Skip to content

Graph stability number #13

@mateuszbaran

Description

@mateuszbaran

I've found new potential example when searching for papers about Hager-Zhang on manifolds: https://arxiv.org/pdf/2207.01855.pdf . In case it would be useful:

struct GraphStabilityNumberCost
    g::Graph
end
function (c::GraphStabilityNumberCost)(x)
    cost = mapreduce(t -> t^4, +, x)
    for e in edges(c.g)
        cost += x[e.src]^2 * x[e.dst]^2
    end
    return cost
end
function (c::GraphStabilityNumberCost)(::Manifolds.Sphere, x)
    return c(x)
end

struct GraphStabilityNumberGrad!
    g::Graph
end
function (c::GraphStabilityNumberGrad!)(storage, x)
    for i in 1:length(x)
        storage[i] = 4 * x[i]^3
    end
    for e in edges(c.g)
        storage[e.src] += 2 * x[e.src] * x[e.dst]^2
        storage[e.dst] += 2 * x[e.src]^2 * x[e.dst]
    end
    return storage
end
function (c::GraphStabilityNumberGrad!)(M::Manifolds.Sphere, storage, x)
    c(storage, x)
    riemannian_gradient!(M, storage, x, storage)
    return storage
end

"""
    GraphStabilityNumberCost

Problem 4.2 from https://arxiv.org/pdf/2207.01855.pdf .
"""
function make_gsn_problem(n::Int, k::Int)
    g = Graphs.SimpleGraphs.SimpleGraph(n, k)
    return GraphStabilityNumberCost(g), GraphStabilityNumberGrad!(g)
end

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions