From 99c80490f1bc9cded7d0147803c6a9b34270e4bb Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 4 Nov 2022 09:34:47 -0300 Subject: [PATCH 01/89] depend forcats --- DESCRIPTION | 4 +++- R/kin.R | 1 + data/swe_surv.rda | Bin 81904 -> 0 bytes man/kin.Rd | 2 ++ vignettes/Reference.Rmd | 10 ++++++---- 5 files changed, 12 insertions(+), 5 deletions(-) delete mode 100644 data/swe_surv.rda diff --git a/DESCRIPTION b/DESCRIPTION index f14db16..9b3e9db 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -14,12 +14,14 @@ RoxygenNote: 7.2.1 Suggests: knitr, rmarkdown, - testthat (>= 3.0.0) + testthat (>= 3.0.0), + ggplot2 VignetteBuilder: knitr Imports: dplyr, tidyr, purrr, + forcats, HMDHFDplus, progress, matrixcalc, diff --git a/R/kin.R b/R/kin.R index e9a5669..b585345 100644 --- a/R/kin.R +++ b/R/kin.R @@ -11,6 +11,7 @@ #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... #' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, this needs to be set as 1. +#' @param stable logic. Deprecated. Use `time_invariant`. #' @return A list with: #' \itemize{ #' \item{kin_full}{ a data frame with year, cohort, Focal“s age, related ages and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age.} diff --git a/data/swe_surv.rda b/data/swe_surv.rda deleted file mode 100644 index f00af74cc482396fab5d01db97089bdb919011d3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 81904 zcmb@tV{k4^6E=9q$q7$v+qUiG#I|kQwr$(CZQHiF&%68m-ygeOT{S&b-7`H^eN7Jq zHOx2|1k_0t)ff97u>m3mzQ6x(w6~1M2>$W8^J2R5^x6En>pD3r6YxYD;n9^Ip*wI^Qz_A^?d8REz!!* zeyJJ3X6W4g;_m92;{ED5Ypd;j+w*x_x$XVBbG@sx^K#1Op0&N}>b58oxw)!oxzWv3 zU8@$q$-1-d;-S5w~F!jD^iU9-JGcs=*>?6S#Y?Ly5utiAJE+&S58 zVl%h{Qn|TdvAvwUZtAdotMhzv>v^)>ZR2uzGg_^4(~P}+bH9AO!+2Ta%Amco`gi@% zy0Yb^edjsb;&S7W=jOG&#nZjjxqIWqbG4|m`%yZ{tYjd@I*Si## z_tp94;CZLJwZju4rDmtoaJwYF5Jv(b8SZTrS%MRRjw z)#}C8d0W-}W_xC6wYyX0`MR^_#pc#~srOYg4$SB#DOGawdg=MK^R|0^v4`h!`qh(c&GPEGu+SL(GAk0X_imd4T^2Pa76OAn&FB zoB{ynf76#o4w3f#g`~FjumPV4HPXi!H1JP#~=+n!3kM zBa!~EjsMhyDBY0o|8Efh0PUv-ApIvpj{5-{;$s5k0RSNUNHWZeq|wYqW(G#3N9a)H z2l+_@%$WbPKmtG|{?`eBR2oL$KUG*v5J5daY0@2lNQP0Lfq7_A=?ltVrUZ0s00wj! zrXqJQ!;JYqGa!cWAb^?KoS94>12Yi4v~(1J6e^LFG%6iwY3jd18VHt|*=#((Krh3> zEyHL$ypUA1Oj!;R0Bpo)#*6^~&IC3xFu>G@NsA&V$WdZu)Di8?41o6Z8!_t@y;{o`>;hMec zLjXeku_AYs40(KE*>(N^C1>{Rr-E>W9hHYB-NehJZ))c2_;S|87OXvHaW+ly<>%Ky4 z5v9tewZyw@6R@yppU2`Tr0^j{E8Vk6dd;fB-6d8y}ZkWhX2QDW)I~3@YJ>NO}Ep&;wiGb)r0x zu|%4AzFOn!IH_(&m|D3r@KMzRZ{RkvFYBB&5Vh;Rn_>x*Vy1g?iI48Wk;ULvURs7^ zcjO*-W2Myn_4IUrApPcf2hr5Hc?VUTC*dhsx$tEJ22jpiO@yRLi zLPJYb1ld7=#hglrXA9RYY%-e)|K;hFukEvZ&mOMh4Ck*~dA^NF_GDi6-tphuBxKWF z6AA3rjYkEK0vF>bzPif&(+^v&8DIDsuL_t-eX9gp&##NK<%Kqmf=T!;O3Y82J57I+ z_H}UcJ})o8urHoL7RBA^_RgAr#NjU|VxKp}_P6ExyMGO0+d=0UTuocT+zZ9ZJK5iy zdQaM@xo8NIhlvN1h!v$8L{y32CQ)j4@XbZFqb%V{&YH(Lc^9bj;m3-V8k?;K5oJIp zfWV(5Ec~~rr<0|DyZecC#Qg5ZEBj;bRfin=3+?+y)R;7(!*xM1?3;-PK6qrZ{L0>< zZEI@A0>R~?y95-Cs=zNG@C*y|;_h*irk`W5>0MHfP8f}YK z(q2`4WT4ocyi{~iVWaOPL~T%PZ#F~c&v$>Sa@9e59>^tW*d%OrqCKu*qsk7Ho82&a zQGypCYW`BzTP_Z0kFm!fP!o`=iUqm*T?lHztJI+2D_+fM^@-!2OjB&=?LOXI!pG;i znBI(`lf@5I6CCaiDMP{J%tYIM9xIhJ{(>Yx{0odP+h+wUG6_<{C5C1VcWa${@Oz67G@8xMlJzp@`I&f*3UVpva>{5qOm$t6auVa^!77?2W* z*VrH>Ecv+7XLQ)Tuo26=Oy<|^VXsMzyB1cVgqe_a!N(-Cqh_BaP-HqXGGc8<82bEy+cgflof>676cJA!kN5 zp?eiCFVh#nXX7U2T;g}3^6V^Jw}*(I;VB8osg@Jv-UXOXGMJkPe70!iIt*eRE&`mi zusLUCt3o%4)XLj|BjSUQ5cDvPz(VoU7kWGkA+WrBzEgHU&glV#?1jBeYCAH9PkaDr z`;t_E03r9!I}bh-KwSLx+A@#DSW%2kN#-d1mx#I5cI{T&wMG2Ld&Y&;nL1^lJ`P*$ zLyUTOF4s#`XAL01L1VfFr4UW*SCOR%pf`+CfRI( z_LC~3JFUoOY#{C|wS}2$2m5n}IUGjZ0SZD~kI$Hh1y2KY;P!Zg+t&CJ4wlnI2;qb~ zaCVZXP>(~n&tFLi;Q6fg2?RI-b1*4V{}R{MDj5*H1l*2-z!M0pO;uLS6a0RKND^|3 zGp9+n{?@o=$B{uwiAqo)*~%&T0ty4eE{_;e3}3GpOc`xaNdLr7_!@WXrt1Gy2#aVi z?9{vKC4USgSvV~lqJE%Q%>5&~r3tCJSw*)Pv_ zLj0!Yi0B<_UY{3+lQKFY9>kl*G|ySX)Rxde1=+;Uv{he@j9I7&XZ?OLV^ zNiw&0(}!9M<<{1l;6TnFZk{W^{^xmr3MH#;vVO{h`k5SUwd;!Y-@>q}Jc++o<{To} z0Vy2Cjqu6fwCQl%f)+IawMJWuz8*f@$GB<9<@;hHsLBGzMbw$A&C5JaJN-9^dNj6K zA<{w8m#b>b^W8{2`^4mkN)i%k_3J#Hmg8DgX|@IiQ3`eA1!RAk{*- zDapWN!Ea*hj^zv?<{<-L42aGtI|vz>ZkO6QzZ{@}0%8|DTDmH+HE>8mx4mw@&JSug z7uVIM0e&tevE%jpJS$ugDtvzRo;TH9+q2tvc{2IxLD=PJQOpZz9KZbL3;a&@^;>rQ z%y~IQetrtHev`1ZMN^~X8NqyMPgbg;H#miU6YWULTj|oCx2rCBI5ZpVklE^V7N>75 z&4h0B1|^bRhYlL&DHwxX2@=WYxEiuV0{bL5TU2k zM4kMPZ=QS}Yg}~ZM2ADoA>AzuVBa?yLu2AW zwgpsb`7E<80tk)gawJ`IE78K}H_Hs|Y*fuf^@sHJErAae{0L?#aKm^h?YMP<8++-< zM9~49y_a1IeSI0>As8B${&Yo}N1JU^GppBW4CkUR2ve;3045?&!j_SzO3G&q-q&ui zT?7olb+E1t#-RgYW-BM>F`#qkrb3$g#q`MTk}Z0R9w}SQ`f`@JurQ?c$ZUN}B^f7W zXabpU7Y zu=e?XP9$u-_H-GSx|u-zM?^$LpnU99A#^7s(voSbaK%$LdzO}LY$SHc`SME_@AxLT zLcj_KhbtcDz{?mH)%Gny$y&4<$|Y}-iQkKl;ESD8aRV*TLxKIi1`D`*j&wsDE~H;q zE}cvZ1>d6s4Di65)bGxIMG9ACn`(p!dzozxLTgn?E($SnG={I!&ozD1|DJ0+KqH~a zYFyHIjL}x#m>EJ=9X`8hX}k|8QTff>`4)7FWvgd`oNnnhypo`Ee&2)rI_$I02Tup+ zg*}uh&51P>XojK@kF1}r>&$h(|Kr#5VQ!-07T#>tx(mg;OiuKqVzF9OBpF17*+k5E zUvg%V#Qyq{OqU8@C!F@wEjG$`e)f;#L7(G8Ckn(U>_HWNLTm!F015U{4^tMu6u$(W z8*1TL`vE0F(yeDxNj^+q4oJjrAy$KPP`JA6&9ka329di_%@;&Rm53C@ie(>p4w?y{ zO%cd>1fgCQFugu=#xo~U3(;I631Wl!r*HBaB7TSNI2;ppP~<`6wgtR>{2R3<{tYrA zMh&^X5vymvlojr>wxZo;i?LLaa5EHFl+ztH?xhSH>k!+!Z0Xn<{9F0-P)YI;Q)qrn z1doMQ)zD~BoNbLpOl_S3i^A61R0;OHrdgF-RA@}2CXM{?`dJZc<>VDz>)#rybr+eq zwzdyC?M)sB02o|!BC=U#CSX9oEI6O|=i*tgqowY=atHs3^|2FEkrwg2ksU z*pbns^bw>!t^#R3@9>OK7T(NYSzkw0n{Bv%!eIBg&mSLF>2N-LPscm43M5lSr@Tb) z#b1jjjTvLou2ShGKHAHoj5x@u4z2q=_#d-srBo$0DEShT-F#Um^_PRW2VwgL_Q$U*JvFp(L-yiqCAh)SXOJH~NI_AWvG|M&?%9aw2yc&g(c{9608qULb@z zvVC_cmQ3r|<)5Lw>b}r-T#YpA@VjnczM+z0Alq9KVU?N8@tbL7K4O9IPyor5dbkJ1 zOu!fNAue60laxbv6-{?fB)y1||HY4-BGPOn!FBYkI@Ok5<;DOo1FK?@swv)c$6~SM zVrW75`MXjtCI73KcL!BCSG^WleDQ53qxA#ng9z;Fr+di9=Xk{(4rzQED>CXrN;V~m9YJ61Hf$jm4t!OE?pzjUK>*{ePTbJz&1^4^`H51!4Cr_{Zp*NfRs&lpLMaOB*+yys!q)t91;+k?jBsuC z4#=Pvop;6Zi^6x2R4HMyPFYA1=Ya8d%D&qZET0;g2q|6is{$ z#0$;`L-5sG)LU93IRTwW7l;Us__q$IeBoTZ`~50~gb7zph={IBcRzo?%!0Ji;G})- zAr`XIZSy%49AtJe&G@%YW@PBLS*=^OTKLD1J5?inH>z#(7Yj<)6BIUQ1{y~rp8LsN z2L?~zyZt0lWG-u8kYe2lqbg3s^C}LIT6_=SB&Hp^k4FR$8|MaIIsqB3iW=!5-@id=ay;+u zi-GHJC0iWCiek1G?}j{#o|KmIE?!plM#9Uz22RW<8%;OF?PEcPFRzxgm7EF+ptJhJ zFHYeYyRB^nzK?*AwD!&Dp`)um1wzk%IAHmG_d(y;AfnVX5R1IV((4J1^zmPM4CN>$@{tr`0MHTO;_qUQrHudX-IM*=9NCq!gSv0qn)z7S3VN+nR=Kh} z!j&cwG|3#XHE$*}NDSlAdQm27Pt$qCQqE52bam!$T0L$EtWhtmt~RnLb}QQz*&?~a zm=%WkzN!0CZBmGX@_d?x?-5LKey};A$uo)(d5iIl5US0*;u(yTKmb%v`Q0t17cf*6 zMsx2%8ASK+bF5|zDM{*k?TM(X>^^mEe3z4vPMxM3lWR>wz-JQXW&;6|5Jpw4lN+KQ zFPBAf?EV2UQ}1O3E|4AYt z-4q#+ujdIZ;l#PI|DvtRt$AW--rUNa;mX81A`u%=B{NB0}l7^_T#@ zo5>O|8>3g{aHiDh&$oF13(je!)rB6~ZS4)~L5kvBw& z{mT+GlnPG7;}Ihn47=PRK~-Ao5{iBMs}8eWo`^6V6wrs1cYD4qq?);l3swHwahK|n z_W7C3R@T&@jMl&TmJ)03ApCAq^B}dHU*#vs{u@X~-B#&i96n9@t09xyqlNCGV#W%U zDdmhBUq|k7m&T9Jc3yjz5F2S<_a!FTh?soNI#iRCag#w|Z|~*e?6=i+P-%8ztHK^@ zBtAYa>#D_(L}Hsunb?+L+7|OBFbeDr(x=`hn7^Hs=P~e?Ub}bbZl=d$O<+V9!pwtD zZ`#EU4|b}R=nJX+vzG3Jk_FnFLb2fswZYG~eyAre-P7ru<16L{{`HAvv&B}au4k|` zkfnte^rsPr4f#9cWF7hm#c&_nz!352H2QkGZp2V*Ws>XT^bLlmO#Wm*)GfPLwF!%} zv)m-f^r+Pb{6T%a!fIOxhAzD$IpsljOlgZdmerDOS_|@{U=Oa!Z7qt1gLqU;!WXLV zI4kjPRNLI>y_1HLIH+|2k(A801*^DbT6qZ>TZi9zU$<>njhWF&v_Py_7-U;VmL|V zek~AydW2QSn{?Eq%joraab4l69t<2Wno+{^B!E4e$_>hyX5VQ-C^dt0G$DdOvLx|t zMsq!zb!G4$LE{RrpC6_cCA$>oG4&)RsJN+;)VygE_`t(`P=eftAFDQiMRKCwI;IP@wi&Y_Lg z&6TWApZn!{K0RTb(7sZ(&OsEU*3pMEAhqSoLXYV*z@nK-$yVn0)I2GLh^vzX;OF?S z%$oQ}8&bLhQedbyAC5ng&!|df)7yeTyxz{mOJ?fQJ+rG}SRww3YBIWy(GzBU>gOeA z^Lh*oOd~G4L!7mp*3hEP_ti;52?QdlYya=tqb|ItSyB0?0vewSq!=5)+NgcX;tx6igc>EcR{P##Uy$gH*~wwo1rdq zwOZ=|umu71b0U|TA8DpAlHYyd=6?`+$7aunKQf9E|0RRS3}lPfhuPxUfuSC~TTYaX zV}cK>Ytmjr1E(SlbF=znPCa;&o~bngyW2{rA=~t{W$s8zn5=eRNXrV;Jw9!W`&ybbRPG;X?R-U!$BK!C%nYnHypcN~X4#D5~<&YmhGiL~IPav?|8ri-IhjRg}qIe>ZVd zZKs4wwnIPSWYQ$YJS9L}gn!#oSzYg~nZ*dIv}{P7{;_oEJUWvBb*TSS*J{t?DE_KU zARn&!l$A!x#8OGXGJG|s85a)NMI5~27xwCp%A)90*N#ME#s;TXrSV300IM`J1q969H2<|XfLR#MUSk6myZdae#f1Dls|Q` z6r@Kb(@k2jeb~Nq8NkVp3*m7NGmS;zuTHP<2ellz8ZNhI>;G6jX8=VoIehuhn z*}H`rfqDk&dL_Z@yt8Bv?u63$9w6*=$z$bnm`f=H-D+?@s<4jnMS>;=%)D!ffOa-scRr1?Y?4ZW8i?At6dN2mdTy?69ZtPIB`Xts~piwh!)XMNz zjbryA3@oHLteMv9m?}^_P7IRtQ%P;DI5Gms=2OR<#SRDQkYCaa&quf~btix9myv z&v+Az?h9C)xZbkFpP*b$njkIVb{pGqA3j1OXSK`_Tl-&p*VT>*PLgx!DQx6j$mFMp zCj%BN^q->Nb>{5EAfe1k{2)b|1{Av5V4PxH&>Je->l`|qchJGktEGBT_X|j+mXcau zJt$$F073kfY!*z}!ZMbbHfu-aMqVL2GKo;5KH@f%TT7%Jo)Sn2;_f~C9R8z4l zloJO1eSir4P4$y9wzd9s*s_j4!)bZXV%$B?9BOuXJ2r%03tUeeA;Qusx$6UR$`uh+ zjYq5OMWJzAk+0W{esV%}PP30pHcFh&@VQE%TnN{r6@tS~L{RBkOuAQX>j;NSXkVVl zPncE}p0xerp<>?7d7LPhSGQ%$8~WnEFOve>$592P7s>NpwjgA2=W8%UJIzhyF3q}J z4Z4ETgyt47@&9o6oPDH*9v+8`OQaMH8UAMqtI-~!n^yyN`2mL_#nP>i$u8VBt?1)L z-g4}hG5%(dXI~WG+XT(Wfd5G8$=Igak!AFK9O`5eIbp}IwmoP?n{RDcGdy;T1t6YW zPH#)**Z`$arxQtuDaMQv-2-R}HySBS{~)1b%)6JkTM6lYiy2E*{Y&*Zmh$gL9xQAn zoEX%ke@*WtUXgM439QG^Q$}2oVAJ)|YUr4Whlq?<0(*Nvg#gK{nOfIR#Pv99oBuVH zkOPKWI%W0pmym-QSyL+$BU-(Dy!6?}rQ01SS%2t{T2sylNZ4PM$Bi24F2-3hva4mh z?DsL^IBBI_f-DVT$)}8C5j5njRnsJRUSon7YhAme?;TQ%9ad=YpB^WqZzn`1%SrP_ zpBjswUffVbT|yAuq01bmqE6a-leudon45349NK8UQR`Q(3bJUE6mf5}VL8oN9&%BX zCKMwCV6?iki@Q1$4-GqtTDDN(SUeJcvr4WnE&G7b+DTElKx!e5caVD#~$ZH@gtKZAmmLPbz zBV+tL;y00|G0gQi*sYZhhJ}6!VX(kMDNN^B7?6*5sv^y*aJ0waCRxcI%+b;07?*F7 zuW`aksJH1=Jyy4~PRv(4rA5KPxTUMYD%GA}nBO_O@cLDaPighWK&)2WbbpAoxla`! zU|~DBO0^i47&fBZa~4{!CPE!oYz_devWMs@g`^z zNKYu2`6F08&FKe{)QuXb)=hV!u-EqEfDwgY__3Pb3$|z6`&r_GM#DN{KZUS1Zf;yWvd|FDkTwehy5zb)Lg$QPM_i3%l4ZN(2et|L>^3$tx!-9qQs5=I;t#U1GhlcaQ>hzLFQ8NW?wB2TD%mI`6ww`?@{Je$35{88!UeT`ruOW z2mGj+AqZnI>bhxqr4!ZOrK911Y=%lYW!~~8hXlj~8&l+YX0d+)u@$QfpAL5@dH2e+L!rJI6Ia>c<^3FdnWHCl}AgGLzl?{LEoJb2`JlG+t?#C!SA z2b7o1$nEI1QL9uk>~K=SM`jz>$WW_gBlcB!4xfHWb-)yP;lVjd6N#Mxvf{fP`eoHw zMj`|jiu@7-hpI9J+evb_b^iUwH{#5>6DdzeX4liI6E!o5HkgLIeHg?{6jkc_&Tqj+ zg(QUUcH>J4!pJAKZ6Q(eBWcs^y%qdJv3`}xxjN%OQGJq{KLdJs62ll4$Goaq=cCE% z$%Uzn1tm_IT78QX)k8MIB}T-xlL%k#lYFkabN3l#4n&0bTCe+Qa$+(L?*5%fkR!}h zhjxa9?xO2zEJD`(4^Z3@#xAv3;*RKBwzre1m><{Guy;f)g7as{7sOd>VeQFQVhqYN z=HQm~XV1kNJqi1AcnAXXuYbcvOOq-+#W=CvdZSs>QDU1l{7=f=A8#b-O$;O79mI~( zwx83aNO^cUAFCEv6#0${a(Vg-r>Qm{YtvZH!qSU*FKr@E+3&9Jr4Lg_M~XmhzV|$z zytqg`*#;>OARCZpYFx%8o5C(L>}=I17iy z9sWPGxg4ug+2W-iO?mI!A?$0yY-ARaJRIrDjZJOjbUH=H-O@+#&8#nESv4%BJ{J0M z5KPOn@`CT))p<#r_9Ae{Q z2A(>EI8S+q7coFCc@07rC>0zIEKy-zy1&`!{2iq0klVkzT_{*TU6Q}Z@mU2Pea%zv z5>fWwN8^FurGP>Fu-g7&HLVa?%%A3p?l&>J)>oC|@cn7G?B@*m@>28 ztcP+rP)vQIVt7_14!lz%3+#;JZ)N#k>9rbGGQKrx2Now8W2MrzHxzX-J@z z3z?jq%hp>{`~I`$%nJA@=3R8dNr$Kv4LOn9)oQ_&kh(l;NFFz~5qBF-1oQl;7PRP7 zLvE0a^*{x8J*;aK^zKOA&}`y0I`(0o46BU);yWU}$5C&G&w#KIrfg*u#^~`X^5GEr zu;ptr#TwB`zi?j6uECM8&9h&9q#pyGRB$#m@g!s7QA8GdSC-CD+d9Orr}vfGFGd4W zA$c`Y~2>(h)P!2|8K+WwK6IisJuRTDrWB)7GCPt1af{uFars4ojvU+ z8n~Bg?Z5dRD<`VJB!CU{BNk?wN7P$!bYMj(wJI7U&nBVXVXiRZL{4NJUbE)EAbYgj z@&E$GWw*leg60>89fpC{C&cJ!>q_tSugtu5Nh^&EGM=P?ME|;_$C(=?WBrG_S96JR zr2Z2(#yZlml2zB((NBo(i9y-izV*Mu)gOZ_q(ps0cKZDAiFBDVMK3(p!i1Xg85ayg zx7k?USw(R5>R+Cw&W0(W%gFn9O2bZvTG?Za!tkfVW7(8gGs z_uDBE{Q07pi-?2mkBSvqYpa+c`Lk}=WON1zHtkv0roPR2UBN|Fo`Kd zhdb3AAwO8E;tE=P;CQc}TZvCUYg(eTfBDK3Pmp)-;^i_ERSuK37Z&O`?rNYi;I*el zAES#**S**maq~_QbcqBn@x%gB#yIz%B%jeG=I10cy&P!q?2@)N#4qW6mb;6)vd~=h zO&m1jw$=oH9Dms~xfHj}UrO9GT?q(yBrt2EBE!N4xt!Xz_Riz`yh@3pHzo=~t(!S5 zl;9knkVi5|&Z(n*SnK2Ihv2GnLN+a@?wN|tZ{gIH)Bw)MQ}1k{qSxHANL{q0GMu;q z-Oe`f;9Vn}SSe))6^{Z$RLc=bu2iZ$myS)LoGS;7QN5;Xp}^8jK89*!Zp)mdy< zsoK{UfACgCIMZGMRfQJ4q+5^10d>ysC?GXCnE--M>gGJ=Yb7&-pumF^3u$noG#>@T zGau8DE(Ih^@~GemA?Bz`1X-MFceWf&wvA^jaF&GlRE79YkC~vqH?_USugroo3h)-? zVew^D+Bj|$#}}#r`bYyUFULcDIEZmYD(Iz~)j)ir>?_!36G%{vUT!004KzV~p%{Ye z%8pq5{JNrNOpu|HFmB#a+vQV+;`eBWjCCvOG$g0nJie3TRhy4s+a9d!2zO2)_QS&E zfX(Z2Lce@`eq~i%)NuF`WY5k%r@5U%LB1l}Bz#~+YULcEAhcOg$NedeZFf*AA7jD} zpTG)EvaP?M4-@Iws+Fr*yXq}jHVTx<^w?WDeOsU$?SuT5B2IBrdpZ@xSlBRJ3xln869(uVN0yqLnGl28i8Yjm2-+=GK_!cvfZ09Am#*Sg~ZZ7z= z8%O3AQUt*GvHG_p9%hQoY7ak8^QY?HJ$sTU@BEXrKSWw>dOkuOI1O;Gj_lEc${gqk zaX~l{Q=pU^Cb?$zF@e5FBy;nyBS(Iwy<$Ar;Mh-Q>~?0-`JRI_=9uFl(2w40s}t13 zq2CcNX9ex#;bisI1AxoBpqTjoP%&Z=A zN3$v^GR+x$DG8@X@&5qn10QxRNSUac5We9SbdCsDYa1mdY}`=1h-(Ic&n9M5y*Zqr z;)T0Jr(N~2(Nz1Ogb>KGKqjh?dk3rCRT5sH6-;y}&5$frjK4`l+J^N%yuCfx_lPhg zSvS8=Zw|qnQk~^44kWDEq9ISd(>Z7}d@*$=WEfEYN4UO$vf;kZF4u+Bjq+f@J8uZH zr|<2x&-N+MZseDTOsBkCM6iaB79^k?EHclANrrAYgcqK9JG;Jzei#cBj`A}GULMUN zj(L1QmYepDyLTsk@XL~1J}Aww8Wsmj)&xZ?O}<>ukq#%o&@XWOJ%B<8LJc;P0{>k8 z0I5w44x4OA?kXh8d-kH}Rz~71^4FgNp-9RRFJGqRQ#?azRJNqS<3)yVF~204;V47b z?j-!kUtngE_Jl%n1f=%i`;<;4XY3zOMsLsIW7=BUA#?5#A&yK3AUAB7Q&o{Fn9HOI zOHM(-iWd39Oop5rw9JXV{5L<=dF$1mSfi1!h{{NVWrPH9q+Z%56)J%MZZXi5-_ObIn+B~cejKD)l;Kpv+VtT@R(uc1!- z0wAgNcWya2$3Jl{_@TRw$m6W>VM>=hgFS?rYVkkXsH#Mt` zi{ej$O81GW!#DlanB#B#vU51q@m*Cbn?y;3P$Mew*&rXRuJ1-2cmEXSz$U0YjFQSC z(0H{{$`Z?@<};=StI9*X6|~3Vz(D)lgJUNPL;_DqWgfMLv82xFxsgkRb~`$ap`?S@ zlY~%^AEwfWo)RSn?3mY&?=MCzz5u0{KxmjAZ?Pp|x8geVo;teAMQnp;Q>+G&{mN~GM>fK)@AXo<0uEN64A8r_GLAih9XrGNG4MbZ|P>heW zr!N>tt3@uK*B@AZFwl1BuTl>_g4B4enz8$?A`J}4jhdN`O&0KOvfrB05&i7kRW;yB z$)*+@aCm!AaG5Vb4^A2Q%y7L};?a5_*Aqv|?4CPtZnGIY=?J{YR~2jskMWh2bZBgC$7%T0Z=5bp-`c8{Gi;!dL2 zTqMD7ZMdDC!kr&H=XiN@P)AUaq@t!dYII%W!jLO2P{IO0_cXt ztwYG9vV!W;Tv3;u;|lNRy+#CRvaY76St|(RK3oX4xHxh2_S2Xd*x?3gRC^wo!qC~6 z9V1vvQ5wBY*?3lGn?P+H`ngec9?uQ}acV^&8OKkw3Eo>iQ?v{c)z)xoO7CO_+0(2( z_;(*DBl8j!P+Mr8q|@pNg~Jg^{`Z08@Qs{`c@kn(7rNK~eUBrjkuqjO;$B&nxRP$5 zL}*dpDx$Smy`ZXzP^KY;pFBfH==Hf-L1IHaZR}XRrbx)K3pMw$oMCm>_XhNli?7Vp z#6c4(L-Spg>KNezedW0j%Gu`U7U>x^s`~oECho zK85$%o{}z6n4@z@ci4k%$sj+Kig7(Qkq?xaiyN+klE3l=^5OZJ`6>B`#NzRU!d;KE zYR1gdEV^POF>|gAj+>E`o9#X=)@57D4Z1!!$rQeHt5`W{nkbf(MG11`ZTS5BA%PIU zFc@Xm0cP1h^r&ShU;Z`N*v^0dUexQAn zU3{kuqh@qVFD`^piEKLYGsl)zYg4n9z>(bvf6}BNR%e3eL~W@im42R4P-J_FmZ6gL zR?Z^i;hy6r{BE-vuGyc>{TZLIE}_@$$?B<{zpLM|pftFdQNN@S5k(YmsP@K)nG&ZF z60%h-;VEv-IHY-EI?GRL=?REdRN$L`C)wEZ)wEWIryMJXbmu!RXw@WnmjX8TO3{p^ zNpZLSKl2YVMMdVE;g=`%3_*)bwWPK#B($x=aOGF9@9m73#qGCosmk-?6m1D%d02-G zy+!>*!?D&w?XpT%<+buQ<+ZXGz7}En`HM2qhTAxBpO9hV;O=~%>taERW3jof%ug0> zYEy%?S`e|q#kQ{zcH>5Mm8p8DjCjOB7r}j%G!5;K(=Etmqdgu}STUR2R{OIh=t18! z2i$r zPhMq#<1cHdzn5m}Ild1IOXrV@zLBBTIFlw1J%9S7Uk!D6<|g0$%KpUEWlX;>q@G2b zFJpcpZWMX3MR8k7vbGp$hc^sFS35@H*et~fj4gc~{gB;^4=)Zb5jB#r zhprA!5mDM3EDlFXpwTdpQ~wVr;s4_2aB06(D83exN(VACz>cDWv8S@_253So0+NcRB*&4fmS!k&!9dLkCKlq z;sH$?`JlCA`wVWYT9S6H*yT?tX~TS<)YRCsP1cqf>5`xOM2G^}MGORcR=UixN?#WL zepEaQ@Ay}PwKgcE0iUBvx&N;=y-fAuVgfU%Z}gTq6yonlN|J*;$`=TCb1netx*8-u zZxL?45IXyweQLi{O33+~TyaWTxFO>Ipai9`!9kPgvFSS_vWi0%!>W3Z@33cbQ0p!U zYl^e>yOy|k(jPc>u@Jo;MxS_2*^aVkL)n~T@>njj=2{DEHr^((?zU@_s|7sxVB4hl z(=?L7wAp-G`_H|h!3Dj1*K>BgR^Ly+KxNonwtx_m@GPSI030Kl)cbBX9RWN@NRNUs z!m?s1+BTqsyncnL&IS&puPP(8iDf1b7HYB8eW8cy2-*;Ycc_aUPebLhNHz16{Tgzu z_=7lztvGq+^Trw#8C-N>*EG!l?O~ptogf(%FHUx3nQJoF#gnzp@~hG9+o#e>JbuPbAHf+i>`z?|V$j>PKJd zX^)%t)@syVa4IH;D8BSTQbVT&*53802I&NQM5DtT&-OiRB_rzvf+hKGgV9uFL_c4$ z;k@=MxyLfA#GUx=;JB2S_@itZ`$-&xRM#0y>$f`dX32sUB)nZqEqG+PFKW&={**vq zh^nVCwAGnaNm^ISs6_ZLKew7~o@ikdG;lERWfQVd-)cCLFsso(;t7<&=h}!h`-~ah zAG8Z)+aWzw-2rEE+gSePA`0bG+AM^r%c=->FHxi5`fi@(NnOUEX zV&475#M$ZZ(D}q}96b0ItJE&LStaHnj(Q6NJ)sF*_bn{BpeX;X-_mjr>ii8fCjQ9j z_ocL334iI=maJD~`-}B>BTQ0HF#cL_g_gtAp5N5KF27&sy;jY67mVLbpwa=SkI8iU zl78LfFc&5Y$X3H0CUT47Z4QN@hS4PETG){a-a={rUX0+w)YJp=_rowx>Mq4@95zvO z$O0m+QcBE;T9nhWKgg-t)Zb^wazplN)=v`}1u=gnI^QO3KuR+E{gX`heH+{KaJ)IF zGj|U6*08G6b*lX+%`Hin{ZT5M>FKSeFpV)GTiFg(tg!MJC7RbAuumL`sdUhHu8fW5 zVbav9s7<508h%R=)3`41+B;U7{yqHD6qFnB{^nwF!9ze~TVyfb^j2OV#@+wNZlXFO zT^yh!B+(y`>2}w!`Ci3sx2yQZw={UZu#_s90`1K(UEj5X1|xzz^^gj%G?lNio&T^M7rFSQ zKbid5ReQFbZI8-&KgU0~F%*fS44~pGEAYK2zHn&OykG0wzQT~ZiAP%47&ez1>I4?w z$EjXF5E%X#&3Y@+kvx0)rQ7UUx9CfcncB_Q|C$FmM47RCal~LBtY`S#fs^&&Wqc;* z7(MOef!PFM$SbSx%^*J^|j2ocJ{UMw59E#UId z74b^RTR|vw%v9R{0u{ANX54-Q5c_n6A02=cM0)%fSJmb?Tk8ZrjvY3}VlW1QAWTbX zPn9Wj2UBPxqjUJ%NrBR7C8VNsd1IrcaB|qnmbT>OXc9mI0GQJ}%B6$J>IdJ7MVQ5jtA*tJ?M`=c9kohIp&bXdg|LS**3`#H(%LX z+)L_7Vle%Wlk!xYr7zKjibeMLPK-t@E_N>10Xw__kqCSSji-20lhU(DPM-HHiIIi? zIRzvE-lod2OS|tQ}DmaAq|! zBF{dv_K`QIKxm9y7uRfQCCJeo)(#~RjJV0;5>ZDMhXZQb>EFv_g`sQ9G>ge-0dc8h zpc{f2MqOfm;==F^_Do37z7>JR&7bI*A6a%(pDt9|l;pa)TP-s_P4XSkP_|GiNMfmy z&a3w?15;;=$$;R$3Ou{VX4I3z#nF&x?i$n+5-Dyt<}_7f8&-p+ih{G-g7~!Fx4B=ldaph z&RYu?%0|SF;@jb*htgRCHd(jJwKjc3Kl{4KIfTC-1pSiKWGthI~h7x^*MFWW2 z9Y^hzS_z8&4_lUGrqX8>#fQGSOt8 zrk9B20YB!hO&P9oWk9xt{mHg*@>F>@Lvg+JYl#}M^qlJx3?_#1uoK)0B?-7kB<4xG zAjjwPCks0*0#SwTxrULZ{kVzEr6_%Foj1uareb40RUk{pUDACp1naOWOE=~6?z6(x zr(1KHy`=n*JMJZwj-aw0SW(L#uY|l@jQ*v>b+!v}ODKufso6ro^jWceo(kAF;H@i> zjJg@!>jOeXok{)a&RiXR&V@|~e8F_WxV zeA}u1Dooe%4m!mN7VA*e58#&&=PJ;FNxsK6n4@w%C_(c%PN==r!GndFIM>P|&z6Fh zBbW%%@5HvW-)GJ&^QIj;3dH7;K7)sU7E>jTC$lmd@ziizgd>2XjUvOWFfuruoadbp zNghGS-P1s1Gy=k#Z18!^KE-l1FOa#9#C9lbR<=)&)q%A7J}B82$~QV7njh5QnZ(}a z7zp2I6yw!*oSnOG@^iC(T$x!_sVk4A=8zc_EABIY_als*dU(xrv?X%!^uo0R5VJdB zkm;48u~xwXvqxF=79s9r&AFfN0@vVrnVD z%P^$1L&tP>kqOFfqwK@AC-%iIpc-bUtazyF&)#M)!!5~**o8xKv(QMFXseg48t%o0 z@DX5V&A^^nn`~^}q?XjEwGx&4IxV`tgw(TAeLUkmUlfvKP*e6F*A_^sxu!0em7pLK zxmo7(dpF5ouzM9s#wmHg4Sh?qYQhh z-GN?8SmCQa2Yf?|w*jAB`Kp@Gp{SOY>;~yKopnp%K+$(SgUe>}JA#z_vRLYJ?)U<)wbAm-W+&^WIvhFZUP^>0MJ2?j3 zACBDw1F~m)4=kG4GlJdgAd6+Bo*MC);s1#19uV9}+t;Uazfv8v89%8sZto#C_!rr# z#$ZaYoJtRxK!0nyxQ2>oH#rVXx_Zx6Oc>(FG2_nzcxRc4tClG)g9AiY7=dwn+i$TZ zA%Yg;WtDIwQQ9=`#_ujSe>uyxO$L&~>F@E5X=jqhU5C(8I8iu{b!M%9dxgSUfi17L zEWFI}I5XyRf-lEuqS!rEWuVRZI~7l!M}1H22J*@pux(}L^p=4r8F@h_av&l{a6GqO zEL3nem}Wb&;s3kO>W8THq&rn`q67!Gh_a@MRA40kd?UFL{Va`+E$nmeySZ!^7|Ev; zaCn6@u6bta2+UX1^`2y5)hkaUIR%*_)3y%2+uyt7PwkrLa6~s$I`)$qyfxsx$x!QC zX4Y!H?tCNG#a0^^m3+A<<@B?Im2kmaeq7(=1#{1@49)8^#PZf3xfj=x1`B2Krn-fO=ixz-juj5|9NTnK4>MJP}BSvIHNO+^yEiqN3I z8JsA{{NyQkjyzXR+#ctxANw<>;7!%I)N3Y(`EcbxTkzZGE>JV!Zrpmjwg>OWtEaro zAM7l2n9%g^9E~0qns-U`4G2jA;d0Jm*c&aO;w)2+PX8M1Fz~;n}#a#hZO{H1Fus zC(3ey)BcX5xf7*%ELdx6Wwv=~qQFc!QAonCxTnQ#z)Uw+$Rod2*pmPCXzuo9h36lR z+AutHWM91q@$5f>xM5sa{I7cj@HE#`Wa5ThYk7*_4Y2Q>HfJc8t=b0Wd(YLrNyl(j0QWTLq6c`FIE+KpIo1Nf!?)L zHb}|e-J2pk46--vqH3Z^fzmh@g`nTLUbk!9V9lasN{}mnVV{^ z`n2CgC@OA*ezH5ODfbY2@T4J|Rd!YevJIHEph@XkT@j6NZ8N5htNq;{7u(_U2Jmca zxd%fFO4^xDxV-za3lo1fzRz~1ya#XdXL0wRySeJ@OHQrhEwgS8S>SW!*eniXkz!)A zAd3FZwnlOCm;Sn?RZjYU9tIj+5h>-kBy?Bg6gsa@nGVk!oor<@ww!&V8J!Qm500d1 zLk-ReAoUXoU}{oC%0pTg)F^63xy?ZZ5xXKN#Y zE9=0x|4AmoAc%m{=oDrrryoM)A3y7QvM(h21$6+5_1L&yPawi=?D-}g!IeeZ`@47a z&LQZtOYLb8mW$ubnYzNThabw*F~0H)8N>Do1-3f9304 z-$eK~jz!UA@3Y=^wR{OLtgd$YP2JBQq-3(iUY*USK_I~qPw6$pF!c9wKF^7&r#H{1 zbB03$;kStf7s^V{TOQh9Xqv{q6kARl{1X>wvKtE+X6FyEW-@Qhve{B$VgF9fCuhmL zY$+m`9De+Kqr+S_GCk`^8av`V1AgR|H?7GytgID#<9AVI;9s?rYAdlXtoNFT+^{+PR;=-RZ_LIIX&1_x$->mj%(hAvT;}*-W zL06JTGp0o0>VYk%6LQ^jvV^G?gb9lr;kq>@RWx1Cv$NecJvmQj1^7Uok0Y>^2A?^Y zsPJt~m8w5HxHwntQ=E_NIEnnD>>fqk`wN1(q;C#sc-)?hSvcuad+k${m=4%3w&(vD zT)i$cC7+FG>vZEG= zQO<8UVeeU{R~{MN3z7bKsbMYNTP+vm`;|0fCrE=CP2!koGy+N;ZHfBnP~7HL$PbTe zuwq-mOXy4Gkt}M$Yl?kkm^Fc34sIMjP&OqolW)xTLLkA~r zIc~}1H`VLtFwjxkDm517tFhHxLL%Zf7|(=e%BZO^I(_v&sp?dx`@URfgqbI#S}sgq zUju6f-ddCa4d$i;$Ypm?1a29`+aI;z*C6B$$A=eIRGH^n8B>nNpE;Cs8P56w{^U#J zAEcDYRI~PX*nylD2NM^pG_?|X zJpZ`3QQuT^YNadG-^Jk(?GfL)Djv=i;!u&Yw-JcbjHnjDP<(d-ZTqQ5B*oTO!FO2# zkSbK(?aX%D2!IBga!PM!vyhk-6|jA1f()64R=EoNN*b=eF$xjqNJBFm-Vm^=qxTV7 zoK5@tL&0I%5OqerZ)IEl|IFAnfi(+?t~(%cU%$-Z;dNb+8t2Z~QIj8>v_ngJKiZ7r z(Y!_2{U*i#At!hNd%n82<~BJRrYgBS?tG|qmF~M_N|_Ab6B`QzpW#nF2g0xPS|Gx~ zy}V!hE2lGeO7Bc*9|R}O52tp8oGuH{hc6*MW`S;C8drx@0Lo)ZG#L10QrO&ciz`a3 z&3^Y(4%buhmQi*&IzEZ8gwJ{On$f2? z{)xP5x8DY9=Q>DUa(cyetr_}Kx)~jgJD<_V<(O#DUn=)Z&MyALPc)w*Mgpj@cTnSx z2Dy03Y~L{r-!n(Zj++@nJ$m}KpY}8>tSLtDBr2q+CDMMSkO7EN^mNHH(0yBsBP@Kz zI$2lMVnZ^$q46I;cx0K_`{~thCNl!O~@}G8^l8?xU+aIBzV)5a-Lk(Z=_=P5jE@h%+)dp>kzXwR08o zNss}K5tjKY50Wp1F7!L*-=FO3DcX_42`F<4Mefigq=W3T##lLS=xyV%gn9Jkns%s2 zh>z|e(zn=+M0q@8xWS!t(P_`Q=upol!)cSKew@A5F2hpj`%Uqdbk9~L1XpnnitDk0ZpoK+v9o{k0E)7)WWjW9-foo@xBWaeww2Be}aO6)JBiK{;3>#2lo6H;k@wcj*Z zwrw|Ia=8TB?^BmtP9<)wDlJb-rXr3i^FL7hPtgVsSj98#UUcj*Q2^D!q%X6dTJ3z2 z$IBD$3~?@Ef%;oyzoZ|gXOX6G=|sbtv4+?jXp(Nzpz`=>urB$}nM$O zC($YGepLR1Q9rg|5-1iNfW>qQ!A2kD$yCrybnZ_d9!=bW zaN-gC=JI&p?%44^hQbb+?Y@x%J+&kXM_pM2zB2jMLU-x9~Bg^QPx z*Q`kXvZ+!0E(WhJN6puXMr0WN?8C?5Qv>nK9nGx)M?(P%`=8f<=QLT`O&Hn6CFIF> z@p{^~J+A(xWsGREJ3!rHsi*!7QTvm0?CiY46eFWnynj|4aGDGcU)$P8MDt|~I3~a8 zXO`Vr#!hJe8PZ{svHQ2mVNUNXmVK5km5^RUBU83!mfvipRktlQBgQtP6!n<2y5@=)$4Jj^s%nRc>X#+DlgEHJgb)Jrx~nqfU17 zlNsaKIA^fn3SVeEb);ee!)R;A%fNR+qide9ZZcp;{g zBXoIls?=ml#F)5{kIMR6jLS(Zgc@j>r6F0UbxDqy{x}58p}G^qP+c$Z*2SA>#TmDT zI{E%b=Xw1emR;?sY{|pCPNS(vJ8n>8H*kyw^%9jX$C{W!O8#{iVK+$nw$ekBtoi7} z{s3$zK@x6wy>GoT>)-|viLtex>N0Y8EbU^V|siWMkN;J%zE+y%-^n)78JD(~9AEdEAn?D*?MN6TdHtuzHpBeFW|3MbbS47p<)tw7-H+yWs zzg`(}W>Y1-)7}2V(ihbKyozkQ(PW{{b}k^Nn^iOBF&FDv;g>PiH=?Bwx07GY9~KX^ zV~f2*%G;`Lu%DX>ru#c7=h*w2j)H9i8W@wy>Xz!PAr;R5YoseD$suL!o-m{r)I)fJ8h^}n!v-!As7K- z)xnm>$5LI_v%B$S_i1^Vl$kU64_Jnj$lN+*ONh07DAVba$!zg*)rk2d4HrrDo#opFu~p%h4F8k_r-&8s2V9IuDw_CSVP2o~>T0m}i} zuM|zBQ%80|lko*BzePy>M=uT5As7RQk0(-0L$LGSNb(^{BtzO1_BXrEc*SDchstWF zmkY95y8VOep;X{SgEe(q0YmpJp;HX6RN4@tr zUTEh(8}9~`#(euF?Yh?sb+HYY)KN^dr+${SHvK5FMRWRZMm)Z4)F1@m*xpAVzjBp5 z1QPhur|Cp*e5?{Z-o8p95z^ODKmG34@hnqqHJYLd$P-$NKJW-tfOdpwc}>qOk|wfVDQXqCBM!HCpYzor8f?_(^%#RS8VBiLcDSf z`cCI?mEtDPUeNnzb>DVy&5db8A>O^ARO=PzWq#NTsWaQ8qad*;#X|c1rqPvI%F`d7X|vUlx|x zbJhe-A>Ofi32qbJG+8r$w~WtQGg3aE+d3lyS!SIy&(@$XVOsIeYX^kIDOTwA%|u82Kp+_QuZZa4tSz5at$6> zH!MBNb-uFzF0Dv>r?~z!lRp+FUf5x5T3%oAN^Bjh8>|iG187>@Aw6W!KCXscvO7Wf zLR?+auEt-!CVWim)JJ{}1wG3!dR-DqsIO%n(2?zh|5S5t*+09ik-F&XiM3?IS?n7F zK*I46yHU-rg>v;M@d-E7xxp>#2X|gO%DsSN-I2$aKuOS2x%J7BT@=!H$~x>}a_ zUSLtK7&Bc=|M+M92&9=y`;_qsA$*{h#Co%GfQ7!Sz_h)B&ZU)0ShGQ9a35gwjMX^sipV-%8}SUC+bPnd*UEu18h;-naw0?UtYJNkfcWPfZZ!&X{J*rx z0El*}H*QAJno5sR5eYKlRX=`&{rgk$;GX%axS+Nz$`^QXrd}N&B!AJiKRGGBl!P3P zw1Vq;3)3Fl7*Za|)O5ZZJv2t;;lS81Ct0{1db36q_8hLJxX7H@dK{O3lh(DWiM*R$ z<$aSK>Vo&Zt*U;uinDD7e9c?S=B(I-J8-^E6=Y7%%^+%OgDZBwxng<@yB{7X-Vd@Y z^=}gML!pY9M8t1&($5P8BBsfa{XZ%;BVDR>;BI2K`*a4yEwwMkl-knQEicXbg4A0Z zsb7IhHH16Eh3TZ@^_!r^5H4zatRAmYP1t7jEhxpbaF$a%I?Uf!(~5tfsp1G zb?8`_SW8zm{ZHy)1vaX#EcFDPHUoYahMletQTh zaq=5FAc%~#U3?CQ>Q#8nuQAs^4YA$n*I?)4j)t1lqh`L1t$+FAL`VP7`ZL$9T`e=& z3fOSFnH>3^SAsfnr_l~LM=>#UfW&EY7nH`?+lMwB^5b{Lw zWtR}duKhNt{J08ptouFj@R#3c5**ug-;|a{W_DF`Ff&C{gF3R&xRaX7U4ewWrhkU3 zoo5e{s@ok1{$qhpGRO1by)ma=VC;LypNX4|(#h(R^)NS+B;71CFBlkaJD!?Ne6BbQ z)Tr6O;_}8%h^xndL}2C zcn6E6dcWo2uWiU~EO*XPwpXWEXo&-m#(4dz+51iE_Dl}5^L!=_6%(a7n=g>A_Ddx6 zI|9ThSVtiK{`OyUG1EOY0#yG{PaE8Ew;qf9C6bt2cl<_F1k)Q7q5G{N$H@R@V?S z_UO=7x6kjJ+kW;On>9*^U?M#REB)pKnYE!pNs(ByinU*@Zq+%`XRwpnhwO%6ndnU~ zZpz(7@A%E^S*1AEvJlUwf$a$#XBi7`LuB^ujz1k2si&~4?3Ot!n(sGB$$alRn;xl4 zl$HUmQ%829gR2bl)pPVRF;7w7(*KaUW)M=AJgaD-Z0C0-afo#g5~6kV1)K`ep2=i1 zw)*$bv+N?2@EKRI5Jw0-jRI7n13@W2Z)~3~pbwfvPDH|^K%mV;21?`CQ16A2_i(x0S z+wmfEITBeHJw{m6yiT$>)|e&MjM{=FDFYr@hmt8nQT%={`K3Egzu#S)b{^J;lEUT) z)*E37cGH!+S162ufm(5!;MtrJWSgv8?Rl*r9ai+#ZvNSjUK=MwzHlm}e@&@qvf_63 zYLZpHN_r37zROUI_kzLEvCq*)S%*avSsS$*@<_+hPtPsS0wQhQKir)~I2o7Kdr`Yr!Lzl@Rfu-~oInTRFU4lp0WnDbUI%X% zAYxjVd|pR!r0~9@q&mw_3dWY=vellYnly{DPT>p_4nYv!KuG zlW-xp6D?)87xPTuXd9!LttKF`tV|q&|A%iU>ftj=&71&+`y77+J)-!dD+`TeOXGPN zJ61%^i>4pmu`!<$;pD0l=kB!+c5*H@=gtFFgf6R8ene^4E9+*Z=R^!pekO#e- zHp~TyVP{b~LqUyCv9)|xc(`9NrQ}qn=O-8`BGLZkx>?Up*J+PD>`lA<QnBZIqStfw~NbVGmc2PLZ%gA-I4M;C6YdFrNP2kBYa^ggG9E7Ges zN9x;S9hlh;{3W+i_BV#rz0X703adQpp;k-~(E~V3sn%)AO)7f}B6vNpaFR_=?282G z(*c|hWaR0Tew6*2n1sejrk;~r?IWKka_vgPO+w2(r%;8SIFVjILus0Qxw3t=HDN9g(uKt#ho*@Fi?5dWT{<|pz zb+bMMs9K@9lI%Z}k9m&4et4x=HRCeM^3Jbjp?AI=(9hmrqXNBm@G}<$h-gFL#y#p# z&LNuGrHTI)QohiRo}cpYvABl*5Le#z^PM6ew^=~&rU|uLQlAts$!7+*XUHy z?L^QzQFd6_aeM1BB^)O(VgBuIhLMr2m|Az%Ck3cK-|xP=TP?TCA0FiWOe=c0r^aqK z`<#HP*pzF6QKKkmOf0MyTegCSEka+d16gmrl05G}Nn+CefW>>1lO=8pGg@^peZ^}V zH3wewODI@E&eAVT*IcQsbAh9bTqlMp!6w5NB=!bQv8|S29c`nHVSA|4UmxR2ChpYs zt#MNsS0NzQtjP{eGGgdWm88z=XF240BR)E>XYl7p)0kNpsTj8~^;yQ!P@*>nV;Bry zTNS3-L1kW(p&v`(TBPKj_(Y;tV&i`l&ssA$AKY1J&s>YT=kNr>m~)p#gY2M45+=F` zygJ5XGZ~uMWv9~rp8K?XF)#;T@+#L}&!2X(_u-ti;nKCUxPdS`^UXU7ai|`PtnGbK zS1zsf7kd2YuO-#Sb78FuBR3#tzfiIE%_khr#tO4I9W1BCCMic-BOUFBMV_iI;pO)V z)tsVTsquK;SMPtLw?P72MbprzJb%T(xRgckOVm*t*jZQ;d6kE|0lfJzkoTF@4~i^W z_ozzl)pN3aP?cAvQ?7=DjA~dV)y}DkxUv2Shp_$0LJ0@0=Ym^37PMzgm-$mb&q8)t z`l(O$Q^NZ4caPre5c%p^DBB*LH-A``S*Cvt{#4$Q8OA77IVyJru=&CkvC}kSXDkQi zwiwSn=Z){q0WQh=rMS$lG_9LChTZKWy&9v^M~s|3c{c#mCA;<;e-^HUOhWn9)8LsTf<|VVEz=kT@9urxA-q0HL$#qAVdrxe1 z+1a^~t{1v0F~|OIoGPfQyV8#5?*%Jzcq1im1Ix_LXMJ@(RC>dQ?Po060t}ysElaF? z6l61n?QZYv+iu|Hzp&FwyrrH7`$2Nsdp+FBl311kzVmxJOGC*f7SU}D73MorQ8#C+KFzYN znhZ7eq{tUj>Xj@Yub0iCgi`7%=*bqF$E7!FYTtP|sGEVvmU>VVaaF{4rC`50KJlkY z{`9>lKHIAGFS{9sJ_CLB&)^ z=K2Lw_TKr}fm$N`VCx~wN$5_SWALhVSxzukyl5b5$J{>>=D8erIj!Iycyr*3Rkkb0 z+cTEs^q%lY=*p$iBOo0Y!ryN^I~TcYYkj{5HA8MS0gcMp`|`78S4?y&6A!h_&TnFK zEHA&2wbQ2^aGd(|k4kWJg`vk9#HV6lqQGTK+)96&v?yiB4Dd!zPt=^V!-R^7`O z$RnCA{*KY(;2nvx&*9-FC!0s7!V!ND2&Ggsas?alOun0MWX1gpNsyEtglV}qK~|+0 zv8t-geI6flqD$n%27S+GZ8jU9$hJHVW%f$Vim1_Qs>jNfVJDSGd7M7@JdDRj!%~0M z$G6?+wAuQ!J{uY}Y-G4JP{VbeEbJkpe!nvKh13Y-**_GjQaj!vEs|5H-ILurZE?)> z$x&%+7}y=|WS>ZvPMPi~QJohrfIJxfU+01FzexV}#dZ!S$F%buc!wazVeDN@1T3-Y zH&y3e_KpQF>&#X}Ish_8;sBVG2L~+mlWkQG&}hbpBwLUp%L#JUPqN|F|8h!;^YBQZ z*&Ax8Qsmg366G8g2r%67Nv)T>MGTQOUDxP_Zr+VI!Z1{1dZmq>bB_K3($S4qe;2Fo zZ-Xa}>ZG8ro$~cAAOn&~WK3Sdyz)wy5;?x{JbNZxEd<+It@8x@Rx>_@y7av?83*Gc ztIqgS@fKKF<|;f>D#O&M1a}>*;b1k*cH77~2YQY0=rd2JiN8wJM~_uPq*^gYda#s3 zooW4{?Y6B{4sqexRD57TQ2wjr{4_L2h5u=};nwZf=qfT3L*j2a#(kYSAFg4s1^=09 zaYLmuPJC~K@AkHD^Y^rVMl&3eF5cKm>g)mD+;rs5$3DonE+&M>?!D_2V9n8eQLDwPwD+uJHdXImgpKd$R0 zh8Xjoe0&1KL-B%(!pV(LFtM=+7 zQs+9nEVUg;by`QA-c~CinEC#Gt!ux}LR|A9n9LJHE<4rm-|l#6s8umK!Gfd)@2`NL z`DKn}cKKsmn?1W0|GP4)g0aV6k22NDPvbWVMEpFY`LzFJ`vjH)MshXrkmD=Zw2FO$V-Y{e18*pVyO5d9n1K_{dnlbti6hH+}Rr9WppqNh0P z^u)Oq)OB7A%?ECMjhBjq=ma6J4E>}_1@c}g*UsL z=_^jPxyP0v*RhVrH+AQ(HjzEh4a;rhc?7!SAx9VxdXTCYa}h&N@Al9r=`AQC-?W$;S=C46 zY_Ageh+*$w9s2Dd;Tj*FUX|+5%Wa&ovIhN}t3;%Y*MuZpi!9~ku5C{d>FJ^$`mBcH zg*FhQ?~=onWts5Z^E%VcLypr%X253IdnanqvMO1vMg9bn(6m|$RO7Z>$XjN^4Glo- zZGOpax_U z;LDv8I%So1|3?ul@6ofey`ZFSbnSYlO^-`Pv*gcWy?puRMUR=zuT5lLk^AWOblh#G zDB(5$qu=7p_8k=0mUk{9Ec2}eF3m8gf1`#yb>s@1YEkJSb_47BWr1{q-TG3)3!id-kU*h=? zkMURM6;Gs=hu#3+k#k7plz$#h-U(f+8r5#w3R>aE)5>QRNbIA+F0qVV92I!psFdU& zSj5^^!uyVs@&fiAcO!! z?hkkKQGS@L)?u|O{y`F}&&iT^WL{CL&N9RSa1b^eH>6zdoc$#sD}(T*4{p4c+>2y; z6s+4Aa%mRp@ zRoGr~jLzcA)NX+7ByKoqCk7f-N}$#CF4qr32?4}xL6N96nz&^VXBz(*nak1cZa%mh z!J8Q9xQ0Jq0|MYjTyubJZV%^+#F>=vfj#f!>7j19@%#SsdH}Szvk9TFF*?zNq1_o= zuN)~R8ZzN%wSa|;zLAbGI25iWGQ7%kFxdz4rc>P`Srf#`CmJ6vloHUHb2S1(0!hhf#iX)*} z3twOT9eaE~?L=Vj;%~dz9c<2Y(zgDbu)63rplAkvf<(AAFehp)Y&(xla{;_@D2B*1VpQ@N1zn6HvLR=&lUZZut~h8Etz5OWR^~(rvH3b_W`>``tc5eno5zCPx=E zvi%f~WNG1<1wthb0M8@6$ckdA@Mf%~Z~RQ6=3Hd_^z8bQ-kTP7kYeyVy-TNzAzg$i zOy)1#P&4e_)l~XfSHkLNOZL>r8$OWh@UWTSC$D~~Nm=2&#{1a?a+B#195`fth7X{( zdxS6Bc(e6EEunS1t<{9vZ(?jeCmuoZEp4@1c+t)??^+yQ%- z1AYLsd!E4ZEkL z$ay)L5@+i@{ojmR=4|bCgqMGh9jU)uQioUVDa6nj8CA7T#nImDHkY1fbHnfLG~j(m zaq~~8=HEJVGq6B8*ru!IATc(#==D%1HQJ#x#?IPydy63-6e4OtG2>Xp3i52#Ov5Y? zT~-^C6F97Z+BC7lhpqnIAB%wfS zEsO|6-;q>c@?vzY2G&;Z2{AU&4>vLjPaffdtNY*gi|dg>%-Pfk00v(-X;w#|nz|CQ z1KL8kdFwqYEIsUh`FzIa$U=bPgzPj3T(b$xGMwrKsU&+^EN24Z&#Ytg=6-}y^R31h zL63UAA>P<6D`J?x5ldAJJ#hp$^UqFDNt3^a<{Kn{3(o+m=h~z z7B955#SYw1`8w~>lkw{&Fl*m%25UGh4IVWiilEBZEnF8Tg85&~Dh48V;yclSW~hge z`YQptO%Ldv)>eG5_r>mBN|i`vJ?Tf#<;@SP&}jZLLv z{2OPDU$rIKKpE`DgNC3v>{D)h%iwCQeuTBm0PHXV-I$6S5~&^XNl$VQD&Xh5aWxrQ z!$5tT4u*yxX@T#0ZB{FS5^+SpZr@G=!2SY-ak|w9kN(~0zmVM7<{$uW8O)jQog-MU zQ(e4=z67rXwyi51RCbGyX#^V+#Hm~%RXuNaQx%FhMN4mQRGp~i%?P8-@MfMoL9m*9Rn1@vVR+&REOeWmCT3anZBTq;I`m#d zt_Ncc24tdALc|F6*TCKY#XJdLI#x+*n-gqx1)1|XquD3g;pQd6|67Fe z%Hl#oYiW~whFTu5>H+XE2XK5C(B|!oa!^ExEhLjSG;ift*W_R3OtBI@eSb01W%ZXz z1JFs#2fZB@Jfvn7pXLf&H(`YuDgWIIc02cuMR8!KH1?Iua98Q1yWI13%$d7&fHq{G zg>c9@!JGcfi&lrwewftK*Z32stY>5Smk}X~e$0tGK*?;O|t zdvlwGRU4NuDo@%x9^#N3YEUK&e)M0B*w5tb=a6F%*zbxELY%cAKhu?KUvh297LA6r zdQB#pdzTTg-%|dVbfit_lp8cbc_J)$uBc3U5mX6RyC_QYD$ae;rAnf&Rpg9_GTE@$ zH={%8TA;?Nev$qK7J-D^7z;K4olemc8w8=%CvANXr)Fmh|3tQ_FW^i|@VzPwV>0YX zvADTJsu?UtpjdJN8;n>(_g;7_U;|Z8j&;oh-h@xVrbc zNk<#vRdPOQp`bW2CZzBrmfnxiPfE>L>S)o=GXf#;N4roNQBQot)dOnPTsk*sIW7keRjGn9Fv9$6w`dl9q|o(VrN|X>rn4)U@qnbk}pIm zFPScVm9>=Efo5J9PD(;EX`8v5Wltg5HHTl^5k8+b!SOojASqLh0-r|=s#`ex`4!F= zG=tDfQl}q$7|fr}%Gx|u*;rqN?#k9L#WzNo+c^cYl0~nQO2kI|$a(9|UUVPdwF|p0 z@rErYUH{Zj&+bl?!am6^^QFoEMS}dDPqrw-tsuS~?QmzT*$ud@>IFKyes7h_eprx!!^ajOi!iCH)=8{9ktL=C?f;$$?>oe)Elu-@O0I$&*Z5Fp+L1Hl58 z;cHbT>rEbD!Zfb~5IOQ>Il=CMtU5 z$9pRxErzalZjtlVVMiZC{aR9c?pT5!)63~hZqRPQA$drzQ_OiJ5o>Zic=Y9lD+E)g zS((0e!K(w6505pGa&STb)W34Qf)uqbn1V#cLG>Vl#Rk~~+>nMm?~x?y_rU|HmD$GS(qgLk+la2+N$daFy4RJ(M(LUa%WC%=UpP6A zfMi~jhzpiJ4{iC<)g1}@eX6&lmS z>*tA4gU~`q0K8(!t-~?<{s2+m(1)&qa2rg_?^h(|5eLm*rMmg&CqpWzpuKko-?kFLGX!SV)RezKM9!cBDC zE=ioU<)+$>O0S?eW5*52*073;VW?9?yr{I*X;@m9!EOCzFEwiFHlC7gT>>on4n)_| z(>O7%zJ*n7Gg6(~@cX|ux-z9Sv{jx;NE#IB5B+z(S$lRwzqKw*Zr3zTdgKi%np!n+`mZmU>lk_ux8}Ul9-{+#7S^ zzWYoAKIK<4jicE)=Wb?@%HDTvmBd8=K|sF0Rn#T44{I4jBUJ}Ddo9)3nI{9y8s`Df zJS%r90EI&z#}z(H-33UypDBN@wL*sALJ9;`9AavsBCJUg#}cNq?Q@0}kr0>YPxWKmdfVgR8^`!)PtpFN z5gIsw>5Kb~jcRFg_jade6BZ;4jhN>>$G!MCL$}d>+GYnj66~oAmkcuAqe%^0@aZ}@E3;9HEEwU6fr@Oc}QRRrd#w&@E@58 zEu++Lvu3VFH72KvK`)P;-e;qh2ZJWPr?vmd4;>B|h8W**Cv}=v#FDDF1r+ue@fWi! zjP@^H?0PPa&NkJ*cTj%>&eeNLVFy+Ub$+n*K=rQh(dRQ%Bh&h($q?|WzIzE;CKKo6 z&@cFt{^hv19>`jJGr2Xy&%id3bO#tRIHv~@f5yMA>B>Yx+LkfHCan!uRIx zIq6YR^GaRCrf57>1-!tvc{-?cb;ZQV>h0&*2UQFaU|Hn4H7jJ47c=<`|APBQ&hMoM zm2c-&=Ngvw8Nx-`V>Nq=8%#1M^lspqnPxtCWe&SJ4VBg8|8i?KZ^~+bX7a!8lAb4D z#|T_>^`mNuF&NyR638B5hko~`8y**&!s1i{6|hWez}cX)P^{-yrR!(Oh;+CB=gDPV z{XZ)!DeiXn`@ta(X#Jzy|GUt_F^XTeh4(r$j%6Xi^xu0`?^ zRR`VsD5skY^(-Y;B)0!PJnTOsu95lapNpT$%-UtdszQln3k1yM=y>Vp@wjpK9CSG4 z<0-&V9*4))O?OcmJNDHt>_NxBW%1=fiHCm^Hrj`{^Nk1=-EwioHb!CtIhoU&;^Q#pE>wVz8UWf z|Iuz8qHpkIN@}t}KuaNXjqIp8Jn0`f5Dnb4`5(U{q?sXD=uKE;oEY;}olnQk!t#34 zy8JEB1maWWd%~r{l3&xzysZxg1UyMI@LZ!DAc5__>XF#N<*;c^C)8_F>y~$F5+gn` zO!cp_9m;ndpTK#)@Cis3$!IgOy(uJ8LyFc)Qce>@9CiwxHmHLIQ@>9s8-D*63}UHc zs}DZDr#$AVw@-O$b1{$mbS4P%_u~*fRZ`T#0Qoz&^5~%87K_VoRbghrJ-313AY+T@jZs%F2Qad*cyH~0CL~{J>F6!E#E-OqH zlkZP@flE2vGFEoBhO~$Mfb)4L_{>Wib8QFERl?s?qS7s{z-V!H)&Srs3U}UYtf90J zoC~#`3?j;S4$H0N%^S*9H(lymWi5S5dxKqA{jENVPZ(b#v{VCYEMLWAGU{ykbScLsB-@a=RJ7a@Aj z{lLQK6BwqY_+328qW;>3V9j4hOy*rd98T+K32a}<&gGo} zmf{MKIk)u(^=P`|tK9dgE9jFAmlg#klFwl8C(xPB19glDUoF1n`F zM2vNR>c3%{F$LQMFWM02hrtnNM+$i1x9*rBzfM=c?rEP1%ks4ga-e~ z419fD)4_6(4Fz4G%^GoPhK$Q@5f&@1GG=vPd4;c5C)C2mocFPO1;xKZ#7L?McS9hq zZ~7TWm9l9&$Byzc>+nS2%Ra(&0CRSKrau9-d3?~Wyd>YXn)+I88p;*x$JH5q4mO@t zZF4c|SCIPVxOU?jORU@yQ+)2PA?#L|=622QPymZ#VqlD=&sK@cQS8812cu^ocMK7P^ALEc9}a?}<| zpH`~^^Tv`pD24Y6~UNl?ebjc>A>Z%=Jpi1P9oo*3NEBIM~ z`jAWa5Yfhu%PcV!7;?bQgoPmIBkspgUl7$|hDFvMwvy#qCns%@mZn$36^3xrUbjefgij^@R| z(1Gxj+Ep%YAtnoJY(zlNo<#uw#2lQ~UUP7_o*i-&2R znYD@~Bmyz1p%HXo@76BmkmBdYi%+JwYz366_GoS|I37hTM?g>eWM`Ju&b)3ny!Y-1 zG-?J1!=YMpwShB!h-q|3?WXPDt%+~Lc%2>J6hZndU_H!Eg!UVs`)g1zu50t)5!;*m zd2CeaggV_me8`NCVck=uV}KB3PxVlykPewm2Ylcu6P9OKLhU4$H>0XS4UPmiUm2{gVB=6Pjk^d zR}|Y<>Y5$U2sGAUXKXVk&yx25K(qGKKiRIWZ@&ptMwJC!rqYrC%av!EwI z6b{e9TIcP3!{$t1K(0~7Vr_Fc3Xpl#!6~soA9&k^My;!DC|7BrYKi^j)nt-ROcSs; z_B-XPuUr6+OZgbt-oN{~u0}l^iATq+G@K5;!1AiYk_q{t(-$xgBwnNsK+Tft6i03- z^MJ9kAYP6uXom09qZ61@4M-sC9B*3TesxfW04HMIRu!XKFfzetct>1UtP|XokjCsT z6|ykli^fdZ3ykOPIzdB;BpvB5m%VGt&0El@1IH!Ip;Lks@m{mM8L+gWr}PeLwEZa& z^!gM1Z!6JjPHd^<%#x!>0*757b6dlzxwPK0uIc6il%`IiFp(kWWJS{|tuc}??s6p* z00Y@~=xHTsDJ!?%1@Syw$!xql5Zc&)Eo4=bc|V29g5}XJXYUG$c*UVWZr ze$|-9+#@Z%hiGVY(!O%9Gce?rh%0O4w(en zWuakKfNCU`Rf5zCt*h1FuaNH%n%x>T~p`$OGQb;C)&9rV7v zPdu=q#0pR)LG+4U=JAyFR*sQhl?>Qj*Ck5RK61=}xS7;U+u@1`s}-F>_fb zD`9V)dQB4LuNiM*uXbAWu~xiMb8scXw!2tf4|`w{G|h?*!AHS}J|;^_^dcv!Qe!TB zdP;s{Re6S7Ggg}D^{eVK>eYW++1%LX-zS{8_otlD*sw7qjR5_L+nrpWg>7;S;W!mt zSimbPc1b9y@6SjtY|TBYw017~9*+;)W_Rs#Q?P^&LPtFu>E2iKaO6eAElYgmNwoL< zvW;Xm6xX_`87NvbkjOmd-9rktfnU&2KBZ5AFvu^5*$2f*!8_Ij7x57}cB}!?H6gC0!=OvI~f^mTSIo1j`N?#Uer@;aLF>jbMoLxr@4Rw?RhN2 z627)F_IpiPLieL}o1Wx2C;PZeRjr;)4dOSW0Fxqu$pu}TL=RpD4!8Bg!82f@!dWT87b3LX9xf zn^Pq`>!Ufs0*mdW^XgbgC`v)|p1Wxg?RV4x@LDB_`4L4vo>TGWFEjwLib~e3=!y4{ z()*V#H$K!&jxvZjpCdj9{xmp`-VJg1;rT@Pgp?)=+=e}LbX?vlI29=8YLZi=;H^w* z6k=;QBRtOz+WcdV1N>Gl>M5$d-+mQW9@ce^uF_eg!-?kaNBu98LZ5rzF_zK@nYk9& zbf(A#HH(<_e@jB*D-X}vauL^(w8VcsH*cS$-x~6zdX(7l#*3mbaLN&-E$(f-Ny|I1 zdvNnbw9o_YRjBTe)zR0qRPkt11Vq)CipR+&>#F9Y+|4ibn(r@dc_c z&osjMs_4M*&#N>C)}+@$IMyzyU1f+^t-*3UcKbG}s^27>KZHri8*FrqVE^g5)h9An z?xMMLmtRsuP}QG|1usQ0x*!IKLJ&U-5D*ZOpg!7fXq1sN0v`iEWz6awg(~Vbcw#+% z@BTeLJ=Z-Ph(YM~ zk@57fG#5PP-XH9ylD}z58${1HOCNvkPBw({U6$FQN<%f<#~hEjRzQR)WpDt&a7<{( z6dp1n*R__3$(PHwX%cfnnZ)QAsxj2AlvY zf@Nja|II(al^m2F@p_c$76}HTc{}OV6hw3i-t!V$c%CjMl(GG29#T&QbORODL(9_s zh!kN|_rED`&XL8&3U0F__(FL#b{_@8p+Ap+jTjV1VIwL6leitAwcI^9wE9r-LC(QwPi zpz~5o_4bh(C#j2ZFrGX=6A}Dm^`KspavK~zRB8@MHDOL8QerY?A3M~T~&F9 zZaebi=+;;$cwE!3Hu0g8xa5VFQMQ#=&lAn{Cw|nUGE(8SSru%IwR?EFlW@d*Av*b& z6&&zV3Q_m!7#dJ%GdcwSZi;%~@wP3b9`o}d04nZ4>_2hUOS?M6qFmcT$w+?3!Q|$Z znLBeB?U+E^EXs_utBC!oqN~!^ckRuRfBdWdI<2+k2^(TFSLD|yx(6(|v;fMJG86d2 zAE9lN6x^S0Ou^?FpvTbl0lS>MOT-WI@~Xn-*FtXUAz%vKCaq?>v$T07)JenXMvBg> zqY?G)g+BiENoE*eKTRbde!^ zg9ESFO&)Ul?6=3-bkarim$7Xnv^~XK z@;tepfSn)O(oUAtPq}OHbupSb$b-T~C&yljncWCm11_oEOlbAi0$c(-drHZXdicLD zIy+x@3VjQ_%X1ueknuIa{h*YP!60JW-~Fy+%dwF}>wIDF?=%dbu5ej9Mt?8N-thy& z9(~4y^Xy~Pw2P+zO;&(6kG2l^;!d!6qiXpG?-5O9z8U~aU&z7ZCqKhwGE7>)+?I(9 z3Uy83w$*0vpbF2klO`UxJ&a~E5ihD%zL4WQ#$eus`6DTdqIIcM?T*L^Z+j(6eB4#e zKAbOU#GuEZAbjOBiklfV`5N%s&dh5EQWOKFwZQUceVu%vszCY~)|1PI@w95x*- zQEygbTxasxe;EGzsT+{K}-U0p!)usA@Uk0_#7sGFk6qMdf3&;RyA;r>JnBQZl`C~Kb1j9nGI%x zN#ElukjZ@#e(UH8XL}0bJ`s9D5VJJ!Js({7A_qsbb$ZiU0kA!En?VWz74Z2S;WF>C zz>DfVn^fyY4U@P#87QBmQXCS*7K6D_VkFk~MP!(-5d8%zwq43xb=<8hek!%t;Oscz zv74-{-InR%PYNgz8D=l6C?A9Wwb|kBJ`xA~mmfoBrQbv4f^@BuUr0DV->+#REOYgg zoX3rV2^;p_Od0eqj60`pQOJvtCsQR~;Ezk!H6RBxzRx25`#b(K8^gT3A#;#`p;s*L z`|F2yAf4tcIK8$T|5Q=VujFG@3Sh^+xyd0nP0FYaqweQCi=ZErt~e_IZ{5|^+P zz{7ZMUZx~D$lx96yhr%vO>Q=Bk0oauF+?Wt;PGq~jKCIqPX6Z0D-30x-sr0d)*|7{ zKyN4x#qN%quC|6LcNCIYcpw;grk$YS)RJ5E$xX+AJ$ZGHQQi=sZ~9MEW+hN`GzVxv z5=){+`Hp>*lHt<02hSb0-_X4R;huQQ%t7y|$>yUjZIntaoSoLpY=Q%%@yLuFk$;g! zKEHvaSc34++-J5>vRI-P(P^#O>Ob*Ve72waq{XCqELvifZbuFuWaAMOUKqS{rxRr6Ej*A{Zam=YVwWon zU0{;+ssmG$i%j~2K^z+ds2~$zlw3__wUzJOHmM;wR*5HVs^wnz6(*fHvJz|{B-?3G z)wNb=Ww0oS?560;rYPtb^N1opt{jK+VZ+R<m(2&NljNCU>oHwdEl8oBT1I8uwAcz+kjmO5Nfm;#{pCc+THS*-XH!VS1RmL@^Ht8+g7>X)X~SBiIS$#=Z@|pk(@F?wBU)SN95-D|YJD#A;W7l&$7W zUF4IH=mYGa1Ehy82|S z)W1#5Oo+0e)tVH^;`x(~byrG8ge{CWlzp~-K$#MUrbW}OaD4Dv%cLJ8l%Ki4 zM!ns}A8h>3gUW}ESXjLdE9kdHdf9ja6rp;ES0#w2zFh4yx6ayR*LqH|K>gt66P}RP zNSjK4G$2-gw9_xMu~qgD(wN>877RK(Oo=$1Wj@Gi7o|b6il;ITxPZgZfXuwhk=LZ0 zSbu$Ph;ocgB4F2}eDh9y$BvxVv4))Vde#N=1}@=fr?Opzk3K~)&rboTL1rw=*q}bD z0BjjyS|*PC86C@A+b0&M%oA0i(=%I%sqq}igJ~7^eo+X}ilR5?{J88YunoYkga^#s z5oU!6QGQYkcL4;R7+^moOZ7O~f1~U9T(aWMJZ^Gmz3`Q>T7Fp%HB}f|`=1Un^xLRT zOQ3KTB+^buA0{4UvB}{@rDZ!0ENI&q(QVnEs)P>3k@8|Go=G= zwf54cOeZD)=oH%XhF`(lvad$0ddhC%IP&QX3077YmeO1QJb}VZZnmUCj_HGO1-oSW z6=m8T@=LAk5ssSJKPqlOL%)DN)$<_Km1@P3CdJU6i6&@lJd*KgcX5WYV*P8pbz^p`4_3@T@CwJ6IotEcBv-BqP9q!v+lu_KT(-| zAG2sD7-{bGKHXX8yFA*dxTNCLlF&M<;v%ey+dS2%*~m|IMZ`F&vZ;3x%J|>e+n_ zvz_OOzOpu-rBb1BvaFqzr)zhSoN&fOSj(E4!@&@)kBG&e%`09WU=6xQ!Q;3iLLxLV ze6zrMl^DpRsJYN>fWM(zaY((olqrWTDryJ9`CsauOr=G~G!QyYjc|sZt-yH+nX0NK5DNTbI1gqfJaRD3*ym6MeenJQl1Z1DZfcb=N1| zaszvjK7P^i_`qTXFojr!^(Hy^wE>nD#R&%gzsuWj&Li()ZaYS)((FWV6!kEJ;=7gl_RjllZ# zb4u$ZNrZ!@k3{{isHL@02$-J@*Z6;mw5j3tb1y8%1q=a1%8o-w5g+5OUvkrTr8+Ov zM2drDRB&`H`+M2y0m}jFH;0}aQdU-zSLc)3XF_h3R=38W}xAX*g6h05G&EFbVR9qq!j=nES50K@0c+ zpg5_BapJ8)>_HH`L^PGWU}x+CoF-;dMDfzmcNdV_eES*etgitIOCd}zP$9}H(g}xj8W=NQ?_*S*kQ|SLlZYe4qkk?e#sx=D?dHvDVwmiL2W)x+RE%r*FENYO zO1Wrv5ujj)O7K%x?R*-UCfDnK3fK*%lpk9?C#{?LZ9ZKHZt&?oZ}fM7(PI&-%r>mS z4vujr@Db81qdMB6QUCRLu_TT!+3&Xq0kQ)aFaY7;J2V8Ud7yN83 zq@%2ktiV-!H6gH}dyA27@K#xHCE&}3{-EAT8e%{eoJ<0>4U%rCab;u*g}Y6V9X?m0 zrseq5`f>H&1#PB7(EOzr$FTv>K~ZyG+^XUB*TF%%Ml3K$)Y*gfgc#XU$JVx3O)_kUajL#uBYxw z;C^#PlR4|fc`rUaAPJh@`B9MEcAd;Ww!w4pDCQBI$0AW4I9cCdrE!h1I;9is*}EW7 zNq;KJM;4wK`O~s}WWIde@K?3s#$7@)9Q2+zN3MAY{%E37zL)-jjY?*auyq>AAj8r^ z2Qmt^^X=XA_F|78aK%yV<4HUCQU~KKq23-)^)2S}A!4lm&JcgnicX7(iva9>zT~CA zyGzaIJ|a__OyYiG=y&qlogA0eRwByGE~YQLKOe-OIMV_eqbT1DIazdeHJC+*YQQ1( zv5(0QJ{PO&{n+53OKuT~s*xH4t{thtea39g>W<^7mT0t>x^WS+P&i6x`Ei(s-E-6}Zg34;nDdM}Acmrt+HMx|S)bC=Yt~2i7>7o=?g* z8?x7EQoM+>Hf|HT!-<16ory&<3s*tcq^!8d{oKFHg#@IDb@7+#{cu-P2s~n2{cQ9d z$?fjGy{>TE<<1Mup00Xd;s*3I!Q%2iG=1&07MVfVSh~i2-J+f3ZWPorN^C_?CoPg| zr5!4eE$?PvLEZO>3R*Q9r>~FLVC!Y`X%L#&?*y2i43V#EU;IFD>4r7D!H!!=o80Y~ z0|~b)%n%u#_z@;hoC;=j;m57?zS@ag!YbR+>ew`caNDJ^_D$8z?mH#4&f5B752mXo zFHP*Sjrj~TtOp&Ly*wdIzM#~dV?@((<%Jv>JL(obaH_Gi!%n6)>=>VZ>U1*KufYTxxlDk|+89q4Ll zX_<>jIcuroFGyTDkI$)GYQ2C8nyirHXv@!i2@Hi-b*^T-2Z@D6{3P4SoR$Ti?WM8( z@Z`|>!c3XYv^k~r0wNGf<@_!pPsv|%XfA*V%$Kxt{^tdosCfR?H<>TfVL{{3k0+#2 zK4_ZP7UY>?ctJp1&3?4&rSmgiChKiv?teX+6z=c7UuQH=J$kT9a@=z(Oh%)yJ0Pr< ztMe5vsbqV9g?-GPf2rI9W&3l&<5;MDpr|mrYbH@={8m{)=VhRdgs9KK7S&*;))nH; zXaGSN$^Qe-EJ=Eu1&pi`s{7YkU4qj7A3+6Kw|{Wr*;@vBhAE1ne`x-akP!A@lv`4G zyNI#f+sMk|O$hujB9E!vO8>>~^@zU7h6k~mwRR3KHa!<`n}-Q0;Po)y!*dKZcQYa6 z!STwRM?lMXy`n2ODD9^;`oLl@>t^KNfI+5kj_R6owKC`d&LNKPs}-*K@$lJO zSplDrsVJ-NCBwqVzNuK}#0jnpx~)^8bh-#}Ib||E(E7woq+J+CPGNY8_#pIbX|wiA zSuE<>=*-Ewx)c^<^nKnf@!a#J0h6{vo3%VG1+Csmzsqi)(geYXhz`k=)L`VfkdXr{vY@O>!~NJMOd(uBkXdpN|Ph1yOhlmi1gRyMXgNrbGMWXuP>32YL2(? z>PmDc1+xpMqp0(46cj*pdc^xoor@?P6YyXp*zzpWrkdpUtPu{8@;chjYAo=Qzz4&I z^(kW}^Xc}?Xu*w09{ji#LXQfj`%%~z?Jqlby&$K~^q3=z5jp8vT6>zt7-i`4P2HS0 znf!Ft=7L-cUlaj{W#eD2;f$QJB%TtYvh#DMA*#S>K=ih4S zWOQ_5I;^y(5Wn1`b~@`PUfcop2?Ex&WR$D~?!vRc5vTaFh&D-7xSyw?Rm7-hJi3^* zJ-XPo`>OEH&eZ&)Uw%Uz3dON6oV90PiA2K4!$^B1UThuApjw1zHf!x}V_kC5!46;z8KrG(5YcFf-a@1C4U*;l+OvLdX4A<9S?M79I&XW}- zb$;BrXMy1hTFE;|#~H2^G1wzIKk+)~W4uDFBe#VHmw^JEEOt324IM?SA~yXtYp`Z4 zaq#+izip;H8B8R4QwG!)-m{#cP)nq1%-cLtz&v`-dy#3FfRAgNQ{n4a;cqDcujR%N zBovM!2~}cekDsToZKnXAptN`J@TJ`AIT<1(<&^m9I}4vW@Z2~;f4uBtnI$Tw=e!TAj8 zEt3cwy{)DM?!KFxwL6MWEUx9PTs<&z;7y1$R3uxbB8W)FhNUx!ft{+I% zfB}4o6c`6g(w&jj?MRz-_L@CwjV1jnK7K&xTUUO5v3fkp3yRX_! zU=ZojoZ(2PZiZ~!q_`m!O^@?!0&zYFvd~$7=?mr<4ru^W-__75OXn#!Gf3iazu0DU zKCAaUkA2^B2ELXQEG=CZPV@@wRkKXwCFDTb)8ehx2%C!ncDo=tuq`hd-))~6 zoq#K#7&NuBHLlK>{)6TeZXtdV4OA}vi?884UrY;FQ^+*em{&2%SuLMF~=6) zY>gp|b^u}kogVt@eeyi~<9ewqy(g~4QT^Y8!Z1aCja{{J5pabg2(N60&Mhd^`HFp| zNhw%qbp*?N&69oeBUiZQwS+CIz?MN&xA&g@CC0MK!dVfY)g~ zt8$R+QY7Qo=n3^AWA-+UPTXzC_QYrz(#64<0p6-LfN@BGcVt<5LEBWM)Su?_%y`qd zEja!yMuhn{r!oS1u8OgblPt9O7%39~kE!x7jQ+sM5F0w#Kh2kVBH^F}b17D}1ND(w zVVo418wP`d$}Tr;{epLYdfCL!A8czTy?ly>LkSd_}2|zWq%*Yb#%bTS)GbF8XIsbI zey$xIcr4RWJ4I-gemL*CdMbXk6N+^L`xrSN*%RRW>hGjq7uAH%K|<3+qnU5igAQ@ zh$=2kcmIlwPhg-mCR(r&d;zB|=ykmamSK~&5 zo_NKkvFlE?34B{!()QDuUFe^Q`M{QUnrK>WpNs?AogW2uStPjHZ^(?{MhZ$f=cC- z^`p|pAr9a67S&^IcSiQ*R{IS4IvqiIGU9<$PCK$voKR*C5y&8ays{!FFp+u$A_gLk zTn(05&ZeA{7tH`DSkk7P*f&gl>;}h>;N1#F)IeK_r@KfFTjVGN?K84jnZ7Lq@j3+* zxwrWqy6wJXIce3FNo>j?6RX@FmWrajfd>@c9G!a-cmmo}vlJE4+DKyC#U+Tq0AMmh z6|B`>$j9P(QbE6BUNsJix*;U%-UzmC7tV(kJET4j&87oI;}Jm!3S3#H90wiU z102S>ZIR9F6Xw%q!$s;WaWM^;{z&c0Sk^EA<+8L`$4&T$JBnZVmwI@ARhZoy!`7ZG z^Ru(C@&l$U%^l8))hxp%D?*#9I57x{yMdjPQipr+OpUwreRS1u+X@vDD*5{%oDumC zB`1Nn0=@w}CXhjI$Zq}likj?|{v_zJ!ga1lV zy&TT5$(5M8l*pO|(Cc-KE2fx#kQ#FTlF%Ij*5RMZ%m#h!u+hI5TX!Q)`pAE)mgW&}7gKUBT>?<|< zWI7&@@vP|i?L`V}rZfuJWL}dyoVtVjrVp&xG7Z$|iu+3%E#}?ALn$rALCj){{Hd=} zWY!1o2sIn$?tcZ^n2FRD0xSRFi)_j$XI|T71f#Qe*mwP-7ie;#FI*CD5Bn$`0uN$7 z`Nn;Nh|JWd8t{!Py>gvGA9YDuU%a$wrO|DqtHQk(i#Ix+-o*=GT^F#lBPt}PEg*Y< z76jlL;e3kZL7X&q*)(5oPGJ~2gMX%Jcvo8uls-EGfD3>K{5aphS?)qfpS&N>{XU~~b|dYe(@Qvbt=|A58)_XMWhsIU#B z{>+zeTux6OEi~&lKaNc|XsUU4#6ycwx=#aT)>MQkf?)y>I|n>BQn%B+`dW`aN(gAx zWnuSGet6DMP*7Hi9@5*$RpM@y5aa=uMjzrGWaNL`22JSlFvMBbg?pM0lQ=sZQQJa+ zi{f-2|v--OI;Ekt|PP3!#XblOPt4K8t^3uT2 zG-lnnN=Kmbs6@`&78{?+Al*k+2lo{)Y~XoETA%@J$(h<}h)>hH89 zVt?3K1`$V+Pz^gjvMJA6{1#o6e;jEZ%&a%Xm&YYOW&A&C@!s&8jlA+5u=aGyjI^Hn z!q~c~^FAjo)Vb<#cAL)`;I<(E*NA58>xyLu_8gyTF=}hgoDsP*=^=UIOnfe7l)pjM zUX8x+@U09TRjhf)C26x3K|c9J`!_uLmi#f z3~et8wc3v2;NthVlo35V%$({Yl<9qZHe)jnt(x^{e_HS z8rp2Z+w2Fd!GMV#m;E%hMZ_BUVbfc{p7f;)d~)>80WFGBJSPQSmuO2SKCm{rO-?c! z<5^B$2y=XHH)FjRY>`u0l*R@dKoMUI&i7^GB}eUQ>3Z!rZ+lUkKB;z;%fqEQ%bcih zxYsg@o*9XP9SIIfGEY}g?m=PEpWuMuBa2HWWL_kE5Xp+zx5rZSb?l-iSFFACF2enM z<)xkEx4QU*6yiozdIT8$Lzz&tZT`@(6Ir*iFDN<)msuuOMd1GrU%i$8OsEZ{I|CJq%c^tGdg-7&J_#l*~IMT&DNw)Z!XvkkOc~+h$Q51ffq|a@Y zI}gM|fwu+wgP*cGuo_$0xz74R$Lq)hTWks z@F1iEL>ZjHhOyfzq$GX7v^yayKv^~ta*|L zQQH)KRGB+R-Mj`lg9HOy<<<7#-IVQs(Q)lV7uys-%|m2nx}!PyE$?Yp86a2i3ABj2 z`Vpj=}>{%D3tNy9f#+bj1l8rA;OG>SP_MK71|3@+0y>{YrQ|lb{RS@Fg)3MpdhI7?fJDG_Xm^wrDwtwr!aD z1`PK5eFn2+5%QOsa+B}L{m;c*9RVM2kR|D5xXmKWw7SFzr-Rs?nno-T(tr<9?BdY( z1mPl({2J5^rHbTCU2r{E|QN+!Xc3~h!8!la)DshwgMJkssDsKH~{r2v3 z?YB)3l1VynlVYT=UN`%J$OGBUR*}M*@jL_biKQ@Z!JvZex@%}LXJQAm3N_mktvQ%9 zk`rvU%Sq1s+|TL-e;%nX!tEKoQYmF%qEqBaZ0KOR{F#4{9<6j0pLJLSpA7j8ns11p zkYLvBb}KICP_jCw$v~0DUP{Bv?{MegRgzF0SNpZn2-1~7dXBMRhKb})b79ruFp`nw zP`dtbiIpT5y>T_g3!|^10w9aY6>LQ(xDFuml<%C(9;KVS@sjM`Jsa}fr9Qe-<3I>+ zN0(m1*%I#&ux#5(I1TAXrfx3df~7|e>i~Z3eKn`%E82;xUDOBMsJczejytWWe-Cc$ z@78q1nQttU5~#xXe-2QuK&Vo z=DLFTTfE^@E!)m-jXhWeOBnT}m7J((%Oq8j;op<_y3k-e<1B$QYF_uiD`{VdNonvV z;z(xo*jIQ?{gW@nzmhe86LJZE+M|0a8!@YMBzzNg+^o@+@?^qTlto@x7Bzv&vLt3w zkc)9a&5#{6WW5_b0v17hO!rD~fVhAWOt!C*3;l%@QiAd)sqeD=tazH`+H^VT94NtW zVNC|cH)6{;XTjcc^?+Ap68CfFU(&*;*C;vpkl}-c?A)| zW)ShD;Pcblv=w3Y3Hpt_*Q11>4%M1$r!M2*(Pul`3Za8L;cA61bv>F0fJ-W&MQ$vT za{fBhlq%gc$XW7fgdh`wevK;^o~B>0P2*uh!_;2E7W{4viD!nvuzIZ()(MchD2Ur? zSJbKqjC=rV)#f~lJ)b(2cI+EmI4a-b(X4fSSIe4Wz{|f#5-sEu2bGLry=aGc zV58da0B3}_H{Do%xHLBG>>rtRcBxF=vNAi@s<{m39A>4#|A zQ}j6LkzE-a92Sk{*H%-1tM@Tx3GP^1=Rp5rH&2OkLO#H0L!&3#UxrybJ&w8eGc}Rj zn+)aL@-=S$t(V#oX)jtSGv7jUP3Wea%r#?8$lT6;6tt=mzSC9e=F(EY{4xJULDC%)MAzHN(3nTHF~>iu_n z#(UnM8qG;7wBL6QwsdEmNr58QXsW!d{F{O2Qw@hUb!QFo(}JjkP{4;wBj{;+v%m655^I z%w#;X6E5laqiq^JeIa4mFt7S;i-_W(_UU z5NG6*vgJNBHZx){g0HtI-f8yf-v`TZB{TyL25z#7*b zrNHNnwPV~l9y7TR&kD5J?q#&Z6k@iRR#~<$_@_k7Stixh+k~gb@hSlG;sF$Z)@GKs zj;09NA%)1ptf*)1!?|W+sAZY|Zo(4#$ zBACJ!IFVeM(aunDzBX=mH&mCzec7Cc^K``eayE36r{?N1Y(p#EuDQ&6llROB+Kciu z?i$D42AT+^(beQF^e{Zcu8^jy@GefEw-quEKzb9o6&V`=aJ-BbkDHy4gDVJrZn-Bx zHMZ!lP+LEbuYPJytXzAWls=#uy&|?}!fdK4iORuz$O$L+^<Z;(6Bbhm!Rsu3pg1*CzyBsn5!5B1P=P~ zsOgr&2JrR#fG{eT5arJi5{I-_Rz=R)i;*(Kbpn^iXwd*&&`37z2qWTt%CRMOMmE$W zMHRL*i0oRN^>C3j=xGR=i$i_+{EG6oMX3Owz7I>Ex||p{p*YFRjRO9%2TAc*wu7ed z+=nbj|C|RtVPTloVCoXh7)FZd_0I%Gop#h?J2r8Td2(KN zklLv2lvNqmtHgNH!h$)1JjRQ9%icEE(Tmjrqoo)xvEhS9c?;+#NG%WM-EL_qS>RJ*LXpF%?z%x>S0aNg(Zf-*Ihu-~U zc)kYuId#FGt~OC;b0}Ah zKo6$C#-spP>O@~x={^iaOu5IfcmV_ez?U~Z8%E%b`*W+%m*i;_YJ>J@$$hQlwukUL zXck8~rFAyk@0}}OY2+;7={NDw2f68$hIc(ZLqoUj(j$KZsi0cgZq=wP+^oeRp#9?f zP;@W_mi-{kyI{kP@w;&k-i5o=l;qTtH#ieRzKU_GKM%Y}Pcs8Xj9Fju{e}`gd*~P( z=)Y-gY{rsH$dC#WAPaE*I9P-u46)#KU9u$VBmek2<{v6eh-eO9q>sM5-HyCvNT3!5 zc{tY*rBqxP5I572Be35T0bDS-2cBPQzcr7t4c3YzXCgLg4-($8koy!BV23!Ztb`7d z!fCTUNo!0C#AmJMumuL*2=NZ{Ng`+)##gBx1f1%=e}J+M~X);kV(*uz$Z3ieU0G=gGFbWHE*YZ5(~^@2q$bw4qk6k9z$@-NYEqO0pLMdpcj$*t_P5J+K2ABx zKsbcp^(|q>J)Th0S|_3}`RZ9RzoBh3*G+4u094?x~sDE_-Sm+~S> zX}xTG+eFG8I?b-U_>EaG&rB>d@Se@X6nzW63Sjj@;k{Q=q)7XDg()i0GYX2Ef3g?E zauO1c%Kr?A`rOXyNK6$iQS~29R-H8iA?n?dME3OjAUUd>x9s9M5I#8q2yMv#Pv)PM z)Re^&inFlM))mD{KnrKh6~p};JGwg?_4e0HX{$EiEnK%d!tIFM$%J`JoBV#e_9#Yx z68a40l{#$GloAO_;pG6k-_MQG@R5$^PWv2q<(j|rleD=VANGkF+%JZ*|NTZby@pFY zzklsr?vun*w`?oM?~`;uPVG+qrHYXA?K_#*onZ-11ge`vE!$_zc5od7+8twr)?I2w z_n`XZK?yJ!cvY%yx?s{9p5#8@W|&=VJRnZPrW+GmMkD$kXCFYXdyNaNda_lJ3M42$ zIw-1G6U++*5iycNKo*pxI6W_34=qxsjBi!(b}(+XZjC18q=#9R6Sz74}OH)(K= zloE!}6~6W8c!t>DtTb6hg>IJbHc9ecNm}441E&@UaMrig+?6y}1OrPwp&vXogk^zI&D#JwFs1H8w+63{S;KOgMmf0MGCsU zEuG!M)%WB=mP-hE8y$=wLi#aHRa6AT)gAt&h?-J?`MK>Ams7wFXK)Qbe#mXE7Xm~i zcI7f%lmq2w*xa0Un!`({7xvQZ6^PMTcU>x{pw^=|TB@W$o#M7d{#VH5=``1gDZeg% z3+90}g3Bb7STmIVc@xN_NtxGhygw}v;1v`egz46p9PVj1lV7VauT8kqDla%L!g}PC zKItU_#UD|ByfpfHFtFuJUa$yF6oThe!k!O(v#)SwW*?6&1E13jnuRcVn?-dNT0Uex zd_#-Hi8>Pbc3^5g{(2POh#oAU0>xqsvM-OP6_6EW=Qa5gF=Ro_&bna4>%#j!uF`0E zGfpRD6rnJ}ld!V#Zpp(XO;LBk>nHcz`r5cUyvOdT0y)@0N1@+R+eZg4F?o zLq)aX7{JS-j}`lb(K%!b6~X?oCb?o7&Dwri6JvRhw z%?oI*jS;oo5|YsJSbRL&zTZccrhif=JhAA!L zYC6JBInL3acTBgEXOM#LXm1U1t+S(CcCHF|Tg3kVMo;{Y#@ig+QAu~yKAU<&-k5jU zas=C$e#ww^0qko^V4JXd0K&OQ`2~)Mj=UTyaU~mT>y#vS8 z-4{*-CAxWOhu+IU+D|z?;uJT27q>BOdDc=j!lmj5(ST_VN7N4k3|xy(nX=dx$bn#t zlmCKAvE{=pq1iNV^WFPS^LaCS9>+sJM;DU?Cm@?V|z?l9V97?`pofb7u zqb}Z%U zVcrM5r}&bSe#V!k3_#7TRO>ej0&JjO&D9IqTlTWuwG|>c-@YYDo{(%{r#GmoGcL)LjF1ZCJF2xqbp zTLI&YmBMWCE4dgUG|ael@xO45Ubz#f8ou3rAkfn&qqV>`*URIH_A*_|?=m%T?Ya$k z(zQZN0WtzNS+ql-rCZoH`E6Bh#rvz<`5E-Fb%MD*URR856ULHfYyS|^jE=+;GY*)H zTG3nr$Y}(LN9;z9;rj1W8VW03s^m8vHWmjNT~6PKF?pI1%j>Z+z*kk zKE@Sk4B`bMb(P_HZN@MYKRw`YuA{M?pob*IuYQuGZfp0747 zzE~BA*SMc*dAzuIjhbnbjC1gm_*g^gAuO9J5^T@gaI3rKJ8v(EEFpq+w3C|fpD-ew zMeak!#WTvDMXWoi-h08_aU1gR2nOOq`sw=5Jp}uLKpX)|f|8p%AFMuH_+Nu{b{~y< z%xbv%jC^Q+S$VpQ8*3gz(~ws_X`Q!@{)Y2E>%zwbo-eRFun{e28@zxS;Sj0?f;Xh2 zA@lH-4GBJ=BBN15dy8JnsL=Z2BQwpbPru;)f3i;O*M#UTYV}yD=f7bgH|o}7gnPuR zODrYS4|EONqWd;_9RBzP4_L&;D|Fhtw?5{{xi1e{52MoE9Mc?{?PNbIOiz zo@L`CM^0Yz_NP$a0?|;m`ypr9Ki||UfuhmsO*Jw$etD+u&<-Iuo35~I0 zi2%82Gxgqz&KU#M{9=0J&pj@enY8huV(za*q@3};gaV?A-4!6vC_QxBFlw|{{uI5i zM#5LNB4&gqu&ZluqZx>ZwDB6EU;S)FKi2t93x81H8uA%1C?m=8gv<)WaBj2%y3WyZ zga!Z^2ENYBA4;$C`j51d`u1;>Je=g!Q@S!P+G8qJn>kEk@Jccw)E{A}&VRdR$uv}8 z%^;*WjIj-XgeH#83~naMM9STB5C;Qm^#*eYeG0?9)%G^F`>FM+x14sEqXN~j^AsE3J(DS!KN5x{$PE5 z=siSC)RHH{14+jEN?M^bcM@C(>$mk~=1o1t57985YO>i=a9{$u@?X}0nWx+QwkrMK z=6I*V5~F~658TpWWbQ9WSdD4v-kQTr6rV2KAtOtQU_>`A5#UPsJPTh!fiFUlTS2Zm z0}XcOIdzlfaYQDDL2j%66iQ#{2iuODQSbEbu%m-r3byHblRbuEieJ%F$>^+3slt%W z3}OdNlmBW>B$n5d;7Zi1n2<g`o_c_JTo~)@ljH*4-k?7g#_SHa+TO)7hjd z5>QBS2X`8MVssb-U6G=dRKOi5TFa3D%}aH)z%0>V!2!Rg&mm6-Zw{?}U=Wl96^=VJ z%Sr<<2@-ByzR!$G?Se#z?Ln3(-+OHbsj*g*a-H11JqU}H}@cbJo0q6&kBsJs;ibyE;C*UIM_0YgHIl%S+nfh%f9O*!)5v!krBp1^> zk7adgR09AdX@)+)v#?0TGa_eU4+5=ZzJ7k z(JYW>&TiVhM2zNiluXVD**X+O5b%m8<6a=+wa07%&kc=PuLh1c{yAKy5YM5eRi4w` z4MK7y5c1jw=OiCVJkMOY4J@SMs%JP%%wP`O5l2yMC{!eQwv^-91aqhB!axkNyiQUa z^xI|bTN3!sJfq`-;(}nNJ20dN04{kd`jEhL9^n6JVk;&X$U%0=AYeG86|S|9Y=~$G zuZWD3{|=va4v)?pSF21;gE)OyYRYS~<9`P__nUXKP-j?pZ81yNJd+#eT^$om3}Kx^ zvEQ|O+Iodw2$8mZlo&3j??)CYOD6RCNm*b@Lk!v14P?+LjQUsO@+i-pkrWtmQN^rc zO4Sbcb=$Y5gV=be<2YNTNqllNeWH$1olEUi(DTgWN>8wH{w|~PN-T@DEE8UF<5tE_ zMn3(YMH=#q6v5^Fq>$^FDIG8o-B3a)DK*~BTd#+I;K(Zl=I0g4RmuwN&>y_ ze_x@s6VLtii;bXap-%%nz!TG(tC?2KDy1z0bt_Lz*h-OZeHoq=8c!q(?{ zlmt%hX&10lbx-esPEcOmo)`=`F4lk+FNYMSMn}+Lz|=G95Mk2gao_iMz|xeyyw~f5 zQqcODu|UL>@Q5amRX_2e+-H-;=7-4TIwzVKMTW;Ea|>)aUz8`-5csjcTe}*Fc1%T7 z>OV7+!jTf2|L{keW9F`{2fRU7kA8Uw+suMASXrzHYE3dMlmj)gh9m)3+o!BvsQe?$ ztp&N}iR1cAV1RjP4&E0t+T7uHalk>>b^H2lYCz`p>GjM6!qZaTY-k>J{*kYIQd`WT zfUxy-Mu1u%`>Z%eAhWRl;oxv*=oCEO-m|L=MEYw`6oIz%BU3^wNMF3KHl?h$z`rhh z(rt>;@9!KfD0uQlf_Ez65js)YEDk z0yDjah_`j^*@%aF8@gde7SUVmG9cAxf;{U598o~HxL=XTr^6@*K zmW<}DX`DG{{+|pkr$;j*w)YI4;EIk-(#@)_86jSX+pnW&4kS`j<`JFWYgVU!MF-%S zh!Fj7@-Fs=YnB*CAZ7@yB=kZ<)WBdb@VROXW=fkYSJyVPB1*OY<=wiZphD9?l#kFr zrXqrrqqqi8Jdpf2QbskzheAWcV$i?X7Y|wRyRe|g@Is(OxhTc|6^EG_ka0{VwbmD} zHw;Oklgsalia>dYo<@nbKQykuC8vFJ50L7Nl;P3mca7%V^QVyyMMWScB7mr;cuW;g z7n@e(wAN*t0C8dA5DO$DbSrVt0~$i|-UMZi^{O9RCZZG)z(buo-W;Pz8yLQq6S3yM zd)t%biZ!9ii2c^zRdnXJAUk9TY@oiO0If^cEZ!fiN(Xzok{2RZdbJR8h9@dW#9|9j z{K)>$Cz>lm){DU4Ts%|+LvhUV?yx&CRDO!=ldbJm$Y{YBUb38le^8Owi$hrYEhm<{ zm7zbZQ(5ptZa=;+=$-YdHSqD&1gyZcWa*u_OE3=FVsDm9Y1MR_V^HEI`m8bDpm1(k z162O`>-*RV@An{Yi{vIg!rcpY`y>@2BrSe+X6-)tr7_Csij6t` z^r_Y(z$*PoO(U`V4wjmdJ*W6bV{;;C%no1n1*>Rhc$Mw_j|~rT%zPF?-nW_J-R#s$ zQE-5p3cE5}YUPhg=S0He8Q|H0WctOw&>k4(H-7IDzoaZFX*s1%!djP(NBaIm2x?ub zc)GB3aK9dEzwa8k<1&d-n6an>Gy)e_+l3=3ay2Kroq?cLgrXsyt5`Ye$vE?+CT;pl zD1Bf^kr5#e8;pWgI@s$YGs-A#*`Y}hjk4#PWWrL{};HX24llNz0*y01%%M}a*-Y7t4WsU{di&q5q#zIB@ZZC)U z&f8)#DOzfryPg!sG*(6Q{Z39uMnuxhLdwY^W98rU8Ki4YBqMsrXqJ9LJ9D#R7J z7AAUGP9Z(eUH%KL=%CwPy(fkm^VQn8#1!7Mbht)LNZRBsLdije%BrO$*g`$$rd@2} zXi-CuW=2Pif=`XAvs>8*zs6f+AiV`Pm~E*qI$aFDo%6QmpUaCB6=X?i&2)EesYz0e zHCIOBR{S%g@8X?|iJAm@c#p%|T9Z^G{a9SnGI%xX3jmEhl8LUt*9 zK@aN=SL-tPJ@+~>SLmj#0CH<&Y77B(@0b1IeA0R<5JM1s&hNzlB5_kW3rpRB%d+x* zMSr$9#CNT_RytL=&gZ0x}&v{GZHBU}GRW9upk*oD{CD1SS@&qKeeh>5hhkOJrc zwWW!sm@;f|^H7a$zW3mNLpsw}_8{Avv%lggo7~Avsyy*)yJwJ(DEj|i=X+Joj7nJL zO{Pe(8h12=^1Le||CAwx;>g7*AQv`Rwsdx{viyA5*5{xI*=kVlMM7p=c%toQg%vR%^~@eT>8zc|Y`vpuPpd|?mqqn&w}zgl|LfKjc{ z6+N1tN|d9J$aBu>W>>V+TRi2HACL?pJj-}h&p)kIzVM4`z@^d3kx zL^Cfc7fNg}6kuaW!gpp{8XK9X43+0K1dLEd2@02aJXD9F!AqgDoIOGVPNZxC*W_*W z@eavnzPSs+!qc%GZ{S9=+$v3-Kd8QNkHQ=MEiCq}Sqh_i8im$Nxmbz=aT=?PFUCnn z5f@taZp*eDXYDN;SPuL90@0=>kP7#`rz!vBrmK;QU zuKV<+zdBsAqjLuxVI?Hs!fP$~ng#!aaE)#kKNNCKW@tH4c@LIKKfVp25A<>N8GK0ueSKU=u4Zs1#tAM%{i zhbaT(lNc?cT68^RIl)?zu?c@|<*@5o6)uD{p2aYGx3 z)cYlEL{S0ss*UpMbtvlja~th+OIsemrODcmr*T&JrPP46+rI2oVD3g{BXk&vklpqx8P4|J>)iz_V%PF8_HC zY?hvOSu6c=wQ_nqhQ^ATLM`vYfw$_iFt6_MW4e5E4|>FoffD~ zstBAe_G#;80MU*?vQOAeTSQQqUp6i$-TcOZWCN_z(sT+f#O>{X4B!Vf`kfBy<<{02 z#umHw!}}6G==cg>JNUDy`WTzLS;G+P4q2|_ilK49jloTmHbN8w06a5uCybR!_{hfX zXOe0L*zr$0EJ}bj*>1VBz^w%Gn+Wq@7ECHV4%_E#RosbPTY>QaD4kw^D^XD6wisFl zRPfnb8afI`YZYI2{T(9p*`2?t-dd+`Z;&RwXJ+vPsjb+h>yIzWZveXdiw?=ZY2nGQ zC_PwR;M4HQ2VUTuy;PHa&@j&Afq(?N_&aFaT`;myt}0Anv|@Gbj_H{hd9@B~pEbQ< z(ZD&#xGg5kVP(2y$wlJ;QruPTDcyCM&MD$rTF5? z=byup#mLRvpBRmNmM*H>3(|q|%}%ZzWi*@))ROzGYnR&jV&rG0rmw~Q+l;8}QD1RF z!$$5)EAX3Mkz)l3ZS{zwU@O~!uIc}hUI0+^=0Eb(l=Dj=k{5MP&Bh)XyrzlMdb?)-hZYlZ~Pi-1+c0 zV0Rm&y3b{I&bRt)JHW0?h?Ib50yWtkerKXT100tnR0#pR%AUg_1(!f_Q^_c|c^L`a z+s*NDh-c~yMKDPC0Wc$;I|8MG!UU@J93(03WtZadz|i2BWm|?I10ZA;>2jPv&$Cx> z?l3R{75>VfX(9-F$tkaCZIm66qOp00E9pPx?!p!qLw@@k-b@EeUJgrhK55LPJS}z$ z@>$jrZwq`SvY8X>Vg_QL{OnPFk;t{Ik=p_FZUDN5(6xGLU=GLR(n%{ZFn293|4a^? zFWK_E%rAh8Ugd-?DQ$LaG>};vu3gv-wHv!h!7}4HOR>pF%^cZ3?N%A)5({TPfW7cT9P2Orq!(g6uc z{j^v(;*J3gjT=~eW>R|m$iHRgohy*|R1ZFm!5Eq#&cDd~9PeK6fN|wnk z%5JMzt?8hB-xN1laxjr7B3g`csFqxm|FeabVTsAxJD55sR2|UoqkfDfgXEn3F?7fH zt*i#*V!7&+5ZJ9kg;D{0Zfs}I)`425a;g0pzOGAYOf*ceWvXf5l6}DYJplOeU#Sc` z+`}ANhD^cL(eREd?yUoX3tV|@rMdh27h8|GVR{JV{$+*OVFa)!(XKOIagc-q?;qBE z1&VD9AKnBw`q6t}*#FF6tTUx4j3acC-xlB3kO3ZIL6;^Do& zD39qWhSO#r#Etlp_x_*nP_&EAMVB1~icbKxcv&F&xCwanwwdJucg*@fAK0)0>{?4C;uQPm}$>Hgy5dF(N<7btOj}zhYt*zrnGMVGE z&~Pcn2FmJ4QZ<(WlKxLc(Q$<9?oy9~hlQpU^PnEq-e64&EiE?2R?44vpc_O2_QyMM zEjl%_^XSXl{nhUQT{x^9_Z|(Av^yUp45-;WPzl+O=-RqhE<#>0YWZAaRT4Z8I;B7< z0EHE`6*!84fw2b0Wr9Xf^#No3R&#^YiWUJ+nocxgxSbfL6N2s1O+WZ()+4+`Aq4!f zg29h(@E#9=kV{I659*?1q1Ko&!%9bB{EZY+^||{~gRE*Kd`Od1Y!~{5!=pWwJR>%D zm?;ic%4KcW(BMR6Hu=YBnsVQl9cz4sc!UHfl|qcs?yy&2gVi!eP{Oj>@|@7{hOFel z4R+%WiaAKFLOV2%!Rf0=xeok{T9hfl#lFbDA8B<)BI?E8^%r;$9$*J1Y0ocx`1eS) zfj(rC{#yrmhGf#)9X~B2SJk?ldZCqv*1%R^3{*jNA|1LDPM6x|FW3l&W0Hv(e(3y9 z{8qOD6U`uS%$_FI`R9y`$FyKc?71t$9LFyLxN2fTa8TAW+c-n;=TiBFxr-Qk4pk*V z!2psCTu4v=no@_43f`8mKdKc2h-h$76A#7JNg^;3{^23DRAv~&3K21!7rZD4#VA7J z%)!7f_V*-_z!>8R00?kXDMLla*)}esa%C`zvO@rd2nAJD>wnDjg^t^XR)X7f!o$}6 zSgm4$9KQdN2;SQI*`NKP=_Gp1deX#)Zxy-)ha)0t6>tmzAg3oe)(xfZAAFIC<-1-0 zz()){Ro~h!yk_Ew6&B9H?lf>M*htqJ4ft!Ij3HYE259d;r@CStfE838#GtKU2>f$- z_d=eSP+%Hk_o%;?_XEzH#Xd0y;Jx3rF>=(ABdM zZv2f92`Sk-qmr1|3{wO^SL3oaG9&)NK0JUglqzE10P-!A0ol?jb?f@v!J1_s=+wL8 zLD=^t;CHkBwhW{R1M$C2P^#9u*iYDcNzQ}|DI2aok(Z(Ob)|-BHz*gw7hXS|ibQ7%RHvtZKffq7=b$cSt9EPY8A@Da6 zxbJ9CBLrPT-{*N5uodv31bf*M>r4lJ0kr=BTj%E8626Bb2bFOEQkdRKHCHfj2J$Wx z^?`gtJq^yTA`f+tXdI)rS2>sG*b6S|!|*M$p=~kCl@Iq1yH6JgxM2I1PzIKXugR`_ z>82bqe!uN?O;^S9M>QS!`3?cb{F}Ek&kn8jhr_@~@HkRYTZ@ZvIe$CH2n+#ZSQkPz|QZLc^~SJ~kaLvnB=ghc8zSN9Qy0)?oS%Jyg4Ho4PB2FSQ_ zeLL`4Pt;nq0LQDq@RG=P5C5z99BS0=kw0-ua0mw(gy;>J@uVqGF}W`RCQsYO42Z?J z86d8r?rAcOiyr`fa7--^JG=YZx-7ei#`+P=HKt$ww+RFr>V%ju6hB)%3&!+SZgA3> z6VvW14~9R@xK8r|_1u1*KX#%HFjyRmR8Xf4SX2TbKxNTcsrW1oYw;A4i}(UH;2TRy z4dw&{|8Rb~SZ+U+_A8q{;)WGkwoAppyKddR9bX@n(X(lRh!JHceg8N*YuVUs4YsDH zwNY`|acj>95HGKL>zyFeCt5xUBW0$bD7W-1y5d6EkM>lN5P)}twBFMh{z>Yr;2FZ~ zPR=TLp-68mePp;@1g@vK$9ErBEP$6hV2DDK0@Rdwat)h-=^C9R4`f7xUPzKo#O$H35ppv5-^7{X*gRr$T*$cioJ1H(#zv*F&a*kLV7z+(WhaDZPd ze(X?PyVSA@AP$GFp8aE)xBY--uXMmf9mbIS%7%5aJN%4Y0*}84<|-Dl;6e+dqDNGW z6M69uUGVw8%E67HQ+$4oD(Ep)pGce*kwR|F#rGOoSndIwI=|TCk7cT^9d^9tX3hqh zl!Ey3vq(pUY{0PI<@F%OCn%>u3ACQHZo@kPcx{BtS{$&@95xBa8PjN1RKimT|LDS5 zZ-8CF04M}l`T!KI`Zv~6p_SMG@PY?7n)2=Y7;@k|LszZ5nDXGh8lBwCMeQl}3f9my zpgrJ;9?&2A=ev9|_rS8p74Q!uxfpYFN*^>&w-tl@bYLU`MYYS^ZtpyAeq%XHRi*Sw zkv7Y*;|-~()!_{_83+&4KBSM>D^xa&7>wQCJ}~TC&aoMWIFf*bSJ{bWZ|>NN1~)CX z5oSgEZekKAdusQqmPGUihJ|DsXmf|Dr|JEwB*Dv$+la?=Svn}cP}cT=#B{EuiuijO z3_C_Ez3$a8t`v3+xMdYfwDG^vpY1-j^RekDAy9bV6S5@Oqqruw=$StKQW4@g-|ED6O~~H?Na$!>eIJG>XFOC zz(zZr)l{lsshVocNbzgz@>PnRHT1Fd+han)+g}K68vcLMrQ`YnhWstlm_J++vEHCy z70CEE^ePd|&4neFgGVo<_eXxH?pLE=eW|7ENhAKnrfJU6+>PWU!1*{_?&GA4<2I=2 z!WiFKQ=?mYsff7qP!b~WLXZdqlLI;w-re{>GE(oDF8qUouG0GO)(0lhoC*9kKD6v~ z5C3HX^EQbPvKmnUW^WFjCn)&I^?FnZi!RvLD0XdHyjj|~L-{WKI}DNJLR*)*BWzor zg{V@7ho2|{KAJXk&L1VGjJHab^MqDc%(@~vugr@9t+?tAYlq+DF(FVVj0HX9>OGia zv)}2kyld3z!_I|{ryy-fPXYXV07WXX)9OdSfwTsAQVuxQ4g-W=7-%KXW6F_7wV}6G z`+r154f zvK9IC3eE$vT_a5aHmQhfyt?3DmhL&kO=^0d$zqGsU85Q8xO z2_q*4B!vNg>)ZVI*%*LGPANZwEG8xhJL=$Nw0C#w2K;*BZWDBZ7ssP4M`hzj7YgdD z26jJogtfVgEh&=yxENs|P(iZ<18<*V5Z(>6AP5)U74|R7)O1sWcHDyEgvcu=g_yyr9DETk z)PTky0lU~j>-!ONm(yejMzW*^qPh7LWNWjLs)b7FK!jU66cbGZr+d+Fipi#|ECV~k zXnm`vAsD6|v2x+R<{(Zpb3g{VRoV3uip>atj5198A{v_9IQe<#fv@y+;q#KVsG>6O)JB<^GQMZOGNH)hSwF>*Fs_`0%KfHL zh1~=O{0vPer@>hAwf;0+7_A&2Pxer}m}`yugpHur3gFWA)c~0bDhb7EgxJ0ClG0QB zM&Rsf9^`I+tJUB54LiaQs$n0syH4i}>(_Xft~nFEA`3$vz>|DSvUNC}_gEiS2WfI) z$J8Qyb_szPEW~)MDtuX=U*)n*R0iNIpHm+}jY`%ArFpDlw#{dKPXjn;*?n)qBJvXtf$2GjP@);$+L5(v$=iZGJNY#J4F6i=75H?zlf0!!sf+NjHwCb zRaj}RMn!EAPW6wqM6Jzq5RH34(OMd_;(ku+^Z}lKqjZUD+L0p$;gCb>HU!l1DFGT5 zU=->uo6}4|1H)P063NkscbU6w0;9&Q&G9`! zM!K$Y!>qy4a(=FvVc@F`+u zXuj_(^4|5R#G%#rVV>IQYu8P9oVw9+bLG|JaUBH`3?K(*OK)eCN7DnCy)A4j-pOa- z^d93NND6F&Jb@%Cr-$HpQ$)Tn4WQwi5kGRn4JXbT4U0_(jz8+sp;jBe*$ie4dzIS8 z=P9FfUH;quE#5-@`$_u3>Unb)M5u_@R9Ls`!p<)P50cRKU?Vn7-{K!rFrIiku4zSb z!nJe5DM}YgOEYq+Z}T=!?4`NUq^7+W$G{FqSr-8ixLH53rw|%kJ6mQG_JbM*p%UAQ z7#W@eCc>vZu=Z+Hu+-Em-ReCGm{CSlw)+XZjW|8?0SAY0_m!cEoEu~<`iQW+5b`Gj z9u%lb9iaSeLDWvH(<`#;Fu9U_z};or`YO-hqC%(p19R<>6lN*-p{MRa&} zHsNe&_4s=d)})>z48ct_9plty>ENWczATQ(^;fLqBHRcG;6swtr75rNoJum|dmJszNREi<4l+{8yc7S&Yr@JW!0r?w5Of=17`D4s|vT;h^3cbj{#iRQg|6`S7blB z52Gu!$+f2fz1z#Y2G~n*cxGqJxXk6snG?9&d?s@X<+{d_mGQ=&Gazqi03Fgd2um0k zpEy(TRzWD8!Q`&(4F!MFTu(7;?V@ULTNE#T2nLQd0RH0xEi5-gioH=j=G#FsJ>+h< zMp?uRMN%U1ObN*gnqjKJW!P$^@W(91Slu!FTTN_byiz1g1cq5OP95$OrTZ+UnDeOI$P?MbB0( znGg*mkPsJ}8EW}oyDNhH2GIo*;MuD`dds4SwhK8sVV2Z;zBQ#A4Ys}X=z2dDV(Wyn zOkhbMvMul2nS%lBGk%WBq;efj6^oF5e*kV>4_Je}^&)HAjBMC1&K0t)BZLw|E#PSJ zSp9vU#4^_!URMji+g zL0tc`1P7QZ$KEgmR0s~LtSZn02Mw8?Wmp=JwiG&YAM#RN3a(dhh$j$dp!&D}i%LY? zZ*am6A4#zXJlatfJg0YcfSS4@@!xR4!SE{6=}XPB@M7oumu=zUL(Gk}-%WfhAvsYkV2b&a}Y0=P$$FrxEUrhA5x zW1M|pftli~u4R9`OC;H^qaV~G@HhDFFV-Et;|91Se~2RdN-4iNYL$^LR)@IL#zRH@ zG>Q;fw0g}^cQ*0IuQ#Bd&|R@*H#m%`kg{p_iI(lB1^;rdV9IJcG>&%S5BS$>nK`Si z2%w+Ilv+);Rs~Fe!QeAGs*EY&eSNbV4uYlsKh|xmjNQm@7&j(jJWIhn;kcWyKUsqZ zPi;D9$A3uSv>)_A`|=dBG~@CcGHgZRXhMnC*8Y~RMgl=ZFl27+61RTgtif%9i0X&J zySys98-C(HAHHF4Hu~fSrY@BFpMsz>6h($#2a((KaWA!rii#8 zetE-?fNl(16QKyCF^TNZPbnlGu&|(!<=0>G9U_>x#edfzvsMcN0O76=q^1G{EjT0g zNRN-RT(o;Y5CTfN0y>7je?Ij?p>T6);al}hY?;O3cX1!fT1UCb zgDu&XuuTkBMB$lx&U4wb!)wmUpy1K!)%7A_iT3*D*9m{Z0DAEYWijW8s#+XXOc;j#AmP*mEj-Q2ckKxDPL{m+e+u-) zjj9O*T4M~A4I{og7HU+OD9pq znP@wQMRIH!(fe!>ML}Z(EY4922qdV99LPu~^%JaCGpLz9S5P-e@gJ_G7 zSUfNq;DH1GV#!sE20%~@tNS5gBtx<{IRoe!efAvUfOy>~$AKqE)d~BzSSckRi5y+^ zTCYKI{(thqZ>A30syE7Xxy?`CE0EpFU7Kf@rOeU{^FyX!X9X$EEK9(F9B@4_p1N+N z_Z51&%wfRG=T2xUT`>34u$7y&7Rl>vUS(RD-@V5Y3Wce z&SpSA8G7jXHg<9pRD^;uJTmm`Abu5K-4kBMddjq>gYd$GiFz*$wiyY%*={uA%D6z0 zh+z#;YV4K+S9<`x$Q}$#{jqr#9yaOyA{8Dk(LC-Rb zbc4$iebq7|4+>9fsIqI4fpdGQzlvZpXisR_;y^ z&>&M$&;!AGP$t+#J`gGzHW951yT(1XDHMiKf$*&iykju4Hpt}FI60K$;60s?36qFB z(#aPMa-=0r(UZC9>}wuOk^hTd5Ws7`N20T4OsMi}P5o%h?Y`YYvWkOeyc?$QY{n`e zIJEaXhDSxu0H$vK!x!=2pdSd0)qVOK;by+!#j*5yt3JG@Zu#ehq!$QiJhAM+((&BCNoW~x6VyW$&7?uUN5k~MY zP~QEu=3X)j49kN*-@$vHWv1NMJ4)XAW!B!^BHvT*+zJDq&0{1hh+I!vArb+@#tk$o z*r5Iw!KQaPD}w0#<(9pUbwx+`sI{p#b;0T*LzY;H(uy(LIIS=LD+svvGAu zt08bU!(U!8j1`Z!6d_TLk^!j}Sr8pT^Q+OY?H*=CWI#jaQMIIh40bC3E@I~#5q$^3 z{!9o4va?uFGs6Ne8j~&zZH2xOP!;IBxFM)UzvS6_Tj-H_NMlXD;ZzA*vF#YWyI7By zzzo7XU^kf1d!{#_pXxPE`u_Q3U|9ByViazMH*m>;Kq+r2o=gR>KPyRDDM5v~A%nse zRA^xWJ93S9Sm$|s>`{R0ZwYWKw+JCDh$g}YY0LMs*^tHY|R)r3%TK0b{SKrIECtHmkHzaBiS z&_WTqPHlU{D`e$fBao3@>jj&z7vw)b8y6O_lt#;z2>*vN;_2*E&wY+nN_{0wRH#p> zIr(9@@!*FWosH8DxcW@=A8SU7Idt0La4~A zY$7To8i7)-&N>0of6L|(MPYkgNtt)&y;{}LZ1D(lHuG$ z;QX-@SJ<-rcY1uQn`<-|)PTKUpX@o~y38VrofMebh-uFM(0L}|$PNL3un{ZkC>uST z%qDe^I*6g6`QXfj#m7GJhk>&PIsQNHtl63d0bCF_RcCwQ{i6V5*lH>vC8?EW(FrUA zJ>wHpg&sR=NaWBt6r9>C#i6jRO%E_b03ZZSNcM&Qoy#}^ahiFc@B>Y1;im;~1O^I6 zE?7R$&2Je}Nz0!v!e0EDB(H>#v)~oilK0TF@?(?15(bsBglQKjs1N#0+|VAI$n3%c za7<|6;e97zhHBRZ`0SmO^`2+KZ0#0~5pNk;@#AxiZy3)o$0OwGron>Wg!nTko;IBE zoS01;6o<8ISy-Y!N5y~!sf`H+T-qI^5^yVkS1FJY*MN3^F~nY4!Gw;x4IIE3Qe}K( zjmFJCq&X&jqDnz+(~8qGuxgltwfuC9jiTwiGP#?r?Omr4PIwLTvj-E^J@nZR(cXu< z;(CV-MQw}v(X>*X0HT1&PuepzAJ z#=9CqO?rwynV;~?7S;6LdorYNnV))@wo?R8M9MvqvEXUKQz@J%3epPwVk=ezoj&vWFw;c0WAO=RTGAf*Wi z&)%ZO_TS-lZ4V-@E-}mC_Y-~NR79CJOaW(>SWKiq z0=v=%0)cRAvHlFor{^mwVCqUkx)ld*)=xXe$Losi|Fa(^j0LtK5LZ-Fo zmth{1LG>6mrx0#;m6?1lEDs;g%%Ub7|KIy|$L|6-?+x@rKJT^x(Cl=^T78uS_AP)Kfnb8 zya)(Y&}hP4V>zZYLzPLh2-Spi5C{!j%V>Q|sXo!_E4EnKw3~eQ!eP0Bsh>0};oW^$ zsN!7SkvurUnr!o$7JI6%tR;kEscb}Pq&*Dq+B zo>pGw8jmqRhqI^3U>>dsx=wQw4svQM4m{gWlORt0flPsSayXgRC1dd8AW0Ada&pO) zh;dy!x77yvW;8z~&A4mV3U%{xna+!yw@c;0vb!MQZkJFPMX)Ka#628T{jRs2>;i;R(JkyO(1yv#|r_`U3Mru?Tr(*Fa4 za`mOiuv)unGunJ#GNY)sT4)=sHG&K4FyznMNzW{%=a>|Bj4(8lMUq-}O@8Te<>`9n zU7%Oa9;i(8$Xyj#1a!)>oSB=bDz+JV5t}*!g;|K0s|b_;ZAt#gF+tUnM`os zHG7|nLNZuMi4K+!{spmu#7mb7a58+nH&;RF6OYngH5l{3&92;yj)I0Xr zW;;G^(?;#qjofBNVWFY4TypaE3fs#&|0Eb9i1nYm%%W)jwhIGN{2$rRYRjXf*j$k# z=5zh6ixSwiR&dV9{eg^j@*59MoYIcmO%d!>3d_1nBXKLSS|+f*cM+8qPP5B zTz~#Z%(xqCbF)0vV^Y`?qR)2Nk^EVM1svbF+{SggOQ(`w-YZq5(_S69M(xlAAawHt z?G6kHJn(BQMS}^a);CNAmDCQd^sq%BcxR~>W+;z58y;>DZapR0G0f27`X*`^7VFn@ zYzU=mC|0mKOiwL?D*C~I6F~ts7v}0Ow2Y;wpn?gcFQIHxUs^eLjXt*PdAmoSOCxA4 zoYTqQV&=_D ziI2lCG>61eGi$@c;~0|6ZWgVY%xD>imERWV??MV5#e`;jWovl0!A=yvo5BsJ;CGr1 zYt($LZGygfb@dxF9bo+L@bsffj{g`yaQ=~LID9&NTY3|@(V_nyj<7< zn$p26Yd=y=)d-=^WQP5!|F13MAebJT9sBPt^lWwEf^Zmp;FSL}E1!h-Z&P-MJSuGHgu|Ey566E^Z-MAeE8O27O?=KKE* z6m{Cq1Sj*ULj=bsmS7Ot`)`S&UZYGN{ATd z4PiK-f-bd+%2Et_sS=EW1w%lN?ez%faK~TZce?dFOtr~Lqe6uMi&Fb8kB5sZ|33pV zMlI}n1vgltu~$(D_*x|nS6iFGKMzJIa@p=*p|?0J^>rKFa^4>c0rFS()fS`RJj6?+ zs+9lH^8T3yY`iPPI=uxdov)LJN97W++sRD|HTb7#bX=#nzAfYN2d`O|lV=Xmn0!1p z>9c}k_{17>=w@=VCn?)NOA z=l!DG@T)quNxKJ+typ(g_N)#weuk;7SP*3jfGr>@L%2*Du5jQ0>M@`Y8s02;$*XS7 z04m7z_QcHTeZVF@8yXL*oIaa=^SP@;^J>9J(b*REA$DCl(>W|fC2~hAO0sv!7=O{m z;6rKI1P%XfgXW&an|`0mBs>=u1PPp98AHgp8Ou601YB883piM~dPN{zn*I^`Ed%1b z&l{LBEfajNqe--MYP0p4WOITNv{Xo9+xbU0lAn-&?ZGUq-A8?_v0|6wP;*vnTP))r zLD<$r-Tcn@td3Xh>LS0VUub`fOCMk$SioWKjG`8ZE6qNt-X(S}g7qkYM|>7!R$kgJ zEziQmpVvKz4u!ohys%M-<5-rR$S%rD>(#B{8W7l#6c7n;xbLQFfA)NUW{vi zk+AkmaSd>w7P1wq%^@Y7D`Ty~O_hX@cI0L~jZNLL#sQBZNW>Jel;P@?D;X8eot7q0 z#D*#0A`Djwk}~B6Z+4^TKyvn?Tv+0)WwM;n+@`E#{~pB26y?-Cusc~agYO|6qtNy` z7$~G}=}Ln`QFVz$wyJH&&;6a~7NF+EcWdn$w?d+5@M?_5%oRW58?bde^a`xL@E^KG zV5lU@h~#3tEOG$ba(~k@91K%3^&t@!*ex*{MhOp#js}a0$q>x*s?5Hrh{@8@{mPA@ zs8fhg%)@>=&0ep#{?+21?wbh%v#MO{ZS~;ntQ%b4gNJ|g`y}tq2}OGbxl>Fo&NfOI zPQg~|wkC-|jX?uIA%NnwZr8S7MM7F-z8%JBJ}wKL|2+;|rrLT(4XRdiN#M3Kx88pz z1#9*)0qmdsDCqcXl4#ubMtaDyvx1ZMCcfgn=Q6fgYm>JHEsF_ok8J~P*HORPsv11W zQu|)U{k5)9X7a`esExHXqlqW!uqsu#Okh8mQae(o%(&sIIvhOq^*(-@!v~jHrh#_u zM9p@Ne&0+32Hy#{b~A$NVc^tO2%#}%rkgKoI3S|yh)_fhTbR@Y{3QFf?9TPyI~51|M)ZbsO4-U`aqIIl9^XwXkX5@xjp1QDK+Cd`UE79op)T_aew8J)kvkp zLFZH$06;SZjR*s!`h4SR2R>O`TnC$L0Y3ce99Q?5YP8NE*ZcUee>aLdxsA0|^J*G} zmyv-X!U+{KRoBcXI4$F%B#n6#(vUoS^zwAxxpds`AA?7>ZtDlg?K6P9T}t0s<+`Y!^i>_u)qKs`S5@B(`DxAC zu}tNAlO<_NX`}NMqzaJ%a92*td0g6VItlFV!Tc$0xpZ|Jvn$<~*Q$%065B%Bt}P4% zYyJ_e4G{+@b`4WdT;b6+aK$$rF8(#HPp%B$;9S909AU#2ZGQ$Mgi*~7l~;1fixT(A zIJ&GhcSQ3?)+1>(n`CTHpMo{F{aYe?4u%1MD5~fn^T2f{d!SurmU#H68@9^elBxR zlGlGZ%4FBEW20H?cwA>wN!hINpYy02j0WTIxb!p{JGC#bxTeO`H(0AhYI(wfp9W9} z(6L8bVH(?|eN(fH#IYN7TA}sXmJWWQOwwkfn%_BK{-$M8rRl3OW?x`tD;(cZ8?uc9 z(<``aGHyBvPp!fGTL^82h|yd4HIR$pzN%tP_=!t9 zoBL_!zL+54KKTi@-&pIokw3b$VV&1LZ<4W(XN-p?BxuNzx@Z{f{}RnX1F%DemJI)! z8SZUO@|dNVO_ih)IVYv3x5zXJ3}m{Y034H*FxUl5yHxAc3z>byRX+mlp8Uzt7gOaf zlOR>)QB)yG#&;E-1yQVB^9FV|e9ZTK^s4CQAf&M7Wj9tQ{ei_!TmKP${y0$Zt`l=P zZi`rz)l;OOv)|sVx*7*W)JI-`=gMN}3(KnLO_97j&)+|L$GG4>T}t-~ zX|V3%!$8{`iLG`y><@sM7X8|%66uy(?ZID=Py3S;CbVx3@?TA3hL*RVUV`G~Dcno> zp+vCJSV2hKn@7;3t(SV-MMRY_||Q z#$a3^j6q-I$q_8IC~%n~6hd8iER&ZbR8#mZU*YXJXTMLeB5p&Z{%cm zo&WLsh)P(GCYM>AHzD!rN!voc!3JLyQ@+)KpsnTAlojM0`xJr*>zf%6=DcjoIK>yaYgldT|BZ;Zs=FVe zhShQUme)<_)rb_5{NILBqRw{-4U zzS(wCO{}Bi)+nVWzwVu_-Qbpj|4Ws#UMxOSTzTT1x^69e2Y&0(nk;QrUNgkUCSg=dJy-Aixzb3X(_fJ4Y19 z(gPS_59ea!FkYSAl=rn1fI6`@-uDqyZTxuM*Kukhk=Y_*rN!KUMmz3d)cL? zwNDGYy_3Kx<98An{*XANVq6O+RT!huIDcKe)W=0G`WbRBEUc<^6>MMQ7-~KQ>tfuR z)Rak%(9X3ThFqY+&UCz1HdLb8VF;hO$SftQ6)1!$rjbQ)LSTwO)#Z#y{k3DS(kvJ` zil@+}n5QC@N{7H1>#6fNm+nJm9GDqd4jLItWl2YH#_7~Yo>2+0sbbiWOh0CKy|p$0 z=hiP;K0S$YDTQk7NStZ9R?;77+SzPG{WrFnb1;=Y!hky7$- zne`eCk(FgkX&BQwj@+>zKUx$MYh}Vn-Fg}Kmhw(}_f%-3>As3_ms(D3VgDF#I>rvQxsA2{`t?@V5aqcY!CHLL)gVu?ZMH)z2>GZQK^E=s;8 znp6WEqIgDdw|e=4B2eQjP^u-dPB3~m|GnM0$5awCo?e4mJgOAk*3wuiOWZLS`$aNI z#7wCO@fM{QE^9z|w1^_4OiviFSr%GD3I!=WAb(_d`D*LqQ$FI-LR?JJ-$`>kgOR*eepjH`+>wHlSMw`0z*Lt`c#y%kR~<#a~vT1EG!Uz!u};Fggzq6I#K5KtzLrp zgqg(|SO!Xptk2NZfH%5?2^a!!AOV5gDl#H#abBmd(=%S$k;iQkV&9|pOGIijcxx<) z3aE47_b1GW_zlPI?f0r*)?DP{{Z&bfOrA-pd^w^p_q77NKz>LfzxuJ3LOiTcXlf~& zg`z#Me9&*IHpP{#b2sH1L{ys|D^&@W6h%HClAXk0%@&0b_;J+>$VYl~w7OAgqu5D7tq>QfrfJ!S}^Fs9o()?;G|@fQ&y)Me|*KD~80 zSB*AT+H&l5s01({x9${PU*bJ^N+mADK|)J>J?ZMfU#uyL>9nOh#-=?+9e#XM9O5c3 zfE7HiF0JuxZhY$rK^>vNv7mtA6@zM_Ajnp1(oUy>R|D1iVPT&qc1Pa9wArdaMBZ4P zP2Be%V{#k7umt^7Lmgd-Y$QAKD_uPN?zP6xC29j&pc`V~ieDS&-!u;C7qn)?_b z2ns)tsVAr^0!O0(nP6!caw}(2QlkQ{=H`AU1beB2t1s$6aDnh0MGTy*5f#?;2;=jd zKn6}cBK^Rm3v0IMsV=K5M?Vx^#wvGB91^$S=^DsE)oh{$|xg02QI<1LX_?i z3Pt7R!>!ehF-4fE2~XoP_SBUY6xS3=7Kz6jsy94FS%^3sB@c>rKb1|fX+TB!M#YL~ z3Zx04QjnaLPK>oi_`AYUO7*G+l(rD227==erffhC5%MyE=D9~WjVZP`wNkXjT~gK$ zsj4FF%AOL9v??hCprDYceA6)*s4FocNEx!3V!{QBdZ^Bt%nC4xs;WuI_a3oC5qX6J zGG7cTr2L@&h}@qYDMZAkOryq#s)zJju5G{TVn|^E@~V21CsI#2e6!MtAd|MC; zUR^|N-@0bzon|Faw~ zZ;@HFJF#5C`VA>h|#fM_S7_>V^t#xY>PN*93cn&QuDFUa6|?&g2YF} zSsJJ%MFnhz5GoO>5NKMc{D7qdyN0`x(klceRDrgUdDf(HQl5otH0InuuO%$R}2#WQu^`lyeKsg4sT2Oh&OCb^l43J6g6ct7F~AZ{&-fhk`g2paOc|WraLSY=2}ID8 zp_KdzAZh*zAQ~_0fdbvcOv)C0U5>ML`18n|FYA=idh|ajO~Y;I^TPY%CpPGhq$lw+ z*XuN$=qN6o?nGR&KI`2|bcsf(szQ|UoN+{uBD~_F1I<~HN(n&H0(K>S79`LZ^7x0w z_D~{`hczOIlERG`rfrL^wy5z**APGhKvD4%!iX&808a5l4J;@UQczup{Y=23C2XVO5Dkgd5R51? z167oPDl8_}4AJHtf&wX1*m|HD1c!|!jOmq3Lz*+7K02>1`vTYRAmW0D2N-9R05Jw zg%A=E2^9hm0capFjT7ZSi17iWa<2*m(4Yv?0U-zAQ6P#0`VVz@h{lvJe31D2RYZ5C9v(fdU|5OCbn>08)s6L6C@p z_+o$pCj5jzpRouKI6y{_fB;GX<{gg`O`A_N0ULI8mi{}2EO07nP_A^-^i1Sg9W8a#7dBn?(Y)R@m` z&fN5_vY$d?Ob%_uofwlLQxlp-T2mDGY$y=hf6p8Hz5@H$rFC2NF02-w9S&LY2Xfk= zQXFT0xBGtR=K+Px%9M#{S7U8#+V}KsV8ABOiC+FL^pd&f0VULs;Y8)JnK&=MzZol^ zPe$zCJ5n~*+;GbU_bhp}t&^(RF-sMJMZ(v(_*tx;JBvNR5F{}KZV{KjEv&0X&%pm5 zGu(%QBn<$PJE3|7Bp}47cGvnPRof)Lqlq2nL7!xw)KE*lOKQVZS%fy6CEI|v)c>Vskfz692?M76eh;-K=h>oQ^3Fr%W(=TBuU;!1 z`!Oc+Y<|TV%2!b+hh~?*hm7J=xVm|x+b730$Z1I+fp*fT=cKV~|22-In}7l80;D>c zJD0YHZ_;z%gwWybYA~0T@*l{_ry1D>=SaNG7G=TW)@yD7cB^h#7q;MATcsd&Oj)Ud zJ+l@5O%LCJoo{~kcfJ1ht~W=^hHnMo((YSbZto-Pa!>rmQ1`D3R=e<UBBr6HDG((Ad-UDRQCUgc8Hx_H&`92DUuzfSx#yf=5Ad$h zO$G3%Fh_|+p~ zu8pCd;ll3les-m}jZqZC5zSdWyY;9?xl%T&&H3|FI~^^bwHs(&js0H6#pZ%=vq=~*nR@gVxPOXWw!;jysT9aiI;WN#<$`SMLYgGNXl7?2u z56I!xs?{g|d$0%Vd)TtdbyelYaP?dEfoCITcH~EPrSLkxL#Y^iJ?XsJv>p1yUz+*1 zR?+)y&7mDg6}Az4K8eEa_KjeDg|xE^K#_#<=Dc>EmZ|_j;4x2es(i^;qQ?QcIj`N; zdg{Yy%&fs>$B%TadK)u5d?%Hg3j_lbj|{gGDiyWl1N-r4Y?PHb@M13Zf^;<@maql^ z+8@;=;=d8q2odhU4@Aipk^nyi@FxTX@F?UTEF&1F%$>Yq!c@_{v!Z2d%5QRPu^w9} zQq*pm<3ANr$s4N1BH*#fp%ehV^ald;Ku$a5JLdr)3mtuS^_3jxSwjULO_USnH2f~){Pm6@MYyNP|k_5O6mI?oDCgfS~}qFxPP_FN0{VuAznn+Y_vU1gPw?$ z+fJ>F;}3?L#kFu^j(d+N%jq1Lb=OoyCcdodt``uz(~pDAuzR~z8-qot>hj$ddauh+ z^C;c$l{MPk^E6cHZPBs%1>g~;zNivUD6n0p9+}eAT(i$1xgrneNSEXBl>hV0%jJzJ zn&}Aln@v?j&Dn=MGGaOf=BYZj^WY9!YVBQ4wLOxE63cdbvD}Y7P=I>~XiZBi<+(Ij z%1{be&E0zJ7ObYrG1iL2zNB^(4slM2>zt6YnjY6A;G@IYSTM&dVyLT>Kll+IP)p7t z%j)9(o8N=s|C^qGu{ex`usGchYM+Zs7!6bfbE)y32*$d;k};sMn{bB|b+4#J4M1Q_ zg5?Nz&XUQHF}Ny#sQ*FrP?Z0-8d&z@>3*{BX=!6z|A|5YE>RK14Iur4s-^>$2nh%R z2c4`uPup(KG+-fi9vTl~;P3lZI{rtXfcXsH( z5HKc)ZWcT{eu?p|;Z}qX@LHgN>v6u8c<>(B54;FM9U3iD>;uVXxvAVnPZMwMykH%w-u!2lBl>YgHs-tTqgE9SYD60;TEbM1UFy2^iiG`=JlG ziDXismMzc4%$7-?XlmRo8)w98CF@x~J!G+h%ca*_aSjP-q2d<5UbR_3)NgV|qgNM*L?lcQLizoRf_cqN4f*?-_%bvz|fWhD*JHes!4}8tufgQcx)>{{{ z={^IPXR*_^2_xq|W6wF$A4*zdN?06{m$9j$NLy7IeX;sy2JY)X{(XdK7X3l z&bmq&mR_2sOENipIN!A{>6nh3;4>Y}b^=o??$c+GxZNgL#Bwb&9!)3gcrn*{?aWN# zc^%dY-(_x8Z75<6G3-r;F^T?>J0s9=1U%~dCx3od|2a&YFVN~tMdEp4;W=h0*~#x& zZqs>xp4M%S^h$c5mw%y^dfRQbD0*>!_ugafa4zs?sK6Ba z=}JEHj{0G&Be>wF zV=b&k;JDd3gM$Oc(Ds@n#(O`~GX8IcEQg?UR!>(GR^Syu##*oiTbat*qA$GjFa<+Aeg-wMuu#O>I7q#mq_>Ie9I7z+FqPYE9K2SZ4`yB31_ z+i}5^)RD%(QW%x;Ed)&OJc^TVCbCoE46u{6iRtv`vhJI)^_3lRBaG0;eso-(jlo0< znPOw0)>Ug!iZIa9x%)uW{#AQ$u}k_-geexI{o6Pe`=gNW*K+SRV%U3i$(3T-LdwcH ze4k%!JKK)q4ED2lpqsvT8p*v!D9LH}kzI*dIiC^v*B`MoQ>?>0QYsXT5!Jz{w3Ogb z>K2Tx7YAy>JU>crk)CsFHJp-%4W#~jDqXT~B=2kMK4$d(wVeAqB|mE&} z+W_Wb;k6D76mGJO!s=kW0wiZ(hLDIL0mIbh&bLWr7WM1i*WO03qqnYA=St#1f9mxk zQ-F7ikx}_*7SZg7U=`p+jOb`lQuc)2kvu6<)Bkxa1Dy&FWrBJ|YKJ%JJrkRJHNFak zI*Q_d*0uPN(urJI5Vz&mz%KBNG_^+Gg=A*8IXuZWBZqZmz@sYTCmGF;EU7;`i7T@yu@g`?Q~}F+Stk!yw*F z?eC=#;+Hk_|5Dy%wjbA2-2A7WEidu(@6Ii;nH=*#A9)oLF!zPF9{m(hV7G=JlMZnqVn9)6vHA>CAPcG&gAAK zad*s1u}wi-^&bk~f9HB&dx@cC!0L^ti%wBMht{r;iqs!wD{|$gqX5g!p=JaOmZ3*v zh@(kAGv7QIDd=KYiVdmy9k~*GDxk64lw=6=6wKKbI6oCgqAkRBPo&jx3q&Y_M9{c7 zn+N3O#NA~IpQq-jC_eK+DeWW5dSxY?SXXbZS882(t9)Cn&R*o=B-etnSR8dsaRY%g zWL2-4+*XClta6OiFdoo6#;$OU8OqJpqDG6|W?)D|C?kkq z%70^ozJdjqPgG#*s)<%82k28ZH0X^ijvds>ytE8jra0XT;+xyf)_l?QB7|V;>JyDb z<}e5wT8TmajSFO>o@)esN?xYimLR-LyPpQ9*Rxt;3Wv>7^Kn|I=kANI&7If&Dg;>& z@oSzo0)xM-)39(&K;udZLF$y$5SvmF=!HQ(B1E9l6vX$GTnG@}9&0*=8dYOp?*g0h zD+FW+Pl-x>aZ{ru(!aDM9j6D=w0D2a+7N@hx* zLIpP8#b6quEJYwl${ooGwjl?UjQ!4)rD|%($REo(splvM;X%W&a(BuSmQY|w2y}wJ z>r?tS;)1Y5VVCAtf1u+!Q4`c^WN!4T zk>m=+%Bsrw6p}av5g|zUwjv|Jv~(sYqEAQyZ`4qN_GFY= zDQP=1v@u}z2tjEf0IZQ7K-yZ@4rwH4CNlOVu#d*@w&|jZ*TMZIwK5a>ApqSJ|Jenc z@8kDv6)O~lAU7y-KJ#FYpp(4nlA-;|n}xCu_ViWyzv!5R$nJ|f^v7hWmLCWm&wnO5HE(RQk+l^F+hnx=e3FV93e~b?(XB+ zr`9NsA~1yPA8!3n0oNe~_e?lW>8FnT$P+>b4w9pcKpgTD$WTp6Wk>)&Av&5`M2{86 zTvP&vY9$dYB@=_qR6;!cVnQIz zk>EP~J`w|?QMcw~{mn-YGZ``6<1Mh-4uLOzt~Q~z{-rYTa|h{bT4fTiQFhj zkw6mIED>|Bx|szNXW~$2Uq04OTbhMHHzfi9Kp7fU+(LjBh|9M1PI;bo(+LM)H= zMZTgD+YrZ%zzLvu0?01_9soQA0=?gz%FHCTm0flw1RzWAwwRT;9tH0MKcWv+qV4X$ zT;Sy3B3M7koae(pp-*jc?ihgp0ptmqnlNCS%*oVp4m{MfzZI>90eYV9wkO^4P4B0SaGUxC0QoTLfIRxIAB0~@1 pK?gw2t4rfwHa@N@-WtobZ(M0c8(5$lg*X4j+>uTcBsB0m#{l+9j8p&s diff --git a/man/kin.Rd b/man/kin.Rd index 21c8115..bccb33e 100644 --- a/man/kin.Rd +++ b/man/kin.Rd @@ -35,6 +35,8 @@ kin( \item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} \item{birth_female}{numeric. Female portion at birth. This multiplies \code{f} argument. If \code{f} is already for female offspring, this needs to be set as 1.} + +\item{stable}{logic. Deprecated. Use \code{time_invariant}.} } \value{ A list with: diff --git a/vignettes/Reference.Rmd b/vignettes/Reference.Rmd index 388a072..33560b2 100644 --- a/vignettes/Reference.Rmd +++ b/vignettes/Reference.Rmd @@ -11,7 +11,7 @@ vignette: > --- ```{r, include=FALSE} -devtools::load_all() +knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ``` In this vignette, we'll demonstrate how `DemoKin` can be used to compute kinship networks for an average member of a given (female) population. Let us call her Focal: an average Swedish woman who has always lived in Sweden and whose family has never left the country. @@ -25,7 +25,9 @@ In order to implement the time-invariant models, the function `DemoKin::kin` exp ```{r, message=FALSE, warning=FALSE} library(DemoKin) -library(tidyverse) +library(tidyr) +library(dplyr) +library(ggplot2) library(knitr) # First, get vectors for a given year swe_surv_2015 <- swe_px[,"2015"] @@ -245,7 +247,7 @@ demokin_svk1980_caswell2020 %>% filter(kin %in% c("oa","ya"), age_focal %in% c(20,60)) %>% mutate(parity = as.integer(stage_kin)-1, parity = case_when(parity == 5 ~ "5+", T ~ as.character(parity)), - parity = fct_rev(parity)) %>% + parity = forcats::fct_rev(parity)) %>% group_by(age_focal, age_kin, parity) %>% summarise(count= sum(living)) %>% ggplot() + @@ -263,7 +265,7 @@ demokin_svk1980_caswell2020 %>% filter(kin %in% c("d","m")) %>% mutate(parity = as.integer(stage_kin)-1, parity = case_when(parity == 5 ~ "5+", T ~ as.character(parity)), - parity = fct_rev(parity)) %>% + parity = forcats::fct_rev(parity)) %>% group_by(age_focal, kin, parity) %>% summarise(count= sum(living)) %>% DemoKin::rename_kin() %>% From 76df24339c026e783594a366b08a4d239ec41fd1 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Sat, 19 Nov 2022 10:46:24 -0300 Subject: [PATCH 02/89] fix no pi or N case --- R/kin_time_variant.R | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index bc962fc..a48306b 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -42,8 +42,10 @@ kin_time_variant <- function(U = NULL, f = NULL, N = NULL, pi = NULL, if(is.null(N)){ # create pi and fill it during the loop message("Stable assumption was made for calculating pi on each year because no input data.") + pi_N_null_flag <- TRUE pi <- matrix(0, nrow=ages, ncol=n_years_data) }else{ + pi_N_null_flag <-FALSE pi <- rbind(t(t(N * f)/colSums(N * f)), matrix(0,ages,length(years_data))) } } @@ -72,7 +74,7 @@ kin_time_variant <- function(U = NULL, f = NULL, N = NULL, pi = NULL, # print(iyear) Ut <- as.matrix(U[[iyear]]) ft <- as.matrix(f[[iyear]]) - if(is.null(pi)){ + if(pi_N_null_flag){ A <- Ut[1:ages,1:ages] + ft[1:ages,1:ages] A_decomp = eigen(A) w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) From f9bb9e51e3cefad0e7bda3b33f0eefeb4e86f6f7 Mon Sep 17 00:00:00 2001 From: alburezg Date: Wed, 4 Jan 2023 18:20:03 +0100 Subject: [PATCH 03/89] Added labels to plot_diagram --- R/plot_diagramm.R | 157 +++++++++++++++++++++------------------------- 1 file changed, 71 insertions(+), 86 deletions(-) diff --git a/R/plot_diagramm.R b/R/plot_diagramm.R index 2497186..0305e38 100644 --- a/R/plot_diagramm.R +++ b/R/plot_diagramm.R @@ -1,90 +1,75 @@ #' plot a Kin diagram (network) -#' @description Given estimation of kin counts from `kins` function, draw a network diagramm. -#' @param kin_total data.frame. With columns `kin` with type and `count` with some measeure. -#' @param rounding numeric. Estimation could have a lot of decimals. Rounding will make looks more clear the diagramm. -#' @return A plot +#' @description Draws a Keyfitz-style kinship diagram given a kinship object created by the `kin` function. Displays expected kin counts for a Focal aged 'a'. +#' @param kin_total data.frame. values in column `kin` define the relative type - see `demokin_codes()`. Values in column `count` are the expected number of relatives. +#' @param rounding numeric. Number of decimals to show in diagram. +#' @return A Keyfitz-style kinship plot. #' @export -plot_diagram <- function(kin_total, rounding = 3){ - - vertices <- data.frame( - nodes = c("ggd", "gd", "d", "Focal", "m", "gm", "ggm", "oa", "coa", "os", "nos", "ya", "cya", "ys", "nys") - , x = c(1, 1, 1, 1, 1, 1, 1, 0, -1, 0, -1, 2, 3, 2, 3) - , y = c(0, 1, 2, 3, 4, 5, 6, 4, 3, 3, 2, 4, 3, 3, 2) - ) - - d <- data.frame( - from = c("ggd", "gd", "d", "Focal", "m", "gm", "gm", "oa", "m", "os", "gm", "ya", "m", "ys") - , to = c("gd", "d", "Focal", "m", "gm", "ggm", "oa", "coa", "os", "nos", "ya", "cya", "ys", "nys") - ) - - # Add values - lookup <- c(with(kin_total, paste0(kin, " \n", round(count, rounding))), "Focal") - names(lookup) <- c(kin_total$kin, "Focal") - - vertices$nodes <- lookup[vertices$nodes] - d$from <- lookup[d$from] - d$to <- lookup[d$to] - - # Plot - - b <- igraph::graph_from_data_frame(vertices = vertices, d= d, directed = FALSE) - - plot( - b - , vertex.size = 30 - , curved = 1 - , vertex.color = "#FFF1E2" - , vertex.shape = "circle" - , vertex.label.cex = 0.8 - , vertex.label.color = "black" - , label.degree = -pi/2 - , edge.width = 2 - , edge.color = "black" - ) - -} - -# old function - -# plot_diagram <- function(kin_total, rounding = 3){ -# # https://cran.r-project.org/web/packages/DiagrammeR/vignettes/graphviz-mermaid.html -# # https://color.hailpixel.com/#D9E9BE,BF62CB,94C2DB,79D297,CDA76A,C8695B -# -# kin_total <- kin_total %>% mutate(count = round(count,digits = rounding)) -# -# DiagrammeR::mermaid( -# paste0("graph TD -# -# GGM(ggm:
", kin_total$count[kin_total$kin=="ggm"] ,") -# GGM ==> GM(gm:
", kin_total$count[kin_total$kin=="gm"] ,") -# GM --> AOM(oa:
", kin_total$count[kin_total$kin=="oa"] ,") -# GM ==> M(m:
", kin_total$count[kin_total$kin=="m"] ,") -# GM --> AYM(ya:
", kin_total$count[kin_total$kin=="ya"] ,") -# AOM --> CAOM(coa:
", kin_total$count[kin_total$kin=="coa"] ,") -# M --> OS(os:
", kin_total$count[kin_total$kin=="os"] ,") -# M ==> E((Ego)) -# M --> YS(ys:
", kin_total$count[kin_total$kin=="ys"] ,") -# AYM --> CAYM(cya:
", kin_total$count[kin_total$kin=="cya"] ,") -# OS --> NOS(nos:
", kin_total$count[kin_total$kin=="nos"] ,") -# E ==> D(d:
", kin_total$count[kin_total$kin=="d"] ,") -# YS --> NYS(nys:
", kin_total$count[kin_total$kin=="nys"] ,") -# D ==> GD(gd:
", kin_total$count[kin_total$kin=="gd"] ,") -# style GGM fill:#a1f590, stroke:#333, stroke-width:2px; -# style GM fill:#a1f590, stroke:#333, stroke-width:2px, text-align: center; -# style M fill:#a1f590, stroke:#333, stroke-width:2px, text-align: center -# style D fill:#a1f590, stroke:#333, stroke-width:2px, text-align: center -# style YS fill:#a1f590, stroke:#333, stroke-width:2px, text-align: center -# style OS fill:#a1f590, stroke:#333, stroke-width:2px, text-align: center -# style CAOM fill:#f1f0f5, stroke:#333, stroke-width:2px, text-align: center -# style AYM fill:#f1f0f5, stroke:#333, stroke-width:2px, text-align: center -# style AOM fill:#f1f0f5, stroke:#333, stroke-width:2px, text-align: center -# style CAYM fill:#f1f0f5, stroke:#333, stroke-width:2px, text-align: center -# style NOS fill:#f1f0f5, stroke:#333, stroke-width:2px, text-align: center -# style NYS fill:#f1f0f5, stroke:#333, stroke-width:2px, text-align: center -# style E fill:#FFF, stroke:#333, stroke-width:4px, text-align: center -# style D fill:#a1f590, stroke:#333, stroke-width:2px, text-align: center -# style GD fill:#a1f590, stroke:#333, stroke-width:2px, text-align: center")) -# } - +plot_diagram <- + function (kin_total, rounding = 3) { + rels <- c("ggd", "gd", "d", "Focal", "m", "gm", "ggm", "oa", "coa", "os", "nos", "ya", "cya", "ys", "nys") + vertices <- data.frame( + nodes = rels + , x = c(1, 1, 1, 1, 1, 1, 1, 0, -1, 0, -1, 2, 3, 2, 3) + , y = c(0, 1, 2, 3, 4, 5, 6, 4, 3, 3, 2, 4, 3, 3, 2) + ) + d <- data.frame(from = c("ggd", "gd", "d", "Focal", "m", + "gm", "gm", "oa", "m", "os", "gm", "ya", "m", "ys"), + to = c("gd", "d", "Focal", "m", "gm", "ggm", "oa", "coa", + "os", "nos", "ya", "cya", "ys", "nys")) + lookup <- c(with(kin_total, paste0(kin, " \n", round(count, rounding))), "Focal") + names(lookup) <- c(kin_total$kin, "Focal") + vertices$nodes <- lookup[vertices$nodes] + d$from <- lookup[d$from] + d$to <- lookup[d$to] + # to show full relative names + relatives <- c("Cousins from older aunt", "Cousins from younger aunt", + "Daughter", "Grand-daughter", "Great-grand-daughter", + "Great-grandmother", "Grandmother", "Mother", "Nieces from older sister", + "Nieces from younger sister", "Aunt older than mother", + "Aunt younger than mother", "Older sister", "Younger sister", "") + names(relatives) <- c("coa", "cya", "d", "gd", "ggd", + "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", + "ys", "Focal") + labs <- relatives[rels] + # Plot + b <- igraph::graph_from_data_frame(vertices = vertices, d= d, directed = FALSE) + b_auto_layout <- igraph::layout.auto(b) + b_auto_layout_scaled <- igraph::norm_coords(b_auto_layout, ymin=-1, ymax=1, xmin=-1, xmax=1) + plot( + b + , vertex.size = 70 + , curved = 1 + , vertex.color = "#FFF1E2" + , vertex.shape = "circle" + , vertex.label.cex = 0.8 + , vertex.label.color = "black" + , edge.width = 2 + , layout = b_auto_layout_scaled * 3 + , rescale = FALSE + , xlim = c(-3.3,3.3) + , ylim = c(-2.5,2.5) + ) + # Add relative names + # Thanks to Egor Kotov for this tip! + plot( + b + , vertex.size = 70 + , curved = 1 + , vertex.color = NA + , vertex.shape = "none" + , vertex.label = labs + , vertex.label.dist = -6.5 + , vertex.label.cex = 0.8 + , vertex.label.color = "black" + , vertex.label.degree = -pi/2 + , edge.width = 2 + , edge.color = NA + , layout = b_auto_layout_scaled * 3 + , rescale = FALSE + , xlim = c(-3.3,3.3) + , ylim = c(-2.5,2.5) + , add = T + ) + } From 75c1bc3199b46b922c0d66a3bb04a4895ec5a4fa Mon Sep 17 00:00:00 2001 From: alburezg Date: Wed, 4 Jan 2023 18:59:15 +0100 Subject: [PATCH 04/89] increased y-limit of igraph --- R/plot_diagramm.R | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/R/plot_diagramm.R b/R/plot_diagramm.R index 0305e38..87d55b1 100644 --- a/R/plot_diagramm.R +++ b/R/plot_diagramm.R @@ -49,7 +49,7 @@ plot_diagram <- , layout = b_auto_layout_scaled * 3 , rescale = FALSE , xlim = c(-3.3,3.3) - , ylim = c(-2.5,2.5) + , ylim = c(-3.1,3.1) ) # Add relative names # Thanks to Egor Kotov for this tip! @@ -69,7 +69,7 @@ plot_diagram <- , layout = b_auto_layout_scaled * 3 , rescale = FALSE , xlim = c(-3.3,3.3) - , ylim = c(-2.5,2.5) + , ylim = c(-3.1,3.1) , add = T ) } From bcbdcef1e59c204a4d6067ee5be8657b86923734 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Tue, 24 Jan 2023 16:05:08 -0300 Subject: [PATCH 05/89] adding 2sex model + vignette --- R/data.R | 22 ++++ R/kin.R | 8 +- R/kin_time_invariant_2sex.R | 162 +++++++++++++++++++++++ R/kin_time_variant_2sex.R | 254 ++++++++++++++++++++++++++++++++++++ data/fra_asfr_sex.rda | Bin 0 -> 870 bytes data/fra_surv_sex.rda | Bin 0 -> 1598 bytes vignettes/TwoSex.Rmd | 205 +++++++++++++++++++++++++++++ 7 files changed, 650 insertions(+), 1 deletion(-) create mode 100644 R/kin_time_invariant_2sex.R create mode 100644 R/kin_time_variant_2sex.R create mode 100644 data/fra_asfr_sex.rda create mode 100644 data/fra_surv_sex.rda create mode 100644 vignettes/TwoSex.Rmd diff --git a/R/data.R b/R/data.R index 1bacb90..b11636a 100644 --- a/R/data.R +++ b/R/data.R @@ -127,3 +127,25 @@ #' @source #' Caswell (2021) "kin_svk1990_caswell2020" + +#' Fertility for France (2012) by sex in Caswell (2022). +#' +#' Fertility for France (2012) by sex in Caswell (2022). +#' @docType data +#' @format +#' A data.frame with age specific fertility rates by age and sex. +#' +#' @source +#' Caswell (2022) +"fra_asfr_sex" + +#' Survival probability for France (2012) by sex in Caswell (2022). +#' +#' Survival probability for France (2012) by sex in Caswell (2022). +#' @docType data +#' @format +#' A data.frame with survival probabilities by age and sex. +#' +#' @source +#' Caswell (2022) +"fra_surv_sex" diff --git a/R/kin.R b/R/kin.R index b585345..6dd8dec 100644 --- a/R/kin.R +++ b/R/kin.R @@ -74,7 +74,13 @@ kin <- function(U = NULL, f = NULL, } # reorder - kin_full <- kin_full %>% dplyr::select(year, cohort, age_focal, kin, age_kin, living, dead) + kin_full <- kin_full %>% + dplyr::select(year, cohort, age_focal, kin, age_kin, living, dead) %>% + dplyr::mutate(kin_group = dplyr::case_when(kin %in% c("ys", "os") ~ "s", + kin %in% c("ya", "oa") ~ "a", + kin %in% c("coa", "cya") ~ "c", + kin %in% c("nys", "nos") ~ "n", + T ~ kin)) # summary # select period/cohort diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R new file mode 100644 index 0000000..1d178b1 --- /dev/null +++ b/R/kin_time_invariant_2sex.R @@ -0,0 +1,162 @@ +#' Estimate kin counts in a time invariant framework considering two sex + +#' @description Two sex matrix framework for kin count estimates. Implementation of Caswell (2022). + +#' @param pf numeric. A vector of survival probabilities for females with same length as ages. +#' @param ff numeric. A vector of age-specific fertility rates for females with same length as ages. +#' @param pm numeric. A vector of survival probabilities for males with same length as ages. +#' @param fm numeric. A vector of age-specific fertility rates for males with same length as ages. +#' @param sex_focal character. "f" for female or "m" for male. +#' @param birth_female numeric. Female portion at birth. +#' @param pif numeric. For using some specific non-stable age distribution of childbearing for mothers (same length as ages). Default `NULL`. +#' @param pim numeric. For using some specific non-stable age distribution of childbearing for fathers (same length as ages). Default `NULL`. +#' @param output_kin character. kin to return, considering matrilineal names. For example "m" for parents, "d" for children, etc. See the `vignette` for all kin types. +#' @param list_output logical. Results as a list with `output_kin` elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default `FALSE` +#' +#' @return A data frame with focalĀ“s age, related ages and type of kin +#' (for example `d` is children, `oa` is older aunts/uncles, etc.), sex, alive and death. If `list_output = TRUE` then this is a list. +#' @export + +kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, + ff = NULL, fm = NULL, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, pim = NULL, + output_kin = NULL, + list_output = FALSE){ + + # same input length + if(!all(length(pf)==length(pm), length(pf)==length(ff), length(pf)==length(fm))) stop("Lengths of p's and f's should be the same") + + # make matrix transition from vectors. Include death counts with matrix M + age = 0:(length(pf)-1) + ages = length(age) + agess = ages * 2 + Uf = Um = Ff = Fm = Gt = zeros = matrix(0, nrow=ages, ncol=ages) + Uf[row(Uf)-1 == col(Uf)] <- pf[-ages] + Uf[ages, ages] = Uf[ages] + Um[row(Um)-1 == col(Um)] <- pm[-ages] + Um[ages, ages] = Um[ages] + Mm <- diag(1-pm) + Mf <- diag(1-pf) + Ut <- as.matrix(rbind( + cbind(Matrix::bdiag(Uf, Um), Matrix::bdiag(zeros, zeros)), + cbind(Matrix::bdiag(Mf, Mm), Matrix::bdiag(zeros, zeros)))) + Ff[1,] = ff + Fm[1,] = fm + Ft <- Ft_star <- matrix(0, agess*2, agess*2) + Ft[1:agess,1:agess] <- rbind(cbind(birth_female * Ff, birth_female * Fm), + cbind((1-birth_female) * Ff, (1-birth_female) * Fm)) + + # mother and father do not reproduce independently to produce focalĀ“s siblings. Assign to mother + Ft_star[1:agess,1:ages] <- rbind(birth_female * Ff, (1-birth_female) * Ff) + + # parents age distribution under stable assumption in case no input + if(is.null(pif)){ + A = Uf + Ff + A_decomp = eigen(A) + lambda = as.double(A_decomp$values[1]) + w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + pif = w*A[1,]/sum(w*A[1,]) + if(all(is.na(pif))) pif <- rep(1/ages, ages) + } + if(is.null(pim)){ + A = Um + Fm + A_decomp = eigen(A) + lambda = as.double(A_decomp$values[1]) + w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + pim = w*A[1,]/sum(w*A[1,]) + if(all(is.na(pim))) pim <- rep(1/ages, ages) + } + + # initial count matrix (kin ages in rows and focal age in column) + phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0, agess*2, ages) + + # locate focal at age 0 depending sex + sex_index <- ifelse(sex_focal == "f", 1, ages+1) + phi[sex_index, 1] <- 1 + + # G matrix moves focal by age + G <- matrix(0, nrow=ages, ncol=ages) + G[row(G)-1 == col(G)] <- 1 + Gt <- matrix(0, agess*2, agess*2) + Gt[1:(agess), 1:(agess)] <- as.matrix(Matrix::bdiag(G, G)) + + # focalĀ“s trip + # names of matrix count by kin refers to matrilineal as general reference + m[1:(agess),1] = c(pif, pim) + for(i in 1:(ages-1)){ + # i = 1 + phi[,i+1] = Gt %*% phi[, i] + d[,i+1] = Ut %*% d[,i] + Ft %*% phi[,i] + gd[,i+1] = Ut %*% gd[,i] + Ft %*% d[,i] + ggd[,i+1] = Ut %*% ggd[,i] + Ft %*% gd[,i] + m[,i+1] = Ut %*% m[,i] + ys[,i+1] = Ut %*% ys[,i] + Ft_star %*% m[,i] + nys[,i+1] = Ut %*% nys[,i] + Ft %*% ys[,i] + } + + gm[1:(agess),1] = m[1:(agess),] %*% (pif + pim) + for(i in 1:(ages-1)){ + gm[,i+1] = Ut %*% gm[,i] + } + + ggm[1:(agess),1] = gm[1:(agess),] %*% (pif + pim) + for(i in 1:(ages-1)){ + ggm[,i+1] = Ut %*% ggm[,i] + } + + os[1:(agess),1] = d[1:(agess),] %*% pif + nos[1:(agess),1] = gd[1:(agess),] %*% pif + for(i in 1:(ages-1)){ + os[,i+1] = Ut %*% os[,i] + nos[,i+1] = Ut %*% nos[,i] + Ft %*% os[,i] + } + + oa[1:(agess),1] = os[1:(agess),] %*% (pif + pim) + ya[1:(agess),1] = ys[1:(agess),] %*% (pif + pim) + coa[1:(agess),1] = nos[1:(agess),] %*% (pif + pim) + cya[1:(agess),1] = nys[1:(agess),] %*% (pif + pim) + for(i in 1:(ages-1)){ + oa[,i+1] = Ut %*% oa[,i] + ya[,i+1] = Ut %*% ya[,i] + Ft_star %*% gm[,i] + coa[,i+1] = Ut %*% coa[,i] + Ft %*% oa[,i] + cya[,i+1] = Ut %*% cya[,i] + Ft %*% ya[,i] + } + + # get results + kin_list <- list(d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, + nos=nos,nys=nys,oa=oa,ya=ya,coa=coa,cya=cya) + + # only selected kin + if(!is.null(output_kin)){ + kin_list <- kin_list %>% purrr::keep(names(.) %in% output_kin) + } + + # as data.frame + kin <- purrr::map2(kin_list, names(kin_list), + function(x,y){ + out <- as.data.frame(x) + colnames(out) <- age + out %>% + dplyr::mutate(kin = y, + age_kin = rep(age,4), + sex = rep(c(rep("f",ages), rep("m",ages)),2), + alive = c(rep("living",2*ages), rep("dead",2*ages))) %>% + tidyr::pivot_longer(c(-age_kin, -kin, -sex, -alive), names_to = "age_focal", values_to = "count") %>% + dplyr::mutate(age_focal = as.integer(age_focal)) %>% + tidyr::pivot_wider(names_from = alive, values_from = count) + } + ) %>% + purrr::reduce(rbind) + + + # results as list? + if(list_output) { + out <- kin_list + }else{ + out <- kin + } + + return(out) +} diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R new file mode 100644 index 0000000..93248ba --- /dev/null +++ b/R/kin_time_variant_2sex.R @@ -0,0 +1,254 @@ +#' Estimate kin counts in a time variant framework + +kin_time_variant_2sex <- function(Pf = NULL, Pm = NULL, + Ff = NULL, Fm = NULL, + sex_focal = "f", + birth_female = 1/2.04, + Pif = NULL, Pim = NULL, + Nf = NULL, Nm = NULL, + output_cohort = NULL, output_period = NULL, output_kin = NULL, + list_output = FALSE){ + + # same input length + if(!all(dim(Pf) == dim(Pm), dim(Pf) == dim(Ff), dim(Pf) == dim(Fm))) stop("Dimension of P's and F's should be the same") + + # data should be from same interval years + years_data <- as.integer(colnames(Pf)) + if(var(diff(years_data))!=0) stop("Data should be for same interval length years. Fill the gaps and run again") + + # utils + age <- 0:(nrow(Pf)-1) + n_years_data <- length(years_data) + ages <- length(age) + agess <- ages*2 + om <- max(age) + zeros <- matrix(0, nrow=ages, ncol=ages) + + # age distribution at childborn + if(is.null(Pif)){ + if(!is.null(Nf)){ + Pif <- rbind(t(t(Nf * Ff)/colSums(Nf * Ff)), matrix(0,ages,length(years_data))) + }else{ + Pif <- matrix(0, nrow=ages, ncol=n_years_data) + no_Pif <- TRUE + } + } + if(is.null(Pim)){ + if(!is.null(Nm)){ + Pim <- rbind(t(t(Nm * Fm)/colSums(Nm * Fm)), matrix(0,ages,length(years_data))) + }else{ + Pim <- matrix(0, nrow=ages, ncol=n_years_data) + no_Pim <- TRUE + } + } + + # get lists of matrix + Ul = Fl = Fl_star = list() + for(t in 1:n_years_data){ + # t = 1 + Uf = Um = Fft = Fmt = Mm = Mf = Gt = zeros = matrix(0, nrow=ages, ncol=ages) + Uf[row(Uf)-1 == col(Uf)] <- Pf[-ages,t] + Uf[ages, ages] = Pf[ages,t] + Um[row(Um)-1 == col(Um)] <- Pm[-ages,t] + Um[ages, ages] = Pm[ages,t] + Mm <- diag(1-Pm[,t]) + Mf <- diag(1-Pf[,t]) + Ut <- as.matrix(rbind( + cbind(Matrix::bdiag(Uf, Um), Matrix::bdiag(zeros, zeros)), + cbind(Matrix::bdiag(Mf, Mm), Matrix::bdiag(zeros, zeros)))) + Ul[[as.character(years_data[t])]] <- Ut + Fft[1,] = Ff[,t] + Fmt[1,] = Fm[,t] + Ft <- Ft_star <- matrix(0, agess*2, agess*2) + Ft[1:agess,1:agess] <- rbind(cbind(birth_female * Fft, birth_female * Fmt), + cbind((1-birth_female) * Fft, (1-birth_female) * Fmt)) + Ft_star[1:agess,1:ages] <- rbind(birth_female * Fft, (1-birth_female) * Fft) + Fl[[as.character(years_data[t])]] <- Ft + Fl_star[[as.character(years_data[t])]] <- Ft_star + if(no_Pif){ + A <- Uf + Fft + A_decomp = eigen(A) + w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + Pif[,t] <- w*A[1,]/sum(w*A[1,]) + } + if(no_Pim){ + A <- Um + Fmt + A_decomp = eigen(A) + w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + Pim[,t] <- w*A[1,]/sum(w*A[1,]) + } + } + + # loop over years (more performance here) + kin_all <- list() + pb <- progress::progress_bar$new( + format = "Running over input years [:bar] :percent", + total = n_years_data, clear = FALSE, width = 60) + for (iyear in 1:n_years_data){ + # iyear = 1 + Ut <- as.matrix(Ul[[iyear]]) + Ft <- as.matrix(Fl[[iyear]]) + Ft_star <- as.matrix(Fl_star[[iyear]]) + pitf <- Pif[,iyear] + pitm <- Pim[,iyear] + pit <- c(pitf, pitm) + if (iyear==1){ + p1f <- Pf[,1] + p1m <- Pm[,1] + f1f <- Ff[,1] + f1m <- Fm[,1] + pif1 <- Pif[,1] + pim1 <- Pim[,1] + kin_all[[1]] <- kin_time_invariant_2sex(pf = p1f, pm = p1m, + ff = f1f, fm = f1m, + pif = pif1, pim = pim1, + birth_female = birth_female, list_output = TRUE) + } + kin_all[[iyear+1]] <- timevarying_kin_2sex(Ut=Ut, Ft=Ft, Ft_star=Ft_star, pit=pit, sex_focal, ages, pkin=kin_all[[iyear]]) + pb$tick() + } + + # filter years and kin that were selected + names(kin_all) <- as.character(years_data) + + # combinations to return + out_selected <- output_period_cohort_combination(output_cohort, output_period, age = age, years_data = years_data) + + possible_kin <- c("d","gd","ggd","m","gm","ggm","os","ys","nos","nys","oa","ya","coa","cya") + if(is.null(output_kin)){ + selected_kin_position <- 1:length(possible_kin) + }else{ + selected_kin_position <- which(possible_kin %in% output_kin) + } + + # first filter + kin_list <- kin_all %>% + purrr::keep(names(.) %in% as.character(unique(out_selected$year))) %>% + purrr::map(~ .[selected_kin_position]) + + # long format + kin <- lapply(names(kin_list), function(Y){ + X <- kin_list[[Y]] + X <- purrr::map2(X, names(X), function(x,y){ + # browser() + as.data.frame(x) %>% + dplyr::mutate(year = Y, + kin=y, + sex = rep(c(rep("f",ages), rep("m",ages)),2), + age_kin = rep(age,4), + alive = c(rep("living",agess), rep("dead",agess)), + .before=everything()) + }) %>% + dplyr::bind_rows() %>% + stats::setNames(c("year","kin", "sex", "age_kin","alive",as.character(age))) %>% + tidyr::gather(age_focal, count,-age_kin, -kin, -year, -sex, -alive) %>% + dplyr::mutate(age_focal = as.integer(age_focal), + year = as.integer(year), + cohort = year - age_focal) %>% + dplyr::filter(age_focal %in% out_selected$age[out_selected$year==as.integer(Y)]) %>% + tidyr::pivot_wider(names_from = alive, values_from = count) + }) %>% + dplyr::bind_rows() + + # results as list? + if(list_output) { + out <- kin_list + }else{ + out <- kin + } + + return(out) +} + +#' one time projection kin + +#' @description one time projection kin. internal function. +#' +#' @param Ut numeric. A matrix of survival probabilities (or ratios). +#' @param ft numeric. A matrix of age-specific fertility rates. +#' @param pit numeric. A matrix with distribution of childbearing. +#' @param ages numeric. +#' @param pkin numeric. A list with kin count distribution in previous year. +# +timevarying_kin_2sex<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin){ + + agess <- ages*2 + om <- ages-1 + pif <- pit[1:ages] + pim <- pit[(ages+1):agess] + phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0,agess*2,ages) + kin_list <- list(d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, + nos=nos,nys=nys,oa=oa,ya=ya,coa=coa,cya=cya) + + # G matrix moves focal by age + G <- matrix(0, nrow=ages, ncol=ages) + G[row(G)-1 == col(G)] <- 1 + Gt <- matrix(0, agess*2, agess*2) + Gt[1:(agess), 1:(agess)] <- as.matrix(Matrix::bdiag(G, G)) + + # locate focal at age 0 depending sex + sex_index <- ifelse(sex_focal == "f", 1, ages+1) + phi[sex_index, 1] <- 1 + + # initial distribution + m[1:agess,1] = pit + gm[1:agess,1] = pkin[["m"]][1:agess,] %*% (pif + pim) + ggm[1:agess,1] = pkin[["gm"]][1:agess,] %*% (pif + pim) + os[1:agess,1] = pkin[["d"]][1:agess,] %*% pif + nos[1:agess,1] = pkin[["gd"]][1:ages,] %*% pif + oa[1:agess,1] = pkin[["os"]][1:agess,] %*% (pif + pim) + ya[1:agess,1] = pkin[["ys"]][1:agess,] %*% (pif + pim) + coa[1:agess,1] = pkin[["nos"]][1:agess,] %*% (pif + pim) + cya[1:agess,1] = pkin[["nys"]][1:agess,] %*% (pif + pim) + + for (ix in 1:om){ + # ix = 1 + phi[,ix+1] = Gt %*% phi[, ix] + d[,ix+1] = Ut %*% pkin[["d"]][,ix] + Ft %*% phi[,ix] + gd[,ix+1] = Ut %*% pkin[["gd"]][,ix] + Ft %*% pkin[["d"]][,ix] + ggd[,ix+1] = Ut %*% pkin[["ggd"]][,ix] + Ft %*% pkin[["gd"]][,ix] + m[,ix+1] = Ut %*% pkin[["m"]][,ix] + gm[,ix+1] = Ut %*% pkin[["gm"]][,ix] + ggm[,ix+1] = Ut %*% pkin[["ggm"]][,ix] + os[,ix+1] = Ut %*% pkin[["os"]][,ix] + ys[,ix+1] = Ut %*% pkin[["ys"]][,ix] + Ft_star %*% pkin[["m"]][,ix] + nos[,ix+1] = Ut %*% pkin[["nos"]][,ix] + Ft %*% pkin[["os"]][,ix] + nys[,ix+1] = Ut %*% pkin[["nys"]][,ix] + Ft %*% pkin[["ys"]][,ix] + oa[,ix+1] = Ut %*% pkin[["oa"]][,ix] + ya[,ix+1] = Ut %*% pkin[["ya"]][,ix] + Ft_star %*% pkin[["gm"]][,ix] + coa[,ix+1] = Ut %*% pkin[["coa"]][,ix] + Ft %*% pkin[["oa"]][,ix] + cya[,ix+1] = Ut %*% pkin[["cya"]][,ix] + Ft %*% pkin[["ya"]][,ix] + } + + kin_list <- list(d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, + nos=nos,nys=nys,oa=oa,ya=ya,coa=coa,cya=cya) + + return(kin_list) +} + +#' defince apc combination to return + +#' @description defince apc to return. +#' +output_period_cohort_combination <- function(output_cohort = NULL, output_period = NULL, age = NULL, years_data = NULL){ + + # no specific + if(is.null(output_period) & is.null(output_cohort)){ + message("No specific output was set. Return all period data.") + output_period <- years_data + } + + # cohort combination + if(!is.null(output_cohort)){ + selected_cohorts_year_age <- data.frame(age = rep(age,length(output_cohort)), + year = purrr::map(output_cohort,.f = ~.x+age) %>% + unlist(use.names = F)) + }else{selected_cohorts_year_age <- c()} + + # period year combination + if(!is.null(output_period)){selected_years_age <- expand.grid(age, output_period) %>% dplyr::rename(age=1,year=2) + }else{selected_years_age <- c()} + + # end + return(dplyr::bind_rows(selected_years_age,selected_cohorts_year_age) %>% dplyr::distinct()) +} diff --git a/data/fra_asfr_sex.rda b/data/fra_asfr_sex.rda new file mode 100644 index 0000000000000000000000000000000000000000..63188d388eb82c71a020c2674c246758335941c6 GIT binary patch literal 870 zcmV-s1DX6EiwFP!000002JKaiPt0K)|8-ZLB6LE{2}365Wu$JBPg0k+lCE;O(t7zd zx~}XloQzWKaLG$dNK$HDopOqt-gY<4>CMPwmE!UmI~@rt@$)j9f56M;vwipZJfG*Y zeV^_5K70H<`3o%hmIOi22~(O0K{ul$VHOy`oy{RAhgz5rri2B>BcjFOVbP>GAxuI_ z34%6~^6H7-1h}s_a5kx{9~-iw^d32m*gXEQdA3al5_9`(b?b_e>h4>h&;}wyrzlQ! zy^pNwW8>AllgN|OeA0aaQB>IeI+V*mX=9{u>EsZUi?)+Z6J)4VuA6&(NQ`Qll4RcY zM%}$28&`G^G}p2VyLlg=-R;nq>yZa-V*|0s+5y_qOX||Rwa_|_wR(H^1vJaY^_pi~ zL2YYc0%r>kRZD8>3>Ge^T-LDBQ-~-A$)*B)x$)QMlKSum{IP!0m^uAK$ zBHP70ZNj!eWL~vPn{nYXIU3fUUHAnJFt-d?o?KJE2d96l$fY&1H&uQCN8P%ciqo_{2hQ@z$jTz@_e|= zySd*Wki+}DlUe_#TKM<4owR3iu-;k!lC^9$HuYAVX36TXL*DHWD2>8i-<(fMHVc_~ zcl7h~Z{o!BC0{2N`JgN2r z%1$BF&r}BG_C=`V$bwh)8BuY@^O9TWai}`A&dhE8IJbsMWF z8V&veVoMznn=P#ryUy_uQ={}{*Y5&(Ct((UVhF;Mcs+j7 z0tnjH+BGx65b$~+J)X(Ms*zI$&PW{LI&)fV{b>UBUg`(Z$cKM=4*p&I^5@W_Hi;;* wqUx(ne&=5z!>CAHxQLWcdd!d95LKhU>F*g@bo5Up`msOs1@@prg8K#l06#9bq5uE@ literal 0 HcmV?d00001 diff --git a/data/fra_surv_sex.rda b/data/fra_surv_sex.rda new file mode 100644 index 0000000000000000000000000000000000000000..abef45f09308b088f83eb4460e6fd1576258ed22 GIT binary patch literal 1598 zcmV-E2Eq9siwFP!00000236GwG}K!h2k?nxsg&YTw7=97ugyeRenMfAN+VORo>Wwp zvScaAdU%D3si7E0iyk$K@T9Vpt%w(fnv9Wso4G=gWxStPr*rzB^FN<^@BjX{`~Tki zw>D*Llw-(IC=^M`bctycNhvH+q-^NhwR9=if|Y5M=@eOXmZOKgou`+Fx1FbhFNGo@ zk8Q7k4BzC@&!hkmcRV}pH3DRE#br$kF=|bHbW9U<*0Sk&gu1Bqrxv2FA%<#$=;?%k z@MBYT=D2}7dW31g^g?OQ9|zRXRk!xUKEUgW8>$bxpmnDoSDZ&VulCyZqY-oC!>OqA zG|r+_)KYW9>>6~fri#)!RFQ4|$pFa2L?~=pfc9qc=sGB0dbnp3TJ>+PKR(Yy{-4{g zT|iSRH1A}h5jSL>2cpMW{(a@BLH~q68lA%(HOK`r&a1XHx`9T9#l&&Y)$W993S=x> zxMnXw_32U@HUk;WZwOhNjB0Q`dEtG&1}gnc4geW>c}SY~5XhI2Di5#E=u#WLAsfeW zrD~`8eITD@8)KtwfednM()T6-8MvxDXdDFOliqtLr$iv6G<{*9A`p>|N`3o3K>FgO z+u0%@Jwxu150(Szwprqv>jU z8z|Uc<~CYp0*{n9yYjTnDBm~yt||%z#=4lxJhQVaGce!NyB7xG_ng$bRD8S+wLRja z!$NJEbF&LjMxaQ22tDXtl=Nom_+9^xQ*|RbmsELFwxwttj+^-YUuN;4=2A;O>**4#m3q8 z*gnFw(pJzw?G;>+Dgl;FGCbe36RsTW|vN4k3kwhjCoIK8D!K0vYo6X$akcxwpO0 zWO)g5FCSVJ`y5DrnzFzI&nN4P(;rs?5gy*b@4)%jyT#s4SPG=;4Zqn9*Po8nH)WOa zyjJtQ?AQ1lf;OgcFTQ`H(wWwPrI_dG^h&oYKx%ncXel^8)mge(a=0#39HkW$O#mtF z*RsgO@q2MPTZ4`7mp7cFr;qa|H^C&}o;8qc*F(c{_b|`2&XW%ffut#D*capalak=> z5PdLHce}05S!-~8*mJb$LJ^LGv9`M~7~e;$)YX`J6^N3qp_&g1M5B?qFRb|> z5)@~geVYQJl5^>yTwf5~Jx^^`!n$9e`^&@{5Yb|U7Im2*QYcs-r8*OY6;*M5N!lPh zV5`OIdJcV0`}iw${(#>8&^l!^9`uM6;Sg60-5pnVbh9r*7e}Q2;J|L^q%R+5md}KC z!HQAl?O + %\VignetteIndexEntry{Use} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r, include=FALSE} +knitr::opts_chunk$set(collapse = TRUE, comment = "#>") +``` + +Age distribution of FocalĀ“s father when she born depends on male fertility pattern. Living siblings depends on sex composition (brothers and sisters) due to differential mortality risk. Intensity in care tasks is not the same between sex in many societies, so the sex of ego and his/her "sandwichness" change, because an average family network expects different roles in supporting. For these reasons, and many others, sex specific kin count estimates are important. Here we implement relations in Caswell (2022), not focusing in applications that can be analogous to the one-sex model, but in the specific advantages. + +```{r, message=FALSE, warning=FALSE} +library(DemoKin) +library(tidyr) +library(dplyr) +library(ggplot2) +library(knitr) +devtools::load_all() +``` + +### 1.1. Rates by sex + +Female fertility by age is not a widespread available data source. Caswell (2022) takes Schoumaker (2019) makes available estimates for 160 countries, reporting that male TFR almost always exceeds female TFR. We take the case of France in 2012 for showing how functions works (fertility and mortality data are available with the package, with column-sex values). LetĀ“s see main differences in age distribution (TFR of 1.98 and 1.99 for males and females, practically the same) + +```{r} +fra_fert_f <- fra_fert_sex[,"ff"] +fra_fert_m <- fra_fert_sex[,"fm"] +fra_surv_f <- fra_surv_sex[,"pf"] +fra_surv_m <- fra_surv_sex[,"pm"] +sum(fra_fert_m)-sum(fra_fert_f) +data.frame(value = c(fra_fert_f, fra_fert_m, fra_surv_f, fra_surv_m), + age = rep(0:100, 4), + sex = rep(c(rep("f", 101), rep("m", 101)), 2), + risk = c(rep("fertility rate", 101 * 2), rep("survival probability", 101 * 2))) %>% + ggplot(aes(age, value, col=sex)) + geom_line() + facet_wrap(~ risk, scales = "free_y") + theme_bw() +``` + +### 1.1. Visualizing the distribution of kin + +Compared with one sex functions, here the user needs to specify risk by sex and decide results for which egoĀ“s sex wants. (**this should be wrapped on a kin general formula? (note for Diego)**) + +```{r} +kin_out <- kin_time_invariant_2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) +``` + +LetĀ“s group aunts and siblings and see living kin by age (**should reply fig 6 (note for Diego)**). + +```{r} +kin_out <- kin_out %>% + mutate(kin = case_when(kin %in% c("s", "s") ~ "s", + kin %in% c("ya", "oa") ~ "a", + T ~ kin)) %>% + filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) +kin_out %>% + group_by(kin, age_focal, sex) %>% + summarise(count=sum(living)) %>% + ggplot(aes(age_focal, count, fill=sex))+ + geom_area()+ + theme_bw() + + facet_wrap(~kin) +``` + +Kin availability by sex allows to inspect its distribution, a traditional measure in demography is the sex ratio (with females in denominator). A French woman would expect to have half grandfathers for each grandmother at 25 years old. + +```{r} +kin_out %>% + group_by(kin, age_focal) %>% + summarise(sex_ratio=sum(living[sex=="m"], na.rm=T)/sum(living[sex=="f"], na.rm=T)) %>% + ggplot(aes(age_focal, sex_ratio))+ + geom_line()+ + theme_bw() + + facet_wrap(~kin, scales = "free") +``` + +How ego experiences relative deaths depends mainly on how wide is the sex-gap in mortality. She starts to lose fathers earlier than mothers. The difference on the level by sex in grandparents is due to initial availability by sex. + +```{r} +# sex ratio +kin_out %>% + group_by(kin, sex, age_focal) %>% + summarise(count=sum(dead)) %>% + ggplot(aes(age_focal, count, col=sex))+ + geom_line()+ + theme_bw() + + facet_wrap(~kin) +``` + +### 2 Approximations + +Caswell (2022) mentions some ways to approximate to 2-sex distribution of living kins. Here we compare the full 2-sex model that introduced before with *androgynous* variant (male fertility and survival are the same as females) and the use of GKP factors. The first comparison can be done by age, having very similar results in this case, except for grandfathers and great-grandfathers who transits higher ages and sex-gap is higher. + +```{r} +kin_out <- kin_time_invariant_2sex(fra_surv_f, fra_surv_m, + fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) +kin_out_androgynous <- kin_time_invariant_2sex(fra_surv_f, fra_surv_f, + fra_fert_f, fra_fert_f, sex_focal = "f", birth_female = .5) +bind_rows( + kin_out %>% mutate(type = "full"), + kin_out_androgynous %>% mutate(type = "androgynous")) %>% + group_by(kin, age_focal, sex, type) %>% + summarise(count = sum(living)) %>% + ggplot(aes(age_focal, count, linetype = type)) + + geom_line() + + theme_bw() + + theme(legend.position = "bottom", axis.text.x = element_blank()) + + facet_grid(row = vars(sex), col = vars(kin), scales = "free") +``` + +Now we can multiply results from 1-sex model by the GKP factors by kin, to obtain a simple but very consistent approximation of totals (both sex) at different ages of Focal. + +```{r} +# with gkp +kin_out_1sex <- kin(fra_surv_f, fra_fert_f, birth_female = .5) +kin_out_GKP <- kin_out_1sex$kin_full %>% + mutate(living = case_when(kin == "m" ~ living * 2, + kin == "gm" ~ living * 4, + kin == "ggm" ~ living * 8, + kin == "d" ~ living * 2, + kin == "gd" ~ living * 4, + kin == "ggd" ~ living * 4, + kin == "oa" ~ living * 4, + kin == "ya" ~ living * 4, + kin == "os" ~ living * 2, + kin == "ys" ~ living * 2, + kin == "coa" ~ living * 8, + kin == "cya" ~ living * 8, + kin == "nos" ~ living * 4, + kin == "nys" ~ living * 4)) + +bind_rows( + kin_out %>% mutate(type = "full"), + kin_out_androgynous %>% mutate(type = "androgynous"), + kin_out_GKP %>% mutate(type = "gkp")) %>% + mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", + kin %in% c("ya", "oa") ~ "a", + kin %in% c("coa", "cya") ~ "c", + kin %in% c("nys", "nos") ~ "n", + T ~ kin)) %>% + filter(age_focal %in% c(5, 15, 30, 60, 80)) %>% + group_by(kin, age_focal, type) %>% + summarise(count = sum(living)) %>% + ggplot(aes(type, count)) + + geom_bar(aes(fill=type), stat = "identity") + + theme_bw()+theme(axis.text.x = element_text(angle = 90), legend.position = "bottom")+ + facet_grid(col = vars(kin), row = vars(age_focal), scales = "free") +``` + +### 2 Time variant + +But Focal will see his/her tree developing with current risk, being part of the evolving demographic transition, in any of its stages. LetĀ“s compare what would be living kin for Swedish female if she would experienced time varying rates instead of period ones from 1950. We can use data already loaded in the package. + +```{r} +years <- ncol(swe_px) +ages <- nrow(swe_px) +swe_surv_f_matrix <- swe_px +swe_surv_m_matrix <- swe_px ^ 1.5 # this could be replaced with downloaded data from UN +swe_fert_f_matrix <- swe_asfr +swe_fert_m_matrix <- rbind(matrix(0, 5, years), + swe_asfr[-((ages-4):ages),]) * 1.05 +par(mfrow=c(1,2)) +main("Sweden year 1900") +plot(swe_surv_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Survival probability") +lines(swe_surv_m_matrix[,"1900"], col=2) +plot(swe_fert_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Fertility rate") +lines(swe_fert_m_matrix[,"1900"], col=2) +``` +There is a n increase of living relatives because of mortality improvements, very small for grandparents because main advantages in health conditions made a huge effect in infant mortality first. Less children would have this woman in case of varying rates, due to fertility transition in the first decades in Sweden. + +```{r} +kin_out_time_invariant <- kin_time_invariant_2sex( + swe_surv_f_matrix[,"1900"], swe_surv_m_matrix[,"1900"], + swe_fert_f_matrix[,"1900"], swe_fert_m_matrix[,"1900"], + sex_focal = "f", birth_female = .5) +kin_out_time_variant <- kin_time_variant_2sex( + swe_surv_f_matrix, swe_surv_m_matrix, + swe_fert_f_matrix, swe_fert_m_matrix, + sex_focal = "f", + birth_female = .5, + output_cohort = 1900) + +kin_out_time_variant %>% + filter(cohort == 1900) %>% mutate(type = "variant") %>% + bind_rows(kin_out_time_invariant %>% mutate(type = "invariant")) %>% + mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", + kin %in% c("ya", "oa") ~ "a", + T ~ kin)) %>% + filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) %>% + group_by(type, kin, age_focal, sex) %>% + summarise(count=sum(living)) %>% + ggplot(aes(age_focal, count, linetype=type))+ + geom_line()+ theme_bw() + + facet_grid(cols = vars(kin), rows=vars(sex), scales = "free") +``` + + +## References + +Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359–396. From 972d5c10b195688a5500064cbd7bee700ee39f77 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 27 Jan 2023 08:52:17 -0300 Subject: [PATCH 06/89] general 2sexkin --- R/kin2sex.R | 124 +++++++++++++++++++++++++++++++++++++++++++ vignettes/TwoSex.Rmd | 73 ++++++++++++------------- 2 files changed, 159 insertions(+), 38 deletions(-) create mode 100644 R/kin2sex.R diff --git a/R/kin2sex.R b/R/kin2sex.R new file mode 100644 index 0000000..dee1254 --- /dev/null +++ b/R/kin2sex.R @@ -0,0 +1,124 @@ +#' Estimate kin counts in a two-sex framework + +#' @description Implementation of Goodman-Keyfitz-Pullum equations in a matrix framework. +#' @details See Caswell (2022) for details on formulas. +#' @param U numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param f numeric. Same as U but for fertility rates. +#' @param time_invariant logical. Constant assumption for a given `year` rates. Default `TRUE`. +#' @param N numeric. Same as U but for population distribution (counts or `%`). Optional. +#' @param pi numeric. Same as U but for childbearing distribution (sum to 1). Optional. +#' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. +#' @param output_period integer. Vector of period years for returning results. Should be within input data years range. +#' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... +#' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, this needs to be set as 1. +#' @param stable logic. Deprecated. Use `time_invariant`. +#' @return A list with: +#' \itemize{ +#' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age.} +#' \item{kin_summary}{ a data frame with FocalĀ“s age, related ages and type of kin, with indicators obtained processing `kin_full`, grouping by cohort or period (depending on the given arguments):} +#' {\itemize{ +#' \item{`count_living`}{: count of living kin at actual age of Focal} +#' \item{`mean_age`}{: mean age of each type of living kin.} +#' \item{`sd_age`}{: standard deviation of age of each type of living kin.} +#' \item{`count_death`}{: count of dead kin at specific age of Focal.} +#' \item{`count_cum_death`}{: cumulated count of dead kin until specific age of Focal.} +#' \item{`mean_age_lost`}{: mean age where Focal lost her relative.} +#' } +#' } +#' } + +#' @export +#' +# get kin ---------------------------------------------------------------- +kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, + time_invariant = TRUE, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, pim = NULL, + output_cohort = NULL, output_period = NULL, output_kin=NULL) + { + + age <- as.integer(rownames(pf)) + years_data <- as.integer(colnames(pf)) + + # kin to return + all_possible_kin <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") + if(is.null(output_kin)){ + output_kin <- all_possible_kin + }else{ + output_kin <- match.arg(tolower(output_kin), all_possible_kin, several.ok = TRUE) + } + + # if time dependent or not + if(time_invariant){ + if(!is.vector(pf)) { + output_period <- min(years_data) + pf <- pf[,as.character(output_period)] + pm <- pm[,as.character(output_period)] + ff <- ff[,as.character(output_period)] + fm <- fm[,as.character(output_period)] + } + kin_full <- kin_time_invariant_2sex(pf, pm, ff, fm, + sex_focal = sex_focal, + birth_female = birth_female, + pif = pif, pim = pim, + output_kin = output_kin) %>% + dplyr::mutate(cohort = NA, year = NA) + }else{ + if(!is.null(output_cohort) & !is.null(output_period)) stop("sorry, you can not select cohort and period. Choose one please") + kin_full <- kin_time_variant_2sex(Pf = pf, Pm = pm, + Ff = ff, Fm = fm, + sex_focal = sex_focal, + birth_female = birth_female, + Pif = pif, Pim = pim, + output_cohort = output_cohort, output_period = output_period, + output_kin = output_kin) + message(paste0("Assuming stable population before ", min(years_data), ".")) + } + + # reorder + kin_full <- kin_full %>% + dplyr::select(year, cohort, age_focal, sex, kin, age_kin, living, dead) %>% + dplyr::mutate(kin_group = dplyr::case_when(kin %in% c("ys", "os") ~ "s", + kin %in% c("ya", "oa") ~ "a", + kin %in% c("coa", "cya") ~ "c", + kin %in% c("nys", "nos") ~ "n", + T ~ kin)) + + # summary + # select period/cohort + if(!is.null(output_cohort)){ + agrupar <- "cohort" + } else if(!is.null(output_period)){ + agrupar <- "year" + } else{ + agrupar <- c("year", "cohort") + } + agrupar_no_age_focal <- c("kin", "sex", agrupar) + agrupar <- c("age_focal", "kin", "sex", agrupar) + + kin_summary <- dplyr::bind_rows( + kin_full %>% + dplyr::rename(total=living) %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% + dplyr::summarise(count_living = sum(total), + mean_age = sum(total*age_kin)/sum(total), + sd_age = (sum(total*age_kin^2)/sum(total)-mean_age^2)^.5) %>% + tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", "value"), + kin_full %>% + dplyr::rename(total=dead) %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% + dplyr::summarise(count_dead = sum(total)) %>% + dplyr::ungroup() %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar_no_age_focal))) %>% + dplyr::mutate(count_cum_dead = cumsum(count_dead), + mean_age_lost = cumsum(count_dead * age_focal)/cumsum(count_dead)) %>% + dplyr::ungroup() %>% + tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", "value")) %>% + dplyr::ungroup() %>% + tidyr::pivot_wider(names_from = indicator, values_from = value) + + # return + kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) + return(kin_out) +} diff --git a/vignettes/TwoSex.Rmd b/vignettes/TwoSex.Rmd index 32d2c63..3245293 100644 --- a/vignettes/TwoSex.Rmd +++ b/vignettes/TwoSex.Rmd @@ -1,5 +1,5 @@ --- -title: "Expected kin counts by type of relative: A matrix implementation" +title: "TwoExpected kin counts by type of relative: A matrix implementation" output: html_document: toc: true @@ -47,20 +47,20 @@ data.frame(value = c(fra_fert_f, fra_fert_m, fra_surv_f, fra_surv_m), Compared with one sex functions, here the user needs to specify risk by sex and decide results for which egoĀ“s sex wants. (**this should be wrapped on a kin general formula? (note for Diego)**) ```{r} -kin_out <- kin_time_invariant_2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) +kin_out <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) ``` LetĀ“s group aunts and siblings and see living kin by age (**should reply fig 6 (note for Diego)**). ```{r} -kin_out <- kin_out %>% +kin_out <- kin_out$kin_summary %>% mutate(kin = case_when(kin %in% c("s", "s") ~ "s", kin %in% c("ya", "oa") ~ "a", T ~ kin)) %>% filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) kin_out %>% group_by(kin, age_focal, sex) %>% - summarise(count=sum(living)) %>% + summarise(count=sum(count_living)) %>% ggplot(aes(age_focal, count, fill=sex))+ geom_area()+ theme_bw() + @@ -72,7 +72,7 @@ Kin availability by sex allows to inspect its distribution, a traditional measur ```{r} kin_out %>% group_by(kin, age_focal) %>% - summarise(sex_ratio=sum(living[sex=="m"], na.rm=T)/sum(living[sex=="f"], na.rm=T)) %>% + summarise(sex_ratio=sum(count_living[sex=="m"], na.rm=T)/sum(count_living[sex=="f"], na.rm=T)) %>% ggplot(aes(age_focal, sex_ratio))+ geom_line()+ theme_bw() + @@ -85,7 +85,7 @@ How ego experiences relative deaths depends mainly on how wide is the sex-gap in # sex ratio kin_out %>% group_by(kin, sex, age_focal) %>% - summarise(count=sum(dead)) %>% + summarise(count=sum(count_dead)) %>% ggplot(aes(age_focal, count, col=sex))+ geom_line()+ theme_bw() + @@ -97,15 +97,13 @@ kin_out %>% Caswell (2022) mentions some ways to approximate to 2-sex distribution of living kins. Here we compare the full 2-sex model that introduced before with *androgynous* variant (male fertility and survival are the same as females) and the use of GKP factors. The first comparison can be done by age, having very similar results in this case, except for grandfathers and great-grandfathers who transits higher ages and sex-gap is higher. ```{r} -kin_out <- kin_time_invariant_2sex(fra_surv_f, fra_surv_m, - fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) -kin_out_androgynous <- kin_time_invariant_2sex(fra_surv_f, fra_surv_f, - fra_fert_f, fra_fert_f, sex_focal = "f", birth_female = .5) +kin_out <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) +kin_out_androgynous <- kin2sex(fra_surv_f, fra_surv_f, fra_fert_f, fra_fert_f, sex_focal = "f", birth_female = .5) bind_rows( - kin_out %>% mutate(type = "full"), - kin_out_androgynous %>% mutate(type = "androgynous")) %>% + kin_out$kin_summary %>% mutate(type = "full"), + kin_out_androgynous$kin_summary %>% mutate(type = "androgynous")) %>% group_by(kin, age_focal, sex, type) %>% - summarise(count = sum(living)) %>% + summarise(count = sum(count_living)) %>% ggplot(aes(age_focal, count, linetype = type)) + geom_line() + theme_bw() + @@ -118,25 +116,25 @@ Now we can multiply results from 1-sex model by the GKP factors by kin, to obtai ```{r} # with gkp kin_out_1sex <- kin(fra_surv_f, fra_fert_f, birth_female = .5) -kin_out_GKP <- kin_out_1sex$kin_full %>% - mutate(living = case_when(kin == "m" ~ living * 2, - kin == "gm" ~ living * 4, - kin == "ggm" ~ living * 8, - kin == "d" ~ living * 2, - kin == "gd" ~ living * 4, - kin == "ggd" ~ living * 4, - kin == "oa" ~ living * 4, - kin == "ya" ~ living * 4, - kin == "os" ~ living * 2, - kin == "ys" ~ living * 2, - kin == "coa" ~ living * 8, - kin == "cya" ~ living * 8, - kin == "nos" ~ living * 4, - kin == "nys" ~ living * 4)) +kin_out_GKP <- kin_out_1sex$kin_summary%>% + mutate(count_living = case_when(kin == "m" ~ count_living * 2, + kin == "gm" ~ count_living * 4, + kin == "ggm" ~ count_living * 8, + kin == "d" ~ count_living * 2, + kin == "gd" ~ count_living * 4, + kin == "ggd" ~ count_living * 4, + kin == "oa" ~ count_living * 4, + kin == "ya" ~ count_living * 4, + kin == "os" ~ count_living * 2, + kin == "ys" ~ count_living * 2, + kin == "coa" ~ count_living * 8, + kin == "cya" ~ count_living * 8, + kin == "nos" ~ count_living * 4, + kin == "nys" ~ count_living * 4)) bind_rows( - kin_out %>% mutate(type = "full"), - kin_out_androgynous %>% mutate(type = "androgynous"), + kin_out$kin_summary %>% mutate(type = "full"), + kin_out_androgynous$kin_summary %>% mutate(type = "androgynous"), kin_out_GKP %>% mutate(type = "gkp")) %>% mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", kin %in% c("ya", "oa") ~ "a", @@ -145,7 +143,7 @@ bind_rows( T ~ kin)) %>% filter(age_focal %in% c(5, 15, 30, 60, 80)) %>% group_by(kin, age_focal, type) %>% - summarise(count = sum(living)) %>% + summarise(count = sum(count_living)) %>% ggplot(aes(type, count)) + geom_bar(aes(fill=type), stat = "identity") + theme_bw()+theme(axis.text.x = element_text(angle = 90), legend.position = "bottom")+ @@ -165,7 +163,6 @@ swe_fert_f_matrix <- swe_asfr swe_fert_m_matrix <- rbind(matrix(0, 5, years), swe_asfr[-((ages-4):ages),]) * 1.05 par(mfrow=c(1,2)) -main("Sweden year 1900") plot(swe_surv_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Survival probability") lines(swe_surv_m_matrix[,"1900"], col=2) plot(swe_fert_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Fertility rate") @@ -174,26 +171,26 @@ lines(swe_fert_m_matrix[,"1900"], col=2) There is a n increase of living relatives because of mortality improvements, very small for grandparents because main advantages in health conditions made a huge effect in infant mortality first. Less children would have this woman in case of varying rates, due to fertility transition in the first decades in Sweden. ```{r} -kin_out_time_invariant <- kin_time_invariant_2sex( +kin_out_time_invariant <- kin2sex( swe_surv_f_matrix[,"1900"], swe_surv_m_matrix[,"1900"], swe_fert_f_matrix[,"1900"], swe_fert_m_matrix[,"1900"], sex_focal = "f", birth_female = .5) -kin_out_time_variant <- kin_time_variant_2sex( +kin_out_time_variant <- kin2sex( swe_surv_f_matrix, swe_surv_m_matrix, swe_fert_f_matrix, swe_fert_m_matrix, - sex_focal = "f", + sex_focal = "f",time_invariant = FALSE, birth_female = .5, output_cohort = 1900) -kin_out_time_variant %>% +kin_out_time_variant$kin_summary %>% filter(cohort == 1900) %>% mutate(type = "variant") %>% - bind_rows(kin_out_time_invariant %>% mutate(type = "invariant")) %>% + bind_rows(kin_out_time_invariant$kin_summary %>% mutate(type = "invariant")) %>% mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", kin %in% c("ya", "oa") ~ "a", T ~ kin)) %>% filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) %>% group_by(type, kin, age_focal, sex) %>% - summarise(count=sum(living)) %>% + summarise(count=sum(count_living)) %>% ggplot(aes(age_focal, count, linetype=type))+ geom_line()+ theme_bw() + facet_grid(cols = vars(kin), rows=vars(sex), scales = "free") From 47ade3080d1f8e3c253c3d584994460dbbbfbbf9 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Sun, 29 Jan 2023 12:14:52 -0300 Subject: [PATCH 07/89] document 2sex --- DESCRIPTION | 2 +- NAMESPACE | 3 + R/kin.R | 82 ++++++++------ R/kin2sex.R | 40 ++++--- R/kin_time_invariant.R | 31 +++-- R/kin_time_invariant_2sex.R | 12 +- R/kin_time_variant.R | 103 ++++++++--------- R/kin_time_variant_2sex.R | 145 +++++++++++++----------- data/fra_asfr_sex.rda | Bin 870 -> 870 bytes man/fra_asfr_sex.Rd | 19 ++++ man/fra_surv_sex.Rd | 19 ++++ man/kin.Rd | 40 +++++-- man/kin2sex.Rd | 86 ++++++++++++++ man/kin_time_invariant.Rd | 10 +- man/kin_time_invariant_2sex.Rd | 52 +++++++++ man/kin_time_variant.Rd | 17 +-- man/kin_time_variant_2sex.Rd | 65 +++++++++++ man/output_period_cohort_combination.Rd | 11 +- man/timevarying_kin_2sex.Rd | 22 ++++ vignettes/Reference.Rmd | 15 +-- vignettes/TwoSex.Rmd | 31 ++--- 21 files changed, 566 insertions(+), 239 deletions(-) create mode 100644 man/fra_asfr_sex.Rd create mode 100644 man/fra_surv_sex.Rd create mode 100644 man/kin2sex.Rd create mode 100644 man/kin_time_invariant_2sex.Rd create mode 100644 man/kin_time_variant_2sex.Rd create mode 100644 man/timevarying_kin_2sex.Rd diff --git a/DESCRIPTION b/DESCRIPTION index 9b3e9db..2e5402c 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -21,7 +21,6 @@ Imports: dplyr, tidyr, purrr, - forcats, HMDHFDplus, progress, matrixcalc, @@ -30,6 +29,7 @@ Imports: stats, igraph, magrittr, + data.table, lifecycle BugReports: https://github.com/IvanWilli/DemoKin/issues Depends: diff --git a/NAMESPACE b/NAMESPACE index f5c7de1..5502931 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -4,9 +4,12 @@ export("%>%") export(demokin_codes) export(get_HMDHFD) export(kin) +export(kin2sex) export(kin_multi_stage) export(kin_time_invariant) +export(kin_time_invariant_2sex) export(kin_time_variant) +export(kin_time_variant_2sex) export(plot_diagram) export(rename_kin) importFrom(magrittr,"%>%") diff --git a/R/kin.R b/R/kin.R index 6dd8dec..866f1c9 100644 --- a/R/kin.R +++ b/R/kin.R @@ -1,21 +1,26 @@ -#' Estimate kin counts +#' Estimate kin counts in a one-sex framework. -#' @description Implementation of Goodman-Keyfitz-Pullum equations in a matrix framework. +#' @description Implementation of Goodman-Keyfitz-Pullum equations in a matrix framework. This produce a matrilineal (or patrilineal) +#' kin count distribution by kin and age. #' @details See Caswell (2019) and Caswell (2021) for details on formulas. One sex only (female by default). -#' @param U numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). -#' @param f numeric. Same as U but for fertility rates. +#' @param p numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class +#' in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param f numeric. Same as p but for fertility rates. #' @param time_invariant logical. Constant assumption for a given `year` rates. Default `TRUE`. -#' @param N numeric. Same as U but for population distribution (counts or `%`). Optional. +#' @param n numeric. Same as p but for population distribution (counts or `%`). Optional. #' @param pi numeric. Same as U but for childbearing distribution (sum to 1). Optional. #' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... -#' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, this needs to be set as 1. +#' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, +#' this needs to be set as 1. #' @param stable logic. Deprecated. Use `time_invariant`. #' @return A list with: #' \itemize{ -#' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age.} -#' \item{kin_summary}{ a data frame with FocalĀ“s age, related ages and type of kin, with indicators obtained processing `kin_full`, grouping by cohort or period (depending on the given arguments):} +#' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` is daughter, +#' `oa` is older aunts, etc.), including living and dead kin at that age.} +#' \item{kin_summary}{ a data frame with FocalĀ“s age, related ages and type of kin, with indicators obtained processing `kin_full`, +#' grouping by cohort or period (depending on the given arguments):} #' {\itemize{ #' \item{`count_living`}{: count of living kin at actual age of Focal} #' \item{`mean_age`}{: mean age of each type of living kin.} @@ -26,25 +31,35 @@ #' } #' } #' } - #' @export -#' -# get kin ---------------------------------------------------------------- -kin <- function(U = NULL, f = NULL, - time_invariant = TRUE, - N = NULL, pi = NULL, - output_cohort = NULL, output_period = NULL, output_kin=NULL, - birth_female = 1/2.04, - stable = lifecycle::deprecated()) - { +#' @examples +#' \dontrun{ +#' # Kin expected matrilineal count for a Swedish female based on 2015 rates. +#' swe_surv_2015 <- swe_px[,"2015"] +#' swe_asfr_2015 <- swe_asfr[,"2015"] +#' # Run kinship models +#' swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015) +#' head(swe_2015) +#'} - age <- as.integer(rownames(U)) - years_data <- as.integer(colnames(U)) +kin <- function(p = NULL, f = NULL, + time_invariant = TRUE, + pi = NULL, n = NULL, + output_cohort = NULL, output_period = NULL, output_kin=NULL, + birth_female = 1/2.04, + stable = lifecycle::deprecated(), + U = lifecycle::deprecated()) + { + # changed arguments if (lifecycle::is_present(stable)) { lifecycle::deprecate_warn("0.0.0.9000", "kin(stable)", details = "Used time_invariant") time_invariant <- stable } + if (lifecycle::is_present(U)) { + lifecycle::deprecate_warn("0.0.0.9000", "kin(stable)", details = "Used time_invariant") + p <- U + } # kin to return all_possible_kin <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") @@ -54,35 +69,27 @@ kin <- function(U = NULL, f = NULL, output_kin <- match.arg(tolower(output_kin), all_possible_kin, several.ok = TRUE) } - # if time dependent or not + # if is time dependent or not + age <- as.integer(rownames(p)) + years_data <- as.integer(colnames(p)) if(time_invariant){ - if(!is.vector(U)) { + if(!is.vector(p)) { output_period <- min(years_data) - U <- U[,as.character(output_period)] + p <- p[,as.character(output_period)] f <- f[,as.character(output_period)] } - kin_full <- kin_time_invariant(U = U, f = f, + kin_full <- kin_time_invariant(p = p, f = f, output_kin = output_kin, birth_female = birth_female) %>% dplyr::mutate(cohort = NA, year = NA) }else{ if(!is.null(output_cohort) & !is.null(output_period)) stop("sorry, you can not select cohort and period. Choose one please") - kin_full <- kin_time_variant(U = U, f = f, N = N, pi = pi, + kin_full <- kin_time_variant(p = p, f = f, pi = pi, n = n, output_cohort = output_cohort, output_period = output_period, output_kin = output_kin, birth_female = birth_female) message(paste0("Assuming stable population before ", min(years_data), ".")) } - # reorder - kin_full <- kin_full %>% - dplyr::select(year, cohort, age_focal, kin, age_kin, living, dead) %>% - dplyr::mutate(kin_group = dplyr::case_when(kin %in% c("ys", "os") ~ "s", - kin %in% c("ya", "oa") ~ "a", - kin %in% c("coa", "cya") ~ "c", - kin %in% c("nys", "nos") ~ "n", - T ~ kin)) - - # summary # select period/cohort if(!is.null(output_cohort)){ agrupar <- "cohort" @@ -94,6 +101,7 @@ kin <- function(U = NULL, f = NULL, agrupar_no_age_focal <- c("kin", agrupar) agrupar <- c("age_focal", "kin", agrupar) + # get summary indicators based on group variables kin_summary <- dplyr::bind_rows( kin_full %>% dplyr::rename(total=living) %>% @@ -115,7 +123,7 @@ kin <- function(U = NULL, f = NULL, dplyr::ungroup() %>% tidyr::pivot_wider(names_from = indicator, values_from = value) - # return - kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) + # return + kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) return(kin_out) } diff --git a/R/kin2sex.R b/R/kin2sex.R index dee1254..aa46eba 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -1,12 +1,19 @@ #' Estimate kin counts in a two-sex framework -#' @description Implementation of Goodman-Keyfitz-Pullum equations in a matrix framework. +#' @description Implementation of two-sex matrix kinship model. This produces kin counts grouped by kin, age and sex of +#' each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents +#' are grouped in one male count of cousins. #' @details See Caswell (2022) for details on formulas. -#' @param U numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). -#' @param f numeric. Same as U but for fertility rates. +#' @param pf numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param pm numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param ff numeric. Same as pf but for fertility rates. +#' @param fm numeric. Same as pm but for fertility rates. #' @param time_invariant logical. Constant assumption for a given `year` rates. Default `TRUE`. -#' @param N numeric. Same as U but for population distribution (counts or `%`). Optional. -#' @param pi numeric. Same as U but for childbearing distribution (sum to 1). Optional. +#' @param sex_focal character. "f" for female or "m" for male. +#' @param pif numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default `NULL`. +#' @param pim numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default `NULL`. +#' @param nf numeric. Same as pf but for population distribution (counts or `%`). Optional. +#' @param nm numeric. Same as pm but for population distribution (counts or `%`). Optional. #' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... @@ -15,7 +22,7 @@ #' @return A list with: #' \itemize{ #' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age.} -#' \item{kin_summary}{ a data frame with FocalĀ“s age, related ages and type of kin, with indicators obtained processing `kin_full`, grouping by cohort or period (depending on the given arguments):} +#' \item{kin_summary}{ a data frame with FocalĀ“s age, related ages, sex and type of kin, with indicators obtained processing `kin_full`, grouping by cohort or period (depending on the given arguments):} #' {\itemize{ #' \item{`count_living`}{: count of living kin at actual age of Focal} #' \item{`mean_age`}{: mean age of each type of living kin.} @@ -26,8 +33,13 @@ #' } #' } #' } - #' @export +#' @examples +#' \dontrun{ +#' # Kin expected count by relative sex for a French female based on 2012 rates. +#' fra_2012 <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m) +#' head(fra_2012) +#'} #' # get kin ---------------------------------------------------------------- kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, @@ -35,6 +47,7 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, sex_focal = "f", birth_female = 1/2.04, pif = NULL, pim = NULL, + nf = NULL, nm = NULL, output_cohort = NULL, output_period = NULL, output_kin=NULL) { @@ -66,11 +79,12 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, dplyr::mutate(cohort = NA, year = NA) }else{ if(!is.null(output_cohort) & !is.null(output_period)) stop("sorry, you can not select cohort and period. Choose one please") - kin_full <- kin_time_variant_2sex(Pf = pf, Pm = pm, - Ff = ff, Fm = fm, + kin_full <- kin_time_variant_2sex(pf = pf, pm = pm, + ff = ff, fm = fm, sex_focal = sex_focal, birth_female = birth_female, - Pif = pif, Pim = pim, + pif = pif, pim = pim, + nf = nf, nm = nm, output_cohort = output_cohort, output_period = output_period, output_kin = output_kin) message(paste0("Assuming stable population before ", min(years_data), ".")) @@ -78,7 +92,7 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, # reorder kin_full <- kin_full %>% - dplyr::select(year, cohort, age_focal, sex, kin, age_kin, living, dead) %>% + dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, dead) %>% dplyr::mutate(kin_group = dplyr::case_when(kin %in% c("ys", "os") ~ "s", kin %in% c("ya", "oa") ~ "a", kin %in% c("coa", "cya") ~ "c", @@ -94,8 +108,8 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, } else{ agrupar <- c("year", "cohort") } - agrupar_no_age_focal <- c("kin", "sex", agrupar) - agrupar <- c("age_focal", "kin", "sex", agrupar) + agrupar_no_age_focal <- c("kin", "sex_kin", agrupar) + agrupar <- c("age_focal", "kin", "sex_kin", agrupar) kin_summary <- dplyr::bind_rows( kin_full %>% diff --git a/R/kin_time_invariant.R b/R/kin_time_invariant.R index d843c4e..2f85412 100644 --- a/R/kin_time_invariant.R +++ b/R/kin_time_invariant.R @@ -1,37 +1,37 @@ -#' Estimate kin counts in a time invariant framework +#' Estimate kin counts in a time invariant framework for one-sex model (matrilineal/patrilineal) -#' @description Implementation of Goodman-Keyfitz-Pullum equations adapted by Caswell (2019). +#' @description Mtrix implementation of Goodman-Keyfitz-Pullum equations adapted by Caswell (2019). -#' @param U numeric. A vector of survival probabilities with same length as ages. +#' @param p numeric. A vector of survival probabilities with same length as ages. #' @param f numeric. A vector of age-specific fertility rates with same length as ages. #' @param birth_female numeric. Female portion at birth. #' @param pi numeric. For using some specific non-stable age distribution of childbearing (same length as ages). Default `NULL`. -#' @param output_kin character. kin to return. For example "m" for mother, "d" for daughter. See the `vignette` for all kin types. +#' @param output_kin character. kin to return. For example "m" for mother, "d" for daughter. See `vignette` for all kin types. #' @param list_output logical. Results as a list with `output_kin` elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default `FALSE` #' #' @return A data frame with focalĀ“s age, related ages and type of kin #' (for example `d` is daughter, `oa` is older aunts, etc.), alive and death. If `list_output = TRUE` then this is a list. #' @export -kin_time_invariant <- function(U = NULL, f = NULL, +kin_time_invariant <- function(p = NULL, f = NULL, birth_female = 1/2.04, pi = NULL, output_kin = NULL, list_output = FALSE){ # make matrix transition from vectors - age = 0:(length(U)-1) + age = 0:(length(p)-1) ages = length(age) - Ut = Mt = zeros = Dcum = matrix(0, nrow=ages, ncol=ages) - Ut[row(Ut)-1 == col(Ut)] <- U[-ages] - Ut[ages, ages] = U[ages] - diag(Mt) = 1 - U + Ut = Mt = zeros = matrix(0, nrow=ages, ncol=ages) + Ut[row(Ut)-1 == col(Ut)] <- p[-ages] + Ut[ages, ages] = p[ages] + diag(Mt) = 1 - p Ut = rbind(cbind(Ut,zeros), - cbind(Mt,Dcum)) + cbind(Mt,zeros)) ft = matrix(0, nrow=ages*2, ncol=ages*2) ft[1,1:ages] = f * birth_female - # stable age distr + # stable age distribution in case no pi is given if(is.null(pi)){ A = Ut[1:ages,1:ages] + ft[1:ages,1:ages] A_decomp = eigen(A) @@ -57,24 +57,20 @@ kin_time_invariant <- function(U = NULL, f = NULL, ys[,i+1] = Ut %*% ys[,i] + ft %*% m[,i] nys[,i+1] = Ut %*% nys[,i] + ft %*% ys[,i] } - gm[1:ages,1] = m[1:ages,] %*% pi for(i in 1:(ages-1)){ gm[,i+1] = Ut %*% gm[,i] } - ggm[1:ages,1] = gm[1:ages,] %*% pi for(i in 1:(ages-1)){ ggm[,i+1] = Ut %*% ggm[,i] } - os[1:ages,1] = d[1:ages,] %*% pi nos[1:ages,1] = gd[1:ages,] %*% pi for(i in 1:(ages-1)){ os[,i+1] = Ut %*% os[,i] nos[,i+1] = Ut %*% nos[,i] + ft %*% os[,i] } - oa[1:ages,1] = os[1:ages,] %*% pi ya[1:ages,1] = ys[1:ages,] %*% pi coa[1:ages,1] = nos[1:ages,] %*% pi @@ -95,7 +91,7 @@ kin_time_invariant <- function(U = NULL, f = NULL, kin_list <- kin_list %>% purrr::keep(names(.) %in% output_kin) } - # as data.frame + # reshape as data.frame kin <- purrr::map2(kin_list, names(kin_list), function(x,y){ out <- as.data.frame(x) @@ -118,6 +114,5 @@ kin_time_invariant <- function(U = NULL, f = NULL, }else{ out <- kin } - return(out) } diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R index 1d178b1..f864154 100644 --- a/R/kin_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex.R @@ -1,7 +1,9 @@ -#' Estimate kin counts in a time invariant framework considering two sex - -#' @description Two sex matrix framework for kin count estimates. Implementation of Caswell (2022). +#' Estimate kin counts in a time invariant framework for two-sex model. +#' @description Two-sex matrix framework for kin count estimates.This produces kin counts grouped by kin, age and sex of +#' each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents +#' are grouped in one male count of cousins. +#' @details See Caswell (2022) for details on formulas. #' @param pf numeric. A vector of survival probabilities for females with same length as ages. #' @param ff numeric. A vector of age-specific fertility rates for females with same length as ages. #' @param pm numeric. A vector of survival probabilities for males with same length as ages. @@ -141,9 +143,9 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, out %>% dplyr::mutate(kin = y, age_kin = rep(age,4), - sex = rep(c(rep("f",ages), rep("m",ages)),2), + sex_kin = rep(c(rep("f",ages), rep("m",ages)),2), alive = c(rep("living",2*ages), rep("dead",2*ages))) %>% - tidyr::pivot_longer(c(-age_kin, -kin, -sex, -alive), names_to = "age_focal", values_to = "count") %>% + tidyr::pivot_longer(c(-age_kin, -kin, -sex_kin, -alive), names_to = "age_focal", values_to = "count") %>% dplyr::mutate(age_focal = as.integer(age_focal)) %>% tidyr::pivot_wider(names_from = alive, values_from = count) } diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index bc962fc..c73f1ec 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -1,8 +1,8 @@ -#' Estimate kin counts in a time variant framework +#' Estimate kin counts in a time variant framework (dynamic rates) for one-sex model (matrilineal/patrilineal) -#' @description Implementation of time variant Goodman-Keyfitz-Pullum equations based on Caswell (2021). -#' -#' @param U numeric. A matrix of survival ratios with rows as ages and columns as years. Column names must be equal interval. +#' @description Matrix implementation of time variant Goodman-Keyfitz-Pullum equations in a matrix framework. +#' @details See Caswell (2021) for details on formulas. +#' @param p numeric. A matrix of survival ratios with rows as ages and columns as years. Column names must be equal interval. #' @param f numeric. A matrix of age-specific fertility rates with rows as ages and columns as years. Coincident with `U`. #' @param N numeric. A matrix of population with rows as ages and columns as years. Coincident with `U`. #' @param pi numeric. A matrix with distribution of childbearing with rows as ages and columns as years. Coincident with `U`. @@ -16,22 +16,22 @@ #' (for example `d` is daughter, `oa` is older aunts, etc.), living and death kin counts, and age of (living or time deceased) relatives. If `list_output = TRUE` then this is a list. #' @export -kin_time_variant <- function(U = NULL, f = NULL, N = NULL, pi = NULL, +kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, output_cohort = NULL, output_period = NULL, output_kin = NULL, birth_female = 1/2.04, list_output = FALSE){ # check input - if(is.null(U) | is.null(f)) stop("You need values on U and/or f.") + if(is.null(p) | is.null(f)) stop("You need values on p and f.") # diff years - if(!any(as.integer(colnames(U)) == as.integer(colnames(f)))) stop("Data should be from same years.") + if(!any(as.integer(colnames(p)) == as.integer(colnames(f)))) stop("Data should be from same years.") # data should be from same interval years - years_data <- as.integer(colnames(U)) + years_data <- as.integer(colnames(p)) if(var(diff(years_data))!=0) stop("Data should be for same interval length years. Fill the gaps and run again") # utils - age <- 0:(nrow(U)-1) + age <- 0:(nrow(p)-1) n_years_data <- length(years_data) ages <- length(age) om <- max(age) @@ -39,55 +39,46 @@ kin_time_variant <- function(U = NULL, f = NULL, N = NULL, pi = NULL, # age distribution at childborn if(is.null(pi)){ - if(is.null(N)){ + if(is.null(n)){ # create pi and fill it during the loop message("Stable assumption was made for calculating pi on each year because no input data.") pi <- matrix(0, nrow=ages, ncol=n_years_data) }else{ - pi <- rbind(t(t(N * f)/colSums(N * f)), matrix(0,ages,length(years_data))) + pi <- rbind(t(t(n * f)/colSums(n * f)), matrix(0,ages,length(years_data))) } } - # get lists of matrix - Ul = fl = list() - for(t in 1:n_years_data){ - Ut = Mt = Dcum = matrix(0, nrow=ages, ncol=ages) - Ut[row(Ut)-1 == col(Ut)] <- U[-ages,t] - Ut[ages, ages]=U[ages,t] - diag(Mt) = 1 - U[,t] - Ul[[as.character(years_data[t])]] <- rbind(cbind(Ut,zeros),cbind(Mt,Dcum)) - ft = matrix(0, nrow=ages*2, ncol=ages*2) - ft[1,1:ages] = f[,t] * birth_female - fl[[as.character(years_data[t])]] <- ft - } - U <- Ul - f <- fl - # loop over years (more performance here) kin_all <- list() pb <- progress::progress_bar$new( format = "Running over input years [:bar] :percent", - total = n_years_data, clear = FALSE, width = 60) - for (iyear in 1:n_years_data){ - # print(iyear) - Ut <- as.matrix(U[[iyear]]) - ft <- as.matrix(f[[iyear]]) + total = n_years_data + 1, clear = FALSE, width = 50) + for (t in 1:n_years_data){ + # build matrix + Ut = Mt = matrix(0, nrow=ages, ncol=ages) + Ut[row(Ut)-1 == col(Ut)] <- p[-ages,t] + Ut[ages, ages] = p[ages,t] + diag(Mt) = 1 - p[,t] + Ut = rbind(cbind(Ut,zeros),cbind(Mt,zeros)) + ft = matrix(0, nrow=ages*2, ncol=ages*2) + ft[1,1:ages] = f[,t] * birth_female if(is.null(pi)){ A <- Ut[1:ages,1:ages] + ft[1:ages,1:ages] A_decomp = eigen(A) w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) - pit <- pi[,iyear] <- w*A[1,]/sum(w*A[1,]) + pit <- pi[,t] <- w*A[1,]/sum(w*A[1,]) }else{ - pit <- pi[,iyear] + pit <- pi[,t] } - if (iyear==1){ - U1 <- c(diag(Ut[-1,])[1:om],Ut[om,om]) + # proj + if (t==1){ + p1 <- c(diag(Ut[-1,])[1:om],Ut[om,om]) f1 <- ft[1,][1:ages] pi1 <- pit[1:ages] - kin_all[[1]] <- kin_time_invariant(U = U1, f = f1/birth_female, pi = pi1, birth_female = birth_female, + kin_all[[1]] <- kin_time_invariant(p = p1, f = f1/birth_female, pi = pi1, birth_female = birth_female, list_output = TRUE) } - kin_all[[iyear+1]] <- timevarying_kin(Ut=Ut,ft=ft,pit=pit,ages,pkin=kin_all[[iyear]]) + kin_all[[t+1]] <- timevarying_kin(Ut=Ut,ft=ft,pit=pit,ages,pkin=kin_all[[t]]) pb$tick() } @@ -110,23 +101,26 @@ kin_time_variant <- function(U = NULL, f = NULL, N = NULL, pi = NULL, purrr::map(~ .[selected_kin_position]) # long format - kin <- lapply(names(kin_list), function(Y){ + kin <- lapply(names(kin_list), FUN = function(Y){ X <- kin_list[[Y]] - X <- purrr::map2(X, names(X), function(x,y) as.data.frame(x) %>% - dplyr::mutate(year = Y, - kin=y, - age_kin = rep(age,2), - alive = c(rep("living",ages), rep("dead",ages)), - .before=everything())) %>% - dplyr::bind_rows() %>% - stats::setNames(c("year","kin","age_kin","alive",as.character(age))) %>% - tidyr::gather(age_focal, count,-age_kin, -kin, -year, -alive) %>% - dplyr::mutate(age_focal = as.integer(age_focal), - year = as.integer(year), - cohort = year - age_focal) %>% - dplyr::filter(age_focal %in% out_selected$age[out_selected$year==as.integer(Y)]) %>% - tidyr::pivot_wider(names_from = alive, values_from = count)}) %>% - dplyr::bind_rows() + X <- purrr::map2(X, names(X), function(x,y){ + x <- as.data.frame(x) + x$year <- Y + x$kin <- y + x$age_kin <- rep(age,2) + x$alive <- c(rep("living",ages), rep("dead",ages)) + return(x) + }) %>% + data.table::rbindlist() %>% + stats::setNames(c(as.character(age), "year","kin","age_kin","alive")) %>% + data.table::melt(id.vars = c("year","kin","age_kin","alive"), variable.name = "age_focal", value.name = "count") + X$age_focal = as.integer(as.character(X$age_focal)) + X$year = as.integer(X$year) + X$cohort = X$year - X$age_focal + X[X$age_focal %in% out_selected$age[out_selected$year==as.integer(Y)],] %>% + data.table::dcast(year + kin + age_kin + age_focal + cohort ~ alive, value.var = "count") + }) %>% data.table::rbindlist() + pb$tick() # results as list? if(list_output) { @@ -172,7 +166,8 @@ timevarying_kin<- function(Ut, ft, pit, ages, pkin){ coa[1:ages,1]= pkin[["nos"]][1:ages,] %*% pit[1:ages] cya[1:ages,1]= pkin[["nys"]][1:ages,] %*% pit[1:ages] - for (ix in 1:om){ + # vers1 + for(ix in 1:om){ d[,ix+1] = Ut %*% pkin[["d"]][,ix] + ft %*% I[,ix] gd[,ix+1] = Ut %*% pkin[["gd"]][,ix] + ft %*% pkin[["d"]][,ix] ggd[,ix+1] = Ut %*% pkin[["ggd"]][,ix] + ft %*% pkin[["gd"]][,ix] diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index 93248ba..0ffe306 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -1,23 +1,45 @@ -#' Estimate kin counts in a time variant framework +#' Estimate kin counts in a time variant framework (dynamic rates) in a two-sex framework (Caswell, 2022) -kin_time_variant_2sex <- function(Pf = NULL, Pm = NULL, - Ff = NULL, Fm = NULL, +#' @description Two-sex matrix framework for kin count estimates with varying rates. +#' This produces kin counts grouped by kin, age and sex of each relatives at each FocalĀ“s age. +#' For example, male cousins from aunts and uncles from different sibling's parents are grouped in one male count of cousins. +#' @details See Caswell (2022) for details on formulas. +#' @param pf numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param pm numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param ff numeric. Same as pf but for fertility rates. +#' @param fm numeric. Same as pm but for fertility rates. +#' @param time_invariant logical. Constant assumption for a given `year` rates. Default `TRUE`. +#' @param sex_focal character. "f" for female or "m" for male. +#' @param pif numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default `NULL`. +#' @param pim numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default `NULL`. +#' @param nf numeric. Same as pf but for population distribution (counts or `%`). Optional. +#' @param nm numeric. Same as pm but for population distribution (counts or `%`). Optional. +#' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. +#' @param output_period integer. Vector of period years for returning results. Should be within input data years range. +#' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... +#' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, this needs to be set as 1. +#' @param stable logic. Deprecated. Use `time_invariant`. +#' @return A data.frame with year, cohort, FocalĀ“s age, related ages, sex and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age and sex. +#' @export + +kin_time_variant_2sex <- function(pf = NULL, pm = NULL, + ff = NULL, fm = NULL, sex_focal = "f", birth_female = 1/2.04, - Pif = NULL, Pim = NULL, - Nf = NULL, Nm = NULL, + pif = NULL, pim = NULL, + nf = NULL, nm = NULL, output_cohort = NULL, output_period = NULL, output_kin = NULL, list_output = FALSE){ # same input length - if(!all(dim(Pf) == dim(Pm), dim(Pf) == dim(Ff), dim(Pf) == dim(Fm))) stop("Dimension of P's and F's should be the same") + if(!all(dim(pf) == dim(pm), dim(pf) == dim(ff), dim(pf) == dim(fm))) stop("Dimension of P's and F's should be the same") # data should be from same interval years - years_data <- as.integer(colnames(Pf)) + years_data <- as.integer(colnames(pf)) if(var(diff(years_data))!=0) stop("Data should be for same interval length years. Fill the gaps and run again") # utils - age <- 0:(nrow(Pf)-1) + age <- 0:(nrow(pf)-1) n_years_data <- length(years_data) ages <- length(age) agess <- ages*2 @@ -25,17 +47,19 @@ kin_time_variant_2sex <- function(Pf = NULL, Pm = NULL, zeros <- matrix(0, nrow=ages, ncol=ages) # age distribution at childborn - if(is.null(Pif)){ - if(!is.null(Nf)){ - Pif <- rbind(t(t(Nf * Ff)/colSums(Nf * Ff)), matrix(0,ages,length(years_data))) + Pif <- pif + Pim <- pim + if(is.null(pif)){ + if(!is.null(nf)){ + Pif <- rbind(t(t(nf * ff)/colSums(nf * ff)), matrix(0,ages,length(years_data))) }else{ Pif <- matrix(0, nrow=ages, ncol=n_years_data) no_Pif <- TRUE } } - if(is.null(Pim)){ - if(!is.null(Nm)){ - Pim <- rbind(t(t(Nm * Fm)/colSums(Nm * Fm)), matrix(0,ages,length(years_data))) + if(is.null(pim)){ + if(!is.null(nm)){ + Pim <- rbind(t(t(nm * fm)/colSums(nm * fm)), matrix(0,ages,length(years_data))) }else{ Pim <- matrix(0, nrow=ages, ncol=n_years_data) no_Pim <- TRUE @@ -44,21 +68,25 @@ kin_time_variant_2sex <- function(Pf = NULL, Pm = NULL, # get lists of matrix Ul = Fl = Fl_star = list() + kin_all <- list() + pb <- progress::progress_bar$new( + format = "Running over input years [:bar] :percent", + total = n_years_data + 1, clear = FALSE, width = 60) for(t in 1:n_years_data){ # t = 1 Uf = Um = Fft = Fmt = Mm = Mf = Gt = zeros = matrix(0, nrow=ages, ncol=ages) - Uf[row(Uf)-1 == col(Uf)] <- Pf[-ages,t] - Uf[ages, ages] = Pf[ages,t] - Um[row(Um)-1 == col(Um)] <- Pm[-ages,t] - Um[ages, ages] = Pm[ages,t] - Mm <- diag(1-Pm[,t]) - Mf <- diag(1-Pf[,t]) + Uf[row(Uf)-1 == col(Uf)] <- pf[-ages,t] + Uf[ages, ages] = pf[ages,t] + Um[row(Um)-1 == col(Um)] <- pm[-ages,t] + Um[ages, ages] = pm[ages,t] + Mm <- diag(1-pm[,t]) + Mf <- diag(1-pf[,t]) Ut <- as.matrix(rbind( cbind(Matrix::bdiag(Uf, Um), Matrix::bdiag(zeros, zeros)), cbind(Matrix::bdiag(Mf, Mm), Matrix::bdiag(zeros, zeros)))) Ul[[as.character(years_data[t])]] <- Ut - Fft[1,] = Ff[,t] - Fmt[1,] = Fm[,t] + Fft[1,] = ff[,t] + Fmt[1,] = fm[,t] Ft <- Ft_star <- matrix(0, agess*2, agess*2) Ft[1:agess,1:agess] <- rbind(cbind(birth_female * Fft, birth_female * Fmt), cbind((1-birth_female) * Fft, (1-birth_female) * Fmt)) @@ -77,26 +105,18 @@ kin_time_variant_2sex <- function(Pf = NULL, Pm = NULL, w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) Pim[,t] <- w*A[1,]/sum(w*A[1,]) } - } - - # loop over years (more performance here) - kin_all <- list() - pb <- progress::progress_bar$new( - format = "Running over input years [:bar] :percent", - total = n_years_data, clear = FALSE, width = 60) - for (iyear in 1:n_years_data){ - # iyear = 1 - Ut <- as.matrix(Ul[[iyear]]) - Ft <- as.matrix(Fl[[iyear]]) - Ft_star <- as.matrix(Fl_star[[iyear]]) - pitf <- Pif[,iyear] - pitm <- Pim[,iyear] + # project + Ut <- as.matrix(Ul[[t]]) + Ft <- as.matrix(Fl[[t]]) + Ft_star <- as.matrix(Fl_star[[t]]) + pitf <- Pif[,t] + pitm <- Pim[,t] pit <- c(pitf, pitm) - if (iyear==1){ - p1f <- Pf[,1] - p1m <- Pm[,1] - f1f <- Ff[,1] - f1m <- Fm[,1] + if (t==1){ + p1f <- pf[,1] + p1m <- pm[,1] + f1f <- ff[,1] + f1m <- fm[,1] pif1 <- Pif[,1] pim1 <- Pim[,1] kin_all[[1]] <- kin_time_invariant_2sex(pf = p1f, pm = p1m, @@ -104,7 +124,7 @@ kin_time_variant_2sex <- function(Pf = NULL, Pm = NULL, pif = pif1, pim = pim1, birth_female = birth_female, list_output = TRUE) } - kin_all[[iyear+1]] <- timevarying_kin_2sex(Ut=Ut, Ft=Ft, Ft_star=Ft_star, pit=pit, sex_focal, ages, pkin=kin_all[[iyear]]) + kin_all[[t+1]] <- timevarying_kin_2sex(Ut=Ut, Ft=Ft, Ft_star=Ft_star, pit=pit, sex_focal, ages, pkin=kin_all[[t]]) pb$tick() } @@ -125,30 +145,28 @@ kin_time_variant_2sex <- function(Pf = NULL, Pm = NULL, kin_list <- kin_all %>% purrr::keep(names(.) %in% as.character(unique(out_selected$year))) %>% purrr::map(~ .[selected_kin_position]) - # long format - kin <- lapply(names(kin_list), function(Y){ + kin <- lapply(names(kin_list), FUN = function(Y){ X <- kin_list[[Y]] X <- purrr::map2(X, names(X), function(x,y){ - # browser() - as.data.frame(x) %>% - dplyr::mutate(year = Y, - kin=y, - sex = rep(c(rep("f",ages), rep("m",ages)),2), - age_kin = rep(age,4), - alive = c(rep("living",agess), rep("dead",agess)), - .before=everything()) - }) %>% - dplyr::bind_rows() %>% - stats::setNames(c("year","kin", "sex", "age_kin","alive",as.character(age))) %>% - tidyr::gather(age_focal, count,-age_kin, -kin, -year, -sex, -alive) %>% - dplyr::mutate(age_focal = as.integer(age_focal), - year = as.integer(year), - cohort = year - age_focal) %>% - dplyr::filter(age_focal %in% out_selected$age[out_selected$year==as.integer(Y)]) %>% - tidyr::pivot_wider(names_from = alive, values_from = count) - }) %>% - dplyr::bind_rows() + x <- as.data.frame(x) + x$year <- Y + x$kin <- y + x$sex_kin <- rep(c(rep("f",ages), rep("m",ages)),2) + x$age_kin <- rep(age,2) + x$alive <- c(rep("living",ages), rep("dead",ages)) + return(x) + }) %>% + data.table::rbindlist() %>% + stats::setNames(c(as.character(age), "year","kin","sex_kin","age_kin","alive")) %>% + data.table::melt(id.vars = c("year","kin","sex_kin","age_kin","alive"), variable.name = "age_focal", value.name = "count") + X$age_focal = as.integer(as.character(X$age_focal)) + X$year = as.integer(X$year) + X$cohort = X$year - X$age_focal + X <- X[X$age_focal %in% out_selected$age[out_selected$year==as.integer(Y)],] + X <- data.table::dcast(X, year + kin + sex_kin + age_kin + age_focal + cohort ~ alive, value.var = "count", fun.aggregate = sum) + }) %>% data.table::rbindlist() + pb$tick() # results as list? if(list_output) { @@ -156,7 +174,6 @@ kin_time_variant_2sex <- function(Pf = NULL, Pm = NULL, }else{ out <- kin } - return(out) } diff --git a/data/fra_asfr_sex.rda b/data/fra_asfr_sex.rda index 63188d388eb82c71a020c2674c246758335941c6..557249902db3e2f3da9aaf4ec4037085b3f7653c 100644 GIT binary patch literal 870 zcmV-s1DX6EiwFP!000002JKaiPt0K)|8=KM5p_b%2}365Wu$JBPg0k+lCE;O(t5c@ z*OlFQIkl8(hpW8AL`h1mt5Z&q)7$QbIhBk|Rw*v8vD1;T62D|N|A3dxXZ!B+c|Ol) z`##(AefIdebC;NL%?N^^5~Cg>Vo5_7o|q6q^>_7!sj|qTti- zdZPY8fR!^d0P5>GMctfF(CoA8%X7-DBis9M#y)m@u|3jSPcPT?n%yKUBoPm@8O`f-Bj>lhT=DeZkD z&qI!rN$Ql{gUGyQlRD?(703iW%6IXVNEvNP>GF$(MES5=^!XqJg4H}$vL4*%13XTc z4s5cks`@5eTVAt|Q9H1d`{8s}MJr}cI}#VCXamh7+$tuq?RVYJfBYSQjo)}_K+v&MRt? z?S@^*>&Zx_GLvxXS?u+Jt3x=hYN=iMQi&s(^aX~%r$}?5Y1aieL0VRB`a(Dx$y`HV z$k;R_(2|_I3mvfQxuqbgxD%pQu{C)_Y&SEP?>)~&RIS3B*{~P!Eri34i>j=iuMPFMkd-Vw;d8 wbFzkQ{s{jP8BIoFLWO)WsVDr%4UuK>U5{iak&!=@@W=kpH!SsnVEYCD0IAxuH~;_u literal 870 zcmV-s1DX6EiwFP!000002JKaiPt0K)|8-ZLB6LE{2}365Wu$JBPg0k+lCE;O(t7zd zx~}XloQzWKaLG$dNK$HDopOqt-gY<4>CMPwmE!UmI~@rt@$)j9f56M;vwipZJfG*Y zeV^_5K70H<`3o%hmIOi22~(O0K{ul$VHOy`oy{RAhgz5rri2B>BcjFOVbP>GAxuI_ z34%6~^6H7-1h}s_a5kx{9~-iw^d32m*gXEQdA3al5_9`(b?b_e>h4>h&;}wyrzlQ! zy^pNwW8>AllgN|OeA0aaQB>IeI+V*mX=9{u>EsZUi?)+Z6J)4VuA6&(NQ`Qll4RcY zM%}$28&`G^G}p2VyLlg=-R;nq>yZa-V*|0s+5y_qOX||Rwa_|_wR(H^1vJaY^_pi~ zL2YYc0%r>kRZD8>3>Ge^T-LDBQ-~-A$)*B)x$)QMlKSum{IP!0m^uAK$ zBHP70ZNj!eWL~vPn{nYXIU3fUUHAnJFt-d?o?KJE2d96l$fY&1H&uQCN8P%ciqo_{2hQ@z$jTz@_e|= zySd*Wki+}DlUe_#TKM<4owR3iu-;k!lC^9$HuYAVX36TXL*DHWD2>8i-<(fMHVc_~ zcl7h~Z{o!BC0{2N`JgN2r z%1$BF&r}BG_C=`V$bwh)8BuY@^O9TWai}`A&dhE8IJbsMWF z8V&veVoMznn=P#ryUy_uQ={}{*Y5&(Ct((UVhF;Mcs+j7 z0tnjH+BGx65b$~+J)X(Ms*zI$&PW{LI&)fV{b>UBUg`(Z$cKM=4*p&I^5@W_Hi;;* wqUx(ne&=5z!>CAHxQLWcdd!d95LKhU>F*g@bo5Up`msOs1@@prg8K#l06#9bq5uE@ diff --git a/man/fra_asfr_sex.Rd b/man/fra_asfr_sex.Rd new file mode 100644 index 0000000..dfda668 --- /dev/null +++ b/man/fra_asfr_sex.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{fra_asfr_sex} +\alias{fra_asfr_sex} +\title{Fertility for France (2012) by sex in Caswell (2022).} +\format{ +A data.frame with age specific fertility rates by age and sex. +} +\source{ +Caswell (2022) +} +\usage{ +fra_asfr_sex +} +\description{ +Fertility for France (2012) by sex in Caswell (2022). +} +\keyword{datasets} diff --git a/man/fra_surv_sex.Rd b/man/fra_surv_sex.Rd new file mode 100644 index 0000000..afa550f --- /dev/null +++ b/man/fra_surv_sex.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{fra_surv_sex} +\alias{fra_surv_sex} +\title{Survival probability for France (2012) by sex in Caswell (2022).} +\format{ +A data.frame with survival probabilities by age and sex. +} +\source{ +Caswell (2022) +} +\usage{ +fra_surv_sex +} +\description{ +Survival probability for France (2012) by sex in Caswell (2022). +} +\keyword{datasets} diff --git a/man/kin.Rd b/man/kin.Rd index bccb33e..036bdd9 100644 --- a/man/kin.Rd +++ b/man/kin.Rd @@ -2,47 +2,52 @@ % Please edit documentation in R/kin.R \name{kin} \alias{kin} -\title{Estimate kin counts} +\title{Estimate kin counts in a one-sex framework.} \usage{ kin( - U = NULL, + p = NULL, f = NULL, time_invariant = TRUE, - N = NULL, pi = NULL, + n = NULL, output_cohort = NULL, output_period = NULL, output_kin = NULL, birth_female = 1/2.04, - stable = lifecycle::deprecated() + stable = lifecycle::deprecated(), + U = lifecycle::deprecated() ) } \arguments{ -\item{U}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} +\item{p}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class +in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} -\item{f}{numeric. Same as U but for fertility rates.} +\item{f}{numeric. Same as p but for fertility rates.} \item{time_invariant}{logical. Constant assumption for a given \code{year} rates. Default \code{TRUE}.} -\item{N}{numeric. Same as U but for population distribution (counts or \verb{\%}). Optional.} - \item{pi}{numeric. Same as U but for childbearing distribution (sum to 1). Optional.} +\item{n}{numeric. Same as p but for population distribution (counts or \verb{\%}). Optional.} + \item{output_cohort}{integer. Vector of year cohorts for returning results. Should be within input data years range.} \item{output_period}{integer. Vector of period years for returning results. Should be within input data years range.} \item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} -\item{birth_female}{numeric. Female portion at birth. This multiplies \code{f} argument. If \code{f} is already for female offspring, this needs to be set as 1.} +\item{birth_female}{numeric. Female portion at birth. This multiplies \code{f} argument. If \code{f} is already for female offspring, +this needs to be set as 1.} \item{stable}{logic. Deprecated. Use \code{time_invariant}.} } \value{ A list with: \itemize{ -\item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example \code{d} is daughter, \code{oa} is older aunts, etc.), including living and dead kin at that age.} -\item{kin_summary}{ a data frame with FocalĀ“s age, related ages and type of kin, with indicators obtained processing \code{kin_full}, grouping by cohort or period (depending on the given arguments):} +\item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example \code{d} is daughter, +\code{oa} is older aunts, etc.), including living and dead kin at that age.} +\item{kin_summary}{ a data frame with FocalĀ“s age, related ages and type of kin, with indicators obtained processing \code{kin_full}, +grouping by cohort or period (depending on the given arguments):} {\itemize{ \item{\code{count_living}}{: count of living kin at actual age of Focal} \item{\code{mean_age}}{: mean age of each type of living kin.} @@ -55,8 +60,19 @@ A list with: } } \description{ -Implementation of Goodman-Keyfitz-Pullum equations in a matrix framework. +Implementation of Goodman-Keyfitz-Pullum equations in a matrix framework. This produce a matrilineal (or patrilineal) +kin count distribution by kin and age. } \details{ See Caswell (2019) and Caswell (2021) for details on formulas. One sex only (female by default). } +\examples{ +\dontrun{ +# Kin expected matrilineal count for a Swedish female based on 2015 rates. +swe_surv_2015 <- swe_px[,"2015"] +swe_asfr_2015 <- swe_asfr[,"2015"] +# Run kinship models +swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015) +head(swe_2015) +} +} diff --git a/man/kin2sex.Rd b/man/kin2sex.Rd new file mode 100644 index 0000000..34bf7c1 --- /dev/null +++ b/man/kin2sex.Rd @@ -0,0 +1,86 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin2sex.R +\name{kin2sex} +\alias{kin2sex} +\title{Estimate kin counts in a two-sex framework} +\usage{ +kin2sex( + pf = NULL, + pm = NULL, + ff = NULL, + fm = NULL, + time_invariant = TRUE, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, + pim = NULL, + nf = NULL, + nm = NULL, + output_cohort = NULL, + output_period = NULL, + output_kin = NULL +) +} +\arguments{ +\item{pf}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} + +\item{pm}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} + +\item{ff}{numeric. Same as pf but for fertility rates.} + +\item{fm}{numeric. Same as pm but for fertility rates.} + +\item{time_invariant}{logical. Constant assumption for a given \code{year} rates. Default \code{TRUE}.} + +\item{sex_focal}{character. "f" for female or "m" for male.} + +\item{birth_female}{numeric. Female portion at birth. This multiplies \code{f} argument. If \code{f} is already for female offspring, this needs to be set as 1.} + +\item{pif}{numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default \code{NULL}.} + +\item{pim}{numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default \code{NULL}.} + +\item{nf}{numeric. Same as pf but for population distribution (counts or \verb{\%}). Optional.} + +\item{nm}{numeric. Same as pm but for population distribution (counts or \verb{\%}). Optional.} + +\item{output_cohort}{integer. Vector of year cohorts for returning results. Should be within input data years range.} + +\item{output_period}{integer. Vector of period years for returning results. Should be within input data years range.} + +\item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} + +\item{stable}{logic. Deprecated. Use \code{time_invariant}.} +} +\value{ +A list with: +\itemize{ +\item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example \code{d} is daughter, \code{oa} is older aunts, etc.), including living and dead kin at that age.} +\item{kin_summary}{ a data frame with FocalĀ“s age, related ages, sex and type of kin, with indicators obtained processing \code{kin_full}, grouping by cohort or period (depending on the given arguments):} +{\itemize{ +\item{\code{count_living}}{: count of living kin at actual age of Focal} +\item{\code{mean_age}}{: mean age of each type of living kin.} +\item{\code{sd_age}}{: standard deviation of age of each type of living kin.} +\item{\code{count_death}}{: count of dead kin at specific age of Focal.} +\item{\code{count_cum_death}}{: cumulated count of dead kin until specific age of Focal.} +\item{\code{mean_age_lost}}{: mean age where Focal lost her relative.} +} +} +} +} +\description{ +Implementation of two-sex matrix kinship model. This produces kin counts grouped by kin, age and sex of +each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents +are grouped in one male count of cousins. +} +\details{ +See Caswell (2022) for details on formulas. +} +\examples{ +\dontrun{ +# Kin expected count by relative sex for a French female based on 2012 rates. +fra_2012 <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m) +head(fra_2012) +} + +} diff --git a/man/kin_time_invariant.Rd b/man/kin_time_invariant.Rd index a470503..d04e243 100644 --- a/man/kin_time_invariant.Rd +++ b/man/kin_time_invariant.Rd @@ -2,10 +2,10 @@ % Please edit documentation in R/kin_time_invariant.R \name{kin_time_invariant} \alias{kin_time_invariant} -\title{Estimate kin counts in a time invariant framework} +\title{Estimate kin counts in a time invariant framework for one-sex model (matrilineal/patrilineal)} \usage{ kin_time_invariant( - U = NULL, + p = NULL, f = NULL, birth_female = 1/2.04, pi = NULL, @@ -14,7 +14,7 @@ kin_time_invariant( ) } \arguments{ -\item{U}{numeric. A vector of survival probabilities with same length as ages.} +\item{p}{numeric. A vector of survival probabilities with same length as ages.} \item{f}{numeric. A vector of age-specific fertility rates with same length as ages.} @@ -22,7 +22,7 @@ kin_time_invariant( \item{pi}{numeric. For using some specific non-stable age distribution of childbearing (same length as ages). Default \code{NULL}.} -\item{output_kin}{character. kin to return. For example "m" for mother, "d" for daughter. See the \code{vignette} for all kin types.} +\item{output_kin}{character. kin to return. For example "m" for mother, "d" for daughter. See \code{vignette} for all kin types.} \item{list_output}{logical. Results as a list with \code{output_kin} elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default \code{FALSE}} } @@ -31,5 +31,5 @@ A data frame with focalĀ“s age, related ages and type of kin (for example \code{d} is daughter, \code{oa} is older aunts, etc.), alive and death. If \code{list_output = TRUE} then this is a list. } \description{ -Implementation of Goodman-Keyfitz-Pullum equations adapted by Caswell (2019). +Mtrix implementation of Goodman-Keyfitz-Pullum equations adapted by Caswell (2019). } diff --git a/man/kin_time_invariant_2sex.Rd b/man/kin_time_invariant_2sex.Rd new file mode 100644 index 0000000..550a331 --- /dev/null +++ b/man/kin_time_invariant_2sex.Rd @@ -0,0 +1,52 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_time_invariant_2sex.R +\name{kin_time_invariant_2sex} +\alias{kin_time_invariant_2sex} +\title{Estimate kin counts in a time invariant framework for two-sex model.} +\usage{ +kin_time_invariant_2sex( + pf = NULL, + pm = NULL, + ff = NULL, + fm = NULL, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, + pim = NULL, + output_kin = NULL, + list_output = FALSE +) +} +\arguments{ +\item{pf}{numeric. A vector of survival probabilities for females with same length as ages.} + +\item{pm}{numeric. A vector of survival probabilities for males with same length as ages.} + +\item{ff}{numeric. A vector of age-specific fertility rates for females with same length as ages.} + +\item{fm}{numeric. A vector of age-specific fertility rates for males with same length as ages.} + +\item{sex_focal}{character. "f" for female or "m" for male.} + +\item{birth_female}{numeric. Female portion at birth.} + +\item{pif}{numeric. For using some specific non-stable age distribution of childbearing for mothers (same length as ages). Default \code{NULL}.} + +\item{pim}{numeric. For using some specific non-stable age distribution of childbearing for fathers (same length as ages). Default \code{NULL}.} + +\item{output_kin}{character. kin to return, considering matrilineal names. For example "m" for parents, "d" for children, etc. See the \code{vignette} for all kin types.} + +\item{list_output}{logical. Results as a list with \code{output_kin} elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default \code{FALSE}} +} +\value{ +A data frame with focalĀ“s age, related ages and type of kin +(for example \code{d} is children, \code{oa} is older aunts/uncles, etc.), sex, alive and death. If \code{list_output = TRUE} then this is a list. +} +\description{ +Two-sex matrix framework for kin count estimates.This produces kin counts grouped by kin, age and sex of +each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents +are grouped in one male count of cousins. +} +\details{ +See Caswell (2022) for details on formulas. +} diff --git a/man/kin_time_variant.Rd b/man/kin_time_variant.Rd index da16ad7..17c1f85 100644 --- a/man/kin_time_variant.Rd +++ b/man/kin_time_variant.Rd @@ -2,13 +2,13 @@ % Please edit documentation in R/kin_time_variant.R \name{kin_time_variant} \alias{kin_time_variant} -\title{Estimate kin counts in a time variant framework} +\title{Estimate kin counts in a time variant framework (dynamic rates) for one-sex model (matrilineal/patrilineal)} \usage{ kin_time_variant( - U = NULL, + p = NULL, f = NULL, - N = NULL, pi = NULL, + n = NULL, output_cohort = NULL, output_period = NULL, output_kin = NULL, @@ -17,12 +17,10 @@ kin_time_variant( ) } \arguments{ -\item{U}{numeric. A matrix of survival ratios with rows as ages and columns as years. Column names must be equal interval.} +\item{p}{numeric. A matrix of survival ratios with rows as ages and columns as years. Column names must be equal interval.} \item{f}{numeric. A matrix of age-specific fertility rates with rows as ages and columns as years. Coincident with \code{U}.} -\item{N}{numeric. A matrix of population with rows as ages and columns as years. Coincident with \code{U}.} - \item{pi}{numeric. A matrix with distribution of childbearing with rows as ages and columns as years. Coincident with \code{U}.} \item{output_cohort}{integer. Year of birth of focal to return as output. Could be a vector. Should be within input data years range.} @@ -34,11 +32,16 @@ kin_time_variant( \item{birth_female}{numeric. Female portion at birth.} \item{list_output}{logical. Results as a list with years elements (as a result of \code{output_cohort} and \code{output_period} combination), with a second list of \code{output_kin} elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default \code{FALSE}} + +\item{N}{numeric. A matrix of population with rows as ages and columns as years. Coincident with \code{U}.} } \value{ A data frame of population kinship structure, with focal's cohort, focalĀ“s age, period year, type of relatives (for example \code{d} is daughter, \code{oa} is older aunts, etc.), living and death kin counts, and age of (living or time deceased) relatives. If \code{list_output = TRUE} then this is a list. } \description{ -Implementation of time variant Goodman-Keyfitz-Pullum equations based on Caswell (2021). +Matrix implementation of time variant Goodman-Keyfitz-Pullum equations in a matrix framework. +} +\details{ +See Caswell (2021) for details on formulas. } diff --git a/man/kin_time_variant_2sex.Rd b/man/kin_time_variant_2sex.Rd new file mode 100644 index 0000000..bcb3ca9 --- /dev/null +++ b/man/kin_time_variant_2sex.Rd @@ -0,0 +1,65 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_time_variant_2sex.R +\name{kin_time_variant_2sex} +\alias{kin_time_variant_2sex} +\title{Estimate kin counts in a time variant framework (dynamic rates) in a two-sex framework (Caswell, 2022)} +\usage{ +kin_time_variant_2sex( + pf = NULL, + pm = NULL, + ff = NULL, + fm = NULL, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, + pim = NULL, + nf = NULL, + nm = NULL, + output_cohort = NULL, + output_period = NULL, + output_kin = NULL, + list_output = FALSE +) +} +\arguments{ +\item{pf}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} + +\item{pm}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} + +\item{ff}{numeric. Same as pf but for fertility rates.} + +\item{fm}{numeric. Same as pm but for fertility rates.} + +\item{sex_focal}{character. "f" for female or "m" for male.} + +\item{birth_female}{numeric. Female portion at birth. This multiplies \code{f} argument. If \code{f} is already for female offspring, this needs to be set as 1.} + +\item{pif}{numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default \code{NULL}.} + +\item{pim}{numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default \code{NULL}.} + +\item{nf}{numeric. Same as pf but for population distribution (counts or \verb{\%}). Optional.} + +\item{nm}{numeric. Same as pm but for population distribution (counts or \verb{\%}). Optional.} + +\item{output_cohort}{integer. Vector of year cohorts for returning results. Should be within input data years range.} + +\item{output_period}{integer. Vector of period years for returning results. Should be within input data years range.} + +\item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} + +\item{time_invariant}{logical. Constant assumption for a given \code{year} rates. Default \code{TRUE}.} + +\item{stable}{logic. Deprecated. Use \code{time_invariant}.} +} +\value{ +A data.frame with year, cohort, FocalĀ“s age, related ages, sex and type of kin (for example \code{d} is daughter, \code{oa} is older aunts, etc.), including living and dead kin at that age and sex. +} +\description{ +Two-sex matrix framework for kin count estimates with varying rates. +This produces kin counts grouped by kin, age and sex of each relatives at each FocalĀ“s age. +For example, male cousins from aunts and uncles from different sibling's parents are grouped in one male count of cousins. +} +\details{ +See Caswell (2022) for details on formulas. +} diff --git a/man/output_period_cohort_combination.Rd b/man/output_period_cohort_combination.Rd index 5b20baf..e53a40c 100644 --- a/man/output_period_cohort_combination.Rd +++ b/man/output_period_cohort_combination.Rd @@ -1,9 +1,16 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_time_variant.R +% Please edit documentation in R/kin_time_variant.R, R/kin_time_variant_2sex.R \name{output_period_cohort_combination} \alias{output_period_cohort_combination} \title{defince apc combination to return} \usage{ +output_period_cohort_combination( + output_cohort = NULL, + output_period = NULL, + age = NULL, + years_data = NULL +) + output_period_cohort_combination( output_cohort = NULL, output_period = NULL, @@ -12,5 +19,7 @@ output_period_cohort_combination( ) } \description{ +defince apc to return. + defince apc to return. } diff --git a/man/timevarying_kin_2sex.Rd b/man/timevarying_kin_2sex.Rd new file mode 100644 index 0000000..e2ad4ac --- /dev/null +++ b/man/timevarying_kin_2sex.Rd @@ -0,0 +1,22 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_time_variant_2sex.R +\name{timevarying_kin_2sex} +\alias{timevarying_kin_2sex} +\title{one time projection kin} +\usage{ +timevarying_kin_2sex(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin) +} +\arguments{ +\item{Ut}{numeric. A matrix of survival probabilities (or ratios).} + +\item{pit}{numeric. A matrix with distribution of childbearing.} + +\item{ages}{numeric.} + +\item{pkin}{numeric. A list with kin count distribution in previous year.} + +\item{ft}{numeric. A matrix of age-specific fertility rates.} +} +\description{ +one time projection kin. internal function. +} diff --git a/vignettes/Reference.Rmd b/vignettes/Reference.Rmd index 33560b2..cd1bee3 100644 --- a/vignettes/Reference.Rmd +++ b/vignettes/Reference.Rmd @@ -5,7 +5,7 @@ output: toc: true toc_depth: 1 vignette: > - %\VignetteIndexEntry{Use} + %\VignetteIndexEntry{Reference} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- @@ -21,10 +21,11 @@ Here, we'll show how `DemoKin` can be used to compute the number and age distrib First, we compute kin counts in a **time-invariant** framework. We assume that Focal and all of her relatives experience the 2015 mortality and fertility rates throughout their entire lives (Caswell, 2019). The `DemoKin` package includes data from Sweden as an example: age-by-year matrices of survival probabilities (*swe_px*), survival ratios (*swe_Sx*), fertility rates (*swe_asfr*), and population numbers (*swe_pop*). You can see the data contained in `DemoKin` with `data(package="DemoKin")`. This data comes from the [Human Mortality Database](https://www.mortality.org/) and [Human Fertility Database](https://www.humanfertility.org/) (see `?DemoKin::get_HMDHFD`). -In order to implement the time-invariant models, the function `DemoKin::kin` expects a vector of sruvival ratios and another vector of fertility rates. In this example, we get the data for the year 2015, and run the matrix models: +In order to implement the time-invariant models, the function `DemoKin::kin` expects a vector of survival ratios and another vector of fertility rates. In this example, we get the data for the year 2015, and run the matrix models: ```{r, message=FALSE, warning=FALSE} -library(DemoKin) +library(devtools) +load_all() library(tidyr) library(dplyr) library(ggplot2) @@ -33,7 +34,7 @@ library(knitr) swe_surv_2015 <- swe_px[,"2015"] swe_asfr_2015 <- swe_asfr[,"2015"] # Run kinship models -swe_2015 <- kin(U = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) +swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) ``` ### 1.1. Value @@ -135,9 +136,9 @@ Let's take a look at the resulting kin counts for a Focal born in 1960, limiting ```{r, fig.height=6, fig.width=8} swe_time_varying <- kin( - U = swe_px, + p = swe_px, f = swe_asfr, - N = swe_pop, + n = swe_pop, time_invariant =FALSE, output_cohort = 1960, output_kin = c("d","gd","ggd","m","gm","ggm") @@ -240,7 +241,7 @@ demokin_svk1980_caswell2020 <- ) ``` -As an example, consider the age-parity distribution of aunts, when Focal is 20 and 60 yo (this is equivalent to Figure 4 in Caswell [2021]). +Note that the function ask for risks already in a certain matrix format. As an example, consider the age-parity distribution of aunts, when Focal is 20 and 60 yo (this is equivalent to Figure 4 in Caswell [2021]). ```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} demokin_svk1980_caswell2020 %>% diff --git a/vignettes/TwoSex.Rmd b/vignettes/TwoSex.Rmd index 3245293..01ed3c0 100644 --- a/vignettes/TwoSex.Rmd +++ b/vignettes/TwoSex.Rmd @@ -1,11 +1,11 @@ --- -title: "TwoExpected kin counts by type of relative: A matrix implementation" +title: "Two-Sex expected kin counts by type of relative: A matrix implementation" output: html_document: toc: true toc_depth: 1 vignette: > - %\VignetteIndexEntry{Use} + %\VignetteIndexEntry{TwoSex} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- @@ -17,12 +17,13 @@ knitr::opts_chunk$set(collapse = TRUE, comment = "#>") Age distribution of FocalĀ“s father when she born depends on male fertility pattern. Living siblings depends on sex composition (brothers and sisters) due to differential mortality risk. Intensity in care tasks is not the same between sex in many societies, so the sex of ego and his/her "sandwichness" change, because an average family network expects different roles in supporting. For these reasons, and many others, sex specific kin count estimates are important. Here we implement relations in Caswell (2022), not focusing in applications that can be analogous to the one-sex model, but in the specific advantages. ```{r, message=FALSE, warning=FALSE} -library(DemoKin) +# library(DemoKin) +library(devtools) +load_all() library(tidyr) library(dplyr) library(ggplot2) library(knitr) -devtools::load_all() ``` ### 1.1. Rates by sex @@ -30,8 +31,8 @@ devtools::load_all() Female fertility by age is not a widespread available data source. Caswell (2022) takes Schoumaker (2019) makes available estimates for 160 countries, reporting that male TFR almost always exceeds female TFR. We take the case of France in 2012 for showing how functions works (fertility and mortality data are available with the package, with column-sex values). LetĀ“s see main differences in age distribution (TFR of 1.98 and 1.99 for males and females, practically the same) ```{r} -fra_fert_f <- fra_fert_sex[,"ff"] -fra_fert_m <- fra_fert_sex[,"fm"] +fra_fert_f <- fra_asfr_sex[,"ff"] +fra_fert_m <- fra_asfr_sex[,"fm"] fra_surv_f <- fra_surv_sex[,"pf"] fra_surv_m <- fra_surv_sex[,"pm"] sum(fra_fert_m)-sum(fra_fert_f) @@ -59,9 +60,9 @@ kin_out <- kin_out$kin_summary %>% T ~ kin)) %>% filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) kin_out %>% - group_by(kin, age_focal, sex) %>% + group_by(kin, age_focal, sex_kin) %>% summarise(count=sum(count_living)) %>% - ggplot(aes(age_focal, count, fill=sex))+ + ggplot(aes(age_focal, count, fill=sex_kin))+ geom_area()+ theme_bw() + facet_wrap(~kin) @@ -72,7 +73,7 @@ Kin availability by sex allows to inspect its distribution, a traditional measur ```{r} kin_out %>% group_by(kin, age_focal) %>% - summarise(sex_ratio=sum(count_living[sex=="m"], na.rm=T)/sum(count_living[sex=="f"], na.rm=T)) %>% + summarise(sex_ratio=sum(count_living[sex_kin=="m"], na.rm=T)/sum(count_living[sex_kin=="f"], na.rm=T)) %>% ggplot(aes(age_focal, sex_ratio))+ geom_line()+ theme_bw() + @@ -84,9 +85,9 @@ How ego experiences relative deaths depends mainly on how wide is the sex-gap in ```{r} # sex ratio kin_out %>% - group_by(kin, sex, age_focal) %>% + group_by(kin, sex_kin, age_focal) %>% summarise(count=sum(count_dead)) %>% - ggplot(aes(age_focal, count, col=sex))+ + ggplot(aes(age_focal, count, col=sex_kin))+ geom_line()+ theme_bw() + facet_wrap(~kin) @@ -102,13 +103,13 @@ kin_out_androgynous <- kin2sex(fra_surv_f, fra_surv_f, fra_fert_f, fra_fert_f, s bind_rows( kin_out$kin_summary %>% mutate(type = "full"), kin_out_androgynous$kin_summary %>% mutate(type = "androgynous")) %>% - group_by(kin, age_focal, sex, type) %>% + group_by(kin, age_focal, sex_kin, type) %>% summarise(count = sum(count_living)) %>% ggplot(aes(age_focal, count, linetype = type)) + geom_line() + theme_bw() + theme(legend.position = "bottom", axis.text.x = element_blank()) + - facet_grid(row = vars(sex), col = vars(kin), scales = "free") + facet_grid(row = vars(sex_kin), col = vars(kin), scales = "free") ``` Now we can multiply results from 1-sex model by the GKP factors by kin, to obtain a simple but very consistent approximation of totals (both sex) at different ages of Focal. @@ -189,11 +190,11 @@ kin_out_time_variant$kin_summary %>% kin %in% c("ya", "oa") ~ "a", T ~ kin)) %>% filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) %>% - group_by(type, kin, age_focal, sex) %>% + group_by(type, kin, age_focal, sex_kin) %>% summarise(count=sum(count_living)) %>% ggplot(aes(age_focal, count, linetype=type))+ geom_line()+ theme_bw() + - facet_grid(cols = vars(kin), rows=vars(sex), scales = "free") + facet_grid(cols = vars(kin), rows=vars(sex_kin), scales = "free") ``` From 9deb29bbb7029d465858b9d11397e38cbadce8ce Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Sat, 4 Feb 2023 10:21:51 -0300 Subject: [PATCH 08/89] pre load cran --- DESCRIPTION | 7 +- NAMESPACE | 1 - R/kin.R | 1 + R/kin2sex.R | 11 +- R/kin_time_variant.R | 2 +- R/kin_time_variant_2sex.R | 11 +- README.Rmd | 23 +- README.md | 28 +- dev/PENDS.txt | 7 - vignettes/TwoSex.Rmd => dev/TwoSex_mine.Rmd | 0 dev/calling_kinship_SVK_4867.m | 86 ---- {R => dev}/get_HMDHFD.R | 0 dev/kinship_function_parity_4867.m | 199 -------- dev/matrix_construction_4867.m | 102 ---- dev/readme.txt | 0 dev/tests/repl_caswell.R | 443 ------------------ dev/tests/repl_caswell_first_year.R | 106 ----- dev/tests/timevarying_kin.m | 180 ------- .../figures/DemoKin-Logo.png | Bin man/get_HMDHFD.Rd | 41 -- man/kin.Rd | 2 + man/kin2sex.Rd | 12 +- man/kin_time_variant.Rd | 4 +- man/kin_time_variant_2sex.Rd | 4 +- man/output_period_cohort_combination.Rd | 2 +- man/timevarying_kin_2sex.Rd | 9 +- .../{Reference.Rmd => Reference_OneSex.Rmd} | 10 +- vignettes/Reference_TwoSex.Rmd | 271 +++++++++++ 28 files changed, 334 insertions(+), 1228 deletions(-) delete mode 100644 dev/PENDS.txt rename vignettes/TwoSex.Rmd => dev/TwoSex_mine.Rmd (100%) delete mode 100644 dev/calling_kinship_SVK_4867.m rename {R => dev}/get_HMDHFD.R (100%) delete mode 100644 dev/kinship_function_parity_4867.m delete mode 100644 dev/matrix_construction_4867.m delete mode 100644 dev/readme.txt delete mode 100644 dev/tests/repl_caswell.R delete mode 100644 dev/tests/repl_caswell_first_year.R delete mode 100644 dev/tests/timevarying_kin.m rename DemoKin-Logo.png => man/figures/DemoKin-Logo.png (100%) delete mode 100644 man/get_HMDHFD.Rd rename vignettes/{Reference.Rmd => Reference_OneSex.Rmd} (98%) create mode 100644 vignettes/Reference_TwoSex.Rmd diff --git a/DESCRIPTION b/DESCRIPTION index 2e5402c..4834c36 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,8 @@ Package: DemoKin -Title: Demokin -Description: Estimate population kin counts and its distribution by type and age +Title: Estimate population kin counts. +Description: Estimate population kin counts and its distribution by type, age and sex. + The package implements one-sex and two-sex framework for studying living-death availability, + with time varying rates or not, and multi-stage model. Version: 1.0.0 Authors@R: c( person("IvĆ”n", "Williams", email = "act.ivanwilliams@gmail.com", role = "cre"), @@ -31,6 +33,7 @@ Imports: magrittr, data.table, lifecycle +URL: https://github.com/IvanWilli/DemoKin BugReports: https://github.com/IvanWilli/DemoKin/issues Depends: R (>= 2.10) diff --git a/NAMESPACE b/NAMESPACE index 5502931..2d84ee7 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -2,7 +2,6 @@ export("%>%") export(demokin_codes) -export(get_HMDHFD) export(kin) export(kin2sex) export(kin_multi_stage) diff --git a/R/kin.R b/R/kin.R index 866f1c9..cdc27d7 100644 --- a/R/kin.R +++ b/R/kin.R @@ -15,6 +15,7 @@ #' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, #' this needs to be set as 1. #' @param stable logic. Deprecated. Use `time_invariant`. +#' @param U logic. Deprecated. Use `p`. #' @return A list with: #' \itemize{ #' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` is daughter, diff --git a/R/kin2sex.R b/R/kin2sex.R index aa46eba..a9b2aa3 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -2,10 +2,11 @@ #' @description Implementation of two-sex matrix kinship model. This produces kin counts grouped by kin, age and sex of #' each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents -#' are grouped in one male count of cousins. +#' are grouped in one male count of cousins. Note that the output labels relative following female notation: the label `m` +#' refers to either mothers or fathers, and column `sex_kin` determine the sex of the relative. #' @details See Caswell (2022) for details on formulas. -#' @param pf numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). -#' @param pm numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param pf numeric. A vector (atomic) or matrix with female probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param pm numeric. A vector (atomic) or matrix with male probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). #' @param ff numeric. Same as pf but for fertility rates. #' @param fm numeric. Same as pm but for fertility rates. #' @param time_invariant logical. Constant assumption for a given `year` rates. Default `TRUE`. @@ -18,10 +19,10 @@ #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... #' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, this needs to be set as 1. -#' @param stable logic. Deprecated. Use `time_invariant`. #' @return A list with: #' \itemize{ -#' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age.} +#' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` could be daughter or son depending `sex_kin`, +#' `oa` is older aunts or uncles also depending `sex_kin` value, etc.), including living and dead kin at that age.} #' \item{kin_summary}{ a data frame with FocalĀ“s age, related ages, sex and type of kin, with indicators obtained processing `kin_full`, grouping by cohort or period (depending on the given arguments):} #' {\itemize{ #' \item{`count_living`}{: count of living kin at actual age of Focal} diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index c73f1ec..f9e9383 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -4,7 +4,7 @@ #' @details See Caswell (2021) for details on formulas. #' @param p numeric. A matrix of survival ratios with rows as ages and columns as years. Column names must be equal interval. #' @param f numeric. A matrix of age-specific fertility rates with rows as ages and columns as years. Coincident with `U`. -#' @param N numeric. A matrix of population with rows as ages and columns as years. Coincident with `U`. +#' @param n numeric. A matrix of population with rows as ages and columns as years. Coincident with `U`. #' @param pi numeric. A matrix with distribution of childbearing with rows as ages and columns as years. Coincident with `U`. #' @param output_cohort integer. Year of birth of focal to return as output. Could be a vector. Should be within input data years range. #' @param output_period integer. Year for which to return kinship structure. Could be a vector. Should be within input data years range. diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index 0ffe306..89efe85 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -8,7 +8,6 @@ #' @param pm numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). #' @param ff numeric. Same as pf but for fertility rates. #' @param fm numeric. Same as pm but for fertility rates. -#' @param time_invariant logical. Constant assumption for a given `year` rates. Default `TRUE`. #' @param sex_focal character. "f" for female or "m" for male. #' @param pif numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default `NULL`. #' @param pim numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default `NULL`. @@ -18,7 +17,7 @@ #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... #' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, this needs to be set as 1. -#' @param stable logic. Deprecated. Use `time_invariant`. +#' @param list_output logical. Results as a list with years elements (as a result of `output_cohort` and `output_period` combination), with a second list of `output_kin` elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default `FALSE` #' @return A data.frame with year, cohort, FocalĀ“s age, related ages, sex and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age and sex. #' @export @@ -182,8 +181,10 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, #' @description one time projection kin. internal function. #' #' @param Ut numeric. A matrix of survival probabilities (or ratios). -#' @param ft numeric. A matrix of age-specific fertility rates. +#' @param Ft numeric. A matrix of age-specific fertility rates. +#' @param Ft_star numeric. Ft but for female fertility. #' @param pit numeric. A matrix with distribution of childbearing. +#' sex_focal #' @param ages numeric. #' @param pkin numeric. A list with kin count distribution in previous year. # @@ -243,9 +244,9 @@ timevarying_kin_2sex<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin){ return(kin_list) } -#' defince apc combination to return +#' APC combination to return -#' @description defince apc to return. +#' @description define apc combination to return in `kin` and `kin2sex`. #' output_period_cohort_combination <- function(output_cohort = NULL, output_period = NULL, age = NULL, years_data = NULL){ diff --git a/README.Rmd b/README.Rmd index 5eb0592..d2426f1 100644 --- a/README.Rmd +++ b/README.Rmd @@ -2,8 +2,6 @@ output: github_document --- - - ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, @@ -23,12 +21,12 @@ library(knitr) ::: {.column width="60%"} -`DemoKin` uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell (2019), Caswell (2020), and Caswell and Song (2021). It draws on previous theoretical development by Goodman, Keyfitz and Pullum (1974). +`DemoKin` uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell (2019, 2020, 2022), and Caswell and Song (2021). It draws on previous theoretical development by Goodman, Keyfitz and Pullum (1974). ::: ::: {.column width="40%"} - + ::: :::::::::::::: @@ -52,14 +50,14 @@ We then ask: Let's explore this using the Swedish data already included with `DemoKin`. -```{r, fig.height=6, fig.width=8} +```{r, fig.height=6, fig.width=8, message=FALSE, warning=FALSE} library(DemoKin) swe_surv_2015 <- swe_px[,"2015"] swe_asfr_2015 <- swe_asfr[,"2015"] -swe_2015 <- kin(U = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) +swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) ``` -*px* is the survival probability by age from a life table and *f* are the age specific fertility raties by age (see `?kin` for details). +*p* is the survival probability by age from a life table and *f* are the age specific fertility raties by age (see `?kin` for details). Now, we can visualize the implied kin counts (i.e., the average number of living kin) of Focal at age 35 using a network or 'Keyfitz' kinship diagram with the function `plot_diagram`: @@ -80,7 +78,7 @@ kable(DemoKin::demokin_codes()[-2]) ## Vignette -For more details, including an extension to time varying-populations rates, deceased kin, and multi-state models, see `vignette("Reference", package = "DemoKin")`. +For more details, including an extension to time varying-populations rates, deceased kin, and multi-state models in a one-sex framework, see `vignette("Reference_OneSex", package = "DemoKin")`. For the case of two-sex see `vignette("Reference_TwoSex", package = "DemoKin")`. If the vignette does not load, you may need to install the package as `devtools::install_github("IvanWilli/DemoKin", build_vignettes = T)`. ## Citation @@ -105,11 +103,6 @@ Caswell, H. 2020. The formal demography of kinship II: Multistate models, parity Caswell, Hal and Xi Song. 2021. ā€œThe Formal Demography of Kinship. III. Kinship Dynamics with Time-Varying Demographic Rates.ā€ Demographic Research 45: 517–46. doi:10.4054/DemRes.2021.45.16. -Goodman, L.A., Keyfitz, N., and Pullum, T.W. (1974). Family formation and the frequency of various kinship relationships. Theoretical Population Biology 5(1):1–27. doi:10.1016/0040-5809(74)90049-5. - - - - - - +Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359–396. +Goodman, L.A., Keyfitz, N., and Pullum, T.W. (1974). Family formation and the frequency of various kinship relationships. Theoretical Population Biology 5(1):1–27. doi:10.1016/0040-5809(74)90049-5. diff --git a/README.md b/README.md index 0142d8b..a8badbf 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,4 @@ - - # DemoKin
@@ -10,14 +8,14 @@ `DemoKin` uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell -(2019), Caswell (2020), and Caswell and Song (2021). It draws on -previous theoretical development by Goodman, Keyfitz and Pullum (1974). +(2019, 2020, 2022), and Caswell and Song (2021). It draws on previous +theoretical development by Goodman, Keyfitz and Pullum (1974).
- +
@@ -50,11 +48,11 @@ Let’s explore this using the Swedish data already included with library(DemoKin) swe_surv_2015 <- swe_px[,"2015"] swe_asfr_2015 <- swe_asfr[,"2015"] -swe_2015 <- kin(U = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) +swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) ``` -*px* is the survival probability by age from a life table and *f* are -the age specific fertility raties by age (see `?kin` for details). +*p* is the survival probability by age from a life table and *f* are the +age specific fertility raties by age (see `?kin` for details). Now, we can visualize the implied kin counts (i.e., the average number of living kin) of Focal at age 35 using a network or ā€˜Keyfitz’ kinship @@ -93,9 +91,10 @@ Relatives are identified by a unique code: ## Vignette For more details, including an extension to time varying-populations -rates, deceased kin, and multi-state models, see -`vignette("Reference", package = "DemoKin")`. If the vignette does not -load, you may need to install the package as +rates, deceased kin, and multi-state models in a one-sex framework, see +`vignette("Reference_OneSex", package = "DemoKin")`. For the case of +two-sex see `vignette("Reference_TwoSex", package = "DemoKin")`. If the +vignette does not load, you may need to install the package as `devtools::install_github("IvanWilli/DemoKin", build_vignettes = T)`. ## Citation @@ -134,10 +133,9 @@ Caswell, Hal and Xi Song. 2021. ā€œThe Formal Demography of Kinship. III. Kinship Dynamics with Time-Varying Demographic Rates.ā€ Demographic Research 45: 517–46. . +Caswell, H. (2022). The formal demography of kinship IV: Two-sex models +and their approximations. Demographic Research, 47, 359–396. + Goodman, L.A., Keyfitz, N., and Pullum, T.W. (1974). Family formation and the frequency of various kinship relationships. Theoretical Population Biology 5(1):1–27. . - - - - diff --git a/dev/PENDS.txt b/dev/PENDS.txt deleted file mode 100644 index ecbf143..0000000 --- a/dev/PENDS.txt +++ /dev/null @@ -1,7 +0,0 @@ -1) Set no specific argument for Pb: in the case the user wants to use it, that can be included by her/himself in the F matrix, implicitly. - ok -1.1) caswellĀ“s assumption stable: ft[1,1:ages] = f * U * birth_female -2) Include a paragraph in the "using" vignette to show this option. -3) Non-stable without pi or N as argument: give user an output anyways and a message "A stable assumption was used for the age distribution of the mother in each input year". -4) Replicate HalĀ“s output for dinamycs. -5) Correct the appendix: survival/probabilities. -6) Finish Multi-stage. \ No newline at end of file diff --git a/vignettes/TwoSex.Rmd b/dev/TwoSex_mine.Rmd similarity index 100% rename from vignettes/TwoSex.Rmd rename to dev/TwoSex_mine.Rmd diff --git a/dev/calling_kinship_SVK_4867.m b/dev/calling_kinship_SVK_4867.m deleted file mode 100644 index f51c641..0000000 --- a/dev/calling_kinship_SVK_4867.m +++ /dev/null @@ -1,86 +0,0 @@ -%script to calculate kinship results -%this script calls the function kinship_function_parity_4867 -%requires the function vecperm.m to create vec-permutation matrix -% -% Supplement to: -% Caswell, H. 2020. The formal demography of kinship II. Multistate models, -% parity, and sibship. Demographic Research 42:1097-1144 -% -% Has been successfully used under Matlab R2018b - -%specify range of years to analyze -years=1960:2014; - -%years=2002; - -numyears=length(years); %specific to SVK data -%add path to location of matrices -addpath('SVK_kinmats/') - -for iy=1:numyears - year=years(iy) - - %specify name of matrix file - fname=char(['SVKmats' num2str(1950+iy-1) '.mat']); - %load matrix file - load(fname) - - %create the block diagonal matrices - - %identity matrices that are useful - Iom=eye(om); - Is=eye(s); - - bbU=zeros(s*om); - bbF=zeros(s*om); - for i=1:om - bbU = bbU + kron(Iom(:,i)*Iom(i,:),U{i}); - bbF = bbF + kron(Iom(:,i)*Iom(i,:),F{i}); - end - bbD=zeros(s*om); - bbH=zeros(s*om); - for i=1:s - bbD = bbD+kron(Is(:,i)*Is(i,:),D{i}); - bbH = bbH+kron(Is(:,i)*Is(i,:),H{i}); - end - - %create the age-stage matrices using the vec permuation formula - K=vecperm(s,om); - Ut= K'*bbD*K*bbU; - Ft= K'*bbH*K*bbF; - - %conditional transition matrix, conditional on survival - Gt=Ut*pinv(diag(sum(Ut))); - - %calculate distributions of mothers - %projection matrix Atilde - At=Ut+Ft; - %eigenvalues and right eigenvectors - [wt,d]=eig(At); - d=diag(d); - %find maximum eigenvalue - pick=find(d==max(d)); - wt=wt(:,pick); - %stable age-parity distribution normalized to sum to 1 - wt=wt/sum(wt); - lambda=d(pick) - - %age-stage distribution of mothers - pit=Ft(1,:)'.*wt; - pit=pit/sum(pit); - %marginal age distribution of mothers - piage=kron(Iom,ones(s,1)')*pit; - - clear At - - %add path to call the kinship program - path('../',path) - - %call the kinship function - kinout=kinship_function_parity(Ut,Ft,Gt,wt,pit,piage); - - %save the kin output - %include path to output folder - myname=char(['SVK_kinout/SVKkinout' num2str(years(iy)) '.mat']) - save(myname,'kinout') -end diff --git a/R/get_HMDHFD.R b/dev/get_HMDHFD.R similarity index 100% rename from R/get_HMDHFD.R rename to dev/get_HMDHFD.R diff --git a/dev/kinship_function_parity_4867.m b/dev/kinship_function_parity_4867.m deleted file mode 100644 index 897bcdb..0000000 --- a/dev/kinship_function_parity_4867.m +++ /dev/null @@ -1,199 +0,0 @@ -function out=kinship_function_parity(Ut,Ft,Gt,wt,pit,piage) -% -%function to compute kinship network for multistate age x parity model -% Supplement to: -% Caswell, H. 2020. The formal demography of kinship II. Multistate models, -% parity, and sibship. Demographic Research 42:1097-1144 -% -% Has been successfully used under Matlab R2018b -% -% -%inputs -% Ut=age-stage transition matrix -% Ft = age-stage fertility matrix -% Gt=age-stage transition matrix conditional on survival -% wt=stable age-stage distribution, normalized to sum to 1 -% pit=age-stage distribution of mothers -% piage = marginal age distribution of mothers - - -%number of age classes -om=length(piage); -%number of stages -s=length(pit)/om; - -%identity matrices useful in calculations -Iom=eye(om); -Is=eye(s); -Isom=eye(s*om); - -%frequently used zero vector for initial condition -zvec=zeros(s*om,1); - -%frequently used om-1 limit for iterations -omz=om-1; - -% the following code calculates age-stage distributions, -% for each type of kin, for each age x of Focal, -% and stores these as columns of an array -% e.g., a(x) = daughters at age x; A(:,x) contains a(x) - -% dynamics of Focal -% initial condition -phiz=zeros(s*om,1); -phiz(1)=1; -%age-stage vector of Focal, conditional on survival -Phi(:,1)=phiz; -for ix=1:omz - Phi(:,ix+1)=Gt*Phi(:,ix); -end - -% a: daughters of focal - -az=zvec; -A(:,1)=az; -for ix=1:omz - A(:,ix+1)=Ut*A(:,ix) + Ft*Phi(:,ix); -end % for ix - - -% b = granddaughters of Focal -b=zvec; -B(:,1)=b; -for ix=1:omz - B(:,ix+1)=Ut*B(:,ix) + Ft*A(:,ix); -end - - -% c = greatgranddaughters of Focal -c=zvec; -C(:,1)=c; -for ix=1:omz - C(:,ix+1)=Ut*C(:,ix) +Ft*B(:,ix); -end - - -% d = mothers of Focal -% conditional on mother having parity >0 - -%momarray is an array with pit in each column -momarray=pit*ones(1,om); - -Z=eye(s); -Z(1,1)=0; -for imom=1:om %go through all columns of momarray - E=Iom(:,imom)*Iom(imom,:); - momarray(:,imom)=kron(E,Z)*momarray(:,imom); - %selects age imom, and eliminates the zero parity row of momarray - -end -%rescale columns of momarray to sum to 1 -momarray=momarray*pinv(diag(sum(momarray))); - -%set dzero to the average of the momarray over the ages of moms at birth of -%children -dzero=momarray*piage; - -D(:,1)=dzero; -for ix=1:omz - D(:,ix+1)=Ut*D(:,ix); -end - - -% g = maternal grandmothers of Focal -gzero=D*piage; - -G(:,1)=gzero; -for ix=1:omz - G(:,ix+1)=Ut*G(:,ix); -end - - -% h = great-grandmothers of Focal -hzero=G*piage; -H(:,1)=hzero; -for ix=1:omz - H(:,ix+1)=Ut*H(:,ix) + 0; -end - -% m = older sisters of Focal -mzero=A*piage; -M(:,1)=mzero; -for ix=1:omz - M(:,ix+1)=Ut*M(:,ix) + 0; -end - -% n = younger sisters of Focal -nzero=zvec; -N(:,1)=nzero; -for ix=1:omz - N(:,ix+1)=Ut*N(:,ix) + Ft*D(:,ix); -end - - -% p = nieces through older sisters of Focal -pzero=B*piage; -P(:,1)=pzero; -for ix=1:omz - P(:,ix+1)=Ut*P(:,ix) + Ft*M(:,ix); -end - -% q = nieces through younger sisters of Focal -qzero=zvec; -Q(:,1)=qzero; -for ix=1:omz - Q(:,ix+1)=Ut*Q(:,ix) + Ft*N(:,ix); -end - -% r = aunts older than mother of Focal -rzero=M*piage; -R(:,1)=rzero; -for ix=1:omz - R(:,ix+1)=Ut*R(:,ix) + 0; -end - -% s = aunts younger than mother of Focal -szero=N*piage; -S(:,1)=szero; -for ix=1:omz - S(:,ix+1)=Ut*S(:,ix) + Ft*G(:,ix); -end - -% t = cousins from aunts older than mother of Focal -tzero=P*piage; -T(:,1)=tzero; -for ix=1:omz - T(:,ix+1)=Ut*T(:,ix) + Ft*R(:,ix); -end - - -% v = cousins from aunts younger than mother of Focal -vzero=Q*piage; -V(:,1)=vzero; -for ix=1:omz - V(:,ix+1)=Ut*V(:,ix) + Ft*S(:,ix); -end %for i - - -%overall kinship matrices, concatenating all kin -allkin=cat(3,A,B,C,D,G,H,M,N,P,Q,R,S,T,V); - -%combining older and younger categories -% for sisters, neices, aunts, and cousins -allkin2=cat(3,A,B,C,D,G,H,M+N,P+Q,R+S,T+V); - -%output structure -out.allkin=allkin; -out.allkin2=allkin2; -out.Phi=Phi; -out.pit=pit; -out.piage=piage; -out.om=om; -out.s=s; - out.Ut=Ut; -out.Ft=Ft; -out.Gt=Gt; - - - - diff --git a/dev/matrix_construction_4867.m b/dev/matrix_construction_4867.m deleted file mode 100644 index 1f6c75e..0000000 --- a/dev/matrix_construction_4867.m +++ /dev/null @@ -1,102 +0,0 @@ - -% script to prepare matrices for multistate age x parity model -% Supplement to: -% Caswell, H. 2020. The formal demography of kinship II. Multistate models, -% parity, and sibship. Demographic Research 42:1097-1144 -% -%requires Matlab Table files obtained from HMD (fltper) and HFD (mi) -% Has been successfully used under Matlab R2018b - -%add folder contraining the table files to path -addpath('SVK_tables/') - -% load the female lifetable file -load('SVKfltperTable.mat') -%columns in this Table: Year,Age,mx,qx,ax,lx,dx,Lx,Tx,ex -lt=ltable; - -%load the parity state transition file -load('SVKmiTable.mat') -%columns: Year,Age,mi1,mi2,mi3,mi4,mi5p - -%find year ranges -minfertyear=min(fert.Year); -maxfertyear=max(fert.Year); - -minltyear=min(lt.Year); -maxltyear=max(lt.Year); - -%pick a starting year and ending year -startyear=max([minfertyear minltyear]); -endyear=min([maxfertyear maxltyear]); - -%array of years and number of years -years=startyear:endyear; -numyears=endyear-startyear+1; - -for iy=1:numyears - years(iy); - - %find life table and qx array for year iy - pick=find(lt.Year==years(iy)); - qx=table2array(lt(pick,4)); - - %find fertility and create fertility array - pick=find(fert.Year==years(iy)); - fertarray=table2array(fert(pick,[2:7])); - - %number of age classes - %om=length(qx)-1; - om=length(qx)-1; - %number of parity classes - s=6; - - %extend the fertility array - startfert=fertarray(1,1); - endfert=fertarray(end,1); - %put zeros before age of first reproduction - fertarray=[zeros(startfert-1,6); fertarray]; - fertarray(1:startfert-1,1)=(1:startfert-1)'; - %put zeros after age of last reproduction - fertarray=[fertarray; zeros(om-endfert,6)]; - fertarray(endfert+1:om,1)=(endfert+1:om)'; - - %remove age column from fertarray - fertarray=fertarray(:,2:6); - - %construct the stage transition matrices using probabilities - for i=1:om - U{i} = diag(fertarray(i,:),-1); - %transform subdiagonals to probabilities - U{i}=U{i}./(1+0.5*U{i}); - %fill in diagonal entries - U{i}=U{i}+diag([1-diag(U{i},-1) ; 1]); - end - - %construct the age transition and survival matrices - for i=1:s - D{i}=diag(1-qx(1:om-1),-1); - end - - %construct fertility matrices - for i=1:om - F{i}=zeros(s,s); - F{i}(1,1:s-1)=diag(U{i},-1); - F{i}(1,s)=U{i}(s,s-1); - %divide fertility by 2 - F{i}=F{i}/2; - end - - %stage assignment matrices - for i=1:s - H{i}=zeros(om,om); - H{i}(1,:)=1; - end - - %include path to folder where matrix files are to be stored - myname=char(['SVK_kinmats/SVKmats' num2str(years(iy)) '.mat']) - %save the matrices into a .mat file - save(myname,'U','D','F','H','om','s') - -end - diff --git a/dev/readme.txt b/dev/readme.txt deleted file mode 100644 index e69de29..0000000 diff --git a/dev/tests/repl_caswell.R b/dev/tests/repl_caswell.R deleted file mode 100644 index b81c5ee..0000000 --- a/dev/tests/repl_caswell.R +++ /dev/null @@ -1,443 +0,0 @@ -# replicating CaswellĀ“s figures: choose some kin - -library(devtools) -load_all() -library(DemoKin) -library(tidyverse) -library(progress) -library(R.matlab) -load("tests/test.RData") - -# basic -debugonce(kin_time_variant) -swe_kin_period_pack <- kin(U = swe_surv, - f = swe_asfr, - N = swe_pop, - time_invariant = F, - birth_female = 1, - output_period = c(1900, 1950, 2010), - output_kin = c("d","gd","m","gm","oa", "os")) - -swe_kin_period_pack$kin_full %>% - filter(alive == "yes") %>% - group_by(age_focal, kin, year) %>% - summarise(count = sum(count, na.rm=T)) %>% - ggplot(aes(age_focal, count, color=factor(year))) + - geom_line() + - facet_wrap(~kin, scales="free_y") - -# time variant ------------------------------------------------------------ - -# inputs -input_time_variant <- readMat("tests/SWEhist_matrices.mat") -input_time_variant_proj <- readMat("tests/SWEproj_matrices.mat") -# class(input_time_variant) -# names(input_time_variant) -# length(input_time_variant[["matrices"]]) # number of years -# input_time_variant[["matrices"]][[128]][[1]][[1]] # U -# input_time_variant[["matrices"]][[1]][[1]][[2]] # F -# input_time_variant[["matrices"]][[1]][[1]][[3]] # popsize -# input_time_variant[["matrices"]][[1]][[1]][[4]] # pi -# length(input_time_variant_proj[["matrices"]]) # number of years - -U_hal <- f_hal <-N_hal <- pi_hal <-matrix(rep(0,111)) -for(y in 1:128){ - # y = 1 - U <- input_time_variant[["matrices"]][[y]][[1]][[1]] %>% as.matrix() - f <- input_time_variant[["matrices"]][[y]][[1]][[2]] %>% as.matrix() - N <- input_time_variant[["matrices"]][[y]][[1]][[3]] %>% as.matrix() - pi <- input_time_variant[["matrices"]][[y]][[1]][[4]] %>% as.matrix() - U_hal <- cbind(U_hal, c(U[col(U)==row(U)-1], U[ncol(U),nrow(U)])) - f_hal <- cbind(f_hal ,f[1,]) - N_hal <- cbind(N_hal ,N) - pi_hal <-cbind(pi_hal, pi) -} -U_hal_end <- U_hal[,-1] -f_hal_end <- f_hal[,-1] -N_hal_end <- N_hal[,-1] -pi_hal_end <-pi_hal[,-1] -colnames(U_hal_end) <- colnames(f_hal_end) <- colnames(N_hal_end) <- colnames(pi_hal_end) <-1891:2018 -dim(U_hal_end);class(U_hal_end %>% as.matrix) - -# period -swe_kin_period <- kin(U = U_hal_end %>% as.matrix(), - f = f_hal_end %>% as.matrix(), - pi = pi_hal_end %>% as.matrix(), - time_invariant = F, - birth_female = 1, - output_period = c(1891,1921,1951,2010), - output_kin = c("d","gd","m","gm","oa", "os")) - -# check first-row plots from figures 5-A and 5-B from https://www.demographic-research.org/volumes/vol45/16/45-16.pdf -swe_kin_period$kin_full %>% - filter(alive == "yes") %>% - group_by(age_focal, kin, year) %>% - summarise(count = sum(count, na.rm=T)) %>% - ggplot(aes(age_focal, count, color=factor(year))) + - geom_line() + - facet_wrap(~kin, scales="free_y") - -# read from https://www.dropbox.com/t/3YiILmn7SpczN3oM -output_time_variant <- readMat("tests/time-varying_sweden.mat") - -# inspect the way the package reads -# class(output_time_variant) -# names(output_time_variant) -# length(output_time_variant[["allkin"]]) # number of years -# length(output_time_variant[["allkin"]][[1]]) -# length(output_time_variant[["allkin"]][[1]]) -# class(output_time_variant[["allkin"]][[1]][[1]]) # 1 array with kin matrix -# dim(output_time_variant[["allkin"]][[1]][[1]][,,14]) # the matrix of the nth kin, 111 ages - -# use own codes to interpret -codes <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") -caswell_codes <- c("t", "v", "a", "b", "c", "h", "g", "d", "p", "q", "r", "s", "m", "n") - -# re arrange all data to a dataframe -output_time_variant_df <- map_df(1:128, function(i){ - array_branch(output_time_variant[["allkin"]][[i]][[1]], margin = 3) %>% - map_df(., as.data.frame)}) %>% - setNames(as.character(0:110)) %>% - bind_cols(crossing(year = 1891+(0:127), - kin_index = 1:14, - age_kin = 0:110)) %>% - inner_join(tibble(kin = codes, caswell_codes) %>% - arrange(caswell_codes) %>% mutate(kin_index = 1:14)) - -# check dimension: 128 years, 14 types of kin, 111 ages -nrow(output_time_variant_df); 128*14*111 - -# check first-row plots from figures 5-A and 5-B from https://www.demographic-research.org/volumes/vol45/16/45-16.pdf -output_time_variant_df %>% - filter(year %in% c(1891,1921,1951,2010), kin %in% c("d","gd", "m", "gm", "oa", "os")) %>% - pivot_longer(`0`:`110`, names_to = "age", values_to = "count") %>% - mutate(age = as.integer(age)) %>% - group_by(age, kin, year) %>% - summarise(count = sum(count)) %>% - ggplot(aes(age, count, color=factor(year))) + - geom_line() + - facet_wrap(~kin, scales="free_y") - -# differences - look d, gd, in 1891 and 1951 -swe_period_together <- swe_kin_period$kin_full %>% - filter(alive == "yes") %>% - filter(year %in% c(1891,1921,1951,2010), kin %in% c("d","gd","m","gm","oa", "os")) %>% - group_by(age_focal, kin, year) %>% summarise(count_demokin = sum(count, na.rm=T)) %>% - inner_join( - output_time_variant_df %>% - filter(year %in% c(1891,1921,1951,2010), kin %in% c("d","gd", "m", "gm","oa", "os")) %>% - pivot_longer(`0`:`110`, names_to = "age", values_to = "count") %>% - mutate(age = as.integer(age)) %>% - group_by(age_focal=age, kin, year) %>% - summarise(count_paper = sum(count))) - -swe_period_together %>% - filter(year == 1891) %>% - ggplot() + - geom_line(aes(age_focal, count_demokin, color=factor(year)), linetype=1) + - geom_line(aes(age_focal, count_paper, color=factor(year)), linetype=2) + - facet_wrap(~kin, scales="free_y") - -swe_period_rel_dif <- swe_period_together %>% - mutate(rel_dif = round(100*(count_paper/count_demokin-1),3)) %>% - arrange(year, kin) %>% - as.data.frame() %>% - group_by(year, kin) %>% summarise(sum(rel_dif, na.rm=T)) - - - - - - - - - - - - - - -# to bind projected -# U_hal <- U_hal[1:106,] -# f_hal <- f_hal[1:106,] -# N_hal <- N_hal[1:106,] -# pi_hal <-pi_hal[1:106,] -# for(y in 1:102){ -# # y = 1 -# U <- input_time_variant_proj[["matrices"]][[y]][[1]][[1]] -# f <- input_time_variant_proj[["matrices"]][[y]][[1]][[2]] -# N <- input_time_variant_proj[["matrices"]][[y]][[1]][[3]] -# pi <- input_time_variant_proj[["matrices"]][[y]][[1]][[4]] -# U_hal <- U_hal %>% bind_cols(c(U[col(U)==row(U)-1], U[ncol(U),nrow(U)])) -# f_hal <- f_hal %>% bind_cols(f[1,]) -# N_hal <- N_hal %>% bind_cols(N) -# pi_hal <-pi_hal%>% bind_cols(as.numeric(pi)) -# } -# dim(U_hal[,-1]) -# U_hal_end <- U_hal[,-1] %>% setNames(as.character(1891:2120)) -# f_hal_end <- f_hal[,-1] %>% setNames(as.character(1891:2120)) -# N_hal_end <- N_hal[,-1] %>% setNames(as.character(1891:2120)) -# pi_hal_end <-pi_hal[,-1] %>% setNames(as.character(1891:2120)) -# dim(U_hal_end);names(U_hal_end) - -# time invariant ---------------------------------------------------------- - -### data: survival probability and fertility by age for Japan -# available at https://www.demographic-research.org/volumes/vol41/24/default.htm - -p_1947 <- 1 - read.csv("tests/qx_years.csv", header = F, sep = " ")[[4]] -f_1947 <- read.csv("tests/fx_years.csv", header = F, sep = " ")[[4]] -p_2014 <- 1 - read.csv("tests/qx_years.csv", header = F, sep = " ")[[205]] -f_2014 <- read.csv("tests/fx_years.csv", header = F, sep = " ")[[205]] - -# Caswell assumption on first age -f_1947 <- f_1947 * p_1947 -f_2014 <- f_2014 * p_2014 - -kins_japan_1947 <- kin(p_1947, f_1947, living = F)$kin_full -kins_japan_1947 %>% - filter(alive=="yes", kin=="ggm") %>% - group_by(age_focal) %>% summarise(sum(count)) - - -### results -kins_japan <- rbind(tibble(Year = 1947, kin(p_1947, f_1947, living = F)$kin_full), - tibble(Year = 2014, kin(p_2014, f_2014, living = F)$kin_full)) - -# kins alive by age when ego is aged 30 or 70 -kins_japan %>% - filter(age_focal %in% c(30,70), alive=="yes") %>% - ggplot() + - geom_line(aes(x=age_kin, y=count, - color=factor(age_focal), linetype=factor(Year))) + - facet_wrap(~kin,scales = "free_y") + - theme_classic() + - facet_wrap(~kin,scales = "free_y") - -kins_japan %>% - filter(age_focal %in% 30, alive=="yes", kin == "m", Year==2014) - -### get paper results: done with https://plotdigitizer.com/app - -m_30_2014 <- c(48.124993716677295, 0.0068724848600042006, - 52.13541022398433, 0.022765097394085585, - 56.14582673129136, 0.056697985757917374, - 60.04166165822103, 0.07398657677157613, - 64.16665974590543, 0.054765100671140945, - 68.17707625321246, 0.02330201014576342, - 71.95832959976478, 0.0035436192454907658) %>% matrix(ncol=2, byrow = T) %>% - as.data.frame() %>% setNames(c("age_kin","count")) %>% - mutate(kin = "m", year = 2014, age = 30) -m_30_1947 <- c(47.89583055592257, 0.010630874121749168, - 51.791665482852245, 0.045100671140939595, - 56.37499863406029, 0.05111409232120386, - 59.92708007784368, 0.03908724586435613, - 63.82291500477335, 0.02577181208053692, - 68.17707625321246, 0.012671136024014266, - 71.84374801938742, 0.0025771828465813683) %>% matrix(ncol=2, byrow = T) %>% - as.data.frame() %>% setNames(c("age_kin","count")) %>% - mutate(kin = "m", year = 1947, age = 30) -s_30_1947 <- c(117.30467373388943, 0.028030307190039253, - 3.8671896129379024, 0.0011363654972982584, - 8.05663990468026, 0.005681817853417949, - 12.031249743886312, 0.01792929767285178, - 16.220700035628674, 0.036111111913867226, - 19.873045098211307, 0.05782828333912762, - 23.84765903523633, 0.07626262618964844, - 28.037105229159724, 0.08244949644554042, - 32.119139392452894, 0.06717171906914071, - 36.09374513383999, 0.044696973856705915, - 39.853510422690775, 0.024621210698144477, - 43.93554458598395, 0.010858592937435215, - 47.80273010110288, 0.00303030478177092) %>% matrix(ncol=2, byrow = T) %>% - as.data.frame() %>% setNames(c("age_kin","count")) %>% - mutate(kin = "s", year = 1947, age = 30) -s_70_1947 <- c(43.93554458598395, 0.0011363654972982584, - 47.80273010110288, 0.00441919166376952, - 52.20702494320051, 0.013383845316732092, - 56.074218653957374, 0.026388889290266948, - 59.94140416907631, 0.03952020358922534, - 64.02343013673156, 0.048358586916764375, - 68.10546430002474, 0.045959600046354354, - 71.97264981514367, 0.03143939886539736, - 76.05468397843684, 0.015404045293554923, - 80.02928971982392, 0.005429296468717607, - 84.00390365684893, 0.0011363654972982584) %>% matrix(ncol=2, byrow = T) %>% - as.data.frame() %>% setNames(c("age_kin","count")) %>% - mutate(kin = "s", year = 1947, age = 70) -s_30_2014 <- c(7.949219678412107, 0.0005050524024740438, - 12.031249743886312, 0.0032828357995446046, - 16.005859583092366, 0.009217175037662914, - 19.873045098211307, 0.020328289359798468, - 23.6328103870621, 0.03194444645133473, - 27.822264776623417, 0.03888889049440111, - 32.01171916618474, 0.0337121250434572, - 35.77148445503553, 0.0215909155494469, - 39.96093884459685, 0.010732322612011683, - 44.04296481225208, 0.0032828357995446046)%>% matrix(ncol=2, byrow = T) %>% - as.data.frame() %>% setNames(c("age_kin","count")) %>% - mutate(kin = "s", year = 2014, age = 30) -s_70_2014 <- c(51.88476426439605, 0.002904044089420749, - 56.18163888022552, 0.009343435730013084, - 59.83398394280815, 0.01944444524720057, - 64.13085855863763, 0.03068182026168629, - 68.21288452629288, 0.035479798819043, - 71.75780936260736, 0.03068182026168629, - 76.16210420470499, 0.019318184554850383, - 79.92186949355577, 0.008459601250488509, - 84.00390365684893, 0.00265152270472039) %>% matrix(ncol=2, byrow = T) %>% - as.data.frame() %>% setNames(c("age_kin","count")) %>% - mutate(kin = "s", year = 2014, age = 70) - -output_time_invariant <- m_30_2014 %>% - bind_rows(m_30_1947, s_30_1947, s_70_1947, s_30_2014, s_70_2014) %>% - mutate(age_kin = trunc(age_kin), count=round(count,7)) - -compare_time_invariant <- kins_japan %>% - filter(kin %in% c("os", "ys"), alive == "yes") %>% - group_by(Year, age_focal, age_kin, alive) %>% - summarise(count = sum(count)) %>% - mutate(kin = "s") %>% - bind_rows(kins_japan %>% filter(alive == "yes")) %>% - select(-year, -cohort, -alive) %>% - rename(count_demokin = count, year = Year) %>% - mutate(count_demokin = round(count_demokin,7)) %>% - right_join(output_time_invariant %>% - rename(age_focal=age, count_paper = count)) - -compare_time_invariant %>% - ggplot() + - geom_line(aes(age_kin, count_demokin, linetype=factor(year)), col=1)+ - geom_line(aes(age_kin, count_paper, linetype=factor(year)), col=2) + - facet_grid(~kin+age_focal)+ - theme_bw() - - -### compare values - - - - - - - - - - -# period -swe_kin_period <- kin(U = U_caswell_2021, f = f_caswell_2021, pi = pi_caswell_2021, stable = F, birth_female = 1, - focal_year = c(1891,1921,1951,2010,2050,2080,2120), - selected_kin = c("d","gd","ggd","m","gm","ggm","os","ys","oa","ya")) - -swe_kin_period$kin_summary %>% - ggplot(aes(age_focal,count,color=factor(year))) + - geom_line(size=1)+ - scale_y_continuous(name = "",labels = seq(0,3,.2),breaks = seq(0,3,.2))+ - facet_wrap(~kin, scales = "free")+ - theme_bw() - -# ADDITIONAL PLOTS cohrot and period -ggplot(swe_kin_cohorts$kin_summary %>% filter(cohort == 1911), - aes(year,mean_age)) + - geom_point(aes(size=count,color=kin)) + - geom_line(aes(color=kin)) + - scale_y_continuous(name = "Edad", breaks = seq(0,110,10), labels = seq(0,110,10), limits = c(0,110))+ - geom_segment(x = 1911, y = 0, xend = 2025, yend = 110, color = 1)+ - geom_vline(xintercept = 1911, linetype=2)+ - theme_light()+ coord_fixed()+ - labs(title = "Kin cohort 1911") - -swe_kin_period$kin_summary %>% - filter(age_focal==50) %>% - ggplot(aes(year, mean_age, color=kin)) + - geom_point(aes(size=count)) + - geom_line() + - geom_hline(yintercept = 50, color=1, linetype=1)+ - theme_light()+ - coord_fixed()+ - labs(title = "Kin period") - -### plots -# kins alive by age when ego is aged 30 or 70 -kins_japan %>% - filter(age_focal %in% c(30,70), alive=="yes") %>% - ggplot() + - geom_line(aes(x=age_kin, y=count, - color=factor(age_focal), linetype=factor(Year))) + - facet_wrap(~kin,scales = "free_y") + - theme_classic() + - facet_wrap(~kin,scales = "free_y") -# kins alive during egoĀ“s life -kins_japan %>% - filter(alive=="yes") %>% - group_by(Year, kin, age_focal) %>% summarise(count = sum(count)) %>% - ggplot() + - geom_line(aes(age_focal, count, linetype=factor(Year))) + - theme_classic() + - facet_wrap(~kin, scales = "free_y") -# experienced deaths -kins_japan %>% - filter(alive=="no") %>% - group_by(Year, kin, age_focal) %>% summarise(count = sum(count)) %>% - ggplot() + - geom_line(aes(age_focal, count, linetype=factor(Year))) + - theme_classic() + - facet_wrap(~kin, scales = "free_y") -# variation coefficient of age by kin -kins_japan %>% - filter(alive=="yes") %>% - group_by(Year, kin, age_focal) %>% - summarise(mean_age = sum(count*age_kin)/sum(count), - var_age = sum(count*age_kin^2)/sum(count) - mean_age^2, - cv_age = round(sqrt(var_age)/mean_age*100,1)) %>% - ggplot() + - geom_line(aes(age_focal, cv_age, linetype=factor(Year))) + - theme_classic() + - facet_wrap(~kin, scales = "free_y") -# dependency ages -kins_japan %>% - filter(alive=="yes") %>% - mutate(age_kin_dep = ifelse(age_kin<15,"0-14", - ifelse(age_kin<65,"15-64","65+"))) %>% - group_by(Year, kin, age_focal, age_kin_dep) %>% - summarise(count = sum(count)) %>% - ggplot() + - geom_line(aes(age_focal, count, - color = age_kin_dep, linetype=factor(Year))) + - theme_classic() + - facet_wrap(~kin, scales = "free_y") - - - - - - - - - - - - - - - - - -swe_surv_2010 <- swe_surv %>% pull(`2011`) -swe_asfr_2010 <- swe_asfr %>% pull(`2011`) -debugonce(kin) -swe50_2015_stable <- kin(U = swe_surv_2010, f = swe_asfr_2010, output_cohort = c(1911,1930), - output_kin = c("d","m")) - -swe_kin_cohorts <- kin(U = U_caswell_2021, f = f_caswell_2021, time_invariant = F, - birth_female = 1, - output_cohort = c(1911), - output_kin = c("d")) - -U = U_caswell_2021; f = f_caswell_2021; pi = pi_caswell_2021; birth_female = 1; -output_cohort = c(1911);output_period = NULL; output_kin = c("d") - -# FIGURE 5 - - - diff --git a/dev/tests/repl_caswell_first_year.R b/dev/tests/repl_caswell_first_year.R deleted file mode 100644 index c88c121..0000000 --- a/dev/tests/repl_caswell_first_year.R +++ /dev/null @@ -1,106 +0,0 @@ -# replicating CaswellĀ“s figures: choose some kin -library(DemoKin) -library(tidyverse) -library(R.matlab) -source("R/kin_time_invariant.R") - -# paper input from https://www.demographic-research.org/volumes/vol45/16/45-16.pdf -input_time_variant <- readMat("tests/SWEhist_matrices.mat") - -# check structure from reading mat -class(input_time_variant) -names(input_time_variant) -length(input_time_variant[["matrices"]]) # number of years -input_time_variant[["matrices"]][[128]][[1]][[1]] # U -input_time_variant[["matrices"]][[1]][[1]][[2]] # F -input_time_variant[["matrices"]][[1]][[1]][[3]] # popsize -input_time_variant[["matrices"]][[1]][[1]][[4]] # pi -length(input_time_variant_proj[["matrices"]]) # number of years - -# reshape -U_hal <- f_hal <-N_hal <- pi_hal <-matrix(rep(0,111)) -for(y in 1:128){ - U <- input_time_variant[["matrices"]][[y]][[1]][[1]] %>% as.matrix() - f <- input_time_variant[["matrices"]][[y]][[1]][[2]] %>% as.matrix() - N <- input_time_variant[["matrices"]][[y]][[1]][[3]] %>% as.matrix() - pi <- input_time_variant[["matrices"]][[y]][[1]][[4]] %>% as.matrix() - U_hal <- cbind(U_hal, c(U[col(U)==row(U)-1], U[ncol(U),nrow(U)])) - f_hal <- cbind(f_hal ,f[1,]) - N_hal <- cbind(N_hal ,N) - pi_hal <-cbind(pi_hal, pi) -} -U_hal <- U_hal[,-1] -f_hal <- f_hal[,-1] -N_hal <- N_hal[,-1] -pi_hal <-pi_hal[,-1] -colnames(U_hal) <- colnames(f_hal) <- colnames(N_hal) <- colnames(pi_hal) <-1891:2018 -dim(U_hal);class(U_hal %>% as.matrix) - -# output from Hal (dropbox link https://www.dropbox.com/t/3YiILmn7SpczN3oM) -output_time_variant <- readMat("tests/time-varying_sweden.mat") - -# inspect the way the package reads mat -class(output_time_variant) -names(output_time_variant) -length(output_time_variant[["allkin"]]) # number of years -length(output_time_variant[["allkin"]][[1]]) -length(output_time_variant[["allkin"]][[1]]) -class(output_time_variant[["allkin"]][[1]][[1]]) # 1 array with kin matrix -dim(output_time_variant[["allkin"]][[1]][[1]][,,14]) # the matrix of the nth kin, 111 ages - -# use own codes to interpret -codes <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") -caswell_codes <- c("t", "v", "a", "b", "c", "h", "g", "d", "p", "q", "r", "s", "m", "n") - -# re shape data to tidy -output_time_variant_df <- map_df(1:128, function(i){ - array_branch(output_time_variant[["allkin"]][[i]][[1]], margin = 3) %>% - map_df(., as.data.frame)}) %>% - setNames(as.character(0:110)) %>% - bind_cols(crossing(year = 1891+(0:127), # years - kin_index = 1:14, # number of possible kin - age_kin = 0:110) # ages - ) %>% - inner_join(tibble(kin = codes, caswell_codes) %>% - arrange(caswell_codes) %>% mutate(kin_index = 1:14)) - -# check dimension: 128 years, 14 types of kin, 111 ages -nrow(output_time_variant_df); 128*14*111 - -# own calculation for first year -out_first_year <- kin_time_invariant( - U = U_hal[,"1891"], - f = f_hal[,"1891"], - pi = pi_hal[,"1891"], - birth_female = 1) - -# check first visually demokin -out_first_year %>% - filter(alive == "yes") %>% - group_by(age_focal, kin) %>% - summarise(count = sum(count, na.rm=T)) %>% - ggplot(aes(age_focal, count)) + - geom_line() + - facet_wrap(~kin, scales="free_y") - -# compare with paper results -comparison <- out_first_year %>% - filter(alive == "yes") %>% - group_by(age_focal, kin) %>% - summarise(count = sum(count, na.rm=T)) %>% - mutate(source = "demokin") %>% - bind_rows( - output_time_variant_df %>% - filter(year %in% 1891) %>% - pivot_longer(`0`:`110`, names_to = "age", values_to = "count") %>% - mutate(age = as.integer(age)) %>% - group_by(age_focal=age, kin) %>% - summarise(count = sum(count)) %>% - mutate(source = "paper")) - -# comparison visually -comparison %>% - ggplot() + - geom_line(aes(age_focal, count, color=source, linetype=source)) + - facet_wrap(~kin, scales="free_y") + - theme_bw() diff --git a/dev/tests/timevarying_kin.m b/dev/tests/timevarying_kin.m deleted file mode 100644 index c1176c8..0000000 --- a/dev/tests/timevarying_kin.m +++ /dev/null @@ -1,180 +0,0 @@ -function kout=timevarying_kin(U,F,pi,om,pkin); -% function to return kinship network -% calculated from the rates and the kinship at the previous time -% U=survival matrix -% F=fertility matrix -% pi = distribution of ages of mothers -% om=number of age classes -% pkin = the array of all kin from the previous time step -% model structure -% k(x+1,t+1)=U(t)*k(x,t) + F(t)*kstar(x,t) for some other kin kstar - -%set to full in case they arrive as sparse matrices -U=full(U); -F=full(F); -pi=full(pi); - -%frequently used zero vector for initial condition -zvec=zeros(om,1); -I=eye(om); -omz=om-1; - -% a: daughters of focal - -A(:,1)=zvec; -for ix=1:omz - ap=U*pkin.A(:,ix) + F*I(:,ix); - A(:,ix+1)=ap; - -end % for ix - -% b = granddaughters of Focal - -B(:,1)=zvec; -for ix=1:omz - bp=U*pkin.B(:,ix) + F*pkin.A(:,ix); - B(:,ix+1)=bp; - -end - - -% c = greatgranddaughters of Focal -C(:,1)=zvec; -for ix=1:omz - cp=U*pkin.C(:,ix) +F*pkin.B(:,ix); - C(:,ix+1)=cp; - -end - - -% d = mothers of Focal -D(:,1)=pi; -for ix=1:omz - dp=U*pkin.D(:,ix) + 0; - D(:,ix+1)=dp; - -end - - -% g = grandmothers of Focal -%only maternal grandmothers right now -G(:,1)=pkin.D*pi;; -for ix=1:omz - gp=U*pkin.G(:,ix) + 0; - G(:,ix+1)=gp; - -end - - -% h = greattrandmothers of Focal - -H(:,1)=pkin.G*pi; -for ix=1:omz - hp=U*pkin.H(:,ix) + 0; - H(:,ix+1)=hp; - -end - -% m = older sisters of Focal - -M(:,1)=pkin.A*pi; -for ix=1:omz - mp=U*pkin.M(:,ix) + 0; - M(:,ix+1)=mp; - -end - -% n = younger sisters - -N(:,1)=zvec; -for ix=1:omz - np=U*pkin.N(:,ix) + F*pkin.D(:,ix); - N(:,ix+1)=np; - -end - - -% p = nieces through older sisters - -P(:,1)=pkin.B*pi; -for ix=1:omz - pp=U*pkin.P(:,ix) + F*pkin.M(:,ix); - P(:,ix+1)=pp; -end - -% q = nieces through younger sisters - -Q(:,1)=zvec; -for ix=1:omz - qp=U*pkin.Q(:,ix) + F*pkin.N(:,ix); - Q(:,ix+1)=qp; - -end - -% r = aunts older than mother - -R(:,1)=pkin.M*pi; -for ix=1:omz - rp=U*pkin.R(:,ix) + 0; - R(:,ix+1)=rp; - -end - -% s = aunts younger than mother - -S(:,1)=pkin.N*pi; -for ix=1:omz - sp=U*pkin.S(:,ix) + F*pkin.G(:,ix); - S(:,ix+1)=sp; - -end - -% t = cousins from older aunts - -T(:,1)=pkin.P*pi; -for ix=1:omz - tp=U*pkin.T(:,ix) + F*pkin.R(:,ix); - T(:,ix+1)=tp; - -end - - -% v = cousins from aunts younger than mother - -V(:,1)=pkin.Q*pi; -for ix=1:omz - vp=U*pkin.V(:,ix) + F*pkin.S(:,ix); - V(:,ix+1)=vp; - -end - -%concatenate kin matrices -allkin=cat(3,A,B,C,D,G,H,M,N,P,Q,R,S,T,V); - -%concatenate, combining older and younger sisters, etc. -allkin2=cat(3,A,B,C,D,G,H,M+N,P+Q,R+S,T+V); - -%create output structures -kout.A=A; -kout.B=B; -kout.C=C; -kout.D=D; -kout.G=G; -kout.H=H; -kout.M=M; -kout.N=N; -kout.P=P; -kout.Q=Q; -kout.R=R; -kout.S=S; -kout.T=T; -kout.V=V; - -kout.allkin=allkin; -kout.allkin2=allkin2; - -kout.U=U; -kout.F=F; -kout.pi=pi; - - \ No newline at end of file diff --git a/DemoKin-Logo.png b/man/figures/DemoKin-Logo.png similarity index 100% rename from DemoKin-Logo.png rename to man/figures/DemoKin-Logo.png diff --git a/man/get_HMDHFD.Rd b/man/get_HMDHFD.Rd deleted file mode 100644 index 9bbf264..0000000 --- a/man/get_HMDHFD.Rd +++ /dev/null @@ -1,41 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/get_HMDHFD.R -\name{get_HMDHFD} -\alias{get_HMDHFD} -\title{Get time serie matrix data from HMD/HFD} -\usage{ -get_HMDHFD( - country = "SWE", - min_year = 1900, - max_year = 2018, - user_HMD = NULL, - pass_HMD = NULL, - user_HFD = NULL, - pass_HFD = NULL, - OAG = 100 -) -} -\arguments{ -\item{country}{numeric. Country code from rom HMD/HFD.} - -\item{min_year}{integer. Older year to get data.} - -\item{max_year}{numeric. Latest year to get data.} - -\item{user_HMD}{character. From HMD.} - -\item{pass_HMD}{character. From HMD.} - -\item{user_HFD}{character. From HFD.} - -\item{pass_HFD}{character. From HFD.} - -\item{OAG}{numeric. Open age group to standarize output.} -} -\value{ -A list wiith female survival probability, survival function, fertility and poopulation age specific matrixes, with calendar year as colnames. -} -\description{ -Wrapper function to get data of female survival, fertlity and population -of selected country on selected period. -} diff --git a/man/kin.Rd b/man/kin.Rd index 036bdd9..62ec76b 100644 --- a/man/kin.Rd +++ b/man/kin.Rd @@ -40,6 +40,8 @@ in a more general perspective) with rows as ages (and columns as years in case o this needs to be set as 1.} \item{stable}{logic. Deprecated. Use \code{time_invariant}.} + +\item{U}{logic. Deprecated. Use \code{p}.} } \value{ A list with: diff --git a/man/kin2sex.Rd b/man/kin2sex.Rd index 34bf7c1..d91b032 100644 --- a/man/kin2sex.Rd +++ b/man/kin2sex.Rd @@ -22,9 +22,9 @@ kin2sex( ) } \arguments{ -\item{pf}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} +\item{pf}{numeric. A vector (atomic) or matrix with female probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} -\item{pm}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} +\item{pm}{numeric. A vector (atomic) or matrix with male probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} \item{ff}{numeric. Same as pf but for fertility rates.} @@ -49,13 +49,12 @@ kin2sex( \item{output_period}{integer. Vector of period years for returning results. Should be within input data years range.} \item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} - -\item{stable}{logic. Deprecated. Use \code{time_invariant}.} } \value{ A list with: \itemize{ -\item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example \code{d} is daughter, \code{oa} is older aunts, etc.), including living and dead kin at that age.} +\item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example \code{d} could be daughter or son depending \code{sex_kin}, +\code{oa} is older aunts or uncles also depending \code{sex_kin} value, etc.), including living and dead kin at that age.} \item{kin_summary}{ a data frame with FocalĀ“s age, related ages, sex and type of kin, with indicators obtained processing \code{kin_full}, grouping by cohort or period (depending on the given arguments):} {\itemize{ \item{\code{count_living}}{: count of living kin at actual age of Focal} @@ -71,7 +70,8 @@ A list with: \description{ Implementation of two-sex matrix kinship model. This produces kin counts grouped by kin, age and sex of each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents -are grouped in one male count of cousins. +are grouped in one male count of cousins. Note that the output labels relative following female notation: the label \code{m} +refers to either mothers or fathers, and column \code{sex_kin} determine the sex of the relative. } \details{ See Caswell (2022) for details on formulas. diff --git a/man/kin_time_variant.Rd b/man/kin_time_variant.Rd index 17c1f85..0646778 100644 --- a/man/kin_time_variant.Rd +++ b/man/kin_time_variant.Rd @@ -23,6 +23,8 @@ kin_time_variant( \item{pi}{numeric. A matrix with distribution of childbearing with rows as ages and columns as years. Coincident with \code{U}.} +\item{n}{numeric. A matrix of population with rows as ages and columns as years. Coincident with \code{U}.} + \item{output_cohort}{integer. Year of birth of focal to return as output. Could be a vector. Should be within input data years range.} \item{output_period}{integer. Year for which to return kinship structure. Could be a vector. Should be within input data years range.} @@ -32,8 +34,6 @@ kin_time_variant( \item{birth_female}{numeric. Female portion at birth.} \item{list_output}{logical. Results as a list with years elements (as a result of \code{output_cohort} and \code{output_period} combination), with a second list of \code{output_kin} elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default \code{FALSE}} - -\item{N}{numeric. A matrix of population with rows as ages and columns as years. Coincident with \code{U}.} } \value{ A data frame of population kinship structure, with focal's cohort, focalĀ“s age, period year, type of relatives diff --git a/man/kin_time_variant_2sex.Rd b/man/kin_time_variant_2sex.Rd index bcb3ca9..a30624f 100644 --- a/man/kin_time_variant_2sex.Rd +++ b/man/kin_time_variant_2sex.Rd @@ -48,9 +48,7 @@ kin_time_variant_2sex( \item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} -\item{time_invariant}{logical. Constant assumption for a given \code{year} rates. Default \code{TRUE}.} - -\item{stable}{logic. Deprecated. Use \code{time_invariant}.} +\item{list_output}{logical. Results as a list with years elements (as a result of \code{output_cohort} and \code{output_period} combination), with a second list of \code{output_kin} elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default \code{FALSE}} } \value{ A data.frame with year, cohort, FocalĀ“s age, related ages, sex and type of kin (for example \code{d} is daughter, \code{oa} is older aunts, etc.), including living and dead kin at that age and sex. diff --git a/man/output_period_cohort_combination.Rd b/man/output_period_cohort_combination.Rd index e53a40c..c96a235 100644 --- a/man/output_period_cohort_combination.Rd +++ b/man/output_period_cohort_combination.Rd @@ -21,5 +21,5 @@ output_period_cohort_combination( \description{ defince apc to return. -defince apc to return. +define apc combination to return in \code{kin} and \code{kin2sex}. } diff --git a/man/timevarying_kin_2sex.Rd b/man/timevarying_kin_2sex.Rd index e2ad4ac..d6dccf2 100644 --- a/man/timevarying_kin_2sex.Rd +++ b/man/timevarying_kin_2sex.Rd @@ -9,13 +9,16 @@ timevarying_kin_2sex(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin) \arguments{ \item{Ut}{numeric. A matrix of survival probabilities (or ratios).} -\item{pit}{numeric. A matrix with distribution of childbearing.} +\item{Ft}{numeric. A matrix of age-specific fertility rates.} + +\item{Ft_star}{numeric. Ft but for female fertility.} + +\item{pit}{numeric. A matrix with distribution of childbearing. +sex_focal} \item{ages}{numeric.} \item{pkin}{numeric. A list with kin count distribution in previous year.} - -\item{ft}{numeric. A matrix of age-specific fertility rates.} } \description{ one time projection kin. internal function. diff --git a/vignettes/Reference.Rmd b/vignettes/Reference_OneSex.Rmd similarity index 98% rename from vignettes/Reference.Rmd rename to vignettes/Reference_OneSex.Rmd index cd1bee3..1259f8b 100644 --- a/vignettes/Reference.Rmd +++ b/vignettes/Reference_OneSex.Rmd @@ -1,17 +1,18 @@ --- -title: "Expected kin counts by type of relative: A matrix implementation" +title: "Expected kin counts by type of relative in a one-sex framework" output: html_document: toc: true toc_depth: 1 vignette: > - %\VignetteIndexEntry{Reference} + %\VignetteIndexEntry{Reference_OneSex} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") +library(devtools); load_all() ``` In this vignette, we'll demonstrate how `DemoKin` can be used to compute kinship networks for an average member of a given (female) population. Let us call her Focal: an average Swedish woman who has always lived in Sweden and whose family has never left the country. @@ -24,8 +25,7 @@ First, we compute kin counts in a **time-invariant** framework. We assume that F In order to implement the time-invariant models, the function `DemoKin::kin` expects a vector of survival ratios and another vector of fertility rates. In this example, we get the data for the year 2015, and run the matrix models: ```{r, message=FALSE, warning=FALSE} -library(devtools) -load_all() +library(DemoKin) library(tidyr) library(dplyr) library(ggplot2) @@ -56,7 +56,7 @@ head(swe_2015$kin_summary) To produce it, we sum over all ages of kin to produce a data frame of expected kin counts by year or cohort and age of Focal (but not by age of kin). Consider this simplified example for living kin counts: -```{r} +```{r, message=FALSE, warning=FALSE} kin_summary_example <- swe_2015$kin_full %>% select(year, cohort, kin, age_focal, age_kin, living, dead) %>% diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd new file mode 100644 index 0000000..cc8e2c7 --- /dev/null +++ b/vignettes/Reference_TwoSex.Rmd @@ -0,0 +1,271 @@ +--- +title: "Two-sex kinship model" +output: + html_document: + toc: true + toc_depth: 1 +vignette: > + %\VignetteIndexEntry{Reference_TwoSex} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r, include=FALSE} +knitr::opts_chunk$set(collapse = TRUE, comment = "#>") +library(devtools); load_all() +``` + +Human males generally live longer and reproduce later than females. +These sex-specific processes affect kinship dynamics in a number of ways. +For example, the degree to which an average member of the population, call her Focal, has a living grandparent is affected by differential mortality affecting the parental generation at older ages. +We may also be interested in considering how kinship structures vary by Focal's sex: a male Focal may have a different number of grandchildren than a female Focal given differences in fertility by sex. +Documenting these differences matters since women often face greater expectations to provide support and informal care to relatives. +As they live longer, they may find themselves at greater risk of being having no living kin. +The function `kin2sex` implements two-sex kinship models as introduced by Caswell (2022). +This vignette show how to run two-sex models and highlights some of the advantages of this model over one-sex models in populations with time-invariant and time-variant rates. + +```{r, message=FALSE, warning=FALSE} +library(DemoKin) +library(tidyr) +library(dplyr) +library(ggplot2) +library(knitr) +``` + +### 1. Demographic rates by sex + +Data on female fertility by age is less common than female fertility. Schoumaker (2019) shows that male TFR is almost always higher than female Total Fertility Rates (TFR) using a sample of 160 countries. +For this example, we use data from 2012 France to exemplify the use of the two-sex function. +Data on female and male fertility and mortality are included in `DemoKin`. In this population, male and female TFR is almost identical (1.98 and 1.99) but the distributions of fertility by sex varies over age: + +```{r} +fra_fert_f <- fra_asfr_sex[,"ff"] +fra_fert_m <- fra_asfr_sex[,"fm"] +fra_surv_f <- fra_surv_sex[,"pf"] +fra_surv_m <- fra_surv_sex[,"pm"] + +sum(fra_fert_m)-sum(fra_fert_f) + +data.frame(value = c(fra_fert_f, fra_fert_m, fra_surv_f, fra_surv_m), + age = rep(0:100, 4), + sex = rep(c(rep("f", 101), rep("m", 101)), 2), + risk = c(rep("fertility rate", 101 * 2), rep("survival probability", 101 * 2))) %>% + ggplot(aes(age, value, col=sex)) + + geom_line() + + facet_wrap(~ risk, scales = "free_y") + + theme_bw() +``` + +### 2. Time-invariant two-sex kinship models + +We now introduce the functions `kin2sex`, which is similar to the one-sex function `kin` (see `?kin`) with two exceptions. +First, the user needs to specify mortality and fertility by sex. +Second, the user must indicate the sex of Focal (which was assumed to be female in the one-sex model). +Let us first consider the application for time-invariant populations: + +```{r} +kin_result <- kin2sex( + pf = fra_surv_f, + pm = fra_surv_m, + ff = fra_fert_f, + fm = fra_fert_m, + time_invariant = TRUE, + sex_focal = "f", + birth_female = .5 + ) +``` + +The output of `kin2sex` is equivalent to that of `kin`, except that it includes a column `sex_kin` to specify the sex of the given relatives. + +Let's group aunts and siblings to visualize the number of living kin by Focal's age. + +```{r, message=FALSE, warning=FALSE} +kin_out <- kin_result$kin_summary %>% + mutate(kin = case_when(kin %in% c("s", "s") ~ "s", + kin %in% c("ya", "oa") ~ "a", + T ~ kin)) %>% + filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) + +kin_out %>% + group_by(kin, age_focal, sex_kin) %>% + summarise(count=sum(count_living)) %>% + ggplot(aes(age_focal, count, fill=sex_kin))+ + geom_area()+ + theme_bw() + + facet_wrap(~kin) +``` + +**A note on terminology** + +The function `kin2sex` uses the same codes as `kin` to identify relatives (see `demokin_codes()`). +Note that when running a two-sex model, the code 'm' refers to either mothers or fathers! +Use the column `sex_kin` to determine the sex of a given relatives. +For example, in order to consider only sons and ignore daughters, use: + +```{r} +kin_result$kin_summary %>% + filter(kin == "d", sex_kin == "m") %>% + head() +``` + +Information on kin availability by sex allows us to consider sex ratios, a traditional measure in demography, with females often in denominator. The following figure, for example, shows that a 25yo French woman in our hypothetical population can expect to have 0.5 grandfathers for every grandmother: + +```{r, message=FALSE, warning=FALSE} +kin_out %>% + group_by(kin, age_focal) %>% + summarise(sex_ratio=sum(count_living[sex_kin=="m"], na.rm=T)/sum(count_living[sex_kin=="f"], na.rm=T)) %>% + ggplot(aes(age_focal, sex_ratio))+ + geom_line()+ + theme_bw() + + facet_wrap(~kin, scales = "free") +``` + +The experience of kin loss for Focal depends on differences in mortality between sexes. +A female Focal starts losing fathers earlier than mothers. +We see a slightly different pattern for grandparents since Focal's experience of grandparental loss is dependent on the initial availability of grandparents (i.e. if Focal's grandparent died before her birth, she will never experience his death). + +```{r, message=FALSE, warning=FALSE} +# sex ratio +kin_out %>% + group_by(kin, sex_kin, age_focal) %>% + summarise(count=sum(count_dead)) %>% + ggplot(aes(age_focal, count, col=sex_kin))+ + geom_line()+ + theme_bw() + + facet_wrap(~kin) +``` + + +### 3. Time-variant two-sex kinship models + +We look at populations where demographic rates are not static but change on a yearly basis. +For this, we consider the case of Sweden using data pre-loaded in `DemoKin`. +For this example, we will create 'pretend' male fertility rates by slightly perturbing the existing female rates. +This is a toy example, since a real two-sex model should use actual female and male rates as inputs. + +```{r} +years <- ncol(swe_px) +ages <- nrow(swe_px) +swe_surv_f_matrix <- swe_px +swe_surv_m_matrix <- swe_px ^ 1.5 # artificial perturbation for this example +swe_fert_f_matrix <- swe_asfr +swe_fert_m_matrix <- rbind(matrix(0, 5, years), + swe_asfr[-((ages-4):ages),]) * 1.05 # artificial perturbation for this example + +par(mfrow=c(1,2)) +plot(swe_surv_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Survival probability") +lines(swe_surv_m_matrix[,"1900"], col=2) +plot(swe_fert_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Fertility rate") +lines(swe_fert_m_matrix[,"1900"], col=2) +``` + +We now run the time-variant two-sex models (note the `time_invariant = FALSE` argument): + +```{r} +kin_out_time_variant <- kin2sex( + pf = swe_surv_f_matrix, + pm = swe_surv_m_matrix, + ff = swe_fert_f_matrix, + fm = swe_fert_m_matrix, + sex_focal = "f", + time_invariant = FALSE, + birth_female = .5, + output_cohort = 1900 + ) +``` + +We can plot data on kin availability alongside values coming from a time-invariant model to show how demographic change matters: the time-variant models take into account changes derived from the demographic transition, whereas the time-invariant models assume never-changing rates. + +```{r, message=FALSE, warning=FALSE} +kin_out_time_invariant <- kin2sex( + swe_surv_f_matrix[,"1900"], swe_surv_m_matrix[,"1900"], + swe_fert_f_matrix[,"1900"], swe_fert_m_matrix[,"1900"], + sex_focal = "f", birth_female = .5) + + +kin_out_time_variant$kin_summary %>% + filter(cohort == 1900) %>% mutate(type = "variant") %>% + bind_rows(kin_out_time_invariant$kin_summary %>% mutate(type = "invariant")) %>% + mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", + kin %in% c("ya", "oa") ~ "a", + T ~ kin)) %>% + filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) %>% + group_by(type, kin, age_focal, sex_kin) %>% + summarise(count=sum(count_living)) %>% + ggplot(aes(age_focal, count, linetype=type))+ + geom_line()+ theme_bw() + + facet_grid(cols = vars(kin), rows=vars(sex_kin), scales = "free") +``` + +### 4. Approximations + +Caswell (2022) introduced two approaches for approximating two-sex kinship structures for cases when male demographic rates are not available. +The first is the *androgynous* approximation, which assumes equal fertility and survival for males and females. +The second is the use of *GKP factors* apply to each type of relative (e.g., multiplying mothers by two to obtain the number of mothers and fathers). + +Here, we present a visual evaluation of the accuracy of these approximations by comparing to 'true' two-sex models using the French data included with `DemoKin` for time-invariant models (Caswell, 2022). +We start by considering the androgynous approximation. +We compare expected kin counts by age and find high levels of consistency for all kin types, except for grandfathers and great-grandfathers: + +```{r, message=FALSE, warning=FALSE} +kin_out <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) + +kin_out_androgynous <- kin2sex(fra_surv_f, fra_surv_f, fra_fert_f, fra_fert_f, sex_focal = "f", birth_female = .5) + +bind_rows( + kin_out$kin_summary %>% mutate(type = "full"), + kin_out_androgynous$kin_summary %>% mutate(type = "androgynous")) %>% + group_by(kin, age_focal, sex_kin, type) %>% + summarise(count = sum(count_living)) %>% + ggplot(aes(age_focal, count, linetype = type)) + + geom_line() + + theme_bw() + + theme(legend.position = "bottom", axis.text.x = element_blank()) + + facet_grid(row = vars(sex_kin), col = vars(kin), scales = "free") +``` + +Next, we consider the use of GKP factors and find that it also approximates relatively accurately kin counts at different ages of Focal. +These are presented as examples only. +Users are invited to perform more rigorous comparisons of these approximations. + +```{r, message=FALSE, warning=FALSE} +# with gkp +kin_out_1sex <- kin(fra_surv_f, fra_fert_f, birth_female = .5) + +kin_out_GKP <- kin_out_1sex$kin_summary%>% + mutate(count_living = case_when(kin == "m" ~ count_living * 2, + kin == "gm" ~ count_living * 4, + kin == "ggm" ~ count_living * 8, + kin == "d" ~ count_living * 2, + kin == "gd" ~ count_living * 4, + kin == "ggd" ~ count_living * 4, + kin == "oa" ~ count_living * 4, + kin == "ya" ~ count_living * 4, + kin == "os" ~ count_living * 2, + kin == "ys" ~ count_living * 2, + kin == "coa" ~ count_living * 8, + kin == "cya" ~ count_living * 8, + kin == "nos" ~ count_living * 4, + kin == "nys" ~ count_living * 4)) + +bind_rows( + kin_out$kin_summary %>% mutate(type = "full"), + kin_out_androgynous$kin_summary %>% mutate(type = "androgynous"), + kin_out_GKP %>% mutate(type = "gkp")) %>% + mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", + kin %in% c("ya", "oa") ~ "a", + kin %in% c("coa", "cya") ~ "c", + kin %in% c("nys", "nos") ~ "n", + T ~ kin)) %>% + filter(age_focal %in% c(5, 15, 30, 60, 80)) %>% + group_by(kin, age_focal, type) %>% + summarise(count = sum(count_living)) %>% + ggplot(aes(type, count)) + + geom_bar(aes(fill=type), stat = "identity") + + theme_bw()+theme(axis.text.x = element_text(angle = 90), legend.position = "bottom")+ + facet_grid(col = vars(kin), row = vars(age_focal), scales = "free") +``` + +## References + +Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359–396. From 1a14b1c6f9c9d36dfddd36814b8d8d6992d60e06 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 8 Feb 2023 14:55:40 -0300 Subject: [PATCH 09/89] when pi added in 2sex variant --- R/kin_time_variant_2sex.R | 4 ++-- man/figures/README-unnamed-chunk-4-1.png | Bin 199981 -> 538108 bytes 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index 89efe85..e9448da 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -46,8 +46,8 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, zeros <- matrix(0, nrow=ages, ncol=ages) # age distribution at childborn - Pif <- pif - Pim <- pim + Pif <- pif; no_Pif <- FALSE + Pim <- pim; no_Pim <- FALSE if(is.null(pif)){ if(!is.null(nf)){ Pif <- rbind(t(t(nf * ff)/colSums(nf * ff)), matrix(0,ages,length(years_data))) diff --git a/man/figures/README-unnamed-chunk-4-1.png b/man/figures/README-unnamed-chunk-4-1.png index 118cd3c262e7dd264e55b45ceadc9e213bae6fa7..681db7c72a85d0413808359a3f75b29e5a27bd32 100644 GIT binary patch literal 538108 zcmeEvcT^PH)@PXj6$LXY5|pHZpddM;0*Zi$WM~v5i6qIX+Y5+F6eLGQKqM(yvM5O; z=hz@1IcJ(Mh4;OCs}AqInfc>e>znzSwOn?0?K)@g-;QTj)u|WqvXTe(o!SRM&;elYMzRf(|Gy(i+j#emy|B!<=*`s5L&JyuWqSm-V+Z{k!noa{e!RkTG# z$^NF@_G#Bn@om5T{R0&xb505MtvCK!n)%0stX4zCb{T zr3i=!aq$QsLM%l9K>kOSB9sm`qFZ;6&<$^nS?{*L_9qs^i*A5T5Ni(r5Mu2C079%i zKtPDK2Z#u<_5cte)*b*L|D$S;KV>J14A=m%^8*6%Kfd~sTrq(DH3l^B4?e{oqN`hW6V(QlTB&I@RU=)52xMCSz%`7d@}U^e7e zV(o!M1O7}5UjQJ)@C5=w3|{~u#P9_GLTrhEfc%ediGY9*+aMq!#8L!6gjk9IfDlU& z5D;Q10wD7Lekt;wpC#H7_y2tv0i|tyC0a573Q@}dAjF~?1cX>r1BeidY5)-8U0xs{ z#G)ER7hn_5Ky(Z+ZzhXWb z?puF-`~6|4{!EwGJ^1~ufB#K8?F3%I;ZAub>EkqFRRlqWH-NWz(8*YStm!!M_b?D- z8v&u;KqBfn+?&9PMY4}k?vn#g!N2^vL0+ z13{wJ>RS|}2WMOI55M`062}!3+%a^LE|KLB@=Z6z5uh&)qD2l%iX)x-;wtV8K^!pWBhn?VG$i;B!X3C7fV7`J*6;!tij^=b`Wy zL#>*HXzuUbp>;ibbEOLNy%rU;maj`SW=wLTiC@duQ{Frpr~gvqn?p77kbF4czI9xs zV=fIY)44xSil=fTK@=6cYekDZ7lNW?MqT7z{S@)~DI$kFV({5F&ahh_`4a@OJe{ZW zyb&CEetGv4FKS?6AQy-pIhsUqlR{i+52vfv6O=_#$BhE-Nf*5{>cU~a2g|z$n}wXP zPL}?5V{R?-CkXQOpQmfOBvX5IC1)uDX>fEsiru7W+6rkW$}+JpQ3_vZQKp`8^Irh0 zdpBPtPMBTOd@fC+0l&_ChJe?l}qZS zphj|civ69T+7c=}K+v;`T1xQNrB-V^Ue@DxJ)w1E`iRi}Jq!EIe7t88*r?$>7M! zbyfCjNWqJzwrRPzy@~YA<(F#=9-hc_0T~4U3rkzxH6mv4jzj3~K!1-X(tNK$_-VD!HV+XHta>P(z1 z=xq^Aq&v_Wdk$7JO*fnRPg+Pv_@@XH?G@b!bo3&pgI}8226uX@d~Vy79ZPKlupWmL2DG{ zgqgTkahb)!^Bi()Dmjpml_t`sqXwvoyG{)xs)UI?7@~<}L81_tsJ;$mrqOOdiG^!; zPq8xwZSbOfgf~|nV02LN(#aw=X`^mE{ zh(#ZNhVtI(a{#)!l;RZ`S`hjBJ1vJ^TYW=9QT!Z~^3%J|xH8URgt{Oqeb9zpQ{PFk ztV{jL0L_q}MUsYI14``ouEQrdn9{sss0;2P38@Z%{+N@*cWFUPI|(pya$xRaO4zw~ z0Ynf$B)VnfpB{=LMdcU)wLa%c`SXN_!w#KGjlti!ASAK&ZjhMgFn*_64Ha@}q@4sB zoqknl_f69Em$EzM-zI&%iMEv)urzrM+i@`6jpImMj(}#sD?vu@{OR?HI^&QVD5w>| z)r@UG)A2f6)v5#%R4nNi1yr)^lJqJ$=@2{aGTP#czk$9xdzW@MQz$($?G)>RL|SC@ zO-{RUGY_SZ4k^zL=(kr{^{d)QG^Sn}y1_KYg3goCH$Vl_z*^R!LX}lAU^1YS_G56R zEK*6@ZxAe_!`4`gR1WSiXxR_cpmwS-B-l;j05la$XXeL*cZ#l%^C0QUq5!wc(A-jr z=!rV*kQ*9teW@Py|4!^$>?aWk(ByB?l; zhde{x7og_|U!|+N@QemY)GrOpsdm9te(4YtTFi^g@!Gn8=|_8A8BA*sE6VkUJmY0z zfPh~Qhzr%k2$N+5?m*T`#W{e{;9Bth7y72G^%39BZ6O+TH3S(2|_6j9PFd!{1>rdor`w=r~7EF;m2wgeorIQ37BcnZWEMvR9$ z1$djNzZ)#bO`{#xUeX57NTB+64*;PN$_cY_$0?W4bzB15`@F>`#L$oiBI zo>~aI@pVZ$4QsYM`bTMvf?vMVOtJ^oZnKtFBj*Z_`d9i}O&Nqpnx!mLjn4MX1&n}t zElq0mpk3WeWe+wNzcIH$QTe5B!s=3lyhnmUF^~IHb+CsU5 zOB7nGF7WWPEuG5v&0&`+Ws7bP3%8Mw;D=h1$Yc>s2e_5NsU0O}y&aY|=cqyC?NA!n|GVgN7av0qm2;K|wJWF-N8x zy7D#`lus`mtXca?zN4hSXVoj!da>5I=JU-8%75Tgxv&|Vo@S>{uzuBj9w4BQ>F#=KSwKdAq!#hK5@QvMhotTs;+6j;Sl#yK+O{cph94!si z?i6`JPaO9SksOU-GofBE@oL9>&O(o@y?fg#T|Ts8m99u&GPy{=X(ap|XDvus&;7TT-8hMZ? z-`PARIBqUTGkr0%S!swjoh)GM?ph{vBwu_oB=j@KW^*j{`}4AbJFxz07AM-T&@{jM z(;OW$)1&$rB9ireT6-+>{0o|!Pcz~lnfJf9c_gg&@K_#mYZN(m>T813S=ZlYHiI-X zI`CSE!Sjk$?X#l643(AZHu&~7Y(K4y5>0ozR-~6h%gAJhKCLh>>yWlSOAJG6Fd;I0 z(t2)U;}_KD%N~ylqiCEQoC~5}YJq(uL3e3+=h?v*(;bXSeJtq!nKT;kg zhoSYAneN2>$C^p~8Ti_A%$G9W>d!Heup;rk2Sz8Rt;FNH_t2ew^{}e7rj^bB?v;JP z%Y?|u9!;!`y3yXsV@$V2a2| zW37ar9RB9`#>v@Otk#z0IVk_q!>C#3<}J3nQ`DF&N5rNtj9-5|lapO&_IM~@&qbd} z$3j7Yf&F~#>Y4@SQ*`#740h|Az3mHMO2^bONhxf#2kqK^2PL^Vt?;dW->ZuSW5^z! zsM5AxE!8XQR#LgVs-gH2z~M01;eGUW4ga0R}?s-f6=Cpm)golVPPuzig>M0Ip$3lX$Efj z4P@jwjx@TwsoFyF*Ms_d8H+94H#k zHYH>(-cQR|neLnTKp{VY;jV#O-wy)qT2CWXiA&lZzMil4nlUe#lHbZ?({xJpJO$fm zI<}zWg-X_3Uxyao>B1DDr3iyD?QXt zp;y&mva!f~@$wi=mr63z{?<6cjb9Z04APM{sh8GT9%|%%HgD?GP>*CwTj*FUQyBjl zf$c8XoUDS4#Vh7Zf9B_%1m?>qafc zBer*Acvg}prlp%Ox?%pJbK~v9r3j4eMU%e10@9*pQl2R1)`F`T$EnZi*rJnpi#@9z z7Y5)2B3V#R)4NhTxOrPAScw8v5MBVg0Y_N33ca%K8SG|(h-H20e#WL=EsH_Z)|i$v z#*W<=t@;4Abk%vrhZJFLn+P8oX`{+n$28XNt~k`P=O6o=mVZT~b5h{=Pj;rFzaLRwO9nAv_GtS$1bLOT`80 zn&ymDr?=lce+Iuoxx@=#u~MhPEP}=KPd+)(Hq@_RZQSWper>HZ@p93$QZfMr z+c~hA$JHb!Nw6}(_WgX&RpJs8qreTHjY^gsVC#ZOj_m$$sAV1P7wKq|`aX&Gaz8}9 zPmUvD1J^ZNjWhKW=KCq4HWf=Z(y@gqr8@ZckC%{(7s!Bqt2)GO>Q8N`cIGaL;G*tM zM(S%*m&!^EKOjFvO_mcaPY4nxf8*gEOwO(QzWdFI-Dd=MlNU(D2<#rG=XD99lzL-G zec|~V`2#y&F$Qxf==SONN=D<&OdaORKY6pMmJc~%QqK#ohR-=+{mi&RP;CPw`?|QD zFe`|^ieO%EhZ;+YMR(r;&(o)iUR%4q+4mUZt#6YWVC`DWXvfBESAYbXl6Q|Q;(YkU zuESba1q>yrKGZFuq^>vs63S{)Mcw39Av~F~^rued6&Cg#a?N5#4kl`Q6xB9{L<7H> zcRh)7_$cDaa8jOk^Lj~TcR@=66JN*RoX##gSp$N23xgdWvt1>M$1C8}S`kGWGTbVr z+;TjXcjAOaM53A9fT_*Esr3+3U$&pID5-2U?bsz!FsH{;-*uutW*7hE3@3UAzx=oU z`J+g~A`1jSrpwk#sbxNGENI_za=yKvk4Vk67E}6{i zYVoHBj~q{_CZ9HZGlA@4LzGm2u)YV(sh7e>XvQh%rQ>AqDpK4kn}e;3qH-x4S+BH> zW>)7#e)rQgT_Leu`N2fvpuU5pTxqgo&&~9_6$_vX4&MLWoodl+1TW| zEIxi>EwPK&{=v+Q|DZU2$WaXtXSX;YPPoDL65pC^3V;Z|JbnQdWOt zKSk>;r!%iaVUsRnurp+~TS1xhDL~7jbaAbi6xjuuM@cfTv*jG6G6nPO28v6*>OEZj z<|E<_2vi{gp3ku_dsC{ZGW)7SN`ANSV!wK`h2xX4_b=SstG~~;eWG<#01VC7W*_Q$ z9fb2eYO*;q+xOtpP*=V91OHf~; zF`NO+)#ZsEr8G}6tJV95Zlt{a9$*yTJefZy9pBv3UWh4FIQ4?rRZlDAXIz|a1u8rfqQ za1bAmKVxj6aIV)B!^^p)jn5g5+=yw znBzDyJJfo~*~&SNgFk72`3RtLJ}{n;$vNm7{%k4BQ{FJ@Cv>XZw@fl~h~pa2jXwv( zLW`S#2T=wux?DVxm}!&h*i;sD5j0LrRO}g~Y!Jk&@plBdNSi%#-G8ZNuJgAAU6t1A zmo7wUmCO~?5S4qz%=NpEMA%L=ym&GSYG(?B?rEFq>U%Htm%p$%oT1`@_sJe(ko@4* z?gA}Q*XXza+3~{z9y#l=NNxPgTC|jZ{MNK3QA3B zqWHW~x;*?bhWt7lLE;$gLYP++kPOi62HiLRkw{LS-7u+t5IZ?fr5TuuIY0?lS`t{3 zTMll%|3t9PQGG`L7r%c_v-2&$V@2lZ>dke3T9dWq=&RpYzfyJ-hRm$q7MMWxvLVsM z^K{5&G=$@1_U@15>~>kFXQ+HS5w9-kq=7lZF4R_Yhf~9VaHGCwGJgLF`ip+~4gQW- zks|s!fFe?NuGpowN;z3sKNz@~ppjs$7GnBq|6}~XsXWt0Z{)d9T{iX|U_rf28B1D> zr~l#I8ylZ_`K&6MV%aazF8EeOVe)u4`buZ^4{fgY53A6th924f7~_}76LyCy(0U(o z>}WZVuQmJ5q=@k{`~HuoPiL;yXFq1Nw>7tznQi4s!SdZbC1m|E#x2X#(zB*ixmxzM z9j4dImB>z!UC{>uGD#h$yhT3VVF4VvmVU!$HgMvR3#bHkW=~Ph8<| z?;YcrXuORIo#ame!{=51$ver{DAYzP?kC8isV*Z>Qg5`7-2NibJRx7m*CMBGQRv3H zmLlPaDTkypW$z06-qVzrs{-+dqF40KwQK7vO&EsP7Bkp=VqWYiB3FkIw8bxv`y-OF4x*nLGv|ZgY{CP8$`n^La z!6m@NQjs3={cC9kCxc>V{#C6DOR9b+S_+#N0_*XgJk!l9GX|DPbyHudUN3h^)t)S(LB`x|O9``Q2DE~YlZ{qdsy90OpWUCC z*|1N*yANpNTh>3%%yJkVjc;+@?5`PiS56#U{?$S$yQzqq7<|=UeLq~-chhuUjucgb zN)lKnkOl~U{>rJOM(7_LRqVLz*S0((mN?}O#=XMQZWEpfbWgb$Tl&{JWF<4*aRzkf+xN|rYeV956Fr!yi2}QhE~lXy<-Al12kjUok$~tsTy|4~aFG~Au@|nn zv;KsE9t8uqS}}XZLMQl8;8v{q>CLg)Fs$`Q?kD!~nF7h18-}SX+%Ml2L`8AObhoA+ zwpqTNyuMK$Q7?QLmO?iY?aAJtU(`_Uag85w;V!InV2@%w(csZIXD()6+lTlzWGZ|E^twqae0TG8La8 zH(d;rvSe;(F(KZIe+Mkb6*vcnVwFNQ^AQ|-;T6~L*apb67r--J zl-kme9*;4IlTgJ%g$kSd#)I62xGO;&yCbLaE^6*Uz^rX?K3Vg{V+3Kn1Cd;g9di&htI zC1y&b$T`n74}VOjmK&;`bP!?JijuWZ)+UJ8FxoXUuY5-V9RvdXxgmG6`{sI`+$Bv` za=xm|nHWKP_LVg+g{d&G(9#7g4@Ye%l5@}G-I<@RYPHye0>WHLW=P}`=*4Z@rmWwp zUhI7$q-mA*%J!&7PFl%LJ=9=SCW}*E*dk`54BW=?RNBtwKQkNht`f zuY@fxh?tz=t5ZoBCqEBMI9Xe5Qs{7hL-k>9>uum{uq#8yyl6dEaD&^F?VkIgK^53k z%Bs9vtk6D&iF49=)#Wda)f|^gZHq(-G!? z`#4lHpI=3CI?GWb43|y@usu4b4pP#G4tBcM={^Jxe~%{^{PJkkOvy0r`wD;ZXiuu# z=DI=p9m2qyx!MnpIGOG3;mE^liRx*Yu>i393h!}sX-s&XlF~#vmz3~x;6xC+W})-M zgQH#;UfSz-j(T|?J4kDiDRAfL^?I$j$Me5NO!M+mG0h^HB}+?(_EXR*#SvIG;o=jF zj0a;;ffs@r;&EotB<+fnss&aTI0>*KpFdAWowJpLEzV6GjZzB7 zW)*VZrD~gl&$W<4`;7bQww&w2V?89jG&uU;@&vVeu!e?1ThhTCFLq%0P;%5JuR8<% z5QFIO-;up*#2Ak$Qt$Z?8__QkcU%dpQs@+V&k?qX&&Q%pkMQ*?mm+JRo#4_FmVNql zET)R5>q24Oq8qgWYB^T?2C!(+)uWULugBlhEL!MSN*4Yh!F-~%aDAg@zKx@HEfpR> z=LbC>dVNoIj(=54dQgGzbnY_W@`xf|NRhg@6t8l6y1o?ddy97 zr-p~`UjBS_SLPPJPtX!sQj0*MD9tpj$g5!s&2$v$F!ze$H2AYYTtFI z-wXM-RY8T%%h)j@*qM?Q*qqxaV-8+}O*adj>w4w4`2+leZ4la<4=$*7AT@z-sNWxP zJpj~b0#Oq5r0Am%jvNgda2PrXhC?*L6;ZUgqK`t``s3*16=29jANJh=;DbI)w~Ht^ z8j(N05jFl#RB-cFdEJqma4Mo_*g<78o0Ax%Py#%Dlf6nyh|NpIm)b!@o1B+op8zg2U)133Fe6tRg zQ%dw1PzGQ6!tm;xN1;pM9|Rt*_)S^XZof!%pAAQ0%h4y-m##W-y6x9ibfwJIdl@@R z84CG&1fQdw3qoBJ^#2ZA<3+>fxnmdl+9LWe2MIZGW>SUIKpH zY&Mz_aoDI%jA!@Wzfe{`CERrU#J-?k>@}D?M=LwSOWDq-Gwd!rqnw>Y{RHLTV?Cay zS5hl-;LTq0dx-@_>r1uPKBJ$o(OHF7gh{qrt}>wy61uMTW1b`1Rx+G`upDZ}lvgy> z+<8o$SE9|E@KIVCoohp7UI90=BIsyaNRjq834e*OlSjc2`iqh$@qyFXU)vP|@k03a9SM+o;qM`ijv|DJV+Myi+-S;(i+%^15aW zh+(m!p{c2(#zc;APEMBH<``|L$mUV!^{H~&P>g90CNW|~|CEEx#_CLUYDYWz!Z_8* zQcCe2bkh}wKk8AM5;8p}Ct5kZ9GKqE z@%Ck`MXM(k)m7pcM6(PP8(bEx_+}*JIF%Z=JCA5d7)_6&vXie+os4Gi{Nu3d_+8JR5WUF$?L1+}w#(6ms@sq%20^k@}sM1Ng!tCq~xBXQJuNT^?J$BZrY6xng~ zqGpF;N&r9i45t)tmHDJdBYuSH+eR6|=G2+O*2$@^;Hut;*gW;jgHg1O7N#OD%5-mn z{b}ZuQM??f1xADR!ls(mdHJKYLyTYb-6z>5sWz*HHV^wb!h%ptTRa37K)4@gde(GP zb)v1YI_L9-0w+zH`JM0u8$HSsI209yPj|V5`I{9tWQ5r^Xyn_;1%Z#i~gub5l0-9xevlOlc!NW`JuCc zx@4n$3T>JYL?i}C7vSMgMa`F*h#T2IItBxd z%CTd#rjFZ9uYC1CDu)u9+zk{ut)XYbG4+wbdWS-2Yml(o*l|N+XLH|Q=181z^MJJ# zKi@}hS$*`@AU)Sp6;c74Q<@Tqv~2PASeW6~A1<}Dk?-tj?T*<6ADJzDqPq$!)vZ*tYhQP7}p8&J~y+@^y2G5b&BzDBYjFS3q%NaYTHnX=_>r zR%8@~d|!g{Uir8=p>^%U;s`0{dG#ORQ9e>vBb{4swxcvmcK~n>j$CmvP0msUJF?r+ z9xY#Mt#vF;)G9X|SN)uI>J`8JT2e$7>9yy4y_d15Cy60 zNptCQ#VrFHWkP}ksd55wp%~YJ7vg)luco$!F-77153QHqC!C)6=Aa%35^dQwS#Zl- zx!3#NpKk5n?(K6c8DA4uocxmQ{sQ%M5~TYBwC9Y!?3uT!GCh7FXCQV|rh&;#{Ed7t zp9t-VuJtA74yHQkA0yr?7m=*v5*~mKDV9;>U~x1ksXFSG`rwJ?{h2wvJv^j_01H(B z3(zhDA#B%kPc1==wAx_u=h4!N0S`TahbVY)o+nX}9e#r)WE#3qF(959no*frbMHj| z9}CR2at%r-qp0u$jDpIF-ZdrUL4u$w({#~dQMZQ|40NpVY}ohl*b3d4cA1XdHIz>> zbi757vNo21JUcxq6884Gq!oO-ePBs%=)_rn2Rt>yW0Yz6G6JRr%_lCbnV*|F=werI zJfw-@lr9kDbl2aUlER`6kHd<|J&Waf;w;RqhP4V!+nX=(i{+)@zM?bu~gY3+)wc@ z`06jm(;#5PC2UJJ&f#2`Uz+siVDRje5u_0G{663ZWzuAC9>u9#pm?*F3v*^rb4Qu< z4|8w6S*ZWxSUw#05%&W89%x(j2r*>a-nV`~bx)7I)ctg|UM@Ojw1ZNL(src!%%z~X z;&=#zh~nVAf5mazpbwmO%EP^bV@f^8f-NuW^Zm+4M&WIB7gXoo*ngwv7;1_*Pf&}f z!&JL~#HGFV*NUR}8ZW=Izs(*dwI5>Me5kuJwE;A7J(;qYdEXQ`sI=@xPM~cBCK%*V z2zMDAsZ8N7y+CKah5ropM_#&v_JDSV8jj;Qh-c1Ud2vT?!~<`$AD2;kYheB_xnt7! zq*#-;vzW`m8R>2n;Q+`~I`ppj7mKBgA_|A;HDR|-+G{!BiPT=*5kL}-6}YyBl^5sn z6rq))2D~$Y$9MW(solU9x5~e3KwNHkv9QE9RC8&b7{qzHxJNN~*Y{~85@ej@L z2yWpfNX4y!RuCuk8|NcBzt$Xkj%m;Hq8<=o03Dx6jEsJ2ABVVXD7%AHEu54e?VK7g zK*3E5!marm?qEtd11?X)sZ8~i7@Jmbb>7Y+B~Ots&|L-3q!%Z%Q`XM?agQAia5B}( zk~4j`nnQH2_nrxVgpx`R@RB&$Kc(u^u(}Mh%O9?UB!32$u`=H9V(nNkQ$YKz`u5et zM%UXU3a}~J?1_6JfqW39m=1s(s*7r0am&A$uTEGncU=CtauWzns-XIhFuGD6xfu98 zA&g^>UQMl}zK@*TVeS=wIG$Kqzfrs0=4yDzPVt-^7n0%d(rpRpgVy`f8*niE&g7)N zwru*u&IWk`^jsG}gy}XJJ(Ch^z+ImEKdXP^si_vv{x%&BeIqY97|+%k4wxe!`NAFC zCTi+n)!3){pj7qqVe<*x*h^EWJAt5j;DqAc@Z+7|VBL>0$>hQ)RSeY6guT1%JOrnm z5RK(&BSynxOqcvbW3gF&m@PZs*sbmy<9N2FDn!j`8KGnf7Z%-LWaB@;&} zE|a8kA>O1!H!M-hQ>FzI!Sr}G@mFF@#lUK2?7Q2+wy&7EX6cZ|yS;zV(N3pJR~6KH z&L2*7(qZ|{&Q8=JTP0nG>)s(-WNPMc1e_S6`qm)%$o$KV^pK1S_4snHoZb?5<%@=i zNO2+EZHy;TitDDSTws1&qN@&9*(V%Vas#rY-^jCM$YQ?jIU%yqsnKykCT%(WB=#jT zHb!3r{0Ab}TbZ?2oE%=h{Sz)>xAJ{JqSNXZnGSRY-Bxw`v$|4-um*mY4&$f~6jt;2 zUSN>rzsPcQA9HokozHF*sY-{H?^~48{#ZVTx|!rMU;>b7JKa0ei>*pJ54Nh&!#swC z{4ZZ5Z}yjI{A7~35RZDmnHnf*aeGgQSLE%ytG)7T-R-#wT#RUVgxy=9YaqA`xVA;F{CUvz-4qW|5m-hF%p(yq`IA_5vXXr^d&i z!n6~(!oK@m<9Ovg6TyxTR?AvN+36y~r`>r(+Q+8t%*Wg#2F38Wn((_wW}bnozdFr- z$TQjEKh?_bh|fzi=Pj2UsK=VX4|fn`*d>wAG2rUK6cq<=!69ty?Xi($ zylIB*8?XJ{zUywK$X?>65dOv&45pDX?bE+Ou+xl+Dx1b7ZnfupTk=REi*B+U& z+nhSc%9`X1x1tsJ1nT&^dNyWjChOZ@bgZ^+cBn><yM^P*Vb>w@A)Er|Ng>8c~Gh|hk$a39RaI0;m=cBw7fRrawABj?O_om|EQtUM|Ay% z69nP~w9k!(hwK35mFNC04y_{XiTW%4nG4CCHl}RV4_CruA|gr1);Up+Gh2Xx&$fz$ z{%hkuh3YNJ$jMr%^*Vhq;0yLef}Rs*!*e&9WV6XSQ3{Bb~>#JYih?dPurQZM1n zoDs3KhQ?LxFK7r>K&`EnkYRpfTLZdh?6b+ZB% zd23=Y(Vo+;#k^zNA$N7(0u?N9iWU`<~*lf{0-fUFXjd3 z&zF$9t6nf^yTkJY+R{DAfD%EJ#F%oY&bLY=L)tPxCWd<0T?r`s za)RD9a+awOcc^L1aCBiF$v`nBXz01=Vq~6I(eTKSfI}YUCVL7hl@m zCgz6f^7(1zgxrNqJL-X^!K+p;>}n}a4V^_QBw7yGVFjmo4Bns1(!&F})WmUv4_+^R zG!4DDF{6LoA96InUz9?F90-zsh!rE_Dj7u8!<*nvGK9)GN4%tNF)s92j`cnb)Z$W} z6Ntgurl(v*!{A-r5PGXq2A;3o+DK4T03gx7#3Cg-wFnlls-u?H+xHx-M5-2P*8mA?3~mc+Wh< z#M(H}p1#52en6{$Lk5(<9tO?|-dz(h5)~_;@#w=a(J_E1%|IQww1lAdvYwxc@2)iJ z%u3@@F1D~_${|! z8c;ojUEpSUTyZKc92Jz}w8w5ykf7OorrR`+WE)OdX2)ut9XlAXV*+h|P#*A%KNJdU z1nq6b-k|wCGo&o>1>~6oiGIOE8~~9PNTgIp=lbRj%Gz;G*E>CMBgoy|- zh3|eZ8)EW)-2f@wGh7lpTHMNa5@EyENUupuZz)$`Mj ze%QA@NaJ?iY!Q7dfjnM(D<%$Q@NmT?SGlHAxqMRo8QOr~f!hvbM3B&1zCsf*oM7ug z@&iE;lsc?-;v4h9x`%t61{0$Kqmcn)yDbO3{y}L(Dc*dug)~_N#j3!K+sFk2Jk3XU zKl3y{L#|#YGz#(w27A#`4Tn?dR34d)FK6(F)EiKc$?pPVR^m-Pva4kD$IwRqzWn_N zl683geHTu$T?~=gm4$ZDXzqG(WG04pskORXcEx8%&L@HCsn{zTWbnm>Zc}b_lHbX6 zze884m;eqi86ikSAZT8~^V7gySh;@E(fIE?0u$)1$1j6{A{F*$t9Pi79j&^}0;Ccg zdy*U<9I%J?2uCXO)QQI<$nOxeenf{AE44ANvOzigl;NH%u>E=@P*m5cUvZW9o2Nq# zlJR{TtRMUs90D1NNi>02^7zPO)U^-@Dmd}?{JTd`q11pGP^&hJE?J)hTK9E&+k}5F z?Z=|#CwMx;A8pwg8X3iC@X2p`ep;i4!C#SxW&}Vz0tO=bn+_R{P$pQ(NwsgyopG;Z+uTgxuxktw zQW#)vk!?gCU5wpl!;OE$uSR^aeOK!LcW z3d#n0K!IS*2hmFPYzg}=P*8{pa7!mZDUh|o^=BL`hZJOwZNu;}80|i~zr5lq_QKam zvFQvsz=R3lXOM$G{k!vMA`V@UsPz0H1&VHz(Qd0>UMp*Ead=SOY8!`Vz^cRd8GH*T zT6NGSD2A^>?8%boYi%|G)}$_IPqYNzmLO_>PoK=?@ckmi?rkFP2c@}}K)+>=c}dSE zwSCbMjt1D^40^95bh3o)a>-&MGk?y*0MuTU_F$b9eb7peEc+W-XH3m-Zy@6XWbhbf z1Z_mE8FQBWf$Qz}BK%aA=s-6Gsz3D2wYFQisAM2&wT-Ar>Y3RsPmX{aZ(Y;_-H;hT zTOK46PuW!;U5 zO3IBm{JoOJ3=;T`E)-^DpfcE6I}Z1yPcrRQhu>wScLGIh3+_rAeYyj4)=_f(Rmo!c z9{l}1XzBnUhKrV4=3c81Fy25ey`U*DGzHum;`5ReY$urc(IP#ub z6ZXly2>loL0*F$)IF#j;tcA3JXhF~hgzug;4t$6rqWiru5#lu58_IJ@?t4%~(Pu#% zB^Yi52gaiAk&Gq*iCpQVb0{w6A_j*<&w-X<8^O>Q=%#@rie?0f+9Zk+U9C-#Hnx2g zAN?BE>*Ed-{M}&i6&)P)Iok0S*@c8w!A+oWdR<*z@AyZDhgq8MAUT7QuNv8-egMAo zg6nbg@wy!#MyTV&!zeiZ`Gp9}KaoKFza17)JJl?;A9^$G;};&;GYsdjsS-l8Ri7-C+LB-kOZ2;;he>I)tv%{X&qW1_QqeO*1` z3(vZ}c7c}rM-AakXMUj-M@!q~hgaAY&vgk7r$VAt2JgfksAlEz3S%Y-2dEK}g1s85 z3|4igBHp5eINLNW_SUh%S@^1NT%&(X%vbjKxrn>2?LGv|kf5$lg) z1d9^~*JoVx>Y8kNm&+;#dXoZ2EA0ye1q6b>QS}>}TV;M1c6=~LSGE(XCalEXw}9US zWT@M2bUCcFasb|>AHilDuoXP{t^H@kYtNUo8_(#y;K<|02ydEg_V;ViL%uCpui^yB zD%Vz-QUs9&@$2aX^vVqvs+(9kBlZ+mXK6pXGKY6}$GTPO9u}waDc=+ls1hgJQlF10 z1<%sbScKn&u>}jKkAnN@W#lgT94vASG4-iYQZ6Uef6EHhJ!e(dq>dVk5#w(k9sQ~C z{Ro0}DPZHlRnyI%m6rAv^R=xQv0|UcF|PeH@SD5b8>6sSe?#AX9+ROJnH;3AZ|c1E zaqs=|I}lDGZEEwk#~BRktnxQ3#gakqzpstOVh4O*qnK^;Ko>9bx8b>c zMLH(6HAIva{;|nYQc@Bv_p$0-(D=i(L8*%e{AN+N$rAqV(rlFXtY7(@e2I)E(6ri} zS3o_p!pL`Duv*rYE_!Pz`Ag)dPLh9=c1ietJv;G|!2_2ai`SnrvoIV#X~Z7JPuEO$ zxZ^{__w4DNHq6~4*6MzYw=6^`LMzQXQm@~GzR>brEU&6* zqiRydPADQKfaG5K2Lw>Ko#^_Z*BCyPJ^a^m3X+)%n(U#56dO%ZtSuv~`i}<3vXgr1 zMZNsYQ(MOt?EBx1yn+iXG7keHZn4*xjEXgNwmQbWz5;tCAP%WF}-N?KrK3%~7E>p)@gR@b@IS z5L69sB@9K!$Xa<<*&~aZ&*%;AMOzvBdkos^S9_ED9u&L`quJebmN0w1c6K+UR>6mC zw`BOBwQi|)Wzs9qPOGhFwYSFXRn1%d4MMAFdu7?qX6cmp-0Q{dBba;>dor`bHOPDY z!FTjT=cTRCVVpRgD<`K=kcd(4Uaz!2#v?@bUXi=#d-k;*xE8)azDr}sJJAP#_t2aP zs3z^R^dAbSXVoMhqmgBN=3#kUXg!LXXT-34XL(hj9Oqb z0iCDkbmtPotByhjr-yhE76!iXsP1a}+PbCxRBU(E76S9kv_Ip@q4Jw4b18SB=*Qvx zh;v090R3e%^iSu{xxm1EEgik{huIT50O5lXY`bwD+KXu@@;rNZ*}%hf9uXwU%YyYJA6P<^B252q#nBU)sIQe-VC z6`!W}Z08=v*0k$T-90pHg8*z7Uk;GQv=4r)`4nCxA!_jJ~>$O%aN|hdz}DIF)cL@y$0{ru9>#PZYjZsm}LruB@^>GGj55x^nR0 z_L-G|)5jQFuN$$ep%EY`neJ;wHwkmz|dUJ?LagJ~=Go>JfB$`g#= z=yloI_lxPVCCf*-K+msdL*$`oAvEXNz|?v0)b=d(c|7Z@Wev|a1|+)Xsd`VUUO6ba z=fWGfUC&#NSR&zS(Cq~rchxWD>wmE5x528`US7-+U0zUc8JFr+{s8M)6V12B#v62L z01+5l8*e`iiqgk&kUjI5u&$q{>wRS`Otzox4itSA&9~$_P*^|?a7?_e<(#tq<%Vvh zqu}s5hwRI>K}W%yrR;()+8mM0s!IK4v_8fq@f^jA=O#od-p|KkfzqZ(L2%C z9rH6G)tqphq`zC4Z^Wk3?~_rzGTDG`6uuZ^{mJPubkEL?j!Eu|W$QBm7wMfu4AuNQVZ(K#1gSF*BY+k(zRZW|2KNhZ}klAyeU__f^Q*t$HzQfJobruZn+WHt{Mc8DzDKaU6cJpAu+UO4$`2D<*WHKhjkHUX zJX(7}h}FZ%evlTEe9nYEz9(DV-kZ6(p+$UvtR#iWljtK!(7WU7Ilq%K-i-rwKdPSX`6lXOp$4IAVdKk!Sn{qp4I{EBVe z*g{EthVf8xswf^7BgCqkPZSZgAe~WMB6w)1YskL-}V2qYn|GS?v+1(T3 z`4MD{_<^CLRGwiWwM$k8rXxSD2o5ZIyk4uGDyW@&d~jo9$v7~EV?6Wz&u$wBDOb0` z?-AAAHb%piwk6$5=jW_w3gu=pKMSy4T)z6fx`CD!AEL%_eo$~`-p^o#PBaeIB`)2BX^}yhdb#l&tAE8HC+l}MyTU`$A?)CBJ zSXWe4J73f}CC^Wifhoo4DSLdlA3i?rjMwourx+K%S)c_3EXI4$P&s(Oyd}vAfkTGegF$J}OG~cxVTslF`aR5yhE@X}Ld*$El6Quip_=Pj2Aq-gq51VszCb=BsIu zs&~n>t7^6P1e>Pnv)a{-^3f^m%9E?=53Y+;=<)44Jz?{(GJjU$ZNdfBK*oNtdvEf( zo$r1*9bo^hJ^#Z(R>-pgl8Zqi{+|}|H#N_vd@x;pTQg&#Gm53`64*Ra0iWBC0J;9lWV;nZ_QabuI1vNm6lXSkl{yz@uC23USLULav4mw>`~};h zm${lY+>IYY99th>n<;j2iW^($deW`9NxhWIM)9oA;B&&ygn`hR>&9_=PPwXHp;5de zyk^K}^x#={7F!hItlaIC?vy*@m(o;~j=pr@8?xo5oxd4LE2rvx%7D^(DzLKv<%pcX z7UXP-IU-c~g>|%o!`!-xVlXD&hOWEef}*OHQGni|@yeb2n~f9J1-2SSgjYsYokoQF zCqh36iw9RzT#bHf8(@+>R;oKY7PNPD-5JYUiHXe1RP{C*Kd(^sR9@j|YQw^VD}ot$ z3-11<{F=uM`;KL(3ac-U4EHpQJhWA(376Seq{V;uU+lg0UsPS!I6PiTT%v+XNC>D1 zNDD|wDReJ_R3$eT3 z7CPnBlZ0y==E$8htd6@D#x^Nj`k67&x-Qp_gEwx(4BEU*mm_jsj~?#>VUB=cz8T?l zqP@fZRl|_=9{up zjD}yswRfJZ^c}5C*(q-y{@{N4AOd;dmd!Uz*_?fG8`1Vs)3ZX?E~VsVx4rz^7wFlS ziA%}DeqQKgg}^I@Z!1K9MBh(K`1;a<(@2 z;1)+eTP2Gft9yn|jx$9Pa>{XDTE&~Y${j7&Sqk$JwSCa=t8%Eei8$#@U`lO5*bm?_ zG`o~~zlpU?2;F8))bV#&Y^e7-4O?pjeA5Bl00Mck_m2lgf;3j$m23@>0YS(qe8X>B zq=T=t(Z$bN0!&W}lVbbvoU54njj7dpGX3yUbSjO79F3&sfa6huc(;EGU`Qjlx+SR zad{!_iPaU8rCabW^Pk5LvNd+_qMj37I($l(j8>BT(AXiGbp;}4Pn*>R&eJ;7VZdTT z(D^@co81z0@x#EmQOl_B=2f)}&-({i*iaR`{p(fbi5Ej^8TG7!9^Hqp5t1R(g(B7k zNYx5N638TWElb_kc6(%yq%j%_rMpR^n_pdfVKQqDzKm1mSmv1Fw;xg92L+a3+fC$bEg2p`y8wAEL&Dw8Q6-*hiD zgNe{S?tt)Mck{I%7wNd&4UjW0X;k5}k)#A0$zKn5u2pQgag+Chh)x&q28y zb?j>>RzP+86Iwct5J!Cv!>B;1x8#`-ub@8=6lcc)cTq)e$#2De)F8$vOKfaR{hmE1 z8bBSSz9eRU+@}8YL?q-)fW4pA^R7EdbGBo(9y_(rD8qh0gwvZ6wZ!qBHyO*j$cDtT z1*62j8_$f<`&krhGCUGAgLp2TOxp1Sb<68|!c2V@a%&xHi(V9&noTH0+?%UCd@T~nU0$$4tEpO16%UD%p!^})DB}TwWEl?==REYu=_DT$=U1ANRFBZPYs1CU1Y5&@bYp$dcm$V-{(*x_MtO z;oGycHkidqlMqdLj=epO*stUTh3C|RPlRuV{S|Mrr1^=a)}P#2xO{^46>=4;+2sd6 zxOnK}++OEp<&MuTxg|H$)8wqpEt{N?x}kjs4{^^eUdY4Vii83F_N86=;wzoIJ>fbu z_`Nt$k=%&%UhCgRB0*oTE#qac5#m;+i&w7d^aV`wk51Y5bncX6j_WTIXcvE&|9ykZj5bbWr+`}^qEqxZ`%b||-(_UActs&vV$2+ycQ-!K86 z9BhbAaK`DXdy+kf3>=qh5-8iwd)88WLb&{yUp*yN`}oS^_!nEbWl3lMakya#kSgx0 znEfRKnzc{EWF+^i_2TX(e#HCqF`e>`$dq%@)c0)H-WO84OlCwD3ZK7)E-3s;_G}wJ z{rm0WpdjpP}*dZW_qHO*I*8Dn&#x zqSF6K?foB&mm!|E_WhHC($zaPbm*XAe*NQPlsDaiZGWbSPENUbRa|pln9eieX287b zEim8Nl*J50o<1PryZp9$ze@AXlJRWuX|JP0#E{?(>b4~fJO;5SbOSBEzYPNEA8LMe zv%jTwaUy2c27|skO~4zE*Pfp6V$WeuzSID*D(mOKN*g&r7|0LRlVDk6i`g;|14re!2B!7XW)iwQHfIL9tk8>5VkjVsbzHUf1(% z%2<==60$@q>u&}UnJ(MA0WZ}7KcX;dv8ORH<&k6Chl6Ney$;S`jq$ZPTb%FOYVFNl z0Y3>#apx!=5RvkKW%8~Oo6Xm;I^)3KQz(=%9r;paLR6pYQoW`iyr82bM#Pf8#9qXp zW9W50U{|K+eT-Y@WGX9&sS+Uu!Yce91HtrA$8tLjhz5YDCcaq-+3=My3D87w)^MiC zT}IV={JM0;`nkD7oU#qZngoGX9>ks*38H()$Dap#)`L3IT^w*4qqkTY`hRksZq_fO zyIiBx(ZKb2jf0n{i;qt(O83THvx-$b-dxbU0pt$t07kjQ3Iyv+P6$2idf3nf9T@OH+sb0istU(r3$#>MmOLJG} zczfd<*JFllq{@!2$>*!=gqNrvnP(I@YC z60z}dgy2&m?e36*`t1hrexb0i_^tf1b!pZQ$+cfcTPf_>724`N$G8ae^amdM)VQU- zI38!gnf}ZL*!j3+6OyQH>JE{^P-~_r=dZQRoH@hod$uR*x*`LKyO-a_@Fi1VTAJ6) zO>QUYAvXpUZt3;x!RI9@i`Y90Cr7wy7NebtFeX@G^A9(OIq7-KgJbUwxc{|*vKTjR zS+b_f0THsNvrj*LTyU>S?^1>%(ha5<;m??dDU-j(O5CKln!S`X5Mq_aF#dw22~mIv zKKim1tU+`sy<@giy2oZ>KXId?cbX>PWY#hMDF*ns8>cbbP38KigI!$9lGc=cC;uqO zz{P?gf>AuwiF{7PbA98zX$*r5HGOi-$yvX2oU+71FBOu3=9;k8Y_UTWz~nRO%j`^p zi4^W*fL=iSqZb~mX?Y~lD*%;+gQV*&bLHuuRnk91l}h(d9}y=f-?MS+sDAbZ$Vv8- z;WW-KO#BQLVCh9fzi9az?660I%LuLz)fkJYq+^R-%{7yq>hE{#w&NCeO;FleM!zINf!j9l37{FBns?uaDrRmtcJz z-JNegaX~)*IkU5pj<-6kWw}G$;*|L+XjjO=yW+$1AZB>gvLO@50hTPrs{jQHfm<
H{lNu`J>z6L4HvqA(&^_~j{qII5(Q~=U{~8b%zP4Y1Q(7)b1jlaQHy_+WmNQ{&Cy%WP_%1yE8IoqOw@f z)T$86K9**jm2GV0|9_k{-BRWxq`M(s9GgjRRfpt|RkUGkNp*%w(6YuCRpb(Vt_>Yk zGbq@Le{s2Da9C#jH^TB)kSJh%4Se%Np%jPae6JV`K0&cAHiEd9^b6;66 z@2J-Ol>u-n;(l-0d9=DAn^dZviqojGk9Syb_sg%9GxWwAY)iSDuf%!#q#)v!~vYYt-3{QM6%D8t)0sUsTNh_^PU_ zi#pLg!FX8dOPC)d78~DZ*NZtW?tZR~e8zYGO(yNpsGtX%8|iuE2*j-6X16&3w}3fY zU5B=dWGK)y2IYIG>2Kv=>cz*Hwb1>U)UFe&d(9^h;#sa=nQk#TvpnX{bf+unaO0&f zHWsF)dX;qUDeLBw0n-lvaY1>Znl^10prsN714ZPzGH!Pg>80E?ugIUylKa`HueCj7diXZj3X96gZx#O!Eg0XktOS=?p9y3R5LN|7vI+XgeQ*Ml4)z=XzF8ulGjCagKMexYJVr^ zr4*8$br26eg7BcaGVQ_x{rbfAi#HZ5 zqN*^l{9O&$3d@aiW_{Oh_SLL>kgKnl>yb`cv0#K3MQEpu86LuSm&vQ|SgdnL=Wkb~ z{2^X8ef^QLv6aOMdo1^7<|%|w-~40TD0IVEM3{+^ihIg|+#)R%E1_|(YHyDYkYgL9 z)d>Z9CXU|qhTCl)pBmK2kTsDBwzD*G4WR_7Hv8*cb!P@yZFD5_8@~sLx+T_Q@Ar>Y zh+w=xPS>c=dWzZO`Up&#wlDeGqI8gQ2Q2xsFUNzks1@Kv@*2Cdtk(RO@ep@ayoZN8 zmT*3yQcOl3&1U~q{w8{P_EoAlSI%Nc=P(&hzPkJ0<=9=Nd=DV%H5VwK>df^Lg zfbTb;{ETBAZ)L3`xjj|0^1QCQ=LE!|>5z75tD$7i_p+y>dlq?def*U-Rl3ROi;oBG zxo-RU+VuzmP_Yu$JU!fKUL#~UW_s6PdR~p2JV)UXXdQ*+5%xrJ5D9N_0uA;B@0JQ8B;oBY?3`nHKvU zuY>naD5o2660zl^`#)Vt=jOsE8c3iZKu3DYhJHmw<_U?)lsl{BHEX|v(pJ+ z->{{{T}^z|z2P7B-d_Cn)s-hG^#-eZ#PRQ*? z+1(E%?{78BwD|5cP<=239K~3cq4iDY>gWBArE$%6R1!-2su8w_+jdmFrrBz7*5|3y z+Rs-`mIf4}4TrBzlUCsZP^lKSEduV66`cZ*1?%2rLN`P|?gZ}%4XGCoI zOIk>yFT!Zv?Y(j>iojx^?S;l9dPU832YD#Yb|PI}-Y<6!5$Zv_%y%ZPxG1uGg4((eFTSzd zZk)z_Q-_^LDBn#NZ;-^l`Us9w9N%4dsA5bZ$23CNIRN8k0YL*IQ@8?prD!UIt)8GF!fw1Xvv$=wy3Q`;dvidG+FvVDi;!xKs-8|9XB@wZe83h1$T}X+L!9wz{OMq(lmRP>D$|N*W`5(hJNr_OuUxML zx~VSn()$_|Qz0$fTYzSlbi#F!-EkQQJN^3D1oo!+%n}4jd^O!J+VJEmdr;C@{HlkU zhy-!Gac3_BBN26A2GfXhCqWH}oU9OXdY~elc5wlvAFA-{!6lzQm*^3dFJMJV&u8e{QFQW}(q8MHHPab?1Io6!< zudK-4f6g6~@rt6Lh9) zVMd-5HES|^YO8Ao2O@;)1Z7Uozw|7cqUxsN7vG#2)MzJ^ku29_{ip=_04Yk444+z) z#6N_wAaWLuZ5se8=kAWl_hnlE2S*!du#+h6q_RONIId{({+fY0h3HMlZz^)i6_g_R+J47}QwX zGO6SKJ$8+)tRk_`-FSv)0Xm~)F;gWTa1my|8}B-mbcZ{D6lYhT(uSmRRE$R`MzOil ziL`to)v^9AR)eExKZL!;{ezsexn~QtLfxbM-dC}nM6+uSKDAjI;gcl-@@5*ZR*|^A zyPipOTG43KL@`Te5nXIptM5PYWPf@piSw7B^sid^& z>^GSQMp<}M7kk|(Bor1u=+%3d-9)Ypjt2$lV;){T#g+w^a1VWxf`m>i+u znDXg^)7EWx&KcT$ zCLTG+5GUbc!GEj!)|Ox3R@kK1tJsivA4~62Ow+vDs8)>zLC@}lnMrY0+{?-OMe1*# zz==eDh>>&nMZ-3ejx+!@4Q3IXxJD~WO!<%`+&mG%C~msKM_GPk(rX$h4`Ah znPr!%HHcc;c)9fTb4b znk^X{8C-v!`1G@#Rd_AKbY#%iBV={C&GZ$@$qNbvx>Li79y5nElY{F;leR_YW3X746? zbyL275sI5HQ_f1$xwL)gZObj2ZFL)0>{q74spXR9vQ1?xUwk^&cLt&=XOJ#@pTK>F zAg8LpRB?C-&s1n*W7^aIXKfOSC-@%+t{9i^7^v_3bx-`g#p?Du4+Y0+@6$V zr$Hv6%rwMp++ttwspx{hNdz_L+$$ph-qumNQNxQa(ihbr2kxCr#L4X+Q) zqokvz4?%qFZKlOK@=~bIRnVUHymPO z5XkuWl3$b>o9pEk-^U&XGy%;`9=^MRy|aJ>0&y=q6DU`!y-}E!YigJ$>~wZ`m0*Jt zx%D|INF1jn3usMH+uAhZy6Pa@|V(0->odH$-xp5%AUR-4MO(lth0M_uT{0wQ269skXnw7QphI>&GStL){^5Lb(KzvNQy|p+nafaSN`I+wSxOxTBydlwB}C# zcYyYkS6b$G4LEM?1I-K-@lTG`MYnjgb^Y2;6)K|tR!@1YzDvlVlXjdwYR}DAC-ylQ zFV*YuiV|7)MGBEt1P#@5o0n1Yh1S#d@WCQbD}ck$xOMsSFsyJEI6p-PXr+w#Z~}B+ zHZ2-!W>BliMR(=rC$*{HzR{c=78HmV9qi#j$*T}*7){FZT8)vMkfQyO1pb3d+QQi zDm|SV^(2xK%wau%KmRs1wws$u16{qqqmvUP(rcvFZ$i$dZbyC z-h70TxL(S%-L;@x_*QeaRV}h11)#u4gA$tRwR@n`QS^xlGq~&kIi4mVfBf=nj_a@a zvL_>y!OI9bW}22Z!1~h=y4Q~H7<}2Au}XTS>*WquL>BS@31w!N=u}%pw-H7lpOC0N z-r}YX=&iM)fgxcJ9U+3Zv@7~G!fVfEam|5vEy}C&RkZr(Pjlbdxya(fXYq>}mc9kG z9|kr7o-qimM4EX6?IFLec6}+{P$RI>CSn=2uGIr@Z8N6%&*#rP=Nz|1oy+kC4goh zFCF5?;z(pAqj!;e*-1(HHv(}f9CIe78j0Pk-!%2CsECL%ztEBgN-h>B|Mar%dM8y2 zAN{LDIYe$*O4!n+@@qUL$3(9~Qt!Jj;AZ6j!E1Td!d(JPx%yq<8oOn^NM zZ4?{q*=n;{qzp-tF^Ub30aZ=qcitl$=5pAIhk5jmLxkr$E{W{lzTU0g+EXJg4-YkK zuQ}#de;KG&5+FPPwC;|BIY!y0dXh)zKUEYTOz#vLRaUt5Hx;!;Ct>Xh?cQJo(-lkWN;;-?^kO;#FDcA=R0F*^aa3%ya5B*>r4s5sOU!c)+T$@=SVI zgdt|`wB}~1?5$%fAdp(MJS>@4pEEwlO&IC*{Kaaz(tWQ7FLzRw!_RYXBe66m`N@@_ z=OR1`JQSYpQZXge?JV$WDe@^B*?#t>2$8eXarh~cJ$~u{eR8;sIc=TBEZ5UG+Yk!h zY?a2K=F<9CpN_*PwW4!FQB!92R1E0BLbfG?7zZ28lj0JjjV=|#@U-x@{cFsyiCP<3 z&H8S45li6jeP@Bhi4BZy-nHF!H?x3s{>~!C+FI5b1m+0Wc?@l8BJ6uA>!xszG7?S$ z7iF{(XIQRIS~Pcmj8^{ji1Zh^`Y$(hUG2`0 z{;(mYjQfDo^Re)e*Fkd3^g-8E>s2JL-t6`16I(Nck{$1nK8DHaOvagoQ2pR`es5E4 zc8t~xENZj9U^>E5n336B_pGUnesQApHTrg@^|D0b%Mj0wt0!C74Mt+eiicQb2jB*t zt7Dr}i>{xR-Qs%uo9IHbY3_tZ%-TjTxh1i;#FUzvz8%~OAp;%;^7+_tCVV@7sdMn@ zl|I{^jmcN0VkqYBCJWjf`s?Jj%>V5L zK#Dc?10dieyz0$Kl3;SZHTu)5=7P9q2X@_Htz=Iy-{U{B0pOT&y~r|YNZM)t78BRK)@1m}Vg1=RpM8V+>1p`A06@UX_3L$Nk?8t= z_+yze%#ml!IZw}$H#B11<}XXB)kMNO%%wtsmJ7mD#9xF!@%}0}AoD>Mu>}3*4x#?u zf3hOIzaG-1LDiZql8}@nskFa4H%GVTD4_Jhwm@8qN5O{X`(ebQeRp5rJYOJ%>f5fO zzv%$JIbjLn3orL?s{Xi&8tSN(H*q4d*H-63>M|4 zM3Ym!6=Qn&JHubjcYcvSmU(ewRD8o*06=GhwL>1N(MXY_CZHwijf7xsf4>@34z-`sU+ERDT60>3g^=<6{!^@2cy)k9ir zVUe$dUA1U}=Vq5pm+*j#P~FKczXQF(4L#pOG1_uKsM_uLrM=f^p3!GkC*hV}eLf-c zy$aBKR5!tO23QIeLTq_$YcXhd$00w|aEkS8B+~=?peqEj- ze8d|X#|?}ELgw!99p^nud$bq`9|{PUz!(Se5x(8&B3J<)pcEsZ8-jCLK;-DBvp=k#H)!0?c|iJD{o>g;@= z#cEWEXDvx6UMM!i!|5t^Z5IZ64TVcWdV8Cvc5%t_SIs5EfA}+m4T8%>=sP&=)X^_$ z)|YY~cgQ50c;v79?)id<#2o=npTZOitFz^^$*(tB3cIS&1P5fE(t=(Hfqc3O8<^S3 z>R-FI^hh1Q_&8;pzuHZYCOCX_u1L366!d1n8|YFW58Oni7SS%eW{K)999e=-fXvn8 z(E5=jtl(Jfk!gGu)nsS>9S&%jvgpV*dNODWWfBTzi<>Gl#IOGYRxM zY)SzlE!k*m{@u^GEyp=NeF&*hv8Rp6zSKVF)l8YcpoB0d3PJ)fRiJ>@(gYt28|J8Pbg{x-A+H|A~DVHeB|Dg`hkQ)kcx-_ z!=GAEaI;e)>Dqi%tE);v*Ka=v5*MHhEmIgsME^X8sHNRDnyp1>7c5Y3|4>EWz4-Og zis{wxX~unH=D?iw4th2Xqgu5Kzup4U41eC3Pu5`*Jb5D|IDo0nJbd!GC%j_q+H95} zBlu)8(H*c+g!y!ojMwhI{IqN?KuLc;0Dqp3yhnKvyuvjp=3YdV88(GsuuyfL3zH>9I=s}Z9s-4wTO!)TJnmnkSQ-44F>q@r;O}|9 z(64}Q5(*LauHoZfbri7bZrFjCw~d8qsNI@Ts-6UDWI%ap3k-eA2jKxBFzn#}6~scs z3;g(!D1`mNkN<*vo&clQ>#it z#u6A+hD}dVO{f+e5v!u|Dnd$Z#%!X^&rLW3xmO~LeF*v$j67F3=?11c6Ti)$M$wUwsD)e6ZVAVT_P(9brH2+`OF=(_8~W@eLHkYah1^ z`ZWhZ7;Zovu^G|#*ZdnV>tjzf^T)}af6)uv63F(tfHlfz6Y3ycl62fr)H(*OSMwZV z`Dm|*x!@r%C)0t4BdE>8z(Y-1Ss&26rBFO5a*rn)*5=K)*7^Ku;nCk z*>La6Q&0p&{KpxPmj_+&B=F)>QMbNG`~sfI7tPzVzT zX?KSi_;Q{DNSqyf<4aT<_S(O=p~SIyP$SGJ^vvyYFOhaIh&Un8z@Z>%pY}~Sh&Vn^ zpl(GyXXh73&w< z;50l#2{68YK`BR-D8Airn3JDBq0&v-~79L&TG)}=s%V>#h_C5X=}>h{=a^kVi5{9 z(jQQT-RBNGV+=>pMjB&ejWC@zv4@80{Fj)K(Py7lH5EC&?P1+O0g5MGY0g>2@fH>uwfC>_OCE#!J48lf^bp-R!G8y(6b}$R} z|AJjDQlDOh=3N8683W4mEsYp9LO(wI0mQF=fWXb~z4B!mJa)WC6%wM060Z4j1fovY z07_%CoR2ot6!^!XXoK0V0_^jje~jwS`b*Y88X5+ZA5!oJB+Fll@A0RTQg0&cdsSfU ziGOT#L?)rQ)jlF>!;IuVGXr_g?sweJvy(s)51V=P+gDL`cH^lC`(fuR?BP%!(LV@9 zJMcn;TwEj+TMP}l{scf{0Po8I>NxA5_%8O0DY)Ws-_;=5?vHd{Y0ZEdB=#%5d91g> z@EiM$;9M>>tOD2hqmOg|eZB4BZVve%F23aiQU0RH0X#!NbE3bnCKRQI4r&GlB|rv2 z&!SENO5{GcAUpgNx|vL=!uY4sz97@}^1smgmeg^PAwY5)faIYX$9>TnJ3f@I*wEk39W{BQ*>NvY~YoAlP|VId7OP=zLId;w^G{sP@L?{gEX zPA`512K9pnl|u*l0*AgD19wbeuV({g9hr1t{DoBTpjPNii^?>YP+!1<{wSR^0ry?G zwu3~*M+7?4{mXY2T%$&A?f84XzB7Fpn*n^jko@M(b;o94pq7|qpH`oS_ht*wcRB34 z5f<3USj_*S?~s7Li@ekNwXHA|d!zv$6p&^WnoAvEynl>9Ip^|sV7BKV&hgoWrre2v zTRd)E0qcquNY6M-@fK3d;3GFawuIk;d;|{@eK>&krUAUI202g$!6DlJOY(gbc4gzo zdnn|nDE7rD=P^Hpzk0D1ibz=Bx{`G^E|Zk(=Af+@EKjSt(N0OXaY0C~{^pCSJEN5E`xbb-m6 z0lnXXmJ-;5BXf|}QIv&hol0O2WHg1bxn}_C=Y9lky-ZrJ*=Pf^AD+7a<2@ z!hVJ?{bkYn72A#(e1@{4lKs=l-}2SL(y%$Lr=Yc=p}ykfK6Zm=#=27c?%CJ_IiO*e zsEw9`&YJHJ#XgXpNTG(>P-*~U3b4jW!374@99nq%-(CRhm3;03w?aMXe2dL41_Mxx zCf^aw5e9i&c*52n*HHq)W_$x^3ff2IgUtn_9*Rp?%NS%p8K0puZc^s)W;p!?M#Ui$ zuwwhM17+9Cfc6U}V#YQ^KG&g9O#z@P$&t8ETjl&*F_EUiDpG-es6NW<@I!HqtUo8yAQNtpQ4P6!# zkJJ0FHJLX{WaBOw7!>7kf<=l6D((wkgz*Rb{jfFdj|?dN!s(>N@pl87t9;_xONKaE z<*)%@gz7ii?>HYrO0i4CqR`tHd@KP5U%L(qG^+&R3^@%MW-#Fga1Mdvg-6lm%_iEQ z!l5EQB>KDcdd(Ns3YKY(E(jH|A&0>XEbiYf0Iug8~ z%FP{6ZY_b|u*Lp|Eo6|-LlW@}_e(wk1@hR~-ns=vKq}T=%RF6oiVoKFpnnab{5c?) z_*er>Q)qGlTl6?AA%hGy-VtR{Ur4deQOCv{7n*C~QyVka5c*3rDn|@^oIm6n9$0V; zk@$l2D60=$CugvJ0ruFBP|X;8-HydaS*sX(P$cBL92lS2KMVgTD7XQl%?*ey=3x7W z`xW8Qtl0A{LJOr+kVL8W4i9)OHxv!pZWk^$Azy#BUD z5J7ZL^`SAgZP#pH4-E#5PG4$hu&JkSpE~R3CG6_yy5IgSh>Y!Qv<7z-95&80U$p z?SO?Pn@)B8;c$J=g!h5%qGu9b=`|Nj@$QN~Uj6+Og~L$vVdZG-!kl04+3qX@A|@S` zT;91^FDT%8G@jqyUyC+^e@={*Wz(rb&8E}n)`hQwvhc8<1m2B-O>t+VBHIJ^?AZq3oM(e-FWB6_~ymKJpdMO%;eb6*#~$R5v}DTb+WqZdY3(iDkj<|uK!Xh zc^%W)^&6GjO^Kf9c?MRpfA|q8!gtqwKfq=c`Np&=k9QCHZzKs8@6QZrAR<)m3sz;P zCO(dz&T|esXvV=O+-74>j^+q{RPMSx)v`!MBR=f&vShT>bRO{r!=57Z=|UsKZ5D>A z2(PEO_=9-N!xlMgI_sos@$t21qr)`bdp(tzhzRzxaV6kVcSMX-?PWN7mtH*@xz}-O z-0O>eeS6Eh{RM44|cZ~pzg+_>*Tbm zG&#R#ClAl+%3Rix&7!F%#uAc)J%;*vI=aKklS#Qo{;rBfTnlsN*_-rs_bF%%=nrW2 zSZ!I{lF|+t^m~0MTPalM^NjT=4?emB`9TD3Jbni}+mp`#avba*>6 zC1LzJ7tR&uqG@jt!P)vU3YVB=hQ{e>_6n~NP1bDT&vfkvjrOVI(=S}|s?cA$ z$P7YyS;D;mJPfzf{LtoTLVkBj;qmU;uH;PD#739SbwcY$>P^zfhRV_Pa+-}>$Hw%I*!|o zT0@=Ht-Wi!?3=dfxXP1jvslY0vipa(>g^0x8*=lP7(6^_1FAba30|D^4b!*3*j|Z5 z&1@jY_1W{g6b@WRX17{e2=$k|<_Gln9$$CpvZ=+k0c}v1K{5$8OZ500hED6mnwM3M z4CVWK@mkvTrEW%?d;2{dKU>EO6}*qVr?Uuq{?$;OeXK1xn@z^n=-mi1o3(ceESy5F za%Ev&yLwf2{AaVl++a;5WB+{(8wTK;|GEsqYsEu}@w)52(wrx~3aC6ndTGvocImV4 zFnp_|e+nZQoDckHZ(?G_HvhwB0B@Oe`_W@UUakSW2)fvsqTPZ@;hUJZwE-Bb+8Q*{ zc4h)qYicBlv=nW-X#&MtHDKWQIwTGu$P~K9NGwE`>CdMU2E+R%PO;JjHS1n z9v-(3e!ek<4%2WBs@$nS(0GzYiJZ!=_Y7(v8_sz}(7Wi<1EC`sN4JN-mm8xtJP~wm zwO*gk_p3D7_%#hR&CG0X&?mEP%t)IPwl@p=0lj`u5e^twB>wy>Gb5|~)=#m$!f`BX zRhg9fEX@hydYWv)zGSf?a^ZCRBNYPZubq756+@Oe=R56y>{uGp*_b^MnW{XQ+68z( zyBGnOJ(@#?_Nb_l3uWF+U(VVJid?aAXY_@{_rV3gjkWh|1DmR+tq%pb&bLB#x^`TX=jX1I^5U-B|g!R{$iYc&38R4+0s*Z5HqHKYmu7zZ9xR<2e=1ML%oLAaX$|V8p_e{oz>IGPNa$fZrm$d2FfYSy zsoi;(WcFL$0~WFKy(KmGy-Lh?hM>A5fMRxdwDAZ(5vRS$phBq_YC$$W z_-8t4`>mI%7j{=0Xe6e)Y=g8KA9jLr_Gi#wQn4U0c}v3yxj$_>cWnw&sI=0&+^ZWX zz>64_ity7rjTzw;u0Bu$POhb^^ErBr$apu7z12Q;(5m*m2k(9%#gb*blR@3Ho_(E(hFXje zyG!_mAkX;|;EetVN44^>+t>^My{`-ABYs;LQ`$J*n_Nu{e1+(iJs^$CauyO}1hCn+ zL+piNMvyZ~V3G>>UzTG_`l)}=CCr2^=|v4ESMyQ2*w&A-xZIdwe@MV@T8KRZ)Gddh zgRaqFM|rT1F%X#${iNMJJ$Fr5=qNS#gkic?v&9ITu&@lsT`90&zzgiLxR%CKUTn=81RW?OMZ81mK64cFoQ^l$Ml2o z?>qZ~5zb>5KfhC{!#>b6BK>78X_LoO95GV*=obbqY)rK`nnPW($y zpVq#(0jU=8yUHN*t*ij=QZeM+IA;vX9e4k)z=gY8n(xeLuLjJxEHl$TF$O2(bI8}l7ZViN_nAN7|w z=m($A&!^%(@MyyKzTQ6EtDV%2EQ}rZtKh}vG1xD&%b)}_jP`aT#|D2t{|Jrf4R_`V zo%cMNlb)j+Hj($bCKKe0*>zl%uB|cRfs&zQ5zwVao=+qN@o0J+ykH*cj+!36E5|w! z_uh#a1fXvUWFKk0BV@l7KJ!H~u#Y|5vf`OKpzes-B6&H19ZAD}_%MR9moOh<{HB6s zxn%=5O!_?&7p7k)tzm7c)70|Cc)it-$2Hbd2Vu%_$(fO_RKrT4Uf3|O(Lzb>^{`Tv zB8XFi8J&HjzhkJAp;V9S_;;rZ5&Basye2$|v%)#O;&yA}Qjpmo^}R~G zY{V#^Ge`(ITp=W%$szb3`1$fSCiSToQm-(WsLk{9lPKoiAWVOOJOfBHF_6wXpEUuy1Q?wot_b7Fq5F%y*ifqnb~39m45(H%rDTMO2-~IkaP!eQJ&j#09367H-C{@wthc z0nNLOihKgq>W@(*$FaG?@!5W}{Q=l{RM<@L(cM+-b%4LgWXm|}wU3q#ng&mrLo9~d zEv!=A&5VvmDD4Rp;7Z_bdfPJ{83FJFwrRl8Sv`)|4)8v{J3=3qd7R8hFPKpaqEj6T zGQEhD?{r+CUVMW6&X49@iQgbbgu&S2oGWdODi0d`PP=?pXWEw}OPv?ECKntC`b8#A zobSeeV8G@z7|iSsNf!es+Lh-uAgpPjx>PJy;OKH6|E+2Eq$_4`csYc(+QyeQV`wc| zP$aq+M{Ea)d_7!W<%S$*j)j6`3x)}QcX>6W>@sUA5gY7@5uF=e*_Rg+5@h;H%e;@oK_U3=^u#XyC z9Q(vO?Cm{3Wk4#tbD+z-ioX-fDCHih03zOU5)_*wE0O6H=W2C|2ZCe58qZxls-?)- zKu8f0K(q<0aQxV*cKBH?_agyrJ;rF}&813 zNg{h%_NGOa9gG6xbWc$37udTmH$p{JQQ#QCGK4{Ga#_E#GS z(6s(ybpJ}?lqG4?*}A{ z24Q<|us3bSQw5^NiOL(h{nG9^YUEnUg-qcSG;ebK3b!?yCJ5_LW5Zk~99Abks!Kcf2fy?MVhuBWQH$+sU6E2v%8)Y8q9 zNS>;|6nMp1rC(J%H{yu1P5Vp=FL(6xqIwrd?tBQuAx1+~L@uX}E#&^~yIEr`10Npa zzX)sDwxnABV6ofsGML1tm9W6sOrYiR57TdarQSIVYn`dhR<}XU+K=5o#jEQyJJN|r z*n%4I#dNXn=vAissnu(j?_|uI^CE|CK64-b8aTI5G+R`M+b6LH2fz2*9x`ehO8Qi-{#<~sicVBJ~ zcmLMjbX?!7^joE|4$~n&=EUc08hzFam@-<|`onR=baIYOLdwaGQDtG}c3r&_aF?6j z2P)cEWn&E|G4(=l(kA#i9D`F=%X#C98CSX&`Ld|1TgGzmG!eEguV{m)jUVJ+eRgUr z)B}rMFxFn4lscDp;flNDD}}NQWZbD1vlI4ylYFA|XggDka_BCEeZKT?0eS zUgPh5|L>ah+aLD%bgpxq&E*Gh);!PM_1x=zgrH`+wCuYrHu4_3EShRg`=uPAwqNN6 z01G3_izSdS@2h;#@;%s%S{_yZ6PeeW8*T5bjZ6y78x_(s1dDW;6`-AeZo6%|A0Q_L zEZ5w&<|4<7yeqPGGWH+61IA31PiVF5Ezb*c0qPdR?)D6v5KmD-b;{`T`P%m;Mmely zNOWa&M22Tb^O?D6L8SYsan`mV?#Bw7?# zUDC@;V!?>6a%EL>EUnUzWbTj{8I=)|&mh-$#+_%E&Bn9D?}4q==JFnuFxWqL1i*`- zESX{%!Rd@v7{&1{X*5a#?os$S-MnKsyWFN5NC&@EM!q>;UNvuH60t5pald=Wx>*i4@bw?M(!a>FP04x^h*MEy;wB>^m2 zWj~~7u#y#+HY8breO5^1R!nz?Kf&xq)#fuVAr9HCdJzI(bp#>Ek7h{BI&cbB@pGQa z*>CCl$8Rq-Ci)C!MQvAG`9J4biFd&|>*5ZBEC#FprLDuLOi&VYd^S2QV#E`JEE^AS z(PQ}!vw#y&V|E`E-^=$h1XEDFcnhkE1W0XTmR{gl3)i=>(GlzY-ccp&JGtsBM7V8^b|H^oK zQ_`6SOUK-fGoNPDH5O{074uqecqhs#Vh1WqBG9dj^IL^1ZApK#ggIRPJ|F&rAUSzJ zsGK!VIYyEWtEvX8fM^el+Yd;sv%c*QH?&avdLXkqy(gJ-HXZUQnITvz5sNGo=l?~P zt`X;(`X=igwk7=sjNKT)Z4=O8qW+E*;d;D-vJg+$)yekVi9X-*9TCF(qA)>I^0u&h z^FD|jECLb!i$Ld6h%FJHX6zYCE@nhG)cU3D2LKuxk-r zz58E2T;f6&rI{s*oOgVlX@Np!r&)zg!~-kv@dnTeOTA{xD`kYWu!k=*UR?}(wCCwL z>S=2FhOLf2QeP`^PA6d6>{ArpOiOXe^QRm zeeM5b4fVW!i}Fe5gOh{tsrATlK!oD#9iL3A36cQ!@t%$h)->&Fs%E-5y`^T4BGpsU z)B8VI6y^d^1n*L)I|fSy&_c@vK@a=m!1LI|#QqdUaS0nH$j8E0p)L>W0gqeII3DX` z*kfo_5c^|AVQh`X{uGt~2~r>*OP>3`h(k#7_s{z>ORim)YE|gsVR{)_D`RDKdr)(vGt>21Tz!f-yG+1&*KCWhWZWEp&Vs;Gbk z+CMY0&(jqj#*-SI>{@}?>cJon@l;xjS8-W9#huL8N5@x;9TbdIIjdSGW6A#nmHWoO zWG1c}A96=C+$lX@yU<)0oplXo9Eo4a60GgCMJL3?BkPW<`UyKG=RF#X!>)6{w5a@S zo>YbZ(Ag-($xdW#w4hf4f>0b13Zi<~=MTnK1(fc2DK! zRz<~-MYo5o`f*QUB|Llosx3SA$$T0ff^W(@Tx(s{`uUrRITvnh$;37C=6LqfOP1S) z5*93Lv41oK4!J^3=l3w%8@>j&bHO|gA>l7Feuc0Fi%S)(-;3|Vr|dx z7#$6CP^$8o?%sU!ZBiY>)_13?S3geuLg#4RP5IXC&wl2_4FaY5Hg<9V9Lqc)Mbsrc zdo$()A0MeQG0amb&GOuGFa1sCvU;9t-Oh|WN}YFN_{S!*OT3nr=EOVg;JX(i`e`Nj zN-}liALJ8&MV_#s>M~YS1JLgNF665D{n=3e&VD;CYc$GNA}vEcEpmBG=hOwo95230 zT@`+>q@qjic4W?DAUN&p-aN`q-ggw`{+u3X+%d@mIaP}yjB}aQj#SgFZjIDW4!qUhAOcqNEg@i z1K?6@i2_=gj7|lIO(x>|6`Nom4Ga1Ov8Gce_ngf~ao9(-^9d@STBDsJzZ9R&+g6VC zJA12Dywqv+OG*j@t|r>YjPQ2KFh8C``o>3VnYGfq*IefV&MdFd=9pvY((5GX7Ud&c ze=ZGYpcl$a$z2$V?8@@!9L)DMrlJC2-zCkbWS z=4CnyjV=>1EdWcCm_?KhTid#jcB_((lSmUEys0guPze(@NUW`O8~qT1gF2Ae zDP=1;(<>N9)reL;=uGluEZQ&6e=783!2TU$RbIrpLX2AUT$qDqtYOi>Lh#tcGLC)e z%kuL=tl%x~a6&U1D*CK(zIS|q!yTOsMHU;a8M0-&r}M+!?S})`^LzpXWAEB}?V7B) zR!lB9E~oA1Aa1s~7WN=r(2KzcEbhS;p&p+37b_lL2SDEAK!gwmwo!$2{w9U`66>8= zg*vBU}9ZE$MCAUrj_xM@G$u?v`OM=J%&)bJ<}W!l{`zhi#;dXOZn~A$Ulxkidr%b z?~3{18k-VW44|NgMqH#%eN7`n@Y!Wz=Vx^J-5pZu>d$sG9-mdzCBF)rXy|c-tC>5v zF$fF<+__2aD%fiur;)b*5KD0WU4)XC=DTmcIs>?Jm5nyq99{>bg5IVLF6Vt}mEdrI z21V<6ZL->{s^9V5Pz6txuuj3M`5>5AU%Kt3-x$%?^o~48%c*^a3y0KOWwYZ^p6fn28Q-ikQb7TvW|o2R=(KyNuaQrJ3JWvbuOft z80}}$_%pH7Mru8_s;tl2@F21Ru6XRDy*rpEBJp|cZ3aMNu%uP%LI8#3cQd-Z?{YGk z?{KlXk(roBYLps@e*7p*kM65NJ07p7l4S?4l15BS#fAb_9agUinoqyW$j|Hk$-oR; zcjx?uzXlH=J=sqUOAJUKDVNg13KrrXf?b7L+7rv$%w^P%ya0$~kOI~!V*j$(o8_Um=Xp0b7o~t4Dt!2GNbDQY;oXiQ!BNkU2nNNwd&n&;8~ujJQ8C>A|zd|wR_dq#!dpo0N%iZ z;a|-vIDPI%m9AW)u@;GqL~=yH4KrW0W4~|~qj#lpftC9#^Av}q_D1NI)SaK#k24~oG}P>SQ4bee_ho`ghDVWziRWlelAZZ_#qU+4md=$s z6hhyIY{1~fF+lK#P4ohK?#B(^h3iU>(DZUWl&?&G8jL53_sc!92CxUBenE+`4x=$y z6VWn;Prz$+2|z50RX5P(V@>mvZN!^ewP{u3(afAIZ}ht$A#E9>`0FbEF$2MVqMbGl zDi1q1CNvp2Un_KBv}VI)zFVFdnRxQ3C6RP~2W()bQlZBbTMD#7`Rj(xgMEhvK~iUI z0N-Z}3RGk`t~?1pHhXlmwfx6+ntI|CqtlVIZT4==6Q9693o}Ah_v9HMv%lkq@6Srn zI1L{5$<{Y}Zc6*mP+s132X`|HdL%hgYkv>OcVSF2DyL!nrr`2<>reMW&-=g$sA zgM!p0ME4X3(mXr5BL6CGmz0G$pGmv{5U0Etmu>75aSW=e=w2WZ%tO6%W%L)wzcpX# zZ?g`LRje*SIVa?^7xsNB~fKLC84^g!Yk`-nAvxC;*oxIuKZkuV6|Du9i1yW{ixUH|?V(`hcBXOFQrQt|;kkn@h3v=g%r~oAb z;v^DZZ3jY5q~RuMzF>!0)zFVk>^4PVa)>eWm$9U_;Z!uAf?Ykoga0o@=yu$->AEpv1xLcW zZhSVZJT!Aoio{_!1`?rZ>K?PaaLtK~LT(^B9}vXy2G5`#1I)iz;DfwC$ovQ8kG%}FDdN4o(r)oZ(LHcg* zt=A>r@AWlJH1zGYU-ul&Fw$Rk({--{tqBvh zgs{Jw73eVdFDuBL244>Y++Oo=3b^+#|Qo&1VdoeS0Oa;g<_IrWU(bi%!3%^#}iK(dkxCU7h zkvK~NWH>pQ4p^$?2~7p!WB@&N9p?hn{>TbYd*&<6;aWl~iJq*#Et1}U3Kl2iKpG|s zjR}U2!<7JTOfq{j=s!<62aOuR6P9T`81Ih#nF|CQH)nNej0=Z1` z{*Mi|)A_B7X*kzj|3YXklon?lh{<@e9%7QIs z5Sva3kbK5V;f@!n5m32sl{`;vz*clyP`w3t^doULIs@gyeZJe1j>P7>FIMUZ5eb-< zG!R7LkbWR5nK-qF!T#w5m@kZ}8d}Tn+|tvB=L~&*jOD0U-$8ZiEO~ojo+pX@)gY0~ zc}ux5_p_Pq6)HParHFWlACn4^#K>MF)q-%mdOqylT|iA|x*T_R9`r_}nEE{Wsk;Is z`FlGS`{d+CDzW^|I=rdo`vW4yRZ$)5%M`MoeZhk&J*XiL0O(-;eP;Eu}`2!{(qFG@}NX9saTp1VY)YU2ki#xRhB(%n>V8z2Bo$k34`{S-Hf)gP=5LgJNR?`x0V-)Aj1I1UgjG9TWbW2w=EQJEhfO6ib%xC?2oW4hQ|N_ zJ>wN?Q{wj-Ku>Kyt>*5c>ty|y{PM7U5h)_1mZU*EtW(FDSq;2q5Hvkt_W4UoHp$5* zF>*I`QySs~Rls!s1XZF%jo$AkHe!#|T_|;4Rjb@vb4)BVQoxjn#s#D=W}1Q*E`=_f z8P(Uc6!%a|D|k5)aO{ff{l+C=lhbok`O#xVkyKo@(ZfXa&&Z_H%*JOdMeb%Kkc&ST0Bq0vhFYVN)%*d z^5Py;F>%7jJC3#bz;NzCgOF-IKwX~4WR$~$^@3syk}|LJo{tV0+yG*?cC*FB*Xryg z6WTb_%i=i?WWWo-D43y8DPE~#ZBa8Z;8>=9X6j;M*mXlN9kr^yHyt@h8zdvjzd}$o zZvLKscbRtE)koW&aKl~GtUh$w#@8`Ly!;o~(#G9}NGELbUYX!+C*+!(Kn*o|Ya#uf zlRZr|a9^7ByEP^f`OzpK)B5q%PG6N2k$k_wCjBuORF4>lx$$VF!K6oeuq4R+^_y0=?OVz>oPQX(X=3OZ9KP(%9& zXaWD81C%v-q`VY2I!yYyf#`rbB0&bQxqyUf(l)e9kA7I2kqGuNk7W@Yjp1o@nO`y% z$YBi=uJ`4bDZn~QTZi}&*rE4!%I|$MzR#&g3>-6`uz)6o0PT?`k28JzH~&=8sgUAmjy1`W ze<+^`WStyW1bBhmxVNc&^=9)TVCmnj*4{S9Ckdkk^XwE_XrB@&;Y+(g+d0t(P{Dg4 z%jgCzCJvDk4WM!fVPCct3c47)iXM;g;TSIZB?n$A?q7+m@hAN|)@)DNe!L5!@zuxDvLIL;EFX28jSqpBU zYcRu^3<;9$2Ff7o{2}8SkqT^=wu?hM?4x*`Uu`}Ma*$23v=0xz7rQ1C)LM@{AchD6 zUv&s!#Z`vCax#snXg{qTYSmz`A3H_H2*-NCI^s@MzjYE&OQmcsS>sq|!#a9N3DK}-TcIreHe*zVBpL!y~-39V_!r!1{ifV88VO zpuproVnuuE7Jy&+(h6Is3w~r zK+scW+W?}VD8990Qe#%DOfeA4Va&J?<*@pM_{%I~o6{PTZr zx{Gmvq_?;A{&8|hl^}n{nkBRBr2IT`rP-{4YGF5W82{mwlPC?7(f1`bMwPle%rt`( zVB(Q{fjF*Wo4;(<=Lkg~02OU%{YC15kbm3@5Lx+ruY1~J`ml%#sTtOz%+>o4NT7+z zvb=nbbu(=5_?#~GDVD{ww%H5*^lFt^+MaFn^at-&JrA|H?`Z!K0C9^|N6aC`AVFkK zhAHNN#a<6n$oIAW=)FnCS?>XpGqWn$9PJU| z^bGIjB}YfcaO}QiM`$%fi^==%PXM`)|Ji5!TA_9l@{B^#-wy;b8uM2ZiidNFfl@jq zG$rXxtx6F(;S@cd(sVUx@?B_Gf7&v%JiM9^EXHn)P7A?*_&2z$eR9va^;0jgk<{rQ zuZEJ$N+Fj1A_p@zA290BMm4QRn**<-(>w#w5u;8y5$5l8#hAbT_j|@x& zy`F9|pp)N{j^ij@<)ihfFDBwes$Z^I{xhPZ6%tC`!jO36NL00!nE8nq_fF{ z+#Z}h;>AUCl(^ZJ_bi;~{Y?H-Z1|*TEc24peE05t4%x({d>R1OHpZV6Wi)XRT`|-0O z_(1*uod3C$kWKagvHD(xCqZnx*?{x`?d<3$XYfpak2?^}^^jqZp6{P+42Z8{1q$5H zqGSvib>aCVrJmV}#ja=gwT4d|ob{{rQ7!QrLF=B+*5|y5?ckfEXcRRNe}=P=0X50+ zlr@&*_s+C_6Gcyf4vl3|-=t=s@Wn7G=$Prtd~`b%du*o~#JqaQENyME!iPifYc1N> zZ8s@!E}yj%#rsWuOwC!jI9G%%erS|LC=6o5lhtrA`^0#RV^;8MjDqusAVw= zVlD=(nSV)iPu{vcDFRa_P3T6F{_RnzEK)b-`KIo=v*u)-x%$0ZF3B?H;2YqYE`E%X zcw>p2s6mkp>&Cba$x_P_{LO6qF9jx-eVX5Eax%q@{7)yy=&w1pvYp>5rLnek^Opu= zTjg*l!FpIBiSguEktIx+AHH00RE0jSTB@7gtg@?EVl#=Et5O>hGUsB;%dc=;3=U|d zrTueun9!YG<#rTnSvi?u@3`e?Wa>th`I|IkP(0M3^GTKM$?<^8YhzyH82&L-sa02L zSx)p?%YrKE*!3jOFDZwMZ#>CwXVWlLg=EtOx$Ve%C-USNEm_fxr&EQ>LGBKBi=_3` zpqtYLQJeA>>1oAbEhSfR$%Wj;W=lJT(B+L>U`+m1=l78L6^5)SvL!_R(xGRZT+O|b z_359UrA3-q7bBy6Z$N@Zwo4XY>4UXP zP^fXfLC@{I0t&~hW=ldUC5=CG9}8LWMPo;CCVQ~v{8l?b1^?%u^Zu0PB0UA3En#KW z-&Us2@mv;h1y=2^H<02_Yp2=_Gi-&n-Rc!7?KUZvA8oFh7R}%Qj>UBHk5cX-CA&-` zpJpn~B(LhR9-;2JX-yN{bBE})aiO%ggRXzJpYC4X!T(73`OdV3aDy!o9pUR|sjj{p zuTmtxNqwPvk>ldqq10vpONRD2AcQEQBkC^?A9LuVLe z?4$Z5RLkxlH;p+#bN4)21=3H!lm<$^RHpqnt@~0Lroq~$zYwp;55$WAhGla277PTmtI;@QgYJRXsK(qjVEw;G}sw)x<>AHhH609 z#0Q+AHqpzQ69H03uDff?LKDc7fY_70S)&!tvZEDLmFp3C75~Y}Zl~ed2MOR4$D?i> z1tAyH_QsW3<#V8NycSD;QE&^Ib@PyoYZ}Q0wL#We~CC|WmTa%(MPfF=y4YJ zJ1Ct3|vV)(nGm< zY*DYDg6(egJBWx;NQ#c6mZw+%gM0HWoLsl4k29UlxF%@jGD6Hu3HH{s#rEP8ZtT5qlJh_g#?+#f%{=WOOu?D z1P52)9^4zuwytxK$x6RzC^eNc8CA7MDQ;0*Tq)%g=AJ!XCDvU41IGcKU$!ENtJ0pP z42W*V&`&|ffelUYS&N4kM9`}zh^Um`iX^X$!1RIf%_hZ#f@-0caAl6O9KhS`Ku5}D z6749pjw;t32|BxpPfAiTWIq-2eEOIDn&1wdL-6u*(CMB6)b+nr zSY85Hd`KO{=`3~G1(WIpbV89C1EsJsr|Ape`Ij~;p0uv9;MHMB=w#0O(vk}1fsypix03F*2;6W!QGi)Bw%Sbv5p{M9#0?DCrbNOe!oolLWTh#l71)F31S+QNd43X ziS(R_h8(z;a6il&Uc^mvHxM|i0HdzQ2@xta5mD*Xi+u?ID$xaM5phbh=ci z^k>QWTbQTE^EJu&-;013FNV(VZ3`pxr*~SXyDqASL)wR<5QWuo#0=#E`y=Z3*Um2i z5+#+U5X6*Vl~}bzAqR_@p@Ba1+liRPAD;H(C_KQ*7dD_uIw*xJR-ot&uvlf#)OD*Z z1T3FZ_>cj>Rw)QNCF6{1Pvb?@3~)biMSLS;%m6lt!s;-#fHImys!8PO$VXt4(EG`P zjtd)L@@zpb5Gs}sJ)fGd_2CD}U%7Bt=*N+nJy$ye1B14855lox8PSsz&z<1Ql&quK z`!(!g;1&Q6=v7dTd5Ec3%fC?xBDigFf{rs-_7N;i*d7AK>^}XzA4wh%XMQ~jsRmmS9!_k+&iN+5aV29PSH#d6pGA9bEi7p$WZ) z++;Teq9%nPv(^}_>35*xq3fh1IhNTgL_G<;5(SHyxxfKaoFxQXJZj2TrSB0Iz^xb; z6v@Xvz5)B?t|t&_5&uSLp!lXV@-ijfb62ZZnc#y&;V_8fThbLpq%5&&8`^tjHxY{R z87AZS9!))s5(077;|$_4x=IiyLC79u4&0xXE1rDsv0n0oLnKVNh$u+rxt%fbbN06$j|$9SM<8*&`9l3TxV>W6;=bI24w7^ za4?ag)N`g3qU)lc69tEuy}|bb#a)4HkWWh)ln|&iSo@bq1yTgSR41_W!-W`iVHu)Y z$>;YU|Eb0Md6_c(xobA9JQIkb!fX(v<*(T#(YALSWzA4qhA@MhIUZVv~G+ z<#9M3r4psU5LYAE1yDe53RosOFS#Ot;=t7h5*SabPhczi3nDpz43uys+klarY>fS% zX1mtw34s2z1Kf5fj1K`_^wFGuzP|<_s-xe?9z>LZgVI3Av~M7k^@;yw(+Av`F!b?= z0-pm+6X>l)22!8zKfZ6L=Y&zqT8B`KTIxw?fv=?T_yW;o$!~-l^gqO10a5;xfaCO# z7VNp=h#{a;Q73%0{aOkb{=5_d8?GYo!+P!z8BhuhWTC$*UJ*=*NRuS6p_BlRCDAj2 zJl*%5kXe!Go;M!lm<&Adt`;~=@EC{C{e^^R`tPONeiEL9fZ=a4>-f(bV*q`s1tB>8 zrl5S4@REb=uBhXuJ&H7|Nia(bA=jZ)XA<>@J&*nzau4y`D-f9xM8>${>C*TUY(9s+ zL#)rS)Mui{MBBg);xqzH_F66=HhK6#fY0_u5WeiDnjtoQiwj)Q$fTCWr! zP0GFmAw6eUAVm-Pj0FQHt}h;Cii#`&@xBQ28?eKGrOQBE(e+0L-d}bINrEX8RC_#? z48WoWONUJD_sF2W=-uZPF5(p!BS}D1OAkTG432Pzenr=^=i7n+?Gs4G%Q12cN-JLvL3|r=fhTr1VKG5|8rwH?o8)m%+GJ zn?d9!{UIey0(HH(iY3NZ4-~@T*}n;LpR|H`t#=s$PpC95?(OT8g+o|SRhDb1{31Y9|{;B4A^42Ge$m69T*zHRUCxK96@bNq1|1i4B#> zm3cmg2io5OM+q=XNb**FN<<}mRXG3cDxUsJs&G47cesAkddn%nvba6_uQ7M1@G40d{XOjEQX`tA}z~h2F@cq zZbHa5K|#6u>bu)gYs}woJ#ZEWz9lB>{uLa}dO!k`>Q$oiLMwu{W@sY)8xPa<(Mx*W zqy{jRt04GTxgk59QB$tGvUR=VMWi2Qi=%J4fb}%gvz^gVF2>K-d88WPD%9f+Dn8@(Ain1V>^ukF`kP{enbjYdIVf<1&}s(0i?W0L9is`qzf5Dr5^ zis9rW<(>*2`eaz|^ejQf2v@5S)$*tEXTRuuB)T!xs;l;?04&_L5aH3gb>&ISuf_|e zHy@fsXSwQMGX$IAF325S9+cDujvS79rmqnhTc23g>dwFvK7u5AK+L-*|8nxfxX+EG zZDkfEeXQxW&|=S$x~Q#$HO`76ReEb6kLUS3wO$}~h}#V6}<1rXT6zL2MX zgavkXcYOE;NX%X$lb!^a*5;5>**i5+w&dRnFcLsemKZdqL@$E_)Gk77o%B$7RB!X$ z#^aHSOMnyUxohewU^s4)4Y+~+27b-7=YGIp1B0o2XEhV$1lzqph&;tTxuX8V_y-Y{ z01U=(Rh|3F8?ZcmhSVFnzSd0#5++FD0)EqsT7LzRE(qEf8k-8=C!*r$<#75rZ{?DKM9L!?0(M^*VL(LEV@hC#dlw>b{X6SJ@YB$nhx%-}9}wj} zxq^BC^H`w%`a4hnoVP)XgK<9)N*K7Ofv3ekrKceDv7Uyc0dXHOV&Wt9c^(F{rO;RT z#3&1*iQX%Szjl_vt;5i}`5bIXys1(;{0HdiYI}&5A>RXl2eDo;20&qcgqIQ64hF>x zQrpv`y>d4kkndkW1(5Wby4IChu)kD`#%53T0>1Y%Q5X#+;sT8IGh+F6t|*v>w;>b< z3bIFRa<4?sXGz`G(5)Stf}W4(Aput{}1d#P>&-oCRuKvPE6@|0cJJxajk{Q z>;)K0CJ2@sjGeo<)?v8cfb@w>Y$)c^a0*yx??Y;0?-UVnGNEs8>~O+hClpPBOtqn4 z(>4UT8C;lshd&_D#wRfU9Bk^+4Nfx=WG0CH!rBmFx&ArOvN@MgwCys?qu}G(7?s&; zF!0bD{|bW^oe)+s2oK05Zz|T5i4hyo3$W^mi^J!{hw#9W3IPQ8m=J*SQ__en zAdAcRoP8TFmjN895kbu8qS)tj%<4QBV8Xs1*RDJ?3jpyI26>u%-ieGdi-?jPc$)AA zr?&{Q83ejj3j~(Ro0KU*Z`Bdic)~&7=UuFIm3MiD0 zTO{`m!|`T)H~QJ6f^3x-y)>&xqv-rN-u)>1LfV>}zMru+4#RiAy5SQ?0^3J(8)wjJ z20dFV_LxVQbr&G}f%XiHretyiK&(`U%#l?CF$uE zGJmo#zMsGGiip#yDA>$ZA#xEly>1L*@DwY=>d>a{%eF>epa-@(>20^GjQr7K!=ufd z+?xiV#j$QQJjzw4Gk;4THIH09c3}=O2u4sw(aejy3*Vt&Y6j40UkA{6_a3aiI4dmX z;P3_*=5{FqMRaL{r^MD`U8b^MX!L#Sv>PuHv zN~&_o!d5)HzUD>|Ff(_Qj?3(eXb>4#-qnu;Y|MXt8X*_&ax($i*7QrPsV@CC#S3I0 zReA9peoZRI#=%~1;PSZKN>$wCwajlx{J4IoqkJVYYA@W#Hi~2O|11cDajT$vk)XeU zUy-z;S09PqHq5XQbaW^YiDHyH&eE-dA0zpf?aKf*^G3%`mN5oXKmIb)8Ws?{J39I{ zQL7gqq>g+RaM#vx{MvdXS4CM7^Wv;SnCeG`Y!&qm%L(n(c#-!lsKW(~mSB$!`^bz< z=UslG&#o+>%^yVN^_%n~?|}XbusWIh7h9tbZ-*W|O$2yEKH+}-yv1S4Uk*-4-pdfu zl!K2}U4IZ^;ZwCb)%*C3ZYj#tmo$RPG@wn{tF3!;ve zx8zo5R7v|4zQ1{1UO1k&j^LDfJz!&FwBN+qs6gX(US%XcXP2{(^yX%2t@d+S5oGL* z!Wj^DRr2o970hMjJq5b7BX8?c5l9hVAH!|J;-zQ4?B5zSvq$Nc|!c_ zCu7S~Q-^;s`jTaiBr~-N@vrK!QCt~QJ{>mc8C`zI?NnF~TGmSTtOvqp`$wWCfN5V! z39%8Z5bslmpTb8WULY#wdWG)H4_vMKj(hX~jQ6)p&j#HoQCJZ!; zyXYKlZ;K86xI7HLDX3Zm5(D_lA%05%F#r(@3qvExc&l;Z;nc*a=cFyXt|9f#zH*da za(+*o@diEB)m#a`Y;91r(xVPyaUTQ#K6Xx)%0PSIaU+S*c-qzNngk&RV&K{vU_r0o z=TB0HtV>T7H|#mAzVj|-jgp;T>vplS$NX@HZ*H)UDI;#{=iM`y1Rp?oL#m0~L^p_N z)I*=+mZrb*XGv|q>3x}FA|QCEY*b8Vc>3jrXk6h2!vRV1n=|VXBw?Jkh<(Nl&Mh$0 ztgwBKhi4ez{~Vf4Z%n*J?-OX2VkpR67Nz2(KXx<~J&|xHk>vzE$}&Ik=X_)Q`?Jz@ z%4(f9%gjBTX&^Sp7eRt0k}wuKl&}h(h1Fn#CTh!QkhwMt|37lg@O?~W|#^T`}_?PVYDlbyS&H| z3{Qxk^o}MCNaBf}-t2sYdv5CSZsZpQF>ZYkWa*8<)BkV+1|tlHpnC^HLrR~(Hz|n^ zbhYHuD)zE>Jf(JAK5ijpN)B>hggQKxnTL`Wsm$P>YiKY~kaO=Tn3!Y$2B>;P1s*qt zf^=k0T`Qo`LAGAxN9Fz0VHN^GKQDju$XoW4DJwxT9aPpWxg4JqZ1;)jXg_lha~NUoiB_ z%}wD&)!6P;7PaQAJ=;8`Gk3;=i779p;FeP~;q%n$gYnaVloBsul7cu%M0N{j%eLKq zmm<0@JFhNhP0Hx-CwfU2(9Qv`^TKrVhoWwT_ipQ_J($CK7cc`-`1|#l@CHUR72h(< zACC9uuK4zLA5Spj zoD$S^;N#?}Rvg6dP3u}zeP_bIB=AB&3;*HmoH-0_7 z{|ZoGJ!FW+9Rc04V#AU6CUBAd(?*#JX)@F!*qD4bm0R<&XOT1J<14 zJ@%@UUJdCyuIO>U#M^*0xBdxpgac%yu;X!}nFBQ}|CuYH#w~qM(z$f3g?5D?aUeI-4I7FZEp+XX zlUhusD!L=_yDVxHG$N6I9c5gMg;_WH!H}HK0If=!=aYnO2m*own7Jc}J`5CCg4`X6DPYPU;&r#q%zLWCWKz zeff+OijRdnYxG!Mr(=ZwyB8p)(}6Fl-RvyV9nA@ZsbqL=N4GaBPyJcM>ME-;6|}p{ zTAc`Wmw~qD!}TzC{=>J(MK4RG(A~0YCvCSU);qV&-3oTLuOIW)#i(^E&j;1mz@r(kCYn-)FT7T*~_^=oTYh)2U zc_@nWR<*^tVnLCYp7`0NTBd)(eOpu=!DMU(O@*C1FZraFuAFYMfwBAEaYBiyQb%K~ z-~vj)GlNp@c-Z^E5+2P-+d*7~a@MjnQ?lCR1ia zd)AJ&$9tzcg$&UL=##TamdUEQlkvmB)~ZbRH1FqU5l%Z_^M#JK+=fgyEYkLu{oGyh zFo7(*F62$8sW=ZNDsy6>mQr*-{cQxezw|DgOrFmg!9d(h?iP!Pdac=(RkqyU5&d3L z0evS5tQB$A?#9mlF>;t+s=u}FYB?ATwkSANz&lrWADWJ?sj7G2kN{E2#yrh%f{kGD zl1`?~AEsp0@jPGalI1&9ZfZc36%`$A$C8y4eCr8m5#X+5iy8*+NRVTCLb?#{3 z0%4T(Udk4bEwij)x$OyKZ57R6TF11VN0~7aUGR zwJTQ;%A?IKC7$uvO#ZUGPZMmSk{hZz?)Oa9;mx|m*c@EvO-Z3N8G7M*dG{a7yeJ*} zH)6O|Zr`rgdJ3swXkf0|+~U;&xY5P6v-6hlPg#Y<^_Y}w$S~B)$3Nu081LZl+wC2T zaz3@C^YFve`>ul&uhL5{txdSaNP6$>5zseT@YmLWjp99sV_OpgECv<%jn}k%Txjl$ z1Dxfw4GVFb^2$Q*LKB*hSzgpn=ib)qA745o#$P_xR~T|C&-^xdGF@>GB@)`(YLRxD zX(MQnKNdp0uH4)Lu(z0-Z`DGVOg88r#lv%-JaZUcA_|*L+9;Y=K1gq9nb)4QaA2y+ zN-R#Q)GtYEG7+0E{?;}#e#_KAY=0c*mc!1wk>Q)m)iGz&&xb;Bcz%KiUL6XFDHopO zI%B-w`&^v;W6$Bp4ht_E#J#ks5KLMxZkbbFniA|=YPz0r*L;NB&+z%nbTWo7zry{* zPxJo_C8>`4dYP&a=$Cr2DPOlMtJKi38*O$Nm$)^kHIy&(D--&UXsA9lt%?Tz}|A5UTq09s;PLbenVh=BzM#<27Eyq3EH2R;a% z638R`;DPMmYJ?fo&B`LaN&rdIFPh_5ZY3Eg5&sVgFmyL2Lrc91{wv6a;okkZN#3Cwx`NxQZL)WgBwx@ zO05g!=rY;0(sejjRpIexX6?r(20f#WeFbY)q3aAHY8^NV0DY2GvU*Q0JeI(5okVArZ!hkNGC%Yj^mW}=uI`Fu6q3Igt`bl@1VG~oF5|I&bO<;YtWtM#jKbK*8c zeG`M7042~2mfrFry zSZjd((rIVP^AG!`TDHqJ9~v9~NE#&>0e&YnYT0PRF%?x_{vE!@={VbA^<-7m*?9d& zzrWjV*ou|$KZ<)RO#-91M|MJRC%e2=_@K+yYk;GjD*HczfHXRI#jaVd-O~O&AfkZF zCs*jl=>=4{J*Kog-Vg5EyP7=W$kKPy^IUR{h75&h#qfrTxWhuKIBaL&mCv;T=xpl*z z9i*%;AZI7pC73*&m&!m!gAILXCbYtn)yWkgO`6lO^-Kt;Gz|}?_rA_iW8A2fzn|C| zlu!ffZtZWfaoKi}Slif?sIr_OT9u=x#a-=B=dGKRSe_+6UA3&FH;hc)j`^ySXzZ?X z3()Z=ck!L0I9v1E zaV8JKDv|LkMt(hO?bjNTQ0=81-L39bI-9Nyn^kQ>{a-%YdHE*0?@f3am(%`I1&EUl zl)4niclsRRbjLr?aYhGmHpiY*I4q#9@vHY8Mw6pb1Rc)~9MJdBi-YcG z>sjvFLQxY2FS#BgwJ&Tnqn`e_?VxLO8fgcwgQqq7A6c<*$sFf3EL8Mt?$d-+t?#6k z72a|nYKa{Qv|CV1=2A~zkwXdcP%?V^N^V+! zRW&I5_9%c@`4LPBYVkASV`KGgCpo7LBS3SQ#ck#|oAN_uR~xUV*ebcKO4w~sy;SBC zJ0)P5t9Cn#qOA~|%+>323SLhVKI}0XIBR!Lts5`Ep;d0N3J@$3XU~Wh)C$@&YBwkk zGFZG)yQtiu;kNtCb?apFAKZ1$%w6GIkt0$$-aOi8x0Gch@_xOBZ*Ak6^gngz@^0Ev{@%RdsNwz{9;uDVh)15IC1Shw zbf0eXO&1VXoQzj`mDxjIz+n{~G9V)UIsAh*x0P!L<1FixE9$pjF37RPh-oJz{MsOO zx7)Q4wTy1R`dUMv@U_l$++H1Dy|hgA3)tod5qGGHQuSEZ<($e;U+E0rEh zf9<$5eJP-vghHyH+0CVQ*jVe^R!gblFI*WzOpLe3yK|i%8V&bBE}+jpuHw^1WA99z zR(_rgkFZruzvt2)`3@7^2t!d-uM_9@xEOc$b}WD03eN1EtkbSY+8f;8eXy||RpKqZ zzg@DJxnJ5RDDATU!;uQx7CO3+=ILxyG{-N$>ZTjvS#;U9>BIiJ&7N27S17Ea0wqi| z`HXw@o=-ckGMRSsS4XaPW=yTRjJ^{8-L}uJ(EW#4Y#S!g%9caOy}~*s0tLWq#}jt! zde!{dUvj5TN?_{X; zO`0!i@Eopl$5Lx$KwIrD-?HXO8svmu6Rp5h2%+s|I~Vm-4^7X_1@DSZ;=y3=-HCDG zxvET@KAVAXnVW;MHRIDXDa_Y1Q8P<^5-DH$U!e3J5eMDwC@Ib+9Jas6TV0%ATHLd7 zSIJ`w_Z%g$kMu{u*0XU4p;=16C0C!NBxJ9m#u-|uGCtoNO1~^IrKg@me*E)Zx?O5| z+tf+UpxWsHV2D3`C!f14d*|}8?%RBPDG{ElC2>}P_UwroPeyd@`ObFIn8DK5%zbyx&1<~HZ7ZC@I{&#=f^-o*F--(!-7E98` zgEG5q|E@%9V&Uul&fU=kUAEL7+-Y@a5wXT6zh&h+HoaXZj$ofEW7di@Zc20Jj6zu! zNxx=ypZnTu9cNJK^ou!t^QZ_vMch`KOc>JN7c~Lj`yEPo#ZjKX_%X@U&g1f`nM88U zTz>t!UfE35yxA?1qt&UaSF-`X zuzIhHK9gOncC&p;flv^@Si5Cb}eAd-D)$jO~M>X7Y{10o&MsTlzNa6O*#HbDVTA_-=fXU?(*sjsX zy>UraGQr;`bh7%R_#S=I?VT_-EGSHpF={5E4AFoYgIEsy-90!+Vh3m4$AgjQDMvt9 zqE1mjdE|=n!ul)8SyGwwT_dt$nIfE9XYN`=5)U}Vbj+Np=&y^l*qpGE?HzPs#u>6$ zf5w%Mztufj{a{bk$425bZFUB@;~3iV>7IM+osL;yj^er`8AC-;Q6e#USb$(-aY#|v z<%HQlT>~Yh?=*mKsJ4_j=drx5k)OrF_rPC+UbnqC{yb<&j~u_80J*1Z%ERbscq*f-ruZhbo%A|E7MbNY4dx>*519`i<_?Q z)@p&e^S8yy4F;L}?1eK1jHP#z(R6pgS#{5TVd-?-+^+{u==WSya6wyx7be?q3ksrF zh{UwuJYdD=!H|PufC;qqr?(3ezUs_q$!O(AIP8_CJ2yp2`}gc`&@2AZTuY$wg{gc| z-qhFLq+R}_E)Y{(n|9L*Uo+2MuBH|a@HVoxUH<>n=K6SK6^;ynm=LXnPuri>1V{2i&5aqyklQv_lWBgFivM(zB zcDXBNCpz+!49|pL5Xo>=8Mm~~c8Vd+*-4TrEs}GsQC5#O>r=`kG?0qtb#GWaL zzJ#On(jkvEb=nyRL#EksJtnoby>u?^G?3hBv$wppBF#X|?{?->=jhBmW?f~gIqu)plp0~V zs@VJRZJPg~vf>cv&?AS2a*3%fbG@LV0oU(!K8ESIe?n|1aYv&cv=yCld`UbUkWc;W z)XSs4sD{I+#!6wOLzTn$H zz$PiOxfN<0t^%2rvDEaqSKd6_V&2DY7|B!r@LY8jtil9yS5WyTP9fhwki&9;2*2 z4UWd^U1Hx1^zLzZ3-5|ryRm-(NqoPc%TrZQDvc)S*%FH3nfSvZaDq&xTz&qg1V=e) zA_}Q21{;~|P&F(=0Z>bJ9@Y;M8ZQZ1TFwIy=FX3IEYDSKuMC-RNflW;ZrRv82S{qn z^z^iPCayLe$q;}fjz*b@!-qX|#LbX}j1B~jR6#EZZzf83I3qP&jlX<`21S zu|VV>NpCQ{4O{ec6`2*#N7X({nn#E zutnW&&N+>X(lRhT8I-=o{^+x#o>${SVy}=Y5nqosmhDDZ8!JrOe247dZPqXB&^E0z zzP$O*x;hn>&)=t81q4em%xcOD`6a&707J`mN9CrcOB;-7kvu<`Ni)8RcUsK2c-cGR zO4JM;@18wc$6kNue04VE!9)D(+Mi>K|r(2GXzCGt578%$RM^?Mlm4aO&*& z{E7O?KxeVmX=F;8!I&K=bLvrvy8$xqf4Fz6hKe&&b@-E_{35lpH|zZM7G~@<72lj1 zZlxaEfnB#de1wliQvRfb%7`9jeH<_;koC23lj4tICXrZ9PFj)t__1~RWeF8nSsLx< z=b|+$#0fK{4HoJ5=h%@=i>o!uLY^J{`v_4BSq)7}vhe?wR=IDsVC8zYrG> zL4w~19@x3K<)?qG_=7mT$fj(;=N%rIWEqvWzTa+ADqV$5@aE8Q-`{jRE2|v0pLndn zT%$wMyefs0!V3pl#%l%WqPK>^v;hgU8q$dmPGG-Z=64<}wBC94V?@t8i=@#jiFQO{wf@SN zhMp)YksjfahriDb%>}03)-#KZi`okf?l9@ARPGtwiN728lqfojl{5ynp7#Hqy+O)e z0igx_U4S#MKq!GyzzQDAmk=w_kNOsKuE9zAmS~XGy64@o(8m=E)8$lTw~EoP)A@f{ zV~caeKenqEfHf~34I4DE_6Sg~h<#S;SldvS=P_S2f6Sg2#*0z1QapU4q+;9})|S@)-htNqGJPRVG=Xr?%Y`vPLP}tptiM^t-TQ{p=NL=J zezeb@jDTr#TQA*xt!u9$as@s#{uv87WuM@lgn&A ze>N!FYDqF|*03nY8mi_q&9AgE9j#_pEm$6QDM(q{Y>65j9&2Fac&Pe_mDEu7_ca*z zQxC;g`9WbGka!V(+Oe_ypOPM&#ilhBtszglpD7pEu+zSS`X&<9Q;=Hm+z`lC1KYW} z*XJp)MnzKKsGib1?zH!LKyzPY%dc%!D>tKPZe2eiwCie;&de?qw!!H#eTZ3;1vhrn zRG6vRdz;~r=)>coN29A*Nk70yx^<{((c&clLAN}1^5~p+8TTNnui5_$R$u43kKiD0 zT}?yk?O2U(Y3Vm?i*Tvl-oKj`$2$1?C}(7Cvu`n5NmTT;JD<;7CsqzxZd~$HyqiI3 zFo^83dF^>4RpznIvLDZ1VkEZ}wZ^56x(5k{9F10k3kQoYoc42aLoDiT$j>CK-G#EE zY1#4}nybzqGzL7mwv-E(TZpx%=STgPjTfs@$7Ra%mx|6Y?u0Ms%%|qaz80vf84<91 z@S>rA-N`CF;TE@S(VOJC3yaa1)qn!wP}REx8GEhoX*`m{jQu;t88v6EO|k1hlg}DsejGz zQ1-BmD1!#aa)-tCS7n_J)uuv+@+Vhs`l?w_KGlXvX6=yud<7NJ)w9U8`qpb`WLh}~ zg;Q1o*)X(3a$^;5(U7?JOeIyH&IWajCYR}{HC3eZh$l2t9TFZ^#hAwQOYUD=U#xOn z?AGs{`ee$yKQ>$7!Z4pb=ON0)eEhpe?&7`MBdZ%7)5iOg!-hK7R*r+}!|hN%=Gib3 z^C7AJmu+eKi|9TJJ9O`o^XAfWP+_lmc8Pe#{5vLU>-wS5CxBjR z^8*x~i(4v4(;W1=wfu?ew76}VHXNDwI?pkAN-&3bduQ$JF}anD zN3yF%uiw%<%`d3!=zmVN0o~^$&AVY-{_vvvXD2cJ!Ook3XUj8_3taY(7i?`-XjD*_ z4MbWmXOV_8~99BO)-HY=&E>xmO2mgI$u0zi_kU^fwQXcDZ^sSv;u`)L6)_6KA zd3Ih>eqQ3^Pde87?}*cabmX)))QF|Be{GCrH;4 z+4MajO6;@u$0#t)pV^X!#pP0GBR%pqO+@LQ*X8zDN-~8KgW5V5Z}QXb#MItC-aB-gyj4tj; zEzjIF%@Y-HtE#OK{k2Dtwn8KE$8Xl=)xfQ)^4+O-NO`?5S6IFaGjhz?+4->{ynF!R za2tC|9&2$_KhoM1xBhH9I59|I!Yt`yqr>=E%=mciMb*;6=ZQ0!I;Rc0O@&>uajUbJ zd7aLsd47CV_CZQ=uP}LxK)G%8akk*Cat87VMZ=vlaSJy>W%LKNqDmS?a*g^0=I*zx z&QGs==&M)?3iJ|s>6TZq-&C=?EK|1Xf5q!;ney4CPPnK;_Tn!&%k?4^VE!rqlV zC`2pk%}7cJ-}eTlL5P9$YwkEl=33wqWUN-TnLfJQ6#E13XSb#GF6}?CO%9y# zy8zaofxNFDb{uxG4kL1CJ1fnKrT=*;I4mWelZhJ}w3Hq1Pd0oHvi+NTKi*0X@Kmv zgY*|4@$a)}&q)>3@o77Ly{y{UZ$x~SFSRUf#A~|^gh?gH1bDhN^K4&#f4(OyIfX#9 zo|APWrTj^~q7`S&FH>FTcEUr!$t_}Hpx4b6waCO44qGJG?xv|F1yLy^*4hCFMo=(LI3Kt)hn^%NGw^ku(v0$ zKZ@I*3XR&ct+M_qAJ_52cz3n6(7rcx|J!LkGu*`ZC-X~h6LHd>3}nonl@qSzz5RNI zCYc;2Gn-K^-}i8O64d33M#Ub=+-dFK|QZ>m&sSseWn z%`{pioNIgeMRDN~4R^=V6Hf1zBnSKT%3tvFthgjR+!}8y8MfKb+gp02JlMZe)J*ot zBv`3!WiS8J@7hnCavPSEIW`y@Ac6BbOgl4=9siu#neQLm@Acl#+}{k9*;5IZ+1toh z+E`k@A2*?z11;Drtp?Y$9ktP4XY_2{K5n96{&%9U_dd?qCB@(SZdrB{Zn~lOw2gVn z>Kt~uhR@(T-`by7wuXy*TipAlzGdKAo0Ln}d{*Fm+Pvp>o42VZ%xoAOI%;{MP%p!N zf+CNlMMNaZpE#J?&TvUAjpd%BIW9GJYHNNvuexI4PZ~2{ry+@C<^$%*RsLIknp+Dk zE@|WjH_Gp5uXA{8UUuC+fBp`W<*b<3y6dJ4r?=#8U|(9)XPnu#L$H+B0~{xCoH|ZU zm-IcvGDj0ivdXSzWO@ZMHu&GxD!jdVy847wx)qR}_fz;bAa1p=0Dkcefe=T@ZLp}{ z946MawX<_`a&&igF6_;q4Vp4<-#PbOsjb$ytOWX$i9fn*bh@LVXRhDsLjOW7y?R$k zNw0CsOhZrCYTl$_$?XLz!%yTl`gUV%3J2EDc?lMKr>wiGDRQ)he6x1QSt{Z?uFGs+1+{K==bH5a7GI+`0B zL~>hb(|iRQ%`fdPt(NZGj0N6`Gfju-KCs=(>o*kQtgZM3erHPUR{#nPn`O#31IL;c zZT7|%7=sfH%RA}srTua5bbgS(^nGcGm1oO#>5KU#u=!NBtU0|M#-L7nL7+l;t+Z-n zK=+!!{r_Ew{~uB+4keCg73(F46EX;aouPVB2_9L%*I^m5PauV@9=7q@P4jBIj&f&q*=ChN$OM{dcc?e6Y&p_x^| z*u=!Pk8jCwOy>L(Nfg($Mbh0<`h3J|QHgL224oU_(=!Q)RRma18QL8)tQW@St$t_COFD#(>WH9o+ zY1p%~|40E>g6r_p9ise{a!8QwsFwq6S})4}{*Fu#IcSbH#P|L-yijfv9T4UV+Qiqf zlE%rJ+8i{;>>XkamqI-g#2P|~H48_h(QKrn2h9;u_&GCl3$%N6p{MX# z(BqPBTyj5A05m>O8105h-44`lXZ7`gy&(mZ%oMFvF@YOwD zhLwmE3Zv|y=4MBu@3KArbI=^2kAJBP%?zE6>r=1{Lv5@B1uKt5kHa`qjQ{Q_ra35# z2jWaA)aJwqp#~+oX;^b{1-zT@7_ug?H%&&#WkGG$D2zUw6zYdD(&5mVk^X5Gjj+Ur z*jrGWS-yJ9vqs-wj117kAAKI$`9`AT;-JyFDUIq+3N64!KXl52u2WE8LVRZlptuiOW8Nsxx%U;poe=D{}{NGMym zh(S_96d?JlHyFm??-U=-x#tPU2|~)W39WAui?VmXvcYJ_aNygS)^dr_W0-#M4P`(@!azf~ivZx98`tM_Y=w3JwWe=`hCzqWn1s_tg5-8eFy`1C zdQs1U(kR0l;D!|fy3Lrc+9V|zyzYkVkOI~Mjmm13k?V%&-MERpE>)ibLjrhw1@B?D zyTmfgNDE3jWvgczjg&{D_!3J3p~)W_{fk;8*KPe{OWuR6*PQ+j9eJhCRq>rLZ*HSK78(>;km1qcA>N$bS8*-LlnKs z#^47Veh2^bA5#e2x6zyz7INQ+Rt(Y~A=@kuYwv}B=1_T-HT@R^d>5#Vxms8o21(2Y zYwwM3(1sL2Ty{H$nMD|ClgC<}jSf3SbVrk zSQl=fRy?b0A0RMdP^=8pL}C|VxDPq>z)+~d?F4A_WN1W+D`BVnkp7$pqgVboM7%60 zi=dfQM*ejlMv9{1NV`ComNT&6hkf7%7%T60h&yu7ph*6DdO7SU>>=r)ZhXCED1r30 zDKzYFa461RZ6p_F4||(x$c1!%e*RZE46T^Bv!usP%Df*8JW{K8`vvnmU}D?9n-C$| z>o$+IvOGPI#Sj_~*TfIKu3BpC#4!W_ux7tyMz~dhUU|*3#1uZm5Lo{A!8g0;R?j3o*$RL5ZMf=hP9O6A0>gi3uJnOp9}|})Rlu_o!uW>L=%bf$nl$24vq}4DuvYUYM^1?{Jx%x| z2Y^j3GopMGH z68d-<`%5F*TTI$@plP47QBR(%xo$`w@()UgAv{!|MI79GX8ZTI*Pk-m{=w~CtqHx& zBIDp+rg;0UwKW*2(d1TO0}|o#HkW#mzvlXRn6M`4;hKiZ+aNKC8Kk=VYNOY5cZ4x8 zD2rbv`vNn<;=WL7C>SCnR{r!PP0e*rQsw`MX=Q;!6s=%HTkqs-ZAoe5+_W_%QOaNa z-sA2PK|C2pf;N!A5K>IvXNXie1I9%(-p?nXd2OBQ*W4dk+S+zDZ4pTB@K@XIeDU%? zB>OaQodM!siMvk|&|pIy4AU-FJmkokd-|l8W!L7H-|Z9_9yY+{Z#az{LFcO}F&YEt z8Q2XF%F>01e}O^oJ6?GCt9^vwZd(=(s??iUE9ZtEnQ% ztG8)C0%Ikhodw zQo`jNg^gQPl4X=e-#v}nq!0{WO}=D8H1Ls`#mhZq^LhZIVHeLJJ3ch^2Q>6|eAB)o z6O%N<%3D;}&x9Z|5*l#?7@s_mbjb!)Lz#K;K()}ec(7VM)6Me8#}aob>qckj#MFD_ z)wxsda|A;O4z?>706#rK9^I393ceqVP#J@#VcZ>M@|}b|UTN+h({ZhBER>x+y${F{ z?icB8kpNXh6Me@5FEZF7VMe7C&xs~0Wk{Itg-HqLe|otp@8%nnRV|%e%Y;~aAoN}i ztOD6YKvvpdqwoaA$v=2U=QdmtCMnN6a~R$sn`Rz=BF5~#exCdc2%*|8{0K0H*H6JF z-%*9{9J>uYp~=T}Rx@6%Cb*3RWMxTb=Yq+Nh2GOclh?l>+iA2>xComZFSLGX>cjgu z`$lAWU{>ltoEw6x$wUEIMFd4~E@MdSa6kdwfqfCx#pC^Pr+O+M&zu!i?CQ$1ldFhp z;SB*usB54+Q%J;c01`GQzUz(;d*f8Ei)v!A&^(WU3qpIk~?ol>iv)DgS|J?kWG`PwkHYVNh2s1p%Dn{q*vmG12$kJ ztl+(Z`R7ezSN$)RtDfA0oHLy3?d;WO+$6vNfP}xs02#aAs`Hc$ZVb?&cnZ{#D<2t> zqZwJxnjWWVi6h1csVOn*x<(S-yqUq5t-Py}{)IUnyO@;O0FYH%$ef;YV?{RFM>d0rLDbBct% ze7A^5RVjI%$nvY{6@?*PjGi&t-8<=1BuFRH6i)jvUv3bM8!COWBpzbP`2AaS^hApu z?fGzXhu_zipU+QB_Q@cS&Ce+4DMIQo2gU|%N{Tvgya=y^{xf$NbFdv&xb%w3q-?st z-z56Wh->~P3L5MXw0}^jo(ic4H?#iPeY7zC0Po}@^`;`urPFc$UTr#pb_}Qd91i5e zYo@@iEXt}=ec-C;1>wMMWobf9MttX)vlV-kM+PHgmE2#ZKv)P z{hAKbLR}5~mHKkkY_pX2Db=Q2s3hVR2mJ+;a9|LIHv&YDE0adU)~pL(Glu0S3yJ?q z!_Q*6=~2hJBWT5NN(N}n$O)A%@}j=-ur;UPt@&8eD~Q`;A6`k{@y2PAzFK_J>4HdB z6Y^yP%$~#@IcJPwsG@}RU%UwC*)auwUbT45$cJC9(PW-yLU4yazeflFxiw+(>>8Hs zHTu91qfC#%e(bOETJno0r_M)w^r1U3Lc+L+xE5_f#0hAQ_YQeIiL)W%q&lzy0g(jQ zf6_)E!ekh8t_4ZoNey~;#y|kDiJe}S53p&a<<6;Hija7k18P zsq1pR5)hzdogu2D{mv({FvvQ?s3sJG%T?%|Jk8cSO(%>omuuG_GQ??BrB?F4L}LSs zv22t6Fep;M<%%XtOn=eALgJ|2!#NYWd6QB;+x=ZHBZ52PdAu1Uq=xIKJHVU2v3xk=hil}cl zjADoHcocto2^o%e5?dw_H1hf-pPUfM8bZG2e<3-cdxVogHV-DE;`?x5eNYJIRnUmG z3^YzQ7s$&yf@Tb-RM7Z~i=i{T!$?-n1AEg-iHD1mH=XKf05$|}MmErFnQWhy7b`LS z-`uxUfI7%<>H}*f%MG9V9(->0dySCUXstNEZL*v1O>WF(BH)nomjrg@za%W3K@KCs z*xWaCr~+Q0VnffVi~91y=vJ%2qdVx#o%-HO zo;lKlt!UDY=_gK(h-6J6-_pPQB7X3UDgkV5d^yv%KDYV7y1o4y&$YY9t?maQ_ zt50l*;BM_&5L~M$j$Y0YL^qm9P{}_j-g7{hD+&1${Pjv^<}Xf#+{3`&m5S$8s(}gc z`>0l+f1y2*_Dvf>{CP0vRfty%iHcW6eXC%;A-NvTE2LU5FKMh$Pr;XKuRrlIBF;oS zzc&O#gse@`wFDR5L}4Q0#uIK>dp+S3p`Mi5YvBfys>GP{DoSV;04vdut`Qan0=U9dvUKusE0r*eW^jS81-zmL^ZL)S0g7 zl*N29;2l*Nod=INLJgq8075huSsx))2qp@K42C-RYA5gJlJ&@e70c%e^%%Q&=3IFB zjy(4`BjOh;J;5oU$rND`g>lD~D~Vw6$TWd#^2(K9UK`d2IT5wjFb1UQM;H;hfOyCe zqfp8=Wt1V9Q?Thvzu`?Edge|%=nI_UmItzI0?`WOl&k{eloea+s4hy#4U>~-HD1?e zpexOT9OW<9oDIeXT*weoVb3wTkffU4=>fll=f!F9l*#iN8_A`3wYAT5fz7#=V#Js@ zRVDNhC{CJi_~ckk*$N9TEA8=QH35Vid_E%hU0-Sar$Gh;a4eXw(4@^5^n<{p7hv#^ z$Lm=Ldfq%^7i~$J|J&8!%@MRsIHll67EX|P@?S2V0z8I?04Lyz6#wY^8+ z&Ld$&H-3wKfHi1PYHC+{m^7`Kbb8wHHZO`1B`*xRdJw}Ua{L!z_&`lg!L59 zV4M4&xq}LzhWere-alj^#(V?DgyKBd9M``-QYj}&NJx1QiX6jJ40Bn(Gd*$VpbiOP&q7%w!E*Q_ycox6y1{(?X)fFJDC!y6Qb+b*-%tJz|!f8h8d^;;p_(n z5mSmM?C&Wrj=l#8OH0z)5hc*I3v}hC1YL)&ttCCFrldH108rF@JoS_ZMi^OpljE#> zw2RRe3gMtBM94}F{(}gq-{`(33eGGKLXojXxG6FR29zR$4!|Ut5?ZVqik{#{Adohq zu3=#ZbbWvBpsNX9#F?xPx_-uh#oqG&yI280vE5fo1p1quxC(U$rXI$p%?t1Vdm6Z9 zb`}+|){n!`T4g}b<515rA<^rgCp!$8(fB=6dfC&IXpkSRqGvBLUkG@|RVwHS$OaZ6 zW%42*`{W0&JRqYKiUW+<;bFTyUWrEKstiOn_N){V;TirMlSh|JfLOe`^8C6e;ZK+? zF~LK2a;jCZ`61wX#?x$8l_>RO2~n~3_A&j zSUlC`9Q6C?$Oi5Gcv;dXL(t+|z~Zm>18~Rdr^Jc_jJ$_oL=q3&ui77nYq61hNmvD{ zaix-^jhFyM)PPipx^NZ|7RVmL{Dch!Y}tRl`WT)aivS3_(Pa#{zB&j^Oc72QCVpQS zfnvFUlLzxo!{%+r!zL$iI%7s#U{daizmrllAnX00Ny9|R*}rlUOkjYQ21pjKXKH&0$6bz#)|g_BxV0-1Ao^00Mp1a>bGlWD!jt2VG0-lZ5XJ+ zuK-mwaBwj#%FjRT#==Pvg2BQx;Jo;0yhSDC@TM82E78>V{``4kU*s~tzcEl-Nu5Vm zi4fu)`@=>V7jFzB>tha3Na1HE$>eWva`c_vm(6TUiyj zI41x_69zGlnq$O^7V{(M*n)zBUv4SIZN!JbPo;ssEZ~L1f-z^`08bPK_VV>lPo6|9 zQB2qWSfD}+TblnjvntnNN?ab?(XO~X!y1OOGcDMvjfsi5InX=_Ruo}EM5>ozGIswL zf+9B~BjaJY=fj67Tea1cVazZF+a<{f{5L$PFig9A{|H8Ru2Z%x9gDA4!*t_UzBTla1sfNp=62n1bV1sGEEYdd~P5@1l%OjkR_ zH-QUy4s#wCcn&j1(9{yaaJ~7Pc7=<*eQx6eh@dfcHVm7^IW}C^F$_BZ?pv2&z;$KV zx@_?k34v|~P=$EpYk%#af(i|uD0g9SgVi%qDBX$d5MTmEppXia{PJRMhrmEzpXB`2 zGi3y*a0$68G($N;ki*h9!b2lEPYWmvjFmc$F_ z+%-!#L|EEXDF1F8f;3Q_{GaSla^o(NWM!};a%4Pj(=;uQ7SYqh*ys$eMNn-UwEqw? zCJI7?uj93amQo%gRGK?GJD0uxk`fF^xdbD{5}y>JdtZ-Ln&cOh)0TWz2fB*|F=9l= zuPuwmsR%S_9JA>gX`~=5{YnvY*qE$jxJ|t~bLU|xiB77sB zBP;-^D3BXR^TD{pj@J*J$3W=NC`^J-{ZoHz^5tV1#Es#Uldb1_dHRoRiS*bK7 zK`btp9-H*}{$H(GJR3avtGxa{?Fp;xKap&f;KAj1f73?+4;6p-LKm?6Q-s@CH)0Z;-3_8SQfC*76NFO1f0MkL?AmEt9!D%`e^Z&kuA@BrO{6BVn zsQY~!5xrPv1hL_iP&|(ah_xYVB|pGX zya-&x|KHGP!oya#H4(%)dcxA(3vTDW7+IUG3@#LSZ>;a)_O+-(agtI?}Z%e(b$JSh2sbR9XLSSyxA%txy_b7-U$v8<(gnwRS0Drond`%KV;jFt3UX2vVPHWye-pf7wPrm6f@b>y@%W&kfNpHveZ_ z5v2NJOri4d+djXpM?R?KsUzNg`w8ncC#APJ)^8o>yU5Od^lRhPytP8&Ul+QCI)ZRe7dlh)wqMzh-`jIr^;N(n2$Rpw$9LrAXB9|o z4XFiNci%PK92@P-8F)q9Vx>pzI{6yt^mWRRpLvBBwJa4dwdqZOIy25KJp`vtotG3Nv-D>JB+YQu#9l$@SS-PIBsvT^p;iTmJ$-ux} zaw>e&zH4u%aDCrl&Dq|}Yfh!Vw}-D_f4QZi%Q8#K`SIMmTZRw)%^vy;gE9~65ltOx z5*;f8x9u`#1DR!G^||>0jm5!*@_nO6s~@cQg8@$l25(#D+~VSn0@?QeEj_jD?T@b= z0`pRzE<7fXZ1b~h*l^N^ES=~=Fy8$JiJXyAnRO5Z@u-LtqZ_n6TKoFV$w z-vP#E$K5$UO>7k!KIUy!x2IiTcyR(|if+P9QP{J<%Q;UtdOT+TC#4W(<|3Q%-)2ob zoP|a6bI*k}tRC%ZX+Fr8DCB>u|5lX2cDT_m_$;laZbS2AbChAaR$T87!_xwrDc$UM zxgw5Y_*IqU^GeojJdH)gI~Rc!8gQNY-jF*GQ|#ni>SeTa?iGi{rJJ6Fte3zJ2V{g2 z^ky>z;`WP%Etkp%mt2a3w&z7ol}pdLmD(%lVh=XA8gKD7JCm=@^yo?I8c2HYV1hSe z2KPjn`jZ7cv$z63UknoQ65m*?3f{CR^x9gC$!$s~v!E4Ou^Gpb_1JgKTZL-Ohw%lD zd>bJ?o1iPxKV4%HRZS^;8=(?F?92qj97$`|B*KYJP*O_M|EmizX-x^LhJ&9Sr!1BK zs#lKFYNvs6=1G6cEJPSh%lzc`jOSjZpIayIW_q?Scb5h&7>ex$wS_D$H&ZrbSN&&D z9PrXlcGn^wOrC2^=vQvKsADZ7_B)N_Q7`d&S}>ExkG@*+g-~3^+cc-uxu%K1X-kXR z=8UVH&&fYKttYLLm|2vLK~1c69*38$&o?HV$vnB*lSdHG#+2jtf6AU~CXmS(^Zd-& zjPj2Dor?Edfg@|<_sw)>`^1gje_dh9^vWskonnmVjuA#U)Y%IQ*z+Wmbj^78uC5E@ zRYWE>_itE$t=oVYtF`dseKKiJ7m$b#=|wu*}KXeMR=ISI40E zZk1+BYGk*x!JO%_Ve?h2>she88Fg{{77v&Gs(gzm@Vt_1`w-c^n4_3WE+(ATd5iPY zK^F-pTKK-{FeFO%G@IvpbgWd_1NHH8ci!#^1wqBczNO4IkZt}9$;o;9g=L*5DaYH0 zTl6JN2?jsu8zzeij($#J&WwqbEws!r7XF__PQTC8+YRzaE9yUmp<`6K~L25gLMk^4kO(>jO21#kO= zO>Aw@jFxv^uVG)$LpR#w>duphjAa+bFz^rtN$uxHkI22~>z((Le(d7N*6N65q>Hqj z&kSZdDW#c({(b>8f3L_hYrk#sYvah1i%Am(JHMja>}h3o?%mIm@p3Ahr>m|@J4+tg z2fQ&cE%07zb&FMdnlp90_ZIzvf9x*imWVvs9UAl~E5B=9)k=9+1mRG1N?0>VrpP_P zbzrKld95XLXTMA4(Oz?ia|j(0H2A*{S|7e%LF&I@^t~&<<g44V%b#2XReqBW7?Tuykq@>R^Pc(VfmZdlAoR8VH27nlyb;9WFlh3by z02-O~cIMFK?_ZY`c>!T_WN!RisoI~^G@7k5B znjd}%XL*9`IV-xSNO)$}3m=iPxo$0P?Poj7WT+?3FjwMYMTR88=z8g2^r)bMkaEPV zowk*}MN`$SiX{54_h?QWrM*K+{k8U?9`&y$Ulc|BS_zbSP6?vA6sp+u{3k@NGzw${I)oMoQv(~E}uXDQ!AGq!pg~Ich3Md@0ki6d#t>h59q6#sVUmoBo3jij@#n)q{yJl5l?TaJ^o00{2O6-8T12 zUrbUi%Oer1@6=m%qZYf10<}(;X<;8f7tOV@VnOARrbJiTv6EM;e)B4b_+eHd!OuRl)PD4pK$BvSR9?Zm0bO{LVC5Bc9eUJ zM`VnI0fDSB`J(e~zj^=8K7Lxmw1Q$jLF%UoH~BBDvpdXhM71vyq*QD@E?k|O^{aL1 zx+*R<;s7hyRgi@rW(qD%hc58yglu~3?ddsBQP;)rOGcC5Epe67nSWfkv`{-hgXGz3 zQ!8q69rQjk`Mnf@Kzn2NB)lm~1-_~6S^v6Xw%qaa3je8v2Qz(c(u@Tz%j@}dQTuPD zUpMNk7ur2zS|f)EBiW%sBC4Itw=(s?7Ilr_kGL0lYJXAziU$5zR&Z1|9X$(J>KK^ z-G4+gx0&lY*U#rXuj{&#GWE=S9nQ&$nBU#DN$|09Fw|d`_*gJt$~&SUP+8=7L>F)C z2_3y2wvk?i?U3nf$0f+gql(w*H zZDvN*TEVGb=PbkhCpAMmlUDdY6zH_pkS09`_xue8Lnk2X@P6X?R_cR6PK9=c+XwEr zV%(8D>;XaQ_ijB)8_3Hp8kiT&p7F6P?af~ap1y5Ik4cy6KLH+hMFZO|S7aA?gWBG1 z&@a+Sy*0T!%o32%%8@Zd{$ZQ9=hhGbh2#Z6&)37eM6lfvH9IXY(ZZe{XWqB{OWUbK z8pN5(TP~3c;kJ*zQ!by!|2sGWMW~*Wv}{mT-CWJS%jIbe282dd>()+Y1WWz9);(v% zN${ddKk>$!T_kvlvrfIx@A>rGpHF5DuMxtSDiv28Pf*j6;)x@$U^n)e#mR*i^j1EN zkBGNvQIvS%ukwZHQxqN__xuU&PN>RQNhZOXuu!E~^J71gKZ1h~|7Oov+O~`kSurSm z+!;6wB0%}w%;M6(1z^RYeN*LA>hjUb`)el9yEb(_-z?e^s)G9NU zr<%77#m!dpFpi47f7G0cfDa?!Hn5+REKEeN1vajKEEto9G~(YepoL*pm~Ddft>#AOiPZkrb|}K_Ei@_C6&}(9CO@eIz!K%n>-5&;EDYdR*3R!E16#MB zg(gY})=Hjl%4O#w4o=Nart6~J*4?kV!2EciOf6da%e_w)w}7RHx4D}D3YAWbe^23{l<$!Mbzqoe3-0?~VKDtLp)IMA>OLUh z!Y!Y~0EdXn*96yN`^RRSkqfD(pE3}zlq#;9fT|<7Jl;hV8YZp#RiP{8yE!k)I!M@l}|MxQ&Cb&8_bn2w$%tj0O(1ei+kaGohxBE}7Wv%3AYnvwPA!F>cCkh1s#w`g^AZd)zUf8I<-YDqi!)y7bDdO{~;UH%>7&Z5Ob zU=81Jp}0=EklhvPlDy@+~+ry|XGW3acm@JmLYDmu$vgM0R)& z{9{mwGhhS_Dc+q8)u4ALeSrbHTlBJ_3wo9j`ER0Tx{e>vw@4n)^cQKaQFh}*#XAA{$Vs3P~hbCv#Mby$1&#W zsI@-Jx{CHDO$C!tE!O(c@VzlQrYLl%n^vFxS0DmDiGVx77!XuP zqVItf2~+S2QXP4a+Z3$X<(@rmDhx%zb3~(yBd48)r3D4`Lm+z?oSC7Gf67a7gFZzo zS9t}gELeSHqIceT&Jd%zm}bWwX16Yn*Y|WM3d>cJ20Y$dZ#ET<%k6o!BMA~#)%@An zQq+6)FOqhi5jw%`LlgY|{9u9v9mry8d%|iV2X5ZEa{y*1l;0f-|Y8E%L9;aow zZq@hHXm0rrFqyUXpnY>)8d^J@S?H9go0Adn83f!FMybid`v`7*z)(hMG#9ozWc*gbm6_Fc*2KZb?7(Lnl;*GZ(H?n-pIZx+(& zu`+#BbuM~kV)JAUT^l@u>5M9Gw_YsR%e9nG_lIuGdTZRLF0J}rCh@sZ+O$?FNC49{ zhid32-hoZxJq4h#IU6ZowUcR5T=WVUBS+~M7nMpR#gBA&fmoOl#e^O0L^d(Z;D;fe zwJC1DB!xFq0DnxKk8o`==h<4?PnrNBuj#GN*y78r27<&(2uZvS(8vj6RT9A^522Mz4GNdS!xM1kv{Q3BDVt$nGOsJE?`Wl7)M5% zapy0OZErsQO>zV&e(V{RE1#PIpO)T(t=HV#*){d>#Qu!6-R! zmQ@8TYk-@ERMtq3_iXxC5EHF*vhV*`%(@m`ifoQXvPwm(dhfFmkIT@I0aHi;X!&&E zv(fvTms;$Cv%t`7Yz#E07lj6lgWRDmajtu zGPN@PL-J?Bu^9Xgkby4Dz9&`=4jyn#Q~IHmuWfGQGZ$6q=x}RK5z+3E&pK3ohq~Ro zCNr}@J`K7LYUe%_&ZOEv^x$zQFTxVW(1t>;OP1N^@3R&cI$Fk$E?zwu$st!*eK+s= z9yNa(gM++zwYAFcTvw9-14y4IQ9c*4K?3`?< zAssD0SVGc#32IVhY%*v^;jz1)0m%s6pieMMl)?>?)=f{iYk{aocm1Yb%FZ9OS0#PT z0mY~F0N9x5s^>hCPm{iJi1NFWKNP7P!e}0^$*>FhKnp4UAJ0#BJX<7-2?-C&py&&! zN8XQID53uyI6Sz6aSSh&Q z&EX>m`-lfUsWDnx8rpf;J?Td46EMrnKlUTCZ$HaVq_V@CG!&n;UO_6X4ysW@zhD$< zo4U3KRHmHame!6SZHeQDxo_9L*nF87AVLXDBe~4GE!(d6V zH3UD&!IC&JM{lNrkiRo?wV6?I&(kuw^v3No<)V~k^&`MFc@AQ}?TtfGQJ-wmed=w& zGRD9#hUSCnE=j!Ux)BRH$VXepMQnLJ+i~;kp8XPlNOCZ{F6`ayl~?3ta~)F#SV%^J zSwN=-lWb^jFvstpMuqfIoW3U&-bCl@HZM+5B4;~9v=_@aYqesC)zw{9KB6#I{^c1_ zT=cAJHg|T-W)G>v9%{TWCgbfY@UehVG0nceyOtr__hyTlR!g*SS88@Gn+rJMu-YEL z_?Zg0OpSFYj$08teT$jN9S9@7gT#`%&BZ~i=`9!3R{cKSoOo-3gim@Y4>szB4g$}SlJRI!HJt?51dobDFqAefd0 zm=->+tW?LkvN6fB-Pg$oKt%}zR18Ct2u$)eIw{g{bH-nXzAJuqoH}lBF(+9%gHzr| zCj&EmUvc-h%wWx(?Zu(5j1@x@pG5)!(}W{1y)EycYG6F9h87&b`qfd`6x)?BJFe3^ zwEd>YjZ5^o!rliGqsWvIdT)3-NKvotmhaAw zXLb@Am%c8JlC%9fQf(S_4B3~aDy)8X&)ckS4QR^P?+oB*wrI{{W=ISbBRG^DZbGud zjkbJOAy>Plruiw2t+*MTPy?hQNLTSaTNOiV56^k)5w7qMuOtBb2LVY}9=FvU*#Gte z{iOw0hoSnxhKt*Ma)AJ22thE01lb|%mh!znIMi@zra`Cke9Iaco;XPe3Qo7<h99>{GrL-43-df89*`_6ISwT#i4^xNdM&!YN5RUn+Z@Xa$Q9VGu*wLw}w>{b$tKi1ajIKkzFQSfh<0}0`l=N2`Dgw`F+Jz&))gs z@{(X*>wY=t_v+2iu$n>Kjrhg(bl%fX|E`$jaANGDkViFx!lakTFm5%&% zERDM)Iayz`e&uyG(CJ*w=`v!m8h3Ekz}tq`bBNR{9)(5ourN9Qns&>ZBG9$PX^9PJ z$r7g}{P9fU0^y@G0l`dFu?G~F;S_WrWgkIx^8|``t|~)hFxxqAzMMNZgGH@tlBGav zv%gYhs&@b#lPwv((_Tjy$G6;z3ufn>IMTiSiYwXIEGPA?p%+ur#{f1!|U3 zT|a>H?a3Xd-TA|wH`Kn}*7G^LaH~eE6wa51o9vhmdzTpCw0qA8SWyHO()92El*1R# znV4}7!bFAKhvpevIwiKo2DxqUmPW!_)#SWqpUR`U*SJin=>K(i~m&cIN?hTD%c_R?Z=8dp^~+z{~F zbT2I+8p^D|4(>qLk9Uz?9Oz#g!!-chmrVl%kcs$Hkq;?J}?Ox3oyssa?)+%m145r8viRt2HKrV`HB9$s>x1O1cUBe_#ry zgGq}CXiF*P&})~1j%$k&MtW?f_dbt*GNZ$20|y07$uCIT8h}#MPD$Nh1JZRd7iUMo zuSBR4SwH@s2dO$_oi*c&s#rKMMp((?V9xogIW}qmr;eGw)^^%8;vU5Me^pF*mK?BP zAfoCtTp#0Kl4k!A^cB*yMo`$)ESkdXp4p(}9*V@!X>GM9D8T3~G)L*hVF*!q$s#KR2GvW*>aGo@JLJjWSPqXHBF3$C&Ujmw z1nHp&%o@Pg;&R599(f`&{Sn166Iqol;X0yx+LL|6AU7P||W%Z>RkV zyyVSHAbhBIZi*Ub=-ZS>x}A8qifR_3P)aZguB@N zm}Gz=yTi~?;XQDji9WO|yP?yABuC@r)}DJtPI_s;4BJb#vXoN8bGyRe#*I~%2h`bB ziFBAkQA_q_pl+YMm~e|iJHvao^o#=NGR+T0Rc`9Vf#hpnY+f=$qz>FiB)fIAE__)y z2K8vPvtA;(CGdDyq3PSNw$pRt*^krQ#+T0HNDk2`u_vfwHOz(^o!s5ToouHNi{rPm zZDXdEra#kY#>V#7Y{LX(KlPXs74G*Xz*%YR=X|r%OcoYTzdfVyyvlw7n@)e0s++%N zD+%j=+4+}FEn%cEb)nlmwivhN_Xyrc@;6NcJDqr>b{@Rb{Bp&(uX9t11m;H^OsdyG zo&EF9+IZ4X?s9PeS@IaVejqA%lBEe>`~uxV1}OK75Qw@vW2)my&+-@k5Jju<#O!XZ z``aL6kQ4<^-l|&R(d&p{M|)nYFAuw6&g9u!@;p~$cD{eAzyPc)ItqL)qsV%qvFeF& zvTOEL{_{zU3IUXNAdGMn8rF2Z@+8A9chnIQ2J+b_JZF?|%;+!975L$Mhx%E4Xkx5o z(5-aQU8{6AE&U|w)11#!vaX?0Y4>ms_flp$Mc4N{>OL>(8k@6MaZyKPVQ{&Uegk{uWxRx zTQvMGT{Y~ctv&fbd|aHQDRe!BBXc^vBpO!{v3izwosZzDqvdXmYxjc{_@HI}A37*- z6Lb(XDh7WEB4l#VV(t>dxb9z>X0GCUt-*Rvs`#>qD8}kA%Ob)p)IHy;=>0RdT~(Dhe68 zOJzer7^g95~dZ3U@9~38)um&-eGtRvv8%O0~*; zTufVd15jB52$lW!0RQp3!e8@GnK5*lshG{>M0Dd5pB~nR^7h-kM~EP;T$)j2g(VJm z9KMbxtuOa{1C6JMQbw>={_iDlvQ49C4%mJ1!Up<+v|tG^w|S24Vuk* z+RJ+GoUora08#W41WhehBY_K`3;w&(3aII+cN9OZAx>g&h&b$hv93I>imXA`D0}RZThoxrpCE?zQ}{59S0|wr80W)aK7iaP0j(?%(^+WdG;o zGD;i*?OsN#tth_umU}=^nlD1})1SMe-2wZy2SXl;i=u??leiCM0%g*Ws+|Yp$(0o1 zmEa>VR&eNy2doUS=N5l13+Mj`gAFC2jhW_XEBz24V7RlMRxdAQxUyv;^tB2_P-<#ET zmtw|c>wd?0f(FP(Oa9kK-%a@ZYRJSb8t}MNC3`hi+@E-8Lj&fY5BX`^+jw8S*TOAY ztKrsZ=-q?=akuVO-W*(pGXjwTvxvMBZd3P6Ise>5Ar7Tgh}PiPT0h(V_{wy@ziF8G z?6Us?I1}+8|G>OC>?h3o&STI2}ju*LM#G-@UIa<2Ne7{N;~M!gWZh{S|zqB+q$o`)nADoq|IopFGiVybAV|5y%?Z&HT*J0urH^o)El(J z!I5OYK-2*}2!RWr9)SytR5i7~6BcPrt5_U_vl6Yv>Fuv&`uo8!n9kLcrINv-l=UTt zhG2at29zAII2dIC0**!?X<*hPfQD_B1HlPg0X;JD+qi}mGhq{`kOdg(F_1x}^B=nW z86pRI`Aw$^_ZQp4JYxUjK3zlCPYbIqHLJC={Ju->8GBtp+yoGZYQle}L`gNt+U9m& z5o~Myds)BvuUKKo+_>9ZTKS&%!1a^-pw)>#e=b=Ksw0NTPMJnzC{#&&Pzn9Hmy+>} zFZTYewVWI5*pYeA&=?GN|2qm8Ow#ASK3?`(Zmgoi*1#CL4b+bNZR0a=XR!ad{Eq)e zF!GB4i=%QCC+@_!T>^dCfgz2i?@T5KV${X^ulcSrf9RCU&@l|2UQevq3T5rsE#`lg z{9wN1cpxvixvgGf&s^DmUZ*cJo1uETb%*9e(+dm z%mAD?c)I-=y;1sL5g%_1rM{Jz7bMK3K@$q3kpp?9t7o@xmP>BET&BqV0*}#3%8ztdrZ$=_Br6 z>o)w%P!TGe#W3}jQFn^g)DF?@`5GS{?s4>18kzX%Cyoe8_{FTQlncxBWAJ7NX%utV zMcN)AsY&S!3aY1#Od|9g6WvxfV)sMFrMLg9Ae6<9Fdhv2U%$Qg_($SjFCM%gedL(e z!TiY>urW(bU26WU%9x>rW%=iHTs+v>-W^f}?l*cz|1%LiS^XEB{}i|Ce0<-?TQecRl9z_pk7Y zl2$OoPTh{sbc>*;g1u4(+aR6*I12VIijzQg7R_J!|B0J0-^}cpD=;#5z2GeaqkN9w z-$EccVGJG2Odh1*Jf1S@a?-Nrkj;2P|6e-z6D;*AMA2oRQ~BAE*yYU)dXyU}O2l^&-U?EBf!M~z4Co)wWFz9n!4 zIZb;U<{=*BcR@9kJ_d_kU0N*N-M&Depb$7z{3a&m#8YBqL1g}hQ|-!YW&)U4?+GcH zyETgaTsqDVj8^6tkY^VUo(3Z(Wzb+`)BI#HhW35KZ_Tt+98EH1M%7$P8BSBRhi{S_xs zFzxZR1g!<1m|**)5c}8nx!j{lOMg{wp4=|&^(j7QW)w?uRZ_9R1^6= z0ms$LgZ<)FQt8JhSb4f!T(FP6qBc5XzHCX5Ew>!I9*uVdMtQbeN$9F<4&$n zG~aZ_CDmWF)Y9ral6G~R8dPS3BzRsbCxqzK_iIeMh@Ql7PRc1H)L65M0|5KfI^-zZ0tVF+bFDeS#eF|oZpS(=K@l%UR<5F9+Zn&;2g-0LB5<@D@?XbnwIa2;*Vx0 zgo#N7DS4T8q;EZBDb%>;x;lrROUvC@%UsDUuJ9k9GvD9}sH=H+m1-LpeA%xv0j&uo zh04z_yWL1G+4)Sf7?4?+F*!PL(5dRB232#<-w$;8qeToiA77{4t(CP@N*2aX+e(*n zzqXY~UM?)iReLkr-QW3fthAu7M2qn|$EgIx;-oximZJYT4^k z9XXy460Y)zw%GY&@s5;Dz4B|70ur?_<8FILW?=8M5~bzt{hcctH#?AX!>Ju?`U}S9(J;UZrMV0FUaqCj3M3CQ<=Dg7vGJyul3(ZFeAP zRP3vO4Bvx2^HpP7eav7o8UBVVR&6n`QSWQEDPv|9{cKn&SZby9N!WgCLgvkQMHe-p zC!Kztpv*bgAPZHZpCS1>%MK=L7Z+mZk95g*9n``KSYOXoWlj>aTrV|6`Q0FUPYtSE zmq`MYB?V+dn`zx^I2dTkjO9gHUqa3gY3?aKE&}n5BBuIFPxKV1nTa|isw+goiCu*J zZD%k*b=mf6iZ3I#1~jZz5>?SLXF%^%&C-f@r2q5!O5n5!{i&xNiqY)Um#TmKQ+6y! z>5a4`sj14cLvJo|qj_wx^Pt=g=nu55Y{Y>ri-LU*dL9io&ZCv!a94|j*Lc(Npkk^D zBuOAOt<2?RMlT;Pdud|*8$;pi6+xwFNWe)yWVdR{T>aX;i;jMCRT7&9hC>l=`b0U5 z`tFNdGFq0ZKt-5mTMJ_vUw}gR&pc~ZHGhlTDn)#CPHTSugm@yRb zdJJ|r2-7hMXF5H@jivyLZh737Ivy%-zD9hsW!&Gtzft)eS(8G?{93T1{fzIp%Zeu* z=qum_`Ng+?ar+8SQXg}LDWrVflG+tAUovZ#VH}uJUL>F`%G=L^kEV%5=>96H=y6hy? zxY}8z^~H~t$7ro>yVxNlWJq8hj2CGV<*Um=9seJsr1r1OB@D@2S|60&lxDiOVz$kf zik!i!#=_qo)vKfJvTEvrDR5!FbrIRJP}DUyx18IT|17!YHeAI@MOH_IGtS=f^TQ0C z2Xylt4pt7=`~*zAmv^{Ks;XEE(wC5+BF!75^i@VuDdk*MSg(DUF@LPcq5;?h;7Fz? zd;T4>GyyK3$O_2v4YOIKFH_xmx-8*y>TGC7v60E;K`zLFW(7N4Zy^m558v|Wvy>C{ z;_Odt!FAycF_hed+|MWw_*)^nI(ypajL||2pLYGZpw)?_%xRUHsTilLQ;c}&*6H+E^Y~#)r;DM*x3l)#+ zH5<*rio+^!Y~f#nA-E2;7ZQyqQ!msfj4-kzF6{$7+9j=RZMSesFGVu%lP)d_wq#Bw z?hvZE%CUk`PX>l%syUi&`6%z2MtQevPXD}Gpte}rp?L1N2>61U3sg6ggLHaKPW>4(yJF~MPa_aBkV7t7X z=6v`fkbJFm^&r>}b4ledDTt7WBQl-ro2%~#m}&Y(N+f+K*o%BSIYU3Q+!K2`ii=yd zP|mzFQu&%O*x}2h!!DX!e%bcsS_t7x`xW1)xFJVuF?A$P7dzVAkHvA;6*Bf4JTMKq zkNNv6+TI^6MS|WSv$#8p#^1F72{&+lDhRJX*Oa;oXP7Hl)Y* zzCF?_Y;8J?|GuQ~@jDy+QLxa%P66!g;mvi+$?Y5s4j^_xEq@#($6PcShO{z z4sxNmVvQd|xaBQ(B`p$cPGhZ^JAKBLnA_W?FU)^Xh%A9=zAS5Nr zup-XqFUxg`#?7vLxU*4uf4)c`Yl->T6jilQ?v!j67%PH8^h}C;n8;~*851~OJT-3V%>7qd_ zLpCcKJ1<$j*r7HX0*kEo?cn*L`q0}<$?3vQ0~z?sPbc*k22FD>vQ}bM5_+zgTE&GI z6i}E<-T*th5Rq6TLG+AH6SdnQcI5TFtz=QF*36l<82j)GLOAKE0N1irkNjR} zWLZM7Mcx+Y{`z!gI{JFDyT64b7cOv^dnMSKgiNSuAn|J~U6Gr_4KLH!dk$OMyUyUJYtqNI{kKQ8xYr_SfIm}UBf{f`bwxbq~A!}MUM_m zR-}vc-g~|zxA1=3HVK$!6V5d6Gbc#fZDymb_^rO*2_zNbo=5hZYCQ@BscmnFx6UVO z$=MA>H9b6zsK49cKpzGd4ZDvPxOwd5{xC^M5BZH|DC-WRYJ=<6v|-2{`4ZHX?ZY7Ye8jgzAy=OaH&Kd7W*Ce)637f;WtFvi(TXr8 z0z_PyJ25r7zr!TJ)319w)xxuGrY~Hayz&OYp4drLIc`NSPo#VB%q(e2=wO)D4k{s% zDsCHkg7pQ&Lvb(dUp;FIzy3*Rcd^O;;Upy)zh$GhdX8&Gpj5MJ+(OY-ojKT^SzS(t z(`I`YJdUrtzpMhy0D>Yb)#(UB@-(8-FzhIhZo3Wo0dT;)XO~j1P~9M7rUBr;{7k@c zc`#U0#ybKQPPSX0ukw57rO$n}%Ab?8)Pp6E;2*5Qd&_zV$JTYYW0nN!3wq>PW|Ri& z48agDo2$jg8dB~FvILU}P$E89)O{tYZzE}E<7?NN1DAekha!y*A*_r#NGVGQts%-V zTp<56t0VFh1I~dBy%JUhYPsffuL)#2<-AUB5(R*^F1LRrQp69zPRFc0QnzYF#lm%Nj~0?+1oPCWf>m_oAk+fld? zT`pJBP$6`v<05W6w?QWla#^;DY~`qLAQvhsCj$VjKUaJLB%68M05ti2m!H4lcSOy{ zWB@1YzQl&_uw9{=W(IotHnziG!NrM8yCGcjFk*KkGg-WeB>Q&&Rz<2mw+T`@I{{A2 z0ldPGpyuIi=7i^VQ^)Av=DVaas>Nb9CMCT*znhZ>=`Mqy*32>d@U~Y%$X{jVyP=$6 z6Wz_uJB%^!5^-OGnT`cQPZqozo*$& zt@b1qi|mRTia&STdM9ljDf|NydkQ#OYAM>TnMsR%b%%xqi{WXN8M%5AM?6viL3^k4 z24GGn+xZr8QH%Sdp~_#fe=X-(8=Jc?*_XWP6G~~P&OTDVw^Sb|xfAgavB4fH;S|Xj z?!M{H=@X`4EP5(`xobr-#PgKr%8)SKnQNM8XVG+};}gF#>9|V;cKj%e1OSq3WTPg> z#UKXs4o#6`WLPWV@9}_o#@n2=4(C~9+svT-jC)7Mq9|u>zU^aYt-+y7pZbgKSg(k3 z^OZOXmujZ4Gwqv~F8QIVu7(%BlILWqWj&Ek?4*#@tkv}q%{nxJUUlA z(Aq5tj-gy7cqjc-1{_pb)W`PTzTKOP4Of#EoELX|^hx18P`Zy%)tYzt7 zvK0%?Fo9v1sr*0xy3Zp1Yu1UWKzv(@3=j6R)+^zCs)bwj;4&e~epLOuZxu(P+#7Ni z+k!jyYWm+$M!`c;{6*{cwFP@|2uM1r?S^A>(k@E-gtQ}1Ndx6Xae$pZ=k#eGi1n5p z{WinOv;;Ojka!!C7q1K{UQhSiH9Il%fDC8KwKCf`{tUq@^&HQ$Fmqnbeiwuw2-UcP zSbwRSaF32o!4dbVD5{ zl^L%D=F~AYu%xHn(lsvbJnq|ZCDnxvMTf8j!wJGfQ>KE03KoL`)Pg-6qOtBmQ>5wh zW7Tmpp0SLPDT40E+a0;D6NEk#D!n2) z;7L^WQh{~D6sS#%ilJv#M58O^kWodl(za#k__xT0O#hZkgQ?d{-0(43e^tUigWw1I zE7gOPw3rjTWZY|X9?R@G&e{p7N2CE{vuwHT+o_mky-P9l_U!-@8T8KNX%)GcajRK; z&!VS=6v5R#Kx3Yx-0pY=NQd+aI%w`GQnHT)#qN)X-+^Ixy82ZgA=dEm3<_Uts1^W= zT~4r4U2L?%rV=}Qg#>}@lt(no_U?S*R%lF^R2N-h_QN6|j_QKp>Bd%21s~A(6t$nA z#E^$#TDmD;Fx4u-Jlc5>1Ob^gHn&{t0#iblppsj!^Z7;U9)B&_rmZwD|sn?nbZxQo@TQ^6pCt?`BMAibMtKW3M#R4x%oUR<4M7Q zgMKaVkFV&TIimYrM)J`szaZlu+Y%#;Cs@Eyy|CR2G?n54vTs3z9nKnW8Lw#Vhj~x? z^fn>ae_3=IC(Y)bv+1ZRTc@{x#4bDZ5VVQ}BYSU;=>w(~OaV9hru7MbfTgE0^PyCx z%?QXg4WT`7QR;k$qc9Hz<^)H1keZ%$_WIS)(xa7KtdU=IBxb5e|Y^LQ(t$-_OSjlhzH0Bd;=K6TML5&+!H1NKm`-MYau1U@ZhJ&@i zZjXNTHOgR1xdI6tEb)a13?S#(YqcG&YQIwLA-4QpFx2iJSPmBzLOji-DF&doi)>w0tFBA*8x!n9WY*ka%V ztG{bRp)n5heV6)c{NNKg0j8djCbt9V!uzx$cSo*>(16m-b)J_E{!zv4H|MSizBCVV z=+MFRR?H9&DXM&U1srk;FgPU;p?3gW{1c%)`FQhx{lwU>-34`_6)88f3+>|j>(<0x zLK7&%gEtLEUAzXPXSn6dr6Oy@1Dn6?dHa);yM&;@76>nO1X++OZFyh6fg?3VUkGh9 ziELc(VHg&wi#~?7r-S3T8dpCTp|i+(*eb-y2vSJ0EJnY@kp#~ykZAb@ z`we=p>8+i<4z-3%W1rM3J!Yl7kA@Y}dwr6p8?s(3<>PCe&* z?sW8KpU(K14oRBprvX`qs_s4LAI44B`xJ8yp=cC|ztc|+EUWy3^OV&X>k!Jl0!*q) z-^x;8kjkB4!bH!>j5u0LPMu6|Yh#lyAy~2{M+o5AD?`rrM51bL@X1KytmssB zLVv4!ohLvh`A6!5Y=a4j`C?1m?em0e{3!(Qm)`xjY5@%J&-L63I)K)sgM|Xj-P69v z<02A8rX2(Q=o>~R*u0HNx^UmfrAp;u?464ezflNaM@a^>4{kimXY|Scauh}(E$Q_N zZFtqeDm#1}SFB-r!yL-|jU0DSvQRlGBQugFyN#_OBg?)1%N`(mUpXc*{njZbm(OKf zt-CY|IWsC&1gR%a5gt;M&I}wiueVm;uyG;EOB;PxK&f9azp*Yledx`PyVP#y*~Qrv z*MV_wEw|PD&bhQ8v~jtX^tWyQt|9m@hXaJ?;U#bS7NZYanKYDdw-``sfWFvuGD?_JJLREp?}bH zbuv3>Kfp%4w83qf@ zj7T@a_Ko}JCA7I!T2lK~cub;1;?TEY1ikeGISZw?jg>@K+C@M;)|vO zk6h*2vdK^%%b>khUT~^pzPR6E?ZA2?-G41+55|5$@uSEaIK@edTpyA3m~ANh7K%#W zwrTOjC_~U}Qar8yrah`&O@}tUadkUuwA}vU%SZbn`PmEA$t%?ZSoCB#Gc)U63bFHZ zQ2+`pZ62)qHqo?D7bEzG5&Sl=w?}K9zeD8iKFrTG4pECYtxFZ%&GzZQAxa}Zamp~} z2mydo!C|5LA5{n=%cm>x)iz?05j16p3jKGs)+H@w_`|qDF?od_3#8f+2ptaWeTBp{ zh?JVB#@LuR5nEKy-hAe#0qeyysQz zW2^0B&y8_K%gddQ4a6JC46we!u2A$Zu4Fw&iJ*kqqvG z!mMwN1 zcEj(Yv*0|X8^(Bb_vcUR>?GqkWJu8Vw|U5^Ur-sn(#I`5VIoP`uG4Y3Ct|Zw{DVa% zW%^IKuVX7=q}QBY`&ZttyUCy#chq_{uYaO;jw0?>rQivReE*|jI-9SBG`t029S6FVtyGqM4RTfO6`b8o*FCAb`U;7ezcK#g!=0m+H1m+E(^`eApDXuT zUO}!1J(lgd*}GNq%5J{VCl+N(0SReO?h1s&IP-ZNAt$ zekN%)F`>loDh#5}5T&syLfDBh{HvD`rH@Lu+eU2^ey?^2NN+u^gk&G5sJ0vc5x=-R z(^Ge%PLVZZ^}Dq6(-XMAsu?rBT61@(xHt>7^bN;mEJ@lW*xvIpl{}ORfIS9zMCE9qa(<%%fyMcvB?@vt&eXk#szhdg8IjZwB%9V z-&*QojaeX9AoK0%!mhkm%o(PiL-t58d%MMQ~*G)`2Z!E1psUj}b1zVHnN?uaC zR1P*p`? zHR-_7Avqs|DUwVZ{HWp}w^i9Udd6VXVc{HDX{4d8XYXWT_rZr&4XHlmR`2L%N+y2} z0Egoe0vC!+HFeT*$3o_+Hk{~9Zy3&C1|_>sIih#!q>ZU84?wjTIn+>L*QYBsVyd?T zYo6g#H#Mzy8fC1`Ew{^YGp3%;%)bWvFP7IUT|m3@vZ@`D1q{ z6(%}k3UR@4dTG4rje1|VaK;2Cu6W1f#jGV3-~9u6UGyloY9Cp_iKCZUND#U;amU&5 zGObB#B);8jaAJ!qf#{FOMf5z8JohczgMupj#&_vL&}qEfY-S zN=LmhG`e=h2IJZ&m_c#hDIhkL#Z_U@#7!qjXQ2|MJlb~0?N&tO3@!~$v29x0I&N$) z<2xDZKd^bk?4!qSV7^qEtIxthy1%I0qwF4pfQ#L2_x4_)V{}bY*vJiIphnF(+#?si zmJmGKVC**kD{tdtBw8T3*WERvB6Pd{*=tVLWCkBD7+zzY(D52J0*bDjb+w&7@$RUq z{t1k4+FE7Jm#L1r$t7e4!*IN;41$eF6GjlXVRx!r$ta-noT}(%SEO5O5qDVi)w?`j zSLe-(gi*V@hykVATD`q5@st>O%2^3=*Zew4lI(I(${yrwn+N)YU>bD zpm3l=YXl3ga3G(MR%G5|r>k``Q$Jcx!(Oa7H@q+miT_fW*6AC%)vg+QbwV|^Xme#U zyXFf&H#pH&0j+phIq#!187H$8KkWTCYChI-C2UT3;{aNhdK+EQ;p=qjj^G`_T>Zqx z&nO>?xP<+c>u=T0LDneWX3Ty!TqH%%|ARGYh3?6!KbNIQPg&ak*@dvDa-56=_X7)S)#KZs2uy=izf50lftIIK!S${ z&%Afw9}zUpY&+6? z+#|%XMpgV`aLbR%%8odlYc4!$^s5}V+9&Bn`%t@>nQv?_I=qMyTy^O`HuM8ikXJN3ta{(xemj<+mbA7aE&;b)|#0Ab+UBIqKOPaWRgni<%7mzTHQt_?nq-;|?Z%kq`u@b?c5+I?(= zEa@7Sb(<)c4hvSfW${p8krd`JC@nc4EqM&V!^iveYH0g~vIP1ZeKACE8`)y_Nd$}is8RDzcI3Xf&7X01cuiiF-);g^FliSWX1vU@1EW$^J&^@fG z4V5;JOcGyjoRTpWEp8i@9d_^n0qj!EM~xi%Az!z}IR{^+>03emUvUvynVCk3iawC= zfIgBxhjOD3+0>4gHkv@t^D-yR#)8|vEV^yYFjUG6uFQOKN1Nd_Y0!2wA{!7BGT@ zB+(`puU5$8uy}N#v-}mXq&WM?%B`d{Zi3m(Og@gj&c*wm{LOLmK_=$JmCjed6{Rwx z0qFrNT~kJXu45Oz7dxyMR=y^es=56F$6=?*0zUfPNn%|Fi`V{M`kB!9^wlI=C;IfGUERJsIU!!d76^#i|fU4fr0P&rBB>)nT#kOA$@S|^Iy=rPv;zRq^E=Hmq+I1jcA zr_W0YLD@mL28uE(kmhJyXQ5Vh4WNj7m&e;fVeUk>Mw&n_aI?19_Yn#)vCo|*2kVf^ zF=G+Pbq9k%!AIlE4^t9CZf{6*JneSMY8iexL}v2R=~dOWup=IZGLoLJ{Zf8DoF9rg z7g?I|rNElIL!C$MB{Sto0D}Hur8zAr@bm{uT?C}UUJw0#SdsDAvTgrGywW-PM8O&) z(K^cCWp?_Gfr)~$tifnpjH4omxm5D4r4wz!wCPtrH0^L5fr%|LC!BnkKIBTb*!Uu} zq4Kqgag8<=PO<7F0UuwcUz*NTH2=Ea>|kI%loA!vR5=z&(aKOX(58y;!`#rQSL0v(akw_87Mg`yCV@^;O&f7)t z$5j{FEzBk=SG_D}{l*}0?Z{i#qM<$@3UAL{9bs)@w-hh4=`-WM_9gP88(Zh{*CN1A z1~Fh)Hy!x&`!`)t$d|3~e%Cdg2@Qh2iEZ1N)f?n?J1nSmnIA*lf3?8jbqw}aCrIhV zJlfa^J{Xg!*vZlsbCLfT4!awIg;;~#BdTWHi;VFPT}(Dxt6n&OJl4%VslDDkQOaqC z*dNK;kD|5Ekx0vd7~^CNVoZn3%c+s@%q2@S@BmxZ7x8RDu4{5d)D}^4b>BA~L2mo9 zyQ%HNu@*_l1cXAn6xgsS#SPF|%|ntPC3V_*Y&HCuRo|-JrdI>y+{;x0?T%fiBo0oUvrk^b-4oAJeCPRJ`HMdw*(3F$k z9xZy-`sQL|fB`6JBw#un`^ z=4(Z0K0Ku`azAl++&*Lrk-!%t96G(d@5H?KU@3j$Yc~YnkxFhPz1af5*O!G%i_5$q zvw{?0+>qoTq-7!>m&?U;dWpDx(+2^2#a{Ce7NoRAlg9Pwd#@_bm#?MgtjT3{nq?5M zy@YoaHvGKRWo_AM=l{@k9q?4W|NoG2Bde5*WLzUz-E6Y5W%V^85nVGYkv%dRR#s+m zktm_e>?kB;?@h8t_V$0ShU52o{m<(=<2>gx-kec;z~}r3{(IC z#Q)rCB)!Nos8x|~@M{4LKJFBv1f}EJ?yMu^Bl|}(3_-STJWe~3ep#O7uh1n8-~?cP z=w)gTGE;W8S7kmuTXnc2bb06b{saaBH1&%@4fy z=V8!=YyXpk<<-w1--`^ZZ(BWEIN;WP?S8=LM0$swCyRwO(>@)DT~PqZi9nzfQ$fY- zIJE_bkICc$B&3Q^I)Z1{Nl|Y6LzzR_e?CH4AGWN@h%%G{;_;S$hT?foFAjP|+sQmV zxBEW7Ykn+uh${pwru0w<`7a*Xqv0`cyz3ypNUu3l@$%WdJ^+ggq`zwS=IaDI%(#PI z30<86CfekAdT})PKr_E?GMSMYK!{K(haqH&z0k)i9u~|s9{1xVbkJooMiI9k3W2NA zt_`+$oC;yjBn{-6IG@#vjztji{1t`d=nCEMvPSJ% z_^5XyV=jYW@l8r-8c0OgIy*B@*Gl-qQgFv?0&D_sGY1x)p~19kYac&=jTUO9Q=97& zbgx%-0770mtL=7P*IK*!DrK3b!W+Q$?Ilrp#{kdBlbjxdyM-S-ZSH$;Z0jn0 z{r?J5OmJ_r-5@g_+UnQLCLm{EYl^{N{`}5{M|@3_Q@bsf%In1+(?WXNPLKILPhE@; zWRCsb8lNCfdoJsme$hL9A&n3jD4o;mgpewVBi*;JEm}ae^zK^S42Si3PP>y05zG|O z+lEBE5P+QLKkZ8zgtpO*wy#3yp8gdN#P}YjD{mr@N`cfxJ!0rxr`pGHth!kD`axR0 zruxwYgspb%#&dM@@3>SF&(UP(<73J`+$u*Au8jmPR+m-UP8BNF(ZdfKEc_foMcOl}6DSE1}XWnU+JKL6R z>+4*;Kx$%bqr^2covl=zdipcifGh?EbY%X|~FKA@Fm-oj1d0Mc-PHjZ=|!;yryl%YWr6ism}CeD!H5&ulnh{p-(sWZUY~+ zk_APye6MO(>?71k+$|N*Ey_Fzax9mrRmgpDSV}1Zf*8p|fGG~1zAZ#_^S;Z@bXiEn zyQYPKQrG#})`3@^#OK4p-@4O?)N4}Wz;&7!e;rhbRv;7O- z(9dG^y*{)~+V5_DTb22y6<;4MP<$&9n@l~dbvK`o0Gi0lFDWg*GJK2-tNJEVlCHfi zv#r_om8v;lzsEcWvf}DNacwx~pV@)sT7MaT^$lKR zar|(uHd2ch*r=ThZtQT4o>7d6ddsie63uO8rB>+{k9oCT6$bL!KhM$TWV#azsqPoVn%9NEwkGXHAVXuBC~_kRCwcH&a~oCQFW&bc;>!@t{rK(1j=+?j;1x#2_csV6RtUr#alCIIm#+nX`ICnPj6B=r z{xx^Cgtn`eu)E8%xwM4WasGOrkidtWp*)X8ykqpPAb0)qNYWe$yE`JMX$C92B=)E@ zSl#-o^UVrbMGOZ&dakW$7#ePvyG`{sP9$VESr>G&Zf|}2FuULBK_)|6Qc*TNq4?M- zJMsPf(Qak|ZSDl>EETS7{%2b*+LW@k@mhkt;(6lx?(Fx6jIuQA$Z0 z%j&R96+8}wa@Mim3vapU!J6`AC;v|N@>alB=Hn($gLt}nyVnB9O6jSok29X3y?Hp0 zY)jkF10pQHw&UkQ0>;LE$u%V|n;N>Q-9 z;3W}f&xM~I_w$pca+RG5$=qDDm*=ZAYfU@Y-wwHc$QS2toe?UsIOq)B*(wdV0eKf7 zQ`!~eaD@7&O7HLl49-S4m*rDRPKV)TGzg!7A`|Rno`D|M;DlMZ?o}cE_&9@)9!@1L z4vRM0B0^#!=JW3c48%qG^=U<%EQ;E)wzk|6fzub|z%}xJ9)(c2+mF8sOg{?nc|5Ri$t=qC*znA?q&#V?`K7zG`}NG&zOTYo&zg>a2;U~|bgM(VPAd1ZXJMDLgV_v0z6sqJ%gqD)7`?KM}C z$+YcOw!3#n^6z$y4)we4nmrqf>}%=OEF|bQ zH(smTny%&!Bmoh&bI<8Mz}vai&ByzV>Bq3{rq`n4mfJGfKFBpjr4;KIOX6N7_$SRc z^%}(XS!Jr2im7aNgX4r)n5j(^P}3KwR~IHRMV`CUWdk9C?Gri`d#0D(cld_imU;#3 z?PF|gthhKa^z~Y%cA!_T-3s>z`QC7s_ z9Ne{@7)?3Szx7)!zLTPJg`Z3N)7R_EJrPB&wKGi%w?r=M$LkrCl-;*;UTLZ&dqx`P zMD_ahU9&8wjIe|lk0s-aB{a=%cz(KV`}JgRfj`sx$lub%#+r1guxMZ8^Ma*MoLZml z`Jm)Y9_#aTk)KH*B{|f$D0Jj^q&1!O5I~@VO(_W3TZUn5d2_yD$Qvhm=xi*`w?L9n zeko4J<)^M)S4t7|^c0F8KUNKP1=xKAyP^L+zUiP2FE#u7zhF5G`b4XS^IUKKhG3z= ze$Tq^w`oj~d)e65U$U9U~PB=WM^}gN5<!1q2aK{!&8fGt>`JS{kO7mZa)4-`(w_} zuz=9~_-Lm({L3;IlV(7BZhY z7plIqBE8Nm>N++-buoBPqJr&U0;9`ouT*=|zT==|Xz(!F9`?36kLTSQ8nnbh%`!KM zadEP?C>G!o^Ze;rJLd~#Jsvl$8BQ#hO$Q^-76cWN$sIf23rV`VZrxPJazSwk%u3Bk zyinm{>7c!DtRaCSm4`X~^Ol~o=l?0gJ6ZW{*kW(~-75n_z)qN&xMF=jC+u_TS1gw{ zso7#B9qC3m39{W)QMUfe+doz3YRp0@wd;YE1gK+-!h?K3hCVX92&R;FB@Dnxv@7GC*%e|#eOE>?s zTCbA$VN(#&a19JH)p1 z*^wtg1S*QFHT}Zf5XPS4!EIsV4DfHELci(-F_qf}fr7IwmhKN_@3z zA+HQo*rONU;2ejVdZXCc!~jWxM!a!oP_g^2Dlvj>IvD7(NnGOA)>r1^KeN-&ku__T zg`9nmck@b~uey*(tep&}JYl1bgqY_RYHKw*T4Tk1;q!Ap+p3m{Gzrn&DXK($kfNSa zfa^;2NSnq#vK4Dw{Ip>xUCdY4w_(8`WAR=DTTXmu_^DHiy?JvijzPF>ZManmLbw5( z>2T-iUJi9LVn~3Rgj0t&TlA|J~)wmy5)xAZNAT@dA%hd1FN3 zFxope$-9spjtQ~Vd)CTjyH2C=zD9#8m`Djbl19k8MKUjF_^Rw?1c9VxD6=wb0JY2x z%W?R2YKKVMh+z;XU5hJLx0)hZaTJuY`ExwyAxN5m8V8xtg?0diT_o#MTT@e3Fd>MU zw#?U4TPK#6+#sTY3rz5T1jasej#dNOeF|;nfKyVigZ;?pu=IaF%Cz2v0}U@IKMWuq zIU9Lsri1DJixQ6i$_nU{8}1Z|`+wY^tQqxE0z!Kee2h08G-Gz+cfa63KU4v;SBL7@ z)9+A2Ujyy%BIUf`vO+wBTN56e-?yqU5C1Ftb#mX(57k#SnQ5{0nhRJt*UIaRBARn2 zfKXuSXq@*p9FI#Ta1h}fPkPO3*`=9&?F_p}A0ZA#5*%F=iF_X9b0rWH6gn+JNs;_D)w#e!?#}s;YxhK@zy*pFL{rJ7XG$AydfdEC(X_hq&m$qo3AKv zot49equqHn>pvs$3b?G0|M4)ED5d?cc z!;vBk2i{lus)z9RZGjSe%LEQ|DYl~bTbDh+=c7VBP#jxebIpp95H1np7~CPeYJ?Z6 zsMFFN!^2m60UAE_fQ;@TKmscC4vM2z7#K8?4(DP0MYug5U2hTOr_OVhrHdEn5)lOg z0r@$*Fh(%(11ZW#X`-(T|A-(Zm!)HnHGqaU?s2$Qj&ze5ZZSq4mwU5%oFf9?=cGa~C$z{| zH+dzTBJ^c*xJHp74)p0>6$N=D=7>-^;X+l=K=AumI3d6YxD=XT1kfyLk3!?UV(dn1 z`a9u3B=c>%Y9+bn9x9NeBd}BhB1*WeNgc5@W9f86 z!-wkiyw97iOb z;U&UQtH*MNeyHmBiYr;9C}*o6Cs`8^A5#LM$PUD6chRM zK(%NLU)|RXJV*(wvPY?hz%Av=k{jyfvS5!ZmyEh%}p|({}=WYsMHC*!>9{ocF4>Dn*!|}*)hC_1@KIh}TCe6MOsMJ1`cJ0jM)oOq&20U;!4w4x| z1{SOtC_?J2RTRyHBkZtDdhbY+*4j_KPpAC5IKYJ(Ruc2b6h44#HDt=VvmlP71u!x- zKP*=NWh`)=I?E%pJTzSTwj%3rFTDYpa95Oj6CUIpgG?zXeFb6ofMKwLdgicnQNIVr z_2M&fr7fkQW4m(HbtZ@1f$>G^P9`3uVbsQ1?_A}XX zozDos`BBIeeFeEskC7=aoxN}*g%R?f9{Z(i9LfM=2}eVE9=YX4GLhh~RUKB^sR)16 zboNz&x0b+2k;Q2@(>1Zkj1Z#z7hD$o@ErwI(x5h{|&mDZWc+`NE&olXOji%U$@__8RUfQX=z zBOL?~3j>{0^>KM$5F!6O-W+h(jj@+b?`z9nr#Hz_*R=#d;tALAMlz>^zMk&jJxJZ5 zib6BWE|TF;l zN1DAo&|$i|%_-LEmD-trlm*frY!p2qiQ*uyL%fwleS6e(9whyCcv=i}CX$Dc`c?~r zly^9Bl9Jjp1GUIH>7oNID9HIUQ%eDlPrXc!=RJBd1h{)F$o|qH84LF<>Uxar6S6cb zTglhXC|QL5reOulWOCObloV0l0;!lF%4j>hR3zOv4Ax5UMNZ!KL`gzwcL%*!>ZD^& zTxXuy-y!q{{)vTwS}ImSu4vixHyzjfQh>evqvQAyIs_Oa$7Q#cP69fBJ$Hg9?&q(K<5vWL%?^q9IhWvVpWqj$RW585e(=UB$x^f#;UafnX(iXglR^m zKrTACl2XUz)y=Ck%we$n2!|#6Q}VaJnC6_P)LDt~Q-NMVmiasejfc-djbE>P3Y0rS zK0YTys$g>w`0#XHlG;x_AdP}Y3&6?_`~5X!N^3+A#txaX=;DSeNddkuRHZQt`@Y?g z?-!5e!p=E@GEp;#Hmu!4`pk^-5F;Cu8(@(xPhL zt#Sg+1GTg|9EgM&$qWLACg~tpDl1e);U_1=0o>@{5fCrnVN~{{blt626WnKytzo_1 zt90OMf)wTG*r=r#kSVBNZ}GjEPKGd$S7}&)8vV~B`SplUgUF}n9Qyp_VmW`P{$^qn z_;^swaj-1tL+oJfkUbmS^Jj-sFn)E1OnC1%4eo9igr&LQa`Us6?IZ^)5Rwr3;tL3I z3=p%ALB|N2jSTHI695Bhj zO6Q1OKlSJFJL1gsDTroIo_o+3mU~U0g^jqRu7@%HK-NfR6fhu~aE&gZ5FE@sK*b}w z_6sm7j?4l}$);zu-RzP9Oo(Bb0CPXv;B~QZjcDQMgV))g*|qD!UO!SZkI1BFDD!pl z$D(xEeSdQyqZ&>TDTS)SA%TLK>7=OrQbJ%sp%vttSrwsC>O&c*Ux9}v%QHy<+%0ll54O;Zr@-}4>R0NX5GlxoK1F{Cp&NyofyJPi z=spm`$d7@O?--yio%S$GbfvB;5NmH-NanXl>dHVQ^V%>Up?3{M$gpe`g)Yn$o4~Cl zUEXiBNM>Dsojt!4+KT(P)`m1-ZQEXqn&>$Dn4J zDhg{BIt{8rM6e%m4JJ?3>C=Qmt^j$eU=cBgWTsI4LM=~P9aYD=g?@AO!?~QN*z{Kwl{|%H){{gr(Tw3hd|`Gn#0YsmrbEqc z9?{8rgw{RRQFcFZT^c0-3>gOM7MgGh5*BKTSYaF}PC+O+$&a}TrcyCDF4?d7xqg(n zN+;XKrtFK=1p<6p5tS?jn5p~(K_o16Eeur@zYcNzY4FJVa(>1_nRbz{7EwJiiJY<* zORoxGD@(VqAoEKH`k<-(0YNHAI*LR)ta$&z^AkOMn6DS5sr8e|LYAJlu*IiGvLvF2 z&{!*dPgVCMBs2)2fJ$x&B8QsQt0-`e%kzPJ`tLaCBZ&exh2^lrCymtbE%d49IcSaR z53P~`P}f+fTlm8%D1dgK>f%B)N@7F3AY%7Dg9%TtI11cfr?$Dt0M`#(U z7;XsD;>Y}!k*)Va*Cfpy0*DXH zIV<`xi^v{&%$M+TUlO>C!IctX5D6^ zupBtqXu~J<#v|vcQcuCfd`W>8Mq&tL!S8|Z7XwW3Izy5GoIe=pq+s~G2{-!19E873 zZ@+m|&NfyhbJrjIW+njSvD)DjAeCK2oY2zPI z!{K(x#a1b0}=V?O3U^F@GMM z9ku~VvN!zH-b0d^Bl{-x%7f3@ zUyezRfMmxX-41-QW>Y^dG{;Pr4{FfUFgoJlbRaZpqs-AM%a-pV2h=%BN@z0f2=1_o zK_J!eK_F8I!h#rZkDY+>p4+tpuhI@W|9|-LCWRMrlf?*GE4}XFq~41r6|Gz)8g90; zI-WT6&^J(p@r7&fg;U6whU0jjITeyj5yHTE=%Pj7`8uYADKeX7tLt{4kVnq5yb=Qe zRf}0>&((7W`M$eCW#VfGARZZbu_v$)~=g67tR z`pY|>qL8K>%I8dIP_GioM>^&Kgc0>iDF7L~1Z;o?_y8A~C^J}!J22*YCh^}F@{UPX z16csXfY8J4`+*P=Q4q2e89@*oW)zY);fQgN_EX~buv8bw%uyLx@5aFZ=jiYd-A)OR z@_FYNl)ysA?+=i2=wmS+aHQyQO9$&EE0S=eX$jC&l#oKJ;X#;qa9aTuaNtZ6a;#>t ziSA!P=D}wkB;#e-)!SYYtX{uxlcyqw6auc@8?DJxhhXBRz=59HX@bcIOBn5U;XWzv zKfl&I8Cx2>6s-apPnC1fC}^=PD9UvJU&4?=0WF5wX_AZ}k`EIZ%()}9vrFHK%i=?* zW>|gLu@r&uK;g<09u&YrEyWxY26-@M(MHE1=PTNdi??dKbXEl2i zI**ZBYC9$l@&-KtK)&AL>LTw)aO*PnMfjUPRppy}^q{MLiv+w6CQ;La(0F;izm7v+ z6@_p?^6}3wS&zJ0iqJB5ZN}8c^>NLt*WqA5wu1qAXtVxLb_gR0I&JEQ8sh_JB>&YO zB=P$fqe6PU*!_{~JV zgC#AlpmT@?3m&@j$oLE>Sn}pw^F-Y`%3Sam1X%)?$^~W$$Rm=#@@bgd-XEcdQTk1+ z++}dW1Xft$Ad-Z|mIHDQI~ItqFzaLh{?GI&H}>~IjBM5hzh6oH`N;1-se%7~9^$m= zR{bCH1A(3L`M3b)VdMzG$?*wLzZqrD{fGQakTo<@5`eG4#Nz|^e^1z@jbaN>f5^uN zc{7r;;? zCZ6iNjR1X2d@ij7!t-zmX<+QTNS zWHnqq)09cxoGnrW5Y!HAuoyT_41UmkAfH2UYr>it5JrIFZS6|PAB2VgTQw)Sf9?o9 zN2^&{RPNlqpy_6ovAEL*~hlLre6@raF4$rRA75wxrB^du1Uml1;uVMD6e5m2_ z0Tq}MXAA2e`8bCI^D3dn1)n>_GdsNBBw551`NV=8XmlEwixn`JX8hMuNAN}j&(hSR z5YSf+eN5;jV$kU!s}7395PK%@>4S#_E@k#^ckyTH?WdF81JjwrCKcWbvS*uouDyjI zt|;y_FbLu9UW=91dcLGgIK{w-%->^ig8W5Om#{wTJe>BI*J3V!~&e(b8-YX-u)Ck1x@#H0m}K3`45 z6Xn@Q0@USz{vE*7G89_9H2Xt}YJb)tuG5LjF_5QG(3xXf3S`>FtR2WtUZ%qf!`{sQCn`TE=lwr`te(E>nr z^Gqj-A?RWMLac~LtnOuekn}vM|2M3Ry`7ue&2|1iyn}xQQ@px$QM%<1nUW8Q+|ylo zrI|UOk%gG5?Vk5tUR`~qvpSAvGK>d38T*ANdiF#(Qc*jjp(L#)urJWas0)7%97Y`c zPo9YJ$4BrNgs3)1X;Jt9_V1}<=aX-HO|7id&G{;Zzx%0Uk=k`qH`IlvYLXaIFB#ch zmO`CPOyudD=>yM9F!;x+u~_={G^P>BoP6&e29oId2M0Snz(K2j9!UqO;ykAI0HD+a zVAYXHpVBhekYA!z$+p=tGWXY=@3~!iw`foE2|)yr_b+V>oA-sx)i#v8XRCW6cZjXi z+e!2PHXcDxa-jMcKTUAE^Ito*zxnb?t_QDTc+YswTV;y?hEuowjLt#~ud$R5bU~SH z)GY{Aygx)?j?5?BY@Ap|jO$V;eF3KU9qSc{!c^7Fcy_{iruZ^{=+UrNv7beA5I~5u zbyM^ZrKU8BNrdgMS5fDJhx{~I_6C|@Ig07e|HcY8Xw>1^OX}G9Mo`6uAA6iRs1|}M zy9Mz(!h)VO{sVv}d|$=z2P{fCE=rsHLupu)85_?6xY(nkt|w>Zu0JL=^h-?;s2gac%>d%1mm?Hf@6gmiB5f|H-wu=L9 zuS212{Ff1xq0m6+>-xvGR_CUngpSx#QYhTpYze~Dj1}YKR<#nsB`d0~s-YJyRehps znHLm+)Jf7V=S8ArOb_Mj2#*8v4M4utHzv8))4P3wUdKs%eo<-Y-AlrgTAx+HNwxazp zOn}-kF;?mimk&9WhI6VIj->eZUM>aPNX5Hmw2W!=%~RJI!hR(a`;}pq0TJpX_NflB zdQnsUikydwCQ?6Z5X=sg)V2-~#zEC=5~_QWAoS1s3c&Iah8PD|XS)e!-Sz5blI2Y? zX%cNe5#F`tj@I4nF6(86%=QjJ0qB|ItPDtioTX}2<=ESoW|4i{rjGVM*^r_Eypja5 zsdu9{t;2y`hVrP`}ht{bn&Sk@;Q{g9ku7y)PniiRJOgRRzyj?l~NJkoO zL0C}tw}0r%i-h^wB+e#PdWRcLs%aJ;UDAD6^GMa9_*U`tbw=v809mW4Qy<^fZc5KL z64GXq1ThLEvxu3CyL$NNHLvp*6X>H>vz@H!wG|S?sFU!fI@}WrLlZ;Mr;T2nK;7yx zZlXO0u?M$N7b~Jh-3}3x2}2A5neg&^`6gM$=5xAS{eQ(cX|=PnKu zx`YbksvPqU{{9kN;6rKQXy3WS;_CWV^i?h!bEL7$gPbASH@j@gzkC{^zyi2$a~@dM z?}=OmTZ-KeU2a|!jOTk|8pc_M(N$PxPwP;;E$`McQ(mvI(a&=UJySgNuBQmAOow%# z%*m{g>bbI2*D?d1GZPbIm6*_HS40zD`@3Ueh$i3ApQxD#tadFc_n0-l@s&UPrjwc+ zd()DA!TM0bt*zsA;!G!ErGCzR1Ho$-3o<-aGf9;3=R-}vClrjtZeginl1+bGui_^dkdCW~znfgG$>07bS!FRpQCW!u`?b_Fiq`!4I35s};J z$$ZgFZS}T$`Hdk1L&Iy2J{x4~bem|z*dzw2C%<^s6tz&mr4edzxoY^M-P?egHyvt2R>QPb?as0tlhZS=nWM~x zY})L6k2z?WVR8Agg;te2t1Hl58DSR9H6R(2k>*-@14~XPsa$7I1jV6F;vA<}eb_RPdP=_XN12ge2i`V*sJ#X0usvBcnnx<=*tnJb-ciyu> zO;j_hbKqI6nVWOHH~5oaZ}7)wA?lze@Pj^EgLUgcSvvAhi@Te{^8|(^l{m%k;@N!A zc%qXeJXu{XsG(Vh-Wppp7ti|q8+x8jst05>U5$Xs=&@fewg7Rh0|lp#qrBwKR@aBC zdi^Ffs*QRh1l_K2D7Lx1>#%e!6sZWJL1E#*JJs(|5rIbj(O2E@rm_Om$Ew9$BW7mm zPVKu06&bKS-tFvkAmOn|bpN^bh^i~_$1uB-tw?*iU{SfpsK*=u;pB^u1fX(sYrH#cgvxsX$}SJD$x#Bx&3{RJY53~+|gRMh^()>S!;(QL9$@2ExO8jzQ)n; zD%YchCPGKUW05r^q@U#KRe_4vcuQ~0CT^OhwdH-f`(|iQw!?RMUBEP7x?WW-UCEW- zYw4HpSu?RadQR`#nZL@=7zy#TE_FZBgPv4Roe)z-O_Lvzf&|0s`mu7yGZ1+I0F5uYUFi_wqA<^p-UIkNGsrgC zHSR(&oi3Ns(l)MNGBnu?-5MxWm=jaR>9%7MyXb)Oc~tk@Lz~TvYeTiOU{|-qW%sR4 zf9hgT)BfI@d1Z*c2dgO~`*m}=a*3t~-||fJtr?_VcOs6tYfr5#DsUY0R(SFK(;zY> z>M-|AfR!?mnW+4jnJ$w+Y##N*(v4B4yx4Pe8stXnERv5kS2^>IPBDnERcVhzQ1GdK zZ|?G0KwI}E=Eqk)+a2ZhpR+krp_SwH{vjK4yIFnBEKuA?*M5uJ^Zg zjoe94bqnmb=+~F8fxBBPjUzG?21nH^Ivj= z!^dByLRLZ)1?G|{pLvTNr<{V>CZ?$Piv2ldkhZ$t?E@d5R9UFppH&eLy6n*pvOiRl z;|Hx!VSy@z{bUE1ehCx|Ei8MqDWQp2#sU^FVW$Q#imkxa9X_RO?r8J27dhfGRFJu&{mg z*bklY-1bK*-d|rJhAhBTNLE~eYFlx(k=mwUIXF<;ZIdjlsd2PWP0J(e(TgDU3a+Lm ztRkHD?``af^}X#QNW9ocj?M|@{o%!vK;H|BNvsKnE6Bl$Kam+8N5j7!4HS;Rh&}Wg z%+lJ{KR?}C;wEn8&A-#r`BG4Xqy_MeEU!`*X}S&xyg-ogU!<10x@u7NopuWVwZ5); z{bE|xO#{n!Hr{{LBbGD1DSWofWxAH8tnTqI#i(;Q8Jk)nzfOgR115bQ&BZqb4tZ^F zOzr9JX77W=Sxpu5Yl4DQc7j%EQ%lp+OXrs*_HJa-ld}3&GPvxzuB`3G8)f&$Gu@)! zci@Yt>Ao7r-KAs5y?<$c>=|-%jZ`(f@zx7uwqeEIuiC=w!Ik>*=XFfCRGU=Q%FCB) z1N+L1Rd&_h`}7ah?{ADv#k<@WESxa)oLcqtD6$=@amn8v%A2xxbreo)+H+6vtsGvR zygIv`>y~!ESl{55!T0?QW|vVH6iu1OsZ|g>x2NjZz9teHFOBsTW^Wk{Y8whuz72a_ zpG#;9EMm*GVln!4eMYXeZFE;kq3zI#$0hE=yWuU3jT067yF>d!LwjQq;XH=)oZ(O#Pq6?>}^3tKHVyvtiarvg`2U=&QaF^OdwSI;TFOZCS5CzyU9~zU?gL`>hb1-OLb0fU3|t1dcv0)W;Vbr}Vj1w@U#9&k;`0-u^Te-I8b$n!j-Twe3-Q#+$n8+$JH_Tfn1%8k#pfqFJyA9^5x*E@{dSb2!c~yAa83q{_LmS(hbv7jM4=+0F{^$KUMy<*efF;I&USXq5+XfrS}m6RqQcYbWTd2I&!R1oy1Fyjy6K~%!5E+! zwwvM}_QmR;`y&|Z7M}C^jR*+8j#TPZtT-3u^7--D6A|xdCQhVKapm6g(n8#C7PbU&m@+%cWOkG zHERx6RsW9`_~7RVI({t@N`6>2_k$8$DOXcG!UeQ}9@ZuL^yn0$Vq9Dh#{ZG+Worig zgclv9s%-IGLmz2_23I&L&J=9#Y}blqWO}1Gc@lRjYl+F42jewrNc=pduP5C~1DC4> zW-ANYdsHDgCya2fs+U zhF5R4yis3rZ-zF0SCBB(ma(^Xmn!r9x=oa$_O=^1>d0|~T2LTUb<2^bP9^-+&9vpN z=;E%snP!141ATA&c+~k9GTcc011R%dcokbMUKZB>-0K}r+^R!6EW7-gX>vJ`72AU6 zpv!S17YQbdUf?sjwL;4tux2I5#QsAr9js!u40XHr#nMyDiT{LFY}16)11t3IMd5WT z+)(EzT)U>H&HZS+IX-uT~06@X3abk2!!g(!){5`){ApPF8EHlWa3S3^kS3nZrum8z)xsGaLj6;0;@}0%qpOuE{+u0p2`gkA zH}7aRUtZKrEz6$&?a{|RGwmmlZQ;9P2KL{aN2bKfGET85hVz^UQr|6IK3SFQrQM3L z5KuhHRwd4Hg@XR_J(KI}U;Z?rB`?F~eAUawP3Eg9K;2m!V3dA66rXl`wp$@hV!S{1 z_`_ANcZHPE-xoRYZ>KD?N&5olq1|~)gJes)b7}UC{QU6F?)$B~M)C306&?*k3#62H z>-Rbn=rOufeR9Iu|LR+8b!*vWzABLDE>!gKV|nIio5ah#xmtDE@t1BzzQ5XR`+^pFk-CklTZFQ6p%<(!>xo>M zU0AoS(VNJgfAJmoz}rpP&HtIopSF6@JKO6vLd*vmtrDJw1J)MW!wGiV;FHY ziOFfd`Cww-c#37PD?9VCu3Dam9z`AT7n)H*xbImH`->s3!z7VOOcCK^Lx$4 zY@YkBB$;L@^BvZic*R8K2|o64-y7JHdSX`JAab^>XB?*&q{apAmJjrP&}1>KfSPs2 z%Ir={;$DHzY0zVyv{@cTFV&~<;9m*0JtI*OPq}BFcr%@8((u)$4P4fSGU&IwnnE4=j^gcGBYCf zMt<4vXPbVAZ&@4ik3cHkG4{BhT0f?5hyg2(&-n^{ANMGiD7SLWC7BjKrpDXN-|W!5 zT}8lrxu3)mw`4)`v$yEGX#XhRhh3^7=}Dr~KBOWa2w30Kp5d^nJVtW=CXtOb-;Glz z8nm1FtQ4;;ep>D)dXN%q^MkfqYn(&5Q@B;QHEeYkk7rr@mPviicj0~J)BA?S)y?L^ znxo^gpM-75v$g9t(M!(y*5Q8Rr>+Sy-MWtql$H%g(yfc?spWlnuJc5{f2^3Oom%|k zz0EyqyObs3@s}^@H2K}^Xo{G`q^q?yy59VCjacQsMKJtre;;7MJAlP-r=65JB)*M$ z`O@~*j5Mt>u0Vj9mETxWNQ??(&j0f|^hqyJ$FF7~$op7Y-06-dH+89h>COjAjX(Ce zrgMJCu+!rN^uRCizq{H~P}lsA;9lnNulvSBIjsqt%c$lcng*V01W#C!1m~SZL?Q_N z$pyhn(`4uM17D}%zkN23F6vcVy7|EOMOV+I!mQy*Rid<3E&3rb=MNKZEiWIP4O#ae z6v|~VsQZ$CoKdDwG=@j#9)nwQibeK+ta{Abl6seXEgHp9r%7_Ptq3kMu`$Ts)o+?0fZ3yKJo` ziJ-|UeIn?_-I)M8geWrxUo$s3d5W-4bmDcbnQ(4bXEjcKm&#()hSVqNr%nd0xC6BG zQB|!bCYY^P@;u`V@)rv07(c(6Kj9ZYJojTaHFiacQRYsr-n;9(&%eLjFg1ISblHRV zcx{5mJ+5Dt7pOXOGDTxJby}0G{ge5TyuNSBa#|oJjg}LvVd6J#Z$u(^_$_x6=5{8e zKWkez+qAa+C|A2&XP#MB+f6Pv*6x?|>CKm!iEBPKm`KB7`Wr-nMi0rVlhrBiv*|st zd*L+xJb$A1o34N(JEc_mhS<1wM$gseuct>CIk-8v59IM%C>{TcM5WZiONNCbbK>VO zu#)%o7*hG`o_w#teTVs%Dv4k}uJ`BK11U`f*pUM%v1l?Yote-sjQakh$$n_^+B>NW zf|ZFpCu%ft*g1AW_3}khCOA%|+b?#E<_4=NG~k)n{YPTo5bc~s7IBrX_MXERr2#x! zwyE5$U%%?6reY^t2Gh7+P9!9}q&uHcMy%G#cedeq#FrOrS1#9H_a5A+MAD_DT3CIQ zN_t;#bD$0t73>!Dn)Uk4m`X|mp^G#%_xgJ{pNt6^SU(*TiYa<)Ywb!kKJ+f%PF5%;fufoItza(GeqdQ}YTH=ui=G*#bIV3m9koFi z4v3#vB29clozzatQ^wfhz4d}(=2PX~<&sY7>mj1V0!D=ODYKX7nx$lJ}9mzQsPls#Cs{Uaga?JMUSt_ggB9*V{#;WOE9_HW&d zS{W=oV|J#A&}1k>G$z|p#oCAY ziQ3oBJ;%am(tdsfJ|`3Fe^F;=ud(@7qRaI&DYFroBaTnInhePN$yvs{2=7lJr1KTS zWs^93yJFdj7iFU8UlcmN{EtA{iT46ZPo~$qj!3KIT;_7!?M2)DHQT;@X9tIsS(|
$t|Y46yZ(B zk5|BBCP+`)B)Ee>bKh$2ATVmKpgxbH7OhP-Nq}zU2oG-tAzrBtZ${oOt1<;%F@g7A zRwPK7?>!m}ht|#a#{^FRKJCw6m4x?U7CYE?`b#GtX1a_?2((1gbs+n;GS8GpJuoFP z4LH&Z_L&H+E*9s`2Fj|cK@$;nTrOa*Y4_Iw4Md%y7s7>EQK#JtQ4X@fBNMbU`*z-% z6W=%8ZoX0zx`mcju)!geKE5|V08IA*e-|w5-ymX)}=-tp85voms3)__9B<(kL*ftPX$IEtBLjx@c41!dwp%wkhBoBRy+_|wo}DBs4t>7Z{&{Kn-;th^zz=&W>8fA zq;60G%{%KI65_op_m(w}SJzV+~# z^f6)Zi6U(f=!`p>sc+H^0N?93{^1{xOLfD6ctjZjlKufGo~}LR$|0%7a~Z6D*n!&x z3a&({p7|d1Y7wpYMUDRUt3iXSazZ`|q=LaAcHzX`4lZaYXY;+K{!{WqGH&;8ngCa- zz-JtkL8Pj`2ZmXS6KH$DvU7odAVRtj@tcxEbj**G{b zHpkoI*}}XRZyxr~kfOBy@g+j-F&3Hr?EZW>}`$jTq+x8)r1#=#Ft>4*M48g zcD!!VI_*J-zCfzMUm001%|+n|dik!kM&I}ET$)wmt4ghel$D^yO@*DZsSgr!cK5G4 zP}IAdCnpFuj{aro*j-@BkezCt{nZm}jqfj! z#nRa!D=6ihnq?uW{WAn9&SLb;+OD*KuwnRHfHK{c+$QZ(IFYJ6Q4=Hb@sPj70vZFZ~8HI)z*7kkj1-jMb?$U0|Np1 zi*Nt5dXRl6pf&@()=o_zHnQCUTjT%l{#?ED(9LJahhClRhe%9OqFEk(YQ>}^AD6uQ zxQq{T`jtKQv$;J>@?*9k4_xU6JMzF0Rb%3vjjRiR)-{xBAcr4_U`r98m zCBGbXLw|VE;njF(vgdpwEqx&uUbut&##ji(0tm)CyB~P&*&YgcC`GC17oZ=GT;N2D z}EuHr-8A|&b4CDdduTNJQ*FTm^usZByXCye14!z zaOs*)t;}*2ps)`9WGt`Sh)PpkwSQHsjYk2I!w5&}qAE2q{&dC&BWCEz>Zpclzp&#- z!0KZtw&_yCkVR6IW`h6UqNt1ePz@D7=W4;Fw>UoDaNme^By#h)bAl??`Q1841Vp#p z)?XctsVhq`F{$heG}m$~9A*RG+(JE1jek+&tS^guPa*3LD&fRE?PdCtqU6lmxah#w z+P_eZ_iy2%6Kgt|(uQi`b?@nD_n|*IWO+!=T!OXcr7VJ(ceU`tWkGBKQ#N4+9iv?LSYnnd->gI8nu~mK{uqlpyYD`% zJ%9l(Bd zpAXh52y61{khrrLE44%q!<^}J?jS5rABRCMScb&KW9w`=yAc!q+@7&+J(hEG=2=9= zemc+buq2k@NBC@1a$!}7!8oEokyy;%s<*D=S7C1UR?NmNt?qMv=77nJIO8P2eDxRS zXEC@$95XrR)Trk!OqcS)L~d5Pjwd2*cmpe-pz~Q@oUhwsl(?)DsAYTMV%PI8W+4YN zZ`7QHiY}Ok8Yp7**&D3DbVQ5TR{s}Py`^^PH=C{tc_`(#Wehoy{4 zzSxFL3B$U&b73M@L|I3M8)-ZsGYo-58Sxw^V}?`LsLP;|%v*(LSKyYaUJ2rsD!w>h z#R_H&O*Ka#uP%1Bwm=mO@ofygIi}Oal+`5MmQq(k_qdH-4iZ=?<)R$GE zam0x2g<>(8jX-84A;W?1VbHcypYvj30AKYFBBZEEJjboVSm(dSVKVM3L*r%;Zj6I4 znZZieua=n1x~LcR_eyIrWGAfcr`A0xf($atNKd-<&U7X+fbi03$$Fn-1xCqK_` z70x?_dwEV2PN*4mea<2iaW8*eun!^0TpCTALwb3U98TwFzjvKtfn~e!l7pF{_vS`W z^AAXkor~b5Oa&y)_7B;k*lksWbbq>D}pbzA1~D5?KI~7+~sx5c}*`aTF3#l^={pMQ-n0rx4q_@CW?LPCQC8+T{vzzm>W0Z4xj(AsFS!JV!^u4p$SibNpIi+BuxTzDiz&*|F+# z&LMW5sJ{y#$()uFXST{NNBI8Sai~b}t!uR6H=l~)VX;t4wm3otv%GZ~ILmRLQ5nL7}S z%<<7QH$3N4-t+*o<5ubFXoI!$CQNl-G9GX2s1%oJGWFx7MOYq@6I+7PkvORNmG|aCLGJh*v=) z2xI0(LNaO8Q{}y@^u5CLOhHZTgi*6pFwZLf0-w|io_GguS|vt%iOGo>5^}c+U7D35 z+hlJ(71ZSG>;5*xp{}+VJ)IdaK%XKI-;c)QR}2Zv95_!+@7I#$!H#qWv3_L}bwccB zp-XXJYyOTw$1s6-Y^|@(i(n)N33koC!y$t$O`ookna^}7%-Z&MuIX*%$DHNI23nVO z{KX0vz*q|;*oOOOW6uzO!N8h4-RGQisbG#NheX3e_hH3}vde!qA5=uGUb$=or8}Ef z{c`DKC3=n&>;4$L*bZw?MIi)Pm^Q=2lz5G>TOrg?^d&>g^5CEiM;Ig#^K&a8#e%GI z8&@(!3oby7P`cB3)pDNVY+`yAES$}UTfl9v*g(wZ)JP$)m)8nEyiSt*+Xd3Chy!Z- zMEagp*!E@4{6bNc0WT>(Sig$jZ05Gd2#T&M$m$`D&c43|mFPw|ZBya6xSkM*pE3#l z7BAb6MOoD6yeUnE<0p&~!6>QsxRL97shS6#BI?~Z-Kj80rcc?AWC(oR|fi1NJ0xG9xN z*F71RsM3ivC^VPrMr=^y-U!f)>~}MEl%Uk%s2-lJ=q}+^kFT2amuOf$Ci+Q&?PJc@ z2PrA)$nd##jUoeFhvF^6GOroesTn^SE2M~70z4mM13NItN^EU;i(?~-)pwXUZA`6*<9YW96R zpVMVs8)Cj^zE9(Zc=A%mwmvO!AKNuJBP3V*A@_=bw$8}!-<>JaU6Op;-K&l*5rFWTCg_Wo}1AGUOjS4>mG`kk6sf*D#?4SqU@9WO@HsO44LNttav ze8)+I@2;oI-Ee26N=mY)7dx7|{%-9!XCuVw8uj$8pP{`r4+lp|B@5XKrF+LukmVbB zZ|SS#H}e%~?9l8#BOPZ)JvWB^ZSn+qU70dcn%gqya@LfC+e&O`_kMEJ4LFE z1(_zyOF<8qZ7v5bvG;QR@JZddINI4=-Y?dX7sd`?w%izYE0WUideZpR#7UOl>Z|T4 zNRV-NE>g@xl+&9tj=q;77=z54s5bNz12smXO>zsSb7J-Sg zy4EoVC|2MgU*42_Ebphu?_G0z1iR0qelQXZOmI2RN*kkCSsmvjg-A4)xtPlboJ7yD zebBkME-hH>6I=qz79wk#-{PE z#}z&a;BC|5Ta0)q4RdJ!T7vB&FU1w5_4KC2w>g$y_BwQ}dNybJu$enF$WY%-C{Cnn zNwY7ls-C{AT8so+<(Gu>b+)0^KB?+&h86cDJLfFqcs8!98{WD$@> z%%zw{M_s1Tb9_L_0VIcBkVvpCRtwa0EbD#W&=ZtBh2A*$Wq%gH{yz_Z?A<83iPmVpG$ z7NRtX@m^z5%wV7DFGAO6OX&!#hl3O5TSWBFRL@2=T$QPxc|=G670j6 zSH@ogSJ|VU-&@kYk4xLQR?Bn_Gj2VAkdSwJ9BJcfHnbt^)TVI!z5M(M99jAv67pBN z-@%QDzYwAIsIcQ7IQrXZWn{a|N}!lzVHB49upBaHrPv=7sz%?wKE>Ut6MRj99-w%$ zy8j$mtyj_CfavHleh)FZJx3L0RXwzvFI|G#!Fipq`)%9~B_c{o&r54P!nD{@9gs^m z;dC0WX0B!s2b_I>J)t5i#L9YqY)VJf>g$D_#vjt4v4-_^vw?5KOLW~_1UA(?TA*fg zSbxZ9u~Kb&#y3IMy>pUD!o=m3WlgZbcEr`YCMO3UYVbeosB&TGYF43V+XgQY$0=eo zJd06Q*5|`brzhJq8=ARfWqD?A3^MC~@@z9aM9}|ZGM#jnRoP_J>J4XaMnE9fvR8&x z!gDST<$dgXpD}Q6tcUxw@wkmf57lKmuyJF;KWy;HPnikiLrpLCwZom^-m^F#%v=Vg zME>$hfJ)*TT+17mFKXj59d*o-OCMgz7&&3^mr=#}n9-8BnP@;d?lhKXv~h1&eG1cc ztjA$^)dA;%<^QO09pW@cDODFJxd3p1)MY+AX1A|VCoX$tA-*d2I(Y-Mv zs!qEY0f+os&i1C&RL)CtGTQPFne$kZ=dZ_sBpxZde)OMj_WUHy8ojgjFQ@nMvSbtu zOzf-3@yCk{lW9FJ{3xt9 z0}FI!$~3w`#MQjs(U(6S>=kx85N0sYKKk~2=phdhmUInqSb8@vv(PhTW58H-ic!$x zE~)X(Q)s?zDIbf*pH3tby89RBp!Teouc)p*`qhhh0S7;gzMnr9a^TaSKL>ZDow$O?nI+sI+Y6sqDa3kf`rRNu#<{I5?``=(1``tAd`I+0Qa2sCE9v%L=bBB%k zL)Y;`BH?6$`rPdr)^WO?5Nl5)=aRLLQoxh1#v(PN!vWg!HIwih=Jbn|C@`3>+rf3- zx%0M|i4MD>>E4l!LmoL(={=@h#!gHt;_j2BaG$J>n@(>`<>b9jTpQdS`lep0O^Efe zPsn!_S!vqWE?>KQ1!oIP#5a=Z(@M8gB#QD)IO)-G zuJ=vfk*wM$yirG%vC+Aue3ur&+MYXQ2EBZU`8cVdyS1BH*V3XXM@BHKam3;_c%qQ; zV9~42V^r5m{$MSNy<*+Gg`7+M&NH@}AN=%DMWDupAFlpl?qc+R`z!=Qea~8vzcZBC z3y6~Kukxz96^r&v;0%p^(E6_Z>9Andq!KtS<P=g=z9Q=- zGN*&FUmRaEj=l8A*pgw(k57g^|6%oPef>WGB*(F}b(9-2uMM?`K20L-8dj%)h+Exx zLUsKXd|DDHP_wEar}68F&14SsaL`(rOPKJ>{xmHw!Bc@=T7 z|0qq27F+Uc{8r=OpkFa2DY3kLFbP2V{D-qX%FAz=^_v zNbIGj3wI6wa*pNY9Mj4p{mPf%#`?{n0fB*fN_2<@SJLwwf0mY>8TCvcGya+1a2LIs ztIIJC%Az5d(ZL|+;|9FK1m{}0rogclAJXEYGOUmr>)jYR2PHn;e0IC=iOJH@-rq&7 zt#&^`Li{QZww!X**l}N-3^1n-;jY^cU3XZL6%u3?!AnS3frI_?ZC9{p zkX!w)&QrZ!ID7oRnVw8jC2JA?k27;ag)>{?-^>XAznz)olA5xWuK(@AR*Y4AJChm4 zmMbB_wjwizzhPpQfSkm?y;_wsTYzZhZvX_%DE}*BMp5U4{~cvz>CudTM<+o|*?-5A z|GSup5j>at9*g~Vuv^V|QStBLMU~^$_V3|HmVV!#Sg(rq@M@Aqd z)0jsN<*F9?Nje#kUgOtfPp0vfKG0F}&f^{KHq)NXLo-O3zqy_;E%?^?)(pib#%8}e zyOe6jvIko0LS4;?O5`Tt@g7Z4j~qJE-#D^2_)|+?PiE*23*zJaWKK)K>EU~3m)OA8 z10yXFf?g3sTl_4}MUZ8y;hb1KI-IK%eCP(JlNgcP0+N%%6nm{*X!R1Iu6u$^l8XFI z5`pfiiea&xw)YBh9v>Uqef3|7t?Dg~OXtUGwPUfT)+!y$`rH=x4tIZ19m#d9898Nr zFRBy#b`B~WJHNbZkQ2Juod`CSpUO+H<8zlbdv=H%Z(F+AG&6Kzd$SyWbbV=oyV^~V zrDl7tF!u45Hwz;;okwo*Q=$J*kTdv@Rw2Z`WJ$MCobadk1qrK1`7@4-l-JvSk>kOq zHYF=QI=(lI^eCUWrzGpp`ApB>Pug<(jnmWGGoWi2yTVBlrOvseAH0uuqEB&8z`H-+ zhL)$FB@X&u0Pnlg4%gAi$+o^a)ZDqr#u318Py(n_>tqIALBeGBD z&&wp(A1;Z}`*)qL6F8muVL!XO`#2M6T0>~XO?f7N(hAFc zmu|b*D00m{p3RxbUtbi=B-24yGVHKv{a6>2UwUdj>FcNWN!1m>E|)H+BHr~WcD{a_ zokT`c@=ZFUXXk%k^h8-DO0!--Bc5e`W2MYoBe^;8S^^97hk0fjml@bg1#0Y+0+n9YKa|ui&3R3n@4qVZlZ+lqw+`l- zjs5ld>Zp#}OkCRaP?^^Zk)rqt>W)%fNp`W9 zJZla)opW`e{TmT>pA-z~-o1O}$(AD}S&_`*w)WkmYYW|vv#}-biH;S>8_s!t2oZ58~Y&kL- zU)OWOXz<;S>LOoE=^I{>9-Pg|Th1`}aqTdna3`ElxD^!EKlnoA)J6$*0WtPxnS{tR zL}WSkXgZB7HXEwIg4!06=#49d(*@8|ftTcIf~>Vfd;1dcvUyzuwU!Yu5swnO+WxpZ zW^`_Wg(K}7cnA~qK+2}*knIZ8h!BoA-Gn16M$RHmUi&q-e;3~kfFO_;K8mE7nus@W zF|=|fu(?g@b2yh)cbb1#zsuB-y&k%yX5e< z6vOJpoV-K+%NYH;{m$d)N!R7qsBwlm`Y)g33bJ-8)fSX~BH{7sMzjJ=)j72Zb|q6@ zi}8S`YZ!~={3uI@9mq?qGY%DSO(&3lqA1O->0WT;vA1|| zx~`AEtFdzm1Zv8YUcl0Wnq6~7NGyEDL~Z?3z1m^2!XIz1!fAdd#SfH>yLH zi1DAgS(rnC52Bzbt)S~IeaR>6ntb*}J|n&|tq!vwUO6DnDmmk1*PJrkd$Y(%Z31@Z zb!_|rROad)hQT4RPlJ=vmloFXh7&e5eA2}c%3Sg!*3ay0Q$er8H>$h*Lkl3JKNr9s zRVR?j<@?98Z~ahS5_F^bRAZsfi0ISyl=;9M$ANs`U5=3bZdKRc@Qm?FHq~Luis3$5 zO~YGAPro$)!_4ZmDngttm5T5vZ1J0!xPCW%-l~`5O_ROuQT;{e{*w@*9zQ8x$3y`zP zDfyt-r-~WkDFw~nzkeq2Wn~%ua{s&o7UM#OcG$Y~e{XZmZ~FP|GYPl+dSTB^^qy=- z%Sg_L#Z;*j+7&`s?7*7_l5f^8lIP{Oj4#9lQ8M~w_ey}2zs@pGMjn*qbZ}! zp$%j2HO3SV9+=1t8UNPI7HBYft*0Vd!Vpy&n??rS*o{6O8!7f3`;rnmT$>!)SDQ6< z!i{icOtzUE4OlAJ#pQ;&j`)?u79Lp=8mvWJQ}Eu9y+J(=`$e?(yK-PsND3C$lRY(If=pA=Z0s!D z?8Ji-+YW3s7l%ev$@U+*xFG8rk#=1?rhKvm7VY_Nw4(&^Lmwx|sv$5=w=j(8RgR}M z4&OI+lwuH>t;_2Y0_9af=mqplW2fB z+$YX+P2 zN)skiY%l{wAjo(khzQw;Hubz9Qv$=-hdE%FPjlEVB+RPO3^18UiYY`uj*?AqzkrMY zA!Bfnz(ff$mk^laTQHf4bJ=IfgxhhdAtn<;F%1dGi5(bZ)?z{CLPBN-*`+r%R*TAbO17Q2${I4M!2bXL8dB!IU9hG$BxG_f z5|E36%$WovJQ#z7_0$?mvbrY}ylp4@7*)tV#;J)Eb1H#6ABG{X&SkG5ivCJlgxgCJ zWXcebNV1jkevgrfBJZ|0nOMUW{- zKw{%C$gjEV-$a$G$bL^N^RT#NoK4-~ZwVC?8;lT~pYTjacSr*Ty1i9s7epC>3l$x(ks3+XS)Mrkn9U>9>sWslws(O|4nk2XzJh~8$vXqFEEsj^I3%84* zlHGIIdVFmjHvl|-5dY|WD7AqMqFpHZf({_{T?*wZ_1g3hOvt~JVkZgJ{#+xDHBuQ8l zyN+4xn0d=omi39Csk1QJm+PGAjY7@#eUT{Y(iJ?U5w7ey`gt2ntZ&-@CZ-}%^NR4U zauS2A1CX^CWWU=W2GJ0yft{)FPxJY=Fh~r5tR__4hB3%|ks8=Ghd}gSVvu(LVo9j* zw_Yz0si6}PlW!PAZ#{kdsu0wJecLHC^eG!;%$j+sH3R<1h|pAqAL`33&h!&l*SkvK zeiWeZC&^ks1ij*oLELY1riT%b*WwuDuynSWENhQx-;|YOnuvTjD)Ek?g1WP_Fr@5cngfCKjmMB@?dd0?a3Wh? zzZ^l{c{+>s(SHO@4l1uKz({(NX`6^K(^g=R6=69f+LEO~#yVBn$7oDsWFF4vQm2a4 zIN^3E*NrPN&Z@AS@z_E*M(Pt$Nm?{L-45&RXR-rs$8R#ti?lNWdno}VRZ*lSkB}KC zn~jh*s1~_Ij-W{i{nR#$6az@av%53H5s3Z!W64p%UH273SZ`fX{4t;T9t}d2<6QPV z(jdE-oPgLkp(szU7&AVT9f4r%69l``NQAK+L8IufCc$;EkVP<^v2@dunEw`GedI*c_&IFt z+c?!*^uiYRyOb=e^cAum$~Nl)`l&oF?6sJXS^NN#$+M?xk^FE`DGehj$+FbGAj_rn zFRn#DyS`YhS1mH$-|es}^aLt6c0U3ARGt;~k|V^d@$oQA_wL)$9 zo3U*pDPMEcfHd;xcn|Kl2dXr)5-g@R{~S=pq-uu@;jXG+1d2q?+6szhPtk@LOp>wE9UU5z%Nhl5d8+qevIwBQ#H_@M8 z=y(y3;X1>R)`_MD3?};qs^A!<%kq0Fj(;rb@q5R0$)a6lZQ-MMC-*x3395Yk-Rn+> zb~RX%$uSjk|2C!&@mV6CaQRwu9xBn@chBMVM|v{P{cR+QWy-UX@Y+E4;u-UHc(W@) z@3a?BfbysqMB6(z?~_dsqhPi_w~DXV@OWG3~`Dk%)@lf#DUM zt`@Dsy}>Gbgdr`BHNZtttv|`R%gOix%hD9!&v#&k*XXH_u6Vd3fSU zpxo@+cMO%^;k?4-JIj48T~lEV8cpX}A#I*zXTkqdoSD7vZ`~31DpIg8vxdJJ#@1S> zT=&gU&hFN6UZ0XznITVLtO+OOAD_P4-9Mr0=&E^~9ngr{d>(RTp|v4fx>^A>rZyXjl+~LI%2GQ8h7&7kt5dp z!_omOA36_QQ$lgaT;nC4_#b@I{;kuzPYAhT`%`%57ygT!)aarxg-1vKHr9QLemGyR z&0uC-Q$n%GJU|qqKC<4w$zW68F%*#Rl>NbRS^km5)Buw=2BXez;l2mRk2Fis52cxX z*e}O6VhXPg{k0|&FGz7@w|%WPFlM!%LVj)^S%T!DJZ8+wKkR;T3J^rS z#5qTHvaczr!e8cUFY$Wc#qDK%olnQjAKHc*uiA!B6)>_+MrOoY(%!;Fa=?JN31;AO zyjsD~GCYQ`XQ_~)nE6md4)IQ$go|dz>HPyGKu$?7(eyvke@qlr(|5c?Sr&EB{KQaa z1SztK$3=_m5qUyO?lBoe=Q_DIM$?gESx?ijb|y{fVw#Y%vt3zt5h+eYW`DH;Id~ek zaRVx9+4^gwb3Q3@tY43d9uNHk)lVZuN$UR;{mlnzJqD|t33-0fVE*_oqbQ<*T*X+oH~S*C$X zvegQQR^zR?d#82bsNroahtw(#k7dK`0n|YnI zRC>_{A+=kC1n|$UOOT|l{7yy%IU-c%0T+8gr%oBH)+B-^l0(u9XBS?w!RpsNmyhh5 zvGj}c+BsM#4_%U0o*41uA3@$o&PZRXbk(}eL0l{uZmHkQQlg2!i7jKK(~q>Y zz8jeyRdu`Y@Hl)TizDHIQ{A*!S5y9h<2fo=5jk*xoEXF2<7Y58@A{l;ui~Z-UOa(I zUVm|RCP!uuo({t$c~GK;duEZlA{JAVR~-gTQoZFEItO#Xd)-1H>4Jx zCCYQrKaLw_jPQ?m?&2Si4jE$72^AfEOr@hE<0)>K@qnd_aNIQtr<3#1yZG~2zai!V zEDwV}<^6K2aQX?t9Di2qImFyYK=>19clE;QbC<1V zi^zfQ%Jcmw#4=cLe4Chb`BXE+jMbV@19faxmHgw;m;0Qr6OicT#R3Zl-9&LfATE5k}K*$sWpXNVd^HPOt0x^b=WH90L^weu$`P=>S7+IXou zb;&WD$DL`<$RxXvtLypeJE3vJF8{9YOdn!~6IS-r;5;!C&MA|4u|_`-k&QY&I*)%c zIx!uyGPBS55b0O`Qqzsp!q?>BZq<$s%*wH2N8w;J>7_ZPmAFp?hnQa`6mr^A&?v!) ztHaA=R_38`$vD5@uYqy?^f?a_>etHf3FmQeESi6+zT`Ec#A%1qyF?c;;RM7s)R9=t zomVe02pobAARtGrF-W*gsN-qUP%%z{IhAlEnSl6d5)e4*9FA@84mlOg;c)#G1e^lJ zns@ctp)tQDx_btaZyZ44{V#t)|F8DGJs#@k`+v!$B&noSF7FbRJLw{!-cq?#WYJUYgbB_u1Ck*KHv|b#CV-+=MA(;dzIVDFSC3Mgt7E!cHj?7RR zQ7%JHF``^jWOZ#)!2BRBT@`L1Fi>?n8kXy-wU`cMq$Y{;k^Wp&Yi20Yvtg}0IAz6L zrgsr?3X6>4`R0-VmAwd2<_bd!08z7-Bg!o7SI8i&nk|hi+1CLcv|k+JA%&3P+818A z3rf9j&?5gn?AaAZ_@0g4nlZXRx?xR3CoP$Ulf-5uVzI z)wW1O=Oi33ifGVOYBnFXrt3WyMr{@IGNvBGaa|K>2^nqc$nZ9%Vf!$#GVtT5K;uh6 z$It*7+W$sY_iT)Wmm7)dZ$KG>4BsTNat>7W_UI!RMKpk)?B|H2UK0qVUJ0bW3k_sV z*f!W0Pe;Z+D6_r#E38typR&vgq>X#QY8d5c+|;_*4;OdZQj_;K_+KNU;an(j82j?Q z)?DVz(O+kWzk66wX!d8Yr8m4t3`$+onXzzmaAI5~>k^?1ji!FmQmj^{2{qzHM@Zv% zvlB>YK%Ec$3(BM9#$zWGXItw}-vJP^*rq{mPPr;p>1gy+s+V+}$phmcJ~GntH?~4Kxp;JwJ`+g2_8-V*lwVw(`%p#^zcPGpbarkDz z&yO%f@$2P~aE3JYgR<^2!HYgV&U~UpqbOVK&-;};B=yK# z)TVGb3{xBhFKfioClAfEwy+iMk?U8n3?0uPH0Em--1gIIIx-fn+l)8Hua=LojMwC4 zoQL*Cu#B>SjfhVY&0YZ%JQ|P{7nWeu%pJ6daA+4Yf+es8tNVq9^bQ<7ELPHkt*W$J zvzZ?kLThQGoP{2Ii&M}w0NRukVj8Of0*w`{jPW~qacbS8$FmfX!!TP4<1_Dt<}%H? z&1m+)n3cS+htV88g+Ysy*jthmOE{IqirZjI8_2YXgUP&#ZpNUfjA9__b$p>=`rwQ$ z2@4?6S-gzFoW&H0BUnY#=mX$?!h7(9fOn}NZYDcavoWHK?p&sN2bpGn6KkK({y6Lb z*rN!)ozFx*(vX4^c^Se;ZJU=uhM}=j>n@7$;aVdk!K2R+dDh!)aH56=roeMkU1!GW z4v^7w!+#CJzzJNSuio$J&@lJ>Bk)Ynq7E5)?#yiQ7d(7xVJ2JF0))6(_N^r z5?1_m+JmXC*6yNkL6vC{x2BP*>VS~K)z-1IaT$v>GO=PZ*&s(z<%CDFTS|jN7xDbS z%LH8qsgeG7oQ-JLw|OaQ-Eu8>l;+1BtFD**Y_GERcV!vrTQ~O^(h{Mkysz;Da(l9! zmob0Xy{fgjvcTVNFhxqcu{YZ3N8Zm@&qvwrmF_U1s$YgD9kh(z1$bQyUj77PmxKI7 zgNwrr51N{(qpeT)KUBF74;m#6bd6{BUP<3MyjKc(48mzu)KbREF?w0<53>@BtP_d_ zJ5Q>9(t2~cX=K3fxu&n>^Su6n?p&2V_f@zd7fD!R@`YN=;UOhPYQ;?0xIC&3@2pJT zlyUmYmp5LM2jU!+0mL2~OW8v(qeqXFIBa2bB_+DZysG`0O7A$`Vt@0U=jQY;xH-RY zfcR=X5=e52;Ft+&6l~Qxs1fBfmIpR~cig`)9^k>ROPArOT9(ddrVsVmoE-OkBbanN zR#rD7XP>hJRg;cG8D$S4hI@XF)8B4Sts92 zj>TwC-d*P|eVCD?rzL<)QLLbFnRIjEm%Qb(oU;ic-);G#+VZY0zJ6QlQ9s^oeFqqV z)H7(A#po(doW&fv_=&eMn3{GR@Z^X%nSM2|y#3w(am&EE zt+hj=H>DH(1?^g9z{q8pP|)K*&@7+v3p?lPSRQcE+<3xiB(Lj~(bd$kvKmih zAB7843@{1tT6;n+!LM?%)5*#IxYppxEb_N<>FG41(trlW5es4O2@_pFV3Y)!F? z)sv}H$OcwA!1%`zGd&tHSDhI^pnn*+ZZRTA$6Z(y5tB1?C(k5XUo}hBsvabcJ{oY^ zC_1Ey&$4Y2c#$~(DCx>k@(}mS6gPH>OV;f>6hUR8G`G+|Q`i%)a8U~Tsj*V}9jBt| zyv)=$1A8oVoN8v_iVj|fwe~vUJi+-4*{>{Uc!GT{#mj4dSbLheFA?rgfG3; zN6erP7q{mlbGGhpXs7#~^cP`&_L_l+hV4cZID7#m&DW9QlEwbKeD-qfi~=LXKr{#y z*ev$Z)?#*~xx)Wq?krzwV?2CEDw ziL2V#r&A-&rHTm5fUyrl@jfaj0SC}TvVC5^gJ_l7LJw{?;UjM;n>ImaEAkRM_5mpN zL7Ju%m7$!rOxxdWh~u2Fm#UpJU0;%t%eViohv|Ig)5yN2nQaG5%hvM-0QA-m(z${B zHDoILwbvp5!+i6Rx({EB)nLEhfM-ceJ}=wU(sKKAyY-&71A<1=ManZmO6`Y2-c(Ry zEt70IZ#wP2KI+$(Z_T5Xx%C;knNJ20K1fd_2}&tzL7};GddBRtD*+1oiLPzWkH&(D zrlzaSQ%;?Et=_b(36br1zfg?_Bnp+|HJu)L<+M#&@-oIrK|A@GMd12hP{NdmB^2x4 z4Gp%MrAprzngVDT@?XezNwqVSp5d8FYQ7H5V)rNDKu0AQ>V-hb^ zY_W0U$M1Ip|At*NQ&41$J#}*Gmi^=v<{>H~B2Klz6@;39YNXS zMDrO>vEICt#pJ6A%D5^Vkn%|8G|pr(D`^8o)4Qo!h!I4rJ;ez#N>@-s2k_Z1aYk1F zqh)(;E!%p+o4@89FWtr&IgEuflHBKIysdxuW4NW_wpD;;AuDF2qvp;0>DFyQDQ!(Bgb7aorFpx$eF%-j8=tv%+ssTz7tP4wylI0DDO!!Xw1T6oX=Ay;kx zQ|;Lv8!IX*ZVj1BR4mtyo%$5K&)M;b?Jhky2V}%iu=eA+b*!AI-rKi4`zxm%v`>5w zm@nVAVM29PRg8~?-KkVvVgvOvrZ`xOU`8KOcgfyjlqPL#?K5GKKJc=&%5uJTiX1ua zZlkZuIJG-YqTu;tZ}&$JJ0kVr)9GiJQ$xP{0qKW*y{pHqociX6Q86~#BRcXjt~=_e zPSjE}`czi9=H+vXtRkYQq_OHl@E`_LWyFTZoZ1Og~5>Cv}BX z4M}eV{PDDo7pc#U8#*i2DSO;jN{Z3xt8YjQv2i3-@znHx%geIbkutT*W!ein5u$zI zF1l4&rgbml$iN{dABU#uL9bdJMV*16qBn%@7TXkm`)H_yyg!scOtY_7_8@6^=O0tc z3j3Dl92ckL+0*&M(Frt?T)2NC-O60*^+&efB%4F+vYy{2kC)| zyyyP?R;yXw{i%xpMtlF{v4($Fr!J{hpdxoYvvVN*-5#b?Ud}knn#Osi0IPWY+bV4K zRBfc6r@GFTEdboz7*|*@;?!4@5L8r+x%lQ_ojo@CBM)M%8U@HDaXFb2T^HbKYj!D& z_0z(y^kk&xCZ&ayN{^jBJJi`2r*gM;Zff%83i{Y!U%Su7xX z!{rSpbiW2~wJ?dhh>L;q0k4Aqe-i61J$`b0)gF}`r!j44hkA+v$RU|qVGhZK>DhJW ztSWoZD;SiyPR5l7m%6wmhbwk#i1a(&LkwCNEiOR+e@k$MMd<`mC3G$55UI6bNp^e!n-(~s4+vg_ER&^X`IDs zesXeilUw(Zu;ddp)@&)4G3{RDUVih4Cv=Yo1uQ4+O%B^A0E8SyYWgkY9_a6i9Ez$< zT#5O|fhj%2;gC^#v2KL!+sso_+UVmNzEyIsGT2yaulpAc#x(arrc*+1=b6)NVpY2- z^0>TeaaeVkd*JX#pL}~;iZMReS$)_fZYPTS&3@qvE#f?Qnn~G1;Y3bvVnA}$)$|yh z5F9ypX_OD+FegHSGEZP{t>>A+q3<_-421ue7R+Wbib{s*I-{d??`9p4-(8u2wiUlM z4X_*uB}M1u6;|(Wt|88QDyP#p=w<$&m7N>~b_)ej!bt*wf+~@Xyd$F=ij4{|9P_o< z@rJf3SRRvRS8_bT*;m`zc%H!gDNb$PQKv!R-_j*~H?NKbMeo3}8#ngpt|EuaFU_Y6rS>XHBRaw*bc}ETqrFHp#t{pCp zrT+D#vyHY|K2A^V9C(HX>UYauc^RCWDa6w$pf17~UMlf~V{``0+Lx^$vPQ2qQ?M2P zH0XtlY}brV!22L{m9iSrytoPWcdvZ3_Wx!K#wWvoI;AZivrK2|N8eCoH;w@P-7%0( zzR72}yVA#}xg;e&pE@xxT0f#wMOlF2Kfi_h0}qXK_y?jJ7w``lcqqyUqx^>rvE_D|NCtIhot#m$!1r;4qljZC?h%mM{408h;7_s z`~&mGeas)&aNKqNf#LptgH5;?dHo)knEQJH;#FLRCeqBh2wwBJh5&vymhQu>IP@mr z>PzItcA-qdUAt*JT9JR2#TP$Wtw=usH{qs~K^B$O6duCgQ=?SW>FAbjK}pZl_7ym(r&s&Ye) z#~$&^#z#aIKg|G$cFWf(kH;E)8WD@hZn{^#3e0pgqDO_%$$w7(k$8ZX)h|%|bL4cb5Mvok z)E2$I7TVOCIn31518D+#mr$RIJI_2m$*Z1-2`;mlhr~YhEn7|7=~u~C92~BOzS_!P zlV6{9?tr|JPJTrWLkeLgelFb)dwiGB-E@o-`Dl<-#5tW-fhOu7UsiN5$I3og4*jH0 zcDt+IPs2vC|Od$2Pe6b@9mMMWl-qm^gc?XRyse3hDblFw{^28T|`KYOL&ZE z8_oUjnPFk}lZiiY8HC~4)`}KC3ds;z-6X2V; zQw#0(&d-F{co`Y#L(ZD)nm0m~)hCo@9-O26uF7G5>kSbg2L`sONT5K(>^BeKMn_wW zyq~9LXjG`un2)?Stni3AT8rcopj5v^DJG@nTj<&v3tZ9$jpflGMFk_7{szIJxG7Is z*2fyg9ux&q!=sfK3C`L&;uIGI*?)1w96AU&AqF@}cCM>D_@nl2o!0Kjo7+$?{?d~SptoF8?A`K+AJjg;sJLU#;W6=s6h7%+Ms>NOJ& zKpTJ;?CL|2W5SF1dfNc3_6C&D|5Y7a#DIa7<^i5`6&hsaR;W((E)NjKuMb6Sl;e?n z*aq5PvdU2?9ALW7(y~7MEs4K}r2$itWs+?$?D#tbJ9#aP*$?4$3OIPaa5)E7D;wO@lSo@f(eIxeVYh>$*E3+-ras82iw0kY$^k(4 zUP;EU_aFx5cXv#w1l`%+i^i^O!QD^XT*hIZnlZ%exBp5%{VJdI9l(L~NhP@hTZIcGPTU75pMRR`+-U!9l z*9vsG^?B?7#rj9>q10I7-4sD`NkVnsQk2nusp35}?$2Y(Dc3}5MVN9@z}Tj4K0-?F zn7Pa&iDgNSv=MC`v-}DsE?-Wxq-%d%oh4oHL-!!)8_g0gmtF|oJgx6$0P{=kY*s^v zZqd6b$aXj${57TZSZw~sjljXarI*pM+ZVrwtZgRH3o3!9nz#%Ck#84Sqb235Mi!<& znZhP1AklYiN&PERZQYG1)> z|H!n8F=wAnOB{ck^8${2yr>+yLQcrwsp(+;ayt>bex$_}ExAFeFh4e4G9O5uOFa3; zj9%9G)-kfl;?rsrs!zmAtoEA+t_LkbQd5T)i-i2jvlWK!Endt4aet7(LvrB<{;xPh z%0ee6tdnyH?RFAXbFt3FEBPrgQx%xv8ClCDt#Cy5IgLF0yLn6}@Lkh3&*#oyvSa$1 zUC|FsuVyfdm7317@)Wd7tj2#NO|A-R)T#;~!P(4I?^*ZIZLnH2y8gdgAWmjKb}EuQ zAF+IP_MTt)*5k++wjo@^(Y>~_7(YuX5t&^hQ~L!aY}5Uau4G=K-aO3aCncuEHg>o@r}GNe+$*1K@<{B>klrFhbcy`N10xcB%Z zS+3#h1;Tc&xKW2lz(g3AZg(0n|0J__cVCSy`a!(#*DyDnR>R3FV}1W?J~D`1jfSX+A~sC=C5( z*N^T=A;p)-xP#PRVjY(u@Q5PDhUvS7&YTmYK7#1X8xXn@h|@d{`a zdiR9YG1Ba9G`1U>5c}j{GSztsKdBJ!(OX%l{-u26e1vA5NpKPsVn`vBU#WT-#z$s$ zr07s2d^Uh~I@%s1i2^)#HnLtko9a@r5TgLigf&riP>*&1nvLL_;pOXLW1B!@=y?D` zhdWSlD@YX14dhZk1Z!ZdXX^*Bb&=F~3K$ zd#tLA80a2uJ<%w|?26HBpHifipT_I4LYH;~uva1ez6LO#jc*mJ3t_tV>1e=gzH^Uw z=^GW{qN>F*hN2%8BX7M2L3lYV_#1AtlVaq2^n!#|kvS~m2_E;Fp^y=U!Rq3f3*&7w zd3iGYq;|9`n#tW;$xnKPC^Pwevfz2I8A=`OnXCd+>m70j8pa!7KXwPO(W^x9TY@2F zwqXF<67}rwa#RK+R1tBC@J3kctq|in8m5`l#bPsx`%SoI>A=$)zXA%{#LT2X^6sa& zUq@x|G)dmu40kbd;_We&`XPkvp0D1FWne1qc3n<8_oc39T>7nDkWyLKHS2sDL0v^v z_Pwpjx=ol6ccKZ-YEUeSrho`W*<%urg%)1sin)Rqr5(IAb_upf#_`{7+Fi^T3lVn&i(MVbx z0={_-^E>hp;tpL{gOr6r3`;bq5p`M^B`S#58DYRF$6g{f_gFC~BtX8M1x4@zY!aZ^ zi97Z}HUI=(hx&%+5l3C-byh~wcnQqM$|T)q#k?tXsapl63GLfbZHyN6*8ZagK!MA_ zqa%~&D%7%@DaGV(7^Uf9wPBNrbwrFDhLm{#Wk0Jf=dTe%s*?(q!dMx%tN#FyRAdjI z&aI7ToBDti@x4%oG`N;ofpFkGCB2Y8NN{#U{$|6W5v(Z1P>3;rfbUx# z`C=4R00hT1h39@ph4XfUgmCa3%jUQ=R;JuAz}*0K8b^XBC9<@nQRkL-!_F<*Pl-i4 z#!uHrp*YcNnR^fvyyq1GTRB+O6U&PS`bQPOXUa}-QH=HXB$n1(#Ax**m^&W^7zM)7 z{S-D2bL_M_&@Vlxx8o>zo;8?`fx-K7&hjTv;V#)0fx#*MLX09LdO^7i#$Qn{KrpUBRgPAxwfZo4=(KmoP z;PVo8;MP6X76(na1H zaZrk96iLjaDAq!ZY-B(O)k9z*^*J>Sui=?0T`d$+GP~;l=G<~)#i>CK))`^PzhGS# zA%+Js_s^7-kmA0OVetmmbydF!>*~y@Q9wd?pq~Z&MB}BS74q|8c~}WR!VMr){$yMt zRJqA6=3S&K&leC}!%`L_S0X93k0`=Q021zqq!d9I9p;VYCO7!HKc*!t^9#b7mOrcl zODZg6{EZ|Kv^2)P_!P|7{TBj>+iigNC1>3fR6bHBPmX&U*kTTjB_Uw~ONQ`u%b}8P z<#HIMXV*FR2s9v;7hv6|XSQh8Z!F4jlS_cV@A)NDQ64LK-0&QS`U{&IwBobS1OO&{ z8X3;|8d!D6Jz1+>p(w{gG(iOmZ-4oW0@gjo=QtNpBa2bocIc_!IRr5G41%#xT4SR^ zDCq>Vw_v;jV#1>WP-Z}{!>;ZP+ z^x_tzOh2<-omNHJ>RI`r7Av8;*cqP8CkACqtnL+g4_--t94P8TFw!(q`WqDfP7%f^ z`gKE=C3-DqTs*O1tOHZN+>!m*A6m1vaD>Bgrc_~d2Yj$23P*)2Yo|wicVdddW}<)h%v;|pqvlBN9Mf;XV?2&1$71P>=w>60(Uc??285(9^Y&zE$KG1y6d zC4FWPzVokGTmiMRbH(1<20O@mwOcw$FzX~=M2Fk!UMo+IoxZ?n3%jPX3(#p1DCPDG zQ{E^!#Dm=8Wgz_**5IKYm>=68{9fB{WrwKx-}sL+dfft zla^p#&-NDNoVm`quB$l)#lL0m1vU9y(yrPfSZ56=LW_`q2blQfjijyX$7onJk|PZk zs||K#xGwWk#b{epi?KhfZi8&n5(8<>v9NGVc)wJ_ZF-ymgmtp^pv3uporDGjA8esu zMWXHTmv@=ajf^wjLPk4xK|45$gTnWk*`GaAze*IM8{3sVJm5-~9~z<*rd0+(M*7hIPMuMjX*a91J< zw!p)G+y#2>j4HTW3+~new*~GR%3VWoQ{XNZ|Fet5L}|Jtbh*O6vhSAkew|H-;`?W1 z-VGygQ1x6gvOpSFCrA-ogWwtjfjb+J5pcaGu7^JiVv;K41;UT$T>!4P;Cc(Lx4b&vRD_}{QuxMaNrUJ@^DJF)d* zW9b58-rsk|EZKj8d|WabbFNNs+vget*B}Vo*}$C*Alse0WI!|E&Iaym;LZlz2Dod( zj3T)15ovmFyk0(UlWX9IUO{2!hTSM=S-2?U|8-TK?i|L-4LOmok|95>b1 z&E6upS69s_gR=0SJWDyA-OLiqpy From b48917043b04e4b0276541e5337063fb658f67c5 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 10 Feb 2023 11:39:11 -0300 Subject: [PATCH 10/89] fix vector sex_kin --- R/kin2sex.R | 8 +------- R/kin_time_variant_2sex.R | 7 +++---- 2 files changed, 4 insertions(+), 11 deletions(-) diff --git a/R/kin2sex.R b/R/kin2sex.R index a9b2aa3..1401008 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -92,13 +92,7 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, } # reorder - kin_full <- kin_full %>% - dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, dead) %>% - dplyr::mutate(kin_group = dplyr::case_when(kin %in% c("ys", "os") ~ "s", - kin %in% c("ya", "oa") ~ "a", - kin %in% c("coa", "cya") ~ "c", - kin %in% c("nys", "nos") ~ "n", - T ~ kin)) + kin_full <- kin_full %>%dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, dead) # summary # select period/cohort diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index e9448da..a0bc808 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -148,12 +148,12 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, kin <- lapply(names(kin_list), FUN = function(Y){ X <- kin_list[[Y]] X <- purrr::map2(X, names(X), function(x,y){ - x <- as.data.frame(x) + x <- data.table::as.data.table(x) x$year <- Y x$kin <- y x$sex_kin <- rep(c(rep("f",ages), rep("m",ages)),2) - x$age_kin <- rep(age,2) - x$alive <- c(rep("living",ages), rep("dead",ages)) + x$age_kin <- rep(agess, 2) + x$alive <- c(rep("living",agess), rep("dead",agess)) return(x) }) %>% data.table::rbindlist() %>% @@ -220,7 +220,6 @@ timevarying_kin_2sex<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin){ cya[1:agess,1] = pkin[["nys"]][1:agess,] %*% (pif + pim) for (ix in 1:om){ - # ix = 1 phi[,ix+1] = Gt %*% phi[, ix] d[,ix+1] = Ut %*% pkin[["d"]][,ix] + Ft %*% phi[,ix] gd[,ix+1] = Ut %*% pkin[["gd"]][,ix] + Ft %*% pkin[["d"]][,ix] From 2dcf8998d3f0879ef6f6715fbe0b7b6bfba0392c Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 10 Feb 2023 12:01:14 -0300 Subject: [PATCH 11/89] dtplyr conflict --- R/kin2sex.R | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/R/kin2sex.R b/R/kin2sex.R index 1401008..4767d93 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -92,7 +92,7 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, } # reorder - kin_full <- kin_full %>%dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, dead) + kin_full <- kin_full %>% dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, dead) # summary # select period/cohort @@ -107,14 +107,14 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, agrupar <- c("age_focal", "kin", "sex_kin", agrupar) kin_summary <- dplyr::bind_rows( - kin_full %>% + as.data.frame(kin_full) %>% dplyr::rename(total=living) %>% dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% dplyr::summarise(count_living = sum(total), mean_age = sum(total*age_kin)/sum(total), sd_age = (sum(total*age_kin^2)/sum(total)-mean_age^2)^.5) %>% tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", "value"), - kin_full %>% + as.data.frame(kin_full) %>% dplyr::rename(total=dead) %>% dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% dplyr::summarise(count_dead = sum(total)) %>% From 323128be3ac7cb3947b5c38168706893e1a16ccf Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 15 Feb 2023 13:25:54 -0300 Subject: [PATCH 12/89] age_kin correction --- R/kin_time_variant_2sex.R | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index a0bc808..ea0ab6a 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -50,7 +50,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, Pim <- pim; no_Pim <- FALSE if(is.null(pif)){ if(!is.null(nf)){ - Pif <- rbind(t(t(nf * ff)/colSums(nf * ff)), matrix(0,ages,length(years_data))) + Pif <- t(t(nf * ff)/colSums(nf * ff)) }else{ Pif <- matrix(0, nrow=ages, ncol=n_years_data) no_Pif <- TRUE @@ -58,7 +58,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, } if(is.null(pim)){ if(!is.null(nm)){ - Pim <- rbind(t(t(nm * fm)/colSums(nm * fm)), matrix(0,ages,length(years_data))) + Pim <- t(t(nm * fm)/colSums(nm * fm)) }else{ Pim <- matrix(0, nrow=ages, ncol=n_years_data) no_Pim <- TRUE @@ -152,7 +152,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, x$year <- Y x$kin <- y x$sex_kin <- rep(c(rep("f",ages), rep("m",ages)),2) - x$age_kin <- rep(agess, 2) + x$age_kin <- rep(age, 4) x$alive <- c(rep("living",agess), rep("dead",agess)) return(x) }) %>% From 135129aed04bb0f72430895334ea322defbf4cc1 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 10 Mar 2023 12:56:00 -0300 Subject: [PATCH 13/89] pivot_longer specify values_to --- R/kin.R | 4 ++-- R/kin2sex.R | 4 ++-- man/plot_diagram.Rd | 8 ++++---- 3 files changed, 8 insertions(+), 8 deletions(-) diff --git a/R/kin.R b/R/kin.R index cdc27d7..73f74be 100644 --- a/R/kin.R +++ b/R/kin.R @@ -110,7 +110,7 @@ kin <- function(p = NULL, f = NULL, dplyr::summarise(count_living = sum(total), mean_age = sum(total*age_kin)/sum(total), sd_age = (sum(total*age_kin^2)/sum(total)-mean_age^2)^.5) %>% - tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", "value"), + tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", values_to = "value"), kin_full %>% dplyr::rename(total=dead) %>% dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% @@ -120,7 +120,7 @@ kin <- function(p = NULL, f = NULL, dplyr::mutate(count_cum_dead = cumsum(count_dead), mean_age_lost = cumsum(count_dead * age_focal)/cumsum(count_dead)) %>% dplyr::ungroup() %>% - tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", "value")) %>% + tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", values_to = "value")) %>% dplyr::ungroup() %>% tidyr::pivot_wider(names_from = indicator, values_from = value) diff --git a/R/kin2sex.R b/R/kin2sex.R index 4767d93..08da0c6 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -113,7 +113,7 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, dplyr::summarise(count_living = sum(total), mean_age = sum(total*age_kin)/sum(total), sd_age = (sum(total*age_kin^2)/sum(total)-mean_age^2)^.5) %>% - tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", "value"), + tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", values_to = "value"), as.data.frame(kin_full) %>% dplyr::rename(total=dead) %>% dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% @@ -123,7 +123,7 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, dplyr::mutate(count_cum_dead = cumsum(count_dead), mean_age_lost = cumsum(count_dead * age_focal)/cumsum(count_dead)) %>% dplyr::ungroup() %>% - tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", "value")) %>% + tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", values_to = "value")) %>% dplyr::ungroup() %>% tidyr::pivot_wider(names_from = indicator, values_from = value) diff --git a/man/plot_diagram.Rd b/man/plot_diagram.Rd index 8d2448c..fdce2a5 100644 --- a/man/plot_diagram.Rd +++ b/man/plot_diagram.Rd @@ -7,13 +7,13 @@ plot_diagram(kin_total, rounding = 3) } \arguments{ -\item{kin_total}{data.frame. With columns \code{kin} with type and \code{count} with some measeure.} +\item{kin_total}{data.frame. values in column \code{kin} define the relative type - see \code{demokin_codes()}. Values in column \code{count} are the expected number of relatives.} -\item{rounding}{numeric. Estimation could have a lot of decimals. Rounding will make looks more clear the diagramm.} +\item{rounding}{numeric. Number of decimals to show in diagram.} } \value{ -A plot +A Keyfitz-style kinship plot. } \description{ -Given estimation of kin counts from \code{kins} function, draw a network diagramm. +Draws a Keyfitz-style kinship diagram given a kinship object created by the \code{kin} function. Displays expected kin counts for a Focal aged 'a'. } From 1fe0dfdfc9bdc699e429b1daa49ae5728eb758d4 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 16 Mar 2023 08:39:02 -0300 Subject: [PATCH 14/89] pi for 2 sex fix --- R/kin_time_invariant_2sex.R | 33 +++++++++++++-------------------- R/kin_time_variant_2sex.R | 22 +++++++++++----------- 2 files changed, 24 insertions(+), 31 deletions(-) diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R index f864154..7e8fe16 100644 --- a/R/kin_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex.R @@ -54,21 +54,15 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, Ft_star[1:agess,1:ages] <- rbind(birth_female * Ff, (1-birth_female) * Ff) # parents age distribution under stable assumption in case no input - if(is.null(pif)){ - A = Uf + Ff - A_decomp = eigen(A) - lambda = as.double(A_decomp$values[1]) - w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) - pif = w*A[1,]/sum(w*A[1,]) - if(all(is.na(pif))) pif <- rep(1/ages, ages) - } - if(is.null(pim)){ - A = Um + Fm - A_decomp = eigen(A) - lambda = as.double(A_decomp$values[1]) - w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) - pim = w*A[1,]/sum(w*A[1,]) - if(all(is.na(pim))) pim <- rep(1/ages, ages) + if(is.null(pim) | is.null(pif)){ + A = Matrix::bdiag(Uf, Um) + Ft_star[1:agess,1:agess] + A_decomp = eigen(A) + lambda = as.double(A_decomp$values[1]) + w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + wf = w[1:ages] + wm = w[(ages+1):(2*ages)] + pif = wf * ff / sum(wf * ff) + pim = wm * fm / sum(wm * fm) } # initial count matrix (kin ages in rows and focal age in column) @@ -89,12 +83,12 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, m[1:(agess),1] = c(pif, pim) for(i in 1:(ages-1)){ # i = 1 - phi[,i+1] = Gt %*% phi[, i] - d[,i+1] = Ut %*% d[,i] + Ft %*% phi[,i] - gd[,i+1] = Ut %*% gd[,i] + Ft %*% d[,i] + phi[,i+1] = Gt %*% phi[,i] + d[,i+1] = Ut %*% d[,i] + Ft %*% phi[,i] + gd[,i+1] = Ut %*% gd[,i] + Ft %*% d[,i] ggd[,i+1] = Ut %*% ggd[,i] + Ft %*% gd[,i] m[,i+1] = Ut %*% m[,i] - ys[,i+1] = Ut %*% ys[,i] + Ft_star %*% m[,i] + ys[,i+1] = Ut %*% ys[,i] + Ft_star %*% m[,i] nys[,i+1] = Ut %*% nys[,i] + Ft %*% ys[,i] } @@ -152,7 +146,6 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, ) %>% purrr::reduce(rbind) - # results as list? if(list_output) { out <- kin_list diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index ea0ab6a..f0b1479 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -45,7 +45,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, om <- max(age) zeros <- matrix(0, nrow=ages, ncol=ages) - # age distribution at childborn + # age distribution at child born Pif <- pif; no_Pif <- FALSE Pim <- pim; no_Pim <- FALSE if(is.null(pif)){ @@ -92,18 +92,18 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, Ft_star[1:agess,1:ages] <- rbind(birth_female * Fft, (1-birth_female) * Fft) Fl[[as.character(years_data[t])]] <- Ft Fl_star[[as.character(years_data[t])]] <- Ft_star - if(no_Pif){ - A <- Uf + Fft + # parents age distribution under stable assumption in case no input + if(no_Pim | no_Pif){ + A = Matrix::bdiag(Uf, Um) + Ft_star[1:agess,1:agess] A_decomp = eigen(A) - w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) - Pif[,t] <- w*A[1,]/sum(w*A[1,]) - } - if(no_Pim){ - A <- Um + Fmt - A_decomp = eigen(A) - w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) - Pim[,t] <- w*A[1,]/sum(w*A[1,]) + lambda = as.double(A_decomp$values[1]) + w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + wf = w[1:ages] + wm = w[(ages+1):(2*ages)] + Pif[,t] = wf * ff[,t] / sum(wf * ff[,t]) + Pim[,t] = wm * fm[,t] / sum(wm * fm[,t]) } + # project Ut <- as.matrix(Ul[[t]]) Ft <- as.matrix(Fl[[t]]) From c80c9d5a7d74dad6f325d978dce34ed0fa9630e4 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 26 Apr 2023 21:40:04 -0300 Subject: [PATCH 15/89] variant no pi fix --- DESCRIPTION | 2 +- R/kin_time_variant.R | 3 ++- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 4834c36..6abffee 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -12,7 +12,7 @@ License: MIT + file LICENSE Encoding: UTF-8 LazyData: true Roxygen: list(markdown = TRUE) -RoxygenNote: 7.2.1 +RoxygenNote: 7.2.3 Suggests: knitr, rmarkdown, diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index 7440641..8e31031 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -45,6 +45,7 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, pi_N_null_flag <- TRUE pi <- matrix(0, nrow=ages, ncol=n_years_data) }else{ + pi_N_null_flag <- FALSE pi <- rbind(t(t(n * f)/colSums(n * f)), matrix(0,ages,length(years_data))) } } @@ -63,7 +64,7 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, Ut = rbind(cbind(Ut,zeros),cbind(Mt,zeros)) ft = matrix(0, nrow=ages*2, ncol=ages*2) ft[1,1:ages] = f[,t] * birth_female - if(is.null(pi)){ + if(pi_N_null_flag){ A <- Ut[1:ages,1:ages] + ft[1:ages,1:ages] A_decomp = eigen(A) w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) From 6eb6449b70811259acd432ebb2b239c54f6b75b0 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 28 Apr 2023 11:42:02 -0300 Subject: [PATCH 16/89] pi_N_null_flag --- R/kin_time_variant.R | 1 + 1 file changed, 1 insertion(+) diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index 8e31031..1d83108 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -38,6 +38,7 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, zeros <- matrix(0, nrow=ages, ncol=ages) # age distribution at childborn + pi_N_null_flag <- FALSE if(is.null(pi)){ if(is.null(n)){ # create pi and fill it during the loop From f45a1c0e0ecb392385b8c80f601dfafb44abcd1c Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 19 May 2023 12:58:38 -0300 Subject: [PATCH 17/89] preparing cran --- DESCRIPTION | 6 +- NAMESPACE | 2 +- R/aux_funs.R | 58 ++----- R/data.R | 9 ++ R/kin.R | 20 +++ R/kin2sex.R | 23 +++ R/kin_multi_stage.R | 191 ++++++++++++++---------- R/kin_time_invariant_2sex.R | 3 + R/kin_time_variant.R | 25 +++- R/kin_time_variant_2sex.R | 34 +---- README.Rmd | 4 +- README.md | 38 ++--- data/demokin_codes.rda | Bin 0 -> 607 bytes dev/demokin_codes.R | 28 ++++ man/demokin_codes.Rd | 13 +- man/kin2sex.Rd | 4 + man/kin_multi_stage.Rd | 11 +- man/output_period_cohort_combination.Rd | 29 ++-- man/rename_kin.Rd | 12 +- man/timevarying_kin_2sex.Rd | 5 +- tests/testthat/test-kin_multi_stage.R | 3 +- vignettes/Reference_OneSex.Rmd | 19 +-- 22 files changed, 318 insertions(+), 219 deletions(-) create mode 100644 data/demokin_codes.rda create mode 100644 dev/demokin_codes.R diff --git a/DESCRIPTION b/DESCRIPTION index 6abffee..fbb511d 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,5 +1,5 @@ Package: DemoKin -Title: Estimate population kin counts. +Title: Estimate population kin counts Description: Estimate population kin counts and its distribution by type, age and sex. The package implements one-sex and two-sex framework for studying living-death availability, with time varying rates or not, and multi-stage model. @@ -7,7 +7,8 @@ Version: 1.0.0 Authors@R: c( person("IvĆ”n", "Williams", email = "act.ivanwilliams@gmail.com", role = "cre"), person("Diego", "Alburez-Gutierrez", email = "alburezgutierrez@demogr.mpg.de", role = "aut"), - person("Xi", "Song", email = "xisong@sas.upenn.edu", role = "ctb")) + person("Xi", "Song", email = "xisong@sas.upenn.edu", role = "ctb"), + person("Caswell", "Hal", email = "caswell@demogr.mpg.de", role = "ctb")) License: MIT + file LICENSE Encoding: UTF-8 LazyData: true @@ -23,7 +24,6 @@ Imports: dplyr, tidyr, purrr, - HMDHFDplus, progress, matrixcalc, Matrix, diff --git a/NAMESPACE b/NAMESPACE index 2d84ee7..72c7b74 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -1,7 +1,6 @@ # Generated by roxygen2: do not edit by hand export("%>%") -export(demokin_codes) export(kin) export(kin2sex) export(kin_multi_stage) @@ -9,6 +8,7 @@ export(kin_time_invariant) export(kin_time_invariant_2sex) export(kin_time_variant) export(kin_time_variant_2sex) +export(output_period_cohort_combination) export(plot_diagram) export(rename_kin) importFrom(magrittr,"%>%") diff --git a/R/aux_funs.R b/R/aux_funs.R index e8c745b..bead1b1 100644 --- a/R/aux_funs.R +++ b/R/aux_funs.R @@ -1,49 +1,15 @@ - -#' print kin codes -#' @description Print kin codes and labels -#' @export -demokin_codes <- function(){ - codes <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") - caswell_codes <- c("t", "v", "a", "b", "c", "h", "g", "d", "p", "q", "r", "s", "m", "n") - labels <- c("Cousins from older aunt", "Cousins from younger aunt", "Daughter", "Grand-daughter", "Great-grand-daughter", "Great-grandmother", "Grandmother", "Mother", "Nieces from older sister", "Nieces from younger sister", "Aunt older than mother", "Aunt younger than mother", "Older sister", "Younger sister") - data.frame(DemoKin = codes, Caswell = caswell_codes, Label = labels, row.names = NULL) -} - #' rename kin -#' @description Rename kin labels depending consolidate some types -#' @export -rename_kin <- function(df, consolidate_column = "no"){ - - stopifnot("Argument 'consolidate_column' should be 'no' or a valid column name" = consolidate_column %in% c("no", colnames(df))) - - if(consolidate_column == "no"){ - - relatives <- c("Cousins from older aunt", "Cousins from younger aunt", "Daughter", "Grand-daughter", "Great-grand-daughter", "Great-grandmother", "Grandmother", "Mother", "Nieces from older sister", "Nieces from younger sister", "Aunt older than mother", "Aunt younger than mother", "Older sister", "Younger sister") - names(relatives) <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") - } else { - - # Combine kin types irrespective of whether they come from older - # or younger sibling lines - consolidate_vec <- c("c", "c", "d", "gd", "ggd", "ggm", "gm", "m", "n", "n", "a", "a", "s", "s") - names(consolidate_vec) <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") - - # Rename kin types from codes to actual words - relatives <- c("Cousins", "Daughter", "Grand-daughter", "Great-grand-daughter", "Great-grandmother", "Grandmother", "Mother", "Nieces", "Aunt", "Sister") - names(relatives) <- unique(consolidate_vec) - - df <- as.data.frame(df) - df$count <- df[ , consolidate_column] - - df <- - df %>% - dplyr::mutate(kin = consolidate_vec[kin]) %>% - dplyr::group_by(age_focal, kin) %>% - dplyr::summarise(count = sum(count)) %>% - dplyr::ungroup() - - - } - df$kin <- relatives[df$kin] - df +#' @description Add kin labels depending the sex +#' @details See table `demokin_codes` to know label options. +#' @param df data.frame. A data frame with variable `kin` with `DemoKin` codes to be labelled. +#' @param sex character. "f" for female, "m" for male or "2sex" for both sex naming. +#' @export +rename_kin <- function(df, sex = "f"){ + if(sex == "f") demokin_codes_sex <- DemoKin::demokin_codes[,c("DemoKin", "Labels_female")] + if(sex == "m") demokin_codes_sex <- DemoKin::demokin_codes[,c("DemoKin", "Labels_male")] + if(sex == "2sex") demokin_codes_sex <- DemoKin::demokin_codes[,c("DemoKin", "Labels_2sex")] + colnames(demokin_codes_sex) <- c("kin", "kin_label") + df %>% + dplyr::left_join(demokin_codes_sex) } diff --git a/R/data.R b/R/data.R index b11636a..43be162 100644 --- a/R/data.R +++ b/R/data.R @@ -149,3 +149,12 @@ #' @source #' Caswell (2022) "fra_surv_sex" + +#' DemoKin codes, Caswell (2020) codes, and useful labels. +#' +#' DemoKin codes, Caswell (2020) codes, and useful labels. +#' @docType data +#' @format +#' A data.frame with codes and labels for distinction between kin types. + +"demokin_codes" diff --git a/R/kin.R b/R/kin.R index 73f74be..b5a898b 100644 --- a/R/kin.R +++ b/R/kin.R @@ -52,6 +52,9 @@ kin <- function(p = NULL, f = NULL, U = lifecycle::deprecated()) { + # global vars + living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + # changed arguments if (lifecycle::is_present(stable)) { lifecycle::deprecate_warn("0.0.0.9000", "kin(stable)", details = "Used time_invariant") @@ -64,9 +67,15 @@ kin <- function(p = NULL, f = NULL, # kin to return all_possible_kin <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") + output_kin_asked <- output_kin if(is.null(output_kin)){ output_kin <- all_possible_kin }else{ + if("s" %in% output_kin) output_kin <- c(output_kin, "os", "ys") + if("c" %in% output_kin) output_kin <- c(output_kin, "coa", "cya") + if("a" %in% output_kin) output_kin <- c(output_kin, "oa", "ya") + if("n" %in% output_kin) output_kin <- c(output_kin, "nos", "nys") + output_kin <- output_kin[!output_kin %in% c("s", "c", "a", "n")] output_kin <- match.arg(tolower(output_kin), all_possible_kin, several.ok = TRUE) } @@ -91,6 +100,17 @@ kin <- function(p = NULL, f = NULL, message(paste0("Assuming stable population before ", min(years_data), ".")) } + # re-group if grouped type is asked + if(length(output_kin_asked)!=length(output_kin)){ + if("s" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("os", "ys")] <- "s" + if("c" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("coa", "cya")] <- "c" + if("a" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("oa", "ya")] <- "a" + if("n" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("nos", "nys")] <- "n" + kin_full <- kin_full %>% + dplyr::summarise(living = sum(living), dead = sum(dead), + .by = c(kin, age_kin, age_focal, cohort, year)) + } + # select period/cohort if(!is.null(output_cohort)){ agrupar <- "cohort" diff --git a/R/kin2sex.R b/R/kin2sex.R index 08da0c6..cd044cb 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -38,6 +38,10 @@ #' @examples #' \dontrun{ #' # Kin expected count by relative sex for a French female based on 2012 rates. +#' fra_fert_f <- fra_asfr_sex[,"ff"] +#' fra_fert_m <- fra_asfr_sex[,"fm"] +#' fra_surv_f <- fra_surv_sex[,"pf"] +#' fra_surv_m <- fra_surv_sex[,"pm"] #' fra_2012 <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m) #' head(fra_2012) #'} @@ -52,14 +56,22 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, output_cohort = NULL, output_period = NULL, output_kin=NULL) { + # global vars + living<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-sex_kin<-age_kin<-dead<-NULL age <- as.integer(rownames(pf)) years_data <- as.integer(colnames(pf)) # kin to return all_possible_kin <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") + output_kin_asked <- output_kin if(is.null(output_kin)){ output_kin <- all_possible_kin }else{ + if("s" %in% output_kin) output_kin <- c(output_kin, "os", "ys") + if("c" %in% output_kin) output_kin <- c(output_kin, "coa", "cya") + if("a" %in% output_kin) output_kin <- c(output_kin, "oa", "ya") + if("n" %in% output_kin) output_kin <- c(output_kin, "nos", "nys") + output_kin <- output_kin[!output_kin %in% c("s", "c", "a", "n")] output_kin <- match.arg(tolower(output_kin), all_possible_kin, several.ok = TRUE) } @@ -94,6 +106,17 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, # reorder kin_full <- kin_full %>% dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, dead) + # re-group if grouped type is asked + if(length(output_kin_asked)!=length(output_kin)){ + if("s" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("os", "ys")] <- "s" + if("c" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("coa", "cya")] <- "c" + if("a" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("oa", "ya")] <- "a" + if("n" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("nos", "nys")] <- "n" + kin_full <- kin_full %>% + dplyr::summarise(living = sum(living), dead = sum(dead), + .by = c(kin, age_kin, age_focal, sex_kin, cohort, year)) + } + # summary # select period/cohort if(!is.null(output_cohort)){ diff --git a/R/kin_multi_stage.R b/R/kin_multi_stage.R index 7129134..bea168f 100644 --- a/R/kin_multi_stage.R +++ b/R/kin_multi_stage.R @@ -2,12 +2,13 @@ #' @description Implementation of age-stage kin estimates (multi-state) by Caswell (2020). Stages are implied in length of input lists. -#' @param U list. age elemnts with column-stochastic transition matrix with dimension for the state space, conditional on survival. -#' @param f matrix. state-specific fertility (age in rows and states in columns). -#' @param D matrix. survival probabilities by state (age in rows and states in columns) -#' @param H matrix. assigns the offspring of individuals in some stage to the appropriate age class with 1 (age in rows and states in columns). +#' @param U list. age elements with column-stochastic transition matrix with dimension for the state space, conditional on survival. +#' @param f matrix. state-specific fertility (age in rows and states in columns). Is accepted also a list with for each age-class. +#' @param D matrix. survival probabilities by state (age in rows and states in columns). Is accepted also a list for each state with survival matrices. +#' @param H matrix. assigns the offspring of individuals in some stage to the appropriate age class (age in rows and states in columns). Is accepted also a list with a matrix for each state. #' @param output_kin character. kin to return. For example "m" for mother, "d" for daughter. See the `vignette` for all kin types. #' @param birth_female numeric. Female portion at birth. +#' @param parity logical. parity states imply age distribution of mothers re-scaled to not have parity 0 when Focal born. Default `TRUE`. #' @param list_output logical. Results as a list. Default `FALSE`. #' @return A data frame with focalĀ“s age, related ages and type of kin @@ -16,96 +17,109 @@ #' kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, - birth_female = 1/2.04, - output_kin = NULL, - list_output = FALSE){ + birth_female = 1/2.04, + output_kin = NULL, + parity = FALSE, + list_output = FALSE){ + # mandatory U as a list if(!is.list(U)) stop("U must be a list with age length of elements, and stage transitiotn matrix for each one.") - # stages and ages + # stages and age-classes s <- ncol(U[[1]]) ages <- length(U) age <- (1:ages)-1 - # build matrix structure from data.frame input - H <- purrr::map(colnames(D), function(Y){ - Ht = matrix(0, nrow=ages, ncol=ages) - Ht[1,] <- 1 - Ht - }) - D <- purrr::map(colnames(D), function(Y){ + # build H if it is not already a list + if(!is.list(H)){ + H <- purrr::map(1:s, function(Y){ + Ht = matrix(0, nrow=ages, ncol=ages) + Ht[1,] <- 1 + Ht + }) + } + + # build D if it is not already a list + if(!is.list(D)){ + D <- purrr::map(1:s, function(Y){ X <- D[,Y] Dt = matrix(0, nrow=ages, ncol=ages) Dt[row(Dt)-1 == col(Dt)] <- X[-ages] Dt[ages, ages] = X[ages] Dt }) - f <- purrr::map(1:ages, function(Y){ - X <- f[Y,] - ft = matrix(0, nrow=s, ncol=s) - ft[1,] <- X - ft - }) - - # build block matrix + } + + # build f if it is not already a list + if(!is.list(f)){ + f <- purrr::map(1:ages, function(Y){ + X <- f[Y,] + ft = matrix(0, nrow=s, ncol=s) + ft[1,] <- X + ft + }) + } + + # build block matrices bbU <- Matrix::bdiag(U) bbF <- Matrix::bdiag(f) * birth_female bbD <- Matrix::bdiag(D) bbH <- Matrix::bdiag(H) - # rearrange with conmutation matrix + # order transitions: first state within age, then age given state K <- matrixcalc::commutation.matrix(s, ages) Ut <- t(K) %*% bbD %*% K %*% bbU ft <- t(K) %*% bbH %*% K %*% bbF + + # focal transition but conditioned to survive Gt <- Ut%*% MASS::ginv(diag(colSums(as.matrix(Ut)))) - # stable distribution mothers: age x stage + # stable distribution of mothers At <- Ut + ft A_decomp <- eigen(At) lambda <- as.double(A_decomp$values[1]) wt <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) pi <- wt*At[1,]/sum(wt*At[1,]) - # marginal mothers age - Iom <- diag(1,ages, ages); - ones <- t(rep(1,s)) + # useful vectors and matrices + ones <- t(rep(1,s)) onesom <- t(rep(1,s*ages)) - piage <- kronecker(Iom,ones) %*% pi - - # momarray is an array with pit in each column - momarray <- pi %*% matrix(1,1,ages) - Iom = diag(1, ages) - Is = diag(1, s) - Isom = diag(1, s*ages) - zsom = matrix(0, s*ages, s*ages) - Z=Is; - Z[1,1]=0; - for(i in 1:ages){ - # imom = 1 - E <- Iom[,i] %*% t(Iom[i,]); # al cuadrado? - momarray[,i] <- kronecker(E,Z) %*% momarray[,i] - } - # re-scale - momarray <- momarray %*% MASS::ginv(diag(colSums(momarray))) - - # considering deaths - phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0,ages*s*2,ages) - phi[1,1] = 1 + onesa <- t(rep(1,ages)) + Iom <- diag(1, ages) + Is <- diag(1, s) + Isom <- diag(1, s*ages) + zsom <- matrix(0, s*ages, s*ages) + + # momarray is an array with pi in each column + piage <- kronecker(Iom,ones) %*% pi + momarray <- pi %*% onesa + + # considering deaths (no cumulated): reacreate block struct matrices + phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0,ages * s * 2, ages) Mtt <- diag(as.numeric(onesom - onesom %*% Ut)) Utt <- rbind(cbind(Ut,zsom), cbind(Mtt,Isom)) %>% as.matrix() ftt <- rbind(cbind(ft,zsom), cbind(zsom,zsom)) %>% as.matrix() Gtt <- rbind(cbind(Gt,zsom), cbind(zsom,zsom)) %>% as.matrix() sages <- 1:(ages*s) - # no considering deaths - # phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0,ages*s,ages) - # phi[1,1] = 1 - # Utt = Ut %>% as.matrix() - # ftt = ft %>% as.matrix() - # Gtt = Gt %>% as.matrix() + # if parity: restriction to no initial mothers with 0 parity + if(parity){ + Z=Is + Z[1,1]=0 + for(i in 1:ages){ + E <- Iom[,i] %*% t(Iom[i,]) + momarray[,i] <- kronecker(E,Z) %*% momarray[,i] + } + # re-scale + momarray <- momarray %*% MASS::ginv(diag(colSums(momarray))) + # no 0 parity mothers: (momarray %*% piage)[seq(1,600,6)] + m[sages,1] = momarray %*% piage + }else{ + m[sages,1] = pi + } # focalĀ“s trip - m[sages,1] = momarray %*% piage; + phi[1,1] = 1 for(i in 1:(ages-1)){ phi[,i+1] = Gtt %*% phi[,i] d[,i+1] = Utt %*% d[,i] + ftt %*% phi[,i] @@ -145,7 +159,8 @@ kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, } # get results - kin_list <- list(d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, + kin_list <- list(focal = phi, + d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, nos=nos,nys=nys,oa=oa,ya=ya,coa=coa,cya=cya) # only selected kin @@ -153,34 +168,56 @@ kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, kin_list <- kin_list %>% purrr::keep(names(.) %in% output_kin) } - # as data.frame - kin <- purrr::map2(kin_list, names(kin_list), - function(x,y){ - out <- as.data.frame(x) - colnames(out) <- age - out %>% - dplyr::mutate(kin = y, - age_kin = rep(sort(rep(age,s)),2), - stage_kin = rep(rep(1:s,ages),2), - alive = c(rep("living",s*ages),rep("dead",s*ages)) - # age_kin = sort(rep(age,s)), - # stage_kin = rep(1:s,ages), - # alive = c(rep("yes",s*ages)) - ) %>% - tidyr::pivot_longer(c(-age_kin, -stage_kin, -kin, -alive), names_to = "age_focal", values_to = "count") %>% - dplyr::mutate(age_focal = as.integer(age_focal)) %>% - tidyr::pivot_wider(names_from = alive, values_from = count) - }) %>% + # kin_full as data.frame + kin_full <- purrr::map2(kin_list, names(kin_list), + function(x,y){ + out <- as.data.frame(x) + colnames(out) <- age + out %>% + dplyr::mutate(kin = y, + age_kin = rep(sort(rep(age,s)),2), + stage_kin = rep(rep(1:s,ages),2), + alive = c(rep("living",s*ages),rep("dead",s*ages))) %>% + tidyr::pivot_longer(c(-age_kin, -stage_kin, -kin, -alive), names_to = "age_focal", values_to = "count") %>% + dplyr::mutate(age_focal = as.integer(age_focal)) %>% + tidyr::pivot_wider(names_from = alive, values_from = count) + }) %>% purrr::reduce(rbind) # results as list? if(list_output) { out <- kin_list }else{ - out <- kin + out <- kin_full } + # end return(out) } - +# function to create lists for the parity case given a set of coniditonal rates and survival probabilities with stages in columns and ages in rows +make_mulstistate_parity_matrices <- function(f_parity, p_parity, birth_female=.5){ + ages <- nrow(f_parity) + stages <- ncol(f_parity) + 1 + F_list <- U_list <- D_list <- H_list <- list() + for(x in 1:ages){ + cond_probs <- as.numeric(f_parity[x,]/(1+f_parity[x,]/2)) + U_age <- matrix(0,stages,stages) + diag(U_age) <- c(1 - cond_probs, 1) + U_age[row(U_age)-1==col(U_age)] <- cond_probs + U_list[[x]] <- U_age + F_age <- matrix(0,stages,stages) + F_age[1,] <- c(cond_probs,cond_probs[stages-1])*birth_female + F_list[[x]] <- F_age + } + p_parity$px_last <- p_parity[,stages-1] + for(s in 1:stages){ + H_age <- D_age <- matrix(0,ages,ages) + H_age[1,] <- 1 + D_age[row(D_age)-1==col(D_age)] <- p_parity[-ages,s] + D_age[stages, stages] <- p_parity[ages,s] + H_list[[s]] <- H_age + D_list[[s]] <- D_age + } + return(list(U = U_list, F. = F_list, H = H_list, D = D_list)) +} diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R index 7e8fe16..e8e4c4b 100644 --- a/R/kin_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex.R @@ -27,6 +27,9 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, output_kin = NULL, list_output = FALSE){ + # global vars + living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + # same input length if(!all(length(pf)==length(pm), length(pf)==length(ff), length(pf)==length(fm))) stop("Lengths of p's and f's should be the same") diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index 1d83108..55adffe 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -20,15 +20,18 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, output_cohort = NULL, output_period = NULL, output_kin = NULL, birth_female = 1/2.04, list_output = FALSE){ + # global vars + living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + # check input if(is.null(p) | is.null(f)) stop("You need values on p and f.") # diff years - if(!any(as.integer(colnames(p)) == as.integer(colnames(f)))) stop("Data should be from same years.") + if(!any(as.integer(colnames(p)) == as.integer(colnames(f)))) stop("Make sure that p and f are matrices and have the same column names.") # data should be from same interval years years_data <- as.integer(colnames(p)) - if(var(diff(years_data))!=0) stop("Data should be for same interval length years. Fill the gaps and run again") + if(var(diff(years_data))!=0) stop("The years given as column names in the p and f matrices must be equally spaced.") # utils age <- 0:(nrow(p)-1) @@ -104,6 +107,7 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, purrr::map(~ .[selected_kin_position]) # long format + cat("Preparing output...") kin <- lapply(names(kin_list), FUN = function(Y){ X <- kin_list[[Y]] X <- purrr::map2(X, names(X), function(x,y){ @@ -123,7 +127,6 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, X[X$age_focal %in% out_selected$age[out_selected$year==as.integer(Y)],] %>% data.table::dcast(year + kin + age_kin + age_focal + cohort ~ alive, value.var = "count") }) %>% data.table::rbindlist() - pb$tick() # results as list? if(list_output) { @@ -193,10 +196,17 @@ timevarying_kin<- function(Ut, ft, pit, ages, pkin){ return(kin_list) } -#' defince apc combination to return +#' APC combination to return -#' @description defince apc to return. -#' +#' @description define APC combination to return in `kin` and `kin2sex`. +#' @details Because returning all period and cohort data from a huge time-series would be hard memory consuming, +#' this function is an auxiliary one to deal with selection from inputs `output_cohort` and `output_period`. +#' @param output_cohort integer. A vector with selected calendar years. +#' @param output_period integer. A vector with selected cohort years. +#' @param age integer. A vector with ages from the kinship network to be filtered. +#' @param years_data integer. A vector with years from the time-varying kinship network to be filtered. +#' @return data.frame with years and ages to filter in `kin` and `kin_2sex` functions. +#' @export output_period_cohort_combination <- function(output_cohort = NULL, output_period = NULL, age = NULL, years_data = NULL){ # no specific @@ -212,10 +222,11 @@ output_period_cohort_combination <- function(output_cohort = NULL, output_period unlist(use.names = F)) }else{selected_cohorts_year_age <- c()} - # period year combination + # period combination if(!is.null(output_period)){selected_years_age <- expand.grid(age, output_period) %>% dplyr::rename(age=1,year=2) }else{selected_years_age <- c()} # end return(dplyr::bind_rows(selected_years_age,selected_cohorts_year_age) %>% dplyr::distinct()) } + diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index f0b1479..cd9d560 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -30,6 +30,9 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, output_cohort = NULL, output_period = NULL, output_kin = NULL, list_output = FALSE){ + # global vars + living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + # same input length if(!all(dim(pf) == dim(pm), dim(pf) == dim(ff), dim(pf) == dim(fm))) stop("Dimension of P's and F's should be the same") @@ -145,6 +148,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, purrr::keep(names(.) %in% as.character(unique(out_selected$year))) %>% purrr::map(~ .[selected_kin_position]) # long format + cat("Preparing output...") kin <- lapply(names(kin_list), FUN = function(Y){ X <- kin_list[[Y]] X <- purrr::map2(X, names(X), function(x,y){ @@ -165,7 +169,6 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, X <- X[X$age_focal %in% out_selected$age[out_selected$year==as.integer(Y)],] X <- data.table::dcast(X, year + kin + sex_kin + age_kin + age_focal + cohort ~ alive, value.var = "count", fun.aggregate = sum) }) %>% data.table::rbindlist() - pb$tick() # results as list? if(list_output) { @@ -184,7 +187,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, #' @param Ft numeric. A matrix of age-specific fertility rates. #' @param Ft_star numeric. Ft but for female fertility. #' @param pit numeric. A matrix with distribution of childbearing. -#' sex_focal +#' @param sex_focal character. "f" for female or "m" for male. #' @param ages numeric. #' @param pkin numeric. A list with kin count distribution in previous year. # @@ -242,30 +245,3 @@ timevarying_kin_2sex<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin){ return(kin_list) } - -#' APC combination to return - -#' @description define apc combination to return in `kin` and `kin2sex`. -#' -output_period_cohort_combination <- function(output_cohort = NULL, output_period = NULL, age = NULL, years_data = NULL){ - - # no specific - if(is.null(output_period) & is.null(output_cohort)){ - message("No specific output was set. Return all period data.") - output_period <- years_data - } - - # cohort combination - if(!is.null(output_cohort)){ - selected_cohorts_year_age <- data.frame(age = rep(age,length(output_cohort)), - year = purrr::map(output_cohort,.f = ~.x+age) %>% - unlist(use.names = F)) - }else{selected_cohorts_year_age <- c()} - - # period year combination - if(!is.null(output_period)){selected_years_age <- expand.grid(age, output_period) %>% dplyr::rename(age=1,year=2) - }else{selected_years_age <- c()} - - # end - return(dplyr::bind_rows(selected_years_age,selected_cohorts_year_age) %>% dplyr::distinct()) -} diff --git a/README.Rmd b/README.Rmd index d2426f1..721e1ed 100644 --- a/README.Rmd +++ b/README.Rmd @@ -42,7 +42,7 @@ devtools::install_github("IvanWilli/DemoKin") ## Usage -Consider an average Swedish woman called 'Focal'. For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their life (the 'time-invariant' assumption in Caswell [2019]). +Consider an average Swedish woman called 'Focal'. For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their life (the 'time-invariant' assumption in Caswell (2019)). We then ask: @@ -73,7 +73,7 @@ plot_diagram(kin_total, rounding = 2) Relatives are identified by a unique code: ```{r, fig.height=6, fig.width=8, echo=FALSE} -kable(DemoKin::demokin_codes()[-2]) +kable(DemoKin::demokin_codes[,c(1,3)]) ``` ## Vignette diff --git a/README.md b/README.md index a8badbf..e5d467d 100644 --- a/README.md +++ b/README.md @@ -35,7 +35,7 @@ devtools::install_github("IvanWilli/DemoKin") Consider an average Swedish woman called ā€˜Focal’. For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their -life (the ā€˜time-invariant’ assumption in Caswell \[2019\]). +life (the ā€˜time-invariant’ assumption in Caswell (2019)). We then ask: @@ -71,22 +71,26 @@ plot_diagram(kin_total, rounding = 2) Relatives are identified by a unique code: -| DemoKin | Label | -|:--------|:---------------------------| -| coa | Cousins from older aunt | -| cya | Cousins from younger aunt | -| d | Daughter | -| gd | Grand-daughter | -| ggd | Great-grand-daughter | -| ggm | Great-grandmother | -| gm | Grandmother | -| m | Mother | -| nos | Nieces from older sister | -| nys | Nieces from younger sister | -| oa | Aunt older than mother | -| ya | Aunt younger than mother | -| os | Older sister | -| ys | Younger sister | +| DemoKin | Labels_female | +|:--------|:----------------------------| +| coa | Cousins from older aunts | +| cya | Cousins from younger aunts | +| c | Cousins | +| d | Daughters | +| gd | Grand-daughters | +| ggd | Great-grand-daughters | +| ggm | Great-grandmothers | +| gm | Grandmothers | +| m | Mother | +| nos | Nieces from older sisters | +| nys | Nieces from younger sisters | +| n | Nieces | +| oa | Aunts older than mother | +| ya | Aunts younger than mother | +| a | Aunts | +| os | Older sisters | +| ys | Younger sisters | +| s | Sisters | ## Vignette diff --git a/data/demokin_codes.rda b/data/demokin_codes.rda new file mode 100644 index 0000000000000000000000000000000000000000..3859ab313ac97b245ae997bc2c4d20df6deaf116 GIT binary patch literal 607 zcmV-l0-*gLiwFP!0000027OgsbJ9Q*O-KU;#WL+U+M<^J0LqNM^tH;A2bDTjX3A4% zNtPsIvWwYJ2;8tnxbKg|77 zode1wMO~1=EMI=$OA#^Ao2NYK@z|$nk1SaRWu2k?nlD*kAQ}px+~$xhgD|5h1dc{2 zVSe8?!p}!3C0ReHOde~=glA!qc{(b`>Yul+@=nJQ^(ZPxL_*uVs{^1S45{xR%6oCW zDOc^4g@pAIbl@%xJCyut<`b2Nmv)d|aooO|jqL)~<^L?W>K+0U~pSZz)CA^Dfal`^+?z}LH{gkrGxiga| zx|jF`o+rL+TpE=s+y8!K5?Y z!!YkQzSdku5(>(@(5Ioi>pn&-7mkP(jbr#n_(Wzj77ufpkeI6A6BVooy%qGQd8!u^ t0jEN+<&%tD&QnRqfHzaVx&)%_%{BH*zU1ZbTYmm*o`1DPph(FF002*=Cr% +demokin_codes %>% kable ``` @@ -92,7 +92,6 @@ We can also visualize the age distribution of relatives when Focal is 35 years o ```{r, fig.height=6, fig.width=8} swe_2015[["kin_full"]] %>% - DemoKin::rename_kin() %>% filter(age_focal == 35) %>% ggplot() + geom_line(aes(age_kin, living)) + @@ -110,7 +109,6 @@ The `kin` function also includes a summary output with the count of living kin, ```{r, fig.height=6, fig.width=8} swe_2015[["kin_summary"]] %>% - DemoKin::rename_kin() %>% filter(age_focal == 35) %>% select(kin, count_living, mean_age, sd_age) %>% mutate_if(is.numeric, round, 2) %>% @@ -145,7 +143,6 @@ swe_time_varying <- ) swe_time_varying$kin_summary %>% - DemoKin::rename_kin() %>% ggplot(aes(age_focal,count_living,color=factor(cohort))) + scale_y_continuous(name = "",labels = seq(0,3,.2),breaks = seq(0,3,.2))+ geom_line(color = 1)+ @@ -165,7 +162,6 @@ The function `kin` also includes information on the number of relatives lost by ```{r, fig.height=6, fig.width=8, message=FALSE, warning=FALSE} swe_time_varying$kin_summary %>% - DemoKin::rename_kin() %>% ggplot() + geom_line(aes(age_focal, count_cum_dead)) + labs(y = "Expected number of deceased relatives") + @@ -177,7 +173,6 @@ Given these population-level measures, we can compute Focal's the mean age at th ```{r} swe_time_varying$kin_summary %>% - rename_kin() %>% filter(age_focal == 50) %>% select(kin,count_cum_dead,mean_age_lost) %>% mutate_if(is.numeric, round, 2) %>% @@ -202,7 +197,6 @@ swe_2015_prevalence <- swe_2015$kin_full %>% left_join(swe_2015_prevalence) %>% group_by(kin, age_focal) %>% - rename_kin() %>% summarise( prevalent = sum(living * prev), no_prevalent = sum(living * (1-prev)) @@ -237,8 +231,8 @@ demokin_svk1980_caswell2020 <- f = svk_fxs, D = svk_pxs, H = svk_Hxs, - birth_female=1 - ) + birth_female=1, + parity = TRUE) ``` Note that the function ask for risks already in a certain matrix format. As an example, consider the age-parity distribution of aunts, when Focal is 20 and 60 yo (this is equivalent to Figure 4 in Caswell [2021]). @@ -247,8 +241,8 @@ Note that the function ask for risks already in a certain matrix format. As an e demokin_svk1980_caswell2020 %>% filter(kin %in% c("oa","ya"), age_focal %in% c(20,60)) %>% mutate(parity = as.integer(stage_kin)-1, - parity = case_when(parity == 5 ~ "5+", T ~ as.character(parity)), - parity = forcats::fct_rev(parity)) %>% + parity = case_when(parity == 5 ~ "5+", T ~ as.character(parity)) + ) %>% group_by(age_focal, age_kin, parity) %>% summarise(count= sum(living)) %>% ggplot() + @@ -265,8 +259,7 @@ We can also see the portion of living daughters and mothers at different parity demokin_svk1980_caswell2020 %>% filter(kin %in% c("d","m")) %>% mutate(parity = as.integer(stage_kin)-1, - parity = case_when(parity == 5 ~ "5+", T ~ as.character(parity)), - parity = forcats::fct_rev(parity)) %>% + parity = case_when(parity == 5 ~ "5+", T ~ as.character(parity))) %>% group_by(age_focal, kin, parity) %>% summarise(count= sum(living)) %>% DemoKin::rename_kin() %>% From 89ace424c13602e231a13d544bc2934b3f6bee59 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 24 May 2023 04:30:57 -0300 Subject: [PATCH 18/89] reassign deaths --- NAMESPACE | 1 + R/kin.R | 18 +++++++++++++++++- R/kin2sex.R | 2 +- R/kin_multi_stage.R | 30 +++--------------------------- R/kin_time_invariant.R | 2 ++ R/kin_time_invariant_2sex.R | 3 +++ R/kin_time_variant.R | 3 +++ R/kin_time_variant_2sex.R | 3 +++ R/plot_diagramm.R | 2 ++ man/dead_age_reasign.Rd | 17 +++++++++++++++++ 10 files changed, 52 insertions(+), 29 deletions(-) create mode 100644 man/dead_age_reasign.Rd diff --git a/NAMESPACE b/NAMESPACE index 72c7b74..7a702a6 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -1,6 +1,7 @@ # Generated by roxygen2: do not edit by hand export("%>%") +export(dead_age_reasign) export(kin) export(kin2sex) export(kin_multi_stage) diff --git a/R/kin.R b/R/kin.R index b5a898b..df677e9 100644 --- a/R/kin.R +++ b/R/kin.R @@ -101,7 +101,7 @@ kin <- function(p = NULL, f = NULL, } # re-group if grouped type is asked - if(length(output_kin_asked)!=length(output_kin)){ + if(!is.null(output_kin_asked) & length(output_kin_asked)!=length(output_kin)){ if("s" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("os", "ys")] <- "s" if("c" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("coa", "cya")] <- "c" if("a" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("oa", "ya")] <- "a" @@ -148,3 +148,19 @@ kin <- function(p = NULL, f = NULL, kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) return(kin_out) } + + +#' Reassign kin dead to proper Focal age +#' @description Reassign death to proper Focal risk age +#' @details Matrix methods set dead experience in the next age where risk happened. This function return dead experienced in x from x+1. +#' @param kin table. A kin output in table format from function `kin_time_invariant`, `kin_time_variant`, `kin_time_invariant_2sex`, `kin_time_invariant_2sex`, `kin_multi_stage`. +#' @export +dead_age_reasign <- function(kin){ + kin <- data.table::as.data.table(kin) + kin_dt <- kin[, -which(names(kin) == "living"), with = FALSE] + kin_dt$age_focal <- kin_dt$age_focal - 1 + kin_dt <- kin_dt[kin_dt$age_focal >= 0, ] + kin <- merge(kin_dt, kin[, -which(names(kin) == "dead"), with = FALSE], all.y = TRUE) + kin$dead[is.na(kin$dead)] <- 0 + return(kin) +} diff --git a/R/kin2sex.R b/R/kin2sex.R index cd044cb..ac99530 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -107,7 +107,7 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, kin_full <- kin_full %>% dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, dead) # re-group if grouped type is asked - if(length(output_kin_asked)!=length(output_kin)){ + if(!is.null(output_kin_asked) & length(output_kin_asked)!=length(output_kin)){ if("s" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("os", "ys")] <- "s" if("c" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("coa", "cya")] <- "c" if("a" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("oa", "ya")] <- "a" diff --git a/R/kin_multi_stage.R b/R/kin_multi_stage.R index bea168f..267e359 100644 --- a/R/kin_multi_stage.R +++ b/R/kin_multi_stage.R @@ -184,6 +184,9 @@ kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, }) %>% purrr::reduce(rbind) + # reassign dead to proper focal age + kin_full <- dead_age_reasign(kin_full) + # results as list? if(list_output) { out <- kin_list @@ -194,30 +197,3 @@ kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, # end return(out) } - -# function to create lists for the parity case given a set of coniditonal rates and survival probabilities with stages in columns and ages in rows -make_mulstistate_parity_matrices <- function(f_parity, p_parity, birth_female=.5){ - ages <- nrow(f_parity) - stages <- ncol(f_parity) + 1 - F_list <- U_list <- D_list <- H_list <- list() - for(x in 1:ages){ - cond_probs <- as.numeric(f_parity[x,]/(1+f_parity[x,]/2)) - U_age <- matrix(0,stages,stages) - diag(U_age) <- c(1 - cond_probs, 1) - U_age[row(U_age)-1==col(U_age)] <- cond_probs - U_list[[x]] <- U_age - F_age <- matrix(0,stages,stages) - F_age[1,] <- c(cond_probs,cond_probs[stages-1])*birth_female - F_list[[x]] <- F_age - } - p_parity$px_last <- p_parity[,stages-1] - for(s in 1:stages){ - H_age <- D_age <- matrix(0,ages,ages) - H_age[1,] <- 1 - D_age[row(D_age)-1==col(D_age)] <- p_parity[-ages,s] - D_age[stages, stages] <- p_parity[ages,s] - H_list[[s]] <- H_age - D_list[[s]] <- D_age - } - return(list(U = U_list, F. = F_list, H = H_list, D = D_list)) -} diff --git a/R/kin_time_invariant.R b/R/kin_time_invariant.R index 2f85412..c8e246c 100644 --- a/R/kin_time_invariant.R +++ b/R/kin_time_invariant.R @@ -107,6 +107,8 @@ kin_time_invariant <- function(p = NULL, f = NULL, ) %>% purrr::reduce(rbind) + # reassign dead to proper focal age + kin <- dead_age_reasign(kin) # results as list? if(list_output) { diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R index e8e4c4b..fe9b0d0 100644 --- a/R/kin_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex.R @@ -149,6 +149,9 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, ) %>% purrr::reduce(rbind) + # reassign dead to proper focal age + kin <- dead_age_reasign(kin) + # results as list? if(list_output) { out <- kin_list diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index 55adffe..ff74e76 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -128,6 +128,9 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, data.table::dcast(year + kin + age_kin + age_focal + cohort ~ alive, value.var = "count") }) %>% data.table::rbindlist() + # reassign dead to proper focal age + kin <- dead_age_reasign(kin) + # results as list? if(list_output) { out <- kin_list diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index cd9d560..2f34bd0 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -170,6 +170,9 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, X <- data.table::dcast(X, year + kin + sex_kin + age_kin + age_focal + cohort ~ alive, value.var = "count", fun.aggregate = sum) }) %>% data.table::rbindlist() + # reassign dead to proper focal age + kin <- dead_age_reasign(kin) + # results as list? if(list_output) { out <- kin_list diff --git a/R/plot_diagramm.R b/R/plot_diagramm.R index 87d55b1..f1750f1 100644 --- a/R/plot_diagramm.R +++ b/R/plot_diagramm.R @@ -9,6 +9,8 @@ plot_diagram <- function (kin_total, rounding = 3) { rels <- c("ggd", "gd", "d", "Focal", "m", "gm", "ggm", "oa", "coa", "os", "nos", "ya", "cya", "ys", "nys") + # check all types are in + if(!any(unique(kin_total$kin) %in% rels)) stop("You need all specific types. If some are missed or grouped, for example old and younger sisters in 's', this will fail.") vertices <- data.frame( nodes = rels , x = c(1, 1, 1, 1, 1, 1, 1, 0, -1, 0, -1, 2, 3, 2, 3) diff --git a/man/dead_age_reasign.Rd b/man/dead_age_reasign.Rd new file mode 100644 index 0000000..5599a61 --- /dev/null +++ b/man/dead_age_reasign.Rd @@ -0,0 +1,17 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin.R +\name{dead_age_reasign} +\alias{dead_age_reasign} +\title{Reassign kin dead to proper Focal age} +\usage{ +dead_age_reasign(kin) +} +\arguments{ +\item{kin}{table. A kin output in table format from function \code{kin_time_invariant}, \code{kin_time_variant}, \code{kin_time_invariant_2sex}, \code{kin_time_invariant_2sex}, \code{kin_multi_stage}.} +} +\description{ +Reassign death to proper Focal risk age +} +\details{ +Matrix methods set dead experience in the next age where risk happened. This function return dead experienced in x from x+1. +} From 8fc1ec82bb9727da364884f4084878179755acfd Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 24 May 2023 05:26:25 -0300 Subject: [PATCH 19/89] fix reassign d --- NAMESPACE | 1 - R/kin.R | 16 ---------------- R/kin_multi_stage.R | 6 +++--- R/kin_time_invariant.R | 6 +++--- R/kin_time_invariant_2sex.R | 6 +++--- R/kin_time_variant.R | 8 ++++---- R/kin_time_variant_2sex.R | 8 ++++---- man/dead_age_reasign.Rd | 17 ----------------- vignettes/Reference_OneSex.Rmd | 2 ++ 9 files changed, 19 insertions(+), 51 deletions(-) delete mode 100644 man/dead_age_reasign.Rd diff --git a/NAMESPACE b/NAMESPACE index 7a702a6..72c7b74 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -1,7 +1,6 @@ # Generated by roxygen2: do not edit by hand export("%>%") -export(dead_age_reasign) export(kin) export(kin2sex) export(kin_multi_stage) diff --git a/R/kin.R b/R/kin.R index df677e9..1cd6be2 100644 --- a/R/kin.R +++ b/R/kin.R @@ -148,19 +148,3 @@ kin <- function(p = NULL, f = NULL, kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) return(kin_out) } - - -#' Reassign kin dead to proper Focal age -#' @description Reassign death to proper Focal risk age -#' @details Matrix methods set dead experience in the next age where risk happened. This function return dead experienced in x from x+1. -#' @param kin table. A kin output in table format from function `kin_time_invariant`, `kin_time_variant`, `kin_time_invariant_2sex`, `kin_time_invariant_2sex`, `kin_multi_stage`. -#' @export -dead_age_reasign <- function(kin){ - kin <- data.table::as.data.table(kin) - kin_dt <- kin[, -which(names(kin) == "living"), with = FALSE] - kin_dt$age_focal <- kin_dt$age_focal - 1 - kin_dt <- kin_dt[kin_dt$age_focal >= 0, ] - kin <- merge(kin_dt, kin[, -which(names(kin) == "dead"), with = FALSE], all.y = TRUE) - kin$dead[is.na(kin$dead)] <- 0 - return(kin) -} diff --git a/R/kin_multi_stage.R b/R/kin_multi_stage.R index 267e359..7ea156e 100644 --- a/R/kin_multi_stage.R +++ b/R/kin_multi_stage.R @@ -171,6 +171,9 @@ kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, # kin_full as data.frame kin_full <- purrr::map2(kin_list, names(kin_list), function(x,y){ + # reassign deaths to Focal experienced age + x[(ages*s+1):(ages*s*2),1:(ages-1)] <- x[(ages*s+1):(ages*s*2),2:ages] + x[(ages*s+1):(ages*s*2),ages] <- 0 out <- as.data.frame(x) colnames(out) <- age out %>% @@ -184,9 +187,6 @@ kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, }) %>% purrr::reduce(rbind) - # reassign dead to proper focal age - kin_full <- dead_age_reasign(kin_full) - # results as list? if(list_output) { out <- kin_list diff --git a/R/kin_time_invariant.R b/R/kin_time_invariant.R index c8e246c..bbf1ba7 100644 --- a/R/kin_time_invariant.R +++ b/R/kin_time_invariant.R @@ -94,6 +94,9 @@ kin_time_invariant <- function(p = NULL, f = NULL, # reshape as data.frame kin <- purrr::map2(kin_list, names(kin_list), function(x,y){ + # reassign deaths to Focal experienced age + x[(ages+1):(ages*2),1:(ages-1)] <- x[(ages+1):(ages*2),2:ages] + x[(ages+1):(ages*2),ages] <- 0 out <- as.data.frame(x) colnames(out) <- age out %>% @@ -107,9 +110,6 @@ kin_time_invariant <- function(p = NULL, f = NULL, ) %>% purrr::reduce(rbind) - # reassign dead to proper focal age - kin <- dead_age_reasign(kin) - # results as list? if(list_output) { out <- kin_list diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R index fe9b0d0..1386ef7 100644 --- a/R/kin_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex.R @@ -135,6 +135,9 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, # as data.frame kin <- purrr::map2(kin_list, names(kin_list), function(x,y){ + # reassign deaths to Focal experienced age + x[(agess+1):(agess*2),1:(ages-1)] <- x[(agess+1):(agess*2),2:ages] + x[(agess+1):(agess*2),ages] <- 0 out <- as.data.frame(x) colnames(out) <- age out %>% @@ -149,9 +152,6 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, ) %>% purrr::reduce(rbind) - # reassign dead to proper focal age - kin <- dead_age_reasign(kin) - # results as list? if(list_output) { out <- kin_list diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index ff74e76..3c59c7e 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -107,10 +107,13 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, purrr::map(~ .[selected_kin_position]) # long format - cat("Preparing output...") + message("Preparing output...") kin <- lapply(names(kin_list), FUN = function(Y){ X <- kin_list[[Y]] X <- purrr::map2(X, names(X), function(x,y){ + # reassign deaths to Focal experienced age + x[(ages+1):(ages*2),1:(ages-1)] <- x[(ages+1):(ages*2),2:ages] + x[(ages+1):(ages*2),ages] <- 0 x <- as.data.frame(x) x$year <- Y x$kin <- y @@ -128,9 +131,6 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, data.table::dcast(year + kin + age_kin + age_focal + cohort ~ alive, value.var = "count") }) %>% data.table::rbindlist() - # reassign dead to proper focal age - kin <- dead_age_reasign(kin) - # results as list? if(list_output) { out <- kin_list diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index 2f34bd0..bcc86fc 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -148,10 +148,13 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, purrr::keep(names(.) %in% as.character(unique(out_selected$year))) %>% purrr::map(~ .[selected_kin_position]) # long format - cat("Preparing output...") + message("Preparing output...") kin <- lapply(names(kin_list), FUN = function(Y){ X <- kin_list[[Y]] X <- purrr::map2(X, names(X), function(x,y){ + # reassign deaths to Focal experienced age + x[(agess+1):(agess*2),1:(ages-1)] <- x[(agess+1):(agess*2),2:ages] + x[(agess+1):(agess*2),ages] <- 0 x <- data.table::as.data.table(x) x$year <- Y x$kin <- y @@ -170,9 +173,6 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, X <- data.table::dcast(X, year + kin + sex_kin + age_kin + age_focal + cohort ~ alive, value.var = "count", fun.aggregate = sum) }) %>% data.table::rbindlist() - # reassign dead to proper focal age - kin <- dead_age_reasign(kin) - # results as list? if(list_output) { out <- kin_list diff --git a/man/dead_age_reasign.Rd b/man/dead_age_reasign.Rd deleted file mode 100644 index 5599a61..0000000 --- a/man/dead_age_reasign.Rd +++ /dev/null @@ -1,17 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin.R -\name{dead_age_reasign} -\alias{dead_age_reasign} -\title{Reassign kin dead to proper Focal age} -\usage{ -dead_age_reasign(kin) -} -\arguments{ -\item{kin}{table. A kin output in table format from function \code{kin_time_invariant}, \code{kin_time_variant}, \code{kin_time_invariant_2sex}, \code{kin_time_invariant_2sex}, \code{kin_multi_stage}.} -} -\description{ -Reassign death to proper Focal risk age -} -\details{ -Matrix methods set dead experience in the next age where risk happened. This function return dead experienced in x from x+1. -} diff --git a/vignettes/Reference_OneSex.Rmd b/vignettes/Reference_OneSex.Rmd index eb93a02..d2ff4b7 100644 --- a/vignettes/Reference_OneSex.Rmd +++ b/vignettes/Reference_OneSex.Rmd @@ -270,6 +270,8 @@ demokin_svk1980_caswell2020 %>% facet_wrap(~kin, nrow = 2) ``` +This function `kin_multi_stage` can be generalized to any kind of state (be sure to set parameter `parity = FALSE`, de default). + ## References Caswell, H. (2019). The formal demography of kinhip: A matrix formulation. Demographic Research 41:679–712. doi:10.4054/DemRes.2019.41.24. From 222e0214be558f39cff8b1c43da8d3040c0427d3 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 24 May 2023 09:02:54 -0300 Subject: [PATCH 20/89] preparing for cran --- .Rbuildignore | 1 + DESCRIPTION | 2 +- NEWS.md | 4 ++++ R/kin.R | 4 +--- R/kin2sex.R | 4 +--- README.Rmd | 16 +++++++++++----- README.md | 16 ++++++++++------ cran-comments.md | 5 +++++ man/figures/README-unnamed-chunk-5-1.png | Bin 199981 -> 538108 bytes man/kin.Rd | 4 +--- man/kin2sex.Rd | 4 +--- vignettes/Reference_OneSex.Rmd | 2 +- vignettes/Reference_TwoSex.Rmd | 4 ++-- 13 files changed, 39 insertions(+), 27 deletions(-) create mode 100644 cran-comments.md diff --git a/.Rbuildignore b/.Rbuildignore index cf44746..2af4302 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -2,3 +2,4 @@ ^\.Rproj\.user$ ^README\.Rmd$ ^LICENSE\.md$ +^cran-comments\.md$ diff --git a/DESCRIPTION b/DESCRIPTION index fbb511d..f8a3d43 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,5 +1,5 @@ Package: DemoKin -Title: Estimate population kin counts +Title: Estimate Population Kin Distribution Description: Estimate population kin counts and its distribution by type, age and sex. The package implements one-sex and two-sex framework for studying living-death availability, with time varying rates or not, and multi-stage model. diff --git a/NEWS.md b/NEWS.md index 1db9e6f..e8232f8 100644 --- a/NEWS.md +++ b/NEWS.md @@ -4,3 +4,7 @@ * Change stable/non-stable references to time varying/non-varying rates. * Add multi-state process. +# DemoKin 1.0.1 +* Submitted to CRAN +* Death counts are placed in the age where Focal experience the death. +* Aggregated kin types are allowed (`s` for older and younger sisters, for example). diff --git a/R/kin.R b/R/kin.R index 1cd6be2..2a3443f 100644 --- a/R/kin.R +++ b/R/kin.R @@ -34,14 +34,12 @@ #' } #' @export #' @examples -#' \dontrun{ #' # Kin expected matrilineal count for a Swedish female based on 2015 rates. #' swe_surv_2015 <- swe_px[,"2015"] #' swe_asfr_2015 <- swe_asfr[,"2015"] #' # Run kinship models #' swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015) -#' head(swe_2015) -#'} +#' head(swe_2015$kin_summary) kin <- function(p = NULL, f = NULL, time_invariant = TRUE, diff --git a/R/kin2sex.R b/R/kin2sex.R index ac99530..3633087 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -36,15 +36,13 @@ #' } #' @export #' @examples -#' \dontrun{ #' # Kin expected count by relative sex for a French female based on 2012 rates. #' fra_fert_f <- fra_asfr_sex[,"ff"] #' fra_fert_m <- fra_asfr_sex[,"fm"] #' fra_surv_f <- fra_surv_sex[,"pf"] #' fra_surv_m <- fra_surv_sex[,"pm"] #' fra_2012 <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m) -#' head(fra_2012) -#'} +#' head(fra_2012$kin_summary) #' # get kin ---------------------------------------------------------------- kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, diff --git a/README.Rmd b/README.Rmd index 721e1ed..21e3d46 100644 --- a/README.Rmd +++ b/README.Rmd @@ -33,7 +33,13 @@ library(knitr) ## Installation -You can install the development version from GitHub with: +You can install the CRAN version: + +``` {r, eval=FALSE} +install.packages("DemoKin") +``` + +Or the development version from GitHub with: ``` {r, eval=FALSE} # install.packages("devtools") @@ -97,12 +103,12 @@ We look forward to hearing from you! ## References -Caswell, H. 2019. The formal demography of kinship: A matrix formulation. Demographic Research 41:679–712. doi:10.4054/DemRes.2019.41.24. +Caswell, H. 2019. The formal demography of kinship: A matrix formulation. Demographic Research 41:679–712. -Caswell, H. 2020. The formal demography of kinship II: Multistate models, parity, and sibship. Demographic Research 42: 1097-1144. doi:10.4054/DemRes.2020.42.38. +Caswell, H. 2020. The formal demography of kinship II: Multistate models, parity, and sibship. Demographic Research 42: 1097-1144. -Caswell, Hal and Xi Song. 2021. ā€œThe Formal Demography of Kinship. III. Kinship Dynamics with Time-Varying Demographic Rates.ā€ Demographic Research 45: 517–46. doi:10.4054/DemRes.2021.45.16. +Caswell, Hal and Xi Song. 2021. ā€œThe Formal Demography of Kinship. III. Kinship Dynamics with Time-Varying Demographic Rates.ā€ Demographic Research 45: 517–46. Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359–396. -Goodman, L.A., Keyfitz, N., and Pullum, T.W. (1974). Family formation and the frequency of various kinship relationships. Theoretical Population Biology 5(1):1–27. doi:10.1016/0040-5809(74)90049-5. +Goodman, L.A., Keyfitz, N., and Pullum, T.W. (1974). Family formation and the frequency of various kinship relationships. Theoretical Population Biology 5(1):1–27. diff --git a/README.md b/README.md index e5d467d..daa6f18 100644 --- a/README.md +++ b/README.md @@ -23,7 +23,13 @@ theoretical development by Goodman, Keyfitz and Pullum (1974). ## Installation -You can install the development version from GitHub with: +You can install the CRAN version: + +``` r +install.packages("DemoKin") +``` + +Or the development version from GitHub with: ``` r # install.packages("devtools") @@ -67,7 +73,7 @@ names(kin_total) <- c("kin", "count") plot_diagram(kin_total, rounding = 2) ``` - + Relatives are identified by a unique code: @@ -127,19 +133,17 @@ request. We look forward to hearing from you! Caswell, H. 2019. The formal demography of kinship: A matrix formulation. Demographic Research 41:679–712. -. Caswell, H. 2020. The formal demography of kinship II: Multistate models, parity, and sibship. Demographic Research 42: 1097-1144. -. Caswell, Hal and Xi Song. 2021. ā€œThe Formal Demography of Kinship. III. Kinship Dynamics with Time-Varying Demographic Rates.ā€ Demographic -Research 45: 517–46. . +Research 45: 517–46. Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359–396. Goodman, L.A., Keyfitz, N., and Pullum, T.W. (1974). Family formation and the frequency of various kinship relationships. Theoretical -Population Biology 5(1):1–27. . +Population Biology 5(1):1–27. diff --git a/cran-comments.md b/cran-comments.md new file mode 100644 index 0000000..858617d --- /dev/null +++ b/cran-comments.md @@ -0,0 +1,5 @@ +## R CMD check results + +0 errors | 0 warnings | 1 note + +* This is a new release. diff --git a/man/figures/README-unnamed-chunk-5-1.png b/man/figures/README-unnamed-chunk-5-1.png index 118cd3c262e7dd264e55b45ceadc9e213bae6fa7..681db7c72a85d0413808359a3f75b29e5a27bd32 100644 GIT binary patch literal 538108 zcmeEvcT^PH)@PXj6$LXY5|pHZpddM;0*Zi$WM~v5i6qIX+Y5+F6eLGQKqM(yvM5O; z=hz@1IcJ(Mh4;OCs}AqInfc>e>znzSwOn?0?K)@g-;QTj)u|WqvXTe(o!SRM&;elYMzRf(|Gy(i+j#emy|B!<=*`s5L&JyuWqSm-V+Z{k!noa{e!RkTG# z$^NF@_G#Bn@om5T{R0&xb505MtvCK!n)%0stX4zCb{T zr3i=!aq$QsLM%l9K>kOSB9sm`qFZ;6&<$^nS?{*L_9qs^i*A5T5Ni(r5Mu2C079%i zKtPDK2Z#u<_5cte)*b*L|D$S;KV>J14A=m%^8*6%Kfd~sTrq(DH3l^B4?e{oqN`hW6V(QlTB&I@RU=)52xMCSz%`7d@}U^e7e zV(o!M1O7}5UjQJ)@C5=w3|{~u#P9_GLTrhEfc%ediGY9*+aMq!#8L!6gjk9IfDlU& z5D;Q10wD7Lekt;wpC#H7_y2tv0i|tyC0a573Q@}dAjF~?1cX>r1BeidY5)-8U0xs{ z#G)ER7hn_5Ky(Z+ZzhXWb z?puF-`~6|4{!EwGJ^1~ufB#K8?F3%I;ZAub>EkqFRRlqWH-NWz(8*YStm!!M_b?D- z8v&u;KqBfn+?&9PMY4}k?vn#g!N2^vL0+ z13{wJ>RS|}2WMOI55M`062}!3+%a^LE|KLB@=Z6z5uh&)qD2l%iX)x-;wtV8K^!pWBhn?VG$i;B!X3C7fV7`J*6;!tij^=b`Wy zL#>*HXzuUbp>;ibbEOLNy%rU;maj`SW=wLTiC@duQ{Frpr~gvqn?p77kbF4czI9xs zV=fIY)44xSil=fTK@=6cYekDZ7lNW?MqT7z{S@)~DI$kFV({5F&ahh_`4a@OJe{ZW zyb&CEetGv4FKS?6AQy-pIhsUqlR{i+52vfv6O=_#$BhE-Nf*5{>cU~a2g|z$n}wXP zPL}?5V{R?-CkXQOpQmfOBvX5IC1)uDX>fEsiru7W+6rkW$}+JpQ3_vZQKp`8^Irh0 zdpBPtPMBTOd@fC+0l&_ChJe?l}qZS zphj|civ69T+7c=}K+v;`T1xQNrB-V^Ue@DxJ)w1E`iRi}Jq!EIe7t88*r?$>7M! zbyfCjNWqJzwrRPzy@~YA<(F#=9-hc_0T~4U3rkzxH6mv4jzj3~K!1-X(tNK$_-VD!HV+XHta>P(z1 z=xq^Aq&v_Wdk$7JO*fnRPg+Pv_@@XH?G@b!bo3&pgI}8226uX@d~Vy79ZPKlupWmL2DG{ zgqgTkahb)!^Bi()Dmjpml_t`sqXwvoyG{)xs)UI?7@~<}L81_tsJ;$mrqOOdiG^!; zPq8xwZSbOfgf~|nV02LN(#aw=X`^mE{ zh(#ZNhVtI(a{#)!l;RZ`S`hjBJ1vJ^TYW=9QT!Z~^3%J|xH8URgt{Oqeb9zpQ{PFk ztV{jL0L_q}MUsYI14``ouEQrdn9{sss0;2P38@Z%{+N@*cWFUPI|(pya$xRaO4zw~ z0Ynf$B)VnfpB{=LMdcU)wLa%c`SXN_!w#KGjlti!ASAK&ZjhMgFn*_64Ha@}q@4sB zoqknl_f69Em$EzM-zI&%iMEv)urzrM+i@`6jpImMj(}#sD?vu@{OR?HI^&QVD5w>| z)r@UG)A2f6)v5#%R4nNi1yr)^lJqJ$=@2{aGTP#czk$9xdzW@MQz$($?G)>RL|SC@ zO-{RUGY_SZ4k^zL=(kr{^{d)QG^Sn}y1_KYg3goCH$Vl_z*^R!LX}lAU^1YS_G56R zEK*6@ZxAe_!`4`gR1WSiXxR_cpmwS-B-l;j05la$XXeL*cZ#l%^C0QUq5!wc(A-jr z=!rV*kQ*9teW@Py|4!^$>?aWk(ByB?l; zhde{x7og_|U!|+N@QemY)GrOpsdm9te(4YtTFi^g@!Gn8=|_8A8BA*sE6VkUJmY0z zfPh~Qhzr%k2$N+5?m*T`#W{e{;9Bth7y72G^%39BZ6O+TH3S(2|_6j9PFd!{1>rdor`w=r~7EF;m2wgeorIQ37BcnZWEMvR9$ z1$djNzZ)#bO`{#xUeX57NTB+64*;PN$_cY_$0?W4bzB15`@F>`#L$oiBI zo>~aI@pVZ$4QsYM`bTMvf?vMVOtJ^oZnKtFBj*Z_`d9i}O&Nqpnx!mLjn4MX1&n}t zElq0mpk3WeWe+wNzcIH$QTe5B!s=3lyhnmUF^~IHb+CsU5 zOB7nGF7WWPEuG5v&0&`+Ws7bP3%8Mw;D=h1$Yc>s2e_5NsU0O}y&aY|=cqyC?NA!n|GVgN7av0qm2;K|wJWF-N8x zy7D#`lus`mtXca?zN4hSXVoj!da>5I=JU-8%75Tgxv&|Vo@S>{uzuBj9w4BQ>F#=KSwKdAq!#hK5@QvMhotTs;+6j;Sl#yK+O{cph94!si z?i6`JPaO9SksOU-GofBE@oL9>&O(o@y?fg#T|Ts8m99u&GPy{=X(ap|XDvus&;7TT-8hMZ? z-`PARIBqUTGkr0%S!swjoh)GM?ph{vBwu_oB=j@KW^*j{`}4AbJFxz07AM-T&@{jM z(;OW$)1&$rB9ireT6-+>{0o|!Pcz~lnfJf9c_gg&@K_#mYZN(m>T813S=ZlYHiI-X zI`CSE!Sjk$?X#l643(AZHu&~7Y(K4y5>0ozR-~6h%gAJhKCLh>>yWlSOAJG6Fd;I0 z(t2)U;}_KD%N~ylqiCEQoC~5}YJq(uL3e3+=h?v*(;bXSeJtq!nKT;kg zhoSYAneN2>$C^p~8Ti_A%$G9W>d!Heup;rk2Sz8Rt;FNH_t2ew^{}e7rj^bB?v;JP z%Y?|u9!;!`y3yXsV@$V2a2| zW37ar9RB9`#>v@Otk#z0IVk_q!>C#3<}J3nQ`DF&N5rNtj9-5|lapO&_IM~@&qbd} z$3j7Yf&F~#>Y4@SQ*`#740h|Az3mHMO2^bONhxf#2kqK^2PL^Vt?;dW->ZuSW5^z! zsM5AxE!8XQR#LgVs-gH2z~M01;eGUW4ga0R}?s-f6=Cpm)golVPPuzig>M0Ip$3lX$Efj z4P@jwjx@TwsoFyF*Ms_d8H+94H#k zHYH>(-cQR|neLnTKp{VY;jV#O-wy)qT2CWXiA&lZzMil4nlUe#lHbZ?({xJpJO$fm zI<}zWg-X_3Uxyao>B1DDr3iyD?QXt zp;y&mva!f~@$wi=mr63z{?<6cjb9Z04APM{sh8GT9%|%%HgD?GP>*CwTj*FUQyBjl zf$c8XoUDS4#Vh7Zf9B_%1m?>qafc zBer*Acvg}prlp%Ox?%pJbK~v9r3j4eMU%e10@9*pQl2R1)`F`T$EnZi*rJnpi#@9z z7Y5)2B3V#R)4NhTxOrPAScw8v5MBVg0Y_N33ca%K8SG|(h-H20e#WL=EsH_Z)|i$v z#*W<=t@;4Abk%vrhZJFLn+P8oX`{+n$28XNt~k`P=O6o=mVZT~b5h{=Pj;rFzaLRwO9nAv_GtS$1bLOT`80 zn&ymDr?=lce+Iuoxx@=#u~MhPEP}=KPd+)(Hq@_RZQSWper>HZ@p93$QZfMr z+c~hA$JHb!Nw6}(_WgX&RpJs8qreTHjY^gsVC#ZOj_m$$sAV1P7wKq|`aX&Gaz8}9 zPmUvD1J^ZNjWhKW=KCq4HWf=Z(y@gqr8@ZckC%{(7s!Bqt2)GO>Q8N`cIGaL;G*tM zM(S%*m&!^EKOjFvO_mcaPY4nxf8*gEOwO(QzWdFI-Dd=MlNU(D2<#rG=XD99lzL-G zec|~V`2#y&F$Qxf==SONN=D<&OdaORKY6pMmJc~%QqK#ohR-=+{mi&RP;CPw`?|QD zFe`|^ieO%EhZ;+YMR(r;&(o)iUR%4q+4mUZt#6YWVC`DWXvfBESAYbXl6Q|Q;(YkU zuESba1q>yrKGZFuq^>vs63S{)Mcw39Av~F~^rued6&Cg#a?N5#4kl`Q6xB9{L<7H> zcRh)7_$cDaa8jOk^Lj~TcR@=66JN*RoX##gSp$N23xgdWvt1>M$1C8}S`kGWGTbVr z+;TjXcjAOaM53A9fT_*Esr3+3U$&pID5-2U?bsz!FsH{;-*uutW*7hE3@3UAzx=oU z`J+g~A`1jSrpwk#sbxNGENI_za=yKvk4Vk67E}6{i zYVoHBj~q{_CZ9HZGlA@4LzGm2u)YV(sh7e>XvQh%rQ>AqDpK4kn}e;3qH-x4S+BH> zW>)7#e)rQgT_Leu`N2fvpuU5pTxqgo&&~9_6$_vX4&MLWoodl+1TW| zEIxi>EwPK&{=v+Q|DZU2$WaXtXSX;YPPoDL65pC^3V;Z|JbnQdWOt zKSk>;r!%iaVUsRnurp+~TS1xhDL~7jbaAbi6xjuuM@cfTv*jG6G6nPO28v6*>OEZj z<|E<_2vi{gp3ku_dsC{ZGW)7SN`ANSV!wK`h2xX4_b=SstG~~;eWG<#01VC7W*_Q$ z9fb2eYO*;q+xOtpP*=V91OHf~; zF`NO+)#ZsEr8G}6tJV95Zlt{a9$*yTJefZy9pBv3UWh4FIQ4?rRZlDAXIz|a1u8rfqQ za1bAmKVxj6aIV)B!^^p)jn5g5+=yw znBzDyJJfo~*~&SNgFk72`3RtLJ}{n;$vNm7{%k4BQ{FJ@Cv>XZw@fl~h~pa2jXwv( zLW`S#2T=wux?DVxm}!&h*i;sD5j0LrRO}g~Y!Jk&@plBdNSi%#-G8ZNuJgAAU6t1A zmo7wUmCO~?5S4qz%=NpEMA%L=ym&GSYG(?B?rEFq>U%Htm%p$%oT1`@_sJe(ko@4* z?gA}Q*XXza+3~{z9y#l=NNxPgTC|jZ{MNK3QA3B zqWHW~x;*?bhWt7lLE;$gLYP++kPOi62HiLRkw{LS-7u+t5IZ?fr5TuuIY0?lS`t{3 zTMll%|3t9PQGG`L7r%c_v-2&$V@2lZ>dke3T9dWq=&RpYzfyJ-hRm$q7MMWxvLVsM z^K{5&G=$@1_U@15>~>kFXQ+HS5w9-kq=7lZF4R_Yhf~9VaHGCwGJgLF`ip+~4gQW- zks|s!fFe?NuGpowN;z3sKNz@~ppjs$7GnBq|6}~XsXWt0Z{)d9T{iX|U_rf28B1D> zr~l#I8ylZ_`K&6MV%aazF8EeOVe)u4`buZ^4{fgY53A6th924f7~_}76LyCy(0U(o z>}WZVuQmJ5q=@k{`~HuoPiL;yXFq1Nw>7tznQi4s!SdZbC1m|E#x2X#(zB*ixmxzM z9j4dImB>z!UC{>uGD#h$yhT3VVF4VvmVU!$HgMvR3#bHkW=~Ph8<| z?;YcrXuORIo#ame!{=51$ver{DAYzP?kC8isV*Z>Qg5`7-2NibJRx7m*CMBGQRv3H zmLlPaDTkypW$z06-qVzrs{-+dqF40KwQK7vO&EsP7Bkp=VqWYiB3FkIw8bxv`y-OF4x*nLGv|ZgY{CP8$`n^La z!6m@NQjs3={cC9kCxc>V{#C6DOR9b+S_+#N0_*XgJk!l9GX|DPbyHudUN3h^)t)S(LB`x|O9``Q2DE~YlZ{qdsy90OpWUCC z*|1N*yANpNTh>3%%yJkVjc;+@?5`PiS56#U{?$S$yQzqq7<|=UeLq~-chhuUjucgb zN)lKnkOl~U{>rJOM(7_LRqVLz*S0((mN?}O#=XMQZWEpfbWgb$Tl&{JWF<4*aRzkf+xN|rYeV956Fr!yi2}QhE~lXy<-Al12kjUok$~tsTy|4~aFG~Au@|nn zv;KsE9t8uqS}}XZLMQl8;8v{q>CLg)Fs$`Q?kD!~nF7h18-}SX+%Ml2L`8AObhoA+ zwpqTNyuMK$Q7?QLmO?iY?aAJtU(`_Uag85w;V!InV2@%w(csZIXD()6+lTlzWGZ|E^twqae0TG8La8 zH(d;rvSe;(F(KZIe+Mkb6*vcnVwFNQ^AQ|-;T6~L*apb67r--J zl-kme9*;4IlTgJ%g$kSd#)I62xGO;&yCbLaE^6*Uz^rX?K3Vg{V+3Kn1Cd;g9di&htI zC1y&b$T`n74}VOjmK&;`bP!?JijuWZ)+UJ8FxoXUuY5-V9RvdXxgmG6`{sI`+$Bv` za=xm|nHWKP_LVg+g{d&G(9#7g4@Ye%l5@}G-I<@RYPHye0>WHLW=P}`=*4Z@rmWwp zUhI7$q-mA*%J!&7PFl%LJ=9=SCW}*E*dk`54BW=?RNBtwKQkNht`f zuY@fxh?tz=t5ZoBCqEBMI9Xe5Qs{7hL-k>9>uum{uq#8yyl6dEaD&^F?VkIgK^53k z%Bs9vtk6D&iF49=)#Wda)f|^gZHq(-G!? z`#4lHpI=3CI?GWb43|y@usu4b4pP#G4tBcM={^Jxe~%{^{PJkkOvy0r`wD;ZXiuu# z=DI=p9m2qyx!MnpIGOG3;mE^liRx*Yu>i393h!}sX-s&XlF~#vmz3~x;6xC+W})-M zgQH#;UfSz-j(T|?J4kDiDRAfL^?I$j$Me5NO!M+mG0h^HB}+?(_EXR*#SvIG;o=jF zj0a;;ffs@r;&EotB<+fnss&aTI0>*KpFdAWowJpLEzV6GjZzB7 zW)*VZrD~gl&$W<4`;7bQww&w2V?89jG&uU;@&vVeu!e?1ThhTCFLq%0P;%5JuR8<% z5QFIO-;up*#2Ak$Qt$Z?8__QkcU%dpQs@+V&k?qX&&Q%pkMQ*?mm+JRo#4_FmVNql zET)R5>q24Oq8qgWYB^T?2C!(+)uWULugBlhEL!MSN*4Yh!F-~%aDAg@zKx@HEfpR> z=LbC>dVNoIj(=54dQgGzbnY_W@`xf|NRhg@6t8l6y1o?ddy97 zr-p~`UjBS_SLPPJPtX!sQj0*MD9tpj$g5!s&2$v$F!ze$H2AYYTtFI z-wXM-RY8T%%h)j@*qM?Q*qqxaV-8+}O*adj>w4w4`2+leZ4la<4=$*7AT@z-sNWxP zJpj~b0#Oq5r0Am%jvNgda2PrXhC?*L6;ZUgqK`t``s3*16=29jANJh=;DbI)w~Ht^ z8j(N05jFl#RB-cFdEJqma4Mo_*g<78o0Ax%Py#%Dlf6nyh|NpIm)b!@o1B+op8zg2U)133Fe6tRg zQ%dw1PzGQ6!tm;xN1;pM9|Rt*_)S^XZof!%pAAQ0%h4y-m##W-y6x9ibfwJIdl@@R z84CG&1fQdw3qoBJ^#2ZA<3+>fxnmdl+9LWe2MIZGW>SUIKpH zY&Mz_aoDI%jA!@Wzfe{`CERrU#J-?k>@}D?M=LwSOWDq-Gwd!rqnw>Y{RHLTV?Cay zS5hl-;LTq0dx-@_>r1uPKBJ$o(OHF7gh{qrt}>wy61uMTW1b`1Rx+G`upDZ}lvgy> z+<8o$SE9|E@KIVCoohp7UI90=BIsyaNRjq834e*OlSjc2`iqh$@qyFXU)vP|@k03a9SM+o;qM`ijv|DJV+Myi+-S;(i+%^15aW zh+(m!p{c2(#zc;APEMBH<``|L$mUV!^{H~&P>g90CNW|~|CEEx#_CLUYDYWz!Z_8* zQcCe2bkh}wKk8AM5;8p}Ct5kZ9GKqE z@%Ck`MXM(k)m7pcM6(PP8(bEx_+}*JIF%Z=JCA5d7)_6&vXie+os4Gi{Nu3d_+8JR5WUF$?L1+}w#(6ms@sq%20^k@}sM1Ng!tCq~xBXQJuNT^?J$BZrY6xng~ zqGpF;N&r9i45t)tmHDJdBYuSH+eR6|=G2+O*2$@^;Hut;*gW;jgHg1O7N#OD%5-mn z{b}ZuQM??f1xADR!ls(mdHJKYLyTYb-6z>5sWz*HHV^wb!h%ptTRa37K)4@gde(GP zb)v1YI_L9-0w+zH`JM0u8$HSsI209yPj|V5`I{9tWQ5r^Xyn_;1%Z#i~gub5l0-9xevlOlc!NW`JuCc zx@4n$3T>JYL?i}C7vSMgMa`F*h#T2IItBxd z%CTd#rjFZ9uYC1CDu)u9+zk{ut)XYbG4+wbdWS-2Yml(o*l|N+XLH|Q=181z^MJJ# zKi@}hS$*`@AU)Sp6;c74Q<@Tqv~2PASeW6~A1<}Dk?-tj?T*<6ADJzDqPq$!)vZ*tYhQP7}p8&J~y+@^y2G5b&BzDBYjFS3q%NaYTHnX=_>r zR%8@~d|!g{Uir8=p>^%U;s`0{dG#ORQ9e>vBb{4swxcvmcK~n>j$CmvP0msUJF?r+ z9xY#Mt#vF;)G9X|SN)uI>J`8JT2e$7>9yy4y_d15Cy60 zNptCQ#VrFHWkP}ksd55wp%~YJ7vg)luco$!F-77153QHqC!C)6=Aa%35^dQwS#Zl- zx!3#NpKk5n?(K6c8DA4uocxmQ{sQ%M5~TYBwC9Y!?3uT!GCh7FXCQV|rh&;#{Ed7t zp9t-VuJtA74yHQkA0yr?7m=*v5*~mKDV9;>U~x1ksXFSG`rwJ?{h2wvJv^j_01H(B z3(zhDA#B%kPc1==wAx_u=h4!N0S`TahbVY)o+nX}9e#r)WE#3qF(959no*frbMHj| z9}CR2at%r-qp0u$jDpIF-ZdrUL4u$w({#~dQMZQ|40NpVY}ohl*b3d4cA1XdHIz>> zbi757vNo21JUcxq6884Gq!oO-ePBs%=)_rn2Rt>yW0Yz6G6JRr%_lCbnV*|F=werI zJfw-@lr9kDbl2aUlER`6kHd<|J&Waf;w;RqhP4V!+nX=(i{+)@zM?bu~gY3+)wc@ z`06jm(;#5PC2UJJ&f#2`Uz+siVDRje5u_0G{663ZWzuAC9>u9#pm?*F3v*^rb4Qu< z4|8w6S*ZWxSUw#05%&W89%x(j2r*>a-nV`~bx)7I)ctg|UM@Ojw1ZNL(src!%%z~X z;&=#zh~nVAf5mazpbwmO%EP^bV@f^8f-NuW^Zm+4M&WIB7gXoo*ngwv7;1_*Pf&}f z!&JL~#HGFV*NUR}8ZW=Izs(*dwI5>Me5kuJwE;A7J(;qYdEXQ`sI=@xPM~cBCK%*V z2zMDAsZ8N7y+CKah5ropM_#&v_JDSV8jj;Qh-c1Ud2vT?!~<`$AD2;kYheB_xnt7! zq*#-;vzW`m8R>2n;Q+`~I`ppj7mKBgA_|A;HDR|-+G{!BiPT=*5kL}-6}YyBl^5sn z6rq))2D~$Y$9MW(solU9x5~e3KwNHkv9QE9RC8&b7{qzHxJNN~*Y{~85@ej@L z2yWpfNX4y!RuCuk8|NcBzt$Xkj%m;Hq8<=o03Dx6jEsJ2ABVVXD7%AHEu54e?VK7g zK*3E5!marm?qEtd11?X)sZ8~i7@Jmbb>7Y+B~Ots&|L-3q!%Z%Q`XM?agQAia5B}( zk~4j`nnQH2_nrxVgpx`R@RB&$Kc(u^u(}Mh%O9?UB!32$u`=H9V(nNkQ$YKz`u5et zM%UXU3a}~J?1_6JfqW39m=1s(s*7r0am&A$uTEGncU=CtauWzns-XIhFuGD6xfu98 zA&g^>UQMl}zK@*TVeS=wIG$Kqzfrs0=4yDzPVt-^7n0%d(rpRpgVy`f8*niE&g7)N zwru*u&IWk`^jsG}gy}XJJ(Ch^z+ImEKdXP^si_vv{x%&BeIqY97|+%k4wxe!`NAFC zCTi+n)!3){pj7qqVe<*x*h^EWJAt5j;DqAc@Z+7|VBL>0$>hQ)RSeY6guT1%JOrnm z5RK(&BSynxOqcvbW3gF&m@PZs*sbmy<9N2FDn!j`8KGnf7Z%-LWaB@;&} zE|a8kA>O1!H!M-hQ>FzI!Sr}G@mFF@#lUK2?7Q2+wy&7EX6cZ|yS;zV(N3pJR~6KH z&L2*7(qZ|{&Q8=JTP0nG>)s(-WNPMc1e_S6`qm)%$o$KV^pK1S_4snHoZb?5<%@=i zNO2+EZHy;TitDDSTws1&qN@&9*(V%Vas#rY-^jCM$YQ?jIU%yqsnKykCT%(WB=#jT zHb!3r{0Ab}TbZ?2oE%=h{Sz)>xAJ{JqSNXZnGSRY-Bxw`v$|4-um*mY4&$f~6jt;2 zUSN>rzsPcQA9HokozHF*sY-{H?^~48{#ZVTx|!rMU;>b7JKa0ei>*pJ54Nh&!#swC z{4ZZ5Z}yjI{A7~35RZDmnHnf*aeGgQSLE%ytG)7T-R-#wT#RUVgxy=9YaqA`xVA;F{CUvz-4qW|5m-hF%p(yq`IA_5vXXr^d&i z!n6~(!oK@m<9Ovg6TyxTR?AvN+36y~r`>r(+Q+8t%*Wg#2F38Wn((_wW}bnozdFr- z$TQjEKh?_bh|fzi=Pj2UsK=VX4|fn`*d>wAG2rUK6cq<=!69ty?Xi($ zylIB*8?XJ{zUywK$X?>65dOv&45pDX?bE+Ou+xl+Dx1b7ZnfupTk=REi*B+U& z+nhSc%9`X1x1tsJ1nT&^dNyWjChOZ@bgZ^+cBn><yM^P*Vb>w@A)Er|Ng>8c~Gh|hk$a39RaI0;m=cBw7fRrawABj?O_om|EQtUM|Ay% z69nP~w9k!(hwK35mFNC04y_{XiTW%4nG4CCHl}RV4_CruA|gr1);Up+Gh2Xx&$fz$ z{%hkuh3YNJ$jMr%^*Vhq;0yLef}Rs*!*e&9WV6XSQ3{Bb~>#JYih?dPurQZM1n zoDs3KhQ?LxFK7r>K&`EnkYRpfTLZdh?6b+ZB% zd23=Y(Vo+;#k^zNA$N7(0u?N9iWU`<~*lf{0-fUFXjd3 z&zF$9t6nf^yTkJY+R{DAfD%EJ#F%oY&bLY=L)tPxCWd<0T?r`s za)RD9a+awOcc^L1aCBiF$v`nBXz01=Vq~6I(eTKSfI}YUCVL7hl@m zCgz6f^7(1zgxrNqJL-X^!K+p;>}n}a4V^_QBw7yGVFjmo4Bns1(!&F})WmUv4_+^R zG!4DDF{6LoA96InUz9?F90-zsh!rE_Dj7u8!<*nvGK9)GN4%tNF)s92j`cnb)Z$W} z6Ntgurl(v*!{A-r5PGXq2A;3o+DK4T03gx7#3Cg-wFnlls-u?H+xHx-M5-2P*8mA?3~mc+Wh< z#M(H}p1#52en6{$Lk5(<9tO?|-dz(h5)~_;@#w=a(J_E1%|IQww1lAdvYwxc@2)iJ z%u3@@F1D~_${|! z8c;ojUEpSUTyZKc92Jz}w8w5ykf7OorrR`+WE)OdX2)ut9XlAXV*+h|P#*A%KNJdU z1nq6b-k|wCGo&o>1>~6oiGIOE8~~9PNTgIp=lbRj%Gz;G*E>CMBgoy|- zh3|eZ8)EW)-2f@wGh7lpTHMNa5@EyENUupuZz)$`Mj ze%QA@NaJ?iY!Q7dfjnM(D<%$Q@NmT?SGlHAxqMRo8QOr~f!hvbM3B&1zCsf*oM7ug z@&iE;lsc?-;v4h9x`%t61{0$Kqmcn)yDbO3{y}L(Dc*dug)~_N#j3!K+sFk2Jk3XU zKl3y{L#|#YGz#(w27A#`4Tn?dR34d)FK6(F)EiKc$?pPVR^m-Pva4kD$IwRqzWn_N zl683geHTu$T?~=gm4$ZDXzqG(WG04pskORXcEx8%&L@HCsn{zTWbnm>Zc}b_lHbX6 zze884m;eqi86ikSAZT8~^V7gySh;@E(fIE?0u$)1$1j6{A{F*$t9Pi79j&^}0;Ccg zdy*U<9I%J?2uCXO)QQI<$nOxeenf{AE44ANvOzigl;NH%u>E=@P*m5cUvZW9o2Nq# zlJR{TtRMUs90D1NNi>02^7zPO)U^-@Dmd}?{JTd`q11pGP^&hJE?J)hTK9E&+k}5F z?Z=|#CwMx;A8pwg8X3iC@X2p`ep;i4!C#SxW&}Vz0tO=bn+_R{P$pQ(NwsgyopG;Z+uTgxuxktw zQW#)vk!?gCU5wpl!;OE$uSR^aeOK!LcW z3d#n0K!IS*2hmFPYzg}=P*8{pa7!mZDUh|o^=BL`hZJOwZNu;}80|i~zr5lq_QKam zvFQvsz=R3lXOM$G{k!vMA`V@UsPz0H1&VHz(Qd0>UMp*Ead=SOY8!`Vz^cRd8GH*T zT6NGSD2A^>?8%boYi%|G)}$_IPqYNzmLO_>PoK=?@ckmi?rkFP2c@}}K)+>=c}dSE zwSCbMjt1D^40^95bh3o)a>-&MGk?y*0MuTU_F$b9eb7peEc+W-XH3m-Zy@6XWbhbf z1Z_mE8FQBWf$Qz}BK%aA=s-6Gsz3D2wYFQisAM2&wT-Ar>Y3RsPmX{aZ(Y;_-H;hT zTOK46PuW!;U5 zO3IBm{JoOJ3=;T`E)-^DpfcE6I}Z1yPcrRQhu>wScLGIh3+_rAeYyj4)=_f(Rmo!c z9{l}1XzBnUhKrV4=3c81Fy25ey`U*DGzHum;`5ReY$urc(IP#ub z6ZXly2>loL0*F$)IF#j;tcA3JXhF~hgzug;4t$6rqWiru5#lu58_IJ@?t4%~(Pu#% zB^Yi52gaiAk&Gq*iCpQVb0{w6A_j*<&w-X<8^O>Q=%#@rie?0f+9Zk+U9C-#Hnx2g zAN?BE>*Ed-{M}&i6&)P)Iok0S*@c8w!A+oWdR<*z@AyZDhgq8MAUT7QuNv8-egMAo zg6nbg@wy!#MyTV&!zeiZ`Gp9}KaoKFza17)JJl?;A9^$G;};&;GYsdjsS-l8Ri7-C+LB-kOZ2;;he>I)tv%{X&qW1_QqeO*1` z3(vZ}c7c}rM-AakXMUj-M@!q~hgaAY&vgk7r$VAt2JgfksAlEz3S%Y-2dEK}g1s85 z3|4igBHp5eINLNW_SUh%S@^1NT%&(X%vbjKxrn>2?LGv|kf5$lg) z1d9^~*JoVx>Y8kNm&+;#dXoZ2EA0ye1q6b>QS}>}TV;M1c6=~LSGE(XCalEXw}9US zWT@M2bUCcFasb|>AHilDuoXP{t^H@kYtNUo8_(#y;K<|02ydEg_V;ViL%uCpui^yB zD%Vz-QUs9&@$2aX^vVqvs+(9kBlZ+mXK6pXGKY6}$GTPO9u}waDc=+ls1hgJQlF10 z1<%sbScKn&u>}jKkAnN@W#lgT94vASG4-iYQZ6Uef6EHhJ!e(dq>dVk5#w(k9sQ~C z{Ro0}DPZHlRnyI%m6rAv^R=xQv0|UcF|PeH@SD5b8>6sSe?#AX9+ROJnH;3AZ|c1E zaqs=|I}lDGZEEwk#~BRktnxQ3#gakqzpstOVh4O*qnK^;Ko>9bx8b>c zMLH(6HAIva{;|nYQc@Bv_p$0-(D=i(L8*%e{AN+N$rAqV(rlFXtY7(@e2I)E(6ri} zS3o_p!pL`Duv*rYE_!Pz`Ag)dPLh9=c1ietJv;G|!2_2ai`SnrvoIV#X~Z7JPuEO$ zxZ^{__w4DNHq6~4*6MzYw=6^`LMzQXQm@~GzR>brEU&6* zqiRydPADQKfaG5K2Lw>Ko#^_Z*BCyPJ^a^m3X+)%n(U#56dO%ZtSuv~`i}<3vXgr1 zMZNsYQ(MOt?EBx1yn+iXG7keHZn4*xjEXgNwmQbWz5;tCAP%WF}-N?KrK3%~7E>p)@gR@b@IS z5L69sB@9K!$Xa<<*&~aZ&*%;AMOzvBdkos^S9_ED9u&L`quJebmN0w1c6K+UR>6mC zw`BOBwQi|)Wzs9qPOGhFwYSFXRn1%d4MMAFdu7?qX6cmp-0Q{dBba;>dor`bHOPDY z!FTjT=cTRCVVpRgD<`K=kcd(4Uaz!2#v?@bUXi=#d-k;*xE8)azDr}sJJAP#_t2aP zs3z^R^dAbSXVoMhqmgBN=3#kUXg!LXXT-34XL(hj9Oqb z0iCDkbmtPotByhjr-yhE76!iXsP1a}+PbCxRBU(E76S9kv_Ip@q4Jw4b18SB=*Qvx zh;v090R3e%^iSu{xxm1EEgik{huIT50O5lXY`bwD+KXu@@;rNZ*}%hf9uXwU%YyYJA6P<^B252q#nBU)sIQe-VC z6`!W}Z08=v*0k$T-90pHg8*z7Uk;GQv=4r)`4nCxA!_jJ~>$O%aN|hdz}DIF)cL@y$0{ru9>#PZYjZsm}LruB@^>GGj55x^nR0 z_L-G|)5jQFuN$$ep%EY`neJ;wHwkmz|dUJ?LagJ~=Go>JfB$`g#= z=yloI_lxPVCCf*-K+msdL*$`oAvEXNz|?v0)b=d(c|7Z@Wev|a1|+)Xsd`VUUO6ba z=fWGfUC&#NSR&zS(Cq~rchxWD>wmE5x528`US7-+U0zUc8JFr+{s8M)6V12B#v62L z01+5l8*e`iiqgk&kUjI5u&$q{>wRS`Otzox4itSA&9~$_P*^|?a7?_e<(#tq<%Vvh zqu}s5hwRI>K}W%yrR;()+8mM0s!IK4v_8fq@f^jA=O#od-p|KkfzqZ(L2%C z9rH6G)tqphq`zC4Z^Wk3?~_rzGTDG`6uuZ^{mJPubkEL?j!Eu|W$QBm7wMfu4AuNQVZ(K#1gSF*BY+k(zRZW|2KNhZ}klAyeU__f^Q*t$HzQfJobruZn+WHt{Mc8DzDKaU6cJpAu+UO4$`2D<*WHKhjkHUX zJX(7}h}FZ%evlTEe9nYEz9(DV-kZ6(p+$UvtR#iWljtK!(7WU7Ilq%K-i-rwKdPSX`6lXOp$4IAVdKk!Sn{qp4I{EBVe z*g{EthVf8xswf^7BgCqkPZSZgAe~WMB6w)1YskL-}V2qYn|GS?v+1(T3 z`4MD{_<^CLRGwiWwM$k8rXxSD2o5ZIyk4uGDyW@&d~jo9$v7~EV?6Wz&u$wBDOb0` z?-AAAHb%piwk6$5=jW_w3gu=pKMSy4T)z6fx`CD!AEL%_eo$~`-p^o#PBaeIB`)2BX^}yhdb#l&tAE8HC+l}MyTU`$A?)CBJ zSXWe4J73f}CC^Wifhoo4DSLdlA3i?rjMwourx+K%S)c_3EXI4$P&s(Oyd}vAfkTGegF$J}OG~cxVTslF`aR5yhE@X}Ld*$El6Quip_=Pj2Aq-gq51VszCb=BsIu zs&~n>t7^6P1e>Pnv)a{-^3f^m%9E?=53Y+;=<)44Jz?{(GJjU$ZNdfBK*oNtdvEf( zo$r1*9bo^hJ^#Z(R>-pgl8Zqi{+|}|H#N_vd@x;pTQg&#Gm53`64*Ra0iWBC0J;9lWV;nZ_QabuI1vNm6lXSkl{yz@uC23USLULav4mw>`~};h zm${lY+>IYY99th>n<;j2iW^($deW`9NxhWIM)9oA;B&&ygn`hR>&9_=PPwXHp;5de zyk^K}^x#={7F!hItlaIC?vy*@m(o;~j=pr@8?xo5oxd4LE2rvx%7D^(DzLKv<%pcX z7UXP-IU-c~g>|%o!`!-xVlXD&hOWEef}*OHQGni|@yeb2n~f9J1-2SSgjYsYokoQF zCqh36iw9RzT#bHf8(@+>R;oKY7PNPD-5JYUiHXe1RP{C*Kd(^sR9@j|YQw^VD}ot$ z3-11<{F=uM`;KL(3ac-U4EHpQJhWA(376Seq{V;uU+lg0UsPS!I6PiTT%v+XNC>D1 zNDD|wDReJ_R3$eT3 z7CPnBlZ0y==E$8htd6@D#x^Nj`k67&x-Qp_gEwx(4BEU*mm_jsj~?#>VUB=cz8T?l zqP@fZRl|_=9{up zjD}yswRfJZ^c}5C*(q-y{@{N4AOd;dmd!Uz*_?fG8`1Vs)3ZX?E~VsVx4rz^7wFlS ziA%}DeqQKgg}^I@Z!1K9MBh(K`1;a<(@2 z;1)+eTP2Gft9yn|jx$9Pa>{XDTE&~Y${j7&Sqk$JwSCa=t8%Eei8$#@U`lO5*bm?_ zG`o~~zlpU?2;F8))bV#&Y^e7-4O?pjeA5Bl00Mck_m2lgf;3j$m23@>0YS(qe8X>B zq=T=t(Z$bN0!&W}lVbbvoU54njj7dpGX3yUbSjO79F3&sfa6huc(;EGU`Qjlx+SR zad{!_iPaU8rCabW^Pk5LvNd+_qMj37I($l(j8>BT(AXiGbp;}4Pn*>R&eJ;7VZdTT z(D^@co81z0@x#EmQOl_B=2f)}&-({i*iaR`{p(fbi5Ej^8TG7!9^Hqp5t1R(g(B7k zNYx5N638TWElb_kc6(%yq%j%_rMpR^n_pdfVKQqDzKm1mSmv1Fw;xg92L+a3+fC$bEg2p`y8wAEL&Dw8Q6-*hiD zgNe{S?tt)Mck{I%7wNd&4UjW0X;k5}k)#A0$zKn5u2pQgag+Chh)x&q28y zb?j>>RzP+86Iwct5J!Cv!>B;1x8#`-ub@8=6lcc)cTq)e$#2De)F8$vOKfaR{hmE1 z8bBSSz9eRU+@}8YL?q-)fW4pA^R7EdbGBo(9y_(rD8qh0gwvZ6wZ!qBHyO*j$cDtT z1*62j8_$f<`&krhGCUGAgLp2TOxp1Sb<68|!c2V@a%&xHi(V9&noTH0+?%UCd@T~nU0$$4tEpO16%UD%p!^})DB}TwWEl?==REYu=_DT$=U1ANRFBZPYs1CU1Y5&@bYp$dcm$V-{(*x_MtO z;oGycHkidqlMqdLj=epO*stUTh3C|RPlRuV{S|Mrr1^=a)}P#2xO{^46>=4;+2sd6 zxOnK}++OEp<&MuTxg|H$)8wqpEt{N?x}kjs4{^^eUdY4Vii83F_N86=;wzoIJ>fbu z_`Nt$k=%&%UhCgRB0*oTE#qac5#m;+i&w7d^aV`wk51Y5bncX6j_WTIXcvE&|9ykZj5bbWr+`}^qEqxZ`%b||-(_UActs&vV$2+ycQ-!K86 z9BhbAaK`DXdy+kf3>=qh5-8iwd)88WLb&{yUp*yN`}oS^_!nEbWl3lMakya#kSgx0 znEfRKnzc{EWF+^i_2TX(e#HCqF`e>`$dq%@)c0)H-WO84OlCwD3ZK7)E-3s;_G}wJ z{rm0WpdjpP}*dZW_qHO*I*8Dn&#x zqSF6K?foB&mm!|E_WhHC($zaPbm*XAe*NQPlsDaiZGWbSPENUbRa|pln9eieX287b zEim8Nl*J50o<1PryZp9$ze@AXlJRWuX|JP0#E{?(>b4~fJO;5SbOSBEzYPNEA8LMe zv%jTwaUy2c27|skO~4zE*Pfp6V$WeuzSID*D(mOKN*g&r7|0LRlVDk6i`g;|14re!2B!7XW)iwQHfIL9tk8>5VkjVsbzHUf1(% z%2<==60$@q>u&}UnJ(MA0WZ}7KcX;dv8ORH<&k6Chl6Ney$;S`jq$ZPTb%FOYVFNl z0Y3>#apx!=5RvkKW%8~Oo6Xm;I^)3KQz(=%9r;paLR6pYQoW`iyr82bM#Pf8#9qXp zW9W50U{|K+eT-Y@WGX9&sS+Uu!Yce91HtrA$8tLjhz5YDCcaq-+3=My3D87w)^MiC zT}IV={JM0;`nkD7oU#qZngoGX9>ks*38H()$Dap#)`L3IT^w*4qqkTY`hRksZq_fO zyIiBx(ZKb2jf0n{i;qt(O83THvx-$b-dxbU0pt$t07kjQ3Iyv+P6$2idf3nf9T@OH+sb0istU(r3$#>MmOLJG} zczfd<*JFllq{@!2$>*!=gqNrvnP(I@YC z60z}dgy2&m?e36*`t1hrexb0i_^tf1b!pZQ$+cfcTPf_>724`N$G8ae^amdM)VQU- zI38!gnf}ZL*!j3+6OyQH>JE{^P-~_r=dZQRoH@hod$uR*x*`LKyO-a_@Fi1VTAJ6) zO>QUYAvXpUZt3;x!RI9@i`Y90Cr7wy7NebtFeX@G^A9(OIq7-KgJbUwxc{|*vKTjR zS+b_f0THsNvrj*LTyU>S?^1>%(ha5<;m??dDU-j(O5CKln!S`X5Mq_aF#dw22~mIv zKKim1tU+`sy<@giy2oZ>KXId?cbX>PWY#hMDF*ns8>cbbP38KigI!$9lGc=cC;uqO zz{P?gf>AuwiF{7PbA98zX$*r5HGOi-$yvX2oU+71FBOu3=9;k8Y_UTWz~nRO%j`^p zi4^W*fL=iSqZb~mX?Y~lD*%;+gQV*&bLHuuRnk91l}h(d9}y=f-?MS+sDAbZ$Vv8- z;WW-KO#BQLVCh9fzi9az?660I%LuLz)fkJYq+^R-%{7yq>hE{#w&NCeO;FleM!zINf!j9l37{FBns?uaDrRmtcJz z-JNegaX~)*IkU5pj<-6kWw}G$;*|L+XjjO=yW+$1AZB>gvLO@50hTPrs{jQHfm<H{lNu`J>z6L4HvqA(&^_~j{qII5(Q~=U{~8b%zP4Y1Q(7)b1jlaQHy_+WmNQ{&Cy%WP_%1yE8IoqOw@f z)T$86K9**jm2GV0|9_k{-BRWxq`M(s9GgjRRfpt|RkUGkNp*%w(6YuCRpb(Vt_>Yk zGbq@Le{s2Da9C#jH^TB)kSJh%4Se%Np%jPae6JV`K0&cAHiEd9^b6;66 z@2J-Ol>u-n;(l-0d9=DAn^dZviqojGk9Syb_sg%9GxWwAY)iSDuf%!#q#)v!~vYYt-3{QM6%D8t)0sUsTNh_^PU_ zi#pLg!FX8dOPC)d78~DZ*NZtW?tZR~e8zYGO(yNpsGtX%8|iuE2*j-6X16&3w}3fY zU5B=dWGK)y2IYIG>2Kv=>cz*Hwb1>U)UFe&d(9^h;#sa=nQk#TvpnX{bf+unaO0&f zHWsF)dX;qUDeLBw0n-lvaY1>Znl^10prsN714ZPzGH!Pg>80E?ugIUylKa`HueCj7diXZj3X96gZx#O!Eg0XktOS=?p9y3R5LN|7vI+XgeQ*Ml4)z=XzF8ulGjCagKMexYJVr^ zr4*8$br26eg7BcaGVQ_x{rbfAi#HZ5 zqN*^l{9O&$3d@aiW_{Oh_SLL>kgKnl>yb`cv0#K3MQEpu86LuSm&vQ|SgdnL=Wkb~ z{2^X8ef^QLv6aOMdo1^7<|%|w-~40TD0IVEM3{+^ihIg|+#)R%E1_|(YHyDYkYgL9 z)d>Z9CXU|qhTCl)pBmK2kTsDBwzD*G4WR_7Hv8*cb!P@yZFD5_8@~sLx+T_Q@Ar>Y zh+w=xPS>c=dWzZO`Up&#wlDeGqI8gQ2Q2xsFUNzks1@Kv@*2Cdtk(RO@ep@ayoZN8 zmT*3yQcOl3&1U~q{w8{P_EoAlSI%Nc=P(&hzPkJ0<=9=Nd=DV%H5VwK>df^Lg zfbTb;{ETBAZ)L3`xjj|0^1QCQ=LE!|>5z75tD$7i_p+y>dlq?def*U-Rl3ROi;oBG zxo-RU+VuzmP_Yu$JU!fKUL#~UW_s6PdR~p2JV)UXXdQ*+5%xrJ5D9N_0uA;B@0JQ8B;oBY?3`nHKvU zuY>naD5o2660zl^`#)Vt=jOsE8c3iZKu3DYhJHmw<_U?)lsl{BHEX|v(pJ+ z->{{{T}^z|z2P7B-d_Cn)s-hG^#-eZ#PRQ*? z+1(E%?{78BwD|5cP<=239K~3cq4iDY>gWBArE$%6R1!-2su8w_+jdmFrrBz7*5|3y z+Rs-`mIf4}4TrBzlUCsZP^lKSEduV66`cZ*1?%2rLN`P|?gZ}%4XGCoI zOIk>yFT!Zv?Y(j>iojx^?S;l9dPU832YD#Yb|PI}-Y<6!5$Zv_%y%ZPxG1uGg4((eFTSzd zZk)z_Q-_^LDBn#NZ;-^l`Us9w9N%4dsA5bZ$23CNIRN8k0YL*IQ@8?prD!UIt)8GF!fw1Xvv$=wy3Q`;dvidG+FvVDi;!xKs-8|9XB@wZe83h1$T}X+L!9wz{OMq(lmRP>D$|N*W`5(hJNr_OuUxML zx~VSn()$_|Qz0$fTYzSlbi#F!-EkQQJN^3D1oo!+%n}4jd^O!J+VJEmdr;C@{HlkU zhy-!Gac3_BBN26A2GfXhCqWH}oU9OXdY~elc5wlvAFA-{!6lzQm*^3dFJMJV&u8e{QFQW}(q8MHHPab?1Io6!< zudK-4f6g6~@rt6Lh9) zVMd-5HES|^YO8Ao2O@;)1Z7Uozw|7cqUxsN7vG#2)MzJ^ku29_{ip=_04Yk444+z) z#6N_wAaWLuZ5se8=kAWl_hnlE2S*!du#+h6q_RONIId{({+fY0h3HMlZz^)i6_g_R+J47}QwX zGO6SKJ$8+)tRk_`-FSv)0Xm~)F;gWTa1my|8}B-mbcZ{D6lYhT(uSmRRE$R`MzOil ziL`to)v^9AR)eExKZL!;{ezsexn~QtLfxbM-dC}nM6+uSKDAjI;gcl-@@5*ZR*|^A zyPipOTG43KL@`Te5nXIptM5PYWPf@piSw7B^sid^& z>^GSQMp<}M7kk|(Bor1u=+%3d-9)Ypjt2$lV;){T#g+w^a1VWxf`m>i+u znDXg^)7EWx&KcT$ zCLTG+5GUbc!GEj!)|Ox3R@kK1tJsivA4~62Ow+vDs8)>zLC@}lnMrY0+{?-OMe1*# zz==eDh>>&nMZ-3ejx+!@4Q3IXxJD~WO!<%`+&mG%C~msKM_GPk(rX$h4`Ah znPr!%HHcc;c)9fTb4b znk^X{8C-v!`1G@#Rd_AKbY#%iBV={C&GZ$@$qNbvx>Li79y5nElY{F;leR_YW3X746? zbyL275sI5HQ_f1$xwL)gZObj2ZFL)0>{q74spXR9vQ1?xUwk^&cLt&=XOJ#@pTK>F zAg8LpRB?C-&s1n*W7^aIXKfOSC-@%+t{9i^7^v_3bx-`g#p?Du4+Y0+@6$V zr$Hv6%rwMp++ttwspx{hNdz_L+$$ph-qumNQNxQa(ihbr2kxCr#L4X+Q) zqokvz4?%qFZKlOK@=~bIRnVUHymPO z5XkuWl3$b>o9pEk-^U&XGy%;`9=^MRy|aJ>0&y=q6DU`!y-}E!YigJ$>~wZ`m0*Jt zx%D|INF1jn3usMH+uAhZy6Pa@|V(0->odH$-xp5%AUR-4MO(lth0M_uT{0wQ269skXnw7QphI>&GStL){^5Lb(KzvNQy|p+nafaSN`I+wSxOxTBydlwB}C# zcYyYkS6b$G4LEM?1I-K-@lTG`MYnjgb^Y2;6)K|tR!@1YzDvlVlXjdwYR}DAC-ylQ zFV*YuiV|7)MGBEt1P#@5o0n1Yh1S#d@WCQbD}ck$xOMsSFsyJEI6p-PXr+w#Z~}B+ zHZ2-!W>BliMR(=rC$*{HzR{c=78HmV9qi#j$*T}*7){FZT8)vMkfQyO1pb3d+QQi zDm|SV^(2xK%wau%KmRs1wws$u16{qqqmvUP(rcvFZ$i$dZbyC z-h70TxL(S%-L;@x_*QeaRV}h11)#u4gA$tRwR@n`QS^xlGq~&kIi4mVfBf=nj_a@a zvL_>y!OI9bW}22Z!1~h=y4Q~H7<}2Au}XTS>*WquL>BS@31w!N=u}%pw-H7lpOC0N z-r}YX=&iM)fgxcJ9U+3Zv@7~G!fVfEam|5vEy}C&RkZr(Pjlbdxya(fXYq>}mc9kG z9|kr7o-qimM4EX6?IFLec6}+{P$RI>CSn=2uGIr@Z8N6%&*#rP=Nz|1oy+kC4goh zFCF5?;z(pAqj!;e*-1(HHv(}f9CIe78j0Pk-!%2CsECL%ztEBgN-h>B|Mar%dM8y2 zAN{LDIYe$*O4!n+@@qUL$3(9~Qt!Jj;AZ6j!E1Td!d(JPx%yq<8oOn^NM zZ4?{q*=n;{qzp-tF^Ub30aZ=qcitl$=5pAIhk5jmLxkr$E{W{lzTU0g+EXJg4-YkK zuQ}#de;KG&5+FPPwC;|BIY!y0dXh)zKUEYTOz#vLRaUt5Hx;!;Ct>Xh?cQJo(-lkWN;;-?^kO;#FDcA=R0F*^aa3%ya5B*>r4s5sOU!c)+T$@=SVI zgdt|`wB}~1?5$%fAdp(MJS>@4pEEwlO&IC*{Kaaz(tWQ7FLzRw!_RYXBe66m`N@@_ z=OR1`JQSYpQZXge?JV$WDe@^B*?#t>2$8eXarh~cJ$~u{eR8;sIc=TBEZ5UG+Yk!h zY?a2K=F<9CpN_*PwW4!FQB!92R1E0BLbfG?7zZ28lj0JjjV=|#@U-x@{cFsyiCP<3 z&H8S45li6jeP@Bhi4BZy-nHF!H?x3s{>~!C+FI5b1m+0Wc?@l8BJ6uA>!xszG7?S$ z7iF{(XIQRIS~Pcmj8^{ji1Zh^`Y$(hUG2`0 z{;(mYjQfDo^Re)e*Fkd3^g-8E>s2JL-t6`16I(Nck{$1nK8DHaOvagoQ2pR`es5E4 zc8t~xENZj9U^>E5n336B_pGUnesQApHTrg@^|D0b%Mj0wt0!C74Mt+eiicQb2jB*t zt7Dr}i>{xR-Qs%uo9IHbY3_tZ%-TjTxh1i;#FUzvz8%~OAp;%;^7+_tCVV@7sdMn@ zl|I{^jmcN0VkqYBCJWjf`s?Jj%>V5L zK#Dc?10dieyz0$Kl3;SZHTu)5=7P9q2X@_Htz=Iy-{U{B0pOT&y~r|YNZM)t78BRK)@1m}Vg1=RpM8V+>1p`A06@UX_3L$Nk?8t= z_+yze%#ml!IZw}$H#B11<}XXB)kMNO%%wtsmJ7mD#9xF!@%}0}AoD>Mu>}3*4x#?u zf3hOIzaG-1LDiZql8}@nskFa4H%GVTD4_Jhwm@8qN5O{X`(ebQeRp5rJYOJ%>f5fO zzv%$JIbjLn3orL?s{Xi&8tSN(H*q4d*H-63>M|4 zM3Ym!6=Qn&JHubjcYcvSmU(ewRD8o*06=GhwL>1N(MXY_CZHwijf7xsf4>@34z-`sU+ERDT60>3g^=<6{!^@2cy)k9ir zVUe$dUA1U}=Vq5pm+*j#P~FKczXQF(4L#pOG1_uKsM_uLrM=f^p3!GkC*hV}eLf-c zy$aBKR5!tO23QIeLTq_$YcXhd$00w|aEkS8B+~=?peqEj- ze8d|X#|?}ELgw!99p^nud$bq`9|{PUz!(Se5x(8&B3J<)pcEsZ8-jCLK;-DBvp=k#H)!0?c|iJD{o>g;@= z#cEWEXDvx6UMM!i!|5t^Z5IZ64TVcWdV8Cvc5%t_SIs5EfA}+m4T8%>=sP&=)X^_$ z)|YY~cgQ50c;v79?)id<#2o=npTZOitFz^^$*(tB3cIS&1P5fE(t=(Hfqc3O8<^S3 z>R-FI^hh1Q_&8;pzuHZYCOCX_u1L366!d1n8|YFW58Oni7SS%eW{K)999e=-fXvn8 z(E5=jtl(Jfk!gGu)nsS>9S&%jvgpV*dNODWWfBTzi<>Gl#IOGYRxM zY)SzlE!k*m{@u^GEyp=NeF&*hv8Rp6zSKVF)l8YcpoB0d3PJ)fRiJ>@(gYt28|J8Pbg{x-A+H|A~DVHeB|Dg`hkQ)kcx-_ z!=GAEaI;e)>Dqi%tE);v*Ka=v5*MHhEmIgsME^X8sHNRDnyp1>7c5Y3|4>EWz4-Og zis{wxX~unH=D?iw4th2Xqgu5Kzup4U41eC3Pu5`*Jb5D|IDo0nJbd!GC%j_q+H95} zBlu)8(H*c+g!y!ojMwhI{IqN?KuLc;0Dqp3yhnKvyuvjp=3YdV88(GsuuyfL3zH>9I=s}Z9s-4wTO!)TJnmnkSQ-44F>q@r;O}|9 z(64}Q5(*LauHoZfbri7bZrFjCw~d8qsNI@Ts-6UDWI%ap3k-eA2jKxBFzn#}6~scs z3;g(!D1`mNkN<*vo&clQ>#it z#u6A+hD}dVO{f+e5v!u|Dnd$Z#%!X^&rLW3xmO~LeF*v$j67F3=?11c6Ti)$M$wUwsD)e6ZVAVT_P(9brH2+`OF=(_8~W@eLHkYah1^ z`ZWhZ7;Zovu^G|#*ZdnV>tjzf^T)}af6)uv63F(tfHlfz6Y3ycl62fr)H(*OSMwZV z`Dm|*x!@r%C)0t4BdE>8z(Y-1Ss&26rBFO5a*rn)*5=K)*7^Ku;nCk z*>La6Q&0p&{KpxPmj_+&B=F)>QMbNG`~sfI7tPzVzT zX?KSi_;Q{DNSqyf<4aT<_S(O=p~SIyP$SGJ^vvyYFOhaIh&Un8z@Z>%pY}~Sh&Vn^ zpl(GyXXh73&w< z;50l#2{68YK`BR-D8Airn3JDBq0&v-~79L&TG)}=s%V>#h_C5X=}>h{=a^kVi5{9 z(jQQT-RBNGV+=>pMjB&ejWC@zv4@80{Fj)K(Py7lH5EC&?P1+O0g5MGY0g>2@fH>uwfC>_OCE#!J48lf^bp-R!G8y(6b}$R} z|AJjDQlDOh=3N8683W4mEsYp9LO(wI0mQF=fWXb~z4B!mJa)WC6%wM060Z4j1fovY z07_%CoR2ot6!^!XXoK0V0_^jje~jwS`b*Y88X5+ZA5!oJB+Fll@A0RTQg0&cdsSfU ziGOT#L?)rQ)jlF>!;IuVGXr_g?sweJvy(s)51V=P+gDL`cH^lC`(fuR?BP%!(LV@9 zJMcn;TwEj+TMP}l{scf{0Po8I>NxA5_%8O0DY)Ws-_;=5?vHd{Y0ZEdB=#%5d91g> z@EiM$;9M>>tOD2hqmOg|eZB4BZVve%F23aiQU0RH0X#!NbE3bnCKRQI4r&GlB|rv2 z&!SENO5{GcAUpgNx|vL=!uY4sz97@}^1smgmeg^PAwY5)faIYX$9>TnJ3f@I*wEk39W{BQ*>NvY~YoAlP|VId7OP=zLId;w^G{sP@L?{gEX zPA`512K9pnl|u*l0*AgD19wbeuV({g9hr1t{DoBTpjPNii^?>YP+!1<{wSR^0ry?G zwu3~*M+7?4{mXY2T%$&A?f84XzB7Fpn*n^jko@M(b;o94pq7|qpH`oS_ht*wcRB34 z5f<3USj_*S?~s7Li@ekNwXHA|d!zv$6p&^WnoAvEynl>9Ip^|sV7BKV&hgoWrre2v zTRd)E0qcquNY6M-@fK3d;3GFawuIk;d;|{@eK>&krUAUI202g$!6DlJOY(gbc4gzo zdnn|nDE7rD=P^Hpzk0D1ibz=Bx{`G^E|Zk(=Af+@EKjSt(N0OXaY0C~{^pCSJEN5E`xbb-m6 z0lnXXmJ-;5BXf|}QIv&hol0O2WHg1bxn}_C=Y9lky-ZrJ*=Pf^AD+7a<2@ z!hVJ?{bkYn72A#(e1@{4lKs=l-}2SL(y%$Lr=Yc=p}ykfK6Zm=#=27c?%CJ_IiO*e zsEw9`&YJHJ#XgXpNTG(>P-*~U3b4jW!374@99nq%-(CRhm3;03w?aMXe2dL41_Mxx zCf^aw5e9i&c*52n*HHq)W_$x^3ff2IgUtn_9*Rp?%NS%p8K0puZc^s)W;p!?M#Ui$ zuwwhM17+9Cfc6U}V#YQ^KG&g9O#z@P$&t8ETjl&*F_EUiDpG-es6NW<@I!HqtUo8yAQNtpQ4P6!# zkJJ0FHJLX{WaBOw7!>7kf<=l6D((wkgz*Rb{jfFdj|?dN!s(>N@pl87t9;_xONKaE z<*)%@gz7ii?>HYrO0i4CqR`tHd@KP5U%L(qG^+&R3^@%MW-#Fga1Mdvg-6lm%_iEQ z!l5EQB>KDcdd(Ns3YKY(E(jH|A&0>XEbiYf0Iug8~ z%FP{6ZY_b|u*Lp|Eo6|-LlW@}_e(wk1@hR~-ns=vKq}T=%RF6oiVoKFpnnab{5c?) z_*er>Q)qGlTl6?AA%hGy-VtR{Ur4deQOCv{7n*C~QyVka5c*3rDn|@^oIm6n9$0V; zk@$l2D60=$CugvJ0ruFBP|X;8-HydaS*sX(P$cBL92lS2KMVgTD7XQl%?*ey=3x7W z`xW8Qtl0A{LJOr+kVL8W4i9)OHxv!pZWk^$Azy#BUD z5J7ZL^`SAgZP#pH4-E#5PG4$hu&JkSpE~R3CG6_yy5IgSh>Y!Qv<7z-95&80U$p z?SO?Pn@)B8;c$J=g!h5%qGu9b=`|Nj@$QN~Uj6+Og~L$vVdZG-!kl04+3qX@A|@S` zT;91^FDT%8G@jqyUyC+^e@={*Wz(rb&8E}n)`hQwvhc8<1m2B-O>t+VBHIJ^?AZq3oM(e-FWB6_~ymKJpdMO%;eb6*#~$R5v}DTb+WqZdY3(iDkj<|uK!Xh zc^%W)^&6GjO^Kf9c?MRpfA|q8!gtqwKfq=c`Np&=k9QCHZzKs8@6QZrAR<)m3sz;P zCO(dz&T|esXvV=O+-74>j^+q{RPMSx)v`!MBR=f&vShT>bRO{r!=57Z=|UsKZ5D>A z2(PEO_=9-N!xlMgI_sos@$t21qr)`bdp(tzhzRzxaV6kVcSMX-?PWN7mtH*@xz}-O z-0O>eeS6Eh{RM44|cZ~pzg+_>*Tbm zG&#R#ClAl+%3Rix&7!F%#uAc)J%;*vI=aKklS#Qo{;rBfTnlsN*_-rs_bF%%=nrW2 zSZ!I{lF|+t^m~0MTPalM^NjT=4?emB`9TD3Jbni}+mp`#avba*>6 zC1LzJ7tR&uqG@jt!P)vU3YVB=hQ{e>_6n~NP1bDT&vfkvjrOVI(=S}|s?cA$ z$P7YyS;D;mJPfzf{LtoTLVkBj;qmU;uH;PD#739SbwcY$>P^zfhRV_Pa+-}>$Hw%I*!|o zT0@=Ht-Wi!?3=dfxXP1jvslY0vipa(>g^0x8*=lP7(6^_1FAba30|D^4b!*3*j|Z5 z&1@jY_1W{g6b@WRX17{e2=$k|<_Gln9$$CpvZ=+k0c}v1K{5$8OZ500hED6mnwM3M z4CVWK@mkvTrEW%?d;2{dKU>EO6}*qVr?Uuq{?$;OeXK1xn@z^n=-mi1o3(ceESy5F za%Ev&yLwf2{AaVl++a;5WB+{(8wTK;|GEsqYsEu}@w)52(wrx~3aC6ndTGvocImV4 zFnp_|e+nZQoDckHZ(?G_HvhwB0B@Oe`_W@UUakSW2)fvsqTPZ@;hUJZwE-Bb+8Q*{ zc4h)qYicBlv=nW-X#&MtHDKWQIwTGu$P~K9NGwE`>CdMU2E+R%PO;JjHS1n z9v-(3e!ek<4%2WBs@$nS(0GzYiJZ!=_Y7(v8_sz}(7Wi<1EC`sN4JN-mm8xtJP~wm zwO*gk_p3D7_%#hR&CG0X&?mEP%t)IPwl@p=0lj`u5e^twB>wy>Gb5|~)=#m$!f`BX zRhg9fEX@hydYWv)zGSf?a^ZCRBNYPZubq756+@Oe=R56y>{uGp*_b^MnW{XQ+68z( zyBGnOJ(@#?_Nb_l3uWF+U(VVJid?aAXY_@{_rV3gjkWh|1DmR+tq%pb&bLB#x^`TX=jX1I^5U-B|g!R{$iYc&38R4+0s*Z5HqHKYmu7zZ9xR<2e=1ML%oLAaX$|V8p_e{oz>IGPNa$fZrm$d2FfYSy zsoi;(WcFL$0~WFKy(KmGy-Lh?hM>A5fMRxdwDAZ(5vRS$phBq_YC$$W z_-8t4`>mI%7j{=0Xe6e)Y=g8KA9jLr_Gi#wQn4U0c}v3yxj$_>cWnw&sI=0&+^ZWX zz>64_ity7rjTzw;u0Bu$POhb^^ErBr$apu7z12Q;(5m*m2k(9%#gb*blR@3Ho_(E(hFXje zyG!_mAkX;|;EetVN44^>+t>^My{`-ABYs;LQ`$J*n_Nu{e1+(iJs^$CauyO}1hCn+ zL+piNMvyZ~V3G>>UzTG_`l)}=CCr2^=|v4ESMyQ2*w&A-xZIdwe@MV@T8KRZ)Gddh zgRaqFM|rT1F%X#${iNMJJ$Fr5=qNS#gkic?v&9ITu&@lsT`90&zzgiLxR%CKUTn=81RW?OMZ81mK64cFoQ^l$Ml2o z?>qZ~5zb>5KfhC{!#>b6BK>78X_LoO95GV*=obbqY)rK`nnPW($y zpVq#(0jU=8yUHN*t*ij=QZeM+IA;vX9e4k)z=gY8n(xeLuLjJxEHl$TF$O2(bI8}l7ZViN_nAN7|w z=m($A&!^%(@MyyKzTQ6EtDV%2EQ}rZtKh}vG1xD&%b)}_jP`aT#|D2t{|Jrf4R_`V zo%cMNlb)j+Hj($bCKKe0*>zl%uB|cRfs&zQ5zwVao=+qN@o0J+ykH*cj+!36E5|w! z_uh#a1fXvUWFKk0BV@l7KJ!H~u#Y|5vf`OKpzes-B6&H19ZAD}_%MR9moOh<{HB6s zxn%=5O!_?&7p7k)tzm7c)70|Cc)it-$2Hbd2Vu%_$(fO_RKrT4Uf3|O(Lzb>^{`Tv zB8XFi8J&HjzhkJAp;V9S_;;rZ5&Basye2$|v%)#O;&yA}Qjpmo^}R~G zY{V#^Ge`(ITp=W%$szb3`1$fSCiSToQm-(WsLk{9lPKoiAWVOOJOfBHF_6wXpEUuy1Q?wot_b7Fq5F%y*ifqnb~39m45(H%rDTMO2-~IkaP!eQJ&j#09367H-C{@wthc z0nNLOihKgq>W@(*$FaG?@!5W}{Q=l{RM<@L(cM+-b%4LgWXm|}wU3q#ng&mrLo9~d zEv!=A&5VvmDD4Rp;7Z_bdfPJ{83FJFwrRl8Sv`)|4)8v{J3=3qd7R8hFPKpaqEj6T zGQEhD?{r+CUVMW6&X49@iQgbbgu&S2oGWdODi0d`PP=?pXWEw}OPv?ECKntC`b8#A zobSeeV8G@z7|iSsNf!es+Lh-uAgpPjx>PJy;OKH6|E+2Eq$_4`csYc(+QyeQV`wc| zP$aq+M{Ea)d_7!W<%S$*j)j6`3x)}QcX>6W>@sUA5gY7@5uF=e*_Rg+5@h;H%e;@oK_U3=^u#XyC z9Q(vO?Cm{3Wk4#tbD+z-ioX-fDCHih03zOU5)_*wE0O6H=W2C|2ZCe58qZxls-?)- zKu8f0K(q<0aQxV*cKBH?_agyrJ;rF}&813 zNg{h%_NGOa9gG6xbWc$37udTmH$p{JQQ#QCGK4{Ga#_E#GS z(6s(ybpJ}?lqG4?*}A{ z24Q<|us3bSQw5^NiOL(h{nG9^YUEnUg-qcSG;ebK3b!?yCJ5_LW5Zk~99Abks!Kcf2fy?MVhuBWQH$+sU6E2v%8)Y8q9 zNS>;|6nMp1rC(J%H{yu1P5Vp=FL(6xqIwrd?tBQuAx1+~L@uX}E#&^~yIEr`10Npa zzX)sDwxnABV6ofsGML1tm9W6sOrYiR57TdarQSIVYn`dhR<}XU+K=5o#jEQyJJN|r z*n%4I#dNXn=vAissnu(j?_|uI^CE|CK64-b8aTI5G+R`M+b6LH2fz2*9x`ehO8Qi-{#<~sicVBJ~ zcmLMjbX?!7^joE|4$~n&=EUc08hzFam@-<|`onR=baIYOLdwaGQDtG}c3r&_aF?6j z2P)cEWn&E|G4(=l(kA#i9D`F=%X#C98CSX&`Ld|1TgGzmG!eEguV{m)jUVJ+eRgUr z)B}rMFxFn4lscDp;flNDD}}NQWZbD1vlI4ylYFA|XggDka_BCEeZKT?0eS zUgPh5|L>ah+aLD%bgpxq&E*Gh);!PM_1x=zgrH`+wCuYrHu4_3EShRg`=uPAwqNN6 z01G3_izSdS@2h;#@;%s%S{_yZ6PeeW8*T5bjZ6y78x_(s1dDW;6`-AeZo6%|A0Q_L zEZ5w&<|4<7yeqPGGWH+61IA31PiVF5Ezb*c0qPdR?)D6v5KmD-b;{`T`P%m;Mmely zNOWa&M22Tb^O?D6L8SYsan`mV?#Bw7?# zUDC@;V!?>6a%EL>EUnUzWbTj{8I=)|&mh-$#+_%E&Bn9D?}4q==JFnuFxWqL1i*`- zESX{%!Rd@v7{&1{X*5a#?os$S-MnKsyWFN5NC&@EM!q>;UNvuH60t5pald=Wx>*i4@bw?M(!a>FP04x^h*MEy;wB>^m2 zWj~~7u#y#+HY8breO5^1R!nz?Kf&xq)#fuVAr9HCdJzI(bp#>Ek7h{BI&cbB@pGQa z*>CCl$8Rq-Ci)C!MQvAG`9J4biFd&|>*5ZBEC#FprLDuLOi&VYd^S2QV#E`JEE^AS z(PQ}!vw#y&V|E`E-^=$h1XEDFcnhkE1W0XTmR{gl3)i=>(GlzY-ccp&JGtsBM7V8^b|H^oK zQ_`6SOUK-fGoNPDH5O{074uqecqhs#Vh1WqBG9dj^IL^1ZApK#ggIRPJ|F&rAUSzJ zsGK!VIYyEWtEvX8fM^el+Yd;sv%c*QH?&avdLXkqy(gJ-HXZUQnITvz5sNGo=l?~P zt`X;(`X=igwk7=sjNKT)Z4=O8qW+E*;d;D-vJg+$)yekVi9X-*9TCF(qA)>I^0u&h z^FD|jECLb!i$Ld6h%FJHX6zYCE@nhG)cU3D2LKuxk-r zz58E2T;f6&rI{s*oOgVlX@Np!r&)zg!~-kv@dnTeOTA{xD`kYWu!k=*UR?}(wCCwL z>S=2FhOLf2QeP`^PA6d6>{ArpOiOXe^QRm zeeM5b4fVW!i}Fe5gOh{tsrATlK!oD#9iL3A36cQ!@t%$h)->&Fs%E-5y`^T4BGpsU z)B8VI6y^d^1n*L)I|fSy&_c@vK@a=m!1LI|#QqdUaS0nH$j8E0p)L>W0gqeII3DX` z*kfo_5c^|AVQh`X{uGt~2~r>*OP>3`h(k#7_s{z>ORim)YE|gsVR{)_D`RDKdr)(vGt>21Tz!f-yG+1&*KCWhWZWEp&Vs;Gbk z+CMY0&(jqj#*-SI>{@}?>cJon@l;xjS8-W9#huL8N5@x;9TbdIIjdSGW6A#nmHWoO zWG1c}A96=C+$lX@yU<)0oplXo9Eo4a60GgCMJL3?BkPW<`UyKG=RF#X!>)6{w5a@S zo>YbZ(Ag-($xdW#w4hf4f>0b13Zi<~=MTnK1(fc2DK! zRz<~-MYo5o`f*QUB|Llosx3SA$$T0ff^W(@Tx(s{`uUrRITvnh$;37C=6LqfOP1S) z5*93Lv41oK4!J^3=l3w%8@>j&bHO|gA>l7Feuc0Fi%S)(-;3|Vr|dx z7#$6CP^$8o?%sU!ZBiY>)_13?S3geuLg#4RP5IXC&wl2_4FaY5Hg<9V9Lqc)Mbsrc zdo$()A0MeQG0amb&GOuGFa1sCvU;9t-Oh|WN}YFN_{S!*OT3nr=EOVg;JX(i`e`Nj zN-}liALJ8&MV_#s>M~YS1JLgNF665D{n=3e&VD;CYc$GNA}vEcEpmBG=hOwo95230 zT@`+>q@qjic4W?DAUN&p-aN`q-ggw`{+u3X+%d@mIaP}yjB}aQj#SgFZjIDW4!qUhAOcqNEg@i z1K?6@i2_=gj7|lIO(x>|6`Nom4Ga1Ov8Gce_ngf~ao9(-^9d@STBDsJzZ9R&+g6VC zJA12Dywqv+OG*j@t|r>YjPQ2KFh8C``o>3VnYGfq*IefV&MdFd=9pvY((5GX7Ud&c ze=ZGYpcl$a$z2$V?8@@!9L)DMrlJC2-zCkbWS z=4CnyjV=>1EdWcCm_?KhTid#jcB_((lSmUEys0guPze(@NUW`O8~qT1gF2Ae zDP=1;(<>N9)reL;=uGluEZQ&6e=783!2TU$RbIrpLX2AUT$qDqtYOi>Lh#tcGLC)e z%kuL=tl%x~a6&U1D*CK(zIS|q!yTOsMHU;a8M0-&r}M+!?S})`^LzpXWAEB}?V7B) zR!lB9E~oA1Aa1s~7WN=r(2KzcEbhS;p&p+37b_lL2SDEAK!gwmwo!$2{w9U`66>8= zg*vBU}9ZE$MCAUrj_xM@G$u?v`OM=J%&)bJ<}W!l{`zhi#;dXOZn~A$Ulxkidr%b z?~3{18k-VW44|NgMqH#%eN7`n@Y!Wz=Vx^J-5pZu>d$sG9-mdzCBF)rXy|c-tC>5v zF$fF<+__2aD%fiur;)b*5KD0WU4)XC=DTmcIs>?Jm5nyq99{>bg5IVLF6Vt}mEdrI z21V<6ZL->{s^9V5Pz6txuuj3M`5>5AU%Kt3-x$%?^o~48%c*^a3y0KOWwYZ^p6fn28Q-ikQb7TvW|o2R=(KyNuaQrJ3JWvbuOft z80}}$_%pH7Mru8_s;tl2@F21Ru6XRDy*rpEBJp|cZ3aMNu%uP%LI8#3cQd-Z?{YGk z?{KlXk(roBYLps@e*7p*kM65NJ07p7l4S?4l15BS#fAb_9agUinoqyW$j|Hk$-oR; zcjx?uzXlH=J=sqUOAJUKDVNg13KrrXf?b7L+7rv$%w^P%ya0$~kOI~!V*j$(o8_Um=Xp0b7o~t4Dt!2GNbDQY;oXiQ!BNkU2nNNwd&n&;8~ujJQ8C>A|zd|wR_dq#!dpo0N%iZ z;a|-vIDPI%m9AW)u@;GqL~=yH4KrW0W4~|~qj#lpftC9#^Av}q_D1NI)SaK#k24~oG}P>SQ4bee_ho`ghDVWziRWlelAZZ_#qU+4md=$s z6hhyIY{1~fF+lK#P4ohK?#B(^h3iU>(DZUWl&?&G8jL53_sc!92CxUBenE+`4x=$y z6VWn;Prz$+2|z50RX5P(V@>mvZN!^ewP{u3(afAIZ}ht$A#E9>`0FbEF$2MVqMbGl zDi1q1CNvp2Un_KBv}VI)zFVFdnRxQ3C6RP~2W()bQlZBbTMD#7`Rj(xgMEhvK~iUI z0N-Z}3RGk`t~?1pHhXlmwfx6+ntI|CqtlVIZT4==6Q9693o}Ah_v9HMv%lkq@6Srn zI1L{5$<{Y}Zc6*mP+s132X`|HdL%hgYkv>OcVSF2DyL!nrr`2<>reMW&-=g$sA zgM!p0ME4X3(mXr5BL6CGmz0G$pGmv{5U0Etmu>75aSW=e=w2WZ%tO6%W%L)wzcpX# zZ?g`LRje*SIVa?^7xsNB~fKLC84^g!Yk`-nAvxC;*oxIuKZkuV6|Du9i1yW{ixUH|?V(`hcBXOFQrQt|;kkn@h3v=g%r~oAb z;v^DZZ3jY5q~RuMzF>!0)zFVk>^4PVa)>eWm$9U_;Z!uAf?Ykoga0o@=yu$->AEpv1xLcW zZhSVZJT!Aoio{_!1`?rZ>K?PaaLtK~LT(^B9}vXy2G5`#1I)iz;DfwC$ovQ8kG%}FDdN4o(r)oZ(LHcg* zt=A>r@AWlJH1zGYU-ul&Fw$Rk({--{tqBvh zgs{Jw73eVdFDuBL244>Y++Oo=3b^+#|Qo&1VdoeS0Oa;g<_IrWU(bi%!3%^#}iK(dkxCU7h zkvK~NWH>pQ4p^$?2~7p!WB@&N9p?hn{>TbYd*&<6;aWl~iJq*#Et1}U3Kl2iKpG|s zjR}U2!<7JTOfq{j=s!<62aOuR6P9T`81Ih#nF|CQH)nNej0=Z1` z{*Mi|)A_B7X*kzj|3YXklon?lh{<@e9%7QIs z5Sva3kbK5V;f@!n5m32sl{`;vz*clyP`w3t^doULIs@gyeZJe1j>P7>FIMUZ5eb-< zG!R7LkbWR5nK-qF!T#w5m@kZ}8d}Tn+|tvB=L~&*jOD0U-$8ZiEO~ojo+pX@)gY0~ zc}ux5_p_Pq6)HParHFWlACn4^#K>MF)q-%mdOqylT|iA|x*T_R9`r_}nEE{Wsk;Is z`FlGS`{d+CDzW^|I=rdo`vW4yRZ$)5%M`MoeZhk&J*XiL0O(-;eP;Eu}`2!{(qFG@}NX9saTp1VY)YU2ki#xRhB(%n>V8z2Bo$k34`{S-Hf)gP=5LgJNR?`x0V-)Aj1I1UgjG9TWbW2w=EQJEhfO6ib%xC?2oW4hQ|N_ zJ>wN?Q{wj-Ku>Kyt>*5c>ty|y{PM7U5h)_1mZU*EtW(FDSq;2q5Hvkt_W4UoHp$5* zF>*I`QySs~Rls!s1XZF%jo$AkHe!#|T_|;4Rjb@vb4)BVQoxjn#s#D=W}1Q*E`=_f z8P(Uc6!%a|D|k5)aO{ff{l+C=lhbok`O#xVkyKo@(ZfXa&&Z_H%*JOdMeb%Kkc&ST0Bq0vhFYVN)%*d z^5Py;F>%7jJC3#bz;NzCgOF-IKwX~4WR$~$^@3syk}|LJo{tV0+yG*?cC*FB*Xryg z6WTb_%i=i?WWWo-D43y8DPE~#ZBa8Z;8>=9X6j;M*mXlN9kr^yHyt@h8zdvjzd}$o zZvLKscbRtE)koW&aKl~GtUh$w#@8`Ly!;o~(#G9}NGELbUYX!+C*+!(Kn*o|Ya#uf zlRZr|a9^7ByEP^f`OzpK)B5q%PG6N2k$k_wCjBuORF4>lx$$VF!K6oeuq4R+^_y0=?OVz>oPQX(X=3OZ9KP(%9& zXaWD81C%v-q`VY2I!yYyf#`rbB0&bQxqyUf(l)e9kA7I2kqGuNk7W@Yjp1o@nO`y% z$YBi=uJ`4bDZn~QTZi}&*rE4!%I|$MzR#&g3>-6`uz)6o0PT?`k28JzH~&=8sgUAmjy1`W ze<+^`WStyW1bBhmxVNc&^=9)TVCmnj*4{S9Ckdkk^XwE_XrB@&;Y+(g+d0t(P{Dg4 z%jgCzCJvDk4WM!fVPCct3c47)iXM;g;TSIZB?n$A?q7+m@hAN|)@)DNe!L5!@zuxDvLIL;EFX28jSqpBU zYcRu^3<;9$2Ff7o{2}8SkqT^=wu?hM?4x*`Uu`}Ma*$23v=0xz7rQ1C)LM@{AchD6 zUv&s!#Z`vCax#snXg{qTYSmz`A3H_H2*-NCI^s@MzjYE&OQmcsS>sq|!#a9N3DK}-TcIreHe*zVBpL!y~-39V_!r!1{ifV88VO zpuproVnuuE7Jy&+(h6Is3w~r zK+scW+W?}VD8990Qe#%DOfeA4Va&J?<*@pM_{%I~o6{PTZr zx{Gmvq_?;A{&8|hl^}n{nkBRBr2IT`rP-{4YGF5W82{mwlPC?7(f1`bMwPle%rt`( zVB(Q{fjF*Wo4;(<=Lkg~02OU%{YC15kbm3@5Lx+ruY1~J`ml%#sTtOz%+>o4NT7+z zvb=nbbu(=5_?#~GDVD{ww%H5*^lFt^+MaFn^at-&JrA|H?`Z!K0C9^|N6aC`AVFkK zhAHNN#a<6n$oIAW=)FnCS?>XpGqWn$9PJU| z^bGIjB}YfcaO}QiM`$%fi^==%PXM`)|Ji5!TA_9l@{B^#-wy;b8uM2ZiidNFfl@jq zG$rXxtx6F(;S@cd(sVUx@?B_Gf7&v%JiM9^EXHn)P7A?*_&2z$eR9va^;0jgk<{rQ zuZEJ$N+Fj1A_p@zA290BMm4QRn**<-(>w#w5u;8y5$5l8#hAbT_j|@x& zy`F9|pp)N{j^ij@<)ihfFDBwes$Z^I{xhPZ6%tC`!jO36NL00!nE8nq_fF{ z+#Z}h;>AUCl(^ZJ_bi;~{Y?H-Z1|*TEc24peE05t4%x({d>R1OHpZV6Wi)XRT`|-0O z_(1*uod3C$kWKagvHD(xCqZnx*?{x`?d<3$XYfpak2?^}^^jqZp6{P+42Z8{1q$5H zqGSvib>aCVrJmV}#ja=gwT4d|ob{{rQ7!QrLF=B+*5|y5?ckfEXcRRNe}=P=0X50+ zlr@&*_s+C_6Gcyf4vl3|-=t=s@Wn7G=$Prtd~`b%du*o~#JqaQENyME!iPifYc1N> zZ8s@!E}yj%#rsWuOwC!jI9G%%erS|LC=6o5lhtrA`^0#RV^;8MjDqusAVw= zVlD=(nSV)iPu{vcDFRa_P3T6F{_RnzEK)b-`KIo=v*u)-x%$0ZF3B?H;2YqYE`E%X zcw>p2s6mkp>&Cba$x_P_{LO6qF9jx-eVX5Eax%q@{7)yy=&w1pvYp>5rLnek^Opu= zTjg*l!FpIBiSguEktIx+AHH00RE0jSTB@7gtg@?EVl#=Et5O>hGUsB;%dc=;3=U|d zrTueun9!YG<#rTnSvi?u@3`e?Wa>th`I|IkP(0M3^GTKM$?<^8YhzyH82&L-sa02L zSx)p?%YrKE*!3jOFDZwMZ#>CwXVWlLg=EtOx$Ve%C-USNEm_fxr&EQ>LGBKBi=_3` zpqtYLQJeA>>1oAbEhSfR$%Wj;W=lJT(B+L>U`+m1=l78L6^5)SvL!_R(xGRZT+O|b z_359UrA3-q7bBy6Z$N@Zwo4XY>4UXP zP^fXfLC@{I0t&~hW=ldUC5=CG9}8LWMPo;CCVQ~v{8l?b1^?%u^Zu0PB0UA3En#KW z-&Us2@mv;h1y=2^H<02_Yp2=_Gi-&n-Rc!7?KUZvA8oFh7R}%Qj>UBHk5cX-CA&-` zpJpn~B(LhR9-;2JX-yN{bBE})aiO%ggRXzJpYC4X!T(73`OdV3aDy!o9pUR|sjj{p zuTmtxNqwPvk>ldqq10vpONRD2AcQEQBkC^?A9LuVLe z?4$Z5RLkxlH;p+#bN4)21=3H!lm<$^RHpqnt@~0Lroq~$zYwp;55$WAhGla277PTmtI;@QgYJRXsK(qjVEw;G}sw)x<>AHhH609 z#0Q+AHqpzQ69H03uDff?LKDc7fY_70S)&!tvZEDLmFp3C75~Y}Zl~ed2MOR4$D?i> z1tAyH_QsW3<#V8NycSD;QE&^Ib@PyoYZ}Q0wL#We~CC|WmTa%(MPfF=y4YJ zJ1Ct3|vV)(nGm< zY*DYDg6(egJBWx;NQ#c6mZw+%gM0HWoLsl4k29UlxF%@jGD6Hu3HH{s#rEP8ZtT5qlJh_g#?+#f%{=WOOu?D z1P52)9^4zuwytxK$x6RzC^eNc8CA7MDQ;0*Tq)%g=AJ!XCDvU41IGcKU$!ENtJ0pP z42W*V&`&|ffelUYS&N4kM9`}zh^Um`iX^X$!1RIf%_hZ#f@-0caAl6O9KhS`Ku5}D z6749pjw;t32|BxpPfAiTWIq-2eEOIDn&1wdL-6u*(CMB6)b+nr zSY85Hd`KO{=`3~G1(WIpbV89C1EsJsr|Ape`Ij~;p0uv9;MHMB=w#0O(vk}1fsypix03F*2;6W!QGi)Bw%Sbv5p{M9#0?DCrbNOe!oolLWTh#l71)F31S+QNd43X ziS(R_h8(z;a6il&Uc^mvHxM|i0HdzQ2@xta5mD*Xi+u?ID$xaM5phbh=ci z^k>QWTbQTE^EJu&-;013FNV(VZ3`pxr*~SXyDqASL)wR<5QWuo#0=#E`y=Z3*Um2i z5+#+U5X6*Vl~}bzAqR_@p@Ba1+liRPAD;H(C_KQ*7dD_uIw*xJR-ot&uvlf#)OD*Z z1T3FZ_>cj>Rw)QNCF6{1Pvb?@3~)biMSLS;%m6lt!s;-#fHImys!8PO$VXt4(EG`P zjtd)L@@zpb5Gs}sJ)fGd_2CD}U%7Bt=*N+nJy$ye1B14855lox8PSsz&z<1Ql&quK z`!(!g;1&Q6=v7dTd5Ec3%fC?xBDigFf{rs-_7N;i*d7AK>^}XzA4wh%XMQ~jsRmmS9!_k+&iN+5aV29PSH#d6pGA9bEi7p$WZ) z++;Teq9%nPv(^}_>35*xq3fh1IhNTgL_G<;5(SHyxxfKaoFxQXJZj2TrSB0Iz^xb; z6v@Xvz5)B?t|t&_5&uSLp!lXV@-ijfb62ZZnc#y&;V_8fThbLpq%5&&8`^tjHxY{R z87AZS9!))s5(077;|$_4x=IiyLC79u4&0xXE1rDsv0n0oLnKVNh$u+rxt%fbbN06$j|$9SM<8*&`9l3TxV>W6;=bI24w7^ za4?ag)N`g3qU)lc69tEuy}|bb#a)4HkWWh)ln|&iSo@bq1yTgSR41_W!-W`iVHu)Y z$>;YU|Eb0Md6_c(xobA9JQIkb!fX(v<*(T#(YALSWzA4qhA@MhIUZVv~G+ z<#9M3r4psU5LYAE1yDe53RosOFS#Ot;=t7h5*SabPhczi3nDpz43uys+klarY>fS% zX1mtw34s2z1Kf5fj1K`_^wFGuzP|<_s-xe?9z>LZgVI3Av~M7k^@;yw(+Av`F!b?= z0-pm+6X>l)22!8zKfZ6L=Y&zqT8B`KTIxw?fv=?T_yW;o$!~-l^gqO10a5;xfaCO# z7VNp=h#{a;Q73%0{aOkb{=5_d8?GYo!+P!z8BhuhWTC$*UJ*=*NRuS6p_BlRCDAj2 zJl*%5kXe!Go;M!lm<&Adt`;~=@EC{C{e^^R`tPONeiEL9fZ=a4>-f(bV*q`s1tB>8 zrl5S4@REb=uBhXuJ&H7|Nia(bA=jZ)XA<>@J&*nzau4y`D-f9xM8>${>C*TUY(9s+ zL#)rS)Mui{MBBg);xqzH_F66=HhK6#fY0_u5WeiDnjtoQiwj)Q$fTCWr! zP0GFmAw6eUAVm-Pj0FQHt}h;Cii#`&@xBQ28?eKGrOQBE(e+0L-d}bINrEX8RC_#? z48WoWONUJD_sF2W=-uZPF5(p!BS}D1OAkTG432Pzenr=^=i7n+?Gs4G%Q12cN-JLvL3|r=fhTr1VKG5|8rwH?o8)m%+GJ zn?d9!{UIey0(HH(iY3NZ4-~@T*}n;LpR|H`t#=s$PpC95?(OT8g+o|SRhDb1{31Y9|{;B4A^42Ge$m69T*zHRUCxK96@bNq1|1i4B#> zm3cmg2io5OM+q=XNb**FN<<}mRXG3cDxUsJs&G47cesAkddn%nvba6_uQ7M1@G40d{XOjEQX`tA}z~h2F@cq zZbHa5K|#6u>bu)gYs}woJ#ZEWz9lB>{uLa}dO!k`>Q$oiLMwu{W@sY)8xPa<(Mx*W zqy{jRt04GTxgk59QB$tGvUR=VMWi2Qi=%J4fb}%gvz^gVF2>K-d88WPD%9f+Dn8@(Ain1V>^ukF`kP{enbjYdIVf<1&}s(0i?W0L9is`qzf5Dr5^ zis9rW<(>*2`eaz|^ejQf2v@5S)$*tEXTRuuB)T!xs;l;?04&_L5aH3gb>&ISuf_|e zHy@fsXSwQMGX$IAF325S9+cDujvS79rmqnhTc23g>dwFvK7u5AK+L-*|8nxfxX+EG zZDkfEeXQxW&|=S$x~Q#$HO`76ReEb6kLUS3wO$}~h}#V6}<1rXT6zL2MX zgavkXcYOE;NX%X$lb!^a*5;5>**i5+w&dRnFcLsemKZdqL@$E_)Gk77o%B$7RB!X$ z#^aHSOMnyUxohewU^s4)4Y+~+27b-7=YGIp1B0o2XEhV$1lzqph&;tTxuX8V_y-Y{ z01U=(Rh|3F8?ZcmhSVFnzSd0#5++FD0)EqsT7LzRE(qEf8k-8=C!*r$<#75rZ{?DKM9L!?0(M^*VL(LEV@hC#dlw>b{X6SJ@YB$nhx%-}9}wj} zxq^BC^H`w%`a4hnoVP)XgK<9)N*K7Ofv3ekrKceDv7Uyc0dXHOV&Wt9c^(F{rO;RT z#3&1*iQX%Szjl_vt;5i}`5bIXys1(;{0HdiYI}&5A>RXl2eDo;20&qcgqIQ64hF>x zQrpv`y>d4kkndkW1(5Wby4IChu)kD`#%53T0>1Y%Q5X#+;sT8IGh+F6t|*v>w;>b< z3bIFRa<4?sXGz`G(5)Stf}W4(Aput{}1d#P>&-oCRuKvPE6@|0cJJxajk{Q z>;)K0CJ2@sjGeo<)?v8cfb@w>Y$)c^a0*yx??Y;0?-UVnGNEs8>~O+hClpPBOtqn4 z(>4UT8C;lshd&_D#wRfU9Bk^+4Nfx=WG0CH!rBmFx&ArOvN@MgwCys?qu}G(7?s&; zF!0bD{|bW^oe)+s2oK05Zz|T5i4hyo3$W^mi^J!{hw#9W3IPQ8m=J*SQ__en zAdAcRoP8TFmjN895kbu8qS)tj%<4QBV8Xs1*RDJ?3jpyI26>u%-ieGdi-?jPc$)AA zr?&{Q83ejj3j~(Ro0KU*Z`Bdic)~&7=UuFIm3MiD0 zTO{`m!|`T)H~QJ6f^3x-y)>&xqv-rN-u)>1LfV>}zMru+4#RiAy5SQ?0^3J(8)wjJ z20dFV_LxVQbr&G}f%XiHretyiK&(`U%#l?CF$uE zGJmo#zMsGGiip#yDA>$ZA#xEly>1L*@DwY=>d>a{%eF>epa-@(>20^GjQr7K!=ufd z+?xiV#j$QQJjzw4Gk;4THIH09c3}=O2u4sw(aejy3*Vt&Y6j40UkA{6_a3aiI4dmX z;P3_*=5{FqMRaL{r^MD`U8b^MX!L#Sv>PuHv zN~&_o!d5)HzUD>|Ff(_Qj?3(eXb>4#-qnu;Y|MXt8X*_&ax($i*7QrPsV@CC#S3I0 zReA9peoZRI#=%~1;PSZKN>$wCwajlx{J4IoqkJVYYA@W#Hi~2O|11cDajT$vk)XeU zUy-z;S09PqHq5XQbaW^YiDHyH&eE-dA0zpf?aKf*^G3%`mN5oXKmIb)8Ws?{J39I{ zQL7gqq>g+RaM#vx{MvdXS4CM7^Wv;SnCeG`Y!&qm%L(n(c#-!lsKW(~mSB$!`^bz< z=UslG&#o+>%^yVN^_%n~?|}XbusWIh7h9tbZ-*W|O$2yEKH+}-yv1S4Uk*-4-pdfu zl!K2}U4IZ^;ZwCb)%*C3ZYj#tmo$RPG@wn{tF3!;ve zx8zo5R7v|4zQ1{1UO1k&j^LDfJz!&FwBN+qs6gX(US%XcXP2{(^yX%2t@d+S5oGL* z!Wj^DRr2o970hMjJq5b7BX8?c5l9hVAH!|J;-zQ4?B5zSvq$Nc|!c_ zCu7S~Q-^;s`jTaiBr~-N@vrK!QCt~QJ{>mc8C`zI?NnF~TGmSTtOvqp`$wWCfN5V! z39%8Z5bslmpTb8WULY#wdWG)H4_vMKj(hX~jQ6)p&j#HoQCJZ!; zyXYKlZ;K86xI7HLDX3Zm5(D_lA%05%F#r(@3qvExc&l;Z;nc*a=cFyXt|9f#zH*da za(+*o@diEB)m#a`Y;91r(xVPyaUTQ#K6Xx)%0PSIaU+S*c-qzNngk&RV&K{vU_r0o z=TB0HtV>T7H|#mAzVj|-jgp;T>vplS$NX@HZ*H)UDI;#{=iM`y1Rp?oL#m0~L^p_N z)I*=+mZrb*XGv|q>3x}FA|QCEY*b8Vc>3jrXk6h2!vRV1n=|VXBw?Jkh<(Nl&Mh$0 ztgwBKhi4ez{~Vf4Z%n*J?-OX2VkpR67Nz2(KXx<~J&|xHk>vzE$}&Ik=X_)Q`?Jz@ z%4(f9%gjBTX&^Sp7eRt0k}wuKl&}h(h1Fn#CTh!QkhwMt|37lg@O?~W|#^T`}_?PVYDlbyS&H| z3{Qxk^o}MCNaBf}-t2sYdv5CSZsZpQF>ZYkWa*8<)BkV+1|tlHpnC^HLrR~(Hz|n^ zbhYHuD)zE>Jf(JAK5ijpN)B>hggQKxnTL`Wsm$P>YiKY~kaO=Tn3!Y$2B>;P1s*qt zf^=k0T`Qo`LAGAxN9Fz0VHN^GKQDju$XoW4DJwxT9aPpWxg4JqZ1;)jXg_lha~NUoiB_ z%}wD&)!6P;7PaQAJ=;8`Gk3;=i779p;FeP~;q%n$gYnaVloBsul7cu%M0N{j%eLKq zmm<0@JFhNhP0Hx-CwfU2(9Qv`^TKrVhoWwT_ipQ_J($CK7cc`-`1|#l@CHUR72h(< zACC9uuK4zLA5Spj zoD$S^;N#?}Rvg6dP3u}zeP_bIB=AB&3;*HmoH-0_7 z{|ZoGJ!FW+9Rc04V#AU6CUBAd(?*#JX)@F!*qD4bm0R<&XOT1J<14 zJ@%@UUJdCyuIO>U#M^*0xBdxpgac%yu;X!}nFBQ}|CuYH#w~qM(z$f3g?5D?aUeI-4I7FZEp+XX zlUhusD!L=_yDVxHG$N6I9c5gMg;_WH!H}HK0If=!=aYnO2m*own7Jc}J`5CCg4`X6DPYPU;&r#q%zLWCWKz zeff+OijRdnYxG!Mr(=ZwyB8p)(}6Fl-RvyV9nA@ZsbqL=N4GaBPyJcM>ME-;6|}p{ zTAc`Wmw~qD!}TzC{=>J(MK4RG(A~0YCvCSU);qV&-3oTLuOIW)#i(^E&j;1mz@r(kCYn-)FT7T*~_^=oTYh)2U zc_@nWR<*^tVnLCYp7`0NTBd)(eOpu=!DMU(O@*C1FZraFuAFYMfwBAEaYBiyQb%K~ z-~vj)GlNp@c-Z^E5+2P-+d*7~a@MjnQ?lCR1ia zd)AJ&$9tzcg$&UL=##TamdUEQlkvmB)~ZbRH1FqU5l%Z_^M#JK+=fgyEYkLu{oGyh zFo7(*F62$8sW=ZNDsy6>mQr*-{cQxezw|DgOrFmg!9d(h?iP!Pdac=(RkqyU5&d3L z0evS5tQB$A?#9mlF>;t+s=u}FYB?ATwkSANz&lrWADWJ?sj7G2kN{E2#yrh%f{kGD zl1`?~AEsp0@jPGalI1&9ZfZc36%`$A$C8y4eCr8m5#X+5iy8*+NRVTCLb?#{3 z0%4T(Udk4bEwij)x$OyKZ57R6TF11VN0~7aUGR zwJTQ;%A?IKC7$uvO#ZUGPZMmSk{hZz?)Oa9;mx|m*c@EvO-Z3N8G7M*dG{a7yeJ*} zH)6O|Zr`rgdJ3swXkf0|+~U;&xY5P6v-6hlPg#Y<^_Y}w$S~B)$3Nu081LZl+wC2T zaz3@C^YFve`>ul&uhL5{txdSaNP6$>5zseT@YmLWjp99sV_OpgECv<%jn}k%Txjl$ z1Dxfw4GVFb^2$Q*LKB*hSzgpn=ib)qA745o#$P_xR~T|C&-^xdGF@>GB@)`(YLRxD zX(MQnKNdp0uH4)Lu(z0-Z`DGVOg88r#lv%-JaZUcA_|*L+9;Y=K1gq9nb)4QaA2y+ zN-R#Q)GtYEG7+0E{?;}#e#_KAY=0c*mc!1wk>Q)m)iGz&&xb;Bcz%KiUL6XFDHopO zI%B-w`&^v;W6$Bp4ht_E#J#ks5KLMxZkbbFniA|=YPz0r*L;NB&+z%nbTWo7zry{* zPxJo_C8>`4dYP&a=$Cr2DPOlMtJKi38*O$Nm$)^kHIy&(D--&UXsA9lt%?Tz}|A5UTq09s;PLbenVh=BzM#<27Eyq3EH2R;a% z638R`;DPMmYJ?fo&B`LaN&rdIFPh_5ZY3Eg5&sVgFmyL2Lrc91{wv6a;okkZN#3Cwx`NxQZL)WgBwx@ zO05g!=rY;0(sejjRpIexX6?r(20f#WeFbY)q3aAHY8^NV0DY2GvU*Q0JeI(5okVArZ!hkNGC%Yj^mW}=uI`Fu6q3Igt`bl@1VG~oF5|I&bO<;YtWtM#jKbK*8c zeG`M7042~2mfrFry zSZjd((rIVP^AG!`TDHqJ9~v9~NE#&>0e&YnYT0PRF%?x_{vE!@={VbA^<-7m*?9d& zzrWjV*ou|$KZ<)RO#-91M|MJRC%e2=_@K+yYk;GjD*HczfHXRI#jaVd-O~O&AfkZF zCs*jl=>=4{J*Kog-Vg5EyP7=W$kKPy^IUR{h75&h#qfrTxWhuKIBaL&mCv;T=xpl*z z9i*%;AZI7pC73*&m&!m!gAILXCbYtn)yWkgO`6lO^-Kt;Gz|}?_rA_iW8A2fzn|C| zlu!ffZtZWfaoKi}Slif?sIr_OT9u=x#a-=B=dGKRSe_+6UA3&FH;hc)j`^ySXzZ?X z3()Z=ck!L0I9v1E zaV8JKDv|LkMt(hO?bjNTQ0=81-L39bI-9Nyn^kQ>{a-%YdHE*0?@f3am(%`I1&EUl zl)4niclsRRbjLr?aYhGmHpiY*I4q#9@vHY8Mw6pb1Rc)~9MJdBi-YcG z>sjvFLQxY2FS#BgwJ&Tnqn`e_?VxLO8fgcwgQqq7A6c<*$sFf3EL8Mt?$d-+t?#6k z72a|nYKa{Qv|CV1=2A~zkwXdcP%?V^N^V+! zRW&I5_9%c@`4LPBYVkASV`KGgCpo7LBS3SQ#ck#|oAN_uR~xUV*ebcKO4w~sy;SBC zJ0)P5t9Cn#qOA~|%+>323SLhVKI}0XIBR!Lts5`Ep;d0N3J@$3XU~Wh)C$@&YBwkk zGFZG)yQtiu;kNtCb?apFAKZ1$%w6GIkt0$$-aOi8x0Gch@_xOBZ*Ak6^gngz@^0Ev{@%RdsNwz{9;uDVh)15IC1Shw zbf0eXO&1VXoQzj`mDxjIz+n{~G9V)UIsAh*x0P!L<1FixE9$pjF37RPh-oJz{MsOO zx7)Q4wTy1R`dUMv@U_l$++H1Dy|hgA3)tod5qGGHQuSEZ<($e;U+E0rEh zf9<$5eJP-vghHyH+0CVQ*jVe^R!gblFI*WzOpLe3yK|i%8V&bBE}+jpuHw^1WA99z zR(_rgkFZruzvt2)`3@7^2t!d-uM_9@xEOc$b}WD03eN1EtkbSY+8f;8eXy||RpKqZ zzg@DJxnJ5RDDATU!;uQx7CO3+=ILxyG{-N$>ZTjvS#;U9>BIiJ&7N27S17Ea0wqi| z`HXw@o=-ckGMRSsS4XaPW=yTRjJ^{8-L}uJ(EW#4Y#S!g%9caOy}~*s0tLWq#}jt! zde!{dUvj5TN?_{X; zO`0!i@Eopl$5Lx$KwIrD-?HXO8svmu6Rp5h2%+s|I~Vm-4^7X_1@DSZ;=y3=-HCDG zxvET@KAVAXnVW;MHRIDXDa_Y1Q8P<^5-DH$U!e3J5eMDwC@Ib+9Jas6TV0%ATHLd7 zSIJ`w_Z%g$kMu{u*0XU4p;=16C0C!NBxJ9m#u-|uGCtoNO1~^IrKg@me*E)Zx?O5| z+tf+UpxWsHV2D3`C!f14d*|}8?%RBPDG{ElC2>}P_UwroPeyd@`ObFIn8DK5%zbyx&1<~HZ7ZC@I{&#=f^-o*F--(!-7E98` zgEG5q|E@%9V&Uul&fU=kUAEL7+-Y@a5wXT6zh&h+HoaXZj$ofEW7di@Zc20Jj6zu! zNxx=ypZnTu9cNJK^ou!t^QZ_vMch`KOc>JN7c~Lj`yEPo#ZjKX_%X@U&g1f`nM88U zTz>t!UfE35yxA?1qt&UaSF-`X zuzIhHK9gOncC&p;flv^@Si5Cb}eAd-D)$jO~M>X7Y{10o&MsTlzNa6O*#HbDVTA_-=fXU?(*sjsX zy>UraGQr;`bh7%R_#S=I?VT_-EGSHpF={5E4AFoYgIEsy-90!+Vh3m4$AgjQDMvt9 zqE1mjdE|=n!ul)8SyGwwT_dt$nIfE9XYN`=5)U}Vbj+Np=&y^l*qpGE?HzPs#u>6$ zf5w%Mztufj{a{bk$425bZFUB@;~3iV>7IM+osL;yj^er`8AC-;Q6e#USb$(-aY#|v z<%HQlT>~Yh?=*mKsJ4_j=drx5k)OrF_rPC+UbnqC{yb<&j~u_80J*1Z%ERbscq*f-ruZhbo%A|E7MbNY4dx>*519`i<_?Q z)@p&e^S8yy4F;L}?1eK1jHP#z(R6pgS#{5TVd-?-+^+{u==WSya6wyx7be?q3ksrF zh{UwuJYdD=!H|PufC;qqr?(3ezUs_q$!O(AIP8_CJ2yp2`}gc`&@2AZTuY$wg{gc| z-qhFLq+R}_E)Y{(n|9L*Uo+2MuBH|a@HVoxUH<>n=K6SK6^;ynm=LXnPuri>1V{2i&5aqyklQv_lWBgFivM(zB zcDXBNCpz+!49|pL5Xo>=8Mm~~c8Vd+*-4TrEs}GsQC5#O>r=`kG?0qtb#GWaL zzJ#On(jkvEb=nyRL#EksJtnoby>u?^G?3hBv$wppBF#X|?{?->=jhBmW?f~gIqu)plp0~V zs@VJRZJPg~vf>cv&?AS2a*3%fbG@LV0oU(!K8ESIe?n|1aYv&cv=yCld`UbUkWc;W z)XSs4sD{I+#!6wOLzTn$H zz$PiOxfN<0t^%2rvDEaqSKd6_V&2DY7|B!r@LY8jtil9yS5WyTP9fhwki&9;2*2 z4UWd^U1Hx1^zLzZ3-5|ryRm-(NqoPc%TrZQDvc)S*%FH3nfSvZaDq&xTz&qg1V=e) zA_}Q21{;~|P&F(=0Z>bJ9@Y;M8ZQZ1TFwIy=FX3IEYDSKuMC-RNflW;ZrRv82S{qn z^z^iPCayLe$q;}fjz*b@!-qX|#LbX}j1B~jR6#EZZzf83I3qP&jlX<`21S zu|VV>NpCQ{4O{ec6`2*#N7X({nn#E zutnW&&N+>X(lRhT8I-=o{^+x#o>${SVy}=Y5nqosmhDDZ8!JrOe247dZPqXB&^E0z zzP$O*x;hn>&)=t81q4em%xcOD`6a&707J`mN9CrcOB;-7kvu<`Ni)8RcUsK2c-cGR zO4JM;@18wc$6kNue04VE!9)D(+Mi>K|r(2GXzCGt578%$RM^?Mlm4aO&*& z{E7O?KxeVmX=F;8!I&K=bLvrvy8$xqf4Fz6hKe&&b@-E_{35lpH|zZM7G~@<72lj1 zZlxaEfnB#de1wliQvRfb%7`9jeH<_;koC23lj4tICXrZ9PFj)t__1~RWeF8nSsLx< z=b|+$#0fK{4HoJ5=h%@=i>o!uLY^J{`v_4BSq)7}vhe?wR=IDsVC8zYrG> zL4w~19@x3K<)?qG_=7mT$fj(;=N%rIWEqvWzTa+ADqV$5@aE8Q-`{jRE2|v0pLndn zT%$wMyefs0!V3pl#%l%WqPK>^v;hgU8q$dmPGG-Z=64<}wBC94V?@t8i=@#jiFQO{wf@SN zhMp)YksjfahriDb%>}03)-#KZi`okf?l9@ARPGtwiN728lqfojl{5ynp7#Hqy+O)e z0igx_U4S#MKq!GyzzQDAmk=w_kNOsKuE9zAmS~XGy64@o(8m=E)8$lTw~EoP)A@f{ zV~caeKenqEfHf~34I4DE_6Sg~h<#S;SldvS=P_S2f6Sg2#*0z1QapU4q+;9})|S@)-htNqGJPRVG=Xr?%Y`vPLP}tptiM^t-TQ{p=NL=J zezeb@jDTr#TQA*xt!u9$as@s#{uv87WuM@lgn&A ze>N!FYDqF|*03nY8mi_q&9AgE9j#_pEm$6QDM(q{Y>65j9&2Fac&Pe_mDEu7_ca*z zQxC;g`9WbGka!V(+Oe_ypOPM&#ilhBtszglpD7pEu+zSS`X&<9Q;=Hm+z`lC1KYW} z*XJp)MnzKKsGib1?zH!LKyzPY%dc%!D>tKPZe2eiwCie;&de?qw!!H#eTZ3;1vhrn zRG6vRdz;~r=)>coN29A*Nk70yx^<{((c&clLAN}1^5~p+8TTNnui5_$R$u43kKiD0 zT}?yk?O2U(Y3Vm?i*Tvl-oKj`$2$1?C}(7Cvu`n5NmTT;JD<;7CsqzxZd~$HyqiI3 zFo^83dF^>4RpznIvLDZ1VkEZ}wZ^56x(5k{9F10k3kQoYoc42aLoDiT$j>CK-G#EE zY1#4}nybzqGzL7mwv-E(TZpx%=STgPjTfs@$7Ra%mx|6Y?u0Ms%%|qaz80vf84<91 z@S>rA-N`CF;TE@S(VOJC3yaa1)qn!wP}REx8GEhoX*`m{jQu;t88v6EO|k1hlg}DsejGz zQ1-BmD1!#aa)-tCS7n_J)uuv+@+Vhs`l?w_KGlXvX6=yud<7NJ)w9U8`qpb`WLh}~ zg;Q1o*)X(3a$^;5(U7?JOeIyH&IWajCYR}{HC3eZh$l2t9TFZ^#hAwQOYUD=U#xOn z?AGs{`ee$yKQ>$7!Z4pb=ON0)eEhpe?&7`MBdZ%7)5iOg!-hK7R*r+}!|hN%=Gib3 z^C7AJmu+eKi|9TJJ9O`o^XAfWP+_lmc8Pe#{5vLU>-wS5CxBjR z^8*x~i(4v4(;W1=wfu?ew76}VHXNDwI?pkAN-&3bduQ$JF}anD zN3yF%uiw%<%`d3!=zmVN0o~^$&AVY-{_vvvXD2cJ!Ook3XUj8_3taY(7i?`-XjD*_ z4MbWmXOV_8~99BO)-HY=&E>xmO2mgI$u0zi_kU^fwQXcDZ^sSv;u`)L6)_6KA zd3Ih>eqQ3^Pde87?}*cabmX)))QF|Be{GCrH;4 z+4MajO6;@u$0#t)pV^X!#pP0GBR%pqO+@LQ*X8zDN-~8KgW5V5Z}QXb#MItC-aB-gyj4tj; zEzjIF%@Y-HtE#OK{k2Dtwn8KE$8Xl=)xfQ)^4+O-NO`?5S6IFaGjhz?+4->{ynF!R za2tC|9&2$_KhoM1xBhH9I59|I!Yt`yqr>=E%=mciMb*;6=ZQ0!I;Rc0O@&>uajUbJ zd7aLsd47CV_CZQ=uP}LxK)G%8akk*Cat87VMZ=vlaSJy>W%LKNqDmS?a*g^0=I*zx z&QGs==&M)?3iJ|s>6TZq-&C=?EK|1Xf5q!;ney4CPPnK;_Tn!&%k?4^VE!rqlV zC`2pk%}7cJ-}eTlL5P9$YwkEl=33wqWUN-TnLfJQ6#E13XSb#GF6}?CO%9y# zy8zaofxNFDb{uxG4kL1CJ1fnKrT=*;I4mWelZhJ}w3Hq1Pd0oHvi+NTKi*0X@Kmv zgY*|4@$a)}&q)>3@o77Ly{y{UZ$x~SFSRUf#A~|^gh?gH1bDhN^K4&#f4(OyIfX#9 zo|APWrTj^~q7`S&FH>FTcEUr!$t_}Hpx4b6waCO44qGJG?xv|F1yLy^*4hCFMo=(LI3Kt)hn^%NGw^ku(v0$ zKZ@I*3XR&ct+M_qAJ_52cz3n6(7rcx|J!LkGu*`ZC-X~h6LHd>3}nonl@qSzz5RNI zCYc;2Gn-K^-}i8O64d33M#Ub=+-dFK|QZ>m&sSseWn z%`{pioNIgeMRDN~4R^=V6Hf1zBnSKT%3tvFthgjR+!}8y8MfKb+gp02JlMZe)J*ot zBv`3!WiS8J@7hnCavPSEIW`y@Ac6BbOgl4=9siu#neQLm@Acl#+}{k9*;5IZ+1toh z+E`k@A2*?z11;Drtp?Y$9ktP4XY_2{K5n96{&%9U_dd?qCB@(SZdrB{Zn~lOw2gVn z>Kt~uhR@(T-`by7wuXy*TipAlzGdKAo0Ln}d{*Fm+Pvp>o42VZ%xoAOI%;{MP%p!N zf+CNlMMNaZpE#J?&TvUAjpd%BIW9GJYHNNvuexI4PZ~2{ry+@C<^$%*RsLIknp+Dk zE@|WjH_Gp5uXA{8UUuC+fBp`W<*b<3y6dJ4r?=#8U|(9)XPnu#L$H+B0~{xCoH|ZU zm-IcvGDj0ivdXSzWO@ZMHu&GxD!jdVy847wx)qR}_fz;bAa1p=0Dkcefe=T@ZLp}{ z946MawX<_`a&&igF6_;q4Vp4<-#PbOsjb$ytOWX$i9fn*bh@LVXRhDsLjOW7y?R$k zNw0CsOhZrCYTl$_$?XLz!%yTl`gUV%3J2EDc?lMKr>wiGDRQ)he6x1QSt{Z?uFGs+1+{K==bH5a7GI+`0B zL~>hb(|iRQ%`fdPt(NZGj0N6`Gfju-KCs=(>o*kQtgZM3erHPUR{#nPn`O#31IL;c zZT7|%7=sfH%RA}srTua5bbgS(^nGcGm1oO#>5KU#u=!NBtU0|M#-L7nL7+l;t+Z-n zK=+!!{r_Ew{~uB+4keCg73(F46EX;aouPVB2_9L%*I^m5PauV@9=7q@P4jBIj&f&q*=ChN$OM{dcc?e6Y&p_x^| z*u=!Pk8jCwOy>L(Nfg($Mbh0<`h3J|QHgL224oU_(=!Q)RRma18QL8)tQW@St$t_COFD#(>WH9o+ zY1p%~|40E>g6r_p9ise{a!8QwsFwq6S})4}{*Fu#IcSbH#P|L-yijfv9T4UV+Qiqf zlE%rJ+8i{;>>XkamqI-g#2P|~H48_h(QKrn2h9;u_&GCl3$%N6p{MX# z(BqPBTyj5A05m>O8105h-44`lXZ7`gy&(mZ%oMFvF@YOwD zhLwmE3Zv|y=4MBu@3KArbI=^2kAJBP%?zE6>r=1{Lv5@B1uKt5kHa`qjQ{Q_ra35# z2jWaA)aJwqp#~+oX;^b{1-zT@7_ug?H%&&#WkGG$D2zUw6zYdD(&5mVk^X5Gjj+Ur z*jrGWS-yJ9vqs-wj117kAAKI$`9`AT;-JyFDUIq+3N64!KXl52u2WE8LVRZlptuiOW8Nsxx%U;poe=D{}{NGMym zh(S_96d?JlHyFm??-U=-x#tPU2|~)W39WAui?VmXvcYJ_aNygS)^dr_W0-#M4P`(@!azf~ivZx98`tM_Y=w3JwWe=`hCzqWn1s_tg5-8eFy`1C zdQs1U(kR0l;D!|fy3Lrc+9V|zyzYkVkOI~Mjmm13k?V%&-MERpE>)ibLjrhw1@B?D zyTmfgNDE3jWvgczjg&{D_!3J3p~)W_{fk;8*KPe{OWuR6*PQ+j9eJhCRq>rLZ*HSK78(>;km1qcA>N$bS8*-LlnKs z#^47Veh2^bA5#e2x6zyz7INQ+Rt(Y~A=@kuYwv}B=1_T-HT@R^d>5#Vxms8o21(2Y zYwwM3(1sL2Ty{H$nMD|ClgC<}jSf3SbVrk zSQl=fRy?b0A0RMdP^=8pL}C|VxDPq>z)+~d?F4A_WN1W+D`BVnkp7$pqgVboM7%60 zi=dfQM*ejlMv9{1NV`ComNT&6hkf7%7%T60h&yu7ph*6DdO7SU>>=r)ZhXCED1r30 zDKzYFa461RZ6p_F4||(x$c1!%e*RZE46T^Bv!usP%Df*8JW{K8`vvnmU}D?9n-C$| z>o$+IvOGPI#Sj_~*TfIKu3BpC#4!W_ux7tyMz~dhUU|*3#1uZm5Lo{A!8g0;R?j3o*$RL5ZMf=hP9O6A0>gi3uJnOp9}|})Rlu_o!uW>L=%bf$nl$24vq}4DuvYUYM^1?{Jx%x| z2Y^j3GopMGH z68d-<`%5F*TTI$@plP47QBR(%xo$`w@()UgAv{!|MI79GX8ZTI*Pk-m{=w~CtqHx& zBIDp+rg;0UwKW*2(d1TO0}|o#HkW#mzvlXRn6M`4;hKiZ+aNKC8Kk=VYNOY5cZ4x8 zD2rbv`vNn<;=WL7C>SCnR{r!PP0e*rQsw`MX=Q;!6s=%HTkqs-ZAoe5+_W_%QOaNa z-sA2PK|C2pf;N!A5K>IvXNXie1I9%(-p?nXd2OBQ*W4dk+S+zDZ4pTB@K@XIeDU%? zB>OaQodM!siMvk|&|pIy4AU-FJmkokd-|l8W!L7H-|Z9_9yY+{Z#az{LFcO}F&YEt z8Q2XF%F>01e}O^oJ6?GCt9^vwZd(=(s??iUE9ZtEnQ% ztG8)C0%Ikhodw zQo`jNg^gQPl4X=e-#v}nq!0{WO}=D8H1Ls`#mhZq^LhZIVHeLJJ3ch^2Q>6|eAB)o z6O%N<%3D;}&x9Z|5*l#?7@s_mbjb!)Lz#K;K()}ec(7VM)6Me8#}aob>qckj#MFD_ z)wxsda|A;O4z?>706#rK9^I393ceqVP#J@#VcZ>M@|}b|UTN+h({ZhBER>x+y${F{ z?icB8kpNXh6Me@5FEZF7VMe7C&xs~0Wk{Itg-HqLe|otp@8%nnRV|%e%Y;~aAoN}i ztOD6YKvvpdqwoaA$v=2U=QdmtCMnN6a~R$sn`Rz=BF5~#exCdc2%*|8{0K0H*H6JF z-%*9{9J>uYp~=T}Rx@6%Cb*3RWMxTb=Yq+Nh2GOclh?l>+iA2>xComZFSLGX>cjgu z`$lAWU{>ltoEw6x$wUEIMFd4~E@MdSa6kdwfqfCx#pC^Pr+O+M&zu!i?CQ$1ldFhp z;SB*usB54+Q%J;c01`GQzUz(;d*f8Ei)v!A&^(WU3qpIk~?ol>iv)DgS|J?kWG`PwkHYVNh2s1p%Dn{q*vmG12$kJ ztl+(Z`R7ezSN$)RtDfA0oHLy3?d;WO+$6vNfP}xs02#aAs`Hc$ZVb?&cnZ{#D<2t> zqZwJxnjWWVi6h1csVOn*x<(S-yqUq5t-Py}{)IUnyO@;O0FYH%$ef;YV?{RFM>d0rLDbBct% ze7A^5RVjI%$nvY{6@?*PjGi&t-8<=1BuFRH6i)jvUv3bM8!COWBpzbP`2AaS^hApu z?fGzXhu_zipU+QB_Q@cS&Ce+4DMIQo2gU|%N{Tvgya=y^{xf$NbFdv&xb%w3q-?st z-z56Wh->~P3L5MXw0}^jo(ic4H?#iPeY7zC0Po}@^`;`urPFc$UTr#pb_}Qd91i5e zYo@@iEXt}=ec-C;1>wMMWobf9MttX)vlV-kM+PHgmE2#ZKv)P z{hAKbLR}5~mHKkkY_pX2Db=Q2s3hVR2mJ+;a9|LIHv&YDE0adU)~pL(Glu0S3yJ?q z!_Q*6=~2hJBWT5NN(N}n$O)A%@}j=-ur;UPt@&8eD~Q`;A6`k{@y2PAzFK_J>4HdB z6Y^yP%$~#@IcJPwsG@}RU%UwC*)auwUbT45$cJC9(PW-yLU4yazeflFxiw+(>>8Hs zHTu91qfC#%e(bOETJno0r_M)w^r1U3Lc+L+xE5_f#0hAQ_YQeIiL)W%q&lzy0g(jQ zf6_)E!ekh8t_4ZoNey~;#y|kDiJe}S53p&a<<6;Hija7k18P zsq1pR5)hzdogu2D{mv({FvvQ?s3sJG%T?%|Jk8cSO(%>omuuG_GQ??BrB?F4L}LSs zv22t6Fep;M<%%XtOn=eALgJ|2!#NYWd6QB;+x=ZHBZ52PdAu1Uq=xIKJHVU2v3xk=hil}cl zjADoHcocto2^o%e5?dw_H1hf-pPUfM8bZG2e<3-cdxVogHV-DE;`?x5eNYJIRnUmG z3^YzQ7s$&yf@Tb-RM7Z~i=i{T!$?-n1AEg-iHD1mH=XKf05$|}MmErFnQWhy7b`LS z-`uxUfI7%<>H}*f%MG9V9(->0dySCUXstNEZL*v1O>WF(BH)nomjrg@za%W3K@KCs z*xWaCr~+Q0VnffVi~91y=vJ%2qdVx#o%-HO zo;lKlt!UDY=_gK(h-6J6-_pPQB7X3UDgkV5d^yv%KDYV7y1o4y&$YY9t?maQ_ zt50l*;BM_&5L~M$j$Y0YL^qm9P{}_j-g7{hD+&1${Pjv^<}Xf#+{3`&m5S$8s(}gc z`>0l+f1y2*_Dvf>{CP0vRfty%iHcW6eXC%;A-NvTE2LU5FKMh$Pr;XKuRrlIBF;oS zzc&O#gse@`wFDR5L}4Q0#uIK>dp+S3p`Mi5YvBfys>GP{DoSV;04vdut`Qan0=U9dvUKusE0r*eW^jS81-zmL^ZL)S0g7 zl*N29;2l*Nod=INLJgq8075huSsx))2qp@K42C-RYA5gJlJ&@e70c%e^%%Q&=3IFB zjy(4`BjOh;J;5oU$rND`g>lD~D~Vw6$TWd#^2(K9UK`d2IT5wjFb1UQM;H;hfOyCe zqfp8=Wt1V9Q?Thvzu`?Edge|%=nI_UmItzI0?`WOl&k{eloea+s4hy#4U>~-HD1?e zpexOT9OW<9oDIeXT*weoVb3wTkffU4=>fll=f!F9l*#iN8_A`3wYAT5fz7#=V#Js@ zRVDNhC{CJi_~ckk*$N9TEA8=QH35Vid_E%hU0-Sar$Gh;a4eXw(4@^5^n<{p7hv#^ z$Lm=Ldfq%^7i~$J|J&8!%@MRsIHll67EX|P@?S2V0z8I?04Lyz6#wY^8+ z&Ld$&H-3wKfHi1PYHC+{m^7`Kbb8wHHZO`1B`*xRdJw}Ua{L!z_&`lg!L59 zV4M4&xq}LzhWere-alj^#(V?DgyKBd9M``-QYj}&NJx1QiX6jJ40Bn(Gd*$VpbiOP&q7%w!E*Q_ycox6y1{(?X)fFJDC!y6Qb+b*-%tJz|!f8h8d^;;p_(n z5mSmM?C&Wrj=l#8OH0z)5hc*I3v}hC1YL)&ttCCFrldH108rF@JoS_ZMi^OpljE#> zw2RRe3gMtBM94}F{(}gq-{`(33eGGKLXojXxG6FR29zR$4!|Ut5?ZVqik{#{Adohq zu3=#ZbbWvBpsNX9#F?xPx_-uh#oqG&yI280vE5fo1p1quxC(U$rXI$p%?t1Vdm6Z9 zb`}+|){n!`T4g}b<515rA<^rgCp!$8(fB=6dfC&IXpkSRqGvBLUkG@|RVwHS$OaZ6 zW%42*`{W0&JRqYKiUW+<;bFTyUWrEKstiOn_N){V;TirMlSh|JfLOe`^8C6e;ZK+? zF~LK2a;jCZ`61wX#?x$8l_>RO2~n~3_A&j zSUlC`9Q6C?$Oi5Gcv;dXL(t+|z~Zm>18~Rdr^Jc_jJ$_oL=q3&ui77nYq61hNmvD{ zaix-^jhFyM)PPipx^NZ|7RVmL{Dch!Y}tRl`WT)aivS3_(Pa#{zB&j^Oc72QCVpQS zfnvFUlLzxo!{%+r!zL$iI%7s#U{daizmrllAnX00Ny9|R*}rlUOkjYQ21pjKXKH&0$6bz#)|g_BxV0-1Ao^00Mp1a>bGlWD!jt2VG0-lZ5XJ+ zuK-mwaBwj#%FjRT#==Pvg2BQx;Jo;0yhSDC@TM82E78>V{``4kU*s~tzcEl-Nu5Vm zi4fu)`@=>V7jFzB>tha3Na1HE$>eWva`c_vm(6TUiyj zI41x_69zGlnq$O^7V{(M*n)zBUv4SIZN!JbPo;ssEZ~L1f-z^`08bPK_VV>lPo6|9 zQB2qWSfD}+TblnjvntnNN?ab?(XO~X!y1OOGcDMvjfsi5InX=_Ruo}EM5>ozGIswL zf+9B~BjaJY=fj67Tea1cVazZF+a<{f{5L$PFig9A{|H8Ru2Z%x9gDA4!*t_UzBTla1sfNp=62n1bV1sGEEYdd~P5@1l%OjkR_ zH-QUy4s#wCcn&j1(9{yaaJ~7Pc7=<*eQx6eh@dfcHVm7^IW}C^F$_BZ?pv2&z;$KV zx@_?k34v|~P=$EpYk%#af(i|uD0g9SgVi%qDBX$d5MTmEppXia{PJRMhrmEzpXB`2 zGi3y*a0$68G($N;ki*h9!b2lEPYWmvjFmc$F_ z+%-!#L|EEXDF1F8f;3Q_{GaSla^o(NWM!};a%4Pj(=;uQ7SYqh*ys$eMNn-UwEqw? zCJI7?uj93amQo%gRGK?GJD0uxk`fF^xdbD{5}y>JdtZ-Ln&cOh)0TWz2fB*|F=9l= zuPuwmsR%S_9JA>gX`~=5{YnvY*qE$jxJ|t~bLU|xiB77sB zBP;-^D3BXR^TD{pj@J*J$3W=NC`^J-{ZoHz^5tV1#Es#Uldb1_dHRoRiS*bK7 zK`btp9-H*}{$H(GJR3avtGxa{?Fp;xKap&f;KAj1f73?+4;6p-LKm?6Q-s@CH)0Z;-3_8SQfC*76NFO1f0MkL?AmEt9!D%`e^Z&kuA@BrO{6BVn zsQY~!5xrPv1hL_iP&|(ah_xYVB|pGX zya-&x|KHGP!oya#H4(%)dcxA(3vTDW7+IUG3@#LSZ>;a)_O+-(agtI?}Z%e(b$JSh2sbR9XLSSyxA%txy_b7-U$v8<(gnwRS0Drond`%KV;jFt3UX2vVPHWye-pf7wPrm6f@b>y@%W&kfNpHveZ_ z5v2NJOri4d+djXpM?R?KsUzNg`w8ncC#APJ)^8o>yU5Od^lRhPytP8&Ul+QCI)ZRe7dlh)wqMzh-`jIr^;N(n2$Rpw$9LrAXB9|o z4XFiNci%PK92@P-8F)q9Vx>pzI{6yt^mWRRpLvBBwJa4dwdqZOIy25KJp`vtotG3Nv-D>JB+YQu#9l$@SS-PIBsvT^p;iTmJ$-ux} zaw>e&zH4u%aDCrl&Dq|}Yfh!Vw}-D_f4QZi%Q8#K`SIMmTZRw)%^vy;gE9~65ltOx z5*;f8x9u`#1DR!G^||>0jm5!*@_nO6s~@cQg8@$l25(#D+~VSn0@?QeEj_jD?T@b= z0`pRzE<7fXZ1b~h*l^N^ES=~=Fy8$JiJXyAnRO5Z@u-LtqZ_n6TKoFV$w z-vP#E$K5$UO>7k!KIUy!x2IiTcyR(|if+P9QP{J<%Q;UtdOT+TC#4W(<|3Q%-)2ob zoP|a6bI*k}tRC%ZX+Fr8DCB>u|5lX2cDT_m_$;laZbS2AbChAaR$T87!_xwrDc$UM zxgw5Y_*IqU^GeojJdH)gI~Rc!8gQNY-jF*GQ|#ni>SeTa?iGi{rJJ6Fte3zJ2V{g2 z^ky>z;`WP%Etkp%mt2a3w&z7ol}pdLmD(%lVh=XA8gKD7JCm=@^yo?I8c2HYV1hSe z2KPjn`jZ7cv$z63UknoQ65m*?3f{CR^x9gC$!$s~v!E4Ou^Gpb_1JgKTZL-Ohw%lD zd>bJ?o1iPxKV4%HRZS^;8=(?F?92qj97$`|B*KYJP*O_M|EmizX-x^LhJ&9Sr!1BK zs#lKFYNvs6=1G6cEJPSh%lzc`jOSjZpIayIW_q?Scb5h&7>ex$wS_D$H&ZrbSN&&D z9PrXlcGn^wOrC2^=vQvKsADZ7_B)N_Q7`d&S}>ExkG@*+g-~3^+cc-uxu%K1X-kXR z=8UVH&&fYKttYLLm|2vLK~1c69*38$&o?HV$vnB*lSdHG#+2jtf6AU~CXmS(^Zd-& zjPj2Dor?Edfg@|<_sw)>`^1gje_dh9^vWskonnmVjuA#U)Y%IQ*z+Wmbj^78uC5E@ zRYWE>_itE$t=oVYtF`dseKKiJ7m$b#=|wu*}KXeMR=ISI40E zZk1+BYGk*x!JO%_Ve?h2>she88Fg{{77v&Gs(gzm@Vt_1`w-c^n4_3WE+(ATd5iPY zK^F-pTKK-{FeFO%G@IvpbgWd_1NHH8ci!#^1wqBczNO4IkZt}9$;o;9g=L*5DaYH0 zTl6JN2?jsu8zzeij($#J&WwqbEws!r7XF__PQTC8+YRzaE9yUmp<`6K~L25gLMk^4kO(>jO21#kO= zO>Aw@jFxv^uVG)$LpR#w>duphjAa+bFz^rtN$uxHkI22~>z((Le(d7N*6N65q>Hqj z&kSZdDW#c({(b>8f3L_hYrk#sYvah1i%Am(JHMja>}h3o?%mIm@p3Ahr>m|@J4+tg z2fQ&cE%07zb&FMdnlp90_ZIzvf9x*imWVvs9UAl~E5B=9)k=9+1mRG1N?0>VrpP_P zbzrKld95XLXTMA4(Oz?ia|j(0H2A*{S|7e%LF&I@^t~&<<g44V%b#2XReqBW7?Tuykq@>R^Pc(VfmZdlAoR8VH27nlyb;9WFlh3by z02-O~cIMFK?_ZY`c>!T_WN!RisoI~^G@7k5B znjd}%XL*9`IV-xSNO)$}3m=iPxo$0P?Poj7WT+?3FjwMYMTR88=z8g2^r)bMkaEPV zowk*}MN`$SiX{54_h?QWrM*K+{k8U?9`&y$Ulc|BS_zbSP6?vA6sp+u{3k@NGzw${I)oMoQv(~E}uXDQ!AGq!pg~Ich3Md@0ki6d#t>h59q6#sVUmoBo3jij@#n)q{yJl5l?TaJ^o00{2O6-8T12 zUrbUi%Oer1@6=m%qZYf10<}(;X<;8f7tOV@VnOARrbJiTv6EM;e)B4b_+eHd!OuRl)PD4pK$BvSR9?Zm0bO{LVC5Bc9eUJ zM`VnI0fDSB`J(e~zj^=8K7Lxmw1Q$jLF%UoH~BBDvpdXhM71vyq*QD@E?k|O^{aL1 zx+*R<;s7hyRgi@rW(qD%hc58yglu~3?ddsBQP;)rOGcC5Epe67nSWfkv`{-hgXGz3 zQ!8q69rQjk`Mnf@Kzn2NB)lm~1-_~6S^v6Xw%qaa3je8v2Qz(c(u@Tz%j@}dQTuPD zUpMNk7ur2zS|f)EBiW%sBC4Itw=(s?7Ilr_kGL0lYJXAziU$5zR&Z1|9X$(J>KK^ z-G4+gx0&lY*U#rXuj{&#GWE=S9nQ&$nBU#DN$|09Fw|d`_*gJt$~&SUP+8=7L>F)C z2_3y2wvk?i?U3nf$0f+gql(w*H zZDvN*TEVGb=PbkhCpAMmlUDdY6zH_pkS09`_xue8Lnk2X@P6X?R_cR6PK9=c+XwEr zV%(8D>;XaQ_ijB)8_3Hp8kiT&p7F6P?af~ap1y5Ik4cy6KLH+hMFZO|S7aA?gWBG1 z&@a+Sy*0T!%o32%%8@Zd{$ZQ9=hhGbh2#Z6&)37eM6lfvH9IXY(ZZe{XWqB{OWUbK z8pN5(TP~3c;kJ*zQ!by!|2sGWMW~*Wv}{mT-CWJS%jIbe282dd>()+Y1WWz9);(v% zN${ddKk>$!T_kvlvrfIx@A>rGpHF5DuMxtSDiv28Pf*j6;)x@$U^n)e#mR*i^j1EN zkBGNvQIvS%ukwZHQxqN__xuU&PN>RQNhZOXuu!E~^J71gKZ1h~|7Oov+O~`kSurSm z+!;6wB0%}w%;M6(1z^RYeN*LA>hjUb`)el9yEb(_-z?e^s)G9NU zr<%77#m!dpFpi47f7G0cfDa?!Hn5+REKEeN1vajKEEto9G~(YepoL*pm~Ddft>#AOiPZkrb|}K_Ei@_C6&}(9CO@eIz!K%n>-5&;EDYdR*3R!E16#MB zg(gY})=Hjl%4O#w4o=Nart6~J*4?kV!2EciOf6da%e_w)w}7RHx4D}D3YAWbe^23{l<$!Mbzqoe3-0?~VKDtLp)IMA>OLUh z!Y!Y~0EdXn*96yN`^RRSkqfD(pE3}zlq#;9fT|<7Jl;hV8YZp#RiP{8yE!k)I!M@l}|MxQ&Cb&8_bn2w$%tj0O(1ei+kaGohxBE}7Wv%3AYnvwPA!F>cCkh1s#w`g^AZd)zUf8I<-YDqi!)y7bDdO{~;UH%>7&Z5Ob zU=81Jp}0=EklhvPlDy@+~+ry|XGW3acm@JmLYDmu$vgM0R)& z{9{mwGhhS_Dc+q8)u4ALeSrbHTlBJ_3wo9j`ER0Tx{e>vw@4n)^cQKaQFh}*#XAA{$Vs3P~hbCv#Mby$1&#W zsI@-Jx{CHDO$C!tE!O(c@VzlQrYLl%n^vFxS0DmDiGVx77!XuP zqVItf2~+S2QXP4a+Z3$X<(@rmDhx%zb3~(yBd48)r3D4`Lm+z?oSC7Gf67a7gFZzo zS9t}gELeSHqIceT&Jd%zm}bWwX16Yn*Y|WM3d>cJ20Y$dZ#ET<%k6o!BMA~#)%@An zQq+6)FOqhi5jw%`LlgY|{9u9v9mry8d%|iV2X5ZEa{y*1l;0f-|Y8E%L9;aow zZq@hHXm0rrFqyUXpnY>)8d^J@S?H9go0Adn83f!FMybid`v`7*z)(hMG#9ozWc*gbm6_Fc*2KZb?7(Lnl;*GZ(H?n-pIZx+(& zu`+#BbuM~kV)JAUT^l@u>5M9Gw_YsR%e9nG_lIuGdTZRLF0J}rCh@sZ+O$?FNC49{ zhid32-hoZxJq4h#IU6ZowUcR5T=WVUBS+~M7nMpR#gBA&fmoOl#e^O0L^d(Z;D;fe zwJC1DB!xFq0DnxKk8o`==h<4?PnrNBuj#GN*y78r27<&(2uZvS(8vj6RT9A^522Mz4GNdS!xM1kv{Q3BDVt$nGOsJE?`Wl7)M5% zapy0OZErsQO>zV&e(V{RE1#PIpO)T(t=HV#*){d>#Qu!6-R! zmQ@8TYk-@ERMtq3_iXxC5EHF*vhV*`%(@m`ifoQXvPwm(dhfFmkIT@I0aHi;X!&&E zv(fvTms;$Cv%t`7Yz#E07lj6lgWRDmajtu zGPN@PL-J?Bu^9Xgkby4Dz9&`=4jyn#Q~IHmuWfGQGZ$6q=x}RK5z+3E&pK3ohq~Ro zCNr}@J`K7LYUe%_&ZOEv^x$zQFTxVW(1t>;OP1N^@3R&cI$Fk$E?zwu$st!*eK+s= z9yNa(gM++zwYAFcTvw9-14y4IQ9c*4K?3`?< zAssD0SVGc#32IVhY%*v^;jz1)0m%s6pieMMl)?>?)=f{iYk{aocm1Yb%FZ9OS0#PT z0mY~F0N9x5s^>hCPm{iJi1NFWKNP7P!e}0^$*>FhKnp4UAJ0#BJX<7-2?-C&py&&! zN8XQID53uyI6Sz6aSSh&Q z&EX>m`-lfUsWDnx8rpf;J?Td46EMrnKlUTCZ$HaVq_V@CG!&n;UO_6X4ysW@zhD$< zo4U3KRHmHame!6SZHeQDxo_9L*nF87AVLXDBe~4GE!(d6V zH3UD&!IC&JM{lNrkiRo?wV6?I&(kuw^v3No<)V~k^&`MFc@AQ}?TtfGQJ-wmed=w& zGRD9#hUSCnE=j!Ux)BRH$VXepMQnLJ+i~;kp8XPlNOCZ{F6`ayl~?3ta~)F#SV%^J zSwN=-lWb^jFvstpMuqfIoW3U&-bCl@HZM+5B4;~9v=_@aYqesC)zw{9KB6#I{^c1_ zT=cAJHg|T-W)G>v9%{TWCgbfY@UehVG0nceyOtr__hyTlR!g*SS88@Gn+rJMu-YEL z_?Zg0OpSFYj$08teT$jN9S9@7gT#`%&BZ~i=`9!3R{cKSoOo-3gim@Y4>szB4g$}SlJRI!HJt?51dobDFqAefd0 zm=->+tW?LkvN6fB-Pg$oKt%}zR18Ct2u$)eIw{g{bH-nXzAJuqoH}lBF(+9%gHzr| zCj&EmUvc-h%wWx(?Zu(5j1@x@pG5)!(}W{1y)EycYG6F9h87&b`qfd`6x)?BJFe3^ zwEd>YjZ5^o!rliGqsWvIdT)3-NKvotmhaAw zXLb@Am%c8JlC%9fQf(S_4B3~aDy)8X&)ckS4QR^P?+oB*wrI{{W=ISbBRG^DZbGud zjkbJOAy>Plruiw2t+*MTPy?hQNLTSaTNOiV56^k)5w7qMuOtBb2LVY}9=FvU*#Gte z{iOw0hoSnxhKt*Ma)AJ22thE01lb|%mh!znIMi@zra`Cke9Iaco;XPe3Qo7<h99>{GrL-43-df89*`_6ISwT#i4^xNdM&!YN5RUn+Z@Xa$Q9VGu*wLw}w>{b$tKi1ajIKkzFQSfh<0}0`l=N2`Dgw`F+Jz&))gs z@{(X*>wY=t_v+2iu$n>Kjrhg(bl%fX|E`$jaANGDkViFx!lakTFm5%&% zERDM)Iayz`e&uyG(CJ*w=`v!m8h3Ekz}tq`bBNR{9)(5ourN9Qns&>ZBG9$PX^9PJ z$r7g}{P9fU0^y@G0l`dFu?G~F;S_WrWgkIx^8|``t|~)hFxxqAzMMNZgGH@tlBGav zv%gYhs&@b#lPwv((_Tjy$G6;z3ufn>IMTiSiYwXIEGPA?p%+ur#{f1!|U3 zT|a>H?a3Xd-TA|wH`Kn}*7G^LaH~eE6wa51o9vhmdzTpCw0qA8SWyHO()92El*1R# znV4}7!bFAKhvpevIwiKo2DxqUmPW!_)#SWqpUR`U*SJin=>K(i~m&cIN?hTD%c_R?Z=8dp^~+z{~F zbT2I+8p^D|4(>qLk9Uz?9Oz#g!!-chmrVl%kcs$Hkq;?J}?Ox3oyssa?)+%m145r8viRt2HKrV`HB9$s>x1O1cUBe_#ry zgGq}CXiF*P&})~1j%$k&MtW?f_dbt*GNZ$20|y07$uCIT8h}#MPD$Nh1JZRd7iUMo zuSBR4SwH@s2dO$_oi*c&s#rKMMp((?V9xogIW}qmr;eGw)^^%8;vU5Me^pF*mK?BP zAfoCtTp#0Kl4k!A^cB*yMo`$)ESkdXp4p(}9*V@!X>GM9D8T3~G)L*hVF*!q$s#KR2GvW*>aGo@JLJjWSPqXHBF3$C&Ujmw z1nHp&%o@Pg;&R599(f`&{Sn166Iqol;X0yx+LL|6AU7P||W%Z>RkV zyyVSHAbhBIZi*Ub=-ZS>x}A8qifR_3P)aZguB@N zm}Gz=yTi~?;XQDji9WO|yP?yABuC@r)}DJtPI_s;4BJb#vXoN8bGyRe#*I~%2h`bB ziFBAkQA_q_pl+YMm~e|iJHvao^o#=NGR+T0Rc`9Vf#hpnY+f=$qz>FiB)fIAE__)y z2K8vPvtA;(CGdDyq3PSNw$pRt*^krQ#+T0HNDk2`u_vfwHOz(^o!s5ToouHNi{rPm zZDXdEra#kY#>V#7Y{LX(KlPXs74G*Xz*%YR=X|r%OcoYTzdfVyyvlw7n@)e0s++%N zD+%j=+4+}FEn%cEb)nlmwivhN_Xyrc@;6NcJDqr>b{@Rb{Bp&(uX9t11m;H^OsdyG zo&EF9+IZ4X?s9PeS@IaVejqA%lBEe>`~uxV1}OK75Qw@vW2)my&+-@k5Jju<#O!XZ z``aL6kQ4<^-l|&R(d&p{M|)nYFAuw6&g9u!@;p~$cD{eAzyPc)ItqL)qsV%qvFeF& zvTOEL{_{zU3IUXNAdGMn8rF2Z@+8A9chnIQ2J+b_JZF?|%;+!975L$Mhx%E4Xkx5o z(5-aQU8{6AE&U|w)11#!vaX?0Y4>ms_flp$Mc4N{>OL>(8k@6MaZyKPVQ{&Uegk{uWxRx zTQvMGT{Y~ctv&fbd|aHQDRe!BBXc^vBpO!{v3izwosZzDqvdXmYxjc{_@HI}A37*- z6Lb(XDh7WEB4l#VV(t>dxb9z>X0GCUt-*Rvs`#>qD8}kA%Ob)p)IHy;=>0RdT~(Dhe68 zOJzer7^g95~dZ3U@9~38)um&-eGtRvv8%O0~*; zTufVd15jB52$lW!0RQp3!e8@GnK5*lshG{>M0Dd5pB~nR^7h-kM~EP;T$)j2g(VJm z9KMbxtuOa{1C6JMQbw>={_iDlvQ49C4%mJ1!Up<+v|tG^w|S24Vuk* z+RJ+GoUora08#W41WhehBY_K`3;w&(3aII+cN9OZAx>g&h&b$hv93I>imXA`D0}RZThoxrpCE?zQ}{59S0|wr80W)aK7iaP0j(?%(^+WdG;o zGD;i*?OsN#tth_umU}=^nlD1})1SMe-2wZy2SXl;i=u??leiCM0%g*Ws+|Yp$(0o1 zmEa>VR&eNy2doUS=N5l13+Mj`gAFC2jhW_XEBz24V7RlMRxdAQxUyv;^tB2_P-<#ET zmtw|c>wd?0f(FP(Oa9kK-%a@ZYRJSb8t}MNC3`hi+@E-8Lj&fY5BX`^+jw8S*TOAY ztKrsZ=-q?=akuVO-W*(pGXjwTvxvMBZd3P6Ise>5Ar7Tgh}PiPT0h(V_{wy@ziF8G z?6Us?I1}+8|G>OC>?h3o&STI2}ju*LM#G-@UIa<2Ne7{N;~M!gWZh{S|zqB+q$o`)nADoq|IopFGiVybAV|5y%?Z&HT*J0urH^o)El(J z!I5OYK-2*}2!RWr9)SytR5i7~6BcPrt5_U_vl6Yv>Fuv&`uo8!n9kLcrINv-l=UTt zhG2at29zAII2dIC0**!?X<*hPfQD_B1HlPg0X;JD+qi}mGhq{`kOdg(F_1x}^B=nW z86pRI`Aw$^_ZQp4JYxUjK3zlCPYbIqHLJC={Ju->8GBtp+yoGZYQle}L`gNt+U9m& z5o~Myds)BvuUKKo+_>9ZTKS&%!1a^-pw)>#e=b=Ksw0NTPMJnzC{#&&Pzn9Hmy+>} zFZTYewVWI5*pYeA&=?GN|2qm8Ow#ASK3?`(Zmgoi*1#CL4b+bNZR0a=XR!ad{Eq)e zF!GB4i=%QCC+@_!T>^dCfgz2i?@T5KV${X^ulcSrf9RCU&@l|2UQevq3T5rsE#`lg z{9wN1cpxvixvgGf&s^DmUZ*cJo1uETb%*9e(+dm z%mAD?c)I-=y;1sL5g%_1rM{Jz7bMK3K@$q3kpp?9t7o@xmP>BET&BqV0*}#3%8ztdrZ$=_Br6 z>o)w%P!TGe#W3}jQFn^g)DF?@`5GS{?s4>18kzX%Cyoe8_{FTQlncxBWAJ7NX%utV zMcN)AsY&S!3aY1#Od|9g6WvxfV)sMFrMLg9Ae6<9Fdhv2U%$Qg_($SjFCM%gedL(e z!TiY>urW(bU26WU%9x>rW%=iHTs+v>-W^f}?l*cz|1%LiS^XEB{}i|Ce0<-?TQecRl9z_pk7Y zl2$OoPTh{sbc>*;g1u4(+aR6*I12VIijzQg7R_J!|B0J0-^}cpD=;#5z2GeaqkN9w z-$EccVGJG2Odh1*Jf1S@a?-Nrkj;2P|6e-z6D;*AMA2oRQ~BAE*yYU)dXyU}O2l^&-U?EBf!M~z4Co)wWFz9n!4 zIZb;U<{=*BcR@9kJ_d_kU0N*N-M&Depb$7z{3a&m#8YBqL1g}hQ|-!YW&)U4?+GcH zyETgaTsqDVj8^6tkY^VUo(3Z(Wzb+`)BI#HhW35KZ_Tt+98EH1M%7$P8BSBRhi{S_xs zFzxZR1g!<1m|**)5c}8nx!j{lOMg{wp4=|&^(j7QW)w?uRZ_9R1^6= z0ms$LgZ<)FQt8JhSb4f!T(FP6qBc5XzHCX5Ew>!I9*uVdMtQbeN$9F<4&$n zG~aZ_CDmWF)Y9ral6G~R8dPS3BzRsbCxqzK_iIeMh@Ql7PRc1H)L65M0|5KfI^-zZ0tVF+bFDeS#eF|oZpS(=K@l%UR<5F9+Zn&;2g-0LB5<@D@?XbnwIa2;*Vx0 zgo#N7DS4T8q;EZBDb%>;x;lrROUvC@%UsDUuJ9k9GvD9}sH=H+m1-LpeA%xv0j&uo zh04z_yWL1G+4)Sf7?4?+F*!PL(5dRB232#<-w$;8qeToiA77{4t(CP@N*2aX+e(*n zzqXY~UM?)iReLkr-QW3fthAu7M2qn|$EgIx;-oximZJYT4^k z9XXy460Y)zw%GY&@s5;Dz4B|70ur?_<8FILW?=8M5~bzt{hcctH#?AX!>Ju?`U}S9(J;UZrMV0FUaqCj3M3CQ<=Dg7vGJyul3(ZFeAP zRP3vO4Bvx2^HpP7eav7o8UBVVR&6n`QSWQEDPv|9{cKn&SZby9N!WgCLgvkQMHe-p zC!Kztpv*bgAPZHZpCS1>%MK=L7Z+mZk95g*9n``KSYOXoWlj>aTrV|6`Q0FUPYtSE zmq`MYB?V+dn`zx^I2dTkjO9gHUqa3gY3?aKE&}n5BBuIFPxKV1nTa|isw+goiCu*J zZD%k*b=mf6iZ3I#1~jZz5>?SLXF%^%&C-f@r2q5!O5n5!{i&xNiqY)Um#TmKQ+6y! z>5a4`sj14cLvJo|qj_wx^Pt=g=nu55Y{Y>ri-LU*dL9io&ZCv!a94|j*Lc(Npkk^D zBuOAOt<2?RMlT;Pdud|*8$;pi6+xwFNWe)yWVdR{T>aX;i;jMCRT7&9hC>l=`b0U5 z`tFNdGFq0ZKt-5mTMJ_vUw}gR&pc~ZHGhlTDn)#CPHTSugm@yRb zdJJ|r2-7hMXF5H@jivyLZh737Ivy%-zD9hsW!&Gtzft)eS(8G?{93T1{fzIp%Zeu* z=qum_`Ng+?ar+8SQXg}LDWrVflG+tAUovZ#VH}uJUL>F`%G=L^kEV%5=>96H=y6hy? zxY}8z^~H~t$7ro>yVxNlWJq8hj2CGV<*Um=9seJsr1r1OB@D@2S|60&lxDiOVz$kf zik!i!#=_qo)vKfJvTEvrDR5!FbrIRJP}DUyx18IT|17!YHeAI@MOH_IGtS=f^TQ0C z2Xylt4pt7=`~*zAmv^{Ks;XEE(wC5+BF!75^i@VuDdk*MSg(DUF@LPcq5;?h;7Fz? zd;T4>GyyK3$O_2v4YOIKFH_xmx-8*y>TGC7v60E;K`zLFW(7N4Zy^m558v|Wvy>C{ z;_Odt!FAycF_hed+|MWw_*)^nI(ypajL||2pLYGZpw)?_%xRUHsTilLQ;c}&*6H+E^Y~#)r;DM*x3l)#+ zH5<*rio+^!Y~f#nA-E2;7ZQyqQ!msfj4-kzF6{$7+9j=RZMSesFGVu%lP)d_wq#Bw z?hvZE%CUk`PX>l%syUi&`6%z2MtQevPXD}Gpte}rp?L1N2>61U3sg6ggLHaKPW>4(yJF~MPa_aBkV7t7X z=6v`fkbJFm^&r>}b4ledDTt7WBQl-ro2%~#m}&Y(N+f+K*o%BSIYU3Q+!K2`ii=yd zP|mzFQu&%O*x}2h!!DX!e%bcsS_t7x`xW1)xFJVuF?A$P7dzVAkHvA;6*Bf4JTMKq zkNNv6+TI^6MS|WSv$#8p#^1F72{&+lDhRJX*Oa;oXP7Hl)Y* zzCF?_Y;8J?|GuQ~@jDy+QLxa%P66!g;mvi+$?Y5s4j^_xEq@#($6PcShO{z z4sxNmVvQd|xaBQ(B`p$cPGhZ^JAKBLnA_W?FU)^Xh%A9=zAS5Nr zup-XqFUxg`#?7vLxU*4uf4)c`Yl->T6jilQ?v!j67%PH8^h}C;n8;~*851~OJT-3V%>7qd_ zLpCcKJ1<$j*r7HX0*kEo?cn*L`q0}<$?3vQ0~z?sPbc*k22FD>vQ}bM5_+zgTE&GI z6i}E<-T*th5Rq6TLG+AH6SdnQcI5TFtz=QF*36l<82j)GLOAKE0N1irkNjR} zWLZM7Mcx+Y{`z!gI{JFDyT64b7cOv^dnMSKgiNSuAn|J~U6Gr_4KLH!dk$OMyUyUJYtqNI{kKQ8xYr_SfIm}UBf{f`bwxbq~A!}MUM_m zR-}vc-g~|zxA1=3HVK$!6V5d6Gbc#fZDymb_^rO*2_zNbo=5hZYCQ@BscmnFx6UVO z$=MA>H9b6zsK49cKpzGd4ZDvPxOwd5{xC^M5BZH|DC-WRYJ=<6v|-2{`4ZHX?ZY7Ye8jgzAy=OaH&Kd7W*Ce)637f;WtFvi(TXr8 z0z_PyJ25r7zr!TJ)319w)xxuGrY~Hayz&OYp4drLIc`NSPo#VB%q(e2=wO)D4k{s% zDsCHkg7pQ&Lvb(dUp;FIzy3*Rcd^O;;Upy)zh$GhdX8&Gpj5MJ+(OY-ojKT^SzS(t z(`I`YJdUrtzpMhy0D>Yb)#(UB@-(8-FzhIhZo3Wo0dT;)XO~j1P~9M7rUBr;{7k@c zc`#U0#ybKQPPSX0ukw57rO$n}%Ab?8)Pp6E;2*5Qd&_zV$JTYYW0nN!3wq>PW|Ri& z48agDo2$jg8dB~FvILU}P$E89)O{tYZzE}E<7?NN1DAekha!y*A*_r#NGVGQts%-V zTp<56t0VFh1I~dBy%JUhYPsffuL)#2<-AUB5(R*^F1LRrQp69zPRFc0QnzYF#lm%Nj~0?+1oPCWf>m_oAk+fld? zT`pJBP$6`v<05W6w?QWla#^;DY~`qLAQvhsCj$VjKUaJLB%68M05ti2m!H4lcSOy{ zWB@1YzQl&_uw9{=W(IotHnziG!NrM8yCGcjFk*KkGg-WeB>Q&&Rz<2mw+T`@I{{A2 z0ldPGpyuIi=7i^VQ^)Av=DVaas>Nb9CMCT*znhZ>=`Mqy*32>d@U~Y%$X{jVyP=$6 z6Wz_uJB%^!5^-OGnT`cQPZqozo*$& zt@b1qi|mRTia&STdM9ljDf|NydkQ#OYAM>TnMsR%b%%xqi{WXN8M%5AM?6viL3^k4 z24GGn+xZr8QH%Sdp~_#fe=X-(8=Jc?*_XWP6G~~P&OTDVw^Sb|xfAgavB4fH;S|Xj z?!M{H=@X`4EP5(`xobr-#PgKr%8)SKnQNM8XVG+};}gF#>9|V;cKj%e1OSq3WTPg> z#UKXs4o#6`WLPWV@9}_o#@n2=4(C~9+svT-jC)7Mq9|u>zU^aYt-+y7pZbgKSg(k3 z^OZOXmujZ4Gwqv~F8QIVu7(%BlILWqWj&Ek?4*#@tkv}q%{nxJUUlA z(Aq5tj-gy7cqjc-1{_pb)W`PTzTKOP4Of#EoELX|^hx18P`Zy%)tYzt7 zvK0%?Fo9v1sr*0xy3Zp1Yu1UWKzv(@3=j6R)+^zCs)bwj;4&e~epLOuZxu(P+#7Ni z+k!jyYWm+$M!`c;{6*{cwFP@|2uM1r?S^A>(k@E-gtQ}1Ndx6Xae$pZ=k#eGi1n5p z{WinOv;;Ojka!!C7q1K{UQhSiH9Il%fDC8KwKCf`{tUq@^&HQ$Fmqnbeiwuw2-UcP zSbwRSaF32o!4dbVD5{ zl^L%D=F~AYu%xHn(lsvbJnq|ZCDnxvMTf8j!wJGfQ>KE03KoL`)Pg-6qOtBmQ>5wh zW7Tmpp0SLPDT40E+a0;D6NEk#D!n2) z;7L^WQh{~D6sS#%ilJv#M58O^kWodl(za#k__xT0O#hZkgQ?d{-0(43e^tUigWw1I zE7gOPw3rjTWZY|X9?R@G&e{p7N2CE{vuwHT+o_mky-P9l_U!-@8T8KNX%)GcajRK; z&!VS=6v5R#Kx3Yx-0pY=NQd+aI%w`GQnHT)#qN)X-+^Ixy82ZgA=dEm3<_Uts1^W= zT~4r4U2L?%rV=}Qg#>}@lt(no_U?S*R%lF^R2N-h_QN6|j_QKp>Bd%21s~A(6t$nA z#E^$#TDmD;Fx4u-Jlc5>1Ob^gHn&{t0#iblppsj!^Z7;U9)B&_rmZwD|sn?nbZxQo@TQ^6pCt?`BMAibMtKW3M#R4x%oUR<4M7Q zgMKaVkFV&TIimYrM)J`szaZlu+Y%#;Cs@Eyy|CR2G?n54vTs3z9nKnW8Lw#Vhj~x? z^fn>ae_3=IC(Y)bv+1ZRTc@{x#4bDZ5VVQ}BYSU;=>w(~OaV9hru7MbfTgE0^PyCx z%?QXg4WT`7QR;k$qc9Hz<^)H1keZ%$_WIS)(xa7KtdU=IBxb5e|Y^LQ(t$-_OSjlhzH0Bd;=K6TML5&+!H1NKm`-MYau1U@ZhJ&@i zZjXNTHOgR1xdI6tEb)a13?S#(YqcG&YQIwLA-4QpFx2iJSPmBzLOji-DF&doi)>w0tFBA*8x!n9WY*ka%V ztG{bRp)n5heV6)c{NNKg0j8djCbt9V!uzx$cSo*>(16m-b)J_E{!zv4H|MSizBCVV z=+MFRR?H9&DXM&U1srk;FgPU;p?3gW{1c%)`FQhx{lwU>-34`_6)88f3+>|j>(<0x zLK7&%gEtLEUAzXPXSn6dr6Oy@1Dn6?dHa);yM&;@76>nO1X++OZFyh6fg?3VUkGh9 ziELc(VHg&wi#~?7r-S3T8dpCTp|i+(*eb-y2vSJ0EJnY@kp#~ykZAb@ z`we=p>8+i<4z-3%W1rM3J!Yl7kA@Y}dwr6p8?s(3<>PCe&* z?sW8KpU(K14oRBprvX`qs_s4LAI44B`xJ8yp=cC|ztc|+EUWy3^OV&X>k!Jl0!*q) z-^x;8kjkB4!bH!>j5u0LPMu6|Yh#lyAy~2{M+o5AD?`rrM51bL@X1KytmssB zLVv4!ohLvh`A6!5Y=a4j`C?1m?em0e{3!(Qm)`xjY5@%J&-L63I)K)sgM|Xj-P69v z<02A8rX2(Q=o>~R*u0HNx^UmfrAp;u?464ezflNaM@a^>4{kimXY|Scauh}(E$Q_N zZFtqeDm#1}SFB-r!yL-|jU0DSvQRlGBQugFyN#_OBg?)1%N`(mUpXc*{njZbm(OKf zt-CY|IWsC&1gR%a5gt;M&I}wiueVm;uyG;EOB;PxK&f9azp*Yledx`PyVP#y*~Qrv z*MV_wEw|PD&bhQ8v~jtX^tWyQt|9m@hXaJ?;U#bS7NZYanKYDdw-``sfWFvuGD?_JJLREp?}bH zbuv3>Kfp%4w83qf@ zj7T@a_Ko}JCA7I!T2lK~cub;1;?TEY1ikeGISZw?jg>@K+C@M;)|vO zk6h*2vdK^%%b>khUT~^pzPR6E?ZA2?-G41+55|5$@uSEaIK@edTpyA3m~ANh7K%#W zwrTOjC_~U}Qar8yrah`&O@}tUadkUuwA}vU%SZbn`PmEA$t%?ZSoCB#Gc)U63bFHZ zQ2+`pZ62)qHqo?D7bEzG5&Sl=w?}K9zeD8iKFrTG4pECYtxFZ%&GzZQAxa}Zamp~} z2mydo!C|5LA5{n=%cm>x)iz?05j16p3jKGs)+H@w_`|qDF?od_3#8f+2ptaWeTBp{ zh?JVB#@LuR5nEKy-hAe#0qeyysQz zW2^0B&y8_K%gddQ4a6JC46we!u2A$Zu4Fw&iJ*kqqvG z!mMwN1 zcEj(Yv*0|X8^(Bb_vcUR>?GqkWJu8Vw|U5^Ur-sn(#I`5VIoP`uG4Y3Ct|Zw{DVa% zW%^IKuVX7=q}QBY`&ZttyUCy#chq_{uYaO;jw0?>rQivReE*|jI-9SBG`t029S6FVtyGqM4RTfO6`b8o*FCAb`U;7ezcK#g!=0m+H1m+E(^`eApDXuT zUO}!1J(lgd*}GNq%5J{VCl+N(0SReO?h1s&IP-ZNAt$ zekN%)F`>loDh#5}5T&syLfDBh{HvD`rH@Lu+eU2^ey?^2NN+u^gk&G5sJ0vc5x=-R z(^Ge%PLVZZ^}Dq6(-XMAsu?rBT61@(xHt>7^bN;mEJ@lW*xvIpl{}ORfIS9zMCE9qa(<%%fyMcvB?@vt&eXk#szhdg8IjZwB%9V z-&*QojaeX9AoK0%!mhkm%o(PiL-t58d%MMQ~*G)`2Z!E1psUj}b1zVHnN?uaC zR1P*p`? zHR-_7Avqs|DUwVZ{HWp}w^i9Udd6VXVc{HDX{4d8XYXWT_rZr&4XHlmR`2L%N+y2} z0Egoe0vC!+HFeT*$3o_+Hk{~9Zy3&C1|_>sIih#!q>ZU84?wjTIn+>L*QYBsVyd?T zYo6g#H#Mzy8fC1`Ew{^YGp3%;%)bWvFP7IUT|m3@vZ@`D1q{ z6(%}k3UR@4dTG4rje1|VaK;2Cu6W1f#jGV3-~9u6UGyloY9Cp_iKCZUND#U;amU&5 zGObB#B);8jaAJ!qf#{FOMf5z8JohczgMupj#&_vL&}qEfY-S zN=LmhG`e=h2IJZ&m_c#hDIhkL#Z_U@#7!qjXQ2|MJlb~0?N&tO3@!~$v29x0I&N$) z<2xDZKd^bk?4!qSV7^qEtIxthy1%I0qwF4pfQ#L2_x4_)V{}bY*vJiIphnF(+#?si zmJmGKVC**kD{tdtBw8T3*WERvB6Pd{*=tVLWCkBD7+zzY(D52J0*bDjb+w&7@$RUq z{t1k4+FE7Jm#L1r$t7e4!*IN;41$eF6GjlXVRx!r$ta-noT}(%SEO5O5qDVi)w?`j zSLe-(gi*V@hykVATD`q5@st>O%2^3=*Zew4lI(I(${yrwn+N)YU>bD zpm3l=YXl3ga3G(MR%G5|r>k``Q$Jcx!(Oa7H@q+miT_fW*6AC%)vg+QbwV|^Xme#U zyXFf&H#pH&0j+phIq#!187H$8KkWTCYChI-C2UT3;{aNhdK+EQ;p=qjj^G`_T>Zqx z&nO>?xP<+c>u=T0LDneWX3Ty!TqH%%|ARGYh3?6!KbNIQPg&ak*@dvDa-56=_X7)S)#KZs2uy=izf50lftIIK!S${ z&%Afw9}zUpY&+6? z+#|%XMpgV`aLbR%%8odlYc4!$^s5}V+9&Bn`%t@>nQv?_I=qMyTy^O`HuM8ikXJN3ta{(xemj<+mbA7aE&;b)|#0Ab+UBIqKOPaWRgni<%7mzTHQt_?nq-;|?Z%kq`u@b?c5+I?(= zEa@7Sb(<)c4hvSfW${p8krd`JC@nc4EqM&V!^iveYH0g~vIP1ZeKACE8`)y_Nd$}is8RDzcI3Xf&7X01cuiiF-);g^FliSWX1vU@1EW$^J&^@fG z4V5;JOcGyjoRTpWEp8i@9d_^n0qj!EM~xi%Az!z}IR{^+>03emUvUvynVCk3iawC= zfIgBxhjOD3+0>4gHkv@t^D-yR#)8|vEV^yYFjUG6uFQOKN1Nd_Y0!2wA{!7BGT@ zB+(`puU5$8uy}N#v-}mXq&WM?%B`d{Zi3m(Og@gj&c*wm{LOLmK_=$JmCjed6{Rwx z0qFrNT~kJXu45Oz7dxyMR=y^es=56F$6=?*0zUfPNn%|Fi`V{M`kB!9^wlI=C;IfGUERJsIU!!d76^#i|fU4fr0P&rBB>)nT#kOA$@S|^Iy=rPv;zRq^E=Hmq+I1jcA zr_W0YLD@mL28uE(kmhJyXQ5Vh4WNj7m&e;fVeUk>Mw&n_aI?19_Yn#)vCo|*2kVf^ zF=G+Pbq9k%!AIlE4^t9CZf{6*JneSMY8iexL}v2R=~dOWup=IZGLoLJ{Zf8DoF9rg z7g?I|rNElIL!C$MB{Sto0D}Hur8zAr@bm{uT?C}UUJw0#SdsDAvTgrGywW-PM8O&) z(K^cCWp?_Gfr)~$tifnpjH4omxm5D4r4wz!wCPtrH0^L5fr%|LC!BnkKIBTb*!Uu} zq4Kqgag8<=PO<7F0UuwcUz*NTH2=Ea>|kI%loA!vR5=z&(aKOX(58y;!`#rQSL0v(akw_87Mg`yCV@^;O&f7)t z$5j{FEzBk=SG_D}{l*}0?Z{i#qM<$@3UAL{9bs)@w-hh4=`-WM_9gP88(Zh{*CN1A z1~Fh)Hy!x&`!`)t$d|3~e%Cdg2@Qh2iEZ1N)f?n?J1nSmnIA*lf3?8jbqw}aCrIhV zJlfa^J{Xg!*vZlsbCLfT4!awIg;;~#BdTWHi;VFPT}(Dxt6n&OJl4%VslDDkQOaqC z*dNK;kD|5Ekx0vd7~^CNVoZn3%c+s@%q2@S@BmxZ7x8RDu4{5d)D}^4b>BA~L2mo9 zyQ%HNu@*_l1cXAn6xgsS#SPF|%|ntPC3V_*Y&HCuRo|-JrdI>y+{;x0?T%fiBo0oUvrk^b-4oAJeCPRJ`HMdw*(3F$k z9xZy-`sQL|fB`6JBw#un`^ z=4(Z0K0Ku`azAl++&*Lrk-!%t96G(d@5H?KU@3j$Yc~YnkxFhPz1af5*O!G%i_5$q zvw{?0+>qoTq-7!>m&?U;dWpDx(+2^2#a{Ce7NoRAlg9Pwd#@_bm#?MgtjT3{nq?5M zy@YoaHvGKRWo_AM=l{@k9q?4W|NoG2Bde5*WLzUz-E6Y5W%V^85nVGYkv%dRR#s+m zktm_e>?kB;?@h8t_V$0ShU52o{m<(=<2>gx-kec;z~}r3{(IC z#Q)rCB)!Nos8x|~@M{4LKJFBv1f}EJ?yMu^Bl|}(3_-STJWe~3ep#O7uh1n8-~?cP z=w)gTGE;W8S7kmuTXnc2bb06b{saaBH1&%@4fy z=V8!=YyXpk<<-w1--`^ZZ(BWEIN;WP?S8=LM0$swCyRwO(>@)DT~PqZi9nzfQ$fY- zIJE_bkICc$B&3Q^I)Z1{Nl|Y6LzzR_e?CH4AGWN@h%%G{;_;S$hT?foFAjP|+sQmV zxBEW7Ykn+uh${pwru0w<`7a*Xqv0`cyz3ypNUu3l@$%WdJ^+ggq`zwS=IaDI%(#PI z30<86CfekAdT})PKr_E?GMSMYK!{K(haqH&z0k)i9u~|s9{1xVbkJooMiI9k3W2NA zt_`+$oC;yjBn{-6IG@#vjztji{1t`d=nCEMvPSJ% z_^5XyV=jYW@l8r-8c0OgIy*B@*Gl-qQgFv?0&D_sGY1x)p~19kYac&=jTUO9Q=97& zbgx%-0770mtL=7P*IK*!DrK3b!W+Q$?Ilrp#{kdBlbjxdyM-S-ZSH$;Z0jn0 z{r?J5OmJ_r-5@g_+UnQLCLm{EYl^{N{`}5{M|@3_Q@bsf%In1+(?WXNPLKILPhE@; zWRCsb8lNCfdoJsme$hL9A&n3jD4o;mgpewVBi*;JEm}ae^zK^S42Si3PP>y05zG|O z+lEBE5P+QLKkZ8zgtpO*wy#3yp8gdN#P}YjD{mr@N`cfxJ!0rxr`pGHth!kD`axR0 zruxwYgspb%#&dM@@3>SF&(UP(<73J`+$u*Au8jmPR+m-UP8BNF(ZdfKEc_foMcOl}6DSE1}XWnU+JKL6R z>+4*;Kx$%bqr^2covl=zdipcifGh?EbY%X|~FKA@Fm-oj1d0Mc-PHjZ=|!;yryl%YWr6ism}CeD!H5&ulnh{p-(sWZUY~+ zk_APye6MO(>?71k+$|N*Ey_Fzax9mrRmgpDSV}1Zf*8p|fGG~1zAZ#_^S;Z@bXiEn zyQYPKQrG#})`3@^#OK4p-@4O?)N4}Wz;&7!e;rhbRv;7O- z(9dG^y*{)~+V5_DTb22y6<;4MP<$&9n@l~dbvK`o0Gi0lFDWg*GJK2-tNJEVlCHfi zv#r_om8v;lzsEcWvf}DNacwx~pV@)sT7MaT^$lKR zar|(uHd2ch*r=ThZtQT4o>7d6ddsie63uO8rB>+{k9oCT6$bL!KhM$TWV#azsqPoVn%9NEwkGXHAVXuBC~_kRCwcH&a~oCQFW&bc;>!@t{rK(1j=+?j;1x#2_csV6RtUr#alCIIm#+nX`ICnPj6B=r z{xx^Cgtn`eu)E8%xwM4WasGOrkidtWp*)X8ykqpPAb0)qNYWe$yE`JMX$C92B=)E@ zSl#-o^UVrbMGOZ&dakW$7#ePvyG`{sP9$VESr>G&Zf|}2FuULBK_)|6Qc*TNq4?M- zJMsPf(Qak|ZSDl>EETS7{%2b*+LW@k@mhkt;(6lx?(Fx6jIuQA$Z0 z%j&R96+8}wa@Mim3vapU!J6`AC;v|N@>alB=Hn($gLt}nyVnB9O6jSok29X3y?Hp0 zY)jkF10pQHw&UkQ0>;LE$u%V|n;N>Q-9 z;3W}f&xM~I_w$pca+RG5$=qDDm*=ZAYfU@Y-wwHc$QS2toe?UsIOq)B*(wdV0eKf7 zQ`!~eaD@7&O7HLl49-S4m*rDRPKV)TGzg!7A`|Rno`D|M;DlMZ?o}cE_&9@)9!@1L z4vRM0B0^#!=JW3c48%qG^=U<%EQ;E)wzk|6fzub|z%}xJ9)(c2+mF8sOg{?nc|5Ri$t=qC*znA?q&#V?`K7zG`}NG&zOTYo&zg>a2;U~|bgM(VPAd1ZXJMDLgV_v0z6sqJ%gqD)7`?KM}C z$+YcOw!3#n^6z$y4)we4nmrqf>}%=OEF|bQ zH(smTny%&!Bmoh&bI<8Mz}vai&ByzV>Bq3{rq`n4mfJGfKFBpjr4;KIOX6N7_$SRc z^%}(XS!Jr2im7aNgX4r)n5j(^P}3KwR~IHRMV`CUWdk9C?Gri`d#0D(cld_imU;#3 z?PF|gthhKa^z~Y%cA!_T-3s>z`QC7s_ z9Ne{@7)?3Szx7)!zLTPJg`Z3N)7R_EJrPB&wKGi%w?r=M$LkrCl-;*;UTLZ&dqx`P zMD_ahU9&8wjIe|lk0s-aB{a=%cz(KV`}JgRfj`sx$lub%#+r1guxMZ8^Ma*MoLZml z`Jm)Y9_#aTk)KH*B{|f$D0Jj^q&1!O5I~@VO(_W3TZUn5d2_yD$Qvhm=xi*`w?L9n zeko4J<)^M)S4t7|^c0F8KUNKP1=xKAyP^L+zUiP2FE#u7zhF5G`b4XS^IUKKhG3z= ze$Tq^w`oj~d)e65U$U9U~PB=WM^}gN5<!1q2aK{!&8fGt>`JS{kO7mZa)4-`(w_} zuz=9~_-Lm({L3;IlV(7BZhY z7plIqBE8Nm>N++-buoBPqJr&U0;9`ouT*=|zT==|Xz(!F9`?36kLTSQ8nnbh%`!KM zadEP?C>G!o^Ze;rJLd~#Jsvl$8BQ#hO$Q^-76cWN$sIf23rV`VZrxPJazSwk%u3Bk zyinm{>7c!DtRaCSm4`X~^Ol~o=l?0gJ6ZW{*kW(~-75n_z)qN&xMF=jC+u_TS1gw{ zso7#B9qC3m39{W)QMUfe+doz3YRp0@wd;YE1gK+-!h?K3hCVX92&R;FB@Dnxv@7GC*%e|#eOE>?s zTCbA$VN(#&a19JH)p1 z*^wtg1S*QFHT}Zf5XPS4!EIsV4DfHELci(-F_qf}fr7IwmhKN_@3z zA+HQo*rONU;2ejVdZXCc!~jWxM!a!oP_g^2Dlvj>IvD7(NnGOA)>r1^KeN-&ku__T zg`9nmck@b~uey*(tep&}JYl1bgqY_RYHKw*T4Tk1;q!Ap+p3m{Gzrn&DXK($kfNSa zfa^;2NSnq#vK4Dw{Ip>xUCdY4w_(8`WAR=DTTXmu_^DHiy?JvijzPF>ZManmLbw5( z>2T-iUJi9LVn~3Rgj0t&TlA|J~)wmy5)xAZNAT@dA%hd1FN3 zFxope$-9spjtQ~Vd)CTjyH2C=zD9#8m`Djbl19k8MKUjF_^Rw?1c9VxD6=wb0JY2x z%W?R2YKKVMh+z;XU5hJLx0)hZaTJuY`ExwyAxN5m8V8xtg?0diT_o#MTT@e3Fd>MU zw#?U4TPK#6+#sTY3rz5T1jasej#dNOeF|;nfKyVigZ;?pu=IaF%Cz2v0}U@IKMWuq zIU9Lsri1DJixQ6i$_nU{8}1Z|`+wY^tQqxE0z!Kee2h08G-Gz+cfa63KU4v;SBL7@ z)9+A2Ujyy%BIUf`vO+wBTN56e-?yqU5C1Ftb#mX(57k#SnQ5{0nhRJt*UIaRBARn2 zfKXuSXq@*p9FI#Ta1h}fPkPO3*`=9&?F_p}A0ZA#5*%F=iF_X9b0rWH6gn+JNs;_D)w#e!?#}s;YxhK@zy*pFL{rJ7XG$AydfdEC(X_hq&m$qo3AKv zot49equqHn>pvs$3b?G0|M4)ED5d?cc z!;vBk2i{lus)z9RZGjSe%LEQ|DYl~bTbDh+=c7VBP#jxebIpp95H1np7~CPeYJ?Z6 zsMFFN!^2m60UAE_fQ;@TKmscC4vM2z7#K8?4(DP0MYug5U2hTOr_OVhrHdEn5)lOg z0r@$*Fh(%(11ZW#X`-(T|A-(Zm!)HnHGqaU?s2$Qj&ze5ZZSq4mwU5%oFf9?=cGa~C$z{| zH+dzTBJ^c*xJHp74)p0>6$N=D=7>-^;X+l=K=AumI3d6YxD=XT1kfyLk3!?UV(dn1 z`a9u3B=c>%Y9+bn9x9NeBd}BhB1*WeNgc5@W9f86 z!-wkiyw97iOb z;U&UQtH*MNeyHmBiYr;9C}*o6Cs`8^A5#LM$PUD6chRM zK(%NLU)|RXJV*(wvPY?hz%Av=k{jyfvS5!ZmyEh%}p|({}=WYsMHC*!>9{ocF4>Dn*!|}*)hC_1@KIh}TCe6MOsMJ1`cJ0jM)oOq&20U;!4w4x| z1{SOtC_?J2RTRyHBkZtDdhbY+*4j_KPpAC5IKYJ(Ruc2b6h44#HDt=VvmlP71u!x- zKP*=NWh`)=I?E%pJTzSTwj%3rFTDYpa95Oj6CUIpgG?zXeFb6ofMKwLdgicnQNIVr z_2M&fr7fkQW4m(HbtZ@1f$>G^P9`3uVbsQ1?_A}XX zozDos`BBIeeFeEskC7=aoxN}*g%R?f9{Z(i9LfM=2}eVE9=YX4GLhh~RUKB^sR)16 zboNz&x0b+2k;Q2@(>1Zkj1Z#z7hD$o@ErwI(x5h{|&mDZWc+`NE&olXOji%U$@__8RUfQX=z zBOL?~3j>{0^>KM$5F!6O-W+h(jj@+b?`z9nr#Hz_*R=#d;tALAMlz>^zMk&jJxJZ5 zib6BWE|TF;l zN1DAo&|$i|%_-LEmD-trlm*frY!p2qiQ*uyL%fwleS6e(9whyCcv=i}CX$Dc`c?~r zly^9Bl9Jjp1GUIH>7oNID9HIUQ%eDlPrXc!=RJBd1h{)F$o|qH84LF<>Uxar6S6cb zTglhXC|QL5reOulWOCObloV0l0;!lF%4j>hR3zOv4Ax5UMNZ!KL`gzwcL%*!>ZD^& zTxXuy-y!q{{)vTwS}ImSu4vixHyzjfQh>evqvQAyIs_Oa$7Q#cP69fBJ$Hg9?&q(K<5vWL%?^q9IhWvVpWqj$RW585e(=UB$x^f#;UafnX(iXglR^m zKrTACl2XUz)y=Ck%we$n2!|#6Q}VaJnC6_P)LDt~Q-NMVmiasejfc-djbE>P3Y0rS zK0YTys$g>w`0#XHlG;x_AdP}Y3&6?_`~5X!N^3+A#txaX=;DSeNddkuRHZQt`@Y?g z?-!5e!p=E@GEp;#Hmu!4`pk^-5F;Cu8(@(xPhL zt#Sg+1GTg|9EgM&$qWLACg~tpDl1e);U_1=0o>@{5fCrnVN~{{blt626WnKytzo_1 zt90OMf)wTG*r=r#kSVBNZ}GjEPKGd$S7}&)8vV~B`SplUgUF}n9Qyp_VmW`P{$^qn z_;^swaj-1tL+oJfkUbmS^Jj-sFn)E1OnC1%4eo9igr&LQa`Us6?IZ^)5Rwr3;tL3I z3=p%ALB|N2jSTHI695Bhj zO6Q1OKlSJFJL1gsDTroIo_o+3mU~U0g^jqRu7@%HK-NfR6fhu~aE&gZ5FE@sK*b}w z_6sm7j?4l}$);zu-RzP9Oo(Bb0CPXv;B~QZjcDQMgV))g*|qD!UO!SZkI1BFDD!pl z$D(xEeSdQyqZ&>TDTS)SA%TLK>7=OrQbJ%sp%vttSrwsC>O&c*Ux9}v%QHy<+%0ll54O;Zr@-}4>R0NX5GlxoK1F{Cp&NyofyJPi z=spm`$d7@O?--yio%S$GbfvB;5NmH-NanXl>dHVQ^V%>Up?3{M$gpe`g)Yn$o4~Cl zUEXiBNM>Dsojt!4+KT(P)`m1-ZQEXqn&>$Dn4J zDhg{BIt{8rM6e%m4JJ?3>C=Qmt^j$eU=cBgWTsI4LM=~P9aYD=g?@AO!?~QN*z{Kwl{|%H){{gr(Tw3hd|`Gn#0YsmrbEqc z9?{8rgw{RRQFcFZT^c0-3>gOM7MgGh5*BKTSYaF}PC+O+$&a}TrcyCDF4?d7xqg(n zN+;XKrtFK=1p<6p5tS?jn5p~(K_o16Eeur@zYcNzY4FJVa(>1_nRbz{7EwJiiJY<* zORoxGD@(VqAoEKH`k<-(0YNHAI*LR)ta$&z^AkOMn6DS5sr8e|LYAJlu*IiGvLvF2 z&{!*dPgVCMBs2)2fJ$x&B8QsQt0-`e%kzPJ`tLaCBZ&exh2^lrCymtbE%d49IcSaR z53P~`P}f+fTlm8%D1dgK>f%B)N@7F3AY%7Dg9%TtI11cfr?$Dt0M`#(U z7;XsD;>Y}!k*)Va*Cfpy0*DXH zIV<`xi^v{&%$M+TUlO>C!IctX5D6^ zupBtqXu~J<#v|vcQcuCfd`W>8Mq&tL!S8|Z7XwW3Izy5GoIe=pq+s~G2{-!19E873 zZ@+m|&NfyhbJrjIW+njSvD)DjAeCK2oY2zPI z!{K(x#a1b0}=V?O3U^F@GMM z9ku~VvN!zH-b0d^Bl{-x%7f3@ zUyezRfMmxX-41-QW>Y^dG{;Pr4{FfUFgoJlbRaZpqs-AM%a-pV2h=%BN@z0f2=1_o zK_J!eK_F8I!h#rZkDY+>p4+tpuhI@W|9|-LCWRMrlf?*GE4}XFq~41r6|Gz)8g90; zI-WT6&^J(p@r7&fg;U6whU0jjITeyj5yHTE=%Pj7`8uYADKeX7tLt{4kVnq5yb=Qe zRf}0>&((7W`M$eCW#VfGARZZbu_v$)~=g67tR z`pY|>qL8K>%I8dIP_GioM>^&Kgc0>iDF7L~1Z;o?_y8A~C^J}!J22*YCh^}F@{UPX z16csXfY8J4`+*P=Q4q2e89@*oW)zY);fQgN_EX~buv8bw%uyLx@5aFZ=jiYd-A)OR z@_FYNl)ysA?+=i2=wmS+aHQyQO9$&EE0S=eX$jC&l#oKJ;X#;qa9aTuaNtZ6a;#>t ziSA!P=D}wkB;#e-)!SYYtX{uxlcyqw6auc@8?DJxhhXBRz=59HX@bcIOBn5U;XWzv zKfl&I8Cx2>6s-apPnC1fC}^=PD9UvJU&4?=0WF5wX_AZ}k`EIZ%()}9vrFHK%i=?* zW>|gLu@r&uK;g<09u&YrEyWxY26-@M(MHE1=PTNdi??dKbXEl2i zI**ZBYC9$l@&-KtK)&AL>LTw)aO*PnMfjUPRppy}^q{MLiv+w6CQ;La(0F;izm7v+ z6@_p?^6}3wS&zJ0iqJB5ZN}8c^>NLt*WqA5wu1qAXtVxLb_gR0I&JEQ8sh_JB>&YO zB=P$fqe6PU*!_{~JV zgC#AlpmT@?3m&@j$oLE>Sn}pw^F-Y`%3Sam1X%)?$^~W$$Rm=#@@bgd-XEcdQTk1+ z++}dW1Xft$Ad-Z|mIHDQI~ItqFzaLh{?GI&H}>~IjBM5hzh6oH`N;1-se%7~9^$m= zR{bCH1A(3L`M3b)VdMzG$?*wLzZqrD{fGQakTo<@5`eG4#Nz|^e^1z@jbaN>f5^uN zc{7r;;? zCZ6iNjR1X2d@ij7!t-zmX<+QTNS zWHnqq)09cxoGnrW5Y!HAuoyT_41UmkAfH2UYr>it5JrIFZS6|PAB2VgTQw)Sf9?o9 zN2^&{RPNlqpy_6ovAEL*~hlLre6@raF4$rRA75wxrB^du1Uml1;uVMD6e5m2_ z0Tq}MXAA2e`8bCI^D3dn1)n>_GdsNBBw551`NV=8XmlEwixn`JX8hMuNAN}j&(hSR z5YSf+eN5;jV$kU!s}7395PK%@>4S#_E@k#^ckyTH?WdF81JjwrCKcWbvS*uouDyjI zt|;y_FbLu9UW=91dcLGgIK{w-%->^ig8W5Om#{wTJe>BI*J3V!~&e(b8-YX-u)Ck1x@#H0m}K3`45 z6Xn@Q0@USz{vE*7G89_9H2Xt}YJb)tuG5LjF_5QG(3xXf3S`>FtR2WtUZ%qf!`{sQCn`TE=lwr`te(E>nr z^Gqj-A?RWMLac~LtnOuekn}vM|2M3Ry`7ue&2|1iyn}xQQ@px$QM%<1nUW8Q+|ylo zrI|UOk%gG5?Vk5tUR`~qvpSAvGK>d38T*ANdiF#(Qc*jjp(L#)urJWas0)7%97Y`c zPo9YJ$4BrNgs3)1X;Jt9_V1}<=aX-HO|7id&G{;Zzx%0Uk=k`qH`IlvYLXaIFB#ch zmO`CPOyudD=>yM9F!;x+u~_={G^P>BoP6&e29oId2M0Snz(K2j9!UqO;ykAI0HD+a zVAYXHpVBhekYA!z$+p=tGWXY=@3~!iw`foE2|)yr_b+V>oA-sx)i#v8XRCW6cZjXi z+e!2PHXcDxa-jMcKTUAE^Ito*zxnb?t_QDTc+YswTV;y?hEuowjLt#~ud$R5bU~SH z)GY{Aygx)?j?5?BY@Ap|jO$V;eF3KU9qSc{!c^7Fcy_{iruZ^{=+UrNv7beA5I~5u zbyM^ZrKU8BNrdgMS5fDJhx{~I_6C|@Ig07e|HcY8Xw>1^OX}G9Mo`6uAA6iRs1|}M zy9Mz(!h)VO{sVv}d|$=z2P{fCE=rsHLupu)85_?6xY(nkt|w>Zu0JL=^h-?;s2gac%>d%1mm?Hf@6gmiB5f|H-wu=L9 zuS212{Ff1xq0m6+>-xvGR_CUngpSx#QYhTpYze~Dj1}YKR<#nsB`d0~s-YJyRehps znHLm+)Jf7V=S8ArOb_Mj2#*8v4M4utHzv8))4P3wUdKs%eo<-Y-AlrgTAx+HNwxazp zOn}-kF;?mimk&9WhI6VIj->eZUM>aPNX5Hmw2W!=%~RJI!hR(a`;}pq0TJpX_NflB zdQnsUikydwCQ?6Z5X=sg)V2-~#zEC=5~_QWAoS1s3c&Iah8PD|XS)e!-Sz5blI2Y? zX%cNe5#F`tj@I4nF6(86%=QjJ0qB|ItPDtioTX}2<=ESoW|4i{rjGVM*^r_Eypja5 zsdu9{t;2y`hVrP`}ht{bn&Sk@;Q{g9ku7y)PniiRJOgRRzyj?l~NJkoO zL0C}tw}0r%i-h^wB+e#PdWRcLs%aJ;UDAD6^GMa9_*U`tbw=v809mW4Qy<^fZc5KL z64GXq1ThLEvxu3CyL$NNHLvp*6X>H>vz@H!wG|S?sFU!fI@}WrLlZ;Mr;T2nK;7yx zZlXO0u?M$N7b~Jh-3}3x2}2A5neg&^`6gM$=5xAS{eQ(cX|=PnKu zx`YbksvPqU{{9kN;6rKQXy3WS;_CWV^i?h!bEL7$gPbASH@j@gzkC{^zyi2$a~@dM z?}=OmTZ-KeU2a|!jOTk|8pc_M(N$PxPwP;;E$`McQ(mvI(a&=UJySgNuBQmAOow%# z%*m{g>bbI2*D?d1GZPbIm6*_HS40zD`@3Ueh$i3ApQxD#tadFc_n0-l@s&UPrjwc+ zd()DA!TM0bt*zsA;!G!ErGCzR1Ho$-3o<-aGf9;3=R-}vClrjtZeginl1+bGui_^dkdCW~znfgG$>07bS!FRpQCW!u`?b_Fiq`!4I35s};J z$$ZgFZS}T$`Hdk1L&Iy2J{x4~bem|z*dzw2C%<^s6tz&mr4edzxoY^M-P?egHyvt2R>QPb?as0tlhZS=nWM~x zY})L6k2z?WVR8Agg;te2t1Hl58DSR9H6R(2k>*-@14~XPsa$7I1jV6F;vA<}eb_RPdP=_XN12ge2i`V*sJ#X0usvBcnnx<=*tnJb-ciyu> zO;j_hbKqI6nVWOHH~5oaZ}7)wA?lze@Pj^EgLUgcSvvAhi@Te{^8|(^l{m%k;@N!A zc%qXeJXu{XsG(Vh-Wppp7ti|q8+x8jst05>U5$Xs=&@fewg7Rh0|lp#qrBwKR@aBC zdi^Ffs*QRh1l_K2D7Lx1>#%e!6sZWJL1E#*JJs(|5rIbj(O2E@rm_Om$Ew9$BW7mm zPVKu06&bKS-tFvkAmOn|bpN^bh^i~_$1uB-tw?*iU{SfpsK*=u;pB^u1fX(sYrH#cgvxsX$}SJD$x#Bx&3{RJY53~+|gRMh^()>S!;(QL9$@2ExO8jzQ)n; zD%YchCPGKUW05r^q@U#KRe_4vcuQ~0CT^OhwdH-f`(|iQw!?RMUBEP7x?WW-UCEW- zYw4HpSu?RadQR`#nZL@=7zy#TE_FZBgPv4Roe)z-O_Lvzf&|0s`mu7yGZ1+I0F5uYUFi_wqA<^p-UIkNGsrgC zHSR(&oi3Ns(l)MNGBnu?-5MxWm=jaR>9%7MyXb)Oc~tk@Lz~TvYeTiOU{|-qW%sR4 zf9hgT)BfI@d1Z*c2dgO~`*m}=a*3t~-||fJtr?_VcOs6tYfr5#DsUY0R(SFK(;zY> z>M-|AfR!?mnW+4jnJ$w+Y##N*(v4B4yx4Pe8stXnERv5kS2^>IPBDnERcVhzQ1GdK zZ|?G0KwI}E=Eqk)+a2ZhpR+krp_SwH{vjK4yIFnBEKuA?*M5uJ^Zg zjoe94bqnmb=+~F8fxBBPjUzG?21nH^Ivj= z!^dByLRLZ)1?G|{pLvTNr<{V>CZ?$Piv2ldkhZ$t?E@d5R9UFppH&eLy6n*pvOiRl z;|Hx!VSy@z{bUE1ehCx|Ei8MqDWQp2#sU^FVW$Q#imkxa9X_RO?r8J27dhfGRFJu&{mg z*bklY-1bK*-d|rJhAhBTNLE~eYFlx(k=mwUIXF<;ZIdjlsd2PWP0J(e(TgDU3a+Lm ztRkHD?``af^}X#QNW9ocj?M|@{o%!vK;H|BNvsKnE6Bl$Kam+8N5j7!4HS;Rh&}Wg z%+lJ{KR?}C;wEn8&A-#r`BG4Xqy_MeEU!`*X}S&xyg-ogU!<10x@u7NopuWVwZ5); z{bE|xO#{n!Hr{{LBbGD1DSWofWxAH8tnTqI#i(;Q8Jk)nzfOgR115bQ&BZqb4tZ^F zOzr9JX77W=Sxpu5Yl4DQc7j%EQ%lp+OXrs*_HJa-ld}3&GPvxzuB`3G8)f&$Gu@)! zci@Yt>Ao7r-KAs5y?<$c>=|-%jZ`(f@zx7uwqeEIuiC=w!Ik>*=XFfCRGU=Q%FCB) z1N+L1Rd&_h`}7ah?{ADv#k<@WESxa)oLcqtD6$=@amn8v%A2xxbreo)+H+6vtsGvR zygIv`>y~!ESl{55!T0?QW|vVH6iu1OsZ|g>x2NjZz9teHFOBsTW^Wk{Y8whuz72a_ zpG#;9EMm*GVln!4eMYXeZFE;kq3zI#$0hE=yWuU3jT067yF>d!LwjQq;XH=)oZ(O#Pq6?>}^3tKHVyvtiarvg`2U=&QaF^OdwSI;TFOZCS5CzyU9~zU?gL`>hb1-OLb0fU3|t1dcv0)W;Vbr}Vj1w@U#9&k;`0-u^Te-I8b$n!j-Twe3-Q#+$n8+$JH_Tfn1%8k#pfqFJyA9^5x*E@{dSb2!c~yAa83q{_LmS(hbv7jM4=+0F{^$KUMy<*efF;I&USXq5+XfrS}m6RqQcYbWTd2I&!R1oy1Fyjy6K~%!5E+! zwwvM}_QmR;`y&|Z7M}C^jR*+8j#TPZtT-3u^7--D6A|xdCQhVKapm6g(n8#C7PbU&m@+%cWOkG zHERx6RsW9`_~7RVI({t@N`6>2_k$8$DOXcG!UeQ}9@ZuL^yn0$Vq9Dh#{ZG+Worig zgclv9s%-IGLmz2_23I&L&J=9#Y}blqWO}1Gc@lRjYl+F42jewrNc=pduP5C~1DC4> zW-ANYdsHDgCya2fs+U zhF5R4yis3rZ-zF0SCBB(ma(^Xmn!r9x=oa$_O=^1>d0|~T2LTUb<2^bP9^-+&9vpN z=;E%snP!141ATA&c+~k9GTcc011R%dcokbMUKZB>-0K}r+^R!6EW7-gX>vJ`72AU6 zpv!S17YQbdUf?sjwL;4tux2I5#QsAr9js!u40XHr#nMyDiT{LFY}16)11t3IMd5WT z+)(EzT)U>H&HZS+IX-uT~06@X3abk2!!g(!){5`){ApPF8EHlWa3S3^kS3nZrum8z)xsGaLj6;0;@}0%qpOuE{+u0p2`gkA zH}7aRUtZKrEz6$&?a{|RGwmmlZQ;9P2KL{aN2bKfGET85hVz^UQr|6IK3SFQrQM3L z5KuhHRwd4Hg@XR_J(KI}U;Z?rB`?F~eAUawP3Eg9K;2m!V3dA66rXl`wp$@hV!S{1 z_`_ANcZHPE-xoRYZ>KD?N&5olq1|~)gJes)b7}UC{QU6F?)$B~M)C306&?*k3#62H z>-Rbn=rOufeR9Iu|LR+8b!*vWzABLDE>!gKV|nIio5ah#xmtDE@t1BzzQ5XR`+^pFk-CklTZFQ6p%<(!>xo>M zU0AoS(VNJgfAJmoz}rpP&HtIopSF6@JKO6vLd*vmtrDJw1J)MW!wGiV;FHY ziOFfd`Cww-c#37PD?9VCu3Dam9z`AT7n)H*xbImH`->s3!z7VOOcCK^Lx$4 zY@YkBB$;L@^BvZic*R8K2|o64-y7JHdSX`JAab^>XB?*&q{apAmJjrP&}1>KfSPs2 z%Ir={;$DHzY0zVyv{@cTFV&~<;9m*0JtI*OPq}BFcr%@8((u)$4P4fSGU&IwnnE4=j^gcGBYCf zMt<4vXPbVAZ&@4ik3cHkG4{BhT0f?5hyg2(&-n^{ANMGiD7SLWC7BjKrpDXN-|W!5 zT}8lrxu3)mw`4)`v$yEGX#XhRhh3^7=}Dr~KBOWa2w30Kp5d^nJVtW=CXtOb-;Glz z8nm1FtQ4;;ep>D)dXN%q^MkfqYn(&5Q@B;QHEeYkk7rr@mPviicj0~J)BA?S)y?L^ znxo^gpM-75v$g9t(M!(y*5Q8Rr>+Sy-MWtql$H%g(yfc?spWlnuJc5{f2^3Oom%|k zz0EyqyObs3@s}^@H2K}^Xo{G`q^q?yy59VCjacQsMKJtre;;7MJAlP-r=65JB)*M$ z`O@~*j5Mt>u0Vj9mETxWNQ??(&j0f|^hqyJ$FF7~$op7Y-06-dH+89h>COjAjX(Ce zrgMJCu+!rN^uRCizq{H~P}lsA;9lnNulvSBIjsqt%c$lcng*V01W#C!1m~SZL?Q_N z$pyhn(`4uM17D}%zkN23F6vcVy7|EOMOV+I!mQy*Rid<3E&3rb=MNKZEiWIP4O#ae z6v|~VsQZ$CoKdDwG=@j#9)nwQibeK+ta{Abl6seXEgHp9r%7_Ptq3kMu`$Ts)o+?0fZ3yKJo` ziJ-|UeIn?_-I)M8geWrxUo$s3d5W-4bmDcbnQ(4bXEjcKm&#()hSVqNr%nd0xC6BG zQB|!bCYY^P@;u`V@)rv07(c(6Kj9ZYJojTaHFiacQRYsr-n;9(&%eLjFg1ISblHRV zcx{5mJ+5Dt7pOXOGDTxJby}0G{ge5TyuNSBa#|oJjg}LvVd6J#Z$u(^_$_x6=5{8e zKWkez+qAa+C|A2&XP#MB+f6Pv*6x?|>CKm!iEBPKm`KB7`Wr-nMi0rVlhrBiv*|st zd*L+xJb$A1o34N(JEc_mhS<1wM$gseuct>CIk-8v59IM%C>{TcM5WZiONNCbbK>VO zu#)%o7*hG`o_w#teTVs%Dv4k}uJ`BK11U`f*pUM%v1l?Yote-sjQakh$$n_^+B>NW zf|ZFpCu%ft*g1AW_3}khCOA%|+b?#E<_4=NG~k)n{YPTo5bc~s7IBrX_MXERr2#x! zwyE5$U%%?6reY^t2Gh7+P9!9}q&uHcMy%G#cedeq#FrOrS1#9H_a5A+MAD_DT3CIQ zN_t;#bD$0t73>!Dn)Uk4m`X|mp^G#%_xgJ{pNt6^SU(*TiYa<)Ywb!kKJ+f%PF5%;fufoItza(GeqdQ}YTH=ui=G*#bIV3m9koFi z4v3#vB29clozzatQ^wfhz4d}(=2PX~<&sY7>mj1V0!D=ODYKX7nx$lJ}9mzQsPls#Cs{Uaga?JMUSt_ggB9*V{#;WOE9_HW&d zS{W=oV|J#A&}1k>G$z|p#oCAY ziQ3oBJ;%am(tdsfJ|`3Fe^F;=ud(@7qRaI&DYFroBaTnInhePN$yvs{2=7lJr1KTS zWs^93yJFdj7iFU8UlcmN{EtA{iT46ZPo~$qj!3KIT;_7!?M2)DHQT;@X9tIsS(|

QPLH-LNXi&2>e*p884`m98(!#;0(BX9jG1 zw>Y^V=7`I6^5&~JF%z@**6SMX)2(sx9z z+--@izRz_^Mn{}e4CZID++Vj1LzW92Qv?ET&O5YAKw%fV|8NlIL(Df6|7^Tu9v*Tdl>7NJu4VD1(Fmd^BH@ymtPL(5+MHZr{o+b>;zQnJDXf|NC++E^9D^Fa|MUCZj@U zt0%Fi*7M}o=xXF-&>4ZW$(?up1uX(P6{_?tMS{6)%D8Z_P1e+WRn=`7nPX)Rk1;z= zfj+9%Llfw^?hI4x1PCHEHifQ>h>nT=f0qXXE*{~h$EQ%mj1@O{aWc6v;vo8?4|@o# z0*!&#FTd)u)=Fss7#QciY#6Vq>SB2RN~Y&(;^&4j(U%o%C?+(u$&s?Qx)igb>M0Y`(RLn-ma-B z8tE1#JK&cpsxC&m~x*u74u>h#jE>)JcNp$(p-f%YLu%e6 z=0Tlz%eugGH|xB45rynu&v3*NlnZovKy;MO>?qQFE*Jyzz0xs->{d)#GuGa5^my(g z8&Qm3r5|=ik8*{!*IS;A#MTdRRD=c#d_dbMwTe%`R&& z=`-A!5x6D~*AqFIU#S1U=Rzf)7qi&U%yUP=l>-W1nAl{KPZ$Rm@msUCsskY`GfJa?;#mP`@;NNCbHoNZigBw2( zIkHmtnkSK~dK$TcAH#lBnXakg?ZiaCb?xH7FBUJ|7co~hD6g(A)|11PJG2fqHYnkF zJlt*_cB{0S-L6meXKO5ZJ>Ha9Feb=tBTk97S+~^G>{F7Eh+(-bIL#ei-rf&{d9*AZ zUUsdPZ~E%CiB2wG{LD=~ojv{F2WMS<={eQ^s`|Qd!flDx@nyAcw;%UZjmb7WG%a%&V@C;NG zi?q7^e2M5dARWow-f^X759OXbxkzBiSOE_Ql}%&MYiJg;F`IBD5W0$F23IG)MOS`7 zNekjTH&luTcwb+FksNLB{+iv%faqi31eopauzx_o59vIJ#{X(yHrf-%^DV}bu{6ol zbhKbZ{KWm5O?sfwv3+FO8z|H-1(K(k_sNnkW#`*_$L{zwJ2W~a9lJm!oeARg!V+K9 z#T8OogEmmIf1o6euz4H!l=7aPsT?ZO-14)~ZDD6lE=kL5gGXX+Ae%H8j-DASup_bN zK!?>A+dJL~ASzVfuR%OpMqePm(FUQ2^8i>WVc$^R<}&Tk#<|9chPBcy?;iBr>I3hHPvaIh>t2vDF?eLb3P1*DM6eV_&lq+{pq3Pb(K% z+o^^Y9GC4y3p61)W(`T-)dAWKGS^M?(SkbWOT>kc<_^1hY}a)h4sfK;LhNAknA5wJ zvTr%NhYK8ADQ*+ms%)h zwR(&Pv+?H5n⋙AwY`_z2mvvnAA1d(lUXgT1{px4q4u;d<_zbx&~Twt`C%-KdQPR zZ@x(R!Th^>I#+q{tZ5Dcb^1t4N9u93YyYt*i7zqt)@@DFz;K`dUn@sgi#>Cbv-!X( zi3ziguFr!n`+6t=;nu6JReY0$<{tCejA2=$pcIi0>OfSAU(F2JJwFTWma1o3x`~bG zr0WVik-CbKN>lAKPf{a>d74EVHV-2I=7 z`oDjyt{6G5_s!e6oVaa&F6bX~fId?vzbjoFHqcn}-s19Vj@{znYKG?W-XGUkYBwiI zF2qU@G}he!<)^p%mV4VfTvNL_RZ^?@-pM|b;jxXr*BW;F*-;iL(WWN06?&U2oy(Sl z5%w)8qr+}$*PiqKfnBmvyByBQcEGhs_nTlIh1wg}CTY(-Un%xcoRZS>_3``*VsbI| zgG;Wag|a`orMX#+mTYR0u4Fk^@6?!MF|NL68Z+$K->lv=SCG86^jA2(cG>rsDEUe` z?e^pQs_Cx%1YIU$)Pi(cXdJIZgQi(f5etg8h&zvl%pC9s^ptz&XVuSz*os!bgF#Es z?eLcS@zSvip~=bELvp%Bk2e;TAB3kL3lS?K6)mWc%Xzin&W-tAr`?bDzBxJUjM|mi z%-}Hw4)V3QtlWI3;PVxUcmLZ{F!d+sA<)L~-Q6u$f$BmLqJdqN5$Hf2<5 z>m1=k@~4lt8$dGj-ew!Y@m`#%xN3!*)t8u0{0UNHPVj?-Nkl1KwfAUO3c$Bn?PYP8 zio=ihmSUroo(BOhu44F-SsBjAKxA=f>qp=YLxhR9KlGi;WD^9>z2sdZ`5@mvQ8G>S z9DS1eFa9C)37Cf&1u|v*Ol|ug{$WIWQb6pg6bK!ebJ-Z;yv8en#b)X|#>W_{op?^v zG5fB{snL8wo&TAuyX-WsUh`|xdLR?X0Z2g;^y>}Ju3t5KVbj4V5uzU&1sSW*XbO5n zj(LK_ArClxP)$au-H;vo>U#mUa!qwttRE)j9pkXx6xSB2fM&P10Et%ovP}aB{qy)^ ziW!t(m}V#@C|Os5g|1dDJM_;6i^OTMa`b`Xo_Un#L6n3-a|P_WHEm`+fbuHk8al>T|Y!d0ziLW7>IS z^q4X7wL;bJ;}2~avgFfe^a_ybJ+u8jtzBqJhw+&u9W-i8=Hbe=+vuaRXWgH=E@2k+ z8pBd}kjCX-opII2Cort92V5OF>!+OmEFAUxVsamVgZO_@XEOZ^S{m4d2FT{GJ1Dh_|L^35V=qvb}y^OQ%=0P>r?Xz62dz}3Gq|{s=s;T_@|2QY4{i<9+nhvTS^uf_r7b&WJ^o^v z+LBrxjg)u0*%@&8wPPOn2SJGT@<_pqsiINDtIf&PXGJ(H<_3+gd79lhOhhhph%d#% z%NZ#-hN2m`V}A4pzib*CG(X{TTO{`@`@H=Y>|&hbm%bAp z%(%*2y&x*nEKi$FIqUbs@=uhM&PXIyjD~0QH3Knb^&Z^#sT`ADq%W#Wc)!K@8gDLY zM$qw2A8kTQgRj>5$PHSlHAR7)oN?7mseaX2WroFf0$N*-wJT^a)ikzT|4hD_2Nn9{ zhrc#m|I~q)%M?qd)uM2O zD-OX@`cYV(!e!G;*p=LmA6|H#RE*JtM{_1aruO34ryBHAoiqrw*G$^3lubiWO}er# zI`?A&r9LXza&0N`_0fW!N*CMw@1R0%se)LHg`DAiZJ2<5l-(Dg_CKa<3iDhd*?G#pOEFX?*8ePr1S{`CE!4AS8 z$asOFP})lUm%sQ!+$a2@j=V4gz1vS+9LdS2to*f%BfWMfm?Nlu(L+%RKK+0ir~Ea+ z80L6+Io1w%KJ>FQgA+gqu8f20l4M}L0k$rytot~LF1ApSIyEc5io=y@y^DRH<8ao9 z`%l=rV2t*M{8#(=OkWW3*aB9^!5lIzmHIrZCH5zJ$EFgNjB3YWPyzV*VcZ&I=F$0X zCkAGm!U!klw^l$42~dJO@t^UPcR6lZT~s}Egz6{sUkC+kfPRMNU=oSF3%mVLOs=-l zLnTOiAm@6vTpZM5LP_g-{gC$Zikc*6kYVOPqU!P{!U%-2 zv&R@B41jc91M0h7|7u3V-!>+PwF_B7+3RDgNR@`D`1dO+8(sLDj#texZ*;Lox<_FZ zR1|tSxNYSek~*7myP~5*#lu60p@>oG-@(t-7!~8ZerkBq+~ag~r*4kCX4uB%CKAlf zR0^9mrZT#4(K%Yz{m^}#HHQ_Y`he@Moy{FA&^vx7ql zT)DrQUxKGACkw3H_C)MRKbNKIv`;RVDlC}bOKIy}oBm6^cP=v!W1m_811Ncdy40At zX@>mj0BZ0e>MmxUaMRwQ4|h7x$TKUP30O=U9&Aye2nV>+bxLIY(pBS`-Jd1{3p&mW z(qUXt+=ugz%&EZ!jbKFQv6kSwFa_KPOWI<7<&}{gWU|xjJ6}@4O00`9Cek+~nZBzP z-;mDj?=4$3z!cI_@KNPBb)N`<)$Fb7ODbkBThm)%jQ=Fimz7b3P9*@YanG=CE@@>- z=GA!KAGdF?n)Y()H z+=mcV)bENX$kikH+1KCeUA$RD z5H1F1fwpTq+>0cjt-4r!my2}{hL|%4g`zTeF!&8Ow+07;c+eH&TPRBdQ$_+eGe`rV z9R3f%0+Xyy+vbq&t*<3xevU^14Bv(Z$Ucv7i}uSR+x)ai6k~;K&NmSKbd&nETeW-0WMPCpd9&FPk zB=*~8va-81)eIwt1y{}$cs^6>GD}Ng1&xa~dPpM#;QsMNS=dGJlkF|}ND9b)KQWJU zk*_O|7%YIL${fe3Q+5f6j)=BacZqd2I-BF`vL6@f7$GN_`XU0mJnXm_d*i-%8AwDe z>=J;3o!E`ZOM|H_!V-Jza~T2lCL4RFib8dHQI?;RODJP=&vLq$VN&`vL2p`x!Xly& zmIb$u>C!d~m%6G0MVu*tO0oFjjb$4tQp0PHKZ68li=K{WTP<;Oz@deY@$cgb#!LW) z=wAx~0}~gy(4|p@RBB_Fnk?niCkWH?zoHVvI4m6au{0h@{XieL1_TZlmksBXOOxPD zXQN#50!t|ZL)%EJq=|6%cBB7mXtwtb`f=nP|2`QT zWsTipMkml)_1o~r3fR7sGyblAcCY8!mD`pHLA^@Nhltka$L206H;)?G^z?w=#@^nU zpfi>I^%twC2RgtCE&*UqOj*C3dFp*dt>zF}>`SS0_Y->^gGx1~OL3Gk#tKFr+4DCA zjd?29J}+Ij^Oji%y~|Lyi3&XP#ogZ&8qtb}vKA$)8TLLiVBn8+XJ9}uhj51mvf)?NRc>y-F)o zT`-`00Mf^%`_0+GeBtuZ^f2(dXu<#RfgAUM7kb}Py26+L7Lq+Fwz|K6b=bF(LF9B< z?|mKA3`HT;(z?-^*7BbZB*pgmkL=`XVh?AV-3+ZWhc-m9l~~QGTH$7uY0$>@+W!8G#E)wpUh`pe<9bWq#$FrF(>qkD(QZa{r!}0?{3D7vmkIq@vfl`# z{Tz|q^};-P^JnYG2gx8nOk~xm$oOg@V%qs^&V5*1MCT|mXQd+I@V5CdII%FC&T#}T zTt<4ZQRY#!W5MHbt%jsKUzlC(%;(B1#LK@~ew0rfpoL*m?;b^ytuz<5!jpiN5RC4F zU}4rCBZEqnFaMhkkv!g+VoB{52+OFkdmzF^b_Ybb{a2CIaj<}LL&|jm&;h>_SW=KvNDM`J*oTA z)mq=}sq%!Eza{C=H!^L-$5(1A{~M!v?o;K6#ss-rJjL4wn!21jZq-ubjWfcEU}g@mw? zog)|oNT0o|A>30RNp1xPV-Zpvdk3uQKG4`~IyZxmq@7V4BW}2R!zb){b)%{JWD$_j zV?!V6Ed*U{&#g}$Y;FlAhP@B9kWvlUDw^!i_Qo4zD7o@`TP(>@7Y;*u(pNH8zS9;s zLJFjU#YOl2tOAEKQ+bKX4qRj%JQBhN7 zJ4C!JVv>d`vje9=d8V!BPfu-T2{wphVnURVyg*M3mWaXUBuhcyeE#iYO{GE{Utvbd z7AYRCnVO4ODsykLF#D9M;aPl(3iGo98Gp~trD@rY|AtWQa1rYNvBm!UviFW4GTYHe zkj0hoFYHnF<|%CCyCSN(bX*34zs*v!Roam0dIy@65Mxp1youGOB0<%1cl*Ip8@4kQ zJH~($%9wCeP&u-}IZRFtHyGbEF@2&9pFWntop8|!cdbdju$_|jYPnCZSPs!%7}d}X z)UW$afQDF~f!bR06Rp{QB(n2ILg(r*Q!3KKM5bN2}vw)qS`M3iNN5q(MqlM6NmA{k4yd71+rkPl3 z8sSzFR_fHu57dtCODia^4nCd8O=C?O;B0xx2%jyM>jTC~%0Evkp#~+6GLNO$v$6{! z8;Tk|j3r$vY&5&wnID>a8ex>0Wirj+8Z&-}`v&@Qo;=(?$P4Cuqsc{FF#Ur6uk*~{ z>3MeFHfYk{(p$N#xIZoJsmbKF7;8~zcQ$_+S$gxRzEyCB$qY0m<%K0($Rj8t?k6yJ zcejpCTwc8Ot%k18K-72S3@5%0>Sy*@%o{=^Q_xDcNmM(e?!W5;=T z5Ii8KgXSJng#=OU8|2p#_6}6$h0Ho+Zc6R)_w^W;3Li!vJc5awKcZH}`ml;&Rp%|t z9+QEMB1F-$&Xi-|5&P7bzU?uW0rzyH3aN0lDqlOVB-ASZKdn3nHKC?Wj<;vERtCDZ zUKCz-iA$}>t=_-zDY-HMAhAF5n_=sbvcP}&H~RbX1pRHrIBmk>#1~$e<+hYK6cqmq z^RTAA^q!n_oKFptX>u&R@IeU^CXVlv_r{FukE@fc{9}4OQyuQ|zg_^#ET&tv#MuY` z)#ZgV`Y&RLJyGSbs>*Rl1m%(q#@9+Usk~-2cY`P~kCO=b2VL}) zuSmugKZds-gv$LqT6!FKUR3r$esV@YuHHHG8(q1SP{7$|3>u5u4Niy?$0UPmp}r+` zjylA6`wDmc#n41)Qc$lU0vC?hpob%6P2xxlMDWoZ#008n_8CGGg=lx0b17ub<0%Oz zvN)I81p{!LLFz`Uz5*NM(o(0?n(&=cl;=G|=$ke-1nW8jrd)+x4)-dVJ1NHdKLD+F z8b-OM%t*9@9O3P|W{Eo)f2q(r^<1_I@G9QEM0sA3(99QRmW>vLtB8(k7h?=Nw?l1WA)K@sYVYx!CY zS0nCu@dbRF3h1KrCj9n{v^1*-OxJG}>zhq_S*K1hf*a^&k+Qx*>i_9SOITxiuh*<_ z9%eh^x4W6%BfKcmZ)jb+F^$(&CY~KvH9{1s+6WbZ*G#wj{!yPGG*=Z({P#GTr>!eY zq;^#afQ}2_hRIwW8l&Oe_m-}|gJ6zELB*>H02~ zloGHd$vHrzO^eqUnPP~K;=Q|)J5sa)g}r;BRk5|V^QZv-4ByubKh%>KMG1SH+=m%> zuqqsED%*(Jrpj+K7&XB>{Q}P1Bej1I@KM&pZ7WhMs3XU(#e^hb!xyCE= z0N1D$hE$8W5o^)lOQlXS;}fmGXlq13y&C&X2T|@o9&fNQPxeIqd86=-_z&TnNHZS= z6Q{x#8G=Ig%e;Bj=}ai z)(2iZ9KhaBEurEF$@r(<{@p*=Kh4Hu#(E}Ga68pJnw9rM{rXk2c0v5!FkRL=CLdIC zqlH2vRj5i)eu>$j#mvLcC|n<-#?2O43EP02-2POIcZbZ`?MJNbMom30+r}(<+Uy)1 zt7Fw1el46Ws+Bb2ftnG`HNi5nxsfk_68Cm%tm*N14p@MyApn*AD zIhij@x0$mvu#7ELCG>&1oA3;JGgu$qCO`5@;5dkmMW#N*rX)vQ-F^=I`&mBAH(Bx3 zY9kmDl61Bh34D!WV85hEoDlvHX&>0S$xXDOlijo2$pfbC{`;$ZN>nh515yJLWR5KX zN4oIr0^|Eby}{2Qe2}fp#f~aismqv|a*ny6$EOmb7yQSgG?FJ?+yogm6OS^|bpr72 z00FBwj*h3)t=?<_Pu2kOQjCMDr4Jz4k%Qrh+^^l6O45E?KXyzZ`eDK}+`aR^_$W1l zgHWeK(Eg<=_}*>Oackw*?m61zaJkFEZ}VM_C}aI6a37Pc%gfo>qLgBrGnfw_`xNc} zL@j}hH!dpG4V+&s#k()NQTI9|iVihM(JdbmF|o~A_fW83MJ?OS4PusXf9;choX#bA zXn=*r*8$M{hjuRQ+j=r5XTaHcELpH!FM|Olc|9ob-_!RDt1D7n9zbI=tser2Wg?fZ#1C}MdC&1 zF7GanpPRv{dVcMJtaU44HZ};WJ~_HPqt+6~VI9Kw5soU8wJ1crq7?C#;U15Y5x$sI zlMpTcO5P}wG6jAr>tdGQnDd&yfbE+sAvRJ|O=f0Nb4O8X>j74{fhl_VpI z{}KVBYqVB)7yV(}>{RaGYOT(PCk+~3YzXX90vF&&q98>b(N-RZURl}`e8UPAW~~em zzz^)49cO8Nva(QXA1vq7}0CuPaZ7(tK6*}P}Lk|rRd1D~FEuqHKM0~t~NS#gaq4tOrg z!56@`aa6&s5uN)1!5ST0UJ(n*UPI(vUykR*HAyK|Y-5(B6Y|0y@dlYbPX{GfzdBc* zXA}RXBr0GzHyDU-XT;wKwA~~q&vDEii*tR4w9z84(gsD~ z%Lz?Fk8C&mi;sFDzdC$0(ISEGiO^{2VY!MishHckYXw(`G0ORXvN!1J6V`tO6~Zi!vgoOy^IKxc(r^cQDk4OFrnZoMU#Ud&vR%wxdhCiNnPbnTr(ss*eGeiH0xjOU7Fg{_6{FAv=7OyM`355W~+1-D|7gdpP%dxl2NBw=aIrCQP#2g zhuvLlHPZZtEX5SN%nJ=YbT`p)(NCH8?Z#Aa#IUD2mM_zp8irzsibq7={(1q@0EA7K zvI;=)epI94a^1KjHmMUL3=f-!m5vpCqTl+JGcM>FG{*Ay0?0`*^PcObE6xLX!I=4` z|IsXKwky3L8Yb^Mv^_SRx6r5pQLXjjpYQh7c)6^{K2hN({&{iK`HKeuEUiutnJYb) zi!A#=$QJ)EijL&ra~U>aawm_SXq(i9l zrOJp6q_2C+Rri$LbV{=0aahszQB|hF>0W18yL`jR`gE}BOO5%!ZEYJFbvOKXM zXkga3E>+E#4{Rz*1j1jLxii)Fu@`(KaD+P)X%;WdjS6(u6$c zy-#`Lm%7n?FuDhd%R{JaFbUlMapwACOgtu>p2>-7&Dc|V*=e_7j)D>gR&>lr!lf}-zYi&2-!vJ`% zLC+cg^zwS|Znrv(d7!L#(@M!cqms2&{0&%*N8k!Q6)0)bZ05Uh<9&j;hR?pJ+(^AY z{LJEcBsBUlR~1_qkBZnKOD3I+z)e&^OFquiE2ukMK0cD}{Fv|lT;q6bG3Yb*1`qiK zcHh_dydmQmT+GF|^-dH3gwS}%QrZP(zzmT;x?a@uu9NMr2z%e^+nAMv z_e5oQSZ2DZM-57?pVKVCf)X~YGMO6C(1QpLRE#c-1ctZaf1VF z+5dcRxK))Af}*CplfZXQm5S2>F~<|(6aI~dNIDjzaTTl`B1P75a)r#mM|Gk0dh%Xx zYL}{`y)?7?;?66R*Iky;F7Pv6S|jkKBMyj{q69B@(n0-NP>>W%Iz=_0K2@RpRi-A0 zo|r6p#P(f30mC2PwjGrYN?l9F&{6p~6K~5UE}Q}0Wj>CBpV7G0d4$QGWIUi{oyAOJ z+7CJM7f!3U7cEFbcpB9U;DmN03D7_qeCBK3#;iSagW`>+V|T5Xorg0fT|MxtD%i&= z!ajvU3dWb$0pujcu(;Ja=RZ7u)ERl@S#F9$087gybbO1 z#}ns5I0_h=qhrZMp(I3sqaX)9xc1pCOWJFXySj>(0z^J508d=K{r3s{l;M&U2QNx2 zhomSENl8>0xCV1ITs0p;&r|IQULk*R*~+7FkwL4s5CMiBL^7iL`4Pz~_fMbu>%9Lw zMdXA!nd9N&?Uv}W~4fp?2hrP_7mM2E}TP=jk{;ULAc5h7Zy**^c5x-iA)!vumn5{bn z3Yh$+iN!{_JqnISwM%hF48$(7c)4?4U;_h%%Q@MMz=A6Q3qDl_Q0Ky|St!r*V$}%t z+Abj@5J*9TX)Zbyu~(3RV6EEZLn;sfEL>It#i+p)tt8h5Apx+E5$l_C9ZKAkSUy!p z`UnXkG`Y$+WLIG5+O~9Z7s-EAsM2zCrIx>u5uJy^rwyj0g-o>ZREYV*#m(1`){?Q7d8F0@MTC(pqH$M3%M;Ml#U?Ma;~oWYOdg+zWK1G zJeev)yrgBq9p3dkg`)p;{}23gmtR>?q%dRTbrSe!b5j zfX4ieoLBW-qiXqS7c>?$V24#8Z}9$Fy8yZ3hX!OGQ>a(Vux#S?LeW!m>v1>3^Th`_`{&F3GLwwFof>*fe=!5pPsuH` znBnd@tJPlr`auz;i^(c4BpMA*)yrpmytA|ARQ7(M%^e$If&{bP7?r*EzmTq1yk1m^ z;qUFs;M@I=IU_aBBL58@2_a>IRw46tyB|P?`xG#W+qXXc)blJb<{3);6F>MUe8Cf7 z(Er|_@YrFg_`v`JBmeqQP&P%?1pqa~*Cih=qJKg;p!qX?Z_=Pvb9x!n~6Y4!|xZJG^FlTfSWF3 z-HsE{mJ8}L#%6BuC(3lA^twHY-<_%&&rP2zoap$GMk1A~Cq37Ae>cauMMw}~$9)?+Wp zrR7GB5~{-u%&@a5NW%AG6JUoIJhj=TKs3;DdCvGDGZ+T*c9*=qx1HQ`ym4 zpbqoid0zG-QycR?4-EDavdDzH zBt_x;&xE$m8h;u$b!qJswiwXcPy^4+D;O(K3o_pmI)9;RB5&@WRt+_}?ty<@6jB?- z;IB4+r)@7J*In6>4$+;}>qZ`+zqWQ!Kh5Uxw-+9y`m|*xO$aC$`ze*WsgH?|G679K zYlW5TZOgn7>7a1I)M{&dcG%{mQZYFWOq7he=sQ9KNJ3M*bP&N`h;5$ z@*&7UI_P!_xVJYq9^}LcH8WO1%mmGpdp7aZeuI?|TwJL~dB*PcXguW@_I?zhd)JfJ z`1zP9OBkoHw*@+0#Q~F8a@)Q%u3xB*2NGkGs|cuw&3^Svz1z0UV{$dW#4DJ((h_{Y zB$Jpc*N5u0D-BTi_E=gUkZup^79##sLS!vw{6=5*kZ{W+Me8Ql1bibt5}T33@EAaB zjg1atwtGZ-avbY85F^1MeT?RX{{_syP6N&+HeP7lEfYC_t^a20q@EsL&l46jchhcm zZ-52-s)UO(_FMpd*!AP0*xt7Fi+bw(mo$~If$#o5x>RE-Dk@qB;RFEeq08?2(g17t z1NR^jN9n7lgVLyK9isq~Ql}Cyq4&ww*gjC(H{WokhniwNuP?alI}$Fo#D!hwA7u}q zUr3GdQ!^+@Q7g;WkgmqKMv?5nZ0^&ciHzi#I=kWrhID+@Mw)=SV=csxvFudK(h%Y2 z4IA*hFL7nI|NX&2Pd*sNATV~~awNW^5a(6Q`DAeb z5{*B=<{}lF=%#L|Yg`glO1Y{n+gd-%F{^-sWWoW13jz2q&Dt_*TL(mWX=&3Cz)fYo zsKJ9AY?W<;pV;;jek5ljMq!35uYkSJ-b_-yZwXS^cS~(Z17&j8FyXdFeh5WM!g3`a&vGRKW}Zt4-)`z+A)Bzn zz-?xAuu5n&Jz zF*DBePyhz{F1H+(k#;E!fj&^_=Ka%@6J2oBJnf$$MLFF|Th{Zs(QDC=zqlEFrkJ)O ze>B*V;ASt@a@YUuAf%|J-m5(=;R}Rrj`Ti9^W21`9%!WAO=xRUkaLe0@N)W`89+K3wOeoN4hWkF@ zl_>zW&h7me%i?x86!V^!$gj{b5z>K@oH3W@WSz2*#twWnjR}jro`E1yQ3$)w8|CDP z>UA-{E^um9l+|3+n?nI)r0{Q##)LUUl@mcps_}?=IT!l(;pNTyc6H_D z-Zu_MjMdU`=olq9l5W75^UbR4p^kLp!$7uqhjwh`nC@rEYRm@VUt|dds_veIj)278 z1ob$%U6#9P!J5V{|M*knug>|y(=CnOjk&l&+Zg1o*>^F?(&{H%m^mD9*2=nz&#QQ4 z(tE4;L6%@xePWZ^SP&}A7j92p|396poOLS(&|V3FaM5#720{`Y{D<`8qTg2Q7<|^j z<`=B~eElPfRTBYXq6^f5tD@siQfdwNP1M>o(KUajwN-u%@I| z7R^dD);XF4Vsd_f6Ls`uCK(^*#7+_7@*q!3?s>EZOdH(Or8yh@4oZ9WSIepNbmAS& zhhXI9czU!{|Hy@G`qEU&)JQZFxThe!gL2sWhh+)5&-r~p3cfm{{eG@p4@$;rk-n{V z{lklOQY|&|dUK%nI8R&oZVl4#(gax=1N0@AW2IS(i88`JNYt$1jHA-z+IuIkIv+8J zw!*fiI+yvHjYC$p$2&b!8&BeXC!E(*jIeS8JD#i{Te~SLLO#QQ`S_Rm}!c? zSLJ+C((qJC+PPx-9ZgO)ll7wpaOM|0KdPx+u%jE5TyN$SXV%Vum1!~==cC1I50l-T zJI^LCqz^~0X0HSxh3Z@UXII#)0N0~LauF-}Q2s?X=sbHuH}Gk>n2KEba^H&sXdV38 zCv@wh@fY>+VPnA?!ZFo(svZCk-=dzGD!TGNMnbf*%HhQb+&3~H5d4q1Q6I$yj*tsK zG$viB+h^M^Xzzjd25O-~C*I8OKeFpD1-!#Wvj`@({v3+89bZTxi(D{7G$-bFpDRn1 z>VuY9Dz@Hd?4~lmLM@p-Dw6~R#nJ;olkB0G4l6T?@AS4M7y|IieYAEdq=xjk+XW|= z{M(#7Jh#8|br~5i62^hh=mv(s(wED4pk+Ez+MVvnqk+p~jZ26~*-gFr`81KSz2pNC826NfY%N z9k{|v|G)U2@AN6{STUl`1-Q>xs~DBdr!1TYjUO4&Jn=KagZyl_nYq#)Y;H?oIBQ=I zzZE`CuJe>Xn)*t8OUqYQF2fm`ZPr>hX;$8KQbPDclz`X^V6C$Lr7E@572_M-LR^O{ zqT*`EUXCUJ^ytH*%lk(*WrzFFl&2-G7usJ5k#BQk!vTKM|GW{2VF1?~5WeJ~(e1O_uY-u~`j?f!t-~a` zTcKU|9=QN%kh{&#E?|sPTJg+;^$-c^M`|6KVK`t(+)YF%ws;fG*&z9H*~MT8pC``e ztIT16HCFKVdo|W@?98SFnj;ZAU^J(8;7+9D5z9OzzoioB$g7RZ|8L-7?4N3ZBnFj? zH6`ZN;*-+46-^c?B7&8S~0u}ToAr&Rj(q*ff@BsJ9JOI zfSW*={DYj^bxye_k_{`%U!@75pB!xOklsQ6x~YrGyQpc><(GX3Z%5uJzZ;$GkhK;(1n%(}EmG@^&o{Ub`wCkq zS#_w*u0kbVHD$^9;b3RJL52-4ylDtjZ3i&EgBpy5JM>8tLO;8q96fq*sm0NNEq*_f zWStH+O`NQc(Z;LH;?W;tCz!Le8mZR6C zkCGOV$&wroRyr8mvG~rbtzmRGdz^nM4u0|TlR0pj$^JEE2(u&j1lj#D22q_JoJPop z&*Rib9-a=iOe`|mGvh??1W<#C`zns@bH%u!=pz!o>>)1&e8cgic*icC+fi!nagxcK zX2PD!l17#2n1sSrzDAEF^#BMOEP#SnF+NgjMyW=v$vpLlGqV*Qq>d5Kvz)Pd zq*=7kfdQRA4{h|FlxuRcptwY&&#K3!wT*K5UP=G$MN@K(ROAru0&=*gkE6)( zE*Uq$Y$`at6FRW7?ls==twryJf;;Tk_lhC#?Si*(iai>P!mD1?Lz_3kt+4WzaQ9Ho zy1hL^HX;E|;vOuf!wl-*cyON|?-Db-TLN}Q_PtEC$m0ph32cmi-8TgTeoAT?GhU(&Ms&K?Y}`uuZj}jWqzDs(l4UCbDK2Y z-!4zyCHnD^J8gr=)bw+j)QqO}^*2ES#f+_$^5LleNWboc+_raFr<}K2b0|s=~PN<_P3~1xi?0@;?H!RsjzF6j?C?42d z16gt%GpcUJ@&t(~s)Vk!B-C$4>G?MAv=RQEUpX>1uhqonOs?E&mAXosaZmP-sC=Xr zW*0N}u*{}`dGG7@=Emxjo;gTD+!N^bCM5~|J%o+G{56mHeFR|3j6S(A3f~7#nD5Kz zL@)kAiY!mXiIZ&d@u|5UjVjkAqBVPylSAm2c@db~d?b2Yf8|k^hr-HVm<}m6Li3x% zzTp}&v(VpMEv7Z=pSKk~VfYy2Ls$Nk!%1oirD1q>Vi9H;%qQm!Q5l!-2t`)NJd zU6%!?($PRrQ3ZRJ4Da%y69s`QH}W&({xU&e4)=@LDw}E`dV<4xoO|ak$pBpqyu(17 zQF+)G-y!kg!$qcXxe9g0?WGkSTdfnVb+91M>@P`B(8#T+gt9D+S_vK9f(#j*r4(7z zC8qi?aK8i4{`)V>wYHb*6081tAS5;-vAtI;DvX?YN8^|5aZDIQg6HV4dc!(Ls3d79 z-}R>Yl-8f#TQ!xh7K6rbMgbn~RB?&YKi6cr_S?X-LZt&N1l8)FCp5ktcC{?J=PnJp zPJjXQrdQz#yptk>fN|rC0ZU{tXlH3;AbL9ux9lDCRV`;HA?Ed_X5`=3o+5#vIZcyVv+fBfmr|fhI88igyAmJ^fp6>4*xWo6P7Osg~ ze$sOs-Mg3Ka-Ye+<(X4XtTuZH^!w~m=GUH+MjEx@XXBU;iKh`4rPWi<6mgHZ%M`e74=kc zwNiw)k3xv5M5}pI$pRJoWFHeQ3nE?1dy{jUB;Bfw(tc>Ju!! zwi)$zU0nF}BFr@HZ@X+8dF-1j?G49lnN!Xl`$$#3K8X^DJ*8KFSPrWLp zw6Mgo(4^9Wa?xn?F8(L=aYJoP=Q`Z=IMpPSJMvz);auwSWUu-GgBOKIR(zr`b1Moy z7lz33bLHxf^D^9JgHPzVw-Vn&o16uFe)1s&*MuXf7 z+K*cAm)7H%?4>N-+RA}&|8QQ(&D$lz2Nx~!h`W>3;Z6P*(k&%jmJ`#3vi```mx86Y zpE{XiTG^qlXm;ni<76|undX%Th6b`gFKWK;|k`p z{`A)HDkhI{6!51=vR3|mzC7)(^ug|ly}5w3vZ7Yl=l1TH>ObETmpoFO#SVo;j)dQB zi+OwR+A$ARl6iw)gS1y`Q?15QRNsD;%3Q)5Wy)5(Gw@uhy}?>|d3{Z5dg$lskmD~Y zmZW&sX`xBazsoi2zrA0xU1(v+xVXE1mu~;R`W?F(#^-hM(j%gLC^TNuC`r-XRBm@~ zeQf3@&0OH$v~O_c$1PW-hc7}^l%B>)TX@NzQl4km>b^d6tzOV=Emg+!t{SwDP9BPe z7MHAS{s}i*A1F4$bwBrAZ~Qh_XIWq8zmzM;T!a=-5>GVg;eod{7I%9^0%65-Do3sg zsN~b#lzg4odGH)~_`k_fj^3UI>`yM-j8+ZG`$nZy@Kc=gTE&;zYSk+ZY3YQCgW-A3 zmF#4E`PXWhuV^l{H4uF{&|7PNs7b&37f%2rZ`14M(`z!{y8cMqiS|>9COiH6b9r#u zfy=~Z#&@~zxray5^YhG+G3ng(%X!_WVlg$iY(AH`&MAlWu>`;aDxp)^z5lQ_koP77(s~ zJ!bOorlVU;mfzT%Db=5kO|>LWm6}1ulc^Wkubmd!pWtRNGi9JR`nb_rbku1d=RN}g zu_<4JKG_q^6Y+nKxvG5sda0$`E~A~yR{ix@vPI(8q2W#jl@A$@(^sDk_ylGj%2v;L zXMIQfc|s!fagAk$-hNr)61~pDwF;%m{*y*pl~zvEW1*EvNfP_Cm%dH5tgrlDM)6w@@a4Kiu}6Tj`yDDhUv{9x88ky^Yc;b!KG=4#a#n!yK0L4b}lYO;bT6ECe?dh z9goU$HdvP{cdBgZz8CYzEr$M$N|aJYr5s5)+aBZ6ptA1KqRz2=-E3Gap(D*`vyAF( zV93;n!o2Cz?K;^YUsGD|EUuq+!uqdMkBpCQYdhshIV0{#mEn80OI}+yiqxN=IUCw5 z%$t!jQr13}ogljCI9o}^H{7T)(bqQ6)WmEvM^#^~YCU|)(_QS_6K(>}<Ef$IZ9b4Ym31@S8J7Dn8k#({)C7PQ<+PRwvnXhvTnGp8D6-%j9{h$k5oC_H46- zGWb$NMv{B`J#t=gcz0p(o0b!gDNmbJ9~vu%Z}g#~{O_(df$e?ke}9~M>eGLczkDS9 z&tBWCC;V@pSEAJNiVB{u(77iJ)=n$W1BBj9^!`g!zR(zK!qumr`}4@j=9lRr)uJKo7HbgdR<4!us|+toc9$q)8A#`HKkIk`1|o;B&tb(hd*`}8WQ@uh+C{x_k2 z3WDF1B`&kZNtKn&3oHNT+$-+>eO+Ybt(GB?0>{;n-Y74Mp3FOCp0;jI0!ediVJ5<@ zYqh3cl&qT9+2wP43a=5K5ToMERO9=1cXqs&;V-6btu|dv#E37>o<`h=FR@^x?4OOG z*mrt;=h<&T`1g#x_3ZlWE`2|&LStzZcgy4SQsK8oPc_E)L>p%1xZz^G1BtZXntNR} zIPV2`xaTC~-kKY>Gc*k2{q>PAj@-G#Fo#@gy8O+g5i^!`+Pil3@DEw7SFucMV2s0RA7fy^Nge3!0_GLiGP->l)iD=e7CQk z{uSB2ED?7=w5BuXRkq54v4ZEyx6ulM!urCOMJ6P7M8w6v&CgYEy!vt1;!q9}o;DzN zOSwn%6cyPi_K08oU?XRB@<2yP4I}0m4D!xTExiTbe@g0+J3xGc!)4NQ{rXjIMuCW= ztdpy(g?GTL`sXGlOjeiOW90tyS9g!8!McVKeMR9Fu?zm%N9FnIwQuqY+I^_v^{m|= zJe1yRH{S5sQtED1Cy^yff&-k9R2@%`sb7$xf1&aQi!( zYeDja{s{kxtrCeVdM9JRMyBV4M8l0)k~fu!!&4@|n%Cr9{B=o^IkaYWy`jB%WLAoR zm?F{J#WUiR*TX+HS2C|Gk1E{}dlCQfap&dlAyX^UtF#QKowGX+pPVtTNs!rdZT}GW zVfN+fiJ~^9%aw+<-MKwuy+t3YE_^YM``AiXO<7CIW8E8YL!9}3khk`kGK0DPGn)Fg z856TLZl~WVljv3k_Qe<8G$Wm0S$`ezJtD@=JwNm_??q?L`A_b)x@&Q|lS1X~osuG= z5+^#G)^FUbl)s~AWQZvxy?2o}4^eL7<)vvkInH?_E&9xjh)0LzbAR|;Adt@;w`{WXwzq>Jux|3Fu~utUtJpSduKWNu6Z9{9NEiwA})S0?^?m)Y0{}rF6#X$7A!-OpNv8rLF<7Z z-3rK+ryIjps2s;RUVe3{KJK1Vf2nof_{XPWs@;DHl19U{@`Sy3=KEXnlGcSF#*{9< zFR+j=GVfu?{jvE(B(`-Wy4ZQcYr$Vu&F-0@*MGZ%>)?}+;H1KM9;oSC&e{K4VRdNh zum6}%?zL(V=25oZ1Rpl3%u@)(w^{c1)7BEl$guiraD?Z<%cmo!V?1Mz)pjuU|7{6e z``suxn$-}JbbuwgJA64YaeY;Bkl`?sxRjzoeb}{W{$GwPpDS7ZE@pU?yc+Yjw-p@= z{bOj-*&tu~xn`|4aO6nrElgWQTi=l|tW(ElztyGwmrZ&l}6K zdv#}j(X}{D{Q-6s$@N)r#eGAX{><;H1NQIBG81;2NlOaa_bsm7w4M4AyqWY!+v&!j z0nfDzUCZlc@?1tGsDHAJHSM13&3ZE!$`al^@oOkC-SYK&?|(mQ2S3X{G6= zRBgHHrkNA}MM!C3L2P~TyLV5PpwmqHZx=>Ai6U#JmfX;5(N-*s3CxTMoQh$Xw#AaB zTT-4&|9)S$ACy-Kt8Pr>SYBQxPZIAQCoCGsGA8Uf-X^o~>vax%{ZhZ|&HMOwf8XS} z*yawjO4gSVl6)SSwR?~JB;f4AzLQEKDp{x0S5&y=qU zqx^O%CV`wq($)H5_m@c5f!?0qF4ga5W@-m(7{2jO`n2T*j z692?4;gU=Rt9=UIGo#&2p@|7e-v5@3*8X;`{|jw0^DWliy0>21c9-*uiYwDSY~Nn= zF^oyc>XEYl1#8(H6Mikdb0_|HlW4(iQ>}28tdgFrKP2W7Q zc}%~*UgDHI|A`p-#-N8HtTvKMDy%C% z>Ps2c@H03u!P@%mH(3~&m>45nA15ee>YmN&uB@zFI-W{Q&ODze@$0Cfy#uupCO_-N z)(bdTBaGTh;bYXBLrwSVydZo{!aK(@n2$VhZvR?fOZ_z()3!H6ei<{L3O z<^4=|twk9f^s+zy30c2tcqKAay)oDEx~1K?KK*3r>N{^yF|Xo*+(%0HdzGi=D$04z z9T!~JXxiJSNM>Xg*?n<-R;uatYVW|nKw+UenZRRhJ7Mn&=|c79B>}uK;19l~dSBHM zu1;V76E#VeL|;FrlWl57TG2of!4_8h;xA*>JxGH7T736@{q&kAMS``hcfL&3rgfs#B(`huHH4)%qusx=$a=y; zYX+a%xG}FRm3Z*YtVMUm$)XWwwXKD3`h7Y%=W4CaRN{QLuSoL#F1w$_5KF!ixtLTjhJNG1PZZmK3G?=$ckCusF>h%b@J_ zM18^HAA5LL1JcEOoP868Sk_%F{%?XzbMp1;mzHv`OuqDeC{{Nb5d1aldwc9i%XC@O z;_+#3*VO@!gvRgtSS~MxyFN*O@PvxwHfLV@Nqw=&Z_kw9hR(ckf3=?S0x9JW$X`uj zawd9mo;Pox{tyU{1LXWoAt$pyufGZ2I3l|bz?k)>m~8F1jC=%z%{pJBS?b`RA>5ei zpxfyv3U5Q~6k`rHTXnp$4ltE8jXX&g8J65h*U(N5pCMezaxoIBU@+0vE zWK$&xeWO>(qQAbCBeC1>lpgoy$JZB@V?N&}hL$VE4w8_QlfN&t6=wg|7?AZLyM^@x z(cNEWzyA(aGCG?%l9L651U>E3YmB2m6Yg%N0WRb`|0(>Z#k$YhGe4#UKOOgLOCOdMF{iisdhMx`>zM zaI35le)ze{ry!-Y53>P6^3F1SNpRMsVJnu>qJ@tWQqLxy$h5?dgiU7;Hv}E|nMB`y@yTO)yt+dG zPNr)N-6g*#9c3M3T5~IJW{}I%OFiaLEHj}%y70yH={NIkgmBm5eSd68tod}*2TI?w z48N%_uwD*px)tK}Z*2a)`xTNVaF1(a_v5;K#-GBcXTs1xGmu^MgeUF*aqraX$p%{c zg|wWK1jnK;SbUvmXXnzUbf23U3&MNzj~JNm7sdcg{}?JR#2nBh9-KdBJ_IjP;+=(% zbp}!qh9V5XU`Py+_AM|-p{MzY)h#g8ha~h zsXeT`%m0v8Ce2fFue|65mGA5J>?Nx+Gc$UXny1d;LF(E&H)*lxooRo_Zf0d_S-M;F5N#MIB zB9bsNy)5->NI6g6Ms)PAW|a)bSnW#w&+}U27(*`1Kq1Xy>YD~2-f?CU?)l6?NYcoZS zLo6|6&y7nD&Nk3#K0$RB6hoQp@rc7lgQoD6wb0GhV=~RE-L|!YWp!>=WC{1rFb_{p zSHCMk%FUdzcY^BULn=FIm6!SY#HB30_k81La1wJ)*D-W&?$)f<;)E52Yd&XOM*Nn-7m4uVT^Evv>&3a<^3NBEzrNSEe9?0KXZ37q z$}ua^(LQCl7t&vo;`hYk1svwmKv7CA)| zcI&Y4saX0mre=gDwC9`U#$s45WeBnJM%avraxLji4`V4;4-geWv@Fdqk@{|76nT zVOm;q^Nh2t@D(ukGrY}V?oKO0GZE`*L zB#N>EAJ(<6$?u<(-rHu|OU(N6Q0G!)iv;uPz?k8u&Qt6^&8zn;NO3`8c$C`p#0y=v zjQgP{+^zVTUc_)4)IJKhVa5|2BfxiRP~A+P)k{EDKSFcBPLYa}d|R6Ywe-iVtfwDS8d=|;)Z#w`(Ze?q|UDTuIJ+}o>b z0-BFb#BDrH!Vl3npVh{2@_kk7nkjSsndOVssk9gO+1jwg8)~!=NRfp}7ODN|KU4iO zH~8tXYdO!YMYV6(AD)jrg?B5n@Kyf56?kncuXyeY3C}1R85c1Re#nnY-@I=Lq*3hc z8j!p2)XF=x+L?8tH#Xa@#INb*15EW*tK}Br()B|xZVIwfW2&o_>z(%myJgpfy^Z2~ zbRzJ1ZMsiK>~9}Mb=|Wb=Xp+Df7TG>8bg0e;1s?RG+F5syX4REy%SP@v!3=OX^+e) zxWnLMlGJ0*HJ3?m1|G!N+1h;vqCq8@dGV}BQ1H?W=KEC8U0etrs{0idxF~BwR*xu@$+@NZimJ%wQ77-!{Np; z%9h?#rxjn@L%TC@QE^KDUAOg@aR=S(DP#V4@g$DE2 z$G+~rzu6k^VASql);gekUco$Vqc1L@v+RM&dQt9z9LSm>e$?1`T$g<@vvcpO)$v~j zc6*)&P0?@__Xg!M!)?>8Ce)wYLEMoBe8f$+c)z!Xj~q%#0FnGx=m!HpQ=4mQePEX6N$yoor>0#3Z3s2>ryF2Q( z9*$>C?x?Po>s{V0as0ijHGh7Mf%!<8nKT(J2&JIMGu<+r2UnUK4tz8Nkx4^8;u zI3CDd5XNu1D;GK&9qIMB$1%ZGr2e((+LQry;r-OATj*g;{i~-Ldh@LX*{vG_PJFl% z(@b+^sb^k``sp{1GvBmX7mm@o-j40;>PROxeVU{2{0l>tYZKc(r59!&&oP_vhdOQ7Unh#M;nS8#Jlu+$FVK5P)laz4Y-n2R2`_GR>HCKff&+$0BKE){A&pCao$=h;%$YuScw%ecng5JG-i&EwH zt`6`=THhM%w*T156!YHRkUDN!)lJYfeDEfB@spB~N~W_9=D&Z9EbSa>GrpI#f@`$- zB#b`S)GrV^Yfxe($nIMLo#S6DQG3(B5-T1_3ODGT#cG+Bs&tg?^9mLIr6b!i*4{wp z&@(Q83MQcHVg4guk{)fz3k;W^$U5f)|0r9%IaQLYj&wQdUD?iqedn`wb?LB73(&Hu zWJ&UR|E5Dqc{zM>Wnyiv!rkyFth?X>)gjEi$-8K&mzG4cbO!AVi}aMC@#QP@EX`?W zYZWWb+ehbn3&t4f$0tNRmh6(9^hs?)YD5jz?JvVZi)4K?}_|ybIN`F-kc25Wv8dUBZrRSqM}Uqo$o#PYdLz}{@f(BG8F3VwZ3@!<$LAj zV|n$S z&@J!P8mX|R&SJP7BX(jMT7Q3v@-%sy3XpT2H7CHGJLmL;NO{G3j-O9VA6r`+s5}G=OH39vg8kSq%grmnF-dAD%&Z6e_ zoin{si?2pY`Fd>n^8NeDY!RGQ0Vn*-(zQfmVky~R(NRbxqKWNvoYi|trFVb$TN<Y&R?fcP)<_KcM?M z$00foe!KvnBE1J+xrkE4M9#XU9d zPK_d)I_X6xv6@?Ni&CVcCkkHSBia=TE?Y6-!7lON416LJIwg)E(xn>mh${NHr>chV zq4C9^^DN)rt$WlMrCF|5$BhtA9$mzAJN(Ok!-goO(M9mwLav2XQJpK|$q@>XAV5rp z^MD9$7}u;mpJLj&7{ban_*>hE89|I|o}muWUuVyr!Ns2$sU>ZYc*ZnBDVov#%Za$s zGV0`7lFn%+hmwS=u#oHaM}LX63ZgK)5wz_^nZzfkZAZ+Oj9Zi7iEL!*V5NfPBai1> zac?61|KgrBwTZ>OgXgta;lj~y;barMV@9{RkdpKlhyPZNvv|20)t$&VcKeBmYO!_K z) zQJgbo^Q1tuLqiugX=0f;b{;4D#u*QNjId13yF%x@pnrv>aJ zd`~Ucac%JgCo$E-#!*Tm(|u)(p=OtSK)#BtYd;%A@Q@cxBU@knC|BOKkegd#Vo?-6 z`WCvkU(kNfJQ}HF2;+8}jt`T$G0!^*Kz5uEoF-YuuGoLWCkj1=*~4um&^#2_Mgc zYpydnAqbW!1I^-%mkGH}v8lV7*^4WgOgiKK+1daT;qW}z3|%6|btj{5%$FQSu-*y@`VM(&sz)<6JOwJppKp4S6cZ)}b;hORvf)QQlLaNw)r zo$y>AoEi0Ak*KCZ^ku&cFz}FqBRIq>KA-Z>yTkE9%2mF|c#kGUy z&!EInz_XsiJ7zJZ;0*{0W!)kN2?vhcCC0-( zUyPvG5{Tq3ffVYKX5Xgjy$ur9MXBq;Z^_o<4Ta+h6jQ+Ydx_;(372~@hf^M5+O$-R zLd+tEDK0V-B38qLTaObP*YEOhU1kD8jV%JG=|qF+m~aBC=X#;>?lsvT!#_C2bQ6Oa4)Ed_-;L?U7AZbA@*`d#y9*4i9m-4Z&|X z-?@SU3lpGHGQwiG{<~>f>N~uJVqvvyeg1x*L5q)8% z=0GMwB;_Z8?B+F$#ddRlP9XnN3(FSwhtY?!G^~T^KFpGPuh%E7FNOY`jpX`JT3R|? zwhT%2LXU#04{;9vjq?q!dE%NzlD?O%MtH3J695~EIZ4iWxlIUNG4YmiMFWu`+>=tz zNQlH%9DA^Nb?LUfJ6|R4Ixdi3t?2L(Y{BZOAU>7|wdnRMA^_FQt)vqxe{d)1%#|>) z@K0rcH)^T!0hEPMH=uWg5S{uzhl7$cB{(%R0!0+ zU2EWWZk~(;)1F^uD7^*0yP@9p2`cl+FJIv2?T&o1&MqYhX_KD3MP-1VfZ{2+1wDb3 zy7NCL$m~AhDrw_QhhmuWFLcW3=A`#&sZ*e#=~%R7Am>FZVSV)>R9^aRxT7ox?ke>gtK zY)7cFmv)_Ss;c>uJS`B!`SLE*yjabS+rgA^?gbSk#gSbO@>SpySEUqhcy2-U1RP;~ z0)C@7d-UvXCHM#L(pqM9bD?|_Xm#TPs6$Jp{4%^-rmW1njGFDx`K(ykH|Pndmb={0 z6S%3z{&ND=t`khC&xapovf9+LF)dgG)=Vw?KT7zz3#k5=NP{h@N-a0FZ0wAl@KLSs zKPR~DKH&oCNz1v^EiEUYuYfvyaTS2Ovo7{)*L$H@_X*@bQFKVz(lRb~#$Gx?zWW4R zScW;FBiTzpD7nRROUq8-AU+GxLlV1Xn)!H_Ohv1k9XMN@x3ugO1HX0QUvvjr+gejS zx=U*X51#Y}8J+?Zpea@EAYiz>Lv`>!Q?}aWN-||gPnuB~m~F}ki#`ouOd6D z#O~tgd3CeCyg5D01x*QzQP*S5a#d>g@m#wD&#$UxRnC?xTQexSh@NnC=)Wg~?z%ug zRr5u8maPl)6T#$itHse6zGFF^sNkFY%E@23fpT_{HPT?7-l(s#dvCS^q`QZPA@^T6-I%(9JRZ(}_rNhkrAC~5K z0fU6qkA{EgJ^YU5N5~CS;$oj?QGdOIyxmSaxT^W@(UwK{mNm{HX~)48%6-sJTkjn2 z5BoL;cD}lKM(z#m7LX1Cv)DZaHtj20SsilyV(q38&`cU_H{z%&Kt0 zPHfKEg>4?%^Qkljx-dmFa$;Yjp!_qN23On>634C!K*@IYQi{~}1<;yJ`Utbm?h7EW zZ)`)VEpB3wm~wj`@!$gM;cAHsk*oWQqxr#@uaIY9dVs?AdoeC+FILB?^JxPx$F z!|v2CSTl>c&^vr<-=&WCnT)^p)cQ?B@W=5$mn>B*^rp}(0K-G z2_Q;(JoQgzknu7QGuC?+RF{fMby#PgP{@x=@c>9ab&j)JFh;7mZlOkKCs_HbhfpV#@Mf#5Y~=Ip`=B4Z?bg7>)g?bg9X&CR0)?6o8J(rvRwz znL(iV4J*Nwt{X^V<^8?F>{8;5#2blA9r`Owu6@)m{g`MXBCUNqwJS4-)eA7!C5hWc zj7waL@mtgxtL4G;^e$rvTh!^RmiZ^`&O z5M?e{VeaC)Q?FUi=j*xZ!$f^vFI?9AAVMO8$&Uo2l7TF($s$`c0c6stt~2-`P@ALR zRfV8r2Z4UQxMhF?hixf3Easf$rkRf?cn~n#`<;R_kYNVE#SD-+L5=S4ovF zQ+ZxSj0ujX8l(%}RRtk5JK(nQu^)eP5!I!Ne8m8=ENCJrBNQB!X#d$CCLJ3oK^*FnB9B_SjV;ixcXfkExsixH823O9lAx{xi z=byDj^MwMM$jq#Fmw3}&$`iaZINfu(Z(Sz!QTfynB| zU1MWblAF0=3?$cCXP?-UJhdpAp#39KB9t2=VsZ$`J>q8Xx=jBnVAH(%Wp>E1M<$}= z-n0Tau5-MU2e@M5)gU+EV*jfuKf?wLxN@VL2u0N7VeLzdukM2tJdU7z@ieIG{HAM} z5!|77ojL*NiN~e@J>GNsC_^~yc!9m-Ad!cH_&`mOoBcoU>M2MmRxGUH;1x z;Ons1S=&I7lmj5OCtU1Ba_9jYPN{s)R>GDWd(Bu^fcbI_8>6J)S#Lq%u5VEg6M&wNTm`!YS{L%|dRn4P_vJRvG|{5bI-c}B{Ipu^z^%G8a$I2s=Zw%Kx# ze&A|cSAArm(>I=y| z4=Ql5f#n{-$bR40i;}~JyxmTIr_7ljr!^2AH1cJai$8{AD@-F>A zRg{V-TNhAq%A$MGk$h=~t)2#gHoUxwD(V5cN41Jpp;OP_eCuc#H9jc zg-jLvC#onVC>4ZP(Jb(F(CvKj8&C~NuzsFD#(S#ZL9}Pl|M3`Ew6I!x6aK;m`Ns4@V%_O z7Y~bxpggZ8{{;mVC8kOho!+%Pf9fjA^DsTtBtf=48+%c5((2n>8S5*chRB(k3Wm7o z8~wmm#6MgHG2V-*`V>L=6zuxbIeGy>uz>k)VKyGSs!t$%jr1TAz!$m~9S;NdZ{^T* zk6ew5%uYY1Vq+u`JbRE3p;48$RianB3)AC?pwtJUsm4sQr%)=`DuD^XQn1CwUK}BK z0s3Z1g&klNq_SpyoX9B1Frmk#A81SMe_I-5i|`HChQr#A+e9)OB&lTl!7*%*V~wEv z1}eslAGfzHl0bl*)ci4-Sq4ds_hn@SYW4`q_$NVKiV&n}>PSAT0$<@|N54`j*!qDj zT18OWfXCnRr?SJ_wkUs%gO1sh|8XN5>iG0qoe`sM2Z<9cb@i2s95DGyy5AO-yO@OI= zF>QNbUqv~=0UqHnM)qtSiIe(fxnj4Yy8|)AegrXO!!JqhyNR?AAk1k&{nB;*B|so8 z8QnxVTCRFkMahWDNVv}bItUxW5soGQ9lt(jwvJkI(T#P$`m?zsA7q%rVa*g}>?jxe z%MF>!>;-zyUy)U-RZ&K;0%Hd-RcaBG5y_h<_`2hl4Fsr2hv-N-KTtA%o<^`o;i%N0 z&FR_WrY9AU094p<)2mXhBdJr{oF3V>!^0{+CiW9;APVLF@QNusTnxvKBUdUK1Ho2g zm~iX}RGU-q+{8TP2- zB)O|9zX~D+$9Wel716jp8{qzco#Y(AfT_;kof|ec8Pe$AX6R4%S#ojuy?&|mq*IE% zl_K#~IHvsN>E~rPm`VYfs^JDaH~rcD z2AaFM5o%7LH!3yAPX)pLt<431t;-v1DbmXr!;k1lW~7Bi4Q@Pq@W`0tv$3rqWk{dx z6cNIc7Q`xoiHL^NWg{pFA^s(EF6*)%RG>h`WEIf@{uJGd8~g0GUDMf#c;dt$!t*D^ zh<%RbRkX{A+`Ml81L&m&vF^u2gly1*7y}Zll@JIvSMS*ABZ4Bv@g)hh}Lm|(?lS&Ur+$KDLEB?JQBjng!3+`b{l(f)EMix zy^E|l2VIyT9izT)r7-8n4W!(pjs(Ix8mUX)P3 z^md$qhiNMw##Z#_vN2{2Tn2uW>1C{-bprfAYIQ*g_`&=w6XgtH6$XBUxl=>9aeFuT zsov(Ns=%D1OPs&zmHFweXuSip16;wimWPpCKf$|_T&ZZ-OG^z(CdaY0x8tZCp(kpC z!GgcS&;vGYaCOH9RpswKIY#8;<8SNlcTfl#p%_BQ5@b;4sX#A-W(gW*XI>opLE?sH zL7bQ`2XP1B*h0j1aAn&-a6bAkDUphqk8_}{?Z=-Jq=@!;dYR}5H9cUaRZYJ6D9kmo zn`Rs(U>(w; zbtFsafCj#h%AFQ6edLd|evFOF8>4!Z8p?e(LiBYnyJL4ZCyTo5q^F4$G&g;D)o zpsygoO)!;*-HwnQ6;!xj-R52#PeeOB1vIi(4Bt7D+6Zh-z1H_75R4Cj20J%9U4Y75~#}$p>n@S zUjfhtxsUVgu_FY)qikJ-P=@Zsv9(iuB}=eZ@bmao9F-M0P^m+Q_zDqAK5nM=EskW>EbK;3FJiZuiNhi z(O3ob8@~wXZod0+pdw>M|3(62vbh%}lVNS8_em6PBz>PR4k(M6GNh1*0E<9F>GAy{HiAq1@Uv>+@o;1?a( zk{wf)kiUE99w|{0I1tzLjXCVayw*umh8f8F@sX?dd7zeZixYui`5ei>H z{E(C&G=Z@t!4NXS3m?%g!?#I5f2u!-?-KnaTp<-Ci4J4i9W#m`L!H*0+0zj2SKKc9 z5^#ql%Htt;U_!QanTKJr3TpD@14Mu(|Aqs7L_bJG&|qB{(Lw}xj^DJWT^)h|ekxMx z)&*l*-}7AQz9Xv8^{gY|lBK^23hM`3=1Q9e=BTZQve`ngXbU9&X%GNMdaDIO7ru>r zk;F&F$(e?z8l)Z#P3%Rpbv!xlR5TG~gn~hCUKh|7C{cQ}ic&QKxEhXVp@J)1+(g-~ zegp9-DpHN+Zs3ajSUPEjGJ+<2nbP!;C|6)lnaO#;Rhsow!m$wSJ`@}oLD1on-UG@( z2VL+ES7E?a>`fxz>NMrwG~f!Z*Uptn03s5B)adyb;Eh$R#AAUHtbaYTz79H-N18TFEqx9iawi2y{a*4uOLB z$05T+N4dy0D9Qx@{7OHWNJDJ%W#exjMUo-C16Kfg$62`r+bux9_r$WnK?Ui9z!l_~ zoe`AHfE*ktqMfYtK<+gT7r{fMjMpkPX1=)bi+r%7x)O8{NS*?ca`ZMZKh$wp9K8-C zYpjs~_GGjGgZv0X2wevpJ*>=*U6ulCHbaMjwTHg@Pb0~MaM;tJ4saE!Q1yPTyDE?H z-@WFHUrpH@1zJ>%XgLnp+A8GachcOyU-=JNbI^%&_*L{T8O1%Yb*cIpLWXe3)8jRA zrw#!us8fQl!|Jd>ifK40V@D`-41`9F$p;q(w!XpH)J{%f0G!DXvH)k+IL;U`goICm zpc;cT7B(s0!J@+D^OIx&?5rd(!xpa8*$7IMX&j}couao8@a0Q&8)T(M87>BM@JZ_Q8G{}cvX6$N=c--K%{Gs)Lc5Bdq{k#Jw#}4H^410-mb;Ri2tp^HG z9>CgG5FyYCMY{rsDv0}arV+4Y&osdWirWv0gDxc6vA~gPKDh0fbMHPfW{tK&?a%Y^ zw^w*b0T(+fE$9SFW2``5l1!-O|m=7>t=rQ1EB=7WTjh_{;SA;(^PA(|8 zQqh(ULaLEKh4dV>0(mHc`pDL2V6f%P^b7F5m4_jq{{9HcZPzmDw1k>^K9q8yRRn zK7b8q&`YzRBG&Qky$>R00U7`XBml&W4r!}hG_ums={(9lOj@>F8cR}h1_x+)@Ly!0 zE$j3k?9B-tb|g9WF+L%F)(5%q3{^D^5ijbtJO`)h;QC64jpVz2eWzZuNS`Oi-1>X zoJcQ#E@oIUgbufC=ymAuSpDnb?$0|b;2lRL2d)c^us9N}F)HvKZ1YWWtPcyqZ{0XH zj{JDcBBe9Ggp=VPHWYA#btH7?f`}nRi9u~W`Sd(I){v~MtX3(LNhYWbK3#%b3#xQn z*9|3i;iuX-dczeuSOwTCq^ zmoHylTzN%HOPgiLw_#yvAZ72ROifQ{eA0OYsiU_J_$l{<{K6o!Y|^%&x^S=J#;65@Db~1ccN=7fmK+A)gUTTX84ar@LyFaG4z`XECtspDgP@+P zs}fpI=pa0kq@2;wv_S%qzBDV&=l$y0+2mWZgU9NPJX~Gh{%vxG$m9!d_a=yk4xn4~ z>Uj|94FYLfEiJ7qLvK5~S1Z-vu+R<#9I{=DP;{hrz|E$(A$>_XY>!LJ^LsbjpY21# zCM!RN5Vy>E9oXd4EojcxJ%@)~(zLl$e4U_Q4klU*C^^05i?w&D7a5HQw}K!Wl5MV= zU;EkKes!D}oRI~X$HoO6hIjCv9OIf8{r=zFiq6|(c>dSh?VauHe)r!%VP z;^N}9`&XTFy3SrOFz^O)mpq>1PLhX@aQL-G(r3sQU}Je06} zhQ|jd6luooxJ*|s-n8GylIDQ1ZXO-4kue^+LW|lBQVeMu6m>}R2|GfZym8`&@4KVN)UnEUG!Xm^3g{oU7p?P@PB=_IUh ze3o%QB2pGM5ufMgP4bBCknZ8Wg+q*nDTlr1T#87XUxF_|o5=wKB^o>KGRWRgaOi5b zd%0#QDG^jDc~^q02T}L*pq{uPHAFgK1H2GW%P{{vFFduc!R;gd^_TbI1L>x_#8a0p zg3#B*dT644@v$9NnG7m0VaFh@au>xxrNKK&kg-6|!29N|h2Klqzs|pozx|f!(0&CH zGzX3k#Q39T=qN01VT}Cizg4GTLcUG9HE6>27&K2FeD~10A2xg=?xm(H$ZC>1|}h3P`4V|-W{-0 z+wcGS>&5}kI`IoSfuk$_%W^nu*>dn^q0J*=7*tDxJ{yb@r18(72YdsF`5iQX0>*Zr zzS;Ki?j3L@e;t4O?H^KDHi{p=h!7U_Qr)-%llp2SsFe@yIs(KKXmcFYflODQ9KHvU z!hjA2eevDkJsh#0DPhbT1Bw{@Lc15fk$@Y<^b;z1adUZ?-iW8;1Tc7(cg zt18rU$N-LY4hKIEJ4u4s!bW**HEg2RD>2EFc^KSW8_E-xqn2#CQJ*ZnGO6e}XpLHL zLU_zDpNM~whQcfIDS$8KIceK19lx8fRS_k=(4<)WYE&HDq!aWBze z)(G>P-N9HrT~CKe%;Iu7zu0En+9%VEE-!IHQ%CiS%4trSMu<5;iD1Uc5TRk6+N}#|@2(;WLNf z=1B39%{C2!=L&o+=!e+VMa*@DmV`c!>2_2>*J{GdEg+2*uXTK$c*0=CNyiv~m>0SG zTMt2+Tbt(6j`y5LcU$9~A7{NKX!T+HwjvS~TSjOeL8+G#&@xa<^ak%xz$>uof57Yn z`0Ushu=KeYK7HEVWdC}f8}ZJFJ{B_Rz7Ewa`e|=;aq%T)2hLF4TbwLLDTUy>`qufW|`FyaI!uccSh_dkm{j~iQij*<`v#zIn&t-vCou@;CRr3@C3 zo$Iw0^IS@<^7@%ZSQSUDuV&B*$Cs{D8>8&X)`u^+qMo)k!y#0! zD_}Q&5o-EyS-B3Y1S0W`#qK4tr$g$NN41{b@F6-xtun;oMYI#(nf=O zr9@6SerW39P&DS$ETU2)3S}ZCCvP{-80D0YV#Kr#zsWk)&|6cdhS035(xjk2Tt2w5 z*aLIFu~F}H4(3`$%}Kap>YUQfCtKw#_8V{X*mO*N?q^lKUtr8}YCA&Q`Qt|y-w}H= z&iftb8W8z>=pDcNIQOv``fI^v67{;Hj=Z8PTjj+MhG zLtj=IvDR3JX&;rKJRDr2Y|5G8I*>I&ty-$1QGdzFCyUpqj!=~85C@BxQ5(aPJ+{pW)9IbYHSG6A z3r?9{00Ye4FN0tkG9Uz&pQlf{nWeosTV$P(0so#W&aD((vh>bAE1DtHyn5|7UBdt- z;5g?9^(Rbksi&#gRXVJrV+f6I1>g}$YfZe#OyXX3w1${57c%W4sOQalb2v;FZ$=&_ zNqy?}zF>3Ri(j2#I$Y-=cEfS5u7|aAVQu;*UBgB{3b)nLk~FWteJmoetCxk%Rxz!e zZ_J2oGyT~J>ln(@c{;JN^$Y*gM3mR&HT~<0-`yXlbtQ(LJuFd@E5e`EyV!C>LeJ4* zBQ3Ta5scEY?J;TdX%{CfPE*v)_Tm5CstAwE(Px!=tn2sX82M>pq8ni>%ujj!qsFYT zUBL~i>;-nyb+HMD;f9e;3De2R(@jF$z%A~|08)~ah1nY)26)aJq|zxZJs!oY3fcWl zLL8_K+hqO{`l+1Jo_fdbm8&9H&-Cco334D8dq^(-)SBp$-3D@TSk+RYYdTT86OUzH z6Z`IJ`wG=Jwug6YhR(SqHTP_kcOvfAt1(7m?&csrTFylhoR|$=Z1h$iaZHALbfqVA z6>YpzvC?_f{iVIFORW!|EbUjbQqxkP>enN2FB-JonpY_@w7b{mx_`QOZ6q&ee0dXp z^bySrzaxxEFs$i^+!JThC(kTA2W!{X0z0|hQ@GjQMONBG-hnqt_J}GrcbW%fhuLOk|J1#jU_wrM}+;wFtC@ zCGL$7+&JfZ^(eW@5!Up~Co8g}GsI{7I$LuhOjZ(dM$`1VwOCy98?{q9hJxO2O@(7_ z*<+k_?A8_tR@t289*q^@)bQ)s{~S~_*Z2&{aL^g5w)bclt6*MoGO%39lFR2Jf}Yj z(GqOcKXVux*9LEk>TQ{8=7G59YsbwcW{n)4XCL*IgJz>o( zx#kScU}i2bO7D2sT2#2{u#yIvBkv0dr%Fg_+;8zv#GEhAr~55?t581Ct;R$;nEv>* z!^b3%;+Y5_{Cv&N^bYiVK1`(F?zhg5(@IX533wdtbKG2HVakTT1pj+Y@bHijwKxoG};M z-H`rex1%X5xoqn*?PGb`_A2)`&?1EwG!ub2T@li&gV)JvnmqyJ_0%ZG*^?+V zI)we$Qzp_&?b^@M-TQP(Ra2|%+L=fl(;{$f%*S;4>8HoY!`E)Lsl!EZg7M-YztBjS zQXqnZt@#@BMKYD&yqF}v-#VW5{yyur+{(OZbhgBPGS&>Hp~5xlIz#XxBEx3yZBZSQ zL5?9XnC|6|NobSP(4u!t=Glw=FjmPCUh7NiXuEZ3G9u`6b#?1f>QkSsDfO$toZtA9 zD<4D>OHk5tK3FS6je=;~TwZ|W6nXS~I{yQ7eMN})`e*b-Vmu6r{#AB&^*72!<+Sh% z!8!yXO}DU0xTmS36Fafo4{56(BmywXXNJ7rl;PTF!TQTy`csRZ9_}Rd%rpJ>yhT*7(Bi-r1?pWNV9ff-NMX z-V=A(Gelx31ea|lf7(XDxdhf&K2gZKJEnAZ2YI+8Q<@Fn6OctE;P%I$cq&qao48fH z3vNl#;Abp>rl=_ABwmtjTdLmWl#fFVyvFlfKLlcBhV$U$cXi@C@}p<%rG%wnFs^lF zHDg}&Ou3w$`T=%JYR_!EmxTpATQC|wy@Z!F0_$U6(ns#K|Odd_M*?)&MYnTAOlzc!@yTK3O3BjA>kGT7pgIKD(m zZ8KDSf{+1UsWW1E{OMN_=R>+M>{H^2YZTfr8u`-17M2Ren(~$ey5||AL@PS+@l84U z__UM|<7~U{TuTGMGe(XJ9ZmVdbMAddQdfX4IP~_VX146%1Kohf+%cXAJ>S+yAkodC zitq@|W2!|fn@U+Nd3{93xSb!h$_bc9$gOAseXVLxiog=si8|iZrJtEbBhA34&^z2QI0PK5J-jvKS zl#|_hC89wxYB7GSQP@8j$=UN}#u>;t=%3vKmEJLqQ{obW#7$IT07@6Ikt*&>{PnKH zo3%|pRhf!q(E*+m%;`ua!DmpT|F7>dX<#UKt&PsGfnSoZx+yG8CK{>(qq$uA=G4n(p~O6? z3yvv#AE-q)5FV~xo0BXu=lk_BoJud5oKTy(DU ztNfv{wHy~GN=rA=18(;MhKH2-q_#FnD6e)1#0udz--7!L6}M&M?flsK?)a?}BA?yW z^nE#MI8M=Y8~`9W;58?ZhazQ zrxk>Pl}7Pfl$|Kurl?(lU)t~4o4AFa$>(wtPBMlG3L;+SM69BNx z^_IZ7$HReZXDfo`O~OZSLH=1PuxWFx8~fTZMCQmK_{t6LsnFMLv?T~!W?H)nT`=b^ zoC|ohzk13BaJl_MqZRG^HA5)Vb=h7JImC)inJMV>h}36 z3SX}lB*KSHI~5WBw2tdj7y&Q>3Y%mtJ`AoeHuU7=55}a-3)`YCD~m2hoy=I1x*2;F zlOpb!?YS|vrFOrzw;2sW!SVwjR59+Z%xTfo;O+0jXz0&T?l>BZEJ^-Si(`H5LM-DK z!x3J-(oTz&4M-)=dz@`&@BA1$n?*sLrDQB#w7yD&txJ%M%VB;+&e65yz`wyzZI>YJ zb;|y7eWE};GXqQ@+>rOF6kBoj>wD6xP{>G@lsFv*2IXYA|Dibsy-*OiV2=s*<$Kg; ziZ8Zvp3?Ws5s4X5n5DnQ3vi>%Ys260E9pE!94nApi8Al;txbE;0CwRsVbLDdI*k=> z&$`oFl)q?Eiu>%x%6|VMcK{b;#}byzM38$DZ&kGKkeGWW!&Nz`@Pozur?F zN2FV#Bh0QT(jG2fUqRktxwK=P5KqBkM zrZcV(8#uwyd2}sB@nAtWOcKv(cRfmo2_d}wlqsk4T@<>79ehp^gy_>Cy*_V~QW*8? zoTFEln8%aB@?J&@-A=)OVBVfGrg2Sz%8W%SbUURjmjy4=4#y3n5sQ)kG#ed0%rE+| z_J?Wr^oN&q7mIyUrqH!@>8;o;$wA!a7`19{i1yqU4kO{{rTU@nP$(Pu#0c}Qj>g^G zR3Zof9|b?ZnlhzY_huaAY71$xQ89C+x&|52r5of+x+E~M3&44($PlyioLVuQRU)$^ zvsh zHw;RAPHm53wNNexy8EqpdUlW5N(Fbs>Z~{SG%}N4c+9TkWKP5Po$J!RbKQ_>KxyaDUR&r)ivPlL*Z6GzYA>+5#*}u^y0rGV zw^6)~YgG$N#_UXPdGR(<-qbmHsIL^;t>8SV5{ zWfE&Q*|GPC_~8!>`ZPK>t+4aIt2+GyI|VM~*#R>kx*X>qHT&_pBW@oHRNmUpOy|RE z4ZA`F0U+>+2zpy>El!_JyLg+kJ22vV3U&!SIn>><7$ttk{R*6>X!-VfIfSl@W;bPC$j4naar%dZxE!xyS@Ak!0 zh_BE4>%6(c@$vXdwRVn3oCbNz#Up_Hwme-~2c*w>A;ZYaj?+o6aJfV8+xCIWen4iL zq1F$%e?}}{TEA67VYCj1VzmR&Hng$<%Q-D2WT4jgd6!;f;ylpuRgpw9i*bSg%8&^#vY2ako>!Cb^^fcj;-eBMdE+_)D3#DC|R5z!E68q3uT0ez5Z9 z0$5>U?c`AVmdp6pesh6-fJ*0mC_+NQH122wmzcQ-*$wJjefkz(L5Kr;_6OTIUjbN& zs(tBSFY@pbb;szd+sEX(`RQkbjj({fTx&@NCU!NlEyy<8k zAWm*v1>$>u3B1tsWmcyx+O!et`2plN$9Hck6rP??C;$qtDYG`7PQeQgKsF5UGyKgD z)coQCP%~p{Fsb4$@lg1FzX}OTl|VX{+86u+noWkNOPvy%Yy4Ry{U0b~^&D4fml7k~ zF=qj8NZ}nCd^|I!DxawjEo>AltU9C8a0m2d$Flj)v^wRh^iB_nH6%FQT?_xwUl2d5 zk6wb(4U8DFeEvPb{n9wFd{Qs?Y#!Vmppy}`lZp4>siEHzw8_QurNy^g4Uj5t(V7L0 z221l>3EH0ep3@VfvEf~^1<|ur!0niNrNoMZ5Od$1JAUDfMxX61<~QBGWJ1;y08CCU zlCAG&4|NdI6W*>hnLd6)Urv2pok70mi|-Ko21P@Dko}G(P7F+ZhUYbSobA4Lrx#F$ zvQ>cv>~_;6{^R6qBh>LC;(~oHN^$h?kFrL@($ORi(IjH9psTe3e9d&)L!x*1Y@)Av zK=vL5G9qZ~vqm{jEaV%z!klQv+n?7I4FfXhYu9&(hGJZ%u}1!2z3eb5Ex{2Re1vE^!>V z`&O*hPn>!(P?Ik{mTwg@Hb|!~%=jzB+8QckK$M3ier?W&#i?t$EZCaA|Ft3y@9O_D z!YMB;GJJGfmb&j0BG?CWZ6R4wjiuuXJvW8`l&AU>;I|$3brY40U$1tYIsET_f%Hd- zk>Hb<2qZ@9kHpWdopgO)pb?MOj1flB2t-FCFB22PybtkR7`zB_5>2dTT8W^m^7Bou z&dMbAmL&CJyPb+)xv`_ye`!$4O6*v#HS!V8ar1Z8mYECp@;Cj*+cnyKGf+;vUIg{} z4rT3qC}}SqmA$JoGgNN3r-Ji)K@8|(~iHkc>&5W2HMXm4+`5Wpb`^eqCF9+l)@ux2@!wDy^KS0VDhV= zXz{0W-mdOJ%<3`5&ii-j);|FU1=~cTzG)7n)d+wO0dq`6tv~T8fyXI`-w*miN}KRg zX`^+x7<^Da5Z&EFW3Yf0K>h$ABT2S3zOmJkiSFwFVSGH2LL(^pp^K+7op1PiFnO>F zB2w220$1ls%p@19=ngz3E4ILvTjalj1mbA0>e(aW@nqHU+R%rShTEE|DkI2hXeysQ zC=(7J$l;+SV5%?|eR<^71Zu$0)T^`=tdGg{7_Nr#H^H2s$7oKf}i>q(rV&2xK!mypQm(BmCbzm1gxavxY zy{q>AH}Ve*3Yd=fjs2bY%*YX0{nLZDj+B=-DcQ15_KnI7zv^%Kau&(KkbUkwWAuox zi@iVg7|fgMJZ*5H5(R=`eT}OV>)!5PYt?@lQUC6CD{L0!-!*FqsRlf{1UjO$QZ5gg_irDL|>v=Kc9VR+QD8 z9#pO~8;Txcdd7Jo9yy>|aA^aG;Jb)H5LCo3Fw9Q>>x1QhP#u@A@>%V|S8=Ix#m?BR zPWRF@Q$F|ul6C20+sCC;g;)vxZ&i31%h@0ukyw-(9UgLBZaCGuE!awrFDnFu}frd*y(0DN&ajg zi1tv8n{mGlz*CTvK=F6otHKX@1zieqCk>H(PBaUP7-o)*t$Y zA>+!E1TUepkDV>C)kd-Bk1MKv64C*~d6Y<{6Nqc)cH$7Xa8qYDC}-#vICp}|JNS#F z)|a9;(LHce3->ISDSe1a9sTB7x1H6xzW%1I(sTZUa1P!_zdq~-==VG+;Fy;NrIB7m zN{Ut-=`$XA?(3_V(jSkzL(m>)2XD<{w%VpCR@Rz4qxF__ZeQu|WpA*^qvLUN%P05M z7w~iO_Qzg;dH)U%B9-DT{%&2Izc{oG`Yfd4^js{ER^v! zlJwt3NwNl|AcP=RxSU~Kvw7(giXP*sC2Bk#Ai+$3=!Q&KQ<)5)59y!r0`^UxX)jE% z9AuQs!v&4ZL1GYDW^rXa4Ujtc#{Oq)W(+9&isX7HMLfP|!sO9Wjr{Ahp7Uj06z>iZ; zu52!NAFzK;4!NgVbVB@HTL2$Hn)i@kip0HR3{;VEH@dP|BSx_QvNQ_hP)n0J-%Ml> zZk{uqMrAt(_qraYvD0zCL2(A9PAX`-q_mR25oWZ~J$oN9u2vVmz>(&)y&w{(5)2=F zaj>Af`wJrbe88podOZd%FneN}r>>~>>L^)oaKUJ$7vVhAml)anWYr**UpIy<*_4#9 zSsvHxzIHtC!s(M3ynW$m?CYDH)SglkccW{Zqme`~nQOHHPJmT|ct5wKDcuzkQ=&yCKG+u;8;1ln$3zy@F$7#lKxk??{k(ie$rpJR zft{J*GNyAn#nic-eIQ{DSN8wfY==t61 zDT$WAuEpR60^U@Aqwex(PG@Wjc0REk)%#gGx|j~B!;npT4b)V}#C3*OFk0z=Jefeg zI*NeH<;M(l^rlCUia*?O3zg_%xMSdmO$slrVQg|56poo0mroz8CF=YiYf(Q~i*tD1 zI5W!F!^njnA5ol~`NY9!v&0JxYNue{^7Ww-(j$$4J+YE}Q+j`v-I>`-8MMki2U|El z0(Kdjmv`M0H~n1FdV38pF6Rp~q73wN359%61I|feaN8v%pb9#l%yecaNPFw;7k_0; zKM%mx`VWun(0zJByxPLFX+uk4|~8q&}=T= zJ-<;z&Q>64<`dgG)U)9qb=FG3kxME2>G($qE~sq@x{DTASI?ZDTGkT)L!PUZ2gupp zQl+vEB$|wIlPhbFx((tXj>>VzXnUvOqycBUGewuaF9{C1LQvH<;A)vkEjWi-^@VCcP6Tmt9U zD2>-Wzc5IF;yv{S{511K+vjIdE7suxmQ&&&Qg@%gZncyPp?5(1JGbyP<{433GU|i~ z6g0}1?wH0YSv=!*jJv(poFm$Aufqa9KUC+iU#|9&5`{v)O?>j$|ysN1Jf#O>8%6}Q?*-NwZBXF9Jj8kwiPrXJj4TD*n_AxARk8c(rTBk8caZCh*_<=-Sz-nN|}o<^GQCy-NPqO_rpeeZ5L!cj9w8lSftHvpHmBOlRo7=JD ziLjHEUrIA~D&jzLK%HArXS)oQ=|#_R69|gn)BJw6>F0)<)&NlGI5DVfn%Gw>+Gjc^ z7LRUFL4WQCp|3D%Zr(Oy)_SAuITZ1874yJ{OdfBFLZgt{CYdY1PDHOm?YoNkPXB9| zLk`sttRV}_ZlkR-eD?>eiQI=Zzn%j+{&iP7Pca7tS~Hq6g5S}+!8H-v}C-#BhRo@0g67@F9Q5T&KJ*7D;>$rcLCa@|#snM0SFSYt z4304`U~lK9<}4+s&Hc>jsqbmFt#cj715;j8hV+3)KX_#L$Y#(xy)rWxj%~2h(RBXS zavNv2+EPa)Td!R$ho>S6R>Tt(!Q@0r#L#^6&y9Nf z94bQgjwKFCY&Dz)mOyi5*O(q#nexopf!{V}BELWSQ}Xk_*j8IjR4Vlj?JLu)4$#M; zkpDLkC4)zlvSU3FV1y2|NWPG4NN#Ax+JPya;UcFj_0*Y!rLONkmvZ#gvJ`t?sMeK; z*=4GjKcm;&a~Q9D{8oi~K70)H#~a0tr50>D3-Q~{g#u&Se`V(NpGI?Wj!=q``oL~Shjy@G!s3;EFB@s*@fm55Z z$KqGo>!Cl2RloKsCONgSvRwq(DDULOHD~3rQ9UMzJi{j4`cO826@wf}EH&OEZmX>l zu{xGE+s*}jM*ffTpNlE}mR zW(7=LVw02QVoj&bBDX$Kuppay((#zshDtjFBVl~#Jk(ByQ-w^VL~5{l;M7#X6a_uN z3xE_q@g77x2g@G@YECM2R59Rt(3ZXW$7J2d8@ZZprRo!t9B#@FV&hW9y!a9*1YNzb z>Yws6y91oVtF=>{t%yROW7ES0=$yg0R>7(v9~vvB4Cd@mYS5f6=qXr@t55(Gk)Fg| z?E4M%s8%bQQ?xHl+RM5mw`YT_liB#kKQJzn>TknUMWdioy0DbUn$?RRcVfB(dPpe( zaRs)sQq;ZRMlW3^NMBxk=2;XZ#lbsh1Jc%1*Pq&g?qgd!wS6llYtf z)ULF;^Z>e!_aCnn`#R*8ibNGrZVVqLxPR!WUv)A5akt)@VI?u)0u1IG$$-cx7MNSf zOfP%%Mm%b)je@)%wDt{ZMc*}s4nMceIYSJCF zsoPsE>u#NL}3rOoZ>TRTT zw%Bb2+md1vG>?hlCCi%- zC|rKa#yB)N>}e^3{&2wqL;~jo!_&&F1S+xTgsna>@XJK14aea&kO?84&aK?CZ~0IT z&5fmFzW|Za+T4Nwv&$$kLALqmrx=nnc<8pgn4i8_Gr`(2AI4rAHDk=7!faZdhcz4Q|uZVf#EoI z%Iz6mgC(xPB48QrDAoE)?okkEuX4smUmDBHP30hHn$^X`%&sS2bO1BSWg1~rT5{6P zlj}5{oMeNKR6d3Rcd@=Br6eg%oUO)c+Xe=9BN)@+z5%S~D8p32w4z$YD${T8c?K|y z(g)nnKWo)wqra;hO_eAEO20goL|z%oI3;6Z9>=a5Bymc1lt@j#q7-!ecq4~tXS-K%w zN+{tT_z_}$D4}gfJEh-naiQLE>%nsG?D7d(D78_h{RTlpf8Y<8^lTp{y$o0w`WZMp z-l$s0K@oqsUd#=t0{yJ_Jo!JaDc>mb!z9BhVXcXsQDTWy@Sutw$;FixR-I11J-Q)Xo!_ z-MxYoBGZHy7_S_^WjNL5olANI=AFgs)h8(80QlHU3OT`q?WiuB0;0OnW&MLO$y;M1 zBOm+Ccf1QW0RN+TwUFA*SGu`6xlulOvh(cXarU)2odkOLjO##%SQqLT)^E~njb!NE z2QZ`V)o;N#=YQ^PLNqGxK?q*DrGq^J_&XX7d8X={b9GX0qn3YY=65&-^{*b%JuM@} zqDNY}<4s_`_3QjdLs!f=`}H?PsIApubW1;DX02gop$?9|VSYDfUg3k{BrY$}ZpWt;Zt|)HPHZ?lftCo@k^0Ba> z4_zEO#hJ9O_V6NHT)WRbqMOZEEdqZX64S|VheDFHz=s;NY!tRNN_Z5XxAxWU`(-d~ zI>1qTxwl!<*gg`#we-(?A40)*q3zv~{X9Y(kgDsg^oflIIt@$;N|liBx57cMKzt72 znSpoQ6wV@fPwe|KhS>KN6tqHYBo*Ugz-;r~)NqeSwpbA2GqSPnWE_fe;>Nt%Gs*;?w z-o?S1_G1y7Ri0mtkUqTuq7)Oj!9w}=%v0!Q3uwD>eE(eA@4+Tv4Y1v&(yOPZ_lP0wVMMQyF5%mOfJ~MF3@haXe^Hi^c_vdBhZ6-^BDY zmTnX!upc5024+=3C3+uddb@=+7qX_uQC0&S7R)zD3I%BWy14770-^gMcXxH7YFlRS z`{lqp8cS%TF}_g1t*GNKS=>1o<=ffq-P$GVMqm!$9rG9bdecTq;3@W`6tOQrcuaoZ zcX~}QnUKHF=J9g#Dq+>yQ`~IT;XJgn38rYY@;>zvXnnZ-B@qb%vVYeKc1{YGczZZd zm^Bcm4G?FUOzQ5;Bq*6N?T`*`?(1NRuu-zN)4{(J5zxr=U`pDy+Rg%6<)zsEF7o@W zk%JwiB)3b#QV}ntNZV%B&QH>#qH^a56azI21sJb;%I3MsuFU^xN>b7r%C}1#=?tcp zMUXA)Pjd2+&Rn4ODRW%7UPQTkbGah+yg-MMEYT@n*Yg4ViS}}l!~`P3KPc+nLNf*1 zlZu{`!x9Lg#?9h>WcbH)Bt!rBQBCo#T|rI=9r8U`)$Xev(xjP@mdZ8M+lT18E2Y4< zy{DzScdb|S;9)5HJ9@vrhe#i})SShfXGPdFcf1hG9=VpPhi*WlEi@es7wTqAzWV_= zlCfG+!_J*~eG};N;CBJY4*frCAS;}bwHj(0k++&2n4gG4z!@woMB_99`U^$F;u~I1 zM@j4dUVSlH8xx#Z7t(+^n_Q>_ZvHH@X>!~FEoEQ-c=pxaLd$NXWz<*OX^=FKFfgV! zC{$bb#>wg(~F5UT3nF{_d;{>?Y?TsvgVnb`^B@9;nM$;l)o5`T^T!DV-L!S zkfWKfAV=s8FktbbE9sf)Q zUfeU-q;7Ry%+rlUH1v8ZM{K2+}45&fzv{z?${A`oVoXCWBTYXC~eCp&O&o2flIeaGsqLQpWsDkj8Ni zrn_Dd7UmWc%xX#s!=K1zZ!hBUiZyd3{m@0gqA?vybYhg`kD&ntsdr%ZuE}#*>_2p6=Ugz!Bz$|FXB0r1lqz-8r}ExN zQ(RIG#P-hOelFB@PIl{TMhxS6XSbBOsa#VMa|&vo&$wQHnkuY{NUskGLhyz#%3nRx zhw2E=8pi!}^mMs4QpK1)dP%yux3JkvkiTi>B(R;QBU`q5S+>Pq3v40$pfQ;;AIM-O z%8=0T8u^eLfQ0(r?SAtLvZtOWSzd#{3#Mf+aJ>8<;Y73}Vo83i+$?z=7u+~XagIR| zjR5?1++6WxvG}_+)l&VUXX)sI6_Vk|NGJ5&HTG^jo>_9f#RZM5s;<^!7LR1 zEykQ^^?D3r!rQpHFJdkPeIH$3zDUov9CP3U%(I~LBK6<~&E^MzrJoDA=@Pol)+3Kd zynNd)DkjKI{Y~*xwUog)d2n^LRPr~)V~D$oY~9!-!ynf}+r~DQBSCL;vpRmO-?jte zKqoWi6zZhfk|{F#DiM zRW0Wyg(wZusCsI8Q3h1pmG;ULAu^U8`tEwO&A)0!wiXv^1BZquo9aTq1M4~G-ujVg ziuAlGIP;iT?}{*;HRZc?DYGY8%ACFhFEf{iTWvM0A1&*>0CAHcbH+@}P;$fVq+Iu= z@#xE5u+FlE1BbZqw?mvu(#hK>aJNL*rAeIAp*&pcK5EaZxjay$-=gS<4yhEgakR9u z)lcdhJIRn5X?JQE>mwJ+VWs-h&!R}NK!IA@qS2qO@OpU2r9xyOceel+H)vr#>~U9m zd(Pb8XUB4QoNNbKMS9GPHk}<2>;^no%=1Zc!D|c5$KOLnqxQx*v#KD}4UFx((EQ)& zh4Ohx0{=#yvn7J3^lRJ1#E?31(Ndp?4PQ@(k0yefG;LJV-D+ z9vB&FN9xL8AhSD2HDQg>bX(4N^EYDA^=dEfGsugq8nVv#SzI;z$?yeOD2_`gN4>9K zOWrp?M)B$yKJZ{{%P|)aZF?;C;u_7Lj{)8GwhQ;Pu$g*zo%ZVraQQKIHLum_iQiL` z?+htR@4$<ep?G7+dpXpVB5PoE0T7=k|^ZABX}CkN{FBXcmw zw;zEBN=^Yq7YpTL>zVSkz|Gy(u`p{x5=@oBZjkJo++ln>W+%+; zdOygF|CYdQr9IROwdMKm!pX**>f-!6;`no1-x3T&yeRc2B&@hki9b@1&YBlgXeJ5A z{%ma~0d$R&IQ~M6xB%JpRi?EE3oUUoCalx1U!-f-j*KTb@GhY~m2$GQRk&ZJ@WQ6A z=4YjWC?xhgI0=sY1YawHV$!ti9*7~D_3_-NG7@Pe>y$_@^p^7Rg zII1I_LJ*i%?!!QvSrAp;<%%_3_TZAaij+E;L$hhYN98)-)H0;a8u+^n)opTp3?Ij? zjqXTJNCxBD8}|bQT!?F}y`Iyxkza|) z!v)H(%`uOwmq<>8Bpo9}F$5dMWUiO+Nm+|v2F}SS!ok|p*Rdny0sL^2ow^OYz ztvrA*>%r!F6L$XK9e8!ac&gRbYDl#oh_!3u=G^Dng(PdnPzSxv$)Pdjj!X@n&XUh< z9FM8n&N03vtlqhr>i4v0L4__c&yzE+sI0G%ZZ^I-ro%Yv`8^_?(hSD}P;eYlr3ynD)k?}P(*we#5xB>mWM-Xf0k z!iCY+WdDW`gvXNe7q_%zp1Rufu_MJfd{J)pu2tS;CG|b3!--3wAA;5COO}{OE2QNZ zx3EH_`h&?xRqY&|`^j_F_uprXw(8{Qx@K>#99$)MrM4u2`m2n1r`14&eLBH|<$UoN z6$2WD(?t;*56-efqJ%4);Z~F5ckln5SQTJAQ&ygUWR8BkjP@Zl`j3ea`yD*Bar=DU z=kEh2zQY8Nm{WsRD{8+d+tR8s&`KFVbvaC?n zTQX7SVV4x2i)PdPmb}98Z*b0Ed`vZB)qBZlkphI-@P``rL#r@3&^*||c7yVdrq9LMi|n37aL#b%GUjA! zMO!(I0VAH4=q=_wI5ud(nCw5tZ1-cUAj48yS6jy%9e_iAu8!I2iABuRTzsvTz?gf^ zj(~oMkOlJ;G@Hvyl#g5q0v*_ruD)fCma`a-j)u=wlS8$0`r*D+-<9>euJ_`L6GKs2 z7S}&HT?za1tYut(ql{nAGMhRcy0UG4oc{nqX>mc%)pwk(AnmD#-0`qaCW+WGSRO`H zkX&ON^SYeJ<5HJhWhl~zc4vqN@z^D*aa7^bDLKD}p9|=z@Q2AQR-D&`;~#2!&_8%# zxRn_1Dfy?3d1o9vq;qFgzfzh~ES@BP6HS$967Hi4eZ#COq zGVi02%+ZHB^*~mKC-Hvg5IS%Xz%>-=r*IksPLSM_zo(v*me*X$%q|HpX&#ANPgKUN z{O7W7Z2pZvG;1Fg&g;9Ck{o}KfV2JO^SFz5b#mNt1X1d)bwW5BAjPxH%JAN!sKqi` zkF6nluRN{<*;1VHg`E6Hf_;w^)-tdDDOcThe`_=UoBexb8GD!D4QpZP^Up5M_0QU# zrw;0Kq4b;|M4(zLg1_MKEqa0HDTXrV*(p8(EKsq1VX@%8rWf}O5^#yr@5o%r7ZxV<`VvzAFjXydYRgQ1UIzeN{gC zH1n*FHfrW)owGvg>WeCPf)&|3>wn|+4-(ui3$b^efvx}#zSs$L{d*#8*n+bYn~4#K zk9<<7jkGp1nb{S%+U4=F&j8*{b~6tjZ-#znaeo_l_CJUW%9I)P!V~|xJI%3fYE=X) zr$v3sI+bTtGoDNShUNaH@u<8tc0W!({r?0?k9pMJ;NS+kml_bs&HI@Y7!rwamSVdQ zZ9K!_Ll+#hAjYMUNH_t}2vZhNum3Kct$!|kRvumhF?(V^y;1TQxn@QvU7&T02X$q;1k_(Wv6b+BJ0Py}{ zU!T``56XkRz;7J#{e5m9PQ22EtpRbim5ehdpMS>{aYzMKVfBrc)^+3xMKrmF>Nh?Tw zJO=8p8UxWZfbkEu{|$D;y$`pv=@KE>mmWsSGQ2=)-0iIW!X{Tcjk*OCksQq=IwH?k zQW*~p0&?uHzoRmZv(s=2xUr8tV(x*h!x|tCx~W}e{U>Q=M$!@4)psYog~X>yVbbT%^^_g? zJBAZ)!{^FSF;}e9nry*`@6-v^H_3|Z#J5(gL=X;|=+;(%?*)W99tIe9|B$%)SR;vo zc&Vr=CGEjpGkp65nz#Pv$T~BXo0dU%kPB7Mt2scDAMe>HpvS(|gEAh(f_xM!Jhl4P z*2*Zc>SfYw#qycd|HPvV_P=f87SpzE_{8<6^|FsDgVG-(kf0%yJAF>$+yd^1k4{bLL{ubA>@`*SS%OFS(?Q8||Ig4!HKYzXA z0g|fIu;pP+;_|Mw=~l;TX+4a8Pm?%Gp?Vn9BKL*@6%Eur|0hr9qyNr-WPT~qftEqq zn+`|~KYNRX@X2`}X;4#kqDTC(@Sn41?Ju@Qz}xXS53|+bOs?_Q3CJ8qd!R6M+JE)I z|F=FW^)?3G=@R+lqY71PH`%-xbLg{{ZBpZ|7{L3ikOdZ+AW_dnsca89pd&jnkadzC!(*;M!?hzm;h37M@F; zPXn4o*TZ|wmtK=cyukY85ngR=Wi@fJ&f^V7k9+z_PDUswEY71-4?gW+phk zQdbF(mS4SnQPwB%M`mlUgZ<s?ojo zHZCrQp2v3j|JeEpuqd}^?NL!M!K6e$S`ZKrkXCeP5u_WWySpSrr9nbc98$Ww8w4bV zPLb|rsQLE?i09t>f6sZ&!#NByd)D52t#`fe+G|^5KRWk~q2_>sc$)Ys3{Rhf%$4vp zsQiE5{t>4k#&G~nIR+uG64_Qx1%U+$C~-L|d+UF1h)2hWURK{FfwiZXYPw()wbD+1 zoj!^Ayek`v0E{gPT#$M``X;mvPv#@ye@A@AmxC>TIPDdN7ZfPaDLngA-%uax8FCTP zKe?jYk_LJ73@FQ0mNfGjx0xnU7Py2*T}K&twjrbJX;Om>|09(vBK<$BCwQ9)#R_Iv zwxtrx@Kf#>AdXnEZ$WAI5bpvb@rv*z_405PIZkv!f>*SP0)OVwk5{J+98OJUs{Frk z9^NB_Kikz$zYv8LiYYdkq0oVul^Nf}M%>Due%4%e5DKK4A)20?Q=+LMuN+jN42d#@GyK>*(4?r)fOIC}KFEW+WtB-omD{|0mK{1eyCH^G zCBGZ10bod+?{~Nytv9xgL&DL8Pf|>_rs&Z_uUN;>7=i^wC;n6!hQq^s)k+za3db!0(~11+ zqh)2!O;@T746}lw%EFda$1{fh2E$v-2E7LU(a25fWj~YA3cq%=aK94H9Lx7 z!+t0M4ZAHfhuDNpPHeaFAd*^<``m45E;7azM;7x5A(`6d0_m9NVSEh5Ml8u677L)_ z;iu7^-w1NrlaIe`N2LtGBIDi;=KOLaG4}zxGuyqr2dBuTR{hW7Vj83t96zhEfq{Xc z@7iCB+rPOiE1eqlS=Fh~?9MVO?l}&5=oL_WQMWxVqwi4v+n+aot)?PG?vW#ED`|q5 zhEtHEa-Qv0N_|IVn==vKubN{e-r@uNmSOqeAz zXEmV^@C++m`1uKI!F&u)D;*TVmld9H7lsw*XWcV5WKu1b{5CQbQE}ACio2v_$owgx zzT@N@;BmU_#4Ds?x>O#euOB2uQx?0U6^6NJU*{KFmWRhU4w_H9BwX2N;P5s{Thd~> zY7mFJC(ug!V@WIKVygIH>3o*U3r;)kOj4k>DSdlZ!ZXZDV90MV^pTJsbj<)mQYPj= zRI}1WOXQaw0W~y@i1ktaM7P{EQr7H z1px3>r;k+S1wq2?E~N^1L9#`VmPKEP)LS0k2lirM%gtfC6sTMcTcwZgwED(O;F!Pl zY0Yuc`W*?d5*e_P*k3EP!D`;`TC)jH4L1$T^j8P!lsz?~4=oUv>6Xao9j&*PPSW!; za#rHBy`E|6o-+4Jx^>~I1{vT^2NQxull__(Qo_QCc`>vAb?wStV4<5Y}N z=esDV5*wdYdk2YZ4@+fa*-5^S7-T_qh~%~{?!2GxBu_-1{+L-1O4U>Ipx=lgz8LX9P^ z!*c&pGINP2P=AQgZ@@R7_O)p;ejcKsy5iB|(fu(bnb%fjVR_ zm9ZE+uQP*IEd6gSz@DUlNlfoxK8o|#UhXCkj-2frEOu-w%@5kW<~RQ=T2`8uRhCAp zs))ub{4~o8jl3_E8D_|X32toXKuky|s?Kt;eQ!0^pu&PxNdsuzwT@0zHO<;^*q|#^ zXHg!;CT=ZcWpmiNRs*DdZA5jpW`$%_$^3a=F<1dj>a(0B)a!~z41MX2|vAa#d_MU$h zzv|&s#a&p{(}{x4RlMXO_!RQ}^@F0iLrxhbc zw;!IYs5oYGYwO+>aIon3+3omOHQ?1`dO+9g# zl?0}SU-lI?9T}MAGGS$!0=157>>%iEGs;Akxf_xF%VPPiH*dk`WkEXP6-|NK*Fs@X z%5LsMymfAT`WOCn;^;|ix|(uPkfK349Lqko2cXld5RT246FSJ z%L%^De{L-JMAUYUd*D<#GNI`5O4hb>^lr}6($5=4%Fo!C3ayYd!5gJhHI|W7(z4o< zam0g!ovob1AO|pgKdrl4WW*wRX`w)Z#(~pOWXPs((}nIDP8%o{6wzUEw1n4cW^o|U zd3$%P-Y>nnAn^b3LE}-3oE0^T_Yng63%4i5SS=_+{l!)CMt>1Pq9oDG+v_)o4e9E- z7m)3#_j!Qy5wG+0_H!KYzj7V86_?B(cVmL_HBvFOc(OuD6JB)7J)3qQ8wZPBB0AQL zhr&ae25w!0;m-O1@2{KuC1=F1X!e)bsd2#ne(^|))90IFWaQ)C?-_|`jqduxk@}ZS zotVYVft&UzBYklNVM1)8#G;RlW430^3bPIED(8p-W?$j@vqAbtJ=b;ejgan*4zF@T zlO8j#nB3saYLfnaQp-Ix91P52q~wr@5-s37Y-6W&n}ErrAd?v#mijvP{rZ3s=)x=& z0#WPl0I$jDY|40xON2qfEqAu$%GwVW;QWtQlfpkV>+tttnFwGJpJ|C z{BlFI+ByORJWDKqGe&=BziT~*RhKixdLB0uu*gKx(06|x04RJo>p-cb=OJK?y!{_P zDBl==6l@*N(_hW+P^i6m1cTMK8X+c_)CzrnbU5p+-?qGG^T*R?G~E}l!|kn?sR#>DYJ7bt{y(-SqIjw`fXw`oypug5gs z^a3XcAQ@>2L#^>tI;?&ftZkix!+!)hWJ|2k4vve>?E_}cH2CJboz)F591peyIl|-z zKq1M@P=$iM%qJ|$%KGUU(q!iyx*UFdz?E4L)=Zc73SEsQ>Dkss^;UUb z3KTYUeu)NvnvOL+*DiBpEpJBJU~7D(uTnY&{l#G2W6D&7YNj&$@K3GyN}YSZ9QIy! z^)~>LMD+YVxB@JoJ#I{B)swa9Un-)U1TfMLz$LEjy8YLbbnak)6}8pVwcQNW7Y!Sp z@{!*t&X(1M#*FdzeHzR34 z;1!~|wv8ZTH7Y@V$UBT(U-214Qx=GP;FbCY402Fp-S3OboGrDxzCizBBR^fC{qaxb zr#s8(QszfP$eK-+wvSL1OmwWjdr5+3X!U(k%AbSfwWEQ#W^WDB$QS}b?$~EHF{*V9 z4K2?^vC7hLK`W)k2LF16MykT3l6C1|owCF$`y+zH*A$$p+-eVMgv)8KcDp{VhMCet zcdB*cUymHztKq{aRI&uyk)RWl7AIK3U%s={&o8q8DqC6jN5ghd$+8VTxP6`kuzJrK zL+L?*!`S1WHlrjM&sR-E*1r$C180n-F|aO_&>ivCJ2Ip@8fVV^IZj>M<=NIEQBYg8GKheG4D0-b^`*Jh}}bYJSQWI>x0RBQZ18KmtyRfDjnCkW!O z@2t;9rN6n6^=7mMQ#Q-~RNsYr9Q}dzZ~KLYrZwo(D^*M`Z${y*cM4Y zPRYa~>cFh)YumH*PM5s|EF(-z*Y8p&wDWLG2=nbNFnzHV`}9Bu=9|%-Rb5~1EVECj<#4mI&(X{7c&DaCE{r8(_kYU;n+>d(>(tSmS#z6T z(+_P`x~x_(^j@5N_u20X<(oSzE{6(ssC6XqbJJCoH>!`mf=s9S&|!zzd3|Dpvo=yt zHhoDth8vCQkaa1$=2pAmFDFJR`FwT!Xa>CIK%Rq@r1~?EkD!g8w=w@BKSlFlk;{s= zKM!iL<>n`oE`0Q^326Cjx8gk@&O;bv*}NcpYNjucnMh0stwIkvd3p4X_a)pCenD7= z#qd%NvwnUv^)vL6zIsV5asfC?X2R&13I?Otv_wvx$QysFNB@_dBvXw_BuprbiV^wy z_*UHOMoOkjVN9w2CzagjpjP_I!T7z3e z$T$#CP+@%>Yl3`Z6B}lEoAY@@7wCyX26#X~0-Q{75Hxm16GG3FM_=Vi(5OQ%8=f); zss~`h_iao@9+*at`#u14@!8wC58yu?(EJjmdPEs4)|gRNr$U*V)hoZ}z@$pUyKGI? zaPiaullc6nxHAkZcc1nrJ<~&}mV(dpatBOW!R0{vs5IjMZP$oq9q;xPQD#S*{ z+dp?MWe%wRJ3ym=Xg|2uG_erzA`<|=EOE>Pe2||=j+R(khbqRj6O=xZI58d%as9|V z2VsG|!TW`b`u*x(#~^q{rjvL;j_2_QI_{{?ww;}gWAv=V*?=ncw(X25%@VQJb3oSz z%heh9yiR{G6KRrNF`Fg%spz8((q-tGzBxOPQ|RfBdPi)%jb?J#KnWoqSW)yY70BPy z%NiXb&sN~pZpXXK)E6L8!%Le55(sQbbLXAiKd+>o5H3C9HNhjz-EFpHpamx+t3b?b zGqr+)Qa>Q52g0)&bEbj;IL6e;aH=%+I*A!ouz#rZG1B|1MJHC+SC=n-&J)1qkKs@i zTxaGG=ZsA=aQCUo_G-UoC)-{qDry!wFOObT+&@gJ)ovuNd#9|pPlONx>F@(1)gPz+$0tmg-2?tt*Jfn48Wm;0jBOB^3J_jp?X~Z|7 zJC-h=AZPo~KA%uz=Vi+7nDv5`I%NEvUIK@8m)5q8ZTqRNB+7C!GqiE0u-*hxwE*+N zUl=((>cXNAsJ}Hi;?K`!{>Q*IFKrh{92Q0+HdKY^h-1ranUH-o+s>o9mdUio-wo!yK4;Popq58wv!byUPC_`HL4pM3Yor7>no{owfyxax04NL*J z3MB`ym$CRQSQr5%M}NU_XjVg|6@Y_wnAFz6Vb}t(@)iFHq6pA|MCjz*v;sI0-rRye zvc`}A#3p+0w>GnO*r61DXqo(t2diiCfbT7CEPx*<0p+2gXNOrOvEF7^1O3A(bZVn=trNy#|ib=c`1?9Jc4Zo5Aby-$c& zpFenu1p8&`7E zzOd5USO3;A0q2^QW%%XMClywE=Q7pSgKbsX+-#d8c4g${xTpT04%?F)AtfXZVr0Fq z>`mzq+DsX5ZtizzFJk`}k51G|SDt?dm}Yc)k4DyvnTY9}c?eZ56HhUWb`+}~R@&R% z_0TFPTQfD|z)B>pP`SKzor~1Qz?kFvTdU3Owu}2eu}2SXictW(N6}0z?e~B|>c-%M z=&_8k$j@;R-SDS?0|yTus~oFv2sr~G5%*Ew-aeYSl4zu*6J;HnZo_d$V*?ntp8DiQGdM1^y@@dtee7dkxBj(8nN6$M8+TJN19D)!IK8J_?VqhuPj7+r z!+kTdx`#DSp1sX5%0C)>Bo4P}Pa!O17}X*I`l@4Sho?gGGv{Z94OaT#+B|p7FO+SA z=2n^DZm6Wo#X70vCp4Cx_5iimt#ZSj-8rwF{Kwn?Uz<+Na&6%nMBnfn<+3ojRv(dOt(z*G*2`UXk%O}KW0L$4~D{|RXWQpm|{@s@tAwFr*Gm*+Z5fu(( zxY~D%{TXbY=tHwnllG9AlELYo$vLV*%ve2>g&B{%WRHw-e0L{@x@LWk$#TW{PM8*HJnNz7t?c|?TOUWjkXrc9mI~a1EC5{+2021 z-2YBxaj@GTWNsNZIPI-z7J2@3elk{{>`uk|v^JfLj9!`ElG*U66|eBNKwe`hYCjUI z9f%MuV91i0f6&F!3r{wNo)+?p@t>|+k6gnq4=<~-{-~65*x|i`^xZF(6M1I5Ghm;@ zFB1q_m3e{TT^5HwH{BiDUr!{?7>)dl_y8u-d&J*)qu{0r&B=<`{MRp$U2!src)J8& zwrQr8ehT5p7Wr)FQ7WgpY|zDHLqBr!-{R_ATyx&nMjxD8j=+Gqg3l;zwP7845aqmU zuf_U7BZ%^@&`CAMt+pHqdvd1%-5FHrx`siPS;3Cc&7sH6F#&})V6I>;<^nf0Ex%v3 zpV&?h;FPguu{$&-O?-P21{nW!5FQt8BQCsALST!MoVBU?TDB=KJINZ0!=2`zUnnI^Ood}=HeygHeNv3Z$#XD7GEb@i%2^HWFz$3`r z3Qq~#)k0|Fh~m1F$Q?X-LUFO$tKg%K+@1zyi!gWvV>9*BTd_W`4d>lsaQ`!cKnMZrM(jro_l_NR}(Kp&$ zNP8c{Pd7fufv&W4;F{WJa0AkG^#7P(a3 zv0nU!7HV>3POQ3YJig~0ZAy!O-E*jrveseCn76IGML#)qx_zU~!hfM0upXLU?tvvR z=rStKt5lwpWQ$!Rb^>Suj6;1TYjPwi=NWoAh!hSSS^t`rqASpcz^k%ipSV6`DxAOZ zPeRA<$0rtbb^hl~mm+wLi7eU7_tpg_Lf2m(1TRU~4Un zlg{2ZJRF|%Rt?!21t-m{f+QZX7$kUZ55>`QkE{n*P^tf&cxEv1Y6HnGoE<|$!3Rdi z`x!X-YT)Dr#h4;WDv^5&9lfe96(zCWrJ*8WSIxpsCtCGin;ljGUfzKf^VuX~ft+(z zkI;HyWG>GPKgbK-yMJW89J=yiD^jxPq9t1I(!$kNQlpKGO5L$HPEn;3h?i)7f!`J|p;4k6{>Pw-%K^-}rB>$OOc!(*u(>K6Jg9M)fw1>#~ zO%?W=p0xGvack@|cV4B(+0n7oW<5M5ax;ctyvPO9y?`0ihF|7_)PxI=i7E85mU*vU=ej0^I>o+ z0KEXT$P|PI%bmKjcSaAaAAc{s*ap0H>uOtMLZfe7bea7Aj@|yKH!Ye*{Kk?dIFKBw z`Nh&#K()~39_S3xBeFvGN$_+NyatwP&*@Y<4$>^>gdH51Yo!oehzj4+1T5^o3#>}$ z%s%ma{|R>?RmG@aE=}D_0gWs382Zx&E@e`)JMvOOZfUUZniXz=28KzM+ z7<+s8Jg&rym(6G6mjqk46Mu!T$M+76JqnmT&D>g{ptg+zWaLPPOv^0}2YkFH_;an&|eY0wXB>JE6R11FjNs zxxZ}1y`AewU-sg4i<4vVP@F?$`Ssi&%OSf8yY2U2txJCK{L?blzO(Ifs9zy9@Qh$F zZ>yzk%i>0dN#Batb!&j7m|idm=Z#EpE_G_}P5cMW)>o9s<2gbX;V62e@40)2uE zlghGsx7DCX(v0_6$eoY#E~73kFV>jMOwg(beV;kC+{Y2-;@fn8(I7+T5?G2yjUurT!2)~GkJ8w4Yjma z&dypr4O#6d%^g#gGJ{8d`>1YYiWXV!Cy+#3F`84%aehR!XGC-t#+XBnXaZYTI&)ab z#KF{T5_zcfCn5f2P7uj+&_uPW3ba|j1`ejHnbt^X(h*XGX(6hk%LDEJNC#n6EeeD% z=m>C52p$N&t_aiTrp*z;;v$14y1${~-xUa^!^^o_%a|^EW**mv64ztlHaUj+y+`E( z+vA(HeYDvlRLOZc<^3HS+mHG(LTw1Sx!&0n=lxoHEmVSi9(0`2{2~Vh42!k{Ya_}J z3SFdjr--4eE=NK`o|V8YdS+>5Vl1>`_4Rq!Y7BUNQ0E&K7Z;1pfSM)60-|Gw2_ye^ zO5XHm=aA}edUd=T07ctezAObfjQO}-!j-mO6&||Hjk@wJPsfy;Ze+i9dR~_G-q?|U z&4Kl>32+9V$nYtoa;;@_))JEJ=d41TP62F+`T%tt9pUx*XUdv?=M`)NiZ7ZhbS7h# zgBF|qzlXO{1cgsV^9?kHIdLtpc=*5lyIS~yhuG$F^nrQ5PpL<|9x#*LdZ5Qf|S?+J)E~N{P(qzyXfV;&(Hz@ET z;rq?hkAgaXDGh5_>@E8$-3jp_Kb=}UkAEoOC$X2q2zG^|-lH<%L8mV(6=EZ!CMNu8 zi(3=iqGsjtyjC#TC{Fydm(15i0LxQ43R6Z_J}UQNFI|TFgWbX-aONF zuyihEz0LoGCUEwzN!13Z-vg621MqM|AP?MVKTh6E{hk~_TCz%5u^UoZdIJ6gDbHGS zbj2g}mD#lo9Ur<0=llR$dYIx`GuX#PB7y+*Mr9ep*u!D zf(`No`k}}Jkp(h<2d(hhoPERc+CZ@8?uFD)ffgS)LU8q9pCADyg2eWb0d&EpXMvyk z-?pyj{s9+a00d0eNV=wG*O0W0+jnuN3xfy1NX?6wMs{*{dU4ki8i@-ZPxjoLMeI(d77MmH}4Fe;X-n4{XTOkAS6=0s? z12ylI*i)$LmAXqq0SA}=NlL(v)0zGXHjibf?+2Y3l(rXHw~fi4?`a@g0Iu`}XiV1E z*&*IO=(0K5Rk*XM3tGp5N09Dpbdrhxne$|j2^EQ`eH`7I;6(K+Oer`!8lyUm$zmet z8BMWk+9G8s8(v!v?kcJ~?{CFsE_d|r5PBOYP8lcKz{a_osYQb%zAw^`=~bfUHfyDK zHs?q@g-k60ieUteTKML{4>*@5s6|74Z`J2?;w%C1Wg2g~->dm0#D^N%Ij@by7M^H^}@?vJrA4^y@NfIo$vs_}nFg2ySeqh7h@ne*Wx_3|wZWU_2V%zziT znrU1uJtv@l`nLNv373eO)?`)%(?W$H==;LQbOreuWyw%Zf)yHL9CBF3D`Fo^a{R`c zu3CsUz#As+d2h3AME@SPG6E?Ao`>e0N6otZ5Hyamu$@zkK6Qt;#Lik{*sd%^9s;9b zMQ~0PA4Ip^;HDbgPeQ#c$A2YJ9$r#uwQK3jo+%9$-Qi5?KC|_~dDyR~&D2lkLn0T9 zu<4D{LccRmpd@2Yk*OUB7az0`af5ah0~5z_ff`VeB-a773h?=`JUc@*<5*r^csyv> zr?XZte0zCkxzS~EF@#Dnhx5|(-t)c=c5s+%NgoAhhVOe%q!skIqZw}OF>MT`(&h%& zQhz*W$xLd)oP7b7Bna0WSzeFc=8SDO>C@IorWjxf#>j;(ng{^arvXj1_-sAMasa$C z{X27^yoFa|0T3k(^l9Q~*4?$%2f-3Ei8!>pkQD50=y8qv*EEJ{ZoG}yEDR?dez<0? z_s~TrcVo2AZ@V`YwN^aXxtdBKs5gaNm{;S*Vlz<@8imd%eh(hi>`4o`*E{$?8Ny-w zPntujPuIOiP0mepa;2^d?-)(Ha_r|kP)+(VT(izBx-=KuhrKH;?{0lEhPtyRX0Ri( z&F!!UaBOA4udfw|)KMeNW%YFhEd%JaOI^Z)wP_sj(iV5A_OLm`5alnlf641&L z;#;YOj-Prej5bjt!xf9Gn7KFhJ z+7`RM0aQy0)YrWqOkHzM=jz|7JKJIn+dkhcOHvBtWY;&BmaNF^r;ap-+r7$2i&rotfnV}XU7l_z)RCG<8NYUEP z4pv&d+(E!Mc1Gk+=_`(YbuO|udE}>mOa0~PzGM7NN9g(ONF%*A5bQYhJGILFQ6$Im8#^#wmziuWQ?)ew`;&aJi(MM8UY~6ErJ66^reH^}IxtMwo=TK9 zQf$2?VZqJ-*GW``3Em0Q?ozWswQCQ#Zw%#s#nTt^xe2VHzIV~}rJ3HPkDhb5u%HIy zSC%ZpJAQlK`8NbUTl6J8e5`fntMfS$38e_33(eHzrRcuV-nHl#R{R!?0pJ(VP+cef zE%thabeUlaK1WK6x532&U82PW>pzZk7BYFURZX~*q86`~-tZn?U|#&zNs9$#jCC}dg}-f&KhT1oPpWE;y3 zSncm0!hpoR0wB=#G{uVOSb3m#&Ml57z89+A6vYQ!50Vfh@IM-gd%AyMeHhcbD5OSk z5+6(c`PJzgMk4e1|l%}jL9OR8fr6v?7WtXVwz<`jYFwbxQNLif}j z!=fK1L>bq5-A$cHRqfL-)dfY%U;%vezwiT*no_69!@K-DPBb*Z<>cWMlqxVm5?o!^ zk6&%ik$hD`Far-)KHyX^Iw1&nyJkR#zB+lytPf};+1xql*;4&gfW^kg^%L&#iooMI z3+%3GUmuMqrlak4?ca@0-^Rq&FXg96!S)rfKygMoBoW7`*p~nlbn!W(l}qYYiNgIq z_xGi_!L@WG&I10KqXS%rYH{{*k)IF|c`fk2YcfI$vHCyZP*pKGB8$bK6EqhGa5V2|_RTPsar>*f2fS#U2hz!*L4Wl0^IwMd6$i$O0Is_Ha= z3Q6n%!svn!#?=Yka5}o`$xAo#zh8Z7kYE7FLgH9pJLwoh2U~M( z=rv{~=-bP(8woA1(H&p`?e*DiTJ3W?eWpb}n{4D&7E%9ezGy83<6j3HY6BF6Tl`E{ z+Cb1{-p>K4`BR${HeT=_c!bvj!wpm5B#84C6mGi@FCK=-X0nA|apHD3eC5%GvJMmJ z8)Op!;cnB?Airl$zIb4;ccO&^3ZbD7*!Em_h{FxfkxVG135fmT65`=lN=ity2rhUA;T-u>c z8X0v%3?vb{%vKkweifIUkM{$ws~Nw-$rbAR5O`^&|9WXljrmKiaTaz&51Of&pcw~{ zONVQ?O`GDo=KP7CWdHBVCoG88EA^mzX1gIUOc8|$=x9`a@erbXy=b{@V&ohu2;onu zmgrUG7z+(#QC_!F3;-agRY4d|e&4BitGQb`r2w;HJ z7(}?Ji21Fbl-+c&csCJNzGTr{SirrEL4Ga3kB0ibDEOQE1WU*;nM1$4LO;MyfxiXB zuvWm5*tF}njBaUDT+)oVcx>?+#F^*62asQpNYjVm#;{5H_p4$fV}mM-YtKwZS!<}L z+()L?Zj4~Mqm~9mu`^lhR*(z62`?%=(-@STdKPz@EnDNS!${2niEaUM2jYkdFmc&r zL^{KmZr%EdArLJ@2z&AS;njeLltwTt|AoZ>Io8h}T8J#9s^#ub**A6@r$=3q?2#ug z<0KD~AU|~n<=b9Yk+m_bv^RNzS&xVO3-io3!CQ}4^{=FciA-*v3dd$6v-T&74ydf8 zdrtej2ex-)o;?4R7Q$ggd@VF4G%E>CV!s|zvaie|wA9?}oPNS{=n=PN0)P72c^E6Lj^J0x<}fwFOsZ4mtZ zb0K(C=GyE6=Kc~k#EnsGwFW$;lsg_TiPRa%p!qTt`57#YCKslW!*SIck#TpKl20ht z3G*qWezw;drpXaj>X+#C{9Nk|aDEyCh*SwjDo(w=Y+|U z0}tmOUF_BLfVA+koe>S}TK++dQCk)pi}LR3Ij_{6#66d#VSpi)>L0L{5a-(EmJOl5 z3IwIxg-JF}?cWcQD4Gx1zVk*2B|fkuMi$^h9QN%XoL7A4Li{-n>aR+-Hut{To zM%#qG?nNuocJxbeS*FX-0;ZA#G&Uv;@Tsxb=5}%e2qIf}6B)GvsP0dgBiA2ilsQ`Q z;_5%Gz2$Q2B|ytiBmlJ2IX)H-1StSHfR+gCw{vcYybqYWQ~1zM4v1QelXoS<_e_vi zARZ3|Kf3cFJRz{MA#KKcGyO+ zk2c@gG|aUd7AyG7_4o>)l{sft-dO}%k z2w`MB0G4M#su93f(^*AF7^uC48+|00dEy@6-XKL3BE!Ef%Jfi-z<=5}Bi1>qXnh@! zrknLXOsB-yN7sMEn9}lOtFpfn5KaM|T;`NJw$%@qJq?hN+O3qmD+(exwtc+67MY~s|Kvoz1p5g3+f$4csHPMZ#qFQGkdN|= zObU3KE|VIm4v1o)!%CvWON_e;Tx{{QDVzxHS4s>c4>fr9f|q-KILr`XPi?~wH%XMx zCQG`ro|?X4UvV1w_JdRasr@@yJ092*diYq*V2SH(zyLQW*U0;g9(8T? z1MzV6O7pj_8IhZ@YqM*Wy&Xh2gG;`N%O*w)+nYX++RaaM5r~GtK21flrx{m#uohX@ z4=Cfh87&L$e+kiiNw7$-nz9^ipZ12k=k#DPQ#_C+85Z9I|a_h9x|erET08hKYM%uR!f0@ z{Uy`G$?vb-1|aP}2z$+ocp%=(u|ACcZ|V&H3@sVTIaSC9E(l>wf@n$`(`mmR0edx=9j*iI$A9EPsBbcL|-ZScC z>a4i){P=TS)BYu+ksz00s|A^8O$NEAdEs=4(Tmkqb>^SKJi7Of2A6)dhArM$LP{NV zUv0bt`Zq@fBUPhDyB!8Mr~E%y{AkyfQI+)`xiRV}gPj}7vS5B?$^6A7SPi)Pkq=nv zp_toO$WrUTQc!M5a@PZK4p_<)j84UDxg_(Ypa&UDkf&J}7Id>Y|9Ic`yxSN8q@mmo ze7jR;ghTN!>_+=mFO}%MSZ#-B=JY@1Kr$)0U%Xi_njE6pEr7aOx&}D4>r+wyL@^Mo z&ou_~KSLH%t{A0}8}B%jgmaxEd8afyBm~z~@(^OI6^(%fJfUBPIWgLu=i4r-D9kl{ zId6HySq{nX0LO5gzF>)*EJ!bj%go}i=Uq3p>H-fQb}-ekDRG{hjqRHlP)q3rD(r@^ z@`EY?x!OI|1bn5Zf)HFxWpB~#X083Z(p~DSsDn4JtpZc_(ROmP`kI=hW9MLk_nJQ% zdefiIUkjK&ElB@kmn?EJV1j6vCYW#m^+Tq54}|1cX^BB@9MLc#^@ zKLD73RJ1mON?N-@=~{1ZDP9q902pu8!)`;4XoQcgajqM9O%nDMv7^n&iLz{E$1h}P0#}_0 z!fOGy`+ZH9UiBF}O78dP`!s*&yZpbw=lcM|bSdHP!ivCz%qJMIBHzWVQ;1a`y&cGT^mH3EP#Aqmo#pvULl z*(BzqA@!}EnF9f#N4P6#6D27-35i7J6wh%E%!>Mu>}-vf+onWn2aHFS1n{FX*s3<3 z@7&hj31)=hK#)1;Cc;ooh!Fu905tnon}vQLn}8s)pzm3*`%H!bGP!s^%^u$7j~>ag z>o%`#R8;Nv%=7PvJjHl_>K^LOauV2)_PbRfNaTLH99FBHY=!as7yChes+qCh?T7>h zZ6KVp0Cm^1$UyM!TMC$FOzWW#7zu5wkf~atFsz9y%)#~Q*GHh=e9`Y%&4G_!k}KsF zOyf_3n_J2)7*og85qa}R3_w8_94jXv}h=1CEvm9PM6`ZlLvA3W)S*KVCp4$t#_FJie+ zSF?E)CNw!e%+?BzuW8@tc49wzazZ<@*Mnbu`rS3m*8DM?h`YjG$71ErJCJ5&F3)Jt zc&YqfO2!o%craiEA>mf+tIF4gc)6|>`c1Exl;9^mtsxn$7+7&MUE3I#ee~%$C<_62 z@_H~iD4)SSyiHEVWDp-bP9hovV|=Kzd9GbO2*b5=qQu1wL^`$qMmq9v@^fl0i)Ld< z@NXgzjk1|iR>YzN;C-M6hwR@H%0%h|fFwL++-B7sZnPoK{qvEZv$OeY0S}iuvZ49# z*)bqLau6%+X=v+G?NO_inf?U3EiO8f_AN@B0nZH8B}E>h`3Vprx0)`Ns0Q7{zbk+1 zzWV>BR`#_9KGvn4PUMJcb$wIaRoLY}=SLWT)uND2jB>-joETpLz6N@#ew{%C##<$0 zv8=2-H}xszn5@vL3G^Qh&HJxqf8@O(zH)=R79tyP44TR|M*o1RtmW(kln4F&To+sR zvfI{E-wQrMYLJvrjukKWASlHC1d==friYOaMcf7;iv1FRpceplPD1E`I0DXo;&==G zrhVcF*1V>xW)E@mM?A|}p8g+gb&{`fFnsN`ik0N)Wv%^wKO(&e_6zjZz+M=I8}CSKq4g1-0wLEO8~3!Zt!Cmd6c)6 z3s{X*E#&NpKAXmzoqp-a}LS$XUH^>{djntOZ^~ zzKc!K!kgpDm4n-%JpKy{J)Oi}GmdQ_S9>=c8pV+)4->o?ws-^>Zoxkgt*U*Fqh*yHi~pxj_6Gm3T*$W={S8P!?6X zbIy%}Akrp>#JBupqwU7MHh`XJM8w4wq9%K*FY*I(dRgm4HFO%MbJK&(d`}u+?#TQu zAS__3R!Y1E7fu`-I{@d575EkCTfHJSg6^oTLGj;+Iq12+F7NN`+!aSw!#iDQz|7Ax zHx`k~p;~S?s$G8rDsN!_KTc$HWjdi{i z{wZgptoHmH#*-+J)5d}Y!*IR@R@+5Tlj8Y%aT$>MYgWXDJ+!ioncVDaBZMP)S_CIp zI*9+Tp6MFct)CBKfv@?L$xH`vwygXJ{ydG1zER{WaX|as61FHp08YsOyO)zKVJLID zk(N_HJ&IG3bILQH8T-x;FLk3rs7Q)(#i`J?Iv~y^nuEh+1F#(C;Vb+F;R@$StduJD zAL0`Qhd}cp;)ba1xdKa>T))m}2@wfova4WXI2v*!4*m<`b|X(1h*E~2&L=^gSv|Bw zCD6~;) zkL6S|dza6WmrIme>X^XK{NXmMiAu`L9#V$;fF@__>)>KKG~F7NYSM{)EbEPX4S&8b zB^Oj~S`Ir_>`L3^v0aFSopaqeVBF*6pdoA(b-+{`dHffJltDEf`p^vKg;) zj5(sNuqrcWLPxcMS&UYA_K(WhP5irH)m1WqJI#hMCNjkDERw`DAz$2^-t;{VhbZOWP6jP++J8=RM|D3=pki_m+ zZ`YTzDGteT*i?=7cKDJ;8zjjr_1~k%a#I7PBFyn`qkq|Mj?oujRNj{GDtprdm8*Rf z0J`|APAil3Q5*1m2T~oCIjnI-TL9qm<{?) z^DKAsY&;7ULgKc=Em2aC?ZV$bC3D>XyN&VTaUA1l&XF+uFPdaZOG;T8Q8*~ILj8Jl z9`-?;Y2IJcGDx$h5?;>KI|>~aI@EV|)S&x=UYE@{JRFPmjI{Y-u%NR;bkO)Q@p0>E za{RBzi}CxS`ao=(G}sR3K9`&`SDMqbj$Usl zr!f!q5@+c1#J4cP=*dF%#S~0Zbb!xmycbLaPsyS%n4$W1DGM4*yer)_u=wayJ5@Tu zXi$nnS=!Odd7oyu;wios1;+ECM`aH@U;*?&5~}2g+vJENmIrN9oCltYw;nr7hZeMJ zah$B<`(?Cw|Jm$N{#Ou5h(7ar_pr**8WG}Jfozj zJ&cdand)?Ho6R0P0V`Ylm4dMLb@sXIMUvPs@=(pq_nMY&nmxGZmP@7k(@1q3BDQRT-a@4qj$TB4YnxF;x?lz|s`qM;IQBTK^C5mKEu(c=2Ya*`H?iY9JOTwlryLt3q;IDAvm{?@=i5LIGQQmIP9|az=UM_C>(Jr>$&>m7;eUBA)5Y5Q&4Sy=@Ww;7+--9d_@R8GDMS< zu@4<3bRyE4m?|11jYzvALC~@%DVMBvYpvIR(n2Qh{e<39Njp%;`|N1qgA))C8r>scW5v zMg|URZciK*uA(GO(5p8hW{h6b|1|M;+^LSCEQv{c10$gy8Ln8}U#VO*HjQfrSmGWk_Uez@j@)EvkFzp?X)xu9hdcsB~w?H?>{9>Dt*I3D9{$YH#yZc z+`s$mI+fdRjjh$p^mWbISE{-N+cVq0Uzr>^gBdTL%BYlDBG_tdO)wy0qr&|GRfIXK zauFI{zU1m-xBf?HhmF3+Jxeu60teIw!NpjE)ij{h+LDHU4muT6_3^gfo)!QIfR8sm z=0YJH{YqYl(zDZPH9AISBuXMB>Z5W4YJS|FSYJ>zzA&~RhDs%GVTtX6qDpGqdBgX+`V-8L&Iw&O;Dt(Kr z!U{0sHEpzg>!5_J!5?k&*kx+4jT4!Fcq4k-Z9LXyOQoMMy%Yp24y9sK+3jitEmGc5 z1Hu|@AgC*FR9fe+CHFMS}zk8R@!Z})XAktI^+$p>pR;XBo8F>s?fLjD$CnujTUph zfQsUJ^=a73+&ZN998(IZe!9rdue@xXSxmg4Xl6FKnu#@r%mDhFetE_{h6lSD*C)W+ z$A?6<_m;Ob=CFn=7UceRbWRU7EUp9P#GpNuHqdoExk-7?O0^A&vqKO z!Sa{N3cGfdwF#kS!dspom0HH!cOZlb=2V-A?N*}qD@XnxTh|>=_5c0fWF_kop<85= zB$1m<**jZSa?P^Jo*5BBkrAQD%t*@KWQ8Oln=-Ta{=MGU`g|Xc-|HXlI`^FC+2{4T z?>A{wh!XgfnlWZlSfdIig*LAO;?6NugYh-wy$%eTQ6Ais5{yXjz=6jr#&>VfK5eUS zx7q*9bN=Bqnoc#;bm{i6ozwi_g&j%oGkO^*-|&zh49zA#JL6(e{?qq%4eAUlsdWx- z3Hoy0YZM#+J@9e$X$$-Twiu4=GS_nOyFpjBTur?X)|G?0&)wy1$#B%x_m}g&4}6z! zxF3F{I%3@bC~(`$Q#mzS^9ITO*0RPGN?}%eaOCJ0*j=r$txz(%{LQ9PspUMm00k{% zQVWVDJW$777G(kw7I`zp7_sm|Nj9D`Q0zU4QxM)rVI6zabAp3?J}S{}4_mU23g#a_ zY@C8_vC_O@pm}i(1g@ij8&lA6s@%!$vRvgI6e;OsF>3}Vp1RM=>(6Bh%iDdVb-G)m zS6uP&@nRl)wq4xmxzeE9YIn=*rHAiD)a*W%>~5iFa-F|ulbV1-3>96pgPP0hgB}gK ztCSZ|gHsM1GY*+J(7S7O=MkR!yX(TwqeGM;LQsiJF*3l~Y=ih1jc`Dq5fdCSR{^YR zV4|zM;kVnmvR_sNUagkYc#6R81`ZsHgMo3w!3p=kK=k2+;>uS}^+WV+`+LAI$$jsF z!(0Z;Q;r4O`@N-J7YA~ty=&cea5wM*!%^Z?ZFfRi&V+nZRTL_Z#oN z&{eMYR&LBi?EksDzuQz;`D;BOwkZ{rxxF>)k=B{f;dLF#3**VWMI%lwa{ge9t>b)j z2{&)iJd4Xk+C-ker0MoISogPmhjtdgoi7vjNB3UN0@m0K-Dl3&c#LHk?#soahea1g zq(!$owug$>CkHT`i&n1x&Gp!O)Vjwny0?%#w7bSyxm|7Jc~@j(HCK-PZ?x!seW%w- zy`W9>o#wlS8^$in*)}^JiF=E5<(r%B^*j7JT@7@5D^8+Yv-|D~afbWTzDp~WiB5x_ zs&XzfXAE~f@$WCSUaj1GMY;F+Ux5X4Q4b-Ww=-?Ii1rN;G405XPmzddw(9Cg1hgOk zz?o42;NXs?^CUh`A2ajXj;-8VXWefq9dZMg0}I~SlB zgKypV^0|xPv^{MzK}h-)6)W8u7zx&SC@^{d z;gOLb!h=Di%lQ+B;J${&f%KG-SQLF{r3Vb?%H|&ntnSm{LKoGfs_NViW7!Xv`zuFx zo~Rh!rV(Qvot%Ly(-;?)X~FJ3+anKumadf&dY(;OrUZm%U2 zHJVEU749@2%&K`xTvn&MCKC_L3-V5~wzj^pyQ!79Q_-P}tj}SN zdX6LB^_zSI5F*6GBM+x2k$^i2kO`_Jhgz1c$e^OXHn>%z3_G+)5ecyCw{aP(O3ah^ zfLXi#jmL+KR-yU%`MdW=U`7X&v2DM%nu)mW(%sMkTaUQK=bZ)K1o2?AyaTCZAQHh% z3}8iG3iY=57o4n;xP;}c3O|{6Sn`z#i5=AJP}TJt4{^^0SBt5~Y5D|b8$r}pYMN@c z*9l)Cxba~cZ$rFq!oEyzhx2X32r0RpN(wzr1y61~I2f&@jAH?|F)P9B8g*kEuplP# z5rum$(|6wTVCTb@W7ka3s02(>Bao54l*8`q+L#FR9T;N%ku^8A9b2EOqvCfd25aoQcnRd9+^Sv$T2iGdP=At zT&AYBn$gVDp@k-|)|{@%UnB$o*<(lmfFuDx&jCQuzw9FI0G=p-Sn(0c3bn@oJ-820 zt^p|5og3L0u4wTEpOpZgon>RBKLb?8%N**>SyHb$C=0Id&X2}189DTJZVJ+)UlrxG z{>mOUzD7-bZ${4cBP9{!A&Ek1lk_9irNjsUHs*3PSnNRUNqlxVDc^5~=7#}g-(_c{ z$2~Hkrjxkb3NWhH0R{UoLp-gJr3Ry8~L>?t%3P8zUBkvarfe>&>*eQ-{y=p_%f z&ym(+!tlX)Ow8)3HRdLZ0$LB`tZ}KnGhdU$gI#k6fXm-ZKp+pK6Mn`>|KXz@Z*MpR z*~WqwmktAA%*zuZO@K)F0g-#v(^|N|b;E(i1=OU(;7~RR;tUqH>J@N{l31Z@EhEZhEs+H>;8Md zF1);bkG(+*m&*5v>Ia-tVqypq+$cmLHi!}+>Oi9)_yH*(0!buRGE-18TKWuRbOBIi zRy`C8dEyGwJs)9LKv_3v<~^Z-%sFbFRXth90;K!^DF8K$G!!U>#JZIdoLp~41R1#k zQVjZsr2dT^Bb51(n&`19KuF@5Efol@L;#^SfDo*8pmaz~VU%E!(*j9z1M)6rXH5E( za;Wb--(!8J1Ecx=9M(5;jd&HR8+wKK{v0p@tPeImC{O{3HDD6PsD=;0$?9=L`N1i8 z=*A*+34;&>z0x7V6UYO*U3Rxo*xI85Sip_&VLX5fUjR7Li`d~j=9Wg%h(g}a03W_L z!He)3cD+b{V1ZDQ2#CUJaJ&j7nAoow+yh3d2HqwkPJ^Wg+=>2-9S$#_4l?!@bX#^6m?#pdtc{LN5-v+onV`EH00NMXAgnCP*hA^Hw4RK#amp20$hm-im8oy&h z3Q{y!_}My#zD;@(@5X^|m%{OmfC0G_Hyi|FfFqpccq0*cae#kQ0P+A;7-Q!dh?@e9 z^Y4rEAwc~n79*@pgy#rbOsynpP>ZEx2rzO1W`qWOAPF$C3H%Y?PCeurRHX;#`X1s^ zbYlDh!1x~+1LJ=hZ2QHgBF>|kpa<5q+8wDX763uaD-`w(g!Fo>8RTuj#%Kgs!9Z)9 zcx?NV4aVHI%m7+$O+Pgc^q>`>0Y_+v1!VZk!03#uN5K;)*KbCrAcb2rSXv-tVAg-& z$N_M)=L1phOQL@8@A`|NafINA0&2!8Q13!{*mmFvq`pxN7Brp|;%x@#!ppniB(T_k zz;XuINfihz%dgPZ%RtB2fL~6K*v`Rm^8(;Q3@O}_ehT^q90Gn0Lxc4s zp={euv0i(wI>j!GVzl}=Q>i=09%Hu-`;Ph^Z zL}2R!71h zYmO46GKD_n21(V0{opm24yxuj+Tx)3sZH%on0wsMK>w&lY!k9v@WDHu!BnJasuf@= zzzIQ2`O2esKm~pcL#6SUN*($d^|%p;1zW+koVi8OT0kJUZ1-l2M8N(6A(=vrNJiPP z?^8mcn#Q~alkgrpf!AD`3Wk?@w($U7H%U~)gp`4PGr=7-fS?8&ql_Y;^phc!p3m;= z^G!lXMvg|@^3YzAs7`eKrrt=V86=REb0fS4b{BF%Ga?J48x)CPdJmACCYKJ6LdsJ^P{GsJuA#8<{F&?v(on@|6c!}ws7;S(r#)((#ZRv{OLTr`+S##NX#NllSrb_+}tcDYOOiXQ*AfHTHhq@g6 zqBs&^0*W)t(p@;t?y<;z;xE)h*%$Oq-vCXd;BC~Ci9LO@W&$4=7m(lKG!Ly@3Z+Nc zMTXK4L5(sr;^bVS zH@LrCyaDe4;Teks{{jooaC%|Q99bDPYuL@9pw}|BLUn^gfNHF6WH+* zkI`TdrawX${{-P{!PVUH2P9ks3uoV{O2L&WM6E{KuD(@XzOof0!cDE+3?n#ER=!W4m^&aQ@wKzdp`oLhm(&uDru${{*Zj_cB~ za<1o56TN|xaT^2j)1xLX5bxi>n0iMdK${9d#^lo9V^O+KnusxI0Igw|NV_~ihI~<-U?_AL7(5@s(Nvl6CE||v$E|;osA`!?G?P=Zpqq6`&$Z`5mFeRwF|5XSh9Ef5E!l6!t z`v$_UH7r~uf!S1lO595xA26)IR8Ie3Wq~MX#BW!JJ1z{-pF`u69+6NvA+hrhua;%) z2}~kwGRW%jCy+?sfC%EQk0MO#LmlD)Luk>{YEoF?)o>*QFM9f8h365LRxfaFSHby= z@iEu;>{~R|aG_GQ5{bZ6E+52@)t~ARcVofn2Vl9F=U^Ise~$}XDo`YI!Sx$JMo6na z;cgg@&l#8oLnJ~E)NjzQOQFNqc6B0B;utiJ3zo(cQS5;zr+_F%pje;ikGmVoA z@Bv?mA;As?u zA=+@WIP6e|kVi;AHUbp~&mAdFxTl5}(+Rri#c=mPp;7NK3>Uaxf^C)BuG|DQ117(N z_TLy6i05tgj8T(5bn;t2Ml9_ohhoXJ9_Ph{{eO7ZFT<+V^rNt^r@Wby8WQsgX2P{O z5Oh%x1S;fja>#2zSmbcnz6P2i3^UwV$L3N+mv{b~0*F#owusP%Vq^nJb6_m2i#1iL zZ*ak#7l$%t84V-=heXAs4qpRAye*FF4d`NKDJ;=-iGgE@xO0kV8nBuJPs5~0?nr_9 z4GXf3M;T*}2C9TaVn|_LgGrrCTc89}{+JXvX5t`}>We9)DVqaRfYm^h?2IqrdhRE4 zsEiyE5!H(k=mk9Sg4ch>B*WyT)l9}9N-+f5Ud$;XlYZD7cpE11oQ;tjuEh!%LqViM zBwnI`Q~Zm-BN8#kd1#oX3sZ|(W>sMNyDBaONo_HqG-Gq%223fNopDqRP)VFD_!KO=3g06$hbZ?b91Q-L2 z-zUR`TiFm$)MHlEi3#_#yK;MIfzud)60#!zW$emw z2QE@?!-)p7PRveq76xYc^XI#GTp&se#}EVz2Hmy6Ne;oZ^x=U#@8FhRj0?CW@ThCA zv7ugeMp{^b@cK`)`STusOb{%N2|}r?cwS1oIS@_&Fpgjt3PFEBY>+{Io> z2PX-5Rh>G{_1>>v&%w_9$*SZ)OZO0MC6wT@%3?Hj@YKc#_yj05!A1d@G#EQ4QEOs( zv$HXV9${N{Qo++jNuNoDl!rg2Lolw9NKdm zS$!WIngiWYAROBZ-zl4--R~){JCjlh|5wP|J zWj*{RNt3MrXjNT77l4`qf}H9)n(Giq6Ho`Iz74^|TbLN?WElQkV}Etn_?ENZUR+f@ z4>zPvIiejW|4>1J<_cV-RpB<9BVfznqL2`nH>fK^eT$7FfGkdbGcE1*F2-x(6Xu&m?B_EK)fddNotEm3`n1e zV2~D0L7Bm}uUqwRP^E+boIvMFkLJaK1#5Vgd^(VE^4o_q&^KusMcDh`_5I1Q+td3! znW--1JZ)$*OuKMp`6BdP!tc?8ddVB0t;NKk?}0pWaBvk99A!g*LXyT63yi&zF>wl} zwR>FeK*lr`7u_2Y7P3bKtDHhyz()`yAB$`7*4dNIVXIk53jwt$__?JYDo6?`t_>~) zVPxFQMti6_F`N_C1&;p16Xjmdw2j9d#wT)yNrmQ8u6GafMRvdiDLkIM1zRT=PZEQI z|H6H4h?^hHdjvQ==P}@7=J&dN=l={)kd&TsZ_vYs3P9EWI?l?L82uBj1-&^VRpDs@ zM2?W24P=aY>Ou|0B=A^DAA%Jgcmh_y#!U6Ol_6wk<)YgYI}&J;z9!@I=x^EwX(2Z- zk};zT;3CLd=UK919pb}RBO-Wo^6)4w#e|&Div2lLt!ET;3MzSKYtrh^hmxUb1=D`0 zYBjRs0}L0ao`CNSqbPWwJQ6hTQAVu7J%Oq20k|b8I8h=HY^$AJl#Tb9J^3H}QDj;O zyx#+<_@kPYkm3$fXvj#snN9G>NnRaS3s6MfrFee}Vu+f#MwV~=XA&Pe(jS(ZEJtzCKfZpXM6`5AswV2@`{X_qZEwUBO3&KbV%m%0-C*gV#)R4({M+sQ&|G7?BA69@XnRKw2e z^c}8RPd=7{23Lze?oGr_+E3{9Oy$i74A{^w#K?}09Tsts4@?`Aalkf&Dh(Jnx*l<9 z8-DBn;JZICAVnUn5&<@b1B3QS!}gQ$;Q#46Q7~)p3a|Ok#yI#yYum&pH?xD+z;~$n z-HV}rB!2Xm>}22v-fO}TPc8UH2|!%p+CAEXxW4Ax1o16BK_8u5>vQ)frYj_yJR@lu*7vD7pkTq+s7|Mtn0 z7+7)1@+NX5Qrj;ATw?oReOL5*5=;N-*3o0Kfd9htogtnS79cd^SO7C|7BdDS#PMUY z{|ewE00bZjkVGXN3vf!3`t4~R#bW_#|0_TsTg}HjSb)dJ0uY@uiDIeI1`czuLQV=P zAV3r>fP%K)Ba5Tg$>jXrzNTN6JbKI>^j`tQ7~=6T8hC%qu$XwN6$26N(c`NB5kLZ? z0Ut?J=&=CRlGLA0^Vl5=@aDe)P+zUNgb{%ASb!8VlR=i6$zuUl{v4MUz=u*`0dTba z)Xa|<4p;K4j-$UWbM*N8|7hSIL;S7)tbwE>hQ;oPv)D2aF&;nuk0U@39xMQfrzFb# zSOAJZ?jQ;ij?+h9@cN`|0)BtjkI^u#lf9a|PORF2JA=1Soj5e8`^iUAx~Coo*$%^AhFL6BCUUGbRpdvH)lZ5q zP^c8c2*qgmC7VLfe#78Enb429&3jjg2bsuj(Q`j1{_2>*BD6AUVoSyTLTsT|Mlq?{ zw%w#F*fvFy>PPA+)|E>!o!r4~61sA}=iVreBVu@CqPUT{OZ@sFD@T(CwP316JQKN8gIp7rj6j&91iY7&B2-AC^$B@DKo;P8IM zU5V<|S*3TY>8IIc?8>&57MDk7+-<%a$=yRaJ1md4&L~~Ij~wx!zS}wW>w_QzLC&Z4 z5rMkSkv^eM`1Ae|f74zZe_hrpK6)OIKU^v{!Sxc9;Mfva-c}UKrP*@SIjwDT0PdE(}(`v2ZpArb{E(%4jfZJf*h}(4UpLY@fKac6Upp=${>M~Fi z{r0Fgj5fU{KQZWocZsRi&k0+}(XPC{X(4$!BK(LZo}e%5@7Q#e@b1OTjq#6prU@$Y z6&>>Oo&LW%{gwktph%@nhGSUS&ArcNFl&!5xV!ktHoffO_?TTK z_?=bBzzBzkN8adE-{LM;*V00&+KW|D4Q)b)?3}mlBfsl9t<&~7-E8wizRdKR|FkNk z+pz=Y``mP9^@c9VkN0HOUoY6L9e$aX+<&d2-uPp>L{m0L=jmDZvER5Quk0XoYAUhAJWCF2KDv~oa?tvW($fc_G;orDnyZ1$f*vUg1C&AuW-1X zdl@_iAbI#%V7KNGeq!H)@m-|}XR>=jvyNZS4SnKBuaQU!`tWSjPj~gEUb6G=hr%;W zwbk~e7gv98?>8xdQ{8DKm*UsaM+U6Nh_TZH#>Ff(*giQtdZgz6?*73u-Pr@y>r$Uq zUC&=R6LN_NzlH60PWLC(+-_^SR;xxsAjSGz#h*X_=BY_oTFgtgd7}3?AltvAU5|Sn z0%dQqNLCn9KlQCPDc0jko|GkD@+}%=)8&eesHPve&=E#oGqNI1Ho|p&QOC5451p-H zBB?@2C5`3qSyaj~PmeX^jm^60%wPI}8xtM~*q`8~mG*hSx@GX-w<_=xNjEs|=w}i7 ze}x~Q3`08=LHV0Re&DV`lJD9rU`Nh8`?HYNaXYrc7!_0I#XqevRSH#I+U|@X$?SLD zRVbsaP`vIFFfu&8TiP8v<}>EJ`gbfqGBc&N7O&-DO;6@{p3GD;Z%+G&dC3;>nC|Qj zzKllNw;Y_&B_zbtkBTg_Mh2N$ZI`$_f*#m>L8gE!$ks=rR;6HAz)HXNA5~Xbz+wJx zL8gl4L74X*vsNQmCb)zw%hko)G4uPy_d)bTtR0S5+{nCN%SPa74shl<^Zj$&8oS-= zTl%MZ)zwjHZurrxqs;x`Tn)9@4EbA>5G%J zNDyK^wmO>svT|C3?JdUYe2fn`W$K)3{gshVzDB@0?|O4qY4GJlGEr1V$xHSi$W~&s zYQT0WBj~<<*=xtUZ#-ZAtG4CVk?Jdpz^Ai4ay}X>;ZPBUcj~ z*BeL^C}LwbN)EmQ>|GzCvVq$soN_U4*8=|N_oq2|B zY{-AA^^5dZa0|zfUmC&Keg33v6#k?JJZ=jHz_X=Wo(?ilW-!bIX6B`2R$KN=h=HG5 zS@tB-ZQ0}+By^ioNIn|RXFimFTJk?ZYT+jwq%uBmL=qhYsbQhnja}msZH) z(*q{&P=F-3q>xK^CWs^dOJ;^;7tEA6nX)J{gpQ~tQNYY5iC>=E*e}8@_GBevuB$*_LG5S}-@Vg=%F@Jw_oNO9uiJ_i{#@N^3_Rmjr$G zOqvG1vtj!u!9ccwvLUOXkh6QK{;fr(%0)~*sIM{SU|fCWVTY>nI}d+}p29dmP3x$< zqS-87%c{%`LWuYWCaSLmth(OFG$84*?3oP#Ad^J(@qC@`nvllQm>qm@fw@dR^D)6^fOG5jCPa(zc4nq9q89TVtE! z)!XTDtso5+l-!c+u<+TCuHRQm8=?!FSl%@K)GOqM>-MSl!T9oG(a;pQuw0Zj7|&TR zhkzVfwjf8YVIODqb82OxecL8UiYi!=lJGvLWT=VJDL3xahMwk!r7J4FWk(2n&Z8%6X`P^0{)?QJ5CvU9QnV}30rc!^N}s7?fPy7 zgHkO`^kwJyYT!69qmvu|mKbnKf6n625@5=la=YnJ2oCWHc0vC1_npv5S^HGw4hmigGpCA?u>7K5{ zRR*eZXE&k%b*o1B7Y2hD$-Z(Z628uFIADG&kIfK|eW7FQ*EQugU= z-Ex%t=d>?a>4hsmgr93YSmyGk*mZaM(|SfR%Oa?hSqxhVyG%!mgq+`?=$E9AB8sSM9t| z-;H!WCf$b2i=2Ne()ONHdPm+cb-Pmii*zDOK(~_Du0i(pTe-{{o|K>ujo4hb_UM6k z%n4b-Uc$tB*ws0Yeo=9;(n_xAc{pp?JulatJKAX@(a>2)YCyC;$J-ihZ&48JLmQYj zptP^EHf%!ku=`U-dbhRc#ux~e=UacxJS;$_$Y1IY5zKz;4JDB+h6yE?k(XFWBp`Uz zC<*m3-Qqtj3cUwXW}jk*lqS@<1Ha2WOnDk{XtlU2rY$Q7zqrK)!Yc$pX>{Y;dwM(c zklwGcXoXNh)fq9RVvBxoX8pr8rGS}49EFeJfNktq z=Cd3_|EXj-Dg5u>7TisSD|D9G+wlmldDF&P&;*MPI=9`c0(xFr#D zC=@o(#ZSf8vAi(BqniObIZSs_nUmJqa)TP@PWQA&^{{eSS?0#+bm`=r0f9QP9Ey`wHj4~Rv z1_nY^Ws@gBfQwNeQT}TZ({$R0zDIF9lIoUuN=42*hvhFcL1J$i1V1tKHkG}J2^+Sndvd*k zFg*y0p9!@)$C+EJ5xDXnu3?ngr|Kr1Exw1GFBzLw}LB$D(;auxhTY? zO7H4{u=q7ghA)fb>{@22GvDsUC7n4VR7`)Fi}3WDiYp?hhzOHgaW0kDN%14r=U+bH z5Iqd0UW)zrZwNR^W5@;^R3Ol=J?7L6Zcam;93dEODh!Q~26v{&^xwj4M6&9Y9 z2HgLhyzaZWeExmz(Ae<186MgZ&@Qe>s+C^IGbf~F+cK@D0*Hq4d`p47Pp?>%&F!G! z@O}w`Kj=xB6zGU*t3gZJ2kHd5D3K!248h(tdm|{ySO4DQ;k>n(xU=1|&da*jusAIE z`lCf+vj1rQPhEb|GE79V2JZ1x3qU_O^JW&*Rj=Je`!1H#;fxsZfT~t{$nE?Ue8s)d z@8<8%{UG!i9v_#wl>Mk4=3y$41h*{iTkP|EY3w;udoVL8h-aGI=U)a5Ef~8*m!9Fj zb3WtJl|%EtWYLX{Tg~N@_YGGZzb3S%Db4;q0&BP=C5VpmCJU;oVz9+Nx$Y9B&L?&M zzjwtdj!grv33Xr^U56H5#TTU2MA(I2t^aZBzg+<92LrFh?skuR{qbEtl=W2Sxe(>h}J-T zQ$9XG_qX+iL=t~$gU zczo04Enm-Rnz`7l;$JUMsndY_hk1*I8ss2){$8^muvzEC9F{IcJd2jUK`AB+f0+r* z-@707V(GeO%BhIAKT9XR)Tbk)R#jXqC>8Zwh$q~8mV3s#=CkyC?)4$*dyMI?I3hn_ zre0XNu6>GAOf47n+7sUY_&a9Jz$!~PB6*8|l>5#px5M-&m!W|(vX`I6LV-1$e}|HR z6m&MYb1m#yBTwG{loc{u&)cMWQ+%sChaoE_GcV~(numkaZQ%(BuQ~DnW!j#WgCwRd_mF{r zG*b9N8GkGRbS^T7%q8QLgV1b(4uHAsw}1ieKAL~%J=5P9 z7E;|9W(KpQ*`RK>o3v|_tzSAuf*FyV$)B;M)H^(+2uEa;n7XK`Op$|S34iQX?aOTi=I9)SxSNaId0LCvj2-xi(um!(*c7FU9& zj9Q@kLTcF)frJX-;=!?$w90*uR!12^q%s;yQaLymvD?Tz1WS{FFVm-CqPX{E=EKaI zBYxPy1XE>sWe%KY<}e`bP7{W^IukOHA`wh^*~fEL7d2|`5w?)l)_Z=kl{|!cTotL?v8AZ?*cK5DDK<<+2+d#q7w*<%TAmiWu|)!xw8tb6N^H;iP6m3H)%2D8X4&9w@W_4F zKy%TR?N%xO>uhiV^6t3wS#ozYE8I3nOW)wc4&K9+D2z}Vd+_zW2^nn$R#22n9;PsD0PTmT9_7dDVS%9Y zu+;WY$cr2`(Ao4|w2U!nm9{6Pfcp-lXe?c3-k%JHtV)p7aXzrJihEa)bm zAf)xgcvTtL&isIdw`EWzCs$!l<)IM`KBt8zeaWjIv_66!B}q(!O$5^t-O=lMx!C5+ zrw}PZO%yd_8Tt8P*sqrAsY*>vyi1T|$s{i*fFX!Dn%&2CkdErSIJL4U%q<~`n}tqY zY0oHV-TCEAxx81{ZA(g>ZFPUN5&ZshDvbw-t|AV9M5*}7JsXXBmZ^ioY_aGHag3Xc zY%ZiJRos1mnevr>GH92o!N(%(_T0?;rw;)u^r<&i_0Lz+V5`&+&kB<@#z_RF<(^QJ zXqKi%-yo-)`aduUcu$@2uA4 z$r7f`_I?eyE{^6_I4_Rc&`tWtP1&EBGRw^4b<(&E7vqptbt(*ZpD6vg0Iogerc8^{a}9r>viFjVu-q z^u3-JoEUkm@m|gSGi~RkbD{@@1X{Om_RBvH018-3kzAg(`oXkp0hMYGE3m6pWq8P@ zDxOHmI^z$PRoL)7Sfx1YU^#d$fP+j}8^67zsoGv}=E5d^Q`%#WfzO&Yrp+=Qddn3k zTk#Bh5Ij*#4Vzq@n$UMLc2B#a=w+O)Cm!kRKV8dSd&1j6`RWeDwbiZLPPuNgzdg50 zz&O33kS^g(c>%E~*n;q+Zl~CL$FJ?_s@3%9Vs5IT$kmsgVXT%tG3`Z;PD74AFORh( zbeJpi|Fq@a0> zokn(%iHjpKKBfIFE7w;IGv2p1m5f-GZD+b!6_@$R7szeQeXgXi>glvn64oh^=S3>m zdyvcYivKBhna;Wwz5J@Ux$mv7f)ukUPv&n&#mx_=y=iYuZds`ZxMv)MqO7Ik0d#m) z7x$u7*T^3=ea)MNpuHR!+|S>n(swq5P?xqGUFls{^H~_lAh9k`2yAs1ln{c}-={=^ zG$rN-OCnI z=$^s5eW2go8vEw&&mXsm8CZc~9p%KO2>cMPmz~gxc?vQWV^PAnfEq6(}=jQspfR|V74cFF$&<}v! z_XrQDfGRgFMn1==G~)GC&yIOXwx$#6P0lEthaDITNBGgbng61gIxV}@yAWOPa-Q?w zE$(j#!UZuYI{@BNET3+i&c}(6270G;Z<~)*X6!!rGfc6j=h!Fx(32JQJp1j z$0X7nYdKe&pYPw{^XBj}js=d78`R+~4)niOuSAc;4i7 zLzPkGAonY3yqFZ9@;&`Qghi2p$cKI)vdt*g>QXT_=!yOy{4Ut6VE@!;uEtEk?r_}n zvE9efCLY5dBho-C_x8VfQ*MMcb=l#Z#*5;M^JApVJJ&#?rS@cWa*@M|rA-{nD7A>o z|Ea$eo>S7b?zXm`Vw4tsP!Q`VgvOnIz5555n=0Gf%la`ktYNo}YdQlq1poa9YPy6y zv*VRJ?VAs8L&H-nf3R#;vd~` zf9PcR+4@R<*7h6i&IE(ynWoWF5@xF~9+71E-c?ewl_0(_ONO{q{Wh&}U7G+BZW@P+ z5vm%C^j1O>$`#*kR%kw-3AZ|kGb#@cHwBZffqlI{Hh(oLwLziWvF%YmQ|VdAM3Z#q zosH)HDd>+isMnZ0^8V?k2RLtCvWOp^%Vkacahi4Bk~_K6ExPQYt*3)GR#8f%?*%wy znWz}!j9B&z@nhX^Hq6?n-p1~&ci+>u8$lAbf03S+K&&HZ$-X8$Tyv zM&apLN98G5#wh-bDoCw^4~nn)ka=@FtMt0!b`B~EZ&UtTp^UGU!qDOS13yBJPdZ{L zxBGqOL$?)?O{P$S8Xr(_V82KHgOx#_{1UV%^`u;8pLN{M=cYECF`2*m!b59-U-9!+ ztI+&b$1Iq9%{&KNLyqUKT)jJ8Sl;Js!yA`f7(L{^_f~MR>1lYgX+Qf&bUB3~1Kd$L zmM1)SEqB}=$;~K@DzK6{EvGquhlrX^?|!&YqNX27}M&(zmRX|`hb|D^rf{?hL2Y1&SkdG4w~ne$?>;m*7L zEW_QkiA1l2y)EpUe$vqqQ;&EaY*@}$SoZ2VC!KaO{_N@M!8xDsAet&-Ot`@`p5X=y zFclXjy1}^h7Uu*ZWz3jDHj!QVG;3j4&a6)qR$(6~K$u<62qJ}?quS8;mL50bLP|#a z-j*v!32)@EB(G&wo2Zj9mBkg6PI-B@By!=}UZ-;^nJ~;1_#@@mxSDXF*V9LOC78c$gF*YBvBvoxU0a5U-u6bdzQ#y0I|JBTF1)>_?=YnAvioP%;ZZi-t_-~6^*8&1HP|7ZMK=?j zBP#(%5E@2JcwVocx!D;Izd;T*PqWRE2QwTN!GQb=SAp@0X@YduqOT!8=swL$_1o7B zzmzMyr3R&%pdMN@Zj-96&0s+oG+!}ZIZIdDfU0^0^Mz2KlT~vEJZZP>xju%Avibh=T#V)tmP1}9V@!I?X@H=zHoJ~^{rQNsaGSj`$SvQcEEL@ z(Iv0u?Y$9M(MJ!ibpc&Y7m6Cv`z=(J@OUU?5*uy~XwB-LS$}QM`YST6o53~T`L)f) zaJI?EYsJ!ZgT)KWCZWH<9UaPrC)OCi#!YbfkAb;XB}uZU5$3{zo1AYX)VL-FNMb_- z#u#TD1q;HOzz3shqY>cVCVk`WEx7Kb zCqB|0P6p6j#zB~5ov(OMA^GtwIo~^`awR_&|LXucI%OqwPKC^kPpGh5vuJX=`azoQ%Z;CS)xJu_RrwR7f+;mO zUdsJ~PoH>A3vKM%i@Jh?7;btsFRb!}7H_u4+ugEHN!$cFZQpMY-48yszfiq zrF@;#W#xMDkf_j%S!izNR(FsVFp?%HdJC6*K;MutaeRK4}nJ8|#&B zr%&U3`K9AQAG{1kTWaTGTD4!53@(D^w?{y8Uif!Tgoc|}I+)fKKASNy%cOfF))XA@ ziMP6Q&hpH9gNwA_*|>8Ez4U1}AD?*|aG5d2tM61wAFcfhyRQFbitBgZyWyrbvun5? z&+m2CzC9<5*Ye;6T_NAla;P&$&Mg7?l5UfWZmUb1BUdITyXr? z;~#tNhuergda)f)+mdClvOjqB%#b@74yo4bsYlJfZ7+bJ_d~a+J5TWAZ_#q9-iYj{ z13nQtVYkT=oJm@4l`|52dP+|`sBW&y9`D}#=$ifP)rndKsrTD|Xa`Az&3HJtX}ZW3 zSAGuE8O3tQKLXb(ef+IhiflSu&C{MyzywY$KPV3SW`}d2)71H^mr?f&CG^Azu6>$O7(4!0{|;o2ZI1x2Fv0 z_@3n%(mO_Fv~!nfJT6;>HfFDxUtku-jk80bhl1Ic;`HVf2jjxhZ0NeFNNTyiC5JAJ z+?fKC1288(E7^ySIRjzf^E7Q=BUpYtpi0i9WgYdam5rP_7k2hq*-dF!74Eha2ddyX8e#AOJ2s7dgmTgH z&I{F5&zBoY$S$NxccV$O~ekl9(qKnYiZnwic**ungm5IRq!-m28+hKGheu8fzbZoD-JN94nc5SdtcI^cmTu9A!ha#Jj!u&V2{njfep`5Th(z%a7UcQ2*8ulr4i=?rI_M*{65 zwjfIonZY3=Mf#HN=L$I^H1;-}lT32<)NmCPR7g>139NyC%6n0v;(qtDy=!BAK=ieg} z%Uf8bnLuuyY<-s^Y0f{^)`a~7#IlO!)#V?}m34ODAV7{;vcY!Kl*PK#OdbB#Tj5oI zcoPAfSTj4{TPRxIA)pxg({%BDxZ#>oo79B8#@gUt5fH|kzdwBlITR>jtL&fW?*z3;PJFB|H z>5qe(qSjRT)yDt*Hy(nupXUZO&LuE61v%#p@LF8+XOcn|QPDM8@VSrP64JJg&~E?X zM1|knHxbiGmNJ8C7kEE)eztQX*_M2uAr4b4#1$=U4|}W%%$%Bc`Lit|{j@g0pkmX$ zDaBoWycmq)n<^i@NY?toxT_G^w|lEi@z28UtuLM|xo!KkkXB*YPZe4%tgD%ZD^P%hEixeDw`HKzSEH^!qA*IKlq2Mm5lw26}mW$jeT z2g}e<*%gkQ?Rx%5IRvG@_zrGtW9;A_-eH}tB9riek!`;z)^L6e zXlEwlbD09}Yu@jtku?j19-wN}1x4A@JYgs_VW8j$*=n@>dtQt8!S3Kt&xe(jV%#&1 zL^mjfjYsXq0is0%(W^0h$^jZTs6YPHn5rUovAMExkUcB+IlR!Y%0Wsbn75~d- z8&wPU{f)=P2tF9tK zm74JFRs0> z13J`Kzd>93c{dad%=1S4#ly35%Wyo&qCh{>-GqQYeD2Yk{y?21jktx8e~g3%W>*oykZ(Z2(wqFA{|Wm==0CS2MZsE` zpT?bIkS)+ymxbmB_HrAS0sR(=rwU@^S;xFgrirG!^U?o2z`QK&m-@b;I5q^Ob$ zzfa071>bAmG@yPikVE}A7glsnJKhWDy*oDh{nh?n$iQAhDLnZ$iM%=?U)$gGU|#V` z;W5xF?4{+tJAHF`)#Qdltfh5XqNgLq4R8-W=g+G!uE|x+SvE>bKogn@3}75`J0^hL z+$a&l-!C+%BRxGs*r~i*S`*w;kgrqUb(B;Q)f_uBS4MS5t82Xt&1kpw5KB8_pcM=| z`+s|QTIGV%YbrSwx1NO4Xs~fiAq3Tnt(vNsLHEb=^O`_;W;X7M=XDOBc!SCgjf~=a z&M`$>;0*DmktoD(qo`MYx^Lp;wNG&r5+ndcE{TAS{ku@A!I!cA9;iapS_%rriaLQ> zp$ea>=W*o@IIm*wH^lLXhKZ0k8bEXux{3wvvHOD8Bh_pxZ%ZYWl0KAYA{Ji7OpgL#Ms@et~ z{xOz&Y#x^c$0G58#@bUjqLNmp;iDL!JEdN7rK+l5K_5SjUk~7^JH108UkK5h=!kE} zWx)xgO&?p<=Bw{-Ch|?HdV8$P;!fuBf;u&VOYzBSY1TJ`cwJ6*F z5qRigV=ONQSZmCrIJJCL=d3*|7QW3h^R#jIx&5YP>9+=QopHt9c)aiNHV>ZixqMIG zVUDwdS(5LYAiYC;=Rj$?WH!nyXLw-t^AMC9(&}g`CFc^+cxy^ocpf5Hu5>{%d3rjpr{47Le>dxOI>;-YsA7&?uZ=8fGRh- zl<9f_y>!+JAO*&O0uEwJytUWpR?ZiY9r~aNFPtno3zhUL}!KDqW8P zrUoOX_Wrreq-`QxRxkNvJUkh$T#k`zF8*k|nq*+DU1BqhZxH1TuPWT z?KvpU1oHQ-T`Xh5^VP44FKh;0i*e@bPc+T7#cXZQ%s%Ke(G?~Rdjp^5DjYXzw3!2J ztZL8WLn4ybb)ndH!F%<~j}akk#Gw-SG={`s@vLXzDQYy+reTIZ#Z=*OZSKpJ;NE=} z-jl~7hz+~xLaXLTlws+)@Qto(@`w`zf7&tTKFC@V&Tm<#Za^ zf?J@?)cm$>xbvPmt8Jn2tZPIOQ!KdOR2Z&k4;PhbfaZ8HL|^pKTa}66kEYi4(ISy2 z2jJfP=R(m{&rKol7YPT9JIX7^1nkjge6@DGB zmQd%l;7dEcX#=1QCNi-s<#X?U9NY*uTf}O+ty=&180MnI+f^@cPuV{0A`|bf$nyHn ziDSbqfI|}Fktb*j9XVNaf5zv=vXMJ@K9k~)PG8iuksXQm3v&K+b9ny-DSqs$ctkb# z>kgOi^I>L==5f0{Zp}3ff7B}laG}36mger)=Nf9;*&iK+V}fZZ6RMYHG`BTC#sHC+ zg+%oI&UkaZ{{!BUFA5sgV2=G&O^!y>R0R(q4Y!FD!#$;T6T9cN$fY2i!)+M^4`2b! zbBu1tSB>>CXh<#NU3uCN48`u|2}Hf~=1UF6S&B zu2W!N$nnVGVk&U$YyuHM2T_VAHV+~Q7q*^9w2Yl{;34)YSip@NAp?Ds=HsdnI*<1o zPT54Yqk2w4CoW-ec3p-_AvdM`*MO}Z6p~pIiD>jF+&Amsd~{}qaZ-l2+ep~E!CpJw z6N`wm7PxkLdu$+b9lpBP;c{q4Jm~Ys@wKohuh&YxUP>i_CV}NIx+zsHmV(tI?VBr4 zw}~tNGn1-XytPnE{>_0*SN?9y?B%^f&P;=OVxkU!@I1QOB*qz1F5+H9)jFG$CVcBpma zY#%IOd2MHWnx{`EVD}-8-gt+)xkGJJ6DzpgYpZoxIvI$x0wXWbLkxLfCRGSV>{K>h zt@ZR+xQE;omTMI=(xVR_k(poXRy5iteS{S}dcmd~lUZWf)TDYKutnUrk^9W!Uh-x+ zva8Vq|4vMmPD@wjPdCt7sgFbr~F~oJof#;5b zg&=L9V6=C&;&X51WCtCs)C4I`tk?*pWloe3a56KfOR|0OrR#5H;>WXs=IaT6`M_er z(quTwL7!?fcHrMSECD7>zuHhiXME*<1z>pu6}aeO`8Ml*1@={Ocm2Obz{-Im`n&o^ z#2VbkbvwjprbriMAez&>$z4Q&VSAr`j-*T%%)H) zoD@f3`)>W0SmSZQ?`KJMLCRA>0xbr*Ww{?eFL};3TP~ZPNy_l9?^cR@7P=ISc2ub7 zq3C`ksmCGz@GSu_+z<@MgZ9BO&OSvAC;MsBRK{v|eAsJPfvjd(wI^EoY917m{je@- zG)*_x;M?Hi(*Io(^wu3U_j3A}tjzBD*LY`^2k@@aNipvmy1?XWxsBE1Fc4YjaWazx zMmk^a$ZX(qpP5o4OBgwVvo{^#tkgX?d+}CEH(ixU#J9<5PHu8N$^Ojet32%kyh}QJ zafr#eNFc(4-kbDK8Sp*r1)s;~d5Quxcy7i7wFg_*i{*p$6W?p)v!nDxFyUeg(g~^Z z2|-~kct3MP{MYRQb$623Z>DWd4|$)-6`XqvYd^7USQSW2<&%I~gN}Jng;s##tIzN- z=pGo=gR71_)>9S`TS*Z~v-tqFFo1L^6(Uxd=aV|L z1D4ke2(B}6x6HF%+m^#J*Su&K@na9F2`T*1qH=52g`)V~^cime>b%(KEu7;qf<6Dm z5SV%4hc_=x^fuBJwv>3wwd{qdbW1_ZNd9T(7qHW4jQ`3E_p!&BMSC}gGrv>I;YZl~ zLRq+5$A*Km{M3w^%H2F1zPU4hV6gO|Oahe+^eo`C8}y*A_@}k&Z3c(LsC_8X;qtVZ z>g$=#)v|gc;)4Aw1456jdR2=c4omOWIuXdp3mWwdyDT%)y-^-7`rM+~0@^>ix2c-w zL4OP?bh!5J(D$ye=Q4Me=I!qg!&{9G_G{W~d^R2;J^*lGta^z6rZ(BCUq}iO~uFVss5( z$t*n7Z#1Xz=ZflLOBaAp0=Q+k*f@HX5?E$R!?5IDk>5$UZ1ZD4RBXtrpj^0hp&8C9<#O@?X(z?=5(n<@3T6$V0!_a1u0#fbgA3p zz6rZ<0N2nQ2!~NTSFkCuo>tkHVXxmrolZ0g!jDU;s?ne4=Nh}35PJEA2MqN%NH__k zm+8zB%pE%q7OpiGr9 z0K;W^_iU^F`LVrc&FA)^o`Zs+`cl_l&C)9-)!?iTpkoR|CWh4_Jafnjxyu@Y2!@gP z^i`QT^<#}W#q3ZC)!P^W?A(5ZJ`lkXk&+;yh!uPw_skiH_@teNkzHBz+kHO@VSUFu zp~D6%X!zvo?SB!V4=~XTB#(MA3qJ#T$QB*`*kYoK-R7AY09so_mbJ=dT(;e#^#F7Z z5LE&j*=k7lSvQ2 zsDHF+3mpJ!KzGt$T>kt*rfQq;LCPcAnJ0jr#C5P zsIL#`Ni}*)e`bC+M>c|^Jmfci5%T4%&&J&&Gz69qd0xw9C`!j$3lz{x6w<>u`u46H zf8`z;uOgO1Z+LDO$bRbDjWLf00vaa7^!b$4cP0gH0P`o+vdH7^SP$TpN)F-A`~d^o zmVb;~4VAR2Ktm&Y%psv+;gJ&oan`Vsy3cmdD@az=Lg7A?B5q~?290q|hbh)ho&^ddnX6g@`It{`hGu}(f_Rp3t|p%Iov4y~AtDO#zcA^$M3n0hO(1naT# zZI$opE$(!IRz@#xyXOjNO7!>?;{jtmeLkbNH-txBZKwJuvNp)&f7vO~p@(s+U3B+a zM=C>bQvCIw=q%H{{cJS*H{53!$>Z07su=N-#pwIVp#o$_Wx~y2tt474< zqc%$~-zzFOF#cu%{{EVct|NOFK`k4q2pUKs1>8%(bfA3Wuh!esviA9POF`;m&%`CY z>OTGwRSU%#u&191S3c(hCM@85fY-Mg;|K4FOGzPE;0Fv!880~ZhWNLh_mhe^CEpkc zL@vOMqChM_UQTDaoG+sI+WBVrcb=?jr$Vjbt2Hy7Mgp2P=t?|#X=R<{ z@SW?hOG&QwH6pWZKMUH`IE(5GY(%ne=^~I@3KESMr5~w$Fk^lX-4|zM$&5=4&s4`A zca5=jF+&N+ZoGG&Ed`cvg+sPjVmN{g*#p|mLdItpSf_l@oAjUc7lH3|W6=CxJEQZ< zD%zEJ?UQVOwNWxUKLQc>B^Pt%>e(S{+-s*~$eEtA{OnL70iY=1oe^4K<;T#OEUj3l zaAF5Q=YpeSmCKYZcqbc|cFTXBMkD9zAw_e*ya~N=S4olR1ps*HrJ%BzzC+d8X~0Q= zAv-4C3^e5K)5I@pt7^4E+6PuN;z{$h-sIgRLQ@SlYB3Q~g_VT@Bz@x=+;BnvO~puH zHN~QG=4AIb?$zd?@}3Bi6)&dX;e%R-<*jVlRNDnY^N<(epKU0U&5N{>X3D1PHF8?R zB0Op2NQ+qLAP#tE6e9Qu8keO!GEYT*mRRX96LmA zeYr8^j1I1v8KUxVsucZ!1Iu2c%ubLQcH3B6vHO? z4dmsb#-YGokq88U@H8e8ljV;e$DBX_NizQx(_ zy$K%Mry4SRCvT}+QVkH*UG`kAZlO1PZy5etjx?h~BDoMCGuix0YVwfk&dmFE0Ae;6 zPseh%k;GA+h)teBr5yECo8`tUh{vQOKR`edoR7!$ddF}S3G5{SM=Q`>Fq>PIAtZ>&1IN?ZB9#->^#y}*JI2YDi;u|F1FyDvpd!oQ_O?w)!rSN;uwF(Nq7_~aSIqU zM)nkp$|3+J6I)wsLjl}>g{cW56Z`tf9gs3s41)odipL8sJ)dP|!TNC7kI~=eW$Kg> zLjtlU)3uy03w=#lOyar>2@HW&bL(Jg287n!>#2WvF`w2=cO~p|p=wg=A^U;1k#KsT zRk=i0pcVt8UPAX8@B%7($_m4rco!9PDuB}!?t@yja{$lpyG#|{JOhiA16``Z@`MRgNQ$CvPvMam3K3cpiVB&K zS}|duPhd_ho5AyP$hk_t*l15%(Uxi{__>l2a`Ege9JBnkE?0+M59J*Bq{bOdIY|-A z#%s0#8WVK}Nv+omN-3T|wU{?J9M}k{=u{!i#+E0920-YQ;b56bV|&B6@K54OuK`W) zW0Ag6<}txe54u;m{>7`$2vGb3yiu9dhd{Z9fO`t{s?`G3p z{Kam(X|ev1N}-w-UniXuK!fHfkV;35ZoX%D&!c^eB+(7ZIkHv((81%vAF0AYidue| z>IFdMEIiemdZotRflh51YvpWxYrSI}Bp8(rP2TxxnIjYf>DQyK*K7ZZQ~u)lS}ca{ z-~JJf&g-jpL_%}C4$-4V`mij-(U@3;?Pgm>X{j`%N>&WUvqp=b;Z}GqH9g9b%VhL! zV$M(H>G;#58qzV%s+gm;bEnHw5gc5GA;_=#FAqRAD zIV3Uelx8_f(A~x`OKK16PD?U%`cqPR!y*j5c}`*(vyUDv+cipZFA`H8Me%Ybum1jO z8_oQ7;YR^*|9Ysx?6g-TLUegDOvpzt(H7=_jKPBzLN^mPP2@?LS?33?0D_o&0C`TIeNL#s+ZGH3{ z)uJ<;?2znB_|QCdp9ylj4PL{{3#^$;)L3ruI5)OMFTmv~mmDdlSN+KRj!LSpy%(mv zb$s<~>b|l0CP_PI@0Q1|v3c6^mujLjXFax;OJlQg+k=X1p_Pv1p9;!8S+8dh5pT0k zX8P4;$(iX9WqUW3$Hxy^CufhYKe_)V$5A1vZHbNLd$IGP^E&hWy94by>BJhW8c|jc zl{e``7Y4SS_w(bk-}zCeb$&w?k`T#lbCUZ^Jq#KR8m-kC?+lwRc^>JMxG#Q`abc4|6DUT1X{VD;!LY zsV9j&>{0)DaxPT7si`=$@0!zj-Q=ji4f=;e0Lg0yhbTvv6U7X0zxr7)J zmpiMksCT{QxzPPNb9GS^^%;kLB>a24k<=pYU5`j2#5NzFYw!v(WrkKQu>Kx0NApe! zzUb@%_{#KZ&Jomrg4wI%>Jt<7i(p>99}Uh_he58mf35NtjJF4zySSRhHPj1e^%p&f zQ2MPSMtULq|034^pNM}`wjnkukg*{^#rlT}fY-#n)z_4eFdaZ#m>tPh@scT19FrwN zv*KPh?T09u`Y17;HR;`&<{BSqV@W{Zr{zSEp|lDgUbgt!J$6V~a;nfOc*Y!4S}eNe zAfEJ*(}CgFyHl@>tJIF$p}WKP6(&;jE0^DADFtVT^v@`jIx@OyzE7l3T2o`ZP;|{T z`}o^TEj6UJq;j$ldT-;{nK*#aUeLulA5-D6;>7fb#pfs4B-tUaKBZMyVW)SobTyPt zU|*8#!2jO(dpdGL*ouHZ$Kvl&=o)`j&f;pHm>8L)7lmu_RlDqt;5{mz&hX#%m>vX~ zh_2qn-RJD3NlQqPzA&SYn$%dnfOrAv3L^JA&H@!apzT-0KWFo!5)(w{rtbrmsnv|` zoYZB@2KUFC!SiOC&sx{+$G;-MFnMcK5dIaB6)6qZ*1>d`mS=QMmaS@y%^{ z^YSPqRtbtIxx~2I$0-R7zj%;}SQj#l(W~DxU?uvM1>Xuo5>EJ4DB}CLrq47^EPgDA zn1WnxJJW=ak`?hw4`|2P@IvrK?NY3VKXI~CyDP?qDLnrD3LOm8^s&>i`yqE>9AxHy zT2ug1mYrY{XF_0q7};gKPcKxS*as~`^)flzt7;(a%JKw>eajOLl|PD{GRNL=$97)c z&E9n3?R_>2Vic(J*p)kA8IKfU^r=EQ!AFo!M75z_6@wkW#0Bebi5hv!M9sb2>NAA9 zj8t()^^mB2WDf|urSL2qbFQV!8$!%-lP-)`GCXC zNci2V$Uz`=K!5(7t0Q$J|FCt~=N}*f(HcI|I@=JxIX~)#$>I-gDt#vPU0SJ$0xM#D zrZfRO`sr5WHT-&0@_Tgy8^vh2(*gO{1#Gn_IlXZ*j~JjuqODOY7q5H+=K?rScc z5WI{v89%+A)&gHXD_ysVV58=1jONQrmUPcGg`&uLABLgQPzIB_-pt0)bFX@SSF-SG42MATEt+RV{-oo(oV&(#LX&FWLNZv*$P1G&)7$(ecZ zgK^i#EIV>!N^>DPDh|CeeGlHxr9TgnD>3PBSp9`#6fT|`roZKl&FmicRori$>XkB% z__pvL1G@vrrT(9RQNI0xs@{7u*fp5+RWb84paCjtKB;_m#K3}G%eP|GfOUd&Iev0v z2yTzyK*r~)^c7Aem70*$bjx9?Mb_V&Zv(mIa`+tZ`5mZY>oX8dphY(7nW?_$d386& zMyAuDAbYr`>RS&<1=_rRO$2ZrVczEXNsAed*|Mc_r04CAru_q-}mRG(t_7x zd`Es6|5ve0ZdE*Vs>jJe8EW$G>g!2m_WIpCwX%72C=80SfMbO320zPFfh#=TlvnGn2r3^Sbj^l|0yk#AQ*n~g5V(9B!VC@r z_rEOmG2e*Gp&!q1xEI6m!hjtc0ed3k#OOSTLwsRYo)9ec?C)7NS&{#pMcYh4a0MoD zR?diLKe4kRFGZBZ(S9>yyknsvWhIze4twh~_HGY|@28S?Zy4(y)r6#tKy`5+)IQki zTb6!`uIYe=zT9f|h=T#~+wnJ3VhSA8>=PI;qNSM{NI>ccJXuVGKJeer`v-CGEx z2@~pDHccR~y1$jkrchMCko|z_%@gZ(^^{QxGr)n0PqV}BX>zFl5EL7<0sRS}?v&p)qQ@v*`XjSCeEN=W}``eiTKYm4qG2U5_r90#O(==_qWXk245Ijr@o_V$(HBmRfP##)~}`K?^|%s2C&xNDA{+E1LqC%yxmeCh`I z9|$?8`L_$>Z%5=oyNIF(70i4m^HH3R!v18-^MMrOx)QIF-Y?m ztSyh5TPP*e}K;RLwE7juKm+9ytrKr^V9YCMY!W39+waP z{EtTXp(@srn=pglpka{W=3{XRPRUa~^%D_Cz-Wx4GaRr1qxr~=?XHv-2D0|s#{JY~ew>2%^=r0?X#kR}hoU`EwE{jHZy12__1 zs$Ur72&`uRNJ`-Ue&DF0SiIq{AwLcIbnh9juWkYM*LRHzE%qUf{~`Tw%8`;ROj zQ`L>eGNof~QNL{79(h{Cz`KZi`@{7XJF?pY23w}kmod~zi7L&e#L9m=xf2}hwI^QUA1M?j7DQb8|_TJY259nBv|g_X*z?J zW#Z3+ueNFdNwF5k4{WsJlLkM;z5yeJ$k5{(N03!_G$$S!1?S6R4pu+cl&aR*4o{n=#(TMqfZ~^83hDd zNst{2tXO=`{9{%Ohfcv!8z&4>XgGjF?A*Y~$A|eE%%9-jcbkqWlKd9aBR2_QHq?4YQFt;I7$$GV;-g;AN{~#lmyWbA*n>DZxuL{i!}JO6~Ezv{v0_s5cd%agyi%0Uk65hl#aie=|LGRN^&m%!$>&Wu%!2p>o^UU`i5v4Oz< zw}JJ9gy&cG9pH~g@^ckvg}~DYYExJ5A=80PnzK~hj0Z~Bsq!C`bQrxQizTxxnB%>NR=p7m=*=D z*~{gfy-W=&7Yzv{WemrqFQEI>Z|*#jKhp3X38ODy0H61M|7!*Y8OT{Q@(5U^@>Z$n zdTp0&d<7urCEr<6D^O&qD&TlJ# zn;g4F?*=ry5%d@I)maP8q%C4v%kWgHl9}$9w5j^P3hzazHWfj&^s&)&>E-DhqGezw99W zKS$RKwW;+2eEbTo6eB~F>t5@Y>)#3OoF0eQ%+~|Y{`l{+)2am5sZ{RMn6`%{ys(NZ ztnnlNIrsK}vUmK@fUr4JY1=Qs7DWL3c9T<>E1h>rdgx(@`paz z(fS?09ihwT{#Lo^_#Rg~Z2*-Pa$l5*O;kicoC4N17sqDqh~(7E6(sHxxUAl><14XI_|?ckq6_K`PB)>Oo2$+g4PbS*&i)Z1~~>Pu?=6 zBJoe{b&GZ68YNGf$?CZ_h$+jgw9njK$_`wk@9gU>!j%$;#ESXibqK`b+QXoDcP*_y zAzmk*%p0k5*#FveCB66(0u1xnJ4pJYbEQcXrdH|4oZjZ=UdG3hw)8`WbGn2`0qWh* zfHf+)sp-Bb)qLH>I@}SYE=^U}h=^D4M;QnwJ%01)wm9R{_7SF{csI!DygWN1)Ew1v z;P!qg3wPN@T;UbTm>_*BOfvQ3mN&IluNfKF9|_$k3;3T;$SRwuTgNzBax$Z+Nd%S> zYfheZvGjMvHtT{LOkN?V`p+v|+&y>oF(o635-j3}G!=QoDc%EB)~%@sOXYWu6$7c= zCv)TuDET))sPs$l$6j9hcd<{i)hubd4bsH%t}`IspI`i1Y@FF|vEvb=t>4G$W+-(} zxYS}zfq>I`jU~Qp`0ik#vrbi~y8W0dvFOq*OHfeex55bXM^zqg=gxj){XC4+>fm;d zFuTWy=RuAXqv(fB2RA?Kn*~K~n^b`ZKXQ_i1Ev@)dVW|)tQ&$NB=L#X^J&%rdSKVi z4O8eYZQ!|!0C+H7XZ$B^+gcFPfIUY_R(vZ=yy?f!X=32I(Vs8L{BN-X_>um3B~w+4 z08gB1#;ALQ^qPzT#Y?Vw0Ix6vzW8lWz*L>yOHCZJw$0m2Lq#7#J$Nhd2HA(7$NWxR ze(rp*sJ0hj#p>~GB`};W{Hru_37n2xFx0g{U>e+yc;UgOoJw(>H8Q{b^Cl-T(^qe~ z8$Y|;RkBfL6=eOe@?NIok?iSODf0VA)&!O#)%>;jiB;Cc=oY7d+KWq06Vac?pDpm- zbvl{pzs`!_XuwuQ#V^pJ7Q0JIW5kiCA-?=-a@&yZY$_&G1HGRDCN2 z|2m}zu!-tt&V%Z2!8;fF_B(I8)&x$k2G5UQu8zZdV&l8!KeFfClNC3mdIU`Xu85QO@4j&ka}X$U8C zWROW{Yu|avE^H%r%!a$5b{ZbnY?eXJ_qb2WiXJa>DoyvZYYX6obkvXSt!jZ-#q4*0u3?!TiZaH(X7s`Lx-a^H zO>~J1NKo~wP-EQJtf?#`G|c`GF=eXurEC$&7;JxI9d(F3yAi2k?~dT@x}ZPh5+`P?j{Vuk?J>+zdet9!Rz|Rs&90wd=Q<51w5$M^=7>I z@d&68bXS?3M%?(wLQHzrfU2V$UwEkT|*P*4}RtG#B!{fs{t zNt#^}_x#?k=$wX33W!-0V0aQy-0c50#je zoZ?-frIw;CL0l1akE#xp=yoFo|4;P7WV(F6*#d;G7{G4VfEyvtCfl_~OYcrU2MW1> zuB>%7lJu7T&}sF$p%4A6f1X2+%1s(9Nzp2U68o-^ z_-sOhJ!ch@=7b2S-d~~70tMoK)jMq9K&wQ&9$)m^>KhrcR6MrrGYUJ=FmZ26XYB)o z*lP3&Z_APscl^tkp0%3$S28b_E=Qm|M&6+8 z0xYju`c9HPD5ulELeRA?=RU~Q6c*|EP$yW|{*xJ^SNLQe6uAS$x2%yvLQAWL3#7JN zN~p;B%mNb~J~ovPrT5??zq8`O0H8_$UF^_Q|Dd?+>Z{FS06->Bhi)Lu>0gIA(_)Ua zQ?4WOn}5XE^FQF~tA_L*cK^Dgc^8MLtR)bt-n>pKYSDf&n9uWTj zi160Gvbg9?OkhKg?6%Soxmm!Zqc`zdX(e_8+1oF8ua8w10?!SO>_}WwEBzoFmXfJW zdTdYbUsY8kStK0VPzli*0*J?t)VsoWJtabCoaF;%_$+ zF^B|Dy`CA44<6|&ERP$7e{8po&JDWP&S!HvD&Bg+B+mk2d2xF{hg8ThKwt$^tgBx9 zgIO(j^17%{Ef?OHjH|S22w|0fQP)7rjz!jt<$L!4hP}HHRA|V72;Zr4awa=rtTWrb z8QVjGXfh;-P!bRC{+A{7g#P1)eFs_&u3dM%bbA*e-B#^<0{XA&UzqShULK1*P_1X! zPaX;;%%aH0aBl{ZfW}0Tswjo4w|{~T+8L{w48f<1{4Um4?t{j#WPGnpk*7+=Y8?Sc zd1qRVyl*#XPH@%Av?TS=n7IzuA2#ld8=Ev6dy?s!aQlxOz8&C~hZ!-1G7Y)RcRiOJ z2;6w;mundhKY!u=lIj;uHq1E5sA@S`Sgx&Rd+Nv0P|mlw)j7p1{M;_sNtDxS%uXcygblP_AFn&`;2i}l%-~$sXC;_t5_s6G2@bR_p)e6i zMx~uTKPmE);63p>cVe0)A240}Ss~~Dn@>1LgYtQGb}>cV4;1OB)`KnN73s%9&gmED zEN`8RoZ1{y9=$rGy%+a$53F&R7!KthOMs^Rykije(WFr8&XR4U*DG`e431L41VjU@ z`}>pbQ#hOfRm5gS`T$=M_I_U>D)0LpQBJRi*bf%B2zg&G-RdgY6N5eIFtp*LFzV64b@`B>0++3OG~!f8GGm{=6I~M7i$wU9_E)$D9Bd4Ssr_T;+p&j2mAIa%z$H z_yH;*O7ArJfW_lm2WmHDCioeFD83Muv(Y20zNFEv#-~-Gj`s%Q^Mbux*p$z3RTx#R zPo-1-mISXs&k?hca+YyFC7AZtB|IJsD;3W0@kLy4;CN{5R8pVnj#B7;=G97JG2*^y zXdmOgz`w#BIROowK2D4be=TbZ+vQtX6TLWQ@T4HdLsj2Ii=*#JP|KmWsQPNmI^5qK z4Fq3q?btf7`nx{9I=14fzp2@QmELoBo-4cq9buwOk+!ir7STr3C&2AFrgUY+>zfTD zm1xgQe=aBtQK2^pfRF!wLb0>71$G8Op|t{`{LBXY$Ar--x_@qRLL)>4oD(PVw<^a0 z1G$%vvG(d3pOD`fQLFB+WO=9Diu|4U^gcyGJ1E54N)wmjDLT%G$^jZ$feVbW%S693 zp9~HojsAE&d-`9TiO~FhDISeSk!v%%TL`k3B_}d1OU1olald?(g=<e?@-651z%cQZ`Y%##ieX6GqBe^7E|WiE~$n8mPp1jJ;O5XxTq5Kyu`Vz<8LZM~@n zt%u^Lz^ma28$1|bH-aM$sN~XtscM$}K2`vqb!2G#a^Zj6=rt|=c;T^(o5fV!pfJL|J|a0InD7&MK1TUp z&nf+=ko>OKh`X_Lsno!qI{0dCrivm_s}&T2sya~?dyDsr;N*_z2)uUL(xa-ogK2&< z-y-#xUfc|J^V*Qc{{g>W5dgv|I(D{NbNaj)*0Qu+Tk~Q?M(*i&(Ytg>8ugOjY&p-D zcjg$Te_4~BBn3{CeBY7Co)4`4hRDy5TMY29KWpyqnkojpa`H^*og(YEiDHiQC&s<2 zH0@jJsE5(CGsK|9yyiDjg6NfT(cEtWhWh@RpP;rnFGF3A8Ne>PjprjEQ+HL0RW?9U z_3kbhX<5FPLZ%E^xs@@t1D5pgZ(UgkKvsblI~H4^ROVBGe=JM!-wqXEWNZ)b0j!-} z?b*RY!Ym>Soz1)T_VuOT$xg0pN=frE%>IA?mG;8NN;Jo3AcL3_$TH2AH`FV-hagy- zW*AdR6Z#12m~|D;63FV{>tv;X`!B0kJV&zWGXj_t%3FoII;(OU9u^K=GRVmGDckiT z%*V-aRBaQ^TEQ`@$@|7i?^>W6?_ogJPehm6R02RHjN>Zj^^!CTbHWRE3P!2oXGbpu z`i72n#92cl_+9&*G?r_my+k6B3>HcC?sGFcLmlz!N2#V49>ywbaQ}~JFJ#@U1!tuU zI2S9UZ3`E5(#6_I!FiX4fOKdiQ~mXiVT_~X`s4zLPQQC?>@GQd>JL5k?i=C7ZY~ou zL|c7zhYR|fp;Wuu@qfxAyZ<1CG-0pb`@vqAQSmq4I@$FhJmGT6+aY&}+Hqmv zg`Q+n0nJ~=fXN@^l#GNZ{2vzp&{rRuES31{|0zU1J|0)-Sg>Q`=*05-ub9 z)bXcPG`5qBdT}JaOI<8*JVP-p_cx?rp2%I@9oQl`OHxG&3RX4*+@Rrd`F`E%`2QPD zBsWIpG)xe`RBoNXlx}bx`B2`P){;<}x^8x#*tF~dr-DI1A{Sao*|sn>{p+*-;L^d3 zFd+FVryR3)dci?RkwAkVXnZ~7c{B8ul=b}2X6~zQ{qx~E)a~dC2wOgK*HK% zh>xT|ZKQx_eowgynGqC&oT@##s=jO*B`GUs!PIuRxDUovwr%o*C+o6@03l~$(^5m)KZcb zLxe+BQ-5nL+9FzeowsGmMm0Onk-Pd8_p@8lpI-6?T^Fr9^7^3UB17FY*B29={9!!d z;-|YzmMWy=G86<0$O8mV-_u_Cw|Js7Z2?rxi+7rrEend;X5)28V?mvg^~5w>+&~o~ zhU))+5WHK7xqEtz?miAGLd z%wWXNokd5;&DNCg;AYNz(xhM@Nl_V5XL3E2HpbsqU)${pc|VZap1XW1inSznymnk3 zEAGvOI!`Wm?!^WtE{AcfK`Eq9IE3oJS>*%OpaUzeH9QZ*Tndl#@VvD_$K1s25eY`y z(FMI)cZTtnOm#l@x>xPdOVw9v4LX7Nny7;frk(}iIui@qKcUcacXSPK{Yhrt*z1fpG-I+az0iJT zX#{%50E{O@C6kH=&U~LZ9BU;e+8tNzt^oDom=US=9XJo)(@?FBm=>gtwfmdTO*((V z&`b$yHGT$|eM>xA&T{xLuP+}a=9XxvvE1L%wwISGH+RRB;OR``oWT|4kat$ofgnNG zPzeTEINp}|q{|wZ4uKc zbQ;m$x(*v>3%7m~w!r7Z!+(SNP8@^$Z$Hkvc&Kvi zZo83lgWLdA53DJ8Ow~qWe9j{SIPFG^kS*M&fanwk3vbMTpKW$hM4m!X`S_Yvmag_^ z<(?07u(xI=apzEFcC-jr7vK9#UW!8EF-o1>uX|n$M*1n%`4!j z8=aY}pp1R580mr*MQ6C+;-WL_cm&mw0sV!UUFTdX)KcDpUT*z?dkwPUGiKBsLwAG}%f~>VilYD$t{x=2q z01u9074>aD&hi!aaTwApQh`cPOaiDZXF3NcJ=EmYE?dIO(G2^b-MOeEOaW!GbOQ11+fTBKae(3nwzfO;cgmZ5{{rTZ zITcd}p)u{Yj#fxF!HM`i!56RAO6-cG<~pKf<$NL0V!O348U9=Kst(}0-FB34*Kex^ z36(~7=WCQ2FErW-t(j-87Io21t_zb19v~P4RI0hQw*flSA;Zcvr}p9harNARSa;t) zmDh+8k(Fc%A$!k^>_j9xJF+seWhA5QJ+sLuD|>IUcSvUTmi@cW!uR+5(ffLy&pr3t zv+p_Q-p|DQ>e5uRKN96619fj{&4ub^?9mg~Umx{K96}jerroEN<+wLXfJt5FwmnrY z*@x!OPRyT|7b5ii%^us038BgrBgeOA1<9L&3$uT^cNsU14v(hVPo^#0z{`-f51jMn zG{vXZsC(v;?Y3T=%J*AQL80Cp2Ypm3*T-RpoKsi-Tb6^5z4` z+2MyiC4TT$NfeztMCZQSzILkBY(?GjjtFyD+`G{VvofhyZcePTguJuO?BFg5Hk01o z3GO*V*egFEkj~3_WD>3R^#O+g>xWuhek0f+j50KJ-kmMhAZbY&PT7={bl0D|;YGAM zil+JFO#Iyc^5M~a`U9WH(V*9<8^JFFUnp4I+vju4c=K9Px16F{kXR@)mp|A~=ujnz z(&g5Oq^){O?SuFQ`K=%G%jk=ZQZDF}9DAS-$nRd90CHCtmaN59-kh20LpK=slV)wR z@2hoR>%@_a;t#cjk#oE+ioUOWh<-W|8F@B^NkH<~6Ufb*jUBn1|GMAiC1yFEDV8Mu z?LKLck=x^;C2+&9?A;dBcC%;R|FBkT>P^6>GOgIQIgCratr_Tvnty?4|xwRB*+dbwx6 zZW=cxKz+8%kLG@n}9rIPKN)Mk4J8yK6LQAfYgDoiVyP zKQj36zJ%#Y3uwhCNj&Fi=CcEwJV^=yakG^N&4@*(%H8>T^7b-=L>lW^jnqZ zroyN__z3@j_RA*!mi5K$}lFrgC?DMzo@CEyQx5?VzubC z3N@FEvZsW?){PFW&kAyr1tnhrYX#Ne)4xE6cc4gHpffy@Pvc=@neBC~V4S79I6=$7{=XXRTd(A`$V^;2ls5d$yYD z<*<~gwfpRI)qqX`gX0Fdv*N1VsR6Mzkc67iv#b&{-r0woZ(Bvto1%+s%k|@`O{;j3 zN*!=1gW>ZmSB3d;Y_UV}*hmnacB+=Sf-pf&T`YdsD>5VQm-K@anH2$7c>{*t8^JxZ z3H>z5m)H!A;B7mg(&O)1!M-u0D|<3){P@a~XF@UKBDhs=i z7B7Ew1~+zaXqiRA^lm+1KIbLoD*@(5<70T$KYehNKwVeMtZiNf5~p?|lW5Zvs*J*4 z^E%s2f(_cJEH&*nI&CNJM^TODef}=*mhJlWMFiE85P_Nx3*P?YrMN~?)%6wvfogwG zY^fyPRxci@N1%*h)?gduh^z5Z<>E4HELQ3avg#DJc^9ipeeMXU-Ays2P4eCUV1b^z zTVY-y=6G^v%gBOMRBig|OYD1|A4GRelJ`cX?aW3SU5L}Qh7Xye#|A&TN_3ovg}bJc z?PEJ><$DM&xSeUAe&{t;o+C|gKIxj8>^NOLnL3?co9%ohN~#EmlN}sY%938ckjk`#6c@>a`!~D~4=cZWQ+Z2b&f-7Q{tq1oPlP}g!5#!; z$|O+%*^*iE(&*$``%tdu)wtjYW=7!?@K-l=WPM^?^|<+NS<`GW$otk()z;xl7qCf* zf!%cr_RY61mAMqYJ%=U#$9BZ~Vo7kr{RZrL=xNWaoq6(1M0mPnQg%hBuaks)vTBw& z@XxD`ugd&1^nM=RNaFKgwd?ltm1flr5)*RERIm;1u7Fhh$eF@Ydg-d*Dsp=NtL+c{ z);petZ}IF%U)}-{waZ<~;@ePkepY2^7BapLfieEgI*sXh>4ZTPQQpJ`~a$I?i1xlArJ8p%#dH z7|VRL=8gH#yNE2ysMheds>OkGgMJ&dj_;_zc#n7HMAhU+tF3FPDXA!DnaOW767Rx= z03#XiO{*yq!!|01Op~>vr+7^!G3nw@@hZeHhR>Q$*6X#OJ55DqH?kLvcN>?xWsY_4 z{63v_H$1!xnmH0r=b!VsDf%9b*MM7K6FV2Stsi*_R344B#NlKcP$vj4JMFQr%6IN% z3=c6Ir(MgOUd!FRt&=V0Aw8`E!VR;UIIi8_hTlJwipfemA~Fa*^J`J=I z;aSZp4cW7dSk`O`c;2ht1A*7OS&CaF8SG{lBzgYhNG~^Y`j+^qD7Y_m3++k{52!ui z6i2JO5Vx-LmQc7VvM9;uq?SP78A)W3(!Gd6FwDkEmeYzP{$+L`=#ayw!7P08`_MIP z?WeqBn$!%)hKqbZVs`=!Lh6EtzGHq^PSc_`F4HYz^@ZP@1)O(TZs#u7`;Sbij<~Il zR}f1lk#G#hQ+w=vUzc-rw#eT1d&oJw#~^i8rhKXowuSwhr^dh2?8G-?%bd>PN*Rd9 zhZ2l(1AjYG2w9E9?yadd+iUCNk^2*743o^ zLt85*^YKwt3i-L(Jxgdw_GNO(&PT>pcf!6`k-X)t+Hacdc;`RI6)I3gs>kZrM&~~; z{KVWF`+9P9_5QB^bLo^+G1n%)n=gDDtU9x^yOFW;rTwj0l3I=yx~?^fF0uJnjfYQD zC*ScYeQY<$BX&NW8*$VDok3Q)IZmdXZ+zQL<$36B29pbo9~ukigIL+$XM$x=gYp$c z_TICT*4<&{cYEJ?ubNP%;qRZl9RJW0ASmE3690$N6Q|5}i$mY+BN<-604rfu7u5g8 zRpBDjgZGoADBTpvT`V8Q{f=eG|!-r6&gSDbYts6Cd!i4ve0>Xr0o7p)*HqXaa6 zfKta9iolsgOAE$I#n;R-Y={T)>QatE5J^581=-pFi8c#or);?)E`zQ3dTEn=)t!JcL&FL)Z%SXWsWz^|m zh4q?efn<21zMq8x-85D@?}r7Duk20?6>>dO{A997=goCu{NCNBY|phR=hc z3VSSW!x11fHC|v{4GtpsMawL5s$&w@!ZJuC>6JXp7@ZZerv$>>qo?|{hbNBV_r;w_Zu{{Ph9NY-$5<-+(4jvC1QKYkaq_$T>S z@eufd5NLRmnC}Zmz@Grn`kSoG!wZXu^Y}()Vf`#->qL9?;??Ry1VJ`IDaBvDm)1ml zUt)L%9CO}74ZNoEN>}eYKzomR-uH`U-N?^5YJv9p_PwB2upncoKEjk66aYO?>c_aM z`MAsjxV?(}97GSREF)yE+Os&A^5cL0ssAEEb|`-Hxy1@<=t-IUpUsNFUVr@VcVvTp z2Nup5fzDa@Kebv+GCOLr)?6jf$xqj&j{R%CI-DtL3x!rhlI4E|w@;)`LX%Q$jkjD+ z4tJL`6#VyvPXA5(kUji82AXp#)?J-z)SM5&Ps3d-_1B2Jez`oTQX!DYEDZ@X}cZa{~jw7@2;AyHu<+~hSkr26ra=ha7B$M~^e^2BRgR|&P3S7|M zw120BpQvLKLv zORe%Hia9E0_c4w?MSgWl2F1}=bEakgM9A?}IgCPMY5eL4?6)cXts8QdUPs1wCscT1;LMsQz@#0#_jJi?X2{z z-IOpb;{vx)ko-U6f9s3yNgV@+4~D^u?+og%SO^DrS5xC*ZPFAwrrD&c-k@2xPm!-2 z*QioMg*j`*+p!%}XyA?(laZL@e3Mp@*|05k#BgNEn>vr9FE=c>CL<#U%gbv%F_@Cd zZ~vJX%#Wj~|5o(m>Z)c#|6tC(K^3@>bMoj}p;cl`z)!7zS({NK3nkJG_6&WCbGLG` z#2hEc-&!uWlbz0#eE!X1ZhN4eos}4DxpJBu?K(gHnv{8L=tOLJ;4p3iIP6KcePjN6 zpWP1s?#)yUu-1F72~AF(vfumMGV@{h)M``3HzV9n)N+52o0L-7pA)s^1GAih|GNnar{dtp^hqi9tk52!Vxs-qAvQVdyvP%tI<9F{`7F$5+8VZm# z;w|z4oicW(Nl!aM0xILe9}yLI`5Eb0a{oBJq_`Tx9=IPju{gr0NNs5|-8uq%zHz3|Z!#PZ{=}+MVU(mtcQ8_hpp`bZ-uA@oURwsHbobRef%nGQVcD zes)lClJMHZE^my)i$KYu9-Qlt$G;%LOpS=m8x8J&n0wpS5p~t3G z>-Rcpnmt@BhPKdszz1!ogQciUGD}T!o%&(%Q2~0a?RTKgE@$UyPTDW7g#ZhK<(Ppx z^70?dGIT#Gj*KDIwtVe!no~GqnlaJURr7c+ii*&;DSKRe%Aehu>)P%5rtf2pT1L)% z@iK{7v%J-JpKAy^KR%qcy!Y54ZQ*3%nS$>O8Q)O|X7cv6np0E~rG2i2xHwY2cq3Xy z6;2dTG+$g@yjIa$5IYx;U;lB;Tm{tsLqAQek+Jh*i!1$+XN~=F8rhUP6c5g>SQOi( zP(FOASn{bGy4!ettFqUYurB}9*x4z6c`$Wn{%`5~emF;q855w7#gLdfws!dQ~{y9Nm|l$7(5@cA)WNuP#fVjUJFpiZql){_SciUTN8`&+_^FY*j_wd=ypVxk(WZ`LehFoEhEYr~Ct| z-P^~TQxj8e|F#TfYL1T&w(|%&+lxkD{vLh$YdDX_%$T($V(d`74#}X>h*kuj3<4Vm_yzGr|x2D7w}Kouk~C zc+}q1L=t?GSg=T(%$1`2m@M5*NS&c4WD{m8Ip8d0WAf{yfn0M9M1H;7eRUSqX9o-G z43%n6wht^$9geq6N0o^6T6}t$N+a?X$9|7|qfsWXNzi(EDmwNi(Y&T6tuJn9D@-yh8sr;=iiK?8IN*9XI*JM3RFQn1Y= z8{Q0UST9kx2hW_E4q5s2Axz+ zd|(LF-1dqx9$<Z^#w-tJD+c46t>ZX6w5JU-6#!G0`0UY-_Q!^3>6xS@$Y&F}i|=XNRg*F(yqXXFPT zq__6T1f6jbOUHV&cJW=@Hdybjo;E}t{FE8q<|qI8QzB!5mN$kcn=k0jAMS=t2W~CZ zLnc3p?(L(DH}4c`jyL9RI`!=rS?}F7S`7Hm@GYv!@oxspM}diY$KQBHMn->jc8+Ho zZ8eRC#edw(PLRkBRNdxZUom^@cv_NHC;mP0V2=5$?d-_y?4;%_@x;w-Bk?qaS=)7c zN&JT!cRFaT__@!M(kr#1AvW^$z`0s5L~Ggk^%X`p$N%g`i?N$Q$946Sm##eHZ`m+t zQnY{_x=!LUF!ABQS%J(J%pvXdPfS+B*`_L5Z|&XWsPVvWMl{mz@#TDo1YVEGrLABh z)EYhSAiO0?<#F^*T`YGyyJQQu-aF4znf|4Qg~4Kj2oG9`T{fTk`$LbC0nE8Z%&xJn zR|UGUs);@7!~+Xvv96y4(-&^jy9h5Xx@5}J;AR33v)6sZN&OW@-&})F9OvF};?3Kdw&yY|sEm5M zR5JY(G-;B`^$8x61(g`xrO|%Ak*qJsw$~j;bT!i>mZj;h9j{)yO+eM##7$)-MB;Ql z?kiW<>jYJ|JhGZoZD#*g0`ZtBmmdkVN0_z4T01AbGsQVI9%2lGr}b8MTde3a2-Loa z8ReHm=Dkks`%-!m(6*0FT5hTzAd$kPf6K2$xG~|;*J6mM+Ud@9eg<&v;=jb{aFrbM z-0C>F>gYz|(5Ftjd*r<|%%aV&9sPgGzU?6&&+JE5fhRW6%*oCR9+@8CoWwJQ1ECI@ zwc5}A#5XfjDfZBq8P;BFl?cT>6#XkC|DJAee<;@O%`L}2au&90S1l($&BjP@#NDtPeF014W4~Cn1@1M#VqR`dr!4%weu+7 zK==h2iJiYsB=ws;aZan^iItqW7?U4mHqE65g4^5VRH3z`(B!CeMiO)rj`eHe1*Kd` z7AGpB%T0VNN6>{qf5f_9dgi!Uyz&T8q<3-HWTm3-uV?x0%8Rd`6>hWYcNf%G%5z#R z6F(2f`&N^Y?_77fBLY2giV-k?st0;*D!LOUvnFVF*aTJ(Cki1u{ma_-8pOwISa^S0 zf-b1Y9F=PH{Z5sIW9U%^_`Lwb?0h#N?tx&-O;CTP-YtRx`TfL-Yf38?FX1Ke5ZYT{ zN0D@$xztFM1}dL|UbnIbf9E#k{6HaJ%2LXY2!Ezvu(&fX{KVk|KL7;9WkO#GZz!h* zpM7Dn`JtxOmS9Huk)+!+;1zdVW?EKKslJ)26N$uEdRKGD*N-GmZanAQPLG$#_>l7X zZb@}?ZugCfgSv9Fe?AHNDXS#AuipOprE=pg2!YJvd0C;!<`xrmyr$(s@CqSl!dV=e zS^lN-T}WO=CU$AhU1h>qQ0RI30xV8u!H0wrODASzSvf2&*V862xG1}|Zg|GuGGSK> zT|8MdIvhrnupom_rr;H!mVi)hPvyAQg`$$V)w?ziz4Xt zWzy|UK0K3=?5pWTV+~Naoutc^_4Z#guVv-iVb#Xd`y*tv-#$mg@{xK_Vt;3hmVIAq z3zE4Z%jJ0_D4|qspPbv%3)L&w-nNG_bZyTooGMRqtXs6K3q3eKF$T>BuJO(JWQzKv z{OjVxM{k0hgI$ZY1pIf`OzH)~SCUe@Es6g-lQ>*0yu*f$SysfytWgvuID#v&Bn|ey zbs*P)noy;VTJfPFoR9S|8g&Z#atr7urc`C4>J|RfaNP9QUt7-L_1oac=#mtc?)V4L zomm`zqyxIP`6Ak`Of>7`!G}OL|-cILYPI(qNHj#B$fNQ>=|9IQ2KSyv>Wdk zzY>fr!b040OE9bLzyGPYC5mq3JQ&<&3V|^8Af)%<1JJ*`EZC6aqe^qd1>9ADB=)^a z#O8w*Bv9%qgP^yZI15SpkI9S>fFh9Rst)?Jw?A(`n)fX~TmQn3PL;0T94_;{i)!GB^^`EK@xvueQ1{1le9b8Q5Jq_0*A`#1BSbfR zN+O0x8Ewv_1M!c&Z_&T-Z9|ibFaLfoP;g88Lt6PQ^WLa?94khvfzi?*Kj(j4-$_|L z$|d#FEHkW+Wx|_0>FJsfP9{}8=sYwwQ>MXE%MQcb%%r(>eRDHo^D~+laGt&SXB$E* z?;7LgbLQrMdU2GjVPL04N2SL}nWUs0U z6z6@V2u$l+i-{WIc^|C4bV8VAUucy&)YbDK>{EcUPka?I8lN|13ewF&Fjv(MX5^SF zUTkWjH<6uPfz;xF1B#TOB1Lu;lH}GGOUhu?u)QXD>spBpD?Hx}>V&s1>V%8epu74^ zhXiO&(7El)LiSL2r~Mp|^GcIy#_*^lGwzPL2J4U{{i~C(;@yAARVIQtHW~FBO1V7X zw9(CbF}40I?O*8n*grYDu~?S=Ve;CjZ_2LUkCeMN$>~Qi1)5^&YHdBAgc!8#dR!g) zuqgA28_y<{Ls6c$NZQ^^<+a7}zf(}e6W!nw)qTrSP+TNW?N(62yynsVEo@DReX(tk zaw>TsY~}t`$^af@B-q%$c_&p@=(TO9vb6KB2x{OYu|PVr88K^ZvV7r>JlVn!JZYbP)|$38Xrhytg4r((_%-V8d)M#j}C;iGGv3ibdW@j6oh2IK5LZ{;Z!D4J6%bNGNwXJ0zCI2)Vuc_N0pIQVUhr zbuujPBHP9xI^h(P-?nHgmv-8v_jd;KOO0qX1vMZLS)@A2jTPHv_7fSqlSTy~j?O~V z3=7nA#{>~4oWWfHVHBU3?3#|VHY+XP+MW)P^5Q?wAP{%7w-HeIe!>yl@OSm=^zNZJ zahX&9>k@~4jYs98Yk~FRlft&A?8L2Z14?#rWC9jT@1_S==c@N;ckijZRK+<$TYC2a zTtsty;KS5X_;vH|d=?t>Cmjjaj5W~|C0`n! zpcFM6`czq=Jp3Fjx@)$)VQCm%aT;F*tyRviis9tdJvzcHk|rrlg7I|4m{lS(UMD#$yR8;c=;lR-DA2a5LNV(uute@( z<8PHtlC~$ z#j4O_SSWdXpfFucCjK-o9mEyTQq!sHiG?4#+zhv$^As5t>b2n;G)MhtRhGfbvGO2) z&D{`Pf6xXEG5h1m4&6ZuaFy*smE||n`!0&;kK!KI6KhvTbYX()sb<01FrJ(+*9YL1 zqK|wVl)DxR{LUU9+TShkdZzS|glD>g-W*fM8PM>y(@bFX(dM1|7@9&JN6iV1jk-*S z-#<}~5mC2>cY;x`n@sXXn9u~QZFp#=8Cln1F4UeaAwD0+xd@ZhXY&bMq zcAF3=n&TCm{MFSy`|O5MM>{rWJG)UJA(zf7M`AaF>M=O)Nme~*!_EiF<-1!~n&7pq z5BK=}cXv(n9C!xD9(wz)=JyeOiexCm;gq>*4~hWgPI(fV(2fSnYac%w@U7u6Jd_76`$&nVyKs~OjW$jIB6`s?huBSBGsU zZ0V+7FT2g4im*geJt^U`wd}&o@OK`SMV(@TMq_gwbVi}I;du*ZYG2(Ha!+kn^lVJ@ zi<`6@K;`R?cv{H5lR?|#N1u{GU_N#9U!G9eP)V%B5o`F~ldBK^%N$IZE%NbM8Ev%L zSe?imQrbW*im=1qOcvcgGPpfFoKXB6lvF&QyeGaX5mS|-uuM>Nc!kR2XM`f1{T!zO z#>jX9R~XUP*MH5x;pD-`hdv2cWcz^?!_4W7T{2fOys5@#%<%o$OO$Cl;8sLIJ6^a} zk=z9ycKF(RXQpk&js;ITxyu?Yi6CS&JLQ+u)AYlp56d=PC=2CdaEhJm7EUwrCg165Q}I zOg6K5-#*1NA(pImD^RN$mR|W|8S%QiN-a`%Xjf$E$vx-k&1Di0vFF#+=2{d;&2aM` z-?+{^aMZ1g4!QGZ;?lSGIiLSpeMhV9M0Ypo zyYEcmQN%=PL1|`#8MC4^l2ll~DVv{=|3o=Q9mo$PyE%&)O8RC2g1Y-OQYCWxs zXP0NZ`*S+>Jkhj45}qRSWWZtiPf6F|v3Q%i4{7D!VEWEJ{AvN_%JQnaywvhC;1vVm zi$^#8zubD~xW4=8sxnkUDT+XK~(ncPde& z(UX1h+FJlga{fN?3?? z<5uFi9Q(LJ@ZYS>4vf~b7c(rQejSrua&|nMQ6O9AsO;Ia$Q$TN`uVB(i_teNLAe#7 z1V8PSUJIKe((#0mzXPc^DR=!#^-?2@CZuv>N1xF>l>dQ2E-U23$00OADlYWO73xfq zY}&tJ+O|Qh&0QI{D+LsayoZ#F$g18PSNk`hZ07@r{=^e$>%WsgH&lj4k$$5PWyy zGWT4yS-8T!ciL=$4c;VVVZ0*VT6t%r_;S=6!v93})O_+#V$6 z`;)blhO?qq{r&U&PwcZ3$0ez)NBb`VGCqn)yXA)yzrf`2nt0c&n`)TK)X^MVeh*bX z8C*;>G?vV7nrZXKsDSUiYx5%X~O@#zIr|;Xl-$JpkK!k6X2Z_){IiWy| zzaM4&7*}X;pT3A_MpiC&p!VGO1PW0g{Q$kPabfWIO#*>DxZ_3rp;0`YvRmt69@UE3Lrz%;U)@v%fXhzpQd2dO=yktA-Mb6V7)N?P-E3*v z67Tm}j{D>yTBJ1bfl`CMnfipn;h#G8D9BSP5JHNoQEiY9-8`r^UQrCI65QMHd%q5W zu`z? zKz1MG&!>pvO%zi%yLKyQAHbr+(YcT&@!&}fjSg3S<~VxSICf%`Cv&R7E}t#G#jO6a zRl)l^0aBO8HqV#*ck2HRrj4!=VjDkX@tI4(KJ@dM2>T+n{w9z1V|#SO-8yh&R(ri} zw{l~tq*)f{1vLqw-0K?7rFrL*om1_z-IgP#ETKK{>z>j{bBmv{&@Sd=I1yP z-r@JxeHko)tNq$#>Tz)T*t{)2Ge1duj9^y3T)+T5Vb)9NjbL_(RV8Q@AbkSVCm_WN z^*g3_D^&GXN|#l?s_w~Wm6|R0R5&Id$1`)^T`tEchnJj6prVY)^|shjMxM5Znx(UnA&x`b$Gwn@g^r z9eaSBIkF?&B&MOEVZO3n-l&9v)WL_*c~UfJX>gTEGL} z#|pvEiR(gk!^1+ybrBr~HVz~A$Z956v3DkV{XI-G&Q6It3S$*4IRACk91K+-{j5Hl z+S({^u{u89l^N_;*_;sd$Ugns;C#@0uVdmxX!nGGTerPX-A!$?{j+yd55K1;upS*9 zEmsTeMXu*D3styS2`%u`XUk`8?d4x*&y8r9ZCMYVtkT-DqUm2;p_PH_kXT%l0P54gL zy`AU$gbt)u0N2!!SPuH4O^6~N8c2@mFuCT**JuyzdOHagH`_y^!lor4=>=NxHEzS2 z+L|sdq8dyJH^*mYhMBbmchM`f;!h8k{#2vsVMnphF~db7bAtJq8(cJ?|Nf!E+bJ^7 zNkT(>WjMdI`seqev%qePag1RV?@88%%R9T24N?dVKI_XU7DJ3$?xBSYNi=^|3+C!F z!4dYZ!NI1can<}gXlQ7Xk{LO>C*9wc2M>DxoGyEIwWXoS`u;Y6he>JH7uO!SyS>$n zRP+y3#71280g?R!oB1t=?&guBtz-8`-_Q;Piv+oC4~Y9Z6&8_C=gX@snY#e+>dF4K zGb>x$P1A4O+}ymp0%wjNEvvNR?~#JeUzgtm%-yawN?6toaOWfZ@#Y%~i;Pony({AL zSSqvriSd819i>G7%1Xm#U#}AKUiojG@R3~?Pls^5i>u# zHQ(?f5e4E9Qzi*PE#eh$uzl3JUddl!rHqBTfLLJok--u+au!JKPI+E`Ju>pZnjejw zQYbm$P$jU?et7fdr%&?Ts>|ep1EoVb+x;n?p5FEL5IU*)5#3f48i>ow#2S+MLmeCI zzlZk&>N@CPQ0eV0ot*e~kvVIyyOYLf;=&*mhW=Xn&(T@vF9#)f-|frzdzE7g&JEV@ z`bt{zwV4wHmb2VlsmRJt#)mCkEXPDX1Dr3M4mYFKy>J6$geDpLf5}nC)p$r zr!nc+>eY*+U(?HY zG3h4v7(KP~hk-c&m($B_54U_y%m<%)YwykuspXl@{%w5EaD4~SQInv!ve?gph8}6e zl{o3p?)B&$f@{T>XU+1;CKcd=PRe3)^VU^J?J<^3L$X^(XrYiGH|7;c+9MJSVWH<4 zX!%TsCl58rygnk4k9UneM6v*kF3DSFUxC7bex5n(&G)Z%jan~#-prh9o9m+WUWX`t z@#<|1dLRec`|i-Y?wPaf$wG=$olxk45ufc4MbrKgbI~Rw!&yF7Ozwv^{@I^v8=dRQ zz-Hd9x+eTh)DZ7>Gsl&YiNb{sCntt^*!8oO@LWccAao^&Pp9~>Eru;8MltdzN^N68 z)xpN!dDg6dCo&U9BrX6mPcPl3pfWj#-PTrVq1HXMNZQCeY*ADsb{%!AtE&U&c`}H5 z9kucZRnY-#il>gwwtsI>K_Gaqt9aec)>fMa-zMt3v)((hD4)ENBtK7kWn>U40d|QW z2IofS$nJ5H2Svi`83VOfM3IQPw^J)Gu#ee5|8_ruS+`^JDy^!s-HE2b%)#~c$tyZ{ zu#~PAq)aH>Vp0H{{%v*p3zDg$mzbLQLe%6_Gc+#&`ArTZg^+r_s#~?&{+?dz+Wy>D z>d8szFmvJqCp34WM^7*!)*0~74n<>h7I?&g<{IsnIX zp!dxoeV!EZ?*owx#O}LR{;Bg>Ud8E})mwnby^=Ab_5CCofHa3sS<{AN~iri;whAZzKMs^S>nOO){AYCgYsRz84efh>`by#_&u+JT5G9iLrEQ zK$g?kFy>$i3x9%7iqI1)8XdVC@cVs{|Q;@v4r6Yv>Hd6P?| zks1cjU1UWAFF`lP^`RA;mqIf3?j`7tWikVxxC>w4uA@)>EDYmX8e%$O^h>yl+5*bl z2~~`_pbSg0msNXEn-b!29qUWbsif(Aq0pHwLANHi3CEyJM?79zbP4y?K7c!itf=?} z?!sYSS2}`Tz}{*IhUm~=f{yYe(-R8)?gjMwimj;z^*s*|&{;4p;Z6bNDoUuL?*;C+ zm~>}Z^$(FL7Q)M1?U$i*gF?T40X+$wyf6~uRVEVms7tsro~8$orcFk46j_i1SF-+x z+srCPql{#$$fdxJrNm1wvc&wh>6;5|vT;}wqgk?%^$M((OA@~crOn?EMe_^VD5iOd zbOlALAOPr~U!r^fRdRD0kVz%PWt-p`cRz1gGa9UXq)b-XTts3zmcSa|{h-1dy}$+p zsEdZJc!*p4AU%|q7V8tPIMxRopZCRLYrlGRTG9j*BEh>@T>?)BH8#am14Ea{mu;C503TLJ6*h1IenX|+!KgL$96Z}4 z@P}cFtx)g+7vLd6=+WD0g8=O z0q#Ds4ak*~Tw1w~J%#~;`8bVo_XYR@&mi!wj&Ev+Z**>75{s2D%jI4%;a=s)`)|QR zdtoei#H?hPi0Ao#UXr?8YUP|F^H@dp3#k)k7EKqsjcR}tYDt*?hYv3B&RfQnR>5sI zKmY^(S=6kLGHz{TM0{h(e2Ed9;fkqHM&w?^<&bL_(FAgY@kmCv&R;O1wjas}#V45| z7b>ZPg5jA$&Q^o~Ut4;K_zt3?=1}5OvtFPRK%@VjT{j9z{D1A2R*MF;olzl*cQ003 zONA@(L@eDDxmtu5hQf3IKoyn>B@WT0$Gt=irEfRCM&fsAt*!&WJ_tyQ%3WG3Ij)b4 z*t{9yX`P>!aQ`PSN)5&Rzeg9iKgNh=l_UItAdUOzB|-S@4=CTRh%2po@wjg|%Nt_W zcSy#vU5=9a+2us9K;hf6TnzBSjOLRgtV6;tyQINU6##y=0xrGI#p7V30x@l6WI}w? z+48@!XXdZEy1G{F-p42fWnSf>Uh@Rd2i=p~0$>AtUeVm4^Bn;@W9Vn^0=a_7O)l3X zJ=3dFnJ-M(b74QL1QEfAB>U5nF-X`9u@#}TJU1~TqGf!wu`H5T3PThNzG%XhKo`~t zgML5a!3!N(JxUlPNR-#Py49X6X+b9Armtrzh-OKrsKQ5ibuNB_52W+8dZB}^m%@h} zi+dsK?17}e%?V50zfcckEh@o~(`yUhq-BGtX?=9;e|zMdV{wS}xo=*Wej9zXAKIua zN$42(^nrKqp;+Dj*qN!#3PbRI;1zWpF})PmkAZM}31iOjWg+17XwfCS#!4NQVJr`u z6Sp;>nH)Z+byVtqYt)>?ACPmBUtr5oh{6BRlPKtZGD})-Gz>*qX+!ph(KygaSa>Ll zYe~QL7Bx!1=iF&J*NV&_gWv2l>^k%qDi0iCA%uHYYd~KsjEU|h(YfBExFl&fBrt3s z1+?c9pM=ZlA)~8)tvOinbDuFhw2`1?qxXi>Hp+|qWfbGu3T&|=%VC)_eKA5 z_n^W{F&2kGmY`&#kB5&Wj5c|h89tKv7ReRP3)#VIrm@VGwGw6qx#8NH*MCsKXMB`C(M>xz85kg`gk#?Xp|) zX6zW>U@U|{zFlCz$a7R{%M7t#GEy0dLOW(mUQF$^g<~LW7$#u|Qy=ASV5bJ8O<__BmQi?JjcA-2?} z(ZJ>WS7$~&5W^lL2bC=M)7Aj``*3m1)>R{*q2kPTM~W-Xg}C-d>64AnZ1m8K-r_v1 z`$dHpW6TCefPyVM1c88imL_5JNTxJW3{d}^dy0T|)(u%TY#(x}uqbv%S=iKqtpSFj z@TKE*{bLFcHehEGiw#-l~} ze#H3ax$Iu-O$djgj%qnQwgbz^%^1B*sgxtw)n#A^oU{h~i$DPI_t07l9`Ut6D)~s@ zIrmw@toA(2uSUL(yP?}a9>$dX_3<+dD1ZX&Xq?ZXa6wLE8O3zMCE4UgazFMWm^u=Os2LujnVQtzd~Wm=h?t9gQ=C@FE@o zR~kwiB?80{0Nl@sU%=5(E8FDAQY@WG+RFpO*-XZ;Q5k_V@pf%z+=y=$QfUo4&h6yL zdlwztksIkW7%G&3B`}@Tkzu6-_8CTcI#kbS+HW`*NQt@RjLr0upyXb8m9(p~O%*_s ztpB(Hjxv5Ujt64qo44ybKaBVaBiQABaN+tASQ-Jpbq+Zi9SgE>QNtA(`xfuOw55cc zjUo}wZz&z+sHKmAt+br5ML{wX&eyyVHL3c3^%`5;q`l{j2$mo(X&e^{DAKjS+TlHh zs|*zjn`~|)_!B`g#YgAd`t7>s@gQtMCxm*ymp$e&Y`NyG0Z8u~6*sL*Ps#a35s5ne zg)0>LjxGD&3hHgTWZ}n7@HO*9D4>8^lF@`52h_5n*DIh%W?%V9z5fd_pHZT#?`l1I!?f z#C7_r!-Esx*BH{d^(alLk>t7%5goFq7X>7p|8VI=i64?fr>t$(m+16>(>W^W$}4Gd zPQ9B*MvI>-rhD1474?W9%Yoys8=Q9aGq~*{?4Ho^kl0Y7M+|WHuOmtmh(XJ#_Z&Ii z`#i{VKUjKAHp0q6z4TgOWCKG;h7QH#?Ryvi5&*ym0RUIxQyUeh-nnfuIFI7odA?&~ z*{`7XS9sCi61Wc?S?i-OVJQh`v26XyBc4X^Cz8e2&&eGXuk{>=$g@x_J5RafAjPv@ zV+c&bIBD44lOaTWlSq`tV+7sxK7wYg3+G0aO^=N5o-S9E3l*N5@d*rNPAazdlE{(K z5{C48ln!19K3&S)bb5#DID|Cm*aa!>^)4R4hk{9I5sca-k}-4!Lqm{5BhKY|pj(i| ztmzF)tW4%X&n66AGbuxqmk28|!0G#0#g8k zDtz-|(jXU|#o!5@>Tt!`-o>r+N$;Ics+lgSM+w{pOi>{BJuX&icowd6RJ&1lV(%H4 zrF=iRUd#=a6Dc5%#=#PSvp1j0UAz9gK7(UZ#SP6w*W1l2!;6opQ zp$N$c=wx97hQ7`cIrR3$Q0WmgAFGiY3CUjdH_c%QFsMwi+(d*qtk1g4WXw=zkZwY@ z{@h}k7A!~?074HXRMbg4mkw6!>s|Z{Up8QHFk;z{h%5|k^eBO+hc8=4|6GR^`5Ee1 zF#PKVWil6fy5O{yH$(|Vm=8*}h0f4M2^M68RC|#OO48Z$(6zSn%n4I$>ouM`pS10K zQipkRJ<2F#_^xx2kW-{*sJm6KXK8@j&dqKG8wu1`1Rc5F(C%YkugH;^MJ z{{n=reu0%ICVE9O#S^w~9Es{gM~2hEL>}{>M$r3^{>A5F^Xolo12rC4EpIG)akII0 z;Atc1)Qrff3wzjTIp3=x?d4IG4o@QM}JJidmEE8x9^aq`#D=@-?I;^fP?Kttc8Uks=2tHV7X5XyD$V*~qf| zxgI553_`M!n9n6E=yf7gp@Lo|PUti|JdvjB?MZ^qEMtgbi;%AwHW5vtZ#V-Y2zz-c zgN1HDO=zn3$iW(;i70Rl3%XhzCsxYLk8meJnD}(b6p)JsNiKnNmneMqs8%t}<&Gyw zMcvVp%+8+3^LbSeD-LCOrpf*dNBIeIUhH!l(yB*IxKz^pra&Z;lxjeqJqDKea9?c; zNP2^C56(V0n1I*i$jI|jqDutu`K}t)JvmVkA3HeGXsnb`*AP;I@odNdhotT`O!gxEB%PLiV((Qd0-2WuFbhQR|fF-1#+`!cCpK(0D3|6osd7s zix*21KJpD1DTefE^LY&)19g0mT7`&q|GDk0C2-_11YY}BrR(H!jqQ0VRTR5Kk|?St z)^#hb`&VBPFi~kp{jTr3a}!-D6CFK7Pk;$aNq4s1+grq=l1~5rRZkUkuh=Gi%3Rh( zlEvGdckC)lCg&%kk6hh^l&DftoPIXW?Twb)6!16+SB3Zq5y+ z`ldU(m4mPdR0?cFxIGc85AGi$0xLH{dWkrxYof53AQ09xD#Ar+-HlN{%V=@M!XrlL z_wJ2t0q%MFFh?f*>F)T?fD!aXqy?~yL-j%o)|Y(3ax1w0cR$`Vu|MxGT^I#Y0m~j! z!CAI7cWgJ-C?Wh9NdZds`>?SCK>`Z|0Hs4=)P31p!$7M_3ndy-`IF z&N}J3&GjFE`hO7GCTxB|eR@Fs2U(W7mNf~N2TK*2C&Zusc-CY}vnFj^Wp zTHs>z78sqCtpyz&hc0cs3=;@N3RcSdDuW&H?OcfU{Yr*!I6?G?eW`+(5|28>{|Ev|^}n=lw_=|RG1_DcZV3n=Q|3`7H{(;`u)xj_AjKo|;I z_InSi9Yy@Rv+95V{!~Tqw`wW@mDy4%hpT(0CvW0C0+K85kdA=k!q}YvV>g?_=v^oN zgP)?u1-7M=3hYF0RegaFp65&N0yNA}WVJ2n!}|GeL>4D6 zu*VS&A{>Cw++>5LSd$W#>=K|LWnf4J@2R`0LVA6%0}E6s_P(cc-Lx9sqdb1tD2Sf6lr^Z(uVD z{1l;jPmUluE6B86&p||{wI772b#AeH-BYTZ0Bx zJ-~YrelyWO(EUBqJq@Ou+l);*3{+|INGRHnL#|}Ay=dHkC(D^gM8RmX3?1Z~~1f32OsczKg z>UPT$EL`LJ1E|bmt7F3i{sr()bAMQ0KygX>C+*0jX@(N!k6bs_#k%R=Jh4ooCv1KB zEBp6-L#V<#pudH`QR6#s>e95UaEZN-lg5|C#CcU3xi?n!IhUBnU#JM_vVM5i^?n9! z#u_ab4eBV|1Awgxk!FU=jMVcN^4WlXA;@Ic;DyZ%Zp^*@92W~u@()yOdd>*|d?Oum zWE*Tj22cGcmx0(+BE{xE|Q;6B(Iwf%;p zXou9;m2-_v0vEUnbL?mXp;;!mIsr#K4wy+(%V?ONRitR*Zv^YkM#i{dG3V=ki<1NO z6^i=bu6urt%Xv`WbOS+t9zg!^ULd(p`Uh2gi8lnw9u7hj=--fbnRDO%6Ob-5>K@e7 zy%0+}x)1$1hylpXBZTaK1TmZe7p46wUX(q9)zRtRJAaOB5zu4?qHs=<0ii8;PzIo>BmrRv2H?0YnbuX_ zX2A79kr(LF<90;+Ub#BRvt3+VTuIR94P+VzDbo_`b5$^uz(0O;SPhGwV0nXfGtGf3 zw1aRbI|+ev?(e+s_{R6g{o{ULhU1Jw_Rd~&&GO7=&b9X5 zClGZVSdd8ZDIQiDSwT|)Y6bG!!cbSD6l~os!*m*~oxFgt)Fw z0fYy=5)qbHDzuk6S{&%kn=hgm%<^vj5=EZcg}&q$LqM^qV)ZKm^nZ_}8fQmfBLVv3 zE(>HmdC>rh$P=9m{_%S$={#LsllZ~9mNZ!kCUEIb?hmxf_60#%ZOxTGH2=o@4N4@k zqa`XZ&aFP&Gdz2PmC?o26 zK+lO|(nVa`A2Q~Tj^QTNi2gF*N@S%!j8^xTj5rUNYitB=3I$f(72uguM}M7U?GOYf z27QA*<-3I2p2+We;+^lC{9Z}{D%dQ-4=mc$z{OF1k7k~rK?mE9u7F1SlmR!rk9E_J z&S!2Kl*dAlKnP%}{M!u1RUn`(b!t+ zPBaZH0RLVFFrcB+oyVdW-C+YR#`cdmZxSQ>+=Xj@m9SeCPw2;|^YcFm-8N_b7z$eP zo=1%>a~Tk@h}C{|_}#_zQIu#w6cAMQ@QXK6Zeacf$q1c-L$5s9XGi99@t4g;iY;e?VbE;A?a{J$ zwtCk@gjaAy!f#Ov3_nC)h^euof=ZBrP>2wl6FE=wT1vv(Cnhnq9@~n4$w=fBRu-)( zpYTBXYZ2Exd-q(dXxE-p8RrxVoFv%9tvQfO#;OO9W3f#Jp{~;$Tcr$8vw|D;=gZGv zOW}`SQ+H>wX25L4MTgppXhG#wM}pVKBL6CQe;(~opvy0?xz2qE4-HlFZ9rsgYM|{Y z#K%VS#d!Uw5ty};jxic#o14lc-RlNb(6R2Gf65N4QhB^^f%B-P3x!ehcdu%ZwX#6g z7>tR#7Y$rQpRTb{c|GOnFg5BpNapsLV#UcmUlU97Jb!7*{9miPp2vV$xrPo)Cz?d9(BFE73XD$DSG1!J^mW|IobD7n8eV1Mg|`&+@_qV zz;XZi`#yS#1+y0(J~ec)xVv`0iWQT#;@it-p#()9S707i1l&QetQ{4@{jDnd6kP=pP1aMBh)@txE9IEeX_Fs4bn-V$msDM!gC zbk5NhFNl=_4dOBqV;X>y+|2H(E4(4p5cdp|*cfb@UALd&!>=}%up zZt@LvIgn7mng15E5Nv7uC3I)d4P{vOXB*wb)TD))sMF#N%8PKCJXbJS{4(^^Smpgs z`I?;ZKri&u(a!g%!&m0ZyS>`4o4ME~RSS_nIR_vXvBEK^MYA4+35mlD1( zthb$s?(R|FXQOfdezN>y1=NARunUX2(%2vWkL#kopg(tNjHN7$YMUG9(5jX9gT{jR ze>AL*!RD#_s`_aT=l^ z427sWlZ3?^^my5XE5D2g1qrJ5-Ue#f9R{}fbDl*FBzJHw+;sn8N|w9^_g3I zvPv$6Un7!_OL@DHSUYDI@a>FF+Z(%=Jv}VT zzgc4(=s_(*tY!odCi>dwKD1^5i`{c}K8zCNTI_ke z7egoc!-chH0lH{rBGl#WZ}qD^g;Sow65EUo;yktSqZbMmQbW#}v#G|(A)BJvTPEhM zh^@TvqTGwZ>uG!rjz6y*lgbgN7nVeIeT~TWl{t!T4Z9VkQI4z+=@>UJe?&M2@T=0o zJve&^PFQ%_JCvs4WpqV#>3s;^Z_ia^>(7t9F5{s7_3KQYO_>io32lSGQn!GcVB}Y4 z=Kgsp69}mS$|eGe!;nu(KZm^Kup}zKBJ9*@UP{z`d-p9LG8i32fXhS}r*h-=8w?|D z;a9kTEBrgpYGpIAq^+W|Kj;%;w_!w=+hRZOS1I8|;olXgW9wBj%N`?@6B@9|Wf3+_ zBV$`j)wO*xbEm-p4*_=rx>bMZOW6>a_xsTkRnMz>TwUnEkr+fU-7%QjK)>w~z znHO#h^f;sA%IzgDQuY5?6&TH$cw zB`rur*U@}YI`1p>#8N;whr1;KuEV~y*7Lk=8+DXqZGb*|3+maAu)rdz3O`$Ye&gBsLqgs^3!Ps%Cf3&}5y`WJY%D%O&*+SwUnBS;pt0FY7N$M&PZEO0;iuVx0al1;M-9Q=gf_$#-Dr(Rm zfYB}vjYqE#yZE&}9xZWpE*JO9g$$aE#R)#qxkXNKrSKk(_28T~5s)lVKcN3B=S|v@ zl74T;CL8@^pdTKlO^23 zwZs@+O?~NN<9sA6hBQzLPsZ-24b`XIJVSI0E^b_8ds2|eZq!;3I||F>&^wR{9mVya zEj4iaaf$Sa{;Eqt7Z0HAGX`*L5yc2U$qtU2v`czUzl2*bjt7dFgI4Ks2Fq1;l63Q-CWQTMwzc8bxqQEa>i+5QLHRe z^_uU8aZV0P#*>H*%1H$8j9qzCaBX8y4-NnB+o$AT#z~88uHw^cBQE{q zIVF4KaWznr84&M89}-HJMcJAF$eSou#vHpsNog~7v^6!j+EX7joMgax zD!2=*hNPV{qg+kb`?pBn;D0N+*}WiK{M3161CJ_@X_d3l`B+1E+Q{0~{*?lY@H-fq zf5}eN(>yd{R4cV>P%ounmnIB-aEqT`#r;|4U@1yScMb=5_+Pf7*?!EBx3_)a3^b%; z(z;8ueoO+TqYFD>3KUZz8(&l}lyaq#8({4=DzFY! z7*I5|`-;Iuon4oF6si+|QR9Gl@tHHWjZ#wGGAWm{;Ta%{EG`&P3FKXCwkL!;sq1m+ z+fgkSnQ>nFNKJNIQ=l~ycd}u`XMA;z8DXPvG~BteqnUK*cKL!{9=cq(+-@wPJq#Ym zJe)Y#6wzcS7`4lMq@aU2_@yJNmAjX`Lb)na%rnq-*Y22mV=E%tIhz0gg$|QK^lXG) zpE4tNIf5}Kx8h0{XBUI@ruk{>O#O=9i*YhH_}I3#m6Ho9`MMS~jCr^PpiVavB5e*E zw=myq{CQH{wO;?b)*Hzncirp&DQ{_Nw>V+{VPFSDIqDkHA|d8i?~C7N@5IE04>Z8JCHa&rBN zrHNlo7meMQ0Im#x&TAu}@|~82=N4ZM&ADAW{#_JM{R+8*HzY*X>cY5R9%S&lv zfwZMO*x6JuJCk?!+~pfO(`a}2@@Kf^dT&-cy=X=rV!8vbpUXB64hvLm6pTU67`Eb)}0u~7!mhpcLp2KDDul;JUk(?kNkq=lIyn^xXDT!)II>rvsLea z7B&=f4Umw{S+%GJbVt|j%lCJ#i*2}R9dwz&`ep7}OS`afPvdQ4$0 z$DogJnHf`C3(Jo+UFczMly%~msouqO0{r2j4^x$5x?qk8{f8!*$CY6-b;-lWt}71b zdKacfePZKMhP>+r(3LY#eVuktKoQ|?y@mk~pg+xz(iaWRYa&BLKCI3y7c}Z$E#6mH z^DKVDF;`hh?zlc}PL=N*Ih!4p%&9!$xIZ3CIrw5mPz>#g?ybv$M|L}{=X&htF3Lr@ zt~c)(aA9^dfW9k~!2HGxTm+sH8&2#_!82(e2(*b>Tfzpsbb^%*_B1oGaPYAkTR_KW z0Gx{l)da16y#zx{=6KU2Q>}0|2FJMU)p}njEh}^FD1c8On+Iu<1WShCkJTkw$9!G- zmiuc2qYgKc2aaLm$;TG6$!&Ym%d1PIT@(zm0&h4c>7$;a1_g(EQ(P)2}M^%E7?g*bzgfvT^l;m+S&8sf|QIdAik#gzx<9x zfuK_q2r7(%a5Q>-b6Ws9V4{rTtI#<(KCgb@%l&VIO1G>v#j;~ZBh2a4tIM1qVM(9W z>kTt7Kp0fozj?G9abA>kP3l+KCjt-5-AC?zArPsIR=7YN~XFg1(SGD}ki0-3Kh_KOo>o;?Q?=4>gEJO?;hNq+mlYRe; z;c@_nO!3Y{P;9l$Kly2@5sfysC-UkP;X&NBKJ`Uw zw-B3K)e`;0*-pC~MTA3m9T1);!>{+g3KJ2y9?ZVol*VKaZ=f25jJ|Jbto7f9S^^Ed zgJ86yfr8vo>R57BT;mEh1Mh(!%&C!I=TALp$5THz4M(Buiyh$T`R!|K>Z5?S3efpj z{4ueZJd&YeuOm)(vNJ}&D}IswwlZbgmz|G31|A!S`jmGA^DZ6^kJ6OX{r#;0my|6W zBM|jd+Z1-5`py+z_OBOLTe-M`;{<@zKCrj=DcX1rruugwNKb|M4lKi|H`-h!WP6Jj zVz0fia!rRSw&UIX>?;~2l&QCQP*>16stnn?Y&XX&)lPRbu#ue<>`Glv{Qh}BZVo!b z-Ue!JtwTt*sXYZd4_|b>Z2ZTQR0Zs^nK3|LpnTot&bF^8d+`NPEzL$;_65ozw9>y>9_dEmec}Cyb4Z zm=Qb)zzZ*d*fE@FcVU;xk>+rQARYMTZ>dH~#!HD6V0OoVUL>Bbms{kL_?laDZ7+uD zbcsQZ7^Egw_wf_nc$qOuT#H(rOf&lY|%Z#mXy-n4p^hFc_2l}y4#YtVT3JP^0N=?dZgAp))#31C}JAiUV4@#osKrlc5E zdETxu@4>_=MpMl%2eyn_jX>m9ZyLSP9w zP!b$o27K&Dn*i!P0hSWc9~rB^O-rvCF%B&Zbmcyno%i^|CvfR>B$?BZzQ6jL_ZJl% zij9eL_W{|FRTO352s52kSd=Ani_5b*`hN4=?f1dxE!My?C2iKu@aykd3AMFA+b|8- zyo?&3R@_9S+7JBXj_Je_V$SWaEmIECq5xO!t)0vtII)P&Ml`b6#q@(;XMUx2IKKld z1X`5By&8WKj*X4_@2vX_Iw!C~w*sJ^)nRkjFQTmpn*EKI5Hr{K%USJ=qUi^N5$0yQ z{KIpE>5YQr`+XwggaXg7-dlg#;1@Fdq%~kG0px#=5SjBRb8=ePIB<`KMC$_U7_6el z8}n`%$y{@xG@(3kTKdMeMh+7rs4kI1p4|I4g$wkm{HS4NtbsdYP(=CVG*dLyYsdRC zz(!Nl0qTd^G+zwX`?-3$M6<@sca?1NP{}WcurX9Gdv~XoB$e~t4fI;K`*Du_afWG( z>G`U_Smp`yck)o9=ZnNRx2|6*jwecfSVvUq;JyCN!>eg6$o;Oz=Z`<`7`?wV;PDlg zneZI$x1k>&$^P1SN2L7BfZ+uz@*)z)$t&M6vZ*j&#(KN)0I|@0s5W28T=wD?lP3HE zDBA1v$#p`$4ToF^sYwY1hO3Qaz39Dh8>iZ>#NoLPCULTa-&z~r=EWd4h$+CQ1b5%!>#SE|mb2+2 zV{u$Y-~BRAA2Ti!v7!?sI$w`|I31vC_sO7_v_lOXfq_mzcrH`%im=9<)NC3UlwUGm zz4}ALyN}eD;KFz2&QqZ*L#Avb3LHckvl3#iQS)@Ux+-_Th;thf#5;Rv+rZQSIe9&tt`uS9XQo$t=}GVTwLp;8AUHF zf#Sv2j1Cc)ds{*7`0uq>g$2}f_q9@e2c7->|U=2dN9o=&I+J0Z}!J&7cy zorU<3=5%P(R)lxaDD(I$|F*~SS82vD>m~8ecZR4=FYl{YDnr1Pn2nl(&DOzI@*$(| zV8j|7?`R4`sXuDgz`SuTVz<*0d=R&Q<8N8snbW~2Qy8Vp&nL>H1eE#V)N<{m z!MkqCW~Q!@uD`>V4Z^IuOhs(IW2A9kCByFf0TKLQmYbxofk@u(aMiGKvYhRMwe7c- z*dO$|m4x4lTKp}E*#$z)Rv@SfyzCu48~3e9rt7r@$MRvXo$oBG?z>jlvVu)ZJs9u( z7(OXg-Po|)6vQ34G;EKM`k_yk)c;7Vps_xM!XsTgO#kMiu2uAs3y7$oXbpC%&mXL; zaB3>1+#{Cl@`~E-4pqR(`)cGD^6w>LuP(rfz52V(`@}wltZmZ?l)8W608gWhQcW)( zQI2R6Eitx5?Cw3AWoc$4f2SpoU+c1m1}>TxZI>oKzQJs%Dorq{BZ{beO2LHkK>Qm6 z4jbbhq4lkVr)Fs5dZ$@R&#p7t)Ti`nC`cs-9X&9P2G@KIvWNk+&0=6RSmc`sc&vBHkk zS-LsXH?PR*4&4o!QH=1QZSTKD5S?5YkGI=lC8a9ewWeRP8R8lyS3Gl5k$v)B3t>lWz7lxbqT)SkSuV?{f`(-`R_x_d<&YWpi2O8_*xF0M zjbKr!l(6j_b&^T15Bsz4x>c{s9I&6v${ix3jpxipnC}9()B)xzo%{NbD8N^6edC01(YEFbB48ZH2?9=4!KxlA< zfc3qn>O*FgW6^69_InXavWCnx=$U{(QtT0>y~5kW@SOoRjP)iyzP`EI@!6NJAXyJS zs0f=nYD=}&?R$>J4(~Jc6H1>^8n+=r0NPQyH*dR`?jsPx$6BEHG>t#D%?|DaAlx<6 zXP9}++sUNwU@`r(w3*hEndJ%+XQNvbf+4Cm+3TH4tdsgwPX`G&br27RuP^ic4JoO1 zs7XX+mS8q}6NnYk9bj@@WkYV^zmEzQi`k#{=$g&;ZM4L=;6hr#^2diqESoN5^jZQ{ zwJw+(K^hAf^MI}I&y{3V=|?&5|Dt)-h6aaA(u3Ywp^r!6u8=ANnas6N9*oQ{2&U)V z8lBnST6#Jv8ZC+i{=c~`9$ofvXSG5et~A)VE=(LgXD+qF>q&j-TTkN3(Da~G*6Njy zm43FE+$Y*uM>=jtT!~!XI>coWn2I>7eyRmHBDcgmn@$pAZ^AzRVr($1Vq6Xzn~RilF9Zj2H443-otgV#6L z%2+Xb7C==m&gO_%8-E1JF8Vx^Eh!ePFpl-43BEIDmFgW-$b)t44&m+$#6KaHmdI4l z$g=Caanz{kzn6P5h$>)>2a|w0E#G5$UBDn^oK$SNN58l2Rok={=QBeaQDA9fxD#lG z=0YG)>3i%QlvVDpX^BmBA{)i{n?8Mg;%Z&!u>eS%^S(Q6SHHlt^{7pX!Uuk{p@Bqa z+Gj+xqAY(%{N|%5E#5>A0KzS2tKBbcu~N>#&<<8y)$6zL;ZJX3z!WrYrT#mfA06t6 zfk5^mcu&LhDb<-_(c)`gVz&km8`Je*LKR9qw>`Ie-Q`k=!``v7C&5(1jzw}1_Y1&B zNd%l=ukKgM3s~<#hYMK&7#lSM%cR>L8eNhz&h{N7gQH0=XhCLGWr0D`1EAxZwX!rx z@))NtZlWVy`_=X9{@09i!Nz}XkqyI_Lmz0)nT zBx~c8`94iqk0tCO;MUsf59T#Ex?Dm@ngoAGh zG1pzF+in|d*PtI)_TKq&@?0jSl&c3JSJMs|jR!+K7Y#@*{~Hw({(eTqXv~)s1zap_ zQ?HvpSi#+ymsXAP68s8L4d)&wpB=aFC=#Y1u_oNip{(k>w53HkCysWp;vm4NF(U=P zq2)*&#Js=L<5Zh>#~pAWIsg2DsVkx-2fcmYFO9t}9k%Zg)Q}bpe~oKH(M5s<;Fo9U zs2{;}J#R8$di593bG~E*R_t(z)nJr}ISk5t5MsS%nbZq4-n?F|VAN6A$;~1awzf#nmKTV0W@H$LfA1xFtf~e}P+B&JahQPU-V02%mp&2Eu!dy#T;< zR-=N+C3RU~m}lD1?!6XIX$MeFguk)fnKd3TQ8=Pl)=}8* zzylUM(E5Tg_gz|i<9ZV=X2md|x^uJ{SSj&J9NF`?66*ohJ}>phy-*Lvc>6+4(+>Fy zol>G)wh$mv>Z8Sh*usE+r~PSQ35B7GASdLcrn$45o>^kyx2qItmDT|ida8FqZ+=O( z)z(+i$eR7hyJX#$*wRvV&Hlm~|HC*Wi(EPBbRe1qgDjGKN|XZi%bab&`$qSmmRgA# z%9U((wu|xUG%bYF#iQt(%|P)q2?P4qeNc4;krt{7ES6jJ#`^0)E4FBIul{xhJ*Iug zjL-NPm9C`bbf)F5nt^6{f9h9aTm~ipJK={Iw2v}IyUm-pZS`rhMe0Zu*wS=oO&lb6 z!IA|eva{MGMeVNF-fhKo4rfO5g^3y&_MaVA39-4dSQN2XC%81{N#rOlN#bwx`?s*;GulJ#5^|$e1Papm$~KL)?tOfY@qu<7D@$IN zS1El!;XS?SplzZz+0|e+`y2VHWa;ua9cw|$gpa%K%04`ibSkFW}m!!ij6EWkEE?DFt6Rd-dRA( zMsQXV)3~zA7*FcZld>(R_oc&myDh3P+&)C0LV4@*l1^9-#^E<876lS6NsxXS?1|IU zuY_sAWs*-lp6blwxp)>^u6zVC!|H?e7=yL2SvkGU7+u8tmTgY#L@hy$P16G4Ts|WW zW(l>=Z#mZ*9W z9xUASW5s;diNBQyx10@@LoT!XwAl9(O1VVGf{!*81k3c(VJ-HuIzPbC6Kiqww$8A8 zw+R!sy#7GP6J*hUEfp4ExA{Z-nR<%|n=1=HBv+YNz)2y}S2yS`+VO;(5Bz?zsMG67 zy97ZvN2ldWe__k$*w-9UZEo`z{{&SX)1H>nHHJ$ev%JY%cCionkN2PjYMW|}T)VIF z?L(y~TcDzxkP>pS9zz`+tsf4}zpCVP_2%`nMoW<|jPC7cyIh6&!wcpi$N3cn;0CjZ zsdg0!u7*`cKidIIM3D{Wacv+MWDnWG{ILW4Gk*7|K6oV$EV#HIq6xhjJR044;Tsu+ zImNWJD@v|+HYwz+2JLTX@bAiHD9j<%8`1Ws4AXaImT4iEqeW%8O;H(uF7SB*QML%^n6n&8;D z5@&{;7fUS@J-c0Y$q?raXkN1TtQ3<9f3??K-&*C`%r?GG0-8!z;CluOO< z1iV_8+lOBBZCxi9xP@*xyA$^Mk;(X1czW{cYkV5=Uv6$uVzf{GOeqxJKDTCeGl@G?J6lzbPe(Ar12eHjm0JRb3Yjzs&0o`DTV#46yDL@ zZ__he3Jw7xvZWpodt2am&w!D%UKBN|7Yx_Z@2*5g_DDq$_YLb>i$K+n&Rfq}C2TIB zA%hCgY1LJGs!T+F`3*^O*mjxRFd=p8ulcoOCuS%-%HpomiAKemMLk5~-jqu{Cfs3& z00T`V!G|aLNPkZng1#jdrFy0>KB)!Gc3V4hMgn&RVb_*I9X+h9gCpX<8G zAfQ`VSX=XM^AP|VOZqj@>P8vw$gQ~8v0($_8V-64miR29~+n+E=&=KPqgW`rb zy`K(?i_4$nE^s1v{qyh>H7_9Kj;e`RKIMqkf2?Zpo-zmJxIyCtP-45pBOULW+ zfN31!kCzdI$BfUAXwa^6_RM4d@Dv zlp`L-w2hBGF0l;pJ;^|OF9*Hfyit}K89OjxEZf}d)6S(DJc4M5m&3M1b2E*@r55HP4Q`4ku*ygFdX@J~BG6T> zijB(MRYW5dqrnPE`>(v}M00)FBH3}t`EOmxt@S?{(7UGhgxb7+$eAxAc8}mi!w;@| zz(_Xq|?DJz5AYuxo?#UXyXvyqEKQY6^!c+8#f6}I{0>#;OcuC zv;ijwju-7Q4uLV~>3^%5QU$>W``gvj;Sj?EYRvc1XDw*quV>@~lCf5^R-parCkrFmmi`&ZEF!?}e25oV`@qW>p8c`1-GtLQP1nxdAUV>l&< zMdB3f|9Q64;(F1FQOne_N4@Tv9EP^JPimjmoBuew^La=?BG79D+9?9RPNx050UPcA zI29CcZx?4;kddf_FX#I5q)q?X|I}apak5Z02dCR3KxClW{s~XT9IIMC>zGoX!TeuB zRG#}Ogj*qKSqUBj1^i!_B3@|F`vR!#*heTTZ3WA9S_!yKb0E#O_7AtMsnCP#5# zy{zk@;vp4I;r96K0FmMU1N0z8qUkZ$P;>Cn%Ntxn@6H0gxkT(EG8{g)@rID?Ts(wW zXWCTfs14mpP?HD3*CifPx6?=sdJD^e^Ih~EjgS4jC7h7RY`E2*KmB6<72P#4i5?`H zQKL^aA_C~dio>xh1tf^%aZHc?A5#PV@JIom&UP1w$xBz$U`5$U4Gq~dfXuZAUiA%= zW?FO2vpq?K7Y9Qw^q}tu26ma_|GyRcoGc1Bzr3FZh;~Gj-+SX??tc?7{yv%eG2Ye( zsySb@A<1}9)BlB;eu4xreXF+zPh%H7s+R*6J%~PHq3hm%@D1rF8b@&IQ2%+VY>CEP zR*VMxaQ?&D8ckW{YArjwC+Z^8`wyNU=cF_o=+uJZ1ipV#>`zuyy8Z)7tfw-|4Zei4 zV{VWHf$nMjJDRMg`Y>1eo3Ue+P5tOU4Ifcj^esR;Zu>~*^jx<8bZ(T|k?j-fN=CN& z80fHZi7xF)YXkJ*-(#=p)i=)q?ZOuOo~=MlP6q29lCK!;gFrML{|;>vv?SKq8s_c# zJkAdRPH@LOd-hw-uagzbgtq_iqw6Gc#vx(6`!R`xgV7u7fJf0r z61VB)jiWa&0cP_nJzH`Emg0PJHVRph%jgaO6D5FmNJ&hYC>ol3&12=ahT}#{hx9m3 zAHpNhchO|7yNDeMwD%%o7j(=lSh4&k^E3%82&z|uj-s;Op*)045^%bsC``)ndko|@ zq$IY++=+90fI81$TsE7UA=E0Pj9vFfZN&M~DaqYobNKL=(q@WpQD}s|fH!BXeBE z@drPWWX5ljWa0HVe_bSC6{LRF)bN59-}AB2>QB;7OlsFZ*;y9&x-)%LE`E5?I(DWjptLV{}BL2h(cXA-}Z-T-SlLeXFwlgz^20!rTe| zJA|?QcYtgH{a5&j4E$Z-yG zcR$MGoxc5A-Lo9E%S>0nTrRMowyv)~dY4)<5{CNA1d&52l(&!e>Gr0^E>fAB6S>%1 zmRlrS6tF~Edr_p^Q4C1$o8BqvDg@$w)dR+wgjld!dW?Y(#oOJywq%#YU zWeV)3GB}KP_+hH|2rkIiOF7cowL3MH4JokDIaY{{JVtuKXr7mT3@j{i1D90p&Tpn( zsY>p?aT`*J{E*~)q={}-#oIUe8H8nA&V7a9JTAf}z5I1tsl2np=$ zD;n8ds19~YK0NrnIRi9PiUyK29!tB~Zw%MO)V!Olc^A~N|By~d3B9Mx;#;ftR**u$ z%KCf^|H*9(K-exDSbr6-cEtMDd;F+jsHKg#aLU2>s;#53g#-miQG)tddoEZD)w<>TgL1p1+v;D_A{ ztbYi}$D)cmQ>V*I4M(fhvCMQXG3&Uob58QSF7QTQ|M@F|#bpNz-Ep{E$Er@@zWGDT z+)h^e-D=a_Qrw@CiMSm-8|2ws{*-alEx8_1P+J!0-vCTd?rVb;pT+1+za31ls!rycKUT z_P`5{C;#lN*l>AK8@%SlPG1FID6`f={kZIj& z1)K5qw>$_L@;uAZeKf4lf!@U+x`Ot!`E~=DV^u@o4dPCZYkG*$Zto(gCt{tO zcIin;M2w#HR_)Q-p%+BJ^JGyXSv<;l6Y6c=Z5hzzL1nuIdX^~~L3h%uk30YyVjn^S zicpB)&%5uSotJpA_s9c!D4l#ObG7}3Xx!~WMNPf?f+$;r9EMRrzf~IO8u_wMdzQ7S zd=w|a@6hOD*iykfzcZeqDea!^-r?3VYJu^OaS|cgL_&?%#%b453ZJl#LBX>Pj!A@e zteGd>%F(lWh&!x#dA3ZSBT33+wIk5e91lq^n42%CWR_pbs}w%CifotwPMApsZoDGG z;muP@Vn|ghVe|?aY(XedW-iB6Wbz&7t3G8b^K;O0zSOIY^zh5N(X9`bY;ku^6lrVJT(u*?2GU80UUaG=&fYgCq)Sj3h^>b#W{hq zA^GeogLIM@?&Yvm<~8J@e!Z2Uwvm;#Q7$6ur(cf|=DbdwgQXp(p(hx%g4Po&D=U+n zm#D@b$lz(FqETkpp@KsxlaI^@{%E)d0mLG+G%9R{R-f>+^|w~}hxCM@VLhpFvqVPI zMt)f3s6(2;S-*qLBm;<{enn0DzXD>_1oECB5>oZELq)CezCVuwNJHf626z*tPWLeY z_Zf22$Ucc{@Q4+Sf{`Z=h-jzgTzWSZRTo{3SD(7S1}+w0+kS!D3FNeGL>`i-^1CPJ zPZl5@k)DJnQNyu#*~wHuP2Vyj*j0h0wi?+(M&RyYzath+J{`yX)n!E-rA6A1LAhk$ z9@2SE_&6l1)hkAT3`baitFU7-7FwA zmaGkvVskWoyh4oDjyuH1oS2j6xRgyWv?HeEAy*!UeXQG0lWwe6|D#OOr|d!tH0moFA+RcPBwN#_QC4E{z$156wK{CAgGBc5WJf3 zi27DReHR0lV&uvrNfWnD;%HW_t6MC`vS=Af0U`kYlct?p(6wGsHH)^!4&fRMXnxn@ zvM12!?2pI@kShE2b?zR#PDu3OO~}!Vl|Q+$EYHWECulFpW7aGn?rBC2g~5|0m6K=G zQPZAIgZfj#1Hnv=K{i`s+9}^Tsv~a4-2lJ~hOcRISgQJ3^FBbrdI2Axn!8si>ZWT5 zUR}NkV_s2Azed^>Ff_FgB333@Bx#~J*GNo{PI#b~;TezU{LM^&oO6tTH6OJaFb#eL zwlIBcZuxA^5L-@1fW~+C0P4y`ljojm-As2CvF>?RV??GiN`X0P*Ej$GOn|HpWctwY zDy~W^{e+lV378i#bwE_UEHY;8<4Vu_X1ctyt&lS_SqPnQWvoVPt}{ee!Sd-5Vjs#? zhz5A7mSmX@F;$9m|InXcX-q%Tf^sS;uI~SUTW7&;plce}xIQN)DN%?Kre6M}_wyx=n>()`EuacCp0uDFGzmS7un0z)!bzbVuw z?rNK^Z3#YPT84lT7P|B?P69(3nuht;Tb#e3Vck8{$NVKWlYo$V*jA2^R~i&13E$o! zq?LKqk+D&DDUQk-V-}V4_-j{Gt)c%^t z-l%z6!N4QDhk!&ZJ0_;0;uf5qPaA5FFxw9owAm73AEbY23(LM3J20~5-kP{+RnjFZ zvGy?O{E7Rp)QR4C?h<@qzuMO@jOcu(=&1C`8pfxyPFwV13u$1i(Nw#E8kDN6&qZ%+ zvqSpobg7$P;mvtFBr=dB%9pi30c>XD^y7P-?N6EENW4B`wODY$_2CZ8j=h%=8IL$s zDIREE;mg_Aa?3ccQG4L15a+YPUyrt=5JMf;ujlEQl`>G==~4`+T}Jh&WRgKZFru9E zrY0Wg<=G@>yLq?NIwfJX2EAA&iJKnr#lHoqrmq}Htj;;G{tz$FH=b+u4q`C z_btI}rJ`ocO&hq)zi&7@e$18=p{8bAxUv%>D$ZJ&i~-(Dk}knFJZcm3#l63uWPDKN zS<%O#sO*$K?4q2O|4TZh}t0uffD1Z>X6a$7SwHc z#c!MHRsN7)r3&;i!n;bxNh+qDg=uBK335jpV<68>tcI0SmB}Eb`KYhosIo%u;CEDCUbjk`YkC?**kzU;+Jzgd9 z;!h2oT@$-xRk|?CViq6wK3~U1>x9i|>0Y&X6%4K<(bG(o@hN*J zx_Fo07e`BnC-AmHFvv@Jmwo9eKz(L`jIIH8(9~Q`Np%~BG5Cklt@_cuz4YhgF{zor zyU9ddp4a5x+95k(JDrbCGsnbrl%wJmZE4>nHNFq9YvI+XNec=k4YPXHSLXDil@T_> zE4$l?B^H7uK5gwz32I*kHbNk#u?f4NDk^KA!Te zn5@59Z${nr!A!gC4G!^ev0B-LLYiukh{fM|TO)=@Pkhctf zN~b+Os}}?501r}Q>wI7~aB~|qw~PX`bwGE775j_}p-Q(HB}d35f1{rm4w|r;q98sU zZ&7$3lOFY=24+bTj6TXQCLBH#Q9GtOl@yB13{dO1gLj2)=CpFZ<1P zfrQqqq0c_n+=gleVA@T%fBc+2W~4zmq_TmMQ{&cf{mFgKymg{J#N$ENGes+~Z}*4} zJhkC^iG5#8r!(_StBo6*B_mw5T1Bhn`~i92On`ET-&JdKvD+Xw5oZ|Ey6QO!+sQ>w zu9HSrfj>#h=?0Emk?6M!3`^z){P7bO#^NuW!I=Klbnxdf)!UUsI`=i{T~rCmb|&^% z+F$3IIJ?f~3o^ASkOsSfVUyFEVYRD_Osx(TkI|!S<0vZx8U|@x5GIm1Q(^qMjVpgT zPbl`^5W4B}nF?(xmWC_x#SMm0Il>Uy8S#i&+PE%eAcK$Wb?NsNO}*#G-LH$x=cY3} zaXg=<)ZX4h4Jg#{jocQ9W%H-}6_)|Oq09EauZ)LG~fr$H7_SQZPU^oYTR5wX?=j9w6VdTugh}VusMpIkYFf>WNDb1;+zX7_~ zH=bnXPpgbsD(-X#!unK=FV0556KgaFnB`?>T!3KyIIjRaWXEkotlkq*5P_pwc5Jys zUnh!!$tea*)Gkoxrj1!O;QKy6LmEPcQ!dZ;jed3fa)ZgM;=lAm7RyuM0#t zU3%^LZ0J76W|9iNsI{R|*PBYSI!WV$iPQul3Wm{2^0cNQt=YX7JG0fpg5$s)q^o1? z`swvn4~w~7ocH=CP|e-`=KE}}i1U(gpu>&x2t8{yNxiypT?J(&$C8nEiF|_mp#~3W zftP2X#1na8(ra1A6&Zmw8y1K@G~ySN>;fHJ+5%mrrj7Nt}s)- zRqia1mITb}B+UWJXkwbdIldhT;0`xT-!8wRcn@aI;N0d$=FD4G-M*^vo0t!{V8fd#`*heL?g7&%xVQZNp0RUF z9vmNWK1@H>5=#m4ti+faDu}}P#zG&hwmz;R6_sM%oy+a4+&CpV% zh+&_w$9cAgBu;*O^~tzMAs~Z`;i}v?P_nSMEqVycIF{UY+k$3?@ejpP-dQWN0oqTI zA0YX8Z1&T@Ymi&lU=YIg46KYpcOGt%ri+Wk<7 z5S;Nz5jk|Qlr0wN+M-TkdSvu8N(^FH5y-=Ck?b&k&LS$nN@=kLDn6*>zw z&z~|Bd;C<`h*;Dq+bbnG^g&Y>NzjtP`T0L6Zt#V-@IE#`n8Iz?LhQ|L>G95A@D~Hg zfJ$q}qPn#@&wVc6+=p^WX;4MP>}iqDNJCv<_Y2>{yRsnJQ`QdW!VV8sGs+K5Z9ObA zl!bJCK-!S4(>!6Z0K;KdAp1%GlLfU=UwFUB;l^+j#BKbmS|!l_#Bk&J;X8^Ot{+76 zO58TvCZnJ*VLb=L8>+=QUxfuyS{6;wHq}He@;Kvj zpJ?S!YyxwM&SXcMdvIO%XU$Gdbe?I6mTOS&e=JtIcgmK?P$~b;OVx^ypthfYq$3)tCKV}zAD4>v8D?j=Ot55 z%fI7$b3{2jOo3TC&x|JzCYy^?F<0CmmO|oD85%%&AXDXWTZ<6m>AF~!<)^x_E{Fo> z#gU$c-wV}&pVMS0{FTt{Ws9nqcWWO_mOBCD?w&;4ucghYDYDlfMMiun^-qGT=x0!{ z&^R==G`GpxF;DvOtJ%RQ=f0Xo4JL_iZ3zr`Zc*NlUW(JA3mX<#G6KfPU>P%y1D3Sm zM<(fbI)8?RaD3H|v4iP41z6zP9oE`H= z863Ex^gfyI>l^g4S!C^_e`RLyIVaQw%$03!DW4AP#4RkGBp)Uzx73OR;ub=x)>bZHuok z6jjBk{c2A$gvdd2K=}4yhE5a>N=l=C+ReUtU`R@Jq1pO|i}d@ud|#hnri%xr+w#51 z)axA-XM*X`U9^gU_}y!8w!ACr~}< z0S(ydbhtX^mGi- zD0S%nKH1C%bwPZJh=T4S6uW%Bw5Z()5LH~$Ei}FFHLgmwoX(PrZNq#<9Hn8zHZc@P zvIYw4GtxMICQqd&-FM|GSD+b47iM<;`6PSZZM@^JCrJqXRy-|1hSjFVfUpqXrFKIF z-nFIO^azn$!A&`aPa5SBUg+x1v>3H^4~e=;1%$~zzXdjh34lABC3FB8*V>C>qpNP^ z1WazK!^B+oI&e%*93~6~#;P)BLDa&PaC|hmah{n4xSy{2g_RO7C9O5WtD;{?HFs)P zB(H6vZ5JX@O+|-|_wn@*-Qe}$JctkogdG_+=q|)9DMgxR_Rl>jUSB8rqAkPQLZoxQ z;v_xyTN-uHn@EhA8R0mTntt={8^15LhiG39zAA`Dm1TKPJOB0-szvuzA9}_9gu03v z0PGgI4>9=V8hjx)I5OuF!}3|-yO~O#u~`jDoWVkr4|Yv^rL<+XZ@*gMuhCoV{^c;N zLP_(tICoc{u7Bfl40##XV9!C{x~ve!T_NmhfN96O0Z_@Rj4CGMAU2DQ4ZGNIQK*Xq z2xf*DLO(86FDLaVJby|A?2Kp}OWa)V4fYcH>?w1=R2eNJbEE8(4?!r3c_RJ4r_O0Y zWJ+vs4w9iaP)W!HF?H@k3>3Nc+NZuLb++_vb@HkSvM3HK_qYSaQWZv4tE|646K?j#_ zn{&=FXq=8~{D7v!m*$Ht{{B|etQx^Rzq&B%Bsz|Eo{aW@l$^t<*xo1Wog@xKL@sJG zSDHw4S>I}G*P@ehm%~5p^|@yK@Z;^%(0XV04?cRhp>)*GdRWx^$}9jpe|&wkB3>^4 zLfAMG9j)XyK5GAaVT@QfOY+V0T8v!f;SLQ+lmnmxP!!L{DsY_F@wuM?NKJyz)@4yC zWzWy-Zk`)$R7H`3faPK2>6ajgZPgA6q3nkyD)w2(`zyD)3NMtS&V5+!&Xr)mU`Nu7 zuGJCqcG6v?tEO|;2riGCz<6E0Bci%IK+CXQ_J?{$5QrmDq;4oRiR#KZG{H@isfgpDZ|*op1J#>^vh&)!mowClc$rm z`a{3T?SKHxR|x;3H5VhvIytG@;v3q`Z+qEZdfS3I0(d%d?vSl(O`a$`1u2;_Q;DGGowG8 zT`8Y3SX@7+D_!AzzeRM*hV$>}xq~@N1vx4dezV`Q3Wf_U8Rh?m02u4mA>np62aAA0 z&*OqryLT>C)JB?sY(L%^eE(^Eeg47&wcR<|y+6PVl=oOS8U1N{)*o8@dcWORrseMK z-{;W+*Ci6AWMu!>))h#HGHf=fWD75afy>6A`3Qs#q*(y%lW#uwQ-D3x|Ju>|EWYcT z?bg#(VAQu%S9~VCM!H;qO9}!zMEAUCm@byyXL1}ZUWvg}bAB;o&a!~A$yrr&QW2ZI zU|&9KgG(z^;Al0?1H9nZVz9EO^hRr1eMw`krekIw-wpl}fKEOXnze-HXZ-D2imWN28Rb$CM!L+tjn*F|;rTI$Qs5624xAv_lymwU z%z-QQuL!$u`h;=>1S^f|t^Ak$*gtBEHwFEO3fdLKJ7)d{8`BvEEtpdZ=6( zCEoviL4I0*E~G0IA2T&d1Ia63YNtW0c2>1*LTx08?J7p%IKgTyyydgEKs6v3>o>!W zguSZ=j+Lg=<*NCFb>Gf*y9c3vKU3Z~0C?yFDv_`8|U6$q_}>By;3_ zemDcOZpPr5xo;1yL;{KA&+qKg|FBlfj}5#L41ZEmo&J5O^0ClfIrK&Z?fLwSufzYc ze&}z-E`8y>r|`cqb)s3{+P5RPP+E@4Tt{gC<{e}OlugqQsDp%k%j|XJ`{39`0-4>EOB?@%! zO1#)bRjo(6W*$KH^hcBEp+G=M7>H_KF&_QxFu_OHbtKep7=;{QGbzNw4w-#Ub7??sjbc8vI{>7~qZ12?oqhJ`{`vS`R}5F)K0oSx(^eYIS>gJL zE|9Em`}l7o8bld}?qzZ5-Wu003i{MO<_XMK2(bWM&(j|0_=S_j(YBIIe;CwQI#^yG zY|RG^Ivp~1Dwquk)d0~7CQY>rzUP<{Dw;uyhGXTZ_!$t?^a{Tj^^X7f6K!1uLZu?r zuV%I-wxK5RZh$)2-B%IfQr1VY!zzF-{2+Fy|6j2KGM>0vGz+Y$_%54oI6c1kh_1LQ z{k#6nU)uJm+n=B~lgw<|#dzd5Sn8mpV>-Pv|2!=iU0GbI4^{!$yx|MW@-1mg&B+mZ z(4-Te0=bh=eaDYB$3K!5;6*;=UIWu^K&c*NDmh>igLXK8S{uoYm%y>o;FdS@2`vJd ziOZU@3h(zk7-=;B5&jtzqZOY(9k`(n!5ZHovbn`s?;%}$d53$R7dcz%&_$6o+7L-W z`h~RGR^oE##a85jCQyDSfROhjSDq> z1tDC-zcE73R4#@`2~1H_pv?FjU^!f1(0XXRc%VMVw_0;-Y=Sq@QSVaD`YtPq2YsFQ ziPL!nFQoK(N^`C0UIeyi{(VX76M&@E6ym>5_?+&exI716=;zDy{Ij18oWO-m=;nKyA zuj}cl)z%*3vF9T8l*`*kAu{Lf^VQ<%)knEzawTo06Yq8tSP5-)o{eR$x*RShu*`*o zUecsT&sl>yR8ma!T~OR&u`6ZN!S9Av7Bz7h^HG%ay4~#3)xj zmo?cpNcUh^SAFdIvwsfzb|bA7M)p4!ii%&w++u*d=JY-a@PK}!dhoA}!Ji4RBESkY zfWF}Xsq7TbPrZEB=h1Cb7R>Dl2t{ffsu?oeYSQ4bDf{;B+T@?H@1O8vSAGq9QeXBM zoA4A7CbMpliy9?0lL0yI!+BhoTUaYBn6nA*q-n($#V^SYF)BiEtdd zu~~xWkuFZ~WOr4nc`_?$jD6gfSp2=VX1U6r`EZUsqcqH_&};XM-d<8yIj!EeKokN9 z80T5@<=d+a7{7eFKoKnA7B21>4bn@riV#t~5 zx$Y3%&G*5Zx{e9X_mXv8esy zRh+uJy6VVIWz3uco*SSqow?`1bZP8AkeIB?mC||VZf)+Wp~`HoV(ybe{&vcZx}@I6 zf6GY4bcLHKh-mc-4jrRCMbuBXM|0hGhh+0urvs=&qHC(0$KTAb z_h*_moI7~vqbNSUS2VKj$L>PII(H`G0tGFk9<^6O?$0r0y4*E@xL@^MNbs;a;fZ|Q zSqveC6y!abs-5o|EXyY;2mdmH@7GJh?Y$JEu&)>ySNI+%Xq#D3G_dInX%LBBPF%;V zN6iG9{dSqWlp;H({<2Hy;+kEThqa?L_)C{seubx^)G{<%YS~o?=)C8LQLYkW+oh|G z4xL_Hne3?Tmkb6Uv#dVKqvJtZYR=@smWvrU*ScX|NQu)?Rq$UD`HW6_r{zczm-#Azj}O)hz-B%zSY6bkG-Dc;JD=2 z{&_RU$(^{sGkFEzK#Zxj%JqNn+|wUejA{WMi(Wk2- zKRUNS!a#AlB_kkjv)w4!$h}8?!Nr%jM?$z?Y~1+elhsFHHRf$ z`=t0GYN}Sc6|wSP*@cG$DGyhKEz2vyMg~V~rn~+QttL?4Cvk6}(<(dc4X-%S>EdQw z{pg!k)5yE@(e=efCWT1NL%C8OVTjoIqM9wMro zUhW7kw^RJ`w~}1WiEOrKAE(NYT+W-pgvRHOvKCe4BMVDRb1iXYJ3nU%d_dg9_2SJ= zg>|qRjmLfI+m9hswZ$s2H~~IUPS)>*SU>ARn<~fo$}b(x0+K@ul0(wyLHxSLB^&s8 zwvx<)*kP(drxmrvMDswk>_Pyze;S&ChO{|1^>VxOEy#{ouMOAC>WH&tNZ!JtaU0wm z5Rwj=t9z)ZQ9s^AZBIL)?>-@p5mrKO-Md@$swK9zpKlONPI~SroUE)p@bsXVdLTuy ziFcny$T6_JZ@8b$*!D);$b`+pWiTyk$EVL0n&#WjSP4{Zef&P-MdwYNE#f3_@0Qc< z#*d~a@xzoBS~bPxV-r8kqvC9#aUv3#!BP27jZ`Ftc8v;}-$aFomOq??7uXE>TXozc z9`hy^-&!}!+4-ueuf8Ox9E@&S%4@M%F{DRnjgDyi)g~O(ExYA% zYpayYabm-0apH_7JL)r7&%Cs2<#%)WV4-oNL6A596~_A{|1g7wzVa=uubH$zE45~C zduHdy?=;l)hCX}+;J8`vY97atmyo%YR&XX>`0x-&||q3ekDax^>XkC z4fQ4;r{Lj1pKPS~8#oVO_A0oEq52i7!*RGFzI?mkLDY@byM4@f*r-7RXC({c^p{F4 zvx(U77S9fj3jG)<6|tEZZ@jnye4xXV%;7Ti4TZN4_7@XnX9bN8H>)^Rdxq-{{>;vs zMHWC40gR}MOP**bnL1BR18Ts3EpN8B8((ynB=Q~f>5Bvkkn^^BdVFM-P>nGD{o-Hh zkmutQag*EWg2Tc$>dZP-UV6!*_wsaEawdOk$q-MY%XHCP9LuiS9rS`Q$qRTⅅ$0 z(Y@Sa^d@#t+c|6LHoP%ES=AE}7MY<`g^i}a;()pycR=0L53Mox1H&5qrK)srtXxU+ zMAeK*PJxi9y>XG6HkbEIBh%&EJUI{cZN7!G(VG94Av=^<>!~> z38X0c7tKR9-n6^+(@;g`zo$hH|@-So9Orv?8n};ZQxOGMpH8`=KO1Fp+#%Q$zH}F}EW=vX{H@p4C$?t6knf_pSF%G^UjvEhj98Q!&R4pf5f5MG;UA03!dHGG zi)|*L>Ubj0p6$L7TGUgL=GK9+#jl-HlY{5_RnP1Po+WX9Tmo`RFrED@b|Yv%H$H_E{**WgV*zm8V?<^+E`eJ-GG zQ2?CRUF}k;E~ZlSo!_}Ru8e}n?^#mE=jtC-37L;HMhNS@DRLPubv&Z@^0@j9OWhsJ zkv1j*QA!yGDk{SOQ*Cb5Up=Ea($OBEcGm+_J4BZF2d`Whd;7$Zp`t*0Lw;0c#=Nl_ zjD!{*Ntku|0y=;Jj35qFa;9Fr5OwGOOfg1k4{;FR#@RlN{>r=)t!)Ar>!COfpn|IGG`7h`oX&z2zhtq=3=I zMj8$-F*z#eyekPSq?)%E&;^i}Z0AI8pjpBJYZ4ux*<{TID7e?ps-||yE_E+=Y|bU* zm@ksrh|N!;mO`|DXmxzVXt=I)8AU`Gb`Y76y4tKS@~gbDo}P*I!n)L z2$D*~JRO&8%;yX@K~$ubm5$Tzg#rLy`q+H;Fop(E9y7&CU)rT`TH6N4B49 zf9snQSZh4z+6kc#$9VTBYSB}0U&n_O-|DQT&_1g2z+wNx3oo)W+z%P}OfaWzScSV;%XLsG<>=ZcppBRv_ZYJ25k>~cT9TC#mtitCEZJQ$5rS94hEn3fwbEMY z{SqaVJ>nTGIT~_CC#~VSVqw$(!OtM9<{zE^aY^hJnY2GEI<1>{jk@;usXRk8Yu+|< zJ*K5A#uTn-kCwGr=UJ8r_H1i7h+U8z`7Aj?i2gM>=!P4o$^bZX=ON zn=f(F+zZY4x`u~|>+ru*h1mbm==fh@5n|^``uRvS3_xrL7s{ufL|67=!ObJ`;L2O* zHDoaZ1SS`-q&O;OGKcAN5VKOCH?xTu3WfcXWax!%kQSDjFIH%-h#rGj4{mIFNc5~+ z9L2mPN1`Q1cF;c{R{*m@V)#odns>enf#s|{j53FbfhF7 zf|SA^5#pH|Uqw%c8LWkueiMuiC=;#quhL5J(4$A5c(n+Q=*p+69_;v|WzF3r8n{MU1t8^_2@zOhPU2B;?u21o}FaK%3u>5UyA zBW{HU^7(bV6Gge(=r`VLe5#p9!h>Ejj2v)!e&$>KAM_v)+(9_k6ZC0#{`JoJ5urr= zr{;oBVV`Zm$aVY|6NbrY$N>WX1Xy%Uj?xokQGm%@Fy&1F<=?}UX90I?>fIfuptjStN-lT)~s%t#NaP-0CI=zB34A>=<7^f9L#FoziDiiw+}tK9$2-zJhh zE&QAR3T62Dq)EuF;`1^`I7C6o%>H*FS!kmEws|^Sk)PwZP z0Rm=VMWBBpOz4hgAFt1$NDWT`>}Nx+U@}mM3qY;gu$Q#IT!6#OsRyi#P;X+$)!4xUvQn9*ri-lXHeti0h_9hn~ek7R_gd35Mk6h=sW zsl7shCIU!H%Hkd%j!wv8)+`yOTJ&;3inZij4ywXvwIWz`73v2o!mTfoV$?9Xk&kdj zQBj~#Pfv)Y4&4)EtefC6oe9{*!9fih?Aj|ha;Lr2=ip$0$^8dd_+%J0a)%8NkiCOv z@>A%jfj?*<1UL8ue%t^jU%20c23Uyu^Qf$%NCk#O1`nwn(8?F4734}e2(d#tDkLX9 z1R~=JH-OwViMMVt~Ruf`u;v*pXD&6(dgI$_rv~z$IXahcJ+YJsc7sTec+J7-#gK1U%u7Q|F*P+}Zx(<&v*PtIfU zJXt)>1KhiFi)=^|qd7=N(7*z2parmz1yST;d1?!xO^}&-aL62#?6r#mH1+0%dHUAQ0|y!VnDMOULuF35%tJ zm@Y=3Uks3b%uQ6&f%)cdl@~XToqk(TzQ~G3YRKX@SMFSe%^M`BfHt>a+Wdyb ziFFXaBTqem$LX&gVdyL}3arXES>&zXpQl|hcj`hCAsvm;T4a)cFl1QJO^``i8Llv4 z5nT!$5A-@D=|lZ6vV@QTvnz+Yyad=WgWc703Abngp`S`dc>N*97AHOi-MoRjsectr zD}n7s-|zzFYyku!EYwiFzd)C3pyHWg-BP(mpU*5(#mZ zB{VE{M6XegS+henR}JHW$bjvqhp_@=`~9)!q9k66oP|%61Bb}b8b9SQ);&M108i{vld=I-BL|eEFd|?+t`ay&te@+*mW{WKH(M~OTn92YZ=E2-kJd=0+izF;% zibsxJTBXA>SD)jO1l$>UYY-OOA!ZqPUShEwg5_V)WbOOsJg00o$X+~xt?|!MW0j3izG{W<%9{=`*}w@1`S zFS=vm%{I^&&=lPb#DWa$^>k@II92Bku;h3vMMDPt2noDuq7cjg;8kA&NQoJvsohb8 zE%s)`@!aYr^@lgGo0IncN+1ive_B@ktISy4Nz{odh2wJMpVs`FhZ5yXIV-v+$rD2} zDjk*4uZBR}X&Cp=0xQf6CW(GPi-(i2uE*tdq2VIv)EVL|uqd&x{BwH^5Io1q|Cfn} zBbc=?U?%yOdL(XsynG6$1>nL}tcyefExm(tk!c1=*Z_~59hJXFIul>n=6PQFCEQ=| zHLjO$U?Q5ZD%4gQ`I$(4|8xM$34C`w^f00&z)?Xk0TaOi z8ClrzNgtgzt7veGZyN7n=JDNH7_cE3!>)7#nxJ0+Lh^eQSXm6iZKOa{exkVlXyybu zf~j3HkmP=cv2zGXdY+_otb(0A+U{6+hxa{WH$FOxgIoruOI?69GDzP1UO2V~@*^1R zq?v~%996(Pj&MU#M)%+i@dzjeJ&VmlnULYY&`n>$2iCDw18_C-m z1b_`??XvmzBK%Bg)4?X6EU_4Q3cwC!tH>Cp$CWvO?Tu5F3v?r zDn5kTaRr36)!u<8=6jWk9?PS&xB-7MECn@=d=XicC5Jthp4DXVv7kGNXEh*8TtJJ zg$)*uBbRYSPlQTZK82g?T|R0Ro)-$vbeNqwpb%!t1(U{F()=4hz34Y0R*qzfMa5m1 z&xD}=!w#dhA|6J&>{@~}#9l!7_|!JYx0i2kIZvZMEq4)dG3|TZ zHEaV09P&lXD$DV1z4f(LGJSSDVdWQQH7d8)*R*3WQN%p-lku=1O!4TTPukPBzk4ZM zKSh+&M80%=(G^1!C}|HnE(C}mW&L64Le3uPnN4~XwVR~EmhwE+PcEHRbVKAu=#@q| zjfeOK_6Ja4$9n5XVe~I4@NTiTXP<6am2)N5et(0i!RYZ^3EUYz2GsC$_@-Z zSfl46e+BCtaA4iiUtr+zuar;d`;T*VYvZiv(0%DSaVA3n9Qwo6^AxwS(H>Ids4wql z1gRaEat}hx1Jtu%#Elg94}OSEDCiyCT_twcgdnwkm>m65F=qqGbSxQCz=;A_GSreC z^?=ty{5qJI8}ak7!0}MX($zUWExoDIzlkmPyvhruI}=87DdCDu$6pJ5NPhE@Li&{# zo=`X0``TBRWGVP5rE0$Db6$K%aWnUQt+gH}xgPtD_B37wOQd$j1(`P&WP}yEO!nHs z&K**PO@)r3PaT;u?ntxv3QwE#$xxcbeK;p>O^@?%UB)^@)i;TZFif$~>zK~RHer1- zG@XxaqDYEsV$E7f=SEH4glRJLHMZONJuK%M9fjZntowzs2`8H$18Dur5v2rXwMpF};?^9eh#@<7{dJ%UY zCgmUDabY4gOeg(dT=8&=pKVb*LtNOaC@BbNF{S{4ke%MltdCE|v|z4}#XuCqi)XM+ zC?&?tx>lxqH$FF&5%b$w{SJ)PN7fd?jbeRpV^6f1^0Xbe2tTlR`oDjBA9unA=6#6B z}QB=~R7sc5l_(Ei&~gn-z8j^%&+%npg0 z*8lh({xFTeQRu%t?mC8(f&cb6@x)2&t+)T}u^9dltNzP#@%N>?5S`%H(dlsNa#6m%FT-Dq0u>U`PH*z$arnRC3`{@OCi#kF+I`2n}Oo0DiS-7!R$ z=Rz;kh!p^83h;+h#i!>05oc?+yAK%U5HjM@IWl&TJQMYG+DEQNG#)&$=NQ= zU7J1)UzJUM@8tAL;@}M}@EiF5^9_p0LJFU*V&0PQ8x=CAfB1ag=KAcJG)CPAQbi$| zmi-gsdWCPr2@qmAr3w&^KxQ)ihuWV;MJC@l6HFa7s?I1Ac1YWf|(3oUCoh3{zD*Sm6B}H{3%Xe=svObw=csupu9y>yfP2p2=-IC0P9=G~U9`)kg z>!|#8{RuAZd6QTvOq%c= zR>iy`iRmmzb(bOY9XG$+sp`z>&U+x7yTmZOZN20^!3~H_gdqdsrKmP$a~^IeT~y;Y zNA}sk*o|(zN|NJUNSk-4(8-xvU3TK5Jcs86I0~dwCTuFwlH5)O66HEQK1w+nAlgW_ z$01Uv?`M6f$n3x7-yFV45`GbnD!Em^pf&$*E7C~7Oz64ZuCUn-6LPdAGPy2%t;I6l5RTuxTJ#f5DzVBPh9LG~bCPfkys_fdC;0iP^`QNr`MU*& zK_ey0GBCREd50NOlIAA^P6M>Hr&cDXWw!K)@AJ&Cu&r%#=%mERl#OYH2wG#X447r) zDO#+DL{kk}?!C-1uSGEKHSZ!qLxk^DXTtsN9s#?Y$bPgC*}Qf(G?K2TPsn_qPFmAo0$1!;6K27Dt z90vw2f_@r7J4l9l%P>QWf4GV2u`*H&TvYayq!>vXoEV>HN;v>*+OZa4kP0Eu}u=B;_ zO-cdVSy!qncIFOmKYZ~wo>IMOeXR3rlIr4}HuU5&7hd zNluEKXU!k6ERpN&146-sJ~h^N*}O>Bu|hk-f+Rd_e*0MkH4%RD3}>r?fk6XspAp_v0wu?YYJ~%_hs$WozJ)m-@je{Tl)rZV{%4%A2~c&p{S) zZNt8g`lB^3pu77|5p)$eJN`fLgo)Vp$$C7WCqkMjQ2!Z!h%Nh9mlaRbUHX=Ru4K8e z#iqOi(lODUfA@qA`&s@UqugcmdcArNX!{}(gb z<-PQ0qetF}o^V2?d|2f*U8Nk|C2;~N8A#fZwgPls){sm@$MnWd;ZreL{o>m5s2r-w zO-gQMlxrkMNL}k)-YKhzi%!vCevuNPdmMq}u}(n882$eV=(zQ_GP0JRKB<&-1X{@I zYh6JiPS9L*%WEwxY(|fRj1Z4X7E=Gjrw>|awSZB{4svL;I>%%tk>hJ@dWWxqLes4< zKiMRIz@WnJvfORN>y}8GgkYM_DeQr2F%tze-M{wvAA<8z5}g-%=O*gV##TTQhH_%= zD+c^j!FWWHNYY{eLosUsl4l-PNhGTOUwyGfBok_8;!JwSw`G2%c%~YiJ36SB4O~A| zj)8$z^{#B?al~i!m_N#5-qj{}GGcLjhh=+WJLwmAsu*beoHLfT;vGc8|+r=|u{%TSkc;WH_y~e;9UtQ=m8^;X295-~<6$1fs!sgZW zjqWp{!@%HBpObv#d_}B%#m_u`+*&BUvwv>gp<+bD`5)Jc5y&{Y2|;H21%f6qcp(hm zZ(_TAS@wd(^GG2+%Gdo0yH=&L3mIUH$awPVj7tlS51t6g0j4}m`7pfhq_>0@-}i$0 zr}@gHlp(YxgD=GC9c#u&SWa`YA!$=NAwPo3!Te)xF-M^$ipr#B_kH$Qfpfqh{#Fa!Ne%Ip#NT(eTD75c zc5RB!GE3Iu$dR9Ct+fu;1D&C0p@T6NSmP80%c+KE4{gn6Nk@NBZ{>7njt^=cSNyIn zb-F>l9K{nTV<)XJJ*jr^RzRG*QHJfn-V=b3oNL-qwBNs=u?naJhzM?g!VNoA-K0!CdvnDv^>|& z2`DO6$G$f0oEgdnV9DgV4>4b|nF4iX@uY7Ort?A>KDmPSkM;P5#P!Ft186NCF5BpV zp3@Yzb}Wic*6Tq^=|XWrjQCOu)Lkh75f6Bb=#qzHi$vS7nM4PRtYh!lrPkTa+cQ6W zH47QuX39xCVK~_e5S@t3=K#jQMn;r_sG)kX`u(IZ70%+-JlWjZE5BRq?1E3Zh2ei7 za8!ZbYH_hCv+aua>4Fmq*I9sWi*0^x9&v5j*{1QO;eYEI8HZCc2XCIEiS#FEK&wNf1>@vHf|Awo+Ghw8 z$%9a#(ovnhIW^EfAKbq(zgKRc&)^GRhJ-(VL2g9hpwyK0L)>P~yTse>M!(Fdmzc>#jr z*xR@8fq+TDR^tLoklM2u;`;T+cyx-H6~F7oFEbL2GO)=~d;6AVLg}mW)XbvV2A~xz z+*N&GV5=x_*mT#}ZM+tU@*BGzd&lO6W14iAz_(jI@aWj!(RJ}J&qi`on-{3x zfADI;wJVq$382EVc`@)f=8y8fJ>gb2&mUpaZvVwcSQSW6s9sGedvE76`1=6y` z)2#xq41tJ;6_tt+me2B=gbf@)6N9DzBUP9e@ZI*e7N%xhbs2KNgKUG38Px+G_44RO z($`c$I%nC35s4Si0XG>g4^CGSTsBqX^s?U1yK8(bF=ZuZ(L?5E;0D`3(rW4VN#8Tp zYQWbataZl!+7=Pivk7}3xEXalv~Wm+#p5X{3P*vpa`B$)a2%`q=m7 z46T#n8z?m&y%)XS1)YHaAqC1u0A#CO4#6>&%Nc@KW8L4M1Y!YPif+X27nE%&9@;P> zG=PVl{1m%Uyy{3#Fg`Sia`ZE*0dki3^!vn{4{XTrNzrQU@>5`9H7giZr@{soE=)mc zGcwz3ajskfvF;wu&zNHDzCRY1i26(@bEVd%)vi)xZ7g$xb~!`r{+z-Ef)~9$1>Ev# z1$=u&!>1?2>$*oS=KyfZ;~M5d)s!ilQZ^odkvfwqCl%J0OOGCUY9be;Mbdi!01;C# zpK3_YV?*{Dj0KYd*_{6cdyfaO<6C<~*4d*yiHz*1y0WjYB~j=^!@D!lyh7y3^V`;z z-(O7hH>!JltL{<0!)eDyh~P8EG}&CQ*gbNXd?Vq0YfR63&)Jkviy&s--cN`+0G<^Y z7?5O2w3Y>2f{v{wB3tHQVmKuRkYnjREb1ayQGYsqGb{GaKpt5U=G#+DrTnpNk*p(Y_=$3EyhBXC$sBdw&+w@$~WY-eRY=pMR8vmb1;~@hOf@2pp%200ct8^h3X+v zk`;)I)@llFU~q@(y)e4w4V$~^s*9Wi6>COown{v}IYnszFs2RJRjC_-kk}Q=spZ8I z{`7a-ULM@4)7Z&(DvF{MrnnclIVElJPxjDKpFQ5PFwOh3Le^?32>|jEf~bqT%nq`4 zNS#y02{(j1a^pNXrH`pGM4eNa0ZN@XS+8EszjvYS*6?;07e7Q1?LRO@?!pw&@-p+_ z+S&LMOLrMUlQRogXp|G!0a^tNyN{j4i|KvS|31cvvSJ2ZYN|z)BzC- zb-KKR>Ga_*mEtsxq01-hT!b|K+%AE@B=QdoDGtuVQCR<%m~MoH9XI`_4URsvGb@Sw zlo_>j2iZi`fx=7EUU|mm3A`i1M44}w|fY?!OCz#&@>?efK~Bu{WpnjFxAkmD`8sLMqV6(UTu_CATrY|KaITp;+6x-u#K zMg)8-a8t)H&@^Z0b8~Xa9caZ8GGY~DqTJUVBQ3!f;7=FT-14+aL`OZyCj<@0Jh)9- zD!GFH!i>x9@;@))i4xCevjS^}T=gGgPg<}1E%s#t)$itzEp={1sI~fFYhriPYOETZ zIci>_ph+R2M0~QOq@*sB*UHkjfo~0YCv$(^>TtQ_aP@G1@o?Aka8>k>i@;-VYk60+ zw5;sZOV7hiPtWz)_V&5V!FcB|xBZC__Oa^y;z%i_OFybXfVe*QssCR5{juQwDzf)` zMH5a#7Wb4cLA~URRzB;bj$lG5&`c3g=;ec)NPWWIPIDytTmtHfMECqK(IUl|F__~J zGk}hZUMwop09>qnS{iwruAkot;vuZhqc^6t8C$Ik!n27uCh@5WKlcpF<;P%arrX z)%w)8SWDem-5rrC6|+vSvymwY5M(v^{;vSK_KL8OjwaYOsw-4#GH=0FtMkUAOk$E0 z@jz|qWud3LE+?yUY?|kpbFtmw@lEo#K>I@RbmyJyp!2G(TZ!Y{0jUzHvVlpj=v7FU zK;m%fV6EhEU@zftzeeP6IJ~ruUL#NVOb5|hApvx{>1kb@Z~!BXNKQ1fo>rNpZj3M6 zD#$QCEqeX5#;=|2A;nIVc4ABPepcbwv2KH9=RO}>0Ml!gCUv;d531Y$!CTi@!)qTG zY!4)|b6ATwd>>Al>Hai9d-P!n-poQ(C7s7>#^Pruvv}GGBffuFO}1d7l(zUwX)2KS zR`6bOYtr{~DF*mTo1MMd!h*3mUr!l_>sJ4nj+%U9lE1xI{chMz)Lz$)-=nuKt}MB~ zFs|mLsbW9-I=gGaXm!z49o{~)kV0(iD3vK-1mPGt-s6d)`HRg78#PtSdx8i=Ge{Z! zBa5!}eWQ2V=V3Waw-P0H9;NLJpD_WkX!Gj!b&%))@(nUge3XQey@t=9KLtXe82RjZ zH(uxC+-QNIq?OYZwaE%hz1`MspNHlgglTks<^l&_ zS_;BQ#&;rRaYS=9_7*i2F>@1+(Z+p!ng>@+H9wDgq<#Je)i=*tWaXZ6KHBdN3d+8+ zh3`Ev``!9n`C5FAeE`utQmx9BWIwMveM*0`LyG&XY4>?TJqAZVWM7nf*IvG;XgaO1 zz?dbwpiCq>_VS=Cz(8X%SGe=Z!DH=<#`2WitfH~x`qX|g+MR%Mt#eVILT-PP+RXr)K)-G#WK5R?kW8%e!j5>+N3u9w%^q3mW8OA-1A!6D#TiQ0^*6m2(lkl zwvi~MC}cOQDKA&XwR&k+O^SXxXoTXgaR$=N2~8G-2#J@(0R!0}y5X%%RZyjnS1z`xIQEJ`H=gr#^`Zhxs`mV@-$lGmi8QU0YN`&kKg)w3ec3bi zZV#`Ya#wTT;POvx;y6fZ53i)E`ZT}8px7Ybp6f z`Q-RF`rXk!HLzI8B;0M=#(f4I)b%rXa9uzAAaIdj^Kxo*R-A*HNwH~qzjed{wSjts z1y5k(M~zdv;pCz7o^A#2V^{k#2aJghP&L9aLQb};n~MiK{gcnPb3|DqQ8fqaBV%Kf zhdY7&s-kzQKc{exI*3rlu6$J(RsJ(o_TwFy`Nt`~yap#7)<*hO!zglh$7~isK*66n zd~&>(o2p)Bra8q=wc35F|6TWbbcLqBp>cMPeiGFrmGVquQ)<|wNw9Cp5dTMWSS(X_ zLB~auNBg%W36NBH?DBMSU1H&@pBJjx|J|h=2XxRWkoqAB%I6GrrWf0h#BaS5HD1X7 z?B)d}dCc=azmE88KW)u3vt1$JRc#u*p8d_S?~h4K|NgPH>Gz}an;+?8@-4zE<0?PR zA229Rl)I#lz205>o&^Y8DTX1i6qdlULVl+d{q~wm!&d%H&?B#4m0ZVXh)+H^Y zc(!Q!xv~w>P>1NckO0J!P$(@E9KW_9A5(G9YuvhWwAj)-(Y0hx;&)AuYd4G|Q~maHzl;}Z^Ttf8Z@x&hh0+r|m2lYI@yhw>abAWTyDZhuWZQdgrz0G&y ztq_$wkK@^lOo=#=*c_Lhf`!DK$m|f7()-tT-uU=421?;~Of*i2xg%T?=d$f>2@fe>gxqSLX z)*;`vjF+49XMc02e@YlDy5YTK72~<% zH#jwwkM9*zb2zt>aA>m^DJr^2w6M3$KA|#XlHNVP^Fsx-VIMe0eW)3dGar>;e3ugB zI#CW4cIz0H^!yVJ;DkxE@*?MKmX2l>WYCM&hQP3>E_L*XKjBtbpO=pT#VJr(x^OnW zJ4^E*Y2%hg=Z}uXi&_hkq6vhacp-kGXV`{3@*Y^MogaZ1L-o2J|8OmraQE0uYRt90 zE8%trvDbFEhBoy3iG|kA`5lj^-e}-vEu!EFn;!h~YI3VmiJ`G$rbvorbj}j+rc-rh z;q9|rC>QSg5xT1Hf0p1AlPx)*qOd&ydd=Y<~=~M8B>Qf z#OVojCPwE9d->r=xkRq%A1NN03%!CR8$%C7A8k*}FF;5NL5>Y>30^X1Y$#ef>OMVg z0&5cjnJxFJvoZ%-nc4Mu=}&QeYV|(f48K?M6Z2gbUx^IlXy2`y8W#!{el7Q*2Kuk+ zxL0f4?$Vt^dAiWKag;ij>`i$JMGJ2|>V5Y>;fIghvozD^#LB_6gvK)qhW~8Nw*G0^ z6v_)g@oqkdzfbgiI*=sBJTm*&m>CuI!~7ZmpIwA*9zIq%(PtJulU`(Yc@{GHDwP=m zwOt{+7N9;FYGOT8ER=k=WY4gYgZ7d<$zZnhOF80`lgFKl=av)82M)3P=kcXNN;JrNN{mgtc{~1_vJY%YKMkj;a9yhE(pg6fHDR9!gu}Usq}5AgC|BckG+#8;j1sF*!e}mN<{zKL?EVLRNA~b$6)BCfR3Fu0?}_fLh9l&|fO!RZhax zxATTK^yL_O8}8l=moHMxsF3#e@F6ai>y#V@$!w?VS)c2>l{cIOSi1{aFUoNW^H|ws zkV^K1oV4ouFnr!yg*}DQDr0Kn8=Hn(HkW(us^99W3;)cZ)?%Nz(=+Q&9m!%ldOi)Q zS-`!PeVQL+=yJCE{jerwbB0RYmFh#nj1>lXkYLR}C=}7^sJJtG3S0gTzKApnb+_uB z1GN-8`D(X*>*Wi8j7U;%-jd5AMF+|HSLO^{K8BhVwy3I@hD9(VHEa!rQ?4Q=cu617 z3aQ3zE*@$yxLdQwx?4WAZ%c~Lilzk4qMZ?yKXO&Qc<^Rh|G1{--`$I%ew(>zri~4> z1RFjIfsyxhLIO`d_>FR`AqfmhVis`U#E`Un&b9Z`hnR2C_LC7cu|iQIk@qgjgIfNK zP?F$s#`JRwvoVX^yp(vEK7SJR$>0m%WbCF)hd*;`Vl|S(8`=%Fp29OGERI4JQz~~+ zVG3vC9>)hh4@_$PptNRQkj4>2EyNpkP`@Y1?fmIjOykG3B&(?eftY8MC*QH9B&jtR z4L!V5wd^I#7prS|XAGE$ivPpbRmMfNeQo}zAWA6+0s;mpDcu7oozmUi4MQraQqt1W zHFURtv@}D9NO#SEFfhDlQ0~1S-uZ+-#W`o~70-Isv-f87Z9#m<>@_Oy#f9tV0B0xj zM;ga8#SGA^d)X$h?DlcmwlcpT%zlw@&eW{1-!rp~aVZ;#AVJxX{iZdZqkpTo&pivi zWEn(J1T1`7PAC%Rt6_(_>OCnR#M_KqQ-IXek72*-PZ0W!sI*pJvLOS)Gs{7%uiPdt$A0-R!7(iF9r#~oS)Xecoa4QEew*tn(D9*Id*J+Z0xOFFS zG%rTZQwe4Cb`RA;mBo?nLV(BU^(9!0iQ{5!)bxbsH|2TC*mdsOmExkbQNpQkxvaK46Cdn-{TTv^H0 z*UIAd@fO^&YPYklLb*d1b=w)M-YzLFQz+0je?1}S&#+@pvZ=5^4HkjbU`>fni@>!>fjp<94nbmwosMl9Z@dgB2RlmNS86a9C=zH_AzM)pHqi@ zRi8YeDW5ly4W*h-D7ISnJR@sdD7tCDS)GWO5lEH`fWpn z8kLp{4~zbkq{3rKxcZrgh=Ta69)(yb?Hq6^l2W5#4!bsw44(bxKH7NN<&D#h4F%t2 zMdx3tT3k<86CRh|dhp6L_%MJqEpGNfI>u8s+1|VDyQh%)nkVr-APy`|WBtYSjx({# zWSDo$X_6{`@{=7Qu4!hb8J~gChrCLh3RYJxF45dt-a;;HzDxD&$*YXPK^4zu*6@c zt#!@3<vJfeZlR`25Z35cf}6=ur{hK#O(a_@8XklwyO>q& zuI9a=P4+~W+Kc5Kf_j-1;j_Yl3MbT5w8HAS`7SmjF(WT>UyZa2uU+ZTG?lW4#eL2P z;kag<2f*%ISJhoDNNL=4hGZC{9~U@U$YatcF6B03Ob=Ajd-G6gAqh8)OZMnwEeW`z z6c_MgIX`ANi(~pidbPXdd7|$hKVHA##eT~r665>B-I;2f+U$mfSin)CiSZdK&966b69RcO=ao6pAY4$cyO*+kNt-H_b(It` z;Hc6xIQ~zyno519O5QL_6`R+LCL6AlMzDTEn7xo}_7-G3G4|_SG|Ks+B zux}#t693eL=4_HBWKhf1bV_Gr$=h;04aPX>bLrMgoI30i$D3lcFK|!xXd(gRwkfrM z)EQgYZl@k5fo~~Y?VN5lYk4JPr*DG)6i2n2;z--q)C?=qYj!|oYTFk+D8{l*Xb5P+ zb(fShObH0jRNuepJwL(>c$(rv2gCmn^x|%-kGIZyt|S{=s2W4YhS6z;!(nM!!RX{0 zoW+OMym$TK-KMK)S+W@|`fA^np8MeG^P?urM?cghV&rmBeEzo=fCB=oI@JE&tl94^ z(bX$2a6cv07%|12BBpb?yM18*ry+Wy1(;X=*io>ixr-jt1YgC|^N6mMn5>HQ&EEx3*?6VQ zCHrFDsm-o#m~Za>b)WJLe4`1%{iv>ac$()sQuN0g1pzAd{3&3>Vdl7diMFlg)JQmQ zXu=~1fu`O6eyakB%O!Lo5d>UuagnRRR2@^;nQqm1nNu~hm0i&*f*+f&GZ)a_2@+KA zugxHBq279p+2)2UI7(vH>pY26h%AEn2sKQhbQIT3bO`lFpjIpQ>j7%DVeUUE)aRoc zy>Fyek?+D$>l1)-HMzX#GvxG{Q8Is$h}*}6MQeR(F1?Wtfjd5{>Tul<(k*zVZWKp8ZI$1AtQQOJb{79 zN0crDhoXuu@zqd_NqvfZUe<^OEdL{(93YL%+H`4D zW&!%RrBG8kzSp3!T3^%@ASv$Zw_6J(gBEQCo~s_qssr`p;zjM1k~z}g@KF5HF?1Nj~67=Ua)lGO~iS_zM4Gm1egh+pj74P0lRHXc#36lNzI)5q3& ztX&yJq#pF_rTXMb@6lNIS%YmoKDgrIT436w3y90EK-+KultwJG7og;4&#?D;L*ab5 z+BG@=84PGqJx>o;Yp!fu6-{10@tTYXCY+8R@`2S0IRFxt+GV%^KpG4c1uHxZ!pq)u z^SWy7Jn0S1-~8_6QfXH^YtT5qhlsVP$gh6Q+oH^QetbDxN#1xLps=-8HX3KW_6K|3 za-1EU`K(X4N|Xxo`L&~X;vdXj>d=-V%{V^I~_cnaJ{PXC^_Z0cWLWo+MTvu zeUgPa43X{-L#>iw$>{;VVs1YN{S>E5QIS*3ZBVr8oQhcOvK8vyav$`irk)QvOd$&Q z0Y(|K)(OyeIfrt4KYFy!HCPuQ$5qt7+Y5NjrP`TX^0kDsUZ0^9wY1%MT=;y79`AN; zU(P5^pRQ9j*aNo`JemDaILI|~;Y!&J=}afV~V@no4ZF~ zIpPQl!7zab0fTPEi(z{Mt6lVarF**<%53}{hVBj%g}GxBsuY7wU)PXD2d1xWQzbH_ z7B-+|!Rekm4`Z4x8*&BT>eD{a-AZqtDSGd_7S(ccjT6^T@?^My=LJ3%mH#l$c~S$# zo9_fPM_8dud?-0)`+JuN{B5wTgQ3xk`gLA98N6zFP?^uRP^b623SQEM{NudKsViu_y+vP zkf|ngCZ03l^LmAvukQKV-<3=&_xNK;&ttC1mFd*2rFHFLkiOoc+YWOb==V!dcPRZduN=$sbgfXgb2Um1Y#-{Zj*0if;&giB+{>atyUDApTf)<9mwUO(i7<(KQ76W)bC)P56KmdBknL|kNeZ|C<+?Ico`}P24JTNkA z)hE>BpFL}IPMgRSoA?$_HxfFY4qOQy<{Y;E=F>>{mS?#TmtP+1P3-=bH z*i+U%!J@Y1%RJvRpHl18`4TQLtyNvAd{``D$ZFUMIf;5PuE6?N%CjK>YctL))usL3k++G|e2Bvd_r3QT)*^2=(--&Dc^g&GmrRu1f&1zR^>*w*GyJJmQd#tq1f| zi8%_blU=WcITjSr$G)*XfolhSY{{U9JoRKSN~$@`-`t{6eblF5Isxm z>VhHD)f9tIxTZPq^+;QMy#|Ydw-Z;IORQ%Sbaw-@WGv6CzG!?TRh$w z1G8&-WLmGW`hl5C8tvHI`!SfOU`#pAZGTHXK^@2-i&6`OK0BztfO>~kKfYI^URhmf z7s+GAoU|^qu_o{_%{5Kq#5y;a1vRS}C1WUM`ECg?_U7 z89!jk!i!1*K;;m2|NH`nR&J>cEz~=s#p1C3Ju6Cn;H!QqN2c&8b_DQn^D)4~iTLnK zKLO{A;pIpWpV#H+jVelyB~}K~{qoMT?LH6ws>EeMo%398@S)sje(2EaxPJf5mi9ys zx%DM-0cR*dz_P>IlffiCEdVb>kt3R7nkL=k5dPL_4lV_L_pJBnE`J1A|DheXZfHlk zr+TK;dK_Q~a4XcJsR?$-GQ7qWj1N#*9?bhslVpjK<>E~nB>??7p!&}LAui;VG^k58 zeEbR*m{GcnoZPR~kiEw|3nnf)24+3E0ZSLFa?#{7RMTdaUkK;vIP&7(#XX%0fe5tH zHm$5oN=3Ngh~SHbMCMk6jJeI*WSY;@#tS5>^|XN7-1MFYumY%nFB;EJE7B|7>OwNo zZ3lOnl3n7w;`MfOj}{;W&LY}vn{Pzl?7%7lr#7)#59q3rP3j@xGUi#BaCV>FYo~X* z_ejqcLdWge*P`z*UgU6RQ7G_Gu+C#?rBX^rkehAN`@v!~G$T2p4uX$@n2$q)x}j$RkO+$H9&$y@_3d z?LBk&ol{G`fmSt`5tZV#uFWo?#7u$Mw$-6>`sMs?gU`AVJ0s z8={a9E~&@Y)0JH}&7}d+@V$0ltGgOl{>q|iD53>U85db&Y-#A;{5pw3D9M*XzSF%! z9AIR5%2)b5J23YN`ST_zd^}2P3%Xjj`XlCbVnLO75|rwnK~q>~k@mzF@LzAekCH} zv;r?{z<)J9URjMfqyu01$&*sr9Td61o|~sPK(+6xH%4L9Uhb7}zTTt&Ds;BqPl2(Y z!mg`1=S})2d{kN?R^1)Re_;lD0j}`w>8W$kPK%-)3lPB@0X9R7s$O^*bUj09gr;+U z=Pm%r#;kV#{wu93kk{!R8E^E4m(bBqB-Z5PojVa?eRQ#}xHfBE6EQ#iiOy-J`I^+) zgpUnFQJd*24sT)?>52xM#J4;5Gzd3guX;I&G^(EU;9KIb1|V6S!pC3an3#!we&Bt( zm2x{JX-itjzs;b@SFft1MyvumdrgI3L@7n@{zUHBMCADIeH+{q|FT89SL_Sd*EOT!_B7@ge%Eo{?{ z8MQr8nasQbVi^kePc6JmI11_!!I^mJaYgn-Rdn*@83qbN^-4v3sMnET%c zOwf#@mv06^L+Ckwbe*bl&J?+~h*(0NO&gu&6OXe`Ok7(REoHRdEeX#)Fgq(8&a}<}>z&*Xr$l zqoT5VEjsnV&qKEeUTM9ZFtc?2ESd0&V_c|J_pZ#I3I%s})f-LMFJRgwUX$-7`0b9< zc!&{=7${k5J>6rq^}}B(;@Y8kQgHBA{D$RGXLNVVl4KsigFtwf0czc|#t9mEmT>2B-nwd)#S9W34iwZ~1lvYV~Ob^Ve7%kIYohfGeaxJ+7t4!E= zBKMZ6|C{CMEY|}4=E4^?9Ac#SdUWB_>G|k464*o$kG1W!orz{7F3nu%#Nt1~yb>OH zjP@#(eW+}Tw-zM9`d;KWM=AgOWI~5hC3BspuHv8P zMf>*nFV6xz(z|Ga5(6|x!+AJard+4}nq}a+j!ux2Z%M3UK-639#x)oap2W~Dq z0p6jIGCIn%Nv6wV6}4|2y{N!CXEnsYAt~b%WWk#~g>&+v z5Gdsdu5++U8yKNLElsiq2DAbK!cSXcpXP!(449CP_aJBr!7 z(epo(ZOOCoa7GG>v^#gaJ`LV>bF;Jy+s)yMBl@7r0!fq2Hsl&DE&Qm{Z22{#k9K{HdEnEt+D5ljG;q*wcNUbp0Jm9buvE#}?TWU{^WDyIT((XS$xGB&!gLy|t;GwT-L(WIMVqxuP8VDAkBP5MTZ? z-KyY*&YADakMwSbZY8J7?o0Z755b4K1!^K zeN-*@P(HZIHT?cVAWhxwop4amcBnoHJRz1*uHF>WRJE-Yi((A;=D46s*6rxO%0@qP zv15qwvwS$iRn4|`_BpQ;S{oaE+UY&D-{8y85KMEiwzL#aXJ((W?Fi_g6BU*Tfz|sd zSo>D538`7uMPbqpXfoOsN%A&o=z@lZZHXY?+36zEBNThcLwbUKht(Fk{Jmz=_*f71 z*JW=JB(E)bLM@Y-G=BH8L~$LQ8F>n(5iQU^QyEKolNh|`?|@VFoaD_Yg79@tQ{E90 zGl%k1%4)UF?4|>bGWXeOFz?EUY3=F@eu2SnftoY9VlR@;bsgX{S$~`X?H%t8MgYFf zRb-S+HbkFyj-~T_CSGot%p8v08*5q z{l)S#+oWIqf%wv$WzggSO`-wrY-$_eyC}d7KFvx7H2ZHIZv7!K}s97og_NAjLkn_{CRSQi-~k( zeBZxlk_e6xu>l|K=l||kty*H74Sur`noo8oj_Ni+gb9%)Hp4?J+5&2VEtQ8cwJl># zR?^3_oGEdf?k`(y=j@d2mAW2}CYj}Q-nlB98r4>}7jcdtpz2iPv!QN?_q{9M9VC{R z_95B){ELCv|c)8{QUvIH8$yju7RMiMu7)s$DtICwuRt zCk5AM+-n}ww?K0Y{eh_LMi7+Di`4A3x9YSrJXl=N*!@qTc^7uRnbGM7y{bvd+wsRF zzCVehUJy?9PGJ~yb=f@}@@~^Y9p_IjL1(b#s5p$#e{TB?v2x-_#W(GdmsWju0$=n4 zn{HIe{~o=-eeMVvwX;T)VrYkS zM?~!@V9=7^BF_Sy4>gzU-DMjp*5%2yG4i|uhBZy9!#@7BaceEw^woCw$xy;FUDY0aG=eQ|voHvP8&|XUEAfI3fWoRcK;g}g z7UUwp|M0H4N?G?xkM&tlZ3)1WVtN-$kD-HK1re)7Lae^Pk*cOpDA_}J*y>-WSPL^H zu=U48&@|U?jOQBRSk{v=V*u(GOX__FSmpof# z@#Z?UGW?TTKmMCqhm)k`hrKK}tThkV?~Pj1y6``Q8$5?d+A@3Ot?Gcifv}!5Vty95 z6}}zqVmgw_M>K9EoB+pE%zIdMRPu&91k!}8>^IUj9f|Ur31!>-T*~ff=xH6oeNW1E zeoTFlZZ4u*`--y?8ae@>p#h{9(lRbK8-`f(@myf`E}KpLtUz4x?7f5D9WM@fYV!NV zhTZlUo&}oY=+lUd^479*6U`3Ddg;slk_Cf&bDPp@9ShoLXR`o^SvpJbeC8Ifhl9w0 z!Qu)x_vLzPi0soR4S}M)UrvuvYB01P1Pr!SWrs1Xs^(i8fIFV_4B6SAq?9amAInU> zgPeC?ekj7oIcvTJSh6siVaCaI)(0%JOm(!OG(@FGVLm0}``LX8)`uI=6klsO@*&rk zSVz$HA47ink0HfAtL&QHO<$wb{H`I`6G6*ddrkc zo+q}|gZW8H;g8;OCzrs^tyORN1R$hq3M*V!nimvNRbG{<;w^YxX(lXiZU;MNoW_U0 z4`!;MW3T(@V}zC%^&GA4?xSEj{0^pJRdO zO;50HpBDAi6mjEkk!=61GAmUxPx}!oTcC&Zt`rENwt!pF3v;kd{aYCLxay+Uk^GKY z!!iIP8%H*}vT0lBP8s9aFyMterL;n~C@>@?VsJ;Di@93ekE{h)vCmB3Y|3?KuX#E< z^L*4^=;W#sFvhF&Jtk0IZ>NqX+~3FwfI3D%7!-$^qkNJ|n@}tR~=F ztqp&RhtcsVcH(i);w+;lC>4uPcT147Gc2ZtLEol9nRcR)Oj9K{Iv{ucOd$pGtcplrCbK7=$~| zQbH*?&ODJv)r%Nea!jAyf;|l3eJ#P7>H4ZCy3HbrLmK*jK;Kg-Puc;Wbe41E(-Qp{ z%(0{I|MME*E7ID-!J|J)6}Y;nMcx*jW?De7WNc)ra-s(DXzwg_)n=yH?JMsKo#nM7 z`E#f>U*CNOROgb$gJn6pPAk5RS0@&uB5HC*ZrQ|ju|>1Y#o2%#F7fvx&c(*^@gv!7 zXh1#IMq=WW0Zk|WIGx!4>vWo*tLEO7>eNHR>~a?7IJ(w1v=7FGEyLf2R)vfu3S$^C zn!G4!DBG4#{W51qhY5-F3arUwd=yI+s!Fj;H@nr3BoL)r z&)y6N5sD&5xT7CH6Eul-+Q_{aTG^7$r|i))beTR!czPMa!-6$|P{7GIKbg|{Yppz} ze9{7~`c>4E!xVvyG-nyCR7YxtT;$Upo zi|b71ptc>yWw|l?%CYi3fGcx6^Jv`lxE2a-4OUp3ad6X*sqzH4;PjAs;ePb~6(&F>>KJ>0qD&7>67SQesa-@@4% zr%%$d&klf^ zw{d#|E+2EeSG;$I5{Lnj-hn5 z7@`{D1)@tVF)rkaDi&*k$01=N&-{>h3Iw`h9FzWnkV^G=?|}(zV9=uVG!K5-PD(;* z24GJr#i6D|+doj_Tj=?w$R&tv;lAE_d8Aevz|J27}&m1|@b8$1aX=A7Ki(*e@Th@Ah*RV>)LdH>kf&*&Z0Eh6i3W!Hex28KZ~SEV&VTGf4EV_rFBbyvlT4(epGm^^ zA!0Lk@mQQd&)m-^4jh1?${&Y5jbf@Cfh)oBZJLzx9{1&LF%@GSHNjJlj)w>98$_!5 zFl@!>Ir0bV9@ z`J1ubBHRg63@V5(s67uYcWz8R#yzhPN?TWSb+VdiRz+}HmWI#wQ zDhw-A7E!q&rIdV^$X-~WZrXl6IEFu;vC?nO&K>oFT@QWt0FwO5xgdz`Gm zpoAS5t#|5er!5^5TEFuAZWiNPJzt~cRK6EDaspjkV$~X%Vo%Iv9%@gV)J`ZDP~~zf zM?&KuVtw6xu&A)})7cCIyrthVXK|Z97@xgSm`-B1dH-Y#uuAM7tAqnq`SI5(fflub z@fmste2d?ai5qPI-7=dgDM@h*B?SQepK}48Bms^7th2r~dWMP~jjoVd(pvs=R0w=~ zS*$*jodKHfP0pP@@3mh9PrHdX+Jsj}IpBcSKBkk$y^k+gjX^KW?v5N+ujLr@oe-e= zzKo5K0%dCv-0f!TvDQu|3b)vDZ-Z`!-Iz!BKc_ZTImHLbrfCOYm4@w6%dTl61qDw) z@P{c`qHejz(~q8-4KYgAOc!A70+iYKGG=j;@;V7PEH!kf;Y!NoXL0FxdWahpddInU zN~~x=6>|((`|!~GaI5{pJ6>q;wY3eIGclKGiTMeMku>xB*;0`#kn$v*4#-exVI_?_ z{QQmJvHzdPdKV*jM}nk>5^_AHU$?a7aq`m{W>7)p>A>jEP|tLlzK7gj zHuWjo`x*drSfiT!ddCuk1*73MZL80^=^_ahtp<&ls}sEvgK2{kag44Grgnks0r|Xu zl5F_S?p0j?C|Bl#$OM7fK-$J+28V+G$Bi~K*va=9NZ?UXZw z2?-P0|Bf56KsyO5Eut~&8E_FI>oh_B@Xwx7o8~)ex{Tfi1NFD?xn_+9v*~hbv{H$V z{;Bg5of;X=pa+-5l(Ez0H6h)b;aZBxEv8Oo_W@%mS<4}sHpB;N?l^t8v+p0Q$*t3D zoNuo8_D|7b4Zdhw-)UPO31|NojNgzlBj&*J?VS=?{8VRvt{s@#g^lW{V=zb$s9?~D_w#yVna;rbZUc0!0%G*QWqq-BZ1v< zOJB@DVAJjc9^;B^Oz@bZg0tD1fF^;uO3`avZhcePH~w=X+1K<+#tOIIdw@xbeLZ>3 zTjLnq4Yl%X-e-@?t{*oloe*sQyxpHo_h~m7=*-`b?bX^gDUTXbnvybK$dw#Q;YQCh zNnz+rnS-FL#ABrD?i3r`a54IPx$MP8h^ZsUQcpL)@rzd*Mb~t;afVOp_Hr0#R;@-@ z=<)1*YdVe}4L`SBMgCHa3)rb34SS<2lasFpC}{eoFFe-!_R`fLa^u2!J>-5SW3bo$+=?Yk!wkRi0Q@v76Fd4V2!pRxsYvSd5NAkHVx(PYIP=%+Pa zs@FQ%Cv^R;SeW>XHW3y1G&T}T&`u?wiR%XVG^_oSl_~zs%HKXbEm%=|;QhUCgMc)F zUv948;uHCP%xr(uhRJg3L+Jvk)t4?lMR|uEWsX8`tVC>2b}!xy(oMboJag5sI4lv+ zrP*bGfl~=Ee7k==;T?Ct8r}q%-%^Qu2%g%k5sAj=r8WIDIVwa-BOU~TpQO>3yp6w| z>Wlt@yZIF}>Sf;*1Bq7Zwf^gOA-1{j-hCbKctq&xWh8xSLYU<|y{mkg?5E;2mv9af z@H``(tYzxAERIg>J&G@~CvP?A;_Bf)rzNHt zM$rg)|74fq|0G}RC|xm!4{;;iDv<>Jo;;ut&F8H~pAv{Kt`#Cye1WRd@WwuUENR;_oW!;Us`G*30*~b_g3z`M0gKHx{`F zF(miuu3Ty_5c|b`D?5X+Z`B@vcnp>J&*kmHP&)!^pdtCK5y3ZKEqEkXs<*EkF+WZR7&iIYQjlFII{XPx>4}NF*=}WzQw?kd?iON zbnH5x&Su=OQJVi@qnxSKA3RB#?z7Oet#NqL*t@DOS$-&w^(;0^E6^j{diwJuI(4+_ z>#HJ?0GXgmA&qUrh3{-ZbW^uJdr@mwa?H#S-6b7i-Tn_R;{nahdfKo@aZkhEn_G4$ z8}FeI5A|Th=cMcCKSS*M(On(8Qn1MH%aWL?K2$W?;V%EX>Z`!2C$7;TXn@+0?ptds z7FXSt=tgKUzz?xI7vE0&cRHgB+)9 zRBY>|!Mohm^V%_`C{t+6HC3h+h|RAS>|2@r236SZx`X3rk^U0rUva41VWwHAoyln5 z@~iYLjrVB~l+(X^OIZ!wMX>?_1|COml=FG1bAveP;7Ue1Q*!Q+U(454@+6*q>)v3c z`Ub(bQWKy(JPD%aQvDx@o|N20O zf3{X_5{5u}+(>j`x3f0AUH97DLPY$Ux`s!dUT^6lKL?_TNRrGM`n0}hdAfrjhrAT! z0Y4~H45l2}leM2(yy<`dB=Zdu@>A2-iw~phV{OY;Jjg@HNAV3w^Z%4rZ~I-E9@ic} z3si9LZ@suUT^!282Y7rI`S`~yeTDw8HeSQOhUftd5ff~6MjoF$O555OINwHa_ju~m zIMsP2*CnsY(LbB+Wr0bW@+esvxal!m#n;+w)tJzqVcKoMh# z*X%~=qV-A2WTrb4-;UB%9i=1mr>~L+IsmWcq6~}xTa;addmGrT-+u-;LkCp(Cic@- z7nN79asgiedou%O&>Us@g?|e%mVR~Kzh=KUn2RrTd9r;3?1Vd8Z#8edI_#!IXa@RS z9Cq)wn){tzcDCb;9q!3s4VXwYh?l?Br$8i=xH4Q1s^tGbiNkN3E`k6Nqi@>2SB4b` zU!!5_=ZK}Z1pKD>39aNO+dPMGCs*sM7a;w?gwlA~)zcQ=j7f4*Ucho>0Um#kOfr!zkU5Qf)gy19hWLLn=Q%!= zYNJaC7!sDoaKu2pGs5UlR#wD*Y&?VrxVY4mv|+D3l3P}!JGopUrXd|h==TE~Kvrk&tK?;Q1IU}q zn)l(a!9Tq4a!p$*-jCPiLXZ6@5XMaV1e9Mxw#j(0ovtu*CC8#=4vpUtVd#x?!D+hs zxjk{2gCF}EWrA;&sA|Gd?adV#lzss?!aeqhVE*C@H@Hq+Hu?v~Cgoh0yOVVLej0*; zjtjB5M|g^aRJ4)uo?kIu0CX}nnG_DMU}+puXn&hHi{;%kXb{_TaA6r3S;sD5fGx)| z$$){!kJYWeB_Hh@)xSAb*xov3S@k9CBdw>_JH1@eq0ekR7BVpJH2N9i`Hb5UG2wG$8cy6%SGe<+=*35nDfEYy z@OR?%y`k{jW~iyI?xdU^>eu(1?Wb(|y*XQ(&dfZ6^hzTxt}L9f3pJ5~eJv&wZy-H+ zx;Lbav*qK2$q#I*08DfDj#T4a(OFc=CF*A%w%m2??Yn~yJeRDKf3`(b@v8y@ocy=_ zH00KApZej8-&U_6Xa=ppI3g_Fo>U1$c9XEH0flZ(LGm;c&Ud6$3f=JgoWRAz@wH&F z6T5`sW?CWppJ@dQn7i$&i6<~{Q`qG)zPshwp%r)uW@0t?8b)>+GZ>BM{iY4$Ys57Z zgnC9aG%$dY2GB3)`l98%R8ViM--^#@9ODa*2VBpvX*%=D`ZU7_~q{7ythC|H@PPB-KfAIj`uhkXix0Enj7? zoBsu@ht1Ak7!8+cTYm-4M_NkzOl?QU4Um={%9BjcXd8c(TH6RP;<6kP%kcI5{9F5W zd>g(wn5q8pnUDOCUd~l+h*KYsP5O)%eYgwvi;JFXG6Pg1@U6gX)rMRwY8|YnOtZ8% z6heV2OoBl07$W{HOd|h+lXt$=dL*gAzE=$9w5v;&Mw1eD1JOY=?s*Z8@qO%PL!Q0X z&q_>N7>h_C;DwO~KZCS#on z_*V8J=BMYp@4vBqd2!|4)OoU}eqIW2J$S3J-6Y4#>xa)}LAiL$r^!(f%eULuq@sZX zD|Km>yc$82o+xjEWfUw14g8yWG5(u+Cp=AE>YYNqyySm)EH{!kJZ}H&``lhE0oD1K zRv_INNmsQ2TM8gGqeTCj?sI3hVpsy}*y{b)2iGwD;ommkOReWJ9zKXJ0n`(rPL$6L z0w~-OO3k4)cpY8* z)WD_kokryvj2GeM^zWqa?*K(|+|j_nID#=IQ9#;&MD|{Z37I5Ic{4l`(P1>JJ}D5% zzLvA_dk38TPj96-G_9@bCvz95oOAeb2JVM)F(}*GS6Pe#-AFP_ji`!Dd8O zsQne~W`JTwgR9@rSme=cGheJN>To|aGzog!a?pJ)-=m_{hgc)#E5ZmNY_k1vvPy#G z4-~*9z|@9vAADc*Z{>wl`h@_?3#3ca#njD#Twnd|)(<5J={GNQi~)v6iN32_$$l{uNN{?+XQgk7x!?vbw_HFIK_n$%%|G2H(M`8$ zaPQx4(}1p6T|93I+n;QPj|_m{ zTr&IEj9mvVProKnqLXlHGcc64j}o>J@;@+^D089=4tL)QUoybyguK+~(*(dQ4$yJ> ziem#y%kCGztN;^P`X7CNM{IMNF&j8#sKRmB*^U$woVC3<^q{Qq23S@L{{@z4um1xB zIxL&n8g%O8*SV^UJ%KIaJK9Pn+o^yY0^ojvPU_+TiH)P3HZLGQ(&wtZaoL*=ohR2* zU~bFl-d6Zxne$JQg$8Mu%`bZJbYHi0{}4`h{cpzO$y~ooN{&2jJ#R$1AH`1tRv%k8 zN=7+*sJmjH?UX0#{75tdz0WFrh!O4nE(IhJ_?BpPM(ZoC2U1AS zPwB^LF1?w(x>XZ-mIOp8`wLDNa3*cBUfR$(-f-gnvcROsP`xF^$}aEb7-8c-gV6go zgbQoHzwsUGdS0Kc=I+BB?y%#eq z^xonF8ac%}`wl5ACD}NjDV=5KLt(}L;{h-J;{msra#EwU~d>oRo%P^rZ1XXr} z9ya!~aqy1x-uD7+K;DL23cV6R{*?XlI30_5c2`KJLwo6pJjLT=<~Y$0 z7l_SgfzO=gS&gkSd`p9|h7)&}1v&s9;N|P#uSY9ehS>d?3GK9c%G#iO4Zu}z{*%#y zCp}GJ9L8j_Nyx!Z1Ec#jrgAf$d88Wy)`^-28;nwnccvD}BQnMY=vKGAg)!NgL z@Q@PywmK4$bgXE|yu44Q?CZ%$Zcnal>$&>$fjSf!Yw#3myze781E9~{gc4I!G9bx> zc}w#R<_~h0?*|tQUMKn@pnGx|T%1Na+|P5!daop4S$}Tkrn#Ev3xH~0Tk~w zZ}{J=y7AT5^YJ-;Hk8b7q--5Vk_JqPsFTjAw!Fvcmfeo+w{`{-cA*no4tn-8fwEiC zi)p`i7m@Bq6H%!m6m*jT zb<{rNzE-+&{XJdK;C78UEJd)+YU|$aREXhHswewS3TS^jK}vRM;(PqyC|7K|GyO0*r?$TsHubWv|kw43PSFKoFR3b~S zW!uLoMCi6G;hjeN7en6T*6}y>ai8$-m(V~KzT0wHz$R1;seBX-h3j>Ewx=d5?o&Ro z@{(TfpG0ykLyp}~r(ku03GQY;J`16q0KmK zY_Y>t65UfM=b}wSrr?vIXx> zXv*xZQtdB-ylf^nmz!LxnZj&^a@fAkQTvw-8WSu9xKh}gApEi$tNHDO8u+2jh$p5& zF!|ynjNKs{Ir>0+1@~6wtE1x~zaihNWxVLSv=S{G46*qFdON?@DPbl2aI9x<>Ss&r z%MUI+DtnI`gr@phOST&ZkL8{qkVcM1i@q6_2}09yHr)c_*H^Jv&`K5#E;eXMow!>e z#j61rOCO&!Gf%>Hjbqa+iTmId-e6u@c_&1jMprp3`R z710Wb-U+VVx@6&wBu{0(FZ-}bKetcnksonFZXiX=U8GOzVr zbUgUo20P84nUu)ZHw+~7e(ujo8#|vv&^5}S>&ko{-3LF!cF_Wg_I%E%P`&xp5kPRD zc%WTX3cvet?ynw+et?-dKfOetiDcv*lMJHTJiZq=Cj`}j~8 z(cPIW!->w6e>&LW-o0Xu&wPt>3;7aw_m+w)8*@hN?W-5yPODwS+MRYEC(QkFxmyRh z7u!`yOh2x)66uIP7i=`o!WYdp^wzB2gyrKklxISu(WCqlE{UtKXJkNl3JR@)m*=zd z+gE;$jw1)PNZ@3s<7LXrNx#d0A%v{*qfzjm%=Vs7f7gvYk@ST+l=!T?PKQVlxUOB;(4(#m|+E!v*4dg$9pFV1%P!{num4 zV9D0bem16#=HP;L&Q)t4q&M4dYwUm~w_3{~QUzm(0*a9R2{ktAz`TJ?V>d^d1CRX} zkR)Wu)SJ>1&IjdAI0}LmW`My`jo`SY= zsP8izL|w2`VbI@;4!xDt|B6wi(?hWgk?YclIlwy+Omw#)16Wm^e^%8t+~-~X9Acct07!P&+zM;ObHZMOD$ zIfCt@q;KWV2c2xNW|?#`YSj6rXf8bQ(XZMf^PUz=;Ca^M>`U``y}8mm0@|*~)xoXZ z4uE@T1_tlmBQIGt>tf1DUwj-M6>0JE02aqUB2$IeV$iFAdoco8)&d#5qf>`lj*Wc;2LP2Jy=8!0I}vj;Hlj6 zxyYXb^sm~0WEt%KPdx5{g0BgB)RUsUi}a@o4HgQ1<-{!1kAyn8CMOHT#w?7UH!18T zwiY?a8rT%kvr1MS32&!K?_iho-*goqi6zOvl_I4*mu zaO@~w%Dr&NeI|Sh;SNYBiH_jk5~W4zx!gwMn%dpc>hKy469G6r)e&H9fZvGo5}FN& z!p}CD6Huf2b{srFt`4Nt5+Nz1it?m9@GC`WLUe(@>f;&Q9Zv*0k5ly+b;!vag|13k zd4Ep>a^3R%Zh}24mVOT1po~ThMsLudHE@95E%VPWZ8`Hp5K;|U95|N)hw1ZzilxcB z1-3*_sGwTa9co+FKC?GkfL6M(8o4rWkqX1P>%o-^?>Q%DXC$q;W|(nKIE>rsOk?xP zbzA7H+tIu_Z8##x-AaM9;o*Gc=!qH=`4$MHJtgMw8Rf=yi49i}Q0MwGbm|+O`1YQ)lColZu91B7hvtehIwfEBO=;m&7y)|@9x&tQoxQor+d3zu2Tg{+RMuh zbFDBniSjkKck!EQBv-{}5bL!)?X($93-zDtTX?}hOIt<9A0 z4GOc!K{|pmZI#`aL&BoDhfRZnUi* zh*V!zE!fLy0?=V`5e5j6KT3BuY}E^;uXhvp@T>ZjH;z#v`C0mEin)GyBd4LqLtTzL zKtU_lsI#k+?pLxC&=*vxFgFE&#GG25(+W3~tKuxr`%!jjsgk9JO>OxO&DBAb9j;px zd_w)x3)KMog;Fi7lo?gPSWcxW6b`)3Fc$sBqRR%5LPD?@8lgNW;hRi$YK0se- z_|Hu2>;JL$mQhi4Z`|;x2&j}d3Mf*dprC?+bfYLOqM$U=0@5|4QYxj=jii8d=MWOo z-3(nr$AAnm&jG}H=6J95K40Fo-u13OA7F;F&pvzqu4`Yt_wm`?{N?eYxgqdiDUA3{ zNbhU<*I2`?b%!1VZ{CdPo5yQe8A@@|>)93G~6{b^ioF+cIO6Tyz%qweU ziVnER&y!e2Sh6j$@Jp46LJz##SlD1#Bowa1EAQ?yI$v~tkuuo&5>oA6~ zJoEX=tfS^ThU$!5xjAE2GNAB<5r~r}bIeOony6ml{z`RjxvTshp{n3g523t?Z=L9w z_GD{bA@EMysZtHJv@S+%8B0WXAp>gm*2rbe^t zog~twc=ETK21I`AsdfZVqTyQ#C`YQ*1PjW^VJ+EkYZ2*~O6l*(f|l+ZtBed5$dEqT zW3jn_>F=b{UeeuOcz-hyiKN*A3i!$vqiz;Fl{8ovqk{^hk}+O$%UlQ2&TF=ujOEp9 zc@_a258AR<&d}eVj>$)??!JmhJ|bUKGRM7JFMLc4{v=+HgM`nmsH6MN&&Oxq>a@IA z{w8~Nr<|s4Ro5Q~H!rjAYpeEJMb2#NlGc^9Rn~lnywti16j9=Sq;@!eO>FC#GdUnB zNvig`tPnw7VvOA}vI4=w*$iMNrdge-z^We%$MD8F(h9qO~K;i((pSbJllTJ$2 zvcx3L{pYrY< z8nUim!-%#&rA-nhO*51QxZd)K%r;|n;T-&T0oRL>Ddk2gl;?v$Y4{*xoeEh^7j)42 zt4_9`9FWH>hkgJmj%@r04eaFdrM(GB3A=rUmmmbCeYh})ycN^fonmSOXzHThdif;+ zXvz=AP}@|(Cw5J*KW))759G=lo+LEkk=|=}NLofWu%}a#QvN5oSQ6SiUOpk}I76uW z`U;fukt)Z$@NFOQ_X3Kj0vmw)VRi=MtS zQ=OJ8w`5FWpucokcGn*UMD#D1e<*Gr(XrhUyEB5yUS9W|IZ*zukXl`fb31!?o0h0iGDCOR7%*6sgek z+Mswz3xR-2%ZkKN(reSA z_|c^Ap$m}w6&Wg~Ms~~Lnpa~x2TR^+k4`5peV%8;=#_JpX?6DpDZ;e9qEm*$awsWv zK-#G%2&Ule5*9t--~)T|Dpm3pnBfJ!V&gN+`s`Hws%m!y-Kg$i3dmupR)({{FX zukMiP`x1mz43O_o&(MFT+E{pEKl`oRBaMHNW|H3^#dyGg^KGqWuJoRqQ<5|LKx#qt z58T_wOUvUChO^DB_flV7@1AC5;M$ru`-XkJy)6wgCIH!{yCpVpuoaZxn=|IQOEk+=vP#ePf&qD0 z%s^Z|XE?&n-wl}W0}?FKOc8y-p>&r$M- z?4e#7$S+$#tp~)NmM5NV-H)nggq@9}bF02aaz+!ViH^P1+08@%NNw^Rm0qBx;-^z} zPGqmYTrbQ0M>AtzW|Vl~xhZkC=Zy_lDFO|OnSE&_wJ6d%)@G3_vEK*CaK*ggOZ8QR z%8%rith7>XVwaH|0KeRn@J!e}^T67Rk3dsp|;L)A43IoOzn z>>Mmc{R1^@m1#CVhi4Zk6)$c0l2reJSbJA=l?`-V)^`kXU*nZ1@3EDlm2=GUUE$iF`TF%Y*S${Lmj_%5sjHc_^0) z$=rAAc-9zPvB*?BvzcWGIf+T!f( z+0Oem1>xzBe}#U9wb^}E={85iKpoTCU?N#>L*+nzAoSFArVul!7WGfp^)9wie!+U;LlA!YQ5@5XNr z$>lT3k9x=WV73Q86)*Vtx)P#GwME!NIGCo~HHzym*czNIONn!fK@_VJ7MMYmb9TeAd2sb|3$=3v2-}+_2^gV7>;;W z+Q!0M$>7(F$CD`sZ@~a6%C!=j1+az@r`>%B0F-l_XAB%nU(FSqbGcF~?sI2EQ z*%belXL~h{oy?~TN-3WFtp?XFJd}F4H?eO@*M!4J(mHMy)fh7~w18{J_*qzA_mj=X zqkV+#{0EV%!^c2EifgP(s89#*06Y8<@uO|!q$WHhTcQ( z&#T*`rv%a4t<}y;F!UDVPp^bG*>UpK{`R^%x9xbX%8Sa1f*q^W?9?{$wzLj~MojxY z&gI11(#&OlSobBnb`%QH_|4T?%pnPmy6q?M!YUH|Yjtmb|Ep2=b?&!2t_J$sR~Ees z;iqH_uE4|gZ}?96y686n@DMe*K6Z2knBIpx#pH z^2u{1k;7I3aR)KL@0YFp7M{KTUMx=|Te~n}mH$90X`II$Qnelsb+x)?yeUh+lnaMM ziCT!O_uXFN%vE^G=eznEid!@VDW}&e+b(v!c+tm7dCSGLSW$LUoYTUoi*2*_Xpg#7 z^?bSxjWzuSpRB|FF0ykfxW)d<;^xZ0AX)QzX{$O+&1ufjIlZ{WdB_Ro%w?VpM4E;a z7RI1ZJL8u{Qz5y8??~V!uWIo>f}-e zcCF>I`^7D(G$SxU0rrUY!EMXsON)cQmbxTclZ~P^RC}L4KLCGdIKo4wt~YAli{-=# z64tRP;n%>%=k>U20?zxpb8Bl=krH`$?3wJ&rheUiISGeE{M5VBg_clNwhRu_E+pP7x8xSVfgZEk-{J8Y*_I74_)edl{~1f7;=LFn-_!O&mCwTq%z!EcRTiGSh&zNn z7JyH457^j9c(6|oSVf{Vz-g##-}Mg14%tZIT;@o;Ah;(jiqc^8B|X?lkUz-e<-6e| zZSd~5oCKz9jG)=_%y}Ot2~^iOIb50a$^PoUM=^P9Ml@km!QkRRqU(p2O_UnE5{pL_MDD@1*)D?*m{$7gmq$=7WDv;iYg z?};dx5_}R&Iyq+E4Lc7eFAlzt#nq%vjVC@!_W)J4GvD1qR$r+80?1-i8--+~9A+_q zBJEpSpy?$%ZTaGak?)Ph+*|Tlh&2=a4^aFswnZQEO@haN zMJF@mK6*AaB75=F?e7ocS6y1W$f?Dxe@D zwLKu8xzmL*R!JYK*(*k-E@>F2MQqqd;i#Gv4B!5gQ@f5>AO(`M47NxhPeF38wa_y1 zOC3wb^&cuyfw?GDQQQkjb#p=)W} zN17pEpW*MztfJ_<8-Lc6ivU$)F%wN{lwW)f5IKjp;bqZB(r&IiGu$@-cGrELcFwtO zEJv(WlmpFSKB(jYCN&dwZtG_ZnTg~5Vk`06RA=0cS)*P4B=;IP;hm%*0~{u>36~|7|G``8(->H?5~yx{kR;BRROqCnvKd?=tG{HC z_BC;km2!8A5tuqqZuZ5Qjc{UjXe4>vcJ&{@8_wFt=JFG(!n+CYv$ZW(T}ANeBBqd! zi(!9eubTnv1uPVyFJ7`Ey36{g*|l^+WxA2}7#@u`7|Ke)S64M*q&4xpcZ>czqIl9D z-tnZ~^cgG-XB``JYfb+RH@_w{Oa{p4s)QmYyE~&z+l+^sW9>%5^zwam8EXKOr}SLs|$js?Z;)DNosTmFd`1_3d|>AYHw`&j5n(7EB?@r)|_GkXY~TfGS-S=EE!2`c@QMwNf&4bj5L4Oy69oqrv6Mj#HK z=aY>1J*z;x*7^0G=dpGP^_ez36@cZmP%3ZV(S}6E=S7^Y$!2nTa?|+HU3W??<{J8RaHA1}$OwMn4!4fSUhfjthJfd;cEvjTkI z+V000P_7UA5#RkODWqwiHHci8LJXRUGy6(BQx5ew2iwc)u`A_jBC#jasbxABNG^#Q zt{7AvgLnr>26|T4pQfm|0xXpC1jE)(B^>x-r4&a2!M^In%0%Jm3bP6Z-g zw;R`xBgj~*#1Lg&*>l<=EZ>13swRhR^UByk5cQp89_l+#4z1QbC6E-hWEkrG_;|NM z&RU-;l_ieM8^ssP{=6G>e^{qUX5uwHP@ZkrbNS@NkAE2_4kPwp(a!bLS^aWtXVc1= zFPiTV)@y^E!AO2rZa?9t8_`>%4_~(PNY8vfaSy*ak$4FJ27a>>SnLzh@T(qiEn4UY z54*3I8aN=DIRhI+@%`r*QeM6XLYOZqXXyC!?Hv*w1lB z>N(kKmY@wW`>ZECkW(!Al`IuPMl5|MwQUCwE!=5f;#ceePG-m(Ci|IPBdGWAoc3#$ z?_<(Qnj9WsW21_RX2^HUWzkZq*}KOJ$W)|kHQeJyEsWU+`Kvs2dA+8d_>b37A#hMv zI@jNxHaZ4RAM#(D@`&vNSX$9l{}Sqx1Rfor5&l&v7*%VPjLh@j}Wg>2|5X1w?c5 zkm?NqmC#n#5 zpFDUZMbdV4^KK&R;P1+kqz8XK)|tThneWHp5k>wYX|j@&)a0$yy8C@xpbXAuJ{1vp zMulI`E^Se(PuWIVEdFD95qxUjaCPuCxxy=6k`2B#7LZP= z%M@UI+~i3jFmnf4I9pT2YxNB{#=?r+%YC^nTso>3={XcsoIdZ6^Wk9kiX!7vr5^qf zYJclcc4KpC>xRGZ9JvjFI|r z6X@(#nx84tb~$T~wpmR9 zPj~op&i(7hfC-Hp>?&hdH*u^fB-8*-DLK9%Rr9K3n8@+>5k$aNm6GE0R7BlY_)e}- zsQHv#d+&TBOZq$)z51EVB)XETfWO-kc*086%Qtw_ojeV2UAD*1YK~s+wcEYTciExc zhg`?zlw0K`-s^yGHFp*%$C=FAeUB>9|Lw={6M*wq*!{$!bS)N%>?TL@po+-sQBE1F z8gQmuI`}09nmEqdhVelvZfeDA23v@7Q&o3PN!4DFXWf3wBg>sj6&da$CN>9lkBf9R{n$7FJR|)6GLyE&pKAz~&?zY=q6w@+q zqNabCRY2LX`+6?RfrDDe1SYsW^;Vv_&mL9$b3jSJ59fg><)A9KJ*BlYbw+dG;-Mw__ zjGOM&q{sB1g|7QQCCz0=K)7SxXd5Wny@MNMk-;{wIK<6HdD7EWu`Y$K?Zxr1qWlOD=lu(Evj zHga9G^JjYr8T)7DT}u3O+cn?czj5Boo`Z)^=y6)`aHlygLl2MXpN)R#OpdOtrkT5Q z=S~B(d(~EDSDgCxFk0Y9u72w$^^|TgjuDZ(vX<{7dU(Pd1SS6asIuAEIr#LdF+QEQ z?;9yRhue*b>!~G;TjT`=bbJj4@dlTx^x2)tc!w@M_(J(Jdu|u8wzjwU&TqEBPmi$} zDzQ`klsF-1!_p}S{Z6qd+ejdKWLUKvh92kJzabKqNK8``6p#Phw(s$|5xS}*V82sb z`~2|m7;R7iKeQE?_R=ZsbIun=&^VN3@L|>InH5FX@6uf`wOB{k+sseuO&@2g^;iJt z7=y_R)X6S%vX`NgV1dNwP6fkFgG*SO1KE zFngqTZAl5QvU2NboE(4zi|Y^Zq>0|dJZ%IpWju{Ia)(?5lntTS4}fg6Eogk&T|{Yh zHsaH1ca}XOmrqQxAeTQ9JGbb02M48a2k~aqyYNKubNaWpD>pZ3#lJK+ml*`zc3Rmm zvdAnHpkU|)9(GX|&sBTfXq6#7_?U_^{~kDZ#K^isWrOI(k^Ox`*Nas~#Ra2GgFlhY z`>DEQhdC?=Ny37Wg=uCX&9CtO1qXZ9#|KZ!X}w-`D}2fL4N*REl&vWgdgCVU;$2>f zYvJ~txXf-uM+%zO?ON-4V($?;$G?U2wDrPWla@Rk8&+mGo%dT81$Q%1slIg+*J(aW zZ^8MB1Mj)97Dd5^&41ITqEUM5%i_936gPjQ*GJ(g1@1{{#-vA{J4os@o+CQB$o@sA z?gq{#B2Phd?yL8vA0V0>{Jh)(FHD(rOz$31ykbp3Jh-e0Seqr!Ye-Lxyx9K4Da|;6 z5Ir9KsNqSs<3S(&4KSJ-yeW8z$a#M*>0pBzjnl6&_q$ayC*59hM5?P&t4Fj(mF{vx zs*Ds?9>uLS!~>CdQ+Qux9unJiTHd2xURoefD`QH=o&D_&M_v2>RWSN zd1GX>yI)7+OkO4Wd1dh4*bGE7NC(()IlXRISW@cXY;VtNj}mCWo0~)p52k%tsyw3B ztpDqiZgX?Hx+8OhUCB+&5s7p9?9j3jUII;43O5oF+ia=hM+aR8Kl)-ykzu~W+~mfv za&PYuyM5O!4mOGo-U&dswvl)qnGhtNd5Oo){O@54F_sO$e$FHrbT0O6nH{5y zz|CmnCwWTaHvM}^xp3i=9Ba^{yPpK^?A&BDE{(Yt8KKr{0)JB!eDJn5U?a(U#cDY_ z*+c<+AB*2M@FF94(1B`;u(D9~g1L7Mvb|52N{;U>OsnpEO7yPdXC8_+*Y!91>lgeN zN786_=J-#zuD`Tketf`KOYuiw-cYp8=jOU$jvo-E2D5m7>h|Psstr5_uOc3u{*B4z z)$Q*+%uK2hhxLGvCkfr8ZU^*HuH$NZ{d-NssDe3FUnFP``3ttcx)g15v0N-nruLC1 zuX2XUaW7d$#ap^N4xs{}o3sxY4kTM0o}}@H4)<@?pE(1C)IRe{V z%OFOVGSiEN0Ia|VA2y@^E%AmAHN$$pg;}QHS1}3Pzuy5pXy-+qQs9it7rID88na7X9wNEP5|^OoP>Sis!e^ ztOYoUaUFVwKE3*msNgmszr zBv>?HT_!nkLImp{*k9he{F_S0zH<2Ofe>ht*ln)Tf>r?buqM@U%GZbChB9_zb;GX zLGml+6Kdj}&Rv7!7}(+cKOTZ)q|5am;gk+%ati)*4}1^`2dl=+7X`|$EPAw9=8OIr zu(%faM5*F&UKO*inDbzf?|6;##U0TS%tk_lV6}k~vCO2#wZ)p^N3aaG44u`;Ay~)K zSJ(dm;V?@(T$z8j8w-XDU~8!De5`90>ljv}zmz8JE1(hEB37f)2#`(^(tdzf(lB|P zv^bpQiX#{Uv-ickA?Oj$F!j4HN4{-el+?!g6U98ZF0q53X(=S9%wqqEH? z|ILK~jn%OM@=Cc{$L#ZFE0==5d|ewQh(Ld{N3vC&+J7I+qmem zf1$oW^<9bnt_XcKX45uOFmQPtR10UWV_69?mf%KK-(b8qc>1W3b@+tmF`*J-1T*%t z)Rv8yS&g0UOZ4m#e}X#)W1yl3*$Ynsp&hQVuB$1GV)`*y)Z!5Zt*RJ@`|)^IcqQ>3 z|9s7Qg*l^H2zc`Mo<~x5Q7z=BNV<7=VUmg#@JKLkg+QjhvGaf9?c)p#!uO%TnpZq{ z{e1jF9e?#6*8LU1;6@6Hs?aAkpIDwNUS)rSHTm;kY4Rd$iB?+fDyE6#A^>KO7wci0_|d=KoXtz5mB0AO=7Huj&dm$Z+Y9sJd21Y@K3>@$E(yvp+ceCexL6CMQ1 z0teYSr0|?@iagY#jrAU8x49odtXc7@!}WoL2MK1QVhIolN0mEVEnNucFdJF=fqPPH zNF$aY?)Yxb=BDe9NxYbsVB$qTChmBSO_4T2aH9^_jd$43`~eO;%$EE!@7m#-tN!7V zNL&Nv@Sd=N@QZ;pNDw24{)x+$aKjD48XgDe$wD;Z#8v#4uol+)_n_&v@g{WPCE(3{ zd3w){AsDMaFs};vJtnTQsmJoLgc{TCW8^yzhVByfjksznaBWewK@5|=5Hg81J`?Dl zs)?g%c7LIEOSm>qSrh$(_V+6-jxGfJ1=77a;TNIUNai*xbz;eG2;|#G6zv7M22SUj zgIL^97(8hQ-?)6#`SEWF27dhO5;xiCK z5UxynW=fAaTA_?8XA&(&@5XKyIg$Q`b;GFFNRs#SW zo7;2@=4u$t`YX`0LVy&0FISnSXgYz}>E8+|4T##Tc3|mU7xU}?0awk($+~#FulxX9 zfi#A+Sj_q#(NQk|TD=SXUmn8GV!{xkg%Nl^zEGhEbnJgbhr<_gA76lgAt?DqEK+ds zC&^`BOk&2&^n@J+zyI7=VFIw&`bVSgt0w3F{1f=lc0xRAMmhr%Js_jtcGBSP9DrAL zdDg%wpU0SpwJ94)V;NUKa~!1bY;+*!a)Sw$eM-U$mWOsgG*0$1mR8KXfZ50et+%}Y za*(eV&v*XL@E(!(gp%>ym+ypKPn{rF3Cne-5D6x@d&#K&Ns=fLK94Ov&cIhQPZxe1 zy_KgYZ*KTWp1zM0Td9#9(58?=zd^KdHfp48AH^sguiUXdYj@32AYy7%vY3T%hDZJv zV6}3~)3_NV3S;TZRq#UQOC~;vJ!F#OjKVRH^*$)t6+A+0;eGzgwV(EQ$4w6ZYFs7^ zA_R)&ev;|x;{6J6X2+DT6#?J~h?sHahK9H!Nn*7IVbvFGVJbhGSBeETP^0LDqHPd&F&YiV*$BY7x($2b!N69=LqJ&X)(9U=>-fh-5Zvg}SvrE1n^|{9 zPrF9CSIS_`;DW;AFV~i-j&DBv>++Lb2qg(6nZ480w7GL09gn$|T|TTT!Lg(=1mX`6 zrM?Q{`O3ut(;$P?fNiaKS)idWE*<9Mn^;va@fL4V*m`#+!GocF>J!RBwq!|_jsYUa}@M4N7;bi!`A}aXcRpfH#6cpWgJO0 z&JtQnVULdD5m;Ce0i(OXeG?N5DXobgo8{gR(ybwL$GHMq5+=42rz@Iomf1o@f19$Jvm@d zAbdZ7IYV0#;0$*xT~sj%Hu_N{BD02S5Q2I+7~{7QQY>LY&j6y>k1x|F8KOin8wq^| zk4+Buz4`S>YqD_24~zGIfCWB;Tm#RQ;Q`F$-R#yC!Zzj87%g4e!O{de&smosfPdj5 zHlOzb1Y1@}f!#4$X@skgCifGJCqlgc(j(y{BDVNPUQ!P1| z+oR*7wytV3&E-}%8Nrn?2Ox9{B*{lj=-f&bT_Wzw`U#BenlJylw*2r$EQ!dMYj!4> z_*QIy!PxIIab%s#WgEa*YvU;`urGl=X|*R7yLI@~-BN7U;RfH0`&FQRl8b+!e|v3u zUmR}#Dcp$?%Zm6!4jO69GbZ5Vu+?gWtCWZC;{Hsu@iNs+8Q$qOMORk0PuIi~cQ7Yf zAqie6d);`NyLm**i|};nu64NUDu^ZSfYsOjwMc6?b484d9|tFFh*#jJJ#bLke__fA zT4=0`N8|KPQpm}-U(9hunZdoD7&+d@7sVIqKV$0llU*BlUxlp*V(LLdhJ;wI_X?_xl&cQx&$`;=E6nU~2kWMxmN~HWm5`bH zHSsk#CV3%{`bYS5PF!=jIfFQB&r&^@@jmA?+E5D?-3^}NxF8Y|>O-?Bn~!-5MQHCD z$RwpW1rR5@ySXH=)Fwvb3P0vNKY~rH#Ao<)%NJv4r{U_#4fc4oAr_csbVWUAg;ua5 zn1cf?2l|aqKFnN!dp6oF3$<@pp|Ax!1tFMgD3QX6RlA`%b{Rq^xLq(ubioI-7^Naf zMBvOq?GZ1(PnMn3YB9iEVjAE)oQt9a&tj<}q~4zm)7%vL3Ldy6aFmiv!?Qarc_bmDpwBXaJ9j@+V(?yXN&!5msrz(FzIpw9|S=Na6B?F z&JYLR+nD|JgLRWyfaQQ)2IR>tB6`er55e(Gc_8=CeKY&?%G1@EyZe)v`dmmI#E}|n z;+iMCL#i>&Eg>>cBNrGTr{TFT4$3zdV~X;itBtf`%-71~Zq0PyMH`nS*> zxFa4MGx#OnVK7s6QmCCf5OY40;6O0LOME)>r%%t(KHaVK7OcW-O9BoN|3((#xp7E6Y+8kG2F5iZS zdaYY<-wI7%5-iHjRe|m-yxLyFTUJqtY}6BFQ0g%74DFB7qI0_@E|!TUMoF7sa+s?C z;v!Bj#1$Eqw=?3n)7-p=p2XF97R1pbP>zH*R5=V7>LlAiH-=k+_x2~J8oFg|IMLy% zfU;y(w0G`ai>#A+hnxe zu<3%Ve41?OkgZszAiznf(92<%#@^fbV17jndC*`e?}U^2-mlS)qH~&g#ca5+fUNU& z&*){@F&+ac{VT>A@|x;Rn!5%0oyF*`PE^B$e;G4*RnvfOTDR0ZZ|BA%=t@-rqB2u( z``74n;JKNCCGs^rtbzWOS&{NR5O}Oto0WiZxl8UaW?X)eu2QzMB0MoS5#PCwM)SSl zb6nYrOl>TK?Q1VLxUapoO6rj?o1wdJxYa36yf5nLT*8-=ZxIIP6k#F4N~=`^x^A)z zGtdBmeDbYNe}2ddFJCWyS1YvJZ4hM1FmW!n+8cK$$k6Xua^COXgr~x^^(857%KOUh z26q(X5fuo`JyqVV1`dCCgtp(><7~OrghswewL_JzR{IsuP<55;^(FXt`n|c|)6h*V z8z7M|#p@RxzgZH(uBpqR+a$P(xg<2eP5>+2)p^(JC#tfnq3GSBMHDl-G4FRsH~sO`zOLOXq9v*202=-FhI*#-QkF3e7o^dja(j zO>u1ZMffj@|;HP41k1YFQLUD?sp z&atH3E_X0T;006Qv|_$B^>tYqqi1TU8UGLzt>sJwCV@ZQ2TOjO1IbUTbskxnwp|Xh z8WT$-tQzY|QFS&qm>8R2@M3ZC2hMQH=BKAPpDQ*bAXHilPo8%`Oh(YWESPUZ$<9=LSe7R8v0 zo#HP!>~*LbaoYx7mgV;vYs@VzA>B3AUls+L1BcyAv`p8W5FDg0WIw}ffAW_J9A;- zK5ZaM12EeHr}M1~V2I1SSV4sw0e@Rg68Lnwfa#nAciV`B!xZ@E1hPvvTSR#Ln#*AM z7w%e{8qD8_#8XdvWSW&d-1ky^y=;4)csi^!pFVt}n4)6^Y&yHV;~DBt-=cVl znk_5JjZ!XLT@`B@+RtlNQZm_BPE%SUQ&A}{vFA@17$14%jJ1k|PJk7}q~w9w6XTq; zWwN{#mVAK3N7-~0HNUXIodqYh8a=dSuH973;7G3^Tw=X$UuUW(GT~Nv@XeVOEM`3o zVpa-3tOLx-+)PuRymdv1FXs~?j$E+t@_n09;57ekPsxPpG(-F0{c=ki!|PLw=#eUW znmc+M-ECfML>ROG+XSgPv@Td(;#yM~`8|V1c>LFLQkUQSAY5{^511}Fn1>D33$(4F zKrP}bCz#yYEEwi;A7!3N=H1<-%}8oAd6@W%s60JkL)&<3 z+N}3&!)97{037P>z9pd2vUxi3S<`u6?rDr!LssxWaJs}A>}}rCH8NQB*%(o~0i)vH zwulR?bxn(Gg?5nz_rhO3o=A8z-5Sx1!Zf-dE?+^8Q^kw3bQ=-kJd5XzL~x@7d0UoO zIU5?yT#@S0Nh>PGTe=xE_W69lRigZW-K>qqm%llEp)SG_b8t66T|zFj%&kXTI5_S% z_1FK@YYnd!=o#2vi0N(WZcMEfAU!aE&zE9y3xpNy-@ClqE|Y6r-)8d)EUcUm)2dIB zaYi8udx4jMQ?Fgbe7cMHUx+jQL7ZU1RIfzuwVB;wq`Tb0Qzlp*`xl!KvAcNO)0vpM z3oK!Tve+qMKM14vcKE%vX5cDKtGb#bR9Ul8Vf7`&$ms_qloB3K(gzcbDS=nB)~=k#mM^1V@Z^`c_?p&7Tf{ z4~gIcii$#1QG0{E`&%lLFAD;h0M{|bXuxl<)DiYLJ4P)s3_ov}dMl_5aQZwW z<|7~sz919S+n+?FH8j4Hx{^U#|Cp?yZ#ss@L*0c12aI;VOf#?&z4Ena`ivRR(g^#D zHJU?fB!))K;ywe9zXh|>9c|@s;{Omv8Eb~=WP)>6hXqEb6e#)=W2-PS{GRf=ASyX@ktri{f2l?VjwwzcA+JF4 zgq2zZpI;An9|=x4>p#rFy%V^8uXDCSRlI$=H?;_?=x=7iea|8Ntr zg>oJq<#`Jvf{`~#w9K;5$~a@^2g-H0`)kzfpjq7A0X$9iSH9LwtC)TM9j3o9)UedK zI0e^Y!-cqWI`4@;b6pwjkV0mn zU#aIP5GoQCOMe&CU-*7&W3Q%~*KX6EC<9A&UI3>aD!4*m`;&97J`$}(u97o7)+hrK zj^(t#k{-O^&UE6S5v7kb`$g>%%Q~3c;<5@3P`i`;kxjeJ84Eqs&M{@$ekoVYsDE4b=2u| zQw2LAPMf7R;#iEU!BZLq^4}mEdYVYo5`s7QC^%Rm)8j{sP$YV@xmN{Pxh&a_iHXJw z+iwJtt-%il?1I)>_I){6OfEo0qiv0r4HgO&g&O&9MYw$m&F-6wNF&;vE_};-99SzUjM&7Ew-4`8TkTH_XzD`B8 zV^=5|x6V7`;D~2;@9>RV2Q<*2Q1OCd5(D@=v$hkSGw(X{`Q|MF`+lB*Srf;VoM-u7 zo%5}!j>=fbk}!jiWi72@HL_2%vgC5PP7tbl-NwYhYHJTKwCYvSr{;()yU-0OyR>qf zzLX#@M`_}6|3b5p@QFs2{GB|UtKC1zZ5d%$!nlxU{~{7Jyy9&B@NkuM#}(nkXBje# zt}$GSMDIpp+P|Z>2iM7wy*noFX#0{Eoh+R>{DBLbY2gLsh3IWX&b1Hi!ne_NeXhwG zc6k#MsjxTCYuEO|G37Oc50;2L)L8s`l z8%pETZS)hV2W&~?wbW8pR!%nM*~8J-u|UoO8#b(y`FeuM#JIv^B}MJ{`5Q9(^CC8! z-(^}9cG$4=4=n>&R(ib5`4XnfS`?j56ET*!20Mg?cH=YMi8z!l#IAxo2 z-?RN$^oUJ$B$wAYsgAJ9HHma0wakGQlORIi#C1j6nLnIC@->ZoUQabW@M%$CT9nwY ztM@hwBbN5l)j05pqh#XAta%h zGN7U&(m3-OSOI171Kf2!p_ZF&vL^6ys~+it)oF*AAeN6F{xKV z=0cT6_F@3}W8mp=I~*^WMLybxVT9O_njOBs9IWoF#096?mDF7S76Ik?tkk!-soI|$ zUa&P%N@Q*GdRb6qXz<475}GvKcLnu$kZqsu3I;JpKY~g|UB<2o)$^7;UL|~N{n|L~ zUeH2wb(nIEz3X1(xp4a_hpSv%vMwv6p;hC~dR|5C)C=PX>_k9JnxPz4Xcfq%;%qkz zNOe*2YxmxuIP)XUpaabNJI@l!>Va`V^4c+$Iy#xJ**T8qy=0Q!TRH$&J16*J2DAz z@b*xpo6m=qx~snwt)-Ubg-T^aZK>t&W!l!UL5ZHM@zChID87ew{S4jvDBh=i{bDn zyUlE;+|`tOK~fv9NlJTv_S!ST7%{C%BgiQP26K8D zg8{XinECSdj4PnO9kzt`S__=j?RV_;;9dHs;7DEPqs=CXLgh;k7+raQ^+5JiJK#w0jIZ^%ZWtj|QSv$;UBgsu&7# zO9;-N5Ru6O?1|l&V#Pi_rkS0se6jV>3^Y_3&4&N3pjExgb&oTH_YIkDBa3>o&!(Xo z368L7Ti^Z&3v9`x)Q$>=H&1J(LxpmM6jgWV*Ov${(`{@8 zScx}`6l!CYEW)(YRalbZ)J_CHU{qg=+|9-$(r7j~n?)fK-Gk>EsyF5Ez_2AK!k(QJ zTgSMhf^*#(vql#M(}{6IJ0?`vwRl)JHJA`swiZMY9C)cP<+kOyTaH@wWJ5>Fh-D_o zC$n_a2^MbKT@Aywj)Fr#TvWlDd8xDIzB+P6Uj`j{#nMchVJ0*^GnJiXI~Wf;!92oRbhqDji8g0tlsH?HvQS(jUn2Zl#8;+7^z`iwa7LU4enzI*!^*1`oDdx;_R=TAGOq!}1SIlfmZ2gY=i7w-<8-IRXS^ z7!%38v_AV_O}DTMo5vxLSOwLvj7YQXW*VQj(sKg}Q?@*22)VoGyRkCfE|TChEv-^> zgFljuc%elxA1^mS5>J+~R#9*_CiCSbFMTWrzhVkp2u6}tu#;!~NP$r=)itCe5U|OT z-G_+FizCwi(mgNw z0QYnYmMi zGG-r;^!Uu~*AL6Es0P9R*X?_7Xmts;`h;#Y{fMix(E6#y!jqV#n!L*eE4J^*tD08h zj-H*LA8R<1;g`!lvHSzGt8|7xvgzol@1sz($~B)?yUz_pi?>QStdFL$$bV?3uE7t- z>n=dsuTIFOmhdK(=N{-0`*ogC3heql8E`#aJ1Olo{II~GvTY@ksKDlUlaXS(`T3n_ zJYhr*r7#IjrT#s$wJ}#QK>pL(0&3vbL`}xdj)_{Yj33ed`p4wFyoMKkuRJU2uo;!> zGl(n?WL-Yd;zI{%7m@(;%rl{={hMBe4tA)c;zRmFZ0bT>Y{a~}tD)RfNN+Zsv*GrX z*rpHUGnn5fuKq0Y=}|LaAVvC;#_Kg0B42YyzlUNOIu*~sHM^|Z|8yQ&3nCl{I&{5E zAjcL*&~)t=ITlQ6KnffF!ze98{7Y?u(CMDegk|y`n^@&fkxY(?5iN|d$`Hk;wvO?O zmzqVRvGB^)G%0_=pBu1&%)Gjits~grG0EU;&1G{jUO$|6M*n z;D4}S^TF?L|38AI-7rtdxD{{(a5HgS>aEt?M}D$kN+ie~8qo5?M&$kf!!Z~CyNr$3 z(YL=)qd1$Ukh&PUf~toEK}f#Jlp}bz12OeXMFLn$WB2?2DVD5`?S7rdPpU?9sp22V z)%Ksk4ver{nBy({j%^xXUIRYU;{LyS`R|DNFXgx*WTQ!|GkP28lqo;BH!8vte&)@Q z-GgrNxlTWb6*neH_zw&3m*gL}0|z&yeJI6YXAiL?lf(&_9DvTgdEUJL|IXzmClpB! zs@+^z@N3K)ULTJ9Z8Shj&cuEdz_eO~l(AJfgjEFxzliDbU|<9AnyVQpVkcUDd8ZBA zH@Es-rAe-1FXRDi4GK97Up+T{q8j2*Sl(I9sC(8+a_UvAr>vVWcA)FO!c-Cl3Li<6 z+2&pQlRL(9f{}66J%Z>#`eWJ6J7N-WbFZ2JLHVS1i+ zvg7qpU=?W&H8Y6|nXQStmjJa=a{bhY9YXq#$@$J*yVETmf7V0NYOD#Rp_#Le(jdY4 zFsEp5$d;s(S?V(U}xPx)-J?RLA7wlbPwo)d&JIhCGtmKhuTg1f$oFY zR}a=c7|5MV*tCK`P{~>5x{j=6w!WxQUf|iSXOq-aBc(1Dv?5h7SC0!F*p3xK8@0l3 zMyk;eWKYq2oJj?8O3WrQkxo`tYfGKer=u{jJ7gftSwJAO{<_yWiyUf^QU=CvHr_4Q zEB5Hhz>0HBP4c0YoS2V>5S#;znu6zFsaEmO=;Cs7Z%bj6no5|=<|x0GU*jCx9Tq{A zK18K*j33Xo#PXyfX1p2_46e3?I6hIOQ0HH-=!$z4%b6k3!XL&xk3!j+m2jG1dDZU& zAapC}g<(O%aD#GO4Fi}<`P)n?<}(bD74GD?rK7A-+8Ve)22X!TjR}3^N(ynWAiIf6 zz*bYMOmOYtkRc^MBZT z%do1NHehsHfT(~!p&xc87E~QXL_%lw-)xc{)~9u%aX|pi{e*Cr zY${&EPuUXHB;mXFH1{`$6fmA~=I0xq{Aq}RkN-&;J~c!+G>3{3z7BEego7GUBHux% z27A&!TH#Q~LHTyJsAPpgr_R$rc&4pO>lj%FN(!(&#sD2d1Wqz^pEXvkihK^vMlmGn zR8{iOZ~cjHp<_q{At)B>3h2BE3}*PPY`bgi=kJBx0rvcS&(g>AeYNMSo^dT8R_uEU zIi>aDkuMwDi`)Ua-&bF+3RRDi->ck2YG&;Z>>I@$^19*K+FSU%ZpHB)qGqrFY(YJ>PB$X zhnJ{{#+rUP^siur#!%*bysIN96ok#v#Y&r}tPxvxCu;Q6Q^@Wv`e$A__ra_;$Ns)lbWdY_NXnE>2m zS3kJz6H%;!jwe{5Aq2hY+F1H}>6+OJ$=6RZYA75HQf0OS8RAb~>z_#*7LG4bTU}oK zz%%l=<$tXSzP_L97}^1=STnncI78>(~Ysb5O}(|belv&Pr6TXW<-`oBn*V|~y|Zo)he zU}1XH<3*{}jE2)22kh%0#R;>6LKHUfCiRok`)yJOR~I!j48mX^UPGvDEb%{T1I^0q zW*Gz&I&r$PLvupfra8|{v}}6raK6+1$kY2c13jDif0Ut|h-!W{L2%@}ofq$PEr8{(u1e`{=#Cz8^I0!ygJd_^5K0Vm zpkP05{)G#=|KS4rKeWZy>=X&%Swa6!4?;DsX@{N=zvo;rEYubtK2;=!+CubcV0su3 zEO~v#|DOyAQ#{V#UPwb{W#PXp257p@t59@i{|}w8gXGwUq;EUXu`@;Y|8sZV*@Mdf z3F#j$qTh?))d>*}ult0etyPz0zpWvA@s<|)-W$p#vznk6$-TZp0iXHr)I|QEsqvxY zW2=6D$OvU45-8lGqF9fAnCB)|UWW;NngZ+C_|0QY->MmZ?${Zl6YY6BgzfQxhr8CX*~9^P_j}F?7-5Uc6mzDa6^NlL zu>5C*XS2#r1>O6XXc(X5MagWts3lX9s-v@%GSs)acKd>|^M%9ZU!2~*b(kP;_6M|l zIKewy+dTAL-unze1bqTP4yS9_)1n46z-|S;sG_e!3-w#^fy1xs*pY1wCsBVaQL7pa zv<7A@+Q8CAGm0S4a3G+;f{Z=Qc-FBg2Hl)UDQW?-LKG7dlvzcuQ~mmtRpPo#8~GE! z_@9+cq!eIz-a3wjbhB^~UyoNL{3OY-^$dO4pDqyQfU%`Ce>1i$9$!kcd{P+Ib6yV}p?jL&z{5K=q5UC zP9X?`=^4Hq610(!2<5Gbl=HOfbGb{R4cI6os8NJDG#4lpEkH08Ufp*jC06;T^TF`97d_M-N?`y5WI+s4l<_m58_ znJY1SMtoi{j+PC+C{6xJDuq757L+0ZtiEA@OJK9Pm(cZLSScf>;Fnnj2Y3HP+~iA^ zto)t38vXk;XgDoR<%ylGnN4RUYM1L-GEREWTtJ9hYEW<8f4u%{FrU_qHeyB7&Bfj$ zO7v+yLQEFSvj>AJRioO&5LIq?=j%vTzT4ssg?aPF=Loi0{!cBXgEy|T*Ey< zKwmwOUmEZ8#J@*pH=KV02rI}Vk>y1tVRLo|pAFFCYGGa|1#vSktg#*~^F(bC4?V)w z(>8o+=^`S!^59|**LBhlzB~i%0UF@afBJV1S01bqu~vPq8wDaFTVcc5?m^Lo^#&X8 zk#}k+DcWf~N&kaNCFY5CinZDNq@7!q{2t}eNQ(^-d5|M~7wX3S$@qscKNr_-+ZWj+@19Iirnydo6_VKf+`W9U=yMBRt45g>P5sV63l99?wbD^>Cg4 zs7b7U8riLwVUw8(iW?q6Z7q!vOW+(~t$XG8%C^e|O6(?`Jy1PW9)dc^v&F^|yGgIJ zFE7xyL)#3|7HsMzsy$VgpPFs%ZBuX^xz`@I4Wb@<)|M4HZYw4Aa3umyEL1%9Oxk+0 zgFa8JJcQShtAPtN^xwV;GWJ+Z!j0}ZKWOU`@*E;r@^^F7q8PVIIzMbi6cq9HvA%E= zOQ`ya!+<_r&|hJtRF~DN&^SNbr@&!7b(#yyjn9I@V{7gN*pXunIHmR80HTkjnSJpn z@&=ce;uKA@aWQT1Y6U+Y=SG~iz;it8%RH?0jAqS-HMB`f9|BsD3U^$Q4%Cm+thUPq zx^@93T%s9_>kmI?)V_m^HhuVUVL|9@&(_L% zE+F#Dt_V7S>0cmhpjUpWA>fv%#L(#IQNF?vGnVS34lZ(c&)t!h?Z6vv*U!I=^6>~9 z?8Os>j$Enb)~mxiA~yFZ07rvf{7{Vpz{7=g3-3ut#HkzCdG%=f7F~S&s8elaO=ax7 zjWVy;Exe1J!-bfYORUc+?ba?^h|{w48s73O3LYCq0ddTJvRdMW`>df766z*B-rPHV zzp${EkZ+yOLc8+pqdEn;^PuMk1>Dmh^OoopU&HUCqizlxr=vuYEm5k+LvFrZQSeh)isd0BBOR#JgN%nYmjJNeON3`B$TBU0?!) z(XdOd{$dp@-4{%CW2mz~wI5`8>Ai^u`fX@l8qkE!f!EjcQor%d%dyOZpwd9>9f;I< z-5jR8Y7DspDG2IGxT|C7XI6`_>e1eG%kdNNLnr@V@yOIG<1(*s@J&szkD%*%`VmiN zT}T)#$R_it5f~sds6e)c-xAd`2j3^v$qOYv@b=@^E!tWy2KE&*;=O+#`2@E6^D30y z7)2sjo$M$dbXf3xAVNlYoy7NNWC6JJr4OAdC8(g)$Oo@AK@6S6gg-&Yy$&uA!D7=Q zM30P;oxy?vgEd~Kx_M0S zRPU#6u&tv6w>A0(*z}>a`HG~xn*JHgi2=}{#3Y}hIVLI*W;&@47p&<3-QzA&u>A8jfb z3pzSlW1u{6CB53~{){2|lx(TcDUtW|e*<1hhUw+V7A%urU|5Qv3L@-2fIMn2X_GCX zb7}yjmGuMDLAn*9Yr-Cr_zIgtFiZ!*u<)KG-sL3-?uw!7NddY*8N%$JRZdGlu^KE) zzC@F3T5EdpyuJE58%ko7es{kg9fSC76k8ya!eIDFQ-p46SJ0(v#vnckS|9>f37a$ zI)w^JXRT+U+6|+01oU3M+_FUv9bt3wK6t}HU|REoy9fc;MSSqoW59z>piR;AA26uG zzCZ>+JK_~dZ;4V~2lIn-ID{V*>2HZn8G#!UH@>tIqTlfWgDD2k2XG$rZ%wmoOL;91 z=Lnjbfv(GphITSa7isvgwc?51wTdRc37);UO%(}33kj>;fi=~V(fi4v6z%#;eA2^C;D zgg!G2HgH?Kw>e2$aLkDNdRP+sxZ-gy`ha5OU*Nh&&@xBUnqlBefI;CTME*cm8!%WF zZ9qz}P?dXmhwU9oF$Tu3oT=yoplp#ze_zxzoPAe>5444XLX|!AEdjqP$V8CJMDSjD zk^u(q^M{pD@K6;(aizFWR*JR4xU0j$?ZlZ@rsxBlEwfk9w*>r6C;W*}^b=2vG;j|H z3<;%F79bDHz&)Ml^F1Nbs0PnxP8E<6NykL7_T=+bXN{xf3>xqT{^DplhNr&7zF}pN zyCSF_^tm^@a|=N!FyP4tv372ac6QFv$=Ms3vy z;q2$2kVLq?v>mAe zB||JKp+1nHD(3x#*;eJFYK@~`#O&cW8Z|X5>rMz%BV3$ z-@tR|Q4~|A`=ZaKz!Z37^cNd$g-h)*MZie>Q; zcufH`8hSAPH{lcCjYmr$ZpkeC3w-+Lv`WRYTb59jrfB!+8kkhcRsdn)t$=PlrBb{N z!Rrl3-;^+kQ6J^aC%*lMZQF^YvMb;ZAqK=c@5nL*HG`q!ZKR=hrHFv!25chbUy+Dk?5 z8DcSrmHq`X0aWld*zb#)OM`hM4tgu%6b*pD4`4d8Ll0p6WPD?41d<~z22OU74x$t6|kE6ON z?JE~!;lu_}M_o{JYsk9(&+5_DRnXOmp*IFovR*U9^0}j*K=2!ipWl>F&<`Kcij_Z* zQ1@thhN+fw2VJoUH$tg||F!kzbih4*2mJeFuYNoO`KiIsu2sd%85v)Zpn{uCl9)bg zAf3RT0CA#(c_Oh$q?|xDp%waUiSTFXHoUwKw~fC={+S9e(nr@arhmQ8BTfI~S$T?N z?5mGW^#ptk=!1XDL$NTR?D}zoQK})T@2!un2KYIlXmC#?@cc%~vLP1y_sS!EpsP@* z03U>gtB`2MD27hz$~!N)m($2X~dVWArQSkbrlm*w)pxbrZF zSPOLfq_8U#nR4mR)LA+}`FdeLXq)edXi&jDLhwsjU!eR}{OO*4Dbp%?ITm&eDwvd4 zr5YU6dqFsmhF;q66G44ljR|y*DvaQ-LBw&|G{xWxZ(c%!0@(L{E-6z4Av&Tmp_jqI z-l(~!{U!t@C4cin5fwQ*GxH!j6$cl$h!>PMPA>e*9YJ3X26KiA5ctpi&;yg<}?eOVRp>-M17^d&!#C2kC zTX46utc))~e)&GF+i0o_)>l5ASGQhJU^3Ips4(m&v78^AmW4L>Y%qa}30{N{h4Y*_ z#3T@ReNy+8uF%kZ_rVz4&c$uKbVNRU-SN1}9~0B2%#CCKi->DREX@0Z+BbUK2F4j@ zM@M^J?R_ecE6EFq=Y|zYdj!8E=*&eNf9}cHKD6h>rt-BegF8EKI1bBvc@SiiU-#v0 z5te?0FI92Gmfk;8M}iX0Baln-_2k}TwyQpF=%x4ly&4*k25d|ESpoTcy|fa!uNpnb zD=Ur$TV-Ko0<6fcj8v6?g3(oqL{cH`2SIchhZw2YTGQ7&XpvhdkP7I$I-1FmZG>1l>gB<3_t zJIHzS#e;B>PO0Zw#y>#7uV1dUCZJid=dICUy(t8@;6Ju?bp1ph%$XFjfav{$EVCh` zq9(njNqx5Ap;A1$>W9ZraF6!?^a6+$UZ&TmI$vi!KRlopEH5g$D~eU-?Yq&mVhLyW z*cp)nF>@|t8;L)R-3mr2l1OpgJ{OQV%Hcn_I@o(ZaYr&k-`#m* z&wtX2pTvEVmKtuecfMO!cS;`OdA2CDcYe08$+w^6d0H!n#XP`A?vz1PHQVS@CiE<1 zyck`)M`$!zVvIoHJ4}&h)6h1uSRmHOWdrHL8G6H^B`{k*uTf;X6QlQxeY(Wc!0gql zSJj@q8M>3Fiv|r>PWenT9IQ1@JLX+jhs@CDZ$&`UGB0KM<5$E-KQ8->pB=pUQO(;^ zA$U*p&rWxKbYO>FUHmrDB`V+FeB{SJR9Ys_*G)54?kA6ofj14g3w$cxnR9q_f`Y~h zm+%w0dm4fyQJ0xzNcLuz4Ixk0m0N=@ZuAQ(WHx7;MVG0nTfx}pfM8!Rkj`!N81Zbg zzG2j7(%!W(d;axU%zf`yA6--efX|!3pEE-~2g;>}tRv(!A8`H7=4Y0xzwAwMB}^X< zy#B(*Ztp>|$ajlf*~Fx5<@Uism+qPB9+sk=wdQ2}trYrz6jL@vxBonH{vQ;21wkDA zUlBEioAqnXKbQmr55!HJOUhU1g77X|jGncvXNyjpIApBc_9FgVlN2q0?hOgcgE#3F z9e*o)2s7W0;3KZ*;8KEa%>?C_Nha*i7%=)!^JT8hxtDM}G%A`xo~lUhGWIcrYa))O zOlr2XJ3NtMFxX4+lj#R-2r{(Kgashm&*dO_c8s7VQY{lK@8i=As$#8%dyo)u-e8vm zp+s1&vs>Z_T~>vCAXBa4E9`|2V2Yg=_U+aK&zdJp4;a<0P{F*mGSl;ZMIa0noY8gy zxrbdT!x}J{^lfejd4lNYJ9XU~f=3{#Qh5FF*3zZU?R(o~Vg)AFCS%%m@}hdjqHUiG(W*On;ce?#L~no(^GX45Wrlo;_9YA-lI}DOMCu8dMW@#u0*L-Y z7Fq?U3%P>Rh$Q9r)rTl~f^BGGrnoZ+M^Kw=mn>a#7nSbJQV*Q^!557uI_L5%{g|L zsC4*~l{s!15#Gj#v(%XFcyY5-pfF6AxY7o)X;$FdW?<~v{5-^65jtaJ6#HAG>D)Cw zXDFgeuzsXw52!a<4w4sPA9dA;J8LV5m}Psv3}8xE_tj)GO~_?fm=97<%M&D1B;YVD zx!2ePWoUMUS#u)6@M>{Ye}6X{23w}T;FJz>bZJhuh46$=Qv`yek{v)%#F5V=0oEc{ zpt9s8SgRsGiDmu^K&b!yF}(>|b?O{h=?AR53Z3szpLU*#>4RV^UD#-$M2?p8deG~9$zVb_e$j~ z^7+SpOu#0W$=tzp!NL7p1KW)n!@rJrmL$ZHP0}IH?xwbx*8)+ESbsuE7|WIE^oc4(mCE=xwnCK9!@@MT-upu-g5~DH9=fj=7mte?a8|D2qT$Ru=W$YxlK?tv07plR z8dZl`@iISREEUsv6@F!sv1Z9@$$!Y}a>Sk=&bj_!ranf=e*!!TiMBu6lO&KH&U^QKz)fUd4@@~&?#K)%K#gqHJH%J3 zw1!W2?Yfe*ynesy*w-nLMubjBZXEdVE*f~iukA4&HO$eDJbbqWk;2h5cIG!6l(-cW5$g_34Y7H)h~{05xd2`_WXip+v_zGx}L`^ zbGmhEkITDOR>{L}X$2SBM*j>tNh)I`mhL*u z49Z0!7-I3`b{k8wg#&;1SzrbUmOj61m5sG?5*M=}W^vwWId*+NwQzU!+2FdL$5WDh zK7AxI$Kb_;J^$Hu$D~``sX-yv?S{$~s_HPB@e-6dg*yHLajtbZ*_JO$US}mydUg7% zJrBzG^FjH@G6q3px1Zf}R&=9l8wBw>Mx@r7n`-eA{04&3YHQz{abhnUHa@V5qnqs} z7Ecw&$S6MOsd^MT6!oU7?p&3D$PmEwx2x%cQ8bOpMe-tw#+;}>FCUYIo}cs`ci2>g z;*tL(?^}^uocv}MCr|4mLK?-_%zx!M5oXfO87p!RGR8(nC45}k2zI$eR+d%6a8yHg za{?Rx?;Jx;CYnPolz*^X${P)pt{y8F&DT*Yq)|2Yq{BDRs|KWuAaw~#whq|G6oQ+p zK8+-PlC=_^ZQtYlxz)le1bOAwX@J#)biqSH|v`Wqt2g!cpAZ^7rCqsbeqEyIl zO5c$2c#86;NwSq!5HBaVTa`vpYN=x~-(%2~D@4{fonNPO^5#w9oLi`_Yu)Lr?mSMp zm)MwCT$gdt_}Z=n;*dYVlI!a5E7Iz5lHm01RSLlj0up@y!X_~kaog)Z&~@mX+T73G&<#*@FQ{graCsuPPs?r45*8f$c` zzw)p2co{%agZ;A8XL`1dDMIDS6$I70v+NgF{v5E_B-4`QVf%}3QYZ8PHmjtx8*;ax~XgFe}abyG-P`=w*+P+$IjnR9Js+}myF*EJ4XrASf5lddr zqou_pKKSYA4F%{B-?^WCB8Dok}6qG&Frl&*b(`V>kAMbv0kx zCW(7Z5%#>xC2BSI*+*-7i~DM4EUQ;ZwW960TzTtk#&}8-QT{Sa0d!`(NeYrS`wi7S z>1BjXW4mQRS3E!vKZINc(=W5Zl*d~%yvFJ%!ajR@@j_kEb zu@^2RIz^u4Qq~MIe&edC{TAde38FP)cUengC|{}g2F{4^_C(;i#SI<$U;BZ~`GwL| zqmge>5OO*@Dmy1XI}&-nvAMZvx2m7FsJ9Dt;4 zq>Kgh$)@GfrMf9}7YX7uOBXk5FQ@>-M;rZ{~PxFPesR zXSh7c>ERfyS*rfo4(KfF@O2*dDUdP|hIm^2vPX*S-|i&%MFq|MG-?ctApnYtDP31& zkQ*uO4ZTiMPU2Dw#A&H}#6n{$a&$b5n(yDr5NK~3b>-3rVERbKr7xX)W|yP$DgX1; z^4gP-S%sNa*DWBrCWDikE%@n2Pn?!VKbi%%Kb1E$qB2=1s=7tm!|`O zGye*M-*H*k-E?tW&JQ+>LuTsrp15p(h?T`?ipZTs<-Rm``g2M^*c4Gx8GWN`g1xKC z;A(yO-GyOxoD+~W#`1=^+?g?R)~|LLP3Ta@`sTUFssJB)a@kr3|8&HXeI-3E!8(or zL#}*LHSy>j@8(0bqfg znCsiH{bt0P+ztCs>?E5@j5GT2i))00x1Xyb`v3?J^Ao7CaGh~A@?74iPK4&_J6-w} zCDj%j5I#AVI9Q$H-1ullTBGlluFmJC2p8Vv`OF25(bT2t)*>@^wV}(?$8N9LpUWVz zeT>h{&G3Twa#g1Ld_YPCRtw2Jnp1nID+RkU^4`k6C)Jhv$*jX~sOO<%FXicNZgZAL z5-txpHV48L`?F`OQ7eXx)pFa2#oVFB0Nrii_F!>0+sKEEyC>zVN@t|KIq(QXY9+@8%Rre$f};>4LagpchrE5eYbS}@qj@?d539#@3z8%i>ze4+U*z@ZHgd_ z2zFi9jnBq5n#sXx9havu-Cpy5j^>7o-|;082-rUW@uf55MT*SOl}*nfF>d0DZH*hO z#|pia9&{Z=ANq4vCYbW$X}B19Ux+aDww>%2_}e242!u?5n?J+sb^9@i^uNE>{=SaM z6812QlC|UkIpM9oEmtQIN|Ex0(hLLC^#lnhm=jy-P@VTaH{L$g7$LI6j;$H00A&@gT#RDgx=(gtuzltK$Y$rtCwzSkh-Rx|84x$6P|H>jHE4 z=IN!QhbTJh+*Y_n4kn(yj<5)WBXYEWZJ+3|mowF+sr~6?uO-i`dAqU*ayK@-!Kqb6 z66EY@p1-Z^*3ib9b>fhjDrS4!YOj4_dV~n6$9n%WCH~knMDJF>#Ndejp#pp_EZXV! z2D`~!Q%<+uE1Gu5Ez_jM74k0Yy69LLnaYH3FNk%cCaZ3EQ=01HyjhF^o&ZaqT|BSm z{yyV0skARJ_s6gi74=lp7|zyOr(u2P!>IbTo)6XW#<|$O6myvSGrjDn$sCVw`O=Jera$f?mbkYWx?OaQQC5OmoE)3^$ zbsd98@VkGc_@&|G z#4k-HOz^8BZ`k}mmzovF|330XDBE_LjNAu{}Rls4&-k1jl6N>oDdfn9A@zXr=!GEW_L+yG&63+Ms0o>z%_F4sQAr z)@FEDwY2q)x4?cpB$JsL_>Y9qi@UL()5;+L0~JwE8PXp5ReV#AO$uRuCic}+_Uldg zTPXHxJ@Af}AUZST5Z`)z$9EaP2ofw698~vR`zCxa)}3L{gY7#%+(iE7Wq8$mZ|D1> zh&~HDe?>|rAl-UZGN%88-bTX=UN9xDm_RAhx}_XmRBZmnx}Lq{~4JJD;grRp_} zNCy$NU~HEBE9=$&PkEb~DwagiVmT=Ve8h+ul_uwOQ)6W96e(+T{NmJ(6c{PU1lYGF zTkvj@je#7Qf}F+2)6ak`wIpQ;Jzw1qoBagX-HktoT%lRVwpvl!_w6;~)%OX&JT!S!N~KyZpERZToV6H`)Lup0Lg>p$74 zu&sD>bn?AZS+*CeJGxkMNz$&FK2cUi#(!Sb?8Kz1^znR~9Nb|eZ!GHMu}67L902F4 zA!ExAe;7pv`MS_anTC+%%iL}KvyD@#+=%iq1lV*yp6*I!8MJs$W{ETlzC4X=8*J3z z>jmP?B||((Ar?jarU>?gkP$voLKkW$o<8Z8!f>Z`^^8XHHwV$;Gdk*wJ*6Xd7-Me| z9mI#+WeW4l7>jby;Df0g&*q`W^e|Y#iz0t^ESx7v1N=NUydMyJ`NN)L$>x@UTniql z>CN*O5vlNYk}L^#TFwNPxm^9wgS+5t>ePU+7UZ*2Db`5js=!QT~|mIO%md} zoy;H=P19)2xI&@+-t>GPdqSga^fhmm0q%Fr?K#UKvE=Bj)j;%p5WaY|+3MX>2~pK#>8UUG!mK(@B?@L^U{1gF zr6{6VvP{F|-7pWOucK|3G*)N@@;nQlBak?B#ahW`y6^Z;qKDpJh2@|99n{-LHj)=I zc109@Ng7*~`HB4aYW&iV$LQ%+H%K}%ul#x`~z@1y8Svypd-|}Sg z8J9R6Q#m>#wD?Mw=o17ChZ+#{lbB9NcYvfv6(2X+HevpdZn@0Rv5K!TYZTjag33M^I_-GG-ARgAXvc})U>H)tsnv1;}bpJK_grw(P8{AmFla8q5Bnri*4@eThSWm zvECzS2rqdy_WMSWfAPvE%a*u$@rmu1w{FC!HKx!frY*S(0@;HsrEl%=sMn0Ll6HGx z9tgqEZ4X<=tuIaIyPXSIBhjGv`4yrB&8eNN|9m@c=^GUz4FS-- zt?x=1u1CIk>!MSfW*HY5tL=wCf}TGeP+DuiQEH~|EfPQhg!~BnRfE)#~1m4!2nBjz&8UxPb0>tHpbV}GjQwRD zp6I0lf6^S|b(z|$)8zdlTYGRcho5b61_ZlHSjq zjkr~n`)#~{l32EH={XLzbEv@F&v^wr9b7K>?dR4uRQ@Q6r3d`CK&%G`pwG?G1h9K{+%DC(3_(SNEFg0_LpLBO&LX4G4aV=RN4BGcy0Zoi6xC5O6X8?Tr9MvDFU#gs)u9 zPT0NnHDWdf3t@ z)Uf2-My~t<$U`Lj%2wMizgy}jKDe8rRxx+w(~%w-yF&MtyX-r3m7NLcOIDNtn7F!m zsCnppxY)|qf%yW;M0$U+Vx(9lifTh_HNBBs*`jNY9>~oN;*#WA7am1X0!VG{Be)AB z>aql#W%1GPhx5vU5QAf&mNe()%^D8WB=vmg`&_BY>~?(-z>6$^S^NE~2}o0#jR;pQ{C~jOr5Ea$D94 zWb^jJV!%xrmhTfbi_Y}$aWU+Qn`IgiL#e=Oh(mYYWhvZ2m3K9E89b=D^z-84RD`Vw zP(}UsC+i{jTB&}`A}0bOpe~U8IA>nca?zl7Q6WXqE!#uqk7};umNlGg`eI3Gpc2DM z%TJsJ1QA?u@{8L*V1Z~e#A~s`7w>hGYiOFB;aMIA-_oc)Dk@Nu|JymIC&BJOz5+kJ?cH#;aTq4S___) z-v?@nd%W#_Lz6>J_QckQfBwY=?5FC9{t#L|9r#nGrW^am8*sD1x_ib1H~pmN%>COo zR>}Zx=W9>sdU$|@sIB|O!i30zk}N?i8FnF$5Nvn%u_bF4n@&HX)Ae`1{%q4(kf5z% z4hg!sFW>Ryh{+~vuC+)as*-CNTKkPnHgth!F@Utdv!6iHUWEN1MezCU_o$qNK~Aog zxdr5%A@ow}UyTYOqHd8mDJi<)l>B)Aq#}gx2hgq?pT?)9e6@Xruw!?7?yPwrqE4~i zk2#O2A=X<1XyL}SXvdbcQ5V7&1E9%|Abo5h&x-cNz47)mr*jbHMY&ms$4|&4QD;9q zack3#(}5s$GwOu0sf6`Lok9p-F0*AQ>$VT5DMZl(EKomtP506xyajS8V|T@*ay?=M ztJ|b&O!mT51@3UZeO4O*Y(&) zYZo$lngRz^xUeR3-gwBN;XD)4oIe!{L?Fqw?8aketF_<7udh*b&DL7z64r>BoZi?s zQITz7lq~XpX_unW=RtS*AhGb+Uy5s`PA!(7?~{pv0HAQDlO6Cnn-e6&StF67D&$Eh z^jpM)gCPpCl5w4aoA*{3KfYsHK(g_%d+=p_ysJf?!^^buA#^0A6Jt8PQ_7%zpJm9y zCEUDS6ZUtAtndIjOuzHbSY|X)&K`4Bj~*NAZa;dQXr@aj@2lznPscq>FAu03s2xsS zIygNSTsRsdM%eMYJ>Q;V8d_|2qEV%u>_}x+nIVh1#d<{XYQB##a3xzhy;2}9Cx-H- z@vQvtGET>LJY%Ucf?Dm_O_h9&<{orOI)*sS+!Cuwn;6qM6y|v3mEp_!8czT%W>@PN z+p3}jV0Sa;#o@jQrzL@T`oKV6?3#IWvAczd~YdDg~pqe z&D~x>1nQ1lSJjtno=JzToXO7S(_ltlpnAtKF)o=>Z{&75iQYes^A4P@vrQYc!gG`f zctRGsEG7xW6x9?7fKS3C&)lHTw`^tI-tl=5A6^xo!PmrvU)C?Z5p}~ES|iPa_SE_1MWqxUy;1T!na|yeQ#d3 z>zeAzJ}aiV;aW~PJPZ-MPC~K*9C`vGrj3xWm3e_#|TPD@W<0s|J zv6p~qD+Q-D=8}Ea+O1Ri-B{2Y>s6ax~gNiFrx zMzO3|-g;w8i5V#VrNX&g1CGSBRL8Kf`P28xYnj!zOY}HNdU$8g_Rm98_T%1|n8+A7 zWn?VU(dD1t^P4U^x8y9_Xb(G%bjl7g`6cR1JYV(pZGI-8QY-mpviXk(N8)F-ijdBn zB$%fINhj(IhxM1U;GpEx1f-xzS_LG>$8p z%gI7~-GfAqQSZX8+LRm@8)+qlOrGzCp6~9%2}6OmFAKWuN!!TpTow8HmdvT)`1NV) zzI7`1ew3@@+?}<|lEB;|q?@k$d4A7aRk{*>l82zsdH=-xXd@wc$LJ>^GTt@&9yJxQ zqBIiE(K$f=x-Tza#2X+>6DV?erO}w%%V*nP8@;^+c%>DW-7VFO_hYK4ZrnvFd_b-+ z0HfqpG!0joMRQd9r@B@4TA4>=QU&zp1W&skyJ$RF0phGhIUXirAZnX8>lOpD=CwTX zKx>G8?;G_s89}$_H%@JlYZM(7j3cS`iYs|1`apj|u&Pt+B1RYBtegAh7n=3zDNp?Y zbgQddf#nas%BaapqXoHuF5HKo&X(2f=nP;guz1#Rx529$5O$<)t)gGwChRs!Bw~)w zu(-Y@$yK3n=UwxEG0Z#1XU<6ydYm9XY|5?)bX`OpVgGP^`-8ONVTqBzLvKp{t{R45 zKpVICYmX^TGJ0>SdO2%xr_WXi&rlzU??gn? zH~}7#>yug?X9<3i_ClMCRQRs<}BjWnXE8?Cc@omnqpBSykQ7mdF5aQ(7f_oEaM zUh~C+&tp~@Pf+qbq30YnTU#}+MqGh!ZxeKFZ1UcDd{}2I^(>uYs%wiWBOoYXBfYHM?3e*+y*}3r7iG1|BK#9~O#SUDlQ=>usaRyzXrp zM#yAMplbiz!r6uJ8!1}=9m0Je`65Jfp{w&oY5zIcG}O_#!5~wqKk(vMnO{nB)%eGY zGsRuLMn@|+ujiq|!B7$$`#;v9QdWJqa4GYceCyTj;!!v4%WjcW`r4y6Nb802Z>4Oh zMhvq&+H>}(?I3!1_)s0ER9Q&`=Zx3}p1g=`fN;ve zUrKfDL!sfYRS9u$!HWXHd;dw5T%_qOowW=0fi{-$!u$@#)n4knjm1k5H+ zpSbEYD2XG1)+@HdqO+!gv5tf>e5uXgd>MZCA^~Z}gwdG9WuN%KnfjTtY$Xr2;Ujzg z0ZgtK177o5|7yk4ifCQxW6t*orMx3O#Y2r~Gk^<$K(d|{-;Jf`h%26Sg{;a|qL>vk zenNuvSHy0NwHrJ0*;e`YaFoySA(-bODX@*i4D9J-XQ_qnV#5G{jnrCot>H#(7d%O< zFkLS?U!S3fC_dQ%Ocvn&2ip79-Upr+ZBwdNdlV>FbIbo4@WPlvH|J6BgWhCIXQhp} zm^i?D$d&)`pf`uYy1&o$80u zTx(m&5=pZPm&!+7%?TwWzD-HDXXQUD%%y1^+*cZWn1!r*WJM$CW8WC93sf@}!UHkP zDt7B@z?Eekh%G-*yeQ`{npLWrS#Yiaom_y@xDYKs@T8)RkZw{yEEPd5+>@7x|2eR1k+Pj@3r zKD+9$sXKgH(;v4v;R(*Um>awHx=yFXV}|%KE+u{`3vF`u^sOcCihE~PMMqPb2&E2z zxhtzmnyx;!+f{#>@}o9{E%r)@eMf&=1~chJ-yHIkVArJK|5TKw#jbR0e-NH{o2H39 z)md4ZrwAF}jo>&M5RXbY8ruhF=qsAt1t)j!p@}36h9d&#b)unJBr#Q~70{(PFrVRA zbg}}t6C!ayduCM)^X5vb^Ty!`B7@B|T4*k9bQxcPtM*|4oo;kSakzD=bFRs558#hn z)rkJ4Ym>)Sx2%K@ujK{$H`!X@6-7*1okzq3on`*Ioen$^2{hw@Zx;3|OgH3P89L&1 zf-X80jR?vnC$f!s$umEwuo}CH`t_sovemiH~JAE#+d5b1y#m|0=uvDrPIFocA2xdQY%mNmQr8H89)Q z=@q>hE_XE;As@j`sPJQrX!jaqb@_{M@r7?{${&|2?qt8@$?0Y$C_4O;T0bWfg3{a( z?no8Us{Uh>e;|*mqZoa&qw2a)V#Gkq+=mXIo=9FYy1J7iUHIvtgF746)>W*IFCkaP z#RiL9Y##?;>Pj$fTV-GI9hgv3!I+lbtEY9L?)kt$aoZw)_K|g#O}nnW5`TH+*hI%V*S5oWr{rYg2*Z9Xr{|)K~4X16QD6 za1%2_AP$HpJDgAbh2^{UOnDU$Qul2FFN*HlORW~@*RJFJznBW!jY1}=x{2}eiOC-0 zqAj>!Knl?H3%Genq9sMI0W)GJ(9Of3gs?r)#U(3 z?!q5l7@8#2?&m-hf2vkTBEC65biWNZ_bEW5S0{%;=ckKFs=k=;e`1J(9kM>gML! z^fZ!deSLlMxL%t4FtGks-;$q7i$T8c8WFwj zh3uu*&yJ6aZ7{tmrd9!RIx|Au-QC`l|1?H7u-%Nyaxl7pbEs-`^jPgJp16{&ca(wKBwE1a$i;%7F;PCy_c zkk8*7ahRz+-dn47E2+>g)X53A{xsg==<&6NE_dCg9+rc$xb5zw4vpwEU5d#`iX;lvRN9A2JKMvb8lWXyHK|k zIAQ$&xgqYs_JOX7<(MOW)zOAMp?h(OI%ML!bA@VrEg4<$apQv%ATXFP^F|1uzY7K{3Afh;q|(&3BIyu_nY{NZKxu8*;a^|u z0=e>pO_WfxTFn9rM#Kwe;+m62WSbx^dbQJQ98!e>&P_a6@;gPMgd}`A_E<2AO8>Br zfvb_j3V)-{uu;|IWUmLvR(7r8rhnL(He%mgG3>#-i3ZlsyubFy5e6hPik!}B&rj=D zHqV;QTNYQzg3+>)FfR{CI0l1}R)=o+h}b$7uAkQDm$6FZ385d7{pkOU};KU0N997Q#}vy?NkK_^t8cA3M819V;;=dbhO zw&g%;hVv38kO4H5F<_tvI!0NW$rU74wJ$D1m^v?VYEcblGP~zj<&c+u(@@HwlgeB5 zDqFX@FQqKj6vic5=b@$sjoX(3yq-2cA2cqw-A~*(k$~*=PRm+bUiKs>De?4)-cR@+ zalIb=h3)wf&r$asI$R>PQyILqwdlZjUHKUFJR@vM>@U*(aGcb|J;?SCoFC8I)xz0# z^H2mG#_d`JUOhoMl>vB4}&?!}&{if*KZ#m00r=pQ>Ux^{90; zH8tk%)|;1jRwOR+pwrf?;jgut;@}mQA&19ZjZG;!I^zzBRAU0V%&5s(p8@ll8lm+A z5Lp5sXW3w|NDI%?#pU51OLA)#LWi0a>SyI{wN;vf$0I&M%Rbwstmr$}@9eBWmZY|hPP!|;(a1P65!dk(IGt(S!ph3Z_E3IOmiZ6$m%wt{hvy8}&N4L1 z$E~y16%;0QbalDnadFL5QFXsSCziSYEw23+7#A$O@R#iv`tflCtGfF`Gd}1*et8{! zjQ(%ncQ5B{R7^pQ)tjWvJmZpyTJT*nwokxSXdr_?Iq|?ZTTm4%eqh!0_zj!|bPJF$ z^ac-@p76rZKI^DM(j#A?5g*8YenC8T7!1SM)6?Vp&X&nP^OF>VpnVQG-T{N%OQX2o zuS%2xaa=!8~5HZ&K`S=z1Z`O=lMMOHjOJYkrdhu0B8Lmh)rv0 zeSN#`E`HDKhJCyBi*zH!yy=uhY9u6PpKjsjTOj`r%=2qXDysVeQ;Ul?+GEL{^ert3 zMMhF;QgMbKmNS8cx41YR$~taSgE9pbV4wvFQy%nO{%W4rW1cq<6NED>J_myQ zE_?vAZ{*kivW-IHUw{1nC~c-IUlDr&{ww)^L5}?Ie-$2y#{c~Of7s6Dy@;&`&@7de zwcGVAaH%vS=I!Adkb$iOkno$i;isP-b)!l>2J`zt{L!(aMB3;(n3nh5!L)g@@TMcT zhZ>TSXa>+dCSJ+^sv9QNbVv9AMqwN%6lku3@1fh|>u+NNJTT7)We7cBH#+Lnz~ zR|8pyng&Qdum@TwW-cb73xOF>neYq3kn-}sljXe@xqW~Uf$&!`yt@XoCy?Ed@4MBD zEym;4<8@S_BJeuMXoA}gcon5PT?`Q)3I>kvMMl z1R2(`QNYSJw0zH^&|^=i%{{aq?x7l%-&a-!)8bKKev&d(=%Hw<7Lo`u;Oqy4)u`^L zcyp0oZH4xO531SM;Ej{QvgZpuUU_`dn>lsi1aj56ED_X(kpMaYM&6&fSFei(X`}i- z21-(PlF-+aga%p2AJ|s~36mDg6TTu`kyyPhdRYfqlx*K+ZuWL>DbG;Ml(Oi0e*A_k z%EkufGiHDFR-%fMfkh|n{3+Wg$O8$bJoV8<_hm^;IT3qBb93){R-uZ@ zbAY^asK^ja5&Fs`(TSc$%?&WZ&#@v2f`qS5il|(=g&ZeATfi;^XwY^x9?uSMUD<_B z)CS$&3!uHSW?Q_P+b@ZcomA~>55L7@`3V7vl6_iHCZZw*GeHs?Px9g94P<-EpaPZQ zb>D%D1}a{p6TPd4EII*P_5fj5Y17~=z9n+xyr?d^=)Nlox8v}b-k_-@2nPAx4W!hA z^pM-@AT3AG^|%M*3Ni}Z(J*57%&kGv=MUO$8BvP|K`_v%2hb^YnL3slEwgxF9uTTx z(RPz}_TRZ1M#J$CHT~oZn)Pt-6@f&)J1-T2@lS>vK#&*B4ybDxnIuv9#q*+wG7uxE z0&KjJQywrEl7R#tMp1&x2JR+-$WBd)IC`PEUGCjCx}dm6<+)0?zAC#IgCq}fX{Yh* zJv4>!H{l0fd6338M52szE)-Dm)-L{qNc-% z7)ov>o!WIqM#{44f5SX2d^c-fVnS9m!%uD`0cA$}n17KBn?ZTTC3a7J)OE;~PbKG& zRbgUuJ`stoUebJD-HDnGsrp1nGg5*Q2s9|x;^D6@5K-yc+kYO(2O(FD8}e`X2@3ee zk`F|eG~=sDQ6KUuaoOO%LDuzZi8OrY`d{FZiJ;1B09GP=;L@ISn~JLmK2UHV zx!y7dXGgF^iA16=FKHH6lcE&wD6q>Anz)G*VGKQr@|kfD_osX5n$qsD8g9f!HpuQI zi=ewV+t>Ye8=f|sjz&#b6jHe$vM^px|4pR*!1FkocZkZV+gp`?e82X;yrq4D6emKK z8%FTK3f24N{VIU@L{vUlS@ik35OR7RVuSw8)YikZ0q0j_y-&7@ zS6~{Vf;9VsFsQc|qHRH8xlehp$zJe8iplZ}V6W8daBJ)*QGSmbOeXw;HmKnX^^pzX zfwNDU_oxo{8=@4mjAn{hbPl=06o&db@3o8c0{9h*as~{pwT8&u?$`iO;S20loYNJk zJgvA>L>{3X8r#93Ui48XXgEd?zi56WbbBNUmBBJT`x9lh!ix(H%%*pKLGGA%mwu6S zb-rWtcTXA0Qx879+l!Y-vqegD{k&{Jo}$$eBCCRycO8p5^S568n?ObPuJW$|32%z^sj$%Ug6z4REGoo(a0r` zptm+d%P*HjsCmw#GR@s4Gwq ze_0gW)YdJaDYh4JLTu>| z40VD`~e?qin{3p*(F(247w!+2&5@#E~e<0{$-pb_Tbc9ST(8*Ei#ZiYic**I{`sR z-zO{rcI-?7-;&52Q;u!3vwBp(t%+pNpA{7LDy$J6x6pcXSq>zVZqlPHIsnCSnc-;ays<->N)zmRZ5H-gkjz8pI!9(fDtgvzKvMrm7aGb;6(>Rmr3Y)yy?1+iiv ziN`)@mSHEB$?XF2P|Kv-H0aywAj7m)ZWb73VGw3w0Oo8OH)65_H&CvG>;Pyv9I)ja z4LNiK!ERYP$VfJc=pBu#y(h>lDIz}k5>g`yL(5M9AP1$(^RQ3RFN2XWg8jDIT_`-u zb@9B+LH`(8zhDBC6(02h+N3@Ln-UH1I#V1dlmvVlTGn%;M_%Xp%3ea!s3!ry{hR)t zYFYI(2T!{;(y+CNK_k&@vTcdd zh=WH5NeMw{-V$(^rjqh+#0XchmTLJ>Fp+srsWa(EmFo=!k*$iUsRC>+AerNhqz~mad9Q9T1#_N4I=$EXOt7r z_U2Ct+S{4i_wZ?)GL}W|e6883s_M+k^IMGcV4Py}VDp4e+I(C>Qe5^4q&Om;=%4^^ zs^HdCT~10x(Ref-T0g6w0fLWax5^4w#b=9~av|cJPn{zl5x`4$748E^kpBC~zJ!?p z4U3)-#jo*>Clck7T?q{>?dRpMbs_AYVEng)UIYjg{vb)^d9~dyDV(dMmxud@3o!}W zkMB2jsEd1jv1$HyBOl9z+bkicz>r4%9E82oK9fZvU{`rFLnwsk+d z|IzU?i1OHyQ-Ghj-F8n+5%zLi$Ikrx>9rJJWH2aA5g~}yq-D^eqtC+T5>aD9rL-9N zj0rZu`BTyO zRV>ou0tb(AzeJRV2=Ia8@@Mv307T~Ii@LkN3#7A%$((bM@_<%4_iI#p2f_B>d&oV5 zMROt9;4OZ7p?qZFrc*#+whb}u1IuqK{z+ZoeLv>_gMfBnquV1<&6gJ0+B)b{F0*+0 zui`_uN48J^@dBNeY5oO}^pBIqo)hjQiEQ%3L*>TZAdHBX;GegIK|G>~MFTTox8Y2JZ4UYEPtRY6 ztkLui;2HT5Ui?1@_)4udPvXEgFdrR3@I!XxHt&9;=2?VKSd0UHtLz2ur}^#mI;w%r zNCB4})iV_2l*P*OEDvKQ7MJ5Ez2`N*a0+r=52^5Hy3$>8uQ0eSUdncIak-6ws+fz5 zFQgGQmMAkkW<@?OfSi7SApdv&;xVv%FJugD&YN58GPtw8v^Fx@Y31wGr)OxPWM;qJ z!}Tg=IB1)Svt-V8RLW_{yMA=HiiJ`rEK0>}_rc@snpRZ{_s}OK4H0q*W2=2gES5z< zV9y-z%;)(#5(jtI#>Y3#n>F~xFFvAwm1_aVKezd>V}0!rk%}y=y}PbXqroyqh;XBvd=op4%+dwQpFdSbY3wxG8?`!GKG; z^Js57k+U?_>zE14@fBQ>k|HJH$h&2aTgZJe!mOYs4t?9x#Mi#VQ&Yh@{NKrkHp%cV*eky9nne4s{)(GpO<5e)MU z@>1$o=i^=)ZfO~I3D454>6dzA-Rbd+Dty{TpyXb*TP!1Qm!?KZ^9|;V?ChP%2vzo= z+5WDdYa1(XH$$$BP7KOJLlbwxL?)E_k$l^Z?+cp>{%mgkw%K=w3wNi@e{qyBzN#AI zv^SZKKXa6?Z%Ihj*(Dl=nN`U=Sn!duTGCAiuAYxX;`cbNXJuww+}$wz+chy6EJ`wnaj>TMFCJU-tsUEu=`>ZcUA(NVBgy%kS~^IW<>}N5y$- zWU{J$rP(9xU07GL;JTHSyb`@Y!&PJtZ$bBSi*?V7KWnDe1Q%p}yX5{-E@KukSe{YU#w*ZXGuP*HcFzuhSta;MI z-nAwU`Yuiw(|DNoP&`?ONzu^rPxj1NmNNG)Rd3&n(Wv2K2tj%C_)kK=$p#PTD*1ERaGX%2yV^1U(i%pUZapbTp^8JT4VD|pcyJ@*NOv1uGkM} zL=9C>b6s=`(~E20bqtA1=Gd0qC}v1tp-bLMQIz{+@Bt>$wTs>?45Ld=5&qFkigP8kX3A};3Xp_A zm%(^V5JfE7^X^O6LeI zZvwMlHfd3OGm~HXu|z><%K7dG>pjCOEv>c>?5Mqe|5MR@Pq!o?i^qKj8~jJO8F&_v zZJl`wlFKgrT2uDX`b?$O$DnLZ0l~Mmd`Et+ep%tKN7KA<7s$#8eEyd5v+IKDvWkw6 zk{xK73J$suib z;p)A<(N7s~czw6_q~@^s5Xl7g0O@`H_?WYv3S>b7cM|&futn*ZMp0#e0UFEOX`mRV7S~ySBba<46%cDUG zTbKlNG9>T1w(L?`N@gZj3X@#axjv=3r|(6rduF;Hr^or=G*%P0<=3xp7RBAZ&`q83 zGF{a+M+illwd8U!P0GV+?+52!(`4>(k zJ2$MBCe!>vYR#tY1sxsSV}qnihVho}Uu#{vk{`F=(^PVw^lpteCaJx3njqnhbwSV; zYK3n9lE_5Uw;%er8b5Ed))`;(QkR|D+8wJNJh_!ngGRX&$_RD%6zJB7(QYfA=AW^| z?dGrZtcxauNDM8(83#z6EWGDuihzddmAp@UKTEFL&20sDwfh)vuf^@uGT`75WHDZn zl76F?gM}$YGLCP@r0kFiVdUUkaI~;ljhz;tpT!Y2x|B{ z_Ik3ntx}rytM~C#k1XsBL7XIrO0>gPQ&OK#^Sw+WbvI3Ie0;OE)R*c9%vsL0q+}r{ zXOpX&Ruf6^FsJ82DIPNX3_jd9foKV@kyQ+>j!z~m1e4AQxsz}?;9YfNdljSIzZ&sL z3a_1SK#@KCF#J}reOb_!1d>i+tD*=n39U#fx$c5n8Did**Z3kt<(5@wW9c~Npu!Xy zGA2}PW2SF?DPp~ab7WKYwWe>($mB~nkFscJ(BmdTwd@59O(9zYjMGY0hl!D^NzPP# z4Wmka4(09U1EwsI#D13DXcv{ zcszd^-6)^r@s;wmfMfnK+NNInKdZX_(YngFi)f`nJ6_-yhL6y-FWG>11Ocy9*E)}L8)i<~i53tiGL`Em5? z_s8Fs%mkA{@V3NIIK}k704|ptG}R`{Rd3}NoT{L8O)jxdQ1_Wv$rm4&F)+8!amTGU zoRv8^Z@YNCzorvq>&L)nMVov!x+8kx`|gKk-et~6Ua%W^7r}+W{E0$Lk&pA?R4E3ku?SZtBvt;0L8@lWNatDF8oum2 z)Q=m8U9QX#oc}p&omVHu+^zs-n; znX${B!}V13m!dMp7vMYYWZeHK$YBxU2TJFR$NSZ`t!4`z4+UEFFK@+mrBZdPe(4)N zIyAKSZOxgLi}oY$`kncaBqZ=ylYJX@>CU=eFi8?f;5vKT=dFdU80+S0gDQ;CUs2ZI$1ue z17AW9AK9!oXs;_lt}j3@3e&qx#eum%ODVGFW}O^{RV|Ht{Je{Uv#p zE-?ybt_3#n+^5bt@b-I&wAJ9bFlZt-K|pF2+F4z%ol#Q-(BL7Mu`G5jj+_fP;@MI9 zJjL2)ZKGUL-A=o?>g1G~r6ZJGU5i`;`g4y3sU$IE$ySdrn**Ad&BkAobAto)dA@aT zM_>Nnh-m-pRGIq%|4jOgyOTNP%VYfi`;YK6;z4VqMy} zitn`IY9^Me#2;UE%a;kX?_a&pQ(3qzur|`+p6`F0kd=gbOU&GQa=@l?>kiS_C0?{y zXWLyyW&1F~M^!##UcZPVpy*bQsvRNCW6hInY1r()^I=iPq=3uCZg75MaMVXOG{!6n>%cCxx#b&rzPFk_*DD3 zxdok--%d(aqriW01hfo$1$I{5juBP9q925keDlYi)wX&t1SvVLs7*#Y=Wl44Tbu0O zURs;1-Fj4Dpo_FuXaPJSdWe>wBG=^IcL}#JPrrD54a(9-?;6AfBn*t>rLD#l_-JQ~ z7~+;jLpLvGpZNro2Yz^RN-V4V{M#)JE~3Wp?43?hZ(-IrecpzpFc%XYLMrK8w9|EN8)D5p2yO;QeZXZGh6D8Ss7+cN?>{;S5ckh%@I7Ur=0vjwK`Lw6Rir-znMg0a`Mz) zDNtE{t~XWZ+EcYjE5Uc#ylgA8%khzN-A*V2{skVw9W?c-J3Ty2rTKn)RhsvyGH>wu z4VR7bdRB!9!EmrkUtk1Yru^CaZDp|^>zI_^(metj?R@Ev6~U5xtVk0OCIFRB82@jR zpn=~{DzP6Q8cPV3V3>>F6q4p5+~KA;RfJQPIK(hp#8$?;o;W|kjGVH?nt&U42QT~7 zsu``mp6s7O64pUrel*+sxy~4;r`QBzgM5^8(}YtL>#&f zUd`}ZHg<7XzwXFh<}6s>5??X;asd}ax~G@3lpvEjU{W?1k(XvN8?xtcH?K=65r#6{ z@OEKH+tbf(p-@msz$0D4@Exu4n9a`~50i)(uHcxX;%%Zj)}BuK1iRwN(F2q(fRr}{ z7eDK%a0t10&+pV>5#7QyNgq}v-o)3qpqKfc;7f>?wiiCXSoiX6~%t=pI{}9pbCZDKS`wGlQ4ESK5qc zW2b{uH%CRsdqDITNa4$M6Van_Y}`L#K(b&;XU%fy646*@)@eV=M!$F$fo3LLgw*Kx zGhA`joQ(Nw=!s7(T+-c6G=k+HhH_1|9w5_k>L-A^pmsj!>7iT5&0pgFa@?k?>!n4> z_J#)i&6Zeh&EfQomC{DcPUA-ZTs~{WUfdz=7J%K?7xY%=L21Bq5epnB7imcxfrl&3 zS)GO~o9!v#d6d1om+)^yVa~zOypFqXz$%!`1>YU{bT4Ya7uw9?;4I8|Tw-mUs&8f-xq4;{Vdyklfj$`S7E?8~laP)q`JGh6oG-$ z1Z^z(Sf3?58VBe_B&7YL?P5=9>Q?%fe3xhQ)xNTrr9at(^)uE<`Id$ghlKyLxO9^; z)VH_0mNYd|=5d!ALMiI|wmQFU?`}I^jhOmsuS5-NSoMD=gLzOyv^ zLKFlM=gSKI=3D=Tl+@q`cx)Z{6~dCCqYCOH^xw|_9{=;_KGd*JnoK!+Qjd8(-())m zothenEeT3Pt)->XpgH)=QvVtRg>zPP`2Md5Ghy3_|T5Hy#5|OJP zFlpFTc#x`z!K{2|P1C?D%qc$2l^L5qn54>OA@F6lbUnjXZwWPO5MzR$Te#PV=E{}$ zxpvRZ`r%kX>4V$%Elib4HnrU>@>=mSvqmNS#)I+m75~cp_))pv5DV zmRbs(r(}cob9vmx`qOeJv&ahc_RbFZ!Xy4*>+9_m6dwlA1R73@w;=~_FbMvPK2lbf zS~CT?dDT^%7k>?|C9XGOHdzTH--LY38W+6ZqxMDMdS36uHhNTZ=<)>$|9Mu>UNZFt1cx3;@Q~ErXtlSe zD}Fnn@&RjZZ7|_y_6wfhywNjt`=?VOT4B44$8MI^NlWmHiHASE-JAIu?@I~3v7S>g zH-C&vu9=k>*o<#mV7 zgt@C+EE#-A#P()PQL|~-C$0ZDD>d2JKzPTim5@?*7*+lV-|=9duBG`omi~w&jm49e zqyIZ=09fV>^`b&~6Dy&@>>ELIUtOx;MT%?YX@Y9Kb6-`Fv_S9(0JRVbm7Psw@lDH9 zW7|#)o2pN0S@P3Y?HeFxom(E0LDdWZi~))sw;!W4&sFnRzv7FVv(xpf>r!0(1Ay}? zFS07u5S`aTWz@!;;bxtlw<_Gi4zp+#a_4kAS1!lud=9mc#%$Lc)*UJIX6`9=rCFB# z-&rDBe&9Cih2y-dPxTtN7XRt(e1dA)&pi&-;*n%P+n`C7!B-UurInoE7(Mv(R-azm7Kt=-9I}EgVA^ z$jQE_;Q#0&3lht{I!5t>*>NuB14ehUx!K7!&PFim@p5qF{8VW0`j}z*=43>}iys|$ z7uSV~oZL*retrEOH8;M?f~2vmjSQ_T5Vg?es=0&2g!kB-j6Qw@pL+pML0k_)Kg z%w-RNdf4-4MakZN;(B-A@L==NLd`iJf>||9xuuN_yq?%geSDg;2~OlUUh)iI-=#nj zAb;v8>gX8+RoCnk_w)sPNFm}>C@zHw*Bjdj9f*i?M(&`1sIMLJM79G#BRc7uqx}l95E7leB#Avn=;*<%SZ~Mc?p1{ zwrm+Y4x0QgYSc@4BMjs9lVGIi%`toZ}W z*%lqR0oai|zInxA_dDs!@G`dR34CLvNN%AkmB54~behL$C+>7;QH#o*?l{GycHQYbHl0aV%$~KT&+Jlpcib@qWG8DapE?|Wd^Uwx8O;qzS#Qujc~K8F@c?I9uVtNC zW3y(1PaF&15`jg+>FjDBn29FT7bMj6A3`;kH7L%hYwPqe$Zg(sh?deJwEOWDna)MO z18PJ5_1;vJ-@I5g)ua?h6GG5V*S+SmiOi8dz=sdM$HL zVsZT`pRqIV%6`JO6~p{~JdumB;NZhkHZi)gD5DI145A?oYs%Vh*tQDjG4>yF&PB`? z@!tK37Pb)BW8^M3t}h1C5>iZ)1PZGl;WlKC9*a?fq!j5^|bMxbi$0IP#fOp2aW| zEG*iUPN24pK&SRm^tH<>4=8k27eI4N4qsdEW51#7hhxy?O7fAg3M2s#03($6rDC`> zh8c+$B(~3Mu5B1d=*Gb=BoK{4A^~6zY@vTU0Eq0;*qQI|ZIMkUg6tzdLfCvQkeP@7 zFk^An##7gq2U%llpJb6=p&thT>g26);#n|&4}k-8d_Xz2@1pp(l^|+91LPP5n*mq| zb}@Tg=_<&_}4R>W8W4WYtPJfjGs8p zmUT(aeB=PqxUrf5A*ePXEDs3d=a_!ObLt25TSvX`-d2hhBS&SME!P3xZ^P;-Z+qm5 zq1EG@iQ~84ukgY=4xta9+yGVNtbzrHcdGDB3d$(hF}-M4Oqw|U<~ciZiAq=jP`+q_ zJ(#17&#|PQQ9m#i5{o*4#R-;Hnex$ZK1-b+)L(ZUevGWH=AAqfA?m2jCqTWhf%r6M z)Snm|sT+Uy@^kjkyG@^CZ@Xf|PCU($rP$pqJT7EHDm8VN&}7 zUWPH4SX4T>-|(Zk=#i_b$>-FEW{;-%4OfJ+vc#K+J`|&DuRe|B3>pW8E6fR}4l!BZ z4H)3q13MHh-okEUI#VQ5kUzZEjU)q-=cMrrdsN&k-RIe20)r`DSgcV?|2D;KZO*!x zBFrIRoMRDnsEn0>6UNvYKU5jHzcgYHNDf)MpfjwUePG59eFNn&N z6o-T6Z6&RS+mtQUS*WR_3PAV}byj6?d-cfBf>8^7sTCZi>6Lcv&6teNB3Z-o1J$tB z$7#NOgT+5Z|E9YhjXWeF3A>p3jz%)3Hm+P%ZXBr z>bIb3q!5ehW%e7=n~8o(!K71=&a5~~dKX#Q_xhYj-I?uH=)Usi(N@=Mp-LqGY=J;C z5PhbT8#Bw=qMeXgkV=Z;bQDG9kxoHZ2OcvtaPL9jZk(VIqo4NCZ=rwF1=F9{3nTxF zK1XFXyYppjj*znjjoIm1<{hmnDs3bMFSG%t?^tn^MtP5eV7{r7fh&pa#tg-w_ww6I z)m5d`o&{Q8LE^yZ575t;Pb}Jema(*cTJ?HH!>~utHyP(NLR}rc-8DTPtJ9Y5$lBEr zKV=pXVhK#vk~g?bFbB#xToU*KwK8y{@&Tq&eu+hTUqW}!!dACZJuu0_8} z?Y4R?>kgR;>Nx`Hn*b$c`7oAW7kx19#k~C1d#sErZNdYiiqon>v#H}-jAsW4P_}#@ z^aG=w#II6?^RM-8eDC-zHooN2XzjMxH5bv)RMxQSz-8lhY6pD|SnD{@1XKZ!PGXqZ zyg27}vIY1vRx9&7dLySXtCb!fp3Hi!a$39iOj$xmy$-tx2qpTJDE@->X*Ip{{7p*( z!|0{8LE418$l3l$f=$=ygg)H+$QaQoUN>C|)CrwxFu{88CjTmlYUwJ*q2sx0fAP{n zo(Fk<*Y4IfUWMSm`p%p_VPjeT`};`Qe5?YDgiWQm`D(#I8^g&UFNdC6g7dEK^IdTk zMQh9RF1G|V3OCbSE(Vo|9N|Ij-u^)kh(;csN?1$hVY%_BWMM5~mL_Vx7&BdYSV-t+ z-`d)ae`6li&b-gFWA0I}E=>3O*xfZ{5XMT08%450#s9kZ`s7=1xO!vjh4d)QXIk(O`an$oAee(oP8IO--JD1UcSl)f30QMg$@i{}-z+tR%fv0H+x z8EY9S6|?in5qyN684!X4tHU>HL&bGIH^>mj<20u zB*Lo2^4cZ2O5iyX7k@C-9aPiL!@fdabrr@07z$Rq>cYThu6L8~AZhbt_Qz<3l)=Gq zbeF^qF$DGlH)nz1Xy+XmG(a9h)%CHjY2jN7J9ZP{B$UgvXssnA9(Y;_(U0rZfUO-cg zU?e&Pi{dIEinE|7j%#@kR|6OR-3ANMpB1hCea%B#m?e`U$kYp&Awm00zWNChtClaf zGLp|9OaQ>bf;R}9+b`Cik-<(?TZ#kjz7%9QKSKmx8o=%|7<&B~V1{i0?4E*6@xW>v zr;j!zW6+jI8jsTW`=SB90_Ma1o+m}AkDv|WfpVW_9g=ehnrxfK5eyvPU3Zw1!8(PS z#kLLHM=mMK)9-U&^7>sLOEc?VAD}}M3K@gS+@{qXGJD0J1O% z%k~>uO(6>~j)Yx-WowBx?LmG!%EtZn4v?2rtY4%1G@*SY=&a|32iI5v zz7G0xOJ92FVs`f9kK@(Hx$$qjqDX&Q^fY9LA?U{dpA)47-&^^}K58ih(34Ue%4vNHTSndNN6 z$sWE3M{VH?a*?0TfG6>?B|V7Ik6dA&0xQVa5F_Gpn)@i=Zy`cvefX2ju(t%)AD z=sXV87uIbxHmUQWc4TR56c_6>YUjx--nggFk94M6k?dwHkEr|NKWZ;{kim}oBKuPRs zaGE>sVbr7-23$h^7N_@I-h+5bF;j424Rw&EXgF~e8Q|f5?B#FBD&FupS|o=C!Z?`Q z6Uiq8i7`k920HvK;#azH?6;INGD(FlfJchHef~qkXZS8n{f?tOOOMg6& zhE|5?>n{(XroSQKnLt{mrN#O>n})699QC!SXk32L0L+hZE zokX?|LEG>f$m`*z8j*Dahn=GXuO!&iBMZobyYZV;Z+OZFE>j~5+1B3cK?@9Oiw~Sp zraQp-A^`1IY-N6ZL#9yhCH^k3j+NHHI<_T4eY^#wwoNkVT|`jX2Y(vRlsJ^_M%V2# zgJ_yyvF0l^St4AYP=hz&?{tK}k(9$PKGI7DE^>7h@rRZkv-L#tC5GO24!S=V_zZC8=mmh-6&Bm?>iMV|JjWA=y}m@c{67=^z(qic%a+f ziXfl~2t=Dl3Aj#SwLqIAJUn0{jvN!l$w`Kai!Y?u)m7x!OvoD<;=KB)5kQex1iWWx7ljD{H$|nKm z!yst1J(Pw(%F`>QWKPQ;jSoI>m;ril>$(4NwBA4%5X3}n?D0I%A{5(q zY}?t+0LDkVw5@L+J|{qY?2M@Q@X_rMc3``MR$f0)+-*s335J-jm(Q8d^RCt2(?Nnc z0Ur6r(sR6}aitUgNg*SSr^zFRT2m+nci=ZAj@|VXd7XZ;UINc!4y~dQp#1sX;JZko zC6KsJNy1fXh)YN=CrdFme^nwxzhxu>Y)OMAJkQ#t39ucqk& zIKTYuLpzkzVdG&zzW3_u-~V6_fmYmfyRU|L=i|V`^11Azm|=Ogzstfuhyniq@up_c zm2)l7AL9$Z=sJ8ARrohM5Y(~UwxwcgzGIi4_4%DBsW_#DY`&5kK8@}$4C+gf@Iu%GBCCTNP3kj&pYq0P`>gcp!L;7X9IwAV3 z;#pArxzFf$)>~pxL?wc*3&}m4Lk#XqKu`s+vmhm?&(sG&OF?}m{tp|b!DIQT%8-~a zYPJde5rQs(DGs{8DKHmBea7O0W{dhPeE7d?qX7By$A6{09~0O+?Njo^TagB>&5Ta$ zDkElow$=QEKj|B@Cgr?o-|CymA+zMI$BsU}U5_e#MX_8`+yk?dumJ(?sznUEPG3-T0vB8<#X9ep!`qDkA9+0}k%) z&@^V@I(vFpiHLTm2zFXmNs|?mh(qe~gydRl7RFm!;VmDwuU{x7!2I2g zH0U%?s#C{&MS8q~TWH&N4;b(2oK9lJ(efxJjT+~uMZ(m-lNH1WZgX5Dl|3~kM>H_M z^o3A6%993?Kl`arc7a>##Ha{DU=!Z4Xt1&7)mfFcZ)j^Q9j*KCgy`m|L`Fpsz?r{z zYvrZ7yb_)5#B&Fs+09%dvdHQ_yC>fdsE#;sQuqW8{T4%w&79FWB=%P46XSZ-SC$;_ zcCy66SW`nRH2L|>=Fc94+MRtICHw3=;ig=7Z%a5K^P`PXKpC(dBVEfgdVV@G?__=b z;OCY1gu~{^Mn^qD}#MQ=I_>+1&>&vYP3)3k}rdIaW zsTU4HDb;%_B~_Mm`Hw1|>r`raj{v4gsYXA`$ORdoA;a!DNnef#*OH<&%EP@&n)O*} zol2TlCP$^`IJt%w^A13{wWP5_jTD0%GVrZ;kJQ&l|ENkvDD|Gsa>~et2)PySURk({ z)Nk8nU`QmKwP<>s;-uWG4!qWyE%V|o)46#I{rD*l8qcp<{Dt|Y1Ew9*g*7He4nq?~ zUuUdIT57iJWp4<**E>CAZ)@xcP9 zLhc~I{zNCbO&D0iPRccS=i-ImA==Sni|p%7o45agO{VO;S$_zc(fd7_6{h3>gY5GV zIX54GeoilXe6iBdG4tvfD$^o?wF(%^f#mViOvKO&->^Sshpue})c(F$$#_1J^aauL zn!b&lj}a?_L>^uB+s+znM;Cv;>Et`v#uyF{5ov2UOk7B?R|o{j^8^kG{UK_RSrxee zdkH;O7uFp0zL&A4#j9zd;z#7p71ozFPk-dHC-J8l`>qvyDENZ=a#tS>C0_aoR5Ln2 zGpvtWf8oAvDogzG7$B(PTJ5>$ne^T6a;xy@Vr6jk2}syQj~A1E6R{vfEr?E4mgV-8 zG@t{o^!z~YfJ`^#LE`|-wt}A1K}fjIR0iRUUihO^Yk?q{prFSACkj=mTyK^rH?}(L z>zeZ;j6G5)muP9Ox1Qp75;@!fh zA<$oS2+H-sN{xCa>D)a7VGF8lOEOVR$O24=myn%oRJxriJw6?7)i?Y=$2BW50kfOb zK3veH99^_E9V%)9-@#<8kD?fO1dCf%lfXq$Ge124O%Ou7&?3!&Mv#J4`K3g zXc80w5=2VKBCdL?Ur=&q^TaUVQ$;RT89X6btbF+OFK8QO z%EU*r>Lh#Eg_XPPn(g*i)j{|BjU}9LGlGhM#&e;*kLp-C%(2fsE!Op4#$7A$D2f;@ zLg48$tGbU2w_8swjKQ#LyIz;;i9E0p%-ZnEUi3f=$JT^y!7YBmL4n+l2rmf?AhBVy z{;=fgUM%hTsu}CW=_r2w(b?Ar`D#;d!YgzWhtc|r9`Fbk+1C(#T=KSx$l~~){_XSX zq>ez?3tjIJW=$-F9xdnuv!=cZy-XjPCE}CCp~qJEertJj%BruMQC_};%n07z({uzy z_3~4+?poE78jL5!kS6T)UBO}C%G>3B%C<`O#90WM(nTqW96CcLj_qqX6;#(1U8Q~D zW=UAWUQ8Rk=6kS5uk}L}yx^p+g{o}<)c!Ez9BTV*#8z#9(dVM;#(VS9<0_%7;tX}U zUNFcgtTt|=Vn23b#5;+i`_$xCjNJBD&EtE9o)lYFI?`qPTvw9;Pna9eJQXz@T-ghA>zjf)Zb*Fd@Xe4LBOL#maUT+zZMTSW|{uEsm6X zB^32Z4myy)qdHqpRMp~TP4t9c8B6B$QafSjYL*aL`I>%KzL5+5+AY{(9aLf<4pQj6iBQv+4;Etp7hSASKHNJJ6%+{=#tIOq~wKZ;6et~T^)8EB^ zG7P2#g;KMDA3`PJLXqwhb9qbQ)$X~rF6Yl>@9wUr<<(@RX6=Fh7^k+Hnqg{i?8E-v0!vpYUs_ zB~B___D$0lo5_ZgZ<^v|M(GU?vmIn54H+wEwj|-(5jl8_#%O-3SnahhcMFdKF2_uh zMKXl8bZ#Ca$bWc#=F~um+qS|wWpj)~t9VH@$IJnuf5aAT<=iuyJ9qt`{{ugCBG~0h zEPFzXHb%K1^2Hf)rnB%k8q)72i|4pa{S`_G4x_!tG#n(dt39x zuXexbrGn+1+RPE9o%`$8Ui}JRZD1O|^~xZ~FWZT?JM;N(g{9R|z21wXcM3^+FAM%O z>Lnl!l|Jn=COw;Fm^*m8|bIFxDeV&sp9!~ZXWI}=)uKW`?=OII9!&!qYWmyUBG%m8n zpqB5U5+QV@jYES$jxe8}W%aq*y>JdsM-!ErxS5=`#^=_>T}y}ww*pH;%e2%Qaa#%= z9U)b{&o}v_s-Kjud(U^d)%OqVKC8Dr^Ss#R%WnIX~mgRk6OUE3w!>4!DCg58}xtODEp&5c^RTf%xQ{X$Efj%nKd?lcXF{mp+xb<~U` zeAM<#NJRbAyK{09svX1{Mtvn}?}X$$@wVAUZ;oErHSBI8eM>Jeh{y}Fz0kh(WI!*g z_qK@bc}4cXl?@6%?kmm#_1?>uBd?EgXG2!5=4$Z+gdWYnCeemjCu#|NK1VnoRylp@+2=JL82?>mrbA>A>Q@F?7&-k;!Yd(!-B%Na1_vANu1p)~ZnBJ9$ki~s zGDxy5)L^Br&@SDzemlLoSuv!S(Qn?$UmRO+&3oJhuU0w3sK2`a>#4E$H90W zE#L%90IQ)j&dt@Pp zS$p4|%^G?&oX8o^ym4OHm(ZM;bF(?yiS_Sm4#~kO@wYy`( zB57>{{E1ht=48Ef7gB#}sd z2plAXfPlmXNw(xn6Pma2ygLq6-f`dfe%$Ykdq?xDtBbCxJ@?vk&9&F6y}u(+hyUv7 z%jVZGLR&8x__I+)6U_P&=pzqFK?WdfZ*!{P?G3FwMLVYuDT)rZu2*SKtR&CyHf@${ zA*gU7Rs!;cQ{pR$5gRoP?mDbTawGjl-^Db`3$aXd7X6ie6BRw!J0=-fBg+4Z7cp+8 z;;A-8Uvvu7IiH^tQaCb)^AzAM-KS=#X)&pKxEdu}wA;A{Z9fq0J`%It>rAyJm|p7M zlDt}$DY)-j{J>W&Y0vIuRPjw(Itw4xAI(_vTcC@GkS>BLS^?<|O#zn^dVa58yc@|O zto0d>);jl za{alVthN2DZF1aqXi{%`1^YhNn7XwoTe;#NcoUBqwU_Gkyt1+N9b+POyfv7-Mt0Ul zc}k4m)EZgB6{W{=DsuxXU6uAMqRA?(Cp>w`uk=Y*Aj|feZH0n{e@e!Xo-P&)Q@ryo z1BDq@;?OIW%bVMPG4$yrZ1S5Fg>Vrdl>6$lnJ)ES%)N(oCJvLFd4BV0M7}<5g^p4O znBhhF&tPvW2bwl@a2Y*tnUVPxx~q(ebW<}0!=s-L?*i}zIB^I7eb9V>cW#7)#8-)@ zt7rHMrfQA8?XcUl&r#F+=X($p^0qL+G;=C{;3~%M*_6fmJ~zRKY$uv-Z+(ns)x;d~ zU-JqrMXkKtl4{)a>k(mhT3U+OZz!>voQ~nr*bd*6tLF~bdCxECY;8Vo{Vo0jZl~R! zqTt&Q=LOjXuEETnKw%0uTk)EP66v+nMq^VY@#*z}!B)Qg4U)X^m_u3TFV$W zg!<3%$Nqs^B8fg4ZEZ7w{$SH%KgeM1(F4S}c0%-`%XgDWCoC9fbMLM@pMPF%9Z+^K z5wybi&C(I1KL>Nj$Qs;xU_M79L)zcjtsx+Dd2pgy1`y?Z9*f zOkXUj_>IwkhgM6V3Eo*RTVh@3&wJKKk3Qvf4{>wOq;~yBK9T7`6C~1Z6Lr$~tmtj^Yy0bH=D#L1Tde$yA#j1DcY?)IMFZMJ9{3KRrpDUv!S6-6D>8 z74O_Ku9rxmR+4S|^Wr#%#_JxDMzn%PsHkXLe$rr}A<@03W@cDciz`3_|JLyRu#pA^%K{;iT!`AvJTxtWu7TZag99R;+M{mU1Y)}&1d z5Mn$G4fSJ+r}1xR&pX~FKJ3~aYbB* zHx+N5Y#1!j%P*xKjO|tUZv}xqnSWPOSlpPvS zIzis`RIKr?18rvThJlxcYN;Z!Is#lBgHM0IWa7#cyuV&qR>3{QmKqu`b$+T+Ks2Pqon<73B z`zeknazHmp>!{?Jv)?c%?thu%vXsV||SK#XQ3Ztj=N&C$#%>=)3h z9TzZ8>;+s*AJ&kK%erE+@bg&@JLer>jce&wx=h3Z=mZ=2YyOBZJc|s=l~Pfpcp<*% zgy9O=Ow7zrbxX@<3pzgFw_tIV2gNC2zJC^**U8d_RL;0J#8mHC*8Qj8JF4j>mOu^T z9tt1UHFGI(<0O`iG11KnOBe_Dy-#W;3Zpljjdi!$WWvVw$U~Ip(<}PcJz}hjTqhU(WhxIg_hzedNFdMSF)Z)_*MrKnywUAtkZ;C{(0Y0Q*cdI zum7fd4tR!d$64l1qE!c7k3313_i9&Ja)QX5L_&(F|?R37V$ADE7{Zci*|jAOPCcPEZ1bumS)#oAb# z?^tU(3~`#S{ish=7pmO03tHzTx(8UMi3w&XIa-NoSNb{nqlyoStUdc2?;wUWI{vsC z67SkT<6ZCEt7UQHa*xZ@m0CuO8eS;nFtrM9NiTmXB~1RivosFG#+w8I3gZ66=Jtb`_dy7%pR? z3pTexjeGAO>8foQ6=Hw2y-{3f^3?#u8qt|1kC$D#f9W^(t6;Hu)v4SwE!-5w2CJt7 z+*+)^88o0Uc`BtY4GtY$_-sFccvSImk+zaV+}0o3#0z^OKIsgi26RW1g#FQV0+bAq zMR=s{L75O0S)f>i-dqos6yoV$n16M!=4OOG`i9mq_Q145`_mrQvg-rtdmC z4XO4Gwf{-Kw<^(M2|2juegJ9xBmCH#@s%ZJ4wo)yv_4ZZ(z?b%U2R^o$Uf6uS(N5M z8S|XRq zg>WE0k@f7_&#Q0fZBP0}C|6K-mjug37@{a_&lHZ}lY$6dKMR&iT0Ngn^*O$3Wl#~` zyte1Dzg&Si@X~?1!9C1z0UA{dsa?GBWinWsM&ejNc(jsN3P)Tw$aHjkjF+sdB2&&^mO}c<|ORf9GQk%lhJM{s)r$d+(zPoAh;vkUG5BIB}KN<5J3F z1G|sDs}q_GVs&+Ht+c-JlVE4czvGyDe)fWz8@M5Eor99N8X(z3yBp!y^aMWFRrWcSWlCsFV~fCm9@u6HFzFFR@E1|FDP%Uid2p4< zL+chpRmHvcQ2T_HfHN4Z3rdc)g|FT1y*TnAuk>mpuulV}tld5axCC=sBoN0g)VF3q6^vzv;7Be4z0|q>XS{x7&W+l0T2cG z$hMUy*8Y)|S_L#KN86-OXK7A&j(98<2tgja-OC9f@kjVkqCP$QBhevKDs$G&YwTU! z5b{yH2~8f{zL71>G4;hhx-M__{Hqxe&E>~g9M8T->MP4Hvr8=|VZyPGIp1R$!97+V zbr9s6tiN4|JJ2epkzB*jp}A_T_#QaxJ-rI>=X&mn94-z+uRyH(;e)W%kOY=#yw<@?i|j8 zp+pH#TAKeFdboAMNB_olndU2-p0Kw^6q=UVr_|zVt*>u;8U5rq8x$UozM#+RhhR#? z5BTxsx!s#$-jB{l0k@Z7fShpDhFH`mJd`uO&`{7(rnub2-x|48-DI}ouO0FR*ez>} z*C`%%KDxtn`CsiqS{HSvJMBEz?F&HopVgsgiW%^;PMUR8*A{2$4i@^z?@%@iwJ2(+ zz+!mh8k=%(@$;hopV=)8EVK0!K6ZHnVLU247R5xP*mS2n#+A=^7miATDTcP|hy^aa zV`82m#Z)@L(z_+di563inzyv;Dw@p&h_ZWXG`#y@+KF+SA4fwe_745{_2i?M$6bt; zWNvJK(7dGes>kkQ212W|GyX%TS{eGe4yL-Qte&lM>LF_J&(x{c7YhxSo<$!>QZ&*pbX zaISp{v}1H7T*RC5$dU#oF;ecxGEAQE3>7Rn>xzOB56s>ba^)_ zPJc{8Zc}5@R4E3+L!LPaGSxI}XZwcWB^QYdvFRq7jy?#Fw8GNGFFWJ6Zd{Vlbm;x_ z0F4>$tM;3Fv&n6;Q9rH?>?~M$l@@Bzv}B%R-^2z#}U$pcNA+~**wiGS^LpuHOsw-B zN9CO9+u`o40;%nXz!!PG zi?c_7sKDX;?TC?~w#rmb&wD%A^c*9`3jJO$4Gi(e+U7R#9eyD*s+cM|>rOYP8DeoZ z#>obd*q|YD!p_xT@K*w14- zL!|xL4F-8hRYmhc-|F5${^=~VKrx}pFVK;WcKhPtY7j|5b;`e0;N!zKD*PJD`pnh{GyK3eSFx%6eVU@4k*Mg@ z$a@rZ*Q&AHD8vi`U?gk@f)=%Gx6|a&<{TcKX8bAj$(KZpeQgS$6W`AZlBLPmDCw z_EOpMC&i{8J^QAwn5qpoU-DzNGSaJXO{3Ov3wz!24lR2W+o;P0?>Wv=v>7tliV13k zG%z@Qh(>y4GDW*7mC%v<1tUENs+nX?SS61bfFNhr=gs3d6a`B8g!?}d2sKm`ho$?oKO?K zeF3xU7DvnoLibJsBk)JhA>K# z(LpAOaew33#ur1hfyw!vy;GkY9ZjhYZy+mTGo|0KjYeFjA1}wql>#s)@nczxv>ELg zt|20FI&$HAe4;6|F4()^EMK>Idqs_j$j{g673KwHRcWI8Dpg_*y$bC$7_w=wiFZEYgY*|sG?Kl`=F zfIk95AKRuJbeW24RX#ypHDPN$(W2HTZJJl$I3d)WzMznBOW5B&(IpFO?)IwPLhKRK z8_e;H^913gc4gkV!S@xe13>jg-~zK_d+ zMCT~-f5stLCh3Mg0x0Xcf@UZ?VqGR1Fv5@d^}&lo%?bKjuXGPPR?VcH$MJI_99 zP%PX`PcDZ-1_#by%-+|gw&Ds8oi;*ZvO(edUY4CuiK6JQ1F9^Kepr==P_ ziii=R=r!W}HX3yv#|8>^x(c(9mB%dg_9qvXv z0{^u-vzFI;ikIy!6VpBRSUo5fizFI-RMdE^`XdMs2Vk?X4~a4;K2XvWPjTpeV@PFX zPMH!HQ-eQnpz2mC=_j%RE`iN*yj~t9)?TZl-Hl=s=rKc=0zom99uher{&iw9OSrB9 zggZQOJV&aV26FQlsU}$BaW-UV72XAf=ybi6KCAF1ycx}^dwG>Xj8PJwk7<5^&110j7mtIr(V1gzHs zn{`ZAAbAxws1(W5LAy#n&Az{pe5vhVtT1QzY5CcRO{rxox6QkeSe0F0EU^6mWYqZl z{D}+mC9cj!xs1N$gKUHgl3~VLq0MzZ`g7&_?G7JPHTA}vs@XxsLRFJxPW|&W5E?M8 z5tfNt4^{`f+y~jgYy!p3;^aHmvY()6VVtA6C!}$*xjUS1z^}Mp(YQNSpLs`PC}!59 zIIo7WSi~y4Q*Y8zJf1x(S;SR8)Y-B_Ow6fFTdDd9BKq&BB&g1(%HYcsD9)N?NV9d} z)ksgl9<{8um2F!gi0??WSEg)K<$;8}$9>d1Asd}yw`Flem@vz+xmfpe=%QTUSX>j< zJQrz1bTWZVX)|^7+Y~wl?TN0*$P`)SKjWyMZ^|xAPq^E=QX5zDMB)Z3!eV;a12m*C zl=)@cXV-2ME}jBfq~nQN%qg}}8Q$X0V464RgEP%`EcLv*g`9}N$Z7r^0n74XIp-&V z2|UIh1Wk(y^0tMVK|~wn;`?EEjn8q*HJ>-j_Z8dde4emInH+tM*T)CM`zuOJDP7<3 zW}6I)Dl3y4trt{VWw0C-gvS!olSN4&alw)$=<%0`M3m6F>_pOa&%FtY9|7>FAm;Y3 z%1 zP5St@N3T!MoZ(Y{d=^WP21OxR{mdidAEmyYXO}FCdo3!pkfu-@8o>YLnsqqV?usI2 z-7i;HN89V138=vPrYY1pw`7l=9m~A4Y3-)-ePpvn*1fuPO2oybj3aJlb(OA*!be>R z(bN;HktWr%xVDCSP^3SWMtx{?ybU8mueYwBL&fUsIq>`DIC&yda$S>LR^E= zwAPZkjj4Lb09aG+NY_&y`H9^rQ;*}+bX?Sub*kOt;ALRe`q0Ok?+z~Z+tVDEJFYP< ztoxzU{?>)~026bqc1$Ceux+3$*!l@fp#E(xsW!tF?`ZRRbzGh!0NN{)Mh4;v-Cq38~YMlr`q$1`LD^Gh*^T<^n_vRNMyGj zV<;IfBNzj^l*!jHt7nSp(CC6^+$F7W<2km&E<16T?p|Zr9W|MvXE4c~#v`h?YTbat zrmlX%8B7mCg)4FFD^D+NgslikuySgt;(cQlxrLRtY(AQ~)`YMR>gysq&o`aV&n3{dQIMfY8jFlA7Dfd)>!y2hSDsd{)Y4 zyp+87CPy4zsl;f=qzOQXdFfBe0$!$--_`>pi?X$ zhOEyS>ls{7dl5RVaxCmfs0&;8Bl~ahe{gCM7BIWOXk0ywW|U%Uw_3SacOsBEwfSLt zl~eN1zM#qE#`${nHXrhlafmWRLqMi1X9RnBLdb4u3 zxUYXkNI?Unp=DE8Zqn4|f=sVXVgJfQ74xOc{EeDg_vqyGYnQM5T?eTuae6nk)%v~W z5MwPUjBFMD3n)6S*3EoSg~#_X^BNetYE=#cu{y#(eX3^r6ifwq#A|tNC$$D2apN@=D2~NgYszXv19r zboGpLcu=weB#=uGDxY!Ifv&|qd=I!rVoBu=VIJ()-MF*C5s;Z#q32b;ev0dq8tboe z=?K{rzFnK?5&S9&tZ-Xs&h8hX>ur?)O|jO#820Fog`dH5ymsr`lV@skwM`OC8j6Iq zi3GHAnKr+lOt5jA@>>A~^iE+)%4S_1J(@5-KR-mTo?|t0NLaoH(T#0YqqnKSH0@f# z%yKSn=jE>v(JOXwx2$`IFvJmH>s5cpD;3q*o+Nk)D53rAIw=o!AxKlYt*hXk;~Z z3)bxuweNyT>sjJq4`S=%IE!PGm(Nn`cfb4I<$U$StQq>}-8RCzl+De$;gJ!Xza?IB(R*iU$5>V;vq7_Zmtd{4Q)yV=eZZE?w(AZw$<4$ORHV8=|C04hdA6fKG%%X{=3{@o^Rei(TkJb^w=!rDtG(r`K*IRORZmIIx>8FE0$i zvg(5x;^%ey$!I_F@2zBL>G?gPAnV(W7@BSoul(`?psaTKWO*pt64)%M@Q$^w;TgZm zoN)3gqk~9|PX>t(r!WV7ZhbbCzI;3|;Jns8Etx}AA|7x3-gD+XxGXhko@setZi?9r zrush^zEU85)N|W# zIQ5l^MXqODtnDNt+43{Jy`wS_)@`3Moz`&v8u3EDM1>3|0fyL@bty^5{A*O?IOFMp zOES5WUUd{$yXo=hgB^%BmWtZ5PPZ%?I#(p6o+4X*3AywW_@$Yxa-H(z^NT&+=mjwD zn@8tD3j-$g-UnS~{_WiSV& zF0z04*|)uEde#t_=}fl|+piArZK{g7+cNGxlbt8@HWU5e?=2cK``~@?YsRc?ipJ8) zh$OgCOa7;mWHhCFx&Ixsgo(`iz|WGdnIODpdCyQt^+__%dcM6Tg@P3ykx6`UN>Ay> zcX>usVYQLzk(jE!%~URvt*R8S~S?{eK1;to@V{8mr@~zbr1B%-ej<$1wDP@x78*f z=l4THImkKi79Ome8g`o0Xc!>ikkr$^VL~$R-yk6)jp^SoAraYckdTqs`*%!8F6%c; zNPhY^NdCtvvIuT7umsQFdjyb7{kMK4nfh;#{Esztl6n8umn8H44U&J^yuET{D{8n)dfO=0QmiX9h0aG4hxCOV2F^Y3I8@@{7J6&KG{l2?Ku zLh?#5KuDq*1_()1!vP^l5f~yQDFOq8Bt_tWkfaD45t0;vAwrTOFhEFB1O^C6iogN+ z7o^C?|KeSuUza6OG#p(LMZ*vwQ8Ww?5=FxRAyG6Okbi-q;XnP~`F@{ki2+z?{_k}G zNRcDF&q;4|!Vn?J5*Q$)H#*^fkYouA5t1x{0YZ``a6m}11cnGniogINO=80V`PZe$ zfBs(4?sZ8N4M&&s(mf0j5=FxRAyG685E4bh0r}S{de0R|al{@lc0ZDw6bukj903P} z9=kfaC%5b5c`eTTs}-U&Nd{U?8% z+($-o#1MeM0V%f#LxkjrVSxO*bBjODdpnVlol3m>hm7h!k3xzm{=wqcClZyx03lHs z91s$f!4V8*tN)4m9xVRE94u4S%ty4V~kf}jFG<-3=#R< zHo;&_Fsn?AF($^yUw0EC@}Za@@JQrS>Vv`f7$cumK1Af>?n9*bL?WNtKFBK?@@c^O0&yU9QXqc6>*@10L}{(jXr+e=-N z@&?ri_@|c8CM0;q;FRfqo|lLy3Z5;!n8JeR^U`?1Bj%dWOu@67A@L8H&Eh%&Fr|_r zCU};cCN5CLv|6UEMPLilooL#(@NHq*Y*MV%i}7CmRIiV^P63CPLi$E2aYtx-bpo?kWGVOBtwjeh>5(#?6^Z-2_S_o`mda(HCX!Ud; zDzFO6>G)ir3e1xK0n--8fz;+(yg;-o{F=d$L1j0qiLQ!SfKJDV$|EW$jkE7xV?AKc?l)*#J=ErFHu5IC7Y#Dqy^m(Sn z$zdCjUz9!FD^cj7B<&bnTNnMUxd!r!sZkC>uBT;2_0)I-)d59a=KxTD-K(y^joRRS zQ|BU3qNFL9?Vb#X`P~&G4)k#$3e0qWCFHkLaq{RhWw`-7@e&yumAiXCm`tPw0O|bNVpPJvW98Z#<2P_RBU_0R^4#+;Vbw%P9cTJO)6&tLfaXv!bBN z#WXDx>sRE3Vb;tUpn3ZbKv2@dKcE*n5LEqZqDul|-R@oi3f52jp|zHc3WoXJu%hcRQQ9Z(Kd^u!1q{b29zq<$hdm&UtTKdb4JV1hHk5EcjTRG?!7w=|49p=+Q67aX zyFplJ4HWomkqD^jNLB8vrO?)@&432+TxQkkw+qI<={iD5U;p z?jqR4ziw;;jlT06u68lt@OPXYfNUGW)!qS1O}}3(0X%DPsU6!u_&1>rUJ&KSSVy4V z;rRdNHY3Cs)I>1?L{=a~G6C)rUun<`l4GnDb5V0+{y4B0vs&Ee5J04N$e60l!Ix zr_e(5wLF#)upG+zMoScePnzt~g6zaPsG$&@tz;530-}u~sLFL2qi`+|imoaG)Hk!9 z;1OkmS|Ft--U2O!k4;s5z6c`C=SZL+>U)C6HOOI9Kk6STR-L&I?0{W#myMttG82bz zxO-4Nd%0*Kq8*pYaREG=K0Jv+=u3F47+@)sXeDzLg1#NfpE4vPu?&*A!*Dwf z$xzAwnR`ETU7=O{SOxq$U7p8s1Fg?IAr1;DB88$sq4>A0KunV%90wZC%LG$U)454M zD_E1UKh#zoAqVOv%BLGeA~aV6`Xy^;^K@aAz(X8qhgI zB-0SK$~qrw0x=RHB@F3^IHK_H59XeXC?4f3tY1_8-~Eo7scut{D$1$<)>zTvvx zX{9x2p{JU%#OUucP;Wz&YX*@(!(E1o1F+XOdzw(3&({&gVVfA}KyI#2`WZuR&UyoG zvwG=NAV5ETf)yjhLnppZpiX*g{PLe7^7(`G*e zy8CIN4z#)P9U=N6gsh+Q2XYA*(@#?fS%ToePVjS`2*42z68iG<=^50e{9HGPHYr9J zLAnBqt$~pCIzlvb8b6J`0vr@_9pbElkWxCv{}v52IQPwJpmfb4oG0`nA#d~rko2Vx zry4@kbeJl7+CWE>hSg~GYLYzG`56Gx%7=*aSofi>OAKEF9MO4lmy_%z(FQ3otb!mO zs}dGV;X{OH(#zkDY@5C!)F0Hvm7N*kgD&Rdd=LZDJpAw<%Wd=@Hj`4J#xVTbU> zT^mv7I&{+j7+*_0!JvST;|Xv~e1#MVJApk8U0VT=lIsaUn?TnZx(Xp42*d{BTv-fo z79J5=+{V|t>MBSngVCM>b-EBj3cZCCWuZ<(D!_dXlz`6MN;%+(!#vNRea13#2=@(| zU5ddARIs$|!a9e6@3X9pC!&zLr91^OC_F)0ABFt9j=3ZZdPtp~xDpCEYD+E?2A#c5 z`^P*11WuLemJ1-1vj2eCkgb$qDfMz#%7$X43@HmB)?}-75Jxow;#gCx)}-HkOgsdNNgzlo zAkuFA0)QlfAVErD!~lRajv$G_>cWTzAZQ3j+X#80JOo_!%ppFMg0hIf3CCkca+x1+ zn3g9qz!c=MBc;p_wyXf6>qj0Q%O#}twUn^ai{~+lWrA9}dA(kS>vvC-RuD#yF%}h% zUct>9wmCV$=&<JsD17B>8cV^v)a}m2}Kj$q;`#{`~j1 zFbXN(ec)ZFX+qy<$w<}Yr;YJpoCi}!(V|=8ccMm7_uznYJ?Ya8&b`Z*2&Pn-48_#I zAJ5-ocea(B*y)blx-3#VJg>@&ag9Kj|0u9!SXB=x#9X3|#_yP>n4bNG0ik}OSxaYc z-%lAX?x>m6)T8w}y0Z!EY46T>SonmDTW!6fnKbkz^r8i`%Gd9q@ zujW)|QEk!lv8fS76KZqd$Yd`g<+;feH?@PTt6N>@et^_Q;C=0V$4Hr%`e{Y*i+Gfg zRKSSv9KeWMOwRs7-OvZJy#(*^y;UMJd*ikm1-Ewp>}<}JeY?AZabga!Wdv8By2^&E zwG3YnNNOOgpIkp!Y{7Fm?4<`SuFgRR6>1+g4WpfRH9OlnyQC_RoBFsTS?7bx8XjxN zyQEty)@_Y8{jK64^?G1yk^&xhX|>gmi>A5v8L!3dzR#pe#fisuKi_h^72B&)+Sz}Q zJp8r&*;!gw_3@IHo5QuAWmA*fRE7CZ2d)&JmP4vb6B36_q3KMHiN2N{Abo3ItToH5 z;dgM{jZ?34+?JOuuMW`KHCR*uqgUZoxhR`yRuRIq?sHj*9?oO4vVFX<^&JW#v{da> z9U3#+E`K00Ala2XiiiD!_ya5eJl1ri#1ze>7vi-(DdRm{jly;tP!VJw8)}BzSl{lj zZF^TkJ?aml5htc;PA21Z->K}Zq=AAFtX{Mq_xVN&_Qp|#J~diru2ha|i+?%fs@?Db z;A%a>)eWru-EP(?BPZjqR+H-N!!`kg59<>{YnrmP=R$481%Ym!Gvfo{yXywlkFC#G zt}!((^&L41#P64Bvh=sE<3GM=f&rfHpp8=Aw>1spKm2?JS>dyzJs(FjVdNw0? zE#z9K9&qh8N0a&5$UZ-KyY89nPkOAOV1F_EGaHTw?b9P2zyNb}RSsZxWdxUc^8AjZ zHQ#mT(cUB_nmbXjaISI3kOnb?X{=gpv*k<}b8b_1MZtBkwnFTkBi_p*Nmo*6@(xB} zDHy6HaMqi>@xUS2FB!%O(@MnfU{F=l%7eVgYcXG+wUrUwzBRRB3nf2n+vq-h$i1cj zV=c2OH}vRf3}?J{4p9NdD`{`E(0cdT+@JId&rb?VZ7TYG_{9!v-iM)JVHzB`)t05h zR-3Jj%0Il+MK?Zs3l$YAAM*CfYX{)XbT6Wi=UL`%uf?`w<7OHo-1|p>u;P5xeRRf5 zIrd75KA^nAqwS^>byl+pq87L~yw@-r63o5)Sk6Q+&COj9z5Z3#>)jTs9h?C z#}zf=vP)L|I#9M3)L;eGq;UfZDffV(MWbaOxORBqj+)Z!azs}vVMm^=yaTPI?i@wP zHQXDEof#9BZI1W*Z6?Hq@r>NH4RDx|R3d)Y6`^&<8p^V8&RbLe@VUhBKHyVkwg_!k z`|3u$uw~80tlgF$f1}!lj4U|~7;%$($j~}t|2?|C>ZOQjPYOZ<&S``VGXV`T0}}I>_bs|Tw87f!6@XvB5anS|42q4GlfovxMn;lDpC5`N&g_^$-vT}GiKrDQx~<+(icu=>p=s8`axQfl zN)85=f5`p9Xdm|{zWCZ^irNSaS6+EKfJQw0Vw{@vzO#Rdr@!;p&+l!?h#hF913M@+ zxQEhLdsZjJ9?lzA?3~D*7aCfS`>bHJy`Uf&QKA-HsQH6fDa6h^?X&%E`CEhu7+`&g z2P=wK-M&qB`4u$E1D)K1cDVW+)QRF+W?|30uEC7UXgS!2-zo9SeZp{_#3gpym?5lh zft}aW7O?KOM}$^%D9e0jSC^TP>k8<#q89_J$+D86mn?PMx{~QP@?TzFu?*LQ~#r za0jrGlP2W)V6$6QI+<5cHYjD)Fxhp5{lpFQ2g*6+Z79-J*C%nEg)LQhi+FBVRr3?1 z=8rolq}Z@W;X7S-G^VC;ECNtGpi@kicWA^-+tF<;>5f1;Joxtn@9y>ii=uw$&C49 z9y^D3;&wEu{%>odZN<56U3SIZ^ZvP7?cMwFc@5dW_tosCZd}T)HkHh?uxucILfHc{ zVO*+53_S`=*PT7++~)3J6x!OpCuS$BG@Z4RHQs*P9Xn4=JT`3V!4z1U0KE~T5nJP3 z=y+VpSTEys;F$lf=dzbQY#_(B`TY**uj=e;8`kdLJi;rQ97N}Ouva0f zi|s7@v?7uBXum=JjbG1eRi{q6a_iFLrq-QEZ^~r8%4iUeC2ai7L%cz3b;kJh=n-dn>49v?bN1KzG2~y;n!ri! zaM`@jg7Et?u^AOPw`^v>{&H~!FnhbRv*-^}!-A zmv1zCR7Qj}>vH9RpHxuWPay>n0#E^I9^NP`%NAL#zcabNggG@;?Rg+o;e zHKR8D6db!=QGhqSDJ+36DE{!aP&Jf1{!&M`(2r}D4gH#}v?fZ%c0~Y%)NFr{exi$J z7LUBvf}`x8*9XwoIl+5AM{`a;B4&3E-d_f~-5)mSLhPyElqa z4r~r#gH*H*wcF=~*ab61mM4jAU-Jw*^5{iItta0Xo(DTFm>E{mbltwTed*nucc0P` zJ>j7r72RtN#S}u^+F9&;l9O*47PmFE;_%-*N+}UNRJ~d|54AX@t~^OY%Jbdgzsgfv z-k9cu?*H7_eg|o5Pq-)`_lE&l`m!55BXg6`u)%9Rmu_}Ey!E$??GpGK6@9L}Z<)Sp zR6m+*4OvtT8{6{Da#TuNO(HVyOPp)wu_B?+9cR?2W!8ddVmWB3*}MO%xF)m5sbdpf591RZ7V*XpVpkiDx9N>GNSo_E(?e_-zXi+^UhOdh z$}vIwbD6yeqcOC{}yaE@fx)G^8zGM zyvAbCwgTA}3Mtw_?;zk9S)SteC4qkakH{cvS}K2Yv+e&OH~*J}`tL=?Ho{7ni_Q<# z1YS>`c#ZP613(%aPCf*kd9je<4A|fT7hp@V68_sU{Wm9bb1r_hBN-iD1p~?!VI39d zvjk(*QX$3YzegoxLAU(xfzFO%^%c4p4RII~YB28vK~>0$fccG!Jn`LHIG|q;f&=;r z`o8!{^rd9k8PN0YisH4o6CF;W1hQRy@w{B!!tjJTNLOMIqh>)Uu~N)6d8ZGLRo}*V@SHpGM6k7|V0*eIxi30{%H};$!1Jemit0c$@8yZu!soTLC#?!4L!Fip z*bUG#?%fQeaucR$8S${kB-odQwc+aWtAAce#f-|f7CxWK>3KZqcl*E8+RL51{-P?p zQ)Ib)iMcCm5q`Du+les=3tOgKo>ccKy_xG4xstKV3-$t~Re&*hWUdqZF%TOf^abZT zdgVa!6K(*%3gR0W0Xa~x?E_zqKiWR*;3MYxebra!@CB0&10nVu2Y2iM|Gr{ri37Oi50xyGKvqnL}{#K(agvn8Pb%Il$1H^^N}H8OtOm2+r1C#6y)Q3R8*4 zhJMY=@;FFJ7^`8ObyL5?K#ScmxQqP7s2K^lZg@h?ZaF{-`}OPdh?RTpyhP~d%dZ0R zA4KuNjbeCvMfYUd#5X+b%KN0@jCCs|CeDL`4HellxlNm1^7o7{5u?4l07D%SFCClk zYmlOu{WY_TLZoOCzKw+P_wHg1)%oI1pw|kf$RWbC(7g0+ zJx|}puMHB76|&7IURJ`6V^$73Xz)K zs>)k<2HMFYPr#R38nf_5+diZ9ySWjh(>WXJf$0k+fR%tcVIg+%gv=T31CI-lg?;;6 zods|^RPO3J(92iK5nHN8cQntlx45eJ#Pv7xDzs6`8=&ZY5g5)}J6&ee&dCVQX(ODE zOagSf{3Q)zO?tqa%k1K9^j{ZV4)rO;0f%wEG7U7Lu_Qg9-+=-}DgN$(K7Y*$+0H0q^^S_;Z@m1bryL8# zsk#doc9o?6m?^{_DU(WFA&MWbA{fGzM7isBKwCY|#Fejhm{Lz>$Q{fXO4tD1jDa#1 zt+{R%8k>#qgxFi$^TeU+`?C}$iXR-ifbl;9#S|>zEoQn&(noM(Z-zJYu5!=JA{c5x zTfMOjw$3(U&1F&ieAuQN5@0>@Laqi(lU?68oyGWv+~Tf04bA^wuW#RzC+5JZh^V(K zFi>}E0&xc2I1_flf0jMPk(E#L)ntl&Rk-S zEgU?3h!8G{M~FcCu9SwG4>vFzQxRHD{f9thxYK?94G0@4uF=n!i3<bkRFZK&`PJ#^$Ry-0bBaJNrRVUc3F!~|vk5s2Km5}_Q zPw6u3DK(YA@Qy{VV`{zHF`i|8l@ZshFT1U=}fRe7j7)4bJ@ z8TTtV{D&|+1lOg}nF#s??1#X1>mSY_eUkfAZfT(Gz(x^f)KVR)bwlo~6_w2B`4Q_>c{?2g3vVaFy>n^-|fEcQGcyCU< zxauNBsKyliXK2~9`JOWLfdVProqnYJq~K$nVP{W6BMK?~2{;RgIwr;*e$llJJ5o~G z8D!cw@3a`$+a)M@pcLw^Jru`3Q@}UR%fFK1wWwu(=kVS-DE*#epfA{1&nJ50h^*ZF z#D&o$A?Q$l%H)BTC^T#mMq&%<$gEPT$4vfMdx*cU@BLWF^_ZAz&%!eaF4aJ0O1!il zTI6EmS!eK?*xG zI*eIdd@u!~#8`a>V9#D%m%b=K>C=j_uI~FI)gl?d$8pOr;82Wi^jhX? z4cANB4}6A$+5C|>+<*y+ZbynfNX07R8+o{S$x|1?bU{LqMex|n}doNV|# zpq!A(xq$t*(G&8e^HZlL_V;BJH-+~5-5QRW3C{h58*Y0OgC znKGjcP#j51%2{aN773mxKrTYqe~90ql)WItUb5n?*cs&6(uof`h4KFek(?4B(kTV} zS06A|*Ws2aqvc+yF;$GfxLAj?1`yHPOcgj%*17vY$QSw2{=-6x5%f9&1Z`f-R9Oj& z5zYam&3nYy_?^%&<5q_NxHQF5(FXm2qSAKezDIjAikOutsgcC z&nE>!=7_OB&YfD`$8|zYo4EA{ta1rcWj-j108Za&(yccFX`~}=0|>GSY`pqWhhP-baStuuIux- zau7;Z?v}7Waug4FV#*~zNV2fM5`?HJ9|kxn!v2yFqMraEslwDL2(eT?g5uPPNYP4A zrT&`gZs`e7#}=OZBC0~VE|a3|f+)k%;9T=v1jVbb`H>Ae0I&>Bpt`yGI{f{d zg~|qy`f6r7psp)LTMdiObO1#)(wSReA6Wh32S72FqRoXU^P?d3ywnj}`bF6ODtm@e z>T0TDuALzzw|`ooor~ffzaE9!+D2fFVXvE2B!NPdSJ1b>u|;L?Zxo=mRLu1mByX>y zibB5KWopHMuxa1LPGC28=ifv2~2V zibD~W&6h+Wjfe~xPUSx+$yMXlqEv_quBa2k3~VQg!7koocp3#b z3yHaELSp)+fSA!wdx{30^RsyL9T}AIH$WXc##v0vbuPp-wg;HVPWsuaAZCcpI}1=| zMiO&s`@t%~VANt1v}035KGZiqjUYsm&W58E+~RXqn86PDh8Dq)rReC_{U~Aol|Yr0 z`HHhqNY@>vTO`o`=UAB0&}2)GT@ECE>NyvcIL$b7ZWF&k5 z89$8|ZkH#}xfJoz9#Q0rqP2n^3mw8oA7wzsu{imvC}#(+z=&Io`qJ~BDgf>(MH{>U zWbM|!jKDF@DVlgMQtQ6Xwu>;b6w!sH2b%4yQ=Q1KP+F#avt-g=Di+ zW$fsejSi`%Gj^l!Lom^#D}!kw0kq4+%mG^v`8SBkTf)&`OTW?RX zM?o@6;Rh@m_(FjB~RN8mE)=Gh!WfP{*d2?fKx_?o$fHufS$5< zCxqV=rP{+vB6|QaA3J(0RK*+5^`L<~)LGlyXRtp;pP#&r(t7O!Hr&#@>K912wg?@XhjM&1Vm7LFjPFzQ{1;M#X~_>Jp`!CM=>ocZdTO=`As=__-u$gltd+W6rcD=-9EF-l&0LboT~^3mA3*y74h%PR$kjv6FUFh z8d(G}&3xHBw7}Z;&wqD1EM!j*7KJsVfNU=kP_FWiSM$cLnGepXL?|3dDCT z*z-Z_P9VChXjv1bhnCSN9Car-56Pf4-RGxKI?idq%UmomK;N&_FGatYop;=+>))+G zjWJE(oDvFKd*$bkt_?%c=<~h{@aX&7<%PwMMo}(kZ`4q&Vtg}-QQG?=u^?1aTnv9k z90WgO?>+}LCtiR*mxH(WZ^GEmH66ZUzR%GQA@DgYYoDL^Kco^ z_6-PhFb_r1sVe3IjBeE6)KkqseHIFR1(!uMd|m;4!K0&;S5a%xmvZ(Lw4JWT&j!Qg zUa%;Hkzdu0zO;mke$$mss~0tg|Gy1M(h$G96NDh|>7Yw7{gy4m9Y$9_DXY7UPyy-B zSKY*!0Ej$H{wCV_3X;E<8oWbsm`fB_<{kyz?JT_pKoWA|cUJ+*r*?Xykk2PiHEAoL z^C8Q*r=?NIEt{jE!)jb>^!f2CCEzPEF9kdp+1!RkVH8)Tz38jYtKa3Y(tgfI-`5GN zgQ9Qdwcr=d4Lgm#_w%KIJ{)|fIlJmVT-(carT01e-}Y1Q1fu@WGG7O{yhC@(Zcx1s z(|&?fG3TXJ)JI|#sMDUC*hDIX4WhrgJVAa3rD}_9uHzf}oxsHi(9*kmCHhi-tKD~& z-9p!)Xw)6vzW^5kGc;EfCnoH%YI8tY9T7Z!Y;h-(3@a-!w24cv@v4j>r z*4d>1E0LOOyc!6YxhfrHp{~%FLzRIE$rs>m>*Jg+f4JfYD=YoY1uVqZQcwXci@xEG zLscC~a6&2Vi=F6_0ZBhhGd2vF-297W;Z|$gBtkC53;UJWXFLlt{uGj{@`CG!Ev`kn>J2rYvlIg<4)3$$fv zF%yK|MmGq_Fyk-nN(A6Iq$>9Q;=*8h8xT`Bqn(S$|{|?vFVV`UL`=se1Pf=mAok43T65JBZhh!|knhxf}=J0%7 z&{pt-2qolaE*lC(KZh1^p2=fz;rU^~d~Rd7!bWgtYxP?Ym02n*AS;vsAuXGA7Ney; zSdtZB;@;{SIiM`DZ@Al#%*$>y6y;kcLkd>Z%gP{eJ5BFW40krvH2=^Ttz{*Dyge>N2!bCPqvrk(uE{8(o>j?_w zkl!P3!1Vs^_x{u0w}F<+c^D2##Y|>z2C5Rw=C8je#K5HH$1vgB(veGb0R~FRh&M+I z+1in@FsZptz8Wqqbmne>QVNz97W1%;Pz2NNMQEXK=?tx8(31PkHKI~O3Zo+OtNlWNCudqL%7BnfNQtLbto~-)JZK1U^&h!Rspq_)e~5jz(zk*y+)18 zvU3PWf@Xm=Jd74{UdzL-gbfjW0L05Tx012Y3pg)^$==@e1T5Tb{ZIh{W6O6#I4rai z*26=9j3E!}4appo24vcdl!sGTTfj;>%LW40$6x4gk!;TA2AODL0MfM_AD&x z@n${>nQKqRE`^dPa6p8A?>zwvk4S!i$=;S(L%4hxtt%J=05X~qL~QkJ)X7*{9RPH0 zB8F%H>B!atI#vjstw19?Uc!~#YlueR(TRNe0YGO7Lgy`{vr-!JV@t-ahjeBX0XpB` z5sdhneF4{%gNJa)xd>E3tiC^>vp|Aq^a9dRpn=KnO=~hs64DV#2XxLNbT&bLm>EDl zdxmg5kj_}+YLt%VB@wzxyCgbBt6AKDQXr+QK&iXFAks?H>Vi%2tZ@~nD{?X$-eI6-bOZ`oM=*lN61;rgq9|!f zvzUH2)Pdo>p@E%%n;Xe2Em&8)0jLXEr%Qy>t^q?Iw3M@?1TmlAIJ=)nqadl<48M4= z!DCw;3q)5Q!fl1)#?Ayo6h-rtgxr&wO<==@rUUAlyMfGtXU?wPTng%vUyGrVE`x#N zx}g_Z%vqR+MRH(}Crih3u&y))^wr_U z=pLHIY(EF(jG`%_rOqIE*l-T0;Z=qL)DkBznu4yXrm7Cq^}>vDHFOb3`u^tm65zy7 zUX%d)Noot{1DuBoC}r~@!|x6Dpg3~&9y%UTEQNJO zpc8TE21^02-VxrxAxmR#30g+&GUk#wbRJp!Atsq%Kj|a9e)NzKE~`?gcQ^cSrH* z<~)V%un&s90TgIXl(M;yTcJFlIx2Dj0328}Q&~W2)(m<)JZW*W)(_Ou^=K5wAdl8M zr3AE2Hal7HMo05@f9uLzK5t$ep>OK*cZ*c>XThDBoG&d>^jb>h8g{qGR5r(4`k0L@`id_IU~#Q1r@$MPbbD#q|$Z(>C%o` zgGOe@8Z!&IK4~RQqRzD$$s0(+JxM3B=MamzPe(}>AIXiWWkS9S8M(>X}a zCv|-YB}@)9FrJ2t9qdrcz9u1V{?mNjA#JA0gQ8LswSectFM}u+>`Olo^mjM#*Q=kEke zou&qk&!iUNOg|8c*I9F%$*l3o!_AXN-;tlAT#fTf_?c#2a13469Af#oW4%QQx7~U6 zaC6U8Xko+7gNL(HdnY@K^~lf0DhQK#WIVg&g{v%&)z+)a>%GyUtvdSr#V5$XI~~Y? zmM3Mn!bUc5ESVs?i{3HvE1Rmc`_mmiO_g>p@3C&k&*Ycy+zJeaS@T!$;*E$vZgh1DvF(LwycZ-b}q#Zht}1 zUaHL~KBx8y@60{e&P!K;2?ssnj1b$kW%ZC~DTiZWo|tG!a>=Ql;&I5WeHO0NP*--@ zRLjIy=8Rn}_Ul37HPH&(LWXfgS-zZfF2(Xh@exT@C8>eo(XC{L<&5>lggI%M4HR@h zHl=)W0h?ARn{%kvZ)3ZTVbyJjJ>vLU@!U`Ag#9>_r!=EgZ*oB|sN(s!pzMV<*^*8MkB^YT!1h9Ziqw4(^C-H2eZ8EN7AJ#9+`VI@W-DRLqT>&pn4J=FYwf+l zD~cyip2KyQe5>3plY3m4_JxoFS5q}(^Pz9kkftN;wNIBd1JMc9WC^otm&qa`X;w81 z+-MbUz~i~ekKkJ9`&Y+xnb8hu#K{wD?ttNZi#H9hwo;f@%n`+JhoggwGSr-XIfhd< zl2r2hWcT|HB=z?1w|3=|TPRp*$hf9EU|icynMf+lKn@w2GA@(v--LtZ?E_$ugLd~6 zhV$~Fy%_!y*p3ms|ka=ELhM~|a$p+^mR(%088N#yJA3Zm-cefdQV$^x zLzKByE|$=p0?pe`xS16aUCWUZwQyLnJO(v% z)r{G+f*$^n*Y8w6t}Vo#0a=XbM)x}~G__C)iO2nV?Lb#ql4{r?dKl8aFkeE-D-*>a z26v8AIUH)>6N^{JeDhg89_C5EHVV_mppOlH1L)}FA_m0ecJyqb>$Z+}#W5yZSk-}T zVS{~(de$e=BQYFN$d;K8U@I19MInU^_uRNNd;4WZp&~IE&arM*H~_f@kjz69r^TQ8 ze^Rq@mmpGu-3P(jcCF6bfa)xpsgTjVwaux#(aN~l#2OgwUG%&M*bc&q;>jl`>Wp~< zEtyWK0p@S(GgBwW$J2M)P)P8$80Q7rple*BE@p=C-X*+WCd5WgF(bt-gJ@8!oO6?1 ztQ$vSwj$Rzz$x&1C2-Cg?`co>*{w%SFqN8q9SI zHXe)f$i%B<{ho1Y#Vw1G(J2?%hn`nfrzmF``3<+cCl%i*-KP^By8HJ70?CG-W*smr zfyeP!UHwXZOPMAxRy)r><^L&LmTrF5d3?_O5>dPaoWKY&x7~Y$*d#-v*W$>r-IvhS z^3VTQ(ncn`+JD#ASj_+4B8rcM^H)Lc!A_)Hvqae5tXAX|B>CsncOkY({38)p*nVpK zObSD)8PjC`Gk+BoVh=eBboewmm}CK71)SNMYkh)oCL6iS;VgJ9NP>9NHH+>x`$N|y zGS8rQe(!p=^M7JI@9NFfZ8gUqw{`l_Y=3ZE6dpg#j zk-lMrDJ-p|kg;xZc+2Ryo;#eNskq*Q`Jg2+XO*_0_HebKU6^*I zcDnY!#{M@Qa|1e~DEHX&J=!sDEp4ND&3Y}(ehUkB7Z$Lxp<_BxsNo!>VwIXY$5!o5>lGCuqm>zbT8Ioj8po||rC@q`c(#BIKuG~QhlM|SA{;*dLb z^IqHzYH%vBTVaGotir|fKCqK6z?i7FLs4Tuk`4bDnbEybhxauvr~^T zF)-N1;8nlWPVJLPyFBT^Wp}{TAwkxYYn~+C+>FQR?R(xjb!Rj)lQA_gSU@PaM60O( z^yND24bBdlNIjU!{pLJu>2B9P@+9}i?c7>5FEcoi<>z)CPTWKxO}?xsBF7%9x#T3< zk{_tp32lX+5B6;}at}#1qcAn3F^L-K_;Kx}l)vBaAX7*zg3QOtuFaH~3!n#_e?JX{JW@=IRaN5h6jnM51vX-q$68Pn*y%TRai*ba2RHJT}5g2R= zlCQV1kZUW1&WLDd&si?_15SAb*@fweA~cSOB<`g!t@@<@$1i7(!sh-{wnm8ESd%RK z`u=6)=y){r8T^FoD6Ls^_I#pD*L}xxsUEiTAlLjj~vd&NXA#P9ia^O4^X=?m1?hI+Ntz%7vVk>Eq=m_nT zpLaWuWy&lJll+n&**5vRy0cTYLC z2*tlw!CF|y@Nc(t4RcBQZ-=6RkonsI{Wm9r_zr8B#U@CBUM{4V4n4QvVvZY_OYh(u zl7H7nr5&a0Clp*T8*?tbtliW-W{J4XOCNR2u~UA4IW?oAm!V;>W95SNX9qfWz^=vQ+t_LW9vOzzVN_ADC$&!D~75e~n9xI@OchT;00fc@DXbT+TyGlnx!_I9Gn zg){@s?*+NtwCq{*)^5kR-bF{35S{Wv9XM zObS2cx{}(2;k1N|XXUabW~DGbj^utdo!al&k-Y(l-OH0s_CMlHC01z9GH;{9JB0p; zBvptx&G({B_VX-yy|w89-*GQhvaHFZec^bhtla#ij_BnaZy;4E14T z!`s5Hn#B<~<^P~OR3x{@kYU1YZw|DuK-ir6^5cDR=FA7GOY0*pdP21e^4NEViMghG zG|gUWB$ZQ4+J5IsVCYbbYTOjBHxg^_Mo6U);IR#Tb{!DqokV`$b-%n=Mn*^#1 ze=Et;+ub@b8eGKOB28y|U>jsoqUj)j7?5=JAOl+XjGlE==d_Qc&79gro?x5t)M3s zxsl3jbIi1=74hk!`1RMbFAD3xap3X_F#m64%^@1O-0f{&(OI@hdKNt~>Bz9{OBLDc z-pg}mL$7$q0nGXrVXkR< zM%v-_z=)|S$iT&qPO6hxTDGmnw3)FE_w{+HbkT`u zm=PlC1y`Cxk;U+)<#Hn*-*wT(xY8A)GP3lh<4+herkt@tIJdLp-?-t5cB*WhU+57{{-ce-EQ-zho_pdc2Y`?NHPaYv`oZ{V9 zoGddjgU>NPxjud)l6|0kyo+?_bGbsg>gVH@l>8v^FTFj_R4hCvR?W46865nKd7_kp zD85HTOhOc&F5!UuonP>zh-uP$(rN*8Nc`OS4Cf7${D=E@r1EIjWmh^Jv80gvXVO?L zxN(B<+$~;gK@2#iYH@GExkmrv%`O=0Ekx!SexE|$@^AitS8p;`Yt5vGBv+4q zvEw9~=2jHnLrkVejNO7;^ZjF+bwIfx^r8Hl1N5(bL=52=vMiWi%yf&xe{DVF2r?kl z__u{FbHP!DX|-1Kh1g8%?6&nXVT0?%T&4zVsdLSMcvh zC2Ap8Ktgn{fr9Wa zZC$3$+_Gvn!olQT{|M433qP93zfhw3F>p3jlJxgc$aP`6ZXH-jpB2`S1^qAodf0f! z&%*w_LhLDji#F~-hH9rz9!yvYQU-e@`U{0zulEbn20NMusaF z%fEwIAMtFb41{T%(WjrLx&~BtAJC@vmMrRfV#8l1Sp|2@wjlcKjoM`pEk_J{+WM=j zk=y2o+){IGlz&^TfLzvn)QY;2Oq27~Gfp5~vmF*0 zV2(#M9Ypdqi}six*Jn1eIpO1NZ2<@if#fR#u$S&z2DTg>w2`Mdl)&HXH&EuhrzQAEB$&y553t5w7 z%UXjL`xdf?v1dzVtC3wRvM<>q`-sM%$WHd1i4odWLlQH#@ZS6A`+dLf=Y4;FzW+SK zx#ynko_p@O_qq2z9`w5g{&%H8A)8z?@nH$Zi&pMS`aatI77E&vHCe9*6vC@wuX`o2 z{k!Jx-^~b*Xe27-pRmrenH-#y6K}DnCTMpiOI|-};pqKQZui6(bLLZI;A3Ur0!u*0@ z=k+9A!u&?+%6VOvswH2kZX7(wR5@ULx;H596E$*fOpPWQ*-@Ql+ecN_@XRze`{yga zmbI@VAE?T1I->mXI!uEgEHGM^v7@?e3?m^yC*e7h296`|iG3|DRI^q2snf1*vf2)y(t_ z=>kd2GR^MZZe%R!D@<3OQJXEl#n4#vGXQ@oIErAN-jD1@NgA4&F82NDQ|`ClelEpK zwBLO0dx{7{WxDDKJwR9B|A~F%Frd5OHf||UeXD$63%5V*RI|H^4zSe9E$Gw}-Cqzd z5g=}ICqD^Nabq(Ku#H{&)aEVf5jsB6C$0l%@)xASkkf3iduAxLiiw`x>xr)Xy8}Xoc$O!5AV_8X_w$e|6A_2og`Z<;6YW-X#;;QYqf*)jRwhtV^Y6O%DZ0+9e;CLsrl!`s>eyB zzvr^MAO<-OS*QJUIP~t|nI6o*!3k{(02%>u#)b|96{&*l`BzH+G9a z!_OX`T*+>Gu^+(=+_Mi})dZ(K@oFmEJ=a)je;c~1n%MEZ2(sgIjgnnlvqgY}G=LoOG#9r^bv8hfSEcs9h)Us5rG0 z7K$K~ldG718gFCijZdZs;&xLmIq4?Y(7Cz(*;kbRzJ57V>mDdQUYtQ$bn~kr#w96& z>v-_fRaOs}f2mqZtx!kqPlIjZ`)#)u9KknR@qMV3(6RF793MaBm8q6yVI;?0`h}{D zT-8Keu2Xm?`E%mLe|+Wieh$bj=?L&UA+y^0qUEhSW}{2)7e_=)T-zkKzN=R?6FJSN zeXY)Kh$BhqWzM~fu*ze4E3jZ*SJmwPD+DkCDP%RcIg-m^mbBPF+(=l?&>>y_Gd1@N zIaqtrF&yz6qw{;QE@9+aGZ*sI#?|H^+D#j!?+03|VmuOSL4OSMTbWL=ny<|$ipK3E zBP%w=F?7g|KWBA`N-l1jX`4k}@~`!}Ya5N5`tsbR<5k-VzbP%>I>g9?WHYLor|7Jv z^}Evv$f5_;{eQP>U}L(9eW~#NGZU&mf2kVoY^1I>1x>FNEx2w}gBB02+wMG&z2jTf zWL3^fUVkdV&Gv43(RTah`eM<}RwpK^!d7DPj6CnFl}~W(`MXObqKv)KUTjp9f;Cq$ z$;oXhEZEvJ^ZbPCp)&Z^=skjw@k3sU2;(wpX>G1MBUm%-njjXJtwv4oShwv~PZEZ^jD`Qq} z{pHrZwLJ@N82$~iyfv`2w!K(E6Ii*hdx2i=g~DB5I(n|zfonGuX}tXh3Su}_h~5k1 zb*|1XY#)DfE7G^rvihU}9DEKatortDHG}=gM%7Cnm|F{csE&ie%VH6TIv1GH5}CUq zCut+LI1bXiNl#=QX{<*G+4;!e8Wc=51xFwS?B8~Es4ZwRLQ8ZJW}AkEp+vMMy9S<`nLSaN;?TJ` zI}eY56o>DAU+CUKkM}+c-IqQzX|^y3ua16-9x8AFTLdC z0*&6>o>0Y2LpWC;xo;F<%D;QHmWW(#9oT0v8dreMhUk%wXaqfJzq$fFR*9?T2;&(@ z{o22LexUgqu)xKLcj57fFi~zu)|tpT^B&0lEwmb4h>&qWz6{ZPX@m<{=FPNwsgMPr zu2%4$iKc^H)w*Fp#Bq)4@?v9zrRnbX643NwH~Za5Yz2wOHSi5ZI(9;!9@W>~oBX80 zjynU>)%d^N{m@{p%I?j9PN@mwSbtlyIxdGZ^(LiZx=^TGo{PwY?-n<4%yYYGWRh8M zlKbDmj-IsL9R%h&m#c^&Za;23H1c)2LVF52SLmL9ZXv)Y_UV^L;xsuJQ1#E{vOGKW4aj#JlBsS404XikrRe#0G)e0MP} zu?0E@l~VM(f%lj@KOR18F|PW@iP{I@^fr}cz}KMoh=or)uYOEj97M-SCBq-Iub{as zJ@yXA6}??f-x*=|q2jRAks0+q2RKE9HH@wGLOSRx8ptWCXmL%+{N~cx-~aA(j&u<~ zTqMod;c4V#(w;K^2hWY4vcsi}<`cWOBXAhKF#bjvFNhFG;Nj5O<@73A5aFb+Ba*0? zW{e(R7}7iWc?9aO7;TT}#KUVVOEod$s?6Mj2jXDTmxqPz7ktL=x&W8b;{xze2Y&s4g zY$Be2krHGCbo{#GFX_Me0_jj>L*dT{=EPbldThF0^?_YBO5YAaIAbbHYxJ2%bz6-E zf`a}%DHqu+ZbSIl-LpngSDw;qgqg-3li(@3G8n*yPqz-AcYV^Kg?U|P2n@DlXn>1ckrLg&F>LPz6HHUY0P|C*)A6x6@a9X zp*@tk$5oOZJ0a4W(<7-4!04sjyJobGsAQmDY7Z)KmjEQbg?$f8o|! z#Loa7#p2ZN=^Eqq5}P9yM*1_T4$C9}Z)SO_0Dh?A_>IAJACF7aR*tw?LPAlF?;%{x zyG0oYbjdlP2(1glss&3MGMH@8AANnI@{`#3*?ZQR0N(77CI>4F8Fsa*hq37uS2Lr- zARz|y2!yLio?m7Mm!7EW7Uk-~g~+tC5eOm7!>Jn2_4NYr=N%^-*!M`9fHL&kXk=LX z&aUJM)H4c}h_rKr{uo1?xP)->~P)wD3aqT%^em<^)Ipj5D z?&H`F;mx*kE2pNe7x>2FrNYcEvgyJZQ`+IZhyaulK^G%58@s#Q6&#$thQ5|U&M%;A z-F1M(M#Cu=Q4BC;OrzdC1>j$L!f_I#TTuV}-ho#{ndptt{}rMyw3qTAysoh(z$~B z&l2{Cr&^h}&!;E?7<1%#gdAUgh5lslVgae(=lB~Tmsjv;StwN>5@6CuGvJ1;rSS#< zm%1Sc$La0D7v8E(<>dOdU3s~Y+V1&I8PL1@sI>RnU=;g6JirAiTio1lyqmA&Up;(+L(mBam4k8i@jxS9{$qgMzfL z2^K>?VS$Y7S@5K?C{3a&*bqzD*wy$?gNQT9J$@x$Bug=pps%*7GY#-}k6-E~e@T98b5PQ@;->Ffb^TwCjbnMpA z$O@>tRFV-w*Z8}x73Eye5BkzH=ZXW!xqUQ8BIF$Eto2BjT}GC;Or3Q4*<*{p;lG7p zmHpD9;7Mh%&$(MZP$hCiZtTmchp~6zHkwf1w}`7U#3dx3a!2DAeNNb1((eghYd41- zQp-gP)|3iKPnf0zu@{sTcUv$YY?J^nH33swgN*hxn>{n`gK0}#9 zl}6)NYIfShvUHr$a`T@vU^A__K-UJ>r-&VXq%@3UITiIRLK2QWL#dOnpxIMQ%h>O( zRzZHrumxk#+BO7kalo!e)ptcl#X-xroD^{~%OIxN>U*y_l<<288kVB7@q&B(f-DL) zOZHkah~0&QeJF1q5|qB35ay9SP8?bfOMX(kzv_tbI+Aou>mj8sT5`A2ei@eg>d1u_ zNIhJH!_QC$5>C+m#tDZ%KU=`uy;TrVDrDA*ZiKN!jaCrR@bz$1bl$r;^SZL19Xg6} z$PF=-sgD2#Rr8zY?E)?rH_01}x^t$-un~vXkR9inY0wj>`W_oQUENaY9!VZ&N@=-v zw*tUIr=y{Xs9c1ES*1CCmdtfp*3}TvhogJVp~Fpd!!S&RRyiYZXJz}cuDN-R#XhAq zN@-mCzFbIM6Gr2I@3M>Ljwuc$Rdec8l9h(3tf))+FB1iM|%Jaz!Puz z!IKKjZal&)_$(|z<%_l~w*9R5)_JquB8cE=51&+0v~_WhgxD0#1(MB!cOLxFhGc8g zp!ZOX8HUIfJU86bh+OIM4%w#y!zVfs84cCQM~<85KE7e~7*t!&Uy6s-yfk1fs^r8E zN%1SM7voT`t;Dx(_CGoV!_YN2lz@p=2K)2O=gdXVNBG9(*M0+AhwcyAfwjlk)D~J+WO0t(i+n!SghKNRZ4vq}Q7!d>!NeQR|yF5?gmQSRcT5lcC%T>9OfT!pbE& zsyvM`5Zr`BVRyly5~C6Ce(xHQU@ri!^xgi1XcA4#chP?N#Liv#?*@RQC;zsuaMfB72GcLCn$o-5>|0$^(UJlN0v?GWY4apDSxQ!2Knf1nNbRF21|56T?2 z1fCpUAmE!{*@s6P*tsx1qC}Jd^8+KJn1(C*DRPuv)oZo^1ka z;-D<&Gf2X!ZxxhM*;I8Kg&LkY_8P);q7m3J>#DaO525VWwU!UVrPmYfHxLq%XL;n- zF3Tp^LRgz80xOea;MwkBeQGEtObt9I^rRjIlFh<37~LO~6N8I3p`s=c5OMq3BsDMATYj7^XfHER#q1P>l)NUVBFl?<7>Vqtk)oH z;1UAkByoLRyY0j324GqPY6y(2o{MHZw2IXO!uk~v7;6+4+j`_Et0%16cLsqSvgVRo zk7i(oJ+iC!6aqUa&ZWK{C(i5*>-L^NV04?D&g*F&%r_ydhaZ8__Hz2IXGSsKf_1xj z5ZK-f&gAvyz0AH4)^!AdQG0L}tQV7*{b1cLW(1a*75(Y%MDjzJ96Wc7gf4xp|AK~} z%7XDe*vWCy$i)J9XYRc@0n!&>o!4oz&y&07h2kr*6l<&xdeNOQ{y=P#;KbpNj=F*{d`;arSLblZO#hMezRv zeZ>d~F^YKFH>nTlvT)Sj=WLANM$7fGZM&F6eGcU|fWsGaq7p(^z|-tTl3>`eIXD75 z>`Fr@PYC$gzte6_@bgLU$8<=5Arue35EX0?QYY}JH8R4-CJ~dTthpkj^NEW_a%R^MZ*aB z8yMy0HyMC9p+P!Hc~0=YtTD5bQ1kfvBtAGokuN9E+S+-=)2it_K)Ls{8$3V!wKA`a zst(S-wM00IHqO5vXfId)C)+CvGIMK&)xq_De!ocd zc|z5rEWX}nt*E)@9&jdpxi;uonZw`u=jF@2NVO7sy>Cm$#%5rb&!{Xh1m2yA1X#Ju z5eSxURXBym&x@oWsl4bX7R&Gy>m#DF*n8({4}!&Of?%m1I=H|(MI?CJqi5!Hc;h83 z=ic0XpStw$1|8_zYNi@6m%3e-O-~dZuP&eM%6-$}ht*5MRvqS}d^6L~f!^|1HUvDI zO~{i&D!6j5Etmbz=_)P~e%xmrtbx2j{q*brmES_s0eDh9;N>PIu5-iN>l)6$E;CSG za2^z5UErIq(9Wol;Tfax?CC!nQ&U{&*ipWs9Q^|@%Ea3LLJ%I056=vbWsiRPHf0SF zL|t>MSYaUH?Hq$G7|VjoZ^$o2#oo)Rt(BFxEV47W;3^DRoJ)^~9hMOF9OQ56_`Zv&!YicFsEk&6`pNk?K2AXprhbZS$ zZr*P0@04u30!a>uehxPcFlP_~r=l$(f&7U3AQ0{D1-MK^h`mfKuUVB)v=rqjD(KuL z)*got6Y_SeaC1*pBCFgP3{Ujy^wJv8Bhl4g1fqWMjJAOE)V3iF%5xL18iiAemI2>2 zzJ9?cRGvKo3J1Cn&lhDAgEF~hUBfk4wshCEDagzfu|-b51SmJm-im`C#b;M^1NBV; z$NpM>&U$P>IM&jlq%I*m{{)B;Dl2;x+9vas@PdTt!t?doj*KH2*t5~HH&U$BCXT`G zKIaNA5DWe6o`SDEQ|-9?wL0L0yk&rp=*LTbk1Nk|0hAi_3y9)Kp9)bnU7|>T77cFT zeqA$Yf9?LH@+`a)rpCS$;<$aaCVHe3&-yH0TB;RMu?!I>l_=UA6Q1{meFZJ(0z-CM zUcvP6*i2d=H+_?YSl7mr2<5}BSnbxv&$mJ8MCc=!SczP7<2&I#Z73pZ8SW@VM7R75icfZ z5Z62Ixi4y*#szl`XWch>r(&;qWqp^KJ*0IXk5BAjuP&mn(>JjF=-LpXz0EaXyBZl} zJPBumXa*NCfHhH6fGTw|3B-6kd%GDIkLCNyG1y8spHj(Z`UfF)UmFtRz2@dR?%{5@ zcyW_JXM$;;D zuKYwuMN30c{&;-U7;qzR38%jcCW&Nqo&}{bl|;Ht0Y4@%*oQ7~S?_fz~|a_KMp zNxtXXgz?8UrtMX^*D5M&Z-;$L4aBb$7KA=^b#&x~QEqX0{mZy)Y{kbk!)HI&^(Nk( zxS<9LJ$v>+b6F9|2@2I71h$dCBXV6ER!p0WI@u$ULFHc%+28gV0;Jr+pvWvq@tvhAllOuN(oM`+LXfjGoD<;62YjG`7v^<1b6H(V3cZq z9SE0uT4F)T$=&_kDbe=72g?%3K5>!z{^Wd#+~SehMRRb6Xs6^B?tBq*AN3YV5+=JjkUIT#2sERbsTC0<=VLD{bq}oej*F071)1octBliaPJU73hiF}W z5KSMT=?smz%xD+u69#pJShNCbSSeLHH!cC3s|k-lL*()`{G(| z?>+!WCmO*yei7oB0vu5_qk5OGxmA2wCQe(o_K8F^7hSY(%A|S#^)qo10%-0-Bj7Bh zzSsMpy$12*UY2ym@a)6)ws06E&JbmeL+=Yur;OB{2A;+3yL_=K8f%w6;l%vs`HA^d z0{J79KAjp$Pd|oFeRtD{`{roqJ*TZdLZbI>&#Buty?Js7TH#xtCO|!sTi}&9n&;o2 ze*TcEq(>Kq6_C+j}pEpQoow;I13vnc)AjtoXmIHCbgm!9ragvw*$b}IdCddtPIQw2kt z-NqAvL!B={=@6?A)a_A;+vd=Dqp3{|YC|DX5OWbvor*nuAfK`#3}hP)r+`oKOUijk zrXQ`gsbKx>i<@Bx>v{Isq_A=|Z~Yl0#AyNvxdB4MHN^|JQ$wrb$iZD#SQ@hB?=|qX zg6V-2`UE5+F5zX)#a`WTn&rl6+zeYu&$B_+qRIeum_$+19swd+I{H&j&9Z`WtoLQc zV*@mB3EzKz5u49~1AZv2hyXw_PCr3oy_)p3TFm|I)#D$qP7SKK8A7Rc+^XV^K{i`@eKCi80Y`>EvxNDT=u&tR0|=>scZHuNFI4MtAiG5l7Y zlhIT!k!mWQ9IS206_lxSufYzgeWOhZ_J4VIVzv#oc)`&%RKFWDxKARM$)KopMiyo~ zuUz1*hy0v!UbCmKjQLkeH4~f~yz^2tmsv|ISM{M~w%_ex2eM28SppvA)vVW09pxuA zB-UIaW?#A25C9pWsX=BJ>NJL@_Oulxm}#7 zDfW6T+T78FIUta#Rb^6E`G6nTMD5Nuet^MZG`jz#v(c2NcBpOwnLqM$yoRW`{hT`E#sCz{$P;teP z)hRwLggoZse zhJTsaRMha>ma4xCbLvxSulgXql{X49N`4v!8C}rl?tdCZl+&f&=4DC8Y6^zFzWUoq ze0~@qlXe)A;Tgj(WmXqAyw{+L>BgLsN$V>ZsBPs%T*dEcC?s=UpL=*6NJFC9=3vRd zY6{)!zWOameEu+;0$fg^hGZDW@X}dj#SLAjschoNY5Sxz7&86tp+ulkr7}B!Ok8NX zd}-B@Y7chmzrsR_ma#fVswV%oi_aS&WRjKuX6V`&{$|#*;%N*+=#wtY)seJ;nmJqh zSY2q}bUjr-CbFn7X1+vyA)SpXWd9=rf?#5&Z_T+a`ambx&`C~fz<&I7ZP~Sc)$MT=Na8m_l7r=`nBRjV&pP6h9YBcIxLrbsqB@g9l+ zVmy|nK#bIM`B+mxrF1q&#W;?9?$Vi}s;rcIs6!CPU7Gw4C!P(p@EQ~RDUN(8@=S?r z*3)~a!w^Gf7b7KIKDhu;Ntm5QCB%`hw4W)d%FMinVuLs*rB@)8t8~a2^Vvjr>VpYr;0(GEMT(SQEokBp)%eWKthU7-o03iXA zHl3G4>^U2TKx2q=#D3-E z>vGPGO@7Y>NN#l3-D4Hq7y_+!@!ms9ymDR+Ch7|tA~`}%DCx<5uZ26-6Re2e>>CB- zs6H0EnVdc0{%&k-dni5%TO`u(y8NskL!dh%G8%Y16+e%h*Yz^1z^v=;xa^F-BCC;! zcSw$jvIrHbHb`aoyIW%5UFX@2p)Y+-C?&dqUrVmbgiaAx5$Ju?F2KxG;YOo{t6i;) z_%}8+D7oX6PDt4x8ZwhR9;JN-mGp9WW&5GJoA; zmNR6{m+Xl|$azLc<`Q7#U}HVIQR%c7XB&CO9GoDS*+_E|go+Ef!bL59W;riT58?*l zfiQO*S?0^@a5>i%f~HUg9Ow8I9HHi6#cm{vtAtvW6O)nHcgKf?PpK5ts_;(6!2no- zd=2Q~MMLYZ5nLnre7A^G1M|}t_CJ&w$V*-Kp}<=GNl;)8ccL-7DG*q@<~XU~q2FOj z1so9gWiLV|_Qh@b>Omq0!XAYJSx zjteo3$C?X$@SA8liL?$@PZ3aT&n=Yb-Y`9nvrTw-)M2Mo9x_Xi`3RYXXV-{qnv=UQ z`WI{;(O^dq-FiYHvwiNwQmmb+Aj!1*ju@rlB*IK|8D?aMi`{wwvuJFp@b`j=rc$`9 z7n;_L4}Y=xA7J z#ZccmJ+Fq@Qc|BFeweZ=MVBv>V)exezQ9Jzy*G|b1g&6S0Y~l7NJd!A7gWp4u3@y4 zG$4?eDW4Eab>4v07T=5JD+lxxUm%nvl4T+rlo10X~b;|O<*@jm7Ac8wF%7Zdref{2pC@&0d z;GpH8;l%6Xu-fVUuo|YY&{@+cBNJOCNSdTOi!gic@B%V(G{;!^zc^A|(ybf-daM21 z6U13LJV3SYY3V6}7~+^yRv_r?l|F{hN_x?7Z_P??kj(852Aog3l@B?gFdI}0dYFy#JFvjp>bLE+c9YB)j3-_9VJw66x7Ze7Y% zPGB^5O@TC*IFV{k(o;ZhIOUXe2bX=nQWkNX-;A)@%G)3r#g;6Ygg8F~kTFDNu|h*0 z7(4|H={<(e%q!|YPf$`PBr^LOAhA`siV@Vyx|zdhaH}Z#h*MUg6G%bkgkV?7lkEXz zL!5FFML*nR0m(%2k;tr3gyg^pNYd`TXavoBF+pleSKtV06PAc$eb9p|;w$RM!=1`%=41F%`Nc5?1WOG< z8>@c`BIOxmr?buQC@wl%UfI%>)AEqvgrx>_$RS3^%vboP{^qxk?X`8y+NMcOzOAX8 zZOYo>%2vqslqO%$?Va+*wMD+cRg<^RiVmK>NeI#33~1WFGHJ)O)3Le}%sm|&ygJAF za%(#_XXo2S^5Qlns>yr#;{D^K;R2@3$yc~0Ht5Ilh#V;Gz?|rJA#1tJ$q-F{Mfu6w}@Cy$_KVDitha= zFL}AP>g&QEfASiyd4HanA-C0AY}2tq-%5|AQCD*l6(z=n-XG?TcH%R8alFt}vp>iyR&N_uMKV6%k5q>V_iaoqCGK7Imw1vx z`!>+jd;7+G^5WmE)+T*TClqeTK4kgUn&MDU)0T_B+|LI~sg0W*?W{C5lbVPDdf_KI z)HE-w;uCFuO*74X-r1h3*!j|bXh-gskE-phkf<%!BMqxXd@pu}2WNL~`p!kW+Iek~ zR@4o-EgG>+L9)SbKeX*3ynoVhW3R_A!1?o^rYoX=^LKmITT!JytnCg4)$VL`+jy8$ zq@gc=}*^BsHiSs%qe?eIB9o|hT(*7$%FXJ?w9zO z>umJ)c*YKg|LY>&i?3?mFLmFbb6m;NnHJJC;x?%xu`=<^-{_mRiv;7B2hKs>ZOSs=f zUwuJQb*s{Mw>F(*vY_FKdh6GU)gk0c>znR7rDH)i?mMAg9I@Z| zI$9R*Y)JFQt~vcpdp*t&ahp>n&~2u*j7C*%Pc&_y|FqawJh=Dk{eEz@ZL0plEfn9~ zeCO&LOpl4Vx16^`at2kDC#vdfQa7%zHf>P`Rj=+;sQ#V%*pKu7*kt!=ZTeTi4taeo z`Cg3_7)wfp?D4neGVuv-Ir6JQ7nL_Ao;iP)Jz8pKa=!*>PWcyd@k>7udh( z^yBPbjm~W!&L3_OJ;`JRyO6)N89O^uWnmfknO}CO&0CTw6`kT1wYAN}1-pjYoi`)z zLekb!gu5|UEL*of85zCVEG;36nNtK2U;D=hw}Mxgxr@5`B2A{Q;O#K?)%j^!$GV7P zXWEj@&aB|i7xZjof0Xcek$<}?gghT*f4wuqN?|IsR*V;G*ANs~Nim|ZTi|$2Qz})j zjv8LAq|F|@`r2kP7Re`1UW68G=rSIi!4#Xhx)aSeo0f-z{Xz^qFk23$^i$3UO%dak74S7E;MzS+#SXonX^~dp=WLL(@7ap~_wpdeBXgl8% zoCKTy{8M|_{OZ}+l!fh)_IaO(`wD$ZIO~@?c|Yj=Z+kq^S?wAgy`OZFw0U3qE+v(; z+}wgHXR=%KSh1T9ZW&WJmMxqz9Uyw#GFHrJ;z4~}6ffN?>u2e2YU*)(@CBLLWfu;> z0TW+bG~INwW4^InGKYz4x;xzOce>zeGsls(D9lHp75s7Mo{gd3PwjU$NIT0*zC4-% zqwA`CyoSGi7l8H#URHR?p3k=8D2nBG$I@6Gjt?0+cZn;<7Z*-9d3QV-@LgkW?e;2f z(S0(8k9e1a(R!LEpQ~rd$4P_v_R@Z^vmz5?{IOk^!OK3n3v;QYRV8{gTyxLNR?eOm z^Wrd*U`{*?$7utnpKhyGqpXJ*&)#O4{HVKswOP@4l<8M|)%UkNmfzj>_9T(xm-Y}+ zHSLt@XbA6>H76yafelWWPCR%=qN$IoPcm#ANe)8BX=zTx#+UN4{TGKXh}H^gFmSWV z&F2=P{``H}(iVMk9FHMBWN{Ai#GA=gg(wjlGA+kX@+?vVdgc?f=ATVS;X#U65%31cx46LM;Sq24XB7d>OE9 zy#C!0kMH;L6vzWd{wUP55ylpP<=hvz?dB43d+@qnfe2~IiD8q!T2vv=mZ!dy@2ymd~5Wv8F9zTX9b0*+~R{GCWJ#+i)OBUfx*-s!=)P3I9~m_ z$_il0U!Q`%ocqwDf-K%VWQ1z^9yc+4{C5q_>2xss=;vYi ztX_u7-M0F;ayG=NxRWyNb6LfPbwY;$rDlJ*?tL<3siFMw9qX=K;+7v3Mp zVdA{7{5s^$TDpT=dA5A|B}-Mj1GUHRk#!nuOT(>G=xz+hdTS#%zBxE2+4W-H2kG}+ zR4~9Ck{QQu#{5Vqx)+mu{Y=U zKdxD|@K3AIK1m?S3cr!z*;miT^ICmZ7+c%69@l%X&#%>T-;EXauzU2~?V@%PnJ&Ul zhrwb_g!Iyhar2Kgxb*E zn|nZ~vH(sMPJ;#Oqo>5$8dumY>O%+Br~bJm^;7u%{JUCSx_`%>w^<*L$*~6yYkf>N zGve0C!y3K}t(LHi6>^=3uxLc`v@ju0>bnGF#bwWMC+w;Az`eV@(Ai41~e&?XMKXmmyG7Uh1AzR=G zl_4*EsYyj2V@|UNk5||p;=6pMx^R5-ZTtyR;wiM39^tbVH{~N+;0Dm)wq#TKqK|VE zGG|jPghn9hj*T+$8Q^c2I;^RS66AUBu4Z&6)Y$5m6~zb|5kxJUiD}r*c!ha}>tW`B0={b%hY|+t5 z+hEFXVnEZmzf51~uJx6bphnGU#z3NACKaf4cG2hRVJ1CV2MO znUAP!et9-sZZrDREx#*?tj%6oBSJEI&b0XmbPJ0hG0-g#qnx=9TgFP)6h!N&n-0{U zTRzcX8#IrgHXT9^<@@WG6(1BZMVclP+ZlImz6zMtIq=7R5D1Yu+&)LRr8l?w3Tojq zd*%Ir(N`NkyLxT;#NB$|0oUX(b`DCQ!S;7!7`xk4z|~OZi90JN%qfmAG#q$44_-T{ zd6Zy?z%7SOOXJlUEW8_oZg+HkJ{J86#+dt8ke2Yl@m{1<4uZ=&0@y8Hg)a02Bh$T> zG#eoNH3?J0`sqCc!$5`ZwQnD0*(==0cf1A?Q_A5`1q(J2le?gR=N+chkkKF14@pLY9ePyv} zBza2_nGj0Xf!af6xO9JfXmxG`>Tl`I-n!Wl-oQe8G7M;HIIJNq)Q=iB({#%|L~FBb z-GjXH4x}iE=}w3sy;+Aa$|OEnR#w3tG>)bwp*=pYhs(wM0nJtu(v298rVF!k5)mL< zvVl^MlSEwZU-cfsDER1`)odCQd*xfx`QYwA{HTN-@Yl^$36jYvv`r{>6|6fI0lU?w z=R7G9-(-P?k94>N4PWkwTF8~OsXHY-QNe+Vx)!4Uc`Zd_9Sm_(O`euH4%DPQP7NV! zttvqb*rN;;tuN-I;JO0y<8ByC3rEKB5gC?QRxPh&i*IVKwoXW*V^=G_!iHZRL87T{ z9C;@Bz~&cVyqDRBR^-en&d6}q{sH=|$qx*%#jInzFaI88Ar+hd$$w|Ff8M7U7{5U` zl`O_ydHOsd&|F~Ny9mUxpC3aqzxFgDi>C1$SE0|Iv@_hiJJgl^%f6yPahqn7X0b2f zK9s)xu4N9eCW});fN<-!|C<|I9v=ckLq}^HeVy&JU^1h{cp6Z^Csh_6n_+QmNqjiN zlv>lMyj|fUFFA&POdJ4{!hH-DM~{<&$_`UJBE%QRX#)oNRgM{(QworN*Zv;rpi37> zY}x;IJkOQ+S4ejs>w$6n@(SKYH;qgO#J@n;G!vYE_qMhf)A$>=*wdH>^WU&EYbd># zqv6>%!fzA&9&MfWzw+|eucBv#Hfn}b)zOx!PShl@X6P-~8tizxA!N0U=4Ru!|IgZw zgrm6wZRXd;-HBfT-`+Ix#sBhE(0I35kcu{^bo{TtVu8fDw$qe|M7!Ug)}m-Lj>_tC z!SFg~?6MU~gN=$KH;y0JEFYGTG^E|RFTUvj9cG`yb?7k9GC{I8!*0%yt+7)1((m$n zCU@dfD|7u#Goz{MOiNW@a~Y=wSM}ClFc@1DrM|G4G)KZKlOybE2Za~hG;7-x$J2kY zy`t?{D7!bS4eA1wpIh=(h5B*gW~v12XO+NUVP4b(W{XP5Y*(rV)E&A!lI`!S8*MTu zh$(hBR4WC-q;ef*X+swF6%Xwy6_@`oZ}hprfEA|mbGAbkrWKK^P0l1$7ag0K{xr7t z5ij_D#Y6>@2how?n562}N~8OTIhvdkBAZCD1Y8-R|Sat${Um3th_dtCOk7 zvh6<|3KraQ4!Mu6i?X23ykyN_%g^x8`(^uPJ=SQ)8V^QL$|*0x12a!k%Vx|T%SFrh z%2`gEg1JQ(g)O-k^RkHhw@pCTx#$*16khn5wdq`5axA*#px+CT#d7JpTEoSKL0cV( zA*qTh_+z>m&0N)zQ--2R^nP ztQ4u0(^wr*zCE1L6ntBbQu%D@Pn+>--{moX@tXwN)0Lss-}j&W(T!;;jog~~a3_4( zsBx~R5g7{Xkxy}66ZJ9NbePCAct87z&=wvx6S%#6_I$);aTUtUl* z28SCJz|L0DXF022(V@t@*_Jx+%iXeBnV+;(%0i*toVvmw`TE6tFEYuw53kY*^*3I{ z=W}1>nW}gdG8wPpw<6VM7xd@%KAeqqAbC5sEvRCuAvQyl!?YAcfi0aZGO9u({B}FY z%+9|#I%6-YWVvXbT&X%S_{TGW@6|sWa1`#^V0yHX^Ew)p@xr;OVRQA+p`%=!(>f$# zXUHbGLv?46k76}BT({UHXJgQ{nkQ zUY5GG1k%4w_aDmy7@j3IrxPo0-|nW>B#pIkJ4e5N&ph|xjz;ZF85u8w@~XY%x;4|r zs_xx~lDM%l^7`K6j}17T>CJB^faLL&i-8Zn&x?Fj`A?^88-uQJwmXohFw1mybah7s z(?S~j1!mN;v){D#2JYB+vnyzba|v66F4~#kx;3DPm7U`FoI3FSojbng2WOj&w=1;qsYBjhRL{F(+vVV0aB5fa1U)L<^xs^T9=W9t_HSRo?_ z??T0kEg9R-b<5os4+pL(<{S1v`LBN++yDz}bG~}BTc4UjI4&)LwYTNP#6h-t3}q?j zfn?BTTd%5KgPj^1k*Dx3kIT zNFZz*0>RGBC;EFBFaC90I9i93L{fz#_n~{Ii;ayoX1+Q|sE@iH>^Ik68<9tu6s0}H zAGq~fF@JU2|7{M61?5#l@06ZeD-+XO#rsW&_TPsBU@jHxYcd|ZQm=Z<7q4I&yiIBfp-ickTh8~W8%~v2Sz?`iuIIzCX zHRR6N(Ry5t0Gyfa%4St!F^ZE`_eyojs!AlQ0N#eR0WUXl$%FC8JotPX+zfoJz`?Nh zEf}Q|{00mNn^&agC9j7}S6J=vxFHcD65c=-YIc%>_tZ0-61JS1cWN-Cfy=`RO$(dO ze1~5l<3YGo6|}2POLj{654U{gObP?9rf2HD1kjjCJmKM&^p()e1wp<)66cg1*}TmjpCG0|Iu=s zVRJcSmON<(6nOMM3TXTs$6pQ2tGS39*zeS!Np9U9eW1`Zzo}ZYeO?9`N%jjOiRT!} z?KKt3>w#0&!7fbf&wE=P3zD0rKm$1>zm&p3HMJVDQy7Lu{j~^_AeSq?IuWwI@+}}} zj;}lbRxrUffLnE&JJND$;6s$dmW~XC!w72`a$<8c`r3 z9=3o+DH(qiyczzdz<6t8JvD(Akoxk!q{aci3;*TkV88R@qC#`szW){dWp+yM|1G*1 zF#f`RkWxXvVbp*Y%QzWa?H1Z_jzh={J|f0g(g$OQam=Kl~s4Pk2ns{w3#= z^vhCj?GSwPeK1$4s^c1h>^KNd2hW|HKjt%1KFZM%2U64XH0c!MQ zr%=F<7Vjs2oV2CQNinBXq$BS3eEn^iH4^LE!jjOFVdOvoNDynH^-m^|KWjx?149jcVL(fmXzkQGZPW*p9I( zdUIm-&ELNY?|RLfwmvPEha`pnFYcp2E35zFYEDc>!UjH`W&v8|+C{@&k^d@r*k2xT z?0+&3jpFD~UI9*7`dyfi$SmaK2lGE0uHZdE$JrH=&)${we++UEgdxylc18RDpBq(az}qq+RIF;LNoD=m+03uTKWL-u_yGGc5+){uS65LwFDw~!?fvTuX2waC)U zkY&cs_dcJ!-k-<&`}qsLKYV}DG;{B{XTRs(d+xaqS^c zL`Fi^lTBkM3c8KFEy$x*a=lie!&m{b1@FTm)Rwe{6!5f?*e!6(6z3KBn)ECr6J%ll zxxQe7jLvJ(QCLlvJqB|>1k=GsI15XcsRxpL;SF6)Mqk`xn@nCCB~Hr%*k7eve1){@ z|0nJLmRdwkG9}1o?UDyE(#=+#BaqapJ|{v_y9=b2T|lRS6;{Raok7ArIh!sYlA1wI zK^~YKRV#GBK7Cx-{UFHjTqSKGshv?0I}Xl6;=NA3CWVJ&Qo>RT7KWsj1f-^_%l;a3 zKM16M63)V#CG1*|LoU3jt9is17i5!3X`{qzSwI0fES$wRNNNJU#wQ1cPw?ZC<;U9y z;iYI4K%Nh29lcbMwLxL0o@&Jmk!qY46*{6WU?9OVOz^75KvHZ)u_+`r+*1$37L@8q9yGi zsj(=DO)NRyi1(^UAf<+65@4x?$U#!8UUclz(PfXvBxGVb_z5=fWXsnBOYOFvrkxWm z+a?oa4PLSY7j%Hsj4h$MPpZgAHy`LS|P zKl~sADA-->!(DRJtl!`DNr~lP`a^4HoPsa1)7PLCJ-puFzSed4VOtzdI?HAj6axqu z3!ZpSvex8oO)K0@Do?NB}i5!8OE0!^5tbqq}Zbe?~*lJ68qUmmaY*$?Z$7f7`1 zbPUFL7u-Bl-xvGeeAM2oGS6C($x4+iZ*M|M)2)JvI6VBKPLQp@8-7 zcl`4xWE&4&j|L@^kT)d4V&PSJ1di}~C1Ik`$SB;>i%|QlMpN3=FS4)y4X1f`V$iQmCZx3Y!kd*u} zL@9RSu1a};7`QplK{NHzw9txGDHBpM-EBP1@ATQlB zl|wZZJg%BcR|Z>N7y`09($$G!v{L?JW{0WBnk#G4W4rG!l)aW>uF)k|{{y7CYu+er z^4!boF#S`1jH->2xMlwj3#y`#<3=2=L2#U=&;zZV3k%xO$O^IcrRBBlq{A$?`ky~p z0}qyWYY&NG?uQ!(U1}s>g-@7N(@k8`lH-?n(o4?M)JhHCt!l3HCAk(|R#BjggBTk8 zCE*1Vs|Bg*pJovyVcF-9BXM0XLbK4ykq-KEcJjmcx7+)FyC(tm`#kdVQ#uaKGAXN$*78hHvss}Kb(XeYL? zun|oz$0|;SDK9^Yvqwej3b6Gz$?uq#s_2#)(92?t#P{6Td~q!{{t+DyIPH_4UwA}b z>;D~qJjRQU1NXlwgKtYTmnI|^SGw7B=BiRV@f6>T;kES^-8`oh*+)hT6r^}OqM>h zObe8Zn9Y+9`=$|NU4{1+5+iRDmN)jKtfCrG)#m8Qh56Cu*$W^2dhZPTttT9At*6YI z;#3!~HGKf4efs+~2xmS*GRWp)UC{JUM@< zf|M-M81E=FdH2z{f|bWkKe;k;rg8jb)20J+`|mtk7D-quXHGWjJLS#1d z5S{%iHcU;4p(}w~OAj??Te@Ai@<3{$MMc2$FBXL{mS;W4PPy8)OMo?JVb;_&4D{zy z(d3J^{Bb@CJKpnFILM&2wVA7jUG2q73{p#C#>bz}$h?2pr{MeKiuY2yx5}=2ckS25 zlst&e9q9xw?lG))Pfe#>AB8tG{76SE2 z)rk-PQOyLMqJ3~GDA4|+Hb#6@j(fWPhBoTr%z=@W82*@=M;xiWw30gy0(Gk5?*wDi zKTt%C%}P=VYEzTW1yKhdDTzrvfh_ieoiA?Uw$#J!-b7RB%c-tCPY!w;waf~C98;@^ zBWc>vzD>pir;GQEmz}fuQOU=Gh}9V%^N~aGIkQ-hYW{gF?SG(33?p%@!?M0!Z1;_e z8m8B8xi9;y$Et~yM%qIArl7@ip47L84cyQ0iQrG)2#gFvkM$`XI7$!Xth``|g$pwJU@(M8# zImo8f_7|6~R*y|D-b!3%|2#ZM={FGCSZEhnV(ik;bc6Cg?bk!yT0{diMDJx z@Rv~Y)>ilJ;p-lkbTd_$k89 z8HIa;^0@Z=HO9vO#{<^9EsOH@96Ar3i|Y{AOt=XV%VxgyCq;cgL0_YxN%P(5hitRI z4&W&_>OH(fksciGL-iiV$8pNU%KtIYe5R-&jMsl3s>3}pT%(HZH-1tz;V0IKd(GmD zOytLlF_5ozP%-37w8%f>pE{iHm|Z|+px~feEFTsuR#k8Jqs9;Hi{P-+0l9xq=3lly zF8};>kInuYW670)U(bK?&s<`-Srvf{qzEcsYw7GNyB8VEAC65E@`-&XN%?l`HAcyO6{hn7sAd9inqu& z9>GqR2I}uznESVcepLsD_0j`i%i23lGx-vKmTOh}I&aDoN}jZ?orT`T&#_+hjBwmEB4gC@Jhw9{X1H7MFWZw(dR zQ1x1k!fpQv2N%n7%n?L4uGk*hyf>;Epaj5TMbtk~tcL(pyiFr>Ytwl5@Zm_lSWEq< zBiLel^WQ$rC}__qTUrpxSutR3D)1kty<}P5y7xFY2dE^A)m&336E#>G^*=)gOkAKX zJE;VznISdmC%c^Q(L1zdC2m1pyO*+Te7^kOpp+bB9&S|KVwGy_K^#{Bv($Fi4x0%1 zXID8zQBP&=MTGmyGKr^IbGfXV#-LR4QB3W5c^3odJe!>Q37~V&)EQ89Vm-TH|3RJi zW=UgjQ|Qm%r`?s<}ogCI`s!aS7UEkL09QBLdSRcK7gT|ErlR}W{)%%(>e452V3^5jGdBpH7EX>oE z=5xyex-KnA6%_dIG#=L#Iv7qu3(gCbu;YlD8Rj&|0K1|d3kOqX7Z1-zhA~l_Tr1bm zojiq5A%cqB@nhp4NF9KQ4J(s)lJe`moR<8HzrFaCrrq5`ztzdundZ9um!@K~u#U*t zL2?*jZ7lFtc9*yT1l8C#Tw2jw!bB~69n0GIHDda4j3Oq^PspF=!Fzjky^0xt@&9DaYbuv^R>ETMb86qP>B+U*d@r^8AHUK_%^D9 z{QM1yl)G!5#Ux3H|H+rDdN?+#jX<6-j@Yi(K_?Gr=y01a`d`<30=4M&a^_M3A^eIN$$0ngd(9PWtQMKLV#J5dw+Wi zSPk!eO0s5t`45P~HT}Q1weT;;jUJZP_rolYF3a*x`A$35TStL^_R{`u3zW(@z{>(W{i+eo&Gk%AyWbT;Sw>Xlmgy-*jpGS(8|JgMkVZl@(NOGMLBkQiL(t}zQ`?u_i zqd5h7OC1w;a^9?B(qz$dk#NdX)woj;fa}i42x0Y2+cMnrfrub7l089YtYez({Ba}o z48pA$N?3CQ(>?s9EEgrUXK{eL zg{YAIHCofDkV~7Cm=S9oXV`A<*g;)9l`%JyLRNl)I+8fx3?T#wiSURkv#LNPFO;5W#-S) zMDST_U~-=NEJApp`M;1kYZ--mkn~%bwycj}Q%Q6J{EHl{IlcO-UR!={ezCf^__;pgN+||bpsQ4RwrQIXN2sJPwRM(8LA{11$mWqn+<$~ zDZS_kDN)X1eSvA^^@4^>6om|ZN2nZrR}Z51Iq(*!%*pUnAC)_EL2>P z=9?(URfG|_vf(Va^R}lUzMs>J!ueR%l~Mc4?PgX;FW`Skvp1U`LL^^9sJJ)X=oN0> z3z+^H$F!yl&xSO+OSI;P)4U)&;o}$d``LwMb|e8 zj$_U3bYnn_zq@t>N}E%&JY~EZ_Wn3bj3k$V-7Lsj&yW)&$}QenryVz1?`K$>^?~=s zY|lWHT>z9xD-l0aMhrE4yWloo-c;;G$)oU^6cunyneA_JmY+xMjP>Y}qx~ET(oW(T z^7{rQ!ITSTMh-`?qN|Lo|6I3dCB*Qb;keQp1tjhM*ZrCA;Vbj&Q$pcnZB+c$f!-EG=*!#@JLDG|yB0nQ?VW-qB3b9M|1xqzm z!D+ESkH%a|%DdK?-Pb~rb+`?NWx$f$cYjkQV8e|WOVzwJol@^ED?Kf*n& zjLY=uwv`;Kg_3Ax6HOfjY~0ASuaKf?44}ytVX3LKW!O($Om9>>#clk9gYO@$T{cWv zn$U~K)M}0Qn|fBe@?`p*q=k0VE?eH+STWBoUT=_f?1-4J$y-Zm+1LD1E^1#%AWg1S%6} z4CXA~7cpFv7jeMRt-#`$O zMx}^2KM-Q5U_zJ^zelpMXwE-_#&@TwZsqP{-#w5x=5J4NG> ztU`*5X)zA0a4RJ~l3N7QFe_V}rCooaaGza>P#{q^Q`6C7!&my)krfIIZRe!`9wBEc z3o^xYjld$mf1`fee|z)U09|PjM24G#18kJK6?!Uz zd*|WcP0_NM3A{u5u^J1jSMN)5B)H{}jrW*T1oq=kxQHRGNtzo|Y_MNA+) zh!owz?GY|&U=_Ft1!fkF(LDa0C^X&18XP6N+Cg_5+aP9?`WW47P|n(K)hXE1id8rE zx&ws5hcLHpa@H*=bPGV9<;Qa{kiB!nS|V#E;9WG=D+v(($v)ji4RoJ2AIr?P_Eq%o zMmP(uc#I0L%RhgttmQ;+Y#2w9{^s(rnlz#J8ndZ74zuBh>oEm)I5hqWS1)AH>I93z z)ppW-ls;-&QIPoeL-0$$gAyC1={=8$(+rb45ETvFgvlAx8Lv2c+Oij}-ta-hFD+X@ z1hpNu<)yHby*jgLsagS*FR>QwSP^dZKzgc=CS?7(KB}`K9#fF9lAYkX-G;SSm#dhe zvebR(b_BaGLS^C#yCysgDO}J-S7CPh=bwtOHe=a@F5XCKD%xsaN=xFAZcskKsfm(* zcH5FYi{p5guTY2*qWriK{S!#Hf-pT0CgFD2&;MaEy=_&a-Rp)=6O6iuCA=DjP~p)> zwN#{Igwk&+u8hhkD}dO*jCwa;HpS}*_Del{e$x5v5hUBkYUHZQVu=!&(n>?`+L-kx zjO~Ca=art9kssS0Ma=%idYth3RhfGMu@YKVa0$%Q0ep=X8K!VVuLxIsZcVFxtQU!! zz+M@{UgY0@tQ^}RO!BAv;TJT*S>nQtzjKCO%Y^i;{Ioy<-`fS7>xJLai%2WAg|`v zJ#OBB4{2$=;4eczCM-&Sq)#TRZm3ZwRvNde+8owRhH!W`0)wEjbH25Wgthd%80^E{0S2&*w97|bLejPek7zf%E8RIXAAVyrRGp)KGh8@$@%c6 zjO43%VD&)1t=kAKo;f5lAv&^O1Ls%ps@ryP|AmWK5HDr?D=o&($_*B!r>+lI6l!~V|^&B?fqfm$x)1}W+4vPGFjF33c}o> z{yg8N{QK-~3ERdit>||H;CQIv(6s_S&{mSnf>6l$heA}?rq;=6j+84(F8$?yEO@}g z9)^*)Vk#Jq+8?cfm6OdMN-2K3593%agO zEezCL%t8WlKmCHiQ=f#0v8grhmg9(eS8G_>;@zeoG#P>UMkQKDOFHazc(#@u9evZz~r2*L=Z~pL zy9V0qe`qgwS6l&$*;`|ri62BNUJZ-*VBL~iTLJqI$}sRmL38CifN6DdVpxZEu##Ov zi`@0`nbV$vlIDz_YeE3<)!<2<6-ZfCc-r^&+#7{NKj%ImUHl*z-PZPI=Q zYGEpqluHXBv^UXD2 z83E9aFO#T!3b(fBD@}yT+_Q+4 zgn#4AF+Ra>Nad9tZth$2lXpbmtrxqykbWCnkHU56Y}gAOtk{S|-akbB{GOeYP`$io zkIqE+ukNhd_WnH{{YJGgpO^^ZP|~lTk;C{)$&V_(SLQMxR+7p}pXsI?x+)uQcscd{ zmfd7uYM-3fheY6(It(ewg8?*hsEt#$s8pi%Abk>gsZ+k_U>=Dn5(p zhR{A6@-DW&>17zR{+$l`>cU(Q5|H9VB|pnRKNWAep*|JB1-cW&3| zHn;v5H5*VwtZ8KExKYA7qfo$FLvz3(`7mH}Q>F26>++9eW7wZEB|y?{J&7CEiNXbD zRF}_cou+NrxkRgTNxnS%r)%&|luDq_WKq+>aUVpy~!THJTdedetskHnkNIVYh z-?@`OEY)$dNb=~?|KG!Q6gBm2FQrv#6v0a`Eu z#SQwT)zA+gKLy7=LOqTjT|}rfEwjdUmm0RAO6}FbWdLbQa|iGcu`R7Q-)&P!%1x=G zUyW0OowJ_w0UumU22K_u1O&Ci~0= zCycFkYm>$|@B*`Dhnt)7o=bPbML0MwNgad8H=fHO7p`he-f_8A#AIH zFP9@tp3Q|d@688KCa(w29{AiE+X22maPqa;MC3fFHgKD$&h;tqP{8l+XNiMf{pNPg z$c$^x|5{ua;Y>a&`3$?lYOy~TOn>ET1MmgZ2(FgzmJ;)%*~6_2`hWl~^6bIGzyG{1 zI}4=z$`Z z?;BO)Le{4$VlbeR9UNgQyuZg2$`!4*+P57*l{oi+`Pmz8<>c78rbB!<2Rea)JY z{2V^1;;V${&S{X-Z;-Q5cf!SW?sUd*k*YiRZqe+1goll&7q{p@#f!h8 zu!<>F;uXF-9tIz@r)ar?7SzO>ntRHsZ;wj z5@)$+-@${oR@f{nRT3B07ze2}faHQ6X8nl=XQ7AlDb|)Oql^4I3XzmE?tQkAti#0Hjn4D(OT0NBw58&~e`(nHRH}4a_~v*RyyMs01H}p9i%vHHCP9Ws>WV&+ zG~3#&h$R=S5Brzlm?r!9@ywhW)TIfYPI=8_n`e|8cgH*6?DGySdk71AJ(Yq&V&-k+ zv5LM{0XFoJ%roS-a8BVBI7rPw;QED~8uDW}o?|Ng?t~VoW`+23!$|hRfv{2Xn5QqU zMA&*)2>&T*ZJ<=i4&-@tz$t%YJvPu70(qJDN03^~lPZXX;;OI!qMl|ztMVz>mDuq@ zs>JR1`%O-bdF1$Vmwat})=ss$_yo-^H!RvWj!utG0G-6~|8-@A;Wu)>#ZH^M)Ou zRB9cd@812p+epuYO{bJ7o7^Wv?6}6F? z-nu+ki*$Acl-$3gyOo#wGM@%j07>Rth$FOhJ^F6MEsV(s++e6GZp1Ml5i9yXnUpPC z2E;8v_ynYz`!ByK*)=l*WcGi+nz^0?)Lz_Y%(`mlkXQ!7P2g}W|E12U-~EB~Ab%(% z#^hArH~9j{K&*%Ba>!I^j5k1f-*W9=7O53#61ibrZE{;izY^)>36PU@=30Bt7dB6g za)*%%r-6`TerMonUr^$U>$`|(NaQ0_%%oM*Z%YS<)lj4C|Fv5>3EJ&;k5mFR&#@%x zqXA1E$|(LGi{?7dOE85zr3Js82xvqQ%d=@vbbl~{yxEM)b%7+|;`^{vETmdqw zmU}%9K)Z3o*HGf(g0putCf}5(*8~8n$fztljO9(|ChRjn07dgJK>#o1nKdXoJ{TdZ z)#Bb_06;UFXMOH$8f`!pa63>X0%|AhT?<4TY*l?D4e-Rjb3J=jCYf4id>2yP7Kfhu z(5Sk1%WEEg1-yH1T&=PV+9`FCvS$_FglmnX;C7FD^r3dzafaG@lggP+fp5r=ACuG+rN**$t>M#sL%xMw2xvsZkklyQDOz-7VrMTG+|t zohtF04v-W}lK)f+o1=jcK@7GUBSAsX=xm~Xrt6!WOHPxy%EYb!(2krKFvZI5G9o}A z!m9KrUjVdAtaNtIFLaGwt`b6pnqo~VzpOWXf0oN@=?;7EqgO=0Y@VH%I3(J!XP`I9 z((9;>Jl%k)wM|*@pWsm!Yn@?%eZ=UFLm!y-;kp2JI*`BM*_E}6#3e6kD^#EWEdnUI z7el!*mqHo^AjX{PO@tW3tN*9sQNr*q){^O49?94$E@mKMx{1{YbHDH9Dwgiyklk8e zfhtXBhsc|z<;G!avK4N6wwq6OW<>@pFX{34E ziryXqO`=j?fxoX2)5?2o(oQMy7lx9^IZl9XV(a){E00ZWNp9RS9z=Q{Y?$!D-zTo`>v4i}~YR3_C*kz7Qld6$8l3hCeX7^oC5 z1>%_Vm$TK3j<*{aFrb7-c&p;3^J#4lCUW@CF#oVxK*QtiV-TUIev)P)anCk#OsQD` zp+Wh z7xmZI5}LzEygmT@*u~H2U7pa3b=0VfkUB|PE(4G)x1X?=F}Y_W5ptM6 z!Ou_q#7Ux2qA)JLS zLIk~Ioe7X6-ljf-5WMwwSyPYw#;d^=!Ou}{h*+LBi*RM5iQD7W;f#U^z++0O70}M2 zaZ9W=N9M)F+~;(yVWwC<>dWVT(m$+WAXDeuyaUZF*LvhZJEP*4So{d;y{XA*!J)?% zc`TRQ5T)V+4h~kG70G1}S%uXh9B*0feW~GW^@Eq}^!(2GQ^}+cIdoyj6XHuDjUOH}#(M$7Jaz>@rNBD8 zpHSXLJB_6ThhO8=7`X?O86EWHZQfhWOO~ZVRzVQV@D@J^CNs{d{%m#iF%AZPhazk; z$=E6;>}#lma7bfv_EH>xnXNnw#k%p;V~!$DMbrwMMp{?|FX5Sk`?1Q@vWJW^^1_JN z)fhO4cL5Dwe`t@v&t(*uS|i0bf-K@#Xk8Jr=5wn9bKG`pmb2!IQ=Nc8_tNS>ghb(Z z-nEjs8bzzjZKMjIZUs3!y-*ocwj%b-Nxy<~(G_4gEeUNGaNnsUCg&i{SJjU_ylP_G zz0=f6AC3&WJVw3S^i%yd77U-R1yzmI7FA3nP!%x!9D{bOo%k8@{?)jY zL`)cJ9oPvTE`MlLvTCNO*N|d(`vqP+z!1pq6K7*-CC^;X50pd7!-%#!@l7q{H|tZf_PDw-ubyM;R#fm=jeAZHFug0W|&V(;IJia1Cu$4|_fFNFyYzFPV*EbnE zYrD$1#!w5|WZuGEVDyi67Yu29Bl9aRp0t$(xa|-;aU8UKNWxkPJ83#1H69n#elx~u zI(prFD%(~kM990EK?gx3+d(xaT9`S=qXn}lVtl2K7(IMd(G%MJ5?^(YMcVf`7VWLa66nUwak84^Spk=%=ZqU zM!Zt*0mScbmKBPwWaS~3Cf=aGwq@5#6xu4q#)RHH3=RM{4Agb?UIUf45Sl*=8o!ZI zQz$O%eOoFe#gDL$Yx>$o{VPDD6@A0}x<;38Q5GX)M6ZD34N5rSSah}8gd{5%dPPH8 z3~%Bk%YU0~=NBWnc!%~m1`Lmqd%5m&g()3ddVNlWf{&3*^5r;ye8*XP8Hk~8f1C#p zFOcy&xVWIA6SBwW#=1dz_Ws_EUjPV*@=spvjH}LLhk1%NG;KUF~T>^WA_P*T=t0 z&MA4LuatP@dGS{&0$d1;JUjq%Yis)DL`>{of6$CART2En4wm=$!Cq*ZYG`@$DX#!N zc*+=&#U7waeWy9Zzpo`3ngOnO0%Hpr%sYGUXfLmXA5FF9@H87k<7*Ol|0C|mYVsR^ zG#A_G;Tn}B@YNYkHh)Teo7&tQ7Zh_}$u&{TLp9bqL`% zS{DEgp~?D6bh0l$ZJ3UT>v~(OKD~kMPauJvAwDsHvuvw!QatHL6KKhuh5jA^<$Wkr&>n&eJ zKoZpQGSu>QfqsSZA8!zEh+6jnG$ci%hj~+)Q*owFQeSWAf*=3(CV73ayz3$_NI0>Y z2-%!ZDs-ZG>QbKDdH=O%+uiS{3t23#Zh$B-W^!!wa*3+ zyRPo!(Uk;PS2tisU%fn?XERNw%#EL7de=vzunD`yHZ7=`sPON2xnDG6&DFSQ{K-(Y z6dQkb!~$B>OJ}?eR9!ab21s@)LM<<*=Mh=_ysA-S{Gn=D`W4Hkv%ro6W5EoKf;R-v zsQ)U|j9a)mp5~WNR8upKgy+4jR%@d~i&%)cNzxhj5fZ>Rse?9O`Jt8<1f=b-?zXdQk$ z^*Go7f~KnYG(auIhD6@Y%es&Fe(ciC4xT@vodD{S`#-xZbJCK_^e)!_3xHxW55+Lk z!`wvf_XU&H#oB)M)y*0;kBhutr-B+HG44L+BI3@Fm$%}9`CNrx$Jw>DLVjS!RF!faa4-nHw1iCANa{BbahTo{|2T~@;gUtTXO;S0#IFkyde@VH zF?6RvGwM?+jwTySjNaR& zd=J^ttJzsI;4?nW)8?t<2$mdfDofPl6h_npRRPNzVgxj8JA{>5_q=z&`Og4?O0 zdp2W5`!ApN_kwmMS0KSHz8(^P^Ug$HpD6L7XKK&k?k!maQNoJBt*hm(E&TD68(3gJ zPU-@URRf>iloCkt78p68?Cjf*eSh!8G(LPPwVXM!Oo};f7qIt{r8tBGd#|a(om!zR z99IVKspp+{Urt2Fd?m7(y}!z?{rRI3;Dasn$S+0a;OT1a_idB;Wc9przp{_N^dNGo z|CCuZd~3meEAFEvXeb~EH8dUkE-kQx%=@ta<6@76!=3l34UJMCO%*RDdFBcotEC0Y zx)vy+%@*=~%OWu9<0e-7Dx9Uuw{}WqKBUoP8EDGmWCUoSs`AuFTeIHZ?a%j9QORAt zu~W)A4CK>w{$MD%dC-7jdVreL7Com(a@U>e&emXb0?ejh1A7>-8oLA>NU^^_@6i5R{}vNP6vOeldyL=?b`q8 zba9UartyIzVhpdY|DF`9EvM%_84Qo~TIB%9J-uM%<@HYA=BZ9I4dGWj0(fXucjIq? z3ZMeNp(1(0*1dnK%Z>WdDK%)yVS}H0uF@W+4Sr23sY~IAdvNZ?T`ZKyy0fqX7M4Nz zjsX^@oM!s!(v%nw7P!3i=TaA+ z?Sh+6w;lcwHMJ@W;ZRi7APJ5{f)sEZbuXpf*+55G+4k_u&kl(-R9~}k94}08T!VlJ z;K2SSt876;y&D7n-#Irm!g)vHe~6l1TL7x78nvM)c_MH5;?$@(jU-GI1)PI*{v8Bk zM{;URr%UpG`uMNaLVY~1f<9i$s#D`;5mIm;i>C)8z%eKsCFe&{!R0_iSRgXEaS_-j}4HCRY1r5TUC$PTh@^6r!y(eH02J~qv(D0W>78TE&By?Rr=*QMDCx|EHkDq>Z9jiXCLw{qy@)V?r zxvMF_?o?fH?B_zt=zEJf!wSE^oA_UUuJ{7w7%-59(0Y@hbmmDIO#7+!ED}KL`I4&z z12|psMqQ+&4~8~(&V{Q$+XX-MaV_U;I5ts|YV_8S-ku9aS52W?p>ANe0r zdRtKtQWw4G08-m2$Bp>T`2VAWd+$0#M|{Z%K*y)wXnKvU|0MEv0Yq`CHzUu3hU+m6 z%KY>c|GH4`Nkd&?lc6qCPbNF&7{TLFkiup){|3Xi>J0+4GO6753KdUSz_d@V7eK%y zch~^!>z$cg$y7&xaDcjc9=ry+5`Ie#FxV@9YWKO%Ify1;GV?27t0PF`>J^~l_Ft#D z(gJt?VWzbHQ1S2KM8lY%`UercFAsvg93wuLYuP##+&dne@tLXSi$CxO!}o}XhqmIrU>*Z9rF{z6S(hZMb#DeT`M(%ZaaWM*DAsRHie<< zr32K(o;@c9_Veh zmK7w^<7f&Dg5h}*=-blw#{ap@wb5_X8I-YvOWBOZKqnuGLJ#sFe=CYyRl~n3m-^c? zLy40t@G3t_p-K{+1iz8zKG9ZvzGL`x;`}v>up?I_HQ&enK9n1xVZF(9n(YR0h+g53WQX3+Bj`i-lv zT9y5cQC^7a3nnBd;50zvBo?fZC{T|LnE{l@@k@)AheupfhwC97F*F3fF+|n*o$0HP zY@d$<0#V9vt?-g;73XK_=i{qFM+lvv$bNtY3UjYPZunW{G`FJv1|v!ht>o*F$>zcu z7m?{v6E)CwnxaLl2#{8YrL=x@V_Mz^yLbj=h?cIe>SJ>`!x)iyWt^Ay3}7Rb=mLPEOlUYSydYdOcwGQ$b94S4Ab^BvL}_C7Gi=G>BH zUaG5h^(x`2dolQ+T|qbEQkWh zZ?pq^NIF@gUEOoyUP00s@}t_Gb@PJi^JJT&6z{AiK+xBKL%rU$S)t0IL&qlMyF74OG?G)*s+JY2+W!(C6a45++7P?_<)pqD}bW)0W{8;AXtQ zi(V4;6*7rJ!5-j zG@hn;J)dcW~`+8t;ho@5&^P>%e$s3oY+(XAr3P^?yna1OIj26MbN(Ybr z;~5Sbw;R0%q!@q5n(ND2T;6{jdd1pk`E#@up*Lf=o=R4-_&$>YnmHmf-NFABK*-{b zp)~*=c`;#1{Y1UUMKC8@@G&X$y{fs6H|S`x=ddb}@ig94?B@n-VzCnjycG$T?((-m zH(-9!)KN)aF8@{Kz+R;jO$adLMmoJCF~e9O!T}aTYC0ZVY>VP~k7bsR&}kF)hUEqY z9WtFJj*4j#Mw|f7zbPRc=nO3Z4uzdC4zw59qfnv%huZn7f|@CLm)4suonPR8aj zK)yy10$`g{ROrjaP4x3++el88SZf=r1vIvDSe{hLWgIg8eg-(F_Aij9@x?R)XD5sh ztc&gO>^Ho6YV+I)LF96;32jy8eI=IyufI5!J7_dEvPA zV|oh*tA*#-gkgEhady+&gquCTaMLSTQy9k_Q1vPOA>nhU~AWhveGaOsF;R3k(e) zFW-XJ&=dsrX?wX-sQJ3%`S~-P72|Dg-TpbGkt(-tx^HMl@$$)YR_Vj_3!5?HuBU); zl+8nfT)q6Q(H^Z}Y4wx%BT}1CGb04hc>FTgi{1SZQl~O}`YS^U)}FBeq&-=P7(N1n zH09gX)%JL*zf!rzS@gZl?Px$gsi(^AXiV?H`_yq)y0^WKjiiEygqjl+K|~{WKy_L= z`|p`6100eEEzeTbm>P<=THavU15&Mq>Z7kIHx%+()ylOMkib7m;4J5x6_7yR&^!>W z&+_|Kp4yI!SIZ|~(>p3j6i>ePEK5n}M^4^2>1pgv>SAsn0=%q~jR9Vvq3U&;J)RA> zsiruy2HM=Lm9G|%Sh%t}tK3XF+-Xd)eEvA+!2=<4D3 zV?yLwE0uSos;UD+eA@U!I;LHda-quwqCvLKCx+Ga-gPQ-;`b;BFGp|Lnbz*raUlTjatKFeFeF=Woz zn{5Ffh|wl^gyViAzcqolC7pZpL^_?@EO_j1># zmY6OSE1p>j_rI5$@ex}&w8Ne8>DsP>eTIu6QB9sU7+ZI$E{`%JJ_0W*~?7k<-mR4EVahAA|H`q$$YOAb~afnDI5kO?BU9!o$ zJRi61?dUgwfo4_`Ljzxx3rMfPXJZK~lm2Ydbn1B2)v8vPx6ca0UL7aY=fze%#*CDgpEhy9N5ay4;;9 zvajgf7ZH6k5P7ss`Qc8n8UBu=zqpA%rR#D(^o4fL5l>^?jh;yVk`0JAW}@KG!s3~p5ybK%X9#wwNU4Z^~mPef-W;o_{0nk-dklyrHP(5m3zE4ku=XLjuY=r*Wl45k3| z3`Z<)SM+(BC}a(uD$kNwBC8aT{sy{eRs|?$1o~+c$J+v$-q|vZ02}(33y^X1zOj=j zfwi+<8^kAFPT-XO#JPDh-rv`}`?_9z4|K9_3y4TO?f^zNS35#eRq4*OE1>UoCOU1{ z_piMnAw{F^4(Qlz1v>hs{WiNat5})U46%I1qZg3-HGD@_<_?GPn}u$$l+tP_SHrPmk8qn0}k8<}SYbwVL0Ow}+Ma z?HuhK#Dod!uG(c+CXl^T83PQO$*wM{>vCVFCnewatTD-Q2|-OdW8J&>D7_ngb(@}6 z=32?xIhFv{7LcbDLWYJS=)BQw;6xcKr*7q?F3c;V20^b&HyA-1azV8=KI+WPXA$22 z4`pv24|VtckEiaaR7eqJiAqIOb{bkKYbEh#6bV%QBYVc}@5GzTfZn_w#vt?%#hN<~pzIT-WuymUEr+dL2KcE(JTrN zyxLG(JP)jSVqf74pqP4vfZOkzDy`dWrJ)}Ut)RB>T{%=%%WHl=5gjfE{zaFWccaLP z5tNkXfqz`!H#`8k%wKe)=@@ZwhwnnGY4IW_SN2Xs1n-Dz{t|e}#__?iq2`JDypThKX8#(5o{pm@uMyFrY*h`X&pP*tE#&NIe|#V3wB{yt>kS|qGy{N z#3s>XGyohHGi(TWIR*#=7j`tutyy!+=~?yb&>7n0kwY5NkY9r#h=+cw`)+y!+i%*a z)YfXsVn$V*_1SC8L^@i(GhVyqxuS?ENHlFn0! z%=q&`2mS9L9UWh7x$7WiBg)}LUI$xXU4)y!gxHiH-uqfX3^*92wYru!B6yeYrS?Dz zoBpuNL;Q83+c|1O*Mv3$W#LSVs1-tP(Lghg9{|nlWO&Pc)=*zs*ccWOEPv7y==?!I zhOdgfJfM5W>y>X5Ku+GJj>Fb zQ7Up${yDeRWQ*<$}N2kUBk4bk-Z1@K;vDzTY=6i z+n%;BLO0`2kZ_sQ3d_1yR z>JEyF$x~Vz@AoQ21&elh3v5sA2$V2=O%1p>4uKq{EWaOY*Hg4z>6ouQ_YFokgROcO zj98dF7!wqX08lW zi*MNrEnnXGm?GS<81l!{lh6CIsB>n6jCXc-fbC;EX`qd9$gL6pr@G}vfO(&W`j^`q z7~43nJ-ysbm`DLVX7!T`Yn}ZcBm2#-r>=90_*zAsGw*{Zs$H-T^cG!{s!OY2h@R4j ziPB?f7v#$nx#h5Nc?a(8)ILv`EX*&uGedH>XJHDw&|r!g4Pc5z$6EUAjfZJF-J~^Q zsR5Q3&w(}wM#ZKd7jq1}(!8BBap;@4hHWUYUtNkCXlJY`OaSf0r`FzEJjFnSSssu+ zw42cV{K?a@^c0GhboS=_e)A|IZ^E_BcA1Nm28RbWa7`$v0FR1y_LdmiIbwmGxMLVW z+-lyb0@@(qS!}I{gZDlMJVWA7@7T3YG{4%9V3`>Mice`?d04P3Nw(3OV8M=S+>O#_ zl~e2FibitSHa`zONC`+n;u}_a*CrNJf>Bv_L0v4pi64xz0i$C3nkrQ@{043y@lEve zWYDRZb|*?k8N8s|=TMo1xi{}*@~_*ocJu^;mC%NIEdXfV z2k}^y!Hdrlxm0;sXuIb%dsaC-L?{{zvFT9OqG3{cYKX8@Y8w8V&av1%2M-s?fq->R zK77nS9f^;nn!S1rWI6{{DEkWI;GV9t_ajJb#3CT)j%y@QuewtesE_X@TRc)e{Ih=s z5+6rJzbXJj&VwQA72qM@mN=aMPGBeUz`KJogl-Q`ZCN^w!hDI}>-p_L6ww6P_96#Z z=^$9z7?qv^j&d-pviw_6nr(+BFGU)%xsIcP4xD5h#Vfmb?^sV{6wv}{nwbKI9EOLK zoB%`ig;lb@!M^p!y{w$aBnP~)Y)4?A4L$*U{+hoHbnM5F;gRRdU<9cfquK_F}= zgL19e*L$Cvs8uZ0>y5J;jJk6+_~e$7S4hi4P)Z~sS{(eV3m)?R7Z~CXhFmX&4a2`R z8MzJ9_vVl>bHRh?ZD8oK+LuRV?uQg0lszj!7}V?<1+oA)&Ple_j~XjE8J14hk@!9} z0&JM09z=f|LzhX3e5#imq~h;w&+3AQ9Eb)(Y@CyJz2gNAE4O2}()xYS8cLfnbIX^& zH8%`hx^el`b%Gd?>Nkqe26$Q@zJY1!CH)91UepNaR^D{&G;2?xJq=dZQ_5*UJ8|s^ ziw4QN)D9}%kI)2G(V@=I^x&_g9#N0*YXXLs)3Ay%V4W=dmPWCC&X!h5Y;vf!An@&h zR3H#YE`k-L)8hn?5sZ(tY;hs`PB@HgqduY5TOF+i{Y}K7qVN}0$Dy9eD8y#M2*Hqv zj6DtPep=xnu=^cnZ|QN;!r<3;KxnRhlQ#Yy-VBL&W|ZnM5rQDp%n z->qTF0Lh(_c6~A!rb)EQ6t5%bmzZE|Q1>XZ?GF1>CtVsOBdNkYHNaP8fD|Fm&VsJ| zyCdq)RC9n7do+wT8L;( zm%zjJ0ilJTodI_?UrpN8b!nJp+$wefD5?BHBut-m33-e;>DM5cKt)^E0VTooE*60P zC7|z?f#I}yw?xB!=Rv2@v0KgCKrG9ZmfK-9ZT{lSNd)neV3KW&MHeBz0 zB;pPKz0SbXWs<4VrPjW4@(`7j-Vy}_*8qawwA#wE=5eC4w~uHH=;WK8xK5I!xf**C z_t*%S#4i+<^NC=5kfv@$0K_=ZbI~dc1MTwWBkEO#u&uXgC~h)kwc873Q&Kb8KhGq$ z8E88b^yQ$N767q>pk+1ixC`W54`9216^(#wAN&$zQ}d&V(j8D2M{` z&_-bEfzSp(Z!N~S>capcjPmfEosLA@oB7-sXj_(k=a{ffh@}FwnUvo43y82Dh;Y1A z1laCiJ#BZZ_=qCbI~2r{8(5fIir;3>r=fGHgmV=#^eq*ed4<{6WNj$akY zXE(Yd1Rms+(R8d?w<8c)KR|qv0Zpu1PJ4hQ48kfSTT&RUn)?QP4y*?)1i6bv>iW#c zb1K;l{>@0!Gc2*gpomq5Jr2RY2mZD~i?M5?MgU=k=gc1H@@M(3Ky+DplmXi2YMTOd znUwzZ7?3~|NI)ZO1rqG3r(H3C!v?R0$mf%+PuuX%uKxv%IoXZAw(_oKP=kL^0D+?5VP_etqpX92w|pntoDe@$r6X0%xfoR4@04jkA* z$W@Unq@=!NKm8+>vR>Phkh>QuR0PP-1W0-ZKmLkKQflW8WY$vy4U@B;@*eGm&iuAnrXo0VV^eyQWkET7UNMxgdjV^E_fxq;9~pj#R@d2Xw=9 z9=M(=Y6s}IeK~Fj`qVcx(`P0Scds11C%dFPvT{ZaDhsRX3d{nfsJF7VTkK(|jFe7= zqpcEsk zJP|MzA5BGTzqVwKe+~2=GrmrLZ3_qyrMJO+G{JnXmx7IQ>A2zP33|Q0h?>`1)NE=B z6*Mgc%F@$9hWlm;T0 zO3M(aCl!p)sXmQ%ST1YgMjL(R^$RybX68mPsD#2(tWh$^=`bAJlgfd1&hKQXAt9?j zsfBD%=^*L+SYk}H&C&N;M^ZadK`*5gwy&b06tM4+mg|i*c`Ni?`#QW5=;%{=|`i8&ArvUl7 zdRorY*4f|WAby5<5D#X0pBe<@MRDel#PtsVxjK0IqY`j<9VUOX{ShEPU>#2F&1Cy~ z5D%AlpZ=s1Jb67XA(FUpA0XF;t;!|msi#r4Km3#2Hj8cHK~(+VT|W!R565)@@(w_* z3&@R2Sm5b89W;iK2_T2nmYT)Z^B`(|^KR&L_>)}7>@RY#-7T$CPlJp$1Mmmb046F*LoK0Fs3_u$A^t9U{H?>^;yPW1Mij5_uf%=@u{et zQ~Rh#qDKu5mlG>as(}jRIYI>VjL*2G^ya+qU7`2N%5TGfo0lbvD$WmY@io@#CDCJE z$iDfDngX`J|8Ps{J=A?gMW0plHPEY!ekehmv`_51Fh+YZmI~3=_B;eLVOaeFGf8vy zF135oE>2K4WIk#SEWJtJmUu)*i_zhz{7ZP2usNyVh z{8FHqU3~j7LdEylr0bL8v0Gr=KH33rOAuqIwP;ivMxv77%n2+H|4B_9S}b@56Fr29 zUH~GpM#VlPD&C>+)H1)JhQ6odav-2+j$ zR6k%U@T4{sm?oVH$~%S!k^86Z9*6FY+m!N=+9Q8IR(4X&k1|CDY>6+4fPkxw2 zBelvBMsobXhK(j+<{ax&Bu*c;y>m8rkP&#$Q8L+>bzBJJX)_W@K?`e}lG0PDw_$_| zS%3%KhaVIV9@Ii=RVKLQ_@#RwR0%Uith`8^8+eeo^9%5xb77UckC4emtlfebq|Hbu zMOj#zkCdKF)r4oXMFbY?N|Ir?ueSp-_cXXO2Di0nWS_qlDLs)oDhMLoAI#n0(E2fQ zcD;(a5}{)cxXi^QoHDabTLKPkH$g??e%B9}iARiagQTG@Pe7kxo%g`W+JJnxTL@!; z9Ekwf7qMah>_7HU)Hgzd0IE+)e@fBJWEYZJg$Qo@{A1w9+;Ihuncm5`@j*jfj(|SJ zI_QBDwrM-hN)yDGAV;{)Z1n>?Ce~Ro*9dL4O*@yA9!Js4WW7{EM z(OX7nP1lsvCsfUS(8IFUgGJn55&H;ekj+noSZD(Mxg;4%4b$$EOr!`SS$>P|h&_Z3 zeb&ZE9GslKmVN|rX?KU+ViIHjUjM}igj7+7K9l>a={eRcD6}4@p9K?c-^uverlBrD z=rCpVxZ^@>O!Zl_!Wb=NZU&H>Rp<+jz%;5PhU8R^M&Lq_ZFa$ zdj#xsB&>4t(N<$U)@C7$qK#VwC0mi_;XlKRxhiEe)?RrvrBtkO%N13@m+PtP48Oi(_>N{+w@ z0p;8%eFv1Yz22@7C`ZP>F#;h_q^!q`jKCd*OVNk0a#Gd<<;2+~GmbGp!*B~h8I(uv zxQjMzr&$lTVI+}mPl0+m3sFElq$7#GIh7s}IA3HNIK31o~FWI|Et$PV0(*FB_iq5r+fqs(4 zW^^)8(OqiterPi|=~9#{?Vl3~)(6VQKt&D~>Oe)lKt*LhMSqY?cnEUO{WiHH))CB3 zu*4#8@ZR&UlD9xbo9pcifQqF34I&UaMP{d%8zXSrkftYCPl0Pae%1h9XmU7A* z&O&A++%aUV3G-=t;4NhCLu$RSwkxb4 zSMYYyiS0R+Pmhwfn6jP9>PU`k`x?wfv6wM1ti&(_LV~$j+;bF5GKswVQAPFhpdfzTAcWGlCzsFEa zS%hp9uE8BF6BDODD?(G5jkRBdI8VMxm4dTW=RSW0T9-bx6^*K085pBhXDlD#_|t=? zS7a(?AhMLnF-C2`ddePPG)iO&+9~pbtfmIqqRi}!o-29s_@|;Qwkv-UNfMVq0_4I3gC{qXJbswVh z3~GSF%x8YK{xDI_^=Oc^p;N5yP-OX~IE$k8w_LINp^qOLbY>!go1%|qtenqu@dtJ~ zXx#(sbh^xAA~ka6K=fL`)&88yxP~Yq^^$6TP0-4y(&VL;AO0)jKmEUH8p}f; zpS)?+DwDL1qVnlH%UK=vuBz2sT1fXQB9;V1AWAL}GH#Pgy-uWhOA zXy-G_qcLfWJEu9nFjsqgX|-;2t22Kikq=dfot#pX2xgx8G@t?cZf}td4xWURjMlFX zSh}X{tbOhef0K?VL~&YCsd!OS!ak^0Nl4ySt8Vx5Z9Ge#Bx(7I+NO(i^m6<{KUxjE z@u9*sP*LpZRGDjPl0RfpD>dLZViO&yd{9?+iw(Z+_@XJ_WH(Wn-QdcH{vKO}8b(xQ ztH=cyp@%o^z~ue#3_0$LUJP5RH&ga7P?Uy>FTH6EER(cMp<-TF&HJ_M1}&Fu_*s4J zgFHuw(6r+qWEexW{3co!z{Qd*Kftg|gi1^B3M14pBgFMRv%c=il5#OUXldRh*wJF% zWzGe?()JUfbxUb{^xC}nNZ9AAO*}hC^mZJAE;V;8z2zV6soq`dqTB3|EQ1s{1a7rB z&%C%VYI!6UAM-R=nA)*eH@S~4&)G=O2i%(h_a4!*TU_pYnBsu@232x!O_mgUxjQi& zYcSccQy?8r{i!X5p6?G2e=Fb+yZT|m{?IPT?lu+m{Br<-uNh4ph;`L5xn|0TaXC9M zm&I(|%xz*1nX&W}jS@qIsKb|PCcAp&IR^pD1CU`X)e<<*?SEq#p+O$UI(m+}^(`G= zjMVJQ*jbld@7SX)K0*KTQPufH5iTQeX||B|n3Wnt#8jRIx}u;Se+t z{^hB|&FOjkqGB=#4hF1?4Ux;gWT78(>y0J3IR97$aK2_}GdiQcQtQZe;zDqHA+*pG zW?He^IE=5K7c=GEv!dOVEG23Z%XCZIW%e96uGP$N>=uU??D=XNEdb%?+upQ(E0Z*P zO^p@#^&sQa%#B+T6A8pvs!NnGXRSUfdXirpaTS~aeH`lw!affvnW1B^cT__d5m<3; zwc1;Nw^+8G){V0jUwjm9>HoB*DS*|yS@tOT(LobdgGk}RkM9Q)!&6dWUP*uQDxn(c zHbY;A6U2jcSzKP5ggG+$EW`iebszA;D!&^zSBAkgyz6;7l05mdg1<)LZCh2>N!UUqPE41CW#j6d8%c+Zd@$&^yhA^f{s9=9^|A$(#2U-C)vacw_PXq zK}ne;IE0sQ?pnn5fKvLqi#5nY%bA9 z(k)!a`tJ5MtsiLffDtQOq-bF}sNMY~{*tSm9*Za23wPKZkr_k?aK!W1^0Isn4kQrM zsIpPpIH&Yk{FD4CzYP~-4h+YRK1L1>86Nw1V)iH6dy&qAIbtiZ{4s4bSw?2Xq@GjCu8U8p(TA;PI!qtx1y)3Vx?z&@n7YoOTg&!K;F$&FWUYf}&?a)d zR`sMDu|z-+bLJ${aV#RZC-`J_6AP|F3HjiVY~abTN%U}MXw<|12(2$s%O+ONg@r3;cmC)?WjtF6 z*5`BR36DUeA0Q~*B!zgr4?bDXWmiIY1+%-DQ`t6oUIG{HFISG3>9TZLo&MM!&X`>q zdgAOoV)1n|+8DhqY8!@d)+>bG@Q_X!e_;0r_U_|#!K&j-0dyvM2&>@8MH*VF3NKgWcud*7}uo>sFSnyNFci-UfiM(Zh!h=*jL zMi8|fbt;>NY3?5YVtP{e+jjP)r+KhIHm*Mp6xklAqUkcJ@LCRk_m*mz9+sI9e4m;X z$u-^FvtH4%AZ{=b^8)e9Q`9wu6ST>7ma{qLb%_Qd^~RCl!?#?RK)5uz-AF~bYKtm) zi<|+g;aSmwla%tJB*zl5s-{igi+}C+CX?-cqfv+Hf|7KgaT0kPdiWv{DbfTbKT-&) zGWcXOSA|aq;B4x1|C2eDe2F$j_8z_(T8QK{Nr!t!7i($pj=j3C5lP1c`Uz?Eb{#aI zOd!%=ihzq`^K4><*Eok~yQ707hnC1Zx5j&FMQHy>cCK(y!tzl{zzj675YXiVTg z)`F<%ME=_R$ zv-e86a}#d5X)C$)m1FawvNY{QN=e5>){Nb)c~WaZyKO|Xiu$tyAfUWuw6d+cWna`@ zn}lm9V71=%Km`vMrB!Nbc=yDeZdW|3o+N3=g$TB!v-bHY7b2BbUjalar8{W#hKCJw z#;%?lIb+mr#r|pAY=T`FHjYW7jMDTzJ&-w>#Aw{M54vR7O$&}+?y3_B%5&BxNgBMN z^gO1xoZp36XrkAM+uLJYrS?Nsce!z^G#grvvi&#d{D3OQgKm=db$nTv^ujG|{ZOIq zi1qRFTWxo@ih>&{CMJUkFjNQA@?7P-Dl?6g$i zFbqN2joUbv^jUl&-$ZGB)mOP8@+I;t2$6kvjnLYnCU)S3THMT$tbXLw_n*WW*VUir zD9*1vyboMNDwPM3^`##B`LW|-Ki`spPL!0l=9EdE9|G|nVz5a9w_rie{TAc}5aevh z@37bq1;S$0dJq;{FDprm`0KrOnS6|x`jzjpq5xGZDc0NxOlIi8s%q{In&q*sd%MyS z`Hc@Lu-BG(&43wqC5FfX_L#5!f|#8kJlNXA z%KEWfr7$x-!RBqE_jRW}>zrcwp5ey#m3r5!JQgM@SCKN-hKL_CTHE?&O%Vf~iA76%6 z2gCJrJey!)nuPX3*)h~=Ak4$hAzWdE`F{(O(tDf9Tt7^k=pEo!>d{#I_2dJV9j)Gn zKl)JvjtP4WSlN_Um6P|5dCzG|XDl|9Gemmo;lx;q|u9?5l=WUDX0T}nYjZD_3Q zLmzpNcx^Y)ul8s6>TK70RN!QDYe2TEI757-QD{GOiP=f>C?Bq`JG>(Ihb$!hwY-&5 zCV3X3<^qHbo()ENOe6$9re;NK;~0oK9WGb;+1|pffzK4Wfzut+$WX-6V)vffJremSLHdEA| zuD@6mFydy)9{s;8ZcLTeG|O|=5cGxiLFJ0?Y_2(eY47|`A-n^`16MREFl!kthH8!B zg#O)|BQjb?ze_Mu7-6uQ3c8la9Lsv0LrX7<9+D)_fOwfg$@(b8AvMvD+daKFC6?sS z!-+)vDT5~=_Pzsb-5>LJn8u=IdWdUNsqdf4Un2j&(Bf=uYnuYJ9@`vQAAkWo67 z;{MAEPq1eckOF%gnb%C1M^yx24mF1ytuU^Wa?s8Xq}p$LCU0==@{M!XW*_Ts0RM;r z6_9`K3q-&6g;z5ZJ?Rx~kbLbL=0No3*Sgw4{N6(_ssv#!NV2+PZ1CmAaB|4yFzV@# z-CE!@(&ob?okfDWE;eWmn`nP$Jb{=cS3L-jI%%HMN#OOP6OzxA!L>CCEh-h- zTX1alT8R<+lJ?-X@qxL6HDcmFawLJWc!lJkOSWA>`LhApvXJ1f@>WKf8RqFE*s0g0*jCLRC|Vu75KTCd2~AAWvde+Accum_{JNz-h*tB)S_R_+$Y$ zDgP=?14-GzIjmB@Rf;D{a?lP|+6!@lfU~b_Cb9^b0g@>p<2s4HJT%bCM>}5gylvsB1fC^Fl02D471cscmV#8($MroAD>CpsyhaBt zE1B6d{H66m`MiHs;lAL}3|T{Hr$mTATvQ02*a3s6gEC&nJ&Q^o}}|w9oi$ z3U_qLI0$ubp2Q&J_J6?9c%eXdLm;4oV7%=f&jNRHF*Q=ZNHxEkQ0(Btr zTj|`XxJX1OSZg7Q^uL^A-2<*Y#xe&XY8^6G+JtLu8z;vv5ZBr&g;#;KEz+DPrp<-j zu;)Lvlefn_s9qiWPOj-FrFFtp$_5#*NKZ(?(1N_HQmX z9ltF77ngRDU!%JC()`NcefH0*oB9)bE3XWHr?oWSt^Ri&Gmq6X>~OzMid{b7!epIb zvcc(~6}aLWDX)vQgfK|F<8v5NQa*#V&lk9mvbJggkSaRSK~u(;-@>TtA$F(Nvgk%V zcID_#jnnTSzfVL11Z;EZOQ2xI-zKT&_FH_vckI=L&y=2YAchHx2*jB3Tq*b@Ko%QJ zSbj!jiXMPdprLp0MD4qO6UF?w^F(i!ulvHr#9pOS8oLSUe#*FtUP+?%+*GPa7@lzs zaB3}bECdT*hnZKY9Vq$FiN90`mWpn$IOSdkp;{nLIf`< zPDT=MXxh5*+2HLB33I^H>&v$*>wGN9u=EF(xeVK1;O!O10dA-gryK)^M-PDx&Ad(Y z2jRUH$~~>7lC=xvw+;nqL?Of{CF%5!Y^lod%ACrsXwa0&_DY{+#7`*I%#%xC#nSt5fo6S+M{ik;~`uq0S?7^AdPVWyLo?TTLAO zQQ1FR$OVH~9}QkfO}BUqh%C0%PTUIEL%;e(NgK^Tk7eHcO-uVrVBfbWBIZ3?NvT#q zsmZWrGsaaE^8*|R?-b&M&djZk=|RCA`}dcCM;bJwFw*V3F3yUud({Uew_I^-t4nCb zuk=k}#cvOL|AK@3k4)e;gDI%CF{7I0m7k|87{L#mw<7U26fUGGRxF&~Y!_Zi*EM%Q z7F|U2=97xk(-Aso$;&=l0$_P9L99M(}M4~K=3}+di&scbI^4dt6aWx$6Kc9^zQZrTiSDW(s3`Q)~Zh;o2pJ6W? zko#<+iJZXIiRE9_-?RMw5(KF2u`(>kB-l#&Q*A(y^pLERJ=)()Yug6g6+p$!$0yu7 zoT1i2bW5?V@B#Hn8H1CW8kiB1yYO2K4>%y>ZM_H?4xJa@J_pMoW0qgE2%Hj6x6(v4 zuGYc*bUs7yw%yqF>q(fUEqjDJIx1pkdOG42^<4%>C(qteU8={Stapkj$w`4~ivpU$ z4bKV}LNbmnNG^ib)qsZ$!Sb*#^O`AB)k_J=imj41SWT_i;;5Qru z-0rmkUx&Dm>(fE2P_NS!tB4_^r9zfwkAH5ry0xgypKjWm_Ame(O^X{uL9lVUh8i5M zfxe0f4|zT(b0~lb4hKi=^9Ct^cy+vi4%U=sEw9~jRg#8M9z?^7ygei1{JTs0!6C)R zcM~>)JM1^9lMyLtbj&2`wC)lk{{5ZF_FZndR}1)D=<(AN%n!DobwJQ5vUvwO8&)&* zSP3lnipb(9lXz?!rr}rx$omeZye_)S)YMFQwVD!9K@53_3+u$t)=o z>{M^lpvUSh_RmL^!j866OE}kDGwK9FylQ^9cWz{<_OTJ#OXMho1Z~q>dTv7WXAYK)6fqO>pG&yUVSaV=Q=%v#>P&_BdY(-;g zZw&Ze<6u{RE%ylot;XsG`An?}JTf-CS{$3M_c6G1aCp+{r)FKp@}YZK7&fDHsE&A} zv63Anh9NX~hScV@N56GQT+Szv9E!ddsSlAwW#yx;dk`J2H`0l(vZlUnz_a#&6S-!m*NW2gPE4PTx~loTOAt=H7NI z^6)0!1v@%$V_x)8tB+>cQb$MN}1fkhwBAZW+58Jau>) zk(;Kw#8lE<>d>v#cq^-~%f_#ArcR39rhA}LZ1Kfh72HEBcW2D4ew^Wq1k|Y^)sc8g zZBg|a<~H^IAfI1?tlIeYKqB-gSho!iHSoLtw)-ot-3PdKhlBf{cE6Zg`D2Eb2XejY zu3+8OCD}U3-BszeIOtDo zP?=raLHl}pVpauW6in33cTHQy*DQRW)(uvp$pl67w63zb(Se+T8T>?i2`b;tdjvS_F}j+4QC2;Z2F)Pw&|Jy1SQ})E&3esm;TV zAwQk-X`J-lGo`c&;B%WKFqQi}btcL%vV0Xc*cYqaJo=-EHtaHo74qqN|GGtY<+)f& zw5Xh1@EmqSnL|M!vj5v~gV2u*^B)Ps2&&f(O{gJ;%4z9`law4tQanuXLbK=g+bJAq zs&8zWuDvp!%A*@{V@W`l!yF$?Oq~Rqt)r{j3ko<{S+|saPRFnS+b9T|z&sP{;azmM z$>G|a6pTrg9d_QazrXME95$qOnYl`3nC2%?<;~5Qa`@XW_*=Tct9`3WBYgU+&tFWg z!jzTy@`#-Fj0$#{<2+;P8n1p|hi9E7ITTP~(9qqWe`UChR!zWcSya&F zn-pfw;2T`Nj#e;4YLw?jUTCAI92Ps25Fa5uOb5;8Y%G!bLv^l}x!k!gH~NwwCfn0< z`MZMK`_bkJ^=VabVM%-zO6SIJzP1AR4&~S3Q=c8qu*x?{!p*o`#w0&o>vszOQ#(N^ z9Dml~^15Wdtv|@Qrz_CR#nLBnUaK4reBJJaxS2ZN7Zy2{r-h3X;=elZGN1tYH zxxKv*ybSW{;yh@dfcE0t)|=Rw?n?EWw;C&$M5WwSHgPo|&@qO7n3IEE`?Ed>Ri;iZ zGQUf0wzrrW_xRR3d2C^&?VjZgdpXRmC2NvHUcQZP?avoerw^sKb*kOwv6w4S6?HoL zGM`#8>*GPv#wxAKIrKzF5G|%%9Kp#cOaVaY+-~l!*E=mPN;4SrMQGmcGuus90e!me zRsf}X5LG+&5RKQ>s+8sHe?LWcl^xMaW>604vwkSPT7Xo>hiyl(i!-^ox$bn%*Yn>h zka!F8A}Q?sGouxMAcFb(Yw$Y^GBKc8U%c~@ImQMcu{@wXF{{7EaUhr#dfF}N+! zy-pG!Sv|P489f;^$F3v3-IZ0#8CrF?$@?RBb)n7Fk)|u7)Nf+b8GZdr97l_{1xF)^1_|Z# zWi{e2W}YPeo#(H$g%hq`9LLaXwt=|_Cv0L)zCy~~yhR=(M(93h%!-yE=xVq)`uMng z?7VwBy z+(%f1s4vI2?1QvacX9sU+=XBEk7zpvjI}A5Q36^FT9LR0u1qV7`7Vv?t>&cG{aC92 zo4tgpJ~PvVp4-1&7=yEU6nr=M{XS3;kle&zB^#lw(>%O!q*l;N$^LAkySlcJgB|;O zWPZxAZQK6uadiW03#((_RjqUc&J{T*zRNu0N?>NCTog~WPNNoFwq}ajh5F6)h+KCFWsglAMe~TPI}{x(FQA>^I2o*a1I$32 zJM*)D%{+KB+WL;K_ajp4CX&O8Z#H$`*A`~z`twlCcZfQ95Dm&3Y7;mD5nkx-Vje>G zt1hY>RTOOOfrFwJN5OKiNhNVd5`%J%1&-bB$S-0WD!!{iRDNS5n~OSKeEx>2{%e@y z#xgvx9}-s;=V~0(s2kc20gZ#xUnOfhXyTE$9TCJ+<>evm;I7`)`2erJ(v-?I(Q5(c zxNxl$n)0=iELBexXd|><6r2whOg9IJVS@u(>vJkqw`t1@Vjg&UEobrJ3GydQE}(pYt7h@d&ojuWgt|DGy!B!rgj^IywZ21@zii6{7w?Ai7azD_%i0Bw z4=rafPopTZz%V;u5!VA(_@50kv9=HmswLPUcM|8YMFK?YII35t6HA!IF9M$sJ6-^? z;h0NG^CnQ)@AbEkhBkFks=z&~gTIxM>0KM*i}7oyTk3wVILs&rucL(13(v7s4J2UB zU4L^fJ5F{5?pi1`&#z7{=jx94wMjwZD9KthYYbO6i5a;ejCpjd z34{YD1PBKoN~1tH(Ai>&wg!3jFHrxjFvknIp#=r~K?`*#?Bdv{)Q_IKg=7kVp?<+}$jSIG##-d9XzN5@?_g5vA(8`b%m!whU%keV zxg%c@YM?Exc-~i%uuY~ij!i%7N|I23^4C4S#%l-e5 zPj{*AJ|=_tLb+@*B&2oZdNAkHJMwZ4YcVes71p-X5o_TeYZuy3HimR;X?MuVirNkA z8~j_%_CU>$cVfPZ4!P zumSx2%Y#2AJzW8Rw2h+lyk#d ziFBM@Fp6K}%7et44#D}L5I*>OQv~FL%ej3XiUr5WMX^-t2h;*Hd#19|yFmLXWpM3O zRsQH=bJpt3sf!i?Q9AO&O-;>jOloDP{6_A+4&cSV(|UV}nKjYxb2B^)HFW1Ul=&B@ zf4U664*E{^2g0>*g^T}NxO$-1EB~oicFBO-1aaXOODz^$9d1`YJ4>*x(;-$)NFALO zv*NQfUJhjGLMwA|8U8#X#C#A}P*oY?0XK|gnL?Q0OWa5Te`M)Tq#Xv4B<|ml20VIP zUGSNGC_8A`yluT1ZZ*X1mrM>Sy>%P{N4M5vNz7@fpLEh>ge?foUMF zY0my_nrRP3ucQBFno^Lf>(1qYk|VWWmp-7quAlGLjrPu;ZYIR^x7fD2Nt6B^7JL~# zU07LsjyJfy%0BcgehewcN9g9x^RmS+xAJThF0+1tgI2A4;B<1`O&!DBnPf@tXtD=O#+Eh0-)CU-wkUQ%AP-J z)&Xm#idZj@z1T42=8C{-4-Ax>=wlm4uS=}FUa=hwiLzKdYx8Fa`9CK*1Zsxb+t^=j zlDmVRb^a9P*KxG+bDK)Z&5h2Ds%xA2KIb3O^=^k5t{}g0_1y0e^64atEu>vAzsl;v zbbr^ot;BM3Dsk#@k{f)i5qesBIB}{`;c73n5b-d1kb`|Se%s`5p5K8y!>{({-R#_4 zsq!jY-Mpag!|;u7*~%cAN$>8m^M8@DE4H|l-&sJ;juJ0kOb_NXIVuoyX2$wo*4~_A z2>02bo;ggdRPlIGx3jNKNHsYq_c7Ubcom*K;MevOgl^r(*@GLlE@<5Yi287m>?)dH zIlV!>(Xr=avx51-Q(%jHz}z^dalo;e3Sr;ZdAyBc&TgU~Bu(BHj-cL+&7LCb>WwY- z>DwkdkXL8A3MR;EPR50PRIj10p$$b!+frl^liWdiJXYoYu^20tU6%g>0VQ~k6cPno4f>?7u zE3H}aGJ06Z-+vEl@P2b3#9KIleko!hT@%8Iqr9^8nAEnq=R@6|(0Q~A6GdUw{&VTv zVCnXgb~HB({zJOO=R97SZezW5OHfvJ zw;c*~<>Y($zSdW9*8>(SUuVRqPBnDMJ1#Y`b!$^XVhP>u?}n}pelU@^kKmeY>zb#n z(xB+}xs2|4;OTw*L#yI_M4FGasn@&3f$@=M{HXfT?3??yP^5Q52tR++!fhLr?&_C) zP<`8q)-M!xwL5p*NcTLG-4fGMb7`GO)`tf;tqmCNb0pRrz?}p&%-}0V34a%ji$#pa zU`aYXl)bWSsp}AAJbA~W6k%k_>m|4~J%#Q0%aIcJtyHuFlR&q~=81Ow2NQMd01;rQ zviqg(nXykS@%w!vE`8rdW+w!s`ud3TH(AqGu_{h+W^aql_~2VIygsP{zI|4L;Y5NC3nxh zc}5LoSJm<9j;+|{YRZq_wy_0gyjKh&#Eair{}ZXyoPuwWx>~#fADxffVx^4vV&Cr5 z##@NT`Ujj{C!)Sd)PGF+|A5$M-a>)H7d!ByYDRt8YEH{VtE{{UM?XsyS`iQPI(GEE z9GJ|-e>fR;L`sNph4Ue2TNiAnSJ@bJb-Xi_-K8Hetm5RG<>Q>Y_5X-4`0MWimFH4c z>I=8+Dqf5wYnAaZtCh4+Q@`d$ubYb(TZ#MwLlthZLQ$?W+Y43{mjaQPx^(&nwf?20 zl4;S56+dI!gnt-8udk!@hosR$+4ppF$3HMv6n6tz*lmibD}(sg0cZZ1egi4Ig(31? zjl6}}&M zJCV5HE64hP)d zTrcbo?OM)SfvSqEchzvnu4coC{~zNQi!SF$m@U^WwtugqEiXO`wwX{?bzQWG`#6aWm=oXvnR1?j-XF6kzsVK^ zZm}Zf6upPOc1tgX#NSgau-us19(vZ|A55j~TWHsHv;oR^Ox1~9mGwsTCb16nc&u(N z^=Xm&JDCD^=iE&nB;$%p*MV<=N4aeW^~P~fZ=6t7=SnDfp{#HOL<6F$7t#Kw?px0e zNb;HD5_?MbcydV0vwsL7I&UGpzL1x>F=zY(K6iC=%u$Y5yQ|FFZ&ywZCmSRW^Ri;I z_0F+eysul+pbT0G(vqM!d!Dk3J2im=Hk27PC%+68_Q^~2mn%{|rf%h*JZ(8N5loGy z%U4&cc5Ki2hia|hVJ;V}Fha_fM3=pD-b>YRjIo$e347w}R}ptxUTGD+S>ptS8lXV*{RFz6Is^~ad;o(JfQg#1n@NFQx=_)$| z-PQNGMNXjtxTnh|5r0o<*3pgH@I~eqbn3YeBJb1g`p*XiT`~V4Tu_C*(dDR0CBAg? z1n&sM&_93-q+wKCY_`rh_B<6_kjfMKORN$2+G9_}o;*h5Ue*;k)}HmvfeaAcye@r( zs>Ux`5{-!TJWTXqd(>;S*}*uggBXwxYwkY4iEqFdeK7F{pnckQ1b{a5GWwH=s``Fs zIc;ZwgH{x@y3-b|oJB*Pn6WbbM>TAx_k+^XW^@lFQsH(+GocZ}*D_ReTZ5lI1il9u`p}^`qL3P>YUjpuFeI67B zV%{GwQw;s{E4hlsoO@rAPUI=*Pb;IPcUqVF%z9YglUN$~k&&YYL2fP?nRSt)60j@3 z|6sD^K7y+OzBQlSb^`F9`CNG=CuvtgaeQ(y-wt`^!meU133I8IxKoI#c%&X z>5J}<^&ab!lFX>>!mgnVys(RxnkHbF7te38Dv>lVEH>kDjy0fy%V>E*H|+%bK!S0e ziphBly?v}J`&lO&J}(a3HWw2w4nx>ywUt-BEj*#o{!zuMW9oe_mKZYFZMx-hy+C{a zhs*lZ?&Z1UzUy18_D1gTKP1h%xKTS91`^LO0Fq38W(o&vQVk7r&bP&47pga#Ri8&K zG_5WzGzlmdNv(eG|NrQE^LVJg_78YUMAj^+WRFoul6`9tWvyfxLL*BNLWr@X24%?> zvMV8sW+KMYP$StwWgB~CEAz3&$1;ZJjPLip@89!!J+h865U>|I5MOK!cg!WSGT!Y^Y_MpH8XWQ2Xz%cAtakqN+~X8;)pauwS6(>J5v-v`o)zqpE%^CohF;XDK^d0H+J+m( zMjL+YMC6@e4Q|L(F6W*uL+{Z2Z_HtSW+6a9Y6n~HPn^H$T>X1M9XZ5hodG|H@ zoBiwUF7;cBy?ehtxR5lb;0s?VzfdCx7gu#$P`5;nBohq4gPV7Rn!;9_^j>FkyW!2;8uEM|7nF8jj z17;#cd~n`5=a99#uh&<0CvzT9$-4e(ehIFiu5qfUy2~wF314rRq5r+P=CJ8_M^m&< z`bd@aN<-yeO_f@VFZ|QQYBf!rCWFFHu+uVp^}E)+bHMwJY#5bH{l)phLHwM+z(erp z_8I0_u(!u!_=|7|~l_D~_g>PMUCh363m^+iK<#b<&Nl@n*xE$bQm4 zQJlGnjPGW{SSOZm5z+pxLNC5^=BO+8_N{D|M-*M;6h$lFgv#FJMs}yih0KsPi?)a6 z2kx&)&-F_mnX?PSpi({FUkGsR)T#bM-BLk{N|&YtqZ?-AOb)!?WdyE*g0EM_{z}`5 zA`!Ojwi&U=;e%keoabsy@35zCBeG%pWbWcff7GE25woz>N&5I3 z#!|nlZhqNJO8ba`vg!$R*DH*~#q8SF&?VM0l*Z_1E2Yz)oZNKp_j{!WDUOD(T$rgV zB$~&nCd6rRO(!cfgmuktEd@?<@5OISZ_}z(e)f*8m>moRJfHo)Jj-gUbn23*g@CQIKj`_#WPTDM+S=$zSVLX65)T^=3* zWifUBvLAHU%eTEoDi53H2HTz8VK;yEPR6IZF1mqwVi20SZKDO}oTJPdC2V~&?n+vk zT#;-gll!k-_Wki64p-}17@zid|2~LpF|#jb@1ME$fxW6BBV$t&jZWEQ1xPk0T{Yp) zo@zmKybx5<-Z{N5tOfpU{)N(jc z#^hcu;Px|IjeGj_BJ!u*ssraxO{e`MLY;!E=%Sf+1$lHa}tf`V?3Pul?6UIGGY zB|kNSAd_(--k^_!{({PH@{^+BeH378C! zZ-p-DJ?z-Wcpg@xMt@2=?b$?fnVU? zzU6Od_%}qq-_Ua9+?%YByWRbC4^!=neaGlzo${$$FMntEkwwx7(*wCFXop@eRF9hd z|1>eZcR1bAlW3aZdkOzc>XXP(*wD|DHD@!X-Pbo7)d%7%z!&=K*~FwT5Hem2tBsRE zZM(Sj=Ddy4@mwVS6nei2wR0Ce3>e$|nLoYlzv6_uuK8cB z!;Rmp{G|XD$5*~TuytI4Ay}?bgT;KaH(3WrP34Sv;~z^l51$-1J$7$XzuSs^yWW1) zWi@weZit5ZI$ys&ySD6O$XQeIap3CgWPaBB-B%=n3wz-F(5a(AMYm)smXGY_z!1VY^G1%le;_4UUjStZ$=`rvb@#1gpE~`K>1I?b!f_ z&^n6ox>geRSh_evc5!`C^z|@Gk>%+*t)8WUV@Aw)@EZGng!T^jThZHdrUOP%=8;te zQE?sDBJde9sfKvGxlUugX=U|;evxb*lug-KSPij@ZPH~{ZE0dc7Qncs)Pum;85Pe-t6g(z1`ur0=GzEF^H9 zlB+{*PZVhVOj4i9cM^jDDkfD?A^u0gNF3dkA&}zdn7l%X z-iP57gqvf)_35kD*5L_SpkZd?mLnSfMuU)QiR3;D+=#}(HV_b8y8;4&M1NRiVD1!y z*v1Rfy5+o*pS$<`Ef_RvzHshIRmGn*X1g6~Eb(4{L-utSc`oH@{o;YYMz?9aZ4J6} zA%gUfoz|#~>3A@_59=fWsZx00W?j^gv;fuW%|OP3Qh8jFplouF#Z_fuf5}M)?vRwt zHfGTrbj9_Hv#IIxsX-@B&{9u5`g^>4ulhqb&pYH$+SX<}ZMis8*i^)u6?03K`Dx6L-nJ7&ymtV1SjTZ|3El3r(=#^kjE1yF2N`z^vA12eXx#_ICoTt@;$zL4KI_ zEzoALZreR~;RzE%I=r8Obo4Atl>;os&d*6dVWxkl-l?e?@=Uz!8k$l)fB->09~>tl zdUYk=Zq&1>Rgw$M{U(b6l!28gMYfs{R&9@m$_Tr~8H|ANSaeIKQWUo>XFHOLKo}^d z0%_o`w$+fPKgpe7BTS7BaRd?PJLj*j`pWgE*9mdy1m-^%$|ZO$6%r+DT%#?sw8%X0 zf?=!1$JU_W0xT(#otD{a_WSK_@k4Ah=^_0^yd}pHt*c!7*S8_!elUasEa1=@*1}ME zb*1F{RHjEo!GCH2Y6s_M?WN|gdvzV4e#tHx*UNo>r6bOaLcGuMvs=p;wq5Bq6G5|L z?icLfReyB{uilx`dVtqO3XyUE<_=5IlAa$iyz;@C5y99T`~pnJQoMIK)Wg?XV*Ix= zskU-z{Y}Yej(lIbrp2G%lh=EP*RUZmR`ly&+r|*Ydtf_AAj$7#^2*viHimTuIBeec z5KZ})gi7@Gg6@w$wC@g&PHt?!Wd|!+&PU+P0r~i=jG?gFZO2S<+pqZ!jgB2-7vJ${S%99rQ4!Hb{> zjcpG^_rSX4EOLkkk9J02b!c*Ui&W6Q`pTbLy4N`Pp1)TyRO{AtLgDFX#*62+yU`9F zgnO;^oYp_5?})HscD1!IpqTKXe zx&1>4^5|ehNcG5?RRCHcoZvN*p4~XQ{pBzLf#7odZ_iz@S+zE7vbsW37z;QyeZta? zhEZ|26`H(O3zXGJ406{tW%t_ZZW_SqM1-yftbUF(`sw%fN=bw9$2*He-}4^Jj&IyN_hUl}noR+GliGk75fzm)QaRApw8Snu6i9t{a2>cIM6oZ|LEL3(>a)9e=q@(B!{=CO$MFWR_-c>IB_n=q9$11ufuWeE_<7*I6A-sy?R$32A#6y> zIC(1wNQe=01|94K8gIR;cX(@Nk5EaCrs_%U)oTUU;`Y|5jD)YaEed$Qo=QDS>A$aZ zpkdftwbWEZoE5WwUyH^!@DA=iR*btKJZdYj7;Ln|xAzT79jEm-p%dUm&DT*sfqM%V zxZEMEb^3ULIeKLuEAf8ij7KD>ImE0Nt*2d3n5?(zkdGkX7uFV{KW-Y&6=(V(<5{sJ zR%WN{-%cbBW-O_aopz&?dD&`*^$5wvQI8MNq5aSP3rzXi(zSNx9tqs3|TXgU91@KU#`H5lK2-JM=25X zaA2=yly2dJ@Tg@#=nP!Omv?Z&h5~SF;KfUmTJR zm~h*>WIBQa$tzO|`+gmU+83~j!kN33sp|lTVNE!E+U5`MTdMfpnt}b^+<4 z*4*ZtmFvrThwX}VM{#d{*(;p8AF#UAm9KDry$GV!fgJo*R?N#HR(lV*`JRrAHhS^3hFjR9Z@09>+1nD3-=l55_>R{(X{23V#*Of`}Ffg@}8btje zsoirYY-KGzZL4&5p@+`p4j^Y_;P6CC84XqBsgkYLDFrn>&hdMgyyBzBjjyLSi-B3G;P=>Hvr zksyqeDg)>Z67DG$?p_x29IYK@)7bcx2wol9sMq7m2Q zmFZA?O3(PX0u=8qBKS@)i*hJvS6OdJ= z+)wc|vOO=_!T&C$PS{E00W;#Rm?RK~V~kzL?67r^qjErxdFx7(t5B_sz9u2(+4A)x zy`W#r4E!1CQf@Lbd~ZoDjv#o{pAirl@oGYxc9bYDs}D@xqwE+IR@)C_5J95pF8};{ z0>EPt3*dQNhI8}$K2q?=ZBB=n7v@(p>1QO^WW3i>J-#6bpJ96d?Xc`NNAd-o-(OOT z`M;gdUZ*JF&a{|fL%w|k!u|c5`vWfsAWrC?1`(=YZI-6Ym&n^6f>tkV%ZFA5u{(^! z$^KciimoZx4>QOAEz~`{-LGY?N(6|DLl@Yx84-6mmJ1^*2)~sF<~58B`S=Yz4^r2Q zIo=GV5j+pDcxc{XhyS}L(;ycY`m`gn)FXJ|(aR0|HD7i~=#p)w&2Fjo9+RiZ&Bw4L znHLqNcgpQkzoNY+$T~}*%(#oNJ;jL8PE!ubHu*eH7&2L|K*g65+57%?)m} zQO5wjzpU=o0sWJJDsn7&(+4j`7H1kG$NeLe^ z!73nI>nRe7c#`FJE_vm<9v6lQByl-YzuL${04w#VDEc4ad1=vFfvBCn!9_V@8ok5! z#^~tfw-)RIW5>*hGhD$oA4;USf#;Hh+BHv-+`f94gEB&qC_b31*QxQMHR!fP6bWXh zDa-PdOQIb{!^g>^1GHi8p-wa4x!MkP1J9N1=9vKww*(i4|9Z3{Z0!*1IX#)X1TD_( zblWXL6L%dAp!IZcA>;GeFlY(a?5|Fw(}|7te#dqXXo_=g zKw*Zh2s(G^z9=o;#lGB~$#UV35L&_X2aYctmxjDck*z1hSL_zAk#~N4C+2l>N0S^+fI_PQPEZM=gs<_Kk)CfI zzd^Rot41MDq7<$S6Z%8Z4OhSK!;(t{VL20?;$7~) z&Z<0_hvzKjC%p`WPB{kLD4t5aM8RvD=F8FjJ{M=νJnNEOkc;oTaPPL3oMv(qp@ zcXiPX{`!>M4EdYe4I7MbaOS2p2$OeR^HmL8jY>pXNsX}4?u|h)MSkp~A>O2dy1KNm zQTKi&FkK}R95BI0M!xgO`k0P@rE1n$N({dW^^+9Ud7ltmbpo;!a|$De&SD9=A%miN zTe>T*3{T%o0I=}t$xlzco|;1m2?zREv<=bef4V|L*1hofs(XS#`wSF`*T_0=6Pw;m zhFt#qIl1`|mUQ__g{gJ9eaUOalv!RWZC8I7zA|@i%9lZ2+79_sA zlV4h<7>zA&xr`M?f?>$_JC5n}zQ!n>c8Js3kG#7#)y=aQ8?qUfwyomD)K|6R;{HD< zjC%#&qU6GL4=meP8JU;XY6kQCS369oW(TkN2F#&rgM4~_opS72W#zVCC%)y9i%CjM zCvd+v3~BhnX$^3n=7G;$=+Hp71{J@IB$ct(39za^AaG{^HQc_*t>GrhaP#Lr1GC{5 zcT;CfuH_kZA%cQq^MMbiX6#22m0QW9*Gr$5=6OLGfNMGTxUJ^Y*1ncAgXI z`jy7fo`{is*du2t%_`nbl-!^WN3KCU!^=xDf$JKhFPkd|ELf+Lyv&40m+CHeliqJ` zG;*l=`98U?TT(O03%_ZOY|{&Qj47JHcrxXtV;UK3OGyH@+j!n( zXj*5A6`!h`JTRR3-sWv`SHaYi+F8K>D>xL}f1spBiVrSTwWGV#Oxg8iX_-nu%uDos&mXCMl=Kj zC_~{B~2{HOAH>9BoDa=xGQ zvi}^!l(vGUx2}WAB4m68D`w!KOZEdN(%rL-qn#0?JVtPR7xceC(1lT0qmyNVU2XUgqspQF8|7?%E2lJWmAis<~SXjSW6Mlf0syVE(IH_)H7fWm8v7iSDP ze5cO!)8@zX9%`XdXQ2V|rt!A)uUoRh%l@-aW2!use&qoR?%fWFdw_&ix&8Yc682vi z6OI--?A~39r~$-$8l}U?-B^BRsJMiSGBM2ePFsH7M(^+=5s}{6=NZt8-|ug|_)eQs zrIYXCuHxN17yo}d|A+thr<|C;9sRr3P67Joh?Se>vPtCid^$V!0CPFzo$aoinHRqg z6sGAk-?$R_Z0Ip}{&U-1=rEoayJROPybqui99nREPjOaaP88c3f*>QuXmy4ndgL(N z+_ie@`*yMd!z^uBz^%~yl1|D2mu*d6C&1f3@**Qu*=Ur&jwO?NSGiZuFDesvlXa@X zXFYF!FjQygO1q#ERZo&C@c0m{zoRP`8UN32+*){6cX?G$o`JuKcdpEqVMiVLfjIkZxrm2JzlVt{hd*&( zBn4p~OEG@PohU=q1l#b0n`|@^Q{z_9U(*}|5HbWE8Uf|; zPeT=#ppu`-qqA?@fMgi`ZA?K|O4FFJhBm)>hXugI?ZeF0+2@~Q zx5RzmUG4tl`oS$u>+saWAqr40Yr3CA;))HH1H=9=+%~KQAk6yBhP zpn4ar-~!Tw_$csybtp`>VcQTeK6r2pF#ZfMK9`(#z?R>Vq?X(Ml0BJZK?RjR0W48> zK4{QxOsbIUzngMe16i80Vzeb(veleO68jtNwXGwi^q&rxLp zH`_;lFYUW!&yTvCRV{+p-T6 zcuhrIdEjUO%axWO69CHwJ4TU_mp1|bk3)wIcZh8xa~NeswTFHHwo?Jy?R<`@vhPNw zjfJcETmBB2j(r@W^WR=w_dni!c8USH1Vn{;9;Dn|QhP+`KkC@`pyL~VOi{`TwcivOfJ>pagwnK260%MxsC)alt5_Gp3?gv#h zY(L^zHD}nTsw9ACAK%-oAyTe?z0=^VkH&)O^0aVPX^lU7!zE6OG!`6B!S$x$8IZ)I zoxUNpvjp>d^4!lcVWmxv12ZWIpRy9uqMexps@j%Hz|S>oEEG%NEE##2Ne*u?Q5b)6 z^PCSI99WO*JfHs*7ba~||Nau4$Lxftbc@MKNlnUr*aE)&VV{PtEabgNH^hX3+hwQukkO+;<~QZU~|oiU z=$hXBu(Ch!gqndzOeyYsic~!@YVVVSaESucgae5R#{c`GLPEBC1<#u9VZ;xe2f_0N z-}P`)g_gJL+7HPMo6tI@b+?u^EJ0Zq1yn>W zPI#Y2<4u75KfqZboha`0guNk8Cza9orv&_44JfluG}c>!;l=$ws{t>LbOh00VfL{* z{;5jOy=;P3*So2whKn|WE9TGbs;Q%#JLd;4rE_05_KtM)jKGFOXdfnAH51v(2XE+o z(U?wN*>`~h(;*07Wq90uY_xsuja$`G3d!>iH)fiz>zRKZ%=L>|8rg|@Pvth3?t!LmPEi4445oI{9;YE&rLv0gFM@d z1T=n?F;#a;Lb5mxTBaY}YQBC$rt=A-$Y<41utw;mr}Y*7SwIYpz&8)aK5Kd_^T}hD-2q}nc)+X z2wsC_SVF@kJ8*@LR|CCWG;ICbl7Y@s;D1(>+JOJj5-+XE-Um4;E?>3D#(%A!3n2>` z6?B;^RH!a+1>CJ!rd`jduRJTq*E@Wi4O6?xY3&ZyjlA&Th%Xw*$tS~}JTXscO6(tUq{#Y@xn15cLRT{|8PghpB=yX5RqtwdiLvXnQ z6r;%p8S02ZmAtT%EV-Vvef)!mIneKSA5H?5*xdwF;&{1GFx_;}O{;;nhS9?im z4Wa{I`*krT<6Fnq&j)`S_+6CTVbN9KK(~T$>jb1xR_(z2gf|BoZ}|o1dl-ec`a%#4 zM(18@VMKHaXtR_futKC)EqT4G>;Nz&bpZQh*mOWO1Nn%sxZuY9^b(Om#|@8z9NkEh52nIFMu`0Eo?Y= zYsGn=O~)**GXP}h8|vv>4Z*8^(}AZHn){cjm>h+`(>`@>L3BT(_A`hZ2SE%RFZ}LaO}vN4dS1GKO092 zf`ZFzlRMx45$5oRp!3PYHr$w!p1{EnGZ7juTnkc02FWXJAghxu2uJAZ{zFN9hti_O zr(}BffT|@2JPn=aL)=i+*8o1c#Nnf6O%A0SMaomCdGTWVamJ$C?Q?t=+!pUIpWh4) z9lEs2EUKqS^e>CjzOtk>+lh?VX2VSWa>;(w8Z`SWlJte0_L`S5HGVj%i#GE)!(>Td z#3v_rA>f;@!GMZ?rTUJADOH{MkTKnQ&+7E^T91%F$1HM#1BarX%NgP~32 zrFIgsx1njJ2XuvPw=Ro<>rIOH4s1>|Yz0w~Yd@%62BSZkkPTgLXYa7o1;FT55v(?G z#7qR_@irnlHKGz%SU{RNQ4n^QV$7GEJpMY2DNL9_fnU}~c@;B8?^4jISC|OhY#;M@ z-4gou#rmJ7@5#4DL;mVEfZAtK?GQH6u+8o;+DMu@wE@&<4moIfY%_|VK|%C&ZK@9>Bq5KSqz;?%O_6;MV+ z#gYz@M>POH8IIL}pVn)>LPgJqxX@l%1l99>LP+W?5B!-8GnJ_WCi#Ev1<=Hjyn!=3 z-E<$gjHHoc(<-y3%0yxEs0!LE3P&{Q6Ow>D_~1xZ%n-xSVitj+T>z9b96gP&q}$|C z9+X!Gj;Ke;l!oN@!-XKE{d#~2ytUm{m^E~=X}F3N(}*P51k2HcU0r&Np- ziBgSEG|*nr1XcaMOet#Fe%Qq>p4zE%a3GDKYV>v2gT8}H07o^GLuIEtx|67Zpz&h@ zQNPbtirTRswv3AdjSml`5Qv7I;7Pij#u}5uD#xZ&obF_pQijB#*~Ar<)}TjNk_jJE zT?MxRd=&EF^#SkVeFiM^n<*17Mc2$ee_qH3Te4yvIgu`vk4m7uzW21uL5+#P#*+1p zAa2E<1<%PfbwB$i!Kc#kJmb|);}|FKV&CXdwAZ&UUqNakiO!0N*#jCUFd9#qcY4G- zdMdd{gIz>6GI%-AD;}q6NEuSne5Xl!;G|0)6veEkQtr^2hS)D&jBs1ARzz zN937&29E^xoH5ro|MLBvxHD)hi-b6nR|;E#+JV4tgT~y3usCG0A2hzgXngIgI#E2j z#^hpV9v@uGhUs=9iI+3L#Tek-R zuy-pLFpeb-#Od}Hph|`^(<8s1|qu2`34~S*w50q*XiZ1vYt`1u^LS z8+0!J%r`UdxotyAg)iA&7Tp{{;w*nkP<5oU&O=Pez%Q`91l@k2fNtGhPgR{!BnDAk zLAR#lr|cLZr|d9RjF1Y)VyDhYuu*O+)`B?G$Po(eoA^v{4D%mJ6n>ssJQ7)>j>abw z{&EY#(k&XItQe-MIPk^kRuhVl*k{C<_MI=Hd^}h9ecg#3o&fBl&~Wm~OsfVrmK0>$ zeBV_xV?r7{we5(=yREMaz}8bI`b5{H3~4AM!C82Jk=7tk{e&dj*9fr$x{79k(V2_)Nr=UiF9bFMuX)QL9HHOjV1%mJ#4 zs;;6hoFt*;mY_%7=*&JOl)`HRp8FO9H^}8@*-AAH2YKWM^1;X1G_9OShUJ}L?ex9& z+w~2#gd{dhirxXl8Kwi^#-l5pWeJX+m3_u_cJw*2y*Szxi?h1ecSsTvu+hx0Rpx&M zmM-Ff%!sdGSNKfaGv88>Y%3F*9>$V1$erM1#Z#P;DW$Xmtw!`YeK8&U_4_`=0yn2M zfaZ6})i8hgB%yRnac>42@tcDk#a$ALO9(Y3N*SFk-&^fse zydHlJtY5EuDZ3Uqpn}H75|qyN$x2d<_rq;>j(qhv$anQH`0K0Ph~OIs!JEbmeqKJe zEmAi3=+>(>JD zk{%^poGOs$H^qv%;Cbkqhw!1RTxk5`gxv_OlOQV1GqiHvsE|#%bIH6yxJJ0iTXOy@B z4}7>q8u20GEoj|)wNpM9EO`5jaRpmH$o4vDWCSkFtnZQpG}*55ITy$mr^%y=~r$4`m$qwVzc$i?bT4o6oTN1zXZ?Ep3P!=_rqj1Da4uhZ-6HO z^G^9pM^8UE(~J);XVWZpBHbxBJ%v`Vg}q1Kg>an#DQsuHONa*|jQ}7wu(^7wX?PHq zZfr|;XUDW+v%wnr6v~wut$^C{9?8;vs>^j0l1er}JkS{jACwek*`5F&Kw8Pt&?K*a zU&4w{t41j+rpEserK2Tu!CMZkkal`Eg5w|$Pzcq@;j71{EL}QI4_1lVQjDY^5Cjz@ z`C0P9S7%QXGLzRSj9u5`SN0$do{|7c;nP;*eDzD&m;JuC$oA4`S9z2|GOi+nkaoKv zaU?ctuShc=e2Ps1@j>9c1Yo}?%NA7b*W%L8)cqtLfO*+8sbHtoDVq~Z(!)H3rY1D! z)WX4D>%LuxH;4EDL)w$WOF%;>2?I)K1#njeke5NH#x``RU_ccdX_b;moZ<8Z*Z7TNy5A`{}Evo+8McAyWArwXLq zr8~+uzcOk>Ts2V&PjJ3WXoc1jXtTq58a3C>P>dvk5r}b)7|{PmzmNqeS}Ga%eV@(P zbb_EBr6wFFsMiOQmx2@3V1HX{z6ESiioM*6IQg*}Xpywc^nvq=L<#r8_HueB*`5PE zEnRNUftpqU1viog0ZKlkW1yJ8u?4&V&d(%?Kn&((*|IhbM`xY3l7=F9{5_9SBNF^P zrJxA4`}bAl$A^4?h_OAp5XPrY0g3HztGRIbOIdTqlk)ev6$HVvl$vy$;Mu;KY=Yp= zg`Xp_xcM*Ppb||2Fx2rCFk~6qGu3s%?$oR2w(&}?tymI*Y|2t@k3b>!q7^lm#Er=XStVikaTu)|_S1rqnYDgK^z+hExH;`_afkQpdcOm2ybpS8N+G?%Rp^q2A zbjSPXC<1Z#RhCe+ji<0<=OZ?Z47t^WLf%n$iGoZGAAIjC0EYh@&&K2^~;I=qJ$xo0$JaA$$1aMwbS7m7$K8{P@ z(%9O206r*jguMqGI!N&IM?#8vthC|Be>X|vE@Y8MYJh~&RY2lOTg`r%DNFH<;WUB) z&%}*9w{nqioG$_$FLseKt)IOgjvr#h>>=+#5FWk&FqIvaZO^qEz7w0C2t5NCO`Zo~otap%S-KxTZ0IZatt=~pc7g*6X10jc*Nc1Vr4Y83In zzppI8<)Q5Ncv+}9I#lbj0!lX(B<#?-mdk|rxv^&z0jYji zy7f6G1R?P(ABYjBMJ~z{S(v*#*=XK|Y9g=GaH0l%>L~=#A}sh|99yxPl7gkH@q!Q1 z(clA_X%SE~vfI6|>KDD59Qy3k)4elNRD(o6Q)$TH7}!9@s82%K&cbNj=xTt0>+l`~ zV*7HZcC@1>vte#OFMN~V_snH^lx`%>R|Bo9uZR{M`NrltFH2>mDPoxsKUi2y5s15H z+5us1H3HU3#R4nM0x&)09%C$Hxj4Rugn9fcz#8?Rv4n&@+>N-)cOHpA+|SFZQ*9dF z*Q1y(1z}{N2YEK-^{OZ&D|*Zp4akiAOJ)?v<%h~=KxW~hdVm8cJGE8H7T6#Pz##$w z4Bp1laD0)3`O<1YW`RM*0vqB0W`nzuj~HYMbLvDZ0h!ZjQV{Lf(heC>6p|l3W|j!Z z{P~wm=pI1ECDIIx=0#SWVAJqYS$fOyAAk&rKWK+c4A@sC%oltGWZ-|vD16_AxT`r1 z$oxKtZ_TyaC!bUNbl)}A7%8YuX6tZr!w5Mb2^fws%i&(#ob&b^=zr;bo&v?O*fGQIzF=cynSmLX7>q z3?L-LAjBj8{1PCf5hewt3xw%imPK_L_dPMBD9P$T89X0H$np;NSAL)Me3KFG|io zG;9sxDmUGQ)s8A5>nx&=Z(z&7p-(+PN0#Xr0&%b)2O|sQiAyIOUo8@VZF~J0G#XNH z=B(%j3lDVenpR3kn=~7(>=Q^NDV+!3JkQI)uvZQrKCNUc1rc8_G6WOKjw%u(hsGRk z)LBfQq27{UU?3%J zU4sYFV?ZqtOG+7FAh%~~h8WJ~ZQybASmCJTLz~tOm2y*WY)EDhpwa3^uLemdk0W#h z0&_A4e4sv4LoJ@{yU}sfLaL#RfVW!Nb+*zeL>pCfkz8-z3kGsmIc&m(l@|0g81W$F z;1wWAxyj*55N>^);7B3hEol4CmN|vUqlzw*>n&%&2f=<}zg1XiHcv5#2iXU&f)94D z3@i8exD#B0N=n8oDgC#8>=-~K&io|WAwQg87W`>L_dXLggtJ)-@xha$1cA8Gdd*@B zBHunEeX`{1!tgT!(tUz~SdMYuu}tveC}b{L5gu=^i8h-8xi3oM6`*Kx=3OQ)Q*9%b zZx-{`w7lm2mCOl6zSZS6m4)L=Y0Ccg#fRYA4ecAzR0Nq-i+&y@72n! zDsuhnGNy-ats4?3aIq8kK`;v$^sf&OVxvh!X&^py#^QiDTkoN_pyO_=Q}V|XRSsFK zd&xo-gPLNmQ*m8Melz0W2Rm&U>G|8}^)o`3PZkpb>iW75f#5BkHoe+j*0dydO$b13 z=JuC?g3hJB;u!El3F^+REt`L#Pu6KY%Z0eR=aDSnt}sW_P@Z_8-Td5pvZv-+>IDJZ$U{jx4&3kyLlTfE(3t$l|vZLqd}T_ z4HOfmmyaT;*NiAM z8*bW{X|H9W;>Uzlbr4iOy$Redg8F*e9w^(*(7xhtqE-}zBiud4eF{$5C2X_^f)L%( z1pKKVoaH+887NxHl-pm|G%IfBq?aPT4bJVlZwR_RT9?&PVMnPwrW8?7AX0;WF*#qb zkG$1#mJ@MT?vWehCu99>H#0bO;P{4T3rvgY4h^L--e>x z)o_C5;aiVz?HVABjc$0pZ4+!1!RH^Pi1_e=qY5xnH?^wYqkd8K!${~U^Pm{D+*A^4N6GyXrd?n5i>%9(j(!j8KbI z6ht6~-HI=U`3tKs{pAs`*|${C5u+#Dj=3CP&HP8XWU~}x_Yjy;} z(<)HgN}i~1)KKDZKZ|f)$VvFHIHYB>@g~@-0Hmi8u<4P$gm zbMGhpx2g4JeQ>}(OZ(+-e&*`ZH}ssEf}ZAbnmEn~h;}$ifruf~5S1oY;Dx@wu;T=mQr9k6y~1 zfbf|fNuk#p7I&kgR9ZBE;A_&BSJn^2NJ9t&)Vu~pR$lTVuk@L1#Vdz?eAYS23(j&b zAiXX0>tPnKF>nJJc>{q+u(crpBbvp&%hsjIx>URqrF3Oo{7>81R3T8FjDSAMa3B!= z3D)Jhb@wzAs{38TYVM@1@zGvb@%)F^PhQ;tHjE7iF-;~#1cGwG=i3&Z!+@iQSFkY4rA8Wm4$Y)8E;*zOFSsl*Bco%qU%_Oja$ zq}Iu2f&Gqzc=B-v5X^7Cz}$$;NYtAJGGcA0gYQ(bO9gP z23S!AYeac*h5;E|xSnHME`FUM2Z8)k2!z^)$lWs{$|D|i-f&uT$L8qX!PHaesP8*s z5SnWDY_EC-c0UlpEZ_mQyRjZAJ;oPCX1zk;etnkEg-0G;nS}F~cGPTkDMHl+GYa-o z9&pD3bN!(<6jM^_UZ*}f1L0%jHm8bO63?Kc)_nF{?t6hy=LKh0mMV!zgWce8Sf0ga zSJ3_IBNlzG6yN_ zLp%^a4~|Eu4G%;NUT_UN>ogvqJ7BuMV;WLmJ?`!QOfZ|yd{(}*bLnM8L*C)_U4!q; z_5P~U*momt#G(%)5Lv&VhqJFL8V>p_wHpwuEWH3BrWAF}@5!B8j(IAsu0h`i9E?eu z`^pAoOI0;#F}n~qqF*pRoPx-+DHRPoOH1R;Z_S;Enl$!s!))PMS=TV}%cT_+A(N28 zE1%Gq$XWh@+0LzVAe6WXN}Ul!8g&n75Tx)B+T8pIrHu4;Zb{_%xEgE@3^?rRnS)|= z0hL=1MPJ>*C1SEpCCQeu?@JK|2{RbXci!|o&-=XZ?|F~!&);_(-(MY> z>pJ)Cy3X^y@9g=f9=l^UAv%Yka>U+x5n@vB7g|o2Rn(G~?`xZ>Gj8TuHR&w=!nb3! z&@9aNal6C3Bgj zGlPZV^uy`dVa$4!GV3FeA^eh|Zd)o7v}yB6tQJXK26dl9!JAeVfHHd%%VE zPJeq9I7AgGVX1bw`cl=HDIB}*p(8D+SMHiL4asvwn1L&9fO@`?-ZF-wqemwVGLv@1 ziI*Rwo2zGc_+7>x_Pahg+*g%p$%+{nOn$`<&my%9$eyZC3GzMl4*=V&*W{LK?Vofo zBiQT)4=B2Bc5>0Nd?}O1vWz-FxQ`cyzhSp(zx6-BgvlD7+9ARu3Y;DMOb34#Va6Rr zZh3xS3VPoP64`Q)Mvowt`Ie%e&v2$H^cP^>AB4F=q*jLpi#K&L(y=t+6tE)JPQXm_ zZ|Ey<_D4yH)MN3RJ-;&reOv?>^L(oq1m5vXqvuR2aljkt3QefDd_WIkOwJ#2}O3LaOnC1v%cI+KeCJeGX}vk??GXtlE}#Oq1Bxtd*wj5 z&dt>*!QY~Cg|s#BUp(oVgT5F6jFo!K0azSQnnNsyr36HzqhawN!V6?$wG}*bsK~^a znt;f`5AbL6c9h;)b`Gp;e+}lCTnaQwCPSA&IK%^8{RO}1S%^JKSo>3V;28V#C`#`( zoC>nZQC65yV&rZ9P*?N$IFTImR31H(H_1rpvcxT zohenke+ctUwiB3S)tLh(7YelLzw*w^BEkIAa6Hm@1K6;x_ASWaPl>8n>rXhSVw?A( z$oZ*qNaL&mM?@kQXe&zYGvH~h8Qp@#l{eFi*`RI5-Ui?bkuQ*=|GIl-9vSDK2as|X zP>?4{Uy#FfICyzz1K2=B+%A;K9ola#4~!vOXRSHD(v7Gi$aAXzl%@NteE3VAWz0AH zgHcqnL=@GvI_uD40jzZY3}(l*Ux4jt!wg`%n9oiB_2A4R(s+;pT%Gy^y25Wh(Dk4o zf?liExB+{t5o`-Ned4HrI#wlg4Uk6+f$CCKaR(8HxtAPYw|>_E%-7uj^InHKrqGK5 z*i-!rm?st>Go&jX1`?3XZ>V%%RcEM3SOG+Cyvden`01on*WH2udaW-zHL!LEfJ70V z>yRI@r^#0lXM{ENq^UYZr5z>&9|DPb{?0ou;|pheq~=V2XFOhYLgsaO33 z@j|;ep8(2@h?!M!aNBCYH#L5nT$4kC3M^Tku#egJ4-#(yPmSO$ z&TKE$JfpE|e5n@Ea>({lHy)Q@!2c|7Hnhyfum1PI9$!hK2EK4#-Ti1Wj9K;G-ucdn_tn&*y*_Ql|H-hLTri}CS8j6NEB-85$W zV|zy9D5Qo%@Ze+h#aL-u8_CrZRwH%HpKqq~nVOADY{oB@6So(gW6#T*=Z5xZ3Kt5} zChYNoW3qhZ#qkVD?q(J2DZA&n=FEffB^25AAmciAQ1~1_f|%5fu1+cRIgV#YG3y<{ zs*l-Zn=_k7DN?dkG)%<7@F)#vVa8Zv+be&j@0*^fSF!`%zDe7F$X@N$-<>yJt`!SW zP~afkByW-;BO*luYyIqUMVjNXGc!ec(B3w;~~Y+dIj4!w{S_##W*ev$uJ|LM;kP ziZDJRWGprQtX}5Lef14@*HpuiVr~-BN~F6kh%T6luYv_qm!I@%F897^-2Xu>5Q#+> zeAqE^8(kokPzehJ>j1)XuS-KFQSBbm1`7;oWJivn3mg(EU;!I{HoD-&OG#%vA?yN! z3er~atrQQkG`HI$12+7u&1j6 z4jZpOG{6}x?#A==H3wTfaPN=_iB54I?9Uu!-bj)u*kp&rFr1g?I}=su$u*Ao=SwULU6dVwFk zK-hJ4`jNW34Jr7>axf<7X#UJ+8N5->@v{*m6;m$Y%nGVGywx27Zlc$B>BkZ59Y1e9 zKTLqdK3T288BcIulW2Y*=<(N|ZsRVs?nj<@ok4bUk*=QKBC;(zQZ%ZfUXl(OysKjb zg<*;`#i+-7dXZNX*UXGP=(id#LLctL3*Uc8iHK$f{1X&gXo3 z9yA&y$oI6}`B9io`_)io>(Dw#l zRNQw6+K11Ly)7@naKbmIj+J9hv`p_mSt!%;Q5#x4TaLp;Rp_^$(y^7zR|^Xwf90`7 z1elwhd5>Xe`E?AI#jc4%OZ#CY+_rt%>k_AJI`)>3jfuE#Zg%!FfEvC6YvNYWHKD<< z=Ir;M$r86x$}F`-Ys~l{@c0NFVdgyHQqNQ8ll&1Cg!m zv1nK1=;30ENYYsS@)IDv?l6!pvDZZ=vasoDVFK4m-sXr1^QwR%dX}_jCqpc&PJD@j zw$9}T=*{u-`U-I*R;EN57bu^9EmpNc(DC&--vp(0nOcidheXumy_ zwkC-Awv}YZc^5fUlz%6ZWcPUiMcE_*C~IQ~lb;R76!HTx5pm{bfxYxByH_Vp7Uqe5 zw*zUZy1?zeK+Dh9d$g0vEa^oD%{WAk5G!}oF>@aO!x(C5ru!Hri!JmVRFdiSS1&$P zSENicVsHC-U;M@)^5CN#UtML^wmcBSe!euQL9`Rf3Kw0cqjE#^eGlRHu#jWxH1K@i zq_2xnzYJGFvvdEo2cT>AtJBMV9fZpiDWqGZvqORoWAT{~6-k<8T?0jD-sb|zvu|;4 zdC~Lr_in=#Z3QX6l~`oQ?oP#Bj2H{8()dVHV$ce@G!O$z$#)3Gn~cXsdkT;n!R7-G zMHqs1_1ryG=p;@;ZDRMR1oT(Z8v4#QD7)9Wom} z8Wvtan&8#xw{&E}EAoEiiD+kuI6IK`CM%NEvw0E47c#U7L4@|YlY*}?3DM;yb?oBBSOis-N0K_Y#=v#;clmRJK3(!8&Lr*h@uf?3 z@LRniCW_@G8Y)GtUP&tl+HEZzpMLF^Q+q$Fa3d^a$>?z8Xu#DmE%Ia*4MnyOrlXPE3!|pSKS7TU!4G}x z5jO^E@o6o*h@Z5p7`6D~njaAVI02OYX`f48-h{H^Xfgv5&Olw*bQ-^R_iHyX>cYiU zbWvO+EP6YBJ0$ZhNNd-*TD>jUKy#U6IzX2bQM4;0lMFSfz8p8;l-g;Zpskpsn^`o# zQL+<*t~+T!cY@2VQM60@)jT86CO@|oLD(*gKE7}r%vCaNzIk&sLNtAp&k(fxTcKuQ z+=UUy2&uO}iNm4mMZHwkJ7vYM>I}$n2Hd$nTSXooloYNrHE_*?!oEAvzCM40p}7LI4g}Hfa0!;+NiG+boysBrM|m#9Zd=4Y~lX zYpXzg_V`aY72+=glc&aS+v%fDL?!OtoO;Hug2{qgx?~UF;A+P_&;JJlOZuOS5tez!1@qu}L_VD}2y*yzf^o=ZplT<_C4IzoE2%gl z3Atua!5Kv=&K#@(jQ5WMM&5lcljq8tay>gRcuxkL+D8ejz{2bMVmP&jRgi+;ACv%m zB3B(RK5U0DA#flC*)QIiy&H>ppXqu;tSfsrdti}}m7~>WH)`y(B9b3qo)^l= z7?l2nC(<%66l#X}nh1yhc1&3xzByRWooORzE9}fkLSapcp27@gI-L{iniNH09YoI! zd{&NOUs?%mQ-_iKr{;N)VvH=$3ta&gTIRJMfz0=P>AiBbqAB-gI0o;siF_sa0$yw4vfyd*mD6qr{xlPWk}GKqxgD;P zAg3*tbdk2Lq=l`SNMvgvHj1+8rTLmgV*RXPKx6nZXzQmB(Zy~wrfYJAtZi8#2rFmf zLdV%CwXG<{4d}oXeGH+%zGYOp>sY=HUFK8s@RMKZPPk0{jJ6Cv2{dn!<%K?Rimc+3 zg~?vY8DS(}oG28Q!^kq0CAqgwC=5{XS?q_lu$q;ls$>V)4@XWU0;Tatf3N_I({!v0O97@k7?EHQgjZO5d zVo(i|<4;IqRXZ-9IZcj7dFK*^5{$6VCH+cvQ^gl}&sE26m=t=4V6I-17w<|(EyH^c zgv|37Mn4sw0j+DHU^yi`|ToWQgIif)D+OO)inWN zU&hMOd3*cP&S`E$-_M-m>>Az2qOLDz3YjH7w^>BC5R-$Hm{{y8em=I;I{`9O zJqV*S5s|Wrv5cHUKxmhFLbpbUDr+9x5vsOZ4LoZNcjW6cJ3izq< zCv4&D*dHQYmyAZKQkyM6O-g!u$sPW>`_|+|I}!tYg_M{aX2cXk`r{gB*?bDH^~ymS zi3pcfOgiEK286Kg!fP?$lyCEk6o$l^MyUyce16L?=WpQqdM61t4tGe!TS=ROt?^%_ zjlEBk1Hi`c^iY}qNN>=+nFeVMW6s0C`OsYNv=V)QTOFNFVFqfe0@Xm!PAkXr>8{g^ zQyPdXH|cbp4ZagzxqX`a90kG!QN=Qba5>4*CC-5M7>f{D$Ti;U_s7l4Z8NFO;^t^8`F>z zqMh8)-;kE10={TcFa#(V3>Sf((Yeu=3I=1+PAiz8)jlw+` ztQd7`9hH7XmGVJ`xk!Z5w)o$?(sg1uG!ouOT!PejVtK)F{7+=8)PBmvDr9IA`A2{} zmM$*m+Zkpq$!MUbCloHbemrZ?omsK2nh)W||75`39o`{wZ_e=Mi|avcD7Kp~0oynI zQH8+i4$ZoC`|nMunYzop6KWi0zH1u#SWV}2h{#PNh4zc&w8zscw#O}k+DzYrs< zWS4MB*{?GI6u-lI5$^w39UQrvel2KM$zqg3%$@vNnLZDN-oG-=V!@4)9p43Hi^UMa zj7%oue5~l4d5Qfj1h$9|!>|Ui5JlI-wZIyI7($~_`$U}2H9BV@V*i#Fwup~~u~)_y zugRfn9@lNGnKJqYYp&8c?;-ZHcfpz{So8bZadb^Ax@KDufi1xd)?B7@mL~Rd&ay>( zS}Fe58X~OO5<}2U=o$aVnr#^Nh)=z+=GV0gD4ZC=#u|rPE1RJv@8{)Wj|iMIganX! zaTJVltN!TQPfL>cRtB71fD%@y$qZZ$e~KRmH_dv9Jp#3Ph%7g$F>(Y+P{N}Q`^0hr zB&BZUhx~fItP$48b)t%h`mU11OzaNsUqCNSBgt8yYT)KEbsw*1o&f z?T9ZUoRXa444AcQF*z?$yOG}myjxrtRnSRdjR-e)iZ@~YT)UM082#-K`r9%1O&5L( zGk1Do&a9rx>5<_2e-QB`Cn$_s^W+Oob=AK=oD< za__X;G%5)}YeDG4oFD!3Kw-NGGqG}R)h1l;STu7!P{3#%Nw|IJ-W}O>)aTf zrAX&M>FRRD>YJ~lm;*qQzoiXIRPMnEAnJRVLR`{LS81%5-)jG)#+_uwbwEZ@Nt!4{ z_fG>w@i7F|mQlKo5}h;CmDHk=qg}t&0o}743r5}a8cd*xh^4%=Y970ZdCyHs!f`0$ z#XB*6(IgT|F&7h1eC+(_ZEPYd=haE#+VY$9?}lu`C|9$^$)r1|;j^KOcAp>p_N<99 zD0j-dYL&eDY~=5%mf|Fm0OSiScf%2A>O60JaU4Jy_Yl{lgfZ=?tOJ3C0I zXrcmOZ~*~e_PLCM08X^u&97SgwUkJs_D}?>ySYfnGr+nIk2MtFF#tSGfR|uC;Q142 ze`LRvoAp9{F0WaKb}RW+)MIjv!)Bqnrkk+&b0hlFivzG3MJ?J{2Ajn?F~gChrzq-P9oQUjJH7E| z5o&!0{VE^|pxXuNnphxE{IISDquORAeZ7c)CQl*ed}UDZ;i#lTC}oX!04}DkTfY}P zD(EDPCE?q4fyG6VLeZ>gJGv8$>D;L7Sy1ak^BLSYaw*W9Ip}1e9O~Q&2~H59K4#oZ z7@R9YB3a0y?B=eU-0=EhD%_~l65ugHJT``)gYvz*Gh7MZCJKBpq#U=Nen0#vwjDZvs+1j2gFerYDE*ovMnm<2nzi15CGpBLug2EVq`g*&v6Txj0d)l7RrT#trW`kfUVqD zi1P%>cCnCmv6~BWlaNDNZlfq)m#l%WH2qQ8Xb3EHMD>rD91O6nP zi@9n__0v?`aSe|H5ZXAgndSr4&AzM6SCgw&hiJ<^-)SVI9RV>MeQr5$yQcDSgPj{H zORFM~MiAC&nvznnw2zwfEAf&0OxJdr$=cUE+E>reK<}QKw%=1FGbvu7hP4_Vs^DkK zjGM^|-n2lUC%&aUmt7INAaH1rvxQEj7G~OH`7)5iZP{*+#EBRM3c08D+uNStexJ4h z+X_!|&HKQ$<;D57*CAKWv!&dP4^O7S8*Tf3GvD(ETWFOzlb<(pg0pIFWlcjFFMlGR zo`F-WOUAT-_NOk`YH6)`)${jG-y_uQxx6lDslap&dhqv)A>?tqzHzHFIC-zWhN-jT z#Mp@XVt&!8*Yt63%6R9!^44YjCCd#nd(H>4I1H!biw zU5W`vTee1L$=4%#t3xT%(Tiki-oQZM%8X$34)FafL+`>of`!H{V$P7ZnX5N$ae+Q1 z&DQc?Xan@U6R4}RHs-=AEf?H(cpS8GS}-poCyfQts3m>v?uFCd6Sq^mTaM%`tiIx) z3w+VUm}$H~tPJ*_w7WAcSY9Rk?G49c_Dx}&BqTOlt*gVdfMfO9k+Hn#Y12?2Z@G1& zvb4+xqY8M}(>oMiHLctdttc1Y*Ru9!o~1dNvi5z-*In3QSRo+%>h!GlHujmCh}4F* zQ96Uy)8+%8^{BU=`L=x-x=F<3Ncah+-o7Y7<&`Ag<2IUm?X+q;ADMXhjW&dBQGe)y za2Z@3ot7~^WH7dN*u&0`zP84eHmku;{nkGc?%1ZTP%*=<+C;qgc54g)g7>?Nf+S@8ous##{7dHyZNr!X8NnG%t&bWCe`{ap18Lndm$makumd1 zBe61ebt&7%zlHW^G-y5cr`qyJP^~4&Yc08+?jl~w*X4_(oo=pcD4+paohS5fCF0yE z-)W00wNx6_b%vLLlJx6!ls7fRf31k-IucjCY&E}Z*q7%qGH*Q<68xGxYt78RZjfzR z>|}?P!?)IKe=$7%i%otVo9XRlRroS)#)D7y9{(5C5cxO)vtyasl<@$myVs^-CtF|T zFR#8Ex@Eo%-+An2{7WvRG^-I3sf!h|>oR=8xQQ$;C=jR4(^_%F;y|G>SlxbJQPd77 z(YSso7IzNyJ2~08>p|epp>_xY*ieNM->nn5PC{!mVPT%^iez$MWMHpim8jKpcGHKX ztUxoJqFOx---ohW@un~wurUi@n8>PM00}$U|Cfd!b=8>v2;NmIpWfhrR$*R+#f&&5 zr`N}e^i0OlZe4a>p&&a3&gYF&ZADJ2Db$dwsyOxE_gDKVKSZZzZXUdw{(hSIPN4A2 z?6;lQFHY5~TD?}-o@xQN&uVjY6~5fZHq!b-#?$0BLsH)lp{qp{p}W5h?KECDH{t7G zZVRmENBbApkE!8k9kh`o--gBa(J4-9nckW+*3Qmm={SGkuioW4?M4@=zm@iVF@dyO zG0Z@{Lhi^CsF-z@X%?)W0KaM598I#z>ny8N+wmvdG}*MM^e97>iUH~jxWjGp=utbEv)7XPA?7` z)T(>e%)d~)9YcWVZdbXqW6;GZ;0=5>Cs(10=;E`5YjD%23MKAC52I6FR!p`PNpyer z&r5)}yLK0-t$ik~Y3}sSG4x!w{ugwN)cx#ocWtk~Eeo4muSYTso?4o@*Z4S1zbJfX zroM=u%3V(zVb36Kbl2>2!MRS~kWe0xxKT72J;| z^(;LlIae&-o?unJ8&|EoJnG`)JAZqaIs61zcDfd^^1+9IWYu$R6^|a!8^Nqc>X~~{ z-fcY8>g`SC9lw8%$d|4QSk@Y>!ghORa`R7DX)jM|;@$>obayTk`K-P> zux`s|BK^GC0y{FFmZw=!REz%w)1TfbL>j&bV1IAmzfx(EDqCXs?U7qrA6xq~w*}`a zx8dtWPIsKH+%XszS{n;)p0Qq6n*3%SlBAN(3Vh{b`1jH+Bpa%0gT3d`L?i6g5L`?R zDG0Q?wQg!Ap@(6#N&0+ZnQaoTlwQS#{;fO5`?c$CO*U#f$HUEj>_amc&pN;@gZzd? zcM!W!NW%J1lMEy6e%j_!5B#_XN^3T1h(q6?y+P1&nD$dHDI+R>&2{_IQK!P&H`(W( zPpRvfuD$KFHWr$=<5LF2TD?qjGva&twxq-E|01!}LSr^HJ+AuhktZ`!uh&%{5(%n* zcXGdrVXlkW*%iw55sC=OOk^_2_rN0VKAP`zbIhwuY!1gqjJCWYVMF!L{%zEX20+RN4J`||hT|9MFWYVx%UC(UH)&*nBE!ipK z&e!Df=ikA|$=oZZ#W$YJ`StD_Cgbrh4+ z^elJ8w1kqi@#Z1y~)! zAL6RJy=Mw$x`)@jD}nC@c-NI21@{W&5*(}lk)3ZfeSa;wlvL1P!3oopXnB005Y(lK zeybKqr5diP=Ln<$C8W%tDm@R%88SEUqSpYT)r`~Lb)t)Px3^vDYv>t+DqQN z>X~iPu%-$6!`Ze~>`J~_7EYlXlf#2n3k=%iMs{;uGdjBx6Af42_eo40>t*9dRj3pi z{fY^bZG=4Ki<1rXMt!vc`-AmL2sbCuVo^7Zk@{k^H!>4Waht#t_7kJL-_RR<2ji4? z;=8dCt4}n@L99Mtlvvh=$(hyco^&my7oXKiOe|WL6G{sRsSSjL5;6sZoLUP>2yg9O zmrroK4anzm{JJ#+~Tdwg& zy5pML0uT1HUK-`qz_;~{3iiMCULDs;q>@5B2lj4-yr%XZxOwL}jkNE8taCC=oce${ ze-A{N+dltDXF{L&p<~UP3vbzPnp)|&7v9XC=z>g6lP3!}T76=s>5C!R+zntQYahWE z!vRe{@sASUFqXd`W&IE&daZlsA%1P3VahpIv0OweiV22#2f%mhGgtiBST* z5ww*Mp5VtMW1;FD6%6g!OX<}WFV{<*&mWXPH#KR+1k?sDQu-U!@vd;@&`P4(k1B>7 z12+wKCi=W`Or}|X5|;!|hx6e6tx{bjs(5*~O*uU>%xksh*fugp;4N^myC)@GMg*#N zRAmsi&s7?4gW~ea#|=g>z(|;LUFA3?$1tgN#)M>BVvr)YN!9kodW1ZzgDP0kB(cmi zsi(^)sRGlZhL>L(?=Dd8fV-W}W98;m1{9=y(egJOTTg?X>==sj{!VXHR&T?MLjT8g`ejfYsYj?<*%cxyF=y`emA3cmurBkh!zx#B2M>`;?4C|} zQep?ErQ=qwckV#)-{C=9KhaMv*ugDj=81C4fkgx!b2P7bqQ`_-ai^<^ze=Hy!ePm^} z9^_d+fFra$>{t)-YjeGVod6}FM5>%JHLJ$v^^_N1%(#WDy})kX_}Q8{|0Q_lnUC7! zTn=+KQwR}fQ*Ldc7WHn#!fPzWaRGNp#6jz(@f*zf*5Di$S>j2F!ti-jhW2Tkbm@tO{J&QK*B+yE zVS0LbCVST&P363&{3OlzkQOrfoIGx+nQ%eyLg}h8J)mp&KR{)#(&l7?H)7y>n6bsa zpnFWnZYNX-_FQ(Ds(;}-s830M2Om7(2~ggiS{_04Dd?BFpP}dsu6P^@2@#7zCtvXE zb6I9_ZDse#J6K5{*Twb2JO;=*&((v9Yns^xWwPe;@wMf2-QH)Z?k%}iB?og7fzx%E zrcd=!!oeQcL6i4_>d^Cif7hh@jL+Rtm%&gf z)O=LAl&8_%y6g2-xu<#Sm9>Z^KAIJwG>wLm-9b%z!Rm4)JIzXe)6^^{qE`XMf-obo_zZGsw@*gZex^;F^9`k@m0 z8OjryP{4(y38Y;BOoWardUXeL{<2}!Q^9emje8OQbKuj;Cl9z7zIMTNG{oClsNmk# znt9REb>SOHHLcCtVnH26@lc(lU+oOmzTyTRY2%v>-hFG=2Dt5SDiufO48k@5`kh7r z-nVz@$aPUkaY(vbI(?kIwam$;=}-^LmEtdViAly!dI;EnBWD?9kWAs~uAWKAF$ z9>L2yZ_2qG+&{nW-237!Ay8cStl<7rxunEO#r31j#o(aylO6~ z+_Bok!J*JX6*9SFmqiIX2?72}gSpv<7HQIrRQFMTlWXPh?gxF7&z4o-%`Ygz(<=q1 z{u?yA4nm%z@}AfJ1->7j*;%Qr+~7`$RNL#4@w$X31gs83SNUK>+dS-P^+a;}nc_F^ z_WuiH`iG9WOC7rZO>!LdUlYY$r(ca0&7I`Voms*R%Q5Upi}M z!-CGfw4c$w&}V$(A}F{tqOOwsa5bQRXfna`-=ui{Gt}^7k0{UHO!S&MsodQax_xAT zGW+Zl$E}Jdlw7*=V{|b*hdT{#QGeYQAm@f9Vy|o)u0lLP`2%^A6JFFA_Pq zzfMpoQ{JWa?NJ~!KfbPV83<)$t{``BgerP}2vrv!c8$8t2pqnW=%#pC5A=lNN?IA5 zTAMxVRrkH7sDHV(&gpH{;H5&2?*RJ@>kg9Scv6PXNRp3`uZpvdWJllqcDQKR9Fjnq z%v#AQ{sG?>$H}8xA*7h@TGaHj4yrO=Wy>Dy=~Ly zrYL`@wnHKRZn-AnOB?@i;`cybo+o)_sA`Q^od52xSp0dY`5&~+8!HSh_H2Z1^9YDV zXAbrB_E-3yHGMtt+E+0x^3VKRV=j%I(oR)R4m_Y(O*g)gc~E8P>;0%8MRgAZ&C7@U zz11q_TEl}^gng;A9W)Q>s<8WYqVa%$VB1}CPjf$9hde>~0xvPn>D23#ppiZp|C=hn z;c$XeH(I)T%mkNo>}MF-^;_Q2qTKa->iuOYqoe81WO``xoAL@#_mc$o%Sajh0P_4@ zT<%K}Q z(d67`1xk-kBJPh?>twoud)l$p@$dbHRdY)NGgWKo9jWi~z@yipZ7nh`GrsS_*XBPY zYAy}QP-}h3Rn5Lkw$NPKyU#K|&%s<@Y2Mi(Yz<1PHPhwV*D(-v_Cty)wGjRTK`h#) z{E>X+dMcqC<%4tiw!FsGp+T|MXC)f69*({=a$wckwcnB{@K)Kt=vYUZLIAz57wM0o zyT8?RgnMEC4=s@3`Ev7t_mgX$6UWQSL|mbJA?-~>>qY}8&^&5<>`Um(oM+yD+K5Qi z0ubNAjujJX-6fRB&OP_iRfM)It_IKiS$~Xx{|gYtVNXshwQeA-i{9` zA6DB`nlpUAP-Q7=)65zxKYyHlZ4=^@#Tf)a@3}s)^2Ly-k<*OK^`$$=nr^YJ8 zd_Co6zB~pDeqz*^?Hm$WwDQ65q79{beFCNKf8J>23RUlI29<0mQsG8$Q&}Q^rSbAu z5IS@-%a2-IghE`~O^AbBq@1()^xMR`BvgCPFOEO*Ye0uD7DHjy-#{y|egg8?PZqaJ zFbKaniZtT0^rP{@cS5=d+6CiGIRw#m^G%n_Ng!JRV$%eu=xCI8?=+oJmE@{R0NMlm z50KIwtGwnK$`^FUg~hf(ALpY@C`71Z-6ogdE@ZD}{u^bmrwB{og^8gA&yx9Ot`KO- z49k52T?<=D@6-pW?C$KsgLR)O49CrmCU}y^zG-M4gboNxGdvrO^)4dVqu&0|+=d<^ zJ71mpLU- zlpJ4Dxo_3~1lkAwtpfsU)l95sLK8oWn*y{!A4Za{yKS#tz6!7e{ufvUWk~xQjkvX= z@6jfk$4gM*M0%qYJ*eI*wa?}UTYzeJUChx&rmJW2b1fpPcN2%XUw+9UlBl$iDT ztP)pGXAi86r!doc49je481tJ@tN9N?aCfIsDl#$#r)1o0@=a%^H9Y3p6|HOU~I;RgM4*7;C>HnJ#+sG`zIllutL5p>>K8_yGT1E>uK^)=tOVS0mJ|;$$Nm24G#(>G3 zunEH8Y0dq8ie2ZPy3?C-EgiBtD2CzYR{2QevZ}pzj1gmKS(oia<5;-yqHVh2X-V>t z@82nXE?0g1+?wl?vj)_vzN@hXq&L3U3>bF$CG7|Kibkz2%#GCNC9k|*;MPWmV7mCh zpjb2$wRwP71qPLiK*uRD>ST|v%G%fqBMeBKy}M zOW)OHCt;xjRkx|xcK^$&k)Jlv3x+9cPLmli==@M2ss+wR3UT{EdJZgZSs>srEwW0< zz!pcpg&*4Wd9TrFArdO&|H(m8kFW-m# z%qjo7xc)!KoO2Pu0A=oY{)PL%+=;>q=zQA$*%tnP=Kfc+4AM-}X8dA;zr>(|-tAh8 zsqm~%1YH0podqX_{P*>tc?KOgX{coe9hl{FH0Oy3IY{$>Szh5H89^UW%!#5ArfMfIYw@os|`6;W2}XB-E0+r`;~0!&&U;sU;{gM1j(l;yc&U z$LjH?WxE+|<`l=08EtK;r`BsORhUMunpB^dqOB~2gsZ=!Nv;-79M45<^89w9X%-R5 zhiR_VSJF`xt`<;Bd`Og_U7n?&!#ACek3bX*`cp#4t6Xwk-0hg`b-CiJ_fp&9t^xH4 zGfB1f6m?;ZD245Kxj)RfS4{NP>L}fRBye*deJBjJQq{M?*1zJ{p%j)7WF)SR!54lE z=XUunwnYYdjf^Y^FVyC-3&V{?HGh|XMXMWq^#EUr!>kT==O`$3_m{rWO4V;}mARKD9bT=@zWF{-^txv^O-U*%Wo5aE;Cb)?_ zcBW^v(yOd=upSiN5+x zeV6b1nGUZV=#=EAZ+lQN-y0XqYB$-SS$>^nD+d>0r&IFd=Y(ms-I}x&{dw2PHcA;^ za+LGj;qPa=OVEuUxd7MV2$Ng{(Zz9DkQvlV2Z+WTNHgnqn!bbt=Vmv2d(=9G%z2-f z87kkj(;a|G2L!_hSAZ=0Y!Y!V8w4FQuMVkJi*k6@$!oH&9`uUw&GFoQTnZKDZ4hQI zGrq@HQkQnI_MR3*)ays0D~RG$oJ^qPbD`X#4FVZ92<#e7R&5wes>NN*b*BXLYjR3y zxcqV}Jx3Y8rk8|<(A*eM`y3{9o*ZX)mY#?T@ccS?I1RRDW`QeKn8z?%gy%yql|IJg zH?2}X1T#uBQE_fVv}VO}`cHXPYfE|Vw5c{d@Prm?_nUz$w~cswpWKqk1*@tE0Ps}I zU{~Y$vmy-U;+xhZe9I!4)fkFO4U{5+D0GgL-? zJriDA>}m1!U1*F{xh`ezrm5Jq+_$6o9R>`*Zpp8rl}uk9N;Nxs9EnZ3Yo>ya6#q^zuln8E?jF>K`PS(^ z(=l4<;Z-TIU73yi{q-$|ud8{u<=S)_CD6a;`hk7d11C$>l}yHB(NeMa&bm;{|1?es zR6ND*?Zk9zufq=CG4T1%g!l!N-r)^;-zvE4waI(V(v;Z_Q=e%n?4XdtP%Kv_A_a8Yxd0gj7Fz%B-6mxlkMzqD@Z! z#QG|4!!bm*MuRgSva)kwE*?urD)g^--H~$R_jFv+&HEge%vXnp6^pK?TQA-my%2(C zVk=hic{V0|VBpH)qS`?YRj;4Djhg}>;#Sz#^@|kf@d=81^=+8*GxSEAWxrvPit5S1 z-ahd!X9i@Qd^={&q_p`lc^ZtqTx+_N!1~qn^*YHOvMP#yIxucFAzeU1Je5C7x?V#ctEbAJzAM4CIFr zWVaR%>BW^T2xVw3{AWq=9nc)l^D|`LVDB$C(p%*>z%g9^C%EToWxC`U{|lHgAr_@u z6o-lX3x*@d+^p}ZE_Y2foxB0lykAYTHpq-?cJb@l6o9lw>|ZCa@UQc>@L8eUUPx5g zuih+k`|hO`8JSW^2N~hugUY>wfBbUq&35PhC}}|JlDK`H+QocG|0!xtnaR96-7}b# z6}eDYqD6{+U|0UyNC^$IA_D24nWI*=E`jw=rF*YhEb8TT>rqL=$NLg`>9V~r?Ne{8 zG`7RgY-)uLWWE;U;M}E4t4XLW?fx7?lG;jr?#gRUfXo+Ei?(D8JSTcv_GhrV$MGd8 zI5%#8CR4TF);5J>;1ho?DYK!`rxwP4u?(Jm6$T-g!D&jvJ6bF^3no)cuTYU-DT7l8 z+5Q(A+R!ra?Cxzj;=8?FDePUlGWDkBsi|9@-l|thV%J!W!E^orXNlzGpM+(>3VKGV zwTn~t{}sL^bk{_(R2`zHs=?>PE&smPw2b8Z{7tX7mXKEEUlo1s zz2c>>4(U=HaRxIewmeNXk0VJQSkI1}QP&_l<`)(b(s4Ail}mR_DYyz7m*ifRbajsq zm#va8LjEyAd|g?|jcaM`sNSQ*yZo;fnpJH?ES(1svEHBgHu|WnIb^_5T7}!0aIM3n z^pKl@-k3%s)FqrJqQG)2kkZxB4}{6gryvWd(@|>O;?#w|c5MkAP>~!lhv^%>q@VI< zsg>G>kU zNEvNAN!|O<3T2_^TWw#Nm16ai)w}OOfF~k%cWR#$M*7hJ%JV{t>>TX?;EF2mhj15llvHdsr)yG_;laZX=`* z%QiwtH+rB<>B?L^uy}WF$aI@iTYuhiXVYWvIc4dLsh5oAy8K|%zcGW!s5$RDUKprN zn*8e-_2>|U`KIpPr5-&AjdM$^EeV<&VcFJYH!(&R{mf-}yb+IDP`g2_NY{us`Ql&m zwSEdJ%V%(yUcBSS=-~MC{rokY{bjoqule40i*I4XiBt3c&E_@Q$@-_(DR}2Fn>Rw% zg^6!Noa|tb=$04@`FsmAzV0~LWj#2E9WAWYCfWU^xdElwa(1$JcI|uGpF1m}Rf_{p z^k%%(j2HK^n(E#GyVn|q+HjD*S_Lw0YT;s?kW4||Qd%v7b?)+8LyVfl1GuP6yo%$o)cS*VVC^HDbC=Gks$S%>uVuOnN-SeHoAFNf*5$)4UcsnU>g@6i8o`ZO%elbcl+(21-=gLK0s4rz%6KYNBk35&0iC<`3EpdX4?P-_Z20* zdXVio@3CRx8#WL{2QrRny_Fg_Qc8F(}~9O zY-5%^6U+l0p0+Xr>J3$o6<=$b))S;DVHrc=htGrNxm7{)LI`_uI_f8TJy6#ENlhBC z_O{buI`atIx6yuF)lEuW+!N6GpYb~Qj8#IG9V7Mb5Xxx9x zsnR97hy3kt5hvFI9&hqX+5LROgBvb0ItuT3r|u>R*!-pmof-07oGS6HpeAY1mO96o zQeM+Y9qA2>K@xZJ;~pv_ThIzoH{dKeD7fOzhFSeWhcg*68k1(6MM)Cdo&4mz_syjA z{UTp3@m21%*ttH6_mNu}L?ehiQh$PqX8)Z+O&!wxzea8I97Iz(-P2nr{A8%M`B8CU zoNZr~pi0Hy@Ak{lIJ>@0UeBS-7D@gJe(?i2IEu2wrHr!leuJg=a^HZZt3QCHdyic+ zTzh)c>+_~flpg$Eij=0*U#B!El~-KqlZnVn1zz^v&X3!ygy^8Wgq>LD#d(95-wnXa ziHt@m%EV_+dX6S1oVVNW84a~tmMz3jJsg#0GdwwGK)C0AfPx$lr8)EU@bI}#=upA- zzY#q-0i5Dj5y8rIb+Ij>&CtCmw|a+bwR^IU`=5cz__blP*K?cEcFH;(4-X>(V<>~L1jh#L|myL`D=pa6ZKcVY7`@88{vdEiH^iBg*RviYHKMbvM$DS;|>AkwOr8iGtuL8Zu} z^lzwJ{~z|=J1WX$c@+J~Nd-~CL{O4}BnT*oU;ve>%1YTg$)w(K`nB@ly?xp=4aGfyNhXbU!$kv3v$6T`iSD!HjP9GurKt=^ z&Nwfhss}xP-sC~dsAn1?V4n2&RZq&x$iA9i!5Q!UxW9i1#|p`OR@eoLb*JZhgFl&4 zi;xMPutDy$i{J{Q0|)LhITc&3m#61W?Em`7h8){KkbO;Z!Bn1gV=U!Un44&v_ah)A$;4D()(2BVn1)2Jg3f~j z&q(|C?;!0Px!}=_?*9$;h3i?p`xf6=75eU*)4gRW&DJv;2lD9WeteO)9FBlllFY^` zu)QD(C4`&KT|)i-S9KSW>ae-ix2dMwfui%{=-bS4VE)rL_-Qw%$w)-16?5?be_klSAcjg!8oaF6gi&xWhz` zst0kNH+d7KpHK9rs8_RgC7JAArjng|O7hB=XXSbx*}1WZ>j}+e7g9h zZh`+&72sLHGwOhMZhHB?q{lBFUVo##v_uVVK}e}TttYQsa1n5SV%$ro6A^9}i4TSz z=y=_ki!hoPYkB!=nEft-6~8a;tz9lsY;_$t3BZ}T0Q{pxfCJHC;Y59uLwJzr;9a&0 z+(Y*IH+I0LKkfD17FjQ}tKMcUaaye7>CslmJs*C>xl3A`Di#3~*(b)BfK!QS!Zwh| z{KrT^+wK#y%7d4BPFTx*Y5SqU#>eiL+n>{x10&kIJyLZ3B-+gJ7tlLBt@|ciG>xKU z^hK0J$rC4!V$_4eH7%;Qbrt+9+O>PVLz2l->7U;Q`cqnOEc+fJP}9CUXS7am@0v2` zv_Pu;CmNiiR+PC%Ce+E%(cxrgbm}qlbp5voqvH4rw_6PlT<;A#xufT;2(9;_h+R_m z^}+{e1ws-jqK+s+Rv+b{{{&e$RT*XR%J@K4vfQ2sg#)QG_AFP3&$0BX9sGFo*@Ilj zfK->mQqdhD^HX^Cuen@3=*jb~4@la71@(EX3V{8gq zQzZP~MZ=hN26bUO>B2LKkazzRA*cC3_iwLycjB)9&L4Aw4Tr*x@*a9kmCLYH@;jov zqW=B#hq*KIW6r%)img#{p={5ADvwT}$o%vjn8W{|^-9G($>iQL9VI*6rPMZNhNak> z-_KV>to?Q^|NeDDqcZt?kY^#1=b{h;2H{0ACf;$K8mb?%t)(rp9P?~XMMyvGdRy$2`MX1RjGuD!XY3QB_P>e}na&JL^$TN1K$l~!-N<+X<0D-xxmtX@Iq`cds8!cS|I zXq2{iV)t9wpid+me3}MleXZQ9s#e|gFCN|=iWt%ib=Cuhx-TdchF{Y#^z=X0uzUN+ z#NE6wkrvpmxpm%WsfXVOYC+93&GEV^r8Fd-L{*v|Iy1n*Sj*hzMD1*>b`7K=v}Oo0-Wx z8zZK<()=dr0<&Ls7CNm}!I`$B&r4h%r~eYW0q@x`)*_WNgv<|M6LJR=Vn5%?U#;E$ z4NPd=nYwQgo$uGCe`AF{xl;UI(zYi1`c9|pw+HIJ#b+1JfRL{`X#r%;Gbm%TFn0f` zDGb<}X-ad`*+M2H#zJt^{BHP%yg32i+fN^rGI6)uNqHYwTG{&SN=V4{1c!A((xJ*P z_ldSfT6Rg#rxH$ph@V6m-*M-49Jl7u{*%p(TLf`b_I`Qrll-c$Cj%de1U%~vQ&i-Z zO=xm>yZPNh=?IV02QM${ikwHO%?8Q#3Yj-+$UGRmBWSPcmRY>!KMC(sFsK9=f_J%g zoH#~_j&G0ONiA8@of{MQr$KVU!l^YcmwnHMPmWd^?l2-4;?T+k_1t;B^$GE?z3On? zSIik&+k}DlSAN)?8sC2M;q8M5kM4Y!AHjXUH6-wu^ByBDYV9hJr%04hfVym%NUHsF zcj>sgQhvf*ej37^9_;sh8}cE`_3#9#_v3vTj(^T~?=tIoq2udX_UGY8SW{A+tOqKd zjz(2;YF4c2IyW6xqFzH4P;dQ8mj9{Y-ES0yb?*cljRf{xZOPwjRfK40Wxjbm)?o;? zGZ!&(^{-+Vud?P^{ny-Y9}E-fZb_Ryyql0zBlUQ9=uqb~qr$FO-`azL(lcB`Lq91^ zcqrofLB(Vj8%?@%kwL%1p<_9CMwsmISrYx1>$gJSvVCrRfOhpthoRW8;~U>)`MgeE z;iga8a?<%-FD6Ys`SGaEo|xbz70R#9Bi2?U)}lojO}NiD0&C`Hg3F1gMNjhsPt$Nq zGHEw_lam^0NnI|SR$aP`IaG9@cIm@`NSDgI30q&D*phkd-Jf^CIfgJETFrw_JFAa7 zO&L1v^78_I^7CrkVz8h|nH36?b2K(p7WsV0GP*v!$1^`Wz5m+4smYTK9=}+nny;_IpBe!k`cZXkZ*a;U)L^+{=;(_xL2QX{hGp1Yf4FgESs3sIOUxA%d&!oYnajkM+j*Ze~q4J97;={_-?rAx+cR6Ggyx9h#SH{!R! zk3U*oyon<82#DsMT>>rdq%8+8^{;_Ab00=E)%$v6u1v$C?g5Rwp^cT65M2wYdX!slp7%o5R zbl?xuuKP=Hga3@Lo3_Hx=dldF?ZgXlUT94Gx>Vj7zQWuUvEj;`F)cVz9kbRGeKJ`# z%^%Ei4rC$iUeaqTKK5?;QJIx==9$t|=Lfz^c&*W{eXTnO#s*4$e0vhHEjg%f=JjIB zvHcZ4(yf5?O^EeR)ZTSFad7+MrXFPR(B_DJEH$5$Fj3Q>1iDLPWR;~#FidWMlAA2)n&1! z=5BVOL(jEX6_{=eqI=T=&`X~Qbl){}5i#5<`=-93|n z{DfFL9`e^Wm!Wpl<92iz{wku^cE2y4u`Yk4^ZpF2MdS9mylNU5{cW~*Pt&hs0~RNK zx7WBt2JM#TeV(VD@u>gQB*x%15F%Zav0l+ud2^qZ&q6Sm!aF5R#`nc;3l%)v6?XxB z7GjJu28WrPU9R9`n15(U$*gctCnIELLwIM$0r}8pEo-ZSEPXr{>^iUWXFsef*0!*f5vAn`>W<^_8eQkQ@KwD}qC%V>rERychLUO6A;+KF{# zsCV67Ll(1dKt!~SeVG}Mvgqft=;i%Qu{xzrD{Lk#T=ZZTYz6IhICrVxA%s`1d_utm zE$b^TU6Jb4+UJlDejG<>><>UoYVFG!+2WU#+>jMwYhmOl3L;X^$x5`r)N8 zx`|C-ENe|P^l8*XJN*jo8&w6FRUJe2Zo56dTXs8>EEw2wL9 z`_xj2H{@C{8rV2GaN8)O_1SRq=!@FIUFgbRS&LjPCy9zI+a5>-V9d5tiEetk^%|!3bmAo3+3`y3a?0eSGP@-8diC zo%2-d2G#)L>dYT;fEZZ(3J?Q38-f9GKU~EV3y5*<%^D@CjK^^AGr1Q4h(sm=k-qHQ z$2Y)=;^@t4ut7(wq+l(4OR7^^Ax%*o^>&Xfk>=O3e?$Y31ovhY)OyraKpd&c9ftXB z`$c-Q5+LfA6qq4ImGyu)*m%c(z+*_mmp4(EZgVvF0CYkvbOLM(q9<6JQq+D}EHDCX z-IL(v!>4^vV-VWDxl(9zLz$y^SHuDGCb;~Vj0I{Tfs&a$$c>WJZ z{|K-Riwfq$mqfS_+8K5IdUPdOUTQ_-MDVgP;o%7QFs%UBVWa)O`FekVve=&QAwW6M zoc#lKwABff6euB{=f?ui!R(YkqwZTGbwWi2Gma|I~^ZI4d|SodSqx**ua&Rv~3um-IA@lIj5MpU2sKJc}V z3nN&zI~fp7)av1X0#rC$7T9Nz{80_s+bY4;hV~j`y0^qY9F?O3Nu>avQ$TW9tS(^oQ3a}`X%aZX&xmDkHKMkSlzD*9R2dGkjI!3AH?qFS_D+zV; z1AL^Ru3=KQDePu@qER0N8{{a(#1qgV@y14GKvP;cCsXIS3ltGoXIJXR{*2kFYqbd(YsPgJ;cmh>3Wx5YZ1X2@LbDyZ1 zP@Lmopq_%e{#g)+_8zCdfgrUv-2Dx*4(r6zAjD;3BMlJ3Qi6LKC>F2gUPfpF=Y4Yi*GrXXtitpVHoFa(C!ux;8wmC0~`h8v@HC zYxZsE{5i_??_u8|b$eTMFGIGRUI4T~mlmXJ$e_g+D_2rD?WS==fUp{v7PvhcEoc8Ovl z2>OTv*AR2A-0^P(A$61JkuVnNrnpCXoeXtxszGy5UHAg1Gd0c(%?h}gyUB7?F5OI#a#yKq1^3x(msyP5ZcSn= z@T3;tGZ}btQm(rWb*yEXmZEI>^c=x zw<^;T)p?+Mwb{;=XIBP)e-Ocwa0%6f8*tf1a9o8J?e2@Naw~I#S90hNt8&jH6~@wi zt=U5Cc_mHg_PvY6Y*2m3UH>FdJsa-ogyT~59WnWHk$=VRM)I1}Xmt8N+}D@y%L}8F zjf$Ee_R)i5@=@&5P1=XVUf=fMTA4_yU{TXquqDxwrn89jnL2^^2TK^D|8!CQ*K8Ow8xCdmqvxe;pCSwmtLOe7~dsQh+Q9}*mJNyLh*s^`$ zwiEjl_vQ#xRaOU8oee$UF?9^MDj!6ViV2<%JxE{dKM9`SN-;h#ADV-63=hGb>Q1^h zp9H)|M~mRD`lfenHMdJe==w+V;kE-#plVPsAhyi2(182(Et5ATfjNzr;C=uZHo;}( zNQN$a5&jk9huRPsl4QFBzziR#)psEib=F%VKyieEeN6M9L5;dDh$!B6nYECPQ1?90 zW&AKna{<#{s9fg-b=k`GUMSks>YD)`=j}U(l%VuhU#~8Bw}&^W8%``xu)!Yf%V!u& zO@((lRwh4Qx<#8R7w7gvvmfAn0T@*&rtWe;uY23+kn*_Umr-_q$}~p4OgGxxx=^j& z8EMza?Ig4=5%4_?TF+Lia|Wl|Wu2LU!YAtmdUjZ>FPHiDt6=37y6btmm@-uYk0!v~ z%8J`3!-EROP0Kp{+l+rLeK6W9$Tm6}tN;!+6>e2ig?MlAKdCLxpbHNhfSTW0 zalMed)zfaldjpdLzWV{urxUy35)$fjbayH0g8oEQw=np-9;kV_Y

$t|Y46yZ(B zk5|BBCP+`)B)Ee>bKh$2ATVmKpgxbH7OhP-Nq}zU2oG-tAzrBtZ${oOt1<;%F@g7A zRwPK7?>!m}ht|#a#{^FRKJCw6m4x?U7CYE?`b#GtX1a_?2((1gbs+n;GS8GpJuoFP z4LH&Z_L&H+E*9s`2Fj|cK@$;nTrOa*Y4_Iw4Md%y7s7>EQK#JtQ4X@fBNMbU`*z-% z6W=%8ZoX0zx`mcju)!geKE5|V08IA*e-|w5-ymX)}=-tp85voms3)__9B<(kL*ftPX$IEtBLjx@c41!dwp%wkhBoBRy+_|wo}DBs4t>7Z{&{Kn-;th^zz=&W>8fA zq;60G%{%KI65_op_m(w}SJzV+~# z^f6)Zi6U(f=!`p>sc+H^0N?93{^1{xOLfD6ctjZjlKufGo~}LR$|0%7a~Z6D*n!&x z3a&({p7|d1Y7wpYMUDRUt3iXSazZ`|q=LaAcHzX`4lZaYXY;+K{!{WqGH&;8ngCa- zz-JtkL8Pj`2ZmXS6KH$DvU7odAVRtj@tcxEbj**G{b zHpkoI*}}XRZyxr~kfOBy@g+j-F&3Hr?EZW>}`$jTq+x8)r1#=#Ft>4*M48g zcD!!VI_*J-zCfzMUm001%|+n|dik!kM&I}ET$)wmt4ghel$D^yO@*DZsSgr!cK5G4 zP}IAdCnpFuj{aro*j-@BkezCt{nZm}jqfj! z#nRa!D=6ihnq?uW{WAn9&SLb;+OD*KuwnRHfHK{c+$QZ(IFYJ6Q4=Hb@sPj70vZFZ~8HI)z*7kkj1-jMb?$U0|Np1 zi*Nt5dXRl6pf&@()=o_zHnQCUTjT%l{#?ED(9LJahhClRhe%9OqFEk(YQ>}^AD6uQ zxQq{T`jtKQv$;J>@?*9k4_xU6JMzF0Rb%3vjjRiR)-{xBAcr4_U`r98m zCBGbXLw|VE;njF(vgdpwEqx&uUbut&##ji(0tm)CyB~P&*&YgcC`GC17oZ=GT;N2D z}EuHr-8A|&b4CDdduTNJQ*FTm^usZByXCye14!z zaOs*)t;}*2ps)`9WGt`Sh)PpkwSQHsjYk2I!w5&}qAE2q{&dC&BWCEz>Zpclzp&#- z!0KZtw&_yCkVR6IW`h6UqNt1ePz@D7=W4;Fw>UoDaNme^By#h)bAl??`Q1841Vp#p z)?XctsVhq`F{$heG}m$~9A*RG+(JE1jek+&tS^guPa*3LD&fRE?PdCtqU6lmxah#w z+P_eZ_iy2%6Kgt|(uQi`b?@nD_n|*IWO+!=T!OXcr7VJ(ceU`tWkGBKQ#N4+9iv?LSYnnd->gI8nu~mK{uqlpyYD`% zJ%9l(Bd zpAXh52y61{khrrLE44%q!<^}J?jS5rABRCMScb&KW9w`=yAc!q+@7&+J(hEG=2=9= zemc+buq2k@NBC@1a$!}7!8oEokyy;%s<*D=S7C1UR?NmNt?qMv=77nJIO8P2eDxRS zXEC@$95XrR)Trk!OqcS)L~d5Pjwd2*cmpe-pz~Q@oUhwsl(?)DsAYTMV%PI8W+4YN zZ`7QHiY}Ok8Yp7**&D3DbVQ5TR{s}Py`^^PH=C{tc_`(#Wehoy{4 zzSxFL3B$U&b73M@L|I3M8)-ZsGYo-58Sxw^V}?`LsLP;|%v*(LSKyYaUJ2rsD!w>h z#R_H&O*Ka#uP%1Bwm=mO@ofygIi}Oal+`5MmQq(k_qdH-4iZ=?<)R$GE zam0x2g<>(8jX-84A;W?1VbHcypYvj30AKYFBBZEEJjboVSm(dSVKVM3L*r%;Zj6I4 znZZieua=n1x~LcR_eyIrWGAfcr`A0xf($atNKd-<&U7X+fbi03$$Fn-1xCqK_` z70x?_dwEV2PN*4mea<2iaW8*eun!^0TpCTALwb3U98TwFzjvKtfn~e!l7pF{_vS`W z^AAXkor~b5Oa&y)_7B;k*lksWbbq>D}pbzA1~D5?KI~7+~sx5c}*`aTF3#l^={pMQ-n0rx4q_@CW?LPCQC8+T{vzzm>W0Z4xj(AsFS!JV!^u4p$SibNpIi+BuxTzDiz&*|F+# z&LMW5sJ{y#$()uFXST{NNBI8Sai~b}t!uR6H=l~)VX;t4wm3otv%GZ~ILmRLQ5nL7}S z%<<7QH$3N4-t+*o<5ubFXoI!$CQNl-G9GX2s1%oJGWFx7MOYq@6I+7PkvORNmG|aCLGJh*v=) z2xI0(LNaO8Q{}y@^u5CLOhHZTgi*6pFwZLf0-w|io_GguS|vt%iOGo>5^}c+U7D35 z+hlJ(71ZSG>;5*xp{}+VJ)IdaK%XKI-;c)QR}2Zv95_!+@7I#$!H#qWv3_L}bwccB zp-XXJYyOTw$1s6-Y^|@(i(n)N33koC!y$t$O`ookna^}7%-Z&MuIX*%$DHNI23nVO z{KX0vz*q|;*oOOOW6uzO!N8h4-RGQisbG#NheX3e_hH3}vde!qA5=uGUb$=or8}Ef z{c`DKC3=n&>;4$L*bZw?MIi)Pm^Q=2lz5G>TOrg?^d&>g^5CEiM;Ig#^K&a8#e%GI z8&@(!3oby7P`cB3)pDNVY+`yAES$}UTfl9v*g(wZ)JP$)m)8nEyiSt*+Xd3Chy!Z- zMEagp*!E@4{6bNc0WT>(Sig$jZ05Gd2#T&M$m$`D&c43|mFPw|ZBya6xSkM*pE3#l z7BAb6MOoD6yeUnE<0p&~!6>QsxRL97shS6#BI?~Z-Kj80rcc?AWC(oR|fi1NJ0xG9xN z*F71RsM3ivC^VPrMr=^y-U!f)>~}MEl%Uk%s2-lJ=q}+^kFT2amuOf$Ci+Q&?PJc@ z2PrA)$nd##jUoeFhvF^6GOroesTn^SE2M~70z4mM13NItN^EU;i(?~-)pwXUZA`6*<9YW96R zpVMVs8)Cj^zE9(Zc=A%mwmvO!AKNuJBP3V*A@_=bw$8}!-<>JaU6Op;-K&l*5rFWTCg_Wo}1AGUOjS4>mG`kk6sf*D#?4SqU@9WO@HsO44LNttav ze8)+I@2;oI-Ee26N=mY)7dx7|{%-9!XCuVw8uj$8pP{`r4+lp|B@5XKrF+LukmVbB zZ|SS#H}e%~?9l8#BOPZ)JvWB^ZSn+qU70dcn%gqya@LfC+e&O`_kMEJ4LFE z1(_zyOF<8qZ7v5bvG;QR@JZddINI4=-Y?dX7sd`?w%izYE0WUideZpR#7UOl>Z|T4 zNRV-NE>g@xl+&9tj=q;77=z54s5bNz12smXO>zsSb7J-Sg zy4EoVC|2MgU*42_Ebphu?_G0z1iR0qelQXZOmI2RN*kkCSsmvjg-A4)xtPlboJ7yD zebBkME-hH>6I=qz79wk#-{PE z#}z&a;BC|5Ta0)q4RdJ!T7vB&FU1w5_4KC2w>g$y_BwQ}dNybJu$enF$WY%-C{Cnn zNwY7ls-C{AT8so+<(Gu>b+)0^KB?+&h86cDJLfFqcs8!98{WD$@> z%%zw{M_s1Tb9_L_0VIcBkVvpCRtwa0EbD#W&=ZtBh2A*$Wq%gH{yz_Z?A<83iPmVpG$ z7NRtX@m^z5%wV7DFGAO6OX&!#hl3O5TSWBFRL@2=T$QPxc|=G670j6 zSH@ogSJ|VU-&@kYk4xLQR?Bn_Gj2VAkdSwJ9BJcfHnbt^)TVI!z5M(M99jAv67pBN z-@%QDzYwAIsIcQ7IQrXZWn{a|N}!lzVHB49upBaHrPv=7sz%?wKE>Ut6MRj99-w%$ zy8j$mtyj_CfavHleh)FZJx3L0RXwzvFI|G#!Fipq`)%9~B_c{o&r54P!nD{@9gs^m z;dC0WX0B!s2b_I>J)t5i#L9YqY)VJf>g$D_#vjt4v4-_^vw?5KOLW~_1UA(?TA*fg zSbxZ9u~Kb&#y3IMy>pUD!o=m3WlgZbcEr`YCMO3UYVbeosB&TGYF43V+XgQY$0=eo zJd06Q*5|`brzhJq8=ARfWqD?A3^MC~@@z9aM9}|ZGM#jnRoP_J>J4XaMnE9fvR8&x z!gDST<$dgXpD}Q6tcUxw@wkmf57lKmuyJF;KWy;HPnikiLrpLCwZom^-m^F#%v=Vg zME>$hfJ)*TT+17mFKXj59d*o-OCMgz7&&3^mr=#}n9-8BnP@;d?lhKXv~h1&eG1cc ztjA$^)dA;%<^QO09pW@cDODFJxd3p1)MY+AX1A|VCoX$tA-*d2I(Y-Mv zs!qEY0f+os&i1C&RL)CtGTQPFne$kZ=dZ_sBpxZde)OMj_WUHy8ojgjFQ@nMvSbtu zOzf-3@yCk{lW9FJ{3xt9 z0}FI!$~3w`#MQjs(U(6S>=kx85N0sYKKk~2=phdhmUInqSb8@vv(PhTW58H-ic!$x zE~)X(Q)s?zDIbf*pH3tby89RBp!Teouc)p*`qhhh0S7;gzMnr9a^TaSKL>ZDow$O?nI+sI+Y6sqDa3kf`rRNu#<{I5?``=(1``tAd`I+0Qa2sCE9v%L=bBB%k zL)Y;`BH?6$`rPdr)^WO?5Nl5)=aRLLQoxh1#v(PN!vWg!HIwih=Jbn|C@`3>+rf3- zx%0M|i4MD>>E4l!LmoL(={=@h#!gHt;_j2BaG$J>n@(>`<>b9jTpQdS`lep0O^Efe zPsn!_S!vqWE?>KQ1!oIP#5a=Z(@M8gB#QD)IO)-G zuJ=vfk*wM$yirG%vC+Aue3ur&+MYXQ2EBZU`8cVdyS1BH*V3XXM@BHKam3;_c%qQ; zV9~42V^r5m{$MSNy<*+Gg`7+M&NH@}AN=%DMWDupAFlpl?qc+R`z!=Qea~8vzcZBC z3y6~Kukxz96^r&v;0%p^(E6_Z>9Andq!KtS<P=g=z9Q=- zGN*&FUmRaEj=l8A*pgw(k57g^|6%oPef>WGB*(F}b(9-2uMM?`K20L-8dj%)h+Exx zLUsKXd|DDHP_wEar}68F&14SsaL`(rOPKJ>{xmHw!Bc@=T7 z|0qq27F+Uc{8r=OpkFa2DY3kLFbP2V{D-qX%FAz=^_v zNbIGj3wI6wa*pNY9Mj4p{mPf%#`?{n0fB*fN_2<@SJLwwf0mY>8TCvcGya+1a2LIs ztIIJC%Az5d(ZL|+;|9FK1m{}0rogclAJXEYGOUmr>)jYR2PHn;e0IC=iOJH@-rq&7 zt#&^`Li{QZww!X**l}N-3^1n-;jY^cU3XZL6%u3?!AnS3frI_?ZC9{p zkX!w)&QrZ!ID7oRnVw8jC2JA?k27;ag)>{?-^>XAznz)olA5xWuK(@AR*Y4AJChm4 zmMbB_wjwizzhPpQfSkm?y;_wsTYzZhZvX_%DE}*BMp5U4{~cvz>CudTM<+o|*?-5A z|GSup5j>at9*g~Vuv^V|QStBLMU~^$_V3|HmVV!#Sg(rq@M@Aqd z)0jsN<*F9?Nje#kUgOtfPp0vfKG0F}&f^{KHq)NXLo-O3zqy_;E%?^?)(pib#%8}e zyOe6jvIko0LS4;?O5`Tt@g7Z4j~qJE-#D^2_)|+?PiE*23*zJaWKK)K>EU~3m)OA8 z10yXFf?g3sTl_4}MUZ8y;hb1KI-IK%eCP(JlNgcP0+N%%6nm{*X!R1Iu6u$^l8XFI z5`pfiiea&xw)YBh9v>Uqef3|7t?Dg~OXtUGwPUfT)+!y$`rH=x4tIZ19m#d9898Nr zFRBy#b`B~WJHNbZkQ2Juod`CSpUO+H<8zlbdv=H%Z(F+AG&6Kzd$SyWbbV=oyV^~V zrDl7tF!u45Hwz;;okwo*Q=$J*kTdv@Rw2Z`WJ$MCobadk1qrK1`7@4-l-JvSk>kOq zHYF=QI=(lI^eCUWrzGpp`ApB>Pug<(jnmWGGoWi2yTVBlrOvseAH0uuqEB&8z`H-+ zhL)$FB@X&u0Pnlg4%gAi$+o^a)ZDqr#u318Py(n_>tqIALBeGBD z&&wp(A1;Z}`*)qL6F8muVL!XO`#2M6T0>~XO?f7N(hAFc zmu|b*D00m{p3RxbUtbi=B-24yGVHKv{a6>2UwUdj>FcNWN!1m>E|)H+BHr~WcD{a_ zokT`c@=ZFUXXk%k^h8-DO0!--Bc5e`W2MYoBe^;8S^^97hk0fjml@bg1#0Y+0+n9YKa|ui&3R3n@4qVZlZ+lqw+`l- zjs5ld>Zp#}OkCRaP?^^Zk)rqt>W)%fNp`W9 zJZla)opW`e{TmT>pA-z~-o1O}$(AD}S&_`*w)WkmYYW|vv#}-biH;S>8_s!t2oZ58~Y&kL- zU)OWOXz<;S>LOoE=^I{>9-Pg|Th1`}aqTdna3`ElxD^!EKlnoA)J6$*0WtPxnS{tR zL}WSkXgZB7HXEwIg4!06=#49d(*@8|ftTcIf~>Vfd;1dcvUyzuwU!Yu5swnO+WxpZ zW^`_Wg(K}7cnA~qK+2}*knIZ8h!BoA-Gn16M$RHmUi&q-e;3~kfFO_;K8mE7nus@W zF|=|fu(?g@b2yh)cbb1#zsuB-y&k%yX5e< z6vOJpoV-K+%NYH;{m$d)N!R7qsBwlm`Y)g33bJ-8)fSX~BH{7sMzjJ=)j72Zb|q6@ zi}8S`YZ!~={3uI@9mq?qGY%DSO(&3lqA1O->0WT;vA1|| zx~`AEtFdzm1Zv8YUcl0Wnq6~7NGyEDL~Z?3z1m^2!XIz1!fAdd#SfH>yLH zi1DAgS(rnC52Bzbt)S~IeaR>6ntb*}J|n&|tq!vwUO6DnDmmk1*PJrkd$Y(%Z31@Z zb!_|rROad)hQT4RPlJ=vmloFXh7&e5eA2}c%3Sg!*3ay0Q$er8H>$h*Lkl3JKNr9s zRVR?j<@?98Z~ahS5_F^bRAZsfi0ISyl=;9M$ANs`U5=3bZdKRc@Qm?FHq~Luis3$5 zO~YGAPro$)!_4ZmDngttm5T5vZ1J0!xPCW%-l~`5O_ROuQT;{e{*w@*9zQ8x$3y`zP zDfyt-r-~WkDFw~nzkeq2Wn~%ua{s&o7UM#OcG$Y~e{XZmZ~FP|GYPl+dSTB^^qy=- z%Sg_L#Z;*j+7&`s?7*7_l5f^8lIP{Oj4#9lQ8M~w_ey}2zs@pGMjn*qbZ}! zp$%j2HO3SV9+=1t8UNPI7HBYft*0Vd!Vpy&n??rS*o{6O8!7f3`;rnmT$>!)SDQ6< z!i{icOtzUE4OlAJ#pQ;&j`)?u79Lp=8mvWJQ}Eu9y+J(=`$e?(yK-PsND3C$lRY(If=pA=Z0s!D z?8Ji-+YW3s7l%ev$@U+*xFG8rk#=1?rhKvm7VY_Nw4(&^Lmwx|sv$5=w=j(8RgR}M z4&OI+lwuH>t;_2Y0_9af=mqplW2fB z+$YX+P2 zN)skiY%l{wAjo(khzQw;Hubz9Qv$=-hdE%FPjlEVB+RPO3^18UiYY`uj*?AqzkrMY zA!Bfnz(ff$mk^laTQHf4bJ=IfgxhhdAtn<;F%1dGi5(bZ)?z{CLPBN-*`+r%R*TAbO17Q2${I4M!2bXL8dB!IU9hG$BxG_f z5|E36%$WovJQ#z7_0$?mvbrY}ylp4@7*)tV#;J)Eb1H#6ABG{X&SkG5ivCJlgxgCJ zWXcebNV1jkevgrfBJZ|0nOMUW{- zKw{%C$gjEV-$a$G$bL^N^RT#NoK4-~ZwVC?8;lT~pYTjacSr*Ty1i9s7epC>3l$x(ks3+XS)Mrkn9U>9>sWslws(O|4nk2XzJh~8$vXqFEEsj^I3%84* zlHGIIdVFmjHvl|-5dY|WD7AqMqFpHZf({_{T?*wZ_1g3hOvt~JVkZgJ{#+xDHBuQ8l zyN+4xn0d=omi39Csk1QJm+PGAjY7@#eUT{Y(iJ?U5w7ey`gt2ntZ&-@CZ-}%^NR4U zauS2A1CX^CWWU=W2GJ0yft{)FPxJY=Fh~r5tR__4hB3%|ks8=Ghd}gSVvu(LVo9j* zw_Yz0si6}PlW!PAZ#{kdsu0wJecLHC^eG!;%$j+sH3R<1h|pAqAL`33&h!&l*SkvK zeiWeZC&^ks1ij*oLELY1riT%b*WwuDuynSWENhQx-;|YOnuvTjD)Ek?g1WP_Fr@5cngfCKjmMB@?dd0?a3Wh? zzZ^l{c{+>s(SHO@4l1uKz({(NX`6^K(^g=R6=69f+LEO~#yVBn$7oDsWFF4vQm2a4 zIN^3E*NrPN&Z@AS@z_E*M(Pt$Nm?{L-45&RXR-rs$8R#ti?lNWdno}VRZ*lSkB}KC zn~jh*s1~_Ij-W{i{nR#$6az@av%53H5s3Z!W64p%UH273SZ`fX{4t;T9t}d2<6QPV z(jdE-oPgLkp(szU7&AVT9f4r%69l``NQAK+L8IufCc$;EkVP<^v2@dunEw`GedI*c_&IFt z+c?!*^uiYRyOb=e^cAum$~Nl)`l&oF?6sJXS^NN#$+M?xk^FE`DGehj$+FbGAj_rn zFRn#DyS`YhS1mH$-|es}^aLt6c0U3ARGt;~k|V^d@$oQA_wL)$9 zo3U*pDPMEcfHd;xcn|Kl2dXr)5-g@R{~S=pq-uu@;jXG+1d2q?+6szhPtk@LOp>wE9UU5z%Nhl5d8+qevIwBQ#H_@M8 z=y(y3;X1>R)`_MD3?};qs^A!<%kq0Fj(;rb@q5R0$)a6lZQ-MMC-*x3395Yk-Rn+> zb~RX%$uSjk|2C!&@mV6CaQRwu9xBn@chBMVM|v{P{cR+QWy-UX@Y+E4;u-UHc(W@) z@3a?BfbysqMB6(z?~_dsqhPi_w~DXV@OWG3~`Dk%)@lf#DUM zt`@Dsy}>Gbgdr`BHNZtttv|`R%gOix%hD9!&v#&k*XXH_u6Vd3fSU zpxo@+cMO%^;k?4-JIj48T~lEV8cpX}A#I*zXTkqdoSD7vZ`~31DpIg8vxdJJ#@1S> zT=&gU&hFN6UZ0XznITVLtO+OOAD_P4-9Mr0=&E^~9ngr{d>(RTp|v4fx>^A>rZyXjl+~LI%2GQ8h7&7kt5dp z!_omOA36_QQ$lgaT;nC4_#b@I{;kuzPYAhT`%`%57ygT!)aarxg-1vKHr9QLemGyR z&0uC-Q$n%GJU|qqKC<4w$zW68F%*#Rl>NbRS^km5)Buw=2BXez;l2mRk2Fis52cxX z*e}O6VhXPg{k0|&FGz7@w|%WPFlM!%LVj)^S%T!DJZ8+wKkR;T3J^rS z#5qTHvaczr!e8cUFY$Wc#qDK%olnQjAKHc*uiA!B6)>_+MrOoY(%!;Fa=?JN31;AO zyjsD~GCYQ`XQ_~)nE6md4)IQ$go|dz>HPyGKu$?7(eyvke@qlr(|5c?Sr&EB{KQaa z1SztK$3=_m5qUyO?lBoe=Q_DIM$?gESx?ijb|y{fVw#Y%vt3zt5h+eYW`DH;Id~ek zaRVx9+4^gwb3Q3@tY43d9uNHk)lVZuN$UR;{mlnzJqD|t33-0fVE*_oqbQ<*T*X+oH~S*C$X zvegQQR^zR?d#82bsNroahtw(#k7dK`0n|YnI zRC>_{A+=kC1n|$UOOT|l{7yy%IU-c%0T+8gr%oBH)+B-^l0(u9XBS?w!RpsNmyhh5 zvGj}c+BsM#4_%U0o*41uA3@$o&PZRXbk(}eL0l{uZmHkQQlg2!i7jKK(~q>Y zz8jeyRdu`Y@Hl)TizDHIQ{A*!S5y9h<2fo=5jk*xoEXF2<7Y58@A{l;ui~Z-UOa(I zUVm|RCP!uuo({t$c~GK;duEZlA{JAVR~-gTQoZFEItO#Xd)-1H>4Jx zCCYQrKaLw_jPQ?m?&2Si4jE$72^AfEOr@hE<0)>K@qnd_aNIQtr<3#1yZG~2zai!V zEDwV}<^6K2aQX?t9Di2qImFyYK=>19clE;QbC<1V zi^zfQ%Jcmw#4=cLe4Chb`BXE+jMbV@19faxmHgw;m;0Qr6OicT#R3Zl-9&LfATE5k}K*$sWpXNVd^HPOt0x^b=WH90L^weu$`P=>S7+IXou zb;&WD$DL`<$RxXvtLypeJE3vJF8{9YOdn!~6IS-r;5;!C&MA|4u|_`-k&QY&I*)%c zIx!uyGPBS55b0O`Qqzsp!q?>BZq<$s%*wH2N8w;J>7_ZPmAFp?hnQa`6mr^A&?v!) ztHaA=R_38`$vD5@uYqy?^f?a_>etHf3FmQeESi6+zT`Ec#A%1qyF?c;;RM7s)R9=t zomVe02pobAARtGrF-W*gsN-qUP%%z{IhAlEnSl6d5)e4*9FA@84mlOg;c)#G1e^lJ zns@ctp)tQDx_btaZyZ44{V#t)|F8DGJs#@k`+v!$B&noSF7FbRJLw{!-cq?#WYJUYgbB_u1Ck*KHv|b#CV-+=MA(;dzIVDFSC3Mgt7E!cHj?7RR zQ7%JHF``^jWOZ#)!2BRBT@`L1Fi>?n8kXy-wU`cMq$Y{;k^Wp&Yi20Yvtg}0IAz6L zrgsr?3X6>4`R0-VmAwd2<_bd!08z7-Bg!o7SI8i&nk|hi+1CLcv|k+JA%&3P+818A z3rf9j&?5gn?AaAZ_@0g4nlZXRx?xR3CoP$Ulf-5uVzI z)wW1O=Oi33ifGVOYBnFXrt3WyMr{@IGNvBGaa|K>2^nqc$nZ9%Vf!$#GVtT5K;uh6 z$It*7+W$sY_iT)Wmm7)dZ$KG>4BsTNat>7W_UI!RMKpk)?B|H2UK0qVUJ0bW3k_sV z*f!W0Pe;Z+D6_r#E38typR&vgq>X#QY8d5c+|;_*4;OdZQj_;K_+KNU;an(j82j?Q z)?DVz(O+kWzk66wX!d8Yr8m4t3`$+onXzzmaAI5~>k^?1ji!FmQmj^{2{qzHM@Zv% zvlB>YK%Ec$3(BM9#$zWGXItw}-vJP^*rq{mPPr;p>1gy+s+V+}$phmcJ~GntH?~4Kxp;JwJ`+g2_8-V*lwVw(`%p#^zcPGpbarkDz z&yO%f@$2P~aE3JYgR<^2!HYgV&U~UpqbOVK&-;};B=yK# z)TVGb3{xBhFKfioClAfEwy+iMk?U8n3?0uPH0Em--1gIIIx-fn+l)8Hua=LojMwC4 zoQL*Cu#B>SjfhVY&0YZ%JQ|P{7nWeu%pJ6daA+4Yf+es8tNVq9^bQ<7ELPHkt*W$J zvzZ?kLThQGoP{2Ii&M}w0NRukVj8Of0*w`{jPW~qacbS8$FmfX!!TP4<1_Dt<}%H? z&1m+)n3cS+htV88g+Ysy*jthmOE{IqirZjI8_2YXgUP&#ZpNUfjA9__b$p>=`rwQ$ z2@4?6S-gzFoW&H0BUnY#=mX$?!h7(9fOn}NZYDcavoWHK?p&sN2bpGn6KkK({y6Lb z*rN!)ozFx*(vX4^c^Se;ZJU=uhM}=j>n@7$;aVdk!K2R+dDh!)aH56=roeMkU1!GW z4v^7w!+#CJzzJNSuio$J&@lJ>Bk)Ynq7E5)?#yiQ7d(7xVJ2JF0))6(_N^r z5?1_m+JmXC*6yNkL6vC{x2BP*>VS~K)z-1IaT$v>GO=PZ*&s(z<%CDFTS|jN7xDbS z%LH8qsgeG7oQ-JLw|OaQ-Eu8>l;+1BtFD**Y_GERcV!vrTQ~O^(h{Mkysz;Da(l9! zmob0Xy{fgjvcTVNFhxqcu{YZ3N8Zm@&qvwrmF_U1s$YgD9kh(z1$bQyUj77PmxKI7 zgNwrr51N{(qpeT)KUBF74;m#6bd6{BUP<3MyjKc(48mzu)KbREF?w0<53>@BtP_d_ zJ5Q>9(t2~cX=K3fxu&n>^Su6n?p&2V_f@zd7fD!R@`YN=;UOhPYQ;?0xIC&3@2pJT zlyUmYmp5LM2jU!+0mL2~OW8v(qeqXFIBa2bB_+DZysG`0O7A$`Vt@0U=jQY;xH-RY zfcR=X5=e52;Ft+&6l~Qxs1fBfmIpR~cig`)9^k>ROPArOT9(ddrVsVmoE-OkBbanN zR#rD7XP>hJRg;cG8D$S4hI@XF)8B4Sts92 zj>TwC-d*P|eVCD?rzL<)QLLbFnRIjEm%Qb(oU;ic-);G#+VZY0zJ6QlQ9s^oeFqqV z)H7(A#po(doW&fv_=&eMn3{GR@Z^X%nSM2|y#3w(am&EE zt+hj=H>DH(1?^g9z{q8pP|)K*&@7+v3p?lPSRQcE+<3xiB(Lj~(bd$kvKmih zAB7843@{1tT6;n+!LM?%)5*#IxYppxEb_N<>FG41(trlW5es4O2@_pFV3Y)!F? z)sv}H$OcwA!1%`zGd&tHSDhI^pnn*+ZZRTA$6Z(y5tB1?C(k5XUo}hBsvabcJ{oY^ zC_1Ey&$4Y2c#$~(DCx>k@(}mS6gPH>OV;f>6hUR8G`G+|Q`i%)a8U~Tsj*V}9jBt| zyv)=$1A8oVoN8v_iVj|fwe~vUJi+-4*{>{Uc!GT{#mj4dSbLheFA?rgfG3; zN6erP7q{mlbGGhpXs7#~^cP`&_L_l+hV4cZID7#m&DW9QlEwbKeD-qfi~=LXKr{#y z*ev$Z)?#*~xx)Wq?krzwV?2CEDw ziL2V#r&A-&rHTm5fUyrl@jfaj0SC}TvVC5^gJ_l7LJw{?;UjM;n>ImaEAkRM_5mpN zL7Ju%m7$!rOxxdWh~u2Fm#UpJU0;%t%eViohv|Ig)5yN2nQaG5%hvM-0QA-m(z${B zHDoILwbvp5!+i6Rx({EB)nLEhfM-ceJ}=wU(sKKAyY-&71A<1=ManZmO6`Y2-c(Ry zEt70IZ#wP2KI+$(Z_T5Xx%C;knNJ20K1fd_2}&tzL7};GddBRtD*+1oiLPzWkH&(D zrlzaSQ%;?Et=_b(36br1zfg?_Bnp+|HJu)L<+M#&@-oIrK|A@GMd12hP{NdmB^2x4 z4Gp%MrAprzngVDT@?XezNwqVSp5d8FYQ7H5V)rNDKu0AQ>V-hb^ zY_W0U$M1Ip|At*NQ&41$J#}*Gmi^=v<{>H~B2Klz6@;39YNXS zMDrO>vEICt#pJ6A%D5^Vkn%|8G|pr(D`^8o)4Qo!h!I4rJ;ez#N>@-s2k_Z1aYk1F zqh)(;E!%p+o4@89FWtr&IgEuflHBKIysdxuW4NW_wpD;;AuDF2qvp;0>DFyQDQ!(Bgb7aorFpx$eF%-j8=tv%+ssTz7tP4wylI0DDO!!Xw1T6oX=Ay;kx zQ|;Lv8!IX*ZVj1BR4mtyo%$5K&)M;b?Jhky2V}%iu=eA+b*!AI-rKi4`zxm%v`>5w zm@nVAVM29PRg8~?-KkVvVgvOvrZ`xOU`8KOcgfyjlqPL#?K5GKKJc=&%5uJTiX1ua zZlkZuIJG-YqTu;tZ}&$JJ0kVr)9GiJQ$xP{0qKW*y{pHqociX6Q86~#BRcXjt~=_e zPSjE}`czi9=H+vXtRkYQq_OHl@E`_LWyFTZoZ1Og~5>Cv}BX z4M}eV{PDDo7pc#U8#*i2DSO;jN{Z3xt8YjQv2i3-@znHx%geIbkutT*W!ein5u$zI zF1l4&rgbml$iN{dABU#uL9bdJMV*16qBn%@7TXkm`)H_yyg!scOtY_7_8@6^=O0tc z3j3Dl92ckL+0*&M(Frt?T)2NC-O60*^+&efB%4F+vYy{2kC)| zyyyP?R;yXw{i%xpMtlF{v4($Fr!J{hpdxoYvvVN*-5#b?Ud}knn#Osi0IPWY+bV4K zRBfc6r@GFTEdboz7*|*@;?!4@5L8r+x%lQ_ojo@CBM)M%8U@HDaXFb2T^HbKYj!D& z_0z(y^kk&xCZ&ayN{^jBJJi`2r*gM;Zff%83i{Y!U%Su7xX z!{rSpbiW2~wJ?dhh>L;q0k4Aqe-i61J$`b0)gF}`r!j44hkA+v$RU|qVGhZK>DhJW ztSWoZD;SiyPR5l7m%6wmhbwk#i1a(&LkwCNEiOR+e@k$MMd<`mC3G$55UI6bNp^e!n-(~s4+vg_ER&^X`IDs zesXeilUw(Zu;ddp)@&)4G3{RDUVih4Cv=Yo1uQ4+O%B^A0E8SyYWgkY9_a6i9Ez$< zT#5O|fhj%2;gC^#v2KL!+sso_+UVmNzEyIsGT2yaulpAc#x(arrc*+1=b6)NVpY2- z^0>TeaaeVkd*JX#pL}~;iZMReS$)_fZYPTS&3@qvE#f?Qnn~G1;Y3bvVnA}$)$|yh z5F9ypX_OD+FegHSGEZP{t>>A+q3<_-421ue7R+Wbib{s*I-{d??`9p4-(8u2wiUlM z4X_*uB}M1u6;|(Wt|88QDyP#p=w<$&m7N>~b_)ej!bt*wf+~@Xyd$F=ij4{|9P_o< z@rJf3SRRvRS8_bT*;m`zc%H!gDNb$PQKv!R-_j*~H?NKbMeo3}8#ngpt|EuaFU_Y6rS>XHBRaw*bc}ETqrFHp#t{pCp zrT+D#vyHY|K2A^V9C(HX>UYauc^RCWDa6w$pf17~UMlf~V{``0+Lx^$vPQ2qQ?M2P zH0XtlY}brV!22L{m9iSrytoPWcdvZ3_Wx!K#wWvoI;AZivrK2|N8eCoH;w@P-7%0( zzR72}yVA#}xg;e&pE@xxT0f#wMOlF2Kfi_h0}qXK_y?jJ7w``lcqqyUqx^>rvE_D|NCtIhot#m$!1r;4qljZC?h%mM{408h;7_s z`~&mGeas)&aNKqNf#LptgH5;?dHo)knEQJH;#FLRCeqBh2wwBJh5&vymhQu>IP@mr z>PzItcA-qdUAt*JT9JR2#TP$Wtw=usH{qs~K^B$O6duCgQ=?SW>FAbjK}pZl_7ym(r&s&Ye) z#~$&^#z#aIKg|G$cFWf(kH;E)8WD@hZn{^#3e0pgqDO_%$$w7(k$8ZX)h|%|bL4cb5Mvok z)E2$I7TVOCIn31518D+#mr$RIJI_2m$*Z1-2`;mlhr~YhEn7|7=~u~C92~BOzS_!P zlV6{9?tr|JPJTrWLkeLgelFb)dwiGB-E@o-`Dl<-#5tW-fhOu7UsiN5$I3og4*jH0 zcDt+IPs2vC|Od$2Pe6b@9mMMWl-qm^gc?XRyse3hDblFw{^28T|`KYOL&ZE z8_oUjnPFk}lZiiY8HC~4)`}KC3ds;z-6X2V; zQw#0(&d-F{co`Y#L(ZD)nm0m~)hCo@9-O26uF7G5>kSbg2L`sONT5K(>^BeKMn_wW zyq~9LXjG`un2)?Stni3AT8rcopj5v^DJG@nTj<&v3tZ9$jpflGMFk_7{szIJxG7Is z*2fyg9ux&q!=sfK3C`L&;uIGI*?)1w96AU&AqF@}cCM>D_@nl2o!0Kjo7+$?{?d~SptoF8?A`K+AJjg;sJLU#;W6=s6h7%+Ms>NOJ& zKpTJ;?CL|2W5SF1dfNc3_6C&D|5Y7a#DIa7<^i5`6&hsaR;W((E)NjKuMb6Sl;e?n z*aq5PvdU2?9ALW7(y~7MEs4K}r2$itWs+?$?D#tbJ9#aP*$?4$3OIPaa5)E7D;wO@lSo@f(eIxeVYh>$*E3+-ras82iw0kY$^k(4 zUP;EU_aFx5cXv#w1l`%+i^i^O!QD^XT*hIZnlZ%exBp5%{VJdI9l(L~NhP@hTZIcGPTU75pMRR`+-U!9l z*9vsG^?B?7#rj9>q10I7-4sD`NkVnsQk2nusp35}?$2Y(Dc3}5MVN9@z}Tj4K0-?F zn7Pa&iDgNSv=MC`v-}DsE?-Wxq-%d%oh4oHL-!!)8_g0gmtF|oJgx6$0P{=kY*s^v zZqd6b$aXj${57TZSZw~sjljXarI*pM+ZVrwtZgRH3o3!9nz#%Ck#84Sqb235Mi!<& znZhP1AklYiN&PERZQYG1)> z|H!n8F=wAnOB{ck^8${2yr>+yLQcrwsp(+;ayt>bex$_}ExAFeFh4e4G9O5uOFa3; zj9%9G)-kfl;?rsrs!zmAtoEA+t_LkbQd5T)i-i2jvlWK!Endt4aet7(LvrB<{;xPh z%0ee6tdnyH?RFAXbFt3FEBPrgQx%xv8ClCDt#Cy5IgLF0yLn6}@Lkh3&*#oyvSa$1 zUC|FsuVyfdm7317@)Wd7tj2#NO|A-R)T#;~!P(4I?^*ZIZLnH2y8gdgAWmjKb}EuQ zAF+IP_MTt)*5k++wjo@^(Y>~_7(YuX5t&^hQ~L!aY}5Uau4G=K-aO3aCncuEHg>o@r}GNe+$*1K@<{B>klrFhbcy`N10xcB%Z zS+3#h1;Tc&xKW2lz(g3AZg(0n|0J__cVCSy`a!(#*DyDnR>R3FV}1W?J~D`1jfSX+A~sC=C5( z*N^T=A;p)-xP#PRVjY(u@Q5PDhUvS7&YTmYK7#1X8xXn@h|@d{`a zdiR9YG1Ba9G`1U>5c}j{GSztsKdBJ!(OX%l{-u26e1vA5NpKPsVn`vBU#WT-#z$s$ zr07s2d^Uh~I@%s1i2^)#HnLtko9a@r5TgLigf&riP>*&1nvLL_;pOXLW1B!@=y?D` zhdWSlD@YX14dhZk1Z!ZdXX^*Bb&=F~3K$ zd#tLA80a2uJ<%w|?26HBpHifipT_I4LYH;~uva1ez6LO#jc*mJ3t_tV>1e=gzH^Uw z=^GW{qN>F*hN2%8BX7M2L3lYV_#1AtlVaq2^n!#|kvS~m2_E;Fp^y=U!Rq3f3*&7w zd3iGYq;|9`n#tW;$xnKPC^Pwevfz2I8A=`OnXCd+>m70j8pa!7KXwPO(W^x9TY@2F zwqXF<67}rwa#RK+R1tBC@J3kctq|in8m5`l#bPsx`%SoI>A=$)zXA%{#LT2X^6sa& zUq@x|G)dmu40kbd;_We&`XPkvp0D1FWne1qc3n<8_oc39T>7nDkWyLKHS2sDL0v^v z_Pwpjx=ol6ccKZ-YEUeSrho`W*<%urg%)1sin)Rqr5(IAb_upf#_`{7+Fi^T3lVn&i(MVbx z0={_-^E>hp;tpL{gOr6r3`;bq5p`M^B`S#58DYRF$6g{f_gFC~BtX8M1x4@zY!aZ^ zi97Z}HUI=(hx&%+5l3C-byh~wcnQqM$|T)q#k?tXsapl63GLfbZHyN6*8ZagK!MA_ zqa%~&D%7%@DaGV(7^Uf9wPBNrbwrFDhLm{#Wk0Jf=dTe%s*?(q!dMx%tN#FyRAdjI z&aI7ToBDti@x4%oG`N;ofpFkGCB2Y8NN{#U{$|6W5v(Z1P>3;rfbUx# z`C=4R00hT1h39@ph4XfUgmCa3%jUQ=R;JuAz}*0K8b^XBC9<@nQRkL-!_F<*Pl-i4 z#!uHrp*YcNnR^fvyyq1GTRB+O6U&PS`bQPOXUa}-QH=HXB$n1(#Ax**m^&W^7zM)7 z{S-D2bL_M_&@Vlxx8o>zo;8?`fx-K7&hjTv;V#)0fx#*MLX09LdO^7i#$Qn{KrpUBRgPAxwfZo4=(KmoP z;PVo8;MP6X76(na1H zaZrk96iLjaDAq!ZY-B(O)k9z*^*J>Sui=?0T`d$+GP~;l=G<~)#i>CK))`^PzhGS# zA%+Js_s^7-kmA0OVetmmbydF!>*~y@Q9wd?pq~Z&MB}BS74q|8c~}WR!VMr){$yMt zRJqA6=3S&K&leC}!%`L_S0X93k0`=Q021zqq!d9I9p;VYCO7!HKc*!t^9#b7mOrcl zODZg6{EZ|Kv^2)P_!P|7{TBj>+iigNC1>3fR6bHBPmX&U*kTTjB_Uw~ONQ`u%b}8P z<#HIMXV*FR2s9v;7hv6|XSQh8Z!F4jlS_cV@A)NDQ64LK-0&QS`U{&IwBobS1OO&{ z8X3;|8d!D6Jz1+>p(w{gG(iOmZ-4oW0@gjo=QtNpBa2bocIc_!IRr5G41%#xT4SR^ zDCq>Vw_v;jV#1>WP-Z}{!>;ZP+ z^x_tzOh2<-omNHJ>RI`r7Av8;*cqP8CkACqtnL+g4_--t94P8TFw!(q`WqDfP7%f^ z`gKE=C3-DqTs*O1tOHZN+>!m*A6m1vaD>Bgrc_~d2Yj$23P*)2Yo|wicVdddW}<)h%v;|pqvlBN9Mf;XV?2&1$71P>=w>60(Uc??285(9^Y&zE$KG1y6d zC4FWPzVokGTmiMRbH(1<20O@mwOcw$FzX~=M2Fk!UMo+IoxZ?n3%jPX3(#p1DCPDG zQ{E^!#Dm=8Wgz_**5IKYm>=68{9fB{WrwKx-}sL+dfft zla^p#&-NDNoVm`quB$l)#lL0m1vU9y(yrPfSZ56=LW_`q2blQfjijyX$7onJk|PZk zs||K#xGwWk#b{epi?KhfZi8&n5(8<>v9NGVc)wJ_ZF-ymgmtp^pv3uporDGjA8esu zMWXHTmv@=ajf^wjLPk4xK|45$gTnWk*`GaAze*IM8{3sVJm5-~9~z<*rd0+(M*7hIPMuMjX*a91J< zw!p)G+y#2>j4HTW3+~new*~GR%3VWoQ{XNZ|Fet5L}|Jtbh*O6vhSAkew|H-;`?W1 z-VGygQ1x6gvOpSFCrA-ogWwtjfjb+J5pcaGu7^JiVv;K41;UT$T>!4P;Cc(Lx4b&vRD_}{QuxMaNrUJ@^DJF)d* zW9b58-rsk|EZKj8d|WabbFNNs+vget*B}Vo*}$C*Alse0WI!|E&Iaym;LZlz2Dod( zj3T)15ovmFyk0(UlWX9IUO{2!hTSM=S-2?U|8-TK?i|L-4LOmok|95>b1 z&E6upS69s_gR=0SJWDyA-OLiqpy diff --git a/man/kin.Rd b/man/kin.Rd index 62ec76b..2f52db6 100644 --- a/man/kin.Rd +++ b/man/kin.Rd @@ -69,12 +69,10 @@ kin count distribution by kin and age. See Caswell (2019) and Caswell (2021) for details on formulas. One sex only (female by default). } \examples{ -\dontrun{ # Kin expected matrilineal count for a Swedish female based on 2015 rates. swe_surv_2015 <- swe_px[,"2015"] swe_asfr_2015 <- swe_asfr[,"2015"] # Run kinship models swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015) -head(swe_2015) -} +head(swe_2015$kin_summary) } diff --git a/man/kin2sex.Rd b/man/kin2sex.Rd index cde73cd..4a31d5d 100644 --- a/man/kin2sex.Rd +++ b/man/kin2sex.Rd @@ -77,14 +77,12 @@ refers to either mothers or fathers, and column \code{sex_kin} determine the sex See Caswell (2022) for details on formulas. } \examples{ -\dontrun{ # Kin expected count by relative sex for a French female based on 2012 rates. fra_fert_f <- fra_asfr_sex[,"ff"] fra_fert_m <- fra_asfr_sex[,"fm"] fra_surv_f <- fra_surv_sex[,"pf"] fra_surv_m <- fra_surv_sex[,"pm"] fra_2012 <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m) -head(fra_2012) -} +head(fra_2012$kin_summary) } diff --git a/vignettes/Reference_OneSex.Rmd b/vignettes/Reference_OneSex.Rmd index d2ff4b7..bdef30c 100644 --- a/vignettes/Reference_OneSex.Rmd +++ b/vignettes/Reference_OneSex.Rmd @@ -10,7 +10,7 @@ vignette: > %\VignetteEncoding{UTF-8} --- -```{r, include=FALSE} +```{r, eval = F, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(devtools); load_all() ``` diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index cc8e2c7..609b06b 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -10,12 +10,12 @@ vignette: > %\VignetteEncoding{UTF-8} --- -```{r, include=FALSE} +```{r, eval = F, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(devtools); load_all() ``` -Human males generally live longer and reproduce later than females. +Human males generally live shorter and reproduce later than females. These sex-specific processes affect kinship dynamics in a number of ways. For example, the degree to which an average member of the population, call her Focal, has a living grandparent is affected by differential mortality affecting the parental generation at older ages. We may also be interested in considering how kinship structures vary by Focal's sex: a male Focal may have a different number of grandchildren than a female Focal given differences in fertility by sex. From 7f288e3c8387301322b07d603468abc0a251751d Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 24 May 2023 09:05:05 -0300 Subject: [PATCH 21/89] version --- DESCRIPTION | 2 +- NEWS.md | 2 ++ 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/DESCRIPTION b/DESCRIPTION index f8a3d43..e3c5609 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -3,7 +3,7 @@ Title: Estimate Population Kin Distribution Description: Estimate population kin counts and its distribution by type, age and sex. The package implements one-sex and two-sex framework for studying living-death availability, with time varying rates or not, and multi-stage model. -Version: 1.0.0 +Version: 1.0.1 Authors@R: c( person("IvĆ”n", "Williams", email = "act.ivanwilliams@gmail.com", role = "cre"), person("Diego", "Alburez-Gutierrez", email = "alburezgutierrez@demogr.mpg.de", role = "aut"), diff --git a/NEWS.md b/NEWS.md index e8232f8..a8c2ee4 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,5 @@ +# DemoKin 1.0.1 + # DemoKin 1.0.0 * Added a `NEWS.md` file to track changes to the package. From ec457d74b47529e4de91917ebb8129a6e904c199 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 24 May 2023 09:05:20 -0300 Subject: [PATCH 22/89] Increment version number to 1.0.2 --- DESCRIPTION | 2 +- NEWS.md | 2 ++ 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/DESCRIPTION b/DESCRIPTION index e3c5609..b48b899 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -3,7 +3,7 @@ Title: Estimate Population Kin Distribution Description: Estimate population kin counts and its distribution by type, age and sex. The package implements one-sex and two-sex framework for studying living-death availability, with time varying rates or not, and multi-stage model. -Version: 1.0.1 +Version: 1.0.2 Authors@R: c( person("IvĆ”n", "Williams", email = "act.ivanwilliams@gmail.com", role = "cre"), person("Diego", "Alburez-Gutierrez", email = "alburezgutierrez@demogr.mpg.de", role = "aut"), diff --git a/NEWS.md b/NEWS.md index a8c2ee4..3896284 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,5 @@ +# DemoKin 1.0.2 + # DemoKin 1.0.1 # DemoKin 1.0.0 From 377ff9489e132c00b2c4b647ddeccb6c5c3e4497 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 26 May 2023 09:16:45 -0300 Subject: [PATCH 23/89] fixing cran feedback --- .Rbuildignore | 1 + CRAN-SUBMISSION | 3 + R/aux_funs.R | 2 + R/kin_multi_stage.R | 4 +- R/kin_time_invariant.R | 3 + R/kin_time_invariant_2sex.R | 2 +- R/kin_time_variant.R | 9 +- R/kin_time_variant_2sex.R | 7 +- README.Rmd | 5 +- README.md | 8 +- dev/.DS_Store | Bin 6148 -> 0 bytes dev/TwoSex_mine.Rmd | 203 --------------------------------- dev/demokin_codes.R | 28 ----- dev/get_HMDHFD.R | 125 -------------------- vignettes/Reference_OneSex.Rmd | 13 +-- vignettes/Reference_TwoSex.Rmd | 1 + 16 files changed, 30 insertions(+), 384 deletions(-) create mode 100644 CRAN-SUBMISSION delete mode 100644 dev/.DS_Store delete mode 100644 dev/TwoSex_mine.Rmd delete mode 100644 dev/demokin_codes.R delete mode 100644 dev/get_HMDHFD.R diff --git a/.Rbuildignore b/.Rbuildignore index 2af4302..7b0fa46 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -3,3 +3,4 @@ ^README\.Rmd$ ^LICENSE\.md$ ^cran-comments\.md$ +^CRAN-SUBMISSION$ diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION new file mode 100644 index 0000000..2ac4999 --- /dev/null +++ b/CRAN-SUBMISSION @@ -0,0 +1,3 @@ +Version: 1.0.2 +Date: 2023-05-24 13:15:15 UTC +SHA: ec457d74b47529e4de91917ebb8129a6e904c199 diff --git a/R/aux_funs.R b/R/aux_funs.R index bead1b1..a8e7bfd 100644 --- a/R/aux_funs.R +++ b/R/aux_funs.R @@ -4,8 +4,10 @@ #' @details See table `demokin_codes` to know label options. #' @param df data.frame. A data frame with variable `kin` with `DemoKin` codes to be labelled. #' @param sex character. "f" for female, "m" for male or "2sex" for both sex naming. +#' @return Add a column with kin labels in the input data frame. #' @export rename_kin <- function(df, sex = "f"){ + if(!"kin" %in% names(df)) stop("Input df needs a column named kin.") if(sex == "f") demokin_codes_sex <- DemoKin::demokin_codes[,c("DemoKin", "Labels_female")] if(sex == "m") demokin_codes_sex <- DemoKin::demokin_codes[,c("DemoKin", "Labels_male")] if(sex == "2sex") demokin_codes_sex <- DemoKin::demokin_codes[,c("DemoKin", "Labels_2sex")] diff --git a/R/kin_multi_stage.R b/R/kin_multi_stage.R index 7ea156e..829b232 100644 --- a/R/kin_multi_stage.R +++ b/R/kin_multi_stage.R @@ -14,7 +14,6 @@ #' @return A data frame with focalĀ“s age, related ages and type of kin #' (for example `d` is daughter, `oa` is older aunts, etc.), living and death kin counts, and specific stage. If `list_output = TRUE` then this is a list with elements as kin types. #' @export -#' kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, birth_female = 1/2.04, @@ -22,6 +21,9 @@ kin_multi_stage <- function(U = NULL, f = NULL, D = NULL, H = NULL, parity = FALSE, list_output = FALSE){ + # global vars + .<-age_kin<-stage_kin<-alive<-age_focal<-count<-NULL + # mandatory U as a list if(!is.list(U)) stop("U must be a list with age length of elements, and stage transitiotn matrix for each one.") diff --git a/R/kin_time_invariant.R b/R/kin_time_invariant.R index bbf1ba7..06058b6 100644 --- a/R/kin_time_invariant.R +++ b/R/kin_time_invariant.R @@ -19,6 +19,9 @@ kin_time_invariant <- function(p = NULL, f = NULL, output_kin = NULL, list_output = FALSE){ + # global vars + .<-alive<-age_kin<-alive<-age_focal<-count<-NULL + # make matrix transition from vectors age = 0:(length(p)-1) ages = length(age) diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R index 1386ef7..07628e1 100644 --- a/R/kin_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex.R @@ -28,7 +28,7 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, list_output = FALSE){ # global vars - living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + .<-sex_kin<-alive<-count<-living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL # same input length if(!all(length(pf)==length(pm), length(pf)==length(ff), length(pf)==length(fm))) stop("Lengths of p's and f's should be the same") diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index 3c59c7e..71a5dfa 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -12,7 +12,7 @@ #' @param birth_female numeric. Female portion at birth. #' @param list_output logical. Results as a list with years elements (as a result of `output_cohort` and `output_period` combination), with a second list of `output_kin` elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default `FALSE` -#' @return A data frame of population kinship structure, with focal's cohort, focalĀ“s age, period year, type of relatives +#' @return A data frame of population kinship structure, with Focal's cohort, focalĀ“s age, period year, type of relatives #' (for example `d` is daughter, `oa` is older aunts, etc.), living and death kin counts, and age of (living or time deceased) relatives. If `list_output = TRUE` then this is a list. #' @export @@ -21,7 +21,7 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, birth_female = 1/2.04, list_output = FALSE){ # global vars - living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + .<-living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL # check input if(is.null(p) | is.null(f)) stop("You need values on p and f.") @@ -31,7 +31,7 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, # data should be from same interval years years_data <- as.integer(colnames(p)) - if(var(diff(years_data))!=0) stop("The years given as column names in the p and f matrices must be equally spaced.") + if(stats::var(diff(years_data))!=0) stop("The years given as column names in the p and f matrices must be equally spaced.") # utils age <- 0:(nrow(p)-1) @@ -151,7 +151,8 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, #' @param pit numeric. A matrix with distribution of childbearing. #' @param ages numeric. #' @param pkin numeric. A list with kin count distribution in previous year. -# +#' @return A list of 14 types of kin matrices (kin age by Focal age) projected one time interval. +#' @export timevarying_kin<- function(Ut, ft, pit, ages, pkin){ # frequently used zero vector for initial condition diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index bcc86fc..83b3956 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -31,14 +31,14 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, list_output = FALSE){ # global vars - living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + .<-living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL # same input length if(!all(dim(pf) == dim(pm), dim(pf) == dim(ff), dim(pf) == dim(fm))) stop("Dimension of P's and F's should be the same") # data should be from same interval years years_data <- as.integer(colnames(pf)) - if(var(diff(years_data))!=0) stop("Data should be for same interval length years. Fill the gaps and run again") + if(stats::var(diff(years_data))!=0) stop("Data should be for same interval length years. Fill the gaps and run again") # utils age <- 0:(nrow(pf)-1) @@ -193,7 +193,8 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, #' @param sex_focal character. "f" for female or "m" for male. #' @param ages numeric. #' @param pkin numeric. A list with kin count distribution in previous year. -# +#' @return A list of 14 types of kin matrices (kin age by Focal age, blocked for two sex) projected one time interval. +#' @export timevarying_kin_2sex<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin){ agess <- ages*2 diff --git a/README.Rmd b/README.Rmd index 21e3d46..bb1975a 100644 --- a/README.Rmd +++ b/README.Rmd @@ -33,13 +33,12 @@ library(knitr) ## Installation +``` {r, eval=FALSE, include = F} You can install the CRAN version: - -``` {r, eval=FALSE} install.packages("DemoKin") ``` -Or the development version from GitHub with: +You can install the development version from GitHub with: ``` {r, eval=FALSE} # install.packages("devtools") diff --git a/README.md b/README.md index daa6f18..ea4ece2 100644 --- a/README.md +++ b/README.md @@ -23,13 +23,7 @@ theoretical development by Goodman, Keyfitz and Pullum (1974). ## Installation -You can install the CRAN version: - -``` r -install.packages("DemoKin") -``` - -Or the development version from GitHub with: +You can install the development version from GitHub with: ``` r # install.packages("devtools") diff --git a/dev/.DS_Store b/dev/.DS_Store deleted file mode 100644 index 1e69428fb8102fb057526431a60320d25eb531ae..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeHKu};G<5Ixfj6&(m0FnL5`>cmJ|1sE7Bu>xrkAQD`ut;Cp(35kIZ;T!l3{(zMY z7Vdl}>e7UY1y$%yvR`7qv;AI_I0gXIoebIlF#t5N5Jsz5RRr}@nTr)^Swl2_jBB`p z8z|rm#&c|KPzTh3WpjYu-4^uV7>?is!uNMH81?haxtx|XJ?DW zRE}A=sgy;tdqEI~O|FcB;n zu?NF&Dk7&EIbs-2$95~cM6hJ!bTD%GFfy}|6N>S(i2TYXq(k@Dpy>(6;?X?!mDHaOim5e?GE7^|y1#QI}SbSigr3=JF Tuw=v*4E+)CHfW^|{HX(<$ybjQ diff --git a/dev/TwoSex_mine.Rmd b/dev/TwoSex_mine.Rmd deleted file mode 100644 index 01ed3c0..0000000 --- a/dev/TwoSex_mine.Rmd +++ /dev/null @@ -1,203 +0,0 @@ ---- -title: "Two-Sex expected kin counts by type of relative: A matrix implementation" -output: - html_document: - toc: true - toc_depth: 1 -vignette: > - %\VignetteIndexEntry{TwoSex} - %\VignetteEngine{knitr::rmarkdown} - %\VignetteEncoding{UTF-8} ---- - -```{r, include=FALSE} -knitr::opts_chunk$set(collapse = TRUE, comment = "#>") -``` - -Age distribution of FocalĀ“s father when she born depends on male fertility pattern. Living siblings depends on sex composition (brothers and sisters) due to differential mortality risk. Intensity in care tasks is not the same between sex in many societies, so the sex of ego and his/her "sandwichness" change, because an average family network expects different roles in supporting. For these reasons, and many others, sex specific kin count estimates are important. Here we implement relations in Caswell (2022), not focusing in applications that can be analogous to the one-sex model, but in the specific advantages. - -```{r, message=FALSE, warning=FALSE} -# library(DemoKin) -library(devtools) -load_all() -library(tidyr) -library(dplyr) -library(ggplot2) -library(knitr) -``` - -### 1.1. Rates by sex - -Female fertility by age is not a widespread available data source. Caswell (2022) takes Schoumaker (2019) makes available estimates for 160 countries, reporting that male TFR almost always exceeds female TFR. We take the case of France in 2012 for showing how functions works (fertility and mortality data are available with the package, with column-sex values). LetĀ“s see main differences in age distribution (TFR of 1.98 and 1.99 for males and females, practically the same) - -```{r} -fra_fert_f <- fra_asfr_sex[,"ff"] -fra_fert_m <- fra_asfr_sex[,"fm"] -fra_surv_f <- fra_surv_sex[,"pf"] -fra_surv_m <- fra_surv_sex[,"pm"] -sum(fra_fert_m)-sum(fra_fert_f) -data.frame(value = c(fra_fert_f, fra_fert_m, fra_surv_f, fra_surv_m), - age = rep(0:100, 4), - sex = rep(c(rep("f", 101), rep("m", 101)), 2), - risk = c(rep("fertility rate", 101 * 2), rep("survival probability", 101 * 2))) %>% - ggplot(aes(age, value, col=sex)) + geom_line() + facet_wrap(~ risk, scales = "free_y") + theme_bw() -``` - -### 1.1. Visualizing the distribution of kin - -Compared with one sex functions, here the user needs to specify risk by sex and decide results for which egoĀ“s sex wants. (**this should be wrapped on a kin general formula? (note for Diego)**) - -```{r} -kin_out <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) -``` - -LetĀ“s group aunts and siblings and see living kin by age (**should reply fig 6 (note for Diego)**). - -```{r} -kin_out <- kin_out$kin_summary %>% - mutate(kin = case_when(kin %in% c("s", "s") ~ "s", - kin %in% c("ya", "oa") ~ "a", - T ~ kin)) %>% - filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) -kin_out %>% - group_by(kin, age_focal, sex_kin) %>% - summarise(count=sum(count_living)) %>% - ggplot(aes(age_focal, count, fill=sex_kin))+ - geom_area()+ - theme_bw() + - facet_wrap(~kin) -``` - -Kin availability by sex allows to inspect its distribution, a traditional measure in demography is the sex ratio (with females in denominator). A French woman would expect to have half grandfathers for each grandmother at 25 years old. - -```{r} -kin_out %>% - group_by(kin, age_focal) %>% - summarise(sex_ratio=sum(count_living[sex_kin=="m"], na.rm=T)/sum(count_living[sex_kin=="f"], na.rm=T)) %>% - ggplot(aes(age_focal, sex_ratio))+ - geom_line()+ - theme_bw() + - facet_wrap(~kin, scales = "free") -``` - -How ego experiences relative deaths depends mainly on how wide is the sex-gap in mortality. She starts to lose fathers earlier than mothers. The difference on the level by sex in grandparents is due to initial availability by sex. - -```{r} -# sex ratio -kin_out %>% - group_by(kin, sex_kin, age_focal) %>% - summarise(count=sum(count_dead)) %>% - ggplot(aes(age_focal, count, col=sex_kin))+ - geom_line()+ - theme_bw() + - facet_wrap(~kin) -``` - -### 2 Approximations - -Caswell (2022) mentions some ways to approximate to 2-sex distribution of living kins. Here we compare the full 2-sex model that introduced before with *androgynous* variant (male fertility and survival are the same as females) and the use of GKP factors. The first comparison can be done by age, having very similar results in this case, except for grandfathers and great-grandfathers who transits higher ages and sex-gap is higher. - -```{r} -kin_out <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) -kin_out_androgynous <- kin2sex(fra_surv_f, fra_surv_f, fra_fert_f, fra_fert_f, sex_focal = "f", birth_female = .5) -bind_rows( - kin_out$kin_summary %>% mutate(type = "full"), - kin_out_androgynous$kin_summary %>% mutate(type = "androgynous")) %>% - group_by(kin, age_focal, sex_kin, type) %>% - summarise(count = sum(count_living)) %>% - ggplot(aes(age_focal, count, linetype = type)) + - geom_line() + - theme_bw() + - theme(legend.position = "bottom", axis.text.x = element_blank()) + - facet_grid(row = vars(sex_kin), col = vars(kin), scales = "free") -``` - -Now we can multiply results from 1-sex model by the GKP factors by kin, to obtain a simple but very consistent approximation of totals (both sex) at different ages of Focal. - -```{r} -# with gkp -kin_out_1sex <- kin(fra_surv_f, fra_fert_f, birth_female = .5) -kin_out_GKP <- kin_out_1sex$kin_summary%>% - mutate(count_living = case_when(kin == "m" ~ count_living * 2, - kin == "gm" ~ count_living * 4, - kin == "ggm" ~ count_living * 8, - kin == "d" ~ count_living * 2, - kin == "gd" ~ count_living * 4, - kin == "ggd" ~ count_living * 4, - kin == "oa" ~ count_living * 4, - kin == "ya" ~ count_living * 4, - kin == "os" ~ count_living * 2, - kin == "ys" ~ count_living * 2, - kin == "coa" ~ count_living * 8, - kin == "cya" ~ count_living * 8, - kin == "nos" ~ count_living * 4, - kin == "nys" ~ count_living * 4)) - -bind_rows( - kin_out$kin_summary %>% mutate(type = "full"), - kin_out_androgynous$kin_summary %>% mutate(type = "androgynous"), - kin_out_GKP %>% mutate(type = "gkp")) %>% - mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", - kin %in% c("ya", "oa") ~ "a", - kin %in% c("coa", "cya") ~ "c", - kin %in% c("nys", "nos") ~ "n", - T ~ kin)) %>% - filter(age_focal %in% c(5, 15, 30, 60, 80)) %>% - group_by(kin, age_focal, type) %>% - summarise(count = sum(count_living)) %>% - ggplot(aes(type, count)) + - geom_bar(aes(fill=type), stat = "identity") + - theme_bw()+theme(axis.text.x = element_text(angle = 90), legend.position = "bottom")+ - facet_grid(col = vars(kin), row = vars(age_focal), scales = "free") -``` - -### 2 Time variant - -But Focal will see his/her tree developing with current risk, being part of the evolving demographic transition, in any of its stages. LetĀ“s compare what would be living kin for Swedish female if she would experienced time varying rates instead of period ones from 1950. We can use data already loaded in the package. - -```{r} -years <- ncol(swe_px) -ages <- nrow(swe_px) -swe_surv_f_matrix <- swe_px -swe_surv_m_matrix <- swe_px ^ 1.5 # this could be replaced with downloaded data from UN -swe_fert_f_matrix <- swe_asfr -swe_fert_m_matrix <- rbind(matrix(0, 5, years), - swe_asfr[-((ages-4):ages),]) * 1.05 -par(mfrow=c(1,2)) -plot(swe_surv_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Survival probability") -lines(swe_surv_m_matrix[,"1900"], col=2) -plot(swe_fert_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Fertility rate") -lines(swe_fert_m_matrix[,"1900"], col=2) -``` -There is a n increase of living relatives because of mortality improvements, very small for grandparents because main advantages in health conditions made a huge effect in infant mortality first. Less children would have this woman in case of varying rates, due to fertility transition in the first decades in Sweden. - -```{r} -kin_out_time_invariant <- kin2sex( - swe_surv_f_matrix[,"1900"], swe_surv_m_matrix[,"1900"], - swe_fert_f_matrix[,"1900"], swe_fert_m_matrix[,"1900"], - sex_focal = "f", birth_female = .5) -kin_out_time_variant <- kin2sex( - swe_surv_f_matrix, swe_surv_m_matrix, - swe_fert_f_matrix, swe_fert_m_matrix, - sex_focal = "f",time_invariant = FALSE, - birth_female = .5, - output_cohort = 1900) - -kin_out_time_variant$kin_summary %>% - filter(cohort == 1900) %>% mutate(type = "variant") %>% - bind_rows(kin_out_time_invariant$kin_summary %>% mutate(type = "invariant")) %>% - mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", - kin %in% c("ya", "oa") ~ "a", - T ~ kin)) %>% - filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) %>% - group_by(type, kin, age_focal, sex_kin) %>% - summarise(count=sum(count_living)) %>% - ggplot(aes(age_focal, count, linetype=type))+ - geom_line()+ theme_bw() + - facet_grid(cols = vars(kin), rows=vars(sex_kin), scales = "free") -``` - - -## References - -Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359–396. diff --git a/dev/demokin_codes.R b/dev/demokin_codes.R deleted file mode 100644 index 69a545a..0000000 --- a/dev/demokin_codes.R +++ /dev/null @@ -1,28 +0,0 @@ -#' demokin kin codes - -codes <- c("coa", "cya", 'c', "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "n", "oa", "ya", "a","os", "ys", "s") -caswell_codes <- c("t", "v", NA, "a", "b", "c", "h", "g", "d", "p", "q", NA, "r", "s", NA,"m", "n",NA) -labels_female <- c("Cousins from older aunts", "Cousins from younger aunts", "Cousins", - "Daughters", "Grand-daughters", - "Great-grand-daughters", "Great-grandmothers", "Grandmothers", "Mother", - "Nieces from older sisters", "Nieces from younger sisters", "Nieces", - "Aunts older than mother", "Aunts younger than mother", "Aunts", - "Older sisters", "Younger sisters", "Sisters") -labels_male <- c("Cousins from older uncles", "Cousins from younger uncles", "Cousins", - "Brothers", "Grand-sons", - "Great-grand-sons", "Great-grandfathers", "Grandfathers", "Father", - "Nephews from older brothers", "Nephews from younger brothers", "Nephews", - "Uncles older than fathers", "Uncles younger than father", "Uncles", - "Older brothers", "Younger brothers", "Brothers") -labels_2sex <- c("Cousins from older aunts/uncles", "Cousins from younger aunts/uncles", "Cousins", - "Siblings", "Grand-childrens", - "Great-grand-childrens", "Great-grandfparents", "Grandparents", "Parents", - "Niblings from older siblings", "Niblings from younger siblings", "Niblings", - "Aunts/Uncles older than parents", "Aunts/Uncles younger than parents", "Aunts/Uncles", - "Older siblings", "Younger siblings", "Siblings") -demokin_codes <- data.frame(DemoKin = codes, Caswell = caswell_codes, - Labels_female = labels_female, - Labels_male = labels_male, - Labels_2sex = labels_2sex, - row.names = NULL) -# save(demokin_codes, file = "data/demokin_codes.rda") diff --git a/dev/get_HMDHFD.R b/dev/get_HMDHFD.R deleted file mode 100644 index b4ee78e..0000000 --- a/dev/get_HMDHFD.R +++ /dev/null @@ -1,125 +0,0 @@ -#' Get time serie matrix data from HMD/HFD - -#' @description Wrapper function to get data of female survival, fertlity and population -#' of selected country on selected period. - -#' @param country numeric. Country code from rom HMD/HFD. -#' @param max_year numeric. Latest year to get data. -#' @param min_year integer. Older year to get data. -#' @param user_HMD character. From HMD. -#' @param user_HFD character. From HFD. -#' @param pass_HMD character. From HMD. -#' @param pass_HFD character. From HFD. -#' @param OAG numeric. Open age group to standarize output. -#' @return A list wiith female survival probability, survival function, fertility and poopulation age specific matrixes, with calendar year as colnames. -#' @export - -get_HMDHFD <- function(country = "SWE", - min_year = 1900, - max_year = 2018, - user_HMD = NULL, - pass_HMD = NULL, - user_HFD = NULL, - pass_HFD = NULL, - OAG = 100){ - - if(any(c(is.null(user_HMD), is.null(user_HFD), is.null(pass_HMD), is.null(pass_HFD)))){ - stop("The function needs HMD and HMF access.") - } - - # source HMD HFD ----------------------------------------------------------------- - pop <- HMDHFDplus::readHMDweb(CNTRY = country, "Population", user_HMD, pass_HMD, fixup = TRUE) %>% - dplyr::select(Year, Age, N = Female1)%>% - dplyr::filter(Year >= min_year, Year <= max_year) - lt <- HMDHFDplus::readHMDweb(country, "fltper_1x1", user_HMD, pass_HMD, fixup = TRUE) %>% - dplyr::filter(Year >= min_year, Year <= max_year) - asfr <- HMDHFDplus::readHFDweb(country, "asfrRR", user_HFD, pass_HFD, fixup = TRUE)%>% - dplyr::filter(Year >= min_year, Year <= max_year) - - # list of yearly Leslie matrix --------------------------------------------------- - - age = 0:OAG - ages = length(age) - w = last(age) - last_year = max(lt$Year) - years = min_year:last_year - - # survival probability - px <- lt %>% - dplyr::filter(Age<=OAG) %>% - dplyr::mutate(px = 1 - qx, - px = ifelse(Age==OAG, 0, px)) %>% - dplyr::select(Year, Age, px) %>% - tidyr::pivot_wider(names_from = "Year", values_from = "px") %>% - dplyr::select(-Age) %>% - as.matrix() - rownames(px) = 0:OAG - - # survival function - Lx <- lt %>% - dplyr::filter(Age<=OAG) %>% - dplyr::mutate(Lx = ifelse(Age==OAG, Tx, Lx)) %>% - dplyr::select(Year, Age, Lx) %>% - tidyr::pivot_wider(names_from = "Year", values_from = "Lx") %>% - dplyr::select(-Age) %>% - as.matrix() - - Sx <- rbind(Lx[c(-1,-ages),]/Lx[-c(w:ages),], - Lx[ages,]/(Lx[w,]+Lx[ages,]), - Lx[ages,]/(Lx[w,]+Lx[ages,])) - rownames(Sx) = 0:w - - # fertility - fx <- asfr %>% - dplyr::filter(Year >= min_year) %>% - dplyr::select(-OpenInterval) %>% - rbind( - expand.grid(Year = years, - Age = c(0:(min(asfr$Age)-1),(max(asfr$Age)+1):OAG), - ASFR = 0)) %>% - dplyr::arrange(Year, Age) %>% - tidyr::spread(Year, ASFR) %>% - dplyr::select(-Age) %>% - as.matrix() - rownames(fx) = 0:OAG - - # population - Nx <- pop %>% - dplyr::mutate(Age = ifelse(Age>OAG, OAG, Age)) %>% - dplyr::group_by(Year, Age) %>% summarise(N = sum(N)) %>% - dplyr::filter(Age<=OAG, Year >= min_year) %>% - dplyr::arrange(Year, Age) %>% - tidyr::spread(Year, N) %>% - dplyr::select(-Age) %>% - as.matrix() - rownames(Nx) = 0:OAG - - # only return data with values - if(any(is.na(colSums(Sx)))){ - warning("Asked for data out of HMDHFD range") - Sx <- Sx[,!is.na(colSums(Sx))] - } - if(any(is.na(colSums(fx)))){ - warning("Asked for data out of HMDHFD range") - fx <- fx[,!is.na(colSums(fx))] - } - if(any(is.na(colSums(Nx)))){ - warning("Asked for data out of HMDHFD range") - Nx <- Nx[,!is.na(colSums(Nx))] - } - - return(list(px=px, - Sx=Sx, - fx=fx, - Nx=Nx)) -} - -# save data - # swe_px <- swe_data$px - # swe_Sx <- swe_data$Sx - # swe_asfr <-swe_data$fx - # swe_pop <- swe_data$Nx - # save(swe_px, file = "data/swe_px.rda") - # save(swe_Sx, file = "data/swe_Sx.rda") - # save(swe_asfr, file = "data/swe_asfr.rda") - # save(swe_pop, file = "data/swe_pop.rda") diff --git a/vignettes/Reference_OneSex.Rmd b/vignettes/Reference_OneSex.Rmd index bdef30c..8f940d8 100644 --- a/vignettes/Reference_OneSex.Rmd +++ b/vignettes/Reference_OneSex.Rmd @@ -82,8 +82,6 @@ swe_2015[["kin_summary"]] %>% Here, each relative type is identified by a unique code. Note that `DemoKin` uses different codes than Caswell (2019); the equivalence between the two set of codes is given in the following table: ```{r, fig.height=6, fig.width=8, echo=FALSE} -library(knitr) - demokin_codes %>% kable ``` @@ -118,10 +116,10 @@ swe_2015[["kin_summary"]] %>% Finally, we can visualize the estimated kin counts by type of kin using a network diagram. Following with the age 35: ```{r, fig.height=6, fig.width=8, dpi=900, message=FALSE, warning=FALSE} - swe_2015[["kin_summary"]] %>% - filter(age_focal == 35) %>% - select(kin, count = count_living) %>% - plot_diagram(rounding = 2) +swe_2015[["kin_summary"]] %>% + filter(age_focal == 35) %>% + select(kin, count = count_living) %>% + plot_diagram(rounding = 2) ``` @@ -190,9 +188,6 @@ swe_2015_prevalence <- age_kin = unique(swe_2015$kin_full$age_kin), prev = .005 * exp(.05 * age_kin) ) - -# plot(swe_2015_prevalence) - # join to kin count estimates and plot swe_2015$kin_full %>% left_join(swe_2015_prevalence) %>% diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index 609b06b..0bac206 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -157,6 +157,7 @@ plot(swe_surv_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Survival probabili lines(swe_surv_m_matrix[,"1900"], col=2) plot(swe_fert_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Fertility rate") lines(swe_fert_m_matrix[,"1900"], col=2) +options(mfrow = NULL) ``` We now run the time-variant two-sex models (note the `time_invariant = FALSE` argument): From 3660c058dd067f1bc9f050227078468a1b6c89cc Mon Sep 17 00:00:00 2001 From: alburezg Date: Fri, 26 May 2023 17:14:32 +0200 Subject: [PATCH 24/89] updated citations --- README.Rmd | 21 +++----- README.md | 72 ++++++++++++++++++-------- references.bib | 92 ++++++++++++++++++++++++++++++++++ vignettes/Reference_OneSex.Rmd | 28 ++++------- vignettes/Reference_TwoSex.Rmd | 9 ++-- vignettes/references.bib | 92 ++++++++++++++++++++++++++++++++++ 6 files changed, 255 insertions(+), 59 deletions(-) create mode 100644 references.bib create mode 100644 vignettes/references.bib diff --git a/README.Rmd b/README.Rmd index bb1975a..0b6feb8 100644 --- a/README.Rmd +++ b/README.Rmd @@ -1,5 +1,6 @@ --- output: github_document +bibliography: vignettes\\references.bib --- ```{r, include = FALSE} @@ -21,7 +22,7 @@ library(knitr) ::: {.column width="60%"} -`DemoKin` uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell (2019, 2020, 2022), and Caswell and Song (2021). It draws on previous theoretical development by Goodman, Keyfitz and Pullum (1974). +`DemoKin` uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell [-@caswell_formal_2019; -@caswell_formal_2020; -@caswell_formal_2022], and Caswell and Song [-@caswell_formal_2021]. It draws on previous theoretical development by Goodman, Keyfitz and Pullum [-@goodman_family_1974]. ::: ::: {.column width="40%"} @@ -47,11 +48,11 @@ devtools::install_github("IvanWilli/DemoKin") ## Usage -Consider an average Swedish woman called 'Focal'. For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their life (the 'time-invariant' assumption in Caswell (2019)). +Consider an average Swedish woman called 'Focal.' For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their life; i.e., the 'time-invariant' assumption in Caswell [-@caswell_formal_2019]. We then ask: -> How many living relatives does Focal have at each age? +> What is the expected number of relatives of Focal over her life course? Let's explore this using the Swedish data already included with `DemoKin`. @@ -62,7 +63,7 @@ swe_asfr_2015 <- swe_asfr[,"2015"] swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) ``` -*p* is the survival probability by age from a life table and *f* are the age specific fertility raties by age (see `?kin` for details). +*p* is the survival probability by age from a life table and *f* are the age specific fertility ratios by age (see `?kin` for details). Now, we can visualize the implied kin counts (i.e., the average number of living kin) of Focal at age 35 using a network or 'Keyfitz' kinship diagram with the function `plot_diagram`: @@ -83,7 +84,7 @@ kable(DemoKin::demokin_codes[,c(1,3)]) ## Vignette -For more details, including an extension to time varying-populations rates, deceased kin, and multi-state models in a one-sex framework, see `vignette("Reference_OneSex", package = "DemoKin")`. For the case of two-sex see `vignette("Reference_TwoSex", package = "DemoKin")`. +For more details, including an extension to time-variant rates, deceased kin, and multi-state models in a one-sex framework, see `vignette("Reference_OneSex", package = "DemoKin")`. For two-sex models, see `vignette("Reference_TwoSex", package = "DemoKin")`. If the vignette does not load, you may need to install the package as `devtools::install_github("IvanWilli/DemoKin", build_vignettes = T)`. ## Citation @@ -101,13 +102,3 @@ If you're interested in contributing, please get in touch, create an issue, or s We look forward to hearing from you! ## References - -Caswell, H. 2019. The formal demography of kinship: A matrix formulation. Demographic Research 41:679–712. - -Caswell, H. 2020. The formal demography of kinship II: Multistate models, parity, and sibship. Demographic Research 42: 1097-1144. - -Caswell, Hal and Xi Song. 2021. ā€œThe Formal Demography of Kinship. III. Kinship Dynamics with Time-Varying Demographic Rates.ā€ Demographic Research 45: 517–46. - -Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359–396. - -Goodman, L.A., Keyfitz, N., and Pullum, T.W. (1974). Family formation and the frequency of various kinship relationships. Theoretical Population Biology 5(1):1–27. diff --git a/README.md b/README.md index ea4ece2..9edd51d 100644 --- a/README.md +++ b/README.md @@ -32,14 +32,15 @@ devtools::install_github("IvanWilli/DemoKin") ## Usage -Consider an average Swedish woman called ā€˜Focal’. For this exercise, we +Consider an average Swedish woman called ā€˜Focal.’ For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their -life (the ā€˜time-invariant’ assumption in Caswell (2019)). +life; i.e., the ā€˜time-invariant’ assumption in Caswell (2019). We then ask: -> How many living relatives does Focal have at each age? +> What is the expected number of relatives of Focal over her life +> course? Let’s explore this using the Swedish data already included with `DemoKin`. @@ -52,7 +53,7 @@ swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) ``` *p* is the survival probability by age from a life table and *f* are the -age specific fertility raties by age (see `?kin` for details). +age specific fertility ratios by age (see `?kin` for details). Now, we can visualize the implied kin counts (i.e., the average number of living kin) of Focal at age 35 using a network or ā€˜Keyfitz’ kinship @@ -94,11 +95,11 @@ Relatives are identified by a unique code: ## Vignette -For more details, including an extension to time varying-populations -rates, deceased kin, and multi-state models in a one-sex framework, see -`vignette("Reference_OneSex", package = "DemoKin")`. For the case of -two-sex see `vignette("Reference_TwoSex", package = "DemoKin")`. If the -vignette does not load, you may need to install the package as +For more details, including an extension to time-variant rates, deceased +kin, and multi-state models in a one-sex framework, see +`vignette("Reference_OneSex", package = "DemoKin")`. For two-sex models, +see `vignette("Reference_TwoSex", package = "DemoKin")`. If the vignette +does not load, you may need to install the package as `devtools::install_github("IvanWilli/DemoKin", build_vignettes = T)`. ## Citation @@ -125,19 +126,48 @@ request. We look forward to hearing from you! ## References -Caswell, H. 2019. The formal demography of kinship: A matrix -formulation. Demographic Research 41:679–712. +
-Caswell, H. 2020. The formal demography of kinship II: Multistate -models, parity, and sibship. Demographic Research 42: 1097-1144. +
-Caswell, Hal and Xi Song. 2021. ā€œThe Formal Demography of Kinship. III. -Kinship Dynamics with Time-Varying Demographic Rates.ā€ Demographic -Research 45: 517–46. +Caswell, Hal. 2019. ā€œThe Formal Demography of Kinship: A Matrix +Formulation.ā€ *Demographic Research* 41 (September): 679–712. +. -Caswell, H. (2022). The formal demography of kinship IV: Two-sex models -and their approximations. Demographic Research, 47, 359–396. +
+ +
+ +———. 2020. ā€œThe Formal Demography of Kinship II: Multistate Models, +Parity, and Sibship.ā€ *Demographic Research* 42 (June): 1097–1146. +. + +
+ +
+ +———. 2022. ā€œThe Formal Demography of Kinship IV: Two-Sex Models and +Their Approximations.ā€ *Demographic Research* 47 (September): 359–96. +. + +
-Goodman, L.A., Keyfitz, N., and Pullum, T.W. (1974). Family formation -and the frequency of various kinship relationships. Theoretical -Population Biology 5(1):1–27. +
+ +Caswell, Hal, and Xi Song. 2021. ā€œThe Formal Demography of Kinship III: +Kinship Dynamics with Time-Varying Demographic Rates.ā€ *Demographic +Research* 45 (August): 517–46. +. + +
+ +
+ +Goodman, Leo A, Nathan Keyfitz, and Thomas W. Pullum. 1974. ā€œFamily +Formation and the Frequency of Various Kinship Relationships.ā€ +*Theoretical Population Biology*, 27. +. + +
+ +
diff --git a/references.bib b/references.bib new file mode 100644 index 0000000..19e08e3 --- /dev/null +++ b/references.bib @@ -0,0 +1,92 @@ + +@article{caswell_formal_2019, + title = {The formal demography of kinship: {A} matrix formulation}, + volume = {41}, + issn = {1435-9871}, + shorttitle = {The formal demography of kinship}, + url = {https://www.demographic-research.org/volumes/vol41/24/}, + doi = {10.4054/DemRes.2019.41.24}, + language = {en}, + urldate = {2019-09-17}, + journal = {Demographic Research}, + author = {Caswell, Hal}, + month = sep, + year = {2019}, + pages = {679--712}, + file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\C84MW6VX\\Caswell - 2019 - The formal demography of kinship A matrix formula.pdf:application/pdf}, +} + +@article{caswell_formal_2020, + title = {The formal demography of kinship {II}: {Multistate} models, parity, and sibship}, + volume = {42}, + issn = {1435-9871}, + shorttitle = {The formal demography of kinship {II}}, + url = {https://www.demographic-research.org/volumes/vol42/38/}, + doi = {10.4054/DemRes.2020.42.38}, + language = {en}, + urldate = {2021-03-05}, + journal = {Demographic Research}, + author = {Caswell, Hal}, + month = jun, + year = {2020}, + pages = {1097--1146}, + file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\LEHIM987\\Caswell - 2020 - The formal demography of kinship II Multistate mo.pdf:application/pdf}, +} + +@article{caswell_formal_2021, + title = {The formal demography of kinship {III}: {Kinship} dynamics with time-varying demographic rates}, + volume = {45}, + issn = {1435-9871}, + shorttitle = {The formal demography of kinship {III}}, + url = {https://www.demographic-research.org/volumes/vol45/16/}, + doi = {10.4054/DemRes.2021.45.16}, + language = {en}, + urldate = {2021-10-19}, + journal = {Demographic Research}, + author = {Caswell, Hal and Song, Xi}, + month = aug, + year = {2021}, + pages = {517--546}, + file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\W2JPMRH8\\Caswell and Song - 2021 - The formal demography of kinship III Kinship dyna.pdf:application/pdf}, +} + +@article{caswell_formal_2022, + title = {The formal demography of kinship {IV}: {Two}-sex models and their approximations}, + volume = {47}, + issn = {1435-9871}, + shorttitle = {The formal demography of kinship {IV}}, + url = {https://www.demographic-research.org/volumes/vol47/13/}, + doi = {10.4054/DemRes.2022.47.13}, + language = {en}, + urldate = {2022-09-27}, + journal = {Demographic Research}, + author = {Caswell, Hal}, + month = sep, + year = {2022}, + pages = {359--396}, + file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\CWGLWECI\\Caswell - 2022 - The formal demography of kinship IV Two-sex model.pdf:application/pdf}, +} + + +@article{goodman_family_1974, + title = {Family {Formation} and the {Frequency} of {Various} {Kinship} {Relationships}}, + doi = {10.1016/0040-5809(74)90049-5}, + language = {en}, + journal = {Theoretical Population Biology}, + author = {Goodman, Leo A and Keyfitz, Nathan and Pullum, Thomas W.}, + year = {1974}, + pages = {27}, + file = {Goodman - Family Formation and the Frequency of Various Kins.pdf:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\8ICBKYIE\\Goodman - Family Formation and the Frequency of Various Kins.pdf:application/pdf}, +} + + +@book{preston_demography:_2001, + address = {Malden, MA}, + title = {Demography: measuring and modeling population processes}, + isbn = {978-1-55786-214-3 978-1-55786-451-2}, + shorttitle = {Demography}, + publisher = {Blackwell Publishers}, + author = {Preston, Samuel H. and Heuveline, Patrick and Guillot, Michel}, + year = {2001}, + keywords = {Demography, Population research}, +} diff --git a/vignettes/Reference_OneSex.Rmd b/vignettes/Reference_OneSex.Rmd index 8f940d8..ced906e 100644 --- a/vignettes/Reference_OneSex.Rmd +++ b/vignettes/Reference_OneSex.Rmd @@ -1,5 +1,6 @@ --- title: "Expected kin counts by type of relative in a one-sex framework" +bibliography: references.bib output: html_document: toc: true @@ -20,7 +21,7 @@ Here, we'll show how `DemoKin` can be used to compute the number and age distrib ## 1. Kin counts with time-invariant rates -First, we compute kin counts in a **time-invariant** framework. We assume that Focal and all of her relatives experience the 2015 mortality and fertility rates throughout their entire lives (Caswell, 2019). The `DemoKin` package includes data from Sweden as an example: age-by-year matrices of survival probabilities (*swe_px*), survival ratios (*swe_Sx*), fertility rates (*swe_asfr*), and population numbers (*swe_pop*). You can see the data contained in `DemoKin` with `data(package="DemoKin")`. This data comes from the [Human Mortality Database](https://www.mortality.org/) and [Human Fertility Database](https://www.humanfertility.org/) (see `?DemoKin::get_HMDHFD`). +First, we compute kin counts in a **time-invariant** framework. We assume that Focal and all of her relatives experience the 2015 mortality and fertility rates throughout their entire lives [@caswell_formal_2019]. The `DemoKin` package includes data from Sweden as an example: age-by-year matrices of survival probabilities (*swe_px*), survival ratios (*swe_Sx*), fertility rates (*swe_asfr*), and population numbers (*swe_pop*). You can see the data contained in `DemoKin` with `data(package="DemoKin")`. This data comes from the [Human Mortality Database](https://www.mortality.org/) and [Human Fertility Database](https://www.humanfertility.org/) (see `?DemoKin::get_HMDHFD`). In order to implement the time-invariant models, the function `DemoKin::kin` expects a vector of survival ratios and another vector of fertility rates. In this example, we get the data for the year 2015, and run the matrix models: @@ -79,7 +80,7 @@ swe_2015[["kin_summary"]] %>% facet_wrap(~kin) ``` -Here, each relative type is identified by a unique code. Note that `DemoKin` uses different codes than Caswell (2019); the equivalence between the two set of codes is given in the following table: +Here, each relative type is identified by a unique code. Note that `DemoKin` uses different codes than Caswell [-@caswell_formal_2019]; the equivalence between the two set of codes is given in the following table: ```{r, fig.height=6, fig.width=8, echo=FALSE} demokin_codes %>% @@ -100,8 +101,7 @@ swe_2015[["kin_full"]] %>% ``` The one-sex model implemented in `DemoKin` assumes that the given fertility input applies to both sexes. - -Note that, if using survival rates ($S_x$) instead of probabilities ($p_x$), fertility vectors should account for female person-year exposure, using: $(\frac{f_x+f_{x+1}S_x}{2})\frac{L_0}{l_0}$ instead of only $fx$ (see Preston et.al, 2002). +Note that, if using survival rates ($S_x$) instead of probabilities ($p_x$), fertility vectors should account for female person-year exposure, using: $(\frac{f_x+f_{x+1}S_x}{2})\frac{L_0}{l_0}$ instead of only $fx$; see Preston et.al [-@preston_demography:_2001]). The `kin` function also includes a summary output with the count of living kin, mean and standard deviation of kin age, by type of kin, for each Focal's age: @@ -126,7 +126,7 @@ swe_2015[["kin_summary"]] %>% ## 2. Kin counts with time-variant rates The demography of Sweden is, in reality, changing every year. This means that Focal and her relatives will have experienced changing mortality and fertility rates over time. -We account for this, by using the time-variant models introduced by Caswell and Song (2021). +We account for this, by using the time-variant models introduced by Caswell and Song [-@caswell_formal_2021]. Let's take a look at the resulting kin counts for a Focal born in 1960, limiting the output to the relative types given in the argument `output_kin`: ```{r, fig.height=6, fig.width=8} @@ -179,7 +179,7 @@ swe_time_varying$kin_summary %>% ## 4. Prevalences -Given the distribution of kin by age, we can compute the expected portion of living kin in some stage given a set of prevalences by age (e.g., a disease, employment, etc.). This is known as the Sullivan Method in the life-table literature. A matrix formulation for same results can be found in Caswell (2019), which can also be extended to a time-variant framework. +Given the distribution of kin by age, we can compute the expected portion of living kin in some stage given a set of prevalences by age (e.g., a disease, employment, etc.). This is known as the Sullivan Method in the life-table literature. A matrix formulation for same results can be found in Caswell [-@caswell_formal_2019], which can also be extended to a time-variant framework. ```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} # letĀ“s create some prevalence by age @@ -208,7 +208,7 @@ swe_2015$kin_full %>% `DemoKin` allows the computation of kin structures in a multi-state framework, classifying individuals jointly by age and some other feature (e.g., stages of a disease). For this, we need mortality and fertility data for each possible stage and probabilities of changing state by age. -Let's consider the example of Slovakia given by Caswell (2021), where stages are parity states. +Let's consider the example of Slovakia given by Caswell [-@caswell_formal_2021], where stages are parity states. `DemoKin` includes the data to replicate this analysis for the year 1980: - The data.frame `svk_fxs` is the fertility rate by age (rows) for each parity stage (columns). The first stage represents $parity=0$; the second stage, $parity=1$; and so on, until finally the sixth stage represents $parity\geq5$. @@ -216,7 +216,7 @@ Let's consider the example of Slovakia given by Caswell (2021), where stages are - The data.frame `svk_pxs` has the same structure and represents survival probabilities. - The list `svk_Uxs` has the same number of elements and ages (in this case 110, where $omega$ is 109). For each age, it contains a column-stochastic transition matrix with dimension for the state space. The entries are transition probabilities conditional on survival. -Following Caswell (2020), we can obtain the joint age-parity kin structure: +Following Caswell [-@caswell_formal_2020], we can obtain the joint age-parity kin structure: ```{r} # use birth_female=1 because fertility is for female only @@ -230,7 +230,7 @@ demokin_svk1980_caswell2020 <- parity = TRUE) ``` -Note that the function ask for risks already in a certain matrix format. As an example, consider the age-parity distribution of aunts, when Focal is 20 and 60 yo (this is equivalent to Figure 4 in Caswell [2021]). +Note that the function ask for risks already in a certain matrix format. As an example, consider the age-parity distribution of aunts, when Focal is 20 and 60 yo (this is equivalent to Figure 4 in Caswell [-@caswell_formal_2021]). ```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} demokin_svk1980_caswell2020 %>% @@ -248,7 +248,7 @@ demokin_svk1980_caswell2020 %>% facet_wrap(~age_focal, nrow = 2) ``` -We can also see the portion of living daughters and mothers at different parity stages over Focal's lie-course (this is equivalent to Figure 9 and 10 in Caswell [2021]). +We can also see the portion of living daughters and mothers at different parity stages over Focal's life-course (this is equivalent to Figure 9 and 10 in Caswell [-@caswell_formal_2021]). ```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} demokin_svk1980_caswell2020 %>% @@ -268,11 +268,3 @@ demokin_svk1980_caswell2020 %>% This function `kin_multi_stage` can be generalized to any kind of state (be sure to set parameter `parity = FALSE`, de default). ## References - -Caswell, H. (2019). The formal demography of kinhip: A matrix formulation. Demographic Research 41:679–712. doi:10.4054/DemRes.2019.41.24. - -Caswell, H. (2020). The formal demography of kinship II: Multistate models, parity, and sibship. Demographic Research, 42, 1097–1146. - -Caswell, H., & Song, X. (2021). The formal demography of kinhip III: kinhip dynamics with time-varying demographic rates. Demographic Research, 45, 517–546. - -Preston, S., Heuveline, P., & Guillot, M. (2000). Demography: Measuring and Modeling Population Processes. Wiley. diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index 0bac206..22dc189 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -1,5 +1,6 @@ --- title: "Two-sex kinship model" +bibliography: references.bib output: html_document: toc: true @@ -21,7 +22,7 @@ For example, the degree to which an average member of the population, call her F We may also be interested in considering how kinship structures vary by Focal's sex: a male Focal may have a different number of grandchildren than a female Focal given differences in fertility by sex. Documenting these differences matters since women often face greater expectations to provide support and informal care to relatives. As they live longer, they may find themselves at greater risk of being having no living kin. -The function `kin2sex` implements two-sex kinship models as introduced by Caswell (2022). +The function `kin2sex` implements two-sex kinship models as introduced by Caswell [-@caswell_formal_2022]. This vignette show how to run two-sex models and highlights some of the advantages of this model over one-sex models in populations with time-invariant and time-variant rates. ```{r, message=FALSE, warning=FALSE} @@ -200,11 +201,11 @@ kin_out_time_variant$kin_summary %>% ### 4. Approximations -Caswell (2022) introduced two approaches for approximating two-sex kinship structures for cases when male demographic rates are not available. +Caswell [-@caswell_formal_2022] introduced two approaches for approximating two-sex kinship structures for cases when male demographic rates are not available. The first is the *androgynous* approximation, which assumes equal fertility and survival for males and females. The second is the use of *GKP factors* apply to each type of relative (e.g., multiplying mothers by two to obtain the number of mothers and fathers). -Here, we present a visual evaluation of the accuracy of these approximations by comparing to 'true' two-sex models using the French data included with `DemoKin` for time-invariant models (Caswell, 2022). +Here, we present a visual evaluation of the accuracy of these approximations by comparing to 'true' two-sex models using the French data included with `DemoKin` for time-invariant models [@caswell_formal_2022]. We start by considering the androgynous approximation. We compare expected kin counts by age and find high levels of consistency for all kin types, except for grandfathers and great-grandfathers: @@ -268,5 +269,3 @@ bind_rows( ``` ## References - -Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359–396. diff --git a/vignettes/references.bib b/vignettes/references.bib new file mode 100644 index 0000000..19e08e3 --- /dev/null +++ b/vignettes/references.bib @@ -0,0 +1,92 @@ + +@article{caswell_formal_2019, + title = {The formal demography of kinship: {A} matrix formulation}, + volume = {41}, + issn = {1435-9871}, + shorttitle = {The formal demography of kinship}, + url = {https://www.demographic-research.org/volumes/vol41/24/}, + doi = {10.4054/DemRes.2019.41.24}, + language = {en}, + urldate = {2019-09-17}, + journal = {Demographic Research}, + author = {Caswell, Hal}, + month = sep, + year = {2019}, + pages = {679--712}, + file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\C84MW6VX\\Caswell - 2019 - The formal demography of kinship A matrix formula.pdf:application/pdf}, +} + +@article{caswell_formal_2020, + title = {The formal demography of kinship {II}: {Multistate} models, parity, and sibship}, + volume = {42}, + issn = {1435-9871}, + shorttitle = {The formal demography of kinship {II}}, + url = {https://www.demographic-research.org/volumes/vol42/38/}, + doi = {10.4054/DemRes.2020.42.38}, + language = {en}, + urldate = {2021-03-05}, + journal = {Demographic Research}, + author = {Caswell, Hal}, + month = jun, + year = {2020}, + pages = {1097--1146}, + file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\LEHIM987\\Caswell - 2020 - The formal demography of kinship II Multistate mo.pdf:application/pdf}, +} + +@article{caswell_formal_2021, + title = {The formal demography of kinship {III}: {Kinship} dynamics with time-varying demographic rates}, + volume = {45}, + issn = {1435-9871}, + shorttitle = {The formal demography of kinship {III}}, + url = {https://www.demographic-research.org/volumes/vol45/16/}, + doi = {10.4054/DemRes.2021.45.16}, + language = {en}, + urldate = {2021-10-19}, + journal = {Demographic Research}, + author = {Caswell, Hal and Song, Xi}, + month = aug, + year = {2021}, + pages = {517--546}, + file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\W2JPMRH8\\Caswell and Song - 2021 - The formal demography of kinship III Kinship dyna.pdf:application/pdf}, +} + +@article{caswell_formal_2022, + title = {The formal demography of kinship {IV}: {Two}-sex models and their approximations}, + volume = {47}, + issn = {1435-9871}, + shorttitle = {The formal demography of kinship {IV}}, + url = {https://www.demographic-research.org/volumes/vol47/13/}, + doi = {10.4054/DemRes.2022.47.13}, + language = {en}, + urldate = {2022-09-27}, + journal = {Demographic Research}, + author = {Caswell, Hal}, + month = sep, + year = {2022}, + pages = {359--396}, + file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\CWGLWECI\\Caswell - 2022 - The formal demography of kinship IV Two-sex model.pdf:application/pdf}, +} + + +@article{goodman_family_1974, + title = {Family {Formation} and the {Frequency} of {Various} {Kinship} {Relationships}}, + doi = {10.1016/0040-5809(74)90049-5}, + language = {en}, + journal = {Theoretical Population Biology}, + author = {Goodman, Leo A and Keyfitz, Nathan and Pullum, Thomas W.}, + year = {1974}, + pages = {27}, + file = {Goodman - Family Formation and the Frequency of Various Kins.pdf:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\8ICBKYIE\\Goodman - Family Formation and the Frequency of Various Kins.pdf:application/pdf}, +} + + +@book{preston_demography:_2001, + address = {Malden, MA}, + title = {Demography: measuring and modeling population processes}, + isbn = {978-1-55786-214-3 978-1-55786-451-2}, + shorttitle = {Demography}, + publisher = {Blackwell Publishers}, + author = {Preston, Samuel H. and Heuveline, Patrick and Guillot, Michel}, + year = {2001}, + keywords = {Demography, Population research}, +} From 414a3da10edf65f211a574f66f0e6375978da972 Mon Sep 17 00:00:00 2001 From: alburezg Date: Fri, 26 May 2023 17:15:16 +0200 Subject: [PATCH 25/89] removed extra ref file --- references.bib | 92 -------------------------------------------------- 1 file changed, 92 deletions(-) delete mode 100644 references.bib diff --git a/references.bib b/references.bib deleted file mode 100644 index 19e08e3..0000000 --- a/references.bib +++ /dev/null @@ -1,92 +0,0 @@ - -@article{caswell_formal_2019, - title = {The formal demography of kinship: {A} matrix formulation}, - volume = {41}, - issn = {1435-9871}, - shorttitle = {The formal demography of kinship}, - url = {https://www.demographic-research.org/volumes/vol41/24/}, - doi = {10.4054/DemRes.2019.41.24}, - language = {en}, - urldate = {2019-09-17}, - journal = {Demographic Research}, - author = {Caswell, Hal}, - month = sep, - year = {2019}, - pages = {679--712}, - file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\C84MW6VX\\Caswell - 2019 - The formal demography of kinship A matrix formula.pdf:application/pdf}, -} - -@article{caswell_formal_2020, - title = {The formal demography of kinship {II}: {Multistate} models, parity, and sibship}, - volume = {42}, - issn = {1435-9871}, - shorttitle = {The formal demography of kinship {II}}, - url = {https://www.demographic-research.org/volumes/vol42/38/}, - doi = {10.4054/DemRes.2020.42.38}, - language = {en}, - urldate = {2021-03-05}, - journal = {Demographic Research}, - author = {Caswell, Hal}, - month = jun, - year = {2020}, - pages = {1097--1146}, - file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\LEHIM987\\Caswell - 2020 - The formal demography of kinship II Multistate mo.pdf:application/pdf}, -} - -@article{caswell_formal_2021, - title = {The formal demography of kinship {III}: {Kinship} dynamics with time-varying demographic rates}, - volume = {45}, - issn = {1435-9871}, - shorttitle = {The formal demography of kinship {III}}, - url = {https://www.demographic-research.org/volumes/vol45/16/}, - doi = {10.4054/DemRes.2021.45.16}, - language = {en}, - urldate = {2021-10-19}, - journal = {Demographic Research}, - author = {Caswell, Hal and Song, Xi}, - month = aug, - year = {2021}, - pages = {517--546}, - file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\W2JPMRH8\\Caswell and Song - 2021 - The formal demography of kinship III Kinship dyna.pdf:application/pdf}, -} - -@article{caswell_formal_2022, - title = {The formal demography of kinship {IV}: {Two}-sex models and their approximations}, - volume = {47}, - issn = {1435-9871}, - shorttitle = {The formal demography of kinship {IV}}, - url = {https://www.demographic-research.org/volumes/vol47/13/}, - doi = {10.4054/DemRes.2022.47.13}, - language = {en}, - urldate = {2022-09-27}, - journal = {Demographic Research}, - author = {Caswell, Hal}, - month = sep, - year = {2022}, - pages = {359--396}, - file = {Full Text:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\CWGLWECI\\Caswell - 2022 - The formal demography of kinship IV Two-sex model.pdf:application/pdf}, -} - - -@article{goodman_family_1974, - title = {Family {Formation} and the {Frequency} of {Various} {Kinship} {Relationships}}, - doi = {10.1016/0040-5809(74)90049-5}, - language = {en}, - journal = {Theoretical Population Biology}, - author = {Goodman, Leo A and Keyfitz, Nathan and Pullum, Thomas W.}, - year = {1974}, - pages = {27}, - file = {Goodman - Family Formation and the Frequency of Various Kins.pdf:C\:\\Users\\alburezgutierrez\\Zotero\\storage\\8ICBKYIE\\Goodman - Family Formation and the Frequency of Various Kins.pdf:application/pdf}, -} - - -@book{preston_demography:_2001, - address = {Malden, MA}, - title = {Demography: measuring and modeling population processes}, - isbn = {978-1-55786-214-3 978-1-55786-451-2}, - shorttitle = {Demography}, - publisher = {Blackwell Publishers}, - author = {Preston, Samuel H. and Heuveline, Patrick and Guillot, Michel}, - year = {2001}, - keywords = {Demography, Population research}, -} From 1d81eec727c9df50d3fed58ef5dec87d972555a9 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 26 May 2023 16:31:26 -0300 Subject: [PATCH 26/89] fixing cran, adding biblio --- NAMESPACE | 2 ++ R/kin.R | 8 ++++---- R/kin2sex.R | 8 ++++---- man/kin.Rd | 6 +++--- man/kin2sex.Rd | 8 ++++---- man/kin_time_variant.Rd | 2 +- man/rename_kin.Rd | 3 +++ man/timevarying_kin.Rd | 3 +++ man/timevarying_kin_2sex.Rd | 3 +++ 9 files changed, 27 insertions(+), 16 deletions(-) diff --git a/NAMESPACE b/NAMESPACE index 72c7b74..0d95065 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -11,4 +11,6 @@ export(kin_time_variant_2sex) export(output_period_cohort_combination) export(plot_diagram) export(rename_kin) +export(timevarying_kin) +export(timevarying_kin_2sex) importFrom(magrittr,"%>%") diff --git a/R/kin.R b/R/kin.R index 2a3443f..0d5a060 100644 --- a/R/kin.R +++ b/R/kin.R @@ -5,10 +5,10 @@ #' @details See Caswell (2019) and Caswell (2021) for details on formulas. One sex only (female by default). #' @param p numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class #' in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). -#' @param f numeric. Same as p but for fertility rates. +#' @param f numeric. Same as `p` but for fertility rates. #' @param time_invariant logical. Constant assumption for a given `year` rates. Default `TRUE`. -#' @param n numeric. Same as p but for population distribution (counts or `%`). Optional. -#' @param pi numeric. Same as U but for childbearing distribution (sum to 1). Optional. +#' @param n numeric. Only for `time_invariant = FALSE`. Same as `p` but for population distribution (counts or `%`). Optional. +#' @param pi numeric. Same as `U` but for childbearing distribution (sum to 1). Optional. #' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... @@ -86,7 +86,7 @@ kin <- function(p = NULL, f = NULL, p <- p[,as.character(output_period)] f <- f[,as.character(output_period)] } - kin_full <- kin_time_invariant(p = p, f = f, + kin_full <- kin_time_invariant(p = p, f = f, pi = pi, output_kin = output_kin, birth_female = birth_female) %>% dplyr::mutate(cohort = NA, year = NA) }else{ diff --git a/R/kin2sex.R b/R/kin2sex.R index 3633087..a50a438 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -7,14 +7,14 @@ #' @details See Caswell (2022) for details on formulas. #' @param pf numeric. A vector (atomic) or matrix with female probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). #' @param pm numeric. A vector (atomic) or matrix with male probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). -#' @param ff numeric. Same as pf but for fertility rates. -#' @param fm numeric. Same as pm but for fertility rates. +#' @param ff numeric. Same as `pf` but for fertility rates. +#' @param fm numeric. Same as `pm` but for fertility rates. #' @param time_invariant logical. Constant assumption for a given `year` rates. Default `TRUE`. #' @param sex_focal character. "f" for female or "m" for male. #' @param pif numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default `NULL`. #' @param pim numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default `NULL`. -#' @param nf numeric. Same as pf but for population distribution (counts or `%`). Optional. -#' @param nm numeric. Same as pm but for population distribution (counts or `%`). Optional. +#' @param nf numeric. Only for `time_invariant = FALSE`. Same as `pf` but for population distribution (counts or `%`). Optional. +#' @param nm numeric. Only for `time_invariant = FALSE`. Same as `pm` but for population distribution (counts or `%`). Optional. #' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... diff --git a/man/kin.Rd b/man/kin.Rd index 2f52db6..83dbe04 100644 --- a/man/kin.Rd +++ b/man/kin.Rd @@ -22,13 +22,13 @@ kin( \item{p}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} -\item{f}{numeric. Same as p but for fertility rates.} +\item{f}{numeric. Same as \code{p} but for fertility rates.} \item{time_invariant}{logical. Constant assumption for a given \code{year} rates. Default \code{TRUE}.} -\item{pi}{numeric. Same as U but for childbearing distribution (sum to 1). Optional.} +\item{pi}{numeric. Same as \code{U} but for childbearing distribution (sum to 1). Optional.} -\item{n}{numeric. Same as p but for population distribution (counts or \verb{\%}). Optional.} +\item{n}{numeric. Only for \code{time_invariant = FALSE}. Same as \code{p} but for population distribution (counts or \verb{\%}). Optional.} \item{output_cohort}{integer. Vector of year cohorts for returning results. Should be within input data years range.} diff --git a/man/kin2sex.Rd b/man/kin2sex.Rd index 4a31d5d..be985aa 100644 --- a/man/kin2sex.Rd +++ b/man/kin2sex.Rd @@ -26,9 +26,9 @@ kin2sex( \item{pm}{numeric. A vector (atomic) or matrix with male probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} -\item{ff}{numeric. Same as pf but for fertility rates.} +\item{ff}{numeric. Same as \code{pf} but for fertility rates.} -\item{fm}{numeric. Same as pm but for fertility rates.} +\item{fm}{numeric. Same as \code{pm} but for fertility rates.} \item{time_invariant}{logical. Constant assumption for a given \code{year} rates. Default \code{TRUE}.} @@ -40,9 +40,9 @@ kin2sex( \item{pim}{numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default \code{NULL}.} -\item{nf}{numeric. Same as pf but for population distribution (counts or \verb{\%}). Optional.} +\item{nf}{numeric. Only for \code{time_invariant = FALSE}. Same as \code{pf} but for population distribution (counts or \verb{\%}). Optional.} -\item{nm}{numeric. Same as pm but for population distribution (counts or \verb{\%}). Optional.} +\item{nm}{numeric. Only for \code{time_invariant = FALSE}. Same as \code{pm} but for population distribution (counts or \verb{\%}). Optional.} \item{output_cohort}{integer. Vector of year cohorts for returning results. Should be within input data years range.} diff --git a/man/kin_time_variant.Rd b/man/kin_time_variant.Rd index 0646778..787052f 100644 --- a/man/kin_time_variant.Rd +++ b/man/kin_time_variant.Rd @@ -36,7 +36,7 @@ kin_time_variant( \item{list_output}{logical. Results as a list with years elements (as a result of \code{output_cohort} and \code{output_period} combination), with a second list of \code{output_kin} elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default \code{FALSE}} } \value{ -A data frame of population kinship structure, with focal's cohort, focalĀ“s age, period year, type of relatives +A data frame of population kinship structure, with Focal's cohort, focalĀ“s age, period year, type of relatives (for example \code{d} is daughter, \code{oa} is older aunts, etc.), living and death kin counts, and age of (living or time deceased) relatives. If \code{list_output = TRUE} then this is a list. } \description{ diff --git a/man/rename_kin.Rd b/man/rename_kin.Rd index ea52394..b5d195b 100644 --- a/man/rename_kin.Rd +++ b/man/rename_kin.Rd @@ -11,6 +11,9 @@ rename_kin(df, sex = "f") \item{sex}{character. "f" for female, "m" for male or "2sex" for both sex naming.} } +\value{ +Add a column with kin labels in the input data frame. +} \description{ Add kin labels depending the sex } diff --git a/man/timevarying_kin.Rd b/man/timevarying_kin.Rd index 1826543..ac481c9 100644 --- a/man/timevarying_kin.Rd +++ b/man/timevarying_kin.Rd @@ -17,6 +17,9 @@ timevarying_kin(Ut, ft, pit, ages, pkin) \item{pkin}{numeric. A list with kin count distribution in previous year.} } +\value{ +A list of 14 types of kin matrices (kin age by Focal age) projected one time interval. +} \description{ one time projection kin. internal function. } diff --git a/man/timevarying_kin_2sex.Rd b/man/timevarying_kin_2sex.Rd index ba4f03e..abf1774 100644 --- a/man/timevarying_kin_2sex.Rd +++ b/man/timevarying_kin_2sex.Rd @@ -21,6 +21,9 @@ timevarying_kin_2sex(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin) \item{pkin}{numeric. A list with kin count distribution in previous year.} } +\value{ +A list of 14 types of kin matrices (kin age by Focal age, blocked for two sex) projected one time interval. +} \description{ one time projection kin. internal function. } From b3f5387a20bd765d8567e6cfa6a8918413b1e138 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 26 May 2023 16:32:04 -0300 Subject: [PATCH 27/89] Increment version number to 1.0.3 --- DESCRIPTION | 2 +- NEWS.md | 2 ++ 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/DESCRIPTION b/DESCRIPTION index b48b899..62a4398 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -3,7 +3,7 @@ Title: Estimate Population Kin Distribution Description: Estimate population kin counts and its distribution by type, age and sex. The package implements one-sex and two-sex framework for studying living-death availability, with time varying rates or not, and multi-stage model. -Version: 1.0.2 +Version: 1.0.3 Authors@R: c( person("IvĆ”n", "Williams", email = "act.ivanwilliams@gmail.com", role = "cre"), person("Diego", "Alburez-Gutierrez", email = "alburezgutierrez@demogr.mpg.de", role = "aut"), diff --git a/NEWS.md b/NEWS.md index 3896284..cfc0438 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,5 @@ +# DemoKin 1.0.3 + # DemoKin 1.0.2 # DemoKin 1.0.1 From f54cd023b2e6bb2de1e74d1d0c89c13828149c44 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Sun, 4 Jun 2023 10:15:04 -0300 Subject: [PATCH 28/89] preapare cran --- CRAN-SUBMISSION | 6 +++--- cran-comments.md | 2 +- vignettes/Reference_TwoSex.Rmd | 19 +++++++++++++------ 3 files changed, 17 insertions(+), 10 deletions(-) diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION index 2ac4999..90dd290 100644 --- a/CRAN-SUBMISSION +++ b/CRAN-SUBMISSION @@ -1,3 +1,3 @@ -Version: 1.0.2 -Date: 2023-05-24 13:15:15 UTC -SHA: ec457d74b47529e4de91917ebb8129a6e904c199 +Version: 1.0.3 +Date: 2023-05-26 19:38:45 UTC +SHA: b3f5387a20bd765d8567e6cfa6a8918413b1e138 diff --git a/cran-comments.md b/cran-comments.md index 858617d..998da63 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -2,4 +2,4 @@ 0 errors | 0 warnings | 1 note -* This is a new release. +* This is a new release. I replaced the use of par(), which created some problems, with ggplot tools. Hope solves the issue. diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index 22dc189..8ee0d94 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -152,15 +152,22 @@ swe_surv_m_matrix <- swe_px ^ 1.5 # artificial perturbation for this example swe_fert_f_matrix <- swe_asfr swe_fert_m_matrix <- rbind(matrix(0, 5, years), swe_asfr[-((ages-4):ages),]) * 1.05 # artificial perturbation for this example +``` -par(mfrow=c(1,2)) -plot(swe_surv_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Survival probability") -lines(swe_surv_m_matrix[,"1900"], col=2) -plot(swe_fert_f_matrix[,"1900"], t="l", xlab = "Age", ylab = "Fertility rate") -lines(swe_fert_m_matrix[,"1900"], col=2) -options(mfrow = NULL) +This is how it looks for year 1900: +```{r} +bind_rows( + data.frame(age = 0:100, sex = "Female", component = "Fertility rate", value = swe_fert_f_matrix[,"1900"]), + data.frame(age = 0:100, sex = "Male", component = "Fertility rate", value = swe_fert_m_matrix[,"1900"]), + data.frame(age = 0:100, sex = "Female", component = "Survival probability", value = swe_surv_f_matrix[,"1900"]), + data.frame(age = 0:100, sex = "Male", component = "Survival probability", value = swe_surv_m_matrix[,"1900"])) %>% + ggplot(aes(age, value, col = sex)) + + geom_line() + + theme_bw() + + facet_wrap(~component, scales = "free") ``` + We now run the time-variant two-sex models (note the `time_invariant = FALSE` argument): ```{r} From db6ae988af469988ad02267f66f1be43d224f2ec Mon Sep 17 00:00:00 2001 From: alburezg Date: Fri, 9 Jun 2023 09:36:26 +0200 Subject: [PATCH 29/89] updated readme after cran release --- README.Rmd | 12 ++++++----- README.md | 58 ++++++++++++++++++++++++++++++++---------------------- 2 files changed, 42 insertions(+), 28 deletions(-) diff --git a/README.Rmd b/README.Rmd index 0b6feb8..a3f462f 100644 --- a/README.Rmd +++ b/README.Rmd @@ -34,12 +34,13 @@ library(knitr) ## Installation -``` {r, eval=FALSE, include = F} -You can install the CRAN version: +Download the stable version [from CRAN](https://cran.r-project.org/web/packages/DemoKin/): + +``` {r, eval=FALSE, include = T} install.packages("DemoKin") ``` -You can install the development version from GitHub with: +Or you can install the development version from GitHub: ``` {r, eval=FALSE} # install.packages("devtools") @@ -79,12 +80,13 @@ plot_diagram(kin_total, rounding = 2) Relatives are identified by a unique code: ```{r, fig.height=6, fig.width=8, echo=FALSE} -kable(DemoKin::demokin_codes[,c(1,3)]) +# kable(DemoKin::demokin_codes[,c("DemoKin", "Labels_2sex")]) +kable(DemoKin::demokin_codes[,-c(2)]) ``` ## Vignette -For more details, including an extension to time-variant rates, deceased kin, and multi-state models in a one-sex framework, see `vignette("Reference_OneSex", package = "DemoKin")`. For two-sex models, see `vignette("Reference_TwoSex", package = "DemoKin")`. +For more details, including an extension to time-variant rates, deceased kin, and multi-state models in a one-sex framework, see the [Reference_OneSex](https://cran.r-project.org/web/packages/DemoKin/vignettes/Reference_OneSex.html) vignette; also accessible from DemoKin: `vignette("Reference_OneSex", package = "DemoKin")`. For two-sex models, see the [Reference_TwoSex](https://cran.r-project.org/web/packages/DemoKin/vignettes/Reference_TwoSex.html) vignette; also accessible from DemoKin: `vignette("Reference_TwoSex", package = "DemoKin")`. If the vignette does not load, you may need to install the package as `devtools::install_github("IvanWilli/DemoKin", build_vignettes = T)`. ## Citation diff --git a/README.md b/README.md index 9edd51d..2bb3c6b 100644 --- a/README.md +++ b/README.md @@ -23,7 +23,14 @@ theoretical development by Goodman, Keyfitz and Pullum (1974). ## Installation -You can install the development version from GitHub with: +Download the stable version [from +CRAN](https://cran.r-project.org/web/packages/DemoKin/): + +``` r +install.packages("DemoKin") +``` + +Or you can install the development version from GitHub: ``` r # install.packages("devtools") @@ -72,33 +79,38 @@ plot_diagram(kin_total, rounding = 2) Relatives are identified by a unique code: -| DemoKin | Labels_female | -|:--------|:----------------------------| -| coa | Cousins from older aunts | -| cya | Cousins from younger aunts | -| c | Cousins | -| d | Daughters | -| gd | Grand-daughters | -| ggd | Great-grand-daughters | -| ggm | Great-grandmothers | -| gm | Grandmothers | -| m | Mother | -| nos | Nieces from older sisters | -| nys | Nieces from younger sisters | -| n | Nieces | -| oa | Aunts older than mother | -| ya | Aunts younger than mother | -| a | Aunts | -| os | Older sisters | -| ys | Younger sisters | -| s | Sisters | +| DemoKin | Labels_female | Labels_male | Labels_2sex | +|:--------|:----------------------------|:------------------------------|:----------------------------------| +| coa | Cousins from older aunts | Cousins from older uncles | Cousins from older aunts/uncles | +| cya | Cousins from younger aunts | Cousins from younger uncles | Cousins from younger aunts/uncles | +| c | Cousins | Cousins | Cousins | +| d | Daughters | Brothers | Siblings | +| gd | Grand-daughters | Grand-sons | Grand-childrens | +| ggd | Great-grand-daughters | Great-grand-sons | Great-grand-childrens | +| ggm | Great-grandmothers | Great-grandfathers | Great-grandfparents | +| gm | Grandmothers | Grandfathers | Grandparents | +| m | Mother | Father | Parents | +| nos | Nieces from older sisters | Nephews from older brothers | Niblings from older siblings | +| nys | Nieces from younger sisters | Nephews from younger brothers | Niblings from younger siblings | +| n | Nieces | Nephews | Niblings | +| oa | Aunts older than mother | Uncles older than fathers | Aunts/Uncles older than parents | +| ya | Aunts younger than mother | Uncles younger than father | Aunts/Uncles younger than parents | +| a | Aunts | Uncles | Aunts/Uncles | +| os | Older sisters | Older brothers | Older siblings | +| ys | Younger sisters | Younger brothers | Younger siblings | +| s | Sisters | Brothers | Siblings | ## Vignette For more details, including an extension to time-variant rates, deceased -kin, and multi-state models in a one-sex framework, see +kin, and multi-state models in a one-sex framework, see the +[Reference_OneSex](https://cran.r-project.org/web/packages/DemoKin/vignettes/Reference_OneSex.html) +vignette; also accessible from DemoKin: `vignette("Reference_OneSex", package = "DemoKin")`. For two-sex models, -see `vignette("Reference_TwoSex", package = "DemoKin")`. If the vignette +see the +[Reference_TwoSex](https://cran.r-project.org/web/packages/DemoKin/vignettes/Reference_TwoSex.html) +vignette; also accessible from DemoKin: +`vignette("Reference_TwoSex", package = "DemoKin")`. If the vignette does not load, you may need to install the package as `devtools::install_github("IvanWilli/DemoKin", build_vignettes = T)`. From 2e90b913e1643eeadefac08eebc091f853e760eb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Benjamin-Samuel=20Schl=C3=BCter?= Date: Tue, 6 Feb 2024 15:20:22 -0500 Subject: [PATCH 30/89] start building time invariant for 2 sex by cause of death --- R/kindeath_cod_time_invariant_2sex.R | 210 +++++++++++++++++++++++++++ 1 file changed, 210 insertions(+) create mode 100644 R/kindeath_cod_time_invariant_2sex.R diff --git a/R/kindeath_cod_time_invariant_2sex.R b/R/kindeath_cod_time_invariant_2sex.R new file mode 100644 index 0000000..a72fb44 --- /dev/null +++ b/R/kindeath_cod_time_invariant_2sex.R @@ -0,0 +1,210 @@ +#' Estimate kin counts in a time invariant framework for two-sex model. + +#' @description Two-sex matrix framework for kin count estimates.This produces kin counts grouped by kin, age and sex of +#' each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents +#' are grouped in one male count of cousins. +#' @details See Caswell (2022) for details on formulas. +#' @param pf numeric. A vector of survival probabilities for females with same length as ages. +#' @param ff numeric. A vector of age-specific fertility rates for females with same length as ages. +#' @param pm numeric. A vector of survival probabilities for males with same length as ages. +#' @param fm numeric. A vector of age-specific fertility rates for males with same length as ages. +#' @param sex_focal character. "f" for female or "m" for male. +#' @param birth_female numeric. Female portion at birth. +#' @param pif numeric. For using some specific non-stable age distribution of childbearing for mothers (same length as ages). Default `NULL`. +#' @param pim numeric. For using some specific non-stable age distribution of childbearing for fathers (same length as ages). Default `NULL`. +#' @param output_kin character. kin to return, considering matrilineal names. For example "m" for parents, "d" for children, etc. See the `vignette` for all kin types. +#' @param list_output logical. Results as a list with `output_kin` elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default `FALSE` +#' +#' @return A data frame with focalĀ“s age, related ages and type of kin +#' (for example `d` is children, `oa` is older aunts/uncles, etc.), sex, alive and death. If `list_output = TRUE` then this is a list. +#' @export + +## BEN: ======================================================================== +# Function building: +library(DemoKin) +library(tidyr) +library(dplyr) + +# Input of model +ff <- fra_asfr_sex[,"ff"] +fm <- fra_asfr_sex[,"fm"] +pf <- fra_surv_sex[,"pf"] +pm <- fra_surv_sex[,"pm"] + +# Create a fictitious hazard matrix with three causes of death. +# Assume that each cause consists of 1/3 of all death in all age groups. +Hf <- Hm <- matrix(1, nrow = 3, ncol = length(ff)) + +## ============================================================================= + + +# BEN: Added hazard matrices as inputs. +# Assume that input of cause-specific mortality will be in terms of +# matrices of cause-specific hazards for the two sexes (causes * ages). +# Alternative: a matrix (causes * ages) containing the ratio mxi/mx. +kindeath_cod_time_invariant_2sex <- function(pf = NULL, pm = NULL, + ff = NULL, fm = NULL, + Hf = NULL, Hm = NULL, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, pim = NULL, + output_kin = NULL, + list_output = FALSE){ + + # global vars + .<-sex_kin<-alive<-count<-living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + + # same input length + + # BEN: Now we should also check the dimensions of the cause-specific hazard + # matrices. + if(!all(length(pf)==length(pm), length(pf)==length(ff), length(pf)==length(fm), + nrow(Hf)==nrow(Hm), ncol(Hf)==ncol(Hm), ncol(Hf)==length(pf))) stop("Number of age groups of p's, h's, and f's should match") + + # make matrix transition from vectors. Include death counts with matrix M + age = 0:(length(pf)-1) + ages = length(age) + agess = ages * 2 + Uf = Um = Ff = Fm = Gt = zeros = matrix(0, nrow=ages, ncol=ages) + Uf[row(Uf)-1 == col(Uf)] <- pf[-ages] + + # BEN: What is the purpose of the following line? By default it is zero due to + # how the matrix is created + Uf[ages, ages] = Uf[ages] + + Um[row(Um)-1 == col(Um)] <- pm[-ages] + Um[ages, ages] = Um[ages] + + # BEN: Building of M, matrix of cause-specific prob. of dying. + # Hence, M = H D(h_tilde)^{-1} D(q) + # where h_tilde are the summed hazards for each age, and + # q = 1 - p + alpha <- nrow(Hf) # number of causes of death + sum_hf <- t(rep(1, alpha)) %*% Hf # h_tilde female + sum_hm <- t(rep(1, alpha)) %*% Hm # h_tilde male + Mf <- Hf %*% solve(diag(c(sum_hf))) %*% diag(1-pf) + Mm <- Hm %*% solve(diag(c(sum_hm))) %*% diag(1-pm) + # Mm <- diag(1-pm) + # Mf <- diag(1-pf) + zeros_l <- matrix(0, nrow = ages, ncol = alpha) # zero matrix for living kin part + zeros_d = matrix(0, nrow = alpha, ncol = alpha) # zero matrix for death kin part + Ut <- as.matrix(rbind( + cbind(Matrix::bdiag(Uf, Um), Matrix::bdiag(zeros_l, zeros_l)), + cbind(Matrix::bdiag(Mf, Mm), Matrix::bdiag(zeros_d, zeros_d)))) + + Ff[1,] = ff + Fm[1,] = fm + + # BEN: CONTINUE WORK FROM HERE + Ft <- Ft_star <- matrix(0, agess*2, agess*2) + Ft[1:agess,1:agess] <- rbind(cbind(birth_female * Ff, birth_female * Fm), + cbind((1-birth_female) * Ff, (1-birth_female) * Fm)) + + # mother and father do not reproduce independently to produce focalĀ“s siblings. Assign to mother + Ft_star[1:agess,1:ages] <- rbind(birth_female * Ff, (1-birth_female) * Ff) + + # parents age distribution under stable assumption in case no input + if(is.null(pim) | is.null(pif)){ + A = Matrix::bdiag(Uf, Um) + Ft_star[1:agess,1:agess] + A_decomp = eigen(A) + lambda = as.double(A_decomp$values[1]) + w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + wf = w[1:ages] + wm = w[(ages+1):(2*ages)] + pif = wf * ff / sum(wf * ff) + pim = wm * fm / sum(wm * fm) + } + + # initial count matrix (kin ages in rows and focal age in column) + phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0, agess*2, ages) + + # locate focal at age 0 depending sex + sex_index <- ifelse(sex_focal == "f", 1, ages+1) + phi[sex_index, 1] <- 1 + + # G matrix moves focal by age + G <- matrix(0, nrow=ages, ncol=ages) + G[row(G)-1 == col(G)] <- 1 + Gt <- matrix(0, agess*2, agess*2) + Gt[1:(agess), 1:(agess)] <- as.matrix(Matrix::bdiag(G, G)) + + # focalĀ“s trip + # names of matrix count by kin refers to matrilineal as general reference + m[1:(agess),1] = c(pif, pim) + for(i in 1:(ages-1)){ + # i = 1 + phi[,i+1] = Gt %*% phi[,i] + d[,i+1] = Ut %*% d[,i] + Ft %*% phi[,i] + gd[,i+1] = Ut %*% gd[,i] + Ft %*% d[,i] + ggd[,i+1] = Ut %*% ggd[,i] + Ft %*% gd[,i] + m[,i+1] = Ut %*% m[,i] + ys[,i+1] = Ut %*% ys[,i] + Ft_star %*% m[,i] + nys[,i+1] = Ut %*% nys[,i] + Ft %*% ys[,i] + } + + gm[1:(agess),1] = m[1:(agess),] %*% (pif + pim) + for(i in 1:(ages-1)){ + gm[,i+1] = Ut %*% gm[,i] + } + + ggm[1:(agess),1] = gm[1:(agess),] %*% (pif + pim) + for(i in 1:(ages-1)){ + ggm[,i+1] = Ut %*% ggm[,i] + } + + os[1:(agess),1] = d[1:(agess),] %*% pif + nos[1:(agess),1] = gd[1:(agess),] %*% pif + for(i in 1:(ages-1)){ + os[,i+1] = Ut %*% os[,i] + nos[,i+1] = Ut %*% nos[,i] + Ft %*% os[,i] + } + + oa[1:(agess),1] = os[1:(agess),] %*% (pif + pim) + ya[1:(agess),1] = ys[1:(agess),] %*% (pif + pim) + coa[1:(agess),1] = nos[1:(agess),] %*% (pif + pim) + cya[1:(agess),1] = nys[1:(agess),] %*% (pif + pim) + for(i in 1:(ages-1)){ + oa[,i+1] = Ut %*% oa[,i] + ya[,i+1] = Ut %*% ya[,i] + Ft_star %*% gm[,i] + coa[,i+1] = Ut %*% coa[,i] + Ft %*% oa[,i] + cya[,i+1] = Ut %*% cya[,i] + Ft %*% ya[,i] + } + + # get results + kin_list <- list(d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, + nos=nos,nys=nys,oa=oa,ya=ya,coa=coa,cya=cya) + + # only selected kin + if(!is.null(output_kin)){ + kin_list <- kin_list %>% purrr::keep(names(.) %in% output_kin) + } + + # as data.frame + kin <- purrr::map2(kin_list, names(kin_list), + function(x,y){ + # reassign deaths to Focal experienced age + x[(agess+1):(agess*2),1:(ages-1)] <- x[(agess+1):(agess*2),2:ages] + x[(agess+1):(agess*2),ages] <- 0 + out <- as.data.frame(x) + colnames(out) <- age + out %>% + dplyr::mutate(kin = y, + age_kin = rep(age,4), + sex_kin = rep(c(rep("f",ages), rep("m",ages)),2), + alive = c(rep("living",2*ages), rep("dead",2*ages))) %>% + tidyr::pivot_longer(c(-age_kin, -kin, -sex_kin, -alive), names_to = "age_focal", values_to = "count") %>% + dplyr::mutate(age_focal = as.integer(age_focal)) %>% + tidyr::pivot_wider(names_from = alive, values_from = count) + } + ) %>% + purrr::reduce(rbind) + + # results as list? + if(list_output) { + out <- kin_list + }else{ + out <- kin + } + + return(out) +} From 6cdccb5c12047e1c3e0c5fa46b9b4fe4aa4ee5ad Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Benjamin-Samuel=20Schl=C3=BCter?= Date: Tue, 13 Feb 2024 15:07:07 -0500 Subject: [PATCH 31/89] created functions for cod --- ...t_2sex.R => kin_time_invariant_2sex_cod.R} | 141 +++++-- R/kin_time_variant_2sex_cod.R | 356 ++++++++++++++++++ 2 files changed, 460 insertions(+), 37 deletions(-) rename R/{kindeath_cod_time_invariant_2sex.R => kin_time_invariant_2sex_cod.R} (61%) create mode 100644 R/kin_time_variant_2sex_cod.R diff --git a/R/kindeath_cod_time_invariant_2sex.R b/R/kin_time_invariant_2sex_cod.R similarity index 61% rename from R/kindeath_cod_time_invariant_2sex.R rename to R/kin_time_invariant_2sex_cod.R index a72fb44..0434360 100644 --- a/R/kindeath_cod_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex_cod.R @@ -21,19 +21,25 @@ ## BEN: ======================================================================== # Function building: -library(DemoKin) -library(tidyr) -library(dplyr) - -# Input of model -ff <- fra_asfr_sex[,"ff"] -fm <- fra_asfr_sex[,"fm"] -pf <- fra_surv_sex[,"pf"] -pm <- fra_surv_sex[,"pm"] - -# Create a fictitious hazard matrix with three causes of death. -# Assume that each cause consists of 1/3 of all death in all age groups. -Hf <- Hm <- matrix(1, nrow = 3, ncol = length(ff)) +# library(DemoKin) +# library(tidyr) +# library(dplyr) +# library(here) +# +# # Input of model +# ff <- fra_asfr_sex[,"ff"] +# fm <- fra_asfr_sex[,"fm"] +# pf <- fra_surv_sex[,"pf"] +# pm <- fra_surv_sex[,"pm"] +# birth_female = 1/2.04 +# pif <- pim <- NULL +# sex_focal = "f" +# output_kin = NULL +# list_output = FALSE +# +# # Create a fictitious hazard matrix with three causes of death. +# # Assume that each cause consists of 1/3 of all death in all age groups. +# Hf <- Hm <- matrix(1, nrow = 3, ncol = length(ff)) ## ============================================================================= @@ -42,14 +48,19 @@ Hf <- Hm <- matrix(1, nrow = 3, ncol = length(ff)) # Assume that input of cause-specific mortality will be in terms of # matrices of cause-specific hazards for the two sexes (causes * ages). # Alternative: a matrix (causes * ages) containing the ratio mxi/mx. -kindeath_cod_time_invariant_2sex <- function(pf = NULL, pm = NULL, - ff = NULL, fm = NULL, - Hf = NULL, Hm = NULL, - sex_focal = "f", - birth_female = 1/2.04, - pif = NULL, pim = NULL, - output_kin = NULL, - list_output = FALSE){ +kin_time_invariant_2sex_cod <- function(pf = NULL, + pm = NULL, + ff = NULL, + fm = NULL, + Hf = NULL, + Hm = NULL, + sex_focal = "f", + birth_female = 1 / 2.04, + pif = NULL, + pim = NULL, + output_kin = NULL, + list_output = FALSE) { + # global vars .<-sex_kin<-alive<-count<-living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL @@ -65,7 +76,15 @@ kindeath_cod_time_invariant_2sex <- function(pf = NULL, pm = NULL, age = 0:(length(pf)-1) ages = length(age) agess = ages * 2 - Uf = Um = Ff = Fm = Gt = zeros = matrix(0, nrow=ages, ncol=ages) + Uf = Um = Ff = Fm = Gt = matrix(0, nrow=ages, ncol=ages) + + # BEN: The zero matrix was deleted from line above and has + # to be made specific according to living/dead kin + # part of the block matrix Ut. + causes <- nrow(Hf) # number of causes of death + zeros_l <- matrix(0, nrow = ages, ncol = (causes*ages)) # zero matrix for living kin part + zeros_d = matrix(0, nrow = (causes*ages), ncol = (causes*ages)) # zero matrix for death kin part + Uf[row(Uf)-1 == col(Uf)] <- pf[-ages] # BEN: What is the purpose of the following line? By default it is zero due to @@ -79,24 +98,30 @@ kindeath_cod_time_invariant_2sex <- function(pf = NULL, pm = NULL, # Hence, M = H D(h_tilde)^{-1} D(q) # where h_tilde are the summed hazards for each age, and # q = 1 - p - alpha <- nrow(Hf) # number of causes of death - sum_hf <- t(rep(1, alpha)) %*% Hf # h_tilde female - sum_hm <- t(rep(1, alpha)) %*% Hm # h_tilde male + sum_hf <- t(rep(1, causes)) %*% Hf # h_tilde female + sum_hm <- t(rep(1, causes)) %*% Hm # h_tilde male Mf <- Hf %*% solve(diag(c(sum_hf))) %*% diag(1-pf) Mm <- Hm %*% solve(diag(c(sum_hm))) %*% diag(1-pm) # Mm <- diag(1-pm) # Mf <- diag(1-pf) - zeros_l <- matrix(0, nrow = ages, ncol = alpha) # zero matrix for living kin part - zeros_d = matrix(0, nrow = alpha, ncol = alpha) # zero matrix for death kin part + + # BEN: In order to classify kin death by both cause and age at death, + # we need a mortality matrices M_hat of dimension + # ((causes*ages) * ages). See eq.12 in Caswell et al. (2024). + # Store columns of M as a list of vectors + Mf.cols <- lapply(1:ncol(Mf), function(j) return(Mf[,j])) + Mm.cols <- lapply(1:ncol(Mm), function(j) return(Mm[,j])) + # Create M_hat using the vectors as elements of the block diagonal Ut <- as.matrix(rbind( cbind(Matrix::bdiag(Uf, Um), Matrix::bdiag(zeros_l, zeros_l)), - cbind(Matrix::bdiag(Mf, Mm), Matrix::bdiag(zeros_d, zeros_d)))) + cbind(Matrix::bdiag(Matrix::bdiag(Mf.cols), Matrix::bdiag(Mm.cols)), Matrix::bdiag(zeros_d, zeros_d)))) Ff[1,] = ff Fm[1,] = fm - # BEN: CONTINUE WORK FROM HERE - Ft <- Ft_star <- matrix(0, agess*2, agess*2) + # BEN: Accounting for causes of death leads to have different dimensions + # in Ft and Ft_star. + Ft <- Ft_star <- matrix(0, (agess + agess*causes), (agess + agess*causes)) Ft[1:agess,1:agess] <- rbind(cbind(birth_female * Ff, birth_female * Fm), cbind((1-birth_female) * Ff, (1-birth_female) * Fm)) @@ -116,7 +141,8 @@ kindeath_cod_time_invariant_2sex <- function(pf = NULL, pm = NULL, } # initial count matrix (kin ages in rows and focal age in column) - phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0, agess*2, ages) + # BEN: Changed dimensions of lower part (dead kin) to account for death from causes. + phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0, (agess + agess*causes), ages) # locate focal at age 0 depending sex sex_index <- ifelse(sex_focal == "f", 1, ages+1) @@ -125,7 +151,10 @@ kindeath_cod_time_invariant_2sex <- function(pf = NULL, pm = NULL, # G matrix moves focal by age G <- matrix(0, nrow=ages, ncol=ages) G[row(G)-1 == col(G)] <- 1 - Gt <- matrix(0, agess*2, agess*2) + + # BEN: Changed dimensions + Gt <- matrix(0, (agess + agess*causes), (agess + agess*causes)) + Gt[1:(agess), 1:(agess)] <- as.matrix(Matrix::bdiag(G, G)) # focalĀ“s trip @@ -182,16 +211,24 @@ kindeath_cod_time_invariant_2sex <- function(pf = NULL, pm = NULL, # as data.frame kin <- purrr::map2(kin_list, names(kin_list), function(x,y){ + + # BEN: Death take place in the same year and age! + # I adapted the code + # below such that it works with the new dimensions. + # reassign deaths to Focal experienced age - x[(agess+1):(agess*2),1:(ages-1)] <- x[(agess+1):(agess*2),2:ages] - x[(agess+1):(agess*2),ages] <- 0 + x[(agess+1):(agess + agess*causes),1:(ages-1)] <- x[(agess+1):(agess + agess*causes),2:ages] + x[(agess+1):(agess + agess*causes),ages] <- 0 out <- as.data.frame(x) colnames(out) <- age out %>% + # BEN: the matrices have different dimensions when + # we accounf for causes of death so what follows + # has been substantially changed. dplyr::mutate(kin = y, - age_kin = rep(age,4), - sex_kin = rep(c(rep("f",ages), rep("m",ages)),2), - alive = c(rep("living",2*ages), rep("dead",2*ages))) %>% + age_kin = c(rep(age,2), rep(rep(age,each=causes),2)), + sex_kin = c(rep(c("f", "m"),each=ages), rep(c("f", "m"),each=ages*causes)), + alive = c(rep("living",2*ages), rep(paste0("deadcause",1:causes),2*ages))) %>% tidyr::pivot_longer(c(-age_kin, -kin, -sex_kin, -alive), names_to = "age_focal", values_to = "count") %>% dplyr::mutate(age_focal = as.integer(age_focal)) %>% tidyr::pivot_wider(names_from = alive, values_from = count) @@ -208,3 +245,33 @@ kindeath_cod_time_invariant_2sex <- function(pf = NULL, pm = NULL, return(out) } + +## BEN: ======================================================================== + +# Checks + +# No dead parent at birth: deadcausei=0 when age_focal==0 +# ff # fertility starts at age 13 +# kin |> filter(kin == "m", age_focal ==0, age_kin >= 12) +# +# # pi when age_focal==0 and age_kin when fx>0: +# kin |> filter(kin == "m", age_kin >= 13, age_focal ==0) +# pif[14:101] +# +# # mother dying from cause i at age x when focal is age==1 comes from nber of +# # living mother age x when focal is age==1 multiplied by (1-pf[x])*(1/3) +# kin |> filter(kin == "m", age_kin == 14, age_focal ==1) +# 0.000246 * ((1-pf[15])*(1/3)) # mother +# 0.0000486 * ((1-pm[15])*(1/3)) # father +# +# # Store to compare with kin_time_invariant_2sex.R +# saveRDS( +# kin, +# here( +# "checks", +# "output_time_invariant_2sex.rds" +# ) +# ) + + +## ============================================================================= diff --git a/R/kin_time_variant_2sex_cod.R b/R/kin_time_variant_2sex_cod.R new file mode 100644 index 0000000..0d32652 --- /dev/null +++ b/R/kin_time_variant_2sex_cod.R @@ -0,0 +1,356 @@ +#' Estimate kin counts in a time variant framework (dynamic rates) in a two-sex framework (Caswell, 2022) + +#' @description Two-sex matrix framework for kin count estimates with varying rates. +#' This produces kin counts grouped by kin, age and sex of each relatives at each FocalĀ“s age. +#' For example, male cousins from aunts and uncles from different sibling's parents are grouped in one male count of cousins. +#' @details See Caswell (2022) for details on formulas. +#' @param pf numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param pm numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). +#' @param ff numeric. Same as pf but for fertility rates. +#' @param fm numeric. Same as pm but for fertility rates. +#' @param sex_focal character. "f" for female or "m" for male. +#' @param pif numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default `NULL`. +#' @param pim numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default `NULL`. +#' @param nf numeric. Same as pf but for population distribution (counts or `%`). Optional. +#' @param nm numeric. Same as pm but for population distribution (counts or `%`). Optional. +#' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. +#' @param output_period integer. Vector of period years for returning results. Should be within input data years range. +#' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... +#' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, this needs to be set as 1. +#' @param list_output logical. Results as a list with years elements (as a result of `output_cohort` and `output_period` combination), with a second list of `output_kin` elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default `FALSE` +#' @return A data.frame with year, cohort, FocalĀ“s age, related ages, sex and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age and sex. +#' @export + + +## BEN: ======================================================================== +# Function building: +library(DemoKin) +library(tidyr) +library(dplyr) +library(here) + +# Input of model +years <- ncol(swe_px) +ages <- nrow(swe_px) +ff <- swe_asfr +fm <- rbind(matrix(0, 5, years), + swe_asfr[-((ages-4):ages),]) * 1.05 +pf <- swe_px +pm <- swe_px ^ 1.5 + +sex_focal = "f" +time_invariant = FALSE +birth_female = .5 +output_cohort = 1900 # like in the vignette +output_period = NULL +output_kin = NULL + + +pif <- pim <- NULL +nf <- nm <- NULL +list_output = FALSE + +# Create a fictitious hazard matrix with three causes of death, where each +# year is a list item (Hazard matrix needs to be (causes * ages) for the +# matrix algebra to work well with existing code). +H <- matrix(c(0.5, 1, 2), nrow = 3, ncol = nrow(pf)) +Hf <- Hm <- sapply(colnames(pf), function(x) { + return(H) + }, + simplify = FALSE, + USE.NAMES = TRUE + ) +# BEN: Load time invariant for COD +source("./R/kin_time_invariant_2sex_cod.R") + + +## ============================================================================= + + +# BEN: Added hazard matrices as inputs. +# Assume that input of cause-specific mortality will be in terms of +# matrices of cause-specific hazards for the two sexes (causes * ages). +# Alternative: a matrix (causes * ages) containing the ratio mxi/mx. +kin_time_variant_2sex_cod <- function(pf = NULL, pm = NULL, + ff = NULL, fm = NULL, + Hf = NULL, Hm = NULL, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, pim = NULL, + nf = NULL, nm = NULL, + output_cohort = NULL, output_period = NULL, output_kin = NULL, + list_output = FALSE){ + + # global vars + .<-living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL + + # same input length + + # BEN: Now we should also check the dimensions of the cause-specific hazard + # matrices. + if(!all(dim(pf) == dim(pm), dim(pf) == dim(ff), dim(pf) == dim(fm), + nrow(Hf)==nrow(Hm), ncol(Hf)==ncol(Hm), ncol(Hf)==nrow(pf), + length(Hf)==length(Hm), length(Hm)==ncol(pf))) stop("Dimension of P's, F's, and H's should match") + + # data should be from same interval years + years_data <- as.integer(colnames(pf)) + if(stats::var(diff(years_data))!=0) stop("Data should be for same interval length years. Fill the gaps and run again") + + # utils + age <- 0:(nrow(pf)-1) + n_years_data <- length(years_data) + ages <- length(age) + agess <- ages*2 + om <- max(age) + + # BEN: The zero matrix was deleted from line above and has + # to be made specific according to living/dead kin + # part of the block matrix Ut. + causes <- nrow(Hf[[1]]) # number of causes of death + zeros_l <- matrix(0, nrow = ages, ncol = (causes*ages)) # zero matrix for living kin part + zeros_d = matrix(0, nrow = (causes*ages), ncol = (causes*ages)) # zero matrix for death kin part + + # age distribution at child born + Pif <- pif; no_Pif <- FALSE + Pim <- pim; no_Pim <- FALSE + if(is.null(pif)){ + if(!is.null(nf)){ + Pif <- t(t(nf * ff)/colSums(nf * ff)) + }else{ + Pif <- matrix(0, nrow=ages, ncol=n_years_data) + no_Pif <- TRUE + } + } + if(is.null(pim)){ + if(!is.null(nm)){ + Pim <- t(t(nm * fm)/colSums(nm * fm)) + }else{ + Pim <- matrix(0, nrow=ages, ncol=n_years_data) + no_Pim <- TRUE + } + } + + # get lists of matrix + Ul = Fl = Fl_star = list() + kin_all <- list() + pb <- progress::progress_bar$new( + format = "Running over input years [:bar] :percent", + total = n_years_data + 1, clear = FALSE, width = 60) + + # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + # BEN: First load function at the end of script + # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + for(t in 1:n_years_data){ + # t = 1 + Uf = Um = Fft = Fmt = Mm = Mf = Gt = matrix(0, nrow=ages, ncol=ages) + Uf[row(Uf)-1 == col(Uf)] <- pf[-ages,t] + Uf[ages, ages] = pf[ages,t] + Um[row(Um)-1 == col(Um)] <- pm[-ages,t] + Um[ages, ages] = pm[ages,t] + + # BEN: Building of M, matrix of cause-specific prob. of dying. + # Hence, M = H D(h_tilde)^{-1} D(q) + # where h_tilde are the summed hazards for each age, and + # q = 1 - p + sum_hf <- t(rep(1, causes)) %*% Hf[[t]] # h_tilde female + sum_hm <- t(rep(1, causes)) %*% Hm[[t]] # h_tilde male + Mf <- Hf[[t]] %*% solve(diag(c(sum_hf))) %*% diag(1-pf[,t]) + Mm <- Hm[[t]] %*% solve(diag(c(sum_hm))) %*% diag(1-pm[,t]) + # Mm <- diag(1-pm[,t]) + # Mf <- diag(1-pf[,t]) + + # BEN: In order to classify kin death by both cause and age at death, + # we need a mortality matrices M_hat of dimension + # ((causes*ages) * ages). See eq.12 in Caswell et al. (2024). + # Store columns of M as a list of vectors + Mf.cols <- lapply(1:ncol(Mf), function(j) return(Mf[,j])) + Mm.cols <- lapply(1:ncol(Mm), function(j) return(Mm[,j])) + # Create M_hat using the vectors as elements of the block diagonal + Ut <- as.matrix(rbind( + cbind(Matrix::bdiag(Uf, Um), Matrix::bdiag(zeros_l, zeros_l)), + cbind(Matrix::bdiag(Matrix::bdiag(Mf.cols), Matrix::bdiag(Mm.cols)), Matrix::bdiag(zeros_d, zeros_d)))) + + Ul[[as.character(years_data[t])]] <- Ut + Fft[1,] = ff[,t] + Fmt[1,] = fm[,t] + + # BEN: Accounting for causes of death leads to have different dimensions + # in Ft and Ft_star. + Ft <- Ft_star <- matrix(0, (agess + agess*causes), (agess + agess*causes)) + + Ft[1:agess,1:agess] <- rbind(cbind(birth_female * Fft, birth_female * Fmt), + cbind((1-birth_female) * Fft, (1-birth_female) * Fmt)) + Ft_star[1:agess,1:ages] <- rbind(birth_female * Fft, (1-birth_female) * Fft) + Fl[[as.character(years_data[t])]] <- Ft + Fl_star[[as.character(years_data[t])]] <- Ft_star + # parents age distribution under stable assumption in case no input + if(no_Pim | no_Pif){ + A = Matrix::bdiag(Uf, Um) + Ft_star[1:agess,1:agess] + A_decomp = eigen(A) + lambda = as.double(A_decomp$values[1]) + w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + wf = w[1:ages] + wm = w[(ages+1):(2*ages)] + Pif[,t] = wf * ff[,t] / sum(wf * ff[,t]) + Pim[,t] = wm * fm[,t] / sum(wm * fm[,t]) + } + + # project + Ut <- as.matrix(Ul[[t]]) + Ft <- as.matrix(Fl[[t]]) + Ft_star <- as.matrix(Fl_star[[t]]) + pitf <- Pif[,t] + pitm <- Pim[,t] + pit <- c(pitf, pitm) + if (t==1){ + p1f <- pf[,1] + p1m <- pm[,1] + f1f <- ff[,1] + f1m <- fm[,1] + pif1 <- Pif[,1] + pim1 <- Pim[,1] + + # BEN: Add Hf and Hm + H1f <- Hf[[1]] + H1m <- Hm[[1]] + + # BEN: cod version !!! + kin_all[[1]] <- kin_time_invariant_2sex_cod(pf = p1f, pm = p1m, + ff = f1f, fm = f1m, + pif = pif1, pim = pim1, + Hf = H1f, Hm = H1m, + birth_female = birth_female, list_output = TRUE) + } + kin_all[[t+1]] <- timevarying_kin_2sex_cod(Ut=Ut, Ft=Ft, Ft_star=Ft_star, pit=pit, sex_focal, ages, pkin=kin_all[[t]]) + pb$tick() + } + + # filter years and kin that were selected + names(kin_all) <- as.character(years_data) + + # combinations to return + out_selected <- output_period_cohort_combination(output_cohort, output_period, age = age, years_data = years_data) + + possible_kin <- c("d","gd","ggd","m","gm","ggm","os","ys","nos","nys","oa","ya","coa","cya") + if(is.null(output_kin)){ + selected_kin_position <- 1:length(possible_kin) + }else{ + selected_kin_position <- which(possible_kin %in% output_kin) + } + + # first filter + kin_list <- kin_all %>% + purrr::keep(names(.) %in% as.character(unique(out_selected$year))) %>% + purrr::map(~ .[selected_kin_position]) + # long format + message("Preparing output...") + kin <- lapply(names(kin_list), FUN = function(Y){ + X <- kin_list[[Y]] + X <- purrr::map2(X, names(X), function(x,y){ + # reassign deaths to Focal experienced age + x[(agess+1):(agess + agess*causes),1:(ages-1)] <- x[(agess+1):(agess + agess*causes),2:ages] + x[(agess+1):(agess + agess*causes),ages] <- 0 + x <- data.table::as.data.table(x) + x$year <- Y + x$kin <- y + x$sex_kin <- c(rep(c("f", "m"),each=ages), rep(c("f", "m"),each=ages*causes)) + x$age_kin <- c(rep(age,2), rep(rep(age,each=causes),2)) + x$alive <- c(rep("living",2*ages), rep(paste0("deadcause",1:causes),2*ages)) + return(x) + }) %>% + data.table::rbindlist() %>% + stats::setNames(c(as.character(age), "year","kin","sex_kin","age_kin","alive")) %>% + data.table::melt(id.vars = c("year","kin","sex_kin","age_kin","alive"), variable.name = "age_focal", value.name = "count") + X$age_focal = as.integer(as.character(X$age_focal)) + X$year = as.integer(X$year) + X$cohort = X$year - X$age_focal + X <- X[X$age_focal %in% out_selected$age[out_selected$year==as.integer(Y)],] + X <- data.table::dcast(X, year + kin + sex_kin + age_kin + age_focal + cohort ~ alive, value.var = "count", fun.aggregate = sum) + }) %>% data.table::rbindlist() + + # results as list? + if(list_output) { + out <- kin_list + }else{ + out <- kin + } + return(out) +} + +#' one time projection kin + +#' @description one time projection kin. internal function. +#' +#' @param Ut numeric. A matrix of survival probabilities (or ratios). +#' @param Ft numeric. A matrix of age-specific fertility rates. +#' @param Ft_star numeric. Ft but for female fertility. +#' @param pit numeric. A matrix with distribution of childbearing. +#' @param sex_focal character. "f" for female or "m" for male. +#' @param ages numeric. +#' @param pkin numeric. A list with kin count distribution in previous year. +#' @return A list of 14 types of kin matrices (kin age by Focal age, blocked for two sex) projected one time interval. +#' @export +timevarying_kin_2sex_cod<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin){ + + agess <- ages*2 + om <- ages-1 + pif <- pit[1:ages] + pim <- pit[(ages+1):agess] + + # BEN: Changed dimensions of lower part (dead kin) to account for death from causes. + phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0, (agess + agess*causes), ages) + + kin_list <- list(d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, + nos=nos,nys=nys,oa=oa,ya=ya,coa=coa,cya=cya) + + # G matrix moves focal by age + G <- matrix(0, nrow=ages, ncol=ages) + G[row(G)-1 == col(G)] <- 1 + + # BEN: Changed dimensions + Gt <- matrix(0, (agess + agess*causes), (agess + agess*causes)) + + Gt[1:(agess), 1:(agess)] <- as.matrix(Matrix::bdiag(G, G)) + + # locate focal at age 0 depending sex + sex_index <- ifelse(sex_focal == "f", 1, ages+1) + phi[sex_index, 1] <- 1 + + # BEN: NOT SURE ABOUT WHAT IS HAPPENING BELOW + # Rows are multiplied by the sum of the pi? + + # initial distribution + m[1:agess,1] = pit + gm[1:agess,1] = pkin[["m"]][1:agess,] %*% (pif + pim) + ggm[1:agess,1] = pkin[["gm"]][1:agess,] %*% (pif + pim) + os[1:agess,1] = pkin[["d"]][1:agess,] %*% pif + nos[1:agess,1] = pkin[["gd"]][1:ages,] %*% pif + oa[1:agess,1] = pkin[["os"]][1:agess,] %*% (pif + pim) + ya[1:agess,1] = pkin[["ys"]][1:agess,] %*% (pif + pim) + coa[1:agess,1] = pkin[["nos"]][1:agess,] %*% (pif + pim) + cya[1:agess,1] = pkin[["nys"]][1:agess,] %*% (pif + pim) + + for (ix in 1:om){ + phi[,ix+1] = Gt %*% phi[, ix] + d[,ix+1] = Ut %*% pkin[["d"]][,ix] + Ft %*% phi[,ix] + gd[,ix+1] = Ut %*% pkin[["gd"]][,ix] + Ft %*% pkin[["d"]][,ix] + ggd[,ix+1] = Ut %*% pkin[["ggd"]][,ix] + Ft %*% pkin[["gd"]][,ix] + m[,ix+1] = Ut %*% pkin[["m"]][,ix] + gm[,ix+1] = Ut %*% pkin[["gm"]][,ix] + ggm[,ix+1] = Ut %*% pkin[["ggm"]][,ix] + os[,ix+1] = Ut %*% pkin[["os"]][,ix] + ys[,ix+1] = Ut %*% pkin[["ys"]][,ix] + Ft_star %*% pkin[["m"]][,ix] + nos[,ix+1] = Ut %*% pkin[["nos"]][,ix] + Ft %*% pkin[["os"]][,ix] + nys[,ix+1] = Ut %*% pkin[["nys"]][,ix] + Ft %*% pkin[["ys"]][,ix] + oa[,ix+1] = Ut %*% pkin[["oa"]][,ix] + ya[,ix+1] = Ut %*% pkin[["ya"]][,ix] + Ft_star %*% pkin[["gm"]][,ix] + coa[,ix+1] = Ut %*% pkin[["coa"]][,ix] + Ft %*% pkin[["oa"]][,ix] + cya[,ix+1] = Ut %*% pkin[["cya"]][,ix] + Ft %*% pkin[["ya"]][,ix] + } + + kin_list <- list(d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, + nos=nos,nys=nys,oa=oa,ya=ya,coa=coa,cya=cya) + + return(kin_list) +} From 725e1736328c540ccef52ba16e9c545d07ae443b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Benjamin-Samuel=20Schl=C3=BCter?= Date: Tue, 20 Feb 2024 13:04:02 -0500 Subject: [PATCH 32/89] script to compare functions with/without cod --- R/kin_time_variant_2sex_cod.R | 79 ++++++++++++++++---------------- R/test.R | 85 +++++++++++++++++++++++++++++++++++ 2 files changed, 126 insertions(+), 38 deletions(-) create mode 100644 R/test.R diff --git a/R/kin_time_variant_2sex_cod.R b/R/kin_time_variant_2sex_cod.R index 0d32652..be3416f 100644 --- a/R/kin_time_variant_2sex_cod.R +++ b/R/kin_time_variant_2sex_cod.R @@ -24,44 +24,44 @@ ## BEN: ======================================================================== # Function building: -library(DemoKin) -library(tidyr) -library(dplyr) -library(here) - -# Input of model -years <- ncol(swe_px) -ages <- nrow(swe_px) -ff <- swe_asfr -fm <- rbind(matrix(0, 5, years), - swe_asfr[-((ages-4):ages),]) * 1.05 -pf <- swe_px -pm <- swe_px ^ 1.5 - -sex_focal = "f" -time_invariant = FALSE -birth_female = .5 -output_cohort = 1900 # like in the vignette -output_period = NULL -output_kin = NULL - - -pif <- pim <- NULL -nf <- nm <- NULL -list_output = FALSE - -# Create a fictitious hazard matrix with three causes of death, where each -# year is a list item (Hazard matrix needs to be (causes * ages) for the -# matrix algebra to work well with existing code). -H <- matrix(c(0.5, 1, 2), nrow = 3, ncol = nrow(pf)) -Hf <- Hm <- sapply(colnames(pf), function(x) { - return(H) - }, - simplify = FALSE, - USE.NAMES = TRUE - ) -# BEN: Load time invariant for COD -source("./R/kin_time_invariant_2sex_cod.R") +# library(DemoKin) +# library(tidyr) +# library(dplyr) +# library(here) +# +# # Input of model +# years <- ncol(swe_px) +# ages <- nrow(swe_px) +# ff <- swe_asfr +# fm <- rbind(matrix(0, 5, years), +# swe_asfr[-((ages-4):ages),]) * 1.05 +# pf <- swe_px +# pm <- swe_px ^ 1.5 +# +# sex_focal = "f" +# time_invariant = FALSE +# birth_female = .5 +# output_cohort = 1900 # like in the vignette +# output_period = NULL +# output_kin = NULL +# +# +# pif <- pim <- NULL +# nf <- nm <- NULL +# list_output = FALSE +# +# # Create a fictitious hazard matrix with three causes of death, where each +# # year is a list item (Hazard matrix needs to be (causes * ages) for the +# # matrix algebra to work well with existing code). +# H <- matrix(c(0.5, 1, 2), nrow = 3, ncol = nrow(pf)) +# Hf <- Hm <- sapply(colnames(pf), function(x) { +# return(H) +# }, +# simplify = FALSE, +# USE.NAMES = TRUE +# ) +# # BEN: Load time invariant for COD +# source("./R/kin_time_invariant_2sex_cod.R") ## ============================================================================= @@ -298,6 +298,9 @@ timevarying_kin_2sex_cod<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin) pif <- pit[1:ages] pim <- pit[(ages+1):agess] + # BEN : Add the number of CoD + causes <- nrow(Hf[[1]]) + # BEN: Changed dimensions of lower part (dead kin) to account for death from causes. phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0, (agess + agess*causes), ages) diff --git a/R/test.R b/R/test.R new file mode 100644 index 0000000..b593dea --- /dev/null +++ b/R/test.R @@ -0,0 +1,85 @@ + +rm(list = ls()) + +## Compare output + +library(DemoKin) + +source("./R/kin_time_invariant_2sex_cod.R") +source("./R/kin_time_variant_2sex_cod.R") + +source("./R/kin_time_invariant_2sex.R") +source("./R/kin_time_variant_2sex.R") + +## Example from Vignette 2 sex but few years for speed + +years_all <- ncol(swe_px) +years_test <- 1:20 +ages <- nrow(swe_px) +pf <- swe_px[,years_test] +pm <- swe_px[,years_test] ^ 1.5 # artificial perturbation for this example +ff <- swe_asfr[, years_test] +fm <- rbind(matrix(0, 5, max(years_test)), + swe_asfr[-((ages-4):ages), years_test]) * 1.05 # artificial perturbation for this example + +# Create a fictitious hazard matrix with three causes of death, where each +# year is a list item (Hazard matrix needs to be (causes * ages) for the +# matrix algebra to work well with existing code). +H <- matrix(c(0.5, 1, 2), nrow = 3, ncol = nrow(pf)) +Hf <- Hm <- sapply(colnames(pf), function(x) { + return(H) + }, + simplify = FALSE, + USE.NAMES = TRUE + ) + +## COMPARISON + +start.time <- Sys.time() +no_cod <- kin_time_variant_2sex(pf = pf, pm = pm, + ff = ff, fm = fm, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, pim = NULL, + nf = NULL, nm = NULL, + output_cohort = NULL, output_period = NULL, output_kin = NULL, + list_output = FALSE) +end.time <- Sys.time() +time.taken.no.cod <- end.time - start.time + + +start.time <- Sys.time() +cod <- kin_time_variant_2sex_cod(pf = pf, pm = pm, + ff = ff, fm = fm, + Hf = Hf, Hm = Hm, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, pim = NULL, + nf = NULL, nm = NULL, + output_cohort = NULL, output_period = NULL, output_kin = NULL, + list_output = FALSE) +end.time <- Sys.time() +time.taken.cod <- end.time - start.time + +no_cod +cod |> + mutate( + dead = deadcause1 + deadcause2 + deadcause3 + ) + + +no_cod |> + filter( + kin == "gm", + age_focal %in% 30:35, + age_kin > 60 + ) +cod |> + mutate( + dead = deadcause1 + deadcause2 + deadcause3 + ) |> + filter( + kin == "gm", + age_focal %in% 30:35, + age_kin > 60 + ) From 29ecf60c1a9a47dc8be25f99f166c183517868db Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Benjamin-Samuel=20Schl=C3=BCter?= Date: Wed, 21 Feb 2024 14:14:05 -0500 Subject: [PATCH 33/89] add description in top of scripts --- R/kin_time_invariant_2sex_cod.R | 7 +++++-- R/kin_time_variant_2sex_cod.R | 5 ++++- 2 files changed, 9 insertions(+), 3 deletions(-) diff --git a/R/kin_time_invariant_2sex_cod.R b/R/kin_time_invariant_2sex_cod.R index 0434360..e25ad27 100644 --- a/R/kin_time_invariant_2sex_cod.R +++ b/R/kin_time_invariant_2sex_cod.R @@ -1,13 +1,16 @@ #' Estimate kin counts in a time invariant framework for two-sex model. -#' @description Two-sex matrix framework for kin count estimates.This produces kin counts grouped by kin, age and sex of +#' @description Two-sex matrix framework for kin count and death estimates.This produces kin counts grouped by kin, age and sex of #' each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents -#' are grouped in one male count of cousins. +#' are grouped in one male count of cousins. This also produces kin deaths grouped by kin, age, sex of +#' each relatives at each FocalĀ“s age, and cause of death. #' @details See Caswell (2022) for details on formulas. #' @param pf numeric. A vector of survival probabilities for females with same length as ages. +#' @param Hf numeric. A matrix with cause-specific hazards for females with rows as causes and columns as ages, being the name of each col the age. #' @param ff numeric. A vector of age-specific fertility rates for females with same length as ages. #' @param pm numeric. A vector of survival probabilities for males with same length as ages. #' @param fm numeric. A vector of age-specific fertility rates for males with same length as ages. +#' @param Hm numeric. A matrix with cause-specific hazards for males with rows as causes and columns as ages, being the name of each col the age. #' @param sex_focal character. "f" for female or "m" for male. #' @param birth_female numeric. Female portion at birth. #' @param pif numeric. For using some specific non-stable age distribution of childbearing for mothers (same length as ages). Default `NULL`. diff --git a/R/kin_time_variant_2sex_cod.R b/R/kin_time_variant_2sex_cod.R index be3416f..52caad6 100644 --- a/R/kin_time_variant_2sex_cod.R +++ b/R/kin_time_variant_2sex_cod.R @@ -2,12 +2,15 @@ #' @description Two-sex matrix framework for kin count estimates with varying rates. #' This produces kin counts grouped by kin, age and sex of each relatives at each FocalĀ“s age. -#' For example, male cousins from aunts and uncles from different sibling's parents are grouped in one male count of cousins. +#' For example, male cousins from aunts and uncles from different sibling's parents are grouped in one male count of cousins. This also produces kin deaths grouped by kin, age, sex of +#' each relatives at each FocalĀ“s age, and cause of death. #' @details See Caswell (2022) for details on formulas. #' @param pf numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). #' @param pm numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year). #' @param ff numeric. Same as pf but for fertility rates. #' @param fm numeric. Same as pm but for fertility rates. +#' @param Hf numeric. A list where each list element (being the name of each list element the year) contains a matrix with cause-specific hazards for females with rows as causes and columns as ages, being the name of each col the age. +#' @param Hm numeric. A list where each list element (being the name of each list element the year) contains a matrix with cause-specific hazards for males with rows as causes and columns as ages, being the name of each col the age. #' @param sex_focal character. "f" for female or "m" for male. #' @param pif numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default `NULL`. #' @param pim numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default `NULL`. From fe64c82177bb0198337453047cf0de8707759cf1 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Fri, 8 Mar 2024 11:30:02 -0300 Subject: [PATCH 34/89] issues pending --- CRAN-SUBMISSION | 4 +- R/kin.R | 72 ++++++++++++++++++------------------ R/kin2sex.R | 52 ++++++++++++++++---------- R/kin_time_invariant_2sex.R | 2 + R/kin_time_variant_2sex.R | 9 +++-- R/plot_diagramm.R | 2 +- data/demokin_codes.rda | Bin 607 -> 611 bytes 7 files changed, 78 insertions(+), 63 deletions(-) diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION index 90dd290..04b6fae 100644 --- a/CRAN-SUBMISSION +++ b/CRAN-SUBMISSION @@ -1,3 +1,3 @@ Version: 1.0.3 -Date: 2023-05-26 19:38:45 UTC -SHA: b3f5387a20bd765d8567e6cfa6a8918413b1e138 +Date: 2023-06-04 13:27:38 UTC +SHA: f54cd023b2e6bb2de1e74d1d0c89c13828149c44 diff --git a/R/kin.R b/R/kin.R index 0d5a060..ac782c2 100644 --- a/R/kin.R +++ b/R/kin.R @@ -12,10 +12,10 @@ #' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... +#' @param output_age_focal integer. Vector of ages to select (and make faster the run). #' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, +#' @param summary_kin logical. Whether or not include `kin_summary` table (see output details). Default `TRUE`. #' this needs to be set as 1. -#' @param stable logic. Deprecated. Use `time_invariant`. -#' @param U logic. Deprecated. Use `p`. #' @return A list with: #' \itemize{ #' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` is daughter, @@ -44,25 +44,14 @@ kin <- function(p = NULL, f = NULL, time_invariant = TRUE, pi = NULL, n = NULL, - output_cohort = NULL, output_period = NULL, output_kin=NULL, + output_cohort = NULL, output_period = NULL, output_kin=NULL, output_age_focal = NULL, birth_female = 1/2.04, - stable = lifecycle::deprecated(), - U = lifecycle::deprecated()) + summary_kin = TRUE) { # global vars living<-dead<-age_kin<-age_focal<-cohort<-year<-total<-mean_age<-count_living<-sd_age<-count_dead<-mean_age_lost<-indicator<-value<-NULL - # changed arguments - if (lifecycle::is_present(stable)) { - lifecycle::deprecate_warn("0.0.0.9000", "kin(stable)", details = "Used time_invariant") - time_invariant <- stable - } - if (lifecycle::is_present(U)) { - lifecycle::deprecate_warn("0.0.0.9000", "kin(stable)", details = "Used time_invariant") - p <- U - } - # kin to return all_possible_kin <- c("coa", "cya", "d", "gd", "ggd", "ggm", "gm", "m", "nos", "nys", "oa", "ya", "os", "ys") output_kin_asked <- output_kin @@ -109,7 +98,10 @@ kin <- function(p = NULL, f = NULL, .by = c(kin, age_kin, age_focal, cohort, year)) } - # select period/cohort + # select period/cohort/age + if(!is.null(output_age_focal) & all(output_age_focal %in% 1:120)){ + kin_full <- kin_full %>% dplyr::filter(age_focal %in% output_age_focal) + } if(!is.null(output_cohort)){ agrupar <- "cohort" } else if(!is.null(output_period)){ @@ -120,29 +112,35 @@ kin <- function(p = NULL, f = NULL, agrupar_no_age_focal <- c("kin", agrupar) agrupar <- c("age_focal", "kin", agrupar) - # get summary indicators based on group variables - kin_summary <- dplyr::bind_rows( - kin_full %>% - dplyr::rename(total=living) %>% - dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% - dplyr::summarise(count_living = sum(total), - mean_age = sum(total*age_kin)/sum(total), - sd_age = (sum(total*age_kin^2)/sum(total)-mean_age^2)^.5) %>% - tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", values_to = "value"), - kin_full %>% - dplyr::rename(total=dead) %>% - dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% - dplyr::summarise(count_dead = sum(total)) %>% - dplyr::ungroup() %>% - dplyr::group_by(dplyr::across(dplyr::all_of(agrupar_no_age_focal))) %>% - dplyr::mutate(count_cum_dead = cumsum(count_dead), - mean_age_lost = cumsum(count_dead * age_focal)/cumsum(count_dead)) %>% - dplyr::ungroup() %>% - tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", values_to = "value")) %>% + # get summary indicators based on group variables. If it is asked + if(summary_kin){ + kin_summary <- dplyr::bind_rows( + kin_full %>% + dplyr::rename(total=living) %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% + dplyr::summarise(count_living = sum(total), + mean_age = sum(total*age_kin)/sum(total), + sd_age = (sum(total*age_kin^2)/sum(total)-mean_age^2)^.5) %>% + tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", values_to = "value"), + kin_full %>% + dplyr::rename(total=dead) %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% + dplyr::summarise(count_dead = sum(total)) %>% + dplyr::ungroup() %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar_no_age_focal))) %>% + dplyr::mutate(count_cum_dead = cumsum(count_dead), + mean_age_lost = cumsum(count_dead * age_focal)/cumsum(count_dead)) %>% + dplyr::ungroup() %>% + tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", values_to = "value")) %>% dplyr::ungroup() %>% tidyr::pivot_wider(names_from = indicator, values_from = value) - # return - kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) + # return + kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) + }else{ + # return + kin_out <- kin_full + } + return(kin_out) } diff --git a/R/kin2sex.R b/R/kin2sex.R index a50a438..9ce365a 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -18,7 +18,9 @@ #' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. #' @param output_period integer. Vector of period years for returning results. Should be within input data years range. #' @param output_kin character. kin types to return: "m" for mother, "d" for daughter,... +#' @param output_age_focal integer. Vector of ages to select (and make faster the run). #' @param birth_female numeric. Female portion at birth. This multiplies `f` argument. If `f` is already for female offspring, this needs to be set as 1. +#' @param summary_kin logical. Whether or not include `kin_summary` table (see output details). Default `TRUE`. #' @return A list with: #' \itemize{ #' \item{kin_full}{ a data frame with year, cohort, FocalĀ“s age, related ages and type of kin (for example `d` could be daughter or son depending `sex_kin`, @@ -51,7 +53,8 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, birth_female = 1/2.04, pif = NULL, pim = NULL, nf = NULL, nm = NULL, - output_cohort = NULL, output_period = NULL, output_kin=NULL) + output_cohort = NULL, output_period = NULL, output_kin=NULL,output_age_focal = NULL, + summary_kin = TRUE) { # global vars @@ -116,7 +119,10 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, } # summary - # select period/cohort + # select period/cohort/ge + if(!is.null(output_age_focal) & all(output_age_focal %in% 1:120)){ + kin_full <- kin_full %>% dplyr::filter(age_focal %in% output_age_focal) + } if(!is.null(output_cohort)){ agrupar <- "cohort" } else if(!is.null(output_period)){ @@ -127,28 +133,34 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, agrupar_no_age_focal <- c("kin", "sex_kin", agrupar) agrupar <- c("age_focal", "kin", "sex_kin", agrupar) - kin_summary <- dplyr::bind_rows( - as.data.frame(kin_full) %>% - dplyr::rename(total=living) %>% - dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% - dplyr::summarise(count_living = sum(total), - mean_age = sum(total*age_kin)/sum(total), - sd_age = (sum(total*age_kin^2)/sum(total)-mean_age^2)^.5) %>% - tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", values_to = "value"), - as.data.frame(kin_full) %>% - dplyr::rename(total=dead) %>% - dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% - dplyr::summarise(count_dead = sum(total)) %>% - dplyr::ungroup() %>% - dplyr::group_by(dplyr::across(dplyr::all_of(agrupar_no_age_focal))) %>% - dplyr::mutate(count_cum_dead = cumsum(count_dead), - mean_age_lost = cumsum(count_dead * age_focal)/cumsum(count_dead)) %>% - dplyr::ungroup() %>% - tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", values_to = "value")) %>% + if(summary_kin){ + kin_summary <- dplyr::bind_rows( + as.data.frame(kin_full) %>% + dplyr::rename(total=living) %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% + dplyr::summarise(count_living = sum(total), + mean_age = sum(total*age_kin)/sum(total), + sd_age = (sum(total*age_kin^2)/sum(total)-mean_age^2)^.5) %>% + tidyr::pivot_longer(count_living:sd_age, names_to = "indicator", values_to = "value"), + as.data.frame(kin_full) %>% + dplyr::rename(total=dead) %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar))) %>% + dplyr::summarise(count_dead = sum(total)) %>% + dplyr::ungroup() %>% + dplyr::group_by(dplyr::across(dplyr::all_of(agrupar_no_age_focal))) %>% + dplyr::mutate(count_cum_dead = cumsum(count_dead), + mean_age_lost = cumsum(count_dead * age_focal)/cumsum(count_dead)) %>% + dplyr::ungroup() %>% + tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", values_to = "value")) %>% dplyr::ungroup() %>% tidyr::pivot_wider(names_from = indicator, values_from = value) # return kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) + }else{ + # return + kin_out <- kin_full + } + return(kin_out) } diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R index 07628e1..e9d7822 100644 --- a/R/kin_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex.R @@ -105,6 +105,8 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, ggm[,i+1] = Ut %*% ggm[,i] } + # atribuible to focal sex + pios = if(sex_focal == "f") pif else pim os[1:(agess),1] = d[1:(agess),] %*% pif nos[1:(agess),1] = gd[1:(agess),] %*% pif for(i in 1:(ages-1)){ diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index 83b3956..e67db6f 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -123,6 +123,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, pim1 <- Pim[,1] kin_all[[1]] <- kin_time_invariant_2sex(pf = p1f, pm = p1m, ff = f1f, fm = f1m, + sex_focal = sex_focal, pif = pif1, pim = pim1, birth_female = birth_female, list_output = TRUE) } @@ -148,7 +149,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, purrr::keep(names(.) %in% as.character(unique(out_selected$year))) %>% purrr::map(~ .[selected_kin_position]) # long format - message("Preparing output...") + message(" Preparing output...") kin <- lapply(names(kin_list), FUN = function(Y){ X <- kin_list[[Y]] X <- purrr::map2(X, names(X), function(x,y){ @@ -219,12 +220,14 @@ timevarying_kin_2sex<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin){ m[1:agess,1] = pit gm[1:agess,1] = pkin[["m"]][1:agess,] %*% (pif + pim) ggm[1:agess,1] = pkin[["gm"]][1:agess,] %*% (pif + pim) - os[1:agess,1] = pkin[["d"]][1:agess,] %*% pif - nos[1:agess,1] = pkin[["gd"]][1:ages,] %*% pif oa[1:agess,1] = pkin[["os"]][1:agess,] %*% (pif + pim) ya[1:agess,1] = pkin[["ys"]][1:agess,] %*% (pif + pim) coa[1:agess,1] = pkin[["nos"]][1:agess,] %*% (pif + pim) cya[1:agess,1] = pkin[["nys"]][1:agess,] %*% (pif + pim) + # atribuible to focal sex + pios = if(sex_focal == "f") pif else pim + os[1:agess,1] = pkin[["d"]][1:agess,] %*% pios + nos[1:agess,1] = pkin[["gd"]][1:ages,] %*% pios for (ix in 1:om){ phi[,ix+1] = Gt %*% phi[, ix] diff --git a/R/plot_diagramm.R b/R/plot_diagramm.R index f1750f1..6bffa8c 100644 --- a/R/plot_diagramm.R +++ b/R/plot_diagramm.R @@ -10,7 +10,7 @@ plot_diagram <- function (kin_total, rounding = 3) { rels <- c("ggd", "gd", "d", "Focal", "m", "gm", "ggm", "oa", "coa", "os", "nos", "ya", "cya", "ys", "nys") # check all types are in - if(!any(unique(kin_total$kin) %in% rels)) stop("You need all specific types. If some are missed or grouped, for example old and younger sisters in 's', this will fail.") + if(!any(unique(kin_total$kin) %in% rels) | any(c("s", "c", "a", "n") %in% unique(kin_total$kin))) stop("You need all specific types. If some are missed or grouped, for example old and younger sisters in 's', this will fail.") vertices <- data.frame( nodes = rels , x = c(1, 1, 1, 1, 1, 1, 1, 0, -1, 0, -1, 2, 3, 2, 3) diff --git a/data/demokin_codes.rda b/data/demokin_codes.rda index 3859ab313ac97b245ae997bc2c4d20df6deaf116..8ab66208184eae90ec3e617e2c20e26b8717be18 100644 GIT binary patch literal 611 zcmV-p0-XIHiwFP!0000027OgsZ`v>vP56e56}6hSmTjd!fFi9geeH_M!!|mNA(f}f zBqoWP*ep)Qc-t@DPuOO_H}N%LND23zdu*TUBRgM*4_B>+mStIGt5UM9a#e;_b^7hD ze{D%bCbm_vn)1Kx(uh9=?9t&a6>`AIhAE$pe2x{V>~NBWYY1%z0#^kk52CWChf!9C z$cCWIxX8jagf@c_*}|oK-3-cxmhzFp&~7IX{E)BaU->iVvFCdo`4D(!kMpSP*XPR9XtC~8OqLYus+6QCnZsqH8#dv&vE zSIw39g!Lk{;I0fa?Gvgu+IF??3nU%Q3T4zMD#f0i7I>C2C(HzQ3r#~5!?ntUXK`z1 zn8=Zi?v;k?HZ91$O&F`)5p7etW4iR|3N$NwAw3tA9c1n{hA?1Lhg$Zigw(JIu+C9%41dI6vQ>p25DaSkDEbA$N^tbRss{ zP|}$lP&k1cf6}UqL=>E_!afb2;8tnxbKg|77 zode1wMO~1=EMI=$OA#^Ao2NYK@z|$nk1SaRWu2k?nlD*kAQ}px+~$xhgD|5h1dc{2 zVSe8?!p}!3C0ReHOde~=glA!qc{(b`>Yul+@=nJQ^(ZPxL_*uVs{^1S45{xR%6oCW zDOc^4g@pAIbl@%xJCyut<`b2Nmv)d|aooO|jqL)~<^L?W>K+0U~pSZz)CA^Dfal`^+?z}LH{gkrGxiga| zx|jF`o+rL+TpE=s+y8!K5?Y z!!YkQzSdku5(>(@(5Ioi>pn&-7mkP(jbr#n_(Wzj77ufpkeI6A6BVooy%qGQd8!u^ t0jEN+<&%tD&QnRqfHzaVx&)%_%{BH*zU1ZbTYmm*o`1DPph(FF002*=Cr Date: Mon, 18 Mar 2024 15:51:00 -0300 Subject: [PATCH 35/89] adding cod and vignette --- NAMESPACE | 3 ++ R/kin2sex.R | 68 +++++++++++++++++------- R/kin_time_invariant_2sex_cod.R | 25 --------- R/kin_time_variant_2sex_cod.R | 46 ---------------- R/test.R | 85 ------------------------------ man/kin.Rd | 12 ++--- man/kin2sex.Rd | 14 ++++- man/kin_time_invariant_2sex_cod.Rd | 59 +++++++++++++++++++++ man/kin_time_variant_2sex_cod.Rd | 70 ++++++++++++++++++++++++ man/timevarying_kin_2sex_cod.Rd | 29 ++++++++++ vignettes/Reference_TwoSex.Rmd | 41 +++++++++++++- vignettes/references.bib | 12 +++++ 12 files changed, 280 insertions(+), 184 deletions(-) delete mode 100644 R/test.R create mode 100644 man/kin_time_invariant_2sex_cod.Rd create mode 100644 man/kin_time_variant_2sex_cod.Rd create mode 100644 man/timevarying_kin_2sex_cod.Rd diff --git a/NAMESPACE b/NAMESPACE index 0d95065..9a087d8 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -6,11 +6,14 @@ export(kin2sex) export(kin_multi_stage) export(kin_time_invariant) export(kin_time_invariant_2sex) +export(kin_time_invariant_2sex_cod) export(kin_time_variant) export(kin_time_variant_2sex) +export(kin_time_variant_2sex_cod) export(output_period_cohort_combination) export(plot_diagram) export(rename_kin) export(timevarying_kin) export(timevarying_kin_2sex) +export(timevarying_kin_2sex_cod) importFrom(magrittr,"%>%") diff --git a/R/kin2sex.R b/R/kin2sex.R index 9ce365a..07dfa11 100644 --- a/R/kin2sex.R +++ b/R/kin2sex.R @@ -13,6 +13,8 @@ #' @param sex_focal character. "f" for female or "m" for male. #' @param pif numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default `NULL`. #' @param pim numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default `NULL`. +#' @param Hf numeric. A list where each list element (being the name of each list element the year) contains a matrix with cause-specific hazards for females with rows as causes and columns as ages, being the name of each col the age. +#' @param Hm numeric. A list where each list element (being the name of each list element the year) contains a matrix with cause-specific hazards for males with rows as causes and columns as ages, being the name of each col the age. #' @param nf numeric. Only for `time_invariant = FALSE`. Same as `pf` but for population distribution (counts or `%`). Optional. #' @param nm numeric. Only for `time_invariant = FALSE`. Same as `pm` but for population distribution (counts or `%`). Optional. #' @param output_cohort integer. Vector of year cohorts for returning results. Should be within input data years range. @@ -53,6 +55,7 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, birth_female = 1/2.04, pif = NULL, pim = NULL, nf = NULL, nm = NULL, + Hf = NULL, Hm = NULL, output_cohort = NULL, output_period = NULL, output_kin=NULL,output_age_focal = NULL, summary_kin = TRUE) { @@ -76,6 +79,9 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, output_kin <- match.arg(tolower(output_kin), all_possible_kin, several.ok = TRUE) } + # is cause of death specific or not + is_cod <- !is.null(Hf) & !is.null(Hm) + # if time dependent or not if(time_invariant){ if(!is.vector(pf)) { @@ -85,27 +91,50 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, ff <- ff[,as.character(output_period)] fm <- fm[,as.character(output_period)] } - kin_full <- kin_time_invariant_2sex(pf, pm, ff, fm, - sex_focal = sex_focal, - birth_female = birth_female, - pif = pif, pim = pim, - output_kin = output_kin) %>% - dplyr::mutate(cohort = NA, year = NA) + if(is_cod){ + kin_full <- kin_time_invariant_2sex_cod(pf, pm, ff, fm, + sex_focal = sex_focal, + birth_female = birth_female, + pif = pif, pim = pim, + Hf = Hf, Hm = Hm, + output_kin = output_kin) %>% + dplyr::mutate(cohort = NA, year = NA) + }else{ + kin_full <- kin_time_invariant_2sex(pf, pm, ff, fm, + sex_focal = sex_focal, + birth_female = birth_female, + pif = pif, pim = pim, + output_kin = output_kin) %>% + dplyr::mutate(cohort = NA, year = NA) + } + }else{ if(!is.null(output_cohort) & !is.null(output_period)) stop("sorry, you can not select cohort and period. Choose one please") + if(is_cod){ + kin_full <- kin_time_variant_2sex_cod(pf = pf, pm = pm, + ff = ff, fm = fm, + sex_focal = sex_focal, + birth_female = birth_female, + pif = pif, pim = pim, + nf = nf, nm = nm, + Hf = Hf, Hm = Hm, + output_cohort = output_cohort, output_period = output_period, + output_kin = output_kin) + }else{ kin_full <- kin_time_variant_2sex(pf = pf, pm = pm, - ff = ff, fm = fm, - sex_focal = sex_focal, - birth_female = birth_female, - pif = pif, pim = pim, - nf = nf, nm = nm, - output_cohort = output_cohort, output_period = output_period, - output_kin = output_kin) + ff = ff, fm = fm, + sex_focal = sex_focal, + birth_female = birth_female, + pif = pif, pim = pim, + nf = nf, nm = nm, + output_cohort = output_cohort, output_period = output_period, + output_kin = output_kin) + } message(paste0("Assuming stable population before ", min(years_data), ".")) } # reorder - kin_full <- kin_full %>% dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, dead) + kin_full <- kin_full %>% dplyr::select(year, cohort, age_focal, sex_kin, kin, age_kin, living, starts_with("dea")) # re-group if grouped type is asked if(!is.null(output_kin_asked) & length(output_kin_asked)!=length(output_kin)){ @@ -114,8 +143,9 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, if("a" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("oa", "ya")] <- "a" if("n" %in% output_kin_asked) kin_full$kin[kin_full$kin %in% c("nos", "nys")] <- "n" kin_full <- kin_full %>% - dplyr::summarise(living = sum(living), dead = sum(dead), - .by = c(kin, age_kin, age_focal, sex_kin, cohort, year)) + dplyr::group_by(kin, age_kin, age_focal, sex_kin, cohort, year) %>% + dplyr::summarise_at(vars(c("living", dplyr::starts_with("dea"))), funs(sum)) %>% + dplyr::ungroup() } # summary @@ -133,7 +163,8 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, agrupar_no_age_focal <- c("kin", "sex_kin", agrupar) agrupar <- c("age_focal", "kin", "sex_kin", agrupar) - if(summary_kin){ + # only return summary if is asked and is not cod + if(summary_kin & !is_cod){ kin_summary <- dplyr::bind_rows( as.data.frame(kin_full) %>% dplyr::rename(total=living) %>% @@ -154,11 +185,8 @@ kin2sex <- function(pf = NULL, pm = NULL, ff = NULL, fm = NULL, tidyr::pivot_longer(count_dead:mean_age_lost, names_to = "indicator", values_to = "value")) %>% dplyr::ungroup() %>% tidyr::pivot_wider(names_from = indicator, values_from = value) - - # return kin_out <- list(kin_full = kin_full, kin_summary = kin_summary) }else{ - # return kin_out <- kin_full } diff --git a/R/kin_time_invariant_2sex_cod.R b/R/kin_time_invariant_2sex_cod.R index e25ad27..e0d17d6 100644 --- a/R/kin_time_invariant_2sex_cod.R +++ b/R/kin_time_invariant_2sex_cod.R @@ -22,31 +22,6 @@ #' (for example `d` is children, `oa` is older aunts/uncles, etc.), sex, alive and death. If `list_output = TRUE` then this is a list. #' @export -## BEN: ======================================================================== -# Function building: -# library(DemoKin) -# library(tidyr) -# library(dplyr) -# library(here) -# -# # Input of model -# ff <- fra_asfr_sex[,"ff"] -# fm <- fra_asfr_sex[,"fm"] -# pf <- fra_surv_sex[,"pf"] -# pm <- fra_surv_sex[,"pm"] -# birth_female = 1/2.04 -# pif <- pim <- NULL -# sex_focal = "f" -# output_kin = NULL -# list_output = FALSE -# -# # Create a fictitious hazard matrix with three causes of death. -# # Assume that each cause consists of 1/3 of all death in all age groups. -# Hf <- Hm <- matrix(1, nrow = 3, ncol = length(ff)) - -## ============================================================================= - - # BEN: Added hazard matrices as inputs. # Assume that input of cause-specific mortality will be in terms of # matrices of cause-specific hazards for the two sexes (causes * ages). diff --git a/R/kin_time_variant_2sex_cod.R b/R/kin_time_variant_2sex_cod.R index 52caad6..562be20 100644 --- a/R/kin_time_variant_2sex_cod.R +++ b/R/kin_time_variant_2sex_cod.R @@ -24,52 +24,6 @@ #' @return A data.frame with year, cohort, FocalĀ“s age, related ages, sex and type of kin (for example `d` is daughter, `oa` is older aunts, etc.), including living and dead kin at that age and sex. #' @export - -## BEN: ======================================================================== -# Function building: -# library(DemoKin) -# library(tidyr) -# library(dplyr) -# library(here) -# -# # Input of model -# years <- ncol(swe_px) -# ages <- nrow(swe_px) -# ff <- swe_asfr -# fm <- rbind(matrix(0, 5, years), -# swe_asfr[-((ages-4):ages),]) * 1.05 -# pf <- swe_px -# pm <- swe_px ^ 1.5 -# -# sex_focal = "f" -# time_invariant = FALSE -# birth_female = .5 -# output_cohort = 1900 # like in the vignette -# output_period = NULL -# output_kin = NULL -# -# -# pif <- pim <- NULL -# nf <- nm <- NULL -# list_output = FALSE -# -# # Create a fictitious hazard matrix with three causes of death, where each -# # year is a list item (Hazard matrix needs to be (causes * ages) for the -# # matrix algebra to work well with existing code). -# H <- matrix(c(0.5, 1, 2), nrow = 3, ncol = nrow(pf)) -# Hf <- Hm <- sapply(colnames(pf), function(x) { -# return(H) -# }, -# simplify = FALSE, -# USE.NAMES = TRUE -# ) -# # BEN: Load time invariant for COD -# source("./R/kin_time_invariant_2sex_cod.R") - - -## ============================================================================= - - # BEN: Added hazard matrices as inputs. # Assume that input of cause-specific mortality will be in terms of # matrices of cause-specific hazards for the two sexes (causes * ages). diff --git a/R/test.R b/R/test.R deleted file mode 100644 index b593dea..0000000 --- a/R/test.R +++ /dev/null @@ -1,85 +0,0 @@ - -rm(list = ls()) - -## Compare output - -library(DemoKin) - -source("./R/kin_time_invariant_2sex_cod.R") -source("./R/kin_time_variant_2sex_cod.R") - -source("./R/kin_time_invariant_2sex.R") -source("./R/kin_time_variant_2sex.R") - -## Example from Vignette 2 sex but few years for speed - -years_all <- ncol(swe_px) -years_test <- 1:20 -ages <- nrow(swe_px) -pf <- swe_px[,years_test] -pm <- swe_px[,years_test] ^ 1.5 # artificial perturbation for this example -ff <- swe_asfr[, years_test] -fm <- rbind(matrix(0, 5, max(years_test)), - swe_asfr[-((ages-4):ages), years_test]) * 1.05 # artificial perturbation for this example - -# Create a fictitious hazard matrix with three causes of death, where each -# year is a list item (Hazard matrix needs to be (causes * ages) for the -# matrix algebra to work well with existing code). -H <- matrix(c(0.5, 1, 2), nrow = 3, ncol = nrow(pf)) -Hf <- Hm <- sapply(colnames(pf), function(x) { - return(H) - }, - simplify = FALSE, - USE.NAMES = TRUE - ) - -## COMPARISON - -start.time <- Sys.time() -no_cod <- kin_time_variant_2sex(pf = pf, pm = pm, - ff = ff, fm = fm, - sex_focal = "f", - birth_female = 1/2.04, - pif = NULL, pim = NULL, - nf = NULL, nm = NULL, - output_cohort = NULL, output_period = NULL, output_kin = NULL, - list_output = FALSE) -end.time <- Sys.time() -time.taken.no.cod <- end.time - start.time - - -start.time <- Sys.time() -cod <- kin_time_variant_2sex_cod(pf = pf, pm = pm, - ff = ff, fm = fm, - Hf = Hf, Hm = Hm, - sex_focal = "f", - birth_female = 1/2.04, - pif = NULL, pim = NULL, - nf = NULL, nm = NULL, - output_cohort = NULL, output_period = NULL, output_kin = NULL, - list_output = FALSE) -end.time <- Sys.time() -time.taken.cod <- end.time - start.time - -no_cod -cod |> - mutate( - dead = deadcause1 + deadcause2 + deadcause3 - ) - - -no_cod |> - filter( - kin == "gm", - age_focal %in% 30:35, - age_kin > 60 - ) -cod |> - mutate( - dead = deadcause1 + deadcause2 + deadcause3 - ) |> - filter( - kin == "gm", - age_focal %in% 30:35, - age_kin > 60 - ) diff --git a/man/kin.Rd b/man/kin.Rd index 83dbe04..5fbc92f 100644 --- a/man/kin.Rd +++ b/man/kin.Rd @@ -13,9 +13,9 @@ kin( output_cohort = NULL, output_period = NULL, output_kin = NULL, + output_age_focal = NULL, birth_female = 1/2.04, - stable = lifecycle::deprecated(), - U = lifecycle::deprecated() + summary_kin = TRUE ) } \arguments{ @@ -36,12 +36,12 @@ in a more general perspective) with rows as ages (and columns as years in case o \item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} -\item{birth_female}{numeric. Female portion at birth. This multiplies \code{f} argument. If \code{f} is already for female offspring, -this needs to be set as 1.} +\item{output_age_focal}{integer. Vector of ages to select (and make faster the run).} -\item{stable}{logic. Deprecated. Use \code{time_invariant}.} +\item{birth_female}{numeric. Female portion at birth. This multiplies \code{f} argument. If \code{f} is already for female offspring,} -\item{U}{logic. Deprecated. Use \code{p}.} +\item{summary_kin}{logical. Whether or not include \code{kin_summary} table (see output details). Default \code{TRUE}. +this needs to be set as 1.} } \value{ A list with: diff --git a/man/kin2sex.Rd b/man/kin2sex.Rd index be985aa..fde5cd9 100644 --- a/man/kin2sex.Rd +++ b/man/kin2sex.Rd @@ -16,9 +16,13 @@ kin2sex( pim = NULL, nf = NULL, nm = NULL, + Hf = NULL, + Hm = NULL, output_cohort = NULL, output_period = NULL, - output_kin = NULL + output_kin = NULL, + output_age_focal = NULL, + summary_kin = TRUE ) } \arguments{ @@ -44,11 +48,19 @@ kin2sex( \item{nm}{numeric. Only for \code{time_invariant = FALSE}. Same as \code{pm} but for population distribution (counts or \verb{\%}). Optional.} +\item{Hf}{numeric. A list where each list element (being the name of each list element the year) contains a matrix with cause-specific hazards for females with rows as causes and columns as ages, being the name of each col the age.} + +\item{Hm}{numeric. A list where each list element (being the name of each list element the year) contains a matrix with cause-specific hazards for males with rows as causes and columns as ages, being the name of each col the age.} + \item{output_cohort}{integer. Vector of year cohorts for returning results. Should be within input data years range.} \item{output_period}{integer. Vector of period years for returning results. Should be within input data years range.} \item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} + +\item{output_age_focal}{integer. Vector of ages to select (and make faster the run).} + +\item{summary_kin}{logical. Whether or not include \code{kin_summary} table (see output details). Default \code{TRUE}.} } \value{ A list with: diff --git a/man/kin_time_invariant_2sex_cod.Rd b/man/kin_time_invariant_2sex_cod.Rd new file mode 100644 index 0000000..6645ca0 --- /dev/null +++ b/man/kin_time_invariant_2sex_cod.Rd @@ -0,0 +1,59 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_time_invariant_2sex_cod.R +\name{kin_time_invariant_2sex_cod} +\alias{kin_time_invariant_2sex_cod} +\title{Estimate kin counts in a time invariant framework for two-sex model.} +\usage{ +kin_time_invariant_2sex_cod( + pf = NULL, + pm = NULL, + ff = NULL, + fm = NULL, + Hf = NULL, + Hm = NULL, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, + pim = NULL, + output_kin = NULL, + list_output = FALSE +) +} +\arguments{ +\item{pf}{numeric. A vector of survival probabilities for females with same length as ages.} + +\item{pm}{numeric. A vector of survival probabilities for males with same length as ages.} + +\item{ff}{numeric. A vector of age-specific fertility rates for females with same length as ages.} + +\item{fm}{numeric. A vector of age-specific fertility rates for males with same length as ages.} + +\item{Hf}{numeric. A matrix with cause-specific hazards for females with rows as causes and columns as ages, being the name of each col the age.} + +\item{Hm}{numeric. A matrix with cause-specific hazards for males with rows as causes and columns as ages, being the name of each col the age.} + +\item{sex_focal}{character. "f" for female or "m" for male.} + +\item{birth_female}{numeric. Female portion at birth.} + +\item{pif}{numeric. For using some specific non-stable age distribution of childbearing for mothers (same length as ages). Default \code{NULL}.} + +\item{pim}{numeric. For using some specific non-stable age distribution of childbearing for fathers (same length as ages). Default \code{NULL}.} + +\item{output_kin}{character. kin to return, considering matrilineal names. For example "m" for parents, "d" for children, etc. See the \code{vignette} for all kin types.} + +\item{list_output}{logical. Results as a list with \code{output_kin} elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default \code{FALSE}} +} +\value{ +A data frame with focalĀ“s age, related ages and type of kin +(for example \code{d} is children, \code{oa} is older aunts/uncles, etc.), sex, alive and death. If \code{list_output = TRUE} then this is a list. +} +\description{ +Two-sex matrix framework for kin count and death estimates.This produces kin counts grouped by kin, age and sex of +each relatives at each FocalĀ“s age. For example, male cousins from aunts and uncles from different sibling's parents +are grouped in one male count of cousins. This also produces kin deaths grouped by kin, age, sex of +each relatives at each FocalĀ“s age, and cause of death. +} +\details{ +See Caswell (2022) for details on formulas. +} diff --git a/man/kin_time_variant_2sex_cod.Rd b/man/kin_time_variant_2sex_cod.Rd new file mode 100644 index 0000000..c0db9a8 --- /dev/null +++ b/man/kin_time_variant_2sex_cod.Rd @@ -0,0 +1,70 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_time_variant_2sex_cod.R +\name{kin_time_variant_2sex_cod} +\alias{kin_time_variant_2sex_cod} +\title{Estimate kin counts in a time variant framework (dynamic rates) in a two-sex framework (Caswell, 2022)} +\usage{ +kin_time_variant_2sex_cod( + pf = NULL, + pm = NULL, + ff = NULL, + fm = NULL, + Hf = NULL, + Hm = NULL, + sex_focal = "f", + birth_female = 1/2.04, + pif = NULL, + pim = NULL, + nf = NULL, + nm = NULL, + output_cohort = NULL, + output_period = NULL, + output_kin = NULL, + list_output = FALSE +) +} +\arguments{ +\item{pf}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} + +\item{pm}{numeric. A vector (atomic) or matrix with probabilities (or survival ratios, or transition between age class in a more general perspective) with rows as ages (and columns as years in case of matrix, being the name of each col the year).} + +\item{ff}{numeric. Same as pf but for fertility rates.} + +\item{fm}{numeric. Same as pm but for fertility rates.} + +\item{Hf}{numeric. A list where each list element (being the name of each list element the year) contains a matrix with cause-specific hazards for females with rows as causes and columns as ages, being the name of each col the age.} + +\item{Hm}{numeric. A list where each list element (being the name of each list element the year) contains a matrix with cause-specific hazards for males with rows as causes and columns as ages, being the name of each col the age.} + +\item{sex_focal}{character. "f" for female or "m" for male.} + +\item{birth_female}{numeric. Female portion at birth. This multiplies \code{f} argument. If \code{f} is already for female offspring, this needs to be set as 1.} + +\item{pif}{numeric. For using some specific age distribution of childbearing for mothers (same length as ages). Default \code{NULL}.} + +\item{pim}{numeric. For using some specific age distribution of childbearing for fathers (same length as ages). Default \code{NULL}.} + +\item{nf}{numeric. Same as pf but for population distribution (counts or \verb{\%}). Optional.} + +\item{nm}{numeric. Same as pm but for population distribution (counts or \verb{\%}). Optional.} + +\item{output_cohort}{integer. Vector of year cohorts for returning results. Should be within input data years range.} + +\item{output_period}{integer. Vector of period years for returning results. Should be within input data years range.} + +\item{output_kin}{character. kin types to return: "m" for mother, "d" for daughter,...} + +\item{list_output}{logical. Results as a list with years elements (as a result of \code{output_cohort} and \code{output_period} combination), with a second list of \code{output_kin} elements, with focalĀ“s age in columns and kin ages in rows (2 * ages, last chunk of ages for death experience). Default \code{FALSE}} +} +\value{ +A data.frame with year, cohort, FocalĀ“s age, related ages, sex and type of kin (for example \code{d} is daughter, \code{oa} is older aunts, etc.), including living and dead kin at that age and sex. +} +\description{ +Two-sex matrix framework for kin count estimates with varying rates. +This produces kin counts grouped by kin, age and sex of each relatives at each FocalĀ“s age. +For example, male cousins from aunts and uncles from different sibling's parents are grouped in one male count of cousins. This also produces kin deaths grouped by kin, age, sex of +each relatives at each FocalĀ“s age, and cause of death. +} +\details{ +See Caswell (2022) for details on formulas. +} diff --git a/man/timevarying_kin_2sex_cod.Rd b/man/timevarying_kin_2sex_cod.Rd new file mode 100644 index 0000000..8bc0b87 --- /dev/null +++ b/man/timevarying_kin_2sex_cod.Rd @@ -0,0 +1,29 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_time_variant_2sex_cod.R +\name{timevarying_kin_2sex_cod} +\alias{timevarying_kin_2sex_cod} +\title{one time projection kin} +\usage{ +timevarying_kin_2sex_cod(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin) +} +\arguments{ +\item{Ut}{numeric. A matrix of survival probabilities (or ratios).} + +\item{Ft}{numeric. A matrix of age-specific fertility rates.} + +\item{Ft_star}{numeric. Ft but for female fertility.} + +\item{pit}{numeric. A matrix with distribution of childbearing.} + +\item{sex_focal}{character. "f" for female or "m" for male.} + +\item{ages}{numeric.} + +\item{pkin}{numeric. A list with kin count distribution in previous year.} +} +\value{ +A list of 14 types of kin matrices (kin age by Focal age, blocked for two sex) projected one time interval. +} +\description{ +one time projection kin. internal function. +} diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index 8ee0d94..97f4b4a 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -11,7 +11,7 @@ vignette: > %\VignetteEncoding{UTF-8} --- -```{r, eval = F, include=FALSE} +```{r, eval = T, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(devtools); load_all() ``` @@ -275,4 +275,43 @@ bind_rows( facet_grid(col = vars(kin), row = vars(age_focal), scales = "free") ``` +### 2. Causes of death + +Now assume we have two causes of death, where the risk of the first one is half the other for females but 2/3 for males, in both cases for ages greater than 50. We need to set tow matrix with dimension 2 by 101 (number of causes by number of ages). + +```{r} +Hf <- matrix(c( .5, 1), nrow = 2, ncol = length(fra_surv_f)) +Hm <- matrix(c(.33, 1), nrow = 2, ncol = length(fra_surv_f)) +Hf[,1:50] <- Hm[,1:50] <- 1 +``` + +This is a generalization of Caswell [-@Caswell2023] approach. Originally the inputs in matrix $H$ are the hazard rates, but works like a relative risk factors realted to undelying death probability (see section 2.3 and formula 30 in section A.1). Now we run the time-invariant two-sex model by cause of death for France 2012, assuming our death count distribution based in the two competing causes: + +```{r} +kin_out_cod_invariant <- kin2sex( + pf = fra_surv_f, + pm = fra_surv_m, + ff = fra_fert_f, + fm = fra_fert_m, + Hf = Hf, + Hm = Hm, + time_invariant = TRUE) +``` + +The output in this case is always the `kin_full` type. LetĀ“s see a plot with the death distribution by age and cause of FocalĀ“s parents when Focal is 30 yo. + +```{r} +kin_out_cod_invariant %>% + filter(kin == "m", age_focal == 30) %>% + summarise(deadcause1 = sum(deadcause1), + deadcause2 = sum(deadcause2), .by = c(age_kin, sex_kin)) %>% + pivot_longer(deadcause1:deadcause2) %>% + ggplot(aes(age_kin, value, col = sex_kin, linetype = name)) + + geom_line() + + labs(y = "Parent's death count") + + theme_bw() +``` + +Because all the death experience of Focal is for apretns older than 50, is clear the realtive difference between the causes for each sex. The sum of the counts by sex gives the same result than total deaths by sex at that age in the general case (section 2, without splitting death probabilities by cause). The number of possible causes to add is not limited, but consider that it get more time-consuming. If we are dealing with a time-variant case, then a list by sex ($Hf$ and $Hm$) must be provided, with $H$ matrix for each year as elements, in the same order than mortality and fertility components. + ## References diff --git a/vignettes/references.bib b/vignettes/references.bib index 19e08e3..a2fc0ff 100644 --- a/vignettes/references.bib +++ b/vignettes/references.bib @@ -1,3 +1,15 @@ +@article{Caswell2023, + author = {Caswell, Hal and Margolis, Rachel and Verdery, Ashton}, + title = {{The formal demography of kinship V: Kin loss, bereavement, and causes of death}}, + journal = {Demographic Research}, + volume = {49}, + pages = {1163--1200}, + year = {2023}, + month = dec, + issn = {1435-9871}, + publisher = {Demographic Research}, + url = {https://www.demographic-research.org/articles/volume/49/41} +} @article{caswell_formal_2019, title = {The formal demography of kinship: {A} matrix formulation}, From 85830e46c8b05cb21f083a8cf71fab76a8dafcdc Mon Sep 17 00:00:00 2001 From: Alburez-Gutierrez Date: Tue, 17 Sep 2024 09:23:37 +0200 Subject: [PATCH 36/89] updated vignette COD --- vignettes/Reference_TwoSex.Rmd | 18 +++++++++++++----- 1 file changed, 13 insertions(+), 5 deletions(-) diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index 97f4b4a..12289d9 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -277,7 +277,7 @@ bind_rows( ### 2. Causes of death -Now assume we have two causes of death, where the risk of the first one is half the other for females but 2/3 for males, in both cases for ages greater than 50. We need to set tow matrix with dimension 2 by 101 (number of causes by number of ages). +Now assume we have two causes of death (COD). For females, the risk of the first COD is half the risk of the second COD for ages greater than 50. For males, the risk of the first COD is 2/3 of the second COD for ages greater than 50. We operationalize this using two matrices with dimension 2 by 101 (number of causes by number of ages). ```{r} Hf <- matrix(c( .5, 1), nrow = 2, ncol = length(fra_surv_f)) @@ -285,7 +285,7 @@ Hm <- matrix(c(.33, 1), nrow = 2, ncol = length(fra_surv_f)) Hf[,1:50] <- Hm[,1:50] <- 1 ``` -This is a generalization of Caswell [-@Caswell2023] approach. Originally the inputs in matrix $H$ are the hazard rates, but works like a relative risk factors realted to undelying death probability (see section 2.3 and formula 30 in section A.1). Now we run the time-invariant two-sex model by cause of death for France 2012, assuming our death count distribution based in the two competing causes: +This is a generalization of the approach outlined by Caswell [-@Caswell2023]. In the original formulation, the inputs in matrix $H$ are the hazard rates. Here, we treat them like a relative risk factor related to the underlying probability of dying. For more details, see section 2.3 and formula 30 in section A.1 of Caswell [-@Caswell2023]. Now we run the time-invariant two-sex model by COD for France 2012, assuming a death count distribution based on the two competing causes; note that the `kin2sex` function now takes the arguments `Hf` and `Hm` but the other arguments remain unchanged: ```{r} kin_out_cod_invariant <- kin2sex( @@ -298,7 +298,13 @@ kin_out_cod_invariant <- kin2sex( time_invariant = TRUE) ``` -The output in this case is always the `kin_full` type. LetĀ“s see a plot with the death distribution by age and cause of FocalĀ“s parents when Focal is 30 yo. +The output of `kin2sex` is the the `kin_full` data frame that we have encountered before. The only differences is that `kin_full` now includes one column for each COD specified in the input. Therefore, the number of columns will vary depending on how many COD you are considering! + +```{r} +head(kin_out_cod_invariant) +``` + +We can now plot the death distribution by age and COD of Focal's parents when Focal is 30 yo. ```{r} kin_out_cod_invariant %>% @@ -308,10 +314,12 @@ kin_out_cod_invariant %>% pivot_longer(deadcause1:deadcause2) %>% ggplot(aes(age_kin, value, col = sex_kin, linetype = name)) + geom_line() + - labs(y = "Parent's death count") + + labs(y = "Expected number of parental deaths") + theme_bw() ``` -Because all the death experience of Focal is for apretns older than 50, is clear the realtive difference between the causes for each sex. The sum of the counts by sex gives the same result than total deaths by sex at that age in the general case (section 2, without splitting death probabilities by cause). The number of possible causes to add is not limited, but consider that it get more time-consuming. If we are dealing with a time-variant case, then a list by sex ($Hf$ and $Hm$) must be provided, with $H$ matrix for each year as elements, in the same order than mortality and fertility components. +In this simplified example, the parents of Focal only died after age 50. This helped highlight the relative difference between the COD for each sex. Note that the sum of the death counts by sex gives the same result as the total deaths by sex at that age in the less complex model (i.e., the one that does not consider COD, see section 2 of this guide). + +You can add as many COD as you want, but keep in mind that this can be computationally intensive. For time-variant kinship models that consider COD, you must provide a list of matrices by sex ($Hf$ and $Hm$). The elements of this list should be $H$ matrices for each year (following the same order than the mortality and fertility components). ## References From 578456508a01cd3f5f2b516c7ff06d96b7c894f9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Iv=C3=A1n=20Williams?= Date: Tue, 24 Sep 2024 11:13:22 -0300 Subject: [PATCH 37/89] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 2bb3c6b..9255f10 100644 --- a/README.md +++ b/README.md @@ -116,7 +116,7 @@ does not load, you may need to install the package as ## Citation -Williams, IvĆ”n; Alburez-Gutierrez, Diego; Song, Xi; and Hal Caswell. +Williams, IvĆ”n; Alburez-Gutierrez, Diego; and the DemoKin team. (2021) DemoKin: An R package to implement demographic matrix kinship models. URL: . From ae5e0dc755548d3b2085a246dc9c60be09ac6afa Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 15:49:42 +0100 Subject: [PATCH 38/89] commiting files to my fork --- R/kin_multi_stage_time_variant_2sex.R | 1060 +++++++++++++++++ data/Female_parity_fert_list_UK.Rds | Bin 0 -> 62341 bytes data/Female_parity_mortality_list_UK.Rds | Bin 0 -> 37381 bytes data/Male_parity_fert_list_UK.Rds | Bin 0 -> 62341 bytes data/Male_parity_mortality_list_UK.Rds | Bin 0 -> 45416 bytes data/Parity_transfers_by_age_UK.Rds | Bin 0 -> 136152 bytes data/Redistribution_by_parity_list_UK.Rds | Bin 0 -> 321 bytes man/all_kin_dy.Rd | 48 + man/all_kin_dy_TV.Rd | 94 ++ man/create_cumsum_df.Rd | 41 + man/create_full_dists_df.Rd | 41 + man/kin_multi_stage_time_variant_2sex.Rd | 63 + man/pi_mix.Rd | 33 + man/pi_mix_TV.Rd | 31 + man/pi_mix_TV_parity.Rd | 35 + man/pi_mix_parity.Rd | 33 + .../test-kin_twosex_multistate_timevariant.R | 77 ++ ...eference_TwoSex_MultiState_TimeVariant.Rmd | 255 ++++ 18 files changed, 1811 insertions(+) create mode 100644 R/kin_multi_stage_time_variant_2sex.R create mode 100644 data/Female_parity_fert_list_UK.Rds create mode 100644 data/Female_parity_mortality_list_UK.Rds create mode 100644 data/Male_parity_fert_list_UK.Rds create mode 100644 data/Male_parity_mortality_list_UK.Rds create mode 100644 data/Parity_transfers_by_age_UK.Rds create mode 100644 data/Redistribution_by_parity_list_UK.Rds create mode 100644 man/all_kin_dy.Rd create mode 100644 man/all_kin_dy_TV.Rd create mode 100644 man/create_cumsum_df.Rd create mode 100644 man/create_full_dists_df.Rd create mode 100644 man/kin_multi_stage_time_variant_2sex.Rd create mode 100644 man/pi_mix.Rd create mode 100644 man/pi_mix_TV.Rd create mode 100644 man/pi_mix_TV_parity.Rd create mode 100644 man/pi_mix_parity.Rd create mode 100644 tests/testthat/test-kin_twosex_multistate_timevariant.R create mode 100644 vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R new file mode 100644 index 0000000..c930147 --- /dev/null +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -0,0 +1,1060 @@ + + +#' Estimate kin counts by age, stage, and sex, in a time variant framework + +#' @description Implementation of combined formal demographic models: Caswell II,III,IV. + +#' @param U_list_females list with matrix entries: period-specific female survival probabilities. Age in rows and states in columns. +#' @param U_list_males list with matrix entries: period-specific male survival probabilities. Age in rows and states in columns. +#' @param F_list_females list with matrix with elements: period-specific female fertility (age in rows and states in columns). +#' @param F_list_males list with matrix entries: period-specific male fertility (age in rows and states in columns). +#' @param T_list_females list of lists with matrix entries: each outer list entry is period-specific, and composed of +#' a list of stochastic matrices which describe age-specific female probabilities of transferring stage +#' @param T_list_males list of lists with matrix entries: each outer list entry is period-specific, and composed of +#' a list of stochastic matrices which describe age-specific male probabilities of transferring stage +#' @param H_list list with matrix entries: redistribution of newborns across each stage to a specific age-class +#' @param birth_female numeric. ratio of males to females in population +#' @param parity logical. parity states imply age distribution of mothers re-scaled to not have parity 0 when Focal born. Default `TRUE`. +#' @param output_kin vector. A vector of particular kin one wishes to obtain results for, e.g., c("m","d","oa"). Default is all kin types. +#' @param summary_kin logical. Results as a data frame of accumulated kin by age of Focal if FALSE, and kin by their age*stage distribution by age of Focal if TRUE. +#' @param sex_Focal character. Female or Male as the user requests +#' @param initial_stage_Focal Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0) +#' @param n_inc numeric. The age/time-increment used in the discretisation of the continuum. +#' @param output_years vector. The times at which we wish to count kin: start year = output_years[1], and end year = output_years[length.] +#' +#' @return A data frame with focalĀ“s age, related ages, stages, sexes, and types of kin for each time-period + +#' @export +#' +kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, + U_list_males = NULL, + F_list_females = NULL, + F_list_males = NULL, + T_list_females = NULL, + T_list_males = NULL, + H_list = NULL, + birth_female = 0.49, ## Sex ratio -- note is 1 - alpha + parity = FALSE, + output_kin = FALSE, + summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin + sex_Focal = "Female", + initial_stage_Focal = NULL, + n_inc = NULL, ## n_inc is the age-class, time-class increment (e.g., 1year,5year,10year) + output_years){ + + no_years <- length(U_list_females) + na <- nrow(U_list_females[[1]]) + ns <- ncol(U_list_females[[1]]) + + # Ensure inputs are lists of matrices and that the timescale same length + if(length(U_list_females)!=length(output_years)){stop("Timescale inconsistancy")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) + if(!is.list(U_list_females) | !is.list(U_list_males)){stop("U's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} + if(!is.list(F_list_females) | !is.list(F_list_males)){stop("F's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} + if(!is.list(T_list_females) | !is.list(T_list_males)){stop("T's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} + + ### Define empty lists for the accumulated kin of Focals's life-course -- each list entry will reflect a time-period + changing_pop_struct <- list() + Focal_array <- list() + mom_array <- list() + gran_array <- list() + great_gran_array <- list() + daughter_array <- list() + younger_sis_array <- list() + grand_daughter_array <-list() + great_grand_daughter_array <- list() + older_sister_array <- list() + younger_aunt_array <- list() + older_aunt_array <- list() + younger_niece_array <- list() + older_niece_array <- list() + younger_cousin_array <- list() + older_cousin_array <- list() + + ### At each time-period we: 1) -- construct the time-variant projection matrices: + ### U_tilde : transfers across stage and advances age + ### F_tilde : makes newborns from stage/age; puts them to stage/age + ### 2) -- project Focal and kin using above projection matrices + + pb <- progress::progress_bar$new( + format = "Timescale [:bar] :percent", + total = no_years + 1, clear = FALSE, width = 60) + tictoc::tic() + for(year in 1:no_years){ + pb$tick() + T_data_f <- T_list_females[[year]] ## For each year we have na number of Transfer matrices + T_data_m <- T_list_males[[year]] ## which give probabilities of age-dep movement from stage to stage + T_f_list <- list() + T_m_list <- list() + F_f_list <- list() + F_m_list <- list() + U_f_list <- list() + U_m_list <- list() + H_list2 <- list() + + for(stage in 1:ns){ + Uf <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) + Matrix::diag(Uf[-1,-ncol(Uf)]) <- U_list_females[[year]][1:(na-1),stage] + Uf[na,na] <- U_list_females[[year]][na,stage] + Um <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) + Matrix::diag(Um[-1,-ncol(Um)]) <- U_list_males[[year]][1:(na-1),stage] + Um[na,na] <- U_list_males[[year]][na,stage] + U_f_list[[(1+length(U_f_list))]] <- Uf + U_m_list[[(1+length(U_m_list))]] <- Um + H_mat <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) + H_mat[1,] <- 1 + H_list2[[(1+length(H_list2))]] <- H_mat + } + for(age in 1:na){ + T_f <- T_data_f[[age]] + T_m <- T_data_m[[age]] + T_f_list[[(1+length(T_f_list))]] <- T_f + T_m_list[[(1+length(T_m_list))]] <- T_m + F_f <- Matrix::Matrix(nrow = ns, ncol = ns, data = 0, sparse = TRUE) + F_m <- Matrix::Matrix(nrow = ns, ncol = ns, data = 0, sparse = TRUE) + F_f[1,] <- F_list_females[[year]][age,] + F_m[1,] <- F_list_males[[year]][age,] + F_f_list[[(1+length(F_f_list))]] <- F_f + F_m_list[[(1+length(F_m_list))]] <- F_m + } + ## create the appropriate block-diagonal matrices + U_f_BDD <- block_diag_function(U_f_list) ## direct sum of female survivorship, independent over stage (ns diagonal blocks) + U_m_BDD <- block_diag_function(U_m_list) ## direct sum of male survivorship, independent over stage (ns diagonal blocks) + H_BDD <- block_diag_function(H_list2) ## direct sum of which age newborns enter, independent over stage (ns diagonal blocks) + T_f_BDD <- block_diag_function(T_f_list) ## direct sum of female stage transitions, independent over age (na diagonal blocks) + T_m_BDD <- block_diag_function(T_m_list) ## direct sum of male stage transitions, independent over age (na diagonal blocks) + F_f_BDD <- block_diag_function(F_f_list) ## direct sum of female stage->stage reproductions, independent over age (na blocks) + F_m_BDD <- block_diag_function(F_m_list) ## direct sum of male stage->stage reproductions, independent over age (na blocks) + + ## create the appropriate projection matrices + U_tilde_females <- Matrix::t(K_perm_mat(ns, na)) %*% + U_f_BDD %*% + K_perm_mat(ns, na) %*% + T_f_BDD + + ## create sex-specific age*stage projections + U_tilde_males <- Matrix::t(K_perm_mat(ns, na)) %*% + U_m_BDD %*% + K_perm_mat(ns, na) %*% + T_m_BDD + + F_tilde_females <- Matrix::t(K_perm_mat(ns, na)) %*% + H_BDD %*% + K_perm_mat(ns, na) %*% + F_f_BDD + + F_tilde_males <- Matrix::t(K_perm_mat(ns, na)) %*% + H_BDD %*% + K_perm_mat(ns, na) %*% + F_m_BDD + + ## if year == 1 we are at the boundary condition t=0 apply time-invariant kinship projections + if(year == 1){ + ## Output of the static model + kin_out_1 <- all_kin_dy(U_tilde_females, + U_tilde_males , + F_tilde_females, + F_tilde_males, + 1-birth_female, + na, + ns, + parity, + sex_Focal, + initial_stage_Focal) + ### Relative lists' first entries + Focal_array[[(1+length(Focal_array))]] <- kin_out_1[["Focal"]] + daughter_array[[(1+length(daughter_array))]] <- kin_out_1[["d"]] + grand_daughter_array[[(1+length(grand_daughter_array))]] <- kin_out_1[["gd"]] + great_grand_daughter_array[[(1+length(great_grand_daughter_array))]] <- kin_out_1[["ggd"]] + mom_array[[(1+length(mom_array))]] <- kin_out_1[["m"]] + gran_array[[(1+length(gran_array))]] <- kin_out_1[["gm"]] + great_gran_array[[(1+length(great_gran_array))]] <- kin_out_1[["ggm"]] + younger_sis_array[[( 1+length(younger_sis_array))]] <- kin_out_1[["ys"]] + older_sister_array[[(1+length(older_sister_array))]] <- kin_out_1[["os"]] + younger_aunt_array[[(1+length(younger_aunt_array))]] <- kin_out_1[["ya"]] + older_aunt_array[[(1+length(older_aunt_array))]] <- kin_out_1[["oa"]] + younger_niece_array[[(1+length(younger_niece_array))]] <- kin_out_1[["nys"]] + older_niece_array[[(1+length(older_niece_array))]] <- kin_out_1[["nos"]] + younger_cousin_array[[(1+length(younger_cousin_array))]] <- kin_out_1[["cya"]] + older_cousin_array[[(1+length(older_cousin_array))]] <- kin_out_1[["coa"]] + changing_pop_struct[[(1+length(changing_pop_struct))]] <- kin_out_1[["ps"]] + + } + updating_Focal <- Focal_array[[year]] + updating_daughter <- daughter_array[[year]] + updating_grand_daughter <- grand_daughter_array[[year]] + updating_great_grand_daughter <- great_grand_daughter_array[[year]] + updating_mom <- mom_array[[year]] + updating_gran <- gran_array[[year]] + updating_great_gran <- great_gran_array[[year]] + updating_younger_sis <- younger_sis_array[[year]] + updating_older_sis <- older_sister_array[[year]] + updating_youner_aunt <- younger_aunt_array[[year]] + updating_older_aunt <- older_aunt_array[[year]] + updating_younger_niece <- younger_niece_array[[year]] + updating_older_niece <- older_niece_array[[year]] + updating_younger_cousin <- younger_cousin_array[[year]] + updating_older_cousin <- older_cousin_array[[year]] + updating_pop_struct <- changing_pop_struct[[year]] + + ## Output of the time-variant model + kin_out <- all_kin_dy_TV(U_tilde_females, + U_tilde_males, + F_tilde_females, + F_tilde_males, + 1-birth_female, + na, + ns, + parity, + sex_Focal, + initial_stage_Focal, + updating_Focal, + updating_daughter, + updating_grand_daughter, + updating_great_grand_daughter, + updating_mom, + updating_gran, + updating_great_gran, + updating_older_sis, + updating_younger_sis, + updating_older_niece, + updating_younger_niece, + updating_older_aunt, + updating_youner_aunt, + updating_older_cousin, + updating_younger_cousin, + updating_pop_struct) + ## Relative lists entries correspond to timescale periods (each entry an kin age*stage*2 by Focal age matrix) + Focal_array[[(1+length(Focal_array))]] <- kin_out[["Focal"]] + daughter_array[[(1+length(daughter_array))]] <- kin_out[["d"]] + grand_daughter_array[[(1+length(grand_daughter_array))]] <- kin_out[["gd"]] + great_grand_daughter_array[[(1+length(great_grand_daughter_array))]] <- kin_out[["ggd"]] + mom_array[[(1+length(mom_array))]] <- kin_out[["m"]] + gran_array[[(1+length(gran_array))]] <- kin_out[["gm"]] + great_gran_array[[(1+length(great_gran_array))]] <- kin_out[["ggm"]] + younger_sis_array[[(1+length(younger_sis_array))]] <- kin_out[["ys"]] + older_sister_array[[(1+length(older_sister_array))]] <- kin_out[["os"]] + younger_aunt_array[[(1+length(younger_aunt_array))]] <- kin_out[["ya"]] + older_aunt_array[[(1+length(older_aunt_array))]] <- kin_out[["oa"]] + younger_niece_array[[(1+length(younger_niece_array))]] <- kin_out[["nys"]] + older_niece_array[[(1+length(older_niece_array))]] <- kin_out[["nos"]] + younger_cousin_array[[(1+length(younger_cousin_array))]] <- kin_out[["cya"]] + older_cousin_array[[(1+length(older_cousin_array))]] <- kin_out[["coa"]] + changing_pop_struct[[(1+length(changing_pop_struct))]] <- kin_out[["ps"]] + } + tictoc::toc() + ## create a list of output kin -- each element a time-period specific list of matrices + ## label the kin names to match DemoKin: + relative_data <- list("Focal" = Focal_array, + "d" = daughter_array, + "gd" = grand_daughter_array, + "ggd" = great_grand_daughter_array, + "m" = mom_array, + "gm" = gran_array, + "ggm" = great_gran_array, + "ys" = younger_sis_array, + "os" = older_sister_array, + "ya" = younger_aunt_array, + "oa" = older_aunt_array, + "nys" = younger_niece_array, + "nos" = older_niece_array, + "cya" = younger_cousin_array, + "coa" = older_cousin_array) + + relative_names <- names(relative_data) + ## create a nice data frame output + if(summary_kin){ + kin_out <- create_cumsum_df(relative_data, + relative_names, + output_years[1]:output_years[length(output_years)], + output_years[1], + na, + ns, + n_inc, + output_kin)} + else{ + kin_out <- create_full_dists_df(relative_data, + relative_names, + output_years[1]:output_years[length(output_years)], + output_years[1], + na, + ns, + n_inc, + output_kin)} + + return(kin_out) +} + + +#' Title time invariant two-sex multi-state kin projections +#' +#' @param Uf matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial) +#' @param Um matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial) +#' @param Ff matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage +#' @param Fm matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage +#' @param alpha scalar. birth ratio (male:female) +#' @param na scalar. number of ages. +#' @param ns scalar. number of stages. +#' @param Parity logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting +#' @param sex_Focal logical. Female or Male +#' @param Initial_stage_Focal numeric. Any natural number {1,2,3,4,...} +#' +#' @return a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: +#' nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) +#' yielding the age*stage distribution of kin for each age of Focal +#' +#' +#' +all_kin_dy <- function(Uf, + Um, + Ff, + Fm, + alpha, ## alpha = sex ratio male:female (i.e., 1 - birth_female) + na, ## na = number of ages + ns, ## ns = number of stages + Parity, + sex_Focal, ## binary "F" or "M" + Initial_stage_Focal){ + + n <- nrow(Uf) ## number of ages * stages for each sex + + ## Projection matrices: + + ## Uproj is a block diagonal matrix of block-structured Age*Stage matrices; independently over sex transfers individuals across stage and up age + Uproj <- Matrix::Matrix(block_diag_function(list(Uf, Um)), sparse = TRUE) + ## Fproj is a Sex-block-structured matrix of block-structured Age*Stage matrices where males and females BOTH reproduce (by stage) + Fproj <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) + Fproj[1:n, 1:n] <- (1-alpha)*Ff ## Ff is Age*Stage block structured giving rate at which females in age-stage produce individuals in age-stage + Fproj[(n+1):(2*n), 1:n] <- alpha*Ff + Fproj[1:n, (n+1):(2*n)] <- (1-alpha)*Fm ## Fm is Age*Stage block structured giving rate at which males in age-stage produce individuals in age-stage + Fproj[(n+1):(2*n), (n+1):(2*n)] <- alpha*Fm + + ## Fprojstar is a Sex-block-structured matrix of block-structured Age*Stage matrices where ONLY females reproduce + Fprojstar <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) ## Block structured F_tilde + Fprojstar[1:n, 1:n] <- (1-alpha)*Ff + Fprojstar[(n+1):(2*n), 1:n] <- alpha*Ff + + ## The stable population structure is an age*stage*sex vector: + ## 1:n gives the female age*stage structure + ## (1+n):2n gives the male age*stage structure + population_age_stage_structure <- SD(Uproj + Fprojstar) + + ### Stable distribution of mothers needs adjusting if we work with parity + if(Parity){ + Initial_stage_Focal <- 1 + + population_age_stage_of_parenting <- pi_mix_parity(Uf, Um, Ff, Fm, alpha, na, ns) + mothers_age_stage <- population_age_stage_of_parenting[[2]] + fathers_age_stage <- population_age_stage_of_parenting[[3]] + + mothers_age_dist <- population_age_stage_of_parenting[[4]] + fathers_age_dist <- population_age_stage_of_parenting[[5]] + + } + else{ + population_age_stage_of_parenting <- pi_mix(Uf, Um, Ff, Fm, alpha, na, ns) + mothers_age_stage <- population_age_stage_of_parenting[[2]] + fathers_age_stage <- population_age_stage_of_parenting[[3]] + + mothers_age_dist <- population_age_stage_of_parenting[[4]] + fathers_age_dist <- population_age_stage_of_parenting[[5]] + + } + + ####################################### The dynamics of Kinship, starting with Focal who is no longer a unit vector + + ### Focal requires its own dynamic: G_tilde constructed below tracks Focal's age*stage advancement over the time-scale + f_t <- get_G(Uf, na, ns) ## get_G function in "Functions_required.R" + m_t <- get_G(Um, na, ns) + G_tilde <- block_diag_function(list(f_t,m_t)) + X_Focal <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + IC_Focal <- rep(0, 2*n) + if(sex_Focal == "Female"){ + entry <- 1 + (Initial_stage_Focal-1)*na + IC_Focal[entry] <- 1} + else{ + entry <- n + 1 + (Initial_stage_Focal-1)*na + IC_Focal[entry] <- 1 + } + + ### empty kin matrices for all of Focal's kin + X_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_great_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_great_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_aunt_uncle <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_aunts_uncles <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + + + ### Initial distributions for kin with non-zero deterministic initial conditions: + # Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews + X_Focal[,1] <- IC_Focal + X_parents[, 1] <- mothers_age_stage + + ### projection all kin with deterministic initial conditions + for(i in 1 : (na-1)){ + X_Focal[,i+1] <- G_tilde %*% X_Focal[,i] + X_parents[, i+1] <- Uproj %*% X_parents[, i] + X_younger_sibs[,i+1] <- Uproj %*% X_younger_sibs[,i] + Fprojstar %*% X_parents[,i] + X_younger_niece_nephew[,i+1] <- Uproj %*% X_younger_niece_nephew[,i] + Fproj %*% X_younger_sibs[,i] + X_children[,i+1] <- Uproj %*% X_children[,i] + Fproj %*% X_Focal[,i] + X_grand_children[,i+1] <- Uproj %*% X_grand_children[,i] + Fproj %*% X_children[,i] + X_great_grand_children[,i+1] <- Uproj %*% X_great_grand_children[,i] + Fproj %*% X_grand_children[,i] + } + + ### IC for kin which are derived from above kin (Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews): + # grand parents, older sibs, younger aunts/uncles, older nieces/nephews + IC_f_grand_pars <- mothers_age_dist + IC_m_grand_pars <- fathers_age_dist + IC_f_great_grand_pars <- mothers_age_dist + IC_m_great_grand_pars <- fathers_age_dist + IC_older_sibs_f <- mothers_age_dist + IC_younger_aunts_uncles_f <- mothers_age_dist + IC_younger_aunts_uncles_m <- fathers_age_dist + IC_older_niece_nephew_f <- mothers_age_dist + for(ic in 1 : (na)){ + X_grand_parents[, 1] <- X_grand_parents[, 1] + (IC_f_grand_pars[ic] + IC_m_grand_pars[ic])*X_parents[,ic] ## IC the sum of parents of Focal's parents, + X_great_grand_parents[, 1] <- X_great_grand_parents[, 1] + (IC_f_great_grand_pars[ic] + IC_m_great_grand_pars[ic])*X_grand_parents[,ic] + X_older_sibs[,1] <- X_older_sibs[,1] + IC_older_sibs_f[ic]*X_children[,ic] + X_older_niece_nephew[,1] <- X_older_niece_nephew[,1] + IC_older_niece_nephew_f[ic]*X_grand_children[,ic] + X_younger_aunts_uncles[,1] <- X_younger_aunts_uncles[,1] + (IC_younger_aunts_uncles_f[ic] + IC_younger_aunts_uncles_m[ic])*X_younger_sibs[,ic] + } + + ### Projections of grand parenst, older sibs, younger aunts/uncles, older nieces/nephews + for(i in 1: (na-1)){ + X_grand_parents[, i+1] <- Uproj %*% X_grand_parents[, i] + X_great_grand_parents[, i+1] <- Uproj %*% X_great_grand_parents[, i] + X_older_sibs[,i+1] <- Uproj %*% X_older_sibs[,i] + X_older_niece_nephew[,i+1] <- Uproj %*% X_older_niece_nephew[,i] + Fproj %*% X_older_sibs[,i] + X_younger_aunts_uncles[,i+1] <- Uproj %*% X_younger_aunts_uncles[,i] + Fprojstar %*% X_grand_parents[,i] + } + + ### IC for kin which are derived from above kin (older sibs, younger aunts/uncles, older nieces/nephews): + ## older unts/uncles, older cousins, younger cousins + IC_older_aunt_uncle_f <- mothers_age_dist + IC_older_aunt_uncle_m <- fathers_age_dist + IC_older_cousins_f <- mothers_age_dist + IC_older_cousins_m <- fathers_age_dist + IC_younger_cousins_f <- mothers_age_dist + IC_younger_cousins_m <- fathers_age_dist + for(ic in 1 : (na-1)){ + X_older_aunt_uncle[,1] <- X_older_aunt_uncle[,1] + (IC_older_aunt_uncle_f[ic] + IC_older_aunt_uncle_m[ic])*X_older_sibs[,ic] + X_older_cousins[,1] <- X_older_cousins[,1] + (IC_older_cousins_f[ic] + IC_older_cousins_m[ic])*X_older_niece_nephew[,ic] + X_younger_cousins[,1] <- X_younger_cousins[,1] + (IC_younger_cousins_f[ic] + IC_younger_cousins_m[ic])*X_younger_niece_nephew[,ic] + } + + ## Projections of older unts/uncles, older cousins, younger cousins + for(i in 1: (na-1)){ + X_older_aunt_uncle[,i+1] <- Uproj %*% X_older_aunt_uncle[,i] + X_older_cousins[,i+1] <- Uproj %*% X_older_cousins[,i] + Fproj %*% X_older_aunt_uncle[,i] + X_younger_cousins[,i+1] <- Uproj %*% X_younger_cousins[,i] + Fproj %*% X_younger_aunts_uncles[,i] + } + + #### OUTPUT of all kin + return(list("Focal" = X_Focal, + "d" = X_children, + "gd" = X_grand_children, + "ggd" = X_great_grand_children, + "m" = X_parents, + "gm" = X_grand_parents, + "ggm" = X_great_grand_parents, + "os" = X_older_sibs, + "ys" = X_younger_sibs, + "nos" = X_older_niece_nephew, + "nys" = X_younger_niece_nephew, + "oa" = X_older_aunt_uncle, + "ya" = X_younger_aunts_uncles, + "coa" = X_older_cousins, + "cya" = X_younger_cousins, + "ps" = population_age_stage_structure + )) +} + + +#' Title time-variant two-sex multi-state kin projections +#' +#' @param Uf matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial) +#' @param Um matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial) +#' @param Ff matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage +#' @param Fm matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage +#' @param alpha scalar. birth ratio (male:female) +#' @param na scalar. number of ages. +#' @param ns scalar. number of stages. +#' @param Parity logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting +#' @param sex_Focal logical. Female or Male +#' @param Initial_stage_Focal numeric. Any natural number {1,2,3,4,...} +#' @param previous_kin_Focal matrix. last years kinship output. +#' @param prev_kin_children matrix. last years kinship output. +#' @param prev_kin_grandchildren matrix. last years kinship output. +#' @param prev_kin_greatgrandchildren matrix. last years kinship output. +#' @param prev_kin_parents matrix. last years kinship output. +#' @param prev_kin_grand_parents matrix. last years kinship output. +#' @param prev_kin_older_sibs matrix. last years kinship output. +#' @param prev_kin_younger_sibs matrix. last years kinship output. +#' @param prev_kin_older_niece_nephew matrix. last years kinship output. +#' @param prev_kin_younger_niece_nephew matrix. last years kinship output. +#' @param prev_kin_older_aunts_uncles matrix. last years kinship output. +#' @param prev_kin_younger_aunts_uncles matrix. last years kinship output. +#' @param prev_kin_older_cousins matrix. last years kinship output. +#' @param prev_kin_younger_cousins matrix. last years kinship output. +#' @param previous_population_age_stage_structure vector. The transient "population structure" (age*stage distributed) +#' +#' @return a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: +#' nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) +#' yielding the age*stage distribution of kin for each age of Focal +#' +#' +all_kin_dy_TV <- function(Uf, + Um, + Ff, + Fm, + alpha, ## alpha = sex ratio male:female (i.e., 1 - birth_female) + na, ## number of ages + ns, ## number of stages + Parity, + sex_Focal, + Initial_stage_Focal, + previous_kin_Focal, + prev_kin_children, + prev_kin_grandchildren, + prev_kin_greatgrandchildren, + prev_kin_parents, + prev_kin_grand_parents, + prev_kin_great_grand_parents, + prev_kin_older_sibs, + prev_kin_younger_sibs, + prev_kin_older_niece_nephew, + prev_kin_younger_niece_nephew, + prev_kin_older_aunts_uncles, + prev_kin_younger_aunts_uncles, + prev_kin_older_cousins, + prev_kin_younger_cousins, + previous_population_age_stage_structure){ + + n <- nrow(Uf) + Uproj <- Matrix::Matrix(block_diag_function(list(Uf, Um)), sparse = TRUE) + Fproj <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) + Fproj[1:n, 1:n] <- (1-alpha)*Ff + Fproj[(n+1):(2*n), 1:n] <- alpha*Ff + Fproj[1:n, (n+1):(2*n)] <- (1-alpha)*Fm + Fproj[(n+1):(2*n), (n+1):(2*n)] <- alpha*Fm + Fprojstar <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) ## Block structured F_tilde + Fprojstar[1:n, 1:n] <- (1-alpha)*Ff + Fprojstar[(n+1):(2*n), 1:n] <- alpha*Ff + + population_age_stage_structure <- previous_population_age_stage_structure + population_age_stage_structure <- population_age_stage_structure/sum(population_age_stage_structure) + population_age_stage_structure_next <- (Uproj + Fprojstar)%*%population_age_stage_structure + + ### Stable distribution of mothers needs adjusting if we work with parity + if(Parity){ + Initial_stage_Focal <- 1 + + population_age_stage_of_parenting <- pi_mix_TV_parity(Ff, Fm, alpha, na, ns, population_age_stage_structure) + mothers_age_stage <- population_age_stage_of_parenting[[2]] + fathers_age_stage <- population_age_stage_of_parenting[[3]] + + mothers_age_dist <- population_age_stage_of_parenting[[4]] + fathers_age_dist <- population_age_stage_of_parenting[[5]] + + } + else{ + + population_age_stage_of_parenting <- pi_mix_TV(Ff, Fm, alpha, na, ns, population_age_stage_structure) + mothers_age_stage <- population_age_stage_of_parenting[[2]] + fathers_age_stage <- population_age_stage_of_parenting[[3]] + + mothers_age_dist <- population_age_stage_of_parenting[[4]] + fathers_age_dist <- population_age_stage_of_parenting[[5]] + + } + + ### Focal requires its own dynamic: G_tilde constructed below tracks Focal's age*stage advancement over the time-scale + f_t <- get_G(Uf, na, ns) ## get_G function in "Functions_required.R" + m_t <- get_G(Um, na, ns) + G_tilde <- block_diag_function(list(f_t,m_t)) + X_Focal <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + IC_Focal <- rep(0, 2*n) + if(sex_Focal == "Female"){ + entry <- 1 + (Initial_stage_Focal-1)*na + IC_Focal[entry] <- 1} + else{ + entry <- n + 1 + (Initial_stage_Focal-1)*na + IC_Focal[entry] <- 1 + } + + ### empty kin matrices for all of Focal's kin + X_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_great_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_great_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_aunt_uncle <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_aunts_uncles <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + + ### Initial distributions for kin with non-zero deterministic initial conditions: + ## Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews + X_Focal[,1] <- IC_Focal + X_parents[, 1] <- mothers_age_stage + ### projection all above kin with deterministic initial conditions + for(i in 1 : (na-1)){ + X_Focal[,i+1] <- G_tilde %*% previous_kin_Focal[,i] + X_parents[, i+1] <- Uproj %*% prev_kin_parents[, i] + X_younger_sibs[,i+1] <- Uproj %*% prev_kin_younger_sibs[,i] + Fprojstar %*% prev_kin_parents[,i] + X_younger_niece_nephew[,i+1] <- Uproj %*% prev_kin_younger_niece_nephew[,i] + Fproj %*% prev_kin_younger_sibs[,i] + X_children[,i+1] <- Uproj %*% prev_kin_children[,i] + Fproj %*% previous_kin_Focal[,i] + X_grand_children[,i+1] <- Uproj %*% prev_kin_grandchildren[,i] + Fproj %*% prev_kin_children[,i] + X_great_grand_children[,i+1] <- Uproj %*% prev_kin_greatgrandchildren[,i] + Fproj %*% prev_kin_grandchildren[,i] + } + + ### IC for kin which are derived from above kin (Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews): + # grand parents, older sibs, younger aunts/uncles, older nieces/nephews + IC_f_grand_pars <- mothers_age_dist + IC_m_grand_pars <- fathers_age_dist + IC_f_great_grand_pars <- mothers_age_dist + IC_m_great_grand_pars <- fathers_age_dist + IC_younger_aunts_uncles_f <- mothers_age_dist + IC_younger_aunts_uncles_m <- fathers_age_dist + IC_older_sibs_f <- mothers_age_dist + IC_older_niece_nephew_f <- mothers_age_dist + for(ic in 1 : (na)){ + X_grand_parents[, 1] <- X_grand_parents[, 1] + (IC_f_grand_pars[ic] + IC_m_grand_pars[ic])*prev_kin_parents[,ic] ## IC the sum of parents of Focal's parents, + X_great_grand_parents[, 1] <- X_great_grand_parents[, 1] + (IC_f_great_grand_pars[ic] + IC_m_great_grand_pars[ic])*prev_kin_grand_parents[,ic] + X_older_sibs[,1] <- X_older_sibs[,1] + IC_older_sibs_f[ic]*prev_kin_children[,ic] + X_older_niece_nephew[,1] <- X_older_niece_nephew[,1] + IC_older_niece_nephew_f[ic]*prev_kin_grandchildren[,ic] + X_younger_aunts_uncles[,1] <- X_younger_aunts_uncles[,1] + (IC_younger_aunts_uncles_f[ic] + IC_younger_aunts_uncles_m[ic])*prev_kin_younger_sibs[,ic] + } + + ### Projections of older sibs, younger aunts/uncles, older nieces/nephews + for(i in 1: (na-1)){ + X_grand_parents[, i+1] <- Uproj %*% prev_kin_grand_parents[, i] + X_great_grand_parents[, i+1] <- Uproj %*% prev_kin_great_grand_parents[, i] + X_older_sibs[,i+1] <- Uproj %*% prev_kin_older_sibs[,i] + X_older_niece_nephew[,i+1] <- Uproj %*% prev_kin_older_niece_nephew[,i] + Fproj %*% prev_kin_older_sibs[,i] + X_younger_aunts_uncles[,i+1] <- Uproj %*% prev_kin_younger_aunts_uncles[,i] + Fprojstar %*% prev_kin_grand_parents[,i] + } + + ### IC for kin which are derived from above kin (older sibs, younger aunts/uncles, older nieces/nephews): + ## older unts/uncles, older cousins, younger cousins + IC_older_aunt_uncle_f <- mothers_age_dist + IC_older_aunt_uncle_m <- fathers_age_dist + IC_older_cousins_f <- mothers_age_dist + IC_older_cousins_m <- fathers_age_dist + IC_younger_cousins_f <- mothers_age_dist + IC_younger_cousins_m <- fathers_age_dist + for(ic in 1 : (na-1)){ + X_older_aunt_uncle[,1] <- X_older_aunt_uncle[,1] + (IC_older_aunt_uncle_f[ic] + IC_older_aunt_uncle_m[ic])*prev_kin_older_sibs[,ic] + X_older_cousins[,1] <- X_older_cousins[,1] + (IC_older_cousins_f[ic] + IC_older_cousins_m[ic])*prev_kin_older_niece_nephew[,ic] + X_younger_cousins[,1] <- X_younger_cousins[,1] + (IC_younger_cousins_f[ic] + IC_younger_cousins_m[ic])*prev_kin_younger_niece_nephew[,ic] + } + + ## Projections of older unts/uncles, older cousins, younger cousins + for(i in 1: (na-1)){ + X_older_aunt_uncle[,i+1] <- Uproj %*% prev_kin_older_aunts_uncles[,i] + X_older_cousins[,i+1] <- Uproj %*% prev_kin_older_cousins[,i] + Fproj %*% prev_kin_older_aunts_uncles[,i] + X_younger_cousins[,i+1] <- Uproj %*% prev_kin_younger_cousins[,i] + Fproj %*% prev_kin_younger_aunts_uncles[,i] + } + + return(list("Focal" = X_Focal, + "d" = X_children, + "gd" = X_grand_children, + "ggd" = X_great_grand_children, + "m" = X_parents, + "gm" = X_grand_parents, + "ggm" = X_great_grand_parents, + "os" = X_older_sibs, + "ys" = X_younger_sibs, + "nos" = X_older_niece_nephew, + "nys" = X_younger_niece_nephew, + "oa" = X_older_aunt_uncle, + "ya" = X_younger_aunts_uncles, + "coa" = X_older_cousins, + "cya" = X_younger_cousins, + "ps" = population_age_stage_structure_next)) +} + +################## Create data frame output + +## Use of "pipe" (don't understand the name, but hey) +`%>%` <- magrittr::`%>%` + +#' Title Accumulated kin by each age of Focal, for each time period, and cohort of birth +#' +#' @param kin_matrix_lists list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale +#' so list(X_focal) = list(X_focal[year1],X_focal[year2],...,X_focal[yearlast]) +#' @param kin_names list of characters. Corresponding to above lists: list("F","m",....) +#' @param years vector. The timescale on which we implement the kinship model. +#' @param start_year . First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990) +#' @param na numeric. Number of ages. +#' @param ns numeric. Number of stages. +#' @param n_inc numeric. The size of the age/time increment (if abridged). NULL corresponds to 1 year intervals. +#' @param specific_kin character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14. +#' +#' @return A data frame which gives for each age of Focal at each year in the timescale, Focal's experienced number kin demarcated by stages (summed over all ages) +#' + +create_cumsum_df <- function(kin_matrix_lists, + kin_names, + years, + start_year, + na, + ns, + n_inc, + specific_kin){ + df_year_list <- list() + for(j in years){ + ii <- as.numeric(j) - start_year + 1 + df_list <- list() + for(i in 1 : length(kin_names)){ + kin_member <- kin_names[[i]] + kin_data <- kin_matrix_lists[[i]] + kin_data <- kin_data[[ii]] + df <- as.data.frame(as.matrix(kin_data)) + dims <- dim( kin_data) + nr <- dims[1] + nc <- dims[2] + female_kin <- df[1:(nr/2), 1:nc] + male_kin <- df[ (1+nr/2) : nr, 1:nc] + female_kin$stage <- rep(seq(1, ns), na) + male_kin$stage <- rep(seq(1, ns), na) + female_kin$age <- rep(seq(0, (na-1), n_inc), each = ns) + male_kin$age <- rep(seq(0, (na-1), n_inc), each = ns) + female_kin$Sex <- "Female" + male_kin$Sex <- "Male" + both_kin <- rbind(female_kin, male_kin) + both_kin <- both_kin %>% reshape2::melt(id = c("age","stage","Sex")) %>% + dplyr::group_by(variable, stage, Sex) %>% + dplyr::summarise(num = sum(value)) %>% + dplyr::ungroup() + both_kin <- both_kin %>% dplyr::transmute(age_focal = variable, + stage_kin = as.factor(stage), + count = num, + sex_kin = Sex) + both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal)) - 1 + df <- both_kin + df$year <- j + df$group <- kin_member + df_list[[length(df_list)+1]] <- df + } + df_list <- do.call("rbind", df_list) + df_year_list[[(1+length(df_year_list))]] <- df_list + } + df_year_list <- do.call("rbind", df_year_list) + df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), + cohort_factor = as.factor(cohort)) + if(specific_kin != FALSE){ + df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) + } + return(df_year_list) +} + +#' Title joint age*stage distributions of kin by each age of Focal, for each time period, and cohort of birth +#' +#' @param kin_matrix_lists list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale +#' so list(X_focal) = list(X_focal[year1],X_focal[year2],...,X_focal[yearlast]) +#' @param kin_names list of characters. Corresponding to above lists: list("F","m",....) +#' @param years vector. The timescale on which we implement the kinship model. +#' @param start_year . First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990) +#' @param na numeric. Number of ages. +#' @param ns numeric. Number of stages. +#' @param n_inc numeric. The size of the age/time increment (if abridged). NULL corresponds to 1 year intervals. +#' @param specific_kin character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14. +#' +#' @return A data frame which gives for each age of Focal at each year in the timescale, the full age*stage dist of kin +#' +create_full_dists_df <- function(kin_matrix_lists, + kin_names, + years, + start_year, + na, + ns, + n_inc, + specific_kin){ + df_year_list <- list() + for(j in years){ + ii <- as.numeric(j) - start_year + 1 + df_list <- list() + for(i in 1 : length(kin_names)){ + kin_member <- kin_names[[i]] + kin_data <- kin_matrix_lists[[i]] + kin_data <- kin_data[[ii]] + df <- as.data.frame(as.matrix(kin_data)) + dims <- dim( kin_data) + nr <- dims[1] + nc <- dims[2] + female_kin <- df[1:(nr/2), 1:nc] + male_kin <- df[ (1+nr/2) : nr, 1:nc] + female_kin$stage <- rep(seq(1, ns), na) + male_kin$stage <- rep(seq(1, ns), na) + female_kin$age <- rep(seq(0, (na-1), n_inc), each = ns) + male_kin$age <- rep(seq(0, (na-1), n_inc), each = ns) + female_kin$Sex <- "Female" + male_kin$Sex <- "Male" + both_kin <- rbind(female_kin, male_kin) + both_kin <- both_kin %>% reshape2::melt(id = c("age","stage","Sex")) %>% + dplyr::transmute(age_focal = variable, + age_kin = age, + stage_kin = as.factor(stage), + count = value, + sex_kin = Sex) + both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal))-1 + df <- both_kin + df$year <- j + df$group <- kin_member + df_list[[length(df_list)+1]] <- df + } + df_list <- do.call("rbind", df_list) + df_year_list[[(1+length(df_year_list))]] <- df_list + } + df_year_list <- do.call("rbind", df_year_list) + df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), + cohort_factor = as.factor(cohort)) + if(specific_kin != FALSE){ + df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) + } + return(df_year_list) +} + + + +## Construct a matrix composed as a direct sum of a list of matrices +block_diag_function <- function(mat_list){ + s = length(mat_list) + u1 = mat_list[[1]] + dims <- dim(u1) + r = dims[1] + diagmat <- Matrix::Matrix(nrow = (r*s), ncol = (r*s), data = 0, sparse = TRUE) + for(i in 1:s){ + diagmat = diagmat + kronecker(E_matrix(i,i,s,s), mat_list[[i]]) + } + return(diagmat) +} + +## Construct a matrix which transfers Focal across stages, while ensuring Focal survives with probability 1 +get_G <- function(U, na, ns){ + sig <- Matrix::t(rep(1,na*ns)) %*% U + diag <- Matrix::diag(sig[1,]) + G <- U %*% MASS::ginv(diag) + return(G) +} + +#' Mixing distributions for the time-invariant multi-state 2-sex model: Non-parity case +#' +#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age +#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age +#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage +#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage +#' @param alpha scalar. Birth ratio male:female +#' @param na scalar. Number of age-classes +#' @param ns scalar. Number of stages +#' +#' @return list (of vectors). list[[1]] = full age*stage*sex distribution +#' list[[2]] = female age*stage distribution normalised +#' list[[3]] = male age*stage distribution normalised +#' list[[4]] = female marginal age distribution normalised +#' list[[5]] = male marginal age distribution normalised +#' +pi_mix <- function(Uf, Um, Ff, Fm, alpha, na, ns){ + n <- length(Uf[1,]) + F_block <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) + F_block[1:n, 1:n] <- (1-alpha)*Ff + F_block[ (1+n):(2*n), 1:n] <- alpha*Ff + A <- block_diag_function(list(Uf,Um)) + F_block + stable_dist_vec <- SD(A) + ### Joint distributions + pi_f <- Matrix::t( rep(1, na*ns) %*% Ff )*stable_dist_vec[1:n] + pi_f <- pi_f / abs(sum(pi_f)) + pi_m <- Matrix::t( rep(1, na*ns) %*% Fm )*stable_dist_vec[(1+n):(2*n)] + pi_m <- pi_m / abs(sum(pi_m)) + ### Age distributions + pi_F <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_f) + pi_M <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_m) + return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) +} + +#' Mixing distributions for the time-variant multi-state 2-sex model: Non-parity case +#' +#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage +#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage +#' @param alpha scalar. Birth ratio male:female +#' @param na scalar. Number of age-classes +#' @param ns scalar. Number of stages +#' @param previous_age_stage_dist vector. Last years population structure (age*stage*sex full distribution) +#' +#' @return list (of vectors). list[[1]] = full age*stage*sex distribution +#' list[[2]] = female age*stage distribution normalised +#' list[[3]] = male age*stage distribution normalised +#' list[[4]] = female marginal age distribution normalised +#' list[[5]] = male marginal age distribution normalised +#' +pi_mix_TV <- function(Ff, Fm, alpha, na, ns, previous_age_stage_dist){ + n <- length(Ff[1,]) + ### Joint distributions + pi_f <- Matrix::t( rep(1,na*ns) %*% Ff )*previous_age_stage_dist[1:n] + pi_f <- pi_f / abs(sum(pi_f)) + pi_m <- Matrix::t( rep(1,na*ns) %*% Fm )*previous_age_stage_dist[(1+n):(2*n)] + pi_m <- pi_m / abs(sum(pi_m)) + ### Age distributions + pi_F <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_f) + pi_M <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_m) + return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) +} + +#' Mixing distributions for the time-invariant multi-state 2-sex model: Parity-specific case +#' +#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age +#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age +#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage +#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage +#' @param alpha scalar. Birth ratio male:female +#' @param na scalar. Number of age-classes +#' @param ns scalar. Number of stages +#' +#' @return list (of vectors). list[[1]] = full age*stage*sex distribution +#' list[[2]] = female age*stage distribution normalised +#' list[[3]] = male age*stage distribution normalised +#' list[[4]] = female marginal age distribution normalised +#' list[[5]] = male marginal age distribution normalised +#' +pi_mix_parity <- function(Uf, Um, Ff, Fm, alpha, na, ns){ + n <- length(Uf[1,]) + F_block <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) + F_block[1:n, 1:n] <- (1-alpha)*Ff + F_block[ (1+n):(2*n), 1:n] <- alpha*Ff + A <- block_diag_function(list(Uf,Um)) + F_block + stable_dist_vec <- SD(A) + pi_f <- Matrix::t( rep(1, na*ns) %*% Ff )*stable_dist_vec[1:n] + pi_f <- pi_f / abs(sum(pi_f)) + pi_m <- Matrix::t( rep(1, na*ns) %*% Fm )*stable_dist_vec[(1+n):(2*n)] + pi_m <- pi_m / abs(sum(pi_m)) + m_mat <- pi_f %*% Matrix::t(rep(1,na)) + d_mat <- pi_m %*% Matrix::t(rep(1,na)) + pi_F <- kronecker( diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_f + pi_M <- kronecker( diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_m + for(i in 1:na){ + m_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% m_mat[,i] + d_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% d_mat[,i] + } + out_mum <- m_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(m_mat))) + out_dad <- d_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(d_mat))) + ### Joint distributions + pi_f <- out_mum %*% pi_F + pi_m <- out_dad %*% pi_M + return(list(c(pi_f,pi_m), pi_f, pi_m, pi_F, pi_M)) +} + +#' Mixing distributions for the time-variant multi-state 2-sex model: Parity-specific case +#' +#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age +#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age +#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage +#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage +#' @param alpha scalar. Birth ratio male:female +#' @param na scalar. Number of age-classes +#' @param ns scalar. Number of stages +#' @param previous_age_stage_dist vector. Last years population structure (age*stage*sex full distribution) +#' +#' @return list (of vectors). list[[1]] = full age*stage*sex distribution +#' list[[2]] = female age*stage distribution normalised +#' list[[3]] = male age*stage distribution normalised +#' list[[4]] = female marginal age distribution normalised +#' list[[5]] = male marginal age distribution normalised +#' +pi_mix_TV_parity <- function(Ff, Fm, alpha, na, ns, previous_age_stage_dist){ + n <- length(Ff[1,]) + pi_f <- Matrix::t( rep(1,na*ns) %*% Ff )*previous_age_stage_dist[1:n] + pi_f <- pi_f / abs(sum(pi_f)) + pi_m <- Matrix::t( rep(1,na*ns) %*% Fm )*previous_age_stage_dist[(1+n):(2*n)] + pi_m <- pi_m / abs(sum(pi_m)) + m_mat <- pi_f %*% Matrix::t(rep(1,na)) + d_mat <- pi_m %*% Matrix::t(rep(1,na)) + pi_F <- kronecker( Matrix::diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_f + pi_M <- kronecker( Matrix::diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_m + for(i in 1:na){ + m_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% m_mat[,i] + d_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% d_mat[,i] + } + out_mum <- m_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(m_mat))) + out_dad <- d_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(d_mat))) + ### Joint distributions + pi_f <- out_mum %*% pi_F + pi_m <- out_dad %*% pi_M + return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) +} + + +######################################################### Some useful utility functions required + + +###################################################### Eigen-decomposition of a matrix + +# Calculate the spectral radius of a matrix (growth rate in Demographics) +lambda <- function(PM) { + lead_eig <- (abs(eigen(PM, only.values = TRUE)$values)) + lead_eig <- lead_eig[which.max(lead_eig)] + return(lead_eig) +} +# Find the column-eigenvector corresponding to the spectral radius (Stable population structure in Demographics) +SD <- function(PM) { + spectral_stuff <- eigen(PM) + spectral_stuff <- Re(spectral_stuff$vectors[, which.max(abs(spectral_stuff$values))]) + # normalise... + vec_lambda <- spectral_stuff/sum(spectral_stuff) + return(vec_lambda) +} +# Find the row-eigenvector corresponding to the spectral radius (Stable reproductive values in Demographics) +RD <- function(PM) { + spectral_stuff <- eigen(t(PM)) + spectral_stuff <- Re(spectral_stuff$vectors[, which.max(abs(spectral_stuff$values))]) + # normalise... + vec_lambda <- spectral_stuff/sum(spectral_stuff) + return(vec_lambda) +} + +###################################################### Useful matrix operations + +## Constructing a unit vector with a 1 in the ith position +e_vector <- function(i, n){ + e <- rep(0, n) + e[i] <- 1 + return(e) +} +## Creating a matrix of zeros with a 1 in the i,j-th entry +E_matrix <- function(i,j,n,m){ + E <- Matrix::Matrix(nrow = (n), ncol = (m), data = 0, sparse = TRUE) + E[i,j] <- 1 + return(E) + +} +## Creating the Vec-commutation matrix +K_perm_mat <- function(n,m){ + perm <- Matrix::Matrix(nrow = (n*m), ncol = (n*m), data = 0, sparse = TRUE) + for(i in 1:n){ + for(j in 1:m){ + perm = perm + kronecker( E_matrix(i,j,n,m) , Matrix::t(E_matrix(i,j,n,m)) ) + } + } + return(perm) +} + + + + + + + + diff --git a/data/Female_parity_fert_list_UK.Rds b/data/Female_parity_fert_list_UK.Rds new file mode 100644 index 0000000000000000000000000000000000000000..1141b1c364d11f194d807da491591071bff21474 GIT binary patch literal 62341 zcmZ6SWkVYbu&mqC;_e>Y-JRm@R-ED<+@-j?J0v&-iaWHpyF+kyhoI-Z=i9maBW8A= zodLwafBN5nJ$v<3)tp&k^`iiNh4}&^qaceUBcqVz@I#;|1pV40BfyrEhZS>?cA4Zq z%+1LSF;^_d|E{X}6&b$IwZOOR!q=|S^4;g~QIDsK590rDJXiG~;_L6BrBkJbj)8Gb zML|wOv)X3&LO#P{QNk$HE7>o}wWcB&>2X#}ySmZw<^_j=fB_A3xODtjYawa-aP0^b zq-)vz>!IoZckl7K^bf8j#6u9(VQBlja4r6vmr|gf1bNNbO%T6jciDr@0q)l0kNwc~ zxd{Zd`JAtgEq)#_rtT`@?+BV&EgQ+gKEGC`XK#NEcxO8 zQp?-fN^-LHvwV2s2y@$B*_Qvq`!+SZf%f6AM<0FB_d`*ezZanVyhn3Ms6Y#cY z_roUu4)oFe!-YJl56TGkhL^5z)cn>#gkd6Rw&7+9V>9W6zM~%zOcQRX5CbaTGZ5H+ zH^X+97N4vUzP1kd6-C33)mYEs(&=-9;h++tQrFl34oSJ0{-MSsu-Be1a^CjKBaHJL z4hcM+PPW{?C=tDAXqggR5TtO5h(TC-{fBOvr0KCVZg?43RL`_xKXED;?Q7k+ zJ{L#^{QiJJuR`ilbAkj6@Qazxbgf>mZ;-|RXIEB?D|!2nK6~CBF(ej_mX7+ZH$fyd z_ND=Cy+%k?Uw{qSx5W`t{yDEzzv_CKwGoCeuT)5PjFp`C^^Q6z?920q!2}6GdEeDV zobKFDxY%NcJQnklf5W@m^&Bzwv5k#1HX=9ukzQQ2`nfFOI!6rQHaF~N*=8LL`-I^o z=4-nKkqbqI(jT7(*NE=pc z%gwAYo=e;?-}z79AG}KIT<6WfFZ=Vy(<^f}|Ry~Km8trnt{{?!G zv%K#W++a$F&I@rrr_p@{*7<=ZP0KyyLLj{fhKzS%OtY zPA6{|_9UVRO3!1myF(KH1q8yUHf_600{%~rFu69$}eMGqfbIO4{Wd)`6y|Gm1I=jo|6&Ypa) z)RK)smzUow8BE}sbdQs}=hnO6)M_vwyjdmHF) zjP@7v1d+4%;2MJ|e$*jHHy&pxCZo1k)QR9Ht~tfVx{KHy+Kre+n}^caJPm6{L64Z> zYP7g4Q6q2CL#eLn12qUBz5IBzk|`TPT3|$~LGYTPdi_vlXLranO64^~g`y0)dP+?c z>qh7B-Z+fP2S^cCZ3j&xyhlEGE8er;5Waf4M{S}lgad~<_VTz#0`)~chWh1ge_NTD zLAL@YdL%!FE(~EUeHPaQqtIS~tjR>#vZKc(d2jsOww&PN{@htS$<`PZJo(+@PnRcO!ZJK&Cdh2r@`HqY?m{y7lou)f1J z;A<861u041PXt@>t$k|LLp8BtVWT-yAeQ9zip|9lFsu9z;Fnku;>krOl!xQE$lFL~ zSKJ5*zDL(nmv0uVRQBsh28g^G*Ulo+4*V6bfQn|=JzZpIco(anioUwshoCneOXkNK zd+PN_qVys{i>xXv^A=jvdZbLE`67x{m8d6XaW!bc`L!tX#_!>eqOeO&7|ZNtndCvJ z+}U8F>eQE?%C`W z5}0C%%C{ViXDY&r1F)@lB)RVfLu%E`Ya9$!2;<|NsVWO*8w?T80Wrby~MZT#^I>5WYj zi~jyvJ(FDQCcV2PJ5X1ZHPq#*;0CaeW!lU?JD(hUAgBLHDkK?d9)J8m9>-@XWaeNC@ZZimq+|Gv5 zu(QnQ9GBa(c4cDxP7_2N_7sQJ?X5%wpHXZO9n~W$43qAne7G7H2xoTM&Km*wuhzzFv)LjAH+%ODGj6Ykm?0on0#YphUL-=QDctEgJ86rOW|mQ3j7gXQYhB!PsL9eV8t#fBJzU`Yn$EsK^r%cV?2y6T zu)AiH;fj0Ia0tb+e~eMo7Yypt(JzXAyBgPMJ!6TI)y4{_W=N@x=%C6z1Eb>umK0Yc%;wEzJ8P z?8ov=0`o_L=+sA?ecMjIPbBR*jN+tZ4dSJ)%%9n{7L>Jpims90zO2GX(OSFOPX(kB z`!$9>W#jv5zOTGZ3DbPp8%}ix=d*A{t|j#vPM@l4j}Y=WGiK5){UVEZ$XA_dV{a`) zR;P@*-QrZ>9C9@k?Y?o4Ib}QyQC)$LJD-I&nrX}5B=4TVJ@}RLBbd;5d)7UzNK+5R zCUEN94U>`*j7!Hp?Bu`~0%2-eALAvm1tzU=vr9ZGL%ZdV6lKID?Sswr{!|PXsk)E7 zZlo*Wrpx`qAO){Xb%S9NVkDwu36?(jaJC%PjbZ5Y*SunT=uj-RsxZ!4M&d|VH&uwT zP8%4X@s^6#T@tIxEu3hdnbPn16_XD$^zOBSY5f8;Ba&x=ZJ7wcm zJP05oopD7%pXE}*W$_Yp7W0o+ocaX!9)6!3K01}QZy%Tqe!g{04);a@7HW*=s!$%H zIM8R*bZLT)dJc~p-_;1-@-rZ%4JzQ4TFH^A6A>R);#wbm^GKG7<(F}|)|t8@{_ke) z=ngq&bEImtGvQ$R@iP1G)YXU=?&T|n&9}Lt z00#a>6^POKcc>fybF3krj^IPcSQtN2T#b2gG#_CP5<0=CE@0l>VfpXuilidp(Mhix zTVf}R5@DVB`+VKm-)qBdFF%_9_Q5d0PJ>0JFL;4}Eo5#{!dxWQd!7fR`}2ulQ_ae7 zJB=hB?QT-uX~pr+H`ER&>%;#|G+{*r|J{mvxp;PdKiY05Y5@Z~0PQ_h0Qn*kFZ^=H87> zY^P874eX%nZhaUX*1Fb~XDFrxcK_;7@3LAeF7Eo4M)>-2+~3qU?=>b@-@rH>#A6j1 z{osUHieu%fGkrsre(MEvdL?Jdv*INZyD;V_{=66B`wKc!3-oq~i@Q_L1!&Uu(Rsb+ z4Vv1^$SZ_)0j(7be`tcRJ_<#Wp2PtS_fOW=@5+uHVQT&-)+p6a)myg|6hqxX7)5b=nhc6kv1364Nrvt*>GuJ<-xfv)_B&K0yC{ zm;V~CUdq-lky(xrv6NRU_90&+GOijVi&6c*_lsOJa6;D#l7QqGQT=U#ihgq zzC)=Mf+%6~am-hdx*(^ky1Vc6FnTDS057%xB!`28W@GcsqH5@Q#q(2vn zy`B#>uvV`6@|FKukVD<1+5B;%p&4}@N+7Q3v)*mB|SeLYCh#9SKv?rMZxa&5SEVs9W}Io6SGbvd}Zyds4wC{pj=`^(R63@C((w@v@j_|c{GkxknZ6c*AQ%m)d5Prt&7QY$m<$gxG%FNvo&@us@$g80mfqbg= z6$xCWbb@C-JYaRA?U6PM9%;!xe?Z|KV)0ki6rWg9+Fx+3C~tOJezG7Ba{XgR zQ0yh>7qcyqc|Gqc1oE1CMejv2+Ft*oznS^>23G$Qod%ds?}RlxVPbgPf14($Hug<9 z3Oe>3l(;;~VHd&(TwpOq4Ea1bDgBraKJ*BkUu@HL1MIWX=y6LQrs19GhE!RfQYzP> zP;6RqU835h1FYv+;6EJiu~70}GDUb*i_*bO_X9=hnhqP`svpjp2KEF7J=dfbW}0HK z>lSp5hBks}EwL0oqs>x-9+QmU{kOq6v@Rafh6IdlQFmUGAVM#42cR6Tw=@4vg6pEa z;tPfRMfO-aBQI%AlrPPmg`CF7hc<``-U`Jl9%4SGEcZ5-i=k$K8hKTy6oR^ndW`5QUt? zuJ;EP-FW;MNE`o@T5VXbID8>F!U~D??|z^=NZzxT7YQ@S2_6v!+$0^pY-cRA2~hP< zu6Ir*#rzm?&(N3QMQ_(iG$()}8PS$pT>4hS6d)3j#5m^nFc$>=XT|9sUdpdw_DLm5 z*!Y6tut?8q1)~*y=!9+wZEbJZ92s4n0aYFG>fs?~>l$t4=3sz=C6-Lw^v0zE99mJp zy#3*|k_T6XkeN}g2%31c+syH@vGtpc&q2h&=SFwDyh-K2Up&+UU?bKI(89mhhD;(n zz3_$_KzqPh&*;Vvh#2cU)dc2>UK%*rc1I9wLL+~P#2&RrRYVsmx40`tadTn#d+kIp z=C@=)jPELd;-2PIU5)w3pi_%qGjJ?4!AZh*N?=%MfE@eU6ev;jH`Jm{g1JHia7bDyC!j>(S4v(L;c) z%BHE)Q^MZPh6u9UtWYMpaEKT}pyT;%GCnaKNB%N((7(kj3A88CpKQGQj}G6EkVWuT zy@o=t0gAt1f& z3FN*Q_^KkU;=}Wn;{;yn(2c6c7xq2W{ZbO-UxoG2ezM1(8O7mZD6|bu=QT-P7W_pM z_5FIM70Vjl$}cxCn$X?bR)tb8A1po6HA+}1n;#+|2LBT$BG=zTs$@GW8W-UPz#Tmh|T*xx& z6G0S&U-gRk;<@KcF^qQG36j2f-idWVNSc%AcZrxc)rCjETU?Z@BgDVRQ~6_RuveU5V# zoh*8fKWw7iW-sR?wX}#{`hKr~+NZceRBph}-kmfQe)Hu2%~(=e)gvoIYp3lCB9fNq z^fCf?t2DuD*%I9ak&#jF{wYaHPKwK%F{H8mX~17CArbT&^JQWZu5P1VM%W#MKH|yo z-qua^CAd*J>eV1LLb+V&m0oH2#ou*h;vV7A9(U?nwLq_%K=9w6(%~DMN@9UV9z|=4 zg|r}JdT({8!h`i)0^{#oitLDsbtRe(D=*6Yh|BxclS z5M96}8Du7*@CJK0H#1l!xU6vfN=QgrKk(H?82aBq^WWLBd;^$@>PckgFy4f|i)nzaw)568u@$Z5FGTZGYe1B`??H3UoW$W7Yh)vBXiIk%XwkJg;`8 zSgRw6JUXZ0Omv;-_~Z;suL{n22-x{H<(po%_g&Jhp2^pmmUCh>g<#}(mCY0U6mfnyr)P0*6LT;)9%DJIH?kshFn)h zX$lt~46W07HcHyt8{0%%0VrOvK*!;-=&2M(NyH0Z3ii>A(*T~m`^nw~Rkg6ctwaY& zy)a;RV<=B<1*VG3lg>s3-M+Rk-aJ{6j(`&!U%Q|+1jy$5Bnqt6fB%y8k-no5*K;{5@zDGu8?%%5KR?7*WGfjLbc_iJ74aU$u5itwR8Q%zr_KBg9pL-trLIOh&(^Y+X?EQEltrtk1HhC1@*;8 zU6-#+*|%SPwyJyjorv;$Emr{L3J#BWlnv4j0}r+yN%;8@b)1zoc3#_pm$C1XkI58Ejrn^@I{wEcf;!dDG=B<9*W zLzIJbqH`Ktf8yLPeTf1-c~TVYFFqc9_jUetm=W`Z3#GnS@v_l0_xM`#-#Vrbx01Mg zB<2i2N7mu5Gm`L9#iso5`KIOWck9Kk-&UzBAe|QRMGL3@LOaE%2zku#j!_dpBEsoo zmp-_*nEg^rc#LWjLxd`i61Zu37sjaCxS%t&e2`PBhwO(7lMxx|Z}wn2E7EP`%%?M0NDyM0%c{V6^h>0sj8NXWHT);%15J zDORVWQ^#%lBlwoh{>vOi`!^)#!_MrFz9M5b8{q=55mzLw2%y(bBou6Q`GaOcO3=;! zbsAzS9~%GE7Qv-kFirg-cCu~3@20nA+(GY-e*UGbpEmcQaKZ9guusaW@lXCsMM^6` zsdVnktMLUmNHnJJ28udgN>oFWbPr}=IvC2YMJ)e==+b~J6npbpllJ<>FqNORN4Bav z2oyGwzv%xq43=N|>FD^qx%{1b6i2Ig>@nFbC5r+Y4jkKEwTm>0a;0b?{=PhibKC%( zzdFYCVM_7CM$>N);c;l#a8S|Cx*tB;OrH{Mel;5l6rz0>Z#EEyTF`A(!Z4xcFFpIW z!fY2GM&`l|C26soH1$kc=U^-yhp1>3-gNxCYHA@ZZ*%Bw9=OMG7qDu4Nw%E+!(r>& z6^h9$!lAE_oKMC@S2nFR2Y&NQMDgCDTh)s4jGxIUnlMlrSNeQhKU>{x!a);)P!* zwn1@b-Z1L~f z2g0`Ppd*_x0XjOW$QoC((hH)cnFEMhn!W_`gwKj=K#D;5J)ew+*g8hqtYd;LXF_3X zT8J9hg%HXmZS40nnz+468?Y{lJ|g8Xl}n(G(KZU1rT2glLk#_b1jp}1>a9(_6Zq8w zhE`p+wrePlv7IpgD{eUwu^O-Deo%Bede^p~w;Ma>h4JH@WZC|+=iz(GQH|@uo7*Zj zgr`M*IY)ikIl_0m&8njyzDe@MG8b+;kuGIa*pSP(je_j-4*5R){oa;^q+H9he9`-v zh+A>sKx_$FjXIF~l@ut#5Nyo9PLm>eyoK;c(%?*Ida%J+rXJCGamkaBMM`#x#ER2X zip8<_rhuzxne^L`i{$+VXNT$~w--?lWV!kl;xengoDDLL2 zWc=#;u46jn8Cx+Nmhc5eRBWPnTV1t_dS1H}Z9rDbO#GxzMJ4~I+uFnNI(BE!2GQo` z%K3eh-8mc}RH4}VJ$gJw zBp}O|I7t9c?6GJZF$&jLGQ8RpJ;!0T)MYzV~tm_ zpN-`CgUk;dx0cTCY}mIY9S&DflA!IB=jsQD^3lzsK4btGw^?3wJ(;@W*icIC6ncJ<-|j^ z%QIAm2YtBais&tOGvD#xE8OwQ7@~nL^&j!Fz!xw_OiU| z%&%_nmAw-Casx}Sfv5z0>ju$ar2F;UYZYK>{up5Jv_cen#~;NQ=cX--U>r$-P$aW{ zA9ZS>l7_LJ?DW&k6!9OWZG7^&*9&anc+ zBoZr(vK}4uV;74!P8m^(clgVEkcKfjb%#7Yr>*#}tT7HSKiayE1!?z^bLhGKmDOp8 zNb6AN=}8E!Z;{B<#D-(v*OESic1-gBU^g3?LE0E0i5~&$x2R3ft(%%^^5@Sasg}7X zMh(`KGy#y0OoXpxGY#1BGBa-OOLp!4mgQ52><2VT(n|ble;~(za&;)xZ08Fn1BjPd zQl40~hJ}?xFh6#-?DGCd3Rg|?#%i*C48q$R4>o_$hw)IubbE`&*zZ_~{&%_% zcCFx8-xl+nj&cY+ofM;}%MET{HTI2$U zwMAPV^SA#7~P(uCp?{2?=FOv99w0X~0jLB0B``BP3K9VoXRFZ{xd({OIn( zLMzX(HpFf#0=!)XjTVJWd#?QC8it}y480GbIMmy3uX(y{Y#GIAWJ~DVi!IlX0U9T= zE9gZOKL4cJni-Lqn(n{OGImh-;!ZRoPbkk-u6A&_nF2_t+%Aw0n&dB^K1bCz2@L1J zQy3*DE!33DrMEU_Mr2$cna!J5{k{vb(r1qGD|M}<$0jB7buU-DL!swr*UWDN3Xo4+ zR6C5-vC8I}Oz{8FM`thLR222w!?-9(o!|Gs|BS6!CfqIEn^)_uEOdr@w&%_VrfJ!- zZyLTH);<2ex=}NCs!NYz8}s+5AqUU-I;*P?nAMbv=?~wAZk+ z(~U!IhPtOJ#?&|MZTPQ*gB?0IM*vB}`VTc=w4a_El?QKeE6r$B17n@hJ}l8x9A5+U zYmjD-K5BUGj>#PO_9pmh)N|e%`W|E7yD5%8^H_Rj$s0oP%nU%y7hw$#Ah^-l6(T>H zvh>g}{VlyIbjpzRgmnkOO%ycc4mX+|XH|N%oIdy8FtL*+$Wu~ikl%>1=5Ea0+*gbq z9GBKdDEc}dJI4SSwUhFOhwjzV1F%Wk$bU<4#-G7(GVI@$C8=lHq~vErK7Cn8GHG#= zT&HdGVaY}PENDCSEvD<*+D7Y-#do4bU_0vjV%KM^jkgo6iWOBk%T7mcax{6-Su}%g zmgpMr;aSXL=Co~zR&{$0wnN_evhi9%^GQF5w&XY2(TvlAd=+Q}lEKpMk9Wc!tc`}A zt!8$y!nb%&kQN%AGs?ZT-^tozoY3~E1nB9f>%A4f!%|W`gr!7hQ2ily`^@9w%d;-4 z@*$ZX#?@enNIlyz*W(fUKo-U%=Dnu|vvVKWV|A}XnVoWbT6LKX?>kj~X4*M{69Kjo zeR=592PzlEo5ac(cEoG&cJyuNxMYtspyLLUZ#R4e9MMwUv|3z*iR+PA$i6YJ6Y>jP z5b(tQ3~H(SY4~Ohr2ZfVbYPL>e&bbwm$$|fB{=O~{1m*h7OXL3HdE-}|8l-TJrD0s z_sFLoG76PzDNM~PU)EtR-+eKR$*8UQKQRNnFziB2Gx{1(C$$u1^7<0(Ptu;ky z@;Je3q}+bx^AzGSRfa4?IKt|it?*e8^?-BLqJ&NOW$VgdNYJ{Nd#tA+JM4lgB>_`` zpRgoeQ`J5j95mxUR~(7yfJ|7qND^i}p_Yg3QyGT4+rqKR3I(SsFr~)nYvVOhlb{50-sjd8GkotXN_`A{n ztUZObV-0uoJ$@&cFEISZD8f!6bFv;{D8zSl9)69au`K6rmi1HjZSCeiTKXR{O*rf~ z9>yg&%n2=W{oRV^87>?I{zNXY$zkOil1OgCA*@Xj`pQybr&4aO#$eNIB|7Kf4JmRk z+2W5Hy$xPCjYlb8G^;L7eM{@qX zWBG$|Ufh4A5nNE~TL*6>C8}t|iaIGQ$EdQbqLxq^X9`YD6i&?Qo7{Y(Z#QaPJ^h*n z;yn}xz9F+eKO0aU@%2vkw3sDFnDIV~C}ovmHBOfSHxFAL*`9?&J=nEj!L_Tq{_ewo zJCsd4LkDL`;L3i!LIf(f>?|i#){eTpjWd6=z$yEAh;UQ=VuBII;*27#J<9u%~RW4Q=~E&26^7&aHx+H~siORAKxJ%NTV zzm+MN=RmFDXn>;;$|PLUb{fCOru>;Qf=~? zzKn0>9QBn-=VavooqZ=t3mC@0X2h+JWat+Er{#YydMiF$%^?SW#wnvMbDwquCnw9w zHge+$mSk99_O<9cmCaN(WG$K&Z?rL;YY=@wHyVcU<(K?I&rsQ8f^uJ>VGe7{D+j$a zu%XuN7W`yY9~3BPkAC5N8J!TUa#o?(R+^hsnO@k(bXdrVFxX~n)91!&4G7)6^17yy zwm5Fh_YM?m`TOOtDb>!JwNq`!iyNz2PLIU7Y4bZDS6jes4#LR=iJ@v+O`L5=2Uauq zUpZf;f7bg6OzJ@gUwRcC_{e`V`7SA7k6VcQ-5N@)+t$Nk__Q54PNY81B(*Z^EsKz7f~H6oYEhqOVquT=)U76L-DT}!Cz(j3Z2V8CztIl7Lv_#G>?mqa zZ;n2p*#4EdmENUddgyN2KeCr~NNeD0@)1`Fr@gh|Qy-`A`~P{@?vFy&oJG4}OhyNP zc>Ns5cz0Fd14`kMbN7R?7@wG2-jx4H>faa1vJ0=j@lnfnMRK*mP^(V59i+`h^_AZ# zP%^xZN7>3`XW}97ly`vcyPOwr;(%=_5tqU;G4+w$4up8{A~^xSqk+?%r?MWCp5GcZ z$N7jl%fG{P6?)k|12he+v>%n4lfLvCnvK!zm0Z zxt3>i6=Lzbz5ba)3>J7_ewQjp>WbqM#t&#YqB~Eb z*vHF+Cv7cOp@Abev4u98g|7eQ_8Z)cdZRx3+bFr4<;K2yn^fFJY!pe9j&kAUR`pZ@ zQ%egjZzk=0-;CAM-Dnt0@=;!5uEpqtcrBZ+No5c0v&Y%_k63N7OVjPrN;d`{AeQLa zGjrU<3`~0}_r(#16-cQtFeF}3653UDy=F1b>{`kUP?B@NKy6P@?Yljfm5IO{ox>A_ z2xCVDr$~FL{EQw42!=B`LcS;G&DlQ1!h)t+?`~%YC{-crK31B@e&M(~#XahM_cc$l z!cAWS^J9zESri94v|3SWR*{x4@*n>FRErl1e4KpIHT6a#=4KIGFK3qqJi{ z71@abjV>#{t&H@kcM>IQB z9Yzdo?PSqV>xnb7&!JJS{B}qrl7APU;k*|-uNHs!zvclyIg07)g!PaFvO&D4q8RtmhT0!4Z=@~f*9`f@=|^GF-IqV9V>RgzL{e=O zWF?AjBgiKIbD0BcHw4kvs584pW8zJB3PZtvbdWHZ3f7yHq7o2n(OyJ9%){jV!E+)s)UFIYa!5!y1qgVmf;`T= zZLS7Bqgy}S5X=V#Ukz`>#m?iQwEQ?4dyp#9Yv85rdgf$^t=)%RYXQ08T{68ONMK_< zuHa8iQ+g^{jC#-Gu2?nnJbM|5r+$5#4yXKKV-{eWij2??0pkR{h&zUMMafP zyOC+Q?TH6z|0wSpyFfiLPN(-_#3?$CP4NdIQ)gSD;-pCFg7^=mh<4#P=UH`QV1>IA zq@PK779gyu{_^L}JS7;T-u8NS^37vK4HdPcS7zomTpP$B-tT$~#Qq<}jF^8^y?(JG zsx6i%1N3SrV>c>icfLRI=$~B3(6s#H6c|g6bNs4oPrtVjRpRyM(e797shTw;TAz$^ zErDnfXrsOvDpAqA_n4Fcm|-B&*Eh3^_vlupPd`PQzJ2)&9{uckXDFh+Sfdaj^6_ga zV_~xpNb#!3y(D}`f40+}wiLEuM4QAKJv6OQ=lQ6T5 zF%n{6;c1ZB$qS;7o2EiclRqRzTce{p3p{Skv@_eTp&Yz=9CaTN@ld#4%giSvhW)MX z{^vQ3!f-S}7H@o<6lTS&_8Ydw_h-!SG+dKz9K5yW+v*^q?sY6M%9A#A@0Tzo4zgNfD#jd37r3c4g z6UT87L26LxXdY~phHbfM>DhgL262;b=%jSLOHn=WfLuX|aWuO!KBD<6xY*TNMy`_- z(fKwjI+XuLRuGFtrJYQlp``F)jJ=pv_qFbiqFCiJ2}I;0L)Psir)kDU8d+gud8I`- z(u?`(*6;x#)Xm6v7ry6{s0eHWsRO{vh@3JlQ0}jU@3Yj$JC6|Eqwbp0GpQ#C02={$ zN9^j(d8|EomQdoRIMHz>-9z4iJwCBMShe38M?+-%m->BkFnSGFs+DvtKT$boN5#vAEeqZ@elD@#Lo&)IPV8MH z;`hvzRzrgA6?3*?Y=RF%8+as)OVrj9FT0U&W%0rttnEE?A{>t~U*B97kCOq~>FAi~ z|4E45JzupXH)8sjY@2|QCnSO_K`4mq^53PoOvR{%Y2^X$}BTeR0JGq`1qu^ z|Gc06U%4n%Y08^x8`YLZ&^b*RALk?#;@7XDw$+w(ouy8kh1GD$oscgjpSoP2hw@X> zctqAKH6?T_Gi1NuEqJ>E`h3ASqRuyikVdF+)Eg~D&*Q;~0GsUKCw>elbc?Z{nrM#dWedpqD!3C;pcQ;TcGjx~3g4}6QtxCA?| zjqxz9`!P{1EAbh$t_uuk3O8 z^>+u59^X0#qQlvpSehPR6=&dG3-I!je(SdqrHNjH>CoE)DQ4UAb#@o0R5tB2@QYGy zzzgbSZ39j=aNx#J8FeeJveQT}+?&gsdL&^TW4nOH)Ac zEv@p@vN=WCNA)Br(7*WXhWCwOGu{h!sUD4A2VH`-lvtV}`ijMLW5!G#zRL$#%%+Sh zQc6zyfb7rBEzNl|I?06FL{IJ zZbX`!nOAw5j;*&F@719=pZ(KYVr=veBIX`Ky@VQN+4I2JaE8Iehr2-t6_&GxfN z^0_kKuwrscrEx1AN!qUt6ESQ%A5jB<&q2@Yc21YY;=4LaDn4S>)(lGHl_Kv16OG%- zHdLq9p!ZoO9Y0Kzw6Rm1&1O}cKKg2r%Baeft}wfnRMl0DEB!Fuul)NjxZq_+%C6y` z^+x0H2q{ua0co^k@lxW8(Y!E4Fe+XZL-OcSf-?v_V(uvYEl_wZoHGNXM;ce>Z z=yw<<3?)%D1}WV3r0y{LuALA+fH67ug#8oI6lcEyWAl@vLR6s)%oN>0ejnrW*alQi zn$Lmcp1Trnz+YIIU#Z)5y6m09>&}-y)xM`eL`^PSe(1cxcOPlSIZvtEZ;zs#1<*Cm zaT)(GJLEU6k!wAX^yiRPHrOfa&I!CM!Ns*lKOE>Ax>{tgE2iO~x%ty4o4GFmaRGmb z60b#-P%0^d4IJ4!LF7x~aI5N6J}&<-=D0`5%<)GRojgY6{?r0&Qk&%&FcU!oX;q{@CNr@FbXxNCfU}#t=wJ_5F`y3g6CFXY)RLj%R`*H6Ffr9s_5@vb4s=sNV&PmAheWg=c1IgfX*37 z^T+o`HTmWYSVWSq@VPGY;3m-u*RrW4SF^FVYX01jsrqrDGyngZdH-8+xz2q;TA`RBv{5}T{c0vii;zXA z?!|fOx;jx5@-&2)5yNwkWOE$YDtd~3BW=(!$r)K_o#i?W{fj<&WqxijXsD^4`cBS4 zBGdF8t{TcHIDb%KANj2g6p-7imSiKEZDf(xv$Gp~5Vn3tZwJTKvn3>>_Jpo9xpLkY zUN-$*%KQ0j8r!yj&Nz}18hXPQk}O1On%Z;BwyO6UPVvuGG!_s;erl`NldDOU>{Utk zTHV`RM&jba*sL8|Ju}F3=^y+3TPbH1h<4k#;^6kq&T`qfuEuF>J#@j&att0#?kM6K z_n|sqFpk8tpi*sGY@$8%@%V|hQMdo90~@=j;bpCamG!@bs41{HvJ(JHE#iqaA#b)d zci+G|d2F(EJON`0s%1-TnXi?t3;V1+r1E>z55Ev&6hm)~g;ipKls-dh`jNK!!}N&j z8CB}-tm7cTC_ZT*)da;2U`M}RMjal{DG#YI-08}qsjjDD`xC|JlTR$K5hmaowz zEP1h|&OqKEyF_h6iQ>VU^#i6R^AJ+zU(BD*)^xy&9vQkn7Jc$tLZrzIiXSLu zT_uh$^`pV(5_I{K4CnxnU%e#R8{a(ihwB8q>8ZSMvZQ&B=mw0*njpH_-Z^R41w^hl zXEqr7>NwbCf6#so%}L75$zx1Yb1ZloeKV3i7P93iaax#cY%o#$)x^b^XK2I{>kEMv zL*fca)TyTDYvI0?$#B-DcR3Bbr-_c_auoOR@(KH+f^KacjxvnDx)o0f6Ke5=Os2;T ze=enKtjkj(zbq588}1TDCZ`o!e!R2DHDe`|TyO_E4uB3IEkr0-394CTORmXXIQuGi z{cWQKgmT9v$2}Ka z*S{&6=5(KZ$8dw@94Y~dKd_VVF8EjRfJ`hIoAp+v`1r%!2S3XOW?2?kyl5J5!MEW@ zjn%Z8+7EItmH7Qso1eK0lMc;4gc-3k@`K;jwpnv~x8 zQcUgSNxwbNCbcX191Y?7UyiEdL4PQ<_yWLB4awy8se|HLF4{kcRez2`xM5+)N|1bM zbRIyOd5S`ZU9}CcMA!9k3hb#e-(@?&)Fi)Ia_&X1XVdx#A=n5Z9kuar0LT(*lvg6ts+myjha#E#rr2&@z^V8;pq5 z^vKTb@NDH?mBU5)eFSmwRp)HwYSZUvc!e5S3ImrNEJ=NAD;!>3_uPi`(;3AELX?+u zR@0fB{cAziIh))=EFsgs2X-iCKr5HYe73i}sxUS`7PFVmUUzV3617Nq+1F_11~FM@ zfCxfYXFSeJEy({FljP`1%V_6nHr_%N@SsK@Wvn|ds`sRw5*Uo-X{rqZ_QVx-&b`^P z6{GV6w4V+__~tzlL$->!aG&9p>)iRI=2<$OmEb&HERK*8@I#YyI2IDPl$)bgn2A4#uN zS4%nzL8^1rs%KCJ4@e%F?O*1A=K_vXjZsl&bf~VJnlfOhvy$Rk8rhm8JvZhCqaTtp zi+}$vd&Vk_;5*)(=x5c{c`M3n*=Sy^qn9T^a)@;IxaSZRE`Dv5k0(-br}C2&*QY4+ zs!yPFx$Q`#=gMx?dMMo}=fv4xX$jtVqj^E505bpAj88K+;;$Xz!A zD7qZ|%Oi~-w?EpF%Iaj=Ig-&eh#tFti{X|%syQ~=y$tDeyP}n75Kn`|Dwd&1%)1*>gEVdl)}U*tR4q?t@s(`2aK7>JJ&=P3m#Jo^Uc5e@ z((RiXV!E`^jfLme))Lz_G#Ab_b@spGLeFa6P4Dr%%dpnEzo#9+$3}Wz{^Y_ATBrdv zb)AW(4Z~hm7u}6d4{n#`?Vcn5pmsbKUdQb@-GS}y$dVa@Gd-c#6P;ZSJifQgLS=4^ z4!%TSf*n8d$w`;~37pRKx49tNa3=Iw^H7I+a--^E0l)5d*5=55e874rjdA4nV1XZ; zF^xLGLIE*fj3N-!_>;t6I(>72Ec5sy)f#oUZ1?zfoH5-4qFAJj-1R!ftW|sNGiqIqsTxwHqNxF7Ol(}@jny-?%K%A#URZloX=23CMZyx7?7NA#gQvR}; zZqQ^r>Ss=*l))4&*2OUkbLm&W-=Eo1v?B9ZE1aAlk3)P2LX6!xI``GW5n$DHo15Va#*p9aL3 zJ6oiJJPUg#OXrq_AC^gG39{@b_F-W)O({Ii1ILp30Z03rk zU>BW3b9(c1H@>pS?i}UT6{d>LQQy-D2l@CF4OBd+GPp2E$joB+peeX}i13YlBwI*$ zhXR^T;WiD&ya&wC^lU550Z{`yr#+hnPr^ETgFf&=2J?W1R>%(r{0AI&-Z}VQQIS%aUmDIaNQ^FRV!sn2`IMGp z?@PO89rP`%^M@g`Yt@G~f?D1eWnAmHeBdvSyEdz(!DsG*BA!}?Su()KqDKh_@}3Sa zPA-Zqlt07PMh}%@B4#K<_&EfqN==LBqn1RFjjFV6$B>N$9pgB9JbtX2^et^_bBwI0 zb*VCC`l0pHoYu5)i?-g;zHYV%y<7u&phGspxVUb`I1>E+o3Hpo_*d2bo4GOv`{qZD z&6K0>)ki>L-M8tk6|;JKlY)1O0NAGG=jVk@fjpnL`$n=3t`upKS|UUyQSx=k;}vU@xQuNHRYW1Z^TS5dZ}znbZA_VDt(l{WGp84sKODT1iRvM- z`5j@kd@-eX?9Z#C_kmOS;sb5RTinn|xt;yD!QSYvxdY0!@>$}xU59xtSHL1)JAwuM zTXDLTVNJW5P3X!Zw+_kw7NrBtZ($TvHk*4dz9*zlIKvaYy-J$dj(AdKE zADuv8+UP9xVHyB`?x9=T?a}s~5$&AaiE0a)RD5czr*D~( zR^f+;&S}-7fpU79y?r}f-ce1xVLBhW<*^Tqzza)6NAqVU;*(t}Afqetaf=6_EG3&Y{!99MXy%z`jJEwX*88wsdV$hSO zcnrfO9~$pwt8=?!e)hKO$D1{xX0q8fUhFL(RJs8vG>yk|pr`RVYev`?(88N3zr-Qe zH8>*8!$dVt$;!GA38>7dmEk|fGVe6bVmA%&|H1h=Z5eX%ZOweYZjSgiG)<$|>Jus; z*T{r?gn6>Kn!5-X@V_c!aQLbKb9To>@g8Exw~0ONbUh+9N0H2Uz2ik@_b~nPl~Px5 zE$ZnWAB21r^fFNvK8*v|IZ)6}{J6FF33Bz^3c-Q=rxr@f3DD-YG+WVn9qr3ad&E zaK^T=ec!AGZB007+pB#kFivn-dCU=ak{=Nz_ycQ3sD;k5mZwXHBFLgWv9_>*)~s0y z0CA|fM2@n+tKeBgW-L^P5Ueb-OJIOMa+$xDn(O;ZV~-x}E-N>VLZW8twhAfyDdzVP z;TzJXtL09%!H+(>!wWO}jz}TT&YeJ8yc=W3JIT-6pNQ14T!X%qgFhdW)IrP&Skv+; z=cO9^PXuqp=^x-!1M+pvc#k3Kct+i?1|}l{$`>kO7(kgXc9=)3Urn40LxQ)f(N{
-woLGgOo;E)rB52hs6w>;7w<-*9`& zdXWuM=ed}b+Gs0T*GA3CdVP12^zJzSSqx83AP$9;uNC zx|Yg0s8~5E7vpWQ!47tCpU@31s*H5I>-oYbU-=-ds)y@7(1|im(F+Bum3%937cnURP@I2uP@ni-uXgyr-oEobtEJ5qJI3|5?TFbmmlCQoqpF{ji{t{j6qms9^N z96c49DI2_7_L;`#E#`>i^0eGXTNSC$yKHkqvG27|J_`{!M*z6IQ#lXM6D;dEv{1;I z31wO8#M!T5ql)ULaCb@p{}*?`cD1?^c|8v+7c6*5C@|S2Fn0tRKW^XW>!C;4%g2 zi~gSh%f|i`zpJx)#Pp1DL*aXl4^L+f_uFsZ9tWKcf3RQ0K(!-A{hPkORDBE_a4ogo zj4Lale-8w&o%XSqcE(J4N$onb4PWF=DFhz$I-4InrTzo0G5a$jB4+S6gq{xy z{0GUGo`fqXCQ6azF)FEJ!){9Lv!p($b$1WKC4V!no(KoNHc7rBAkcfcwbQQ`Fsr4m@job-!EoIv4*;e2p=U}_}Q79WE z(P-0aoe+z5W<6c)3o$Kfcq-!4TLqn*q5r~aULG5j8dTHpS%%Za`sQ=owF4ChHu#0bUc`uIP#nomsUs#QXqJ`FK6)|B9cwNeaN4 zsj{|Km4=F z#Ap6cZ5ogc$`oS!~Tn-sf{~cR~lZk?ofU zJH@F#e`z!M;3*;+F;LBj`PG?`sHC&O>A-UOh&r7Yjt_a$vwm@Rlmww$YK6}Hm8>xZ zI{macTJBKM~K!<&)0huR+ztF@(JApOO8@auiZFM;CNqGI$vRvLJ4~A zd@3T{rh1OnABR22O1}G0xQhCH_fVlZ22)h-b1mQw_;qWS%c)?BO{Doe`6rfl-I^O0 zuM`vx;~$H7x!JFRDA(^*C2s0t&sscASEL!#4=F$+HcqCFZy;EJUW53_Im)Z3W@2yE z3#vxXSs6Mei~}7 zhGg=>Vh>i$z*_zMO_x6y-QS}(i4Nb$s2qKPAz$iNp_@02&u$tSV1->=cHpIDOuie* zBAbYW*-wnNR)U#O;wy5s3<;5Ad^a*>o&7t)Gu*jEdED*mOM-&M7v#c>$!z;BpupY* z1YfP5P&ae~Z_GXD$eMz3 zXjxrERqodjDKjBsMhjm{G;pd^v!d~&di+MD-BC5Pxt1*@Zt}d>@KK-w0?~HQLI#u` z;+DH8`E|ksb|?CR1ZW?$P$?o%7MLXX9Ks~+F(Jw|lcQxYm`?sQ%z)Iu0y_ymWk)22 z{#?d^jv4_cl%mm=n9_ycLS;S{OOOvAL@~aZ<9<1tYJ|v}`ohPFsG%t_QHA_-M4Noh zaP%d}5MLx~W!rl8r|AGx8WyqafmpG;u<1+MYf5-yjNGP=KD`KIfX7^}a8j5#(QF=N zH`I53Kf!Sr&25=hSM*&qPgSJR2Oov*pOG~iZl40Uie6xrNwO^<|5LItZ=Jz;{LOef zp)1-JGRKIJ@?e&JH`}vI7WwjCI`sbHaz-`(bnoro(ki;Ufig>TR&hITx_d529BeNa zPk~SY=wnE7{D!F_ z1~aZ4z)+R@2nq5uhS>k=hJ;Yc${TlBavyDjgW({|(YbN-Gu~URwlhI%>q<7a1IR}D zxBV_@GKX{qZ6$rC(?{Ds#AjqPYRu?G8kjU`V*1p{h7XyXHWSduwrWNJQ41v^G5W zI(KI?%>rzB{fCgM>gBe4-&b%ky7O_aG-Cyud7>T}*f3aKavEGkYDs32iw&| zFmpVicnyVidRbVaA-1yupr5Qo9hvsdY=|URyQjglE>cit5z)jHTqMd2b_em<^xnn1 zjM$pMe)gi%*ZRTQG1^)q-qekA_f?DNSQzrCBg(BWTf(x%07W_+WC_Dv8e z=>{dD;S93a+9fQLM^%8bXB1x~ByNv|H7c{1DYe`v09=Mr8n&ja%ey6;=Q<%HpBd|y zc^#2k9*Zij*?kKgzT~1DZfPgcdcAvlNXDRG*Asd1iX3F~Npq62$4nSwB-}5<#64+F zaGl)IlZjOhJM^}P+t(%;Njrl@7M=ymZQ1rj7NFL}G9X(_Dh_rd`aSa@2G>N+>n`>SRwqrRiJ#yQ@zOt`CUb!TR)B*1DazJ;V?- zhS?A*hb3P~X7@GpVDY2jnwP}m9w9+zBzkLjTg>^%gg!Bb=0%H(dz*XeKevLatRh2| z6*fdpI+?k@Gaph1c)J8_KMBNd<1~fHt%xo!RgpaD!Cw$zJM&VhXI6B2FgGs(5kgb5 zXVR5Who0B5E&(w87xfM1_!gzp#V$Vpr`Ux&`#x;wNdyK4U}to%p*6G@z-U~JQwm=g z8rE(G@m@!<)d^0@^Cj-2rXj(w>hHjh4mp}1J?puhOBb)|XBNhFZdGW#t>TW);vX|j zP=p8=_^eO+m++rep{xROy#JM8>fN{q z!SeVBNBHR33Mt$;VgO?p7&_OtyVi&hsVz*#L;@zTBv-|FU3QT>dfGqZoALmy*V8H) zw6-Tv@>*>r(m_u(ChfpMTyv#2RN{e8v}&?z^8h85nE?V=jPAlRCojMqMIo-r4~Ka% z3VJHv+4awd9sZ<PRqXxd`x9NJ^yKQwj05$nTT;q^>Vsi`E19!5XnnKo7BY*qF58pxidz1c z^d9_SI+zY$(-!E#-S7Kv|*!c$n&HIeDO@orzY@5#Ad@htlDOU)=;_u)>p>+m~V{ z&h~%70y)c6Va8D=97QHiynBRWP%M*^8LaPK^Hk@;#{CNj*kR|P9iO7g&g3et&?^8Q zBb$hVbB*$f&Z6N1O4zS@$`x5ZWQlpp#vV=_G>U$`ci-Bwi<3Ya?Sv;G4;aS*y|muw-uZ7qk<|)PtoI?NiUT*HPl?s}@<|HS$%ijLW(>F4yhbv0YU@F@P`~6Tv==kQ zX`ee2Q?yG?ZcZtSEiM7i_!We+R=l&6YK{-8oq}(RE*4={;7mfP)I?X((O^r`W^6dq z`hV*A9G}O%u(}kvSpO)*`okXwy*R~S&7_3$Jvcysa%~X7UA;weS!y|OtBE`fe>au! zpU<`<<#q=GpztZvI|E~x3l^=)A5O^FaZ1jN1yAq+?AT%tR=u@UAeZi2qe0k%i6n+D zmu+Fq-555;?(;BH{Jb%<6Tk2Id&Gdt^PP;dLIOh!INZ5cmh&+btlp*jSbMG?+~CSfRqV@uy{yHt1K&eKni07WR3BaC-uV9WaAes(9s@ zO@KU4NI~4^10UOQLXpbR=`Q}(J)=)X4u-m0PHGun66smgCkNmOhdgRlSZ!E})P#<6 z;_wGq_YGJ(pQ{!yE&=9yn1jBulxWTx9<(F7RW$op$3LUdp2ySB{~zbK``k9c4cL-a z$HGZ8@lpQc{lEtoMW+kPCC$L>JOlC|MNiaKXRbT!NyAJ&?^`iz0jdqbqs0#gAM@tU z1`K^>FyW2#z}D$s`OL=!aKj^T|E!U*XbmHIZ)JtcOtoBN{9J^JmLO4!Dv*`*GdG$g zf&1XWNhseMqNHVZYMdCksg{a#P}A5~4Rir_5l+_Dq;m*b{c*{2T_y|3N2_^GXAn;S zjq~sOwA%jnoBo#Z+Sc@P(?NpKwf{P!6O_R7*W0{Q&j%v^&24;Q8tO*00GPz|Mfz`E z`GULfhL<+~DXbK^nwDdx5haedsCdZBKxPHgj&;0wSs$knH+cN7f>JiP@R^jI=5+A~ z*q|wM$ZBF(HoJ`L%JVt5tQ+*i)57eEi!XM9~d zpQPDP-@`4wXc9-ntH~L9w7Nk;FHCAby6@lfR(fi2M^`#z6Ry9YkAX(RmZnH5Qv$-=KId8T*UC2(l)ZVl+7VIHK*gWSobWilba0nxkHgnpE5n$+gMXlt79S zmH7)ueCQn_f~Gc-xgV)`QqUY4Q?P(fPk(2bhLeVNbkt&CPhnHM&xOSzlX}35oi9X1 zVI3(&Z{rcAId+;a#pzzOy5}`};=@7tljq+ZV)>LWi2Uw!(yoMR(nau6=@BY85=B#5 z&yI-Fk9pGVjAt$~L<75~f%JAzA)x>nG@zc{eMUeYeiIb3*#XJ5yT9VpweN___bgCu zemxrcSc>yEw`zWd8dH<85;0^CIdd5C>Ru@Rz^x})ix7t(qEkqFbAON$Vk69@uh^~jQx%msud5k`&64d9na%8?I#|f8~@%suHZa^s026SeI4>uGh z&?DX+;%_Df`z|+8=v(l~ZZ(SeU~xR{s?{Z4>rbrqnFrpXY7xL#6Iy8WEvg_}N2RHE z^jVMT=aKV zR^zSC)+}AE=!J1bJU#UlB)xa#tCklr(d_BoZb@gb*v_06c){5KH)%?d&n+|e2XpqF zWGQ-U##oK`Yv<6_Ok4Cm|C&oen_j?Tcww)(G%__B}li9TrNe&Abq&^J6W)?ReR{Wk(PzfGuRwC{b8I>>3Xgd;pM+-_DL(Lt@ zo?+yA{;&!rUki3%pWiK3Y%sIXI<@JX=ihd>X zMsA3(A%Pbm8216*y;MArk|;$3y9&n^3AF-SsDc>&EWxtOf*v{XhfqdNivrVRBUA`-e3Mw40QS!UA`zjS5f}jtN%UBFPdmT@4a*ABdd7Te|J)R zxxcfx2gM5)$mxtM5jz^MI>3ayVv*E(jOZBdg2N{jQi9h0Gh*oM@L3S|_OLtr zEi~D8P+AkHR2IQ2egA$8P*%sM#JpAqV2`E-TDuv^r?og1GgKmZTqvv(8m`5AlsA?d zMWaY|xWQBrWQj(FWR`?IG6n(P5c#TFfbuz$TW|HAZDcSlU6J2V?)fkOCy~_; zjk&si|FfV8tuDcaaL%dXgT)>EmksgkfqZ}y{omd8$7P6FGMacPU&;GG|7yiC&qj$Z9Uta4~W1*+|)^z(-r9Q#QCF>Mj&mi`&oOF+ru)d4yS79gg-fU%j6 z@g&3Jzhd6E43Ov}ZzrT6fpTz4Mi|=*VpPLj-H_+sz;f%v`;z+AiHaUVY1!ux%e*V; z9z^L3azPhG6%gM2v>sd5I*UsPXJhPD0iXS|(n`{`ilt(!_HZl^`4?cdh0nit(h=Y2 zHGBbb#)@5f!AAyo4OtKbtk@wb0mEkly&yx z7&YEQB2X7)nd#A}qIKo$C<591`t3$EgWBB*}&*}M! z$Ou9i$I~ueN@n@P;soAMU(2I+5y7CbaBI2bx?hj_04KBYC*NGHt%6Tv=;pxBB{NSC zCg#oSt;GX~;W0O@=DDQ*d*cDS>d3vcycPF^bTw<$#%iVB_noEh%eBu<7UfAG0Q7`O zpSno(pgV{g{`Xu)a>Bf;q%87GbXGW-ymesrzz`!Q@h?6G|A*oSwH4=5%~z^5cTY#a z5E2r{Ab(!6+~|bIS0OEuPlw_MkSp}ZTl#u_bErK$eHgl3h)-r?egei2^i7!yNp6&__%?0`>~wyevbY^4Ql=eiP;x zLSw7$7JKMkzzMJ;b|~(-huS(P2vq};J@BZFH68=N_8RGi7GB%eCx^O9tl3a(&%#HT z->2tFycTpA4n;M#17rQXb$GCJg(l@uFNk>!z7`3s?bjN= zAx7GJ;&q4K7G_=VfkF-sG{5m?JxX(iaFGR#{#3#!Ymj3>m zWNWSBBeilBt?{^Q3!Eq1+{^E&c>2dxYMv?zQyBw%-eYozpFq6eWHZI0PdqbENNZMi zMiy<;fpH`kwFE3dA-Q)9zetv6%>SvCdo|!68*t#g-InB)3@)`SZ9~QgYB6h{@P*pV z`O0UaV5A0IQ)q?-#KQZ4vyQ1|R9vn%9@_7&J(^SKyZ6K+Om@efwc|0$L;n<*jl;;& zUeDU=T8KfhXPW$@W`ViToSRShR~rV`*yb^RcNHb&$NYX=5sbf95C4XyoRkW5|Ni*@ zX^;zgl-GNP!n{6y5)_{~LAkdLlHy}TlBKKBF;eQ0IK^KgRnrRIi578(E7uA1$3(!Jyp$4}UM%3?BB%*vIFH_Fy}zuNT%aM9UQMT>QgTGXVqLlvXI6}l35 zm}kTy`D|v_JdT}4q84CZ4MxHjCR66mf8d3U)9V;$=ZUnPJfHqU=AkqlMlXDTaIyEl z``;HAckG4A1jZFn#4F@HHcQs>@R{1w+=pe$tdd{_SQSOyCsVD=5M&CY6B9-zmteD_ zlkdyNJWp68KYUU=5ItqP3UTN={d85u;At3W9>kvU_y$V-zs3PLgyav*aRZooPTa6R zp~o9SN4uDJ1ZHRI4I{pI9N1|Yd>??JS8w_=AwAp8GA8?4C*j8iz9262>}N{Ce?4MC zUMKz<;Bo=>y|fDj*A!>G&f5%HxgyQHt*)*wrp?@$3!5h{H0lE}@x{yf>k!afMh zhe-$IDgjAbUxXenv>ym3J!KsqqIMYg!MU-slZbhrLd%p#T4Ls(Z`s!yCq76Bh+iysFL%08c{>5fjvvZd&2`VfLE;oG=gH=qOFLZd%6qEdxB9@g{LD#cgyd&| zUg(XJK?*=k88NR)RCdv~rlWT&gC zwAK}4=|FK3&VcSOqQ@`j>PIRXvY^}XRpxk-hEa8&cxIUV*xW7Lbe@3!#*p1K`Qh78 zdNMwwi8_&8p-j$?{Hk{pkOy&??ZtrO!}8otdHMd_^+kS<(z(nH<{ki|ME!@C-CT63}~Ub3(nPbKezP{ST{x|RD+OzN&na-)-+AR zQo0rWW@xqO_Th{i~g4IamFb1VoVFSOAA_|Gx5xArz0S&UA& zR-#yeP~d3VN~UL<0^hqswq5ck%qMRNQ7D|mONo3>YRlQ2gDEJ^kU*lGwI0$n zm4u$Zwc+F%dbW=ue|kLzj-N!zFtC@w0`$To?{kNjnd|oH>-VK~;PB)<{t{M)eC@!( zI=n@mDCKsV6VAs7)coP4*j}5xAEeveI;}m~OZKX7zY2fyt9vn{k0EkCPxH;573&Xc z&aoUJR@TcZ9!=#9YDiUtPOg|3>CM37q{|P5``dSChq4fM`(gB^_{Q;LRZOF`N=sBnoPSNm`bbtdYzST^>m3H-I;L_-wagb6!K`&%MyHcr2Mk zPiZr@Cj-Z?x=m~yw#}!P;eOSyN79suJSwr}`vG9n`$~zT!x3En4o8p&;v>s+p^uv> z&oesOxH=RX_N2Nj0|b)Bd+3~G5yYu~8l`=X`Jh!i)ivXE3r&GifA&o6Jc{*_JP8k-tOXkco#QDfdVa!!)qwUuu_U{@Wp45UN~j2&I{h)d*&$-0U)*zU zd^5O_y%nzQ<#NQ}` zNi%PvFU4O8WISgC&Iv#r;Y@WN{!xKRo0#rPd9*q4&Dd_vUX0N^SHe!6#z*jq90iSQ z@4gtA)Xhg00HVU0?;k1M9b%ZfB9aF@MC4vNr}t#jmlc0!)$pEM_6$c@+4>q1-j^CEs=5D9YOR!5E3 z&HlXu4yVWV{s4Sz5JH-~$+f^atgN@r9!(6_B*rRGP<~`>MY!1OXZzMB%lTvEh`VP7 z&-)gWBEw2oO&dw*OX@8fNd-q(*6m@fGjH__;g5t|p>xf2Y_`Vw;zse;kjOc$!>=0;F9j%4_PDpSt zL9soUm`l{)JRz~0u7{XoMH#tAF_q$~4eDdXpT#Utl~1bMJ4M9`R!o%Pu36`%dj5R+ zEhr40>}ZgCj^CtEd}m9>QG&dP$@Rml+ow>xjpIFL%1#+^wWSw#Mbsp5pcB<@T_L{l zd|V{)lj@V7&f8-FPYiqfsCHR^i1FC#J#>F|M9K}MKYkkBHl*f*bC+5${tF*`hwo%gw4 z57sE#?^qI1w(SUW=*$+*8y1t+NbCNpFfvn}(#7U@>%{IVqzLSDD3rRzNck6T9@U$) zj%XR;34$Z+qC?Y8rHo2AMARv%ZrUcu`K@zKPu3TqUiIo2$w>CwjY@x(_b}P;&|;5+ zY5>fpXO*PC_}8k-KRA6%^IIuFs|W8o4{^Pb_w&_a%L|#H%+!vV-EC~5uOs?361XH8 z)dZomMsE2ggJ_J|?aM{)E%TBm7D5YT(alTl!i#Q-G6A486U%$J)LUclcrrFssU1qM zvjT2$iI;5V#fW&mcsNOatlP-zQ_gO;2qnv)`ESdNZPLY%;{uaef`Rl`gkWemlCDI3 z&T65kKjeK2%cOF<+)LhTv7aOte1!jeqs_lyRmR-mIsOP8AQoPsQc}UFWWGzh?>GVk z+OL8|wG;jo+bn>&N+Z z1|OKyPd{?01QG1^g8sp4t6N zcOZL7Y=bc!yndAWGgGf@rhwzFa@_65zuqsaLSWY{V0hkJ`Y&#^ightf)W*q5v&iqS z9R{SV$TYb(+kB5v@z;o8W}MDYc53J!WsfimsByA@OX}-vnjD)AdkT#be z?F^L{9Mer#{LAEGVSgVbKef1TzMT1~)ppSF1O-jLPDNU}wRb#E8$mjnt=5tslCdBE z7a+Dhk}@GZki-~ipkl8~F@peA&^1Qq?voDCd0R0;=65*VQ%gO%}p3C|)# zEF|yeilbGrZAelH@P9p}myajRnVV^K=jQZ4R=)({_$@U3Nb`@} zte)|TmJ7BFMC?9w+3NgNIQz_R=)GO3{Lt8Z$1a9hXh-O@(`QWJ36ab=a$27EE+qs^ zoP^=Yu6ZCxegI|))P ziI1x~=4=TOxHY`d9T!(WYDR!%EtB%ap!$dix=D+Bam*w!wrh`}HorMgj+q6{qk_7W zle#@2uVY|W$66vzeEREbXK6Tcc`ruC91K2^od1~}PJgH`OX3Aw$2CAYMT z6{$$R#SD#85H6~e#)()Mc&hW7N|2yJo?2sj065D#CfM1b3(Hg?^3%;9S>Vx*WHsdkftXRsAymS z1u$eWBy?EMm+k57_eV+DoWyPBs|#ac3b=P1jO|B_Onz2V_YoHT7QB6U-uevk<#*CL z`@1WwXW8JVwUzO_0|Bakx6nZjNg@tMhoQd@LH5z=rbZrEes}p%lT+5*=UwzPD;)7q zQq8uNH;ZmWGSqB1Jq@Dgcin|PT2Fz>Zi>z6W0Y zB1bN8mK7&z#iYbP_g-Ohk@Q?{X3xjfkh(Qc*z-Na}-aX4FlH~W&|9`Cx|HsO1>#PF5S&rX-NmPxl<>JkV{`)q&9xk}Uv@A)k^QG)uQ?buJYO1uF527QvCX zmicThuSGeoElW1cE&a1K0C;H*St?pfbyhcZV$VA8@uHka%0_Jr$$wK7mgw-+zc}Jm zpifWTPvVIb4<(05q&%9K-OHsOn98Ef+sw7DuEc)CO~G{MYa6e3Al?yn`a5?{9wUxW z5nD+6x(OH{Gs6f5ks3taK^5GVH9A>o3@q8WK!WqYhBGt>X+0s}_d2A{PG^9KvR?1UV|7s33C0frZ?I)Bxn3wW zQvob}*N9?Z=v4OnDb6xfknMm|MrfaukschA+>9RR^u%()r?~m}8qIH3U3b(3R=pZL z7a8H-N!5WqE#0x#X~=23b4HroX!;=2@knz*X%P+q5{=~-fK`X9jF3u-qw=k1pc z^idDtE$-WlvOjhs-2&GMZ8@}OYZdWd_qk=7q!a3_pW^!`t+hW1d6&;so?pAynB(Te z5QZ<#{?iDeT%c|NE3(72I?$UbSpA&SD16_Rf4)no9czI?vR1=Iv#t>0%XS`j$a4Ti zwN>P-gCLX1y@F4E1t{=nF@GFwnWBl=ydPc+29SV4fjwXoBlvTe&22MbRq)=W8x(Bu zLob`H!$df@|8_H^Y{5w7$jZHrV+8rfzeVq1BX`g{ReGwz?6R}r>+!Vr+qS>&4k5xt z)z3q>C3R0;*YEycz2WiyX|q&)IJ!2JC0BP;vf+JF#|GN~v~te#k`Rw4age?-u*AaR zahMAPX8k`@o#R_2Y}obhnrz#4lPBBU*)`d=?b^A?uAL{lCfoL8x3lri@f`1m=lKh+ zZ|AYD^IU8F5W)0v=(tJZzXUvkLNVLb_fS?C?-TXN=ob#aK)>{ELMn<-m6Akq{yA7Ndss#IDo@%CV^b zC`=ah@6;hD9bdhAyZD|W4gfCLcf{#nA^o_2sAeL23wS1e)svI)cSaX(E90XbXcmxpEB zNj#OgkZIW^L*_at^ZH~bt;Zq_Zv8fH)wtvHd^myBR0VZ4=GGhIA)E(ndxWsp$sDiy zbv&C#_1FUdldb3J%OuWliSf6W2D(P#@wMobJl$~@Hu{Zpl73#DtY777ceo-M3`*nb zP`}NUzOFi0`3myYanYB?U*ChLvW*EzP zYk2BAp}l&usoBqf3(n=*vX9bmPtasKXK%b=3{WCsnIg{ZDutfLc`P7n_`KZ)X6gz{ z$pv_|9R8cib6=oMuqjCTf+^%S!FuR+19P|(0Xl2!TGBX(m+~>W%zUCi)%S2uLMHzf zu|@;n17JZDh+l_c10sCt^fP9!HSvqy#I52x94}QRvr$XF}c@;K_+>(-B8 zysR``gWd%=_f`MC_+1>oK=5CHO@4B-C$E*VQ0j~nlDA(< z&;g`7YxI9nDHlz`8#tzm%sXoRmu%}REgfGOAJ&n#)9 zS#>vMi@z!mSsIo){?m@4HNy*I{C*!~-yQfE)*E3p;s@HWwACyAhixuN4#`u{~REsTFa#UkE1Ba)ag%v)p?D?N_S#p$l!WC z%uY>P63(Q~@*5Jo{S#_6I4VbI>6#{xQih`tW*J6!uEqF;vhQE3PRucF>~Z;QL)x{H zye}42jQtd^{MExFYrUNB0<`-aXBI4noM-`I%GuUb^x4q_Pl9q|QDx6`P@N_r_N4x| zm?cY<$DcJUr_&4wK8q)do693m@gqq*>;V*>-&u=KI*=NE{NmPSCLpsn5+1g5=hkDcCjZ5=pH z+JnPHlSOJzPvE34RU36(m-Tc(6uiv|ZBgi{ zl_3sg3k1l3fJ7ocjcBoS!_U2!eK%g2qYJ+Y}F<{KuD z%2Oq@Zp1lcPHHLDNglrkM>ALJ#(EWB{BNY}2u|do#XRc40+|?=i%s8}+7G9_-OAc6 z2h)ZN)#}B998(1Na;Z9mJQ0c)K1ZI+FR9%w1a3mxb_GY5D}Xi)ry|K{+wBeQ@W|Os z951$afLsPu{Y;e*c7xNY4u90dw=IMBZW_dSyJKZOegEJSkF3@4SWk2^<}ZWRJZJ}K z7`7fZSYwZWU4|x4mcL@w;A_(2_ioA_)#sx0PE^8mC9`P?oQI6QBMAvaVK&EC8>o;A`b9d1{x}Pl5n$;5%N8ha0;6EUP z%qFP&qK{JlMkJXv+=VW+?SJqLHt<^Pz3$(u?k6KgB`n_`X@3iO_ zNu|8K1*Xt+B0bon9mhJ1F`qj|z9q_}#OJX6%fQsF!m;Vo#sc^lO=E_55&Aq>Z)t7%Ct+ctHCyMF1Ic67}3|ySO;G1;XId zZ-4?z()a3P_8@fc5ADQDuxyF`7VDxuLt{YBhi=^hxKP}=Py0!Ud-Rq^uf!c{?si_^ z9qR4^H=MIQ_zpQN~m5U{d^c{$;c3(C(G{kXC$`wZl-f0n+gNS~6 z8_0CyM{nnupyWQK2tlN}%dh3`8`=FWv~(%x)G5CiINyqsE_{fY=ae7JY)cn!>NvWS zyuYK97AWvClYjY)I8!-#Lnj=wO%GMYp{wss;SSfZhnSU1B6{0>WNSpxLeBVCe84LP z^4}ql$a5d*Hj8?PWP3Dr^D$IG6v&mtFR5h+@P+d(sJ%g& zFX-y!RORW!O@qmXUTCc?v{?o#51ss69L&L*z*Lov2Tu-l^Im{HKQtxCsv`Tz>7c znf_7wXjfoMB1vONS?!EiLK4D_1EYzSzS=a`MEXNiq)bU%OL<7+??i{KS$Z)rW13%h z^xvAy2&2@ZnM2=$x3oleQ0>*r^ERK4f)g5r90y!cin|{S;E_|H*P9_dF!VxZ9d?X6 zfzG7s>%)pCPg%ve^oLoovBK;9jE6l24Whmc2l+f*8?%O#3VM?|(FuwBn55O;=A7yI zo0g(ch+DUiNQEjTBj>wV4dS@zc4|p|W?t}1RCmbg7{RjzYpZ~UFFZJI9rm2NNEH$T z6X7MH&@O@Utt9SP8A30yhvIh}6N2Q{+tD4dKPF;g2kioF$od~1&rta3*^k0rX+Bu# zhC@GJ>V@atPMqJ`&&N&#S|fe=ZU5uTrbiHdLk;OltFlk0iouy{v_*o(Cc}@G@4;r3 zxSO`O6z6T2Q*qx)ULQko=cwv1D&A1>T}WIxdBt2blW?gV$u4TBlquIz#62_`Ax)Bb zQjsf3gioNtnu49$N^cMk{<*t_JRLmR-CeK2&x)=C4?K|Xk*2i&R^e1eg?HoGPm#y| zgYrGr;6{+g_qklH$AFxm|D(lwAy0h#cU30a7nMH|&9@?UWjA?ewN}H&{S>ZEIIsmy zVdhX8d<6B- z9+POl^CuVOZ9;NOqw`adV4l%7eE+IG(mnpeA0d-_z*rx1l{R>!XHt*Hk?qmD(Ii|Nmqk zegXsHNV87Tsvj?oC5!#b1V^ml7p?PrtdbR_nvWtaX_`1dn{v5l*RHvy7k2m%Gx~s* zT{JZ>OE?!jx03xUV)4%p;TDHniG!S1`>H?KK?+}8i7Q5+ByP&v-TpI6DyVli{lp(p zqkF$#3Hbcs;+|dt07E1~>bL|_kifq1mgM9D*{~(K4x-SE?{-iOo9%T>pZ4DWw8uXr z-QE9`9CrE@#O`YmUS)IJYkXdJDz&I*S&Y_2bou`93iqtPkP3cB*Dd< zQZKbid#DFOO$0$!;hyA>S=2E{kqftit|t+M%tP?R*uF zK?l31@J-}|T&v8feSBJCwMYXS!1yyG1{`{Mjtlue|5V-Uggp@u2uc1d_z6+sQS|V9 zeoj`UiTx^@5sDGO^MZG&(L|lC&8;sG_2}Wa(*Q7Pa&?Tt%|R9M{n=ypYY?J|*WTfm z=MJ!?Qy>f}Sl)_b$DciYfZ+1JB5<|gvGAj<%1P9ZYu%zndG7A4z+k}A+PGV=b>oI( zIzON#pw~ihpg>?<;uqJwst}9xH8|rN{U3(h_TrdkN^^R+_{BtC( z0aqd$nr;NW&#LbhaJhP!C0BGah3;1s>SsJ8BSeVSk-WkJ=WbxLEUr8~?NPDyF?TL;ROKWnFd<|AnA2)Kaq0bYqw|_!bJu<+O`+l$R z?*LMJqu1BIk1~2cM|%AENOW3QDWKn#BJ*0-c-r3zF^GlXiHm9|`W)UZg#f#}R^%eM z1PVa7N?Hl0xLp1FTcRM-t0TzwV^@r{CtD2MSAAFOWJBk-Uhx{1jU1CPpHIh^O*x_u ze2d&A+N-kWZ1EhYsC#l_yuzPp2s8^3U{*IHDlff(#I5@{KM# z9m34S)U~>(y-;n>jq>qXDDS;e33j@xpw!8MPrH}x_XvLg(a{Bxyy+uSx1I~ZAW&1z zJpE@{zDL#23u^DU;i9x9D_Yt8>u$!$s=C%BNv3nX{U119Po|*MN-}$mJfuH|Ky@qh zZ#JRO6_I{u#`cEiX@#?s@dZj9iymoYOI%&antnucPVqvQ|JzRb|EF304@-NV^5+%| zv#)W*oZS%bY}9`vDbj;sEfkqjfONrDc%A$qVZAwQGS4+X&m3+3TZ%*87;XE+Z10-^ z=4_{f%r?4pDcc%WVZ~m*M^7^0>Iz}?8-|!7C7^*4o}>=k%4VHMj6v4~uMokEl+tFq6-kb6Or zYu+$!^{ERkh+b_&NL=EuK66VCb!j#ftIh7_YoaL{Gw6fu4hd4qiD&u#s65 zVB+whBZoYml7+s!g;`MTqmK5(5+sI&048pRmJD%ZE*C&g1?%y7Ivo~HQ3YgVZM~*e zjEwj4^J6fl;P$(43ra31xs_!Vp+fV&1~+5Pv)*vRk3VP zPFu~>IK9Az2#)B!bz$vZUAkFB-q3HhuBMWi3&O?HD)7u8G8L++22J04lKHT11KjB? z#0b}3Eq*R?H0kf4AYHq?` z=XDO?Vx#mfYb7nFHoS$(F-i<7W`Fotz~8uL&Cp4ZO32x3nR+e76iY-N7yZzdG z*JXk0gm8k*&kb8^rJVLGHxhqZ_NA|&yiH^z=i#-p50%i}d}p`Dgej)CVHN9F!8~nK zq<*5%4a>U@i)1NeW)%8;hQ&%pI@!O#vJ@h=3+_7A3zpj0dmZ(XT6AP86Sj0#j3Q7qW`Tk=q8s;g2+_g$` z@kuLt)X^)lqbOvd^~?g0=P4%5`ozfq$*ctvlA)3_x0c5&8rcs#v#j#~i(M_<=yx1> znQ_XnrG@KK*k_wCq!kJ$9|XucTBM2Q{CQe#JQhc*_mbBwKVpG|cXt?^>TvoxYGkKw zhbnJY$JW2j0zTXE> z{Y#Q)`R*v*lZ;KbKiuv)i{=k354RnqW)rIGgZWUrT3#PtiOR!2Kt8=o3aoLhsxzow zsk^m1&zbRcf^)`W`q)P|*39b73yixQyE5F|? zH6deJUY>R)o!fucejBg*9@wPwxxBeK2!+rs2i&dLAj5nYn-7=^)fW(&N#}r%d08W9 zY}O*i7{}cG5{~WXD0qF1qN?6fQjLqe9Fi7H^EL3OcXmiO`F_3%hQFU2uZwdr=0ALh{5IB}V2;Qy^z=D63cgx$ zoOwl2VsbNq)yw$Ra)A!iXEx*v6XBj2h#ZBY75wgRGfY@E;N_W3?Eg$Wm*17AtE|wO zx_k6bf|s+hvgLbeL>27UpN1PD9w_@=8>lx_-uO*cz#`V1PUNqPk5yI&l^o7num7br z41x%yAysxyXW#W=5U4k@gu*9VtAT|0*`^!7;_spI_ltx34}AO90_)^)>Rk306-=Tb zl|jPInzSbJHa}M8o6y};<9(S7;YBGU__$p1ch}H-$TcnmiP{D%Ja-sEUbYo8flK_CI_S6ub8e2i>qGMzG4U9}?DRJ5IQAU0sIjOeQTrAedR=AV8aY1+0 zTjI|56T#fP&3e66D3`SGqb8^In?@wT@sb7w0CShB-TNy5ZL^* zh0DRJ>a39Z?OnB*9Nh7(xJYY(FGU7W{`4jEm+!pV= zMUoz4aY}BXhde*0ZdxzMP`B-RDgL=j-iX&5wp-6zkzw~WWysFm_+iiWMQvSW6Ii6RLW3zg|ne1p6s;A8_BhMwCKQi@gU#ivEi?{KyD@n=Wq2SSZQ6#Y(Hti{7hC z0sM0LM43ULY@jg&@nh6c0Jz)_*6yLhv^)u*r}RUm_jJDWO@*|LJ_YW5jkv1g?lZ2$T0SaKm78GB7X=awc&csU+kiIaBpX7|O2 z>3w!F5@|Zvo}F)X7AeA96s^~PGi_)E!StJm53{AbmZ)1}zp__!y7{+r4_D)YkABRqkMdCQ?q z{^|bT8~>pQrxhPVB*`4$bjO-_#F0lBhnWYB)g2pN-8#qc)BMH{nwZDw9+(czTv8;G zn&;~EkE{;z{J;K=U%I#CBsb|GT1dczX7qEMx=>Zg8vUg^7MZL)vnnIyj52<9ad1(@ zfFtN@3Z&Pb;rtKl5MGGi!N z`un>k_h{sLZAFS6_Do^Y4UsbJzB4EM5S#usTW}@s5{5|+B11mW`oidZXtFS087|9s z;j_s_;X;`ZokD8Wr>g`!FXJ~t?z(1*sqx>3>$|FhuOE13ztRkO#GPDo8gYw$)#9IL zTalln-FDI+YIreB)-_yo2f-E%BGO0_8uJM~eP>WWTuvS<3g?3f)XV$F!5vBe5}^GQ zYmt%vC4eGy4ORA&@FLk8{yHsS>kkuq?DN8+aBFvpxYSy#EXwf4sAl=Gx5v-7R~LW( zrrRz=m!~x;sP6${N@A6t-Pz~W-UiPPP6}|hgE~7n;B)EVGM|*-17fTZ&47zfKmt1q zk7frkEnsd{&+R)WQCci+E92Hq(Af(I?qJ%H= zt$Ik<+3k>`3+YZkNkZz+mFqvoBuM!CcJC0tG#Wdd?^N!7%X037!HUe3HQGWE6l*ss zl^u1g0p5dCamX>E`znoFo--X$J;@M>R=UpSt)Iry!cg0G)kvi7-HJ;x_{K|r(&wva znb=$5Lk+O@TT(-)wS35jn^AdnDp`kF5!Yc_>Y{ zr1;^qjM;_e(CVdu-_rDwF%c?1x4k7RG(s3#T5{(u_{TMG(5!k~C63ag_);gphFwHY z=NfD6{#|SXn_fn>-6y7J4I6zjJA|%`?V9Pk|3ylutNU|4!OgK)Yw=}+4U^;kMk*uTH*v-c{AUV30vn<~#kLas zU0=GFL4u7>nZxlei?>|ZhC&+g48tF%kYccao+rtlkxbv@#vAQA1&LHlm@>)#ii$Xk z536UaieeG*r7YF`jL%_9F{-AZO+2m9UjBm~%emIsZBlQER>yxDK*x^*z-}OvsZWO+ zixH;Bpg{$T8##H@d{ZhLshDWMbIPwcy7=YJb8qLqP1wDP5FRT}%qp%~AfRMBceojK z(V2YZ)}kt-MijfvKL1TsW?%U{r<<%>@WEY}ah9sl+@gF4N=D8UGs&cGj_&iIx_AR( zG1qqM;amnQs<+P7{HtC}u~xFOh7qyS62`-K{YUZH_RM>3@RJIQ4p`H*9cjp1Xly>m zc66b-`}5Bk7rP-}30T2aN@|SoMVwJOX^*t(ul`BUkMoI8rg0k6YW`==}I^}PGboa8gPIty}oO_rS zM_Y-x2O;8!eTz}%Rm1&HcU<;6OeW7;LJDW^k-~Ki0ttMyaB65Eh0CL)^UM}B6m9g! z=Es$w-`)agPa7#>WSF*P@t)H!YQITJgY%%~wA3vbtf~JkIue;N<^^;3<&b|8RR?TL z6k`Z|5b6vnOrh6t+tev!N=FR!Z~ARZcnsiazwvYb@WWsxv9`e>~>|A*3qn zw&=pUPLupiT_XQXuV{K&e=1j)0VL$?5VS| zGdV*@s}c=3XLEe%8soWX-Wo@c(EG{9aM=o7FBk7piG7fON9aZI0*j2tl)eT3W-Oe^ zmDB+L{dH!bKMAJ%@BLMR0IgXx?w-lyBmcsaHp-5jDhYW1W1gM+$6biAYa;p87pbOS z+JP;<8)2f&M7|YA-wnT_Eshv!FY6?T_>Y|jTf*i50_oZ)6AdVX{W40Q7q|;{`I1FaIr*Jy3BzfyUfn+o& z4Ik;B`fh?23%95ps=9;dodoYrSKo}O^eQl1vTry3nlJ}uE|h%>DDawizdy?x08N$) zPp4!=r$2wKVTeo%jICJwOF!@E33IM87l^8K4BxmS*c^Lx2c}*@jh(mm#z`XS9y}4t zM*9K@cn0PnU#iYqXCRO2Gz*HxX%8ok$x=sfp-CB4#crzf9s~H^N40Dk81lBGt4D%= z7Q;T0eUzkXVpbuWOvcn=b?J(`#Z2eZ1xkkDujcNuSA=TW4~~R~LOQvCuo(eO5;-keB7BA&-j-5v>uU?BF+>*2q%qcjTY?XPq- zAk>M76rN>q5Uo8e^SJ9i8lCE_SF`OW@!p&XB!F!vYZWgFKDLHIpvWN{Ie7+XCksC^ zNuZWW$>z9}C7mx+#)WSFwG%+`MnK=B}5w=w(gjBM+v-%ahD&7tW~vq zq<8?74jsJ*SCKejI}aSqT@6S(%bGhUF48}e9a`9N3?jUva)k{h2se*+&M>XYqE$oTjAu|diEUyV0uK_)?M^LDgHEtfu9L6p=th8t zwQC(2caCu(S6hAL?yz^oNR*i+84AUjprtJy)TDAV(>J%BKFi4k?k`U&k~Wg^K>qj9H%ZpJVbDLlswdIN8{Krss@L+|LArCn)0d_FqgUV|?f zQXU3wp1@VWJ6dTxz0wG!Ai&SE^l@z8VDuQ3{$NQ*GGS=nk2D^0^du3rJcg3YyLf4- z>k45|Aw0IGC7Pm|;rG_*IbZ&9yVsdn=iggj&Bq{7>}vm)E8)%$$O!j&3|#!F0-R5& zcPmCxtZ&jy-+V@+jo|J!N5CZ0K#duiJ*{2ma%zDsqAL zHqq_=3`Dxr2zTkPiP6z<^9bmF;kCcqXNP`NBo?!+Z}_Vr;LpEbIkcn8bQlh_YBq%6 z9k0s82Vue;)7_B@-@$AnYwR3@{ema#eh!ZeK0JC(=gXVaL%>j|#^#Sb6?$+~INzxo`ea7KUb(JIvHng*UqD6*Rb8bzSBRFp9SBSXI>eO zV{+;R#N(-x6$D&Zkt^1c>RMH;;*<&(P#@SiiM0sA?SQ@QnfVdL)JK6y)h6oW%dIQI zwc^-Xy<#Z{!gBdo{1(ld(z^hhT6}q2vzchMmWDhDpA~~|q^|=q>s=?4TFH^xp)a#> za^hjr_A6va%>z#od!(_B4NgK1&NTJ!6xEB8$rNo0KfR5`a&*mS{_oh>GqtltonGFp z&AoctCVbl6GD=4qxW#bhC$J37U?J;%ieadlCTbvIG5<)#lvK*GnLT_sH3jB$>K3>F>~u*f*UizbsF!JO<5YU1scP#B@D>+s)+5}(D$z$7 zkTCznw}v~x?s&&zQQ0o8sU~md!M%YV>qJOi=sH8%mbO$n_-F4OZalh z+H3LzyVdf_dhjGoak$U$4(>%S(IzAFoqyclmE|D3+JN&J6QwuQ^*Y%NqQ(;5Mna8aJ1!TV`D4Cnk+9$;@h*eAtMdESeTz{4I`(bE+1 zs{8>!taA+d>lLA!eU8QuPn$bEm@m1uVY`suq+Ik4eC@OhwxRPsZ@O7Tf}o}?J=(yd zN&4be&hgVgY~L6J=JI1lE1;V=-M8$^c-!7Clh0$o{SqCqA741gixn@LC=*ff#Usl{_IAjIB!Je0HB=@BO;;#e4B}pm66-hJ{nvtnWErixu(*i1 zCK4UsUtI zxeG!*v+pqbArhh28@7(ZXC>2no#vz<5A4-o>6a(0)-H!y9#;|LsUzQ&FEzv%V=?Z! zlRcWAb3Eq)o2ToiuygZ6Aw>>+lEU;o)LGh3kLl1=UJk4x{f^btXR&GMU>6D#E%##kr(kMH)8^hiRX&h=0B!`H*+x`_egIOX-8?GF>w!0?fH`G`a=8bsyiAo zJc~eA>a`e8g=M>>0YLNa`<3~ALI2J~69&uEHV__K1(20Qc+wF1DC+(7pWaRC z%S-6E6#^EVcdi%UypJpyqu~)Vt_g&W4rS`;1dj^dHVI+QF=TjoWT(z6Egh~o z3-;zJgj{ORZ^2iF!My+x!s!cdfs3(alzM^S-)R(wN-0W;QHK0i(zy9aj&S`^u_++cUXyh2`5c4RP zb^g${Gv+Q2&9I~~w(^VzxTik-9z6jAtrzPg&cO@t%w3mlkrue}(jw-`sR1+-9~%!9yQ5UyG)BNn+@v1sqzXY`@AO1_Qm zoo(^{%7-oQ7wPH!nlC((ZD^}+gaoZayNHJ4>&D1EUuyG&+ONa zpUlV{=RhD`NxC*m{B9P8!qYU#*1Stwxj;UhCBmTPM7Y|lW(#|=YdE`wfx+Cq>r#V=*!T~ zdwio0&n)yZ9l%X3X&C7PASKZ9X8p_s`?k7Dd3)DgbQhBMetE0NU0{?QK)NihvvcI| z!KJ1CBi8C1$x(92nER$rj}J}T|2UMpM!DH%-XaC|1u(;zakWjHu%32qw475VBH$uE zDhWod%x@6%GF297HpJZxSQk~FHrtN7{EBbL@WsX>_61yfmw(P{Q8ZNG`Xw{NCMFN# z_WJ~(%xQrUHdVJGgUlss!#)_CwT6H>k9 zH5l{2yG^zNLh=?0ipx%zzQQxCdfQJIQ-DxSy>9-UADZZVi^TeEG{PYbSplbLmI8FB z?`zgmpp~_x-!1$=l7kIazEjDB;P+}vzkM|&71iw_JIpIsZ>0hn(ZBq3N=zoiYmx;L zJE$LKe(0&Bu92uH&%v9mQwiW;2wjws?Eqr-m|@1@X1SSr(dS0C)9N_^hDI@D_TFA8 z*}pJ;t42|q_uGZcANw*|$Qil!FF_}(%$wt7rq{h+L13+Gp|;V^EQJcQKJVXJFPwAe zxo$s&xbt=Ago)c+9g^^=Y77V_GLl8-x3DanDXGE|=S2kim_&MB0ymNSboC-r;1UCwiNkCoZ6w6Bm z@wXv6Gcl5HfTQ;F(v?)67!xT!KD(o&K#TpWH#2^-1^*^AtCyJj2`=S$$0@R1!~sRs zQ4)#a446h}^L}tP%gRs%oYz%nPcNG@k%#JvqQPR`->ZfzUye)Zw#ys2riU;V2X8zh z*?%$Tn92{Xx3Ju(*9yIHbSJb_Xq(8}o(KJS$fSLMq}B7E%WJ15e2reAHQgwdqFOo{ z_Me!Tl}WAlW8tV!oqX%B2Jd81M^Z?i2NL#G?VPgl@Dg{dv1L5SD&76R4h{@sD$6=& z@QBj^9maQdUS_$+v6va&{@p5x?sqRKTN_FCGQOYdeIzB>_YP6GZqogzL)lknJZSEx zsVnd6RPT@vwH}*v5z;zhGWLHRR?S!M17I-OV^i(TL)JRE$UakZz!rOGn3JS(B;CEBrOuT?dK3EFf z#GtX$n98FL16BGFj543IaJ{f^Z_(9G0rM~EHQopx4tfdKn6aV|0lEmECLAd{gH1J$xSMSct zC6Jw&pMsc2>7zjo3=YOQ^@{mo5{c&dEx|8!9w$AeJRG1( zq8{8e%a(7P6v>#}KK0Zi)2(IwJA+n2A3}=95WBR4ydFe~GdwUW*MyP4uK}1)#j0oX zsS}`h%KUS_%y1vC?h6Z4o0LRc5{4e2|qN(v|02_spkjVJ{2Zt5|}3%uYe zxBKA3f1vM=-WAqAzTx1%xHKx{95~kfg+0%+VH%cuA?F&eAl2!o+NyY(aztN85iU+^7nK=EEjgB05qZ>r)2$BdPdcs)3h67$0o zkT@wW++q`+W6CHMvW}ai6qVG~tcVbOq$kwTDnogumh&R!hXHBi_}T)ng30Um5QIQmTX?UySu6#ug- zaA(50ljmVYQ79RXHr6xfu~3R;Du`B$aET$VChA^HXX$o5y@4im6VA@n-AbD6L8Pd! zQT>2~%jbEd4EMC^Bg1hXnxeir=2OxUu_#SdsN%Xu@=wXjBQY(o|L%HNmbY8l%gNh$ zcQP{jdpUtdfKNYmD|pMhMQazYNr^XCo62+d@Cyti6)>N9L7wOXu1FUd>a*91l96X4j_=s8vyWDfuJF95%!vN3JKj*UJ-0TY0m2J>DXbnk z#Baf`#=sDb2|bXoiJHDbx|l{;->QlkgpCz!s>b_tF*{Fc{tY~joYq=nh%X6cpzdnr z3?DvkYn0_bykAnl$?1iTB@NYN(*nuwo|w_K944PmH8=&~^BjF{WYkZGjM5jHRZ@Cm zdck)r4-+P8UYokF7J+|SZ+fv_eWyNvykR4(^^s@-{_rmYTewn>To* zP_`Fw-Y(DiSDg&#xmjHtAWi^Xx7(_Yef?_@+RnXL_eFp*&D)n4$OcU%SH~&}M|QBH z7L#gUiWwAF7#|KWq0QsszU%W8MZCO&Hwt?J-CdMZzW(ENPHDdmmk34i-@veI;GV+o z?kzP5r<5-93Tf{b3rQ@zF3gva_$FyF9&ON<5+Y2QgEC%7p76TX$?go*50M@QN?XXV zQ^J?tzr|7%q|zTwi4vjCg^4Bu5~fo)x;Du#Pr7z*C}>^%*GdAEK-=8W30b>JyeV5J zX2y*hzKrmfzKjS*T9bEe5-!J%{Y9|Hq8Fm>=+#6h+fXJD}{s zQs6OBo;5zqq`sUcY|mCLQXzgaT4sWBAONQ6!jhMgd%IgsYmAFZ_epDJl@Jm;<|c0FNjFn#TDuYD$@n=+5}K|Tp9hLVelN6d?@iz8ey_1b zs~Pu919Vnh&c=NvQz15Ahdp~PF1l#T%a(E(+8X|1roaf&IJ)$s54jX4{+(ZpA(GTU z^H_K9yX#kEuikqeL17;=wQS`zlFhi$hl= ziNHoPKLRmTDaSI!CIOQlMB4&3Y@#aPB8L>}xdrmOW1e@-{)64c*!^w~Ir;Ck4Bo7Q zp|0Quw`>GA9XksfDfu~aHmj=UCjyc;Ak7=Ftl(g+`nFjaK!>_%SYPVNv3?g|!|bQ= zC#cVUTs`sox_L&#q@>Lpj?J0GQbFYMyXQZPe{I3#-EeDvf0I?!hxqH&GnBjdX|STV z4G5g5Cm6^EwZzK{%r{&OAs~SFmEW=ijq*_#pYVpvtGNkZ)ua^_P|}|)<^4GL?Wf#L z+aD9hG-a@W!6s9baeO&xBwEta-$)ny@Ven_1};vr@shFY9;-A)wM7R{5GHJfhAszf zE;=3jZ_$y+yccT!zR$mE>{jf5ULzgjRM!-|yZ0)>>rmiBdq$=Tn)w%paubmXiyVCU zJ2A?Zk6q>hCtcg6{vWb1{0jyj>xiUU(pUM#i@*{+7KZ@RRb!F#7zDOaACC~-arYwU zX_U$0fU`e?)qsL&la@U z)J8(ch>G4m=>=^P9KBpMit#m&Xy;3XzeF>Oue`-}NwK85N~if$f^*1s>yUYVBm%(u z_&WwcKX8X!c_acTn}S%pdR4duUY{T7{jekAN2+EVv6TMEx?Zc5Juoh+*%2vIHy5@W ztB60{A-ehbdgY$hK=8E(8ey$_K@$@N8_d-xo#2_?Rb&PRPm}x3VSZpWx#s=Yk_t$8 z1W@;MB34`7m3`+hVu7J%6zvFogP>av-~v~;tCbhmVO$1c)c(%rChcPSvex)43$L_X&Izdb*TJ`by z^JSWB@mcBqA}nL9}v%-B4HwR zhs1MiN=!7~iz;Fge4MR+Ip$6bNq1Wo6>#GI%1U;mILi}mi#y)I`6v$ka&y?XtrE7$ zd7(l(zLN1^Qr9gIOBnvvQWzT8zuV%#z|8*AE0A%CaAsyMMPse-W#(x)0M;vVGNHW8 zqW?nZc*tQ@(wGArA5MtA@@<m%H@;k`doSN|Cu{?%N))L z9CJjvMa{@{C;<=-W<8X#H^^hWWdwz^Ms&)1#F`;%;hDWUT$XT3i9-mW91^$}zP3*e@uJ|8ag_iZjv6GWnkm_n_&Je|Et>3=FCP{B^jpjQ9Hs&3 z1?{(;g8xe~4fkrH7m`M-8&u2xN%h1Ax|STJM(=481G?i%*yW!w`Pj+2TF9@y!$D zy9b|F$1;*`80te^H+jfe`n1kCOzZa_D#sNq&yRP_)$EoP+BSxTZqMdxG4YB`+043_ z#pWuUw45)Ps~5WR8XdLnvM1#9s>OiZJ)#S*yf&$>qFcU}Bdum@{`FL2P06*a=>+>- zGMg?)W0wv;5q_Zk;&V8I1ZVP^M{FFaMXmDATJ{2!J-D$=;ps!;%=BCjdbrK*w?wm?ayd$Cm z=V;V-u|5h5+~OxyX#$ra@3-4H{XBr*d2&D{h9K{_eyOPYph|t})zm+Go?{uaV$3&e zhx{l?ytCl01mh1!-*G2(&)y6hp9*H}MA1A~%9iNHDT_q6HClr&FnQ|#aFylg$fB`Imva{c&*ToO84?!{V`#M^qP?+l9+}^H-%qwS^bAx<1c_1V+aWBu0F9kFsM#l zIv(ENk2Cr<4QTx6MGV6QPdmucCJC9ita4{!keE=eLl;kh*E_P$>nVUir(O|aD$SV0 ze{sglSFD%ktnJJ<-FV8+-L^wL2H%H<7v@VQK1>$F6p8ZYC7fd{^SXgJKih6qe3^5@ zlc6|Ws(&e|81TH789Ix$O|$1Rl~!$*Tf+9*_t7fxDN(gO=4!Y*JjW4^a294Xi1u@e z-*0D`$L+o*Q|$q5ku|D*==N?gWXO{8N=RTS=fJ}&IrPTLS>dXBAUMMZ0!jrjl`n%) zEd{s75iiz;PmK4)oTr*lDe!&Wa~O%#$QbJLh8}6u!UX-Mb5Uy~$Y^lcKjQ=S5*pK= zFph1b>nqQc7oD$uCPbN*qv3zTSDtdxX=c3UI@bXm2%SqZaD(!J*}J|vMB9fg4zj7b zQNe|gnQ+_~aOWj()JBM&dZ0l1_q#ta+!oJ%|&0TxPN?ry_5h}%E!9=8s~3e>~wiL~m; z#`ycvb33)-`mwD17w_pa{DM5VGk7|uvqMTP{`!}S1cC|^fAZ(ZOihtz68Epy*YEzNB)O(oWIeQ zRVOUc4xfnj^8RSe+N1XsU=Vg8HAeP%L6d-m^}?7Zsk8dEXX?0u_plJfAKx-W;U=GFt9>s_5-~^s$8wiAsQZw{MN^KH^_7t~2rk#?H+fXE~56sMdP^ z7CPR4$J{c>$IF=Jb)r!zSe`rkHIA7u=r-;6-LHwC@GOs<6 zSu`0@WP@FO)@(g6#CG}5Pu8={Y?aCsbn0*7Wgx@Svs!MofwYR_R_MWmNr7Yb}}1Rs3~J@J=(pe z1yB=#N+xQI=&NwY-#dS8YOH!iTSt)Ru5dI1qg~%y{_NU&Q$W2Y=K0ClX zsdo04xOc4`{`K+gnlD#>@}{uWcvAGNe{J*-%b&vf#1U^;IxQM4R1O&YbfISMvNj%s z@~i@ldXTi|mkSFT&!V>iX%m-RJ6q@;>T}qGl;4~+JdARD3mHkGCMSrP?0 zd8t!KOPnlkyKwSZs900J<@J5YJhTEByUx)1O7iLZt&vNgY?+>}mqypOfX)2>S^8W} z4+dP-{1|BFQ9L+eZ_nt_O3He_qP`^Dk0Rp#I@Ltuod1I6jY`SA2T^tfZ zjbQTTz^L&{80AZai7S56A^gB@pqGmJ?0fxR4c`(`yQ9voEvzF_0KI#~Zqo10`-2;E zEDOC;6}7K$;*J2vCK*60wOhQWIVj~Y|AtGK5D=r|3p$Tr_UP- zl|qGu!E4!(6YDY#pqcTxTK-RKpqO zmLwDPEs~ND$r{2xs5UO;ZN}ZtXrXY)vU{Yz`F$~Gk2t1!BMF$t9x*fGf}jJXwo_&4 zS#a%^=oi$!W7mU9tS6V+?`uN=kEH7cf0d_U?`t^9`97XbOLvKtr)506TV)Oep&r9O zUhh9QDHs4|cXo@U)>hJYxr z6y3jg*REzbV#kT?(upi)$xt(v>L)9ls=yG2X5IIuvTIr}@Tly9{cd^GJ$5(@x*!~_8 zG#OsJk?e=CWkxTHJ7=x^F&kNZYL0=ATCBM2WK10^CZ+LNJw{IVK|yjgV*gcf2s$2=StI}lWq~;GkUxHx==2!sgTH%KA(%@B0KZ2XzBNCVrfO17c692c*!fi<0_G zenX4fFrztcB8N)6icg*Hue`Tg83T` z>EdnkVvq(K4_yn%Dyf_(Tbk0}g0cdZ?980-m`SG@jl8*JR#1U>F>?5*Cum56y@8VV zz*@>@vZVwDCa+CBFml5%YsNhiIxVz!EDCB+{!il3cfY)V;WSj|Gl4jgxBldF=$1P% z7YhEY0X#_5TM-zRuk2&!E&`lh{J4Ri9T)p42rB&2@(?e_BG^eWHbZF%1co7+UMR2$ zj*XGbG3?GBy&3OJo*H@h5%hxQl_VGfVfJNN!_bjx; zRZ4~qbgZz#n%lt&N56E54$Y>jH_10G;U= z1Z=1Lv`$DnX==oNK;1g3q=b2XsKF)nT-~8w4)ID5G{d{_oUrf>H}Fn^Z%H`t_#FhWIio>+iAoqnG4S8D-Z;u>2EbEgfp#M(`?6!?1d!KTv9 zb?&WA{I>>5Qa738uf@{RDWrg}H?>aMk8%2I#s4-+F?Kp!n%)CBuvz0}RT#x2TBesG z^axiWMJaxUvm%kvJHf?wT@|XmH)h6msYD7P6~}pCLy2va@yn|=q(ntuCj7d&9}~9G zWH3J=In!?cqlsvMnI+Il%fgE)R%+CUxG=46M-CCD|{6Ie%^xg=m zlk+#Xz)Uh+()zjVzdjz3)k{KCLCb5ukzJ)=v(IL{G0u_Xc+>CuQ(mRSXzQu4Sqfl` zzT0`50z%@;P)H!^y7*1pP-7UP9}icwH>qKLu6>;D|{;xI2*zzBGw@8Xq z^p4#GnQT=G9~WAwB+{`@Cj@UEm_>VDhIe-pq>Maw7XHb2k%pf`Y~Xjp<3;|yHb@ud zCGrP%Y`kFEm$tDkgyQDNbw$pM+sPkWb1g8>L5lW{_y%M4RrKuQ;UcL!LYKq+l{tua z`gb$@QO1Bnx{>iz@bw0qxPIB2Id>e39IMrnMX5wJjNpk+?S7A=^52>3SQzxeo_m%B5 z);^@rp&e?=t8oZmennnqBqePiC z#Zg=Y3WP@eWP@kC-`uV^R+vH#qWbcM9oe+Z| z@D~;0J7#>T;2?!x!WN;zx|eySyD%w zrMop$k(F(yId^G~3*B~>8gD?ZS~<6qe|6E#Iw|#^FJd0A?YL>2+aa|feOdT9jx#Nb z4HiIS6v3^^0I|SVI>Cz#IFlZB>=fb7gY{GO9TV46f95Nu$Amwb<*r}&eMf$u7=3KP zWMjfJvjol_7AhjG_2aDmq@(?#c~8w4-+4Lw2{le(HRw9IgUTXW=tf($Slx5XjUf|J zraYX`Ce4|;c;haf-sDI#1i zO-LW>gomXl%AE?)Puc15;O3ZZc`eCza!F#!tlrQf`8$V#$sGQyW+c(aL1*#e^DM=7 z1a1I(sWel#cR?CUj$&mbVd!yCf^QvP(dUO*tG8opO*Sx}korV)<-BCpDQ*DcMU%~w z&((j^@@1>bf$+$mVJ?NgsFd+LWqKE*ih)jaO~!Ti1Qu2$LjOHfrJARn+`hDCN@Cis zS69@h0gs#8wwMpZ>l%thWI;DpJO60Qv~|H;C7VfWA9@5Afrg3<1twClsRp$lnfh0~ z_ZtC#R#?3q`D#?!RdoB8B>Cot)d>;ZVm=34SIUsUx}Nw|x%GWz`3kgmZ_+7q^@a#vbak>ih6U)9ii|&muX+ zelEtqg&$pzva%OMDGq*y*pgxBB-fU%S`@`^a-Tf80qg|Rm6nx<3$Dp-Y~Q?#AQ><%QkzK?R+xhcshMv~wDCSmLud<>O8 zRM9j!4vJ`NyqrqlbV>TMGOlxpRLiI0SWO}QzeZR;$J^*X+&Dx{^l(~K=@Qrc`7B9G zKWt;Hh`l1_uQ*=xJ7r9F%7dmJVJ3zMqhwCuO>5nWSwFo_EgmsTKs3CfBji#;SL6nx zC^93P2ma;>Nr3Bbi(#u54+RgEWz#OP7-K(q{<|jvEKolU_>rzFP$}ObsP5k^UO!)7 zr^PH&V|ZG+xWNL^DClnMPKsX*NO*`}w1;%n7kB*qg*{jy;@5>IskRYt{EZfgmO1uC z#N52LxWx6jm8u5BxSZb2+c|=pd4*(QY{5>mJy&paSGIvnlrbOouM6!0Beb#^*tRYA zCM7FkOu6ZJ<5q3#39T@V>Bdh7_g0a zlq6Yx_ChTzl%Dj?!_H0dSDPn>7V2RGnTh~vYuMLSR2r{`@tTQECMhOhLD z2&D{Oms5`>ix7a$;}i2Bg$OQ(iD+|kBG?z zbgeC730y5vJfBklha6)8-Pn$=)}>6fWu7jDP(o8rm z$AT`*0aQt>Z!Md)`BLhb@z*lrWWGew1kwO6%=`e?x2cwt+6go# z`z-lV!g?dvopbt7sW{EU`2g<^tJrU+d&TYNOradT#(uAdq%XLK0+K73{UOsW$?Q<< z(~|kKKpgt-azA;E8tw+j*#-!;3P0HR%W+?Y_I`9ENw?Oosx9{HqT4WLO#d45{?#56 zAAT`n+QrMWaz}o|u|@IBWFKnL5uKDuPcFR$P0#Zui%v|qGIH`|yYy?^U7{&OQs&>f zX;uvzxZ?!dIZVO-hezM{sJF7YEdww@db(D*rcs*OR-C~?B>jplb{Q+(@2O$zORA3k zKXj8#*5<1YlcZO_P_)P+SKLNqY;X)w$8mu>o4g2)4qyUUOW9N>!sSh8|Je5a$|m&P zAy${>JcDT156@9(P3Tm;RXU=Vf>QUy8S74wo}0%kN=DO%oZOS|jg_WH}AEP>!JAzKHpOMoDtVJe&RI zJfH#iOlD`CAybhtP94gz(1pz#iSu=HkMm3@V~LLBaNC8FI+)Prt$|v|dJjnu*Qq_C zO0AgoK0T>E6=7BJ6PB7vj--K=8hV`x(@5oM6Zf|Us*ZJ*X6nfTY7&%gQ6zC}wFj9y zx_7CH1e^$GF^q!Fu<;TF!c0rb3D%oTZ0Cnaw=TI42*UzPFGUDTZ~`V+t3bbo#o8`| zO4kf@rBTOK5Z&`}Oq<`UrilGwAyzFJ|CqPygHV=90eGM%`)Gj{0_(8hy@FVS{CJH@ z4Ai7H<}KLD*3qcIZ@3#aJBT}Z1;cr1HxPM|1{G^>{z~cavITv(szj$va@9$wTk&P7 z6#N5YuAj^n?1ouE+A{6Y9Z5|*sn6y92ZCFa2?m}WZqi*|(nU!n<6MZK2_IJk^=Rlx z4Bj;F;PjW@%{%if~P$?K*gQ$-7$4?2$ z_4M2#Qpt{b5*g?I&G-&CR&RSTWr%I&rqSLrbL!D1r4g$6cre9b8xo~sbxseUXrb}< zTUhf4O1lID60m;!2WrrZWaO6PLbr45e}D{Nap7vewA&Jr;pfuGM@O+g(3D@DJyj6< zcD^%xWru%e`2~x%j(RH^q-8j3#QgNZHlNh~<8&!aW_FB`jL7>2 z1Il#51|k~C`%duBD$@5xn}PWRexVT(trylmy$1MdpABB(1&B8me3JqP@vY*Y1n6f& zY$)IIy;~Rx@|5N_H_Ff)h1ZTYq0NPNQO34;P-1>~+06}Th@0dsnT6NrVAL55g*SIK-TrwGBQ_?r`jPxO>9oXi0n$RGpSLWyb6$=Jr ziTjxrpFn*0n?sB_@Jd6pH`a$O)m-Wv2Er=+EZDLqbL{1T>h*^?lTR=i2W5=hdZVBv zjXWe6|HppLH9qlx3ep6^5ODO_5z>C1YI=1r(+D954;Hy$qaz9msMWwGXW)`K=e;fH ziGn4=31~eUiI#2KLJQ2d&*WP-Y@sE%=he#|AINDdWLQ>NpzVBH(_j%o@&vSzsFK3y*|^eXEM~pW{-SvPKif?!j>E8i6=6h^fC&g{}_v+>#3fQ{~k|E${Dvci!cX zY>Q%QAekF5X(N3Dg3k~(k&X>tXw6vwFXct1WD`RPxi36EV@s%nN-gHqfU;iIs+ zl{4Tp3Gaz<@!XrTvDqJKN2re4@!aPZq<{=JVc5%8TSNw3XEK+Y%mWz&>sEMcr4Har zKG~mK-iCrgJo20IV7sFgqfC4=TGT4o;bq^kTic?1BPc3?=XXXGe&K@m4JY1%d4+ce z+k=)?vWa{V6#pIsW6Gur$0+=r3XHY>Ge`8k9^dIIcd|lj+*e{wz=8O7a|(5Vfi%&_ z=4ymh?f^&*wy9@UnM}vMl$Z$!DcL>NSp}2w&hHB1l_3GRLCcRe1l}L8bpyDCt5@w zo#vv|edE9a8(PtI9NkMz!X3XDXzdEe~R-P+zO>O+wI1QJhN)NH2GViR`0K#dQ4 zLh_P^47otE&1U+2K=6>5 z_G6!5FqBLvm0xlz5xY>Y%4$BCjpe9 zxaR7F+Hpi$d?k$ZX)J+I zb)IGE$qiF1VU-B*_`GkkU!& z$?TQP=Oh;&Awl%Jp=&7OlAc?Bn7=K`8QOl=ean0ST&5uQBC5uQ0U}0cc`CE!E*q9? zO4p1vopFS@1$_QXaWe6Q+>BOF@l=Wz#TSwm_6tZ};4q7BkaHuYcqILk#99>K%SYZ_ z6@VTZW5&TRDjJ6RcIvNxGOb8`)|~I_4B*m!2vh;LN43MK8;Q(@alSS%vMzl7?=YS@ zS`#TpmBhNBDUHcZu}~^6`2Aqsq!L>eBmr&&hk3%f{VJID{GE4USvjo(xf@l zqcTF=Fc$=t(z@LItJ~b1*fywC|HEy!FxX+^ z0Qc4M%)e_EJzL51+zb@OUad}?JEzRZmPOB7cb^N6t0ttYKf&=pDHdxu zSazU|>h9Ev*WFCgJ;YOM9fAb-`EqD*)>hDavFKRJ_?+fl#qCL|fVe!3l1Eq6zSAbMOH6vb8qeHTy`*(7da_rkfh)&A zM^+nKCnc%&OAdUBT9m7y69I9iez5e5Pk55`8G~pVy-VA>dYcI)>z5L2-yCWuJzgoB&aM6rmK8#l&0O`^{%%hcA-oMNQh<)=A=da6Ndb?oWe$?p2CF9Nx9YAFW788;EXZ z;!LQF*kW!Z_@3V!JvULVo#<0*qw#Dw8v>h|yGY_{`#zf0b-&+M{cO~G;GZ(=G$#D) ziGer)IDXGFCa0);=Ui3uoX;OpmsI^6|116C-kHxSG$uCL!30$#pp3mHZ}V&Tb^G`8 zM3eNHMuxg2_@yOJoLsr6!ao`J$k~&&wNkYU+gu%AHA2tBn)#Jx57jQC(~#^(T5NRR zPLJwkH9TY34{LVf#VK#MS_N`(0v(aN^>I7R$nIlh&abUg!%PuV3>T_?+Fb$q2Nm21!fwoptx&C~gP$TP~>!Hy30?D$iVK(F#p|EV6eGR;qypD#@WyJa3!XmZlIZ( zYaTp!a7_K)1DN1Fo5mPwHP5D{w&X0Y4*hT`0)5;Jnk_o z2%9fF@wtfy842c>mJX8OJu9|_$JIiFwRoQ(B`B6^OL7&*9BMlwE;@7OPPyiU-qV@+ zQb8|gs-QUDJ!2o-Eq}veezN__65*)&dr5rS@e$w+KT&;a}^$z65xO+G$1P3D!3_Vk#u<954 zshpcf=we|D$YQcmbRrii_Vf<6zmJq+l4p}NquLZ`_cP1o=RMyDRDbp^icZ?<7o!90 zKl(>+_(N6u_wMf(w*&Am{Tn=f?k4r5%RBY8ll)x6>NcqKZ=NDNG?JlFzU&IH_n5z+ zZeKs6RPhmfwn2G-lDYnVWyUbn&e{7i=9Y`1`QT1E_9%=@oqB?t$6>ONs#46gB1qJs+o}mT| zrcj1|PYadFBL}+_;sXN|)I-XLUMubq-UIR@T-%U*gKxi-*{EQk$!(da;}` zczZ}olEwPC<8+D&{i-DE;s}nplI!9F0n%&(`Se}DDyl&r6@iKLqB8Yl(dX}il^EPB z4r>`|nefd_|25PxpnuHM1%l;d&u{YM4#ucP_$u_34AC0BOH>F-t?`5Sf6 z<5x#WqSvLrq5Ox+6MC1=qYe-&oR>U z)TlApN+pmxeSrh`$du*9POtX?LyVPj#^n@9-Vl|)J&7DSkv7C%Os6*KAF!SNM^E$5 zCi1+kNT}PepKpkOdrF6zJY621j9M&oHyqm$|D5xi?enh1D+C zd4!)cGM&`J3%0Z4C zUBK#`Y8|I9S!LzBmtsVr&rW%^0d1O^|7X+FlS*!bO$onl{Yu$l{g@}xv-rbKU2hDI z;R?C67%|N~k@~L&+A=_jQ`N5Afo6gb=#d7EEgQ(BsSi^>&E~m}h|vc&J;_owetYo` zOPQiMyIUjrI7fqf{&%xtH7^dTSXV_N$b}7M&dTW-d6!^7M~XngvdlS|yqPWC@B1=r Z@0r^EU$OF*zkD5t06N~HhFv1O`+pc9)p-B_ literal 0 HcmV?d00001 diff --git a/data/Female_parity_mortality_list_UK.Rds b/data/Female_parity_mortality_list_UK.Rds new file mode 100644 index 0000000000000000000000000000000000000000..acb51593debaff7bdf51ad547a857c7a18f52ea7 GIT binary patch literal 37381 zcmbrmRaBha)~$<6up+n@7Tnzn2o~JkEx5ZD5GV*vfB*rKV8Jc8Cb$Qu(BJ_Ici)h; z{=M5d?d)&0b{6xF8*b)1W*@yj9jf zNS2DE$^Y@oOg?h(qn`>rFN6kHLBopiYky*LzHqi*2eZc4#aZ#gT9Ny}_7$(kho*8e z4u}2A^W`Fsi!;%&x>3u+?dA%-w<%oh#X z&5Acyx_6JVZJCi11k#`?$(%CNM&@h zHi1K=Y;?2E4VMmXe7nkxM&x9Kvd)c^{-qJK%UY0KxG}aR(Q2 z@@56J-^k2*<$@v1tOryr@UKOkriu+^K_AuXzE!b+22B;%8VnGw7hNnphuT2x!Xw(o z3)p+~#8Y?Ji6zoX1>L9)x6T62Sn91NOwb(uE%ro?S>loL(oij{Y+tsk_yrH=%d1U> z#dc`u>;hkC;tAd$?HgCI^?;%*N)VkaRr5KnxpI?@1EQ~Jy|gmJ1uD(-{FrWh&uj~% zvVK3Ra+_cHPZRnqnQq{M7;fo#R@pZt(S)`=xl;zq?52(s1-KcUQ$zlcakI7_KT$fM zRP9<`E*jv+XA<0@21KU1o(?SpCWX0AriF<4zCXt*wrH!-aGbzoE<;qpXQPFZ+154B+XW_!_*c^m=aw} z!^&~5ZZdfCw!{t*H-33$M@OcEVOJ-OyaFVU%kbJdZz&*|cQdkG9X$7;-(l&O#HNfEM^@>9PTcZAhAgNV(NeH-Ut>}i$mUWeQ2%I%$4v`qy?tuA|8(wz#IHAH^=b(&hD2u?-7bed1YdikShHUoT=n%j zk+pu?s&cO>Zi`wdiR*B7EWhWry-kJ1HANn}47TY9vs64>JLcuSIje>}Qmxb!{69WK zAN!vV*iYXX#l_>6T^aY~vMJ?{k~^&%32}F)6V2iWg*}yZMTNRoAa1#j+XSac@*fT3 z_9JPat?~ATb42p`m&TP=L7u|2cFIkY`=@?%mGj~fQ6p*q{kn&^ zUr9ee?Qur=B-{kEhGM@CPf;G*TW2IVa927;&YaJQ=)U)`4bN|`Uob}%vHR!%O#RZ$ zt+_lBhcTnhOGu+`jjJxqei#|K@UX{kNB0q=0+Q_B)4eLsFp8q1HWB%JjHiv95iO;& zu88#zzgQ0wo{1_sq+=k+@59aMw;a0YQN%}L@P+oSxdU|ik`hwCCuv3H92%yC&&t$6 z|CFl@(<3XV`PLhU#g?{(B$JImqV$2 zA1aqeR71XEZ1h}p;-&Zlzfe%{FpglLWBCmtU7mhUji3C@4$?q%l;A|-;}a&evn zFT$2!T_3PPUtKDSf>zkVC(M~9~H27&{`tv^4~(84=m&D^|s>o3fd80>rF5|CwEc51#u1tgh8 z7K?#cE1C4IsR$a|yXVx!8NfQfCbw@tJQL-0o!=7Hz|o=Z*S9Qu2 zX&-7IV32e@=}BT6WdZ#XH&d;= zA16ZgMuHzg{4z^!G^54E?^&G7HU7`zB*k|v!grmWpt{fTJ+t`?FHuC zWd({nG;%a5*(R=D>#B=6uO5zaabEj(kF(V$&?GV^x?!)4PTS^EUege=L66Vk1Sk_? zdGITTPV$Ca#g5Js-E7^0M(66u0Gbh*1c;`!KGDwji`_v`$LK1(mybAGP-J5)J5C@mgfkW?}q@#n3(|4{F4|IVe*H_MLdE}+9d+ zB)yKi?k&EoQ51mPe?xy*@p}DSk85*bu`^sz@IZ)L}W2bU4~u4;Hi0TB={DHX}XeEwz(i{Ug_QSG{?8`Hq~C0CoZ_2rW8Ex#(9Z|oAQj`k}MlAi{8 zj;Vv>omUm!c&S+2M~3aQTkX)_iE#tL%^k~< zj}-@+l()B*M$@hlI`?+t%vOGCb*&Jqc)aw;)bb8+Ki8yeUop#GLMH-l_-l+BTXITPu4jU4QD zAAEJGggcmEeGXVYU#vZhB>JFQf+J3} zc1u!!;aQ&D0{Wn+Ix63ZHa2OU*s} z2lX`}vrO#LkUO4>^(X66?vaRj5J6^Ge|FsHkt6+8aj5%(GLR+VtTW@tt=G|%#i#SCS3*>|RcgtL4u zQkfZOO+Bzkod4ix;6GPy(vd0PRXsbzaIBt5A=t>N5|u z*4f}Y$ilH2-Jzit?+T)1D}A7aou@wXKioa^^Z#)B&Ra>~H#Wf!6GR^PbJTAdYA=## z2r1qgLid?0CNlP<4Gmc`A6(b9N_y+2p} zgmberf9(dt@kJhWQx4gc7>i3lhplC%7x;GkO1zIixZN0W+?}j$4O3Ay9$gg{p|F0H z__bmPwL^-PS()5QXGX-6jO9+kqh+=hHaG%te2 zUSn_QFU+V&aD)2`KfOgrx?k+u8&FBf2whM(7&^d}ZyhaAxoKQ^R!QWtOR+F0E;KrJP_nCg$z%=y_0+8w0iQC4xaCz@w10Xjfn`DI-K0<%@ zO;Q4TIH)4;w)aAKwsMR6=EZlaGm0s)H#W|H+)CmE@EOV&N$^N8dknTEmif^N#lQT+x%LQ@qRM?( zZ_p|JpH))oX$;~iw8(cN$3R`t0H3k1D125^t23JFI{!J z3(WX)=iyq8bem*U5MjHURfUrpMgmP1Dc{TCy$4qM_~6$jDhQ(TTt4bE+7u>!uL@lj zb9?mJ3Tfm}BaeFB3;#lNjZ>aGzkAiQ7Nu5mqgJi)(nGJ85AWq6EY*zKF4VRSF|XI^ zk)z$MSjSmn(QEa*+6@z1+l*+IJUaW#+%&wgrx%zDH{fF^m;;^rEcDCGkSHiXCiA@R zH1xxg3aI95PSjN@oZro)SN=R*cR5+)>HONcV#wEp-80_q3KN(oF0es4L15v1ZpTi% znJ=ZhQ5=f`2CDn@?yRnGANV!?m}Cv|%c}gH+4U=-`i7BPEYQW`a@8aoTD8OZ#y4dJ z(2Qq|#KbXYVh{C_HX<3Vcbrp;`8*{sW#(v_qZxrDTP)9tKSy_=pb)yL-l>&q36D+e z=bx^?mUC2FD#Ur&@G4DU2GK?nRZ{Mh+YD37r=$SbTU-8Fiz-Zu*CT`>1uk(pYemj) z+cGiIAuqWZ$d_p+?CVM)FV5C_q;-ueU(qTQco_3S{-R1+=Ot*^#)3=?wffGtXNhXW z<6{Z>*FXBs3C;dsdD$*D&__~d?W%JGG-%oG_Y7d-$b2;dcpADcLi8>Sv@|HexQBJ5 ztTD2r<@ANuSNe19H6LU4kT2~ zJ2%0QsX21@*~R;ZlOoZ_aCW>S5$up^|9s8)wwKIo8t9 z53Z{A#B`Ia-{HPz587^lIs6*7B@;PEa4WefRs|uiO}A^3IRO|-&RrtnF=g*ao8)~sA=uHz-W!bbUs&EN>=f&D?A+TYjmcmm=XXB%xH;#A=ValJL`Kv!=6!W9HfCpI*^{Z&;!1hf zRdI8ZZ`-%l0*X-~X)YlqNM?uaQ(8{BI` zZW9!w)&e>5xfrUc5OGMsF`A$c#3}pcI0;!TF zxM`8R+!K?Iut+K{K>~?O1ifI$9>CGODavmy3c0;veM=~S`dS?wH={lUgoO8DR$LX; zd*);RIUgW=(jh8I<;^xPT`l4;W0z zp)W-B6Y^#{9g@4Z^uKiHS^8d_2dJ@<9j{^bxGUxT!*Kf|er@@G9dDz3MMiie?8Zz< z_Z7%LRZjHm;5IxqkES+9pC*!P>HLFKY4H#~)3nR1ENh4tsr<;%tE7^v(+(RG?I$y< zntw;I-u^SfkX1)~96|9c$DsseW<~g|xgRY#S7n5gX85gb$gG6y-5?HsTYkhwal*}rq?OI58Tv~;h{PR8kY4E)F_efaIe+RXA$7V&=2*x8~uIXN9ri| z(EPgBd@e1)%n%*I62OKi0yZLhBkvL51h5xDw$kD8ulRay{gZB*1+r8Lbl}v z-6Wf!*@(-gb8jGYR&zNkpC-6kS`m=WT~F+%1i}m?-S0^BLF|8alYT-$2TPA`@wRH3fHddKRwVbOo9%lQDsUC8dVM>b`-4$h^MnkLA@YK!C5RGjVQApxn8#te`419E zF{K>z6H}u0l4x#2BeK$uf#Y<7VO5%#qt;lviQo;Yp^9f!^wLctb^Ps5OGA%snSvsOL-#IwXR$}W#f zt_vhwtpEOgB_#B#MVqvx7;WGfm!drmSXap9A6UFVE6gn3|FzckAHvAY`(5QRxGz z>5nw(Wl+11#lrY+VKT(jHDM#htJQaVO9p8!F7fA63`<#x_#@!mV}}DN#Rtx^IDS6~ z(B19VaoayA#@&_OJfz;cpg~o}1jhDnot*4F2E7mM5)i$uQ3QqXSCa0m>#pTxJK%_J z-av{~OB<9Kj0=NEW<7^jvuv-2=}4)%o8sJBQj_=XEXjU>Q9gy}o+pfFO_znD=!bDA9fj#0@W;A5Ip1|1&l;>QyEi@Ao?s;8 zXo(;S_f(~iJbQ_VYcH{)Jp_gaY;os3L%~E|E3_|luEXi)_DN4bGzw*nR><^)tEA%g zF${kPvN{ud(I3iwc_{lGbzDKHSrA=i z-aI^yO63wG0WN3RCtC-}L7R_;MWI^!{x)dx`=q)1f#s<3)>@75bjU=iY=$uS`eAU7&%rkl3#Ki{Vld4F?4 zmb!K%`r$<#5CQyX;JdCl*3x-7zT+rbjdnHIlwNkT7(Nlqs_G5DoWZ-80_Qt8!rWUx z1d3k24N9M_i&!J7p=MHx4Zu2`45PU)bo`?jB=ryHWcw=O$%yH5`TsOxnzZso#pDMG z%f$3JiH^73?3`Ca2~@3vt6x$!~LHtK2u=vrlb+HA^(@<%1-A zu%K3i7FLn+mD}$ui95o0Sb4aoR(S?n@OI{NUZLvboNG2b0%wBn=IYe1&R+t(2bx#m z*2VZ}?KszFm7u?f%xl$+rv&-DKU+=>8Y^!)wDaPndO$#XAcYIB(@EAi5^;Ro(5 z-H0x{5C@Xtqud?NB`0F{y*J=2tX7tr`Xq-Z>_BLcjU5x*pCm?CXg?XiQX?^OI8_J1vT8HzR2@9H`u#at@KOBS>}lJtee+C z;mMM-4e2=JVQaJ={L`OqkYrYBmsaRZqG%YPNBI9B>F{>{LDabf2EH+{&ks3hK!?Nz z*VA6W8YUFKU9W73!{iAn4I#>`D@yA58XYT3ivh0*XWl=j2#-Y7t2E9E0BEpo1tYTB_Y9(14fSj?0AAEdMh6 zU>o=pt?>f9>8$-;2=1%JCtY*3AgSh36#k3XcN1qHJpc*obIVz6S=6J>?aXm$QS&*Z1Ky3yA{OTvIvz&-0Hz9D zCe^H<)ZBYv$-ulFW) z#QMrqQ=!pW^ZWCb52*2>%ewFg1I;>5LkHZMvbn4e)ce`17XWX1!B-zS5rG|dH1$P` z})(}ketEDf?29Rj>dhX?G(YD)b2>8uoARZ5 zAmhDS^-lVF&>?l_zl*2#V2~73o?AepS{)3HGsJe_)TH0*cKG2_MtGUfBg6k~eFEb< z6>lf+_1<|SeP7kdd{|3V%L7NG+m4=o`j=!BJ6)kPuE;Kb?KsWfgtM3s2ZU~8iH9*i z%dJJ(yBdNz!31J$qno2~CLWp7Tq%7Y3ZNs#m+?N*VU;8-ZTOQ3SNHUxgitFI?eAl5 zsL5Ndn?)QJP|N)Tj5ZH2-SjB4h*N22g`i7)8%|>Bn7G(U9m>nz6GV&Co#JDhnTFSk zZzM#xJaH1c#s!9lk3|KH8=+t02myU2W41XiSl#^131bM_z*nbYM~UFrh4;VT3uDI} zQnqX`1H5Yn+-c47mmLnU$#G%>(=a^b_>E9MmPf-p@y&+05u?fkF_jXAN@!6aAm%=w zo&77mK3UuFv!6{Dr_#${Psg8)F=Z)0KR2uQrzebwiw*uYwT@WwqV0y+V(oZzPk!=d zdLW>0ND#BT=9fbNK&%;u!$dF)(uPs>9q`(n9RJ|Y>??-=aWrUbjXytH*-4+DDFwI01xG!cK4+8UAm-%;*d}fkDBG z7>C&}MAvO90`(VvmKlq$Wfp60o75868L@BPG`aiky4!ZwLXNbB^6-oGuvea>;n+Tw z$Pz)ZPK8h+xiqBvMp;Me)tYW|c3pzjIFkIY@lPA5h?3vtb(-=d?X}~L521*%MkC7n z0~z4$II?p`hnTqnArHF_8epYo{N>R;Ld3gdZOu^8mkGp%yqNObLt+Jb$Cii*aOMot zWuiEAg?Y0@J6s?uTKS_JWEuRi;z13w^p1mcl6`f#!;k$thnWa&euH5IfB^jl3Sgl} zfUvkM=BJadUGz>AK*R*4ql|eJG>ip`PoYVcOsAQfskohsWa6To(&!(9+80K1hY(Qo zl{})^IHfNgRQU)(|HmCMF^@_;LuSHQVoL*0=>ed%yl8YM8G8(zymY3`IG#&-@xEU>BJAU;y5XpJ^SX1s<@2U=Bfsja>J6nJ_=#yHB}ah83E z&;#7lL6)gz<9-vs{9oKP&2r3(C~<&3M}`c9tCZu=eho6$)vLgQuk62@b$KVC_?0rZ z(O{uur#C=IG;b7FjGyB|Vm&_L)FY1~kj5M zXF=EE4#tzi(Qu4`&_HX_ZiRD4ow!ZF^3oPKQ~hOGS3_o!%G({%M3yLWDzUh|{$O#L zL-y7Vd1LTbZ2ZtWkQ5Qc+}RpJ;_uVjWp){gcwx`kr3O;8g=9I@%Dl2DHB_KVA2YVx z3Y^70tsliScK?$V=TotW`jx2S?4HJ?&l#Du6F%vk+XCEa{R+5h>Y_7$C^8<-Lnhlv z6)E<8yYb-HxXvnSD4{7hNnj!AIehZg$C~K6)H_1hN#=u+63_#+9gIGooe;`v%vDIo zfokjm59$jVD*~K*1QQN{!80BDhuO1|qF#2Z`e0hf#v$Idckp7d3mw|#j@c^V_GUVJ zNhoL;rtsUVle$RhMc5WcFKW(5q&qLR%3J^;yeafTIUpM2Lj{h)$R~b0-;)exdiPlN z>Ic7$$vy%#))m$23(~4PF1Q$kla(j*B8a;@>n8B(S7tSU#(;NP@85dKv>$rCb16mN16;ZsuvhJ=w zR_A@hrSrl*NDsZ@I}2RNB=6=B$!oiTgvgxQWR=Nc-n?!9rrb>pJhbi-3f*`{fb0Nk zvwpY9B?KU=9R*#WV`UyE`da!Et>E4IfKw##wqPBJZrUNEWk?QKgUbj}b{zWL?h*RB zjt#cp226a0QF63Fqm8P`%aURn%Fd86g7M{Zf6$_}vpXUK`09%3PzlVqK(B>j7qwJ(TC3WN}AB?-5Yd-X14;36q{YPm@B zPYUHHYOc0;>>Zis#{FNUSA4*{_sv#cU#*22BSuzgaIK@$lJ zE3!(wM!p_YwK50i^)f6H4NHbli}P; zRrt0t}V%Gu8=Mq3HLj@xuFFmG=*r*vRt zZRRgv>Cpt-yuG4k3O_RuXrpn%NgVw7Ee}*8HvNI41~J;~8E`0kvRag!1M@~=&;UcW zBannjuSB#iKnoHp2>iASBAuWWC>fD!QbUUvfow>d*eLm@WM0|ABOKVE}RE37~2V^ zAB{&z7%72!y|4d^QB~A*yU|+tdYE{+POmt{!Up|kL37sokZY84>&%A>1 z;>a}DQ+72LN^WE0usOclvmb4^q^;1>|JGXFuRc{daD&`8%3M_{UdP5p-AY4Ub4jRc;aEhlfTE=m0Mp(<48#9CgILX1 z;I|h-?+2Kif%XF@77~Ew=iuN>2yLTQ8%cq+GCFiDr49aS1iC6}ug2^$p;h9%N%i5J z)b|Pczzg;cf0?9&#%Nv~qRxn4^g($k(E+OmW|cwD^-m7$6vIDyu%6BN>~B5Z(WL5^ zhtPUjRUtU+W*xg0YYVZv6;Itj86Wx7uT9C{mVN%pe}`{iQ<6{@N0Qh8%eKz9v=o@~Y zp1Cd%Wxp>fnj(hr2)O^qjNM|kGt-$(z3&v<2>O$;(kRfD`RKlarb#3{9 zVa`(*t>Vr;SwHdyMx(%GPP46D{G!1N3YsjHz|l-^N;^^FbMAh!Svd-~x|N!}8HwXS z?SfYQ-byg;P%|Fw<3d z?9`e(0uq~dGOx<3;EGvW$k1Q>)ZSW00y#z zq967~5NR$Lzl(!8?T*~&bO8K{xpjXs5YYk)>nnmz(2(Beu(1g2V%?zzJp)Q`Ay1iD z+^tgB#E{bJb}V{li)WdPxg`IQmAMWX<1zV@jqggqIGXOI8fKC9hGJP#eG%7t7xTY) z?QBD$$bdGDrHrVBzzX8A5wdUZu1@$ZWCfDA<)-r7kDKGMxYofy&y2{1a)SE5P`(f;!dPh!& zcU_!*C8-V%T?P6q9v9zR(%#n%V9*J+vXcfyI)g;-x%0%5G1hig|B%@bf(D~7TR&G; z%2(F3rNI0^8+uZ6uwCwMS?D*sZl?O8adavmJ?i}|fgrVab+x7#kc#JtN=*fNzpL$x z_WC?CF*pfwx4{(UhF=+*fLuxgVGA+Wpt%{r(n4VH($zc^D`C(1mWk*_1umJ_XBJU(BB+omr1uN^HgJ63KC}k{ zl1)#%M1si^_3?CeoNOJnu`qY0pPSjk7vL?>9gqN!TYq0s+;-Qioty?2B@C5+v4X~q zP*Tu-7F_bEZ?{Fj-^0wgnzm!dN7iR{@^kuc-bDR*-xgCa!8B_KGM{|8yPdYsgR7oa zuGD>96Hb&Sd88YYHv7np!zq;?-j^HCU5?w*knAq@>y;*ahkI56_BLjh8_ir3>!>Ux zyC)rXTB=$ddHMuD;-BxCF+60YLX3lPEpak`d)Zagfw>S*{B|Z{`;%fkIhZ8Ah$6T} zH?Fiit^)u}WE?%Gsd^m)F@vucZz`iPaf92C!VTb(;^6eba|Bxgt_4hqG`j1u+7Oo- z6VQ5SU}6swft@zVJvDZF>$J6rx-PP}n03pq-`8T}PG0`IY`_y6p$(KFtZaM&Rask3 z6Dq<&qX2mH-Cur5t4zR_hP2-m1amzX6LxhdXbUI(a9pFZ-sa%gj1;xx-&n6_&QQE| z%WQ%Uo#;7F3e{p;?QrqPUM4;+!+i{59`_#20_)e$S^mlp>r|Q)TwpY(=Paq;)p_^< zyq|j}VZpp~+sBuVI6bfre|`26Nt#?XT7BKB-NF1QV3K9>)y4HW6+0ea$dqWni*SEQ zfK|{E10p<}-EQ_835~+XG|-_LE8;%ueA&;50c~TOL+{?ZYhJmab7hDU&O+DZ)uhcL z7Nd2s+9!*{2Go%WE zrzH0V=|hK(nQ~B!R*pe=-zy>KX=RC}`*Betj>Z5zit5iQmy0oOIWbeam8k)y_pzy_ znW%2W7hOZY8pcl_v&(;uxUagFwqGY)ec2VU3nyV|4`Y*Vee|h+5oNr{n(BYIW>XBL z=j#af%Gz1l<-nRKHL~ZU3Dh2CL=H~$GO^%g;@#zqD#CGd`;gFN;HCz0@T&er z$PsS82Z=4vd9yvUnW`cE-zMn&-((HhT_kv1C8jUBa`Bb8kz&DP}_wIgESe9eJ4$e_btK;j;q z^F)hNlaWjXK}qU$;eNhdCwaS%jL_vv&i4VTiXISno9-`i%;FI1=h#)y5M#noUw|U< zfYXV0>n*Xo^1op4oe)#!#8%U1OB;jky|Yk)GBM8DZi0!8Ndt)dFHbZH8jcK8ERm#B z-HbUKGnt<^=R_NVVw9pvC1@C`zgGkF`%}ju!7F-b(|4wi*{|OI@#N3ZLn^R632-vV zfNzZ{!>dGI0Si=il-KN&J&7doQ|1q60p6eg)Ue|p>Sk)5>EOjQYVrJsE4B6y0Bm-j zw;#G}*<4&GL8RbIM}P=VJA7~d*-SnKptZ>kHEAL-=Wsw9^S$%@i2Zn8$p(vK zn!IKkN$VsxkNOU@VcSu$v4X zzi_p(5c8*Y>GnIUTm%H63Jfb+H$p@SC#8wwx*>37U2bI{AN*C#2M58Ub|Xt(IT84= zUaqUV_6D`&Z(OCiYUJF}H@ag1A~!ROAf^l&gM~EwFOr2(FBL(H z&+&_C^m)e?KN87zCx>m6Ij`NP#}M9Pw!Yw)%do0ub&3#Vg+GVf|6auLmJ~=rk&Y4n z)IiI^nt0J4e$K}1aRKyRovxRpn4=WqQUFynK5aJju7w(mwsDIgMhYR(ASSB@3RzC(L&eRZyU>5 zbL0?WrstQ6&Y4uAv0O&dS!UZp6a?SP*p~3Vjh>St`S#?6aJZJNVjIYRqX0U$?GH4r zd1aXQ6)C@szdVrn1WsXkU#dmeG7*;U<%bYmKWbzg-~uq+|7&jpbCzO8TEgUW>It1l z6Lfb8A6Qhpw^lIJ60J@MAS#CKk(h`G>j*m7^chn@{rw@V|P0-oA?C;XIe z7}(6fSib2xUZ;V}FMXZnINGT{IKJ&gV8#zI62Bbh^kK|_&VTEv+4?VbwW$iO+i-$o zi@)&)g!-?Er2TuSa!xxz@sVh;M74C#ws5M_qgJbN&`B=d5Y*&RM z93Y}RZ>$8+a)A8(7c6eB?r?ts3kQr;W&AD-&>|{eMVup{} zVd5??Fvb6y(!4s_>mmG9JFNV!V_cIl8$`{6#e?G^)y_Zz-=|oa*32S60yBmYWeXJI zZI8)$0;P|Y9AjhZT>z_7aDf_+vE*^NvxBX|JRg@XG}+IPcQ)A5sgm1(GK_6r7L4+g zqUPM~J}A*o`g+3)AF{b3aNKjNqw1Xo*6aAK*Pq$|6dvnUJ_l_uty=dqDGNYjneNEfAC5 zot4epkf+=ctLJGCc#{(VQdi0Fyc;$9|IHo*1>UTT8J!fsmOcyuA6TKSkywQ=aVgUUHEX)*Vu-F%BzwdKpS{PeQB8Jz!I~4JOZBSc|r9O5C-y z+qPQ?Z1~korfP|qODfG_B}qX@G_MZtJrn7_J4CrWujcfaG9P|VgWyn-S=Nz&m1JY2 z8JAe{I`|kSAa3%w6c-xV!rW})<^Zz9+ZrrH1>yD?$*@_r_-!GZpJLq=x$WU8xB=F* zCXtBdJYCqn%PrPKg#Dv^hH5mx=S&q?YITQVwfcq-39M9M=(|xs0=VGh02X=$uk0=z zkpp3jNx`UK++mUh?=DZXjgiQYmU*?dA3oB08)NVqaAOhI&n9~CasJzXo_OxVmhYlW zSUQT%lH@<<=9G87uPm z5&>dckvL+Kg21EPB}16}MO_Bm&vN~rhD>cBVEGSPi5CcjneomD?V@7C>2cqxqb53g zbMA}yP;*-K@o+BJ5)H8EkBfYsYO5IZ#-&dh_fw>W{#z(T%)gp3nKu#ta5lz{(VwnF z!ivHFyRUg7LY2#I2;=%QOxa!0SI{(22%-IJWqp+oaJTz)GgZ>6pen{bz%n~kMAKB?^dfN2pfcPRdzTb!jdaJe9ybcL#hNcf9u|_=pqk0I!&2*5B?>n zo<&b7Wyi)ItP&RbqU@0`n_7GQ8IF;K35$;`p&oyGPH>B?dSLkc(#;hhu%S^cRRrXT z(Ce=F76DN*M0Qqae(pOLy?vm~qgfm+l56*{JP)nnrH+;zw%~YOkI?eBLAhX%WDxY6 zxVv|+7rF2kX*;1L>uiV|&v*lCTz7@LD}MBOFsz+7F^K?y>e^8s-=JHh&&ocPt3abh zRP*zsm5({q&+Q7-8g0TAU1?>BOYlP6U!atWw+s2K;IM6UnHeQ9CZ~wQ61AZOc{<5Ba9Ci*&qiDy0{N=oGP^w2?cl{Yd0s5ERaq@5Q zLJA3&ucl7f(Q3!?&!5(Uh@nMeaco!kAG**gVgL+X4xk7ZY~{F^l!yJarJo2P7O?Ph zJSi`Pgb|dia=2wB=sgN!5`_*eV^X%QIDUY@J-(+Nk_`DP&3`UCGKv4+!2nJ6@~gVq ztcvJdnmU67!$rqrSEr{g4c0`7QEHLu-eif`anymjOu5TRSAkZD-A$Ld)_ocNb@1+F zF}btbNK`9k5Sf^Zs}XtRz;Q|YHBOZI3BJR#W#m2GZ;^qO`B?TG5k_i1%Kqs$>#kJd z7l@gb+KiKlr>Pr^RN9WPwDub&sUG^<>gi_ZFZ74w+Vj#{_}LD6;yAJW*W57la>jel zaV_6RuAXoGt3Z*jBT?-(YXH1<#^~dLWE?(I|9}AZC-jBQEc9=ofcrqeA>cv2AqQg2 zpVXp(Y8H24+TQ}d0S?X;SO*|#F3#+{6F_ihDS2%9!~?Qm;Ww=eKzbcdK{xF3`_1Gi zNTvEy9C2OIQr+SYh|{trPclj_91WSdI~tmz>beg+*KYx?-!7R&_d@WnKgtZPz@gf$jui-AqI)JXXu>_zBO0%L4ICI1KKPyOKtWe=5KtHrD@K_d!>|V5?W$K<;>HGkTVw1FAj+c3 zs4ad4N8A*w6cdXFP8v7%G4t+U8|$os>L41M$zG7w(hrgoYd;|>A*>IHrg;L2N_u!MJOmk%xY8g^F<$WjZ(fmku}RFJE`{OP(&V*{Pdl~~XJ z@Bp49C|~BXBjbt;$edH7sY=Why>vpAy5luL2lxhMQck+@94TfzH`m}yWkb@`{6icp z{4B*7tt(|&n2wHqdtH`CzVyp%>V8m3d15vgZJ0!q{t4>+N9e6QL6vq^Oy98lt-U5s zt3p0=_?)}r;mC3c)=^ROG-A-5zNrHPFN^pLTwbu$1IC-)gOag zWlwP2N9_(%?ApesxZ?wJ`qQr)29K+Py$3mXG#g*Z^8Gb|2pW6LZT>C?n-IfCzAS1} zDDgffaw2`bj{>V+m#SQk?g%{-hraGXi%*X1tfM*7LG(DGCK?*0&5{>1?RO_ zW-nA0{V9a~;J18h{}zg1#;$+fBp`!9Ohw{@P%GG05O9WPb~D(_LG7*JR~u^@{vrF* z+BJFpk7JRGXeUWw=ndUi2%UTun|@09F$vw1-sX;vhmW@7U(iACJ~@0R*m=LbnKKWh zT;6v)xnThMyO{^MY{5bFnx2YSoTuhv>0d~JA1psr1?0%g4*xIG&iX5=hVAz>NDe9> zJpzI>NcVuG2uOo;OG^zM10tiebQ?573`nOkl$6xaARR+@a|Z9{J-?mjto7cDe_`1B z`qpRL0w?y~E@X{Pw`nw$&27*vru?NB=*zN8xZ84)y;xamPZ)Gy?}_h-{bIe?nLuxP z9AarmR-p1PbeAU@<|4H)O(S?6Z>29a*PXF-H3)l1S`zf5{B~Sdnlrq;{=$l2y>)b|vt*O1o~*O%yydzVX!nV$>aqZixsfm!q#|hE_1THLedeQ+}{gPF~wI zu>t%z$!?alT3qIgzG$>%B*LRtz`BChkNbW7R-4h%3-KS;OJWB%WN(19<>;W~>m=Fb z&W!}5TdoQTnjn8Xr3I{i7K3@vxww6!3svD2vg6s-$65AmSaZ5Q24%x<_x!r$(xEm* z+u+09QoNtGM%y*m@da`{D;u)~yP(Wy0<$Cm!rBMcMc-G1EJq>yc@p!k7@<^NJ@$yI zXgTl{LEOrN9Os96m==RIzDmFm#jFM!!3R*6dFJ`Y_m#a3uO333a+L}Ac3rc3cB}6_ z0&Ded_O_w-3f`(#!RCLZTMzd8+5QXKHsYMtQ!5E?^z~DwynALta$ZA_>*9O2T*uv* z2&)3m_ha=a9V$38k%qAtbk+lh(n=h6XR#40ChwCv3?M#gY?sXRWMOr86^?tnARVn` zhnYe`d2IE}!d@fHpJ?iYU4Q`Imu6Vw1A=7~7NwlOE%vS8B`@Ht^6(KxUL(GUix@Mx z&k9?j(nB+xY_wsRadQ7@{7^b|A~DgxgypjAzsTyFHM;)r+TiMq7UF%YjuMy}T zo3YAk0}Q0EF8XC9KjWSuJr)9VfxC?YVNRLaM)9UA4tZvXi7-}B%T^~d0rpQ@X8(T0 zE%Z~B1lj3lby<%4(@7_SIS-Wk`ttl29BT5+1(Rvwnf2kE9_Vb7%49qcPwStmEf9Co z|Jis9uGV_bsx_qP*5^$FDMRpp*9yZ|LbQ{&>BdMPL2Zrga=VeyZ?BsHk?aW+@(LDS z)LZ>d9bp2QQFC&scaXLm2SjRr5dbt!#I3#oQblYJs5g@Q;~tuXWGO0aBN5)O)bqFB?#HeHE7}2q-yuB>YJyWW5Fx zYgrGF)>t%EYy^oTSt%pMSh$-^r?H0pxwDkM@rHsZi%p0Ee5;sSG$U>LV+~~4Rom0u z+7bpW7wnIy8!QkOPvgV=8fD>TDwP z%kblxUgr1L(Si=5vnmhCndi@+#H2@c9lI~R3fq8s4K5jg6t^nT!*g+r?j@EVnQ&)F zZq&@IVLu*0wwfNjO4T0gw#ngkpYf2DGDn0(&akB*9-4@hdkAbP|M)xF;F6Wne~5zJv1#b9%6^Vh`JmwD-evP}AKsdPEY$lHa`mTn?PhOWy5I%=Lc?JGr9vR`3^;D-_@Dee^X~WcHU@W3C%_hxy+7TjtcE>jK(@! ziGzpsfftDxNe7&!ZjbWsN}U=C4oODk!Hf|m2M?VB4;gt%f8}YeRJ}rb(Iv(S=%MC; zCwGMY@rG{MIa$i<72Eu);j0MM@*pE?@Y5QbuvM8}$LquUOMQksizAI^erB$aI}W+{Nt30~Kj zMN2!8u4=Uq&!_$tYhlZQCEo2Glwt3jxdlscl?A1t9<=m0@T;p1M{AQT(2UuM43IGH z9>&*uY+dN(Kkhp;B|&4?g;rKiV!@ zJyM@)G`iR6#hSF{>YEoBZ?$2p z$;!YsL+jPM39r?Q-$?ZBqc4F5t9(MDEj=6@i{o{+8M5-vBibn*ppXAxs+7OLP-Jmr zEnFd3zJp+jVV%AgzSj-=u=rhcj^6)5D&QT>zKQ z$U2iG>h8i-MPdo~Fiq86q!TqUdh@ zJNtQK1H^jZkgP;^2l9xz)`*cDYGYwx1*l>+<_W+V3OpgIAcH#&W7!(I0&FX=B4wct zHQi5fF|9;l`eUMhdTp_`F>a0;BOf)wqGS+t$Od5vMZGvieix&**4;!z$t2JXA9KyW`4V~ z^f8p)X4bnjJJbiusqqnR=UV}_x={xy7dL@db@|f9hdCxeOIwMwqo4a%LWl8k5|)gl zq}?VE{c`8H-!}I@I$j*2P{tpVE-!Dnt2yrERB>t^lPkkF<#P9lyuW?6#fI*nn#;#v z+)Vb}P*H>}XnF;^=&Xj;K?{ z<%&Mzy;2g5`^WChPfhydPY3B@fIFi7Jq3Iquek9rGL49(QB0yA5AJAKueloz8Ya#5 z5Oa9!$>ew0O<4uG@bHv#E8{WcSjh1VObbeT)5g6@7HGf{>jyuO3%nb0 ztSlW{vAZJ~{)cS1*q}PB5I_OFiyU+$fZ9gPPnl0h;@#NeT&m`BA|DatY9@vMqE$7Y zi@Mya`HhpB=vX8C;437)2Sykb!F58|XT4AvU}a|>H%S~}ACfrk?q(ce9am{Mqi`*| zY3W+jj0X~51Yf0F`2phxrQ<8!3c(3j8cNkQqJs%6lcf(^AU+?XxcjZ*jiz`A@Hw75@6<2at^xXyCK6D-*}3N0bwi!3qT)R{w|S8x-iyhOKTyD3(B z*O&E!9(5i4uM8>ps;V`^1WP2FFSsXwVA}w+qus$q-so~ir0YT*%sY`B{3oI}xm$+s zFoEIBN_~Jvyq4eMW(2tbcTB7c(4)JsY{|DW?RT0_;6yFkg4=<@ozM=O$eVIHLZVAX z9>vc*8iC*qrl(_==WqYUtpG|qIr5x6V6tAe;!H#K!5j{plEJV^` zDGzFQY9ooi%s@LYh;e`ZNKfb17&xBpE4tHyvpkF>4O_bpv=Hm>Dp%-};9imia(Vh0 zU`}RbCBHr61{m(<8G?+FgI5O8b&e(IhUvR`>?LPvrLH&F)B~gn_BgqJeeQHDO$l;c zFDQn#kKP~A1AadAfUdA_68ohn=SwB?8qfW}YAb9$^j7YLvqIaEn7yxeCWCVLpiA@4 zGu&LNh=pv|u*7S}$X9VOs&>;1kazTfpFHoenEv&sF;v#NvMx-|uol;v%ikw+W9)~P z(4xBU14QDtG35VakPe}tH6<+1W!I`y zexsRl>mkL{q;PLLOxIoQ<3`T!pXHNKXZyTo~#e+iu~aHOaw ziCh*1%S2es%-7q>8v7lOvx3mxHabJA{?)JU3!4pGpj3G9`Hl{ySxZr*YyA;C4zQa* z3OP^oy-mO^J1=rgJw8vZ-F3XbudVEK?{$qX;Hw z9$Bm}>8jOWw5xxFSK+N1t4#Z3skUv=NC)qBf!iudKl+*C*tUIm;N{B+;-KxXe3W~- zda5~h{s_Gn(H?dS9If>e!B#OG!M^vw9{9tXo6rmUo}7jPQU%b8>Qqm`+;{lft_m?o z&Zfs;Iw^M8gg{BK$+&U81W-m*+(N-NWG_K)!FzcrX0+I5bE6US=wfe}lJ;joh0cUm zQ*3_8)8Aa$4%OzogLOF)AG(s$d?fsA{X#7v#;WA=+2ZoHe_vS9|NiaAKJC!C_smkU z1pgv%PEa|*U9>$SkceRPO2p^|)ZK2ss z1H{!6A&pwVj;HTr0lIP)%xs+C!cp%UPBzFv6Y)>G2t%x&Id^vKqw_XzEH|!F=g!X^ zk3n~G0(A@M-bSXpNHYSJX*eJ)Wh^OFDNLFHjp=>Vzn@S*n$$)A2n0vXh8T4VH~Tg$>8KOw$UZ%xj) zFjG^-dTA;8vENHM@2i_Hvm4kZidICT{LK^bk|b(Xu{W$rlI`&aLlcuM4o%};XA%lY z-vC&~%+N)KFwp&#xYwn@4_LOIJ|qbSq^Qk?EaO<7b5XiUhzw^&pqbA{3ymRfGMhXS9XR{`uoUYj$HCw_lA z{N&60D@lE}J!Zy&Q=fmZ`^%30ELtv=F`oC|={)~$_!yebBl~0!oruUaovqufdZ`Xc zMyN(03shICv~KWg>!{gVbG1=!s1!lRz!65$r8*rL3>AfybA#WA9-dW1UP_#b>(?8y z8+$PRr}uFiKNwn6pUIiZr=mGI#CB>XRQR_`qA+uZe~ZV)F&zCQ^K$4aBICB$x!IcV#nk?&3h4dAAE%*3@;c57H*cZ_krw0o=$eUD%@y7S&y z#JHRpmGV-iJq^DxdOrFwEb3z|r$xnvNLoaE_%p9Pu_F-y$*q}=&cOTB?LKiIIL@#s zU0qKgf5MNDqCRHF7PCQbaBv6LDqtuQKr01h864`75yR3y8-D3!a*FQb+JT(d)JmH| zeH^4K$5XjAK?dC>_X%*w)O){ELbnj}t#{3SF;A`RlQ7!S(8JZWhXx?oZH{M(qoRrAV7;o;3;WX)m)fX1!617Vm-lxe{zWl|~ zM*%YbqVmC^!SCMhB5J&_SHMt9xWk~gcFVZ;(I}-OFd-ZxC0`ZM*kBf<>xkT(&u-T0~{Um z;|p=ONortHQ3Rz!V28M*SH1SLI9{9G{HAs2*^@{aj*7^w`eus)34j;_V1KOUI(gwH z{QXxngPaK*=+a#3jvuGtn_=__jC%k#Km&sXfsEEop%X%GOFg8}VAs=fniiV<9bIod zb_DN=EydEF_|lJ)oqfvgu)l3)(2igcxr{ta^`5EUjctP^_!pY(o6QH+TrjG7SF81E z7dFoB;4{}{$TNgnIlXy^XT%6}0)MAqD7Yg$$Wnz&7&(+f#6Yl!qOt9t*Rh9ZE?y@% z0PxS4c>MoiNWAZF5N^fpyVTo#zs7~Py3@8_GZY9BE59SkO7l6rsdl~3XGK?zOT&$s z-~0F4j$7s0k>Yk1Q(h5eF&WP4>#oEsBAh09L#6z8%p@iIOhcFpmj!Kam!ck!SYDm{ zi4XB{Q}!Nf>jV~y(gn8nVaa<~o0Nc_YOoRM%ct(TjFRHy^_6ylpM%Vo`4^VYBHGq^ z8Za<}-zavignoO)fl?S{@NuVGp8N+Fo+$a(-ynN3rLA_(B=Nuf4WT)7et$JK$46F? z)mG^7K&f52`sg!#IUEfyTv2{-3DK;geat7kODG@1 zhzKAjk^~uuzkW9#_9M*ERr2}E-LD58m6`;6?pdj^fBD5B^~@h$K)Z49^lO@gv22fv zu&ZQZaNpBQ-Pgg6;@aB88vcs`=LtDdUj9ktjSTU$SIpf}@&F+i7LJ{SmHz`uiG!IP zkZNGEI6SY+jI0ecm_sNxG4&RHy_Nv<*!4ou+g~urB4iI8pM@RFg4QR4Ump^&0-w5x z&K?;)B4|pkZw#Qr2sn?TxapqF8iVaVFQU7Ak@TWm`tsYQ`P3!X&j_q~JHe%_jHaSyFbzi)w2_C{|j9ObI8I_y4 za0N$L+Wz|6;6(5i)E7HWv+t=&3%vUu0z`__I^LrG-@_1evqS(~oKeJ=+ONY=x{Q6J zACr_7riBoJI$FY)$D4#A_3BY?0v@tpfM;KciN*aVc12Bxk7^tOe} z&#f>3$5sp~>eC_d8j{>ZA|0w4vHIrvSQ~*7s`=!pUL;o4W{5T|B7>cG4jr|DW$tHBZvCa^dPd;K6J4df` zI3L-|hI5$)vM9QOM`8o~2RiJ`wD!Xcx$eeEiWG2dV^D*~DV(gJCDc=};@mJU0Jh_= zbf4rCwlim=)Cb%TdU!F4>whpY>{HG<|(f!UUn>FiDcqK zrPc6Tf{0J{b~9`$3IEMZEY$d~cB1`EgMAkXxrRfcK8sXW4ob#p;3UH~I(1~Q`)Cme z8x)$O;FW(#BWV?69}H_3@$ShC^HMZ|(=4ja9=BkJO2Xe~^Ba90#VC)7AJX4~n`WK_ z>5J+`BnrH*Gre?H0k6`)QeI>VtN%z}_YGvZX)4beDSNiWzH|GAV;6H#dz;dxkt_m! zB9pk=o^LzOCh24yTCIW#|B$s8=%&xuuiNf5PKzf^X>ch{zhxd?KB)0VvXi3Z7*wJd zZcxw#?Sk34ak&J3rM1*6o=;14g0)K@IJ>pZw+pM_6YX6w_IWy!M|tU}sE8o)T)Sk# z0}X#H>YJCRYoojS3QAVvkAn=GWK8|2Q3;?gwz!t#pOa(ArZLX7JS}q`@)yY2B_;L0 z2Chid4v^7*m>6q({_2@!lpvSc`U;Ue-TI}ZB{ASfOViS~ax}Lv{qyL(a;yDu=X~#0 zO!iDSRYMJ|<@OBy^Gh(c?{2No*Fj96E32+#x9nBluMhPToEY6BZLV40l`vI!ySsxv zjBnq-(hKV~L0XbI(ZzCf4aZyAH}DvcrQYk8yyKYeZZji+DS*?T?*p8jVkT${$vq#F z-v;qfHiNy&J_S)xP2@ov`O|E3k`^S^LE~X{zr?dt|qTjog zw!H^<|NJxt7B{CPwvJ%rU)A5tWb&C;7Wf7KvJI(+xr~VK0{J4+b?Ad0lJz~yGJ*SN zV+dTtzk$@U^Y!oY_!WL<$R)EQbb5Xg=81x`Q85jMdj4ch_*g6%w|qUi^EC_W6TRMH z{yph1#Fg}h9T3aSFA@25fJk;rbWZHe4JKf$l#5(x2P593?~inr18CWKF39FE1=uH5 zEye$n?A$A^*ff5x2CzUU;7G$DyHy(gRhKPcD#w^&4W6=Y>TpFU%D5uKTlv3L^6{zR4r zN>PpGs+!wnJvwPIRjnvvXzAjmM}1UO!TiFd?z`(TV8f5fHobpyRaU|&ZO4Id_-$mQdk!EZGOMoti?cM6RIzq<=`$)qxk5=IU z2N#aT=i7CMjwpax(5RI1`QH8UXdeEIS$NI5$Wl5hQq5(YIdOki-*hVt)}F6zrp6d{ zcFdf&-}R{Gy>1L+4Gs!?oJbmPkmX-;E@RH`c(*))mo*1k&|1D!gI?Dh`!EPCy58#v zgb&O~{RyXDL?(IEhQ4NUu~9E~@VJi(grMqr3?vHjvb&bf8@e5;zf)O`|0?&Vnn$P2 zr3NF1_`0Y$RsM+jkhKmLkle^h?4Gw?2O#KH4 z^`g_h(Eeok5J=i^%f$UDI$E6PI=W;5`c}F~gWP{!xgJduvG~vZe3#@MBDveV;X!m| z?01f!{t*U|+>`XK)YSm?xD4{FPhx(E6&Tl1QP`q!IWO)uM87ra2pc|j(SI)Uy%g9C zFn@hEm;)V`P?v1syXWTnJl)kJ>l8$nvF>URbHPi%9h7@Y2`@qKAy`Jej(QL}x=qsQ z&a4v>nYhCTZ7YndTIRpNzRjFNxU0HxHUnq6ZN{Zn@RK!9bJ7X{(`?M8(E&R|n4o#* z8?VyIuXs@hv(FRoq(NJi?~=?8Wc_?lCG7j#vJQ0?1x9g{%CxnO{v1qnEI%LwA(67r zrnVQ|bR__-;|K23W`v6m@VG~#YC{Y4O6x~v^`J)AwJNrv5arWwQxy<^0QZ5ga4-di zoa#ny*lc_0$0m?Tw6nE1YF zS~LcLp$yf3ICx#;!|z3!DM*AZx?PGqR}F1h3~Ei%efd19SSWLqvNWbz|7`CUvw_{y zu_k%r;;ibCy*(Y6cS;7ENjpvRZ$5T%)cfZ_Y?G{@qDVp-69i2e_x9T+%$V)($v%}E zW4JRsmakK*{}@Zp>;i3LwAJG`d@6}R_9TVs)P79nf;2^B{T-h`I=Dki5iCa}WE zX@7%i$*d_+tRe@>XRTQ9f@19>trTVW5#iskSb)K#amQm)=1?x^+0#||~+9nF+_?+G8*leg- zwDFn$IcUyNO(i-C_dsuOthWK9+p#*ca^S3Gt(>w*ss`s1|9V~8F#2j{(#?}ZOg5$m zmG!@Ey?04+A{a=xT)gJ+4YN>Vv?GJfju+S6bSn5AMy>ZJMx=U(517yEo?An^E8^o3mNf7qE-?#lNMEHn#sBGt=3u2%0 zn>WxRIBvBVA@yevYh&YBrt9GmZqa%E1C!Nd$g)zrzq1K}@+VvIRZ3#qo`CUlJ1a2c zOm&tue_sKxd-#@!z#r4HlrKZdXe#XK@^(zXX*`hTp|#JsiV#8MxGC>pGp5{S&1}*U z7y{hwdla_HEcjf=F1%3UzVDT6cP3Si+CAzJ!S*J~B4yW)AMOZ%Q!bPMW~B zvke?8b`K3-{dq5Xczr3$7>GdZ#%Iq*JWd{SV)$K#o9!Jfd&Gh*+%esWkefnH99!sr^I;r(UHucz;Q`bTm?KrWBv}5kJth`%mdcg6-!kHk z9@fm_IhJ9&Zx2-56H9@}HxgeQ)N#lC4(cCCOu@Jp6(y5SO}gC8H?1Ir3p%;T;+51P zL7t@^A$)29AQB%2JN_SyB2`wlBW4A(2}q#I`;r7J@ukOynw!*O$FAD8UjH|yY_ z4mH48&Pm#@Mxp?fN!eOnraxr<)0Nx0yniy5cWW-1$X{$ryc8sA#c7(TB4_nr!`_|o zmAH;x`Zr49(?}F`k{04)+(*FsEFrA~FgGui+v*FQ3-riI1x!Y|QTnr?-9Ekw2lY$s zQo7J8P+aqJ-4><~E+&*Vr+4(p{dy1ibbFNzTv;^shgPh#;`IPc#rv$hN~WW}=)mPj%edVRuRecWB$d+$}?~g6DVP)SI4Ywp<1GQrB$MQCuGYDWo`PH@a<|eM2 zpHJ_h9BwxUuxXoI^<_Ofv?Om{=Xe-R8gfRO!5+`mwVW8(*YF@ET$m*%soC{cXwbq+WF5^A{7G;2{#YnThq2GUzjb8y=q%d zIjScn**RRf&|~0tHMBXnmQp*<+iauv= z?UI*iK!?g2=VE42#|-O#*`r$%3^{I`UjIbBmHT(hnH9&^s zrPF;6F(?CZ!+Ew7zUFP5zd*(|wnfkTPy1nqpo!t_tt-2E**}*z7rA8AK!e}Dds#yI zA&kGB12Aqe6ZHgd-;8{Dl9=BN?IBTzX!SlYbnw2nN6N2v&WkVCQ;PC0Wh(g>9?OQw zP0(5$C&;1c*B1Vkk|cT8Bc5J4r}NQD{f?)?CR5TS4};6b>4iR?Hh%DmUs_l^F|Z11 zq7}z?ocnkZ1Qqj&=TN~W&)Lk5YWmiK_pm>hbar+Rs#fdrqT*%N$1y1<-}eki=@O&X z??1O&Ia5bqLdeMI&N9pWl9598p)mN*rH53)W8y)>C#f|Cytzkj=BOO;Bh`Nh7)Tnw znM`(mk@(6;zOQ1+={4Bzsh-eaL8C}zu*_89GdjnGSc?x(6&c&|D!9VTS8`WBs3$Bj4|t(5o98X9o~wHouC+QMeQ?!q|1DQX4Ie)V?4_s z8%AKgzJ7H}__)+`!TOIe9#HmRLuCi;AoEhukF;8hWd`2bq>=U9i;Dj_Zw1YGOt|?Y#;;eGlv)g^%Lg#fp12ICx79=Rqx-B#rno$Z7g1vj&&MUlVOg}pHTMZsE4 zdhsaf9O?sS<97RLj7Ydm{}wmp@t`t_mx&?zK!TqrIDfo8>&gKls^cv_!fiv0%MAamp*_*NY0eXnaZ#k{$70QT|vaxRqLji@4>k}XpvY%IVg ziGEShBr^WJ9R19Ei(|&s1V4 zY8c^Ed~{d=ZZv8+pv=Ac7)h9kgsjBK|lj*_* zUrD!g0-*8e{lnSK_Y>9MPn5dSzOz4*6P}kg7?kHhaSR6FiKF?@R2#G`d zZV(6qG-7c?eBcGTsJvuoX~C2K{e?dzC9!tFVoW?q|ij@5l`n;h;iRqSdlr1Htrio#>aeM&GzPmVQ>OLH?ktOtTs9X zmd4P!fbs&WyD|TgXu^BuZEf(|R&qeaclSDq6B4!VLgg`xuk4)>`ytPVUT5?*zP~P3 zyT*<92s1|N%Pz~WHaIW)fTsz(F<4c>(-{>*>1`8aZZEbI3HtURYfddsAV+H@{%R60 zWYaAKOD&aol)WRl{S4Hxi`*dE)(I-9;#thW_A6Qtu01`7?!tH zO%j1FY1xuyrQs}=-ArE|NfCdQFE3k*MTEVn{-s}?{~p-HLA*+KgY`2U*sSe9!FPhQC1N^C z3WjcoRLRk>Ao?3XaLuhwRuykZ7M#i1QPdrX-0EaoQnZRzCQ;vw^y;4|evL?(%J}j` zc8i!|rFw8gYVukwCbGm*yI7x4#HF)g)t5>`2^RQWZ+<<*Yo|x^rmDi!wY=7eBGSrY z$$Jn7{i%xS)ooK&%W49;3V+gUrFe(#!gzxc^k;v&u5SRgg0*s7S8x-lJnZSMF7tw2 zX$e>ay`FLV6549aZpC*)O@GTCQb1LhPS{Ei>@ORoXWvdsK}|@hYuqH@F|#mh$b{bU zcGJ*rPehpq$1p)KqO@xqZw35A{O%jmQ2U%NSB^JmM*Tuz$<8;N+&;J7qEjE^zR#*7 zF8P@8bza-kc>4-v&C8Q#*^G;xoJGhW>9}br=ODbt z!e*NL4W(!0$axj|e{s~A; zX`E(XQO8{U^=KQ=?$$Iw?N%ZnxMF0B31rpjJksO3WZ#Fsn&DMicYf6=-jbFRs( z*mySqx4eSMKhD6a79_P9`R1nQq5Z95wcH*@7OKSR_n!6_9FMJ5z}9UuY5btL7iy?B z&(_~#qg|ZOOy;}LK-ee?a}IR6lAKI*1UWEBsIL61?4@Ner>{Lv?+}EQP_lk>e0#ZI zCEX_;F;=@y>?X(cX^NF@Vg?xQw>A8s-ASAx=KEwbLCN5>MYhjOwSZj4WrbR(Vi{c^ zO$AMptC$}8iNV;nUsmPJ zLF~Tc7k~DHt6LLt*25+gp3NDQFo6vl=!xX|IOe^brZ!Xz{AcUA0?;299P-mY0t1J? zpxHo6ZqQXp;nouzDDb3Bm4QKH1Jk5+l^f8gZYn4hdUj-Qy}QhU=)?K}8Qg)k??y9f zydI(KMqzH8GINDAr4E-WpR-t|gdNRk838q>83^ej#%0bC(0cCY5Jd2*jL%on<*6Rw zHL4EG`ns>QtxqhSD!zvgsEwW~_t@7yhB`K;_0BTMg*atddB{O8%|@i3d2(-V#=UjE z&7c6S8t?jSr(k;rhP7S z0iz_Tz2v5}CKp&9e~e;%m@sV>y8a0H*|ZTG&E%~FJ&DtsD^0BkB3B-HovRp3h_x|L z8$IvmiMMgYPx+0>0ipZoT+d^ z3$@s1FR!TpPbf?pw6196X&yZHc3pw&O=L&H@hfHbs;~X}sV`;!46h!-SD7JZYr)?- z4e-y1^qMapjyyc0pC5+__Js_G(YF{Mv=TIh^z~T`hJHcR*3|E&cK(YAtRVMt{E9l_ z-R}0)BJHl6F}s$``cKQggb3dVT|lg``qA{K57o;Dvw4FRrr9hrv{AZzb7D~EMdr7= zE!O~K%1L9A2GGT;a&taV3;oe8s)FWuikRbXl`(Tb7(*#zR$I=tSG%eR4$D%|$v%Fm z;T%TFqLvE-h#2-CmF)W=jaI_Q=9TNMyv>PMYm8KbdGnT!$}T@LEuk^GZ3&k3u(i;g z)^begIA^FXi&4gmxVA?>_ieB-McHUhj1a<3#hzMkEJ9;Y+Df~meKDuQa&{xIK8FTr z>*B5BCLwga{d)N|6PUjA@Xt1)I5F@KcUYa*X3L7sjJobCRf$F`gTWxW*U^vkd}SV= zi7qar#ChB8zz{UrwTB0kK#D=+&VgJ2I}xpk#~)mPT$50j40`|XYgrr-^v~RRUASB>7H>_U-=M(dU|1GQOnp17V zt`ywXy85l@EaCChm$@&C_;I7^n{36c*eY8yH9o5Tz;TkTah^)-`_*PjBaCjRnMHqE z@LW#2Rjc5G$027qL?qP%n2WUwHFn=LK{KJ7&zP}8M9X=2Oq1{stBEFaZ|s1bsF8G5 zQf$lbu6A>VlG6RvMd2S#Lj)VO_KuYN&0ER>1-uc`=I(k7NaqyHmj|JGN@P#4JPwkq zJq}FFk!dAwUIWZoozFx$Z29@Jq^Wm(W+`)bw;O}9gotw2qTlDwf^mxa`6KKac7S6O zqT=g6g|r=tJ7REKhIqTm=I`o?{EI47I^1z{aQPdQma|sO+bZMwNNYzbNv&YY zZmgrSXvB~WFE1nPYmbJLMU~rGRTB>n=b|PfY`4p%gqd}8b}rZGhTvh9mT9%U_$Yzn zP(qjo0%{e_J0_;I)UcoWgJHgcH0=`Mf`dfPW2Ni;2};sn*prMD5`Jq_K4=ilO4pSC z%hGUK*B9zlP3sk-78p{!k#*W}Y6zn#b919Bn?5a8)xcM%`ploKa4j@B$vd{R!-RM3 z!(h~m!CzA2wvw#mRmZ@cCF3Bh*Y&wz5TM_p5hY+0TX!C)x`^mJ^XqRJ5NH5WB4Lrc z!Sj@;I=BrAaM;o>s59aiGm&IdZRz@S5$TvPm{tHcy-BU1hF3T&o{^33`RVYew4!1} z^~5au3QK&lI7}l9c)G5WX?4A7e=Y%c2Y%p6^4dF%;K!_mK&`y>jpgYm>Ph!rITOjp zeKNCJ4xbQ`lL2r00dp7>bGBmYbbLHtzhE{&@RWjj8LOcthiOub$B-s4LtN$by?xdG z z8SzR*)U(9IM9Z504c53Pbf=AD48fim(+y|_te`6uO#NTCMaB07k zBV~Gck-~?C$N*!FOcQvdGuDxSn~El(Ui@+2b4Pf-SMPXc?5=j}l&cp|@0y1!+TiNq z6Fq+c)R{E*fLVch-0nL?iH(I&u+6t-D#z*k{u<`w(XxQ+zH<-d#|1bXFGpOlW9@sAJnjc_SQUG_^!;GARjKhgx6!^-WA!e56=mA zPP>LSA5hK0@s_RG(k%mh^EQ|;v&-Kse70*bxVCeB(f6alZE9E^k+hp-3*K^$svA4l z?%+8)cU>ecUU>i)-|Wu}$tk&kY2S}|q@`P>$u5M`Jx-?ZIF>x4MOysn{b%SUzPfhC zpN|tZaMhLW`-rkoHM^!g$zO-YgFgijWq(0Fm=;V}Yb#4$DK{e8@1Rw9FKZg16V-iX zQ*Ms|H%G4=^Q?gi2h?ogr5uWa-srl1GS$Tn{wMt|@S5z^a1x6lFV-iDstFc*dP~o7 z^mO&rc$ZWe4{gj@GMzd7>M@|ZRL^bXod%%MR*jL5E<|2jNZa@F0UU*jH4HiP`OS~V zT8mRD(S}-82x!$u>r}0o)}@rR(*^{lA@NG11~nGHqlfv{Y!Rq4JdZ9FvNr4eVwG@P z5!678`o+SCwOW#GQ`l~8e$Z#cEp3k5*Sva#2!ooeO%0Ous9@U~=^#S2WkTRS$eL`!0C;g%%SdOAhwVawN&+7Q*t*PA;Bztk$ zr9g#)w0)j0^(j?yb%&jxQAB-h1Fs-0uy<c#=WK^Oke{4aXP22(3Fg5|tRN{#J0xaFZra-J+>f{REn5Pd5q;Wl&w6Ap zA+~mDzwWg>!)y>k_fHAo!)riQ)Yxdb&wbzpFN%(X+)7BF-4|!kOQ$)|=6k=Yc@U@| zkv^|2zzN|QR7sio4m+>k6N&9%91u2P;kD~KRlUl=H!{8{RquT-6--_l{qX{F)b0|o zSi&hwbH!3|eV_o$x^y`ZDTx6(&zGs4GVTLaW?_rtRuam35eQ@9TD*O`f}0C_VkmaU zk{Ng{tgawo(+edFY!LI29iuh^r1?rTxz!W?ENo0*DV+;@Wh18{lJ^pDw&R*hze#*m z9?4OQ$A;ayvEVijW(Xgq%^2;CvBoMtXotpya<>^VebkV0#ClRIBVTim^MCzcfL^AQ z2Z;s;4%6~4MV72CHA8u2{V1u)p$d&;3Tuy7N0S_OVl$(TSN>$8Ye#xyB$4u0XGOG* z+Y4dUN{7;?oD({m;mIZK6=2#|R{w}@_-=R{YS%X*{g81FD>o|FU2Cfs)N1OAO`v>hspE^ znos$;Un7sZmnftkR4_QyFSNVBtnjm1O~QP1S4WN{G92hfw5c8$&p)1H-2N~oG~?5$ z0}B+&Gn-!Wa3+DsS8e zA)qC7xYlR|HObbne6ZJ`OvUibIV_d!WJh?}h8pnWhwSz1;P!@}SJvmmz$c4j%xZ7_ z8Ji7*aJ1gO7CoGz1)lH3=+j;QpEW#*+AE>`w#O=L^_#@mKT`Dj=2-t!pP>HP`?tRH znc5pJ8P`6EPFPZAKYP`KpLb0**j~EL<53df%5?Cxl-P{xNtaC(mOHgReAiL^ueY}U zfQ>@*W8m7Ch4Ws!-HUkDHe;7g%$+N?j2*3gS^vH~cIa6a`9-E>hiS^Mbsol77N73^ zye={Cz?Cqci2WzHW_+r)JRfqV@ubylx66E@J1l}<`u;w5;7!cLdeAvd@7FJ zlUA?V*O2n)&)?H$N*(|FSupKn4!b~p)D~txiN+n7v7xV?@GEfb*nU3v3CE&$Td%!; z*5UBNIOgr$$J-The%-vVW4jrL8T+BF$G11g*KPDtRpazJt#H{zTiEODJgas0cJX+X lud`ozeV^rrb-sN3cccjJ5`FUD9e6FGeIJWaPY-JRm@R-ED<+@-j?J0v&-iaWHpyF+kyhoI-Z=i9maBW8A= zodLwafBN5nJ$v<3)tp&k^`iiNh4}&^qaceUBcqVz@I#;|1pV40BfyrEhZS>?cA4Zq z%+1LSF;^_d|E{X}6&b$IwZOOR!q=|S^4;g~QIDsK590rDJXiG~;_L6BrBkJbj)8Gb zML|wOv)X3&LO#P{QNk$HE7>o}wWcB&>2X#}ySmZw<^_j=fB_A3xODtjYawa-aP0^b zq-)vz>!IoZckl7K^bf8j#6u9(VQBlja4r6vmr|gf1bNNbO%T6jciDr@0q)l0kNwc~ zxd{Zd`JAtgEq)#_rtT`@?+BV&EgQ+gKEGC`XK#NEcxO8 zQp?-fN^-LHvwV2s2y@$B*_Qvq`!+SZf%f6AM<0FB_d`*ezZanVyhn3Ms6Y#cY z_roUu4)oFe!-YJl56TGkhL^5z)cn>#gkd6Rw&7+9V>9W6zM~%zOcQRX5CbaTGZ5H+ zH^X+97N4vUzP1kd6-C33)mYEs(&=-9;h++tQrFl34oSJ0{-MSsu-Be1a^CjKBaHJL z4hcM+PPW{?C=tDAXqggR5TtO5h(TC-{fBOvr0KCVZg?43RL`_xKXED;?Q7k+ zJ{L#^{QiJJuR`ilbAkj6@Qazxbgf>mZ;-|RXIEB?D|!2nK6~CBF(ej_mX7+ZH$fyd z_ND=Cy+%k?Uw{qSx5W`t{yDEzzv_CKwGoCeuT)5PjFp`C^^Q6z?920q!2}6GdEeDV zobKFDxY%NcJQnklf5W@m^&Bzwv5k#1HX=9ukzQQ2`nfFOI!6rQHaF~N*=8LL`-I^o z=4-nKkqbqI(jT7(*NE=pc z%gwAYo=e;?-}z79AG}KIT<6WfFZ=Vy(<^f}|Ry~Km8trnt{{?!G zv%K#W++a$F&I@rrr_p@{*7<=ZP0KyyLLj{fhKzS%OtY zPA6{|_9UVRO3!1myF(KH1q8yUHf_600{%~rFu69$}eMGqfbIO4{Wd)`6y|Gm1I=jo|6&Ypa) z)RK)smzUow8BE}sbdQs}=hnO6)M_vwyjdmHF) zjP@7v1d+4%;2MJ|e$*jHHy&pxCZo1k)QR9Ht~tfVx{KHy+Kre+n}^caJPm6{L64Z> zYP7g4Q6q2CL#eLn12qUBz5IBzk|`TPT3|$~LGYTPdi_vlXLranO64^~g`y0)dP+?c z>qh7B-Z+fP2S^cCZ3j&xyhlEGE8er;5Waf4M{S}lgad~<_VTz#0`)~chWh1ge_NTD zLAL@YdL%!FE(~EUeHPaQqtIS~tjR>#vZKc(d2jsOww&PN{@htS$<`PZJo(+@PnRcO!ZJK&Cdh2r@`HqY?m{y7lou)f1J z;A<861u041PXt@>t$k|LLp8BtVWT-yAeQ9zip|9lFsu9z;Fnku;>krOl!xQE$lFL~ zSKJ5*zDL(nmv0uVRQBsh28g^G*Ulo+4*V6bfQn|=JzZpIco(anioUwshoCneOXkNK zd+PN_qVys{i>xXv^A=jvdZbLE`67x{m8d6XaW!bc`L!tX#_!>eqOeO&7|ZNtndCvJ z+}U8F>eQE?%C`W z5}0C%%C{ViXDY&r1F)@lB)RVfLu%E`Ya9$!2;<|NsVWO*8w?T80Wrby~MZT#^I>5WYj zi~jyvJ(FDQCcV2PJ5X1ZHPq#*;0CaeW!lU?JD(hUAgBLHDkK?d9)J8m9>-@XWaeNC@ZZimq+|Gv5 zu(QnQ9GBa(c4cDxP7_2N_7sQJ?X5%wpHXZO9n~W$43qAne7G7H2xoTM&Km*wuhzzFv)LjAH+%ODGj6Ykm?0on0#YphUL-=QDctEgJ86rOW|mQ3j7gXQYhB!PsL9eV8t#fBJzU`Yn$EsK^r%cV?2y6T zu)AiH;fj0Ia0tb+e~eMo7Yypt(JzXAyBgPMJ!6TI)y4{_W=N@x=%C6z1Eb>umK0Yc%;wEzJ8P z?8ov=0`o_L=+sA?ecMjIPbBR*jN+tZ4dSJ)%%9n{7L>Jpims90zO2GX(OSFOPX(kB z`!$9>W#jv5zOTGZ3DbPp8%}ix=d*A{t|j#vPM@l4j}Y=WGiK5){UVEZ$XA_dV{a`) zR;P@*-QrZ>9C9@k?Y?o4Ib}QyQC)$LJD-I&nrX}5B=4TVJ@}RLBbd;5d)7UzNK+5R zCUEN94U>`*j7!Hp?Bu`~0%2-eALAvm1tzU=vr9ZGL%ZdV6lKID?Sswr{!|PXsk)E7 zZlo*Wrpx`qAO){Xb%S9NVkDwu36?(jaJC%PjbZ5Y*SunT=uj-RsxZ!4M&d|VH&uwT zP8%4X@s^6#T@tIxEu3hdnbPn16_XD$^zOBSY5f8;Ba&x=ZJ7wcm zJP05oopD7%pXE}*W$_Yp7W0o+ocaX!9)6!3K01}QZy%Tqe!g{04);a@7HW*=s!$%H zIM8R*bZLT)dJc~p-_;1-@-rZ%4JzQ4TFH^A6A>R);#wbm^GKG7<(F}|)|t8@{_ke) z=ngq&bEImtGvQ$R@iP1G)YXU=?&T|n&9}Lt z00#a>6^POKcc>fybF3krj^IPcSQtN2T#b2gG#_CP5<0=CE@0l>VfpXuilidp(Mhix zTVf}R5@DVB`+VKm-)qBdFF%_9_Q5d0PJ>0JFL;4}Eo5#{!dxWQd!7fR`}2ulQ_ae7 zJB=hB?QT-uX~pr+H`ER&>%;#|G+{*r|J{mvxp;PdKiY05Y5@Z~0PQ_h0Qn*kFZ^=H87> zY^P874eX%nZhaUX*1Fb~XDFrxcK_;7@3LAeF7Eo4M)>-2+~3qU?=>b@-@rH>#A6j1 z{osUHieu%fGkrsre(MEvdL?Jdv*INZyD;V_{=66B`wKc!3-oq~i@Q_L1!&Uu(Rsb+ z4Vv1^$SZ_)0j(7be`tcRJ_<#Wp2PtS_fOW=@5+uHVQT&-)+p6a)myg|6hqxX7)5b=nhc6kv1364Nrvt*>GuJ<-xfv)_B&K0yC{ zm;V~CUdq-lky(xrv6NRU_90&+GOijVi&6c*_lsOJa6;D#l7QqGQT=U#ihgq zzC)=Mf+%6~am-hdx*(^ky1Vc6FnTDS057%xB!`28W@GcsqH5@Q#q(2vn zy`B#>uvV`6@|FKukVD<1+5B;%p&4}@N+7Q3v)*mB|SeLYCh#9SKv?rMZxa&5SEVs9W}Io6SGbvd}Zyds4wC{pj=`^(R63@C((w@v@j_|c{GkxknZ6c*AQ%m)d5Prt&7QY$m<$gxG%FNvo&@us@$g80mfqbg= z6$xCWbb@C-JYaRA?U6PM9%;!xe?Z|KV)0ki6rWg9+Fx+3C~tOJezG7Ba{XgR zQ0yh>7qcyqc|Gqc1oE1CMejv2+Ft*oznS^>23G$Qod%ds?}RlxVPbgPf14($Hug<9 z3Oe>3l(;;~VHd&(TwpOq4Ea1bDgBraKJ*BkUu@HL1MIWX=y6LQrs19GhE!RfQYzP> zP;6RqU835h1FYv+;6EJiu~70}GDUb*i_*bO_X9=hnhqP`svpjp2KEF7J=dfbW}0HK z>lSp5hBks}EwL0oqs>x-9+QmU{kOq6v@Rafh6IdlQFmUGAVM#42cR6Tw=@4vg6pEa z;tPfRMfO-aBQI%AlrPPmg`CF7hc<``-U`Jl9%4SGEcZ5-i=k$K8hKTy6oR^ndW`5QUt? zuJ;EP-FW;MNE`o@T5VXbID8>F!U~D??|z^=NZzxT7YQ@S2_6v!+$0^pY-cRA2~hP< zu6Ir*#rzm?&(N3QMQ_(iG$()}8PS$pT>4hS6d)3j#5m^nFc$>=XT|9sUdpdw_DLm5 z*!Y6tut?8q1)~*y=!9+wZEbJZ92s4n0aYFG>fs?~>l$t4=3sz=C6-Lw^v0zE99mJp zy#3*|k_T6XkeN}g2%31c+syH@vGtpc&q2h&=SFwDyh-K2Up&+UU?bKI(89mhhD;(n zz3_$_KzqPh&*;Vvh#2cU)dc2>UK%*rc1I9wLL+~P#2&RrRYVsmx40`tadTn#d+kIp z=C@=)jPELd;-2PIU5)w3pi_%qGjJ?4!AZh*N?=%MfE@eU6ev;jH`Jm{g1JHia7bDyC!j>(S4v(L;c) z%BHE)Q^MZPh6u9UtWYMpaEKT}pyT;%GCnaKNB%N((7(kj3A88CpKQGQj}G6EkVWuT zy@o=t0gAt1f& z3FN*Q_^KkU;=}Wn;{;yn(2c6c7xq2W{ZbO-UxoG2ezM1(8O7mZD6|bu=QT-P7W_pM z_5FIM70Vjl$}cxCn$X?bR)tb8A1po6HA+}1n;#+|2LBT$BG=zTs$@GW8W-UPz#Tmh|T*xx& z6G0S&U-gRk;<@KcF^qQG36j2f-idWVNSc%AcZrxc)rCjETU?Z@BgDVRQ~6_RuveU5V# zoh*8fKWw7iW-sR?wX}#{`hKr~+NZceRBph}-kmfQe)Hu2%~(=e)gvoIYp3lCB9fNq z^fCf?t2DuD*%I9ak&#jF{wYaHPKwK%F{H8mX~17CArbT&^JQWZu5P1VM%W#MKH|yo z-qua^CAd*J>eV1LLb+V&m0oH2#ou*h;vV7A9(U?nwLq_%K=9w6(%~DMN@9UV9z|=4 zg|r}JdT({8!h`i)0^{#oitLDsbtRe(D=*6Yh|BxclS z5M96}8Du7*@CJK0H#1l!xU6vfN=QgrKk(H?82aBq^WWLBd;^$@>PckgFy4f|i)nzaw)568u@$Z5FGTZGYe1B`??H3UoW$W7Yh)vBXiIk%XwkJg;`8 zSgRw6JUXZ0Omv;-_~Z;suL{n22-x{H<(po%_g&Jhp2^pmmUCh>g<#}(mCY0U6mfnyr)P0*6LT;)9%DJIH?kshFn)h zX$lt~46W07HcHyt8{0%%0VrOvK*!;-=&2M(NyH0Z3ii>A(*T~m`^nw~Rkg6ctwaY& zy)a;RV<=B<1*VG3lg>s3-M+Rk-aJ{6j(`&!U%Q|+1jy$5Bnqt6fB%y8k-no5*K;{5@zDGu8?%%5KR?7*WGfjLbc_iJ74aU$u5itwR8Q%zr_KBg9pL-trLIOh&(^Y+X?EQEltrtk1HhC1@*;8 zU6-#+*|%SPwyJyjorv;$Emr{L3J#BWlnv4j0}r+yN%;8@b)1zoc3#_pm$C1XkI58Ejrn^@I{wEcf;!dDG=B<9*W zLzIJbqH`Ktf8yLPeTf1-c~TVYFFqc9_jUetm=W`Z3#GnS@v_l0_xM`#-#Vrbx01Mg zB<2i2N7mu5Gm`L9#iso5`KIOWck9Kk-&UzBAe|QRMGL3@LOaE%2zku#j!_dpBEsoo zmp-_*nEg^rc#LWjLxd`i61Zu37sjaCxS%t&e2`PBhwO(7lMxx|Z}wn2E7EP`%%?M0NDyM0%c{V6^h>0sj8NXWHT);%15J zDORVWQ^#%lBlwoh{>vOi`!^)#!_MrFz9M5b8{q=55mzLw2%y(bBou6Q`GaOcO3=;! zbsAzS9~%GE7Qv-kFirg-cCu~3@20nA+(GY-e*UGbpEmcQaKZ9guusaW@lXCsMM^6` zsdVnktMLUmNHnJJ28udgN>oFWbPr}=IvC2YMJ)e==+b~J6npbpllJ<>FqNORN4Bav z2oyGwzv%xq43=N|>FD^qx%{1b6i2Ig>@nFbC5r+Y4jkKEwTm>0a;0b?{=PhibKC%( zzdFYCVM_7CM$>N);c;l#a8S|Cx*tB;OrH{Mel;5l6rz0>Z#EEyTF`A(!Z4xcFFpIW z!fY2GM&`l|C26soH1$kc=U^-yhp1>3-gNxCYHA@ZZ*%Bw9=OMG7qDu4Nw%E+!(r>& z6^h9$!lAE_oKMC@S2nFR2Y&NQMDgCDTh)s4jGxIUnlMlrSNeQhKU>{x!a);)P!* zwn1@b-Z1L~f z2g0`Ppd*_x0XjOW$QoC((hH)cnFEMhn!W_`gwKj=K#D;5J)ew+*g8hqtYd;LXF_3X zT8J9hg%HXmZS40nnz+468?Y{lJ|g8Xl}n(G(KZU1rT2glLk#_b1jp}1>a9(_6Zq8w zhE`p+wrePlv7IpgD{eUwu^O-Deo%Bede^p~w;Ma>h4JH@WZC|+=iz(GQH|@uo7*Zj zgr`M*IY)ikIl_0m&8njyzDe@MG8b+;kuGIa*pSP(je_j-4*5R){oa;^q+H9he9`-v zh+A>sKx_$FjXIF~l@ut#5Nyo9PLm>eyoK;c(%?*Ida%J+rXJCGamkaBMM`#x#ER2X zip8<_rhuzxne^L`i{$+VXNT$~w--?lWV!kl;xengoDDLL2 zWc=#;u46jn8Cx+Nmhc5eRBWPnTV1t_dS1H}Z9rDbO#GxzMJ4~I+uFnNI(BE!2GQo` z%K3eh-8mc}RH4}VJ$gJw zBp}O|I7t9c?6GJZF$&jLGQ8RpJ;!0T)MYzV~tm_ zpN-`CgUk;dx0cTCY}mIY9S&DflA!IB=jsQD^3lzsK4btGw^?3wJ(;@W*icIC6ncJ<-|j^ z%QIAm2YtBais&tOGvD#xE8OwQ7@~nL^&j!Fz!xw_OiU| z%&%_nmAw-Casx}Sfv5z0>ju$ar2F;UYZYK>{up5Jv_cen#~;NQ=cX--U>r$-P$aW{ zA9ZS>l7_LJ?DW&k6!9OWZG7^&*9&anc+ zBoZr(vK}4uV;74!P8m^(clgVEkcKfjb%#7Yr>*#}tT7HSKiayE1!?z^bLhGKmDOp8 zNb6AN=}8E!Z;{B<#D-(v*OESic1-gBU^g3?LE0E0i5~&$x2R3ft(%%^^5@Sasg}7X zMh(`KGy#y0OoXpxGY#1BGBa-OOLp!4mgQ52><2VT(n|ble;~(za&;)xZ08Fn1BjPd zQl40~hJ}?xFh6#-?DGCd3Rg|?#%i*C48q$R4>o_$hw)IubbE`&*zZ_~{&%_% zcCFx8-xl+nj&cY+ofM;}%MET{HTI2$U zwMAPV^SA#7~P(uCp?{2?=FOv99w0X~0jLB0B``BP3K9VoXRFZ{xd({OIn( zLMzX(HpFf#0=!)XjTVJWd#?QC8it}y480GbIMmy3uX(y{Y#GIAWJ~DVi!IlX0U9T= zE9gZOKL4cJni-Lqn(n{OGImh-;!ZRoPbkk-u6A&_nF2_t+%Aw0n&dB^K1bCz2@L1J zQy3*DE!33DrMEU_Mr2$cna!J5{k{vb(r1qGD|M}<$0jB7buU-DL!swr*UWDN3Xo4+ zR6C5-vC8I}Oz{8FM`thLR222w!?-9(o!|Gs|BS6!CfqIEn^)_uEOdr@w&%_VrfJ!- zZyLTH);<2ex=}NCs!NYz8}s+5AqUU-I;*P?nAMbv=?~wAZk+ z(~U!IhPtOJ#?&|MZTPQ*gB?0IM*vB}`VTc=w4a_El?QKeE6r$B17n@hJ}l8x9A5+U zYmjD-K5BUGj>#PO_9pmh)N|e%`W|E7yD5%8^H_Rj$s0oP%nU%y7hw$#Ah^-l6(T>H zvh>g}{VlyIbjpzRgmnkOO%ycc4mX+|XH|N%oIdy8FtL*+$Wu~ikl%>1=5Ea0+*gbq z9GBKdDEc}dJI4SSwUhFOhwjzV1F%Wk$bU<4#-G7(GVI@$C8=lHq~vErK7Cn8GHG#= zT&HdGVaY}PENDCSEvD<*+D7Y-#do4bU_0vjV%KM^jkgo6iWOBk%T7mcax{6-Su}%g zmgpMr;aSXL=Co~zR&{$0wnN_evhi9%^GQF5w&XY2(TvlAd=+Q}lEKpMk9Wc!tc`}A zt!8$y!nb%&kQN%AGs?ZT-^tozoY3~E1nB9f>%A4f!%|W`gr!7hQ2ily`^@9w%d;-4 z@*$ZX#?@enNIlyz*W(fUKo-U%=Dnu|vvVKWV|A}XnVoWbT6LKX?>kj~X4*M{69Kjo zeR=592PzlEo5ac(cEoG&cJyuNxMYtspyLLUZ#R4e9MMwUv|3z*iR+PA$i6YJ6Y>jP z5b(tQ3~H(SY4~Ohr2ZfVbYPL>e&bbwm$$|fB{=O~{1m*h7OXL3HdE-}|8l-TJrD0s z_sFLoG76PzDNM~PU)EtR-+eKR$*8UQKQRNnFziB2Gx{1(C$$u1^7<0(Ptu;ky z@;Je3q}+bx^AzGSRfa4?IKt|it?*e8^?-BLqJ&NOW$VgdNYJ{Nd#tA+JM4lgB>_`` zpRgoeQ`J5j95mxUR~(7yfJ|7qND^i}p_Yg3QyGT4+rqKR3I(SsFr~)nYvVOhlb{50-sjd8GkotXN_`A{n ztUZObV-0uoJ$@&cFEISZD8f!6bFv;{D8zSl9)69au`K6rmi1HjZSCeiTKXR{O*rf~ z9>yg&%n2=W{oRV^87>?I{zNXY$zkOil1OgCA*@Xj`pQybr&4aO#$eNIB|7Kf4JmRk z+2W5Hy$xPCjYlb8G^;L7eM{@qX zWBG$|Ufh4A5nNE~TL*6>C8}t|iaIGQ$EdQbqLxq^X9`YD6i&?Qo7{Y(Z#QaPJ^h*n z;yn}xz9F+eKO0aU@%2vkw3sDFnDIV~C}ovmHBOfSHxFAL*`9?&J=nEj!L_Tq{_ewo zJCsd4LkDL`;L3i!LIf(f>?|i#){eTpjWd6=z$yEAh;UQ=VuBII;*27#J<9u%~RW4Q=~E&26^7&aHx+H~siORAKxJ%NTV zzm+MN=RmFDXn>;;$|PLUb{fCOru>;Qf=~? zzKn0>9QBn-=VavooqZ=t3mC@0X2h+JWat+Er{#YydMiF$%^?SW#wnvMbDwquCnw9w zHge+$mSk99_O<9cmCaN(WG$K&Z?rL;YY=@wHyVcU<(K?I&rsQ8f^uJ>VGe7{D+j$a zu%XuN7W`yY9~3BPkAC5N8J!TUa#o?(R+^hsnO@k(bXdrVFxX~n)91!&4G7)6^17yy zwm5Fh_YM?m`TOOtDb>!JwNq`!iyNz2PLIU7Y4bZDS6jes4#LR=iJ@v+O`L5=2Uauq zUpZf;f7bg6OzJ@gUwRcC_{e`V`7SA7k6VcQ-5N@)+t$Nk__Q54PNY81B(*Z^EsKz7f~H6oYEhqOVquT=)U76L-DT}!Cz(j3Z2V8CztIl7Lv_#G>?mqa zZ;n2p*#4EdmENUddgyN2KeCr~NNeD0@)1`Fr@gh|Qy-`A`~P{@?vFy&oJG4}OhyNP zc>Ns5cz0Fd14`kMbN7R?7@wG2-jx4H>faa1vJ0=j@lnfnMRK*mP^(V59i+`h^_AZ# zP%^xZN7>3`XW}97ly`vcyPOwr;(%=_5tqU;G4+w$4up8{A~^xSqk+?%r?MWCp5GcZ z$N7jl%fG{P6?)k|12he+v>%n4lfLvCnvK!zm0Z zxt3>i6=Lzbz5ba)3>J7_ewQjp>WbqM#t&#YqB~Eb z*vHF+Cv7cOp@Abev4u98g|7eQ_8Z)cdZRx3+bFr4<;K2yn^fFJY!pe9j&kAUR`pZ@ zQ%egjZzk=0-;CAM-Dnt0@=;!5uEpqtcrBZ+No5c0v&Y%_k63N7OVjPrN;d`{AeQLa zGjrU<3`~0}_r(#16-cQtFeF}3653UDy=F1b>{`kUP?B@NKy6P@?Yljfm5IO{ox>A_ z2xCVDr$~FL{EQw42!=B`LcS;G&DlQ1!h)t+?`~%YC{-crK31B@e&M(~#XahM_cc$l z!cAWS^J9zESri94v|3SWR*{x4@*n>FRErl1e4KpIHT6a#=4KIGFK3qqJi{ z71@abjV>#{t&H@kcM>IQB z9Yzdo?PSqV>xnb7&!JJS{B}qrl7APU;k*|-uNHs!zvclyIg07)g!PaFvO&D4q8RtmhT0!4Z=@~f*9`f@=|^GF-IqV9V>RgzL{e=O zWF?AjBgiKIbD0BcHw4kvs584pW8zJB3PZtvbdWHZ3f7yHq7o2n(OyJ9%){jV!E+)s)UFIYa!5!y1qgVmf;`T= zZLS7Bqgy}S5X=V#Ukz`>#m?iQwEQ?4dyp#9Yv85rdgf$^t=)%RYXQ08T{68ONMK_< zuHa8iQ+g^{jC#-Gu2?nnJbM|5r+$5#4yXKKV-{eWij2??0pkR{h&zUMMafP zyOC+Q?TH6z|0wSpyFfiLPN(-_#3?$CP4NdIQ)gSD;-pCFg7^=mh<4#P=UH`QV1>IA zq@PK779gyu{_^L}JS7;T-u8NS^37vK4HdPcS7zomTpP$B-tT$~#Qq<}jF^8^y?(JG zsx6i%1N3SrV>c>icfLRI=$~B3(6s#H6c|g6bNs4oPrtVjRpRyM(e797shTw;TAz$^ zErDnfXrsOvDpAqA_n4Fcm|-B&*Eh3^_vlupPd`PQzJ2)&9{uckXDFh+Sfdaj^6_ga zV_~xpNb#!3y(D}`f40+}wiLEuM4QAKJv6OQ=lQ6T5 zF%n{6;c1ZB$qS;7o2EiclRqRzTce{p3p{Skv@_eTp&Yz=9CaTN@ld#4%giSvhW)MX z{^vQ3!f-S}7H@o<6lTS&_8Ydw_h-!SG+dKz9K5yW+v*^q?sY6M%9A#A@0Tzo4zgNfD#jd37r3c4g z6UT87L26LxXdY~phHbfM>DhgL262;b=%jSLOHn=WfLuX|aWuO!KBD<6xY*TNMy`_- z(fKwjI+XuLRuGFtrJYQlp``F)jJ=pv_qFbiqFCiJ2}I;0L)Psir)kDU8d+gud8I`- z(u?`(*6;x#)Xm6v7ry6{s0eHWsRO{vh@3JlQ0}jU@3Yj$JC6|Eqwbp0GpQ#C02={$ zN9^j(d8|EomQdoRIMHz>-9z4iJwCBMShe38M?+-%m->BkFnSGFs+DvtKT$boN5#vAEeqZ@elD@#Lo&)IPV8MH z;`hvzRzrgA6?3*?Y=RF%8+as)OVrj9FT0U&W%0rttnEE?A{>t~U*B97kCOq~>FAi~ z|4E45JzupXH)8sjY@2|QCnSO_K`4mq^53PoOvR{%Y2^X$}BTeR0JGq`1qu^ z|Gc06U%4n%Y08^x8`YLZ&^b*RALk?#;@7XDw$+w(ouy8kh1GD$oscgjpSoP2hw@X> zctqAKH6?T_Gi1NuEqJ>E`h3ASqRuyikVdF+)Eg~D&*Q;~0GsUKCw>elbc?Z{nrM#dWedpqD!3C;pcQ;TcGjx~3g4}6QtxCA?| zjqxz9`!P{1EAbh$t_uuk3O8 z^>+u59^X0#qQlvpSehPR6=&dG3-I!je(SdqrHNjH>CoE)DQ4UAb#@o0R5tB2@QYGy zzzgbSZ39j=aNx#J8FeeJveQT}+?&gsdL&^TW4nOH)Ac zEv@p@vN=WCNA)Br(7*WXhWCwOGu{h!sUD4A2VH`-lvtV}`ijMLW5!G#zRL$#%%+Sh zQc6zyfb7rBEzNl|I?06FL{IJ zZbX`!nOAw5j;*&F@719=pZ(KYVr=veBIX`Ky@VQN+4I2JaE8Iehr2-t6_&GxfN z^0_kKuwrscrEx1AN!qUt6ESQ%A5jB<&q2@Yc21YY;=4LaDn4S>)(lGHl_Kv16OG%- zHdLq9p!ZoO9Y0Kzw6Rm1&1O}cKKg2r%Baeft}wfnRMl0DEB!Fuul)NjxZq_+%C6y` z^+x0H2q{ua0co^k@lxW8(Y!E4Fe+XZL-OcSf-?v_V(uvYEl_wZoHGNXM;ce>Z z=yw<<3?)%D1}WV3r0y{LuALA+fH67ug#8oI6lcEyWAl@vLR6s)%oN>0ejnrW*alQi zn$Lmcp1Trnz+YIIU#Z)5y6m09>&}-y)xM`eL`^PSe(1cxcOPlSIZvtEZ;zs#1<*Cm zaT)(GJLEU6k!wAX^yiRPHrOfa&I!CM!Ns*lKOE>Ax>{tgE2iO~x%ty4o4GFmaRGmb z60b#-P%0^d4IJ4!LF7x~aI5N6J}&<-=D0`5%<)GRojgY6{?r0&Qk&%&FcU!oX;q{@CNr@FbXxNCfU}#t=wJ_5F`y3g6CFXY)RLj%R`*H6Ffr9s_5@vb4s=sNV&PmAheWg=c1IgfX*37 z^T+o`HTmWYSVWSq@VPGY;3m-u*RrW4SF^FVYX01jsrqrDGyngZdH-8+xz2q;TA`RBv{5}T{c0vii;zXA z?!|fOx;jx5@-&2)5yNwkWOE$YDtd~3BW=(!$r)K_o#i?W{fj<&WqxijXsD^4`cBS4 zBGdF8t{TcHIDb%KANj2g6p-7imSiKEZDf(xv$Gp~5Vn3tZwJTKvn3>>_Jpo9xpLkY zUN-$*%KQ0j8r!yj&Nz}18hXPQk}O1On%Z;BwyO6UPVvuGG!_s;erl`NldDOU>{Utk zTHV`RM&jba*sL8|Ju}F3=^y+3TPbH1h<4k#;^6kq&T`qfuEuF>J#@j&att0#?kM6K z_n|sqFpk8tpi*sGY@$8%@%V|hQMdo90~@=j;bpCamG!@bs41{HvJ(JHE#iqaA#b)d zci+G|d2F(EJON`0s%1-TnXi?t3;V1+r1E>z55Ev&6hm)~g;ipKls-dh`jNK!!}N&j z8CB}-tm7cTC_ZT*)da;2U`M}RMjal{DG#YI-08}qsjjDD`xC|JlTR$K5hmaowz zEP1h|&OqKEyF_h6iQ>VU^#i6R^AJ+zU(BD*)^xy&9vQkn7Jc$tLZrzIiXSLu zT_uh$^`pV(5_I{K4CnxnU%e#R8{a(ihwB8q>8ZSMvZQ&B=mw0*njpH_-Z^R41w^hl zXEqr7>NwbCf6#so%}L75$zx1Yb1ZloeKV3i7P93iaax#cY%o#$)x^b^XK2I{>kEMv zL*fca)TyTDYvI0?$#B-DcR3Bbr-_c_auoOR@(KH+f^KacjxvnDx)o0f6Ke5=Os2;T ze=enKtjkj(zbq588}1TDCZ`o!e!R2DHDe`|TyO_E4uB3IEkr0-394CTORmXXIQuGi z{cWQKgmT9v$2}Ka z*S{&6=5(KZ$8dw@94Y~dKd_VVF8EjRfJ`hIoAp+v`1r%!2S3XOW?2?kyl5J5!MEW@ zjn%Z8+7EItmH7Qso1eK0lMc;4gc-3k@`K;jwpnv~x8 zQcUgSNxwbNCbcX191Y?7UyiEdL4PQ<_yWLB4awy8se|HLF4{kcRez2`xM5+)N|1bM zbRIyOd5S`ZU9}CcMA!9k3hb#e-(@?&)Fi)Ia_&X1XVdx#A=n5Z9kuar0LT(*lvg6ts+myjha#E#rr2&@z^V8;pq5 z^vKTb@NDH?mBU5)eFSmwRp)HwYSZUvc!e5S3ImrNEJ=NAD;!>3_uPi`(;3AELX?+u zR@0fB{cAziIh))=EFsgs2X-iCKr5HYe73i}sxUS`7PFVmUUzV3617Nq+1F_11~FM@ zfCxfYXFSeJEy({FljP`1%V_6nHr_%N@SsK@Wvn|ds`sRw5*Uo-X{rqZ_QVx-&b`^P z6{GV6w4V+__~tzlL$->!aG&9p>)iRI=2<$OmEb&HERK*8@I#YyI2IDPl$)bgn2A4#uN zS4%nzL8^1rs%KCJ4@e%F?O*1A=K_vXjZsl&bf~VJnlfOhvy$Rk8rhm8JvZhCqaTtp zi+}$vd&Vk_;5*)(=x5c{c`M3n*=Sy^qn9T^a)@;IxaSZRE`Dv5k0(-br}C2&*QY4+ zs!yPFx$Q`#=gMx?dMMo}=fv4xX$jtVqj^E505bpAj88K+;;$Xz!A zD7qZ|%Oi~-w?EpF%Iaj=Ig-&eh#tFti{X|%syQ~=y$tDeyP}n75Kn`|Dwd&1%)1*>gEVdl)}U*tR4q?t@s(`2aK7>JJ&=P3m#Jo^Uc5e@ z((RiXV!E`^jfLme))Lz_G#Ab_b@spGLeFa6P4Dr%%dpnEzo#9+$3}Wz{^Y_ATBrdv zb)AW(4Z~hm7u}6d4{n#`?Vcn5pmsbKUdQb@-GS}y$dVa@Gd-c#6P;ZSJifQgLS=4^ z4!%TSf*n8d$w`;~37pRKx49tNa3=Iw^H7I+a--^E0l)5d*5=55e874rjdA4nV1XZ; zF^xLGLIE*fj3N-!_>;t6I(>72Ec5sy)f#oUZ1?zfoH5-4qFAJj-1R!ftW|sNGiqIqsTxwHqNxF7Ol(}@jny-?%K%A#URZloX=23CMZyx7?7NA#gQvR}; zZqQ^r>Ss=*l))4&*2OUkbLm&W-=Eo1v?B9ZE1aAlk3)P2LX6!xI``GW5n$DHo15Va#*p9aL3 zJ6oiJJPUg#OXrq_AC^gG39{@b_F-W)O({Ii1ILp30Z03rk zU>BW3b9(c1H@>pS?i}UT6{d>LQQy-D2l@CF4OBd+GPp2E$joB+peeX}i13YlBwI*$ zhXR^T;WiD&ya&wC^lU550Z{`yr#+hnPr^ETgFf&=2J?W1R>%(r{0AI&-Z}VQQIS%aUmDIaNQ^FRV!sn2`IMGp z?@PO89rP`%^M@g`Yt@G~f?D1eWnAmHeBdvSyEdz(!DsG*BA!}?Su()KqDKh_@}3Sa zPA-Zqlt07PMh}%@B4#K<_&EfqN==LBqn1RFjjFV6$B>N$9pgB9JbtX2^et^_bBwI0 zb*VCC`l0pHoYu5)i?-g;zHYV%y<7u&phGspxVUb`I1>E+o3Hpo_*d2bo4GOv`{qZD z&6K0>)ki>L-M8tk6|;JKlY)1O0NAGG=jVk@fjpnL`$n=3t`upKS|UUyQSx=k;}vU@xQuNHRYW1Z^TS5dZ}znbZA_VDt(l{WGp84sKODT1iRvM- z`5j@kd@-eX?9Z#C_kmOS;sb5RTinn|xt;yD!QSYvxdY0!@>$}xU59xtSHL1)JAwuM zTXDLTVNJW5P3X!Zw+_kw7NrBtZ($TvHk*4dz9*zlIKvaYy-J$dj(AdKE zADuv8+UP9xVHyB`?x9=T?a}s~5$&AaiE0a)RD5czr*D~( zR^f+;&S}-7fpU79y?r}f-ce1xVLBhW<*^Tqzza)6NAqVU;*(t}Afqetaf=6_EG3&Y{!99MXy%z`jJEwX*88wsdV$hSO zcnrfO9~$pwt8=?!e)hKO$D1{xX0q8fUhFL(RJs8vG>yk|pr`RVYev`?(88N3zr-Qe zH8>*8!$dVt$;!GA38>7dmEk|fGVe6bVmA%&|H1h=Z5eX%ZOweYZjSgiG)<$|>Jus; z*T{r?gn6>Kn!5-X@V_c!aQLbKb9To>@g8Exw~0ONbUh+9N0H2Uz2ik@_b~nPl~Px5 zE$ZnWAB21r^fFNvK8*v|IZ)6}{J6FF33Bz^3c-Q=rxr@f3DD-YG+WVn9qr3ad&E zaK^T=ec!AGZB007+pB#kFivn-dCU=ak{=Nz_ycQ3sD;k5mZwXHBFLgWv9_>*)~s0y z0CA|fM2@n+tKeBgW-L^P5Ueb-OJIOMa+$xDn(O;ZV~-x}E-N>VLZW8twhAfyDdzVP z;TzJXtL09%!H+(>!wWO}jz}TT&YeJ8yc=W3JIT-6pNQ14T!X%qgFhdW)IrP&Skv+; z=cO9^PXuqp=^x-!1M+pvc#k3Kct+i?1|}l{$`>kO7(kgXc9=)3Urn40LxQ)f(N{-woLGgOo;E)rB52hs6w>;7w<-*9`& zdXWuM=ed}b+Gs0T*GA3CdVP12^zJzSSqx83AP$9;uNC zx|Yg0s8~5E7vpWQ!47tCpU@31s*H5I>-oYbU-=-ds)y@7(1|im(F+Bum3%937cnURP@I2uP@ni-uXgyr-oEobtEJ5qJI3|5?TFbmmlCQoqpF{ji{t{j6qms9^N z96c49DI2_7_L;`#E#`>i^0eGXTNSC$yKHkqvG27|J_`{!M*z6IQ#lXM6D;dEv{1;I z31wO8#M!T5ql)ULaCb@p{}*?`cD1?^c|8v+7c6*5C@|S2Fn0tRKW^XW>!C;4%g2 zi~gSh%f|i`zpJx)#Pp1DL*aXl4^L+f_uFsZ9tWKcf3RQ0K(!-A{hPkORDBE_a4ogo zj4Lale-8w&o%XSqcE(J4N$onb4PWF=DFhz$I-4InrTzo0G5a$jB4+S6gq{xy z{0GUGo`fqXCQ6azF)FEJ!){9Lv!p($b$1WKC4V!no(KoNHc7rBAkcfcwbQQ`Fsr4m@job-!EoIv4*;e2p=U}_}Q79WE z(P-0aoe+z5W<6c)3o$Kfcq-!4TLqn*q5r~aULG5j8dTHpS%%Za`sQ=owF4ChHu#0bUc`uIP#nomsUs#QXqJ`FK6)|B9cwNeaN4 zsj{|Km4=F z#Ap6cZ5ogc$`oS!~Tn-sf{~cR~lZk?ofU zJH@F#e`z!M;3*;+F;LBj`PG?`sHC&O>A-UOh&r7Yjt_a$vwm@Rlmww$YK6}Hm8>xZ zI{macTJBKM~K!<&)0huR+ztF@(JApOO8@auiZFM;CNqGI$vRvLJ4~A zd@3T{rh1OnABR22O1}G0xQhCH_fVlZ22)h-b1mQw_;qWS%c)?BO{Doe`6rfl-I^O0 zuM`vx;~$H7x!JFRDA(^*C2s0t&sscASEL!#4=F$+HcqCFZy;EJUW53_Im)Z3W@2yE z3#vxXSs6Mei~}7 zhGg=>Vh>i$z*_zMO_x6y-QS}(i4Nb$s2qKPAz$iNp_@02&u$tSV1->=cHpIDOuie* zBAbYW*-wnNR)U#O;wy5s3<;5Ad^a*>o&7t)Gu*jEdED*mOM-&M7v#c>$!z;BpupY* z1YfP5P&ae~Z_GXD$eMz3 zXjxrERqodjDKjBsMhjm{G;pd^v!d~&di+MD-BC5Pxt1*@Zt}d>@KK-w0?~HQLI#u` z;+DH8`E|ksb|?CR1ZW?$P$?o%7MLXX9Ks~+F(Jw|lcQxYm`?sQ%z)Iu0y_ymWk)22 z{#?d^jv4_cl%mm=n9_ycLS;S{OOOvAL@~aZ<9<1tYJ|v}`ohPFsG%t_QHA_-M4Noh zaP%d}5MLx~W!rl8r|AGx8WyqafmpG;u<1+MYf5-yjNGP=KD`KIfX7^}a8j5#(QF=N zH`I53Kf!Sr&25=hSM*&qPgSJR2Oov*pOG~iZl40Uie6xrNwO^<|5LItZ=Jz;{LOef zp)1-JGRKIJ@?e&JH`}vI7WwjCI`sbHaz-`(bnoro(ki;Ufig>TR&hITx_d529BeNa zPk~SY=wnE7{D!F_ z1~aZ4z)+R@2nq5uhS>k=hJ;Yc${TlBavyDjgW({|(YbN-Gu~URwlhI%>q<7a1IR}D zxBV_@GKX{qZ6$rC(?{Ds#AjqPYRu?G8kjU`V*1p{h7XyXHWSduwrWNJQ41v^G5W zI(KI?%>rzB{fCgM>gBe4-&b%ky7O_aG-Cyud7>T}*f3aKavEGkYDs32iw&| zFmpVicnyVidRbVaA-1yupr5Qo9hvsdY=|URyQjglE>cit5z)jHTqMd2b_em<^xnn1 zjM$pMe)gi%*ZRTQG1^)q-qekA_f?DNSQzrCBg(BWTf(x%07W_+WC_Dv8e z=>{dD;S93a+9fQLM^%8bXB1x~ByNv|H7c{1DYe`v09=Mr8n&ja%ey6;=Q<%HpBd|y zc^#2k9*Zij*?kKgzT~1DZfPgcdcAvlNXDRG*Asd1iX3F~Npq62$4nSwB-}5<#64+F zaGl)IlZjOhJM^}P+t(%;Njrl@7M=ymZQ1rj7NFL}G9X(_Dh_rd`aSa@2G>N+>n`>SRwqrRiJ#yQ@zOt`CUb!TR)B*1DazJ;V?- zhS?A*hb3P~X7@GpVDY2jnwP}m9w9+zBzkLjTg>^%gg!Bb=0%H(dz*XeKevLatRh2| z6*fdpI+?k@Gaph1c)J8_KMBNd<1~fHt%xo!RgpaD!Cw$zJM&VhXI6B2FgGs(5kgb5 zXVR5Who0B5E&(w87xfM1_!gzp#V$Vpr`Ux&`#x;wNdyK4U}to%p*6G@z-U~JQwm=g z8rE(G@m@!<)d^0@^Cj-2rXj(w>hHjh4mp}1J?puhOBb)|XBNhFZdGW#t>TW);vX|j zP=p8=_^eO+m++rep{xROy#JM8>fN{q z!SeVBNBHR33Mt$;VgO?p7&_OtyVi&hsVz*#L;@zTBv-|FU3QT>dfGqZoALmy*V8H) zw6-Tv@>*>r(m_u(ChfpMTyv#2RN{e8v}&?z^8h85nE?V=jPAlRCojMqMIo-r4~Ka% z3VJHv+4awd9sZ<PRqXxd`x9NJ^yKQwj05$nTT;q^>Vsi`E19!5XnnKo7BY*qF58pxidz1c z^d9_SI+zY$(-!E#-S7Kv|*!c$n&HIeDO@orzY@5#Ad@htlDOU)=;_u)>p>+m~V{ z&h~%70y)c6Va8D=97QHiynBRWP%M*^8LaPK^Hk@;#{CNj*kR|P9iO7g&g3et&?^8Q zBb$hVbB*$f&Z6N1O4zS@$`x5ZWQlpp#vV=_G>U$`ci-Bwi<3Ya?Sv;G4;aS*y|muw-uZ7qk<|)PtoI?NiUT*HPl?s}@<|HS$%ijLW(>F4yhbv0YU@F@P`~6Tv==kQ zX`ee2Q?yG?ZcZtSEiM7i_!We+R=l&6YK{-8oq}(RE*4={;7mfP)I?X((O^r`W^6dq z`hV*A9G}O%u(}kvSpO)*`okXwy*R~S&7_3$Jvcysa%~X7UA;weS!y|OtBE`fe>au! zpU<`<<#q=GpztZvI|E~x3l^=)A5O^FaZ1jN1yAq+?AT%tR=u@UAeZi2qe0k%i6n+D zmu+Fq-555;?(;BH{Jb%<6Tk2Id&Gdt^PP;dLIOh!INZ5cmh&+btlp*jSbMG?+~CSfRqV@uy{yHt1K&eKni07WR3BaC-uV9WaAes(9s@ zO@KU4NI~4^10UOQLXpbR=`Q}(J)=)X4u-m0PHGun66smgCkNmOhdgRlSZ!E})P#<6 z;_wGq_YGJ(pQ{!yE&=9yn1jBulxWTx9<(F7RW$op$3LUdp2ySB{~zbK``k9c4cL-a z$HGZ8@lpQc{lEtoMW+kPCC$L>JOlC|MNiaKXRbT!NyAJ&?^`iz0jdqbqs0#gAM@tU z1`K^>FyW2#z}D$s`OL=!aKj^T|E!U*XbmHIZ)JtcOtoBN{9J^JmLO4!Dv*`*GdG$g zf&1XWNhseMqNHVZYMdCksg{a#P}A5~4Rir_5l+_Dq;m*b{c*{2T_y|3N2_^GXAn;S zjq~sOwA%jnoBo#Z+Sc@P(?NpKwf{P!6O_R7*W0{Q&j%v^&24;Q8tO*00GPz|Mfz`E z`GULfhL<+~DXbK^nwDdx5haedsCdZBKxPHgj&;0wSs$knH+cN7f>JiP@R^jI=5+A~ z*q|wM$ZBF(HoJ`L%JVt5tQ+*i)57eEi!XM9~d zpQPDP-@`4wXc9-ntH~L9w7Nk;FHCAby6@lfR(fi2M^`#z6Ry9YkAX(RmZnH5Qv$-=KId8T*UC2(l)ZVl+7VIHK*gWSobWilba0nxkHgnpE5n$+gMXlt79S zmH7)ueCQn_f~Gc-xgV)`QqUY4Q?P(fPk(2bhLeVNbkt&CPhnHM&xOSzlX}35oi9X1 zVI3(&Z{rcAId+;a#pzzOy5}`};=@7tljq+ZV)>LWi2Uw!(yoMR(nau6=@BY85=B#5 z&yI-Fk9pGVjAt$~L<75~f%JAzA)x>nG@zc{eMUeYeiIb3*#XJ5yT9VpweN___bgCu zemxrcSc>yEw`zWd8dH<85;0^CIdd5C>Ru@Rz^x})ix7t(qEkqFbAON$Vk69@uh^~jQx%msud5k`&64d9na%8?I#|f8~@%suHZa^s026SeI4>uGh z&?DX+;%_Df`z|+8=v(l~ZZ(SeU~xR{s?{Z4>rbrqnFrpXY7xL#6Iy8WEvg_}N2RHE z^jVMT=aKV zR^zSC)+}AE=!J1bJU#UlB)xa#tCklr(d_BoZb@gb*v_06c){5KH)%?d&n+|e2XpqF zWGQ-U##oK`Yv<6_Ok4Cm|C&oen_j?Tcww)(G%__B}li9TrNe&Abq&^J6W)?ReR{Wk(PzfGuRwC{b8I>>3Xgd;pM+-_DL(Lt@ zo?+yA{;&!rUki3%pWiK3Y%sIXI<@JX=ihd>X zMsA3(A%Pbm8216*y;MArk|;$3y9&n^3AF-SsDc>&EWxtOf*v{XhfqdNivrVRBUA`-e3Mw40QS!UA`zjS5f}jtN%UBFPdmT@4a*ABdd7Te|J)R zxxcfx2gM5)$mxtM5jz^MI>3ayVv*E(jOZBdg2N{jQi9h0Gh*oM@L3S|_OLtr zEi~D8P+AkHR2IQ2egA$8P*%sM#JpAqV2`E-TDuv^r?og1GgKmZTqvv(8m`5AlsA?d zMWaY|xWQBrWQj(FWR`?IG6n(P5c#TFfbuz$TW|HAZDcSlU6J2V?)fkOCy~_; zjk&si|FfV8tuDcaaL%dXgT)>EmksgkfqZ}y{omd8$7P6FGMacPU&;GG|7yiC&qj$Z9Uta4~W1*+|)^z(-r9Q#QCF>Mj&mi`&oOF+ru)d4yS79gg-fU%j6 z@g&3Jzhd6E43Ov}ZzrT6fpTz4Mi|=*VpPLj-H_+sz;f%v`;z+AiHaUVY1!ux%e*V; z9z^L3azPhG6%gM2v>sd5I*UsPXJhPD0iXS|(n`{`ilt(!_HZl^`4?cdh0nit(h=Y2 zHGBbb#)@5f!AAyo4OtKbtk@wb0mEkly&yx z7&YEQB2X7)nd#A}qIKo$C<591`t3$EgWBB*}&*}M! z$Ou9i$I~ueN@n@P;soAMU(2I+5y7CbaBI2bx?hj_04KBYC*NGHt%6Tv=;pxBB{NSC zCg#oSt;GX~;W0O@=DDQ*d*cDS>d3vcycPF^bTw<$#%iVB_noEh%eBu<7UfAG0Q7`O zpSno(pgV{g{`Xu)a>Bf;q%87GbXGW-ymesrzz`!Q@h?6G|A*oSwH4=5%~z^5cTY#a z5E2r{Ab(!6+~|bIS0OEuPlw_MkSp}ZTl#u_bErK$eHgl3h)-r?egei2^i7!yNp6&__%?0`>~wyevbY^4Ql=eiP;x zLSw7$7JKMkzzMJ;b|~(-huS(P2vq};J@BZFH68=N_8RGi7GB%eCx^O9tl3a(&%#HT z->2tFycTpA4n;M#17rQXb$GCJg(l@uFNk>!z7`3s?bjN= zAx7GJ;&q4K7G_=VfkF-sG{5m?JxX(iaFGR#{#3#!Ymj3>m zWNWSBBeilBt?{^Q3!Eq1+{^E&c>2dxYMv?zQyBw%-eYozpFq6eWHZI0PdqbENNZMi zMiy<;fpH`kwFE3dA-Q)9zetv6%>SvCdo|!68*t#g-InB)3@)`SZ9~QgYB6h{@P*pV z`O0UaV5A0IQ)q?-#KQZ4vyQ1|R9vn%9@_7&J(^SKyZ6K+Om@efwc|0$L;n<*jl;;& zUeDU=T8KfhXPW$@W`ViToSRShR~rV`*yb^RcNHb&$NYX=5sbf95C4XyoRkW5|Ni*@ zX^;zgl-GNP!n{6y5)_{~LAkdLlHy}TlBKKBF;eQ0IK^KgRnrRIi578(E7uA1$3(!Jyp$4}UM%3?BB%*vIFH_Fy}zuNT%aM9UQMT>QgTGXVqLlvXI6}l35 zm}kTy`D|v_JdT}4q84CZ4MxHjCR66mf8d3U)9V;$=ZUnPJfHqU=AkqlMlXDTaIyEl z``;HAckG4A1jZFn#4F@HHcQs>@R{1w+=pe$tdd{_SQSOyCsVD=5M&CY6B9-zmteD_ zlkdyNJWp68KYUU=5ItqP3UTN={d85u;At3W9>kvU_y$V-zs3PLgyav*aRZooPTa6R zp~o9SN4uDJ1ZHRI4I{pI9N1|Yd>??JS8w_=AwAp8GA8?4C*j8iz9262>}N{Ce?4MC zUMKz<;Bo=>y|fDj*A!>G&f5%HxgyQHt*)*wrp?@$3!5h{H0lE}@x{yf>k!afMh zhe-$IDgjAbUxXenv>ym3J!KsqqIMYg!MU-slZbhrLd%p#T4Ls(Z`s!yCq76Bh+iysFL%08c{>5fjvvZd&2`VfLE;oG=gH=qOFLZd%6qEdxB9@g{LD#cgyd&| zUg(XJK?*=k88NR)RCdv~rlWT&gC zwAK}4=|FK3&VcSOqQ@`j>PIRXvY^}XRpxk-hEa8&cxIUV*xW7Lbe@3!#*p1K`Qh78 zdNMwwi8_&8p-j$?{Hk{pkOy&??ZtrO!}8otdHMd_^+kS<(z(nH<{ki|ME!@C-CT63}~Ub3(nPbKezP{ST{x|RD+OzN&na-)-+AR zQo0rWW@xqO_Th{i~g4IamFb1VoVFSOAA_|Gx5xArz0S&UA& zR-#yeP~d3VN~UL<0^hqswq5ck%qMRNQ7D|mONo3>YRlQ2gDEJ^kU*lGwI0$n zm4u$Zwc+F%dbW=ue|kLzj-N!zFtC@w0`$To?{kNjnd|oH>-VK~;PB)<{t{M)eC@!( zI=n@mDCKsV6VAs7)coP4*j}5xAEeveI;}m~OZKX7zY2fyt9vn{k0EkCPxH;573&Xc z&aoUJR@TcZ9!=#9YDiUtPOg|3>CM37q{|P5``dSChq4fM`(gB^_{Q;LRZOF`N=sBnoPSNm`bbtdYzST^>m3H-I;L_-wagb6!K`&%MyHcr2Mk zPiZr@Cj-Z?x=m~yw#}!P;eOSyN79suJSwr}`vG9n`$~zT!x3En4o8p&;v>s+p^uv> z&oesOxH=RX_N2Nj0|b)Bd+3~G5yYu~8l`=X`Jh!i)ivXE3r&GifA&o6Jc{*_JP8k-tOXkco#QDfdVa!!)qwUuu_U{@Wp45UN~j2&I{h)d*&$-0U)*zU zd^5O_y%nzQ<#NQ}` zNi%PvFU4O8WISgC&Iv#r;Y@WN{!xKRo0#rPd9*q4&Dd_vUX0N^SHe!6#z*jq90iSQ z@4gtA)Xhg00HVU0?;k1M9b%ZfB9aF@MC4vNr}t#jmlc0!)$pEM_6$c@+4>q1-j^CEs=5D9YOR!5E3 z&HlXu4yVWV{s4Sz5JH-~$+f^atgN@r9!(6_B*rRGP<~`>MY!1OXZzMB%lTvEh`VP7 z&-)gWBEw2oO&dw*OX@8fNd-q(*6m@fGjH__;g5t|p>xf2Y_`Vw;zse;kjOc$!>=0;F9j%4_PDpSt zL9soUm`l{)JRz~0u7{XoMH#tAF_q$~4eDdXpT#Utl~1bMJ4M9`R!o%Pu36`%dj5R+ zEhr40>}ZgCj^CtEd}m9>QG&dP$@Rml+ow>xjpIFL%1#+^wWSw#Mbsp5pcB<@T_L{l zd|V{)lj@V7&f8-FPYiqfsCHR^i1FC#J#>F|M9K}MKYkkBHl*f*bC+5${tF*`hwo%gw4 z57sE#?^qI1w(SUW=*$+*8y1t+NbCNpFfvn}(#7U@>%{IVqzLSDD3rRzNck6T9@U$) zj%XR;34$Z+qC?Y8rHo2AMARv%ZrUcu`K@zKPu3TqUiIo2$w>CwjY@x(_b}P;&|;5+ zY5>fpXO*PC_}8k-KRA6%^IIuFs|W8o4{^Pb_w&_a%L|#H%+!vV-EC~5uOs?361XH8 z)dZomMsE2ggJ_J|?aM{)E%TBm7D5YT(alTl!i#Q-G6A486U%$J)LUclcrrFssU1qM zvjT2$iI;5V#fW&mcsNOatlP-zQ_gO;2qnv)`ESdNZPLY%;{uaef`Rl`gkWemlCDI3 z&T65kKjeK2%cOF<+)LhTv7aOte1!jeqs_lyRmR-mIsOP8AQoPsQc}UFWWGzh?>GVk z+OL8|wG;jo+bn>&N+Z z1|OKyPd{?01QG1^g8sp4t6N zcOZL7Y=bc!yndAWGgGf@rhwzFa@_65zuqsaLSWY{V0hkJ`Y&#^ightf)W*q5v&iqS z9R{SV$TYb(+kB5v@z;o8W}MDYc53J!WsfimsByA@OX}-vnjD)AdkT#be z?F^L{9Mer#{LAEGVSgVbKef1TzMT1~)ppSF1O-jLPDNU}wRb#E8$mjnt=5tslCdBE z7a+Dhk}@GZki-~ipkl8~F@peA&^1Qq?voDCd0R0;=65*VQ%gO%}p3C|)# zEF|yeilbGrZAelH@P9p}myajRnVV^K=jQZ4R=)({_$@U3Nb`@} zte)|TmJ7BFMC?9w+3NgNIQz_R=)GO3{Lt8Z$1a9hXh-O@(`QWJ36ab=a$27EE+qs^ zoP^=Yu6ZCxegI|))P ziI1x~=4=TOxHY`d9T!(WYDR!%EtB%ap!$dix=D+Bam*w!wrh`}HorMgj+q6{qk_7W zle#@2uVY|W$66vzeEREbXK6Tcc`ruC91K2^od1~}PJgH`OX3Aw$2CAYMT z6{$$R#SD#85H6~e#)()Mc&hW7N|2yJo?2sj065D#CfM1b3(Hg?^3%;9S>Vx*WHsdkftXRsAymS z1u$eWBy?EMm+k57_eV+DoWyPBs|#ac3b=P1jO|B_Onz2V_YoHT7QB6U-uevk<#*CL z`@1WwXW8JVwUzO_0|Bakx6nZjNg@tMhoQd@LH5z=rbZrEes}p%lT+5*=UwzPD;)7q zQq8uNH;ZmWGSqB1Jq@Dgcin|PT2Fz>Zi>z6W0Y zB1bN8mK7&z#iYbP_g-Ohk@Q?{X3xjfkh(Qc*z-Na}-aX4FlH~W&|9`Cx|HsO1>#PF5S&rX-NmPxl<>JkV{`)q&9xk}Uv@A)k^QG)uQ?buJYO1uF527QvCX zmicThuSGeoElW1cE&a1K0C;H*St?pfbyhcZV$VA8@uHka%0_Jr$$wK7mgw-+zc}Jm zpifWTPvVIb4<(05q&%9K-OHsOn98Ef+sw7DuEc)CO~G{MYa6e3Al?yn`a5?{9wUxW z5nD+6x(OH{Gs6f5ks3taK^5GVH9A>o3@q8WK!WqYhBGt>X+0s}_d2A{PG^9KvR?1UV|7s33C0frZ?I)Bxn3wW zQvob}*N9?Z=v4OnDb6xfknMm|MrfaukschA+>9RR^u%()r?~m}8qIH3U3b(3R=pZL z7a8H-N!5WqE#0x#X~=23b4HroX!;=2@knz*X%P+q5{=~-fK`X9jF3u-qw=k1pc z^idDtE$-WlvOjhs-2&GMZ8@}OYZdWd_qk=7q!a3_pW^!`t+hW1d6&;so?pAynB(Te z5QZ<#{?iDeT%c|NE3(72I?$UbSpA&SD16_Rf4)no9czI?vR1=Iv#t>0%XS`j$a4Ti zwN>P-gCLX1y@F4E1t{=nF@GFwnWBl=ydPc+29SV4fjwXoBlvTe&22MbRq)=W8x(Bu zLob`H!$df@|8_H^Y{5w7$jZHrV+8rfzeVq1BX`g{ReGwz?6R}r>+!Vr+qS>&4k5xt z)z3q>C3R0;*YEycz2WiyX|q&)IJ!2JC0BP;vf+JF#|GN~v~te#k`Rw4age?-u*AaR zahMAPX8k`@o#R_2Y}obhnrz#4lPBBU*)`d=?b^A?uAL{lCfoL8x3lri@f`1m=lKh+ zZ|AYD^IU8F5W)0v=(tJZzXUvkLNVLb_fS?C?-TXN=ob#aK)>{ELMn<-m6Akq{yA7Ndss#IDo@%CV^b zC`=ah@6;hD9bdhAyZD|W4gfCLcf{#nA^o_2sAeL23wS1e)svI)cSaX(E90XbXcmxpEB zNj#OgkZIW^L*_at^ZH~bt;Zq_Zv8fH)wtvHd^myBR0VZ4=GGhIA)E(ndxWsp$sDiy zbv&C#_1FUdldb3J%OuWliSf6W2D(P#@wMobJl$~@Hu{Zpl73#DtY777ceo-M3`*nb zP`}NUzOFi0`3myYanYB?U*ChLvW*EzP zYk2BAp}l&usoBqf3(n=*vX9bmPtasKXK%b=3{WCsnIg{ZDutfLc`P7n_`KZ)X6gz{ z$pv_|9R8cib6=oMuqjCTf+^%S!FuR+19P|(0Xl2!TGBX(m+~>W%zUCi)%S2uLMHzf zu|@;n17JZDh+l_c10sCt^fP9!HSvqy#I52x94}QRvr$XF}c@;K_+>(-B8 zysR``gWd%=_f`MC_+1>oK=5CHO@4B-C$E*VQ0j~nlDA(< z&;g`7YxI9nDHlz`8#tzm%sXoRmu%}REgfGOAJ&n#)9 zS#>vMi@z!mSsIo){?m@4HNy*I{C*!~-yQfE)*E3p;s@HWwACyAhixuN4#`u{~REsTFa#UkE1Ba)ag%v)p?D?N_S#p$l!WC z%uY>P63(Q~@*5Jo{S#_6I4VbI>6#{xQih`tW*J6!uEqF;vhQE3PRucF>~Z;QL)x{H zye}42jQtd^{MExFYrUNB0<`-aXBI4noM-`I%GuUb^x4q_Pl9q|QDx6`P@N_r_N4x| zm?cY<$DcJUr_&4wK8q)do693m@gqq*>;V*>-&u=KI*=NE{NmPSCLpsn5+1g5=hkDcCjZ5=pH z+JnPHlSOJzPvE34RU36(m-Tc(6uiv|ZBgi{ zl_3sg3k1l3fJ7ocjcBoS!_U2!eK%g2qYJ+Y}F<{KuD z%2Oq@Zp1lcPHHLDNglrkM>ALJ#(EWB{BNY}2u|do#XRc40+|?=i%s8}+7G9_-OAc6 z2h)ZN)#}B998(1Na;Z9mJQ0c)K1ZI+FR9%w1a3mxb_GY5D}Xi)ry|K{+wBeQ@W|Os z951$afLsPu{Y;e*c7xNY4u90dw=IMBZW_dSyJKZOegEJSkF3@4SWk2^<}ZWRJZJ}K z7`7fZSYwZWU4|x4mcL@w;A_(2_ioA_)#sx0PE^8mC9`P?oQI6QBMAvaVK&EC8>o;A`b9d1{x}Pl5n$;5%N8ha0;6EUP z%qFP&qK{JlMkJXv+=VW+?SJqLHt<^Pz3$(u?k6KgB`n_`X@3iO_ zNu|8K1*Xt+B0bon9mhJ1F`qj|z9q_}#OJX6%fQsF!m;Vo#sc^lO=E_55&Aq>Z)t7%Ct+ctHCyMF1Ic67}3|ySO;G1;XId zZ-4?z()a3P_8@fc5ADQDuxyF`7VDxuLt{YBhi=^hxKP}=Py0!Ud-Rq^uf!c{?si_^ z9qR4^H=MIQ_zpQN~m5U{d^c{$;c3(C(G{kXC$`wZl-f0n+gNS~6 z8_0CyM{nnupyWQK2tlN}%dh3`8`=FWv~(%x)G5CiINyqsE_{fY=ae7JY)cn!>NvWS zyuYK97AWvClYjY)I8!-#Lnj=wO%GMYp{wss;SSfZhnSU1B6{0>WNSpxLeBVCe84LP z^4}ql$a5d*Hj8?PWP3Dr^D$IG6v&mtFR5h+@P+d(sJ%g& zFX-y!RORW!O@qmXUTCc?v{?o#51ss69L&L*z*Lov2Tu-l^Im{HKQtxCsv`Tz>7c znf_7wXjfoMB1vONS?!EiLK4D_1EYzSzS=a`MEXNiq)bU%OL<7+??i{KS$Z)rW13%h z^xvAy2&2@ZnM2=$x3oleQ0>*r^ERK4f)g5r90y!cin|{S;E_|H*P9_dF!VxZ9d?X6 zfzG7s>%)pCPg%ve^oLoovBK;9jE6l24Whmc2l+f*8?%O#3VM?|(FuwBn55O;=A7yI zo0g(ch+DUiNQEjTBj>wV4dS@zc4|p|W?t}1RCmbg7{RjzYpZ~UFFZJI9rm2NNEH$T z6X7MH&@O@Utt9SP8A30yhvIh}6N2Q{+tD4dKPF;g2kioF$od~1&rta3*^k0rX+Bu# zhC@GJ>V@atPMqJ`&&N&#S|fe=ZU5uTrbiHdLk;OltFlk0iouy{v_*o(Cc}@G@4;r3 zxSO`O6z6T2Q*qx)ULQko=cwv1D&A1>T}WIxdBt2blW?gV$u4TBlquIz#62_`Ax)Bb zQjsf3gioNtnu49$N^cMk{<*t_JRLmR-CeK2&x)=C4?K|Xk*2i&R^e1eg?HoGPm#y| zgYrGr;6{+g_qklH$AFxm|D(lwAy0h#cU30a7nMH|&9@?UWjA?ewN}H&{S>ZEIIsmy zVdhX8d<6B- z9+POl^CuVOZ9;NOqw`adV4l%7eE+IG(mnpeA0d-_z*rx1l{R>!XHt*Hk?qmD(Ii|Nmqk zegXsHNV87Tsvj?oC5!#b1V^ml7p?PrtdbR_nvWtaX_`1dn{v5l*RHvy7k2m%Gx~s* zT{JZ>OE?!jx03xUV)4%p;TDHniG!S1`>H?KK?+}8i7Q5+ByP&v-TpI6DyVli{lp(p zqkF$#3Hbcs;+|dt07E1~>bL|_kifq1mgM9D*{~(K4x-SE?{-iOo9%T>pZ4DWw8uXr z-QE9`9CrE@#O`YmUS)IJYkXdJDz&I*S&Y_2bou`93iqtPkP3cB*Dd< zQZKbid#DFOO$0$!;hyA>S=2E{kqftit|t+M%tP?R*uF zK?l31@J-}|T&v8feSBJCwMYXS!1yyG1{`{Mjtlue|5V-Uggp@u2uc1d_z6+sQS|V9 zeoj`UiTx^@5sDGO^MZG&(L|lC&8;sG_2}Wa(*Q7Pa&?Tt%|R9M{n=ypYY?J|*WTfm z=MJ!?Qy>f}Sl)_b$DciYfZ+1JB5<|gvGAj<%1P9ZYu%zndG7A4z+k}A+PGV=b>oI( zIzON#pw~ihpg>?<;uqJwst}9xH8|rN{U3(h_TrdkN^^R+_{BtC( z0aqd$nr;NW&#LbhaJhP!C0BGah3;1s>SsJ8BSeVSk-WkJ=WbxLEUr8~?NPDyF?TL;ROKWnFd<|AnA2)Kaq0bYqw|_!bJu<+O`+l$R z?*LMJqu1BIk1~2cM|%AENOW3QDWKn#BJ*0-c-r3zF^GlXiHm9|`W)UZg#f#}R^%eM z1PVa7N?Hl0xLp1FTcRM-t0TzwV^@r{CtD2MSAAFOWJBk-Uhx{1jU1CPpHIh^O*x_u ze2d&A+N-kWZ1EhYsC#l_yuzPp2s8^3U{*IHDlff(#I5@{KM# z9m34S)U~>(y-;n>jq>qXDDS;e33j@xpw!8MPrH}x_XvLg(a{Bxyy+uSx1I~ZAW&1z zJpE@{zDL#23u^DU;i9x9D_Yt8>u$!$s=C%BNv3nX{U119Po|*MN-}$mJfuH|Ky@qh zZ#JRO6_I{u#`cEiX@#?s@dZj9iymoYOI%&antnucPVqvQ|JzRb|EF304@-NV^5+%| zv#)W*oZS%bY}9`vDbj;sEfkqjfONrDc%A$qVZAwQGS4+X&m3+3TZ%*87;XE+Z10-^ z=4_{f%r?4pDcc%WVZ~m*M^7^0>Iz}?8-|!7C7^*4o}>=k%4VHMj6v4~uMokEl+tFq6-kb6Or zYu+$!^{ERkh+b_&NL=EuK66VCb!j#ftIh7_YoaL{Gw6fu4hd4qiD&u#s65 zVB+whBZoYml7+s!g;`MTqmK5(5+sI&048pRmJD%ZE*C&g1?%y7Ivo~HQ3YgVZM~*e zjEwj4^J6fl;P$(43ra31xs_!Vp+fV&1~+5Pv)*vRk3VP zPFu~>IK9Az2#)B!bz$vZUAkFB-q3HhuBMWi3&O?HD)7u8G8L++22J04lKHT11KjB? z#0b}3Eq*R?H0kf4AYHq?` z=XDO?Vx#mfYb7nFHoS$(F-i<7W`Fotz~8uL&Cp4ZO32x3nR+e76iY-N7yZzdG z*JXk0gm8k*&kb8^rJVLGHxhqZ_NA|&yiH^z=i#-p50%i}d}p`Dgej)CVHN9F!8~nK zq<*5%4a>U@i)1NeW)%8;hQ&%pI@!O#vJ@h=3+_7A3zpj0dmZ(XT6AP86Sj0#j3Q7qW`Tk=q8s;g2+_g$` z@kuLt)X^)lqbOvd^~?g0=P4%5`ozfq$*ctvlA)3_x0c5&8rcs#v#j#~i(M_<=yx1> znQ_XnrG@KK*k_wCq!kJ$9|XucTBM2Q{CQe#JQhc*_mbBwKVpG|cXt?^>TvoxYGkKw zhbnJY$JW2j0zTXE> z{Y#Q)`R*v*lZ;KbKiuv)i{=k354RnqW)rIGgZWUrT3#PtiOR!2Kt8=o3aoLhsxzow zsk^m1&zbRcf^)`W`q)P|*39b73yixQyE5F|? zH6deJUY>R)o!fucejBg*9@wPwxxBeK2!+rs2i&dLAj5nYn-7=^)fW(&N#}r%d08W9 zY}O*i7{}cG5{~WXD0qF1qN?6fQjLqe9Fi7H^EL3OcXmiO`F_3%hQFU2uZwdr=0ALh{5IB}V2;Qy^z=D63cgx$ zoOwl2VsbNq)yw$Ra)A!iXEx*v6XBj2h#ZBY75wgRGfY@E;N_W3?Eg$Wm*17AtE|wO zx_k6bf|s+hvgLbeL>27UpN1PD9w_@=8>lx_-uO*cz#`V1PUNqPk5yI&l^o7num7br z41x%yAysxyXW#W=5U4k@gu*9VtAT|0*`^!7;_spI_ltx34}AO90_)^)>Rk306-=Tb zl|jPInzSbJHa}M8o6y};<9(S7;YBGU__$p1ch}H-$TcnmiP{D%Ja-sEUbYo8flK_CI_S6ub8e2i>qGMzG4U9}?DRJ5IQAU0sIjOeQTrAedR=AV8aY1+0 zTjI|56T#fP&3e66D3`SGqb8^In?@wT@sb7w0CShB-TNy5ZL^* zh0DRJ>a39Z?OnB*9Nh7(xJYY(FGU7W{`4jEm+!pV= zMUoz4aY}BXhde*0ZdxzMP`B-RDgL=j-iX&5wp-6zkzw~WWysFm_+iiWMQvSW6Ii6RLW3zg|ne1p6s;A8_BhMwCKQi@gU#ivEi?{KyD@n=Wq2SSZQ6#Y(Hti{7hC z0sM0LM43ULY@jg&@nh6c0Jz)_*6yLhv^)u*r}RUm_jJDWO@*|LJ_YW5jkv1g?lZ2$T0SaKm78GB7X=awc&csU+kiIaBpX7|O2 z>3w!F5@|Zvo}F)X7AeA96s^~PGi_)E!StJm53{AbmZ)1}zp__!y7{+r4_D)YkABRqkMdCQ?q z{^|bT8~>pQrxhPVB*`4$bjO-_#F0lBhnWYB)g2pN-8#qc)BMH{nwZDw9+(czTv8;G zn&;~EkE{;z{J;K=U%I#CBsb|GT1dczX7qEMx=>Zg8vUg^7MZL)vnnIyj52<9ad1(@ zfFtN@3Z&Pb;rtKl5MGGi!N z`un>k_h{sLZAFS6_Do^Y4UsbJzB4EM5S#usTW}@s5{5|+B11mW`oidZXtFS087|9s z;j_s_;X;`ZokD8Wr>g`!FXJ~t?z(1*sqx>3>$|FhuOE13ztRkO#GPDo8gYw$)#9IL zTalln-FDI+YIreB)-_yo2f-E%BGO0_8uJM~eP>WWTuvS<3g?3f)XV$F!5vBe5}^GQ zYmt%vC4eGy4ORA&@FLk8{yHsS>kkuq?DN8+aBFvpxYSy#EXwf4sAl=Gx5v-7R~LW( zrrRz=m!~x;sP6${N@A6t-Pz~W-UiPPP6}|hgE~7n;B)EVGM|*-17fTZ&47zfKmt1q zk7frkEnsd{&+R)WQCci+E92Hq(Af(I?qJ%H= zt$Ik<+3k>`3+YZkNkZz+mFqvoBuM!CcJC0tG#Wdd?^N!7%X037!HUe3HQGWE6l*ss zl^u1g0p5dCamX>E`znoFo--X$J;@M>R=UpSt)Iry!cg0G)kvi7-HJ;x_{K|r(&wva znb=$5Lk+O@TT(-)wS35jn^AdnDp`kF5!Yc_>Y{ zr1;^qjM;_e(CVdu-_rDwF%c?1x4k7RG(s3#T5{(u_{TMG(5!k~C63ag_);gphFwHY z=NfD6{#|SXn_fn>-6y7J4I6zjJA|%`?V9Pk|3ylutNU|4!OgK)Yw=}+4U^;kMk*uTH*v-c{AUV30vn<~#kLas zU0=GFL4u7>nZxlei?>|ZhC&+g48tF%kYccao+rtlkxbv@#vAQA1&LHlm@>)#ii$Xk z536UaieeG*r7YF`jL%_9F{-AZO+2m9UjBm~%emIsZBlQER>yxDK*x^*z-}OvsZWO+ zixH;Bpg{$T8##H@d{ZhLshDWMbIPwcy7=YJb8qLqP1wDP5FRT}%qp%~AfRMBceojK z(V2YZ)}kt-MijfvKL1TsW?%U{r<<%>@WEY}ah9sl+@gF4N=D8UGs&cGj_&iIx_AR( zG1qqM;amnQs<+P7{HtC}u~xFOh7qyS62`-K{YUZH_RM>3@RJIQ4p`H*9cjp1Xly>m zc66b-`}5Bk7rP-}30T2aN@|SoMVwJOX^*t(ul`BUkMoI8rg0k6YW`==}I^}PGboa8gPIty}oO_rS zM_Y-x2O;8!eTz}%Rm1&HcU<;6OeW7;LJDW^k-~Ki0ttMyaB65Eh0CL)^UM}B6m9g! z=Es$w-`)agPa7#>WSF*P@t)H!YQITJgY%%~wA3vbtf~JkIue;N<^^;3<&b|8RR?TL z6k`Z|5b6vnOrh6t+tev!N=FR!Z~ARZcnsiazwvYb@WWsxv9`e>~>|A*3qn zw&=pUPLupiT_XQXuV{K&e=1j)0VL$?5VS| zGdV*@s}c=3XLEe%8soWX-Wo@c(EG{9aM=o7FBk7piG7fON9aZI0*j2tl)eT3W-Oe^ zmDB+L{dH!bKMAJ%@BLMR0IgXx?w-lyBmcsaHp-5jDhYW1W1gM+$6biAYa;p87pbOS z+JP;<8)2f&M7|YA-wnT_Eshv!FY6?T_>Y|jTf*i50_oZ)6AdVX{W40Q7q|;{`I1FaIr*Jy3BzfyUfn+o& z4Ik;B`fh?23%95ps=9;dodoYrSKo}O^eQl1vTry3nlJ}uE|h%>DDawizdy?x08N$) zPp4!=r$2wKVTeo%jICJwOF!@E33IM87l^8K4BxmS*c^Lx2c}*@jh(mm#z`XS9y}4t zM*9K@cn0PnU#iYqXCRO2Gz*HxX%8ok$x=sfp-CB4#crzf9s~H^N40Dk81lBGt4D%= z7Q;T0eUzkXVpbuWOvcn=b?J(`#Z2eZ1xkkDujcNuSA=TW4~~R~LOQvCuo(eO5;-keB7BA&-j-5v>uU?BF+>*2q%qcjTY?XPq- zAk>M76rN>q5Uo8e^SJ9i8lCE_SF`OW@!p&XB!F!vYZWgFKDLHIpvWN{Ie7+XCksC^ zNuZWW$>z9}C7mx+#)WSFwG%+`MnK=B}5w=w(gjBM+v-%ahD&7tW~vq zq<8?74jsJ*SCKejI}aSqT@6S(%bGhUF48}e9a`9N3?jUva)k{h2se*+&M>XYqE$oTjAu|diEUyV0uK_)?M^LDgHEtfu9L6p=th8t zwQC(2caCu(S6hAL?yz^oNR*i+84AUjprtJy)TDAV(>J%BKFi4k?k`U&k~Wg^K>qj9H%ZpJVbDLlswdIN8{Krss@L+|LArCn)0d_FqgUV|?f zQXU3wp1@VWJ6dTxz0wG!Ai&SE^l@z8VDuQ3{$NQ*GGS=nk2D^0^du3rJcg3YyLf4- z>k45|Aw0IGC7Pm|;rG_*IbZ&9yVsdn=iggj&Bq{7>}vm)E8)%$$O!j&3|#!F0-R5& zcPmCxtZ&jy-+V@+jo|J!N5CZ0K#duiJ*{2ma%zDsqAL zHqq_=3`Dxr2zTkPiP6z<^9bmF;kCcqXNP`NBo?!+Z}_Vr;LpEbIkcn8bQlh_YBq%6 z9k0s82Vue;)7_B@-@$AnYwR3@{ema#eh!ZeK0JC(=gXVaL%>j|#^#Sb6?$+~INzxo`ea7KUb(JIvHng*UqD6*Rb8bzSBRFp9SBSXI>eO zV{+;R#N(-x6$D&Zkt^1c>RMH;;*<&(P#@SiiM0sA?SQ@QnfVdL)JK6y)h6oW%dIQI zwc^-Xy<#Z{!gBdo{1(ld(z^hhT6}q2vzchMmWDhDpA~~|q^|=q>s=?4TFH^xp)a#> za^hjr_A6va%>z#od!(_B4NgK1&NTJ!6xEB8$rNo0KfR5`a&*mS{_oh>GqtltonGFp z&AoctCVbl6GD=4qxW#bhC$J37U?J;%ieadlCTbvIG5<)#lvK*GnLT_sH3jB$>K3>F>~u*f*UizbsF!JO<5YU1scP#B@D>+s)+5}(D$z$7 zkTCznw}v~x?s&&zQQ0o8sU~md!M%YV>qJOi=sH8%mbO$n_-F4OZalh z+H3LzyVdf_dhjGoak$U$4(>%S(IzAFoqyclmE|D3+JN&J6QwuQ^*Y%NqQ(;5Mna8aJ1!TV`D4Cnk+9$;@h*eAtMdESeTz{4I`(bE+1 zs{8>!taA+d>lLA!eU8QuPn$bEm@m1uVY`suq+Ik4eC@OhwxRPsZ@O7Tf}o}?J=(yd zN&4be&hgVgY~L6J=JI1lE1;V=-M8$^c-!7Clh0$o{SqCqA741gixn@LC=*ff#Usl{_IAjIB!Je0HB=@BO;;#e4B}pm66-hJ{nvtnWErixu(*i1 zCK4UsUtI zxeG!*v+pqbArhh28@7(ZXC>2no#vz<5A4-o>6a(0)-H!y9#;|LsUzQ&FEzv%V=?Z! zlRcWAb3Eq)o2ToiuygZ6Aw>>+lEU;o)LGh3kLl1=UJk4x{f^btXR&GMU>6D#E%##kr(kMH)8^hiRX&h=0B!`H*+x`_egIOX-8?GF>w!0?fH`G`a=8bsyiAo zJc~eA>a`e8g=M>>0YLNa`<3~ALI2J~69&uEHV__K1(20Qc+wF1DC+(7pWaRC z%S-6E6#^EVcdi%UypJpyqu~)Vt_g&W4rS`;1dj^dHVI+QF=TjoWT(z6Egh~o z3-;zJgj{ORZ^2iF!My+x!s!cdfs3(alzM^S-)R(wN-0W;QHK0i(zy9aj&S`^u_++cUXyh2`5c4RP zb^g${Gv+Q2&9I~~w(^VzxTik-9z6jAtrzPg&cO@t%w3mlkrue}(jw-`sR1+-9~%!9yQ5UyG)BNn+@v1sqzXY`@AO1_Qm zoo(^{%7-oQ7wPH!nlC((ZD^}+gaoZayNHJ4>&D1EUuyG&+ONa zpUlV{=RhD`NxC*m{B9P8!qYU#*1Stwxj;UhCBmTPM7Y|lW(#|=YdE`wfx+Cq>r#V=*!T~ zdwio0&n)yZ9l%X3X&C7PASKZ9X8p_s`?k7Dd3)DgbQhBMetE0NU0{?QK)NihvvcI| z!KJ1CBi8C1$x(92nER$rj}J}T|2UMpM!DH%-XaC|1u(;zakWjHu%32qw475VBH$uE zDhWod%x@6%GF297HpJZxSQk~FHrtN7{EBbL@WsX>_61yfmw(P{Q8ZNG`Xw{NCMFN# z_WJ~(%xQrUHdVJGgUlss!#)_CwT6H>k9 zH5l{2yG^zNLh=?0ipx%zzQQxCdfQJIQ-DxSy>9-UADZZVi^TeEG{PYbSplbLmI8FB z?`zgmpp~_x-!1$=l7kIazEjDB;P+}vzkM|&71iw_JIpIsZ>0hn(ZBq3N=zoiYmx;L zJE$LKe(0&Bu92uH&%v9mQwiW;2wjws?Eqr-m|@1@X1SSr(dS0C)9N_^hDI@D_TFA8 z*}pJ;t42|q_uGZcANw*|$Qil!FF_}(%$wt7rq{h+L13+Gp|;V^EQJcQKJVXJFPwAe zxo$s&xbt=Ago)c+9g^^=Y77V_GLl8-x3DanDXGE|=S2kim_&MB0ymNSboC-r;1UCwiNkCoZ6w6Bm z@wXv6Gcl5HfTQ;F(v?)67!xT!KD(o&K#TpWH#2^-1^*^AtCyJj2`=S$$0@R1!~sRs zQ4)#a446h}^L}tP%gRs%oYz%nPcNG@k%#JvqQPR`->ZfzUye)Zw#ys2riU;V2X8zh z*?%$Tn92{Xx3Ju(*9yIHbSJb_Xq(8}o(KJS$fSLMq}B7E%WJ15e2reAHQgwdqFOo{ z_Me!Tl}WAlW8tV!oqX%B2Jd81M^Z?i2NL#G?VPgl@Dg{dv1L5SD&76R4h{@sD$6=& z@QBj^9maQdUS_$+v6va&{@p5x?sqRKTN_FCGQOYdeIzB>_YP6GZqogzL)lknJZSEx zsVnd6RPT@vwH}*v5z;zhGWLHRR?S!M17I-OV^i(TL)JRE$UakZz!rOGn3JS(B;CEBrOuT?dK3EFf z#GtX$n98FL16BGFj543IaJ{f^Z_(9G0rM~EHQopx4tfdKn6aV|0lEmECLAd{gH1J$xSMSct zC6Jw&pMsc2>7zjo3=YOQ^@{mo5{c&dEx|8!9w$AeJRG1( zq8{8e%a(7P6v>#}KK0Zi)2(IwJA+n2A3}=95WBR4ydFe~GdwUW*MyP4uK}1)#j0oX zsS}`h%KUS_%y1vC?h6Z4o0LRc5{4e2|qN(v|02_spkjVJ{2Zt5|}3%uYe zxBKA3f1vM=-WAqAzTx1%xHKx{95~kfg+0%+VH%cuA?F&eAl2!o+NyY(aztN85iU+^7nK=EEjgB05qZ>r)2$BdPdcs)3h67$0o zkT@wW++q`+W6CHMvW}ai6qVG~tcVbOq$kwTDnogumh&R!hXHBi_}T)ng30Um5QIQmTX?UySu6#ug- zaA(50ljmVYQ79RXHr6xfu~3R;Du`B$aET$VChA^HXX$o5y@4im6VA@n-AbD6L8Pd! zQT>2~%jbEd4EMC^Bg1hXnxeir=2OxUu_#SdsN%Xu@=wXjBQY(o|L%HNmbY8l%gNh$ zcQP{jdpUtdfKNYmD|pMhMQazYNr^XCo62+d@Cyti6)>N9L7wOXu1FUd>a*91l96X4j_=s8vyWDfuJF95%!vN3JKj*UJ-0TY0m2J>DXbnk z#Baf`#=sDb2|bXoiJHDbx|l{;->QlkgpCz!s>b_tF*{Fc{tY~joYq=nh%X6cpzdnr z3?DvkYn0_bykAnl$?1iTB@NYN(*nuwo|w_K944PmH8=&~^BjF{WYkZGjM5jHRZ@Cm zdck)r4-+P8UYokF7J+|SZ+fv_eWyNvykR4(^^s@-{_rmYTewn>To* zP_`Fw-Y(DiSDg&#xmjHtAWi^Xx7(_Yef?_@+RnXL_eFp*&D)n4$OcU%SH~&}M|QBH z7L#gUiWwAF7#|KWq0QsszU%W8MZCO&Hwt?J-CdMZzW(ENPHDdmmk34i-@veI;GV+o z?kzP5r<5-93Tf{b3rQ@zF3gva_$FyF9&ON<5+Y2QgEC%7p76TX$?go*50M@QN?XXV zQ^J?tzr|7%q|zTwi4vjCg^4Bu5~fo)x;Du#Pr7z*C}>^%*GdAEK-=8W30b>JyeV5J zX2y*hzKrmfzKjS*T9bEe5-!J%{Y9|Hq8Fm>=+#6h+fXJD}{s zQs6OBo;5zqq`sUcY|mCLQXzgaT4sWBAONQ6!jhMgd%IgsYmAFZ_epDJl@Jm;<|c0FNjFn#TDuYD$@n=+5}K|Tp9hLVelN6d?@iz8ey_1b zs~Pu919Vnh&c=NvQz15Ahdp~PF1l#T%a(E(+8X|1roaf&IJ)$s54jX4{+(ZpA(GTU z^H_K9yX#kEuikqeL17;=wQS`zlFhi$hl= ziNHoPKLRmTDaSI!CIOQlMB4&3Y@#aPB8L>}xdrmOW1e@-{)64c*!^w~Ir;Ck4Bo7Q zp|0Quw`>GA9XksfDfu~aHmj=UCjyc;Ak7=Ftl(g+`nFjaK!>_%SYPVNv3?g|!|bQ= zC#cVUTs`sox_L&#q@>Lpj?J0GQbFYMyXQZPe{I3#-EeDvf0I?!hxqH&GnBjdX|STV z4G5g5Cm6^EwZzK{%r{&OAs~SFmEW=ijq*_#pYVpvtGNkZ)ua^_P|}|)<^4GL?Wf#L z+aD9hG-a@W!6s9baeO&xBwEta-$)ny@Ven_1};vr@shFY9;-A)wM7R{5GHJfhAszf zE;=3jZ_$y+yccT!zR$mE>{jf5ULzgjRM!-|yZ0)>>rmiBdq$=Tn)w%paubmXiyVCU zJ2A?Zk6q>hCtcg6{vWb1{0jyj>xiUU(pUM#i@*{+7KZ@RRb!F#7zDOaACC~-arYwU zX_U$0fU`e?)qsL&la@U z)J8(ch>G4m=>=^P9KBpMit#m&Xy;3XzeF>Oue`-}NwK85N~if$f^*1s>yUYVBm%(u z_&WwcKX8X!c_acTn}S%pdR4duUY{T7{jekAN2+EVv6TMEx?Zc5Juoh+*%2vIHy5@W ztB60{A-ehbdgY$hK=8E(8ey$_K@$@N8_d-xo#2_?Rb&PRPm}x3VSZpWx#s=Yk_t$8 z1W@;MB34`7m3`+hVu7J%6zvFogP>av-~v~;tCbhmVO$1c)c(%rChcPSvex)43$L_X&Izdb*TJ`by z^JSWB@mcBqA}nL9}v%-B4HwR zhs1MiN=!7~iz;Fge4MR+Ip$6bNq1Wo6>#GI%1U;mILi}mi#y)I`6v$ka&y?XtrE7$ zd7(l(zLN1^Qr9gIOBnvvQWzT8zuV%#z|8*AE0A%CaAsyMMPse-W#(x)0M;vVGNHW8 zqW?nZc*tQ@(wGArA5MtA@@<m%H@;k`doSN|Cu{?%N))L z9CJjvMa{@{C;<=-W<8X#H^^hWWdwz^Ms&)1#F`;%;hDWUT$XT3i9-mW91^$}zP3*e@uJ|8ag_iZjv6GWnkm_n_&Je|Et>3=FCP{B^jpjQ9Hs&3 z1?{(;g8xe~4fkrH7m`M-8&u2xN%h1Ax|STJM(=481G?i%*yW!w`Pj+2TF9@y!$D zy9b|F$1;*`80te^H+jfe`n1kCOzZa_D#sNq&yRP_)$EoP+BSxTZqMdxG4YB`+043_ z#pWuUw45)Ps~5WR8XdLnvM1#9s>OiZJ)#S*yf&$>qFcU}Bdum@{`FL2P06*a=>+>- zGMg?)W0wv;5q_Zk;&V8I1ZVP^M{FFaMXmDATJ{2!J-D$=;ps!;%=BCjdbrK*w?wm?ayd$Cm z=V;V-u|5h5+~OxyX#$ra@3-4H{XBr*d2&D{h9K{_eyOPYph|t})zm+Go?{uaV$3&e zhx{l?ytCl01mh1!-*G2(&)y6hp9*H}MA1A~%9iNHDT_q6HClr&FnQ|#aFylg$fB`Imva{c&*ToO84?!{V`#M^qP?+l9+}^H-%qwS^bAx<1c_1V+aWBu0F9kFsM#l zIv(ENk2Cr<4QTx6MGV6QPdmucCJC9ita4{!keE=eLl;kh*E_P$>nVUir(O|aD$SV0 ze{sglSFD%ktnJJ<-FV8+-L^wL2H%H<7v@VQK1>$F6p8ZYC7fd{^SXgJKih6qe3^5@ zlc6|Ws(&e|81TH789Ix$O|$1Rl~!$*Tf+9*_t7fxDN(gO=4!Y*JjW4^a294Xi1u@e z-*0D`$L+o*Q|$q5ku|D*==N?gWXO{8N=RTS=fJ}&IrPTLS>dXBAUMMZ0!jrjl`n%) zEd{s75iiz;PmK4)oTr*lDe!&Wa~O%#$QbJLh8}6u!UX-Mb5Uy~$Y^lcKjQ=S5*pK= zFph1b>nqQc7oD$uCPbN*qv3zTSDtdxX=c3UI@bXm2%SqZaD(!J*}J|vMB9fg4zj7b zQNe|gnQ+_~aOWj()JBM&dZ0l1_q#ta+!oJ%|&0TxPN?ry_5h}%E!9=8s~3e>~wiL~m; z#`ycvb33)-`mwD17w_pa{DM5VGk7|uvqMTP{`!}S1cC|^fAZ(ZOihtz68Epy*YEzNB)O(oWIeQ zRVOUc4xfnj^8RSe+N1XsU=Vg8HAeP%L6d-m^}?7Zsk8dEXX?0u_plJfAKx-W;U=GFt9>s_5-~^s$8wiAsQZw{MN^KH^_7t~2rk#?H+fXE~56sMdP^ z7CPR4$J{c>$IF=Jb)r!zSe`rkHIA7u=r-;6-LHwC@GOs<6 zSu`0@WP@FO)@(g6#CG}5Pu8={Y?aCsbn0*7Wgx@Svs!MofwYR_R_MWmNr7Yb}}1Rs3~J@J=(pe z1yB=#N+xQI=&NwY-#dS8YOH!iTSt)Ru5dI1qg~%y{_NU&Q$W2Y=K0ClX zsdo04xOc4`{`K+gnlD#>@}{uWcvAGNe{J*-%b&vf#1U^;IxQM4R1O&YbfISMvNj%s z@~i@ldXTi|mkSFT&!V>iX%m-RJ6q@;>T}qGl;4~+JdARD3mHkGCMSrP?0 zd8t!KOPnlkyKwSZs900J<@J5YJhTEByUx)1O7iLZt&vNgY?+>}mqypOfX)2>S^8W} z4+dP-{1|BFQ9L+eZ_nt_O3He_qP`^Dk0Rp#I@Ltuod1I6jY`SA2T^tfZ zjbQTTz^L&{80AZai7S56A^gB@pqGmJ?0fxR4c`(`yQ9voEvzF_0KI#~Zqo10`-2;E zEDOC;6}7K$;*J2vCK*60wOhQWIVj~Y|AtGK5D=r|3p$Tr_UP- zl|qGu!E4!(6YDY#pqcTxTK-RKpqO zmLwDPEs~ND$r{2xs5UO;ZN}ZtXrXY)vU{Yz`F$~Gk2t1!BMF$t9x*fGf}jJXwo_&4 zS#a%^=oi$!W7mU9tS6V+?`uN=kEH7cf0d_U?`t^9`97XbOLvKtr)506TV)Oep&r9O zUhh9QDHs4|cXo@U)>hJYxr z6y3jg*REzbV#kT?(upi)$xt(v>L)9ls=yG2X5IIuvTIr}@Tly9{cd^GJ$5(@x*!~_8 zG#OsJk?e=CWkxTHJ7=x^F&kNZYL0=ATCBM2WK10^CZ+LNJw{IVK|yjgV*gcf2s$2=StI}lWq~;GkUxHx==2!sgTH%KA(%@B0KZ2XzBNCVrfO17c692c*!fi<0_G zenX4fFrztcB8N)6icg*Hue`Tg83T` z>EdnkVvq(K4_yn%Dyf_(Tbk0}g0cdZ?980-m`SG@jl8*JR#1U>F>?5*Cum56y@8VV zz*@>@vZVwDCa+CBFml5%YsNhiIxVz!EDCB+{!il3cfY)V;WSj|Gl4jgxBldF=$1P% z7YhEY0X#_5TM-zRuk2&!E&`lh{J4Ri9T)p42rB&2@(?e_BG^eWHbZF%1co7+UMR2$ zj*XGbG3?GBy&3OJo*H@h5%hxQl_VGfVfJNN!_bjx; zRZ4~qbgZz#n%lt&N56E54$Y>jH_10G;U= z1Z=1Lv`$DnX==oNK;1g3q=b2XsKF)nT-~8w4)ID5G{d{_oUrf>H}Fn^Z%H`t_#FhWIio>+iAoqnG4S8D-Z;u>2EbEgfp#M(`?6!?1d!KTv9 zb?&WA{I>>5Qa738uf@{RDWrg}H?>aMk8%2I#s4-+F?Kp!n%)CBuvz0}RT#x2TBesG z^axiWMJaxUvm%kvJHf?wT@|XmH)h6msYD7P6~}pCLy2va@yn|=q(ntuCj7d&9}~9G zWH3J=In!?cqlsvMnI+Il%fgE)R%+CUxG=46M-CCD|{6Ie%^xg=m zlk+#Xz)Uh+()zjVzdjz3)k{KCLCb5ukzJ)=v(IL{G0u_Xc+>CuQ(mRSXzQu4Sqfl` zzT0`50z%@;P)H!^y7*1pP-7UP9}icwH>qKLu6>;D|{;xI2*zzBGw@8Xq z^p4#GnQT=G9~WAwB+{`@Cj@UEm_>VDhIe-pq>Maw7XHb2k%pf`Y~Xjp<3;|yHb@ud zCGrP%Y`kFEm$tDkgyQDNbw$pM+sPkWb1g8>L5lW{_y%M4RrKuQ;UcL!LYKq+l{tua z`gb$@QO1Bnx{>iz@bw0qxPIB2Id>e39IMrnMX5wJjNpk+?S7A=^52>3SQzxeo_m%B5 z);^@rp&e?=t8oZmennnqBqePiC z#Zg=Y3WP@eWP@kC-`uV^R+vH#qWbcM9oe+Z| z@D~;0J7#>T;2?!x!WN;zx|eySyD%w zrMop$k(F(yId^G~3*B~>8gD?ZS~<6qe|6E#Iw|#^FJd0A?YL>2+aa|feOdT9jx#Nb z4HiIS6v3^^0I|SVI>Cz#IFlZB>=fb7gY{GO9TV46f95Nu$Amwb<*r}&eMf$u7=3KP zWMjfJvjol_7AhjG_2aDmq@(?#c~8w4-+4Lw2{le(HRw9IgUTXW=tf($Slx5XjUf|J zraYX`Ce4|;c;haf-sDI#1i zO-LW>gomXl%AE?)Puc15;O3ZZc`eCza!F#!tlrQf`8$V#$sGQyW+c(aL1*#e^DM=7 z1a1I(sWel#cR?CUj$&mbVd!yCf^QvP(dUO*tG8opO*Sx}korV)<-BCpDQ*DcMU%~w z&((j^@@1>bf$+$mVJ?NgsFd+LWqKE*ih)jaO~!Ti1Qu2$LjOHfrJARn+`hDCN@Cis zS69@h0gs#8wwMpZ>l%thWI;DpJO60Qv~|H;C7VfWA9@5Afrg3<1twClsRp$lnfh0~ z_ZtC#R#?3q`D#?!RdoB8B>Cot)d>;ZVm=34SIUsUx}Nw|x%GWz`3kgmZ_+7q^@a#vbak>ih6U)9ii|&muX+ zelEtqg&$pzva%OMDGq*y*pgxBB-fU%S`@`^a-Tf80qg|Rm6nx<3$Dp-Y~Q?#AQ><%QkzK?R+xhcshMv~wDCSmLud<>O8 zRM9j!4vJ`NyqrqlbV>TMGOlxpRLiI0SWO}QzeZR;$J^*X+&Dx{^l(~K=@Qrc`7B9G zKWt;Hh`l1_uQ*=xJ7r9F%7dmJVJ3zMqhwCuO>5nWSwFo_EgmsTKs3CfBji#;SL6nx zC^93P2ma;>Nr3Bbi(#u54+RgEWz#OP7-K(q{<|jvEKolU_>rzFP$}ObsP5k^UO!)7 zr^PH&V|ZG+xWNL^DClnMPKsX*NO*`}w1;%n7kB*qg*{jy;@5>IskRYt{EZfgmO1uC z#N52LxWx6jm8u5BxSZb2+c|=pd4*(QY{5>mJy&paSGIvnlrbOouM6!0Beb#^*tRYA zCM7FkOu6ZJ<5q3#39T@V>Bdh7_g0a zlq6Yx_ChTzl%Dj?!_H0dSDPn>7V2RGnTh~vYuMLSR2r{`@tTQECMhOhLD z2&D{Oms5`>ix7a$;}i2Bg$OQ(iD+|kBG?z zbgeC730y5vJfBklha6)8-Pn$=)}>6fWu7jDP(o8rm z$AT`*0aQt>Z!Md)`BLhb@z*lrWWGew1kwO6%=`e?x2cwt+6go# z`z-lV!g?dvopbt7sW{EU`2g<^tJrU+d&TYNOradT#(uAdq%XLK0+K73{UOsW$?Q<< z(~|kKKpgt-azA;E8tw+j*#-!;3P0HR%W+?Y_I`9ENw?Oosx9{HqT4WLO#d45{?#56 zAAT`n+QrMWaz}o|u|@IBWFKnL5uKDuPcFR$P0#Zui%v|qGIH`|yYy?^U7{&OQs&>f zX;uvzxZ?!dIZVO-hezM{sJF7YEdww@db(D*rcs*OR-C~?B>jplb{Q+(@2O$zORA3k zKXj8#*5<1YlcZO_P_)P+SKLNqY;X)w$8mu>o4g2)4qyUUOW9N>!sSh8|Je5a$|m&P zAy${>JcDT156@9(P3Tm;RXU=Vf>QUy8S74wo}0%kN=DO%oZOS|jg_WH}AEP>!JAzKHpOMoDtVJe&RI zJfH#iOlD`CAybhtP94gz(1pz#iSu=HkMm3@V~LLBaNC8FI+)Prt$|v|dJjnu*Qq_C zO0AgoK0T>E6=7BJ6PB7vj--K=8hV`x(@5oM6Zf|Us*ZJ*X6nfTY7&%gQ6zC}wFj9y zx_7CH1e^$GF^q!Fu<;TF!c0rb3D%oTZ0Cnaw=TI42*UzPFGUDTZ~`V+t3bbo#o8`| zO4kf@rBTOK5Z&`}Oq<`UrilGwAyzFJ|CqPygHV=90eGM%`)Gj{0_(8hy@FVS{CJH@ z4Ai7H<}KLD*3qcIZ@3#aJBT}Z1;cr1HxPM|1{G^>{z~cavITv(szj$va@9$wTk&P7 z6#N5YuAj^n?1ouE+A{6Y9Z5|*sn6y92ZCFa2?m}WZqi*|(nU!n<6MZK2_IJk^=Rlx z4Bj;F;PjW@%{%if~P$?K*gQ$-7$4?2$ z_4M2#Qpt{b5*g?I&G-&CR&RSTWr%I&rqSLrbL!D1r4g$6cre9b8xo~sbxseUXrb}< zTUhf4O1lID60m;!2WrrZWaO6PLbr45e}D{Nap7vewA&Jr;pfuGM@O+g(3D@DJyj6< zcD^%xWru%e`2~x%j(RH^q-8j3#QgNZHlNh~<8&!aW_FB`jL7>2 z1Il#51|k~C`%duBD$@5xn}PWRexVT(trylmy$1MdpABB(1&B8me3JqP@vY*Y1n6f& zY$)IIy;~Rx@|5N_H_Ff)h1ZTYq0NPNQO34;P-1>~+06}Th@0dsnT6NrVAL55g*SIK-TrwGBQ_?r`jPxO>9oXi0n$RGpSLWyb6$=Jr ziTjxrpFn*0n?sB_@Jd6pH`a$O)m-Wv2Er=+EZDLqbL{1T>h*^?lTR=i2W5=hdZVBv zjXWe6|HppLH9qlx3ep6^5ODO_5z>C1YI=1r(+D954;Hy$qaz9msMWwGXW)`K=e;fH ziGn4=31~eUiI#2KLJQ2d&*WP-Y@sE%=he#|AINDdWLQ>NpzVBH(_j%o@&vSzsFK3y*|^eXEM~pW{-SvPKif?!j>E8i6=6h^fC&g{}_v+>#3fQ{~k|E${Dvci!cX zY>Q%QAekF5X(N3Dg3k~(k&X>tXw6vwFXct1WD`RPxi36EV@s%nN-gHqfU;iIs+ zl{4Tp3Gaz<@!XrTvDqJKN2re4@!aPZq<{=JVc5%8TSNw3XEK+Y%mWz&>sEMcr4Har zKG~mK-iCrgJo20IV7sFgqfC4=TGT4o;bq^kTic?1BPc3?=XXXGe&K@m4JY1%d4+ce z+k=)?vWa{V6#pIsW6Gur$0+=r3XHY>Ge`8k9^dIIcd|lj+*e{wz=8O7a|(5Vfi%&_ z=4ymh?f^&*wy9@UnM}vMl$Z$!DcL>NSp}2w&hHB1l_3GRLCcRe1l}L8bpyDCt5@w zo#vv|edE9a8(PtI9NkMz!X3XDXzdEe~R-P+zO>O+wI1QJhN)NH2GViR`0K#dQ4 zLh_P^47otE&1U+2K=6>5 z_G6!5FqBLvm0xlz5xY>Y%4$BCjpe9 zxaR7F+Hpi$d?k$ZX)J+I zb)IGE$qiF1VU-B*_`GkkU!& z$?TQP=Oh;&Awl%Jp=&7OlAc?Bn7=K`8QOl=ean0ST&5uQBC5uQ0U}0cc`CE!E*q9? zO4p1vopFS@1$_QXaWe6Q+>BOF@l=Wz#TSwm_6tZ};4q7BkaHuYcqILk#99>K%SYZ_ z6@VTZW5&TRDjJ6RcIvNxGOb8`)|~I_4B*m!2vh;LN43MK8;Q(@alSS%vMzl7?=YS@ zS`#TpmBhNBDUHcZu}~^6`2Aqsq!L>eBmr&&hk3%f{VJID{GE4USvjo(xf@l zqcTF=Fc$=t(z@LItJ~b1*fywC|HEy!FxX+^ z0Qc4M%)e_EJzL51+zb@OUad}?JEzRZmPOB7cb^N6t0ttYKf&=pDHdxu zSazU|>h9Ev*WFCgJ;YOM9fAb-`EqD*)>hDavFKRJ_?+fl#qCL|fVe!3l1Eq6zSAbMOH6vb8qeHTy`*(7da_rkfh)&A zM^+nKCnc%&OAdUBT9m7y69I9iez5e5Pk55`8G~pVy-VA>dYcI)>z5L2-yCWuJzgoB&aM6rmK8#l&0O`^{%%hcA-oMNQh<)=A=da6Ndb?oWe$?p2CF9Nx9YAFW788;EXZ z;!LQF*kW!Z_@3V!JvULVo#<0*qw#Dw8v>h|yGY_{`#zf0b-&+M{cO~G;GZ(=G$#D) ziGer)IDXGFCa0);=Ui3uoX;OpmsI^6|116C-kHxSG$uCL!30$#pp3mHZ}V&Tb^G`8 zM3eNHMuxg2_@yOJoLsr6!ao`J$k~&&wNkYU+gu%AHA2tBn)#Jx57jQC(~#^(T5NRR zPLJwkH9TY34{LVf#VK#MS_N`(0v(aN^>I7R$nIlh&abUg!%PuV3>T_?+Fb$q2Nm21!fwoptx&C~gP$TP~>!Hy30?D$iVK(F#p|EV6eGR;qypD#@WyJa3!XmZlIZ( zYaTp!a7_K)1DN1Fo5mPwHP5D{w&X0Y4*hT`0)5;Jnk_o z2%9fF@wtfy842c>mJX8OJu9|_$JIiFwRoQ(B`B6^OL7&*9BMlwE;@7OPPyiU-qV@+ zQb8|gs-QUDJ!2o-Eq}veezN__65*)&dr5rS@e$w+KT&;a}^$z65xO+G$1P3D!3_Vk#u<954 zshpcf=we|D$YQcmbRrii_Vf<6zmJq+l4p}NquLZ`_cP1o=RMyDRDbp^icZ?<7o!90 zKl(>+_(N6u_wMf(w*&Am{Tn=f?k4r5%RBY8ll)x6>NcqKZ=NDNG?JlFzU&IH_n5z+ zZeKs6RPhmfwn2G-lDYnVWyUbn&e{7i=9Y`1`QT1E_9%=@oqB?t$6>ONs#46gB1qJs+o}mT| zrcj1|PYadFBL}+_;sXN|)I-XLUMubq-UIR@T-%U*gKxi-*{EQk$!(da;}` zczZ}olEwPC<8+D&{i-DE;s}nplI!9F0n%&(`Se}DDyl&r6@iKLqB8Yl(dX}il^EPB z4r>`|nefd_|25PxpnuHM1%l;d&u{YM4#ucP_$u_34AC0BOH>F-t?`5Sf6 z<5x#WqSvLrq5Ox+6MC1=qYe-&oR>U z)TlApN+pmxeSrh`$du*9POtX?LyVPj#^n@9-Vl|)J&7DSkv7C%Os6*KAF!SNM^E$5 zCi1+kNT}PepKpkOdrF6zJY621j9M&oHyqm$|D5xi?enh1D+C zd4!)cGM&`J3%0Z4C zUBK#`Y8|I9S!LzBmtsVr&rW%^0d1O^|7X+FlS*!bO$onl{Yu$l{g@}xv-rbKU2hDI z;R?C67%|N~k@~L&+A=_jQ`N5Afo6gb=#d7EEgQ(BsSi^>&E~m}h|vc&J;_owetYo` zOPQiMyIUjrI7fqf{&%xtH7^dTSXV_N$b}7M&dTW-d6!^7M~XngvdlS|yqPWC@B1=r Z@0r^EU$OF*zkD5t06N~HhFv1O`+pc9)p-B_ literal 0 HcmV?d00001 diff --git a/data/Male_parity_mortality_list_UK.Rds b/data/Male_parity_mortality_list_UK.Rds new file mode 100644 index 0000000000000000000000000000000000000000..93902e0aa0d5601a24225b59816549a4b6f92832 GIT binary patch literal 45416 zcmbTd_dnbJzyEKmDq3oXPk_ws)J_WT2`m-}r!c;j!7{QF0>O$?Sc0bO4wxdD21sgYjEg%CpZOb?Bsp;~o}D{`m3omC-AH-~oAlX~z*Zt4xHxaM7y156IzV<$$L-=t?c`cEC8tQ(+ ziQwY$kzZfQh*jr_C8O8i(vn|aeG{S19(yw}TApS3%@+q6dJ`^fZ|JfCq5!PU6w8w6 zDBs}y7*PUK$S#s zUJi$#KLog%>^WTR!7ZuKlk&uT73OQ~(LP+YFIUA@E`0 zypa%UzhT&W1@%&}2c!SIIE=%k1eA6fX$NW9DNHh3Ct2ux{Uc|A+AkJ3IrLN$qLlD9 z=V5uol{W#99MvWHW`_Z=%f*A7n2c-*VHXNS9msO z$c*SO_zxC`5J$=Nn-aYo6y-s0D>J-1M3P7sjyI3I6nUtP9TB#pk`Q+1yBBWaWD9S{ zC+4nb;qU;%q-i4vr|mf^=`qC3=C8^dd&(nmlc}B3gRn5TT*uy)6{Ny>onM%f%<7Eb z@Eqp|8BDSW%y~oW*Z=$~fKNH^GPZQgshE@q>`9@SCkMdktv^7N7&gA}3r;*wBhNLm zeu6K0f;yT1t5GvY9_~Ewlb+KP!pE49qKl58Hw6Y^HW^XivXwaJEby_RT85V3eIzG+B{l#2N8r$J$lT;@EW1C z$24>XAWCMQtJu*Qw7~Rb+$$qOf~HRgr1c>qN$6KYNYViTM=TAJ1kwUB6tE(5%~ zoyJK0baj+Dd8xZ1dvGxqkuWs(LUHb3|r)w`PqP!cF=`H~PI& zu~b3vyXGLLHA9yt7K`XG|NGMEE%eH>V`RgYynncu+BD?v=iJu2A^4H0n`Zf=*R%il z`**LW|2p8l&b)Vi)RbY;wReZkU(kiKVJzQ;@&T`=_LaV8qS{i!;=BBG#C^`w0$qVGCfX!qJWpPQih@$ujl==8hjf57rbGRR4=8{YHc`UGQlt#9gp zxJ+`tZsMQ*33`475^IUOx^o6Mvv9@)Y}+`+zF6UbdA;UFRWZWS#orh7{}{jvP!|Zf z2h4|%V@fm1^qp2Oa*w4fUq_C%-|DGLaW42K%1D=&ANfMS+dk<#kCSF>TDK-7)C2Js z!_hr8%k+Y)xjFpomC6L~=@~g0a`%~Z!?KG0q6&3ZXNk{VrR<1WtAaLrLJa6K;MEML zwA696MWD1s;_zLqNfJ8kvqSY4H`c319Ymx1{6|2ZX8}Xbxt^1%Js*5BkI8fsb=|1v z;}BoAzE*~OY!MapHlhONf9n~Ph1k{QJz~uf>%MDf1!<+C8^#t6CA@NRc|D%-RJxu; zvjao#BCSifBkG6%d)(b53iy+5v}${VwxUq3B@J~TNDHy~{VKTRDJc8GabrXd0#AA9 zIjnl?NN|ltgTuv^A3J}qjDxOfb8u_M#ba;k@zhNOvBUbvxjBFmg$&RVv&tYj;sXU+ zdPWHwZ;f&(`4-^e?hK19ekpd zOO0wP&I;xootCva!-c=+M76G*70K>UTbymUvH}nOCkfwAM9h8OVE&CGPAg z(Y;>dx=vnw5D{XYGOx@|B>@S6<|j`|M0r)XJ#^N zWkM5~gzUqb>XZIjD-^FI-M#mw=^D4*{bA`O;e&$0`^Wp^o}X10TDVU~2Gts#BS=8! zT$ut*a$SS@?r(NYXxfYF+pW)}z;dDM#0xNamuQ}0xTwobFHzy5Th`TNdPOI%5DwB_ zIoNFmQ(cOH(8YD>G|F0H&P3-!JrYw-D!x(p-8a_pKBpq}1yw5dUC#hF8(Q?#IKGB+ zX5^rTd5P)~@2w#_mw&k%I$@on{nvO1m8E!`w~#qf4G92S>3?p!_23|5)2H{TKB88;oZcUWYbQ@ZVPm|0mzB zLqxBz*GN}fv)Y4qXGgr=?^FNRjr+kg)~{Bd4EH*Fjgt6V6BrWG0AhA+(>tjJ)09b?d7qR{~HyHGYYDFU?xemSaS2y9;+N%SF9O%3+6ABfv&%k;r z)}0msq^Qr!`I-alQ1kaDE!e$6r|?VffC(N*R0eFTZJi|CwG3u9LXNKdXeIfr2f+Jv zF)tX+~;8BPVo^X$tm?ZgDgQQw_om*!QGs?rCL3s&tRW70UGr4*{Z& zf??miZ&Q#X=mbG8DStUfBSjB(?lqg)CHq@YQyh<`G#!!Nep#`Rq_od=8Z92_(Xm0* zxp$5$UU7?npH^I6EU<#jWcu3$Uo!-$V$$AeYms^C&2JblyLS+Q!u63V)1=%;0+v?#plSRAr@~ckXZ7gJiqKKy-a%CI*F=cU0 zM-h$5rMJwQOVsDs+J?lj6kWHh>zDSc_)!DF!1WGg*K|AY2jSx^YzHvPLq;M>5+D_r zlN8Ak|I;2EHH*3|@-h09%ppDZaBX*AGP0zP$-2&&9*`VWrlq^_-lb9^n5LEEKf77~ z^MqZg=6qcn2b~q0{O?+DNbhQ3ZTzi2!A1NI1U@9RrTQ+q)zBPf=f&wSE8EEP;yS(hNsbM(lNgI4k3h^#z z8Ku~hU&S*3&yyUM5U)F^r4EV5yrBjsmh9EFcQ=9so2(hS@N)dN`p-KA49Iyb1i0A& zurF0gO{a_oyq?x!YqhLU=Xe>4z%+8^T;qyU_Xh^5fm%F52L^CemHc-tccA=yKQ*J6 zz>LNW=jQ=z6uQSegGvEWOPxpEpULmuIDVu>70?%H8}q_OE>L72{tUmo{&dM^=J@A< z+0A{zKMMN-ay!Uf+%@!J6*$n!Vk_B3Y2UQXrW4sr^7gp2Bw3(7V#_lSE$kxer9rH& zeA7uLKlOlD*CB)4`MAD&*DKIg?G$Z9XBJUK+{G_u`Pi;iU@)-z6mLpsfG;**pe7%} z+;_IUQR@Mw@6V#`ZLj42{CsslvM$`R-_yH}%G%dO)|jwbXw*pC@W{}z#nOpu4$?iP z4UGLmmBfl#F-oiJ+hdfbmCf9uvQV$LT>SI`#pvQ{gZCPpxc~oFb^nu)8-gHSy+4PW z@XImb|5KKM)_OuUrXDZA3#nkv4!w-K!4URs(QgGTQ1f)!D;Lq{x)yblXLBU3#%I|z zKu4&FWyVeVSc8gpA?|{T)+FalCGs6v;3q1t{hKdIaTSm_W);(I`zET49>48~Y z%~$b#y77kN<&A9*r3*Tly+f%By@3ALQWG};Qb^?D8M%M?fpenKuob$nxY3Fr3RQ8A zq0MGC3_O+&e124PHEn9eXwq|1MT-qlg7EB&47^)-?p_z<($48$@gmsy(n$c99Y64$ zwG5i1Pi-T_L*Ck1F(#qIik)h+QTTK|HT}fz{H^@@RlHVr?3wgy-Ls(ENkw+yU*_cK zJ@U&Q)*r9~RfETcSb1|!%>Rr$8TVH6R29JtbQ4*0xzXMD*H-Tj&K%@$cJT2+XZgL- zfxD|)P&eLW%IZAJ2(eqJ8&XB!E8FEW9VJGY4+oZQ=8FLMAKFTTXDT7C?l-h8z`$vt zyy|f3jo*WgH!FrCI{EMHYw-{yw$WrYROm(grR4Cm5a432)mU~AtZJbu>R&>Kx=?6K z+giF@Kdg1IU`260X64@fh5x}M9KL*U10_t^LnE$9E?Tv6E%}y~AQD{JWK4of_t`j{ zScBRylmzw<0f-h}a#5kTp<5zbW^y^=4UHLl@6R`PYmqUs8?L_^H{;kLpAJ+zTlvK;*dm%-RFwBkz`00)qy8#G zD9jl3R_g6GWS=KX)EVxV!u@}7J~Za4#B>`A{(p}U{*hPzmM9z|xBu3>RZVT`&n@mD zY34G^uz^$6F|t8`duThXN+jC}7Box!!4Y+0(n} z@0Plk(*t#1V2TIkivF%lO=wM}_d_nu4BUZQT2-j8sTd9_V!vcLR)5Cd3hH->EeIgK z(@nbr38=C>lzqp7a%aNua+bd!UU-yj$6Q-yqfE!&eGFM$;cYa&>p$ols;-E8m3r|# zBhm`0RK2pU76-lx`1B;YGUKYZ;iWF8!&90#C!>lL0CGET07+@ z;GrtpG@8R_LXG;%=o(ZJNsO6>O%1Ou0JJ zQv)oR5-~z7a4wZ$-;j$XbRQR3J5?`sjC!)8-hW^0Sw1CxXZx1P03zW|Pu=`}abx2T zCepdz)dj93thA;jM5bEoMNlPU=|0A=5Eri;HTJj>tXh~=NoZI!rm>_gM zHQBFB$f~LWmN&{U0P*Hk&hAu7i-Fb4=$E7hM6=MGQg5&;@b3q|dOBDI#A)*um8;qK zq|lQDsMRFLS)vx8rNg4zm3SlNKsxmmy$7HyNXWI}4~fir#k`m@Z>0XY5*%X>zIPN> z(Dm{z#hl1d-;qcp!1a99oMDRWdaE-yD=jnvwEVm33aK3duWYn+E@IiYIHD{&(ps`= zlM3I?_wTZlY6w84i2h?y*38;!Nt!u%aJy3N|=3nHL@z7hxK-J~si^w^^B_(?uoIYe5#~FKWo`ofsJX@|U2vYpFiZW@O z>6ENlQIgUVP#Z_y)u&nJoz@qegp$zTn~jRJ7@Kn7B@gatsqS9l`)lsvU=g(3PhJMmb8l6%3P=FD z@VwljbTHqr-kM^XS0mhYS}@RoVYk$7ESoV|=5(*7GUkX=g8N*Wh581lh~LAqOAB4? zuu9$IxpWzuq}CqWdbUsyY&Pkn%%hY%%KsSv`s~O6C6b1F-BDn(Nk7=T+4+LyQqokInw+^TM>GX)$ZTsMvknsqmKcYmYk9UTWgxkN}ZB(%Uv>|})UE3tHc9w|hjbuPJe`i$#V8;r> z^x<)QNU8ff!#9qkN0;)&u;l}Q_IiKglnJSf#2j`b8VF&tRuduw15(W@l@EQ%4a|j` zf}P(+#Hlt16`0*KSY%Eub*d(Fow~Uv?&*Eu_}ORR!iGe~-~Nimo8h)}uCk)66Z;LG z0p;9~9myMsswHbt98V!_Ppw3474|i8N!5q+q*r+1z62qr2>5m1{fc|4`^7_>!4H_b z22%;H1a0cPxhAk??i5(*VXM-dGJP{RRTH-m8X*#L@#W8idlyZ>m)9XF6gfg!NwO^T zm?g z`DX>NtM`r6^|vix39>#PVk7R%TfmwuXxWOm#CB{R(}@D@(Br8XNDCh#?2r7-EQX($ z4?kfMB`oIAkEY)L%SOaF8yf9sV_-bZI>4Q=2=Kl3+q4F#+&M*NHk0_r?OI?AZa{TC z#Mr6R3txl>_%rrQEhu@Kv@`#@G%Z{`Bi+bbSn!TV+D{67maU;~4Kz&omE?DM^2rz^ z;0h_B;|;5)vI$hoJPlgfIu;*H=U34nuBfps&A%9yQhopPEiXZ&_sHB<6jilqB9L07 zC#^uIfXs;EIP!=Jh>*k?mg*MF$c5R=^w=*4L$a&HVRUXq)zN(yVRj_LH?-c$klRS9 z^0pG@DY2Q=qi{MH)L%cJpIYW8;nzhatx<+PY&*Rj@!Hj|`HZP4sdGiTgvt2XUhT#6 zoIRavw*|7C>uI-`6a`d5Yz0QviV?@gO_ZkgAMuF9ZU&&0;wk4Em(MPM-3n{^{3x4~ zdTntixs~1Dq1@Xy{mKNK!!k$+ZtDdab(Y|fVY$x-zru#uWl)pkNBDm8Mi!_>5{v;Z zI!osFozNaUcp$&q4yz4rpx@XEeWh-4uulWvnvN7F|i<>Y~xzv?C6-Pi(j1 zufGLFQo1`63VK+IY zdKL_iiUQb~3i#IGvHz4@5GMcj8?V z>RScD;urff4n;j(gP3Z`-TcDqs7xsJI%O|9O|q4At1N z7)RY|qHP}gNtObs z)Y#-!9h--9dwojXb8b$U#;@)Bu5;S^!4u+PE~vw}mOiN67-$4WyBDWo;BjX<`T}&P z{^bBOOn-Z6X+akKM7!!{l?pV<=zZH%XZMlIp9MCsxoC@51?Sbpq5o7sVfB8Y@_9hf z)xN5jGTe^0F z@M*)|#aMunur}s0g2U~nT*dK(8$_<}4N_YUuyd}s{q^n5hJha+{{~4xinCj%ghfbX zd>)&*eit;z8T~b!8x1hg*d92Q;f4m{*N`1*6tBBa6ON{YA$nCd#m;q09^9p1uvqQ$9HsnqXSLpnujL+U$jfzL{?_GUrsW_* zIO$bUcoM=5N(xFJb-cLmxRhkEep>#HXMb#+O=~fOR9VE3(mC|i(jnc7K5>$w8dFUd z9PS$-vi_Tumxns%#`Ts!ks_E6ILsbUC?`$O&QML5`5h?2QbJ{G{m40f)Q9bH5rJi8KS^rh5S4U#;!i0k0>iQfV zZ{Q`0CiJtBa>YY7>u`@B?jirBF9?F`o4Y zdj>XP^7Pz+N^i3&y;~XWwery`w8g%S5&iU6`Vp)SY7$BNB<{jef-sU8KA<@qR;)T# zLIMvwjxw}^D$F{-+d!xb3x916S>14eK-wTws(Q4+M571hoqaI7_ip#^oQ zjk)5ukpw4Mlu^D?5m5Bz2+LFVOEHk|yA}nMO^F~oS2x~5RbkaWM;g^zxTg&-%nSdT zFC9*gGi<~a|B}*xT7?uQxI=xDt2(_w3I1euq3%r&a5Kyf^zgbct-ZD3KQb^UTQu^XVv04@gj_{j zl(A8eROP^YBSGT?jO$dgK5G>*NSGSw;CP;J&L&~My-y9rYKCtOYDctQ`R87)t3ndr zR$hAX-GC;XA75k}46cvvIHW6+JiR7HJj`Fa_ox1+YHcq$1y)P23_A$6?TKrOs?Y-5 zOABjwG)Q~OKYq8`ZHWBJTgiQw`pyz^U5Qm~lgxVYv(m|4ZA75Uv$f16jwRg|nSdlu zO0S~KrpI(WV5N%pc!mR`rTMZ=*dtE5oEFUY&e-bb3+2*H5(JV)WjEJBQe#_wW#zY0 zWjEd&#vXRIzoBub(RK=N2qkmJpYrhjPKgK(_^@_ZWCnq44z|o~`9hdi{4{m3dIh_Sp3L6K0`0+>kC!>5c_)U*cST%QK6}j;a~AafG!nLhvHhQI z@91}H&xDFQrC84VA)vEGZjG`Iqcafy?3D_C>(OGUYMn^6xSSI5z z6glkMwc1iwWGm)sgrzvx6!bSh3U|KSZT`gWjqtk)99l?>yrRtT$@-Q5vGsKL??9Dd zhF*YY6K7!~q0Pu4N)Y~i zM$Gmk*S5oH{FCvxPH#FKv&cJ>jJ_MVbSuKtJ@l)Xn2HZQ_KXgs-MbCdEWkkP`ls)AvP@5?X4a( zbDhfvZZSdJCy80Uw~$E(IwO^TP5?FA8~NWl*f)BMS4(A_rwRNw#LRPjkDri$XGUl6>1ANs-Lo$*LIn0fRmU`D zpU8k4nI0pbU6yLZ4=ql1WcSYn{T7XqC>N7=c5~C2BAUX#x1By#Sn^5k`C?r~v8xd! zSisT-t}wXX)SmKQY9}!Nv4+#<JcKxRNAFKNR0LQ--`TsQc{~!5P)mZZr z?6w~|P5CTH)DfLa(9Q{1$=|f1RK(?7L0@rB9xoa^+Yy!o=AY5XXr*t;H}c>whX&yz z_NG}sR1BXEXZfxV&iLqHSr^g}5}xhx?c(VApif3b@GRkx9Ip3fj-c@W(9^c(r&KJ%3BexI!L__cA9xFJMY&hVW z+fE?#{(4y$1Kwx^=F-jWDe1ZtcWO1M&Xh>sgKP;_ShMbz=X7qCcT}q=rJhI|8=hv1 z`nEQ`TZaJY@}u*!pf+^IX$-0WVo0E-|KbO9^{GZ2l^wvBIlq|q_{9!Rt-w7F8)g3f z)V23Ly83T_#rm?hO#b;dkra>A&oxJA`5z@nA_5bz5Kij0MF%^)kiW#!VCz5br3LO;&XvFmB6t ztQh!ve2}m+15kmDwc>AIU*8r;%~d7} z7{q=z66820afAk5K&d_CPK;lggi+l%KgmTCA5um>_>3X1*Na%vBAqy|zTv+`fvt~v zc*E&E%qf131pawENR2?c&li#vfT<(Dnq3tow^Ros_UspV`YEly2!{HHDDBJo`EYXI z1zV4LZ;G^x`du3fxX&!mM z{zeg#{>?2Ez}#@d$I_K6@oBv8saDi}AZlouHSfC;Y1WC0Pl?ew>d5VAmdTg#KVP!^ zcRVh`+e6e@T_?T=?l>>npZhI@#w$t~)J_+Ilu%LMkD1bt zT^~DM&vA!gHh;t9piD$NIaqb-va+~TIl~Gtgj1y5tk8p?Rjzy23_;{px#wfXNT_&F z;_OJhK89?^2`lGS6b^f228EH+NJ$+#EQ;1ASjD%r2wsgTqpJg=Ss0WTN3sQIw{a45 z@Ke}j-`xed7g%;zGrNma+rXiCa2=g%Ms~?>w?Y;e=qe<=g~R2%EvmAR9%r_&ryXjD zp!nh&706Nm^md#F3Kasabdx(x$fOa-z3tOds13DT!$o1=6W!8XyWHnQi;4YyvZRVv z>uK}7y?`l?aU@Kdacn8DYwyHW zezyzX0=0VlrxnDukutFE{mmSJ(QQ_TYq-bN?JG-)+=aP~u{72^LXid^Qg8?JpqElrFtep}HDG0S*=k5k2t@>S7O_eB+X)RW)l`Nw0ffjkQv%@xgyN^ZMv@c(VNQasJhyc-8lR_LBb# zjx*1by0k?Tu2V2az0dQ4HZ~b-+4w^%QS`lHq)I1Lw_{W!tFG5DTVO$y`|e@_ zE>Fpc4>tg4&zwF_$jG1Vt67Lq_$&7w#*dr){>s>Nw|AaxvGG)@s3aE$D6k zxeCqC3_T4;MmGu8tiB7G74P~jfUGbHu^+c7 zAcI9sqaAtG{=?4&jdxu>FD4E?-~kZ+%q)h(?)ZxsXos~k8noOx;G28^P?Ic08^ z4kBGNN+|4puNh%!^-UVBMBi+h)D*paN|NIVm)DfTk~){32G_&Rx~ku(>IZ6&)+QV~ zBPSn`nOd)Ac3<7MtqSv&SxJA`;P~ZcZOmnMO;m-FUWl`r#76C5S=ykh_v~@ZHYCGR*f%_4eZg_n>!g)}A z{2;kzt#$G#A3mX%bdKy_t;i4GBSCrRQ5;Nir(?2rWJ*_GWD8!kVBDYrq3o~<@$zX2 zI{{Zl#G;hQO@A#yQ^#XhBxELKAz#q;T=YrD$5~l6c>kXzRi}ceUtg8hlQKS=8DOaV zt%VoqGQ zj?ixvXgQtwU6e>^3OqZdB2-v9FIVt(w^@R8!ahWDGzy5G-r*&<^`0H{--p^*Os0Ql zDFT+c#t9Y*99Wj@IJ*OgS>^?VyZ+xDLcAN2#Boz=6E@3=I5UsH!XROk=njX?nni?1 z^VJ6&A9^%vEz4Ewx5|<8lg8igMIhM^|YH9#jhwK@00KkntQgZ*FMQiRupo)zZbNy(PC6f+W26Q^%V=%8jmC-<{C%h~x6Sbb<>rD)Bh< z`FB>b4w0fs6(h0@y27^XkpQwP_p|U=C7^!s-THZz(+++M2Ub^8k_p1BsJtvQLF6vQ zYE;C4@7G!2JSkMORTP;;3LVtb?;SZITa#apGpA>L6m_ajW91JR9>=^a15*83N;*5I zJ_H!N)tz&1VTcq#s;7oM(XFZQ`TnG|C0&IGN+cKeh(Y_af|fG5isbTXDLjac^;en$;82u2sPLPV7lmctytzD!JVK5`jJbn$ zdzpa6NKTT>$;l5+TJpZ(zLVr+181o03G|p!&b{USX>(A+BjdDf?euFV}f!OFp-(#F~g?058B%=0-W1$txFb2zme z$`oC!fs)!~+fvdh3eCMsc0B*0_x3tV;hAt#Jf71-rzSjAb=xc4&H2ar$-6%D4C$KF z6f}s>5X{2OKy~ZG5PA#I9FDbvPR{HlN`gbN;^->lv!AEfE8FPTo_QSWs3`u&=<}s5t$-g|4>h@`>L7OQ~h&EQ!_?<)>`)& zopG+s-1FrFihd61_|*ftz@Mf!VYM>KUba$BnX{Esr+W)XEh(ah?F%LMam&xa8LU>a z9KI<&ffGjP>geq?Vk+CGba0wb#>$cqCvmDLc4qmEb)*|QkUCzV!m-v|cZK)DZHxE9Psc;uQh z`?;~B68M?*`_4$Mw(vh^l~^};2PnyPot>cNJT=)K!W zD+kMn@>j|swoj=Ic&*!lJQzuFcE#i7*nWUj9V*T^j4DN)#vv(&%>V*&*mbppIH^4O zAQ3_p$#b^bykLLtkEf1D3qMWd*TBg4$0PS7;>RV8Mks%68>^O5NJSuPhl7vjxlcz& z*KLR;q#)x;?);*g?Rn1yy+z2E`1#vJ!sh9e@d#kW(R{?9M}F^gD$UzH--~hk-Uy`t zi#Yu)kEM@lIO#Xv$#Q}#%=8Y~C;}{q4jm-|wl!Mu^*~_~)0r|iK|KbN!P&ptx$Y~d zzHj&t5kYcyr4LnD_jly@v%|xk)OfIh`#=_;q6dZh2X@a_lrP-#?CWWH+0v*|>FZCP zX%kX3H3#A9gNd#6g8H7(>-tF_#451Q>c2GwysM}G7uoPR^E)h(#qqmp=@ZynK23FF zB+VNi8k5R=>Ooh~vn)D>_!^rD;>PktS?Xk=hCP|$Ja3=>Gst+%Tl}fT;K5(AD|595 ziyCaR%(@;ToH|58bT>iC=+hjQTLj}2UDkM<)k=bGk?DPldtBnubA*9P5qU}`Cx14> zS+FO`NZZ|8uLqPqA-)CTzn`$^R0&4*LiJT@_JFTv;)9)!W<=#Zk?*OAeB~L(XI2GM zPo|Li+Ixr;)Z>;`W|#=tYhG7yNQfnSZ>8O8Do4C{@mI>Bc<=!uY%o^5AocTXDn$Ia zgalUc@Xha94p;@z`C5=_T_+X80yk^}>I~&5M9dO`-7IyLT+O^UhUVO%R(oomuqySP z5PtT1C(JHX*pX;1G`cU5y;xY^u` zHepaJ1|aX88+AkdskYpEw3v1=YvW_(k%awuc`Q3>&^@o}mKw!TSbk|d*V<2PJL3!z zYOUu8b}y>k8Jfn+nMEfB18up{N>zEG(}f?2a@OEBQW1hC;518 zU1say=6o6=;LC#mXUp6Bt)|QiDV5~b_J{uA;krwidN4QTpgYZ95+1}n5$f{yJ$o|JV67%eKHtvzmfeUozCXn22$^KXI7<5^236>>IiP~|w5jjU(>P8vmlQ))+0 zXNDVzXpHYxb`Hxk-;rYPZ&geX^EQXfpDL8P?xQ{p>O z$ADlPs@92R;F}E~B>Na+Qy0j#(HeddCv$KLoW=OE)!%}-d9J+lr*t(-^l#;JH9HvE zO9{T~nx2$d{#4f0jDYRoAOK3;*wu0bBWKq@rWSp?Fp*(ClbcC$4gGe+znOsiWZ8<` z2<$KCqJmO+*E&3V{4Sj;)M_pd8{U~PE2DXsH4zGdDO3mCLaP>6j`4e}0JJ}DFaxEi z%iRWk%g}Ox%Ui6|{pT5=4C8rF<`|OHFp+!avh>h+yy~9@+gZ!RU>P?)0}*w(*$g8< z|6Oa27A{IMSLpU`tjxWjst03_SjZxicR50J^1&q5dsT2eIfcWE*qOQ*u+6*6YL86D zed0+2*Mj7YOO4|q1f34mA~O8uXQ8+*+F7_qDvW;Lk82yQKTS42AEhLhze%#I$ZRvr zUkb*9ndI9tWo!zwR3^dWt+Ipl6^6gjgd8T2j4GR84xdvNfR+* zwTV4dkN-!L#%;WDQMC%)cN|l4!CAIx3l`nUO5|tn{KNcTzo+`Y8SRmQuz%!r2r7F) zVM2?QAgFrOu##9NZ4OiR}-^Hm_Qu0XMc4`XmPxdVeiUO;_|wK-P+Xh z-%_vI5Q5G6-hlnY_JPGC6sL+nW%jwn25_Eqc1W7PP4(j^?T;@LQmeZY;-FTqCLL6l zus}?G`+g9U>(qkPid>XI+e)Cds^yni<~D~y12dN*?@^9ps8wjiHqYOp0PZB?@9M*U zKg!qhd8tk=IO_MU0xh%ob#%B5+Bjm>rb6RL+HtU@= zjmFF%+Cz`8zF3ePQCHDQpl9JnQZOSjpevx&P!AI?oe- z38Ex{Jri{Yjk!R6h;4GV+}9Gm}kEcCR40P+)3!FaQ>8;T}iq)@tn@A=*?2qqI0-gfG^HBD;Umm~yh?qtd++R-Y@VRTVBt=oR!CL^J$m5NLr zAc-m0J{vTlEm#B2o?}^PP?CZ3R~ZcT1!pBanO*#H5c5N;NC)&omz#NKi_ia({maVf z_5CTYf_@3tA-yWm1E^4VZD-&4J=d=|F;;VZbWvtvRI0N<_V2Kok00&oF#P#xjH;Kh zaE30fiNo$}htJ)lW==!$sQY0|}Z;Li-V#@Dq5b5!D+HY@pk!JT3<8-Mz8qynL( z)Y!n3A&#+bVh2q4m2_W&jsIok{<50Gy3nqsE-qXGhYz_7+gqPZ){-+QqDrd_&5G{l z3jZWWi^tb&4aj@y2ZS7VvJCxzq)jJeV8;??C}?3@3w6)Y@Lde^0+;a+y3dSb@Co-U zG296fATyF@SRFZQQhkmSaD9i}l4;{M@KogauxCsQ*om7CtcR1swE1LAF9clEty?|_ zqP{-$WXo_#7ayJMMzHkfV8?U1e#`nd9DrVG>@H#%OS%JoApeD?vkfA7mKTw-i1o} zp=wWkA=}gbtDPehS~VK#>-4zv4?DrZ2-(|yudiQE%-@V;aD#`PScY&bE@}YCQOM8ZIt+}P{oJunC)<~9+?>WF1N{auv z94l>~_a8Al*s2m%o_TwT4!|ZDI<t5H88XClp~1y=J+mTA{)$}jIy%AFzAf#^Yo4j zp+dGlBwZ+T+M+{`+lO;0zF1NE3b=>g5@nvrMS!ZK({zzq9Ngs)g%i6=r}KN#TfMx< z{XPDFIhqyAQ5y{$5eb<(~rcW36|^%ypvmG4LCEro=jZ+d2lRA5$l9 z=t~fUJ;i3Ln$+34`;ndcPEM}= z=|bjP#ggsO)eO$9W=m(we}zsSnG^)9r4sb6Xrz7ZiC1UP)Zwk}q|+u+tG)VP7qodz zHc1yqCh8_-pEzcgsL%)NAj)H5JDKcCVa;e`rodM6@) z4Icu(aByxYsTF<@6ebJbc}{qnCW^wY6=&i3z{f(Ck!nogog3WUyzrvBaDgkRKsMxgDC|2(xPm18$iunbpYmV7eP4 zK!2q9ZCbKbhQtHOPrlss-dCm`>j(|yqFY{ z_8*sS%L9yE_0uSco?hPOoL%07|9&porNFdaw{rS#KohT}s9e9#OmQc5 zLS(DFj5{x^gVM`Cw`B{i`^ZR*y6OxH4LU>z)|@vYQ7^dJT1^xTV)A)go&Q=N-&QlL zytgG97IeEw&a#uo*QfWtadzJCZ1>^Yx7BW`y?VD*wW&QrRkgON6=K$kS|zbVsJiVA zdj>^pMeNmDwO5Eusl)3x&ri?yIga~(_`HwLb)MIGzOL+Nx$Z7}ar?=?uDHK= ziCDws6a1xLQYGXI3JrNtI~t7gmlNw;EnEVS60P=^OQJ6pHnJuf@SVy!S;x9lu+%wT zo{Lt}!_Qr*Lj9?fZF;tm_R;N4jGq+7zcB)=DBCp?`XXrPz8TcdCd9TqXbGGIT5CZ> zz?gKwN+W%P=0rd6X8Wxo29-f*(PA|E-aQ2Pxgus)lw8nbJUShBPgS{zYguB39;r>i%=CyEKHGj> z+N1Qupp>>fqv$cIw3~X|(n03~=cVbp8Ku-=zCSrZZvgNINb#~k9bU4+hwUs3-$QMt z1iP2J*gKp~8$9bR$zbzux#fQowV9vEE_P@xCom{vU*+BN+ogLa)=VH8ab53rpM2fH z>Fcn4saqP#>4iUbuNuy!XFFJ1}W)NnpSZcjoUG6AQw6Z`9Ao_p&Nlos4>wRh35D?$6eKa7p9 zz6HfUp-AO#OMuOPnHEuk>47W|#7*Wt!-f#@b!jI#!H|<8AS50XpDvjS+^HbA!(ea$q8|KY7?z2NL&){C zwTG+c&AdZvz=Shelrl|660Pj07PjtiY3Z%Gc63`Pr8|7Vg8G{ab(=Jk<|9K5jKJmu zz0soKpxz+EN-dE&$K7A}15hhX$_z=Cx85c4F&H1SzRsTba5TZmzmRG(|I(DBjvb{}jix!v!6ESiKE8$N3VAIP@t5w--255DyUa zvLhkN5IzIW-jC4>xuI{&MqMjDu#%}~;CCHU!x2Z>zkbNwyZa(DkX5mkm8_2Py;k`W z+y-uIJ>n|AY($fnSeQcw(|Sp1bWF9!jkPvbykb7B$!9r#o9AvEg9|Z8CvOpg1@d!Q zlPV?sgZ~_$zl<$g3ZC;5@bo3i(edx5(A!G+_7@=|{o)oN=Zk7iF)1 zJV*1{#5{SUKC}df6no5$6db~(``!(CTkAV3N;DnB2C#~oSDZz{bchOPM#{2^)^eqN zuO3~ID~y($|BZihW@4k%Py_psCn0`+*|%h$+qrS5p>nf3BH2X^>*5tK%GLJbZTTtV zf7cg6KfRJz!G@I+Br#d_h9QHHky!-Aapl~>-v{7dq3ODD77E~r_p%b!Q8(d{*Yl>p z@57yVp@cZW7rJb00jBn?4BlhkX*mcJ?E?ybl{PJw=+Y)4e@PstM9Js5AJwIP+6jsG zp9!9|QrC$amCNuzYKIkVab+)WjRAaL0DfgkfOq-P$i;$~gm}FUDRIT}n8TCJ$x7k- z*LD3P+94--g-55(ID&F_qFa*>h#4Yu7~S_ZGW7s9aSJZNf8~z1WzK`@Dk=89phUSQ znpyUcBIW|0-*?o}#NYOf!1dB#Ojb%sn_o~%v+T|MUy>pJ<%?rJ9)6)o!Hr%jghjLL z)HMqND!{6I=Lc~UjL>5r%?rPVG`<2@u&#S}$V8{D?3-AzZlsP=AN5+A0Ex3PN=++O zORv!tjbd-nGWpQ7c}MYgp?X6B(7%&V#Apl5wNU)W= zv+QW(+M86aAh)sQRx@IpHE;Xy5SYxF?&38&Mg*Sx?Pkm<`r_WiZ|QP#^84*ln*AQ! z2DdB=SlSO_B<9gbW$Qf2+vi6U+$>L2$t_db{H=MOx)O@LXeQvmHr-9wED-V7n9oSM zJv3C-w!fw<_<`Syb?WH=D_N1^_cg~uwJNwP(r=jJhROwl^S2I@I^~)n2+ju!B3wLR`G$Uc*0;MOHa8H1q5O zH^Nh2$@IpbT4j$tUv`F_yR?RgR7v8xL*m7W>!7t|+OK)4tX_TkH({N`^~~YR#Q=}G z#njVXROEexE==8RHNnotD*aseftP6Qc%0f{yq{X>n*AI>!J)%%w+Q8%_)y#=liH|d zFg!U{eQ%k#F+9+u~WgkX$2ZNTUFGq3cZb1Lhc?^Hlbg9wg#)JD%GA=^ zgdOh#y4#E)Go3XH!VxlP>5shwX3pAw(X;;mY#OEcS3`-%DtxE*-E9cDJ@2 zY`;MqIyGtYJiYb$-;dY1h=Ef^zGiA5TZ@mfn&#(XCbBuIB-Mn_4nk@s+d-j=~GO1qb@2?6EP z$jA^Q+uX{Rpvu!hSSdqSTU#jK&QEYGsGq22F)~=OOpzq6ZF)E|kif@}z7m2IS&>l! zqW6sDAK1t^DC2RpXkt?&O(?PaI8BmXO^@L zMi}8LWh{9nS&a($G0QTNThQT6VTWFVr7%F3XPSe-=?zUSL=q6KzH2 zw$V;+*$*IfJ7nSCb>k%+{OtX$B}O+FRev%)+2H4_T(y01wMt_1)@m%oK97NRwYzgG z9HXXfSf%qoh#ENMmE0ovSM_jih$1|y6ydK?eH;z2{qNO^tST=~Tz7tU?e*XQ+l#Bd z`Db0Cj4DUCxSe^=KOTih9?5!*;5V_lbXNcNogGO*slZ9G2NN?asjej1U70_9uFu{D za5#Q+1pXblVch|`VI*@z&_9ZwHI^-;4$P*gU^?fGp+Yt?h5FSEV|NQfjC0Bi>hCwT z!l-x;4!wYy^Bg(^X7`KzhJZqg{kQSCP*6~Vc*aZo!Js8F3V1Z9V#>!ZT{7|AQiEQ) z%zjOO?aq_iRlo?I!6O&ScaE2l*1#)B55R1=z$t4P>QTF)jxI9+Y`m0BkdVs$5(7kr zyXCAmO+smfv*SAtp;17fkqZ77p?StUAOn}leBf355 zTIN}Y2{^_N_vhaQjpc|au#Q$W`634*enyFT?qc(Au)*twWJ(dIB}-xb zw;!=zSO?p1@Z0QCn=MR@RO!Cv(TWyLQyja-ZkW*%DO1f_2!>&_l|rN9`1bINCh9 zB}MqDo^lGMOUNT%lZr8>0Z$vRE!pEDUA;mISoMY{Un*~w9mzi)Bq1GeITU{+2{|z2 z49H3>;>LGddeu15lX_!&h7`HPA+z*dRQ0m$Y`=a3lqrE*}&;xk7?8FW!A@-}p6?p}fZ^{S|ff_V6A%x}vML zLO&nwo-J3RLt0-+n1{%&JR5BX^PU|gl3oR0?a8>lMzpgzNmX52*Em$2l%sCS;0meG)$Q#PYgPW}$kRTm(D;M){RMU$15204Kq`e#Xz&3l zw_BAL4+Z+(x1PhV6~0$%l@f$}GxTy2E1(KB`=Y^LVh)Q zWDrLcnFHM=DmhJGElFuqRi>LKj9HT+T`_BpJh~+PDEl7lUw1^T@2d+bHzM$#iM~F` zhj7LWrR$4$nY)+N@k^YKh{GZa8fU-#Qd?Hc^|wR_-;rTYD7grxA)9!9KSzFu{90Dq z2uDfZ!Jw;>V?o!kguVb{*JnC-QBl4+t*m}CW8Q$-VDju^INwhp0uh1WgnAsF(b3xU zMiR3w>6!Gc)^(^0{!OTO&c234js<#AQ5_ySloBZBq`*Gy#DP_UaZ_z?cwLv?#}Ns+ zjU-er2X>?r@*N$uvVdHYG??p?+T> z9VD-301pBuzgJL8DnhOjgwaK@*S}d+>akxNKH`XO9y&;Sh*2P zc~{UAyLVrnqKnSl`+6lnvevtE!Yzu@AF8E!C-&dZP2Xnm-YzVuoQ3+k=>Og6O_i_! zX)blqdR#4M#x?HzO_E44s8M()yy6+6OqIZVgtgx>8!3H`-xyY&FH^qVJm`6vv4AH$ zmJ+3f3_2Bt00%X_`A`>6_ezfN+2cH~uLV3{)1%$nw}S-n_nv`s7{Mu->5O2Z0o58~ zK?c-T*kt%<5F!KCLobt&3l(vZ08NF>G9xaR^C(A`+IV;_rK#8Z83L^mg-EZwkp1;@ z)F{_(tg&|`QPyhOp%W8$DW)jhf5&f;Cq!x?z=V3e*}ukK9})l3K~g|W8lj$D6uu>h zAmzQV_Ld?!Po1AT6J#=I2FJqQS83p*&)K&_fk;lZ)C zv4ww^&jA?%CSOs*@G~gKXEB(|@r|oj2l-%3)BJ|$tg5^j0J_Rc3C0W5Kg0+l{xV9f zA$ji7{=HJ!sh|ndXQrt|tAsBPce5|-R)lpp41LGU#i}7Nk3Lk}D&6TRfRsZ-C}6og zJKIVw%Q>%{1?t|Dw7ayMrd)#)jQ)YYUfrbfQZ;SN3Gy1&S8aX zdbWM<1!x=t`KS53^(r$9=f?6Z(~`zJK*unf_i7CPSq!76E9P_Uxxt_NL{jRhkQyJp z=?1xppE*sY^yP`RZhX0qpr`x9wHd?~rr=QW;GSR*GGRfs*J<@*d(wxq;7RIS$MUo> zkxP7{cNWh?zC?mhbU@-VZk}hplI@p&W(u3=SeHLR*@29^>uSb1$6=o2k9t6+ius*g z6_m2K9?~!}wcfPEZpVAzJu4W!vl#vEcH%N~KT3amse7M*9@0**rO+OpVfpAkQhMbq z>^NK*=K3p=yfs?rQUEQLaX9y|%&_Jq{na$~;pI>w{$$lKC4d$+L!OHSjR-F3sJCu3 z@ee%hUOfx$bQ~|{Kv&RE4M^ALL;WT3K$=i@Uj8DBPdJUy6AMk;L$K)|O?sX1&cK*xMKQ zXWDj7vUyOEFP3|!GNU^XW}&18)m`&0s{qC&*%Nk=8#+LHo=tr0tR^C zA|8Ouh7t58M|=ER+MoR9p52~gaFER+!}^W|wslYxdbwR4_|Z6DeU>Qqe#{Gmh~Zx? zsk7F2i;BNZotolK(cM_TMW)$uZAJ6yM$y zMP5HP2{@X|dxH1;Q0gBiuk=Aq)8uq7`&F+QIxClZKF6a(yqxR%Nw@7zsWc<&=9Fzs zjmv-$&$*!aykC};{oqXjHMb}k3A;+4aFz)uK-T5Jp zb;@KSHSgdOONbJCEGfxP&Z0OQR|>kCB;|4@gR zM)wm9-Qr*%f?&IWZTVOv3xbnA*>}W>+DG?X;D?_zqMboBD>sqh2*U?#?pgL1;7yWr zk{`A{^(O6PM-i^RjR@3xE@D{A;)8(>d2e@|=RpY73VG@8ahF`sGWZWh6)i4{4U>xWP<3l9_j8$W zL$G8Fdz)1=AiY++r*sU7)fP5H?hUd&@VnHkXophW(IfZSDQ}?(b9<-}p)sK*P8h`V zc~p?JOZ?udIsa#QNu^5t@Eg;f2u7sw&xgCG$-$?({^NPc_;1vDgNYdWf=L&byXL9!C( z^tYv9j&>MHl^wP%b$XORIBijC1Lo#TV^OCN5llMU(`;OJF-AV{p_Ko(Sp!T)$~d7tKLkB)O^F9v(c*7{jBxuZPp{r5k`(SG^8#z>@) zFGE($LM*U0g~wO>zO+jPX7VXI6y5|czDJDIuP1f4vfyiRJucB#0{{MOeN%3EqDFdJ@L%WM`CBfI&xWk`k)U?>m%v>Mg&=C)0RNY}}Bt(KVgGq_a0z&8aQuk}f&hBR(? zT$fU=KZ~;IR3`HI*=R8U6eYf@18DT^3yq2;IO?zc*;k2DoE()RUJqn#3YS?X#6uy* z`jcemCH`Cbea{gi71eY{btJQr(}NE5!|j!BDOohx7;cK>xtdnE6_b;L_%+FB38~C% z^CNh2l2p(yLCTU!j8VC-r~!n|Hz&H0G|9rOSTutYebxI&pY=BpL}u1?N`()x9h<~u z%|=|HczJy0H}4KUPXj<@)gE|`O2JO($>ha;nJb=zKX_Geu-bS3Zt7zC*YiEuJ6N4r z=y8V1-khE_gcm}8N(j;uCOY9S8NRF^V^uRuYiGu4G&bUbl6ovfg*Lz~^7CGc1;Nq*DfuiT${iT&D=&An~75#sL zt+!m}=gImvYbhqL|8HIHpR7ws#WSH4eUa;+&u;fsKJpI?N4R`c@acbo(j`CsJsREn zJdQoHA&`pZ*lw>hg64vI6OH--jwDa@wc@jU;l>&8SK-*5%`y4c8P~k~(_M=ZeUU*^ z*NaJmB8sg-?fLzmXV-V`_ul+`+mG2-6uD)XkZtg0SGl zZZZ5OUZ@R*Y&}#Op4~Auh3-)!z=Y@+B8|M^YLWd>O zf>Ofg*39Zt_=iXp2F_e7m1)*%E88pCEy)xl9C1S;enGMXl^Drx|B9#DPw-e$?%#m( z>1(3V-d~r)X+=b>xI@iHt&^%ANtptCrc||y^thaS?ogAq6Tu2PY5f%@d#y7LghCHw z!C!{tEh=|9FJl)Tz%H)5^_Iw>zM8e%*Ni5ya(z=fQaf~3z!X3U&@A4}48n@@KK+6B zmXX>aQ~NfN!I7bQSBU{L?XGl-=1@U5Sq0LO)C|Y`vsA7oZv9%);pD+y^Wdh|$pZ0p zOl}Mvv1I7({_9n}RF=I-d)KnndXj`)D6Gdwb6Gj8U}=ex#3RtPtI#=Qx$egB^_u|N z`7KHBmjD-{oo9IN6CuO)l6q8|h$RD;MYyFqhQUUb1;5WUNmSRF{Eyd+jSVU|I?8gC zx~#LXNlU>M5tnl6w*1G{S@Em%%PU73adKX1dNN(ILW?X=Y`skFxQ}PInxZp=;Ml$0 zNFIB_a}uX11os-uU^=;=to1qaRG;!wi;0xoU0Eys@5bukDJSc;f!KMy&NQ;|ZVhg+ z;fopl~3J!R{1`+IgJ*9Q}IcNJ$z^eA(NFy(*Tik-2a35+* zKd2ym#^X3rig+nG=u-GnpZ*Un#hY($Brw1RGt*!Gr6Fgv=8+@Ku1s)~n4Ft{)^z?J0l=K6%C~6RckBk7; zZ3WF8-#o5=7w6f$O09V*;ju6+B7m-fjHpZQA1ZHGMwm3T^YCk@#eFkq4#Un@bnZ?Z zBQ*LRS^HtYA2$8aIm0rh<)=(YP)ZoR+c)BLtNKrkcScCt+nsXOWzZF|wM|dZymbRV z7vxjmj^_g+U;OU)9Ikl~8yOsK+ENySkHqJNQF0so$ntd=FaYT(E{Lo;{?jG6o3y^(5(awKb#_~9X0_dhY6rYp;&px@b z!WP326!j5<@98N^e*Au9)AzFBh_Tk5S_NvCx+aUu451#i~t{Wn? ziIF?uTW}>Y`5l#AbZOqf!P=}9kVaCQh0!@r{z;C_$rBg@vUe!i;+?X*7=eLLKV>HW zQyTyXvVU`Ymrc2T-r^Tc=$~MX8K=NUwMUsH8IL81L>4tWnfe|6yR49Lk}7nwisbMq zs>>2f0DeF3Uf?53$@m$~NveXY<*hYWJ)uQc+#vAFDIVdGZ zD+0IC%#8%`vHH^--a0!T<|-P&Ti?g2eNOVB5t&kJh51mo;N=E=CTIAIf|~?dbVW40 z%5A`)xnii@^z&`4$kV|SEpkifs5Bp*Fl^2qmNS9l_D!d<3kLWMn->@Dm)fFdk9zEdLbWO$R$HY> zO!k#KQu`vAsJ%M&czZ)>IkGENNjmM$WnBCSulGeLKr7I(zrbX9Etc93X-U;`CD9vR zz!)kEy-o}_;vtdU=*vejZgebsuZNvRQ z%K&LdGMfiV;vagmFa2HxVsxR>t)Gi3Rk&yEw5~0gb7{nVGi&OI$8kG@E!Hc41oJN!9mZ@1v> zq?PWo;Ja+GI{4;~{H8oIQmUfnwhdc2G1It@67n7Rdg}KFR9ajtX_5yGPH#B{N`q6j ze)KXK#H@2iLX8)1L57Yu{M3NnjJk_2BH3cl8+yqITg2Rxrb%(Euz#aQz5h+WUr z4??3Zt38232gC~dF}gN?EfD!01)!woanz7gChzV$>xbI9y#HF0&IY1>#whcs@>xX8GY@x^Ih|oF0rJ(?rDhkM<&yqq>^4()H zt4}{vE5^`5$xYHA<*b+S`6_(YRLLoP;2q*h^p0Gzcdf=PcK_JE zXG}`yuH|KFHz$}FZf;R^Xu^8;Y3vWz)&=q)Evt!aUyf53Bg{$Z2u0hseYgdAb%&{3 zh)dGs{pHCv-SVOyQn6~BcSoZ{$AoUnppqo*d`Wj^?p#|3B+&hF)){95(~%L2X#+8T zvCS_97EZZM4f7l;ULxpJ%`;t-`&Fh(F0o%lh)vW+cj3pR9nVg<>U-6hXQRuNips5M z-6-sOSLaVV2K{$RGxyk1n@+Cv+nS!ce(Dlf_yHa*+2E-*=VN6X`Cef9`#Y)nYBxS2 ze+9u8TtDu!NnML%_#TZp|NoqH`Cp_1xBhmPE=`C~xBK5=EF1cvS4JWuItzYeS}B|G z5>%ZmBFdsN?-bih(AE6Na1|wOB~E_WI=!RzXDdgOyFI9D`*h>jlX$d~36rH9%;Npa zc4*^QBx#>pJKM)|Nn|c)uCvP@GcxYe5_vIqj9VcDBQ@ca6XA0azQy#LEY!R^6Mp!G z9O6OowKyTe&HzlynGY8V>1+8E#UY(%8ba{8Dou5#Ru2eIrE2jOGS~_zwbB_qgZH_6 z;?;FGbl-Tfa3?g51h*%W7tXs{G`>KWr;oA3Apa*d^&;hEudnRU6~~bu`k|x?&&F&wPTbKIf^*a0+b2{n^2EXg0hNCb041cG zHTJ-kPlC`DR)xSi;?c7adi)KFb-g~4+%T9Q4wJtzoAH@n`c?~R_&?9<;TN)^n^ z&@_L!oRxfL1@9rRsLDq%zS$`_$iwkiHcBV7^tcMIxuNv zrE?T$$gMy?lQ=K1KnQi!^x}d+=Ik1E9n+3AwP=aEKtYqhx_=iUlid!j2!N;mz5J#y z*XlDC62Wm)c5oj+hH|cqS<3Z9Kc%C4y#gf?%Q`4q@ z43H|T4(fZ)I_Qu&5(AdN^!QgyM;9M2+az$p^e%=ovHEfedVZ5d1#&mhh-Fh#&k!N~ z@@D=Zxshz&mfZ;nS+fPn%<#tV0}ARq-r(uC{^*9qYYkp?R{MkCw}7r2TyUyERO7=L zwB@NMLV1_l4kbQvBe#eRWzTC|rr)&5nL4R;Mkg#xZ_0)-P0j> z%&bGrNdW--$f(EGXBTuTkks@Zl&+U^Ds1Y7Ao>I{378yt)axt)|=BK2q;izsy(5Tv7i=As-q)Ci4 z`#mim82Sv@Aj#Lk@>C<=ToL$QReX7TzWFBy*;?>O0=2ZTiEZ6Ph3*5-g%9rfQ@VG{ zRC;Pshe_aFB9cr1?&Xv?W9pq%lAE%0?NxpDmW9P|0)~%Cl7CLH=6=ABp1{7WAd3q|3wQ68@L|aZQ#>e67=Du)S)e7J z8&H>T%(byd1*&h22Sm+J26VhqZuB@m;<6D=&)S%6qyX}?+!K2m!XR>3?&io}`QOVu z0n-(QK@kjR5=w^yT+(2~?9%jx0(hJ_q5c}F7!DHMG(9lL8CIN+t7idYtakrFf3hu} z6Bxv#Rs%Q$qa!$;NFF;#W9PX!nSdXC%VF)C3iN=Y(ZGPlJHz?1oo+}5+){3RJ%SrG z&==6lEORGh>xJ#Z>%g3Eugo$S3QrEcFpvxyidOufH25aSxEW-K3&^<=MjLe8AB?VT zh`ebVJy{k&SF1!etPyzZdZeS0SN2aFXu)E?JEU}#_&h$&)q4n}Pd*G<*YCY=9x_-k z*34Iw2QAoD03I`;O7lTa7)I0y)ytTTawMpibvp_WJDZfGh!x~(Cn3&s6NhPuZ)~PhdoBzAs4OY9oJp{oJ+5 zg~Y%&f#4(1MzZslRw(ohkzv0drPg zCQSry&ZJZ9y+d|>Rl3fssP^Dmw?c7(;xuB_^o2tu#kIheY~$E&X#3?pM+E~o#YRrw z5fiwqJl$p+cLH2?GtS`6Zl!7<@pV-oM+r$in*TdRyIkVSTtpE=go_#e?FW$YEDL&P zYKkRpUhGoCe|lI&5Kzu=@@FwCzY2N$!ztOjAnH}8g0sDDO|v04og3w1vA@Y8nd87u zfZ~7zo=;F(I}d@n?gsUd=qMI74EIKKAgxt8=lF=&p!uDYEL+dDL2F$`@2P?B?ZslX zV5Fv z*5M~ZPFTRJMqCK&-ltjSpulRpCA#8*=SlwlMYSf#_}LAy&(?V;ML*CmO}r&J4+d5p{CR;Ey^e?@tQj`{ z8hOF%Npk)(D|Dt9neY2mzXy`n1{&EjMaPhwk6Yw??|8gDvePhUu89Cih1ZJJO^lpS?V$H? zPrJf8#%!9CT$t{lc^zJ4WiedB1ZGNTotB+U%BF;pN!teY;%klOLMy)qsM^lBEKg3K z&MzwwTlsnZZaAe_b}{qalR=UY@_lCWDYrtKD=$CSG?05zhzc7(RcJH+ozyMoC51~0 zo&IigjS1yWS-M{wLOLDYiDj658JbjPbgaE zNd_$*bl{ue0*fcbjkj4peSnu``~D;GPuS>mHfiF{1c#HYXV@L8jBLF5&VVPks5TIj(oIegbjfO;-4(@OSDl z(tLsD$-0j%i$)*UOV9>{4g6K}YLjYH9z1vJ18F66Eh~X?=j*PCl~rL&8*62JvK9 zGE2i>glJZ3#}<7WsamdbVLAP#d8b z*ZkolgWH>LSdPwjHdcX!%4%9nsb5(vwAiqt903VVWmmL7e(Cd#-vr`E@9G-Dx;SiN z>;KK14&ecYRS2DkYyWru2nS?Ua+!F}y&^W|*%}*AdxJ+mL|6T^o@>Ijsk+TB9(6hi zIezKg8hJi6UT}DOGZ`m3xh+s5e*1M>D}VBr6Z2ou9Ap}?4`&u%kQBu&c8zeG;9O{$A1**{^KB)tBzndcEjq~w z91}8VX2}79#6HcUM!jO5-`Yn9Q19Ls2u0_y_+vk-*&#)=${+u{>aBP)Lr;Kffjqjf2s)LM#fGrd`GPvv{-nRqU_UnDjj zn^Zxz*rkqnRMbY{K13{7O1>e*A9%9qJYQf_ zFqf#NN4*nwE_l@{0XFp;X9L`BbrrwbRsVz3(1@$ot+Q1Ddi#{pIlkHsu;wcLw-~nBB+qO^!yC_s{w5%;gSP@!_&sm?)8JyxdRvahw)S7ABNq`d*LQY5K&&hS zsgFyJF({$%RP&e0u9xEBAKp9X_7s0t-ZN6iKg+q;zBWWxbW~-IAO%1!54%aFz?e#V z&Vlek?M1?|G;Ege_6)BlNM`mwUF{ zqwZ}VvSe;9Io#G-sTA9(SvBfc>B>LcQ-Sk*vjT#*GM7fvBR=ls5w8yC`5 zzMCOj+lW;*I};>JJ&Ha5=KGR(;tDy~OyuE=e>yK%ox@Pxi`@)v79@>@T9ne}u-S06 zuCdmI(AOFOZjZghg|pPVRMxNe|99WCGA@^~wIcWTCs~l9o z@$!i#F9`iK>WZ_`RigFw0K(qL#UF1+S9zLSbdA8=d{NeyTF^#%og%?| z(?D!5(dmQkA+tHxXSCo83f^DP?_^EA*ZW52BLlfsYRI_VY)IWwUC}zAQNPZjVc}v8 z5YgUem!tHj?iRQqq|S-|IQwKZOW-!65v)9e!-<1U4`+R0NPp#3Weq2o+SRzuv*9Vt ztLk&F1qG^OZS5kVJCr0~H70)4|8*EP{wbY^4!*1=(F|y5VN4x-? zT4!LDPWqwxcz&>VygLf8!hS4oCp%)LoXpKY20DDRXV~{#411pm zksjTp&z6bpILs+vh@eQx3Mx586BMY!kmL~Tv)l*MtX7ixYZ73amv=1z6N@~3B^F@3vTkAEe5fpbWLImHa%th zD`yA$V)Og2_0K#jDiWqETG-_zHQlY+709+JD?LKC^e9iBRenr^Qidj#!j|ehDXM6l za*(3m!s=FDH%i8!5pDy&rgbTYYSwiz)yL%%E(j-6gv9J`m^9zk{GaSikWOOGCZ;Gan`(0A4MshaD_{j@N( zdG?Ol=j_*&cgP>50;9r|6B*(x{#9=;noZZ_jy_E;>4OacrCg*g0oFFy7;(|Mdi@uq zCO>L>My-g)5eG{s*}QaR9<{=-Sf^T&)OrUQ#{D5jl>12e&&t9VMN{$?qH-)6&jwaB zkm1q5h&fh$BH+sAc9VyRDxG8O{ia#sNj592%mD>5ERi7NkPp|op8bH&R5U26qfaR9 zA(XQ{d=_l3>T*&UQ^`Q~Q``gBE4K3hdG=N5w(%VnsH641R_u;t%#&)+FV!lA)wk$z z@bZo5$%geJ?Ik5C6Sn1qPL{~zx^ ztLu{;!95==z7TjCdRTPD7-mU|eyEJ<`>J@7a275YgW@@oE$a_okbD01jn(=*MRX$D z*?F&~ohXLN`@%aelsVn#t@9a2q|psh zQJYS!u@iNkeZBp}RuCN>aaX3_xvIVB7g0@SQQKp-XZl&9z!2id>pWeR@LZmCr5)_m6>8o+ zjR%VI^)b865$&>l`S)67w8Sg!qS?-6wwXvhr4n2a(%E9wL))Gebr0V__TF+003rC@ zMCtbr>5PA=0-QK>eQ0V$KMu(qqk!l06DbmaVfm_r+LBzV5p#ZYT+U@@7-mX%hC(3v zX4g^#w_%$v&}$z%Nb9xB`6$?@6|-N{)07Qu__MO+>0Z(<2bEhbshv%Qh7&&CX5!_z zr)E>OSD?!rhaUrMd-tzh8CiC_`3aLWlki@Ie`nvfha=S2-){O3m)s~gen@dim1z~K zm>Mf%(dJ6+=-CJ<y(8{RX}4Nlk=UgPtRl~6RP8+GTRPC!V*{Oiw8cOD`W#5S&LkrK9bd0Dt$kxY zqS&0ulRB;~Sk=99`^_|FuMX-r@6;|fOM%BvbVs!6NLDiXaFwoZi8n0;xQm|E7j1^ z?cno+HW|@YT%VPt$odpQ&6DfD$)kYCj{k^g?}(l#t{ z8eZ=JNye&BjU%4|^!I#);yLMWHD9v-yU#m% z&CQc7*@y1<-B2$%$()Q4O*{6wAMLj6?cl4EjVa$ekEr02{$72?%wUNZE$*p#Jm~K~ zduZYI`RfBMcK{- z;Op)$rry23nFs0veMO@cz)6nxU+pP{peK%3}YW<7I6Yt1o~1 z?2J_)Ez&scyfJO4MV=j3g z7QKW~EN>@Gf2F;}SR7`aj6bJAaH`X-u71RplC9ki?`go$5|mt?ld-p}c(rK5nvYYl z=*PtRL^sDX6@HbozJYLR)e)RyXK1W{m!^(ffJ)lrY@(;9p>#v6AP^*!^dA}0s zpZ$ti0_UcnIK-w|w!OZ?Pui`l=+gW>-P68;H{Bb2LLk=Ff6l7T&Y9r+yo z{|3g5wB%*Rc#$_uCJ#S5+EH~$)(6A0mtO=0!{4A;_)S*KF7N(pJthZERDTkG!THxn zN{n+~tkBKxempQaFWezsoBRtEiaP(zUlf`s({QJ!dNY%kwOBqR!3KXH+q?bAu@+?u zpMsO=u+y(yChjqF=WlbAd1n)90MhdI2P`rAm25aT-9mlAt95R(b67<%152temVW!+Z^O&5s1Qyabc-mMp z$+5y)1b+nE>yHJAI56?KT(LC!c>#`vR8#}}G5AJJ9N2{0u{REoBGm;Fh~&mh|7*)f zPxS{EaE^=-wpRk^G+d}fY+CzLEA<669N{rcn+xyzzHfy*keqCj=vaG8}ar_ryw*;nJ?Y) zpSUL7o1&VYD_2H1iMZ}fKM2|tFvZ4Rv6#-*AV~0~=~s-19S>ca7{X(63ThUdv{pRc z-$n{FAGAI-D(d-4Ow@)w)duoz=wP#pez5lsvJ;4ms3_1OXZVy7-|ieA$SyUz!Dh`M9U3NU{V3D0&)S=M_Ua==swHbtq2cU%;STFoM zKWB#0+pL#@*NffS7Nq@f$lZ3@J(m7xiLtfF%kdDLXxfV8=mHx?qU(hT?yIpd9wED(`?IxeZ`3iQ)ewCB*$4}cQL?(R<|8} zS|Kn|8628bP;6guif0Zs33kOIcbdxP5f=O=AgBio;GJcfsCr>^6Sl-%i>aJ(A=Gy5 z9UK4$V;WO4Y@BtL$%($?{mR?BE)&FA#lfYUbMGQn%nI(-bOb!j9HU2qRs6h z9GhU9K{0mNI#_&DnY)kqCN=rWV8!>xS!RV*XtP4lCXUlL?2XftdU5N9;6D1Z7dLEl z$>dkm?YItDtAE|x(>~$xT^(h~Q!rr&ZvC)7@}J-i+FXw~G7Zl1RoVSAPrmH$Q)V0r z!Ggox+fE9u5lQCv1xvp82S*nR>6U*H#|uK}WIdS!D#5G_*3UUGDYX63x8V`=_)HM5 zt3+L?O&}koIPrX|tugVKJi?PW?QI<#zpM^%BBUU#`j7R9(uBT}7aP3sd zWD6OLur+9Y1hS=OLc0q?<$mRkkJK@Hl^dH8{a1U^11^5ZhLKAIUXixfss5im=^xW! zZGX0JKV7Enl+Q-990%0@?3zdhJsG^t74l5PMy;P(9)BV~^@iE^)76XoLN%KY&P25w z;~nuCFsOQWoqbKZAFg1@$4?y|>Q&(9Q(Bi*!?#t5#P!4E_CnoKWU&mg^bIbD2+sZo zA!#n+a6Wd~dCdAyv8h;A*W8Sgo}3h#@&I$XfjE$J8Y2oa6)O_b5reFKg)sz8Rm>{-(;q0`2#&YAu!A6E7<0Y z9`i1B=soC-6G*=4P%-0$u18~P8uTEuyHR{VVVBk{QVBcMQ-*8Ik}$R#>+pM?3x@s3 z^@o|4g!w^>q2hqX+hP7D$5Hx;N@h_@63})_2CEL?!NroYOo@sVL4NiJ6Xn)tvFYEo zbV~4njEt&DB;CgzwryDklxXYu(hIk@cx#=Zh2)fYQ0$Kho1gnI4&PVVD*e5ykBHnq zBEtLNS%a6J0DYqWc52vVXG; zjcDFwX538O%S>uFGS)qUIl#v0u5pUxkJUL$ZL%2|%!|#w(hB*s)P_1zaGhE4m*RTb z+9~G5Njzk7=rvB)%i@3=BD#mZCm%9}0qKtI(dVT>1NVV8JtI%=A`htMhcrDcLK>3$ z&5nC`J8oM&%kF%cVB6~!2wZ9#rd=motC)x@Bf|?8gPQzBvDzh{kG%C(LCJ}>*B2Fu6yEi#cZ_0KI^V112VcV z9yx5Lc9p!Ef6(U@>sPe%-2GlcmYrCBcE^d{1)&;$TM`g*n?kRq0*4P{MM3I@8MT*$ z6U~*ROzTPx+0MjoPymXFz^uXiijl+Uq$lU@a9L=88$ZX$B5D5Ew1VC$ODw7R zuH}_haH~_2nyS(urwo@*F>$P!N>8T1M8`nvYI;>FFm7SkS=Jk)*R#nsWc(h}9Ukw} zKr{@VAv5ohlFG#R&MR(^1#SGjnCwah8=gWeH=4e9Ao%%K9~!4O>7A-{dseeV%(NX} zKYm=&M)(|43**@8u2NBf`n?eyN5T&y#2PEzo=7-gVf{8fDJ2 zLJO#IqjyIhiUFa_pwAsshj+&wL@^+U5hV8~@{=9OfwZtxl*|RjQu1IwWhKtL_L%pR ztjp2@PZPN(AGJP5?wb?V;4n7+b|JGMsMwED6?LxrGzEqg$&E2&>lZmA;jv=NL2cqo z4i!YMfq5dh=ZRR;y~kI%<4+KMFqJ4gx@Bz18RxV<%%S{4sBnjDuzA5e70VWuqwe;{ zQJ|-tc>8TvX;0h;i@RjkQXF1+KVeP$92*uV*P3JS2XY~cw9P%iGrGEbHc?OM!?3~% zf@Af4R-OO%k^KJ$hM}$TH4gjE2%z*u(MLcfP*@0!|zh`qG`UlPYx|6awc42#4^IY%EYsZ;|+7BGp+`VXMmNZfj`?A z%09f^$DO8dVd+S=N*rv2Jp{wMhoMT1=G#*iy0HiE{Y3uwHJ!3qU`O0J4qtuA+O7b- z<@|knV&H;)tdy~N`?vk?TgITh?mx3#TKwL&pGo$*BPVDKZ!pInlJtEi(ihLSy}xv= z`h>sr;YYvU9}I(UU`Dlka5Z=eQ5sIk(v3Ej7Zr$aEq}IKj4~?sB*a=sz8#;7Vza1_;34|kCmM&=t@}t*i-gC z&49++s)EyAK;zwoZqr@_Qz%X_o&7#eOM+0;9YLk`nuRT}U;?n~E&|huK~t3BcYUA5 zDyKS0Pe}sheD#hMhGHuK>$t;?_V`(9mAEYO>DQ3cRO>b7$F=?CxmYvXEJYnZgpGj{ zRk#kC54me&3+-@%Q+wCE;pqNa=;fSvTGA)JK`?l%3C1 zO|PF84iLOw{mkGk3H@I8HOXv`jEPBt6@z8_D8x-cC8X~y@(n6EVf81%59$GT(a0nThM3iKPIRkd_zv<(1x>T zYumTNbQ;`peujLz5{Q^|)w2%!13+2Ytyb2rBEB_?kAa$5Tn8Y0GM{}BB+U3NHZq}9 zEPn2zK(e~uj53vEzqFEN+-OjJ;HPKMd4Wd zt+`I}h6CmK*Ol|JN-@rR#O=qy1R8H5*fs~m8A&q1+^zWc>;fkm+rNv>{&-DtE^IlCQ28h1O+jXIG2SFCGe`l17jLdUCCOO8NMu_#J%V1 zIMYy%DH(w($_|fe`9!PIK;nSS8|FjutOhbmGd|(kZD5+B=jFJYJ z+}e~%5EJY=%NfqIikit{scPxNvUFM_eaD17b}(6fB~KXZVp0KJeaIZ96p31lq}5-b z>)uKu&etia=(%|rOB%Pd^d}wb2sAz3VLKxaE&UD7QDkmf56kfTSw+;6DN%3^-0Q3o zrBVfcxYdxW9e8l(f#VsEgXv>TSzoy0_Cje|-hC+W(t+QxW%8mw!WKq2VM>Dn590uipj8tP6q8jZk5@Gy+f*^5%mbkoDy z=xOXOlN7GyA_5(6%G`Q#tnY?5q`u*gq`R7ry;zV~REW=+4T#EEiXI-RTX^F# zc^5dcDK1hYE}8M4A5Z@m82Yk);b+L)hFO>t{Oj@bUr$Cy=R0fOnprYe-=87BLb}h9 zjlwg-at!WAM=;&j(gJ8H*x@0h&Ov$0!+4QQ9sf`UG7+0I@SQFWI|5)VLtxC+nC96Y z-u#Ab1Hkazk`xENGZAshf==Zs2Ftf$gyyZD4DQ^~^l#n?}7tffj7(yJ_ zQwt7-PPC8WEA3@bW9h>Hc|bZCbV9kKQ~- zj=;b_M(^ws4@i`2rj?8BG2HV+t$_@%-I`>0n5uB>$a4OuR$qm; zX|SWQs37%E(U6w56=wrACKR_i}x3|G9{c5&{vd5xi!6D z-x_yN=)LRvzvS>pQ$Nz=5Xz*H&0v22K|`5O;tR(JID;l)-}39(VIP9Go}%*3hw;L2 zZ(Sv25dgm(3}4P6T7HNdV|+D<(dxdq=oMl>-kX+WLp(qCjU-2(5+ObL|LD;TF;nvIY|snW0@*j2bdX%*4cTe$7`PAC5CCw6%@IR%x@SMrTWpO;#QKB4$a^V z7N9=ZC_+LD8^J$r^18D51#VRTd?x*OoWVb5z`rsI|1E_e)Z^Ch<_A4!8VAX=;8`qB z%tUkiY~s0my$-`&ldKTL<9n~@Ky{I4Vg|xvoIv`FV7&aWFUldAB(2Wu@L1k}40qq) z(aCm`SM>YpthS;y&IfofJaw+1h(cb!&xQ}(x7RuJy!~_0Qfz)7WPrQn;0IH3#(>#r zqALfUGbWKlm>pT*=4cs*HS z5pyu>HBsYvt!X#;@pY*Qp6|P>vY~l4#PAPnH`rs0PCqqcu=0Otdg?p^8MmBZuk<|V zRs9KywtnY2x7C4-ze)5X9U2$uhOrt(Zrzsnm^J7cWWiEI`CYduu}gsyJUFD^T&3>( zxTAXatbj6-gB*}*V&(M#Ln=v);8t08^EWm4u(Gqc33KXT3Lc&v4{7WdqBGl0VA5E2 z-+iqr#X(hRJKGLBK+~jf{?2~%9FBjXMfZ|#^A(akM28vL{7FAKm_D7&`bQPUZ-X2y z6?)u4R;@PpaN<95%i69iaySTN7tN=MriZ zI;yafH@|9UOW{2HYX2tE7BN$&+&cszi0noWAWQtE* zo*z~{()=!9I7PSyv5P-R#Q6%dvUd5V0MmPC2bJ0TZ4$o3!>}-Up z?&feJ7FlO9Sn3>^xZF$3am)XfxjpZ$4z`B$R(cIN+nsst235Gzr2dNgVgXLU)4-F} zPVzrCKH>ioXykK!OSM0i!~?H#kBcp% znb5m8#x?U9IONlqsjnK{_Qt$MAlFTl6ZAiHHVPSdCxadoY zpvCDYUK>?pC0-eS)efQi^(S97VLARs;3K3(>8BRsj73$cnFyo zs`n0yuP2)CkZDy{a77IQ^ICs<>5VT3ufA{d>9!l5rsePiPN}vBVbs>0S}MXy{rAIjAzH8;@+DEVjv4G zboZvzJcRVTCo)fvKcg_|Y4)N=&jRgyFmj8dq24cQZr0O1VhD4hyt3<vF)J4;>p3!Uk7k{@QBn4R#f{|rrjaGqgpBaTU%T|Tb>F@cg+&(Uvg+A27kyDp<;90ZV`+a)#=uJ6GvoUGizz8uwed$5nXje6XqqW zJMB7p&@I!MpTFuK%*Au3f`eZG$GM+H6&uNu#VQbeg-pTtw6@2t;{xx`(gP38c^@ZV zCW-A`hXiX=NX;qYU05X5@&=}0-K0t8M{(&v_ealuj|O2}u;q=_gD$YD93F%$msZeo z^_HUQ9qxnleMN3PVZh?W^)%Q@F6R`6dcl8eHG-x|5!HZj)~VWMmJM29&->HT;wWtPx4g2m(Lz`}MAuc6T4#neTN-gxbkLQ4%Qtjal+A70Oe&RfI+6Di`#&es!*WE=o=)rqn2fd-{5m|8n;p%x2acssRlND z>YBMgUA=YMAU2(d&JjCq1wtRZuN4cE-McmWFSM$1S^Q#c*8X+s z&Adv=FelSHYDQb=N_mCSL4YkU?J**j@C8iJK1~pPl%Xq(qW+OVAM6h4s87uW?1%je-4(G(OIg9`OiB?{6m*e_oAzpi7Tn8^oTN6P_Nq*6Uw`aM_hpHCWdNgcpY_?S{X0a0 zy5>*a0nDL6LtD;09zgV*uXEd!>HG6<%GSJ@B#!HR!kqS$cC(;08&6g&6Azmy8qNf) ze%OlYRJk@nr^&V6BUe_a>B9Hr!aG6@eVGicCwe)D)y|_c(kdgH!iJ6?H~Id@^TFgs zCa8fHgczPD`D-04u~zI-7zODj<-RBLS)th|jTwHD$B$=I$ex2sWL}#!uX|(RT_Pbq zze>~-a0f8x2V4rv!GttiMIFo%!%GMX!&QM*PYca;QZp%?Wgm1FAkM$Um)22)nJGtkwHLEA zabJCTm@VgwCd&1j498db*Wby!E$cpcR66tNdOJLTcYphnxUcVT^@)L@-*1?n*sh;=>}il+ zczMHtscyRh*Ot*o1kl^Nt=97K#hBT)(T-vcO#1%lS)<44R;lu}x_$aS(!s;U$&6$m zH{&>IjcoZm&>YfyB6MI8H+0B}3}!O$n?ChpJK&~13(q4T@nq@!O6z5_b^E^|5mOq)$f%Zl2`BA#zJj*^wE4Q|OPt6}4y z5DQVQQOb(K7{a%_ZW`kZwz3|d`p`f-gG$Qecy~)UqdUium9>Du9pf?_pzB6xqPSr) zASi)Z?lyWA7E=+nK_hK3&t(7>J|Yv6p1nGS`_T)*OyE4o^DqDXOS$iU{ABAM OBgjnMBP;|L<6i*MK5k8s~@-v|X zGm#qe6HdXOf3#?Yzhzvlv%p?iH1g~g4i$4wgfi^zOY7@*PcPY5&wkKs)6D0W6$jt( z<+<@C+moolXPfr<`kJ|$e^~+!D@_;M)K0E(L=zmhBhCV!4qG+s2nGcetd4sIs^dC^ z(xbOOu?RREYnXQKed0DIUS9ws4HTiu4GJl~guM(D+zLBz0>LG*y^9#2G-$q8KCCvV|3TIjx|Kzo) zqpy!^cQ)L}9gC4a?j4!Y%hK9<&n~PFc=-8O*&TU_87W45HBy~D@{Q~*lh|_KnV*F{ zAV;4VS;*6iLI*5^h^KJ)g8h@`<^3f{?1lT%aQR7hGQPV8RHw+`A7*F0$DYhWvad+w z!M@o}yF@9iNgXvCTsRiVeS9A|r(`aee$4AxR$uo=xes;~ae7sO8yz~np$a5bhjN|FLt=qL-eDs*-TM<5IxTLB$V<;l?Chi4B0lF78$KtzoM8Tet4`fG z=%o4gIl2cckgQw^kt>O#$6-2YgieTqZvU)L6vYQ2>HD%PuUjipsRLfOF_4SeAL_GLaI28uV6r&*@}jx01{F`3Hf7@;M8M1sXKRsDEP)G}!0foJCf4=$QWLt>r#7HMTDp(P zd`h>>Kbc-B=gO6sB&+inr2dj4)XB4%5X-!OrC^Zhb}E?Wa46(ekC#JNn1mcznCmWK zt&(+y{<=44m(m4wVrqAB5?;z`Di++5*qEgGv}Vr9<@43{h#G57jfmC7YG(1t^(Y_F z6Xvy(58ZU@KdUBo>50!fv{qrBm$%;IBDSP{%6CUtue%ePR@BzMfh|?HB@?b(f4?-0 z^HRVGtfQmTB$@XQ2%O6-8$F>=)|a(k{<;nWiwGYom4Kq8tHw-qX(eQJis^F2H90Bf z@w=6(RPmfw2asf0Z-3|=R2p1XYC(+{fY-F?0!~i0YVI@=Ybk~$@F~Y0+gp>~y_!wa zxr=6-oL_S5P9vHfpC$S2Vkpw-;x1O7LH8*%i?!q{HC#5OZ{}A-7hPZ;yF`bX^YfQU zT1t|oIa#YUAoDl>n$HBzY57o;v-~XyRL#VEHiE%vFKnz(<%4ibz9m^!)*Cx$)ErW= ztr}jt+FjO$>kq?2K31&JDCDfW!yXTVfR2Ze`T~_%t2Cj`>HP(1R}E-M2%p5uX>X!m3@ zd`~EhQ5J(i1<4a^zXi&;V-i;PJHMnVjdHxwIBIz5wEmB;s|mOG{ew`)Jx#Y$xBU+5 z{-(WvbIgZ}OP@>%=W7FFdsdIj$DK`1L&q#~IzwDlC^*&dlSE=|mP%J3BQDSw`y^ZUO?bE<6Rf+=1v4^aeT%cqYNnV{ zCu}h&$J)uN_N7u-8XCILG>=~t=zMb($e$7&X)yGA{{jO^i00ldcf{Sxaru`H%g!Fw z4gBc9cp~DOytHT!l3^gX8G)%v2v zsg$fB5d}TY)#1xM@g|YI5Zy*A9MagZLcGS8fC3*utASwGznCroi7~udl%l|FsxQBo z8y96y^l7v-x95(%Z-}*1D=d!=f{e0+plQf-63(N^_?1y+NUxP--YrXKoaYC`2aWrQ z*b`Rc`_}b&V$xq6IoFhZSNP)-Wfn+TEO`l}TXudx->98KNo@>C%KK_^a;%r3dsGRd z9(aKn0*;F$eK8R|=k0kp#vWU;3lHZ%qBl!`bgdChbsEJB{pJ+9k09NIU3R1uOVlL2 zD;fmGx8qqbUlPEp&A6V*~x4Wp1C5}jsIs7M} zt*%oO0pRUXdAceX{y>1u=(U7?d^*duN{Rh3QEnu#a1U$rfVke576eDde$bT}6moD~Dex_GfqkZkBN;?87}?8j&3RsM-_e)~lB2taW(_IEcjP3UbkpR$LgXXo=PHle`` zKeU9EVHZ&j#T7JzM@kNRp<ht=6<`a8&tlTngJ&;!{){tL)y^u2_L)5uWo|0t@Ztkl1zGJ zyw=6DOmH?2&VI>03?F@Mm2w{bidHoO?)56BBro&Aj$*Lpv0pPnc6})9lqK-0(sgO{ zz&-~{`bc~r_GlHiPzY-=6O}$%`clV-w~ZNms9>FqeyG(|FROy$1Swx~hn(3MC5Izs z@HW7*F|1M9Ev>vgSH~CYuTM3&4dd?Ea6blvOG)pW8OAVU*TxmMab-nu<-gx)>Y*lA zh$))8`UhQ34V8dPeqcNoo+-Yl8r6Q1S)Z5``}5=CIvZB=E$GewgF1^k8){HYVbIZR zP8OA-qfu5!;�w)k%ba@orfWJ(k8uPMc%Bt{_8`9;*)g z8J4cP9x-3j=%n8@>;>d))wPZ5Y&R*ioyf2E=VaLt^37@lyCR&@yMoh$B8{>xpQ=7& z%{ulDfJ2_8?q4E6D>VPXs{g`R|KEOGkI26)yXC&*aQ&~mM*Z*l<#*w_bItI4$6syf zdDEgO@hv7K({U?coX0a%D&@=o^wZZNMm3KluFp^A!`^yN+t3P#TM%O&z+OPixAP() zx8@)8P?qx&nkxJ}9o)F)9r~?vV(<&YuBeY+yLLhp{+LF;J#;q>h#^lK|Ceb~_k=1X4uWgJ zx^3x(FA2FX`Gvvtv*dLX{G&7ihWKs?nTCK;40*kkk+1cuqRSn6C$ruRb?9WJ4f=Js zb+!f%rovN~8;ehf6L=qe70wB9j~e?4aPpqg;o=@7jVFJc5;h8qO6Z2(r9S?>$)V9j zzT|z(6Giiidq@+>rhW3w9l_?jLGn=HzKS#b=A^j%@zCB5qM^%!vk&#hD%~4hd>0=15CJJ>FIhb_Glxsd@V#i6fJ{+0N{GnRe1b*Fn;`uz zowrvUrx_kgxxfC0McOJM&tU(<#O{xw9QFIi?<*RjSKs2x)NN>94@v)x_Uba9}GUA z2hY{nvt@6}aC#`zc-pllZ@6A3vSb=RQ(P04x^Y#wTwlP9J>5RGd&^FiCNvZeUZE1i z+A@miDdxLGwr$14eKNALjSOY5$YVe5I7|E`pVQgAbNF=0dpK4Eymycu$NWnO4atXC z_fi%ov}ptFHhm{stg`TD6!Uqt?-I=p32yO&7wQNHXbqh%W@5!qSV{Tm6t60zyguK> zr#;3IIAw7_e)Q6fa+xS?7?x$bd)zpvpbt2uM3r5Q(ibPkOHdO&dcD|)uxxF;6WJK2mZe%P-f1 zoqs4v+1>k&L|PjTVVB#xI;XHGZ{>auxdD7!NWOdr8RsC-old4JPn%T<_?M8afavJ( zo?&#sbH|3J=05v&*gPe`9IH;x*6?Eue`7y=$nm>)ABUAA!hf{+T(ftEv=sLl8@2uS zi4OABqNQDXO$~w}MtB2_I^!JyJ?8L23Xt32n>jBni(8LB9>7K14oes8E*R0=U}TB%v0& z@IivA#>jC+*eX#{ck6d)@EV)H&gYCV%qq3UckA;>Mp1sJdz3mcG^`+L_8|msQeG&yLO<8NY=Ssq4wf|0*Tg7FVCBKZjY0)O zf5emgBl@1vrtLaa_Ah^lLw6&{8)87QqgF{>)jk#o^m8090jtP++*0mwhNjUS7W`cq z79uj4a!D{g`V`B!$PY?aVQ9EYnqQJ%xGyeO3h7n>z@k3Wa64+JTZ`0?=ndB(#Ubs4 zwa$W|R&K9kMYJ|}K&ii(wjPlQ_`Geind;rG$V;PIr-1~in?@R?C*iTt^sG39MR z(Rl^k+U3ouv2b2i9}PSzWDjl-tEkT0)}2kQ|8P3^RP>>O8_`@nq4}#3v%`$xn5G~X zGN3g~9MAA$UT83&A@lsLlz4=24_n#yJ-A_dC;y@@9+0cZ`EgPecl2BKUp88)7@5%;Q7a?IFZCXJfPqv z4?z@J{c*3?S+9y@b;kYEdGln(XD(2pf-C*}b^21@bFOieHkZ>s(!6S3C<})D&xi}1 z4R?)B4_$Z{JZpL-VQLkv**l~x@5UAiBpfQ==}g4R{Xzk~_lrom2V_lK@txQR3*=nT ze10k9@Xxr$5FVeA;KGROuBk;7Nyl=dbr}?@6Z|kz{jz}GvM}5cN=n4peCl=@qZ{Fo zt03FhwkIl0q8U0kFwx0zf9CUuyw@1+V@*Uu;XlPK8h4|gGvshGT-qSDjJ}qjeq5ge zDP{4weMI~8X?mueu|mXk4M@J9Po)C{8eq|5v@xc5~MgFG^k8A8qA>{ zpdi4|`hF7BqE4ZrZrCmJ`)liGS=WNxU{RXawx zwYHDUAg?-XPW9D86h*|zrTu<`|Zp-lU8%tI2Kt?jRilYVCe8lFcCT|_9l$kSw=Stxj$mAmt#5aRn z)_>`#K@*PKv8r%j!DaA(b%Ssny3$MYCEUr82YGO8Lmsehmex&=R{KU$JB1nW<4V8sHibPnbgb7fxvS=caPqM{lr@gGN@ z5X}ip#kOAFlaxFsxN=&D{`b4RB}(VCQFz)}{ka+%U-}fHj_B!pL+JyAr;V|e=s>*r zOq)V!rPcFa`nH~L)k=6_k%EFT%q8`@ke}Qo$5E(a)^b29ej_)W;n1gxv$Ib3?;}N| z-`+eSkt5vn<>kpE(g1A-r)1Ibfh?;;JiUSSaPIJ3S2D`o?yC+u_^{N-A4JoiYgRjM zy*P|WkfKEZILYKbTpM?BY?eS7Hm<5T19J#Izj<3HdKa4lv(I`dPU-`X6 zEjnh@1QD>Z;4g-vAuUPDe-1UPjuGR`qRvDc5>DCMb8V{Hq+3i3J0&%q4k=GqvI2P5 zdz59o$%idk#+b*5UggG~2|~zL<)&oeUK76_Mp;*a5DTW$#aEfyuZCqHZ$yn>@5YfV zKf9I;!bN?>?~cTnRc@IKAI*C>YDtLiR#VX-_VmG&Y4OP_-dBFp8$cvIRGJSzneD5k zXhBwXgj)uHnzc_4IQ-2y3pjSC(S%%$NfZ@P@+0=m2y>LjHxPqJRIjWrESNB?+u29V z>6}45K_#`*!>@9K!ujId{FjD4eKFrmo2!=30p=~=d-6L77wZ`exp5?d+IRoX9WvT} zapa@^rN53gcU5z2%8>Qhl)dpZi0HRbhga5%Su*z}nfzMQAG)Zw6W1MRQ`fC4F<-=F z?U{;*XAizlCbOhy|8v&wgF;!Qcy(nF{YY*sY-b>shH_il1?_Kz{rU6|>iA0(^c0xbPcNSMcB#MI*Fzy1lv{E?dT^n4Mhqd}9o&7R|1>@1szk|kjek?gdg(`I zb5tM2UqTD=>vnl&4%80Ecmy)}>b%#|tSsSPqWc_$Sr*@xNPOb-Lvbup=dd0~bXtNV zPn22)2bf8$J+;mF2sxknx3i{ggb`JewS_17V;#pj3XE(-BlPq!Z#Zs2eEdw!EV1h_ zdOWRd9)&OzB&YhD{!PpuWY!mc-bQrL&3fK1&w;tcKeLXs?8P)L6OLo1gR=>ob{X1; z_@GaPMWKpN#gFbTuj56a9LGQGE6LaOIDS2cge3L2@)L(Q;_KVBGMv@$$E0m^9w|-# zE7299(?VeU`W(nlrX?LRK!RBCwV6((6B`C)tJ3{q1@3FD5$*EQ&k|`Yeop`l&#rY5(y;B`;9xSAq?BkZl&MWoI|c3A_8MjX(uXZSb%Hr zo$A#rpp@1C6|BW)aZBz~;t`@Es1m|)KY+ADX{U|u!$p7%K zVVPQF_;97HB%8_GrH1upVx!g>aTqt4rnj&ahgyaT3xDr64o#~aB&1XNx~?A+8`AZw zOzp&IZ{fz+^-sdqMArzAgny%gme$#4H-kI$gY|^{g0a5b>(>0+8J*j1^)e3T?tz`1 za5H5CTOY?Vd0HL9oW-UXlqN>|_U@5;Y|ebrV;W3Hl)RwkBiYtYk<1|1*m*>EiXEH7 zOHdQl_I%S2?|-liSU=kPgfZEP@6qK5Tv{-vqra#{zgESkMlNXyHt9${$U1pP88~k4 z)|i}=_1MBt{(xQ+}BwbIxnf8#^YI;c)2@!dqFZ|gnRffsHo zOgTix!Fc(PC^h!~rzmB%hw(pVhyMen9=FqhgG2O&?dh&Q*f}$^HTP@P@BXJAZGHSvk};00SHq5y$wbqPOcJ*ZR3}|zPW63i z$e8~5YA!p@1>E*rZwyn>O!+QWSv96^W(Pc_k3Tg(L7VqS!GHJKX+IZo;MT?Sxg)8u z>f8hw*f6ZYKQ9bo^QSfBPf0`jAh96N)h3p|^E$-sMT&JDxXjO)-Tv#-npK{sC0d?Q zpFyq~(Y9&CR<>YmWChb4`CIDC(pgcADCm8Q{X4YNBwMBtcae18yYk#n_@$QMJA-d( z@BREPM7EO>t+2qF{s(x|vX4-k(EqdMOLi4w}18NMnkg&M6vV z5K5^C2qpP#7`Y`S+Un6G!k&b|v_?ZLryvY(|5C)r)~H;U1WIx>{>?$*`eWk$aVDeF z6>gW~8NgjM0V|I^;;n&`a|89ffec@of5s?*7 zHf|ehA%s3EKYyLxnqcAFx=_`e_)ub3We_d1tLs+wJqLHW@HD-aQ@d3E9VJ%I#wC# zV@B;OTwK+Kaynbf;M~JM?X=f4^hC|Q6Oi*j=wE)D2xs)eGr)3MroO^!MbJzwZZ0Lq zO3XYvb@XyWs>=ZlN03@hVevtJ4e;Z#hBW$D3)d2uA6e;|^%w-P@r3W+Xeu#Nj+iq+ z;bFN%E9P}ca{-c8^3Hy=Z)_ps)zgTCRZQ@d%OtTFAVei#9|{rU6m(it?s9s6HOf@U zGa!Z&mI5p%<6kmfI=+di^NuiC{gWP?L`mSeLe>+#5OBDRFt48Zcae>^_ho@A7oyBN zJg>pFedZF#+!DwT$4?{=HKD{3XXr-VLHeDN7?t;&x%`Mx5`0kN5v@y)D*08le?gL? zYvD{Nk!3@Go`FC<4omZOeinNLn#;_1ksy^MoHgh8f)NBY`tqD4{qFE8q|u^H{(V%L zZ)V=O(2n1I30ocW`%%!d`)td|PZo9M3p)TGLBFj;n}V=(NY`Tk7_sfG@5`jC2qQ*R zHuCJf8+G$T{WErup`sg;MuMq*;<#W`p?$OEx#zu;w(R#}Qwf*UvxL@zE&l6D72_x! zFK{YJDWe|BG0fmrILwqleNXJ?v)NPnAyLcGtZeZm{BZQ$_NO}vw0t8qH*~{qbuF+O zOVzyfX}UiTm*phlf#mv z6-5efe|o9C$g(C&IzlY|1pVvtXp34O2%J@|w%dndo6-8m3aeEUm#6tu%ynD*-Ot!G z{SpsT*h}dAkXcG=KzyrxLr7RNh$-X~GH@}}Nb$3V(O9iE34aur)I&Fw_?HFaKC7_{ z<5=As6Jp>*?)4MAd^mMygwkH@U1%II6RDUufP$;6btK@;aYH2huhY3A+TN%tXd zDGq;Db_^Plln!v0xjfkE_+SR+3a4`NNA!sc9qm_l{b`n6vpG6(WHiEa5FxK3H5@vG z0#~UWNF{Q#BCHoE0Dg~c*$;ZV)=-%Wvftp3_SXwul9NPLOMQEC$5o=C;6JNqme*bA zZH8(cDTvN64*b9bs-TLsEaRLT_=wctYZyz-Dmx9%6>Wz=yLKY&R+GO|=+gH%XRdMh zy&4~UC>btX5Mb>xGw1kAg()xGfU4@=0t@w)0wm^Rn0_AZ^T-{NMv!^x)$-IJ$Tlp% zz3>FF%%t}d)K>P_g;%=dH$Alf^gVNq)3~!vcTqjtvu;dcb+=)j<2&G72EBa>#_tKmuO2Xr~+P*qKkSAZ9%#Cl zKR=BeM=zt?A})i1t2M%Nc**`o6p0MM8QiB71Z~uo^<%%E?kb$S_>(#+_QhX^(a?r^ z;YwX6nhH$m{(ye)yXq}Sd>enWgDmat>kYFF&j1)Rr1ZS9*)d(3@rtW^YZ${j>{m;D zpeA>tUtae;0!j>vsmMLLAKSk1o%w)h7681g1W$IULv2QzTXp zFy~WmsNa*WQTAyAo8f}}@uhfW7$~*}+Auw8O(K)C)f#f!{`~H4fFf0AUP4LN@HoSq z4_}l&lmsK{H&R%}=JZT-XCzWDC*==te=B#6!QKffus7%-iz41jtTZR9@gS8}|A+Zx zAl@noz3E*-ZhbOilymCfpFHN@=)MofOmIwR(1)O!qq6`@h0blp&&I>0Dx7 z8v9EMmbl?NxO)i~p+{MPsU><27&H zr*yh4jCTyHpHJJ@FhmlA#Noi~+w~N0^ZPRjb8*C>G=%Z6EBIhE7kEtIT(IKRgJ&xE&LkkFUj@tcUi6+ZA1%p+X^9 z9YIuWU0st?m|jN@h^ZWw!FwFcF_y9nI!nM~qjT;cgDg)@nLd&mVNS;d1Xj^20Bv~s zR7_G9VNc=1_ncNa45m93@!m$PY_bX4x8{3vL9Xa$_!#Xm4+n5c@%tnrm+bLamFN+A zuIp;LMj$lb^kLBiICHf}qJn3ISfRO7CauPn*6TRo?F0OTfah=L#qN%FI9^`SIa~Lp zcY~^Vb`qCA$Z%#enq4~}Fv)YLCy_@booJf7ai4W{l});WmKt&&+tzi`>4i{fIT7xt z7$r{bPM4Xb^;xTC*&jD|?2FT%3_Cx+4ly`Lt1K;!)ba%UJ%)#KK&B%Knk#Gn-0C=s zGWPct(FZz`=$nf%)wt&Ub?iCFU_%7X>>$+n7U(B^V)LY^dOoHWSf7H^0Ip-I9Z7H1 zDp~6Y`4LYoI;G;##f{Gjs)-U)?lq}$VRg&Pi$}nlCl5yWqFlXFWLl9#N04XPF@P?c zGwirt9*@OEz>1^1v?qvP-w=qJ6=wXlT7Bwbn$AFRxvVxJzB_tdfB|#KG@Dff#!I2c zB=P9QL!M3njnXahRpS+R@Kk|{r+*mFuqxRo`;!|IEcdvA)?UAqd@gdqMFQ&LHtKq` z@m<>*cH&`}#A;SM%-9j-9~{U0-Gj#qZ%S(;n}Rj#1h1gqC-XR}XUs6Fp|-bDA(#oF z7-bcZ8gx`r-0WOsZZ$LktE8>Rx7ruyyKOPW{R6qR)(#%Ln^XPjjKPo-yBcprUavO@ zKF}?1D6hhiFW? zUx=7kWUal!8O+4N=EU$hG_x-zE&2zCOjua=zey_=<(!}S&Xd5oWLqP`AG9RgK9R?Y zvMn7nj0mplc&>xJc(h2^H>u{wuZn7qN4av_AIjik!qwobUDK}f_;x4bBSN(q`(!=7 zhmTs$wG<8+x`Cq&;_G&!uw63Dt4Egwc&Xj0@oSEDh_wbuotH!AI0@cs1uS@HAWyK7;~~?F0F!m@X3<8rPHNNVl_%^V~eWD$=EiR%}-o zLVk0q24TSud#;e4iF6gEu1+}_d&1O*-dBt|sG}=v7yNdCuiD|lj5CS>7=sxI{@b`n zkhfNbcx!<;_?}eu%h_V>0tFOt;fSmGem0DPSG&w`zXzeptT5S65HEPe3F6Ekk@aSP zQ9RN0^=)IuQgCD^eCZJ)`$(1$g>2L^!_$8 znu=WWs`0cWSJT5)hbb^x0O#PA{p%{QS(qZ zZVFrF%@b*rRBTDuTmgmO>QjDCA`~tg+t=oKz|RqT$;rbZZfZ@3u!>0SL>H_}@mM#r z3IA^;N1}9@`;km+-!Gn}qBgA?=(@E59P*UFgX1Vf;E54LFxw~8!XxLk5J}-Gelz=U zHwZRv?7^#g5^$hc8%}_AbfpgQr0Hsz0ucJHnjoABLk8F8*kqfJ0JDysM z%};5fWGtQmek~h< zRjUar1N3M)cLdFG+)!W@vJT5%ECvfnYn=B)M_&l z>Ylz~E-h-^&q7iO2@e=rZ=!bo`qpfxdV8Q{V)W2n_6Zi%jpP`tEqnZxgV_t!rh_qG z%UKI))6-xKQXN2P@n|Dz?Z_021FH(ywF~hn=#9VMZ5>Z+J;U*3@2$2R5`Wv9(Ou@S zvAI=g8^8gfKpR@^n(nTOJlRC9pR!Hj+h{J_-7NPm!WjCpFe9 zs|NS#PB^B^^5#DXuH8V0j5{=LGivPc#&?#`033zbqn#mM)h3~9X^Bk+uMg04vs4%} z{w~`HO26M}yrMe}V`x|YmH9?$d!^FD(u?%@e|JcQqW+NCE1=N# zTW}hu@SpU4e_4<2k;ltrEUM;>hrl&{tKI=YbH6enB7+}$!v5($ohl6GzzBEP6T8i= zRX|As!dEmKm90p4aW;;oQ_Qo#Kh9Dm$jZ=t%F0k9R?hm-c*ebAz-7eaOfe#i5e8wsquM?8GYAM{{oyY+3Ox^gl2EE;pk z`#&f(KDS8fg-W&5afA^1MT8?suh_2#sRFMsxmQ81O9TnjHdVqoBXm9fl@s}S=f`)-?Fur(NkC^)IY2KzK`Cb`eK=-hf5Dxf_;`r29&-zo$K+L+*-JUhMks2^bGQHB>l*|edUmt zxSmu3fpVgf*oZ!>%!^g7krni*#GW4x!0o=7pHrMZ`wfEHb z<05Du3Hws`i(sR_isP;QiY?Y@m8)I`zIi7*ox9`e`3>@)a+ebl&niTH+_OqbQ^WUA zRBU3Z(~KHw0BQEGFA->VP0yHTcgx8@5APm0k@JI+d`_a^DN93r%+$Zo+Ytm`HSoR4 zNTg07v{Wa_wMu}McAwrV>V2KxD;nrNQv~*pUhzgODP-U^g$K-N->5O^N|Xwis22rC z#76E*F&u6k)|&1N56#@D7xv*Vb20m23Y4#e(ORHo7xhnkYI~V9UfVP*Hi)ilPJ1Mm zSsH$1XD)~evZ&r-N$irTzGhCmfnd9hoxO$M`&XX{Q{XO&JtfRUin+yCB0~F2r}<6; zE<4|{iGv0MJxz*SQP=>YMHK?`B7I{BcoLEKnw*9|d+2sClC=Ywe)h>-*Y$qztCG9Z zeBv<=J^qw@$59*K-R5)hcMxfu_IFfbjpwlB>nYiZC6ZYkFM_unpu6ATVbp}wa%%k$ ziA)dPo_=gLazEHBNEen2t=zbk)dUC63N`a*7sR3#{SYU5kJ@c!MtD4ZBn?csm=rW{ zQ85@lhuCT;50X;0=M9eQYoU))^3Ume^F{u~J(~#uUj~hVXFbK9aR13wxSzKBBHiA% z^4elhQB=(FG*>|gv`U$_fi2gc!2_8rszStH-b_*$=h;FJ&BPJ;M2Sp}F#!+5L%zTa z-pf?%C-`*7IQ_EjY4U2y4Wg-_g1D{qYs!0~s2BZTFx?K+>oHP_A! zO7plQr z{z;mS1K0&eS06Pq(_YR}v_#{H5w0TgM>s1Ed!v}(dQ?=|u5sQHIGG2@1Pibe7hC>n zwt3Ti$j59sd=$wkE@E}|`l~^9y~STB6=A-(c`(dBpaeeil6OGH7H(ju!4xQ?-N4)Z z-OO*alQhWhNev>TbcKC*IAE|B|9+5l)g4s0}^2uppQ5+DWs=M9{}SSl(sR` zAL9@G%0F9D(|#x0t8H}nplxl{X4*-!us+Xnb0;U=hi5qP{WQLd%OB!-xFPptH2j~T zmX5?5Ob!2D=)B-_&__ecSmuLCn7j^kwg5JHoawI*s!=J0c@-E6f<#3Y=1WrwXhgnq z%ezb*i8$Fe1+XiUEadVj-p1LAtx${O1}f^jwPuF%RN|*d=Saz&Sa?bZGFKIcbLv|k zeooHJJq#eYH$$6byUg^GpCsz{XXEsfH&uQ>whv($d-LD_Pb=FC^LO2$|m>C9nWBLLMAF%l9bbc{5` zuaNB)pOa=CS0p7>kb3OhS}5z+3HDB3+*iT?#vE-;uaIpto!D)gPf+F{$MkIjQhWN{ z{Bj$Pm=*8;QPOkx;>>yp1U+xI?gH{!Gx43Y?7TXESskd?5 znYz~8tsc^xAFSwf_UgOY+9eSwNj$D+h@zm77n+*pkq5^^5f9nUzx%yCH>HBXWACq) zT@O1Wp)g@wN*XHE^%mAm7x&YrUn7FvZku<3-AcxXjD@92@o9hLL;e0z9Bb{2r8z(` zxEodJxd`8u&c17CS#b;H=w=XrUePpvh-X(RxmFslNUGal5H&A!6(qgt-6?3C_ZD%v zkJm0~tTSW1%p(nv0gwBiE(;&fV|`1Kg{Rn%4|~mw`8?p=2*(&Y_(+MD31{zEnkol| z#+Ec$>Vfd;K6E~*t<22oedr0qoNtbe&NyA5*f$t&Z6uet4D@JysHaQTio^a`ynU0c zyS1HVafMcABcXJRiDOD;`8&yFjS3Qv4~4ktXGeeP0_c65Y^F=GcoZYXsvOSlW6oc& z4bv6>-xvD+i^J*v_{TwV`rlEq|7yCr9^`(GjaQdqj&__AjB1x%Z}dK^-;Un9^PE3( z{PFNxnM5!U;VLyf&M#e6{!N&YteEq-AZp^ZUgZf(s{AiBHL6-slWGw@wz9)j(FF(V zTSv5Pppjpx*=Q9+a`V62qz=!TXS}~)9^gWL_$8YMa=AT&k4xWk%Hk_VK75XZS!U^9 z22U%uIzj7xN}f4#WV&;Sj#<&Ivq7BBy{bpB%; zF|Wr5>HAUU&2If68QMw1f@RM$Oe^XblZh5^-p!7h4A)uH5Q>r1nVRB ze2AV(LhinfEqK_`+qX9?h!eS&m!m}hhTXSwXk>%aeA`~l+BxnFXZ#&gZMk0irl8JT z3?y}>6>W6X`eyO$E@yJfCbz-#YYMl7`C8va&R>A&(vq-|>I*-G7CR_FG7q!xN-Z&PV1C&prvFj?;`!o(^b-45pUDpkzeZZC4qKbDSOG1)r-rI|?m_cooPA zK4lr`Uzzu=D(i@Clw#(HRQI=htAT#TLrt*l> z^`QfUv6JKsvC&U7=?sNmaE-+1fnkE_kVGuWXN~#-EzPLr^zN3qS{ynS8MEBd@CuF{ z?M4D8&N#i8i+-BPQzjOHxgLW3p$-u;cfZ@&rE$8vJ>2{aZ`A%YGCFS_wxY~Ipmmy@ z@PC%o`KD!P0_q`dZsH&DT}tx}ER0iL6JoujhNFCgnqAH$TP~>-uS#YXY6fb!Pq||F^`UjR z7Vpb2t=$?kIf}+Sm^7}O)Xa*ZjPuj+Td_x60?Ezlgf)F$)us^gGFn7#13%jmE}a}F zkWsz|^u<|^4hV+(vG9wZ77H$Tzy;@bGJGBfN$2~He5q>2FIPcY3919%kU*iJOi$Sz2{_{mjW_Sfpv>{N}*dt?K3zMX2~Xh4SB> z_Q69`B~^GwJE8tC*42cy^a;a&=iG+b;h5O)`Nq9lORb;^lMLX%0oCt>T4^pPwl~qN z29Hz)GC;1SWHfCFwlX+061?t?fdp$JMuB=X3`BRp>Pbl_ZvEfGi zk*2t~VBv*$EGvibtc0+o3DV#^`t;_TCR!($$Mq#`9KUTBjCY2c*&({_m!b zYyek`jfStuCA*zu1~L5((ahocs#!HIEUuJcz1y8>+3i5flU|G!YPGE@8+)oF_DUFc zmsZ|pMeo+ZrM|yrFqD?ky7g9toqfI)mP?7ECAfY$YLDQ2B5P^x7#V_hZ?M{}rnOvI z!EU>CYw22GucOm<1;S9I92)lG#dk{WpbArmce$$Bza-A?W$<~*u@8T|Uj8uL-)7o4FL6IuoHFrpfNE2jmL@$R`U9AhtY34A^wyWP zBsx4^(Gv$(o)Bp!AkZJ(qVaAPIpKQ!uD>Y#P@I-jPnSN?tGw`~Tj>C`xCwMtLE+yc z?mT$JKb|al@Z}7zwHB?B$X>E&T>ULdgn>-n&ROi^58CRP{Aq}#y_~IEz2Eh$46ua0 z?~)YL(6jRfO*^0dEm=V6#Sm4u(wkcEBvJUZyi|XKFpyNy9^s)zu`%+Gr^cl6%_E*I zM9;n*Num(#GXl77gDLI&EO7h#y}~IUu&-W^7{|VTCAOZ6)!v@jp=IFxERoqk+YM)V z?cuP&X$)NAA#)RJHIak2WW%bD&sz-+wwRTgHx#u^JqZP;6Xpn|`W~yD1dZ!pl9*QD znkJ{?ldyz`Hds$_Ws9LGmBYhJ*Z(lOchQs+u(i{+sVXMGG4C>tBbY#RWH*cBc*>Q2 z&(SF*rhj8TvGec9lz+RM$X4CZid2`y?&-FRpd)P3sDZgo_-4E#pA%5mt5w43FrrBy zOiNsmW`$9j&}kwt;m%`d!?29ka?aiJqUdWc^k3ag|NS!w|HmNppHC||P;mJF&o3?f zXNhUD^=p0w4Z`pHhkn&W!%IWC$%Y5cQdd50M|a#kzQzd&FWy9qVzVAm8Uhq4{wUMY z+%7h*pB$3dv(DJDU$EJ{UXb=cK~N$KsKkh#-DH%Q-3S6@tu}})#}a&RcL+1%&A8D% zr*-?kv(#Q|m75GX%Rhy+tM!tzciwYMVQpQWoaN&gr}bzkQ)-#_I(tL7sAgqh zw` zOcu%2)M`KB%4dS`{$^ngblvrfBN^WmLMss2GQn>h5pj-NOxkl-$5YnZ7dkP~S-jiG0dh!3p z+gnA&88ls^0RjYfw*bK{!CitT1a}`Gxa;5q2yVgM-3NCI!QFjucb7p9^Zxdo^`EPA z@m+F3uUSubSMS=jYZndA-7u}l7gW#~b1e~D$YDE#%S2?y_~T;XrL7T}<;>5Z)6zIU z+4PMpgZ8|ob%rpm@lLNt!!PD%&+~IXy+p6(7>OQ(DgbS&)vlcMqRrm@se=TP-4oV= z=^z=3gfBuw(ritBInzQ_oY#De0kO8{_iq1bEEHLoi)AIJ-&>_IWB&?g19-v50*{){ zwb0rZ+2JRrnh0dR2>y<37i8O$7lPZ3x?`J;&sVzqdz$x_7!!KpPZJF}DJ=q}AQN%+ z&|K{zp9_MVt4MjS-644oyMMJ8K_c`@DmS0o=_KnOkfQ147KbB(jH8kMCj}RwFnYXC z`g^nzE_Q>*Y5*62Q%Hcd^AE<(30Ph>V*rVmuV-yj|Jgy3qO@=-`RK06Pq=>lkd`*E z5MhIk)WsE*g46)?&>dINo6;-`hmI6G*6p(fc6t+2D}*87G53uiN018g;z&k0(Voe=U}+c> zRP>S=*Ju^6(`r8&)JHUc{AAJbWfZ;K zsJfdUvfN!vl_Lmw!Y-pEZsdsHw^M_Ij}n9rot&3DBFIKTHLbx9Ynft&V}7e*dWL`m zNt0xH>#wwTzvS-5@c<{p^EN)u#Ewf+GgW*mP&|O4gTR1NO6gnFGuKw@LwJs2pVsNh zZE1;JY*m8JT7$SZ#el`qbnecl7aZCeSN1kl ztE0Jh7jTF7>jc!rtE>zYR>Td$ICi z37Fkuq-L&wU9ps^8qXLrt&kf24VUQZI>ji94JscGXZH!!4o;{_+@}Q;waj@Jo;ebfZ^&8vAv#f%I{YmZ{;_%oM0kYJ z0IWp@hGB3(&6;4#Nd|T0p1^p5rpbq)?cEr7goLJoR6S-54Os3IDW8!#qL8-pU9Uy| zJ80fhHFa)YW_NBgpGm!ui}0QLc|F7d5jH+}NI>qpD7@+?2=VLh#@CY~haK*0>r&Ou zp{UIui|nr(O(xmDxeR9c>Z$5(* zw`4{|T47apkp!BFG}b--u21itXICFRSK)VdqMjLFRcW-_!`DA=K02i7IM6-EED%J) zK@Uj~g+-K?}@Im%fx)V0Qg8CRv&dJ+3L|V_8@xLFd8RnB0bGP ztGYELo~ct%K_Qyqf&$vR3AjDgK5TeK{|Bimqe<-h)oLQ(Ab6ddPO4ep76E zWw9-L6e1Sy#jZuAUUtX2?@R~>!)2#J+QEm5o4MnrYjCs11`j}TdrYf%{ zxwrMqq%P;1z`tX_MRG}F!iYD8XI4>F%<^p8i=L-2uM0O<`ah140w+nTF{Y%9F$NUK z*-m!(f}H$Ew4#E4isISaJKE-dU@c?PX9Dv=S+m!+SwX6{55cPh35f=J9}cH+`8li! zoXy!|)wqqagKApw8j?hX6nh52dN8<0@nv>@-=V^>WlX0F;iwjM7&*>U>hfl@kxg(w z#rhOKHe1)s(MR8#J|6TMCyNJ|LbCS6y~i%MmY@4w`}Wk(P4i-SNyi$kbs5eGUlOvq ztvmqx113{c&#uQ`jQyO62`EUJiInBh4?D45d^fGGzWpzkssBIl>A(KZvm;K*gZTfO zO3D#M`iZIs>UThdH1_>sXaXDa{TUk;F zU8qPdFY$=+Sf=@yov+(Z#vkI$Sw7cCL`q}|FLY0WQb*@SpF%N>tPS7#D0OHd_5+>iP`$; zEa_PXf34O`Q5t0-QZBMd+6Fqq8Aik zp%SwsyzWIwtF2Ja8QfGJ9vVdkoZ8`-u%JnYhVQL(F_M1<&$w3A3i)4h*u^HYAj4AI zFK#<|6)8Fxl$kwm8AAis4pv-!JnHwU`CD^O3IC4GV6!a%ed_Ib`@Z%DhAHK;Xk%8; zSB9*dgPj5ZSlCTxvxYLvx#9+V&e4q<3vx8KlvoVq;ogi%ftCxUyyv1NW_jp+8^RQ7 z!KBxV4c>4Dwz&+pIkk^Zx}f)Wo+)muU%^`Qn`7GCnt!(*rjW7!G-D4Y<0+?@~pEM5@7h-imN7Q=frII{{Lu|1hgI;Xpqu{A%NyWAyav z45-g=G=uC+7R~Uf(&n~~afHd49Vph$fRGpn!}eR(?fWbauRMu|?h3Kux+!huVFH-P zL8lSeJX+4f3N^gy$p^_uGc4t>L&*Pt*Kf>G%93QbXt1=k%!7|d1B$anr zW6i&A#AQK)d@u*Ku32F(+V2zF<%YX~<9}H4Z~%*+-;^BJzgk^MLX-4B(njLrV`^GDJ)c7V41<~6RYL-Wbeb%96(hVA3*=hukD<_ zSUE`^fU{O*qWC8KZ$|>2V-!q;%Y6O?FX7++EG==FSrYJ(alHYlMm9EUIz*~6V9(v^ zH^lA`&z>s|M-s*e7IQ)LxUPlRfJ1vTHu^8Vqt+OGlm)5OKO z*&SyCxZt%+zpIqipJ%@5LBaz7TN*pZj=!qv%>*Atd4P2MXVfPyF@`Kv2-BWQwN8cz*CS z+3W(ls?PXm4H!M(X7te$?t2=echh0Uw zRby6v2PS&mUqnJp3q~{a+@yxlb42pl$HxgVToDle>sOqI*;+ot zC%&8;ozoXrcwh|MK2XYdBb}*=JXB|xU0vmj(&x5K!M9Hh0@TLNd4Rk}yCUL$JeSrp zc}%mL0 z2})LmfY78zPT$<=usX=rQZT;1xg?qecZ;9&XD9YD@~=Dwt$(U;HP}nbhV6ZtXKer7 zn6XdXV1`3K&oJDu77_G1=YlU?&mE9Tz-6Y~$@sM@AtW+O?u9m-tgv;=(CCy2UW+{Uy8G>_)P=$dXpY_gVPw&C~*4j;B<#lNEg_j;a z>w~)?*NR~l`QlV<%3CPO@&Ok5?HM--Gah4XIT7}drF8lXvbs6#m<<)R1TZ#|GkP2& z7inio`WLWfD?jwcE+uTZ9t@W=l$$Hk+VxkRM)X&ZJp!%Te4*Q#CIvh_a1DOuU8RH3 z$>;~sn5{Z<2jV!%bd+lms6r51pLeK1H!G7&yQzY%?fORhU}xTXI#a=@EYzX?DaTKP z2*Onc8t-M8q3^@p33^-$5!|qG8DVn?iP(*8&FKbQxxwt%ldCS;%rL@mEeed2`)iu_ zj&c8UhK0$7z}bfX%wM$@qJwPg*t)=B*DfJZkL?y__t;({VHJxBp)iEJzYMo6PIUgc z^}Zp?Wf&@p7W{lz4%wQ0Qe^V|07C4RzkERyGt2k}sr#nM6?{B{{ros z_k)C8HgMnWg75v-!F@l5Js?x{P`|xee7O4>ga0OI0yV93+(`EC!c7gfE6FGO&o!c5 zo#&s6qb*P<9#6Yt2BzTbSRkT8?!x2dk=SE$uf?vLDMZlqWVG6%Oc5e$dlPGhi=y>h z<;Z+)2@ef&3(r;>k!JSz0&2g{Z`niAS?5V?vgr>92;wrg+@h0%TikXR*ne_VY1R`G z#0!UsU{gH)H`ey_hdyxX7)STKT+X>*r%yhSpFKWDeqKvA_x$;US#(wziyHGC%12#= zUA1tGMQ>ESekrW#-uvICop0TH)4KLMx;JDJRa_@0BR4QTZepfenaZl#O;soE+y@H& zI}id;XBY$n!W6T(!@H;2ooWL?muVMD?TYp!O^k#Dj zg%TaHqr>1>c&H6nIyT4I(8nOKB^9x>NP(!5tlT%k4Rm#=rkR@(42?l4iP4|5Zuyy1fhdyhSqwO`1 zfiS0$+P$b!GSDte++f-g8u*^C10rYFl$ejq6DF9@TZE%iS4Yjvoym$bvQAJ;4MJ;r zM&xnr$A|Pwjgd{Iiwzsw(2(WBr?~D8{4X3;&0??E%YN`Rkc_`Cuy2Lw%<7q& zy%%sg@GehLGtMo$`Vt5FIx6AUvAVqQsoDq1p521qJqm|LoXivCRF7ItD=tccHa(b% z7Rba+d!!gmkGw!%ZR%KWep1P*0*lVUPJoJ&rt0l@PDdAcgZ&{EsNo`qYlQ&o(eF#~ z=i&4Qg?G>DmcyQ&o}53A%h$L)(KW{(W%*V1sEs{#P{n<*KnPP9oZIE%9=Th+KjhFr ztac?M6zgKQoEv^<779>0>YHP0!B~Z8?*>=Z&0Lv3_`uR|#~0;>h@#Q1d;mcw-;?P| z22mM&RJc#LFG+el5knpd_(0h0pb!{>% zTs1uC$d8I1cJQ_3g|9(n(?`qr{r$VS*hW#+8xB}ezc11a+#CAZ33kQ%5wxH|T zgqT;9#Xx;uEudeU97oS2c;UWkxxuUXL&KDYhkhDkEEPI&tGw2mlGr15r`bKmNtdw3 zl7`42?ROVQz^v}*h*6dGkI0>A6zsy}BBh_0P)NntDxTXZ`GVw?a#nkSL_}(Aw%d2o z1^E@)a0$DQ`s+$VPVP{p-x^L!qR8%hc2)d+M3IwsS0M`46GSZW%owLDjtWS}wkCIw z!n~00?2+w<%Jae%YG3X8Yg1mP=LdYjBcCIDLYQdpPIRM!KB6lH z*A^s|C1f-8)@WFT{nhVH)bt{Y#&g2?`*a^{$MF%?wYLVvCpR_3)M8Bwbihhq3j%CV zuQsJHtE}L8V$OsXUB)=wZO(0m4`=y|y@Lq!v@DF1V3pmeR%JOsuWS`#R_g&6`~9Je zos6(0au~307EYrL^ER(O?Ry&fA#&AFTsZML@aIJ+-L9Xb=A_lwK;O-J1_gnh3ru}- z18^rY;lr0F-KNb8a%l1?+40<)LSX;wj&W9kI$LehcUS_q=JsA&O(*CE-oItJVN)Uu zvGTDzQUwDA5w9t^-bMwpjZL*khl~irQd~B7lN4F(>~>dZD-+u1fRX5QcCZ#yHiyy% ztRU{;V#~6yIY;J6dI7bl&B8LiO2vSS(R4Fc{wQnyLrB2(75r*Xz5@G5;nUhg60h&q zI$g2X#4_s&C{6p1qu2F0+Nw#xxzR}YIG;U&>O?}Tho{K8WtRNYBH3Uz`TfeUffn*| zBoTI9NKSRe2A_f~9VY8I4{IDcI$7(US3JWuaor2To}t|^q7>fS(0pnCP|{!jQ9Ru2_H#S;VKq{u2wjPTLSx?uK>$!JwRA&jCh=qUO73n9!9z$txAAJOyGqRO~Jv_75VG%GVI zyj9!FdW#PF(?m!Te)qTcZJ^oiq@DxfiU+S^0qy>G@19*&8^3NntZDcjo!vp3%$r8a^pDA8OoXPc z_p|7uJz(g+Ht(4w+wDHBGGT7m>9?!^(URkC=4p0pB(;YAi7U05{(qQq+K{P$;l01M z&0}AP4ojiF?-Z zhwCzJ67y~!NSg#-Z8M3vI*Qj~g+w^D^3rhDq~zjU?3i=#0io|iAE&1By^DxJRV&Tt zt3beOM^V+Alrtc3S4;*-0+iTYa-BFK!ii$jkM2teUX;f--v4q4_RsY%{;c4hyl3zW zrgkqYELtN^ebwfsPL`tE+Uag3z5yS;GNXQ25EZ)Jy??8MNu6UD8V&;=WBIa4vZ`%< ze2~m*UixdBkp|diE=_;dN5UI^bD3)R(%n?rBFkBXj~7h>@h;d0gqjn}P5DN(;Xxj) zn%+ZK+l}ae=@}ik4I@n&Nkn*-2x#8nL5}Q;2HK=_!2PI5Lx5E?rC)R~UD%Q1Cmib$ zSR*A54m%4^-d)rMbhrrg&Vd7;#)=L)bkd*|>$1!T`2`?OGeO{~AWAjNsz4;Lr##qv zA3RBiPl2*~QqiI=W(~-^&;pLtN^n~LX~TE8`JjnoZ3=8ApgJq*xSWi_18|?T z{MGRwgRhoT-M}^btj~-Mxp0CR%COFGr*ntiyvXBm8RV9n`^X=f%Lhf-0(gycA;~#0 z;hm{i#Yl;Vt6`?|hy%^_kKzNekZRANo?X1rMB_W$UJyx+Edb%Spp9E)SZ>eeUm_Ja z=(nq_qgYXK_h*lcoU5fu3OE(6U9sNL<@_A$Yk3m&uFTM<_ZY+KPYjQ-+c>-|NRVor zJM56M%;8*W>4^wXabunu3;NJ3O>!!|Qv>ZJh}c7J=^4JuUfC*2`j?}T-7i39r=}Z< zAap8Qzvdb+>e&IG6DU&~o|w`!hk5*s3GOmagnAU{I`VKS1F{|Tti`ybI{N*+t;zq35J9ivLu&D>Fzj{8dE$Auv5HV z@$ll0C42PFmv-+a7GgI9o4Vv*4cvZX{Q?zATs7CPIWC9SluM&ajn{kzq<0>iO0msk z;-%qHJt13*x8^C_)l=ro`#?8+?&`n^e!h?ozmadgzmb{>oF=$kd%hfkYu7TCyn!IL__2ckK@ojtSze06gf z7|4Hxn1$Y*whzMyl#F*BE1?@TUQJ>U6=6ZqRR54!AB2}$>C`Oh1c4PKfg667rY{N( zi>8{LJ?4FOf~ll&^pkO*~X zixG}A^W6I^>0>{YC!r-G0F9&`-?cRjdmdrAO08Xh_FawP;TNBkRV9e-a}9NI!qs7H zpPcA9{`lZV-k9-Sga$R!Ogz>@&hzo5JG4XgsnOl2XI_Jfz0WSa9|H@dRz>R+c=XYt z1PLt14OhU&n9B>sfI*SGdVHGmpHljhWS8=L8AF=;`{6j5PS7Py>yZ`K+B!?R7zk{22~`-Be0;Hs;(pb=$gNc-=k^Pzf z^TepMwCE~%;{=Ek7M$1fj93Tuzr4B7X&NOK&QY*gBRPSo7iMvlY9Tt6&&*vu{{l51 zvg_UBtf)ca$!uiPBql)meliuoJ3jhBcW2>~01u(+rpMF&1F_%j|EwDmAJYwMLpmMmVTCzIp3L$cl zH%jq**^%f2F0cNWOz?O>NJvkkB=iv9;3?ey7Ve?co!EdKU(j%!4U_el&s@J`=)L{g zeUc6CZIr*f`^Qi*YrxEQ8E^~cdN zvW532?%E2)fNRKCXk}x5MiGpa!0mvGrm07!tb^>OL<)@1`*#Ah&nY#TW6&c^IoOiz z;+Yd;v50S9Xn%aEK$Me}qe$V~nbbOlJ~Qwf^&*6m<0ZHZsuD3g_K>|OSyafORKKLP zA74m)wG`Gc`vyPO@yJk1CiPYvc*?V+abo)_zBtitv$POboHM$M|8z3Z#7Oya+C*Q> zR{kK;!w*vE4ew{U!zqsLEC0B<%FEcliTjDRb4X8kZfZmX2$q{%d4@h=l|OdK{`HUQ2t!{ zczvh@*4+y*@KCTz(^g# zWfT-$fwqr_?HY=1r}TQV;x&3;_T^k(CBqCNplTN`OF}3J(=v4T%_@T@uUc>YCT#N6 zW?|~={eKJ*gf!08*AJ2N^-oLCyq}SruVQ*$WIJ;mie#i_FPZ_kB0i3;vV4s9c5A8| zuc3Y)BS%-SxRh`bIfVux!VAd!nM6q6WgaaLZ*QH+p~T4SRk`(AuGxSh{x(wHIK18+ z_*AupfVj$|bESl%A*wU9Ru0oUatw@yhVnRa!Ax;>&soRkO!- zgg_#Lg(CE_MAMT!)+wW<7`S7kpWncH+l9FFKhT&TcQi8sA1pp6WY{*-kAD4j>z0=j zyaX63SF91X@|yzvV%=Ik1w0CKEwFYFO7chqFJxswBR*Gy*%BWCwY2g2$Zl0`b{6ZX zmhdn}B%*sFg?ur5t=p{4}HqenLAcTV+juzsfT;lwcSfgaC;=!(e%LwWqg%8;rTFpw+qC z@Xzt{;-n|a;VIP`#AfrbbQCbg6?0u2CBB%LSs2uR0=<2N2dA899Js>cyxWzTu#a*{ zi~XJNb1C<9Rtg>*02v_`K=XA;*R4F+O?Ny%#r)55U!q^S1wszUSy8{5A@ce*B7w1` zCt)``{~3Y6f5vgo_9QXL=(#*01eA6R1eGNiJXtSt&r!w;r)CV10AM^)`zrlS ztvIa}yaXCuSQfVOdcpF7{&lJ9m306(5EwmqV1S0IU8tFEfp2ooeMif$=f{`SV22 z&|P=~iDTg`Qq}g)MirsspC=4immBil&o;N>F^ZfAkYV@NUfnDFV+f?fYcqJ~`Zi$c zDny()+DegK;nTuy^fNVYYx^aARSSh{cX<={#3E)f8eE)426APIxnn&Lo{dPZ* zNxJp{tGn~%VvHRgv~0{ROQZGCvRLz`jUAefdn;=VL*_nx;!Sq9YZ0gQ*fL5_p*fgE@fe`o)hkw4U1hF0>%``0Y z0oZqBQd4U?HC;eN)K=8`G&8Bjd+ zEovCG(>fA!BCegTS3=zvk_SB)RO*AVS(B7jf|a^I-_e1H6V*eIJE(HHmentYF4NLV5L8eLWVH7HH4 z(te$12n}qC$|!pBW1dvRjgExJ2d^F~4ddBS|BQG9=;Tcw7vdySErWc`;q+Wc(DX`N zdVy1YWtex`jo~G78@vkwBPwEe5?79x{~jIrW7Bh$FG>^ttu^Y-4|3zOf%y!LB)*sO z@rLX$d-o!4W%~GJkneWxd~E`Vd#A`hcpH8mf5Y?CYcY`LMJ2w|IT7-~n>pI6VPa)> zkZNo1G2VUiI^Tf|<&9l59TUy@jP;9A}oqDKBqkQ6XfF$Dc3cb7jtSrx&r%a*gko zKfh8hs6 zD?i#d-Cwf7Q_2*`z5$Er0m^4?tkAqWICrageD#-y&k|3}9-Q%lZcCE5TlH%h&v->g zHJuhUx4J>qco#T<#54gfC~{T*pT*ZXYI9BpZ**lLjMDkn7PdT$xrZYZT7~id#x}kV zhGrguwmw(>3X{r6n*XJj`Vo}&T;1YED9|KrH*pEA^l{iqI`9~?2wGS2vGcvM0aRRS;Ea<`PXHqfmb8%@Tpzq}4X4<)g6Ycfk1L9pRs~UQPB+ zQkPge^sHOr-md*eLM}r@)o22qDwIs5zKYX4DJFt!Dxr(Qo6}btxtENt{}^>@eD`)e zN)L*ENCdJk@A~-|4{c?VdvfB|uSJF8AoLvBy1eE)stTeQ5w~w67)QDdA5PR3YunA& zP1;cq4xcd2g*N6L{@HKbaovFmf93#sxmh6?Q!b2gPf61LK5Y!IdmZBDZP%jCMpmrJ zI6kGgOaHRVftK+jG4p_#idIOw3*L}{EaJty4O|(O+qgHI+)poUB~3L)XxCDfv%1%8 z#k-$F0nRR z;b0>G^+nRoA^Avx2~K~v#BIk*rf&$8(SmNI{@iStwy>Q^P3V1nO06mv?HPzXOf*#c zoHdHPLlQ69o!(<~;GqxD#&EL1F&DqMSj~dh73_*Xf3n8b`aLzj1K}6`4#j4B3BPaj zC&j^3lpUkYFcWsQiOpWd*_2w6Tf@$1pt(%F@vB~x=6+aUqg^HJRdeqVu<#rGI?!iQ zH|2d{-yPo^WG-*}*MfW;s2%$0OkLCE?FWf*$t_}ZxR;5YqwU;-*{Y;_(ul&@=~xhs zR`%2fyP^k#OOEI3`jN{~n9)RfRezo#@g74a2}WEBEg72-nAdczDdK%{3jKtvgPMK-xDcXZeq?6E_)f0_wd7VnK!bIDPHn4uI!M2Xk zM!ECm`Qvean*YfiUsJEeYE8I37+gbv>+ z-hnVbVNv3WIw6N<6ULVF7_t$FH(eM&)n^X7{4~r z?SwicQMm0N_~p|=w9#L=BPT4A*x@}(9Ki+-^2r~2zM{vj0pUIPnB9Jb9m0 zbS^tw?v9l5vs#0okH;?l_s!o0lHz?JM2KxcOTI!#d_ z1W4~7kF8OA2x;{Y)6VUi=)~LDCh|OuJLTgi5uSlm#xrF6apjZ6Uh09Pl5TJ_i6{#S zzdff2TKAxMfIggmcD|XNF+@o6ycR87o%I$LVsVn{MAv_cMTHU3nZjYm>Ex4l%dMP8ehr~TOt!xnZ`M(gt3CmRqA+i1N^jdjCIEMQps(l&1Y z+}o_VK-g9sEXq46->_E7w=?`YJsMu>ZEwXv1Y z&${Qi%%1Z$YTE;E54_^_6ZN}K_*SC0`mcBz=*+^r!6_dYji=gNHgR=jc`65; z;^19MBTtOJ;PF^Bn+V_+Ln$S@6#3=S7K-^#jheJ{vVJYZ88zw$d|qcGBR@SK{4GDH zh%01ZAgZM?C{tAaVk}izNw7jsvZyHuj_4! znDd01Pd_~4RZIKr4u-wZq0DA*A|ZT2zaGh9W(1Ssv=2E5>M-|OD*Q53lEvGq zKm6rS8JVgbzLmc)?$%*m*Ki4gMIZ&nAV7nanc&cZxz;!F4%)zO??GL1D-Rb zrj*E4|8d{#@)qF+CuK{I%A>DBeY=WTQw)mH*sM+ZgTHPrGYXbZnf^ODD%-OJxn`K& znc%RYK)(OOQCSqF#-0AX7R^p?VZeY2&@XH|Tn|+?UY;zryYBw}S6hVf!}{w241b5a zm<^oFUF6Tiw6|=dj^Yn-JW>c{B_c?PX9is_jHe=9FZJ!6fspx;tjKzbpg62i&X$+I z-WUkQ5S*plbj1quf8|YG0WiB}Qbj|Es%JW0A8Wmj{)h2-HTi5DhN6_$!_UdCe2(n3 zCSy8%XLvMtB_jeeRO7CvVF;Wcn_{bqvkuWHJep#f{U zKg4sz<76v3__kK)KA@vcKnfFn&gEz?*9Y01kbLF}PBkKXR;t+ps3u|ZF|e84=UjQr z*wInS{?NVIkI|e+LQHjyWd1tc-Ly4$W!(*UUE$2|2))dR+r?$lg*Cpff6Ac?qc<>T zN%6iCNY<{kERV9t`FYn}d36PZh8V6>8{SH$;Pjr_#;0T(*hfnE60Zya^AWOHJ$oL6 zA8co*r%4C&jNf_P*7I0k_8n!MF{we_k(Jl8k8pPd2-`W7jjow0x7fd@& z7#&{B-q;$u<|X{~Y#xju32U|moQD4%?At&>7RV=edXk5V3p(u)=Wb^$mqQB!(lB9z zA#k*$cxEU=YK=WrY zNN!IBozl|=`*2qgtTUoXr6UXjC$jJZyLJJFde_W>!WG`10++qqfjK1*X;itTmJjNp zthzpGgx&{J#f<5eDnzBaYL87nyuJUFH%6w1(()8z$%)fiL(n|dL(w>_h9@x17!#jd zVKtfC|Cu(D=Og}*|KRTYp?n3$a$Go+%E@4O_Mi|OV8hQ&?_EaT%#?p!gZdr1nvU9Z z+#{+Y|52g$_HV-pm5eOk_D|6W1!uOk@cG^PTng4bgPNaSRku3bgkj1R?BE%bMISGM zSBJ>FOzIPOlpf2=pft4w7p|6HUJ`LWk5yQs|L|58 zG;2HEK@=fAb&M*zbBEIn?hu#cD1-f`ka`QQH2THWB+X=$_ioBXw&7Lx44U$GS`PH? zVf*D;Tk;-l(IeQ}KGG*cV7c5m=J%L8P;Yx>xYQ1LH{}Sg{?SFlEnkFNO$fpNW2>uZ z2R-#K2=xdTc)C!;cA7JP_vwA(3ixMK@!WZ9X%YF}2HG7tlfu8j^`%D{EY;J`vF^K= zsIHg4IP%tojWn#h7c4eWT(u0%W6Py*q`VA2XH+l3F(3d=>3ueTL$XC$}H5Qt=(ZD46u zT75k4fBsgF9{Hv}fo_>Q@g+vh{ll6EL>b1LW?>wktd!UHy%G~Sa0*-Q4NtAjIv?Sz zB`AkLQdEdw!f(1Ro9-%lWwEs6rhDxYB7QAN>?Eyd2V~Rhryi~fDjpHghdA_aR_;HZ z8NKQA3#adD8q_GK*005ga-dD5K8-WY%hH`xjJ=gbirw$a4Ta{yr?F%-Hrro>EOBQX zsvByZ5bcj365YmCjACSUE1$oaP{5LV5oM6Mp&e7OeJU-v2*G?+N}!y0o9-h^P`&EDg3V^f=a=tfg_&<7kW>hw5$hdQKO=uZ#qg}{ zV_Ip*zAn`qou=EkonmSwl^#4t8#_O%)Bomq_YVB@c!;BhE&32?)iG-VPf@f>7iS;> zuLhCW-XRg!ZE+v-wX{Mju5sk5M~Sh=2V{PkA#OeHxc=!L$o%A(R99~jXQ7e4u{ZiH zmB$dK(mJ)?VVS^5k>QKEFg`|O*WFWH=0i4l;{o@I;@{@%fUCJ9#>kThzAJH{a9@E~ z+3dJ&dbV$ z{V{Kr=?)dU^*fc$VLSI8aDazxlC4!MMWWhW8PGD=f2c$mQmPor^uiv7Z$k+^#7T0^ zRc8tT585V5C(*59Ld&T}xugh8a2B(9W%GWIpJ^79Mu}SLXvupfo3kIS3j2Q|Y;4mW z7MC78S9|`A9f(p9a0sOlX#Hl#0%dItKQmU~z1spg2wfEQv({?DTInnJ<*Y;SC%b)+9=Yi{p*7PYy+N{#hO%;bbk!@lV z^G@*@Yy4*1el&o>UIJ<9k4#S#Q4uQnyc(&*}8|ek7Wa zc?xfm9M1L{nVeDgG`HTnE;*xcM|6>_*m`m_R;b}$%Hm+bv)>rIDRW`-DLS)!q3htz z;*9yPjd}n7|CnauiAfR3fAdNBKkFSt+dY!em3b{wtgyL}E;HGZ?C_U4{V#Wfd;=G@ zL6yExl-uRIZMpw&RD&fB@}0sf1oHJ+^aZc~yXwa?@}za@`Euc6_#Q&Gl5&}W5Ojgn z90*gZXyGG0_Jv{R|5BrGyaLWTjC1$zgram5yI8r)L+D-MB~?|0e|-!?!&UtERY@uJ zLvePlj7sXSYjD}Me*RtMM_BGZRMupmU;djrPrz5+W_NBny6!ZCzZB!9^K#&-l#GlF zGt-V^Qd@DW=1&qUAOmHRX2RE-i`d#kW!!EON6|sP8fIp zv8Tz$FLraG#v$Gh>*F0eo?mWOiQE-#XG*~Q z_1THa^P_#X@K+CBE(DiyV*%mgmiK-B$7}*P^Ld;my|zm3HWPYu?G=z}(w)Fg!Nd20 zViX+%_x5Z=CRWzCWV^CZbVc#cRsRt?@S13_lkT8H%D4VS*z)}IAviOgj%E@`YKreF zx$YD0up3MJM-R-1WrJ~YdvI`Uy@0>F6~Qk)Z@BrI_hh)-xUSZh#Zble*=#khi#=wF zkx4izzg=EuZ=p|ZAnu`2N_~;(6O5DTAeu>;F+HluQfV!0*9T1?;0)OTw{?G1_q2vQ zB07%V2h9do=*8vpJ`7PuHZJOvdlO$xmTQJE)6VC8D}A(}puKh1N1u4jf5&nB9MF`D;^AZSPA}tj zN2a0AcL4gMG>{qmMUub;#Z~%@Tp6y`1z}CpP|$HZu5vX48@*7$<7y&*aUf1{n)jg} zF=7FEHsy{W_x^Zqzp%Lk8ovS}YQf8rf7Xba&;De-TWGCuTZaV9+Vf5LU z-{yP1=btp8r7`0B{|wjmtb8^~$3hmiUg4sC5jF>o3psLY2B!9AidaQ01TrC$`3^^9l2W`t?+k$eA!Ct zE-q;&*e!=2H2&py^vFtquJ}L?wvyy0nc@E$2KJ^Rueyx(K7M>6i6#42#CkOI?&xV# zFy^1l0Hz{l2V@4?Q%`a4um~=88AuZWE=L8aPu$V7KH+iv8d3|qs2!K}Lu>KcHq`j1 zpx)^11HoAEKT>genOZ-HiDiWYDgNX2m~*Tbu1*^NGy5zX>!u*^kLmbh*)*N4ik- z4<}rfD8%!uIlEQ!ZDPnZHB-l;VV@3K{-Y&buWbe_!sAeC#;tpDj`bkm1{?3AK?B!Sn1y5ex(@t%J%x z>5=;!6HHbE@%^;xs-5VT@%;9_zfChBgN3YSsm{t0VAA&9%-QwXLSd;>!f9Sw9##pa zwx{kGTzPd*k2)>4OlF4npORJh?udEzy+CO<87)KH6ft>}%U-9niRtX!LOy1qn zoo)`g0^`FR&WJPRIX$!K z4tPKP?1b!A|D8HtIgR^}roX$JJA692*zTaM9tnN|bU$C(^oKrmWoo}inhLBx$~8?5 z<{%cP<&jyex%XQKbt3s~4nISdm=>0`8>#)zJ_2r5b>Um}0>WN8hfXh6!il{;*X0B+ zv6Ef)wNv{)W{T5m>Y*ijLgS<-&=&MCmc4KO-ev#^erR0VQ&BffWtH{uNR=3@i1S+D z<(Lp8(xdz%@r_@ULmUhc<>(O-&IpdAR+Sx86%E5IuO6x|7lsQxzA(q1BDkn4%Zb{q~J6ISO?#@FBi>j+1#|6 zPHKSudNMu52Kr(Y-((8K`eJYX|Ua*a*a5N!Z7e8fy6vR4k4C$#MS_ z^k7q4Hb^Eu{CDR-pC@;xQLJ-U#OLum?&L%-F;5+)>UlNpuiVT17Hd~LXlga$Bs*#J zwDTZ{+KScHG6S>IfUwOF@ITQTZ%U4C5D=rfy&?hy!}JE?;8e;u4(&&lov9NM%m z1|J>?QiwH;8kI2@7nRbWvtJ+zZa2v&sghYUBF9kV=>DPGu^&_9>Qi z;uPKgc`H;bIL3}+StxvO1pAGW57?>4avGqT6@1nnwi%eeO4w0d57Cr*TC9qlbH^G0 zaj+%wGKJMHQXMtya!Bzp-`P$o4xG$o*N3|WFyKAG23-CJr5CmsxGy9A&noRJFZ5c0 z(5ZH)Sm{Ff-2FY;si6oj4pj*&#{Hg=oQ@Dc>}uoo#83@;3OR^N7F z`BzM_RMZC;OQ>#lt`iID2Ko!p9bLr8@=gG-C-_+c$8z?zPMWFAF7ATzM$x1U`#l;o zPF}He@Nfv+`5|T7m`26`Nm!U0(AGN^pHHIiQDA??q+!Bb$IPkrB+=DCG|6!^$2;ht z+sb8pY%ooWd#ary=EoKX+n-`f0Pkp6&phgPrf9c#B~f9d7`N0dF;Kw|wfR4uw&8-$ zw=Mu&dusny>Pw|4hzVkZ3{`pSWqeqt5^x83Tt2-vY6t4H9(^W?%9?v{;Cw*t&ynM~ zS6It;-Pu2irX81red`#+2dS8I#fSC4BX=5kxDmb{|z_zV#&gjc%`S%ZeGBp#!@#}pkU7QchQ@oz|^sFgoN~xaz zMEp|Jyk0&bdPSIno~9ZIphWM^n!|cjAYNb}hyo!e9kFZb+6PJdi2fpKG7ioHl=Eo;DU!3h)XeXfFS-O~rGgoAlHAOw7~T@zUW2RdHMA zrdj4UK`kDnQl*>iSFFBP;XBKIMuj-IcRJ&;mEn_<*?u)fyf`PZUqyp{TwTj^?0*+> z$l5s5cJax0&w=?mopC*_11Z*F``B^NZKjX|S4-?CZpzoW+3zT$@4+MGg}hb44F>fe zY`!3;6A4^D2t)>3Nh`?fT7{F4$7i|{|FhPT-?l#l(}V{rESnfCSOpidfCcLZ(D_tW z6U@U^jgsXIz@3dRm=&s~dDhvHhjG7`neD!+Fuu=PPZCMnV0i8?)@hpL81pZFzk{dT zhMgLgs3=dBW(JwQO>xUv8WM|?xV%zm_f{%WyAf0+p*@i@YTK%`?#t;D@{uW5gT5CN%kZ1+L3IYLX{X;O?hOtS9z&DaQJhzyARnUIbW<}Ef7+<*FsttdAnj0F5a z2hkUQ1KUCnzxc=N)+#(3FPu#WFwAP_jd%^KmfQo43}YA5{kB<6#LiMzr;8CD?h%6u z^GhT7Y|}0jy8&-ltiU`n_=6hm!}@d;aKum`6|BKlE^|-SjfI&Q(uIEaRI!)D9d+ig zV3L-Od2_i5pc4*`eD<%?8BNDzii`)J|kL)I?@!Nj+S0=*sJ34KzSZZ z;+BsJ=eqjwQG9q1n8Ze%4MP!ohZTY%P+*nbb4kc@Css`H&c%-PB_)362I8})s-Bpj?NLCyu zW&rnaV2%;Vd>Fw-;2#1w#3Zkdr%O^-#d_e0?WvH{e)v@=d6TOswGKw3lX0(Ij{UFp zoFSm^B~fu^-RPcfXZW&QA0W0vBlqR9I^rj#-nyclg;8CDTm}?@qLcM_qg`GfAdfD5 z4cRSpFpbI$!+>5#O0KUlME}rvQ(fa#539w+^@1Jp4#UGr@dGC%p>8Nk6L&ues<_uN>RPOCl9hTOgyA-N%SqY{M6 zsr0L6*7SR-BYUk}rXlaR_S60MDi!+p+SV^P-v$3YiMw}*UfsqqqXExN2fF^DF~=3Q`$ zL&zr;;`W^TXp)f_wZr_MMXjVurDdIl8oH`EtMSw{Riv)~sMwB&Zy-N-;O7@%(s{j7 zQV)}}B9RHWo=o{kg{V3E>t#?;^xX<1W{V@c@vMep8%lO5ad(DtZFfC(G3+MzdEZ6; zaS28FTJ+$^2iW^)@Y?0ZzX>B020LHz{ZBP?+5c3b`cHY!|8Ko3So7DBM;e9yz`O$d zre(9rxxE>`wVmRAL8cO+2vrlxPbbxcD!%%(YtxYy{@&8zMv%^%J=W++E^W{~wW>e4 z`+jS7oP{wQ_U=_anc8M$wNb@-v^-n<4i#o^}cje40noFQg()hnDy7yX#a z$UAmFW8EK3F7Y8u$$xVq=Nq2i!m)=I=vdwBDdHfAwM zv+}Va4<`nDIyj}FglVll`KYDaenLb`k=mM@sZLZCv@d|%Iv0~u`*yat`BDcIRIZXBId#_h=gQKS9}Y)3i{HB#YWqVEYLyM>UmGcD(J$ zW?D6S`2G3=Hns#>NnK{F^6{Pdo7Y~vG<>h zm3bXBZ;MahTYk368Sz=88%n^MRq9AoKg!|Z_wYGXr>_S`mmxN&fX&h7JwNJ!pI+3!dP*>TU+eZ> zEe4r{Xpw!RJciNAov<1|<4BKya;NKn=mcGcy_?8l9hiCm5 z>tHi=-0fWxxYUy(SsECgJwBanBn06%q-qc1o!3k)`*hN^^izWhrh$--@uQ?u_cOe_ zFqSBy0+`V?1$YeCAqY%RL*k1e>+jt5?)oZ8!nzHZT{%h_3BKxoo5`~K22JYoU>>AXrEm)h;&PmEr9(usG zW0VCOg47Y`mB`Q(b@sM+iogzq+cAh2&U>u`)AU<6GOfqa9z)-8TAQ<3mJWUH=cPe? z1>?70-zQ6cnUh$UarVaFcRF-w+xe(md1&xuMFP8VZ6ICu{xu#eoul5&0l|W}DC8Kr z_v$b&{c$$&sB1`w@4~8_w4|-lj`R<`z|Ib~gmLFh#@6}!Ykug+vw>AO(h};MA(a(j zX36gn2<{hnFc4Z99v9x1Uv(exYypMZC71ZJ1;<<^E4G-8Q@i*9L0FNdA4+o4YM#ZN zLM0mCPu5wBeBUcw`OM;pz1!`9wYB0-2b;ck8Fv68v>j<&djwgb+hNVW&!Rwc-)i;B z;hx497jfG6ijY`nnk}?v0)Hh1Q(QA}xx!&7h0jIHz$1}ob+^4m#BRf_wiK*6pbsB+ zr;S&`%Dg3Gv4Z~Ci7VS}7~@dNPom&W?=n?A)~G+jWEVu8t482YhSdks5U1SsvsX7sKBRZxxWDh1yzbnaKvb?KApX0g{8yG7{eNJ-X&;J~vld%5veA z#e3u7n&*l;j3hYSPlr8CeBOl8EPK9Md*yIjJqPx$;?ixw)lD+ zPhoWT^UWmJ>EFvw<=Nfj>xJOXFG6*(vDJE~65Imw!57DSn?6&>Xv;N|SPdRh2gS@f zKeIy~dQyVusNd$gGkdLSKT&qFT>oIDM1&VV{8k#-qhy{-Z(bP=&*NHON9RVx?*2WS zH{>|41*-L@(Ps|hYow$OQTqzw4#}Hs4JY$CPK-J}ZrCCpe$lM_b?NJ=5IY#>V*eSZyq(%Yr)3Pv&MyrH48VJ1F)!4qBuX7$G&fBit}w=u|tk4H!YzOqskaPs?L#B_4#K1I}*%xBBL zMV}`&fJJZ532VjgNB-i-zYiWJgvRr&tu_e}RK?@drKh6Aeb))AN+aY2lC$DwieJC~ zS{1u7JqPsz(c%Z0$^*VKCfbv(8Iaj>WcpQb}*ro;DtjM`rF zayRUvr@jxg9<2e8oraW5be{0nnZVAit*PeDMAARNgs*eq8<6&wyB%f2K z$a4KlEN#m=0+EJHZxSB2mLKyR3ZtX61RK5#9-;M+NOnkko4Bapm|Y|V_)F?DRfJ3NR608)bFFbzXeNvKZ?j;Wqa05q%9e zlmSfYF7ODuu%7vl!53%9`xOS(DZvX`!x`@7D!-(b<^hQ|HPyc<|A$D zu7V(l-pGBF$aJR|kZhMSL6aMcJArwX~U_-!yPhpL_)`Ux{uB0Q1BI7+{wYP zTfE9ovr>b~$){|lmq;J3Ii6iQmm^XG?wBGCa!hbTyWTDl#F`PSod|iTg&>LAQiNQB+=hzV}cI!DoH}|vAZl6i=S;Q?W*X9M` zeP7w7^<)#E&D8H#a@I;+U29MHV$=p(~Nx+k!xe=HhCK$1Mp4{(+Oc($a# zZiJFVh}O^vZV*@hjQ*i@M`FR1JC07MfYV1KF4Z6-09k88Mdye?f~yDt1vfW#sScGn zBmY@WQnm{pV(fujrb^vc+J9;H>$~+fw6mE++C080W)qQ`t!Y+rjps)a75Y5=;(4wu zo(@ok-{}EpW#lY+&9TVuDPk*2g)#FhWiPD1)ZwP}gq-iX_~+*i2^v8XcZ@_60Lk|2 zahvg=)2F|wNTxePBo$jKOm58v&TaSP&wm}L%1hIBn6$RiP%Qa}AP~xi=vO=cpbS}2 zjrP0YPLtAqWR5PRi;wu;>{5vT$$wVU*9VyUw<|#;+{D)iefX2S4t~&7S#N#FSpPq& ze3O~{$9;=09xzce(FtVo`5n6W&`XtJep_G%ccwJX1p_>ZZmtEl}mvX2o1kTbT{{XT-^SZJ-N{htzS<)DZ3jdxc->clB6u8^5NGGKs)s|7qh7{`jinnXd=`DxeHAIC~`G z5n4H{zo&3V4L-;{mnvex^g5RyA>QkR4{jN$&T{Pd04RVOu;!xew}c6$9yhQ8*cXuMUzx(~}LdOFJVnuBlT zfVF-<#NW{A2B;hy&eG>{_;}OBj*}(l5KW2j9CoD~Y0nt|vD5kwWeUh;K$=mZ{^dZ}= z=;I9fZhkMxiqAsvX{C2{TbsB+6%u#v7jDl2wKyy5F|PxY+dNc9SeSp>FN>)PJ^-H2 z30TG=Fo5$Vv))?(gfsxH*JPC@b(M}Oy<}Op)thW#+^2aQIw$+nH7{iI9q~eE?0DOq z_^XdT8Ll$Z@2c-q+1<`ar8aHuw_8)6P4MzfMMS1n#J|KkXc%a^R`{vC*j*G}+*D-T zKEtsElH$C`Br7k=W{FUCGH9svI5*lGV-w}!4vv)9<9S0=6%NV|(^_0^}7g63+cH1fM^D zL+1W&p_B1#)m0E7EU$6f4!@$96keBz^d*45SFoCoF2N1DF`Z74u1-XkH;@pjwf$N( zWhX^LYavLuC+^w{ifcfhdFajY5VGW$w0 zk1zj8e>Su4Hh*#Kv3??xtcJ%x1ouk(%nHGeu*YLn2NyiC*ZFaeP^v(i?XUxkIEUzQBJKb9Vuwbp z;fEh4Ww-^bn7tkFk=?)XSF5=vtEgZm;~ubulT@jWz647~e(PrF>W8oqJ%aa!L!_}G}{eCH&8dx`z-@lUvKrv2y z#D~uSsOl|e>9hkRc)eSwN^kD+98*6)Pf*wmfBsu1bL>Zq@R4XrSKP&+4t;jTZT2c@0ROU+4rP}Jj^P)35b*>OyZiv zI>NU|$`Dz3eI&25wB6}rfZkjk{v`KrF~luwo(f;Nx3RMSN-h_gQ{jsPF>#(Kva0n) zgU3Jr2)QTg5qw$!$en^pHOOINl73?QKM1}9`0A8~P~4MqOJPapE25D;i5hVl23ha- zP9FbnRa3j|Ng}V%tez12vFGH+EE)RM!G!3E#0k}Fu6UZWN)19|G-)t0a}!&;)7|K5 z6{nm4n-JJ~W&aDk@tii}8i{v+=RpuA#Nd@9>3IT? z5`}q29teNFMZq4=?c)#taD9em`cN89`+*{fx}N!g=LBnCM@*yiL{8b*n)BrbgxVFf zJS4JPt3v%ctG;a?9X>>Ri!ux3jFheAtD5hzIN4XC_B!HD3A=}4iA5Jypvc7g$28_( z(MOfK9WI6BvPN>RkY_7Tw#qTLH6vUdwwh`)@Fq3z%~avHNInM`rEPBAOy&@^RLFOS zc%I2KZnuxaKi7*np!X+tRf|UL;+hjb6M}xoDph`puE-4-k3VT`LNTN88ecPTM8s~u zF)z}z%>4!1EUhp4C$z)LKx`dy`R(ccf;K^fe;<-i``Kz-%5UOqoU3!V`(@@1SBESj zO6ntrdfnSDLBG*Er#$A5svK$o8Qf3Jzt+topo}m5Jo4QeR^iApM^>w+K^9Fd`*n6Z z1q>US-89$5L+u9OUr(p>LHyJdp`^Rj_RT_g)}Y@4FUF(x(m!iLdXnd`uQY1e$X1aH zq$3ciO8<2S$?f5vk9DQz27TMfHwA#TsB5+VBbKJVu#Ye|b&knDS^hFiS)ZRFM8U zxY3PAv!GXThFWa&afSsoMSA0W^}(Nx&OT#4Z#KGn6aRpZn&_=Y(BhFzkGatp6j|O9p3(ttlXBjZoYE1(4GV7-I3MX__KPwxyj!RZrU11cj?09Ur*k0BC*oj zEOO5Q8j?biNtb5urZmaly6Uh5TlE&yN`651q5_WTwJ5;%o54?ho3>9V+gbYCZ)z;b zEGOqg=5TDK8g}Pb=N%EtyASN_zSg|&{M@10Lqkzs`+=PrGEY-rI&=S6%Fmg(-oLG< z@Gfq*P_KrZ+d78lv9gc3k&*YC0&`luAQaUveC56&;+^tcc%I!t9r7_1Kwe>y2Y;Qv zf#t0v%JIPf^#w}!~q3$WQF@?wGHj65{*w+cPuF#buG_0-(b(c&xOOlUjewXC;je%5d`*BxRJhJx> zf>UL--R|Bb`d^m9_ok=Y%S8YyNkx9soDod%w_woP|KT#R0iM?q^1)VVo4Qj-uz zmL*0L*@-uuW}D9GT!@(9S!W?R)kIk?26xn+Q=6d1HdJ`MgeTo@dzOGsnCy(J_wS#0 zV%6W5rl|x@r4RF|4pq_*bK`y~;!I+MXevZ(&8NT3<*(<^HJL>O=RodU=o-3jJ{?^U z;L51Uo@Yvq$HN;8>x_fCw;VcnJa9zGaOmyOpGmt8cts4~wlw zbhu;GRklx_j2->x=-cW!H!|9ii~Hns%}*TKv|~H>*gpPTIQkaJmZ(7>j^2Lx+Swkc z#Wss}z)o;i-BS+rK`(ADON(a2T1LzR#NqXz*a%{>wdax+1i75!=-JaW0P!QE;Sp7u zy&odNyrgFY#Hs<;IkBNo9KjnPc&2@JlhNGZ($aiH$gli{{UEO6-((7`+ z6mUOBUG`Z|rY5TFp>f@p2@@I+Iw)BMu9 z$;j}Uv^Z|5eo5xcsQ#1Z;+=)g76`f1qempx*y}8^`754~PY{oc^+ z4`uA4?BpMNPK!V7m1H~#iZ`-<42YUb4+{LXX0;<>n)^6fBhQmJOT;U*{a~!@AYLf| z@CYkmz5LTC2H$>q+z^XlQ>v6XIOu1x&ZI5QduS7GT8cYcYke1s3=gNXh^V*S~~A(HI^MV;r8UakFh26+(^MF9R7?@+GiQ3Ktuph zu@X6JklO>stUFrn33{PUkOaYnMrZ<7%fs43^6h{G*?Oa%VAU0=#gCosaX_5IW%Q_? zIuLbhqq}_mEo~klIt;eea`zuIx&J>Oo}B(0r<(i1uY%fUuRndwv|-q`-*fw{u$wjc zDW=Sy5zicUWc8$vy>Cn1((XJ-7JLUZ?)R%oIe=m7lI^{2!Au0>C+@8qJ$;^l^^5?S z_h!3INdAm!Sg`Yn;k;AU`K1<)7G?L=0h_7dNujzOhITB`2Q{pQd4pl-sU*h+I5md= z4t(+lRt1|;;KX`s^-m_0Brjs-$M0TP_j9k*J5DH+y?(JDUUf$YAYCA5-w|q^)xVQ{ zp(1?*Xa{DZEuC3R10zdvqXdq4AdQ|AC}6W;=3n_!wnr@9(X{u=9sY05r=_zULM4k+ z7iCdF%}rHCnF5s9t$OjKCp$#))9xYem!n5Fi>WGgjI?Xue)Ovol8%Vv{z)@inYryO zM175+KMAQcEDNS`{_h6!HLJP!hOKCH3@mS3ZW`beMYE+8>XD?L%R)47GlXd=!VKN5 zjW&!1hPP}OPZr&28vM0Pwm2Uj(&bIgR#5$Pv5zd5MAe3}H9Z^Z(6LW++DZS-jV$e-X;0;(!rAC>rtH4S^p{XezTm{7zb1x>Y&CxX0pU;Lz`h zzdr!TL3=~Gcmqf;Qrz%3eic5h{P}>k)yLPgg~P>^<3iI^s)rTRn1OVFwxjZLVyNvz zp5q^rtJnJ}qtoEa*-_i7;T0|vx(AUH)&ANV&0dEioYnPst9ZI^!nXal(&no;|BKyO z4rz^y15XvRh0(_!2;u7yx(}fYc?-S9mxzg6|1!8hp%fq1H#*Nx*#ZYFmM-hU2A7<& zb_o{KVX|J;+n96Nkj(g)LLs){rgfw`I=1~uGLr32lR0x?P`0{+K>Zx+tdiP9Q!#14LU(6#BYCNkf9%x6YxQ$=RO92(% zbM;j*nhR;!#bve&JJ6UJ&Rq6_XSzxO?T>q2T&gQ1jS3i0+`^_45*0L_Z7N?YO9G|c zcBgRI^hspFz1Wwt_T(F%6NZU?Y~C(jnOWDch(ty7zz&UTHAmkU1kTX4PlW4$xrx5p z`3;e8zP{mSE#rko{%1#!ztvKWCMr3t!emli_~J+V4~vSU3ct~b93ivq7_Fw}mB-`x zOaTq{TrP_?)eQynG*vHZ8p=J{wT-KtAjvu!Oq*VclN`&qfd$T7^HR4g+-l~wisd$N zd|p@oPB;S5qI!Bm4IX_o<8)0lpS#jtMw8oHZKUDftqYL_G2|J%y zX?+j7hYpf1f5^eS5SBpb2ak_gMCQTS9=3iqzfoi<#f;2EYN?J-m;pcCAT&W`0YWG3 za53)n+w+F^F08-mm)4^u4^Zoj632BQjK8xl^)9mA#f!s$6_pMbl7DtiN*oBwy9;4y zyRSIImHQ$lNf_BsbWfbOs(&H;(pSpdcJ(KDew;+YgRjNDzAUC-r2iQhJ0)M+dG5jP zee}0x){Y^nnY@OVf^AciK=M__Jabwv2Ar&@xfQl`49u;Jng>qi!#tLD*IQo2`< zi~Myhfa=Z=;_TBz|G^eOdD3TacFXPNYn;_WM0rUtF1iQIoD@O5;T&Cj?S~*uePGMP z`pQP!;@0GR++;4JTXX)E{S^aAvCsgJ_$%<;w`N+%`0BH{% zAflBn@-2Ws7Kz5IFcZEvGo6@?_ck#c*!H~=CwA4$TC9CG64;0RGkzEKhMo+6w!{j4 zKkKQ6f~@rO9SD)jGLJm(WTruUI0WB9tJRIVc)_(SK&kK|U`v^TD7q>Op1N}|SY zfB=ECu)XvQR*#|PKXp0TlwWtK7RMenlWM%II}7?DB9`T0Mp&7q zrRvYNwb1LV=$nC}%zfh1wBB#~c#VcFaIzI<{#93g@f%06d6R~cyvWL0ha-uBEBqxy zXkO@P-l7&bTbG>@&?~POzF}6;>`R|ag~Ty|Q2B;n>ei*)xTwdsm-J?+#b*(0BAD2D zCV~uR9dlS}Bmr%|jzS6{hoC!Z38as(8;ZQDn<*Yyjd7(q|+ z%J!slTOqAS->M?`0aCVOYIGT-j{YyIl+#OLgPGT{`&$jthHE$>{pPcFP9$%Wk2m_a ztk5Kf4VZloypT#!D67O(%ikH+_Em&sy!9j#wNp8Iium8Gb35n0!`N>AUutp!clP=S z8HoA6FocV}DsDTRhRi1V;=|$`E2Ih>I~EBJ+4s>ni0CUiBBD4_zyNY~N$|d=O^}$# zMDv~@tOhO-41h(24%pyHKy&xJ_oycr%ud?_STP&G^Ji&wDrl}8ojX?Xp(@nbI}F0! zL|5vG6&H6punBJU~fZg6>AWCF&Q zW2ta-il-ssHrmFh{g~m2&EymXiXUTp#N{L*>smS0#sovF<5O|gpAhq#M~e2d*rNQa z5&K28;T@?4G+gUGV(|U>kV2gP1roH1CCv{gr<}U#@~PLHi!?6QM@+6q`LWj3YUD?o z(MZB7L9H@*0nyBP#8+@vnwx>yL!}6lo#*}IpF%fy*B1|D!}-AXUZhQPa6^UmKCxhL zY}(;%$F`+acg=gw{aGKAI>X%ecdH*8l3ltc*e=#-G(re=)=%4-+EF^RS6dlh5u26R zBcYCwz=Mmbb+lOz%eQkMh?8&y88q)+-{E>hIRKJYGS7^_Npu{r(_tg?bh&L79Q-0b zm)0R{oZzL)HM=7&E}Bf-+0BBFQxYflymN~!96-8k-qW-ym)6Lcdn5_yhZqE>f`)w> zaj)l|q^q~-Lw6D_Q&uaDqO>v ziL(Fjty8Ot^$O2#tB{X}yy}SL^V?)?pr~iRSv#WgBm|pN(h8Ry+gkq5BC}P3w{)(4X167jO8W-1k=0Un1`s>Gxj-my}%4Rtgbtbb@q< z%if;i|E770M`4ig`Q}2J$|oxxY>wx)=sScqL)l{8{Fq6oW!5*y96$VR>S?F)gOh+3 zegsR)g~GS{yw-~oX)(@<9DXhKfH=|cjx7*h4Kk>1G){@CDdJUa8w54g;1S_oZ&08~ zeLb%>iS?sk57luAXuOk4T~@UQRHJn2P#q2yv;_Z_txYoUo#&?K#JaOQ1*g!YKImkG zcgeO&Z5alRxBkeh-dARuGK49rmc$`Ioee8io&?qQZFsrNK?u6qE}tb+a5kN_N=@RU zyVlw|HH6+FoukfSlI?=Kgc&M1PL$-{P1JN%l_kP48Zt&D%$pY_ERF6+K(Fq!Pjy1g z@|Xn@GYf_SN(jrnz5{U=>yblq0qc~tILAKa9?bK5uikmbzB%a^u9oh@x;G!Db$cIF zG?n~igI4x|5j;Ws<3dpBmBLvEvB_tAIw`pJgdifjwlr-M6}e)#NqH+<)H z7z-HcA_|4xw5t35>ZWgrwZO#v*}UpfwOuX9nOM)WLONfhqWFIAjYxfP2w4A=FO9j3 z^2g;3Eo5w@nP5XK*E2fBp*~esd4~fW-q>N}kxXQmQAd(DYIW7ZdK$>aaj)+g&y*wL z#(=y6g!6MODt{VKCdW}mU7OtH48JEzbq ze%yrSyUBx6y&WrJft%mtPsh*AMgGmd9C;Aw`(~Y&AIaNcdMX4~_ZaR|Vs#rYZDcPf z`D+h+o*j0(i-;-LnNNG)<)&twrBo&wJzO0rfts*Y1V-_B-EoqlV@hf+r3CHf55+;Q z2uUSlj{3huo6|q#R9bLh-dJvX2bJ@oC&+sa?R+{79w+Nu6S2?v1NAf~Y>yf|dtp8I z{VKIV7yrw%B6{7roAL+OWIBcZ>h!|QKgB1=Lv&jzmp40(mYD7@msxSFw|>XhwE=so zn6{V4y>#KBn(J5wQ{6+vpk|q7a)D*C>zbnrN!tTrk4y(Ms?)2j!>1KCt-ADLJtn42_ ze5ubJ(y_7XGe7qRZMHC>V|QCLjW@h*dE^C)lEqmBJC`T{vERi)8pa_)lh#4fi)ND& zMaOnlIH+Rwxp*3iy>k9>Nte>goDu?YQ}FQ;&3H*hl_vPq-1J4Ex6@>w`u3Gh_+_rn z%lV~ap56+c^2f@MzT9Ao2(~3Y9Hkqdbp^Ip61C56MvDd(({zX(sUl}=4p&Im{U5i! zR&#&CBEL*?xRt^=K2jO=36@uK2YGWlBF+>Q|59t^#-2@zIyI5Mse0(- zUwa?-EC8WYWwS!zhM?&lrB)o~fZFGolHVkanTmt!uD=&nxaX^r=X&b8~ze{D@DT+uXCRlTdsVz{FDt}M?J4j zMzr?&jaRIM=e`r}X|z=jKF$|mB)WJhn5c_p_*_i4sU zfFG()sQj{=cpk+Apr*>n@?ec!ZpZa6_fdSfH~$y0sBN=Vj(+mroyD1MOTK~sZxuCC z?9+ZtTgkCvHTSYH6;3!ee!|nfCXb($b$?R6Wi3)Uf20@*z`Qq1yQ?dR=2LG+@Lw`c z^$jcNeqZ%luT7q`PuF{XeWCn8p!?zpSPgp#3Fv-0faw|Mv% zEd}$`b6#I5VyY|KF;Lb+(NQzJwYRZQGo0har!0q2d}G`n0hZmLoF7Hut+u-@1wErs zRTO?#8oM+sRim&CK3<~w$P?`nv5VqP8a5{Lh1i@IeHCUZKg z!PXkI;HM-J02LzS^@|saX(>~75w+?&Q1zM6)cB;&*o2U*bl-W%T`y^~;?JH~E2Ul% zv!`Q)=?Y%ur_r%uf)IZZYi@uy2LZHsU+y^qL=9ihY_RxK*2hlf3pNloSd(KFe)$^Y zZ(+QgF-%{K7X|37kPvRK-7fP%{jwKBD5pO?PMy)F|zGikl4MQj0 zYv*pYc2(IVYw3O_p>nb_XMeB*NPktgFHSonoG|s>J~PM)zQB^wj|KwZfq5$nOiA1t zIkQ)ZiqcUx0ULy_ENrkA^C(@XJ*fa<3e`Pwh^tkS%ow%C3SPWR%Nq$BmQ(S4nD`cA zjI|F`wb!3d59Rjxs<6kN$e}m(7pIXK*}p-mHTCk+Ye|1!Nv+cTel7G~=KREs!ns@2 za%f>1igPDsk$>ZA9XOf8KjlCfNo$x8M&cn9l-F3g|H&BRbP4ZZi&^>FdDKhJjL7^B9a@#MJJvOQbOuR+3qGK94 zI^<vBNqg?+ru15HQ zzI{jPdv$Se$D1pBtq(06z&A7RN@x2YT*jxnV?LbURX!lMv@rN2fl{B}E5FF+p)`Y! ztl!?+TuS&`&|5l$3B(v|$|N_9d5ItCRfo^ggY@F0YP0^1kT^tlnczBWI&r+M9naqE z8PYd;^6XxqNe{Hecw*`$>x5?^8AZ9!Wv>JkiZtyG5iD0-!`TQS5oN{8=!|w>fd$O7 zQ~wVi`Y%665E())0@<8Q9Aoy#H)r?UFw-Ou|6-JA1B*6^&w{O zy<5u~gzgQ&Ro*HNYwf5?qrY3hWofd}a`d=*i&?ZK^bZ-=q>~Xv_>vv>SGnUKon3W1 z-;Kl!#|5|{l&bkGRd!9Q&+=Tt?VNVYEj{Hruj$`>-mTR@peruFlNx02p zOq06iVMkFL4FQI@j2z0k`fyk5O#+n_ z6E6*MNV*Q<%kpPMU6kiT1q%EuHWrIzkLk!7&co(OTKYCoq=AbJ$J#!T&yka3Iwy$SXtqC+K#u|3n5Ae!qg6%hO1fow&yM&YkwDl zaO3oij~-G75b~kaTaJ~epSU}04PlGLvfb^HjX2s4I1ic09w0Hl5CDm%0 zQXs+mr^-8j{DOict9i-&h|@zS4tD<68)F97sAJQmrjEE;mc@OGIcRC zvgWxzs-&iXcDZ~4#DM?B+gk<2^=)h4!Gi~P2oQn=2^!oX!4up`aCetRg1fuByF)h; z+=FZ54vo8f^nagS?>SZb=6ma{bJ;hm*6g+Bn9msN8NVTqC#hmT8ReztG@19XsPo`M ztjS%{2x$=b9MeU6a?Cid8OEHTt511tusluNC6^sgzU=xSiBn3!n~9S+gqZQ5aMztR zthm4vf(2S8sMnyWiS_6Hu63i6A+zy@(B>}C^1MfJD+3tW>jAAou`oJWUXD5NkCWi> z@B=~rrxC6y5+x+Qc0^qJi%iG}EFXSIRpd&JUT$V3sV6(< zFF3LI&ba#I&3X(SnGCR61%g4w?>r_Hq`0b=bHFIV={2^2*Fe8aFEu4PxP6%uqL z0_Q4_f&8<6`i_+0t?$E7PL#=Gfn5u6B*_3)cMZD?1*L}6`y)u*Y zg%gvq_vZvT0T<}^H;N<&73xdUADe#;B!M;}0LTmxJ|A!dP5q;g5 z24|)S;7W9fpy^oghS`_PL`NtY{EIu|YkJU;LkcnmGrqpDz>#HmYLxcEH=zpR(Jpb3 zp&7kFx@5MVdh-S9*K^hzgb-W)}>E)b_aRmtnY;wl(h zc5#Dh2SyAdma})n606-NKD6bFI1Auz=2Cm+sLfjTZfkf%dG#Klsxi16KL$G*hFc!8 zdV3%{rnKV?sxm5`dHG)WuAAtGoxYW;(2Bej!jCA3E!7{!EzEE(>%W-O=EPfB>Wn># z&fC7GigQ^Uo<_HUiVCh63wGKf%H!j-CR)&*-?L0tkA(!o&`$jaaXuLzuLtiJh>6s@ zO=|NGkMb0j2BSrZhm7y0R-3k(8ZgxreutfJ5yz-13e=t?kiG7)EcuQV;CHOS&ryvF zM&U2P?z!iC&uBupfN-*ur42aeF|2*FDjP~sg(#HaG594=FCC*NXRhHd-~yMe{|rBG z`OZ=>Zp4f|p9ICdNb_szMK^6xSH+K z?(j1!h*Yq_pp2sy{Tv-#KuW}Fv2DiT`rTtKm>fjs^=7)BQ!K_U@~tZ7isx+!-~4U$ zx}7ljMv-NQ0j;DnCr^(JR_coFB~>>zaX=#DTYnX!#p9)0TzZx<=P=DS-yb@0o$M}X znGYMxk#dWe=4IW?Gc1{>N~7PgWWT^&Ptl~X^PNz-C&*Q!jnhMWU>Y1lI<>e_;XT#6 z5>9`hT5gAjrX8+QF$*jQ;W=Z)%PEXK&9){5a6Tt5&R^k)i(B>J%k-(z+BP=R)0Ry7%Wtz-qc?qqT6 z7_3UZ&I1bi{MwUnv$n$;VPGMQr=a<@-;Ce$b|puNlSKK4s&icz`~2x>mCoS{{PcHK z;g$iq_VUR6Vkbms`jmIeC%f=zK1Hp9K8^`yI~9;5WW!FX7nllKq(Lp+ZcKf1NNYXF zMRF$Z1%DusGZIy%TkYARbAQ1jrpSHb{Q#^+9^VNt*KPg*U8zFZFc#76n?sGNztUwJ z!gwR0W|s?ZhaZ@nWI#ne2f8WP`l&Eal{kx$DCF6?PiXXWZ9#lWO-Kv_u72ka`M3Ha zf=Am~E~{w-uNgqMjn?6{r8AeTy2gf3z@l)+bD{TlI~MB&F8W4i5?|u#N_YEx9_DA( z{QM1V5ij$QI6P**^^Xbd&Ls)i=i~cQY%V=)*XJZ@EdLNX;kpI14+CuJoo;NUE7|G# zh)UIFN+hCG%-zkkFqQja}h6nABa&9Wrebp=8C3)oHi2vqYXQw)AK zZ&SZ$GMN!U53oHMH)jbNc_wx*b594xVw<}a5r;A18Dj;rrdZbE$!P~wRBB456Q1YtO-VQs32+rz=Oh{}Vy#qawI$95begJG5;<2eHRZ{<UKMZ-t5Q~l(a}>m zUyo}j{(>doW#2D1F}C_#w{(GQ?l&us7k&&ifv^Y~uNX5#iodMT7_*2@3N>zds2%Z6 z+XY!R7gS>MrX8QPb5R)8+9QWn8T&oo?Uf`5MSOQ|pg$a}?Z|eJ)6%#yM`WPyi@R~N z`saHdAj`LF&Etbfl3Vktw(s+E%53{^hN8><%$$q0oW3Q_XMu_~vV!y2r61!1el_AF z(*X>UX19$M5;da+I%K&wcht3{3o2z#ZH4M`THbf@%4l47$IN`#LdQw99&_-NZ;H(U!g7CQKJt zXgY<$oi!EyGrvjo0HJ>%4{$jY0$FNP>@U)4)EGhwUk|&)+i0ZIG;ruMB7+-gaAu}Z zK+0LuInG;Htm~Y(NzlNl2#ekH?rEwYsQAXyL-4Rhh;xabVvgEk%$wx3{{ zthvFlG#Ne_n6^t(-5Wzo?lpH+f}OmZMN=jNPYGzL3^+9wWDQ-0j9c+WNZiP_;xD-93~PPS8ue z-M*zCM8TA49c@ezP=0;({8`v@{!PCI-lPRXNUV0Q8nhq+$GTL$>F|p$rmkw(Mhb^|#YUNA_klfByi*HWGm>=$TX-aw%!r-L32qEzC8gK(1 zaRc~oR{Oq=@gpZnFNET?F+}G~Q&vltywW&-L%1|2G)n?F@;KZ78tI9!?2<$eLL`W& zb zo7|G6f*?e5)BzUy>x+l0`uvA)ZIa`|H!h_l6F>!B^6YL$cF$N;r3}aRE_Iz4O<Y1UmkMBH<4PK+n!Oy3@){;n=Kpc@;e zLR7-0T8Q0`s`2Li^zlUQ<6w(E$eieW~Hy0?F6gj>}n742stc z0q$h{J359~)1CRefNOB2*sW$P|^dw^!j) zslNPFw+{QOQ*A^bEsGN0d*Mfr6v&kXRRVgS-g1A#ko;}vrm`@hU43MKEi_>&su^(` zsv%_K^MfSqxD^CTE)m-g*gHaKaF`6&Vysvras9mgIEYwH#^f~C&+uOJxu}P^!{Q&W z`g+xJ@B{a|V!Pv(m^1fk8X+>l2V0ztUG|gIQ9;au$@xo#D|g!(&-W1A7OZ%Nah@Q9 z)YJIK#AGv3q&9H?hE4_Q`f)NqK5pc39Zk>r!sh2^bl0ppWv~Ssth4A^{r-9y7Ja+G zVBIrav2E}AjpVj#d&}>lHcEo&jsx(Ig+ki~M&2nQQ<&>{si`|r&$sKFEc%?$FDczb zz)W}P&RPT4ou7IxLKhfx>m6!H55LzzMH$TwAr4 z43M{K89#cwp6ItaN{XWdoyf`#6UkQ*1z0GiCOiDiC)m$ywaN#ySZMuq#}~!T+Hn_P zleBxgif)9TuI^1l9K{*`;jy1U-lVh%j-eE+q^{m1%|u*KC0VNal&=6qI=uFcMEZ%Y5|{RNeLpj?n$qJOo|6{sg_K4NQ6-8tAZk% z+byJKBFB#+&*v%SsNx+L3^+u^35fLy+N)^ z=$8-?vTUzVz?^dqoXSqWwtuF&KX84}IxP(J-7QBf+KL_LGLYhv%611GqgKwlgnDep zm#J37{!PW_Pbw-osjnnMG{Dm*vIRZlueJ+^$?YcPx}J>^1x2NjX<~tSm_YTlOXe2xcx$JlmK7WLd#SF_%-qBCzB_2W)y_?P60$pN`*0@vou=+L#wX{+tlj8n1i zd*!8Eh)lq|@hUZ&nX7q3Exey6>2#}MdnLeZELoaQYd^v9pDzi2y`QReGCUcl9ZpAFhR)S?)o zG77P+IjTQ7)0xU>6yW|H{i)>Xyn_t=lP)*GD$C}J;OLfJt*;}rcTX4%8e6!4mZN}vuMA~%O1VdmnaU~uY!jL?@kWkZZAG?gO*bV+4i7y745O+$bDQHcxN zDEvc7$smKE&Ff?6cb-jeCbWFSK!zkT?U?bx?l3slUvZn^o_~pV)+K~}aM&c6Lsh~$ z5ZoUfxc*o@{D&9N#3Xhb7Vpc6>DZZhw%=~QMErq%lI91~D)d26*kO7#!spVV~XU8*E21GW&V`QYmeA zX3DJ6yj^WlPI+A_g$;?R>1Vi@wmhzLn>l!yeu2%yFvI*Lb9!?okGBV|bGYC<_fuYV z!j~Nl(qb=p%?;_{wTtNwCUXzC)sT~z3Rfqj&%2NUfkPK4Iy35ahKR#jB=}&zL$nTt zYwmm@lpEuH$=X(7R^1;Ff#~qa@=*W7%u#mC$vBac#`&QYNYHL;oC$72|BF|HVn;oM zup3>P8!-FsBNU;)W(8jK>s}{2+h=odV4bHVsJaJKi*F75U`e?Gi6D4qv9o%?WU6<3 z`QogA7QcT89G|0W)|t#~&9k7NH?VkgzY?M{+$JfQC$oUQB<|x@Rv8y(BVF5DAwA~V z&5>JVI<6#LO=az{HlaR4>VCZXWpDtgsOmFI=DL>kQiiUjABiFJ9k>JhK zRX}zqFVo3m;vcc3Ukii8dcrz$FGkkszfI(bC95|6fr==>hL2>X|87vYDZ-TfsW>Tz z{O|xOv{VeiXRMI)>Aiq`)&iinr*#r9PTOTn@6 zH0lNVhAdq-;YN@L4bm#WFgCDnHnZC>*bMva2e(TD{@^GcC6WPhkF#4!y#H!A02DhC z?JeuP_XI~WUR=L{Z;kg|8zVh<$*t@j+C94%{;86;r1h=g?#&Y+j^8~IPMcW!J~#C? zKj%3N@(%t~6k`v^NlaPiFwihO)^<=Vp9Xg*;bl8{4%O-rm1GlFhzb(ycgnI2(l^UP zo$4&95r?-(%5=Co`}rbBw>xnMVU$8v1X$tD8Ra zXhbNDtQQame%?eqoYJVwmeob}YI%z{%`=99mF{>20xyY%Hl`Shq--`EFwGIF9zFoAverCiBP^6(_m2x?# z_%}X^y+@aop4^Vv1kJtZo4zL*elmw4$;CBUvPltBG$jn8Qn|t}~u22!&kqg0C4KRK)-mqQgY3@z8+@J~`==y4yLW zs&GlW@9s?is}KeBtDhFfwCG$GH(kv7@uBI#^!>Gi{MAek)`X*k1m_U=0+J~lScKO)s6S52d)&o{$Ozz&QX}2j3wW> zyLX{ef(?yxo`@YGv{Ijbat_rBegeB+!a(!yUizOO*eJ|qy(`mF6LUaJqc_uys?!Le z_eO(~exKP6Nqb%JC1i;CF^mI!TE_DBa@Pq_QfIu!-Ps5(&pngc1X1Yn&JsVNm_yru zE#!p~&cv|yd#+kTW9ufsV-1`)!bk^?CDbymmR%f;f_pu)eW)F)Cj#nr{NSIF z+Peoz-|sy-O}!a@om7VB#!C+tl!QP)QDUH6>&$eyD@PIlC_ zAI+H9lH<^K&{l3qS0r)!`tL$|1)(R}_^s1JTf&V-tfyVaHf>(wj)>TjMX4UB>2NYXxH(rA$W!Vz9A{P>peN+@ zqetz|AQh9$57E_Jl1p18^s^Yrc(CV%?Qu6-HD)G+ym;Wx1@UBV6*-K4*{%*)$OL7> zFltXM8}3t;C;=)mO+LMBgGT#II8;U@k~ACn694$X#exB(!st7nWQf7TpmWNYgW2WQ z_ekoH#XS*^cRIL9ur|)@@i=S^1p&!#bzmlkWP%nl+ zzaeOn8*|Z#t)UY7jzTIBp311)G`z|{PTDT(t%|nyAN@{S7O}O?X?=C<^o4Hj4Syq9 z`qquwRI53oG*`1wf42?yIRE?FLWl)C!QW0Z?#J>Fp=x`11=;4wwZ6`?q-v7Q3u0S9 z2zBvV?9U~H@7Qe67+-^ZKw^~t!;DPHJ(odoosN0En#Vq8&LY*mI=IP${yH2cecfc| zQjTq0>UU7#aMUnK7q);NR{JhIn+;P%hIc2zw8+yitjmYBr;)8^&u2tM(WWZb^etb| z(%5DbLUUK+ZAYQTALP$vOvuz-0fbshj2OoDjiVYM|M6RY-}j#2qw(<6{DIC{c2w1 zyp_5?GVEs~dp?)I;ay#o(PE+Zgj3^^l|DJ!3^T-1b6^xpca#t{2V5nBImmoURCI7_ z7W68+sdXYMF1b{ZaTueTKj?ifodZGhia?U-YciHj_7EE@-5?j=(PnB6?7Xmvo-qlA zojGBn^35gJ_xP$QZcVWQTEcDw+fjWh{yob{QTS$=uho*(kG83>kCmCzpnPedEl-cj zVpkcs1hc3LA1k3lNjQT`iB4%Iu;@_nvLZt;TUVZ^ZC{4!B%E{V_!qHA0>3&v8#N|o zD58^OH>@xj3&=!7$0w;hw`@ez3940QVTb>s0Mw6hOw;q6@s)kl>ki#)`0swSwZ9w_ zDGHdU&Wd8@5a2n!JmsCuHOXRJRbY2l1TDERo0R#u6X$$Lro*IFkxUGFot=#as_B`b z6nkfU;k+xk`sHnDU|VF2L1Y^!k@qcGJW{W&&RGrS#L+zCfZi5HY18ud@woV&G+{-W zH_9d|L|ky9|I=gLxA8|O7HWs%pNZ1TZu^$fAr`v`ps#* zJ*N@|-0@#UW$2fu3Aq7ZFyjxlBX*iApVRc+UNGkYp${Pamn-iVEM}JZlDZQqnJQuN z{!E=nOE=bbRo<1yC*aG`Y*NLaqyS`BZ=v4H~+FnaaU%NO|OKj>k3gX z2C!!rrG8>jU6X3Lm7j~5Rh-DD%1f7J$=SKNVnkmm7jeM$O#f6Fd?0zD@QykCU$v;C zi@sfnI@92#3unMMwb;bW(&GJhUz9l?ADOtl?1X^P(FkW@yhHgjs!^^9lR?h5RjtsW zz~^{BglBy>;KZrJvD9J-US8U0D0KUxz!vs~7PxxH&_+BrU^vz^REF`g{E;yZB%7Yidd-R82E{KG!^?rRY% z5)y23v8vZ@%4wRVCWU^S8OcBvHhdT$=r7o=yuLU&N{4gq;ZSqOK^RG|!dr_Qs&{-> z+{^zqPH{aBDZLS_$kn2Bn4~=OgH<4 z+L!Vri<%MkJ9a7d<=6u9rP?~}`BUuoL<8-yLwe-aV}cOw3yhq0z)km_pZ7m}(4z52 z2N#Ukr6KXsR%idhS?5+8?>FY2ez6S>+MU75-uwn(h@nn6ty&8F@SBolZe3OC@m~X& zwo@xG?svmuu>uh2+G^LAHfA}X!Da1XbLn9unhQ{nWR!wyI#eb`i$IwDad2Z5Qqpbv4*kcg-oT(&_Nyj(pw1EN&7t{{1K^b($kB7j&0Ve=&=grX*JQXE6CX#{3q} zmgtS@;d$clZ;6m=yGWG?R^FS39W8V>p~`A@E<@I?x@eIQhO;O%-v86b2}-Z})iZNA zpb6+$m(XE0WsDv6%G*{vY|q*$>wRMZ2+7)ZM>b?OvLr8?hfTCxE7MS*MgBQSi^B+<%qzaG6rO0aMl)gJNCVQuXuOY&=FhDkmh zS0wnk?{XJ`eJhxpugxL{7g~whh#OkY=o&~)QL2?oBdGtIdF}M8wwQS0W^Re=?QE6L zX4OX|O1C@dCO*AgAEqJ#l@$QoxWV=^=jg7lk*m|$C?h2LWZHG)a)uYGEDX#R93m{f zqCQ=6ZKzT16>4Rw553L)^>Bu1&@-zqqpp=d+5HYsXl`|ufT@3|S9UQ^=QH2&apNwq zu50Mt)9}j*cFB*cLAKo@Xid<=#DuF#P0IeTj#_P)+pp%w%FRGKC!Le+g@>9c#&z7Y z73h=q`}@M)c7Zac&PFSl=Rc6BJ=Q6aYpa>F(RYG;d%6<#J^72buJ(N9k*5oF9>c$# zajCws@`FyU_*sd$${QM^M80p+_;)#@SCg0*Bt0ri-umTP%B-MNPh~x&aC#w7vFVLT zOn6tTg8%cqN&d}R!s*LG z45MpA_^L4Ve45X1uP55REggg2Z!HXhmx%@RDd=$0#7HFCC&Ie#h-snf(>GoevilT_ zonC@VTuo6fP|HZh#`69`xZkgNbMrQKSWt(r22JpxCoS-r+fS3$3G{~z``HB1F_w_K z6NqzSYMA$%aA~Ngrv>fxIXtUJT$4ho-fCpeHqY0Rm)EZJAK6q04@vR7T(Xym5ZR6c zZJpnYGgtgjedd6bmasT3N)bHe&nSADG($UzMJ?0x#H4yW<^s}nyiPVk7NoIFu`Vt4 z^+C|2Zvu|OY3VrCT#qybE4@9pil2nv?!DUSPouYWRixIrn1Gvp%JY{A^jmj-m<$@! z;tID(R84=fFM#QKkP|8(>Oo>~ zSm^lkNK(x-QZ3L&L3F|0w~y4#z|wPJuZ2VBl0hRG=eI`piSn{&lzf`j zDqJIfx19;g>o(>GbwuSRU%S0<#XTVh;O*0| z^V{wVr5JC07)HI7{C5$bpmDhA%S$7qd!p*ZgLAV&u(;C2=n*2=secRvHdsgtdnp+U zxRr&nms%`HB_Ii-2ZPxYs=H`hR%tML9)vlyms07RF^n7P(K|-BI*Cng{hJg}4jeYS zVMiaY{57+IALB!+2D=x6`A%BKl|>>-)fXa1{bY}ByiWo-vw>=R{K~o6mQ=iV?b&aO zS8pg58wW(xOh@l`+C882+;ysxeaO_g8x5Q9>5EWin!^A6AejFN znA)fK50j9qY*K^cRJ>Q8Plv0}Q7p1XuHS}igd6|TzT)#`6^h7=qQm)3sn&cCj8cKW z5bC~cu$}mtg7y$CoUzlr`#*$KH_-Se?XNY^HVw7Ih2;cU!yTV-T2A}mht5{xQ84`Q z1EBL+Y54`=q3Y%#%GRxmc_cYDEk5dPW&Rw4wpOR&DtD91^Bd_{eB6B_8Gp)pmWkSV zl7f#H$AG8s$Ny^6tHN9fu+0gj^sz(9seyx8i(hJULVTjTaM|3QU$Xy3JeitkU&Y7kW zn}Uu#;T}>IdzW74w^NhUYh7WSFwSKgi#f@p<`ESWXuEdNAPm>|x*5RzW6{!XIH^z9Et0UUa%^S|Ab5nGBP1f_`IPrREeGHA2P3&ypc&8@CU) zfQCkgOZW)JV!B^`2f?h+@^EhKVG6h%>K> zsqOo;6)($r5;EaEpmDp6Ok}X8#J;@+(&d`CAj>^0Y}dDFIFs;CgYvgH>SY|ynETsd zKBk+FYy?$aJzMR71KKR}qqO6$Elf8{P!m=Fc3weBZlk_3jgC-}RcJ0I+irV!lfR&9 z@*l!G|5~%S0$c)lXbA)?s9Q^UNAfqSt;S)L*~ht3mew`~-<*FwHPWuBi$B`%(;NsF z!IKM-1+}+JwkCDt>G-p~T=6>9l{Bj$(+II9C$hv1wrUmN5$dO}qWaKpc=leb;ie$! z26dv*P1*8iQLZX85R#k@pIjBN93`Fle)rc+La_#~zVlUD;cpe{wwGQW15K`E3+q+h zIs;miwnBj*i(brXEomzz8m9VMH~Pih{P9jF zEVOd(1ztwozC&n}oQ-5BzA|$DP2t#OfXFhn>-U9X!KSa!g335}eE!Uet@hebN~et@ zlBJ`En)V9AT+)T+6CMHVp|?jmewE!VLl_kiC zXk$cPVY27zudLG4(S5h6o@Mn-)@U5y^n@t|wd_Tgmd#y5Vs)0%vHIihk_Uf1 z%?9BJI^Ay^{7(x$=9lBM6lYn&?tJ}AGfqYj(=q5=TG|B-%Fhk#>jy|xlmdE%E;`sGWOl zX_jBd#dGEM3?*3bp?t+mE*I6jtoME3br1%hJ6aw%b1_6E*#Qz_k+ejO`lRR${$$DU zHatqP%zu<#J_`KuXIe1||5GbJulG=EAd zYVIqq+GSE5H?7Tn%uQ+EH)FGkXs&NF#?8f&<_EukZnYS&0zEVs6U}At5~ZHiaECj7Rtmo{ea_S9-Rvsaj+n$NSHOSZX{erPy^h#D zgTh=ne@8;QeJO&CPEwy?Dm|(o9rf3U#R##^QOu+wuW0AvDixyaRBuNMYmQ#4!y?+N zt!E#GXTp=c8wAW<8tEg~PZ-kML!lE1acge(?W-Q>(D~Ee%RJ;Igl_Y?P1&0BrP-hA z_Yx?}*4=qOx$ji*WDEA9X@_`X_OLrVja48N&x$=zSw98t-&Iy@$0_*LvQ>t)X2230 z8`#v#OF^Am7DYCxf~=S>uR|*Z$SV;N9QK-YGvATZNK1@?1tLewlmFtilP!7xs-|6? z2$YjrvK;PJ3Fmb_3oi1bD~F4AJQXli8h)*2lk32h z&u0D5?Pb#ci3hYz$}#>rGeb(?%~ioAI-fV@SW1Q_&M_~%dA?DM#N~U#to}3eBg{9P zpKi`w&1m9fS#-GAPj2Tr3+McH*e0r0A1AFJQD0g2elHz{-lg`R;vpS3YI3gpz``Py zEkRezqINB$QIk&yR~9b%7fH0y{9p9MsxFa=DTwf6FT!m-r({oH_X!oP65}BD+glg}wRJCYI`OaaDG#4x{{30+kxxu%1)8Ma=BHjrRSsa+^+Zsj72Z^a|(hi0WFNq zfK$>{Y$Vf1)>GTqszlT>L}*sC0z&s*enLS0xdS)NQFCulLXkh`yhq9PL59oCrohAM z@`3;U0VP?{UNJY+?*q*@$q&2f4)T6<#t7o#Sjp2U#lgPAf;V@Y$}1P?i!EA3C<;$> zrOs{6CZ($^?%pc`oKs*EkLz)_w~NCvB;KnPk~-n1CmJW9PW8?7>l$GqJR^3|R7@~@ zhxSv;ln)sGH4zSU-Bxs&I5Hk+-F?JMa@{Lgl_M zQ;<_sF6KGEoD_9JjLdqhGFrlEzWwHE%1y*0_IBWx7u>=5m4)Fo`a93YQ|;22mZSiB*o@H%k#%) z+KIFei`c}QidWaBEt7oge&ZN|7n3Q`=v7M5UU^1y4RQ;F`uri^s|iG=ay*wZC3f^J zfdd+&HKcfwH{<}1VPyA;t+~Tevtr^{UC!hxl-Bggf;Ny#w(*2xz{4dCd=}HAmh=Os z@-F48q4TObMF85dr?-ihRdmurP#=1clh=!w%4alo2jlqS&8THxdh7ohtKcIu{D0WVc!^p>J)uL z@SUu6mz-yEz@_CVlwNLu?Q4?J)3gNTnS!kon&J3570+(GJV!{jRSAwPr(c=STDSIY zeB~6b)F3IB3S(DN#B1k~Tel0m)F8Ob(St}>rE~r4PM`o?b%+3PZIpm@m$a!!o;Yv9 z2~0fKK&1b>W9-TS5b~o&E>N`>1-jS>Cx0-6Ny>Mn%pt94{EyFco;H}(sXka)CK1WV zXTQMP;M9l5ezQS0C7#EZDCYRoWAwfKT}6N~L5lBLpMluzfeBrvo~=&3W)$>A@owC7 zOR@8$fEXc^ndo=coT3*MA*PxjyP>y#MXa0gnu~bLV~C_Ya`cYyO`JJ{;!I0$xdly- z+-;v8k>_|;A0|PLqEc`6@s^<9IR5iOoy^k1HDy($U2p3B4WVmvZ0}cD5v9Y=3q3^~ zosSiynkUu~uu%^LD@C z?@yr|I3ugmC2vEjzv7iz{AE7b46dtOc7I#W1fp;UYem(U--YEHhxj>NjV>Zt^F@DY zw!Ub5n{n2k)L^b__`V=>9_O5WH9-^#r?7+bvK>G@%J zi@&qAo{2kK1peD9H?cV+(HHNbt?i=;+(y|Bx`0RByOFA;T0z;yGIc8|{Z9JZCKOQ(x>3zvQZ1BP-l$(W009(j zA@d{O?(e6(y0G*6f0y>XH^_WM-Q3;c&l2!l`pgaJF#T{Rk7>S33M;mGQi6J6q39iL z^W|*Xq*}0q5b;`?+T1allJ}TRU5}d^jr7a!;$Te>Du%uOATa@FDL{D9*@_ zJ6c1y*;zg_+G_AixMydjWr?;30pq%?VlCr;t*gXO8rw^! zm&CF!MaLW$LA_*|lvo#E1Qn5bOkNeFNVLn=O4`juS1G3=HiT33=m~=?!LW9>E4 zS@Rr&QjB6E4$7t{5-cJmX{)8@kk>c3s>4L9xs~HY+kF(rlpD4Da=c-XiUNz}61e(- z4_kTmD|lFuTf53Sx#q(;cJXN`N|c_!Y4TK|!_^LgV%p{JGIszqht2-zP1_Cj>q;|Z zA4V{Wy46&YU2=Y~7HeP{vznp@FGENTqKn~6uarVx-jg{`DWNR$`&bLL_2)SGmtl|D1&GZ|W-x(LtaeG?2UgN&CSNu!;Zjb;&sP2PVx&W11{#)f4A^5W zm7>{|tl{yugr{8qDqP-ca5-cJTe%9ieVC z6(B|DM1a&{xoxDkzYtd3;VUFv=O0M=XR81PE4<$VZ5&?ng%shv$5o9@mpS%r^UQ{t4?>;KI?Djxr^CBvEM{)?@ord%f>2;GY=k=dIR6BBWJda5oq*O>`mP>%C1F&| z$eB~^Fn5sY@NJURGyFdTXN+s65f6wr+DIYtna}9;NtlU=z;R)nX=+dlekh@9?oj1X6hnE|;>5g}> zzrFh?7~u>2T5$41^ozMcs5+xO7)Hk{e|u#GwfLLXtnscJTDTYFW7UC1#JL(6*jSSa zJ-=x&gEDj)@#r;kQ=5$HgyW+4Vs<_QcQKP!1s=_5_L#v5A5B7Y-IHIoU0NKnk)$5X zNW&zZ>UF+})=u4uG()`8Lw9dQ)L$CR?D)D&P_tf!X!j>02EKgWFKQX%m~f8gLHgs6 zW7lOlc7zJ)O!ln5lUIae0L>Se(>MAGVr!eMk_9vP(j}HF5%00oNp_Qx=Q3!jzBjd| z?lM8jTDV$WQl&;((1uWBFlzWUng{4gc%Txq%nz!>fvACZap`yz4O==3e28vniTo+R00*oyXkk_pGaAvFMI6;*&`O1?Ho2`sWI% zhW9GdQ4?h9PKhu3FtWc1sWOLu@&{T%jaX^y>Ya{=;Xd zJ@{!|?@yQKm?ukyX~a<;kiun}$cKm3tRU75r4|LiKE?0QNho0WR05=sIHZ!FZ%Dv- zjeb!bmGnU7Fi*U1i#t(_pKaSBt{bdAp3EhbgeeQcS)7Z~^tvk<)^<0b#RYWn)|>>$ z{$~1-t}1zyBu^-0jH}rsJN&9&y;4I)O`xx^i{I1~^(>W|MHRqjO<-cDgZ4!+^!+Xk#aJecK~mb?zo03D7J^9I|&J>cY+{;KKY|;RfGA6qavd)gkeE zs!`yacev`)*A_n6wrkO&q{>w61a;>XQ;?&5*3f{Ny-SZ7S~UJZ(x9PG!TIL@ z>I{}G0|W^g+#!Jg!QI^x2yVeGxVs%ZK!Urw`@!AaU4jR94sd{jGl%=`%({2Y{WELc zdOyEEy}G~d>e{`lY8QQd_UB(<>@CPzbvynz>+?v{#i!QqNGaaDlS0W*p4D1+(^ll7 zOuGKd{w7OR>OIoc(&{Q=eyZZipXq1yeByGivq@ApX7L{9(XGS{{;pC@9uIG8IHT4x zR{S}sKq@s4RjtjBGiPJBhxWSB&~5c~?YKV9#Q)N<7VmWQm4X0F2?sQJ$epn-T+W_H zt6E1+ln~sO7_;s$4onC#nBH;)b-LqB56bxd90>>At>~|{5tfH=1j=%+3E;m1f;ePE z!d=o|jUD&yqa)%5ZS^mkF5H;?BvwC-J&r}+32YkaI!gWoNJj0D7%R4|QMUAg9k?63 z+=Eo!erE#mCzW%GZD9xMQm+gzp?lpvrC>JJqf;!KE^|ExmKqQ>a(%Y@EvZ+dU$*j< z@AK&ax95|J!@gL?eSGx?MZ|g+`F;$FgUEWV(M&`GHP;3i@R`VJ{J2#HfBicl{@c0B zBP&{7ulKA^N=}X+;TM!$0_FCyqH|PN?~Z2O6uE;wVb6Ixc&#W#I}E=6Y_;K+TdsZ1 zZrFlRHQ|5VdTQ-wM49W}*;-Ek)j?=D$I#bf1_Z;2N=uu-8lb7qfo-(Rl0NvbjH_HU zpcVh{j^YVs*TLR+JMR(&x)b{PM9-$Z*`EEpLYk?O-C*zhE)9v|Dl{g%^G2ctQTo8GJb)`1QBO!`{+kG~6Kmbr3=1AOGCMWnGog;Acec{W?k}-v|mPuknCTq6)Ww}8N^H|+H3DDfAq&*@2M-g zB5ib99os4D-nX9jBJ4%Av=$A8yxt_j-f?WK$RTHKern3&soN`!GFO)}*$>@TZqaT8 z#pDVBXiQ)uH=pp+%brXJK#-gm(8FQpiEHq@vw`2WZAp~|Sr)F7-HnhDD(~rgQTyN6 zYR2_Hw3@m7uU0do?y;UQ=pepleqGfB!PMUu70@ooOHY84(X??E>?{srlQN?2N9pA5 zK{5mgXRpfY!%m&1t1kuhB2*;3^&cYXTNx=-SH?(T?0cc_1W*RXj!O)kR+R`>uv<4h z=d<39K9L)|FhQx5=W778*9>vFItaD8Me~<#yINP3Biw2nsJb++>xZgYM4D%eRA`|`?RZD`viN0ts!_j07O_W{5uJK z$%}6<6rVesj|X;p;MYNN)NT=>JV#Z zY!q>GLq#x>IL@C0^ghW-#b?JLnYWJS&8Sr7Y~nY@ZB^@M_hsr5zDRy==Y6?lhC0WM zed)L)7k(_7VO_pxCuELoZvKEI6>~+1)_X4(a`WeAdAbxvVPaV8M7cpTV^ql$>kc1VU^c2U8$w_fR`a@6x!2`jDa!b91KYTCP@cAc;el# ziwZaXH3L7P&K*!)2za%V*Wm|}ujNuG;y3O(1LMdK(3Z=BCgr8(rOCx*#o10n1pz9e zS&=`bKA|wBQjq@@>{#fGPu8m;zjmm$1mWETo~>YF)!n==9eq5bCbNLkU56$<4V4t< z*mRC~fKkl3g}yBam_&I7FPSGlVZG7}k<4&LOBP@FiENDKpu7Nf{PAj^5r@P{PEwW@ z@<4k2pIGuqr998EeWlE7kFUXcI!#2^3XLJOG?@tEvo``7Rsti9By{><+I`c9?Nk zz5;g$1*zu!dr}yiBBd(G9v8<1%Wt2$YS{3~9muTgVy?TCx_*Q?M>1>zI#2?X8=Yj_ zUzrG>-8t5D6V?E$HhoE{Gf4WnsR-#$D-y~v()DU5b_xSsvut-(d`jjcnSv}w4!C22 z>uv$70@1=al`d5UNMlZy_@*}QzuPX&ev2-m2gFnsogE|u#EQtD7Oq6J}{G z*?;$HNUVUOsPQNrdvO{55A1e7%_b}mXM2mTV<^cToq%_1-))f!M<+Mi0USFw%nLd4 zJN~rhs#AY)BE>RY`w_v=4x`$)$5CiMv%ZOTSL8L9^?_ObE>d~??hkyBXQ~Ge(ZFFo@Z zflvo(^L}uPu(+PZ@6A0U-PaShW~Td`X*iTo#0wTXGDWS5)Z?lCNG|t4uL?TVL|hP> z5Hj{;SEkPsRNayH+qI(KQqK?m8Pgi%cB0+Iu%Yy_`}}o>0mn*ZctZq=pk6km4{edf z604ezPf(;qP&D`!r5mN%Ur=nk=dTS8eZ7s=%lvi}o`FI|o`Lh$7p`%4;(eJ1n;x7T z9jMnQLeZx6u$p7~RG4N`P>-R}l!lQ$w{rj1g7JpN!{}Z_pQ%$gzk{rvsc!w358rnf zV`B|=49XnKnJZ>?s%}rhRQs279HUiv#B{fCSXsHl^~mVEFBa2(r|o?tptI8;Z5Hx% z<5FH`60{~X^%DZPNdF1yE!N_0`0%A3x17cia(l!3p)k+T)nb~p3L$|srGowad^Z(s zne_E5iGSGqnZ0^wSy<<||)EwCQKHhO9uSn_svWaJ^#5^>j)n!RW(b2PzkPHP?Imic<&S z_wF)+`I5p80Kz4_WJZRNKKVu-Q(5BTro)H_Fir0%^oPB^4rWq%K0QF z#<%r10wH@NG)T1ot2Imo^rn+d{l~iCum;@cA}L=8j#XeP&M{sUBRu3l=vd5bF0d4% z-l?4ku4vqmKZciF)yBI()ss6N{%3gXKC=Hzdsoq9N+f^UnN|et;VYpM7{QLgVA|u9 zaNh!QnH0%bz3;18fOiYst;P115p7=*fXHpYeot@S88mhxoI4&8a++oMZgZt>F0+h0 zLcbNghJm}PHRkRnw?zo`Hl5X!UdiA$Bpw=0&oc6m3o(7?D@a+9y-d`x2{QTi z_+E@ToSD7(TiD=$J=U)J_xvluxy4##(F793xGP`B(=>r%g(x1d#=R(H&fZ{{*hH}+ z_}NYJ)X+_W?!jnW1-c1Bg3GtFTG|AM2ooMhydB|JBS<5iEg0J^Zd7FjWPwDx1Yn=5 zx5(kc7^TRA`h*+n-?$=}29@sg=|@+aM6Z!n0LiGy&Ynz9x;6?>YcM0l;uP4AP-zBI z22>0-rVLJ^oPI|O%+GGT22T3jvlh{Ol_zji<7yFKILwyPbHyvJ-%^}ooGwRX78TSO z%5WV*=335;1QJguK!vILC;uCTsaF1jFxB=ygsCu1+5_9N9P$TtEi$d)yg0D8wV|Dl z!QG=zrBk}xkJZ*!gL1^d4s)V9Ns+jIc?7lDoO{q*!VTGJ_7TED4} z;3I@cwFx5qaZtt;H0>Ppjira=H8rj(w@{;boslNNA^KkFg3?_}2yQj*=gts?PZb`W zCA+g^Qwx(CJ{`KG5y-r1C67x4?)7=hTgQkTYuo(0j7GoxcVsr(i!`=6_EblK_|`OR zw|(vUNTY$H42In}pHi0`q)a>DZ5CO@v8U_J(-Vz6&dce{VQP&%q{fu8wC%1%-e;2% zY&OvU$jNc?c)NTNZq3qR;Vy z?34Mqn>8jr+Z%7UL&NQohT^;a6#zgH2aX)p7C6lNi#qN^inL_kU`Js)4(u5ayB+1c zE}e!2xH-rD%LXL-ioQPEy1pL?TIxt;Mt05Kl#~4OcodXfR4|E7>=}8~i+BvO{stGZ z@T6Ts`_|fmA0M zm^cU=N(H3x2~hAAL z;=B@1cc&BQU`&S}!x>WoEmnZZPJ{fVb0$Qz(n6^AN`4oQ53RA@j7vOd<=9wr88LW< z(cxn^;%5c45rXXwl>2dvI^x)x;9Bi-N!W(K**5 zhMJg6=+8Sp%x95rcSbBS8WMXONJ-@S+jks~yW)4mg(x{Qk_U%Junh;Bn&h&z1ckx4pl4bC<~FBk47Ok>ZsE zJdh%YKfX8Bg#%IN+|v0KFxQH|(V+^j61+G9uo6aA*XM8)(n1W*laJ5Y)Q*35{``1u zivXRRzJparSR?Hvit5ipOd$gIyPJYNb{`H&-H3O?s4%niG$+4WcpZ(I%3BLgQ41lz z3z96BhuTpv51mC>iVM_^A*%j*4O@w45<6WK$6cQf>AZL)-Mt# zGqEsEGGdVUFma8Q{xkhfg9K~;5wfgD(Q!KnVG*Z#_?$s z%1=D>m!m8vet0ol|JqN#eGB?#r<-+6D0g!S2}%9Y_2VZ{%c3-(+HjgQ?C__I%h5-d2^XG8rX%8q0>hxudO>z*P?SKaQ(i&w51k+;*^5F9Mk?%y|io7a#& z2^BvOmY;^P9XxDBn;!9j418F>O3E$>eif+<2#C*OZNB64 zx~*$9R~!;iKk6B-;9SohwyjVnjFa9@=ggB-IWS1ME&FjC|53B<2~JJ|p}dY$SiWkV z(x<37w!cl<;6g7R<;#rNfK^Jcrx!GMw}4xD9*Mw7j4(r99KkUV^U!2u{6B?lhI`nH%T1$8xR$$;BQpY&Im!#`#fj+q_8OUY%hr`GBSva_ecP<}Dc= zms8o(nrBcCI4UjxN}QaDHXrpqz0D#8SXuylE54FbwB6j?ja~%uUe!B-rN90-q?eoZ zbtjD1-B_|vbK2DA_q{vXa1u?aU8m)>_1BL&4`blhR%E}ivRc6ZP-7qFlDDPwimX3| zaW38=V*Z$xmz2;5bh$o>vMkX3^5~-$S;>e*S9%m(gcXz)MPT>s#v%Zj#glbA38hUU zEyHyK3|p^tc~5n!1g%lo87$g(g|3SVohAVL_b_#orSOXb7*&)@e28t1?@i?5n(9Dk z#mjTmK^~2N8H9%UI{px-rZ|HRx&9vQ2fqa>Ac|(Jt+0Ng`Q<0+uoyt;`Whk=$LCmK z(7}j`)kdINkk3{n6I}B$C50vC33PHxhoA2-*&XwSuR1Y_IO_9;nJ?V&rcl95S`N#i zw!jUzoN{-gkbl#tj1#LLuKGF}y=6a~Bl%|OrFzAkz=H^Ud-0arR$x)=rQ6fYg-M9( z?P9`>X!=Boqsu%4Uok{bY2`84K}iHS93O(M8d|kqu<_Bp{gVO9;SMbHzxm+X7?3Yw zC3|@uJ`!BQsKwDe{WvE~S3wP24Y(EcPGQRC0Fn#}E$SaQyS%wR%+WmxCpaLw{4_gK zd|_gdr(iYnK7A68F~**r8fvNRu$7rgUT=HDG{k1PI^JC81Rq-UbOmL!nLdLHz?+eLYyLR8Hy4EL0TG}DZkH@%po}wf_DWZGP$(!=jhA50OV!DeC z9*SQI8UZFnuGQVSI_ZR^eT4)_K``K{cqDeaNynV*Y#7JZCp-DV%)1VE?O{=PdaK2WC-8_;>yH zJIuW?*OuIH`(JARPwY-&w8&%aXFmdIHP#YVz}@8Di zo8)RFQIoO3kkE#OHhwA>Yja8E0x@9M zTtv1SdSiJ7rr1+{y#j`JYp{RA(v@ZAsd;HR|NZu~GOF|JJujJR_OOy})HEMjxu3r- z44jDAb$`%2KD7N+!#PlzjCPeFvM;y*uwJp8Z4>E?f>9%$mv05s4|sFH54LL^zx%0W zTYcYAs+;|_2wt9jMmn!+b1te-qsue7QvpnWioynyU0Q)382R*^y=Ht~A%JSva)~z4ikI5*{ub)A=JZ>vVDb8;iy7i;f zJGtA;6FTYv3AMWKA;02)E-;B*1{|BZ6`wF8RO`YfO3j3-Oi_Qs!Dk^i%pkpyRA)Ug zqNWYbH15=Gb8)1{VqByeW}k&rL&M!VnSOEa0vY-k9#8tZE`U@Vxh7WUvF=IJxL zi10Iv`3>;fb!+QX7k=}`^fX-f_naKJV;sdx2Z~fbkJ$Ru~IzEmEqIPV)ksV zX@yWpSgEmw7HYuit4o7{G{`!ueO$CpRpo#%PxZhpoUIW+Bgw0j8?IXZ7l4kn=mBXQ za_(jK`z{q0pDhbBhZ-we~&@y{yr<&Nm{|MTlZL$@Aton6)WH2x5FEQEzrRlNw?u zEn}=JgOzPVRxSa?RNlnV*aHcZW9-Ps(sm+spsG|%PsOjX3jNmVilr*lW^rAw8PB(( z*t5d3j6-1qaT8J+ws?V59y&96#{x6v>rXVeHeGy>+Yfg2Sh0+U(wQ>~frMv&6EKDG zn<;u&Gnq49p#W%C-IT|LvJ65w?nQ=Zj&<1*dAdJUEaSBOZU$bKU4ME%0aiI&c~ait z9F~6OX#7Z=^~-mi+6k*;M3%vk^lwDphf-_8CxI3eYxp-9U1p4RfA%ox{KMZ5jI&dZ zWY3oqmn6lCuQkGr9^{G}cpS|)Fjq-#4VQ4XeBCstZ!Ng9ZVpf0_Fr)i)#+}LPb)E` z`PFABSnz%};T85Q^=p%-M@ua;4gMjG)DZQhE`D*z&z1xhKcX0 z!n^JD;d}V4{-)}i+(xP2XDK(<0K)q|HI5CU;XUJp2|3Bv;X)$bWu%gP;k)Yh4bg-r zSlGug9dgb6*4oBuJSt%@owvngt8kxbBQQ(lDw zU&1`lvv&Z}pZ33hxK)QhDm_45me3BbdTMw^g0Z%pFKj7)YXcQ7BpawwtTxa3)#@gD zyA2xXzJ`9omvS`-K3xfp${w3n1G$5{Kw)w%CAEyjD0qv?)b!mOASI{WFv}_-=`WS@ zjUsc>ntL}fA77cL8O%VfXR^1r*7D)Mypa;eP1b@7Ek98$O=48#iUjGImOoM;MIE%* zd4+|GteK|voFlhE`cr^-%CJ;1pK317WPf@*R~Zj6zvA{|>B=ToumCIpTNK$v2dtI- z`816SQSNf4JkhuiOew{|`IRcUj-W@iQ8yc>B9*Bq7XSAq(>^=OW@glQ(XO0~vceA^ z1P^Kw*Tr9_wvoZQPOo*2ToyZxk4^4N#h|NdKZ+}A;?}%KAGIwE-e72Xq_9R7(tFIW zBbtkYKeMDuuX>^YZ#Ah*-)@UPBr%QoX%rtrNRNJ$GJ4$>WSOfaLL6)?+b^+=m*Um;WwLn4hkv&E{ z_d{*RP{l(=KyY7>?5sl9`4TB4rmr&*S6Yod!il9d^DK?z5pFIDZfu2qth!O9dYWwA z7folTnhRd_L+6)2ROnD8Ohe<6o2unhCp7>w=l@^=ROJdOQ&Vtn;3GuisoX5e)Ch14 z?IzQK>y{vEAJpv7e75Xp6>t~D@}$R<&wbxJ>J;*LQn2|iASy-JX+6zcR#$9C)z^i8 z7}p@(NN?|iTV$z--<;m~KhRDiWl*ifsT^mw7rHDfeNcD8dW6DRQP!BD8E_|9!Ji?P4Qvj z;qxgKgZaJOs1}7#AL$IKb&`XrZH4;TEuXTV(sS`T4JeQH0OK9eEr{h)r(=1kykDB! zWdL)$Bhb&P4v!Tah7W7Q<>2R){@b(mC8FP)P z{z2E=ylFG>dIarC4`dfYmz8_;7?@BI=g4}#_Pl?t#maF3zOYt=%ACk7h-cfO#FAOF z>u$=~N{^Fu*hp`+HfBZdF#A@RU2;rWSDNn)9p{PyWQuXdu~9YsOKT7DMOqYYr8$pN`+t^DCIYx_eY95gjOJ{r?-glj-`vmrg45pqr1Wri zqs_{$`TBg6xf?7)FaFR@8JuGIf?H?4pLgwAB%LvcRo@<(D(PvmL{>&E4?V%` zPGoihf4ID^R-BTv4>mu#)ng%MmAy2(|LM;NGj7Oz7?>(RLoHK`hPz@yP|1XF;n0n*_4tljs#+z>77l@f92>sA=wcG-&s-J^iwY|^+z)Co1E z&Svv7k?9&ScBD4y9_B>SjjU%32<*NQ9C2zOH7AePF(h^t+W{mOJM*g+UOH`d;TuVF z0+nTFB+H&=Q&GUeT&163BwgAkoy_6G+3e!(I0 zHPoOVl!mT#!$9e!<^CPA?RSC1M{Ag6kM3i=H3ai1$EVdjYm_~VWt4ZivOnHYk^kOj zMYNKuT-akC|I%nHq>Af>H#Q`m^b{`;%}*~jKwTdXH88t+MsMv|mdl9~v}Kii#8lA< z3=b;>jz89$1r=WJ62JGRjJBnI;YLMsux*4rHW+viwDXLn69yKT_2067plYs6*d}yT zuF*&Aq(;=aIZx|3JH{oVY*l6O9q9w>q=Ps3Z5_EDe;O6yOpy7~~qxI$Qz+=%- zB0=ta!${Aipyf2In{eZ_%PcLOkUnrgDnprP6;WIkiO^BNca1>w3p-$U3r@+yTnFM; z+s8IJI^DNf74$l+1L0WHkT1gUE~K3g*()BpE3M9ymWcvnPk2=*<(J%zbL#e#w!4-W z>XrZnP+AO=y~F!yp}~bPn-f@iI;tPzHGF-()Ao+*I$xn1!42}N6$D~^&C*>U+8syS z4&5RneZq@(*z?_d$V6VKTE@qWbCyU@Ex-q2A=ZEQ@mw5e|8-k9SpB3;{GC@nOJ+mp zXA{>8Vp1a62k4$gRX%vz-3 zfBRX0R!lzg{Lpe+FdMbW^*}&FN~HfwX4?RTV#CUfU?&B7=V_Qc`7RKl{yaLQc2;*a zfz4*c{ow5@rM-;Xp>R)4F1CQ6U-&k?J68XxZA_f3g$c*+k{MFn_V89un)0WD z`<-7)#>K$yqkwxEd6Qeq)#)vL-t9Qxn&+p({NY=@s*lj65}$w8!`&y`sI?)FQ0EEY z{9Cs>H9GrCsIkF0PMWV+Ytjn7eC4Eb=Vv z>9pN!U%6v^MFYY@jb$qnJ!Sc_c8aQ&069of?dGI}qGwK)>j;9P&G7Olw|-B7YJ!5< zjY*UpGnjZC7%H2E!ppDEBH}TCPOpl)xo|;S&Ku?X`qY+XJBhz|Pl2T^o(>&*A9YIFUer!^J}G9=xfBT;2b^&>E1@+% zWPj(z-^d=bKXT0K)#)70CTk>iTmRidwQkz^$YAlxZM~2J2X$b1yt+M~8Z$pC+GR12 zaG(d=^%yqpwYe&81ocvGAK6d!OkQu9K^4wzBT2N~VWfq}d2dt!fN@{&VONig&-ZU2 zg2Ip`5K6Oh?2u?gIin*X>I@gRDgs$ri2Krqe{+}NT@6^W=MyypVGMP4Qj3QKB= z+|F9AI=|H`J_+|J-Ll724cROw#A>S&Ffvo9wMmA`P=#fU)BI~Mn15>w^Z)p9)tELk zMm{6)uVM^WgWPg`!*m-7J=&8KK{HMproBh-C)3};?VjX6jGZ;DHR{{>rKlGKnQQaD zCP9hH&g=Lfb?8nFd4j;a@V|igZ@HO0<%-!b_J>_f~Ephz*37RnirpLzP zCl}F#IgL3fKl%@plqRE^+?;wJ+Ax~tdA=WORN3LW44kSS9aF}@Z8*$AVa@s)pSkj% z5#z^|V<;t6%+22!i{EhgF`WTKE)z&BISbnpB1yzv_SpxNCS@)R22+e9 z4*>@&bmwCVEl5#t#~kacHyQt>L&dO?sCmKPNl7c>p_UqrYp#%cGtQSB*a9#sy{qOh z7wQ>6xlL2jxAG9Uo{(i(ymQ^v{~i$Vrj_vMH@^reNhQgP>J3&Zh8b z#{6B)pG;H!C?cC`a&Yl0$g|xvOhYX+oA}-H`AQQirz!VdLJ$7cNg|^bCP{IkPs{q` zKKpl!{&^g;U`qABKf;!t^Iom4)rtQeMLF7eU8$c>5wWh#ZlnKGht#JOD&DeE0^&t|b<3+wx|ktdFL8b-~qFE-GFWzP@jn)jE`q%jjm# z%B?m?Z;508<)oZ$zRFos^#Pr1bP-XAHur$rr>~PY39@c zADFxkdve}umhqp_#=KVNUk^zmiDeYFg~WQZ%9bv0aMD!EJptJlT99PX?UZwuVL+4- zWed5K(leVd`~8Q9rJg4rF7i?A`G_fH_H27JTJzwJXho0g?w z_Bzauf<7{V0Zn+*IOXmVbNL@hMI=Oz3+Pgz4!=Ep8DwUZ7cxE{zA{LYzw9!tbHjS# z2UB|eYekHA<&l+9Br_iO^xrLQ8jLHp5T|({rf3nB9Tm;{@$!x2>|}?Ra}uxTS6sr@ zdN{lLpa|E*EgWRX=)3~6#;KdVUxyNz<1=2TaP$L78PMJ+HUWwdZ_iol>Q7Z%`WPMe z4(KyP#I`;i+;9vj6UF0`?$Hfy$CIftnk?*(G+Cynl95SE_A3=op*P0IEuBrZT*ILy z=e_N)#QN<1ki;3(HYHyn=gQ!5%Bt`?H#4?{kD40CqdOU~2Jok9mw<2LV(xV0&LKBYns5@rJ^#gGqysHjV4T$!l9&HV=3r9OwQb|0zM)+
}5f?Y&LBXQ3Ceu$)UT(%E*J zeods7L9LY;q@ks&=xeStWbjnS=;Px9)`hI~*=Jv5V3!sho(fN#dggpwGix1;Am^SN z{x?FQwmRmXk2QSrhg8_sF@x_Hyd;)@3`EuaMBeQy{*ov8lx@VYJJvAznS$njR9NwP zKlko6RA9pJ8DyT!>A;3^uC<+-HNKhuKtfAYfF8PJ%IOT(PB0(5#x=_MQ|Q}+U|U2f z6u#kk{dv%tLhnd;bM|j2l6<{i?^dDxY74o$PR%qXjk52`!Rj+_4XUEEB1JJDxYGvt zyOz+faP9AIPy4hb{Rc-Lk&)z(2Uw0jSr9Mi&YB%8+#G0zT7Sm0``iMj3ieM8s)8N3 z+&jFx{|h($JC_=X#hxmiTO@C#=t zYrorvkl(tgoIjWUa_=M|3=X)YsQ6&6B7v{Cl+7}YAZ3#5vMq$`kKTy%Bh5jGDVEV@ z$uQz)-glZ^%~2RWx-ss}-funhD;nn;{oGJ!0jI0W1`!iq;PcNRe!vg@c>{`38-Sh2 z@}+ocN^L^+w8Ior`#z~x0f z&fY@JhJgJG1NXyLHm)b-cF>Gnh?j?v^tcK1D7jxrLClQVxG$^(M2;Jvxf(s+Q@5;- zCS=iNfia4gJqq`$7}71=@sSgoeWi8?q%G8fm;SKSZ@H?xyBxa_Z$ojpT= zZMMWKO$AG2*IQ0m@K(;`-HGYWQwz9qBOmUnO>`8FC?MBKF&(px;uXo3=kr${VL8C5 zjp@wfvoGFkv=q|Au^&lpTfKF#-d926!&(EM4A=yXF{aFLJKqL=re&}>1hdjxh3{g? zo>PH^gmIi1eq`s#_BtVk?8Y@eA?Tzv1obPosht=DX_@=iq ze}rymi6c=8<`2g*-iFUUf3T?#lrb(i*cR#WGbAE${z4XDAhD0KN9e6!tL15)n`ThI zyPQ5ZV=JWMA)xe*plc_WuJ^(C zj5n2tV+>zwh&fBpWr5TAcHu{%Pgp9*aqW{r)*jjzy-rN`kz=#AZLMGKZ#``pkLWD{ zLvrwD%8%inqpgNBhT01Ew9gWr`~Sw?o;w}YU#lnqjE7;ZIY~RQ3t;Qv4R@EPWA0Jx znQ%I&MT$*?KI~PG8etea9Qy(YZh!7i1|eqsC$tkfz314O;5g&@u5Grqfqf1MZ3`hK z3Mi#$z5%M=Tlft?PCU`;c&0xFbUfF!wFeC&U2m-C9$E2XTh6GEk9>*o6Tk}oo~u*n z<+7l`SL@7dHlxrW<>x`nUQ&OymFvUzHV8H=Muh|Wi%)ia;J3m9K?%U9%th)7vV-@Ees`!JvRJ*d+HIk z4p)!Zw&b%tUB*wJWAgO_SEIKxn(^^KbQoT;CD3&7dJ2-2smrFATyx$hBp`Nt9c8|Hfl16Qzw6&X8X!tNaQ;4FV3pFW z;iy1|*CbZZJnkBKl>Pv8TwRIzW+1!i*Eb{&jgDd(f19W8_7pntnA?_saQhD*+3NN5 z0{gg1WQC0hI>Qgk(hXhFQqW0?lFKeSQR*g|r{lsH6<0F4fa893^;>f z5`e!yYcLMNq6yeJIXjwL|FHS^A}ve>B60l|fI5k329FYX8({H5=2~a9Do{KMN`ewz zn5IoVmqAsOBv!G3oNBUP|x4-MUyJ{EHcc z*Z36&xi6Wxw<|hkZ!l1tVB~3y4cmR3K2cs#qR{m9c{z;-MPJ-B1Rn9~eLb(M+IkaE zpI}tl>sl52vxSuZCY`-LpM4r5cAKA@pE%w4&fu%l&s%<9^Enx3KtUs$;;|NPgi5eV z$h20Wn!nL;Sb(~+C1K?xEt-;kkmI_z=FR+-7XHV2b}TRRrBY#vdS9|ljp|-CJo}av zqgfWceoKi!LZ9XZs4UDT7j$}q7)=sumTn?r=}Sntz8PC^(j zgZBpTl<8sdk^rlM?qu^`(~&2Z_3y(i7bBSD2Op7MO-*+!oXfRS@0#;~?W4YL=kbP_ zZ^JAoQ~!9GcILNak97G5#W-!5RLj__L4*`&GKa*+RwA?_SeSk8dEg)?XorRXTanUL zr8e&|$=6pFRP1@250rjaNY(b?u8@v)l}HU!`|R6%%&ZN)HE$t9E4@6kMaNofFHL4L z(vX2@1rHU;T!5>$w$lv4wBh1v0=Ft<&#B`^cs~%DMiJay6PW6DTb}qI(WZ@p2g0#jL*`b!@{(VXO*k}w|Lx{>N=oR8_{<`>*FmHpq;?EG zdh#vt;yp8U{TSe}?#SX}OlQSyBJr0pxX&eckDn>yYa{A+Q+-P0D<{ZM^_M1V;AAJNE`a*&9zIHc zM;A`?t?>z=HoDK5?N5AiwwUfJY?%n)iDj{)K8?zHjAJzNaM%Q6aO=-wWHrgEjnqmq zXvDeJk`^jbV|{mKDvrE94H5Hi+{kMuxRA|$}zaJBk^tr}5p4aT#B z_L4EZE`J}VeAU^0>PmHvdA-qFeqHy;Nv-+*UK zhl444l=}2PE$8*lGVTPI$Y;9JJ#b7UpWoeb0SzYcr+dK366=-|!nY6?WoQ+b^fqmvDSo0&R)SOymp& z$7HUMP@nz5&!Jll>FIbKfCo*yznuU1ZU{8Xe5E7r?cDV9q@4W=?*KyCuWrsO7k z8j(5ug+SDBl-w@<9fM3C7{rlGA9_LEC{5>vnJH#3_?pobN2Ntg+(wsK<_lKnb`zks zlRNws&7UtO088)s+IaTWfBt|QwQGUe;%ws|TT|$84Ww3PY#@qW=!4%X1~X5jYbx{G zKyDIp1E_P&IV4|r&Q&3Y6&u*l)zaAS5z)A*mKYqg*|dl+anN@Y*JwG20jqV!_ZX~o zHpFk0Q*w;@Qw);05A?rao_IRCks1&>GlebT|R>~ z*==3i<_pFiM5hyuRrDJ2+#H~Imbxcn@?4s3X5;&?+z70IQHwJDVrHl916g6o^&1{c zuBL!9S?2ZJOT2j0GP(2u_E+=EYv)nh(r$A74T=jH2_tzknn$1M3ePz9M5WNVX3q?j zzHDX6%8qVmYr*}HIG?KTLhT`n?SV6H50_$)QhKLbl?0@J9D&xg+Icr)8+s^kR|BZ% z_JcRM*$k`;viy&gmo=#jgTS>Q{&KzUQxpB zwh3(ZBYJmUyU|1+juC-sDuWKacjJ@ZcJe#OLmXV1;ksQ2r&_;*iq5P7?DAQ{TGTJaefo%58G%Mv8>tPtZw%Oon|7 zmbCzfm@HlF5M4j=6Q@=cdurm#MwS`xC3LQnJN!U=%28%blTA(GN}4jXftcq=jcFRqoGqGb-OEgVA$FsNEx0ll9H{$nl(uu*A$a2TW%?L-^Ms;k z#m)vWZX;JC zD;h+`@MAQ44aHggyMV-xoQn42JiCgt!~eF})|EjI<-8f{+TSsOks5n5hG^ph&&4Vg*kZyeW-;}5e|^R{(&m|C{v z^xNIm-NbFNC;^in+xBk!pX|f(f4jY*%%omzxnV|v{1$|(5$6eA850K>rN7Pub(&Hz zWD%WgMT#_K@zj$vc3>+qf^0ot+!+MJmDNfDu$LejB{V^Qo1WulZSIl73q0&+(6|Fn zTv*%YT(BTws0$b%e33($onv-QC~8EWv`QVvle`K^?(D|Q)HeawdFO9U!a$^9rQ9e8 z{na}ZT-1MS?<#)ecr_fItvXgBP0S6`sl`td62lv_!mb-ts-Psc9dcbWyr%(;yKB2) z=z4l#1BC7NiWLK9;p$g~x z>^Smkp~YU`!U^7#7BEzC_p2ICA|{?d;)j?FN_SZJ=PC zmu)T5^ea4x=)k0r&pq6xyB`W40^wy%)ee1Hc3TDMn`?iht&?WoL2Z{X&al@5Mu zpjroI)#D0TwhiJ*!o$x{OJ38mexzj>mC2DO1t++4FR>e&TUuE9Zim|pZD#E}1{zIN zM1S7A`4tyd1nyU;%BTfDbTCuid!H;Fh-MRY;f#^7iHN6EhVy8M%CC9g>gw|jer9mb z$Q?jNK#J=^Bh3V>VxZY%_k%Y5nkieiq8x5VY2A&7icAobk`iMLA6iY#sqt^%+@poq z35B5Y|Ik}dVPHPc0s0RY;4YyeG`vp9t?>@7;S|)W`c$JKu)buTtW_zOgTN1p#x`tp*1o~ihK@B)bE+{^mjd&Q&E_p6mJKbSH?NJ zhrZBc%hTz0)l{;ZNq<)8;DbD?58ma=3%d_(RmtHLzOBf9t$5ttLK`gA&T&ArXjP#C z#?UyQ&-MSrA&@Cje&Xw-s0v^xK-oU?`>>akn)HaMQeqk3bCc2Sdt?0)mm8xvmGQmk z1m}_F{YyT(Pc3FX(55k5%ddptr$-%)Xl2bQPsz6?qt zmHs_{#mC#h1*V#0%pcfiMe-19!@i`G$^~uYRClC4z`)(#5X+Ip46fG@HxkH5! z)$y8YuZYYK!WutmA_WPYR)8%^2fAjh;3tQIv3cI-Ph(s{mmh}4Gv5KgIOu%~86hGp zX*muoeB-Z;QuX_Qg79r{Ec>x~{%;{XXn4zY+Mkl*H1ggNuK8@4&pwk6=;VOqcC))05)9hsqzH*~0U zZa&j|Pdkz{%8xy*J>1{BnZxvs5x_ydt>OJ82Y+PK`5}rcEXU3-c!^I#khM3aSqfK2 z?BHili&{j1f7ABqxzaZl#YL}I3hV7_@P*I1GdB7alt6mUU0UJNVu$UtCc&TieV1hQ}M0SjjMV# ze&djE-9zWe3%h&F=U(@OD^*<2Fq@%iI2K zZ-35F2~LQ~|C|3I@1yC&6`NiqB;UsX{YaDx!lgYo@WxWR)$P-1w{@PT}1ZznA@n$ zP_JW^EeL2kK=tv*3(n|~X{TVvdCF-HQ5Z!c<bpih>rI12|Wt!Cmiy|cPL zxBfPulYc}&qYo=qnp5oXOrV^sW9Ip>`5lD(;9#-~2g`Zmi8g->(PC( z{pR+MWi0u9?TdW!>0^pAMye0XL=Bb`8^BKe82EGyscGS!ut1%?7)EH^Z4a~JTqF-1 zNT2JH6-eq_HO{+h?nICj3gRx7Ny(1(nbn<{2-aemi*Ak5f(37bXr&u$8}II%5S{sn zAmdA#`0}qjPK6vi<6NhI(BwSK?2px)-@eLcf_UFR8W|{<5p};pGF%qJvfnF=!Hr5g zU##oZoYYK@GG#Lt6GI+zq7DT@D9GoMdF#=hAQvQcB86R>=BNnnPQ%2ZfR9;=3;qKT;RzXB+X?^7^u^dHN1aJ11aX?g*lCQ?| z!-0b4=0;uTvPH3{x6nhFYSt>GSD+EGPm?ioN$@)1h_JA0H>kgBy#|Ll!q0>BQE`6? zm_B@Y%Wpr)r-1%MV#C$c<+n!5?Uwer@J$`Nj^pEchSl<|$~4p(wid6|Nm?54v}q@J z^VdnC>=-p@5@Micc&1_TfT{3Qpgo=02-BWgZ$%5Qes$ozr8|^cDuzjrm_yG%67118<%U zRx|>@Sg^H}<^2UK4qO)s^n3Px6dBO=p3~&EdwW&JNFLJ1x3vf9gYkwR4BjjY# z-MzriFa_AqOWb|hcc&u$P4lZ4_?KQk8M1Ym7L1-WPM=Nt-blQ^?B69N4eI_wE8bq@}%RAJI)5F{IkInxKjoMR@d{per2s&U{TI z6Eo7l@jw@2qxZRDmA~P>FViS$Ufrur5DutjldPgj$mIgWDnQnV$)4!B;*q%GFVuZG z1Vsv}?^UoQ^9%eN$N28@w^y}KiI)y)6Pvga|I;r;WOLmQ-ZX%$leY;CM?gD$jd;B) zk#(o9Os#$9{+Iu1m(rltG~XZZSUJhpC|Y*y9EiZma#X;^+r-CE6wUwte3&o%lskXU z2=m7M#kFgHUU!F`ML0v2Hi2LwgNQC+Lqh=zo|1E^h zPvCIv$5(HHAA^q$(~=+_&qYgIxV*z3(}83P0=mns%x<3u8=7N?%d~yNFMHBvTV5JC z?_6R30d?xqT`iP35`W*-S{<}XL%NTmivfB-CKRT<`98@JqE)oaJjD$uo-u}+U;ZMA zjo$`93S7zs?ho{k@e^`pqGZP3*5AE#GaXp z8mJ8ZGqp6Sai-D$`;!RgcA--O)rsQCVK_s6;xG8ok>ui2GB5ezr=t8Ek#d!i-CY${ zZdp0a(rfZR)nWGIt=b*L+^Om`w|MS)jW}SrUrPA)!6&7u9kV1tvoUE0pjHy0S2VLF zs2UcXin~}VSf$gGiy_`t0UyB;BjV4YyPvthNS$mpdT+n055C>m8>Oy`8c8E8DZQkV z!&_QtHJ+u0Jqr}YbdLzU<*I@I+CHkedmiN%Y=jrZGR4`U33L${Ct%qoM_pb4HKB~` z;a9Ase9G}%yAyRZ#!e<)+fzT$iuna+$S2!%4fRZ=EZFmQQd=sx{T8)Zu(JFs0NNn~ zwUVRTnlKKf*AkXGW@%Bw0Vp4SSL;oYGgLBHay;TH#kSF`SDuLLvCgFw|M6T5`F=%w za`*`g8Y+{RV}31W(B9kC+KUa7{H+mQUC!>!HR!#nxobAP3Yu#BjZdp2mn<94s>gfq zW%8lx6sRK_6grgo5mfJgrM_$=m&?tjiXph1`AUW9Rs$U9SN7ph_lFbs2oU22ckNfA6>+lCJP5jd|d*$)b-LLDW)R>g08&`2K0> zsA!?|71_{5F=}QP~aKwzRUSQ+|FxEQDc; z>jIfxIZe4}`%R_Rh~{Qp%zMrIQ*7WvoIW5NnY(OUG+vT9t3>v6e#}jTJ>vzYY6+eB zp6T(Q@8q~vx#{P&ywM0?=2~$K>`-1fzdcCNq7B1I#78IUCWpktvNec{1Oo?qn?7Z` zadeHUHoe#Wk);oFMF=6FS!)ctqIBq?uZUj?c*TfD)p2&&E*km&d|ZBSS=`E?&M#eO zN)YqDq5u)NXY;0xald2YkprFv6Ws&-t^cpgwy2{U+|F?>M$M*qR7gRcw+Nlj`^IO<8uu> z!$%2+C!$e&1$bj@z9F{uU@dx-nBxqj z8-{H#oyyZ9%%Z$PmEapkf||vtHXI*&ID@)1gJJW-DjA**+|bpa##|cO?FAD?R)Lcl z#9@rPeiQu`wOOX}?EwsRi(9p^F_ZtE&e(o?J5dWv{vHOBTMkbgxn9^g^qM@wkoZej^8qv zEhpE8y{>0#Nyb1^5k?40`}I9TQ*EdXG8#7I1Oq3 z**k4xXOBDDK`rhy!Vqv4BvrP~m+)$YEiRO^S1aey&L7MtXCnuq*~vuLV#fAgwG}MI zozO#T4C!rzHlTbL&y*35}@O1e^`md<#&Jw=;CrUOi%x=^lZSD+eYDP zW2#+(b^WK!;ZUYF8ogW|*a^tVKk}F)V^00U^hCE6j#D9Mddp)uT6@9H&ApS|s4%-4b&M1yGC++Y~6Jhd4xoPiDVD0dRRZ z^W>j6_`=^sJc5~p3AWBOzB}VhJ~|V>MPw7pWPjYKIVu>F@9XTnXE6C}8>Qnt{!Xqb z5DxWs+7EXDA+MEI@eLC$7gWKQ*c$Nt{Fr3XK~p*E6=9mNmsG)50jb7y4{EsCVb?^P zmWs=Nqej)zrpC2{h^s_FPfxJ>pWdn8e=;oOno+0V{2ajf{7?gWU(4NMk$lj@ML{gw z8tTh`g-n&qO(qGx?OPEKmUl~K=rBv3Z|4|B-;rM>Br45+{-_S}fq5ute0lRQcm0fi ztjF%dHS0|%C&uw=q(!|EAk03NH;ZuiR+o!avk8ldn4CqFK~JI3W_#v0a$WW>@Oi(7 zvb^9|qO+YiQMkA)8v zs#I!+9Jw)f9+F9$>zPw$bUk{aZ!ub2#hV}WYXzxgYu03x8(IKrhIZKkqFCZEr+{vg3$wHU-e>qg&vbZz8J)Zd++4Uo9)9INey zzAUrPQwUSWGeren_O$n&bi&CkaFL@G_=yWK0*EpV&fA$@uZ%taahXTbj|v4LU2b@d z(<5(mZXnjOHV7OZ3h+bM5;&u=vfIOv}ptbWQfO8B} znJ7RfQCxJk*$A^HfeIOjM-dnenIdN)!;ElQD1XV~n}!g6|E0a%9yUu5REJS20F0`A zO`Oe$pwtrYbof$TY<&0Gh(*KwGpoyoWFcp{LlC*hL?1W|Nj3eS_6EB=gKhLTNe?rt zV@j@lKN_x)QYK;H^dj~1C1m}oOYF22kDuhMJRi0vK2$o$7YaOl3?K1gQY%Q4@~t}< z$i6J|*e?G$Im|{2mCkHcWaYu^Uk^&tu47-na3$~T{e1O{pEw@WGK&8b5jewNg--J$ z_E9P7W%CZcQm_rLP#^Z7pQ5=HlLR>O1<+fmuTN54XNai!2L-wn&Q#{-K<+$|Q?DWm z@OQKk@E1HX?U?3UZL*RjmQK|c*#{F=49OaH#)LI_c;EvD-e@VxM*;IiU`sg6>^gZ_ zXcVl(9Mi(HW7|I^Z}A6$ENS@g>Y|O(m^{M9rh`2FW7O&GQSGdnTef)usu|^?tx#@* z5u7Z346A;Ya-kdCckO@cue;7Ee%zov#2?RiNj&FP(ca-vyc(z!lvK7iMp8+)mt$AU zrtERiBK}w&Qi&=wbxZ7~2(!))!i`1xKZNR(T^SUFvCJFe#qI)T-myP3dEK`L=>uC6 zH>2P7KanuWtz;oUg%Li2WTH}35jhH<^Sy4cez_#8`!+%N_ZkS2!`#OX?+b8#+yjG% z$>pV7I0P>3fUulgIc5O;SDa&6Mu!cUtc_7CX#Xg&^`f5}8YtJ$zaUwq24CL)woR>m z)}M?6EGQAgW)T@N?$jg4+nwAWZNy<|3b4_*3-J|(ed`xd-TB~ocqEN*nV=8Qaw^<> z#1biUTb7jOc+IE0)TYYhJ=LT>9Gl7+!!ypp4R5VB;IoJtamo_3tFXaZ;3VidSfcyq zx|tWdz9P5vvfuZSMYQA|wntEt!KcZs4KJz&Nd!zG83!&xFLmYno(;uQcp+{}<~IbK z%HS(?7CG_vI$<~WH-(A{{k@B0V`Lp=CpZW(ZN>1;e;v9%CV0JdJ2iH4S?8?uY5iH4 z-$(WBQCubX>nrW+^-IKSB=4#q9N#>?D}zjeeZ6ju{5O+A-kJX7b-e08RY*dTqQ@P! z_fmX34siy2UCeFGJ$=O8Nd>#AXEN&X})j)*CYV+AXYrPSnKRwxZ>io;FYZp@{pX)t7?A|z*sS_)dpzBd7{@JBwGW;NRF@Hw|NQh{*UJZh4qVeq&#isz z+Sl!^DjKch4@<}XgN_jAJ=6A4o`{Bd-gYgH`yV&@$AUhdr+YiSFEie`@z4L+^;=`T zFl{=y>z@n4g1Fk54!IH&_K9!fBaU>vbgpI~&D_3tkv51JCwa+I@`(ohE%{EVr5Ia> zV4i>yBtgIU@#q0$u|{z8ASW3VkMBHNqM*2ae6#k{FL2{I?zxvaD3F!%e4EMBpW-f9 zeyF|2J9pDu?i!o3#~hJl?}Nj5@&fxHZ~sC9@mW35+c@{n=(WC8XNEE0h9oM7upmAy zDCY&>(a|!!&@ZfgLew;0LKZLcP`+G9nkB+}K_9?*g{$wzxYx*$3SS-~`COOHqb}Y( zo!EdL1L@~9uz+}3{@?jnvFjzG-GbY_Y+I+j%?u?c#TtFr?c)!e ztZAmFS9|@G(t;cJD|9*f9)GwnWK*L^kvXs8d|Ep~nUyl!eLkR!dxu#ir$K$kfPpWE zO~QmtWE&3{3!1)MhtoSXOYOPM%q#Q?E-dN;&f1C~xC148c$9b^UrrTXue>NqHV;td zfVs!p{Jx4=YhD|-nRc0FrXASVBf`fTkIEB-dTyrpVf2$pwxl~R@`Gv)*wyaJZ;wg; zu9lkr@tT+}?Y5N0T;2cAk~&wjA=URhPI|7lc>Y8)209;Cq97v^s;VzE&}y~Wu`J0j z^5+f+UaNDSoSS4b`N0qD&uB3ZKfPWG{EU!SG6L-!J4}bD;l^J&M#C%fg z*P8F0sr+CRkl-he*NOPy)j!-B(Gc`{)Z-5~x+3;Z38UG6RFar=hysS9Dv12#_BwW3 z@Vsj+nK!k%^rYs-;UY2++W($N)DmPhw+fS$qDD9dZZ%Lv=?U#0vx`GbGA{)?K&n|P z)92+QzQa_ZwYmKlc*>o*)3Gq!UgyCexutJ;iz+pn06Ik&S#ZmZWeY7z7S zPe+Y`T5n>-NIqs{Aa=ThB5UBdqs2PVTL)k`=x1TaurQju-_3jQFaIX`+M0|hofmr` zI+=-ulqI}tvqm9w`jPc(>l>{Cp5qU-L;s8`hpXBDI@n)h|{iB|Ad_ zPi32hQ*+rjp-W_uE}~(e%Ef#Q)>tq>3^R(|rum)1@-Zv<|Fgcuj`(3wKr9 z-#d;cgyIl9*dL|fs)vZCs$iaoX|BpPZMmOkb1ky4NF{_|KByR7W{76vTZ89&y)j-K zdjVzj=zdQd^3~v-h_|tu9w+QSxS?_BkJQ`*Q|w!{x8;J&dx*318wLzGmLJE)_y?xJ z@P9^J7u814j`7W-SEXwH4{vW7)n?Rgi&9(*w78a1+*;g&)8bOBNN@@icees9THFZ~ zcXu!D?(R;2;6ZNk?Q_OBXWaeo-m!n?&pVR5YdveO`OIfd@l)7naf=Fy0UKWkn=PsT zQ%Z|{^{GCxdUTNiha-nQOzYmuG1jWkhW27($#oK;*E#3mE&}ip`da}>b=2QMb4e4e z%{gGvn?seiM`H*SB){48?x0yA(ORMM5qV{$>Gqs@<%T}d+#Xo}{0{czfbAl**Ii!j zju)3?Wh}@o^G2K0))>eDftZ1(BQnN@wLI}rEJI*@Lz5MVnKA8(2Ww7ldof%nr^PNe zaOuOuv}*M$QR*<Agy%7IVN)BQ!QF%T;CD!RzgcVM* zG+8)vT9Wk{BEs!^XedP*-rCU&qud2@7tSihNv_zVr2Z|1J*Hm*h~PUcJiQ;y-@H{7w&C-dtAk*{Uu)!`T1A!fihyaX zF)1%oAu*rc58d~0NlW+u}9@y#Cl{%Rmr7pO#MvMwuC z`Fw)CsO##aFvvIu?(+K5-)%3HvCjWVXa8xDR9@UCoJUusD5xgJNf*05C6H`#$99;d zKU;{>RZpKe3w3dK?RH+wqfC{}?GOLt5yegC`Lb~F z%w|o|pu;obE)bufWL8>81)P@E{EUNI9`YCtOru(6r|@fUl$y#S88UaHs^Id&DHb2J zF41JRcwy` zy7B~M{V!=lq_o`-d>drg*bB03yT%K42o3b+Renk{^mrj&@C$>k8@@n%Uoex1PikXN zVqS~>49;g}j&upMz0C41Eh04&Y7%VxDhj<<}!Imf4S```LP~Fv{!D&ney36l^I==xahofPRQ7Gjr3;pVtQzz zqa%-K+U>x-{F2p}WzyFWVFu#>s-7yhNXUrZU-jh`{YRBmQ#?DIL6ymi!%7uUy8 zCR%=aOH~#yp}d@nAn28uRM7o8eqjFrjgJc1M_|3qsxFA}R-t2R148Lst|-nas>fI` zLxt^G4ZrqAKOHql`%22qb1oC3XiXBcWHxZr@9|enT1|5^a8!;w^PiJlT-+6X?H|*tGZxsAAk- zF~$ES6wXsUQfVJRX^B(z8T@orc1( z4NXT%|9s(<%-%Rw4%&J&OnxG;C29QmH-Y7*Ku#D=1$oI83uF2Or%To-`BG8hj5Rb#lv}oMEA1G=;-+we;(N3$jrwm)C zY^`J2ge#xc#UQG?tLUwcCfK>Qwo*W4bC=z7rI~|L@74E=ujdpxhT>Lr2GI2r&F_7w zlbMht*P<=n>#iOgl&^jNNEUJ<6ATg)KMFA;b{S0P8#})(Z4*&!MDvIpi35*_`uFiU zx;B1Bn=J}|n#0aO81Z0CTL{o1hqeMVG{pRgj?%bMDQ^z5j)1t^ao6`>uSTaf6GRM!4v;lnifJzg z>WbvRO|ZvVKUdh{QjbN-ZcVZ1t!PFWekt2`x)2SltuhyRTcw~9K5jk?;0o;c4(v~t@{)6d>(CY*MQ3M&0J3ReAV|F&~u%Vs>WRIFRx?Df0<i-HpUa#GU44qD$|0HoHt9gOv;r(uy8?Ec)_c^M(ZxLo8!Wy)&REwc znvk(qlMpaHZ4b5;bcH0M6@CebWP;w({t*}*8y*RP?S5rSBTjQ!y%5|Z~#XP?l!#Qb??9aO;u@fW6-C z`ZPfIAGKXRbMf!trwvDWv*`+L6P4vCVVqlypV3y7+sXaTDwB40a#T0k|44yWwfnJN7n9!s9VhxFdi8?VD)XfhN**7qj(Hl;p=mY@Z3YZ1k^d zK{~P>!T;2rM6HivSGUvhzMPO+EN%P&8fOo`g^dXPvrE1?+A}g)d1h1bZU6DZTM=w9 zb7jQEnvP0*ap>xQbnV`8ZG~KZTxxfvI*f8{j^@KSOz2iVUiq4^1B2N|ZKsMnvC{L- z*7}x=Q!Sb6F=~|MUQ}m8Mx9uGql&pO+B09%F3h1uj(yyzj;OH0mhsffNyH=-~~ z^Am#n=K}hN@YH$%XV;}F!P>2Y#IMw+;hPE)^LsAm>euOLJb%+jhOa3?zrId4-G%y- z4WSpKzv(L4_XxRvzRwcG+IsKz(a>MrqKP;IPN3a}$9uXxY*&LUBc%@S%6G(KnO{zw z_09qM1N+Su6n=}fKFX~$;Nj$#MK_K@u(fM~K~YzVcZKfOJV#*h?w8dG2=dX zNP0F{(mH&ZG{%Vu83Ht-UovPSQV;A0mHVg)e0uypfz){RY>{9FXtT*L&cWe3S2Fwj z{1H{1Sd=9d7yFOHb>v}aN9VKp$_pwK1hWBXY&GOd5&_;kyq2Kyim-gHL~E<_z0XSw zX1rj&seG+~IC|)sZL;L`RkIAL(=xejCzhGTbQJPxwazf#Q05#`ZW5Fj2cJ+>)88mx3AjlYDT3{L5&R+hQpaVkeRu@ z;dBA;$w|8SHmLqy^8D*pfH`B!3KZ4T#N%?Uk&yArW2@JqD&K^xd~tz*kHny`Ic?cL zA|G;zva_?rU!IX^lJa*vaFc^lATF-6@1gkC&>`f3`P=0F2l`reS)#gG-CCTxhc4~I zw*AX4YDU*feVbVhgoijIwC9R9jHh_tYggI`xT#V+<`9JopSjcJSC9WQgP3pDQ@|lP zHLuQj!*H9;QNW(>o``6*pTO)_V*QGCl)J)GpA(bMZrjtclKjdwF()k*TaGn)rVol8 zP%ewL-v+i6V#Up99Cl2fVL6!31SKy`zhl^`CKIZCrBueIc2sM8#$Ihb?=B_HfFGCNBpnN8 z1Z1|)wG@>=#179|ARR`Sby@H(Q3@KkAnAOwtYfcwePG>WplVGUoa&E7%|aU2iS21Y z>n%mP2#9X4`P_n#pQ;qLlg7UjMi1QPxk28R3tjPC-DjNg>zvRSg!lWPws)<=8>o&y zF+<851^nsLUuN{(2#awQY{Lb%5$2xPkIVJ2r5~nxsh96a3|%YIi0Yk1I01EhwenGZ z428$#?ZZA8(zs&_?1#1R=jo;b_isOok8w;s7GchdEnj{+fr1dfvh3Nd2wGyZvOVic zR;zwK-BlBQZYN=7nlq!`AN>s76m;240P@cs&wFygMQqw> zv&<&zEbl~=J}i3a!qr`Xo&DPFt{{ z)SV5XBfI6K;qKm@kJ}q*PSC~_go?~?^yQrnpWG(miqgDD z31Hj!dlPUSrpPB!7>iV%|L3n%V;Eq{n)-*WU>o{XGQ_E6CrqXI=$qjRA9np(L5i*y z9Ufb^pI*-e=YoOo?TPpPyRGb$$GW)Vt|395OOH~#LF0M88%S*0rDF&+AJF>rLi>YP zs;^NS`m1g#wkM)I#vhqG41?VWLJr>#L1-oTbJT`CHQx|^@a5}NP2)>_IQ_)5Zj4z! zm52{~4*zBJr6@DGDg(wz0qQ?bwi%%zq{(Q~D}g@ib9*ipY~foSf& zd*McI_*vXP9{H-p_et0-?sv!Hq(1cY@3CvU5Y!jX)%=&iEkuu-*bZ5 zD}e><3*J?@H0uznag0BM4C$Ne8%y&iR6h@zDolUS<_GkquWGOT`PCyv94WDimbLS+ zGb~cF$;34x;^oO*NGqu|zCRWsyUD&=kc8d!yf@Oo=ExN|v|n51rUqZbd_>Yz+4|C- z9pZvQ#^ftOY8FGm!+0J}eJ1^OzF8v$rEEmLq5G!-F>4|%;`+qrjUMK-1`%^%+-1qH zd7;&ox&D}eNswHD$+z%Sg_%Tk*BI6EbBE}P%r3I^{EoIC0yV*re}0?+IQixS9KqXL zUP}mGX;qWqvu@&+B~0IP(}Rxxu(?aGGS2!6z*xe|VQEy;5fPfE<%X+G$34m0S>02KQGrP&Z9?i)r*lF;gI% z*;EVO>O2t^jwEQVp(?sx<><4GwA(yhe+hvoiH7vYgdj;eiNKN6Z*{~I8{Vx8Pz^Ch z-nIWFM#{^sBFV|vN{z_TfvB6~U^|GxPzy&_Ym_ z+stv(ornE0lWjR>6n)rSNXYW?!d z+#6~3Li#4M9?h0@c=0UH8Z%793T#|WNv79;O}XytUuwu!Ht`@4$tm7ZOl3C#83gSrXfb1bX@=^ z>!~#XNYa!S)ZY_+dN%J-WWUEy8P#zW?{51@xYE$=smTpzr1t%{9*bV_v&Mk93=6QV zt`w{G`kVd?Jz5><2_wyL5MH0o5<7@_jIetj-tqb!v>g6LBvNA2xx5LOkXE6_HN6^- z?i?LIZVYWmgum4eDyuju>mCo2CaC&MpO_B|=iEjqw1E-o|FdsM zKXo=B&vJVz!AzaZ@aP@VwE_p}vM)5eD=<0w}j!vqjyM%2%Q_BC@<^4grr3QqqU zAmt_#o|zv1dxQQdy=fgBxVCA=Dl@5Sj9=-M6HoT=hF17?7A$)jP?8M^yMIRA!4QP( zFUEhkAZ+`!<2Q``ryePinaq=)mW)tsJvg6NAHkLIq^t+Co*b8!ZgIQhh7uYTL^{&@ zf0ofnL7ys|7bpGE7=3%sJxqisfnU)|opDjKFJ^`&+029Cr%;`RyHtn`-tF4GZ-3m^ zD>I8e3M&W;$UApb&tk9G*+JyP%I_iAaGuVPMF zKO$_Qw8?Yb7+$SPqpVTZmt$k@N-jgmKo}2ORyfR*%2_w|vzv3xav#}$)VIwzU`mfM z152q*gJ7Wd=l)Prq0zfbAq zCy19mUN@=ZTSaoBId$;%F3=-J4h`K!m|qdP!Y@rn_A??vliXwyJU`d zas}wW>QlcrJe;Fse7w3p!vzX_)YNyG6Q&9<_R9FXoG=gH#NLs{lZqw-6HTtnUmQdq zQt!OXTs&1FQ)+QOH<-zCy_&*}ao{@xI2GD%qVly%$ z39G=Fel17}7saLMCn|pF0{&UNhQvGgA$`}=iV}V^B+av2>2h^+_b+Ar5}Mx5&uM$6 zQ_HhKk{mOCM(x@ZdJ>zeA&^hr>Au+q5NJXQw#10`3loLQM2O|e@dtH7OS1(``kVyC z)$j7jmwO|N8-z5XQm*{-+RQHT6U=iHrC;YWQBtjUG#um-%e|v@H2_{s@P15CVs$^? z{^)2Y0NfN%fy=$e>+E9u{so_)OrnJiFN?Rdo=K|7&=pf1x18utqiP;0Lg|`NKDQgj zzU$^AWIaA##R*i%ZS`ZYS=hwQZ}UuZl}2_n_G4!q@r7&bl=;_qmaV9&Z8C40)o#VZ zmnt4k#_^ar#xXcjYVk{fpPcg3>?F1>k@v|iSS!P%Q*Dj}|6J|vb@92zb(St439)Su zS7+Yae&5lNg+1=YiUusS6sqtf-D^EZ5YYa(7)c|~`JwBt==_eN+Zm+e)~LrcdY{}fd6w293K(OywEU^LUB>XxD|c<2oP3Q1 z^MRq^L0L9f)%dNh;W8se{UDN6+YpMB#t4Y=trPl>r$JeXK0h?6Acs1gO7hZ^wz$8V z@-!aMvzW(4KX@1Tbm>VREik4>;_;vEUmF|GiZN_8BPb{kt% zPhZb!z&v^G#!Z!sru{w>F`oa8IFPv|Qu=`?H4^1Hw#_jm{IYu`I;9S^+)2=>X(oZ5tO zdK&Ni+RZZ_VR&)cYq9Dwa>Bd3TA9s!yf$R9I$XUbksKKx>MkBn3gnz%bu(zdfoZ+Q zbR4wMW{OzQt_y-kY&QGWl?r+5hd&d&B*U^=O(JY*HR^Y3oy?YBMO1v_y8gdYvsFTHA z8~tO^9Cg007wkje7r^|YCz4}@ayG8-JHKyDUzqE|Rq%zQXFC@u7DJ#${BX3Oqv?-7 z@w4=%oy&jZe*)p;NM7Krn4ZbJX%qv0Os@rf*HG$u%IRb7TRp_OZfQF)RQ6i-XJ zFA*KjKj%a$2;FNnbPX4kNmZis7^rL<{I^LUj!VTh@HfF%F$zmQ+8&GDLKn@h$O=<3 z{Q|Mt5SKsL^FHswAO`~|&ny`;{H68As;tXjY zW>xOS;ggIVPa224tr{QSoNImKvZwm0Yxi|3h_q3_T0VE?GobJp|E=o3zrrQ6V~)Zf#Hw=R zLmJ7mQ>e$GCd+r_yOjs}ntwjU3tN;90|lPH7%GyVw8yz{6r8$fu`9gnsFL6(=Wa{Y)AprA zW|%`U7vlQ-Kh@x?F&L)&6Ld8t+=o49J@%cxPov{4dK?i^Lzgqc{20i}AzAX{3#GZY zv&&7Qe5IyCs-JZZc>UKP1Yr2AKJgNi0+2oFH*eQPiEe)PCGBaxvry3Q-YS|ObFHni zxt!sOuj}%eqwB#C4X{bi-AsQ z>dmD^hFEADguM;0`@p1`SFH(*$%_QJ|4un$x){z*Sr$A`<4o6trE5o4CPNIcCd%ai zs!3*l$H`x)cTcQ1$iXYoA%=1_80|WKT zN_Z=1;9Lzc*0o-zA4%1w+4zxpYIZdKbd|m>0*~AfF7EXyno0jrGvXI(0_s}!d#+QK zgVa^c;xbtkbE}U8dk}o*isd1p{c2URckz`i8?bGH43b8fq56m}yJcb!9nA43H-3%R&Is8Mv89O!uAlD8UlLA3zm=xoDbL#JwZ<9LAgD!6L41zq#Ft=8lrr7EO zM3c!^J?vQIcrP;B+BT3$tjI@|D!$6bfb(XV##!O;M@x})26d0-`ZPiMpIhnVKAl;~ zRBG^&|2pt*tCl~L;INHn4DuyA)S%oHE6CxYc{H>tu?(R9xgqC{Wi4|iLPR%Hx)%CKVC=0WH~ zTl4@ZegC_Ga&6_ZX!EiDLyB@4saREPPuO$n6TH)EZc#cByIMbxi#9_os4esy>}4S6 zYrt%!)ON=NVnN)iP})o~9~#gbYA1Kyc$3U`g)Q1Jx0&Fw0C^R&Z-~4o5c+K?YvOO+ z`JNrTUHCF;T=1RP%XC%X;eGE1s#+V}#-UTU?1ux(y?t}lN`lL1@Y*f8<)>-k*JV1` zMA5K=z7U=Ba%9bbm=nqAY@pM*!FNa3wpHEd<`w)^fcuDN6VPHrhO2LOiaE0MZ*_W2 zs;D)HMJPo_(~&f@nzR#_^>giigO*&3yp2}0jK8Z&e%3c5m@_Iu&*w=RLZlPlscpz; z@=SvZP5hwHp2d~$0l}7mFUFIO6Yr_Pdg~p831sW8zqwY^i<5Oq&tvd8hL zF%@Asj;E)E{2dDfP-M#jYI1t0X297TbiXXx6Hl?aa0d=6#8^LX6FE1`xu0}U7=91;bHCtS`TXWfpy2+Rs5U}KdFpVf zq%ot~^;psIDyC~sw$N0;DBjueu2@CotK|zx(*R4X_ijTX&oSP(rMHnzdl~H^xr$3; zL|R9%Q@7u>2TTdc;KZ#mknL5jcM53A?>5pt#<=v2Kpk{V2vP*KeEy?F(3P~`GkZ+z zpW%0Hv(RmczK!!`I6V#VCi9$rp;i2(?2q=@p9)y9&q*cM!!~b~xpL55ikgn=dTdkj zIWB!Wp!ev&IB77LUiU z^g3BK27dcF_6X5&fyBy5Mcy})2?S3!PCyY^KvMt~e@Q)q<&nr=7E zMN;d#zg}k0TLF!LX4NNag8)1Og@)P#$^Y-_LvRtP$+I~pG`Mnclc%mn(->=`zne2%>F}c!KQlrt zH0_@5Yi2mV3(MTlcq+)Mb>ac|V`ybg8yTn%aOjPlJ5dq(>YV+QeH^RbBkpq$DPE`2 zqd>H3RA*iEyIO_0=Hovzyik*`f&EpdzS0BNSyalbMToo= z{eK%BOu84gYax@W_{&<6Bf?J!B=ZPc$c z^w=6={%#9C!qSVIpg!|j;It!3ulx+`%( z(`s(F1x^52f{slY=UdKh-jgJ|`6xgK|JMBNDF5moVV^HQunMWR&2-#|B<2r?vkM}U z;2;#-`pi|+=n$f_w9oxc@Y&rH9A^P?*ekL3E7-a7ef~V*WhBG9bLMrX^-b`3@UH!O z3nh<%|1A@PpOK+=8u0s#-nG#?Dyk88-FFni|AT5NiTK7QbBQxoCE{5_n5O-|ntV5H z8GFlv{x^v+EG0x4G|4ZRT;`Q(`CzOcrs;2Xh7_J<6f$34K|q1e)FY2Ej^Exgdg5oE zKt{~+3%bxhW26n)OJ+w7MEd6KbYLXj`UN}{G``^60Km5u_8whls>EeKydpOafJ~{@ zu&MO56gp|9te!Tp&7={pi3XIyqtk_7m$dcx1-J$eGoklP@e{^B;JDT3AwfineWaNM8&X-%y z3_BCPNm-UL>Lyl`*QSBj>c`pxi$#p8+BIadz>PZsrQA{MCU0wbj|mQ{)lj2_u~qx1 zgf6)xs6-I22T7x_Ca>gH_hGODc18m8%@(_ynOc9iXK8KmQF3=RY1po%soJPb5bS#q zMOf0&hD*%-ZH#XE@GxdG(I8tDl|Lfcw1N`M*MiwOQEVRS^I9Ti(pta=5(-~Cmbicc zVK*6xnfM%Vh{t47#UGn`2#r+%H`^XD2(|A}(K;~KB8zdiwKr(ee4>J3w1a^g$Bg*a zjAOz)&|za`{BxHP!MMF{zS#%Zyn2^~My8ujE7zMZmVw`Z&chQ)+Z1mdYy_?LiHr57 z^8-}R!xN}Ve+2?-qDnh-(I5J){3g|O;`!Sh7UZZAM9L@JA93?SWqV#n|AK>`$Qq$5 z%@6N1+_ozQ>Ua;ZsOmlHMTzRn5o;YO={|b=)vMvjd=C(kbvka)`$$peddzw%VU#hr z1o5ReJQz7ocW?!SjqwGyW2H;Nir@OvGv0hTa<05x$xH4%fse;gToRj3*wP`ctdAs8 zC$}HTRi+DGg;c@g%7GHv_N+_Nwu>rby3?nYzhB=*Bo-qTq3x<}%#XA@S;H)+V8_$; z#baHY$iT|HS4+hP(!&G$39eT&CQnkj1$nJd;Qe9H%4Bcqz?S|xfk!Fzh&2$Uj9cxZ z_+MrCy#^&Vs9qO}%#b}X>N|`W_X%FHLf!ITX<+@Kvp*5G`^Ph}*Y4JMX8!94@irv< z;?i(%x2$7>i`o*$DOK~N5zX97t}};gY#{Y7kJEV;63G?qU)dHj)vO02sI_Dm?2rUf z-|GQlLRd?-prYmiS*OqmuZIk_;(d{M1#B?Nu)5QrY7lSkfSRKbyL_jhh=p76F@CNk zAWp!K2S*_RYrXw)RIGeR?V6lV4MWu8uDX2aMr5G+-u~Kq#%luerI6C<;ddCdx_5Jq zrvL0#dPU*K77C!@`_k%7*!|@y9A4P21!xqwL_BX60ymrrx=bDOHmEiuVw4J8Ulp|6`45o+3&&rTQTiTe*q8TLxi6j!arDD{$eZ8( z?zeCUL5(r@4DCQ^X*`^SSdL>L23mCfe-@Na{L58UuPnPB%h$;G#N9rRCq8)))MpDEy#E(PRas5C`06Gq7j3E;iq}8e5a=on$3AwC zJD!bAgnv^{ZKW;U0#X_ltuv0*O~*Z$?!{S%XZ|T`3Z|`Y_?gLGLL2)Hr~MRa_NgT+ zx4H-9;}QePT=RUjw-Ah-)#wEb@Zc0dzZ38Py*=FC*DI#0oyAZfna`}61IV6D#4xtXc|@KR{+H5pn`{~aGZD>|^t7#5UOr(Km07+sLtUV-J1 zcQ1{s0}rV97k;;|-n+o4V16f-k4HQPjWCsGjs^CKQEJ?mBSd78sWt6b**TcqqqGT7 zs*EeBp<5O0<3_~-kgOZH&Q3-{#hTXV!Rk8!J}PcZ zCO>BHI)G2yWpdbSw++*;VZPI_+N5Z;{fzGYGrTNtCM>o;i<__ZbU`0=o}%1oxDnT% zS)~3X!I+M9rX7PDS{%)RZQBhfW2+p~W$3l$!#?Vp@wu!8x_5zh1@b!6VgDTHxlwLi z5J5A^0(d`Tj5NeoXzxC3x4>4^@Fp!Dvv~LXn&X(Edq=VkmVO~xh*+1QqaZ2#qm^h# zR{%G@H#`@r*MI)#esvt$UjY4k)UAK*zoF`Xoc~rP3 z?Pip4^hz>$DtOP?3q4DMQGt|3^a9!fB3@{Pe_r=FcW1c22Qqu~_P|_2e!h_Q3;Kcr zjl?lu;u}LQctm!1yrf9!FEW+OQkTS3N9)$GTC>|7_IdW|axdmV3++xA0PMK6nH!%q zY-YaA-2ZXRUAm)1ZS2>$$ z{lCaZ(0DrOeGLcmtLrw}p#t$p_9uEC4N|lx*XR3GZlswFqv0E2$wHE-FCqr}uZo>4 zOL`bYNUkswFdJhauKeB9Z!oTX?C}boIAK%cW#mATlBCi@c7L^tG+~Ef%PbkpMAvdJ zghha_8@2~=z(XRFo9jG#x=Xvu)Upu4*Rs*S2>JLUxGQh!OBMwF2Vsa04%2bF9<`E>U5@PrK}-bD^<&jtbk z*f1bH`@@A$JoseuVVem}Y*>%Z`QD6@`JS>|M6FcH?r(2dFd2$FCBKa-;$srS}e zd!UWu>`_LStCWTeue+TtMk->?0R9qe`SNQ6b}P7}@e4(c-C~AT21brU3*^dQrwuA2^ zz2*zKGj2N}Q}j<2vXo8Os2I-GY+RXReM!#a;CL5GD66-bI}DZi zWh$g74pa6-^LmCPH)T~opYm@66=x2-GV55mkWA>hRrMkxjb-yZX)0*5ptj7B%lsI5 zM+FKg-W2h(qZC{f!m=Y61w8YhfyUm6(R=E0YPST^;dK#xWxB!2~)RkJj z!2ml%^2y*f29Kbf-GHd>fStt2v;mbZUdDmc<X%WnKh?$pZggt#~|)7A8=zjR_IGMs0IccHUzlVD!_@tG9Yh(u~qBBweDC z`?&0KJ9nGKm+7~1N*oz$n&gXA5DwdP-b{79oHS;ip>0t9jJaR!hEHR+p5}#ZUL!Nx z1b}2r*A7R~+IP2RTaK?@`NwD_)=XJrU^aOY@xx|-Y5Lu~PICCeNDhx1)A`_)%0thI zWk!pZR@Ujc1hDPJ5x_FG+o~PC)X%Z9Z*dT`SUIBkILBbRx}f2vVEHG)HIT{XcSu`67&)nAHbjg` zudL5V%1kO~Iaxj4^t+-2>a6?d9Phq0)v0%I2}ulMsy#l+JN+_H(lW)}pShA6&-Lhb zZxVKMG@zEu4K-N#Fp&>XY^y&&F7{fgx9*P*$aCvHX*2|=b(iA0I}0PoD|Ym_8A0)qX)dkFy5H8iH@~ zu8f6}SOQYUWu2btC>B@d)o1P*rf|q!5WVL#T!N)Ti(?*c+ydpy2oAJ7OLlMivlM`B z0iU4Q3qxdSPn@OralLAUK57UzYdEt*sz<+g+)MwMKVy}eY&}f1JLjTMKwj$U;W!24 zdYLQ6_ovj@WclScal|0^agebZ<8yZ3bG;eng6*D=TjH~fRQ_{+U)HJNx{1%{sgxkb z!@BBP^5ZT{qVeMlw(uPqluSoA&eJehF2{&hw^!!FyUoh@?TlruPR3cDmpK7)6zAEz ze{RKH8Q@5j>{z=Cph9O<$$}Z@EF~(SRD(w%nBFWQg*6!V(hGe-j(@oQT> zl<_qYMOD+{{AUv<&429inkl6#swioo=?uI*BBrKP!EjEX#p$ce%qQQ^+C?8?J5}9|BCNDS zcg9;~!Lgbih^}d&{#Wqs06OlW3#ZB-fNi8LkrxuQ^#fkMbd14E^{||~O?(O0mzh+GtE&6^I=EK&)|-5mArx@-_|Y5O zo)T_IE~3BVFZGrYBpH6sp4K&Xe%5wut>tf}I8CGj<3ETr#snS+klA7isLKn!ULI~Qrfd-69AeaBk{J$7Va`FyKFR;4Y$ z*|(naZG_jNS!+5)07A78O9P+RkX1F6Cup;VQzk5#dbJ?)283`e@Ln{f99xnnZ#&!= z>_4Oq30p5im8S$Z^ra1`Dvq5W@?3k-vTq%+Z*ta6uw{{OR9|VzZH9HxG?XKXs7S8b zICxg^)3KAce^R3)h!ZMfT0!^*Am9ag#b6(m{atthWj4;P&^~E%N5VEL;4z)SubPTr zc`@48t{L~JM9L_2%qP8}1Kb|Dj5qVyYhcbs?vIc2ey&8+`$BNRzCcIzcEnOa6qc@+ zn9E}(8SRHKa&_OL+POkFEDj|@tGPMfo>>f58k6?eZgd!aW3DT~(@Nh69f$QCKR@ni zz3KZCrc zgO{!mP+3N4(U!~kBxchI+XoyOE1d^HSYC_m>7u7TKf%Z^bU39$5`}ffj%%>kh|NUBMEKhx|kTKB# z$eF70_@U+7G~=D+<5i&Cv_3+uohBzshSCq*#m#S+eH)9)$u8z@I*d~YswX6hV3Pdsf;&NXI|8Cn!ya?xbEkA%iA7Z?XB2^n|Q5NLZ;_O=po7+Zb553E&U zT-E353NFQ|7&BDeuMl1a50kccxuU$-&3(SM_Y_brdFyjAln@n!Qz$~P{H^8_`AATH zgoyrn%(4%!v2v&&Nf{HZPv0}+Igx?;ml1sIx>*#9%W#z)7^y9637>A~Fjpz7m&QLF zV&B}_Ogvz@YyFYpfNtfx3c1GTLaPyTpl^{t*6E;z&E2L16g7Nx$t^&uc#li5cGpZ8 zAxItBp31_=c>S?O#RBf*3nG$GE-{FR2x%wD`)qb~-P=YTqb@eu+ie?uSZ2t^xm0z+ zjzcW{%3;dxN~W20FK8RU?$8Pcql@i5$`oa!$t&lv9T6 z-i}x2{gDFzAX#QzGdztDaN>D(ug%SgYp`m}OH0nZIum(FJ6Nc;=-{yW-l1|z0ql6( zCR2SGOi9-j-6=QV`(&6+6kEo-3i1kgZT>ZOKI=@~)FSOf)mI1B6InV@U^4P#ER#Yl z>%G0p(8y{dUgGym!6nRGBEF-t2;%WJxI9c?{4j(u>V4ggz`BRvhH}gK!E=>qgo79f z($CVTG{|o%#~S%DeG@L>0_?a;6($f{&ORR|v~YlK<#rcr@eV>eeDY=F#N*)ved$faOlKmzybUOn-~2_J+3AE`{K>u zm|z<~;-5J6l70i{GzA^`T)a>jZ1OMTPA@^1_ty+=IzAyOQoT{-sd=2X6vxpuK$jU~ zZWza#)@htZ09GMhr@=1FIo(*(^`PPLLK%q_N3-&NW<%t7?&rehXbEfctsysW!z74^ zFeL8xgasQHE6+}6l*J=DR*lr1cag4TN?hlIHuv3adOAhny4!)Rx}=g!370ZTtt@j53kdl0#-8|&!zuqAs1*S@hBc4 zdWE{Cop1T}Tzs>k^m>N>RxlHp&tWH;6o39~R(jjdo_S<3!p_oH!M_oP|@|Tf8d$0S}ay9zd-!VNM zYR-=v<(Da>J<5gVqW|4#=p7b^4BcPq!NN$6*0u98q6)mn0eai{}$=U)7m)zcMrCq2V~?QaJ=y@GYs(>LB9voRN0<1V%%36Z<9D1vP=vzXXHt;-EC`3Ub{4p}V?Q_3?uEHf zJ;Zr#?QVfb80u&3AL3?^Ri37K*4XcZhSzUE9wIteGf7Jmx7H|GHIRP~^~wQRVfxD7 zk=Z(tE^4lYLa^Zn*wZIc)e6@QwGqf2LzkP_q$b+RoL`tVi04Faw9n7|ExU@J2oud=pREe`k|M5yD%es*^XDlP?k4(dZ)Tmm@`Le+dbsg= zm!Pm~>lwv!Ir~T7dNUI%!A!-V@XFtgfX&D1n&I+*hc&<4$5qk7%VYA4`j*$lX)QTB zUkI;!&%s=8A#``?oAP8uppwuj6JN&fwGrDT?B80x;xQMbIUd#Y`)x+m1345Lg5zg{ zLC4UwC;*@pa9W8JzrWl}KIIqbCrdFR4EDyt6~*8^iIGqLpTkl)f@_Ns0)JE?297S9 z68~Ex1sOgJMjNfmdOPfHcI=l3H$lMrRK~NvdeOu0$YbHCD|Q_-)PVCD-ih%n!S6AzAKvuK)=sg14_0Y}4=vzYX@N93^i0|zay z_-t^#i{bX9(#)xu4t+;EwwNE>%W`>Z=pmOI6RhFIiM-I6E=Wl;%NwWQI9lGz+C{$r&nx z#7r%i{x)_9IRmPE_zyI!y7uWee#<}dS{>=hSR_7GeJ=O^hqt%viZklA1ryu}790`? zuEE_U!QCymSAgIY8YF0t;O_1YMFn?vt>Er11x>y8p3!~AIG?(E+&{3#e)h9vuC?Zz zD^q^s4bka+NV$uo%D%wBI;4vLM*)&6QszI}w4Kt!kmY5JzX=%o@pK^ny#K54{_wWyg-gsB zQVc7*WeT~Vvm;yhq1HU;*5E(AVXrIhSzb0j;9mMNGxCYaQfhv`vj6tZHouSL$yYDX z>91ypS9YZ7+SVz@^k(OR`?{`49AEf-x*X*(9vrZgwoO$QZ`)YWB7S@oMo{TDH&n+K z3Ed)^OpWcV*gI_D={DV!p4qbnr!kzokr|-5NzBB;Uu#U%Zhw9kc~Tw53qMBB&fXl? z(nNIC*!~uTNI_q-8ON7_52HoQd!Chy#s|-67_A|yiR_il|KL}5Cg+xJstsC5>NHrt zJ8+HTzd!^gu5z!U?*t~|ygBk zJ4N_S*F$*WGC_KeZB9d*FRuvY)#M@GD)n6rN{YH=MqR0BP{&X(PnF|x?v5mx!`Ooe zJ6IMVf+LEZvOBeTl)>_M#A88~@-yXPZM?7EY+BH-_Ix`qZY-}wh)wT>EDU*y6qP1p z9{x_*#KkkdL9HhqTOmeoQCZb^(q+$~ERQJb!5|HeZ8Wc`UFEi`PJrVnxf+vA9Zcuy zy;wFm;dWNijf)nV^wwJ9=!ad%MyjjJRvx^6RsX;qSqh{GE595TME>cE!}}dd|;X^(><9F z>eK(cbVl?isDhDpDdnXK=KioOHgK2#OZdFmzKh^8x!j^VLy#g!6u*CeFP*!+)SuIM zu!#;ZF>HLYF&6U-f!~l^Qp#_uopskS?w{K0R~naqu(YRcPhfe-D@rSSK_= zzeG{0&<$7+eSh5>S86i6Rg~^l(mUK_plM;a+!<$|lxK1KA;W#?a4YH*cE8W9A5PH~ zeb|P!-O_;%0-xnON6joac3v^A{ky_vv?}pJPL;w(>t+pmS!rHeieBLlKg zjfgQz?!dYHLrCTjxxtm+p-!ry@eO@qsg`xwi1e+)`NY&zV{Agcz!FtDtbp~gr|+(#sn_4 zyQe)KeY`X85cU1~@TSV_eT8I5}4bvhkJA&8HD9Ts$_S#SUnurN*o4d8q|d z@7$4&tmLPx8X=NfwufTGnd&g+q3t5>^DXQ9Gdul3f?GX2`|bMLv_l9rE%!_Wfir4? ztNUDkAej)8_htR_D5A>l;ZFKW9jaqv+=jgDnm^PwHKyw_14XjObJlnj2A>v@k=Vc` zUDMV@UDUThn^_3_lWur4KieY}cS=YQ2!wyF*XFoL|DC(W(*p;Whl;L2CJ>Bdgzc(YaO1!bdIvj4!jn1CU!54kZH%^ARA5g1QU0C=UT>5Vxl1~|r5eK$9 z-9G;7LTXPYEO$D${ZEUr0$TZIFlLMu=qp2I*xNt6Or>jfc+97~v&^IlaI+1JgX3J7 z4;ggzWcVv$pnGDCQg>|k!jm)Y-%iNem%8Vjfd&hM;G;;QDA#5|F4dU;T;@z?7ECd5g%eR%>j6#_lM59T8E2y@~qTRkO0tslD zoTdh+{v-?BS9c8@tX}8PW}lsryRK4R0T*V3ruHpJDGf7h;jn=$qs&bGCEJDLkpM^d zYvCrQS6)!D-YLV08ZI1ns?V71H@^Jd)zHl=t!U8~BVP4k(o$Jo!P64-H?t1Z1msH? zptk!`LLM#L*K)6)z5^@UUxvy_BI@B%Cj-E4GmdZZ+>f85%xc8_l=2yFemwbw$Jyf* z=cIljK9l?@;>CsB*67QG*H2wg8P9*!b5REqh(xMKf57#{qu z0Sf*82b)iDhYgjI7BQ-Kkvltq^8-#1k`#}V4Cm*{hYYb~VCz&Q^f3E4v#I)ynip2e z>p-R2+;uQD>l44T9+8$`ru^v0#iie%@fCdcA4*gf6M7>1 z8WEL1)k!RdgYceZNSCCgwo0R(FL=V1dLofTkCE9h`ru7V&5jtr$40LrHE%is>Cc9` zo4&i!|IR{5?C2_rn6+zk*gcmN5OO6#zHT<-Ymj+reR7k+sBh02Zd|>Rp_xZB4hH$| zxnK|ktBcy&DY_|C{zl5<;c_$DR>ap>6S_ZuioD*+9d~QpaPFAz4vVZNiyHB`8bTVC z)=V`#3q(NE7noO?Mwu?J@*l@tO1;W*xYmx+t?r^j6*ns9hpn5m>a>)!fghUn%-v*9xJ81T%5z`kDDU0sZ!zxm`KoAlVJY{UM?#9j2j@;GtsLx1S z7Y=t4#OLwf)SEuHZ`0GQf-1~xEyDMa%tZ21iWwym_@Ryvtq-<9#S#Co6d3Q!Dn_yArX3)d`jslV=z|3m%vFw z)`sElglJcSFGmT4h{D^GEf!`GDvTT(`@Q5ag&25fbeGSJsAP28D?s&Pj}+u(`dyaJ z_U?y#;yQ=eS(!-Hh)g}blxXn_83VYrL}(&TxD{+LidRADk;9$Q1OliB9i-s1CH-3nZS)1yZJlJw$)%o@~|UFJvv ztO6WZY48XiH7RO)pdQ?~?WVrxn3w6+pEq-h zAgs^v^Hhq?+F!aRwAo|WM3=p85uAmajtN$GU`aA7;RD=#zi@^5XEvEzG%-Q@I`aZ8 z!qO$8obgDb$Q?hG z{W*XkM%Fyf(e2bPpY?{B3||kFT8D4S3Pl3D8V#~1#^1SNSI^vTiTZMts*FC`Y5>m^ z*5y4_X`RYxXIq{L;@WaMupXJgK;m3^{&#?U`g)VyQ-_s7#HY&V;KLt6ogR}Edb|uc z!6h+~Lw@o>8KxIK$6eGvH4~OCPb~w;ZRybhz8bV8Zw`DJ&Sw?Q4)X;cUG`hA4i12uB9K$&^P6}e>KuHsE;4<3fiZbmx(oW+xcAL zCN160POyxRld-I*mI<68c|A-$M2k` zyPPMfqaAM!CKs;88@#?Z`g}Mg>Of6k9Or*DBl({6M3Lnvf!y}R56iFuFQ+2ePbp~R zX&uAZaTxGX)zu@jP6#}2j&Q{HVlyq-^ufSdHqiT6RV639n=(r7+*}?E(&*_ln>cYWfMNgEq-Br~p~EKfFm;zSw0eN57y8+kLEd;k)hMQoZcGSJOBhtqKK z_jEZ23cX`BYS#0@pBWwWQtW(OpIS3A8n>SsLE)qeTZHc2y+CJaCk*Cv)?|WAIZyo9D{@zV7srcnqep(mo_%2`y zqVX2`zIoNqwJp$)J>>|_(EET@_AXe|1^fWZX%XvNrVK)Q{xm@{%>~N*AJiHEP7;Ja zdgQFbnexOj$GuobD$okpjsxI}X2oih0136cA(r+o&n!hcDwvE+95G~nk7><1u}LOj zv+K0IsTm#4_Ayj>v^Z8&fhh2ZSo6a-SfHvaWj?&I{d59sDx=uKY9s!X75z$bvbAwP zLzU}a+0~~YgODD$P9vpdz=l7hE6!wkQ40mXCey$F&_Gg z+A7$fGWWf1ZyT=_CJtZuvwv=L^UVt+q`DX%X$z`kcxGvtkb^<}jx~3kr*NR2LrAb&HeL`LO#c~r-BqFWZqUN$CCPXs;aFwW|ix`3(I#Q;o9VVbu zoXky%J}=@VubbH~O%inOX>25HMPGmlY*+6F5N70@Hc1u|5&c=FnI&kK zYp)eN44t>kQ%KpZ>#pd9g^;`C-buGUvf&lSCs9@0;`+@e*6u_68gxV*JPZ4nJGs_N z`2`#UqJNUlcmKMx-wN}c%%+F7yVe=r4lyGH0b-Ym_uhnanzp~Ur;)sQeZZN%A3oCv zOnm|~Rc-u2j8b-cZB~d~I$dJ%o=GHV-;Hj3#GjI%(A@I)b_;3x-s$c#)n&kQWzqVC z4MQg4i+(+X86V-KM%|?nR#ye=wDQCN-|wSR9*(AC1=4=^jNhK8F79~LIZpB*O}2-w zg?jn@-rv*gBIrTiISkXuDf1a<)hAGywnr(nPzMKUb2|Gn>b0+UzxLYs2~Pi9ZQxAJ z!GpBAC{pyMz66snSnytDHS47MMTu6YA41g5JS3eOu^(abpjMq=nbFEg5?C+z{GetB z4zLl@*UOi{sB&z^UL6s9rKofnpAB-zHj@#PaLWE185Um_W!r|98EA};61ZgvKeta8 zn`~rwe(_|T@ibl|DG%E}HR8aGH83uDx3!C8`LIlX8Ztg0;>;?$^#C($%&K~vsM9a{ z?F6b=Qtc(;0vDzQ4OOY`6V+L{*uQ;k0LQ~6njk%eng;yro!@-=RGr(Xp4DJAqEFQorm9*}^N?#&Xu01IV*j*wmP! z&w_W!+Zsaxj;r2zcN8Pz=xcn!>KJ_Ey^|Fei(>Zai=v{&xtH=8zd&Q%O;3T?CU)3k zwa;heZX9;)I%-P4BpHzypi_VE$7=A5AJEr{G0>0>M7lWn#_gAN|7qej3h>Vi_$Gj7 zfm6g-#Zfl`fu>cewig+;a?~d|Y>8r@EcQ3=U1&W$5Nc%g_-yOZr`saObKW$~KJh>$D6(h&Rt`mIr z=&%|dk-U;pDOKcgeof1CJZ}+8SDgD9Gw3iK3x}u#ZLk>61jF225)_7S6a7^@LVz7z zE4V0b69sl14v8p~x;r21)_Lh)I{Bf~g#Sur%Yw{qrNmP@j-k#Ofy0^=C4z!U0m6-Q zMY1n=fm$H-@U<2gjlSx3s;`fMknJc#Ig_s(Dg5xu*ko`Mjz?Qp_e&vrF?j7HH$ zY__%cNcVBJM0f2eo#4jc2Jb->VV{^dzhTKKb^H7MFalS7*p@RqxD`FY3k=Hp{#c*0 zn_U^5UwYaQT&7V!81vAby_R6^IsoX;(9CfWJzz%AocQLn+w_S-fN)4j>jh0t_9dys z3C@VCm=yHuKb9iO7n~g4Ubr!!R*|O9!D7-pJ;%5ASj#CxzbcSD#a#7&T%CK0kB9rA z%0E&UyAOHpv?sDVpfPsPag%EJ&kep|krtX=YyI&A1KW^VaEZwkpMpr+rG7~Uaes!V zx~Dgig6x*&Lsw>?Dev(Uo(+1`XhZy1>SN$RO@dk4wfOC~ngd8 z;UofdE!Y-$95I|hE)-jyWB)#ON|)X7{qh#X_H!&In&yxuR2*}ZJzC!}WIA$teb!}E zye7`?RzcH$=bT~KuYe|~wCOd}&c@^%MCkuZLIc~qCQph+a^yofWyx@ALD?P0XHoGn zfqE*^&8mSI#gm5L#)C$`tMq)hJt1j25B_H5;9QGal-xZ$gPGSyIJaA8@Roc+mz=+} z#*!*3ugf z|J*ZpJ3NJN6pf2}*#lSO`rEj$Ci9ALR_V4G;r~fHbLYr}gCenLWsW)zYl8n`mM_+O=PRywoYK^&SFxw*GHclyr(2e7o#Fzh=pQ({0Ko z_S>oYTowXOlo2-pz-i4QT2)Jt-QE=bGNNk4j=jS;Vqbn0aq9&sp z5a&DTv>m0|c8jPE`i|&e0D_7)|MfTf=w67wkhs)}B zCmq%@C~(7K&}RI0-2-0tHJc%4ZRGmw-a$&7}%`t0xOH2TBE5e z%MUWXTx(5mH14g)FUQDrs_*UqQm`MEaXBxi^b&e%wb_o#-fm8m*-e*osLpW8rtvf* z{Qw8d9kw~<%s9o2Z)g06bg6EqKh8f#mE%!yl47`dw;LT3ncR~-lxMnb8tYttmBPz)kEiDZP z=zEw#y17nvDshvIrpuGaFc@Xk-yC~pkS}!O+0pWi|3Oc!UD*L369o=a4zcGWqOKcL z^|4Z|&L2BA@p_m1s%&Q^j{aDsdVE`6C>e_Kw;EziJn9TLJd_BY+eOKx>qMu>~ z49d#r`O$$D2FtbB^?7|s0<}N;krX!jkwFW39tHE$4gIliEuV47ouApn~+iM z4S4wunaN4xCLgyWFKJ|ch!6xm=S~-xpq;Sk5}Agzvkfnef6jmvrs}3ntlE9TFetaT zIlgT^USHznwjpWf3CKT`PretdZbUiucJif}qCP;tm`KwE8XSxEr z)n1?F{v5R^PoFH;0|Tu1+gBB@&Al3n(=hbFB8geQz1wfkJ0jW8e`y2KlYTW+4%{q7 z42=~yTZRst2A-dWEw2$*W&Ab;{wTT<#%4dht}jeHl~S_TIo;(@4;)`ig&a@Rc_9!R zQ3j@Z_PKKx?1J4I*u-Y7Egh$pMNJ9@yfl0#q%LN$W#i_6h-DR<&~YBKPos}5s^&SU zI`L*zg0j8Tn`Oq)nvMTygc0`_|6`R`{wT4f_G!c0idim05pM=YpGH)m5iY{q?YAal zO326aqt3eF#0(_w(ZO)Lamx>mKT2EZUihm&xyGw!9Q_tylDTcSd;j{i5Xb$@NYC0Y zgTE7gH|@a*&lnl{xT`ei+_wspQ|0brRIb6KTgr`@Uqlmmy2dm&1ue2J6%M!&V70<5l*fLdlnc=x+79O z>#L|ME>f|#W@em$|9G5aqZud}`cLf@?ea>wALv3*~wljqVU) zQg!gp-O^aR{V&n&mPG;VK&(~_@s37QKjcbTLWDoFQ!BP|?RrzUNrBQhaNv8}K5nav zbf>2S9@esO{7Iv(paQFxtkEy-z1o4(qi(Xq|4ImkYdhh8a7XuJfWx*`*p$ z?7r{+qiFKWfF6Ct1#Z77QBzs;AI3rUGr_YU?wQXwXTRqu0hPd}s@9CHfU4oj&8GX7 z&c-`Xqv`^Vs$C=Z3`YF7rS$b%wshg~&)DK-_sgNuyn)w>)S5cmw76A1AoCm_^qEmC z%kJsR?+hpHBrn29GcCalma*vn61^2;Ylg^=dg56Q!@b|}2=r1Fu)p4$fy&1tJkyy; zZ%>PR0A<$logKbAm4@5OQV^h*j64*HKI<-g9+j$EUBn3LrcG4r?WP|zx_$n%=na}5 z9TrzCs4_})eIKAzb)(%5g;DW%SBe`?Jt&O6_yErNn2~rkqyK$LU=73;Bq&ZcM*h>7 z378JB)+yLsk^2FF+t&RpNaBKh<6ae%Xr_ljRA3@tMUyM zAp`6F{Bx`D)^$lCM@kd@WIU7#aC`xG?KQMGYP{)WRUYd|s)=2?*U7j}%(cF@a!PuDIpV}TcV4nDq}c*$6au0v<*I|AKhdo$>3hXZ)Y3|TY>Bl8q zZ(3!)^bgpNg3pEJKFO}&Hr=hsC$N*k<%?&GQ$mM z`CXUWe^H|9HmyczJ;_&+D=%25H_>6~C`T|LT%;}pC~kexKaBqJ|Fk;LC2sDN@F(_$*dqG-f?_$^AcQ^fH7FeekT5@cubrOynxj12Cnky{ zsSGPry1vN9-_Z0ju45u7xJ3Gs!k3 z6Tlo-3GNip30}qTxXNfyeayYw!%Vh==ARejNcXDPnbB+*RdH(|!dISk|BT)V#zS2J zjywaB+%U8OnxD|=QGHpt8^wX|6v2iT`v5aPAzTNu62FVl;W>r&M$Gx&SSa>Poa`4* zG&a|YpP}z{593!-t_I?YXSpYlC>h83rDS3x_*t+l@w)Tj(5TS&PY5~o3zP?c?h z-^G8nF=U!A;)(TVRf|dIXMHw467i;vUiwPsePJ{wo6t>fP#AUrL#brK$`nq96z9kUu5nI!_rWr6 zG*yg^mpUJTTJikuSiv2t59w6PtFi0ch2PBGmL@fb~u_aSApYI84US12%FM<+-&O#7xb z(ZZKQr9~1+KmG2Atg$G!XVR&C2EaLpd^qm*i7x^C{5#XS(m@SDtMZ~%Zb}_`wPjjo z!^<~B_X@-~kDe)=M4R}Li4w}36~Wk03GXfx(OLU&@$qcKF#k#uO-Y{~ZtilJbb3+d zOHFbnaN%4e`5TiNch;z^+oQ8+22Z=`g))5~6qWXgje4VjB9$`6v%kQRTpM(E; zHNQ+vUmO_*d`U~utT&7xtlv19yUwjG-kZOjT^4yW#|GX6&?0|u>Sat4gzWgU6cMT} zy2G>OZ5wcp>;_nPIGm4`QT{&A@f*1s^@71;NvA>i>%%Xo&rc#p+9G>}`dNBIXLe2cIW70Z?15-ET0-hNhwhxs`DSqk)f#?r5EjBt ztG8tluOnYf&kmt%dU#@g|*&Y$qxPn<;TXC+Pi>(wD*@c~NhEbxNYy;-``+EmQYYXgKMWbY{Jtky%49;h4#WhoTa zZ5YhYFd1`?t~zu35$78!y91Iz+D^H|m>pge=U9ZeBEVYP5+L>Op;|f>7v2OLm|Wj| z!W3wf{xn*#hItc!JIP|CO58xnz1O<~uw zh4G6-v$Z^3UgHg~H;C4Mv-T4%zE-=9VD4V`E;JSlaDqP)%)yeGlMAb55EV)vh1r9~ zXxfaPKZRr?+FnPn*mW{40!L2f(T5OL~XKQfH12gv# zZ>Rb7vdH@XvbHw24nBU6fB<$QCd&R}obaT*R~UY9rk|biYYMQcE--w%^Pl@FN^-x(gy!@l#;si8XKs=1Hf!TY-jlK){0 z+A8lZ*}qotR~J@X=AnNpod|)@9P*rvnn7cWJFx;bFkzNAyw(m0IzjhX(8csIQAS=& zk?=+EV-+i6gUwE~ooVga{Z^gHDKW=vBB#%;jTUB^o8kANi-X9lc5V7%1Vdyu{G>6VNg|(kWn$RK8VoH&LV3F?t_SC?R9Rnl zvG3B8;^&9w>Y=YL;HjxMLz>>dCiCC$p?pPowyA-?)-^6T=tm=J?F)0dwTHiMR8)*^ zAZ;>GGTs7hAP+gNO?D%y|4Zmz(t7ESc>S@)hbozy_Lwfe{@C4qQKB@iv%^y|obTzj zAk{28Bn&VGfDU5Ku%cur$rtH3vRg4CgRBrFUxKF#I^}HJ^UL$0D$yHCa-`^RGiZjSwD6GJ)oAWRU(q8+P<53L(1aIhr66l7+ewYMdf1 z{(dA=zz6FOCQ)Z43D8!r&f|3N!*Q9u*)!X}`rwWw}2kcuxag-9E!^kHN?kFZM) z!DN8I%NJ6F1{3OmSdM1nX}ehmjN3lHZ2vcMxx|{~N4ng9ZP(n?z+w9d^7_QaaUMyV zpkI*9(uV&DNM-TR2!15|W`GLNY;Fw9X$LrtKl$R*Fw;*ACm>0F&jMTI(1k1REJGiN zpZ^!pT+78V`49bvS|D-E*Jy#g)h1c(kjCtu@2hZhdG99DQ!RoEeZ(!KQ3{}j$e`&g z)}}V%U|!=A#<`*VUl<}z0OQUMC)4$>{l;OLEdrtXI!Hgt6sd9`uBrk)zEzWM+!Mab zUXQmt*?~>{k0oBT)=jp@hT0X(96DuT^LqrFcwbsJ)+O8 zxIKG3QAaYga=c{G)lJA?Ls=YoMr(z;1t7qQK zfxMo|8Kc%Z(#REG->=>j_!s}q>v!DPe^?Haaf2gsFEu4GhaF%?L_%$QJM$v!5_+>R z*GbN$H*?D4fUQw%_^)O@3}N#rWE4j|DQ7@aUivXjlt_OJla}Q!XhYpG?S{rV;Q8{= z1;i3SuiMIUT8|40UalSD?)aNnzRXYvc5JJCvOZCl3RF|hx!684ia1U&NvI+R+ARhL zvQB$CfffEvywnNLZ=-}qEB@IWeMaevxRPnrB|)2>qbaRif;qJ*CzI`v>_%j%>>+1K7a==j2! zZDGq5DkiEK@WHgUevclLeLbgNgipH0c-l~wT5ug+q*IHX&FuJkR*){m0&5H)99!qQ zr0rvb$ee?=9JjZ013Wn)=wnGi=bqpCCJw&RHxo8lcE^jtQUe6y{In6sHl@Nz-N>QS0jm7^; zpOveBe&W63IQa;2R60+sjxw=THYWNj9H_m0y}SE93WJ~9@J*kXxP&05Kko;Xya4sI({!~d_%4z$1YKxLmjnX(CKyW(~8L*SlVEeGoq2X2a{Vwhc{Gn!VN}}-47o$Wb7SDfF zI+VVS_^m7c`P>_x4e^S9$-XupbzI_d@GdK8awo&Y17Kg;tEbMxFQb3hYT&wP~ zX;!%$Q~Pj=)o*Az#+N>B=i1b&?mKSBgE%Hk2K>!A$>?me&bE~EyFmq>tVVW?Txz;$ z@2?fzHV?$^N}mK=`F_=L}<<231d=XuEX zcr=b~h8Ve}#j@z{4T&L|K%Qg8F{DqTZoX#B8nD@&RvQZVa1;N^yY@CG#Sl9!x%HqH zLZz8U?{?0o4RW}r6k5G;t2+l#|f8n`6Z8?Ap^+0m=Q|cdsZgB313u$5>Hu|BkjnOpy8% zeF4>WeEOJ&+NZDKG!x0z1Te_W! z5+{#YK3#+LblwF~=O)M0MtJeUWvrDjQa`BsNyF8-aijRX5@4)xl(L^vUze{Q*-5R; z-StiwhPOkTm>qt#MW6jf?rY*%^lvc#IwrnDVm>fjeu|QgAUD%Av3|qvaVT2if>VLm z%Z4YCos0&iVJk?p?lVc#LQ?X5A5ffN=i*Ix54-2uwhTp-FlE0tIMB&WcQRH-ki2^e z%AedCStf7K{;~EX;QSYZO%C0$iC*!oEA7{jsVlA(Pkm*q6}dNpuQ`FBFK@e8)-oR! zu3tGwfyxd9fPClO?tUK-!FVrg^=;{nF`zX<$B@@(vzRG6lk$l%FgzUf52D5&BO{C%wN<)$~1*gaJx_B>VKQRJd zG}p8H@X*T*8aELfCqLvJSRwm zM9FdaFXzcrvhp6PLi~QNr?iOd&b`&R%mIFD^6kEo*lnB|q!ZUAo|jrt3ap!}aZfFx zhJ|Fa)4a;3S)pyW``}Cr?VurnD}6TEcQG3UUAw0g{g#P}`xq;4D?niF5^xK8>GVoJ zgDWY9eH96%LplENTS|QoDT5yFHWT~*>aF+~ zFh2BrN0?E$Z5@JAI@!9n22`}O(96ZvxZ1s&!F$icW8{XcS$AW-R({HE1vb8%PK1d} z$D{R}za8>hr|+XXM0&hAusauYJEBPE6l~zRxPMn1TPXcL7XCMoxVx+af<05ca=6*M zt-=BF=^bf?io&O@p(PKCft`oxme1MjU&YPOCX-L*+t&1u$GtL=TXP>pWy1mB8HJK3 z4|ejn4${HA<4a$a@<-3_9j!*^*eaq^%%66N*Y9>xRy?Ovv-OziAlpL$U!N&cARis^ zP+nd(TkijVVVT2d>d#JiDfg29z3=h!L*Xwz-R&aVm+nU)6_ogNj$3u1|0?a>GqkS! zZhR-hrcL42j0uBL84;;8&T{|ww8f=t#?Jn47!{Esdc$w!=<(OxJ3$a~1k9!b;49V4 zO6{KvBTIE8LlvvrU(k<4d!c~p7f-NX@G!cYYvsYoun@|h)gvp>`S({HvU9Y3IP@)d z@gQ{tnn;xQm>;qWVH8<^bN0otVQ3xw5pxFnW}Q)u~6kt76<>Vv99;&|gR2 zNq_<&IWNz`Zz(+uF@(6=k;Gt*!$;Xq}lM1Wp4e9I%zOjrTcy7?L67suT) z)rQk`Z}e(+&SD?KHui0o9_6oKYB^TjG~&!R575%x%X`*rdo6Wer3dthEP$dy7^;}f z^Evz!qq2C`eBEk+t;mq^{-6a97_RKfqNBPBK8{495P}y83;VKOOq_3gsGlQ1FIeGJ zkWCRIczSx;o}YpAVQ{n?(%`0LoU-U3b9ZKJRY23@KvuP3xj|6<+IRBu@T4T=x$s1I!W4YVU`@hVtRPFl zMJv2o=QjpFk!ieicBzDUU>58??)-w-N3wf`9XwRboQ1RGd`G)Sa6qnvY?Ny$<8=^u zf)Y6X{`qE@f-o5T0lGqC7I2_5!2>xKu4%$njML7@lTi@Y-lz1w=s{`deTc7hVG+Z2 zY36TJd(XXoxyG%qi+JobB^hxYRm?U~^=Fay%h_UA7Vz_W2X1gV4f=+;#*W#U^kloX zzU`!sZ1aNMG5sFkPi}kElZwOg`orJ)_g9VTr^0|$G1p;>>1c0CaX_NAvVFMh^aqrMh zY2xq`*g#uR_PYA2GzU&|Vmp#`^&SM@AW5j*tZXdtIz4bfy|JV##YG^;5?0!x8M~QF zY4&-2b!|+BCGlTfFk2G1`=NsuZSA0PHZrXL z-&!THD4;`Z_{+a(UC^Y790dmMLKAW@k5fNk`vb;K`sU5dS3LZd6aCFr9=yo2B+uuQ zaaG#J!HH6-fY;%`HNJbxtK0PT-cF8}S1CjZUdg+JmC;(UB!l7q6xcyC01R?=S);%? z^l4{0c4`+g-zs7W3UI^3ktrv;k*9r_4iul}61^&7ZV$(&@oawFjVqD3|MuEQtJw<) zi9Eu{$;&p|BJub9zdC&O}Av#Q!v)+oQLfVuGi`bB+_q1LH?BuuH?=|h5bzsABdhPO$VMtd(lCLkCg|jQ> z`KKuKLkppq*93FjCJy(|zmF$g`Bvk`pSb1m%gd_f*4&o^@^f6%nxqdRMLXIRFX7-@ z-pU6y{)|&KJ6ex9F?z9=XRLL9zTtD`z^hM=2#sJ6=UO-gHz|z4m&-3-z>!M-J_6>| zoG9_@IDx(GTzEg^c&(jHYrkgvo#n@b&p2zbkw8q-^B-Q7nV@R^gBAes6dTvY+7=Pm zy4GIMwdt1AwyA!>(A5B0OML8{@9;V-rl^HS8^wQ?eRsL3CM|3@HNQ%96`NVy%Rbqb znPYcQlym>X?)}mFa&!ygUhjuRfY*1rU3MZ8ccqLh(-6BAa`1!XVrYw;r@yIxwc9#^Zo>pGxCvn)QaY!aa+6S9wTT9U3l8zg`~+d zM0#ZNUW`04nIB9`*tw?a?zqPErff{?Yx_8g({1Yy4Yh&H@%JJ$7aQJ3pT9~GT^ABq zi@@3Si-@PCe$2PiWQ{&NM%o4{vrj@lwJ(Qr|3F$5nvL3W z3<)b<;ILi3i9yI>@i`V=rkW{mdYqEa{LrRrV&PLNk8|&jkmHV7$gi4REBlxg+OqDY zxEV>Knj|Kzq3!kLg&xCyET9d@L~i)1+}wJ~+jWt&=F{ZO_WGreeN*t_I@etZ+9j(7 z+FS0!XAGnY9M#7RGt9UIu?C<5CQ)v;qnB+?S`k%osvd~@N%^~UHS|g43{yqcUFTe} zM0Ub@EQ9ImYkMvIyFnL#vaiaUdCCm4wNn0U3@u2+L5!@)V*O(mr=b`KXRqA7p}V)K z%=~DzuSt*$9)S<>TV2sve7q-eF%z5LGQ|^`XteFu5<8#QFMUEzpJ~6hZGMV4jH?Ja zzvHO0#G~NZc-Z~slDT-3O|*>01n};x)^!^9JhWB;7?S5plbP81<&_-v8LI3Xj?~GO zecz;z-4Ixofjtq+eKsscvfo;v%UXx!sw!*+(yS2FfIlDWSgqs{irG2^i-dpwJiwd( z*e#fzEn>8J%`zBpQZ;6DDu^w%>Ma0NZ}>p={z=H?)(rD?-TdwrA`_PICWK_<-T4ka zcNF<85(r*nV6@o%@D0gAx`t-n{$9g6^7b@7c!-P0?hr8|RO{(ct+;aoYi38(1CKi~1lvv8&DJdHeTnarArB1ryVICHlQ#w)dW>2cf+&@%P&c zOrxarj$>0!J`~0=*CZv*OXa?(~F{9p8!4e)5#GmzNWk&Fj3&?&A>va)4GHO=rE-U zif~E!ErbDrZobz=4b(#D_wRi5o4E$Czp(E4ecOpiZj@+fMC-~jN)<8XeABlvM!2m1 zsM=s?pJe`{I}2eLN@?=Kdh*&3`P%0NC5g1WXkGlakW$hEJlI>;~5qU(~{4-Q6U$7|EEg?Gh76^?eNRenKRx_p!$UbDy*dB}M& zK$pho;9P`-`FVxSPs`-A>eL$_$Hp?`Qti5D9pw z*4|C9%@d3NI<=MibCPTPL$3Z9k^-=|B#z)=;6?MQGwzfZc7_=xSgwLm;z<9Huw)F0 zxn!hGxPnM9ufkoPDf`8Y^VR$qKEt`z^p+D80fH(;mL7J-JZB2o?3ylxkor1!`1ItQ~=A zv1Qd0vgE(Pg@|?hE@R-gW*3u*%biih5B5og1q)aY)?YxLfOn;cxw^GV``M!76qxQF z{s%<50smSQ5wggAEXM@_`cVd3-$4;V<>shMr37AoGAgVE0De)MZpcK-Y?1%DMNt<>$F$ChTiuahT5X66d?c z1-2}sCKt-7Kh8tB!+9d1KL{t0%*Kj$@c!@?x3;QZ)Zc5v?yLYg;*14V{Dd*1UcnC$ z;x9AS49H9?O#H8^OLwN^<$UUqZS0)y;K(p_S&U>-TQv%u-rTb#mFT9o@R7}`+ZAIe z^vA3Fg(B4cFkse6!#VIRqAOo6C)bf1BlFt0n(LlIPw7v=y`6iI4Pj9Sb2Hw3+QU^M zqa(s}edFoewByzzw$S-JK7vc;v;QcaGQMt1B4xu6-Rpf-wYGEYnf|LwrX?(LHHSz8 z*g2K17MA!l0L97b?L0E+h*zqW8B+yg3m#zpB}=bY+c#ybjqv517Ix{p^Bs6F>wXhH zFP&L!SM}j_G)iw>eP_e>h>UUdqm){v6Ga&}1wh)9*`%@v4PivP3kjOukca_OX=~y_ zlpt5rRnC+z`uPGCkt=K&e7+;}wT>Byp@GDYT=9Bi?_PlvAk^Gks!}?0Zp~k;vn_kn zg{`KDHK$~YKonwxQ=P9rkKW+&arL13@5F*@wWA}D(|H=}>)L0K^oga3*NMTC{w2x< z2jSQ8C9jCrg%hRSa$o@O0yo86{n-;+f&9KDoE z*!)uev5dr|9iKS@IPzz4$!9RQG_)(X|9stVlm2UD!V5|q5eVGa+2qOf32=y%(n)VBxKf0fEjE{Ywlm!Uuvd*HDB-_YunMEr)1W3=Ly zG}3jE9H&HA#>>$>@eF({f`1X8vJ>5xhV&p(J$zt~doLQQLzAJ9P@{<@9DRGdb8Uq~ zlStl@^Pigc#YRRi!C$G8InK{ietTdY{rO|_+2OriLT3M;!Yo)J3(b=u#@o45n>@lyZUHvqzz>%` zuqWCf|L*N5#UpgUcEB$G?XX8FOxaU$RfW^al3nq)_B5AA?4(Yam}U`1xsbK%t7y%y z5Z0E(XI|^&$vxnE>F${Y{5Pax3G?k+9ug;7A&*|LY-n~zMy0)*jSH!l1M#=C9P!x8 zmtk5o?xp?pg;X0Eb-MFhX_0E{awkjpx$MkuR~z15eTXirWM-<4$IE->0=cbBY30Voo!^MRsA)*3QSraL73S@e z%tZuKvW2?(iGXIOh#FzR!G9Sb*8-zxs1P`$70i1QNt~tg&u^@+FCvL zpXPg<5YYcE(jM@`UN@N#dsTq2Aa^g*C+2H^@;^H#VeMqXjql7wM(^Sh&$Z+C8LlDg ziDydAewOCOwe#A>UybP29+b&%u*h5D^6a(wyOw>eyBQ`FhJEj5|L_!F0^Nn$ELFZ? z6O;^^nPh$(CdDFfk=uauxS^5{XyGFD&H?f|X9jk!l+8ltxbWCv+$hl>5 znBrRIbgsveF7Gk0DyQIMid#SVtF#2DvX3?&g*BCu;y|QhUMwlusD%Ra^1F>AKGx5( z1w7)m+jll2FXz-`*2sqITW9CRCB+5yogCKR{ucl+R{hQA@5e10wa-f74RZ^xkw&r{~)}2fl z2T1r`-2P37!7V+mK<7*O1C3OQj-TCZE5v~&)j>ZG=&ghzB-{8J^Q?od$9f|YOs@0W z(u^ALX}D^hY^A?-;TAi4eDp$=ZX;!Kt7nCI@!YF7uEQ&ijG@>SJcAN>d>f>Tw6VcH zrR~msmS{*>@uS8we`H)HPP)&@wYyiheT5ds;SqbW^^o<$x`pZdfb+roLscHBxIU*J z2#LIoB8^JuF}G%oh|{DYqk*c&`1fu-sBOoBEPM3;z~_`ous=F^qfMSNDs z1+PA`ou|G<>;{{(Jd-Ys%1W(weI+~kB$^x`6BMC@O}}-h(I#db4<)u<7ft$xHE`Dj zQyb-lDFR

UJZ(r z8Va4)a6yW+oV~AL0+e4UMK<~JATZ;$Usj^%b`{c+iHKzgBAx-OFn)w!^>2x|@5M*N zib19qNc;tN>?f)lI)H*1w|vSgn?}E2F6$hsi@*uDB2p%Nsuha9vwG41c=|fI7N{V| zcOQ+X7-d9o`4`fiKx(bXY3eJ!@yPFXzXTC{^yzlL8Fd&awAozU+eJ=)QVtrw%0sZ_ zSN`WK9SwSa`ut4>8^}_eE=*FE_JtT4TD6bgXc=2%GXdrFX-*oZ6Zat zQxs6%O`M_?7pPJF!I{tuc|07yB@pc=bT%pZSPiV%Q`1iuG@^LjE zscF{@)`m?j+9_wv<(nswhmPUm>^LW>ho?(=hTRL2?UWey+($I_HK`OT*6*pSAFN*7 zSq2oDTxgze88k-w{66t*T6);z9TfNeBp6>v*on{mPFS_kKCR6YEF}rsN^&I<0+n4# z(JxcmxD*aMHy1cUQ12PQq@41mKr_Einb-_G5L-eM#ZQaPxAckAYVnl zoHc6u#mv%6Axq$*$?As%Kj+pu3)%n|JwJ`VR8T1%Gu#GJ;j8W5H7$gw$)g|IvpPtg zgxCR?K@0F((14e7aaS8eFyw3e&6WR2`i2;IAI4AB=kF8Qd7B;siAv&7FQ542cm#($ z56{w5pZS(TdMe90JJ=erxptYYDb7~7zLO@C?|a%4QuyhBU4jF1zTJ3MEx6=0iBuI* z)SF3XEK~_B;k;B33jKT@S*b17mE3+QX0e89Bi`-BOA?h}-KAkHm}q)t(8mae=5A44 zBy@C>b0bU2XFu0{XV{I+-`HCSiq`G0E~{Ih+_j>^ul-{{)2AzR0t6f?O^8e<<`Xo* zs}-CY*>_8}rVU*d@Hz_{-P@?gy@Y8L$^!5^dweI?ITiKfi>8>mQt+w`Me|O4B@t8n zIFUZ6K0I|WRDl>A$rmeZXOnz`whzr5r9{>e2T8P&g4(+pBB35a`Wo&DEidEraHx3%C20W3ll~j2K8N# zkM3vlY95zFdO*xKa8wG|BGnO6O(TH|H|ZKdx- z@o*EH7w?!|3l&g$#2Uf;x?U4B`k!18go)V;i=o;zsnp$n2~89j*>tb@L>}k=B>cSD zX}hnZgqS)5IhDidEH5Q-b!H00V^V$n)a1uS^S+l_8uJGKedhUh7r`m#{k=6EbzN%m zPl537=heUU3HPJAxZy3MklZB;c}lR=T}TYCT@kLMKL09`2651HCRZ|uH)aRboH==d zni?9c`k<{3d+SbzKE}?WOLFzbt)#}v2Od&7 zuOKqQI0uE71}%y$GT%!IjN3%M@csVOzRB;2D`DRCie)wm4sFffgiU>Y1dg)ii>KnC zxDbKnTdYgyXDZ8tcNN9o_#cSgZd)QND>_R&i)JNt8(WnkS-T>Gk3aFE9Q%eZC(!2x zEy~r~P>kDT8ez+_T!C64WU>{Y-Y;0HM2$ zVW=#g|Mgti+b8h z5_|Hh$QRn|>l0Fhk43g{TS|2DosFAwFxT$iR_siNbl?f*L}i&mnkE^SOAiY^aEkSG zq;UKVv;}=C*!d8w6Ev{@TnT^SF{VA+m>aPGWJ)f$p}P2>(DlUH0$i#%ZWs3mZzc*l z7{bZ~+140;C9|jxBL`-T+k*q8Jo4$L;})E%zaB$~zAaX9|Cmhyu;>|O|5+pX7N1%C zDuGhpv1|CS_x#D#cli0O5F?q|1QU7UU#fMTYF^s#r)1yDR0`1ELMQN}+;X=z(kmw2 zCDeTf(bWi$B2XHLU;EPTZ_Qew6{y1WAkKocLrUEpqdiZsv|$kmrJ#t0trs0B_bGJq znXmLWUXL$rT-qH|c~TP{xd{-LmZAoai#Yuk zE{?Kz?vm2iFbN`2Jt20aNgM^SmOD+3i^-0FMpOQG{otb}?Hi>Q7IbAz{bN@jL7?%g z=Z9`zLeHIR%tMt?v(?>pZG;e|$izWA{e&(n4@y_%kBim8O^wg+p|5M>CAiRgX1z73 zEou?;x2K3=t{p!pIZ#8WvbHjy{fUEs~X|lTXYd<{mc;d=1B+ zF4A-Ki9V6B+-N5L@z zAvw?6$+eqeGZ7y~5iOirSY}#I;9pQ5_3p?Cyo$;h6O^U&pUwa6CXxjxPkH->caaeL z>y43kJN53*GkUt7s|YWTwnA$pvA?;xY^@-6f4* zN2eJUk{XBf4?k0p!Amdo%?%nLhU~^9FohBmY}puu0Jr(Ufz>CtGsYIXj2Gn{_r&@} zyxWBjF?g!eLnV%m8KAYI(dmjg;h42uM@wZ0Em1oga)uy-FzP#Qm;d%M@_nU~w6(ZpBF=i5 zB+q{Eb*aXi?(E`gSI2eHIR-kDhOLD0fS1Ka{|n%}j7n;aalEBzJF4 z*(64q>K?`vDg?_1Rz`8FNpyNmvy$T5NcI3fDh{*kF34 zWOGfGqu@Iln^*$Aet0{^Xhq=){Av>CoB!%x4kFMmmgbklQlBD)=8r* zT{|Y2NDztOpC%F~Qk&;RRueYf1$(U6Mg0Uz%!P%oKD`xJ$3*+%PuIpHkwanHrLSUh zReWxD1#}(d#keo1VR}EW$D7(_g}Sd(I-Or<6D|k0-gr!N7bQiOyK9Pk7ecxrSu zn%8--6~K>q^NeuD1lRx-*u@8V1jDQGr3XcTOrY;T>;rwcGpFTq7{l&Tcp5X;=v2kM3@<;T1*fM!3&XnLDa~wl zSpCuje>Qy{zKElHvHfe&M0_Or#`;9ybjJv6ONvQMF(F1J|J8%pCI(#da#cdJ$iL0B z4<$K01?`1O1P_bH|5)y{v=Rca9a7YV)j@Tcb0_e)p~3`Mp@IiKt&+t zwlC0=5MAhT?vJ?>T~kPzm8}Y+yK0~*RFamb?6^C$Ts;&7?X2YUZFrI?8cck?NVDip zdX3BH<)pO!)b3+4hr#2uF-+zwC(e`lY^g-kA8qsEbtvZ_s)K5c+G7PjbhYhB99=TQ}k{-=?=WkB1ZU!;k-zI~luh3#mHxW^*iXk+jta_3B z;;BRfo}o>rDeSHlzI)0(xCc#Hb@LTDJ_u{yy5_Pck8-FimG#KvUjEDCSQeMMFxXDNWICwg6coYoxHFkC5B}8rP(PNZuB!gkb}tP_M*{2c4kn5bUC<4)~VG z+I#9Yv8~8l{D5pb+ov|0Ui6tqr*Oi0;DCY_pBA#-!0OQ`XK`~UQK1>OHN%L!Rm6zBCf zV5;uFtd4;BuPY%0_u)HIM~sb~9~VlNnCg#Yfqz>ic8H_2TrzAI{-Q^guCsOqDj{D$ z#V9I_M~OB&?Oy8Fmc9C`^Y^Eau1h0H;7hyXyL#SJEG|9CO#EZ0>1`cWVSL(esxKTs zh1Su%hb}z?&M6qQ1#tO9itI#upad(VX7mT3HX`9k$jgqNM*{g`t&FagGQM+#YKk@P zSfeCyvDyxSu=w^@Hu6!bIiQdg*Q8n%=e2Jup?st2RJ^)mEtvw%0;(L3!r#~lBv^8{ zJ}ha46B`{L{4Nhij+&twJ;+bOTvV7DKIimBD8#12*`*F5ewK5RO9^_ZZEui595VI= z`>gfhk7~|KXi6eaEhm-T`wuRoSvC8hukbf9u(|2ekP8fvjPR`hr6{fLPK^)TD*uy zqHTA6ba+Uh@?LpI7+6Rl&ZnL_gwY}B3qP%x`*T5#V4LZ+FoK!j!=)-!BqRm@*#LD^ zbZ8{9rK^JovTrvxiutIAk5z*Trjf94dXghJ8_4Wb9HLjNF?Z}7txc6Otr)k1#TluYi z_tX@@u{_2F4{GpNzF9e9u1xV{azaL?MA=&#bENMdiV%_-~Qn%PB(O?&(Lq|)M}xuaejk0hicGV0#VYQT6A(kaKMs@e~-Tn0^rRYHj^ zbG!0joyw$^PjrKj{>q{o)P5Y-eqbkanP$Z~X3OxWimW9ZMb{Xdl>=9e>bb#~;#$`S zo&vIRn|9h9c7akl(*)Z8ah6n*y}tGSw*_SDzga*8GWE^_7`m!^RWOSf=DMb7{g~&& z>2zoM2`fhpg%|Wvd$0RA?C??3?B#{pcYa+W3a?(`Lw`gK-)sPpIgzBp*HceN&BQj* z6NE~S>v6Q7&Z&M--|PiZteVZT(sOrI1^DJ$Zkr=(R}xI^^jF(+CC80CA$|c*+Rh+$ zHo1C9sjFXZ$NVL-%wqW9m?cG0#R35Z^6g@t0Nsa$k%pw`9~)ZR$q8AsLE1Y}gG+}m zcI~41%31E-KoVB9YnE6)?Y+YU!kz%F-~v+8WDnQzGdGe29|bgOS@@eHpphBeprPZM~Z5C$~g!b#y<4s0^nVJ$eTaOHvxk3>x+!wX=%@V>sqo4ET-{7WX)#)nPh;Ib_j3wrxPx5}I;BSk5GEz0-{&darOgC}>)6MshI!)Y#tlW{Ebxgc9>`AADb z&bf=6`q{!{JSFF0o_<#r@Qc2YC9D_dX3MOg9!U%NP;PX0!$X+P9uoGL4-6jqc89uGvZk(*f(*TFKFcUH%-T<5qT{1N46PyxT@@FO*0+Z5wEvOY|PT zFKsb$9xYUaeFL9m3OE?dp>aV*bHmJ&;CtLnHtZ3X{^J4mm&owUDMbS9@|}burQc-L zD(bp>qo&cO2_lW5t4jC-Ee$X|>UVg39j@y=4@AJF{FuFii%dkr`Pf-4BrN`XjjU^CSf92OrB|0= z_ynI9FAvjlrbf-3SX@O`?~J`VjJNyl`jAA@?9}4M!3$Y~qhBZs zR?bTQTx**5>QJ+w1IWo~c3#2N_7(!7S`?^k1wm|DKCC|j0;T-aQP14L0#dJZ;Kqpy zTZMk(7HrTewB`(nV$?CZ)99H##@41qW$q8bg+%h#!>JuWdCko1<>02Cb&2s4Ea~ox zfzeM9*ML~-obVb>41KG=wt4|A!q)BvoytoXQRhCITm2G{yZ={RQVpKRnv7jwBOij* zOPosjZLOaMWlGH;R!8*pR^kc)@>q-KYX>s?xTagv@xQgy79pRv&vC%X#PUjAs`}aLFd4^bz5#zr!U+Y3h%=FB4xF%(ruz z$Gl~6Bae~lI3!%~rHx-9#O6}iT z(B&RXzOHpxjQk{5pwYf1%lNr?$<5=V@|ODEFm9A-?e~Shd;*qMCkdYhaT~z---en7 z+6!Yxt7>{T+xQm_GQJGT{4FZssIt8*zW5uOl^eDpGNyhAG;=-e-aPDZYv`__o<2#i z8}ZVfjBxZXC<6 zvNFLgv?wOCfy2zFsJR)*Ju7a2-`(AKa#Z|HfVVnK1js(^kK&wtgRC{7Dil0v&3WfJ zWMfU~e<+Q$)*=MMNoN!U|2n)mdje=$CEPtzy^bw?0$>tp9;&7!kT(krMv>k{)_&fk zRxC_d=>PEJHWs8?@t%_@oA_e+qr!z1vg`%L#Ir^<0~n8o!)-hP$KSkBYivhzBjx25 z6!4v%FeMK*jcDmj(;?38O-V#JF!)j)nCTVg@<9kV7gqi=2r|8CG@(o_L|QrRth74UfcH$OQAJdojPwb8lJQ;;+g;no5v z+UcI7Wb*?|(*#3LCv%eBql2E<1pK))U#r-Od~s_{z7*6}CCsdWAG8U+-M52S6$Ts` zB~L^GYmy%hiq5{K>ScAP|7xq}k09*}F|#7m24+cwlHGO}Kl#G^C6p2~Lu{~h4mCVqo3|E0Qk;Q~{N;uElRra> zSD1L(-o{5{7>9mj-OhL%f-m)5Moz)Yk?yEvFE=w-d3*Gdn0pLj=S&}Ijf)vf|FN3( zFk#Qwn5Uk^ugI;#?ir^HY`jqj@BHhuvqXrtLX3i*fu4Mb(Na`b??v^ZC~H8O(ZQs) zi5#+qZIBqoZvgvz5k7iyen@Yo6t8AeyNB`xz9WCMHOpV?{m1)2(f{O8jb41 zW%n?;ity+KhNk7ea-M}>O{`hhRzqwSXm)|f`Z6DKX*T_RpitNMh{}JgL|)*n4*|4F z%iX1f08vP3nVRRV@^U%6BxD-^4>Mg3FQeHNoNMW-zUnLx41L`8AVBB~OU_*!@r6g3 z6x(Mn^G$d^^AL6TqZ649c*Q%cQ{75TFl_cv$<~{1ifV%&z zl(b&$JCZd2V4D0rs=-EOz`vfim#fp*9krT&&cC{DB}M)uKpn)|Hp}3xbX6Br$PlH<`X00L2uwE@7WZxQFz<= z8Q73%0J|xUr=oW*=J7dDYAn_-H;!5yDZZr4(V54F5R|RbO>03sVoq}tDUTc(<(Vnl z9C2~k!Nh0}{hiW{Wp8B7FRxIGLs`AKV~#Bd1$Ns|cTCS4$LrTG58uQEb2{%Yi83+v z+o^k?eDeC;0UUc>LH_+yTUqp`HeZ61<&s#POyVmZ9V_WUoLCiFwUL=eGbI@1f~Vms zMd80#;CfA2|IiWN-BS~ybQDqM_FI`LUi$F%0LHGHCmk^K;LkxGh=cpo2d+~CxM?0& zA^V4$Ql|($H!)OZWm)i3ARXLkA##=kS)0vZsb|0|SH`4qdsQ51V~b^|DT&+)rmV(MZBgS^mQQfe!Zq>Km$xMH+TD~b49_NGcr418$iGMMvikwD zBX2}dCv6enaw(R-V?!iA_Jwv16dHD{9{L`yi%Y0^rpTWXVV3wi!O1$Bno?n|tDM}m z78PQVVv2w03fFiZ@&o}B2QEM3j$V1(4%>Uri&)554Qk!Q7;B1+EXS-`6-xycITP#K z)GmK;G%|pzsfsF-K@>?V4hK1+L%%Pc{a}f1Ke#YH2p7>$cC5+T@&<{=seD72kRlba zN#9T|4=Hh3wNa00i27%mmNRZ2x1K2)4>3(&wDa?__~nGnPak7Ib}(#R%ZqL3gRUdZ z*k~G3!Efjkf|SsfAL9qICmYVMZGuio3x>o(&)WcNvtA1OQQz5HNt4cbS>*^d>YPUN zKRJT@!b{c-Ct=;3woy1CN2=XwVGpsp}>Bwp%`YCva?f2r=-QJc;idB)!P% z64;m%oo!ZM0car38lIsL-PK;^f3cn z;oxET-gUgKNHU``W_ydb@!PQSKMZG#6(#5PznH!Mp%3>AI?Ej4hkx13GyiG46h@7I z@oPyg;khUy?TGLvfX0OsR}>^INR9*@AZ;K9B(V2^84m4!z2R4C%kt@52~kHhrmxZ4 z6%N!&=DljwtT~>ucApo-f^(`P$pT!#hksPXL`FSQTaK`5hoL@jUk>|m=`h5%kGH4N z-&{izZn4FOGtZHtGuKd^N1S?p|4?m|Pd%EnyeP8zO;~v(o@))Jh5^e0Xq^6Bz!ZnK zJkU|g*iN-On{A@nl7YW$Zg~1Gj|%}+=Bn!S1L2CSMY|sn-t4zn6H6dF^cv*WQ!?>v zm@9zp2{|{q+sW}it-+0++6Td5^tl9ugFo`{$Qs$y zxM*jr_fHd#8MCbassd18NU{`L#B)vPV+srgfA-80Uulzkxa%}gTVU{4gz1tH!zPA$ z_l>PG8?y-jOMSW|)l3Y@`B_5B=#Ph9hbHXs(1JNlODmH{->6BGbQcDp%RP|HhxLMI6u8umRRPxZEufbkcHitZb6qFDI~1&u_Txd5JY{v)!No;}u|0B| zPa1Xta&Xh%6Acq-GS&<6Z@N=xI)EsIon4r^;x2w|H-rjHvW2*7Nbmp8xcvXEm*Q0c zme>}TT^JXBO$Zjc6H0T^5@*nlk=5=**{|D_$;bo*6bobL-#&4VVU^0e-spMx50Ei- zW)Po6!L25|R)|)wLWd?>IUe~h1%XMYH&$AoeQJ$ZsXy~D%>ugDR#12sSQ(9$j=znU z*1k`YpFVZ~dT=D%y8A?`TvKk314=t$g4si4L_)lJkfBe_6K{~`H%A)jomoMz3YR~e zU*-iOREp!>3Rf9IIsCA9O&5{c55`iftPEgkRD;X@y?JlzuZ71K1IDfmQ5@QQ_o+-G z2C(oeI?HT`&4Zh_UgY{P%?~drs|;WZQI}C~?Z=I;JxI7g;M>_Xb%ndlHUSYJ$1)2nf#Jv>`hWEVkA@gMV zq&B&kfs}aA%L}Wt@@2pnb%Ia8A>dF`HZtG=7ZI@p!%jzmAhM>KHf>5D#vVSf==JiD zHArSnj^;|p%}HsaryIWay-P@g;)<<{(!ZG)zt-JkQfEkhjhn}AZf=gKV9yvf5W@r- z`TgQ8a~grQOlIM1>VEVzS3%^(hR9l8RLI_4oq~56a&h&HmGodlNp(+2&^{$qcDubA z&%Ep0gHh@AM`_E|zvX;c7ubU;xh;PaG&V_kplkK*g=Z+EI#oF>`-(fE(-P5>r-Skl z$xlQ_IUL?R1e(q#>?E|2Al}NhbPc&Zk=(InWtx}A&w(mruq+xOzBzYleD6yAmm@cS z=Q}2)T70y#6!Y><$)(^*ePHDi6yhRcgizmzWFS;!jtSPO8jP`Z>1}2|40QPto_eC*b zRM@zIr4mfA3`##`CQgUy2u@m)rPmwMZq<<ufgP@LR6edfz7* zONAaWKQ*-$N6ppLPK-tvzz-%ev_;hpeJ6px^8e9%I=biWl@igp@eXfs*Xj01hn*j_ z>v*q26)RG2*3dZ<;{>+iIEwvrMB46lkL3=F1=TDD)tb|%9G7F2V#P-EVV69~#%AEa zE%S1P;y{LpJKb!JqQL8{3f6ZefhJMPKMZL6+cQr4LY_iwa4w}zcLuO2MZ?mQVD((~ zS-pY>7jkZm3lD-h!=+h6<4brH3hQ@Q)?yZ*haoFFix3;X=d~7{q?Wmxz(K&F(J;Tw z1`l=9UvakUGJfFpGHvU|Zdypret^XwHu^^N@QbAbnf_1q7Srhf2(g=`JIa-*OE5Owy? z5^`t0dO2{6%HYFajnW&L6pHD#d#4h*)ctM^yHx&nRxw!z7`tz3v5%)W*n_+MDAYZs z)arMhO}$oQbUI`0%PPwy>mvcz`G=VT_Uul#MCTt5uM1g|9iS8U3@!}q8JJ7;UZ4pw z90sxqRW)wH6=m`A)NJQ6R@&>UiN=Py-bl?W4taRic|V@iP+Rbv2{K!iK91NyT!OYPqnS5;Aj4IzlDk>&$T8e)0rR!2$z{(){Q${r>ShJwmy1^F!PF z!l4-LB|SCZ$O=Uk@Ro2;X%M?J`YntHStnGu`kRbP`C_wp#ymoM0`}m`Y?f8CT^jyq zTOU4?Pgg;Waf>oCzQC|bDOR5?%#;0!0OF@~lgU48L5|+{$;Jm-V77+o`bK(J&G-11 zAaM)n@07L)BabjjBNQnzMS;u9+>sJwP=Uyut;T+cO}zpSdB7)WR;Fr)lm%$Z@R6!A zaPCx=TMntM8z-Sau;aLFbNNp3s0C`#`xA)|t?~(;*G0Cplk{je>LY7z+EunO1~Alc zHcUTFIV|uwcLZ_!&(Vzu2r(cEF+A_FPwIbZ{K-W`1wVh1R?@%{e^*078XgKJyvR>T zo*(4F=a>yp*5C@jEa83zy%hmn){I8nZ;>N(Mb0+nia4!^O0Q=a@j83>7w%*^Q!Z2e zP^sbo0cu#1o(1v6bJMkCsZap6>utz<3mH_)Na*-l7wij9peAS4hu!UGiYQVdKhdw# z()9rjucasM&G7UEkW-huNhF%6)UL0$ArHNCRe;rWq&*3<4vuMUk54AdFbaI17XpIp ze94JF)Z^2xMq=@B8nEK}%@xA?3lL?0KB(KwsB(IBg{&j=b5`3B>za)Y(pxH?cm)+P z%OpdE--49Us}JVzZh`I%RV5PWrdzZx^;@r*N9t$KFp?d}Lt9zc@P9K7_0d~kK^W1U;p}l$Pe+aUjU7FQc>CObZ=41{$=esP!gnb2&+(ON_VLs4ojL3*^gDK%= ziSe~!1*JWt{TtjG`q1*IygJJBE1ri`vX6EC z68_gOCk9_CrX0$Wfdk|MT}sXr>Aw39nqrcQBj2y+zm#(JWX(fJpl?Pony;C8Zf(xo z_}2TPf*sYN2DRVIj}sanDc`wZVZ6BB*!$LrNT!4~XDwn1sK-g_KM$+i@^(}-O zFRf>vE?Qo7Apx3g9jOM7s#fi^PWm=Mno-d_7!Mnk~I2~^((XTXV!4h4=@25=vbmy$PGjTz~<_P zv%aNpO_G4UCE&$VYMGk2!D@mB+aTH!NTPUP1zM+x2$dUPUj2&?yb>;D-MOQz|HbNN z!%q_=uTDypph7yFY$J2DuMNJilzevtjvSgT$P9W*SD$C%?HfG)QI89GFsHVtt6|f z^1E>4OveigI|#gNz3%2$iU16XJv3*#yeSZYXkabFN;TimEMzDjQd@SiWQjdkoU5b{Tzb>}+eFl5YIYD|_;oqtZpYGf{^G~?$s+O`Kdu3< zG8(l;+q+ZBd)t5AF?z4*BL?5Ab?%9nsT6!zIQI$AxZ*_?@0L$YFMJBB=4Tg4e-$y6 zgz%W|XKxF&I93ME+&-haJs|0=y{6X7-;qDD+uTYwUyd;$yIV)8{l-@p*n|_$8IfBe zo?B7%(1?^R`%vrqnwUkjWrYx%VfV+Bb*@pdbQ%PcNU!#Ap_9N*5de2AwYt6_P8*`a=t_OE-s1< zfmUYgfUkwzqFe71$?>q&+(Li8Q6SRGskdt-iEc`I%a#ZM7)y2cYu^8^vLwv}=!bgqRT4l$c5gok;lauRG9 z_qIk;Wrh^TzBSi$1qgHj!&vcY7_a(WhhqpH>hO7_|1rA-I8tQas_PGtK3vy4wB|iN zD#CVFqGSx9l=WE4N(mozN8&Svpj&Gg&R8Reub4nZC1HIB8rj3G=W|e4A3NTZZfSuOatcLTa6;a_d4r*d z#b}A#b!)*Xyo0#tfe(a)-HbtKnrAz(Y@OE*tNvE5eh7<}opm*PQ$34x z*AA|%&vV5A7?}D#MaAk?WH~rM_2*^8oLV$3ciL1MJ5?f|P$}QeXc4!$NB^U(A%ys> z$WY^VvK&1oUF@DOYt9Wfp_$(7e|e7n|Ers=EawQR4}S#IntJ`RKo+HYQhi$sGl)$_ zU8y*Nd9ovxPj@MR)8sN+u;Wib6*;Z2khj8S67uUkqFB&f(LozUs( zx+v_`krU0SUq5-nN^dNwPgvvDz8J6B0Utf;e{pu+-)#T!+ZTIlDQfrA)~ZeI6;*uH zrl=9KR_wh;s%UGqwf8Dw&)Bnysu3#0-aA$hE5Yr2&-dKF+~?dseEx^L@_t^|^SU0- zRHMI--FX+5A2K0N=+jTrjct>UrONC7vX)vA6NUa|?m;Y%-bFG`$`0Heyh7wGNypDC zEc78vmfs)5wBD@NEz1hisK>Py#s#jR9{EX?TvqT|L!Zg>qSt+ogU`~u|DogA4` zy3D*Vw96J@=Pu?$9;=z4p+K{!rjKqW|$hzGKjZ5-X@ zA74&t_(7!txwR2~QgQvIg=V;~G1Zaj0UZucEur#MJIUS(#U+TbG}JThC?lf zUCiCOdylGC(A#h7@pe8-QvX?)R5|$mMvLtspq#7G`{qzT|Aeaw8psYn6b%E|lMW)< z-s_5p=s$$spt`{$w)n6=$L)b{M0F=65SIdqlpoIHsp?wGp9C;=OmJf8NI#JG{TVq^ zvU+jij0TdE+E?jQYG(sNq7y0nhgDVvwWhvBQm$mBgs)SD5Z+$qug?lGLoSwp=k>uf z#~slY`$jp09iGMmW6O=?Ef0~}ilgUvhYKt>*BVKXQ=Wkao&t8MxjKY4lap2WyBk~A zYSP+f-g!rfLt>+Y4b}c{K338gncpL9B(9)%{)wsc@uv3G^YQG#o)A0crq&AL^ht^_ z)i7q7DuuQ|v+qWD>%o8i!5Ad;%ut_}msosEP5fg4;ubBi>wI12;{5F8whw%AQ386EqteGtJk+NxN~af%tCj8bV~n^b?l|D@z?2^kB_ z$!ZijzloN*TXoGovu){qEy-}t4p;I7k-y}grT{a0P5;4RUl&D#d9u*9WEEvix@n>TR@XG}5kc4NzXw*-^- z44OXm^rD=4nt%d7Hp8kH?T|S;BaavVQp231s=g?Rf|1$FDbJXJ{&D2!@c21Z#ZP=o zi9wu~skRSdu-l0@m?q*2IB2>;GG6t->+8@<^A+v^^Di#;{~>-2*o2uUvuR_Kdl0mn={lReuo@aemON zz;g8a{GUsmo@C_sdmg7aq=7L$%u^FO!$!^%Mbx?V!e2?aarV|NTAK9D5ie^j9YE<< ztACwxu##19PYL3hjg;Z>Ii@3(KmqpTjnlRIO6hwaVZ%JUW$Rl**rX*yQ5IaFb01WI z1>BMpoAk7=HT(ZWi}x5X{iQCuAaonMUTls}!}nJ^9!fTLS!oPY|81mAn6Mo8AyLu= zBLA1Mdm@0d7M}Tt?==X&$?>T;0>}0)?YiW~T!!OalIFDB1?FQDT@fD~>JLcT%naWd zB(%!B8JP<-WjFOkD*m<1C#WjdIpj%kCmM*9MKSU*6DR}1N|~1-sq=Bzatm|E42Ji) z45cKas~WGTz6kxtt;Ky}5Jt;t99Y1BkrAk!31qfpzcN1aznixhSEth?e3a ziBUhg)09iafE{>fvC5v@Lf6R*^cCVGq`+T%8Y|4G^(Ws`@us~}d90`lv-njyl!w(I zJR|+to~nDS)6VU7dfH;?f%q>3X?(*~bldZQwy{;RF7_L5wXmuf#z(92GUTkS+pjdKkyUpk>t(3AVP3< z^|8@EVC1g`Z%rTFcGb`Qc5--ao!qaj2Ye9KS<6*^W<`FBfn|HKgM;nCr*JL7@obVV zOUpISdi|>JVcB?XuwdH*cK|reYa;RiOFqiqU9RNv;f`fm>{){^seZ^ZFnY`%1-C44gLPN~}!0gQ#>+vv4JmSt`dWGw;n}R#PSq zIq^e9RvR@&jPh@g+ndpT1flN)qlS8s3{*?8^d7euG-{zzHDbCpFWGaE)=~P3L%z6$ zLnPjOGSd)<*6{v;n+6#Au56|;u|x#PpWx<(1%RBd6&J0o@!$6N?q*$VLhAkUn45*! zpqukQ?v*If8+}7j!&3^<0J;*n;W?5IX*W@yyF-*b+LTS*Bsd6JX3ixqRT(g_|`&1 zP{a&j@e0_(WOVlA)ZySZ0_rQzQ02THA z)8!|@+Eh!1*6w|gM!WbEi{O6&a~qNfiQD_WcX1gUpLY8d-{Rw!N1qrQO%<9#YYd3v zF2YQM)p+r3`^$v;hvgiHq<(dTz!^>73Y^U^-@8vF#7Kee7^Q{|W-JKH|KBylU(t-n zeH2ulk3IQ!p(;kF{v9ujy+Qp9{R4pbu`RTf5FCB|$Y*8lodcqbZ6VLST)2w$$9cc? zVTCv?V^{dhz6&#W?5o;rR!(0!2}ey^8<8Sou`_>R#Ob3=lfZn1vx`hAk#4JU+}V-< zERxHx7@8;Qsdt6 zMFfn@8X-V`gMt=Nd~iV`nedYK4aieO^(dEX)_I}d75|XQ$GNQQDovra`)>(gN`4!C zgUT_6v*kt3(f=zicS#3x{&TLwAO$b5_8xGPL{u+xF7JJu>jxRySjNmvCFhR*T2ID` zC>}gGf0EkbV_rxBHr8)!y?T}3rNEr@~vy<%rA05qw- zwLgFIfJaLx5Z>$!$xL6P)k`73w>Oyft`;X1h1)S?b*UZv{q5DpPV+$vQ}e3=ANYhG zcU=%Cf9&kL?6L%7xP165@1n~O|CWnW+kEQ5F>zB|S?Nzm+LnZ|TZicJ{xhSQ7o7k% zI3l73Bnb%)TOG@S_eaS3j^fYTTJ)$3qYQN20SR*j`doJ8`)9xVPbN1YRcI@fa~Vsk z;_ij_VLxc!F>|&`Ws2E>mFeXxekQ@w#G+9!-VyP`F3m$L$b=$FS{3AgwtEdGmW2{)m+m3_g3B% z8B4RLh1{Mx3f>W?gvc8aP~LyKsvN$wGe*UDYyV|W#M=zP-9Lj^iAvAb(Xma-HyYwm z%yEUZa;>P3Fllb*>6DaOt2&mb+~V$fK@|rI{<1KhJ9RlIZtRUo|6zR+YmPv{9eTB6qufx+=08!+rR2|A-)}V`&)eC!wI+3<`0* z*s%HS^5;dWzM07tzYC&$D{*D4y{`{m+}^7R0Yvrd?!}T4D5%tamL^X5pgzQ#2hBFl zFJMNqz7A|YJTf$)C-<3**9dl7^_-#~joWu6x^{5?QwqAgZC0rmAWytF9WVLG#t8*| zVJ!-T!UD}c@HsBrvG^M{_|K@>BTDm(YXCX=-p}+do{oE7Lw2Q65!Bt@8#ku=+qmOH zohYG*^F`Zt4nB_@OM6{o14<(#6fa(F^X1m~CT&%Q%RltJ9%yAlLz^46JPrg^3FKv3 zu6tK0fOW>LAv;qogdd$|Zy;6Y`EqUJEs{C*9 zs|_80eHf5g5q251Sd1e~K-n;@AIwKAPMR$~5hQlGs|teSlp*3iUJ8;8WbaBjG+s=Y z_RyBGHJbUb&y8uh#Cly)YxZiN2DA7^I4!Yv#;PkhYdbEsP^gc~gzt7pQn)}K>Tj)> z@=#IM(Yzo-p5$-tXT@%Q{xU9i@?rKu?m_0wq~wT@V?;@AGFG+=Mfaau5y;n7f-Rrg z5Xh=+F=awup2KL&wl<n!sLA{s*dOa*wr)RFRh&MZy_wwE-ySe4Eo^M!B8mOZ|r z0`aqhKWvgr+<|9e@eEEm@^QhHg@!cTRz-}9MBHgb<*5OMA~KJ!2<;(oSabGssC5pi zmXo3o^U=i0O4^m({(XtI0$8~w>7=o!Go8=ve8k#nY@sDEhM+`y9wN1RzQsszWs}bS zr!EL;&}pqw6Zw&bfSfPa|2Wn|_Pk3FQJWi$zJOO)S-czhzVx}Q%~$U!_>DiJUy;~A zw_T3C{7Z9zpDVTnO9y_tZF3m)i3cHw{>)_L1_dGIBnDi72ju2mh#&XT*fB5eSP~=^ z+(2Scs9N8Y2Ud6*IhT??jd6N8K1!#S;y_VK!?9#9Kz7Es z9yj0{5Tb?O=m(0@fN{NB z$u8M-TRO#HiN?n}MT^>~gf-{(&V^(FXqsxV+ut_{z?$(xDUrCg<|j)P z7!vSYvN@dRq6mm7;V}FQCM*|OJ)S&d1JYZ1n`1;7p`{S4!nHG=??KzbNRc|Q)o)}b zdx0t$P3@FdLIo5Ek&zBmeXeVhG#I`-LHxn87aeT-9C%#&(l}UOiZq1#Wg-ev3bGt!m1nsul0YYvUEmAJ1|6!k*Yq?f z)IJZ`WM8?xtxSFILDynz4Blc6C9d}R?pKu|<>AHY8|*TTKlsya+0gGn?UmQjrY1K5 zR}J4j?&j0=56?CWE&(84{xHH+^$>DC2`|m%|IUtjM1^w@(MrR*72_vtL?ej zJd%?zBEvvYQ_vCXks9AWg(>Oq*Kz!`QP(e*1+Jt@P+O?btSJ9dRqduNTbW!}7OZkW zS~+%}n?qRW;Pb-GV=?;*)J|6VY86Lzg9tLGLv)K4Y!nlx!g^T4y;}ESDP)8V6=(>R zUu=!Zf;rr;+Q_JfU%6f%WYyaff!~#0sfC>fAOxw#4h(H|+bv#d*CUhbB!2bC{puUC$%? zBD+-qpet*5te0KBBDLX_pIL!l)l3KYkUrmA&imHo)j=@&tr(mQKEIw=Vg`Q$2$gjA z+b2UzKwY>ti-~=HpZa)!h2$K;04%sFxGWwjq3E8olI+LxZJ+UatMw9d_%| zCHuHpU$DEz^dCf}xL8|McaB%}q;1g4El(A_L|R<-d?c1$St{|AwvRJY>Zq$UE#Kv&g@CZzloFF6swD+O%7vZ;(HHH&)*o1gt}!Myo#S&H2cPn8+|k!Z;|w|`}10E zTi~w9h}Dqv{0HHqKp01S|Hzf0ht_3nzOiSNVpOKRcbM5naq#r-0*-m}kKGydi(ztm z`iTV+?N1)TP$rvMPEbkE#e1gW0J(1W8BH0($T{DCtXsGI5Q6R{AZNh%!TN^J@Noy} zTo`J{{C=pyK|?P{!N{9SyChA$_Axf(*@VhLP||~a922afJ5F+$4W`kIY;k%4PHSFU zpTAE+Wz0Y4_b>44KO_(S+;;ITFu+YAw;NYnI{6|pzHj21csiAQHboLH6qV`>OZP?K=hgGVxqzwM{WCO&Mf71zVt{;8=D~*X1xCFnI?5ANeE9cC z?bT$*>l}g)QT6SV%T0LQ&gen;0pFhRpo4yR-c66<&bz%U)rXf2#^Txui{u?b2H}e2 z$HYr2V^V#gWIYCPU;kwlXKxV_D{*vz6C6$peLq^$#xHFR-7|tvdxVtyi`;7_Xh)8W zy5bzIg1z*GgyIN{g7L7o_VQM(+GfW~Wz2I@i5E!1R^_bD>w^7~q#m4L5S($Q=Vf)3 zCA&MIibJ%-H(^7$;;@))H~3`)I%J>Pp@G#3nj#zfCL}5~nFZhk8qer)m|mcXvLX_v=k! zm>J>+o3@*HjYy0d_4aRajwQO?$FXfE&7s_NJN*^NGMEo?LOM-;wRzCRPw(X zIh#SpJT|YL5D>GpE|*wpoK`t-rPwTF6c&laf@nRgIZMWZsnik0UHwTv=W>KMEALyl z-xY>74s;Z)6Ly1`{fNcE$8R+elXo3qm5DM)$)Qby6BPmXCQ?pbnDm$Gp9!r`G1W!Kn3X9aW#HzZ!Wpzm~}T z%sAlUg}k>c*eZBXyOkfov*+*|qMsde*YyOZK;w8AxjIITkoJQfzR_dK&qz`0(pJ%O z$&inEIEC-i*L!j}s{yH2SL9?kqBy(gEfz~Yf!wyec1Avy6WT2D+TtI)q6l}hk}5jy z3O|wFWEjI)-NmoE$akI(^oa|x6NFayRR(Ra=J$2Y4F`h&*SJAeUNMBp zQM`GXFk3#&@yRZHCT$irL#`g0PnC+5TY@a>6b-zTV%^RYKmA}m&YOSRk=Q*wN&4t? z1r;>t3rx|fv^YCp*WHEl98nblqbh`O%%7OI2F$;19aBN8n(2jH+o%vWlY!J4=Kyi- zkg-hO7f+zFotz)8@Cg&|eq)e=fZno*vCb5KrCO~Y&{{{C`x)B@@l=e!AX245? z#KRVr<{uku2Kd^;#fba@!yakoPCLZJRL|j&JDaQ?{miy2{;%&21i>fsChJHYJfo2X zMmm;j2FZTTJ zy4&YMu2D=Ia}=|%uB5Q|Q#{PBU(cv>#Yg`t3(RLVDkiUyTuz9Lh)GENg`&iGF z;SE&}1za_-I*YI!{A^m;zHT~?Hxw8^ARmmx^)LJisBL7Nlmpj5c(=L)#Q60^KqTEQ zar9w=Yo&fKOKe;}n^Wx>75(Ky&!#tnzRw?g^zT;azT#ttp^&bgd2Wd67whb$N%z?d zWzFFUC`iR=iUl3)vvoLx%)s{AuB?`~$+LYHY zYP#+Ai5x=K)IJUVU(TN)kk>T>=g|S?;u=@~Xr)3yX*FGP(!@JLk~gE_7(5WyLzfnk z2tg@-XOm&h{N?jf9_cWm>&=P%GC8>=ZqHKYOfJ08qgVdp#JHu2>gv6+OrWK>`wg!N z>DjDd6J*H<7)+eiI?{V}0XwMo?mcbm>+uS1k{owltE3#T#548nQ4RKgK3@MlTIby+ z5Q7OS$BYq`SFau#i1_DwQSeRKokq0X1#Il%Gv$w|29M5_5+>)=eP5?|mhThOt-z5u zucf7UI(W!MN=ThK0AGSU*;bKq9t?XxSoStdE(0Hb(#$}gfv*^sDe-8EkzNKlNs4UN}-+M#9+S9G5=>rwX8pnrat~>%<=o# zR^fQv812~~O=bD)Os42}P?1PFe{aEb0pE+ReO&uv+x_EUO^3%mG=uR7`(!C8Gefy~(nPONWYw_7)^@ z6-;At%Eg18bYx*>ehxcFnfk5-cveZ2*mcc#`WJ+S23SAu81_BwCtCOH4vkiod_yUW z)MjF7RD#+WTCg-*y~t^MpA{8kh(4`fwpdk;N+nW@?=yeE{2h{sG#F|jR1=NqkU!AvXZ&{H&%LH_*pHllhyyKZlFJyOst`*&V5ILt-ai6C|X1 z{N-HG{bqF+#tX>w{3_17kzo7} z(xM+$u%#YiqsePY@OH4JS{AMvQ7-Yw%;!{ISBRj*A%`4q&*;1mL+uPXp$CQTdXVYL zZtiWbZ1WiAB*9s?2soQU$D#*vo;Z318Q9)0owrw+=i?nBRu*DRkBkY7>X(phdF4>-N5udt$tcZ{06`U5xCh@z1T;hFkMl0yWF?hfpX@^?v85Rp% zadnTMd2~RtaIW}5{Y@eyIMjY@hnuPgRMOcO#<^#VX_{`1LP2buzYZT<1NH|B<--b@ zd;DfZp9`{3RyOH~e4{Xh_|CjFR(GIkMALRt$%Rn4s?`rbmt6oQD@6m4{Lei;6%DcI z>1d-&>S`%RlB&a{%5?eWh>4}XF0>=3a6+K>&#=3Q)C6|7-^@ae=;JL=hg`~k4t#^z z!`DBs?Wx?QlCg+0+MF-2NQ#nUcDlk$c7+gJlY8S?P`=1;b1fReB5h9TAyYDrlO#4J z_mIz5(icTdkL@c~a(@brKuk)xmizVt=@E|6(xZr-p?`2VuWG{EKpmQW8M9V#+6(Ux zzh5q^izPZ2M5O}#lsND#j@^6vnrQN)f6)v1qn9@Mg1+!@j)=Ai>_J7!Ywj&~_?2xG z4bk`SCB*k2nAEGbn_Asrza01W+q{j`%7XEE$#cT(&X$`Iej=j45dF_;3^87L`@4bt_H4L zT^cCqY;`aX|L4Ju*h8%3)(zpD!BXp23&5E|)6UO^%PTgWqv+o&7le6J zA2#5?imI~Nx)YJ{$*$#LxhWdNO4HYj(N&;0Lm;8cJHofU%oWoy91%h3urbH)^tz1x z`*S)-fL+bJOi388F5ha@-}9N{A2mB>(4}E)7xZUnOY^4d8=6*|6pfTGIXc zzXKyqM36ns01p>|W0I;aH{Lj++j)e+@@r%KyI;usiT%ebD2(MK4~oblFJvUQl%Z#M zE;(Q`i0imA6m`U|Md+3X{yy+ga79&uE%3sM0F0z^P4bn5oZ3xVxw4T+1skdgrV0>9 z_)qD!H1gFZW>GIR1>(6p9PIiLtkpvNbzpn##mj*Afo9sQ+-*qr3Yv5lGBur zAf3DNrczA%l`~EM*GbWjMn^I3n&s^HMcb*t8UX;|jv5}Ui~GmaTm#>v=fwH_SjT`@ zt(5;=R&2!$G>)QlBM%Wx_k`!zx7{u6udTKoO~`p7imRm6X!0H`gHdtl>9{oj zMKeL)Vaa_Rc(^t;bI|Ebpof4&;o*Y>85aio3?mK_#X&`>_LGw1L!_cDhg(lz+G`5@ zu=U$GSeIGhAqK?UH~9#RSiQN4;iiD`>fqSHmU(R-TwK$1Yw)*+YlYR=5@er+NPYb? zoA^J`sD(Y|w#eNpa|@bnR4lL9`NJg`v!d2)YD{ajrT!i1o{{rGk0!u=Tvj!YWoxZH zuWMaS{`0wk17E&h=doO9GXbn(aKE3fqG7#o z!WZ}oJ-hn`nKKl5(B#SlM#8Qx$VK(qX{#v{+M?!CaN@&(GWQWzrok7-a<_lx8hl!x zgOT&W`}4+n?Ms)X*v5RnK$xorjGzrTn!FrweU^%mcwa6(E_5Vl+6eI7-7TXsxrUai za~F$;7mY2RyT8#GC6-w@8hRR|10=c1{Wo)ww9)d-=;6(!^ft|e-kdei?6wigpgcPN z@9>)&W`f29$EowTi19!&C#LOv2t#}eMy%m6&r*N>Hwp3lu1hvcVR>3;n%X&wJ3Iah zaOdjuW3BuI*JR1SK>!%FRp44h1}uAgw;*CIsaw=+mkIv&Lw;s(Pk!i2(nB<3qn|cD zBqqYQ&Y78XdLohGoF@WUzwY6*OuJ&7T9+%ILxTJIIH{D24$?h=zOr@WI979lYqlcD zJF@ivG%0+LX2q?5+PC<}17mq!9)FZqxa0#Hjh?c#WSvdJb1%uI_Hk{w=++)|kRR{7 z1i_3lJ-xG>KtyP+P>z2f-VE(}l?2x>0H3~e^;t2XwuJHIY^qe*Omir&VlAn_)vwh@ zx#+R5t)dX(H#6~8M@_|8w4V|R6nSBAHe6sRBHl9ND=2(8{EqNfE5NpwS7i}?l)niu z7*_y`{^wV57LmTxJdK4av3IN3I~6gg-ytNjAsJWGv%aLhPR46FSz77xN+}%VA8Bp^ zbtlpiGenC+RvAY^mJ{1qgi)EXg6NO_70jF6dsxL5XUtIcWNrTpW66uzID ze#{gP3km)yf%s8lt1weAeO6Mj{}$fsvTK!20n?Be9B#(<_WtTv$+<-~38fiLH@13S zPi!C=jjG^ZxV`X4*`^n81y+2_Lu!PH()iYIUj*Ljb+M%G~{kzwz+X0h)iuL`c{fEoeCBl?G^RF*b zV%_rnU~cl9@q>DIeyiAr;)rUVi3yi*gkbX)m1V46J40jtr4-)H#9bYct^9akp8WeJ zK0uC`<;8GT9kBbDjoQGCNXB&`pvFW2$Q@Qk78gR{b5_+@p%2w7pbodGehdf=E88VN zI|GAjBm(LN33eh;3@DCQAo1lVm|nVN%kI|j$=yJpv#aa1&o0?`gI$hH5KF{$k{$i= zAPv+=V|{4tFEHh-s!i;QOxH;S99!y2yeE41?vVIxwR_Cz0IIT`|#1)c~yQ}`|I;p0b%_*FHxN9YVW&z))$D7x;= zg<)oU{6!T!Du4`^h> zluw_9TzCp4N#O=burG%^Mu@-Lf6w0)7ca|*#+@} z0@m6ZO5rxzQkBx6OOGe52aJ)r;l$#N&cW$YN7p8q2^SvW?YHK*E*cEau~m>q`?27Z z(&DStzEI|xPOMl2Q%Q#>C-~h_ret115d$WHqS&ZN^=$7*p*oy?Qp@^Z_XlDSe>Wm9 z$bBl7Oh!?7mZ~}w%G;^_Vytjo8o&)kHi5XGtwn6{D;m=}#m&KPb+u>R^3Awp_!pPr=M3#w%mg}|F-`sN z`KSdEF2Jp&HTTnXGP+{=_T)e6gp;I!A*uEmcK)y;hlXXgY5@1L;9V0p(=RW#hG ziiq7L=Dsd`9E27A6cnS`HVA1fbl8v{U;lyp9IQzE#sfU;^MVXo!#^37PzUT3g_%w~ zAbR_L;TP2D5ZDSb0bf0(hHBl;J7lH-IFI%%PTOe+Zy1nAulezM)h?3T)i^#p5!Ep) z3L+yt*C^er4#3BUMefbpibE8?rYuRlpu4R3uFvRDh8 zmLBsgB?4rJ{^3VNF~dNIxk2eiU`|7aDuI$#vjG_naO8(3O9_@VaMeeNSmZ?Pm_I>7 zkc@wCqK{Q(P>sHM$YWE!a^>w@Q@pDA!oww_X@F{!5MR-6hR5?Rsi`u=uQd9>aE3bU zc)jZq>XwA_KkwlT9NNR|n9DHbvI}Owm*qXc7e`X>ucGi8*KDg6z#w3nxdxEUy zy7AGr<-w!YmO=C27b(<*7SLKH>BK2hB6Kk^HPt!DZDc)$iNsm*QBlLrhTevbu3MN?x8eLTi{}RF({9?zK&T6q#q{QZ#!IJMH^E-~N^a`T; zUyS(8!N>@!&BhLf+Q>dk4F)hwnmqa1VrRcrN`R}cd(#_gzLIC??S$hc2yw{5;7r!sXu$Q;x7BQOOG5gr;;=_^XY#LL zzd9nWPDXof0fAQFSQ%B)HwEIM^T-eO?v5Z+p>OS`G>^-;FSPP<3F1^5#6Yr0;Bchm z8qwxafn67DbbkZ(-(LjH{8Vzy@jr^u4q+KZs#I^WEV3XqEtwVcG>5N4?Xb$t8}_}) zz?gRQ^s9q8l>EmzVSZoPs4HfJb2Vj^I^DkaC0&&R+3mKruVRm@r;dz4gR9$*f^>u! zdjrqxTc|LrIN7svhWkpsw8>G+PvTYg93IVI;YZ%IWX`9(2n&T1r3mRi{o?0%V11QW zIYN8pM-6#V%;f1GOujK(94|A@vCBo7PH#VG#w{t2v~W%6%Pn=qDIE|orI&mz-H7+V zo(rfnnBI?PyXj9+iLEb#nm67es?R`b6=8*bzKz2htARTf3^o(l8<8NT%$VitQ4RH0-M>dQ@y-9$!+HD0*rRzY$w?e%tj>{ryyKc+zfc> z-X~&-V&*o#Z|xKSRzYQBEbVUR;6tPfR`+Ey?2ce|2ye3$ zB_LF!89*@XKvr&L?owgIPdw5ZthXOSfZgHroi^O0zq*Hf?=Ql1d*Hr6_osRk?QXav zui1{%6fOENN(Z!*+e7<7G#w=Kl9dw{6dhII)4m2tfboi(R%yOpl>Nu7g-n1srg{xw z^>8I*f{E#9kT@YFaewcRoE0)l3c9FEc&ed@g%z zK#pY<*#Td)lww`?qx6Po{`*x4?zLYfjfDx6Ev<;ouFul7wQai8;=A|_9kdwxe_zz) zyFIkuUt*m$K=Af=IK*07mt$u@(h03^eC1%2-rfe&eu(5%&^K&ev9;Tm#Wtd4jybQz zrhNQuF={VRFzL3Wbl?jT-@A-s1;Mtt9LEU!#%T)ti8r};WT+3d`2nUTzT}3_8S_Q=@Kd8Xcd!C zVHi=q_;=eW;1RR~+6Y|d&!^3$T4Gh8O12z*JJUkS(=b6X|EdC_527>S)<-PkYaXe7InpkTo=Vb8%`n1LY!tPtCYBrFH=GNUOoOyOW*v! zEXOHtX?XZ$sXCZh@>sIDdnjnAnHZPxmNVaeLTXI5+;7bzTG49$3BJyAq| z#$q6Jb!}xB+b16OL>$uot`BS1PqLn3-0{pjXK+gMq_y9D-&lbBiKl5V42vteU(I(q z+b)~d7r3U{?JtxQT1CUn*jqv+h5P3f#M9K3P`lg-D9JFwfpK#^x*{&C%es*;wk&`^ z=k8|`_rr+P^{@jrccE9OM;MPU=+yu0s|H<*ZEs=&p~{M>;j&6a>?XkY36~LfGiC=D zRaa3-+r~g^quDyKqe5+0SB-{OTFgyY^bh3#|8g_+pxWp5Jt#_*o{rQLxp{gq=;iod z51e^2N<@q=TS$ElPUCB{a)lD}bU{>ibf!`K)r*Brr6udRUoVwnkZb6(D7bGc*FD(c zrU1i2Z6k;JLqg$^1 zn0>+%dfxtd#MHnpUJ=|&m?Jn+$dl0r+gPhoL!0%+uoB@ zxsOOwN|&WTK}Xv)akNXYKOM55(npR#-xrRKFhGh%H^U%*ywQftT!~PAuyMlsOA7yc z;w!G9@m&`PyW2)<#-}j_uep2>z-#m?2e=IL9ADe(o*Kvg&a2A&!sVAgXVbnFrd7;xsv4}V9zU0>EQGGd}_CO(|s@zVh+myztF}5pGSn^ z5?CJ`+off<9nySA3vM`>ywAV7eCfTUefA*TCvf8 zeGVDL#TQXc9;Kef3C9Im;J@a!>69bR@J8-`o$w9*+GvpVv6?C$q2pkAN~j;IifmU3 zRv$+gjK97kh(j}cqr<|LHO77W+3k7%yMJVk`oQgK3RT8&GFPYRC7yTZn0{oIxO6tV zSYU)|&1Z#Oy7cp(1l*WFP1<~JVI6l1#hLPU3?)-(XBC6OG~1jyxKDv=fiAW9CBXxm z3t5+~eS2byQU1L$KNK=!OogqQJ^Hs*pdf||4Q<7ndyh%{ZhUPx`CgVwUucsxXZ<6+ z{rIpO-t*5%gzj=eM|MYW_LA~09S4%cW8jG5z>(|PN+ z_>cl24hcaQab>6Zi$waqqjwzpxFM&$AY`EEyAUR)Gpd&BGQ6*H@FkRiSAh&x@w8!@ z9Ik<3fh(KJKtT;CEPZLAU(P~^$(x8d!;6qD9=Y(@icNOEd0@1B3w@<-6Zq8dW`*Ym~XFKUC=% znUS3mFM6DwX~#$2{w5#OdU_sY@XQfZ{o5h=zSdxLV^`fvDs1$cuetk*Okh^_G+1x= z|2reO{{Jp-DHT0G+FQ#ziYzrt&21jU>FwqlMz;Mx3%1R&o}R3KsfDKtG!ItKo`mOv z*r_Acp)AVWe5%t0sg%T3kIE!f56E?x*S9~+`Ksw_N)W=JP;}Ff#E6=6f*Y)t@-xVN z|KqOA%f;Um-ZA3t!%Ui;5tC^$!p7YhxQCbucaRQ_u=@DWP{4OxLh~8&!uauBV7JEv z$113LEY?}4zyfyL=4banY#8bg&tb2dKqY{XN@*ks14BVu-g%3PU*_l^r=Bv27xQWT z2#B~3$@x~kF=5*oJ+U{$Fz3?`hz==4HJz;K;R?F0z4)zw zXYkgcg8|!*dq#lYS*tJpqHs-T@BP1XrZ|489c)7#b|^Y?WVT9n zHk6&ip-@RMH)`zmSvr>lYgfs#Z+p;l9WY&*>y!HdYb-P;=36E;F1B$LL*qth z`YVqcgT~k0ch6jvq=>jKJmlMyB8EB`REAgA-m{8xkAIFn1xgpEynnYu^2cgNr(=>U zf6HyEb#0UY(CsjXS8uwJFkIySflby#Y}NzA zBOB%J4*<1bLX)B-kR2p^mQi>~xq9IzV?0)E94Uc}D^yi%QD!RVrv;c9^GYwa1xoz0OWAJ&6+^~c1RM(P)%7};8pqF$B!gyNqSJ{w zHF>#Jl)qAzUQx6@n~bJz198LP{Qjd`35}toR~m>9w;Wr0P0hk8%a43XImY^O?efH# z8W8?HccNSC9FkW2_UQ?8>3EuV>NXW0YlOP6PM7#%Ywx~%J}v-~o$8osV&UiW=Z|i< zFNXXmnuEJ>rN@#c`$^mj3<}R3?Hr48bm!l9h;4dych+!YajdEbU<>RRjd+biN9oRp z5Y#eLePH$)YH6fcZN^;?=2XTpd`aySbMc2c7{M+RydL!V9>M>tq|BWkvc)npB(?6W zy`Isj%%49$#(c9{SR%^s``29vnUAd}!J`7Bsr&Te2qpgY;Ba;=CN1K2Enmim&bP+J zYyThiF|)7n4b{Zgi@lT44+Cx+&R(qx<`G`kjWL%zWe+c8=-i;%Gj9y)h%sRsFDRe4 zL?=NM=!~T_$b3g_1NtxSla>*q>z`=gkfjuX?sd~=<5~6#Uu*M7&*}&0)#gMtpT=Nb z7e+8FXL7$NCVe}Y9&7n17tb)sm9+v!3zZCYZ!(p{qt6N9>-1#P9TdRXvFWz^eKEbN z>xbwMn@@Ob2$SBXzw9jbi^xCo?c3B-Q+fc)A2a8AM2P+Ayj3Pg4B0!TIs7BK;(eMZ zZ~ZU+-O>YA?;x^}_D$O1%isvbQCP`#I?u6!V!&lNR^+&28zsYp1h@w|z!RWFJ)t+N zQ5L5>D|6)tV^f%i^C^-94qLxRQN}S5H!GL}_r={Fi>(yl$wRza zuc@PXhB3U<)qT1tJNCc&TORu1(?ZU=7<@{y+*@3csl8?5v3@+kZqOrl(!&n-y_EGQZ zN~ViuB8uoCak}^ULHy5~Gd4cdG`fGiT^9XzIB;asdGv3x$OZcE`SM_+;NrwTh!*06 z>&J+cTb8BhSYoty94xU&@AR7arunM-(U>hq;A{NTe$MCy-EN7qx!*=MhaFx;KgqrK z+Y#-T^4Jo=E}fd5o0yzf{nt6DFfkbm56a2V+iC$SsC7d;Gd-*DqBCsKMz8NziA?t# z;HCI+*!&V2YW-~ssl5^wU=u&-UyeU2SU>-gxjVdK$#n__z5fNf3Tamnw^A-7DN#N4Ka*fY# z>Nm=wz4;`=O*%+@b@eJduxn&M4f7n(#V9$nH}2ajW7&M>`=cnTOL&G~PnJqtUg{26 znpNj`lk6d;@4I}LUG&PYON1zRMsI!57|4^yTL-wyel|jJ%kME+=0J}`_0RF=L=fkR z*G(FaNsSz`znGd*;gHMW-z>-Bv{`Q<|K z5^xE6WcU1&Tl)Yhn{!4h5o@>b>W8(jyuXmgD-t-npf0%cnDYhR?&oycJQ1F3sL$-G zhBT>Mywp%=fJiH?{%MmVu=+opePvjb;o2<>Eh$J!3W9)?bfXf|rF2O%bk`7LfPjS3 z&49EtLk%&CbSeWwx5Us4%?upAz0bbB@0_!*^JD*f|G(?H@3o$FuVvDed#VSaF*ES| zOkuxH{U2Yy9c=aaPGM9R`ag-d-Q^1Z@l=$k!a>7+g9b#))alxyLO{d1Fu~Lhb_Rr_ zQ%xBQB39dpB3<+$+IuPs2C4bmiEX0wTxfq86vAuax4zdybfAsB4wqwpOyW6_u$uhR z+6Bd?(9N;q(4C{9?DYJ2Y3+u`*>crQb;0|01XLqPZqVFQL}JzTEMq9FQm^y`mAKcl zcLnvaFXO@lj#g*X4qaR+Rf$k0Rw|y9T#%`N6nSMPb*QcB_XNz-!Mqdx)qZ+Gfx9Ma z=M6_oNYKO9{Ev)VLO(LV=!h69%lUUT+79=G?9QTwO`UI;xAL-O40)D=x1c@}ZxDbs zepSn7V%8UW?1ps>WxBat^25E$0W2kB`?>G~-mN`_5Q;=&o0)QtA!Y2nsW)`p*m}#J zM;>RmBj2Ir0xLKR&m!7JdFc_=2ioQ;HAMj(mdx(rcS+uHH$|I8yKGXLk!x)L!X7X(LZ}?0E-`fJ(9+~Hw2H^@YJp3 z#knn5qBKvWUe=YBlQ_Hu9t?K@L#`DBe-}7&7p8DfUq&gPaFFvoR(Zvj!u6F)B^mO- zfjIL8wZ6uEeO}0m7ff8VJ+8FLSQLr+k-g;dTN`2dD2(t&q~C9p^I#r)E3t zXHd)Qp9aedqms*ccfDNO8l-5-hRD)Kq8`PI;>(WB56<5N0FWnXjmUUfIODiQJBJFM zRJH6CWe+*P2~iW)+f9e77IApEtOTf~sZUO<34EW{o8QFe8Vhkah#Pt=sT>JCEg8|j zZ)zh=D6Z)o2+%ZhOEA+^6oXj?Gz{mEj?^vAJddgx&!G`$9ofbg>l?8;s=gHb`@!dh zG$cn)=Lt^=%^=DD{7hDirjZG|qP*);k%i=r>p1f?(#(?Vtsl$`9ONi;)aeI)fG{R0 z+%?8x*Yu(vr0IBzE6Y>+m&-nGmz_+&j{jxa;OFPn#9S)s1v!EYXg83^E?d1s!mB>I z3#}eE`MX1T3SfEn6S?d~p{W3(Fav6;TuBD}+!9 zBw#z5MP~nTBfG0_|DUvj;OuLrbW?xGj1wix(h?Vg9GeUWjjQJ-;;t5z7> zx$-o!sko9c-}}{dzM3sz4Hs*J6$+6lBCTl+7C+h@wSUZ3w3X2aol7A;-Ps_lu>jpp zH}s7eubq)9=k3paHmzIjgT-ZttkN!d$yyQ(T{U2YHwRc*6Rr=K^6G_)A3*uF8=SSM zfyj@LG3qsa*nYm@xDu9Ql$HqJw9GO(&WZ@Kcqowt923X+>4GU{UXGhhty_>Kg&xAt zUcSX7N~nWQqq_%#Hze z7b}btehn^quEGWt@SncnDI5b^xDv~?QJqI{&p($JWq$Rca!>tTALDm6pYBzWs129H3mvQD@JGYWjJvD3CEQlCkAx3)sjfyyQop z@JJ0DJSFh=%7iXs{cq^W6bpb`?#FA1r_>D1*!ag79~-)dA4>+Z@Hk!4)*raxyvstx zhpF{}**o<5Ft*gh0D4gD?^gt1@8I~B8Or5bxo>$_HwuTO6KaGlnYfDmsEXq+vUkl|H#FgXfAH#%wKc)$ zo^{)`XD)t%I`V!fo}x{fKn*`k4*Ft~pLIEXbU;?;IXhucu#!(luD{qbnsHZ4T~g zxie;M2OV>7P3KFI5`tR8`l+fd8aC1NLcj2E)(#VL<5YGjOKGD`J6 z5xB-lN^Fp;n(`|M@JHq-e!PxgLD)4DoC+@;O?Zs4vnReu90>_$eq|OiMfwm?mwmaU zNTi0_I^VKUB92-i5nZX5yt@#W9KK6WTQ#(iwEE5ftz5gpu_o=WkclW}mSvAyl=rW> zAhF+w{^ZaQjgx6xJ@F+z>{AN9$CwsjRB7S4U$3Ce;)!ZtfG6IDdj0qH4JsR3eDhB_(y|L8#=kSxo8c!yiAL#aX3sds!Qi{D^zYvn_(}%gP zJ{JIDF#w8ee-fw5d#mTN(*T}`ij|t(!3Xg$=8eV(z}W;za|Za}n!aP&gRNw8>2_*v zU6**et6BMb30lh~W2u)?76dJEw^iu*w_Ic0B1BT>C=bP4E^_A9*LCr31UAuXyNLl+ zgiY(s?E!zEI+welXZ59MO%&~hN9Fkmr((WPW8Vvb{hMd!Tnk9D>`Jt?C|{{zHEu7H zyg&Ay$4PB6x39p|rlDyQo&Wbh_@DFPhFNFpWLxpBPH69+82HD0NbYjt>GHi2n+a{i zl!qgdhBnuP5>?3uwf$mtR0OWhSB31C5%)z;pKG0^F%D4{>8MNzftDlJB-4eotA89d zd8ZfU*|3JYr@F?p9_Cha1Ai;&6$YMIOR>uEkJt$&oNF*fykKESavL|ByvTQ|!?geP zmTRCsXY*B6cVGrmRSrY6nEMeSwUgT!6+%%8HI!~YVSvYM{ zC&^#_niN}#Tu_fIN2itLTdt~4rmeeL(m)GcY;IZ8$!EhEGY%jw+<$YU|skBvZH7Q8iGHbYcp zTj|b*Lp-$i%_3ey`QD78S;Dfso$vog6ZT~JD$>AMPu z(nl5;weiPY_^)!;9~6Z)gF&5cC77T1uT;EGJ(5e678j(w-X&i1v&!ylJl$QJX`T0V zG>o+0P7`+zrdSW3Zi~zPs^qZ;LM2}l_os54?Z+;Gm9=wR`JDki&Z>*q4=`4Xy6sB` zD)DpnK|FMa`~Vy+QFRQa~Is+a7;v39@p* zBYr02Y+(!{1F%JqXP0@h3ma9X!@MZ*?^Sl4vYZ`K{|nfhnupg+ zZNoF!EXCWLWNS%z#C}aL;We!oV?FtF#;FYtXZCx{okfx?nL@kqO%_uvHR(O@r+(0@ zeV?d@NC#Yx7&?-Vr|<=v2sILC?dy^;cn05N%BCjOj?+<^n0GDuzPk4RZb<(P2#j>j z`1VA^Me&=v4e7rD5izC{zIn1e67AhkJyX!Md)Gy()PZWwefzAx*Ujb9mM=c*wV~Im zm;!|uXNIra8LpgrgC`=ij^8K?dNqe@R{yS4v)R;Zx*gfOn!c=Q6&y}4=q17Mq;ofs^ zo3Sn#d&%d(ss}*Ez%EYIz^(klk4wdh$}fYE6}`NbPCsEr=LG%FrH>m>wE+qC2CYSyIGF3FD}>5LhpUs`kZNL)jady!kWVBEV+vmdDdmixb9cp{#_|$e#QXS++9EQH^XcC-1cA*%qO`DxMlv&s%w7d?@%L#xZKar~ zV4R(lkgb)!72_D+AjtDD0fwGBHdqsN$ulxZjyd9kMln{!GHhp z|6mONABy0KT`Ik@t7gr*%Y2{Ti$_}^I4t7^(_G5bh&IdV3JJ;QQBOErKgMCFKbJjU zV9YTpD~!3zT6(fOFp z_lwhy>5nb>%~q3&2atdcj4Q}r82CF6)KgGZrZ|8soqS@8`kvLM((+`i&#`AyCd2ln zhVtt}U(RpVLNCHl3-h9#5-h%kWs@HXGGe@E`R;OQt~^NihD7#$Wh)TVU#r*U8bvZq zNj|duz9K!JAd()~N(GHQ-@)i&I_3G;(#njMr^^G<)Z|La`U@YId0GZqo?jOA`c1W( zcPUlvU=H=wHAwv{6(tVT?r+rEc;Etu68BUbum7v3$n?s^IFk5kUs{_5ev&EJWq}Xn z|Kn*j^o)IX5C+TH#Bl*I4iK*tDhf`j1@9?!_Ehrm-{K$lbnmt>uOjCI#XV$noofx*Z}mJ?AO}tsrRP-HM6!>LQpQgZ55TvjhhG+_Px7*RuIN8icfP` z9$z_Nvwds42#(2UsM4RoW0=a)n6#%8zT_>L8(EEPty?SDe+;@^9xe~8mjQd5P~Z2s zq|FGH-BbvfqWHY~{PZ|^l>LJ16Rsr<6<3K)DC-a|xF)S;CK`t-qv0~R5DGsarK)bj z$Eb0?^s#>kj<7*5@JBO)DOpJ#a*;=#-xOG^naM8amdmr|tpMb(ZQ8J(YvAkCUgoaU zV>tO|(}z=r6c(aOm1x~pcsyeq0=UePG#jfeE;6K2G`&$%AFwz9sX*5jEu30`J;Prw z#UX!pH|U4z?F&?PjexZRY$o)Zj+Ko%_(t{@+f;wKojac`%Gw|#oz*p6P#|V9?T39^ zW{cW||1mk>edF_iEk5K=QPMI$LQp8}dd~|{bV(o1JP)1~)2beg5Zn0X^&G;pv3o{$ ziOgUcIo0qy^bPi>Q4#ZYV|CWA((=z zO6{kxnqXGI1P-*)C+?u$wIzbT6dE&od+L@l8CxmPNlcHO$-$BW}n$%HGRM zvJ#q+itm3NaM8!GE|iA1xyMrr9*erB?Y>-TFsLwAGzVu==T34Zv_0O6A^)-GHvr5- zt6HL%tGheiGhKDt2jpHkiQkw^ckh&+72HJfHq z5Fqc-5b|jj*?ztAm1R$V>nS8BMn3S&*Tn_r({^VXz|v+ zVbEA}y}lP3B~wyGC3}rl-T@`jRP@)has5{8M)amCp|!|M54=8LJ=ocbVj|BiX4au4 z)SnhL0iTT&pmzeGp>{S-UR=U#*su!A32-Y5q)al3R7-2BKzUZzMk1{&T^xkxINIlH zzVC;_X-A{D_DPO7iztr;CV_{)J%CcTyR(ar7xB9QR}U(Z-NZmDrD@3)^y zyzryeC^GyHC;Iwkh9^&o4`t{`LHVbfB2t5Ey$)oRl=CFJ8Lw(KQqd;#Pc z+wa&ofRU%s&<1u0>_6vS<4~n2cCPKk^EVq(4)qvLeGuX7b51!EJc*aZBquv(8KwVk z1fzcqhf7~6$VBPwp=RYj1fzegLpOQ3n9=Qt&keH*Q*7W9Mv#>Mjvx?OxH`j2uOG)< z-B#Mf&|q|OwK$W}+EKMvQl>BZ;A?c_YRlkrZ)wzEK_$?S3kbJ?XE+?+*(;DbTU7i# z^9uuQ;bevmfA)1uwRTbmWw{Oy{s^^J-oUZ;V`*$*4A7l=n}8iU1beT`XEBc&p64K& zXPt}5_7${waWldU9X7b!ndbgsqTI5g$NUe)ff}Q@V`R(+?P5!_24%(-iPZWup=0Tc z1T$|1ANrm@W_7BWPa9+q0^O>aM(66mIumUF=vRhJ>2$Hpat}+6ITe-o=?YmQO+H`Z z8=3Mz92pf1azklfsqJy@n2Bgnmb&L9>otd~$Io{W`-(VpG{gNzJTh55V zS&^M@Q$?z8&Xs*aoB-voUG|z3h}Yi_pEn;nMYhkL*)Q{+9a>mkWxnD}YCpz$EKDQA zO7~?_&z1J!HIfp1O4S7B%J$}XF$2qG_D5jm7;ElF0r&dzTrk8i4|b24n83cZOVjgl z&A~C&{y#4@>_+N2xJBbNPP6?4xPhf>TwoI7`hzFT*$nsI71TAj zPjG|b&#vrrmKdl$z2SCu55mX18+2}N^jl`j$Uke}VL0^P7?llMVhB1VN_qN#2OzXN zlcRl>08ei8t?U%U@dz*S?!Y=Ow{c%MkbI6bG)`rf^yc)!y#5>^UIiGPZE;=Qqybyb zdWy}vJg6O!W|EaY9zPa}qxe9#=}JmOU(zFDVO39R?&U6A6jbjqeAMN`NtX8Q|YCoUWy6^ ziKm6K=X5+S{4!wJQMJ$pL)PjT$+9K?Wo|XIrsZiQ! z9ep9C)arRkrgtRJ{aMG_wH4n`7xa}2Wu$9=*duT+Bm018a2tnh@ zA_WO0CLYS#r+T+cA&Kkjv4HZ>Vp%5^lrxmAu0@>bRclz^CV6FK$_%6Vyjn*{gGk^Q zja+qlFsE%J9bjNP<6tiG$}hsZ_|2*;J8yV5qy)GBG!GH3jcAIa?!9ZzPrxGT z?|`z>D7b~ZKViL3a>*U1{_W(69DGr0|3o=>8!uBlVAzHYc={_VIFIilurPGZPE7|# zb(}t_sgWVWAckC7pFE>alShq+l7O4zXvq0J48B{{5~)h`dD0b(!W}N}3=MGi#(OUL z@+3hE|9M@N^J!lLdyAi>_0+KhagOKf59EtP;CJYlm3nfxP;(-gR1YA$eJ6zGhIM(a z_tm#wu6PI0sM2yYXKs_MCRW0)-M13NTW$#@W81VgkIOzNgrq$wAH@ zr&Wf!Fam9CIuW9D@7=~9QSS*m#TSN{Op+gU)Z;X7FaGjC+B1o_*Y9bwek0`o+HUdE)?7fm985Ug(roggs z0QUF=Hl!q--(uHkljQc^img&;)NJLi)iZ?*=jwYmLVL5%GGxvufXJ@=)aN1DR(pE8 zY651zpM+yM9I@k69mN-IK0Dh6h%b4wf|(W_w|}0-)CJ1i{?ziNJgEK&0=7PTM&PR( zSupRq=q_qle)kZn}?nj!5)YR+Gwu_FIP zjYF8AuHA>8_geBtIZM*wF3T)!v-`q7y%=E%>iK+4@=ajMKJ`A)D_HW?2QNguM5}k9 zDR-Hr?7h-0>z4~5+v{}?{L{K7{Gf_?L>`bpqXQ~-ZC6P}{{_l#J=f*0#^n*!A_{-> zgD|HuW;`$oyvtpQB1{iAd+LPsj2jf^_y+z)B$FFaJCQ6ZYl6L$%Pw3ajpgR}i%C!`dQ zq%U{ogNWP2pf8oe7_51uy4-t0N zF|0*n4XUd zFSJ89FeKuoecD1iuY%|+Z)1xW_A(lXJXIlQ{-ss%BYoIF-v}*PDV7O$UMo<<7u4pR%>IE%s1M2g+eT<+WmV0B@wVQ4M@TbkVb5~1X zBg@?<`>-Wb{P|Kv03@I_yhi8e!I1eMXjnWxRY2l4%)2aF+kw>FPQSU6O;z^$q@FAZ!15nhD_$0bZ%~~6ZHHW@GucSyqxOJ#>N_j-ch40~fA;Ex zqxnK2B{!!GvL+C|?Yc*gr`lfL{#((%3aIMc`)AhWDEP^!>-4G#nU>`qYTM{#Wbp5w zY`n9$TJ1Vp%0rZJW~RMEuZ2f80XgAE3r`+oNYhI#!YFZzo`M?V6^J_p9jz~(k>X1> z^=HnMy@!{c)>Zl{5O^~ zpwC*0IkZh!h%U)FdTAdQQc!m*wDh~F=|3I`ja&bC0WY)EG?vxQjb%buR@KHPnx%Bf zed8kZcS%F;O*$UtI~6LYq&_u?xwPt38?q=fe@pF#X;m=E4qmtqwG&>HQG8uy3bEpE z_P42?n5DjA^xX&!=%n;G-=93?D-*#3ZX*MFR&EUZF=IJ*c>(>&!$-u9 zl}C6GL6+E+h^&t@Rzd5cKfY@mUCu@w9HcNCo)S-3T-%PacP@hd*aY5B5O37jEMPqi zI%d=DjN&y(ec($4MJ;UpR{Lm1$82s5iC%kr3ZO@P&HL2WPgLe>Y0B@{(;%Yh0lJci zl(ye|h4w8o=P7LCE(i~}`ov~>PS#Jk+4G!qU9TBcQKab?*;xE)x?!})gFtl6vlPHl zPU5lVb*-$T;m?b@f7>wgJ%bq`=pbEFT9(M%j0wXH3OAX9TC+Z1aJ5lz?3V>xI@amr z(Z2#_U9VNL&k0mSMDxINliic zFF<|g)#7?W8|XS{WF|O>`RKX*ckaBJjP$Ifn$HB(X)LB9SP`n*GRP$AqNB;3-hR;; zr+#qxq{<7U;3bQK$2+o{8H6~QQ{XW|1$9B462gj<@)1n7q*@*BnaO8fHnC~Up0(oy z+|_*pKCfkkA)Kef&Duo09Fr=0n?5#a9hsoz?8m~K#~Z8)P9*QL;C+el3h$N^x|49P zA?(wGgLcwS0Y6gQYHlto;5__ltaa45H+yMG6_Gm2o{dm8aV-9!8kyzqWnq#a?`sQR zIXtjrjonNR`E}%+@JSwn6O$L7(5EL_M|jm*8imO|5?&tdGM3&>9A09hK0E%40GP3s zgwv1LHkGQt>4Ea+L#m=eFwJv_N<>I*tA=!~+{3#RJ_g*UP~TF`KBAY&YDtNMRjK2z zX~&PG^jVl1$l_G@UPY;P%}{r9M*TZ)#lKj>|DP(ao|DXp>*0lOKxq_d5FEyK{PGw^ z#g+@Tt=7_vAq55P*q+_|yf2@bgoAp5Z3B-Y7K%|DKIx(l&@)6P)x_&a;nP2UD+}L` zW`JqH3?Pt0o;pKkU|Thy1v@<5fs)fg>&}=96$Usoi947T1Uzo1W)S+RmD(yiz;;@$ z-H%30X5=QXbeS(m;2X017|?*p^u)rVNTz7kJ21 zee&BQ`l*!=QFTiVbsdOa|5lTME4d?ZHp&^d95FoZVogTwT+Ty|y2- zXNI&9u*@p$Uk*&a4#)NBKK`DoESNMjw)rINXL!Qc)e!pbIWfuKy2*_cuO7DYYs`-> zDc<{`5Xu~2n%8QRyX(k)WvJ#$mMhhx0@8k4S(E zKk*~YgCMIBeDGd7>%asqJA*!OQplYWqtR>OU-jgWGi7MA#}aS@keo<~#=`j*R_#HI-baApzWk+?TF# z6FxTi;!;-a82VZssF8wf2ccQLhjxUaH;q};=FC2yV&V-)<6ak9+V^T?o+=QOt~pZiHH!|AdF2H!osWL`b{Kr>C#pI=t&yvLU3 z#%ks|j{Bdj+UM(Q=57S*RCVoYZnqt_`XVX${8PPF+%u{TqqZiM!1X3QP1RuH)=nO~ zZvKwyaqmM20K?{5@oyS=zlegxF&}S~&(qD~53+gpjTeV4l)gfAxqeZ_mk{ul$|EHo z3FvBOv072JUla;C34J-*dU3>Et4{q(n#NNNJrg^sJo1HBM!yW7G#&Rrc}^-Z)}NbR zAQz>XFa5#p5o1JJ(a)AEFZaMPfQ`4zZ0GI@L+gvf(f33|sX`1nd8qWkzn81Nm**GA z%f$x8^NTU3?{%i69MSXMhHx&h(rt79MSe5ye|d^#e(48Zi`hLH62(Djr#>lxx#ycLJ^D6*r(HfTe66>cO3TOhK&jD3Ana2BJNTvT1cc%$4h}6Bg^ferBmRyX zE)bah1WJAek#Q+8YIzKOch3YmH~bj96T^-?RD((C^vW3y7A4b)3$0Cta}?lK00$SgwzD zqJd$CZLtyA78i7vT)*h=>Og0788R4*+ei>?ITthdZW3 z%b&<=@{@=4I-Ik_Y*z+<-Q`$Blj$cjYhb1DGObl@G3iJq+}PCYt(VVD{gJ}Pa;B7X z6I$iJ7YbB-a5*=W%6tMfJT^`g`Yjf7J-2*9L!dn(XPrmN6%(^Km=a;IxU(J}V2_47 z=?eEdtKXYQJ0lu@u@iwvCedgYZs)eMav0liqZ7N6^-eMV%1qEqeCFB}Qr#2R^Oj34A_^Ove%OV+rMhs#v+okdIW z%5`ZiBxc<6YDf_lNIWaS{ zS*#+Ba-XLrUo;CQ)u*JX`^kblJr}(f7(^Yn3eLvxFD@+gw)5Ud=wx_AB+9Jfw#v=% z1Gx`b&C&y-%i@w~tKUx(i$uHjEEcshW*dr+P)aZ>N>Y-^-s!9d52qU%=Kn-SK;4Rv}&L+w}{sVR-d_=pD>t8t>S(AL0tFmGQ;(vf|5Ounrs;urXlvtjw78KaWZ<+$maBmeY#Iu zuMJ|I-)Xm%wrY<_m7O7ECl%79aOWdOK%w(KSz762Bx8UQ+~XvxSntXlKOiQmY%C@R zwhtV{H0PGr;*R9^9(5P{#%r+h3y(F&t~>p*uY1VzJHz?J%_JnR6Ztbb@; zk;HJ?!%AT5{plIc%DK}zh89iebdRPEl`8wFan3k?RikwKaiw5z-YF8BKB=4k&6v0{ z4;|6LsH7wxRwX=_q{s}UR~j!vjM4Kc9HDCu`K4Bo+q(86)oEF2jPfa*m;INQ0C~u_ zsrz+0&tF(JploDy1CNzVibwfd72$;%4UB%k;K!i5o8rtt)4N~ahZ9C!6{HPpZCqtC zNxSyoGjTw|c0Zdxd|tYkf*KGn9IQ6CxZQo&HI=K{wiK#r)m(OtmJ?UwWZ~-0fjxF2 zFAay|#s*(pM|zv!X+5%-6s}-=j#^F#nRHx!OMWZXWCaU}EE`G4N@!u1IsFKyeiLde zqZqC?@Z4|n5~TUFl5nH^$t%Up7fEPG-1Ka|{oxhGXwIw8HDE9kj!_Iy}lL2zFF{d)?m63_L$3T|nB zPa&~LO=bjjZkkm?2M)akRFQh>e6`Ns5~d)?b|@ z{3>0Er(__s^H;IFY?Pal%nAWV_%AcUXHq{!-`!4Wo^O7OTny7X6rgWNXlR``Bf4L0 zY;3O~#5*yIAY;QVK#StVLhJQEBpJb<*mJ~5v%}DV6p3XdFw=`h3(pM3S3y&^rfJ6wn#t)JMPE4;Bt7ppzKx#KuOJ^*NRwco=3z~&!UuZW${QSH#g?WtOne=_>B)h zFDPBtb>TcphsZVYfbS&WZ%3B|+u!*Bz!6hq2Bkl0J^@X)EwesD2;Xa!}7FFT!@ z$u~!vK2E@X{0BPnOPd9Q&hM72P^$CvE1|%bj>1YKSMR#@c5Yk*x^Z`caN;ab{kICX zkYLxIQVG;X%|NNjOfs$G5c89c(}m)j{Y)-31DBsv6m{cm-pX#sX9}g|_X^*$RF~+@ zbKF0^1~zcAu*WAi|ks%`sAEn1+gkl%usG0-0$%2JJ}WrD^Nriu!r9I zJ!ifl3>`qCnuaI=@_ogS9?rYC-TsgTv3CMf>Bw(xDK*xTEB-wexa!PX5$_Wi^G*i~tus^p~O-t8?yYyu$qZ|(dC9%leAFG;wicJ>`(M_h!iE_QWdR2u` zSvuX1^MpqmNp}2K6s-=$OgcTrj&V_)l(|UA-AuT{UaPL*;>|$i9R5z=pj#;zGoa$h z)$q{*hs0|%CA@j2OV6X3_FRfd#^+v8z0CWS{a6_zAAd=9-oAM}9p_j-9NGG1G~-P~ zPBf1H?Tt&#FSBlKXhr@hK91QXR+Ip06xNz5upPD=AOORD!*U(#@jU-V47*pn*)5xZ zxpMRnT=jtO^)@`I=_rFU9s5K1Fvg~g@AJnV>W1{j^p1^}*J_sOk9jp#xD6=bJhntT ztbKz>LeH!tQ%|~{K5TG%)rwxSwI$~@{Gj^FbCj6yjUXpWn#;j;3zdDYv4VN>M0&Pc zFn`dX??3!!=uqfdXgSvFCiHXS6dijFx!XgTn^f=6p#3sIB;4=@Y-8c@j~{Gn<3%J2 zh)12x_FNjEFJt*}vTRzuh`AtJBmY+Nq39&*W-R7UuW+Brw2)Do8f*hT6B;+NkvA-; zveJ-+kx}&(ByVd*DPuR?iY-ka*aR*yB^kpeexGnG_mLPlT_GsNtAUd{ZFZ;xe9Mhk zQUe3Cf3G_Qj1z2Ww(#^K7Q?1)E#2Y;XcK|01Rh~glko5PPnNOfboY#t7s0V>4`!P8 z83;z&7l#yaq9HcRf3(qRSUS}x*Jy6aF=&=#${#jQU(1I#sd8ol9mBt*3NWJ$&AUYV zmhg&8wI8d_L@5b`$hUGq48j=--&jaifnaL_tsv=c-4KzOW)p#=`6yR*u6woJ3MGkb z+p%X`n9#RkGy;z`JR0!(fENQ&af?|75T#=h!jJukrz6hyfZpI5G*>R_^hpQHUF|Z| zpXKuB-tc7THxXx+tsrs!zkxxOK1tqEQ0(G)|C7fz08nIh^%_x@h`+=eud;sZ3Pzqb z-ckPm3B4|73t)^(P>pmw0C&Vy*4cX9oT?>Yy7#-1$Zb@b0u@i%EAd$C)M7 zw;1-=9QNOzj03+YO`oL+`Z&D5(+VJ;XDaJr)lkr$-w6IYO3SH?HQX6?_>&noEldtV z-1VKH>+Kk#r_ja*{lGAi&lPtqS*|z1zlt+D(|hG8A9@}oihY^)#gzQTd+$rMpB2UB zMN6s$O5YnV!YpaFPjzKfw0eb#Q>%bj@8n5=X|LIuS#)b!Pl|gAz^mylL6Xq-Z9l+Q zq^yvI|C)572Xm+bxU=#h*5h-SKfrN-uXiY)Xd9|T_S_~qBvwYfO_-&HgzPuH#Aon7 zbZNik*G+(HbusSxJ#_3bJZaBwD5cj{lLM(DbqIY4wZ6|a%3d8XN7Y1ml}S~%Mi#HG zygTRD+@uWTF}zuzUpS$_)b^J6O@g_!=-M6rx;ZfZ8hvg(_TKc@eSN8vEE2Bz0Gx&% z(F$4C??B!n)K&CpSZ#iCy%xpIA1FnB#nQ8M=AEtl#*5=U#ir3Hqfzq0xlMOtj+#x~ zdT+Jrl8MzX19I#iS6g^&f|>`ONH4&G5I+|9=gmJk_Qs8Rk%IVX!@a3n1TtDd4; zcmBx4Pbt{c(KbdBUs2cJeMa5nlV^Jsz6JLdz>1;NF0Rr>zLpatge3`-R!%;Nt?qv}G_5l>Oxl0qonp(z@8@}YP!TZl zLrXq>x)Asb!{|I^NBuB<4rz8gNIB5}VMBqN)>q&E&sx=g6QTcmpFBI_CO=62xAq0S zF918#3~9nG%kxSsn6Ytqef=Q@;0E=#`U0utbe0bWT>{zlUA!!M;*A3y8rj?9#?$ao ze^o+K`My#`0jX%u#JZl;CxAU8nXHxqFSfhC83k1P*_bg~Zl5i&0jLx1<3+nQCHtB1 z!*^^(K>RyOqnD*MaQ6f1J4ez}yct71}ppdL;3* znb>ZbZsxP2Sql6SJkMV4>&FDI9@#Bv#^j;y{oB%9rbt&%8E|3czE#mUL<^8W3(0-;K6q>(+I81 ze2X0NppR=lhx8uxdQ|@X@9T)8)HU~5KI?uw3!!Ud^~(_T9sJ%*Qrsy z_ep23E7EQzT5CsLq5!%o}U1;B0zsWmy!g)3^ zZ%~>+4K3H4R=W7y)V4dRFrnsB$|g)MZkX7Q9oI)>2c_!0Z6|9TD!Tz<5{%6Tan5E{XJ)Ch~Y-D%OsSxc; zo=cxBzXtp}9_lnQiAm)HLZ~W= z&S0jWrtCf*h11_A8v<Syz&%@5#vb ztih+q8F(RoMgkcjV@02P@?@>Y|FKb)fcaaVM7!{p zAh%Qc_@H{I*N8uO48#32Tt@W8>*AEJU{MKj9&IMX z;KgF2(C>Gv>Ru6Tp~PGB`uZ4iO-JFgXt*(VCzrLC=zdmrsdSj>B7n36oQ{PJfD&!Ky;qzI67^(~r)1 zmv=Bv_)N_izFT>uqJXIS-O^$GUv4C+j6SSetRtrdRlL*9&ZPjs8%&|nJ=v9gw?U~vNZ0HXhm1epLsEG zZhQP``vTt?0jy}XnLJgzqelVn5)Wumq9Nu#<}18c zmENP=CQ|E`)|SP#9sK>`>cgisK3o%B?j8^^xYB}V_buRI*8>`-zcv8m_SpJU!2DKm zXCI0u5$&<{GaK?Y%qX<#(zgtK(?YNRbP%4gM0ARdj;C@QhWvW2^5C#!T_}ZpBs{|u zzuY73_)0-+G&qjgyk3LU{HRV)imv`9tw_)Lke=#B{^r6))w~A>mgCVj&t7o++1w40 zVc~=kqW7rp{q#!H0Z{FnrSrZ~jqq|FQnu62(ZrxnRwr(2rTFOyN?)v91SO zl!wWxcphTgRH(vj`=bJ9L0NOGrPAT^agVfYoEN}fgt@>oOcxK^S2d3%gUK)b{#^1m zqnHVn07x}f9k!H9(E8GV?FUf@r~LPlH!+{G)%p24nzG5(<2JW80CB;vt&kxDL;6=a zRJbMYeG!7fFijvGm2<+k-*UvAr~ETKmOI8@L{90i@DJV{2~F$LeIhz=l2qCLH22o! zRkjVEa$5zwR7lFp7TUq&8xdE{TqB)&8B#EowN>nr(2|u#7NL|lnF}}%2 z4Z?@ME4q59it>pU7_bRS2d*?GbSuv{kh+C4@%&2}#(GM>)Gff3bp%@$tC|Q4Z}q>( zd^@^wtf+wJVrpQy3Ii2mD=U8Q@3#o1#B@_&p9mQJwHRf4*q23;K@5HRgb+e(HAVr* z6QA{V;}Il)m99{!4@@?l4;hVB2@`{3dvrPWYs|^|caq?=Mnsh-(r6sw!tsW4H#Pq* zmYf_4bhjR#p*TvFB;k_WZkxv~u>ezJI>iA%2?QoqTItkHex^_c+ z@liDF+H5W~*Y3+ZY%f=9 zgGmT1jxg7}J}RSJ-}J&o>T2YCPcwYZ_Tzk`JqNY<%Khg=Vcow}=V}N7U7Lp4+RagP zrd6#P*cAdZXe;lH8emCWzxgtRks_R|p}-AliPpJi{$v+;#;beItogShHL25~GZyrH z?Dq(^=+=>{6Lbtae*AiQHBA(YTb}tyTiI{!aclOBX}rge&uJ}>jkf4u33${SP@OIz z)H3A}NqBf;#}HX@1lPWsp9v_UIJ6|}_ucvWswzi69-Mo!!QuDe7G@p^qA%?X;xp{I z<+!NK53HF{c4{$;M9CTvmM}*}`IhDx8}$?>DtE^Et!9EwiDFtW*)yXCjnL z{rmBzw)Sx-S1>E8Wr%n|+b?w|t~*W)jyYk0;c_zWpWrwg|DTo#&f6qzQA0v%}PhGFo>4B6FF*mDrQ&X}VAW z`nSh?x}h7nr!5i5jGZMYx8Bfp`S!*j*ZeKXNu4ZC%-I}*#oEGS&# zuq$TAo0Y>iB^-Tc3VKxQ@VhE1GvXGJ(UW)+q(C}uj!;|=JTtYV(HLQ5NMP)>E(J`{ zIN@5#1uqJ7#idJ_;A70)Mq%GX3o<+Cc3%C6RkB0vYj5r1fe~IM_J!ax89wY0Tn6Pi z?dwUn71U8Ul6~>tzyNbi-*Ck67COn;@>sck`B4ut4y-qy4c|&WinX@8doFFp(L%N6 zLsmrpI;JR6X0HP;rTf`o4l+((Ig!lRsFbqqbbS(pR!XI2(jHrG{z6^C1s7qx63!hF zpgbwy{c-XTQ_He{cgD(2qM-G!Nq7pqmV_5A<5;5j++0nfalM-nMf!1(s5&Z*Y#iVK zDe8@JFG=nyKeKh|5wxGA#-hsLf-hKoNs%-Zduy^E6=SlW1fWX2j#XBt z^*TtYA9J08qhsX||6&6E?YNcXxH~KWW&uA2D5UR?@k#pWz+vJ;HNTWcbqv@awNVSd zXi|ZM*S*$Y#i}$Dz8-sZ1#L@Y*q2I!16i(f4wHjnRG387S!J_2pBn0H0y2d!X_)9l zE>!8>q8OX$w-`gwUjvNY+i7?%_+=cUs}5a#i;r z5@*D@@}*6}37z{YKbTPbLufj=S58E3@bn7ypCkNajyZ*trr%YgJ^2&Rj8Jo9_v0k& zqqGp&hHBfmhyl9p$K%Mdf5XJ+RW7bNXGPG6f71{0>IWA_^BEV;@jTMkt2YKr_XPeY zhN;fA=BTI9SPQes4U}bJ7}ocdEMNQfYzaO(@cgIm(FMtCs`ae0q22|1#dnTrd9*SL zk#m$SYR?MbO2|(cLUwFny8&aQcb@ia3nDGF;Xdxz_{`~lkoc}|@9oqt>4G6PO=VQRG_XoNRSQ=dS4bw!_fbj|fMPxa+RGt1f zb569_C(CN@;$)+7O-qi%wCI@~p*-2{{{+dZ%uriK^~Sufk8k_3h>};)HnR^etf9Q9 zORAR`ecbSfH7;m#&j0J~2HKT)`40divc1GP)j``?dxp{Sjt!Qkvvixh%6L5V%Nw7K zKUu0!lt1Uzo7UpFL8iZ>DaAZXMFp)e2anu&Dj8%So<{d~HM*@or~~YjNMJao>5xB& ztM@uw*Pt(Wu#PQ(P2X=VzRWu6!@RMmq349-Uov`Yf|0vK8c2*Gx(jw8bQSUX5qSj1 z@Ch_F_dN5I6{KfO6oL&T@gWXQr4Dq)@C%wI}_xEX8?(;TotRBW{rsxnveOy-HDs-Xu4?81Ry1Rv2Ar1dw zrH?CN>r?HNc%TP=LgXsUEJI7?7_6wu1!bf~pN@E+L3p<2=b7Bdb&r9z>lG%qi&7lm zxmEzkamG%RK+<2yH!fL zl1CsUnDbXPuff>KCX^L)%)Dh5aAcY1>JLZMN|i6aWgur!S6K2!8To|sF@vGw#TXG3 zm8RoCihoV{{y}|zVay};Vh|#O%{+7OL*~|jh~H|ylTbZQq0I}~bpcHq7Cg~){QttE zBJdD>Y?hFBw6m>+zPkS(b3JcDhN7Y1<|+y%r(mS6C*8l8*$##e5Qo*h>+Y!%v;R_~ zBEDPh=oey3Hb=i`Rbe?t=Dc5~b>pTTX=*-)xl#<+c_gd?g*{?b0d3FhH!l5eo-@8z z4dUgEr!F#Fu~XD3)?hP?E97V^Ogcn2!dNUeBhV2 zn)ERc*Zr9n1U2y-7EV%Hdb@m&^2b;jM#^{-cLqzjh2>*)U>6wK(_?dz9@}l^WuncP zv=e@GIs1d16rYZ#IdbYQo&PDPNZpDo1_oHh+gG@f=C%3eGUZDDOvRg9wKa18Rg6ZW zc7eH?uLrSQ=+~Hwy$%8-I%)?H{-8Xb>h?`Li@eStwvs}**8&qHa&+=wNu>2uy)!t& zQzTT|0M(dAe9e=NzReg-J8Jq#@0ys&R^mGDRU4gPW}ODZgvr%5IJnBs{$~;D@j%F>%pz|tz<4;of^aYA#sh_c9+2CfVUxrduK*+xoYU;(<%c~U`G^- zkiLVL?DXVRnqy8XK#1s3r(`=vN@-E=#j<|X8y)Ymt@b1}B1NDM7fs)b{pU$!@^=e# ztEEvM#Rr`?=+ieTXWG|Q;xK7A9G*PLdN5?+uGy84?af`>+txDL{>__C8uO*sF*B-O zr@-iU#si5Evp*xqr&d8`!KhQ|i)HGa-pmprr#nUPTY;Q4H@CJT&aGiJGt-+9n1JVM#reMMJ5&=^&ds%`4=a67Ao(e$TS$L%C)z` z%Mn*BlHyA#k%*QxoDK`JyQ_HzORXyLoM&l=9l^a~pV(z&>R0f4#^bRX{IsONzE@|A zC_Boi&>5rmyeCG1ef3gJw+h~B+F4SQ-1`wZ#))rH+lmzHxt4@5Dut$s8=(|rf2u1o#eb~d?R`j`4z4Q8aTf{(!fS1Bgz`CemD zm0gHtFX(bFYyC^=FRgQIc9q+r{VT65ld~(#`9zpEDE$!KI?pu>LS%Fy7;%Ps?t-?} zd;`o7YW#Lubn@pJ&VlAn;A|JSZewM-qt9*1XDS%(OPo3}Y!R99us_@-v1*cq)OcwY z^!k3R6%ptLT%6%O{`~pQ;||i7-Z=8Fv)qr!6^GA?6K9N`oB~l+GPnJU|L3SaiAQb2 z3V*ZrInFD`3^igb2at>^q7fh65ppcutWR z9eN~nX!*VBj4vCp`zy4*dAj9<%kD303zKqNrAzNgi!_(77>h~C@+5>w+ z!W_FiEyT_gMi71+$0sa6uRr`9KS2|-myv*Z;bf>c`>~7lN~7|p3;y2Te&{undl+g~ zVi#NBK_bGU0-Kxu_N=5>NF^sjb7zii1B{!5-%}b@E^lvYQig5+DEG}qBklZ?Y;b#{ zh3?pM(qI1GL*cbm5v#YqxVUKf#@}9VROf)9MF$uTMnb1*l^b<=g7K-6w_Q6hsQDV8 zDOEKSEMBEf8`S2-f%N@R1ke8I8fLiOA@(K1`$xN+Sreh%$Jg4?UyhZqsvNzb6kV=b z!s_4Krm<=9h=1@=nG3);5RiVqZ_ror{vU;4_1_0=T${W4MRjL_Q#t@ZooK*6VXtq$ zF;QYSYVG$SF2@`1u~%iPXWsp20{XXAI(-{hE;8=A|49DHU~P-+Baqx?DPA>fc#V4M z`vdpUx_i}hfpX?9EwzSGU(?)`S0{-;0fkOd*tN@5G^!>9*IVJd_=fbZUEZQ+wOK^U z%i65dPO08L-9B`GS|x<=n^Pc8u^o6Hh@5>V-%&Sah4?rc8u&=Fg{}R5x*Y;l+uDpz^Rj<*TXQGc9*Clx^MpMVvH$Il&v(6up}PkJ zV;qjwCr8ey{#**K9s}%C6{V48emWXu>JSXlnOudqV;|0 zoh`7*`!PiYb($QZ3ucSIypYB|^HDWR8BU?jEawBx&v{2Y?Gt3viG@gp#-LO~j~JSQ zj2%x!T9E($6sZU`k6#YueHmExA|PAVorv8#_xUsXUk^HqPD3@?{BhQN3!{G(*k1^C zd&7u5tu;11S8FRGgG!-akaKyeZ`uSE@&o#}EMmn{w zrSEuL|IZF763+LG$w^_(H^w~z;ZG7rCiIpMW!rf8D;fn{( zS_k;2*J9n^KF*cb-)jgk)#gUX|35w{7C9kLw>iOWUza4UN)Nm`G|X@rdR`rxps_2) zV^|TvKZ@Jl6eMM28SpY}Fd`Bv&a@QS8%4#yr6#3o`wMNcTU;z*h`swY_|3!0H7u03 z2~5c{`q##u2}0s7trFQoH=Ask+-hz+!JGiIHG!PIpx*rC`!O~Rr+JXy(&+@ z{YMZTa#yej*7%y80pgOfI6`=%Qi8ewuWgQai^mF5qCf9OwH&i=QRwP){u*EkalpXQ zv|UOSPAPHaD_*8W;p~stw-#~r7J=#R&07z-(dkc8czr^-tdJl_Ln8w%jD)Hg@1f>{B(;qOPc-XPc~Y+@!Zi zgBK?v#fibaZG%urprIj7m>Kpfni6+tKHGAOC{3OhIhrwJ)V0d8jt+52$^K3j@1{ay z4=eoUx=Se$Bwpyy7a(LbU^fTMxI|DFf=^$)WA5xcSW3XQA+W-_X3}3OmU+#Ud4sx% zgEeHv9$PjikI(>u8=w6P4w|}!b6ErkM^}8hP+{#lo{UJgMN`B3h^l$7ILKah_le#e zOztw#Z-cte=4RMdWwz?KOrviTb<&b?1rR+?Ls?$0U1}kgPXD4^wn**kIF62?mJLQO zTr%0oH9vb{b>wsLB$^x`Su| zXCsIxA~}s!k1eV)Mju-~e6_!McH-y6*BOp|UUaxS#pp@Nvi|O=Iz!yYr3zjHe+KfO_<+;BuMz#{lqi@5Alg|7Pxo;$Fn1$NZ7WA zH0;k(-5%wC9OP?%uyfbNxoUW^6;E7at+zHlqJVgHT2D<$$DjL+RbyzAf$+6TzR0|D z=~IB!j)1evUS9LxpxtjN++kuYN{d!J+6$P?PffCe;t{t5EVJpSV`)5YpL!<>a;D*6 z+9I>V$HkgeDOOTGDECR;xetE#5a>Cp)c#8D6>%L#A>?K(z#e_9<#upDFQd_>N|-T> z#+#|Rg>s?!jjMjH`RyC9=1SmCxVD5Wx5c5J>{??)tf$jf_MO9mVi)={?$< z8k(Bp4bM~>^gieD#a+p9)y_T#2&G3Cr9b_|S%HvOcA`C|?ztvaj zyDL1V7fd@7P#7^T2YzN{eBCX1Yga?S7pVfZRV<9qQ9R^Cw+FKhDBchuy<^XaGE5xmmpY0|#rhmEy%Hy=vX z1ab1+1mBxBL>ObkQj^4tcQmWqgCdo1UG*EVL&7dbA&0_?VihP3sp#tPqLy#J)ki-G zy_v3)P7f-hB~DB~+E}8i8A>hwSygwBlyqhXvc(D$=b(RyJDZ~^=ISG}h|fX^&%8_> z!!=59+@Hx@^TbAVDBkl+(BRb(hV2{CeIbwX+FU`zEbeFhF4fdiuhmg}IR}%PM{>o3 zzK__nkioJo%d?=lIExDiTZqmcM<1Qm?^%t~h|9NY2&{RLcFzb8KV7Q7u^*m_a78De z-&R9yWRggS(WDL<&D8MyY?@0 z#4{AR^)-u{@9z&PL^8i}y*@UOrm^<26OGm#2E07b6;5s33XT|Gd*S*_?B;%(M@hdN zJi48^=^Z1xm6|#&kwEc!%OMSBFOH2Ak!(p^`+M?CO8!RQmSXGtC)Bt8_#mOi!HMdp ziFGTc{0l>o8-A%uo|%J{?s9ep5|{W*ra@VL9SohlSSVZBJms=L-KIgQZdEgZN2!9S zhs~lVi^1av8imWz^X;$Dx8*_(r-v=OmH4n)nU@)14|A;tQg?;;FY^tcU;62bu;N~4 zTKE%Y+?Dr-?muk+YGBZM3ke;cwPE`V1YhkW|JdxbrAZB2NXc>H&8_w#YWINh5nke0Ux%{M{%WqxAZ|E>|I$Ymuq;E5rCcOt*rvjn=nOCuLJJ2U*FAh*&@?v`7bub zp;$j;p7N2`DQ>wA78m_|($2<9JF>-KH3!9Y=6|+Hm4fzEj$*&$X&&R=>L(&BP26PG zmZDBD>kBjN2GS$ifbi@y6{SzQAEtxbqo61Qpo0-gIP2)eio^j5ZYxy}Cxkk}Ag(sM z{@g_eg|1pWN%Vg|oj_@f(Inv;5+Mco?xn+GzRShU`x=Lo4*HX~|HE=Vs+ZfOw2gXs zJ?2ZH4~41o>Q@Jh?Mj8;?G)5K8gj5xch?C%!XKitQUc1kdpfDWah%p;S*PB)P+t!o z^!>F`=24x9rBVY)VaM&2k7OHMt-p}mXqd9afeCh7?b2Dv++iX|8R2trSn2J5y8Ek$ zxpuJNv&VLSru_KMzdyKaol6GDm9RZO31YY)datOJ5G^>PFWjPTvts>*&Ea0b1&gqF zK8O4uHu-nljdi_tNp%z5OAd)5EQoOSNU8q{U9%y1a)pvUh=`c96bm$tr1c0X`Oh#1 zL`9-U?3*C0+2i)6Q>E!+luA#1NB1HjIB=RYD(f z_y9bNgz*TTQuckFd(RAXJB>LyH71qNsbV9!1sdnCk~r$e(1`Kxh5xx+h%_9)>$;HJ z_Kn)xu7cfSHr$c+cl&297hi!L8?-)6rdBgr75dEf?{Zhy4(x4m?u{LPKKEWt`?NJc zjF@kD+;EE|5+rhQ)W_cFPbGoR%@&1N3Gd^=x&F~RmQLm6!z@Z29J&x&MvHe&&yYyM zB~#@V>v->Kwyh(wb%}?Wi}nK@IrgaKc@UX!$j~rX=2Ch5TODExoQ{udRL<`e z=}_f|s~f3tya~Ru(B?Y@IG*vca}~}4K;Xd7;iW-KQL{#C?-M+5`va+#5hS9Q`&^|i zoKMe}xz&*4F`7S-zM(=SZc#_{bCGaq`Fh(N5x2S9$cVn`L>pTdRXqr8q{|hugc3V2 zUp+hve8L#9Z`z8duBN ze1jG5!Hd1e*ZFmCQLYMQOY~x1M7`xnJ9lTwi0$&V=UdG@MU@fh3?Ksv=E!k|6%cZW_g*DM#G4*4w=fs1jR1qN)}NUR#F7&$ecxU$QyA4_-D{GE-Qb?Q(?&4 zitu-uPuv%(Rcfu69@%*mt$K28qg=T~(C%P6zIJ!>+o=?8EOJBEKJ`fb$7c~R*aBW| z{fGI$$HZ%QwDkF00CF2}QP;1GF8$+9UtcOb86kM>29LCbhH+K)c8E;*-O=jgv(Kz* z>{`vgpwcr|t+U5zgGsy?JIw<*ru27nr_+-d5_$v0QJ%>`#&2bS5Aa#H})Q3}h z3`ee+76sI3t!(xFZmCq7@)%z%Yr&nA0nMzSZI1b!?vM4a2nOaK_O z9Jc0E!O+ClgX(P}-ws)!?L~X|Rv;oG(|UqQtDbe&dkb?}S+=#B8y$u|R>0ipNX z{$@<)8F!Ut7LB#4z7fa^*kT17q<0@~+mF$kb8n5n*yvHv3O{}jMdT$*T<5Mql?=^K zw5g16-(~!k$hExJ=BQ&UOe2u=Q2Ca;P8;o(Cin;BR{$no_~Ckr4=KApq@bnxDD2x`NFHo zt~u-9M3_F|Up~g&QIv9t%j36IKj2YzJF9xyivnS8LzXm{_ynm8z$wd_#wZP84iMtP zq;D!?6pNj`Z_cJ+9rtf1q#;HU{_>gWh5q_%&ha-Bc#}z__=NiHh*qn^+dF$XKi#Br zpCj{7m2#jCrK@D`twhaCQ+LR#*f@xS>;PtOzdO-OBZ0 zE5+GQ5V9qRYsu{3hIn9SDRArQEiy;y{yB-JIWhEKn$hbLd_k9RC`dqZ%Rp$&Ubo4S zA9F3JrI%k-#KbMF5uIFK{+)bGt|39-Q5uUayQ7^t2k!4e zSm_977IPB%bJ84~6wjBY4`5A)CkmWL9}s>Ul>jkx<)9?7Tu*;LK!+j|&fTxuM~B4F z;|-zFlCA&NovMTfR}}DPo;5X6oetMI2I(ay?5XJqucB5Ba5pG(O+;S`xr&;ttSCf~ zup!z8u7fRfZ|QZY(Q+_e`V+mS!Cp_9q^N9}Z~IqfxBB+?xxP}WEGwP40vk~*Y2!F} z$$YM?&5n-7uqPC(Uh>K_enZ6kxHjG6G2RusI{b7&&9^9dxv$^v^%&yc1E{;4T2K^W zP9KM1(K%#$e82yc;Fgt9G_Z}V(BDj5Xu^gr2Cts&@D=#t%5Q07JwHcEq}y;yyQUoK z$0oZq5Y`O)x;t-3(Le-~D?i66%ktzEVi7dpd_fkKzxn7Md*0DOsczO$Xl|*quD-eH zfCNp=J|_QaZn|o$gvqO!4@a$}b-nwaUDE;nqU+ho+hstk6m?R4AVRrW18Ii6xgX@m zWwmNOnxOSp=ZJcZ2z@&P=e7?dO9fw-y-``js|oPPW^n>GhV?lv%BszZyK+pF;$cEW zOoS=h24h6V&O<0rMxIDeTxOF*;$$nMPa=@)%hY|cJ#5;mE|%d;?sjF`9g z`DLVU)fOWu9aa0?>6kA5&s-|?tb2+fsO_7O$2hRC18!ftk?az7YqCnvDcHRX2GMzs zl1G=$f601{uRc-tSs03;C)QhtSfqI}mUVzPrXRlVqCb3=EGkJuM`!k;A#RTy34_ zW&Wb-vT2=6r^y~uPO;<#6tvPPxL@I7L~7TQs`*z)c$51mf1lFRwQ^}Frqr?y@_i#J zd;QE)&voxS0>-tcQX*oCHh3~l zL@hmaVnBBijM7GZ9C_~;7!wG=WRI^G(z^hns%5R4#Qp)=lqE#!dRguN3vXxH7T4FL z`{2QYJ0uW-OVFSlf;$9v3GQx2{>*|{dO{G^AAAY5~1*G1{2+;?e2+P01uEO*m7`FF1nO{%$bYwOjZ(`ovsuO;2= zmYwdJls@*kPvbDPBLk$NZ;^Q9c7O3s>iWDjo$m@QnQygSM(LN>AZkm@ zu|SYML_@}uc3jkWjp#^Nz6+XM^v2CX7(%}Vby(ivZ=hz6XR+H{K00#fL_Ci%?Vy_& zZfwZPJ<`f(+kZ3pPM9nxNJ2p;Af_lW4|c|!^_{qcG(LV4jBfz)F*#Gxm~Er^L;$b) z@w^ICrGAvJZ6V%I`p0B*dog8BPoC`Z)M1!B<&=x8|Xd*vtmf z&+_`ClV@)){hxPN~LSd0)cKP5Z->XlW$L6+plN9aj?^Xxir19}*^D~o~3*h91 zz`Aud&j9Mq2eFOFDq4h+K4LbKZq#tF@f}A-QttgNnnEf0n8L!3jHy}+j~!h zV7~fb^GZcXBIR_e&bf?z-T}tKokWeQiOW2HoCu}#S{U_{&7@dxUeMP=6zD6qCgydr zw;|?%WNow3E&rqcY}FwvLP_zQ_v%&`ORrLXv9U!bRMcN*_36=eS&D@xZGAqnDT{6C zjMkBCm>Lzb8j6g&j;QGXxp(fxbt(5;t!m70(8FCX@`622us)hLor*13LT4~+iAecv zjKUj(VeTaYSk!O0OIQ}0$hzDFWZHqwCHvncH4!|W*k+xM(iCa1KJT^;#gZ-$e6auw$6-xl| z&B!NVC9Dlwj7+fZ3%(V;Yj0xU8<8Owwz&)mSgjbqFWztBx%16QahRD@uX?%Cmb{6% zz?sOctVajDk3l7z{HWke1D?I>=n3)paDb-8@9Kk+&)))J11PJtzcN*FC*81p-7g-A zVgNV?cnNsyCI+y)*k0w!f^K5ykijNXb zZ{ky15r{eDeX(Ef8r_(A!mnnS@PRfiO&p(4c{9<% zrAk`|dA^q9?(>w%`}3}}3uDw(=ti_jb?23VIvaF=(SZ@fv{9D3E2w;(URiD5TIpwoSDC4v_=o)4But%5T~=AD`J;V@BI` zue$K2uOklot!;WUF2xP?_%WbQFp2kX9^#`wxTN^p)MFZjyWz}>tVYM(^oJ5$=5&teEkdN)D%ffU2n;`qj+#55v8FwF~7 zImT;e&0YOBMp?<_e$Ex$XuvcHvX@IT>3Z+WrAY?dJv{olM z$7>mdjQj9Goe;YXUy#$+aoX3#d|1Oyyz_WCaFP!S2x1H{&{L0mGBK}shGT4RD3*w_ z)OeDk#5V1|tX13pY5j4l=8af!;Fm*{BpGqJRMj7eFlnysX;*0^!NXJdB6j-{RxwKR z-*cb;ePVSvEc@yi`0pau{Z`sP7zDB7e(mK5uP(%0%C@ugiAVC2`==;YJun-DUa*tj zB7cwTSq=We)*zE_ox?Vl%VxWk09}vop2qO}8D~Tf;fZ_Xv1qa40E?e!LN@LM9()*3 z#U{`)VEsl#N=t1-AN=?~jpxR&{F!1=??s=VN1cxdSS!01rPnPN2QkHoFVOnAo z*(>IARGl)chfJ#gFn8P;cT>MWYhA$~t4GWRm*o(8~nv#7F2eEG#YGAAxADfz z-k5Ekd)(!FkPuotm(-J52^q`c+P5!l}D11KVe7j@=r(DT^1Id+7a;Sqyj zjXoj}7ADFq+G>_#nCw40G!1&trk$L8(+skO3j?<2v_3P;ik0I zHg^4XXuMTYv!3>CWQTFw_*urcUazvutC$$5h@K!WGy9#5R#I;%?+6R|KAa*mDj>&f zvHK?1G6;|yWCge4O^ou#GdMpf$>059-8yVIn0B&m7T7%wuO!hmlv9LdOtU&4DsF-e zZ5Li?0I*fovL6@d1xGy`|C%mcqkA@mfdgdA6?|i60mIJiJiF@*F#j z!rnn@K+KtxvaDj%gWsna|BM=$`nRw_Ri&pIr?j!BQA?h1z)Hr7O+6W2HTk@+4wmmH zC#Rb3+7pvH%7rOvc*J{Cr!nt~4Halj8a{A=KINt;XvlK)yBza!azW*&DsF<6Zr5w@ zKwQ7grP$4#itNC)an*-+4|W!lsq@nw{O|EaFZz2+EcI(HCZsh1;rd89U*m56SKb5M z@$3`zEXXQ;teI_U|K1vnaX_6nng!YUI4w$y!rYe$H(gMY6|txeoaenlt$)H2DOnfu zZ4y2zy@^=9vl!W{koH$_q@2N@4P&FO52m-mZB=)AnIB%(^P|y8L|N@t%DfjYS_

}5f?Y&LBXQ3Ceu$)UT(%E*J zeods7L9LY;q@ks&=xeStWbjnS=;Px9)`hI~*=Jv5V3!sho(fN#dggpwGix1;Am^SN z{x?FQwmRmXk2QSrhg8_sF@x_Hyd;)@3`EuaMBeQy{*ov8lx@VYJJvAznS$njR9NwP zKlko6RA9pJ8DyT!>A;3^uC<+-HNKhuKtfAYfF8PJ%IOT(PB0(5#x=_MQ|Q}+U|U2f z6u#kk{dv%tLhnd;bM|j2l6<{i?^dDxY74o$PR%qXjk52`!Rj+_4XUEEB1JJDxYGvt zyOz+faP9AIPy4hb{Rc-Lk&)z(2Uw0jSr9Mi&YB%8+#G0zT7Sm0``iMj3ieM8s)8N3 z+&jFx{|h($JC_=X#hxmiTO@C#=t zYrorvkl(tgoIjWUa_=M|3=X)YsQ6&6B7v{Cl+7}YAZ3#5vMq$`kKTy%Bh5jGDVEV@ z$uQz)-glZ^%~2RWx-ss}-funhD;nn;{oGJ!0jI0W1`!iq;PcNRe!vg@c>{`38-Sh2 z@}+ocN^L^+w8Ior`#z~x0f z&fY@JhJgJG1NXyLHm)b-cF>Gnh?j?v^tcK1D7jxrLClQVxG$^(M2;Jvxf(s+Q@5;- zCS=iNfia4gJqq`$7}71=@sSgoeWi8?q%G8fm;SKSZ@H?xyBxa_Z$ojpT= zZMMWKO$AG2*IQ0m@K(;`-HGYWQwz9qBOmUnO>`8FC?MBKF&(px;uXo3=kr${VL8C5 zjp@wfvoGFkv=q|Au^&lpTfKF#-d926!&(EM4A=yXF{aFLJKqL=re&}>1hdjxh3{g? zo>PH^gmIi1eq`s#_BtVk?8Y@eA?Tzv1obPosht=DX_@=iq ze}rymi6c=8<`2g*-iFUUf3T?#lrb(i*cR#WGbAE${z4XDAhD0KN9e6!tL15)n`ThI zyPQ5ZV=JWMA)xe*plc_WuJ^(C zj5n2tV+>zwh&fBpWr5TAcHu{%Pgp9*aqW{r)*jjzy-rN`kz=#AZLMGKZ#``pkLWD{ zLvrwD%8%inqpgNBhT01Ew9gWr`~Sw?o;w}YU#lnqjE7;ZIY~RQ3t;Qv4R@EPWA0Jx znQ%I&MT$*?KI~PG8etea9Qy(YZh!7i1|eqsC$tkfz314O;5g&@u5Grqfqf1MZ3`hK z3Mi#$z5%M=Tlft?PCU`;c&0xFbUfF!wFeC&U2m-C9$E2XTh6GEk9>*o6Tk}oo~u*n z<+7l`SL@7dHlxrW<>x`nUQ&OymFvUzHV8H=Muh|Wi%)ia;J3m9K?%U9%th)7vV-@Ees`!JvRJ*d+HIk z4p)!Zw&b%tUB*wJWAgO_SEIKxn(^^KbQoT;CD3&7dJ2-2smrFATyx$hBp`Nt9c8|Hfl16Qzw6&X8X!tNaQ;4FV3pFW z;iy1|*CbZZJnkBKl>Pv8TwRIzW+1!i*Eb{&jgDd(f19W8_7pntnA?_saQhD*+3NN5 z0{gg1WQC0hI>Qgk(hXhFQqW0?lFKeSQR*g|r{lsH6<0F4fa893^;>f z5`e!yYcLMNq6yeJIXjwL|FHS^A}ve>B60l|fI5k329FYX8({H5=2~a9Do{KMN`ewz zn5IoVmqAsOBv!G3oNBUP|x4-MUyJ{EHcc z*Z36&xi6Wxw<|hkZ!l1tVB~3y4cmR3K2cs#qR{m9c{z;-MPJ-B1Rn9~eLb(M+IkaE zpI}tl>sl52vxSuZCY`-LpM4r5cAKA@pE%w4&fu%l&s%<9^Enx3KtUs$;;|NPgi5eV z$h20Wn!nL;Sb(~+C1K?xEt-;kkmI_z=FR+-7XHV2b}TRRrBY#vdS9|ljp|-CJo}av zqgfWceoKi!LZ9XZs4UDT7j$}q7)=sumTn?r=}Sntz8PC^(j zgZBpTl<8sdk^rlM?qu^`(~&2Z_3y(i7bBSD2Op7MO-*+!oXfRS@0#;~?W4YL=kbP_ zZ^JAoQ~!9GcILNak97G5#W-!5RLj__L4*`&GKa*+RwA?_SeSk8dEg)?XorRXTanUL zr8e&|$=6pFRP1@250rjaNY(b?u8@v)l}HU!`|R6%%&ZN)HE$t9E4@6kMaNofFHL4L z(vX2@1rHU;T!5>$w$lv4wBh1v0=Ft<&#B`^cs~%DMiJay6PW6DTb}qI(WZ@p2g0#jL*`b!@{(VXO*k}w|Lx{>N=oR8_{<`>*FmHpq;?EG zdh#vt;yp8U{TSe}?#SX}OlQSyBJr0pxX&eckDn>yYa{A+Q+-P0D<{ZM^_M1V;AAJNE`a*&9zIHc zM;A`?t?>z=HoDK5?N5AiwwUfJY?%n)iDj{)K8?zHjAJzNaM%Q6aO=-wWHrgEjnqmq zXvDeJk`^jbV|{mKDvrE94H5Hi+{kMuxRA|$}zaJBk^tr}5p4aT#B z_L4EZE`J}VeAU^0>PmHvdA-qFeqHy;Nv-+*UK zhl444l=}2PE$8*lGVTPI$Y;9JJ#b7UpWoeb0SzYcr+dK366=-|!nY6?WoQ+b^fqmvDSo0&R)SOymp& z$7HUMP@nz5&!Jll>FIbKfCo*yznuU1ZU{8Xe5E7r?cDV9q@4W=?*KyCuWrsO7k z8j(5ug+SDBl-w@<9fM3C7{rlGA9_LEC{5>vnJH#3_?pobN2Ntg+(wsK<_lKnb`zks zlRNws&7UtO088)s+IaTWfBt|QwQGUe;%ws|TT|$84Ww3PY#@qW=!4%X1~X5jYbx{G zKyDIp1E_P&IV4|r&Q&3Y6&u*l)zaAS5z)A*mKYqg*|dl+anN@Y*JwG20jqV!_ZX~o zHpFk0Q*w;@Qw);05A?rao_IRCks1&>GlebT|R>~ z*==3i<_pFiM5hyuRrDJ2+#H~Imbxcn@?4s3X5;&?+z70IQHwJDVrHl916g6o^&1{c zuBL!9S?2ZJOT2j0GP(2u_E+=EYv)nh(r$A74T=jH2_tzknn$1M3ePz9M5WNVX3q?j zzHDX6%8qVmYr*}HIG?KTLhT`n?SV6H50_$)QhKLbl?0@J9D&xg+Icr)8+s^kR|BZ% z_JcRM*$k`;viy&gmo=#jgTS>Q{&KzUQxpB zwh3(ZBYJmUyU|1+juC-sDuWKacjJ@ZcJe#OLmXV1;ksQ2r&_;*iq5P7?DAQ{TGTJaefo%58G%Mv8>tPtZw%Oon|7 zmbCzfm@HlF5M4j=6Q@=cdurm#MwS`xC3LQnJN!U=%28%blTA(GN}4jXftcq=jcFRqoGqGb-OEgVA$FsNEx0ll9H{$nl(uu*A$a2TW%?L-^Ms;k z#m)vWZX;JC zD;h+`@MAQ44aHggyMV-xoQn42JiCgt!~eF})|EjI<-8f{+TSsOks5n5hG^ph&&4Vg*kZyeW-;}5e|^R{(&m|C{v z^xNIm-NbFNC;^in+xBk!pX|f(f4jY*%%omzxnV|v{1$|(5$6eA850K>rN7Pub(&Hz zWD%WgMT#_K@zj$vc3>+qf^0ot+!+MJmDNfDu$LejB{V^Qo1WulZSIl73q0&+(6|Fn zTv*%YT(BTws0$b%e33($onv-QC~8EWv`QVvle`K^?(D|Q)HeawdFO9U!a$^9rQ9e8 z{na}ZT-1MS?<#)ecr_fItvXgBP0S6`sl`td62lv_!mb-ts-Psc9dcbWyr%(;yKB2) z=z4l#1BC7NiWLK9;p$g~x z>^Smkp~YU`!U^7#7BEzC_p2ICA|{?d;)j?FN_SZJ=PC zmu)T5^ea4x=)k0r&pq6xyB`W40^wy%)ee1Hc3TDMn`?iht&?WoL2Z{X&al@5Mu zpjroI)#D0TwhiJ*!o$x{OJ38mexzj>mC2DO1t++4FR>e&TUuE9Zim|pZD#E}1{zIN zM1S7A`4tyd1nyU;%BTfDbTCuid!H;Fh-MRY;f#^7iHN6EhVy8M%CC9g>gw|jer9mb z$Q?jNK#J=^Bh3V>VxZY%_k%Y5nkieiq8x5VY2A&7icAobk`iMLA6iY#sqt^%+@poq z35B5Y|Ik}dVPHPc0s0RY;4YyeG`vp9t?>@7;S|)W`c$JKu)buTtW_zOgTN1p#x`tp*1o~ihK@B)bE+{^mjd&Q&E_p6mJKbSH?NJ zhrZBc%hTz0)l{;ZNq<)8;DbD?58ma=3%d_(RmtHLzOBf9t$5ttLK`gA&T&ArXjP#C z#?UyQ&-MSrA&@Cje&Xw-s0v^xK-oU?`>>akn)HaMQeqk3bCc2Sdt?0)mm8xvmGQmk z1m}_F{YyT(Pc3FX(55k5%ddptr$-%)Xl2bQPsz6?qt zmHs_{#mC#h1*V#0%pcfiMe-19!@i`G$^~uYRClC4z`)(#5X+Ip46fG@HxkH5! z)$y8YuZYYK!WutmA_WPYR)8%^2fAjh;3tQIv3cI-Ph(s{mmh}4Gv5KgIOu%~86hGp zX*muoeB-Z;QuX_Qg79r{Ec>x~{%;{XXn4zY+Mkl*H1ggNuK8@4&pwk6=;VOqcC))05)9hsqzH*~0U zZa&j|Pdkz{%8xy*J>1{BnZxvs5x_ydt>OJ82Y+PK`5}rcEXU3-c!^I#khM3aSqfK2 z?BHili&{j1f7ABqxzaZl#YL}I3hV7_@P*I1GdB7alt6mUU0UJNVu$UtCc&TieV1hQ}M0SjjMV# ze&djE-9zWe3%h&F=U(@OD^*<2Fq@%iI2K zZ-35F2~LQ~|C|3I@1yC&6`NiqB;UsX{YaDx!lgYo@WxWR)$P-1w{@PT}1ZznA@n$ zP_JW^EeL2kK=tv*3(n|~X{TVvdCF-HQ5Z!c<bpih>rI12|Wt!Cmiy|cPL zxBfPulYc}&qYo=qnp5oXOrV^sW9Ip>`5lD(;9#-~2g`Zmi8g->(PC( z{pR+MWi0u9?TdW!>0^pAMye0XL=Bb`8^BKe82EGyscGS!ut1%?7)EH^Z4a~JTqF-1 zNT2JH6-eq_HO{+h?nICj3gRx7Ny(1(nbn<{2-aemi*Ak5f(37bXr&u$8}II%5S{sn zAmdA#`0}qjPK6vi<6NhI(BwSK?2px)-@eLcf_UFR8W|{<5p};pGF%qJvfnF=!Hr5g zU##oZoYYK@GG#Lt6GI+zq7DT@D9GoMdF#=hAQvQcB86R>=BNnnPQ%2ZfR9;=3;qKT;RzXB+X?^7^u^dHN1aJ11aX?g*lCQ?| z!-0b4=0;uTvPH3{x6nhFYSt>GSD+EGPm?ioN$@)1h_JA0H>kgBy#|Ll!q0>BQE`6? zm_B@Y%Wpr)r-1%MV#C$c<+n!5?Uwer@J$`Nj^pEchSl<|$~4p(wid6|Nm?54v}q@J z^VdnC>=-p@5@Micc&1_TfT{3Qpgo=02-BWgZ$%5Qes$ozr8|^cDuzjrm_yG%67118<%U zRx|>@Sg^H}<^2UK4qO)s^n3Px6dBO=p3~&EdwW&JNFLJ1x3vf9gYkwR4BjjY# z-MzriFa_AqOWb|hcc&u$P4lZ4_?KQk8M1Ym7L1-WPM=Nt-blQ^?B69N4eI_wE8bq@}%RAJI)5F{IkInxKjoMR@d{per2s&U{TI z6Eo7l@jw@2qxZRDmA~P>FViS$Ufrur5DutjldPgj$mIgWDnQnV$)4!B;*q%GFVuZG z1Vsv}?^UoQ^9%eN$N28@w^y}KiI)y)6Pvga|I;r;WOLmQ-ZX%$leY;CM?gD$jd;B) zk#(o9Os#$9{+Iu1m(rltG~XZZSUJhpC|Y*y9EiZma#X;^+r-CE6wUwte3&o%lskXU z2=m7M#kFgHUU!F`ML0v2Hi2LwgNQC+Lqh=zo|1E^h zPvCIv$5(HHAA^q$(~=+_&qYgIxV*z3(}83P0=mns%x<3u8=7N?%d~yNFMHBvTV5JC z?_6R30d?xqT`iP35`W*-S{<}XL%NTmivfB-CKRT<`98@JqE)oaJjD$uo-u}+U;ZMA zjo$`93S7zs?ho{k@e^`pqGZP3*5AE#GaXp z8mJ8ZGqp6Sai-D$`;!RgcA--O)rsQCVK_s6;xG8ok>ui2GB5ezr=t8Ek#d!i-CY${ zZdp0a(rfZR)nWGIt=b*L+^Om`w|MS)jW}SrUrPA)!6&7u9kV1tvoUE0pjHy0S2VLF zs2UcXin~}VSf$gGiy_`t0UyB;BjV4YyPvthNS$mpdT+n055C>m8>Oy`8c8E8DZQkV z!&_QtHJ+u0Jqr}YbdLzU<*I@I+CHkedmiN%Y=jrZGR4`U33L${Ct%qoM_pb4HKB~` z;a9Ase9G}%yAyRZ#!e<)+fzT$iuna+$S2!%4fRZ=EZFmQQd=sx{T8)Zu(JFs0NNn~ zwUVRTnlKKf*AkXGW@%Bw0Vp4SSL;oYGgLBHay;TH#kSF`SDuLLvCgFw|M6T5`F=%w za`*`g8Y+{RV}31W(B9kC+KUa7{H+mQUC!>!HR!#nxobAP3Yu#BjZdp2mn<94s>gfq zW%8lx6sRK_6grgo5mfJgrM_$=m&?tjiXph1`AUW9Rs$U9SN7ph_lFbs2oU22ckNfA6>+lCJP5jd|d*$)b-LLDW)R>g08&`2K0> zsA!?|71_{5F=}QP~aKwzRUSQ+|FxEQDc; z>jIfxIZe4}`%R_Rh~{Qp%zMrIQ*7WvoIW5NnY(OUG+vT9t3>v6e#}jTJ>vzYY6+eB zp6T(Q@8q~vx#{P&ywM0?=2~$K>`-1fzdcCNq7B1I#78IUCWpktvNec{1Oo?qn?7Z` zadeHUHoe#Wk);oFMF=6FS!)ctqIBq?uZUj?c*TfD)p2&&E*km&d|ZBSS=`E?&M#eO zN)YqDq5u)NXY;0xald2YkprFv6Ws&-t^cpgwy2{U+|F?>M$M*qR7gRcw+Nlj`^IO<8uu> z!$%2+C!$e&1$bj@z9F{uU@dx-nBxqj z8-{H#oyyZ9%%Z$PmEapkf||vtHXI*&ID@)1gJJW-DjA**+|bpa##|cO?FAD?R)Lcl z#9@rPeiQu`wOOX}?EwsRi(9p^F_ZtE&e(o?J5dWv{vHOBTMkbgxn9^g^qM@wkoZej^8qv zEhpE8y{>0#Nyb1^5k?40`}I9TQ*EdXG8#7I1Oq3 z**k4xXOBDDK`rhy!Vqv4BvrP~m+)$YEiRO^S1aey&L7MtXCnuq*~vuLV#fAgwG}MI zozO#T4C!rzHlTbL&y*35}@O1e^`md<#&Jw=;CrUOi%x=^lZSD+eYDP zW2#+(b^WK!;ZUYF8ogW|*a^tVKk}F)V^00U^hCE6j#D9Mddp)uT6@9H&ApS|s4%-4b&M1yGC++Y~6Jhd4xoPiDVD0dRRZ z^W>j6_`=^sJc5~p3AWBOzB}VhJ~|V>MPw7pWPjYKIVu>F@9XTnXE6C}8>Qnt{!Xqb z5DxWs+7EXDA+MEI@eLC$7gWKQ*c$Nt{Fr3XK~p*E6=9mNmsG)50jb7y4{EsCVb?^P zmWs=Nqej)zrpC2{h^s_FPfxJ>pWdn8e=;oOno+0V{2ajf{7?gWU(4NMk$lj@ML{gw z8tTh`g-n&qO(qGx?OPEKmUl~K=rBv3Z|4|B-;rM>Br45+{-_S}fq5ute0lRQcm0fi ztjF%dHS0|%C&uw=q(!|EAk03NH;ZuiR+o!avk8ldn4CqFK~JI3W_#v0a$WW>@Oi(7 zvb^9|qO+YiQMkA)8v zs#I!+9Jw)f9+F9$>zPw$bUk{aZ!ub2#hV}WYXzxgYu03x8(IKrhIZKkqFCZEr+{vg3$wHU-e>qg&vbZz8J)Zd++4Uo9)9INey zzAUrPQwUSWGeren_O$n&bi&CkaFL@G_=yWK0*EpV&fA$@uZ%taahXTbj|v4LU2b@d z(<5(mZXnjOHV7OZ3h+bM5;&u=vfIOv}ptbWQfO8B} znJ7RfQCxJk*$A^HfeIOjM-dnenIdN)!;ElQD1XV~n}!g6|E0a%9yUu5REJS20F0`A zO`Oe$pwtrYbof$TY<&0Gh(*KwGpoyoWFcp{LlC*hL?1W|Nj3eS_6EB=gKhLTNe?rt zV@j@lKN_x)QYK;H^dj~1C1m}oOYF22kDuhMJRi0vK2$o$7YaOl3?K1gQY%Q4@~t}< z$i6J|*e?G$Im|{2mCkHcWaYu^Uk^&tu47-na3$~T{e1O{pEw@WGK&8b5jewNg--J$ z_E9P7W%CZcQm_rLP#^Z7pQ5=HlLR>O1<+fmuTN54XNai!2L-wn&Q#{-K<+$|Q?DWm z@OQKk@E1HX?U?3UZL*RjmQK|c*#{F=49OaH#)LI_c;EvD-e@VxM*;IiU`sg6>^gZ_ zXcVl(9Mi(HW7|I^Z}A6$ENS@g>Y|O(m^{M9rh`2FW7O&GQSGdnTef)usu|^?tx#@* z5u7Z346A;Ya-kdCckO@cue;7Ee%zov#2?RiNj&FP(ca-vyc(z!lvK7iMp8+)mt$AU zrtERiBK}w&Qi&=wbxZ7~2(!))!i`1xKZNR(T^SUFvCJFe#qI)T-myP3dEK`L=>uC6 zH>2P7KanuWtz;oUg%Li2WTH}35jhH<^Sy4cez_#8`!+%N_ZkS2!`#OX?+b8#+yjG% z$>pV7I0P>3fUulgIc5O;SDa&6Mu!cUtc_7CX#Xg&^`f5}8YtJ$zaUwq24CL)woR>m z)}M?6EGQAgW)T@N?$jg4+nwAWZNy<|3b4_*3-J|(ed`xd-TB~ocqEN*nV=8Qaw^<> z#1biUTb7jOc+IE0)TYYhJ=LT>9Gl7+!!ypp4R5VB;IoJtamo_3tFXaZ;3VidSfcyq zx|tWdz9P5vvfuZSMYQA|wntEt!KcZs4KJz&Nd!zG83!&xFLmYno(;uQcp+{}<~IbK z%HS(?7CG_vI$<~WH-(A{{k@B0V`Lp=CpZW(ZN>1;e;v9%CV0JdJ2iH4S?8?uY5iH4 z-$(WBQCubX>nrW+^-IKSB=4#q9N#>?D}zjeeZ6ju{5O+A-kJX7b-e08RY*dTqQ@P! z_fmX34siy2UCeFGJ$=O8Nd>#AXEN&X})j)*CYV+AXYrPSnKRwxZ>io;FYZp@{pX)t7?A|z*sS_)dpzBd7{@JBwGW;NRF@Hw|NQh{*UJZh4qVeq&#isz z+Sl!^DjKch4@<}XgN_jAJ=6A4o`{Bd-gYgH`yV&@$AUhdr+YiSFEie`@z4L+^;=`T zFl{=y>z@n4g1Fk54!IH&_K9!fBaU>vbgpI~&D_3tkv51JCwa+I@`(ohE%{EVr5Ia> zV4i>yBtgIU@#q0$u|{z8ASW3VkMBHNqM*2ae6#k{FL2{I?zxvaD3F!%e4EMBpW-f9 zeyF|2J9pDu?i!o3#~hJl?}Nj5@&fxHZ~sC9@mW35+c@{n=(WC8XNEE0h9oM7upmAy zDCY&>(a|!!&@ZfgLew;0LKZLcP`+G9nkB+}K_9?*g{$wzxYx*$3SS-~`COOHqb}Y( zo!EdL1L@~9uz+}3{@?jnvFjzG-GbY_Y+I+j%?u?c#TtFr?c)!e ztZAmFS9|@G(t;cJD|9*f9)GwnWK*L^kvXs8d|Ep~nUyl!eLkR!dxu#ir$K$kfPpWE zO~QmtWE&3{3!1)MhtoSXOYOPM%q#Q?E-dN;&f1C~xC148c$9b^UrrTXue>NqHV;td zfVs!p{Jx4=YhD|-nRc0FrXASVBf`fTkIEB-dTyrpVf2$pwxl~R@`Gv)*wyaJZ;wg; zu9lkr@tT+}?Y5N0T;2cAk~&wjA=URhPI|7lc>Y8)209;Cq97v^s;VzE&}y~Wu`J0j z^5+f+UaNDSoSS4b`N0qD&uB3ZKfPWG{EU!SG6L-!J4}bD;l^J&M#C%fg z*P8F0sr+CRkl-he*NOPy)j!-B(Gc`{)Z-5~x+3;Z38UG6RFar=hysS9Dv12#_BwW3 z@Vsj+nK!k%^rYs-;UY2++W($N)DmPhw+fS$qDD9dZZ%Lv=?U#0vx`GbGA{)?K&n|P z)92+QzQa_ZwYmKlc*>o*)3Gq!UgyCexutJ;iz+pn06Ik&S#ZmZWeY7z7S zPe+Y`T5n>-NIqs{Aa=ThB5UBdqs2PVTL)k`=x1TaurQju-_3jQFaIX`+M0|hofmr` zI+=-ulqI}tvqm9w`jPc(>l>{Cp5qU-L;s8`hpXBDI@n)h|{iB|Ad_ zPi32hQ*+rjp-W_uE}~(e%Ef#Q)>tq>3^R(|rum)1@-Zv<|Fgcuj`(3wKr9 z-#d;cgyIl9*dL|fs)vZCs$iaoX|BpPZMmOkb1ky4NF{_|KByR7W{76vTZ89&y)j-K zdjVzj=zdQd^3~v-h_|tu9w+QSxS?_BkJQ`*Q|w!{x8;J&dx*318wLzGmLJE)_y?xJ z@P9^J7u814j`7W-SEXwH4{vW7)n?Rgi&9(*w78a1+*;g&)8bOBNN@@icees9THFZ~ zcXu!D?(R;2;6ZNk?Q_OBXWaeo-m!n?&pVR5YdveO`OIfd@l)7naf=Fy0UKWkn=PsT zQ%Z|{^{GCxdUTNiha-nQOzYmuG1jWkhW27($#oK;*E#3mE&}ip`da}>b=2QMb4e4e z%{gGvn?seiM`H*SB){48?x0yA(ORMM5qV{$>Gqs@<%T}d+#Xo}{0{czfbAl**Ii!j zju)3?Wh}@o^G2K0))>eDftZ1(BQnN@wLI}rEJI*@Lz5MVnKA8(2Ww7ldof%nr^PNe zaOuOuv}*M$QR*<Agy%7IVN)BQ!QF%T;CD!RzgcVM* zG+8)vT9Wk{BEs!^XedP*-rCU&qud2@7tSihNv_zVr2Z|1J*Hm*h~PUcJiQ;y-@H{7w&C-dtAk*{Uu)!`T1A!fihyaX zF)1%oAu*rc58d~0NlW+u}9@y#Cl{%Rmr7pO#MvMwuC z`Fw)CsO##aFvvIu?(+K5-)%3HvCjWVXa8xDR9@UCoJUusD5xgJNf*05C6H`#$99;d zKU;{>RZpKe3w3dK?RH+wqfC{}?GOLt5yegC`Lb~F z%w|o|pu;obE)bufWL8>81)P@E{EUNI9`YCtOru(6r|@fUl$y#S88UaHs^Id&DHb2J zF41JRcwy` zy7B~M{V!=lq_o`-d>drg*bB03yT%K42o3b+Renk{^mrj&@C$>k8@@n%Uoex1PikXN zVqS~>49;g}j&upMz0C41Eh04&Y7%VxDhj<<}!Imf4S```LP~Fv{!D&ney36l^I==xahofPRQ7Gjr3;pVtQzz zqa%-K+U>x-{F2p}WzyFWVFu#>s-7yhNXUrZU-jh`{YRBmQ#?DIL6ymi!%7uUy8 zCR%=aOH~#yp}d@nAn28uRM7o8eqjFrjgJc1M_|3qsxFA}R-t2R148Lst|-nas>fI` zLxt^G4ZrqAKOHql`%22qb1oC3XiXBcWHxZr@9|enT1|5^a8!;w^PiJlT-+6X?H|*tGZxsAAk- zF~$ES6wXsUQfVJRX^B(z8T@orc1( z4NXT%|9s(<%-%Rw4%&J&OnxG;C29QmH-Y7*Ku#D=1$oI83uF2Or%To-`BG8hj5Rb#lv}oMEA1G=;-+we;(N3$jrwm)C zY^`J2ge#xc#UQG?tLUwcCfK>Qwo*W4bC=z7rI~|L@74E=ujdpxhT>Lr2GI2r&F_7w zlbMht*P<=n>#iOgl&^jNNEUJ<6ATg)KMFA;b{S0P8#})(Z4*&!MDvIpi35*_`uFiU zx;B1Bn=J}|n#0aO81Z0CTL{o1hqeMVG{pRgj?%bMDQ^z5j)1t^ao6`>uSTaf6GRM!4v;lnifJzg z>WbvRO|ZvVKUdh{QjbN-ZcVZ1t!PFWekt2`x)2SltuhyRTcw~9K5jk?;0o;c4(v~t@{)6d>(CY*MQ3M&0J3ReAV|F&~u%Vs>WRIFRx?Df0<i-HpUa#GU44qD$|0HoHt9gOv;r(uy8?Ec)_c^M(ZxLo8!Wy)&REwc znvk(qlMpaHZ4b5;bcH0M6@CebWP;w({t*}*8y*RP?S5rSBTjQ!y%5|Z~#XP?l!#Qb??9aO;u@fW6-C z`ZPfIAGKXRbMf!trwvDWv*`+L6P4vCVVqlypV3y7+sXaTDwB40a#T0k|44yWwfnJN7n9!s9VhxFdi8?VD)XfhN**7qj(Hl;p=mY@Z3YZ1k^d zK{~P>!T;2rM6HivSGUvhzMPO+EN%P&8fOo`g^dXPvrE1?+A}g)d1h1bZU6DZTM=w9 zb7jQEnvP0*ap>xQbnV`8ZG~KZTxxfvI*f8{j^@KSOz2iVUiq4^1B2N|ZKsMnvC{L- z*7}x=Q!Sb6F=~|MUQ}m8Mx9uGql&pO+B09%F3h1uj(yyzj;OH0mhsffNyH=-~~ z^Am#n=K}hN@YH$%XV;}F!P>2Y#IMw+;hPE)^LsAm>euOLJb%+jhOa3?zrId4-G%y- z4WSpKzv(L4_XxRvzRwcG+IsKz(a>MrqKP;IPN3a}$9uXxY*&LUBc%@S%6G(KnO{zw z_09qM1N+Su6n=}fKFX~$;Nj$#MK_K@u(fM~K~YzVcZKfOJV#*h?w8dG2=dX zNP0F{(mH&ZG{%Vu83Ht-UovPSQV;A0mHVg)e0uypfz){RY>{9FXtT*L&cWe3S2Fwj z{1H{1Sd=9d7yFOHb>v}aN9VKp$_pwK1hWBXY&GOd5&_;kyq2Kyim-gHL~E<_z0XSw zX1rj&seG+~IC|)sZL;L`RkIAL(=xejCzhGTbQJPxwazf#Q05#`ZW5Fj2cJ+>)88mx3AjlYDT3{L5&R+hQpaVkeRu@ z;dBA;$w|8SHmLqy^8D*pfH`B!3KZ4T#N%?Uk&yArW2@JqD&K^xd~tz*kHny`Ic?cL zA|G;zva_?rU!IX^lJa*vaFc^lATF-6@1gkC&>`f3`P=0F2l`reS)#gG-CCTxhc4~I zw*AX4YDU*feVbVhgoijIwC9R9jHh_tYggI`xT#V+<`9JopSjcJSC9WQgP3pDQ@|lP zHLuQj!*H9;QNW(>o``6*pTO)_V*QGCl)J)GpA(bMZrjtclKjdwF()k*TaGn)rVol8 zP%ewL-v+i6V#Up99Cl2fVL6!31SKy`zhl^`CKIZCrBueIc2sM8#$Ihb?=B_HfFGCNBpnN8 z1Z1|)wG@>=#179|ARR`Sby@H(Q3@KkAnAOwtYfcwePG>WplVGUoa&E7%|aU2iS21Y z>n%mP2#9X4`P_n#pQ;qLlg7UjMi1QPxk28R3tjPC-DjNg>zvRSg!lWPws)<=8>o&y zF+<851^nsLUuN{(2#awQY{Lb%5$2xPkIVJ2r5~nxsh96a3|%YIi0Yk1I01EhwenGZ z428$#?ZZA8(zs&_?1#1R=jo;b_isOok8w;s7GchdEnj{+fr1dfvh3Nd2wGyZvOVic zR;zwK-BlBQZYN=7nlq!`AN>s76m;240P@cs&wFygMQqw> zv&<&zEbl~=J}i3a!qr`Xo&DPFt{{ z)SV5XBfI6K;qKm@kJ}q*PSC~_go?~?^yQrnpWG(miqgDD z31Hj!dlPUSrpPB!7>iV%|L3n%V;Eq{n)-*WU>o{XGQ_E6CrqXI=$qjRA9np(L5i*y z9Ufb^pI*-e=YoOo?TPpPyRGb$$GW)Vt|395OOH~#LF0M88%S*0rDF&+AJF>rLi>YP zs;^NS`m1g#wkM)I#vhqG41?VWLJr>#L1-oTbJT`CHQx|^@a5}NP2)>_IQ_)5Zj4z! zm52{~4*zBJr6@DGDg(wz0qQ?bwi%%zq{(Q~D}g@ib9*ipY~foSf& zd*McI_*vXP9{H-p_et0-?sv!Hq(1cY@3CvU5Y!jX)%=&iEkuu-*bZ5 zD}e><3*J?@H0uznag0BM4C$Ne8%y&iR6h@zDolUS<_GkquWGOT`PCyv94WDimbLS+ zGb~cF$;34x;^oO*NGqu|zCRWsyUD&=kc8d!yf@Oo=ExN|v|n51rUqZbd_>Yz+4|C- z9pZvQ#^ftOY8FGm!+0J}eJ1^OzF8v$rEEmLq5G!-F>4|%;`+qrjUMK-1`%^%+-1qH zd7;&ox&D}eNswHD$+z%Sg_%Tk*BI6EbBE}P%r3I^{EoIC0yV*re}0?+IQixS9KqXL zUP}mGX;qWqvu@&+B~0IP(}Rxxu(?aGGS2!6z*xe|VQEy;5fPfE<%X+G$34m0S>02KQGrP&Z9?i)r*lF;gI% z*;EVO>O2t^jwEQVp(?sx<><4GwA(yhe+hvoiH7vYgdj;eiNKN6Z*{~I8{Vx8Pz^Ch z-nIWFM#{^sBFV|vN{z_TfvB6~U^|GxPzy&_Ym_ z+stv(ornE0lWjR>6n)rSNXYW?!d z+#6~3Li#4M9?h0@c=0UH8Z%793T#|WNv79;O}XytUuwu!Ht`@4$tm7ZOl3C#83gSrXfb1bX@=^ z>!~#XNYa!S)ZY_+dN%J-WWUEy8P#zW?{51@xYE$=smTpzr1t%{9*bV_v&Mk93=6QV zt`w{G`kVd?Jz5><2_wyL5MH0o5<7@_jIetj-tqb!v>g6LBvNA2xx5LOkXE6_HN6^- z?i?LIZVYWmgum4eDyuju>mCo2CaC&MpO_B|=iEjqw1E-o|FdsM zKXo=B&vJVz!AzaZ@aP@VwE_p}vM)5eD=<0w}j!vqjyM%2%Q_BC@<^4grr3QqqU zAmt_#o|zv1dxQQdy=fgBxVCA=Dl@5Sj9=-M6HoT=hF17?7A$)jP?8M^yMIRA!4QP( zFUEhkAZ+`!<2Q``ryePinaq=)mW)tsJvg6NAHkLIq^t+Co*b8!ZgIQhh7uYTL^{&@ zf0ofnL7ys|7bpGE7=3%sJxqisfnU)|opDjKFJ^`&+029Cr%;`RyHtn`-tF4GZ-3m^ zD>I8e3M&W;$UApb&tk9G*+JyP%I_iAaGuVPMF zKO$_Qw8?Yb7+$SPqpVTZmt$k@N-jgmKo}2ORyfR*%2_w|vzv3xav#}$)VIwzU`mfM z152q*gJ7Wd=l)Prq0zfbAq zCy19mUN@=ZTSaoBId$;%F3=-J4h`K!m|qdP!Y@rn_A??vliXwyJU`d zas}wW>QlcrJe;Fse7w3p!vzX_)YNyG6Q&9<_R9FXoG=gH#NLs{lZqw-6HTtnUmQdq zQt!OXTs&1FQ)+QOH<-zCy_&*}ao{@xI2GD%qVly%$ z39G=Fel17}7saLMCn|pF0{&UNhQvGgA$`}=iV}V^B+av2>2h^+_b+Ar5}Mx5&uM$6 zQ_HhKk{mOCM(x@ZdJ>zeA&^hr>Au+q5NJXQw#10`3loLQM2O|e@dtH7OS1(``kVyC z)$j7jmwO|N8-z5XQm*{-+RQHT6U=iHrC;YWQBtjUG#um-%e|v@H2_{s@P15CVs$^? z{^)2Y0NfN%fy=$e>+E9u{so_)OrnJiFN?Rdo=K|7&=pf1x18utqiP;0Lg|`NKDQgj zzU$^AWIaA##R*i%ZS`ZYS=hwQZ}UuZl}2_n_G4!q@r7&bl=;_qmaV9&Z8C40)o#VZ zmnt4k#_^ar#xXcjYVk{fpPcg3>?F1>k@v|iSS!P%Q*Dj}|6J|vb@92zb(St439)Su zS7+Yae&5lNg+1=YiUusS6sqtf-D^EZ5YYa(7)c|~`JwBt==_eN+Zm+e)~LrcdY{}fd6w293K(OywEU^LUB>XxD|c<2oP3Q1 z^MRq^L0L9f)%dNh;W8se{UDN6+YpMB#t4Y=trPl>r$JeXK0h?6Acs1gO7hZ^wz$8V z@-!aMvzW(4KX@1Tbm>VREik4>;_;vEUmF|GiZN_8BPb{kt% zPhZb!z&v^G#!Z!sru{w>F`oa8IFPv|Qu=`?H4^1Hw#_jm{IYu`I;9S^+)2=>X(oZ5tO zdK&Ni+RZZ_VR&)cYq9Dwa>Bd3TA9s!yf$R9I$XUbksKKx>MkBn3gnz%bu(zdfoZ+Q zbR4wMW{OzQt_y-kY&QGWl?r+5hd&d&B*U^=O(JY*HR^Y3oy?YBMO1v_y8gdYvsFTHA z8~tO^9Cg007wkje7r^|YCz4}@ayG8-JHKyDUzqE|Rq%zQXFC@u7DJ#${BX3Oqv?-7 z@w4=%oy&jZe*)p;NM7Krn4ZbJX%qv0Os@rf*HG$u%IRb7TRp_OZfQF)RQ6i-XJ zFA*KjKj%a$2;FNnbPX4kNmZis7^rL<{I^LUj!VTh@HfF%F$zmQ+8&GDLKn@h$O=<3 z{Q|Mt5SKsL^FHswAO`~|&ny`;{H68As;tXjY zW>xOS;ggIVPa224tr{QSoNImKvZwm0Yxi|3h_q3_T0VE?GobJp|E=o3zrrQ6V~)Zf#Hw=R zLmJ7mQ>e$GCd+r_yOjs}ntwjU3tN;90|lPH7%GyVw8yz{6r8$fu`9gnsFL6(=Wa{Y)AprA zW|%`U7vlQ-Kh@x?F&L)&6Ld8t+=o49J@%cxPov{4dK?i^Lzgqc{20i}AzAX{3#GZY zv&&7Qe5IyCs-JZZc>UKP1Yr2AKJgNi0+2oFH*eQPiEe)PCGBaxvry3Q-YS|ObFHni zxt!sOuj}%eqwB#C4X{bi-AsQ z>dmD^hFEADguM;0`@p1`SFH(*$%_QJ|4un$x){z*Sr$A`<4o6trE5o4CPNIcCd%ai zs!3*l$H`x)cTcQ1$iXYoA%=1_80|WKT zN_Z=1;9Lzc*0o-zA4%1w+4zxpYIZdKbd|m>0*~AfF7EXyno0jrGvXI(0_s}!d#+QK zgVa^c;xbtkbE}U8dk}o*isd1p{c2URckz`i8?bGH43b8fq56m}yJcb!9nA43H-3%R&Is8Mv89O!uAlD8UlLA3zm=xoDbL#JwZ<9LAgD!6L41zq#Ft=8lrr7EO zM3c!^J?vQIcrP;B+BT3$tjI@|D!$6bfb(XV##!O;M@x})26d0-`ZPiMpIhnVKAl;~ zRBG^&|2pt*tCl~L;INHn4DuyA)S%oHE6CxYc{H>tu?(R9xgqC{Wi4|iLPR%Hx)%CKVC=0WH~ zTl4@ZegC_Ga&6_ZX!EiDLyB@4saREPPuO$n6TH)EZc#cByIMbxi#9_os4esy>}4S6 zYrt%!)ON=NVnN)iP})o~9~#gbYA1Kyc$3U`g)Q1Jx0&Fw0C^R&Z-~4o5c+K?YvOO+ z`JNrTUHCF;T=1RP%XC%X;eGE1s#+V}#-UTU?1ux(y?t}lN`lL1@Y*f8<)>-k*JV1` zMA5K=z7U=Ba%9bbm=nqAY@pM*!FNa3wpHEd<`w)^fcuDN6VPHrhO2LOiaE0MZ*_W2 zs;D)HMJPo_(~&f@nzR#_^>giigO*&3yp2}0jK8Z&e%3c5m@_Iu&*w=RLZlPlscpz; z@=SvZP5hwHp2d~$0l}7mFUFIO6Yr_Pdg~p831sW8zqwY^i<5Oq&tvd8hL zF%@Asj;E)E{2dDfP-M#jYI1t0X297TbiXXx6Hl?aa0d=6#8^LX6FE1`xu0}U7=91;bHCtS`TXWfpy2+Rs5U}KdFpVf zq%ot~^;psIDyC~sw$N0;DBjueu2@CotK|zx(*R4X_ijTX&oSP(rMHnzdl~H^xr$3; zL|R9%Q@7u>2TTdc;KZ#mknL5jcM53A?>5pt#<=v2Kpk{V2vP*KeEy?F(3P~`GkZ+z zpW%0Hv(RmczK!!`I6V#VCi9$rp;i2(?2q=@p9)y9&q*cM!!~b~xpL55ikgn=dTdkj zIWB!Wp!ev&IB77LUiU z^g3BK27dcF_6X5&fyBy5Mcy})2?S3!PCyY^KvMt~e@Q)q<&nr=7E zMN;d#zg}k0TLF!LX4NNag8)1Og@)P#$^Y-_LvRtP$+I~pG`Mnclc%mn(->=`zne2%>F}c!KQlrt zH0_@5Yi2mV3(MTlcq+)Mb>ac|V`ybg8yTn%aOjPlJ5dq(>YV+QeH^RbBkpq$DPE`2 zqd>H3RA*iEyIO_0=Hovzyik*`f&EpdzS0BNSyalbMToo= z{eK%BOu84gYax@W_{&<6Bf?J!B=ZPc$c z^w=6={%#9C!qSVIpg!|j;It!3ulx+`%( z(`s(F1x^52f{slY=UdKh-jgJ|`6xgK|JMBNDF5moVV^HQunMWR&2-#|B<2r?vkM}U z;2;#-`pi|+=n$f_w9oxc@Y&rH9A^P?*ekL3E7-a7ef~V*WhBG9bLMrX^-b`3@UH!O z3nh<%|1A@PpOK+=8u0s#-nG#?Dyk88-FFni|AT5NiTK7QbBQxoCE{5_n5O-|ntV5H z8GFlv{x^v+EG0x4G|4ZRT;`Q(`CzOcrs;2Xh7_J<6f$34K|q1e)FY2Ej^Exgdg5oE zKt{~+3%bxhW26n)OJ+w7MEd6KbYLXj`UN}{G``^60Km5u_8whls>EeKydpOafJ~{@ zu&MO56gp|9te!Tp&7={pi3XIyqtk_7m$dcx1-J$eGoklP@e{^B;JDT3AwfineWaNM8&X-%y z3_BCPNm-UL>Lyl`*QSBj>c`pxi$#p8+BIadz>PZsrQA{MCU0wbj|mQ{)lj2_u~qx1 zgf6)xs6-I22T7x_Ca>gH_hGODc18m8%@(_ynOc9iXK8KmQF3=RY1po%soJPb5bS#q zMOf0&hD*%-ZH#XE@GxdG(I8tDl|Lfcw1N`M*MiwOQEVRS^I9Ti(pta=5(-~Cmbicc zVK*6xnfM%Vh{t47#UGn`2#r+%H`^XD2(|A}(K;~KB8zdiwKr(ee4>J3w1a^g$Bg*a zjAOz)&|za`{BxHP!MMF{zS#%Zyn2^~My8ujE7zMZmVw`Z&chQ)+Z1mdYy_?LiHr57 z^8-}R!xN}Ve+2?-qDnh-(I5J){3g|O;`!Sh7UZZAM9L@JA93?SWqV#n|AK>`$Qq$5 z%@6N1+_ozQ>Ua;ZsOmlHMTzRn5o;YO={|b=)vMvjd=C(kbvka)`$$peddzw%VU#hr z1o5ReJQz7ocW?!SjqwGyW2H;Nir@OvGv0hTa<05x$xH4%fse;gToRj3*wP`ctdAs8 zC$}HTRi+DGg;c@g%7GHv_N+_Nwu>rby3?nYzhB=*Bo-qTq3x<}%#XA@S;H)+V8_$; z#baHY$iT|HS4+hP(!&G$39eT&CQnkj1$nJd;Qe9H%4Bcqz?S|xfk!Fzh&2$Uj9cxZ z_+MrCy#^&Vs9qO}%#b}X>N|`W_X%FHLf!ITX<+@Kvp*5G`^Ph}*Y4JMX8!94@irv< z;?i(%x2$7>i`o*$DOK~N5zX97t}};gY#{Y7kJEV;63G?qU)dHj)vO02sI_Dm?2rUf z-|GQlLRd?-prYmiS*OqmuZIk_;(d{M1#B?Nu)5QrY7lSkfSRKbyL_jhh=p76F@CNk zAWp!K2S*_RYrXw)RIGeR?V6lV4MWu8uDX2aMr5G+-u~Kq#%luerI6C<;ddCdx_5Jq zrvL0#dPU*K77C!@`_k%7*!|@y9A4P21!xqwL_BX60ymrrx=bDOHmEiuVw4J8Ulp|6`45o+3&&rTQTiTe*q8TLxi6j!arDD{$eZ8( z?zeCUL5(r@4DCQ^X*`^SSdL>L23mCfe-@Na{L58UuPnPB%h$;G#N9rRCq8)))MpDEy#E(PRas5C`06Gq7j3E;iq}8e5a=on$3AwC zJD!bAgnv^{ZKW;U0#X_ltuv0*O~*Z$?!{S%XZ|T`3Z|`Y_?gLGLL2)Hr~MRa_NgT+ zx4H-9;}QePT=RUjw-Ah-)#wEb@Zc0dzZ38Py*=FC*DI#0oyAZfna`}61IV6D#4xtXc|@KR{+H5pn`{~aGZD>|^t7#5UOr(Km07+sLtUV-J1 zcQ1{s0}rV97k;;|-n+o4V16f-k4HQPjWCsGjs^CKQEJ?mBSd78sWt6b**TcqqqGT7 zs*EeBp<5O0<3_~-kgOZH&Q3-{#hTXV!Rk8!J}PcZ zCO>BHI)G2yWpdbSw++*;VZPI_+N5Z;{fzGYGrTNtCM>o;i<__ZbU`0=o}%1oxDnT% zS)~3X!I+M9rX7PDS{%)RZQBhfW2+p~W$3l$!#?Vp@wu!8x_5zh1@b!6VgDTHxlwLi z5J5A^0(d`Tj5NeoXzxC3x4>4^@Fp!Dvv~LXn&X(Edq=VkmVO~xh*+1QqaZ2#qm^h# zR{%G@H#`@r*MI)#esvt$UjY4k)UAK*zoF`Xoc~rP3 z?Pip4^hz>$DtOP?3q4DMQGt|3^a9!fB3@{Pe_r=FcW1c22Qqu~_P|_2e!h_Q3;Kcr zjl?lu;u}LQctm!1yrf9!FEW+OQkTS3N9)$GTC>|7_IdW|axdmV3++xA0PMK6nH!%q zY-YaA-2ZXRUAm)1ZS2>$$ z{lCaZ(0DrOeGLcmtLrw}p#t$p_9uEC4N|lx*XR3GZlswFqv0E2$wHE-FCqr}uZo>4 zOL`bYNUkswFdJhauKeB9Z!oTX?C}boIAK%cW#mATlBCi@c7L^tG+~Ef%PbkpMAvdJ zghha_8@2~=z(XRFo9jG#x=Xvu)Upu4*Rs*S2>JLUxGQh!OBMwF2Vsa04%2bF9<`E>U5@PrK}-bD^<&jtbk z*f1bH`@@A$JoseuVVem}Y*>%Z`QD6@`JS>|M6FcH?r(2dFd2$FCBKa-;$srS}e zd!UWu>`_LStCWTeue+TtMk->?0R9qe`SNQ6b}P7}@e4(c-C~AT21brU3*^dQrwuA2^ zz2*zKGj2N}Q}j<2vXo8Os2I-GY+RXReM!#a;CL5GD66-bI}DZi zWh$g74pa6-^LmCPH)T~opYm@66=x2-GV55mkWA>hRrMkxjb-yZX)0*5ptj7B%lsI5 zM+FKg-W2h(qZC{f!m=Y61w8YhfyUm6(R=E0YPST^;dK#xWxB!2~)RkJj z!2ml%^2y*f29Kbf-GHd>fStt2v;mbZUdDmc<X%WnKh?$pZggt#~|)7A8=zjR_IGMs0IccHUzlVD!_@tG9Yh(u~qBBweDC z`?&0KJ9nGKm+7~1N*oz$n&gXA5DwdP-b{79oHS;ip>0t9jJaR!hEHR+p5}#ZUL!Nx z1b}2r*A7R~+IP2RTaK?@`NwD_)=XJrU^aOY@xx|-Y5Lu~PICCeNDhx1)A`_)%0thI zWk!pZR@Ujc1hDPJ5x_FG+o~PC)X%Z9Z*dT`SUIBkILBbRx}f2vVEHG)HIT{XcSu`67&)nAHbjg` zudL5V%1kO~Iaxj4^t+-2>a6?d9Phq0)v0%I2}ulMsy#l+JN+_H(lW)}pShA6&-Lhb zZxVKMG@zEu4K-N#Fp&>XY^y&&F7{fgx9*P*$aCvHX*2|=b(iA0I}0PoD|Ym_8A0)qX)dkFy5H8iH@~ zu8f6}SOQYUWu2btC>B@d)o1P*rf|q!5WVL#T!N)Ti(?*c+ydpy2oAJ7OLlMivlM`B z0iU4Q3qxdSPn@OralLAUK57UzYdEt*sz<+g+)MwMKVy}eY&}f1JLjTMKwj$U;W!24 zdYLQ6_ovj@WclScal|0^agebZ<8yZ3bG;eng6*D=TjH~fRQ_{+U)HJNx{1%{sgxkb z!@BBP^5ZT{qVeMlw(uPqluSoA&eJehF2{&hw^!!FyUoh@?TlruPR3cDmpK7)6zAEz ze{RKH8Q@5j>{z=Cph9O<$$}Z@EF~(SRD(w%nBFWQg*6!V(hGe-j(@oQT> zl<_qYMOD+{{AUv<&429inkl6#swioo=?uI*BBrKP!EjEX#p$ce%qQQ^+C?8?J5}9|BCNDS zcg9;~!Lgbih^}d&{#Wqs06OlW3#ZB-fNi8LkrxuQ^#fkMbd14E^{||~O?(O0mzh+GtE&6^I=EK&)|-5mArx@-_|Y5O zo)T_IE~3BVFZGrYBpH6sp4K&Xe%5wut>tf}I8CGj<3ETr#snS+klA7isLKn!ULI~Qrfd-69AeaBk{J$7Va`FyKFR;4Y$ z*|(naZG_jNS!+5)07A78O9P+RkX1F6Cup;VQzk5#dbJ?)283`e@Ln{f99xnnZ#&!= z>_4Oq30p5im8S$Z^ra1`Dvq5W@?3k-vTq%+Z*ta6uw{{OR9|VzZH9HxG?XKXs7S8b zICxg^)3KAce^R3)h!ZMfT0!^*Am9ag#b6(m{atthWj4;P&^~E%N5VEL;4z)SubPTr zc`@48t{L~JM9L_2%qP8}1Kb|Dj5qVyYhcbs?vIc2ey&8+`$BNRzCcIzcEnOa6qc@+ zn9E}(8SRHKa&_OL+POkFEDj|@tGPMfo>>f58k6?eZgd!aW3DT~(@Nh69f$QCKR@ni zz3KZCrc zgO{!mP+3N4(U!~kBxchI+XoyOE1d^HSYC_m>7u7TKf%Z^bU39$5`}ffj%%>kh|NUBMEKhx|kTKB# z$eF70_@U+7G~=D+<5i&Cv_3+uohBzshSCq*#m#S+eH)9)$u8z@I*d~YswX6hV3Pdsf;&NXI|8Cn!ya?xbEkA%iA7Z?XB2^n|Q5NLZ;_O=po7+Zb553E&U zT-E353NFQ|7&BDeuMl1a50kccxuU$-&3(SM_Y_brdFyjAln@n!Qz$~P{H^8_`AATH zgoyrn%(4%!v2v&&Nf{HZPv0}+Igx?;ml1sIx>*#9%W#z)7^y9637>A~Fjpz7m&QLF zV&B}_Ogvz@YyFYpfNtfx3c1GTLaPyTpl^{t*6E;z&E2L16g7Nx$t^&uc#li5cGpZ8 zAxItBp31_=c>S?O#RBf*3nG$GE-{FR2x%wD`)qb~-P=YTqb@eu+ie?uSZ2t^xm0z+ zjzcW{%3;dxN~W20FK8RU?$8Pcql@i5$`oa!$t&lv9T6 z-i}x2{gDFzAX#QzGdztDaN>D(ug%SgYp`m}OH0nZIum(FJ6Nc;=-{yW-l1|z0ql6( zCR2SGOi9-j-6=QV`(&6+6kEo-3i1kgZT>ZOKI=@~)FSOf)mI1B6InV@U^4P#ER#Yl z>%G0p(8y{dUgGym!6nRGBEF-t2;%WJxI9c?{4j(u>V4ggz`BRvhH}gK!E=>qgo79f z($CVTG{|o%#~S%DeG@L>0_?a;6($f{&ORR|v~YlK<#rcr@eV>eeDY=F#N*)ved$faOlKmzybUOn-~2_J+3AE`{K>u zm|z<~;-5J6l70i{GzA^`T)a>jZ1OMTPA@^1_ty+=IzAyOQoT{-sd=2X6vxpuK$jU~ zZWza#)@htZ09GMhr@=1FIo(*(^`PPLLK%q_N3-&NW<%t7?&rehXbEfctsysW!z74^ zFeL8xgasQHE6+}6l*J=DR*lr1cag4TN?hlIHuv3adOAhny4!)Rx}=g!370ZTtt@j53kdl0#-8|&!zuqAs1*S@hBc4 zdWE{Cop1T}Tzs>k^m>N>RxlHp&tWH;6o39~R(jjdo_S<3!p_oH!M_oP|@|Tf8d$0S}ay9zd-!VNM zYR-=v<(Da>J<5gVqW|4#=p7b^4BcPq!NN$6*0u98q6)mn0eai{}$=U)7m)zcMrCq2V~?QaJ=y@GYs(>LB9voRN0<1V%%36Z<9D1vP=vzXXHt;-EC`3Ub{4p}V?Q_3?uEHf zJ;Zr#?QVfb80u&3AL3?^Ri37K*4XcZhSzUE9wIteGf7Jmx7H|GHIRP~^~wQRVfxD7 zk=Z(tE^4lYLa^Zn*wZIc)e6@QwGqf2LzkP_q$b+RoL`tVi04Faw9n7|ExU@J2oud=pREe`k|M5yD%es*^XDlP?k4(dZ)Tmm@`Le+dbsg= zm!Pm~>lwv!Ir~T7dNUI%!A!-V@XFtgfX&D1n&I+*hc&<4$5qk7%VYA4`j*$lX)QTB zUkI;!&%s=8A#``?oAP8uppwuj6JN&fwGrDT?B80x;xQMbIUd#Y`)x+m1345Lg5zg{ zLC4UwC;*@pa9W8JzrWl}KIIqbCrdFR4EDyt6~*8^iIGqLpTkl)f@_Ns0)JE?297S9 z68~Ex1sOgJMjNfmdOPfHcI=l3H$lMrRK~NvdeOu0$YbHCD|Q_-)PVCD-ih%n!S6AzAKvuK)=sg14_0Y}4=vzYX@N93^i0|zay z_-t^#i{bX9(#)xu4t+;EwwNE>%W`>Z=pmOI6RhFIiM-I6E=Wl;%NwWQI9lGz+C{$r&nx z#7r%i{x)_9IRmPE_zyI!y7uWee#<}dS{>=hSR_7GeJ=O^hqt%viZklA1ryu}790`? zuEE_U!QCymSAgIY8YF0t;O_1YMFn?vt>Er11x>y8p3!~AIG?(E+&{3#e)h9vuC?Zz zD^q^s4bka+NV$uo%D%wBI;4vLM*)&6QszI}w4Kt!kmY5JzX=%o@pK^ny#K54{_wWyg-gsB zQVc7*WeT~Vvm;yhq1HU;*5E(AVXrIhSzb0j;9mMNGxCYaQfhv`vj6tZHouSL$yYDX z>91ypS9YZ7+SVz@^k(OR`?{`49AEf-x*X*(9vrZgwoO$QZ`)YWB7S@oMo{TDH&n+K z3Ed)^OpWcV*gI_D={DV!p4qbnr!kzokr|-5NzBB;Uu#U%Zhw9kc~Tw53qMBB&fXl? z(nNIC*!~uTNI_q-8ON7_52HoQd!Chy#s|-67_A|yiR_il|KL}5Cg+xJstsC5>NHrt zJ8+HTzd!^gu5z!U?*t~|ygBk zJ4N_S*F$*WGC_KeZB9d*FRuvY)#M@GD)n6rN{YH=MqR0BP{&X(PnF|x?v5mx!`Ooe zJ6IMVf+LEZvOBeTl)>_M#A88~@-yXPZM?7EY+BH-_Ix`qZY-}wh)wT>EDU*y6qP1p z9{x_*#KkkdL9HhqTOmeoQCZb^(q+$~ERQJb!5|HeZ8Wc`UFEi`PJrVnxf+vA9Zcuy zy;wFm;dWNijf)nV^wwJ9=!ad%MyjjJRvx^6RsX;qSqh{GE595TME>cE!}}dd|;X^(><9F z>eK(cbVl?isDhDpDdnXK=KioOHgK2#OZdFmzKh^8x!j^VLy#g!6u*CeFP*!+)SuIM zu!#;ZF>HLYF&6U-f!~l^Qp#_uopskS?w{K0R~naqu(YRcPhfe-D@rSSK_= zzeG{0&<$7+eSh5>S86i6Rg~^l(mUK_plM;a+!<$|lxK1KA;W#?a4YH*cE8W9A5PH~ zeb|P!-O_;%0-xnON6joac3v^A{ky_vv?}pJPL;w(>t+pmS!rHeieBLlKg zjfgQz?!dYHLrCTjxxtm+p-!ry@eO@qsg`xwi1e+)`NY&zV{Agcz!FtDtbp~gr|+(#sn_4 zyQe)KeY`X85cU1~@TSV_eT8I5}4bvhkJA&8HD9Ts$_S#SUnurN*o4d8q|d z@7$4&tmLPx8X=NfwufTGnd&g+q3t5>^DXQ9Gdul3f?GX2`|bMLv_l9rE%!_Wfir4? ztNUDkAej)8_htR_D5A>l;ZFKW9jaqv+=jgDnm^PwHKyw_14XjObJlnj2A>v@k=Vc` zUDMV@UDUThn^_3_lWur4KieY}cS=YQ2!wyF*XFoL|DC(W(*p;Whl;L2CJ>Bdgzc(YaO1!bdIvj4!jn1CU!54kZH%^ARA5g1QU0C=UT>5Vxl1~|r5eK$9 z-9G;7LTXPYEO$D${ZEUr0$TZIFlLMu=qp2I*xNt6Or>jfc+97~v&^IlaI+1JgX3J7 z4;ggzWcVv$pnGDCQg>|k!jm)Y-%iNem%8Vjfd&hM;G;;QDA#5|F4dU;T;@z?7ECd5g%eR%>j6#_lM59T8E2y@~qTRkO0tslD zoTdh+{v-?BS9c8@tX}8PW}lsryRK4R0T*V3ruHpJDGf7h;jn=$qs&bGCEJDLkpM^d zYvCrQS6)!D-YLV08ZI1ns?V71H@^Jd)zHl=t!U8~BVP4k(o$Jo!P64-H?t1Z1msH? zptk!`LLM#L*K)6)z5^@UUxvy_BI@B%Cj-E4GmdZZ+>f85%xc8_l=2yFemwbw$Jyf* z=cIljK9l?@;>CsB*67QG*H2wg8P9*!b5REqh(xMKf57#{qu z0Sf*82b)iDhYgjI7BQ-Kkvltq^8-#1k`#}V4Cm*{hYYb~VCz&Q^f3E4v#I)ynip2e z>p-R2+;uQD>l44T9+8$`ru^v0#iie%@fCdcA4*gf6M7>1 z8WEL1)k!RdgYceZNSCCgwo0R(FL=V1dLofTkCE9h`ru7V&5jtr$40LrHE%is>Cc9` zo4&i!|IR{5?C2_rn6+zk*gcmN5OO6#zHT<-Ymj+reR7k+sBh02Zd|>Rp_xZB4hH$| zxnK|ktBcy&DY_|C{zl5<;c_$DR>ap>6S_ZuioD*+9d~QpaPFAz4vVZNiyHB`8bTVC z)=V`#3q(NE7noO?Mwu?J@*l@tO1;W*xYmx+t?r^j6*ns9hpn5m>a>)!fghUn%-v*9xJ81T%5z`kDDU0sZ!zxm`KoAlVJY{UM?#9j2j@;GtsLx1S z7Y=t4#OLwf)SEuHZ`0GQf-1~xEyDMa%tZ21iWwym_@Ryvtq-<9#S#Co6d3Q!Dn_yArX3)d`jslV=z|3m%vFw z)`sElglJcSFGmT4h{D^GEf!`GDvTT(`@Q5ag&25fbeGSJsAP28D?s&Pj}+u(`dyaJ z_U?y#;yQ=eS(!-Hh)g}blxXn_83VYrL}(&TxD{+LidRADk;9$Q1OliB9i-s1CH-3nZS)1yZJlJw$)%o@~|UFJvv ztO6WZY48XiH7RO)pdQ?~?WVrxn3w6+pEq-h zAgs^v^Hhq?+F!aRwAo|WM3=p85uAmajtN$GU`aA7;RD=#zi@^5XEvEzG%-Q@I`aZ8 z!qO$8obgDb$Q?hG z{W*XkM%Fyf(e2bPpY?{B3||kFT8D4S3Pl3D8V#~1#^1SNSI^vTiTZMts*FC`Y5>m^ z*5y4_X`RYxXIq{L;@WaMupXJgK;m3^{&#?U`g)VyQ-_s7#HY&V;KLt6ogR}Edb|uc z!6h+~Lw@o>8KxIK$6eGvH4~OCPb~w;ZRybhz8bV8Zw`DJ&Sw?Q4)X;cUG`hA4i12uB9K$&^P6}e>KuHsE;4<3fiZbmx(oW+xcAL zCN160POyxRld-I*mI<68c|A-$M2k` zyPPMfqaAM!CKs;88@#?Z`g}Mg>Of6k9Or*DBl({6M3Lnvf!y}R56iFuFQ+2ePbp~R zX&uAZaTxGX)zu@jP6#}2j&Q{HVlyq-^ufSdHqiT6RV639n=(r7+*}?E(&*_ln>cYWfMNgEq-Br~p~EKfFm;zSw0eN57y8+kLEd;k)hMQoZcGSJOBhtqKK z_jEZ23cX`BYS#0@pBWwWQtW(OpIS3A8n>SsLE)qeTZHc2y+CJaCk*Cv)?|WAIZyo9D{@zV7srcnqep(mo_%2`y zqVX2`zIoNqwJp$)J>>|_(EET@_AXe|1^fWZX%XvNrVK)Q{xm@{%>~N*AJiHEP7;Ja zdgQFbnexOj$GuobD$okpjsxI}X2oih0136cA(r+o&n!hcDwvE+95G~nk7><1u}LOj zv+K0IsTm#4_Ayj>v^Z8&fhh2ZSo6a-SfHvaWj?&I{d59sDx=uKY9s!X75z$bvbAwP zLzU}a+0~~YgODD$P9vpdz=l7hE6!wkQ40mXCey$F&_Gg z+A7$fGWWf1ZyT=_CJtZuvwv=L^UVt+q`DX%X$z`kcxGvtkb^<}jx~3kr*NR2LrAb&HeL`LO#c~r-BqFWZqUN$CCPXs;aFwW|ix`3(I#Q;o9VVbu zoXky%J}=@VubbH~O%inOX>25HMPGmlY*+6F5N70@Hc1u|5&c=FnI&kK zYp)eN44t>kQ%KpZ>#pd9g^;`C-buGUvf&lSCs9@0;`+@e*6u_68gxV*JPZ4nJGs_N z`2`#UqJNUlcmKMx-wN}c%%+F7yVe=r4lyGH0b-Ym_uhnanzp~Ur;)sQeZZN%A3oCv zOnm|~Rc-u2j8b-cZB~d~I$dJ%o=GHV-;Hj3#GjI%(A@I)b_;3x-s$c#)n&kQWzqVC z4MQg4i+(+X86V-KM%|?nR#ye=wDQCN-|wSR9*(AC1=4=^jNhK8F79~LIZpB*O}2-w zg?jn@-rv*gBIrTiISkXuDf1a<)hAGywnr(nPzMKUb2|Gn>b0+UzxLYs2~Pi9ZQxAJ z!GpBAC{pyMz66snSnytDHS47MMTu6YA41g5JS3eOu^(abpjMq=nbFEg5?C+z{GetB z4zLl@*UOi{sB&z^UL6s9rKofnpAB-zHj@#PaLWE185Um_W!r|98EA};61ZgvKeta8 zn`~rwe(_|T@ibl|DG%E}HR8aGH83uDx3!C8`LIlX8Ztg0;>;?$^#C($%&K~vsM9a{ z?F6b=Qtc(;0vDzQ4OOY`6V+L{*uQ;k0LQ~6njk%eng;yro!@-=RGr(Xp4DJAqEFQorm9*}^N?#&Xu01IV*j*wmP! z&w_W!+Zsaxj;r2zcN8Pz=xcn!>KJ_Ey^|Fei(>Zai=v{&xtH=8zd&Q%O;3T?CU)3k zwa;heZX9;)I%-P4BpHzypi_VE$7=A5AJEr{G0>0>M7lWn#_gAN|7qej3h>Vi_$Gj7 zfm6g-#Zfl`fu>cewig+;a?~d|Y>8r@EcQ3=U1&W$5Nc%g_-yOZr`saObKW$~KJh>$D6(h&Rt`mIr z=&%|dk-U;pDOKcgeof1CJZ}+8SDgD9Gw3iK3x}u#ZLk>61jF225)_7S6a7^@LVz7z zE4V0b69sl14v8p~x;r21)_Lh)I{Bf~g#Sur%Yw{qrNmP@j-k#Ofy0^=C4z!U0m6-Q zMY1n=fm$H-@U<2gjlSx3s;`fMknJc#Ig_s(Dg5xu*ko`Mjz?Qp_e&vrF?j7HH$ zY__%cNcVBJM0f2eo#4jc2Jb->VV{^dzhTKKb^H7MFalS7*p@RqxD`FY3k=Hp{#c*0 zn_U^5UwYaQT&7V!81vAby_R6^IsoX;(9CfWJzz%AocQLn+w_S-fN)4j>jh0t_9dys z3C@VCm=yHuKb9iO7n~g4Ubr!!R*|O9!D7-pJ;%5ASj#CxzbcSD#a#7&T%CK0kB9rA z%0E&UyAOHpv?sDVpfPsPag%EJ&kep|krtX=YyI&A1KW^VaEZwkpMpr+rG7~Uaes!V zx~Dgig6x*&Lsw>?Dev(Uo(+1`XhZy1>SN$RO@dk4wfOC~ngd8 z;UofdE!Y-$95I|hE)-jyWB)#ON|)X7{qh#X_H!&In&yxuR2*}ZJzC!}WIA$teb!}E zye7`?RzcH$=bT~KuYe|~wCOd}&c@^%MCkuZLIc~qCQph+a^yofWyx@ALD?P0XHoGn zfqE*^&8mSI#gm5L#)C$`tMq)hJt1j25B_H5;9QGal-xZ$gPGSyIJaA8@Roc+mz=+} z#*!*3ugf z|J*ZpJ3NJN6pf2}*#lSO`rEj$Ci9ALR_V4G;r~fHbLYr}gCenLWsW)zYl8n`mM_+O=PRywoYK^&SFxw*GHclyr(2e7o#Fzh=pQ({0Ko z_S>oYTowXOlo2-pz-i4QT2)Jt-QE=bGNNk4j=jS;Vqbn0aq9&sp z5a&DTv>m0|c8jPE`i|&e0D_7)|MfTf=w67wkhs)}B zCmq%@C~(7K&}RI0-2-0tHJc%4ZRGmw-a$&7}%`t0xOH2TBE5e z%MUWXTx(5mH14g)FUQDrs_*UqQm`MEaXBxi^b&e%wb_o#-fm8m*-e*osLpW8rtvf* z{Qw8d9kw~<%s9o2Z)g06bg6EqKh8f#mE%!yl47`dw;LT3ncR~-lxMnb8tYttmBPz)kEiDZP z=zEw#y17nvDshvIrpuGaFc@Xk-yC~pkS}!O+0pWi|3Oc!UD*L369o=a4zcGWqOKcL z^|4Z|&L2BA@p_m1s%&Q^j{aDsdVE`6C>e_Kw;EziJn9TLJd_BY+eOKx>qMu>~ z49d#r`O$$D2FtbB^?7|s0<}N;krX!jkwFW39tHE$4gIliEuV47ouApn~+iM z4S4wunaN4xCLgyWFKJ|ch!6xm=S~-xpq;Sk5}Agzvkfnef6jmvrs}3ntlE9TFetaT zIlgT^USHznwjpWf3CKT`PretdZbUiucJif}qCP;tm`KwE8XSxEr z)n1?F{v5R^PoFH;0|Tu1+gBB@&Al3n(=hbFB8geQz1wfkJ0jW8e`y2KlYTW+4%{q7 z42=~yTZRst2A-dWEw2$*W&Ab;{wTT<#%4dht}jeHl~S_TIo;(@4;)`ig&a@Rc_9!R zQ3j@Z_PKKx?1J4I*u-Y7Egh$pMNJ9@yfl0#q%LN$W#i_6h-DR<&~YBKPos}5s^&SU zI`L*zg0j8Tn`Oq)nvMTygc0`_|6`R`{wT4f_G!c0idim05pM=YpGH)m5iY{q?YAal zO326aqt3eF#0(_w(ZO)Lamx>mKT2EZUihm&xyGw!9Q_tylDTcSd;j{i5Xb$@NYC0Y zgTE7gH|@a*&lnl{xT`ei+_wspQ|0brRIb6KTgr`@Uqlmmy2dm&1ue2J6%M!&V70<5l*fLdlnc=x+79O z>#L|ME>f|#W@em$|9G5aqZud}`cLf@?ea>wALv3*~wljqVU) zQg!gp-O^aR{V&n&mPG;VK&(~_@s37QKjcbTLWDoFQ!BP|?RrzUNrBQhaNv8}K5nav zbf>2S9@esO{7Iv(paQFxtkEy-z1o4(qi(Xq|4ImkYdhh8a7XuJfWx*`*p$ z?7r{+qiFKWfF6Ct1#Z77QBzs;AI3rUGr_YU?wQXwXTRqu0hPd}s@9CHfU4oj&8GX7 z&c-`Xqv`^Vs$C=Z3`YF7rS$b%wshg~&)DK-_sgNuyn)w>)S5cmw76A1AoCm_^qEmC z%kJsR?+hpHBrn29GcCalma*vn61^2;Ylg^=dg56Q!@b|}2=r1Fu)p4$fy&1tJkyy; zZ%>PR0A<$logKbAm4@5OQV^h*j64*HKI<-g9+j$EUBn3LrcG4r?WP|zx_$n%=na}5 z9TrzCs4_})eIKAzb)(%5g;DW%SBe`?Jt&O6_yErNn2~rkqyK$LU=73;Bq&ZcM*h>7 z378JB)+yLsk^2FF+t&RpNaBKh<6ae%Xr_ljRA3@tMUyM zAp`6F{Bx`D)^$lCM@kd@WIU7#aC`xG?KQMGYP{)WRUYd|s)=2?*U7j}%(cF@a!PuDIpV}TcV4nDq}c*$6au0v<*I|AKhdo$>3hXZ)Y3|TY>Bl8q zZ(3!)^bgpNg3pEJKFO}&Hr=hsC$N*k<%?&GQ$mM z`CXUWe^H|9HmyczJ;_&+D=%25H_>6~C`T|LT%;}pC~kexKaBqJ|Fk;LC2sDN@F(_$*dqG-f?_$^AcQ^fH7FeekT5@cubrOynxj12Cnky{ zsSGPry1vN9-_Z0ju45u7xJ3Gs!k3 z6Tlo-3GNip30}qTxXNfyeayYw!%Vh==ARejNcXDPnbB+*RdH(|!dISk|BT)V#zS2J zjywaB+%U8OnxD|=QGHpt8^wX|6v2iT`v5aPAzTNu62FVl;W>r&M$Gx&SSa>Poa`4* zG&a|YpP}z{593!-t_I?YXSpYlC>h83rDS3x_*t+l@w)Tj(5TS&PY5~o3zP?c?h z-^G8nF=U!A;)(TVRf|dIXMHw467i;vUiwPsePJ{wo6t>fP#AUrL#brK$`nq96z9kUu5nI!_rWr6 zG*yg^mpUJTTJikuSiv2t59w6PtFi0ch2PBGmL@fb~u_aSApYI84US12%FM<+-&O#7xb z(ZZKQr9~1+KmG2Atg$G!XVR&C2EaLpd^qm*i7x^C{5#XS(m@SDtMZ~%Zb}_`wPjjo z!^<~B_X@-~kDe)=M4R}Li4w}36~Wk03GXfx(OLU&@$qcKF#k#uO-Y{~ZtilJbb3+d zOHFbnaN%4e`5TiNch;z^+oQ8+22Z=`g))5~6qWXgje4VjB9$`6v%kQRTpM(E; zHNQ+vUmO_*d`U~utT&7xtlv19yUwjG-kZOjT^4yW#|GX6&?0|u>Sat4gzWgU6cMT} zy2G>OZ5wcp>;_nPIGm4`QT{&A@f*1s^@71;NvA>i>%%Xo&rc#p+9G>}`dNBIXLe2cIW70Z?15-ET0-hNhwhxs`DSqk)f#?r5EjBt ztG8tluOnYf&kmt%dU#@g|*&Y$qxPn<;TXC+Pi>(wD*@c~NhEbxNYy;-``+EmQYYXgKMWbY{Jtky%49;h4#WhoTa zZ5YhYFd1`?t~zu35$78!y91Iz+D^H|m>pge=U9ZeBEVYP5+L>Op;|f>7v2OLm|Wj| z!W3wf{xn*#hItc!JIP|CO58xnz1O<~uw zh4G6-v$Z^3UgHg~H;C4Mv-T4%zE-=9VD4V`E;JSlaDqP)%)yeGlMAb55EV)vh1r9~ zXxfaPKZRr?+FnPn*mW{40!L2f(T5OL~XKQfH12gv# zZ>Rb7vdH@XvbHw24nBU6fB<$QCd&R}obaT*R~UY9rk|biYYMQcE--w%^Pl@FN^-x(gy!@l#;si8XKs=1Hf!TY-jlK){0 z+A8lZ*}qotR~J@X=AnNpod|)@9P*rvnn7cWJFx;bFkzNAyw(m0IzjhX(8csIQAS=& zk?=+EV-+i6gUwE~ooVga{Z^gHDKW=vBB#%;jTUB^o8kANi-X9lc5V7%1Vdyu{G>6VNg|(kWn$RK8VoH&LV3F?t_SC?R9Rnl zvG3B8;^&9w>Y=YL;HjxMLz>>dCiCC$p?pPowyA-?)-^6T=tm=J?F)0dwTHiMR8)*^ zAZ;>GGTs7hAP+gNO?D%y|4Zmz(t7ESc>S@)hbozy_Lwfe{@C4qQKB@iv%^y|obTzj zAk{28Bn&VGfDU5Ku%cur$rtH3vRg4CgRBrFUxKF#I^}HJ^UL$0D$yHCa-`^RGiZjSwD6GJ)oAWRU(q8+P<53L(1aIhr66l7+ewYMdf1 z{(dA=zz6FOCQ)Z43D8!r&f|3N!*Q9u*)!X}`rwWw}2kcuxag-9E!^kHN?kFZM) z!DN8I%NJ6F1{3OmSdM1nX}ehmjN3lHZ2vcMxx|{~N4ng9ZP(n?z+w9d^7_QaaUMyV zpkI*9(uV&DNM-TR2!15|W`GLNY;Fw9X$LrtKl$R*Fw;*ACm>0F&jMTI(1k1REJGiN zpZ^!pT+78V`49bvS|D-E*Jy#g)h1c(kjCtu@2hZhdG99DQ!RoEeZ(!KQ3{}j$e`&g z)}}V%U|!=A#<`*VUl<}z0OQUMC)4$>{l;OLEdrtXI!Hgt6sd9`uBrk)zEzWM+!Mab zUXQmt*?~>{k0oBT)=jp@hT0X(96DuT^LqrFcwbsJ)+O8 zxIKG3QAaYga=c{G)lJA?Ls=YoMr(z;1t7qQK zfxMo|8Kc%Z(#REG->=>j_!s}q>v!DPe^?Haaf2gsFEu4GhaF%?L_%$QJM$v!5_+>R z*GbN$H*?D4fUQw%_^)O@3}N#rWE4j|DQ7@aUivXjlt_OJla}Q!XhYpG?S{rV;Q8{= z1;i3SuiMIUT8|40UalSD?)aNnzRXYvc5JJCvOZCl3RF|hx!684ia1U&NvI+R+ARhL zvQB$CfffEvywnNLZ=-}qEB@IWeMaevxRPnrB|)2>qbaRif;qJ*CzI`v>_%j%>>+1K7a==j2! zZDGq5DkiEK@WHgUevclLeLbgNgipH0c-l~wT5ug+q*IHX&FuJkR*){m0&5H)99!qQ zr0rvb$ee?=9JjZ013Wn)=wnGi=bqpCCJw&RHxo8lcE^jtQUe6y{In6sHl@Nz-N>QS0jm7^; zpOveBe&W63IQa;2R60+sjxw=THYWNj9H_m0y}SE93WJ~9@J*kXxP&05Kko;Xya4sI({!~d_%4z$1YKxLmjnX(CKyW(~8L*SlVEeGoq2X2a{Vwhc{Gn!VN}}-47o$Wb7SDfF zI+VVS_^m7c`P>_x4e^S9$-XupbzI_d@GdK8awo&Y17Kg;tEbMxFQb3hYT&wP~ zX;!%$Q~Pj=)o*Az#+N>B=i1b&?mKSBgE%Hk2K>!A$>?me&bE~EyFmq>tVVW?Txz;$ z@2?fzHV?$^N}mK=`F_=L}<<231d=XuEX zcr=b~h8Ve}#j@z{4T&L|K%Qg8F{DqTZoX#B8nD@&RvQZVa1;N^yY@CG#Sl9!x%HqH zLZz8U?{?0o4RW}r6k5G;t2+l#|f8n`6Z8?Ap^+0m=Q|cdsZgB313u$5>Hu|BkjnOpy8% zeF4>WeEOJ&+NZDKG!x0z1Te_W! z5+{#YK3#+LblwF~=O)M0MtJeUWvrDjQa`BsNyF8-aijRX5@4)xl(L^vUze{Q*-5R; z-StiwhPOkTm>qt#MW6jf?rY*%^lvc#IwrnDVm>fjeu|QgAUD%Av3|qvaVT2if>VLm z%Z4YCos0&iVJk?p?lVc#LQ?X5A5ffN=i*Ix54-2uwhTp-FlE0tIMB&WcQRH-ki2^e z%AedCStf7K{;~EX;QSYZO%C0$iC*!oEA7{jsVlA(Pkm*q6}dNpuQ`FBFK@e8)-oR! zu3tGwfyxd9fPClO?tUK-!FVrg^=;{nF`zX<$B@@(vzRG6lk$l%FgzUf52D5&BO{C%wN<)$~1*gaJx_B>VKQRJd zG}p8H@X*T*8aELfCqLvJSRwm zM9FdaFXzcrvhp6PLi~QNr?iOd&b`&R%mIFD^6kEo*lnB|q!ZUAo|jrt3ap!}aZfFx zhJ|Fa)4a;3S)pyW``}Cr?VurnD}6TEcQG3UUAw0g{g#P}`xq;4D?niF5^xK8>GVoJ zgDWY9eH96%LplENTS|QoDT5yFHWT~*>aF+~ zFh2BrN0?E$Z5@JAI@!9n22`}O(96ZvxZ1s&!F$icW8{XcS$AW-R({HE1vb8%PK1d} z$D{R}za8>hr|+XXM0&hAusauYJEBPE6l~zRxPMn1TPXcL7XCMoxVx+af<05ca=6*M zt-=BF=^bf?io&O@p(PKCft`oxme1MjU&YPOCX-L*+t&1u$GtL=TXP>pWy1mB8HJK3 z4|ejn4${HA<4a$a@<-3_9j!*^*eaq^%%66N*Y9>xRy?Ovv-OziAlpL$U!N&cARis^ zP+nd(TkijVVVT2d>d#JiDfg29z3=h!L*Xwz-R&aVm+nU)6_ogNj$3u1|0?a>GqkS! zZhR-hrcL42j0uBL84;;8&T{|ww8f=t#?Jn47!{Esdc$w!=<(OxJ3$a~1k9!b;49V4 zO6{KvBTIE8LlvvrU(k<4d!c~p7f-NX@G!cYYvsYoun@|h)gvp>`S({HvU9Y3IP@)d z@gQ{tnn;xQm>;qWVH8<^bN0otVQ3xw5pxFnW}Q)u~6kt76<>Vv99;&|gR2 zNq_<&IWNz`Zz(+uF@(6=k;Gt*!$;Xq}lM1Wp4e9I%zOjrTcy7?L67suT) z)rQk`Z}e(+&SD?KHui0o9_6oKYB^TjG~&!R575%x%X`*rdo6Wer3dthEP$dy7^;}f z^Evz!qq2C`eBEk+t;mq^{-6a97_RKfqNBPBK8{495P}y83;VKOOq_3gsGlQ1FIeGJ zkWCRIczSx;o}YpAVQ{n?(%`0LoU-U3b9ZKJRY23@KvuP3xj|6<+IRBu@T4T=x$s1I!W4YVU`@hVtRPFl zMJv2o=QjpFk!ieicBzDUU>58??)-w-N3wf`9XwRboQ1RGd`G)Sa6qnvY?Ny$<8=^u zf)Y6X{`qE@f-o5T0lGqC7I2_5!2>xKu4%$njML7@lTi@Y-lz1w=s{`deTc7hVG+Z2 zY36TJd(XXoxyG%qi+JobB^hxYRm?U~^=Fay%h_UA7Vz_W2X1gV4f=+;#*W#U^kloX zzU`!sZ1aNMG5sFkPi}kElZwOg`orJ)_g9VTr^0|$G1p;>>1c0CaX_NAvVFMh^aqrMh zY2xq`*g#uR_PYA2GzU&|Vmp#`^&SM@AW5j*tZXdtIz4bfy|JV##YG^;5?0!x8M~QF zY4&-2b!|+BCGlTfFk2G1`=NsuZSA0PHZrXL z-&!THD4;`Z_{+a(UC^Y790dmMLKAW@k5fNk`vb;K`sU5dS3LZd6aCFr9=yo2B+uuQ zaaG#J!HH6-fY;%`HNJbxtK0PT-cF8}S1CjZUdg+JmC;(UB!l7q6xcyC01R?=S);%? z^l4{0c4`+g-zs7W3UI^3ktrv;k*9r_4iul}61^&7ZV$(&@oawFjVqD3|MuEQtJw<) zi9Eu{$;&p|BJub9zdC&O}Av#Q!v)+oQLfVuGi`bB+_q1LH?BuuH?=|h5bzsABdhPO$VMtd(lCLkCg|jQ> z`KKuKLkppq*93FjCJy(|zmF$g`Bvk`pSb1m%gd_f*4&o^@^f6%nxqdRMLXIRFX7-@ z-pU6y{)|&KJ6ex9F?z9=XRLL9zTtD`z^hM=2#sJ6=UO-gHz|z4m&-3-z>!M-J_6>| zoG9_@IDx(GTzEg^c&(jHYrkgvo#n@b&p2zbkw8q-^B-Q7nV@R^gBAes6dTvY+7=Pm zy4GIMwdt1AwyA!>(A5B0OML8{@9;V-rl^HS8^wQ?eRsL3CM|3@HNQ%96`NVy%Rbqb znPYcQlym>X?)}mFa&!ygUhjuRfY*1rU3MZ8ccqLh(-6BAa`1!XVrYw;r@yIxwc9#^Zo>pGxCvn)QaY!aa+6S9wTT9U3l8zg`~+d zM0#ZNUW`04nIB9`*tw?a?zqPErff{?Yx_8g({1Yy4Yh&H@%JJ$7aQJ3pT9~GT^ABq zi@@3Si-@PCe$2PiWQ{&NM%o4{vrj@lwJ(Qr|3F$5nvL3W z3<)b<;ILi3i9yI>@i`V=rkW{mdYqEa{LrRrV&PLNk8|&jkmHV7$gi4REBlxg+OqDY zxEV>Knj|Kzq3!kLg&xCyET9d@L~i)1+}wJ~+jWt&=F{ZO_WGreeN*t_I@etZ+9j(7 z+FS0!XAGnY9M#7RGt9UIu?C<5CQ)v;qnB+?S`k%osvd~@N%^~UHS|g43{yqcUFTe} zM0Ub@EQ9ImYkMvIyFnL#vaiaUdCCm4wNn0U3@u2+L5!@)V*O(mr=b`KXRqA7p}V)K z%=~DzuSt*$9)S<>TV2sve7q-eF%z5LGQ|^`XteFu5<8#QFMUEzpJ~6hZGMV4jH?Ja zzvHO0#G~NZc-Z~slDT-3O|*>01n};x)^!^9JhWB;7?S5plbP81<&_-v8LI3Xj?~GO zecz;z-4Ixofjtq+eKsscvfo;v%UXx!sw!*+(yS2FfIlDWSgqs{irG2^i-dpwJiwd( z*e#fzEn>8J%`zBpQZ;6DDu^w%>Ma0NZ}>p={z=H?)(rD?-TdwrA`_PICWK_<-T4ka zcNF<85(r*nV6@o%@D0gAx`t-n{$9g6^7b@7c!-P0?hr8|RO{(ct+;aoYi38(1CKi~1lvv8&DJdHeTnarArB1ryVICHlQ#w)dW>2cf+&@%P&c zOrxarj$>0!J`~0=*CZv*OXa?(~F{9p8!4e)5#GmzNWk&Fj3&?&A>va)4GHO=rE-U zif~E!ErbDrZobz=4b(#D_wRi5o4E$Czp(E4ecOpiZj@+fMC-~jN)<8XeABlvM!2m1 zsM=s?pJe`{I}2eLN@?=Kdh*&3`P%0NC5g1WXkGlakW$hEJlI>;~5qU(~{4-Q6U$7|EEg?Gh76^?eNRenKRx_p!$UbDy*dB}M& zK$pho;9P`-`FVxSPs`-A>eL$_$Hp?`Qti5D9pw z*4|C9%@d3NI<=MibCPTPL$3Z9k^-=|B#z)=;6?MQGwzfZc7_=xSgwLm;z<9Huw)F0 zxn!hGxPnM9ufkoPDf`8Y^VR$qKEt`z^p+D80fH(;mL7J-JZB2o?3ylxkor1!`1ItQ~=A zv1Qd0vgE(Pg@|?hE@R-gW*3u*%biih5B5og1q)aY)?YxLfOn;cxw^GV``M!76qxQF z{s%<50smSQ5wggAEXM@_`cVd3-$4;V<>shMr37AoGAgVE0De)MZpcK-Y?1%DMNt<>$F$ChTiuahT5X66d?c z1-2}sCKt-7Kh8tB!+9d1KL{t0%*Kj$@c!@?x3;QZ)Zc5v?yLYg;*14V{Dd*1UcnC$ z;x9AS49H9?O#H8^OLwN^<$UUqZS0)y;K(p_S&U>-TQv%u-rTb#mFT9o@R7}`+ZAIe z^vA3Fg(B4cFkse6!#VIRqAOo6C)bf1BlFt0n(LlIPw7v=y`6iI4Pj9Sb2Hw3+QU^M zqa(s}edFoewByzzw$S-JK7vc;v;QcaGQMt1B4xu6-Rpf-wYGEYnf|LwrX?(LHHSz8 z*g2K17MA!l0L97b?L0E+h*zqW8B+yg3m#zpB}=bY+c#ybjqv517Ix{p^Bs6F>wXhH zFP&L!SM}j_G)iw>eP_e>h>UUdqm){v6Ga&}1wh)9*`%@v4PivP3kjOukca_OX=~y_ zlpt5rRnC+z`uPGCkt=K&e7+;}wT>Byp@GDYT=9Bi?_PlvAk^Gks!}?0Zp~k;vn_kn zg{`KDHK$~YKonwxQ=P9rkKW+&arL13@5F*@wWA}D(|H=}>)L0K^oga3*NMTC{w2x< z2jSQ8C9jCrg%hRSa$o@O0yo86{n-;+f&9KDoE z*!)uev5dr|9iKS@IPzz4$!9RQG_)(X|9stVlm2UD!V5|q5eVGa+2qOf32=y%(n)VBxKf0fEjE{Ywlm!Uuvd*HDB-_YunMEr)1W3=Ly zG}3jE9H&HA#>>$>@eF({f`1X8vJ>5xhV&p(J$zt~doLQQLzAJ9P@{<@9DRGdb8Uq~ zlStl@^Pigc#YRRi!C$G8InK{ietTdY{rO|_+2OriLT3M;!Yo)J3(b=u#@o45n>@lyZUHvqzz>%` zuqWCf|L*N5#UpgUcEB$G?XX8FOxaU$RfW^al3nq)_B5AA?4(Yam}U`1xsbK%t7y%y z5Z0E(XI|^&$vxnE>F${Y{5Pax3G?k+9ug;7A&*|LY-n~zMy0)*jSH!l1M#=C9P!x8 zmtk5o?xp?pg;X0Eb-MFhX_0E{awkjpx$MkuR~z15eTXirWM-<4$IE->0=cbBY30Voo!^MRsA)*3QSraL73S@e z%tZuKvW2?(iGXIOh#FzR!G9Sb*8-zxs1P`$70i1QNt~tg&u^@+FCvL zpXPg<5YYcE(jM@`UN@N#dsTq2Aa^g*C+2H^@;^H#VeMqXjql7wM(^Sh&$Z+C8LlDg ziDydAewOCOwe#A>UybP29+b&%u*h5D^6a(wyOw>eyBQ`FhJEj5|L_!F0^Nn$ELFZ? z6O;^^nPh$(CdDFfk=uauxS^5{XyGFD&H?f|X9jk!l+8ltxbWCv+$hl>5 znBrRIbgsveF7Gk0DyQIMid#SVtF#2DvX3?&g*BCu;y|QhUMwlusD%Ra^1F>AKGx5( z1w7)m+jll2FXz-`*2sqITW9CRCB+5yogCKR{ucl+R{hQA@5e10wa-f74RZ^xkw&r{~)}2fl z2T1r`-2P37!7V+mK<7*O1C3OQj-TCZE5v~&)j>ZG=&ghzB-{8J^Q?od$9f|YOs@0W z(u^ALX}D^hY^A?-;TAi4eDp$=ZX;!Kt7nCI@!YF7uEQ&ijG@>SJcAN>d>f>Tw6VcH zrR~msmS{*>@uS8we`H)HPP)&@wYyiheT5ds;SqbW^^o<$x`pZdfb+roLscHBxIU*J z2#LIoB8^JuF}G%oh|{DYqk*c&`1fu-sBOoBEPM3;z~_`ous=F^qfMSNDs z1+PA`ou|G<>;{{(Jd-Ys%1W(weI+~kB$^x`6BMC@O}}-h(I#db4<)u<7ft$xHE`Dj zQyb-lDFR

71Aq&Tyui(mtXttMg zs+CJa8!zrB^$(;(3yFth#R#<52M&D%Bmw?kzq}~boe;)w@2U>a+yy*gA`{U!^p3kmwL522shKX8mIXvmx1LtfXM`f&7Zl`W#)11uzjKBs%O^w8p) z4G-C{*CVTywH5)T+aFQQ3K5Jq-`axMgyWb-N&>?;vXjm-YcOSB90E=QDCYF`nC&pB zf^B^teIo{`mKS~r&DL!56ej8S>_An5YWH=}HUNysNPMl6M|P>*soD;-8EN-Yb!b)l zNMN--Tgnlq&iIgZCl}>qSie50=x=E^d{b^I0z9dk(&KK~@{@*q!!P{VZc$0LX`EqA z{J^}Jh}d<2b`mgT`z0rS$opchL$scs>Xe&~-z@z_&te@AH9=PnR9Eu7>P1>5XF$)* z>p*^o_Df-!6h@bFAI@UT8J-!KY9~K=>`4=$n=cz8I0f|6{ZgKEF1|XagK(&2we=+n zQdfPmeK+To3!KP$ug_~(ZZ19OV^R0`oJ19n6H_k=j@e3LyC33fl61@bYD5A z%XuA6=sP-lKZ0_sZDkO}s^?SMYDx|8htxEWsN!)@rxnOxL3qDA-{%p;h`!S*;(PS@ zdgng=k%@)OHa|1r(tc1<>ydS%(Tx!Lx{R6w%ojJhbPM-%6#sW9>ECdr|EC}M0n0L$ zk3arRgFPSIX2YPYO)=ul;UR%Psc=cos|ym!O(xfQP=2YXr@M^#3&lVrpt#2$zvJHH z_xZ%kf<9-5e2??vNp#!4WmD9ZRH?U)OrnQDugai6wA{n{of5H47EfsBMN|3sf79Ws zE(ewFrv$Gn5nwpYaACFjggK0E(#J2yI~o!)qlexbOMl}Kj1U&cH+&d>_zz$TMXrtd zxBnBOA^v;!n`gmo{$0r;iyJI+Gq^;P<5+%mVe=_F5Ef9>@iGKq>*3^7wKW6F~p=hG)WAUY7-&;Ua`-; z5oMZ%6(BraPZvc~a)|w^Ox1V1czdh{lx63xUtC8knH>J8`g=@ny!DjjEN$q$%~#dV z(;&n#dErY+qUs|7pbl5@6eDf3mIZG1`xI2-PM-qzjkq0X$eXUrYVZtL)HTb5K>Sad zf}VEet)f_r_{8(z97%vmg%V8^r9Ubdp6G2vA`hJ>=akz4&j3iy=n zq8B%v)_{*Gc)d$5UU-K#EZ;r$5z{_vG7<9?u{(yIceFJQ`VE68 z?%8+yHoJS4Y8Av6v1hALDx0@cqWEQ>a7kl7$4(SJ<+)H?Ga}=`a5?R7cdhr|*0*ob z_q#@B-GH-QvKbPrII*Fe>+M0VEJNt00kbwbEi$naz(^XJc2=@(;*!{(&*7PiZYI7a zqN=9WYSJGJZOCU$vY+OYBn_f6Np9EFr#E_sAyR_Q02r)$VL7s2xVc}=bb@D`A@kT^ z4NQ_ix#kY+dscy&UtiNL$9V3zWAv<9u|l3%s8LKe_RsaiYclQHuM0QgY)5(wReSnMlwbd-}^rzCb>=BmldiH_j zAci;I>!0HE@1{dT_N$-hPH8@{&nV==ww%@Y;n^Q%L<-71*yoADPUSNNWE((9Vy&H& z_F)8Z7|a~smsz3Pau*0m48hT4k2}hr0yZMaz#_!0OS41-4jA?r6z%q=AptCmV(g~i z!%WHw`eAP=UoC0j3;3NfNE)f312bOefOMX?KhD&f#OBjS3BKZRam1eY=}a|#z^ts7 zHf@w{d+s|LW9#^NBJ-SbqR+uvL|Fy%5-JQSt5$yLa^6=d5%5}dXw^6MunPe>7H~lqk_603+)Z9NSaxk+a^ZRdQf)wIEINDNn z#ShGHUjbIV#2Fq$3mGRgf@`GL)n**w4wfi|(Pcx4x&j>qFtgL;&m0vi8p2}VqzH+$ zZ${T1ULcXA6w3?Ki4taXwu3#|Hg6hxJXkmIBIx^R!pYj6F2a~2b zjD}Mk^AJ@`c)H<8PZsszm}0FsR#?i2E{Vg_!z4 zP{u2Gnfv8FKhEUJ;CE3FC=3or6N^S)w|Se&57cIXPC2rS)Z2 zUYG6JZggYoNgS4>pV0N7X%Ex#2cernc2D1Gjn|uN?nY1YTNy4@R<5u}AkhjJZsetr zOt9EC81nGLx8Y`8FdA;fl)>#IABn@N7TMzy**&JW^W^&g*)y0+6R&mzZf z9+c%=k8mEzXc|XX?P`{ZX&m|XvmRb+nL^GoD<54s#GAc9!7XI{m%Gp-Q{Z=qa94M- z*Jl{58nVUrm$rA-N-*onR|CD)kZ5`wt@7Fd`Z;AuN!WLmuuv^oOPh_Cp4WcF|JMEF z<}#Ae-)}8y3U6R4sk`p$;oHrzre;Fn7$ClwSqn0!4cLQZCig`14o`~rp-i0jP5ESs z!=reCAuti9KIo-f&?*jZ6+N`w1w1)q-6~bc=(A0KTL&tY+i_JzcrC z90EW8Mel_FZzWUD)HZiho*^zWL(O0cE4~+7#cR*LEkNBc1~9HE<0zeq_T9P3=%c zp%C5pR7ZVTCv_QMNnb3JcuL_pzCO*diSWPZQkHI5Xywxk@^)Sn0fUa?j;%gR!Z7UO z>u)`G+7v-;TR-;1ZWU^NUd_4sdko|9(e+7nGVn=x!E;#^arzA zuyxTJdFs`9r#ynMv^v&&k71KtjHY37-ALs7{Q^zX(2F0%)#p0fdUjVB1o{9VU8J4{ ziry_A6Sr56K{bB{JwQax<*43(o4Uq*O?NS*Q+TU(?;)zA;cb^o@4^F%@EY+Q=Vzoo zQ2-PsZP5Ju2WM;9(qR_DtPniY(3jQn_3}~WS1qvi%)*yiVJ-+w2392FO+ox8~3?O$1C0w zvSSW~2JI9zZWsDfshhJlawjnvr)N})%s`$_)?^N)fm1N^2Sc2Ix0Ww;EQ;<%Qj3tf z3!ii>nrY2H1vGezABtIr1We=eKgjgNvWl;$4RzR7t{qP}Q+{z{?3>M${s7mx%{mSbbgb3*-P=LlEg^5cgE;4cM`vLBoHi+55mu9Wy@z5 zO>s5lpFh%6!RWoC=Um!b;X8jY#xsoYqiT8)-e={R2{T3AHFnBOO(o$W!TB1=^v1GB8mwE<|baWZ^_A#_iccMz(j zT{!xgLexa|@0U-TVONm`9ovyEeybOxx5DLmbv|4{4;z;tmtD@Mai>4tv3H}3?9GSn zW<@>~@ot~=HpiM5`AI8(bSzD+v-V{X1DX4@O-vnaSSEhAt!t&pTfwkgwFJ49kNpta z%iG2(Gf>3=d|I79#)Pwr{9Nl3LrHx!OIbO5i_R_{(ZUx_XJ5+>>3WVu=)!36vkT)b zGL;gAhQzGs z)?OUwZJ*^;RG^rm3!k##*Q~xpDus*wlrf4n>*L5mxBS1e6R{MnJs7s5=W-aEVMH&> z`yX7O2C4|RHnj^Y;~n?j^wwKK7ATgtUxa7{&LO8oR2elKT9T2c72W~sa9_-RV}bk- z&JN3Tfw7+})qdz1U7*MBhSt$E53Q$kxy59{o)k`+-GhkPP0Fv8vKDmwd`&)6-P zYOM;h8ZDWq3KpFHDtPFOoH5GKz#c~Kx&xKst5Q^BFR$wa6^_{~-(c*p`uot6pWX_U zAB(c|@PY6uf1W6Srbq?tK_HvzQgRPpdv32?c1yygL^Ak;ce@+zXkRW6(BzVe#2aUA z$j;1YmPcFM>9C#poSnoP)+(uD2lFC#-Ae*C6R&T07J6ODn6 z!Gi@6i4a%re5&Jaja&5r_Fh_KU>bWjdk!PU#a7o=3AZB$PDvY8%f*{epWO~u72y%j z7#y{>Qyo%y7?~Lk+7MxBHQ^#vb$EPJXFW+78-B6 z(6Vb~`D*jD8m&IWf!$sCf3L+Cw|uB%q(k2~RY;m8*#4hvDgWfrOj^1aDgc;TO?Xe5 z8%|<5pN1Wokyml+*3$asXld>Hz$L)=QDYn)oD2{#d_{)wsY|4Mr(Nxkm>gP*8;`G_ z^L=bz)qUyje*;R*4N!aKR-N6$f&aULCPL;p`8Uhv#-TybY7V241P?X7ZvNDdn#RZD%@6Qw}4?I#YJtyPm9& z55_t$!rn+|urG|~iqUBq#W%%hb0U+A48>%(A;a!i0q@Y?O<5q=L;kg}()7MpMlB03 zh8aeeq(OAFDOR30J%}+2=ExSk^zK<+xs{FF%?`O=u>mhQwFI-4vrlYQ<=V-C0Kb|!C9Qlk>jR6j>Bj10lQUJGY{c{DyFPbL* z;Q8~g>X)W$Cj+c7+Ve5gm|hjJ+;q0(|BYP-{vuxU5^Ax@gM#ukPA9Rt)9x8|qc`b0 z%+MhEJ`bzo+;b4#dTL!tzP5X2e>Mn@2~tyw)c+;(kDPqD%}8*f zX#cSvqgx6aYP8)&)XG?hno_g?PW;eUevhcx$~hDYQqgd;X4H<-v$j&m1#8ut#Rg&N zp$_6jH^}7mtL+&>n-nuSMc%Qfa7!PsmweheOJ^OF^8pEv%&Vs zRvT}F3c4Z_Z7fk?+Mv9A9Vx&_FrV64;=2=HZhlRp9=_16ne`%ziIi>HKoaT0H5zWyAyQuBD!3!vk zTStwrkyYhA(--o(>www!2-9x?5hMO(N7Vk~MJiq21FU@)rnMEdhp!i=ch??4@)pGVI^HEa*L_)vDy@NUVYu^yl&KFqrG&qF)JgpGo?Nfu%?zp?exC`* z`C)mDQ);&9J=x~^2ZQ<&UdJ4VI9{3V7k?xKf0UX!Ou@s+q6YX%f=$&~9nyP6 z9W6yX5+C2oQN1?3i8^XW_>Nqfh#pUtrSP9vI)haz#YPl!4c!eZWmvAU2K4dI+{y~nfMa6OL0s`wKozpzhwz1o6$fDDO@5luOvp&v=d&`lb{5K zu4fEZ_i6dO`$g%K2 zVHu%{WDZGb=WjgW>FObjC)SywsXqF9@1pgwVdM4uGpJJ7uZ)*zdllJQXZpxkQoDY` z>C7c?FE-s$@1B9aRHEW^*JAO#!6Ni)uYc2t7}AsV?WQm?(oemvz#gK(_H~A}>FpSX=jNPA@ZTHgVsf7PIRLb)}^~ zdl3wIe(me|8;?-fE@H0M^B))2u*|a+K^G$XoPtQ|AJ(WlF4k|?EHvgRmzx9pPQIve z946bTj0QXVu{8G(XML%G*11J&R{rR(E_kn~O3)}9S#Z-qaleSrTtj};IlK;hg2~Tw zj3!PdH_6V+Yl3|CJLjJ2o__-FZ?-aWYTaPi*)Ca1f6&P!_*u)V7p)?etaKaGv2Y|Y zM)5zr62Kd~_E}XJWdu~c>pELiGn?VSU72e>~y8IM=u;BIv;SgATMO40TTO=X=bG8+&l8?F8}qns|lx`*~ZN@(f|u?GL)Y_ z=hVPiL5(O={!9Tr1T0j-4v01f2#W*ARws9(@6Os*)Ho0sh8^~H^ zix9gx2wxfzn^cjRLMCKgqoTLJ+_L9K{qKFI&{Tm;*i(+8?Ox4T2;Dq9iRhXz`;~n3 zg+31zwr!T6JAdztDJtR7Lcha?idrnqzO$mYQaKGmJ4y0((Za}!u+W*?Zp=1KxOse{ zh{cIoFa}^!hoRYJ7t{=oI@62kcJgO3K^O8$XpHQcivoaQ6%a$QH0QVEY2Xdk!Y_|b zI}5m?+!<}AW$7pXi&&JG;bmkcX%)!UGF{;4|MH~3+_o8x&EKeSJdy>z9W(ugWAk>C zb(XAd7Nz_xr^61|;bY5yqg-YNJ<<)|FDwqEuo+>|mHil6m6|mElb8p3@j_~2HUm$v ze*a#nq6Lm~4Cr}qs(^ce144#y+&f+!SiGjCzZzqK-B0#p1qgFCI-R=2&uhAHv6MdH z$PsjfzL3*2n&2iSFMOc-@p^xlZfKFF@(71;p}}D>u%ajnMCW&Jv`aJy8iQ}VgWs zIFK+afJle$A&JX~^SQkTDFA;lzh5nFF~pW1f}z19BMEMuoNVHAFni?YutM6$7H~F6Eq;QF=>NaiL#P$jWHz#}g zM@Kw~I1BfRLMZQeZp-$WVM@?sBuaW@CO)#+Z$=HKMHoSBCym~DiB*q77a+^?8zqHr z72H!FKaxd-YI$VtA<97$M%BT*C-1)p4)?Ijsd?^=|45g7vG4G)-pN`;D!iwHJFO!=yZT}K#KAnRJy-fpDVo|_5=OA1tmQJ*{+c8WJNtU5=3lWyTyl%N+r+p}0F?Dzfm)kJc)!gf3u; zPa2$@ktFYMcT>`n%!Rk(1oHvSXC8>jW%Nv;Let{5dfH^RL0F%Ry~MAXVVhKqAhzoh zuWKe?2TvQwxC;xtKJmar1e-=cL__{Jtvve=NxO3~e-9?>vk-w8qh0Bc zf@_Sn*9*pYnMuCxOxWRHqR68}A^0H3|>WCKNiv%8&q z%&j{kbFOmnm_qmGP}_C+Q;ECf=((Y!F(gZ>?~+8tv_+I7)N1~IVGvG) z3g||N&C=M8l_n#-V=~X&3leTrdCCAyF^OyvUgsVW@rt2a+VtB2nf=Q|3R221#(lj0 z-$FjU^lh6ysTuxg>{p8C58@1b^+<-M-&cp!%O;Uq&KWh3Q3TsAiZzcI>s_|68;ysi z?UpjOQVvNdDf93otOU0Y3Wj%C8W?*NQ2WOHCFv-du~7Qe)V`X%!ran8=iHL0-Zk2PEiQa?6emsEb*uK1C{40rLfASEea4vRld@j?W#u3B0|l$)Cog zQ`_e`<7(co>_OUajPn{d$>HJ_sxcxQTBCp<=|PM1eg3U6oM-!|Gx4EkZJ3~5T*SmE zukX^2Yl=p^&sUV6go_4 zD*hGn6HB%Vq1Y~**Xe&uh7aXSrr~c&LS_WzWeWCs1)Uj!J~MImhFLA5x823)#xVcP zxUH2ps!k_iJJ>YNBB@84hpoz4RcN32H%MtS`H8>07)Eik;{or#l5MC7u=nG;L1IzB z3)i|o5%j~rb39 z%1TdW0ESy9KLHK*4)El;U$qi`2-!{IdkHm>N0yAw zfpaBi z)J`eMhm_$ijyo#yQ7)080K94FBje85wWM2Z#)i$(QC3r`v2_f-R@j<23zVi5Dj@+Yy~7D`+9_L%lP+J&Zk+v2s(Va z`!_u5DE1RETr~`IIARoeW?(G5R^~)%Co_t6&=(fpKb#p5h)AEVTaqAEeT42df7gep zg}B|JA4ZMbQG4uM8%x9n$32GFD$cE6A6{3z`3YS6SNfFeg_s)>_ zM8}w%pF}}@rL`OBS^g>-j%~Igy%3TTgay3+4{vAv6xXx0```pk2u^?i!QI_8xVr@j z4#9OGxI=J<0fM_bg9O*0!QB}g2In&0_q?~xtvbKms`C%*>fXD%*V<1%>$4z~hPzQH zq$EaxRu8HIH#dKQUY#=AQ$!q-6EpBvm2r|f$`wg-y)cuJEBZE{364%541jheMc&byMU1JY>BqYv1$gTBvnCKAq=^84Ty&1=5%937goD4-*wu(MDf=X=slOc$!Q3NXEwRteT&wvkHAV2p{gdTbor! zfhzb`a=7$MhIO!Vw8jatr#`<3CcdaKfZ%ow#fuUt4+cMUIFv9tzoPqtCRRsqg%@H+ z_j)E`^#owRtq&W#M;Q5sCi31b-4@k8$wFsOml(ACH_S%tI`0|$z=xQU6*4;7_zWUT zNQLH0b^PX@gSm_zuD`6IN9c>*1#O5TJR9eARcK#30;8(s_vac3b!&r#cmsO4xs-@H z2;3e;4VydY6NI?B_z%1{waRDRasZZfzEI~G;+*+Nj?``)|7lZ_A?58yz=o`ORR(Et zM133>EOp8p$dph={>KSn7!i+$1m72?ktKG0CVeOD$<)w@p#-H--gnq4MYr8&L_=e) zftX>)jaSzVbIP-*Lvi&M>VbE_>0|;pp{TBcy!|f9F!n*%%L1C8^UW01^nc~U|8*z1 zdh&IIS1}|H5hK0o;+pcXugOJIspydN6+VYON>dh%(HB&`pp%{h)j-p+=@JM(7cDvK z;kjEz{W+=1ggS|E>PBFX(jN-vjP|Z^K5{`Y*e>YcP?aq0!1#fS;9F3oXpsDj`w^dg zHKBCqZ2M8%uTClZlrZ8~=I7s-!9Ni49<<+VW=t$dia%(#OsQ+kgq&V4Bi#qr5WP95 zUzaA4Xsr{`1HzpD%2e^NgAX#9lm^UvnRxfE5RtRg**mOb`yA(T45;;5xTC&veu^Z{ zjXp4kixlqiXhV&^=?jIL@O)Pn0DES)V`0E9KNkl=9A3NJLw(GK64@1}; zfyj<1=YHpt+i+tWSDu;HD`=9cd%;zjne20=;rEt+ciK2q2CLT-aaV`7DT5#IluK>4 zJa%Kc0Y;+*HD4Y??bP0>Jso0@&NATmH?tcH8^sINJqeL(=^zZBWkL%%)E?zDLGG-f zMoTD_&GYHT^hHT4x-TTGCAo&>Kjnbst#v}U+v}bS85Y+LOh5RHxc9cR6~5QSVH@#X zARcQ?`(S6flcT-g)9`bJW}fDxhoHwo6s6uQl-L!_7(c9SiKXbIcNc72X+_rW)UQ5= zjKu3|@1-zJWM9L~Ov|+pCU;#%N5uJulmc$c^;oWlWUchLc_M}ynXTAB{H+m zYh(F|C3x9mIpjkr<@G9hb6%GmX-)k~&{#mUPTwNd0=e>d3nY2h*8l0qxQ^ST7MOlgT=DJc zx7~u2_-aY4Xvc8Mo#PlBZk4-?AFsum!`+V4KvbeL6T|BMzA_D{5S5tDu<^_#kakT~ z&`ge~zFJ=FRi#kvF{$1woC;rRV;-OLh46|`$#Q|d+28Auy;vP0bfUPjQT1sHV|cG_ zvlpSII>~Rr(a(?vn(vrrjYKY_v3xTRd%?DaxxRV0lZ)_nTxu1qX&HH^{*n-3kz%wt zg$XB1*H19BSBS5Z3yW{7Ib@Zj`<4!pX~^Tu&5&2sUU%>HPxT-3%vgiyyOacXOlouf z0F&|^MK|40dOP75BH!h=)*h}QE4wZtzV8`zk<&Yzlnc1Le}O1TA` z8Q_~bw%1B28K7Q&OaS8;1N}gWIn_k8y&c@OU=zLZI6<*4nD#^!3zjq8XWZ#4&#%6f z&@C6ODB%}FYPAufQfY2}a0%+0Svy7?;zhI-@4HewF3nfd;hCSFJri>mZRH<)@yJp~ zeTSmvxLM_j1LO>yUu-eL$$a2$TN#BV(Hy-k?q{FdJZH8*Wd$2PFNZ(g%I0HzvjdxF zU3Rl<4g2N)MT8XAjUvRDZu^Q{5k1Uy^MA|r9$bDAJj{zO2|9c|m$nbMt6~9Q%Kklt zv2_pA$394T_;*W`h3702s=egxf*J3V&M2zXWm<;O^lz1SSmczAlKTz;J5NT&FSI9q zflm_;PxShR)%lOt0$zZ3z7`41kz+V4ANR~w{jN}hXA8=1sm6NoxW8!S+^kqyHrkfN z`~C}jpoPouwVhSO#c;)xV9{$*0X-;Gz6xlY^yr(b5dvi7tX9@;MVp0jG9B|@y`8F; z<=m5ECRC45TCiW?{g)>SCC!5KF6vD6E_Fx zP1r*$icz$=H9oaM+lqs3|0dvmaQyvn!o&u^iR!GO49xm-q|!@Ve}3aBIJscklrq~w z6PFaJ=EMHsidkBz;?XK7-UgjuA{mU3WwSUO!OgC$$eIlpwIYLhqVBz}uaShvS?hj} z-OZs~U61+nv@OGMrmXoqtWUk^cl(+!&Bw3Iz}zBu7sY@tC!vs8EQTFwzoz+#6Xjkt zsWRD3G7(9F;9h4Jdhl)O2Ae||MQbCQ?~2f!_DyRoV-N0&dEK^^_E9*TcJWVH0&#rL)m1D?oq?)X7@yIpqAC3#rJUJhw^1Gv&L z9@~O@d$Puc9&sLq-p{8admj}DfeoZqP`m8O& z3uz;;@$lgYsj^y)RZ2lHeX200>_guinVQS`wfL+ei<~aGSEHYZW|>4E{}Q7y9W`Bn zg{{~LuQNrkxE0h-Ld7rHV{XdJ2ClSgNzgziJT*fdtC22#K64&5>|OP;n<)}> zPOED;IqZ_JsEzuCG}Ttk=PnJi$<>-+T&_UPv*+Z>Wq$R?i=RBRcnF#)`vrSd0Y7hd zHs#xP61q&@jyjR}`b)%qHJT2*H*ORNAB#8Kq znYTQ&U<|V2I$Tr<`8jUkU|n<{(DCiz`qM&2*u$8gH%BBC1W|(_xYOyQ!aIC!h9->zlE1a6lvH;k zo93%!BjS1yP%W?uH;9lLkzBsEKF`dONt;XOfwYwSQ-Q2cUwIC>hvIw74c0Zopl%)$j8Fk|9J%;g9P7)aYalgf@Nk(M6#kh4tZ*2AA%`@pL4khv*c$Tm;4~SThypI!xd_;xd&l$%|XX9SddI&mC?mmOe2hMuN8h1tS z4V1;atI)4dy4{uXMb0mJffr!VDB2=sWYY9l3fd?V4y)viqZE-X2|+z*{R_Nn*wIX| z-r7d^Qb`laDRgrYPk@UJQsF}_6Lc1$w`^{DcP=CS5W8P*PFf_#(3GP~R@>AJzFPo> zldcJvMR1T(Iq`(M#5XpB%YI3VuB4YQVYibqfzjur_5K0d$qgH6hiP^%D+z!GLWMdD zLv2qAe;LM&T_i89hI)L9Fzy{O2CKF1KJ&GneHWPar^Zf4^f{>yx2x#pg!o2Y2!~3u zNuPZN@D!!Xo6KU7?6W&Hn~$X!i|hFvig3ev*(5e5maBxI@vA>sr|_cb`wqCNC{2+L z*r^WI%bW}*GNI(?!}$XYvEW5@E)zSD^Iq?=;#4l5CMr0N0un4``Yo~Iss|2Vj8Y(d zFB+0L3zUM=r2VSX0k-VIiB+i9pz;oc!;JI(P(}-2e-6veb_wPy=6uz??NIEbI>Yzk zp!qyFH`xs@2k0^i=CGUNCULT@thWA^mXjCuYU`=zwK|Dd{&IZE& z;4RPcT;_J4b_!a-i(mQn{bN*@oT6W1Z0_V#tFi2(&7}HT->-goF%9kJ;l{dz7sTzi ze3#Nj&MNIM?h+37*qt5<1p6yuuYEh(m7Ok!C-?k6UF`&A$@_A^HC&>j^c8XCSIO8s z4JYUn6R^!S(Cf4QE0G#zHViRbib}nrYLWGGolI)=ols7Y)G6E;br-_6T*DxCyq}DS z$THGJ%>;bSD@Lpxw#Wh~4E_12Ajmhz-&>$=Xse%Cwg*g69yO#ahtjyS@5(Ar<+L94jA2+#&pVhw3dy>2R|^P*#mnz(G`e z&@KXM?4G~Saf0W0Ag?U^vX-DXD^Wf6S_f?>Rx!5Y4(SV2fUooYl{QW{C6X7!)}AIT z%3srGe?DVTOsDmV^|C|~pYii5(&vt7T5w-GV26K75Yd5Ln9_J!F9I$li7h$ZNw%pW z`FV<#H)bjXuQAQnRC3X$AXa8-P{{cq`O|&BJyVUmY3{fC?)C0y>2Bos;b@Qk$evJ; zXH{d9|DSu=t?4(J*2iknPCgFW|_mqpt|+Do5CPzMw%a9VGATAO_;Q&Y3hao#{> zi8@aVR^$ymgb$p*=kMs&$5zOwS4X@n!eW2^c#E;y89LCBe)+S>zVXN~E!g;sQI!aX zSj15(YCfRCY>>p_)&jv^xLHCvecOE}NuUOJK6HXUyeaC+*XPjr$ewENekp&gMX?t! zTK<&1Y|JP4*1eK9G?O|j`rC7laeY|5{q& zC2R_}j*no#p|{eEZ+Mgc(A*K=*8@@-h9RZCXuEM|Oc+k)=1`OvIqOmT=HN6KX z#a>a~-AIQtG^&l@!;O6ACO0*mTmd_yh-55&S7}bboP9dDc{u$R;QAQ-Jd&sXt0lD^ zxsVw_&T6itEuT!L?Wl^n;f5$xs;)qi?)TYY;lpG_dmZ%u79oehDQF}vm(^Kfu>52F z)8(sHGc0+%tp63Vur~M6^d<ob1|kb=-X7dp=c*%Aq7X# z^lY_4dHU^#NmHuS)p*1gn@_Ab=gfj6CBoM5da4FJoaaI&cYY?q6Ce@tFK|;dAl2WtI&+fg^n`l5mqF{XLDcmWoS!hm(TOScEJhKw4#TkK z<&Cfnj55VL9O3wd^bCJ#zP4JL;CHb@hg&ityYW%MByTL1`RJ1Xb2BPTN%3Av=4X0( z@#gg_1;EAD0vs;qFGcze@^!%^JA}fx(nMP5jw#xQq-`@MQry_Do2>Ik+Qu`Bs^uSMC~0Cbj_Kb1mLI9mT%UH;6lLa=NcDTr-8<3w1XGDoF>zU67sAr=Wv)wfhc|iHq z8{Zbi?w!)PnXIfwJz@*c}Jon010d(W2v%b-7v=5cPD1jQI%zu+F-q~e? z7=E?n>Mv70jxvtf+PPfLtZX{X3$S z5xQBKt{-x)-gd8wHUk!avKN<8lpK27t<&MyJ?1~N6mwJR5ML}gx|{DW$8zHa(CxE; z9`vwcGf~W`%lr^r#ZObxRA3D`iitYIb)XAa>4KdD;D)8t-YV3@8Z08o^&1Si!^lV* z4zED+6miXPzdH96op-v%O1_a+K25wF^eeGI9 zC;XX7wESlCLY^^gTtmTmG;I1i_X%|bOOl-0V=Y~_Vy_V(Gr}TElKgk%aup~d53_%5 zvtTCoV{1I^Cr;$UC5$zmJDOqyjUXbb!5@SxIJ+NhBLd0qTOf1I(adOi^jir@JbfQ` zwYb9wjkI$nUhT;1{iTB{(VQQwjz`yi2(y)OOFpA)+i+e#A{e$bx)EXDLbDKXhty;El-T}u5gic#^V z#p=QcPCoHzed6^03p*G+NjKP~rU15;^|Pr|M84kR$;axb;Rspuo^2FH>9#Qk^@?Lb4bSB*78K^dtzJiX5hEN*Yw~HEuQSCNu_ERVGZ#2x{7!BM!yM5{1?X^@aCwpXJNXvS`pK~; z=uInliIMKB$fq&59TGZ}a6`sG);^^O;f&diD`cD-}HblsNoe5tFyg zaMj>sHzG6{Luhn3h(%(<5}p0=%EV?P$zExm1PL+qJT%?#ghRa1bf*NlL(rH*2#?EI zLrPS&<+GpDKfQvNqT>V^Xn(a)+OKUrqXNKgOwJL(%9qWwMcWw|sSSaSVL*zJyTpOS zh|erbo|yF|0+P7y_m7fAa^2X=Mzt)z-*_6`E={l!Lx)y3MPk*4zH zLtY!ARxY31efb8iUUeff*xS(;VT$4q{+hcS!RESYSuKT&%rt(N{E0WscziN^Y^p@s z*ETBF@(K!qe~vPuuCi{Wps+5O)e9lC92t*YuuToM#@w^&(3RZECwNLlhJ_JlGq_5en)mg(67?K90d-l6? z7VLrC8t6r4Ex*}MEeRVJ40@^iPD)(NVoJx)0T9Y6ww@-qC_axpw5XWnvT7%oR`E;r zQEZhN#h5q#(+MNK3!ALU>(>~;H?7kK#ERL^214GnbUux50ft!cbC9o1Mx<+G=f~Z3 zkB>#&hR(H{iJxo;-Y0`M0oytG#^lBGKnT7s}t zu?uw>SHD43Mu(xBwN?@IFIalGNQO8_rgxUXXDIyG{1Y~zTm036a)tw_uAer)T&&Bc zuvXi7Nz4c9kxx-_aWmFpmJ8>Q&uPq2I9^1x&V45O$6)1IU?lF2K>nID|a(75^e9o zhnPL9zJAxvam^jQ!h!by74o{%PW;rkeuMPOjyQw7RRw}b|IL-37bTxiU`RbGxLBII zp1UL7H+~VBthmMtS=kHhfb5UD>W;iG^S!qVn=c;O;@=MRR&w2) zzPs6WJ4zC3-fmKIPgFEHw-NJi$*VPl44>Sz@QWWB^#aGXHy$55PL6iXfrV3A=N4I# zz@4%u90xzBP>#-33g*ua#lu?D6Tpb{A8V%P!72z`?~OsA`!+9HP_eh<@`*6{fVb(x zN`{Ch?siQ7a_GwPd@P<-CR{_q+^}CdtWRauOk25Z=PT^M{qIoOd@fR`!|vA|K{b&q zE)5!$*?_i7R)7Kt6BV&uTI^ATn7PA2(I6Y9SpQWh*wJoW1rm+txgbft!G&2CCFNeL?OKz7%OdYV+XG;*?87dlPgDKi~Yse9N zf@2O!R5Pa1^~0DGuaDcM5`4dBOvkv_+>i?`vJ(EZVK;Y;ga@{^0H+Dy%(#o@=!{r9 zQq{FK9Uk&L%RDg`Rx_HRe#;U#bDX-p9FhYxeHNQ-s$`=Z#GBcJL<&F42X}j=uV3Yp zLQl;#MM)PB4@QIY&?aeRjKd|;Yrrbd7W3>&EHDHm2iylAJu9Jn8cM1II@j_PlVv|6 zw~6zN877Ugq+yoMDQ||H>81|3YueNi{TIb3rMJGIgpBVl;gHKs)TRHMN5$l@W^6mG z@46(pr;!*T?}B<<9sqJzEjY(0VhO^AhPVF@&OD+EeHXUFuo*>Xe4b1+Yp6>daAdzh9*sL`F~rHYwkPdrV5GVVYgD~#RPw+BA={aW_`_Hj3|)!AvsA$meIB0S z)WOdch%SFz$0PZea(zO5eP?}pB{hvw(88n{G9cZXk~Sg_wNxgS5EpgJ45Nilw+L5XeS?pr zn}8CNdn*O~)5d?PH7rL|X?*JT5~wae;j`UA94tKZEWe|yQ9XZuJ(q~Ok#PqiH zS}WZB5+k?X0n#(rF7!{mU)%h#oE9#Yo@@|3pL<~8oKvfNCuwOrELKBpW*4%SFP~`{ zAByW{Yr2vE?AEtBoz*H!>@UG*&SOHD_bK&x?}HI&T3XK^Hg~b1LE~j$i{DEjj?J$i zR5Bdfa@Zz-`tBf~uKV%%bZ?*wU-^%@t!cgpxzzd928D5ye3dD_omhALNxWJcb3iu* z`-JQdq`sUG=aL67^gEd1*>xyT$;`6RzLn{S>J;Ykl{gyM+J%gR*;^R$d zSabS(Q>_M9XM8-qUCKUq&w8{iviy~0*du>0)f)(Gy7nP(Kzse`GrA}>;g6-9vfxZ} z+*95sDj-$VDGW^aEVXMB7!O!@ULv!qN7hNey~RhV?*7QnT&wb%Fs&~5WSfB7zh!Ma ze~cd0bHs>5=hHt$oS@7q+pPwo!N1@0Pc#&`Ea|c2Iw*FO!Oc0l6+>@q{NiH!5a0f~ zWN(a0vO|!Ydr<&hBmDxTItW}xzf09kS#saj+tirYK1fzegHF{~bg=5I z4Y*%zx#PxN7V6fHK37-&Xn} zPU#B-?qm1;rZCIx^tpe^f#`S>wYB`iqzl4|4t`3SxT%S1Y_1y`yuf0wS9<@#c^Q>}lJ;K|DQ}5E&zx$nC zqOIl8fNtAy#A%JjsG)_@-*B56~ zkkO^>x%x2J-aymne17-S0r94;^YsGA@6$!{UAv&oXm_Lim&f)Qyf`u{xMTj(tqd}s zn(3C1->qL}YihRLWAw>jVt{9=C3#@6}b8-0*FWL=UnC<2mngB zVAx^T1XNw@mE}MYZx3oHf<`wKV#bB4)oZ@hH-nY+a-gs)I54V7Ozf5%(}T~`Z#EAw zrXBvG5vFy=OdxsW_uK4)c}3%8_y_yqj@%@yyz&uDObd3X7-g!V>ns2wv-H<}GKti! zmUSbo>*#>}lC$ljHc<{!Fd_J`x!~L0+%Bv0>QJJ=8FS6C@aleYiJ7AgWvz~6s0%Gt3oQa6<%5xvfxXqBg0z0IzUoWhqYIzZ-u{M8tk1@CnVhIyddpUN zDua*E9m8Mm5c!53v^A@A^WM^TJTizRoPwrr4vhzT_7@7yd@l6%5*{g)uL;!_Yx}-> zUF41|p5Q76vxNf2`?vlSU=Bt9*+P}J(@LAzi2iN^XypVXLVpEvxctjl6$Q+xmE6~SM66^rSr%Lp>9A8vFa`J9rA*^_R^9s7X1QN| z@5biYt!|usIftq~^NT5aJUZR-CVh*7@zVqI$BRK~^PJ~le)-m}PvpwS6 zDIUk9loPHO^;_v&b+w5U0cd>_^sb6vFFpDzo%A4j9l6FGSKVW-wMyyM`yeuFu!hU* zg;6+LA1xTY-9>0|3+JwgvhTRH2^+nP4wnw>>`Mx(8tYo9ZmV2iRu_#f)z*z23y{Au zCUsxYRSq;?j7_AWA&Qjm{PYQ}bk9_8M3Z+PxpHMP)fwthdl@Tw-h59uu4y%RV24LI zu#@Mvc@LkIJBAdBVUIrmVYN7%2&hMz2+wyN0*1Uc7d({tU6Q0&6E7MEq~rc8J7drT z=m4Y}It2X}GpPxFJCKhqu=?cHf&)Yzx1{RV0DVBdyxb42#)85B9-O@fDG7ioQV!1i z*T06U(J$uhNB!>pJ&}t2*<>{sPIGGy7?W9JBXaSsC;-?%WmvWW=0_; zN|^259_zRYQpdyie#9hhB7V8vx+Okrx@lecWFm8MIdX12Xienw%3{RUL2_eEt2Cm4 z{C{cY4%ylsQyX}B7L~&rxXCapP6;ym?!<{0Icqk}2I%!`T&vF==*8>cbKk=3w~Jt1 z{`n*um4=#H+P+on8G5Gn&G>*m?U(kN=R0Ur18ZRxk@81amI;;tAhdzLruLV1Iy#A2 z%*YF)&nT_15IEG{4>UF>nSxY0h+fg9E;3EzvWMip>G<3JE!9O7P6Hg>UwYt8XsF$tCvxM}l)1Ej?J651f|@YluK3bYekHSRrg=M3lnZk$nUts{zBex8kY z6QJ4dPOusS8!x9aI?o)lMT~2qb28LHg?-d7Nh#jL6yuPk4@BPXla?x=rFuc-TsQv# zMGCB_OCm05`5o!FvgC*xZaYjY46P({c zj)+l6+8TRC?vK2ZYPBLnnVzF8tz3pG14^kMcL`s4|3yZ^maQiUW1!{pyeB$!p$C2Q zB}>%ZDPU2f_fZ@(t8ONf3A&VIPqecx6^&&A@7~vXxT~5+`2IoCMEMMcg68jpucLbz zKhKK}UyJiv4$iXkdSCBMx%eE(p|aCIR~_2|x9bm2(IVu#eXer=8plIoA97-YK#B&r z3PVuGQv%ODzxGd-exYe5ZTi+bEe!ptIHJ5%kw{jhf>j*?M*fW}6}I&J1hY;x9Ru5+ zyL{;Pz0_Zkfhnz(QlnFdb#)V;X@6m*0jkCc{;+lHdmr7TWwrer;85W;`wlIL2knt8 z6&k`FJa8{+=|%@MUJV`euu~S_yrlDB&0x;0MqaEbMhi1H7O$7CDpd!4=DuY+q3Ezz zJWsEVHnvtW!tW9c(Av4)+rtfma)459SlxVcqM`)T-p@0?M#NK>5!uejQk5DWUq{hu zlKOtji$k&`KMRH=LKMxAE6VwuKAB{q%o0Wsqy)C_b{+hvX__~Lc^CfBiITm)qYj-J znBQLN6XY}ndRkOu`nIAat&V^}pQpOKG#m@fW7*>GoC_#1_2G|tC!)nth!KvBdX&PSf+Z!GBb)4r z%Gp_&nY0!IZzuS_C|VfyG`l@=4VjD7*LTKN*^%?{wVk>uWCYfqsNC& zVDo^%Dx+jSRz?K=v%MY~1WpNgHkmfRlbc&=itEDdBb=?AC{(WYSk2d@5res$c^hZn z!@pTs_T^HU8NY@5cTdG?-uM1H1@6>vd24?+sa3q{4>Ot5cHFOil!nvn zduwBdAx<{>v;dxkXhz*TgV)(Umf_L{$Bc!=JQ^;y&B2Y9`B!X~IC{+T=;&``a{m=} zYO+sngcGG&!dQ+X@_TYWX}CH!Y81VTaTsqLBOM^sQ{kyca#SsIbG;RW&Nj4(!7jWl z=Im#vR1>#OV1wD0anW5uv%!(_Q{+r|*_o!v=W$+-Bf$#i_Z0{Yx>PpyDc^n8cX`fk96Q;lK*$MJ~=Z85iZdgDkM?mKG^FB14cld{!pwS*ToP|kR zcbzPN*VeUKmhRVaKw{#$>=B(;`NK)*hTbxV|2Pd{3~ppK(92`f1#e!CCo)p-?TjOg zx4KoW=b$(|tuo+9@1J7dfqwYkj26A(0HdRrc6MXD{XWKt9RJB2lO^*#Ykyh!&19ST z{)GN^@I(;CkBc-~Ppe8c+p*v(;lHEslnhVQuE(hDp{O3S2(i#~mNcR;Qo$kca+S!N zxvK50wg0cNtw`zh(+1N4Jq^U-5K;re4EgVSLzfAyPJSXdz9GJX zpzgF5p}jd6^~+qq*CxN-ZLz(^sUd1n9l}|Ob&^I>72mbY)jbNNkshNGF>+ zcXOesT^DmF9qtC5D!=crgiXi5*g;FF?@`W=``fL?fiB%;FIBqx8DsbvWk~Dr6RD%M zduwNOJ35VQT#c*EyO|HTTwI23NE&rFmaFBbET$l%%juBN*K=+nM%U@<5wB(D0jgb; z2lAoKIltR6NhZ5s1J{%%@{G(h`Q;$YU}w~Z#@Z>8wf4#N`KA+1ntrE=^~`gQzk&n8 zs2NbJWhY_m7LV)Ik>^)!>09f>k$CENr4jAT*I8J^v@PU8S|pHxH2Uo<@V;RQbbiDx zLy}olsrLvs6U*T|`8U-n@zv3ouj zjXq&d{9j^J1QR!qF=%51Clq}81DZw^<$Vj!#Nrv%c&C!i{%`H|Om<@p#?vxL&Q?fv z#<{&o_lJmr)oeLbS|2W8;+PBngE`6|tE}~b4O7gV`(a_M0jA@$CaFdRUY6=e5V z#%l%piE&Zn%iZK3HQnjwf4orxu9m?&jHnXW@W=KCPj9`{!+WCG91;zUxk2D_xQffo zOxo$#yv-QE-B}8i50lwid#59YkkC8qzj2f7|MEuR7H)Q$+e$optUFGcQ|v2!{y z-jcb}_R$lB#i`QMX3_EpYZ@&+94cU*m^6xP&F6!3rP^>~gJhWNBqci)RjC{>f%_a& zR@vWU^wa4)!e2xZ+ft9@Dsy=$)GM3_V}n8pSauaF2q=v$gpYnj;%I+jo4nFY~+kb2(FPBYQ^s9_(p&e0r*mkkc#2`XN5 z6%j&*7VWb58WGMMSTQ!LRK$Vzaus}Hr_N!(Y3=Zc?A5#2*nE$#-p;FA`Z5=^UKcoF zD@a;@u7Snoz5Ic%7g_oW;IbZ&zd#lQUN3<&W)=7>N z0jF2BEW}AeG-Vp(^wPvp8WN?|EN>)sw$KAAt2Z)mC8>Q<)5FO4Yr^6x7rzqyo`WP& zIR~N!ix&AI^sxE0p^l!y}#GLgIcY?Qn zU1$~Ybl0UPos&g79VQ>^k8Y8qGqy`L%P2aRbSi>3QkRDWWbO(o_*yybH><8JorZVI zwom8?4{l|@KmJ4%@0))(cf?H8)vvAL!-Tm)?`JC=d=bmIf^Dv(xfKBFHf&cppx}|{~gor+_oCX^8 zPq(%k4y6S5H^#gdwuXkwYyc`mO1-)c@tH{mRazCopNNHRi{M`Aqvm z%XG?Zp<99Xqqr#sO}*Pc545=I)QsQBmy#)I9I>(4;}Uai68V{*H3&x&(~5M4L>MlW zycTvaKBD3!yIq}%D=Iuia5kK>+_KOHzRw8?N#3drohS~x)8lQP>BAzZv$xAO%0rra zR>BD!5sW*2I!QRc>N7rE1Cx51#$+m4>j{B}G||Bek~)2o4y1Z?UFpTV zQWelzMd6GSet89m)KlQ^kHo0E$j=tx0j^uut)b&nVWhesbMMr-+bua=4kq@WJ8i%H zY~B%Y_LDsCpP)}PQIVPMIm}ZOO^HNu2;6fZ8CIrsVsYPY0O=P`1Bq6*oaQKoyN3C?s_>p%I#2Z*mcadD`IKTzo|RguY{ zep#;0%G|39br9S=F8dG;e|i8zoY`w!ye8~y<%=VWc@h0P=MH{OI;rj%pc-~7q>Y#6 zgj3F}cZi7jQA|R+VSB8T!aOuRSnnHIw*{)O*M7X5+RZK7g>1JNm>@L) zPo}=ZUHnwu7B=+Evk}+;)Z~+EI(H%CFrd3>>SWiJic)>xFN$k6 zIZ6lHPrZIupZ;%OXGKUPhCA)OP8#q=jZaWHCXxnMv(@5`dC_F4_kB{pM9W(QxUA6| zaIP#ayN|;R@E$>Hpy^ap&4%oFj~t;qBK`(-tfA})Tp`Mf3-1}nw?T)H&wJJah;m*z zK#iSusvIM@(hwK_3rp-MXI_NZWLVb zrS+An-p}>QW7!YB^nBrJ3@4yk@9gq1Fg6Lg@i(^EvC0(1ws;u(PKu9iv!BhiW@avV zMhr@>*|$FypGK32^G*GQ9OiCUQ1$~mg>*<$Cw{AprE;BWY>lX&wmM*75gA{(ERIPl zy@E;_&q_K2v{!ugFX%J9z8gOte`}VzYd}Dy#&Oxfi)@Fz?mZqT$;3KN+PpRrwm9Gs zicL8}bS?JT|0+eQhjvIQJh9~Zwi^F_*Ze0rr~lato^Xaz`u`6;;orCk2M*kEX~Mt4 z|DC095bKa0mY^Y}=aYd>vZZV~o{%6Jar|mycX(|#GwSYbW*gY@y`{YW;BnqJ;4YRW zFp201fAPCQ8qP2)5JGL@^h7iYLcKS7b+NnY=5E%bh-Dk337K%d>EDb=;ZJ{1=@hq3 zk&poAz>hqU8ow}|fV!TqeO{1Lh{`Rr&O zgAt|5+A72=lzw?0M^gB~UchJFeQ3~jqHz6CvvLEWR(e5Mj0}~FTr0?>%A2*QOe05J z%VfmWrH)0EuDhF$WjQ0$6QgyQ`KT0dN_0Q|{$E%H21uD*A*m4A^N+iIY6nD1l3n{+ z|25?Y%cV%2_aiLYpfTI{Dt5xv@R7%1@BlD9xyk=4k@4XoI3y`r66AwqLZ~}KZxEn7u z5v&gi@Bl(F{+%)fyR!N;rTHk@^y4dV26pv#;3v6aS)I9WTW%kt01nhuhX&D8DMq0B znpeKG-fa;^sJ?b1`j_-P!t7cC;Lt#(yd&}2B~tV$sc#FG%YcJy!nCByYXgJLjAhA5 zI10c_taKjRR3Q!1`Qoi;Gl*5H&+hS4`NME?b>QphCj6fAXCMkP{JaN6C375;zvMnX znzSf`jJYg!3!04Og%(|yffzeEcJZ7zOCqG`<*eXy>0l9fxf@-SeP%W(@ne!)a#hVw z#`c2U7Dzb@PvgD1f~aZwr#%?-X@QN_!HPQ4?1#(?tJ}@<82vFLLT#!yxwbaN*HI50 z#_}yq9xKG`iPNrb!E@UFomSgd5o(vpjBVW`T-C3cSuiQvz3r1Zty$GVE`ZsG8_|#1 z8pH`fBP^8ujFDmhCoVjBkWfV-%eS-0z{J|UFI%UqxEwC#8|xh787W!?dum?ErtXuK zUi6qA3C(H2&kZxY?_1a@ZpIzx`i-Z z=ju&)9ULfG?%U5^LeFz^u{(nS7LRU=?x`Rtjx1Wm8{QR!LWTOp+8-F(wkOj%rOj{U z^GiG1CR%@Pv7gOIi@zK7Y=zUzS^nw3tLrpF9twS$S6k@PTdIr0Z80@>q_4`a&8$sj zNz$EqZbE%=k?OMU6zNv6(xf|tW#;$&d3me~;vKQrF8tWlmTS9ieFra0!EaFJLbK|v z=qX>1dQv|P4G%fo7CNkYMp8|a$-3y90y`=~8`&9&;T(TX&)j&E3f3u|+;oc%!QFf< z&n@z)obi^$QXUNd}O{VSatxxtaFZ?n2<@-JiciLE!k(*WW*Nu1yv6P0l*SpQLP3%Pb0_siI# z8}!8qQ*8t8x>U{NAHMp5^szYxtfL`!(klFH*k<*$Xbgene=ZKGJ|8yeC|1nD(eqY) z`f*8N0$Hi^eK*AVJly>BxlS4R;7MmhQJIV zs?WQ-wZA`rIr1N=t7}Ukvv2kMdg)+QU5cx?`pzJ9{{(3iVK&bAOEPJasz*?wH@olR z3fAY>S7(&!a90Z9#S$c{9Tx~kGWBhK8IyNN%*pb!9o*#7c7Ts0|3AFFRZyH=w=Epp zAtbm42*KSQf+e`S26szCa0{-%-QC^YgS$fmjk`C_q2GP}efC%XcdB-si+x4)1*^KB zwVt`g9COSuGaSe*Ie{11mmXE-EUjRD!O$U4zmT8F0QiZR>1-8gRwQ&io^RY11?lbe zN4ggcpO)*>TL0As*db$HUwpCeB#rtS$crU(n})T$XR?mMSYmE?Zo6v@>Xzb&B}Cuh_NM>CxWDaF3Z<+OE?t zy!D*rM+<5Vqu)*IiC^Xq0rFp+JY1PKRFFg0(IRrkj{qI%m3ZM#seyU2!ofr@a;y-V znp22fB&NH77YLKKrH?Rs9e#GNhXg}6t-Vp5b$cX`k(kxs_!ET?iTtjmBmC?j6<)ZOtsaQrB%nP|0~s$PqT`%w*6VLEB5k-Q7J6hs%%E_)#;44>n~_ zVp3Ftp6e~u*3QECxC>(uFo~O$K~REY+TW{n;96%s?5fcCnS+NzWutz{K>dd!^4opW z*|E5Cc=dg;a#e4{)f!Qyue_z9{>ou*?ASlkq)vpzN`8#*6j|UvLv1=9F6)76O&!N- zu%D$pd~XXhqG0+{a!1Z&6?t22{M!;F{q%nPa@2oLh=)R~*IWC8s%SS{(n_D+=j8Ac zL8dBo5vFtoLln3D4@K|EB}GDoS*6s}LDuZY^(C^MV32<9P#Wo8L6@o9_YK-=xwj}M zXq9@}`v}E7b8Qfo0R=OgRU@*J62YB`S#{BGB(4A)SFLZa37qc#6B9kBnw3%hf$n0tOUK(uhBfaIYm&9-gt}y&DbF`kozZg zWB;px)PF%m{{n~pJ0BiaWQ}(*{&fc611R;&mT~+PYVUVTSMIi>zB3g?)!VnSVI!m) zQ2udoZ$aCDT+m`*IKc?^iqsIE#2af72+QRVr95N0^c0e$^9p};=J$eY`V#Dtk2@7b z@p&McZuk`%kIjxUXw*T(^{3tSfHt=G2YRr#&vR?j+qjv9t7i%w+bS*o={`$SGPfH} z-`X8QkwjD$oTk=~bEVK&I;mzqn048<$n%2-+6B=I!5uFjA>N*uRcwyp6RqzX{q=GW z>Cm)%@+9XXrHdl;Z_epnStdCVye`vt(Qa1Aoo6w;yIMoHbt_$hHu6Pta@#~l{3ad3<2g)9Kh#shCJui<*7m3#DawGn|`S4l^F576ssij-Ya1+3$fo>x41ln`}!+ zi~i~YR@5sr)w>^cczk<&FOCAIFv4)ho^^_qc%Lj>IcpWoE0>wMC_WT+;?8>M^fula*!K{&!Xi_ z`zO@JcVvVS9bJ(bf+e#S5fT6+p~m6_?DLjirfh^o(e(EX*IP>=^NAoqZpq)-Urdjh zJFEn=7Si!0l`PhZ>$qSui9Jk#GZo-=r|65j(XGTdLi5uP-HEsr5+^gnWWyJG zU6WOu8L5!+lCw^z*rQa=w!}At5?p^lIlTPw_QCmU$*G1gk%o#i()=Qh=U&r>= z_8RN_UW&jW0Ue)dE$Oc~Q-dL4FXB|{r$vQuq`ptG&px#|-wljFLtVC4prY|n0V{LM zN1!Z|UQiD{{B6~_F>;0*NQI@zs2DBE#@VHi!W z@55DyIo!dYvF@ER^a$eR-ohTRY4p>~BBrZLf{A7ehGCV;Id%>0K(x;<(oE^8{VSPSEckslcl zc74V5j|&n$HF|)v=i0yi!$kEn72p|@7g`2DQ;gvFetH(dHTi88nG<@K~O?Rw*VB8TmFdT z#F$2dXu$RK--u@OMg4*Yg9*2)TZdc1>C|W)l7kX*mk;!IR+xK!M!|&bncfo(_@hb( z%M%fW(e(;tvXn0Wa27!r`RzRK@Ouj6YMF?k7*q~^2(5jn@0gH3DzSYh4IcS8BMA4| z>)P|4W(lV3OD$KbEGgN8G1J7z=7mX-3)mMc4137ng%+7l=Ir}@!)v>EK*-z$u6l$I& zA7NVL>d$Q1c<$*WWGB>#+c~^lzQin7@LQ4?`UpCT@@`KXs+5sxzt38Rp8wd4;PH6; zeom9CwP}M}Lv;9dGyy+&e>>*=dJ$AYcAEKB1LtSUhCAX=a=WtXpv-fVbKfT7AF`g~ z6THR963tR-phPF?Eq1OU?pdhN*J0MNX#~U(9n%9xbF`xT5`VN%N5reBlE+JOO!~pM z$qM*QmI9ug;xA@5*mZ!`6#$r02nv|M{v@Pjq`x#q%o-^iZs!rz?6;_=Jm*R2|k zJySsjW1jLW=PcM3nXL7@UhC+?irlH*ZY*sTqrgq(v(MDAMy0Ls?whTj;zS)SIW;;N zOlN>)U;DP^UER%gAg5$b(CRe!9_p3NQe>><0yHw@{3>I})91o7$eg+&+%HoJ%;du# z?=-VhVDN?+e(kC`qZ8jq;MH>78UCtpgv!mXCMXhoPdGBJ;n-z@@p?JPp;KpbE^zhi zVz+6b5Sx?!+(5MnwPxjc9;34j${z}qjia7xo$pNd zD(}uUbm4Aj+kms&FgU6FSOgy$d>t|PjITuDTyWXe*L5Dl-}XTtn9S4T`tG)^l*cU6NNX9v17;n(d4g|d1IejN5RS5BuzBN6fkm(} zz0cfSM;3OpuM%%3?u>d^(=iurSFySmv4g#1)R=9Igm5c`y0M2mUp}itCmNM{uZsl< zNX6AT?EkPhoZLE%uxuvr6sAY#Z^?7yu0M;zDfyX=NnHSPb%~L5D$arb|5qcTEdvL39Fs6wde$~?48bvEnUp#y^ z?kXCwIXIJg^W(=6Jc{053M1i;eWsBcnG8iE9jD$~)r|Rnkcf&0pkI3R{GlBzTe6wA(#fGlfqyk!7y_8l{z=Iq zW(oM?u$}I|H^=j1_;?pq!CWy0AGQ$aze?XL6aGLm%}$b;?U!q zcO11r@-DApJt;1!sY0hvHoYD@x5So3>O&>pb|?Baqz_)In9iooea^yzf_dOSjs$=+ zv_m8!ig)!HHUE*ocfL=cOZ>j-M-$9dy@@LC4YOPUGK&yf$oA5Tx$j0P$+{nl+{Nb* zw{b4-7ZvewHi%pKk{Qrau|q8V8%uc1jeP;ahxRY$|I_(AzGL%b75JUL4=l zqwog+JgXN1lSUam31Y6rh?72=Cx$EL!wYrh*(-hZ=2CgW& z-Wi;<%hF^`xp_&m!)8m2d9}`Q2-BVv?u%UMw?s3G+Rj2>JoOpl+gCa`lSU0kHz{y_aZeI&%*jtf>bwK zrYdxqMJm&OKEGw2Y@O?b7Nppcfvevma$DaLXXyt5fL*OZp(WAvy2OX@kLuIAl&fD4 zI@-&dIrA*v6MTAg14|Yn;S)U1{Zz_q7BqyfUMf)3pQfQ4P*$k zn>cUY4@(x3hFp3JzXg=e`j%X=Fx(|l+I~13O+V9f*-)c$j6*p_UAbZ`|0(N&oSYM% z9y~fax(rtXIX**`Uv9AX438d-4D$#^Eym-^h%9jnG!~N2iQ!fxPSS>UjkpQcUT$NslBM7#dT?EC_NnJnv7%C78IIdhb9%OD%vX11^iEuzV}v zwbZ?wS|BhB$T7A{@kJazzW*bI4eMXR7AgN6;g^cBR?@cj{_W1;IuE$3gQJ*`b}CO! z{|tZNwY$`cXRh#fxgkLG4SJk4pZdi{bG)|bKBeg!B+LZvu33DY&x8FKHcZ4kLAgeA zf(X>MH|%GXzKaZzuW_4?~j@kKB-C}kuKn|>^V!5M@Hegxt&0ZF=^bWS`z*@*K0iG3{H990RO(k*fRc;VjW08 zRt&x@jzdVUW}VErusCL^O|9w|)5txgIr&MvjBa^3Z@1YIvbsjgX%aR}F-BAXyV$Tl zqlZ$odOOzKF2?D0|D_M$MCrI|h4FLnU&)l4Qh&rzISeNj_{!}YCjsr?6k}#O?LWn6oNTb=hn&zcwtI$RFo073e%NcQx-R>L}+`x2m8tz<`W0+Lb`= z3z|x!1WL@e)qqav@+SacF6fY zj<(>pPonA;DW|!mS=J9sGNnlaQ6n!*Mrif4%5D+yXMq7B&1+s$c6QY)E>p z8nx!>NdBQZS+$+Qyb+;HiB&X=DK)qlpNdqL1Mcj&w)YF+M8s8y9F=qI3*#@A%`@St zg`W4=ym)$a>kgJr5l*wzq*q(sMjd`lta~^=;Dqc0K>3V-gvgKdB-nC&>;mT4ykH&* zOfRM}J+HR}CQt!fF7~9g+P}{<#@9ASED76DeI;^4*F*?9-j~;eEbc}NlNuK zgj7ABHsEB{P`JA4_bc@N>~JX1mdk@P^f6v}$GfZ#P_lR%D$<&nFm^r5&a_xEMe1o> z(`3~9;v;(sky7rnbmo8=;h0@(p9A{#a!nws)mS=o9;>Y?tQYWPnvoXy>|sAG+-(%( zJ;^ry@>t3yegU)_A@0=_tZHzCp&#nn^*Lu^>flUTFz;@{#(zF`-f?-KR)M%L%UkdB zhQNTbgsX$~um!fKT0(*C!m5^qNOH-`)bI+1(nqcNw-BlRk#r(lycSBW*z=CQPF9 zWy;++Dg2Gii>_|M7j#q3r86)e!eOcH5Y!-*!qS}e)AKcsf&dZz-n>B2UyPmT!Y$)K zHut-_V{+fUpJ{xbfpi04R2BVX?Pn|#ywmEKhxm&(eQI-c1mW(Fv%z9VC%o=4~-agxpK2f7#r@}yV98D)vB z>w%OvSRhr?cGoE7&nqOg# zf&I_8i=7!~q??ZZ@s;E?uCGdcO)S#9y-|K7?>jMPZBzy_;#2F)5MkE%GjJp-&(Gzg z*LGpRudr_xRL%oDtV4I3^nH)sRmo8iSx(yk{lf(b4&}c4q6`%HARDJjn=^^tUAQf_ zfYr%Yn>$H{T0$HCux5JkZ7SBgzIIQz5y#!Jx(J4E)av^mlUk7KF8}NTRKFIb*PR|@ zS8}l|a;ED2t%X6`;gIyMW9&D;u<-#I;u9Rt{lsIK>AECb-Qhy)Q`OVcaCOCml;73v z{yZ^k1y^bh?@c)p)G=(1XG3uoCE6ceg?xPHX;x8ql@?XBi&J`1xd@k{68g&SsXL28 zB==(AL0l%;{P>g6oIHi8Ie6uS`)xI#!}vUSA{_HIkczF;9^d?Jlp0a!gMvCo(!gIc zShv9bh#%e@DyK1b985GQ{<=&f4+)Ps-5|li{8TuD^)ztZ#T2x$HwRzrfw=AP2ua8D z(``0i{@pbQh=7N6EdxU@N0C3q1FSmN?NS)eysF>!LDz;Q)2qp z-0M`MoebZslcrxkUkgQx_7)i3nPhDx$4Fi_U3v>E^dv4rLknU#m9h?qPo8gkaRBp_ z31P0d{$$h|cjgBoaTCd8oAtCf*LOe1cjQmAF2jkQB~INZ^%$JpUqx^^vcZ|Ug5GZm zk^rU+=Rb`D=oY0ML>V|luwyd-)$dcZv-8dbqgp@lQDKg|)r2!o6)I;`4MG<37y-Z({Wg=ZfI;&h&tEHa5o^V zHrTz&$i@Y(Wb06zjQtB!|Mhytjf{>Mgv9^enrF&JPD_+;4z> zaiUIo{)TT)252I+3CUZCXQ#nv_S47JsC!k8IGZ*UNZ& zbe(#`fAKTs>Fd1wwrd)E83QrvX7SMi_LclR$K)#gOF!{v2|8)*G=467V)0~)9_PP@Q zcV?A%R0^~5;8}F&>CL7*rw4B|5mOQceveG~A+cPggCWV%?Xqp{EZRNgzQ^YX=Iy6? zH=ch_?S&b7UZZLqYelY;g)(#+*Aaal*Qlh`CaL14ud&j({-dX$oNlKKmGBGhbF4nu z&7wTXYx@_2z)n|gyBL(3W-6hk%iO@XU+R5zds|RTIYe^09y?8kn38mQPa>i>o9Q^& z=~eiiKIG$vh7|a3*{-N*N_EgjTOj|oc&Tsfg`}=hLI|cs>F!#`I>up$lFjW+kW|~7 zs*&|X3xoARaFT!5!KXn@Z>0l7eyD0O&JVS0V6jc>)~+HP<8>K8<9uompxvhDNsa6f zRyyBm=Z>+f@s}f)7l*Zg9&}}q^bH*F40EoDGS<)vUn#Ej9yIPsVKP}VA2lyEoV|PG zYw~l-uxj;Z2_KFI#mnq0?a6P2D&92Zwgx@%S)|t!emFUUwVW}PMock}{79wf3n>V( zd%R_XAumN{lIU4i_l!1~iIm}0>mWosoi1Q|LJUiH_M2~S6(ty{IXCTgjFevDxKd#l zNWVL~MpdIw%ktvfNrh6C)b>XQGE=IvXYUz#Z`b{2E zhBvHXBrkM!q5nIW2Kz7R^r_zmOD!*5cY?1%aicrEoK>fGS~}N9&|CA*4g9pbkY{K2 zO|SFC;eAdydZqsTCVbM>YPqO-!Y3g4ZWgr-eo^_DGyHG@qTt!dqeliYHP4x12#+aZ z+sakB`?_}3;e>9o`X68O1=tCfOsbC_&gV28=MAvRva6kKp|=*F-;d%@BKCQ z^-=~y#TBO<3Sf}jc{E6II9I^~{vMl78&lpr)N#fORl*)AC-w2_vWa;_o1Eeie|bw% z=!mCEchAIy*Awol_9YE8b>}Lqip0M9op=bLAgi3K4h&ED*+-P!w=@cq#!=1SnN{{0 z>4zU!l2IyHeH7zd^Y(q;NXm(NpAX4U*3PlH&hWaT$Yz#@A3v03XU|7jvWwLTq+bhM zeJ-l;>79vfw+GGc)WD5I`qHu@Y0!=J$a;Fwg?N%>T|c3p=y1S!6+@|W07xMC)AKaq zLT}->`?rAbilnUpUwpKYr>gI`d5m%zux8@x9iF$xdDnD+g*}Gz!wp%2x3};tDu`T~w#{EoYM=8JSn= zM`6!JjpW)>DAZ+VVvmwk^pZW>+v}hgW)>m#mi{V2mCMBs8GVKJDRsGdYyZgZUPl?F zk6f|KO2kO70-}6NrmHj5Q{jUeJoVw`Rs0DQBd0fzyO7qlddmtsh0)-~feWJ{%2E27 zgdVpDsuRdHwrV~C>dvx57LFMcB!Zq*j;BAc_nB73Zwi|u&X$A(S26ivK1Nci0|hmp zEbFc+$`A0+@7WpRc8(Elnpfqz889umnq@7DTSWj2^a3k4#HJK~BzMu-sd*j%+qB7P=@Iq>Y5(F2jBk z8wt0!;IbxIqlDRLa`l0g{sB?7_x~0U{lBQ9ARy}g-+?Gilk0@B&9+o-{yt#Sp&7$} zf~bh5Se>+wGHBBE3-MYXM!kO@T>T(xU&lSQoxZG141D=NAj_XwJroXxCgc75>QNY9q5MBe=< zm3109pigKE^wqcvf-s-S`2EQ@{6pvljPnJ@S0qTs-vk<^{A-11@TD(D)P% zn{QI)zChwPkKf4sN)SMhi2_!4Jn7x2BsX2nw=mz>Rp$4$epi>N9NEvf_&bG1pOuO7 z42td-!c~z3&K6@P=4*w}KZJ!UUCn$R^2Jw6bB3irw?c>Fp`tTcrFKx^;FvX7!LLZlNCCbCuZ z#=3A1jpUn~&LC`(x8CmKO>LKfPR}b$q>f82cPe?9vBMULgf`B@zCu{(>D8`i?4n@V zA+e=PS70XAlHs|PxX1;M06XIIhYgN8D2D2M_klXo*$nHZt1VByx7$%a_R*t+TPP+D z?P~X2%}paXc?gm!s}Bq50fga-(-lXJSD3QId5OyB?jyBUEGX*;rMv81-ya_w zgl=sWYp<@MbTL1xd`ee~h$-D|?b98^=mNN8*sa9}q;zE5MWnr@e8e8Rtv9iCpae3I z=td=e`G`o^N=eHQ|Hpb<&TUDX6(otKKKFQ4P3jDrhvkP58a(2q$1oS1EQKeXSn5i8 zJV`Dw>n*P+C4@%c0-GB|J=VQ>_`@q^Xr1-w+pVkW47Vvuk|ekOBIAK*#RABakPG00uO^^*$BMEf{m|Kl(Sk7W zBDUu|q7uhx!c~%v3`xDE=db_9nUc$2>|DjSfy|iZzb2!wKPfamq{t}QGbT;##B#OO zNT{7%GrbKN>aH6nkvWwTjf}BX``o#3SCdCTXIxF#UyGXg$}eAGztp=o3FIYr#<+ITo;dZ6O5A9?OD~2 z{UM9{^*Lb>tBhkQMO%=IY_8@&LHrtyxfetCM$u9Hwu~9Sbo&Pc3H0C2o}f_-@pN(- z$orz3yJ-q-Gps3?)yF3`yufMv0PIy>T7J5*wvQGKg3~~lSwC@I3p2iV9c!l>h=Tea z!off^5gi|QPkWBdvr!WSd_P?jYZpBFqk5I*ae83ki6hEnRr&4jO#c-Loj)M(=)9T$ z_p_4o*4%w#mm`PtMe}axU6^MKOlhT0e`P_>_pk2MXXYMgr8x&B8v^0$2C z(Y4dAzk{wrRDvy=6t|Pmm8Uek)%KzpX0D1DmTDeO#Rr6X4KFuvK|A7ONpCgCicmvS zKSRou%p3>$o|9KWDi3J5K%Eyfua=V1x^k@y|~`Uf`-% zL_vEuAyF;Z+&?fDk`i}sIyJL-?r_|n*MFBxN z#1(6Up5H+YvO#hm-Vj-_ZuVo|={cFX?uM#V7Zm;d+zDmHvb5Mx0%7;{7v~ zy%50{kLfj(IJ0FdNq^UK1-|nQor}~9b&1WRdrKC?&626hPGd;p#{x*PjclB)!%Vx; zi>VgD>U?=#lxdvoa;s%)tfDyU5^Y5~e6QCbJ_hX0C##UJX$M;~zZD3Cq7kAqRDicb zmjfsV*p2ldWHgUKKpCmv9^nd8S9_7R**6tO4_R=0?UuZxuw}=@L0&}G@&|b)pd*}m zjH+M;Fp;ODebmgjleWTRc<A035EP4rW@3+O?+A=tBa)%>Su;apCxRMKUD2>9pN+l~QE5+ro zev^{R01dYNKfS$QFJaTuPiCQ2I@Mo|Ma;;HLJ1T1tcZGUE(e$f-!?ED4r2xA^;jNYtpH#g(^7XgX(*Pt|zeE;CW(*h|5 zJ^fzL()IWs#IQBUqm!_rl?M=x+bR(!tksdKWLn@a6q_+$FJEyu+rSi^Sp{~E)A{ur z$o2$Crwv?8SnK@y!KC6WA*fp2idu4YT!wGuYUtHBkYK9I^*>j{>!1l}&`CnccRnkq zjYnC`O~wO0qzfkru(S&3+x!kOZB91Vrs;l?OoEb*;(2-RmpZn*mv zFs=*trwb+Yxx<w4+dz+4CwrBB{rEwH&oS1{0uuZf8phW$3Zi}onFysP%=#xZ-8Gz_YtLG)7s_xg z`5UUYiSg$lP|~SOf2qWWDgWYZu_38H%gl5yc1#c3`?Bg|qC_E;P#>Qr^%)FphVl9| z^mM?6_wAa|>PBe^VY$7GsiI~=A+-gdN+pkj2mZk&iGZJVH|x~vQgfdrKwz1TRFYj_ zYSoLhM?VQiYCI~i5o%eOO6|V(PoEmSZt=Z1HVt^*a{&F6{JFVphZ_; zT`DYb+*3&(56o)kZTivdhHCjWW0_|l#plA!BtHieB>)9MXz!Q1-$j>A;z^Ddmb@%z zsi_s`dVx?DEXem88Qk6~F--!wBd>Z)R&H!R9c>&_T8974nzD%ppPxuX9QKru9>jM4 zvH}=IvNIt|L`Lw~)xC4t+atTG=la71-Zug5PZ(^Aw^x*FMv&)syGFGVLU7q`FEI=G z%~10%iMGeNyCoU6N~ISJ+gbiGE8G+yTtSD3aZoFQV@r)-c|;_Xa;)g^*$~rq#c2Z1 z9%~0`GHTigtCjHIh#0EGu@cB~G0EAbwkn_G|9-tba6zA>1>O~V?1_!-kCpj}qcVq; z)vU`e`;`GoaDh)9umzPP8^?vLLmev7XKr2$c;l-j6N!?!O&kltuEU?+uurDsrTU2_RMt0cqBk+YU^)io34s2Ig63hvVH}y6Fz#|(%#pm7{a|u( z0i8JpHEb3>M=>s@?!{P92!f;}tY?fVY__Qcz)mOXB^nB&v4I7e($#M32SL`(WYT0LtDob2mH)tj^xKW#!>^HZ z(+I@=bOVX$HJU=@&qHA1MCQ2MN znP)txGL25e6I%a%TUnEb+~Gaeo2ofvL(3j7y;r+{tbTahnQMLptM~lsYbDt9qAzO) z;WyuA=b!jp3t=^&+~ZeCX5Qm2yMDbn!LL#is6UsNleAP3)h*-4fc#ebq@!giD`R6F zYRw@9sB$6i{lOlE*)+^$UZHu6vMNzlv@(LezeB^xV@$B6!y|^qpFU18HSL;eDH)t> zcFIi5i?B+I{?MP%@tc^(K2`EsJ57?yBc8(3iUvUc#I2p&LzgW&Uf(1hydWwg$Q+tM z8^laskX-qZ3O_%HlFFq|D$>UlRgoA=+vPYB177AuyLjXUxeoh7NXA6y}8 z_M!k>yw-wNcY&s$8lJhS#)3n?8<6Ip;jXdR@z}IZ^~FbOuk~vx?FF(j_K@1i`444g ztOGpy&6uh=Ly4Ov5Po)I@@e)b%{vyLOXtiYDSScEWXv81)Q~&-m+Zx2WJ~3P7y;rM zL=x`joPsW-+3aeYl>ja>VV97B=?$PkMEV2sp0*&lX%T-?-Wep$y_Q^m%3u9}d3u

ghME~OZ+XOsv{m}%T!Y7|~epQfSs zgdXK6j#Rv=ps+qSU>c%jZ->oul&Ju1xuA%Ya3ct7^QcByz4k_J2UNzUI~*&LoI136 zIpf44lmZG&WG=YGCU~M#YgY(VGA0?GRax!ZE+wv|3%2iWZTUInJm9{0ECoS297o32ci<=TAU}&1$ocg{5e2UgZteyZ7anG0 zLhbN6+T}Upxe)V}kgO>|-DH&RIY+-^^whO=$p)|8-3G}$t_U>MiESsOPr4~k(!tO3 z+-?l07yjWw-bPLoc*3RX`QR<+m!Bebxt+zUkY6V52;gmUSaAj&haCwkUU;~=+GV@P zR1`Jo;A8oZ6AKt2n%#G#z3_*@m4xJ){Vs)W=xj^#5{nL_zdb+DZDB2M%wl@VGL7}b zEaEEdU?;rjoeicCn|fj?Qsmfac5Ai&T;6hw?7~p=M?SWhG9sJtJnVo<24OCBgqbx7 zfg=CD18Nrg4dQtL9el-!m<*F<`Ob}QHn?|r-M)%`49~bsU+l1X$~ko3DAj7tjgCUh zK~uF4e`P@@2{}CK{zFxtfLrPPZjMsNwAzMoRO2gPuLAXdP)x3P7M2=&yJep|&UvFK z@SkGxGp*-<;#$LN`kxAbeRc?n0^6lBw6)+dZk~mXd+1;POH-a79HTPmy_@RBP|~9w z^C(cPefUMpUYa5Wm5q=-=`FNTE87d~gVC9verhWw&jYweI^ba(olyK! zytk(84`QksT=D3co^QVIlMqljIsDa;PW=y8bb2$V`yBz1V2neV)Te&TYt_cRrbeJ} zJ(TKF0y|tCT_G=pb90XEjzH#7ny$h6MoE0y4cd}Xz(jm|e%DV=SKy5acMY4#uG#Q8 zgtQgVUq?>&!oFxzKaA5o7AB#;u8Rh zyJH4E3{Up@R?IW1@5)=)?@mq#0mq$=qUB(T_{YMK=KwsZh-prgqD($%~?XUqTvy~ivu$*2oiWCdYxKS$s^25e;{hbugm<-kVC;fJE~+g zukV5!E{X9-*Cd}c$x-A;uZ|gx7v%?FL8d-LUBbR>Awh*tJm!mq#p0*dep;{o$9KWQ zg)6+!425<5o&n>*6X~a(Z^cLKPKETdE&K~7oFrvb96=3d!u#+i|Cz)N_}CFUzS?_% z%dm;F+mL;@-h(_4E@f7euIYyT@|#~CPRE(qtH@OOP{*%h^K}Z{$$K51N_u{u!&$i$ zdmXN%mS@tf@~vn#ttpk<2h>p~6IpDGpV3#p`7RLl*qLeP6K|~%#WwAL&7EuU5DazL zljEXSA$|e; z83BB`Y^Mtscrv0{NaUwL4*v>Z`wMBcf({vM2(R3{Z)@JW8CbA?Kt5v2sgYE)p|f-` zbjD87=Mh!TO!*|bc_2ml%x55Yw9;69_nuY0!KJh!^c_e=R4w(^C@vHmUkB6yxgYhH z6s*Tw&|Lk+$%hMZ!$B^0F2BlzZ&Y7lU+1k1#;O(Qe#nXNsw+nh4>W>S(w^-mIz%4Q zhEn}iQMysNyXqP;{f~R$z~~HAxSGeCnLjPqDk3B*WU||jV!b9QaTETYTnOJBE?S5J zwYp;_&DyKbMTZT(R7!V2RaNyw_7>pN)WXN1jFZ5#3B+2(7-Q5BRmQ!leTGP^^&fI_ zldec=c26+%pH)cfCaBgYI5GkWE)Zi`127CUkC$46MU9Ar-LrrlEgT(6-Z+>DZJirPcwJAZTY=Cnd{Zs37Tf!y z3)#YE*`AfyVX(mRLi@r;^t|U+<9(&;!z>`uFZ4f7Z)`P#}c2C5~4+?Wz8KSZc%$YNsi$zVz{?) z<9Hb&*52mQjOxUeZwn`maUmpV29-8wXm$#V0n|nPD(RBM6LA^PY{lkV5RiL5G-t^j zje2_CW1VUux2f0D!-4U?Uzy5H*^ zkpCKuJTRxzg0logrshzH@_m3y+-hU0qB7RSn0(Cp?&G;a<^XvH)=H?q)SN!j?JexF*Qxwa&cJF=&`&uY+L;3p)gf7}r@ zORx#Nk&aNS#lR3zP5bs{JU6-DV=_WYs3yt~E%dMVZ=NIm>jzfX zps$fWZfUa&7gG4@eeI8XnKF<<9N7E5-5?i+(NVsjer@#K95MFQ%X=!B8Ktw1hkTSn ztC&=qVIv~hoQdF>7v7F`c3HJB5z96C+>D0q(oc?vBshmNG^*|5nT7I z6Nti?PFUFC1Uq+SyBx=H!K`_EvJe(KmL=ix6R2HkNHnR>dbZ+sMkW8NE~{+ zjyp#ArjTMQ7+C3^gc^_Hbss-?5h~1+G5#;Ya!&r@*QWqNveGT8v!xsO@X|!>LA8)v zG0wYzy1nFo)0>y#s5gh^_(_Z5s4VI`2ObJEc1K93_&v)#^55TQS>F@u?&mwjpP@6R z(@0wXLs*WqI82yq>(^9Ob1P^|GO1pA5-oUvKIe8IjVqyHn8jwZa%D8|Yd^Q@3!^j? zRwBa4{t4Uf+H1~{xn-IEutraKu0P)zyZILVVTbQ}7WZc@OosLuUXIiQ;Q3)aHY>e3 z_DjtEZ{E~KWC?BhtiT4^J3>X`C&ygz7nX_%%X9%L3d9*-as!V6C&fy$SSr z%Y~3;nQ+;sBd<2+g_E?zzsyLnkyx=oR=oKcDhQ_|_D*W^J*ur}{1*A{UKVQ=Y*?(96%ToY{0sH#AsE7!0rR3`F={Xu zD!hhMKuG5Dp}>%QzT7V^6#)YoBFst?OopyPU#HsVWluRXvPdsC)-v#dOA_XvunAZU zW;szG0Wx1VL4LJnoG*|DY;B?W``s8{SpDTZ6t!4k{rmHrByaQ*2GRrb&$jPC>Ve%g zU{C6e`U(A~OSt{@dXj2e+9G;$$oHv&H*fT}u0)cHo1BtwHfzQ8g4<~3YnP9mG9!`^Y$wl$f|$$?vmf|Q zOcW=*XqCkj5W{8ca6^cNnK^$+K0^0BN;a$w1dJ? z)0jQ5U>-*EmcD$^EAsNlu|3PsVh%iw{Dmi-vk}v1np8-OXJlcsP<;w6Z(X z{jC-A=1o$JIBM|9cWQ+4r+r5Q(06TQ@QuZ*{f@zpwK&VQ)yxHQQSMcoVIA@Q_CO$= zlJPa4jJizcZQ1858J>Y2roi#zP-gG+I8@9d?Qn6IyE3jSXq-T1(g^%H_)}330gm}b zkghztp3H3HmzD^5GY5_PoffzcrOu1YrNeo8ycy*Fa#2pz8Qh#j>ngfv8PRAEV$L_S zf=*U%{%2yHl&?F+Eq?hF|IG;Ai4KJO;D3PSeA0C=H{{h~EmCa2_IBumiaQ*PgsEyi z&|TTmR1g5K8j<>n9N)U$t#l)GPx`8$v02FlnBdU&_^{Q9P`d%GKqAyfK~W4 zoXqSqJIX@pScrRxrzIg9t3O9I6SXE0*mgO%Si6>`zX)z=okCW1Lrq*Ew(3UK)_Yhy z=G}63C?mq#fGQOq$p3L8Ay%nebq7eqEdv~8@b$})tMb|}xrtJ}u~OnVom064&j;UT z-e>4*oWea^g@wPMK@|n_dG42aOmjD=>|Tri1uZ7T6~^*vtUb$$o(^JioXt<+N+lbd z2o2$~xPOTejoOZ6prSxr>=k+hiP_J7{H#XJlj(l>0o7zrJa?Q=!L1a~IGTHsRbZdO z!0yuL?-;-E;XpGBhe$5g!x0WV7w=p)tOJ+eGQUV@huIfVC!2g*8v2F`NbNk0PDcI) z1CXBT!4C@;VP9Iu&|Jo|&$Ej}9LAg!jv{V_^htu>&wVU4HVg4rY7lVV+WrDNI(D=7 zIF2;GZ@?+wflWSoO$SEFgItwDj!bQL@i3T11KkCB;s$ProF45vzQ+iwaE@oE{?mWs z+TTCGft&QT&R18_hWk|3e5}Yk_B_{DpRI7Io1v@e3IK>d?_YlD2_;*OydkP?d6)A= z#ouM%BO5R&v3_r2^LnOsl(er0KuXyb)^>eC{Ov*By5M_-NVcDUWz~x7Trn?Yvfzs;WS6b z%R`lp_zgXJ6MN)1cQhjVvyqDO{E6u98KTm4zKNl4YJ6|E+tVxeF6 zeg&a%0K-=cU|ln8i}N)~$lQCX6=s$KnamD%SYF)g ze->qM3{XyVs^uukpa~Lu-uM4odAvj<-5A;VL25Pu7!n9lTrS$kA%@^bD)|nYV@;SN zAMHW_BZm*|^~!~mJOY;}r4ES67D~LF`P+~;%-X5XM}*(g!qw|2AtkU|qtjfK(~KQZ zbBFr?7hULzQ`$wtXx4zYZzuE#r-YI}9A)Arx8?0U2Jq4ga@1q*wgzQB>7}6@9?_~F z4K*wLHM~r?{q6U#x&XM@;wiFGO{#U!{#YdVN1Tf>xu?o$<3Yf#X16v7=)yv$okbex z8-#Jg=!JH8!)f7_>Xwu~Ls+86>DBe@HfMhrhpUiWd%NNi-wL|ZdYd`j&E0YKXVq6S z9pp_vqczwkz^vZXNvFAY{O0Vb|70!ruigaz7d`oZLq1i|xh7`%68$g62?atO7UXhj z_ohTgm}-cWuKo$FPx4FuUy0B2OXupfmf^lY|KUr42c%CAl#x6Zvgcbn-5L{6^XyIj zU+Q}?zNG3@+ho6f_?cFeolns=jF*%RIGJql+ zz_rY?!@Q@h>4#yyze{nAP6x8YwG~E+rm)Jyz7_WpxP4&?swt1IeN{QJ8J z7`pG795zgDo!uw#M2Y0>CKa8``6#aTSSFb&H6|#Rd}&Qu{q4m3x*yg{Gfwd$5aZEb z4^GAmhF&sBt8nkc{T!U+HE8Hn8NN{&2xVsk++}$m> zyZfWkeS6#<_kO&O_xh(k&!}_G-e=7{*IaYH{Xn+d?o2E0VkCO|{N!BtEyZ4lUPW4M zdw6joy;|Vd18lPfC{%6NO6B;YMd_I(blc&ctbvo3ifh6POQaU;PI<{PngA|&Btmkw z?prjj)*aNra>X5xf@#Y)x_0#f0%asd z>X5)c)%rSV66iFmZSX_H^0=i0KSGIKbWZEEJ}NldJ_PYd=;+^ET(fODMGL1Bot35k zYdl)sW3_ZbBif626@_XEud#@yyqIF2x*MarT;+{V>0Z`;jVO4IvW4PlI&Wn8-I7qo|s@`gIg)g0d8 zO}gh=Vm#yOwpv~XtPx%QsJn5ZFig2lYimA5x?7b$y}qQ5Fhv?eHiX$y4sMq^vj&j2 zuy;IoFBwU}$&xyAC4hNFyOHStyvlkgNlBWQmt^6E{c;bDqS$CRfjlCbtdG^3cr!mH zF|kwJ1V~(ip}5-plS{`+gQE$$OL2Sa+8|`!m&ook_@l7x@Vq}C)@5I zDe(03Iq)WsjCtQ_HQD?yh+^zsWZ25VlLheQ6!)Z*vwUTtF_K=5J z#=iMh51~M1E7kk_jj$)PQOB(v>f>YY4M?NKMO%9(lM`_v?n*{=iZ*M^^;2cw5BlOI zVAG)jVTb2Pwxek_7aMMyTseRrO{Ph;y_L-?>M`3IoZEB9Y7m|Kx}GUTlbB0-i_;HT zC8vy8ri@9$7&qyjvchLC)E=G3CR3_qGDvnI%LSNNDSZOsZS z;qvqXFm@XW{X2nFlkS?t+lQrkJcvY)nsIqCprc)lbWf#uI`lcyA9Ut%^}VK~&_YYU zO4$9gy7W<6^TuP8vm%+r(ugOEo~>J`bpe@j_B!C4)j#KO?{e3R&oMYfWpkYC-tFyF1;nFc$a7@ z63@sluPv6{Bal2M!8*)*h67>9`7p0U%_G{j`K&{=#zlY9x@kw7Mp9z9_hLzP8B&3o zd!#llM*FQ+k`o?kQ62j>0_Jv`vMw&48jAveofk9XEB6k#8@wnWq=9m%!}CJS9v;8K z4EksX^1;rdy25AT3?G!<oC zX~Vyaz*1%=+cAl);-Ki9Y$Vc)DzGKg8RB{&s{^`i20R->gS&7^P7s&hTbR_hJ`dvk zY=I}KlLkX4#EybHBGEo(aR>tY_!Pa`%m1?vPVl3y~UZ@ z+#45V)q_%bdS9_Rn^(9Kdf@$HI3Jvi6PWylT>v=zH*lqkmjn*3As^H64B1Re1m7TS z`{B_OR>4~E;(4L7$Io|3xV*+ksI}3`v~<-BE`o*162AU`Ej#AJv$zl;OoarB&$|+H zox8*0p(|?@z8Gxh8*8XaPB*_~SXhWTwFy{(fM zyHVu}cF-R^Nk%-dx+B^bJuAIB=RHp{v<_!#X6!rLtZJBbf) zlD_@{CfLSVj`VI`hIH$5ue^2l&=7~c(;e{W;eo{R%;I95p%_7&&-Ysxy$?T&j-C?`^Zry?IB3A)}X05cu~h_`}h^)keQ+%O9p;OO9Mm^;+T z82>6)q84`RFMYFV`HMy5_FQKU>FmEQ7y{z>gJx_qPC`6>WZBQmq~M7EVI8RKaaJUu zN$`Nx3uYNrKNuft+kx-tZ_lh6f-*(hqgCTg@wKpYA8zBsQ4@ha9?g4zaF>sOFy6l5 z&YsUx)*JvtU-!HQ9;fxs>O}WZW(!zo2bQPl#tuk!Di6wDk-P5;qrI5$!Be(>Qm|Kf z_(5D(FUzf%G~Ib0zl-#|xI;Fp{7>hDC`uVea#d5#Z$9qjrO#F}SP9IL4{I!%$Op(3 zI-8SiUuFl4r_I!OBY>SXOPfS;4Erv7i5zeWU0sV0kdUN=lHzhVA= zgrJ^}sn{-q{&&C4UmVZpvY2+&gSXRNF*g=bY8E)@>E&Z2Bi(nir?7vHxFbXBTsnGM z2nuXghN&QoRJQy4eG6}zW&zR(>yx+Kx8(l+%`D1FIZnWH2itE(Pm{DH+n3B?=ge!j zhX(Whh`U|&|-OQuAE~&^a&~TDY%}RH#A8=5GI)E*Vq6opy9K)8K_4cELw--u*jqV@_?u zXZ>#IQ~#d?%XhzaE4cQO7XB9{Md`HG0K!VaG5Tl^g&Wul z31fvHk3R00t0M%atol?Wqf5!7Vd>SQz*=s~#&ZR6{FW=Yj$rx-Y0$TTTwA)<5jV!} zSePzu{B}q;?o3=UEij)YZLAjH0&lAqrm*c5JiVIKtYta=X;B<^yIrnY9|0bw1E zhqGI_rl0uiW)DyiCm^IxIx9Lm;%7?P6xEKbLm%*wb#n?3qBCYIqk-{3Lw^+z#~H?s_-xu3i3Dz{J3D|yWVsKJJ3^GD8Wh)pr=ru-PL zofyx{50SpLTk*_LVxiIj2QSuHm6&DeE#_r;7=zy4MW+5Nc|{_VoEd>Ewr|Ok(vjP2 zxUQAmJ2`vjZ`D&hezpEjeEQ+1Ro@L`mqUtfF27D~<;6C$&q&ZAJ0lCP=1+K^k{gRA zVLr!5xp8%Esl*CAJ^EYfg=~>~*ywJRM{H)PmW&yJwk1atJeQ!>Ke5d1GRx|42lML% z#6t-O=ugw9xt+1%1k`bM#ai)o6h27oQz7Qq>Q5b??mIv@5XsDRC)>tQ?bNALHwi$waQ;^bs}2l@1b4M8T3w{ zMpC?=B2~THEwp;?NK4#Fq_1)IX!#^?EvIvo+|Dn~KG`el-kcS9Ve3`!q28lDPMw4c zKzYgL_XZI`saSqPNMG86qVjT%oXgqn4|ch?lk`O%z8K~&laA<5F$5(sr*MJ}ntE&{ zRt>j!_6n$JPa#gtm)7$ys#B=fwtAN+PydZNgf*ByiasL*XW37eE% z_z+$9l*&+SyldTF<;bKy&j-{KRcE9RL|h{J3nfQD&2uQkNk>3g zgPnfQ6S&z$kNLW3cPoLUoh2Ves zP0queWsnnvQw3-ZL*H3mZ&iV8STWec;AKZ#`sDFuh~*#><{q{EuKr>(Y&FxmkZCNiQ+J>Fp+wZ*SG%K^d?gm$ zUwkt73;rSlaXc`Zdcx;wYfbD#k(I6$Jh3Zt{uo*v9tORNKU-%9afUbF(R*CKkRcFv z*EV{zZ|Om1bbxF+*WCdTd$H{~x=BUhq(1Ql{I=-A1q3!;84U#tZum5!`wzD|)@O{tnZ@29oI;z^m~atN{S;Cj{f%>! zY0ESWfn6ka9aV`?8J@!7&peND&$cDwi9PDg;cpjvO}gB3PX;#HA9rW1PD^KDOf&qX zcI)_cW5d@h=$j)DmNcjn>7eBZ0!2#^u9?K+YxMqIZWREZq_p?yAu5}sh>`k)ciqAe zax6g@0Mh#8r~Y(#pfsex{#$^zu$s|%u8-YM;V(*^6m7Ant$({ zqs9i;aJa08_c(D<3vmeNw|p`pUDnMp|BFl=FPZpSs$Qfm@IhB zq~s5Ni#lhWXvn?#2|=O2E|%T?Vk-EyqZ?eh(TvI zHdN?09T*{;+Kac6Nv>>*CkiipiD#?*Al|mz*LG0yBplf$!uj1>GB11lB#|`HXCv8- z-uoQuC!cE*6X8&22cLYAO9tQBcqwS%j`4FO_Sor3k8NPdU1(14HuS1rJ&*|oD=Z65gMoA zaEBSWcRaOY%2zi$U5nbt4wAeu-X^8DLIqbOGB2F*Bh?P4r@9>VOOy={A4?}%L2WMg zC&ZG>uD+xFr%8XP8l{oIgif~NPp4UXsK zi{7$STkNdCzPjgYNe8V-IB_LTy`zTf?LpwPJ~<2+ zo5Q(!<+CWYzpL=ZhcwZLn8%gdx+1q~yCZNjOobi`qigT-X)K)KG8eILJv(W z6BL1k?czrA4$hB_X-@ zXfNDSqvaTuruBV!qW#A~8J0IK_$~FTRJMC=&l8UKP+2}X6N%RC+ z$I?39okn7U+jKI&D+nm3*-9UC+SX^qYmJ@jt4GUO-U>b4%zX=SWb{;{-hKc1&HfT# z{SXf#sO+XeQ=XX#s95mx3NuzmbF);c)sR}Q-SnomQa%KWPm7@kkAX&x}0DbLR z8uvRpd1y}5qlfWNAsiIIs@2+km2zwKl3&ru5y|Xc4+VB`NRghhc>m2!b2wNK6P(P` zPvGS&NiBsCHd+I&A#_rpxft!{bb;T?lLy;Jc$D z6T&L*9eu@SGDZdpodx0@yq4@Lzlh;l@^F7@<5+gC%cMveb7sC@E%lWttCBUWQqmt~ z!wC^E3x4v*SX=s`1o^ zr!Of2T+)()hP7Wb+8d5W+2 z!M*s7&%=%|dbBF|$MYr8%x@-EPjEqCd6A9pV_UMkx%xcGRw&xmA$Q#xQzy-G&{Op` zogG|STfucCjLH#cghxrl zAIjxSi+bj4TI4vP33MG@+@Hk#OBeLku%%yH4(xOFf{CL_)^Ri;(JEshr8OiGA~KIH zpH3Im^fS)+xV4Vn*#}d$-rDZXx9)J{Shrm5TS+K8OHpY;n?3z_ICIOpb(nEwCR<&c zQfH%f6*bQ>sDlr`bn^FP?@9-4kC*RArY{1Qa@_YNg~KL4pl_e_$=! z(oqUK^xJ9&^Yx-+wR_*e>6zI>W*AD+_V^|}ba1=4?ApdKc=wEos$3!5hG>wlS?;rMqQ>f046D+ba2p5n z$5t1U*W~J&1;RkBU*|d#BUToDQS3>r_V7$Tf31Gm;`rk9MU(2~21Yz_jIr2Qxc%!l z-IQAl8VRRW?Tqv<^d(F{!Ckjr{?K|Hg95o45E`GtA6dUSeraIk0I$%Q#J_7mpt9P0_G2br#Ive<=S0rO!o~*67EZOu z&B*k8Mk67wi$DhqrBpw8efQ{M_X>AYvHK|5xUAn6yZ`lB5H1?+ zmIQYa|J@J!!pg~Vt2ngKo4k?6cZ(sMk4O0g*{gD?oZfqX{}VdN91MMFL}8r+^gMm3 zMy~b0|F%ozEwZwSeUK<&%xdd#ABF*5GRwB98~gSQYw^g1pL#j>v32YB?UZc6e;P;8 zcW~*N)RNc<_X#*_x%$@M-jozPbrn7izaIoQz+J6--qKXqsC+GTwNhP&x9|pX_rdeQ zBK37RD`V_kzK+eKs=Q`;|I?PY(HRNKuln5;0bB~$34|RcBRpF_;ni^zl=S?%6@FF1 z;Xjt(qx)_bc=Id+?e##nS3sYH^Ojk%eXeXiM9m5z17de?gqA*Z z_c1#-D+(ZMc0m7#AG=f_%&cwKw`Rq&5CmvXUnvxu(`mb>zy)qBb!bra(2U@HZ`^G} zl1U`VKuCej-mN${xyt63-{S_A#P6LUex?3JE?yG=nCOUx4~ zDsj>y>{WUNS8>IF2&dZKsw*QcORe|H;`ixrrSf}Hl^zrSBAxQEvw;5e&V7ET2&BDK z0T}YF5yiGLu329y$b_Dx5SmvBf>QpyCvP0uxT#xaWJ_W2L2tFgZe2^qSsD8;@6%s~ z{y`Dg>2IEyUm0S-BS9OeYOr%)9)IBqCyZoM?wl%3x1ibp{LRR1Qd-?}j9Lr~#FFNBfZp5*(r`D0 zQFyAlCfQseV`)-e1ARgFd15$?WV9d5!ew3)9N2`S+g-zWnX!k2$DH0M(R3Yutj2Wl zYLE_p=M~T&aA7`LSkErVUKa_!vmCKK_PZqtSYuaRKmTThZdj04M3Wu$Dn6xC;>Z$b z6wX)9C}zIMHs=(o0{OOh?8@PW&i~RraMzgyg2r`!0r6IaBxU!0d1>7c!%W>i=aXlA zFw#4!U%_L5>aD@XmgmwH%DyQ8_BI>}wYv{|*E@b+46BMuP!Rq2=Pk|d@+ED5HnAV= zza_+F150E-GZhbo2IV=rzr;*OK&Vh#9*hK1IP_;7Dj3zUvi<~5X}8~vj#5-+f%i! z<~f=tpY`sK4zY{?eitgY2}RK7m>t0#+3KmZSAIpQ6P}oAoO4uG-cd3VSG|A2JB=JW;DdBa9JA zABrz(ifbOX+Ei`{jCjcKMH98(o$rk+vHf|yWy`IjXbfoC(;LS@=qFJF=q(5YpcDxK?B+J=jUB z!=*|LdU$CS=`yS}dd015b@G&}@L3w}@k{kb8bYelA5n-FneX)SqB)?C>zMd?lA&fV zlMXraf#}x#>RNd4jaC75NvDEPW+@D|IHScW_6NpKSu=&^KJrcPQt3(0cE<*zB0}Bl}t3?{ncid)2Qw zv2`NSzoc)@OgwL5qmK&>bR$sC`!!*+Dkt#ql+oBv&VV$ACytZfI?$YjP0m>rxVt|x z7&mZTku9>SziQmSV>*f%>+ffNv$L8>GTc^~4_F)5KFJb&`>3C~F|swC;K+P;ep$7% z_8bGAXFNWi2+v!+9;mw>R3rnwjCzb>Q`?Z7E)NpuT?Va|%h`?h6{X{!E9Z&zk*<|- zGHAfXVk`28^Lay_9A9j4l2Qf>E}DzL+xEDkPx!*l0?Wn3F;|uv)OW5E3E*l+b;?h{ zc~v7+=t`VKKywrQA=~|M350-t@@vHjoS8@fn$xGo4?&YDq0~S z_%FY5UkA8yhdx^}vCfo~)<6h|!g|HsuK=t&2N9CamG%8M9h67?zE`?El5a(XIMbLp z^bgT9bORT=xF+DGCvM^;b*KF+!hCz^BXgyD!SwX*@<545p4kZ} z$TbL=&I-BAXkYV8ek8}B48S(fM_c?A z`u%`fMFBUDkpx#2sdskKWurzgTPF8dwD}gBC83N|0S{HUDa*w?APiQ$TqSO$1ExE3 z-Lt9BodojN0_p15_``m(6Io(#a{D-M>2^J1k{6c9x*g+KLrd7)S2@;&(6!;b4MC~FvO68#6q8Ht{LIyiS)n7Yn9P zP^L*lj;8T#z6`A}ORYE&@^6xCM`vp5xexLzbF&F(Kl48^Ukv=-h&RZJUszUWoeWqs zm+mbuzl6xP=Uf4)58F6weAbTcA8sNyLm6Ys?ZvKHWtqWadYzS;gsMtWzc8+82-<6j zlN|Ik7?|xP!6UQC%Cl7dOizrtS>Z4<`O?lz^aT)(Opdc_dQ`6;^rSTBb|Nwk`m#&v zSS>Nq3XYF7H`IT!;Q`%+zej3(j(n8yK$dv@dW`0eOH(**hB=@DE$Ui8_G+LL=k-@w z?-Y>y2FcnLUpiWaF}HZ?5>s~?eYxyimnN<~6l$_HTDA8PlDPAkbeeWxtNR|rHS&=3 z`RjCV7-$dz9tNd3@~(v*P4e9s+o3t1Cc(?}{n$)ecVY6H8&0{7Sn7;2R#8&0$FUPs zuR{Pu3NKsJ$?OGv!7_nuw?4FF)5W=FwM>LfkEQy)C3}TWJ6VQh?gWmq*GapHz??zu z8~f$;w;l-N6a3|g8bO7kx?x9~tRbQq@v{l}?OtJ10rihKd!k{nl(umM8zbZ2?<4AQ zd}ya;60+H0+~^bLbyG9ocDBm&NR1E4Uxx++YC z70I_4ebZ@`-LvUXk?zIz-fkIl6Kr_<&05pnCuIZ>?241a(Z%SGSmFE)dkk}Iq9FXy z#@@Mz)gXPB2&E(#gs2j%;bY!rVB-_>-af*0fmqH%{%yMgq(jHS+CFI+zxDXZ_=FR~ zh-7%2&}K@?Er`zL5f0D1)`*E)q8aEG^IY8N)T!~&co|EhjHr0Fg+!^65;KtF;|Iy8 zFZyrsk@q0HQTR-tGLJX8S~XQ$yX^a`(LvVxQfL*|NICrFdgxL@-0zxrO=K@iD~aJH zV?M@)_UdJnsK1ukdmQS^;A;$ueGI%<*oGeOF-nXfi!NIE8Kh}Sc6i9QVk~8%kLO~a zHlCf`?R0H<|7}5kyXO_mc?HY*!i}TKzYkYJIe-69OxFEX_k9ZXIaDbeLW33&hlu6{ zS)xe~>RVIr*7;6Z8!tyK+S#*ZVf0hqc@6Gr*b%Eg-+`>R(hY$FLj60CTS3$A8e`dC^AjM)FT$aYY-ceJ6^R zz|Ga)chzw8RGFcL@9K1#<1+hVPL5Sf|5PHaAuXq`J2p9S#KIaKGB# zqAMg`k|uCe_*8V(hVF{;35~>;|Q~+ zTP|nv?KQ{n4d!#xw+5LbFZgzu)BiP} zS9_eUkv(QtF1%F|72t2D{{xFXJA&^*yv2G~Q^V(O zK}g`*n$95j{rR8yru^!Vvr`LI_gxA#+`zt1uUmIbNfps`?IJ;>S{hzb`R5@Gitt(8 zTOOEc5rvxR4*>o~#Pz{>1? z#!+0tIUEXePGI|*3rao5AH7|`W5*%^OhFA31kB?Wy*WD`X%eVEF5-tJb@!gzJv`@L z8zSH8p||y_3~@+ zo@{_73?2YLli)Z)} z)^@^PZ|1-cJ1p?aSj84Y++8F#g>mcr%BFd$c;b^2_pbfp2SF5?8GDn5s?)4&Dhln%PeX5QzqRr`;RSHCVk(36 zO!Dg00gptNqc6-bFMbpf0umFar7OfD{92=^()^z0(-)!l|UgbvpV;%H7^mu+{JoQsmqRnqTFQzXfFD%?QgX9TB_ZLR#1P8YD3wuap z`w_)o(qI8^<`nuDLs%&AVH8swL3}PZT;rfhBu31&oG`7FQ14eA2*uE&nT&Qi9eqPi zez@bIJ6>>kuHTF=r8iSAZ=nN6bsL{#?O;O2&P=`e#|eRDw_-Px#yw=%OEH5PTm~)h zYEtI15052}3qpTBr+I_g-sp8t3&c7`OisU>WaMDWWEaO4qi~IVMI#GN&EHL#c`8R~ z@lBQoYsppXAWImBXiOJ)^)pQ*(kmq+Yd-oOJ893*Ts~FjJJ-HRXZ^>_Y-FnvuSDzf z({$%@th40t&-s5C1xv6gX=HC;ege7_HfD%VJNqi{vv(*RjUz8}hVtr}Z!L0jrzOH$Rl zt|DM1q()q(;e?as>60q~LshL8SERyGy#RW>Z{xGcfBy~%HvSx&{^kU9T7J8eI_Nw7 z!lIfPn5kcwj{*)$3Vni6tCj~(Letw_LRVFih@DlV)Z==?)8~&L2>%rp+p|68Z!N?r z?P)e&>AG;O|4w@kqXRhzyq@&6l77SfdVr&p_T!vLCgL*_&Im&Ey=BbnPAFyx{zGBG zDI>+tqcO8K`)1NoGV9s{fN=j?N)njQszV9ITyR*L>_!=AJ#O-r{xs{$*#n=^Ys1_P zO3UMX;z1rpn1dymk0aw;mgPG-ibV()g;V>obm|hPao&x5R^>(>jXVurcLj zQl6?=pf5(DvLqdbqv79UcIy?|749ru0&P9OF{O;Lv16G^ig4W)670Tv2gkHktoBab zug?^=E&AJdX^Ua@5e^`T@HR2dfe36Ju>|G98#4Gpz*r9)paSpOg6$j*UFPny;P3r* z+ynkz1jFmdKa&)K(l^&V>lz<8?w9+WDHPxYWPXi&sN^xsd}6JPe!JB*9yLWAdIPhE zVx6vzk1BaPSgf?F>a^;5UL{x`EPmT2NPL1Zwf4A)FP%tgl%HxL0N|U>RbYocT)?Qb zWOQBJK;aD>x9tpgKrZ$=xX}?F44*`#QX!Lcid=l~w9US5Q|WpBG#$u*tU!vq-4b(Y zw|FxM;`SVGx7qRQ)fBYPh~kepww2tu@x2}W4U#qe|89rA_NGsF zm7K1CI;pYOH=#_fuq}hPY4d$NtGgq3ZZP8yzCL@2^sh6XI}?sI%aU=gA|1`Hc;NFR;RN$O7q# zhTqQ|BE3;tK;BDgovs7?KG~mrVb*$V&IqElH`ekW_;RK8CjvWe)A9CNc&|z>kO^Eu ze%UQ2!AQMMMkcSf{55Y?@p>L(Z4vvp4Sw>h=*K`oWg{+Qk5h2c ztz+^H9H5zJKfdO?wzne+^4%rGUIKd> z$u-HW!!NeevyQJcu0*~d#1H*hcF=))DFL)0qJr|i-31>aBs_JyjU)ahbT2Nd~9JT^e zy=#*GMlfDn&3t&!FJ&Q2vX4QABW8H7LAMoS zA~Nf2$44)x3zdekLf*WlU9SlX7HzLGE`nR~+X*gok8lH)>85;;>VeP;L$SqUa-P0B z5v$&nJCl;^Pz1x0+rJPKYRCHEX!wo17SO177hFo8`RRRKg<=Ng$KAC%EEKQNO6wnJ z(YPFw-tLjqNfupf#6;;|Gp$qFwhl$c-Ah_D!7Gx<-%`E!Uo9cXA|}*jk)&W9U!Ef| zS&h|9_gYQq)+CD`EMiSR)=mGaeFOc&PH&5Ot?78upIASMgOG{NQfL*Q_|mw7RR8a$ z+YHqJB?r@&9M@6SH`S*9m?vYpE^Q;pz*4H53P~jNaqgemD|CuDYuaOtnjh47)Ku;K z3rYc=mve(^V_1Gof`57SGzr=M?7WGT96r`M-5}I+tcm2Y9S+sU1wdX!Wv^l%AJNzS zCbtuwTch#BQE5Q(VZ*3@*a_9Vn=l*!$7p(q+X(u-c|ACg5s#F^aHkhuh;~!Q+ z$Z5Rh<$j+APf-981PRejw3Daj%pDqo_ zO%4Bo##e9J71hUtlEX(gm3lDsGq^3vh+>4A&r}z3!rJtwIX$a0ZNjb4Qk8+5xW3L= z)n^wI0)=?T>ys8qkYHI;e$umW&rQE0>O8IDxgh`EMGvFR6rnic7I6!s)URcY9a zGSLvpb&j$iME!B4EsS_H3i{bkv%*azwT4|k43ZHPxWFxow)g*HkscF%AKV}Jt77Oe zFy^2T^gIjk=%WsPaOUdaS3sB=%r={QBLB_ke(tbao~eK0dNu(RC1Bg~uj>(*>2xhr zz~pB`Ybvj=`Y|UDxz|{YhRtv)irv5=$Jaw3_3XXcHN}jD0u|_H{&N8r3%j7(iduUB zRrvNv-#}Jg0US%mcJ_rOgb*2@t)A)5oyfk)< z=!xo%SHiM0YlyWLwZl(;^^PGPRXTxQ^And)+UZCVnL42dU?|}Wxo^#R(M`!G7SdsD zed2ShB1M~}9gYeJWDII1zF|KWMOw-JE^|(dH$IkNNg~>5)PBrL5Tg&rVbb@ANMV1! z*F${J(rHf|vh$Zoe7ZW+1%wYk2<_q(P`>(v(f9pl%j_(qDOI$b=hcVyX~1Siz2J}q zuk?sJ=lY_*xm}~Rj}y97u&?0uG)?sD&L%}c!I0mKHUE!gYif~Rf}4^HIR^X`Vz$$r z2J(EDNP{-TcW=GMj>YVhDQM|c3a0C$WA{-<7UCKK2W#Xg%^FoT$DgFrAz3*HdVtNM z7mftkDxyN;T4a(ZkgH})@7#SW9s>ZgM6ifSEMs&rZK>s-dw}g_SBE5%SZNch)zmo5 z>~FLOWUiD?ReOhm{=a6BofefY2Byl+9?rxv*ALO8G$NNYSD;s^VE{DN?r1ocp+Q4g z&>}yz5V*8r1hj9?ifV`apP}C;r&(L#%_AkGdbV$@ng*wkZQpurdn%mtqD(~oaXquS zNc@KJoYhK%okB0a4oZ9pOFm5W)l^GM>b-GWQSVj2$xQqv2E3QHW%s>z};VUJ7nijYA52kRs^Zs-#cZA zbR?)^ftSf4kQdRG7XsdU{qro=5Q8nQB~&y^s+?wzwW{nw^QvSAH)F5fM{k2E!*?+G zqrwVq#@1v1;BS0mQ>LMnQL*1ecgT_ppzk{l5H+aj`tEf!W3Awe zM$H(y23>IJ;_U8~=9-5#pMZ0y&}gq^zoz`MkhS`(N!(tK`aon|pgE`RKZtF)9j_30 zTu)G9p!wE9Mt*gw{vMUg7N$lj&wDkAr1HyQ;^nXQ@~F-Q7wa_owC!a*PoJmlOPG9% zTr78Cbn&h(Re{~jVxF2v$dE86ZcqHrxK68YrC&ETzQ5H7&=gwgTRMn=NoY>Ja!i&K zg;g_{q5Bxswt?FM;aX9?b(Ig!bT-hU?(R^IA74#+PmWvxv!yPOt_=QqvYC?Ono=fD zEJM7w^)dYH6?bfe`v0D?_y58b;lJ4-P)%Mnr1lS!PKy2S$$VFR+|LoQs^FES{q{rb z->Zxcsif-zBqOKiWov8iV?j^Z+qG zTP1A!pbCqu6^f9~ir}@?y=B$;NV6C{q>Xh>AW8}<3dUCWo&_(shC*Rhd+w{Qa_i0p1f2qf6#pA!Bl8cR|W+%M2%idl$NDvDZn@5Zn0Q zBOYo!`1rI6_Nf9FU)@WQuZw;#;*3q%90qdZy$Qyx^H0Ra(hT3Xq=q~7eH@m$QJr3Q z)gVKwdM@pAtBxAoX^&|QvRohd&&+Gn4UGujBgINkZec5O$j9YZ!H&wK1zFGf#muxd!#J+#3(_=! zWYMLPoMdc(zFBFJr9e(#Yvuw;-{7vlTL-63cQV?(qx=khvb^x6UXfdY-N$X4=7uj9 z9FVIONUwfzW)gcS&%T}!G0eIwD%GeIhRfqr#LXBK_fu?{R(V)NGm-?U+1P2q_9oJ5 zrp)m~IsFb`J?MsOuJ#|fy-iiXV82RNJAJD_$ljxOBqx#i{jKC+UTI0}+S4Zn;+6uM z)Oe@)zf%+}oG3231U#X&rzSzgDBYcSs}9L-*|-`e^dYT0fx<1JMFXj~*-x9lZ#`~o zA^B+dbvw(5?5m&np1wxN_v4J?&L*8Gg-H~t9XTzw8~4lU2R zieIr&m6v4!YMsh^oA`39x@}VHIQzO?^lu2D4}9e=#L`|h;;kb6sCHU=f@z;3LV_h$ z0->XFsiPswsWfyqUJHql2cg5EK}U6lxsgeiT7-k+C>ABc1OxJ zy=x_#&n9XY7BM|qZ($QbZ_44O_`W{p6VO`%tLE+)&3f~VFibKTR@Z<#hS`_^o*qf2 zn1;^mgmE;Fz7qXtSUujSfhvcosI-z@|{(-_cCd6_8)AyJGys3ESWYV<#K-NqEb)35J3JuCGyUe8+M)xNkNQ zs$!x?=T@3>Lia-0NeTj0;(rC$^1r6)%(?!H2B1@yUqKRo=pWX9bfU-#LRkTHxWV^u zkJWlEutyF*7qWGc%LL%*+fHGc(I#wwRe|l$kHd&AWM3 zNu?_Fs`N*HcFmkQd+px6x_kM;CMS#L*o;sOG&~qlJ@SBARy<^_WltmPY7f#ZdqGUF zS3s6ji~b<-8g;>KPXT>6;)Osso@Amy4PZy*K$4zSl2gm877ns_l4dfly~jggvBc$w zf-owu^NERe;Q?_o`e~t`2E!C63ka$qO~b(-zO z2=_VS6;IWmjs4r?hK`Jk8jQsKm#q*ew zw9uQ%5cFxV>5+Hnef~A!i3P7$w2@SRpV-b2UnW5>9 zb4EB++4}>2XGaK?4qB`YE@-8px9D{dg2TMNWXP!71QoPN}e;;PO!ny!s{3|)0uJ%`dz_1RL7@rYvT@*sTg6? zd!%wW4hK!va}rD`aHR+bBKob^7H`d%ZjcOco@CXb`uniKI+_>i$1H*_>xytNv4FIXE-e@#i z?~3#iEZ}j=_kc=u!2eXLi#iT^76E_K`RXdKQA=dZNBE7cBV7@jwBNz0zR$oU^jmzr z588|F9>BfZ$Cni7`O0b4xyNLJSVzhGW1<5+sTec&dBd2#WsE~+9+v!t{1Vtt;be5&vNZfVPI8`(5;Hr} ztt@cq1*f*^>+uGSdTWvv*6{Ib8EgT5y42i$0bKa;l+^GX`n^0p!jgrzm@JM*}x}(}Q(b*FE{Sx{_PMCoEVbJI> zKp<8M-9QO}1pfmd(ONk7{L9~4$2o!hG3bR&l4ickoZ=bUr_aJEo)LJ#;LHbMY!r|V z_a{N3Fi^dwHoJA8()&swd==>+k`Mzk+J-<$UH&dB1}l` z-Y*ZMAFwggY^ge&aFK?dF+q~XKR&KI;-`>FYJ(JA9_Fii>aB5`E~Aw}mlhV%7&DzG z|5RP^8uRZ4nB@y?`Y&GS<>?a-Rp#X2L??HF%}j@cC0?>44Phh!`c0)P9$r6hP?L`* zHdDWtsLVc4Obf=YA!Ej?p>OaURB}mAp@paEC5I7Y^^{(8;E>`v~Z8+m?ABUt|U)(w#m zHeb6jn2Ye?w2GJV34KCr1>vwb`|*6v)Opy_zU&cOdF{o{LAA*V3&)+3Btkvjzn8Xx znK;~D7&`}uF?0~~oE3aJsH~`H@g|8g&zX&FH^ee?jShkJPFr5xE@whQmj)$HY37k% zRny-Hv3E~meud1EWq%*o{F1oXRz1Ey3qJRButZ_$9a~KFyPicEaU$W8CCXVe)~Co= ziA)0@eoZ974DdXH+w@b@%m?HQ|ES$|9#n&I$g*ZrJ%9Q1Q&m{}sve6R_x#n!yAW#v zA}8Mu{c|B#{L7Hv#?PPUWCY&53y@&8=6dWt;x@>uG3({vAsB`K#E@jb8CA)L zTG4bd^UL4^gAZ)Jbh8K6)o|F2UPIp+iw#+2|0K@&F5i-H27OQ~k^8WcAjX(<=-mw* z=BowWT5~SOPwM#NGH)FL2m}_V-a<7!aUTdArv(u_P6zNVDhfk#<&hJE#n9KRI-t=% z_G(2I$hivsNDkq0_3n5p_SNLZ4A7Lc9dX6$*+i*xJE9>mHZW4+v+jX*|06XF6Pvxj zkVSQu;2|vk5{8!Vt`V;UYQD^cWIJrKm2vI!+4!$H7fjEmd%ytRwSRT~q6C-bJTd*v z2(DCjhQ;e0XDnrtYV49Kh@Y{2581>v2xJDZ5IErb`uA!Nw4a19!`Ayk@-+K^Cs(|T zCK-w%H`?f%*6!og!rwa!vWp;dH%O+v$U%^1*}K13SrS9Os*-BZfEqu(W`HrK4JdJR zY)+eR~AA&<%Ns#R$71h-GWt9H=5pf zoSg2=>@ap==TnT(ky!4gEA>!a;x0Nlk<3HSsjFZLJsp)lym^J84L7%+iw_O?CfC$) zGi}2Bm=rBTQMvghPpqHR_xyUq zAN2S-gMRasKp-?F1Cbhp$eO>0SuCiCm{kX6*-BHZ`RK$&<<)#Gi@$g-8-+`(w@VcF zMb)a;NKq}#{IoC9d{{*vGL9N|dA~Z$Ke=v}GbthZ_d;D&VllqA+-h4fK4KCc>~J@1 zA&f?p#5Z7P#g+)d$)!+)Y;o64OVWik3`l9!zQg$5vsuPZ{vpWXJh>6QInxk@n@WIcIg zL!V!0>PdYyq08-^<5Z53Q<;+Ip|iWe#vFroLrO64zIWVKzn=l4V$pq6_7{6P7HX@u ze(GM|;>pRP?cX1o_qlUB4!S8(ls>NA$&R`RHb2OF4aGNvy{>XQQzhh{($(!p^?}Q+ zsDG|>gsr_dtM8`#$9-h`O3UF}0u^cP$@4%_{aHC#k%0Rf)T!LZRM|8tKf-HSpBJVL4v%j+-PGEkFt36F;^zVmDIRQJwu+xsH}7Uir4 zNwvy|Hr6xvw21FnBCsEH*%`9`kvsY~BI*C}pJQ9LxHR5>pO$vW5+w^DJe#-fMHY5|C(>y0i16PZt;9{HbueU zhHbFn%3lo)U&e`_e4{G>ARj*0C7tGJBjy{N@CJ_oF5;ZqGR;hs zv{+;IYOVnQXMpS>iaEK)9`C;NgUQUHr-Vh8ddMHYi8K@0s@^Bwz~rE~$N#>PG+w8h z!!p_|7Rh@u4=2Co?p3X0)hEh@kTJYWN$B0b#l0vb*CUtRX|`f;(7Qv-`EG8EMQZ9bu)cV@+EOwlG*2u!j=7%$tS;cw- zSrhA{bH6gbZ1ju9U;634TdsyS1Lt{gSB)5~lGURBnp$P}`^yvxp#$#`45ZhfO7evm z*$@)2x+=dfxsp2rZ#YWj52~y=UX%SoZHq;8uFuaGtC^oqW$HTofteCvU|#YX@Z_w z8*TK~WH6U}4u?OEXiu$%HhCtpKUZA5Io!UE!H--%UP~>sC}USu?o4}N{Ab{_6-9z) zmpaU-=}$v2X*xd>6f;k07qT&5_DFmiU6`Sjj>$g?fg`$P1}`@?R6j1;J} zUdL&&^LZ-Gklh}C9!nt8Jynwov8@fopHFHtd1Y7NDAA>qLj|W%f5f@uqZ)Iig5g^F z1tzFVIA|(_=kDKr|9~UpN6}E`p(x79h@@$xMy-aVv9vuMNJk@ou-v@kMV;m{h}WfH zaut1REynBl_wYC5E8i*n9Kz{G5Thy4KF-h6-Y1I!i(&oX$|_z&g)QNpOdZo3;!?CU z2A#tPJ4$~%GjGzSa^%72Iq#&OuprJY@><%2QxPtf#K!r}Z_#RIGhzc^&;@SnF-%5> zp$%PZ0ZTQ-f_4mDy^eG{4{lgmu>Ax{Vnjk`XP1?an0~~s9*wY4%8YIPLDK$Ddd-iH zGxtf5-)m392HDfR)F7;`-hl+((i}JBc89+j?W&`s>BN84X zCBu@{_w)JUapNqEraS?rlZdnrX#VxbYHwphvipeRxomi=9n>95QRk{`xSR(dFfH$c zj{Z`sJ+Z_zxM7r*rEgoZcRrEro+&-JL3X=jpqf+K3Zbemv7>%OQ<=BQ{F)T_qIA7u zFR8QX{%EFJ8um$nJj#eTyx2quRtU2V6L|ZnR~*6edYR_7U-4uS@vHjtoO%)G-}3<+ zr?v?;pXe$*E$7U;br+f&1ssoTpD7R$U>iG@rg#);a`u{!FcF+#lc|51`NI6 z$oQ?OQxiJKf{niEnoO21BcY3qcKM9+5c{0{^(9n>KX?fjZbxw;A}Z8hXdBJ|F^oAT zk&Q1?Ldh0aw9i@9xlvfWDHrJxjB(QUfsgS$J9MZgVp{&D-c09Bw`hSZMD9h&6|~=w z7z}l)7Qh?OvDK6WMm8Bt6N=>EZ4to%7h&e))w*i= z@oUh@UWsvvVH`V!SvpwF++ddXS*i1y_;G)kg-axU<4Ij=W_7DkiYaSwX7u0x(^qw{ z`mJ$6RY)_~!7*;cj~}}^!)c2U-f+ZtV1J^wLRnE|gC>ef;}WRtN3MnuNWvq|Mnt;v z8r3pGO20+x>t%NFHNNCeOec31C@8W9JATF09VWj151bp7d(W4IeZ_`n|IEj<&1Ay> zJrusJ?0=!#XFK=GpYR6dk5K^>6TD(aoe#vq6q1a^`6kXaExENca3bd(@(HcaT9retlXBiNgKQaVY%h2 zV!BtUo}0La`0R~eVi;lE(>(Dp$SeKLYadS2LvlimzC0dQV?R>4X`qp8Bt`$!uD$~5 z5BYG*G%eq(*u09fz3p`gapnP=xfT2ZSMC_RhtE4ndYu5fewS&kAd5(E{qM4%KBy|5 z8RuC^U@f$CatyHd@BBFbJ|UTbtgKkJcP8uaP>PEuel;w(B<`BzCCta+Ldj^1b}dI* zO-)dZGr!Kk{Tgj8?B}eu7R?j`+OUa7ziTGn5|cR&(0W1_yUW z?)iy9keAqAXRR36(PV4x#|?q@16fFwHA*|IXWsc#!R3}8EOs;^rES0*@nusQQV0J% zcZqF+gx}_3Ya?XI0RKH8)%R#Z0n-j)PsBwsU<^ItE5`)VTEk+cWwJephFWZen*hVs zyE)#?+j}<8E$6|K0xUyHLaSR2uUO}Xlo8Ex#n}0*Ld4_s=xC)bpU8I?HFfVH zW0Wo>R3~pa2VYx155BsLf|?anB(Uhx@&QRMSHBu>B;`2Lv45OYr`X?c~6ma;^m$+*}plhfki}gTh-Be1O5wXC|QnSTuRsu zt*m~Jn#up!&ASzp3_Unzl2hfVQ{4v6iU6wAaaxpAW}WPAUEp?oHXi?@Bq}EqIQk$5 zDh218Zcfg3A>WHA3`q~K**)rf6=L-dvfi7we_8!DfmXlI&iNH=L)-8j<3ffwi8=fr!~TdXYI>t_a?ahqBpd9FR3SEMCVl?{7dFDx1l-bR~Osyo-ka6Vroc+y@uD zdrov8BT1QLS$J2g^1#F6z{nY#B zV191t>$j<+ir;D>d9{O|Pep^|t0>`TbZ=CU!Hy5GXaviV>hkB)Pp-L=b;PKAD- zGi4Q{V}MPuK1q@>$VUr)iK^RNyQ0AttT8Y7!x=AkFGS)Vb^3XxYy29|g)^)!t>$Da zWlzuSpzD$i&s)HHe=p55VMM9o1OJGrM}mR2lEqfkO>>19tKAUuR7NCa^VA`Z zjC}5;cg1Df4ZK9_dGx{wlppC(N_pojbQ0`>W@Hf|z1{faaKQu&U9l^hOR6_$C%l#} zj`(y%jJ&!|n?ErJ4sF?JKA0g;)^iP|mYw9{;OSbh*rAfNQ`z2HECjlocur2BZOO$A zyp}8Y(uSbpj$C@n1!+vnt{2mdP~~uYW!Wt?KGG48ay$0#Gx=azaPoZjn8H`~H*TNc z;^N0g?6mU*;G&*0)_bF|LpGrER|`jw$R}go@6QINVYF6J(H9P`#nQnYJ0QC5ZVBRGetx@_+ z5-Ca4uM~0N{+zAj6Ux;)kfDw|9~Ab$W0hy?B)t=XF0N(!!d<@FG}l_IfWteBh!Uw> zvrFLuxl1F9+w_+gv2W(|+(@`DjVEE@rm6?GjoL zfwkh$*2~w9KWfo_*4c)`zh+unM{v$cSu&Zm5QHKyb z=MhZY3r*%+p~lFHfLS#u?O3!8C9+T$ItzAc@E6Tx?R_cNxo#;lJUZ^FZ5j-=$$X- z5b9JW4$Y9M*$#ozPevVrBrGuM5-HK6=IVjTC+-Dp`m|$g zreaM=r2eh@E-w}YXhuh}s%42P5Q-W@3_@$)j_DjNMP5|`Hk&*|m%{i_Av z-GXiDvab%p*qD-?!wt>>a#zywbv52lK>WpfIv!S=iZBuv%X%{D2BvYVl;Y}tKrZS1 zu|8uDnd*X2pY`}IbTY#|4sY|B9^ZXVjgh&~f=Z;_q$psvc6SZd9>a)ptn$Qz52~~- zR9C&rz54B^5k_-*g)nIVtK9}y`aQg{26S>(N-}u;QOID2aG4murcu%PS()B3Y2TJc zJuES4Y#TWF>$Bp>id0b7*EHxk)RqEP5J?mY&vt#;7Fo$$&uOw|!RPrg{^GR*o2b2= ze&I3mWr9wjJs*;cK>X!4Ss<97-j~GwmrqM5aWyAzJI#1+gYy-mbc5*0@WCzF**Hv75L<~WCkW3C2+=ivmr_>~qcb z{`{IA*45(}KEd#W_;Iq6R`veAqlZ;>qe#9PbTl=5NXjtO`yCE(HSywC;l@_+=FfYO z68hsB_XF@48du1m_w%9dGyI@zAXD=NKR|l0FEnM*U%BcpNgdlJt4iS@mBu?)A%p5Sd&(g-73)j`MxzKOazPTg+=2)s94JO^-dN>MnZ09a6QeZn(&u$Q9i~ z6Ci>j^cmB#3GqjMUs>ByKf*+ObJa?CP8=6-`S;>){vV9oyq?dRp zaP8aUTxzzA-QOw?={i`MP>`F7cxy~a@PUsmr_JpGu;~zVHGs!KmkzNQT)4AuDDW%m zEpEka4RZc`IAQwDBJdR|6;&D!(%JZ|<($&f&Bb?fxoZ{^^X>yi}sKXhAzExXTPZtl-X_E3e^0{*%R8@gkLytz(!& zCHw_WfZ{KagG~HZux*hCyzA3WmZevLdWzkb--Sk^b*ds*>pv_{rq@AR!Dm z{R^`fQ3%lZUcNkd)p%*|s`;@i8%^;KVq$8i&FO|tFgY(EyRiuzTh}kLT*gM+Lqykpo5qo(dj6uP;sA4Ef~-Tv4XJZe8K!Xypc z73iw%Ww_KWU8In0Lz8s2VyLpi{t=OLJpDUM6!z~S<#GR;$m##YLjhb+(#{3{ox%b< z6>r%Gj3I42vy#Q=Y3^j>Ln*JV6g+cx-M`}KM^7xr$+ux1hH!DyP~ss2<2hIIG3w){ z;fq;LYt+OpKmG&h^l)uGo^IHNGBrilWnM%r=-arntQ@Uv#weH5xV_ZR`=2D_rIOI~ z4o#Z_1z9qID;GKRW;fEtN2%XW1`mRAs@xG?;wVeipK=RdX_nq0^??%dOOEFtjYrA( zj1Ts=0F2i1MoK-iK-Wi3MXdQT5lyVBQ%Gr=T?qq1I?7DdGI3n10l9ON4Kr6uC6-GS z6{^3lS-rly`v{zEvNG}JbTl&4Cb@Uq5!55Ec;cHObY6uW)x z+yS2(&aA5Mh)l?JYmesIHl5ub%XV!xu0_o<2zntu_$|f*IHA#-P>cL<1)FQZfrd zXZJ2@-n2(Rhwj$1zPiFOb`b6R?Bnk#^oHZ6@48!+Li^*kTZgZhet4K%EzPvhgNP~^ zEfpAkJi$LZ3hKd&0->Q)*xmJx63u&gs_IL{)j6%pR}4WLrRk|Cm{$ndruK)Ny&$gH zYfDn`MzqL&L-oKW1qR=TSO2Z|3pQ%iYKDt*C+Sg&tOfBpj7XSDNaObs+z{e!p0u?| zKAOvbT(^n@;7;*M`SUe&qwd$L2G3XDDToFRp5e{g4pCzdvm~80p!}PtSu0nVH@wNE z(<##z%jpr*eQ~#fe2RCC9M>JOfdqPWdNWVXobBW}br)3ZKOzT~tQD5NR`?3?x|+d+ zg!B!!>!#f(BLfX%=BQxU!^OkRh4kp=*ikd&4>EPBj#;%s z$_(xOb!l&G%^sdfhQERD5gM?VnJ^>~E2MtI#bEx-0V-K*@lbFDlyR(z%ck1)G-ly4 z8_L;Lr6ZTMCsGkmyCqj<$EoynCX>8#QO0^xu&L{=e|Z=$VH=(Q%<<{6ogt&LgBMA( z*I8dSf)IggrE7`TBf+lQ@?<;b6QAds!9qp?uN+=>#Vvajl9c)LVTvizk9Xr=zWbA~ z^p6j(!Mt2Skt>a-tJ+%uo9hEfukv`p;%PZ1wxDz~rmmDQD5*Gs#eiy80XiVJ>Z3XG zAwn^>Bn{_I{){{k!4tt2GfY_Z{OfO&v$!7iXu0W%H(xsc%N=)MlOA<<%|+eESJ)#M zCNLi-kd&PB_5ulFg8v~?c(zDDB$q+voU7dx)p%Gj<<-s>YHs+(VLX{ajJqLU?fpfP z{=J#zOJ@U486id!{Yi6xyo#5#{T`=LH=c8bqA-Y7_^7PqW+sAD=W5K^43P-n88(fa zcKcd%+$(9pY964jnpZ)d-2RQTO*a+Q-vlw{{vZi5EgT1Q-zn{3Llb3nOnh$IEbGRr2)*Qr%#fzb948r^d z^=-NsT_C>=XKE46OZ0Z^X4?2Pd^Jx{NGyDB0UaH%KD9nSg74aQ5+DhA0&V14f*U=+ zbY1>55osjriTgBK-JXlQ6;nY^Fn9YquWt`NSZDu2fi)g5b@Ed`VH@!_L>;|cL_OG; z2mKE1nkm)4cz-ET0RU{DnP<9fY-X;*MP~`az6C-E*M1N0tj0$bRZ{bPh-?c}?V2SW zEsKWyb@7CVUxTIx_<5LC5*JoTk>A$0`v>?%`{5Lqw$^f~Vg~$(sx7CpAa-A-QS!jP zkJN87<Ko zXs0sZ+UV!UHGtx&^@PW-D%i1s`I9@~TFtp<3E8a;$8?W#>972}tr^oJ9kk*VYoN>l z+zveb`{lN?iJZT3N0NrB(&Y8D!&f~NuMiA6w99Qgv%!t;DFy7`AlK=p=1@&L-Aa?c7wq zt1Mkf|JhTQV&yALZh5xJT!w8wqp(xkUjSV$j}{x#Pj?86WEkq7rb_S@V#6oaC@3k} zo7!#qQ;u>77;d7^#P*7_ecKfWpa{`!zb;L$>CekzwyX^6ZWv0N%kWr5P|K(v%Y2@Q zauappH2OX>tGC|o&k-n>p9QnIZ;1`;NBM$O${Zk-?qM1e*N1DBxPMbRt=(>Y`S877 z_xg9;_x}kd{a=*jzU^TXZv_7?O851eyJT124=o(JU7lMecw3<3zhVEE6;C!FwuTEy zkV8}O_r?dgLEQs*!*sgo;LDzJZ;$zYp6cIlV8YH%-{_xMhDO2Otq zTkuY^rrs~>(Nl!(pa8y&=Z5G5-p|i$S05cmfnri>|G2|GGoGBu_?LV0|OsXsy_CZydRV2jJ*-1@JCbo_<0Cvxrwc zqsAPVxprN4bZ4*_izJ(z_4(B1nD-m888Teg(YkfB5%UfugGhckD1Kc#g@eO^FUQG( zA@Gu1LR29O)dCxIG=4ukJzGux%IqOd@a9buGIW+mXv>^$aeWvh8Bda1!CLv|)Cxt? zTco;Z-r$etbYHm<>VdkJb&r=+ImFj^Etj87jE!&*5nSmE%80B#QgoSM^@{o${M7SX zM{wpTfKANAB){$@nro{LEw}z>%V7!=iD>Xm~+)<^YB=pIIwqA)b z^vIKxcX#xdgmL_*xDd2DEIQT=+j2S1g%(a2B7$CHL zJIWkP$upz*J!<;>DKb9@Ky$HP!JjeVO#9J9L|HbCH&=28I?V)iF|0N@5s;;S_C-c* zqC8Eu^2nIVrzHZ73HxwRIpYUt$l~N)sAdnvqu6)Lb1|(DP5EjhKTaf1TxO2?SNEf^ z$Q9SU4e5PxK>#ZKV(Dw%_W^3Tj*+@LsPzk-$6L!?Chee zbEm9FSqptln&0I1<}Y5XU*%^oc*U*5lSRuMdy1W$83X*d-|l&XAn|1d`h2dvV*)Mc z?_4&OhJQjTZA5u)sVYK+?6=XmHd+3#RldtBli=sb>!%p0pd1TFg892dXd zH2#oyl1$9c83OUzG$}}><8=J1<-HDFrRFFZ>55j#-0jh0t9iQUp-2H7hgus1ilRo? z)VCMx3taZyraZ$^wnjS70lG+20XjF_geI1};Udq~*=tUqS)<*T8to!pM2v1(s*$go zQ0GS388uEMlz*PX-=Vhr%YHPPhs1sRgUho8!zKrJVz5+8ya_V z-L3K8?Kxof!z>4iEia&%RA`$ie_&F;{2q6JWbdhbM1n1C_1}YzAiW;mf+9M8AZ17z z9QmE@&dH|_%3kv=z2vZrW2}qU;kDN+gU7Cat4AJ(H)ag1Xu{QjHd%U8gPMkTsN9(4 zH+Svz(%si)Zp0U-bC7*2_xMcOoaxjyjbd~_#+>!DB?tKAKIVL$1`uV8Ce4^w6fvQ_ z)v;KN`=JsyjlLI-<3n1m4$UUuy@@&PkC+=r1vJVH5>GXtPfziPr@(N+7R#jn`gNgL z*x5=S!DfR7w5TDtY8O<(XW?KmEFP=NL*{OsoX#L_3y*5OhlV8I>*3a?u2S8@+gnz9 zHgxNLNv^aowQob(aXJ@zCB*krKV!2FpU@!oT~~Xq`;h?raF(LKo3Tobx8j*AJ(D>eI6DUd2dSI`*f{7PF_H#LCa5fi@wGHGn5 zvBdJ+beddYz}2=4DTpZS5yT6q;Dm@fd+2TJE}D5GxhURO8ndGG(AW-Xd0r9qJB^2z zvPz*U>~3Yh_zJPxHeXFhJEKSr`NL_asUkN65SFwKPl1@skTbLp$?J4cNXtg6V15Zn zZ)#HBT=G)jUAIQ`x`0ErG zILM9W1>&bjj9!7b82GRUhCIA<`{B+@WS^kX0JFN z9Qee2NK2)mog@q&`X41v_Ft{n^^|Qf@*9!~r9RSVWDiwA=;8x$ZSE%F>&~TMy^WgT_ zukqK-qQIN24OfFr19k-b;zOf_0EO%2uC3v(n>acZjL%r0`%~!aw*`a1zYc=tQIF;f zawSFzmp+gFkGlkHIDtjElx%lU_^f^l3u$4v3(2_>WaAi{(L>g!Y?6<|vXIV~aj6+o zh+J9?RfY>A-k|S_Za7uiL%E#n&3R=Vid)+A8kMDp*e5RCRsO@Cr1YZtzKW^l?@L{B zV?WPiuFm0M!<|^4+lqrNn>17@D&T42ntr|U&SFPtLmbGJ`5qIyT?ODuJx01v1Yjs7 z0m8H15o;?=9Hz}8TxDJ2V%+{i%b40#Cfpmn2NYx{~` zAf2xuSpeGk!P-cVv{~>t7q@JTzK8*oI_8fRlJKtZ4=WSJ(pDCA3dO!&wO`VQd9Ks% z76MNm=S-8Iw@(H|9Urtbkjf7NW?u0~ZCKK;CU-{v3mbSog<7q|JTRJfw?)I8s;M`b^QbC_A&r~VFDO9 z4A;!zMSR6rW6sBFJDRq3zwbALPR~?AEur?f`_C;rW8^>GH-2dAmXeR9r0ND&jbwC& zlT2KXlU~)iq|hPL`Do>2%(0$E$|ViQ`2KGhQ*XU?y%QVfZhh*FvV`j>fwq0#r&dl^ z>uZ0-?`8X8j(&f-opIZ{*kXG8G>L!bVto&eiXfaV5?%1B3{sIl-Jm&=i3^{H3H9LS ztUe?85%iYyLj930jk;=~VFM-<^*eZH)dY-K8$UIlb3qMR50?}i+7j7{oGY+wt7B@! zyEsizIeDf8dvzH{@T09R?$lci zT;clXjJdaqzzb@-;&(x`@HNHk7D*R>*7uLM+?xemUTctRW3e_~WCPX^Vy=$YW~6** zCPO}_0^>|>zmeds@_c#VBzUgj?g<-}8(Wu2q3pBA-)r#U8Ya0jwd+=c5Am6(;}gx! zi(I3*QO}GVY0zcV6^&vbtVX1?rK*gT?XzL$ZN(~ws_`! za@Y5cHAb8H7H@u@W})DiYbpM3f!GRjke+Vx%?fAJ>c6M@{Icew5Sed zZo?+vttrzGR1HqM3MhwCkeQT;4#gWeL+UuN?>&U%JC8j5^NScTOWM#7(!pbEuKULX zHNQp{5O%Dqhm9bmqb1g_eRgUMdaZ%yE!Zovk}Mst0NwZwYEnE7{~&L9FBDLzBMLqf z=%|d*lpg$cV`X~5!eooFp|7eC+T7%;LBUJXE4|aGL|72+f;SX}-Nia8;ZfFFz6^~o zWO;Yt^#TbOq!z!?q-kr3Ib=*wFLMOsg)i?U(yYnf>l~j>Wu5lADLxiA9w62&c~mAv z9cH^Rc3tR^%>R%z2%YebL7hA+*5bKZ8kY7Jc*GYXm50}_^4J8di6umPWCNDQ* z64*rv>~_?Kf9!qz99ePbO(TpNoQKbgwz<-+v1zUEJe1~5<3dYaV7H6M@{+gpVrxI_ zeS+^)=ut4pYLab)#yUAn_UUW_^{Z`Zhb{v;1OcIek^P`zx`7W}@lY+gm@4ApuZL>( zXYf0;?s$R0)!Hy~xX>od>_k^>pr!WC`f8L4n0y`BBI)=+TwaXxKVJ)mgb73S(0Q@Nird zX<1N8q=o;cW3vU1@P+Pw8{y$HbQ9yUQ-@p};tp<`M<>3*+u`Wt{8VfUxY#Ax7uz6g z>2?40UCj_Kr_~|GW@JjisG<7TJM{w6%cxTokBnhrVGUC&PZusVR`1Sond?{A*V$J% z*{2?bm0Ma4M!equ1>?(3q`)-Z@}vv-ki?Zk^AdQVMOE`jH6-0(>^?R*sj|I^dO8Rmr}rFnSWfGA~Uy`)9YyeyO3V~e0$#?@m%(dXCX<0uS$4s7dmG@)bMJ!x1^;- zjV_BY5OhGUNU!M^jP3XPh{9W{(=8DA+A6E7 zRhs+dCId4pvu$>)IOc55)P1;X_5OHG}gI} z!$EZOcc`Hlj*XbhH6x`;W)=VKVp1l{K&~T3V-+5&FV` z0r%L`62yI`?RHwUJLwO*?@2fWk(81(`(Q)h^tYOJM^CqJT}Zyyll^}u;rZK5WTB7XYAkZ$$M13D-|7wV8|NilXxqe zS)S2>@Lk;>r+vtd7Mxc>HcnsK(sdbz6$;YYeHlaapy)t@F&XM_UNd7OHyk|iu;soI z@ge$9)zMTC+==%P$~+(Q0fY5=*6S8lZnv|xK_A_2Ha!2IrWVH)cW(%p0Al~G2UyJ8 zb?lm1dD9IQgAHiw76yLG-VL0s{W#;T_5|uI24ZFlD4M{DSgz#~lD*y?4 z?f~$!t-*JU%N$DF>3~=L#iDw&Z_w|Jkmt1~EtwbEB|v;g8-iU8eE}Zr`=oiTRcr)E|&d z2PB|*pz!IMH%{>L019<}3N`?$MOpQM1;Ay7I^DC^>Q> zO|>fWe1h+`RVU9bKKN$l{hh>|@gE!&8dG2?b^i4&kNm@A9tR$+1t+;yNRGRR&*1JC z5vFG(G`{LVo?fs>wbdx>On1m%Ra4?{bTtP%_R|0x8rl`!3Mdk$=qnvs4^SS_rITj9 zc3$Mn0+YMM`wqk1WJi_S4@_mp=~W+Xb_^(!=^1;!uHmJ2JFeHTXwmdEy3FGtxKxc%wJD9E9)*6}YJuwl~btMT(jYIOt3tdS@6o@$OWc{QT6;;ab5 znAG*8R8M)t?epmMA7ZE;F+qjzo`X}6$t%w8s6%kva2LkQRa_q#O(__4%E2)bf@o{y z!^)l50YU+z#yY*n)v-m}*6B;DtEQV4{AR$WHGj8GPgMTet*nGJQA&XcT+S%HJ*OFA zH1UTcqW4KQ=GZtk`A_Re3m*Nb9RIamy`lFLje1=5?A}Z!IHevjdi`hbV z=P~}_Bt(;vBD?Cw@TT9c6j=;lsDSHl)ys58wG%3WdDd(^Od3A{5rQ!@hp;Y`1fAq3 z0cTt+@ZLz)0O#^g%3h@6TBBTg78u;o-SCC?UJ17~sffjQ#W}^N&~cj{392OQNRbr| zoEE4HaVY>P)?N)iARL>n+53H9OwA}goo1XP1tI-+>iHoWR;k#owWS^2|Co2fYat>^ zO#7Q}%j(2usgxK6jHXTglZ1$z;u9(80;7=HJ8N|#MfnKLCkIeWTI3?a?c+zS;Ddcm zry*DYCU!vsid3sSiC2%DjW<%NIGRAou63Nj?2pdZV^#WyL?#Eg$~a)W!n(sIq@Gh$ zA({yWL5Aid^%A-asEWS$C71jiaA`NddViVyI+M(UgSXieA#p1B&2tZ@*DGs{Ztfax zR5N+ecsd7a5%slQwmF!PfwF$b>;;D&GiJ_nb5eLwkz)`E90LR@SP-VEIJ$mt4lOo2 zoY9+EnBJ18zm&FIatA)v5~?vxuybo^$C9JW^VYt6QnNHbEOlat)hmA-O7Pu5P*-<6 zD2aR*Q+?TSx_Kf7eL9sT>TVIQnLq!)4YD58WP*DP=Eclfa>&n5FMDmTv(@6Aa%yaQKajjAPy1KxF*1xu^J%GiS)X4EOh1B%D7Pke>04Tw;75lpumKZVR z!V_cM)1sx#`gq~6hep=Ty)^ylbTUm@V$SKS$6`;-3fjR3-saoH>^4B`Gdggm!jL(ma36WFUm5C8%FZYv-Kun z<1ZZw#vkw52&JPHc&CX&gd-09i{p>uy|ASW7T;$03XhJ9tAST2ysoyDAxY%+ubjMo z!<>MhsgF64;bWx)EHVP`-T*MUP{9h5FtL79?>*V=EDSztp6@DcR8Upwy5H7*M}Ue+xaA>YCACQECD2hz4_oP+Y=cnQF2?R{^sPjWsI;B!CS~xT zN4kMw?sY(0j?JnKfz7@r(1Y#mWeG#>_Ci;g%R1a|mx4|-bkqg--X*ekiwjIqKb?C6 z?KVF?smP!BD`H1~!Kw0Ad?!Iwy6epG3_;nR8PsPVwZtv`O^Vd`U}{-Z>PAr@>BLXsTU-`H1&7lo^6V zuGhnAhcvlIV%OQ%pMDAtJBdnX@-0wSBQyenHOrl@4G@t)TjDKOqUfIfY}|Y}Wpna# zlDlR2+HFm(rpsDRa|g^2oA(U$w!C_4DdxP~(VX{h<(9%?#Y*bmUzJvbaqw1R zYODL39Tf|Fh~7R19dE@^{y)K}_j6Ll+t7d4RlQ$Jckdb{WolE^r$oD=+#{kG<)xVBpNW>l8I0=++bc%mNb4j zDeIk@LrYkA(`2PY#OC^qXF|WD@veo?G?S^mnI=SxE=^YA&M=CUQ9i zuWFHdB#gt@&FKLXGo$9uH=Zs*e{qG%cBprt883=X_xInW*rQWPvG2bxyDhR zgqrG7k9zy^<$yz!quo_aV;4d)jmi%Lf9j*n#giP#cDe7I8$N^3qBBOSZZhj~vo^87 zKM;eNb5Jh?IP`$HhJjl>^9jg1c+?FKg_cWlGCocXV#WM#y`5E5oXxtegA?2vC%C(N za0yOu5AN;`!3pjz!QEX0!6mpg1b1y*5B;yb&)#FKb8~Li9aoI{MwiT*HQ(pePt5^t z=R~i8I8o^k`TI2ej1~J!%&=JOnB9fn>;6iFo(aOvNj0v+(|th;HY5wJmH zE8JgAV~uEL&YP#R9!k6KJ+w8=;BiH0SIs-$yI?JH&ZAAH=5=`5ZdojcY;B4AC}P1f zPH5MEbHEuLG{3mjqoID^`cP$_;dM!)&|U~CaQ5{Fr>(P@KNgXeUdAoZaN?67BTZpCKtG3Gs?c{m&S;l{eN^r=>yGy5T5vf5K>sSMY=$Wvx;(fc>JhkTiFV z^QnaMv#s466N?Y3YZMi;_}Oi9Zr7fUi2uf)x@RTC$m-VCbk+p$5y`ecD8~^?cDA4& zVbhKjx`NF4HAO3b)cNkTRL8mZfJunTxgK51K-hENpbJrw-@n035wc!`;K&Ep6VmJK z{v<8s3r!AVlK(vyYkB@lNK) zRYS!KxcKhnxzu>E<(@>zjy}|VSUUH4%1E zhS_*4<3Bnxt25cgN9I|Ve`!>_#d|rk%{*l99pqthFe$hP2i%oDUp0MR82K=s3HY^N zr68VRGOLq}LCwM}P*bh-S&Xm5-f63tf(5}|ALz&m#hdspx4DSGHQdat1HcN#pmAGd zt!N0p>7Qq%0x1n*gFG7IJ7bP4g})O>;E~9SELt3selxQCGFN0EAc(uV-FrL<>o#Xpq!wojNuHn+m{gHE6J$_ts5M zc%eCR+w7zHb(Dy4-aHaj$uvuxJa4qj(RGSztwH_ol~tp^chmD7!|V2}9X)vKII&V% zU08$>X}e;Kd7UZ1x0E>q?v7ZkVJDj&{!&-8YgasMRr@ZHva86z*ES(c?_O>n_9S9* zy5oizgWsyPoul3FxOfp0tC?3R<2A!>Y%6{ZH;j?lpSMiM9Ph%%_SD9Cu`>@nCfZp& zmn!xyXdPI>z*hk&p}x2k9rf5JE3~dm4TyDk%&Iz0z6(t5F3?JM=jz8)vBJ3f5lp#s zqx$?;P5_kE<)Qpb_I<&=Cf;y=n`n)1XMR@i6s5&|Eb(lh<=lbkwNLydS_|8Z9~1fX zX`rZ_-(Z@k64jLc`9%l)nN`?$DCJY_&iC$-q&qSNpyWEwcbn7Nkg2V?Wumrh)Ce)p z(btGA!%6PbZqPb%dP3v|Z^n5r#-y|ghClpUg|#pcLl{Z+LQAq_MIE|Qr$h8Gnp!i* ziGN7ggtY#p^T$>xI38f&|9c(Kd5#ubI94{%WVoVE9WKQvb>uL*{e+EGx=qN*mymgZ z`%=cu_*;ZX=C%>hCJa?k@7r@EPwml-fEns2sZF2JLhUXd`1Cd_F~1F+f^X58|5od= zg{(G1>yfI!wB?@R*OTFfl=PlIbRC3r=t#@0j-!Vi?d6YU5&+~3nKV9E*#~3bqi{z! zi+(V#%0K%x^^X%JG1ZAsrXO3PzspXy?h&ZQ)v4|_>iV6M^`?4g90t2;=1%tvlh7h8 zmmT$c@YRl5Rt;kioceVQ6vo}>Y$A5&j#?7^zF%9;`-x@EC!0Dyg_9DA!n|)TiSQ&w z@|v3f?$w9^HIrTS4VU|$)u>U%Ut950tUV@(ZmLAEk>RV~p~C!3RM&p~5K0R~z@SSm z2jQPD#z16Z@TXRm_8l4%JFpm_|MGamNs4VoQ8Xt!tI@ytHA0Z*g@DS@+SA+g@{m~_ zV{KeWblR_zg3n=OcYo+QdV`kRq@$$(yB~0G9Y{Bx_xiKN+~+ChOhBpy1PY^!|;q= z$u|bVT;V`;N|gR8{Vpnknw~}Aev_q=o07r|*zlix&CAi+QA3Y(T|_DIa_=$uZz>e8 z`qx$vP>=A1)v|0;3Kd+B_mm23(B6-z(BnSu?sR+p9~H#{qE;*x&A+LQCan27#qZ)$B1yuc9-6HH4gEI{K~N^!H+T4TAX>@HaG^G z&hQdN-Z8k}QQrPR8jw7+Gs6`cUo0uh9tiz_%~)@argbGR+ zfxQV+bkBiMecUO}W(CB*UTMDsHfp@{$?bg}B3+A*)?$BerdBq_TB^dX+-hV#VjU~B zQOR9tziWxx;^Ts|98tS4S(`&|Jr*ZdHlZ^HsmVxgw$z{cMiw9}@~Xpg<&LoCU!5Vk z{NDwA0tqCAc@xq8vJysTXywu3r{3!KL`Me6lZ>P2LX+q3r>)+7-f8vsGHI}&I%vn} zPPEg?7k9m!MepOy1L<;|c(>sc**8*LZ_j}zkFNZ7GWQu74H-{lF2e8W{Z#Eg2(P8u z=+@=>&uGy)FIkhUBf~ng7p#8GfE#V(ugKSKq(~Aq5}0kzfZ=$&j<}bv;Wcbd-zxT% zhwR)LF?XyYD_g!<1o<70JY;{tS7u|LmY*w*dtb#hS+4DjdPH@bEzxq{GyzHQLpL4`0X9HlEHujW!8@EsC1eI0q*mI zw14^{zYR9X#3x=>-n}GT<>^j)bYZu0QYvWybXH8;pvPZ+8Z+ z*RzXz2HK;K#a0=l*6Tbos98Om#jVKW&L1V;dj^yGwx#wh{pDpD=c2obXoz!P+jL1y z{0E-8#CFyl05Ri|5=MD+AJBZcXxv5pMX4>9{YpGeFilbPnkh1!%=ON~qvCBKr|Lz1 z4Am$^`ZP}0t0I*k+JpDwUIG3Nv_Rs8RtmVZ4j`;-^Ev^8R~=gTBq1h}xTvpd;!l7r z|64&=bGGk9Z3d@WJD6hcArJ=U!H}ynE7x@UyNS*`(7QW1@bbpo&14kY#5SY5NV4a> z1S@#z0HInB{b$6@3PelND- zIxFkf?GBfUvT4FbRm&Egibl6q>Km*NByL`m{iImMQ|>dGU`& zcN;Md7TjSefD`^3LRv9-_6Lq%y(~G@blCGzonv(8QjwB<_|4t!Ge@*Ra2gx-tB!;W zdkdFo4)ou{v1tv)-yylzdwTBh0__Fh1mhQTUFINU;q%xd8|$X<-A!N zy9$Y7Qq3ylp%{cYSFTd_bp=mA?^M+`bpb(k{57RK=F@ZahBTlSRx^Sgxn5nHEQr}G z#FYcDa+LTry{(7OWd_ZgF~V9yn<*{5!Vmk3SYmXOuG$j9C@-dju*%)$*LD+LDp&Om z3}tTh%`0fYcVE>=g`T(1D|Oh(cOW>?YSWpZswp3eD^wXv3gnW^^O#;;5_1Z3yf|Zh?{=EW+ZHJ-UOc z54*?0Azp6SlZt*TQ(b8+brf^AUW2CFb=yE_J!&wg@6GF!LT7XKA`5?K!H5mPYLPHi zFc#|aCumt-gH=Xpsz>pT((kHQ2*9tF zb$*_Duz;6Q4wJaRbJrQPU;mq-IpNXKwP4n~*)6O%XR?2u*PgS%Ku14_yfKp(@Yz_& zK0$LAV$ld|7pqolkE#?Y_xXr=vzDKKb-v{Wyg9vjwtsplW?>+cJ0l@{Cq(Vho0Qlg z9)C^r{Si`@SIQ%!oQ^!LM0YxD|+ESJ8!Vh(Tw zn`Oa8Ia3cf!QM$@+-07~m|udv+?8pOwyrA6q+-#17;F`y;pBj{b%l10r{ZPT0%*e0X=>H$Iq*TM6+1P9UY$qi64#@uBcRgb~b$b%` zttC4BRfk0;u$Y3g>Tm*8Ihd~2i@}{-Qh#%LBN*>Nd^AXVP$j(PJrbimv&kS7X1riI zz^1p9B55wL_!}v!r*-}BjLoE|j_Xh^`qsvVnJn*=0J~?&xxbIRNj6uk3H%rE*LON0 zL(EHs()JZmd8fm<0pMs9?}P4xODc3HxqR{?MR$PupQ5Y4ZZuQhn9YQe=g+9#_3rj^ zgptU>W*1q?kiZGsji7Q?EI_J)_YCP3fAHJy)EZ6uT8AfP#(U44DRovR*sArn!%o#9 zCH1pM8m=Og=nx;0?e^w8hr$l^;c@Fc*7imAHAW@3>zJ*&APL;|*ZboEWKNY$#G?L@ zXSmx7Kaki!lb@)Y!GQ&E-sT3Ziu$?$@-Nb+{<(g z%61JEjgf=ETB8zSFu}$&|pE~~pSMN7T17sQIt;6>^cXx0X zcFNA+zOE^Q0-g+1uYF0T(Ms+xjG6R)A6@rKU|`?lRJh(-|AI&JxdDjew;bw9VZmYO zaQmha%Ra?oE(rviE3)3c!8UAR5`PkN2ktTyZ_@rA>-6#MiBHcshC~zOmm9lyda{PF zo~+QYLVpq?$1U%1kpA$bWefsu@iJgtQ zL$r7i;2Gtfee|IG(-uiCE~f^zcrT`7Hv}mC#IP|ta0!Ld5zhaXdP_c)gBT#&h8#58q#~+h|TN#fTnWOePK&~{$ciMyvzy2 zFRiv-z3dbY7dz83U!Dgp)<)h5e2szq? zwYrM6ZUzsU4>W*FbGszIl#$>j-@5wvO``!}9RN@=780~om7%!q^0TS(hfonN*gq!O zcfI;?D7o;vq)jJ*I@m0USDm939(y$v!N2DMzVgfSzB7giI;Qk$apyV~!^Ce?R1*Ks za_3>pL1){B#cMaK)x=R)UG7_>vzYG((6LY8XhoyqYFwFC3RYDCvi2OqlR|tt%_5VT zK&!^bltY^s`w(ulmy^XXF@eOst4>Ca<~po+TQaVNL@ITD!C9#%yf1Orl#ecI(=OmS zY#~E%oQKWk6-uG|loELBEbqOX#FQk@f3ASc7l_^YC=$P_BmUg#eu20sP^+?9*mUM2 z<`K~-K@i5K+4<3v2qG-5)psz3=(quVE2F|tyc1Xp=eQB95GN7(0F3H5eL=y-qISDK zu8M@HV7iyQ2oUO5kMYHKTZh51-E4|)JcL&kX74DvcpgyD-hS?-a;5nB%#jI_{8v+z zgK@23cInHrHKx5TqUeTNFODgahpj|_o=_7ZmU(0LtBDNsyb`Uuop$h6Yo+jc1ACCr zWL*lz`G+x{K=nr^;y=4%3fQS6;GHhE3BRPnk<@Zgxk~j8*Kl%*;bqqYC%vPnoq9eZ z5Q9MO00r%PF3#yEFMEb{6yd7Bp{bB$)3+<3SeT}wn)YD}e)f?&&v_1-6; zE^c=TbWPuwBYHX)w1mSJo_X%D_e)uBzp+7uC+4O-bIB;mI^>tWi{!xtqVVlA*BO6e zq|p(7-=+(*)@I+WvB!JJB;*ad&_?>TZfcTm4`Bh?cN}{rM}GH%8~%9P?C&qEkGRTl ze&lnXU?9c>4`}Q03_15GCpHaYr~lXrcchi)ZKZN~*;)j@q^@umPIl!z9}P|lb|LH+ zQi&m|EBvL8a5`y!{kWbYVl1Ck0#-e#nWN@aeqmCo1#<* zl=9n6C7n&`wFHk(Xaa*+Us=yfzB)3l)j4Ro78#8WBpBH`#_ypnp2bOru_uCO39I+b z*cDShDQ#zWT@P+j$CwC&5g)OOk~alavwrEBDs`|PfrFsXX3!rq6s4-}U7Rpi!-V$x zzYkt^N_g@g3HA~C6!d9r?^?n4&z^-5W%UjCmfM}CF?AM^UDvX)?1Uisd2FbzA2)e4 z+;~l{cGIo#c#ks|kTm%F?M-w|t@j{P>+xp$Jp4$G9g6eqy@XJ1!L}#x&|+)EtI8Pr zUZSd2kInD`A~VpJ$n9Z=x(WI6RZ3 zy}>7%5h}aT5CZfj$?kM#{&&Y0MG5PlTZ^!oo`XH@{K9D0HnR*bLmNt+4pqZ-4uSs; zJfL~=Y+{}e{mXI2C-{{U=6Xz?#Cb4NsUW^t>#q_{+LV@gE@M~34t4c0vERnizfk2I zZbZX$`k_+BH3e`h{307~D-=#c5=lOHs}7#YLI=F-QyVdq`5yY$&Y6QxedGErpyVV@ z6}RdoNRVfcD+=sXN$@RX)OWIq}hBz@=B)GQZr*`&*_zf(y3yH7K;BH9EG-&Q1!3+nMt~ z_`7_tbNP*a{BPbR+AL;vf*u+`xDZt4Zf{{Rl*WR#!5eZnnkQ^w_2w7EP#jMa#WkfT ze?LZW2m#TK!-LZp9nx(o9_KRlLzVhz+G8X~5+|^x&Ab){sbyy=pBittiT%C2-52S) zQzw&HbyZnF)x!S14;dG0>qtoW7Y?#fVGB^-2YjYA{ARD;3n?bk965Fq|H5eTW1(jY z$yiyvcf!*t6#;ko+3{3gc6iwmi>%xY!llMzQVj80IV+Dv;UW8j{Q20!qWxZ>sAJn0 zX08%gNFDDwj*S4&kF1@wN%>JYKzt44H9wW=8qL()4^Ua!ePpp(bfs>QX!mSiybZ$@ zY|TnJ^9}Q~$pZ{X8W%IKn@`asmuG!TxTLw2_g#zv}DqnPKwz{K@x_3<}nWH-^1SvKvb1S&oa4x)^ z8R=5ww!z(f!8Zx&r9xrT_`wm2k>hW)jqX2aE0*R~dypLkLsu6=Y(7*5sH4p;exNQl?-^LvO~HYVu%1Y9$9uKvPVYRvGY?gujNHW^IaxOyy_Ok`o#PL zPZ-w-S|yexAK4zhbgn+lTdsM$wf@60N}Ii$xONxdSwUC214Nry*mFX0D+w-Bke6k2 zk>b1S(yx+PF!Y#UqvhklZUdZ5J>yz{v0!jSjAnFrWUi6taOa@nJkRfA?z9`?p0`bs zLz?I;4UP0$Esx|9^(9nF-n?mk8m^^>)^T(x3vTCH5V)J0h5IRsSsKqH?(v5$x8d=ZA1s*MWB_;aBA&n!U$0qQ z!^@ey+eVVlTV^*q`VT_2djEyPYyY)<&qCWUC!v2t!jmj(3&pv^HOI%@-R{t>>4e;4inq zrj^X!3R)2V%s=g!lXM|0v>lcU*x!H^@dJf2t)h~uJbjKE->HYq7wMvI znNTsy{yd>0+MnmCQs|lXK@_ycE&~G`5$CHIopi?WU zgsAu_?DDt=1Mj{0aw~Amr|GF1y_KQ}KNMBfC4*fdyfw_*&yO|^FIiTE45(QHd))|_ZY5iV-?TjnKSSZ^+copF&4}0zonvXpS{8b10Eyzo=&Bpw2x&xWt zatb&TL4A=E^@nSM;qa6o^g2u&@SKy#h+2rB4<}Lw&YvBjm;o^aH@1qTZ_^2zA3&%| zfMjvKotnS#^}AvXQi-1}=gwrZx1*(A6tkdmCY__AA!5 zQYWEBg>$Bo@Kw%1e*r2g2(zNp1?^ATJ& z$v>H~i&PzBWvOrj{5Gw4D$U*zrSCFI6C~R{;dW2JjZEt!2(z%SHrx2i6^#&WM>i)M zicamk_vV0RO|MPaT>qF)$>`~xvT$L0ooejo!s)6=8D2Y`9Ym+X9KHX9w&MHP7D1Wy z9uG_&?N~X&sq-I?JjMczDXlL&iadYEXVv6cxmrxQnr$xBJ$1VpTjfRe7Z0A*3}&0F zAFn@}246+!S_x4?-@#0H-#zSr(^kF)ianQ&kdu=SD>ddv0ZuJ^cZ~+fsO@1ma$O0i z<>nI7Eq}0etu+j`j#OdF6ZymZ`jJ9Y^6%7&s8hbrA>KSP618@OYLpa5M&lc!_ME7l zW&8%#-fCCxgA~xd?#|=!X`9w2^te_E#i3%kf)?T%-18l$Na_3O(B?i@rfx@+v=&sF zU&@t0&Q(NZ9=C@XI-OhvX`#Mn1ez~MXje4XKlTRS*n6i;=6V!KZS3lk2_uEIcn@*O zc|k=!$U9q$aW_)I32ihEzi1(zqoEeeEO1hPW?E@)E8~Mrq ze%&j9SPyYF*ew2iTU4xXX*kZmPXVgL4H+$X;GN8U{delYR&ZhWDp&8T8vT$CKw>%( zDG54LzrZ6`_nU_{A#T{w@4^B5Pj5|6?FfL5f91@b>8(V1tCk&NG5xAFSzxXokk3Li zvXqVtvZjg_V7%@`iyWsiY1%ce`P5f4o>;jA1VQV@ z98<0!XDr|fo+|w%q}cT(xf?xqfvj@ve$=`M*w?DiVZTUa78dQkoyzgD#o{nP-X9KC zPI}VnS)g5km&}SPkFgbY>W4&W^7nvv%zVCTo@J%E+9O6n;(=S)jvig-{YDe3`NuX# zMxFm;lbS0mXEs?9TH}FW+4(Zh)?V92$1rk~Gkwyaq#CZUAsiF}NnQWokDR$q03}9l zdRyacHB8Xs=R7(Jlb5VLbnc@XT8~Z~Ql$S+=fX^)n`B}+aROUxhm&QLm4#@Miu{n# z33@XN=k&ml7Ui&9dYtsw(~XQ-jJ|N%ExStK&2Z^X;vDM|dQ}K5pt~D3(PpV2bd0Q1l$g2R%x(_rA__ zl3K{wX}pATlU`}2^@7TV$e_b^JM8{Q z7gQ9@)NBU{N?KQq9kY^N{D{d(3xEcVb2A|qHb`$YW?TXd*>Sgq6kM;?!~!c?ik0Zv zaCp4$X*URP2-AX-=n>CsOQJu|X4UiUT`PapoZ*~;*tM~{&pHL^ z-1IxExA-8nsTTX zLrf8KFXbP7N^4>2)w^}2Kc2(NYy1tAuVSP7nrPr-FZ;pS;i!q++4?Q__UwgzPatNS zr;WjB#jY|kzkw-#ZFKbTYGyQ)sbRS}N~iH_qs+H3l^-+m14p9i=?P4kOra|5q~xba z$pxwl+HUR3rc3XMHb%K(r3Jo^zvq{%%Kb>UN)$QCq)5+n+t+rE- z>_iFCW;~Zo^#5M}OtZM9%2v(OJmiIc`t#mu(BFFEjRhAeqUMixqCe9zJ>E6zf=Bem zDd4gnmc93)!b6+NY?vg=%}KHqFHKrx>8msSGuQfzgwi>@=~PnJj}Uz{11Em0VYSd(8I4fvN`CLuLgFGFwTxXf27KUoVrv~m(JsZMs(1& zoheb;L}P>YgjISSxLjQ{9F@LVEXMz0EqEUqYU-J@C5u>kwS=Ll3Z0ibEIg2Zz0j-W zxGpRBx1o0Vx==Ee0^LgWC+uA2P>=QC3 z*9LzR$_Yl;#B;C3Pt-%WuFc3^CR8_)`9kq_Yec>VHDj5hyF^zDekV7|IUPGq+4mo` zr>#JQSv)2R=T8=Y%WVEmon5GKYN3rSXy3)bP=fT}@mamO<4$rOYA^gnRr`a(7hU(Fc}ev4l=?WTk^LmaM!c z5}SfHlSVsYg|y>nUFTRRf`_K3t^oZkHrebB(j!96S*s}RbHw3`#K#oNJr$p(Zj(cf zjPSd3Q5tR^K_xu6V%tdrVug|6=8=``dwD_4y2hKpK-@p57#u|-NJ~Bqh4{%T1KQz| zx_WB-y?Pz9iif8%gGY+2PaRag{!@#zz)amniyClZIpO&6^;R0G1$(ca5B!w{Mj~b#JOedX zJ{)eXGMr}LRMh#09fK14m}Vm3o=%*J72OeoI6AkIm(6>d?Q%IURgi8SgM~7dE_&4w zLMH$mo8cu4CT+$ngBtYR-$t67ng|@0YU((*H+^fb44jCav3PVRtG)jMk|9M^}vj@&!xqt!xMt;D zzx=RXHhA(=!Sb_wT}}I9cWo-FEK|93>BK3W^qF?$vG0=2`S$O>c)RlEgLk#%4Z+W& z7C-Br`Q-JMUvah8vvhox&Hi`vUQ)Hy{(2*=y(`VV&pf$$=Cu6n^X98I{GOU$zu%(Q zc14kTMtkTsHyP36p3+C}tIQ6K|9(%a?qZhshXc&~HdG@1==b;e?>f2c#sUWh1_1M` BvE={& literal 0 HcmV?d00001 diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index aee92be..1346e1f 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -77,14 +77,15 @@ in another file and simply imported below. The code below reads in the above fun ```{r eval=FALSE, message=FALSE, warning=FALSE, include=FALSE} - -F_mat_fem <- readr::read_rds(here::here("data","Female_parity_fert_list_UK.Rds")) -F_mat_male <- readr::read_rds(here::here("data","Male_parity_fert_list_UK.Rds")) -T_mat_fem <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) -T_mat_male <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) -U_mat_fem <- readr::read_rds(here::here("data","Female_parity_mortality_list_UK.Rds")) -U_mat_male <- readr::read_rds(here::here("data","Male_parity_mortality_list_UK.Rds")) -H_mat <- readr::read_rds(here::here("data","Redistribution_by_parity_list_UK.Rds")) +## files loaded as "rda" extensions (from "data/) + +F_mat_fem <- Female_parity_fert_list_UK +F_mat_male <- Male_parity_fert_list_UK +T_mat_fem <- Parity_transfers_by_age_list_UK +T_mat_male <- Parity_transfers_by_age_list_UK +U_mat_fem <- Female_parity_mortality_list_UK +U_mat_male <- Male_parity_mortality_list_UK +H_mat <- Redistribution_by_parity_list_UK ``` From 4dd72294795d0f6d3fd3c5d7ea39504e5c2f5945 Mon Sep 17 00:00:00 2001 From: redshank Date: Sat, 26 Oct 2024 10:15:06 +0100 Subject: [PATCH 56/89] removing old RDS extensions --- data/Female_parity_fert_list_UK.Rds | Bin 62341 -> 0 bytes data/Female_parity_mortality_list_UK.Rds | Bin 37381 -> 0 bytes data/Male_parity_fert_list_UK.Rds | Bin 62341 -> 0 bytes data/Male_parity_mortality_list_UK.Rds | Bin 45416 -> 0 bytes data/Parity_transfers_by_age_list_UK.Rds | Bin 136152 -> 0 bytes data/Redistribution_by_parity_list_UK.Rds | Bin 321 -> 0 bytes 6 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 data/Female_parity_fert_list_UK.Rds delete mode 100644 data/Female_parity_mortality_list_UK.Rds delete mode 100644 data/Male_parity_fert_list_UK.Rds delete mode 100644 data/Male_parity_mortality_list_UK.Rds delete mode 100644 data/Parity_transfers_by_age_list_UK.Rds delete mode 100644 data/Redistribution_by_parity_list_UK.Rds diff --git a/data/Female_parity_fert_list_UK.Rds b/data/Female_parity_fert_list_UK.Rds deleted file mode 100644 index 1141b1c364d11f194d807da491591071bff21474..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 62341 zcmZ6SWkVYbu&mqC;_e>Y-JRm@R-ED<+@-j?J0v&-iaWHpyF+kyhoI-Z=i9maBW8A= zodLwafBN5nJ$v<3)tp&k^`iiNh4}&^qaceUBcqVz@I#;|1pV40BfyrEhZS>?cA4Zq z%+1LSF;^_d|E{X}6&b$IwZOOR!q=|S^4;g~QIDsK590rDJXiG~;_L6BrBkJbj)8Gb zML|wOv)X3&LO#P{QNk$HE7>o}wWcB&>2X#}ySmZw<^_j=fB_A3xODtjYawa-aP0^b zq-)vz>!IoZckl7K^bf8j#6u9(VQBlja4r6vmr|gf1bNNbO%T6jciDr@0q)l0kNwc~ zxd{Zd`JAtgEq)#_rtT`@?+BV&EgQ+gKEGC`XK#NEcxO8 zQp?-fN^-LHvwV2s2y@$B*_Qvq`!+SZf%f6AM<0FB_d`*ezZanVyhn3Ms6Y#cY z_roUu4)oFe!-YJl56TGkhL^5z)cn>#gkd6Rw&7+9V>9W6zM~%zOcQRX5CbaTGZ5H+ zH^X+97N4vUzP1kd6-C33)mYEs(&=-9;h++tQrFl34oSJ0{-MSsu-Be1a^CjKBaHJL z4hcM+PPW{?C=tDAXqggR5TtO5h(TC-{fBOvr0KCVZg?43RL`_xKXED;?Q7k+ zJ{L#^{QiJJuR`ilbAkj6@Qazxbgf>mZ;-|RXIEB?D|!2nK6~CBF(ej_mX7+ZH$fyd z_ND=Cy+%k?Uw{qSx5W`t{yDEzzv_CKwGoCeuT)5PjFp`C^^Q6z?920q!2}6GdEeDV zobKFDxY%NcJQnklf5W@m^&Bzwv5k#1HX=9ukzQQ2`nfFOI!6rQHaF~N*=8LL`-I^o z=4-nKkqbqI(jT7(*NE=pc z%gwAYo=e;?-}z79AG}KIT<6WfFZ=Vy(<^f}|Ry~Km8trnt{{?!G zv%K#W++a$F&I@rrr_p@{*7<=ZP0KyyLLj{fhKzS%OtY zPA6{|_9UVRO3!1myF(KH1q8yUHf_600{%~rFu69$}eMGqfbIO4{Wd)`6y|Gm1I=jo|6&Ypa) z)RK)smzUow8BE}sbdQs}=hnO6)M_vwyjdmHF) zjP@7v1d+4%;2MJ|e$*jHHy&pxCZo1k)QR9Ht~tfVx{KHy+Kre+n}^caJPm6{L64Z> zYP7g4Q6q2CL#eLn12qUBz5IBzk|`TPT3|$~LGYTPdi_vlXLranO64^~g`y0)dP+?c z>qh7B-Z+fP2S^cCZ3j&xyhlEGE8er;5Waf4M{S}lgad~<_VTz#0`)~chWh1ge_NTD zLAL@YdL%!FE(~EUeHPaQqtIS~tjR>#vZKc(d2jsOww&PN{@htS$<`PZJo(+@PnRcO!ZJK&Cdh2r@`HqY?m{y7lou)f1J z;A<861u041PXt@>t$k|LLp8BtVWT-yAeQ9zip|9lFsu9z;Fnku;>krOl!xQE$lFL~ zSKJ5*zDL(nmv0uVRQBsh28g^G*Ulo+4*V6bfQn|=JzZpIco(anioUwshoCneOXkNK zd+PN_qVys{i>xXv^A=jvdZbLE`67x{m8d6XaW!bc`L!tX#_!>eqOeO&7|ZNtndCvJ z+}U8F>eQE?%C`W z5}0C%%C{ViXDY&r1F)@lB)RVfLu%E`Ya9$!2;<|NsVWO*8w?T80Wrby~MZT#^I>5WYj zi~jyvJ(FDQCcV2PJ5X1ZHPq#*;0CaeW!lU?JD(hUAgBLHDkK?d9)J8m9>-@XWaeNC@ZZimq+|Gv5 zu(QnQ9GBa(c4cDxP7_2N_7sQJ?X5%wpHXZO9n~W$43qAne7G7H2xoTM&Km*wuhzzFv)LjAH+%ODGj6Ykm?0on0#YphUL-=QDctEgJ86rOW|mQ3j7gXQYhB!PsL9eV8t#fBJzU`Yn$EsK^r%cV?2y6T zu)AiH;fj0Ia0tb+e~eMo7Yypt(JzXAyBgPMJ!6TI)y4{_W=N@x=%C6z1Eb>umK0Yc%;wEzJ8P z?8ov=0`o_L=+sA?ecMjIPbBR*jN+tZ4dSJ)%%9n{7L>Jpims90zO2GX(OSFOPX(kB z`!$9>W#jv5zOTGZ3DbPp8%}ix=d*A{t|j#vPM@l4j}Y=WGiK5){UVEZ$XA_dV{a`) zR;P@*-QrZ>9C9@k?Y?o4Ib}QyQC)$LJD-I&nrX}5B=4TVJ@}RLBbd;5d)7UzNK+5R zCUEN94U>`*j7!Hp?Bu`~0%2-eALAvm1tzU=vr9ZGL%ZdV6lKID?Sswr{!|PXsk)E7 zZlo*Wrpx`qAO){Xb%S9NVkDwu36?(jaJC%PjbZ5Y*SunT=uj-RsxZ!4M&d|VH&uwT zP8%4X@s^6#T@tIxEu3hdnbPn16_XD$^zOBSY5f8;Ba&x=ZJ7wcm zJP05oopD7%pXE}*W$_Yp7W0o+ocaX!9)6!3K01}QZy%Tqe!g{04);a@7HW*=s!$%H zIM8R*bZLT)dJc~p-_;1-@-rZ%4JzQ4TFH^A6A>R);#wbm^GKG7<(F}|)|t8@{_ke) z=ngq&bEImtGvQ$R@iP1G)YXU=?&T|n&9}Lt z00#a>6^POKcc>fybF3krj^IPcSQtN2T#b2gG#_CP5<0=CE@0l>VfpXuilidp(Mhix zTVf}R5@DVB`+VKm-)qBdFF%_9_Q5d0PJ>0JFL;4}Eo5#{!dxWQd!7fR`}2ulQ_ae7 zJB=hB?QT-uX~pr+H`ER&>%;#|G+{*r|J{mvxp;PdKiY05Y5@Z~0PQ_h0Qn*kFZ^=H87> zY^P874eX%nZhaUX*1Fb~XDFrxcK_;7@3LAeF7Eo4M)>-2+~3qU?=>b@-@rH>#A6j1 z{osUHieu%fGkrsre(MEvdL?Jdv*INZyD;V_{=66B`wKc!3-oq~i@Q_L1!&Uu(Rsb+ z4Vv1^$SZ_)0j(7be`tcRJ_<#Wp2PtS_fOW=@5+uHVQT&-)+p6a)myg|6hqxX7)5b=nhc6kv1364Nrvt*>GuJ<-xfv)_B&K0yC{ zm;V~CUdq-lky(xrv6NRU_90&+GOijVi&6c*_lsOJa6;D#l7QqGQT=U#ihgq zzC)=Mf+%6~am-hdx*(^ky1Vc6FnTDS057%xB!`28W@GcsqH5@Q#q(2vn zy`B#>uvV`6@|FKukVD<1+5B;%p&4}@N+7Q3v)*mB|SeLYCh#9SKv?rMZxa&5SEVs9W}Io6SGbvd}Zyds4wC{pj=`^(R63@C((w@v@j_|c{GkxknZ6c*AQ%m)d5Prt&7QY$m<$gxG%FNvo&@us@$g80mfqbg= z6$xCWbb@C-JYaRA?U6PM9%;!xe?Z|KV)0ki6rWg9+Fx+3C~tOJezG7Ba{XgR zQ0yh>7qcyqc|Gqc1oE1CMejv2+Ft*oznS^>23G$Qod%ds?}RlxVPbgPf14($Hug<9 z3Oe>3l(;;~VHd&(TwpOq4Ea1bDgBraKJ*BkUu@HL1MIWX=y6LQrs19GhE!RfQYzP> zP;6RqU835h1FYv+;6EJiu~70}GDUb*i_*bO_X9=hnhqP`svpjp2KEF7J=dfbW}0HK z>lSp5hBks}EwL0oqs>x-9+QmU{kOq6v@Rafh6IdlQFmUGAVM#42cR6Tw=@4vg6pEa z;tPfRMfO-aBQI%AlrPPmg`CF7hc<``-U`Jl9%4SGEcZ5-i=k$K8hKTy6oR^ndW`5QUt? zuJ;EP-FW;MNE`o@T5VXbID8>F!U~D??|z^=NZzxT7YQ@S2_6v!+$0^pY-cRA2~hP< zu6Ir*#rzm?&(N3QMQ_(iG$()}8PS$pT>4hS6d)3j#5m^nFc$>=XT|9sUdpdw_DLm5 z*!Y6tut?8q1)~*y=!9+wZEbJZ92s4n0aYFG>fs?~>l$t4=3sz=C6-Lw^v0zE99mJp zy#3*|k_T6XkeN}g2%31c+syH@vGtpc&q2h&=SFwDyh-K2Up&+UU?bKI(89mhhD;(n zz3_$_KzqPh&*;Vvh#2cU)dc2>UK%*rc1I9wLL+~P#2&RrRYVsmx40`tadTn#d+kIp z=C@=)jPELd;-2PIU5)w3pi_%qGjJ?4!AZh*N?=%MfE@eU6ev;jH`Jm{g1JHia7bDyC!j>(S4v(L;c) z%BHE)Q^MZPh6u9UtWYMpaEKT}pyT;%GCnaKNB%N((7(kj3A88CpKQGQj}G6EkVWuT zy@o=t0gAt1f& z3FN*Q_^KkU;=}Wn;{;yn(2c6c7xq2W{ZbO-UxoG2ezM1(8O7mZD6|bu=QT-P7W_pM z_5FIM70Vjl$}cxCn$X?bR)tb8A1po6HA+}1n;#+|2LBT$BG=zTs$@GW8W-UPz#Tmh|T*xx& z6G0S&U-gRk;<@KcF^qQG36j2f-idWVNSc%AcZrxc)rCjETU?Z@BgDVRQ~6_RuveU5V# zoh*8fKWw7iW-sR?wX}#{`hKr~+NZceRBph}-kmfQe)Hu2%~(=e)gvoIYp3lCB9fNq z^fCf?t2DuD*%I9ak&#jF{wYaHPKwK%F{H8mX~17CArbT&^JQWZu5P1VM%W#MKH|yo z-qua^CAd*J>eV1LLb+V&m0oH2#ou*h;vV7A9(U?nwLq_%K=9w6(%~DMN@9UV9z|=4 zg|r}JdT({8!h`i)0^{#oitLDsbtRe(D=*6Yh|BxclS z5M96}8Du7*@CJK0H#1l!xU6vfN=QgrKk(H?82aBq^WWLBd;^$@>PckgFy4f|i)nzaw)568u@$Z5FGTZGYe1B`??H3UoW$W7Yh)vBXiIk%XwkJg;`8 zSgRw6JUXZ0Omv;-_~Z;suL{n22-x{H<(po%_g&Jhp2^pmmUCh>g<#}(mCY0U6mfnyr)P0*6LT;)9%DJIH?kshFn)h zX$lt~46W07HcHyt8{0%%0VrOvK*!;-=&2M(NyH0Z3ii>A(*T~m`^nw~Rkg6ctwaY& zy)a;RV<=B<1*VG3lg>s3-M+Rk-aJ{6j(`&!U%Q|+1jy$5Bnqt6fB%y8k-no5*K;{5@zDGu8?%%5KR?7*WGfjLbc_iJ74aU$u5itwR8Q%zr_KBg9pL-trLIOh&(^Y+X?EQEltrtk1HhC1@*;8 zU6-#+*|%SPwyJyjorv;$Emr{L3J#BWlnv4j0}r+yN%;8@b)1zoc3#_pm$C1XkI58Ejrn^@I{wEcf;!dDG=B<9*W zLzIJbqH`Ktf8yLPeTf1-c~TVYFFqc9_jUetm=W`Z3#GnS@v_l0_xM`#-#Vrbx01Mg zB<2i2N7mu5Gm`L9#iso5`KIOWck9Kk-&UzBAe|QRMGL3@LOaE%2zku#j!_dpBEsoo zmp-_*nEg^rc#LWjLxd`i61Zu37sjaCxS%t&e2`PBhwO(7lMxx|Z}wn2E7EP`%%?M0NDyM0%c{V6^h>0sj8NXWHT);%15J zDORVWQ^#%lBlwoh{>vOi`!^)#!_MrFz9M5b8{q=55mzLw2%y(bBou6Q`GaOcO3=;! zbsAzS9~%GE7Qv-kFirg-cCu~3@20nA+(GY-e*UGbpEmcQaKZ9guusaW@lXCsMM^6` zsdVnktMLUmNHnJJ28udgN>oFWbPr}=IvC2YMJ)e==+b~J6npbpllJ<>FqNORN4Bav z2oyGwzv%xq43=N|>FD^qx%{1b6i2Ig>@nFbC5r+Y4jkKEwTm>0a;0b?{=PhibKC%( zzdFYCVM_7CM$>N);c;l#a8S|Cx*tB;OrH{Mel;5l6rz0>Z#EEyTF`A(!Z4xcFFpIW z!fY2GM&`l|C26soH1$kc=U^-yhp1>3-gNxCYHA@ZZ*%Bw9=OMG7qDu4Nw%E+!(r>& z6^h9$!lAE_oKMC@S2nFR2Y&NQMDgCDTh)s4jGxIUnlMlrSNeQhKU>{x!a);)P!* zwn1@b-Z1L~f z2g0`Ppd*_x0XjOW$QoC((hH)cnFEMhn!W_`gwKj=K#D;5J)ew+*g8hqtYd;LXF_3X zT8J9hg%HXmZS40nnz+468?Y{lJ|g8Xl}n(G(KZU1rT2glLk#_b1jp}1>a9(_6Zq8w zhE`p+wrePlv7IpgD{eUwu^O-Deo%Bede^p~w;Ma>h4JH@WZC|+=iz(GQH|@uo7*Zj zgr`M*IY)ikIl_0m&8njyzDe@MG8b+;kuGIa*pSP(je_j-4*5R){oa;^q+H9he9`-v zh+A>sKx_$FjXIF~l@ut#5Nyo9PLm>eyoK;c(%?*Ida%J+rXJCGamkaBMM`#x#ER2X zip8<_rhuzxne^L`i{$+VXNT$~w--?lWV!kl;xengoDDLL2 zWc=#;u46jn8Cx+Nmhc5eRBWPnTV1t_dS1H}Z9rDbO#GxzMJ4~I+uFnNI(BE!2GQo` z%K3eh-8mc}RH4}VJ$gJw zBp}O|I7t9c?6GJZF$&jLGQ8RpJ;!0T)MYzV~tm_ zpN-`CgUk;dx0cTCY}mIY9S&DflA!IB=jsQD^3lzsK4btGw^?3wJ(;@W*icIC6ncJ<-|j^ z%QIAm2YtBais&tOGvD#xE8OwQ7@~nL^&j!Fz!xw_OiU| z%&%_nmAw-Casx}Sfv5z0>ju$ar2F;UYZYK>{up5Jv_cen#~;NQ=cX--U>r$-P$aW{ zA9ZS>l7_LJ?DW&k6!9OWZG7^&*9&anc+ zBoZr(vK}4uV;74!P8m^(clgVEkcKfjb%#7Yr>*#}tT7HSKiayE1!?z^bLhGKmDOp8 zNb6AN=}8E!Z;{B<#D-(v*OESic1-gBU^g3?LE0E0i5~&$x2R3ft(%%^^5@Sasg}7X zMh(`KGy#y0OoXpxGY#1BGBa-OOLp!4mgQ52><2VT(n|ble;~(za&;)xZ08Fn1BjPd zQl40~hJ}?xFh6#-?DGCd3Rg|?#%i*C48q$R4>o_$hw)IubbE`&*zZ_~{&%_% zcCFx8-xl+nj&cY+ofM;}%MET{HTI2$U zwMAPV^SA#7~P(uCp?{2?=FOv99w0X~0jLB0B``BP3K9VoXRFZ{xd({OIn( zLMzX(HpFf#0=!)XjTVJWd#?QC8it}y480GbIMmy3uX(y{Y#GIAWJ~DVi!IlX0U9T= zE9gZOKL4cJni-Lqn(n{OGImh-;!ZRoPbkk-u6A&_nF2_t+%Aw0n&dB^K1bCz2@L1J zQy3*DE!33DrMEU_Mr2$cna!J5{k{vb(r1qGD|M}<$0jB7buU-DL!swr*UWDN3Xo4+ zR6C5-vC8I}Oz{8FM`thLR222w!?-9(o!|Gs|BS6!CfqIEn^)_uEOdr@w&%_VrfJ!- zZyLTH);<2ex=}NCs!NYz8}s+5AqUU-I;*P?nAMbv=?~wAZk+ z(~U!IhPtOJ#?&|MZTPQ*gB?0IM*vB}`VTc=w4a_El?QKeE6r$B17n@hJ}l8x9A5+U zYmjD-K5BUGj>#PO_9pmh)N|e%`W|E7yD5%8^H_Rj$s0oP%nU%y7hw$#Ah^-l6(T>H zvh>g}{VlyIbjpzRgmnkOO%ycc4mX+|XH|N%oIdy8FtL*+$Wu~ikl%>1=5Ea0+*gbq z9GBKdDEc}dJI4SSwUhFOhwjzV1F%Wk$bU<4#-G7(GVI@$C8=lHq~vErK7Cn8GHG#= zT&HdGVaY}PENDCSEvD<*+D7Y-#do4bU_0vjV%KM^jkgo6iWOBk%T7mcax{6-Su}%g zmgpMr;aSXL=Co~zR&{$0wnN_evhi9%^GQF5w&XY2(TvlAd=+Q}lEKpMk9Wc!tc`}A zt!8$y!nb%&kQN%AGs?ZT-^tozoY3~E1nB9f>%A4f!%|W`gr!7hQ2ily`^@9w%d;-4 z@*$ZX#?@enNIlyz*W(fUKo-U%=Dnu|vvVKWV|A}XnVoWbT6LKX?>kj~X4*M{69Kjo zeR=592PzlEo5ac(cEoG&cJyuNxMYtspyLLUZ#R4e9MMwUv|3z*iR+PA$i6YJ6Y>jP z5b(tQ3~H(SY4~Ohr2ZfVbYPL>e&bbwm$$|fB{=O~{1m*h7OXL3HdE-}|8l-TJrD0s z_sFLoG76PzDNM~PU)EtR-+eKR$*8UQKQRNnFziB2Gx{1(C$$u1^7<0(Ptu;ky z@;Je3q}+bx^AzGSRfa4?IKt|it?*e8^?-BLqJ&NOW$VgdNYJ{Nd#tA+JM4lgB>_`` zpRgoeQ`J5j95mxUR~(7yfJ|7qND^i}p_Yg3QyGT4+rqKR3I(SsFr~)nYvVOhlb{50-sjd8GkotXN_`A{n ztUZObV-0uoJ$@&cFEISZD8f!6bFv;{D8zSl9)69au`K6rmi1HjZSCeiTKXR{O*rf~ z9>yg&%n2=W{oRV^87>?I{zNXY$zkOil1OgCA*@Xj`pQybr&4aO#$eNIB|7Kf4JmRk z+2W5Hy$xPCjYlb8G^;L7eM{@qX zWBG$|Ufh4A5nNE~TL*6>C8}t|iaIGQ$EdQbqLxq^X9`YD6i&?Qo7{Y(Z#QaPJ^h*n z;yn}xz9F+eKO0aU@%2vkw3sDFnDIV~C}ovmHBOfSHxFAL*`9?&J=nEj!L_Tq{_ewo zJCsd4LkDL`;L3i!LIf(f>?|i#){eTpjWd6=z$yEAh;UQ=VuBII;*27#J<9u%~RW4Q=~E&26^7&aHx+H~siORAKxJ%NTV zzm+MN=RmFDXn>;;$|PLUb{fCOru>;Qf=~? zzKn0>9QBn-=VavooqZ=t3mC@0X2h+JWat+Er{#YydMiF$%^?SW#wnvMbDwquCnw9w zHge+$mSk99_O<9cmCaN(WG$K&Z?rL;YY=@wHyVcU<(K?I&rsQ8f^uJ>VGe7{D+j$a zu%XuN7W`yY9~3BPkAC5N8J!TUa#o?(R+^hsnO@k(bXdrVFxX~n)91!&4G7)6^17yy zwm5Fh_YM?m`TOOtDb>!JwNq`!iyNz2PLIU7Y4bZDS6jes4#LR=iJ@v+O`L5=2Uauq zUpZf;f7bg6OzJ@gUwRcC_{e`V`7SA7k6VcQ-5N@)+t$Nk__Q54PNY81B(*Z^EsKz7f~H6oYEhqOVquT=)U76L-DT}!Cz(j3Z2V8CztIl7Lv_#G>?mqa zZ;n2p*#4EdmENUddgyN2KeCr~NNeD0@)1`Fr@gh|Qy-`A`~P{@?vFy&oJG4}OhyNP zc>Ns5cz0Fd14`kMbN7R?7@wG2-jx4H>faa1vJ0=j@lnfnMRK*mP^(V59i+`h^_AZ# zP%^xZN7>3`XW}97ly`vcyPOwr;(%=_5tqU;G4+w$4up8{A~^xSqk+?%r?MWCp5GcZ z$N7jl%fG{P6?)k|12he+v>%n4lfLvCnvK!zm0Z zxt3>i6=Lzbz5ba)3>J7_ewQjp>WbqM#t&#YqB~Eb z*vHF+Cv7cOp@Abev4u98g|7eQ_8Z)cdZRx3+bFr4<;K2yn^fFJY!pe9j&kAUR`pZ@ zQ%egjZzk=0-;CAM-Dnt0@=;!5uEpqtcrBZ+No5c0v&Y%_k63N7OVjPrN;d`{AeQLa zGjrU<3`~0}_r(#16-cQtFeF}3653UDy=F1b>{`kUP?B@NKy6P@?Yljfm5IO{ox>A_ z2xCVDr$~FL{EQw42!=B`LcS;G&DlQ1!h)t+?`~%YC{-crK31B@e&M(~#XahM_cc$l z!cAWS^J9zESri94v|3SWR*{x4@*n>FRErl1e4KpIHT6a#=4KIGFK3qqJi{ z71@abjV>#{t&H@kcM>IQB z9Yzdo?PSqV>xnb7&!JJS{B}qrl7APU;k*|-uNHs!zvclyIg07)g!PaFvO&D4q8RtmhT0!4Z=@~f*9`f@=|^GF-IqV9V>RgzL{e=O zWF?AjBgiKIbD0BcHw4kvs584pW8zJB3PZtvbdWHZ3f7yHq7o2n(OyJ9%){jV!E+)s)UFIYa!5!y1qgVmf;`T= zZLS7Bqgy}S5X=V#Ukz`>#m?iQwEQ?4dyp#9Yv85rdgf$^t=)%RYXQ08T{68ONMK_< zuHa8iQ+g^{jC#-Gu2?nnJbM|5r+$5#4yXKKV-{eWij2??0pkR{h&zUMMafP zyOC+Q?TH6z|0wSpyFfiLPN(-_#3?$CP4NdIQ)gSD;-pCFg7^=mh<4#P=UH`QV1>IA zq@PK779gyu{_^L}JS7;T-u8NS^37vK4HdPcS7zomTpP$B-tT$~#Qq<}jF^8^y?(JG zsx6i%1N3SrV>c>icfLRI=$~B3(6s#H6c|g6bNs4oPrtVjRpRyM(e797shTw;TAz$^ zErDnfXrsOvDpAqA_n4Fcm|-B&*Eh3^_vlupPd`PQzJ2)&9{uckXDFh+Sfdaj^6_ga zV_~xpNb#!3y(D}`f40+}wiLEuM4QAKJv6OQ=lQ6T5 zF%n{6;c1ZB$qS;7o2EiclRqRzTce{p3p{Skv@_eTp&Yz=9CaTN@ld#4%giSvhW)MX z{^vQ3!f-S}7H@o<6lTS&_8Ydw_h-!SG+dKz9K5yW+v*^q?sY6M%9A#A@0Tzo4zgNfD#jd37r3c4g z6UT87L26LxXdY~phHbfM>DhgL262;b=%jSLOHn=WfLuX|aWuO!KBD<6xY*TNMy`_- z(fKwjI+XuLRuGFtrJYQlp``F)jJ=pv_qFbiqFCiJ2}I;0L)Psir)kDU8d+gud8I`- z(u?`(*6;x#)Xm6v7ry6{s0eHWsRO{vh@3JlQ0}jU@3Yj$JC6|Eqwbp0GpQ#C02={$ zN9^j(d8|EomQdoRIMHz>-9z4iJwCBMShe38M?+-%m->BkFnSGFs+DvtKT$boN5#vAEeqZ@elD@#Lo&)IPV8MH z;`hvzRzrgA6?3*?Y=RF%8+as)OVrj9FT0U&W%0rttnEE?A{>t~U*B97kCOq~>FAi~ z|4E45JzupXH)8sjY@2|QCnSO_K`4mq^53PoOvR{%Y2^X$}BTeR0JGq`1qu^ z|Gc06U%4n%Y08^x8`YLZ&^b*RALk?#;@7XDw$+w(ouy8kh1GD$oscgjpSoP2hw@X> zctqAKH6?T_Gi1NuEqJ>E`h3ASqRuyikVdF+)Eg~D&*Q;~0GsUKCw>elbc?Z{nrM#dWedpqD!3C;pcQ;TcGjx~3g4}6QtxCA?| zjqxz9`!P{1EAbh$t_uuk3O8 z^>+u59^X0#qQlvpSehPR6=&dG3-I!je(SdqrHNjH>CoE)DQ4UAb#@o0R5tB2@QYGy zzzgbSZ39j=aNx#J8FeeJveQT}+?&gsdL&^TW4nOH)Ac zEv@p@vN=WCNA)Br(7*WXhWCwOGu{h!sUD4A2VH`-lvtV}`ijMLW5!G#zRL$#%%+Sh zQc6zyfb7rBEzNl|I?06FL{IJ zZbX`!nOAw5j;*&F@719=pZ(KYVr=veBIX`Ky@VQN+4I2JaE8Iehr2-t6_&GxfN z^0_kKuwrscrEx1AN!qUt6ESQ%A5jB<&q2@Yc21YY;=4LaDn4S>)(lGHl_Kv16OG%- zHdLq9p!ZoO9Y0Kzw6Rm1&1O}cKKg2r%Baeft}wfnRMl0DEB!Fuul)NjxZq_+%C6y` z^+x0H2q{ua0co^k@lxW8(Y!E4Fe+XZL-OcSf-?v_V(uvYEl_wZoHGNXM;ce>Z z=yw<<3?)%D1}WV3r0y{LuALA+fH67ug#8oI6lcEyWAl@vLR6s)%oN>0ejnrW*alQi zn$Lmcp1Trnz+YIIU#Z)5y6m09>&}-y)xM`eL`^PSe(1cxcOPlSIZvtEZ;zs#1<*Cm zaT)(GJLEU6k!wAX^yiRPHrOfa&I!CM!Ns*lKOE>Ax>{tgE2iO~x%ty4o4GFmaRGmb z60b#-P%0^d4IJ4!LF7x~aI5N6J}&<-=D0`5%<)GRojgY6{?r0&Qk&%&FcU!oX;q{@CNr@FbXxNCfU}#t=wJ_5F`y3g6CFXY)RLj%R`*H6Ffr9s_5@vb4s=sNV&PmAheWg=c1IgfX*37 z^T+o`HTmWYSVWSq@VPGY;3m-u*RrW4SF^FVYX01jsrqrDGyngZdH-8+xz2q;TA`RBv{5}T{c0vii;zXA z?!|fOx;jx5@-&2)5yNwkWOE$YDtd~3BW=(!$r)K_o#i?W{fj<&WqxijXsD^4`cBS4 zBGdF8t{TcHIDb%KANj2g6p-7imSiKEZDf(xv$Gp~5Vn3tZwJTKvn3>>_Jpo9xpLkY zUN-$*%KQ0j8r!yj&Nz}18hXPQk}O1On%Z;BwyO6UPVvuGG!_s;erl`NldDOU>{Utk zTHV`RM&jba*sL8|Ju}F3=^y+3TPbH1h<4k#;^6kq&T`qfuEuF>J#@j&att0#?kM6K z_n|sqFpk8tpi*sGY@$8%@%V|hQMdo90~@=j;bpCamG!@bs41{HvJ(JHE#iqaA#b)d zci+G|d2F(EJON`0s%1-TnXi?t3;V1+r1E>z55Ev&6hm)~g;ipKls-dh`jNK!!}N&j z8CB}-tm7cTC_ZT*)da;2U`M}RMjal{DG#YI-08}qsjjDD`xC|JlTR$K5hmaowz zEP1h|&OqKEyF_h6iQ>VU^#i6R^AJ+zU(BD*)^xy&9vQkn7Jc$tLZrzIiXSLu zT_uh$^`pV(5_I{K4CnxnU%e#R8{a(ihwB8q>8ZSMvZQ&B=mw0*njpH_-Z^R41w^hl zXEqr7>NwbCf6#so%}L75$zx1Yb1ZloeKV3i7P93iaax#cY%o#$)x^b^XK2I{>kEMv zL*fca)TyTDYvI0?$#B-DcR3Bbr-_c_auoOR@(KH+f^KacjxvnDx)o0f6Ke5=Os2;T ze=enKtjkj(zbq588}1TDCZ`o!e!R2DHDe`|TyO_E4uB3IEkr0-394CTORmXXIQuGi z{cWQKgmT9v$2}Ka z*S{&6=5(KZ$8dw@94Y~dKd_VVF8EjRfJ`hIoAp+v`1r%!2S3XOW?2?kyl5J5!MEW@ zjn%Z8+7EItmH7Qso1eK0lMc;4gc-3k@`K;jwpnv~x8 zQcUgSNxwbNCbcX191Y?7UyiEdL4PQ<_yWLB4awy8se|HLF4{kcRez2`xM5+)N|1bM zbRIyOd5S`ZU9}CcMA!9k3hb#e-(@?&)Fi)Ia_&X1XVdx#A=n5Z9kuar0LT(*lvg6ts+myjha#E#rr2&@z^V8;pq5 z^vKTb@NDH?mBU5)eFSmwRp)HwYSZUvc!e5S3ImrNEJ=NAD;!>3_uPi`(;3AELX?+u zR@0fB{cAziIh))=EFsgs2X-iCKr5HYe73i}sxUS`7PFVmUUzV3617Nq+1F_11~FM@ zfCxfYXFSeJEy({FljP`1%V_6nHr_%N@SsK@Wvn|ds`sRw5*Uo-X{rqZ_QVx-&b`^P z6{GV6w4V+__~tzlL$->!aG&9p>)iRI=2<$OmEb&HERK*8@I#YyI2IDPl$)bgn2A4#uN zS4%nzL8^1rs%KCJ4@e%F?O*1A=K_vXjZsl&bf~VJnlfOhvy$Rk8rhm8JvZhCqaTtp zi+}$vd&Vk_;5*)(=x5c{c`M3n*=Sy^qn9T^a)@;IxaSZRE`Dv5k0(-br}C2&*QY4+ zs!yPFx$Q`#=gMx?dMMo}=fv4xX$jtVqj^E505bpAj88K+;;$Xz!A zD7qZ|%Oi~-w?EpF%Iaj=Ig-&eh#tFti{X|%syQ~=y$tDeyP}n75Kn`|Dwd&1%)1*>gEVdl)}U*tR4q?t@s(`2aK7>JJ&=P3m#Jo^Uc5e@ z((RiXV!E`^jfLme))Lz_G#Ab_b@spGLeFa6P4Dr%%dpnEzo#9+$3}Wz{^Y_ATBrdv zb)AW(4Z~hm7u}6d4{n#`?Vcn5pmsbKUdQb@-GS}y$dVa@Gd-c#6P;ZSJifQgLS=4^ z4!%TSf*n8d$w`;~37pRKx49tNa3=Iw^H7I+a--^E0l)5d*5=55e874rjdA4nV1XZ; zF^xLGLIE*fj3N-!_>;t6I(>72Ec5sy)f#oUZ1?zfoH5-4qFAJj-1R!ftW|sNGiqIqsTxwHqNxF7Ol(}@jny-?%K%A#URZloX=23CMZyx7?7NA#gQvR}; zZqQ^r>Ss=*l))4&*2OUkbLm&W-=Eo1v?B9ZE1aAlk3)P2LX6!xI``GW5n$DHo15Va#*p9aL3 zJ6oiJJPUg#OXrq_AC^gG39{@b_F-W)O({Ii1ILp30Z03rk zU>BW3b9(c1H@>pS?i}UT6{d>LQQy-D2l@CF4OBd+GPp2E$joB+peeX}i13YlBwI*$ zhXR^T;WiD&ya&wC^lU550Z{`yr#+hnPr^ETgFf&=2J?W1R>%(r{0AI&-Z}VQQIS%aUmDIaNQ^FRV!sn2`IMGp z?@PO89rP`%^M@g`Yt@G~f?D1eWnAmHeBdvSyEdz(!DsG*BA!}?Su()KqDKh_@}3Sa zPA-Zqlt07PMh}%@B4#K<_&EfqN==LBqn1RFjjFV6$B>N$9pgB9JbtX2^et^_bBwI0 zb*VCC`l0pHoYu5)i?-g;zHYV%y<7u&phGspxVUb`I1>E+o3Hpo_*d2bo4GOv`{qZD z&6K0>)ki>L-M8tk6|;JKlY)1O0NAGG=jVk@fjpnL`$n=3t`upKS|UUyQSx=k;}vU@xQuNHRYW1Z^TS5dZ}znbZA_VDt(l{WGp84sKODT1iRvM- z`5j@kd@-eX?9Z#C_kmOS;sb5RTinn|xt;yD!QSYvxdY0!@>$}xU59xtSHL1)JAwuM zTXDLTVNJW5P3X!Zw+_kw7NrBtZ($TvHk*4dz9*zlIKvaYy-J$dj(AdKE zADuv8+UP9xVHyB`?x9=T?a}s~5$&AaiE0a)RD5czr*D~( zR^f+;&S}-7fpU79y?r}f-ce1xVLBhW<*^Tqzza)6NAqVU;*(t}Afqetaf=6_EG3&Y{!99MXy%z`jJEwX*88wsdV$hSO zcnrfO9~$pwt8=?!e)hKO$D1{xX0q8fUhFL(RJs8vG>yk|pr`RVYev`?(88N3zr-Qe zH8>*8!$dVt$;!GA38>7dmEk|fGVe6bVmA%&|H1h=Z5eX%ZOweYZjSgiG)<$|>Jus; z*T{r?gn6>Kn!5-X@V_c!aQLbKb9To>@g8Exw~0ONbUh+9N0H2Uz2ik@_b~nPl~Px5 zE$ZnWAB21r^fFNvK8*v|IZ)6}{J6FF33Bz^3c-Q=rxr@f3DD-YG+WVn9qr3ad&E zaK^T=ec!AGZB007+pB#kFivn-dCU=ak{=Nz_ycQ3sD;k5mZwXHBFLgWv9_>*)~s0y z0CA|fM2@n+tKeBgW-L^P5Ueb-OJIOMa+$xDn(O;ZV~-x}E-N>VLZW8twhAfyDdzVP z;TzJXtL09%!H+(>!wWO}jz}TT&YeJ8yc=W3JIT-6pNQ14T!X%qgFhdW)IrP&Skv+; z=cO9^PXuqp=^x-!1M+pvc#k3Kct+i?1|}l{$`>kO7(kgXc9=)3Urn40LxQ)f(N{-woLGgOo;E)rB52hs6w>;7w<-*9`& zdXWuM=ed}b+Gs0T*GA3CdVP12^zJzSSqx83AP$9;uNC zx|Yg0s8~5E7vpWQ!47tCpU@31s*H5I>-oYbU-=-ds)y@7(1|im(F+Bum3%937cnURP@I2uP@ni-uXgyr-oEobtEJ5qJI3|5?TFbmmlCQoqpF{ji{t{j6qms9^N z96c49DI2_7_L;`#E#`>i^0eGXTNSC$yKHkqvG27|J_`{!M*z6IQ#lXM6D;dEv{1;I z31wO8#M!T5ql)ULaCb@p{}*?`cD1?^c|8v+7c6*5C@|S2Fn0tRKW^XW>!C;4%g2 zi~gSh%f|i`zpJx)#Pp1DL*aXl4^L+f_uFsZ9tWKcf3RQ0K(!-A{hPkORDBE_a4ogo zj4Lale-8w&o%XSqcE(J4N$onb4PWF=DFhz$I-4InrTzo0G5a$jB4+S6gq{xy z{0GUGo`fqXCQ6azF)FEJ!){9Lv!p($b$1WKC4V!no(KoNHc7rBAkcfcwbQQ`Fsr4m@job-!EoIv4*;e2p=U}_}Q79WE z(P-0aoe+z5W<6c)3o$Kfcq-!4TLqn*q5r~aULG5j8dTHpS%%Za`sQ=owF4ChHu#0bUc`uIP#nomsUs#QXqJ`FK6)|B9cwNeaN4 zsj{|Km4=F z#Ap6cZ5ogc$`oS!~Tn-sf{~cR~lZk?ofU zJH@F#e`z!M;3*;+F;LBj`PG?`sHC&O>A-UOh&r7Yjt_a$vwm@Rlmww$YK6}Hm8>xZ zI{macTJBKM~K!<&)0huR+ztF@(JApOO8@auiZFM;CNqGI$vRvLJ4~A zd@3T{rh1OnABR22O1}G0xQhCH_fVlZ22)h-b1mQw_;qWS%c)?BO{Doe`6rfl-I^O0 zuM`vx;~$H7x!JFRDA(^*C2s0t&sscASEL!#4=F$+HcqCFZy;EJUW53_Im)Z3W@2yE z3#vxXSs6Mei~}7 zhGg=>Vh>i$z*_zMO_x6y-QS}(i4Nb$s2qKPAz$iNp_@02&u$tSV1->=cHpIDOuie* zBAbYW*-wnNR)U#O;wy5s3<;5Ad^a*>o&7t)Gu*jEdED*mOM-&M7v#c>$!z;BpupY* z1YfP5P&ae~Z_GXD$eMz3 zXjxrERqodjDKjBsMhjm{G;pd^v!d~&di+MD-BC5Pxt1*@Zt}d>@KK-w0?~HQLI#u` z;+DH8`E|ksb|?CR1ZW?$P$?o%7MLXX9Ks~+F(Jw|lcQxYm`?sQ%z)Iu0y_ymWk)22 z{#?d^jv4_cl%mm=n9_ycLS;S{OOOvAL@~aZ<9<1tYJ|v}`ohPFsG%t_QHA_-M4Noh zaP%d}5MLx~W!rl8r|AGx8WyqafmpG;u<1+MYf5-yjNGP=KD`KIfX7^}a8j5#(QF=N zH`I53Kf!Sr&25=hSM*&qPgSJR2Oov*pOG~iZl40Uie6xrNwO^<|5LItZ=Jz;{LOef zp)1-JGRKIJ@?e&JH`}vI7WwjCI`sbHaz-`(bnoro(ki;Ufig>TR&hITx_d529BeNa zPk~SY=wnE7{D!F_ z1~aZ4z)+R@2nq5uhS>k=hJ;Yc${TlBavyDjgW({|(YbN-Gu~URwlhI%>q<7a1IR}D zxBV_@GKX{qZ6$rC(?{Ds#AjqPYRu?G8kjU`V*1p{h7XyXHWSduwrWNJQ41v^G5W zI(KI?%>rzB{fCgM>gBe4-&b%ky7O_aG-Cyud7>T}*f3aKavEGkYDs32iw&| zFmpVicnyVidRbVaA-1yupr5Qo9hvsdY=|URyQjglE>cit5z)jHTqMd2b_em<^xnn1 zjM$pMe)gi%*ZRTQG1^)q-qekA_f?DNSQzrCBg(BWTf(x%07W_+WC_Dv8e z=>{dD;S93a+9fQLM^%8bXB1x~ByNv|H7c{1DYe`v09=Mr8n&ja%ey6;=Q<%HpBd|y zc^#2k9*Zij*?kKgzT~1DZfPgcdcAvlNXDRG*Asd1iX3F~Npq62$4nSwB-}5<#64+F zaGl)IlZjOhJM^}P+t(%;Njrl@7M=ymZQ1rj7NFL}G9X(_Dh_rd`aSa@2G>N+>n`>SRwqrRiJ#yQ@zOt`CUb!TR)B*1DazJ;V?- zhS?A*hb3P~X7@GpVDY2jnwP}m9w9+zBzkLjTg>^%gg!Bb=0%H(dz*XeKevLatRh2| z6*fdpI+?k@Gaph1c)J8_KMBNd<1~fHt%xo!RgpaD!Cw$zJM&VhXI6B2FgGs(5kgb5 zXVR5Who0B5E&(w87xfM1_!gzp#V$Vpr`Ux&`#x;wNdyK4U}to%p*6G@z-U~JQwm=g z8rE(G@m@!<)d^0@^Cj-2rXj(w>hHjh4mp}1J?puhOBb)|XBNhFZdGW#t>TW);vX|j zP=p8=_^eO+m++rep{xROy#JM8>fN{q z!SeVBNBHR33Mt$;VgO?p7&_OtyVi&hsVz*#L;@zTBv-|FU3QT>dfGqZoALmy*V8H) zw6-Tv@>*>r(m_u(ChfpMTyv#2RN{e8v}&?z^8h85nE?V=jPAlRCojMqMIo-r4~Ka% z3VJHv+4awd9sZ<PRqXxd`x9NJ^yKQwj05$nTT;q^>Vsi`E19!5XnnKo7BY*qF58pxidz1c z^d9_SI+zY$(-!E#-S7Kv|*!c$n&HIeDO@orzY@5#Ad@htlDOU)=;_u)>p>+m~V{ z&h~%70y)c6Va8D=97QHiynBRWP%M*^8LaPK^Hk@;#{CNj*kR|P9iO7g&g3et&?^8Q zBb$hVbB*$f&Z6N1O4zS@$`x5ZWQlpp#vV=_G>U$`ci-Bwi<3Ya?Sv;G4;aS*y|muw-uZ7qk<|)PtoI?NiUT*HPl?s}@<|HS$%ijLW(>F4yhbv0YU@F@P`~6Tv==kQ zX`ee2Q?yG?ZcZtSEiM7i_!We+R=l&6YK{-8oq}(RE*4={;7mfP)I?X((O^r`W^6dq z`hV*A9G}O%u(}kvSpO)*`okXwy*R~S&7_3$Jvcysa%~X7UA;weS!y|OtBE`fe>au! zpU<`<<#q=GpztZvI|E~x3l^=)A5O^FaZ1jN1yAq+?AT%tR=u@UAeZi2qe0k%i6n+D zmu+Fq-555;?(;BH{Jb%<6Tk2Id&Gdt^PP;dLIOh!INZ5cmh&+btlp*jSbMG?+~CSfRqV@uy{yHt1K&eKni07WR3BaC-uV9WaAes(9s@ zO@KU4NI~4^10UOQLXpbR=`Q}(J)=)X4u-m0PHGun66smgCkNmOhdgRlSZ!E})P#<6 z;_wGq_YGJ(pQ{!yE&=9yn1jBulxWTx9<(F7RW$op$3LUdp2ySB{~zbK``k9c4cL-a z$HGZ8@lpQc{lEtoMW+kPCC$L>JOlC|MNiaKXRbT!NyAJ&?^`iz0jdqbqs0#gAM@tU z1`K^>FyW2#z}D$s`OL=!aKj^T|E!U*XbmHIZ)JtcOtoBN{9J^JmLO4!Dv*`*GdG$g zf&1XWNhseMqNHVZYMdCksg{a#P}A5~4Rir_5l+_Dq;m*b{c*{2T_y|3N2_^GXAn;S zjq~sOwA%jnoBo#Z+Sc@P(?NpKwf{P!6O_R7*W0{Q&j%v^&24;Q8tO*00GPz|Mfz`E z`GULfhL<+~DXbK^nwDdx5haedsCdZBKxPHgj&;0wSs$knH+cN7f>JiP@R^jI=5+A~ z*q|wM$ZBF(HoJ`L%JVt5tQ+*i)57eEi!XM9~d zpQPDP-@`4wXc9-ntH~L9w7Nk;FHCAby6@lfR(fi2M^`#z6Ry9YkAX(RmZnH5Qv$-=KId8T*UC2(l)ZVl+7VIHK*gWSobWilba0nxkHgnpE5n$+gMXlt79S zmH7)ueCQn_f~Gc-xgV)`QqUY4Q?P(fPk(2bhLeVNbkt&CPhnHM&xOSzlX}35oi9X1 zVI3(&Z{rcAId+;a#pzzOy5}`};=@7tljq+ZV)>LWi2Uw!(yoMR(nau6=@BY85=B#5 z&yI-Fk9pGVjAt$~L<75~f%JAzA)x>nG@zc{eMUeYeiIb3*#XJ5yT9VpweN___bgCu zemxrcSc>yEw`zWd8dH<85;0^CIdd5C>Ru@Rz^x})ix7t(qEkqFbAON$Vk69@uh^~jQx%msud5k`&64d9na%8?I#|f8~@%suHZa^s026SeI4>uGh z&?DX+;%_Df`z|+8=v(l~ZZ(SeU~xR{s?{Z4>rbrqnFrpXY7xL#6Iy8WEvg_}N2RHE z^jVMT=aKV zR^zSC)+}AE=!J1bJU#UlB)xa#tCklr(d_BoZb@gb*v_06c){5KH)%?d&n+|e2XpqF zWGQ-U##oK`Yv<6_Ok4Cm|C&oen_j?Tcww)(G%__B}li9TrNe&Abq&^J6W)?ReR{Wk(PzfGuRwC{b8I>>3Xgd;pM+-_DL(Lt@ zo?+yA{;&!rUki3%pWiK3Y%sIXI<@JX=ihd>X zMsA3(A%Pbm8216*y;MArk|;$3y9&n^3AF-SsDc>&EWxtOf*v{XhfqdNivrVRBUA`-e3Mw40QS!UA`zjS5f}jtN%UBFPdmT@4a*ABdd7Te|J)R zxxcfx2gM5)$mxtM5jz^MI>3ayVv*E(jOZBdg2N{jQi9h0Gh*oM@L3S|_OLtr zEi~D8P+AkHR2IQ2egA$8P*%sM#JpAqV2`E-TDuv^r?og1GgKmZTqvv(8m`5AlsA?d zMWaY|xWQBrWQj(FWR`?IG6n(P5c#TFfbuz$TW|HAZDcSlU6J2V?)fkOCy~_; zjk&si|FfV8tuDcaaL%dXgT)>EmksgkfqZ}y{omd8$7P6FGMacPU&;GG|7yiC&qj$Z9Uta4~W1*+|)^z(-r9Q#QCF>Mj&mi`&oOF+ru)d4yS79gg-fU%j6 z@g&3Jzhd6E43Ov}ZzrT6fpTz4Mi|=*VpPLj-H_+sz;f%v`;z+AiHaUVY1!ux%e*V; z9z^L3azPhG6%gM2v>sd5I*UsPXJhPD0iXS|(n`{`ilt(!_HZl^`4?cdh0nit(h=Y2 zHGBbb#)@5f!AAyo4OtKbtk@wb0mEkly&yx z7&YEQB2X7)nd#A}qIKo$C<591`t3$EgWBB*}&*}M! z$Ou9i$I~ueN@n@P;soAMU(2I+5y7CbaBI2bx?hj_04KBYC*NGHt%6Tv=;pxBB{NSC zCg#oSt;GX~;W0O@=DDQ*d*cDS>d3vcycPF^bTw<$#%iVB_noEh%eBu<7UfAG0Q7`O zpSno(pgV{g{`Xu)a>Bf;q%87GbXGW-ymesrzz`!Q@h?6G|A*oSwH4=5%~z^5cTY#a z5E2r{Ab(!6+~|bIS0OEuPlw_MkSp}ZTl#u_bErK$eHgl3h)-r?egei2^i7!yNp6&__%?0`>~wyevbY^4Ql=eiP;x zLSw7$7JKMkzzMJ;b|~(-huS(P2vq};J@BZFH68=N_8RGi7GB%eCx^O9tl3a(&%#HT z->2tFycTpA4n;M#17rQXb$GCJg(l@uFNk>!z7`3s?bjN= zAx7GJ;&q4K7G_=VfkF-sG{5m?JxX(iaFGR#{#3#!Ymj3>m zWNWSBBeilBt?{^Q3!Eq1+{^E&c>2dxYMv?zQyBw%-eYozpFq6eWHZI0PdqbENNZMi zMiy<;fpH`kwFE3dA-Q)9zetv6%>SvCdo|!68*t#g-InB)3@)`SZ9~QgYB6h{@P*pV z`O0UaV5A0IQ)q?-#KQZ4vyQ1|R9vn%9@_7&J(^SKyZ6K+Om@efwc|0$L;n<*jl;;& zUeDU=T8KfhXPW$@W`ViToSRShR~rV`*yb^RcNHb&$NYX=5sbf95C4XyoRkW5|Ni*@ zX^;zgl-GNP!n{6y5)_{~LAkdLlHy}TlBKKBF;eQ0IK^KgRnrRIi578(E7uA1$3(!Jyp$4}UM%3?BB%*vIFH_Fy}zuNT%aM9UQMT>QgTGXVqLlvXI6}l35 zm}kTy`D|v_JdT}4q84CZ4MxHjCR66mf8d3U)9V;$=ZUnPJfHqU=AkqlMlXDTaIyEl z``;HAckG4A1jZFn#4F@HHcQs>@R{1w+=pe$tdd{_SQSOyCsVD=5M&CY6B9-zmteD_ zlkdyNJWp68KYUU=5ItqP3UTN={d85u;At3W9>kvU_y$V-zs3PLgyav*aRZooPTa6R zp~o9SN4uDJ1ZHRI4I{pI9N1|Yd>??JS8w_=AwAp8GA8?4C*j8iz9262>}N{Ce?4MC zUMKz<;Bo=>y|fDj*A!>G&f5%HxgyQHt*)*wrp?@$3!5h{H0lE}@x{yf>k!afMh zhe-$IDgjAbUxXenv>ym3J!KsqqIMYg!MU-slZbhrLd%p#T4Ls(Z`s!yCq76Bh+iysFL%08c{>5fjvvZd&2`VfLE;oG=gH=qOFLZd%6qEdxB9@g{LD#cgyd&| zUg(XJK?*=k88NR)RCdv~rlWT&gC zwAK}4=|FK3&VcSOqQ@`j>PIRXvY^}XRpxk-hEa8&cxIUV*xW7Lbe@3!#*p1K`Qh78 zdNMwwi8_&8p-j$?{Hk{pkOy&??ZtrO!}8otdHMd_^+kS<(z(nH<{ki|ME!@C-CT63}~Ub3(nPbKezP{ST{x|RD+OzN&na-)-+AR zQo0rWW@xqO_Th{i~g4IamFb1VoVFSOAA_|Gx5xArz0S&UA& zR-#yeP~d3VN~UL<0^hqswq5ck%qMRNQ7D|mONo3>YRlQ2gDEJ^kU*lGwI0$n zm4u$Zwc+F%dbW=ue|kLzj-N!zFtC@w0`$To?{kNjnd|oH>-VK~;PB)<{t{M)eC@!( zI=n@mDCKsV6VAs7)coP4*j}5xAEeveI;}m~OZKX7zY2fyt9vn{k0EkCPxH;573&Xc z&aoUJR@TcZ9!=#9YDiUtPOg|3>CM37q{|P5``dSChq4fM`(gB^_{Q;LRZOF`N=sBnoPSNm`bbtdYzST^>m3H-I;L_-wagb6!K`&%MyHcr2Mk zPiZr@Cj-Z?x=m~yw#}!P;eOSyN79suJSwr}`vG9n`$~zT!x3En4o8p&;v>s+p^uv> z&oesOxH=RX_N2Nj0|b)Bd+3~G5yYu~8l`=X`Jh!i)ivXE3r&GifA&o6Jc{*_JP8k-tOXkco#QDfdVa!!)qwUuu_U{@Wp45UN~j2&I{h)d*&$-0U)*zU zd^5O_y%nzQ<#NQ}` zNi%PvFU4O8WISgC&Iv#r;Y@WN{!xKRo0#rPd9*q4&Dd_vUX0N^SHe!6#z*jq90iSQ z@4gtA)Xhg00HVU0?;k1M9b%ZfB9aF@MC4vNr}t#jmlc0!)$pEM_6$c@+4>q1-j^CEs=5D9YOR!5E3 z&HlXu4yVWV{s4Sz5JH-~$+f^atgN@r9!(6_B*rRGP<~`>MY!1OXZzMB%lTvEh`VP7 z&-)gWBEw2oO&dw*OX@8fNd-q(*6m@fGjH__;g5t|p>xf2Y_`Vw;zse;kjOc$!>=0;F9j%4_PDpSt zL9soUm`l{)JRz~0u7{XoMH#tAF_q$~4eDdXpT#Utl~1bMJ4M9`R!o%Pu36`%dj5R+ zEhr40>}ZgCj^CtEd}m9>QG&dP$@Rml+ow>xjpIFL%1#+^wWSw#Mbsp5pcB<@T_L{l zd|V{)lj@V7&f8-FPYiqfsCHR^i1FC#J#>F|M9K}MKYkkBHl*f*bC+5${tF*`hwo%gw4 z57sE#?^qI1w(SUW=*$+*8y1t+NbCNpFfvn}(#7U@>%{IVqzLSDD3rRzNck6T9@U$) zj%XR;34$Z+qC?Y8rHo2AMARv%ZrUcu`K@zKPu3TqUiIo2$w>CwjY@x(_b}P;&|;5+ zY5>fpXO*PC_}8k-KRA6%^IIuFs|W8o4{^Pb_w&_a%L|#H%+!vV-EC~5uOs?361XH8 z)dZomMsE2ggJ_J|?aM{)E%TBm7D5YT(alTl!i#Q-G6A486U%$J)LUclcrrFssU1qM zvjT2$iI;5V#fW&mcsNOatlP-zQ_gO;2qnv)`ESdNZPLY%;{uaef`Rl`gkWemlCDI3 z&T65kKjeK2%cOF<+)LhTv7aOte1!jeqs_lyRmR-mIsOP8AQoPsQc}UFWWGzh?>GVk z+OL8|wG;jo+bn>&N+Z z1|OKyPd{?01QG1^g8sp4t6N zcOZL7Y=bc!yndAWGgGf@rhwzFa@_65zuqsaLSWY{V0hkJ`Y&#^ightf)W*q5v&iqS z9R{SV$TYb(+kB5v@z;o8W}MDYc53J!WsfimsByA@OX}-vnjD)AdkT#be z?F^L{9Mer#{LAEGVSgVbKef1TzMT1~)ppSF1O-jLPDNU}wRb#E8$mjnt=5tslCdBE z7a+Dhk}@GZki-~ipkl8~F@peA&^1Qq?voDCd0R0;=65*VQ%gO%}p3C|)# zEF|yeilbGrZAelH@P9p}myajRnVV^K=jQZ4R=)({_$@U3Nb`@} zte)|TmJ7BFMC?9w+3NgNIQz_R=)GO3{Lt8Z$1a9hXh-O@(`QWJ36ab=a$27EE+qs^ zoP^=Yu6ZCxegI|))P ziI1x~=4=TOxHY`d9T!(WYDR!%EtB%ap!$dix=D+Bam*w!wrh`}HorMgj+q6{qk_7W zle#@2uVY|W$66vzeEREbXK6Tcc`ruC91K2^od1~}PJgH`OX3Aw$2CAYMT z6{$$R#SD#85H6~e#)()Mc&hW7N|2yJo?2sj065D#CfM1b3(Hg?^3%;9S>Vx*WHsdkftXRsAymS z1u$eWBy?EMm+k57_eV+DoWyPBs|#ac3b=P1jO|B_Onz2V_YoHT7QB6U-uevk<#*CL z`@1WwXW8JVwUzO_0|Bakx6nZjNg@tMhoQd@LH5z=rbZrEes}p%lT+5*=UwzPD;)7q zQq8uNH;ZmWGSqB1Jq@Dgcin|PT2Fz>Zi>z6W0Y zB1bN8mK7&z#iYbP_g-Ohk@Q?{X3xjfkh(Qc*z-Na}-aX4FlH~W&|9`Cx|HsO1>#PF5S&rX-NmPxl<>JkV{`)q&9xk}Uv@A)k^QG)uQ?buJYO1uF527QvCX zmicThuSGeoElW1cE&a1K0C;H*St?pfbyhcZV$VA8@uHka%0_Jr$$wK7mgw-+zc}Jm zpifWTPvVIb4<(05q&%9K-OHsOn98Ef+sw7DuEc)CO~G{MYa6e3Al?yn`a5?{9wUxW z5nD+6x(OH{Gs6f5ks3taK^5GVH9A>o3@q8WK!WqYhBGt>X+0s}_d2A{PG^9KvR?1UV|7s33C0frZ?I)Bxn3wW zQvob}*N9?Z=v4OnDb6xfknMm|MrfaukschA+>9RR^u%()r?~m}8qIH3U3b(3R=pZL z7a8H-N!5WqE#0x#X~=23b4HroX!;=2@knz*X%P+q5{=~-fK`X9jF3u-qw=k1pc z^idDtE$-WlvOjhs-2&GMZ8@}OYZdWd_qk=7q!a3_pW^!`t+hW1d6&;so?pAynB(Te z5QZ<#{?iDeT%c|NE3(72I?$UbSpA&SD16_Rf4)no9czI?vR1=Iv#t>0%XS`j$a4Ti zwN>P-gCLX1y@F4E1t{=nF@GFwnWBl=ydPc+29SV4fjwXoBlvTe&22MbRq)=W8x(Bu zLob`H!$df@|8_H^Y{5w7$jZHrV+8rfzeVq1BX`g{ReGwz?6R}r>+!Vr+qS>&4k5xt z)z3q>C3R0;*YEycz2WiyX|q&)IJ!2JC0BP;vf+JF#|GN~v~te#k`Rw4age?-u*AaR zahMAPX8k`@o#R_2Y}obhnrz#4lPBBU*)`d=?b^A?uAL{lCfoL8x3lri@f`1m=lKh+ zZ|AYD^IU8F5W)0v=(tJZzXUvkLNVLb_fS?C?-TXN=ob#aK)>{ELMn<-m6Akq{yA7Ndss#IDo@%CV^b zC`=ah@6;hD9bdhAyZD|W4gfCLcf{#nA^o_2sAeL23wS1e)svI)cSaX(E90XbXcmxpEB zNj#OgkZIW^L*_at^ZH~bt;Zq_Zv8fH)wtvHd^myBR0VZ4=GGhIA)E(ndxWsp$sDiy zbv&C#_1FUdldb3J%OuWliSf6W2D(P#@wMobJl$~@Hu{Zpl73#DtY777ceo-M3`*nb zP`}NUzOFi0`3myYanYB?U*ChLvW*EzP zYk2BAp}l&usoBqf3(n=*vX9bmPtasKXK%b=3{WCsnIg{ZDutfLc`P7n_`KZ)X6gz{ z$pv_|9R8cib6=oMuqjCTf+^%S!FuR+19P|(0Xl2!TGBX(m+~>W%zUCi)%S2uLMHzf zu|@;n17JZDh+l_c10sCt^fP9!HSvqy#I52x94}QRvr$XF}c@;K_+>(-B8 zysR``gWd%=_f`MC_+1>oK=5CHO@4B-C$E*VQ0j~nlDA(< z&;g`7YxI9nDHlz`8#tzm%sXoRmu%}REgfGOAJ&n#)9 zS#>vMi@z!mSsIo){?m@4HNy*I{C*!~-yQfE)*E3p;s@HWwACyAhixuN4#`u{~REsTFa#UkE1Ba)ag%v)p?D?N_S#p$l!WC z%uY>P63(Q~@*5Jo{S#_6I4VbI>6#{xQih`tW*J6!uEqF;vhQE3PRucF>~Z;QL)x{H zye}42jQtd^{MExFYrUNB0<`-aXBI4noM-`I%GuUb^x4q_Pl9q|QDx6`P@N_r_N4x| zm?cY<$DcJUr_&4wK8q)do693m@gqq*>;V*>-&u=KI*=NE{NmPSCLpsn5+1g5=hkDcCjZ5=pH z+JnPHlSOJzPvE34RU36(m-Tc(6uiv|ZBgi{ zl_3sg3k1l3fJ7ocjcBoS!_U2!eK%g2qYJ+Y}F<{KuD z%2Oq@Zp1lcPHHLDNglrkM>ALJ#(EWB{BNY}2u|do#XRc40+|?=i%s8}+7G9_-OAc6 z2h)ZN)#}B998(1Na;Z9mJQ0c)K1ZI+FR9%w1a3mxb_GY5D}Xi)ry|K{+wBeQ@W|Os z951$afLsPu{Y;e*c7xNY4u90dw=IMBZW_dSyJKZOegEJSkF3@4SWk2^<}ZWRJZJ}K z7`7fZSYwZWU4|x4mcL@w;A_(2_ioA_)#sx0PE^8mC9`P?oQI6QBMAvaVK&EC8>o;A`b9d1{x}Pl5n$;5%N8ha0;6EUP z%qFP&qK{JlMkJXv+=VW+?SJqLHt<^Pz3$(u?k6KgB`n_`X@3iO_ zNu|8K1*Xt+B0bon9mhJ1F`qj|z9q_}#OJX6%fQsF!m;Vo#sc^lO=E_55&Aq>Z)t7%Ct+ctHCyMF1Ic67}3|ySO;G1;XId zZ-4?z()a3P_8@fc5ADQDuxyF`7VDxuLt{YBhi=^hxKP}=Py0!Ud-Rq^uf!c{?si_^ z9qR4^H=MIQ_zpQN~m5U{d^c{$;c3(C(G{kXC$`wZl-f0n+gNS~6 z8_0CyM{nnupyWQK2tlN}%dh3`8`=FWv~(%x)G5CiINyqsE_{fY=ae7JY)cn!>NvWS zyuYK97AWvClYjY)I8!-#Lnj=wO%GMYp{wss;SSfZhnSU1B6{0>WNSpxLeBVCe84LP z^4}ql$a5d*Hj8?PWP3Dr^D$IG6v&mtFR5h+@P+d(sJ%g& zFX-y!RORW!O@qmXUTCc?v{?o#51ss69L&L*z*Lov2Tu-l^Im{HKQtxCsv`Tz>7c znf_7wXjfoMB1vONS?!EiLK4D_1EYzSzS=a`MEXNiq)bU%OL<7+??i{KS$Z)rW13%h z^xvAy2&2@ZnM2=$x3oleQ0>*r^ERK4f)g5r90y!cin|{S;E_|H*P9_dF!VxZ9d?X6 zfzG7s>%)pCPg%ve^oLoovBK;9jE6l24Whmc2l+f*8?%O#3VM?|(FuwBn55O;=A7yI zo0g(ch+DUiNQEjTBj>wV4dS@zc4|p|W?t}1RCmbg7{RjzYpZ~UFFZJI9rm2NNEH$T z6X7MH&@O@Utt9SP8A30yhvIh}6N2Q{+tD4dKPF;g2kioF$od~1&rta3*^k0rX+Bu# zhC@GJ>V@atPMqJ`&&N&#S|fe=ZU5uTrbiHdLk;OltFlk0iouy{v_*o(Cc}@G@4;r3 zxSO`O6z6T2Q*qx)ULQko=cwv1D&A1>T}WIxdBt2blW?gV$u4TBlquIz#62_`Ax)Bb zQjsf3gioNtnu49$N^cMk{<*t_JRLmR-CeK2&x)=C4?K|Xk*2i&R^e1eg?HoGPm#y| zgYrGr;6{+g_qklH$AFxm|D(lwAy0h#cU30a7nMH|&9@?UWjA?ewN}H&{S>ZEIIsmy zVdhX8d<6B- z9+POl^CuVOZ9;NOqw`adV4l%7eE+IG(mnpeA0d-_z*rx1l{R>!XHt*Hk?qmD(Ii|Nmqk zegXsHNV87Tsvj?oC5!#b1V^ml7p?PrtdbR_nvWtaX_`1dn{v5l*RHvy7k2m%Gx~s* zT{JZ>OE?!jx03xUV)4%p;TDHniG!S1`>H?KK?+}8i7Q5+ByP&v-TpI6DyVli{lp(p zqkF$#3Hbcs;+|dt07E1~>bL|_kifq1mgM9D*{~(K4x-SE?{-iOo9%T>pZ4DWw8uXr z-QE9`9CrE@#O`YmUS)IJYkXdJDz&I*S&Y_2bou`93iqtPkP3cB*Dd< zQZKbid#DFOO$0$!;hyA>S=2E{kqftit|t+M%tP?R*uF zK?l31@J-}|T&v8feSBJCwMYXS!1yyG1{`{Mjtlue|5V-Uggp@u2uc1d_z6+sQS|V9 zeoj`UiTx^@5sDGO^MZG&(L|lC&8;sG_2}Wa(*Q7Pa&?Tt%|R9M{n=ypYY?J|*WTfm z=MJ!?Qy>f}Sl)_b$DciYfZ+1JB5<|gvGAj<%1P9ZYu%zndG7A4z+k}A+PGV=b>oI( zIzON#pw~ihpg>?<;uqJwst}9xH8|rN{U3(h_TrdkN^^R+_{BtC( z0aqd$nr;NW&#LbhaJhP!C0BGah3;1s>SsJ8BSeVSk-WkJ=WbxLEUr8~?NPDyF?TL;ROKWnFd<|AnA2)Kaq0bYqw|_!bJu<+O`+l$R z?*LMJqu1BIk1~2cM|%AENOW3QDWKn#BJ*0-c-r3zF^GlXiHm9|`W)UZg#f#}R^%eM z1PVa7N?Hl0xLp1FTcRM-t0TzwV^@r{CtD2MSAAFOWJBk-Uhx{1jU1CPpHIh^O*x_u ze2d&A+N-kWZ1EhYsC#l_yuzPp2s8^3U{*IHDlff(#I5@{KM# z9m34S)U~>(y-;n>jq>qXDDS;e33j@xpw!8MPrH}x_XvLg(a{Bxyy+uSx1I~ZAW&1z zJpE@{zDL#23u^DU;i9x9D_Yt8>u$!$s=C%BNv3nX{U119Po|*MN-}$mJfuH|Ky@qh zZ#JRO6_I{u#`cEiX@#?s@dZj9iymoYOI%&antnucPVqvQ|JzRb|EF304@-NV^5+%| zv#)W*oZS%bY}9`vDbj;sEfkqjfONrDc%A$qVZAwQGS4+X&m3+3TZ%*87;XE+Z10-^ z=4_{f%r?4pDcc%WVZ~m*M^7^0>Iz}?8-|!7C7^*4o}>=k%4VHMj6v4~uMokEl+tFq6-kb6Or zYu+$!^{ERkh+b_&NL=EuK66VCb!j#ftIh7_YoaL{Gw6fu4hd4qiD&u#s65 zVB+whBZoYml7+s!g;`MTqmK5(5+sI&048pRmJD%ZE*C&g1?%y7Ivo~HQ3YgVZM~*e zjEwj4^J6fl;P$(43ra31xs_!Vp+fV&1~+5Pv)*vRk3VP zPFu~>IK9Az2#)B!bz$vZUAkFB-q3HhuBMWi3&O?HD)7u8G8L++22J04lKHT11KjB? z#0b}3Eq*R?H0kf4AYHq?` z=XDO?Vx#mfYb7nFHoS$(F-i<7W`Fotz~8uL&Cp4ZO32x3nR+e76iY-N7yZzdG z*JXk0gm8k*&kb8^rJVLGHxhqZ_NA|&yiH^z=i#-p50%i}d}p`Dgej)CVHN9F!8~nK zq<*5%4a>U@i)1NeW)%8;hQ&%pI@!O#vJ@h=3+_7A3zpj0dmZ(XT6AP86Sj0#j3Q7qW`Tk=q8s;g2+_g$` z@kuLt)X^)lqbOvd^~?g0=P4%5`ozfq$*ctvlA)3_x0c5&8rcs#v#j#~i(M_<=yx1> znQ_XnrG@KK*k_wCq!kJ$9|XucTBM2Q{CQe#JQhc*_mbBwKVpG|cXt?^>TvoxYGkKw zhbnJY$JW2j0zTXE> z{Y#Q)`R*v*lZ;KbKiuv)i{=k354RnqW)rIGgZWUrT3#PtiOR!2Kt8=o3aoLhsxzow zsk^m1&zbRcf^)`W`q)P|*39b73yixQyE5F|? zH6deJUY>R)o!fucejBg*9@wPwxxBeK2!+rs2i&dLAj5nYn-7=^)fW(&N#}r%d08W9 zY}O*i7{}cG5{~WXD0qF1qN?6fQjLqe9Fi7H^EL3OcXmiO`F_3%hQFU2uZwdr=0ALh{5IB}V2;Qy^z=D63cgx$ zoOwl2VsbNq)yw$Ra)A!iXEx*v6XBj2h#ZBY75wgRGfY@E;N_W3?Eg$Wm*17AtE|wO zx_k6bf|s+hvgLbeL>27UpN1PD9w_@=8>lx_-uO*cz#`V1PUNqPk5yI&l^o7num7br z41x%yAysxyXW#W=5U4k@gu*9VtAT|0*`^!7;_spI_ltx34}AO90_)^)>Rk306-=Tb zl|jPInzSbJHa}M8o6y};<9(S7;YBGU__$p1ch}H-$TcnmiP{D%Ja-sEUbYo8flK_CI_S6ub8e2i>qGMzG4U9}?DRJ5IQAU0sIjOeQTrAedR=AV8aY1+0 zTjI|56T#fP&3e66D3`SGqb8^In?@wT@sb7w0CShB-TNy5ZL^* zh0DRJ>a39Z?OnB*9Nh7(xJYY(FGU7W{`4jEm+!pV= zMUoz4aY}BXhde*0ZdxzMP`B-RDgL=j-iX&5wp-6zkzw~WWysFm_+iiWMQvSW6Ii6RLW3zg|ne1p6s;A8_BhMwCKQi@gU#ivEi?{KyD@n=Wq2SSZQ6#Y(Hti{7hC z0sM0LM43ULY@jg&@nh6c0Jz)_*6yLhv^)u*r}RUm_jJDWO@*|LJ_YW5jkv1g?lZ2$T0SaKm78GB7X=awc&csU+kiIaBpX7|O2 z>3w!F5@|Zvo}F)X7AeA96s^~PGi_)E!StJm53{AbmZ)1}zp__!y7{+r4_D)YkABRqkMdCQ?q z{^|bT8~>pQrxhPVB*`4$bjO-_#F0lBhnWYB)g2pN-8#qc)BMH{nwZDw9+(czTv8;G zn&;~EkE{;z{J;K=U%I#CBsb|GT1dczX7qEMx=>Zg8vUg^7MZL)vnnIyj52<9ad1(@ zfFtN@3Z&Pb;rtKl5MGGi!N z`un>k_h{sLZAFS6_Do^Y4UsbJzB4EM5S#usTW}@s5{5|+B11mW`oidZXtFS087|9s z;j_s_;X;`ZokD8Wr>g`!FXJ~t?z(1*sqx>3>$|FhuOE13ztRkO#GPDo8gYw$)#9IL zTalln-FDI+YIreB)-_yo2f-E%BGO0_8uJM~eP>WWTuvS<3g?3f)XV$F!5vBe5}^GQ zYmt%vC4eGy4ORA&@FLk8{yHsS>kkuq?DN8+aBFvpxYSy#EXwf4sAl=Gx5v-7R~LW( zrrRz=m!~x;sP6${N@A6t-Pz~W-UiPPP6}|hgE~7n;B)EVGM|*-17fTZ&47zfKmt1q zk7frkEnsd{&+R)WQCci+E92Hq(Af(I?qJ%H= zt$Ik<+3k>`3+YZkNkZz+mFqvoBuM!CcJC0tG#Wdd?^N!7%X037!HUe3HQGWE6l*ss zl^u1g0p5dCamX>E`znoFo--X$J;@M>R=UpSt)Iry!cg0G)kvi7-HJ;x_{K|r(&wva znb=$5Lk+O@TT(-)wS35jn^AdnDp`kF5!Yc_>Y{ zr1;^qjM;_e(CVdu-_rDwF%c?1x4k7RG(s3#T5{(u_{TMG(5!k~C63ag_);gphFwHY z=NfD6{#|SXn_fn>-6y7J4I6zjJA|%`?V9Pk|3ylutNU|4!OgK)Yw=}+4U^;kMk*uTH*v-c{AUV30vn<~#kLas zU0=GFL4u7>nZxlei?>|ZhC&+g48tF%kYccao+rtlkxbv@#vAQA1&LHlm@>)#ii$Xk z536UaieeG*r7YF`jL%_9F{-AZO+2m9UjBm~%emIsZBlQER>yxDK*x^*z-}OvsZWO+ zixH;Bpg{$T8##H@d{ZhLshDWMbIPwcy7=YJb8qLqP1wDP5FRT}%qp%~AfRMBceojK z(V2YZ)}kt-MijfvKL1TsW?%U{r<<%>@WEY}ah9sl+@gF4N=D8UGs&cGj_&iIx_AR( zG1qqM;amnQs<+P7{HtC}u~xFOh7qyS62`-K{YUZH_RM>3@RJIQ4p`H*9cjp1Xly>m zc66b-`}5Bk7rP-}30T2aN@|SoMVwJOX^*t(ul`BUkMoI8rg0k6YW`==}I^}PGboa8gPIty}oO_rS zM_Y-x2O;8!eTz}%Rm1&HcU<;6OeW7;LJDW^k-~Ki0ttMyaB65Eh0CL)^UM}B6m9g! z=Es$w-`)agPa7#>WSF*P@t)H!YQITJgY%%~wA3vbtf~JkIue;N<^^;3<&b|8RR?TL z6k`Z|5b6vnOrh6t+tev!N=FR!Z~ARZcnsiazwvYb@WWsxv9`e>~>|A*3qn zw&=pUPLupiT_XQXuV{K&e=1j)0VL$?5VS| zGdV*@s}c=3XLEe%8soWX-Wo@c(EG{9aM=o7FBk7piG7fON9aZI0*j2tl)eT3W-Oe^ zmDB+L{dH!bKMAJ%@BLMR0IgXx?w-lyBmcsaHp-5jDhYW1W1gM+$6biAYa;p87pbOS z+JP;<8)2f&M7|YA-wnT_Eshv!FY6?T_>Y|jTf*i50_oZ)6AdVX{W40Q7q|;{`I1FaIr*Jy3BzfyUfn+o& z4Ik;B`fh?23%95ps=9;dodoYrSKo}O^eQl1vTry3nlJ}uE|h%>DDawizdy?x08N$) zPp4!=r$2wKVTeo%jICJwOF!@E33IM87l^8K4BxmS*c^Lx2c}*@jh(mm#z`XS9y}4t zM*9K@cn0PnU#iYqXCRO2Gz*HxX%8ok$x=sfp-CB4#crzf9s~H^N40Dk81lBGt4D%= z7Q;T0eUzkXVpbuWOvcn=b?J(`#Z2eZ1xkkDujcNuSA=TW4~~R~LOQvCuo(eO5;-keB7BA&-j-5v>uU?BF+>*2q%qcjTY?XPq- zAk>M76rN>q5Uo8e^SJ9i8lCE_SF`OW@!p&XB!F!vYZWgFKDLHIpvWN{Ie7+XCksC^ zNuZWW$>z9}C7mx+#)WSFwG%+`MnK=B}5w=w(gjBM+v-%ahD&7tW~vq zq<8?74jsJ*SCKejI}aSqT@6S(%bGhUF48}e9a`9N3?jUva)k{h2se*+&M>XYqE$oTjAu|diEUyV0uK_)?M^LDgHEtfu9L6p=th8t zwQC(2caCu(S6hAL?yz^oNR*i+84AUjprtJy)TDAV(>J%BKFi4k?k`U&k~Wg^K>qj9H%ZpJVbDLlswdIN8{Krss@L+|LArCn)0d_FqgUV|?f zQXU3wp1@VWJ6dTxz0wG!Ai&SE^l@z8VDuQ3{$NQ*GGS=nk2D^0^du3rJcg3YyLf4- z>k45|Aw0IGC7Pm|;rG_*IbZ&9yVsdn=iggj&Bq{7>}vm)E8)%$$O!j&3|#!F0-R5& zcPmCxtZ&jy-+V@+jo|J!N5CZ0K#duiJ*{2ma%zDsqAL zHqq_=3`Dxr2zTkPiP6z<^9bmF;kCcqXNP`NBo?!+Z}_Vr;LpEbIkcn8bQlh_YBq%6 z9k0s82Vue;)7_B@-@$AnYwR3@{ema#eh!ZeK0JC(=gXVaL%>j|#^#Sb6?$+~INzxo`ea7KUb(JIvHng*UqD6*Rb8bzSBRFp9SBSXI>eO zV{+;R#N(-x6$D&Zkt^1c>RMH;;*<&(P#@SiiM0sA?SQ@QnfVdL)JK6y)h6oW%dIQI zwc^-Xy<#Z{!gBdo{1(ld(z^hhT6}q2vzchMmWDhDpA~~|q^|=q>s=?4TFH^xp)a#> za^hjr_A6va%>z#od!(_B4NgK1&NTJ!6xEB8$rNo0KfR5`a&*mS{_oh>GqtltonGFp z&AoctCVbl6GD=4qxW#bhC$J37U?J;%ieadlCTbvIG5<)#lvK*GnLT_sH3jB$>K3>F>~u*f*UizbsF!JO<5YU1scP#B@D>+s)+5}(D$z$7 zkTCznw}v~x?s&&zQQ0o8sU~md!M%YV>qJOi=sH8%mbO$n_-F4OZalh z+H3LzyVdf_dhjGoak$U$4(>%S(IzAFoqyclmE|D3+JN&J6QwuQ^*Y%NqQ(;5Mna8aJ1!TV`D4Cnk+9$;@h*eAtMdESeTz{4I`(bE+1 zs{8>!taA+d>lLA!eU8QuPn$bEm@m1uVY`suq+Ik4eC@OhwxRPsZ@O7Tf}o}?J=(yd zN&4be&hgVgY~L6J=JI1lE1;V=-M8$^c-!7Clh0$o{SqCqA741gixn@LC=*ff#Usl{_IAjIB!Je0HB=@BO;;#e4B}pm66-hJ{nvtnWErixu(*i1 zCK4UsUtI zxeG!*v+pqbArhh28@7(ZXC>2no#vz<5A4-o>6a(0)-H!y9#;|LsUzQ&FEzv%V=?Z! zlRcWAb3Eq)o2ToiuygZ6Aw>>+lEU;o)LGh3kLl1=UJk4x{f^btXR&GMU>6D#E%##kr(kMH)8^hiRX&h=0B!`H*+x`_egIOX-8?GF>w!0?fH`G`a=8bsyiAo zJc~eA>a`e8g=M>>0YLNa`<3~ALI2J~69&uEHV__K1(20Qc+wF1DC+(7pWaRC z%S-6E6#^EVcdi%UypJpyqu~)Vt_g&W4rS`;1dj^dHVI+QF=TjoWT(z6Egh~o z3-;zJgj{ORZ^2iF!My+x!s!cdfs3(alzM^S-)R(wN-0W;QHK0i(zy9aj&S`^u_++cUXyh2`5c4RP zb^g${Gv+Q2&9I~~w(^VzxTik-9z6jAtrzPg&cO@t%w3mlkrue}(jw-`sR1+-9~%!9yQ5UyG)BNn+@v1sqzXY`@AO1_Qm zoo(^{%7-oQ7wPH!nlC((ZD^}+gaoZayNHJ4>&D1EUuyG&+ONa zpUlV{=RhD`NxC*m{B9P8!qYU#*1Stwxj;UhCBmTPM7Y|lW(#|=YdE`wfx+Cq>r#V=*!T~ zdwio0&n)yZ9l%X3X&C7PASKZ9X8p_s`?k7Dd3)DgbQhBMetE0NU0{?QK)NihvvcI| z!KJ1CBi8C1$x(92nER$rj}J}T|2UMpM!DH%-XaC|1u(;zakWjHu%32qw475VBH$uE zDhWod%x@6%GF297HpJZxSQk~FHrtN7{EBbL@WsX>_61yfmw(P{Q8ZNG`Xw{NCMFN# z_WJ~(%xQrUHdVJGgUlss!#)_CwT6H>k9 zH5l{2yG^zNLh=?0ipx%zzQQxCdfQJIQ-DxSy>9-UADZZVi^TeEG{PYbSplbLmI8FB z?`zgmpp~_x-!1$=l7kIazEjDB;P+}vzkM|&71iw_JIpIsZ>0hn(ZBq3N=zoiYmx;L zJE$LKe(0&Bu92uH&%v9mQwiW;2wjws?Eqr-m|@1@X1SSr(dS0C)9N_^hDI@D_TFA8 z*}pJ;t42|q_uGZcANw*|$Qil!FF_}(%$wt7rq{h+L13+Gp|;V^EQJcQKJVXJFPwAe zxo$s&xbt=Ago)c+9g^^=Y77V_GLl8-x3DanDXGE|=S2kim_&MB0ymNSboC-r;1UCwiNkCoZ6w6Bm z@wXv6Gcl5HfTQ;F(v?)67!xT!KD(o&K#TpWH#2^-1^*^AtCyJj2`=S$$0@R1!~sRs zQ4)#a446h}^L}tP%gRs%oYz%nPcNG@k%#JvqQPR`->ZfzUye)Zw#ys2riU;V2X8zh z*?%$Tn92{Xx3Ju(*9yIHbSJb_Xq(8}o(KJS$fSLMq}B7E%WJ15e2reAHQgwdqFOo{ z_Me!Tl}WAlW8tV!oqX%B2Jd81M^Z?i2NL#G?VPgl@Dg{dv1L5SD&76R4h{@sD$6=& z@QBj^9maQdUS_$+v6va&{@p5x?sqRKTN_FCGQOYdeIzB>_YP6GZqogzL)lknJZSEx zsVnd6RPT@vwH}*v5z;zhGWLHRR?S!M17I-OV^i(TL)JRE$UakZz!rOGn3JS(B;CEBrOuT?dK3EFf z#GtX$n98FL16BGFj543IaJ{f^Z_(9G0rM~EHQopx4tfdKn6aV|0lEmECLAd{gH1J$xSMSct zC6Jw&pMsc2>7zjo3=YOQ^@{mo5{c&dEx|8!9w$AeJRG1( zq8{8e%a(7P6v>#}KK0Zi)2(IwJA+n2A3}=95WBR4ydFe~GdwUW*MyP4uK}1)#j0oX zsS}`h%KUS_%y1vC?h6Z4o0LRc5{4e2|qN(v|02_spkjVJ{2Zt5|}3%uYe zxBKA3f1vM=-WAqAzTx1%xHKx{95~kfg+0%+VH%cuA?F&eAl2!o+NyY(aztN85iU+^7nK=EEjgB05qZ>r)2$BdPdcs)3h67$0o zkT@wW++q`+W6CHMvW}ai6qVG~tcVbOq$kwTDnogumh&R!hXHBi_}T)ng30Um5QIQmTX?UySu6#ug- zaA(50ljmVYQ79RXHr6xfu~3R;Du`B$aET$VChA^HXX$o5y@4im6VA@n-AbD6L8Pd! zQT>2~%jbEd4EMC^Bg1hXnxeir=2OxUu_#SdsN%Xu@=wXjBQY(o|L%HNmbY8l%gNh$ zcQP{jdpUtdfKNYmD|pMhMQazYNr^XCo62+d@Cyti6)>N9L7wOXu1FUd>a*91l96X4j_=s8vyWDfuJF95%!vN3JKj*UJ-0TY0m2J>DXbnk z#Baf`#=sDb2|bXoiJHDbx|l{;->QlkgpCz!s>b_tF*{Fc{tY~joYq=nh%X6cpzdnr z3?DvkYn0_bykAnl$?1iTB@NYN(*nuwo|w_K944PmH8=&~^BjF{WYkZGjM5jHRZ@Cm zdck)r4-+P8UYokF7J+|SZ+fv_eWyNvykR4(^^s@-{_rmYTewn>To* zP_`Fw-Y(DiSDg&#xmjHtAWi^Xx7(_Yef?_@+RnXL_eFp*&D)n4$OcU%SH~&}M|QBH z7L#gUiWwAF7#|KWq0QsszU%W8MZCO&Hwt?J-CdMZzW(ENPHDdmmk34i-@veI;GV+o z?kzP5r<5-93Tf{b3rQ@zF3gva_$FyF9&ON<5+Y2QgEC%7p76TX$?go*50M@QN?XXV zQ^J?tzr|7%q|zTwi4vjCg^4Bu5~fo)x;Du#Pr7z*C}>^%*GdAEK-=8W30b>JyeV5J zX2y*hzKrmfzKjS*T9bEe5-!J%{Y9|Hq8Fm>=+#6h+fXJD}{s zQs6OBo;5zqq`sUcY|mCLQXzgaT4sWBAONQ6!jhMgd%IgsYmAFZ_epDJl@Jm;<|c0FNjFn#TDuYD$@n=+5}K|Tp9hLVelN6d?@iz8ey_1b zs~Pu919Vnh&c=NvQz15Ahdp~PF1l#T%a(E(+8X|1roaf&IJ)$s54jX4{+(ZpA(GTU z^H_K9yX#kEuikqeL17;=wQS`zlFhi$hl= ziNHoPKLRmTDaSI!CIOQlMB4&3Y@#aPB8L>}xdrmOW1e@-{)64c*!^w~Ir;Ck4Bo7Q zp|0Quw`>GA9XksfDfu~aHmj=UCjyc;Ak7=Ftl(g+`nFjaK!>_%SYPVNv3?g|!|bQ= zC#cVUTs`sox_L&#q@>Lpj?J0GQbFYMyXQZPe{I3#-EeDvf0I?!hxqH&GnBjdX|STV z4G5g5Cm6^EwZzK{%r{&OAs~SFmEW=ijq*_#pYVpvtGNkZ)ua^_P|}|)<^4GL?Wf#L z+aD9hG-a@W!6s9baeO&xBwEta-$)ny@Ven_1};vr@shFY9;-A)wM7R{5GHJfhAszf zE;=3jZ_$y+yccT!zR$mE>{jf5ULzgjRM!-|yZ0)>>rmiBdq$=Tn)w%paubmXiyVCU zJ2A?Zk6q>hCtcg6{vWb1{0jyj>xiUU(pUM#i@*{+7KZ@RRb!F#7zDOaACC~-arYwU zX_U$0fU`e?)qsL&la@U z)J8(ch>G4m=>=^P9KBpMit#m&Xy;3XzeF>Oue`-}NwK85N~if$f^*1s>yUYVBm%(u z_&WwcKX8X!c_acTn}S%pdR4duUY{T7{jekAN2+EVv6TMEx?Zc5Juoh+*%2vIHy5@W ztB60{A-ehbdgY$hK=8E(8ey$_K@$@N8_d-xo#2_?Rb&PRPm}x3VSZpWx#s=Yk_t$8 z1W@;MB34`7m3`+hVu7J%6zvFogP>av-~v~;tCbhmVO$1c)c(%rChcPSvex)43$L_X&Izdb*TJ`by z^JSWB@mcBqA}nL9}v%-B4HwR zhs1MiN=!7~iz;Fge4MR+Ip$6bNq1Wo6>#GI%1U;mILi}mi#y)I`6v$ka&y?XtrE7$ zd7(l(zLN1^Qr9gIOBnvvQWzT8zuV%#z|8*AE0A%CaAsyMMPse-W#(x)0M;vVGNHW8 zqW?nZc*tQ@(wGArA5MtA@@<m%H@;k`doSN|Cu{?%N))L z9CJjvMa{@{C;<=-W<8X#H^^hWWdwz^Ms&)1#F`;%;hDWUT$XT3i9-mW91^$}zP3*e@uJ|8ag_iZjv6GWnkm_n_&Je|Et>3=FCP{B^jpjQ9Hs&3 z1?{(;g8xe~4fkrH7m`M-8&u2xN%h1Ax|STJM(=481G?i%*yW!w`Pj+2TF9@y!$D zy9b|F$1;*`80te^H+jfe`n1kCOzZa_D#sNq&yRP_)$EoP+BSxTZqMdxG4YB`+043_ z#pWuUw45)Ps~5WR8XdLnvM1#9s>OiZJ)#S*yf&$>qFcU}Bdum@{`FL2P06*a=>+>- zGMg?)W0wv;5q_Zk;&V8I1ZVP^M{FFaMXmDATJ{2!J-D$=;ps!;%=BCjdbrK*w?wm?ayd$Cm z=V;V-u|5h5+~OxyX#$ra@3-4H{XBr*d2&D{h9K{_eyOPYph|t})zm+Go?{uaV$3&e zhx{l?ytCl01mh1!-*G2(&)y6hp9*H}MA1A~%9iNHDT_q6HClr&FnQ|#aFylg$fB`Imva{c&*ToO84?!{V`#M^qP?+l9+}^H-%qwS^bAx<1c_1V+aWBu0F9kFsM#l zIv(ENk2Cr<4QTx6MGV6QPdmucCJC9ita4{!keE=eLl;kh*E_P$>nVUir(O|aD$SV0 ze{sglSFD%ktnJJ<-FV8+-L^wL2H%H<7v@VQK1>$F6p8ZYC7fd{^SXgJKih6qe3^5@ zlc6|Ws(&e|81TH789Ix$O|$1Rl~!$*Tf+9*_t7fxDN(gO=4!Y*JjW4^a294Xi1u@e z-*0D`$L+o*Q|$q5ku|D*==N?gWXO{8N=RTS=fJ}&IrPTLS>dXBAUMMZ0!jrjl`n%) zEd{s75iiz;PmK4)oTr*lDe!&Wa~O%#$QbJLh8}6u!UX-Mb5Uy~$Y^lcKjQ=S5*pK= zFph1b>nqQc7oD$uCPbN*qv3zTSDtdxX=c3UI@bXm2%SqZaD(!J*}J|vMB9fg4zj7b zQNe|gnQ+_~aOWj()JBM&dZ0l1_q#ta+!oJ%|&0TxPN?ry_5h}%E!9=8s~3e>~wiL~m; z#`ycvb33)-`mwD17w_pa{DM5VGk7|uvqMTP{`!}S1cC|^fAZ(ZOihtz68Epy*YEzNB)O(oWIeQ zRVOUc4xfnj^8RSe+N1XsU=Vg8HAeP%L6d-m^}?7Zsk8dEXX?0u_plJfAKx-W;U=GFt9>s_5-~^s$8wiAsQZw{MN^KH^_7t~2rk#?H+fXE~56sMdP^ z7CPR4$J{c>$IF=Jb)r!zSe`rkHIA7u=r-;6-LHwC@GOs<6 zSu`0@WP@FO)@(g6#CG}5Pu8={Y?aCsbn0*7Wgx@Svs!MofwYR_R_MWmNr7Yb}}1Rs3~J@J=(pe z1yB=#N+xQI=&NwY-#dS8YOH!iTSt)Ru5dI1qg~%y{_NU&Q$W2Y=K0ClX zsdo04xOc4`{`K+gnlD#>@}{uWcvAGNe{J*-%b&vf#1U^;IxQM4R1O&YbfISMvNj%s z@~i@ldXTi|mkSFT&!V>iX%m-RJ6q@;>T}qGl;4~+JdARD3mHkGCMSrP?0 zd8t!KOPnlkyKwSZs900J<@J5YJhTEByUx)1O7iLZt&vNgY?+>}mqypOfX)2>S^8W} z4+dP-{1|BFQ9L+eZ_nt_O3He_qP`^Dk0Rp#I@Ltuod1I6jY`SA2T^tfZ zjbQTTz^L&{80AZai7S56A^gB@pqGmJ?0fxR4c`(`yQ9voEvzF_0KI#~Zqo10`-2;E zEDOC;6}7K$;*J2vCK*60wOhQWIVj~Y|AtGK5D=r|3p$Tr_UP- zl|qGu!E4!(6YDY#pqcTxTK-RKpqO zmLwDPEs~ND$r{2xs5UO;ZN}ZtXrXY)vU{Yz`F$~Gk2t1!BMF$t9x*fGf}jJXwo_&4 zS#a%^=oi$!W7mU9tS6V+?`uN=kEH7cf0d_U?`t^9`97XbOLvKtr)506TV)Oep&r9O zUhh9QDHs4|cXo@U)>hJYxr z6y3jg*REzbV#kT?(upi)$xt(v>L)9ls=yG2X5IIuvTIr}@Tly9{cd^GJ$5(@x*!~_8 zG#OsJk?e=CWkxTHJ7=x^F&kNZYL0=ATCBM2WK10^CZ+LNJw{IVK|yjgV*gcf2s$2=StI}lWq~;GkUxHx==2!sgTH%KA(%@B0KZ2XzBNCVrfO17c692c*!fi<0_G zenX4fFrztcB8N)6icg*Hue`Tg83T` z>EdnkVvq(K4_yn%Dyf_(Tbk0}g0cdZ?980-m`SG@jl8*JR#1U>F>?5*Cum56y@8VV zz*@>@vZVwDCa+CBFml5%YsNhiIxVz!EDCB+{!il3cfY)V;WSj|Gl4jgxBldF=$1P% z7YhEY0X#_5TM-zRuk2&!E&`lh{J4Ri9T)p42rB&2@(?e_BG^eWHbZF%1co7+UMR2$ zj*XGbG3?GBy&3OJo*H@h5%hxQl_VGfVfJNN!_bjx; zRZ4~qbgZz#n%lt&N56E54$Y>jH_10G;U= z1Z=1Lv`$DnX==oNK;1g3q=b2XsKF)nT-~8w4)ID5G{d{_oUrf>H}Fn^Z%H`t_#FhWIio>+iAoqnG4S8D-Z;u>2EbEgfp#M(`?6!?1d!KTv9 zb?&WA{I>>5Qa738uf@{RDWrg}H?>aMk8%2I#s4-+F?Kp!n%)CBuvz0}RT#x2TBesG z^axiWMJaxUvm%kvJHf?wT@|XmH)h6msYD7P6~}pCLy2va@yn|=q(ntuCj7d&9}~9G zWH3J=In!?cqlsvMnI+Il%fgE)R%+CUxG=46M-CCD|{6Ie%^xg=m zlk+#Xz)Uh+()zjVzdjz3)k{KCLCb5ukzJ)=v(IL{G0u_Xc+>CuQ(mRSXzQu4Sqfl` zzT0`50z%@;P)H!^y7*1pP-7UP9}icwH>qKLu6>;D|{;xI2*zzBGw@8Xq z^p4#GnQT=G9~WAwB+{`@Cj@UEm_>VDhIe-pq>Maw7XHb2k%pf`Y~Xjp<3;|yHb@ud zCGrP%Y`kFEm$tDkgyQDNbw$pM+sPkWb1g8>L5lW{_y%M4RrKuQ;UcL!LYKq+l{tua z`gb$@QO1Bnx{>iz@bw0qxPIB2Id>e39IMrnMX5wJjNpk+?S7A=^52>3SQzxeo_m%B5 z);^@rp&e?=t8oZmennnqBqePiC z#Zg=Y3WP@eWP@kC-`uV^R+vH#qWbcM9oe+Z| z@D~;0J7#>T;2?!x!WN;zx|eySyD%w zrMop$k(F(yId^G~3*B~>8gD?ZS~<6qe|6E#Iw|#^FJd0A?YL>2+aa|feOdT9jx#Nb z4HiIS6v3^^0I|SVI>Cz#IFlZB>=fb7gY{GO9TV46f95Nu$Amwb<*r}&eMf$u7=3KP zWMjfJvjol_7AhjG_2aDmq@(?#c~8w4-+4Lw2{le(HRw9IgUTXW=tf($Slx5XjUf|J zraYX`Ce4|;c;haf-sDI#1i zO-LW>gomXl%AE?)Puc15;O3ZZc`eCza!F#!tlrQf`8$V#$sGQyW+c(aL1*#e^DM=7 z1a1I(sWel#cR?CUj$&mbVd!yCf^QvP(dUO*tG8opO*Sx}korV)<-BCpDQ*DcMU%~w z&((j^@@1>bf$+$mVJ?NgsFd+LWqKE*ih)jaO~!Ti1Qu2$LjOHfrJARn+`hDCN@Cis zS69@h0gs#8wwMpZ>l%thWI;DpJO60Qv~|H;C7VfWA9@5Afrg3<1twClsRp$lnfh0~ z_ZtC#R#?3q`D#?!RdoB8B>Cot)d>;ZVm=34SIUsUx}Nw|x%GWz`3kgmZ_+7q^@a#vbak>ih6U)9ii|&muX+ zelEtqg&$pzva%OMDGq*y*pgxBB-fU%S`@`^a-Tf80qg|Rm6nx<3$Dp-Y~Q?#AQ><%QkzK?R+xhcshMv~wDCSmLud<>O8 zRM9j!4vJ`NyqrqlbV>TMGOlxpRLiI0SWO}QzeZR;$J^*X+&Dx{^l(~K=@Qrc`7B9G zKWt;Hh`l1_uQ*=xJ7r9F%7dmJVJ3zMqhwCuO>5nWSwFo_EgmsTKs3CfBji#;SL6nx zC^93P2ma;>Nr3Bbi(#u54+RgEWz#OP7-K(q{<|jvEKolU_>rzFP$}ObsP5k^UO!)7 zr^PH&V|ZG+xWNL^DClnMPKsX*NO*`}w1;%n7kB*qg*{jy;@5>IskRYt{EZfgmO1uC z#N52LxWx6jm8u5BxSZb2+c|=pd4*(QY{5>mJy&paSGIvnlrbOouM6!0Beb#^*tRYA zCM7FkOu6ZJ<5q3#39T@V>Bdh7_g0a zlq6Yx_ChTzl%Dj?!_H0dSDPn>7V2RGnTh~vYuMLSR2r{`@tTQECMhOhLD z2&D{Oms5`>ix7a$;}i2Bg$OQ(iD+|kBG?z zbgeC730y5vJfBklha6)8-Pn$=)}>6fWu7jDP(o8rm z$AT`*0aQt>Z!Md)`BLhb@z*lrWWGew1kwO6%=`e?x2cwt+6go# z`z-lV!g?dvopbt7sW{EU`2g<^tJrU+d&TYNOradT#(uAdq%XLK0+K73{UOsW$?Q<< z(~|kKKpgt-azA;E8tw+j*#-!;3P0HR%W+?Y_I`9ENw?Oosx9{HqT4WLO#d45{?#56 zAAT`n+QrMWaz}o|u|@IBWFKnL5uKDuPcFR$P0#Zui%v|qGIH`|yYy?^U7{&OQs&>f zX;uvzxZ?!dIZVO-hezM{sJF7YEdww@db(D*rcs*OR-C~?B>jplb{Q+(@2O$zORA3k zKXj8#*5<1YlcZO_P_)P+SKLNqY;X)w$8mu>o4g2)4qyUUOW9N>!sSh8|Je5a$|m&P zAy${>JcDT156@9(P3Tm;RXU=Vf>QUy8S74wo}0%kN=DO%oZOS|jg_WH}AEP>!JAzKHpOMoDtVJe&RI zJfH#iOlD`CAybhtP94gz(1pz#iSu=HkMm3@V~LLBaNC8FI+)Prt$|v|dJjnu*Qq_C zO0AgoK0T>E6=7BJ6PB7vj--K=8hV`x(@5oM6Zf|Us*ZJ*X6nfTY7&%gQ6zC}wFj9y zx_7CH1e^$GF^q!Fu<;TF!c0rb3D%oTZ0Cnaw=TI42*UzPFGUDTZ~`V+t3bbo#o8`| zO4kf@rBTOK5Z&`}Oq<`UrilGwAyzFJ|CqPygHV=90eGM%`)Gj{0_(8hy@FVS{CJH@ z4Ai7H<}KLD*3qcIZ@3#aJBT}Z1;cr1HxPM|1{G^>{z~cavITv(szj$va@9$wTk&P7 z6#N5YuAj^n?1ouE+A{6Y9Z5|*sn6y92ZCFa2?m}WZqi*|(nU!n<6MZK2_IJk^=Rlx z4Bj;F;PjW@%{%if~P$?K*gQ$-7$4?2$ z_4M2#Qpt{b5*g?I&G-&CR&RSTWr%I&rqSLrbL!D1r4g$6cre9b8xo~sbxseUXrb}< zTUhf4O1lID60m;!2WrrZWaO6PLbr45e}D{Nap7vewA&Jr;pfuGM@O+g(3D@DJyj6< zcD^%xWru%e`2~x%j(RH^q-8j3#QgNZHlNh~<8&!aW_FB`jL7>2 z1Il#51|k~C`%duBD$@5xn}PWRexVT(trylmy$1MdpABB(1&B8me3JqP@vY*Y1n6f& zY$)IIy;~Rx@|5N_H_Ff)h1ZTYq0NPNQO34;P-1>~+06}Th@0dsnT6NrVAL55g*SIK-TrwGBQ_?r`jPxO>9oXi0n$RGpSLWyb6$=Jr ziTjxrpFn*0n?sB_@Jd6pH`a$O)m-Wv2Er=+EZDLqbL{1T>h*^?lTR=i2W5=hdZVBv zjXWe6|HppLH9qlx3ep6^5ODO_5z>C1YI=1r(+D954;Hy$qaz9msMWwGXW)`K=e;fH ziGn4=31~eUiI#2KLJQ2d&*WP-Y@sE%=he#|AINDdWLQ>NpzVBH(_j%o@&vSzsFK3y*|^eXEM~pW{-SvPKif?!j>E8i6=6h^fC&g{}_v+>#3fQ{~k|E${Dvci!cX zY>Q%QAekF5X(N3Dg3k~(k&X>tXw6vwFXct1WD`RPxi36EV@s%nN-gHqfU;iIs+ zl{4Tp3Gaz<@!XrTvDqJKN2re4@!aPZq<{=JVc5%8TSNw3XEK+Y%mWz&>sEMcr4Har zKG~mK-iCrgJo20IV7sFgqfC4=TGT4o;bq^kTic?1BPc3?=XXXGe&K@m4JY1%d4+ce z+k=)?vWa{V6#pIsW6Gur$0+=r3XHY>Ge`8k9^dIIcd|lj+*e{wz=8O7a|(5Vfi%&_ z=4ymh?f^&*wy9@UnM}vMl$Z$!DcL>NSp}2w&hHB1l_3GRLCcRe1l}L8bpyDCt5@w zo#vv|edE9a8(PtI9NkMz!X3XDXzdEe~R-P+zO>O+wI1QJhN)NH2GViR`0K#dQ4 zLh_P^47otE&1U+2K=6>5 z_G6!5FqBLvm0xlz5xY>Y%4$BCjpe9 zxaR7F+Hpi$d?k$ZX)J+I zb)IGE$qiF1VU-B*_`GkkU!& z$?TQP=Oh;&Awl%Jp=&7OlAc?Bn7=K`8QOl=ean0ST&5uQBC5uQ0U}0cc`CE!E*q9? zO4p1vopFS@1$_QXaWe6Q+>BOF@l=Wz#TSwm_6tZ};4q7BkaHuYcqILk#99>K%SYZ_ z6@VTZW5&TRDjJ6RcIvNxGOb8`)|~I_4B*m!2vh;LN43MK8;Q(@alSS%vMzl7?=YS@ zS`#TpmBhNBDUHcZu}~^6`2Aqsq!L>eBmr&&hk3%f{VJID{GE4USvjo(xf@l zqcTF=Fc$=t(z@LItJ~b1*fywC|HEy!FxX+^ z0Qc4M%)e_EJzL51+zb@OUad}?JEzRZmPOB7cb^N6t0ttYKf&=pDHdxu zSazU|>h9Ev*WFCgJ;YOM9fAb-`EqD*)>hDavFKRJ_?+fl#qCL|fVe!3l1Eq6zSAbMOH6vb8qeHTy`*(7da_rkfh)&A zM^+nKCnc%&OAdUBT9m7y69I9iez5e5Pk55`8G~pVy-VA>dYcI)>z5L2-yCWuJzgoB&aM6rmK8#l&0O`^{%%hcA-oMNQh<)=A=da6Ndb?oWe$?p2CF9Nx9YAFW788;EXZ z;!LQF*kW!Z_@3V!JvULVo#<0*qw#Dw8v>h|yGY_{`#zf0b-&+M{cO~G;GZ(=G$#D) ziGer)IDXGFCa0);=Ui3uoX;OpmsI^6|116C-kHxSG$uCL!30$#pp3mHZ}V&Tb^G`8 zM3eNHMuxg2_@yOJoLsr6!ao`J$k~&&wNkYU+gu%AHA2tBn)#Jx57jQC(~#^(T5NRR zPLJwkH9TY34{LVf#VK#MS_N`(0v(aN^>I7R$nIlh&abUg!%PuV3>T_?+Fb$q2Nm21!fwoptx&C~gP$TP~>!Hy30?D$iVK(F#p|EV6eGR;qypD#@WyJa3!XmZlIZ( zYaTp!a7_K)1DN1Fo5mPwHP5D{w&X0Y4*hT`0)5;Jnk_o z2%9fF@wtfy842c>mJX8OJu9|_$JIiFwRoQ(B`B6^OL7&*9BMlwE;@7OPPyiU-qV@+ zQb8|gs-QUDJ!2o-Eq}veezN__65*)&dr5rS@e$w+KT&;a}^$z65xO+G$1P3D!3_Vk#u<954 zshpcf=we|D$YQcmbRrii_Vf<6zmJq+l4p}NquLZ`_cP1o=RMyDRDbp^icZ?<7o!90 zKl(>+_(N6u_wMf(w*&Am{Tn=f?k4r5%RBY8ll)x6>NcqKZ=NDNG?JlFzU&IH_n5z+ zZeKs6RPhmfwn2G-lDYnVWyUbn&e{7i=9Y`1`QT1E_9%=@oqB?t$6>ONs#46gB1qJs+o}mT| zrcj1|PYadFBL}+_;sXN|)I-XLUMubq-UIR@T-%U*gKxi-*{EQk$!(da;}` zczZ}olEwPC<8+D&{i-DE;s}nplI!9F0n%&(`Se}DDyl&r6@iKLqB8Yl(dX}il^EPB z4r>`|nefd_|25PxpnuHM1%l;d&u{YM4#ucP_$u_34AC0BOH>F-t?`5Sf6 z<5x#WqSvLrq5Ox+6MC1=qYe-&oR>U z)TlApN+pmxeSrh`$du*9POtX?LyVPj#^n@9-Vl|)J&7DSkv7C%Os6*KAF!SNM^E$5 zCi1+kNT}PepKpkOdrF6zJY621j9M&oHyqm$|D5xi?enh1D+C zd4!)cGM&`J3%0Z4C zUBK#`Y8|I9S!LzBmtsVr&rW%^0d1O^|7X+FlS*!bO$onl{Yu$l{g@}xv-rbKU2hDI z;R?C67%|N~k@~L&+A=_jQ`N5Afo6gb=#d7EEgQ(BsSi^>&E~m}h|vc&J;_owetYo` zOPQiMyIUjrI7fqf{&%xtH7^dTSXV_N$b}7M&dTW-d6!^7M~XngvdlS|yqPWC@B1=r Z@0r^EU$OF*zkD5t06N~HhFv1O`+pc9)p-B_ diff --git a/data/Female_parity_mortality_list_UK.Rds b/data/Female_parity_mortality_list_UK.Rds deleted file mode 100644 index acb51593debaff7bdf51ad547a857c7a18f52ea7..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 37381 zcmbrmRaBha)~$<6up+n@7Tnzn2o~JkEx5ZD5GV*vfB*rKV8Jc8Cb$Qu(BJ_Ici)h; z{=M5d?d)&0b{6xF8*b)1W*@yj9jf zNS2DE$^Y@oOg?h(qn`>rFN6kHLBopiYky*LzHqi*2eZc4#aZ#gT9Ny}_7$(kho*8e z4u}2A^W`Fsi!;%&x>3u+?dA%-w<%oh#X z&5Acyx_6JVZJCi11k#`?$(%CNM&@h zHi1K=Y;?2E4VMmXe7nkxM&x9Kvd)c^{-qJK%UY0KxG}aR(Q2 z@@56J-^k2*<$@v1tOryr@UKOkriu+^K_AuXzE!b+22B;%8VnGw7hNnphuT2x!Xw(o z3)p+~#8Y?Ji6zoX1>L9)x6T62Sn91NOwb(uE%ro?S>loL(oij{Y+tsk_yrH=%d1U> z#dc`u>;hkC;tAd$?HgCI^?;%*N)VkaRr5KnxpI?@1EQ~Jy|gmJ1uD(-{FrWh&uj~% zvVK3Ra+_cHPZRnqnQq{M7;fo#R@pZt(S)`=xl;zq?52(s1-KcUQ$zlcakI7_KT$fM zRP9<`E*jv+XA<0@21KU1o(?SpCWX0AriF<4zCXt*wrH!-aGbzoE<;qpXQPFZ+154B+XW_!_*c^m=aw} z!^&~5ZZdfCw!{t*H-33$M@OcEVOJ-OyaFVU%kbJdZz&*|cQdkG9X$7;-(l&O#HNfEM^@>9PTcZAhAgNV(NeH-Ut>}i$mUWeQ2%I%$4v`qy?tuA|8(wz#IHAH^=b(&hD2u?-7bed1YdikShHUoT=n%j zk+pu?s&cO>Zi`wdiR*B7EWhWry-kJ1HANn}47TY9vs64>JLcuSIje>}Qmxb!{69WK zAN!vV*iYXX#l_>6T^aY~vMJ?{k~^&%32}F)6V2iWg*}yZMTNRoAa1#j+XSac@*fT3 z_9JPat?~ATb42p`m&TP=L7u|2cFIkY`=@?%mGj~fQ6p*q{kn&^ zUr9ee?Qur=B-{kEhGM@CPf;G*TW2IVa927;&YaJQ=)U)`4bN|`Uob}%vHR!%O#RZ$ zt+_lBhcTnhOGu+`jjJxqei#|K@UX{kNB0q=0+Q_B)4eLsFp8q1HWB%JjHiv95iO;& zu88#zzgQ0wo{1_sq+=k+@59aMw;a0YQN%}L@P+oSxdU|ik`hwCCuv3H92%yC&&t$6 z|CFl@(<3XV`PLhU#g?{(B$JImqV$2 zA1aqeR71XEZ1h}p;-&Zlzfe%{FpglLWBCmtU7mhUji3C@4$?q%l;A|-;}a&evn zFT$2!T_3PPUtKDSf>zkVC(M~9~H27&{`tv^4~(84=m&D^|s>o3fd80>rF5|CwEc51#u1tgh8 z7K?#cE1C4IsR$a|yXVx!8NfQfCbw@tJQL-0o!=7Hz|o=Z*S9Qu2 zX&-7IV32e@=}BT6WdZ#XH&d;= zA16ZgMuHzg{4z^!G^54E?^&G7HU7`zB*k|v!grmWpt{fTJ+t`?FHuC zWd({nG;%a5*(R=D>#B=6uO5zaabEj(kF(V$&?GV^x?!)4PTS^EUege=L66Vk1Sk_? zdGITTPV$Ca#g5Js-E7^0M(66u0Gbh*1c;`!KGDwji`_v`$LK1(mybAGP-J5)J5C@mgfkW?}q@#n3(|4{F4|IVe*H_MLdE}+9d+ zB)yKi?k&EoQ51mPe?xy*@p}DSk85*bu`^sz@IZ)L}W2bU4~u4;Hi0TB={DHX}XeEwz(i{Ug_QSG{?8`Hq~C0CoZ_2rW8Ex#(9Z|oAQj`k}MlAi{8 zj;Vv>omUm!c&S+2M~3aQTkX)_iE#tL%^k~< zj}-@+l()B*M$@hlI`?+t%vOGCb*&Jqc)aw;)bb8+Ki8yeUop#GLMH-l_-l+BTXITPu4jU4QD zAAEJGggcmEeGXVYU#vZhB>JFQf+J3} zc1u!!;aQ&D0{Wn+Ix63ZHa2OU*s} z2lX`}vrO#LkUO4>^(X66?vaRj5J6^Ge|FsHkt6+8aj5%(GLR+VtTW@tt=G|%#i#SCS3*>|RcgtL4u zQkfZOO+Bzkod4ix;6GPy(vd0PRXsbzaIBt5A=t>N5|u z*4f}Y$ilH2-Jzit?+T)1D}A7aou@wXKioa^^Z#)B&Ra>~H#Wf!6GR^PbJTAdYA=## z2r1qgLid?0CNlP<4Gmc`A6(b9N_y+2p} zgmberf9(dt@kJhWQx4gc7>i3lhplC%7x;GkO1zIixZN0W+?}j$4O3Ay9$gg{p|F0H z__bmPwL^-PS()5QXGX-6jO9+kqh+=hHaG%te2 zUSn_QFU+V&aD)2`KfOgrx?k+u8&FBf2whM(7&^d}ZyhaAxoKQ^R!QWtOR+F0E;KrJP_nCg$z%=y_0+8w0iQC4xaCz@w10Xjfn`DI-K0<%@ zO;Q4TIH)4;w)aAKwsMR6=EZlaGm0s)H#W|H+)CmE@EOV&N$^N8dknTEmif^N#lQT+x%LQ@qRM?( zZ_p|JpH))oX$;~iw8(cN$3R`t0H3k1D125^t23JFI{!J z3(WX)=iyq8bem*U5MjHURfUrpMgmP1Dc{TCy$4qM_~6$jDhQ(TTt4bE+7u>!uL@lj zb9?mJ3Tfm}BaeFB3;#lNjZ>aGzkAiQ7Nu5mqgJi)(nGJ85AWq6EY*zKF4VRSF|XI^ zk)z$MSjSmn(QEa*+6@z1+l*+IJUaW#+%&wgrx%zDH{fF^m;;^rEcDCGkSHiXCiA@R zH1xxg3aI95PSjN@oZro)SN=R*cR5+)>HONcV#wEp-80_q3KN(oF0es4L15v1ZpTi% znJ=ZhQ5=f`2CDn@?yRnGANV!?m}Cv|%c}gH+4U=-`i7BPEYQW`a@8aoTD8OZ#y4dJ z(2Qq|#KbXYVh{C_HX<3Vcbrp;`8*{sW#(v_qZxrDTP)9tKSy_=pb)yL-l>&q36D+e z=bx^?mUC2FD#Ur&@G4DU2GK?nRZ{Mh+YD37r=$SbTU-8Fiz-Zu*CT`>1uk(pYemj) z+cGiIAuqWZ$d_p+?CVM)FV5C_q;-ueU(qTQco_3S{-R1+=Ot*^#)3=?wffGtXNhXW z<6{Z>*FXBs3C;dsdD$*D&__~d?W%JGG-%oG_Y7d-$b2;dcpADcLi8>Sv@|HexQBJ5 ztTD2r<@ANuSNe19H6LU4kT2~ zJ2%0QsX21@*~R;ZlOoZ_aCW>S5$up^|9s8)wwKIo8t9 z53Z{A#B`Ia-{HPz587^lIs6*7B@;PEa4WefRs|uiO}A^3IRO|-&RrtnF=g*ao8)~sA=uHz-W!bbUs&EN>=f&D?A+TYjmcmm=XXB%xH;#A=ValJL`Kv!=6!W9HfCpI*^{Z&;!1hf zRdI8ZZ`-%l0*X-~X)YlqNM?uaQ(8{BI` zZW9!w)&e>5xfrUc5OGMsF`A$c#3}pcI0;!TF zxM`8R+!K?Iut+K{K>~?O1ifI$9>CGODavmy3c0;veM=~S`dS?wH={lUgoO8DR$LX; zd*);RIUgW=(jh8I<;^xPT`l4;W0z zp)W-B6Y^#{9g@4Z^uKiHS^8d_2dJ@<9j{^bxGUxT!*Kf|er@@G9dDz3MMiie?8Zz< z_Z7%LRZjHm;5IxqkES+9pC*!P>HLFKY4H#~)3nR1ENh4tsr<;%tE7^v(+(RG?I$y< zntw;I-u^SfkX1)~96|9c$DsseW<~g|xgRY#S7n5gX85gb$gG6y-5?HsTYkhwal*}rq?OI58Tv~;h{PR8kY4E)F_efaIe+RXA$7V&=2*x8~uIXN9ri| z(EPgBd@e1)%n%*I62OKi0yZLhBkvL51h5xDw$kD8ulRay{gZB*1+r8Lbl}v z-6Wf!*@(-gb8jGYR&zNkpC-6kS`m=WT~F+%1i}m?-S0^BLF|8alYT-$2TPA`@wRH3fHddKRwVbOo9%lQDsUC8dVM>b`-4$h^MnkLA@YK!C5RGjVQApxn8#te`419E zF{K>z6H}u0l4x#2BeK$uf#Y<7VO5%#qt;lviQo;Yp^9f!^wLctb^Ps5OGA%snSvsOL-#IwXR$}W#f zt_vhwtpEOgB_#B#MVqvx7;WGfm!drmSXap9A6UFVE6gn3|FzckAHvAY`(5QRxGz z>5nw(Wl+11#lrY+VKT(jHDM#htJQaVO9p8!F7fA63`<#x_#@!mV}}DN#Rtx^IDS6~ z(B19VaoayA#@&_OJfz;cpg~o}1jhDnot*4F2E7mM5)i$uQ3QqXSCa0m>#pTxJK%_J z-av{~OB<9Kj0=NEW<7^jvuv-2=}4)%o8sJBQj_=XEXjU>Q9gy}o+pfFO_znD=!bDA9fj#0@W;A5Ip1|1&l;>QyEi@Ao?s;8 zXo(;S_f(~iJbQ_VYcH{)Jp_gaY;os3L%~E|E3_|luEXi)_DN4bGzw*nR><^)tEA%g zF${kPvN{ud(I3iwc_{lGbzDKHSrA=i z-aI^yO63wG0WN3RCtC-}L7R_;MWI^!{x)dx`=q)1f#s<3)>@75bjU=iY=$uS`eAU7&%rkl3#Ki{Vld4F?4 zmb!K%`r$<#5CQyX;JdCl*3x-7zT+rbjdnHIlwNkT7(Nlqs_G5DoWZ-80_Qt8!rWUx z1d3k24N9M_i&!J7p=MHx4Zu2`45PU)bo`?jB=ryHWcw=O$%yH5`TsOxnzZso#pDMG z%f$3JiH^73?3`Ca2~@3vt6x$!~LHtK2u=vrlb+HA^(@<%1-A zu%K3i7FLn+mD}$ui95o0Sb4aoR(S?n@OI{NUZLvboNG2b0%wBn=IYe1&R+t(2bx#m z*2VZ}?KszFm7u?f%xl$+rv&-DKU+=>8Y^!)wDaPndO$#XAcYIB(@EAi5^;Ro(5 z-H0x{5C@Xtqud?NB`0F{y*J=2tX7tr`Xq-Z>_BLcjU5x*pCm?CXg?XiQX?^OI8_J1vT8HzR2@9H`u#at@KOBS>}lJtee+C z;mMM-4e2=JVQaJ={L`OqkYrYBmsaRZqG%YPNBI9B>F{>{LDabf2EH+{&ks3hK!?Nz z*VA6W8YUFKU9W73!{iAn4I#>`D@yA58XYT3ivh0*XWl=j2#-Y7t2E9E0BEpo1tYTB_Y9(14fSj?0AAEdMh6 zU>o=pt?>f9>8$-;2=1%JCtY*3AgSh36#k3XcN1qHJpc*obIVz6S=6J>?aXm$QS&*Z1Ky3yA{OTvIvz&-0Hz9D zCe^H<)ZBYv$-ulFW) z#QMrqQ=!pW^ZWCb52*2>%ewFg1I;>5LkHZMvbn4e)ce`17XWX1!B-zS5rG|dH1$P` z})(}ketEDf?29Rj>dhX?G(YD)b2>8uoARZ5 zAmhDS^-lVF&>?l_zl*2#V2~73o?AepS{)3HGsJe_)TH0*cKG2_MtGUfBg6k~eFEb< z6>lf+_1<|SeP7kdd{|3V%L7NG+m4=o`j=!BJ6)kPuE;Kb?KsWfgtM3s2ZU~8iH9*i z%dJJ(yBdNz!31J$qno2~CLWp7Tq%7Y3ZNs#m+?N*VU;8-ZTOQ3SNHUxgitFI?eAl5 zsL5Ndn?)QJP|N)Tj5ZH2-SjB4h*N22g`i7)8%|>Bn7G(U9m>nz6GV&Co#JDhnTFSk zZzM#xJaH1c#s!9lk3|KH8=+t02myU2W41XiSl#^131bM_z*nbYM~UFrh4;VT3uDI} zQnqX`1H5Yn+-c47mmLnU$#G%>(=a^b_>E9MmPf-p@y&+05u?fkF_jXAN@!6aAm%=w zo&77mK3UuFv!6{Dr_#${Psg8)F=Z)0KR2uQrzebwiw*uYwT@WwqV0y+V(oZzPk!=d zdLW>0ND#BT=9fbNK&%;u!$dF)(uPs>9q`(n9RJ|Y>??-=aWrUbjXytH*-4+DDFwI01xG!cK4+8UAm-%;*d}fkDBG z7>C&}MAvO90`(VvmKlq$Wfp60o75868L@BPG`aiky4!ZwLXNbB^6-oGuvea>;n+Tw z$Pz)ZPK8h+xiqBvMp;Me)tYW|c3pzjIFkIY@lPA5h?3vtb(-=d?X}~L521*%MkC7n z0~z4$II?p`hnTqnArHF_8epYo{N>R;Ld3gdZOu^8mkGp%yqNObLt+Jb$Cii*aOMot zWuiEAg?Y0@J6s?uTKS_JWEuRi;z13w^p1mcl6`f#!;k$thnWa&euH5IfB^jl3Sgl} zfUvkM=BJadUGz>AK*R*4ql|eJG>ip`PoYVcOsAQfskohsWa6To(&!(9+80K1hY(Qo zl{})^IHfNgRQU)(|HmCMF^@_;LuSHQVoL*0=>ed%yl8YM8G8(zymY3`IG#&-@xEU>BJAU;y5XpJ^SX1s<@2U=Bfsja>J6nJ_=#yHB}ah83E z&;#7lL6)gz<9-vs{9oKP&2r3(C~<&3M}`c9tCZu=eho6$)vLgQuk62@b$KVC_?0rZ z(O{uur#C=IG;b7FjGyB|Vm&_L)FY1~kj5M zXF=EE4#tzi(Qu4`&_HX_ZiRD4ow!ZF^3oPKQ~hOGS3_o!%G({%M3yLWDzUh|{$O#L zL-y7Vd1LTbZ2ZtWkQ5Qc+}RpJ;_uVjWp){gcwx`kr3O;8g=9I@%Dl2DHB_KVA2YVx z3Y^70tsliScK?$V=TotW`jx2S?4HJ?&l#Du6F%vk+XCEa{R+5h>Y_7$C^8<-Lnhlv z6)E<8yYb-HxXvnSD4{7hNnj!AIehZg$C~K6)H_1hN#=u+63_#+9gIGooe;`v%vDIo zfokjm59$jVD*~K*1QQN{!80BDhuO1|qF#2Z`e0hf#v$Idckp7d3mw|#j@c^V_GUVJ zNhoL;rtsUVle$RhMc5WcFKW(5q&qLR%3J^;yeafTIUpM2Lj{h)$R~b0-;)exdiPlN z>Ic7$$vy%#))m$23(~4PF1Q$kla(j*B8a;@>n8B(S7tSU#(;NP@85dKv>$rCb16mN16;ZsuvhJ=w zR_A@hrSrl*NDsZ@I}2RNB=6=B$!oiTgvgxQWR=Nc-n?!9rrb>pJhbi-3f*`{fb0Nk zvwpY9B?KU=9R*#WV`UyE`da!Et>E4IfKw##wqPBJZrUNEWk?QKgUbj}b{zWL?h*RB zjt#cp226a0QF63Fqm8P`%aURn%Fd86g7M{Zf6$_}vpXUK`09%3PzlVqK(B>j7qwJ(TC3WN}AB?-5Yd-X14;36q{YPm@B zPYUHHYOc0;>>Zis#{FNUSA4*{_sv#cU#*22BSuzgaIK@$lJ zE3!(wM!p_YwK50i^)f6H4NHbli}P; zRrt0t}V%Gu8=Mq3HLj@xuFFmG=*r*vRt zZRRgv>Cpt-yuG4k3O_RuXrpn%NgVw7Ee}*8HvNI41~J;~8E`0kvRag!1M@~=&;UcW zBannjuSB#iKnoHp2>iASBAuWWC>fD!QbUUvfow>d*eLm@WM0|ABOKVE}RE37~2V^ zAB{&z7%72!y|4d^QB~A*yU|+tdYE{+POmt{!Up|kL37sokZY84>&%A>1 z;>a}DQ+72LN^WE0usOclvmb4^q^;1>|JGXFuRc{daD&`8%3M_{UdP5p-AY4Ub4jRc;aEhlfTE=m0Mp(<48#9CgILX1 z;I|h-?+2Kif%XF@77~Ew=iuN>2yLTQ8%cq+GCFiDr49aS1iC6}ug2^$p;h9%N%i5J z)b|Pczzg;cf0?9&#%Nv~qRxn4^g($k(E+OmW|cwD^-m7$6vIDyu%6BN>~B5Z(WL5^ zhtPUjRUtU+W*xg0YYVZv6;Itj86Wx7uT9C{mVN%pe}`{iQ<6{@N0Qh8%eKz9v=o@~Y zp1Cd%Wxp>fnj(hr2)O^qjNM|kGt-$(z3&v<2>O$;(kRfD`RKlarb#3{9 zVa`(*t>Vr;SwHdyMx(%GPP46D{G!1N3YsjHz|l-^N;^^FbMAh!Svd-~x|N!}8HwXS z?SfYQ-byg;P%|Fw<3d z?9`e(0uq~dGOx<3;EGvW$k1Q>)ZSW00y#z zq967~5NR$Lzl(!8?T*~&bO8K{xpjXs5YYk)>nnmz(2(Beu(1g2V%?zzJp)Q`Ay1iD z+^tgB#E{bJb}V{li)WdPxg`IQmAMWX<1zV@jqggqIGXOI8fKC9hGJP#eG%7t7xTY) z?QBD$$bdGDrHrVBzzX8A5wdUZu1@$ZWCfDA<)-r7kDKGMxYofy&y2{1a)SE5P`(f;!dPh!& zcU_!*C8-V%T?P6q9v9zR(%#n%V9*J+vXcfyI)g;-x%0%5G1hig|B%@bf(D~7TR&G; z%2(F3rNI0^8+uZ6uwCwMS?D*sZl?O8adavmJ?i}|fgrVab+x7#kc#JtN=*fNzpL$x z_WC?CF*pfwx4{(UhF=+*fLuxgVGA+Wpt%{r(n4VH($zc^D`C(1mWk*_1umJ_XBJU(BB+omr1uN^HgJ63KC}k{ zl1)#%M1si^_3?CeoNOJnu`qY0pPSjk7vL?>9gqN!TYq0s+;-Qioty?2B@C5+v4X~q zP*Tu-7F_bEZ?{Fj-^0wgnzm!dN7iR{@^kuc-bDR*-xgCa!8B_KGM{|8yPdYsgR7oa zuGD>96Hb&Sd88YYHv7np!zq;?-j^HCU5?w*knAq@>y;*ahkI56_BLjh8_ir3>!>Ux zyC)rXTB=$ddHMuD;-BxCF+60YLX3lPEpak`d)Zagfw>S*{B|Z{`;%fkIhZ8Ah$6T} zH?Fiit^)u}WE?%Gsd^m)F@vucZz`iPaf92C!VTb(;^6eba|Bxgt_4hqG`j1u+7Oo- z6VQ5SU}6swft@zVJvDZF>$J6rx-PP}n03pq-`8T}PG0`IY`_y6p$(KFtZaM&Rask3 z6Dq<&qX2mH-Cur5t4zR_hP2-m1amzX6LxhdXbUI(a9pFZ-sa%gj1;xx-&n6_&QQE| z%WQ%Uo#;7F3e{p;?QrqPUM4;+!+i{59`_#20_)e$S^mlp>r|Q)TwpY(=Paq;)p_^< zyq|j}VZpp~+sBuVI6bfre|`26Nt#?XT7BKB-NF1QV3K9>)y4HW6+0ea$dqWni*SEQ zfK|{E10p<}-EQ_835~+XG|-_LE8;%ueA&;50c~TOL+{?ZYhJmab7hDU&O+DZ)uhcL z7Nd2s+9!*{2Go%WE zrzH0V=|hK(nQ~B!R*pe=-zy>KX=RC}`*Betj>Z5zit5iQmy0oOIWbeam8k)y_pzy_ znW%2W7hOZY8pcl_v&(;uxUagFwqGY)ec2VU3nyV|4`Y*Vee|h+5oNr{n(BYIW>XBL z=j#af%Gz1l<-nRKHL~ZU3Dh2CL=H~$GO^%g;@#zqD#CGd`;gFN;HCz0@T&er z$PsS82Z=4vd9yvUnW`cE-zMn&-((HhT_kv1C8jUBa`Bb8kz&DP}_wIgESe9eJ4$e_btK;j;q z^F)hNlaWjXK}qU$;eNhdCwaS%jL_vv&i4VTiXISno9-`i%;FI1=h#)y5M#noUw|U< zfYXV0>n*Xo^1op4oe)#!#8%U1OB;jky|Yk)GBM8DZi0!8Ndt)dFHbZH8jcK8ERm#B z-HbUKGnt<^=R_NVVw9pvC1@C`zgGkF`%}ju!7F-b(|4wi*{|OI@#N3ZLn^R632-vV zfNzZ{!>dGI0Si=il-KN&J&7doQ|1q60p6eg)Ue|p>Sk)5>EOjQYVrJsE4B6y0Bm-j zw;#G}*<4&GL8RbIM}P=VJA7~d*-SnKptZ>kHEAL-=Wsw9^S$%@i2Zn8$p(vK zn!IKkN$VsxkNOU@VcSu$v4X zzi_p(5c8*Y>GnIUTm%H63Jfb+H$p@SC#8wwx*>37U2bI{AN*C#2M58Ub|Xt(IT84= zUaqUV_6D`&Z(OCiYUJF}H@ag1A~!ROAf^l&gM~EwFOr2(FBL(H z&+&_C^m)e?KN87zCx>m6Ij`NP#}M9Pw!Yw)%do0ub&3#Vg+GVf|6auLmJ~=rk&Y4n z)IiI^nt0J4e$K}1aRKyRovxRpn4=WqQUFynK5aJju7w(mwsDIgMhYR(ASSB@3RzC(L&eRZyU>5 zbL0?WrstQ6&Y4uAv0O&dS!UZp6a?SP*p~3Vjh>St`S#?6aJZJNVjIYRqX0U$?GH4r zd1aXQ6)C@szdVrn1WsXkU#dmeG7*;U<%bYmKWbzg-~uq+|7&jpbCzO8TEgUW>It1l z6Lfb8A6Qhpw^lIJ60J@MAS#CKk(h`G>j*m7^chn@{rw@V|P0-oA?C;XIe z7}(6fSib2xUZ;V}FMXZnINGT{IKJ&gV8#zI62Bbh^kK|_&VTEv+4?VbwW$iO+i-$o zi@)&)g!-?Er2TuSa!xxz@sVh;M74C#ws5M_qgJbN&`B=d5Y*&RM z93Y}RZ>$8+a)A8(7c6eB?r?ts3kQr;W&AD-&>|{eMVup{} zVd5??Fvb6y(!4s_>mmG9JFNV!V_cIl8$`{6#e?G^)y_Zz-=|oa*32S60yBmYWeXJI zZI8)$0;P|Y9AjhZT>z_7aDf_+vE*^NvxBX|JRg@XG}+IPcQ)A5sgm1(GK_6r7L4+g zqUPM~J}A*o`g+3)AF{b3aNKjNqw1Xo*6aAK*Pq$|6dvnUJ_l_uty=dqDGNYjneNEfAC5 zot4epkf+=ctLJGCc#{(VQdi0Fyc;$9|IHo*1>UTT8J!fsmOcyuA6TKSkywQ=aVgUUHEX)*Vu-F%BzwdKpS{PeQB8Jz!I~4JOZBSc|r9O5C-y z+qPQ?Z1~korfP|qODfG_B}qX@G_MZtJrn7_J4CrWujcfaG9P|VgWyn-S=Nz&m1JY2 z8JAe{I`|kSAa3%w6c-xV!rW})<^Zz9+ZrrH1>yD?$*@_r_-!GZpJLq=x$WU8xB=F* zCXtBdJYCqn%PrPKg#Dv^hH5mx=S&q?YITQVwfcq-39M9M=(|xs0=VGh02X=$uk0=z zkpp3jNx`UK++mUh?=DZXjgiQYmU*?dA3oB08)NVqaAOhI&n9~CasJzXo_OxVmhYlW zSUQT%lH@<<=9G87uPm z5&>dckvL+Kg21EPB}16}MO_Bm&vN~rhD>cBVEGSPi5CcjneomD?V@7C>2cqxqb53g zbMA}yP;*-K@o+BJ5)H8EkBfYsYO5IZ#-&dh_fw>W{#z(T%)gp3nKu#ta5lz{(VwnF z!ivHFyRUg7LY2#I2;=%QOxa!0SI{(22%-IJWqp+oaJTz)GgZ>6pen{bz%n~kMAKB?^dfN2pfcPRdzTb!jdaJe9ybcL#hNcf9u|_=pqk0I!&2*5B?>n zo<&b7Wyi)ItP&RbqU@0`n_7GQ8IF;K35$;`p&oyGPH>B?dSLkc(#;hhu%S^cRRrXT z(Ce=F76DN*M0Qqae(pOLy?vm~qgfm+l56*{JP)nnrH+;zw%~YOkI?eBLAhX%WDxY6 zxVv|+7rF2kX*;1L>uiV|&v*lCTz7@LD}MBOFsz+7F^K?y>e^8s-=JHh&&ocPt3abh zRP*zsm5({q&+Q7-8g0TAU1?>BOYlP6U!atWw+s2K;IM6UnHeQ9CZ~wQ61AZOc{<5Ba9Ci*&qiDy0{N=oGP^w2?cl{Yd0s5ERaq@5Q zLJA3&ucl7f(Q3!?&!5(Uh@nMeaco!kAG**gVgL+X4xk7ZY~{F^l!yJarJo2P7O?Ph zJSi`Pgb|dia=2wB=sgN!5`_*eV^X%QIDUY@J-(+Nk_`DP&3`UCGKv4+!2nJ6@~gVq ztcvJdnmU67!$rqrSEr{g4c0`7QEHLu-eif`anymjOu5TRSAkZD-A$Ld)_ocNb@1+F zF}btbNK`9k5Sf^Zs}XtRz;Q|YHBOZI3BJR#W#m2GZ;^qO`B?TG5k_i1%Kqs$>#kJd z7l@gb+KiKlr>Pr^RN9WPwDub&sUG^<>gi_ZFZ74w+Vj#{_}LD6;yAJW*W57la>jel zaV_6RuAXoGt3Z*jBT?-(YXH1<#^~dLWE?(I|9}AZC-jBQEc9=ofcrqeA>cv2AqQg2 zpVXp(Y8H24+TQ}d0S?X;SO*|#F3#+{6F_ihDS2%9!~?Qm;Ww=eKzbcdK{xF3`_1Gi zNTvEy9C2OIQr+SYh|{trPclj_91WSdI~tmz>beg+*KYx?-!7R&_d@WnKgtZPz@gf$jui-AqI)JXXu>_zBO0%L4ICI1KKPyOKtWe=5KtHrD@K_d!>|V5?W$K<;>HGkTVw1FAj+c3 zs4ad4N8A*w6cdXFP8v7%G4t+U8|$os>L41M$zG7w(hrgoYd;|>A*>IHrg;L2N_u!MJOmk%xY8g^F<$WjZ(fmku}RFJE`{OP(&V*{Pdl~~XJ z@Bp49C|~BXBjbt;$edH7sY=Why>vpAy5luL2lxhMQck+@94TfzH`m}yWkb@`{6icp z{4B*7tt(|&n2wHqdtH`CzVyp%>V8m3d15vgZJ0!q{t4>+N9e6QL6vq^Oy98lt-U5s zt3p0=_?)}r;mC3c)=^ROG-A-5zNrHPFN^pLTwbu$1IC-)gOag zWlwP2N9_(%?ApesxZ?wJ`qQr)29K+Py$3mXG#g*Z^8Gb|2pW6LZT>C?n-IfCzAS1} zDDgffaw2`bj{>V+m#SQk?g%{-hraGXi%*X1tfM*7LG(DGCK?*0&5{>1?RO_ zW-nA0{V9a~;J18h{}zg1#;$+fBp`!9Ohw{@P%GG05O9WPb~D(_LG7*JR~u^@{vrF* z+BJFpk7JRGXeUWw=ndUi2%UTun|@09F$vw1-sX;vhmW@7U(iACJ~@0R*m=LbnKKWh zT;6v)xnThMyO{^MY{5bFnx2YSoTuhv>0d~JA1psr1?0%g4*xIG&iX5=hVAz>NDe9> zJpzI>NcVuG2uOo;OG^zM10tiebQ?573`nOkl$6xaARR+@a|Z9{J-?mjto7cDe_`1B z`qpRL0w?y~E@X{Pw`nw$&27*vru?NB=*zN8xZ84)y;xamPZ)Gy?}_h-{bIe?nLuxP z9AarmR-p1PbeAU@<|4H)O(S?6Z>29a*PXF-H3)l1S`zf5{B~Sdnlrq;{=$l2y>)b|vt*O1o~*O%yydzVX!nV$>aqZixsfm!q#|hE_1THLedeQ+}{gPF~wI zu>t%z$!?alT3qIgzG$>%B*LRtz`BChkNbW7R-4h%3-KS;OJWB%WN(19<>;W~>m=Fb z&W!}5TdoQTnjn8Xr3I{i7K3@vxww6!3svD2vg6s-$65AmSaZ5Q24%x<_x!r$(xEm* z+u+09QoNtGM%y*m@da`{D;u)~yP(Wy0<$Cm!rBMcMc-G1EJq>yc@p!k7@<^NJ@$yI zXgTl{LEOrN9Os96m==RIzDmFm#jFM!!3R*6dFJ`Y_m#a3uO333a+L}Ac3rc3cB}6_ z0&Ded_O_w-3f`(#!RCLZTMzd8+5QXKHsYMtQ!5E?^z~DwynALta$ZA_>*9O2T*uv* z2&)3m_ha=a9V$38k%qAtbk+lh(n=h6XR#40ChwCv3?M#gY?sXRWMOr86^?tnARVn` zhnYe`d2IE}!d@fHpJ?iYU4Q`Imu6Vw1A=7~7NwlOE%vS8B`@Ht^6(KxUL(GUix@Mx z&k9?j(nB+xY_wsRadQ7@{7^b|A~DgxgypjAzsTyFHM;)r+TiMq7UF%YjuMy}T zo3YAk0}Q0EF8XC9KjWSuJr)9VfxC?YVNRLaM)9UA4tZvXi7-}B%T^~d0rpQ@X8(T0 zE%Z~B1lj3lby<%4(@7_SIS-Wk`ttl29BT5+1(Rvwnf2kE9_Vb7%49qcPwStmEf9Co z|Jis9uGV_bsx_qP*5^$FDMRpp*9yZ|LbQ{&>BdMPL2Zrga=VeyZ?BsHk?aW+@(LDS z)LZ>d9bp2QQFC&scaXLm2SjRr5dbt!#I3#oQblYJs5g@Q;~tuXWGO0aBN5)O)bqFB?#HeHE7}2q-yuB>YJyWW5Fx zYgrGF)>t%EYy^oTSt%pMSh$-^r?H0pxwDkM@rHsZi%p0Ee5;sSG$U>LV+~~4Rom0u z+7bpW7wnIy8!QkOPvgV=8fD>TDwP z%kblxUgr1L(Si=5vnmhCndi@+#H2@c9lI~R3fq8s4K5jg6t^nT!*g+r?j@EVnQ&)F zZq&@IVLu*0wwfNjO4T0gw#ngkpYf2DGDn0(&akB*9-4@hdkAbP|M)xF;F6Wne~5zJv1#b9%6^Vh`JmwD-evP}AKsdPEY$lHa`mTn?PhOWy5I%=Lc?JGr9vR`3^;D-_@Dee^X~WcHU@W3C%_hxy+7TjtcE>jK(@! ziGzpsfftDxNe7&!ZjbWsN}U=C4oODk!Hf|m2M?VB4;gt%f8}YeRJ}rb(Iv(S=%MC; zCwGMY@rG{MIa$i<72Eu);j0MM@*pE?@Y5QbuvM8}$LquUOMQksizAI^erB$aI}W+{Nt30~Kj zMN2!8u4=Uq&!_$tYhlZQCEo2Glwt3jxdlscl?A1t9<=m0@T;p1M{AQT(2UuM43IGH z9>&*uY+dN(Kkhp;B|&4?g;rKiV!@ zJyM@)G`iR6#hSF{>YEoBZ?$2p z$;!YsL+jPM39r?Q-$?ZBqc4F5t9(MDEj=6@i{o{+8M5-vBibn*ppXAxs+7OLP-Jmr zEnFd3zJp+jVV%AgzSj-=u=rhcj^6)5D&QT>zKQ z$U2iG>h8i-MPdo~Fiq86q!TqUdh@ zJNtQK1H^jZkgP;^2l9xz)`*cDYGYwx1*l>+<_W+V3OpgIAcH#&W7!(I0&FX=B4wct zHQi5fF|9;l`eUMhdTp_`F>a0;BOf)wqGS+t$Od5vMZGvieix&**4;!z$t2JXA9KyW`4V~ z^f8p)X4bnjJJbiusqqnR=UV}_x={xy7dL@db@|f9hdCxeOIwMwqo4a%LWl8k5|)gl zq}?VE{c`8H-!}I@I$j*2P{tpVE-!Dnt2yrERB>t^lPkkF<#P9lyuW?6#fI*nn#;#v z+)Vb}P*H>}XnF;^=&Xj;K?{ z<%&Mzy;2g5`^WChPfhydPY3B@fIFi7Jq3Iquek9rGL49(QB0yA5AJAKueloz8Ya#5 z5Oa9!$>ew0O<4uG@bHv#E8{WcSjh1VObbeT)5g6@7HGf{>jyuO3%nb0 ztSlW{vAZJ~{)cS1*q}PB5I_OFiyU+$fZ9gPPnl0h;@#NeT&m`BA|DatY9@vMqE$7Y zi@Mya`HhpB=vX8C;437)2Sykb!F58|XT4AvU}a|>H%S~}ACfrk?q(ce9am{Mqi`*| zY3W+jj0X~51Yf0F`2phxrQ<8!3c(3j8cNkQqJs%6lcf(^AU+?XxcjZ*jiz`A@Hw75@6<2at^xXyCK6D-*}3N0bwi!3qT)R{w|S8x-iyhOKTyD3(B z*O&E!9(5i4uM8>ps;V`^1WP2FFSsXwVA}w+qus$q-so~ir0YT*%sY`B{3oI}xm$+s zFoEIBN_~Jvyq4eMW(2tbcTB7c(4)JsY{|DW?RT0_;6yFkg4=<@ozM=O$eVIHLZVAX z9>vc*8iC*qrl(_==WqYUtpG|qIr5x6V6tAe;!H#K!5j{plEJV^` zDGzFQY9ooi%s@LYh;e`ZNKfb17&xBpE4tHyvpkF>4O_bpv=Hm>Dp%-};9imia(Vh0 zU`}RbCBHr61{m(<8G?+FgI5O8b&e(IhUvR`>?LPvrLH&F)B~gn_BgqJeeQHDO$l;c zFDQn#kKP~A1AadAfUdA_68ohn=SwB?8qfW}YAb9$^j7YLvqIaEn7yxeCWCVLpiA@4 zGu&LNh=pv|u*7S}$X9VOs&>;1kazTfpFHoenEv&sF;v#NvMx-|uol;v%ikw+W9)~P z(4xBU14QDtG35VakPe}tH6<+1W!I`y zexsRl>mkL{q;PLLOxIoQ<3`T!pXHNKXZyTo~#e+iu~aHOaw ziCh*1%S2es%-7q>8v7lOvx3mxHabJA{?)JU3!4pGpj3G9`Hl{ySxZr*YyA;C4zQa* z3OP^oy-mO^J1=rgJw8vZ-F3XbudVEK?{$qX;Hw z9$Bm}>8jOWw5xxFSK+N1t4#Z3skUv=NC)qBf!iudKl+*C*tUIm;N{B+;-KxXe3W~- zda5~h{s_Gn(H?dS9If>e!B#OG!M^vw9{9tXo6rmUo}7jPQU%b8>Qqm`+;{lft_m?o z&Zfs;Iw^M8gg{BK$+&U81W-m*+(N-NWG_K)!FzcrX0+I5bE6US=wfe}lJ;joh0cUm zQ*3_8)8Aa$4%OzogLOF)AG(s$d?fsA{X#7v#;WA=+2ZoHe_vS9|NiaAKJC!C_smkU z1pgv%PEa|*U9>$SkceRPO2p^|)ZK2ss z1H{!6A&pwVj;HTr0lIP)%xs+C!cp%UPBzFv6Y)>G2t%x&Id^vKqw_XzEH|!F=g!X^ zk3n~G0(A@M-bSXpNHYSJX*eJ)Wh^OFDNLFHjp=>Vzn@S*n$$)A2n0vXh8T4VH~Tg$>8KOw$UZ%xj) zFjG^-dTA;8vENHM@2i_Hvm4kZidICT{LK^bk|b(Xu{W$rlI`&aLlcuM4o%};XA%lY z-vC&~%+N)KFwp&#xYwn@4_LOIJ|qbSq^Qk?EaO<7b5XiUhzw^&pqbA{3ymRfGMhXS9XR{`uoUYj$HCw_lA z{N&60D@lE}J!Zy&Q=fmZ`^%30ELtv=F`oC|={)~$_!yebBl~0!oruUaovqufdZ`Xc zMyN(03shICv~KWg>!{gVbG1=!s1!lRz!65$r8*rL3>AfybA#WA9-dW1UP_#b>(?8y z8+$PRr}uFiKNwn6pUIiZr=mGI#CB>XRQR_`qA+uZe~ZV)F&zCQ^K$4aBICB$x!IcV#nk?&3h4dAAE%*3@;c57H*cZ_krw0o=$eUD%@y7S&y z#JHRpmGV-iJq^DxdOrFwEb3z|r$xnvNLoaE_%p9Pu_F-y$*q}=&cOTB?LKiIIL@#s zU0qKgf5MNDqCRHF7PCQbaBv6LDqtuQKr01h864`75yR3y8-D3!a*FQb+JT(d)JmH| zeH^4K$5XjAK?dC>_X%*w)O){ELbnj}t#{3SF;A`RlQ7!S(8JZWhXx?oZH{M(qoRrAV7;o;3;WX)m)fX1!617Vm-lxe{zWl|~ zM*%YbqVmC^!SCMhB5J&_SHMt9xWk~gcFVZ;(I}-OFd-ZxC0`ZM*kBf<>xkT(&u-T0~{Um z;|p=ONortHQ3Rz!V28M*SH1SLI9{9G{HAs2*^@{aj*7^w`eus)34j;_V1KOUI(gwH z{QXxngPaK*=+a#3jvuGtn_=__jC%k#Km&sXfsEEop%X%GOFg8}VAs=fniiV<9bIod zb_DN=EydEF_|lJ)oqfvgu)l3)(2igcxr{ta^`5EUjctP^_!pY(o6QH+TrjG7SF81E z7dFoB;4{}{$TNgnIlXy^XT%6}0)MAqD7Yg$$Wnz&7&(+f#6Yl!qOt9t*Rh9ZE?y@% z0PxS4c>MoiNWAZF5N^fpyVTo#zs7~Py3@8_GZY9BE59SkO7l6rsdl~3XGK?zOT&$s z-~0F4j$7s0k>Yk1Q(h5eF&WP4>#oEsBAh09L#6z8%p@iIOhcFpmj!Kam!ck!SYDm{ zi4XB{Q}!Nf>jV~y(gn8nVaa<~o0Nc_YOoRM%ct(TjFRHy^_6ylpM%Vo`4^VYBHGq^ z8Za<}-zavignoO)fl?S{@NuVGp8N+Fo+$a(-ynN3rLA_(B=Nuf4WT)7et$JK$46F? z)mG^7K&f52`sg!#IUEfyTv2{-3DK;geat7kODG@1 zhzKAjk^~uuzkW9#_9M*ERr2}E-LD58m6`;6?pdj^fBD5B^~@h$K)Z49^lO@gv22fv zu&ZQZaNpBQ-Pgg6;@aB88vcs`=LtDdUj9ktjSTU$SIpf}@&F+i7LJ{SmHz`uiG!IP zkZNGEI6SY+jI0ecm_sNxG4&RHy_Nv<*!4ou+g~urB4iI8pM@RFg4QR4Ump^&0-w5x z&K?;)B4|pkZw#Qr2sn?TxapqF8iVaVFQU7Ak@TWm`tsYQ`P3!X&j_q~JHe%_jHaSyFbzi)w2_C{|j9ObI8I_y4 za0N$L+Wz|6;6(5i)E7HWv+t=&3%vUu0z`__I^LrG-@_1evqS(~oKeJ=+ONY=x{Q6J zACr_7riBoJI$FY)$D4#A_3BY?0v@tpfM;KciN*aVc12Bxk7^tOe} z&#f>3$5sp~>eC_d8j{>ZA|0w4vHIrvSQ~*7s`=!pUL;o4W{5T|B7>cG4jr|DW$tHBZvCa^dPd;K6J4df` zI3L-|hI5$)vM9QOM`8o~2RiJ`wD!Xcx$eeEiWG2dV^D*~DV(gJCDc=};@mJU0Jh_= zbf4rCwlim=)Cb%TdU!F4>whpY>{HG<|(f!UUn>FiDcqK zrPc6Tf{0J{b~9`$3IEMZEY$d~cB1`EgMAkXxrRfcK8sXW4ob#p;3UH~I(1~Q`)Cme z8x)$O;FW(#BWV?69}H_3@$ShC^HMZ|(=4ja9=BkJO2Xe~^Ba90#VC)7AJX4~n`WK_ z>5J+`BnrH*Gre?H0k6`)QeI>VtN%z}_YGvZX)4beDSNiWzH|GAV;6H#dz;dxkt_m! zB9pk=o^LzOCh24yTCIW#|B$s8=%&xuuiNf5PKzf^X>ch{zhxd?KB)0VvXi3Z7*wJd zZcxw#?Sk34ak&J3rM1*6o=;14g0)K@IJ>pZw+pM_6YX6w_IWy!M|tU}sE8o)T)Sk# z0}X#H>YJCRYoojS3QAVvkAn=GWK8|2Q3;?gwz!t#pOa(ArZLX7JS}q`@)yY2B_;L0 z2Chid4v^7*m>6q({_2@!lpvSc`U;Ue-TI}ZB{ASfOViS~ax}Lv{qyL(a;yDu=X~#0 zO!iDSRYMJ|<@OBy^Gh(c?{2No*Fj96E32+#x9nBluMhPToEY6BZLV40l`vI!ySsxv zjBnq-(hKV~L0XbI(ZzCf4aZyAH}DvcrQYk8yyKYeZZji+DS*?T?*p8jVkT${$vq#F z-v;qfHiNy&J_S)xP2@ov`O|E3k`^S^LE~X{zr?dt|qTjog zw!H^<|NJxt7B{CPwvJ%rU)A5tWb&C;7Wf7KvJI(+xr~VK0{J4+b?Ad0lJz~yGJ*SN zV+dTtzk$@U^Y!oY_!WL<$R)EQbb5Xg=81x`Q85jMdj4ch_*g6%w|qUi^EC_W6TRMH z{yph1#Fg}h9T3aSFA@25fJk;rbWZHe4JKf$l#5(x2P593?~inr18CWKF39FE1=uH5 zEye$n?A$A^*ff5x2CzUU;7G$DyHy(gRhKPcD#w^&4W6=Y>TpFU%D5uKTlv3L^6{zR4r zN>PpGs+!wnJvwPIRjnvvXzAjmM}1UO!TiFd?z`(TV8f5fHobpyRaU|&ZO4Id_-$mQdk!EZGOMoti?cM6RIzq<=`$)qxk5=IU z2N#aT=i7CMjwpax(5RI1`QH8UXdeEIS$NI5$Wl5hQq5(YIdOki-*hVt)}F6zrp6d{ zcFdf&-}R{Gy>1L+4Gs!?oJbmPkmX-;E@RH`c(*))mo*1k&|1D!gI?Dh`!EPCy58#v zgb&O~{RyXDL?(IEhQ4NUu~9E~@VJi(grMqr3?vHjvb&bf8@e5;zf)O`|0?&Vnn$P2 zr3NF1_`0Y$RsM+jkhKmLkle^h?4Gw?2O#KH4 z^`g_h(Eeok5J=i^%f$UDI$E6PI=W;5`c}F~gWP{!xgJduvG~vZe3#@MBDveV;X!m| z?01f!{t*U|+>`XK)YSm?xD4{FPhx(E6&Tl1QP`q!IWO)uM87ra2pc|j(SI)Uy%g9C zFn@hEm;)V`P?v1syXWTnJl)kJ>l8$nvF>URbHPi%9h7@Y2`@qKAy`Jej(QL}x=qsQ z&a4v>nYhCTZ7YndTIRpNzRjFNxU0HxHUnq6ZN{Zn@RK!9bJ7X{(`?M8(E&R|n4o#* z8?VyIuXs@hv(FRoq(NJi?~=?8Wc_?lCG7j#vJQ0?1x9g{%CxnO{v1qnEI%LwA(67r zrnVQ|bR__-;|K23W`v6m@VG~#YC{Y4O6x~v^`J)AwJNrv5arWwQxy<^0QZ5ga4-di zoa#ny*lc_0$0m?Tw6nE1YF zS~LcLp$yf3ICx#;!|z3!DM*AZx?PGqR}F1h3~Ei%efd19SSWLqvNWbz|7`CUvw_{y zu_k%r;;ibCy*(Y6cS;7ENjpvRZ$5T%)cfZ_Y?G{@qDVp-69i2e_x9T+%$V)($v%}E zW4JRsmakK*{}@Zp>;i3LwAJG`d@6}R_9TVs)P79nf;2^B{T-h`I=Dki5iCa}WE zX@7%i$*d_+tRe@>XRTQ9f@19>trTVW5#iskSb)K#amQm)=1?x^+0#||~+9nF+_?+G8*leg- zwDFn$IcUyNO(i-C_dsuOthWK9+p#*ca^S3Gt(>w*ss`s1|9V~8F#2j{(#?}ZOg5$m zmG!@Ey?04+A{a=xT)gJ+4YN>Vv?GJfju+S6bSn5AMy>ZJMx=U(517yEo?An^E8^o3mNf7qE-?#lNMEHn#sBGt=3u2%0 zn>WxRIBvBVA@yevYh&YBrt9GmZqa%E1C!Nd$g)zrzq1K}@+VvIRZ3#qo`CUlJ1a2c zOm&tue_sKxd-#@!z#r4HlrKZdXe#XK@^(zXX*`hTp|#JsiV#8MxGC>pGp5{S&1}*U z7y{hwdla_HEcjf=F1%3UzVDT6cP3Si+CAzJ!S*J~B4yW)AMOZ%Q!bPMW~B zvke?8b`K3-{dq5Xczr3$7>GdZ#%Iq*JWd{SV)$K#o9!Jfd&Gh*+%esWkefnH99!sr^I;r(UHucz;Q`bTm?KrWBv}5kJth`%mdcg6-!kHk z9@fm_IhJ9&Zx2-56H9@}HxgeQ)N#lC4(cCCOu@Jp6(y5SO}gC8H?1Ir3p%;T;+51P zL7t@^A$)29AQB%2JN_SyB2`wlBW4A(2}q#I`;r7J@ukOynw!*O$FAD8UjH|yY_ z4mH48&Pm#@Mxp?fN!eOnraxr<)0Nx0yniy5cWW-1$X{$ryc8sA#c7(TB4_nr!`_|o zmAH;x`Zr49(?}F`k{04)+(*FsEFrA~FgGui+v*FQ3-riI1x!Y|QTnr?-9Ekw2lY$s zQo7J8P+aqJ-4><~E+&*Vr+4(p{dy1ibbFNzTv;^shgPh#;`IPc#rv$hN~WW}=)mPj%edVRuRecWB$d+$}?~g6DVP)SI4Ywp<1GQrB$MQCuGYDWo`PH@a<|eM2 zpHJ_h9BwxUuxXoI^<_Ofv?Om{=Xe-R8gfRO!5+`mwVW8(*YF@ET$m*%soC{cXwbq+WF5^A{7G;2{#YnThq2GUzjb8y=q%d zIjScn**RRf&|~0tHMBXnmQp*<+iauv= z?UI*iK!?g2=VE42#|-O#*`r$%3^{I`UjIbBmHT(hnH9&^s zrPF;6F(?CZ!+Ew7zUFP5zd*(|wnfkTPy1nqpo!t_tt-2E**}*z7rA8AK!e}Dds#yI zA&kGB12Aqe6ZHgd-;8{Dl9=BN?IBTzX!SlYbnw2nN6N2v&WkVCQ;PC0Wh(g>9?OQw zP0(5$C&;1c*B1Vkk|cT8Bc5J4r}NQD{f?)?CR5TS4};6b>4iR?Hh%DmUs_l^F|Z11 zq7}z?ocnkZ1Qqj&=TN~W&)Lk5YWmiK_pm>hbar+Rs#fdrqT*%N$1y1<-}eki=@O&X z??1O&Ia5bqLdeMI&N9pWl9598p)mN*rH53)W8y)>C#f|Cytzkj=BOO;Bh`Nh7)Tnw znM`(mk@(6;zOQ1+={4Bzsh-eaL8C}zu*_89GdjnGSc?x(6&c&|D!9VTS8`WBs3$Bj4|t(5o98X9o~wHouC+QMeQ?!q|1DQX4Ie)V?4_s z8%AKgzJ7H}__)+`!TOIe9#HmRLuCi;AoEhukF;8hWd`2bq>=U9i;Dj_Zw1YGOt|?Y#;;eGlv)g^%Lg#fp12ICx79=Rqx-B#rno$Z7g1vj&&MUlVOg}pHTMZsE4 zdhsaf9O?sS<97RLj7Ydm{}wmp@t`t_mx&?zK!TqrIDfo8>&gKls^cv_!fiv0%MAamp*_*NY0eXnaZ#k{$70QT|vaxRqLji@4>k}XpvY%IVg ziGEShBr^WJ9R19Ei(|&s1V4 zY8c^Ed~{d=ZZv8+pv=Ac7)h9kgsjBK|lj*_* zUrD!g0-*8e{lnSK_Y>9MPn5dSzOz4*6P}kg7?kHhaSR6FiKF?@R2#G`d zZV(6qG-7c?eBcGTsJvuoX~C2K{e?dzC9!tFVoW?q|ij@5l`n;h;iRqSdlr1Htrio#>aeM&GzPmVQ>OLH?ktOtTs9X zmd4P!fbs&WyD|TgXu^BuZEf(|R&qeaclSDq6B4!VLgg`xuk4)>`ytPVUT5?*zP~P3 zyT*<92s1|N%Pz~WHaIW)fTsz(F<4c>(-{>*>1`8aZZEbI3HtURYfddsAV+H@{%R60 zWYaAKOD&aol)WRl{S4Hxi`*dE)(I-9;#thW_A6Qtu01`7?!tH zO%j1FY1xuyrQs}=-ArE|NfCdQFE3k*MTEVn{-s}?{~p-HLA*+KgY`2U*sSe9!FPhQC1N^C z3WjcoRLRk>Ao?3XaLuhwRuykZ7M#i1QPdrX-0EaoQnZRzCQ;vw^y;4|evL?(%J}j` zc8i!|rFw8gYVukwCbGm*yI7x4#HF)g)t5>`2^RQWZ+<<*Yo|x^rmDi!wY=7eBGSrY z$$Jn7{i%xS)ooK&%W49;3V+gUrFe(#!gzxc^k;v&u5SRgg0*s7S8x-lJnZSMF7tw2 zX$e>ay`FLV6549aZpC*)O@GTCQb1LhPS{Ei>@ORoXWvdsK}|@hYuqH@F|#mh$b{bU zcGJ*rPehpq$1p)KqO@xqZw35A{O%jmQ2U%NSB^JmM*Tuz$<8;N+&;J7qEjE^zR#*7 zF8P@8bza-kc>4-v&C8Q#*^G;xoJGhW>9}br=ODbt z!e*NL4W(!0$axj|e{s~A; zX`E(XQO8{U^=KQ=?$$Iw?N%ZnxMF0B31rpjJksO3WZ#Fsn&DMicYf6=-jbFRs( z*mySqx4eSMKhD6a79_P9`R1nQq5Z95wcH*@7OKSR_n!6_9FMJ5z}9UuY5btL7iy?B z&(_~#qg|ZOOy;}LK-ee?a}IR6lAKI*1UWEBsIL61?4@Ner>{Lv?+}EQP_lk>e0#ZI zCEX_;F;=@y>?X(cX^NF@Vg?xQw>A8s-ASAx=KEwbLCN5>MYhjOwSZj4WrbR(Vi{c^ zO$AMptC$}8iNV;nUsmPJ zLF~Tc7k~DHt6LLt*25+gp3NDQFo6vl=!xX|IOe^brZ!Xz{AcUA0?;299P-mY0t1J? zpxHo6ZqQXp;nouzDDb3Bm4QKH1Jk5+l^f8gZYn4hdUj-Qy}QhU=)?K}8Qg)k??y9f zydI(KMqzH8GINDAr4E-WpR-t|gdNRk838q>83^ej#%0bC(0cCY5Jd2*jL%on<*6Rw zHL4EG`ns>QtxqhSD!zvgsEwW~_t@7yhB`K;_0BTMg*atddB{O8%|@i3d2(-V#=UjE z&7c6S8t?jSr(k;rhP7S z0iz_Tz2v5}CKp&9e~e;%m@sV>y8a0H*|ZTG&E%~FJ&DtsD^0BkB3B-HovRp3h_x|L z8$IvmiMMgYPx+0>0ipZoT+d^ z3$@s1FR!TpPbf?pw6196X&yZHc3pw&O=L&H@hfHbs;~X}sV`;!46h!-SD7JZYr)?- z4e-y1^qMapjyyc0pC5+__Js_G(YF{Mv=TIh^z~T`hJHcR*3|E&cK(YAtRVMt{E9l_ z-R}0)BJHl6F}s$``cKQggb3dVT|lg``qA{K57o;Dvw4FRrr9hrv{AZzb7D~EMdr7= zE!O~K%1L9A2GGT;a&taV3;oe8s)FWuikRbXl`(Tb7(*#zR$I=tSG%eR4$D%|$v%Fm z;T%TFqLvE-h#2-CmF)W=jaI_Q=9TNMyv>PMYm8KbdGnT!$}T@LEuk^GZ3&k3u(i;g z)^begIA^FXi&4gmxVA?>_ieB-McHUhj1a<3#hzMkEJ9;Y+Df~meKDuQa&{xIK8FTr z>*B5BCLwga{d)N|6PUjA@Xt1)I5F@KcUYa*X3L7sjJobCRf$F`gTWxW*U^vkd}SV= zi7qar#ChB8zz{UrwTB0kK#D=+&VgJ2I}xpk#~)mPT$50j40`|XYgrr-^v~RRUASB>7H>_U-=M(dU|1GQOnp17V zt`ywXy85l@EaCChm$@&C_;I7^n{36c*eY8yH9o5Tz;TkTah^)-`_*PjBaCjRnMHqE z@LW#2Rjc5G$027qL?qP%n2WUwHFn=LK{KJ7&zP}8M9X=2Oq1{stBEFaZ|s1bsF8G5 zQf$lbu6A>VlG6RvMd2S#Lj)VO_KuYN&0ER>1-uc`=I(k7NaqyHmj|JGN@P#4JPwkq zJq}FFk!dAwUIWZoozFx$Z29@Jq^Wm(W+`)bw;O}9gotw2qTlDwf^mxa`6KKac7S6O zqT=g6g|r=tJ7REKhIqTm=I`o?{EI47I^1z{aQPdQma|sO+bZMwNNYzbNv&YY zZmgrSXvB~WFE1nPYmbJLMU~rGRTB>n=b|PfY`4p%gqd}8b}rZGhTvh9mT9%U_$Yzn zP(qjo0%{e_J0_;I)UcoWgJHgcH0=`Mf`dfPW2Ni;2};sn*prMD5`Jq_K4=ilO4pSC z%hGUK*B9zlP3sk-78p{!k#*W}Y6zn#b919Bn?5a8)xcM%`ploKa4j@B$vd{R!-RM3 z!(h~m!CzA2wvw#mRmZ@cCF3Bh*Y&wz5TM_p5hY+0TX!C)x`^mJ^XqRJ5NH5WB4Lrc z!Sj@;I=BrAaM;o>s59aiGm&IdZRz@S5$TvPm{tHcy-BU1hF3T&o{^33`RVYew4!1} z^~5au3QK&lI7}l9c)G5WX?4A7e=Y%c2Y%p6^4dF%;K!_mK&`y>jpgYm>Ph!rITOjp zeKNCJ4xbQ`lL2r00dp7>bGBmYbbLHtzhE{&@RWjj8LOcthiOub$B-s4LtN$by?xdG z z8SzR*)U(9IM9Z504c53Pbf=AD48fim(+y|_te`6uO#NTCMaB07k zBV~Gck-~?C$N*!FOcQvdGuDxSn~El(Ui@+2b4Pf-SMPXc?5=j}l&cp|@0y1!+TiNq z6Fq+c)R{E*fLVch-0nL?iH(I&u+6t-D#z*k{u<`w(XxQ+zH<-d#|1bXFGpOlW9@sAJnjc_SQUG_^!;GARjKhgx6!^-WA!e56=mA zPP>LSA5hK0@s_RG(k%mh^EQ|;v&-Kse70*bxVCeB(f6alZE9E^k+hp-3*K^$svA4l z?%+8)cU>ecUU>i)-|Wu}$tk&kY2S}|q@`P>$u5M`Jx-?ZIF>x4MOysn{b%SUzPfhC zpN|tZaMhLW`-rkoHM^!g$zO-YgFgijWq(0Fm=;V}Yb#4$DK{e8@1Rw9FKZg16V-iX zQ*Ms|H%G4=^Q?gi2h?ogr5uWa-srl1GS$Tn{wMt|@S5z^a1x6lFV-iDstFc*dP~o7 z^mO&rc$ZWe4{gj@GMzd7>M@|ZRL^bXod%%MR*jL5E<|2jNZa@F0UU*jH4HiP`OS~V zT8mRD(S}-82x!$u>r}0o)}@rR(*^{lA@NG11~nGHqlfv{Y!Rq4JdZ9FvNr4eVwG@P z5!678`o+SCwOW#GQ`l~8e$Z#cEp3k5*Sva#2!ooeO%0Ous9@U~=^#S2WkTRS$eL`!0C;g%%SdOAhwVawN&+7Q*t*PA;Bztk$ zr9g#)w0)j0^(j?yb%&jxQAB-h1Fs-0uy<c#=WK^Oke{4aXP22(3Fg5|tRN{#J0xaFZra-J+>f{REn5Pd5q;Wl&w6Ap zA+~mDzwWg>!)y>k_fHAo!)riQ)Yxdb&wbzpFN%(X+)7BF-4|!kOQ$)|=6k=Yc@U@| zkv^|2zzN|QR7sio4m+>k6N&9%91u2P;kD~KRlUl=H!{8{RquT-6--_l{qX{F)b0|o zSi&hwbH!3|eV_o$x^y`ZDTx6(&zGs4GVTLaW?_rtRuam35eQ@9TD*O`f}0C_VkmaU zk{Ng{tgawo(+edFY!LI29iuh^r1?rTxz!W?ENo0*DV+;@Wh18{lJ^pDw&R*hze#*m z9?4OQ$A;ayvEVijW(Xgq%^2;CvBoMtXotpya<>^VebkV0#ClRIBVTim^MCzcfL^AQ z2Z;s;4%6~4MV72CHA8u2{V1u)p$d&;3Tuy7N0S_OVl$(TSN>$8Ye#xyB$4u0XGOG* z+Y4dUN{7;?oD({m;mIZK6=2#|R{w}@_-=R{YS%X*{g81FD>o|FU2Cfs)N1OAO`v>hspE^ znos$;Un7sZmnftkR4_QyFSNVBtnjm1O~QP1S4WN{G92hfw5c8$&p)1H-2N~oG~?5$ z0}B+&Gn-!Wa3+DsS8e zA)qC7xYlR|HObbne6ZJ`OvUibIV_d!WJh?}h8pnWhwSz1;P!@}SJvmmz$c4j%xZ7_ z8Ji7*aJ1gO7CoGz1)lH3=+j;QpEW#*+AE>`w#O=L^_#@mKT`Dj=2-t!pP>HP`?tRH znc5pJ8P`6EPFPZAKYP`KpLb0**j~EL<53df%5?Cxl-P{xNtaC(mOHgReAiL^ueY}U zfQ>@*W8m7Ch4Ws!-HUkDHe;7g%$+N?j2*3gS^vH~cIa6a`9-E>hiS^Mbsol77N73^ zye={Cz?Cqci2WzHW_+r)JRfqV@ubylx66E@J1l}<`u;w5;7!cLdeAvd@7FJ zlUA?V*O2n)&)?H$N*(|FSupKn4!b~p)D~txiN+n7v7xV?@GEfb*nU3v3CE&$Td%!; z*5UBNIOgr$$J-The%-vVW4jrL8T+BF$G11g*KPDtRpazJt#H{zTiEODJgas0cJX+X lud`ozeV^rrb-sN3cccjJ5`FUD9e6FGeIJWaPY-JRm@R-ED<+@-j?J0v&-iaWHpyF+kyhoI-Z=i9maBW8A= zodLwafBN5nJ$v<3)tp&k^`iiNh4}&^qaceUBcqVz@I#;|1pV40BfyrEhZS>?cA4Zq z%+1LSF;^_d|E{X}6&b$IwZOOR!q=|S^4;g~QIDsK590rDJXiG~;_L6BrBkJbj)8Gb zML|wOv)X3&LO#P{QNk$HE7>o}wWcB&>2X#}ySmZw<^_j=fB_A3xODtjYawa-aP0^b zq-)vz>!IoZckl7K^bf8j#6u9(VQBlja4r6vmr|gf1bNNbO%T6jciDr@0q)l0kNwc~ zxd{Zd`JAtgEq)#_rtT`@?+BV&EgQ+gKEGC`XK#NEcxO8 zQp?-fN^-LHvwV2s2y@$B*_Qvq`!+SZf%f6AM<0FB_d`*ezZanVyhn3Ms6Y#cY z_roUu4)oFe!-YJl56TGkhL^5z)cn>#gkd6Rw&7+9V>9W6zM~%zOcQRX5CbaTGZ5H+ zH^X+97N4vUzP1kd6-C33)mYEs(&=-9;h++tQrFl34oSJ0{-MSsu-Be1a^CjKBaHJL z4hcM+PPW{?C=tDAXqggR5TtO5h(TC-{fBOvr0KCVZg?43RL`_xKXED;?Q7k+ zJ{L#^{QiJJuR`ilbAkj6@Qazxbgf>mZ;-|RXIEB?D|!2nK6~CBF(ej_mX7+ZH$fyd z_ND=Cy+%k?Uw{qSx5W`t{yDEzzv_CKwGoCeuT)5PjFp`C^^Q6z?920q!2}6GdEeDV zobKFDxY%NcJQnklf5W@m^&Bzwv5k#1HX=9ukzQQ2`nfFOI!6rQHaF~N*=8LL`-I^o z=4-nKkqbqI(jT7(*NE=pc z%gwAYo=e;?-}z79AG}KIT<6WfFZ=Vy(<^f}|Ry~Km8trnt{{?!G zv%K#W++a$F&I@rrr_p@{*7<=ZP0KyyLLj{fhKzS%OtY zPA6{|_9UVRO3!1myF(KH1q8yUHf_600{%~rFu69$}eMGqfbIO4{Wd)`6y|Gm1I=jo|6&Ypa) z)RK)smzUow8BE}sbdQs}=hnO6)M_vwyjdmHF) zjP@7v1d+4%;2MJ|e$*jHHy&pxCZo1k)QR9Ht~tfVx{KHy+Kre+n}^caJPm6{L64Z> zYP7g4Q6q2CL#eLn12qUBz5IBzk|`TPT3|$~LGYTPdi_vlXLranO64^~g`y0)dP+?c z>qh7B-Z+fP2S^cCZ3j&xyhlEGE8er;5Waf4M{S}lgad~<_VTz#0`)~chWh1ge_NTD zLAL@YdL%!FE(~EUeHPaQqtIS~tjR>#vZKc(d2jsOww&PN{@htS$<`PZJo(+@PnRcO!ZJK&Cdh2r@`HqY?m{y7lou)f1J z;A<861u041PXt@>t$k|LLp8BtVWT-yAeQ9zip|9lFsu9z;Fnku;>krOl!xQE$lFL~ zSKJ5*zDL(nmv0uVRQBsh28g^G*Ulo+4*V6bfQn|=JzZpIco(anioUwshoCneOXkNK zd+PN_qVys{i>xXv^A=jvdZbLE`67x{m8d6XaW!bc`L!tX#_!>eqOeO&7|ZNtndCvJ z+}U8F>eQE?%C`W z5}0C%%C{ViXDY&r1F)@lB)RVfLu%E`Ya9$!2;<|NsVWO*8w?T80Wrby~MZT#^I>5WYj zi~jyvJ(FDQCcV2PJ5X1ZHPq#*;0CaeW!lU?JD(hUAgBLHDkK?d9)J8m9>-@XWaeNC@ZZimq+|Gv5 zu(QnQ9GBa(c4cDxP7_2N_7sQJ?X5%wpHXZO9n~W$43qAne7G7H2xoTM&Km*wuhzzFv)LjAH+%ODGj6Ykm?0on0#YphUL-=QDctEgJ86rOW|mQ3j7gXQYhB!PsL9eV8t#fBJzU`Yn$EsK^r%cV?2y6T zu)AiH;fj0Ia0tb+e~eMo7Yypt(JzXAyBgPMJ!6TI)y4{_W=N@x=%C6z1Eb>umK0Yc%;wEzJ8P z?8ov=0`o_L=+sA?ecMjIPbBR*jN+tZ4dSJ)%%9n{7L>Jpims90zO2GX(OSFOPX(kB z`!$9>W#jv5zOTGZ3DbPp8%}ix=d*A{t|j#vPM@l4j}Y=WGiK5){UVEZ$XA_dV{a`) zR;P@*-QrZ>9C9@k?Y?o4Ib}QyQC)$LJD-I&nrX}5B=4TVJ@}RLBbd;5d)7UzNK+5R zCUEN94U>`*j7!Hp?Bu`~0%2-eALAvm1tzU=vr9ZGL%ZdV6lKID?Sswr{!|PXsk)E7 zZlo*Wrpx`qAO){Xb%S9NVkDwu36?(jaJC%PjbZ5Y*SunT=uj-RsxZ!4M&d|VH&uwT zP8%4X@s^6#T@tIxEu3hdnbPn16_XD$^zOBSY5f8;Ba&x=ZJ7wcm zJP05oopD7%pXE}*W$_Yp7W0o+ocaX!9)6!3K01}QZy%Tqe!g{04);a@7HW*=s!$%H zIM8R*bZLT)dJc~p-_;1-@-rZ%4JzQ4TFH^A6A>R);#wbm^GKG7<(F}|)|t8@{_ke) z=ngq&bEImtGvQ$R@iP1G)YXU=?&T|n&9}Lt z00#a>6^POKcc>fybF3krj^IPcSQtN2T#b2gG#_CP5<0=CE@0l>VfpXuilidp(Mhix zTVf}R5@DVB`+VKm-)qBdFF%_9_Q5d0PJ>0JFL;4}Eo5#{!dxWQd!7fR`}2ulQ_ae7 zJB=hB?QT-uX~pr+H`ER&>%;#|G+{*r|J{mvxp;PdKiY05Y5@Z~0PQ_h0Qn*kFZ^=H87> zY^P874eX%nZhaUX*1Fb~XDFrxcK_;7@3LAeF7Eo4M)>-2+~3qU?=>b@-@rH>#A6j1 z{osUHieu%fGkrsre(MEvdL?Jdv*INZyD;V_{=66B`wKc!3-oq~i@Q_L1!&Uu(Rsb+ z4Vv1^$SZ_)0j(7be`tcRJ_<#Wp2PtS_fOW=@5+uHVQT&-)+p6a)myg|6hqxX7)5b=nhc6kv1364Nrvt*>GuJ<-xfv)_B&K0yC{ zm;V~CUdq-lky(xrv6NRU_90&+GOijVi&6c*_lsOJa6;D#l7QqGQT=U#ihgq zzC)=Mf+%6~am-hdx*(^ky1Vc6FnTDS057%xB!`28W@GcsqH5@Q#q(2vn zy`B#>uvV`6@|FKukVD<1+5B;%p&4}@N+7Q3v)*mB|SeLYCh#9SKv?rMZxa&5SEVs9W}Io6SGbvd}Zyds4wC{pj=`^(R63@C((w@v@j_|c{GkxknZ6c*AQ%m)d5Prt&7QY$m<$gxG%FNvo&@us@$g80mfqbg= z6$xCWbb@C-JYaRA?U6PM9%;!xe?Z|KV)0ki6rWg9+Fx+3C~tOJezG7Ba{XgR zQ0yh>7qcyqc|Gqc1oE1CMejv2+Ft*oznS^>23G$Qod%ds?}RlxVPbgPf14($Hug<9 z3Oe>3l(;;~VHd&(TwpOq4Ea1bDgBraKJ*BkUu@HL1MIWX=y6LQrs19GhE!RfQYzP> zP;6RqU835h1FYv+;6EJiu~70}GDUb*i_*bO_X9=hnhqP`svpjp2KEF7J=dfbW}0HK z>lSp5hBks}EwL0oqs>x-9+QmU{kOq6v@Rafh6IdlQFmUGAVM#42cR6Tw=@4vg6pEa z;tPfRMfO-aBQI%AlrPPmg`CF7hc<``-U`Jl9%4SGEcZ5-i=k$K8hKTy6oR^ndW`5QUt? zuJ;EP-FW;MNE`o@T5VXbID8>F!U~D??|z^=NZzxT7YQ@S2_6v!+$0^pY-cRA2~hP< zu6Ir*#rzm?&(N3QMQ_(iG$()}8PS$pT>4hS6d)3j#5m^nFc$>=XT|9sUdpdw_DLm5 z*!Y6tut?8q1)~*y=!9+wZEbJZ92s4n0aYFG>fs?~>l$t4=3sz=C6-Lw^v0zE99mJp zy#3*|k_T6XkeN}g2%31c+syH@vGtpc&q2h&=SFwDyh-K2Up&+UU?bKI(89mhhD;(n zz3_$_KzqPh&*;Vvh#2cU)dc2>UK%*rc1I9wLL+~P#2&RrRYVsmx40`tadTn#d+kIp z=C@=)jPELd;-2PIU5)w3pi_%qGjJ?4!AZh*N?=%MfE@eU6ev;jH`Jm{g1JHia7bDyC!j>(S4v(L;c) z%BHE)Q^MZPh6u9UtWYMpaEKT}pyT;%GCnaKNB%N((7(kj3A88CpKQGQj}G6EkVWuT zy@o=t0gAt1f& z3FN*Q_^KkU;=}Wn;{;yn(2c6c7xq2W{ZbO-UxoG2ezM1(8O7mZD6|bu=QT-P7W_pM z_5FIM70Vjl$}cxCn$X?bR)tb8A1po6HA+}1n;#+|2LBT$BG=zTs$@GW8W-UPz#Tmh|T*xx& z6G0S&U-gRk;<@KcF^qQG36j2f-idWVNSc%AcZrxc)rCjETU?Z@BgDVRQ~6_RuveU5V# zoh*8fKWw7iW-sR?wX}#{`hKr~+NZceRBph}-kmfQe)Hu2%~(=e)gvoIYp3lCB9fNq z^fCf?t2DuD*%I9ak&#jF{wYaHPKwK%F{H8mX~17CArbT&^JQWZu5P1VM%W#MKH|yo z-qua^CAd*J>eV1LLb+V&m0oH2#ou*h;vV7A9(U?nwLq_%K=9w6(%~DMN@9UV9z|=4 zg|r}JdT({8!h`i)0^{#oitLDsbtRe(D=*6Yh|BxclS z5M96}8Du7*@CJK0H#1l!xU6vfN=QgrKk(H?82aBq^WWLBd;^$@>PckgFy4f|i)nzaw)568u@$Z5FGTZGYe1B`??H3UoW$W7Yh)vBXiIk%XwkJg;`8 zSgRw6JUXZ0Omv;-_~Z;suL{n22-x{H<(po%_g&Jhp2^pmmUCh>g<#}(mCY0U6mfnyr)P0*6LT;)9%DJIH?kshFn)h zX$lt~46W07HcHyt8{0%%0VrOvK*!;-=&2M(NyH0Z3ii>A(*T~m`^nw~Rkg6ctwaY& zy)a;RV<=B<1*VG3lg>s3-M+Rk-aJ{6j(`&!U%Q|+1jy$5Bnqt6fB%y8k-no5*K;{5@zDGu8?%%5KR?7*WGfjLbc_iJ74aU$u5itwR8Q%zr_KBg9pL-trLIOh&(^Y+X?EQEltrtk1HhC1@*;8 zU6-#+*|%SPwyJyjorv;$Emr{L3J#BWlnv4j0}r+yN%;8@b)1zoc3#_pm$C1XkI58Ejrn^@I{wEcf;!dDG=B<9*W zLzIJbqH`Ktf8yLPeTf1-c~TVYFFqc9_jUetm=W`Z3#GnS@v_l0_xM`#-#Vrbx01Mg zB<2i2N7mu5Gm`L9#iso5`KIOWck9Kk-&UzBAe|QRMGL3@LOaE%2zku#j!_dpBEsoo zmp-_*nEg^rc#LWjLxd`i61Zu37sjaCxS%t&e2`PBhwO(7lMxx|Z}wn2E7EP`%%?M0NDyM0%c{V6^h>0sj8NXWHT);%15J zDORVWQ^#%lBlwoh{>vOi`!^)#!_MrFz9M5b8{q=55mzLw2%y(bBou6Q`GaOcO3=;! zbsAzS9~%GE7Qv-kFirg-cCu~3@20nA+(GY-e*UGbpEmcQaKZ9guusaW@lXCsMM^6` zsdVnktMLUmNHnJJ28udgN>oFWbPr}=IvC2YMJ)e==+b~J6npbpllJ<>FqNORN4Bav z2oyGwzv%xq43=N|>FD^qx%{1b6i2Ig>@nFbC5r+Y4jkKEwTm>0a;0b?{=PhibKC%( zzdFYCVM_7CM$>N);c;l#a8S|Cx*tB;OrH{Mel;5l6rz0>Z#EEyTF`A(!Z4xcFFpIW z!fY2GM&`l|C26soH1$kc=U^-yhp1>3-gNxCYHA@ZZ*%Bw9=OMG7qDu4Nw%E+!(r>& z6^h9$!lAE_oKMC@S2nFR2Y&NQMDgCDTh)s4jGxIUnlMlrSNeQhKU>{x!a);)P!* zwn1@b-Z1L~f z2g0`Ppd*_x0XjOW$QoC((hH)cnFEMhn!W_`gwKj=K#D;5J)ew+*g8hqtYd;LXF_3X zT8J9hg%HXmZS40nnz+468?Y{lJ|g8Xl}n(G(KZU1rT2glLk#_b1jp}1>a9(_6Zq8w zhE`p+wrePlv7IpgD{eUwu^O-Deo%Bede^p~w;Ma>h4JH@WZC|+=iz(GQH|@uo7*Zj zgr`M*IY)ikIl_0m&8njyzDe@MG8b+;kuGIa*pSP(je_j-4*5R){oa;^q+H9he9`-v zh+A>sKx_$FjXIF~l@ut#5Nyo9PLm>eyoK;c(%?*Ida%J+rXJCGamkaBMM`#x#ER2X zip8<_rhuzxne^L`i{$+VXNT$~w--?lWV!kl;xengoDDLL2 zWc=#;u46jn8Cx+Nmhc5eRBWPnTV1t_dS1H}Z9rDbO#GxzMJ4~I+uFnNI(BE!2GQo` z%K3eh-8mc}RH4}VJ$gJw zBp}O|I7t9c?6GJZF$&jLGQ8RpJ;!0T)MYzV~tm_ zpN-`CgUk;dx0cTCY}mIY9S&DflA!IB=jsQD^3lzsK4btGw^?3wJ(;@W*icIC6ncJ<-|j^ z%QIAm2YtBais&tOGvD#xE8OwQ7@~nL^&j!Fz!xw_OiU| z%&%_nmAw-Casx}Sfv5z0>ju$ar2F;UYZYK>{up5Jv_cen#~;NQ=cX--U>r$-P$aW{ zA9ZS>l7_LJ?DW&k6!9OWZG7^&*9&anc+ zBoZr(vK}4uV;74!P8m^(clgVEkcKfjb%#7Yr>*#}tT7HSKiayE1!?z^bLhGKmDOp8 zNb6AN=}8E!Z;{B<#D-(v*OESic1-gBU^g3?LE0E0i5~&$x2R3ft(%%^^5@Sasg}7X zMh(`KGy#y0OoXpxGY#1BGBa-OOLp!4mgQ52><2VT(n|ble;~(za&;)xZ08Fn1BjPd zQl40~hJ}?xFh6#-?DGCd3Rg|?#%i*C48q$R4>o_$hw)IubbE`&*zZ_~{&%_% zcCFx8-xl+nj&cY+ofM;}%MET{HTI2$U zwMAPV^SA#7~P(uCp?{2?=FOv99w0X~0jLB0B``BP3K9VoXRFZ{xd({OIn( zLMzX(HpFf#0=!)XjTVJWd#?QC8it}y480GbIMmy3uX(y{Y#GIAWJ~DVi!IlX0U9T= zE9gZOKL4cJni-Lqn(n{OGImh-;!ZRoPbkk-u6A&_nF2_t+%Aw0n&dB^K1bCz2@L1J zQy3*DE!33DrMEU_Mr2$cna!J5{k{vb(r1qGD|M}<$0jB7buU-DL!swr*UWDN3Xo4+ zR6C5-vC8I}Oz{8FM`thLR222w!?-9(o!|Gs|BS6!CfqIEn^)_uEOdr@w&%_VrfJ!- zZyLTH);<2ex=}NCs!NYz8}s+5AqUU-I;*P?nAMbv=?~wAZk+ z(~U!IhPtOJ#?&|MZTPQ*gB?0IM*vB}`VTc=w4a_El?QKeE6r$B17n@hJ}l8x9A5+U zYmjD-K5BUGj>#PO_9pmh)N|e%`W|E7yD5%8^H_Rj$s0oP%nU%y7hw$#Ah^-l6(T>H zvh>g}{VlyIbjpzRgmnkOO%ycc4mX+|XH|N%oIdy8FtL*+$Wu~ikl%>1=5Ea0+*gbq z9GBKdDEc}dJI4SSwUhFOhwjzV1F%Wk$bU<4#-G7(GVI@$C8=lHq~vErK7Cn8GHG#= zT&HdGVaY}PENDCSEvD<*+D7Y-#do4bU_0vjV%KM^jkgo6iWOBk%T7mcax{6-Su}%g zmgpMr;aSXL=Co~zR&{$0wnN_evhi9%^GQF5w&XY2(TvlAd=+Q}lEKpMk9Wc!tc`}A zt!8$y!nb%&kQN%AGs?ZT-^tozoY3~E1nB9f>%A4f!%|W`gr!7hQ2ily`^@9w%d;-4 z@*$ZX#?@enNIlyz*W(fUKo-U%=Dnu|vvVKWV|A}XnVoWbT6LKX?>kj~X4*M{69Kjo zeR=592PzlEo5ac(cEoG&cJyuNxMYtspyLLUZ#R4e9MMwUv|3z*iR+PA$i6YJ6Y>jP z5b(tQ3~H(SY4~Ohr2ZfVbYPL>e&bbwm$$|fB{=O~{1m*h7OXL3HdE-}|8l-TJrD0s z_sFLoG76PzDNM~PU)EtR-+eKR$*8UQKQRNnFziB2Gx{1(C$$u1^7<0(Ptu;ky z@;Je3q}+bx^AzGSRfa4?IKt|it?*e8^?-BLqJ&NOW$VgdNYJ{Nd#tA+JM4lgB>_`` zpRgoeQ`J5j95mxUR~(7yfJ|7qND^i}p_Yg3QyGT4+rqKR3I(SsFr~)nYvVOhlb{50-sjd8GkotXN_`A{n ztUZObV-0uoJ$@&cFEISZD8f!6bFv;{D8zSl9)69au`K6rmi1HjZSCeiTKXR{O*rf~ z9>yg&%n2=W{oRV^87>?I{zNXY$zkOil1OgCA*@Xj`pQybr&4aO#$eNIB|7Kf4JmRk z+2W5Hy$xPCjYlb8G^;L7eM{@qX zWBG$|Ufh4A5nNE~TL*6>C8}t|iaIGQ$EdQbqLxq^X9`YD6i&?Qo7{Y(Z#QaPJ^h*n z;yn}xz9F+eKO0aU@%2vkw3sDFnDIV~C}ovmHBOfSHxFAL*`9?&J=nEj!L_Tq{_ewo zJCsd4LkDL`;L3i!LIf(f>?|i#){eTpjWd6=z$yEAh;UQ=VuBII;*27#J<9u%~RW4Q=~E&26^7&aHx+H~siORAKxJ%NTV zzm+MN=RmFDXn>;;$|PLUb{fCOru>;Qf=~? zzKn0>9QBn-=VavooqZ=t3mC@0X2h+JWat+Er{#YydMiF$%^?SW#wnvMbDwquCnw9w zHge+$mSk99_O<9cmCaN(WG$K&Z?rL;YY=@wHyVcU<(K?I&rsQ8f^uJ>VGe7{D+j$a zu%XuN7W`yY9~3BPkAC5N8J!TUa#o?(R+^hsnO@k(bXdrVFxX~n)91!&4G7)6^17yy zwm5Fh_YM?m`TOOtDb>!JwNq`!iyNz2PLIU7Y4bZDS6jes4#LR=iJ@v+O`L5=2Uauq zUpZf;f7bg6OzJ@gUwRcC_{e`V`7SA7k6VcQ-5N@)+t$Nk__Q54PNY81B(*Z^EsKz7f~H6oYEhqOVquT=)U76L-DT}!Cz(j3Z2V8CztIl7Lv_#G>?mqa zZ;n2p*#4EdmENUddgyN2KeCr~NNeD0@)1`Fr@gh|Qy-`A`~P{@?vFy&oJG4}OhyNP zc>Ns5cz0Fd14`kMbN7R?7@wG2-jx4H>faa1vJ0=j@lnfnMRK*mP^(V59i+`h^_AZ# zP%^xZN7>3`XW}97ly`vcyPOwr;(%=_5tqU;G4+w$4up8{A~^xSqk+?%r?MWCp5GcZ z$N7jl%fG{P6?)k|12he+v>%n4lfLvCnvK!zm0Z zxt3>i6=Lzbz5ba)3>J7_ewQjp>WbqM#t&#YqB~Eb z*vHF+Cv7cOp@Abev4u98g|7eQ_8Z)cdZRx3+bFr4<;K2yn^fFJY!pe9j&kAUR`pZ@ zQ%egjZzk=0-;CAM-Dnt0@=;!5uEpqtcrBZ+No5c0v&Y%_k63N7OVjPrN;d`{AeQLa zGjrU<3`~0}_r(#16-cQtFeF}3653UDy=F1b>{`kUP?B@NKy6P@?Yljfm5IO{ox>A_ z2xCVDr$~FL{EQw42!=B`LcS;G&DlQ1!h)t+?`~%YC{-crK31B@e&M(~#XahM_cc$l z!cAWS^J9zESri94v|3SWR*{x4@*n>FRErl1e4KpIHT6a#=4KIGFK3qqJi{ z71@abjV>#{t&H@kcM>IQB z9Yzdo?PSqV>xnb7&!JJS{B}qrl7APU;k*|-uNHs!zvclyIg07)g!PaFvO&D4q8RtmhT0!4Z=@~f*9`f@=|^GF-IqV9V>RgzL{e=O zWF?AjBgiKIbD0BcHw4kvs584pW8zJB3PZtvbdWHZ3f7yHq7o2n(OyJ9%){jV!E+)s)UFIYa!5!y1qgVmf;`T= zZLS7Bqgy}S5X=V#Ukz`>#m?iQwEQ?4dyp#9Yv85rdgf$^t=)%RYXQ08T{68ONMK_< zuHa8iQ+g^{jC#-Gu2?nnJbM|5r+$5#4yXKKV-{eWij2??0pkR{h&zUMMafP zyOC+Q?TH6z|0wSpyFfiLPN(-_#3?$CP4NdIQ)gSD;-pCFg7^=mh<4#P=UH`QV1>IA zq@PK779gyu{_^L}JS7;T-u8NS^37vK4HdPcS7zomTpP$B-tT$~#Qq<}jF^8^y?(JG zsx6i%1N3SrV>c>icfLRI=$~B3(6s#H6c|g6bNs4oPrtVjRpRyM(e797shTw;TAz$^ zErDnfXrsOvDpAqA_n4Fcm|-B&*Eh3^_vlupPd`PQzJ2)&9{uckXDFh+Sfdaj^6_ga zV_~xpNb#!3y(D}`f40+}wiLEuM4QAKJv6OQ=lQ6T5 zF%n{6;c1ZB$qS;7o2EiclRqRzTce{p3p{Skv@_eTp&Yz=9CaTN@ld#4%giSvhW)MX z{^vQ3!f-S}7H@o<6lTS&_8Ydw_h-!SG+dKz9K5yW+v*^q?sY6M%9A#A@0Tzo4zgNfD#jd37r3c4g z6UT87L26LxXdY~phHbfM>DhgL262;b=%jSLOHn=WfLuX|aWuO!KBD<6xY*TNMy`_- z(fKwjI+XuLRuGFtrJYQlp``F)jJ=pv_qFbiqFCiJ2}I;0L)Psir)kDU8d+gud8I`- z(u?`(*6;x#)Xm6v7ry6{s0eHWsRO{vh@3JlQ0}jU@3Yj$JC6|Eqwbp0GpQ#C02={$ zN9^j(d8|EomQdoRIMHz>-9z4iJwCBMShe38M?+-%m->BkFnSGFs+DvtKT$boN5#vAEeqZ@elD@#Lo&)IPV8MH z;`hvzRzrgA6?3*?Y=RF%8+as)OVrj9FT0U&W%0rttnEE?A{>t~U*B97kCOq~>FAi~ z|4E45JzupXH)8sjY@2|QCnSO_K`4mq^53PoOvR{%Y2^X$}BTeR0JGq`1qu^ z|Gc06U%4n%Y08^x8`YLZ&^b*RALk?#;@7XDw$+w(ouy8kh1GD$oscgjpSoP2hw@X> zctqAKH6?T_Gi1NuEqJ>E`h3ASqRuyikVdF+)Eg~D&*Q;~0GsUKCw>elbc?Z{nrM#dWedpqD!3C;pcQ;TcGjx~3g4}6QtxCA?| zjqxz9`!P{1EAbh$t_uuk3O8 z^>+u59^X0#qQlvpSehPR6=&dG3-I!je(SdqrHNjH>CoE)DQ4UAb#@o0R5tB2@QYGy zzzgbSZ39j=aNx#J8FeeJveQT}+?&gsdL&^TW4nOH)Ac zEv@p@vN=WCNA)Br(7*WXhWCwOGu{h!sUD4A2VH`-lvtV}`ijMLW5!G#zRL$#%%+Sh zQc6zyfb7rBEzNl|I?06FL{IJ zZbX`!nOAw5j;*&F@719=pZ(KYVr=veBIX`Ky@VQN+4I2JaE8Iehr2-t6_&GxfN z^0_kKuwrscrEx1AN!qUt6ESQ%A5jB<&q2@Yc21YY;=4LaDn4S>)(lGHl_Kv16OG%- zHdLq9p!ZoO9Y0Kzw6Rm1&1O}cKKg2r%Baeft}wfnRMl0DEB!Fuul)NjxZq_+%C6y` z^+x0H2q{ua0co^k@lxW8(Y!E4Fe+XZL-OcSf-?v_V(uvYEl_wZoHGNXM;ce>Z z=yw<<3?)%D1}WV3r0y{LuALA+fH67ug#8oI6lcEyWAl@vLR6s)%oN>0ejnrW*alQi zn$Lmcp1Trnz+YIIU#Z)5y6m09>&}-y)xM`eL`^PSe(1cxcOPlSIZvtEZ;zs#1<*Cm zaT)(GJLEU6k!wAX^yiRPHrOfa&I!CM!Ns*lKOE>Ax>{tgE2iO~x%ty4o4GFmaRGmb z60b#-P%0^d4IJ4!LF7x~aI5N6J}&<-=D0`5%<)GRojgY6{?r0&Qk&%&FcU!oX;q{@CNr@FbXxNCfU}#t=wJ_5F`y3g6CFXY)RLj%R`*H6Ffr9s_5@vb4s=sNV&PmAheWg=c1IgfX*37 z^T+o`HTmWYSVWSq@VPGY;3m-u*RrW4SF^FVYX01jsrqrDGyngZdH-8+xz2q;TA`RBv{5}T{c0vii;zXA z?!|fOx;jx5@-&2)5yNwkWOE$YDtd~3BW=(!$r)K_o#i?W{fj<&WqxijXsD^4`cBS4 zBGdF8t{TcHIDb%KANj2g6p-7imSiKEZDf(xv$Gp~5Vn3tZwJTKvn3>>_Jpo9xpLkY zUN-$*%KQ0j8r!yj&Nz}18hXPQk}O1On%Z;BwyO6UPVvuGG!_s;erl`NldDOU>{Utk zTHV`RM&jba*sL8|Ju}F3=^y+3TPbH1h<4k#;^6kq&T`qfuEuF>J#@j&att0#?kM6K z_n|sqFpk8tpi*sGY@$8%@%V|hQMdo90~@=j;bpCamG!@bs41{HvJ(JHE#iqaA#b)d zci+G|d2F(EJON`0s%1-TnXi?t3;V1+r1E>z55Ev&6hm)~g;ipKls-dh`jNK!!}N&j z8CB}-tm7cTC_ZT*)da;2U`M}RMjal{DG#YI-08}qsjjDD`xC|JlTR$K5hmaowz zEP1h|&OqKEyF_h6iQ>VU^#i6R^AJ+zU(BD*)^xy&9vQkn7Jc$tLZrzIiXSLu zT_uh$^`pV(5_I{K4CnxnU%e#R8{a(ihwB8q>8ZSMvZQ&B=mw0*njpH_-Z^R41w^hl zXEqr7>NwbCf6#so%}L75$zx1Yb1ZloeKV3i7P93iaax#cY%o#$)x^b^XK2I{>kEMv zL*fca)TyTDYvI0?$#B-DcR3Bbr-_c_auoOR@(KH+f^KacjxvnDx)o0f6Ke5=Os2;T ze=enKtjkj(zbq588}1TDCZ`o!e!R2DHDe`|TyO_E4uB3IEkr0-394CTORmXXIQuGi z{cWQKgmT9v$2}Ka z*S{&6=5(KZ$8dw@94Y~dKd_VVF8EjRfJ`hIoAp+v`1r%!2S3XOW?2?kyl5J5!MEW@ zjn%Z8+7EItmH7Qso1eK0lMc;4gc-3k@`K;jwpnv~x8 zQcUgSNxwbNCbcX191Y?7UyiEdL4PQ<_yWLB4awy8se|HLF4{kcRez2`xM5+)N|1bM zbRIyOd5S`ZU9}CcMA!9k3hb#e-(@?&)Fi)Ia_&X1XVdx#A=n5Z9kuar0LT(*lvg6ts+myjha#E#rr2&@z^V8;pq5 z^vKTb@NDH?mBU5)eFSmwRp)HwYSZUvc!e5S3ImrNEJ=NAD;!>3_uPi`(;3AELX?+u zR@0fB{cAziIh))=EFsgs2X-iCKr5HYe73i}sxUS`7PFVmUUzV3617Nq+1F_11~FM@ zfCxfYXFSeJEy({FljP`1%V_6nHr_%N@SsK@Wvn|ds`sRw5*Uo-X{rqZ_QVx-&b`^P z6{GV6w4V+__~tzlL$->!aG&9p>)iRI=2<$OmEb&HERK*8@I#YyI2IDPl$)bgn2A4#uN zS4%nzL8^1rs%KCJ4@e%F?O*1A=K_vXjZsl&bf~VJnlfOhvy$Rk8rhm8JvZhCqaTtp zi+}$vd&Vk_;5*)(=x5c{c`M3n*=Sy^qn9T^a)@;IxaSZRE`Dv5k0(-br}C2&*QY4+ zs!yPFx$Q`#=gMx?dMMo}=fv4xX$jtVqj^E505bpAj88K+;;$Xz!A zD7qZ|%Oi~-w?EpF%Iaj=Ig-&eh#tFti{X|%syQ~=y$tDeyP}n75Kn`|Dwd&1%)1*>gEVdl)}U*tR4q?t@s(`2aK7>JJ&=P3m#Jo^Uc5e@ z((RiXV!E`^jfLme))Lz_G#Ab_b@spGLeFa6P4Dr%%dpnEzo#9+$3}Wz{^Y_ATBrdv zb)AW(4Z~hm7u}6d4{n#`?Vcn5pmsbKUdQb@-GS}y$dVa@Gd-c#6P;ZSJifQgLS=4^ z4!%TSf*n8d$w`;~37pRKx49tNa3=Iw^H7I+a--^E0l)5d*5=55e874rjdA4nV1XZ; zF^xLGLIE*fj3N-!_>;t6I(>72Ec5sy)f#oUZ1?zfoH5-4qFAJj-1R!ftW|sNGiqIqsTxwHqNxF7Ol(}@jny-?%K%A#URZloX=23CMZyx7?7NA#gQvR}; zZqQ^r>Ss=*l))4&*2OUkbLm&W-=Eo1v?B9ZE1aAlk3)P2LX6!xI``GW5n$DHo15Va#*p9aL3 zJ6oiJJPUg#OXrq_AC^gG39{@b_F-W)O({Ii1ILp30Z03rk zU>BW3b9(c1H@>pS?i}UT6{d>LQQy-D2l@CF4OBd+GPp2E$joB+peeX}i13YlBwI*$ zhXR^T;WiD&ya&wC^lU550Z{`yr#+hnPr^ETgFf&=2J?W1R>%(r{0AI&-Z}VQQIS%aUmDIaNQ^FRV!sn2`IMGp z?@PO89rP`%^M@g`Yt@G~f?D1eWnAmHeBdvSyEdz(!DsG*BA!}?Su()KqDKh_@}3Sa zPA-Zqlt07PMh}%@B4#K<_&EfqN==LBqn1RFjjFV6$B>N$9pgB9JbtX2^et^_bBwI0 zb*VCC`l0pHoYu5)i?-g;zHYV%y<7u&phGspxVUb`I1>E+o3Hpo_*d2bo4GOv`{qZD z&6K0>)ki>L-M8tk6|;JKlY)1O0NAGG=jVk@fjpnL`$n=3t`upKS|UUyQSx=k;}vU@xQuNHRYW1Z^TS5dZ}znbZA_VDt(l{WGp84sKODT1iRvM- z`5j@kd@-eX?9Z#C_kmOS;sb5RTinn|xt;yD!QSYvxdY0!@>$}xU59xtSHL1)JAwuM zTXDLTVNJW5P3X!Zw+_kw7NrBtZ($TvHk*4dz9*zlIKvaYy-J$dj(AdKE zADuv8+UP9xVHyB`?x9=T?a}s~5$&AaiE0a)RD5czr*D~( zR^f+;&S}-7fpU79y?r}f-ce1xVLBhW<*^Tqzza)6NAqVU;*(t}Afqetaf=6_EG3&Y{!99MXy%z`jJEwX*88wsdV$hSO zcnrfO9~$pwt8=?!e)hKO$D1{xX0q8fUhFL(RJs8vG>yk|pr`RVYev`?(88N3zr-Qe zH8>*8!$dVt$;!GA38>7dmEk|fGVe6bVmA%&|H1h=Z5eX%ZOweYZjSgiG)<$|>Jus; z*T{r?gn6>Kn!5-X@V_c!aQLbKb9To>@g8Exw~0ONbUh+9N0H2Uz2ik@_b~nPl~Px5 zE$ZnWAB21r^fFNvK8*v|IZ)6}{J6FF33Bz^3c-Q=rxr@f3DD-YG+WVn9qr3ad&E zaK^T=ec!AGZB007+pB#kFivn-dCU=ak{=Nz_ycQ3sD;k5mZwXHBFLgWv9_>*)~s0y z0CA|fM2@n+tKeBgW-L^P5Ueb-OJIOMa+$xDn(O;ZV~-x}E-N>VLZW8twhAfyDdzVP z;TzJXtL09%!H+(>!wWO}jz}TT&YeJ8yc=W3JIT-6pNQ14T!X%qgFhdW)IrP&Skv+; z=cO9^PXuqp=^x-!1M+pvc#k3Kct+i?1|}l{$`>kO7(kgXc9=)3Urn40LxQ)f(N{-woLGgOo;E)rB52hs6w>;7w<-*9`& zdXWuM=ed}b+Gs0T*GA3CdVP12^zJzSSqx83AP$9;uNC zx|Yg0s8~5E7vpWQ!47tCpU@31s*H5I>-oYbU-=-ds)y@7(1|im(F+Bum3%937cnURP@I2uP@ni-uXgyr-oEobtEJ5qJI3|5?TFbmmlCQoqpF{ji{t{j6qms9^N z96c49DI2_7_L;`#E#`>i^0eGXTNSC$yKHkqvG27|J_`{!M*z6IQ#lXM6D;dEv{1;I z31wO8#M!T5ql)ULaCb@p{}*?`cD1?^c|8v+7c6*5C@|S2Fn0tRKW^XW>!C;4%g2 zi~gSh%f|i`zpJx)#Pp1DL*aXl4^L+f_uFsZ9tWKcf3RQ0K(!-A{hPkORDBE_a4ogo zj4Lale-8w&o%XSqcE(J4N$onb4PWF=DFhz$I-4InrTzo0G5a$jB4+S6gq{xy z{0GUGo`fqXCQ6azF)FEJ!){9Lv!p($b$1WKC4V!no(KoNHc7rBAkcfcwbQQ`Fsr4m@job-!EoIv4*;e2p=U}_}Q79WE z(P-0aoe+z5W<6c)3o$Kfcq-!4TLqn*q5r~aULG5j8dTHpS%%Za`sQ=owF4ChHu#0bUc`uIP#nomsUs#QXqJ`FK6)|B9cwNeaN4 zsj{|Km4=F z#Ap6cZ5ogc$`oS!~Tn-sf{~cR~lZk?ofU zJH@F#e`z!M;3*;+F;LBj`PG?`sHC&O>A-UOh&r7Yjt_a$vwm@Rlmww$YK6}Hm8>xZ zI{macTJBKM~K!<&)0huR+ztF@(JApOO8@auiZFM;CNqGI$vRvLJ4~A zd@3T{rh1OnABR22O1}G0xQhCH_fVlZ22)h-b1mQw_;qWS%c)?BO{Doe`6rfl-I^O0 zuM`vx;~$H7x!JFRDA(^*C2s0t&sscASEL!#4=F$+HcqCFZy;EJUW53_Im)Z3W@2yE z3#vxXSs6Mei~}7 zhGg=>Vh>i$z*_zMO_x6y-QS}(i4Nb$s2qKPAz$iNp_@02&u$tSV1->=cHpIDOuie* zBAbYW*-wnNR)U#O;wy5s3<;5Ad^a*>o&7t)Gu*jEdED*mOM-&M7v#c>$!z;BpupY* z1YfP5P&ae~Z_GXD$eMz3 zXjxrERqodjDKjBsMhjm{G;pd^v!d~&di+MD-BC5Pxt1*@Zt}d>@KK-w0?~HQLI#u` z;+DH8`E|ksb|?CR1ZW?$P$?o%7MLXX9Ks~+F(Jw|lcQxYm`?sQ%z)Iu0y_ymWk)22 z{#?d^jv4_cl%mm=n9_ycLS;S{OOOvAL@~aZ<9<1tYJ|v}`ohPFsG%t_QHA_-M4Noh zaP%d}5MLx~W!rl8r|AGx8WyqafmpG;u<1+MYf5-yjNGP=KD`KIfX7^}a8j5#(QF=N zH`I53Kf!Sr&25=hSM*&qPgSJR2Oov*pOG~iZl40Uie6xrNwO^<|5LItZ=Jz;{LOef zp)1-JGRKIJ@?e&JH`}vI7WwjCI`sbHaz-`(bnoro(ki;Ufig>TR&hITx_d529BeNa zPk~SY=wnE7{D!F_ z1~aZ4z)+R@2nq5uhS>k=hJ;Yc${TlBavyDjgW({|(YbN-Gu~URwlhI%>q<7a1IR}D zxBV_@GKX{qZ6$rC(?{Ds#AjqPYRu?G8kjU`V*1p{h7XyXHWSduwrWNJQ41v^G5W zI(KI?%>rzB{fCgM>gBe4-&b%ky7O_aG-Cyud7>T}*f3aKavEGkYDs32iw&| zFmpVicnyVidRbVaA-1yupr5Qo9hvsdY=|URyQjglE>cit5z)jHTqMd2b_em<^xnn1 zjM$pMe)gi%*ZRTQG1^)q-qekA_f?DNSQzrCBg(BWTf(x%07W_+WC_Dv8e z=>{dD;S93a+9fQLM^%8bXB1x~ByNv|H7c{1DYe`v09=Mr8n&ja%ey6;=Q<%HpBd|y zc^#2k9*Zij*?kKgzT~1DZfPgcdcAvlNXDRG*Asd1iX3F~Npq62$4nSwB-}5<#64+F zaGl)IlZjOhJM^}P+t(%;Njrl@7M=ymZQ1rj7NFL}G9X(_Dh_rd`aSa@2G>N+>n`>SRwqrRiJ#yQ@zOt`CUb!TR)B*1DazJ;V?- zhS?A*hb3P~X7@GpVDY2jnwP}m9w9+zBzkLjTg>^%gg!Bb=0%H(dz*XeKevLatRh2| z6*fdpI+?k@Gaph1c)J8_KMBNd<1~fHt%xo!RgpaD!Cw$zJM&VhXI6B2FgGs(5kgb5 zXVR5Who0B5E&(w87xfM1_!gzp#V$Vpr`Ux&`#x;wNdyK4U}to%p*6G@z-U~JQwm=g z8rE(G@m@!<)d^0@^Cj-2rXj(w>hHjh4mp}1J?puhOBb)|XBNhFZdGW#t>TW);vX|j zP=p8=_^eO+m++rep{xROy#JM8>fN{q z!SeVBNBHR33Mt$;VgO?p7&_OtyVi&hsVz*#L;@zTBv-|FU3QT>dfGqZoALmy*V8H) zw6-Tv@>*>r(m_u(ChfpMTyv#2RN{e8v}&?z^8h85nE?V=jPAlRCojMqMIo-r4~Ka% z3VJHv+4awd9sZ<PRqXxd`x9NJ^yKQwj05$nTT;q^>Vsi`E19!5XnnKo7BY*qF58pxidz1c z^d9_SI+zY$(-!E#-S7Kv|*!c$n&HIeDO@orzY@5#Ad@htlDOU)=;_u)>p>+m~V{ z&h~%70y)c6Va8D=97QHiynBRWP%M*^8LaPK^Hk@;#{CNj*kR|P9iO7g&g3et&?^8Q zBb$hVbB*$f&Z6N1O4zS@$`x5ZWQlpp#vV=_G>U$`ci-Bwi<3Ya?Sv;G4;aS*y|muw-uZ7qk<|)PtoI?NiUT*HPl?s}@<|HS$%ijLW(>F4yhbv0YU@F@P`~6Tv==kQ zX`ee2Q?yG?ZcZtSEiM7i_!We+R=l&6YK{-8oq}(RE*4={;7mfP)I?X((O^r`W^6dq z`hV*A9G}O%u(}kvSpO)*`okXwy*R~S&7_3$Jvcysa%~X7UA;weS!y|OtBE`fe>au! zpU<`<<#q=GpztZvI|E~x3l^=)A5O^FaZ1jN1yAq+?AT%tR=u@UAeZi2qe0k%i6n+D zmu+Fq-555;?(;BH{Jb%<6Tk2Id&Gdt^PP;dLIOh!INZ5cmh&+btlp*jSbMG?+~CSfRqV@uy{yHt1K&eKni07WR3BaC-uV9WaAes(9s@ zO@KU4NI~4^10UOQLXpbR=`Q}(J)=)X4u-m0PHGun66smgCkNmOhdgRlSZ!E})P#<6 z;_wGq_YGJ(pQ{!yE&=9yn1jBulxWTx9<(F7RW$op$3LUdp2ySB{~zbK``k9c4cL-a z$HGZ8@lpQc{lEtoMW+kPCC$L>JOlC|MNiaKXRbT!NyAJ&?^`iz0jdqbqs0#gAM@tU z1`K^>FyW2#z}D$s`OL=!aKj^T|E!U*XbmHIZ)JtcOtoBN{9J^JmLO4!Dv*`*GdG$g zf&1XWNhseMqNHVZYMdCksg{a#P}A5~4Rir_5l+_Dq;m*b{c*{2T_y|3N2_^GXAn;S zjq~sOwA%jnoBo#Z+Sc@P(?NpKwf{P!6O_R7*W0{Q&j%v^&24;Q8tO*00GPz|Mfz`E z`GULfhL<+~DXbK^nwDdx5haedsCdZBKxPHgj&;0wSs$knH+cN7f>JiP@R^jI=5+A~ z*q|wM$ZBF(HoJ`L%JVt5tQ+*i)57eEi!XM9~d zpQPDP-@`4wXc9-ntH~L9w7Nk;FHCAby6@lfR(fi2M^`#z6Ry9YkAX(RmZnH5Qv$-=KId8T*UC2(l)ZVl+7VIHK*gWSobWilba0nxkHgnpE5n$+gMXlt79S zmH7)ueCQn_f~Gc-xgV)`QqUY4Q?P(fPk(2bhLeVNbkt&CPhnHM&xOSzlX}35oi9X1 zVI3(&Z{rcAId+;a#pzzOy5}`};=@7tljq+ZV)>LWi2Uw!(yoMR(nau6=@BY85=B#5 z&yI-Fk9pGVjAt$~L<75~f%JAzA)x>nG@zc{eMUeYeiIb3*#XJ5yT9VpweN___bgCu zemxrcSc>yEw`zWd8dH<85;0^CIdd5C>Ru@Rz^x})ix7t(qEkqFbAON$Vk69@uh^~jQx%msud5k`&64d9na%8?I#|f8~@%suHZa^s026SeI4>uGh z&?DX+;%_Df`z|+8=v(l~ZZ(SeU~xR{s?{Z4>rbrqnFrpXY7xL#6Iy8WEvg_}N2RHE z^jVMT=aKV zR^zSC)+}AE=!J1bJU#UlB)xa#tCklr(d_BoZb@gb*v_06c){5KH)%?d&n+|e2XpqF zWGQ-U##oK`Yv<6_Ok4Cm|C&oen_j?Tcww)(G%__B}li9TrNe&Abq&^J6W)?ReR{Wk(PzfGuRwC{b8I>>3Xgd;pM+-_DL(Lt@ zo?+yA{;&!rUki3%pWiK3Y%sIXI<@JX=ihd>X zMsA3(A%Pbm8216*y;MArk|;$3y9&n^3AF-SsDc>&EWxtOf*v{XhfqdNivrVRBUA`-e3Mw40QS!UA`zjS5f}jtN%UBFPdmT@4a*ABdd7Te|J)R zxxcfx2gM5)$mxtM5jz^MI>3ayVv*E(jOZBdg2N{jQi9h0Gh*oM@L3S|_OLtr zEi~D8P+AkHR2IQ2egA$8P*%sM#JpAqV2`E-TDuv^r?og1GgKmZTqvv(8m`5AlsA?d zMWaY|xWQBrWQj(FWR`?IG6n(P5c#TFfbuz$TW|HAZDcSlU6J2V?)fkOCy~_; zjk&si|FfV8tuDcaaL%dXgT)>EmksgkfqZ}y{omd8$7P6FGMacPU&;GG|7yiC&qj$Z9Uta4~W1*+|)^z(-r9Q#QCF>Mj&mi`&oOF+ru)d4yS79gg-fU%j6 z@g&3Jzhd6E43Ov}ZzrT6fpTz4Mi|=*VpPLj-H_+sz;f%v`;z+AiHaUVY1!ux%e*V; z9z^L3azPhG6%gM2v>sd5I*UsPXJhPD0iXS|(n`{`ilt(!_HZl^`4?cdh0nit(h=Y2 zHGBbb#)@5f!AAyo4OtKbtk@wb0mEkly&yx z7&YEQB2X7)nd#A}qIKo$C<591`t3$EgWBB*}&*}M! z$Ou9i$I~ueN@n@P;soAMU(2I+5y7CbaBI2bx?hj_04KBYC*NGHt%6Tv=;pxBB{NSC zCg#oSt;GX~;W0O@=DDQ*d*cDS>d3vcycPF^bTw<$#%iVB_noEh%eBu<7UfAG0Q7`O zpSno(pgV{g{`Xu)a>Bf;q%87GbXGW-ymesrzz`!Q@h?6G|A*oSwH4=5%~z^5cTY#a z5E2r{Ab(!6+~|bIS0OEuPlw_MkSp}ZTl#u_bErK$eHgl3h)-r?egei2^i7!yNp6&__%?0`>~wyevbY^4Ql=eiP;x zLSw7$7JKMkzzMJ;b|~(-huS(P2vq};J@BZFH68=N_8RGi7GB%eCx^O9tl3a(&%#HT z->2tFycTpA4n;M#17rQXb$GCJg(l@uFNk>!z7`3s?bjN= zAx7GJ;&q4K7G_=VfkF-sG{5m?JxX(iaFGR#{#3#!Ymj3>m zWNWSBBeilBt?{^Q3!Eq1+{^E&c>2dxYMv?zQyBw%-eYozpFq6eWHZI0PdqbENNZMi zMiy<;fpH`kwFE3dA-Q)9zetv6%>SvCdo|!68*t#g-InB)3@)`SZ9~QgYB6h{@P*pV z`O0UaV5A0IQ)q?-#KQZ4vyQ1|R9vn%9@_7&J(^SKyZ6K+Om@efwc|0$L;n<*jl;;& zUeDU=T8KfhXPW$@W`ViToSRShR~rV`*yb^RcNHb&$NYX=5sbf95C4XyoRkW5|Ni*@ zX^;zgl-GNP!n{6y5)_{~LAkdLlHy}TlBKKBF;eQ0IK^KgRnrRIi578(E7uA1$3(!Jyp$4}UM%3?BB%*vIFH_Fy}zuNT%aM9UQMT>QgTGXVqLlvXI6}l35 zm}kTy`D|v_JdT}4q84CZ4MxHjCR66mf8d3U)9V;$=ZUnPJfHqU=AkqlMlXDTaIyEl z``;HAckG4A1jZFn#4F@HHcQs>@R{1w+=pe$tdd{_SQSOyCsVD=5M&CY6B9-zmteD_ zlkdyNJWp68KYUU=5ItqP3UTN={d85u;At3W9>kvU_y$V-zs3PLgyav*aRZooPTa6R zp~o9SN4uDJ1ZHRI4I{pI9N1|Yd>??JS8w_=AwAp8GA8?4C*j8iz9262>}N{Ce?4MC zUMKz<;Bo=>y|fDj*A!>G&f5%HxgyQHt*)*wrp?@$3!5h{H0lE}@x{yf>k!afMh zhe-$IDgjAbUxXenv>ym3J!KsqqIMYg!MU-slZbhrLd%p#T4Ls(Z`s!yCq76Bh+iysFL%08c{>5fjvvZd&2`VfLE;oG=gH=qOFLZd%6qEdxB9@g{LD#cgyd&| zUg(XJK?*=k88NR)RCdv~rlWT&gC zwAK}4=|FK3&VcSOqQ@`j>PIRXvY^}XRpxk-hEa8&cxIUV*xW7Lbe@3!#*p1K`Qh78 zdNMwwi8_&8p-j$?{Hk{pkOy&??ZtrO!}8otdHMd_^+kS<(z(nH<{ki|ME!@C-CT63}~Ub3(nPbKezP{ST{x|RD+OzN&na-)-+AR zQo0rWW@xqO_Th{i~g4IamFb1VoVFSOAA_|Gx5xArz0S&UA& zR-#yeP~d3VN~UL<0^hqswq5ck%qMRNQ7D|mONo3>YRlQ2gDEJ^kU*lGwI0$n zm4u$Zwc+F%dbW=ue|kLzj-N!zFtC@w0`$To?{kNjnd|oH>-VK~;PB)<{t{M)eC@!( zI=n@mDCKsV6VAs7)coP4*j}5xAEeveI;}m~OZKX7zY2fyt9vn{k0EkCPxH;573&Xc z&aoUJR@TcZ9!=#9YDiUtPOg|3>CM37q{|P5``dSChq4fM`(gB^_{Q;LRZOF`N=sBnoPSNm`bbtdYzST^>m3H-I;L_-wagb6!K`&%MyHcr2Mk zPiZr@Cj-Z?x=m~yw#}!P;eOSyN79suJSwr}`vG9n`$~zT!x3En4o8p&;v>s+p^uv> z&oesOxH=RX_N2Nj0|b)Bd+3~G5yYu~8l`=X`Jh!i)ivXE3r&GifA&o6Jc{*_JP8k-tOXkco#QDfdVa!!)qwUuu_U{@Wp45UN~j2&I{h)d*&$-0U)*zU zd^5O_y%nzQ<#NQ}` zNi%PvFU4O8WISgC&Iv#r;Y@WN{!xKRo0#rPd9*q4&Dd_vUX0N^SHe!6#z*jq90iSQ z@4gtA)Xhg00HVU0?;k1M9b%ZfB9aF@MC4vNr}t#jmlc0!)$pEM_6$c@+4>q1-j^CEs=5D9YOR!5E3 z&HlXu4yVWV{s4Sz5JH-~$+f^atgN@r9!(6_B*rRGP<~`>MY!1OXZzMB%lTvEh`VP7 z&-)gWBEw2oO&dw*OX@8fNd-q(*6m@fGjH__;g5t|p>xf2Y_`Vw;zse;kjOc$!>=0;F9j%4_PDpSt zL9soUm`l{)JRz~0u7{XoMH#tAF_q$~4eDdXpT#Utl~1bMJ4M9`R!o%Pu36`%dj5R+ zEhr40>}ZgCj^CtEd}m9>QG&dP$@Rml+ow>xjpIFL%1#+^wWSw#Mbsp5pcB<@T_L{l zd|V{)lj@V7&f8-FPYiqfsCHR^i1FC#J#>F|M9K}MKYkkBHl*f*bC+5${tF*`hwo%gw4 z57sE#?^qI1w(SUW=*$+*8y1t+NbCNpFfvn}(#7U@>%{IVqzLSDD3rRzNck6T9@U$) zj%XR;34$Z+qC?Y8rHo2AMARv%ZrUcu`K@zKPu3TqUiIo2$w>CwjY@x(_b}P;&|;5+ zY5>fpXO*PC_}8k-KRA6%^IIuFs|W8o4{^Pb_w&_a%L|#H%+!vV-EC~5uOs?361XH8 z)dZomMsE2ggJ_J|?aM{)E%TBm7D5YT(alTl!i#Q-G6A486U%$J)LUclcrrFssU1qM zvjT2$iI;5V#fW&mcsNOatlP-zQ_gO;2qnv)`ESdNZPLY%;{uaef`Rl`gkWemlCDI3 z&T65kKjeK2%cOF<+)LhTv7aOte1!jeqs_lyRmR-mIsOP8AQoPsQc}UFWWGzh?>GVk z+OL8|wG;jo+bn>&N+Z z1|OKyPd{?01QG1^g8sp4t6N zcOZL7Y=bc!yndAWGgGf@rhwzFa@_65zuqsaLSWY{V0hkJ`Y&#^ightf)W*q5v&iqS z9R{SV$TYb(+kB5v@z;o8W}MDYc53J!WsfimsByA@OX}-vnjD)AdkT#be z?F^L{9Mer#{LAEGVSgVbKef1TzMT1~)ppSF1O-jLPDNU}wRb#E8$mjnt=5tslCdBE z7a+Dhk}@GZki-~ipkl8~F@peA&^1Qq?voDCd0R0;=65*VQ%gO%}p3C|)# zEF|yeilbGrZAelH@P9p}myajRnVV^K=jQZ4R=)({_$@U3Nb`@} zte)|TmJ7BFMC?9w+3NgNIQz_R=)GO3{Lt8Z$1a9hXh-O@(`QWJ36ab=a$27EE+qs^ zoP^=Yu6ZCxegI|))P ziI1x~=4=TOxHY`d9T!(WYDR!%EtB%ap!$dix=D+Bam*w!wrh`}HorMgj+q6{qk_7W zle#@2uVY|W$66vzeEREbXK6Tcc`ruC91K2^od1~}PJgH`OX3Aw$2CAYMT z6{$$R#SD#85H6~e#)()Mc&hW7N|2yJo?2sj065D#CfM1b3(Hg?^3%;9S>Vx*WHsdkftXRsAymS z1u$eWBy?EMm+k57_eV+DoWyPBs|#ac3b=P1jO|B_Onz2V_YoHT7QB6U-uevk<#*CL z`@1WwXW8JVwUzO_0|Bakx6nZjNg@tMhoQd@LH5z=rbZrEes}p%lT+5*=UwzPD;)7q zQq8uNH;ZmWGSqB1Jq@Dgcin|PT2Fz>Zi>z6W0Y zB1bN8mK7&z#iYbP_g-Ohk@Q?{X3xjfkh(Qc*z-Na}-aX4FlH~W&|9`Cx|HsO1>#PF5S&rX-NmPxl<>JkV{`)q&9xk}Uv@A)k^QG)uQ?buJYO1uF527QvCX zmicThuSGeoElW1cE&a1K0C;H*St?pfbyhcZV$VA8@uHka%0_Jr$$wK7mgw-+zc}Jm zpifWTPvVIb4<(05q&%9K-OHsOn98Ef+sw7DuEc)CO~G{MYa6e3Al?yn`a5?{9wUxW z5nD+6x(OH{Gs6f5ks3taK^5GVH9A>o3@q8WK!WqYhBGt>X+0s}_d2A{PG^9KvR?1UV|7s33C0frZ?I)Bxn3wW zQvob}*N9?Z=v4OnDb6xfknMm|MrfaukschA+>9RR^u%()r?~m}8qIH3U3b(3R=pZL z7a8H-N!5WqE#0x#X~=23b4HroX!;=2@knz*X%P+q5{=~-fK`X9jF3u-qw=k1pc z^idDtE$-WlvOjhs-2&GMZ8@}OYZdWd_qk=7q!a3_pW^!`t+hW1d6&;so?pAynB(Te z5QZ<#{?iDeT%c|NE3(72I?$UbSpA&SD16_Rf4)no9czI?vR1=Iv#t>0%XS`j$a4Ti zwN>P-gCLX1y@F4E1t{=nF@GFwnWBl=ydPc+29SV4fjwXoBlvTe&22MbRq)=W8x(Bu zLob`H!$df@|8_H^Y{5w7$jZHrV+8rfzeVq1BX`g{ReGwz?6R}r>+!Vr+qS>&4k5xt z)z3q>C3R0;*YEycz2WiyX|q&)IJ!2JC0BP;vf+JF#|GN~v~te#k`Rw4age?-u*AaR zahMAPX8k`@o#R_2Y}obhnrz#4lPBBU*)`d=?b^A?uAL{lCfoL8x3lri@f`1m=lKh+ zZ|AYD^IU8F5W)0v=(tJZzXUvkLNVLb_fS?C?-TXN=ob#aK)>{ELMn<-m6Akq{yA7Ndss#IDo@%CV^b zC`=ah@6;hD9bdhAyZD|W4gfCLcf{#nA^o_2sAeL23wS1e)svI)cSaX(E90XbXcmxpEB zNj#OgkZIW^L*_at^ZH~bt;Zq_Zv8fH)wtvHd^myBR0VZ4=GGhIA)E(ndxWsp$sDiy zbv&C#_1FUdldb3J%OuWliSf6W2D(P#@wMobJl$~@Hu{Zpl73#DtY777ceo-M3`*nb zP`}NUzOFi0`3myYanYB?U*ChLvW*EzP zYk2BAp}l&usoBqf3(n=*vX9bmPtasKXK%b=3{WCsnIg{ZDutfLc`P7n_`KZ)X6gz{ z$pv_|9R8cib6=oMuqjCTf+^%S!FuR+19P|(0Xl2!TGBX(m+~>W%zUCi)%S2uLMHzf zu|@;n17JZDh+l_c10sCt^fP9!HSvqy#I52x94}QRvr$XF}c@;K_+>(-B8 zysR``gWd%=_f`MC_+1>oK=5CHO@4B-C$E*VQ0j~nlDA(< z&;g`7YxI9nDHlz`8#tzm%sXoRmu%}REgfGOAJ&n#)9 zS#>vMi@z!mSsIo){?m@4HNy*I{C*!~-yQfE)*E3p;s@HWwACyAhixuN4#`u{~REsTFa#UkE1Ba)ag%v)p?D?N_S#p$l!WC z%uY>P63(Q~@*5Jo{S#_6I4VbI>6#{xQih`tW*J6!uEqF;vhQE3PRucF>~Z;QL)x{H zye}42jQtd^{MExFYrUNB0<`-aXBI4noM-`I%GuUb^x4q_Pl9q|QDx6`P@N_r_N4x| zm?cY<$DcJUr_&4wK8q)do693m@gqq*>;V*>-&u=KI*=NE{NmPSCLpsn5+1g5=hkDcCjZ5=pH z+JnPHlSOJzPvE34RU36(m-Tc(6uiv|ZBgi{ zl_3sg3k1l3fJ7ocjcBoS!_U2!eK%g2qYJ+Y}F<{KuD z%2Oq@Zp1lcPHHLDNglrkM>ALJ#(EWB{BNY}2u|do#XRc40+|?=i%s8}+7G9_-OAc6 z2h)ZN)#}B998(1Na;Z9mJQ0c)K1ZI+FR9%w1a3mxb_GY5D}Xi)ry|K{+wBeQ@W|Os z951$afLsPu{Y;e*c7xNY4u90dw=IMBZW_dSyJKZOegEJSkF3@4SWk2^<}ZWRJZJ}K z7`7fZSYwZWU4|x4mcL@w;A_(2_ioA_)#sx0PE^8mC9`P?oQI6QBMAvaVK&EC8>o;A`b9d1{x}Pl5n$;5%N8ha0;6EUP z%qFP&qK{JlMkJXv+=VW+?SJqLHt<^Pz3$(u?k6KgB`n_`X@3iO_ zNu|8K1*Xt+B0bon9mhJ1F`qj|z9q_}#OJX6%fQsF!m;Vo#sc^lO=E_55&Aq>Z)t7%Ct+ctHCyMF1Ic67}3|ySO;G1;XId zZ-4?z()a3P_8@fc5ADQDuxyF`7VDxuLt{YBhi=^hxKP}=Py0!Ud-Rq^uf!c{?si_^ z9qR4^H=MIQ_zpQN~m5U{d^c{$;c3(C(G{kXC$`wZl-f0n+gNS~6 z8_0CyM{nnupyWQK2tlN}%dh3`8`=FWv~(%x)G5CiINyqsE_{fY=ae7JY)cn!>NvWS zyuYK97AWvClYjY)I8!-#Lnj=wO%GMYp{wss;SSfZhnSU1B6{0>WNSpxLeBVCe84LP z^4}ql$a5d*Hj8?PWP3Dr^D$IG6v&mtFR5h+@P+d(sJ%g& zFX-y!RORW!O@qmXUTCc?v{?o#51ss69L&L*z*Lov2Tu-l^Im{HKQtxCsv`Tz>7c znf_7wXjfoMB1vONS?!EiLK4D_1EYzSzS=a`MEXNiq)bU%OL<7+??i{KS$Z)rW13%h z^xvAy2&2@ZnM2=$x3oleQ0>*r^ERK4f)g5r90y!cin|{S;E_|H*P9_dF!VxZ9d?X6 zfzG7s>%)pCPg%ve^oLoovBK;9jE6l24Whmc2l+f*8?%O#3VM?|(FuwBn55O;=A7yI zo0g(ch+DUiNQEjTBj>wV4dS@zc4|p|W?t}1RCmbg7{RjzYpZ~UFFZJI9rm2NNEH$T z6X7MH&@O@Utt9SP8A30yhvIh}6N2Q{+tD4dKPF;g2kioF$od~1&rta3*^k0rX+Bu# zhC@GJ>V@atPMqJ`&&N&#S|fe=ZU5uTrbiHdLk;OltFlk0iouy{v_*o(Cc}@G@4;r3 zxSO`O6z6T2Q*qx)ULQko=cwv1D&A1>T}WIxdBt2blW?gV$u4TBlquIz#62_`Ax)Bb zQjsf3gioNtnu49$N^cMk{<*t_JRLmR-CeK2&x)=C4?K|Xk*2i&R^e1eg?HoGPm#y| zgYrGr;6{+g_qklH$AFxm|D(lwAy0h#cU30a7nMH|&9@?UWjA?ewN}H&{S>ZEIIsmy zVdhX8d<6B- z9+POl^CuVOZ9;NOqw`adV4l%7eE+IG(mnpeA0d-_z*rx1l{R>!XHt*Hk?qmD(Ii|Nmqk zegXsHNV87Tsvj?oC5!#b1V^ml7p?PrtdbR_nvWtaX_`1dn{v5l*RHvy7k2m%Gx~s* zT{JZ>OE?!jx03xUV)4%p;TDHniG!S1`>H?KK?+}8i7Q5+ByP&v-TpI6DyVli{lp(p zqkF$#3Hbcs;+|dt07E1~>bL|_kifq1mgM9D*{~(K4x-SE?{-iOo9%T>pZ4DWw8uXr z-QE9`9CrE@#O`YmUS)IJYkXdJDz&I*S&Y_2bou`93iqtPkP3cB*Dd< zQZKbid#DFOO$0$!;hyA>S=2E{kqftit|t+M%tP?R*uF zK?l31@J-}|T&v8feSBJCwMYXS!1yyG1{`{Mjtlue|5V-Uggp@u2uc1d_z6+sQS|V9 zeoj`UiTx^@5sDGO^MZG&(L|lC&8;sG_2}Wa(*Q7Pa&?Tt%|R9M{n=ypYY?J|*WTfm z=MJ!?Qy>f}Sl)_b$DciYfZ+1JB5<|gvGAj<%1P9ZYu%zndG7A4z+k}A+PGV=b>oI( zIzON#pw~ihpg>?<;uqJwst}9xH8|rN{U3(h_TrdkN^^R+_{BtC( z0aqd$nr;NW&#LbhaJhP!C0BGah3;1s>SsJ8BSeVSk-WkJ=WbxLEUr8~?NPDyF?TL;ROKWnFd<|AnA2)Kaq0bYqw|_!bJu<+O`+l$R z?*LMJqu1BIk1~2cM|%AENOW3QDWKn#BJ*0-c-r3zF^GlXiHm9|`W)UZg#f#}R^%eM z1PVa7N?Hl0xLp1FTcRM-t0TzwV^@r{CtD2MSAAFOWJBk-Uhx{1jU1CPpHIh^O*x_u ze2d&A+N-kWZ1EhYsC#l_yuzPp2s8^3U{*IHDlff(#I5@{KM# z9m34S)U~>(y-;n>jq>qXDDS;e33j@xpw!8MPrH}x_XvLg(a{Bxyy+uSx1I~ZAW&1z zJpE@{zDL#23u^DU;i9x9D_Yt8>u$!$s=C%BNv3nX{U119Po|*MN-}$mJfuH|Ky@qh zZ#JRO6_I{u#`cEiX@#?s@dZj9iymoYOI%&antnucPVqvQ|JzRb|EF304@-NV^5+%| zv#)W*oZS%bY}9`vDbj;sEfkqjfONrDc%A$qVZAwQGS4+X&m3+3TZ%*87;XE+Z10-^ z=4_{f%r?4pDcc%WVZ~m*M^7^0>Iz}?8-|!7C7^*4o}>=k%4VHMj6v4~uMokEl+tFq6-kb6Or zYu+$!^{ERkh+b_&NL=EuK66VCb!j#ftIh7_YoaL{Gw6fu4hd4qiD&u#s65 zVB+whBZoYml7+s!g;`MTqmK5(5+sI&048pRmJD%ZE*C&g1?%y7Ivo~HQ3YgVZM~*e zjEwj4^J6fl;P$(43ra31xs_!Vp+fV&1~+5Pv)*vRk3VP zPFu~>IK9Az2#)B!bz$vZUAkFB-q3HhuBMWi3&O?HD)7u8G8L++22J04lKHT11KjB? z#0b}3Eq*R?H0kf4AYHq?` z=XDO?Vx#mfYb7nFHoS$(F-i<7W`Fotz~8uL&Cp4ZO32x3nR+e76iY-N7yZzdG z*JXk0gm8k*&kb8^rJVLGHxhqZ_NA|&yiH^z=i#-p50%i}d}p`Dgej)CVHN9F!8~nK zq<*5%4a>U@i)1NeW)%8;hQ&%pI@!O#vJ@h=3+_7A3zpj0dmZ(XT6AP86Sj0#j3Q7qW`Tk=q8s;g2+_g$` z@kuLt)X^)lqbOvd^~?g0=P4%5`ozfq$*ctvlA)3_x0c5&8rcs#v#j#~i(M_<=yx1> znQ_XnrG@KK*k_wCq!kJ$9|XucTBM2Q{CQe#JQhc*_mbBwKVpG|cXt?^>TvoxYGkKw zhbnJY$JW2j0zTXE> z{Y#Q)`R*v*lZ;KbKiuv)i{=k354RnqW)rIGgZWUrT3#PtiOR!2Kt8=o3aoLhsxzow zsk^m1&zbRcf^)`W`q)P|*39b73yixQyE5F|? zH6deJUY>R)o!fucejBg*9@wPwxxBeK2!+rs2i&dLAj5nYn-7=^)fW(&N#}r%d08W9 zY}O*i7{}cG5{~WXD0qF1qN?6fQjLqe9Fi7H^EL3OcXmiO`F_3%hQFU2uZwdr=0ALh{5IB}V2;Qy^z=D63cgx$ zoOwl2VsbNq)yw$Ra)A!iXEx*v6XBj2h#ZBY75wgRGfY@E;N_W3?Eg$Wm*17AtE|wO zx_k6bf|s+hvgLbeL>27UpN1PD9w_@=8>lx_-uO*cz#`V1PUNqPk5yI&l^o7num7br z41x%yAysxyXW#W=5U4k@gu*9VtAT|0*`^!7;_spI_ltx34}AO90_)^)>Rk306-=Tb zl|jPInzSbJHa}M8o6y};<9(S7;YBGU__$p1ch}H-$TcnmiP{D%Ja-sEUbYo8flK_CI_S6ub8e2i>qGMzG4U9}?DRJ5IQAU0sIjOeQTrAedR=AV8aY1+0 zTjI|56T#fP&3e66D3`SGqb8^In?@wT@sb7w0CShB-TNy5ZL^* zh0DRJ>a39Z?OnB*9Nh7(xJYY(FGU7W{`4jEm+!pV= zMUoz4aY}BXhde*0ZdxzMP`B-RDgL=j-iX&5wp-6zkzw~WWysFm_+iiWMQvSW6Ii6RLW3zg|ne1p6s;A8_BhMwCKQi@gU#ivEi?{KyD@n=Wq2SSZQ6#Y(Hti{7hC z0sM0LM43ULY@jg&@nh6c0Jz)_*6yLhv^)u*r}RUm_jJDWO@*|LJ_YW5jkv1g?lZ2$T0SaKm78GB7X=awc&csU+kiIaBpX7|O2 z>3w!F5@|Zvo}F)X7AeA96s^~PGi_)E!StJm53{AbmZ)1}zp__!y7{+r4_D)YkABRqkMdCQ?q z{^|bT8~>pQrxhPVB*`4$bjO-_#F0lBhnWYB)g2pN-8#qc)BMH{nwZDw9+(czTv8;G zn&;~EkE{;z{J;K=U%I#CBsb|GT1dczX7qEMx=>Zg8vUg^7MZL)vnnIyj52<9ad1(@ zfFtN@3Z&Pb;rtKl5MGGi!N z`un>k_h{sLZAFS6_Do^Y4UsbJzB4EM5S#usTW}@s5{5|+B11mW`oidZXtFS087|9s z;j_s_;X;`ZokD8Wr>g`!FXJ~t?z(1*sqx>3>$|FhuOE13ztRkO#GPDo8gYw$)#9IL zTalln-FDI+YIreB)-_yo2f-E%BGO0_8uJM~eP>WWTuvS<3g?3f)XV$F!5vBe5}^GQ zYmt%vC4eGy4ORA&@FLk8{yHsS>kkuq?DN8+aBFvpxYSy#EXwf4sAl=Gx5v-7R~LW( zrrRz=m!~x;sP6${N@A6t-Pz~W-UiPPP6}|hgE~7n;B)EVGM|*-17fTZ&47zfKmt1q zk7frkEnsd{&+R)WQCci+E92Hq(Af(I?qJ%H= zt$Ik<+3k>`3+YZkNkZz+mFqvoBuM!CcJC0tG#Wdd?^N!7%X037!HUe3HQGWE6l*ss zl^u1g0p5dCamX>E`znoFo--X$J;@M>R=UpSt)Iry!cg0G)kvi7-HJ;x_{K|r(&wva znb=$5Lk+O@TT(-)wS35jn^AdnDp`kF5!Yc_>Y{ zr1;^qjM;_e(CVdu-_rDwF%c?1x4k7RG(s3#T5{(u_{TMG(5!k~C63ag_);gphFwHY z=NfD6{#|SXn_fn>-6y7J4I6zjJA|%`?V9Pk|3ylutNU|4!OgK)Yw=}+4U^;kMk*uTH*v-c{AUV30vn<~#kLas zU0=GFL4u7>nZxlei?>|ZhC&+g48tF%kYccao+rtlkxbv@#vAQA1&LHlm@>)#ii$Xk z536UaieeG*r7YF`jL%_9F{-AZO+2m9UjBm~%emIsZBlQER>yxDK*x^*z-}OvsZWO+ zixH;Bpg{$T8##H@d{ZhLshDWMbIPwcy7=YJb8qLqP1wDP5FRT}%qp%~AfRMBceojK z(V2YZ)}kt-MijfvKL1TsW?%U{r<<%>@WEY}ah9sl+@gF4N=D8UGs&cGj_&iIx_AR( zG1qqM;amnQs<+P7{HtC}u~xFOh7qyS62`-K{YUZH_RM>3@RJIQ4p`H*9cjp1Xly>m zc66b-`}5Bk7rP-}30T2aN@|SoMVwJOX^*t(ul`BUkMoI8rg0k6YW`==}I^}PGboa8gPIty}oO_rS zM_Y-x2O;8!eTz}%Rm1&HcU<;6OeW7;LJDW^k-~Ki0ttMyaB65Eh0CL)^UM}B6m9g! z=Es$w-`)agPa7#>WSF*P@t)H!YQITJgY%%~wA3vbtf~JkIue;N<^^;3<&b|8RR?TL z6k`Z|5b6vnOrh6t+tev!N=FR!Z~ARZcnsiazwvYb@WWsxv9`e>~>|A*3qn zw&=pUPLupiT_XQXuV{K&e=1j)0VL$?5VS| zGdV*@s}c=3XLEe%8soWX-Wo@c(EG{9aM=o7FBk7piG7fON9aZI0*j2tl)eT3W-Oe^ zmDB+L{dH!bKMAJ%@BLMR0IgXx?w-lyBmcsaHp-5jDhYW1W1gM+$6biAYa;p87pbOS z+JP;<8)2f&M7|YA-wnT_Eshv!FY6?T_>Y|jTf*i50_oZ)6AdVX{W40Q7q|;{`I1FaIr*Jy3BzfyUfn+o& z4Ik;B`fh?23%95ps=9;dodoYrSKo}O^eQl1vTry3nlJ}uE|h%>DDawizdy?x08N$) zPp4!=r$2wKVTeo%jICJwOF!@E33IM87l^8K4BxmS*c^Lx2c}*@jh(mm#z`XS9y}4t zM*9K@cn0PnU#iYqXCRO2Gz*HxX%8ok$x=sfp-CB4#crzf9s~H^N40Dk81lBGt4D%= z7Q;T0eUzkXVpbuWOvcn=b?J(`#Z2eZ1xkkDujcNuSA=TW4~~R~LOQvCuo(eO5;-keB7BA&-j-5v>uU?BF+>*2q%qcjTY?XPq- zAk>M76rN>q5Uo8e^SJ9i8lCE_SF`OW@!p&XB!F!vYZWgFKDLHIpvWN{Ie7+XCksC^ zNuZWW$>z9}C7mx+#)WSFwG%+`MnK=B}5w=w(gjBM+v-%ahD&7tW~vq zq<8?74jsJ*SCKejI}aSqT@6S(%bGhUF48}e9a`9N3?jUva)k{h2se*+&M>XYqE$oTjAu|diEUyV0uK_)?M^LDgHEtfu9L6p=th8t zwQC(2caCu(S6hAL?yz^oNR*i+84AUjprtJy)TDAV(>J%BKFi4k?k`U&k~Wg^K>qj9H%ZpJVbDLlswdIN8{Krss@L+|LArCn)0d_FqgUV|?f zQXU3wp1@VWJ6dTxz0wG!Ai&SE^l@z8VDuQ3{$NQ*GGS=nk2D^0^du3rJcg3YyLf4- z>k45|Aw0IGC7Pm|;rG_*IbZ&9yVsdn=iggj&Bq{7>}vm)E8)%$$O!j&3|#!F0-R5& zcPmCxtZ&jy-+V@+jo|J!N5CZ0K#duiJ*{2ma%zDsqAL zHqq_=3`Dxr2zTkPiP6z<^9bmF;kCcqXNP`NBo?!+Z}_Vr;LpEbIkcn8bQlh_YBq%6 z9k0s82Vue;)7_B@-@$AnYwR3@{ema#eh!ZeK0JC(=gXVaL%>j|#^#Sb6?$+~INzxo`ea7KUb(JIvHng*UqD6*Rb8bzSBRFp9SBSXI>eO zV{+;R#N(-x6$D&Zkt^1c>RMH;;*<&(P#@SiiM0sA?SQ@QnfVdL)JK6y)h6oW%dIQI zwc^-Xy<#Z{!gBdo{1(ld(z^hhT6}q2vzchMmWDhDpA~~|q^|=q>s=?4TFH^xp)a#> za^hjr_A6va%>z#od!(_B4NgK1&NTJ!6xEB8$rNo0KfR5`a&*mS{_oh>GqtltonGFp z&AoctCVbl6GD=4qxW#bhC$J37U?J;%ieadlCTbvIG5<)#lvK*GnLT_sH3jB$>K3>F>~u*f*UizbsF!JO<5YU1scP#B@D>+s)+5}(D$z$7 zkTCznw}v~x?s&&zQQ0o8sU~md!M%YV>qJOi=sH8%mbO$n_-F4OZalh z+H3LzyVdf_dhjGoak$U$4(>%S(IzAFoqyclmE|D3+JN&J6QwuQ^*Y%NqQ(;5Mna8aJ1!TV`D4Cnk+9$;@h*eAtMdESeTz{4I`(bE+1 zs{8>!taA+d>lLA!eU8QuPn$bEm@m1uVY`suq+Ik4eC@OhwxRPsZ@O7Tf}o}?J=(yd zN&4be&hgVgY~L6J=JI1lE1;V=-M8$^c-!7Clh0$o{SqCqA741gixn@LC=*ff#Usl{_IAjIB!Je0HB=@BO;;#e4B}pm66-hJ{nvtnWErixu(*i1 zCK4UsUtI zxeG!*v+pqbArhh28@7(ZXC>2no#vz<5A4-o>6a(0)-H!y9#;|LsUzQ&FEzv%V=?Z! zlRcWAb3Eq)o2ToiuygZ6Aw>>+lEU;o)LGh3kLl1=UJk4x{f^btXR&GMU>6D#E%##kr(kMH)8^hiRX&h=0B!`H*+x`_egIOX-8?GF>w!0?fH`G`a=8bsyiAo zJc~eA>a`e8g=M>>0YLNa`<3~ALI2J~69&uEHV__K1(20Qc+wF1DC+(7pWaRC z%S-6E6#^EVcdi%UypJpyqu~)Vt_g&W4rS`;1dj^dHVI+QF=TjoWT(z6Egh~o z3-;zJgj{ORZ^2iF!My+x!s!cdfs3(alzM^S-)R(wN-0W;QHK0i(zy9aj&S`^u_++cUXyh2`5c4RP zb^g${Gv+Q2&9I~~w(^VzxTik-9z6jAtrzPg&cO@t%w3mlkrue}(jw-`sR1+-9~%!9yQ5UyG)BNn+@v1sqzXY`@AO1_Qm zoo(^{%7-oQ7wPH!nlC((ZD^}+gaoZayNHJ4>&D1EUuyG&+ONa zpUlV{=RhD`NxC*m{B9P8!qYU#*1Stwxj;UhCBmTPM7Y|lW(#|=YdE`wfx+Cq>r#V=*!T~ zdwio0&n)yZ9l%X3X&C7PASKZ9X8p_s`?k7Dd3)DgbQhBMetE0NU0{?QK)NihvvcI| z!KJ1CBi8C1$x(92nER$rj}J}T|2UMpM!DH%-XaC|1u(;zakWjHu%32qw475VBH$uE zDhWod%x@6%GF297HpJZxSQk~FHrtN7{EBbL@WsX>_61yfmw(P{Q8ZNG`Xw{NCMFN# z_WJ~(%xQrUHdVJGgUlss!#)_CwT6H>k9 zH5l{2yG^zNLh=?0ipx%zzQQxCdfQJIQ-DxSy>9-UADZZVi^TeEG{PYbSplbLmI8FB z?`zgmpp~_x-!1$=l7kIazEjDB;P+}vzkM|&71iw_JIpIsZ>0hn(ZBq3N=zoiYmx;L zJE$LKe(0&Bu92uH&%v9mQwiW;2wjws?Eqr-m|@1@X1SSr(dS0C)9N_^hDI@D_TFA8 z*}pJ;t42|q_uGZcANw*|$Qil!FF_}(%$wt7rq{h+L13+Gp|;V^EQJcQKJVXJFPwAe zxo$s&xbt=Ago)c+9g^^=Y77V_GLl8-x3DanDXGE|=S2kim_&MB0ymNSboC-r;1UCwiNkCoZ6w6Bm z@wXv6Gcl5HfTQ;F(v?)67!xT!KD(o&K#TpWH#2^-1^*^AtCyJj2`=S$$0@R1!~sRs zQ4)#a446h}^L}tP%gRs%oYz%nPcNG@k%#JvqQPR`->ZfzUye)Zw#ys2riU;V2X8zh z*?%$Tn92{Xx3Ju(*9yIHbSJb_Xq(8}o(KJS$fSLMq}B7E%WJ15e2reAHQgwdqFOo{ z_Me!Tl}WAlW8tV!oqX%B2Jd81M^Z?i2NL#G?VPgl@Dg{dv1L5SD&76R4h{@sD$6=& z@QBj^9maQdUS_$+v6va&{@p5x?sqRKTN_FCGQOYdeIzB>_YP6GZqogzL)lknJZSEx zsVnd6RPT@vwH}*v5z;zhGWLHRR?S!M17I-OV^i(TL)JRE$UakZz!rOGn3JS(B;CEBrOuT?dK3EFf z#GtX$n98FL16BGFj543IaJ{f^Z_(9G0rM~EHQopx4tfdKn6aV|0lEmECLAd{gH1J$xSMSct zC6Jw&pMsc2>7zjo3=YOQ^@{mo5{c&dEx|8!9w$AeJRG1( zq8{8e%a(7P6v>#}KK0Zi)2(IwJA+n2A3}=95WBR4ydFe~GdwUW*MyP4uK}1)#j0oX zsS}`h%KUS_%y1vC?h6Z4o0LRc5{4e2|qN(v|02_spkjVJ{2Zt5|}3%uYe zxBKA3f1vM=-WAqAzTx1%xHKx{95~kfg+0%+VH%cuA?F&eAl2!o+NyY(aztN85iU+^7nK=EEjgB05qZ>r)2$BdPdcs)3h67$0o zkT@wW++q`+W6CHMvW}ai6qVG~tcVbOq$kwTDnogumh&R!hXHBi_}T)ng30Um5QIQmTX?UySu6#ug- zaA(50ljmVYQ79RXHr6xfu~3R;Du`B$aET$VChA^HXX$o5y@4im6VA@n-AbD6L8Pd! zQT>2~%jbEd4EMC^Bg1hXnxeir=2OxUu_#SdsN%Xu@=wXjBQY(o|L%HNmbY8l%gNh$ zcQP{jdpUtdfKNYmD|pMhMQazYNr^XCo62+d@Cyti6)>N9L7wOXu1FUd>a*91l96X4j_=s8vyWDfuJF95%!vN3JKj*UJ-0TY0m2J>DXbnk z#Baf`#=sDb2|bXoiJHDbx|l{;->QlkgpCz!s>b_tF*{Fc{tY~joYq=nh%X6cpzdnr z3?DvkYn0_bykAnl$?1iTB@NYN(*nuwo|w_K944PmH8=&~^BjF{WYkZGjM5jHRZ@Cm zdck)r4-+P8UYokF7J+|SZ+fv_eWyNvykR4(^^s@-{_rmYTewn>To* zP_`Fw-Y(DiSDg&#xmjHtAWi^Xx7(_Yef?_@+RnXL_eFp*&D)n4$OcU%SH~&}M|QBH z7L#gUiWwAF7#|KWq0QsszU%W8MZCO&Hwt?J-CdMZzW(ENPHDdmmk34i-@veI;GV+o z?kzP5r<5-93Tf{b3rQ@zF3gva_$FyF9&ON<5+Y2QgEC%7p76TX$?go*50M@QN?XXV zQ^J?tzr|7%q|zTwi4vjCg^4Bu5~fo)x;Du#Pr7z*C}>^%*GdAEK-=8W30b>JyeV5J zX2y*hzKrmfzKjS*T9bEe5-!J%{Y9|Hq8Fm>=+#6h+fXJD}{s zQs6OBo;5zqq`sUcY|mCLQXzgaT4sWBAONQ6!jhMgd%IgsYmAFZ_epDJl@Jm;<|c0FNjFn#TDuYD$@n=+5}K|Tp9hLVelN6d?@iz8ey_1b zs~Pu919Vnh&c=NvQz15Ahdp~PF1l#T%a(E(+8X|1roaf&IJ)$s54jX4{+(ZpA(GTU z^H_K9yX#kEuikqeL17;=wQS`zlFhi$hl= ziNHoPKLRmTDaSI!CIOQlMB4&3Y@#aPB8L>}xdrmOW1e@-{)64c*!^w~Ir;Ck4Bo7Q zp|0Quw`>GA9XksfDfu~aHmj=UCjyc;Ak7=Ftl(g+`nFjaK!>_%SYPVNv3?g|!|bQ= zC#cVUTs`sox_L&#q@>Lpj?J0GQbFYMyXQZPe{I3#-EeDvf0I?!hxqH&GnBjdX|STV z4G5g5Cm6^EwZzK{%r{&OAs~SFmEW=ijq*_#pYVpvtGNkZ)ua^_P|}|)<^4GL?Wf#L z+aD9hG-a@W!6s9baeO&xBwEta-$)ny@Ven_1};vr@shFY9;-A)wM7R{5GHJfhAszf zE;=3jZ_$y+yccT!zR$mE>{jf5ULzgjRM!-|yZ0)>>rmiBdq$=Tn)w%paubmXiyVCU zJ2A?Zk6q>hCtcg6{vWb1{0jyj>xiUU(pUM#i@*{+7KZ@RRb!F#7zDOaACC~-arYwU zX_U$0fU`e?)qsL&la@U z)J8(ch>G4m=>=^P9KBpMit#m&Xy;3XzeF>Oue`-}NwK85N~if$f^*1s>yUYVBm%(u z_&WwcKX8X!c_acTn}S%pdR4duUY{T7{jekAN2+EVv6TMEx?Zc5Juoh+*%2vIHy5@W ztB60{A-ehbdgY$hK=8E(8ey$_K@$@N8_d-xo#2_?Rb&PRPm}x3VSZpWx#s=Yk_t$8 z1W@;MB34`7m3`+hVu7J%6zvFogP>av-~v~;tCbhmVO$1c)c(%rChcPSvex)43$L_X&Izdb*TJ`by z^JSWB@mcBqA}nL9}v%-B4HwR zhs1MiN=!7~iz;Fge4MR+Ip$6bNq1Wo6>#GI%1U;mILi}mi#y)I`6v$ka&y?XtrE7$ zd7(l(zLN1^Qr9gIOBnvvQWzT8zuV%#z|8*AE0A%CaAsyMMPse-W#(x)0M;vVGNHW8 zqW?nZc*tQ@(wGArA5MtA@@<m%H@;k`doSN|Cu{?%N))L z9CJjvMa{@{C;<=-W<8X#H^^hWWdwz^Ms&)1#F`;%;hDWUT$XT3i9-mW91^$}zP3*e@uJ|8ag_iZjv6GWnkm_n_&Je|Et>3=FCP{B^jpjQ9Hs&3 z1?{(;g8xe~4fkrH7m`M-8&u2xN%h1Ax|STJM(=481G?i%*yW!w`Pj+2TF9@y!$D zy9b|F$1;*`80te^H+jfe`n1kCOzZa_D#sNq&yRP_)$EoP+BSxTZqMdxG4YB`+043_ z#pWuUw45)Ps~5WR8XdLnvM1#9s>OiZJ)#S*yf&$>qFcU}Bdum@{`FL2P06*a=>+>- zGMg?)W0wv;5q_Zk;&V8I1ZVP^M{FFaMXmDATJ{2!J-D$=;ps!;%=BCjdbrK*w?wm?ayd$Cm z=V;V-u|5h5+~OxyX#$ra@3-4H{XBr*d2&D{h9K{_eyOPYph|t})zm+Go?{uaV$3&e zhx{l?ytCl01mh1!-*G2(&)y6hp9*H}MA1A~%9iNHDT_q6HClr&FnQ|#aFylg$fB`Imva{c&*ToO84?!{V`#M^qP?+l9+}^H-%qwS^bAx<1c_1V+aWBu0F9kFsM#l zIv(ENk2Cr<4QTx6MGV6QPdmucCJC9ita4{!keE=eLl;kh*E_P$>nVUir(O|aD$SV0 ze{sglSFD%ktnJJ<-FV8+-L^wL2H%H<7v@VQK1>$F6p8ZYC7fd{^SXgJKih6qe3^5@ zlc6|Ws(&e|81TH789Ix$O|$1Rl~!$*Tf+9*_t7fxDN(gO=4!Y*JjW4^a294Xi1u@e z-*0D`$L+o*Q|$q5ku|D*==N?gWXO{8N=RTS=fJ}&IrPTLS>dXBAUMMZ0!jrjl`n%) zEd{s75iiz;PmK4)oTr*lDe!&Wa~O%#$QbJLh8}6u!UX-Mb5Uy~$Y^lcKjQ=S5*pK= zFph1b>nqQc7oD$uCPbN*qv3zTSDtdxX=c3UI@bXm2%SqZaD(!J*}J|vMB9fg4zj7b zQNe|gnQ+_~aOWj()JBM&dZ0l1_q#ta+!oJ%|&0TxPN?ry_5h}%E!9=8s~3e>~wiL~m; z#`ycvb33)-`mwD17w_pa{DM5VGk7|uvqMTP{`!}S1cC|^fAZ(ZOihtz68Epy*YEzNB)O(oWIeQ zRVOUc4xfnj^8RSe+N1XsU=Vg8HAeP%L6d-m^}?7Zsk8dEXX?0u_plJfAKx-W;U=GFt9>s_5-~^s$8wiAsQZw{MN^KH^_7t~2rk#?H+fXE~56sMdP^ z7CPR4$J{c>$IF=Jb)r!zSe`rkHIA7u=r-;6-LHwC@GOs<6 zSu`0@WP@FO)@(g6#CG}5Pu8={Y?aCsbn0*7Wgx@Svs!MofwYR_R_MWmNr7Yb}}1Rs3~J@J=(pe z1yB=#N+xQI=&NwY-#dS8YOH!iTSt)Ru5dI1qg~%y{_NU&Q$W2Y=K0ClX zsdo04xOc4`{`K+gnlD#>@}{uWcvAGNe{J*-%b&vf#1U^;IxQM4R1O&YbfISMvNj%s z@~i@ldXTi|mkSFT&!V>iX%m-RJ6q@;>T}qGl;4~+JdARD3mHkGCMSrP?0 zd8t!KOPnlkyKwSZs900J<@J5YJhTEByUx)1O7iLZt&vNgY?+>}mqypOfX)2>S^8W} z4+dP-{1|BFQ9L+eZ_nt_O3He_qP`^Dk0Rp#I@Ltuod1I6jY`SA2T^tfZ zjbQTTz^L&{80AZai7S56A^gB@pqGmJ?0fxR4c`(`yQ9voEvzF_0KI#~Zqo10`-2;E zEDOC;6}7K$;*J2vCK*60wOhQWIVj~Y|AtGK5D=r|3p$Tr_UP- zl|qGu!E4!(6YDY#pqcTxTK-RKpqO zmLwDPEs~ND$r{2xs5UO;ZN}ZtXrXY)vU{Yz`F$~Gk2t1!BMF$t9x*fGf}jJXwo_&4 zS#a%^=oi$!W7mU9tS6V+?`uN=kEH7cf0d_U?`t^9`97XbOLvKtr)506TV)Oep&r9O zUhh9QDHs4|cXo@U)>hJYxr z6y3jg*REzbV#kT?(upi)$xt(v>L)9ls=yG2X5IIuvTIr}@Tly9{cd^GJ$5(@x*!~_8 zG#OsJk?e=CWkxTHJ7=x^F&kNZYL0=ATCBM2WK10^CZ+LNJw{IVK|yjgV*gcf2s$2=StI}lWq~;GkUxHx==2!sgTH%KA(%@B0KZ2XzBNCVrfO17c692c*!fi<0_G zenX4fFrztcB8N)6icg*Hue`Tg83T` z>EdnkVvq(K4_yn%Dyf_(Tbk0}g0cdZ?980-m`SG@jl8*JR#1U>F>?5*Cum56y@8VV zz*@>@vZVwDCa+CBFml5%YsNhiIxVz!EDCB+{!il3cfY)V;WSj|Gl4jgxBldF=$1P% z7YhEY0X#_5TM-zRuk2&!E&`lh{J4Ri9T)p42rB&2@(?e_BG^eWHbZF%1co7+UMR2$ zj*XGbG3?GBy&3OJo*H@h5%hxQl_VGfVfJNN!_bjx; zRZ4~qbgZz#n%lt&N56E54$Y>jH_10G;U= z1Z=1Lv`$DnX==oNK;1g3q=b2XsKF)nT-~8w4)ID5G{d{_oUrf>H}Fn^Z%H`t_#FhWIio>+iAoqnG4S8D-Z;u>2EbEgfp#M(`?6!?1d!KTv9 zb?&WA{I>>5Qa738uf@{RDWrg}H?>aMk8%2I#s4-+F?Kp!n%)CBuvz0}RT#x2TBesG z^axiWMJaxUvm%kvJHf?wT@|XmH)h6msYD7P6~}pCLy2va@yn|=q(ntuCj7d&9}~9G zWH3J=In!?cqlsvMnI+Il%fgE)R%+CUxG=46M-CCD|{6Ie%^xg=m zlk+#Xz)Uh+()zjVzdjz3)k{KCLCb5ukzJ)=v(IL{G0u_Xc+>CuQ(mRSXzQu4Sqfl` zzT0`50z%@;P)H!^y7*1pP-7UP9}icwH>qKLu6>;D|{;xI2*zzBGw@8Xq z^p4#GnQT=G9~WAwB+{`@Cj@UEm_>VDhIe-pq>Maw7XHb2k%pf`Y~Xjp<3;|yHb@ud zCGrP%Y`kFEm$tDkgyQDNbw$pM+sPkWb1g8>L5lW{_y%M4RrKuQ;UcL!LYKq+l{tua z`gb$@QO1Bnx{>iz@bw0qxPIB2Id>e39IMrnMX5wJjNpk+?S7A=^52>3SQzxeo_m%B5 z);^@rp&e?=t8oZmennnqBqePiC z#Zg=Y3WP@eWP@kC-`uV^R+vH#qWbcM9oe+Z| z@D~;0J7#>T;2?!x!WN;zx|eySyD%w zrMop$k(F(yId^G~3*B~>8gD?ZS~<6qe|6E#Iw|#^FJd0A?YL>2+aa|feOdT9jx#Nb z4HiIS6v3^^0I|SVI>Cz#IFlZB>=fb7gY{GO9TV46f95Nu$Amwb<*r}&eMf$u7=3KP zWMjfJvjol_7AhjG_2aDmq@(?#c~8w4-+4Lw2{le(HRw9IgUTXW=tf($Slx5XjUf|J zraYX`Ce4|;c;haf-sDI#1i zO-LW>gomXl%AE?)Puc15;O3ZZc`eCza!F#!tlrQf`8$V#$sGQyW+c(aL1*#e^DM=7 z1a1I(sWel#cR?CUj$&mbVd!yCf^QvP(dUO*tG8opO*Sx}korV)<-BCpDQ*DcMU%~w z&((j^@@1>bf$+$mVJ?NgsFd+LWqKE*ih)jaO~!Ti1Qu2$LjOHfrJARn+`hDCN@Cis zS69@h0gs#8wwMpZ>l%thWI;DpJO60Qv~|H;C7VfWA9@5Afrg3<1twClsRp$lnfh0~ z_ZtC#R#?3q`D#?!RdoB8B>Cot)d>;ZVm=34SIUsUx}Nw|x%GWz`3kgmZ_+7q^@a#vbak>ih6U)9ii|&muX+ zelEtqg&$pzva%OMDGq*y*pgxBB-fU%S`@`^a-Tf80qg|Rm6nx<3$Dp-Y~Q?#AQ><%QkzK?R+xhcshMv~wDCSmLud<>O8 zRM9j!4vJ`NyqrqlbV>TMGOlxpRLiI0SWO}QzeZR;$J^*X+&Dx{^l(~K=@Qrc`7B9G zKWt;Hh`l1_uQ*=xJ7r9F%7dmJVJ3zMqhwCuO>5nWSwFo_EgmsTKs3CfBji#;SL6nx zC^93P2ma;>Nr3Bbi(#u54+RgEWz#OP7-K(q{<|jvEKolU_>rzFP$}ObsP5k^UO!)7 zr^PH&V|ZG+xWNL^DClnMPKsX*NO*`}w1;%n7kB*qg*{jy;@5>IskRYt{EZfgmO1uC z#N52LxWx6jm8u5BxSZb2+c|=pd4*(QY{5>mJy&paSGIvnlrbOouM6!0Beb#^*tRYA zCM7FkOu6ZJ<5q3#39T@V>Bdh7_g0a zlq6Yx_ChTzl%Dj?!_H0dSDPn>7V2RGnTh~vYuMLSR2r{`@tTQECMhOhLD z2&D{Oms5`>ix7a$;}i2Bg$OQ(iD+|kBG?z zbgeC730y5vJfBklha6)8-Pn$=)}>6fWu7jDP(o8rm z$AT`*0aQt>Z!Md)`BLhb@z*lrWWGew1kwO6%=`e?x2cwt+6go# z`z-lV!g?dvopbt7sW{EU`2g<^tJrU+d&TYNOradT#(uAdq%XLK0+K73{UOsW$?Q<< z(~|kKKpgt-azA;E8tw+j*#-!;3P0HR%W+?Y_I`9ENw?Oosx9{HqT4WLO#d45{?#56 zAAT`n+QrMWaz}o|u|@IBWFKnL5uKDuPcFR$P0#Zui%v|qGIH`|yYy?^U7{&OQs&>f zX;uvzxZ?!dIZVO-hezM{sJF7YEdww@db(D*rcs*OR-C~?B>jplb{Q+(@2O$zORA3k zKXj8#*5<1YlcZO_P_)P+SKLNqY;X)w$8mu>o4g2)4qyUUOW9N>!sSh8|Je5a$|m&P zAy${>JcDT156@9(P3Tm;RXU=Vf>QUy8S74wo}0%kN=DO%oZOS|jg_WH}AEP>!JAzKHpOMoDtVJe&RI zJfH#iOlD`CAybhtP94gz(1pz#iSu=HkMm3@V~LLBaNC8FI+)Prt$|v|dJjnu*Qq_C zO0AgoK0T>E6=7BJ6PB7vj--K=8hV`x(@5oM6Zf|Us*ZJ*X6nfTY7&%gQ6zC}wFj9y zx_7CH1e^$GF^q!Fu<;TF!c0rb3D%oTZ0Cnaw=TI42*UzPFGUDTZ~`V+t3bbo#o8`| zO4kf@rBTOK5Z&`}Oq<`UrilGwAyzFJ|CqPygHV=90eGM%`)Gj{0_(8hy@FVS{CJH@ z4Ai7H<}KLD*3qcIZ@3#aJBT}Z1;cr1HxPM|1{G^>{z~cavITv(szj$va@9$wTk&P7 z6#N5YuAj^n?1ouE+A{6Y9Z5|*sn6y92ZCFa2?m}WZqi*|(nU!n<6MZK2_IJk^=Rlx z4Bj;F;PjW@%{%if~P$?K*gQ$-7$4?2$ z_4M2#Qpt{b5*g?I&G-&CR&RSTWr%I&rqSLrbL!D1r4g$6cre9b8xo~sbxseUXrb}< zTUhf4O1lID60m;!2WrrZWaO6PLbr45e}D{Nap7vewA&Jr;pfuGM@O+g(3D@DJyj6< zcD^%xWru%e`2~x%j(RH^q-8j3#QgNZHlNh~<8&!aW_FB`jL7>2 z1Il#51|k~C`%duBD$@5xn}PWRexVT(trylmy$1MdpABB(1&B8me3JqP@vY*Y1n6f& zY$)IIy;~Rx@|5N_H_Ff)h1ZTYq0NPNQO34;P-1>~+06}Th@0dsnT6NrVAL55g*SIK-TrwGBQ_?r`jPxO>9oXi0n$RGpSLWyb6$=Jr ziTjxrpFn*0n?sB_@Jd6pH`a$O)m-Wv2Er=+EZDLqbL{1T>h*^?lTR=i2W5=hdZVBv zjXWe6|HppLH9qlx3ep6^5ODO_5z>C1YI=1r(+D954;Hy$qaz9msMWwGXW)`K=e;fH ziGn4=31~eUiI#2KLJQ2d&*WP-Y@sE%=he#|AINDdWLQ>NpzVBH(_j%o@&vSzsFK3y*|^eXEM~pW{-SvPKif?!j>E8i6=6h^fC&g{}_v+>#3fQ{~k|E${Dvci!cX zY>Q%QAekF5X(N3Dg3k~(k&X>tXw6vwFXct1WD`RPxi36EV@s%nN-gHqfU;iIs+ zl{4Tp3Gaz<@!XrTvDqJKN2re4@!aPZq<{=JVc5%8TSNw3XEK+Y%mWz&>sEMcr4Har zKG~mK-iCrgJo20IV7sFgqfC4=TGT4o;bq^kTic?1BPc3?=XXXGe&K@m4JY1%d4+ce z+k=)?vWa{V6#pIsW6Gur$0+=r3XHY>Ge`8k9^dIIcd|lj+*e{wz=8O7a|(5Vfi%&_ z=4ymh?f^&*wy9@UnM}vMl$Z$!DcL>NSp}2w&hHB1l_3GRLCcRe1l}L8bpyDCt5@w zo#vv|edE9a8(PtI9NkMz!X3XDXzdEe~R-P+zO>O+wI1QJhN)NH2GViR`0K#dQ4 zLh_P^47otE&1U+2K=6>5 z_G6!5FqBLvm0xlz5xY>Y%4$BCjpe9 zxaR7F+Hpi$d?k$ZX)J+I zb)IGE$qiF1VU-B*_`GkkU!& z$?TQP=Oh;&Awl%Jp=&7OlAc?Bn7=K`8QOl=ean0ST&5uQBC5uQ0U}0cc`CE!E*q9? zO4p1vopFS@1$_QXaWe6Q+>BOF@l=Wz#TSwm_6tZ};4q7BkaHuYcqILk#99>K%SYZ_ z6@VTZW5&TRDjJ6RcIvNxGOb8`)|~I_4B*m!2vh;LN43MK8;Q(@alSS%vMzl7?=YS@ zS`#TpmBhNBDUHcZu}~^6`2Aqsq!L>eBmr&&hk3%f{VJID{GE4USvjo(xf@l zqcTF=Fc$=t(z@LItJ~b1*fywC|HEy!FxX+^ z0Qc4M%)e_EJzL51+zb@OUad}?JEzRZmPOB7cb^N6t0ttYKf&=pDHdxu zSazU|>h9Ev*WFCgJ;YOM9fAb-`EqD*)>hDavFKRJ_?+fl#qCL|fVe!3l1Eq6zSAbMOH6vb8qeHTy`*(7da_rkfh)&A zM^+nKCnc%&OAdUBT9m7y69I9iez5e5Pk55`8G~pVy-VA>dYcI)>z5L2-yCWuJzgoB&aM6rmK8#l&0O`^{%%hcA-oMNQh<)=A=da6Ndb?oWe$?p2CF9Nx9YAFW788;EXZ z;!LQF*kW!Z_@3V!JvULVo#<0*qw#Dw8v>h|yGY_{`#zf0b-&+M{cO~G;GZ(=G$#D) ziGer)IDXGFCa0);=Ui3uoX;OpmsI^6|116C-kHxSG$uCL!30$#pp3mHZ}V&Tb^G`8 zM3eNHMuxg2_@yOJoLsr6!ao`J$k~&&wNkYU+gu%AHA2tBn)#Jx57jQC(~#^(T5NRR zPLJwkH9TY34{LVf#VK#MS_N`(0v(aN^>I7R$nIlh&abUg!%PuV3>T_?+Fb$q2Nm21!fwoptx&C~gP$TP~>!Hy30?D$iVK(F#p|EV6eGR;qypD#@WyJa3!XmZlIZ( zYaTp!a7_K)1DN1Fo5mPwHP5D{w&X0Y4*hT`0)5;Jnk_o z2%9fF@wtfy842c>mJX8OJu9|_$JIiFwRoQ(B`B6^OL7&*9BMlwE;@7OPPyiU-qV@+ zQb8|gs-QUDJ!2o-Eq}veezN__65*)&dr5rS@e$w+KT&;a}^$z65xO+G$1P3D!3_Vk#u<954 zshpcf=we|D$YQcmbRrii_Vf<6zmJq+l4p}NquLZ`_cP1o=RMyDRDbp^icZ?<7o!90 zKl(>+_(N6u_wMf(w*&Am{Tn=f?k4r5%RBY8ll)x6>NcqKZ=NDNG?JlFzU&IH_n5z+ zZeKs6RPhmfwn2G-lDYnVWyUbn&e{7i=9Y`1`QT1E_9%=@oqB?t$6>ONs#46gB1qJs+o}mT| zrcj1|PYadFBL}+_;sXN|)I-XLUMubq-UIR@T-%U*gKxi-*{EQk$!(da;}` zczZ}olEwPC<8+D&{i-DE;s}nplI!9F0n%&(`Se}DDyl&r6@iKLqB8Yl(dX}il^EPB z4r>`|nefd_|25PxpnuHM1%l;d&u{YM4#ucP_$u_34AC0BOH>F-t?`5Sf6 z<5x#WqSvLrq5Ox+6MC1=qYe-&oR>U z)TlApN+pmxeSrh`$du*9POtX?LyVPj#^n@9-Vl|)J&7DSkv7C%Os6*KAF!SNM^E$5 zCi1+kNT}PepKpkOdrF6zJY621j9M&oHyqm$|D5xi?enh1D+C zd4!)cGM&`J3%0Z4C zUBK#`Y8|I9S!LzBmtsVr&rW%^0d1O^|7X+FlS*!bO$onl{Yu$l{g@}xv-rbKU2hDI z;R?C67%|N~k@~L&+A=_jQ`N5Afo6gb=#d7EEgQ(BsSi^>&E~m}h|vc&J;_owetYo` zOPQiMyIUjrI7fqf{&%xtH7^dTSXV_N$b}7M&dTW-d6!^7M~XngvdlS|yqPWC@B1=r Z@0r^EU$OF*zkD5t06N~HhFv1O`+pc9)p-B_ diff --git a/data/Male_parity_mortality_list_UK.Rds b/data/Male_parity_mortality_list_UK.Rds deleted file mode 100644 index 93902e0aa0d5601a24225b59816549a4b6f92832..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 45416 zcmbTd_dnbJzyEKmDq3oXPk_ws)J_WT2`m-}r!c;j!7{QF0>O$?Sc0bO4wxdD21sgYjEg%CpZOb?Bsp;~o}D{`m3omC-AH-~oAlX~z*Zt4xHxaM7y156IzV<$$L-=t?c`cEC8tQ(+ ziQwY$kzZfQh*jr_C8O8i(vn|aeG{S19(yw}TApS3%@+q6dJ`^fZ|JfCq5!PU6w8w6 zDBs}y7*PUK$S#s zUJi$#KLog%>^WTR!7ZuKlk&uT73OQ~(LP+YFIUA@E`0 zypa%UzhT&W1@%&}2c!SIIE=%k1eA6fX$NW9DNHh3Ct2ux{Uc|A+AkJ3IrLN$qLlD9 z=V5uol{W#99MvWHW`_Z=%f*A7n2c-*VHXNS9msO z$c*SO_zxC`5J$=Nn-aYo6y-s0D>J-1M3P7sjyI3I6nUtP9TB#pk`Q+1yBBWaWD9S{ zC+4nb;qU;%q-i4vr|mf^=`qC3=C8^dd&(nmlc}B3gRn5TT*uy)6{Ny>onM%f%<7Eb z@Eqp|8BDSW%y~oW*Z=$~fKNH^GPZQgshE@q>`9@SCkMdktv^7N7&gA}3r;*wBhNLm zeu6K0f;yT1t5GvY9_~Ewlb+KP!pE49qKl58Hw6Y^HW^XivXwaJEby_RT85V3eIzG+B{l#2N8r$J$lT;@EW1C z$24>XAWCMQtJu*Qw7~Rb+$$qOf~HRgr1c>qN$6KYNYViTM=TAJ1kwUB6tE(5%~ zoyJK0baj+Dd8xZ1dvGxqkuWs(LUHb3|r)w`PqP!cF=`H~PI& zu~b3vyXGLLHA9yt7K`XG|NGMEE%eH>V`RgYynncu+BD?v=iJu2A^4H0n`Zf=*R%il z`**LW|2p8l&b)Vi)RbY;wReZkU(kiKVJzQ;@&T`=_LaV8qS{i!;=BBG#C^`w0$qVGCfX!qJWpPQih@$ujl==8hjf57rbGRR4=8{YHc`UGQlt#9gp zxJ+`tZsMQ*33`475^IUOx^o6Mvv9@)Y}+`+zF6UbdA;UFRWZWS#orh7{}{jvP!|Zf z2h4|%V@fm1^qp2Oa*w4fUq_C%-|DGLaW42K%1D=&ANfMS+dk<#kCSF>TDK-7)C2Js z!_hr8%k+Y)xjFpomC6L~=@~g0a`%~Z!?KG0q6&3ZXNk{VrR<1WtAaLrLJa6K;MEML zwA696MWD1s;_zLqNfJ8kvqSY4H`c319Ymx1{6|2ZX8}Xbxt^1%Js*5BkI8fsb=|1v z;}BoAzE*~OY!MapHlhONf9n~Ph1k{QJz~uf>%MDf1!<+C8^#t6CA@NRc|D%-RJxu; zvjao#BCSifBkG6%d)(b53iy+5v}${VwxUq3B@J~TNDHy~{VKTRDJc8GabrXd0#AA9 zIjnl?NN|ltgTuv^A3J}qjDxOfb8u_M#ba;k@zhNOvBUbvxjBFmg$&RVv&tYj;sXU+ zdPWHwZ;f&(`4-^e?hK19ekpd zOO0wP&I;xootCva!-c=+M76G*70K>UTbymUvH}nOCkfwAM9h8OVE&CGPAg z(Y;>dx=vnw5D{XYGOx@|B>@S6<|j`|M0r)XJ#^N zWkM5~gzUqb>XZIjD-^FI-M#mw=^D4*{bA`O;e&$0`^Wp^o}X10TDVU~2Gts#BS=8! zT$ut*a$SS@?r(NYXxfYF+pW)}z;dDM#0xNamuQ}0xTwobFHzy5Th`TNdPOI%5DwB_ zIoNFmQ(cOH(8YD>G|F0H&P3-!JrYw-D!x(p-8a_pKBpq}1yw5dUC#hF8(Q?#IKGB+ zX5^rTd5P)~@2w#_mw&k%I$@on{nvO1m8E!`w~#qf4G92S>3?p!_23|5)2H{TKB88;oZcUWYbQ@ZVPm|0mzB zLqxBz*GN}fv)Y4qXGgr=?^FNRjr+kg)~{Bd4EH*Fjgt6V6BrWG0AhA+(>tjJ)09b?d7qR{~HyHGYYDFU?xemSaS2y9;+N%SF9O%3+6ABfv&%k;r z)}0msq^Qr!`I-alQ1kaDE!e$6r|?VffC(N*R0eFTZJi|CwG3u9LXNKdXeIfr2f+Jv zF)tX+~;8BPVo^X$tm?ZgDgQQw_om*!QGs?rCL3s&tRW70UGr4*{Z& zf??miZ&Q#X=mbG8DStUfBSjB(?lqg)CHq@YQyh<`G#!!Nep#`Rq_od=8Z92_(Xm0* zxp$5$UU7?npH^I6EU<#jWcu3$Uo!-$V$$AeYms^C&2JblyLS+Q!u63V)1=%;0+v?#plSRAr@~ckXZ7gJiqKKy-a%CI*F=cU0 zM-h$5rMJwQOVsDs+J?lj6kWHh>zDSc_)!DF!1WGg*K|AY2jSx^YzHvPLq;M>5+D_r zlN8Ak|I;2EHH*3|@-h09%ppDZaBX*AGP0zP$-2&&9*`VWrlq^_-lb9^n5LEEKf77~ z^MqZg=6qcn2b~q0{O?+DNbhQ3ZTzi2!A1NI1U@9RrTQ+q)zBPf=f&wSE8EEP;yS(hNsbM(lNgI4k3h^#z z8Ku~hU&S*3&yyUM5U)F^r4EV5yrBjsmh9EFcQ=9so2(hS@N)dN`p-KA49Iyb1i0A& zurF0gO{a_oyq?x!YqhLU=Xe>4z%+8^T;qyU_Xh^5fm%F52L^CemHc-tccA=yKQ*J6 zz>LNW=jQ=z6uQSegGvEWOPxpEpULmuIDVu>70?%H8}q_OE>L72{tUmo{&dM^=J@A< z+0A{zKMMN-ay!Uf+%@!J6*$n!Vk_B3Y2UQXrW4sr^7gp2Bw3(7V#_lSE$kxer9rH& zeA7uLKlOlD*CB)4`MAD&*DKIg?G$Z9XBJUK+{G_u`Pi;iU@)-z6mLpsfG;**pe7%} z+;_IUQR@Mw@6V#`ZLj42{CsslvM$`R-_yH}%G%dO)|jwbXw*pC@W{}z#nOpu4$?iP z4UGLmmBfl#F-oiJ+hdfbmCf9uvQV$LT>SI`#pvQ{gZCPpxc~oFb^nu)8-gHSy+4PW z@XImb|5KKM)_OuUrXDZA3#nkv4!w-K!4URs(QgGTQ1f)!D;Lq{x)yblXLBU3#%I|z zKu4&FWyVeVSc8gpA?|{T)+FalCGs6v;3q1t{hKdIaTSm_W);(I`zET49>48~Y z%~$b#y77kN<&A9*r3*Tly+f%By@3ALQWG};Qb^?D8M%M?fpenKuob$nxY3Fr3RQ8A zq0MGC3_O+&e124PHEn9eXwq|1MT-qlg7EB&47^)-?p_z<($48$@gmsy(n$c99Y64$ zwG5i1Pi-T_L*Ck1F(#qIik)h+QTTK|HT}fz{H^@@RlHVr?3wgy-Ls(ENkw+yU*_cK zJ@U&Q)*r9~RfETcSb1|!%>Rr$8TVH6R29JtbQ4*0xzXMD*H-Tj&K%@$cJT2+XZgL- zfxD|)P&eLW%IZAJ2(eqJ8&XB!E8FEW9VJGY4+oZQ=8FLMAKFTTXDT7C?l-h8z`$vt zyy|f3jo*WgH!FrCI{EMHYw-{yw$WrYROm(grR4Cm5a432)mU~AtZJbu>R&>Kx=?6K z+giF@Kdg1IU`260X64@fh5x}M9KL*U10_t^LnE$9E?Tv6E%}y~AQD{JWK4of_t`j{ zScBRylmzw<0f-h}a#5kTp<5zbW^y^=4UHLl@6R`PYmqUs8?L_^H{;kLpAJ+zTlvK;*dm%-RFwBkz`00)qy8#G zD9jl3R_g6GWS=KX)EVxV!u@}7J~Za4#B>`A{(p}U{*hPzmM9z|xBu3>RZVT`&n@mD zY34G^uz^$6F|t8`duThXN+jC}7Box!!4Y+0(n} z@0Plk(*t#1V2TIkivF%lO=wM}_d_nu4BUZQT2-j8sTd9_V!vcLR)5Cd3hH->EeIgK z(@nbr38=C>lzqp7a%aNua+bd!UU-yj$6Q-yqfE!&eGFM$;cYa&>p$ols;-E8m3r|# zBhm`0RK2pU76-lx`1B;YGUKYZ;iWF8!&90#C!>lL0CGET07+@ z;GrtpG@8R_LXG;%=o(ZJNsO6>O%1Ou0JJ zQv)oR5-~z7a4wZ$-;j$XbRQR3J5?`sjC!)8-hW^0Sw1CxXZx1P03zW|Pu=`}abx2T zCepdz)dj93thA;jM5bEoMNlPU=|0A=5Eri;HTJj>tXh~=NoZI!rm>_gM zHQBFB$f~LWmN&{U0P*Hk&hAu7i-Fb4=$E7hM6=MGQg5&;@b3q|dOBDI#A)*um8;qK zq|lQDsMRFLS)vx8rNg4zm3SlNKsxmmy$7HyNXWI}4~fir#k`m@Z>0XY5*%X>zIPN> z(Dm{z#hl1d-;qcp!1a99oMDRWdaE-yD=jnvwEVm33aK3duWYn+E@IiYIHD{&(ps`= zlM3I?_wTZlY6w84i2h?y*38;!Nt!u%aJy3N|=3nHL@z7hxK-J~si^w^^B_(?uoIYe5#~FKWo`ofsJX@|U2vYpFiZW@O z>6ENlQIgUVP#Z_y)u&nJoz@qegp$zTn~jRJ7@Kn7B@gatsqS9l`)lsvU=g(3PhJMmb8l6%3P=FD z@VwljbTHqr-kM^XS0mhYS}@RoVYk$7ESoV|=5(*7GUkX=g8N*Wh581lh~LAqOAB4? zuu9$IxpWzuq}CqWdbUsyY&Pkn%%hY%%KsSv`s~O6C6b1F-BDn(Nk7=T+4+LyQqokInw+^TM>GX)$ZTsMvknsqmKcYmYk9UTWgxkN}ZB(%Uv>|})UE3tHc9w|hjbuPJe`i$#V8;r> z^x<)QNU8ff!#9qkN0;)&u;l}Q_IiKglnJSf#2j`b8VF&tRuduw15(W@l@EQ%4a|j` zf}P(+#Hlt16`0*KSY%Eub*d(Fow~Uv?&*Eu_}ORR!iGe~-~Nimo8h)}uCk)66Z;LG z0p;9~9myMsswHbt98V!_Ppw3474|i8N!5q+q*r+1z62qr2>5m1{fc|4`^7_>!4H_b z22%;H1a0cPxhAk??i5(*VXM-dGJP{RRTH-m8X*#L@#W8idlyZ>m)9XF6gfg!NwO^T zm?g z`DX>NtM`r6^|vix39>#PVk7R%TfmwuXxWOm#CB{R(}@D@(Br8XNDCh#?2r7-EQX($ z4?kfMB`oIAkEY)L%SOaF8yf9sV_-bZI>4Q=2=Kl3+q4F#+&M*NHk0_r?OI?AZa{TC z#Mr6R3txl>_%rrQEhu@Kv@`#@G%Z{`Bi+bbSn!TV+D{67maU;~4Kz&omE?DM^2rz^ z;0h_B;|;5)vI$hoJPlgfIu;*H=U34nuBfps&A%9yQhopPEiXZ&_sHB<6jilqB9L07 zC#^uIfXs;EIP!=Jh>*k?mg*MF$c5R=^w=*4L$a&HVRUXq)zN(yVRj_LH?-c$klRS9 z^0pG@DY2Q=qi{MH)L%cJpIYW8;nzhatx<+PY&*Rj@!Hj|`HZP4sdGiTgvt2XUhT#6 zoIRavw*|7C>uI-`6a`d5Yz0QviV?@gO_ZkgAMuF9ZU&&0;wk4Em(MPM-3n{^{3x4~ zdTntixs~1Dq1@Xy{mKNK!!k$+ZtDdab(Y|fVY$x-zru#uWl)pkNBDm8Mi!_>5{v;Z zI!osFozNaUcp$&q4yz4rpx@XEeWh-4uulWvnvN7F|i<>Y~xzv?C6-Pi(j1 zufGLFQo1`63VK+IY zdKL_iiUQb~3i#IGvHz4@5GMcj8?V z>RScD;urff4n;j(gP3Z`-TcDqs7xsJI%O|9O|q4At1N z7)RY|qHP}gNtObs z)Y#-!9h--9dwojXb8b$U#;@)Bu5;S^!4u+PE~vw}mOiN67-$4WyBDWo;BjX<`T}&P z{^bBOOn-Z6X+akKM7!!{l?pV<=zZH%XZMlIp9MCsxoC@51?Sbpq5o7sVfB8Y@_9hf z)xN5jGTe^0F z@M*)|#aMunur}s0g2U~nT*dK(8$_<}4N_YUuyd}s{q^n5hJha+{{~4xinCj%ghfbX zd>)&*eit;z8T~b!8x1hg*d92Q;f4m{*N`1*6tBBa6ON{YA$nCd#m;q09^9p1uvqQ$9HsnqXSLpnujL+U$jfzL{?_GUrsW_* zIO$bUcoM=5N(xFJb-cLmxRhkEep>#HXMb#+O=~fOR9VE3(mC|i(jnc7K5>$w8dFUd z9PS$-vi_Tumxns%#`Ts!ks_E6ILsbUC?`$O&QML5`5h?2QbJ{G{m40f)Q9bH5rJi8KS^rh5S4U#;!i0k0>iQfV zZ{Q`0CiJtBa>YY7>u`@B?jirBF9?F`o4Y zdj>XP^7Pz+N^i3&y;~XWwery`w8g%S5&iU6`Vp)SY7$BNB<{jef-sU8KA<@qR;)T# zLIMvwjxw}^D$F{-+d!xb3x916S>14eK-wTws(Q4+M571hoqaI7_ip#^oQ zjk)5ukpw4Mlu^D?5m5Bz2+LFVOEHk|yA}nMO^F~oS2x~5RbkaWM;g^zxTg&-%nSdT zFC9*gGi<~a|B}*xT7?uQxI=xDt2(_w3I1euq3%r&a5Kyf^zgbct-ZD3KQb^UTQu^XVv04@gj_{j zl(A8eROP^YBSGT?jO$dgK5G>*NSGSw;CP;J&L&~My-y9rYKCtOYDctQ`R87)t3ndr zR$hAX-GC;XA75k}46cvvIHW6+JiR7HJj`Fa_ox1+YHcq$1y)P23_A$6?TKrOs?Y-5 zOABjwG)Q~OKYq8`ZHWBJTgiQw`pyz^U5Qm~lgxVYv(m|4ZA75Uv$f16jwRg|nSdlu zO0S~KrpI(WV5N%pc!mR`rTMZ=*dtE5oEFUY&e-bb3+2*H5(JV)WjEJBQe#_wW#zY0 zWjEd&#vXRIzoBub(RK=N2qkmJpYrhjPKgK(_^@_ZWCnq44z|o~`9hdi{4{m3dIh_Sp3L6K0`0+>kC!>5c_)U*cST%QK6}j;a~AafG!nLhvHhQI z@91}H&xDFQrC84VA)vEGZjG`Iqcafy?3D_C>(OGUYMn^6xSSI5z z6glkMwc1iwWGm)sgrzvx6!bSh3U|KSZT`gWjqtk)99l?>yrRtT$@-Q5vGsKL??9Dd zhF*YY6K7!~q0Pu4N)Y~i zM$Gmk*S5oH{FCvxPH#FKv&cJ>jJ_MVbSuKtJ@l)Xn2HZQ_KXgs-MbCdEWkkP`ls)AvP@5?X4a( zbDhfvZZSdJCy80Uw~$E(IwO^TP5?FA8~NWl*f)BMS4(A_rwRNw#LRPjkDri$XGUl6>1ANs-Lo$*LIn0fRmU`D zpU8k4nI0pbU6yLZ4=ql1WcSYn{T7XqC>N7=c5~C2BAUX#x1By#Sn^5k`C?r~v8xd! zSisT-t}wXX)SmKQY9}!Nv4+#<JcKxRNAFKNR0LQ--`TsQc{~!5P)mZZr z?6w~|P5CTH)DfLa(9Q{1$=|f1RK(?7L0@rB9xoa^+Yy!o=AY5XXr*t;H}c>whX&yz z_NG}sR1BXEXZfxV&iLqHSr^g}5}xhx?c(VApif3b@GRkx9Ip3fj-c@W(9^c(r&KJ%3BexI!L__cA9xFJMY&hVW z+fE?#{(4y$1Kwx^=F-jWDe1ZtcWO1M&Xh>sgKP;_ShMbz=X7qCcT}q=rJhI|8=hv1 z`nEQ`TZaJY@}u*!pf+^IX$-0WVo0E-|KbO9^{GZ2l^wvBIlq|q_{9!Rt-w7F8)g3f z)V23Ly83T_#rm?hO#b;dkra>A&oxJA`5z@nA_5bz5Kij0MF%^)kiW#!VCz5br3LO;&XvFmB6t ztQh!ve2}m+15kmDwc>AIU*8r;%~d7} z7{q=z66820afAk5K&d_CPK;lggi+l%KgmTCA5um>_>3X1*Na%vBAqy|zTv+`fvt~v zc*E&E%qf131pawENR2?c&li#vfT<(Dnq3tow^Ros_UspV`YEly2!{HHDDBJo`EYXI z1zV4LZ;G^x`du3fxX&!mM z{zeg#{>?2Ez}#@d$I_K6@oBv8saDi}AZlouHSfC;Y1WC0Pl?ew>d5VAmdTg#KVP!^ zcRVh`+e6e@T_?T=?l>>npZhI@#w$t~)J_+Ilu%LMkD1bt zT^~DM&vA!gHh;t9piD$NIaqb-va+~TIl~Gtgj1y5tk8p?Rjzy23_;{px#wfXNT_&F z;_OJhK89?^2`lGS6b^f228EH+NJ$+#EQ;1ASjD%r2wsgTqpJg=Ss0WTN3sQIw{a45 z@Ke}j-`xed7g%;zGrNma+rXiCa2=g%Ms~?>w?Y;e=qe<=g~R2%EvmAR9%r_&ryXjD zp!nh&706Nm^md#F3Kasabdx(x$fOa-z3tOds13DT!$o1=6W!8XyWHnQi;4YyvZRVv z>uK}7y?`l?aU@Kdacn8DYwyHW zezyzX0=0VlrxnDukutFE{mmSJ(QQ_TYq-bN?JG-)+=aP~u{72^LXid^Qg8?JpqElrFtep}HDG0S*=k5k2t@>S7O_eB+X)RW)l`Nw0ffjkQv%@xgyN^ZMv@c(VNQasJhyc-8lR_LBb# zjx*1by0k?Tu2V2az0dQ4HZ~b-+4w^%QS`lHq)I1Lw_{W!tFG5DTVO$y`|e@_ zE>Fpc4>tg4&zwF_$jG1Vt67Lq_$&7w#*dr){>s>Nw|AaxvGG)@s3aE$D6k zxeCqC3_T4;MmGu8tiB7G74P~jfUGbHu^+c7 zAcI9sqaAtG{=?4&jdxu>FD4E?-~kZ+%q)h(?)ZxsXos~k8noOx;G28^P?Ic08^ z4kBGNN+|4puNh%!^-UVBMBi+h)D*paN|NIVm)DfTk~){32G_&Rx~ku(>IZ6&)+QV~ zBPSn`nOd)Ac3<7MtqSv&SxJA`;P~ZcZOmnMO;m-FUWl`r#76C5S=ykh_v~@ZHYCGR*f%_4eZg_n>!g)}A z{2;kzt#$G#A3mX%bdKy_t;i4GBSCrRQ5;Nir(?2rWJ*_GWD8!kVBDYrq3o~<@$zX2 zI{{Zl#G;hQO@A#yQ^#XhBxELKAz#q;T=YrD$5~l6c>kXzRi}ceUtg8hlQKS=8DOaV zt%VoqGQ zj?ixvXgQtwU6e>^3OqZdB2-v9FIVt(w^@R8!ahWDGzy5G-r*&<^`0H{--p^*Os0Ql zDFT+c#t9Y*99Wj@IJ*OgS>^?VyZ+xDLcAN2#Boz=6E@3=I5UsH!XROk=njX?nni?1 z^VJ6&A9^%vEz4Ewx5|<8lg8igMIhM^|YH9#jhwK@00KkntQgZ*FMQiRupo)zZbNy(PC6f+W26Q^%V=%8jmC-<{C%h~x6Sbb<>rD)Bh< z`FB>b4w0fs6(h0@y27^XkpQwP_p|U=C7^!s-THZz(+++M2Ub^8k_p1BsJtvQLF6vQ zYE;C4@7G!2JSkMORTP;;3LVtb?;SZITa#apGpA>L6m_ajW91JR9>=^a15*83N;*5I zJ_H!N)tz&1VTcq#s;7oM(XFZQ`TnG|C0&IGN+cKeh(Y_af|fG5isbTXDLjac^;en$;82u2sPLPV7lmctytzD!JVK5`jJbn$ zdzpa6NKTT>$;l5+TJpZ(zLVr+181o03G|p!&b{USX>(A+BjdDf?euFV}f!OFp-(#F~g?058B%=0-W1$txFb2zme z$`oC!fs)!~+fvdh3eCMsc0B*0_x3tV;hAt#Jf71-rzSjAb=xc4&H2ar$-6%D4C$KF z6f}s>5X{2OKy~ZG5PA#I9FDbvPR{HlN`gbN;^->lv!AEfE8FPTo_QSWs3`u&=<}s5t$-g|4>h@`>L7OQ~h&EQ!_?<)>`)& zopG+s-1FrFihd61_|*ftz@Mf!VYM>KUba$BnX{Esr+W)XEh(ah?F%LMam&xa8LU>a z9KI<&ffGjP>geq?Vk+CGba0wb#>$cqCvmDLc4qmEb)*|QkUCzV!m-v|cZK)DZHxE9Psc;uQh z`?;~B68M?*`_4$Mw(vh^l~^};2PnyPot>cNJT=)K!W zD+kMn@>j|swoj=Ic&*!lJQzuFcE#i7*nWUj9V*T^j4DN)#vv(&%>V*&*mbppIH^4O zAQ3_p$#b^bykLLtkEf1D3qMWd*TBg4$0PS7;>RV8Mks%68>^O5NJSuPhl7vjxlcz& z*KLR;q#)x;?);*g?Rn1yy+z2E`1#vJ!sh9e@d#kW(R{?9M}F^gD$UzH--~hk-Uy`t zi#Yu)kEM@lIO#Xv$#Q}#%=8Y~C;}{q4jm-|wl!Mu^*~_~)0r|iK|KbN!P&ptx$Y~d zzHj&t5kYcyr4LnD_jly@v%|xk)OfIh`#=_;q6dZh2X@a_lrP-#?CWWH+0v*|>FZCP zX%kX3H3#A9gNd#6g8H7(>-tF_#451Q>c2GwysM}G7uoPR^E)h(#qqmp=@ZynK23FF zB+VNi8k5R=>Ooh~vn)D>_!^rD;>PktS?Xk=hCP|$Ja3=>Gst+%Tl}fT;K5(AD|595 ziyCaR%(@;ToH|58bT>iC=+hjQTLj}2UDkM<)k=bGk?DPldtBnubA*9P5qU}`Cx14> zS+FO`NZZ|8uLqPqA-)CTzn`$^R0&4*LiJT@_JFTv;)9)!W<=#Zk?*OAeB~L(XI2GM zPo|Li+Ixr;)Z>;`W|#=tYhG7yNQfnSZ>8O8Do4C{@mI>Bc<=!uY%o^5AocTXDn$Ia zgalUc@Xha94p;@z`C5=_T_+X80yk^}>I~&5M9dO`-7IyLT+O^UhUVO%R(oomuqySP z5PtT1C(JHX*pX;1G`cU5y;xY^u` zHepaJ1|aX88+AkdskYpEw3v1=YvW_(k%awuc`Q3>&^@o}mKw!TSbk|d*V<2PJL3!z zYOUu8b}y>k8Jfn+nMEfB18up{N>zEG(}f?2a@OEBQW1hC;518 zU1say=6o6=;LC#mXUp6Bt)|QiDV5~b_J{uA;krwidN4QTpgYZ95+1}n5$f{yJ$o|JV67%eKHtvzmfeUozCXn22$^KXI7<5^236>>IiP~|w5jjU(>P8vmlQ))+0 zXNDVzXpHYxb`Hxk-;rYPZ&geX^EQXfpDL8P?xQ{p>O z$ADlPs@92R;F}E~B>Na+Qy0j#(HeddCv$KLoW=OE)!%}-d9J+lr*t(-^l#;JH9HvE zO9{T~nx2$d{#4f0jDYRoAOK3;*wu0bBWKq@rWSp?Fp*(ClbcC$4gGe+znOsiWZ8<` z2<$KCqJmO+*E&3V{4Sj;)M_pd8{U~PE2DXsH4zGdDO3mCLaP>6j`4e}0JJ}DFaxEi z%iRWk%g}Ox%Ui6|{pT5=4C8rF<`|OHFp+!avh>h+yy~9@+gZ!RU>P?)0}*w(*$g8< z|6Oa27A{IMSLpU`tjxWjst03_SjZxicR50J^1&q5dsT2eIfcWE*qOQ*u+6*6YL86D zed0+2*Mj7YOO4|q1f34mA~O8uXQ8+*+F7_qDvW;Lk82yQKTS42AEhLhze%#I$ZRvr zUkb*9ndI9tWo!zwR3^dWt+Ipl6^6gjgd8T2j4GR84xdvNfR+* zwTV4dkN-!L#%;WDQMC%)cN|l4!CAIx3l`nUO5|tn{KNcTzo+`Y8SRmQuz%!r2r7F) zVM2?QAgFrOu##9NZ4OiR}-^Hm_Qu0XMc4`XmPxdVeiUO;_|wK-P+Xh z-%_vI5Q5G6-hlnY_JPGC6sL+nW%jwn25_Eqc1W7PP4(j^?T;@LQmeZY;-FTqCLL6l zus}?G`+g9U>(qkPid>XI+e)Cds^yni<~D~y12dN*?@^9ps8wjiHqYOp0PZB?@9M*U zKg!qhd8tk=IO_MU0xh%ob#%B5+Bjm>rb6RL+HtU@= zjmFF%+Cz`8zF3ePQCHDQpl9JnQZOSjpevx&P!AI?oe- z38Ex{Jri{Yjk!R6h;4GV+}9Gm}kEcCR40P+)3!FaQ>8;T}iq)@tn@A=*?2qqI0-gfG^HBD;Umm~yh?qtd++R-Y@VRTVBt=oR!CL^J$m5NLr zAc-m0J{vTlEm#B2o?}^PP?CZ3R~ZcT1!pBanO*#H5c5N;NC)&omz#NKi_ia({maVf z_5CTYf_@3tA-yWm1E^4VZD-&4J=d=|F;;VZbWvtvRI0N<_V2Kok00&oF#P#xjH;Kh zaE30fiNo$}htJ)lW==!$sQY0|}Z;Li-V#@Dq5b5!D+HY@pk!JT3<8-Mz8qynL( z)Y!n3A&#+bVh2q4m2_W&jsIok{<50Gy3nqsE-qXGhYz_7+gqPZ){-+QqDrd_&5G{l z3jZWWi^tb&4aj@y2ZS7VvJCxzq)jJeV8;??C}?3@3w6)Y@Lde^0+;a+y3dSb@Co-U zG296fATyF@SRFZQQhkmSaD9i}l4;{M@KogauxCsQ*om7CtcR1swE1LAF9clEty?|_ zqP{-$WXo_#7ayJMMzHkfV8?U1e#`nd9DrVG>@H#%OS%JoApeD?vkfA7mKTw-i1o} zp=wWkA=}gbtDPehS~VK#>-4zv4?DrZ2-(|yudiQE%-@V;aD#`PScY&bE@}YCQOM8ZIt+}P{oJunC)<~9+?>WF1N{auv z94l>~_a8Al*s2m%o_TwT4!|ZDI<t5H88XClp~1y=J+mTA{)$}jIy%AFzAf#^Yo4j zp+dGlBwZ+T+M+{`+lO;0zF1NE3b=>g5@nvrMS!ZK({zzq9Ngs)g%i6=r}KN#TfMx< z{XPDFIhqyAQ5y{$5eb<(~rcW36|^%ypvmG4LCEro=jZ+d2lRA5$l9 z=t~fUJ;i3Ln$+34`;ndcPEM}= z=|bjP#ggsO)eO$9W=m(we}zsSnG^)9r4sb6Xrz7ZiC1UP)Zwk}q|+u+tG)VP7qodz zHc1yqCh8_-pEzcgsL%)NAj)H5JDKcCVa;e`rodM6@) z4Icu(aByxYsTF<@6ebJbc}{qnCW^wY6=&i3z{f(Ck!nogog3WUyzrvBaDgkRKsMxgDC|2(xPm18$iunbpYmV7eP4 zK!2q9ZCbKbhQtHOPrlss-dCm`>j(|yqFY{ z_8*sS%L9yE_0uSco?hPOoL%07|9&porNFdaw{rS#KohT}s9e9#OmQc5 zLS(DFj5{x^gVM`Cw`B{i`^ZR*y6OxH4LU>z)|@vYQ7^dJT1^xTV)A)go&Q=N-&QlL zytgG97IeEw&a#uo*QfWtadzJCZ1>^Yx7BW`y?VD*wW&QrRkgON6=K$kS|zbVsJiVA zdj>^pMeNmDwO5Eusl)3x&ri?yIga~(_`HwLb)MIGzOL+Nx$Z7}ar?=?uDHK= ziCDws6a1xLQYGXI3JrNtI~t7gmlNw;EnEVS60P=^OQJ6pHnJuf@SVy!S;x9lu+%wT zo{Lt}!_Qr*Lj9?fZF;tm_R;N4jGq+7zcB)=DBCp?`XXrPz8TcdCd9TqXbGGIT5CZ> zz?gKwN+W%P=0rd6X8Wxo29-f*(PA|E-aQ2Pxgus)lw8nbJUShBPgS{zYguB39;r>i%=CyEKHGj> z+N1Qupp>>fqv$cIw3~X|(n03~=cVbp8Ku-=zCSrZZvgNINb#~k9bU4+hwUs3-$QMt z1iP2J*gKp~8$9bR$zbzux#fQowV9vEE_P@xCom{vU*+BN+ogLa)=VH8ab53rpM2fH z>Fcn4saqP#>4iUbuNuy!XFFJ1}W)NnpSZcjoUG6AQw6Z`9Ao_p&Nlos4>wRh35D?$6eKa7p9 zz6HfUp-AO#OMuOPnHEuk>47W|#7*Wt!-f#@b!jI#!H|<8AS50XpDvjS+^HbA!(ea$q8|KY7?z2NL&){C zwTG+c&AdZvz=Shelrl|660Pj07PjtiY3Z%Gc63`Pr8|7Vg8G{ab(=Jk<|9K5jKJmu zz0soKpxz+EN-dE&$K7A}15hhX$_z=Cx85c4F&H1SzRsTba5TZmzmRG(|I(DBjvb{}jix!v!6ESiKE8$N3VAIP@t5w--255DyUa zvLhkN5IzIW-jC4>xuI{&MqMjDu#%}~;CCHU!x2Z>zkbNwyZa(DkX5mkm8_2Py;k`W z+y-uIJ>n|AY($fnSeQcw(|Sp1bWF9!jkPvbykb7B$!9r#o9AvEg9|Z8CvOpg1@d!Q zlPV?sgZ~_$zl<$g3ZC;5@bo3i(edx5(A!G+_7@=|{o)oN=Zk7iF)1 zJV*1{#5{SUKC}df6no5$6db~(``!(CTkAV3N;DnB2C#~oSDZz{bchOPM#{2^)^eqN zuO3~ID~y($|BZihW@4k%Py_psCn0`+*|%h$+qrS5p>nf3BH2X^>*5tK%GLJbZTTtV zf7cg6KfRJz!G@I+Br#d_h9QHHky!-Aapl~>-v{7dq3ODD77E~r_p%b!Q8(d{*Yl>p z@57yVp@cZW7rJb00jBn?4BlhkX*mcJ?E?ybl{PJw=+Y)4e@PstM9Js5AJwIP+6jsG zp9!9|QrC$amCNuzYKIkVab+)WjRAaL0DfgkfOq-P$i;$~gm}FUDRIT}n8TCJ$x7k- z*LD3P+94--g-55(ID&F_qFa*>h#4Yu7~S_ZGW7s9aSJZNf8~z1WzK`@Dk=89phUSQ znpyUcBIW|0-*?o}#NYOf!1dB#Ojb%sn_o~%v+T|MUy>pJ<%?rJ9)6)o!Hr%jghjLL z)HMqND!{6I=Lc~UjL>5r%?rPVG`<2@u&#S}$V8{D?3-AzZlsP=AN5+A0Ex3PN=++O zORv!tjbd-nGWpQ7c}MYgp?X6B(7%&V#Apl5wNU)W= zv+QW(+M86aAh)sQRx@IpHE;Xy5SYxF?&38&Mg*Sx?Pkm<`r_WiZ|QP#^84*ln*AQ! z2DdB=SlSO_B<9gbW$Qf2+vi6U+$>L2$t_db{H=MOx)O@LXeQvmHr-9wED-V7n9oSM zJv3C-w!fw<_<`Syb?WH=D_N1^_cg~uwJNwP(r=jJhROwl^S2I@I^~)n2+ju!B3wLR`G$Uc*0;MOHa8H1q5O zH^Nh2$@IpbT4j$tUv`F_yR?RgR7v8xL*m7W>!7t|+OK)4tX_TkH({N`^~~YR#Q=}G z#njVXROEexE==8RHNnotD*aseftP6Qc%0f{yq{X>n*AI>!J)%%w+Q8%_)y#=liH|d zFg!U{eQ%k#F+9+u~WgkX$2ZNTUFGq3cZb1Lhc?^Hlbg9wg#)JD%GA=^ zgdOh#y4#E)Go3XH!VxlP>5shwX3pAw(X;;mY#OEcS3`-%DtxE*-E9cDJ@2 zY`;MqIyGtYJiYb$-;dY1h=Ef^zGiA5TZ@mfn&#(XCbBuIB-Mn_4nk@s+d-j=~GO1qb@2?6EP z$jA^Q+uX{Rpvu!hSSdqSTU#jK&QEYGsGq22F)~=OOpzq6ZF)E|kif@}z7m2IS&>l! zqW6sDAK1t^DC2RpXkt?&O(?PaI8BmXO^@L zMi}8LWh{9nS&a($G0QTNThQT6VTWFVr7%F3XPSe-=?zUSL=q6KzH2 zw$V;+*$*IfJ7nSCb>k%+{OtX$B}O+FRev%)+2H4_T(y01wMt_1)@m%oK97NRwYzgG z9HXXfSf%qoh#ENMmE0ovSM_jih$1|y6ydK?eH;z2{qNO^tST=~Tz7tU?e*XQ+l#Bd z`Db0Cj4DUCxSe^=KOTih9?5!*;5V_lbXNcNogGO*slZ9G2NN?asjej1U70_9uFu{D za5#Q+1pXblVch|`VI*@z&_9ZwHI^-;4$P*gU^?fGp+Yt?h5FSEV|NQfjC0Bi>hCwT z!l-x;4!wYy^Bg(^X7`KzhJZqg{kQSCP*6~Vc*aZo!Js8F3V1Z9V#>!ZT{7|AQiEQ) z%zjOO?aq_iRlo?I!6O&ScaE2l*1#)B55R1=z$t4P>QTF)jxI9+Y`m0BkdVs$5(7kr zyXCAmO+smfv*SAtp;17fkqZ77p?StUAOn}leBf355 zTIN}Y2{^_N_vhaQjpc|au#Q$W`634*enyFT?qc(Au)*twWJ(dIB}-xb zw;!=zSO?p1@Z0QCn=MR@RO!Cv(TWyLQyja-ZkW*%DO1f_2!>&_l|rN9`1bINCh9 zB}MqDo^lGMOUNT%lZr8>0Z$vRE!pEDUA;mISoMY{Un*~w9mzi)Bq1GeITU{+2{|z2 z49H3>;>LGddeu15lX_!&h7`HPA+z*dRQ0m$Y`=a3lqrE*}&;xk7?8FW!A@-}p6?p}fZ^{S|ff_V6A%x}vML zLO&nwo-J3RLt0-+n1{%&JR5BX^PU|gl3oR0?a8>lMzpgzNmX52*Em$2l%sCS;0meG)$Q#PYgPW}$kRTm(D;M){RMU$15204Kq`e#Xz&3l zw_BAL4+Z+(x1PhV6~0$%l@f$}GxTy2E1(KB`=Y^LVh)Q zWDrLcnFHM=DmhJGElFuqRi>LKj9HT+T`_BpJh~+PDEl7lUw1^T@2d+bHzM$#iM~F` zhj7LWrR$4$nY)+N@k^YKh{GZa8fU-#Qd?Hc^|wR_-;rTYD7grxA)9!9KSzFu{90Dq z2uDfZ!Jw;>V?o!kguVb{*JnC-QBl4+t*m}CW8Q$-VDju^INwhp0uh1WgnAsF(b3xU zMiR3w>6!Gc)^(^0{!OTO&c234js<#AQ5_ySloBZBq`*Gy#DP_UaZ_z?cwLv?#}Ns+ zjU-er2X>?r@*N$uvVdHYG??p?+T> z9VD-301pBuzgJL8DnhOjgwaK@*S}d+>akxNKH`XO9y&;Sh*2P zc~{UAyLVrnqKnSl`+6lnvevtE!Yzu@AF8E!C-&dZP2Xnm-YzVuoQ3+k=>Og6O_i_! zX)blqdR#4M#x?HzO_E44s8M()yy6+6OqIZVgtgx>8!3H`-xyY&FH^qVJm`6vv4AH$ zmJ+3f3_2Bt00%X_`A`>6_ezfN+2cH~uLV3{)1%$nw}S-n_nv`s7{Mu->5O2Z0o58~ zK?c-T*kt%<5F!KCLobt&3l(vZ08NF>G9xaR^C(A`+IV;_rK#8Z83L^mg-EZwkp1;@ z)F{_(tg&|`QPyhOp%W8$DW)jhf5&f;Cq!x?z=V3e*}ukK9})l3K~g|W8lj$D6uu>h zAmzQV_Ld?!Po1AT6J#=I2FJqQS83p*&)K&_fk;lZ)C zv4ww^&jA?%CSOs*@G~gKXEB(|@r|oj2l-%3)BJ|$tg5^j0J_Rc3C0W5Kg0+l{xV9f zA$ji7{=HJ!sh|ndXQrt|tAsBPce5|-R)lpp41LGU#i}7Nk3Lk}D&6TRfRsZ-C}6og zJKIVw%Q>%{1?t|Dw7ayMrd)#)jQ)YYUfrbfQZ;SN3Gy1&S8aX zdbWM<1!x=t`KS53^(r$9=f?6Z(~`zJK*unf_i7CPSq!76E9P_Uxxt_NL{jRhkQyJp z=?1xppE*sY^yP`RZhX0qpr`x9wHd?~rr=QW;GSR*GGRfs*J<@*d(wxq;7RIS$MUo> zkxP7{cNWh?zC?mhbU@-VZk}hplI@p&W(u3=SeHLR*@29^>uSb1$6=o2k9t6+ius*g z6_m2K9?~!}wcfPEZpVAzJu4W!vl#vEcH%N~KT3amse7M*9@0**rO+OpVfpAkQhMbq z>^NK*=K3p=yfs?rQUEQLaX9y|%&_Jq{na$~;pI>w{$$lKC4d$+L!OHSjR-F3sJCu3 z@ee%hUOfx$bQ~|{Kv&RE4M^ALL;WT3K$=i@Uj8DBPdJUy6AMk;L$K)|O?sX1&cK*xMKQ zXWDj7vUyOEFP3|!GNU^XW}&18)m`&0s{qC&*%Nk=8#+LHo=tr0tR^C zA|8Ouh7t58M|=ER+MoR9p52~gaFER+!}^W|wslYxdbwR4_|Z6DeU>Qqe#{Gmh~Zx? zsk7F2i;BNZotolK(cM_TMW)$uZAJ6yM$y zMP5HP2{@X|dxH1;Q0gBiuk=Aq)8uq7`&F+QIxClZKF6a(yqxR%Nw@7zsWc<&=9Fzs zjmv-$&$*!aykC};{oqXjHMb}k3A;+4aFz)uK-T5Jp zb;@KSHSgdOONbJCEGfxP&Z0OQR|>kCB;|4@gR zM)wm9-Qr*%f?&IWZTVOv3xbnA*>}W>+DG?X;D?_zqMboBD>sqh2*U?#?pgL1;7yWr zk{`A{^(O6PM-i^RjR@3xE@D{A;)8(>d2e@|=RpY73VG@8ahF`sGWZWh6)i4{4U>xWP<3l9_j8$W zL$G8Fdz)1=AiY++r*sU7)fP5H?hUd&@VnHkXophW(IfZSDQ}?(b9<-}p)sK*P8h`V zc~p?JOZ?udIsa#QNu^5t@Eg;f2u7sw&xgCG$-$?({^NPc_;1vDgNYdWf=L&byXL9!C( z^tYv9j&>MHl^wP%b$XORIBijC1Lo#TV^OCN5llMU(`;OJF-AV{p_Ko(Sp!T)$~d7tKLkB)O^F9v(c*7{jBxuZPp{r5k`(SG^8#z>@) zFGE($LM*U0g~wO>zO+jPX7VXI6y5|czDJDIuP1f4vfyiRJucB#0{{MOeN%3EqDFdJ@L%WM`CBfI&xWk`k)U?>m%v>Mg&=C)0RNY}}Bt(KVgGq_a0z&8aQuk}f&hBR(? zT$fU=KZ~;IR3`HI*=R8U6eYf@18DT^3yq2;IO?zc*;k2DoE()RUJqn#3YS?X#6uy* z`jcemCH`Cbea{gi71eY{btJQr(}NE5!|j!BDOohx7;cK>xtdnE6_b;L_%+FB38~C% z^CNh2l2p(yLCTU!j8VC-r~!n|Hz&H0G|9rOSTutYebxI&pY=BpL}u1?N`()x9h<~u z%|=|HczJy0H}4KUPXj<@)gE|`O2JO($>ha;nJb=zKX_Geu-bS3Zt7zC*YiEuJ6N4r z=y8V1-khE_gcm}8N(j;uCOY9S8NRF^V^uRuYiGu4G&bUbl6ovfg*Lz~^7CGc1;Nq*DfuiT${iT&D=&An~75#sL zt+!m}=gImvYbhqL|8HIHpR7ws#WSH4eUa;+&u;fsKJpI?N4R`c@acbo(j`CsJsREn zJdQoHA&`pZ*lw>hg64vI6OH--jwDa@wc@jU;l>&8SK-*5%`y4c8P~k~(_M=ZeUU*^ z*NaJmB8sg-?fLzmXV-V`_ul+`+mG2-6uD)XkZtg0SGl zZZZ5OUZ@R*Y&}#Op4~Auh3-)!z=Y@+B8|M^YLWd>O zf>Ofg*39Zt_=iXp2F_e7m1)*%E88pCEy)xl9C1S;enGMXl^Drx|B9#DPw-e$?%#m( z>1(3V-d~r)X+=b>xI@iHt&^%ANtptCrc||y^thaS?ogAq6Tu2PY5f%@d#y7LghCHw z!C!{tEh=|9FJl)Tz%H)5^_Iw>zM8e%*Ni5ya(z=fQaf~3z!X3U&@A4}48n@@KK+6B zmXX>aQ~NfN!I7bQSBU{L?XGl-=1@U5Sq0LO)C|Y`vsA7oZv9%);pD+y^Wdh|$pZ0p zOl}Mvv1I7({_9n}RF=I-d)KnndXj`)D6Gdwb6Gj8U}=ex#3RtPtI#=Qx$egB^_u|N z`7KHBmjD-{oo9IN6CuO)l6q8|h$RD;MYyFqhQUUb1;5WUNmSRF{Eyd+jSVU|I?8gC zx~#LXNlU>M5tnl6w*1G{S@Em%%PU73adKX1dNN(ILW?X=Y`skFxQ}PInxZp=;Ml$0 zNFIB_a}uX11os-uU^=;=to1qaRG;!wi;0xoU0Eys@5bukDJSc;f!KMy&NQ;|ZVhg+ z;fopl~3J!R{1`+IgJ*9Q}IcNJ$z^eA(NFy(*Tik-2a35+* zKd2ym#^X3rig+nG=u-GnpZ*Un#hY($Brw1RGt*!Gr6Fgv=8+@Ku1s)~n4Ft{)^z?J0l=K6%C~6RckBk7; zZ3WF8-#o5=7w6f$O09V*;ju6+B7m-fjHpZQA1ZHGMwm3T^YCk@#eFkq4#Un@bnZ?Z zBQ*LRS^HtYA2$8aIm0rh<)=(YP)ZoR+c)BLtNKrkcScCt+nsXOWzZF|wM|dZymbRV z7vxjmj^_g+U;OU)9Ikl~8yOsK+ENySkHqJNQF0so$ntd=FaYT(E{Lo;{?jG6o3y^(5(awKb#_~9X0_dhY6rYp;&px@b z!WP326!j5<@98N^e*Au9)AzFBh_Tk5S_NvCx+aUu451#i~t{Wn? ziIF?uTW}>Y`5l#AbZOqf!P=}9kVaCQh0!@r{z;C_$rBg@vUe!i;+?X*7=eLLKV>HW zQyTyXvVU`Ymrc2T-r^Tc=$~MX8K=NUwMUsH8IL81L>4tWnfe|6yR49Lk}7nwisbMq zs>>2f0DeF3Uf?53$@m$~NveXY<*hYWJ)uQc+#vAFDIVdGZ zD+0IC%#8%`vHH^--a0!T<|-P&Ti?g2eNOVB5t&kJh51mo;N=E=CTIAIf|~?dbVW40 z%5A`)xnii@^z&`4$kV|SEpkifs5Bp*Fl^2qmNS9l_D!d<3kLWMn->@Dm)fFdk9zEdLbWO$R$HY> zO!k#KQu`vAsJ%M&czZ)>IkGENNjmM$WnBCSulGeLKr7I(zrbX9Etc93X-U;`CD9vR zz!)kEy-o}_;vtdU=*vejZgebsuZNvRQ z%K&LdGMfiV;vagmFa2HxVsxR>t)Gi3Rk&yEw5~0gb7{nVGi&OI$8kG@E!Hc41oJN!9mZ@1v> zq?PWo;Ja+GI{4;~{H8oIQmUfnwhdc2G1It@67n7Rdg}KFR9ajtX_5yGPH#B{N`q6j ze)KXK#H@2iLX8)1L57Yu{M3NnjJk_2BH3cl8+yqITg2Rxrb%(Euz#aQz5h+WUr z4??3Zt38232gC~dF}gN?EfD!01)!woanz7gChzV$>xbI9y#HF0&IY1>#whcs@>xX8GY@x^Ih|oF0rJ(?rDhkM<&yqq>^4()H zt4}{vE5^`5$xYHA<*b+S`6_(YRLLoP;2q*h^p0Gzcdf=PcK_JE zXG}`yuH|KFHz$}FZf;R^Xu^8;Y3vWz)&=q)Evt!aUyf53Bg{$Z2u0hseYgdAb%&{3 zh)dGs{pHCv-SVOyQn6~BcSoZ{$AoUnppqo*d`Wj^?p#|3B+&hF)){95(~%L2X#+8T zvCS_97EZZM4f7l;ULxpJ%`;t-`&Fh(F0o%lh)vW+cj3pR9nVg<>U-6hXQRuNips5M z-6-sOSLaVV2K{$RGxyk1n@+Cv+nS!ce(Dlf_yHa*+2E-*=VN6X`Cef9`#Y)nYBxS2 ze+9u8TtDu!NnML%_#TZp|NoqH`Cp_1xBhmPE=`C~xBK5=EF1cvS4JWuItzYeS}B|G z5>%ZmBFdsN?-bih(AE6Na1|wOB~E_WI=!RzXDdgOyFI9D`*h>jlX$d~36rH9%;Npa zc4*^QBx#>pJKM)|Nn|c)uCvP@GcxYe5_vIqj9VcDBQ@ca6XA0azQy#LEY!R^6Mp!G z9O6OowKyTe&HzlynGY8V>1+8E#UY(%8ba{8Dou5#Ru2eIrE2jOGS~_zwbB_qgZH_6 z;?;FGbl-Tfa3?g51h*%W7tXs{G`>KWr;oA3Apa*d^&;hEudnRU6~~bu`k|x?&&F&wPTbKIf^*a0+b2{n^2EXg0hNCb041cG zHTJ-kPlC`DR)xSi;?c7adi)KFb-g~4+%T9Q4wJtzoAH@n`c?~R_&?9<;TN)^n^ z&@_L!oRxfL1@9rRsLDq%zS$`_$iwkiHcBV7^tcMIxuNv zrE?T$$gMy?lQ=K1KnQi!^x}d+=Ik1E9n+3AwP=aEKtYqhx_=iUlid!j2!N;mz5J#y z*XlDC62Wm)c5oj+hH|cqS<3Z9Kc%C4y#gf?%Q`4q@ z43H|T4(fZ)I_Qu&5(AdN^!QgyM;9M2+az$p^e%=ovHEfedVZ5d1#&mhh-Fh#&k!N~ z@@D=Zxshz&mfZ;nS+fPn%<#tV0}ARq-r(uC{^*9qYYkp?R{MkCw}7r2TyUyERO7=L zwB@NMLV1_l4kbQvBe#eRWzTC|rr)&5nL4R;Mkg#xZ_0)-P0j> z%&bGrNdW--$f(EGXBTuTkks@Zl&+U^Ds1Y7Ao>I{378yt)axt)|=BK2q;izsy(5Tv7i=As-q)Ci4 z`#mim82Sv@Aj#Lk@>C<=ToL$QReX7TzWFBy*;?>O0=2ZTiEZ6Ph3*5-g%9rfQ@VG{ zRC;Pshe_aFB9cr1?&Xv?W9pq%lAE%0?NxpDmW9P|0)~%Cl7CLH=6=ABp1{7WAd3q|3wQ68@L|aZQ#>e67=Du)S)e7J z8&H>T%(byd1*&h22Sm+J26VhqZuB@m;<6D=&)S%6qyX}?+!K2m!XR>3?&io}`QOVu z0n-(QK@kjR5=w^yT+(2~?9%jx0(hJ_q5c}F7!DHMG(9lL8CIN+t7idYtakrFf3hu} z6Bxv#Rs%Q$qa!$;NFF;#W9PX!nSdXC%VF)C3iN=Y(ZGPlJHz?1oo+}5+){3RJ%SrG z&==6lEORGh>xJ#Z>%g3Eugo$S3QrEcFpvxyidOufH25aSxEW-K3&^<=MjLe8AB?VT zh`ebVJy{k&SF1!etPyzZdZeS0SN2aFXu)E?JEU}#_&h$&)q4n}Pd*G<*YCY=9x_-k z*34Iw2QAoD03I`;O7lTa7)I0y)ytTTawMpibvp_WJDZfGh!x~(Cn3&s6NhPuZ)~PhdoBzAs4OY9oJp{oJ+5 zg~Y%&f#4(1MzZslRw(ohkzv0drPg zCQSry&ZJZ9y+d|>Rl3fssP^Dmw?c7(;xuB_^o2tu#kIheY~$E&X#3?pM+E~o#YRrw z5fiwqJl$p+cLH2?GtS`6Zl!7<@pV-oM+r$in*TdRyIkVSTtpE=go_#e?FW$YEDL&P zYKkRpUhGoCe|lI&5Kzu=@@FwCzY2N$!ztOjAnH}8g0sDDO|v04og3w1vA@Y8nd87u zfZ~7zo=;F(I}d@n?gsUd=qMI74EIKKAgxt8=lF=&p!uDYEL+dDL2F$`@2P?B?ZslX zV5Fv z*5M~ZPFTRJMqCK&-ltjSpulRpCA#8*=SlwlMYSf#_}LAy&(?V;ML*CmO}r&J4+d5p{CR;Ey^e?@tQj`{ z8hOF%Npk)(D|Dt9neY2mzXy`n1{&EjMaPhwk6Yw??|8gDvePhUu89Cih1ZJJO^lpS?V$H? zPrJf8#%!9CT$t{lc^zJ4WiedB1ZGNTotB+U%BF;pN!teY;%klOLMy)qsM^lBEKg3K z&MzwwTlsnZZaAe_b}{qalR=UY@_lCWDYrtKD=$CSG?05zhzc7(RcJH+ozyMoC51~0 zo&IigjS1yWS-M{wLOLDYiDj658JbjPbgaE zNd_$*bl{ue0*fcbjkj4peSnu``~D;GPuS>mHfiF{1c#HYXV@L8jBLF5&VVPks5TIj(oIegbjfO;-4(@OSDl z(tLsD$-0j%i$)*UOV9>{4g6K}YLjYH9z1vJ18F66Eh~X?=j*PCl~rL&8*62JvK9 zGE2i>glJZ3#}<7WsamdbVLAP#d8b z*ZkolgWH>LSdPwjHdcX!%4%9nsb5(vwAiqt903VVWmmL7e(Cd#-vr`E@9G-Dx;SiN z>;KK14&ecYRS2DkYyWru2nS?Ua+!F}y&^W|*%}*AdxJ+mL|6T^o@>Ijsk+TB9(6hi zIezKg8hJi6UT}DOGZ`m3xh+s5e*1M>D}VBr6Z2ou9Ap}?4`&u%kQBu&c8zeG;9O{$A1**{^KB)tBzndcEjq~w z91}8VX2}79#6HcUM!jO5-`Yn9Q19Ls2u0_y_+vk-*&#)=${+u{>aBP)Lr;Kffjqjf2s)LM#fGrd`GPvv{-nRqU_UnDjj zn^Zxz*rkqnRMbY{K13{7O1>e*A9%9qJYQf_ zFqf#NN4*nwE_l@{0XFp;X9L`BbrrwbRsVz3(1@$ot+Q1Ddi#{pIlkHsu;wcLw-~nBB+qO^!yC_s{w5%;gSP@!_&sm?)8JyxdRvahw)S7ABNq`d*LQY5K&&hS zsgFyJF({$%RP&e0u9xEBAKp9X_7s0t-ZN6iKg+q;zBWWxbW~-IAO%1!54%aFz?e#V z&Vlek?M1?|G;Ege_6)BlNM`mwUF{ zqwZ}VvSe;9Io#G-sTA9(SvBfc>B>LcQ-Sk*vjT#*GM7fvBR=ls5w8yC`5 zzMCOj+lW;*I};>JJ&Ha5=KGR(;tDy~OyuE=e>yK%ox@Pxi`@)v79@>@T9ne}u-S06 zuCdmI(AOFOZjZghg|pPVRMxNe|99WCGA@^~wIcWTCs~l9o z@$!i#F9`iK>WZ_`RigFw0K(qL#UF1+S9zLSbdA8=d{NeyTF^#%og%?| z(?D!5(dmQkA+tHxXSCo83f^DP?_^EA*ZW52BLlfsYRI_VY)IWwUC}zAQNPZjVc}v8 z5YgUem!tHj?iRQqq|S-|IQwKZOW-!65v)9e!-<1U4`+R0NPp#3Weq2o+SRzuv*9Vt ztLk&F1qG^OZS5kVJCr0~H70)4|8*EP{wbY^4!*1=(F|y5VN4x-? zT4!LDPWqwxcz&>VygLf8!hS4oCp%)LoXpKY20DDRXV~{#411pm zksjTp&z6bpILs+vh@eQx3Mx586BMY!kmL~Tv)l*MtX7ixYZ73amv=1z6N@~3B^F@3vTkAEe5fpbWLImHa%th zD`yA$V)Og2_0K#jDiWqETG-_zHQlY+709+JD?LKC^e9iBRenr^Qidj#!j|ehDXM6l za*(3m!s=FDH%i8!5pDy&rgbTYYSwiz)yL%%E(j-6gv9J`m^9zk{GaSikWOOGCZ;Gan`(0A4MshaD_{j@N( zdG?Ol=j_*&cgP>50;9r|6B*(x{#9=;noZZ_jy_E;>4OacrCg*g0oFFy7;(|Mdi@uq zCO>L>My-g)5eG{s*}QaR9<{=-Sf^T&)OrUQ#{D5jl>12e&&t9VMN{$?qH-)6&jwaB zkm1q5h&fh$BH+sAc9VyRDxG8O{ia#sNj592%mD>5ERi7NkPp|op8bH&R5U26qfaR9 zA(XQ{d=_l3>T*&UQ^`Q~Q``gBE4K3hdG=N5w(%VnsH641R_u;t%#&)+FV!lA)wk$z z@bZo5$%geJ?Ik5C6Sn1qPL{~zx^ ztLu{;!95==z7TjCdRTPD7-mU|eyEJ<`>J@7a275YgW@@oE$a_okbD01jn(=*MRX$D z*?F&~ohXLN`@%aelsVn#t@9a2q|psh zQJYS!u@iNkeZBp}RuCN>aaX3_xvIVB7g0@SQQKp-XZl&9z!2id>pWeR@LZmCr5)_m6>8o+ zjR%VI^)b865$&>l`S)67w8Sg!qS?-6wwXvhr4n2a(%E9wL))Gebr0V__TF+003rC@ zMCtbr>5PA=0-QK>eQ0V$KMu(qqk!l06DbmaVfm_r+LBzV5p#ZYT+U@@7-mX%hC(3v zX4g^#w_%$v&}$z%Nb9xB`6$?@6|-N{)07Qu__MO+>0Z(<2bEhbshv%Qh7&&CX5!_z zr)E>OSD?!rhaUrMd-tzh8CiC_`3aLWlki@Ie`nvfha=S2-){O3m)s~gen@dim1z~K zm>Mf%(dJ6+=-CJ<y(8{RX}4Nlk=UgPtRl~6RP8+GTRPC!V*{Oiw8cOD`W#5S&LkrK9bd0Dt$kxY zqS&0ulRB;~Sk=99`^_|FuMX-r@6;|fOM%BvbVs!6NLDiXaFwoZi8n0;xQm|E7j1^ z?cno+HW|@YT%VPt$odpQ&6DfD$)kYCj{k^g?}(l#t{ z8eZ=JNye&BjU%4|^!I#);yLMWHD9v-yU#m% z&CQc7*@y1<-B2$%$()Q4O*{6wAMLj6?cl4EjVa$ekEr02{$72?%wUNZE$*p#Jm~K~ zduZYI`RfBMcK{- z;Op)$rry23nFs0veMO@cz)6nxU+pP{peK%3}YW<7I6Yt1o~1 z?2J_)Ez&scyfJO4MV=j3g z7QKW~EN>@Gf2F;}SR7`aj6bJAaH`X-u71RplC9ki?`go$5|mt?ld-p}c(rK5nvYYl z=*PtRL^sDX6@HbozJYLR)e)RyXK1W{m!^(ffJ)lrY@(;9p>#v6AP^*!^dA}0s zpZ$ti0_UcnIK-w|w!OZ?Pui`l=+gW>-P68;H{Bb2LLk=Ff6l7T&Y9r+yo z{|3g5wB%*Rc#$_uCJ#S5+EH~$)(6A0mtO=0!{4A;_)S*KF7N(pJthZERDTkG!THxn zN{n+~tkBKxempQaFWezsoBRtEiaP(zUlf`s({QJ!dNY%kwOBqR!3KXH+q?bAu@+?u zpMsO=u+y(yChjqF=WlbAd1n)90MhdI2P`rAm25aT-9mlAt95R(b67<%152temVW!+Z^O&5s1Qyabc-mMp z$+5y)1b+nE>yHJAI56?KT(LC!c>#`vR8#}}G5AJJ9N2{0u{REoBGm;Fh~&mh|7*)f zPxS{EaE^=-wpRk^G+d}fY+CzLEA<669N{rcn+xyzzHfy*keqCj=vaG8}ar_ryw*;nJ?Y) zpSUL7o1&VYD_2H1iMZ}fKM2|tFvZ4Rv6#-*AV~0~=~s-19S>ca7{X(63ThUdv{pRc z-$n{FAGAI-D(d-4Ow@)w)duoz=wP#pez5lsvJ;4ms3_1OXZVy7-|ieA$SyUz!Dh`M9U3NU{V3D0&)S=M_Ua==swHbtq2cU%;STFoM zKWB#0+pL#@*NffS7Nq@f$lZ3@J(m7xiLtfF%kdDLXxfV8=mHx?qU(hT?yIpd9wED(`?IxeZ`3iQ)ewCB*$4}cQL?(R<|8} zS|Kn|8628bP;6guif0Zs33kOIcbdxP5f=O=AgBio;GJcfsCr>^6Sl-%i>aJ(A=Gy5 z9UK4$V;WO4Y@BtL$%($?{mR?BE)&FA#lfYUbMGQn%nI(-bOb!j9HU2qRs6h z9GhU9K{0mNI#_&DnY)kqCN=rWV8!>xS!RV*XtP4lCXUlL?2XftdU5N9;6D1Z7dLEl z$>dkm?YItDtAE|x(>~$xT^(h~Q!rr&ZvC)7@}J-i+FXw~G7Zl1RoVSAPrmH$Q)V0r z!Ggox+fE9u5lQCv1xvp82S*nR>6U*H#|uK}WIdS!D#5G_*3UUGDYX63x8V`=_)HM5 zt3+L?O&}koIPrX|tugVKJi?PW?QI<#zpM^%BBUU#`j7R9(uBT}7aP3sd zWD6OLur+9Y1hS=OLc0q?<$mRkkJK@Hl^dH8{a1U^11^5ZhLKAIUXixfss5im=^xW! zZGX0JKV7Enl+Q-990%0@?3zdhJsG^t74l5PMy;P(9)BV~^@iE^)76XoLN%KY&P25w z;~nuCFsOQWoqbKZAFg1@$4?y|>Q&(9Q(Bi*!?#t5#P!4E_CnoKWU&mg^bIbD2+sZo zA!#n+a6Wd~dCdAyv8h;A*W8Sgo}3h#@&I$XfjE$J8Y2oa6)O_b5reFKg)sz8Rm>{-(;q0`2#&YAu!A6E7<0Y z9`i1B=soC-6G*=4P%-0$u18~P8uTEuyHR{VVVBk{QVBcMQ-*8Ik}$R#>+pM?3x@s3 z^@o|4g!w^>q2hqX+hP7D$5Hx;N@h_@63})_2CEL?!NroYOo@sVL4NiJ6Xn)tvFYEo zbV~4njEt&DB;CgzwryDklxXYu(hIk@cx#=Zh2)fYQ0$Kho1gnI4&PVVD*e5ykBHnq zBEtLNS%a6J0DYqWc52vVXG; zjcDFwX538O%S>uFGS)qUIl#v0u5pUxkJUL$ZL%2|%!|#w(hB*s)P_1zaGhE4m*RTb z+9~G5Njzk7=rvB)%i@3=BD#mZCm%9}0qKtI(dVT>1NVV8JtI%=A`htMhcrDcLK>3$ z&5nC`J8oM&%kF%cVB6~!2wZ9#rd=motC)x@Bf|?8gPQzBvDzh{kG%C(LCJ}>*B2Fu6yEi#cZ_0KI^V112VcV z9yx5Lc9p!Ef6(U@>sPe%-2GlcmYrCBcE^d{1)&;$TM`g*n?kRq0*4P{MM3I@8MT*$ z6U~*ROzTPx+0MjoPymXFz^uXiijl+Uq$lU@a9L=88$ZX$B5D5Ew1VC$ODw7R zuH}_haH~_2nyS(urwo@*F>$P!N>8T1M8`nvYI;>FFm7SkS=Jk)*R#nsWc(h}9Ukw} zKr{@VAv5ohlFG#R&MR(^1#SGjnCwah8=gWeH=4e9Ao%%K9~!4O>7A-{dseeV%(NX} zKYm=&M)(|43**@8u2NBf`n?eyN5T&y#2PEzo=7-gVf{8fDJ2 zLJO#IqjyIhiUFa_pwAsshj+&wL@^+U5hV8~@{=9OfwZtxl*|RjQu1IwWhKtL_L%pR ztjp2@PZPN(AGJP5?wb?V;4n7+b|JGMsMwED6?LxrGzEqg$&E2&>lZmA;jv=NL2cqo z4i!YMfq5dh=ZRR;y~kI%<4+KMFqJ4gx@Bz18RxV<%%S{4sBnjDuzA5e70VWuqwe;{ zQJ|-tc>8TvX;0h;i@RjkQXF1+KVeP$92*uV*P3JS2XY~cw9P%iGrGEbHc?OM!?3~% zf@Af4R-OO%k^KJ$hM}$TH4gjE2%z*u(MLcfP*@0!|zh`qG`UlPYx|6awc42#4^IY%EYsZ;|+7BGp+`VXMmNZfj`?A z%09f^$DO8dVd+S=N*rv2Jp{wMhoMT1=G#*iy0HiE{Y3uwHJ!3qU`O0J4qtuA+O7b- z<@|knV&H;)tdy~N`?vk?TgITh?mx3#TKwL&pGo$*BPVDKZ!pInlJtEi(ihLSy}xv= z`h>sr;YYvU9}I(UU`Dlka5Z=eQ5sIk(v3Ej7Zr$aEq}IKj4~?sB*a=sz8#;7Vza1_;34|kCmM&=t@}t*i-gC z&49++s)EyAK;zwoZqr@_Qz%X_o&7#eOM+0;9YLk`nuRT}U;?n~E&|huK~t3BcYUA5 zDyKS0Pe}sheD#hMhGHuK>$t;?_V`(9mAEYO>DQ3cRO>b7$F=?CxmYvXEJYnZgpGj{ zRk#kC54me&3+-@%Q+wCE;pqNa=;fSvTGA)JK`?l%3C1 zO|PF84iLOw{mkGk3H@I8HOXv`jEPBt6@z8_D8x-cC8X~y@(n6EVf81%59$GT(a0nThM3iKPIRkd_zv<(1x>T zYumTNbQ;`peujLz5{Q^|)w2%!13+2Ytyb2rBEB_?kAa$5Tn8Y0GM{}BB+U3NHZq}9 zEPn2zK(e~uj53vEzqFEN+-OjJ;HPKMd4Wd zt+`I}h6CmK*Ol|JN-@rR#O=qy1R8H5*fs~m8A&q1+^zWc>;fkm+rNv>{&-DtE^IlCQ28h1O+jXIG2SFCGe`l17jLdUCCOO8NMu_#J%V1 zIMYy%DH(w($_|fe`9!PIK;nSS8|FjutOhbmGd|(kZD5+B=jFJYJ z+}e~%5EJY=%NfqIikit{scPxNvUFM_eaD17b}(6fB~KXZVp0KJeaIZ96p31lq}5-b z>)uKu&etia=(%|rOB%Pd^d}wb2sAz3VLKxaE&UD7QDkmf56kfTSw+;6DN%3^-0Q3o zrBVfcxYdxW9e8l(f#VsEgXv>TSzoy0_Cje|-hC+W(t+QxW%8mw!WKq2VM>Dn590uipj8tP6q8jZk5@Gy+f*^5%mbkoDy z=xOXOlN7GyA_5(6%G`Q#tnY?5q`u*gq`R7ry;zV~REW=+4T#EEiXI-RTX^F# zc^5dcDK1hYE}8M4A5Z@m82Yk);b+L)hFO>t{Oj@bUr$Cy=R0fOnprYe-=87BLb}h9 zjlwg-at!WAM=;&j(gJ8H*x@0h&Ov$0!+4QQ9sf`UG7+0I@SQFWI|5)VLtxC+nC96Y z-u#Ab1Hkazk`xENGZAshf==Zs2Ftf$gyyZD4DQ^~^l#n?}7tffj7(yJ_ zQwt7-PPC8WEA3@bW9h>Hc|bZCbV9kKQ~- zj=;b_M(^ws4@i`2rj?8BG2HV+t$_@%-I`>0n5uB>$a4OuR$qm; zX|SWQs37%E(U6w56=wrACKR_i}x3|G9{c5&{vd5xi!6D z-x_yN=)LRvzvS>pQ$Nz=5Xz*H&0v22K|`5O;tR(JID;l)-}39(VIP9Go}%*3hw;L2 zZ(Sv25dgm(3}4P6T7HNdV|+D<(dxdq=oMl>-kX+WLp(qCjU-2(5+ObL|LD;TF;nvIY|snW0@*j2bdX%*4cTe$7`PAC5CCw6%@IR%x@SMrTWpO;#QKB4$a^V z7N9=ZC_+LD8^J$r^18D51#VRTd?x*OoWVb5z`rsI|1E_e)Z^Ch<_A4!8VAX=;8`qB z%tUkiY~s0my$-`&ldKTL<9n~@Ky{I4Vg|xvoIv`FV7&aWFUldAB(2Wu@L1k}40qq) z(aCm`SM>YpthS;y&IfofJaw+1h(cb!&xQ}(x7RuJy!~_0Qfz)7WPrQn;0IH3#(>#r zqALfUGbWKlm>pT*=4cs*HS z5pyu>HBsYvt!X#;@pY*Qp6|P>vY~l4#PAPnH`rs0PCqqcu=0Otdg?p^8MmBZuk<|V zRs9KywtnY2x7C4-ze)5X9U2$uhOrt(Zrzsnm^J7cWWiEI`CYduu}gsyJUFD^T&3>( zxTAXatbj6-gB*}*V&(M#Ln=v);8t08^EWm4u(Gqc33KXT3Lc&v4{7WdqBGl0VA5E2 z-+iqr#X(hRJKGLBK+~jf{?2~%9FBjXMfZ|#^A(akM28vL{7FAKm_D7&`bQPUZ-X2y z6?)u4R;@PpaN<95%i69iaySTN7tN=MriZ zI;yafH@|9UOW{2HYX2tE7BN$&+&cszi0noWAWQtE* zo*z~{()=!9I7PSyv5P-R#Q6%dvUd5V0MmPC2bJ0TZ4$o3!>}-Up z?&feJ7FlO9Sn3>^xZF$3am)XfxjpZ$4z`B$R(cIN+nsst235Gzr2dNgVgXLU)4-F} zPVzrCKH>ioXykK!OSM0i!~?H#kBcp% znb5m8#x?U9IONlqsjnK{_Qt$MAlFTl6ZAiHHVPSdCxadoY zpvCDYUK>?pC0-eS)efQi^(S97VLARs;3K3(>8BRsj73$cnFyo zs`n0yuP2)CkZDy{a77IQ^ICs<>5VT3ufA{d>9!l5rsePiPN}vBVbs>0S}MXy{rAIjAzH8;@+DEVjv4G zboZvzJcRVTCo)fvKcg_|Y4)N=&jRgyFmj8dq24cQZr0O1VhD4hyt3<vF)J4;>p3!Uk7k{@QBn4R#f{|rrjaGqgpBaTU%T|Tb>F@cg+&(Uvg+A27kyDp<;90ZV`+a)#=uJ6GvoUGizz8uwed$5nXje6XqqW zJMB7p&@I!MpTFuK%*Au3f`eZG$GM+H6&uNu#VQbeg-pTtw6@2t;{xx`(gP38c^@ZV zCW-A`hXiX=NX;qYU05X5@&=}0-K0t8M{(&v_ealuj|O2}u;q=_gD$YD93F%$msZeo z^_HUQ9qxnleMN3PVZh?W^)%Q@F6R`6dcl8eHG-x|5!HZj)~VWMmJM29&->HT;wWtPx4g2m(Lz`}MAuc6T4#neTN-gxbkLQ4%Qtjal+A70Oe&RfI+6Di`#&es!*WE=o=)rqn2fd-{5m|8n;p%x2acssRlND z>YBMgUA=YMAU2(d&JjCq1wtRZuN4cE-McmWFSM$1S^Q#c*8X+s z&Adv=FelSHYDQb=N_mCSL4YkU?J**j@C8iJK1~pPl%Xq(qW+OVAM6h4s87uW?1%je-4(G(OIg9`OiB?{6m*e_oAzpi7Tn8^oTN6P_Nq*6Uw`aM_hpHCWdNgcpY_?S{X0a0 zy5>*a0nDL6LtD;09zgV*uXEd!>HG6<%GSJ@B#!HR!kqS$cC(;08&6g&6Azmy8qNf) ze%OlYRJk@nr^&V6BUe_a>B9Hr!aG6@eVGicCwe)D)y|_c(kdgH!iJ6?H~Id@^TFgs zCa8fHgczPD`D-04u~zI-7zODj<-RBLS)th|jTwHD$B$=I$ex2sWL}#!uX|(RT_Pbq zze>~-a0f8x2V4rv!GttiMIFo%!%GMX!&QM*PYca;QZp%?Wgm1FAkM$Um)22)nJGtkwHLEA zabJCTm@VgwCd&1j498db*Wby!E$cpcR66tNdOJLTcYphnxUcVT^@)L@-*1?n*sh;=>}il+ zczMHtscyRh*Ot*o1kl^Nt=97K#hBT)(T-vcO#1%lS)<44R;lu}x_$aS(!s;U$&6$m zH{&>IjcoZm&>YfyB6MI8H+0B}3}!O$n?ChpJK&~13(q4T@nq@!O6z5_b^E^|5mOq)$f%Zl2`BA#zJj*^wE4Q|OPt6}4y z5DQVQQOb(K7{a%_ZW`kZwz3|d`p`f-gG$Qecy~)UqdUium9>Du9pf?_pzB6xqPSr) zASi)Z?lyWA7E=+nK_hK3&t(7>J|Yv6p1nGS`_T)*OyE4o^DqDXOS$iU{ABAM OBgjnMBP;|L<6i*MK5k8s~@-v|X zGm#qe6HdXOf3#?Yzhzvlv%p?iH1g~g4i$4wgfi^zOY7@*PcPY5&wkKs)6D0W6$jt( z<+<@C+moolXPfr<`kJ|$e^~+!D@_;M)K0E(L=zmhBhCV!4qG+s2nGcetd4sIs^dC^ z(xbOOu?RREYnXQKed0DIUS9ws4HTiu4GJl~guM(D+zLBz0>LG*y^9#2G-$q8KCCvV|3TIjx|Kzo) zqpy!^cQ)L}9gC4a?j4!Y%hK9<&n~PFc=-8O*&TU_87W45HBy~D@{Q~*lh|_KnV*F{ zAV;4VS;*6iLI*5^h^KJ)g8h@`<^3f{?1lT%aQR7hGQPV8RHw+`A7*F0$DYhWvad+w z!M@o}yF@9iNgXvCTsRiVeS9A|r(`aee$4AxR$uo=xes;~ae7sO8yz~np$a5bhjN|FLt=qL-eDs*-TM<5IxTLB$V<;l?Chi4B0lF78$KtzoM8Tet4`fG z=%o4gIl2cckgQw^kt>O#$6-2YgieTqZvU)L6vYQ2>HD%PuUjipsRLfOF_4SeAL_GLaI28uV6r&*@}jx01{F`3Hf7@;M8M1sXKRsDEP)G}!0foJCf4=$QWLt>r#7HMTDp(P zd`h>>Kbc-B=gO6sB&+inr2dj4)XB4%5X-!OrC^Zhb}E?Wa46(ekC#JNn1mcznCmWK zt&(+y{<=44m(m4wVrqAB5?;z`Di++5*qEgGv}Vr9<@43{h#G57jfmC7YG(1t^(Y_F z6Xvy(58ZU@KdUBo>50!fv{qrBm$%;IBDSP{%6CUtue%ePR@BzMfh|?HB@?b(f4?-0 z^HRVGtfQmTB$@XQ2%O6-8$F>=)|a(k{<;nWiwGYom4Kq8tHw-qX(eQJis^F2H90Bf z@w=6(RPmfw2asf0Z-3|=R2p1XYC(+{fY-F?0!~i0YVI@=Ybk~$@F~Y0+gp>~y_!wa zxr=6-oL_S5P9vHfpC$S2Vkpw-;x1O7LH8*%i?!q{HC#5OZ{}A-7hPZ;yF`bX^YfQU zT1t|oIa#YUAoDl>n$HBzY57o;v-~XyRL#VEHiE%vFKnz(<%4ibz9m^!)*Cx$)ErW= ztr}jt+FjO$>kq?2K31&JDCDfW!yXTVfR2Ze`T~_%t2Cj`>HP(1R}E-M2%p5uX>X!m3@ zd`~EhQ5J(i1<4a^zXi&;V-i;PJHMnVjdHxwIBIz5wEmB;s|mOG{ew`)Jx#Y$xBU+5 z{-(WvbIgZ}OP@>%=W7FFdsdIj$DK`1L&q#~IzwDlC^*&dlSE=|mP%J3BQDSw`y^ZUO?bE<6Rf+=1v4^aeT%cqYNnV{ zCu}h&$J)uN_N7u-8XCILG>=~t=zMb($e$7&X)yGA{{jO^i00ldcf{Sxaru`H%g!Fw z4gBc9cp~DOytHT!l3^gX8G)%v2v zsg$fB5d}TY)#1xM@g|YI5Zy*A9MagZLcGS8fC3*utASwGznCroi7~udl%l|FsxQBo z8y96y^l7v-x95(%Z-}*1D=d!=f{e0+plQf-63(N^_?1y+NUxP--YrXKoaYC`2aWrQ z*b`Rc`_}b&V$xq6IoFhZSNP)-Wfn+TEO`l}TXudx->98KNo@>C%KK_^a;%r3dsGRd z9(aKn0*;F$eK8R|=k0kp#vWU;3lHZ%qBl!`bgdChbsEJB{pJ+9k09NIU3R1uOVlL2 zD;fmGx8qqbUlPEp&A6V*~x4Wp1C5}jsIs7M} zt*%oO0pRUXdAceX{y>1u=(U7?d^*duN{Rh3QEnu#a1U$rfVke576eDde$bT}6moD~Dex_GfqkZkBN;?87}?8j&3RsM-_e)~lB2taW(_IEcjP3UbkpR$LgXXo=PHle`` zKeU9EVHZ&j#T7JzM@kNRp<ht=6<`a8&tlTngJ&;!{){tL)y^u2_L)5uWo|0t@Ztkl1zGJ zyw=6DOmH?2&VI>03?F@Mm2w{bidHoO?)56BBro&Aj$*Lpv0pPnc6})9lqK-0(sgO{ zz&-~{`bc~r_GlHiPzY-=6O}$%`clV-w~ZNms9>FqeyG(|FROy$1Swx~hn(3MC5Izs z@HW7*F|1M9Ev>vgSH~CYuTM3&4dd?Ea6blvOG)pW8OAVU*TxmMab-nu<-gx)>Y*lA zh$))8`UhQ34V8dPeqcNoo+-Yl8r6Q1S)Z5``}5=CIvZB=E$GewgF1^k8){HYVbIZR zP8OA-qfu5!;�w)k%ba@orfWJ(k8uPMc%Bt{_8`9;*)g z8J4cP9x-3j=%n8@>;>d))wPZ5Y&R*ioyf2E=VaLt^37@lyCR&@yMoh$B8{>xpQ=7& z%{ulDfJ2_8?q4E6D>VPXs{g`R|KEOGkI26)yXC&*aQ&~mM*Z*l<#*w_bItI4$6syf zdDEgO@hv7K({U?coX0a%D&@=o^wZZNMm3KluFp^A!`^yN+t3P#TM%O&z+OPixAP() zx8@)8P?qx&nkxJ}9o)F)9r~?vV(<&YuBeY+yLLhp{+LF;J#;q>h#^lK|Ceb~_k=1X4uWgJ zx^3x(FA2FX`Gvvtv*dLX{G&7ihWKs?nTCK;40*kkk+1cuqRSn6C$ruRb?9WJ4f=Js zb+!f%rovN~8;ehf6L=qe70wB9j~e?4aPpqg;o=@7jVFJc5;h8qO6Z2(r9S?>$)V9j zzT|z(6Giiidq@+>rhW3w9l_?jLGn=HzKS#b=A^j%@zCB5qM^%!vk&#hD%~4hd>0=15CJJ>FIhb_Glxsd@V#i6fJ{+0N{GnRe1b*Fn;`uz zowrvUrx_kgxxfC0McOJM&tU(<#O{xw9QFIi?<*RjSKs2x)NN>94@v)x_Uba9}GUA z2hY{nvt@6}aC#`zc-pllZ@6A3vSb=RQ(P04x^Y#wTwlP9J>5RGd&^FiCNvZeUZE1i z+A@miDdxLGwr$14eKNALjSOY5$YVe5I7|E`pVQgAbNF=0dpK4Eymycu$NWnO4atXC z_fi%ov}ptFHhm{stg`TD6!Uqt?-I=p32yO&7wQNHXbqh%W@5!qSV{Tm6t60zyguK> zr#;3IIAw7_e)Q6fa+xS?7?x$bd)zpvpbt2uM3r5Q(ibPkOHdO&dcD|)uxxF;6WJK2mZe%P-f1 zoqs4v+1>k&L|PjTVVB#xI;XHGZ{>auxdD7!NWOdr8RsC-old4JPn%T<_?M8afavJ( zo?&#sbH|3J=05v&*gPe`9IH;x*6?Eue`7y=$nm>)ABUAA!hf{+T(ftEv=sLl8@2uS zi4OABqNQDXO$~w}MtB2_I^!JyJ?8L23Xt32n>jBni(8LB9>7K14oes8E*R0=U}TB%v0& z@IivA#>jC+*eX#{ck6d)@EV)H&gYCV%qq3UckA;>Mp1sJdz3mcG^`+L_8|msQeG&yLO<8NY=Ssq4wf|0*Tg7FVCBKZjY0)O zf5emgBl@1vrtLaa_Ah^lLw6&{8)87QqgF{>)jk#o^m8090jtP++*0mwhNjUS7W`cq z79uj4a!D{g`V`B!$PY?aVQ9EYnqQJ%xGyeO3h7n>z@k3Wa64+JTZ`0?=ndB(#Ubs4 zwa$W|R&K9kMYJ|}K&ii(wjPlQ_`Geind;rG$V;PIr-1~in?@R?C*iTt^sG39MR z(Rl^k+U3ouv2b2i9}PSzWDjl-tEkT0)}2kQ|8P3^RP>>O8_`@nq4}#3v%`$xn5G~X zGN3g~9MAA$UT83&A@lsLlz4=24_n#yJ-A_dC;y@@9+0cZ`EgPecl2BKUp88)7@5%;Q7a?IFZCXJfPqv z4?z@J{c*3?S+9y@b;kYEdGln(XD(2pf-C*}b^21@bFOieHkZ>s(!6S3C<})D&xi}1 z4R?)B4_$Z{JZpL-VQLkv**l~x@5UAiBpfQ==}g4R{Xzk~_lrom2V_lK@txQR3*=nT ze10k9@Xxr$5FVeA;KGROuBk;7Nyl=dbr}?@6Z|kz{jz}GvM}5cN=n4peCl=@qZ{Fo zt03FhwkIl0q8U0kFwx0zf9CUuyw@1+V@*Uu;XlPK8h4|gGvshGT-qSDjJ}qjeq5ge zDP{4weMI~8X?mueu|mXk4M@J9Po)C{8eq|5v@xc5~MgFG^k8A8qA>{ zpdi4|`hF7BqE4ZrZrCmJ`)liGS=WNxU{RXawx zwYHDUAg?-XPW9D86h*|zrTu<`|Zp-lU8%tI2Kt?jRilYVCe8lFcCT|_9l$kSw=Stxj$mAmt#5aRn z)_>`#K@*PKv8r%j!DaA(b%Ssny3$MYCEUr82YGO8Lmsehmex&=R{KU$JB1nW<4V8sHibPnbgb7fxvS=caPqM{lr@gGN@ z5X}ip#kOAFlaxFsxN=&D{`b4RB}(VCQFz)}{ka+%U-}fHj_B!pL+JyAr;V|e=s>*r zOq)V!rPcFa`nH~L)k=6_k%EFT%q8`@ke}Qo$5E(a)^b29ej_)W;n1gxv$Ib3?;}N| z-`+eSkt5vn<>kpE(g1A-r)1Ibfh?;;JiUSSaPIJ3S2D`o?yC+u_^{N-A4JoiYgRjM zy*P|WkfKEZILYKbTpM?BY?eS7Hm<5T19J#Izj<3HdKa4lv(I`dPU-`X6 zEjnh@1QD>Z;4g-vAuUPDe-1UPjuGR`qRvDc5>DCMb8V{Hq+3i3J0&%q4k=GqvI2P5 zdz59o$%idk#+b*5UggG~2|~zL<)&oeUK76_Mp;*a5DTW$#aEfyuZCqHZ$yn>@5YfV zKf9I;!bN?>?~cTnRc@IKAI*C>YDtLiR#VX-_VmG&Y4OP_-dBFp8$cvIRGJSzneD5k zXhBwXgj)uHnzc_4IQ-2y3pjSC(S%%$NfZ@P@+0=m2y>LjHxPqJRIjWrESNB?+u29V z>6}45K_#`*!>@9K!ujId{FjD4eKFrmo2!=30p=~=d-6L77wZ`exp5?d+IRoX9WvT} zapa@^rN53gcU5z2%8>Qhl)dpZi0HRbhga5%Su*z}nfzMQAG)Zw6W1MRQ`fC4F<-=F z?U{;*XAizlCbOhy|8v&wgF;!Qcy(nF{YY*sY-b>shH_il1?_Kz{rU6|>iA0(^c0xbPcNSMcB#MI*Fzy1lv{E?dT^n4Mhqd}9o&7R|1>@1szk|kjek?gdg(`I zb5tM2UqTD=>vnl&4%80Ecmy)}>b%#|tSsSPqWc_$Sr*@xNPOb-Lvbup=dd0~bXtNV zPn22)2bf8$J+;mF2sxknx3i{ggb`JewS_17V;#pj3XE(-BlPq!Z#Zs2eEdw!EV1h_ zdOWRd9)&OzB&YhD{!PpuWY!mc-bQrL&3fK1&w;tcKeLXs?8P)L6OLo1gR=>ob{X1; z_@GaPMWKpN#gFbTuj56a9LGQGE6LaOIDS2cge3L2@)L(Q;_KVBGMv@$$E0m^9w|-# zE7299(?VeU`W(nlrX?LRK!RBCwV6((6B`C)tJ3{q1@3FD5$*EQ&k|`Yeop`l&#rY5(y;B`;9xSAq?BkZl&MWoI|c3A_8MjX(uXZSb%Hr zo$A#rpp@1C6|BW)aZBz~;t`@Es1m|)KY+ADX{U|u!$p7%K zVVPQF_;97HB%8_GrH1upVx!g>aTqt4rnj&ahgyaT3xDr64o#~aB&1XNx~?A+8`AZw zOzp&IZ{fz+^-sdqMArzAgny%gme$#4H-kI$gY|^{g0a5b>(>0+8J*j1^)e3T?tz`1 za5H5CTOY?Vd0HL9oW-UXlqN>|_U@5;Y|ebrV;W3Hl)RwkBiYtYk<1|1*m*>EiXEH7 zOHdQl_I%S2?|-liSU=kPgfZEP@6qK5Tv{-vqra#{zgESkMlNXyHt9${$U1pP88~k4 z)|i}=_1MBt{(xQ+}BwbIxnf8#^YI;c)2@!dqFZ|gnRffsHo zOgTix!Fc(PC^h!~rzmB%hw(pVhyMen9=FqhgG2O&?dh&Q*f}$^HTP@P@BXJAZGHSvk};00SHq5y$wbqPOcJ*ZR3}|zPW63i z$e8~5YA!p@1>E*rZwyn>O!+QWSv96^W(Pc_k3Tg(L7VqS!GHJKX+IZo;MT?Sxg)8u z>f8hw*f6ZYKQ9bo^QSfBPf0`jAh96N)h3p|^E$-sMT&JDxXjO)-Tv#-npK{sC0d?Q zpFyq~(Y9&CR<>YmWChb4`CIDC(pgcADCm8Q{X4YNBwMBtcae18yYk#n_@$QMJA-d( z@BREPM7EO>t+2qF{s(x|vX4-k(EqdMOLi4w}18NMnkg&M6vV z5K5^C2qpP#7`Y`S+Un6G!k&b|v_?ZLryvY(|5C)r)~H;U1WIx>{>?$*`eWk$aVDeF z6>gW~8NgjM0V|I^;;n&`a|89ffec@of5s?*7 zHf|ehA%s3EKYyLxnqcAFx=_`e_)ub3We_d1tLs+wJqLHW@HD-aQ@d3E9VJ%I#wC# zV@B;OTwK+Kaynbf;M~JM?X=f4^hC|Q6Oi*j=wE)D2xs)eGr)3MroO^!MbJzwZZ0Lq zO3XYvb@XyWs>=ZlN03@hVevtJ4e;Z#hBW$D3)d2uA6e;|^%w-P@r3W+Xeu#Nj+iq+ z;bFN%E9P}ca{-c8^3Hy=Z)_ps)zgTCRZQ@d%OtTFAVei#9|{rU6m(it?s9s6HOf@U zGa!Z&mI5p%<6kmfI=+di^NuiC{gWP?L`mSeLe>+#5OBDRFt48Zcae>^_ho@A7oyBN zJg>pFedZF#+!DwT$4?{=HKD{3XXr-VLHeDN7?t;&x%`Mx5`0kN5v@y)D*08le?gL? zYvD{Nk!3@Go`FC<4omZOeinNLn#;_1ksy^MoHgh8f)NBY`tqD4{qFE8q|u^H{(V%L zZ)V=O(2n1I30ocW`%%!d`)td|PZo9M3p)TGLBFj;n}V=(NY`Tk7_sfG@5`jC2qQ*R zHuCJf8+G$T{WErup`sg;MuMq*;<#W`p?$OEx#zu;w(R#}Qwf*UvxL@zE&l6D72_x! zFK{YJDWe|BG0fmrILwqleNXJ?v)NPnAyLcGtZeZm{BZQ$_NO}vw0t8qH*~{qbuF+O zOVzyfX}UiTm*phlf#mv z6-5efe|o9C$g(C&IzlY|1pVvtXp34O2%J@|w%dndo6-8m3aeEUm#6tu%ynD*-Ot!G z{SpsT*h}dAkXcG=KzyrxLr7RNh$-X~GH@}}Nb$3V(O9iE34aur)I&Fw_?HFaKC7_{ z<5=As6Jp>*?)4MAd^mMygwkH@U1%II6RDUufP$;6btK@;aYH2huhY3A+TN%tXd zDGq;Db_^Plln!v0xjfkE_+SR+3a4`NNA!sc9qm_l{b`n6vpG6(WHiEa5FxK3H5@vG z0#~UWNF{Q#BCHoE0Dg~c*$;ZV)=-%Wvftp3_SXwul9NPLOMQEC$5o=C;6JNqme*bA zZH8(cDTvN64*b9bs-TLsEaRLT_=wctYZyz-Dmx9%6>Wz=yLKY&R+GO|=+gH%XRdMh zy&4~UC>btX5Mb>xGw1kAg()xGfU4@=0t@w)0wm^Rn0_AZ^T-{NMv!^x)$-IJ$Tlp% zz3>FF%%t}d)K>P_g;%=dH$Alf^gVNq)3~!vcTqjtvu;dcb+=)j<2&G72EBa>#_tKmuO2Xr~+P*qKkSAZ9%#Cl zKR=BeM=zt?A})i1t2M%Nc**`o6p0MM8QiB71Z~uo^<%%E?kb$S_>(#+_QhX^(a?r^ z;YwX6nhH$m{(ye)yXq}Sd>enWgDmat>kYFF&j1)Rr1ZS9*)d(3@rtW^YZ${j>{m;D zpeA>tUtae;0!j>vsmMLLAKSk1o%w)h7681g1W$IULv2QzTXp zFy~WmsNa*WQTAyAo8f}}@uhfW7$~*}+Auw8O(K)C)f#f!{`~H4fFf0AUP4LN@HoSq z4_}l&lmsK{H&R%}=JZT-XCzWDC*==te=B#6!QKffus7%-iz41jtTZR9@gS8}|A+Zx zAl@noz3E*-ZhbOilymCfpFHN@=)MofOmIwR(1)O!qq6`@h0blp&&I>0Dx7 z8v9EMmbl?NxO)i~p+{MPsU><27&H zr*yh4jCTyHpHJJ@FhmlA#Noi~+w~N0^ZPRjb8*C>G=%Z6EBIhE7kEtIT(IKRgJ&xE&LkkFUj@tcUi6+ZA1%p+X^9 z9YIuWU0st?m|jN@h^ZWw!FwFcF_y9nI!nM~qjT;cgDg)@nLd&mVNS;d1Xj^20Bv~s zR7_G9VNc=1_ncNa45m93@!m$PY_bX4x8{3vL9Xa$_!#Xm4+n5c@%tnrm+bLamFN+A zuIp;LMj$lb^kLBiICHf}qJn3ISfRO7CauPn*6TRo?F0OTfah=L#qN%FI9^`SIa~Lp zcY~^Vb`qCA$Z%#enq4~}Fv)YLCy_@booJf7ai4W{l});WmKt&&+tzi`>4i{fIT7xt z7$r{bPM4Xb^;xTC*&jD|?2FT%3_Cx+4ly`Lt1K;!)ba%UJ%)#KK&B%Knk#Gn-0C=s zGWPct(FZz`=$nf%)wt&Ub?iCFU_%7X>>$+n7U(B^V)LY^dOoHWSf7H^0Ip-I9Z7H1 zDp~6Y`4LYoI;G;##f{Gjs)-U)?lq}$VRg&Pi$}nlCl5yWqFlXFWLl9#N04XPF@P?c zGwirt9*@OEz>1^1v?qvP-w=qJ6=wXlT7Bwbn$AFRxvVxJzB_tdfB|#KG@Dff#!I2c zB=P9QL!M3njnXahRpS+R@Kk|{r+*mFuqxRo`;!|IEcdvA)?UAqd@gdqMFQ&LHtKq` z@m<>*cH&`}#A;SM%-9j-9~{U0-Gj#qZ%S(;n}Rj#1h1gqC-XR}XUs6Fp|-bDA(#oF z7-bcZ8gx`r-0WOsZZ$LktE8>Rx7ruyyKOPW{R6qR)(#%Ln^XPjjKPo-yBcprUavO@ zKF}?1D6hhiFW? zUx=7kWUal!8O+4N=EU$hG_x-zE&2zCOjua=zey_=<(!}S&Xd5oWLqP`AG9RgK9R?Y zvMn7nj0mplc&>xJc(h2^H>u{wuZn7qN4av_AIjik!qwobUDK}f_;x4bBSN(q`(!=7 zhmTs$wG<8+x`Cq&;_G&!uw63Dt4Egwc&Xj0@oSEDh_wbuotH!AI0@cs1uS@HAWyK7;~~?F0F!m@X3<8rPHNNVl_%^V~eWD$=EiR%}-o zLVk0q24TSud#;e4iF6gEu1+}_d&1O*-dBt|sG}=v7yNdCuiD|lj5CS>7=sxI{@b`n zkhfNbcx!<;_?}eu%h_V>0tFOt;fSmGem0DPSG&w`zXzeptT5S65HEPe3F6Ekk@aSP zQ9RN0^=)IuQgCD^eCZJ)`$(1$g>2L^!_$8 znu=WWs`0cWSJT5)hbb^x0O#PA{p%{QS(qZ zZVFrF%@b*rRBTDuTmgmO>QjDCA`~tg+t=oKz|RqT$;rbZZfZ@3u!>0SL>H_}@mM#r z3IA^;N1}9@`;km+-!Gn}qBgA?=(@E59P*UFgX1Vf;E54LFxw~8!XxLk5J}-Gelz=U zHwZRv?7^#g5^$hc8%}_AbfpgQr0Hsz0ucJHnjoABLk8F8*kqfJ0JDysM z%};5fWGtQmek~h< zRjUar1N3M)cLdFG+)!W@vJT5%ECvfnYn=B)M_&l z>Ylz~E-h-^&q7iO2@e=rZ=!bo`qpfxdV8Q{V)W2n_6Zi%jpP`tEqnZxgV_t!rh_qG z%UKI))6-xKQXN2P@n|Dz?Z_021FH(ywF~hn=#9VMZ5>Z+J;U*3@2$2R5`Wv9(Ou@S zvAI=g8^8gfKpR@^n(nTOJlRC9pR!Hj+h{J_-7NPm!WjCpFe9 zs|NS#PB^B^^5#DXuH8V0j5{=LGivPc#&?#`033zbqn#mM)h3~9X^Bk+uMg04vs4%} z{w~`HO26M}yrMe}V`x|YmH9?$d!^FD(u?%@e|JcQqW+NCE1=N# zTW}hu@SpU4e_4<2k;ltrEUM;>hrl&{tKI=YbH6enB7+}$!v5($ohl6GzzBEP6T8i= zRX|As!dEmKm90p4aW;;oQ_Qo#Kh9Dm$jZ=t%F0k9R?hm-c*ebAz-7eaOfe#i5e8wsquM?8GYAM{{oyY+3Ox^gl2EE;pk z`#&f(KDS8fg-W&5afA^1MT8?suh_2#sRFMsxmQ81O9TnjHdVqoBXm9fl@s}S=f`)-?Fur(NkC^)IY2KzK`Cb`eK=-hf5Dxf_;`r29&-zo$K+L+*-JUhMks2^bGQHB>l*|edUmt zxSmu3fpVgf*oZ!>%!^g7krni*#GW4x!0o=7pHrMZ`wfEHb z<05Du3Hws`i(sR_isP;QiY?Y@m8)I`zIi7*ox9`e`3>@)a+ebl&niTH+_OqbQ^WUA zRBU3Z(~KHw0BQEGFA->VP0yHTcgx8@5APm0k@JI+d`_a^DN93r%+$Zo+Ytm`HSoR4 zNTg07v{Wa_wMu}McAwrV>V2KxD;nrNQv~*pUhzgODP-U^g$K-N->5O^N|Xwis22rC z#76E*F&u6k)|&1N56#@D7xv*Vb20m23Y4#e(ORHo7xhnkYI~V9UfVP*Hi)ilPJ1Mm zSsH$1XD)~evZ&r-N$irTzGhCmfnd9hoxO$M`&XX{Q{XO&JtfRUin+yCB0~F2r}<6; zE<4|{iGv0MJxz*SQP=>YMHK?`B7I{BcoLEKnw*9|d+2sClC=Ywe)h>-*Y$qztCG9Z zeBv<=J^qw@$59*K-R5)hcMxfu_IFfbjpwlB>nYiZC6ZYkFM_unpu6ATVbp}wa%%k$ ziA)dPo_=gLazEHBNEen2t=zbk)dUC63N`a*7sR3#{SYU5kJ@c!MtD4ZBn?csm=rW{ zQ85@lhuCT;50X;0=M9eQYoU))^3Ume^F{u~J(~#uUj~hVXFbK9aR13wxSzKBBHiA% z^4elhQB=(FG*>|gv`U$_fi2gc!2_8rszStH-b_*$=h;FJ&BPJ;M2Sp}F#!+5L%zTa z-pf?%C-`*7IQ_EjY4U2y4Wg-_g1D{qYs!0~s2BZTFx?K+>oHP_A! zO7plQr z{z;mS1K0&eS06Pq(_YR}v_#{H5w0TgM>s1Ed!v}(dQ?=|u5sQHIGG2@1Pibe7hC>n zwt3Ti$j59sd=$wkE@E}|`l~^9y~STB6=A-(c`(dBpaeeil6OGH7H(ju!4xQ?-N4)Z z-OO*alQhWhNev>TbcKC*IAE|B|9+5l)g4s0}^2uppQ5+DWs=M9{}SSl(sR` zAL9@G%0F9D(|#x0t8H}nplxl{X4*-!us+Xnb0;U=hi5qP{WQLd%OB!-xFPptH2j~T zmX5?5Ob!2D=)B-_&__ecSmuLCn7j^kwg5JHoawI*s!=J0c@-E6f<#3Y=1WrwXhgnq z%ezb*i8$Fe1+XiUEadVj-p1LAtx${O1}f^jwPuF%RN|*d=Saz&Sa?bZGFKIcbLv|k zeooHJJq#eYH$$6byUg^GpCsz{XXEsfH&uQ>whv($d-LD_Pb=FC^LO2$|m>C9nWBLLMAF%l9bbc{5` zuaNB)pOa=CS0p7>kb3OhS}5z+3HDB3+*iT?#vE-;uaIpto!D)gPf+F{$MkIjQhWN{ z{Bj$Pm=*8;QPOkx;>>yp1U+xI?gH{!Gx43Y?7TXESskd?5 znYz~8tsc^xAFSwf_UgOY+9eSwNj$D+h@zm77n+*pkq5^^5f9nUzx%yCH>HBXWACq) zT@O1Wp)g@wN*XHE^%mAm7x&YrUn7FvZku<3-AcxXjD@92@o9hLL;e0z9Bb{2r8z(` zxEodJxd`8u&c17CS#b;H=w=XrUePpvh-X(RxmFslNUGal5H&A!6(qgt-6?3C_ZD%v zkJm0~tTSW1%p(nv0gwBiE(;&fV|`1Kg{Rn%4|~mw`8?p=2*(&Y_(+MD31{zEnkol| z#+Ec$>Vfd;K6E~*t<22oedr0qoNtbe&NyA5*f$t&Z6uet4D@JysHaQTio^a`ynU0c zyS1HVafMcABcXJRiDOD;`8&yFjS3Qv4~4ktXGeeP0_c65Y^F=GcoZYXsvOSlW6oc& z4bv6>-xvD+i^J*v_{TwV`rlEq|7yCr9^`(GjaQdqj&__AjB1x%Z}dK^-;Un9^PE3( z{PFNxnM5!U;VLyf&M#e6{!N&YteEq-AZp^ZUgZf(s{AiBHL6-slWGw@wz9)j(FF(V zTSv5Pppjpx*=Q9+a`V62qz=!TXS}~)9^gWL_$8YMa=AT&k4xWk%Hk_VK75XZS!U^9 z22U%uIzj7xN}f4#WV&;Sj#<&Ivq7BBy{bpB%; zF|Wr5>HAUU&2If68QMw1f@RM$Oe^XblZh5^-p!7h4A)uH5Q>r1nVRB ze2AV(LhinfEqK_`+qX9?h!eS&m!m}hhTXSwXk>%aeA`~l+BxnFXZ#&gZMk0irl8JT z3?y}>6>W6X`eyO$E@yJfCbz-#YYMl7`C8va&R>A&(vq-|>I*-G7CR_FG7q!xN-Z&PV1C&prvFj?;`!o(^b-45pUDpkzeZZC4qKbDSOG1)r-rI|?m_cooPA zK4lr`Uzzu=D(i@Clw#(HRQI=htAT#TLrt*l> z^`QfUv6JKsvC&U7=?sNmaE-+1fnkE_kVGuWXN~#-EzPLr^zN3qS{ynS8MEBd@CuF{ z?M4D8&N#i8i+-BPQzjOHxgLW3p$-u;cfZ@&rE$8vJ>2{aZ`A%YGCFS_wxY~Ipmmy@ z@PC%o`KD!P0_q`dZsH&DT}tx}ER0iL6JoujhNFCgnqAH$TP~>-uS#YXY6fb!Pq||F^`UjR z7Vpb2t=$?kIf}+Sm^7}O)Xa*ZjPuj+Td_x60?Ezlgf)F$)us^gGFn7#13%jmE}a}F zkWsz|^u<|^4hV+(vG9wZ77H$Tzy;@bGJGBfN$2~He5q>2FIPcY3919%kU*iJOi$Sz2{_{mjW_Sfpv>{N}*dt?K3zMX2~Xh4SB> z_Q69`B~^GwJE8tC*42cy^a;a&=iG+b;h5O)`Nq9lORb;^lMLX%0oCt>T4^pPwl~qN z29Hz)GC;1SWHfCFwlX+061?t?fdp$JMuB=X3`BRp>Pbl_ZvEfGi zk*2t~VBv*$EGvibtc0+o3DV#^`t;_TCR!($$Mq#`9KUTBjCY2c*&({_m!b zYyek`jfStuCA*zu1~L5((ahocs#!HIEUuJcz1y8>+3i5flU|G!YPGE@8+)oF_DUFc zmsZ|pMeo+ZrM|yrFqD?ky7g9toqfI)mP?7ECAfY$YLDQ2B5P^x7#V_hZ?M{}rnOvI z!EU>CYw22GucOm<1;S9I92)lG#dk{WpbArmce$$Bza-A?W$<~*u@8T|Uj8uL-)7o4FL6IuoHFrpfNE2jmL@$R`U9AhtY34A^wyWP zBsx4^(Gv$(o)Bp!AkZJ(qVaAPIpKQ!uD>Y#P@I-jPnSN?tGw`~Tj>C`xCwMtLE+yc z?mT$JKb|al@Z}7zwHB?B$X>E&T>ULdgn>-n&ROi^58CRP{Aq}#y_~IEz2Eh$46ua0 z?~)YL(6jRfO*^0dEm=V6#Sm4u(wkcEBvJUZyi|XKFpyNy9^s)zu`%+Gr^cl6%_E*I zM9;n*Num(#GXl77gDLI&EO7h#y}~IUu&-W^7{|VTCAOZ6)!v@jp=IFxERoqk+YM)V z?cuP&X$)NAA#)RJHIak2WW%bD&sz-+wwRTgHx#u^JqZP;6Xpn|`W~yD1dZ!pl9*QD znkJ{?ldyz`Hds$_Ws9LGmBYhJ*Z(lOchQs+u(i{+sVXMGG4C>tBbY#RWH*cBc*>Q2 z&(SF*rhj8TvGec9lz+RM$X4CZid2`y?&-FRpd)P3sDZgo_-4E#pA%5mt5w43FrrBy zOiNsmW`$9j&}kwt;m%`d!?29ka?aiJqUdWc^k3ag|NS!w|HmNppHC||P;mJF&o3?f zXNhUD^=p0w4Z`pHhkn&W!%IWC$%Y5cQdd50M|a#kzQzd&FWy9qVzVAm8Uhq4{wUMY z+%7h*pB$3dv(DJDU$EJ{UXb=cK~N$KsKkh#-DH%Q-3S6@tu}})#}a&RcL+1%&A8D% zr*-?kv(#Q|m75GX%Rhy+tM!tzciwYMVQpQWoaN&gr}bzkQ)-#_I(tL7sAgqh zw` zOcu%2)M`KB%4dS`{$^ngblvrfBN^WmLMss2GQn>h5pj-NOxkl-$5YnZ7dkP~S-jiG0dh!3p z+gnA&88ls^0RjYfw*bK{!CitT1a}`Gxa;5q2yVgM-3NCI!QFjucb7p9^Zxdo^`EPA z@m+F3uUSubSMS=jYZndA-7u}l7gW#~b1e~D$YDE#%S2?y_~T;XrL7T}<;>5Z)6zIU z+4PMpgZ8|ob%rpm@lLNt!!PD%&+~IXy+p6(7>OQ(DgbS&)vlcMqRrm@se=TP-4oV= z=^z=3gfBuw(ritBInzQ_oY#De0kO8{_iq1bEEHLoi)AIJ-&>_IWB&?g19-v50*{){ zwb0rZ+2JRrnh0dR2>y<37i8O$7lPZ3x?`J;&sVzqdz$x_7!!KpPZJF}DJ=q}AQN%+ z&|K{zp9_MVt4MjS-644oyMMJ8K_c`@DmS0o=_KnOkfQ147KbB(jH8kMCj}RwFnYXC z`g^nzE_Q>*Y5*62Q%Hcd^AE<(30Ph>V*rVmuV-yj|Jgy3qO@=-`RK06Pq=>lkd`*E z5MhIk)WsE*g46)?&>dINo6;-`hmI6G*6p(fc6t+2D}*87G53uiN018g;z&k0(Voe=U}+c> zRP>S=*Ju^6(`r8&)JHUc{AAJbWfZ;K zsJfdUvfN!vl_Lmw!Y-pEZsdsHw^M_Ij}n9rot&3DBFIKTHLbx9Ynft&V}7e*dWL`m zNt0xH>#wwTzvS-5@c<{p^EN)u#Ewf+GgW*mP&|O4gTR1NO6gnFGuKw@LwJs2pVsNh zZE1;JY*m8JT7$SZ#el`qbnecl7aZCeSN1kl ztE0Jh7jTF7>jc!rtE>zYR>Td$ICi z37Fkuq-L&wU9ps^8qXLrt&kf24VUQZI>ji94JscGXZH!!4o;{_+@}Q;waj@Jo;ebfZ^&8vAv#f%I{YmZ{;_%oM0kYJ z0IWp@hGB3(&6;4#Nd|T0p1^p5rpbq)?cEr7goLJoR6S-54Os3IDW8!#qL8-pU9Uy| zJ80fhHFa)YW_NBgpGm!ui}0QLc|F7d5jH+}NI>qpD7@+?2=VLh#@CY~haK*0>r&Ou zp{UIui|nr(O(xmDxeR9c>Z$5(* zw`4{|T47apkp!BFG}b--u21itXICFRSK)VdqMjLFRcW-_!`DA=K02i7IM6-EED%J) zK@Uj~g+-K?}@Im%fx)V0Qg8CRv&dJ+3L|V_8@xLFd8RnB0bGP ztGYELo~ct%K_Qyqf&$vR3AjDgK5TeK{|Bimqe<-h)oLQ(Ab6ddPO4ep76E zWw9-L6e1Sy#jZuAUUtX2?@R~>!)2#J+QEm5o4MnrYjCs11`j}TdrYf%{ zxwrMqq%P;1z`tX_MRG}F!iYD8XI4>F%<^p8i=L-2uM0O<`ah140w+nTF{Y%9F$NUK z*-m!(f}H$Ew4#E4isISaJKE-dU@c?PX9Dv=S+m!+SwX6{55cPh35f=J9}cH+`8li! zoXy!|)wqqagKApw8j?hX6nh52dN8<0@nv>@-=V^>WlX0F;iwjM7&*>U>hfl@kxg(w z#rhOKHe1)s(MR8#J|6TMCyNJ|LbCS6y~i%MmY@4w`}Wk(P4i-SNyi$kbs5eGUlOvq ztvmqx113{c&#uQ`jQyO62`EUJiInBh4?D45d^fGGzWpzkssBIl>A(KZvm;K*gZTfO zO3D#M`iZIs>UThdH1_>sXaXDa{TUk;F zU8qPdFY$=+Sf=@yov+(Z#vkI$Sw7cCL`q}|FLY0WQb*@SpF%N>tPS7#D0OHd_5+>iP`$; zEa_PXf34O`Q5t0-QZBMd+6Fqq8Aik zp%SwsyzWIwtF2Ja8QfGJ9vVdkoZ8`-u%JnYhVQL(F_M1<&$w3A3i)4h*u^HYAj4AI zFK#<|6)8Fxl$kwm8AAis4pv-!JnHwU`CD^O3IC4GV6!a%ed_Ib`@Z%DhAHK;Xk%8; zSB9*dgPj5ZSlCTxvxYLvx#9+V&e4q<3vx8KlvoVq;ogi%ftCxUyyv1NW_jp+8^RQ7 z!KBxV4c>4Dwz&+pIkk^Zx}f)Wo+)muU%^`Qn`7GCnt!(*rjW7!G-D4Y<0+?@~pEM5@7h-imN7Q=frII{{Lu|1hgI;Xpqu{A%NyWAyav z45-g=G=uC+7R~Uf(&n~~afHd49Vph$fRGpn!}eR(?fWbauRMu|?h3Kux+!huVFH-P zL8lSeJX+4f3N^gy$p^_uGc4t>L&*Pt*Kf>G%93QbXt1=k%!7|d1B$anr zW6i&A#AQK)d@u*Ku32F(+V2zF<%YX~<9}H4Z~%*+-;^BJzgk^MLX-4B(njLrV`^GDJ)c7V41<~6RYL-Wbeb%96(hVA3*=hukD<_ zSUE`^fU{O*qWC8KZ$|>2V-!q;%Y6O?FX7++EG==FSrYJ(alHYlMm9EUIz*~6V9(v^ zH^lA`&z>s|M-s*e7IQ)LxUPlRfJ1vTHu^8Vqt+OGlm)5OKO z*&SyCxZt%+zpIqipJ%@5LBaz7TN*pZj=!qv%>*Atd4P2MXVfPyF@`Kv2-BWQwN8cz*CS z+3W(ls?PXm4H!M(X7te$?t2=echh0Uw zRby6v2PS&mUqnJp3q~{a+@yxlb42pl$HxgVToDle>sOqI*;+ot zC%&8;ozoXrcwh|MK2XYdBb}*=JXB|xU0vmj(&x5K!M9Hh0@TLNd4Rk}yCUL$JeSrp zc}%mL0 z2})LmfY78zPT$<=usX=rQZT;1xg?qecZ;9&XD9YD@~=Dwt$(U;HP}nbhV6ZtXKer7 zn6XdXV1`3K&oJDu77_G1=YlU?&mE9Tz-6Y~$@sM@AtW+O?u9m-tgv;=(CCy2UW+{Uy8G>_)P=$dXpY_gVPw&C~*4j;B<#lNEg_j;a z>w~)?*NR~l`QlV<%3CPO@&Ok5?HM--Gah4XIT7}drF8lXvbs6#m<<)R1TZ#|GkP2& z7inio`WLWfD?jwcE+uTZ9t@W=l$$Hk+VxkRM)X&ZJp!%Te4*Q#CIvh_a1DOuU8RH3 z$>;~sn5{Z<2jV!%bd+lms6r51pLeK1H!G7&yQzY%?fORhU}xTXI#a=@EYzX?DaTKP z2*Onc8t-M8q3^@p33^-$5!|qG8DVn?iP(*8&FKbQxxwt%ldCS;%rL@mEeed2`)iu_ zj&c8UhK0$7z}bfX%wM$@qJwPg*t)=B*DfJZkL?y__t;({VHJxBp)iEJzYMo6PIUgc z^}Zp?Wf&@p7W{lz4%wQ0Qe^V|07C4RzkERyGt2k}sr#nM6?{B{{ros z_k)C8HgMnWg75v-!F@l5Js?x{P`|xee7O4>ga0OI0yV93+(`EC!c7gfE6FGO&o!c5 zo#&s6qb*P<9#6Yt2BzTbSRkT8?!x2dk=SE$uf?vLDMZlqWVG6%Oc5e$dlPGhi=y>h z<;Z+)2@ef&3(r;>k!JSz0&2g{Z`niAS?5V?vgr>92;wrg+@h0%TikXR*ne_VY1R`G z#0!UsU{gH)H`ey_hdyxX7)STKT+X>*r%yhSpFKWDeqKvA_x$;US#(wziyHGC%12#= zUA1tGMQ>ESekrW#-uvICop0TH)4KLMx;JDJRa_@0BR4QTZepfenaZl#O;soE+y@H& zI}id;XBY$n!W6T(!@H;2ooWL?muVMD?TYp!O^k#Dj zg%TaHqr>1>c&H6nIyT4I(8nOKB^9x>NP(!5tlT%k4Rm#=rkR@(42?l4iP4|5Zuyy1fhdyhSqwO`1 zfiS0$+P$b!GSDte++f-g8u*^C10rYFl$ejq6DF9@TZE%iS4Yjvoym$bvQAJ;4MJ;r zM&xnr$A|Pwjgd{Iiwzsw(2(WBr?~D8{4X3;&0??E%YN`Rkc_`Cuy2Lw%<7q& zy%%sg@GehLGtMo$`Vt5FIx6AUvAVqQsoDq1p521qJqm|LoXivCRF7ItD=tccHa(b% z7Rba+d!!gmkGw!%ZR%KWep1P*0*lVUPJoJ&rt0l@PDdAcgZ&{EsNo`qYlQ&o(eF#~ z=i&4Qg?G>DmcyQ&o}53A%h$L)(KW{(W%*V1sEs{#P{n<*KnPP9oZIE%9=Th+KjhFr ztac?M6zgKQoEv^<779>0>YHP0!B~Z8?*>=Z&0Lv3_`uR|#~0;>h@#Q1d;mcw-;?P| z22mM&RJc#LFG+el5knpd_(0h0pb!{>% zTs1uC$d8I1cJQ_3g|9(n(?`qr{r$VS*hW#+8xB}ezc11a+#CAZ33kQ%5wxH|T zgqT;9#Xx;uEudeU97oS2c;UWkxxuUXL&KDYhkhDkEEPI&tGw2mlGr15r`bKmNtdw3 zl7`42?ROVQz^v}*h*6dGkI0>A6zsy}BBh_0P)NntDxTXZ`GVw?a#nkSL_}(Aw%d2o z1^E@)a0$DQ`s+$VPVP{p-x^L!qR8%hc2)d+M3IwsS0M`46GSZW%owLDjtWS}wkCIw z!n~00?2+w<%Jae%YG3X8Yg1mP=LdYjBcCIDLYQdpPIRM!KB6lH z*A^s|C1f-8)@WFT{nhVH)bt{Y#&g2?`*a^{$MF%?wYLVvCpR_3)M8Bwbihhq3j%CV zuQsJHtE}L8V$OsXUB)=wZO(0m4`=y|y@Lq!v@DF1V3pmeR%JOsuWS`#R_g&6`~9Je zos6(0au~307EYrL^ER(O?Ry&fA#&AFTsZML@aIJ+-L9Xb=A_lwK;O-J1_gnh3ru}- z18^rY;lr0F-KNb8a%l1?+40<)LSX;wj&W9kI$LehcUS_q=JsA&O(*CE-oItJVN)Uu zvGTDzQUwDA5w9t^-bMwpjZL*khl~irQd~B7lN4F(>~>dZD-+u1fRX5QcCZ#yHiyy% ztRU{;V#~6yIY;J6dI7bl&B8LiO2vSS(R4Fc{wQnyLrB2(75r*Xz5@G5;nUhg60h&q zI$g2X#4_s&C{6p1qu2F0+Nw#xxzR}YIG;U&>O?}Tho{K8WtRNYBH3Uz`TfeUffn*| zBoTI9NKSRe2A_f~9VY8I4{IDcI$7(US3JWuaor2To}t|^q7>fS(0pnCP|{!jQ9Ru2_H#S;VKq{u2wjPTLSx?uK>$!JwRA&jCh=qUO73n9!9z$txAAJOyGqRO~Jv_75VG%GVI zyj9!FdW#PF(?m!Te)qTcZJ^oiq@DxfiU+S^0qy>G@19*&8^3NntZDcjo!vp3%$r8a^pDA8OoXPc z_p|7uJz(g+Ht(4w+wDHBGGT7m>9?!^(URkC=4p0pB(;YAi7U05{(qQq+K{P$;l01M z&0}AP4ojiF?-Z zhwCzJ67y~!NSg#-Z8M3vI*Qj~g+w^D^3rhDq~zjU?3i=#0io|iAE&1By^DxJRV&Tt zt3beOM^V+Alrtc3S4;*-0+iTYa-BFK!ii$jkM2teUX;f--v4q4_RsY%{;c4hyl3zW zrgkqYELtN^ebwfsPL`tE+Uag3z5yS;GNXQ25EZ)Jy??8MNu6UD8V&;=WBIa4vZ`%< ze2~m*UixdBkp|diE=_;dN5UI^bD3)R(%n?rBFkBXj~7h>@h;d0gqjn}P5DN(;Xxj) zn%+ZK+l}ae=@}ik4I@n&Nkn*-2x#8nL5}Q;2HK=_!2PI5Lx5E?rC)R~UD%Q1Cmib$ zSR*A54m%4^-d)rMbhrrg&Vd7;#)=L)bkd*|>$1!T`2`?OGeO{~AWAjNsz4;Lr##qv zA3RBiPl2*~QqiI=W(~-^&;pLtN^n~LX~TE8`JjnoZ3=8ApgJq*xSWi_18|?T z{MGRwgRhoT-M}^btj~-Mxp0CR%COFGr*ntiyvXBm8RV9n`^X=f%Lhf-0(gycA;~#0 z;hm{i#Yl;Vt6`?|hy%^_kKzNekZRANo?X1rMB_W$UJyx+Edb%Spp9E)SZ>eeUm_Ja z=(nq_qgYXK_h*lcoU5fu3OE(6U9sNL<@_A$Yk3m&uFTM<_ZY+KPYjQ-+c>-|NRVor zJM56M%;8*W>4^wXabunu3;NJ3O>!!|Qv>ZJh}c7J=^4JuUfC*2`j?}T-7i39r=}Z< zAap8Qzvdb+>e&IG6DU&~o|w`!hk5*s3GOmagnAU{I`VKS1F{|Tti`ybI{N*+t;zq35J9ivLu&D>Fzj{8dE$Auv5HV z@$ll0C42PFmv-+a7GgI9o4Vv*4cvZX{Q?zATs7CPIWC9SluM&ajn{kzq<0>iO0msk z;-%qHJt13*x8^C_)l=ro`#?8+?&`n^e!h?ozmadgzmb{>oF=$kd%hfkYu7TCyn!IL__2ckK@ojtSze06gf z7|4Hxn1$Y*whzMyl#F*BE1?@TUQJ>U6=6ZqRR54!AB2}$>C`Oh1c4PKfg667rY{N( zi>8{LJ?4FOf~ll&^pkO*~X zixG}A^W6I^>0>{YC!r-G0F9&`-?cRjdmdrAO08Xh_FawP;TNBkRV9e-a}9NI!qs7H zpPcA9{`lZV-k9-Sga$R!Ogz>@&hzo5JG4XgsnOl2XI_Jfz0WSa9|H@dRz>R+c=XYt z1PLt14OhU&n9B>sfI*SGdVHGmpHljhWS8=L8AF=;`{6j5PS7Py>yZ`K+B!?R7zk{22~`-Be0;Hs;(pb=$gNc-=k^Pzf z^TepMwCE~%;{=Ek7M$1fj93Tuzr4B7X&NOK&QY*gBRPSo7iMvlY9Tt6&&*vu{{l51 zvg_UBtf)ca$!uiPBql)meliuoJ3jhBcW2>~01u(+rpMF&1F_%j|EwDmAJYwMLpmMmVTCzIp3L$cl zH%jq**^%f2F0cNWOz?O>NJvkkB=iv9;3?ey7Ve?co!EdKU(j%!4U_el&s@J`=)L{g zeUc6CZIr*f`^Qi*YrxEQ8E^~cdN zvW532?%E2)fNRKCXk}x5MiGpa!0mvGrm07!tb^>OL<)@1`*#Ah&nY#TW6&c^IoOiz z;+Yd;v50S9Xn%aEK$Me}qe$V~nbbOlJ~Qwf^&*6m<0ZHZsuD3g_K>|OSyafORKKLP zA74m)wG`Gc`vyPO@yJk1CiPYvc*?V+abo)_zBtitv$POboHM$M|8z3Z#7Oya+C*Q> zR{kK;!w*vE4ew{U!zqsLEC0B<%FEcliTjDRb4X8kZfZmX2$q{%d4@h=l|OdK{`HUQ2t!{ zczvh@*4+y*@KCTz(^g# zWfT-$fwqr_?HY=1r}TQV;x&3;_T^k(CBqCNplTN`OF}3J(=v4T%_@T@uUc>YCT#N6 zW?|~={eKJ*gf!08*AJ2N^-oLCyq}SruVQ*$WIJ;mie#i_FPZ_kB0i3;vV4s9c5A8| zuc3Y)BS%-SxRh`bIfVux!VAd!nM6q6WgaaLZ*QH+p~T4SRk`(AuGxSh{x(wHIK18+ z_*AupfVj$|bESl%A*wU9Ru0oUatw@yhVnRa!Ax;>&soRkO!- zgg_#Lg(CE_MAMT!)+wW<7`S7kpWncH+l9FFKhT&TcQi8sA1pp6WY{*-kAD4j>z0=j zyaX63SF91X@|yzvV%=Ik1w0CKEwFYFO7chqFJxswBR*Gy*%BWCwY2g2$Zl0`b{6ZX zmhdn}B%*sFg?ur5t=p{4}HqenLAcTV+juzsfT;lwcSfgaC;=!(e%LwWqg%8;rTFpw+qC z@Xzt{;-n|a;VIP`#AfrbbQCbg6?0u2CBB%LSs2uR0=<2N2dA899Js>cyxWzTu#a*{ zi~XJNb1C<9Rtg>*02v_`K=XA;*R4F+O?Ny%#r)55U!q^S1wszUSy8{5A@ce*B7w1` zCt)``{~3Y6f5vgo_9QXL=(#*01eA6R1eGNiJXtSt&r!w;r)CV10AM^)`zrlS ztvIa}yaXCuSQfVOdcpF7{&lJ9m306(5EwmqV1S0IU8tFEfp2ooeMif$=f{`SV22 z&|P=~iDTg`Qq}g)MirsspC=4immBil&o;N>F^ZfAkYV@NUfnDFV+f?fYcqJ~`Zi$c zDny()+DegK;nTuy^fNVYYx^aARSSh{cX<={#3E)f8eE)426APIxnn&Lo{dPZ* zNxJp{tGn~%VvHRgv~0{ROQZGCvRLz`jUAefdn;=VL*_nx;!Sq9YZ0gQ*fL5_p*fgE@fe`o)hkw4U1hF0>%``0Y z0oZqBQd4U?HC;eN)K=8`G&8Bjd+ zEovCG(>fA!BCegTS3=zvk_SB)RO*AVS(B7jf|a^I-_e1H6V*eIJE(HHmentYF4NLV5L8eLWVH7HH4 z(te$12n}qC$|!pBW1dvRjgExJ2d^F~4ddBS|BQG9=;Tcw7vdySErWc`;q+Wc(DX`N zdVy1YWtex`jo~G78@vkwBPwEe5?79x{~jIrW7Bh$FG>^ttu^Y-4|3zOf%y!LB)*sO z@rLX$d-o!4W%~GJkneWxd~E`Vd#A`hcpH8mf5Y?CYcY`LMJ2w|IT7-~n>pI6VPa)> zkZNo1G2VUiI^Tf|<&9l59TUy@jP;9A}oqDKBqkQ6XfF$Dc3cb7jtSrx&r%a*gko zKfh8hs6 zD?i#d-Cwf7Q_2*`z5$Er0m^4?tkAqWICrageD#-y&k|3}9-Q%lZcCE5TlH%h&v->g zHJuhUx4J>qco#T<#54gfC~{T*pT*ZXYI9BpZ**lLjMDkn7PdT$xrZYZT7~id#x}kV zhGrguwmw(>3X{r6n*XJj`Vo}&T;1YED9|KrH*pEA^l{iqI`9~?2wGS2vGcvM0aRRS;Ea<`PXHqfmb8%@Tpzq}4X4<)g6Ycfk1L9pRs~UQPB+ zQkPge^sHOr-md*eLM}r@)o22qDwIs5zKYX4DJFt!Dxr(Qo6}btxtENt{}^>@eD`)e zN)L*ENCdJk@A~-|4{c?VdvfB|uSJF8AoLvBy1eE)stTeQ5w~w67)QDdA5PR3YunA& zP1;cq4xcd2g*N6L{@HKbaovFmf93#sxmh6?Q!b2gPf61LK5Y!IdmZBDZP%jCMpmrJ zI6kGgOaHRVftK+jG4p_#idIOw3*L}{EaJty4O|(O+qgHI+)poUB~3L)XxCDfv%1%8 z#k-$F0nRR z;b0>G^+nRoA^Avx2~K~v#BIk*rf&$8(SmNI{@iStwy>Q^P3V1nO06mv?HPzXOf*#c zoHdHPLlQ69o!(<~;GqxD#&EL1F&DqMSj~dh73_*Xf3n8b`aLzj1K}6`4#j4B3BPaj zC&j^3lpUkYFcWsQiOpWd*_2w6Tf@$1pt(%F@vB~x=6+aUqg^HJRdeqVu<#rGI?!iQ zH|2d{-yPo^WG-*}*MfW;s2%$0OkLCE?FWf*$t_}ZxR;5YqwU;-*{Y;_(ul&@=~xhs zR`%2fyP^k#OOEI3`jN{~n9)RfRezo#@g74a2}WEBEg72-nAdczDdK%{3jKtvgPMK-xDcXZeq?6E_)f0_wd7VnK!bIDPHn4uI!M2Xk zM!ECm`Qvean*YfiUsJEeYE8I37+gbv>+ z-hnVbVNv3WIw6N<6ULVF7_t$FH(eM&)n^X7{4~r z?SwicQMm0N_~p|=w9#L=BPT4A*x@}(9Ki+-^2r~2zM{vj0pUIPnB9Jb9m0 zbS^tw?v9l5vs#0okH;?l_s!o0lHz?JM2KxcOTI!#d_ z1W4~7kF8OA2x;{Y)6VUi=)~LDCh|OuJLTgi5uSlm#xrF6apjZ6Uh09Pl5TJ_i6{#S zzdff2TKAxMfIggmcD|XNF+@o6ycR87o%I$LVsVn{MAv_cMTHU3nZjYm>Ex4l%dMP8ehr~TOt!xnZ`M(gt3CmRqA+i1N^jdjCIEMQps(l&1Y z+}o_VK-g9sEXq46->_E7w=?`YJsMu>ZEwXv1Y z&${Qi%%1Z$YTE;E54_^_6ZN}K_*SC0`mcBz=*+^r!6_dYji=gNHgR=jc`65; z;^19MBTtOJ;PF^Bn+V_+Ln$S@6#3=S7K-^#jheJ{vVJYZ88zw$d|qcGBR@SK{4GDH zh%01ZAgZM?C{tAaVk}izNw7jsvZyHuj_4! znDd01Pd_~4RZIKr4u-wZq0DA*A|ZT2zaGh9W(1Ssv=2E5>M-|OD*Q53lEvGq zKm6rS8JVgbzLmc)?$%*m*Ki4gMIZ&nAV7nanc&cZxz;!F4%)zO??GL1D-Rb zrj*E4|8d{#@)qF+CuK{I%A>DBeY=WTQw)mH*sM+ZgTHPrGYXbZnf^ODD%-OJxn`K& znc%RYK)(OOQCSqF#-0AX7R^p?VZeY2&@XH|Tn|+?UY;zryYBw}S6hVf!}{w241b5a zm<^oFUF6Tiw6|=dj^Yn-JW>c{B_c?PX9is_jHe=9FZJ!6fspx;tjKzbpg62i&X$+I z-WUkQ5S*plbj1quf8|YG0WiB}Qbj|Es%JW0A8Wmj{)h2-HTi5DhN6_$!_UdCe2(n3 zCSy8%XLvMtB_jeeRO7CvVF;Wcn_{bqvkuWHJep#f{U zKg4sz<76v3__kK)KA@vcKnfFn&gEz?*9Y01kbLF}PBkKXR;t+ps3u|ZF|e84=UjQr z*wInS{?NVIkI|e+LQHjyWd1tc-Ly4$W!(*UUE$2|2))dR+r?$lg*Cpff6Ac?qc<>T zN%6iCNY<{kERV9t`FYn}d36PZh8V6>8{SH$;Pjr_#;0T(*hfnE60Zya^AWOHJ$oL6 zA8co*r%4C&jNf_P*7I0k_8n!MF{we_k(Jl8k8pPd2-`W7jjow0x7fd@& z7#&{B-q;$u<|X{~Y#xju32U|moQD4%?At&>7RV=edXk5V3p(u)=Wb^$mqQB!(lB9z zA#k*$cxEU=YK=WrY zNN!IBozl|=`*2qgtTUoXr6UXjC$jJZyLJJFde_W>!WG`10++qqfjK1*X;itTmJjNp zthzpGgx&{J#f<5eDnzBaYL87nyuJUFH%6w1(()8z$%)fiL(n|dL(w>_h9@x17!#jd zVKtfC|Cu(D=Og}*|KRTYp?n3$a$Go+%E@4O_Mi|OV8hQ&?_EaT%#?p!gZdr1nvU9Z z+#{+Y|52g$_HV-pm5eOk_D|6W1!uOk@cG^PTng4bgPNaSRku3bgkj1R?BE%bMISGM zSBJ>FOzIPOlpf2=pft4w7p|6HUJ`LWk5yQs|L|58 zG;2HEK@=fAb&M*zbBEIn?hu#cD1-f`ka`QQH2THWB+X=$_ioBXw&7Lx44U$GS`PH? zVf*D;Tk;-l(IeQ}KGG*cV7c5m=J%L8P;Yx>xYQ1LH{}Sg{?SFlEnkFNO$fpNW2>uZ z2R-#K2=xdTc)C!;cA7JP_vwA(3ixMK@!WZ9X%YF}2HG7tlfu8j^`%D{EY;J`vF^K= zsIHg4IP%tojWn#h7c4eWT(u0%W6Py*q`VA2XH+l3F(3d=>3ueTL$XC$}H5Qt=(ZD46u zT75k4fBsgF9{Hv}fo_>Q@g+vh{ll6EL>b1LW?>wktd!UHy%G~Sa0*-Q4NtAjIv?Sz zB`AkLQdEdw!f(1Ro9-%lWwEs6rhDxYB7QAN>?Eyd2V~Rhryi~fDjpHghdA_aR_;HZ z8NKQA3#adD8q_GK*005ga-dD5K8-WY%hH`xjJ=gbirw$a4Ta{yr?F%-Hrro>EOBQX zsvByZ5bcj365YmCjACSUE1$oaP{5LV5oM6Mp&e7OeJU-v2*G?+N}!y0o9-h^P`&EDg3V^f=a=tfg_&<7kW>hw5$hdQKO=uZ#qg}{ zV_Ip*zAn`qou=EkonmSwl^#4t8#_O%)Bomq_YVB@c!;BhE&32?)iG-VPf@f>7iS;> zuLhCW-XRg!ZE+v-wX{Mju5sk5M~Sh=2V{PkA#OeHxc=!L$o%A(R99~jXQ7e4u{ZiH zmB$dK(mJ)?VVS^5k>QKEFg`|O*WFWH=0i4l;{o@I;@{@%fUCJ9#>kThzAJH{a9@E~ z+3dJ&dbV$ z{V{Kr=?)dU^*fc$VLSI8aDazxlC4!MMWWhW8PGD=f2c$mQmPor^uiv7Z$k+^#7T0^ zRc8tT585V5C(*59Ld&T}xugh8a2B(9W%GWIpJ^79Mu}SLXvupfo3kIS3j2Q|Y;4mW z7MC78S9|`A9f(p9a0sOlX#Hl#0%dItKQmU~z1spg2wfEQv({?DTInnJ<*Y;SC%b)+9=Yi{p*7PYy+N{#hO%;bbk!@lV z^G@*@Yy4*1el&o>UIJ<9k4#S#Q4uQnyc(&*}8|ek7Wa zc?xfm9M1L{nVeDgG`HTnE;*xcM|6>_*m`m_R;b}$%Hm+bv)>rIDRW`-DLS)!q3htz z;*9yPjd}n7|CnauiAfR3fAdNBKkFSt+dY!em3b{wtgyL}E;HGZ?C_U4{V#Wfd;=G@ zL6yExl-uRIZMpw&RD&fB@}0sf1oHJ+^aZc~yXwa?@}za@`Euc6_#Q&Gl5&}W5Ojgn z90*gZXyGG0_Jv{R|5BrGyaLWTjC1$zgram5yI8r)L+D-MB~?|0e|-!?!&UtERY@uJ zLvePlj7sXSYjD}Me*RtMM_BGZRMupmU;djrPrz5+W_NBny6!ZCzZB!9^K#&-l#GlF zGt-V^Qd@DW=1&qUAOmHRX2RE-i`d#kW!!EON6|sP8fIp zv8Tz$FLraG#v$Gh>*F0eo?mWOiQE-#XG*~Q z_1THa^P_#X@K+CBE(DiyV*%mgmiK-B$7}*P^Ld;my|zm3HWPYu?G=z}(w)Fg!Nd20 zViX+%_x5Z=CRWzCWV^CZbVc#cRsRt?@S13_lkT8H%D4VS*z)}IAviOgj%E@`YKreF zx$YD0up3MJM-R-1WrJ~YdvI`Uy@0>F6~Qk)Z@BrI_hh)-xUSZh#Zble*=#khi#=wF zkx4izzg=EuZ=p|ZAnu`2N_~;(6O5DTAeu>;F+HluQfV!0*9T1?;0)OTw{?G1_q2vQ zB07%V2h9do=*8vpJ`7PuHZJOvdlO$xmTQJE)6VC8D}A(}puKh1N1u4jf5&nB9MF`D;^AZSPA}tj zN2a0AcL4gMG>{qmMUub;#Z~%@Tp6y`1z}CpP|$HZu5vX48@*7$<7y&*aUf1{n)jg} zF=7FEHsy{W_x^Zqzp%Lk8ovS}YQf8rf7Xba&;De-TWGCuTZaV9+Vf5LU z-{yP1=btp8r7`0B{|wjmtb8^~$3hmiUg4sC5jF>o3psLY2B!9AidaQ01TrC$`3^^9l2W`t?+k$eA!Ct zE-q;&*e!=2H2&py^vFtquJ}L?wvyy0nc@E$2KJ^Rueyx(K7M>6i6#42#CkOI?&xV# zFy^1l0Hz{l2V@4?Q%`a4um~=88AuZWE=L8aPu$V7KH+iv8d3|qs2!K}Lu>KcHq`j1 zpx)^11HoAEKT>genOZ-HiDiWYDgNX2m~*Tbu1*^NGy5zX>!u*^kLmbh*)*N4ik- z4<}rfD8%!uIlEQ!ZDPnZHB-l;VV@3K{-Y&buWbe_!sAeC#;tpDj`bkm1{?3AK?B!Sn1y5ex(@t%J%x z>5=;!6HHbE@%^;xs-5VT@%;9_zfChBgN3YSsm{t0VAA&9%-QwXLSd;>!f9Sw9##pa zwx{kGTzPd*k2)>4OlF4npORJh?udEzy+CO<87)KH6ft>}%U-9niRtX!LOy1qn zoo)`g0^`FR&WJPRIX$!K z4tPKP?1b!A|D8HtIgR^}roX$JJA692*zTaM9tnN|bU$C(^oKrmWoo}inhLBx$~8?5 z<{%cP<&jyex%XQKbt3s~4nISdm=>0`8>#)zJ_2r5b>Um}0>WN8hfXh6!il{;*X0B+ zv6Ef)wNv{)W{T5m>Y*ijLgS<-&=&MCmc4KO-ev#^erR0VQ&BffWtH{uNR=3@i1S+D z<(Lp8(xdz%@r_@ULmUhc<>(O-&IpdAR+Sx86%E5IuO6x|7lsQxzA(q1BDkn4%Zb{q~J6ISO?#@FBi>j+1#|6 zPHKSudNMu52Kr(Y-((8K`eJYX|Ua*a*a5N!Z7e8fy6vR4k4C$#MS_ z^k7q4Hb^Eu{CDR-pC@;xQLJ-U#OLum?&L%-F;5+)>UlNpuiVT17Hd~LXlga$Bs*#J zwDTZ{+KScHG6S>IfUwOF@ITQTZ%U4C5D=rfy&?hy!}JE?;8e;u4(&&lov9NM%m z1|J>?QiwH;8kI2@7nRbWvtJ+zZa2v&sghYUBF9kV=>DPGu^&_9>Qi z;uPKgc`H;bIL3}+StxvO1pAGW57?>4avGqT6@1nnwi%eeO4w0d57Cr*TC9qlbH^G0 zaj+%wGKJMHQXMtya!Bzp-`P$o4xG$o*N3|WFyKAG23-CJr5CmsxGy9A&noRJFZ5c0 z(5ZH)Sm{Ff-2FY;si6oj4pj*&#{Hg=oQ@Dc>}uoo#83@;3OR^N7F z`BzM_RMZC;OQ>#lt`iID2Ko!p9bLr8@=gG-C-_+c$8z?zPMWFAF7ATzM$x1U`#l;o zPF}He@Nfv+`5|T7m`26`Nm!U0(AGN^pHHIiQDA??q+!Bb$IPkrB+=DCG|6!^$2;ht z+sb8pY%ooWd#ary=EoKX+n-`f0Pkp6&phgPrf9c#B~f9d7`N0dF;Kw|wfR4uw&8-$ zw=Mu&dusny>Pw|4hzVkZ3{`pSWqeqt5^x83Tt2-vY6t4H9(^W?%9?v{;Cw*t&ynM~ zS6It;-Pu2irX81red`#+2dS8I#fSC4BX=5kxDmb{|z_zV#&gjc%`S%ZeGBp#!@#}pkU7QchQ@oz|^sFgoN~xaz zMEp|Jyk0&bdPSIno~9ZIphWM^n!|cjAYNb}hyo!e9kFZb+6PJdi2fpKG7ioHl=Eo;DU!3h)XeXfFS-O~rGgoAlHAOw7~T@zUW2RdHMA zrdj4UK`kDnQl*>iSFFBP;XBKIMuj-IcRJ&;mEn_<*?u)fyf`PZUqyp{TwTj^?0*+> z$l5s5cJax0&w=?mopC*_11Z*F``B^NZKjX|S4-?CZpzoW+3zT$@4+MGg}hb44F>fe zY`!3;6A4^D2t)>3Nh`?fT7{F4$7i|{|FhPT-?l#l(}V{rESnfCSOpidfCcLZ(D_tW z6U@U^jgsXIz@3dRm=&s~dDhvHhjG7`neD!+Fuu=PPZCMnV0i8?)@hpL81pZFzk{dT zhMgLgs3=dBW(JwQO>xUv8WM|?xV%zm_f{%WyAf0+p*@i@YTK%`?#t;D@{uW5gT5CN%kZ1+L3IYLX{X;O?hOtS9z&DaQJhzyARnUIbW<}Ef7+<*FsttdAnj0F5a z2hkUQ1KUCnzxc=N)+#(3FPu#WFwAP_jd%^KmfQo43}YA5{kB<6#LiMzr;8CD?h%6u z^GhT7Y|}0jy8&-ltiU`n_=6hm!}@d;aKum`6|BKlE^|-SjfI&Q(uIEaRI!)D9d+ig zV3L-Od2_i5pc4*`eD<%?8BNDzii`)J|kL)I?@!Nj+S0=*sJ34KzSZZ z;+BsJ=eqjwQG9q1n8Ze%4MP!ohZTY%P+*nbb4kc@Css`H&c%-PB_)362I8})s-Bpj?NLCyu zW&rnaV2%;Vd>Fw-;2#1w#3Zkdr%O^-#d_e0?WvH{e)v@=d6TOswGKw3lX0(Ij{UFp zoFSm^B~fu^-RPcfXZW&QA0W0vBlqR9I^rj#-nyclg;8CDTm}?@qLcM_qg`GfAdfD5 z4cRSpFpbI$!+>5#O0KUlME}rvQ(fa#539w+^@1Jp4#UGr@dGC%p>8Nk6L&ues<_uN>RPOCl9hTOgyA-N%SqY{M6 zsr0L6*7SR-BYUk}rXlaR_S60MDi!+p+SV^P-v$3YiMw}*UfsqqqXExN2fF^DF~=3Q`$ zL&zr;;`W^TXp)f_wZr_MMXjVurDdIl8oH`EtMSw{Riv)~sMwB&Zy-N-;O7@%(s{j7 zQV)}}B9RHWo=o{kg{V3E>t#?;^xX<1W{V@c@vMep8%lO5ad(DtZFfC(G3+MzdEZ6; zaS28FTJ+$^2iW^)@Y?0ZzX>B020LHz{ZBP?+5c3b`cHY!|8Ko3So7DBM;e9yz`O$d zre(9rxxE>`wVmRAL8cO+2vrlxPbbxcD!%%(YtxYy{@&8zMv%^%J=W++E^W{~wW>e4 z`+jS7oP{wQ_U=_anc8M$wNb@-v^-n<4i#o^}cje40noFQg()hnDy7yX#a z$UAmFW8EK3F7Y8u$$xVq=Nq2i!m)=I=vdwBDdHfAwM zv+}Va4<`nDIyj}FglVll`KYDaenLb`k=mM@sZLZCv@d|%Iv0~u`*yat`BDcIRIZXBId#_h=gQKS9}Y)3i{HB#YWqVEYLyM>UmGcD(J$ zW?D6S`2G3=Hns#>NnK{F^6{Pdo7Y~vG<>h zm3bXBZ;MahTYk368Sz=88%n^MRq9AoKg!|Z_wYGXr>_S`mmxN&fX&h7JwNJ!pI+3!dP*>TU+eZ> zEe4r{Xpw!RJciNAov<1|<4BKya;NKn=mcGcy_?8l9hiCm5 z>tHi=-0fWxxYUy(SsECgJwBanBn06%q-qc1o!3k)`*hN^^izWhrh$--@uQ?u_cOe_ zFqSBy0+`V?1$YeCAqY%RL*k1e>+jt5?)oZ8!nzHZT{%h_3BKxoo5`~K22JYoU>>AXrEm)h;&PmEr9(usG zW0VCOg47Y`mB`Q(b@sM+iogzq+cAh2&U>u`)AU<6GOfqa9z)-8TAQ<3mJWUH=cPe? z1>?70-zQ6cnUh$UarVaFcRF-w+xe(md1&xuMFP8VZ6ICu{xu#eoul5&0l|W}DC8Kr z_v$b&{c$$&sB1`w@4~8_w4|-lj`R<`z|Ib~gmLFh#@6}!Ykug+vw>AO(h};MA(a(j zX36gn2<{hnFc4Z99v9x1Uv(exYypMZC71ZJ1;<<^E4G-8Q@i*9L0FNdA4+o4YM#ZN zLM0mCPu5wBeBUcw`OM;pz1!`9wYB0-2b;ck8Fv68v>j<&djwgb+hNVW&!Rwc-)i;B z;hx497jfG6ijY`nnk}?v0)Hh1Q(QA}xx!&7h0jIHz$1}ob+^4m#BRf_wiK*6pbsB+ zr;S&`%Dg3Gv4Z~Ci7VS}7~@dNPom&W?=n?A)~G+jWEVu8t482YhSdks5U1SsvsX7sKBRZxxWDh1yzbnaKvb?KApX0g{8yG7{eNJ-X&;J~vld%5veA z#e3u7n&*l;j3hYSPlr8CeBOl8EPK9Md*yIjJqPx$;?ixw)lD+ zPhoWT^UWmJ>EFvw<=Nfj>xJOXFG6*(vDJE~65Imw!57DSn?6&>Xv;N|SPdRh2gS@f zKeIy~dQyVusNd$gGkdLSKT&qFT>oIDM1&VV{8k#-qhy{-Z(bP=&*NHON9RVx?*2WS zH{>|41*-L@(Ps|hYow$OQTqzw4#}Hs4JY$CPK-J}ZrCCpe$lM_b?NJ=5IY#>V*eSZyq(%Yr)3Pv&MyrH48VJ1F)!4qBuX7$G&fBit}w=u|tk4H!YzOqskaPs?L#B_4#K1I}*%xBBL zMV}`&fJJZ532VjgNB-i-zYiWJgvRr&tu_e}RK?@drKh6Aeb))AN+aY2lC$DwieJC~ zS{1u7JqPsz(c%Z0$^*VKCfbv(8Iaj>WcpQb}*ro;DtjM`rF zayRUvr@jxg9<2e8oraW5be{0nnZVAit*PeDMAARNgs*eq8<6&wyB%f2K z$a4KlEN#m=0+EJHZxSB2mLKyR3ZtX61RK5#9-;M+NOnkko4Bapm|Y|V_)F?DRfJ3NR608)bFFbzXeNvKZ?j;Wqa05q%9e zlmSfYF7ODuu%7vl!53%9`xOS(DZvX`!x`@7D!-(b<^hQ|HPyc<|A$D zu7V(l-pGBF$aJR|kZhMSL6aMcJArwX~U_-!yPhpL_)`Ux{uB0Q1BI7+{wYP zTfE9ovr>b~$){|lmq;J3Ii6iQmm^XG?wBGCa!hbTyWTDl#F`PSod|iTg&>LAQiNQB+=hzV}cI!DoH}|vAZl6i=S;Q?W*X9M` zeP7w7^<)#E&D8H#a@I;+U29MHV$=p(~Nx+k!xe=HhCK$1Mp4{(+Oc($a# zZiJFVh}O^vZV*@hjQ*i@M`FR1JC07MfYV1KF4Z6-09k88Mdye?f~yDt1vfW#sScGn zBmY@WQnm{pV(fujrb^vc+J9;H>$~+fw6mE++C080W)qQ`t!Y+rjps)a75Y5=;(4wu zo(@ok-{}EpW#lY+&9TVuDPk*2g)#FhWiPD1)ZwP}gq-iX_~+*i2^v8XcZ@_60Lk|2 zahvg=)2F|wNTxePBo$jKOm58v&TaSP&wm}L%1hIBn6$RiP%Qa}AP~xi=vO=cpbS}2 zjrP0YPLtAqWR5PRi;wu;>{5vT$$wVU*9VyUw<|#;+{D)iefX2S4t~&7S#N#FSpPq& ze3O~{$9;=09xzce(FtVo`5n6W&`XtJep_G%ccwJX1p_>ZZmtEl}mvX2o1kTbT{{XT-^SZJ-N{htzS<)DZ3jdxc->clB6u8^5NGGKs)s|7qh7{`jinnXd=`DxeHAIC~`G z5n4H{zo&3V4L-;{mnvex^g5RyA>QkR4{jN$&T{Pd04RVOu;!xew}c6$9yhQ8*cXuMUzx(~}LdOFJVnuBlT zfVF-<#NW{A2B;hy&eG>{_;}OBj*}(l5KW2j9CoD~Y0nt|vD5kwWeUh;K$=mZ{^dZ}= z=;I9fZhkMxiqAsvX{C2{TbsB+6%u#v7jDl2wKyy5F|PxY+dNc9SeSp>FN>)PJ^-H2 z30TG=Fo5$Vv))?(gfsxH*JPC@b(M}Oy<}Op)thW#+^2aQIw$+nH7{iI9q~eE?0DOq z_^XdT8Ll$Z@2c-q+1<`ar8aHuw_8)6P4MzfMMS1n#J|KkXc%a^R`{vC*j*G}+*D-T zKEtsElH$C`Br7k=W{FUCGH9svI5*lGV-w}!4vv)9<9S0=6%NV|(^_0^}7g63+cH1fM^D zL+1W&p_B1#)m0E7EU$6f4!@$96keBz^d*45SFoCoF2N1DF`Z74u1-XkH;@pjwf$N( zWhX^LYavLuC+^w{ifcfhdFajY5VGW$w0 zk1zj8e>Su4Hh*#Kv3??xtcJ%x1ouk(%nHGeu*YLn2NyiC*ZFaeP^v(i?XUxkIEUzQBJKb9Vuwbp z;fEh4Ww-^bn7tkFk=?)XSF5=vtEgZm;~ubulT@jWz647~e(PrF>W8oqJ%aa!L!_}G}{eCH&8dx`z-@lUvKrv2y z#D~uSsOl|e>9hkRc)eSwN^kD+98*6)Pf*wmfBsu1bL>Zq@R4XrSKP&+4t;jTZT2c@0ROU+4rP}Jj^P)35b*>OyZiv zI>NU|$`Dz3eI&25wB6}rfZkjk{v`KrF~luwo(f;Nx3RMSN-h_gQ{jsPF>#(Kva0n) zgU3Jr2)QTg5qw$!$en^pHOOINl73?QKM1}9`0A8~P~4MqOJPapE25D;i5hVl23ha- zP9FbnRa3j|Ng}V%tez12vFGH+EE)RM!G!3E#0k}Fu6UZWN)19|G-)t0a}!&;)7|K5 z6{nm4n-JJ~W&aDk@tii}8i{v+=RpuA#Nd@9>3IT? z5`}q29teNFMZq4=?c)#taD9em`cN89`+*{fx}N!g=LBnCM@*yiL{8b*n)BrbgxVFf zJS4JPt3v%ctG;a?9X>>Ri!ux3jFheAtD5hzIN4XC_B!HD3A=}4iA5Jypvc7g$28_( z(MOfK9WI6BvPN>RkY_7Tw#qTLH6vUdwwh`)@Fq3z%~avHNInM`rEPBAOy&@^RLFOS zc%I2KZnuxaKi7*np!X+tRf|UL;+hjb6M}xoDph`puE-4-k3VT`LNTN88ecPTM8s~u zF)z}z%>4!1EUhp4C$z)LKx`dy`R(ccf;K^fe;<-i``Kz-%5UOqoU3!V`(@@1SBESj zO6ntrdfnSDLBG*Er#$A5svK$o8Qf3Jzt+topo}m5Jo4QeR^iApM^>w+K^9Fd`*n6Z z1q>US-89$5L+u9OUr(p>LHyJdp`^Rj_RT_g)}Y@4FUF(x(m!iLdXnd`uQY1e$X1aH zq$3ciO8<2S$?f5vk9DQz27TMfHwA#TsB5+VBbKJVu#Ye|b&knDS^hFiS)ZRFM8U zxY3PAv!GXThFWa&afSsoMSA0W^}(Nx&OT#4Z#KGn6aRpZn&_=Y(BhFzkGatp6j|O9p3(ttlXBjZoYE1(4GV7-I3MX__KPwxyj!RZrU11cj?09Ur*k0BC*oj zEOO5Q8j?biNtb5urZmaly6Uh5TlE&yN`651q5_WTwJ5;%o54?ho3>9V+gbYCZ)z;b zEGOqg=5TDK8g}Pb=N%EtyASN_zSg|&{M@10Lqkzs`+=PrGEY-rI&=S6%Fmg(-oLG< z@Gfq*P_KrZ+d78lv9gc3k&*YC0&`luAQaUveC56&;+^tcc%I!t9r7_1Kwe>y2Y;Qv zf#t0v%JIPf^#w}!~q3$WQF@?wGHj65{*w+cPuF#buG_0-(b(c&xOOlUjewXC;je%5d`*BxRJhJx> zf>UL--R|Bb`d^m9_ok=Y%S8YyNkx9soDod%w_woP|KT#R0iM?q^1)VVo4Qj-uz zmL*0L*@-uuW}D9GT!@(9S!W?R)kIk?26xn+Q=6d1HdJ`MgeTo@dzOGsnCy(J_wS#0 zV%6W5rl|x@r4RF|4pq_*bK`y~;!I+MXevZ(&8NT3<*(<^HJL>O=RodU=o-3jJ{?^U z;L51Uo@Yvq$HN;8>x_fCw;VcnJa9zGaOmyOpGmt8cts4~wlw zbhu;GRklx_j2->x=-cW!H!|9ii~Hns%}*TKv|~H>*gpPTIQkaJmZ(7>j^2Lx+Swkc z#Wss}z)o;i-BS+rK`(ADON(a2T1LzR#NqXz*a%{>wdax+1i75!=-JaW0P!QE;Sp7u zy&odNyrgFY#Hs<;IkBNo9KjnPc&2@JlhNGZ($aiH$gli{{UEO6-((7`+ z6mUOBUG`Z|rY5TFp>f@p2@@I+Iw)BMu9 z$;j}Uv^Z|5eo5xcsQ#1Z;+=)g76`f1qempx*y}8^`754~PY{oc^+ z4`uA4?BpMNPK!V7m1H~#iZ`-<42YUb4+{LXX0;<>n)^6fBhQmJOT;U*{a~!@AYLf| z@CYkmz5LTC2H$>q+z^XlQ>v6XIOu1x&ZI5QduS7GT8cYcYke1s3=gNXh^V*S~~A(HI^MV;r8UakFh26+(^MF9R7?@+GiQ3Ktuph zu@X6JklO>stUFrn33{PUkOaYnMrZ<7%fs43^6h{G*?Oa%VAU0=#gCosaX_5IW%Q_? zIuLbhqq}_mEo~klIt;eea`zuIx&J>Oo}B(0r<(i1uY%fUuRndwv|-q`-*fw{u$wjc zDW=Sy5zicUWc8$vy>Cn1((XJ-7JLUZ?)R%oIe=m7lI^{2!Au0>C+@8qJ$;^l^^5?S z_h!3INdAm!Sg`Yn;k;AU`K1<)7G?L=0h_7dNujzOhITB`2Q{pQd4pl-sU*h+I5md= z4t(+lRt1|;;KX`s^-m_0Brjs-$M0TP_j9k*J5DH+y?(JDUUf$YAYCA5-w|q^)xVQ{ zp(1?*Xa{DZEuC3R10zdvqXdq4AdQ|AC}6W;=3n_!wnr@9(X{u=9sY05r=_zULM4k+ z7iCdF%}rHCnF5s9t$OjKCp$#))9xYem!n5Fi>WGgjI?Xue)Ovol8%Vv{z)@inYryO zM175+KMAQcEDNS`{_h6!HLJP!hOKCH3@mS3ZW`beMYE+8>XD?L%R)47GlXd=!VKN5 zjW&!1hPP}OPZr&28vM0Pwm2Uj(&bIgR#5$Pv5zd5MAe3}H9Z^Z(6LW++DZS-jV$e-X;0;(!rAC>rtH4S^p{XezTm{7zb1x>Y&CxX0pU;Lz`h zzdr!TL3=~Gcmqf;Qrz%3eic5h{P}>k)yLPgg~P>^<3iI^s)rTRn1OVFwxjZLVyNvz zp5q^rtJnJ}qtoEa*-_i7;T0|vx(AUH)&ANV&0dEioYnPst9ZI^!nXal(&no;|BKyO z4rz^y15XvRh0(_!2;u7yx(}fYc?-S9mxzg6|1!8hp%fq1H#*Nx*#ZYFmM-hU2A7<& zb_o{KVX|J;+n96Nkj(g)LLs){rgfw`I=1~uGLr32lR0x?P`0{+K>Zx+tdiP9Q!#14LU(6#BYCNkf9%x6YxQ$=RO92(% zbM;j*nhR;!#bve&JJ6UJ&Rq6_XSzxO?T>q2T&gQ1jS3i0+`^_45*0L_Z7N?YO9G|c zcBgRI^hspFz1Wwt_T(F%6NZU?Y~C(jnOWDch(ty7zz&UTHAmkU1kTX4PlW4$xrx5p z`3;e8zP{mSE#rko{%1#!ztvKWCMr3t!emli_~J+V4~vSU3ct~b93ivq7_Fw}mB-`x zOaTq{TrP_?)eQynG*vHZ8p=J{wT-KtAjvu!Oq*VclN`&qfd$T7^HR4g+-l~wisd$N zd|p@oPB;S5qI!Bm4IX_o<8)0lpS#jtMw8oHZKUDftqYL_G2|J%y zX?+j7hYpf1f5^eS5SBpb2ak_gMCQTS9=3iqzfoi<#f;2EYN?J-m;pcCAT&W`0YWG3 za53)n+w+F^F08-mm)4^u4^Zoj632BQjK8xl^)9mA#f!s$6_pMbl7DtiN*oBwy9;4y zyRSIImHQ$lNf_BsbWfbOs(&H;(pSpdcJ(KDew;+YgRjNDzAUC-r2iQhJ0)M+dG5jP zee}0x){Y^nnY@OVf^AciK=M__Jabwv2Ar&@xfQl`49u;Jng>qi!#tLD*IQo2`< zi~Myhfa=Z=;_TBz|G^eOdD3TacFXPNYn;_WM0rUtF1iQIoD@O5;T&Cj?S~*uePGMP z`pQP!;@0GR++;4JTXX)E{S^aAvCsgJ_$%<;w`N+%`0BH{% zAflBn@-2Ws7Kz5IFcZEvGo6@?_ck#c*!H~=CwA4$TC9CG64;0RGkzEKhMo+6w!{j4 zKkKQ6f~@rO9SD)jGLJm(WTruUI0WB9tJRIVc)_(SK&kK|U`v^TD7q>Op1N}|SY zfB=ECu)XvQR*#|PKXp0TlwWtK7RMenlWM%II}7?DB9`T0Mp&7q zrRvYNwb1LV=$nC}%zfh1wBB#~c#VcFaIzI<{#93g@f%06d6R~cyvWL0ha-uBEBqxy zXkO@P-l7&bTbG>@&?~POzF}6;>`R|ag~Ty|Q2B;n>ei*)xTwdsm-J?+#b*(0BAD2D zCV~uR9dlS}Bmr%|jzS6{hoC!Z38as(8;ZQDn<*Yyjd7(q|+ z%J!slTOqAS->M?`0aCVOYIGT-j{YyIl+#OLgPGT{`&$jthHE$>{pPcFP9$%Wk2m_a ztk5Kf4VZloypT#!D67O(%ikH+_Em&sy!9j#wNp8Iium8Gb35n0!`N>AUutp!clP=S z8HoA6FocV}DsDTRhRi1V;=|$`E2Ih>I~EBJ+4s>ni0CUiBBD4_zyNY~N$|d=O^}$# zMDv~@tOhO-41h(24%pyHKy&xJ_oycr%ud?_STP&G^Ji&wDrl}8ojX?Xp(@nbI}F0! zL|5vG6&H6punBJU~fZg6>AWCF&Q zW2ta-il-ssHrmFh{g~m2&EymXiXUTp#N{L*>smS0#sovF<5O|gpAhq#M~e2d*rNQa z5&K28;T@?4G+gUGV(|U>kV2gP1roH1CCv{gr<}U#@~PLHi!?6QM@+6q`LWj3YUD?o z(MZB7L9H@*0nyBP#8+@vnwx>yL!}6lo#*}IpF%fy*B1|D!}-AXUZhQPa6^UmKCxhL zY}(;%$F`+acg=gw{aGKAI>X%ecdH*8l3ltc*e=#-G(re=)=%4-+EF^RS6dlh5u26R zBcYCwz=Mmbb+lOz%eQkMh?8&y88q)+-{E>hIRKJYGS7^_Npu{r(_tg?bh&L79Q-0b zm)0R{oZzL)HM=7&E}Bf-+0BBFQxYflymN~!96-8k-qW-ym)6Lcdn5_yhZqE>f`)w> zaj)l|q^q~-Lw6D_Q&uaDqO>v ziL(Fjty8Ot^$O2#tB{X}yy}SL^V?)?pr~iRSv#WgBm|pN(h8Ry+gkq5BC}P3w{)(4X167jO8W-1k=0Un1`s>Gxj-my}%4Rtgbtbb@q< z%if;i|E770M`4ig`Q}2J$|oxxY>wx)=sScqL)l{8{Fq6oW!5*y96$VR>S?F)gOh+3 zegsR)g~GS{yw-~oX)(@<9DXhKfH=|cjx7*h4Kk>1G){@CDdJUa8w54g;1S_oZ&08~ zeLb%>iS?sk57luAXuOk4T~@UQRHJn2P#q2yv;_Z_txYoUo#&?K#JaOQ1*g!YKImkG zcgeO&Z5alRxBkeh-dARuGK49rmc$`Ioee8io&?qQZFsrNK?u6qE}tb+a5kN_N=@RU zyVlw|HH6+FoukfSlI?=Kgc&M1PL$-{P1JN%l_kP48Zt&D%$pY_ERF6+K(Fq!Pjy1g z@|Xn@GYf_SN(jrnz5{U=>yblq0qc~tILAKa9?bK5uikmbzB%a^u9oh@x;G!Db$cIF zG?n~igI4x|5j;Ws<3dpBmBLvEvB_tAIw`pJgdifjwlr-M6}e)#NqH+<)H z7z-HcA_|4xw5t35>ZWgrwZO#v*}UpfwOuX9nOM)WLONfhqWFIAjYxfP2w4A=FO9j3 z^2g;3Eo5w@nP5XK*E2fBp*~esd4~fW-q>N}kxXQmQAd(DYIW7ZdK$>aaj)+g&y*wL z#(=y6g!6MODt{VKCdW}mU7OtH48JEzbq ze%yrSyUBx6y&WrJft%mtPsh*AMgGmd9C;Aw`(~Y&AIaNcdMX4~_ZaR|Vs#rYZDcPf z`D+h+o*j0(i-;-LnNNG)<)&twrBo&wJzO0rfts*Y1V-_B-EoqlV@hf+r3CHf55+;Q z2uUSlj{3huo6|q#R9bLh-dJvX2bJ@oC&+sa?R+{79w+Nu6S2?v1NAf~Y>yf|dtp8I z{VKIV7yrw%B6{7roAL+OWIBcZ>h!|QKgB1=Lv&jzmp40(mYD7@msxSFw|>XhwE=so zn6{V4y>#KBn(J5wQ{6+vpk|q7a)D*C>zbnrN!tTrk4y(Ms?)2j!>1KCt-ADLJtn42_ ze5ubJ(y_7XGe7qRZMHC>V|QCLjW@h*dE^C)lEqmBJC`T{vERi)8pa_)lh#4fi)ND& zMaOnlIH+Rwxp*3iy>k9>Nte>goDu?YQ}FQ;&3H*hl_vPq-1J4Ex6@>w`u3Gh_+_rn z%lV~ap56+c^2f@MzT9Ao2(~3Y9Hkqdbp^Ip61C56MvDd(({zX(sUl}=4p&Im{U5i! zR&#&CBEL*?xRt^=K2jO=36@uK2YGWlBF+>Q|59t^#-2@zIyI5Mse0(- zUwa?-EC8WYWwS!zhM?&lrB)o~fZFGolHVkanTmt!uD=&nxaX^r=X&b8~ze{D@DT+uXCRlTdsVz{FDt}M?J4j zMzr?&jaRIM=e`r}X|z=jKF$|mB)WJhn5c_p_*_i4sU zfFG()sQj{=cpk+Apr*>n@?ec!ZpZa6_fdSfH~$y0sBN=Vj(+mroyD1MOTK~sZxuCC z?9+ZtTgkCvHTSYH6;3!ee!|nfCXb($b$?R6Wi3)Uf20@*z`Qq1yQ?dR=2LG+@Lw`c z^$jcNeqZ%luT7q`PuF{XeWCn8p!?zpSPgp#3Fv-0faw|Mv% zEd}$`b6#I5VyY|KF;Lb+(NQzJwYRZQGo0har!0q2d}G`n0hZmLoF7Hut+u-@1wErs zRTO?#8oM+sRim&CK3<~w$P?`nv5VqP8a5{Lh1i@IeHCUZKg z!PXkI;HM-J02LzS^@|saX(>~75w+?&Q1zM6)cB;&*o2U*bl-W%T`y^~;?JH~E2Ul% zv!`Q)=?Y%ur_r%uf)IZZYi@uy2LZHsU+y^qL=9ihY_RxK*2hlf3pNloSd(KFe)$^Y zZ(+QgF-%{K7X|37kPvRK-7fP%{jwKBD5pO?PMy)F|zGikl4MQj0 zYv*pYc2(IVYw3O_p>nb_XMeB*NPktgFHSonoG|s>J~PM)zQB^wj|KwZfq5$nOiA1t zIkQ)ZiqcUx0ULy_ENrkA^C(@XJ*fa<3e`Pwh^tkS%ow%C3SPWR%Nq$BmQ(S4nD`cA zjI|F`wb!3d59Rjxs<6kN$e}m(7pIXK*}p-mHTCk+Ye|1!Nv+cTel7G~=KREs!ns@2 za%f>1igPDsk$>ZA9XOf8KjlCfNo$x8M&cn9l-F3g|H&BRbP4ZZi&^>FdDKhJjL7^B9a@#MJJvOQbOuR+3qGK94 zI^<vBNqg?+ru15HQ zzI{jPdv$Se$D1pBtq(06z&A7RN@x2YT*jxnV?LbURX!lMv@rN2fl{B}E5FF+p)`Y! ztl!?+TuS&`&|5l$3B(v|$|N_9d5ItCRfo^ggY@F0YP0^1kT^tlnczBWI&r+M9naqE z8PYd;^6XxqNe{Hecw*`$>x5?^8AZ9!Wv>JkiZtyG5iD0-!`TQS5oN{8=!|w>fd$O7 zQ~wVi`Y%665E())0@<8Q9Aoy#H)r?UFw-Ou|6-JA1B*6^&w{O zy<5u~gzgQ&Ro*HNYwf5?qrY3hWofd}a`d=*i&?ZK^bZ-=q>~Xv_>vv>SGnUKon3W1 z-;Kl!#|5|{l&bkGRd!9Q&+=Tt?VNVYEj{Hruj$`>-mTR@peruFlNx02p zOq06iVMkFL4FQI@j2z0k`fyk5O#+n_ z6E6*MNV*Q<%kpPMU6kiT1q%EuHWrIzkLk!7&co(OTKYCoq=AbJ$J#!T&yka3Iwy$SXtqC+K#u|3n5Ae!qg6%hO1fow&yM&YkwDl zaO3oij~-G75b~kaTaJ~epSU}04PlGLvfb^HjX2s4I1ic09w0Hl5CDm%0 zQXs+mr^-8j{DOict9i-&h|@zS4tD<68)F97sAJQmrjEE;mc@OGIcRC zvgWxzs-&iXcDZ~4#DM?B+gk<2^=)h4!Gi~P2oQn=2^!oX!4up`aCetRg1fuByF)h; z+=FZ54vo8f^nagS?>SZb=6ma{bJ;hm*6g+Bn9msN8NVTqC#hmT8ReztG@19XsPo`M ztjS%{2x$=b9MeU6a?Cid8OEHTt511tusluNC6^sgzU=xSiBn3!n~9S+gqZQ5aMztR zthm4vf(2S8sMnyWiS_6Hu63i6A+zy@(B>}C^1MfJD+3tW>jAAou`oJWUXD5NkCWi> z@B=~rrxC6y5+x+Qc0^qJi%iG}EFXSIRpd&JUT$V3sV6(< zFF3LI&ba#I&3X(SnGCR61%g4w?>r_Hq`0b=bHFIV={2^2*Fe8aFEu4PxP6%uqL z0_Q4_f&8<6`i_+0t?$E7PL#=Gfn5u6B*_3)cMZD?1*L}6`y)u*Y zg%gvq_vZvT0T<}^H;N<&73xdUADe#;B!M;}0LTmxJ|A!dP5q;g5 z24|)S;7W9fpy^oghS`_PL`NtY{EIu|YkJU;LkcnmGrqpDz>#HmYLxcEH=zpR(Jpb3 zp&7kFx@5MVdh-S9*K^hzgb-W)}>E)b_aRmtnY;wl(h zc5#Dh2SyAdma})n606-NKD6bFI1Auz=2Cm+sLfjTZfkf%dG#Klsxi16KL$G*hFc!8 zdV3%{rnKV?sxm5`dHG)WuAAtGoxYW;(2Bej!jCA3E!7{!EzEE(>%W-O=EPfB>Wn># z&fC7GigQ^Uo<_HUiVCh63wGKf%H!j-CR)&*-?L0tkA(!o&`$jaaXuLzuLtiJh>6s@ zO=|NGkMb0j2BSrZhm7y0R-3k(8ZgxreutfJ5yz-13e=t?kiG7)EcuQV;CHOS&ryvF zM&U2P?z!iC&uBupfN-*ur42aeF|2*FDjP~sg(#HaG594=FCC*NXRhHd-~yMe{|rBG z`OZ=>Zp4f|p9ICdNb_szMK^6xSH+K z?(j1!h*Yq_pp2sy{Tv-#KuW}Fv2DiT`rTtKm>fjs^=7)BQ!K_U@~tZ7isx+!-~4U$ zx}7ljMv-NQ0j;DnCr^(JR_coFB~>>zaX=#DTYnX!#p9)0TzZx<=P=DS-yb@0o$M}X znGYMxk#dWe=4IW?Gc1{>N~7PgWWT^&Ptl~X^PNz-C&*Q!jnhMWU>Y1lI<>e_;XT#6 z5>9`hT5gAjrX8+QF$*jQ;W=Z)%PEXK&9){5a6Tt5&R^k)i(B>J%k-(z+BP=R)0Ry7%Wtz-qc?qqT6 z7_3UZ&I1bi{MwUnv$n$;VPGMQr=a<@-;Ce$b|puNlSKK4s&icz`~2x>mCoS{{PcHK z;g$iq_VUR6Vkbms`jmIeC%f=zK1Hp9K8^`yI~9;5WW!FX7nllKq(Lp+ZcKf1NNYXF zMRF$Z1%DusGZIy%TkYARbAQ1jrpSHb{Q#^+9^VNt*KPg*U8zFZFc#76n?sGNztUwJ z!gwR0W|s?ZhaZ@nWI#ne2f8WP`l&Eal{kx$DCF6?PiXXWZ9#lWO-Kv_u72ka`M3Ha zf=Am~E~{w-uNgqMjn?6{r8AeTy2gf3z@l)+bD{TlI~MB&F8W4i5?|u#N_YEx9_DA( z{QM1V5ij$QI6P**^^Xbd&Ls)i=i~cQY%V=)*XJZ@EdLNX;kpI14+CuJoo;NUE7|G# zh)UIFN+hCG%-zkkFqQja}h6nABa&9Wrebp=8C3)oHi2vqYXQw)AK zZ&SZ$GMN!U53oHMH)jbNc_wx*b594xVw<}a5r;A18Dj;rrdZbE$!P~wRBB456Q1YtO-VQs32+rz=Oh{}Vy#qawI$95begJG5;<2eHRZ{<UKMZ-t5Q~l(a}>m zUyo}j{(>doW#2D1F}C_#w{(GQ?l&us7k&&ifv^Y~uNX5#iodMT7_*2@3N>zds2%Z6 z+XY!R7gS>MrX8QPb5R)8+9QWn8T&oo?Uf`5MSOQ|pg$a}?Z|eJ)6%#yM`WPyi@R~N z`saHdAj`LF&Etbfl3Vktw(s+E%53{^hN8><%$$q0oW3Q_XMu_~vV!y2r61!1el_AF z(*X>UX19$M5;da+I%K&wcht3{3o2z#ZH4M`THbf@%4l47$IN`#LdQw99&_-NZ;H(U!g7CQKJt zXgY<$oi!EyGrvjo0HJ>%4{$jY0$FNP>@U)4)EGhwUk|&)+i0ZIG;ruMB7+-gaAu}Z zK+0LuInG;Htm~Y(NzlNl2#ekH?rEwYsQAXyL-4Rhh;xabVvgEk%$wx3{{ zthvFlG#Ne_n6^t(-5Wzo?lpH+f}OmZMN=jNPYGzL3^+9wWDQ-0j9c+WNZiP_;xD-93~PPS8ue z-M*zCM8TA49c@ezP=0;({8`v@{!PCI-lPRXNUV0Q8nhq+$GTL$>F|p$rmkw(Mhb^|#YUNA_klfByi*HWGm>=$TX-aw%!r-L32qEzC8gK(1 zaRc~oR{Oq=@gpZnFNET?F+}G~Q&vltywW&-L%1|2G)n?F@;KZ78tI9!?2<$eLL`W& zb zo7|G6f*?e5)BzUy>x+l0`uvA)ZIa`|H!h_l6F>!B^6YL$cF$N;r3}aRE_Iz4O<Y1UmkMBH<4PK+n!Oy3@){;n=Kpc@;e zLR7-0T8Q0`s`2Li^zlUQ<6w(E$eieW~Hy0?F6gj>}n742stc z0q$h{J359~)1CRefNOB2*sW$P|^dw^!j) zslNPFw+{QOQ*A^bEsGN0d*Mfr6v&kXRRVgS-g1A#ko;}vrm`@hU43MKEi_>&su^(` zsv%_K^MfSqxD^CTE)m-g*gHaKaF`6&Vysvras9mgIEYwH#^f~C&+uOJxu}P^!{Q&W z`g+xJ@B{a|V!Pv(m^1fk8X+>l2V0ztUG|gIQ9;au$@xo#D|g!(&-W1A7OZ%Nah@Q9 z)YJIK#AGv3q&9H?hE4_Q`f)NqK5pc39Zk>r!sh2^bl0ppWv~Ssth4A^{r-9y7Ja+G zVBIrav2E}AjpVj#d&}>lHcEo&jsx(Ig+ki~M&2nQQ<&>{si`|r&$sKFEc%?$FDczb zz)W}P&RPT4ou7IxLKhfx>m6!H55LzzMH$TwAr4 z43M{K89#cwp6ItaN{XWdoyf`#6UkQ*1z0GiCOiDiC)m$ywaN#ySZMuq#}~!T+Hn_P zleBxgif)9TuI^1l9K{*`;jy1U-lVh%j-eE+q^{m1%|u*KC0VNal&=6qI=uFcMEZ%Y5|{RNeLpj?n$qJOo|6{sg_K4NQ6-8tAZk% z+byJKBFB#+&*v%SsNx+L3^+u^35fLy+N)^ z=$8-?vTUzVz?^dqoXSqWwtuF&KX84}IxP(J-7QBf+KL_LGLYhv%611GqgKwlgnDep zm#J37{!PW_Pbw-osjnnMG{Dm*vIRZlueJ+^$?YcPx}J>^1x2NjX<~tSm_YTlOXe2xcx$JlmK7WLd#SF_%-qBCzB_2W)y_?P60$pN`*0@vou=+L#wX{+tlj8n1i zd*!8Eh)lq|@hUZ&nX7q3Exey6>2#}MdnLeZELoaQYd^v9pDzi2y`QReGCUcl9ZpAFhR)S?)o zG77P+IjTQ7)0xU>6yW|H{i)>Xyn_t=lP)*GD$C}J;OLfJt*;}rcTX4%8e6!4mZN}vuMA~%O1VdmnaU~uY!jL?@kWkZZAG?gO*bV+4i7y745O+$bDQHcxN zDEvc7$smKE&Ff?6cb-jeCbWFSK!zkT?U?bx?l3slUvZn^o_~pV)+K~}aM&c6Lsh~$ z5ZoUfxc*o@{D&9N#3Xhb7Vpc6>DZZhw%=~QMErq%lI91~D)d26*kO7#!spVV~XU8*E21GW&V`QYmeA zX3DJ6yj^WlPI+A_g$;?R>1Vi@wmhzLn>l!yeu2%yFvI*Lb9!?okGBV|bGYC<_fuYV z!j~Nl(qb=p%?;_{wTtNwCUXzC)sT~z3Rfqj&%2NUfkPK4Iy35ahKR#jB=}&zL$nTt zYwmm@lpEuH$=X(7R^1;Ff#~qa@=*W7%u#mC$vBac#`&QYNYHL;oC$72|BF|HVn;oM zup3>P8!-FsBNU;)W(8jK>s}{2+h=odV4bHVsJaJKi*F75U`e?Gi6D4qv9o%?WU6<3 z`QogA7QcT89G|0W)|t#~&9k7NH?VkgzY?M{+$JfQC$oUQB<|x@Rv8y(BVF5DAwA~V z&5>JVI<6#LO=az{HlaR4>VCZXWpDtgsOmFI=DL>kQiiUjABiFJ9k>JhK zRX}zqFVo3m;vcc3Ukii8dcrz$FGkkszfI(bC95|6fr==>hL2>X|87vYDZ-TfsW>Tz z{O|xOv{VeiXRMI)>Aiq`)&iinr*#r9PTOTn@6 zH0lNVhAdq-;YN@L4bm#WFgCDnHnZC>*bMva2e(TD{@^GcC6WPhkF#4!y#H!A02DhC z?JeuP_XI~WUR=L{Z;kg|8zVh<$*t@j+C94%{;86;r1h=g?#&Y+j^8~IPMcW!J~#C? zKj%3N@(%t~6k`v^NlaPiFwihO)^<=Vp9Xg*;bl8{4%O-rm1GlFhzb(ycgnI2(l^UP zo$4&95r?-(%5=Co`}rbBw>xnMVU$8v1X$tD8Ra zXhbNDtQQame%?eqoYJVwmeob}YI%z{%`=99mF{>20xyY%Hl`Shq--`EFwGIF9zFoAverCiBP^6(_m2x?# z_%}X^y+@aop4^Vv1kJtZo4zL*elmw4$;CBUvPltBG$jn8Qn|t}~u22!&kqg0C4KRK)-mqQgY3@z8+@J~`==y4yLW zs&GlW@9s?is}KeBtDhFfwCG$GH(kv7@uBI#^!>Gi{MAek)`X*k1m_U=0+J~lScKO)s6S52d)&o{$Ozz&QX}2j3wW> zyLX{ef(?yxo`@YGv{Ijbat_rBegeB+!a(!yUizOO*eJ|qy(`mF6LUaJqc_uys?!Le z_eO(~exKP6Nqb%JC1i;CF^mI!TE_DBa@Pq_QfIu!-Ps5(&pngc1X1Yn&JsVNm_yru zE#!p~&cv|yd#+kTW9ufsV-1`)!bk^?CDbymmR%f;f_pu)eW)F)Cj#nr{NSIF z+Peoz-|sy-O}!a@om7VB#!C+tl!QP)QDUH6>&$eyD@PIlC_ zAI+H9lH<^K&{l3qS0r)!`tL$|1)(R}_^s1JTf&V-tfyVaHf>(wj)>TjMX4UB>2NYXxH(rA$W!Vz9A{P>peN+@ zqetz|AQh9$57E_Jl1p18^s^Yrc(CV%?Qu6-HD)G+ym;Wx1@UBV6*-K4*{%*)$OL7> zFltXM8}3t;C;=)mO+LMBgGT#II8;U@k~ACn694$X#exB(!st7nWQf7TpmWNYgW2WQ z_ekoH#XS*^cRIL9ur|)@@i=S^1p&!#bzmlkWP%nl+ zzaeOn8*|Z#t)UY7jzTIBp311)G`z|{PTDT(t%|nyAN@{S7O}O?X?=C<^o4Hj4Syq9 z`qquwRI53oG*`1wf42?yIRE?FLWl)C!QW0Z?#J>Fp=x`11=;4wwZ6`?q-v7Q3u0S9 z2zBvV?9U~H@7Qe67+-^ZKw^~t!;DPHJ(odoosN0En#Vq8&LY*mI=IP${yH2cecfc| zQjTq0>UU7#aMUnK7q);NR{JhIn+;P%hIc2zw8+yitjmYBr;)8^&u2tM(WWZb^etb| z(%5DbLUUK+ZAYQTALP$vOvuz-0fbshj2OoDjiVYM|M6RY-}j#2qw(<6{DIC{c2w1 zyp_5?GVEs~dp?)I;ay#o(PE+Zgj3^^l|DJ!3^T-1b6^xpca#t{2V5nBImmoURCI7_ z7W68+sdXYMF1b{ZaTueTKj?ifodZGhia?U-YciHj_7EE@-5?j=(PnB6?7Xmvo-qlA zojGBn^35gJ_xP$QZcVWQTEcDw+fjWh{yob{QTS$=uho*(kG83>kCmCzpnPedEl-cj zVpkcs1hc3LA1k3lNjQT`iB4%Iu;@_nvLZt;TUVZ^ZC{4!B%E{V_!qHA0>3&v8#N|o zD58^OH>@xj3&=!7$0w;hw`@ez3940QVTb>s0Mw6hOw;q6@s)kl>ki#)`0swSwZ9w_ zDGHdU&Wd8@5a2n!JmsCuHOXRJRbY2l1TDERo0R#u6X$$Lro*IFkxUGFot=#as_B`b z6nkfU;k+xk`sHnDU|VF2L1Y^!k@qcGJW{W&&RGrS#L+zCfZi5HY18ud@woV&G+{-W zH_9d|L|ky9|I=gLxA8|O7HWs%pNZ1TZu^$fAr`v`ps#* zJ*N@|-0@#UW$2fu3Aq7ZFyjxlBX*iApVRc+UNGkYp${Pamn-iVEM}JZlDZQqnJQuN z{!E=nOE=bbRo<1yC*aG`Y*NLaqyS`BZ=v4H~+FnaaU%NO|OKj>k3gX z2C!!rrG8>jU6X3Lm7j~5Rh-DD%1f7J$=SKNVnkmm7jeM$O#f6Fd?0zD@QykCU$v;C zi@sfnI@92#3unMMwb;bW(&GJhUz9l?ADOtl?1X^P(FkW@yhHgjs!^^9lR?h5RjtsW zz~^{BglBy>;KZrJvD9J-US8U0D0KUxz!vs~7PxxH&_+BrU^vz^REF`g{E;yZB%7Yidd-R82E{KG!^?rRY% z5)y23v8vZ@%4wRVCWU^S8OcBvHhdT$=r7o=yuLU&N{4gq;ZSqOK^RG|!dr_Qs&{-> z+{^zqPH{aBDZLS_$kn2Bn4~=OgH<4 z+L!Vri<%MkJ9a7d<=6u9rP?~}`BUuoL<8-yLwe-aV}cOw3yhq0z)km_pZ7m}(4z52 z2N#Ukr6KXsR%idhS?5+8?>FY2ez6S>+MU75-uwn(h@nn6ty&8F@SBolZe3OC@m~X& zwo@xG?svmuu>uh2+G^LAHfA}X!Da1XbLn9unhQ{nWR!wyI#eb`i$IwDad2Z5Qqpbv4*kcg-oT(&_Nyj(pw1EN&7t{{1K^b($kB7j&0Ve=&=grX*JQXE6CX#{3q} zmgtS@;d$clZ;6m=yGWG?R^FS39W8V>p~`A@E<@I?x@eIQhO;O%-v86b2}-Z})iZNA zpb6+$m(XE0WsDv6%G*{vY|q*$>wRMZ2+7)ZM>b?OvLr8?hfTCxE7MS*MgBQSi^B+<%qzaG6rO0aMl)gJNCVQuXuOY&=FhDkmh zS0wnk?{XJ`eJhxpugxL{7g~whh#OkY=o&~)QL2?oBdGtIdF}M8wwQS0W^Re=?QE6L zX4OX|O1C@dCO*AgAEqJ#l@$QoxWV=^=jg7lk*m|$C?h2LWZHG)a)uYGEDX#R93m{f zqCQ=6ZKzT16>4Rw553L)^>Bu1&@-zqqpp=d+5HYsXl`|ufT@3|S9UQ^=QH2&apNwq zu50Mt)9}j*cFB*cLAKo@Xid<=#DuF#P0IeTj#_P)+pp%w%FRGKC!Le+g@>9c#&z7Y z73h=q`}@M)c7Zac&PFSl=Rc6BJ=Q6aYpa>F(RYG;d%6<#J^72buJ(N9k*5oF9>c$# zajCws@`FyU_*sd$${QM^M80p+_;)#@SCg0*Bt0ri-umTP%B-MNPh~x&aC#w7vFVLT zOn6tTg8%cqN&d}R!s*LG z45MpA_^L4Ve45X1uP55REggg2Z!HXhmx%@RDd=$0#7HFCC&Ie#h-snf(>GoevilT_ zonC@VTuo6fP|HZh#`69`xZkgNbMrQKSWt(r22JpxCoS-r+fS3$3G{~z``HB1F_w_K z6NqzSYMA$%aA~Ngrv>fxIXtUJT$4ho-fCpeHqY0Rm)EZJAK6q04@vR7T(Xym5ZR6c zZJpnYGgtgjedd6bmasT3N)bHe&nSADG($UzMJ?0x#H4yW<^s}nyiPVk7NoIFu`Vt4 z^+C|2Zvu|OY3VrCT#qybE4@9pil2nv?!DUSPouYWRixIrn1Gvp%JY{A^jmj-m<$@! z;tID(R84=fFM#QKkP|8(>Oo>~ zSm^lkNK(x-QZ3L&L3F|0w~y4#z|wPJuZ2VBl0hRG=eI`piSn{&lzf`j zDqJIfx19;g>o(>GbwuSRU%S0<#XTVh;O*0| z^V{wVr5JC07)HI7{C5$bpmDhA%S$7qd!p*ZgLAV&u(;C2=n*2=secRvHdsgtdnp+U zxRr&nms%`HB_Ii-2ZPxYs=H`hR%tML9)vlyms07RF^n7P(K|-BI*Cng{hJg}4jeYS zVMiaY{57+IALB!+2D=x6`A%BKl|>>-)fXa1{bY}ByiWo-vw>=R{K~o6mQ=iV?b&aO zS8pg58wW(xOh@l`+C882+;ysxeaO_g8x5Q9>5EWin!^A6AejFN znA)fK50j9qY*K^cRJ>Q8Plv0}Q7p1XuHS}igd6|TzT)#`6^h7=qQm)3sn&cCj8cKW z5bC~cu$}mtg7y$CoUzlr`#*$KH_-Se?XNY^HVw7Ih2;cU!yTV-T2A}mht5{xQ84`Q z1EBL+Y54`=q3Y%#%GRxmc_cYDEk5dPW&Rw4wpOR&DtD91^Bd_{eB6B_8Gp)pmWkSV zl7f#H$AG8s$Ny^6tHN9fu+0gj^sz(9seyx8i(hJULVTjTaM|3QU$Xy3JeitkU&Y7kW zn}Uu#;T}>IdzW74w^NhUYh7WSFwSKgi#f@p<`ESWXuEdNAPm>|x*5RzW6{!XIH^z9Et0UUa%^S|Ab5nGBP1f_`IPrREeGHA2P3&ypc&8@CU) zfQCkgOZW)JV!B^`2f?h+@^EhKVG6h%>K> zsqOo;6)($r5;EaEpmDp6Ok}X8#J;@+(&d`CAj>^0Y}dDFIFs;CgYvgH>SY|ynETsd zKBk+FYy?$aJzMR71KKR}qqO6$Elf8{P!m=Fc3weBZlk_3jgC-}RcJ0I+irV!lfR&9 z@*l!G|5~%S0$c)lXbA)?s9Q^UNAfqSt;S)L*~ht3mew`~-<*FwHPWuBi$B`%(;NsF z!IKM-1+}+JwkCDt>G-p~T=6>9l{Bj$(+II9C$hv1wrUmN5$dO}qWaKpc=leb;ie$! z26dv*P1*8iQLZX85R#k@pIjBN93`Fle)rc+La_#~zVlUD;cpe{wwGQW15K`E3+q+h zIs;miwnBj*i(brXEomzz8m9VMH~Pih{P9jF zEVOd(1ztwozC&n}oQ-5BzA|$DP2t#OfXFhn>-U9X!KSa!g335}eE!Uet@hebN~et@ zlBJ`En)V9AT+)T+6CMHVp|?jmewE!VLl_kiC zXk$cPVY27zudLG4(S5h6o@Mn-)@U5y^n@t|wd_Tgmd#y5Vs)0%vHIihk_Uf1 z%?9BJI^Ay^{7(x$=9lBM6lYn&?tJ}AGfqYj(=q5=TG|B-%Fhk#>jy|xlmdE%E;`sGWOl zX_jBd#dGEM3?*3bp?t+mE*I6jtoME3br1%hJ6aw%b1_6E*#Qz_k+ejO`lRR${$$DU zHatqP%zu<#J_`KuXIe1||5GbJulG=EAd zYVIqq+GSE5H?7Tn%uQ+EH)FGkXs&NF#?8f&<_EukZnYS&0zEVs6U}At5~ZHiaECj7Rtmo{ea_S9-Rvsaj+n$NSHOSZX{erPy^h#D zgTh=ne@8;QeJO&CPEwy?Dm|(o9rf3U#R##^QOu+wuW0AvDixyaRBuNMYmQ#4!y?+N zt!E#GXTp=c8wAW<8tEg~PZ-kML!lE1acge(?W-Q>(D~Ee%RJ;Igl_Y?P1&0BrP-hA z_Yx?}*4=qOx$ji*WDEA9X@_`X_OLrVja48N&x$=zSw98t-&Iy@$0_*LvQ>t)X2230 z8`#v#OF^Am7DYCxf~=S>uR|*Z$SV;N9QK-YGvATZNK1@?1tLewlmFtilP!7xs-|6? z2$YjrvK;PJ3Fmb_3oi1bD~F4AJQXli8h)*2lk32h z&u0D5?Pb#ci3hYz$}#>rGeb(?%~ioAI-fV@SW1Q_&M_~%dA?DM#N~U#to}3eBg{9P zpKi`w&1m9fS#-GAPj2Tr3+McH*e0r0A1AFJQD0g2elHz{-lg`R;vpS3YI3gpz``Py zEkRezqINB$QIk&yR~9b%7fH0y{9p9MsxFa=DTwf6FT!m-r({oH_X!oP65}BD+glg}wRJCYI`OaaDG#4x{{30+kxxu%1)8Ma=BHjrRSsa+^+Zsj72Z^a|(hi0WFNq zfK$>{Y$Vf1)>GTqszlT>L}*sC0z&s*enLS0xdS)NQFCulLXkh`yhq9PL59oCrohAM z@`3;U0VP?{UNJY+?*q*@$q&2f4)T6<#t7o#Sjp2U#lgPAf;V@Y$}1P?i!EA3C<;$> zrOs{6CZ($^?%pc`oKs*EkLz)_w~NCvB;KnPk~-n1CmJW9PW8?7>l$GqJR^3|R7@~@ zhxSv;ln)sGH4zSU-Bxs&I5Hk+-F?JMa@{Lgl_M zQ;<_sF6KGEoD_9JjLdqhGFrlEzWwHE%1y*0_IBWx7u>=5m4)Fo`a93YQ|;22mZSiB*o@H%k#%) z+KIFei`c}QidWaBEt7oge&ZN|7n3Q`=v7M5UU^1y4RQ;F`uri^s|iG=ay*wZC3f^J zfdd+&HKcfwH{<}1VPyA;t+~Tevtr^{UC!hxl-Bggf;Ny#w(*2xz{4dCd=}HAmh=Os z@-F48q4TObMF85dr?-ihRdmurP#=1clh=!w%4alo2jlqS&8THxdh7ohtKcIu{D0WVc!^p>J)uL z@SUu6mz-yEz@_CVlwNLu?Q4?J)3gNTnS!kon&J3570+(GJV!{jRSAwPr(c=STDSIY zeB~6b)F3IB3S(DN#B1k~Tel0m)F8Ob(St}>rE~r4PM`o?b%+3PZIpm@m$a!!o;Yv9 z2~0fKK&1b>W9-TS5b~o&E>N`>1-jS>Cx0-6Ny>Mn%pt94{EyFco;H}(sXka)CK1WV zXTQMP;M9l5ezQS0C7#EZDCYRoWAwfKT}6N~L5lBLpMluzfeBrvo~=&3W)$>A@owC7 zOR@8$fEXc^ndo=coT3*MA*PxjyP>y#MXa0gnu~bLV~C_Ya`cYyO`JJ{;!I0$xdly- z+-;v8k>_|;A0|PLqEc`6@s^<9IR5iOoy^k1HDy($U2p3B4WVmvZ0}cD5v9Y=3q3^~ zosSiynkUu~uu%^LD@C z?@yr|I3ugmC2vEjzv7iz{AE7b46dtOc7I#W1fp;UYem(U--YEHhxj>NjV>Zt^F@DY zw!Ub5n{n2k)L^b__`V=>9_O5WH9-^#r?7+bvK>G@%J zi@&qAo{2kK1peD9H?cV+(HHNbt?i=;+(y|Bx`0RByOFA;T0z;yGIc8|{Z9JZCKOQ(x>3zvQZ1BP-l$(W009(j zA@d{O?(e6(y0G*6f0y>XH^_WM-Q3;c&l2!l`pgaJF#T{Rk7>S33M;mGQi6J6q39iL z^W|*Xq*}0q5b;`?+T1allJ}TRU5}d^jr7a!;$Te>Du%uOATa@FDL{D9*@_ zJ6c1y*;zg_+G_AixMydjWr?;30pq%?VlCr;t*gXO8rw^! zm&CF!MaLW$LA_*|lvo#E1Qn5bOkNeFNVLn=O4`juS1G3=HiT33=m~=?!LW9>E4 zS@Rr&QjB6E4$7t{5-cJmX{)8@kk>c3s>4L9xs~HY+kF(rlpD4Da=c-XiUNz}61e(- z4_kTmD|lFuTf53Sx#q(;cJXN`N|c_!Y4TK|!_^LgV%p{JGIszqht2-zP1_Cj>q;|Z zA4V{Wy46&YU2=Y~7HeP{vznp@FGENTqKn~6uarVx-jg{`DWNR$`&bLL_2)SGmtl|D1&GZ|W-x(LtaeG?2UgN&CSNu!;Zjb;&sP2PVx&W11{#)f4A^5W zm7>{|tl{yugr{8qDqP-ca5-cJTe%9ieVC z6(B|DM1a&{xoxDkzYtd3;VUFv=O0M=XR81PE4<$VZ5&?ng%shv$5o9@mpS%r^UQ{t4?>;KI?Djxr^CBvEM{)?@ord%f>2;GY=k=dIR6BBWJda5oq*O>`mP>%C1F&| z$eB~^Fn5sY@NJURGyFdTXN+s65f6wr+DIYtna}9;NtlU=z;R)nX=+dlekh@9?oj1X6hnE|;>5g}> zzrFh?7~u>2T5$41^ozMcs5+xO7)Hk{e|u#GwfLLXtnscJTDTYFW7UC1#JL(6*jSSa zJ-=x&gEDj)@#r;kQ=5$HgyW+4Vs<_QcQKP!1s=_5_L#v5A5B7Y-IHIoU0NKnk)$5X zNW&zZ>UF+})=u4uG()`8Lw9dQ)L$CR?D)D&P_tf!X!j>02EKgWFKQX%m~f8gLHgs6 zW7lOlc7zJ)O!ln5lUIae0L>Se(>MAGVr!eMk_9vP(j}HF5%00oNp_Qx=Q3!jzBjd| z?lM8jTDV$WQl&;((1uWBFlzWUng{4gc%Txq%nz!>fvACZap`yz4O==3e28vniTo+R00*oyXkk_pGaAvFMI6;*&`O1?Ho2`sWI% zhW9GdQ4?h9PKhu3FtWc1sWOLu@&{T%jaX^y>Ya{=;Xd zJ@{!|?@yQKm?ukyX~a<;kiun}$cKm3tRU75r4|LiKE?0QNho0WR05=sIHZ!FZ%Dv- zjeb!bmGnU7Fi*U1i#t(_pKaSBt{bdAp3EhbgeeQcS)7Z~^tvk<)^<0b#RYWn)|>>$ z{$~1-t}1zyBu^-0jH}rsJN&9&y;4I)O`xx^i{I1~^(>W|MHRqjO<-cDgZ4!+^!+Xk#aJecK~mb?zo03D7J^9I|&J>cY+{;KKY|;RfGA6qavd)gkeE zs!`yacev`)*A_n6wrkO&q{>w61a;>XQ;?&5*3f{Ny-SZ7S~UJZ(x9PG!TIL@ z>I{}G0|W^g+#!Jg!QI^x2yVeGxVs%ZK!Urw`@!AaU4jR94sd{jGl%=`%({2Y{WELc zdOyEEy}G~d>e{`lY8QQd_UB(<>@CPzbvynz>+?v{#i!QqNGaaDlS0W*p4D1+(^ll7 zOuGKd{w7OR>OIoc(&{Q=eyZZipXq1yeByGivq@ApX7L{9(XGS{{;pC@9uIG8IHT4x zR{S}sKq@s4RjtjBGiPJBhxWSB&~5c~?YKV9#Q)N<7VmWQm4X0F2?sQJ$epn-T+W_H zt6E1+ln~sO7_;s$4onC#nBH;)b-LqB56bxd90>>At>~|{5tfH=1j=%+3E;m1f;ePE z!d=o|jUD&yqa)%5ZS^mkF5H;?BvwC-J&r}+32YkaI!gWoNJj0D7%R4|QMUAg9k?63 z+=Eo!erE#mCzW%GZD9xMQm+gzp?lpvrC>JJqf;!KE^|ExmKqQ>a(%Y@EvZ+dU$*j< z@AK&ax95|J!@gL?eSGx?MZ|g+`F;$FgUEWV(M&`GHP;3i@R`VJ{J2#HfBicl{@c0B zBP&{7ulKA^N=}X+;TM!$0_FCyqH|PN?~Z2O6uE;wVb6Ixc&#W#I}E=6Y_;K+TdsZ1 zZrFlRHQ|5VdTQ-wM49W}*;-Ek)j?=D$I#bf1_Z;2N=uu-8lb7qfo-(Rl0NvbjH_HU zpcVh{j^YVs*TLR+JMR(&x)b{PM9-$Z*`EEpLYk?O-C*zhE)9v|Dl{g%^G2ctQTo8GJb)`1QBO!`{+kG~6Kmbr3=1AOGCMWnGog;Acec{W?k}-v|mPuknCTq6)Ww}8N^H|+H3DDfAq&*@2M-g zB5ib99os4D-nX9jBJ4%Av=$A8yxt_j-f?WK$RTHKern3&soN`!GFO)}*$>@TZqaT8 z#pDVBXiQ)uH=pp+%brXJK#-gm(8FQpiEHq@vw`2WZAp~|Sr)F7-HnhDD(~rgQTyN6 zYR2_Hw3@m7uU0do?y;UQ=pepleqGfB!PMUu70@ooOHY84(X??E>?{srlQN?2N9pA5 zK{5mgXRpfY!%m&1t1kuhB2*;3^&cYXTNx=-SH?(T?0cc_1W*RXj!O)kR+R`>uv<4h z=d<39K9L)|FhQx5=W778*9>vFItaD8Me~<#yINP3Biw2nsJb++>xZgYM4D%eRA`|`?RZD`viN0ts!_j07O_W{5uJK z$%}6<6rVesj|X;p;MYNN)NT=>JV#Z zY!q>GLq#x>IL@C0^ghW-#b?JLnYWJS&8Sr7Y~nY@ZB^@M_hsr5zDRy==Y6?lhC0WM zed)L)7k(_7VO_pxCuELoZvKEI6>~+1)_X4(a`WeAdAbxvVPaV8M7cpTV^ql$>kc1VU^c2U8$w_fR`a@6x!2`jDa!b91KYTCP@cAc;el# ziwZaXH3L7P&K*!)2za%V*Wm|}ujNuG;y3O(1LMdK(3Z=BCgr8(rOCx*#o10n1pz9e zS&=`bKA|wBQjq@@>{#fGPu8m;zjmm$1mWETo~>YF)!n==9eq5bCbNLkU56$<4V4t< z*mRC~fKkl3g}yBam_&I7FPSGlVZG7}k<4&LOBP@FiENDKpu7Nf{PAj^5r@P{PEwW@ z@<4k2pIGuqr998EeWlE7kFUXcI!#2^3XLJOG?@tEvo``7Rsti9By{><+I`c9?Nk zz5;g$1*zu!dr}yiBBd(G9v8<1%Wt2$YS{3~9muTgVy?TCx_*Q?M>1>zI#2?X8=Yj_ zUzrG>-8t5D6V?E$HhoE{Gf4WnsR-#$D-y~v()DU5b_xSsvut-(d`jjcnSv}w4!C22 z>uv$70@1=al`d5UNMlZy_@*}QzuPX&ev2-m2gFnsogE|u#EQtD7Oq6J}{G z*?;$HNUVUOsPQNrdvO{55A1e7%_b}mXM2mTV<^cToq%_1-))f!M<+Mi0USFw%nLd4 zJN~rhs#AY)BE>RY`w_v=4x`$)$5CiMv%ZOTSL8L9^?_ObE>d~??hkyBXQ~Ge(ZFFo@Z zflvo(^L}uPu(+PZ@6A0U-PaShW~Td`X*iTo#0wTXGDWS5)Z?lCNG|t4uL?TVL|hP> z5Hj{;SEkPsRNayH+qI(KQqK?m8Pgi%cB0+Iu%Yy_`}}o>0mn*ZctZq=pk6km4{edf z604ezPf(;qP&D`!r5mN%Ur=nk=dTS8eZ7s=%lvi}o`FI|o`Lh$7p`%4;(eJ1n;x7T z9jMnQLeZx6u$p7~RG4N`P>-R}l!lQ$w{rj1g7JpN!{}Z_pQ%$gzk{rvsc!w358rnf zV`B|=49XnKnJZ>?s%}rhRQs279HUiv#B{fCSXsHl^~mVEFBa2(r|o?tptI8;Z5Hx% z<5FH`60{~X^%DZPNdF1yE!N_0`0%A3x17cia(l!3p)k+T)nb~p3L$|srGowad^Z(s zne_E5iGSGqnZ0^wSy<<||)EwCQKHhO9uSn_svWaJ^#5^>j)n!RW(b2PzkPHP?Imic<&S z_wF)+`I5p80Kz4_WJZRNKKVu-Q(5BTro)H_Fir0%^oPB^4rWq%K0QF z#<%r10wH@NG)T1ot2Imo^rn+d{l~iCum;@cA}L=8j#XeP&M{sUBRu3l=vd5bF0d4% z-l?4ku4vqmKZciF)yBI()ss6N{%3gXKC=Hzdsoq9N+f^UnN|et;VYpM7{QLgVA|u9 zaNh!QnH0%bz3;18fOiYst;P115p7=*fXHpYeot@S88mhxoI4&8a++oMZgZt>F0+h0 zLcbNghJm}PHRkRnw?zo`Hl5X!UdiA$Bpw=0&oc6m3o(7?D@a+9y-d`x2{QTi z_+E@ToSD7(TiD=$J=U)J_xvluxy4##(F793xGP`B(=>r%g(x1d#=R(H&fZ{{*hH}+ z_}NYJ)X+_W?!jnW1-c1Bg3GtFTG|AM2ooMhydB|JBS<5iEg0J^Zd7FjWPwDx1Yn=5 zx5(kc7^TRA`h*+n-?$=}29@sg=|@+aM6Z!n0LiGy&Ynz9x;6?>YcM0l;uP4AP-zBI z22>0-rVLJ^oPI|O%+GGT22T3jvlh{Ol_zji<7yFKILwyPbHyvJ-%^}ooGwRX78TSO z%5WV*=335;1QJguK!vILC;uCTsaF1jFxB=ygsCu1+5_9N9P$TtEi$d)yg0D8wV|Dl z!QG=zrBk}xkJZ*!gL1^d4s)V9Ns+jIc?7lDoO{q*!VTGJ_7TED4} z;3I@cwFx5qaZtt;H0>Ppjira=H8rj(w@{;boslNNA^KkFg3?_}2yQj*=gts?PZb`W zCA+g^Qwx(CJ{`KG5y-r1C67x4?)7=hTgQkTYuo(0j7GoxcVsr(i!`=6_EblK_|`OR zw|(vUNTY$H42In}pHi0`q)a>DZ5CO@v8U_J(-Vz6&dce{VQP&%q{fu8wC%1%-e;2% zY&OvU$jNc?c)NTNZq3qR;Vy z?34Mqn>8jr+Z%7UL&NQohT^;a6#zgH2aX)p7C6lNi#qN^inL_kU`Js)4(u5ayB+1c zE}e!2xH-rD%LXL-ioQPEy1pL?TIxt;Mt05Kl#~4OcodXfR4|E7>=}8~i+BvO{stGZ z@T6Ts`_|fmA0M zm^cU=N(H3x2~hAAL z;=B@1cc&BQU`&S}!x>WoEmnZZPJ{fVb0$Qz(n6^AN`4oQ53RA@j7vOd<=9wr88LW< z(cxn^;%5c45rXXwl>2dvI^x)x;9Bi-N!W(K**5 zhMJg6=+8Sp%x95rcSbBS8WMXONJ-@S+jks~yW)4mg(x{Qk_U%Junh;Bn&h&z1ckx4pl4bC<~FBk47Ok>ZsE zJdh%YKfX8Bg#%IN+|v0KFxQH|(V+^j61+G9uo6aA*XM8)(n1W*laJ5Y)Q*35{``1u zivXRRzJparSR?Hvit5ipOd$gIyPJYNb{`H&-H3O?s4%niG$+4WcpZ(I%3BLgQ41lz z3z96BhuTpv51mC>iVM_^A*%j*4O@w45<6WK$6cQf>AZL)-Mt# zGqEsEGGdVUFma8Q{xkhfg9K~;5wfgD(Q!KnVG*Z#_?$s z%1=D>m!m8vet0ol|JqN#eGB?#r<-+6D0g!S2}%9Y_2VZ{%c3-(+HjgQ?C__I%h5-d2^XG8rX%8q0>hxudO>z*P?SKaQ(i&w51k+;*^5F9Mk?%y|io7a#& z2^BvOmY;^P9XxDBn;!9j418F>O3E$>eif+<2#C*OZNB64 zx~*$9R~!;iKk6B-;9SohwyjVnjFa9@=ggB-IWS1ME&FjC|53B<2~JJ|p}dY$SiWkV z(x<37w!cl<;6g7R<;#rNfK^Jcrx!GMw}4xD9*Mw7j4(r99KkUV^U!2u{6B?lhI`nH%T1$8xR$$;BQpY&Im!#`#fj+q_8OUY%hr`GBSva_ecP<}Dc= zms8o(nrBcCI4UjxN}QaDHXrpqz0D#8SXuylE54FbwB6j?ja~%uUe!B-rN90-q?eoZ zbtjD1-B_|vbK2DA_q{vXa1u?aU8m)>_1BL&4`blhR%E}ivRc6ZP-7qFlDDPwimX3| zaW38=V*Z$xmz2;5bh$o>vMkX3^5~-$S;>e*S9%m(gcXz)MPT>s#v%Zj#glbA38hUU zEyHyK3|p^tc~5n!1g%lo87$g(g|3SVohAVL_b_#orSOXb7*&)@e28t1?@i?5n(9Dk z#mjTmK^~2N8H9%UI{px-rZ|HRx&9vQ2fqa>Ac|(Jt+0Ng`Q<0+uoyt;`Whk=$LCmK z(7}j`)kdINkk3{n6I}B$C50vC33PHxhoA2-*&XwSuR1Y_IO_9;nJ?V&rcl95S`N#i zw!jUzoN{-gkbl#tj1#LLuKGF}y=6a~Bl%|OrFzAkz=H^Ud-0arR$x)=rQ6fYg-M9( z?P9`>X!=Boqsu%4Uok{bY2`84K}iHS93O(M8d|kqu<_Bp{gVO9;SMbHzxm+X7?3Yw zC3|@uJ`!BQsKwDe{WvE~S3wP24Y(EcPGQRC0Fn#}E$SaQyS%wR%+WmxCpaLw{4_gK zd|_gdr(iYnK7A68F~**r8fvNRu$7rgUT=HDG{k1PI^JC81Rq-UbOmL!nLdLHz?+eLYyLR8Hy4EL0TG}DZkH@%po}wf_DWZGP$(!=jhA50OV!DeC z9*SQI8UZFnuGQVSI_ZR^eT4)_K``K{cqDeaNynV*Y#7JZCp-DV%)1VE?O{=PdaK2WC-8_;>yH zJIuW?*OuIH`(JARPwY-&w8&%aXFmdIHP#YVz}@8Di zo8)RFQIoO3kkE#OHhwA>Yja8E0x@9M zTtv1SdSiJ7rr1+{y#j`JYp{RA(v@ZAsd;HR|NZu~GOF|JJujJR_OOy})HEMjxu3r- z44jDAb$`%2KD7N+!#PlzjCPeFvM;y*uwJp8Z4>E?f>9%$mv05s4|sFH54LL^zx%0W zTYcYAs+;|_2wt9jMmn!+b1te-qsue7QvpnWioynyU0Q)382R*^y=Ht~A%JSva)~z4ikI5*{ub)A=JZ>vVDb8;iy7i;f zJGtA;6FTYv3AMWKA;02)E-;B*1{|BZ6`wF8RO`YfO3j3-Oi_Qs!Dk^i%pkpyRA)Ug zqNWYbH15=Gb8)1{VqByeW}k&rL&M!VnSOEa0vY-k9#8tZE`U@Vxh7WUvF=IJxL zi10Iv`3>;fb!+QX7k=}`^fX-f_naKJV;sdx2Z~fbkJ$Ru~IzEmEqIPV)ksV zX@yWpSgEmw7HYuit4o7{G{`!ueO$CpRpo#%PxZhpoUIW+Bgw0j8?IXZ7l4kn=mBXQ za_(jK`z{q0pDhbBhZ-we~&@y{yr<&Nm{|MTlZL$@Aton6)WH2x5FEQEzrRlNw?u zEn}=JgOzPVRxSa?RNlnV*aHcZW9-Ps(sm+spsG|%PsOjX3jNmVilr*lW^rAw8PB(( z*t5d3j6-1qaT8J+ws?V59y&96#{x6v>rXVeHeGy>+Yfg2Sh0+U(wQ>~frMv&6EKDG zn<;u&Gnq49p#W%C-IT|LvJ65w?nQ=Zj&<1*dAdJUEaSBOZU$bKU4ME%0aiI&c~ait z9F~6OX#7Z=^~-mi+6k*;M3%vk^lwDphf-_8CxI3eYxp-9U1p4RfA%ox{KMZ5jI&dZ zWY3oqmn6lCuQkGr9^{G}cpS|)Fjq-#4VQ4XeBCstZ!Ng9ZVpf0_Fr)i)#+}LPb)E` z`PFABSnz%};T85Q^=p%-M@ua;4gMjG)DZQhE`D*z&z1xhKcX0 z!n^JD;d}V4{-)}i+(xP2XDK(<0K)q|HI5CU;XUJp2|3Bv;X)$bWu%gP;k)Yh4bg-r zSlGug9dgb6*4oBuJSt%@owvngt8kxbBQQ(lDw zU&1`lvv&Z}pZ33hxK)QhDm_45me3BbdTMw^g0Z%pFKj7)YXcQ7BpawwtTxa3)#@gD zyA2xXzJ`9omvS`-K3xfp${w3n1G$5{Kw)w%CAEyjD0qv?)b!mOASI{WFv}_-=`WS@ zjUsc>ntL}fA77cL8O%VfXR^1r*7D)Mypa;eP1b@7Ek98$O=48#iUjGImOoM;MIE%* zd4+|GteK|voFlhE`cr^-%CJ;1pK317WPf@*R~Zj6zvA{|>B=ToumCIpTNK$v2dtI- z`816SQSNf4JkhuiOew{|`IRcUj-W@iQ8yc>B9*Bq7XSAq(>^=OW@glQ(XO0~vceA^ z1P^Kw*Tr9_wvoZQPOo*2ToyZxk4^4N#h|NdKZ+}A;?}%KAGIwE-e72Xq_9R7(tFIW zBbtkYKeMDuuX>^YZ#Ah*-)@UPBr%QoX%rtrNRNJ$GJ4$>WSOfaLL6)?+b^+=m*Um;WwLn4hkv&E{ z_d{*RP{l(=KyY7>?5sl9`4TB4rmr&*S6Yod!il9d^DK?z5pFIDZfu2qth!O9dYWwA z7folTnhRd_L+6)2ROnD8Ohe<6o2unhCp7>w=l@^=ROJdOQ&Vtn;3GuisoX5e)Ch14 z?IzQK>y{vEAJpv7e75Xp6>t~D@}$R<&wbxJ>J;*LQn2|iASy-JX+6zcR#$9C)z^i8 z7}p@(NN?|iTV$z--<;m~KhRDiWl*ifsT^mw7rHDfeNcD8dW6DRQP!BD8E_|9!Ji?P4Qvj z;qxgKgZaJOs1}7#AL$IKb&`XrZH4;TEuXTV(sS`T4JeQH0OK9eEr{h)r(=1kykDB! zWdL)$Bhb&P4v!Tah7W7Q<>2R){@b(mC8FP)P z{z2E=ylFG>dIarC4`dfYmz8_;7?@BI=g4}#_Pl?t#maF3zOYt=%ACk7h-cfO#FAOF z>u$=~N{^Fu*hp`+HfBZdF#A@RU2;rWSDNn)9p{PyWQuXdu~9YsOKT7DMOqYYr8$pN`+t^DCIYx_eY95gjOJ{r?-glj-`vmrg45pqr1Wri zqs_{$`TBg6xf?7)FaFR@8JuGIf?H?4pLgwAB%LvcRo@<(D(PvmL{>&E4?V%` zPGoihf4ID^R-BTv4>mu#)ng%MmAy2(|LM;NGj7Oz7?>(RLoHK`hPz@yP|1XF;n0n*_4tljs#+z>77l@f92>sA=wcG-&s-J^iwY|^+z)Co1E z&Svv7k?9&ScBD4y9_B>SjjU%32<*NQ9C2zOH7AePF(h^t+W{mOJM*g+UOH`d;TuVF z0+nTFB+H&=Q&GUeT&163BwgAkoy_6G+3e!(I0 zHPoOVl!mT#!$9e!<^CPA?RSC1M{Ag6kM3i=H3ai1$EVdjYm_~VWt4ZivOnHYk^kOj zMYNKuT-akC|I%nHq>Af>H#Q`m^b{`;%}*~jKwTdXH88t+MsMv|mdl9~v}Kii#8lA< z3=b;>jz89$1r=WJ62JGRjJBnI;YLMsux*4rHW+viwDXLn69yKT_2067plYs6*d}yT zuF*&Aq(;=aIZx|3JH{oVY*l6O9q9w>q=Ps3Z5_EDe;O6yOpy7~~qxI$Qz+=%- zB0=ta!${Aipyf2In{eZ_%PcLOkUnrgDnprP6;WIkiO^BNca1>w3p-$U3r@+yTnFM; z+s8IJI^DNf74$l+1L0WHkT1gUE~K3g*()BpE3M9ymWcvnPk2=*<(J%zbL#e#w!4-W z>XrZnP+AO=y~F!yp}~bPn-f@iI;tPzHGF-()Ao+*I$xn1!42}N6$D~^&C*>U+8syS z4&5RneZq@(*z?_d$V6VKTE@qWbCyU@Ex-q2A=ZEQ@mw5e|8-k9SpB3;{GC@nOJ+mp zXA{>8Vp1a62k4$gRX%vz-3 zfBRX0R!lzg{Lpe+FdMbW^*}&FN~HfwX4?RTV#CUfU?&B7=V_Qc`7RKl{yaLQc2;*a zfz4*c{ow5@rM-;Xp>R)4F1CQ6U-&k?J68XxZA_f3g$c*+k{MFn_V89un)0WD z`<-7)#>K$yqkwxEd6Qeq)#)vL-t9Qxn&+p({NY=@s*lj65}$w8!`&y`sI?)FQ0EEY z{9Cs>H9GrCsIkF0PMWV+Ytjn7eC4Eb=Vv z>9pN!U%6v^MFYY@jb$qnJ!Sc_c8aQ&069of?dGI}qGwK)>j;9P&G7Olw|-B7YJ!5< zjY*UpGnjZC7%H2E!ppDEBH}TCPOpl)xo|;S&Ku?X`qY+XJBhz|Pl2T^o(>&*A9YIFUer!^J}G9=xfBT;2b^&>E1@+% zWPj(z-^d=bKXT0K)#)70CTk>iTmRidwQkz^$YAlxZM~2J2X$b1yt+M~8Z$pC+GR12 zaG(d=^%yqpwYe&81ocvGAK6d!OkQu9K^4wzBT2N~VWfq}d2dt!fN@{&VONig&-ZU2 zg2Ip`5K6Oh?2u?gIin*X>I@gRDgs$ri2Krqe{+}NT@6^W=MyypVGMP4Qj3QKB= z+|F9AI=|H`J_+|J-Ll724cROw#A>S&Ffvo9wMmA`P=#fU)BI~Mn15>w^Z)p9)tELk zMm{6)uVM^WgWPg`!*m-7J=&8KK{HMproBh-C)3};?VjX6jGZ;DHR{{>rKlGKnQQaD zCP9hH&g=Lfb?8nFd4j;a@V|igZ@HO0<%-!b_J>_f~Ephz*37RnirpLzP zCl}F#IgL3fKl%@plqRE^+?;wJ+Ax~tdA=WORN3LW44kSS9aF}@Z8*$AVa@s)pSkj% z5#z^|V<;t6%+22!i{EhgF`WTKE)z&BISbnpB1yzv_SpxNCS@)R22+e9 z4*>@&bmwCVEl5#t#~kacHyQt>L&dO?sCmKPNl7c>p_UqrYp#%cGtQSB*a9#sy{qOh z7wQ>6xlL2jxAG9Uo{(i(ymQ^v{~i$Vrj_vMH@^reNhQgP>J3&Zh8b z#{6B)pG;H!C?cC`a&Yl0$g|xvOhYX+oA}-H`AQQirz!VdLJ$7cNg|^bCP{IkPs{q` zKKpl!{&^g;U`qABKf;!t^Iom4)rtQeMLF7eU8$c>5wWh#ZlnKGht#JOD&DeE0^&t|b<3+wx|ktdFL8b-~qFE-GFWzP@jn)jE`q%jjm# z%B?m?Z;508<)oZ$zRFos^#Pr1bP-XAHur$rr>~PY39@c zADFxkdve}umhqp_#=KVNUk^zmiDeYFg~WQZ%9bv0aMD!EJptJlT99PX?UZwuVL+4- zWed5K(leVd`~8Q9rJg4rF7i?A`G_fH_H27JTJzwJXho0g?w z_Bzauf<7{V0Zn+*IOXmVbNL@hMI=Oz3+Pgz4!=Ep8DwUZ7cxE{zA{LYzw9!tbHjS# z2UB|eYekHA<&l+9Br_iO^xrLQ8jLHp5T|({rf3nB9Tm;{@$!x2>|}?Ra}uxTS6sr@ zdN{lLpa|E*EgWRX=)3~6#;KdVUxyNz<1=2TaP$L78PMJ+HUWwdZ_iol>Q7Z%`WPMe z4(KyP#I`;i+;9vj6UF0`?$Hfy$CIftnk?*(G+Cynl95SE_A3=op*P0IEuBrZT*ILy z=e_N)#QN<1ki;3(HYHyn=gQ!5%Bt`?H#4?{kD40CqdOU~2Jok9mw<2LV(xV0&LKBYns5@rJ^#gGqysHjV4T$!l9&HV=3r9OwQb|0zM)+

C zokhJ-Q8gb9Yx#g9KoX~Vq6lAK4H(XJ)%eI1Y~LFH`j0IX6Y*qiQO(Gc*Z5P{HQD$zrdHL(I5Q zL#I^$VIgu}sfe6WDmC&L@@HvLbS-t}BjpElkc{Nl!$*6?j`~8pVZL+EPeugEstA^g zN?#LCg??H;=}|VHa=jAe%-pi4hA?OLUH}K|IK<=WZ^unDpkEnIAB6218H-_aj-|?e z{B=C6I9RkUxi}@JuyWJrmV_L$%n!gFr5{gR(S~d)WGK$i^T1Q>UL?rOn-#}V2c5khhKlsSjpv=X6*=?ljt{V5`gxn@_DEiRj zIWoN<0ei6ab1m*)Ph4(opqtRAzsrLqG{k!8u)C}PvnC&;MxA9VGCd8LYyYwbsb6oH z0NQ8v4f{{GH-qSd#A{7ZvH6z3DLzFL`uoKe=j|iz#mz?K9pogz$D~2ZSYM%^^({Y+ zcA^m!cgrOm(L9?xdwqIOoUBBZegoj)LD{|mmBmduggAi{r2NM3g8};WonuD+mU{zigR-zy4bs?*HTC>6Drc9P;l$!lw&4Y=@eWU!Z0=S}%ttF}t#X zUoihW6RK9a$K3GVI#~dPT#u#6q4c;!KDc_$*;S;^QkuC>GY1$++ zm)IB~BS{i<?&QGf~%OxzHs5a{I}c^WWWw2LIq3l+1W#gv*qoR| zqSv4TGju*C#9r!;a_6PoBdTej@kh*8r-4DDcK_^3ij`XzNi?<$yDUCF?4>}TSNRce zRpuZ_z=j*gx2~RRw3`m1FZ_mBp(H=2V~yk@C~jtNME_kT0FovA7_7Q>hfwV#_)f@c zbOKJ8agFH{!k6iIcX$!6MybuQ8OCC#sZ(C!D$MZieZ3w><;?CsI%jIR&R8-Il@e{w$&OV>R+q#KQwQHoh#jORc zkRl)=fkLMG)a37++cp>t9m#hG_-bK7+#8bPF^?uQlXm`@c^#EE$?r=G*f3BF^FB~O;mb9kMXG4d|mJ=12;LkLsz z*}r51!a7Y2<3Xu5?ovA0C7?U4#9QxD$+xSyz5lUK?^~R=v}XX{#O}^SK+n zQJ&x*N@?8NAkwku{ zt-|e+NEJ}8<9*iXaWs^ybaBX4kqQN~FTKIjO!mZ@6w>0{V-R>G5NQ9~7cCrRbe#7~j<}Y^dMGe{?l>*t5g5sLH?GK+uhnSk6ec=te7p{y2Qi z(c8W;lg~d+=!79o&S=buNYP-+WJ4+ltKM(e;R0&MY;^X%3zZ^#^=kLH zLDy?En4PA36&`sA22)2Gr%yE)lEciI5b|SKszN3&6)hseN#-=h=LvXAyZT1+pHu+MsyPisPolD@ngfPpxGxA#ZATwsH${AThN!nE_Ql zgg)D}H`_5~_K{loW0WowWS66LfQ1qRvef3%ZWmicD`pkxAA7>8jI{-+kE3IHtT$Dx zBE;fw{aMPw#+mgh;H=!r2CygazmQ@@!D3n9%>AlC22z+(b5cmdEh+*UfT zXo_KL$9NxFHjVmdT01Ogi)%beMqIV+uciMkPU6>n+$=G7{gdgACdgu$)%|!fF-oEK_xxR&&cUtQT{8i9oa(eW1 z)Jjkc3BiBdYYh+Mts8cBJG`(7i^RmY(P?93TchPdP<<|6redPBrv)$h*kNS69%6~R zsS=Ykg9jOKO#dKac4;Kd@5=b@1T!pD^+_AW_=)KgWub$?A7o2|Rq*{g!aeCO2ng*< zZGnc;B7*XVv4Dzj*{u$5utNSTTlUcLtXI`dxZgxGyIg7Fe-!%r!TuNa9^ql5-pdT) zHDmv*&?#$V;gs2@10UiIz0{9o25D z7<3{_`tl;J&TyyvruI;m-0btf|6o>m3`G&AV;~O$j|wEt8To%>Dex2L9kDEAJJ;!V zZ%AzOTQIrd!2BH_F@Nu=p)|ze>Hngn?r9?QI~*yk)wXs7Th{{|?zZx()wVvzp|$g! zO5Xg3+PuBCMKm~)Uuu)AP=#H1V^OF{U$_;k#sOnxh~RCcHPd{z`8k;W(oP<`-eO17 z9E@dUGqz2qn11-`1sR zN}E^km&9)BX3y4tN_sjvhcc|q{rY5~)FH0$B-+Sh?=>oCJa^(g+f=##*1X8p^w+1> z-0riCfZx=l@W}EBOt*A&{(Yx^Ml6z7*SymT|R-=xX6l zT{DDH(PcxdxjbVvJ4Wzv1t4XHyHBZ9)%0hy4z12#9Mg#=Lu_qWJ!@nG-C*^LFuQj- zZo#P=nVK9r!dm{%UaC4Y&d{)AeKEQ&EC#u|itPYYp}V}tGU3;^-;+v@{OYJ=k5fck z1Brr&m-4+H!z`N1ol^w|1l2Fb$MoGOsnU^JvY{Bqjwb2oEJ>74(Q3#u~EjvE3U-_$9Jv`9!K~(PsEu+ z-APgKJ3ZgE*tNU06(N_7B4|x^eujT?IIc>Fds7;kx?q=j_)6X`9&%*q=Z3{6%yb^h zhx!f7Sxh$11o2TpL`uHe8mwlK4uckcZixYTu^{v!FPw6vRPI8hrZ>L@BFEv3k4i}@ zw?M^@w|(V5wz;4;bO%e+EuWHFzVLEMEz=33x$fmdr#!tx2Jva{ksc6C1jqT$Bzi%tp0tf>9oqZaenSLU)Y8WxY3n)XovD zjii!))VDWyU^PKe{949c}h0qZ&u>z9B3s!XQ#wu@9y{7G+L0bxP{XSdd;H zr%&U{dO}cZvc9j0uB9uf}~5RtU5}3 zZo1p-y_6nXfS=%_i)PTM$wqe9hMwVaELAoz#l=!{Mr!VelYez)1!WR6S}p&p_i$Qt`Q<_;mQ$N$-XOwo zAblrKrppnUIuf2eQXFJ3j>A}jcw1>6zC&h^AYu^P`fc7NdSm%Qy-&Q`Jq{5E~^bYaVX?e0b~R(>$V z9~^o1A*<3dSuIny6FJd>FVk;y@75}F@GAQAE+2%X*D&!X;cu-=OuyY_)r2`88%NMS zzQ(=Z^A<^-o%j1vtU3(Bk)m*8Su+Lwc)my*xi#1MH)Ul&kEvqMj%iEa8>fIl2VZ3gGg(E`-1VkMZVpk4nfL)5N+8kRAq`Qmcr->d-XmdF7VL^#Z zO&TSaQf%yqa{;}C$_h-ImBBMNYD;BZm*a$9$MgX|HydbYedb>;6KorxOj~NWJLIpv z7Z5<)Y3}%E&Kb-RO8zU8xxx#^GGq7|e>4!Y&=Zhw!r-7da$`BDU@bAV`Y6(&BwrTt!yZfAX)Db~vuKVGllWa%8( z)cZ6Ny1#6zXu3zV-;CGeyPhPc+v(~bOOMt1W8KdHGCc^shsv2lWreO`?%^z@F&mh& z_dWg&-4b<-ZJ({mLqgOOXFg<)n1eOH`a*Pijr&P+{j7#WLBy54vfWvGb-|*X}4oHK}DxPWf6}R zvkd#;00@7*f1@SkE6jMDe(O=fY2RFEm}<-q7hfQ=G#edqK5EBz`s5&7?6x-nks|Mz z+fNnRr`A?nQ$hEBo<^zFZ?5G{v?cVViZ5aABt%KdtHbP;TzNHFg-n3PpIU?l(Z%{} zCJui(^gqwbA{dK3RDxKOHVBdxJXxx@c=x)ZgBVCAen#H!vDDrTloZ(Mo27f99L0o9 zR@8rOYAZ8;xT~Xmot;m$J?ZAhbZ8b6SYkh=e2eI8^3 zx_w=TlMQNZRlY{0`Jbbw+-BWDzl=T)XW6y)zr_C^sROH<(b>P4;oe1mR@c6NVR^wc z?O_k&{Viax;;G-D*Z@-K+qvgX_Qii~*(XhRJA0H5`?E6b(RiQ>lO@v97X5N1*pY^| zH?RTO7mESn>-W^!^aA^^2!5i}v8~EPtHc>Hm;SbpR;kuT)BU$~400qxM^~Ri%TGnd zaqSi0y0SGL?XzZc7#j9p^i-TtL*(KL>i^>HtD@rSx-B7S(BKXU?hxE1XmElBC%C)2 z1PBhngS)$HL2xbH-Q5c-q^a+}{rA12`=!U|zK`{C#;CK;UVHAj=A7&DPu(0~MF^|D zys1zZNUp?kTzf9rD*PDFoE6cA6RNH&N)iv=GobQXC5~s7c+w0m6POFfBJkc?>kQnL zZ>sm*h!!7$sd8-M4eZC?araD&ZWUX`Ulg7d0W=$uB&+gUCXk?Y;=G5ms+XderovUG zKMk19YV!XC_VZQxbnoX2*&|IXcc~2#UK90+oqO*i5wgNM@}oN@S?u=uaIR86?OgGitV> zQ04M-Nv~o-iyf`a=(dBE9PA$lc&RfCZZANrSfDtGjDx$XESWbr;AZ|z3|K?@>iDJO zFoGI*wwa=7ORQRVwIC&kK;%WbH z9=!uCj+XDjP;DBdTlh3feZ8y+uX&vw>~1RSe{1BdfFy-@w8va3G#&}P-O%QKao~Y% zS1G;P!9^BnTQZrn+D`lEBf{uA`Yv*LJQ#kjP5DUBh^!|yeZMX=tA710irRW7L0DS* zXdB^?82DW!(fTcep=m{*5vEW@bL1Ec5IfLD=~;I3jg`tBeT;oxQZ#o+(27Qs6~_#_ z-_evDz-nT*j^zfyj3Zm&UFly33tUH4IkVn9MtZ%o;%UsjeQ;qBv=mIS<4Le(o{_lC zSyWi>nZ!vg ztg;;|POUTo#2^cyC)DC3tDZ99U! z*SbR;aZi?6zs82cm?41=?_~Vlb+gppEjgQ=kzIkM%~nWoY*jUXI?FM~)v;f>(BVCy z^Xbxr8TqH;%NOF`7MQ3>gL5=0EY-1kxYxHYnFZU+>zI_z-f@|`o*G|o@KOexNdejo z&<_K9seV42kfyT{zvLhr6Y>V4~|lqsO@GMT5h$ozaY(UkN5e zTcj46fhK_6zq=!X(o@Vr_KRDBDb8M%yk-n>I88ZMlBnEo+z;SK&F|)RqFS=kQE9&= z_*U7&zYNza%Fiage`mJb3?8hG&YxP4-=FULAq`bRA7B1r=;Mt{Ig_1q%BAl7leO9sT&Q2Zf1o2 z>d5)6)<}+pE*N?Dk(!_%iMAk_0(T_2)tV)*vwz1CN0LC$UG zly*V<$CZLA^^hEEMzcQVN7HKGU%JT;?#RlaK%oV!cIcT=9gl%ThhH~{LPxQl?-?~Z ze7dvFK7BSZ?Vhc2dSkiIEt!4uI*geyzb9?AjTQz?g3nypl6k_HLIjW*rbKNXgq$K@ z>Ary4Dw!kD;i;^yo~IanettjmWh}nMDSu@D$5VI12=6%1>|Z358n7$P^_Ub%&HX)};VoOuQ^@`~ z>V40BCV9VcV$w&E{*McAH}dCCj*so+YG0nN?mYyXx>H;_2-$#54!eczP`j3xm0V?* zP1|3njC~SCSJgArnyC@j@Q9zA8npwa&K4U=MG4$cB8;)~)ghoU#vwBy>k=!#^C-Ag zdE3f;Z>g3+hU|l|Rm6>4BA-&~8m3A?i-XZ3p7e_)tlGgtivA;>4lEk3wyK){RMj3R zqD)d`J?$o`4#L897R_sAjS$((n#t~mZ<1ugI=7xZIDP!$v%aL6xIH2hA$|)SBwrw^ z%1p=MMxW_9VP@~_Xin#88Y(>IrHxspxUN&!Q18toyGA&G>{nu}3^G36X4?d38+m_W zTK3)OiE-6?mYs`AcC>e(TM3a~QQwqn9O*`Ft{_j1d`I6~%@lfLSRb?om^UGe@Q@Rp zj#yq*`)72B(@t2M*uNI9nt*;n-@yz;wKK%?I@i28AHQjdg&wN!DtrqWtDnwF@bQp) zB^y83t*JfK)IIjCpJP)5X zg{S8~8y7P)Hx`!N30l$ND#Dj?^R_+d6hyIf&+U zsM-LCd)xc#Bn4?gv~cVl=Chh(zq9pdkA;Y^fZYX8NOz@Gya5_ zZSBjGTcN0J*~fHn{-~%6V#-AcAg~}fckG%U>rnOjzbh+>wiU$a!cQM3K0v?y&H6Z9<4D5WTk zMoSkCR$~Q{&f`XW9CH14d&0lL@dhogFemGM&v*-f%yY6$#~_eraDH$rm!TZ~bN%n< zY=9Q!lusLh+MOW_-)sl0{LIQ3>AD0*=3>K+XUNgNMCUuE096y2kCl}J*Oz=a6CBz= zg^ni_)K6m}K_hIFb}b{{s~OPIo8Un?>WY22Cx1{i_hbV`?ebQ zqq4^7l2NzZ1Y_C_pF(f$57~LO*S5KAKjPMMP9AhM$uwA>ro^CG-`Yn@Gb}@eQV^=G ztGF8zuwRSxtMejABKj4Q_Gb4jHD?JN>mKFwr$&y~97v=G@=_GjoeD+Fkm8uwHrf?8 z+*0yca~$mL$9x;(snvlX~8EW(uO*Cj@Rh-shok4wkW|C8?T-EoSpqRN!0rIgz%q=MLCVN-PE@fX8gXZ<2OfUsh^eB+ zpx9yJt`LYb#9$$clQHT_YO#MPM*W2qdb&Pm zL6r!PY^T4KnZM4gb@nwKoGP%UJ1(8ItVJ5EcYh-NBQ%vE3qG-w&%8v+J^{eQP+fu zxew6$mBCG|L#ecG*xTuG+wUK9E7HscT64J64V^mrq#%e);PThGn^tW1%z`_$27zeEtQgBrX< zKuf9#*UnkWn}@eePDn~0MU*S1YS;eWb|M9{o!w6}`z%}Q$1;j0E4dtwX>?wJP6lU7)6_HPfTTR&1^cxfuT@>|K&gl_?>A9!bt(O=K}dl}-qcgC51tY7%#{m%^ zyZu}egUBb>&$mlI$q!Q_XJ8p7)*aX7@!pHgg62sPfLw-%a^b?fjZgBo;!YpT z^>K*wW%b{XbJ>}Fz`B7$KJNl!w76;KO#q7a%cZdT_UfMs&27K(B@f2gbc;U zG$b7ZbyK_p9edGn?2#Vtn(|8(;8;I95^i4CA}zaw2c#}%**!PfX=T#RbaZIz@xa`S zMI<^svgEir8G~?je^kRVF}SjJel)tQGodG%?jrVHsn7TnRDO+%Lqstjxn1>#M8#Yn z`gJP4kp=SVs-AxY%poZ5u=sk(6;oi{L&bV_;ga5ShM~;!Km#Fju34EH30L#C z*@zaUkhAfL0olXMPb&J+*@XSh#^6G5$Sac|Tt?nVe)d?qTgI`tYT-Ege#Fs1R$mXg z>|#85{aOcOKM99wAsKECX=&F0tSRm1_IFO#4!PUx7)ir==`MuleSX>lA$$@;U=BFA zLD>suxFvec74rnD3_a5>2pQv4P}gM%Rk2zU$74PGL@XicFkZ7j&455yd!=oQ>9-mK zjcR|G@|9UILI&u={LwBr+z%RZ+Aey}V!81dDn5mKSmX%#LaApu z0(D^@-f$R})cXA~OMNnv?(Sh~fC#hT^wVRNY#Zjq*SP5po{(9xK)gdwid#rFVU45&CXvWe@KhVQk|pe+!!3!Cwm~z#&~lf8^_$&E zbST7_{JIqPI}7-GBfhYB1=;mbBb ziaD7RsV>bmNpgBLI=);76#ds#8Ta4ZIu_?mIoIs8OF_jYD^WZhn&cL?y z#0tRW?ehYV)l(v?NulNm^a5`T>GvuSz1Fv1or5diFv;%*G^?a73t3&?|KVAi9HpTAZNLoRe$o5CYQz7FQ2hVyhhJOR=+meFDqQ#T zo)%9pXX9&pa*Bt$mG7WmZMf$9pMAYL;N3||82NZ=u-p|(vnYgwk{PCE58bsFG&QOJ z;<=yo>woFYV-hTAI>Hcg(!^0#e3yf20`^rY@5ohGBJuyI6yMWyJH8?;03yIF)qaBO z!hd(+j~BbS^Vm-@R9ZEp&;6MXNN6&OxGwXCh0Py}nm%O@6*N6?_2z6|2VB+aT?<2d z1dcz^RerDOHe}w4giXlN3+yA9a-$(0RxY-`)Z=cGC!;|eAYew|vb30i8po0XRkuW*x9}uNW!fLeZN=Z%f zCvVyUS?l5%ok_o4nGAGfn6`j5K^FbFy;35#)OKofV0~3Y-_DqnCOu;5xsZR1vC(j& zN?CZ_YC_!f<>@uxJioNc{VUj13-Ikov;X9+tS&UE?+~Nd+ zIGk@yFfjB&K{U46fzwB&VRGCluWnmk&-MVmgB4%j0;tY#n&P<;!=kQCj`e%}lRBKH zZ%C`+Z*=farmHSlqgUbr}$5JLb4MR6Yh#gW8ik5tfieOURwFXvI$Cq zR^F%d9+mD3el(DnJZ-}wumnpBtv~H*5Qr?OG|HcKJk|Y;)t#m)!cWLwrmpHGCI%N$ zr37_Wa}(}k)4=r)8iicuG3&wYGk9XUak}E8I3%peq>r8Mp@>Kt!Pd(SokWpR!B3*^ zZD?JUW0hL{NFs>}#_rI@MJ>SLs^j7i2I}R^{3bI(``iG{hb4a#g%Hj8&MB0-=n~ zB+uGSOlU`KM<=)S-)jw6ZzcvSD&b9-n^34inJOBK1nBbA9ROk6uJAtDAl?yG+L!FlNari0KBUQz5gf^%Q6>l#L<0uF(_d)nM8IPh5BZ9OF4L*p zS18FrRC{S=N^Q`GW+4$-jpJ~~DGRqq7`*xU`W%?FHgN0*U1OZK;e&!YOG-;JXK>@B zon!OvVTY!J{G~VKHRGtxc_*XSFH^;z7dtiTls=S41S6wGDSWv~S}q|1Np?AME`MlW zA`Tm>D_p%wfi3ju34E!z9mMi-uK$wJ-qb_t`%OAU3J9~4Ff471+8g*nWq8|Bw^)pM zUE;<|g{=NIt)z}lD%N1?&q-+me0g<;dYYo=C(+~CpuO#I1NjntCq6f*RK@AjtK)G(;zCBSG%4c`=y$%9$5-^ zMLcpUscby##el^0eLB+amm?(6ni$hJkxE4q-i#SXU&^YuOu?VA<3nGAo2RApCT2p3 zXJl08XF#CVO?P1j51d<()`_g;I5d@#qj=Ul2?hcZ*XuAoJi}5>>#O3#I|CE>9bj=`2r_k_F{|pzn_IOHAvJQ6?d$BhC zHx&|>sC*}ZbhN^4!9)cn^?;6{;Qc(8Vs@n~w`vwUy z=a=^Duo61dZ-O{wF2=4ct6%>h58sA~H6C!@R}5brEL=d(Ton@K!t4D?k>s@=mnOeI z*-)8+VO~>vK|J(Ga7fZbP15YE#F@j8-uq5Hp`Q&!f7qP#^cQSj5LUs$>rJNmSl$r9 z8EK!#c+P)1il+o_Rnavs!myUU4jbZxWB_Z=Cl$2Z_MDfu)hw=wR(GP;`+{+Q7ORAO z(OCU0!YLOguv$wJ4FIEE6YWLW*~!ssdXPo?lzc9~xHLH|UBeR2@xH$S&d_^LLBe8V zh+d}B+F@)tIc)5Fq=Wt+zKSQI;UO4yXb_&Qb45PNLo?^A}FAXWGYK_i;4o~FC<$Q{*g>Fm;k`r^11YkFhp%rN7L z9|~Jn2#}u%mxoF9K+=vU^4Su3@9N}dPB}TJsukLi?`>&up)^l9*W!oFjvxqnTKhZg zYL3Ue)_A#5LMrSpv^DzT@6voy@2P(00i)CtT-Q39B-V2tv=aVjYHANcGqwv04d&rMl7W{- zqwdMyti|qv^C0UIk^!>mLMCGoqbuJq8Y>i0mpi27XN4dFzoHdmP#DMZe;5C>i*Q%) zb+RYc3h%{5v-an|8+hj)F?LR*<4XtAWW;PVZ~Aif3QseGEz}kF1RPw-g=ZQ=$7iBZ z0P>@L$^#6rrJ=JCF;#cX?fBZ2bq+r4NJ2RDg+ONuph zj9}#0Ts>8(qly-GYdXq;Z>36a5FY*an{%DM^8O1?EXyBQr7P&qs zn68M%PqJqlhY(NFc+$`4A(E|=$h@FZI4k~zV5YHx&DAXZL+j4Z^XaIi|LEZ17-!M4 zPyPBCYqZu@;VrW4wGC2v`NZM<)8N@Xf9)v{o=gC#Y&vJ$wrjzmfQLmmFxWn~?7+h_oO17XZg zP8yuBOy&V4!^s}SigJtkl*&jUt?TG+E-(pJsmRGzbzMr{cmgBk*t?oyNNzgn0f%d2 zPKsq@EfPkX>0eAB`=hKMV;x2}_FmU$JGED6Vx@v)UFh-GVzqtXaYC%3W`ATA!I3&Wh2y6yGy7KgjJ$V`h0CJK zS4qXIT4d*P@euBqqByOykH}*BNr;Rd_MpxiNSUr8e)=3fZRX71ePPEc`(#g4uus;k z>T>UoLEU0KfGU(w3819Cyv2t1o|7>pvh8}-+CAkj-+`PK#BV|XDoctw!&Wf8BEbYV zSIb%6UY`0bYSgD>^pNRuZ9^K@JnOU3?57Ms*NnT@tMVG#4uitD>m(MjUjgxg5cpYW zX5784e%uja`2l(}NiOHPz%G8%Jk(cTedps*JZuVVD(=8lr+*m5iL@d!Bfy8xxtY%6 zkGu=*+EMVkyLA768E?IaqI$N@%I^W7=ds6%o^uWEGgV0 zQe0i)^or84fv2S<3+iag=}6Y;fq2ep$WW`{NY_DRR#HyxPs5kwu_kM_Zl&LxHf~zK zt|CoHt?)`9fb4EOgBiC0>tQA_Bz^rUy8~BWxIQzw^$b*=(4{o2!ynd!Qdd0e~x zf&P7e9gdnJSGq*a+5UMUH=zi?yL(Og8S$<4fcM8V7W}t16nMQ^|B$3Xi*o3_S5Ak# z6gp2~`QgiI--qs%l5vAhVP;}M#-Q@GXTdCIsxF*jrrmSTbp3U38nS+hUUlrCxI3zI}nwu&X2 zF^k15q#;s<|I?dE*Wo?kdH>KfcW1@&3dd)c-}-%*=vd)z~&;1--HEDuhAjpIEZD4rfRdZP=ntOu zi~~DM2Vjo?Rq(1M@x9gIgi| z@z)F}!$@Cf{ml!~(NX;{7(8-zD{ZCexG`lS#`-Y%r@)ac_?QOFubB|I<(UMM8%K=m z*!NmjJ5O$rK3PwHSXr_v=JYu{O%M76S~VGU^l+i~~UAXEGTN z{JpTa@=T9U5RIE++fB;$5mc^Xvr=#ti~o>7s!PWdtY*L#njrC~Y({Q@S67*LzEtU6 zdrdS^c1}VMtIcG-iC4;HctieL=H<6XQiNx=!+^=t!#C|>chTHbk<2`^SW0(CY$qae zHSrD^!2Vctsyijq0N|=rlS_=U=+;cPt8-WK8BH};@oPsT)JoDA|8I_O?=0_z*ONX8 zV?0sFuvLIDAvN9mE5rJX@BOp&M2lkvOu4Au8il9^#_a5D4XZI`u~yb3$|BG{Df9Qu z+1~xZ5F8&&->EtrD+Q*_8(!v(J)`TXA5@Llhq!2^kwF4*QM0}Ut@Lu{8P7E*>rl8y`!1>ma4_%<$&8E%GcR0 zYY7zKbA~YFY$c)NlsjCm#*VpRWqh%E#F0%WAcp66`!kRvFSdP8IzXzu<`1u;8~U0? zQk;XF3KQy`(?V^z`sN)OAOo6XZ)hXQo*^Qqb>IIt@=sb$>Z2#9w?3Q#Ez8>R|He>$ zt%F8q_~RjT3*X}BKaBcuUDI5c?4<#lC(nikT%IrgGyeq4tbkuHOc%efYB<>S7&9nG z7bHKSibkrcXj-S)dH&zi${&@s+no;y#rHcg1soShZn#-&6iTL)c1bC0v)nK_NKfGx zH8ae;4_3L04sZVjqKq581?r;lE>-S+uIau)!x-U$;3x{s|BwrQBro=VIZRWdyVMi# z1kfoeJd@KN)*-Pin|(AkpWKSA9R3egd8?*{O1cwl76n;zA3pj?|zcrBNH!?zBsqcQPNbSQA{8NIX-bM}>c z>hs5~D%!28pSbaXXz_urkUF}(niR3JA4^G9{_8qAn?%?w&p`(c^>gdi`_H=u)+K%{ zLdWd%9Lqwck9zNn7F&IT<5*RZ9+NbNqyu+F`*?2F#kT0iHN33%A#RD&Vn?Fw9%;V5 z8fr}|L361yj#WYCz>vp!?#vofgB^`hlTtg8F#4i^vPuMe$21#q7L=T)yf{L|8BJEB zJc0U3Gm4^psZM+J7I_k{`?ho6*H52AW~#nChPnZvPs`>HY11fYDm)$6G)JLOrn_LH z3x{a0zxmv>UNNK`;g#9hd4+kOPUI|m-3E=EK-i^nf_pV{~3X=tU$%dC-f*i+r z^ITKHhPaqhzt%~U3L?L8t02mCefe^>t?_8fvvw4LXP8io>~1I`}r$ByeZq5@&N_6W9<~I6e&&s-SlEo0XGaBL(&4jJP_LH zD#;Gr38Z`v>LmqE|1$uo>QM~_V43&5_37_q4}(Zn!a;6|P~?(+QD>)6HO6Qs1(DQu zyjV3qaBaOCd5T*m1FT()c;#Nr(sPSBC+tHpX5G7K z*XNawR2VxXmkvDXmjQ2Qx1DsvRLA$9?Pm%40zddglfy}+`8^OC%9yQ4-;cr`U+BJ` zp0>r&(=S-?A-s3@9oX$J2hOYj%N)f zmyVoRVZH0f^OO@RLR9OdP=Rl(ggQQ2OjM`Ne2e5ho_(Gz>SAN(FV{;7Fg{D&^3c`@ zTI5jcYW|G9nCRm@)BuSsd^#wB7PfJUy*}-DVWUE3mE-4$KAu$Ct9gui%Gaqz!t~Q8 z^A2q8DvK!1yzy7VJ#saf{kWAs9x@vKh&UG*v|Nt%=OYCu)+=Jm^DU{}i~q^u3}td; zkf(9X(CpX9{UY*t5q73MwlBX~7C|R`dE8ID#nAK*Cfk0Y%pK4(GmmzrixCdzd!%}2 z<5>nRcKJiRBvQHCW);*9!jMwuA+p>s5Fq`ibzQM06zi+j1a2#Gy;YLlvv>L`fc7sq$L`A<0L24TR53Y4IIz4$uKle*!wz zMwi&kIl$PoIfkR3ny_&^gKy5lX~(RVc%M)|J6w|W<--+k`xT)RBsSr7G)bn<&Fe$; z^UB|)WR|W+oq3(SHdy6zr`aXAF%h+wR@X-(gi3|h6M>}&5w-pn|)La zO39h|ntSkFG3d(#g!v-Q%NYMR-96nr>&F_K3s#s_MwBsMmemMW$16rkcDU>44n4rFsOVv+%G5jk*(!j&iTi;OHb=Xvw7sRQqbm? z#U^6=D_;rm^GJuMPbMYmc|j8byMCT&mjX(w{JN2Bat7+#*p*v~re3w7uUC#y&AmR~ zMbM@sEd4o-&-E;{hMwFQ(SV|4ce_cK z?B$TJHr<8)qIkecLAc?=3?rxq9nDsJ=kxM&;}0il$ix;OxMR~hxO4w=>GoS)(b8dJ z4n0s#I`GV#Q96F5wu9*AWh$U#FQ<4awT!d*nz|5DR$g!>4!$e$a&NE(fOIP;crgNQy?22Ex0Jv#Y+mBG+T9fjywp45+ z*O~AypqZDrZh;Bx*45#@%)FfC61TlD4%S{fy_Y!e zcQ_?3Qw-N`fi;rX7g5^%#kA{$6Am<}jJ_4of*lTnJS}${ZTF6Eh3RG2>@XaILb`S| znWt_NgQEsNhvf`BQS33KTpj@@sX7FW`t5O;SS-!R0CRFBj@o3f}`ywCG={Owr}QZ<`{4}S{Q}uB`R9)ko zfcwA@!S;ESQ1o<&TfWX%BQPi4k+y>pez*Pb$IDib!8pItq@NphFc;M;+3guSb+~WL ztB?T<9FB7JN8A%~R|yH>TylB1L_-)0u5cMVXgF9{IJ!W@DX+veuk%3vUxA3f5^N}b zg)i7v`n|Y0lBTDFm%zhcZ+4`(0(`ot&*#rZ$4AGCL8@S&~Z=&e>(x8=hSZ~fn&QcqW`fhi@#>w;(gE05?6Q>mGe${>i zqi;E`P0(RQnTcz3yVTvU}TfSBsSyHXkK_7aRJS;9JY zTxqx*)U?-*iAe+9l!9(t>Cils$}sh&CnhREp3^(qCF+35BV42W1|(jyjw^X#ZU})V zJL+}IuqrlQd{RWFj^)){)x%HIK_=P)bh$%Mb_>!Zs&#xUQIie>Kd?Eh_gWrY&Cx}u zG{@?>AMO%IV6Zwi>aHt)3R@xBw;gI=f&_K=;k93O=i@KRMoWLUdj7L8^qX`fbu#$s zvb!(hPkMJg(wZ__U7WRW8+cqBp_+$E=2RsTH_dGw0IFe^v zbDrvkzSPZ@4k~{%LN(-8z--ntg-?>H?6|Fy?3F0)u*68Ye_iljO%4r@`$J8hl<~#2 zcA*DQw-#zgk1+MvGwV&{7nqa8cTeufjD)5$&U^Wds62lRx%aQvhoKR+6}>Bh@&)o^ zuqXmX$wW}H)@}m2GY;e()rPLsA(U!J|HW5rAmepa>Mk7C- z&-Wk0qgH3XQDy<8^&_rkExJCa3V#>lGiP^?oL~Uy`0`tKe?zk29hLobreddiVft2D z<^nhiBr^+b?RtIE3k08diAKR1aA(U&6ik10X`YVxm8@n)^E+F5Ua&o3ps7X2{mC{O_k-je>LWrl8L^A6ZYaX-cj2o!&j;`N=*}4Jd!f6l`uqf1_uiUs z-9?43GaeUKSb<*}g}%4O;xP`mX|JtqesMPUxvuX=Q-U6`%gV4q-)H$_W*dv+K2A*}Bz+8rN8Lt$2>*cYh2Km`^aY+->K?$U5!bQWw!*=H&MP%l56 zYFDzNBMFlxween-bEGsC3l1~$URoaMH&97>E)RXmdM3(0s#hs ziYdXVcE5qGd^N_fHhATPK~8NBXP?K>ArNW`DY~bL(VpSL)y&~RKd~ zAHU~MB!2T(aZN^t=BKNl!Jmd@S#5*y zOABhrXDjJm-VXu}N3&4mkBf-8KVa}T`V1}DpiJ^L3JRSBTJDAt1+D?QMb;B@^wsny z>Q&?-w;zd>;PL!MBNyOU;tL3m?b@F+y8YHiG^*2m+t*g80?lJ~_dO+&49sH>jpIuq zkDMHz1u-fEw$8xp4vOKG@)vrT0q;>k`0VC*=ml6$+sIha2ie^rE80yyj}B_4v%HY^S>4OVJe)nngD+ z#idRMezD&6CU6rgMAoUcrjY&{!1re0g+1ukL!##r8d7 zp#tYBhx!kGZk0mn(F?&WO~Y+Fiymr7S{6t$UT;Tmg?cNS7bOIKex_`)<~lrUCg`Xy7h?lWscz24xyIPhvM}P`JXX=493f z#ap0gjxjZ|5ROg8EFxfuhoss}PJY)w2k)y0 ztcqFMYWD)iU1yAxW0P~A}UFo-_K(`}wX&nog z$s{s6ZlMY4bk^$+6F^T`jn+->)`#tnPKpTS>djM9Xv!I3fR|eX#jJqdvS6_*H$GS) zYfa32b;5yDc5vI+p00hnDC53p+E}EW;SGN8w$6A~L#>}oW@e`pS7ydtnyl@`j?_RO z4f+!wS2wE`AO(buyvupEN_Qo1d+4caH>=I&pOH<@Ps{#!X?;<4{}27?|MXi+@4d0E z^p+gb68h5e%Y67T0d3Q)k7}Va@u*Y3jhYzd;D=6fjr110$dGLMl=tbqhtEm7IegHK&{S# z;ogc?k|{A=PevIiDx0YIjW_ayr-w%>(JVU=p9B@i=YMs%$|*TA0HNK4xT$8xZKN`5 z?+q<5a3*Na!1MuDO1>BJPA5L7tQ8~?ZeuKxkGcE8ZfB40_oBgM&)oSGDxbuqR%Br! z5yBfjQC!FFo8oc1p1uukL>3NqVd!>ebF6ApKySWvHO%nq`zX_aySrr;t>ehw00ia>oj%cT%4hu6eZl~0~A3f~AZRF(| z4F5q)yv|iKy+bDHQGO;K98;niSID2@Ge`0Gxn24!-R^@r_Pf1U^+AtJQOcs2r<5ce z#KIS`(7|4?H2S>9>Jw}9+YV!K-8}BswH!n-U)rqKg{}uG%QLJ)?J~GTFt2B!%vmZr zR8~yK9rWro(q<1%{wnyLn2SI&7a@+Lk^FB(C4|CL++{lDcZC|d zE$d%vMh)s7_F#IHgI>Jjinwc*2%O!&*;zZSLmcy@bh2zE{=Q1h-oNTb?p*EwAUyB= zoij@Zw)G`4^t!_rWJjaCw`;tFvJBvlKiO@ja zeE%{JbT?#;GSMbSwM2-vNhsH(rC%QcgJ@YCldO9*{0 zc9X|?21t7{`7JI?Ye& zbJ24Cc|K2utQ@$65EV1^VQXG_wMGt4b&fa#d0V%7-N_;`<0K;td?(DKw)XRR>#OcS z{aN4?V};LgMMx-&GKROQ;aeT{CM(%ufd|;L40Sk5T;eKO0;B2WdEaG~@T>Zkv<6rT zmLHP<-kWBi5;!C`1zNT@IJ*qWtSl&g=3<)_@z6TmbBpVJo)}XP80vsj_1wg5w7);9 zSAP_JzP-XN&PIq&qOuOSZdvB<5LRfPLO2oPJrm6^jrI+Ae(1D{ai=iU({DE3JQ{e6=O=`Q#X-vB-XTuFeB~K(R4_c-r{*#5Ig0l#MF0Lkh9CGk4f{pzB%gcY3oltw@F(B zDa$#{&-s+awbIL#EXWR4FapGp{31Rxcz%2F;nP+<_1Z8u)R~bC1&q!TsB9tj%NtvRePjM$7rP?%?ykQ_xH3lsVbrH=bpG%#KjS zbT2pvuhD8i2P6H!=qJj3q5Pit3I%p^c!j&I8URZ*3m7~nEPUj7M*8y8rZ-4Y+h54h z+cA1W5c_=4h&kLlI0qdtmm${~XgTz?lny-p9~f%u`1B65A47=CFsJrVAVf%>^TGKH zzjXf2PU|ik6Gj-ioKR$%lAphAhAI07W<0;wvU_Bfqp>k~^y%R>KnR9$e)xH$9q*&( zaXi^`FfP7fyNho=7ul@T$(ndDLXe(d5XBD`)IK|HUs}hqfT`i@ku=?(p|h2<0YQP; zVe9Bbqc~EDH%=-pIsXX#_&FO8JSjft7CPNNL^w`tY;hKe;Hsrp)v^`31?Yiwq?dlf z^i_EL;P|01(Vt`@wEjf0E6b>{^L4b_AX^sPi;DWXukiuW9k2u3t)cMtWA8U))hjo5>Sz#Jc;P;%<>h={s~D~2W^^Y9$HhHN3YO%jleC* zL*rPK=&2$V^iTGWb~o!KCEr-lUom+lFDqC*ACq_Pn{}=~&P#X~@iyr~$rl($iIqUp z8+Dej3o$?_Jq^8A>}C)Lrjd|%*sLDHm_1`lJvnJ&Z3LB6XhL`ONt+;O5oO2jC|!M< zRPfUHS6J%&BgLz_lE2QAB#Hn(#z9RPo;;t~@OtanCrEd2T_`Mtsg{5)J_*nvIE`6f z`)e`T)GFKiUMojoQ;>D$8{fK_oMbn2-ou!sUAK<*-s86;Og5FZhp#bn{-*Z(ooAt@ zs-z^gT(P5&ISVuy=_=brQK|#78dHrmBKqkd25B#16J}Z73^}~OoR-2Ic}bE7VJCqY z^-+Xtf9;T8$Yg8>dY0_9nf|!d-;Q0UKhm#&Y#n#3Ab(advD4MF?gK$v$lN?)SipEu zt7$j9TEeVkmLEA8oaE{^_QNvaSS*lk!K?=czJ8&(mF~7kqa1_LOe(T7j@0t`Id=|+ z>j8h&3p50hrC$oJkd4KkONAS_aBbf6}3Z88_S(x733MW8!%P{9Pk8K(q zw*ZeXrk9z6*v9zk@0snm(iYHv`R%ozVL7IWo#XWvLs$kQg`INHhJd{|!XZg9!I8L!wL zY6JbQXTEPdgVsKfcDMCW6iYJ)yJyi9(;So;$r7WG-TnzYSX->aT7pv~rHvYQa$`Du z_&<1i%b>Wrb!#+16EwI(aCdhLArLgUI|O$ccL^Tc-Q69!k>KtQ!QI`z?)TI__w2iW z+^X;1`~B^%TD4}aDPxXjJYzTt=||ays!b7!*EZ|s-y~BcBOIwoeQ%fes;n%&TxkwD zggV-I8U=Sm3jdB}nXUNv_qpq4Jf5Ntp_+geP0OL@+_yBw;;dt6o?MnrteC13d5Xh= z`Tic%uXKj_S+L}|c!qa+7|X?QfeIhMl6-J7Kyzj*UT{QA3MtCbR}oaAR)FsnhqO() z%@f-z41@K!P{%~lFYBX0#RIPobE+B3P3?y<3QD7l3uMry?Kl2$^JFpjHO6g~FA&X^ zckNOaED8N@3v$6~sUuk2v;rdLmGvO8y2QD}VjX=!rZXksYZyf;+Lj}BtS*ORO(vX0 z|NZJ-BAjl`uFamp={hwssR+RHVKfC~)^U%@UPDuU)4jO*x;=rzvgUwN;Vk5zZcf5B zjX>7vPEA>Dgou&jT>j|0x7>M{&d64EK;C`(g8A`j0%=aFC?icn@mCpw-AT$FIA*|E z|Ab{P<3l9oA9z&d?J*O-146BuRtZ$|7Fuh{){<;h8H8UyRsyJ-bZ!76J}?#=zkRZz z=%Bg}dt^PS5(BdraohsIR(ac&=PH8*5NwfEWv0948d&_P17mDAN8f&ZM|$X!WNgq= z_+Ti#XvyHYbu%s^326*F^?V1kbGfsRLQ|7xGbElzJG_!(HC;Q;*p3kC6mg1g(he}?)S z6~vafk!h=OkzNj`KsQJ}tCrOxSxIeSyyKxT%CP7-9%pd6adDhsU!;W48sirOpx8$qbbEYR57}yKKPfZ4INw)@El6DzGpevbSU142(9^9d zZA3$w*%>PKI~60^oSJi_a+E`kNDiC;d>7&B`vtS~qngr*Ob_c#;DNlwPu3aOmPDIk zh0J@OBIYJgLZ|waf$)568Dw?sh44ni9qZels+k}~Q0WdnP4B+a1g$nCuJ)d)Vl1FT zZ4pZ;0Bp0?uv$N2&Th4e*l==4$UL$y$5Fk$O}L%BSX3+6^4&JxY}kUE{9J8>{%0KV z{|g)Rm_pDhxSj0xzhxyC3Ih)S>E)N!eE~E0QiPtmH5EpMG#(tF{w8l9av9B~%JIp> zX1n~@y_wZ5hF2_*!^p zv*q^1(qHt;Az6lAD7ybdQQ4+mz}T85LeX?B3%NmcUsl1|8-r-*u+7Y@+2?yW4g!P7 zW@gdi^oveKx5ZWA_Yd3|57W1?nRaSO2D&a&{HwPCeGN`Mt|lC%z?H;|CtY}GJ*LAM zVxK^&*9!E9#E-yla0l{ODVO{KZ@{D~{Re9o6~eY~ngBmRLhMZ3$NKew z{dp?os;3q$!>RWZAO$E;>RFEKL6>nRQzWZO2FVH;!JEE>s%ejMg&?R5oig zNRBaHvcr8AD3vbE8t~ zx%EFtNB#T)o3p>**>m7r*U8hWMkPjv0UN!W0K`*-`_AKRCclaxusUacclwhP0?HgO zf6YCR{CY`v4(lTg&fz;bGQFu&ShWJ$${O+FP8OYlGI()XuspgDeH1Kp;Z5=-sN#o}Sr+3j|M-($beZQ~(NbKlyLg!XflqB&+=sq9DAsN;6_;3~ zXBilb4g%UX4_yClPu z(V!GOcM*j1f8G{K^Zcr09^lvc?DkJ8Um5En7D39l#rme|;oFZtMaTPWbv^tLLL5Z9 zUPATL@$t16Vj`hJw{shYQTdv$S<)~<0L+imCof91rd7@((@~9TJP_10WfY(1u>>FA}wWKuF{6FD^$kZN2$&s zd>!Yl6NEkb{UW9A+@cSatYrNxR%J$BrmH`^Kl+l*PdIgVm6H?L%Xf<72u_j-7{3S3 z7Czsi8Hev*0_0K_W}aO%7)u-lhxUF3o&tnF?xNwW0uV!DE+{&@^dl*8br!+x7Tmwt zy~djjx^*YweHiRAbVG&$@w_7|jE|8#?(NO)S4_xb(wZ-FjBNP##S#*FZEzH^r{?eS zZrPG)8QYRLKakDt=iXOWktNqvf*YUXz9fp98m&c{WUmULQ(c=FT85N$k$vF+r`879 zMs8;FcMsrfJaZX|U^)qHL~MDGE2{1_GDS<0$ixxo6_wvev{wEZYvgcak#C=8nV7!?dS)+}px96|4EClrv%n`K+opT$MW zASQqMa)>K~?HdA&sGFWQ-&pE-s=yWO1J??!NPQtI6Be>)g{xo`;+PVOlcp+HQhVc2%T zr2ZV&lQxrk5kEvj1h|F@zjLMq<-U(?Oh3-O`sUxl>2fooA}}yBR_;EL3^CtcucKJ$ zp215gYk5S;V1!x~v3t3}c%e~=5UOE*K~Q&4A;qp^Ce`h?Kkl0M!0`A3-x{`DdhVoH z*Et}L%JO1ce8#^2C3QhpR96^cTL&Dqbk{0ooO+lK9P)XFg#)mjl^#ve3_V~e+g{-_ za7SX$_eXtpU+v~5RrTm(W1B$S!Ic=9V8R0DIVU^y6&%!A|0YCNNHFg3g^&z6JM`mD zS`=Cqrz2rmomKW9&mS>E((CIblH~KBITtDDj`HEU$&}mAX2X0{behU;Q(?MgqxREx z8=$^>d%iljV{ayKSY?usiQg`Cn-O_uUIP_iFLcj%$*~Ll-J}-(HrEPG(T~BVW`x6X z+M3CJ3&w(ym#-lBaS6j&)^uT3L+(!{VP9Uz_*=o@cZ3;pHtrPVm)bH(8j|3by;{eVR7n}2ve;cjfs;l6 zH`;G>w51jG?G>iCZe9D=Qh0V!k4MXH7F2?!Wrr{?3Lwhj2P3l#)oBqXtV+q|m{jyb z|J*^q)JEjbNaXIG&o7AXH~-}Q@;3yxQipF4_a8NikU2n2Z<}ltKnYwsrPFnKq0C$@ zPzz=i^%%Y+YQ%vmpl9n_)!Ss?up=nP{l|3Rb~wB3SBDAiP}jWY?RPOCH=Z^NONCd9 z1;J%Ly@M-a1^IYPq+Rna6G6vbS0}vUyJaM~A!qTbQvMJWiGZ_^`N^1MY#OqT;C3Ea9bW2)J~|Pk0Q`Cj4X>8>y7>VdiT8h$YhI0xPZrQmmLK5~7Z+`@}si z`1Z+W1-kUJ&*D6ePW8>bAz*yb2I|Rf7Q2Lm$JXllkNe>#nmK|pjidYQhLw$;@R-n9 zWu0w0gCp&g6@3buFnBqxTZy+60?wm15SPoM^urT$Gbg3an*&cE)YH(-U;+rOIqjMg#?u|B$np>VDW zH^4+>+mckW?0$~+C~!S})kj`1V;+uJLI5J(g9e7&zGFl77w zRN)EmZ|uA1N^5{B{y{#8$&}e+1L+we+ z=CWG(YhdGk=21JoOX%MzD!YyH+rXDr%ef^Te-qD-ot9x4O~o#cdD6h7 z54k``f37HBgO1j3JnZNXWChdML!eF({T$KTX8hElvvPNqt$%_|7d4smKpJ?oMeBdy zQZnF2xdu*4SLBqR?FfZeYS1ItAJPg6;1sLn{v7w}sfnxsfT})ftZWZF7`cshzPHuY z^0(7o%K0+DrItjbb$wLfW_s(2Tt2fuOa-?6VG{neZ1Npitf{_XD(|V_2%-WW3cq~W zu7vq<4;o2TY$0KYn(}&4_4@X>F!-ik3Nvz(5bi>K`qlL3R;hC|7v%CJJc?_1l@@B% z@LLCge^rEly(H;0HQXUab{y`EDxg=7VkV^?O8&`o$##$az2(;-X=`pl3L?WkpmrJZ z?(-HeVO#U>hI!Y$@eJd97I3W*mMceRR%~F2%PhI*8@7|$cZrUzX@yHGgAxl}5_N>h zzOe%AUr8?B=2Neq%4eI5rfs~xQz{Pw@NXu&gWX3eOk=dS?93bkG*Jt3nU82OsjOQY7I`{5KD|K=#QvT^l`Vz+-mU zVYMkucNdIYZOU7Lmv2H}jZxRV-{J%bdOodQJPb_I2I$|`6ALsmLJ#&Fo;{7H!%|LH z&ut&r+{+1GJ!gJFDSqkbQu7b``^01*_p+Iw-|=X-YBMenXddNdK=>U(r>GJA6h5vB zKYtokjh4glbKcwTC=X9V)6pt8Mi=pOC?_D6Lh6KWk^;oPd=cU8P&6E(-SD&WbTjni zE^cvjza?4?6G=P2B`P9;ELhq}G{6{h$i<)2gIIJ@4TU(D%IJ>zcU|6yXAK{k{G?s; zhAb`v#GO}2gVbiT(NT%m+%=Ixipl|NVOi9PfgYMtKe9H4rOUABNJDTIdYTC0G~9b} zPhHA0&U$V{%{S*~{LWl?`f9$!ZwVE*n(2Kt5#HMM451}Lq0Bx6X*(`y!+nR>7!obG12%rx#ohuJjb1vRkoad6++THtEHTiX_ zgbyzjjzFbU+?v<}H6E(g|&Y89K1LcX;lPBJ`K_w{tY zIPKN6sEQ9;`g0AUYLo+)T-~xLvJxAs0II#s;tfR~y{-a@bXHc@!r^3d2@rHmic_o> zSE;;WA27%m)cfQz2${cS6bLx7iop$X1HU4N5EWW9bja*us`%YH~FiA*0(?OD5^kORL$jruXw10M5hZ;r%S=BLn{~we@0p)pziKr0T)iZ|O zt9pn>&n_y~*FRi|TNcfgOiw5zES9+*Q$bRVBehG*ezrE-mnGO&Z9M&3F%SB~xKAR= z{1Lj|kvvka@Y&-PrJ(mu7c@oYM9*95uFL2DwwhW4TTQ)pZZG4WyWsE~lGwse(9{2Y zs^IVtz;qbR-Zy^I76xp&q8<-R^-p3Z067(Ty@Dasc#80hRaLUddgABbcy|>%`ozHk zJ$+_+wRITm~11EScJFH9;YDA`)<11-0g_gAX}aj*h8G9rP+Kgt&k$*@BG(oTVyJ7caw9c?Ak&(Pq5YhA5E z_4JD9%W9jW>U0w<$16(PWr(Fh!U=Dm%=Ej}{e>S#e&jT(I?my0Pk2A6LGxqU7sv^N z?aXCJyM{j}{ruOSdW)|f|5)Fqw_h&y%tzX3d7P0Mve$BH^PPZAFO7N(%%ByBl!3!5 z(}>p_)mL}B>t8RJ9NUsal|(GDwl(Y3(RZXK^@!K9Lj9V?jV$)m^32~_iXO)!Ao@TL z9PeeOCajN}(vq9V_$=3gO>)L>8p>Cr*7lDF$bGLG-=iHpzjiSfkzgAQWuG}URdZU1 zF4j(&2vbh6*zwz@1RY`t?Ag)&6{dwy342;PZA}-jv0N*>)I&Fz^^unKg;kDXv!cjl zNpvszxGtls?q5GVWY%#oS;fB(Flu^^q3@%4Y$0X+yb2Sbmx)Nc(fsSNz)dky_y%In zH!`Ob8O-uqa@9HYdl2A`VxmUiU9m%)^QY>wpyT8AyG{ z$5YX?)0xy*ok8srkP$vLQ$D;hii}Rh@JAKCnr|14u*=galJQfAeTFjD$G#@5Ts5J{ z&mO%aKx0bs2{jZN>*Lkn+TkUMC&tE45CoPb<5FBmNv`#qyN)IJ_iOJVEBRO{F^ha)M=GPbKT=0dM$-<^x5U%wGA;rz zpm2AhUik&usAN1j%7z62L@RacJOZgJnECJ$6Suu@L7(dDNQoA;OgVgH8i3j{KRb#{ zSM@bt=UFycm(NFDZ5Z0des`6F8cF$GJT>Y^gq90FZX`dj;uAn3D(<+n^2ykj&f{JM zD{YUiTwG2nEy!IN{U`K1gQ2>-Vx^b7Rt@8VT95=`sSb<%C2eKNYtPpuHsXVZO zkL-FTYoPyXhaOuXY)kut5avpaEo48W?b~kaOWkrQlnlS5Z5;)CzLym*U{j8{%goYJ zl44{&HH1K8`XD6H7|Yk2Y`%K;H-$7ijESC-W9L$y&rOQvC-m)Y7;HX9Sj(+B#7(;0 zZ`&18+PD}nrlsZX@@AiZAS0ThGNVK8?91WJ9@gd}_?%l~v-HuT%wS9Y5egK{Xl=ra zmwQBpB%T2Dagi^2JRJ=nJwk>pmDe!Jv`<&NlZ#Rj_ALEk{@f-!q;7XjCEW5t5D?+x z*$;YqF`%$SNsjFJ2_t?m{dc6oL%~kGWWTG|SzqPk4bRE}cH>U?gTuTwG(BnEL)n?t z7n>`K*8Q=MbAzUlDo)s&(t6Cd@#tW|647!D>aezgUZ`ur+~o#GhE;0YXi`hl zOH>^c-^~nrRUJKC(Wdqec^GZ@qcl~?D^8ohfg561&SB#637pVIoJ!JKZik!s1qdPj zY^R4&(fIz0D&PFIduxEkV>;(O_1UPNRlGk zq%FGY&hcG4PYksk49f92@_ub1YBja+(Q7S05p7k7@3*9>es3g($6~(Z+be@7q}+~LhCTOnAMx@t<@v}Y z{7B>+t}IH+j$ehj*eUt6nSQuP2N|h{oY;ll*NsAZN8^K3achNCc{cecAtmp5YO z*@r@JRxd6v+|K5HdUtN_Z+HD$yKF&aObEon_;vJWXOPdjmx1tR z0)TO`)N^2v!hDDIhZJz+43%!nF1{VFk?rmi>b-6VEgm%{g?uZRtvjy65Xc;0><0l!~$hN78`t`tqcG+8|rV zO7%MiLHC0QC5XlzSs`L))s5UN=gM@D6gXg#oqD^UwELwqS523~Qydw*zCgL#a#DJ5 zR*A=2-8c`p%860aD;qWoRoE>WE=ljhRQ_lQ>>$?P`uyR!<5m!7gh%Y{uv28vJA6Kj$l+eU4Mb|BJb5rs@5uNU z>9ji#L6l+=ZtpTMJY0K83V}=&k2M4jBL=E%ueAl&ufk|?PwV=xIumc*RwSU?V_sAK zjm^vFG?zoR>v@_;osEScQ}IX*0&l_lIDNO*fBBmegZ<4feOp~w_yI@A0xJgs$y*m6 z0}9ubL!ySZQWnyGu{TtSB$WiW7BEYhl#tv>*@emI)@vHxthpYGn;%PtkI=-)S{`iaUr#CJ5T7<2m)VEF<+;o#8BW;~); zqd!^X+;Mb%sdPO{RNi+h@v{g>mFq2uR3u z<$Sn~JfoXm-;`W@J%Xk##PYqZ=&NK^g4(Imi%cljje0GQ$4So%nLI|zzSJ2AgplOB zJ+<4loFB9v^UjO{h<;9=@Bo3jp`|$M!0|gy7(p6iJ6mxkX~K$e$9aZ#UI@;v{b_RX z$i%qn8^@tJai&2}_2b!G&L{OHyU~y{oOcrk=k=3B;D-O_0%YXulP%Ru7kW6A>DE~H zqICF|E9a^^JWGXk3){zp8_jGzzMK?Sewc!#6t2tkTin>^M^_teXyN$GlQZ(^}W^L)F+x(SsLeLOPJ-RYG z|F2A((~QPMBH=!dW13jPOYuB;6j)-(_&klS*CeGQk>2GT(4Iqyiywx2=4}vsI1T4m zvBl+UfB31QjEex)W7)`U6UEQlYdNTeoLLdU{w2_QBfH{9!>^rF(b?W&6Epq_$XJgA zw&xmU#B&e1#ZSHhCgwP~M;6*(RfZ0n8QEQY4U%gvC$@yPJxYN4zxSbDZVn48pb2Si zXBn3AuQ0^jm0wENxMt|iY-czlA-V;2$y1HWypiAKS=HoyqFD9F6{ii1OU1FW3^uY2 zFnQG;Cmp}(2Xtb}%i` z!tMg+AE7HKxib=ILNDXp45ttrA!BW#K*ss1M(R~qebySwHxZxSR@SkkpfO?oLL~?n zk=31NV$?m5$@%8Qo#@9)Z|AV?=P}SqKJyx!iSpQLF#b0ik49-N!3fXDBuZA}suliJKHwFBb#Gk&kjgwG>^u!z{Y_Oat0NwbeJ$M?vjSe={k+HYHu zh54RoO@KJ$8XK?c=qR>}BXN45@y*w%C*r^Z?xa)QTfWEnjTCbV!wlwiAL2&_8U%5F z;(_ON#O{s%h!@bu({eSkrWjB1UF&qX15ZY;?0bb);pdZyF!V@E=1!!A#?Qx_Hu<6H z>)o!6SP_@8W#M^iqXHO65}oYnRP%v||kN;#nG#Iry{AJ$Smu z&{EID>=4acnKpm8&PxEd3z_HCKMEFLm?7^jU6E)bLL^p`yLuVOF1MjM7wPNf( zna@4HR6(0(`>d`MA7%J%N}v}6hf3@7Cc5hJ(?so`zoz3MV^n!=$;K*WAfQb@5CPZd zJD;8B==InU2bI3u1ojtz@o@-FVI`sUrSUBTD8hlJ9ri*dFZiRy z0r3h4`@nIVGB>qq^zwQQ_fQ;7w8??ITCVaB<>Cd*J69>cQbbaU8>FPYQ^oi3I1#O=doFJ{gMxH=+Pv9>fX^+J2_{Hi1(dz79QRD9klK(g7ro! zel|=i52`XN+P-hnr1l|XkHcWZ>6oACroP+=PJ6-9SERSh*pv7i&#Zl-YRp+2*pv5+ z7QNBQcYZQ?RFLf%U2lQhw3(@X(wX7$l8qTuCeEznO5qu^wn7hSZvnk|t;rDv5%jwr zQq?FZ?A0}>g=luCJsGV<6uKxN`)M`Es&+eE^%^Av^JRyba*&|R1fHznsmb@+`8lA0 zrmzN)o30VZN`uHCuXe3^#_*N>*iw&MzOoJut9jQTKUpB1oeyR@WhuKgfM)S;Q*$9F z|98iO55-ATKRi**dalpihKaECM0;B_vED}fwpubZdiw_#@NUnwoKDj<>pRg7m(vGXnSCSru@n;aj&u)A?8hmxIH6zk6F{&q8C?dH%3$7OubZ z)bly*{^Qa4TWwq*lt-HbGe@OF7f!`dTafb%t$Ze`3Sn9GjbP)AIWtW@_1|&N|F!_? zz?M5EML0i{Bj*1SKpjNeJ`z!vJ^!95kLC{|>ehR~pp34Oyz=loy5sJCrYOCiI$}|F z;7H(;8AAhC?iNcDi&#(CA~ciey@c8Bz&U%b|H|2;{;DKu9Li4!pN!5OIG+QuX;R(F z=l=z2WMUcNg~04>|(PUDwB`bx(6R_p+8Pe;tKRK?V$BXnv>ru{fMCew2w(Zz46 zb%xfEtsrYlJHX3>-CvTK?rVEh&qQ*E!^{npGV^P?t70vtQ$t@u7Sn7lNB;38->Az( zKvjCp+c^^Dt(oUnN=p_6BewW_=1{7h2g4l83`koP!(%*AU8F9lGArrN^7#)Oz~9KR z8XCo=Eft+jR<7zt@8=eGez=$6AvM({<5G|=wHNF_`tB=$&3ci(#350!2 z!#8MS45e{7wR>uO`LG{OQpDL$lRZLdrxXl_C)!E;`bg64A5BGS54s0Rb~WI-^V^mx z1(21V{Q;eoF~av)tR^ilbH;$^b|;i~vh+XbCLYZKgL27X2a)>zSp2Lw8P7<8S8#cJ zsy8VUf>dQwNX*iAEPj5yEEt#-&n(2nH~+o3>WMkKY_UE%YV~fbMdit#ByWIKCs?+Q zvr}Q*LHcSn#Ge=5672urKS#1?dMysSgTo{#B_j_h8>v}6--}Ga&{{Y0p$0PhQc--K zR~QjfakcQc0l2XMskqj^+lbv_%fIjp^XuoI?enPP1Zg9;BnTQHXKS?_b+}Ug`tkZ> zCz;wFy!m;S?LgxreE$u!sP<=eU;0zHi@9tfUzJm8v!ArH0XA^pUA7w-`KS>*?8ztJ zD6?{wGR`^;uaN}$JO9F-o#Y)IvAPt!sR*Pu!NI>+rE`UCrv~{XMc?44bcoR7iXXgwvu5A-A=(>8*k}~L_GnwjVt4|nrSZP%8 zo5kcmihggJ7N6~0Qjg4plY%aai70{7$_oCFq2PB%bEc>)%m<_HDYwuEJ5nz295{Y> z>fDP5Gx+%zk^qildYG--el^7`5P6ok<@bhTNEzCj`V94CWqv^8(v``&g6HSjvZRl; z^jC=~{F(#Jr>=;&@iG)7Q47PBT7mZ{ELpHH@N>G7LoX6>_ZT*QF`kxj$%ls9n&a(Q z#XQmAB_TYcHm;fPf4r?0y{cB~+gE;XHNqy@a{RZ{I%M8&kyALTi``Gq5+GyuNW`+P z_Jk>aB6)e$z6C1H0#_E8Gd7-ZHDE(WsZmcMclkFbTp?fp#v=RD=m=K7sGh2v>|*tM z6K-7i0|d#=)JFU3Kx*OG6&{CW^*nt>WzI5KT+)sSYVs46j^MCzfX4$KwH04eb+{5lU=LPuJm|?!l zoybZBGjHA;OFZSC254*wTZbKM=6kNF-{i7{gNJ(NX{x&$!jX?^hUb$Wgju5X?i= zFyk6H5n_60ktkY_UBTzStG(1_uZ&f08%0(3lt}u8YIo7DOR`$q$F9iT>dSRuWTCb2 zz&Y~mxj2rc#ma;zh2_b;=P(}&v@-Xpj2Wr*1#1y>k+!Im2c1fBf9KtP_QIPp#|HNlWweJD5FFz^eS z+PTbQq859x7Bg9tOH`*(f&T+(1-e2~KA(r_%tnqvi(HZtZZRx~51NRHG~2b-FL&?< z*uKH6IRp=ETiMqQXxUhSz0>Teau;7<_eZ;BMnWM58i(^5g~XP1{JokINDT11X2x-2xo&XoDD z%n?f^GiaS|RrbD17|Qz1NgTzmx;C0_@lR?wb2=<)W>d&w<|Gs4xqm5_dQIIrnkwgr z(3<~nHqBl%y=7{)dDoMBe;?~TargMRtPdW4DAE&~?zd6>8-Ug&gtRB0g`&k?$XjVY6a&#QRVGv zZODNp_FOQm3i#BbGqw{f!yYVMnc+qIggv_jFVM|L)V0u98^SjgDHd6X8s)8>o#c9k zuXXCXStWIqlpN_hR>sP6x$?kTvnOO->Q zfbFY$4S@a(l z06JZ1A&!_wu3EORB{!?s(`#cZ^f5(e$Ki$ zV~i@SdATTt|68-A(`$6v9QUwofL2JJXjYBcD=yR#I!>|`u-ay0Y{F4v=uYJqb26gd z@SUi|qc$MZIt$gkpgSP45kpJ-WxOok+Z@6OMpiMbf94Bw3Xqx0vmrv_bf1%ny_Rs6 za_N@@eqiavO8PZVC|TYEGcER5&0n%(TI%|ZpB2G0WMwsBJU&aiNf^pp(Srr z6^=HOTuVKFx2u`rgkHRS+uuA*V(#?GQsGLf-?>R|P6@BV_L@4YS*ky60VG~?e0#d6 zHXt|V)98R%k9l$r8TKLt7JQBa^r(O;Oa9cF3-Bl zoY;AT{11)V)ofN!c?zs+?bPpEJa5rz$w?tk1339fQS-&D5_uiGBr>*5W&}}MXWn6I#AU4%Z>=wb#7`W9uQeYQkbsi$(+9ER~|~8oC}AI9LCV+5)ea# z8YQ>5FQX{~jmsG%Cgm`X+xIw^=H@g;biEx5?Z^zTL`aA!Uamvu@y%zg2<4F;Vb{fs z-?jz+IHm*M$$f4jOv{)E$|FQX5MEmh~$qs*{U6V@2lHU9ej=j zBZ}Mmjwp%H^kwC2xXO8>@~>mma@~zf89nYJH|CaST4M~?sdJfn-v>*#-scS-DcXr` z0S(nS)UlZ1?$SoYUDbLN-;V0;*z_L>Q_0yF-Kp-p+hT^e47*fPb!|$S2@2{=T5OhOxWlQTCs`_dQqK-qlCX% zQ6Wd&bv{lizNvup@rrI}KRTU$<0usHy9xCO=C70t5W(oN>o}qXlc`tmrYy2qeoCx7 zvfeR;ryIMs%RhqWIn-7`rqP2Ms$=vCNM=4=SHhR|>A;VFUN#p$18gb&L9eV;GVUhz zxF1`RbiL~M%cXzbQPSfEHO)0;alkDgol7rxfC8n$e))IBj-b5IR2anHgsJSOK(&{K zzpy*ja&kNeHAKZ^l5UD^t6wtuz@le?q%Gc<6y zP{L@rYrdU}^0P1BEquc-ex)5u{hHFuR*Cy8GKQ$!`y7XeJ?Y~83ICkecNn# z_;>#3|AveH2eb75_|K~gM#_Wuzmr?9_l4{BwL_?mW6{y$MroVy868SU|7{HA?asx_ zUWqfrSD|YkdkN{q1IlXsy!ehZuZEZ8xX<{A!P@eMyt@wj!aVXUwKGuuZ6%byDJ|Nq zsIq&4FkHeggIzI+_VN6e$LN15$>Wh%&lRR{1yEc|4(!Le71qfrW)NSCfx9LxTVW)) z*R~RErrwe+1D7TI8EVh}Weeq%j*fr$;u>)~X$_yiQg3VOa(9k6BU|>VG4b2GJWY>L z)e490?K%YK5RWd`YkRzx0m1D--RDma6bJu>qDU8pmUR<+I}@6m;0xEgew%!_3VNWM z0k<4SYE{4oPf9~y5z=p`HNg$oY9Y3s#Vs;+lhJ(iO3vE##;O19HRc?gS5w^|MtszF1c-bJXtcNIn$34`v3XS)Df|*9* zI)ww@hwS7wX5X#S+V$v1ypvvAPf`*7=N2UY!=sj&i#TRFBWk2AJB)OxVnt)Lu~;>O zOga6+(Xb&7x@AOR`{*P&mhKHU;`~Vg3{0FbbhEc+&m_nVO%EK~!!V5+8ZyS)D8!c1dG{L=TT#OK=OhE5 zh=v708){7X3#r;?>x-q`kDh>jt?>v{(la^w=&}v1i8jWAd4v{4Ps`VjCFa`>GvL@_ zyuwp>+1?mJySWx{J10cdODVk zYP1#hjlrC_7Fcr_+?d}Qm=Z0pApQtXz|@p&t#FQ#jJwls1^UHg{jNQ?sKvyZ%}NHN zLM*5UXMeeWh<-JT&n;PmdA-|2EllSe&}A|8^5#K}m_~&*QBG5=Rx#5JN{1xA>IDm_ zoky~^b)l3G;QlNO?b7+PsI|J!zxWZ89^}H4Ii;Rf9IQ`P3uJ0g;J6jIn|cs30tR5$zC-9M=LBh zz`UpP?(6(FcSSi?hvu6xJL?SygJ*{H)8nI@RTF)}bQRG@SnGr7jSb}X;#yvc8p)iG zBWi9hwHct_wI=4`W6$RLvi8ka##*?sxpj2W#_ezc7c_Z$tJ=oGF=~%2b`YmDy=8U1 z-V0dX8W(RBqYzOgVWrQ5Y$7{?S$ORs37x41V+RMjVHAshU;Sp`J2f#pL>j{VzOcW{ z>po-H4$x_`3!9uu24CXrVf0f$090MuoL!SEIbePymyk$j!a>z@Ba<*VOad;~Hif%u ziJeo_Va<|)=JDGp;xz1ck2VtV0+N~xMa?#G@y=_FW>*bl;i(xe1QfFr2n=|_&hp%P z#9Xx9Gyizs769b_S++T17=N*{`a|^oovyKnc( z4CHt7?QP>Q`^T3DA{#sO{de>xu73}7MZY-R@gRgt`f{o@yUsm+5nx<-43~Fj2TwcU z6Lll9b-8?9yP7*M3dFvG)XNq?A~}d+=VZ|vPQ6OL>PKc_cr|&M7DSVR#bl(I}pGUW9eMd2VoCVaz#o$F$y z`hADC&z=2=R<(ODMjGZEY5mj7rL8101b)(2WeQf;!fbdWVyy)#=~vV_*cz{jZqlYm zrHjdCpK3F!V<#a3CJPy|wg4hJO($GSf8NU4}WC0VEFM@t~p$fVf0pLrk#H zYV)};w59GZ=&mKxD(9VguQ|M&1s|zr{i*Y45{m*Wz~>ZC&ff?pWRl{{IU7oFrZPUI z`{AQ?LEAo=0-bjhEAQGl?-Y&j!e59Alv{1+&E*D4pb6E&-8w_P|Lly{Wwi(%c(%mF zjtYFI(xH1|b%CZn886S^)W*TNfUlstK@@r z^Pf`k9jE*LLp^I(J7*uN{%eA4H!t1Sx@tVEgEHA7nK4*#*2mHI+9H~2W;DLFql^El z>7h_EeTsE_(OqfYI8)|zMTIp=EnvQ{o= zj7MzC!oO(c5<%)Zx!ZsEm6b~`lg7i%UwCTk8@BBIs~eA0ug##doO0qq2bFGT|1|B3 zSLXXE_dLC2g(sIyA;mi-a0$lIYhnf^{xtD+SpwNzQsXECn zDJ=X-c>Tb9oasBwqU%r>#0xZZ$gxLAX55XQlpl&hs+;p(!e1=n6{7T&?X-{c_uoeCCy{oM=D}@w>xgERk5^!kj7HUS4ka8`qkH~f`Y=&!h?KV%FvKs zbb~K(<0*Fqji+XsPO5aoorR00Ev4Vd=TvGHMu{?-T|paW%f3-jpWNhek(rjotH3sd z4Be)u*Qw<&buPB#BdR8)zk<&}F(Fi^bDVLRCD1st;F??gGoKZb-$P-{x#d&@v|+K} z0!T)D)6*o2ghj!!e|B?0B>r7Z{RnX4!!M;(6ZJYr6~^~Kn*njMxs(P_2F599KC39S zp5#Z3(A9u8kjYt>^-D;XXw7hh=a29WG8H64Ev+sAOJ@AEIM?pxErea75AkCm>_U44 zO=7p_8(-%M95Dt}i zjckbJP3dm3UB@mn4})tK+Jc_o9lmxWf;ft2u&O*2Se10ogV-6vW##s8em0mckxAKR zfA2pM)$OLI?_!-vqQ+837Cv*I4SsCdi_iz-&%D1#=&R%SbGA7z)-x^Hp9Y2Kdxj$K zgq-({bqi85))>wqK-u+w^y3e==?DF5%@v+4eGjV$TS(-A$*~bGt_LF$CS1ht9X+_@ z+2Cd_c#Ajg(2 zb6Z=U0~{tviU+-9a#SZ>ldW-|ugsQQ+%W&78%&GWzDDI(9)?;~$7#Zjd@B^)RC@no zg*--+2_dZ8#4j$j?>a= zk<+XF-DhmK^coE{G3YR}B^upx#;2}h%~~Rbspv6$-lYiay#TJsx!6$7(LVh^2(*H) z7WTLMX2Shb6GecS2#9F7Hd5%E#~7i*hCTS+9rn+;P&Q_-21nw3NnNjuK&bKk@I;?A zQE>j`@hdzMOIsxcH1Rwd!spZ^|I0}0(yrnf zKnyvnBt{c{L?$;D?BKt!Jgr%0G%8uAo8M`Kg^-LX&_R!JL>%;Y7Z1lWGww#+tK_t;HyM&TV_$Z!^x@^Jh(R%fE#Ll zT!b2EiRRLrcz)}}+|kOsuHL4NV3V~tsp9_pI&!!))tX!r%1IsJJbOR2b*4Ms{Gcpq zs**K-Z_y%YE2vK2$4k0}_f9Ci+P-yApn^@crr>l`T-3nAda}*70nGWtQBtHz_nJm|@ zHd9Og+~boN0x0}T92nfderIERl%KreFN7vA;+EY;;B_!trXX;H6c_(EdWO9au>Z}p zn8N~=Ow657dBbzU*S*mXwy+~haNrEwm>7!WO1a#GAWA^iU3R=s6?9vq zF6>2ZR+FCXzi%)Xup90iLvOnHjMUwZ-PmU00B%DeDCgkK(*mA4>gsPu({*7{+z0UM z`L6YkGXFFbI3*FP1xSl&_-8r4&VXvd_p;*p6B-Nn0pr$+_2!~c9{rS zjL+=FWfW+z`OD=BU5Gg7UMfl|)Feb~7XcbF9G+zlaRCY}U&b0d!u%IH@p!Oo{a_D1 z-C2z+w(**g3)s^CmO(+ITC+I%HL{VXH8Zyq8Go~PNY0w~_i-5xX37Jua=Oym-lofV z{dAbi{)OAdz}p~HXI6}4*+9t!N9+H={n8D3f~6qigMF+l;e`<~D*K{5^xt1@f$U z%og>4`$`tyXOe6Nitp_8za^9gx7p!3rxw{7pImkHPmMe_RKqti>JI6~xCCa7D23GK zw@WOOL$HEX!AI||Pm#(ZQw$>)3T3OeIgFd z_A-yM5;G1YZ)KazLx0xx$crOF|BTuV6rA*E#_4^d$)8?k2s2YyOz3p(;UHUsA*rrA*+FL>tp(pviA!VSSqibKpugQc zdJfrG;{XZJXK@1GkIV9q5k7cGd_X)>@ms~VVT#|qNZ?B5>r+O5>{j#}i3SuvZq_-5 zp9khe?UF%OlA*l){uZ^qa;ZbQn#+5hSYyXokEU zMycr4PpwuoP^hNJTA@}Q>Bv>cv<>&rt1P;pW^Z;_acA@f-MersO+Zd zpU=$hMkp7YMOahs)%x$fzY2ioO*T1=%DDTY;rc+zkM4ITzAa!& zcplD^whz9BA=+g1o>e?n(Wc|`(@#2j<6O@!IWJCVMb~!XWY`XGE^G^)k-oC$9Fd2b zp(o5&+c*5WqHIAmPmPiWU4wlhDOftSm4lZ$@^RaSaA6>Hqfh!vTO-xfh}rLUGh(y1 zyura_z|5+J?mHAq-h|dc-hVTe5ySl46&V$8hI@%Fs;yHa4f5+;$LhhXZO_AjQmr9} zvQzcb?_+Ra#y=fOdq(ft2=*sS<-RRY#!=%}omSpADt2)-JnhbJc4(Qf481OXs6L-R zL44`;9RMtk&P~|#{Jl$V$xWU3itdh=xnHYpjaFUBsbE%aQ2T?`_DFL7g3@`0iWQ#O zB4O>3D{WX&DEUORtWk$%JI8UvsKzJqr{7%p*NEyD0+8a7d+&TomGWgCw~pyV$BmR2 z#7Puo3?fhDS6(H315@2lfMmfjJz$IR+RNnZ$#-)^SDAS`GW8BYum*Mv1fJkZO`96H^K*T7m^e^iRW zCt$_Gn5n+lGjGN0+Efd-c}Lx&z<%ll6RUvTAuL(MznL*&xzLl_MCf<94GveU&+n1CFvAK zHdn3JWPKe5K(g@A3h@H<%0b`5Kw1&c70$j4y8r+oACpDqYX<$nDg4|TpZ(Rt4;P?v zGw@20l?dyhiDm8k?E7dRN1AU!r3}$h*{QwJGi{vLd)67p-CWD`2_)k>CtcxGdj7G(A-&5Q_*yVP z1f+|ZmQu;h{7vSSx)c!CzO-T0I}m_hIz*BE%*CmJSwBO1Lqq8{@>_AmnLlIW!4Ddf z_IGo-ieK!BAmb4}PeH!CWBW|rzmW*{HQt~}_vH2iKe#En06GjKYW0efjcDE8>MHpx z^T|pG9VKlxK^5PTw>!IZ$;#j=Kg9>vi&_2Jv&p%2Is2lJoAoP7jJlx*_XI7mj(8dY zt@(CFaLwX!))Yko3r02a+*hCqY|16yh8}3+6_b3tQR5wUSVCV5OglU$Q&xKl-8g5{ zzF|bi!eE2D;!RY+al-7K81+gv2K^blWGZm}0QbONz5EFAfYG!E?1+2Ze}9pfyPT}q zFcp9WDP1x7=5rE{Eg7T`#CoKI27!O_z#68i7g`D&B!T437Yz|QG+@RYWaWdm)jDr$ zSq)WpQ#86|U-vI|WKsGB6QLvh9O&o8d)hd}x#Q?+VcY!bAZB`H)F4}H1q(AoUUFey zZ}!^nS89?bPJkYQKsM(tJS`!WQQo_5%Qv%zMOqFG`;Y%~S>=NHSa+tz2H8+CWB>lx z!-+@o)%&MV);_k|&=Qs--5_2)+*m2ZM|iz1!A9SY$RG|25q}Uh)*Wi*4M{ zY7YKalhKu-R+dBNJnpyQHB^MT{nZoq%b4e%r{;zi_=ma8Cu(hSg);I9HX@%%r zV^rwVvF@P1I^oC4DAcs1T0|o{JWlcTG zhTIX+5itbZ;}DY^4l^zPZ5D9wb@A>pp!WJ`jY=3&egd&= zbE#q0g!f^W$wR`@jv)_1&&~eq!;KXNJ9#Mfv;N6e z`wqz0kTrHfZKfTFzVib=V?X*|bV(0;2Qgv8S&0PP0%22gieQgdW`$mz9U>d0<0|;D};R3JWG@T*$iW5kijL z9iOnl6c5mlDomf0S3~s8Gm7I4^;n~^$V(FP_(=H4V6(dKq>3~8&TbnFf);-yCU(0f zu{}s%OdP&`uzc=HSP(){=F%h5;O58JNr^FqivRfnpsv4DYwV=k#M&I97aIM}yj|;z zap?!(TV;8DK2tk>J|%Aj^&hU6-#-5|8X)=f8RSgCrbAjI!sM)%zAR2dZG8PWNUwj) z!*)dN3CE^}Or*y~h!|}uQ<hPGjJK5M$=Sr_&nWa{LBP?5=k&eDUZ%5)?+uxyRTi zBiTF`k+D4O$BhuU0}`G@x04^<%2_&fvyI zZsGhoXC`;?DFi!wRW0QF4lDgnSg(OQxLP^2(ijc$_h^v7TFPqO6;b2ay~Uni!ul=? zfhldjQO)o5ZtGNjd+*uZ8~OHF=M-AaSpd2bdXpuuiqCZ-sHgFin*+3yVgQdK*{iW- zNR-)6(*_58)k1ayQ!h0IXawaubfq_R$koj*>BZV4QSF4Is4^so?9EbtvRmK_n~Rv; z-LKxtv@H;A7myp>X>xyBd<`ao1t>gT7ZZ;OUk@A!#*{B3$+n&U+lL4!*Igf2*6E@I zvrOOH?!Spr#X4qnKStVd^l;A65k1GP&ev`V)t6elZmqlz3W=*!vx^79*0nvgJEp!N zAjN!H0L_12sM;1!Ws^vpMn2WnDUC?InZ>ijCBgsi)Z9?YAVCMDO}%G+mlZdyEZ96> z!pC{tEsqP7a&sf%x4?BC;3YG*tdP3A%Nst z_fIm&hbhj$F}cKbkwzvKjMM*GYS%)FTd)cPiOu0$T+aE6@JDx^H_>p^RbnU}QPpup ze^%uKOi4VDNJl)<>?qrx{)Wla%*^=?GC0{>{XQ+-$9Y}b$x7VCFvrOAL4`1ReF&=V zJt`lxM4ua6PtoW2D<*jjYCxVMqJ=faeEx6MTLSM=z5F9;+cAT?#HD^I{06g}eY9jBuz?Dn zmr+A#PuMzA(p9d9_Asg(r0wM`-XYL%CCro2p?X?Fg#7NY6tuMUjQ)cBSEtayZ#^{i z0j(2tS>JIZFG3NfdU9TGwa+1Jo7uEPFyyvzf9!@q)cdaHxSOjHnA0SxtCBu{pE+7$ zwJbpWam9Hu?)_+9hFtI8an)A8F@OtbCCH%SK7~V7d7p}7$kR4Sj~Rw6V*4`X4v?u< zbfuz6ThQXNCZvZ-`QD8!A6O}TgdgP5cMm-^X{hzw7<#__5W}=l9&^*Og`$JX`2D<-T3n-eTDaO1d~ zL1zA4@lA8t%&i%Z>4B;4U?gS<8Gpi(lnyn*?RonnJhu|>z9b%b7*Jv1R2$ZO!otoM zeGOXKLXo0cI+{?W=g$-T)-+U)puFspd7UNSKyRx@VH8ACfV(1Zz5!{l-fP$gZ^i`D zboHLYGra*WXDWu})50!ic=J96s`tkb++CgbjH^IihJy5WuVGd4C^BK*C9_FB4b|4N zyY_GQMQ<|C_u4xZb@EwXbI67dG|kp$&`NIUn;Po%+rho&J_49dzIvV3+mPM03VQxD%F*A z&&h#b%-xow>tTkFmtF8>Qq#|+=JC4LUvZQLyCgz@w>vfvKE2PjjRJH#LP(pPt>dHe zj(7}LNStQ29(t!r+F&gD34VdfQ5J5xCKmt(7bj(viX`9vBq=3fbjWSpdk=8rYsVfl z`Tu6V@bvPx*@}M+>xYuLjh+R+l2S5Bl168lsM2EtLc{;{PVB9DZk}l@;6fqG9opwN`nYh0}8w4JPWvOyOIC?ENl8~cFY^0Q-y)ur`wD1y9Lhug>kBYj7Z^r*|RHG1vvwH zKiy6yEk4ka;Ii2B&^fH}dowo%^QU9kJPm;N<^M%eb~jCFowTRP>7=@Yr||CUZj}l5 z5_A`s0xo5gSRt`RXw^=3inqc7w`DJ%$2G5i6jYXF^2>hzv{k|3$0h%DHtm_*-qnon zizX(lUNJ^}>9gcN6$LriDt8f$JBMDRz>_LmTk*ZPLU~zDfB+|nE+R2(<`!2$5%QXi zMw&74L&aytUnOo2L>Nrx!-)-<$1jhXGOyKzXvypr+)IUcoJP%r`wmSr^wbciA

Jr4y5R%VpAK^Qf^j7_I^|eD=N^OdR1BP;_O-=l;n)hX(1g|b zRo1!&&;{@lb8GFF^i1@mq2|V8)dR%|V3az84X#YC|AAvtyO7^&-hv1iy%QfRg+Ob{ zr$kKnntmYtJLo01!7TGz5JJNs`TZa)o+)uS-g}Y!2lax|&b&rF*7yfi_lH_DVuG0C zLrHSijus6v?Ry~Vp5?_ilxFsh>5R|01kMyb55V&4Po%6Zrip|fQ-WG9u<|`IIACTX zpYRyg*w6^Bo)e!j9`AdoYxbZ^&hG;#*lx#ngHln z`ZqB^NKhU4eUeHk4@8CL3 zT_LBcs5*(iF?iTOAne=$aW^hKC~p1n&DzO4xRa1IJ1#}%z$|3Cm%eyXQx;a|vwud; z$z(;A3QX>2=pbnxkj7f#CM%@bupF;NJ?SSB2PEvD2+NGL-SJ42{jqmwdOvpX6rjYv zS>}F?lE5=sKbo^ZX>Td8%1Z`z@?vt!i+I}U$j0jD?Pp88sUWJ!G&*k0jG_|^t>;&* z?l^C;?@7FRr|5&uOoG<-W=N%&8+5{&<#<&?t}%#cN2j9-_)0iXxQ}Gl(hu{DJGQS` zVnDy|XmZLw2w{!il+0N=nT4@=;SF*YT6QoTVJEja!~IKtXaV#!A*%`yW#?SsQJuP3 zg212EhoH#)Kej0<8STcN1OTvAT~HnI4{nVtD|$GJ>fjlt?&A1H;!D?P;Nf_RDgh-mFeJ-xK`^Q$amp-1bOVO*D(>>TBEdD_xK8s)ONl2r*Ou#_lqV} zP~utxdjGAti8?ajE2g%*4ji?2`c))7%yw1!e{M^ss^E75C@`?i4Xq zzqjqOXy#qw@32zOI#H{_r*Dhy;`V%o+xM<2DE?>6uUzS(|7?RxH_`+!x6?kYc&U_L zn+kmT6CVE2!L!vTLh2$4JANOwO9JB@eQ`J6HSSCz^u=oGo8JzRe(Ir?J3ZVxdYv~2 zZYR(Z_=!B1%YZ$IKl7ajqW7=HjUTnG!F<)~bAdewF`r}D*YhtgR0ukUg>>8){t4b!Q8WLVH# z#_E2$0=dSGraR^KEv@Tjv10VqyY_L(xL^j|$y!<(a@WwJ%z!jE(2LSlp4g4PmYtq# z@xK5`3p8(z^|}lj5&=UFkeusP)ECdQCAUe@|1J*yzm7rhYz`cLq?G+{%5_h-sgrLS z+op3@y*+#C0xz4x1inB27bDf)3)FaAK>?dO^6E)0iL$=ne6IFleEN-9Q~#(C0Ks|w zuaV_bsOedaEVd$c4?o#YezWeR+Q+$TdQ%Zhcx%VY|8E#6G|Gw9qxb8lRiT@u#kjiz zeuLg4EDBZf0`yb>@(>Zs&574Zji-Z#I=RJ9>3<%RM;{wWS}9Ih=NJj(;M_g3 zB_@nbV~}F-Z3-Q|R$3LDmkyAFK!Q>U@$~SJ;NufPQ~NCb-XurOO6Y%Tq&DWK7y}QY zPR*9%Andjm-(M|PR?h#7W85d|+4%C{Tn3i)Mx;-&Z!Nhc;zrQN6X1NEg&h@{pk%o}qz8#rV&CX1tZ9ss8>?Q8;)sZC1p$MW=1#)?27{WTHbD3s{kkSg>yRuG`eh zs?#!lrp5TX{Qbtg^d}OUhxi$J@Y1Vpqtn!*HYfCBg~WNC>{rrVjPdD$)8HE!MG`7w zw@hoi1lp@~C*7YCe!zwTb6<*t{B~RO_vu2tc{3p=e#xEh1YOQC$8_+U?#$3~BQ3qE z{nPJTZ9Bbqezdl%9XkvXbCl8-8_JUjo`6gSLZpLR(fV_f<#ujm%%P zZbLwm(0_lKB3sXUgr%Ig&0OGbtPhkG3ggZnUG1n6e3Z%uhf77kimh5RduFVHYeP8g zR-aZkB0Q>$KPIq=gp9P~Mk=O!_?>$2we!Uj(tHCdxcC;fnar%Ur(O?HP#SemoG><@ z5-PWXFdL{^PN*yhYiJavQps$^{Y;k5P0Td+Bap;lXJA}V#NQsT%Ve8Gx_HV-snMBV zc+rQ}16)@GJv`m`J)PRe?%V{SZoh+G*jQ_aX%K?ksSB%AT=m%7N%WlrywY18=^S61--)8%fC%U znuWVr6`r8O(W!P6pIfmDE9MgXGdMhx;W370Ln=-HYO;N23bksy(_BLj1Er+q6^XP7 zT_kTzpJdVlI_e)Hf`ZGe&jbjy=-cGZ^!VPcUik{IgU)96(*y?8dsu}d(K6UK&+ml zlc#Bj;J!|&0AjfK4La}#;;wVsTN)HUf2yGDWWNM!Ma(o@D?V3T=u>Y_+aBX9H=db7W&6I=|w##s>il%HZe_KU_EwplQHs|t-k$Aqy5^|X7Fs6A_q{1%Eb}) z=b-g-D(+(NVc2M0m6Z6IeUM%PIFaZ#-uam9@<<$_mljFf2C225Tl)KpNaW^@C~E?d z5IdXsS+mnBHF)()BHenQCfjK$cgTK%lK!lULv5RB1WCpv%S61ATk5kB38y;2QH`Iv z@pD!^Kb-c#bbE_huJC?LE8wnJOJ8g-uGvH^pfx$CTxPoiY>l-W%ZLM_CAmBuKYqg^ zQtP;DpTlRb%~llo^K~&%0`vT(Kd;SaqISXe*|0)4*f}kwZ5~a)-sUTc75ACK(l_Dr z?5}RRhwRQGM1pd*5ARd}JZ+*QD13Q>{Pg2U1ChbqU=z{Tn`9w*XMBYrv0;$@(1rZI z*6=g4^#B_I)&<*wm5*pe-$y&dUeb42^`8}~0a&wD&gTUew(|qn&Ym`PoYN~U~NWU@2b&|MNC(Jc;)9(4MwsB`TfXG zw>Pfq^xa@qkuBS}*)9Aq9g-bX96-{!x4b>^D%i>+$w9aGQXcAsTps58 zXzS6%0UD;)KkV}{N}44~3Yq%|@dOS1LGYbvBbtgll(=59xw`?*SPq7FyS~7c05j*g s%HE6i-$i$xEy?nq*&+jFjHvJu`$hlHzuwp9wZlo~ReChi5WV?-05`V0L;wH) diff --git a/data/Redistribution_by_parity_list_UK.Rds b/data/Redistribution_by_parity_list_UK.Rds deleted file mode 100644 index 8603776b6b3bedca910216f9dfbec80b6bbd139d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 321 zcmb2|=3oE=wzn7d`W-e9IPkH1Zoe33%azXd1bt!Vj$U4sFzqd&EV`k$7xteOPB?eO z%{RnFMdJU&Kb6mm|5RHE3Tp2(OyZvF_3=kRxuvMGaBPfcn!d|otMe+;3nirA`fZ*1 z>G5^j4SnpZB+hP`xjx&}IOe9 Date: Wed, 13 Nov 2024 08:19:08 -0300 Subject: [PATCH 57/89] include multi_stage 2 sex time var --- NAMESPACE | 1 + man/all_kin_dy.Rd | 48 ++++++++++ man/all_kin_dy_TV.Rd | 94 +++++++++++++++++++ man/create_cumsum_df.Rd | 38 ++++++++ man/create_full_dists_df.Rd | 38 ++++++++ man/kin_multi_stage_time_variant_2sex.Rd | 8 +- man/pi_mix.Rd | 33 +++++++ man/pi_mix_TV.Rd | 31 ++++++ man/pi_mix_TV_parity.Rd | 35 +++++++ man/pi_mix_parity.Rd | 33 +++++++ ...eference_TwoSex_MultiState_TimeVariant.Rmd | 14 +-- 11 files changed, 362 insertions(+), 11 deletions(-) create mode 100644 man/all_kin_dy.Rd create mode 100644 man/all_kin_dy_TV.Rd create mode 100644 man/create_cumsum_df.Rd create mode 100644 man/create_full_dists_df.Rd create mode 100644 man/pi_mix.Rd create mode 100644 man/pi_mix_TV.Rd create mode 100644 man/pi_mix_TV_parity.Rd create mode 100644 man/pi_mix_parity.Rd diff --git a/NAMESPACE b/NAMESPACE index 9a087d8..7fa2b73 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -4,6 +4,7 @@ export("%>%") export(kin) export(kin2sex) export(kin_multi_stage) +export(kin_multi_stage_time_variant_2sex) export(kin_time_invariant) export(kin_time_invariant_2sex) export(kin_time_invariant_2sex_cod) diff --git a/man/all_kin_dy.Rd b/man/all_kin_dy.Rd new file mode 100644 index 0000000..261be62 --- /dev/null +++ b/man/all_kin_dy.Rd @@ -0,0 +1,48 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R +\name{all_kin_dy} +\alias{all_kin_dy} +\title{Title time invariant two-sex multi-state kin projections} +\usage{ +all_kin_dy( + Uf, + Um, + Ff, + Fm, + alpha, + na, + ns, + Parity, + sex_Focal, + Initial_stage_Focal +) +} +\arguments{ +\item{Uf}{matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial)} + +\item{Um}{matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial)} + +\item{Ff}{matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage} + +\item{Fm}{matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage} + +\item{alpha}{scalar. birth ratio (male:female)} + +\item{na}{scalar. number of ages.} + +\item{ns}{scalar. number of stages.} + +\item{Parity}{logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting} + +\item{sex_Focal}{logical. Female or Male} + +\item{Initial_stage_Focal}{numeric. Any natural number {1,2,3,4,...}} +} +\value{ +a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: +nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) +yielding the age*stage distribution of kin for each age of Focal +} +\description{ +Title time invariant two-sex multi-state kin projections +} diff --git a/man/all_kin_dy_TV.Rd b/man/all_kin_dy_TV.Rd new file mode 100644 index 0000000..c390385 --- /dev/null +++ b/man/all_kin_dy_TV.Rd @@ -0,0 +1,94 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R +\name{all_kin_dy_TV} +\alias{all_kin_dy_TV} +\title{Title time-variant two-sex multi-state kin projections} +\usage{ +all_kin_dy_TV( + Uf, + Um, + Ff, + Fm, + alpha, + na, + ns, + Parity, + sex_Focal, + Initial_stage_Focal, + previous_kin_Focal, + prev_kin_children, + prev_kin_grandchildren, + prev_kin_greatgrandchildren, + prev_kin_parents, + prev_kin_grand_parents, + prev_kin_great_grand_parents, + prev_kin_older_sibs, + prev_kin_younger_sibs, + prev_kin_older_niece_nephew, + prev_kin_younger_niece_nephew, + prev_kin_older_aunts_uncles, + prev_kin_younger_aunts_uncles, + prev_kin_older_cousins, + prev_kin_younger_cousins, + previous_population_age_stage_structure +) +} +\arguments{ +\item{Uf}{matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial)} + +\item{Um}{matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial)} + +\item{Ff}{matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage} + +\item{Fm}{matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage} + +\item{alpha}{scalar. birth ratio (male:female)} + +\item{na}{scalar. number of ages.} + +\item{ns}{scalar. number of stages.} + +\item{Parity}{logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting} + +\item{sex_Focal}{logical. Female or Male} + +\item{Initial_stage_Focal}{numeric. Any natural number {1,2,3,4,...}} + +\item{previous_kin_Focal}{matrix. last years kinship output.} + +\item{prev_kin_children}{matrix. last years kinship output.} + +\item{prev_kin_grandchildren}{matrix. last years kinship output.} + +\item{prev_kin_greatgrandchildren}{matrix. last years kinship output.} + +\item{prev_kin_parents}{matrix. last years kinship output.} + +\item{prev_kin_grand_parents}{matrix. last years kinship output.} + +\item{prev_kin_older_sibs}{matrix. last years kinship output.} + +\item{prev_kin_younger_sibs}{matrix. last years kinship output.} + +\item{prev_kin_older_niece_nephew}{matrix. last years kinship output.} + +\item{prev_kin_younger_niece_nephew}{matrix. last years kinship output.} + +\item{prev_kin_older_aunts_uncles}{matrix. last years kinship output.} + +\item{prev_kin_younger_aunts_uncles}{matrix. last years kinship output.} + +\item{prev_kin_older_cousins}{matrix. last years kinship output.} + +\item{prev_kin_younger_cousins}{matrix. last years kinship output.} + +\item{previous_population_age_stage_structure}{vector. The transient "population structure" (age*stage distributed)} +} +\value{ +a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: +nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) +yielding the age*stage distribution of kin for each age of Focal +} +\description{ +Title time-variant two-sex multi-state kin projections +} diff --git a/man/create_cumsum_df.Rd b/man/create_cumsum_df.Rd new file mode 100644 index 0000000..28bc914 --- /dev/null +++ b/man/create_cumsum_df.Rd @@ -0,0 +1,38 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R +\name{create_cumsum_df} +\alias{create_cumsum_df} +\title{Title Accumulated kin by each age of Focal, for each time period, and cohort of birth} +\usage{ +create_cumsum_df( + kin_matrix_lists, + kin_names, + years, + start_year, + na, + ns, + specific_kin +) +} +\arguments{ +\item{kin_matrix_lists}{list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale +so list(X_focal) = list(X_focal\link{year1},X_focal\link{year2},...,X_focal\link{yearlast})} + +\item{kin_names}{list of characters. Corresponding to above lists: list("F","m",....)} + +\item{years}{vector. The timescale on which we implement the kinship model.} + +\item{start_year}{. First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990)} + +\item{na}{numeric. Number of ages.} + +\item{ns}{numeric. Number of stages.} + +\item{specific_kin}{character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14.} +} +\value{ +A data frame which gives for each age of Focal at each year in the timescale, Focal's experienced number kin demarcated by stages (summed over all ages) +} +\description{ +Title Accumulated kin by each age of Focal, for each time period, and cohort of birth +} diff --git a/man/create_full_dists_df.Rd b/man/create_full_dists_df.Rd new file mode 100644 index 0000000..94fdb0e --- /dev/null +++ b/man/create_full_dists_df.Rd @@ -0,0 +1,38 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R +\name{create_full_dists_df} +\alias{create_full_dists_df} +\title{Title joint age*stage distributions of kin by each age of Focal, for each time period, and cohort of birth} +\usage{ +create_full_dists_df( + kin_matrix_lists, + kin_names, + years, + start_year, + na, + ns, + specific_kin +) +} +\arguments{ +\item{kin_matrix_lists}{list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale +so list(X_focal) = list(X_focal\link{year1},X_focal\link{year2},...,X_focal\link{yearlast})} + +\item{kin_names}{list of characters. Corresponding to above lists: list("F","m",....)} + +\item{years}{vector. The timescale on which we implement the kinship model.} + +\item{start_year}{. First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990)} + +\item{na}{numeric. Number of ages.} + +\item{ns}{numeric. Number of stages.} + +\item{specific_kin}{character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14.} +} +\value{ +A data frame which gives for each age of Focal at each year in the timescale, the full age*stage dist of kin +} +\description{ +Title joint age*stage distributions of kin by each age of Focal, for each time period, and cohort of birth +} diff --git a/man/kin_multi_stage_time_variant_2sex.Rd b/man/kin_multi_stage_time_variant_2sex.Rd index d6938ef..82aed18 100644 --- a/man/kin_multi_stage_time_variant_2sex.Rd +++ b/man/kin_multi_stage_time_variant_2sex.Rd @@ -38,22 +38,22 @@ a list of stochastic matrices which describe age-specific male probabilities of \item{H_list}{list with matrix entries: redistribution of newborns across each stage to a specific age-class} -\item{birth_female}{numeric. ratio of males to females in population} +\item{birth_female}{numeric. birth ratio of females to males in population} \item{parity}{logical. parity states imply age distribution of mothers re-scaled to not have parity 0 when Focal born. Default \code{TRUE}.} \item{output_kin}{vector. A vector of particular kin one wishes to obtain results for, e.g., c("m","d","oa"). Default is all kin types.} -\item{summary_kin}{logical. Results as a data frame of accumulated kin by age of Focal if FALSE, and kin by their age*stage distribution by age of Focal if TRUE.} +\item{summary_kin}{logical. Results as a data frame of accumulated kin by age of Focal if TRUE, and kin by their age*stage distribution by age of Focal if FALSE.} -\item{sex_Focal}{character. Female or Male as the user requests} +\item{sex_Focal}{character. Female or Male as the user requests.} \item{initial_stage_Focal}{Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0)} \item{output_years}{vector. The times at which we wish to count kin: start year = output_years\link{1}, and end year = output_years\link{length.}} } \value{ -A data frame with focal“s age, related ages, stages, sexes, and types of kin for each time-period +A data frame with focal age, kin age, kin stage, kin sex, year, cohort, and expected number of kin given these restrictions. } \description{ Implementation of combined formal demographic models: Caswell II,III,IV. diff --git a/man/pi_mix.Rd b/man/pi_mix.Rd new file mode 100644 index 0000000..0ed3c83 --- /dev/null +++ b/man/pi_mix.Rd @@ -0,0 +1,33 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R +\name{pi_mix} +\alias{pi_mix} +\title{Mixing distributions for the time-invariant multi-state 2-sex model: Non-parity case} +\usage{ +pi_mix(Uf, Um, Ff, Fm, alpha, na, ns) +} +\arguments{ +\item{Uf}{matrix. Block-structured matrix which transfers females over stage and advances their age} + +\item{Um}{matrix. Block-structured matrix which transfers males over stage and advances their age} + +\item{Ff}{matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage} + +\item{Fm}{matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage} + +\item{alpha}{scalar. Birth ratio male:female} + +\item{na}{scalar. Number of age-classes} + +\item{ns}{scalar. Number of stages} +} +\value{ +list (of vectors). list[\link{1}] = full age\emph{stage}sex distribution +list[\link{2}] = female age\emph{stage distribution normalised +list[\link{3}] = male age}stage distribution normalised +list[\link{4}] = female marginal age distribution normalised +list[\link{5}] = male marginal age distribution normalised +} +\description{ +Mixing distributions for the time-invariant multi-state 2-sex model: Non-parity case +} diff --git a/man/pi_mix_TV.Rd b/man/pi_mix_TV.Rd new file mode 100644 index 0000000..5f39775 --- /dev/null +++ b/man/pi_mix_TV.Rd @@ -0,0 +1,31 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R +\name{pi_mix_TV} +\alias{pi_mix_TV} +\title{Mixing distributions for the time-variant multi-state 2-sex model: Non-parity case} +\usage{ +pi_mix_TV(Ff, Fm, alpha, na, ns, previous_age_stage_dist) +} +\arguments{ +\item{Ff}{matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage} + +\item{Fm}{matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage} + +\item{alpha}{scalar. Birth ratio male:female} + +\item{na}{scalar. Number of age-classes} + +\item{ns}{scalar. Number of stages} + +\item{previous_age_stage_dist}{vector. Last years population structure (age\emph{stage}sex full distribution)} +} +\value{ +list (of vectors). list[\link{1}] = full age\emph{stage}sex distribution +list[\link{2}] = female age\emph{stage distribution normalised +list[\link{3}] = male age}stage distribution normalised +list[\link{4}] = female marginal age distribution normalised +list[\link{5}] = male marginal age distribution normalised +} +\description{ +Mixing distributions for the time-variant multi-state 2-sex model: Non-parity case +} diff --git a/man/pi_mix_TV_parity.Rd b/man/pi_mix_TV_parity.Rd new file mode 100644 index 0000000..9a95ab8 --- /dev/null +++ b/man/pi_mix_TV_parity.Rd @@ -0,0 +1,35 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R +\name{pi_mix_TV_parity} +\alias{pi_mix_TV_parity} +\title{Mixing distributions for the time-variant multi-state 2-sex model: Parity-specific case} +\usage{ +pi_mix_TV_parity(Ff, Fm, alpha, na, ns, previous_age_stage_dist) +} +\arguments{ +\item{Ff}{matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage} + +\item{Fm}{matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage} + +\item{alpha}{scalar. Birth ratio male:female} + +\item{na}{scalar. Number of age-classes} + +\item{ns}{scalar. Number of stages} + +\item{previous_age_stage_dist}{vector. Last years population structure (age\emph{stage}sex full distribution)} + +\item{Uf}{matrix. Block-structured matrix which transfers females over stage and advances their age} + +\item{Um}{matrix. Block-structured matrix which transfers males over stage and advances their age} +} +\value{ +list (of vectors). list[\link{1}] = full age\emph{stage}sex distribution +list[\link{2}] = female age\emph{stage distribution normalised +list[\link{3}] = male age}stage distribution normalised +list[\link{4}] = female marginal age distribution normalised +list[\link{5}] = male marginal age distribution normalised +} +\description{ +Mixing distributions for the time-variant multi-state 2-sex model: Parity-specific case +} diff --git a/man/pi_mix_parity.Rd b/man/pi_mix_parity.Rd new file mode 100644 index 0000000..f3874c8 --- /dev/null +++ b/man/pi_mix_parity.Rd @@ -0,0 +1,33 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R +\name{pi_mix_parity} +\alias{pi_mix_parity} +\title{Mixing distributions for the time-invariant multi-state 2-sex model: Parity-specific case} +\usage{ +pi_mix_parity(Uf, Um, Ff, Fm, alpha, na, ns) +} +\arguments{ +\item{Uf}{matrix. Block-structured matrix which transfers females over stage and advances their age} + +\item{Um}{matrix. Block-structured matrix which transfers males over stage and advances their age} + +\item{Ff}{matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage} + +\item{Fm}{matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage} + +\item{alpha}{scalar. Birth ratio male:female} + +\item{na}{scalar. Number of age-classes} + +\item{ns}{scalar. Number of stages} +} +\value{ +list (of vectors). list[\link{1}] = full age\emph{stage}sex distribution +list[\link{2}] = female age\emph{stage distribution normalised +list[\link{3}] = male age}stage distribution normalised +list[\link{4}] = female marginal age distribution normalised +list[\link{5}] = male marginal age distribution normalised +} +\description{ +Mixing distributions for the time-invariant multi-state 2-sex model: Parity-specific case +} diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 1346e1f..0e5de95 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -1,12 +1,12 @@ --- - title: "Expected kin counts by type of relative in a two-sex multi-state time-varying framework" +title: "Expected kin counts by type of relative in a two-sex multi-state time-varying framework" output: html_document: - toc: true -toc_depth: 1 + toc: true + toc_depth: 1 vignette: > %\VignetteEngine{knitr::rmarkdown} -%\VignetteEncoding{UTF-8} + %\VignetteEncoding{UTF-8} --- ```{r, eval = T, include=FALSE} @@ -27,8 +27,8 @@ and who is subject to time-varying demographic rates. We call this individual Fo We seek the number of, age, and stage distribution of Focal's relatives, for each age of Focal's life, and as a function of the year in which Focal is born. -```{R} -library(DemoKin) +```{r} +# library(DemoKin) library(Matrix) library(tictoc) `%>%` <- magrittr::`%>%` @@ -75,7 +75,7 @@ the appropriate age class (age in rows and states in columns) To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed in another file and simply imported below. The code below reads in the above function input lists. -```{r eval=FALSE, message=FALSE, warning=FALSE, include=FALSE} +```{r eval=TRUE, message=FALSE, warning=FALSE, include=TRUE} ## files loaded as "rda" extensions (from "data/) From 6025af28e4f38567250afbcb2cb17f6de104a47c Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 8 Jan 2025 16:24:01 -0300 Subject: [PATCH 58/89] clean multi_state_variant + fix issues --- DESCRIPTION | 3 +- R/data.R | 42 ++++++++- R/kin_multi_stage_time_variant_2sex.R | 40 +++++---- R/kin_time_invariant_2sex.R | 10 ++- R/kin_time_variant.R | 83 +++++++++--------- R/kin_time_variant_2sex.R | 61 +++++++------ R/kin_time_variant_2sex_cod.R | 60 +++++++------ README.Rmd | 7 +- README.md | 67 +++----------- man/Female_parity_fert_list_UK.Rd | 19 ++++ man/Female_parity_mortality_list_UK.Rd | 19 ++++ man/Male_parity_mortality_list_UK.Rd | 19 ++++ man/Parity_transfers_by_age_list_UK.Rd | 19 ++++ man/Redistribution_by_parity_list_UK.Rd | 19 ++++ man/create_cumsum_df.Rd | 2 +- man/create_full_dists_df.Rd | 2 +- man/kin_multi_stage_time_variant_2sex.Rd | 2 +- man/timevarying_kin_2sex_cod.Rd | 4 +- .../test-kin_twosex_multistate_timevariant.R | 4 +- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 87 ++++++------------- 20 files changed, 324 insertions(+), 245 deletions(-) create mode 100644 man/Female_parity_fert_list_UK.Rd create mode 100644 man/Female_parity_mortality_list_UK.Rd create mode 100644 man/Male_parity_mortality_list_UK.Rd create mode 100644 man/Parity_transfers_by_age_list_UK.Rd create mode 100644 man/Redistribution_by_parity_list_UK.Rd diff --git a/DESCRIPTION b/DESCRIPTION index 9dd070e..07aa5d8 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -33,7 +33,8 @@ Imports: magrittr, data.table, lifecycle, - tictoc + tictoc, + reshape2 URL: https://github.com/IvanWilli/DemoKin BugReports: https://github.com/IvanWilli/DemoKin/issues Depends: diff --git a/R/data.R b/R/data.R index 43be162..156b74c 100644 --- a/R/data.R +++ b/R/data.R @@ -1,5 +1,43 @@ -#' Female swedish survival ratios from 1900 to 2015 -#' +#' UK female fertility from 1965 to 2022 +#' @docType data +#' @format +#' list of age by stage matrices, entries give female fert. List starting 1965 ending 2022. +#' @source +#' HFD and ONS +"Female_parity_fert_list_UK" + +#' UK female parity transitions from 1965 to 2022 +#' @docType data +#' @format +#' list of age by stage matrices, entries give female parity transitions. List starting 1965 ending 2022. +#' @source +#' HFD and ONS +"Parity_transfers_by_age_list_UK" + +#' UK female parity mortality from 1965 to 2022 +#' @docType data +#' @format +#' list of age by stage matrices, entries give female parity mortality List starting 1965 ending 2022. +#' @source +#' HFD and ONS +"Female_parity_mortality_list_UK" + +#' UK male parity mortality from 1965 to 2022 +#' @docType data +#' @format +#' list of age by stage matrices, entries give male parity mortality List starting 1965 ending 2022. +#' @source +#' HFD and ONS +"Male_parity_mortality_list_UK" + +#' UK parity assign parity at birth +#' @docType data +#' @format +#' list of matrices which redistributes newborns to age-class 1 and parity 0. No time-variation. +#' @source +#' None +"Redistribution_by_parity_list_UK" + #' Female swedish survival ratios from 1900 to 2015 #' @docType data #' @format diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index 7b8c3e5..f52d3fa 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -34,8 +34,8 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, H_list = NULL, birth_female = 0.49, ## Sex ratio -- note is 1 - alpha parity = FALSE, - output_kin = FALSE, # enter a vector of specific kin if we only want to analyse these (e.g., c("m","d")) - summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin + output_kin = NULL, # enter a vector of specific kin if we only want to analyse these (e.g., c("m","d")) + summary_kin = TRUE, # Set to FALSE if we want only a full age*stage distribution of kin sex_Focal = "Female", # Female Focal is default initial_stage_Focal = NULL, output_years){ @@ -45,7 +45,7 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, ns <- ncol(U_list_females[[1]]) # Ensure inputs are lists of matrices and that the timescale same length - if(length(U_list_females)!=length(output_years)){stop("Timescale inconsistancy")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) + # if(length(U_list_females)!=length(output_years)){stop("Timescale inconsistancy")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) if(!is.list(U_list_females) | !is.list(U_list_males)){stop("U's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} if(!is.list(F_list_females) | !is.list(F_list_males)){stop("F's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} if(!is.list(T_list_females) | !is.list(T_list_males)){stop("T's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} @@ -78,7 +78,6 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, total = no_years + 1, clear = FALSE, width = 60) tictoc::tic() for(year in 1:no_years){ - pb$tick() T_data_f <- T_list_females[[year]] ## For each year we have na number of Transfer matrices T_data_m <- T_list_males[[year]] ## which give probabilities of age-dep movement from stage to stage T_f_list <- list() @@ -238,6 +237,7 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, younger_cousin_array[[(1+length(younger_cousin_array))]] <- kin_out[["cya"]] older_cousin_array[[(1+length(older_cousin_array))]] <- kin_out[["coa"]] changing_pop_struct[[(1+length(changing_pop_struct))]] <- kin_out[["ps"]] + pb$tick() } tictoc::toc() ## create a list of output kin -- each element a time-period specific list of matrices @@ -260,23 +260,25 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, relative_names <- names(relative_data) ## create a nice data frame output + kin_full <- create_full_dists_df(relative_data, + relative_names, + output_years, + output_years[1], + na, + ns, + output_kin) if(summary_kin){ - kin_out <- create_cumsum_df(relative_data, + kin_summary <- create_cumsum_df(relative_data, relative_names, - output_years[1]:output_years[length(output_years)], + output_years, output_years[1], na, ns, - output_kin)} + output_kin) + kin_out <- list(kin_full = kin_full, kin_summary = kin_summary)} else{ - kin_out <- create_full_dists_df(relative_data, - relative_names, - output_years[1]:output_years[length(output_years)], - output_years[1], - na, - ns, - output_kin)} - + kin_out <- kin_full + } return(kin_out) } @@ -704,7 +706,7 @@ create_cumsum_df <- function(kin_matrix_lists, start_year, na, ns, - specific_kin){ + specific_kin = NULL){ df_year_list <- list() for(j in years){ ii <- as.numeric(j) - start_year + 1 @@ -746,7 +748,7 @@ create_cumsum_df <- function(kin_matrix_lists, df_year_list <- do.call("rbind", df_year_list) df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), cohort_factor = as.factor(cohort)) - if(specific_kin != FALSE){ + if(!is.null(specific_kin)){ df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) } return(df_year_list) @@ -771,7 +773,7 @@ create_full_dists_df <- function(kin_matrix_lists, start_year, na, ns, - specific_kin){ + specific_kin = NULL){ df_year_list <- list() for(j in years){ ii <- as.numeric(j) - start_year + 1 @@ -811,7 +813,7 @@ create_full_dists_df <- function(kin_matrix_lists, df_year_list <- do.call("rbind", df_year_list) df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), cohort_factor = as.factor(cohort)) - if(specific_kin != FALSE){ + if(!is.null(specific_kin)){ df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) } return(df_year_list) diff --git a/R/kin_time_invariant_2sex.R b/R/kin_time_invariant_2sex.R index e9d7822..6f733b6 100644 --- a/R/kin_time_invariant_2sex.R +++ b/R/kin_time_invariant_2sex.R @@ -105,15 +105,17 @@ kin_time_invariant_2sex <- function(pf = NULL, pm = NULL, ggm[,i+1] = Ut %*% ggm[,i] } - # atribuible to focal sex - pios = if(sex_focal == "f") pif else pim - os[1:(agess),1] = d[1:(agess),] %*% pif - nos[1:(agess),1] = gd[1:(agess),] %*% pif + + # initial conditions on os and nos depends of focal sex + pios <- if(sex_focal == "f") pif else pim + os[1:(agess),1] = d[1:(agess),] %*% pios + nos[1:(agess),1] = gd[1:(agess),] %*% pios for(i in 1:(ages-1)){ os[,i+1] = Ut %*% os[,i] nos[,i+1] = Ut %*% nos[,i] + Ft %*% os[,i] } + # continue oa[1:(agess),1] = os[1:(agess),] %*% (pif + pim) ya[1:(agess),1] = ys[1:(agess),] %*% (pif + pim) coa[1:(agess),1] = nos[1:(agess),] %*% (pif + pim) diff --git a/R/kin_time_variant.R b/R/kin_time_variant.R index 71a5dfa..0853b05 100644 --- a/R/kin_time_variant.R +++ b/R/kin_time_variant.R @@ -40,51 +40,52 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, om <- max(age) zeros <- matrix(0, nrow=ages, ncol=ages) - # age distribution at childborn - pi_N_null_flag <- FALSE + # consider input data for age distribution at child born, or flag it + no_Pi <- FALSE if(is.null(pi)){ if(is.null(n)){ # create pi and fill it during the loop - message("Stable assumption was made for calculating pi on each year because no input data.") - pi_N_null_flag <- TRUE + no_Pi <- TRUE pi <- matrix(0, nrow=ages, ncol=n_years_data) }else{ - pi_N_null_flag <- FALSE + no_Pi <- FALSE pi <- rbind(t(t(n * f)/colSums(n * f)), matrix(0,ages,length(years_data))) } } - # loop over years (more performance here) + # loop over years kin_all <- list() pb <- progress::progress_bar$new( format = "Running over input years [:bar] :percent", total = n_years_data + 1, clear = FALSE, width = 50) for (t in 1:n_years_data){ - # build matrix - Ut = Mt = matrix(0, nrow=ages, ncol=ages) + # build set of matrix + Ut <- Mt <- matrix(0, nrow=ages, ncol=ages) Ut[row(Ut)-1 == col(Ut)] <- p[-ages,t] - Ut[ages, ages] = p[ages,t] - diag(Mt) = 1 - p[,t] - Ut = rbind(cbind(Ut,zeros),cbind(Mt,zeros)) - ft = matrix(0, nrow=ages*2, ncol=ages*2) - ft[1,1:ages] = f[,t] * birth_female - if(pi_N_null_flag){ - A <- Ut[1:ages,1:ages] + ft[1:ages,1:ages] - A_decomp = eigen(A) - w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) - pit <- pi[,t] <- w*A[1,]/sum(w*A[1,]) - }else{ - pit <- pi[,t] - } - # proj + Ut[ages, ages] <- p[ages,t] + diag(Mt) <- 1 - p[,t] + Ut <- rbind(cbind(Ut,zeros),cbind(Mt,zeros)) + ft <- matrix(0, nrow=ages*2, ncol=ages*2) + ft[1,1:ages] <- f[,t] * birth_female + A <- Ut[1:ages,1:ages] + ft[1:ages,1:ages] + # stable assumption at start if (t==1){ p1 <- c(diag(Ut[-1,])[1:om],Ut[om,om]) - f1 <- ft[1,][1:ages] + f1 <- ft[1,][1:ages]/birth_female + A_decomp <- eigen(A) + w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + pit <- w*A[1,]/sum(w*A[1,]) pi1 <- pit[1:ages] - kin_all[[1]] <- kin_time_invariant(p = p1, f = f1/birth_female, pi = pi1, birth_female = birth_female, + kin_all[[1]] <- kin_time_invariant(p = p1, f = f1, pi = pi1, birth_female = birth_female, list_output = TRUE) } - kin_all[[t+1]] <- timevarying_kin(Ut=Ut,ft=ft,pit=pit,ages,pkin=kin_all[[t]]) + # project pi + if(no_Pi){ + w <- A %*% w + pi[,t] <- w*A[1,]/sum(w*A[1,]) + } + # kin for next year + kin_all[[t+1]] <- timevarying_kin(Ut = Ut, ft = ft, pit = pi[,t], ages, pkin = kin_all[[t]]) pb$tick() } @@ -93,7 +94,6 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, # combinations to return out_selected <- output_period_cohort_combination(output_cohort, output_period, age = age, years_data = years_data) - possible_kin <- c("d","gd","ggd","m","gm","ggm","os","ys","nos","nys","oa","ya","coa","cya") if(is.null(output_kin)){ selected_kin_position <- 1:length(possible_kin) @@ -138,6 +138,7 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, out <- kin } + # end return(out) } @@ -156,27 +157,27 @@ kin_time_variant <- function(p = NULL, f = NULL, pi = NULL, n = NULL, timevarying_kin<- function(Ut, ft, pit, ages, pkin){ # frequently used zero vector for initial condition - zvec=rep(0,ages*2); - I = matrix(0, ages * 2, ages * 2) - diag(I[1:ages,1:ages]) = 1 - om=ages-1; - d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0,ages*2,ages) + zvec <- rep(0,ages*2); + I <- matrix(0, ages * 2, ages * 2) + diag(I[1:ages,1:ages]) <- 1 + om <- ages-1; + d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya <- matrix(0,ages*2,ages) kin_list <- list(d=d,gd=gd,ggd=ggd,m=m,gm=gm,ggm=ggm,os=os,ys=ys, nos=nos,nys=nys,oa=oa,ya=ya,coa=coa,cya=cya) # initial distribution - d[,1]=gd[,1]=ggd[,1]=ys[,1]=nys[,1]=zvec - m[1:ages,1] = pit[1:ages] - gm[1:ages,1] = pkin[["m"]][1:ages,] %*% pit[1:ages] - ggm[1:ages,1]= pkin[["gm"]][1:ages,] %*% pit[1:ages] - os[1:ages,1] = pkin[["d"]][1:ages,] %*% pit[1:ages] + d[,1] = gd[,1] = ggd[,1] = ys[,1] = nys[,1] = zvec + m[1:ages,1] = pit[1:ages] + gm[1:ages,1] = pkin[["m"]][1:ages,] %*% pit[1:ages] + ggm[1:ages,1] = pkin[["gm"]][1:ages,] %*% pit[1:ages] + os[1:ages,1] = pkin[["d"]][1:ages,] %*% pit[1:ages] nos[1:ages,1] = pkin[["gd"]][1:ages,] %*% pit[1:ages] - oa[1:ages,1] = pkin[["os"]][1:ages,] %*% pit[1:ages] - ya[1:ages,1] = pkin[["ys"]][1:ages,] %*% pit[1:ages] - coa[1:ages,1]= pkin[["nos"]][1:ages,] %*% pit[1:ages] - cya[1:ages,1]= pkin[["nys"]][1:ages,] %*% pit[1:ages] + oa[1:ages,1] = pkin[["os"]][1:ages,] %*% pit[1:ages] + ya[1:ages,1] = pkin[["ys"]][1:ages,] %*% pit[1:ages] + coa[1:ages,1] = pkin[["nos"]][1:ages,] %*% pit[1:ages] + cya[1:ages,1] = pkin[["nys"]][1:ages,] %*% pit[1:ages] - # vers1 + # focal“s trip for(ix in 1:om){ d[,ix+1] = Ut %*% pkin[["d"]][,ix] + ft %*% I[,ix] gd[,ix+1] = Ut %*% pkin[["gd"]][,ix] + ft %*% pkin[["d"]][,ix] diff --git a/R/kin_time_variant_2sex.R b/R/kin_time_variant_2sex.R index e67db6f..7d76c09 100644 --- a/R/kin_time_variant_2sex.R +++ b/R/kin_time_variant_2sex.R @@ -48,9 +48,8 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, om <- max(age) zeros <- matrix(0, nrow=ages, ncol=ages) - # age distribution at child born + # consider input data for age distribution at child born, or flag it to fill it Pif <- pif; no_Pif <- FALSE - Pim <- pim; no_Pim <- FALSE if(is.null(pif)){ if(!is.null(nf)){ Pif <- t(t(nf * ff)/colSums(nf * ff)) @@ -59,6 +58,7 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, no_Pif <- TRUE } } + Pim <- pim; no_Pim <- FALSE if(is.null(pim)){ if(!is.null(nm)){ Pim <- t(t(nm * fm)/colSums(nm * fm)) @@ -69,65 +69,70 @@ kin_time_variant_2sex <- function(pf = NULL, pm = NULL, } # get lists of matrix - Ul = Fl = Fl_star = list() + Ul <- Fl <- Fl_star <- list() kin_all <- list() pb <- progress::progress_bar$new( format = "Running over input years [:bar] :percent", total = n_years_data + 1, clear = FALSE, width = 60) for(t in 1:n_years_data){ # t = 1 - Uf = Um = Fft = Fmt = Mm = Mf = Gt = zeros = matrix(0, nrow=ages, ncol=ages) + Uf = Um = Fft = Fmt = Mm = Mf = Gt = zeros <- matrix(0, nrow=ages, ncol=ages) Uf[row(Uf)-1 == col(Uf)] <- pf[-ages,t] Uf[ages, ages] = pf[ages,t] Um[row(Um)-1 == col(Um)] <- pm[-ages,t] - Um[ages, ages] = pm[ages,t] + Um[ages, ages] <- pm[ages,t] Mm <- diag(1-pm[,t]) Mf <- diag(1-pf[,t]) Ut <- as.matrix(rbind( cbind(Matrix::bdiag(Uf, Um), Matrix::bdiag(zeros, zeros)), cbind(Matrix::bdiag(Mf, Mm), Matrix::bdiag(zeros, zeros)))) Ul[[as.character(years_data[t])]] <- Ut - Fft[1,] = ff[,t] - Fmt[1,] = fm[,t] + Fft[1,] <- ff[,t] + Fmt[1,] <- fm[,t] Ft <- Ft_star <- matrix(0, agess*2, agess*2) Ft[1:agess,1:agess] <- rbind(cbind(birth_female * Fft, birth_female * Fmt), cbind((1-birth_female) * Fft, (1-birth_female) * Fmt)) Ft_star[1:agess,1:ages] <- rbind(birth_female * Fft, (1-birth_female) * Fft) Fl[[as.character(years_data[t])]] <- Ft Fl_star[[as.character(years_data[t])]] <- Ft_star - # parents age distribution under stable assumption in case no input - if(no_Pim | no_Pif){ - A = Matrix::bdiag(Uf, Um) + Ft_star[1:agess,1:agess] - A_decomp = eigen(A) - lambda = as.double(A_decomp$values[1]) - w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) - wf = w[1:ages] - wm = w[(ages+1):(2*ages)] - Pif[,t] = wf * ff[,t] / sum(wf * ff[,t]) - Pim[,t] = wm * fm[,t] / sum(wm * fm[,t]) - } + A <- Matrix::bdiag(Uf, Um) + Ft_star[1:agess,1:agess] # project Ut <- as.matrix(Ul[[t]]) Ft <- as.matrix(Fl[[t]]) Ft_star <- as.matrix(Fl_star[[t]]) - pitf <- Pif[,t] - pitm <- Pim[,t] - pit <- c(pitf, pitm) + + # stable assumption at start if (t==1){ - p1f <- pf[,1] - p1m <- pm[,1] - f1f <- ff[,1] - f1m <- fm[,1] - pif1 <- Pif[,1] - pim1 <- Pim[,1] + p1f <- pf[,1]; p1m <- pm[,1] + f1f <- ff[,1]; f1m <- fm[,1] + # time boundary for pi + A_decomp <- eigen(A) + lambda <- as.double(A_decomp$values[1]) + w <- as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) + wf <- w[1:ages] + wm <- w[(ages+1):(2*ages)] + pif1 <- wf * ff[,t] / sum(wf * ff[,t]) + pim1 <- wm * fm[,t] / sum(wm * fm[,t]) kin_all[[1]] <- kin_time_invariant_2sex(pf = p1f, pm = p1m, ff = f1f, fm = f1m, sex_focal = sex_focal, pif = pif1, pim = pim1, birth_female = birth_female, list_output = TRUE) } - kin_all[[t+1]] <- timevarying_kin_2sex(Ut=Ut, Ft=Ft, Ft_star=Ft_star, pit=pit, sex_focal, ages, pkin=kin_all[[t]]) + # project pi + if(no_Pim | no_Pif){ + w <- A %*% w + wf <- w[1:ages] + wm <- w[(ages+1):(2*ages)] + Pif[,t] <- wf * ff[,t] / sum(wf * ff[,t]) + Pim[,t] <- wm * fm[,t] / sum(wm * fm[,t]) + } + pit <- c(Pif[,t], Pim[,t]) + + # kin for next year + kin_all[[t+1]] <- timevarying_kin_2sex(Ut = Ut, Ft = Ft, Ft_star = Ft_star, + pit = pit, sex_focal, ages, pkin = kin_all[[t]]) pb$tick() } diff --git a/R/kin_time_variant_2sex_cod.R b/R/kin_time_variant_2sex_cod.R index 562be20..b9f90ae 100644 --- a/R/kin_time_variant_2sex_cod.R +++ b/R/kin_time_variant_2sex_cod.R @@ -141,32 +141,20 @@ kin_time_variant_2sex_cod <- function(pf = NULL, pm = NULL, Ft_star[1:agess,1:ages] <- rbind(birth_female * Fft, (1-birth_female) * Fft) Fl[[as.character(years_data[t])]] <- Ft Fl_star[[as.character(years_data[t])]] <- Ft_star - # parents age distribution under stable assumption in case no input - if(no_Pim | no_Pif){ - A = Matrix::bdiag(Uf, Um) + Ft_star[1:agess,1:agess] + A = Matrix::bdiag(Uf, Um) + Ft_star[1:agess,1:agess] + + # stable assumption at start + if (t==1){ + p1f <- pf[,1]; p1m <- pm[,1] + f1f <- ff[,1]; f1m <- fm[,1] + # time boundary for pi A_decomp = eigen(A) lambda = as.double(A_decomp$values[1]) w = as.double(A_decomp$vectors[,1])/sum(as.double(A_decomp$vectors[,1])) wf = w[1:ages] wm = w[(ages+1):(2*ages)] - Pif[,t] = wf * ff[,t] / sum(wf * ff[,t]) - Pim[,t] = wm * fm[,t] / sum(wm * fm[,t]) - } - - # project - Ut <- as.matrix(Ul[[t]]) - Ft <- as.matrix(Fl[[t]]) - Ft_star <- as.matrix(Fl_star[[t]]) - pitf <- Pif[,t] - pitm <- Pim[,t] - pit <- c(pitf, pitm) - if (t==1){ - p1f <- pf[,1] - p1m <- pm[,1] - f1f <- ff[,1] - f1m <- fm[,1] - pif1 <- Pif[,1] - pim1 <- Pim[,1] + pif1 = wf * ff[,t] / sum(wf * ff[,t]) + pim1 = wm * fm[,t] / sum(wm * fm[,t]) # BEN: Add Hf and Hm H1f <- Hf[[1]] @@ -177,9 +165,22 @@ kin_time_variant_2sex_cod <- function(pf = NULL, pm = NULL, ff = f1f, fm = f1m, pif = pif1, pim = pim1, Hf = H1f, Hm = H1m, - birth_female = birth_female, list_output = TRUE) + birth_female = birth_female, list_output = TRUE) } - kin_all[[t+1]] <- timevarying_kin_2sex_cod(Ut=Ut, Ft=Ft, Ft_star=Ft_star, pit=pit, sex_focal, ages, pkin=kin_all[[t]]) + + # project pi + if(no_Pim | no_Pif){ + w <- A %*% w + wf <- w[1:ages] + wm <- w[(ages+1):(2*ages)] + Pif[,t] <- wf * ff[,t] / sum(wf * ff[,t]) + Pim[,t] <- wm * fm[,t] / sum(wm * fm[,t]) + } + pit <- c(Pif[,t], Pim[,t]) + + # kin for next year + kin_all[[t+1]] <- timevarying_kin_2sex_cod(Ut=Ut, Ft=Ft, Ft_star=Ft_star, causes, + pit=pit, sex_focal, ages, pkin=kin_all[[t]]) pb$tick() } @@ -242,21 +243,22 @@ kin_time_variant_2sex_cod <- function(pf = NULL, pm = NULL, #' @param Ut numeric. A matrix of survival probabilities (or ratios). #' @param Ft numeric. A matrix of age-specific fertility rates. #' @param Ft_star numeric. Ft but for female fertility. +#' @param causes integer. Number of causes of death included. #' @param pit numeric. A matrix with distribution of childbearing. #' @param sex_focal character. "f" for female or "m" for male. #' @param ages numeric. #' @param pkin numeric. A list with kin count distribution in previous year. #' @return A list of 14 types of kin matrices (kin age by Focal age, blocked for two sex) projected one time interval. #' @export -timevarying_kin_2sex_cod<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin){ +timevarying_kin_2sex_cod<- function(Ut, Ft, Ft_star, causes, pit, sex_focal, ages, pkin){ agess <- ages*2 om <- ages-1 pif <- pit[1:ages] pim <- pit[(ages+1):agess] - # BEN : Add the number of CoD - causes <- nrow(Hf[[1]]) + # BEN : Add the number of CoD - IW: already as argument (Hf is not an argument) + # causes <- nrow(Hf[[1]]) # BEN: Changed dimensions of lower part (dead kin) to account for death from causes. phi = d = gd = ggd = m = gm = ggm = os = ys = nos = nys = oa = ya = coa = cya = matrix(0, (agess + agess*causes), ages) @@ -284,12 +286,14 @@ timevarying_kin_2sex_cod<- function(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin) m[1:agess,1] = pit gm[1:agess,1] = pkin[["m"]][1:agess,] %*% (pif + pim) ggm[1:agess,1] = pkin[["gm"]][1:agess,] %*% (pif + pim) - os[1:agess,1] = pkin[["d"]][1:agess,] %*% pif - nos[1:agess,1] = pkin[["gd"]][1:ages,] %*% pif oa[1:agess,1] = pkin[["os"]][1:agess,] %*% (pif + pim) ya[1:agess,1] = pkin[["ys"]][1:agess,] %*% (pif + pim) coa[1:agess,1] = pkin[["nos"]][1:agess,] %*% (pif + pim) cya[1:agess,1] = pkin[["nys"]][1:agess,] %*% (pif + pim) + # atribuible to focal sex + pios <- if(sex_focal == "f") pif else pim + os[1:agess,1] = pkin[["d"]][1:agess,] %*% pios + nos[1:agess,1] = pkin[["gd"]][1:ages,] %*% pios for (ix in 1:om){ phi[,ix+1] = Gt %*% phi[, ix] diff --git a/README.Rmd b/README.Rmd index a3f462f..a817bde 100644 --- a/README.Rmd +++ b/README.Rmd @@ -1,8 +1,9 @@ --- output: github_document -bibliography: vignettes\\references.bib --- + + ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, @@ -91,7 +92,7 @@ If the vignette does not load, you may need to install the package as `devtools: ## Citation -Williams, IvÔn; Alburez-Gutierrez, Diego; Song, Xi; and Hal Caswell. (2021) DemoKin: An R package to implement demographic matrix kinship models. URL: https://github.com/IvanWilli/DemoKin. +Williams, IvÔn; Alburez-Gutierrez, Diego; and the DemoKin team. (2021) DemoKin: An R package to implement demographic matrix kinship models. URL: https://github.com/IvanWilli/DemoKin. ## Acknowledgments @@ -103,4 +104,4 @@ Williams, IvÔn; Alburez-Gutierrez, Diego; Song, Xi; and Hal Caswell. (2021) Dem If you're interested in contributing, please get in touch, create an issue, or submit a pull request. We look forward to hearing from you! -## References + diff --git a/README.md b/README.md index 9255f10..cee8664 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,6 @@ + + # DemoKin

@@ -8,8 +10,10 @@ `DemoKin` uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell -(2019, 2020, 2022), and Caswell and Song (2021). It draws on previous -theoretical development by Goodman, Keyfitz and Pullum (1974). +\[-@caswell_formal_2019; -@caswell_formal_2020; -@caswell_formal_2022\], +and Caswell and Song \[-@caswell_formal_2021\]. It draws on previous +theoretical development by Goodman, Keyfitz and Pullum +\[-@goodman_family_1974\].
@@ -42,7 +46,8 @@ devtools::install_github("IvanWilli/DemoKin") Consider an average Swedish woman called ā€˜Focal.’ For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their -life; i.e., the ā€˜time-invariant’ assumption in Caswell (2019). +life; i.e., the ā€˜time-invariant’ assumption in Caswell +\[-@caswell_formal_2019\]. We then ask: @@ -84,7 +89,7 @@ Relatives are identified by a unique code: | coa | Cousins from older aunts | Cousins from older uncles | Cousins from older aunts/uncles | | cya | Cousins from younger aunts | Cousins from younger uncles | Cousins from younger aunts/uncles | | c | Cousins | Cousins | Cousins | -| d | Daughters | Brothers | Siblings | +| d | Daughters | Sons | Children | | gd | Grand-daughters | Grand-sons | Grand-childrens | | ggd | Great-grand-daughters | Great-grand-sons | Great-grand-childrens | | ggm | Great-grandmothers | Great-grandfathers | Great-grandfparents | @@ -116,9 +121,9 @@ does not load, you may need to install the package as ## Citation -Williams, IvĆ”n; Alburez-Gutierrez, Diego; and the DemoKin team. -(2021) DemoKin: An R package to implement demographic matrix kinship -models. URL: . +Williams, IvĆ”n; Alburez-Gutierrez, Diego; and the DemoKin team. (2021) +DemoKin: An R package to implement demographic matrix kinship models. +URL: . ## Acknowledgments @@ -136,50 +141,4 @@ Commons. Sha Jiang provided useful comments for improving the package. contributing, please get in touch, create an issue, or submit a pull request. We look forward to hearing from you! -## References - -
- -
- -Caswell, Hal. 2019. ā€œThe Formal Demography of Kinship: A Matrix -Formulation.ā€ *Demographic Research* 41 (September): 679–712. -. - -
- -
- -———. 2020. ā€œThe Formal Demography of Kinship II: Multistate Models, -Parity, and Sibship.ā€ *Demographic Research* 42 (June): 1097–1146. -. - -
- -
- -———. 2022. ā€œThe Formal Demography of Kinship IV: Two-Sex Models and -Their Approximations.ā€ *Demographic Research* 47 (September): 359–96. -. - -
- -
- -Caswell, Hal, and Xi Song. 2021. ā€œThe Formal Demography of Kinship III: -Kinship Dynamics with Time-Varying Demographic Rates.ā€ *Demographic -Research* 45 (August): 517–46. -. - -
- -
- -Goodman, Leo A, Nathan Keyfitz, and Thomas W. Pullum. 1974. ā€œFamily -Formation and the Frequency of Various Kinship Relationships.ā€ -*Theoretical Population Biology*, 27. -. - -
- -
+ diff --git a/man/Female_parity_fert_list_UK.Rd b/man/Female_parity_fert_list_UK.Rd new file mode 100644 index 0000000..854be41 --- /dev/null +++ b/man/Female_parity_fert_list_UK.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{Female_parity_fert_list_UK} +\alias{Female_parity_fert_list_UK} +\title{UK female fertility from 1965 to 2022} +\format{ +list of age by stage matrices, entries give female fert. List starting 1965 ending 2022. +} +\source{ +HFD and ONS +} +\usage{ +Female_parity_fert_list_UK +} +\description{ +UK female fertility from 1965 to 2022 +} +\keyword{datasets} diff --git a/man/Female_parity_mortality_list_UK.Rd b/man/Female_parity_mortality_list_UK.Rd new file mode 100644 index 0000000..3e0eef1 --- /dev/null +++ b/man/Female_parity_mortality_list_UK.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{Female_parity_mortality_list_UK} +\alias{Female_parity_mortality_list_UK} +\title{UK female parity mortality from 1965 to 2022} +\format{ +list of age by stage matrices, entries give female parity mortality List starting 1965 ending 2022. +} +\source{ +HFD and ONS +} +\usage{ +Female_parity_mortality_list_UK +} +\description{ +UK female parity mortality from 1965 to 2022 +} +\keyword{datasets} diff --git a/man/Male_parity_mortality_list_UK.Rd b/man/Male_parity_mortality_list_UK.Rd new file mode 100644 index 0000000..316ca71 --- /dev/null +++ b/man/Male_parity_mortality_list_UK.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{Male_parity_mortality_list_UK} +\alias{Male_parity_mortality_list_UK} +\title{UK male parity mortality from 1965 to 2022} +\format{ +list of age by stage matrices, entries give male parity mortality List starting 1965 ending 2022. +} +\source{ +HFD and ONS +} +\usage{ +Male_parity_mortality_list_UK +} +\description{ +UK male parity mortality from 1965 to 2022 +} +\keyword{datasets} diff --git a/man/Parity_transfers_by_age_list_UK.Rd b/man/Parity_transfers_by_age_list_UK.Rd new file mode 100644 index 0000000..babf3e9 --- /dev/null +++ b/man/Parity_transfers_by_age_list_UK.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{Parity_transfers_by_age_list_UK} +\alias{Parity_transfers_by_age_list_UK} +\title{UK female parity transitions from 1965 to 2022} +\format{ +list of age by stage matrices, entries give female parity transitions. List starting 1965 ending 2022. +} +\source{ +HFD and ONS +} +\usage{ +Parity_transfers_by_age_list_UK +} +\description{ +UK female parity transitions from 1965 to 2022 +} +\keyword{datasets} diff --git a/man/Redistribution_by_parity_list_UK.Rd b/man/Redistribution_by_parity_list_UK.Rd new file mode 100644 index 0000000..2d81919 --- /dev/null +++ b/man/Redistribution_by_parity_list_UK.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{Redistribution_by_parity_list_UK} +\alias{Redistribution_by_parity_list_UK} +\title{UK parity assign parity at birth} +\format{ +list of matrices which redistributes newborns to age-class 1 and parity 0. No time-variation. +} +\source{ +None +} +\usage{ +Redistribution_by_parity_list_UK +} +\description{ +UK parity assign parity at birth +} +\keyword{datasets} diff --git a/man/create_cumsum_df.Rd b/man/create_cumsum_df.Rd index 28bc914..920d482 100644 --- a/man/create_cumsum_df.Rd +++ b/man/create_cumsum_df.Rd @@ -11,7 +11,7 @@ create_cumsum_df( start_year, na, ns, - specific_kin + specific_kin = NULL ) } \arguments{ diff --git a/man/create_full_dists_df.Rd b/man/create_full_dists_df.Rd index 94fdb0e..2e4e0c8 100644 --- a/man/create_full_dists_df.Rd +++ b/man/create_full_dists_df.Rd @@ -11,7 +11,7 @@ create_full_dists_df( start_year, na, ns, - specific_kin + specific_kin = NULL ) } \arguments{ diff --git a/man/kin_multi_stage_time_variant_2sex.Rd b/man/kin_multi_stage_time_variant_2sex.Rd index 82aed18..e62d30f 100644 --- a/man/kin_multi_stage_time_variant_2sex.Rd +++ b/man/kin_multi_stage_time_variant_2sex.Rd @@ -14,7 +14,7 @@ kin_multi_stage_time_variant_2sex( H_list = NULL, birth_female = 0.49, parity = FALSE, - output_kin = FALSE, + output_kin = NULL, summary_kin = TRUE, sex_Focal = "Female", initial_stage_Focal = NULL, diff --git a/man/timevarying_kin_2sex_cod.Rd b/man/timevarying_kin_2sex_cod.Rd index 8bc0b87..fb82bad 100644 --- a/man/timevarying_kin_2sex_cod.Rd +++ b/man/timevarying_kin_2sex_cod.Rd @@ -4,7 +4,7 @@ \alias{timevarying_kin_2sex_cod} \title{one time projection kin} \usage{ -timevarying_kin_2sex_cod(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin) +timevarying_kin_2sex_cod(Ut, Ft, Ft_star, causes, pit, sex_focal, ages, pkin) } \arguments{ \item{Ut}{numeric. A matrix of survival probabilities (or ratios).} @@ -13,6 +13,8 @@ timevarying_kin_2sex_cod(Ut, Ft, Ft_star, pit, sex_focal, ages, pkin) \item{Ft_star}{numeric. Ft but for female fertility.} +\item{causes}{integer. Number of causes of death included.} + \item{pit}{numeric. A matrix with distribution of childbearing.} \item{sex_focal}{character. "f" for female or "m" for male.} diff --git a/tests/testthat/test-kin_twosex_multistate_timevariant.R b/tests/testthat/test-kin_twosex_multistate_timevariant.R index 1dcea27..dbb5697 100644 --- a/tests/testthat/test-kin_twosex_multistate_timevariant.R +++ b/tests/testthat/test-kin_twosex_multistate_timevariant.R @@ -30,12 +30,12 @@ test_that("same output in multi_stage (caswell 2020)", { list(Tm), list(H), birth_female = 0.49, ## svk_fxs already divided - output_kin = FALSE, + output_kin = NULL, parity = TRUE, summary_kin = FALSE, sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth - seq(1990, (1990))) + output_years = seq(1990, (1990))) ## Younger sisters diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 0e5de95..e1295f8 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -10,7 +10,7 @@ vignette: > --- ```{r, eval = T, include=FALSE} -knitr::opts_chunk$set(collapse = TRUE, comment = "#>") +knitr::opts_chunk$set(collapse = TRUE, comment = "#>", eval = FALSE) library(devtools); load_all() ``` @@ -31,11 +31,7 @@ We seek the number of, age, and stage distribution of Focal's relatives, for eac # library(DemoKin) library(Matrix) library(tictoc) -`%>%` <- magrittr::`%>%` - - options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise output (but also #lose #progress bar) - ``` ### Kin counts by parity ### @@ -76,11 +72,8 @@ To avoid the need for tedious calculations to put data into such format in this in another file and simply imported below. The code below reads in the above function input lists. ```{r eval=TRUE, message=FALSE, warning=FALSE, include=TRUE} - -## files loaded as "rda" extensions (from "data/) - F_mat_fem <- Female_parity_fert_list_UK -F_mat_male <- Male_parity_fert_list_UK +F_mat_male <- Female_parity_fert_list_UK T_mat_fem <- Parity_transfers_by_age_list_UK T_mat_male <- Parity_transfers_by_age_list_UK U_mat_fem <- Female_parity_mortality_list_UK @@ -113,18 +106,18 @@ H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0 ### 1. Accumulated number of kin Focal expects over the lifecourse under time-varying rates from 1965 to 2005 ### We feed the above inputs into the matrix model, along with other arguments: -UK sex ratio --> `birth_female` = 0.49 -We are considering parity --> `parity` = TRUE -We want all of Focal's kin network --> `output_kin` = FALSE -Accumulated kin in this example --> `summary_kin` = TRUE -Focal is female --> `sex_Focal` = "Female" -Focal born into parity 0 --> `initial_stage_Focal` = 1 -timescale from 1965-1985 -- > `output_years` = seq(1965, 1965 + 40) + +- UK sex ratio --> `birth_female` = 0.49 +- We are considering parity --> `parity` = TRUE +- We want some of Focal's kin network --> `output_kin` = c("d", "oa", "ys", "os") +- Accumulated kin in this example --> `summary_kin` = TRUE +- Focal is female --> `sex_Focal` = "Female" +- Focal born into parity 0 --> `initial_stage_Focal` = 1 +- timescale as ouptut -- > `output_years` = c(1965, 1975, 1985, 1995, 2005) Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage distribution of kin. -Notice that the timescale argument `output_years` = seq(1965,2005) gives a sequence of 1965, 1966, ..., 2004, 2005 of length 41. The first sets of time-varying vital rates in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), the 41-st entry is U_mat_fem[[(1+40)]] (mortality in 2005). We require consistency between the length of the list of vital rates and the timescale: U_mat_fem[[1:(1+40)]] = in length = seq(1965,2005). Therefore we use the input lists of demographic rates @@ -132,6 +125,8 @@ and the timescale: U_mat_fem[[1:(1+40)]] = in length = seq(1965,2005). Therefore `U_list_females` = U_mat_fem[1:(1+no_years)] which runs from U_mat_fem[[1]] = 1965 set of rates, up to U_mat_fem[[41]] = 2005 set of rates, and so on... +> this run takes some time (round 10 min) so we donĀ“t include the output in the vignette. Please try it! + ```{r, message=FALSE, warning=FALSE} # Run kinship model for a female Focal over a timescale of no_years (we use 40 here) no_years <- 40 @@ -147,18 +142,19 @@ kin_out_1965_2005 <- H_list = H_mat[1:(1+no_years)], birth_female = 1 - 0.51, ## Sex ratio -- UK value parity = TRUE, - output_kin = FALSE, + output_kin = c("d", "oa", "ys", "os"), summary_kin = TRUE, sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth - output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over - ) + output_years = c(1965, 1975, 1985, 1995, 2005) ## the sequence of years we run the function over +) + ``` ### 1.1. Visualizing the output ### ```{r, message=FALSE, warning=FALSE} -head(kin_out_1965_2005) +head(kin_out_1965_2005$kin_summary) ``` Notice the structure of the output data. We have columns `age_focal` and `kin_stage` because we sum over all ages of kin, @@ -179,9 +175,8 @@ below plot is that we really plot Focal's born into different `cohort` -- i.e., while a 40 year old Focal was born in 1965. ```{r, fig.height=6, fig.width=8} -kin_out_1965_2005 %>% - dplyr::filter(group == "oa", - year %in% c(1965, 1975, 1985, 1995, 2005)) %>% +kin_out_1965_2005$kin_summary %>% + dplyr::filter(group == "oa") %>% ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + ggplot2::facet_grid(sex_kin ~ year) + @@ -193,9 +188,8 @@ kin_out_1965_2005 %>% We could also consider any other kin in Focal's network, for instance, offspring using `group` == "d" ```{r, fig.height=6, fig.width=8} -kin_out_1965_2005 %>% - dplyr::filter(group == "d", - year %in% c(1965, 1975, 1985, 1995, 2005)) %>% +kin_out_1965_2005$kin_summary %>% + dplyr::filter(group == "d") %>% ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + ggplot2::facet_grid(sex_kin ~ year) + @@ -210,7 +204,7 @@ Since we only ran the model for 40 years (between 1965-2005), there is very litt We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring and only show Focals born of `cohort` 1910, 1925, or 1965: ```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005 %>% +kin_out_1965_2005$kin_summary %>% dplyr::filter(group == "d", cohort %in% c(1910,1925,1965) ) %>% ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + @@ -228,35 +222,13 @@ the RHS plot (1965 cohort) simply reflects the fact that Focal will not start re ### 2. Now lets consider the distributions of kin Focal expects over the lifecourse ### -To obtain distributions of kin as output, we simply change the function argument: `summary_kin` = FALSE +To obtain distributions of kin as output, we simply use the `kin_full` data.frame. -```{r, message=FALSE, warning=FALSE} -rm(kin_out_1965_2005) -gc() -no_years <- 40 - -kin_out_1965_2005_full <- - kin_multi_stage_time_variant_2sex(U_mat_fem[1:(1+no_years)], - U_mat_male[1:(1+no_years)], - F_mat_fem[1:(1+no_years)], - F_mat_male[1:(1+no_years)], - T_mat_fem[1:(1+no_years)], - T_mat_fem[1:(1+no_years)], - H_mat[1:(1+no_years)], - birth_female = 1 - 0.51, ## Sex ratio -- UK value - parity = TRUE, - output_kin = FALSE, - summary_kin = FALSE, - sex_Focal = "Female", ## define Focal's sex at birth - initial_stage_Focal = 1, ## Define Focal's stage at birth - output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over -) -``` ### 2.1. Visualizing the output ### ```{r, message=FALSE, warning=FALSE} -head(kin_out_1965_2005_full) +head(kin_out_1965_2005$kin_full) ``` Notice the additional column `age_kin`. Rather than grouping kin by stage and summing over all ages, @@ -270,9 +242,8 @@ Restricting ourselves to the years 1965, 1975, 1985, 1995, 2005, we can plot the of these kin over the considered periods, as shown below: ```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005_full %>% +kin_out_1965_2005$kin_full %>% dplyr::filter(group == "ys", - year %in% c(1965, 1975, 1985, 1995, 2005), age_focal == 50) %>% ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + @@ -284,14 +255,13 @@ kin_out_1965_2005_full %>% ggplot2::ggtitle("Focal 50") ``` -Notice the discontinuity along the x-abissca at 50. This reflects the fact that Focal's younger siblings +Notice the discontinuity along the x-abscissa at 50. This reflects the fact that Focal's younger siblings cannot are of age <50. Contrastingly, when we look at the age*stage distribution of older siblings, we observe another discontinuity which bounds kin to be of age >50, as plotted below: ```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005_full %>% +kin_out_1965_2005$kin_full %>% dplyr::filter(group == "os", - year %in% c(1965, 1975, 1985, 1995, 2005), age_focal == 50) %>% ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + @@ -306,9 +276,8 @@ kin_out_1965_2005_full %>% With a simple bit of playing with the output data frame, we can plot the age*stage distribution of the combined siblings of Focal ```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005_full %>% +kin_out_1965_2005$kin_full %>% dplyr::filter((group == "ys" | group == "os"), - year %in% c(1965, 1975, 1985, 1995, 2005), age_focal == 50) %>% tidyr::pivot_wider(names_from = group, values_from = count) %>% dplyr::mutate(count = `ys` + `os`) %>% From a860fba2dbb93c6426a8271d3a806fb05c2c2b90 Mon Sep 17 00:00:00 2001 From: ButterickJoe <135118165+ButterickJoe@users.noreply.github.com> Date: Fri, 21 Feb 2025 11:12:38 +0000 Subject: [PATCH 59/89] fixing age-year increments --- R/kin_multi_stage_time_variant_2sex.R | 51 +- R/kin_multi_stage_time_variant_2sex_preJANG.R | 1048 +++++++++++++++++ 2 files changed, 1081 insertions(+), 18 deletions(-) create mode 100644 R/kin_multi_stage_time_variant_2sex_preJANG.R diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index 7b8c3e5..8255a5b 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -38,14 +38,16 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin sex_Focal = "Female", # Female Focal is default initial_stage_Focal = NULL, - output_years){ + output_years, + age_year_consitent = TRUE, + age_increment = NULL){ no_years <- length(U_list_females) na <- nrow(U_list_females[[1]]) ns <- ncol(U_list_females[[1]]) - + if(age_year_consitent){age_increment <- as.numeric(output_years[2]-output_years[1])} # Ensure inputs are lists of matrices and that the timescale same length - if(length(U_list_females)!=length(output_years)){stop("Timescale inconsistancy")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) + if(length(U_list_females) < (length(output_years))){stop("Proposed timescale longer than demographic timescale")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) if(!is.list(U_list_females) | !is.list(U_list_males)){stop("U's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} if(!is.list(F_list_females) | !is.list(F_list_males)){stop("F's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} if(!is.list(T_list_females) | !is.list(T_list_males)){stop("T's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} @@ -263,19 +265,21 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, if(summary_kin){ kin_out <- create_cumsum_df(relative_data, relative_names, - output_years[1]:output_years[length(output_years)], + output_years, output_years[1], na, ns, - output_kin)} + output_kin, + age_increment)} else{ kin_out <- create_full_dists_df(relative_data, relative_names, - output_years[1]:output_years[length(output_years)], + output_years, output_years[1], na, ns, - output_kin)} + output_kin, + age_increment)} return(kin_out) } @@ -704,25 +708,30 @@ create_cumsum_df <- function(kin_matrix_lists, start_year, na, ns, - specific_kin){ + specific_kin = NULL, + increment = NULL){ + if(length(years) > length(kin_matrix_lists[[1]])){stop("More years than data")} + age_inc <- increment df_year_list <- list() for(j in years){ - ii <- as.numeric(j) - start_year + 1 + ii <- which(years == j) df_list <- list() for(i in 1 : length(kin_names)){ kin_member <- kin_names[[i]] kin_data <- kin_matrix_lists[[i]] kin_data <- kin_data[[ii]] df <- as.data.frame(as.matrix(kin_data)) - dims <- dim( kin_data) + dims <- dim( kin_data ) nr <- dims[1] nc <- dims[2] female_kin <- df[1:(nr/2), 1:nc] male_kin <- df[ (1+nr/2) : nr, 1:nc] + colnames(female_kin) <- seq( 0 , age_inc*(na-1) , by = age_inc ) + colnames(male_kin) <- seq( 0 , age_inc*(na-1) , by = age_inc ) female_kin$stage <- rep(seq(1, ns), na) male_kin$stage <- rep(seq(1, ns), na) - female_kin$age <- rep(seq(0, (na-1)), each = ns) - male_kin$age <- rep(seq(0, (na-1)), each = ns) + female_kin$age <- rep( seq( 0 , age_inc*(na-1) , by = age_inc ) , each = ns) + male_kin$age <- rep( seq( 0 , age_inc*(na-1) , by = age_inc ) , each = ns) female_kin$Sex <- "Female" male_kin$Sex <- "Male" both_kin <- rbind(female_kin, male_kin) @@ -734,7 +743,7 @@ create_cumsum_df <- function(kin_matrix_lists, stage_kin = as.factor(stage), count = num, sex_kin = Sex) - both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal)) - 1 + both_kin$age_focal <- as.numeric(paste(both_kin$age_focal)) df <- both_kin df$year <- j df$group <- kin_member @@ -771,11 +780,14 @@ create_full_dists_df <- function(kin_matrix_lists, start_year, na, ns, - specific_kin){ + specific_kin = NULL, + increment = NULL){ + if(length(years) > length(kin_matrix_lists[[1]])){stop("More years than data")} + age_inc <- increment df_year_list <- list() for(j in years){ - ii <- as.numeric(j) - start_year + 1 df_list <- list() + ii <- which(years == j) for(i in 1 : length(kin_names)){ kin_member <- kin_names[[i]] kin_data <- kin_matrix_lists[[i]] @@ -786,10 +798,12 @@ create_full_dists_df <- function(kin_matrix_lists, nc <- dims[2] female_kin <- df[1:(nr/2), 1:nc] male_kin <- df[ (1+nr/2) : nr, 1:nc] + colnames(female_kin) <- seq( 0 , age_inc*(na-1) , by = age_inc ) + colnames(male_kin) <- seq( 0 , age_inc*(na-1) , by = age_inc ) female_kin$stage <- rep(seq(1, ns), na) male_kin$stage <- rep(seq(1, ns), na) - female_kin$age <- rep(seq(0, (na-1)), each = ns) - male_kin$age <- rep(seq(0, (na-1)), each = ns) + female_kin$age <- rep( seq( 0 , age_inc*(na-1) , by = age_inc ) , each = ns) + male_kin$age <- rep( seq( 0 , age_inc*(na-1) , by = age_inc ) , each = ns) female_kin$Sex <- "Female" male_kin$Sex <- "Male" both_kin <- rbind(female_kin, male_kin) @@ -799,7 +813,7 @@ create_full_dists_df <- function(kin_matrix_lists, stage_kin = as.factor(stage), count = value, sex_kin = Sex) - both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal))-1 + both_kin$age_focal <- as.numeric(paste(both_kin$age_focal)) df <- both_kin df$year <- j df$group <- kin_member @@ -807,6 +821,7 @@ create_full_dists_df <- function(kin_matrix_lists, } df_list <- do.call("rbind", df_list) df_year_list[[(1+length(df_year_list))]] <- df_list + } df_year_list <- do.call("rbind", df_year_list) df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), diff --git a/R/kin_multi_stage_time_variant_2sex_preJANG.R b/R/kin_multi_stage_time_variant_2sex_preJANG.R new file mode 100644 index 0000000..ad413e6 --- /dev/null +++ b/R/kin_multi_stage_time_variant_2sex_preJANG.R @@ -0,0 +1,1048 @@ + + +#' Estimate kin counts by age, stage, and sex, in a time variant framework + +#' @description Implementation of combined formal demographic models: Caswell II,III,IV. + +#' @param U_list_females list with matrix entries: period-specific female survival probabilities. Age in rows and states in columns. +#' @param U_list_males list with matrix entries: period-specific male survival probabilities. Age in rows and states in columns. +#' @param F_list_females list with matrix with elements: period-specific female fertility (age in rows and states in columns). +#' @param F_list_males list with matrix entries: period-specific male fertility (age in rows and states in columns). +#' @param T_list_females list of lists with matrix entries: each outer list entry is period-specific, and composed of +#' a list of stochastic matrices which describe age-specific female probabilities of transferring stage +#' @param T_list_males list of lists with matrix entries: each outer list entry is period-specific, and composed of +#' a list of stochastic matrices which describe age-specific male probabilities of transferring stage +#' @param H_list list with matrix entries: redistribution of newborns across each stage to a specific age-class +#' @param birth_female numeric. birth ratio of females to males in population +#' @param parity logical. parity states imply age distribution of mothers re-scaled to not have parity 0 when Focal born. Default `TRUE`. +#' @param output_kin vector. A vector of particular kin one wishes to obtain results for, e.g., c("m","d","oa"). Default is all kin types. +#' @param summary_kin logical. Results as a data frame of accumulated kin by age of Focal if TRUE, and kin by their age*stage distribution by age of Focal if FALSE. +#' @param sex_Focal character. Female or Male as the user requests. +#' @param initial_stage_Focal Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0) +#' @param output_years vector. The times at which we wish to count kin: start year = output_years[1], and end year = output_years[length.] +#' +#' @return A data frame with focal age, kin age, kin stage, kin sex, year, cohort, and expected number of kin given these restrictions. + +#' @export +#' +kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, + U_list_males = NULL, + F_list_females = NULL, + F_list_males = NULL, + T_list_females = NULL, + T_list_males = NULL, + H_list = NULL, + birth_female = 0.49, ## Sex ratio -- note is 1 - alpha + parity = FALSE, + output_kin = FALSE, # enter a vector of specific kin if we only want to analyse these (e.g., c("m","d")) + summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin + sex_Focal = "Female", # Female Focal is default + initial_stage_Focal = NULL, + output_years){ + + no_years <- length(U_list_females) + na <- nrow(U_list_females[[1]]) + ns <- ncol(U_list_females[[1]]) + + # Ensure inputs are lists of matrices and that the timescale same length + if(length(U_list_females)!=length(output_years)){stop("Timescale inconsistancy")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) + if(!is.list(U_list_females) | !is.list(U_list_males)){stop("U's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} + if(!is.list(F_list_females) | !is.list(F_list_males)){stop("F's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} + if(!is.list(T_list_females) | !is.list(T_list_males)){stop("T's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} + + ### Define empty lists for the accumulated kin of Focals's life-course -- each list entry will reflect a time-period + changing_pop_struct <- list() + Focal_array <- list() + mom_array <- list() + gran_array <- list() + great_gran_array <- list() + daughter_array <- list() + younger_sis_array <- list() + grand_daughter_array <-list() + great_grand_daughter_array <- list() + older_sister_array <- list() + younger_aunt_array <- list() + older_aunt_array <- list() + younger_niece_array <- list() + older_niece_array <- list() + younger_cousin_array <- list() + older_cousin_array <- list() + + ### At each time-period we: 1) -- construct the time-variant projection matrices: + ### U_tilde : transfers across stage and advances age + ### F_tilde : makes newborns from stage/age; puts them to stage/age + ### 2) -- project Focal and kin using above projection matrices + + pb <- progress::progress_bar$new( + format = "Timescale [:bar] :percent", + total = no_years + 1, clear = FALSE, width = 60) + tictoc::tic() + for(year in 1:no_years){ + pb$tick() + T_data_f <- T_list_females[[year]] ## For each year we have na number of Transfer matrices + T_data_m <- T_list_males[[year]] ## which give probabilities of age-dep movement from stage to stage + T_f_list <- list() + T_m_list <- list() + F_f_list <- list() + F_m_list <- list() + U_f_list <- list() + U_m_list <- list() + H_list2 <- list() + + for(stage in 1:ns){ + Uf <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) + Matrix::diag(Uf[-1,-ncol(Uf)]) <- U_list_females[[year]][1:(na-1),stage] + Uf[na,na] <- U_list_females[[year]][na,stage] + Um <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) + Matrix::diag(Um[-1,-ncol(Um)]) <- U_list_males[[year]][1:(na-1),stage] + Um[na,na] <- U_list_males[[year]][na,stage] + U_f_list[[(1+length(U_f_list))]] <- Uf + U_m_list[[(1+length(U_m_list))]] <- Um + H_mat <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) + H_mat[1,] <- 1 + H_list2[[(1+length(H_list2))]] <- H_mat + } + for(age in 1:na){ + T_f <- T_data_f[[age]] + T_m <- T_data_m[[age]] + T_f_list[[(1+length(T_f_list))]] <- T_f + T_m_list[[(1+length(T_m_list))]] <- T_m + F_f <- Matrix::Matrix(nrow = ns, ncol = ns, data = 0, sparse = TRUE) + F_m <- Matrix::Matrix(nrow = ns, ncol = ns, data = 0, sparse = TRUE) + F_f[1,] <- F_list_females[[year]][age,] + F_m[1,] <- F_list_males[[year]][age,] + F_f_list[[(1+length(F_f_list))]] <- F_f + F_m_list[[(1+length(F_m_list))]] <- F_m + } + ## create the appropriate block-diagonal matrices + U_f_BDD <- block_diag_function(U_f_list) ## direct sum of female survivorship, independent over stage (ns diagonal blocks) + U_m_BDD <- block_diag_function(U_m_list) ## direct sum of male survivorship, independent over stage (ns diagonal blocks) + H_BDD <- block_diag_function(H_list2) ## direct sum of which age newborns enter, independent over stage (ns diagonal blocks) + T_f_BDD <- block_diag_function(T_f_list) ## direct sum of female stage transitions, independent over age (na diagonal blocks) + T_m_BDD <- block_diag_function(T_m_list) ## direct sum of male stage transitions, independent over age (na diagonal blocks) + F_f_BDD <- block_diag_function(F_f_list) ## direct sum of female stage->stage reproductions, independent over age (na blocks) + F_m_BDD <- block_diag_function(F_m_list) ## direct sum of male stage->stage reproductions, independent over age (na blocks) + + ## create the appropriate projection matrices + U_tilde_females <- Matrix::t(K_perm_mat(ns, na)) %*% + U_f_BDD %*% + K_perm_mat(ns, na) %*% + T_f_BDD + + ## create sex-specific age*stage projections + U_tilde_males <- Matrix::t(K_perm_mat(ns, na)) %*% + U_m_BDD %*% + K_perm_mat(ns, na) %*% + T_m_BDD + + F_tilde_females <- Matrix::t(K_perm_mat(ns, na)) %*% + H_BDD %*% + K_perm_mat(ns, na) %*% + F_f_BDD + + F_tilde_males <- Matrix::t(K_perm_mat(ns, na)) %*% + H_BDD %*% + K_perm_mat(ns, na) %*% + F_m_BDD + + ## if year == 1 we are at the boundary condition t=0 apply time-invariant kinship projections + if(year == 1){ + ## Output of the static model + kin_out_1 <- all_kin_dy(U_tilde_females, + U_tilde_males , + F_tilde_females, + F_tilde_males, + 1-birth_female, + na, + ns, + parity, + sex_Focal, + initial_stage_Focal) + ### Relative lists' first entries + Focal_array[[(1+length(Focal_array))]] <- kin_out_1[["Focal"]] + daughter_array[[(1+length(daughter_array))]] <- kin_out_1[["d"]] + grand_daughter_array[[(1+length(grand_daughter_array))]] <- kin_out_1[["gd"]] + great_grand_daughter_array[[(1+length(great_grand_daughter_array))]] <- kin_out_1[["ggd"]] + mom_array[[(1+length(mom_array))]] <- kin_out_1[["m"]] + gran_array[[(1+length(gran_array))]] <- kin_out_1[["gm"]] + great_gran_array[[(1+length(great_gran_array))]] <- kin_out_1[["ggm"]] + younger_sis_array[[( 1+length(younger_sis_array))]] <- kin_out_1[["ys"]] + older_sister_array[[(1+length(older_sister_array))]] <- kin_out_1[["os"]] + younger_aunt_array[[(1+length(younger_aunt_array))]] <- kin_out_1[["ya"]] + older_aunt_array[[(1+length(older_aunt_array))]] <- kin_out_1[["oa"]] + younger_niece_array[[(1+length(younger_niece_array))]] <- kin_out_1[["nys"]] + older_niece_array[[(1+length(older_niece_array))]] <- kin_out_1[["nos"]] + younger_cousin_array[[(1+length(younger_cousin_array))]] <- kin_out_1[["cya"]] + older_cousin_array[[(1+length(older_cousin_array))]] <- kin_out_1[["coa"]] + changing_pop_struct[[(1+length(changing_pop_struct))]] <- kin_out_1[["ps"]] + + } + updating_Focal <- Focal_array[[year]] + updating_daughter <- daughter_array[[year]] + updating_grand_daughter <- grand_daughter_array[[year]] + updating_great_grand_daughter <- great_grand_daughter_array[[year]] + updating_mom <- mom_array[[year]] + updating_gran <- gran_array[[year]] + updating_great_gran <- great_gran_array[[year]] + updating_younger_sis <- younger_sis_array[[year]] + updating_older_sis <- older_sister_array[[year]] + updating_youner_aunt <- younger_aunt_array[[year]] + updating_older_aunt <- older_aunt_array[[year]] + updating_younger_niece <- younger_niece_array[[year]] + updating_older_niece <- older_niece_array[[year]] + updating_younger_cousin <- younger_cousin_array[[year]] + updating_older_cousin <- older_cousin_array[[year]] + updating_pop_struct <- changing_pop_struct[[year]] + + ## Output of the time-variant model + kin_out <- all_kin_dy_TV(U_tilde_females, + U_tilde_males, + F_tilde_females, + F_tilde_males, + 1-birth_female, + na, + ns, + parity, + sex_Focal, + initial_stage_Focal, + updating_Focal, + updating_daughter, + updating_grand_daughter, + updating_great_grand_daughter, + updating_mom, + updating_gran, + updating_great_gran, + updating_older_sis, + updating_younger_sis, + updating_older_niece, + updating_younger_niece, + updating_older_aunt, + updating_youner_aunt, + updating_older_cousin, + updating_younger_cousin, + updating_pop_struct) + ## Relative lists entries correspond to timescale periods (each entry an kin age*stage*2 by Focal age matrix) + Focal_array[[(1+length(Focal_array))]] <- kin_out[["Focal"]] + daughter_array[[(1+length(daughter_array))]] <- kin_out[["d"]] + grand_daughter_array[[(1+length(grand_daughter_array))]] <- kin_out[["gd"]] + great_grand_daughter_array[[(1+length(great_grand_daughter_array))]] <- kin_out[["ggd"]] + mom_array[[(1+length(mom_array))]] <- kin_out[["m"]] + gran_array[[(1+length(gran_array))]] <- kin_out[["gm"]] + great_gran_array[[(1+length(great_gran_array))]] <- kin_out[["ggm"]] + younger_sis_array[[(1+length(younger_sis_array))]] <- kin_out[["ys"]] + older_sister_array[[(1+length(older_sister_array))]] <- kin_out[["os"]] + younger_aunt_array[[(1+length(younger_aunt_array))]] <- kin_out[["ya"]] + older_aunt_array[[(1+length(older_aunt_array))]] <- kin_out[["oa"]] + younger_niece_array[[(1+length(younger_niece_array))]] <- kin_out[["nys"]] + older_niece_array[[(1+length(older_niece_array))]] <- kin_out[["nos"]] + younger_cousin_array[[(1+length(younger_cousin_array))]] <- kin_out[["cya"]] + older_cousin_array[[(1+length(older_cousin_array))]] <- kin_out[["coa"]] + changing_pop_struct[[(1+length(changing_pop_struct))]] <- kin_out[["ps"]] + } + tictoc::toc() + ## create a list of output kin -- each element a time-period specific list of matrices + ## label the kin names to match DemoKin: + relative_data <- list("Focal" = Focal_array, + "d" = daughter_array, + "gd" = grand_daughter_array, + "ggd" = great_grand_daughter_array, + "m" = mom_array, + "gm" = gran_array, + "ggm" = great_gran_array, + "ys" = younger_sis_array, + "os" = older_sister_array, + "ya" = younger_aunt_array, + "oa" = older_aunt_array, + "nys" = younger_niece_array, + "nos" = older_niece_array, + "cya" = younger_cousin_array, + "coa" = older_cousin_array) + + relative_names <- names(relative_data) + ## create a nice data frame output + if(summary_kin){ + kin_out <- create_cumsum_df(relative_data, + relative_names, + output_years[1]:output_years[length(output_years)], + output_years[1], + na, + ns, + output_kin)} + else{ + kin_out <- create_full_dists_df(relative_data, + relative_names, + output_years[1]:output_years[length(output_years)], + output_years[1], + na, + ns, + output_kin)} + + return(kin_out) +} + + +#' Title time invariant two-sex multi-state kin projections +#' +#' @param Uf matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial) +#' @param Um matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial) +#' @param Ff matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage +#' @param Fm matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage +#' @param alpha scalar. birth ratio (male:female) +#' @param na scalar. number of ages. +#' @param ns scalar. number of stages. +#' @param Parity logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting +#' @param sex_Focal logical. Female or Male +#' @param Initial_stage_Focal numeric. Any natural number {1,2,3,4,...} +#' +#' @return a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: +#' nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) +#' yielding the age*stage distribution of kin for each age of Focal + +all_kin_dy <- function(Uf, + Um, + Ff, + Fm, + alpha, ## alpha = sex ratio male:female (i.e., 1 - birth_female) + na, ## na = number of ages + ns, ## ns = number of stages + Parity, + sex_Focal, ## binary "F" or "M" + Initial_stage_Focal){ + + n <- nrow(Uf) ## number of ages * stages for each sex + + ## Projection matrices: + + ## Uproj is a block diagonal matrix of block-structured Age*Stage matrices; independently over sex transfers individuals across stage and up age + Uproj <- Matrix::Matrix(block_diag_function(list(Uf, Um)), sparse = TRUE) + ## Fproj is a Sex-block-structured matrix of block-structured Age*Stage matrices where males and females BOTH reproduce (by stage) + Fproj <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) + Fproj[1:n, 1:n] <- (1-alpha)*Ff ## Ff is Age*Stage block structured giving rate at which females in age-stage produce individuals in age-stage + Fproj[(n+1):(2*n), 1:n] <- alpha*Ff + Fproj[1:n, (n+1):(2*n)] <- (1-alpha)*Fm ## Fm is Age*Stage block structured giving rate at which males in age-stage produce individuals in age-stage + Fproj[(n+1):(2*n), (n+1):(2*n)] <- alpha*Fm + + ## Fprojstar is a Sex-block-structured matrix of block-structured Age*Stage matrices where ONLY females reproduce + Fprojstar <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) ## Block structured F_tilde + Fprojstar[1:n, 1:n] <- (1-alpha)*Ff + Fprojstar[(n+1):(2*n), 1:n] <- alpha*Ff + + ## The stable population structure is an age*stage*sex vector: + ## 1:n gives the female age*stage structure + ## (1+n):2n gives the male age*stage structure + population_age_stage_structure <- SD(Uproj + Fprojstar) + + ### Stable distribution of mothers needs adjusting if we work with parity + if(Parity){ + Initial_stage_Focal <- 1 + + population_age_stage_of_parenting <- pi_mix_parity(Uf, Um, Ff, Fm, alpha, na, ns) + mothers_age_stage <- population_age_stage_of_parenting[[2]] + fathers_age_stage <- population_age_stage_of_parenting[[3]] + + mothers_age_dist <- population_age_stage_of_parenting[[4]] + fathers_age_dist <- population_age_stage_of_parenting[[5]] + + } + else{ + population_age_stage_of_parenting <- pi_mix(Uf, Um, Ff, Fm, alpha, na, ns) + mothers_age_stage <- population_age_stage_of_parenting[[2]] + fathers_age_stage <- population_age_stage_of_parenting[[3]] + + mothers_age_dist <- population_age_stage_of_parenting[[4]] + fathers_age_dist <- population_age_stage_of_parenting[[5]] + + } + + ####################################### The dynamics of Kinship, starting with Focal who is no longer a unit vector + + ### Focal requires its own dynamic: G_tilde constructed below tracks Focal's age*stage advancement over the time-scale + f_t <- get_G(Uf, na, ns) ## get_G function in "Functions_required.R" + m_t <- get_G(Um, na, ns) + G_tilde <- block_diag_function(list(f_t,m_t)) + X_Focal <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + IC_Focal <- rep(0, 2*n) + if(sex_Focal == "Female"){ + entry <- 1 + (Initial_stage_Focal-1)*na + IC_Focal[entry] <- 1} + else{ + entry <- n + 1 + (Initial_stage_Focal-1)*na + IC_Focal[entry] <- 1 + } + + ### empty kin matrices for all of Focal's kin + X_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_great_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_great_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_aunt_uncle <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_aunts_uncles <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + + + ### Initial distributions for kin with non-zero deterministic initial conditions: + # Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews + X_Focal[,1] <- IC_Focal + X_parents[, 1] <- mothers_age_stage + + ### projection all kin with deterministic initial conditions + for(i in 1 : (na-1)){ + X_Focal[,i+1] <- G_tilde %*% X_Focal[,i] + X_parents[, i+1] <- Uproj %*% X_parents[, i] + X_younger_sibs[,i+1] <- Uproj %*% X_younger_sibs[,i] + Fprojstar %*% X_parents[,i] + X_younger_niece_nephew[,i+1] <- Uproj %*% X_younger_niece_nephew[,i] + Fproj %*% X_younger_sibs[,i] + X_children[,i+1] <- Uproj %*% X_children[,i] + Fproj %*% X_Focal[,i] + X_grand_children[,i+1] <- Uproj %*% X_grand_children[,i] + Fproj %*% X_children[,i] + X_great_grand_children[,i+1] <- Uproj %*% X_great_grand_children[,i] + Fproj %*% X_grand_children[,i] + } + + ### IC for kin which are derived from above kin (Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews): + # grand parents, older sibs, younger aunts/uncles, older nieces/nephews + IC_f_grand_pars <- mothers_age_dist + IC_m_grand_pars <- fathers_age_dist + IC_f_great_grand_pars <- mothers_age_dist + IC_m_great_grand_pars <- fathers_age_dist + IC_older_sibs_f <- mothers_age_dist + IC_younger_aunts_uncles_f <- mothers_age_dist + IC_younger_aunts_uncles_m <- fathers_age_dist + IC_older_niece_nephew_f <- mothers_age_dist + for(ic in 1 : (na)){ + X_grand_parents[, 1] <- X_grand_parents[, 1] + (IC_f_grand_pars[ic] + IC_m_grand_pars[ic])*X_parents[,ic] ## IC the sum of parents of Focal's parents, + X_great_grand_parents[, 1] <- X_great_grand_parents[, 1] + (IC_f_great_grand_pars[ic] + IC_m_great_grand_pars[ic])*X_grand_parents[,ic] + X_older_sibs[,1] <- X_older_sibs[,1] + IC_older_sibs_f[ic]*X_children[,ic] + X_older_niece_nephew[,1] <- X_older_niece_nephew[,1] + IC_older_niece_nephew_f[ic]*X_grand_children[,ic] + X_younger_aunts_uncles[,1] <- X_younger_aunts_uncles[,1] + (IC_younger_aunts_uncles_f[ic] + IC_younger_aunts_uncles_m[ic])*X_younger_sibs[,ic] + } + + ### Projections of grand parenst, older sibs, younger aunts/uncles, older nieces/nephews + for(i in 1: (na-1)){ + X_grand_parents[, i+1] <- Uproj %*% X_grand_parents[, i] + X_great_grand_parents[, i+1] <- Uproj %*% X_great_grand_parents[, i] + X_older_sibs[,i+1] <- Uproj %*% X_older_sibs[,i] + X_older_niece_nephew[,i+1] <- Uproj %*% X_older_niece_nephew[,i] + Fproj %*% X_older_sibs[,i] + X_younger_aunts_uncles[,i+1] <- Uproj %*% X_younger_aunts_uncles[,i] + Fprojstar %*% X_grand_parents[,i] + } + + ### IC for kin which are derived from above kin (older sibs, younger aunts/uncles, older nieces/nephews): + ## older unts/uncles, older cousins, younger cousins + IC_older_aunt_uncle_f <- mothers_age_dist + IC_older_aunt_uncle_m <- fathers_age_dist + IC_older_cousins_f <- mothers_age_dist + IC_older_cousins_m <- fathers_age_dist + IC_younger_cousins_f <- mothers_age_dist + IC_younger_cousins_m <- fathers_age_dist + for(ic in 1 : (na-1)){ + X_older_aunt_uncle[,1] <- X_older_aunt_uncle[,1] + (IC_older_aunt_uncle_f[ic] + IC_older_aunt_uncle_m[ic])*X_older_sibs[,ic] + X_older_cousins[,1] <- X_older_cousins[,1] + (IC_older_cousins_f[ic] + IC_older_cousins_m[ic])*X_older_niece_nephew[,ic] + X_younger_cousins[,1] <- X_younger_cousins[,1] + (IC_younger_cousins_f[ic] + IC_younger_cousins_m[ic])*X_younger_niece_nephew[,ic] + } + + ## Projections of older unts/uncles, older cousins, younger cousins + for(i in 1: (na-1)){ + X_older_aunt_uncle[,i+1] <- Uproj %*% X_older_aunt_uncle[,i] + X_older_cousins[,i+1] <- Uproj %*% X_older_cousins[,i] + Fproj %*% X_older_aunt_uncle[,i] + X_younger_cousins[,i+1] <- Uproj %*% X_younger_cousins[,i] + Fproj %*% X_younger_aunts_uncles[,i] + } + + #### OUTPUT of all kin + return(list("Focal" = X_Focal, + "d" = X_children, + "gd" = X_grand_children, + "ggd" = X_great_grand_children, + "m" = X_parents, + "gm" = X_grand_parents, + "ggm" = X_great_grand_parents, + "os" = X_older_sibs, + "ys" = X_younger_sibs, + "nos" = X_older_niece_nephew, + "nys" = X_younger_niece_nephew, + "oa" = X_older_aunt_uncle, + "ya" = X_younger_aunts_uncles, + "coa" = X_older_cousins, + "cya" = X_younger_cousins, + "ps" = population_age_stage_structure + )) +} + + +#' Title time-variant two-sex multi-state kin projections +#' +#' @param Uf matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial) +#' @param Um matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial) +#' @param Ff matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage +#' @param Fm matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage +#' @param alpha scalar. birth ratio (male:female) +#' @param na scalar. number of ages. +#' @param ns scalar. number of stages. +#' @param Parity logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting +#' @param sex_Focal logical. Female or Male +#' @param Initial_stage_Focal numeric. Any natural number {1,2,3,4,...} +#' @param previous_kin_Focal matrix. last years kinship output. +#' @param prev_kin_children matrix. last years kinship output. +#' @param prev_kin_grandchildren matrix. last years kinship output. +#' @param prev_kin_greatgrandchildren matrix. last years kinship output. +#' @param prev_kin_parents matrix. last years kinship output. +#' @param prev_kin_grand_parents matrix. last years kinship output. +#' @param prev_kin_older_sibs matrix. last years kinship output. +#' @param prev_kin_younger_sibs matrix. last years kinship output. +#' @param prev_kin_older_niece_nephew matrix. last years kinship output. +#' @param prev_kin_younger_niece_nephew matrix. last years kinship output. +#' @param prev_kin_older_aunts_uncles matrix. last years kinship output. +#' @param prev_kin_younger_aunts_uncles matrix. last years kinship output. +#' @param prev_kin_older_cousins matrix. last years kinship output. +#' @param prev_kin_younger_cousins matrix. last years kinship output. +#' @param previous_population_age_stage_structure vector. The transient "population structure" (age*stage distributed) +#' +#' @return a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: +#' nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) +#' yielding the age*stage distribution of kin for each age of Focal +#' +all_kin_dy_TV <- function(Uf, + Um, + Ff, + Fm, + alpha, ## alpha = sex ratio male:female (i.e., 1 - birth_female) + na, ## number of ages + ns, ## number of stages + Parity, + sex_Focal, + Initial_stage_Focal, + previous_kin_Focal, + prev_kin_children, + prev_kin_grandchildren, + prev_kin_greatgrandchildren, + prev_kin_parents, + prev_kin_grand_parents, + prev_kin_great_grand_parents, + prev_kin_older_sibs, + prev_kin_younger_sibs, + prev_kin_older_niece_nephew, + prev_kin_younger_niece_nephew, + prev_kin_older_aunts_uncles, + prev_kin_younger_aunts_uncles, + prev_kin_older_cousins, + prev_kin_younger_cousins, + previous_population_age_stage_structure){ + + n <- nrow(Uf) + Uproj <- Matrix::Matrix(block_diag_function(list(Uf, Um)), sparse = TRUE) + Fproj <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) + Fproj[1:n, 1:n] <- (1-alpha)*Ff + Fproj[(n+1):(2*n), 1:n] <- alpha*Ff + Fproj[1:n, (n+1):(2*n)] <- (1-alpha)*Fm + Fproj[(n+1):(2*n), (n+1):(2*n)] <- alpha*Fm + Fprojstar <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) ## Block structured F_tilde + Fprojstar[1:n, 1:n] <- (1-alpha)*Ff + Fprojstar[(n+1):(2*n), 1:n] <- alpha*Ff + + population_age_stage_structure <- previous_population_age_stage_structure + population_age_stage_structure <- population_age_stage_structure/sum(population_age_stage_structure) + population_age_stage_structure_next <- (Uproj + Fprojstar)%*%population_age_stage_structure + + ### Stable distribution of mothers needs adjusting if we work with parity + if(Parity){ + Initial_stage_Focal <- 1 + + population_age_stage_of_parenting <- pi_mix_TV_parity(Ff, Fm, alpha, na, ns, population_age_stage_structure) + mothers_age_stage <- population_age_stage_of_parenting[[2]] + fathers_age_stage <- population_age_stage_of_parenting[[3]] + + mothers_age_dist <- population_age_stage_of_parenting[[4]] + fathers_age_dist <- population_age_stage_of_parenting[[5]] + + } + else{ + + population_age_stage_of_parenting <- pi_mix_TV(Ff, Fm, alpha, na, ns, population_age_stage_structure) + mothers_age_stage <- population_age_stage_of_parenting[[2]] + fathers_age_stage <- population_age_stage_of_parenting[[3]] + + mothers_age_dist <- population_age_stage_of_parenting[[4]] + fathers_age_dist <- population_age_stage_of_parenting[[5]] + + } + + ### Focal requires its own dynamic: G_tilde constructed below tracks Focal's age*stage advancement over the time-scale + f_t <- get_G(Uf, na, ns) ## get_G function in "Functions_required.R" + m_t <- get_G(Um, na, ns) + G_tilde <- block_diag_function(list(f_t,m_t)) + X_Focal <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + IC_Focal <- rep(0, 2*n) + if(sex_Focal == "Female"){ + entry <- 1 + (Initial_stage_Focal-1)*na + IC_Focal[entry] <- 1} + else{ + entry <- n + 1 + (Initial_stage_Focal-1)*na + IC_Focal[entry] <- 1 + } + + ### empty kin matrices for all of Focal's kin + X_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_great_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_great_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_aunt_uncle <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_aunts_uncles <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_older_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + X_younger_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) + + ### Initial distributions for kin with non-zero deterministic initial conditions: + ## Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews + X_Focal[,1] <- IC_Focal + X_parents[, 1] <- mothers_age_stage + ### projection all above kin with deterministic initial conditions + for(i in 1 : (na-1)){ + X_Focal[,i+1] <- G_tilde %*% previous_kin_Focal[,i] + X_parents[, i+1] <- Uproj %*% prev_kin_parents[, i] + X_younger_sibs[,i+1] <- Uproj %*% prev_kin_younger_sibs[,i] + Fprojstar %*% prev_kin_parents[,i] + X_younger_niece_nephew[,i+1] <- Uproj %*% prev_kin_younger_niece_nephew[,i] + Fproj %*% prev_kin_younger_sibs[,i] + X_children[,i+1] <- Uproj %*% prev_kin_children[,i] + Fproj %*% previous_kin_Focal[,i] + X_grand_children[,i+1] <- Uproj %*% prev_kin_grandchildren[,i] + Fproj %*% prev_kin_children[,i] + X_great_grand_children[,i+1] <- Uproj %*% prev_kin_greatgrandchildren[,i] + Fproj %*% prev_kin_grandchildren[,i] + } + + ### IC for kin which are derived from above kin (Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews): + # grand parents, older sibs, younger aunts/uncles, older nieces/nephews + IC_f_grand_pars <- mothers_age_dist + IC_m_grand_pars <- fathers_age_dist + IC_f_great_grand_pars <- mothers_age_dist + IC_m_great_grand_pars <- fathers_age_dist + IC_younger_aunts_uncles_f <- mothers_age_dist + IC_younger_aunts_uncles_m <- fathers_age_dist + IC_older_sibs_f <- mothers_age_dist + IC_older_niece_nephew_f <- mothers_age_dist + for(ic in 1 : (na)){ + X_grand_parents[, 1] <- X_grand_parents[, 1] + (IC_f_grand_pars[ic] + IC_m_grand_pars[ic])*prev_kin_parents[,ic] ## IC the sum of parents of Focal's parents, + X_great_grand_parents[, 1] <- X_great_grand_parents[, 1] + (IC_f_great_grand_pars[ic] + IC_m_great_grand_pars[ic])*prev_kin_grand_parents[,ic] + X_older_sibs[,1] <- X_older_sibs[,1] + IC_older_sibs_f[ic]*prev_kin_children[,ic] + X_older_niece_nephew[,1] <- X_older_niece_nephew[,1] + IC_older_niece_nephew_f[ic]*prev_kin_grandchildren[,ic] + X_younger_aunts_uncles[,1] <- X_younger_aunts_uncles[,1] + (IC_younger_aunts_uncles_f[ic] + IC_younger_aunts_uncles_m[ic])*prev_kin_younger_sibs[,ic] + } + + ### Projections of older sibs, younger aunts/uncles, older nieces/nephews + for(i in 1: (na-1)){ + X_grand_parents[, i+1] <- Uproj %*% prev_kin_grand_parents[, i] + X_great_grand_parents[, i+1] <- Uproj %*% prev_kin_great_grand_parents[, i] + X_older_sibs[,i+1] <- Uproj %*% prev_kin_older_sibs[,i] + X_older_niece_nephew[,i+1] <- Uproj %*% prev_kin_older_niece_nephew[,i] + Fproj %*% prev_kin_older_sibs[,i] + X_younger_aunts_uncles[,i+1] <- Uproj %*% prev_kin_younger_aunts_uncles[,i] + Fprojstar %*% prev_kin_grand_parents[,i] + } + + ### IC for kin which are derived from above kin (older sibs, younger aunts/uncles, older nieces/nephews): + ## older unts/uncles, older cousins, younger cousins + IC_older_aunt_uncle_f <- mothers_age_dist + IC_older_aunt_uncle_m <- fathers_age_dist + IC_older_cousins_f <- mothers_age_dist + IC_older_cousins_m <- fathers_age_dist + IC_younger_cousins_f <- mothers_age_dist + IC_younger_cousins_m <- fathers_age_dist + for(ic in 1 : (na-1)){ + X_older_aunt_uncle[,1] <- X_older_aunt_uncle[,1] + (IC_older_aunt_uncle_f[ic] + IC_older_aunt_uncle_m[ic])*prev_kin_older_sibs[,ic] + X_older_cousins[,1] <- X_older_cousins[,1] + (IC_older_cousins_f[ic] + IC_older_cousins_m[ic])*prev_kin_older_niece_nephew[,ic] + X_younger_cousins[,1] <- X_younger_cousins[,1] + (IC_younger_cousins_f[ic] + IC_younger_cousins_m[ic])*prev_kin_younger_niece_nephew[,ic] + } + + ## Projections of older unts/uncles, older cousins, younger cousins + for(i in 1: (na-1)){ + X_older_aunt_uncle[,i+1] <- Uproj %*% prev_kin_older_aunts_uncles[,i] + X_older_cousins[,i+1] <- Uproj %*% prev_kin_older_cousins[,i] + Fproj %*% prev_kin_older_aunts_uncles[,i] + X_younger_cousins[,i+1] <- Uproj %*% prev_kin_younger_cousins[,i] + Fproj %*% prev_kin_younger_aunts_uncles[,i] + } + + return(list("Focal" = X_Focal, + "d" = X_children, + "gd" = X_grand_children, + "ggd" = X_great_grand_children, + "m" = X_parents, + "gm" = X_grand_parents, + "ggm" = X_great_grand_parents, + "os" = X_older_sibs, + "ys" = X_younger_sibs, + "nos" = X_older_niece_nephew, + "nys" = X_younger_niece_nephew, + "oa" = X_older_aunt_uncle, + "ya" = X_younger_aunts_uncles, + "coa" = X_older_cousins, + "cya" = X_younger_cousins, + "ps" = population_age_stage_structure_next)) +} + +################## Create data frame output + +## Use of "pipe" (don't understand the name, but hey) +`%>%` <- magrittr::`%>%` + +#' Title Accumulated kin by each age of Focal, for each time period, and cohort of birth +#' +#' @param kin_matrix_lists list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale +#' so list(X_focal) = list(X_focal[year1],X_focal[year2],...,X_focal[yearlast]) +#' @param kin_names list of characters. Corresponding to above lists: list("F","m",....) +#' @param years vector. The timescale on which we implement the kinship model. +#' @param start_year . First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990) +#' @param na numeric. Number of ages. +#' @param ns numeric. Number of stages. +#' @param specific_kin character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14. +#' +#' @return A data frame which gives for each age of Focal at each year in the timescale, Focal's experienced number kin demarcated by stages (summed over all ages) +#' +create_cumsum_df <- function(kin_matrix_lists, + kin_names, + years, + start_year, + na, + ns, + specific_kin = NULL){ + df_year_list <- list() + for(j in years){ + ii <- as.numeric(j) - start_year + 1 + df_list <- list() + for(i in 1 : length(kin_names)){ + kin_member <- kin_names[[i]] + kin_data <- kin_matrix_lists[[i]] + kin_data <- kin_data[[ii]] + df <- as.data.frame(as.matrix(kin_data)) + dims <- dim( kin_data) + nr <- dims[1] + nc <- dims[2] + female_kin <- df[1:(nr/2), 1:nc] + male_kin <- df[ (1+nr/2) : nr, 1:nc] + female_kin$stage <- rep(seq(1, ns), na) + male_kin$stage <- rep(seq(1, ns), na) + female_kin$age <- rep(seq(0, (na-1)), each = ns) + male_kin$age <- rep(seq(0, (na-1)), each = ns) + female_kin$Sex <- "Female" + male_kin$Sex <- "Male" + both_kin <- rbind(female_kin, male_kin) + both_kin <- both_kin %>% reshape2::melt(id = c("age","stage","Sex")) %>% + dplyr::group_by(variable, stage, Sex) %>% + dplyr::summarise(num = sum(value)) %>% + dplyr::ungroup() + both_kin <- both_kin %>% dplyr::transmute(age_focal = variable, + stage_kin = as.factor(stage), + count = num, + sex_kin = Sex) + both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal)) - 1 + df <- both_kin + df$year <- j + df$group <- kin_member + df_list[[length(df_list)+1]] <- df + } + df_list <- do.call("rbind", df_list) + df_year_list[[(1+length(df_year_list))]] <- df_list + } + df_year_list <- do.call("rbind", df_year_list) + df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), + cohort_factor = as.factor(cohort)) + if(specific_kin != FALSE){ + df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) + } + return(df_year_list) +} + +#' Title joint age*stage distributions of kin by each age of Focal, for each time period, and cohort of birth +#' +#' @param kin_matrix_lists list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale +#' so list(X_focal) = list(X_focal[year1],X_focal[year2],...,X_focal[yearlast]) +#' @param kin_names list of characters. Corresponding to above lists: list("F","m",....) +#' @param years vector. The timescale on which we implement the kinship model. +#' @param start_year . First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990) +#' @param na numeric. Number of ages. +#' @param ns numeric. Number of stages. +#' @param specific_kin character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14. +#' +#' @return A data frame which gives for each age of Focal at each year in the timescale, the full age*stage dist of kin +#' +create_full_dists_df <- function(kin_matrix_lists, + kin_names, + years, + start_year, + na, + ns, + specific_kin = NULL){ + df_year_list <- list() + for(j in years){ + ii <- as.numeric(j) - start_year + 1 + df_list <- list() + for(i in 1 : length(kin_names)){ + kin_member <- kin_names[[i]] + kin_data <- kin_matrix_lists[[i]] + kin_data <- kin_data[[ii]] + df <- as.data.frame(as.matrix(kin_data)) + dims <- dim( kin_data) + nr <- dims[1] + nc <- dims[2] + female_kin <- df[1:(nr/2), 1:nc] + male_kin <- df[ (1+nr/2) : nr, 1:nc] + female_kin$stage <- rep(seq(1, ns), na) + male_kin$stage <- rep(seq(1, ns), na) + female_kin$age <- rep(seq(0, (na-1)), each = ns) + male_kin$age <- rep(seq(0, (na-1)), each = ns) + female_kin$Sex <- "Female" + male_kin$Sex <- "Male" + both_kin <- rbind(female_kin, male_kin) + both_kin <- both_kin %>% reshape2::melt(id = c("age","stage","Sex")) %>% + dplyr::transmute(age_focal = variable, + age_kin = age, + stage_kin = as.factor(stage), + count = value, + sex_kin = Sex) + both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal))-1 + df <- both_kin + df$year <- j + df$group <- kin_member + df_list[[length(df_list)+1]] <- df + } + df_list <- do.call("rbind", df_list) + df_year_list[[(1+length(df_year_list))]] <- df_list + } + df_year_list <- do.call("rbind", df_year_list) + df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), + cohort_factor = as.factor(cohort)) + if(specific_kin != FALSE){ + df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) + } + return(df_year_list) +} + + + +## Construct a matrix composed as a direct sum of a list of matrices +block_diag_function <- function(mat_list){ + s = length(mat_list) + u1 = mat_list[[1]] + dims <- dim(u1) + r = dims[1] + diagmat <- Matrix::Matrix(nrow = (r*s), ncol = (r*s), data = 0, sparse = TRUE) + for(i in 1:s){ + diagmat = diagmat + kronecker(E_matrix(i,i,s,s), mat_list[[i]]) + } + return(diagmat) +} + +## Construct a matrix which transfers Focal across stages, while ensuring Focal survives with probability 1 +get_G <- function(U, na, ns){ + sig <- Matrix::t(rep(1,na*ns)) %*% U + diag <- Matrix::diag(sig[1,]) + G <- U %*% MASS::ginv(diag) + return(G) +} + +#' Mixing distributions for the time-invariant multi-state 2-sex model: Non-parity case +#' +#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age +#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age +#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage +#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage +#' @param alpha scalar. Birth ratio male:female +#' @param na scalar. Number of age-classes +#' @param ns scalar. Number of stages +#' +#' @return list (of vectors). list[[1]] = full age*stage*sex distribution +#' list[[2]] = female age*stage distribution normalised +#' list[[3]] = male age*stage distribution normalised +#' list[[4]] = female marginal age distribution normalised +#' list[[5]] = male marginal age distribution normalised +#' +pi_mix <- function(Uf, Um, Ff, Fm, alpha, na, ns){ + n <- length(Uf[1,]) + F_block <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) + F_block[1:n, 1:n] <- (1-alpha)*Ff + F_block[ (1+n):(2*n), 1:n] <- alpha*Ff + A <- block_diag_function(list(Uf,Um)) + F_block + stable_dist_vec <- SD(A) + ### Joint distributions + pi_f <- Matrix::t( rep(1, na*ns) %*% Ff )*stable_dist_vec[1:n] + pi_f <- pi_f / abs(sum(pi_f)) + pi_m <- Matrix::t( rep(1, na*ns) %*% Fm )*stable_dist_vec[(1+n):(2*n)] + pi_m <- pi_m / abs(sum(pi_m)) + ### Age distributions + pi_F <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_f) + pi_M <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_m) + return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) +} + +#' Mixing distributions for the time-variant multi-state 2-sex model: Non-parity case +#' +#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage +#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage +#' @param alpha scalar. Birth ratio male:female +#' @param na scalar. Number of age-classes +#' @param ns scalar. Number of stages +#' @param previous_age_stage_dist vector. Last years population structure (age*stage*sex full distribution) +#' +#' @return list (of vectors). list[[1]] = full age*stage*sex distribution +#' list[[2]] = female age*stage distribution normalised +#' list[[3]] = male age*stage distribution normalised +#' list[[4]] = female marginal age distribution normalised +#' list[[5]] = male marginal age distribution normalised +#' +pi_mix_TV <- function(Ff, Fm, alpha, na, ns, previous_age_stage_dist){ + n <- length(Ff[1,]) + ### Joint distributions + pi_f <- Matrix::t( rep(1,na*ns) %*% Ff )*previous_age_stage_dist[1:n] + pi_f <- pi_f / abs(sum(pi_f)) + pi_m <- Matrix::t( rep(1,na*ns) %*% Fm )*previous_age_stage_dist[(1+n):(2*n)] + pi_m <- pi_m / abs(sum(pi_m)) + ### Age distributions + pi_F <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_f) + pi_M <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_m) + return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) +} + +#' Mixing distributions for the time-invariant multi-state 2-sex model: Parity-specific case +#' +#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age +#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age +#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage +#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage +#' @param alpha scalar. Birth ratio male:female +#' @param na scalar. Number of age-classes +#' @param ns scalar. Number of stages +#' +#' @return list (of vectors). list[[1]] = full age*stage*sex distribution +#' list[[2]] = female age*stage distribution normalised +#' list[[3]] = male age*stage distribution normalised +#' list[[4]] = female marginal age distribution normalised +#' list[[5]] = male marginal age distribution normalised +#' +pi_mix_parity <- function(Uf, Um, Ff, Fm, alpha, na, ns){ + n <- length(Uf[1,]) + F_block <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) + F_block[1:n, 1:n] <- (1-alpha)*Ff + F_block[ (1+n):(2*n), 1:n] <- alpha*Ff + A <- block_diag_function(list(Uf,Um)) + F_block + stable_dist_vec <- SD(A) + pi_f <- Matrix::t( rep(1, na*ns) %*% Ff )*stable_dist_vec[1:n] + pi_f <- pi_f / abs(sum(pi_f)) + pi_m <- Matrix::t( rep(1, na*ns) %*% Fm )*stable_dist_vec[(1+n):(2*n)] + pi_m <- pi_m / abs(sum(pi_m)) + m_mat <- pi_f %*% Matrix::t(rep(1,na)) + d_mat <- pi_m %*% Matrix::t(rep(1,na)) + pi_F <- kronecker( diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_f + pi_M <- kronecker( diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_m + for(i in 1:na){ + m_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% m_mat[,i] + d_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% d_mat[,i] + } + out_mum <- m_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(m_mat))) + out_dad <- d_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(d_mat))) + ### Joint distributions + pi_f <- out_mum %*% pi_F + pi_m <- out_dad %*% pi_M + return(list(c(pi_f,pi_m), pi_f, pi_m, pi_F, pi_M)) +} + +#' Mixing distributions for the time-variant multi-state 2-sex model: Parity-specific case +#' +#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age +#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age +#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage +#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage +#' @param alpha scalar. Birth ratio male:female +#' @param na scalar. Number of age-classes +#' @param ns scalar. Number of stages +#' @param previous_age_stage_dist vector. Last years population structure (age*stage*sex full distribution) +#' +#' @return list (of vectors). list[[1]] = full age*stage*sex distribution +#' list[[2]] = female age*stage distribution normalised +#' list[[3]] = male age*stage distribution normalised +#' list[[4]] = female marginal age distribution normalised +#' list[[5]] = male marginal age distribution normalised +#' +pi_mix_TV_parity <- function(Ff, Fm, alpha, na, ns, previous_age_stage_dist){ + n <- length(Ff[1,]) + pi_f <- Matrix::t( rep(1,na*ns) %*% Ff )*previous_age_stage_dist[1:n] + pi_f <- pi_f / abs(sum(pi_f)) + pi_m <- Matrix::t( rep(1,na*ns) %*% Fm )*previous_age_stage_dist[(1+n):(2*n)] + pi_m <- pi_m / abs(sum(pi_m)) + m_mat <- pi_f %*% Matrix::t(rep(1,na)) + d_mat <- pi_m %*% Matrix::t(rep(1,na)) + pi_F <- kronecker( Matrix::diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_f + pi_M <- kronecker( Matrix::diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_m + for(i in 1:na){ + m_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% m_mat[,i] + d_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% d_mat[,i] + } + out_mum <- m_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(m_mat))) + out_dad <- d_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(d_mat))) + ### Joint distributions + pi_f <- out_mum %*% pi_F + pi_m <- out_dad %*% pi_M + return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) +} + + +######################################################### Some useful utility functions required + + +###################################################### Eigen-decomposition of a matrix + +# Calculate the spectral radius of a matrix (growth rate in Demographics) +lambda <- function(PM) { + lead_eig <- (abs(eigen(PM, only.values = TRUE)$values)) + lead_eig <- lead_eig[which.max(lead_eig)] + return(lead_eig) +} +# Find the column-eigenvector corresponding to the spectral radius (Stable population structure in Demographics) +SD <- function(PM) { + spectral_stuff <- eigen(PM) + spectral_stuff <- Re(spectral_stuff$vectors[, which.max(abs(spectral_stuff$values))]) + # normalise... + vec_lambda <- spectral_stuff/sum(spectral_stuff) + return(vec_lambda) +} +# Find the row-eigenvector corresponding to the spectral radius (Stable reproductive values in Demographics) +RD <- function(PM) { + spectral_stuff <- eigen(t(PM)) + spectral_stuff <- Re(spectral_stuff$vectors[, which.max(abs(spectral_stuff$values))]) + # normalise... + vec_lambda <- spectral_stuff/sum(spectral_stuff) + return(vec_lambda) +} + +###################################################### Useful matrix operations + +## Constructing a unit vector with a 1 in the ith position +e_vector <- function(i, n){ + e <- rep(0, n) + e[i] <- 1 + return(e) +} +## Creating a matrix of zeros with a 1 in the i,j-th entry +E_matrix <- function(i,j,n,m){ + E <- Matrix::Matrix(nrow = (n), ncol = (m), data = 0, sparse = TRUE) + E[i,j] <- 1 + return(E) + +} +## Creating the Vec-commutation matrix +K_perm_mat <- function(n,m){ + perm <- Matrix::Matrix(nrow = (n*m), ncol = (n*m), data = 0, sparse = TRUE) + for(i in 1:n){ + for(j in 1:m){ + perm = perm + kronecker( E_matrix(i,j,n,m) , Matrix::t(E_matrix(i,j,n,m)) ) + } + } + return(perm) +} + + + + + + + + From 4ce63245577bac86ad581deb7535a617f4edc361 Mon Sep 17 00:00:00 2001 From: ButterickJoe <135118165+ButterickJoe@users.noreply.github.com> Date: Fri, 21 Feb 2025 11:29:34 +0000 Subject: [PATCH 60/89] fixing age-year increments --- R/kin_multi_stage_time_variant_2sex.R | 26 +-- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 159 +++++++----------- 2 files changed, 79 insertions(+), 106 deletions(-) diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index 8255a5b..e1bc8ff 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -262,25 +262,27 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, relative_names <- names(relative_data) ## create a nice data frame output + kin_full <- create_full_dists_df(relative_data, + relative_names, + output_years, + output_years[1], + na, + ns, + output_kin, + age_increment) if(summary_kin){ - kin_out <- create_cumsum_df(relative_data, - relative_names, - output_years, - output_years[1], - na, - ns, - output_kin, - age_increment)} - else{ - kin_out <- create_full_dists_df(relative_data, + kin_summary <- create_cumsum_df(relative_data, relative_names, output_years, output_years[1], na, ns, output_kin, - age_increment)} - + age_increment) + kin_out <- list(kin_full = kin_full, kin_summary = kin_summary)} + else{ + kin_out <- kin_full + } return(kin_out) } diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 1346e1f..66872b0 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -10,38 +10,34 @@ vignette: > --- ```{r, eval = T, include=FALSE} -knitr::opts_chunk$set(collapse = TRUE, comment = "#>") +knitr::opts_chunk$set(collapse = TRUE, comment = "#>", eval = FALSE) library(devtools); load_all() ``` -Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model -of kinship, there have been many extensions to the framework (many of which are documented within this package). -Caswell [-@caswell_formal_2021] updated the original model to incorporate time-varying vital rates, -Caswell [-@caswell_formal_2022] introduced two-sexes to the model, -and Caswell [-@caswell_formal_2020] considered a multi-stage population of kin. -Here, we provide an R function which combines the three aforementioned models. +Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model +of kinship, there have been many extensions to the framework (many of which are documented within this package). +Caswell [-@caswell_formal_2021] updated the original model to incorporate time-varying vital rates, +Caswell [-@caswell_formal_2022] introduced two-sexes to the model, +and Caswell [-@caswell_formal_2020] considered a multi-stage population of kin. +Here, we provide an R function which combines the three aforementioned models. -In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks -encompassing both sexes for an average member of a population, the sex of whom is user specified, -and who is subject to time-varying demographic rates. We call this individual Focal. +In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks +encompassing both sexes for an average member of a population, the sex of whom is user specified, +and who is subject to time-varying demographic rates. We call this individual Focal. We seek the number of, age, and stage distribution of Focal's relatives, for each age of Focal's life, and as a function of the year in which Focal is born. -```{R} -library(DemoKin) +```{r} +# library(DemoKin) library(Matrix) library(tictoc) -`%>%` <- magrittr::`%>%` - - options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise output (but also #lose #progress bar) - ``` ### Kin counts by parity ### -In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from -the [Human Mortality Database](https://www.mortality.org/) -and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). +In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from +the [Human Mortality Database](https://www.mortality.org/) +and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). Some simplifying assumptions we make due to data availability are as follows: i) Fertility rates vary with time, are distinct among parity class, but the same over sexes (the so-called ``androgynous approximation''). @@ -63,24 +59,21 @@ This input list has length = the timescale, and each entry represents the rates This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. 5) `T_list_females` A list of lists of female age-specific probabilities of moving up parity over the timescale (in matrix forms). -The outer list has length = the timescale. The inner list has length = number of ages. -Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. +The outer list has length = the timescale. The inner list has length = number of ages. +Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. Thus for each year, we have a list of age-specific probabilities of moving from one stage to the next. 6) Same as 5) but for males -7) `H_list` A list of length = timescale, in which each element is a matrix which assigns the offspring of individuals in some stage to +7) `H_list` A list of length = timescale, in which each element is a matrix which assigns the offspring of individuals in some stage to the appropriate age class (age in rows and states in columns) -To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed +To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed in another file and simply imported below. The code below reads in the above function input lists. -```{r eval=FALSE, message=FALSE, warning=FALSE, include=FALSE} - -## files loaded as "rda" extensions (from "data/) - +```{r eval=TRUE, message=FALSE, warning=FALSE, include=TRUE} F_mat_fem <- Female_parity_fert_list_UK -F_mat_male <- Male_parity_fert_list_UK +F_mat_male <- Female_parity_fert_list_UK T_mat_fem <- Parity_transfers_by_age_list_UK T_mat_male <- Parity_transfers_by_age_list_UK U_mat_fem <- Female_parity_mortality_list_UK @@ -102,7 +95,7 @@ List starting 1965 ending 2022. F_mat_male == F_mat_fem. -T_mat_fem: list of lists of matrices: Each outer list entry is a list of matrices where each matrix gives age-specific probabilities +T_mat_fem: list of lists of matrices: Each outer list entry is a list of matrices where each matrix gives age-specific probabilities a female moves up parity (inner list has length of number of age-classes). Outer list starting 1965 ending 2022 @@ -113,28 +106,30 @@ H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0 ### 1. Accumulated number of kin Focal expects over the lifecourse under time-varying rates from 1965 to 2005 ### We feed the above inputs into the matrix model, along with other arguments: -UK sex ratio --> `birth_female` = 0.49 -We are considering parity --> `parity` = TRUE -We want all of Focal's kin network --> `output_kin` = FALSE -Accumulated kin in this example --> `summary_kin` = TRUE -Focal is female --> `sex_Focal` = "Female" -Focal born into parity 0 --> `initial_stage_Focal` = 1 -timescale from 1965-1985 -- > `output_years` = seq(1965, 1965 + 40) - -Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage -distribution of kin. - -Notice that the timescale argument `output_years` = seq(1965,2005) gives a sequence of 1965, 1966, ..., 2004, 2005 of length 41. -The first sets of time-varying vital rates in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), + +- UK sex ratio --> `birth_female` = 0.49 +- We are considering parity --> `parity` = TRUE +- We want some of Focal's kin network --> `output_kin` = c("d", "oa", "ys", "os") +- Accumulated kin in this example --> `summary_kin` = TRUE +- Focal is female --> `sex_Focal` = "Female" +- Focal born into parity 0 --> `initial_stage_Focal` = 1 +- timescale as ouptut -- > `output_years` = c(1965, 1975, 1985, 1995, 2005) + +Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage +distribution of kin. + +The first sets of time-varying vital rates in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), the 41-st entry is U_mat_fem[[(1+40)]] (mortality in 2005). We require consistency between the length of the list of vital rates and the timescale: U_mat_fem[[1:(1+40)]] = in length = seq(1965,2005). Therefore we use the input lists of demographic rates -`U_list_females` = U_mat_fem[1:(1+no_years)] which runs from U_mat_fem[[1]] = 1965 set of rates, up to U_mat_fem[[41]] = 2005 set of rates, +`U_list_females` = U_mat_fem[1:(1+no_years)] which runs from U_mat_fem[[1]] = 1965 set of rates, up to U_mat_fem[[41]] = 2005 set of rates, and so on... +> this run takes some time (round 10 min) so we donĀ“t include the output in the vignette. Please try it! + ```{r, message=FALSE, warning=FALSE} # Run kinship model for a female Focal over a timescale of no_years (we use 40 here) -no_years <- 40 +no_years <- 5 # and we start projecting kin in 1965 # We decide here to count accumulated kin by age of Focal, and not distributions of kin kin_out_1965_2005 <- @@ -147,21 +142,24 @@ kin_out_1965_2005 <- H_list = H_mat[1:(1+no_years)], birth_female = 1 - 0.51, ## Sex ratio -- UK value parity = TRUE, - output_kin = FALSE, + output_kin = c("d", "oa", "ys", "os"), summary_kin = TRUE, sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth - output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over - ) + output_years = c(1965, 1975, 1985, 1995, 2005), ## the sequence of years we run the function over + age_year_consitent = TRUE, ## we use 5-year age classes + age_increment = NULL +) + ``` ### 1.1. Visualizing the output ### ```{r, message=FALSE, warning=FALSE} -head(kin_out_1965_2005) +head(kin_out_1965_2005$kin_summary) ``` -Notice the structure of the output data. We have columns `age_focal` and `kin_stage` because we sum over all ages of kin, +Notice the structure of the output data. We have columns `age_focal` and `kin_stage` because we sum over all ages of kin, and produce the marginal stage distribution given age of Focal. We have a column corresponding to sex of kin `sex_kin`, a column showing which `year` we are considering, and a column headed `group` which selects the kin type. Finally, we have columns showing Focal's cohort of birth `cohort` (e.g., year - age of Focal), and an as.factor() equivalent. @@ -169,19 +167,18 @@ Finally, we have columns showing Focal's cohort of birth `cohort` (e.g., year - ### 1.1.1. Plotting kin for an average Focal at some fixed period in time ### -Let's suppose that we really want to understand the age*parity distributions of the accumulated number -of aunts and uncles older than Focal's mother and father, for each age of Focal, over years 1965, 1975, 1985, 1995, 2005. -Some people will do.... +Let's suppose that we really want to understand the age*parity distributions of the accumulated number +of aunts and uncles older than Focal's mother and father, for each age of Focal, over years 1965, 1975, 1985, 1995, 2005. +Some people will do.... We restrict Focal's kinship network to aunts and uncles older than Focal's mother by `group` == "oa". We visualise the marginal -parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different colour schemes. Implicit in the -below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, +parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different colour schemes. Implicit in the +below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. ```{r, fig.height=6, fig.width=8} -kin_out_1965_2005 %>% - dplyr::filter(group == "oa", - year %in% c(1965, 1975, 1985, 1995, 2005)) %>% +kin_out_1965_2005$kin_summary %>% + dplyr::filter(group == "oa") %>% ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + ggplot2::facet_grid(sex_kin ~ year) + @@ -193,9 +190,8 @@ kin_out_1965_2005 %>% We could also consider any other kin in Focal's network, for instance, offspring using `group` == "d" ```{r, fig.height=6, fig.width=8} -kin_out_1965_2005 %>% - dplyr::filter(group == "d", - year %in% c(1965, 1975, 1985, 1995, 2005)) %>% +kin_out_1965_2005$kin_summary %>% + dplyr::filter(group == "d") %>% ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + ggplot2::facet_grid(sex_kin ~ year) + @@ -206,11 +202,11 @@ kin_out_1965_2005 %>% ``` ### 1.1.2. Plotting the kin of Focal as a function of Focal's cohort of birth #### -Since we only ran the model for 40 years (between 1965-2005), there is very little scope to view kinship as cohort-specific. +Since we only ran the model for 40 years (between 1965-2005), there is very little scope to view kinship as cohort-specific. We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring and only show Focals born of `cohort` 1910, 1925, or 1965: ```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005 %>% +kin_out_1965_2005$kin_summary %>% dplyr::filter(group == "d", cohort %in% c(1910,1925,1965) ) %>% ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + @@ -221,42 +217,20 @@ kin_out_1965_2005 %>% ``` The LHS plot (1910 cohort) should be interpreted as follows: if Focal is born in 1910, between 1965-2005 he/she will be 55-95 years old. Focal will have already accumulated its maximal number of offspring, and their overall number will now be dropping as mortality risk begins. The offspring of Focal will be approximately 20-35, and began if not completed reproduction/parity progression. -The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in parity 0. Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by +The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in parity 0. Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by a well mixed parity-distribution at this age of Focal. the RHS plot (1965 cohort) simply reflects the fact that Focal will not start reproduction until around 15 years old. ### 2. Now lets consider the distributions of kin Focal expects over the lifecourse ### -To obtain distributions of kin as output, we simply change the function argument: `summary_kin` = FALSE +To obtain distributions of kin as output, we simply use the `kin_full` data.frame. -```{r, message=FALSE, warning=FALSE} -rm(kin_out_1965_2005) -gc() -no_years <- 40 - -kin_out_1965_2005_full <- - kin_multi_stage_time_variant_2sex(U_mat_fem[1:(1+no_years)], - U_mat_male[1:(1+no_years)], - F_mat_fem[1:(1+no_years)], - F_mat_male[1:(1+no_years)], - T_mat_fem[1:(1+no_years)], - T_mat_fem[1:(1+no_years)], - H_mat[1:(1+no_years)], - birth_female = 1 - 0.51, ## Sex ratio -- UK value - parity = TRUE, - output_kin = FALSE, - summary_kin = FALSE, - sex_Focal = "Female", ## define Focal's sex at birth - initial_stage_Focal = 1, ## Define Focal's stage at birth - output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over -) -``` ### 2.1. Visualizing the output ### ```{r, message=FALSE, warning=FALSE} -head(kin_out_1965_2005_full) +head(kin_out_1965_2005$kin_full) ``` Notice the additional column `age_kin`. Rather than grouping kin by stage and summing over all ages, @@ -270,9 +244,8 @@ Restricting ourselves to the years 1965, 1975, 1985, 1995, 2005, we can plot the of these kin over the considered periods, as shown below: ```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005_full %>% +kin_out_1965_2005$kin_full %>% dplyr::filter(group == "ys", - year %in% c(1965, 1975, 1985, 1995, 2005), age_focal == 50) %>% ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + @@ -284,14 +257,13 @@ kin_out_1965_2005_full %>% ggplot2::ggtitle("Focal 50") ``` -Notice the discontinuity along the x-abissca at 50. This reflects the fact that Focal's younger siblings +Notice the discontinuity along the x-abscissa at 50. This reflects the fact that Focal's younger siblings cannot are of age <50. Contrastingly, when we look at the age*stage distribution of older siblings, we observe another discontinuity which bounds kin to be of age >50, as plotted below: ```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005_full %>% +kin_out_1965_2005$kin_full %>% dplyr::filter(group == "os", - year %in% c(1965, 1975, 1985, 1995, 2005), age_focal == 50) %>% ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + ggplot2::geom_bar(position = "stack", stat = "identity") + @@ -306,9 +278,8 @@ kin_out_1965_2005_full %>% With a simple bit of playing with the output data frame, we can plot the age*stage distribution of the combined siblings of Focal ```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005_full %>% +kin_out_1965_2005$kin_full %>% dplyr::filter((group == "ys" | group == "os"), - year %in% c(1965, 1975, 1985, 1995, 2005), age_focal == 50) %>% tidyr::pivot_wider(names_from = group, values_from = count) %>% dplyr::mutate(count = `ys` + `os`) %>% From 3b2e90a38cf0851f20307e843479bf79c7d10d05 Mon Sep 17 00:00:00 2001 From: ButterickJoe <135118165+ButterickJoe@users.noreply.github.com> Date: Fri, 21 Feb 2025 11:55:54 +0000 Subject: [PATCH 61/89] age year --- R/kin_multi_stage_time_variant_2sex.R | 6 +++--- vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd | 6 +++--- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index e1bc8ff..e7506ee 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -34,7 +34,7 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, H_list = NULL, birth_female = 0.49, ## Sex ratio -- note is 1 - alpha parity = FALSE, - output_kin = FALSE, # enter a vector of specific kin if we only want to analyse these (e.g., c("m","d")) + output_kin = NULL, # enter a vector of specific kin if we only want to analyse these (e.g., c("m","d")) summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin sex_Focal = "Female", # Female Focal is default initial_stage_Focal = NULL, @@ -757,7 +757,7 @@ create_cumsum_df <- function(kin_matrix_lists, df_year_list <- do.call("rbind", df_year_list) df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), cohort_factor = as.factor(cohort)) - if(specific_kin != FALSE){ + if(!is.null(specific_kin)){ df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) } return(df_year_list) @@ -828,7 +828,7 @@ create_full_dists_df <- function(kin_matrix_lists, df_year_list <- do.call("rbind", df_year_list) df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), cohort_factor = as.factor(cohort)) - if(specific_kin != FALSE){ + if(!is.null(specific_kin)){ df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) } return(df_year_list) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 66872b0..897f77b 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -129,7 +129,7 @@ and so on... ```{r, message=FALSE, warning=FALSE} # Run kinship model for a female Focal over a timescale of no_years (we use 40 here) -no_years <- 5 +no_years <- 6 # and we start projecting kin in 1965 # We decide here to count accumulated kin by age of Focal, and not distributions of kin kin_out_1965_2005 <- @@ -147,8 +147,8 @@ kin_out_1965_2005 <- sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth output_years = c(1965, 1975, 1985, 1995, 2005), ## the sequence of years we run the function over - age_year_consitent = TRUE, ## we use 5-year age classes - age_increment = NULL + age_year_consitent = FALSE, ## we use 5-year age classes + age_increment = 1 ) ``` From f96f8a56c1d5cb70859f326a7e08478c0a56166d Mon Sep 17 00:00:00 2001 From: ButterickJoe <135118165+ButterickJoe@users.noreply.github.com> Date: Fri, 21 Feb 2025 15:24:05 +0000 Subject: [PATCH 62/89] fixing time and age inc --- R/kin_multi_stage_time_variant_2sex.R | 32 +++++++++++++------ ...eference_TwoSex_MultiState_TimeVariant.Rmd | 7 ++-- 2 files changed, 26 insertions(+), 13 deletions(-) diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index e7506ee..baa2aa1 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -20,7 +20,10 @@ #' @param sex_Focal character. Female or Male as the user requests. #' @param initial_stage_Focal Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0) #' @param output_years vector. The times at which we wish to count kin: start year = output_years[1], and end year = output_years[length.] -#' +#' @param model_years. The full timescale on which we run the matrix model. From these periods we extract the ``output_years''. +#' Note that if we use abridged life-tables: e.g., 1960,1965,1970 to run the model, by default age_increment = 5 +#' @param age_year_consistent logical. Null sets age-bridge to be equal to year +#' @param age_increment. numeric. If age_year_consisent FALSE set own age-gap #' @return A data frame with focal age, kin age, kin stage, kin sex, year, cohort, and expected number of kin given these restrictions. #' @export @@ -39,15 +42,17 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, sex_Focal = "Female", # Female Focal is default initial_stage_Focal = NULL, output_years, + model_years, age_year_consitent = TRUE, age_increment = NULL){ - no_years <- length(U_list_females) + no_years <- (-1+length(U_list_females)) na <- nrow(U_list_females[[1]]) ns <- ncol(U_list_females[[1]]) - if(age_year_consitent){age_increment <- as.numeric(output_years[2]-output_years[1])} + if(age_year_consitent){age_increment <- as.numeric(model_years[2]-model_years[1])} # Ensure inputs are lists of matrices and that the timescale same length - if(length(U_list_females) < (length(output_years))){stop("Proposed timescale longer than demographic timescale")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) + if(length(U_list_females) != (length(model_years))){stop("Proposed timescale longer than demographic timescale")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) + if(output_years[length(output_years)] > model_years[length(model_years)]){stop("Output years longer than model run")} if(!is.list(U_list_females) | !is.list(U_list_males)){stop("U's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} if(!is.list(F_list_females) | !is.list(F_list_males)){stop("F's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} if(!is.list(T_list_females) | !is.list(T_list_males)){stop("T's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} @@ -80,6 +85,7 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, total = no_years + 1, clear = FALSE, width = 60) tictoc::tic() for(year in 1:no_years){ + pb$tick() T_data_f <- T_list_females[[year]] ## For each year we have na number of Transfer matrices T_data_m <- T_list_males[[year]] ## which give probabilities of age-dep movement from stage to stage @@ -265,7 +271,7 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, kin_full <- create_full_dists_df(relative_data, relative_names, output_years, - output_years[1], + model_years, na, ns, output_kin, @@ -274,7 +280,7 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, kin_summary <- create_cumsum_df(relative_data, relative_names, output_years, - output_years[1], + model_years, na, ns, output_kin, @@ -707,16 +713,19 @@ all_kin_dy_TV <- function(Uf, create_cumsum_df <- function(kin_matrix_lists, kin_names, years, - start_year, + model_years, na, ns, specific_kin = NULL, increment = NULL){ if(length(years) > length(kin_matrix_lists[[1]])){stop("More years than data")} + + matrix_model_time <- model_years + age_inc <- increment df_year_list <- list() for(j in years){ - ii <- which(years == j) + ii <- which(matrix_model_time == j) df_list <- list() for(i in 1 : length(kin_names)){ kin_member <- kin_names[[i]] @@ -779,17 +788,20 @@ create_cumsum_df <- function(kin_matrix_lists, create_full_dists_df <- function(kin_matrix_lists, kin_names, years, - start_year, + model_years, na, ns, specific_kin = NULL, increment = NULL){ if(length(years) > length(kin_matrix_lists[[1]])){stop("More years than data")} + + matrix_model_time <- model_years + age_inc <- increment df_year_list <- list() for(j in years){ df_list <- list() - ii <- which(years == j) + ii <- which(matrix_model_time == j) for(i in 1 : length(kin_names)){ kin_member <- kin_names[[i]] kin_data <- kin_matrix_lists[[i]] diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 897f77b..d3fb039 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -129,7 +129,7 @@ and so on... ```{r, message=FALSE, warning=FALSE} # Run kinship model for a female Focal over a timescale of no_years (we use 40 here) -no_years <- 6 +no_years <- 40 # and we start projecting kin in 1965 # We decide here to count accumulated kin by age of Focal, and not distributions of kin kin_out_1965_2005 <- @@ -147,8 +147,9 @@ kin_out_1965_2005 <- sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth output_years = c(1965, 1975, 1985, 1995, 2005), ## the sequence of years we run the function over - age_year_consitent = FALSE, ## we use 5-year age classes - age_increment = 1 + model_years <- seq(1965, 2005), + age_year_consitent = TRUE, ## we use 5-year age classes + age_increment = NULL ) ``` From 7e98a866f9d93fff62d3a9392137b8e8267094d0 Mon Sep 17 00:00:00 2001 From: ButterickJoe <135118165+ButterickJoe@users.noreply.github.com> Date: Fri, 21 Feb 2025 15:36:50 +0000 Subject: [PATCH 63/89] removing old --- R/kin_multi_stage_time_variant_2sex_preJANG.R | 1048 ----------------- 1 file changed, 1048 deletions(-) delete mode 100644 R/kin_multi_stage_time_variant_2sex_preJANG.R diff --git a/R/kin_multi_stage_time_variant_2sex_preJANG.R b/R/kin_multi_stage_time_variant_2sex_preJANG.R deleted file mode 100644 index ad413e6..0000000 --- a/R/kin_multi_stage_time_variant_2sex_preJANG.R +++ /dev/null @@ -1,1048 +0,0 @@ - - -#' Estimate kin counts by age, stage, and sex, in a time variant framework - -#' @description Implementation of combined formal demographic models: Caswell II,III,IV. - -#' @param U_list_females list with matrix entries: period-specific female survival probabilities. Age in rows and states in columns. -#' @param U_list_males list with matrix entries: period-specific male survival probabilities. Age in rows and states in columns. -#' @param F_list_females list with matrix with elements: period-specific female fertility (age in rows and states in columns). -#' @param F_list_males list with matrix entries: period-specific male fertility (age in rows and states in columns). -#' @param T_list_females list of lists with matrix entries: each outer list entry is period-specific, and composed of -#' a list of stochastic matrices which describe age-specific female probabilities of transferring stage -#' @param T_list_males list of lists with matrix entries: each outer list entry is period-specific, and composed of -#' a list of stochastic matrices which describe age-specific male probabilities of transferring stage -#' @param H_list list with matrix entries: redistribution of newborns across each stage to a specific age-class -#' @param birth_female numeric. birth ratio of females to males in population -#' @param parity logical. parity states imply age distribution of mothers re-scaled to not have parity 0 when Focal born. Default `TRUE`. -#' @param output_kin vector. A vector of particular kin one wishes to obtain results for, e.g., c("m","d","oa"). Default is all kin types. -#' @param summary_kin logical. Results as a data frame of accumulated kin by age of Focal if TRUE, and kin by their age*stage distribution by age of Focal if FALSE. -#' @param sex_Focal character. Female or Male as the user requests. -#' @param initial_stage_Focal Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0) -#' @param output_years vector. The times at which we wish to count kin: start year = output_years[1], and end year = output_years[length.] -#' -#' @return A data frame with focal age, kin age, kin stage, kin sex, year, cohort, and expected number of kin given these restrictions. - -#' @export -#' -kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, - U_list_males = NULL, - F_list_females = NULL, - F_list_males = NULL, - T_list_females = NULL, - T_list_males = NULL, - H_list = NULL, - birth_female = 0.49, ## Sex ratio -- note is 1 - alpha - parity = FALSE, - output_kin = FALSE, # enter a vector of specific kin if we only want to analyse these (e.g., c("m","d")) - summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin - sex_Focal = "Female", # Female Focal is default - initial_stage_Focal = NULL, - output_years){ - - no_years <- length(U_list_females) - na <- nrow(U_list_females[[1]]) - ns <- ncol(U_list_females[[1]]) - - # Ensure inputs are lists of matrices and that the timescale same length - if(length(U_list_females)!=length(output_years)){stop("Timescale inconsistancy")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) - if(!is.list(U_list_females) | !is.list(U_list_males)){stop("U's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} - if(!is.list(F_list_females) | !is.list(F_list_males)){stop("F's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} - if(!is.list(T_list_females) | !is.list(T_list_males)){stop("T's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} - - ### Define empty lists for the accumulated kin of Focals's life-course -- each list entry will reflect a time-period - changing_pop_struct <- list() - Focal_array <- list() - mom_array <- list() - gran_array <- list() - great_gran_array <- list() - daughter_array <- list() - younger_sis_array <- list() - grand_daughter_array <-list() - great_grand_daughter_array <- list() - older_sister_array <- list() - younger_aunt_array <- list() - older_aunt_array <- list() - younger_niece_array <- list() - older_niece_array <- list() - younger_cousin_array <- list() - older_cousin_array <- list() - - ### At each time-period we: 1) -- construct the time-variant projection matrices: - ### U_tilde : transfers across stage and advances age - ### F_tilde : makes newborns from stage/age; puts them to stage/age - ### 2) -- project Focal and kin using above projection matrices - - pb <- progress::progress_bar$new( - format = "Timescale [:bar] :percent", - total = no_years + 1, clear = FALSE, width = 60) - tictoc::tic() - for(year in 1:no_years){ - pb$tick() - T_data_f <- T_list_females[[year]] ## For each year we have na number of Transfer matrices - T_data_m <- T_list_males[[year]] ## which give probabilities of age-dep movement from stage to stage - T_f_list <- list() - T_m_list <- list() - F_f_list <- list() - F_m_list <- list() - U_f_list <- list() - U_m_list <- list() - H_list2 <- list() - - for(stage in 1:ns){ - Uf <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) - Matrix::diag(Uf[-1,-ncol(Uf)]) <- U_list_females[[year]][1:(na-1),stage] - Uf[na,na] <- U_list_females[[year]][na,stage] - Um <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) - Matrix::diag(Um[-1,-ncol(Um)]) <- U_list_males[[year]][1:(na-1),stage] - Um[na,na] <- U_list_males[[year]][na,stage] - U_f_list[[(1+length(U_f_list))]] <- Uf - U_m_list[[(1+length(U_m_list))]] <- Um - H_mat <- Matrix::Matrix(nrow = na, ncol = na, data = 0, sparse = TRUE) - H_mat[1,] <- 1 - H_list2[[(1+length(H_list2))]] <- H_mat - } - for(age in 1:na){ - T_f <- T_data_f[[age]] - T_m <- T_data_m[[age]] - T_f_list[[(1+length(T_f_list))]] <- T_f - T_m_list[[(1+length(T_m_list))]] <- T_m - F_f <- Matrix::Matrix(nrow = ns, ncol = ns, data = 0, sparse = TRUE) - F_m <- Matrix::Matrix(nrow = ns, ncol = ns, data = 0, sparse = TRUE) - F_f[1,] <- F_list_females[[year]][age,] - F_m[1,] <- F_list_males[[year]][age,] - F_f_list[[(1+length(F_f_list))]] <- F_f - F_m_list[[(1+length(F_m_list))]] <- F_m - } - ## create the appropriate block-diagonal matrices - U_f_BDD <- block_diag_function(U_f_list) ## direct sum of female survivorship, independent over stage (ns diagonal blocks) - U_m_BDD <- block_diag_function(U_m_list) ## direct sum of male survivorship, independent over stage (ns diagonal blocks) - H_BDD <- block_diag_function(H_list2) ## direct sum of which age newborns enter, independent over stage (ns diagonal blocks) - T_f_BDD <- block_diag_function(T_f_list) ## direct sum of female stage transitions, independent over age (na diagonal blocks) - T_m_BDD <- block_diag_function(T_m_list) ## direct sum of male stage transitions, independent over age (na diagonal blocks) - F_f_BDD <- block_diag_function(F_f_list) ## direct sum of female stage->stage reproductions, independent over age (na blocks) - F_m_BDD <- block_diag_function(F_m_list) ## direct sum of male stage->stage reproductions, independent over age (na blocks) - - ## create the appropriate projection matrices - U_tilde_females <- Matrix::t(K_perm_mat(ns, na)) %*% - U_f_BDD %*% - K_perm_mat(ns, na) %*% - T_f_BDD - - ## create sex-specific age*stage projections - U_tilde_males <- Matrix::t(K_perm_mat(ns, na)) %*% - U_m_BDD %*% - K_perm_mat(ns, na) %*% - T_m_BDD - - F_tilde_females <- Matrix::t(K_perm_mat(ns, na)) %*% - H_BDD %*% - K_perm_mat(ns, na) %*% - F_f_BDD - - F_tilde_males <- Matrix::t(K_perm_mat(ns, na)) %*% - H_BDD %*% - K_perm_mat(ns, na) %*% - F_m_BDD - - ## if year == 1 we are at the boundary condition t=0 apply time-invariant kinship projections - if(year == 1){ - ## Output of the static model - kin_out_1 <- all_kin_dy(U_tilde_females, - U_tilde_males , - F_tilde_females, - F_tilde_males, - 1-birth_female, - na, - ns, - parity, - sex_Focal, - initial_stage_Focal) - ### Relative lists' first entries - Focal_array[[(1+length(Focal_array))]] <- kin_out_1[["Focal"]] - daughter_array[[(1+length(daughter_array))]] <- kin_out_1[["d"]] - grand_daughter_array[[(1+length(grand_daughter_array))]] <- kin_out_1[["gd"]] - great_grand_daughter_array[[(1+length(great_grand_daughter_array))]] <- kin_out_1[["ggd"]] - mom_array[[(1+length(mom_array))]] <- kin_out_1[["m"]] - gran_array[[(1+length(gran_array))]] <- kin_out_1[["gm"]] - great_gran_array[[(1+length(great_gran_array))]] <- kin_out_1[["ggm"]] - younger_sis_array[[( 1+length(younger_sis_array))]] <- kin_out_1[["ys"]] - older_sister_array[[(1+length(older_sister_array))]] <- kin_out_1[["os"]] - younger_aunt_array[[(1+length(younger_aunt_array))]] <- kin_out_1[["ya"]] - older_aunt_array[[(1+length(older_aunt_array))]] <- kin_out_1[["oa"]] - younger_niece_array[[(1+length(younger_niece_array))]] <- kin_out_1[["nys"]] - older_niece_array[[(1+length(older_niece_array))]] <- kin_out_1[["nos"]] - younger_cousin_array[[(1+length(younger_cousin_array))]] <- kin_out_1[["cya"]] - older_cousin_array[[(1+length(older_cousin_array))]] <- kin_out_1[["coa"]] - changing_pop_struct[[(1+length(changing_pop_struct))]] <- kin_out_1[["ps"]] - - } - updating_Focal <- Focal_array[[year]] - updating_daughter <- daughter_array[[year]] - updating_grand_daughter <- grand_daughter_array[[year]] - updating_great_grand_daughter <- great_grand_daughter_array[[year]] - updating_mom <- mom_array[[year]] - updating_gran <- gran_array[[year]] - updating_great_gran <- great_gran_array[[year]] - updating_younger_sis <- younger_sis_array[[year]] - updating_older_sis <- older_sister_array[[year]] - updating_youner_aunt <- younger_aunt_array[[year]] - updating_older_aunt <- older_aunt_array[[year]] - updating_younger_niece <- younger_niece_array[[year]] - updating_older_niece <- older_niece_array[[year]] - updating_younger_cousin <- younger_cousin_array[[year]] - updating_older_cousin <- older_cousin_array[[year]] - updating_pop_struct <- changing_pop_struct[[year]] - - ## Output of the time-variant model - kin_out <- all_kin_dy_TV(U_tilde_females, - U_tilde_males, - F_tilde_females, - F_tilde_males, - 1-birth_female, - na, - ns, - parity, - sex_Focal, - initial_stage_Focal, - updating_Focal, - updating_daughter, - updating_grand_daughter, - updating_great_grand_daughter, - updating_mom, - updating_gran, - updating_great_gran, - updating_older_sis, - updating_younger_sis, - updating_older_niece, - updating_younger_niece, - updating_older_aunt, - updating_youner_aunt, - updating_older_cousin, - updating_younger_cousin, - updating_pop_struct) - ## Relative lists entries correspond to timescale periods (each entry an kin age*stage*2 by Focal age matrix) - Focal_array[[(1+length(Focal_array))]] <- kin_out[["Focal"]] - daughter_array[[(1+length(daughter_array))]] <- kin_out[["d"]] - grand_daughter_array[[(1+length(grand_daughter_array))]] <- kin_out[["gd"]] - great_grand_daughter_array[[(1+length(great_grand_daughter_array))]] <- kin_out[["ggd"]] - mom_array[[(1+length(mom_array))]] <- kin_out[["m"]] - gran_array[[(1+length(gran_array))]] <- kin_out[["gm"]] - great_gran_array[[(1+length(great_gran_array))]] <- kin_out[["ggm"]] - younger_sis_array[[(1+length(younger_sis_array))]] <- kin_out[["ys"]] - older_sister_array[[(1+length(older_sister_array))]] <- kin_out[["os"]] - younger_aunt_array[[(1+length(younger_aunt_array))]] <- kin_out[["ya"]] - older_aunt_array[[(1+length(older_aunt_array))]] <- kin_out[["oa"]] - younger_niece_array[[(1+length(younger_niece_array))]] <- kin_out[["nys"]] - older_niece_array[[(1+length(older_niece_array))]] <- kin_out[["nos"]] - younger_cousin_array[[(1+length(younger_cousin_array))]] <- kin_out[["cya"]] - older_cousin_array[[(1+length(older_cousin_array))]] <- kin_out[["coa"]] - changing_pop_struct[[(1+length(changing_pop_struct))]] <- kin_out[["ps"]] - } - tictoc::toc() - ## create a list of output kin -- each element a time-period specific list of matrices - ## label the kin names to match DemoKin: - relative_data <- list("Focal" = Focal_array, - "d" = daughter_array, - "gd" = grand_daughter_array, - "ggd" = great_grand_daughter_array, - "m" = mom_array, - "gm" = gran_array, - "ggm" = great_gran_array, - "ys" = younger_sis_array, - "os" = older_sister_array, - "ya" = younger_aunt_array, - "oa" = older_aunt_array, - "nys" = younger_niece_array, - "nos" = older_niece_array, - "cya" = younger_cousin_array, - "coa" = older_cousin_array) - - relative_names <- names(relative_data) - ## create a nice data frame output - if(summary_kin){ - kin_out <- create_cumsum_df(relative_data, - relative_names, - output_years[1]:output_years[length(output_years)], - output_years[1], - na, - ns, - output_kin)} - else{ - kin_out <- create_full_dists_df(relative_data, - relative_names, - output_years[1]:output_years[length(output_years)], - output_years[1], - na, - ns, - output_kin)} - - return(kin_out) -} - - -#' Title time invariant two-sex multi-state kin projections -#' -#' @param Uf matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial) -#' @param Um matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial) -#' @param Ff matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage -#' @param Fm matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage -#' @param alpha scalar. birth ratio (male:female) -#' @param na scalar. number of ages. -#' @param ns scalar. number of stages. -#' @param Parity logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting -#' @param sex_Focal logical. Female or Male -#' @param Initial_stage_Focal numeric. Any natural number {1,2,3,4,...} -#' -#' @return a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: -#' nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) -#' yielding the age*stage distribution of kin for each age of Focal - -all_kin_dy <- function(Uf, - Um, - Ff, - Fm, - alpha, ## alpha = sex ratio male:female (i.e., 1 - birth_female) - na, ## na = number of ages - ns, ## ns = number of stages - Parity, - sex_Focal, ## binary "F" or "M" - Initial_stage_Focal){ - - n <- nrow(Uf) ## number of ages * stages for each sex - - ## Projection matrices: - - ## Uproj is a block diagonal matrix of block-structured Age*Stage matrices; independently over sex transfers individuals across stage and up age - Uproj <- Matrix::Matrix(block_diag_function(list(Uf, Um)), sparse = TRUE) - ## Fproj is a Sex-block-structured matrix of block-structured Age*Stage matrices where males and females BOTH reproduce (by stage) - Fproj <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) - Fproj[1:n, 1:n] <- (1-alpha)*Ff ## Ff is Age*Stage block structured giving rate at which females in age-stage produce individuals in age-stage - Fproj[(n+1):(2*n), 1:n] <- alpha*Ff - Fproj[1:n, (n+1):(2*n)] <- (1-alpha)*Fm ## Fm is Age*Stage block structured giving rate at which males in age-stage produce individuals in age-stage - Fproj[(n+1):(2*n), (n+1):(2*n)] <- alpha*Fm - - ## Fprojstar is a Sex-block-structured matrix of block-structured Age*Stage matrices where ONLY females reproduce - Fprojstar <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) ## Block structured F_tilde - Fprojstar[1:n, 1:n] <- (1-alpha)*Ff - Fprojstar[(n+1):(2*n), 1:n] <- alpha*Ff - - ## The stable population structure is an age*stage*sex vector: - ## 1:n gives the female age*stage structure - ## (1+n):2n gives the male age*stage structure - population_age_stage_structure <- SD(Uproj + Fprojstar) - - ### Stable distribution of mothers needs adjusting if we work with parity - if(Parity){ - Initial_stage_Focal <- 1 - - population_age_stage_of_parenting <- pi_mix_parity(Uf, Um, Ff, Fm, alpha, na, ns) - mothers_age_stage <- population_age_stage_of_parenting[[2]] - fathers_age_stage <- population_age_stage_of_parenting[[3]] - - mothers_age_dist <- population_age_stage_of_parenting[[4]] - fathers_age_dist <- population_age_stage_of_parenting[[5]] - - } - else{ - population_age_stage_of_parenting <- pi_mix(Uf, Um, Ff, Fm, alpha, na, ns) - mothers_age_stage <- population_age_stage_of_parenting[[2]] - fathers_age_stage <- population_age_stage_of_parenting[[3]] - - mothers_age_dist <- population_age_stage_of_parenting[[4]] - fathers_age_dist <- population_age_stage_of_parenting[[5]] - - } - - ####################################### The dynamics of Kinship, starting with Focal who is no longer a unit vector - - ### Focal requires its own dynamic: G_tilde constructed below tracks Focal's age*stage advancement over the time-scale - f_t <- get_G(Uf, na, ns) ## get_G function in "Functions_required.R" - m_t <- get_G(Um, na, ns) - G_tilde <- block_diag_function(list(f_t,m_t)) - X_Focal <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - IC_Focal <- rep(0, 2*n) - if(sex_Focal == "Female"){ - entry <- 1 + (Initial_stage_Focal-1)*na - IC_Focal[entry] <- 1} - else{ - entry <- n + 1 + (Initial_stage_Focal-1)*na - IC_Focal[entry] <- 1 - } - - ### empty kin matrices for all of Focal's kin - X_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_great_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_great_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_older_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_younger_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_older_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_younger_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_older_aunt_uncle <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_younger_aunts_uncles <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_older_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_younger_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - - - ### Initial distributions for kin with non-zero deterministic initial conditions: - # Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews - X_Focal[,1] <- IC_Focal - X_parents[, 1] <- mothers_age_stage - - ### projection all kin with deterministic initial conditions - for(i in 1 : (na-1)){ - X_Focal[,i+1] <- G_tilde %*% X_Focal[,i] - X_parents[, i+1] <- Uproj %*% X_parents[, i] - X_younger_sibs[,i+1] <- Uproj %*% X_younger_sibs[,i] + Fprojstar %*% X_parents[,i] - X_younger_niece_nephew[,i+1] <- Uproj %*% X_younger_niece_nephew[,i] + Fproj %*% X_younger_sibs[,i] - X_children[,i+1] <- Uproj %*% X_children[,i] + Fproj %*% X_Focal[,i] - X_grand_children[,i+1] <- Uproj %*% X_grand_children[,i] + Fproj %*% X_children[,i] - X_great_grand_children[,i+1] <- Uproj %*% X_great_grand_children[,i] + Fproj %*% X_grand_children[,i] - } - - ### IC for kin which are derived from above kin (Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews): - # grand parents, older sibs, younger aunts/uncles, older nieces/nephews - IC_f_grand_pars <- mothers_age_dist - IC_m_grand_pars <- fathers_age_dist - IC_f_great_grand_pars <- mothers_age_dist - IC_m_great_grand_pars <- fathers_age_dist - IC_older_sibs_f <- mothers_age_dist - IC_younger_aunts_uncles_f <- mothers_age_dist - IC_younger_aunts_uncles_m <- fathers_age_dist - IC_older_niece_nephew_f <- mothers_age_dist - for(ic in 1 : (na)){ - X_grand_parents[, 1] <- X_grand_parents[, 1] + (IC_f_grand_pars[ic] + IC_m_grand_pars[ic])*X_parents[,ic] ## IC the sum of parents of Focal's parents, - X_great_grand_parents[, 1] <- X_great_grand_parents[, 1] + (IC_f_great_grand_pars[ic] + IC_m_great_grand_pars[ic])*X_grand_parents[,ic] - X_older_sibs[,1] <- X_older_sibs[,1] + IC_older_sibs_f[ic]*X_children[,ic] - X_older_niece_nephew[,1] <- X_older_niece_nephew[,1] + IC_older_niece_nephew_f[ic]*X_grand_children[,ic] - X_younger_aunts_uncles[,1] <- X_younger_aunts_uncles[,1] + (IC_younger_aunts_uncles_f[ic] + IC_younger_aunts_uncles_m[ic])*X_younger_sibs[,ic] - } - - ### Projections of grand parenst, older sibs, younger aunts/uncles, older nieces/nephews - for(i in 1: (na-1)){ - X_grand_parents[, i+1] <- Uproj %*% X_grand_parents[, i] - X_great_grand_parents[, i+1] <- Uproj %*% X_great_grand_parents[, i] - X_older_sibs[,i+1] <- Uproj %*% X_older_sibs[,i] - X_older_niece_nephew[,i+1] <- Uproj %*% X_older_niece_nephew[,i] + Fproj %*% X_older_sibs[,i] - X_younger_aunts_uncles[,i+1] <- Uproj %*% X_younger_aunts_uncles[,i] + Fprojstar %*% X_grand_parents[,i] - } - - ### IC for kin which are derived from above kin (older sibs, younger aunts/uncles, older nieces/nephews): - ## older unts/uncles, older cousins, younger cousins - IC_older_aunt_uncle_f <- mothers_age_dist - IC_older_aunt_uncle_m <- fathers_age_dist - IC_older_cousins_f <- mothers_age_dist - IC_older_cousins_m <- fathers_age_dist - IC_younger_cousins_f <- mothers_age_dist - IC_younger_cousins_m <- fathers_age_dist - for(ic in 1 : (na-1)){ - X_older_aunt_uncle[,1] <- X_older_aunt_uncle[,1] + (IC_older_aunt_uncle_f[ic] + IC_older_aunt_uncle_m[ic])*X_older_sibs[,ic] - X_older_cousins[,1] <- X_older_cousins[,1] + (IC_older_cousins_f[ic] + IC_older_cousins_m[ic])*X_older_niece_nephew[,ic] - X_younger_cousins[,1] <- X_younger_cousins[,1] + (IC_younger_cousins_f[ic] + IC_younger_cousins_m[ic])*X_younger_niece_nephew[,ic] - } - - ## Projections of older unts/uncles, older cousins, younger cousins - for(i in 1: (na-1)){ - X_older_aunt_uncle[,i+1] <- Uproj %*% X_older_aunt_uncle[,i] - X_older_cousins[,i+1] <- Uproj %*% X_older_cousins[,i] + Fproj %*% X_older_aunt_uncle[,i] - X_younger_cousins[,i+1] <- Uproj %*% X_younger_cousins[,i] + Fproj %*% X_younger_aunts_uncles[,i] - } - - #### OUTPUT of all kin - return(list("Focal" = X_Focal, - "d" = X_children, - "gd" = X_grand_children, - "ggd" = X_great_grand_children, - "m" = X_parents, - "gm" = X_grand_parents, - "ggm" = X_great_grand_parents, - "os" = X_older_sibs, - "ys" = X_younger_sibs, - "nos" = X_older_niece_nephew, - "nys" = X_younger_niece_nephew, - "oa" = X_older_aunt_uncle, - "ya" = X_younger_aunts_uncles, - "coa" = X_older_cousins, - "cya" = X_younger_cousins, - "ps" = population_age_stage_structure - )) -} - - -#' Title time-variant two-sex multi-state kin projections -#' -#' @param Uf matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial) -#' @param Um matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial) -#' @param Ff matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage -#' @param Fm matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage -#' @param alpha scalar. birth ratio (male:female) -#' @param na scalar. number of ages. -#' @param ns scalar. number of stages. -#' @param Parity logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting -#' @param sex_Focal logical. Female or Male -#' @param Initial_stage_Focal numeric. Any natural number {1,2,3,4,...} -#' @param previous_kin_Focal matrix. last years kinship output. -#' @param prev_kin_children matrix. last years kinship output. -#' @param prev_kin_grandchildren matrix. last years kinship output. -#' @param prev_kin_greatgrandchildren matrix. last years kinship output. -#' @param prev_kin_parents matrix. last years kinship output. -#' @param prev_kin_grand_parents matrix. last years kinship output. -#' @param prev_kin_older_sibs matrix. last years kinship output. -#' @param prev_kin_younger_sibs matrix. last years kinship output. -#' @param prev_kin_older_niece_nephew matrix. last years kinship output. -#' @param prev_kin_younger_niece_nephew matrix. last years kinship output. -#' @param prev_kin_older_aunts_uncles matrix. last years kinship output. -#' @param prev_kin_younger_aunts_uncles matrix. last years kinship output. -#' @param prev_kin_older_cousins matrix. last years kinship output. -#' @param prev_kin_younger_cousins matrix. last years kinship output. -#' @param previous_population_age_stage_structure vector. The transient "population structure" (age*stage distributed) -#' -#' @return a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: -#' nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) -#' yielding the age*stage distribution of kin for each age of Focal -#' -all_kin_dy_TV <- function(Uf, - Um, - Ff, - Fm, - alpha, ## alpha = sex ratio male:female (i.e., 1 - birth_female) - na, ## number of ages - ns, ## number of stages - Parity, - sex_Focal, - Initial_stage_Focal, - previous_kin_Focal, - prev_kin_children, - prev_kin_grandchildren, - prev_kin_greatgrandchildren, - prev_kin_parents, - prev_kin_grand_parents, - prev_kin_great_grand_parents, - prev_kin_older_sibs, - prev_kin_younger_sibs, - prev_kin_older_niece_nephew, - prev_kin_younger_niece_nephew, - prev_kin_older_aunts_uncles, - prev_kin_younger_aunts_uncles, - prev_kin_older_cousins, - prev_kin_younger_cousins, - previous_population_age_stage_structure){ - - n <- nrow(Uf) - Uproj <- Matrix::Matrix(block_diag_function(list(Uf, Um)), sparse = TRUE) - Fproj <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) - Fproj[1:n, 1:n] <- (1-alpha)*Ff - Fproj[(n+1):(2*n), 1:n] <- alpha*Ff - Fproj[1:n, (n+1):(2*n)] <- (1-alpha)*Fm - Fproj[(n+1):(2*n), (n+1):(2*n)] <- alpha*Fm - Fprojstar <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) ## Block structured F_tilde - Fprojstar[1:n, 1:n] <- (1-alpha)*Ff - Fprojstar[(n+1):(2*n), 1:n] <- alpha*Ff - - population_age_stage_structure <- previous_population_age_stage_structure - population_age_stage_structure <- population_age_stage_structure/sum(population_age_stage_structure) - population_age_stage_structure_next <- (Uproj + Fprojstar)%*%population_age_stage_structure - - ### Stable distribution of mothers needs adjusting if we work with parity - if(Parity){ - Initial_stage_Focal <- 1 - - population_age_stage_of_parenting <- pi_mix_TV_parity(Ff, Fm, alpha, na, ns, population_age_stage_structure) - mothers_age_stage <- population_age_stage_of_parenting[[2]] - fathers_age_stage <- population_age_stage_of_parenting[[3]] - - mothers_age_dist <- population_age_stage_of_parenting[[4]] - fathers_age_dist <- population_age_stage_of_parenting[[5]] - - } - else{ - - population_age_stage_of_parenting <- pi_mix_TV(Ff, Fm, alpha, na, ns, population_age_stage_structure) - mothers_age_stage <- population_age_stage_of_parenting[[2]] - fathers_age_stage <- population_age_stage_of_parenting[[3]] - - mothers_age_dist <- population_age_stage_of_parenting[[4]] - fathers_age_dist <- population_age_stage_of_parenting[[5]] - - } - - ### Focal requires its own dynamic: G_tilde constructed below tracks Focal's age*stage advancement over the time-scale - f_t <- get_G(Uf, na, ns) ## get_G function in "Functions_required.R" - m_t <- get_G(Um, na, ns) - G_tilde <- block_diag_function(list(f_t,m_t)) - X_Focal <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - IC_Focal <- rep(0, 2*n) - if(sex_Focal == "Female"){ - entry <- 1 + (Initial_stage_Focal-1)*na - IC_Focal[entry] <- 1} - else{ - entry <- n + 1 + (Initial_stage_Focal-1)*na - IC_Focal[entry] <- 1 - } - - ### empty kin matrices for all of Focal's kin - X_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_great_grand_children <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_great_grand_parents <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_older_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_younger_sibs <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_older_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_younger_niece_nephew <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_older_aunt_uncle <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_younger_aunts_uncles <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_older_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - X_younger_cousins <- Matrix::Matrix(nrow = (2*n), ncol = na, data = 0, sparse = TRUE) - - ### Initial distributions for kin with non-zero deterministic initial conditions: - ## Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews - X_Focal[,1] <- IC_Focal - X_parents[, 1] <- mothers_age_stage - ### projection all above kin with deterministic initial conditions - for(i in 1 : (na-1)){ - X_Focal[,i+1] <- G_tilde %*% previous_kin_Focal[,i] - X_parents[, i+1] <- Uproj %*% prev_kin_parents[, i] - X_younger_sibs[,i+1] <- Uproj %*% prev_kin_younger_sibs[,i] + Fprojstar %*% prev_kin_parents[,i] - X_younger_niece_nephew[,i+1] <- Uproj %*% prev_kin_younger_niece_nephew[,i] + Fproj %*% prev_kin_younger_sibs[,i] - X_children[,i+1] <- Uproj %*% prev_kin_children[,i] + Fproj %*% previous_kin_Focal[,i] - X_grand_children[,i+1] <- Uproj %*% prev_kin_grandchildren[,i] + Fproj %*% prev_kin_children[,i] - X_great_grand_children[,i+1] <- Uproj %*% prev_kin_greatgrandchildren[,i] + Fproj %*% prev_kin_grandchildren[,i] - } - - ### IC for kin which are derived from above kin (Focal, parents, children, grand+great children, younger siblings, and younger nieces/nehpews): - # grand parents, older sibs, younger aunts/uncles, older nieces/nephews - IC_f_grand_pars <- mothers_age_dist - IC_m_grand_pars <- fathers_age_dist - IC_f_great_grand_pars <- mothers_age_dist - IC_m_great_grand_pars <- fathers_age_dist - IC_younger_aunts_uncles_f <- mothers_age_dist - IC_younger_aunts_uncles_m <- fathers_age_dist - IC_older_sibs_f <- mothers_age_dist - IC_older_niece_nephew_f <- mothers_age_dist - for(ic in 1 : (na)){ - X_grand_parents[, 1] <- X_grand_parents[, 1] + (IC_f_grand_pars[ic] + IC_m_grand_pars[ic])*prev_kin_parents[,ic] ## IC the sum of parents of Focal's parents, - X_great_grand_parents[, 1] <- X_great_grand_parents[, 1] + (IC_f_great_grand_pars[ic] + IC_m_great_grand_pars[ic])*prev_kin_grand_parents[,ic] - X_older_sibs[,1] <- X_older_sibs[,1] + IC_older_sibs_f[ic]*prev_kin_children[,ic] - X_older_niece_nephew[,1] <- X_older_niece_nephew[,1] + IC_older_niece_nephew_f[ic]*prev_kin_grandchildren[,ic] - X_younger_aunts_uncles[,1] <- X_younger_aunts_uncles[,1] + (IC_younger_aunts_uncles_f[ic] + IC_younger_aunts_uncles_m[ic])*prev_kin_younger_sibs[,ic] - } - - ### Projections of older sibs, younger aunts/uncles, older nieces/nephews - for(i in 1: (na-1)){ - X_grand_parents[, i+1] <- Uproj %*% prev_kin_grand_parents[, i] - X_great_grand_parents[, i+1] <- Uproj %*% prev_kin_great_grand_parents[, i] - X_older_sibs[,i+1] <- Uproj %*% prev_kin_older_sibs[,i] - X_older_niece_nephew[,i+1] <- Uproj %*% prev_kin_older_niece_nephew[,i] + Fproj %*% prev_kin_older_sibs[,i] - X_younger_aunts_uncles[,i+1] <- Uproj %*% prev_kin_younger_aunts_uncles[,i] + Fprojstar %*% prev_kin_grand_parents[,i] - } - - ### IC for kin which are derived from above kin (older sibs, younger aunts/uncles, older nieces/nephews): - ## older unts/uncles, older cousins, younger cousins - IC_older_aunt_uncle_f <- mothers_age_dist - IC_older_aunt_uncle_m <- fathers_age_dist - IC_older_cousins_f <- mothers_age_dist - IC_older_cousins_m <- fathers_age_dist - IC_younger_cousins_f <- mothers_age_dist - IC_younger_cousins_m <- fathers_age_dist - for(ic in 1 : (na-1)){ - X_older_aunt_uncle[,1] <- X_older_aunt_uncle[,1] + (IC_older_aunt_uncle_f[ic] + IC_older_aunt_uncle_m[ic])*prev_kin_older_sibs[,ic] - X_older_cousins[,1] <- X_older_cousins[,1] + (IC_older_cousins_f[ic] + IC_older_cousins_m[ic])*prev_kin_older_niece_nephew[,ic] - X_younger_cousins[,1] <- X_younger_cousins[,1] + (IC_younger_cousins_f[ic] + IC_younger_cousins_m[ic])*prev_kin_younger_niece_nephew[,ic] - } - - ## Projections of older unts/uncles, older cousins, younger cousins - for(i in 1: (na-1)){ - X_older_aunt_uncle[,i+1] <- Uproj %*% prev_kin_older_aunts_uncles[,i] - X_older_cousins[,i+1] <- Uproj %*% prev_kin_older_cousins[,i] + Fproj %*% prev_kin_older_aunts_uncles[,i] - X_younger_cousins[,i+1] <- Uproj %*% prev_kin_younger_cousins[,i] + Fproj %*% prev_kin_younger_aunts_uncles[,i] - } - - return(list("Focal" = X_Focal, - "d" = X_children, - "gd" = X_grand_children, - "ggd" = X_great_grand_children, - "m" = X_parents, - "gm" = X_grand_parents, - "ggm" = X_great_grand_parents, - "os" = X_older_sibs, - "ys" = X_younger_sibs, - "nos" = X_older_niece_nephew, - "nys" = X_younger_niece_nephew, - "oa" = X_older_aunt_uncle, - "ya" = X_younger_aunts_uncles, - "coa" = X_older_cousins, - "cya" = X_younger_cousins, - "ps" = population_age_stage_structure_next)) -} - -################## Create data frame output - -## Use of "pipe" (don't understand the name, but hey) -`%>%` <- magrittr::`%>%` - -#' Title Accumulated kin by each age of Focal, for each time period, and cohort of birth -#' -#' @param kin_matrix_lists list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale -#' so list(X_focal) = list(X_focal[year1],X_focal[year2],...,X_focal[yearlast]) -#' @param kin_names list of characters. Corresponding to above lists: list("F","m",....) -#' @param years vector. The timescale on which we implement the kinship model. -#' @param start_year . First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990) -#' @param na numeric. Number of ages. -#' @param ns numeric. Number of stages. -#' @param specific_kin character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14. -#' -#' @return A data frame which gives for each age of Focal at each year in the timescale, Focal's experienced number kin demarcated by stages (summed over all ages) -#' -create_cumsum_df <- function(kin_matrix_lists, - kin_names, - years, - start_year, - na, - ns, - specific_kin = NULL){ - df_year_list <- list() - for(j in years){ - ii <- as.numeric(j) - start_year + 1 - df_list <- list() - for(i in 1 : length(kin_names)){ - kin_member <- kin_names[[i]] - kin_data <- kin_matrix_lists[[i]] - kin_data <- kin_data[[ii]] - df <- as.data.frame(as.matrix(kin_data)) - dims <- dim( kin_data) - nr <- dims[1] - nc <- dims[2] - female_kin <- df[1:(nr/2), 1:nc] - male_kin <- df[ (1+nr/2) : nr, 1:nc] - female_kin$stage <- rep(seq(1, ns), na) - male_kin$stage <- rep(seq(1, ns), na) - female_kin$age <- rep(seq(0, (na-1)), each = ns) - male_kin$age <- rep(seq(0, (na-1)), each = ns) - female_kin$Sex <- "Female" - male_kin$Sex <- "Male" - both_kin <- rbind(female_kin, male_kin) - both_kin <- both_kin %>% reshape2::melt(id = c("age","stage","Sex")) %>% - dplyr::group_by(variable, stage, Sex) %>% - dplyr::summarise(num = sum(value)) %>% - dplyr::ungroup() - both_kin <- both_kin %>% dplyr::transmute(age_focal = variable, - stage_kin = as.factor(stage), - count = num, - sex_kin = Sex) - both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal)) - 1 - df <- both_kin - df$year <- j - df$group <- kin_member - df_list[[length(df_list)+1]] <- df - } - df_list <- do.call("rbind", df_list) - df_year_list[[(1+length(df_year_list))]] <- df_list - } - df_year_list <- do.call("rbind", df_year_list) - df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), - cohort_factor = as.factor(cohort)) - if(specific_kin != FALSE){ - df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) - } - return(df_year_list) -} - -#' Title joint age*stage distributions of kin by each age of Focal, for each time period, and cohort of birth -#' -#' @param kin_matrix_lists list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale -#' so list(X_focal) = list(X_focal[year1],X_focal[year2],...,X_focal[yearlast]) -#' @param kin_names list of characters. Corresponding to above lists: list("F","m",....) -#' @param years vector. The timescale on which we implement the kinship model. -#' @param start_year . First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990) -#' @param na numeric. Number of ages. -#' @param ns numeric. Number of stages. -#' @param specific_kin character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14. -#' -#' @return A data frame which gives for each age of Focal at each year in the timescale, the full age*stage dist of kin -#' -create_full_dists_df <- function(kin_matrix_lists, - kin_names, - years, - start_year, - na, - ns, - specific_kin = NULL){ - df_year_list <- list() - for(j in years){ - ii <- as.numeric(j) - start_year + 1 - df_list <- list() - for(i in 1 : length(kin_names)){ - kin_member <- kin_names[[i]] - kin_data <- kin_matrix_lists[[i]] - kin_data <- kin_data[[ii]] - df <- as.data.frame(as.matrix(kin_data)) - dims <- dim( kin_data) - nr <- dims[1] - nc <- dims[2] - female_kin <- df[1:(nr/2), 1:nc] - male_kin <- df[ (1+nr/2) : nr, 1:nc] - female_kin$stage <- rep(seq(1, ns), na) - male_kin$stage <- rep(seq(1, ns), na) - female_kin$age <- rep(seq(0, (na-1)), each = ns) - male_kin$age <- rep(seq(0, (na-1)), each = ns) - female_kin$Sex <- "Female" - male_kin$Sex <- "Male" - both_kin <- rbind(female_kin, male_kin) - both_kin <- both_kin %>% reshape2::melt(id = c("age","stage","Sex")) %>% - dplyr::transmute(age_focal = variable, - age_kin = age, - stage_kin = as.factor(stage), - count = value, - sex_kin = Sex) - both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal))-1 - df <- both_kin - df$year <- j - df$group <- kin_member - df_list[[length(df_list)+1]] <- df - } - df_list <- do.call("rbind", df_list) - df_year_list[[(1+length(df_year_list))]] <- df_list - } - df_year_list <- do.call("rbind", df_year_list) - df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), - cohort_factor = as.factor(cohort)) - if(specific_kin != FALSE){ - df_year_list <- df_year_list %>% dplyr::filter(group %in% specific_kin) - } - return(df_year_list) -} - - - -## Construct a matrix composed as a direct sum of a list of matrices -block_diag_function <- function(mat_list){ - s = length(mat_list) - u1 = mat_list[[1]] - dims <- dim(u1) - r = dims[1] - diagmat <- Matrix::Matrix(nrow = (r*s), ncol = (r*s), data = 0, sparse = TRUE) - for(i in 1:s){ - diagmat = diagmat + kronecker(E_matrix(i,i,s,s), mat_list[[i]]) - } - return(diagmat) -} - -## Construct a matrix which transfers Focal across stages, while ensuring Focal survives with probability 1 -get_G <- function(U, na, ns){ - sig <- Matrix::t(rep(1,na*ns)) %*% U - diag <- Matrix::diag(sig[1,]) - G <- U %*% MASS::ginv(diag) - return(G) -} - -#' Mixing distributions for the time-invariant multi-state 2-sex model: Non-parity case -#' -#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age -#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age -#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage -#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage -#' @param alpha scalar. Birth ratio male:female -#' @param na scalar. Number of age-classes -#' @param ns scalar. Number of stages -#' -#' @return list (of vectors). list[[1]] = full age*stage*sex distribution -#' list[[2]] = female age*stage distribution normalised -#' list[[3]] = male age*stage distribution normalised -#' list[[4]] = female marginal age distribution normalised -#' list[[5]] = male marginal age distribution normalised -#' -pi_mix <- function(Uf, Um, Ff, Fm, alpha, na, ns){ - n <- length(Uf[1,]) - F_block <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) - F_block[1:n, 1:n] <- (1-alpha)*Ff - F_block[ (1+n):(2*n), 1:n] <- alpha*Ff - A <- block_diag_function(list(Uf,Um)) + F_block - stable_dist_vec <- SD(A) - ### Joint distributions - pi_f <- Matrix::t( rep(1, na*ns) %*% Ff )*stable_dist_vec[1:n] - pi_f <- pi_f / abs(sum(pi_f)) - pi_m <- Matrix::t( rep(1, na*ns) %*% Fm )*stable_dist_vec[(1+n):(2*n)] - pi_m <- pi_m / abs(sum(pi_m)) - ### Age distributions - pi_F <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_f) - pi_M <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_m) - return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) -} - -#' Mixing distributions for the time-variant multi-state 2-sex model: Non-parity case -#' -#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage -#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage -#' @param alpha scalar. Birth ratio male:female -#' @param na scalar. Number of age-classes -#' @param ns scalar. Number of stages -#' @param previous_age_stage_dist vector. Last years population structure (age*stage*sex full distribution) -#' -#' @return list (of vectors). list[[1]] = full age*stage*sex distribution -#' list[[2]] = female age*stage distribution normalised -#' list[[3]] = male age*stage distribution normalised -#' list[[4]] = female marginal age distribution normalised -#' list[[5]] = male marginal age distribution normalised -#' -pi_mix_TV <- function(Ff, Fm, alpha, na, ns, previous_age_stage_dist){ - n <- length(Ff[1,]) - ### Joint distributions - pi_f <- Matrix::t( rep(1,na*ns) %*% Ff )*previous_age_stage_dist[1:n] - pi_f <- pi_f / abs(sum(pi_f)) - pi_m <- Matrix::t( rep(1,na*ns) %*% Fm )*previous_age_stage_dist[(1+n):(2*n)] - pi_m <- pi_m / abs(sum(pi_m)) - ### Age distributions - pi_F <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_f) - pi_M <- kronecker( diag(na), Matrix::t(rep(1, ns)) ) %*% (pi_m) - return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) -} - -#' Mixing distributions for the time-invariant multi-state 2-sex model: Parity-specific case -#' -#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age -#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age -#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage -#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage -#' @param alpha scalar. Birth ratio male:female -#' @param na scalar. Number of age-classes -#' @param ns scalar. Number of stages -#' -#' @return list (of vectors). list[[1]] = full age*stage*sex distribution -#' list[[2]] = female age*stage distribution normalised -#' list[[3]] = male age*stage distribution normalised -#' list[[4]] = female marginal age distribution normalised -#' list[[5]] = male marginal age distribution normalised -#' -pi_mix_parity <- function(Uf, Um, Ff, Fm, alpha, na, ns){ - n <- length(Uf[1,]) - F_block <- Matrix::Matrix(nrow = (2*n), ncol = (2*n), data = 0, sparse = TRUE) - F_block[1:n, 1:n] <- (1-alpha)*Ff - F_block[ (1+n):(2*n), 1:n] <- alpha*Ff - A <- block_diag_function(list(Uf,Um)) + F_block - stable_dist_vec <- SD(A) - pi_f <- Matrix::t( rep(1, na*ns) %*% Ff )*stable_dist_vec[1:n] - pi_f <- pi_f / abs(sum(pi_f)) - pi_m <- Matrix::t( rep(1, na*ns) %*% Fm )*stable_dist_vec[(1+n):(2*n)] - pi_m <- pi_m / abs(sum(pi_m)) - m_mat <- pi_f %*% Matrix::t(rep(1,na)) - d_mat <- pi_m %*% Matrix::t(rep(1,na)) - pi_F <- kronecker( diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_f - pi_M <- kronecker( diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_m - for(i in 1:na){ - m_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% m_mat[,i] - d_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% d_mat[,i] - } - out_mum <- m_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(m_mat))) - out_dad <- d_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(d_mat))) - ### Joint distributions - pi_f <- out_mum %*% pi_F - pi_m <- out_dad %*% pi_M - return(list(c(pi_f,pi_m), pi_f, pi_m, pi_F, pi_M)) -} - -#' Mixing distributions for the time-variant multi-state 2-sex model: Parity-specific case -#' -#' @param Uf matrix. Block-structured matrix which transfers females over stage and advances their age -#' @param Um matrix. Block-structured matrix which transfers males over stage and advances their age -#' @param Ff matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage -#' @param Fm matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage -#' @param alpha scalar. Birth ratio male:female -#' @param na scalar. Number of age-classes -#' @param ns scalar. Number of stages -#' @param previous_age_stage_dist vector. Last years population structure (age*stage*sex full distribution) -#' -#' @return list (of vectors). list[[1]] = full age*stage*sex distribution -#' list[[2]] = female age*stage distribution normalised -#' list[[3]] = male age*stage distribution normalised -#' list[[4]] = female marginal age distribution normalised -#' list[[5]] = male marginal age distribution normalised -#' -pi_mix_TV_parity <- function(Ff, Fm, alpha, na, ns, previous_age_stage_dist){ - n <- length(Ff[1,]) - pi_f <- Matrix::t( rep(1,na*ns) %*% Ff )*previous_age_stage_dist[1:n] - pi_f <- pi_f / abs(sum(pi_f)) - pi_m <- Matrix::t( rep(1,na*ns) %*% Fm )*previous_age_stage_dist[(1+n):(2*n)] - pi_m <- pi_m / abs(sum(pi_m)) - m_mat <- pi_f %*% Matrix::t(rep(1,na)) - d_mat <- pi_m %*% Matrix::t(rep(1,na)) - pi_F <- kronecker( Matrix::diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_f - pi_M <- kronecker( Matrix::diag(1, na), Matrix::t(rep(1,ns)) ) %*% pi_m - for(i in 1:na){ - m_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% m_mat[,i] - d_mat[,i] <- kronecker( E_matrix(i,i,na,na) , Matrix::diag( c(0, rep(1, ns-1)) ) ) %*% d_mat[,i] - } - out_mum <- m_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(m_mat))) - out_dad <- d_mat %*% MASS::ginv(Matrix::diag(Matrix::colSums(d_mat))) - ### Joint distributions - pi_f <- out_mum %*% pi_F - pi_m <- out_dad %*% pi_M - return(list(c(pi_f,pi_m),pi_f,pi_m,pi_F,pi_M)) -} - - -######################################################### Some useful utility functions required - - -###################################################### Eigen-decomposition of a matrix - -# Calculate the spectral radius of a matrix (growth rate in Demographics) -lambda <- function(PM) { - lead_eig <- (abs(eigen(PM, only.values = TRUE)$values)) - lead_eig <- lead_eig[which.max(lead_eig)] - return(lead_eig) -} -# Find the column-eigenvector corresponding to the spectral radius (Stable population structure in Demographics) -SD <- function(PM) { - spectral_stuff <- eigen(PM) - spectral_stuff <- Re(spectral_stuff$vectors[, which.max(abs(spectral_stuff$values))]) - # normalise... - vec_lambda <- spectral_stuff/sum(spectral_stuff) - return(vec_lambda) -} -# Find the row-eigenvector corresponding to the spectral radius (Stable reproductive values in Demographics) -RD <- function(PM) { - spectral_stuff <- eigen(t(PM)) - spectral_stuff <- Re(spectral_stuff$vectors[, which.max(abs(spectral_stuff$values))]) - # normalise... - vec_lambda <- spectral_stuff/sum(spectral_stuff) - return(vec_lambda) -} - -###################################################### Useful matrix operations - -## Constructing a unit vector with a 1 in the ith position -e_vector <- function(i, n){ - e <- rep(0, n) - e[i] <- 1 - return(e) -} -## Creating a matrix of zeros with a 1 in the i,j-th entry -E_matrix <- function(i,j,n,m){ - E <- Matrix::Matrix(nrow = (n), ncol = (m), data = 0, sparse = TRUE) - E[i,j] <- 1 - return(E) - -} -## Creating the Vec-commutation matrix -K_perm_mat <- function(n,m){ - perm <- Matrix::Matrix(nrow = (n*m), ncol = (n*m), data = 0, sparse = TRUE) - for(i in 1:n){ - for(j in 1:m){ - perm = perm + kronecker( E_matrix(i,j,n,m) , Matrix::t(E_matrix(i,j,n,m)) ) - } - } - return(perm) -} - - - - - - - - From 738cda7afb98c16fbe02562a51081cd134f3f4b3 Mon Sep 17 00:00:00 2001 From: ButterickJoe <135118165+ButterickJoe@users.noreply.github.com> Date: Fri, 21 Feb 2025 15:41:21 +0000 Subject: [PATCH 64/89] fixing --- vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index d3fb039..d2e4068 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -146,9 +146,9 @@ kin_out_1965_2005 <- summary_kin = TRUE, sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth - output_years = c(1965, 1975, 1985, 1995, 2005), ## the sequence of years we run the function over - model_years <- seq(1965, 2005), - age_year_consitent = TRUE, ## we use 5-year age classes + output_years = c(1965, 1975, 1985, 1995, 2005), ## the sequence of years we want output + model_years <- seq(1965, 2005), ## the sequence of years we model + age_year_consitent = TRUE, ## age_increment = NULL ) From 3025030905d0def3e43696ce8e3d54929dbadfaf Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 23 Apr 2025 20:40:24 -0300 Subject: [PATCH 65/89] home --- docs/404.html | 121 +++++++++++++ docs/LICENSE-text.html | 95 ++++++++++ docs/LICENSE.html | 99 +++++++++++ docs/authors.html | 126 ++++++++++++++ docs/bootstrap-toc.css | 60 +++++++ docs/bootstrap-toc.js | 159 +++++++++++++++++ docs/docsearch.css | 148 ++++++++++++++++ docs/docsearch.js | 85 +++++++++ docs/index.html | 342 ++++++++++++++++++++++++++++++++++++ docs/link.svg | 12 ++ docs/pkgdown.css | 384 +++++++++++++++++++++++++++++++++++++++++ docs/pkgdown.js | 108 ++++++++++++ docs/pkgdown.yml | 8 + 13 files changed, 1747 insertions(+) create mode 100644 docs/404.html create mode 100644 docs/LICENSE-text.html create mode 100644 docs/LICENSE.html create mode 100644 docs/authors.html create mode 100644 docs/bootstrap-toc.css create mode 100644 docs/bootstrap-toc.js create mode 100644 docs/docsearch.css create mode 100644 docs/docsearch.js create mode 100644 docs/index.html create mode 100644 docs/link.svg create mode 100644 docs/pkgdown.css create mode 100644 docs/pkgdown.js create mode 100644 docs/pkgdown.yml diff --git a/docs/404.html b/docs/404.html new file mode 100644 index 0000000..0f36184 --- /dev/null +++ b/docs/404.html @@ -0,0 +1,121 @@ + + + + + + + +Page not found (404) • DemoKin + + + + + + + + + + + +
+ + + + + + + + diff --git a/docs/LICENSE-text.html b/docs/LICENSE-text.html new file mode 100644 index 0000000..aa823db --- /dev/null +++ b/docs/LICENSE-text.html @@ -0,0 +1,95 @@ + +License • DemoKin + + +
+
+ + + +
+
+ + +
YEAR: 2021
+COPYRIGHT HOLDER: DemoKin authors
+
+ +
+ + + +
+ + + +
+ +
+

Site built with pkgdown 2.1.1.9000.

+
+ +
+ + + + + + + + diff --git a/docs/LICENSE.html b/docs/LICENSE.html new file mode 100644 index 0000000..7222755 --- /dev/null +++ b/docs/LICENSE.html @@ -0,0 +1,99 @@ + +MIT License • DemoKin + + +
+
+ + + +
+
+ + +
+ +

Copyright (c) 2021 DemoKin authors

+

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ā€œSoftwareā€), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

+

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

+

THE SOFTWARE IS PROVIDED ā€œAS ISā€, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

+
+ +
+ + + +
+ + + +
+ +
+

Site built with pkgdown 2.1.1.9000.

+
+ +
+ + + + + + + + diff --git a/docs/authors.html b/docs/authors.html new file mode 100644 index 0000000..7b85e3a --- /dev/null +++ b/docs/authors.html @@ -0,0 +1,126 @@ + +Authors and Citation • DemoKin + + +
+
+ + + +
+
+
+ + + +
  • +

    IvƔn Williams. Maintainer. +

    +
  • +
  • +

    Diego Alburez-Gutierrez. Author. +

    +
  • +
  • +

    Xi Song. Contributor. +

    +
  • +
  • +

    Caswell Hal. Contributor. +

    +
  • +
+
+
+

Citation

+ Source: DESCRIPTION +
+
+ + +

Alburez-Gutierrez D (2025). +DemoKin: Estimate Population Kin Distribution. +R package version 1.0.3, https://github.com/IvanWilli/DemoKin. +

+
@Manual{,
+  title = {DemoKin: Estimate Population Kin Distribution},
+  author = {Diego Alburez-Gutierrez},
+  year = {2025},
+  note = {R package version 1.0.3},
+  url = {https://github.com/IvanWilli/DemoKin},
+}
+ +
+ +
+ + + +
+ +
+

Site built with pkgdown 2.1.1.9000.

+
+ +
+ + + + + + + + diff --git a/docs/bootstrap-toc.css b/docs/bootstrap-toc.css new file mode 100644 index 0000000..5a85941 --- /dev/null +++ b/docs/bootstrap-toc.css @@ -0,0 +1,60 @@ +/*! + * Bootstrap Table of Contents v0.4.1 (http://afeld.github.io/bootstrap-toc/) + * Copyright 2015 Aidan Feldman + * Licensed under MIT (https://github.com/afeld/bootstrap-toc/blob/gh-pages/LICENSE.md) */ + +/* modified from https://github.com/twbs/bootstrap/blob/94b4076dd2efba9af71f0b18d4ee4b163aa9e0dd/docs/assets/css/src/docs.css#L548-L601 */ + +/* All levels of nav */ +nav[data-toggle='toc'] .nav > li > a { + display: block; + padding: 4px 20px; + font-size: 13px; + font-weight: 500; + color: #767676; +} +nav[data-toggle='toc'] .nav > li > a:hover, +nav[data-toggle='toc'] .nav > li > a:focus { + padding-left: 19px; + color: #563d7c; + text-decoration: none; + background-color: transparent; + border-left: 1px solid #563d7c; +} +nav[data-toggle='toc'] .nav > .active > a, +nav[data-toggle='toc'] .nav > .active:hover > a, +nav[data-toggle='toc'] .nav > .active:focus > a { + padding-left: 18px; + font-weight: bold; + color: #563d7c; + background-color: transparent; + border-left: 2px solid #563d7c; +} + +/* Nav: second level (shown on .active) */ +nav[data-toggle='toc'] .nav .nav { + display: none; /* Hide by default, but at >768px, show it */ + padding-bottom: 10px; +} +nav[data-toggle='toc'] .nav .nav > li > a { + padding-top: 1px; + padding-bottom: 1px; + padding-left: 30px; + font-size: 12px; + font-weight: normal; +} +nav[data-toggle='toc'] .nav .nav > li > a:hover, +nav[data-toggle='toc'] .nav .nav > li > a:focus { + padding-left: 29px; +} +nav[data-toggle='toc'] .nav .nav > .active > a, +nav[data-toggle='toc'] .nav .nav > .active:hover > a, +nav[data-toggle='toc'] .nav .nav > .active:focus > a { + padding-left: 28px; + font-weight: 500; +} + +/* from https://github.com/twbs/bootstrap/blob/e38f066d8c203c3e032da0ff23cd2d6098ee2dd6/docs/assets/css/src/docs.css#L631-L634 */ +nav[data-toggle='toc'] .nav > .active > ul { + display: block; +} diff --git a/docs/bootstrap-toc.js b/docs/bootstrap-toc.js new file mode 100644 index 0000000..1cdd573 --- /dev/null +++ b/docs/bootstrap-toc.js @@ -0,0 +1,159 @@ +/*! + * Bootstrap Table of Contents v0.4.1 (http://afeld.github.io/bootstrap-toc/) + * Copyright 2015 Aidan Feldman + * Licensed under MIT (https://github.com/afeld/bootstrap-toc/blob/gh-pages/LICENSE.md) */ +(function() { + 'use strict'; + + window.Toc = { + helpers: { + // return all matching elements in the set, or their descendants + findOrFilter: function($el, selector) { + // http://danielnouri.org/notes/2011/03/14/a-jquery-find-that-also-finds-the-root-element/ + // http://stackoverflow.com/a/12731439/358804 + var $descendants = $el.find(selector); + return $el.filter(selector).add($descendants).filter(':not([data-toc-skip])'); + }, + + generateUniqueIdBase: function(el) { + var text = $(el).text(); + var anchor = text.trim().toLowerCase().replace(/[^A-Za-z0-9]+/g, '-'); + return anchor || el.tagName.toLowerCase(); + }, + + generateUniqueId: function(el) { + var anchorBase = this.generateUniqueIdBase(el); + for (var i = 0; ; i++) { + var anchor = anchorBase; + if (i > 0) { + // add suffix + anchor += '-' + i; + } + // check if ID already exists + if (!document.getElementById(anchor)) { + return anchor; + } + } + }, + + generateAnchor: function(el) { + if (el.id) { + return el.id; + } else { + var anchor = this.generateUniqueId(el); + el.id = anchor; + return anchor; + } + }, + + createNavList: function() { + return $(''); + }, + + createChildNavList: function($parent) { + var $childList = this.createNavList(); + $parent.append($childList); + return $childList; + }, + + generateNavEl: function(anchor, text) { + var $a = $(''); + $a.attr('href', '#' + anchor); + $a.text(text); + var $li = $('
  • '); + $li.append($a); + return $li; + }, + + generateNavItem: function(headingEl) { + var anchor = this.generateAnchor(headingEl); + var $heading = $(headingEl); + var text = $heading.data('toc-text') || $heading.text(); + return this.generateNavEl(anchor, text); + }, + + // Find the first heading level (`

    `, then `

    `, etc.) that has more than one element. Defaults to 1 (for `

    `). + getTopLevel: function($scope) { + for (var i = 1; i <= 6; i++) { + var $headings = this.findOrFilter($scope, 'h' + i); + if ($headings.length > 1) { + return i; + } + } + + return 1; + }, + + // returns the elements for the top level, and the next below it + getHeadings: function($scope, topLevel) { + var topSelector = 'h' + topLevel; + + var secondaryLevel = topLevel + 1; + var secondarySelector = 'h' + secondaryLevel; + + return this.findOrFilter($scope, topSelector + ',' + secondarySelector); + }, + + getNavLevel: function(el) { + return parseInt(el.tagName.charAt(1), 10); + }, + + populateNav: function($topContext, topLevel, $headings) { + var $context = $topContext; + var $prevNav; + + var helpers = this; + $headings.each(function(i, el) { + var $newNav = helpers.generateNavItem(el); + var navLevel = helpers.getNavLevel(el); + + // determine the proper $context + if (navLevel === topLevel) { + // use top level + $context = $topContext; + } else if ($prevNav && $context === $topContext) { + // create a new level of the tree and switch to it + $context = helpers.createChildNavList($prevNav); + } // else use the current $context + + $context.append($newNav); + + $prevNav = $newNav; + }); + }, + + parseOps: function(arg) { + var opts; + if (arg.jquery) { + opts = { + $nav: arg + }; + } else { + opts = arg; + } + opts.$scope = opts.$scope || $(document.body); + return opts; + } + }, + + // accepts a jQuery object, or an options object + init: function(opts) { + opts = this.helpers.parseOps(opts); + + // ensure that the data attribute is in place for styling + opts.$nav.attr('data-toggle', 'toc'); + + var $topContext = this.helpers.createChildNavList(opts.$nav); + var topLevel = this.helpers.getTopLevel(opts.$scope); + var $headings = this.helpers.getHeadings(opts.$scope, topLevel); + this.helpers.populateNav($topContext, topLevel, $headings); + } + }; + + $(function() { + $('nav[data-toggle="toc"]').each(function(i, el) { + var $nav = $(el); + Toc.init($nav); + }); + }); +})(); diff --git a/docs/docsearch.css b/docs/docsearch.css new file mode 100644 index 0000000..e5f1fe1 --- /dev/null +++ b/docs/docsearch.css @@ -0,0 +1,148 @@ +/* Docsearch -------------------------------------------------------------- */ +/* + Source: https://github.com/algolia/docsearch/ + License: MIT +*/ + +.algolia-autocomplete { + display: block; + -webkit-box-flex: 1; + -ms-flex: 1; + flex: 1 +} + +.algolia-autocomplete .ds-dropdown-menu { + width: 100%; + min-width: none; + max-width: none; + padding: .75rem 0; + background-color: #fff; + background-clip: padding-box; + border: 1px solid rgba(0, 0, 0, .1); + box-shadow: 0 .5rem 1rem rgba(0, 0, 0, .175); +} + +@media (min-width:768px) { + .algolia-autocomplete .ds-dropdown-menu { + width: 175% + } +} + +.algolia-autocomplete .ds-dropdown-menu::before { + display: none +} + +.algolia-autocomplete .ds-dropdown-menu [class^=ds-dataset-] { + padding: 0; + background-color: rgb(255,255,255); + border: 0; + max-height: 80vh; +} + +.algolia-autocomplete .ds-dropdown-menu .ds-suggestions { + margin-top: 0 +} + +.algolia-autocomplete .algolia-docsearch-suggestion { + padding: 0; + overflow: visible +} + +.algolia-autocomplete .algolia-docsearch-suggestion--category-header { + padding: .125rem 1rem; + margin-top: 0; + font-size: 1.3em; + font-weight: 500; + color: #00008B; + border-bottom: 0 +} + +.algolia-autocomplete .algolia-docsearch-suggestion--wrapper { + float: none; + padding-top: 0 +} + +.algolia-autocomplete .algolia-docsearch-suggestion--subcategory-column { + float: none; + width: auto; + padding: 0; + text-align: left +} + +.algolia-autocomplete .algolia-docsearch-suggestion--content { + float: none; + width: auto; + padding: 0 +} + +.algolia-autocomplete .algolia-docsearch-suggestion--content::before { + display: none +} + +.algolia-autocomplete .ds-suggestion:not(:first-child) .algolia-docsearch-suggestion--category-header { + padding-top: .75rem; + margin-top: .75rem; + border-top: 1px solid rgba(0, 0, 0, .1) +} + +.algolia-autocomplete .ds-suggestion .algolia-docsearch-suggestion--subcategory-column { + display: block; + padding: .1rem 1rem; + margin-bottom: 0.1; + font-size: 1.0em; + font-weight: 400 + /* display: none */ +} + +.algolia-autocomplete .algolia-docsearch-suggestion--title { + display: block; + padding: .25rem 1rem; + margin-bottom: 0; + font-size: 0.9em; + font-weight: 400 +} + +.algolia-autocomplete .algolia-docsearch-suggestion--text { + padding: 0 1rem .5rem; + margin-top: -.25rem; + font-size: 0.8em; + font-weight: 400; + line-height: 1.25 +} + +.algolia-autocomplete .algolia-docsearch-footer { + width: 110px; + height: 20px; + z-index: 3; + margin-top: 10.66667px; + float: right; + font-size: 0; + line-height: 0; +} + +.algolia-autocomplete .algolia-docsearch-footer--logo { + background-image: url("data:image/svg+xml;utf8,"); + background-repeat: no-repeat; + background-position: 50%; + background-size: 100%; + overflow: hidden; + text-indent: -9000px; + width: 100%; + height: 100%; + display: block; + transform: translate(-8px); +} + +.algolia-autocomplete .algolia-docsearch-suggestion--highlight { + color: #FF8C00; + background: rgba(232, 189, 54, 0.1) +} + + +.algolia-autocomplete .algolia-docsearch-suggestion--text .algolia-docsearch-suggestion--highlight { + box-shadow: inset 0 -2px 0 0 rgba(105, 105, 105, .5) +} + +.algolia-autocomplete .ds-suggestion.ds-cursor .algolia-docsearch-suggestion--content { + background-color: rgba(192, 192, 192, .15) +} diff --git a/docs/docsearch.js b/docs/docsearch.js new file mode 100644 index 0000000..b35504c --- /dev/null +++ b/docs/docsearch.js @@ -0,0 +1,85 @@ +$(function() { + + // register a handler to move the focus to the search bar + // upon pressing shift + "/" (i.e. "?") + $(document).on('keydown', function(e) { + if (e.shiftKey && e.keyCode == 191) { + e.preventDefault(); + $("#search-input").focus(); + } + }); + + $(document).ready(function() { + // do keyword highlighting + /* modified from https://jsfiddle.net/julmot/bL6bb5oo/ */ + var mark = function() { + + var referrer = document.URL ; + var paramKey = "q" ; + + if (referrer.indexOf("?") !== -1) { + var qs = referrer.substr(referrer.indexOf('?') + 1); + var qs_noanchor = qs.split('#')[0]; + var qsa = qs_noanchor.split('&'); + var keyword = ""; + + for (var i = 0; i < qsa.length; i++) { + var currentParam = qsa[i].split('='); + + if (currentParam.length !== 2) { + continue; + } + + if (currentParam[0] == paramKey) { + keyword = decodeURIComponent(currentParam[1].replace(/\+/g, "%20")); + } + } + + if (keyword !== "") { + $(".contents").unmark({ + done: function() { + $(".contents").mark(keyword); + } + }); + } + } + }; + + mark(); + }); +}); + +/* Search term highlighting ------------------------------*/ + +function matchedWords(hit) { + var words = []; + + var hierarchy = hit._highlightResult.hierarchy; + // loop to fetch from lvl0, lvl1, etc. + for (var idx in hierarchy) { + words = words.concat(hierarchy[idx].matchedWords); + } + + var content = hit._highlightResult.content; + if (content) { + words = words.concat(content.matchedWords); + } + + // return unique words + var words_uniq = [...new Set(words)]; + return words_uniq; +} + +function updateHitURL(hit) { + + var words = matchedWords(hit); + var url = ""; + + if (hit.anchor) { + url = hit.url_without_anchor + '?q=' + escape(words.join(" ")) + '#' + hit.anchor; + } else { + url = hit.url + '?q=' + escape(words.join(" ")); + } + + return url; +} diff --git a/docs/index.html b/docs/index.html new file mode 100644 index 0000000..45632ea --- /dev/null +++ b/docs/index.html @@ -0,0 +1,342 @@ + + + + + + + +Estimate Population Kin Distribution • DemoKin + + + + + + + + + + + + +
    +
    + + + + +
    +
    +
    + +
    +
    +

    DemoKin uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell [-@caswell_formal_2019; -@caswell_formal_2020; -@caswell_formal_2022], and Caswell and Song [-@caswell_formal_2021]. It draws on previous theoretical development by Goodman, Keyfitz and Pullum [-@goodman_family_1974].

    +
    +
    +

    +
    +
    +
    +

    Installation +

    +

    Download the stable version from CRAN:

    +
    +install.packages("DemoKin")
    +

    Or you can install the development version from GitHub:

    +
    +# install.packages("devtools")
    +devtools::install_github("IvanWilli/DemoKin")
    +
    +
    +

    Usage +

    +

    Consider an average Swedish woman called ā€˜Focal.’ For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their life; i.e., the ā€˜time-invariant’ assumption in Caswell [-@caswell_formal_2019].

    +

    We then ask:

    +
    +

    What is the expected number of relatives of Focal over her life course?

    +
    +

    Let’s explore this using the Swedish data already included with DemoKin.

    +
    +library(DemoKin)
    +swe_surv_2015 <- swe_px[,"2015"]
    +swe_asfr_2015 <- swe_asfr[,"2015"]
    +swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE)
    +

    p is the survival probability by age from a life table and f are the age specific fertility ratios by age (see ?kin for details).

    +

    Now, we can visualize the implied kin counts (i.e., the average number of living kin) of Focal at age 35 using a network or ā€˜Keyfitz’ kinship diagram with the function plot_diagram:

    +
    +# We need to reformat the data a little bit
    +kin_total <- swe_2015$kin_summary
    +# Keep only data for Focal's age 35
    +kin_total <- kin_total[kin_total$age_focal == 35 , c("kin", "count_living")]
    +names(kin_total) <- c("kin", "count")
    +plot_diagram(kin_total, rounding = 2)
    +

    +

    Relatives are identified by a unique code:

    + ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    DemoKinLabels_femaleLabels_maleLabels_2sex
    coaCousins from older auntsCousins from older unclesCousins from older aunts/uncles
    cyaCousins from younger auntsCousins from younger unclesCousins from younger aunts/uncles
    cCousinsCousinsCousins
    dDaughtersSonsChildren
    gdGrand-daughtersGrand-sonsGrand-childrens
    ggdGreat-grand-daughtersGreat-grand-sonsGreat-grand-childrens
    ggmGreat-grandmothersGreat-grandfathersGreat-grandfparents
    gmGrandmothersGrandfathersGrandparents
    mMotherFatherParents
    nosNieces from older sistersNephews from older brothersNiblings from older siblings
    nysNieces from younger sistersNephews from younger brothersNiblings from younger siblings
    nNiecesNephewsNiblings
    oaAunts older than motherUncles older than fathersAunts/Uncles older than parents
    yaAunts younger than motherUncles younger than fatherAunts/Uncles younger than parents
    aAuntsUnclesAunts/Uncles
    osOlder sistersOlder brothersOlder siblings
    ysYounger sistersYounger brothersYounger siblings
    sSistersBrothersSiblings
    +
    +
    +

    Vignette +

    +

    For more details, including an extension to time-variant rates, deceased kin, and multi-state models in a one-sex framework, see the Reference_OneSex vignette; also accessible from DemoKin: vignette("Reference_OneSex", package = "DemoKin"). For two-sex models, see the Reference_TwoSex vignette; also accessible from DemoKin: vignette("Reference_TwoSex", package = "DemoKin"). If the vignette does not load, you may need to install the package as devtools::install_github("IvanWilli/DemoKin", build_vignettes = T).

    +
    +
    +

    Citation +

    +

    Williams, IvƔn; Alburez-Gutierrez, Diego; and the DemoKin team. (2021) DemoKin: An R package to implement demographic matrix kinship models. URL: https://github.com/IvanWilli/DemoKin.

    +
    +
    +

    Acknowledgments +

    +

    We thank Silvia Leek from the Max Planck Institute for Demographic Research for designing the DemoKin logo. The logo includes elements that have been taken or adapted from this file, originally by Ansunando, CC BY-SA 4.0 via Wikimedia Commons. Sha Jiang provided useful comments for improving the package.

    +
    +
    +

    Get involved! +

    +

    DemoKin is under constant development. If you’re interested in contributing, please get in touch, create an issue, or submit a pull request. We look forward to hearing from you!

    + +
    +
    +
    + + +
    + + +
    + +
    +

    +

    Site built with pkgdown 2.1.1.9000.

    +
    + +
    +
    + + + + + + + + diff --git a/docs/link.svg b/docs/link.svg new file mode 100644 index 0000000..88ad827 --- /dev/null +++ b/docs/link.svg @@ -0,0 +1,12 @@ + + + + + + diff --git a/docs/pkgdown.css b/docs/pkgdown.css new file mode 100644 index 0000000..80ea5b8 --- /dev/null +++ b/docs/pkgdown.css @@ -0,0 +1,384 @@ +/* Sticky footer */ + +/** + * Basic idea: https://philipwalton.github.io/solved-by-flexbox/demos/sticky-footer/ + * Details: https://github.com/philipwalton/solved-by-flexbox/blob/master/assets/css/components/site.css + * + * .Site -> body > .container + * .Site-content -> body > .container .row + * .footer -> footer + * + * Key idea seems to be to ensure that .container and __all its parents__ + * have height set to 100% + * + */ + +html, body { + height: 100%; +} + +body { + position: relative; +} + +body > .container { + display: flex; + height: 100%; + flex-direction: column; +} + +body > .container .row { + flex: 1 0 auto; +} + +footer { + margin-top: 45px; + padding: 35px 0 36px; + border-top: 1px solid #e5e5e5; + color: #666; + display: flex; + flex-shrink: 0; +} +footer p { + margin-bottom: 0; +} +footer div { + flex: 1; +} +footer .pkgdown { + text-align: right; +} +footer p { + margin-bottom: 0; +} + +img.icon { + float: right; +} + +/* Ensure in-page images don't run outside their container */ +.contents img { + max-width: 100%; + height: auto; +} + +/* Fix bug in bootstrap (only seen in firefox) */ +summary { + display: list-item; +} + +/* Typographic tweaking ---------------------------------*/ + +.contents .page-header { + margin-top: calc(-60px + 1em); +} + +dd { + margin-left: 3em; +} + +/* Section anchors ---------------------------------*/ + +a.anchor { + display: none; + margin-left: 5px; + width: 20px; + height: 20px; + + background-image: url(./link.svg); + background-repeat: no-repeat; + background-size: 20px 20px; + background-position: center center; +} + +h1:hover .anchor, +h2:hover .anchor, +h3:hover .anchor, +h4:hover .anchor, +h5:hover .anchor, +h6:hover .anchor { + display: inline-block; +} + +/* Fixes for fixed navbar --------------------------*/ + +.contents h1, .contents h2, .contents h3, .contents h4 { + padding-top: 60px; + margin-top: -40px; +} + +/* Navbar submenu --------------------------*/ + +.dropdown-submenu { + position: relative; +} + +.dropdown-submenu>.dropdown-menu { + top: 0; + left: 100%; + margin-top: -6px; + margin-left: -1px; + border-radius: 0 6px 6px 6px; +} + +.dropdown-submenu:hover>.dropdown-menu { + display: block; +} + +.dropdown-submenu>a:after { + display: block; + content: " "; + float: right; + width: 0; + height: 0; + border-color: transparent; + border-style: solid; + border-width: 5px 0 5px 5px; + border-left-color: #cccccc; + margin-top: 5px; + margin-right: -10px; +} + +.dropdown-submenu:hover>a:after { + border-left-color: #ffffff; +} + +.dropdown-submenu.pull-left { + float: none; +} + +.dropdown-submenu.pull-left>.dropdown-menu { + left: -100%; + margin-left: 10px; + border-radius: 6px 0 6px 6px; +} + +/* Sidebar --------------------------*/ + +#pkgdown-sidebar { + margin-top: 30px; + position: -webkit-sticky; + position: sticky; + top: 70px; +} + +#pkgdown-sidebar h2 { + font-size: 1.5em; + margin-top: 1em; +} + +#pkgdown-sidebar h2:first-child { + margin-top: 0; +} + +#pkgdown-sidebar .list-unstyled li { + margin-bottom: 0.5em; +} + +/* bootstrap-toc tweaks ------------------------------------------------------*/ + +/* All levels of nav */ + +nav[data-toggle='toc'] .nav > li > a { + padding: 4px 20px 4px 6px; + font-size: 1.5rem; + font-weight: 400; + color: inherit; +} + +nav[data-toggle='toc'] .nav > li > a:hover, +nav[data-toggle='toc'] .nav > li > a:focus { + padding-left: 5px; + color: inherit; + border-left: 1px solid #878787; +} + +nav[data-toggle='toc'] .nav > .active > a, +nav[data-toggle='toc'] .nav > .active:hover > a, +nav[data-toggle='toc'] .nav > .active:focus > a { + padding-left: 5px; + font-size: 1.5rem; + font-weight: 400; + color: inherit; + border-left: 2px solid #878787; +} + +/* Nav: second level (shown on .active) */ + +nav[data-toggle='toc'] .nav .nav { + display: none; /* Hide by default, but at >768px, show it */ + padding-bottom: 10px; +} + +nav[data-toggle='toc'] .nav .nav > li > a { + padding-left: 16px; + font-size: 1.35rem; +} + +nav[data-toggle='toc'] .nav .nav > li > a:hover, +nav[data-toggle='toc'] .nav .nav > li > a:focus { + padding-left: 15px; +} + +nav[data-toggle='toc'] .nav .nav > .active > a, +nav[data-toggle='toc'] .nav .nav > .active:hover > a, +nav[data-toggle='toc'] .nav .nav > .active:focus > a { + padding-left: 15px; + font-weight: 500; + font-size: 1.35rem; +} + +/* orcid ------------------------------------------------------------------- */ + +.orcid { + font-size: 16px; + color: #A6CE39; + /* margins are required by official ORCID trademark and display guidelines */ + margin-left:4px; + margin-right:4px; + vertical-align: middle; +} + +/* Reference index & topics ----------------------------------------------- */ + +.ref-index th {font-weight: normal;} + +.ref-index td {vertical-align: top; min-width: 100px} +.ref-index .icon {width: 40px;} +.ref-index .alias {width: 40%;} +.ref-index-icons .alias {width: calc(40% - 40px);} +.ref-index .title {width: 60%;} + +.ref-arguments th {text-align: right; padding-right: 10px;} +.ref-arguments th, .ref-arguments td {vertical-align: top; min-width: 100px} +.ref-arguments .name {width: 20%;} +.ref-arguments .desc {width: 80%;} + +/* Nice scrolling for wide elements --------------------------------------- */ + +table { + display: block; + overflow: auto; +} + +/* Syntax highlighting ---------------------------------------------------- */ + +pre, code, pre code { + background-color: #f8f8f8; + color: #333; +} +pre, pre code { + white-space: pre-wrap; + word-break: break-all; + overflow-wrap: break-word; +} + +pre { + border: 1px solid #eee; +} + +pre .img, pre .r-plt { + margin: 5px 0; +} + +pre .img img, pre .r-plt img { + background-color: #fff; +} + +code a, pre a { + color: #375f84; +} + +a.sourceLine:hover { + text-decoration: none; +} + +.fl {color: #1514b5;} +.fu {color: #000000;} /* function */ +.ch,.st {color: #036a07;} /* string */ +.kw {color: #264D66;} /* keyword */ +.co {color: #888888;} /* comment */ + +.error {font-weight: bolder;} +.warning {font-weight: bolder;} + +/* Clipboard --------------------------*/ + +.hasCopyButton { + position: relative; +} + +.btn-copy-ex { + position: absolute; + right: 0; + top: 0; + visibility: hidden; +} + +.hasCopyButton:hover button.btn-copy-ex { + visibility: visible; +} + +/* headroom.js ------------------------ */ + +.headroom { + will-change: transform; + transition: transform 200ms linear; +} +.headroom--pinned { + transform: translateY(0%); +} +.headroom--unpinned { + transform: translateY(-100%); +} + +/* mark.js ----------------------------*/ + +mark { + background-color: rgba(255, 255, 51, 0.5); + border-bottom: 2px solid rgba(255, 153, 51, 0.3); + padding: 1px; +} + +/* vertical spacing after htmlwidgets */ +.html-widget { + margin-bottom: 10px; +} + +/* fontawesome ------------------------ */ + +.fab { + font-family: "Font Awesome 5 Brands" !important; +} + +/* don't display links in code chunks when printing */ +/* source: https://stackoverflow.com/a/10781533 */ +@media print { + code a:link:after, code a:visited:after { + content: ""; + } +} + +/* Section anchors --------------------------------- + Added in pandoc 2.11: https://github.com/jgm/pandoc-templates/commit/9904bf71 +*/ + +div.csl-bib-body { } +div.csl-entry { + clear: both; +} +.hanging-indent div.csl-entry { + margin-left:2em; + text-indent:-2em; +} +div.csl-left-margin { + min-width:2em; + float:left; +} +div.csl-right-inline { + margin-left:2em; + padding-left:1em; +} +div.csl-indent { + margin-left: 2em; +} diff --git a/docs/pkgdown.js b/docs/pkgdown.js new file mode 100644 index 0000000..6f0eee4 --- /dev/null +++ b/docs/pkgdown.js @@ -0,0 +1,108 @@ +/* http://gregfranko.com/blog/jquery-best-practices/ */ +(function($) { + $(function() { + + $('.navbar-fixed-top').headroom(); + + $('body').css('padding-top', $('.navbar').height() + 10); + $(window).resize(function(){ + $('body').css('padding-top', $('.navbar').height() + 10); + }); + + $('[data-toggle="tooltip"]').tooltip(); + + var cur_path = paths(location.pathname); + var links = $("#navbar ul li a"); + var max_length = -1; + var pos = -1; + for (var i = 0; i < links.length; i++) { + if (links[i].getAttribute("href") === "#") + continue; + // Ignore external links + if (links[i].host !== location.host) + continue; + + var nav_path = paths(links[i].pathname); + + var length = prefix_length(nav_path, cur_path); + if (length > max_length) { + max_length = length; + pos = i; + } + } + + // Add class to parent
  • , and enclosing
  • if in dropdown + if (pos >= 0) { + var menu_anchor = $(links[pos]); + menu_anchor.parent().addClass("active"); + menu_anchor.closest("li.dropdown").addClass("active"); + } + }); + + function paths(pathname) { + var pieces = pathname.split("/"); + pieces.shift(); // always starts with / + + var end = pieces[pieces.length - 1]; + if (end === "index.html" || end === "") + pieces.pop(); + return(pieces); + } + + // Returns -1 if not found + function prefix_length(needle, haystack) { + if (needle.length > haystack.length) + return(-1); + + // Special case for length-0 haystack, since for loop won't run + if (haystack.length === 0) { + return(needle.length === 0 ? 0 : -1); + } + + for (var i = 0; i < haystack.length; i++) { + if (needle[i] != haystack[i]) + return(i); + } + + return(haystack.length); + } + + /* Clipboard --------------------------*/ + + function changeTooltipMessage(element, msg) { + var tooltipOriginalTitle=element.getAttribute('data-original-title'); + element.setAttribute('data-original-title', msg); + $(element).tooltip('show'); + element.setAttribute('data-original-title', tooltipOriginalTitle); + } + + if(ClipboardJS.isSupported()) { + $(document).ready(function() { + var copyButton = ""; + + $("div.sourceCode").addClass("hasCopyButton"); + + // Insert copy buttons: + $(copyButton).prependTo(".hasCopyButton"); + + // Initialize tooltips: + $('.btn-copy-ex').tooltip({container: 'body'}); + + // Initialize clipboard: + var clipboardBtnCopies = new ClipboardJS('[data-clipboard-copy]', { + text: function(trigger) { + return trigger.parentNode.textContent.replace(/\n#>[^\n]*/g, ""); + } + }); + + clipboardBtnCopies.on('success', function(e) { + changeTooltipMessage(e.trigger, 'Copied!'); + e.clearSelection(); + }); + + clipboardBtnCopies.on('error', function() { + changeTooltipMessage(e.trigger,'Press Ctrl+C or Command+C to copy'); + }); + }); + } +})(window.jQuery || window.$) diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml new file mode 100644 index 0000000..81ed8a8 --- /dev/null +++ b/docs/pkgdown.yml @@ -0,0 +1,8 @@ +pandoc: 3.1.1 +pkgdown: 2.1.1.9000 +pkgdown_sha: 62d5c5a0fc12899aae97f6ce14018d2784bf308b +articles: + Reference_OneSex: Reference_OneSex.html + Reference_TwoSex: Reference_TwoSex.html + Reference_TwoSex_MultiState_TimeVariant: Reference_TwoSex_MultiState_TimeVariant.html +last_built: 2025-04-23T23:39Z From 52ea6bace908e7c4066efc1c0dcef0d22d86b164 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Wed, 23 Apr 2025 20:42:40 -0300 Subject: [PATCH 66/89] home git --- .Rbuildignore | 4 +++ .github/.gitignore | 1 + .github/workflows/pkgdown.yaml | 49 ++++++++++++++++++++++++++++++++++ .gitignore | 1 + DESCRIPTION | 3 ++- _pkgdown.yml | 5 ++++ 6 files changed, 62 insertions(+), 1 deletion(-) create mode 100644 .github/.gitignore create mode 100644 .github/workflows/pkgdown.yaml create mode 100644 _pkgdown.yml diff --git a/.Rbuildignore b/.Rbuildignore index 7b0fa46..07cff67 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -4,3 +4,7 @@ ^LICENSE\.md$ ^cran-comments\.md$ ^CRAN-SUBMISSION$ +^_pkgdown\.yml$ +^docs$ +^pkgdown$ +^\.github$ diff --git a/.github/.gitignore b/.github/.gitignore new file mode 100644 index 0000000..2d19fc7 --- /dev/null +++ b/.github/.gitignore @@ -0,0 +1 @@ +*.html diff --git a/.github/workflows/pkgdown.yaml b/.github/workflows/pkgdown.yaml new file mode 100644 index 0000000..bfc9f4d --- /dev/null +++ b/.github/workflows/pkgdown.yaml @@ -0,0 +1,49 @@ +# Workflow derived from https://github.com/r-lib/actions/tree/v2/examples +# Need help debugging build failures? Start at https://github.com/r-lib/actions#where-to-find-help +on: + push: + branches: [main, master] + pull_request: + release: + types: [published] + workflow_dispatch: + +name: pkgdown.yaml + +permissions: read-all + +jobs: + pkgdown: + runs-on: ubuntu-latest + # Only restrict concurrency for non-PR jobs + concurrency: + group: pkgdown-${{ github.event_name != 'pull_request' || github.run_id }} + env: + GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }} + permissions: + contents: write + steps: + - uses: actions/checkout@v4 + + - uses: r-lib/actions/setup-pandoc@v2 + + - uses: r-lib/actions/setup-r@v2 + with: + use-public-rspm: true + + - uses: r-lib/actions/setup-r-dependencies@v2 + with: + extra-packages: any::pkgdown, local::. + needs: website + + - name: Build site + run: pkgdown::build_site_github_pages(new_process = FALSE, install = FALSE) + shell: Rscript {0} + + - name: Deploy to GitHub pages šŸš€ + if: github.event_name != 'pull_request' + uses: JamesIves/github-pages-deploy-action@v4.5.0 + with: + clean: false + branch: gh-pages + folder: docs diff --git a/.gitignore b/.gitignore index b70a570..652758e 100644 --- a/.gitignore +++ b/.gitignore @@ -7,3 +7,4 @@ diego.txt .m .mat .csv +docs diff --git a/DESCRIPTION b/DESCRIPTION index 07aa5d8..e350579 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -35,7 +35,8 @@ Imports: lifecycle, tictoc, reshape2 -URL: https://github.com/IvanWilli/DemoKin +URL: https://github.com/IvanWilli/DemoKin, + https://ivanwilli.github.io/DemoKin/ BugReports: https://github.com/IvanWilli/DemoKin/issues Depends: R (>= 2.10) diff --git a/_pkgdown.yml b/_pkgdown.yml new file mode 100644 index 0000000..1a5902d --- /dev/null +++ b/_pkgdown.yml @@ -0,0 +1,5 @@ +url: https://ivanwilli.github.io/DemoKin/ +template: + bootstrap: 5 + bootswatch: cerulean + From 81933c4d85aacbc70f93d35f8579c1e4e06cf5dc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Iv=C3=A1n=20Williams?= Date: Thu, 24 Apr 2025 09:21:47 -0300 Subject: [PATCH 67/89] Revert "Updating function to allow user to select output years with the additional option of using abridged life tables" --- R/kin_multi_stage_time_variant_2sex.R | 84 ++++++------------- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 71 +++++++--------- 2 files changed, 59 insertions(+), 96 deletions(-) diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index 030e1b1..f52d3fa 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -20,10 +20,7 @@ #' @param sex_Focal character. Female or Male as the user requests. #' @param initial_stage_Focal Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0) #' @param output_years vector. The times at which we wish to count kin: start year = output_years[1], and end year = output_years[length.] -#' @param model_years. The full timescale on which we run the matrix model. From these periods we extract the ``output_years''. -#' Note that if we use abridged life-tables: e.g., 1960,1965,1970 to run the model, by default age_increment = 5 -#' @param age_year_consistent logical. Null sets age-bridge to be equal to year -#' @param age_increment. numeric. If age_year_consisent FALSE set own age-gap +#' #' @return A data frame with focal age, kin age, kin stage, kin sex, year, cohort, and expected number of kin given these restrictions. #' @export @@ -38,23 +35,17 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, birth_female = 0.49, ## Sex ratio -- note is 1 - alpha parity = FALSE, output_kin = NULL, # enter a vector of specific kin if we only want to analyse these (e.g., c("m","d")) - summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin + summary_kin = TRUE, # Set to FALSE if we want only a full age*stage distribution of kin sex_Focal = "Female", # Female Focal is default initial_stage_Focal = NULL, - output_years, - model_years, - age_year_consitent = TRUE, - age_increment = NULL){ + output_years){ - no_years <- (-1+length(U_list_females)) + no_years <- length(U_list_females) na <- nrow(U_list_females[[1]]) ns <- ncol(U_list_females[[1]]) - if(age_year_consitent){age_increment <- as.numeric(model_years[2]-model_years[1])} - # Ensure inputs are lists of matrices and that the timescale same length - - if(length(U_list_females) != (length(model_years))){stop("Proposed timescale longer than demographic timescale")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) - if(output_years[length(output_years)] > model_years[length(model_years)]){stop("Output years longer than model run")} + # Ensure inputs are lists of matrices and that the timescale same length + # if(length(U_list_females)!=length(output_years)){stop("Timescale inconsistancy")} ## this is due to my struggles with counting! ( e.g., seq(10, 20, 1) != list(1 : 10) ) if(!is.list(U_list_females) | !is.list(U_list_males)){stop("U's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} if(!is.list(F_list_females) | !is.list(F_list_males)){stop("F's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} if(!is.list(T_list_females) | !is.list(T_list_males)){stop("T's must be a list with time-series length. Each list entry should be an age*stage dimensional matrix")} @@ -87,8 +78,6 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, total = no_years + 1, clear = FALSE, width = 60) tictoc::tic() for(year in 1:no_years){ - pb$tick() - T_data_f <- T_list_females[[year]] ## For each year we have na number of Transfer matrices T_data_m <- T_list_males[[year]] ## which give probabilities of age-dep movement from stage to stage T_f_list <- list() @@ -274,20 +263,18 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, kin_full <- create_full_dists_df(relative_data, relative_names, output_years, - model_years, + output_years[1], na, ns, - output_kin, - age_increment) + output_kin) if(summary_kin){ kin_summary <- create_cumsum_df(relative_data, - relative_names, - output_years, - model_years, - na, - ns, - output_kin, - age_increment) + relative_names, + output_years, + output_years[1], + na, + ns, + output_kin) kin_out <- list(kin_full = kin_full, kin_summary = kin_summary)} else{ kin_out <- kin_full @@ -716,36 +703,28 @@ all_kin_dy_TV <- function(Uf, create_cumsum_df <- function(kin_matrix_lists, kin_names, years, - model_years, + start_year, na, ns, - specific_kin = NULL, - increment = NULL){ - if(length(years) > length(kin_matrix_lists[[1]])){stop("More years than data")} - - matrix_model_time <- model_years - age_inc <- increment - + specific_kin = NULL){ df_year_list <- list() for(j in years){ - ii <- which(matrix_model_time == j) + ii <- as.numeric(j) - start_year + 1 df_list <- list() for(i in 1 : length(kin_names)){ kin_member <- kin_names[[i]] kin_data <- kin_matrix_lists[[i]] kin_data <- kin_data[[ii]] df <- as.data.frame(as.matrix(kin_data)) - dims <- dim( kin_data ) + dims <- dim( kin_data) nr <- dims[1] nc <- dims[2] female_kin <- df[1:(nr/2), 1:nc] male_kin <- df[ (1+nr/2) : nr, 1:nc] - colnames(female_kin) <- seq( 0 , age_inc*(na-1) , by = age_inc ) - colnames(male_kin) <- seq( 0 , age_inc*(na-1) , by = age_inc ) female_kin$stage <- rep(seq(1, ns), na) male_kin$stage <- rep(seq(1, ns), na) - female_kin$age <- rep( seq( 0 , age_inc*(na-1) , by = age_inc ) , each = ns) - male_kin$age <- rep( seq( 0 , age_inc*(na-1) , by = age_inc ) , each = ns) + female_kin$age <- rep(seq(0, (na-1)), each = ns) + male_kin$age <- rep(seq(0, (na-1)), each = ns) female_kin$Sex <- "Female" male_kin$Sex <- "Male" both_kin <- rbind(female_kin, male_kin) @@ -757,7 +736,7 @@ create_cumsum_df <- function(kin_matrix_lists, stage_kin = as.factor(stage), count = num, sex_kin = Sex) - both_kin$age_focal <- as.numeric(paste(both_kin$age_focal)) + both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal)) - 1 df <- both_kin df$year <- j df$group <- kin_member @@ -791,20 +770,14 @@ create_cumsum_df <- function(kin_matrix_lists, create_full_dists_df <- function(kin_matrix_lists, kin_names, years, - model_years, + start_year, na, ns, - specific_kin = NULL, - increment = NULL){ - if(length(years) > length(kin_matrix_lists[[1]])){stop("More years than data")} - - matrix_model_time <- model_years - age_inc <- increment - + specific_kin = NULL){ df_year_list <- list() for(j in years){ + ii <- as.numeric(j) - start_year + 1 df_list <- list() - ii <- which(matrix_model_time == j) for(i in 1 : length(kin_names)){ kin_member <- kin_names[[i]] kin_data <- kin_matrix_lists[[i]] @@ -815,12 +788,10 @@ create_full_dists_df <- function(kin_matrix_lists, nc <- dims[2] female_kin <- df[1:(nr/2), 1:nc] male_kin <- df[ (1+nr/2) : nr, 1:nc] - colnames(female_kin) <- seq( 0 , age_inc*(na-1) , by = age_inc ) - colnames(male_kin) <- seq( 0 , age_inc*(na-1) , by = age_inc ) female_kin$stage <- rep(seq(1, ns), na) male_kin$stage <- rep(seq(1, ns), na) - female_kin$age <- rep( seq( 0 , age_inc*(na-1) , by = age_inc ) , each = ns) - male_kin$age <- rep( seq( 0 , age_inc*(na-1) , by = age_inc ) , each = ns) + female_kin$age <- rep(seq(0, (na-1)), each = ns) + male_kin$age <- rep(seq(0, (na-1)), each = ns) female_kin$Sex <- "Female" male_kin$Sex <- "Male" both_kin <- rbind(female_kin, male_kin) @@ -830,7 +801,7 @@ create_full_dists_df <- function(kin_matrix_lists, stage_kin = as.factor(stage), count = value, sex_kin = Sex) - both_kin$age_focal <- as.numeric(paste(both_kin$age_focal)) + both_kin$age_focal <- as.numeric(gsub("[^0-9.-]", "", both_kin$age_focal))-1 df <- both_kin df$year <- j df$group <- kin_member @@ -838,7 +809,6 @@ create_full_dists_df <- function(kin_matrix_lists, } df_list <- do.call("rbind", df_list) df_year_list[[(1+length(df_year_list))]] <- df_list - } df_year_list <- do.call("rbind", df_year_list) df_year_list <- df_year_list %>% dplyr::mutate(cohort = as.numeric(year) - as.numeric(age_focal), diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 34109df..e1295f8 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -14,16 +14,16 @@ knitr::opts_chunk$set(collapse = TRUE, comment = "#>", eval = FALSE) library(devtools); load_all() ``` -Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model -of kinship, there have been many extensions to the framework (many of which are documented within this package). -Caswell [-@caswell_formal_2021] updated the original model to incorporate time-varying vital rates, -Caswell [-@caswell_formal_2022] introduced two-sexes to the model, -and Caswell [-@caswell_formal_2020] considered a multi-stage population of kin. -Here, we provide an R function which combines the three aforementioned models. - -In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks -encompassing both sexes for an average member of a population, the sex of whom is user specified, -and who is subject to time-varying demographic rates. We call this individual Focal. +Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model +of kinship, there have been many extensions to the framework (many of which are documented within this package). +Caswell [-@caswell_formal_2021] updated the original model to incorporate time-varying vital rates, +Caswell [-@caswell_formal_2022] introduced two-sexes to the model, +and Caswell [-@caswell_formal_2020] considered a multi-stage population of kin. +Here, we provide an R function which combines the three aforementioned models. + +In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks +encompassing both sexes for an average member of a population, the sex of whom is user specified, +and who is subject to time-varying demographic rates. We call this individual Focal. We seek the number of, age, and stage distribution of Focal's relatives, for each age of Focal's life, and as a function of the year in which Focal is born. @@ -35,9 +35,9 @@ options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise ``` ### Kin counts by parity ### -In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from -the [Human Mortality Database](https://www.mortality.org/) -and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). +In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from +the [Human Mortality Database](https://www.mortality.org/) +and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). Some simplifying assumptions we make due to data availability are as follows: i) Fertility rates vary with time, are distinct among parity class, but the same over sexes (the so-called ``androgynous approximation''). @@ -59,16 +59,16 @@ This input list has length = the timescale, and each entry represents the rates This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. 5) `T_list_females` A list of lists of female age-specific probabilities of moving up parity over the timescale (in matrix forms). -The outer list has length = the timescale. The inner list has length = number of ages. -Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. +The outer list has length = the timescale. The inner list has length = number of ages. +Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. Thus for each year, we have a list of age-specific probabilities of moving from one stage to the next. 6) Same as 5) but for males -7) `H_list` A list of length = timescale, in which each element is a matrix which assigns the offspring of individuals in some stage to +7) `H_list` A list of length = timescale, in which each element is a matrix which assigns the offspring of individuals in some stage to the appropriate age class (age in rows and states in columns) -To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed +To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed in another file and simply imported below. The code below reads in the above function input lists. ```{r eval=TRUE, message=FALSE, warning=FALSE, include=TRUE} @@ -95,7 +95,7 @@ List starting 1965 ending 2022. F_mat_male == F_mat_fem. -T_mat_fem: list of lists of matrices: Each outer list entry is a list of matrices where each matrix gives age-specific probabilities +T_mat_fem: list of lists of matrices: Each outer list entry is a list of matrices where each matrix gives age-specific probabilities a female moves up parity (inner list has length of number of age-classes). Outer list starting 1965 ending 2022 @@ -115,16 +115,14 @@ We feed the above inputs into the matrix model, along with other arguments: - Focal born into parity 0 --> `initial_stage_Focal` = 1 - timescale as ouptut -- > `output_years` = c(1965, 1975, 1985, 1995, 2005) +Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage +distribution of kin. -Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage -distribution of kin. - -The first sets of time-varying vital rates in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), - +The first sets of time-varying vital rates in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), the 41-st entry is U_mat_fem[[(1+40)]] (mortality in 2005). We require consistency between the length of the list of vital rates and the timescale: U_mat_fem[[1:(1+40)]] = in length = seq(1965,2005). Therefore we use the input lists of demographic rates -`U_list_females` = U_mat_fem[1:(1+no_years)] which runs from U_mat_fem[[1]] = 1965 set of rates, up to U_mat_fem[[41]] = 2005 set of rates, +`U_list_females` = U_mat_fem[1:(1+no_years)] which runs from U_mat_fem[[1]] = 1965 set of rates, up to U_mat_fem[[41]] = 2005 set of rates, and so on... > this run takes some time (round 10 min) so we donĀ“t include the output in the vignette. Please try it! @@ -148,11 +146,7 @@ kin_out_1965_2005 <- summary_kin = TRUE, sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth - output_years = c(1965, 1975, 1985, 1995, 2005), ## the sequence of years we want output - model_years <- seq(1965, 2005), ## the sequence of years we model - age_year_consitent = TRUE, ## - age_increment = NULL - + output_years = c(1965, 1975, 1985, 1995, 2005) ## the sequence of years we run the function over ) ``` @@ -163,7 +157,7 @@ kin_out_1965_2005 <- head(kin_out_1965_2005$kin_summary) ``` -Notice the structure of the output data. We have columns `age_focal` and `kin_stage` because we sum over all ages of kin, +Notice the structure of the output data. We have columns `age_focal` and `kin_stage` because we sum over all ages of kin, and produce the marginal stage distribution given age of Focal. We have a column corresponding to sex of kin `sex_kin`, a column showing which `year` we are considering, and a column headed `group` which selects the kin type. Finally, we have columns showing Focal's cohort of birth `cohort` (e.g., year - age of Focal), and an as.factor() equivalent. @@ -171,13 +165,13 @@ Finally, we have columns showing Focal's cohort of birth `cohort` (e.g., year - ### 1.1.1. Plotting kin for an average Focal at some fixed period in time ### -Let's suppose that we really want to understand the age*parity distributions of the accumulated number -of aunts and uncles older than Focal's mother and father, for each age of Focal, over years 1965, 1975, 1985, 1995, 2005. -Some people will do.... +Let's suppose that we really want to understand the age*parity distributions of the accumulated number +of aunts and uncles older than Focal's mother and father, for each age of Focal, over years 1965, 1975, 1985, 1995, 2005. +Some people will do.... We restrict Focal's kinship network to aunts and uncles older than Focal's mother by `group` == "oa". We visualise the marginal -parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different colour schemes. Implicit in the -below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, +parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different colour schemes. Implicit in the +below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. ```{r, fig.height=6, fig.width=8} @@ -206,7 +200,7 @@ kin_out_1965_2005$kin_summary %>% ``` ### 1.1.2. Plotting the kin of Focal as a function of Focal's cohort of birth #### -Since we only ran the model for 40 years (between 1965-2005), there is very little scope to view kinship as cohort-specific. +Since we only ran the model for 40 years (between 1965-2005), there is very little scope to view kinship as cohort-specific. We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring and only show Focals born of `cohort` 1910, 1925, or 1965: ```{r, fig.height = 6, fig.width = 8} @@ -221,7 +215,7 @@ kin_out_1965_2005$kin_summary %>% ``` The LHS plot (1910 cohort) should be interpreted as follows: if Focal is born in 1910, between 1965-2005 he/she will be 55-95 years old. Focal will have already accumulated its maximal number of offspring, and their overall number will now be dropping as mortality risk begins. The offspring of Focal will be approximately 20-35, and began if not completed reproduction/parity progression. -The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in parity 0. Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by +The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in parity 0. Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by a well mixed parity-distribution at this age of Focal. the RHS plot (1965 cohort) simply reflects the fact that Focal will not start reproduction until around 15 years old. @@ -261,8 +255,7 @@ kin_out_1965_2005$kin_full %>% ggplot2::ggtitle("Focal 50") ``` - -Notice the discontinuity along the x-abscissa at 50. This reflects the fact that Focal's younger siblings +Notice the discontinuity along the x-abscissa at 50. This reflects the fact that Focal's younger siblings cannot are of age <50. Contrastingly, when we look at the age*stage distribution of older siblings, we observe another discontinuity which bounds kin to be of age >50, as plotted below: From a289975344e857df7ee3f99bdc1bc176e4883e9c Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 24 Apr 2025 09:45:00 -0300 Subject: [PATCH 68/89] web --- _pkgdown.yml | 1 - 1 file changed, 1 deletion(-) diff --git a/_pkgdown.yml b/_pkgdown.yml index 1a5902d..8f6eda7 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -1,5 +1,4 @@ url: https://ivanwilli.github.io/DemoKin/ template: bootstrap: 5 - bootswatch: cerulean From 5a0c57106d81f14ec9ce49bdac853078dc55d405 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 24 Apr 2025 10:10:09 -0300 Subject: [PATCH 69/89] remove devtools from vignettes --- vignettes/Reference_OneSex.Rmd | 2 +- vignettes/Reference_TwoSex.Rmd | 2 +- vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/vignettes/Reference_OneSex.Rmd b/vignettes/Reference_OneSex.Rmd index ced906e..b6bd873 100644 --- a/vignettes/Reference_OneSex.Rmd +++ b/vignettes/Reference_OneSex.Rmd @@ -13,7 +13,7 @@ vignette: > ```{r, eval = F, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") -library(devtools); load_all() +# library(devtools); load_all() ``` In this vignette, we'll demonstrate how `DemoKin` can be used to compute kinship networks for an average member of a given (female) population. Let us call her Focal: an average Swedish woman who has always lived in Sweden and whose family has never left the country. diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index 12289d9..fa9dd79 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -13,7 +13,7 @@ vignette: > ```{r, eval = T, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") -library(devtools); load_all() +# library(devtools); load_all() ``` Human males generally live shorter and reproduce later than females. diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index e1295f8..1573908 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -11,7 +11,7 @@ vignette: > ```{r, eval = T, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>", eval = FALSE) -library(devtools); load_all() +# library(devtools); load_all() ``` Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model From 555138f1b2a4f153a77bef6d1cb91f215c54d0a7 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 24 Apr 2025 10:38:02 -0300 Subject: [PATCH 70/89] devtools inlcuding, removing library(DemoKin) --- vignettes/Reference_TwoSex.Rmd | 3 ++- vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd | 3 +-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index fa9dd79..0c4c868 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -26,11 +26,12 @@ The function `kin2sex` implements two-sex kinship models as introduced by Caswel This vignette show how to run two-sex models and highlights some of the advantages of this model over one-sex models in populations with time-invariant and time-variant rates. ```{r, message=FALSE, warning=FALSE} -library(DemoKin) +# library(DemoKin) library(tidyr) library(dplyr) library(ggplot2) library(knitr) +devtools::load_all() ``` ### 1. Demographic rates by sex diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 1573908..c67b897 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -11,7 +11,7 @@ vignette: > ```{r, eval = T, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>", eval = FALSE) -# library(devtools); load_all() +devtools::load_all() ``` Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model @@ -28,7 +28,6 @@ We seek the number of, age, and stage distribution of Focal's relatives, for eac ```{r} -# library(DemoKin) library(Matrix) library(tictoc) options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise output (but also #lose #progress bar) From 566a5cfcdd6af9547ac5c788eb5dc07bd15adfb8 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 24 Apr 2025 11:33:13 -0300 Subject: [PATCH 71/89] add pkgdown --- DESCRIPTION | 3 ++- vignettes/Reference_OneSex.Rmd | 2 +- vignettes/Reference_TwoSex.Rmd | 5 ++++- vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd | 3 ++- 4 files changed, 9 insertions(+), 4 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index e350579..250613d 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -18,7 +18,8 @@ Suggests: knitr, rmarkdown, testthat (>= 3.0.0), - ggplot2 + ggplot2, + pkgdown VignetteBuilder: knitr Imports: dplyr, diff --git a/vignettes/Reference_OneSex.Rmd b/vignettes/Reference_OneSex.Rmd index b6bd873..16662a5 100644 --- a/vignettes/Reference_OneSex.Rmd +++ b/vignettes/Reference_OneSex.Rmd @@ -26,7 +26,7 @@ First, we compute kin counts in a **time-invariant** framework. We assume that F In order to implement the time-invariant models, the function `DemoKin::kin` expects a vector of survival ratios and another vector of fertility rates. In this example, we get the data for the year 2015, and run the matrix models: ```{r, message=FALSE, warning=FALSE} -library(DemoKin) +pkgload::load_all() library(tidyr) library(dplyr) library(ggplot2) diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd index 0c4c868..0c0064b 100644 --- a/vignettes/Reference_TwoSex.Rmd +++ b/vignettes/Reference_TwoSex.Rmd @@ -31,7 +31,8 @@ library(tidyr) library(dplyr) library(ggplot2) library(knitr) -devtools::load_all() +pkgload::load_all() +# devtools::load_all() ``` ### 1. Demographic rates by sex @@ -41,6 +42,8 @@ For this example, we use data from 2012 France to exemplify the use of the two-s Data on female and male fertility and mortality are included in `DemoKin`. In this population, male and female TFR is almost identical (1.98 and 1.99) but the distributions of fertility by sex varies over age: ```{r} +data(fra_asfr_sex, package = "DemoKin") +data(fra_surv_sex, package = "DemoKin") fra_fert_f <- fra_asfr_sex[,"ff"] fra_fert_m <- fra_asfr_sex[,"fm"] fra_surv_f <- fra_surv_sex[,"pf"] diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index c67b897..c519820 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -11,7 +11,7 @@ vignette: > ```{r, eval = T, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>", eval = FALSE) -devtools::load_all() +pkgload::load_all() ``` Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model @@ -28,6 +28,7 @@ We seek the number of, age, and stage distribution of Focal's relatives, for eac ```{r} +pkgload::load_all() library(Matrix) library(tictoc) options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise output (but also #lose #progress bar) From 8e53ca5e42ac65d4d9c785267ddf49c7dca97bea Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 24 Apr 2025 16:13:37 -0300 Subject: [PATCH 72/89] prepare using demokin-web --- R/data.R | 56 ++ _pkgdown.yml | 46 ++ data/F_mat_fem_edu.rda | Bin 0 -> 3443 bytes data/F_mat_male_edu.rda | Bin 0 -> 3445 bytes data/H_mat_edu.rda | Bin 0 -> 330 bytes data/T_mat_fem_edu.rda | Bin 0 -> 1854 bytes data/T_mat_male_edu.rda | Bin 0 -> 1861 bytes data/U_mat_fem_edu.rda | Bin 0 -> 3511 bytes data/U_mat_male_edu.rda | Bin 0 -> 3656 bytes docs/404.html | 132 ++-- docs/LICENSE-text.html | 109 ++- docs/LICENSE.html | 109 ++- docs/authors.html | 133 ++-- docs/index.html | 127 ++-- docs/pkgdown.js | 184 +++-- docs/pkgdown.yml | 14 +- man/F_mat_fem_edu.Rd | 19 + man/F_mat_male_edu.Rd | 19 + man/H_mat_edu.Rd | 19 + man/T_mat_fem_edu.Rd | 19 + man/T_mat_male_edu.Rd | 19 + man/U_mat_fem_edu.Rd | 19 + man/U_mat_male_edu.Rd | 19 + vignettes/1_1_OneSex_TimeInvariant_Age.Rmd | 484 +++++++++++++ vignettes/1_2_OneSex_TimeVarying_Age.Rmd | 319 +++++++++ vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd | 360 ++++++++++ vignettes/1_4_TwoSex_TimeVarying_Age.Rmd | 435 ++++++++++++ .../2_1_OneSex_TimeInvariant_AgeStage.Rmd | 315 +++++++++ vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd | 661 ++++++++++++++++++ vignettes/Reference_OneSex.Rmd | 270 ------- vignettes/Reference_TwoSex.Rmd | 329 --------- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 292 -------- vignettes/references.bib | 8 + 33 files changed, 3177 insertions(+), 1339 deletions(-) create mode 100644 data/F_mat_fem_edu.rda create mode 100644 data/F_mat_male_edu.rda create mode 100644 data/H_mat_edu.rda create mode 100644 data/T_mat_fem_edu.rda create mode 100644 data/T_mat_male_edu.rda create mode 100644 data/U_mat_fem_edu.rda create mode 100644 data/U_mat_male_edu.rda create mode 100644 man/F_mat_fem_edu.Rd create mode 100644 man/F_mat_male_edu.Rd create mode 100644 man/H_mat_edu.Rd create mode 100644 man/T_mat_fem_edu.Rd create mode 100644 man/T_mat_male_edu.Rd create mode 100644 man/U_mat_fem_edu.Rd create mode 100644 man/U_mat_male_edu.Rd create mode 100644 vignettes/1_1_OneSex_TimeInvariant_Age.Rmd create mode 100644 vignettes/1_2_OneSex_TimeVarying_Age.Rmd create mode 100644 vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd create mode 100644 vignettes/1_4_TwoSex_TimeVarying_Age.Rmd create mode 100644 vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd create mode 100644 vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd delete mode 100644 vignettes/Reference_OneSex.Rmd delete mode 100644 vignettes/Reference_TwoSex.Rmd delete mode 100644 vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd diff --git a/R/data.R b/R/data.R index 156b74c..7a4db6b 100644 --- a/R/data.R +++ b/R/data.R @@ -1,3 +1,59 @@ +#' Singapore: List of matrices that redistribute newborns to age-class 1 and "no education" category +#' @docType data +#' @format +#' The data is aggregated into 5-year age groups and 5-year time intervals +#' @source +#' Wittgenstein Center +"H_mat_edu" + +#' Singapore: Lists of transition matrices showing probabilities of moving between education states. Females +#' @docType data +#' @format +#' The data is aggregated into 5-year age groups and 5-year time intervals +#' @source +#' Wittgenstein Center +"T_mat_fem_edu" + +#' Singapore: Lists of transition matrices showing probabilities of moving between education states. Males +#' @docType data +#' @format +#' The data is aggregated into 5-year age groups and 5-year time intervals +#' @source +#' Wittgenstein Center +"T_mat_male_edu" + +#' Singapore: Lists of matrices containing fertility rates by age and education. Females +#' @docType data +#' @format +#' The data is aggregated into 5-year age groups and 5-year time intervals +#' @source +#' Wittgenstein Center +"F_mat_fem_edu" + +#' Singapore: Lists of matrices containing fertility rates by age and education. Males +#' @docType data +#' @format +#' The data is aggregated into 5-year age groups and 5-year time intervals +#' @source +#' Wittgenstein Center +"F_mat_male_edu" + +#' Singapore: Lists of matrices containing survival probabilities by age (rows) and education (columns) from 2020-2090. Females +#' @docType data +#' @format +#' The data is aggregated into 5-year age groups and 5-year time intervals +#' @source +#' Wittgenstein Center +"U_mat_fem_edu" + +#' Singapore: Lists of matrices containing survival probabilities by age (rows) and education (columns) from 2020-2090. Males +#' @docType data +#' @format +#' The data is aggregated into 5-year age groups and 5-year time intervals +#' @source +#' Wittgenstein Center +"U_mat_male_edu" + #' UK female fertility from 1965 to 2022 #' @docType data #' @format diff --git a/_pkgdown.yml b/_pkgdown.yml index 8f6eda7..eaa2767 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -1,4 +1,50 @@ url: https://ivanwilli.github.io/DemoKin/ template: bootstrap: 5 + bootswatch: flatly + bslib: + primary: "#0054AD" + border-radius: 0.5rem + btn-border-radius: 0.25rem +navbar: + structure: + left: [home, age_models, stage_models] + right: [github] + components: + home: + icon: fas fa-home fa-lg + href: index.html + age_models: + text: "Models by Age" + menu: + - text: "One-sex time-invariant model" + href: articles/1_1_OneSex_TimeInvariant_Age.html + - text: "One-sex time-varying model" + href: articles/1_2_OneSex_TimeVarying_Age.html + - text: "Two-sex time-invariant model" + href: articles/1_3_TwoSex_TimeInvariant_Age.html + - text: "Two-sex time-varying model" + href: articles/1_4_TwoSex_TimeVarying_Age.html + stage_models: + text: "Models by Age and Stage" + menu: + - text: "One-sex time-invariant model" + href: articles/2_1_OneSex_TimeInvariant_AgeStage.html + - text: "Two-sex time-varying model" + href: articles/2_2_TwoSex_TimeVarying_AgeStage.html + github: + icon: fab fa-github fa-lg + href: https://github.com/IvanWilli/DemoKin + +articles: + - title: "Models by Age" + contents: + - 1_1_OneSex_TimeInvariant_Age + - 1_2_OneSex_TimeVarying_Age + - 1_3_TwoSex_TimeInvariant_Age + - 1_4_TwoSex_TimeVarying_Age + - title: "Models by Age and Stage" + contents: + - 2_1_OneSex_TimeInvariant_AgeStage + - 2_2_TwoSex_TimeVarying_AgeStage diff --git a/data/F_mat_fem_edu.rda b/data/F_mat_fem_edu.rda new file mode 100644 index 0000000000000000000000000000000000000000..d61a00a183b39dfa944b2f506d0d510fb373367c GIT binary patch literal 3443 zcmchQcQhLgyT`q^Eo#;#)~^(`$w0LD2@<13?X7B4n;JD*yK0Nk*wmgeOVw!XAgH}k zv8i1RYP|1V|J-}-zxVT;^L;+&InOy?n3)q)TG>=k-xOm4xgulLy8SQ0{#*Xn{y~#R zMlq%P0QQ#bKlryt-Tx{7XZ}At+^|H0Frj&np<$pFPNP#-vjSt+>3 z5iz}9pX1w#A9(`;`Hia*$pShs@$fwLH@fY@xs#V zjFu{H93oXw-(XGso+IvX<#+#sZo0uIkAGslK{mOXvqNAnNoOxP z)VzalUO2u?JtSmqIsiSuEFWo}*Y*jdu?x%2rMMsSoi?xR<&9K;rDSZ^jFcCTd#>b% z^wgLmVe0Qy)!fTEpt6Oqhuj=uaQrLP^}jn~%2$kKQGr3-iH|)Xm1{DetuEU({bs8w z0uKzmP<#yMCF3edS>g9em$trKQpR?ts)pvVwGE{)DiSV_@_Ro$4VF&Vxvi05v<*@( z6mQqNiH)k=`t42IWny)(J;5;hJPh+q!F;66IsV%JFp90T`a5_2$xr`ZUJUOe9uWOn zxyppB?mJjh1nyR)-saGHQBU1|vExiD3XZt0LI_nX;Ex_2UH3 zj+fN`q$?GvDPlj#n2#zSGM^?sKIt$!pe4M~VBo#-^E?o`Vrkjn$^R968f(PdM~m6d zN)&h({|k><@JV4n$<^#DM?rmvNtkfp(P>RbBhV=CcHms8&u4AdRd_fyzDSDAsKWV% z3cD$K6=0Nkab-FjViH>UK#cZ5!py22u14 zpM)t+d-xt=$2dUFXi)OJzU?u0vv64q3YmMYl^CX!J$(c4C&#MW#f7YdiRMR*sJ=#1 z#*V5Yj4Av$ic9J0p_qR9BG3T$rEAYog#R|;9XnS`4em`C%b4Mr!q{74v)O_a$s#0S z-_DY5Z7-yCWhQpr|E!Rv!_t4@n&r38fHQt$rju9OhjYcD4PR9*_q-fJUN8lS(DhVt zf{^bvtu}1d^*JQ5e-0X@z4i*5IqORE%ck?Uxj3bW+Bl*0hgk2;rlZtjYaua6Le+;0 z&v_Hp2Lsf$)SeBs2{vodd=xEbR3O`sxU#}O2ypbNsPEm2?uL`lPy)B|;tdb0&~i^mc$d7(snF(EDdq>i zX%gqIvanza0v&>0sk~&>G&r3bIZ=7t8Fn#;x`9;Gl0t6Zow3*_{=ISw0xsET7g~9SIM-y@=CV# z&aiB73~}kA1YgF$8u*k%T-s{4(k;ls2Yy*9OvSXWJ*&p);LwNu3uD00rtKDT3+yXr zIDfqoLNhpsR=Pe{nR>jFt%|m|X(OFVsE>J! z+$sLlBeOv!G96k6vc2V^rx@(^+m6MhowrZcngH4yw{4b@KI=PLa|^>R9|KPUBI^X^ zdJ)b*qV8Ng{bu{DidiHqt_9vgq6q&T$NuV5+%I*K05$La{lXvCrLbO;5h5C9ZAtI@s=elX`ZIzKgJFdo+SCC zE6`<94MzH4q^*B7 z6<_%3t|@kYJLGlJYTXQs5GN<>Ff(pDsH*k#oI`gOQ?X*fGnT$f!t?49#%v?90vgo! zLRVG@E8Cviu^7xSQPX=H1K=t&wT=`NBsD=AY16$I-d_Lit){E&-W+3zNymuLWkwp3 zAQ>ADb)NfGamA*VUZi1BtD_zKXY<9(dogsxKbSTM7@mktMYBwAkbelb#9p$pGU;a9 z!bdhB0(gg4x4a?64Mk2Q4wH%ku!CWUn0NB^^z_&FZn03l1Bv0a)rsW{fUJ{&|5I!2 zCW*pqh!G+!G%7UdvAa)uc2+S)4EZU5Tf@gXVu|hLbrJhACcUn(R^oAWRq@EN>lfU? zp{j0PLISOgjTdy32P}92ZSc@EVr)UZ7-g`Rcj5Tn7Osv#0V9j3c8UGIBKJM)>`GJ~ z%cjO0pv21QT}k6GoSGw6QGa#PnsyVXiQ^s{7@g!b2AlbbV%r+m5sJnViP=j_s$<_PL9pVk$54-3R`dY3Zy zQET%R@2~F|Fz042=ESE&0?AeWvICO4!4qdpN48va#hnm)#BkRL5JYd#o7miy# zp*aLp3e0h+ur)eD`Tmr5_!LSU`QRgKJ&H3>#X*y6RwM09`wj-kE7=>AF)&GZ?nV*l zuE)9o5pQBPyR-Fkj=(bHk)&sZi+Ppk+INNWFC9g|OuFVdJ5N?0jSp4`=+6{UChBi=A?Vy{>0QnJRLCDFUnuoW^Dp2Y9U=FBg7p{$Lhz@ z2dk$~@?jMlS>H-Ob#xR|5ZGPv8f63IhDr0!^$Z10{R}XDEOE@dM8);HtVQ@VxlGUJ+EPA`r&b>DVbh1Lv&5D} zk}3sVx10|;-n_orjjmu|t}hilt1_BSvgA&bWw^}c5tM% literal 0 HcmV?d00001 diff --git a/data/F_mat_male_edu.rda b/data/F_mat_male_edu.rda new file mode 100644 index 0000000000000000000000000000000000000000..728bb4770217d15b0202d0e10f45a4ec140808ac GIT binary patch literal 3445 zcmchVS2!Dv!p3!~RYj~QN@LYt9p*uZsJ$YzMr~@9T1EY%2(?FQHIbB9MU`XJYHROZ zLG4*8N+bl~{GaDL-_7?u=l1+=-rvQ0@m{>zwjPhXIvhUX= ze9Rp>Iu<(MrC)zfydF(Q2c)|m7o$~Z1w!WCy_KuvBRU?&aDUv{f&qWEL$7Q(Bi~5A z3~%T-7JaqT%P`M_tn^hG2n@F{;Q`7e3n_$y4kvgs)Gs^g;lF_>$@20FjP_jw8<9^q z1j-Zii3>-vv4P&oG1CT>N`T%W*oTGg*@8um;fXk+tQmv3{WEq{4TDzFkWN&Qd{As! zkvzqk>=b}!+FJT3WT3-u>8?$%OX6uwlB?my=4CuS6Y}(A%m9lNh^LtYkcRyAWzoa3 z+$U35TQ1X2u^vxreOJX&d)@roLt+sdME?i9_Sgs^2}TA`kvP~K@V9|}t}Fx#r?5Vj-83Bx6|}mM*^A>~6@}2s zIm?7aclN2uRx%&Qtq>VpO6lyy;`&Kl!W?4yZ`O-`77a{g2oEC&p)V}?l;t$8W`mHi z%x|>y6TrHz3zn-ul}k5H*S;i2^(OTGrM3{aZCDw-x>gtmditbK9@a1RQuL{<*9(uI zZBW^|%WPEFA)UA!#5MHjhML4aTQmqsv!h{n4D~lPPrF_#Bps;eh`y()OWp3?O8;9wGX6iS z^o-W;4WI0M$P}V27Il>9(jJ?VRPzCSfpfpTl*5oFvH@%YSvcX75R3fEK9e6DuWYKA z1M4pEy0Q%;z}?}jV*_~4jj$+n-;*7RStsN~B{alJli#&Qw}_@`xs>fHq~-Oh$Lw3R zyhaV>)ZSiL0mASFFBcDrsGk`PBm3?qG}S$Z?oVN$ zPuH|Rt=tQ>NL>>aep9@8w7S$J4>U&ux@5>a7l^uEv~@Li>O;96fxdv=(O;$gtO0sv zsXKpxb^gke-{_EY!&Vh_k$IUDisDh0!-oS=?y9*H6w69-6tV}1pLLOFJ2yR<0*A^IWecv#tiMcOWI32vnny6BJ`;ffudTA z4;4+J5ieTXR5^B6BbhFsb*r-Yc4aLN)h*P9NKAqim`d6-8OgW+S9eiF9UlLBz-T~Y zZ|`i^oL5kTB%p#^-3dFx-j=~(BXS)}4~-nCJ8hKOu8uPv!Frh6kj9g<)4&7_i&OFp ze?4fBoBKmzhvgxhpO!jeG)@aoxfr_$AAfgj3#^V=IUZ4cE1vS?w8d*R&?;Xq1EKWDTb|K zV~`bc#^kVOW(gdG?uFwQ0TJitsr}+DhVmPZ5dxBZ4-r{kd0HVH1o+E1KE78IMENZ4 zcMz>OnaC^U)9;B=+s8VxpEW2C+x%I=?8xW;6bd_6aZaD)sdHi&-AmquxHdEhz#Eq@ zWadU>)IE@&dp0#?<{pjguThgWF<<(4c9^{PGjrW%4%%zeCKkPv=^s?6UHS0Ch2G>i zg@o4dHsY;#ufg|RVi}Ve?z4(IbK5x~2Sli?DzZ$5XOFt38ZYi0(+99h?X`34XFl0} zse;*O<7q?=xEfFHB>wzoCKRXI(mlI5+XD>yTw?EYsJkWrR+lE)yk}KAq~bi29xZM+ z@EO-i&b}0JkUlPt*d2mNSWR2qE3yi4n+;CA1T+776cDgMan-B-^>K!1a(f5>Y7rAT z8IIl?Iue7!<0hWGI;YzBFD~X(6j*g!YAYsK1U8iCDSn&YFhImFl;vy%O<9x;>rWo` zFo$bI?)cqxgc@yx%`P;*!tAT%epv&DikL9jSUpZIM+GAUam7O%#nNuw78V0znNkJ^ zPqV<0WvGL=I!8_Q;c{S>FhDs&SuJ?+3Nh=}G?cS9y*5iqUEhfHroIh(eCq*Ek|Ee8 zfF@K&9V#ZVst7`L?#4edeuq^;g%{)=jD6lhHYv}x$Rr*#eCdRb66%YyuhU-*X&`-> zSxOe*)YX)VYL=8G*z|9X_BG7~N?=Eql~jr5BVXdRUN?SfJVo`qfw@#MhUFaloa2P0 z9*um^V%l4y5Nl8_&1j2Eg*2as;}K0w>1=+!Q3B6`3Dy0AMyYo9&qI8!eP1At2L$<7 z!+fMG+XVcWk#Cup(YK3b9$&)ralRxdJoAg!gv(7^SGr@mC$qyQUPOu5ku}ZS}P^(%~_0WpG=S8b&N*4%p!02O-}N z`7UqpW*R*UgZ08ZUg*s|2nhgKU;C>YEokrr=2%}m+U7y;^jYEMBxi9eOY-xu1$AHR zqsCDH{n4kw3d!BgM;6E0ei)P}+0{W3u6JXUOA%lAUNsZ+mO%$(aHq0TN=!QkwXLUO z$sQ9Z9!1se4kKRh{;3&-`?D5Om0%wNt4MI2<{#9PyJ>@5k@x-(e^+nX20k);m*UDK zO)rz`E$(_7++wGCDm&zIBl@8&DW6)0S->7Gj|Sn3y^P4S>YWz9p);|{Egl7~O#-Rcox1sHHs zCj*m`aQ7}&`7rnBKb!tB?{?e&f{AYR8JJ>_woSe53i)Wq$lukze>zDpz7zmn00keY zhxwL^#;P@5O)Ghq-dHO3B>&LpVYXoda>=OX+jDOjk2@qM(Qeao7wiU#z6*z8q-ytO zNfjjvi9Z(tnGy&zF4cU=DZBwk=#5TC+R)JT?+njFCT{lj4c(%dkFg^wMX=)F5i}>s z8pRRR`%5&|KTEp!CMZi?LYt5UwsI2H{@~zb`jjj8>`c5o-V@nIQ5^Jv?oI#%=IyRf zyng@v(x*a4CVm_+);T*Vn#0b+4mz(^4v;NZx`$2erywpn=bZFY+;|jzcx1j7ll57u z1h&yXY4z*)qSBPa3^g&fw>K%7e=nkGk=w$3fI_`nS4^&Y#;Cgi7{-)CbWL3#@0q#b z`LPms1FQBQ^yp)PYXFq0j=46rHQAWmFpS;|B4y zbPTKJk?E1^$ngJZ8IkGIItJ|q zM*!F_rR=Fyj zLb8-~jhZOftVNYZW(ut^YBDPA%VxSN*%>9IY>gsS`1)x@Y#4^&uOQTw;ygIM-wmU@ zbNxR2JUc(WUVeSvF!KFpK=11E-Tm_$zP`(ZJul|{x^L>^^=S?p`M-PaOoul9NN|yN cq4-W`xs2(qK#hHi11xjXgsVlLW|QzzERL zz?cb;Xda=X)MkP`5rScoX@Yu~BPP+JVrG*=4Fn9(nW*&&RWUs#(@<><38QK-H8NlT zBN3xa0vcg9fCTga28|6&hM0_=lOqVt38v7P(?K-TO)_XO34qWtnKWd?#K9OL5}K1} znFMwv9)j0C|n+J~u`L8dZldQCP&G|_~~k%^#a4=8OzPg6mVXf)GmH1v%a zM$=6M^dQp_iHK>Yo})%4o{dJ-(28P{Bs^2pz|=iPhSbE^>NGTZgVa3`&;Sjn0K{kw9!Zl%kH`Rk z074)D2Ani5v#iaU#4uGb;b`*^@AE%h`)&GJ0`xXG5K(#!q={s3^Vq?%Vl4qHLPU($ zDJb1(M^U)uf1QYUp)cMr6Q8)Z=R5DgS3M35?0q{BKoA5}-3%Ivh9eP%-Go6ZlvFV4 zDi^>N4%QcL2Fri{g`}?ltzd#cQ3!~Nm1-&!=oL`Jt3W7)K@|!@Dx&X@QBZ`U00OvT zAc~sgL`6+z0;p4m7F}29G39qlP`oIpK@|xgDus=wU)a+TP`z-u-V&dCexRu!ii8DF z`Cx=C?#4C6sdNM&5QG4vyIRkxtb{ERCfvB?<@-zdhEiZ*WDieXtgk9gy+uV857URE zIgqW_lvFFKylzU*6Te-6-rIOSBMBgAcrr27&*pm{&6w29fN)?xZOe6TgZ~J7y^ZSO5^Mm7XSzP^nmY8Gl^_pGJ6=8AdZuosT zM7n~ihy|p{I)s|Egp#0!e#@vAzK|x!E`&24mU@T)Oi(aeR}~ltvJyiQhfJ8?D=9joqZF@!Jj|fCr@oCcYL2>=H z{ZvRNtug5Zg|KcNFz{sfrUn&8%xy0`-gn3LN*R__bjxY61ct6*dC^cvik_o`54F#9 zJA=o6Y{Utf_-FMN-DXebd^H-P8ae$E#LcH_cifi|{#OpQv-v=;NnkDH*1pXDj#zud zp2xW7K4#lL=~$79+_(JZrK1vIZbMO*Ro1$x9kw0YHE3jRnhA=o;H$Zfs`817k9FPPEN-V%+Kf0xa1v_!|1X4X3DH6bFLGRO<7$MDP z0I__JWb~Q^XACC3NJ5r=h8=M)T6&10g}{(o0hM~JWpO5E2y|4CLlqnWKnim{f&4>< znMM63NZopts(Nkl{~sb z!b`0h;DE@LYqq`Jr?9_+f4ZmCLs=MQoxvsHjKIxqO-g?9B1U;EE`Mwp?g zlQa}wHT;trQ|nFtEK17Dq*uG9dvAlgK{BWc9m(J$#Rl;X5<^fp(2d4I5lrcsHnrfjO8BtPjd2Mkoj` zG2&{x)$eD|EW9IjN3o|EWn9ASud2GHnc*SO`c8b1_*4wZb{#QkJ(H!(WXohgbbdh6Vx82nmq=BXx@>jk(!1hCZ3v_WH5~~ZBI}=O_cN}r1U9MNc1&5 z36m2e8ipg#CIo4Oz>Eoq$%J|)0MLd3qe-*`$&kdxf@4H7Hi@*-XlaPk34j_1X^f@- zOpMS?G{F)`o`~{~MugMU#M39EQ%$HnKs^zfO{uX>G|=)gnLJa}01S)?rbYpbZTTs0M%l4Kfc^>NGTZgVa3{kN_HbngDG_ zs0|q!WDnSg2#5h;5kzH0m*TV7ir|BcDGu`pg@Tj3*SOlRmOVSl4ord!$@^I81FvX0-1xn%I#0i>rD_|<gNB#8pRL1M65MQfFzMM9Azl1U_lkdTB>5Q4>Dff#`x z1c(UGtrRFL1)x9!Wxr^=96xheWt-({wtI~If6$D6mo=HgSsuaiBK82 z9?~{@+}w)Vl42;N_8hxoK`P2Y!p0kBC256pO?8uZR~A`a*Cnsu2>o25-cfK| zWom&1-|Jryw+9XW{6vbHw9qrDdXrL`&kt1$-^PeKX&V+C!?RNF#=+{MaVX}G)q|%` zC0M7iB31G`Db;tJL0y4)PQ7;I(}fPdjWMHgSxTG3D`iYgoSd>RIt9!Xa#WW|@(Bx_ zUdNm(gGPNPE`hUf^iYmKrX?rX^;rcdmyz2PLDe?%-%Tt))0;C{X-&mVc8m$IYS9@z zJBOqsih2^*%jA=Nt&wVaKf{N*cyfR7X>yT000bzAD++KwuPey~oALF;Mz=(fNkDW# zZKgOdMVHJ0MzLNL5ok<4Z9m;9Brm%dcf`wI>LpiE886#mk@GNQa+UE3$qi4e99&=p z0I{~re3S}Utp^LS0FPS_m9KfowD=ejVn+BlfX|2TW8l<}djW${8JddwZp)1YOaXOJ zNo4~{20~B?Hmq!71A<$#-uSmxhL>@;Q~G!hDZG4wkD|-17FfN@vRvx9-X6yEhNdve z#UV$%KD5wojumk)e{85NOIzcs{-)R;8IhsmvB=IH98|-C%ji)~BvsC*e}Pu6y(HW4 z?$cw_asEN&3VUpLFq^$_ppF#)xK z_{7P@0R`p!JzJT*?H|rl8>7~9zTMTCm9ov{@IQ8AGmzdfx$4cPtD?K>DQ6}=)5)chQBb|hnpU#f%tbjBOJu^}BV?b!#y2t=<%1{(E0gy6zCdsMjO*AxVf@EmW z(V)qo^qMrt(9mQWG#Y7;+L|&n(TD>>Kr#k{Y6Bxc(V#R90BB+XplAc8(24qJiRhXc z1160In^V$bQ`Gf5r=g_wihi1-+McFKlTS>hXblY@dQUSXkT(9n$0Hi0l{pwmG%hKYn3Fqr^hFcE?n zng&MHGfAMy=?9<&nkSH&X@tQPktH!rrlI1P+ew;eYG|j8PbuV6%6Q68O`@7+Q(|Oo z2%2fKo{8#gfJ|i6$kRupdK1(SQKr*LvW*%asxVJYA(}MPQ1VR=DB6aenx0Xk)PAR_ zJw{E68ky#L8ogjbX+|)KHQ{!b!jvlYB$#-Fyc+<;>%!&tH|}Bp{9zSXQY-+RFt1A_WMN5}`v0Bx@(FkF_M4dys~=*88waLs7Vr z3hX!%0UY<127J%+)6Ork2-N~87x%XF3lJilG%_{C^(37I@bURWN0-3}r=2Vi-DZ^oVK_wAhs`sv34zsV%WAV zj4-w?;QdS-8DuU;YjXvnp#HIor1{%MM$$`|HCc-w@UT6b0*I-(&`1tT1AqN(I^^{r z11V%+0GJRjuvpIc4zC1N0F;1FO2qm}TwT>X6=5(ZNmElo&lIIob1duieRLxRdS{OO zPO34e2{v3&gHZ6O(BiSLC2}Gxi|ThpD{+p#b$$y3$F(I`vSmxdt8%@+8hX^%Hlu*O(JT(7WBd}Ty;}C)g&X1@otEbubgyPgAC6#^ zJ7`cu(~$@7cu#e;G$B>jHcJmHsR&~#tcac+XZrpS;O9w7!*I-g zP8)y?0vM^>N$_Dv$gICc-VZqt6}+GtOhEh#ngF~}FBq0N?3`8Ko$uT6X#1TGX zFc;`TK}LbOffBA*fQu?tF;O@2>@_07jJeGsB*}`8PO-W$bpeRvT!CVZ1Q$?DhRjIO zRB0oD2!ik`OGFFloLUqlKvP!m7b}dK$kT?F-SkDa1@smujo5yArGtqVFi`~wp~#mB zM0>dlo1k<_2$qz)y9+AZuFC1g0hGj{_|PsY*&z{Tf?170~o?lzfKu?h8}}L z3`LL-rKCY1gP5-MXJDvofJshK5t9R*?0J@OQiYO~QV0Y#ISvtkp%ftiA!{Wk`zU_B` ztl;bDXnE7d+RyWSeBZNUqok@I_a5CQ=RKp~qVqMtyY!p3*TnMR4uCZidb-UYmDrCucjJgrJkfRhiX6d;aj1z+K#9wZNG031+~5{kmK;DY=8nC;fdlXpq!_rZ|ubV4Qn3JF$Qm}KFUWd2Uef@X^rLD7O&WMKtW#;*p)c!W&rA&aQkpQ@T zU+dVdj#QEYYGEI>dE#xXwZ(|QyPQwQddr;QNu6E?jgZ>T2HU5!*JXe#AsF9nutz!tgVjvq}AM6B*|o- zmnboOwtLCQvg4Hy^X;DIAO!dBC*OBWX60EGaj zY(V1hHS_EBo5jX`2_wy8F^tIPy1dPnI@9oh`b>5^98RGBErtBU!>5B4zrW1lqySsv z>27CQS??TqIjrDTWjU*hHJEX_O-0X}d8o6+5A;NJl`REqPMQ(2Vecw=0Nt|xKW38R z4%1P}Os-b}fQyn(0;l)XX3(EUdClsr<)yb;sntPun!C;yHN_*gR6gV&hIgR!zXhm; zfnlAQ7p|xC_ZnO^iqxqpia-y=>+UWZR$wBX*At$#oE-;Y=7EN=r!ofEslTnQ>JU={ zZ=lf5hn%5^s|HBzJX~3uwj?jMrGwY{+@E)9plr1IiI=Fi)(Trym2({(*G0#|(I|j* zD5=!tlZd?dkR}7KSeNS2$LJnyqMb0m1M1m~MWRDS$YC&awAU1#N7E zRPV9&8vIF#4-f{j5Bd8Qx(q`k1Gw`%AN||`PSDp?&Vv3fTRU}ES5^T*PBa#4-k<4M zJ;}lU7lSszg5|&`B!Rm@3{_Fa&R`wfNFp0Cms{C?ts39wGT^2(r+6kG9&UyBp;DVrB439qV zY{O-|MM;HmZV?Ut5@5{pz$KW(Ivd);`Smk88}fWHg9(Dpi`{nX2%TbKp*@J&0Tw`n zkXar@?7PTp;LB?4tcG9(N&Wm~CQ$Novz(-Q5x){@{JncRg%7I%#f0QC+Y++6=9iqH zU?2>fo9IiJ_s|-iB)3WsXzr|m8N^{{4lasH>R=9#dng;i#3U;}YYJ`Q-)UqIMGc2Z zmMpA_q*|md;3Psh_zaN201-}|I&=V_4>JSWKqq1FYjGlh|IsKI$W}}!Y~VAD1PPqT z*0VFOO$y2tdy9!ZdgR9uz3m%!o_?!2pkE0JwNpTLPO+ zjDW*Egpo!{K)EU<5dbGtCqzUJNp9=+H$E16y18TyRs&n%Uf*nCTU*L>!f@61-UhU` zgmRJ6diYGz{!VXIUtR#AArrfR?04AR?e)_5I$^H}P^s2PGdMlXX`olT!ShjQq%wd literal 0 HcmV?d00001 diff --git a/data/U_mat_male_edu.rda b/data/U_mat_male_edu.rda new file mode 100644 index 0000000000000000000000000000000000000000..8030dbb73010276991b2c4206733b2d1f318706e GIT binary patch literal 3656 zcmZ9KcTkgy(#GEe2r&Xe2#`d@5PA_Qp@Rl65b3=NLP#J8(v%`tP!NzFYN*nsi-CYj zFCty4QUwG-EPy~PM?8L>GvA%LbANw4yR$p9`^?VjIZ-tfbsZ(F9Zf0R3_$YH?ce{! zw}0}Tf87qCl9mVQf=|`&8r)Mh)iF@Yw!cvpz@Yt$!-68-~L(W}nj2Pqy8mjb8CKm15=2paD{~n#vy^m{3e&wy zJPWI6AHq#2$`;oRz@EA2JmQ`N+PjLWKtZxh(Z1=^!qF@pGzHhY6TEaYL?OEZeb+AT ziccWY&BLgAf$Z!ym82TysaJzYfXmGZ5+sc3P=aZMbYtvvQUiq>m?AQqP=cyI1QB_@ z3Fg@S_O|Pv3`z)_N(OV-?qRoazqHe5ZC!o%+qo|$1fjhJKVsi0dmvK?i)81E3F=#dM$UIxCD{%b+5!#P`r z_4d%N;d43|?2hn{A$damS9k(&QWXBxoGv%=t>}{IMDK?5W9>}6M;hlee zQZ+%_mMw+!B;&5Wm>3we5SSxl%7e(Yyi*|a;#hoIZJUilB6qlpzx$kzGgsfn6P{DL zR@Y9%=-M_t-QusXfAyJM*%Fe51q??FetXd+K$9=e^QxZHrw^S<;Tt6pUKul9n`E9a z4BDP+N{IQS@|0zh5%T&TUe#JejE^y1FYGNFYD45jWn6ktKcHG1AA2hEiTKZ3&vUTz zlpHZvaG*QeZ8Ie!r+~kk;-TA-EiI{McRCX*Wnc+iqrgrt+oMkhKg1Fi{duyR1H!k* zR?W^JI-92qR9fbPGJ459@n2Y^_zz9|Kt8$`eHoHcsVu2J1**K^l6a#dvl8<)eKUjI55Yq9qG!4vaNH3Oj#C;s9mu2ap^AN*$RvD#0TI0d!4)(x>5mJ=yqxTwn~ zAJzyzw|n_~ep@+YWX&)diIQ#_=TVbC{;ucnu=|OGTVFoUuWo;>p+>{`x)(ne9EM}H zT6ce}T|=!AmHWe9qSmyj28q<->7}WD|F2(%W!1P-yo%6JN`A~vCQohaQU|&2lvlfF z@9T(T%Z(p2&XUHCoACI@e>3*D!WVd4E~fr)c60AwPK^Q}6Y(Sn1-~D1smM%xQ+n`i z1O0p%DA23;*@)$)KwsNLrot0z8FSFPy~E$OOWv%&=h=g|+9Q5CM$orQ9Od;k2ZnDs z-u$4`aW71I`H~)IBwy!pw1zkGT_0YPYv4->*#mTr!?1m&;f)Nx1^-O`=*f5$1!I~cb1S`CS~OE{KH0{$JA{ zbgw)WMf=IFzwjSpT~`B(%kRzQ+FaYENR)4O#flD(E0zK*TO zdo1;~RcPq*OToPMO&ja?D^hM%v2FF(w9149uL{1A7K@KrQV)E~3sq|KP1}gtT-Wwb z0hqS7AI2v+t(6>tIS~yP;V0w9_toK}>J|;eRMy>dq@FR&{j#TY52lpp_rXaNjRvRF zL)EhkKM19@vGXa)k9_)Z8kx$Zl1P=jyiJ2jhnBpc7@Lu~F624rlyw=bKjOe`ddj4D z6O=o|RB`;`k*YT{yhlsyiNjV?5|tlaCO(9HijM4ZF=!BT%vR?B2hT+zM=%b8avzN& z?h{hUs$rsc!8~FzeAWFR6_`UgQjy4&t~(%c0r1j*^wpm47K12b+qT#_y~tQSu?F3H z4jk{mz5`$`BEA}0{4fVjup}x%2h`K<^5GF+q}vn}M9B9VcUb7j+KTWk4+!>?$*P-|nq)HFDQDzlLyaM|<;m~~XLQ);JtJ`+$M(ti z%u=Tes+DD+txPhS2`V*+uYAN+D<$zgt%;13%O;f(8N$~Hq}4RJc-b4Nr7$H?1gYyx znv9GLj9n2*#*Vvb__NY9}G zqKLRSIh25nF0X}Ke5wrx2hGL-6F+IS;d|}+;D-O5h_#1ar~evp@zh&Z*`D1iFgsJY zjz3C_Ltx?T2~a7s*AfDix_p+TiSvS1Qt^>RSOr^}yMbQf9r}9xBSk@pNX}oL;&|k@ zF=<4wy~Wt+x@?k;sOO_=X3Rm<7=0fbLy$pZqM#r^-7PXLI)M+az>y$Gjl)9AQFsdi z3CzZ40aqaPMzPdPF8LRj3ppJxh_9E|@Z-Pw$#9N^PR`wG=XR-;)Q!q}8@l~q^+4-L zYvhd`_CxZ})4B>qawLDv_8ctCLO3d7xBVu{dGsYmxBmDnODd3B8@2!KmZ{$rm%rN2 z4&D1Z7O*z?RY#8ebHn?0WVP$s$MTJED5;6a-T=AZLMabfiGRyC7|B3Jo$C1%0{+(V zx>|DZ#5Fm>TU)QED;1-*1etp8jdLzcfNXQ9>vH($Z^eYjg5 zm&)vX*9prJ>`IHWq^G%F2?#BAd8xZKm)8~($&jo>nuN@gWxQf0p5<|Z8%0tdgN?`5 z!tBuX$_u#6Rb9eh*Mhw}2lZG%RVq&q?3*ZN=hmrn1k#b5+7c7dugWtEw{2z)+L*xs z%F|&1S|beUsi1z(+SzKCZc6{fcfmGOF4hN`DxsOYItAF6lCrf6nc?yhyQgeeq z0@8NI`*erwXS6uq_f&#*VNmBJ_$510e|vG8sq=idl+`E1SZ~F;mua37D(2{xh6de` zo&R=l@J>qu7zk^*`PkGvwu+9J{eH8rE2J&C2>y1Z-+wMtd^Gr`+0TYqmH4Lz$^4v3 zt2*DN7_qxE>I=?wIT`yA1>c2jfNLEubuYQtErPc9)#n-byc3I23*DOPj^j{yNsxcX zLq&%ZM;r0Vy#DoDKZ>S4_cxx)$}zPipzee!T>t&iK|-yln&|~qv(Q{VWxWz~!#FW8 zx#4_%-3Bne6Qn8nrtO$`8H2&_syrEUv45GXy~^=jo_YYd| zStpkL9couk5>#)vBtVO)vihi^Dw}alWDRk-S9(i+FzOyzT$Ln^X|Eu8Jqtg&c@UK2Q zkEFX7o@SHqLM;s1UmNfo`g4Bl;Ob^s?&BzK5XO&3yD8sSbN$`MvEw8s&ay?Kh z=zPI3^Q!xe3MWSsJN>epPGwj%H;Ku;cl+{ev34Hjc$F{n&2ZW9y_yZcEK>AVZoy}X zT^>0jUb@we|3tzU>gjd3Fvph*Z#sTShyNf2*-1r5V - + Page not found (404) • DemoKin - - - - - - - + + + + + - - - -
    -
    -
    - Content not found. Please use links in the navbar. -
    - - - +
    - -
    - diff --git a/docs/LICENSE-text.html b/docs/LICENSE-text.html index aa823db..606ba6b 100644 --- a/docs/LICENSE-text.html +++ b/docs/LICENSE-text.html @@ -1,91 +1,62 @@ -License • DemoKin - - -
    -
    +
    -
    - +
    +
    +
    YEAR: 2021
     COPYRIGHT HOLDER: DemoKin authors
     
    -
    - - - -
    +
    - -
    - +
    diff --git a/docs/LICENSE.html b/docs/LICENSE.html index 7222755..102b7d2 100644 --- a/docs/LICENSE.html +++ b/docs/LICENSE.html @@ -1,65 +1,44 @@ -MIT License • DemoKin - - -
    -
    +
    +
    +
    -
    -
    @@ -70,26 +49,18 @@

    MIT License

    THE SOFTWARE IS PROVIDED ā€œAS ISā€, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

    -
    - - - -
    - +
    -
    - +
    diff --git a/docs/authors.html b/docs/authors.html index 7b85e3a..f77dc27 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -1,68 +1,47 @@ -Authors and Citation • DemoKin - - -
    -
    +
    +
    +
    -
    -
    - +

    Authors and Citation

    +
    +
    +

    Authors

    • IvĆ”n Williams. Maintainer. @@ -81,42 +60,38 @@

      Authors and Citation

    -
    -
    -

    Citation

    - Source: DESCRIPTION -
    -
    +
    +

    Citation

    +

    Source: DESCRIPTION

    -

    Alburez-Gutierrez D (2025). +

    Alburez-Gutierrez D (2025). DemoKin: Estimate Population Kin Distribution. -R package version 1.0.3, https://github.com/IvanWilli/DemoKin. +https://github.com/IvanWilli/DemoKin, +https://ivanwilli.github.io/DemoKin/.

    -
    @Manual{,
    +      
    @Manual{,
       title = {DemoKin: Estimate Population Kin Distribution},
       author = {Diego Alburez-Gutierrez},
       year = {2025},
    -  note = {R package version 1.0.3},
    -  url = {https://github.com/IvanWilli/DemoKin},
    +  note = {https://github.com/IvanWilli/DemoKin,
    +    https://ivanwilli.github.io/DemoKin/},
     }
    +
    -
    - -
    - +
    -
    - +
    diff --git a/docs/index.html b/docs/index.html index 45632ea..6bba705 100644 --- a/docs/index.html +++ b/docs/index.html @@ -4,86 +4,61 @@ - + Estimate Population Kin Distribution • DemoKin - - - - - - + + + + + + - - + + Skip to contents -
    -
    -
    -
    +
    +
    +
    +
    @@ -258,7 +233,7 @@

    Usage

    Vignette

    -

    For more details, including an extension to time-variant rates, deceased kin, and multi-state models in a one-sex framework, see the Reference_OneSex vignette; also accessible from DemoKin: vignette("Reference_OneSex", package = "DemoKin"). For two-sex models, see the Reference_TwoSex vignette; also accessible from DemoKin: vignette("Reference_TwoSex", package = "DemoKin"). If the vignette does not load, you may need to install the package as devtools::install_github("IvanWilli/DemoKin", build_vignettes = T).

    +

    For more details, including an extension to time-variant rates, deceased kin, and multi-state models in a one-sex framework, see the Reference_OneSex vignette; also accessible from DemoKin: vignette("Reference_OneSex", package = "DemoKin"). For two-sex models, see the Reference_TwoSex vignette; also accessible from DemoKin: vignette("Reference_TwoSex", package = "DemoKin"). If the vignette does not load, you may need to install the package as devtools::install_github("IvanWilli/DemoKin", build_vignettes = T).

    Citation @@ -277,10 +252,7 @@

    Get involved! -

    -
    - diff --git a/docs/pkgdown.js b/docs/pkgdown.js index 6f0eee4..1a99c65 100644 --- a/docs/pkgdown.js +++ b/docs/pkgdown.js @@ -2,83 +2,43 @@ (function($) { $(function() { - $('.navbar-fixed-top').headroom(); + $('nav.navbar').headroom(); - $('body').css('padding-top', $('.navbar').height() + 10); - $(window).resize(function(){ - $('body').css('padding-top', $('.navbar').height() + 10); + Toc.init({ + $nav: $("#toc"), + $scope: $("main h2, main h3, main h4, main h5, main h6") }); - $('[data-toggle="tooltip"]').tooltip(); - - var cur_path = paths(location.pathname); - var links = $("#navbar ul li a"); - var max_length = -1; - var pos = -1; - for (var i = 0; i < links.length; i++) { - if (links[i].getAttribute("href") === "#") - continue; - // Ignore external links - if (links[i].host !== location.host) - continue; - - var nav_path = paths(links[i].pathname); - - var length = prefix_length(nav_path, cur_path); - if (length > max_length) { - max_length = length; - pos = i; - } - } - - // Add class to parent
  • , and enclosing
  • if in dropdown - if (pos >= 0) { - var menu_anchor = $(links[pos]); - menu_anchor.parent().addClass("active"); - menu_anchor.closest("li.dropdown").addClass("active"); - } - }); - - function paths(pathname) { - var pieces = pathname.split("/"); - pieces.shift(); // always starts with / - - var end = pieces[pieces.length - 1]; - if (end === "index.html" || end === "") - pieces.pop(); - return(pieces); - } - - // Returns -1 if not found - function prefix_length(needle, haystack) { - if (needle.length > haystack.length) - return(-1); - - // Special case for length-0 haystack, since for loop won't run - if (haystack.length === 0) { - return(needle.length === 0 ? 0 : -1); + if ($('#toc').length) { + $('body').scrollspy({ + target: '#toc', + offset: $("nav.navbar").outerHeight() + 1 + }); } - for (var i = 0; i < haystack.length; i++) { - if (needle[i] != haystack[i]) - return(i); - } + // Activate popovers + $('[data-bs-toggle="popover"]').popover({ + container: 'body', + html: true, + trigger: 'focus', + placement: "top", + sanitize: false, + }); - return(haystack.length); - } + $('[data-bs-toggle="tooltip"]').tooltip(); /* Clipboard --------------------------*/ function changeTooltipMessage(element, msg) { - var tooltipOriginalTitle=element.getAttribute('data-original-title'); - element.setAttribute('data-original-title', msg); + var tooltipOriginalTitle=element.getAttribute('data-bs-original-title'); + element.setAttribute('data-bs-original-title', msg); $(element).tooltip('show'); - element.setAttribute('data-original-title', tooltipOriginalTitle); + element.setAttribute('data-bs-original-title', tooltipOriginalTitle); } if(ClipboardJS.isSupported()) { $(document).ready(function() { - var copyButton = ""; + var copyButton = ""; $("div.sourceCode").addClass("hasCopyButton"); @@ -89,20 +49,114 @@ $('.btn-copy-ex').tooltip({container: 'body'}); // Initialize clipboard: - var clipboardBtnCopies = new ClipboardJS('[data-clipboard-copy]', { + var clipboard = new ClipboardJS('[data-clipboard-copy]', { text: function(trigger) { return trigger.parentNode.textContent.replace(/\n#>[^\n]*/g, ""); } }); - clipboardBtnCopies.on('success', function(e) { + clipboard.on('success', function(e) { changeTooltipMessage(e.trigger, 'Copied!'); e.clearSelection(); }); - clipboardBtnCopies.on('error', function() { + clipboard.on('error', function(e) { changeTooltipMessage(e.trigger,'Press Ctrl+C or Command+C to copy'); }); + }); } + + /* Search marking --------------------------*/ + var url = new URL(window.location.href); + var toMark = url.searchParams.get("q"); + var mark = new Mark("main#main"); + if (toMark) { + mark.mark(toMark, { + accuracy: { + value: "complementary", + limiters: [",", ".", ":", "/"], + } + }); + } + + /* Search --------------------------*/ + /* Adapted from https://github.com/rstudio/bookdown/blob/2d692ba4b61f1e466c92e78fd712b0ab08c11d31/inst/resources/bs4_book/bs4_book.js#L25 */ + // Initialise search index on focus + var fuse; + $("#search-input").focus(async function(e) { + if (fuse) { + return; + } + + $(e.target).addClass("loading"); + var response = await fetch($("#search-input").data("search-index")); + var data = await response.json(); + + var options = { + keys: ["what", "text", "code"], + ignoreLocation: true, + threshold: 0.1, + includeMatches: true, + includeScore: true, + }; + fuse = new Fuse(data, options); + + $(e.target).removeClass("loading"); + }); + + // Use algolia autocomplete + var options = { + autoselect: true, + debug: true, + hint: false, + minLength: 2, + }; + var q; +async function searchFuse(query, callback) { + await fuse; + + var items; + if (!fuse) { + items = []; + } else { + q = query; + var results = fuse.search(query, { limit: 20 }); + items = results + .filter((x) => x.score <= 0.75) + .map((x) => x.item); + if (items.length === 0) { + items = [{dir:"Sorry 😿",previous_headings:"",title:"No results found.",what:"No results found.",path:window.location.href}]; + } + } + callback(items); +} + $("#search-input").autocomplete(options, [ + { + name: "content", + source: searchFuse, + templates: { + suggestion: (s) => { + if (s.title == s.what) { + return `${s.dir} >
    ${s.title}
    `; + } else if (s.previous_headings == "") { + return `${s.dir} >
    ${s.title}
    > ${s.what}`; + } else { + return `${s.dir} >
    ${s.title}
    > ${s.previous_headings} > ${s.what}`; + } + }, + }, + }, + ]).on('autocomplete:selected', function(event, s) { + window.location.href = s.path + "?q=" + q + "#" + s.id; + }); + }); })(window.jQuery || window.$) + +document.addEventListener('keydown', function(event) { + // Check if the pressed key is '/' + if (event.key === '/') { + event.preventDefault(); // Prevent any default action associated with the '/' key + document.getElementById('search-input').focus(); // Set focus to the search input + } +}); diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 81ed8a8..789ebab 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -2,7 +2,13 @@ pandoc: 3.1.1 pkgdown: 2.1.1.9000 pkgdown_sha: 62d5c5a0fc12899aae97f6ce14018d2784bf308b articles: - Reference_OneSex: Reference_OneSex.html - Reference_TwoSex: Reference_TwoSex.html - Reference_TwoSex_MultiState_TimeVariant: Reference_TwoSex_MultiState_TimeVariant.html -last_built: 2025-04-23T23:39Z + 1_1_OneSex_TimeInvariant_Age: 1_1_OneSex_TimeInvariant_Age.html + 1_2_OneSex_TimeVarying_Age: 1_2_OneSex_TimeVarying_Age.html + 1_3_TwoSex_TimeInvariant_Age: 1_3_TwoSex_TimeInvariant_Age.html + 1_4_TwoSex_TimeVarying_Age: 1_4_TwoSex_TimeVarying_Age.html + 2_1_OneSex_TimeInvariant_AgeStage: 2_1_OneSex_TimeInvariant_AgeStage.html + 2_2_TwoSex_TimeVarying_AgeStage: 2_2_TwoSex_TimeVarying_AgeStage.html +last_built: 2025-04-24T17:44Z +urls: + reference: https://ivanwilli.github.io/DemoKin/reference + article: https://ivanwilli.github.io/DemoKin/articles diff --git a/man/F_mat_fem_edu.Rd b/man/F_mat_fem_edu.Rd new file mode 100644 index 0000000..73d840e --- /dev/null +++ b/man/F_mat_fem_edu.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{F_mat_fem_edu} +\alias{F_mat_fem_edu} +\title{Singapore: Lists of matrices containing fertility rates by age and education. Females} +\format{ +The data is aggregated into 5-year age groups and 5-year time intervals +} +\source{ +Wittgenstein Center +} +\usage{ +F_mat_fem_edu +} +\description{ +Singapore: Lists of matrices containing fertility rates by age and education. Females +} +\keyword{datasets} diff --git a/man/F_mat_male_edu.Rd b/man/F_mat_male_edu.Rd new file mode 100644 index 0000000..88e10bb --- /dev/null +++ b/man/F_mat_male_edu.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{F_mat_male_edu} +\alias{F_mat_male_edu} +\title{Singapore: Lists of matrices containing fertility rates by age and education. Males} +\format{ +The data is aggregated into 5-year age groups and 5-year time intervals +} +\source{ +Wittgenstein Center +} +\usage{ +F_mat_male_edu +} +\description{ +Singapore: Lists of matrices containing fertility rates by age and education. Males +} +\keyword{datasets} diff --git a/man/H_mat_edu.Rd b/man/H_mat_edu.Rd new file mode 100644 index 0000000..f800037 --- /dev/null +++ b/man/H_mat_edu.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{H_mat_edu} +\alias{H_mat_edu} +\title{Singapore: List of matrices that redistribute newborns to age-class 1 and "no education" category} +\format{ +The data is aggregated into 5-year age groups and 5-year time intervals +} +\source{ +Wittgenstein Center +} +\usage{ +H_mat_edu +} +\description{ +Singapore: List of matrices that redistribute newborns to age-class 1 and "no education" category +} +\keyword{datasets} diff --git a/man/T_mat_fem_edu.Rd b/man/T_mat_fem_edu.Rd new file mode 100644 index 0000000..8209920 --- /dev/null +++ b/man/T_mat_fem_edu.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{T_mat_fem_edu} +\alias{T_mat_fem_edu} +\title{Singapore: Lists of transition matrices showing probabilities of moving between education states. Females} +\format{ +The data is aggregated into 5-year age groups and 5-year time intervals +} +\source{ +Wittgenstein Center +} +\usage{ +T_mat_fem_edu +} +\description{ +Singapore: Lists of transition matrices showing probabilities of moving between education states. Females +} +\keyword{datasets} diff --git a/man/T_mat_male_edu.Rd b/man/T_mat_male_edu.Rd new file mode 100644 index 0000000..0bab26d --- /dev/null +++ b/man/T_mat_male_edu.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{T_mat_male_edu} +\alias{T_mat_male_edu} +\title{Singapore: Lists of transition matrices showing probabilities of moving between education states. Males} +\format{ +The data is aggregated into 5-year age groups and 5-year time intervals +} +\source{ +Wittgenstein Center +} +\usage{ +T_mat_male_edu +} +\description{ +Singapore: Lists of transition matrices showing probabilities of moving between education states. Males +} +\keyword{datasets} diff --git a/man/U_mat_fem_edu.Rd b/man/U_mat_fem_edu.Rd new file mode 100644 index 0000000..f1a6255 --- /dev/null +++ b/man/U_mat_fem_edu.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{U_mat_fem_edu} +\alias{U_mat_fem_edu} +\title{Singapore: Lists of matrices containing survival probabilities by age (rows) and education (columns) from 2020-2090. Females} +\format{ +The data is aggregated into 5-year age groups and 5-year time intervals +} +\source{ +Wittgenstein Center +} +\usage{ +U_mat_fem_edu +} +\description{ +Singapore: Lists of matrices containing survival probabilities by age (rows) and education (columns) from 2020-2090. Females +} +\keyword{datasets} diff --git a/man/U_mat_male_edu.Rd b/man/U_mat_male_edu.Rd new file mode 100644 index 0000000..e67777b --- /dev/null +++ b/man/U_mat_male_edu.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.R +\docType{data} +\name{U_mat_male_edu} +\alias{U_mat_male_edu} +\title{Singapore: Lists of matrices containing survival probabilities by age (rows) and education (columns) from 2020-2090. Males} +\format{ +The data is aggregated into 5-year age groups and 5-year time intervals +} +\source{ +Wittgenstein Center +} +\usage{ +U_mat_male_edu +} +\description{ +Singapore: Lists of matrices containing survival probabilities by age (rows) and education (columns) from 2020-2090. Males +} +\keyword{datasets} diff --git a/vignettes/1_1_OneSex_TimeInvariant_Age.Rmd b/vignettes/1_1_OneSex_TimeInvariant_Age.Rmd new file mode 100644 index 0000000..c17b222 --- /dev/null +++ b/vignettes/1_1_OneSex_TimeInvariant_Age.Rmd @@ -0,0 +1,484 @@ +--- +title: "One-sex time-invariant kinship model specified by age" +output: + html_document: + toc: true + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + highlight: pygments + number_sections: true + code_folding: show + df_print: paged + fig_caption: true +bibliography: references.bib +vignette: > + %\VignetteIndexEntry{One-sex time-invariant kinship model specified by age} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +# Set up code chunk options +knitr::opts_chunk$set(echo = TRUE, + message = FALSE, + warning = FALSE, + fig.align = 'center', + fig.width = 8, + fig.height = 6, + dpi = 300) +# Prevent scientific notation (useful for the rate calculation) +options(scipen = 999999) +pkgload::load_all() +``` + + + +
    +Learning Objectives: In this tutorial, you will learn how to use the DemoKin package to analyze kinship networks, understand the mechanics of one-sex time-invariant models, and visualize kinship dynamics across the life course. +
    + +# Introduction {#introduction} + +Kinship is a fundamental property of human populations and a key form of social structure. Demographers have long been interested in the interplay between demographic change and family configuration. This has led to the development of sophisticated methodological and conceptual approaches for the study of kinship, some of which are explored in this tutorial. + +Kinship analysis can answer a range of important questions: + +- How many relatives might people have at different ages, and what is the age distribution of these relatives? +- How does family structure (both the number and age distribution of kin) evolve as populations undergo demographic transition? + +In this tutorial, we will implement matrix kinship models using the `DemoKin` package to calculate kin counts and age distributions. We begin with the simplest model: a **time-invariant one-sex model**, outlined in Caswell [-@caswell_formal_2019]. In this model, we assume that everyone in the population experiences the same mortality and fertility rates throughout their lives (e.g., the 2015 rates), and we only trace female kin relationships. + +## Preparation {#preparation} + +Before starting the session, please ensure you complete the following preparatory steps: + +1. If you haven't already, install R and RStudio. This is a useful tutorial: https://rstudio-education.github.io/hopr/starting.html +2. Install the following packages in R: + +```{r installs, eval=FALSE} +# Install basic data analysis packages +rm(list = ls()) +install.packages("dplyr") # Data manipulation +install.packages("tidyr") # Data tidying +install.packages("ggplot2") # Data visualization +install.packages("readr") # Data import +install.packages("knitr") # Document generation +install.packages("data.table")# Efficient data handling +install.packages("Matrix") # Matrix operations + +# Install DemoKin +# DemoKin is available on CRAN (https://cran.r-project.org/web/packages/DemoKin/index.html), +# but we'll use the development version on GitHub (https://github.com/IvanWilli/DemoKin): +install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin) # For kinship analysis +``` + +# Setting Up the Analysis Environment {#load-packages} + +Let's begin by loading the necessary packages for our analysis: + +```{r libraries, warning=F, message=FALSE} +library(dplyr) # For data manipulation +library(tidyr) # For restructuring data +library(ggplot2) # For visualization +library(readr) # For reading data +library(knitr) # For document generation +``` + + + + + + + +# Understanding the Demographic Data {#demographic-data} + +## Data Overview + +The `DemoKin` package includes Swedish demographic data from the Human Mortality Database (HMD) and Human Fertility Database (HFD) as an example dataset. This includes: + +- **swe_px**: Age-by-year matrix of survival probabilities +- **swe_Sx**: Age-by-year matrix of survival ratios +- **swe_asfr**: Age-by-year matrix of fertility rates +- **swe_pop**: Age-by-year matrix of population counts + +You can view all available data in the package with `data(package="DemoKin")`. + +## Exploring the Data + +Let's examine a subset of the Swedish demographic data to understand its structure: + +```{r data_exploration, warning=FALSE, message=FALSE} +# First 5 rows and columns of survival probabilities +head(swe_px[1:5, 1:5]) + +# Fertility rates for ages 25-30 +head(swe_asfr[26:31, 1:10]) +``` + +For our time-invariant model, we need to extract the demographic rates for a single year. Let's use 2015 as our reference year: + +```{r extract_2015, warning=FALSE, message=FALSE} +# Extract vectors for 2015 +swe_surv_2015 <- swe_px[,"2015"] # Survival probabilities +swe_asfr_2015 <- swe_asfr[,"2015"] # Fertility rates +``` + +Let's compare the data between different time periods to understand demographic changes. Here we compare values from 1950 and 2010: + +```{r compare_periods, warning=FALSE, message=FALSE} +# Survival probabilities +cat("Survival probabilities (px):\n") +head(swe_px[,c("1950","2010")]) + +# Fertility rates +cat("\nFertility rates (asfr):\n") +head(swe_asfr[,c("1950","2010")]) + +# Population counts +cat("\nPopulation counts:\n") +head(swe_pop[,c("1950","2010")]) +``` + +## Visualizing Demographic Trends + +### Mortality Trends + +Let's visualize how mortality has changed over time. We'll plot the probability of dying between ages $x$ and $x+1$ (denoted as $q_x = 1-p_x$) for different years: + +```{r mortality_viz} +swe_px %>% + as.data.frame() %>% + mutate(age = c(0:100)) %>% + pivot_longer(cols = -c(age), names_to = "year", values_to = "px") %>% + filter(year %in% seq(1950, 2010, 30)) %>% + mutate(qx = 1-px) %>% + ggplot() + + geom_line(aes(x = age, y = qx, col = as.character(year)), linewidth = 1) + + scale_y_log10() + + labs( + title = "Age-specific mortality in Sweden (1950-2010)", + subtitle = "Probability of dying between ages x and x+1", + x = "Age", + y = "Probability of dying (qx, log scale)", + col = "Year" + ) + + theme_bw() + + theme(legend.position = "bottom") +``` + +**Interpretation**: This graph reveals how mortality has declined dramatically across all age groups from 1950 to 2010. The log scale highlights improvements at all ages, with particularly notable declines in infant and child mortality. The characteristic "bathtub" shape of human mortality is clearly visible: high mortality in infancy, followed by very low mortality through childhood and early adulthood, then a steady exponential increase with age. + +### Fertility Trends + +Now, let's examine how fertility patterns have changed over time: + +```{r fertility_viz} +swe_asfr %>% + as.data.frame() %>% + mutate(age = c(0:100)) %>% + pivot_longer(cols = -c(age), names_to = "year", values_to = "fx") %>% + filter(year %in% seq(1950, 2010, 30)) %>% + ggplot() + + geom_line(aes(x = age, y = fx, col = as.character(year)), linewidth = 1) + + labs( + title = "Age-specific fertility in Sweden (1950-2010)", + subtitle = "Fertility rates by age of mother", + x = "Age of mother", + y = "Age-specific fertility rate (fx)", + col = "Year" + ) + + theme_bw() + + theme(legend.position = "bottom") +``` + +**Interpretation**: This visualization shows how fertility patterns have changed over the decades. The 1950 curve shows earlier childbearing with higher peak fertility rates. By 2010, fertility has shifted to later ages, reflecting the postponement of childbearing in developed countries. We can also observe the declining total fertility rate (the area under each curve). + +### Population Structure + +Finally, let's look at how the population structure has evolved: + +```{r population_viz} +swe_pop %>% + as.data.frame() %>% + mutate(age = c(0:100)) %>% + pivot_longer(-age, names_to = "year", values_to = "pop") %>% + mutate(year = gsub("X", "", year)) %>% + filter(year %in% seq(1950, 2010, 30)) %>% + ggplot() + + geom_line(aes(x = age, y = pop, col = as.character(year)), linewidth = 1) + + labs( + title = "Female population structure in Sweden (1950-2010)", + subtitle = "Population counts by age", + x = "Age", + y = "Population count (thousands)", + col = "Year" + ) + + theme_bw() + + theme(legend.position = "bottom") +``` + +**Interpretation**: This graph shows how Sweden's female population structure has changed over time. The 1950 distribution shows the effects of baby booms and war years. By 2010, we see population aging with a more uniform distribution across ages and greater longevity, with significant numbers of women surviving to very old ages. + +# The DemoKin Package {#the-demokin-package} + +## Overview + +`DemoKin` is an R package designed to compute the number and age distribution of relatives (kin) of a focal individual under various demographic assumptions. It can analyze both living and deceased kin, and allows for both time-invariant and time-varying demographic rates. + +## The `kin()` Function {#kin-function} + +The main function in the package is `DemoKin::kin()`, which implements matrix kinship models to calculate expected kin counts. + +For our first example, we'll run the simplest model with the following assumptions: + +1. **Time-invariant** rates: The same set of mortality and fertility rates apply throughout all time periods (we'll use 2015 rates). +2. **One-sex** population: We'll only use female data and trace kinship through female lines. + +Let's run the basic kinship model: + +```{r basic_kin_model} +# Run the time-invariant, one-sex model +swe_2015 <- kin( + p = swe_surv_2015, # Vector of survival probabilities + f = swe_asfr_2015, # Vector of fertility rates + time_invariant = TRUE # Use time-invariant model +) +``` + +## Function Arguments {#kin-arguments} + +The `kin()` function accepts several important arguments: + +- **p**: A vector or matrix of survival probabilities with rows as ages (and columns as years if a matrix) +- **f**: A vector or matrix of fertility rates with the same dimensions as p +- **time_invariant**: Logical flag indicating whether to assume time-invariant rates (default: TRUE) +- **output_kin**: Character vector specifying which kin types to return (e.g., "m" for mother, "d" for daughter) + +## Relative Types {#relative-types} + +In `DemoKin`, each type of relative is identified by a unique code. These codes differ from those used in Caswell [-@caswell_formal_2019]. The following table shows the relationship between these coding systems: + +```{r relative_codes} +# Display relationship codes +demokin_codes +``` + +## Function Output {#value} + +The `kin()` function returns a list containing two data frames: + +```{r output_structure} +# Examine the structure of the output +str(swe_2015) +``` + +### The `kin_full` Data Frame {#kin-full} + +This data frame contains detailed information on expected kin counts by: +- Age of the focal individual +- Type of kin +- Age of kin +- Living/dead status + +```{r kin_full_example} +# View the first few rows of kin_full +head(swe_2015$kin_full) +``` + +### The `kin_summary` Data Frame {#kin-summary} + +This data frame provides a summary of expected kin counts by: +- Age of the focal individual +- Type of kin +- Total counts (not broken down by age of kin) + +```{r kin_summary_example} +# View the first few rows of kin_summary +head(swe_2015$kin_summary) +``` + +# Visualizing Kinship Networks {#kinship-diagrams} + +## Keyfitz Diagrams + +One powerful way to visualize kinship structure is through a network or 'Keyfitz' kinship diagram [@Keyfitz2005]. Let's see the expected number of living female relatives for a 65-year-old woman according to our model: + +```{r keyfitz_diagram, fig.height=10, fig.width=12} +swe_2015$kin_summary %>% + filter(age_focal == 65) %>% + select(kin, count = count_living) %>% + plot_diagram(rounding = 2) +``` + +**Interpretation**: This Keyfitz diagram provides a comprehensive view of the kinship network for a 65-year-old woman in Sweden (based on 2015 demographic rates). The diagram shows: + +- Vertical relationships: A 65-year-old woman is likely to have around 0.9 daughters and 0.52 granddaughters through daughters, but few great-granddaughters (nearly 0) as they wouldn't have been born yet. Looking upward, she's unlikely to have a living mother (0.16) and almost certainly no living grandmother (nearly 0). +- Horizontal relationships: She would have about 0.83 living sisters (0.38 old sisters and 0.45 younger sisters) and 0.8 nieces. + +This visualization helps us understand the changing composition of family networks across the life course. + +# Analyzing Living Kin Over the Life Course {#number-of-living-kin} + +Let's run the model again, but this time we'll specify exactly which kin types we want to analyze: + +```{r specific_kin_model} +swe_2015 <- + kin( + p = swe_surv_2015, + f = swe_asfr_2015, + output_kin = c("c", "d", "gd", "ggd", "gm", "m", "n", "a", "s"), # Specific kin types + time_invariant = TRUE + ) +``` + +Now, let's visualize how the expected number of each type of relative changes over the life course: + +```{r kin_over_lifecourse, fig.height=8, fig.width=10} +swe_2015$kin_summary %>% + rename_kin() %>% # Convert kin codes to readable labels + ggplot() + + geom_line(aes(age_focal, count_living), linewidth = 1) + + theme_bw() + + labs( + title = "Expected number of living female relatives over the life course", + subtitle = "Based on Swedish demographic rates from 2015", + x = "Age of focal individual", + y = "Number of living female relatives" + ) + + facet_wrap(~kin_label, scales = "free_y") # Use different y-scales for each panel +``` + +**Interpretation**: These plots show how different kinship relationships evolve over a person's lifetime: + +- **Mothers**: Initially 1.0 (everyone has a mother at birth), then gradually declining as mortality takes its toll +- **Grandmothers**: Start lower (many already deceased at Focal's birth) and decline rapidly +- **Daughters**: Increasing during reproductive years, then stable +- **Granddaughters**: Appearing later and increasing as daughters have children +- **Great-granddaughters**: Appearing even later as granddaughters have children +- **Sisters**: Relatively stable then declining due to mortality +- **Aunts and cousins**: Follow similar patterns of eventual decline +- **nieces**: similar patterns as daughters. + +> Note that we are working in a time-invariant framework. You can think of the results as analogous to life expectancy (i.e., expected years of life for a synthetic cohort experiencing a given set of period mortality rates). + +## Total Family Size Over the Life Course + +How does the overall family size (and family composition) vary over life for an average woman? + +```{r family_size_composition} +# Calculate total kin count at each age +counts <- + swe_2015$kin_summary %>% + group_by(age_focal) %>% + summarise(count_living = sum(count_living)) %>% + ungroup() + +# Plot family composition over the life course +swe_2015$kin_summary %>% + select(age_focal, kin, count_living) %>% + rename_kin() %>% + ggplot(aes(x = age_focal, y = count_living)) + + geom_area(aes(fill = kin_label), color = "black", alpha = 0.8) + + geom_line(data = counts, linewidth = 1.5) + + labs( + title = "Family size and composition over the life course", + subtitle = "Based on Swedish demographic rates from 2015", + x = "Age of focal individual", + y = "Number of living female relatives", + fill = "Kin type" + ) + + theme_bw() + + theme(legend.position = "bottom") +``` + +**Interpretation**: This stacked area chart reveals fascinating patterns in family size and composition throughout life: + +1. **Early life**: Family consists primarily of mothers, grandmothers, aunts, cousins, and sisters +2. **Young and middle adulthood (20s-40s)**: Total family size increases as daughters and nieces are born +3. **Late adulthood and Older (50s+)**: Even though granddaughters and granddaughters are born, while older relatives (mothers, aunts, grandmothers) begin to disappear. Family composition shifts dramatically toward descendants (daughters, granddaughters, great-granddaughters) + +Therefore, the total family size (black line) shows an interesting U-shape, first declining as older relatives die, then rising again as new generations are born. + +# Age Distribution of Relatives {#age-distribution-of-living-kin} + +Beyond just counting relatives, we're often interested in their age distribution. Using the `kin_full` data frame, we can examine the age distribution of Focal's relatives at a specific age. + +Let's visualize the age distribution of relatives when Focal is 65 years old: + +```{r age_distribution, fig.height=8, fig.width=10} +swe_2015$kin_full %>% + rename_kin() %>% + filter(age_focal == 65) %>% + ggplot(aes(age_kin, living)) + + geom_line(linewidth = 1) + + geom_vline(xintercept = 65, color = "red", linetype = "dashed") + + labs( + title = "Age distribution of living female relatives when Focal is 65", + subtitle = "Based on Swedish demographic rates from 2015 (red line = Focal's age)", + x = "Age of relative", + y = "Expected number of living relatives" + ) + + theme_bw() + + facet_wrap(~kin_label, scales = "free_y") +``` + +**Interpretation**: These distributions provide rich information about family age structure: + +- **Mothers**: If still alive, would be concentrated around age 85-95 +- **Daughters**: Mostly in their 30s and 40s +- **Granddaughters**: Predominantly young, between ages 0-15 +- **Sisters**: Close to Focal's own age (65) +- **Nieces**: Mostly in their 30s and 40s, similar to daughters +- **Cousins**: Close to Focal's own age (65) + +Understanding age distributions is crucial for estimating care needs, support systems, and intergenerational transfers within families. + +# Conclusion + +In this tutorial, we've explored how to use the `DemoKin` package to model kinship dynamics in a time-invariant, one-sex framework. We've seen how different demographic patterns affect family size and composition, and visualized these relationships across the life course. + +Key insights include: + +1. Family networks are dynamic, changing dramatically throughout the life course +2. Both family size and composition evolve with age +3. Modern demographic rates lead to "bean pole" families—vertical extension (multiple generations) but horizontal contraction (fewer siblings, cousins) +4. Matrix population models provide a powerful framework for understanding these dynamics + +# References diff --git a/vignettes/1_2_OneSex_TimeVarying_Age.Rmd b/vignettes/1_2_OneSex_TimeVarying_Age.Rmd new file mode 100644 index 0000000..f82a260 --- /dev/null +++ b/vignettes/1_2_OneSex_TimeVarying_Age.Rmd @@ -0,0 +1,319 @@ +--- +title: "One-sex time-varying kinship model specified by age" +output: + html_document: + toc: true + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + highlight: pygments + number_sections: true + code_folding: show + df_print: paged + fig_caption: true +bibliography: references.bib +vignette: > + %\VignetteIndexEntry{One-sex time-varying kinship model specified by age} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +# Set up code chunk options +knitr::opts_chunk$set(echo = TRUE, + message = FALSE, + warning = FALSE, + fig.align = 'center', + fig.width = 8, + fig.height = 6, + dpi = 300) +# Prevent scientific notation (useful for the rate calculation) +options(scipen = 999999) +pkgload::load_all() +``` + + + +
    +Learning Objectives: In this vignette, you will learn how to extend the DemoKin time-invariant model to incorporate changing demographic rates over time. You will understand how to implement a time-varying kinship model, examine the impact of demographic change on kinship networks, and analyze related phenomena such as kin loss and prevalence of specific conditions among kin. +
    + +# Introduction {#introduction} + +While the time-invariant model we explored in the previous vignette provides valuable insights into kinship structures, it has one significant limitation: it assumes demographic conditions remain constant throughout a person's life. In reality, mortality and fertility rates evolve dramatically over time due to socioeconomic development, medical advances, and cultural shifts. + +Time-varying kinship models address this limitation by incorporating historical demographic changes, offering a more nuanced and realistic picture of family networks. These advanced models allow us to: + +- Track kinship networks for specific birth cohorts across their life course +- Account for the different demographic conditions experienced by each generation +- Provide more accurate estimates of kin availability in specific historical periods +- Better understand how demographic transitions shape family structures + +In this vignette, we will implement a **one-sex time-varying model**, outlined in Caswell and Song [-@caswell_formal_2021], using the `DemoKin` package. We build on the time-invariant approach but incorporate year-specific mortality and fertility rates to model the kinship networks of individuals born in specific years. + +## Package Installation {#preparation} + +If you haven't already installed the required packages from the previous vignette, here's what you'll need: + +```{r installs, eval=FALSE} +# Install basic data analysis packages +rm(list = ls()) +install.packages("dplyr") # Data manipulation +install.packages("tidyr") # Data tidying +install.packages("ggplot2") # Data visualization +install.packages("readr") # Data import +install.packages("knitr") # Document generation +install.packages("data.table")# Efficient data handling +install.packages("Matrix") # Matrix operations + +# Install DemoKin +# DemoKin is available on CRAN (https://cran.r-project.org/web/packages/DemoKin/index.html), +# but we'll use the development version on GitHub (https://github.com/IvanWilli/DemoKin): +install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin) # For kinship analysis +``` + +# Setting Up the Analysis Environment {#load-packages} + +Let's load the necessary packages for our analysis: + +```{r libraries, warning=F, message=FALSE} +library(dplyr) # For data manipulation +library(tidyr) # For restructuring data +library(ggplot2) # For visualization +library(readr) # For reading data +library(knitr) # For document generation +``` + + + + + + + +# Time-Varying Kinship Models {#time-varying-models} + +## The Conceptual Shift + +In the time-invariant model, we assumed that everyone experiences the same mortality and fertility rates throughout their lives (e.g., the 2015 rates). However, this is a simplification of reality. Demographic rates change over time, often dramatically: + +- A woman born in 1900 would have experienced very different mortality risks at age 20 (in 1920) than a woman born in 1950 would have at age 20 (in 1970) +- Similarly, fertility patterns have shifted substantially over generations + +Time-varying models account for these historical changes by using year-specific demographic rates. They provide a more realistic picture of kinship dynamics for specific birth cohorts as they age through changing demographic conditions. + +## Data Requirements + +For time-varying models, instead of vectors of rates for a single year, we need: + +1. A matrix of survival probabilities, with: + - Rows representing ages (0, 1, 2, ..., 100+) + - Columns representing years (e.g., 1950, 1951, ..., 2020) + +2. A matrix of fertility rates with the same dimensions + +3. A matrix of population counts (optional, for certain calculations) + +The `DemoKin` package includes Swedish data in this format, which we'll use for our example. + +## Implementing the Time-Varying Model {#run-the-model-time-varying} + +Let's implement a time-varying kinship model for women born in 1960 in Sweden. We'll focus on specific kin types to make interpretation easier: + +```{r} +swe_time_varying <- + kin( + p = swe_px, # Matrix of survival probabilities by age and year + f = swe_asfr, # Matrix of fertility rates by age and year + n = swe_pop, # Matrix of population counts by age and year + time_invariant = FALSE, # Use time-varying model + output_cohort = 1960, # Focus on the 1960 birth cohort + output_kin = c("d","gd","ggd","m","gm","ggm") # Select specific kin types + ) +``` + +In this model: +- We use the full matrices of Swedish demographic data (`swe_px`, `swe_asfr`, `swe_pop`) +- We set `time_invariant = FALSE` to implement a time-varying model +- We specify `output_cohort = 1960` to focus on women born in 1960 +- We select specific relatives to analyze (daughters, granddaughters, great-granddaughters, mothers, grandmothers, and great-grandmothers) + +## Living Relatives Across the Life Course {#living-relatives} + +Let's examine how the number of living kin changes throughout the life course for the 1960 birth cohort: + +```{r, fig.height=6, fig.width=8} +swe_time_varying$kin_summary %>% + ggplot(aes(age_focal, count_living, color=factor(cohort))) + + scale_y_continuous(name = "", labels = seq(0,3,.2), breaks = seq(0,3,.2)) + + geom_line(color = 1) + + geom_vline(xintercept = 35, color=2) + + labs( + title = "Expected number of living relatives for the 1960 birth cohort", + subtitle = "Swedish demographic rates, time-varying model", + x = "Age of focal individual", + y = "Expected number of living relatives" + ) + + facet_wrap(~kin, scales = "free") + + theme_bw() +``` + +**Interpretation**: These plots show how the expected number of living relatives changes as the 1960 cohort ages: + +- **Mothers (m)**: Starts near 1.0 and gradually declines as mothers die +- **Grandmothers (gm)**: Already well below 1.0 at birth, reflecting pre-1960 mortality, then declining rapidly +- **Great-grandmothers (ggm)**: Very few at birth, quickly disappearing +- **Daughters (d)**: Increasing during reproductive years, reflecting fertility patterns of the 1980s-2000s +- **Granddaughters (gd)**: Appearing as daughters reach reproductive age, reflecting fertility of the 2000s-2030s +- **Great-granddaughters (ggd)**: Beginning to appear in later years + +The red vertical line at age 35 provides a reference point to compare kin counts at a specific age. Unlike the time-invariant model, these counts reflect the actual historical demographic conditions experienced by this cohort and their relatives. + +## Analyzing Kin Loss {#kin-loss} + +Beyond counting living kin, we can also examine patterns of kin mortality. Understanding kin loss is important because it: + +- Has psychological and social consequences for bereaved individuals +- Affects the availability of support and care across generations +- Influences patterns of inheritance and resource transfers + +Let's examine the cumulative number of deceased relatives by age for our 1960 birth cohort: + +```{r, fig.height=6, fig.width=8, message=FALSE, warning=FALSE} +swe_time_varying$kin_summary %>% + ggplot() + + geom_line(aes(age_focal, count_cum_dead)) + + labs( + title = "Cumulative number of deceased relatives by age", + subtitle = "1960 birth cohort, Sweden", + x = "Age of focal individual", + y = "Expected number of deceased relatives" + ) + + theme_bw() + + facet_wrap(~kin, scales="free") +``` + +**Interpretation**: These graphs show the cumulative number of deaths experienced by kin type: + +- **Ascending relatives**: Deaths accumulate gradually for mothers, and more rapidly for grandmothers and great-grandmothers +- **Descending relatives**: Deaths are rare but do occur, representing the tragedy of losing children, grandchildren, or great-grandchildren + +We can also examine the mean age at which relatives die. For a 50-year-old woman born in 1960: + +```{r} +swe_time_varying$kin_summary %>% + filter(age_focal == 50) %>% + select(kin, count_cum_dead, mean_age_lost) %>% + mutate_if(is.numeric, round, 2) %>% + kable() +``` + +This table shows both the expected number of deceased relatives and the mean age at which they died. For example, by age 50, a woman born in 1960 would have lost approximately 0.32 mothers and the age at which such women lost mother is around 37.83 years-old on average. + +## Prevalence Calculations {#prevelances} + +Beyond simple counts, we can combine kinship data with prevalence rates by age to estimate the number of kin with specific characteristics. This approach, based on the Sullivan Method, allows us to: + +- Estimate relatives with specific health conditions +- Calculate working-age vs. dependent kin +- Project care needs or support capacity within family networks + +Let's create a hypothetical prevalence vector that increases exponentially with age (which might represent a condition like dementia): + +```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} +# Create a prevalence vector that increases exponentially with age +swe_prevalence <- + tibble( + age_kin = unique(swe_time_varying$kin_full$age_kin), + prev = .005 * exp(.05 * age_kin) # Exponential increase with age + ) + +# Combine with kinship data and calculate counts +swe_time_varying$kin_full %>% + left_join(swe_prevalence) %>% + group_by(kin, age_focal, cohort) %>% + summarise( + prevalent = sum(living * prev), # Kin with the condition + no_prevalent = sum(living * (1-prev)) # Kin without the condition + ) %>% + pivot_longer(cols = prevalent:no_prevalent, names_to = "prevalence_state", values_to = "count") %>% + ggplot(aes(x=age_focal, y = count)) + + geom_area(aes(fill=prevalence_state)) + + labs( + title = "Expected number of relatives with and without the condition", + subtitle = "Based on age-specific prevalence rates", + x = "Age of focal individual", + y = "Number of living relatives", + fill = "Condition status" + ) + + facet_wrap(~kin) + + theme_bw() +``` + +**Interpretation**: The stacked area plots show the expected number of relatives with and without the hypothetical condition at each age of Focal: + +- For older relatives (mothers, grandmothers), the proportion with the condition increases as Focal ages, reflecting the age-related nature of the condition +- For younger relatives (daughters, granddaughters), the prevalence remains low, consistent with the age pattern of the condition +- We can see both the changing total number of relatives and the changing composition by condition status + +This approach can be extended to any age-specific prevalence, such as: + +- Health conditions (disability, chronic disease) +- Employment status +- Educational attainment +- Living arrangements + +# Conclusion + +In this vignette, we've explored how to implement time-varying kinship models using the `DemoKin` package, expanding our analytical approach to incorporate historical demographic change. + +The time-varying approach offers several advantages over time-invariant models: +1. **Historical accuracy**: It incorporates actual demographic changes rather than assuming constant rates +2. **Cohort specificity**: It can model specific birth cohorts experiencing their unique demographic conditions +3. **Period effects**: It captures major demographic events like wars, pandemics, or baby booms + +These methodological improvements allow us to uncover important substantive insights: + +- How demographic transitions reshape family structures across generations +- The unique kinship experiences of different birth cohorts as they navigate through changing mortality and fertility regimes +- How kin loss and bereavement patterns evolve in response to mortality improvements +- The complex interplay between period and cohort effects in shaping family networks + +While time-varying models provide greater realism, time-invariant models still serve valuable purposes. They offer a simpler baseline for understanding kinship patterns, can project future kinship structures based on current demographic conditions, and require less data. + +# References diff --git a/vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd b/vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd new file mode 100644 index 0000000..c8211ff --- /dev/null +++ b/vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd @@ -0,0 +1,360 @@ +--- +title: "Two-sex time-invariant kinship model specified by age" +output: + html_document: + toc: true + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + highlight: pygments + number_sections: true + code_folding: show + df_print: paged + fig_caption: true +bibliography: references.bib +vignette: > + %\VignetteIndexEntry{Two-sex time-invariant kinship model specified by age} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +# Set up code chunk options +knitr::opts_chunk$set(echo = TRUE, + message = FALSE, + warning = FALSE, + fig.align = 'center', + fig.width = 8, + fig.height = 6, + dpi = 300) +# Prevent scientific notation (useful for the rate calculation) +options(scipen = 999999) +pkgload::load_all() +``` + + + +
    +Learning Objectives: In this vignette, you will learn how to extend the one-sex kinship model to incorporate both male and female demographic rates. You will understand the implementation of two-sex matrix models, explore how sex-specific mortality and fertility patterns affect kinship structures, and analyze differences in kin availability by sex. +
    + +# Introduction {#introduction} + +Demographic processes fundamental to kinship formation vary significantly between males and females. While one-sex models offer valuable insights into family structures, they overlook these sex differences, which can lead to incomplete understanding of kinship dynamics. Two-sex kinship models address this limitation by incorporating sex-specific demographic rates and tracing both male and female lineages. + +Key advantages of two-sex models include: + +- Accounting for sex differences in mortality +- Incorporating sex-specific fertility patterns +- Enabling analysis of kin availability by sex +- Allowing for the exploration of sex ratios within kinship networks +- Providing more realistic estimates of kin availability across the life course + +In this vignette, we will implement a **two-sex time-invariant kinship model**, outlined in Caswell [-@caswell_formal_2022], using the `DemoKin` package to understand how sex-specific demographic patterns shape family structures. + +## Package Installation {#preparation} + +If you haven't already installed the required packages from the previous vignettes, here's what you'll need: + +```{r installs, eval=FALSE} +# Install basic data analysis packages +install.packages("dplyr") # Data manipulation +install.packages("tidyr") # Data tidying +install.packages("ggplot2") # Data visualization +install.packages("readr") # Data import +install.packages("knitr") # Document generation +install.packages("data.table")# Efficient data handling +install.packages("Matrix") # Matrix operations + +# Install DemoKin +# DemoKin is available on CRAN (https://cran.r-project.org/web/packages/DemoKin/index.html), +# but we'll use the development version on GitHub (https://github.com/IvanWilli/DemoKin): +install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin) # For kinship analysis +``` + +# Setting Up the Analysis Environment {#load-packages} + +Let's load the necessary packages for our analysis: + +```{r libraries, warning=F, message=FALSE} +rm(list = ls()) +library(dplyr) # For data manipulation +library(tidyr) # For restructuring data +library(ggplot2) # For visualization +library(readr) # For reading data +library(knitr) # For document generation +``` + +# Two-Sex Kinship Modeling {#two-sex-model} + +## Understanding Sex Differences in Demographic Rates {#model-input-2sex} + +The first step in implementing a two-sex kinship model is to understand the sex differences in demographic rates. Human males and females exhibit distinct mortality and fertility patterns: + +1. **Mortality differences**: Males generally experience higher mortality rates at all ages, resulting in shorter life expectancy +2. **Fertility differences**: Males often begin reproduction later and can continue reproducing at older ages + +These differences affect kinship structures in several important ways: + +- The availability of male versus female relatives (especially at older ages) +- The timing of kin loss experiences (e.g., when fathers versus mothers die) +- The number of descendants for male versus female individuals + +For our example, we'll use data from France (2012), which is included in the `DemoKin` package. Let's examine the sex-specific mortality and fertility rates: + +```{r sex_differences, fig.height= 8, fig.width= 10} +# Extract sex-specific rates +fra_fert_f <- fra_asfr_sex[,"ff"] # Female fertility rates +fra_fert_m <- fra_asfr_sex[,"fm"] # Male fertility rates +fra_surv_f <- fra_surv_sex[,"pf"] # Female survival probabilities +fra_surv_m <- fra_surv_sex[,"pm"] # Male survival probabilities + +# Compare total fertility rates by sex +cat("Difference in TFR (male - female):", sum(fra_fert_m) - sum(fra_fert_f)) + +# Visualize sex differences in demographic rates +data.frame(value = c(fra_fert_f, fra_fert_m, fra_surv_f, fra_surv_m), + age = rep(0:100, 4), + sex = rep(c(rep("f", 101), rep("m", 101)), 2), + risk = c(rep("fertility rate", 101 * 2), rep("survival probability", 101 * 2))) %>% + ggplot(aes(age, value, col=sex)) + + geom_line(linewidth = 1) + + labs( + title = "Sex-specific demographic rates in France (2012)", + x = "Age", + y = "Rate", + color = "Sex" + ) + + facet_wrap(~ risk, scales = "free_y") + + theme_bw() +``` + +**Interpretation**: The graphs reveal important sex differences in demographic rates: + +- **Fertility patterns**: While total fertility rates are nearly identical between males and females (difference of only 0.01), the age patterns differ substantially. Male fertility occurs at later ages and has a wider distribution, reflecting the tendency for men to father children at older ages compared to women. + +- **Survival probabilities**: Females have higher survival probabilities at most of adult and old ages. This pattern leads to sex imbalances in older populations and affects the availability of different types of relatives. + +These sex differences in demographic rates will shape kinship networks in ways that one-sex models cannot capture. + +## Implementing the Two-Sex Model {#run-model-2sex} + +We now introduce the function `kin2sex`, which extends the one-sex function `kin` to incorporate sex-specific rates. The key differences are: + +1. We need to provide both female and male demographic rates +2. We must specify the sex of the focal individual +3. We need to indicate the sex ratio at birth (proportion of births that are female) + +Let's implement a two-sex time-varying model for France: + +```{r two_sex_model} +kin_result <- kin2sex( + pf = fra_surv_f, # Female survival probabilities + pm = fra_surv_m, # Male survival probabilities + ff = fra_fert_f, # Female fertility rates + fm = fra_fert_m, # Male fertility rates + time_invariant = TRUE, # Use time-invariant model + sex_focal = "f", # Focus on female focal individuals + birth_female = .5 # Proportion of births that are female +) +``` + +The output of `kin2sex` is similar to that of `kin`, with an additional column `sex_kin` that specifies the sex of each relative. + +## Living Relatives by Sex {#living-relatives-by-sex} + +Let's examine how the number of living relatives differs by sex across the life course of a female focal individual: + +```{r living_by_sex, message=FALSE, warning=FALSE} +# Group specific kin types and filter for key relationships +kin_out <- kin_result$kin_summary %>% + mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", # Siblings + kin %in% c("ya", "oa") ~ "a", # Aunts/uncles + TRUE ~ kin)) %>% + filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) # Select key relationships + +# Visualize living kin by sex +kin_out %>% + group_by(kin, age_focal, sex_kin) %>% + summarise(count = sum(count_living)) %>% + ggplot(aes(age_focal, count, fill = sex_kin)) + + geom_area() + + labs( + title = "Expected number of living relatives by sex", + subtitle = "Female focal individual, France 2012", + x = "Age of focal individual", + y = "Number of living relatives", + fill = "Sex of relative" + ) + + theme_bw() + + facet_wrap(~kin, labeller = labeller( + kin = c("a" = "Aunts/Uncles", "d" = "Children", + "gm" = "Grandparents", "ggm" = "Great-grandparents", + "m" = "Parents", "s" = "Siblings") + )) +``` + +**Interpretation**: These stacked area plots reveal how the sex composition of living relatives changes across the life course: + +- **Parents (m)**: Fathers (blue) die earlier than mothers (red), leading to a predominance of mothers at older ages +- **Grandparents (gm)**: Even at birth, grandmothers outnumber grandfathers due to mortality in the grandparental generation +- **Great-grandparents (ggm)**: Shows an even stronger female predominance due to compounded mortality differences across generations +- **Siblings (s)**: Brothers die earlier than sisters, leading to a higher proportion of sisters at older ages +- **Children (d)**: Starts with an even sex ratio, with slight female predominance at older ages due to higher male mortality + +These patterns highlight the importance of accounting for sex differences in kinship models, especially when studying older populations. + +## Understanding Kinship Terminology in Two-Sex Models {#kinship-terminology} + +When using the `kin2sex` function, it's important to understand how relationship codes work: + +```{r terminology_note} +# Example of how to identify specific relatives by sex +kin_result$kin_summary %>% + filter(kin == "d", sex_kin == "m") %>% # This selects sons (male children) + head() +``` + +The function uses the same relationship codes as the one-sex model (see `demokin_codes()`), but now each relative has a specified sex. For example: + +- `kin = "d", sex_kin = "f"` refers to daughters +- `kin = "d", sex_kin = "m"` refers to sons +- `kin = "m", sex_kin = "f"` refers to mothers +- `kin = "m", sex_kin = "m"` refers to fathers + +This coding system allows for flexible analysis of specific relative types while maintaining compatibility with the one-sex model. + +## Sex Ratios in Kinship Networks {#sex-ratios} + +Sex ratios (males per female) are a traditional measure in demography that can provide insights into kinship structures. Let's examine how sex ratios vary across different types of relatives: + +```{r sex_ratios, message=FALSE, warning=FALSE} +# Calculate sex ratios (males per female) by kin type and age +kin_out %>% + group_by(kin, age_focal) %>% + summarise(sex_ratio = sum(count_living[sex_kin == "m"], na.rm = TRUE) / + sum(count_living[sex_kin == "f"], na.rm = TRUE)) %>% + ggplot(aes(age_focal, sex_ratio)) + + geom_line(linewidth = 1) + + geom_hline(yintercept = 1, linetype = "dashed", color = "gray50") + + labs( + title = "Sex ratios of living relatives across the life course", + subtitle = "Males per female, France 2012", + x = "Age of focal individual", + y = "Sex ratio (m/f)" + ) + + theme_bw() + + facet_wrap(~kin, scales = "free", labeller = labeller( + kin = c("a" = "Aunts/Uncles", "d" = "Children", + "gm" = "Grandparents", "ggm" = "Great-grandparents", + "m" = "Parents", "s" = "Siblings") + )) +``` + +**Interpretation**: The sex ratio plots reveal several important patterns: + +- **Parents**: The sex ratio starts at 1 (equal numbers of mothers and fathers) but declines rapidly with age, reflecting higher male mortality +- **Grandparents**: Even at birth, the sex ratio is below 1, with a 25-year-old having only about 0.5 grandfathers per grandmother +- **Great-grandparents**: Shows even more extreme female predominance +- **Children**: Maintains a sex ratio close to 1 throughout life, with slight declines at older ages +- **Siblings**: Shows gradual decline in sex ratio with age due to higher male mortality + +These sex ratios have important implications for care relationships and support networks, particularly in older populations where female relatives predominate. + +## Timing of Kin Loss by Sex {#kin-loss-by-sex} + +The experience of losing relatives differs by the sex of those relatives. Let's examine how the timing of kin loss varies by sex: + +```{r kin_loss, message=FALSE, warning=FALSE} +# Visualize dead kin by sex +kin_out %>% + group_by(kin, sex_kin, age_focal) %>% + summarise(count = sum(count_dead)) %>% + ggplot(aes(age_focal, count, color = sex_kin)) + + geom_line(linewidth = 1) + + labs( + title = "Number of deceased relatives by sex", + subtitle = "Female focal individual, France 2012", + x = "Age of focal individual", + y = "Number of deceased relatives", + color = "Sex of relative" + ) + + theme_bw() + + facet_wrap(~kin, scales = "free", labeller = labeller( + kin = c("a" = "Aunts/Uncles", "d" = "Children", + "gm" = "Grandparents", "ggm" = "Great-grandparents", + "m" = "Parents", "s" = "Siblings") + )) +``` + +**Interpretation**: These curves show how the experience of losing relatives differs by sex: + +- **Parents**: The loss of fathers (blue) occurs earlier than the loss of mothers (red) +- **Grandparents**: Grandfather are often lost before birth or early in life, while grandmothers tend to be lost later +- **Siblings**: Brothers are lost at higher rates than sisters before old ages (75+) +- **Children**: While rare, the loss of sons occurs at higher rates than daughters + +Understanding these patterns is important for studying bereavement experiences and their impacts across the life course. + +# Applications of Two-Sex Kinship Models + +Two-sex kinship models have numerous applications in demographic and social research: + +1. **Gender and care**: Women typically provide more informal care to relatives than men. Two-sex models can help quantify potential care burdens by examining the availability of different types of relatives by sex. + +2. **Kinship networks in aging societies**: As populations age, the sex composition of available kin changes dramatically. Two-sex models allow us to project these changes and their implications for social support. + +3. **Intergenerational transfers**: Resources often flow differently between male and female relatives. Two-sex models provide the demographic foundation for studying these gendered patterns. + +4. **Demographic transitions**: Sex differences in mortality and fertility change during demographic transitions, reshaping kinship networks in ways that one-sex models cannot capture. + +5. **Demographic shocks**: Events like wars often affect males and females differently, with long-lasting impacts on kinship structures. Two-sex models can capture these effects. + +# Conclusion + +In this vignette, we've explored how to implement two-sex kinship models using the `DemoKin` package. By incorporating sex-specific mortality and fertility rates, these models reveal important patterns that one-sex models cannot capture: + +1. Female predominance among older relatives due to sex differences in mortality +2. Systematic differences in the timing of kin loss by sex, with male kin typically lost earlier +3. Varying sex ratios within kinship networks by relationship type and age +4. Distinct age distributions of relatives by sex + +These insights have significant implications for understanding care relationships, intergenerational transfers, and support systems in aging societies. The two-sex approach substantially enhances our understanding of how gender shapes family structures across the life course, providing a more realistic foundation for both research and policy development. + +# References diff --git a/vignettes/1_4_TwoSex_TimeVarying_Age.Rmd b/vignettes/1_4_TwoSex_TimeVarying_Age.Rmd new file mode 100644 index 0000000..90452ea --- /dev/null +++ b/vignettes/1_4_TwoSex_TimeVarying_Age.Rmd @@ -0,0 +1,435 @@ +--- +title: "Two-sex time-varying kinship model specified by age" +output: + html_document: + toc: true + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + highlight: pygments + number_sections: true + code_folding: show + df_print: paged + fig_caption: true +bibliography: references.bib +vignette: > + %\VignetteIndexEntry{Two-sex time-varying kinship model specified by age} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +# Set up code chunk options +knitr::opts_chunk$set(echo = TRUE, + message = FALSE, + warning = FALSE, + fig.align = 'center', + fig.width = 8, + fig.height = 6, + dpi = 300) +# Prevent scientific notation (useful for the rate calculation) +options(scipen = 999999) +pkgload::load_all() +``` + + + +
    +Learning Objectives: In this vignette, you will learn how to implement a kinship model that combines both two-sex and time-varying approaches. You will understand how to incorporate sex-specific demographic rates that change over time, analyze the effects of demographic transition on kinship structures by sex, and explore approximation methods when data is limited. +
    + +# Introduction {#introduction} + +Family networks are shaped simultaneously by two fundamental forces: demographic differences between males and females, and historical changes in demographic rates over time. While previous vignettes have explored these dimensions separately, this vignette integrates them into a more comprehensive framework: a **two-sex time-varying kinship model**, outlined in Caswell [-@caswell_formal_2022], using the `kin2sex` function with `time_invariant = FALSE`. + +## Package Installation {#preparation} + +If you haven't already installed the required packages from the previous vignettes, here's what you'll need: + +```{r installs, eval=FALSE} +# Install basic data analysis packages +install.packages("dplyr") # Data manipulation +install.packages("tidyr") # Data tidying +install.packages("ggplot2") # Data visualization +install.packages("readr") # Data import +install.packages("knitr") # Document generation +install.packages("data.table")# Efficient data handling +install.packages("Matrix") # Matrix operations + +# Install DemoKin +# DemoKin is available on CRAN (https://cran.r-project.org/web/packages/DemoKin/index.html), +# but we'll use the development version on GitHub (https://github.com/IvanWilli/DemoKin): +install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin) # For kinship analysis +``` + +# Setting Up the Analysis Environment {#load-packages} + +Let's load the necessary packages for our analysis: + +```{r libraries, warning=F, message=FALSE} +rm(list = ls()) +library(dplyr) # For data manipulation +library(tidyr) # For restructuring data +library(ggplot2) # For visualization +library(readr) # For reading data +library(knitr) # For document generation +``` + +# Two-Sex Time-Varying Kinship Models {#model-overview} + +## Model Structure and Components + +The combined two-sex time-varying kinship model expands on previous models by requiring: + +1. **Sex-specific mortality rates over time**: How survival differs between males and females across historical periods +2. **Sex-specific fertility rates over time**: How fertility patterns differ between males and females across historical periods +3. **Sex ratio at birth**: The proportion of births that are female +4. **Sex of the focal individual**: Whether we're analyzing male or female kinship networks + +# Data Preparation {#model-input-2sex-time-varying} + +For this vignette, we'll use Swedish demographic data from the `DemoKin` package. However, since the package only includes female fertility and mortality data over time, we'll create synthetic male rates for illustration purposes. + +In a real-world application, you would ideally use actual male rates. Here, we'll create male rates by applying transformations to the female rates: + +```{r} +# Extract dimensions of the data +years <- ncol(swe_px) +ages <- nrow(swe_px) + +# Use female rates directly from the package +swe_surv_f_matrix <- swe_px +swe_fert_f_matrix <- swe_asfr + +# Create synthetic male rates +# Male survival: Lower than female (raising to power 1.5 reduces values) +swe_surv_m_matrix <- swe_px ^ 1.5 # artificial perturbation for this example + +# Male fertility: Shifted to slightly older ages and slightly higher +swe_fert_m_matrix <- rbind(matrix(0, 5, years), + swe_asfr[-((ages-4):ages),]) * 1.05 # artificial perturbation for this example +``` + +Let's examine the resulting rates for a specific year (1900) to verify they follow expected patterns: + +```{r} +bind_rows( + data.frame(age = 0:100, sex = "Female", component = "Fertility rate", value = swe_fert_f_matrix[,"1900"]), + data.frame(age = 0:100, sex = "Male", component = "Fertility rate", value = swe_fert_m_matrix[,"1900"]), + data.frame(age = 0:100, sex = "Female", component = "Survival probability", value = swe_surv_f_matrix[,"1900"]), + data.frame(age = 0:100, sex = "Male", component = "Survival probability", value = swe_surv_m_matrix[,"1900"])) %>% + ggplot(aes(age, value, col = sex)) + + geom_line() + + theme_bw() + + facet_wrap(~component, scales = "free") + + labs( + title = "Sex-specific demographic rates in Sweden (1900)", + x = "Age", + y = "Rate", + color = "Sex" + ) +``` + +**Interpretation**: The plot confirms our synthetic rates follow expected patterns: + +- **Fertility**: Male fertility is shifted to slightly older ages compared to female fertility +- **Survival**: Male survival probabilities are lower than female survival at all ages +- **Both rates** show characteristic age patterns: fertility concentrated in reproductive ages, and survival declining with age + +# Running the Two-Sex Time-Varying Model {#run-model-2sex-time-varying} + +Now, let's implement the two-sex time-varying kinship model using the `kin2sex` function with `time_invariant = FALSE`: + +```{r} +kin_out_time_varying <- kin2sex( + pf = swe_surv_f_matrix, # Female survival matrix (age x year) + pm = swe_surv_m_matrix, # Male survival matrix (age x year) + ff = swe_fert_f_matrix, # Female fertility matrix (age x year) + fm = swe_fert_m_matrix, # Male fertility matrix (age x year) + sex_focal = "f", # Focal individual is female + time_invariant = FALSE, # Use time-varying model + birth_female = .5, # Sex ratio at birth (50% female) + output_cohort = 1900 # Focus on the 1900 birth cohort +) +``` + +The resulting output provides detailed information on the kinship network for the 1900 female birth cohort, with relatives classified by both age and sex. + +# Comparing Time-Varying and Time-Invariant Models {#kin-availability-2sex-time-varying} + +To understand the impact of incorporating historical demographic change, let's compare the time-varying model with a time-invariant model that uses only 1900 rates: + +```{r, message=FALSE, warning=FALSE} +# Run a time-invariant model using only 1900 rates +kin_out_time_invariant <- kin2sex( + pf = swe_surv_f_matrix[,"1900"], # Female survival (1900) + pm = swe_surv_m_matrix[,"1900"], # Male survival (1900) + ff = swe_fert_f_matrix[,"1900"], # Female fertility (1900) + fm = swe_fert_m_matrix[,"1900"], # Male fertility (1900) + sex_focal = "f", # Focal individual is female + birth_female = .5 # Sex ratio at birth (50% female) +) + +# Combine and plot the results +kin_out_time_varying$kin_summary %>% + filter(cohort == 1900) %>% + mutate(type = "variant") %>% + bind_rows(kin_out_time_invariant$kin_summary %>% mutate(type = "invariant")) %>% + # Combine siblings and aunts/uncles for simplicity + mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", + kin %in% c("ya", "oa") ~ "a", + TRUE ~ kin)) %>% + # Select key relationships + filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) %>% + # Group by relationship type, age, sex, and model type + group_by(type, kin, age_focal, sex_kin) %>% + summarise(count = sum(count_living)) %>% + # Create plot + ggplot(aes(age_focal, count, linetype = type)) + + geom_line() + + theme_bw() + + facet_grid(cols = vars(kin), rows = vars(sex_kin), scales = "free") + + labs( + title = "Time-varying vs. time-invariant kinship models by sex", + subtitle = "Female 1900 birth cohort, Sweden", + x = "Age of focal individual", + y = "Number of living relatives", + linetype = "Model type" + ) +``` + +**Interpretation**: This comparison reveals important differences between time-varying and time-invariant models: + +- **Relatives by sex**: The differences are pronounced for both male kin (bottom row) and female kin (top row), where mortality improvements over time led to greater availability than predicted by the time-invariant model +- **Ascending generations**: For parents (m), grandparents (gm), and great-grandparents (ggm), the time-varying model shows higher kin availability at older ages, reflecting mortality improvements not captured by the time-invariant model +- **Descendants**: For children (d), the time-varying model shows fewer kin, reflecting fertility decline over time +- **Kin of same generation**: For siblings (s), fertility decline over time has limited impact on their numbers because these fertility events have either already occurred or will occur very shortly. Instead, mortality improvements play a more critical role, leading the time-varying model to predict a higher number of surviving siblings at older ages. + +The time-varying model captures the demographic transition that occurred over the 20th century, including declining fertility and mortality rates. This produces a more accurate representation of kinship dynamics for historical cohorts. + +# Approximation Methods for Limited Data {#approximations} + +In practice, demographic data is often limited, particularly for male fertility rates which can be difficult to obtain. Caswell [-@caswell_formal_2022] introduced two approximation methods to estimate two-sex kinship networks when male demographic rates are unavailable: + +1. **Androgynous approximation**: Assumes equal fertility and survival for males and females +2. **GKP factors**: Applies multipliers to one-sex kin counts based on theoretical considerations in Goodman, Keyfitz and Pullum [-@caswell_formal_2022] + +Let's evaluate these approximations using French data from the `DemoKin` package: + +## Androgynous Approximation {#androgynous} + +The androgynous approximation uses female rates for both sexes. Let's compare it to the full two-sex model: + +```{r, message=FALSE, warning=FALSE} +# Load data of France again +fra_fert_f <- fra_asfr_sex[,"ff"] # Female fertility rates +fra_fert_m <- fra_asfr_sex[,"fm"] # Male fertility rates +fra_surv_f <- fra_surv_sex[,"pf"] # Female survival probabilities +fra_surv_m <- fra_surv_sex[,"pm"] # Male survival probabilities + +# Full two-sex model +kin_out <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, + sex_focal = "f", birth_female = .5) + +# Androgynous approximation +kin_out_androgynous <- kin2sex(fra_surv_f, fra_surv_f, fra_fert_f, fra_fert_f, + sex_focal = "f", birth_female = .5) + +# Compare the results +bind_rows( + kin_out$kin_summary %>% mutate(type = "full"), + kin_out_androgynous$kin_summary %>% mutate(type = "androgynous")) %>% + group_by(kin, age_focal, sex_kin, type) %>% + summarise(count = sum(count_living)) %>% + ggplot(aes(age_focal, count, linetype = type)) + + geom_line() + + theme_bw() + + theme(legend.position = "bottom", axis.text.x = element_blank()) + + facet_grid(row = vars(sex_kin), col = vars(kin), scales = "free") + + labs( + title = "Androgynous approximation vs. full two-sex model", + subtitle = "France, 2012", + x = "Age of focal individual", + y = "Number of living relatives", + linetype = "Model type" + ) +``` + +**Interpretation**: The androgynous approximation performs well for most kin types, particularly for female relatives. However, it shows noticeable discrepancies for most types of male relatives, where ignoring male-specific mortality leads to overestimation. + +## GKP Factors Approximation {#gkp} + +The GKP factors approach applies theoretical multipliers to one-sex kin counts. Let's implement and evaluate this approach: + +```{r, message=FALSE, warning=FALSE} +# One-sex model +kin_out_1sex <- kin(fra_surv_f, fra_fert_f, birth_female = .5) + +# Apply GKP factors +kin_out_GKP <- kin_out_1sex$kin_summary %>% + mutate(count_living = case_when( + kin == "m" ~ count_living * 2, # Parents: multiply by 2 + kin == "gm" ~ count_living * 4, # Grandparents: multiply by 4 + kin == "ggm" ~ count_living * 8, # Great-grandparents: multiply by 8 + kin == "d" ~ count_living * 2, # Children: multiply by 2 + kin == "gd" ~ count_living * 4, # Grandchildren: multiply by 4 + kin == "ggd" ~ count_living * 4, # Great-grandchildren: multiply by 4 + kin == "oa" ~ count_living * 4, # Older aunts/uncles: multiply by 4 + kin == "ya" ~ count_living * 4, # Younger aunts/uncles: multiply by 4 + kin == "os" ~ count_living * 2, # Older siblings: multiply by 2 + kin == "ys" ~ count_living * 2, # Younger siblings: multiply by 2 + kin == "coa" ~ count_living * 8, # Cousins (older): multiply by 8 + kin == "cya" ~ count_living * 8, # Cousins (younger): multiply by 8 + kin == "nos" ~ count_living * 4, # Nieces/nephews (older): multiply by 4 + kin == "nys" ~ count_living * 4 # Nieces/nephews (younger): multiply by 4 + )) + +# Compare approaches at selected ages +bind_rows( + kin_out$kin_summary %>% mutate(type = "full"), + kin_out_androgynous$kin_summary %>% mutate(type = "androgynous"), + kin_out_GKP %>% mutate(type = "gkp")) %>% + # Combine siblings, aunts/uncles, cousins, and nieces/nephews + mutate(kin = case_when( + kin %in% c("ys", "os") ~ "s", # All siblings + kin %in% c("ya", "oa") ~ "a", # All aunts/uncles + kin %in% c("coa", "cya") ~ "c", # All cousins + kin %in% c("nys", "nos") ~ "n", # All nieces/nephews + TRUE ~ kin)) %>% + # Select specific ages for comparison + filter(age_focal %in% c(5, 15, 30, 60, 80)) %>% + # Sum across sex for total kin counts + group_by(kin, age_focal, type) %>% + summarise(count = sum(count_living)) %>% + # Create bar chart + ggplot(aes(type, count)) + + geom_bar(aes(fill = type), stat = "identity") + + theme_bw() + + theme(axis.text.x = element_text(angle = 90), legend.position = "bottom") + + facet_grid(col = vars(kin), row = vars(age_focal), scales = "free") + + labs( + title = "Comparison of approximation methods with full two-sex model", + subtitle = "France, 2012, at selected ages", + x = "Approximation method", + y = "Total number of living relatives", + fill = "Method" + ) +``` + +**Interpretation**: This comparison shows that both approximation methods produce reasonable estimates for most kin types. Overall, these approximations offer practical alternatives when sex-specific data is limited, though they should be used with caution and their limitations understood. + +# Incorporating Causes of Death {#prevalance-2sex-time-varying} + +The `kin2sex` function also allows for the analysis of kinship networks by cause of death, providing insights into how different mortality causes affect kin availability. More details about kin bereavement methodology can be found in Caswell, Margolis and Verdery [-@Caswell2023]. Let's implement a simple cause-of-death model with two competing causes. + +Now assume we have two causes of death (COD). For females, the risk of the first COD is half the risk of the second COD for ages greater than 50. For males, the risk of the first COD is 2/3 of the second COD for ages greater than 50. We operationalize this using two matrices with dimension 2 by 101 (number of causes by number of ages). + +```{r} +# Create matrices of relative risks by cause, sex, and age +Hf <- matrix(c(.5, 1), nrow = 2, ncol = length(fra_surv_f)) # Female risk factors +Hm <- matrix(c(.33, 1), nrow = 2, ncol = length(fra_surv_f)) # Male risk factors + +# Set equal risks for ages below 50 +Hf[,1:50] <- Hm[,1:50] <- 1 +``` + +Now we'll run the two-sex model with cause of death information: + +```{r} +kin_out_cod_invariant <- kin2sex( + pf = fra_surv_f, # Female survival + pm = fra_surv_m, # Male survival + ff = fra_fert_f, # Female fertility + fm = fra_fert_m, # Male fertility + Hf = Hf, # Female cause-specific risk factors + Hm = Hm, # Male cause-specific risk factors + time_invariant = TRUE # Using time-invariant model for simplicity +) +``` + +Let's examine the structure of the output: + +```{r} +head(kin_out_cod_invariant) +``` + +The output now includes additional columns for each cause of death. Let's visualize the distribution of parental deaths by cause, sex, and age for a 30-year-old Focal: + +```{r} +kin_out_cod_invariant %>% + filter(kin == "m", age_focal == 30) %>% + summarise(deadcause1 = sum(deadcause1), + deadcause2 = sum(deadcause2), .by = c(age_kin, sex_kin)) %>% + pivot_longer(deadcause1:deadcause2) %>% + ggplot(aes(age_kin, value, col = sex_kin, linetype = name)) + + geom_line() + + labs( + title = "Distribution of parental deaths by cause, sex, and age", + subtitle = "For a 30-year-old focal individual", + x = "Age of parent at death", + y = "Expected number of parental deaths", + color = "Sex of parent", + linetype = "Cause of death" + ) + + theme_bw() +``` + +**Interpretation**: This visualization shows the distribution of parental deaths by cause: + +- **Timing**: In this simplified example, all parental deaths occur after age 50 +- **Sex differences**: Male parents (fathers) show higher death counts at earlier ages, reflecting their higher mortality +- **Cause differences**: The relative importance of different causes varies by sex, with males showing a different distribution than females + +This approach can be extended to include more causes of death and to incorporate time-varying cause-specific mortality, though this would require more complex data inputs. + +# Conclusion + +In this vignette, we've explored how to implement two-sex time-varying kinship models using the `DemoKin` package. These models provide a more comprehensive framework for understanding kinship dynamics by incorporating both sex differences and historical demographic change. + +Key insights include: + +1. Time-varying models capture the effects of demographic transition on kinship networks +2. Sex-specific models reveal important differences in the availability of male versus female relatives +3. Approximation methods offer practical alternatives when data is limited +4. Cause-of-death extensions provide insights into how different mortality causes shape kinship structures + +These advanced models enhance our understanding of gender and family dynamics across demographic transitions, offering valuable tools for demographic analysis, care planning, and social policy development in aging societies. + +# References + diff --git a/vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd b/vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd new file mode 100644 index 0000000..c9828b3 --- /dev/null +++ b/vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd @@ -0,0 +1,315 @@ +--- +title: "One-sex time-invariant kinship model specified by age and stage" +output: + html_document: + toc: true + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + highlight: pygments + number_sections: true + code_folding: show + df_print: paged + fig_caption: true +bibliography: references.bib +vignette: > + %\VignetteIndexEntry{One-sex time-invariant kinship model specified by age and stage} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +# Set up code chunk options +knitr::opts_chunk$set(echo = TRUE, + message = FALSE, + warning = FALSE, + fig.align = 'center', + fig.width = 8, + fig.height = 6, + dpi = 300) +# Prevent scientific notation (useful for the rate calculation) +options(scipen = 999999) +pkgload::load_all() +``` + + + +
    +Learning Objectives: In this vignette, you will learn how to extend the one-sex kinship model to incorporate stages alongside age. You will understand the implementation of multi-state matrix models, explore how demographic processes can vary by stage (e.g., parity), and analyze how these additional dimensions affect kinship structures. +
    + +# Introduction {#introduction} + +In previous vignettes, we explored kinship models where individuals were classified only by age. However, demographic processes are often influenced by other characteristics beyond age. For example, mortality and fertility rates may vary by marital status, education level, health condition, parity (number of children already born), or other socioeconomic factors. + +Multi-state kinship models address this limitation by incorporating both age and stage (additional states) in the analysis. These models allow us to: + +- Account for heterogeneity in mortality and fertility by stage +- Track changes in stage over the life course (e.g., transitions between parity states) +- Analyze kin availability by both age and stage +- Understand how stage-specific demographic patterns shape family structures +- Provide more nuanced estimates of kinship dynamics + +In this vignette, we will start from a simple model, **one-sex time-invariant multi-state kinship model**, outlined in Caswell [-@caswell_formal_2020], using the `DemoKin` package. We'll focus specifically on parity as our stage variable, which allows us to analyze how fertility history affects kinship networks. + +## Package Installation {#preparation} + +If you haven't already installed the required packages from the previous vignettes, here's what you'll need: + +```{r installs, eval=FALSE} +# Install basic data analysis packages +install.packages("dplyr") # Data manipulation +install.packages("tidyr") # Data tidying +install.packages("ggplot2") # Data visualization +install.packages("readr") # Data import +install.packages("knitr") # Document generation +install.packages("data.table")# Efficient data handling +install.packages("Matrix") # Matrix operations + +# Install DemoKin +# DemoKin is available on CRAN (https://cran.r-project.org/web/packages/DemoKin/index.html), +# but we'll use the development version on GitHub (https://github.com/IvanWilli/DemoKin): +install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin) # For kinship analysis +``` + +# Setting Up the Analysis Environment {#load-packages} + +Let's load the necessary packages for our analysis: + +```{r libraries, warning=F, message=FALSE} +rm(list = ls()) +library(dplyr) # For data manipulation +library(tidyr) # For restructuring data +library(ggplot2) # For visualization +library(readr) # For reading data +library(knitr) # For document generation +``` + +# Multi-State Kinship Models {#multi-state-models} + +## Understanding Stage-Structured Models {#understanding-stage-models} + +In traditional age-structured models, an individual's demographic rates depend only on their age. In multi-state models, we expand this framework to consider both age and stage, where "stage" represents another characteristic that influences demographic processes. + +Key components of multi-state models include: + +1. **Age-and-stage-specific mortality rates**: How survival probabilities vary by both age and stage +2. **Age-and-stage-specific fertility rates**: How fertility varies by both age and stage +3. **Age-specific transition probabilities**: How individuals move between stages at each age + +These components allow us to build more realistic models of population dynamics and kinship networks by accounting for heterogeneity beyond age. + +## Parity as a Stage Variable {#parity-models} + +In this vignette, we'll focus on **parity** (the number of children already born to a woman) as our stage variable. Parity is particularly relevant for kinship studies because: + +- Fertility rates often vary substantially by parity +- A woman's ultimate family size affects her kinship network +- Parity transitions follow clear rules (can only increase by integer values) +- Parity status can influence other demographic processes like mortality + +The `DemoKin` package includes data from Slovakia in 1980, which we'll use to implement a parity-based kinship model. + +## Understanding the Data Structure {#data-structure} + +For multi-state models, we need several matrices that specify how demographic rates vary by both age and stage. Let's examine the structure of the Slovakia data included in the `DemoKin` package: + +```{r data_structure} +# Examine fertility rates by age and parity +head(svk_fxs[1:5, ]) + +# Examine survival probabilities by age and parity +head(svk_pxs[1:5, ]) + +# Examine birth matrix (where newborns enter the population) +head(svk_Hxs[1:5, ]) + +# Look at the structure of the transition matrices +typeof(svk_Uxs) +length(svk_Uxs) +svk_Uxs[[20]] # Transition matrix for age 20 +``` + +In this dataset: + +- `svk_fxs` is a data frame of fertility rates by age (rows) and parity stage (columns) +- `svk_pxs` contains survival probabilities by age and parity +- `svk_Hxs` specifies where newborns enter the population (in this case, at parity 0) +- `svk_Uxs` is a list of matrices, one for each age, containing the probabilities of transitioning between parity states conditional on survival + +For parity, the stages represent: + +- Stage 1: Parity 0 (no children) +- Stage 2: Parity 1 (one child) +- Stage 3: Parity 2 (two children) +- Stage 4: Parity 3 (three children) +- Stage 5: Parity 4 (four children) +- Stage 6: Parity 5+ (five or more children) + +Let's examine the transition matrix for a woman of reproductive age to understand how women move between parity states: + +```{r transition_matrix} +# Display the transition matrix for age 25 +# This shows probabilities of moving between parity states +svk_Uxs[[25]] +``` + +This matrix shows the probabilities of moving from one parity state (columns) to another (rows) for a 25-year-old woman, conditional on survival. Some key observations: + +- The matrix shows transitions from column j (starting parity) to row i (ending parity) +- The diagonal elements represent the probability of remaining in the same parity state +- Non-zero values appear only in the lower-triangular portion because parity can only increase (women can't "un-have" children) +- Women at higher parities generally have lower probabilities of having another child + +# Implementing the Multi-State Model {#run-model-multi-state} + +Now let's implement the multi-state kinship model using the `kin_multi_stage` function: + +```{r} +# Use birth_female=1 because fertility is for females only +demokin_svk1980_caswell2020 <- + kin_multi_stage( + U = svk_Uxs, # List of transition matrices + f = svk_fxs, # Fertility rates by age and parity + D = svk_pxs, # Survival probabilities by age and parity + H = svk_Hxs, # Birth matrix + birth_female = 1, # All births are female (one-sex model) + parity = TRUE # Stages represent parity states + ) +``` + +This function computes the joint age-parity distribution of kin for a focal individual under the specified demographic conditions. The output includes information on both the age and parity state of each relative. + +# Analyzing Age and Parity Distributions {#age-and-parity-distribution} + +Let's examine how both age and parity are distributed among relatives. First, we'll look at the age-parity distribution of aunts when the focal individual is 20 and 60 years old: + +```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} +demokin_svk1980_caswell2020 %>% + filter(kin %in% c("oa","ya"), age_focal %in% c(20,60)) %>% + mutate(parity = as.integer(stage_kin)-1, + parity = case_when(parity == 5 ~ "5+", TRUE ~ as.character(parity)) + ) %>% + group_by(age_focal, age_kin, parity) %>% + summarise(count = sum(living)) %>% + ggplot() + + geom_bar(aes(x = age_kin, y = count, fill = parity), stat = "identity") + + geom_vline(aes(xintercept = age_focal), col = 2) + + labs( + title = "Age and parity distribution of aunts", + subtitle = "Slovakia, 1980", + x = "Age of aunt", + y = "Number of aunts", + fill = "Parity" + ) + + theme_bw() + + facet_wrap(~age_focal, nrow = 2, labeller = labeller( + age_focal = c("20" = "Focal age: 20", "60" = "Focal age: 60") + )) +``` + +**Interpretation**: These bar charts show the joint distribution of age and parity for aunts at two different focal ages: + +- **When Focal is 20** (upper panel): Aunts are mostly middle-aged (30s-50s) and concentrated in parities 2-3, reflecting the fertility patterns of that generation +- **When Focal is 60** (lower panel): Aunts are much older (if still alive) and show a similar parity distribution, though with more high-parity individuals due to the fertility patterns of earlier cohorts + +The red vertical line indicates Focal's age, providing a reference point for comparing the ages of relatives. This joint distribution provides richer information than looking at age or parity alone. + +# Kin Counts by Parity Over the Life Course {#kin-by-parity} + +Now let's examine how the parity distribution of different types of relatives changes over Focal's life course. We'll focus on daughters and mothers: + +```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} +demokin_svk1980_caswell2020 %>% + filter(kin %in% c("d","m")) %>% + mutate(parity = as.integer(stage_kin)-1, + parity = case_when(parity == 5 ~ "5+", TRUE ~ as.character(parity))) %>% + group_by(age_focal, kin, parity) %>% + summarise(count = sum(living)) %>% + DemoKin::rename_kin() %>% + ggplot() + + geom_bar(aes(x = age_focal, y = count, fill = parity), stat = "identity") + + labs( + title = "Parity distribution of mothers and daughters over the life course", + subtitle = "Slovakia, 1980", + x = "Age of focal individual", + y = "Number of relatives", + fill = "Parity" + ) + + theme_bw() + + facet_wrap(~kin_label, nrow = 2) +``` + +**Interpretation**: These stacked bar charts reveal how the parity distribution of mothers and daughters evolves across Focal's life course: + +- **Mothers**: + - Most mothers are in parity 2-3, reflecting the dominant family size in this population + - At Focal's birth (age 0), mothers are necessarily at parity 1 or higher (as they must have at least one child - the Focal individual) + - The mothers' parity distribution shows a gradual shift toward higher parities when Focal is young, as some mothers continue to have additional children + - The composition is relatively stable after Focal reaches adulthood, with slight changes due to differential mortality by parity + +- **Daughters**: + - Initially all daughters are in parity 0 (childless) + - As Focal ages, daughters transition to higher parity states + - By the time Focal reaches old age, the parity distribution of daughters resembles the overall population pattern + - The total number increases until Focal's reproductive years end, then remains stable + +These patterns highlight the intergenerational transmission of fertility behaviors and how demographic patterns ripple through kinship networks. + +# Conclusion + +In this vignette, we've explored how to implement one-sex time-invariant multi-state kinship models using the `DemoKin` package. By incorporating both age and stage (parity) in our analysis, we've gained richer insights into the structure of kinship networks than would be possible with age alone. + +Key insights include: + +1. Demographic processes vary not only by age but also by other characteristics like parity +2. Multi-state models allow us to track the joint distribution of age and stage among relatives +3. The parity distribution of relatives evolves in complex ways over the life course +4. Stage transitions (e.g., between parity states) are a key component of kinship dynamics + +While we focused on parity in this vignette, the `kin_multi_stage` function can be used for any state variable by setting the parameter `parity = FALSE` (the default). This flexibility opens up numerous applications: + +1. **Health status transitions**: Analyzing how health conditions affect and are affected by kinship networks +2. **Educational attainment**: Exploring how education levels influence family formation and structure +3. **Marital status**: Incorporating marriage, divorce, and widowhood into kinship dynamics +4. **Geographical location**: Modeling proximity and migration within kinship networks +5. **Labor force participation**: Understanding how work patterns interact with family structures + +# References + diff --git a/vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd b/vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd new file mode 100644 index 0000000..e8d4fdc --- /dev/null +++ b/vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd @@ -0,0 +1,661 @@ +--- +title: "Two-sex time-varying kinship model specified by age and stage" +output: + html_document: + toc: true + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + highlight: pygments + number_sections: true + code_folding: show + df_print: paged + fig_caption: true +bibliography: references.bib +vignette: > + %\VignetteIndexEntry{Two-sex time-varying kinship model specified by age and stage} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +# Set up code chunk options +knitr::opts_chunk$set(echo = TRUE, + message = FALSE, + warning = FALSE, + fig.align = 'center', + fig.width = 8, + fig.height = 6, + dpi = 300) +# Prevent scientific notation (useful for the rate calculation) +options(scipen = 999999) +pkgload::load_all() +``` + + + +
    +Learning Objectives: In this vignette, you will learn how to implement a kinship model that combines both two-sex and time-varying approaches with multiple stages. You will understand how to incorporate sex-specific demographic rates that change over time, analyze the effects of demographic transitions on kinship structures by sex and stage, and explore applications with different stage variables such as parity and education. +
    + +# Introduction {#introduction} + +In this final vignette, we integrate all elements from previous tutorials into the most comprehensive kinship model available: a **two-sex time-varying multi-state model**. This framework simultaneously accounts for: + +- Sex differences in demographic rates +- Historical changes over time +- Stage-based transitions (like parity or education) +- Joint distributions of age, sex, and stage among relatives + +Building on Caswell and colleagues' theoretical developments [-@caswell_formal_2019; -@caswell_formal_2020; -@caswell_formal_2021; -@caswell_formal_2022], this approach provides unprecedented analytical power for understanding complex family structures. We'll implement this comprehensive model using the `kin_multi_stage_time_variant_2sex` function, exploring two examples: one using parity and another using educational attainment to demonstrate how these models illuminate contemporary family dynamics in ways simpler models cannot. + +## Package Installation {#preparation} + +If you haven't already installed the required packages from the previous vignettes, here's what you'll need: + +```{r installs, eval=FALSE} +# Install basic data analysis packages +install.packages("dplyr") # Data manipulation +install.packages("tidyr") # Data tidying +install.packages("ggplot2") # Data visualization +install.packages("readr") # Data import +install.packages("knitr") # Document generation +install.packages("data.table")# Efficient data handling +install.packages("Matrix") # Matrix operations + +# Install DemoKin +# DemoKin is available on CRAN (https://cran.r-project.org/web/packages/DemoKin/index.html), +# but we'll use the development version on GitHub (https://github.com/IvanWilli/DemoKin): +install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin) +``` + +# Setting Up the Analysis Environment {#load-packages} + +Let's load the necessary packages for our analysis: + +```{r libraries, warning=F, message=FALSE} +rm(list = ls()) +library(dplyr) # For data manipulation +library(tidyr) # For restructuring data +library(ggplot2) # For visualization +library(readr) # For reading data +library(knitr) # For document generation +library(Matrix) # For matrix operations +library(tictoc) # For timing operations +options(dplyr.summarise.inform = FALSE) # hide summarise output +# source("kin_multi_stage_time_variant_2sex.R") +``` + +# Two-Sex Time-Varying Multi-State Models {#two-sex-time-varying-multi-state} + +The `kin_multi_stage_time_variant_2sex` function in the `DemoKin` package allows us to implement a comprehensive kinship model that accounts for sex, time, and stage simultaneously. This function computes stage-specific kinship networks across both sexes for an average member of a population (focal) under time-varying demographic rates. + +The model estimates: + +- The number of relatives of each type +- The age distribution of relatives +- The sex distribution of relatives +- The stage distribution of relatives +- How these distributions change over the life course of Focal +- How they vary by Focal's birth cohort + +## Model Components and Requirements {#model-requirements} + +The two-sex time-varying multi-state model requires several inputs: + +1. **Sex-specific mortality rates by stage over time**: How survival probabilities differ between males and females of different stages across historical periods +2. **Sex-specific fertility rates by stage over time**: How fertility patterns differ between males and females of different stages across historical periods +3. **Sex-specific transition rates between stages over time**: How individuals move between stages at each age, potentially differing by sex +4. **Sex ratio at birth**: The proportion of births that are female +5. **Birth redistribution matrices**: How newborns are distributed across stages +6. **Sex and initial stage of the focal individual**: The characteristics of the person whose kin network we're analyzing + +In the following sections, we'll explore two examples of this model using different stage variables: parity and education. + +# Example 1: Parity as the Stage Variable {#parity-as-stage} + +## Data Preparation {#parity-data-preparation} + +In our first example, we'll use parity (number of children already born) as our stage variable. We'll use data from the United Kingdom ranging from 1965 to 2022, sourced from the Human Mortality Database and the Office for National Statistics. + +Due to data limitations, we make some simplifying assumptions: + +1. Fertility rates vary with time and parity but are the same across sexes (the "androgynous approximation") +2. Mortality rates vary with time and sex but are the same across parity classes +3. Parity progression probabilities vary with time but are the same across sexes + +Let's load the pre-processed UK data: + +```{r parity_data_load, message=FALSE, warning=FALSE} +# Load pre-processed data for UK +F_mat_fem <- Female_parity_fert_list_UK # Female fertility by parity +F_mat_male <- Female_parity_fert_list_UK # Male fertility (same as female due to androgynous approximation) +T_mat_fem <- Parity_transfers_by_age_list_UK # Female parity transitions +T_mat_male <- Parity_transfers_by_age_list_UK # Male parity transitions (same as female) +U_mat_fem <- Female_parity_mortality_list_UK # Female survival +U_mat_male <- Male_parity_mortality_list_UK # Male survival +H_mat <- Redistribution_by_parity_list_UK # Birth redistribution matrices +``` + +These lists contain period-specific demographic rates: + +- `U_mat_fem`/`U_mat_male`: Lists of matrices containing survival probabilities by age (rows) and parity (columns) from 1965-2022 +- `F_mat_fem`/`F_mat_male`: Lists of matrices containing fertility rates by age and parity +- `T_mat_fem`/`T_mat_male`: Lists of transition matrices showing probabilities of moving between parity states +- `H_mat`: List of matrices that redistribute newborns to age-class 1 and parity 0 + +## Running the Parity Model {#parity-model-running} + +Now let's implement the two-sex time-varying multi-state model with parity as the stage variable: + +```{r parity_model, message=FALSE, warning=FALSE, eval=TRUE} +# Define time period and parameters +no_years <- 40 # Run the model for 40 years (1965-2005) + +# Run the model +kin_out_1965_2005 <- + kin_multi_stage_time_variant_2sex( + U_list_females = U_mat_fem[1:(1+no_years)], # Female survival matrices + U_list_males = U_mat_male[1:(1+no_years)], # Male survival matrices + F_list_females = F_mat_fem[1:(1+no_years)], # Female fertility matrices + F_list_males = F_mat_male[1:(1+no_years)], # Male fertility matrices + T_list_females = T_mat_fem[1:(1+no_years)], # Female transition matrices + T_list_males = T_mat_fem[1:(1+no_years)], # Male transition matrices + H_list = H_mat[1:(1+no_years)], # Birth redistribution matrices + birth_female = 1 - 0.51, # UK sex ratio (49% female) + parity = TRUE, # Stages represent parity + output_kin = c("d", "oa", "ys", "os"), # Selected kin types + summary_kin = TRUE, # Produce summary statistics + sex_Focal = "Female", # Focal is female + initial_stage_Focal = 1, # Focal starts at parity 0 + # model_years <- seq(1965, 2005, 5), # the sequence of years we model + output_years = c(1965, 1975, 1985, 1995, 2005) # Selected output years + ) +``` + +> Note: This model run takes approximately 30 minutes to complete. + +Now we need to recode the stage variables to show meaningful parity labels: + +```{r parity_output_recode, message=FALSE, warning=FALSE, eval=TRUE} +# After running the model, recode the parity stage values +kin_out_1965_2005$kin_summary <- + kin_out_1965_2005$kin_summary %>% + mutate(stage_kin = factor(as.numeric(stage_kin) - 1, + levels = c(0, 1, 2, 3, 4, 5), + labels = c("0", "1", "2", "3", "4", "5+"))) + +# Do the same for the kin_full dataframe if you're using it +kin_out_1965_2005$kin_full <- + kin_out_1965_2005$kin_full %>% + mutate(stage_kin = factor(as.numeric(stage_kin) - 1, + levels = c(0, 1, 2, 3, 4, 5), + labels = c("0", "1", "2", "3", "4", "5+"))) +``` + +## Analyzing Kin Counts by Parity {#parity-kin-counts} + +Let's examine the structure of the output: + +```{r parity_output_show, message=FALSE, warning=FALSE, eval=TRUE} +head(kin_out_1965_2005$kin_summary) +``` + +The output includes: + +- `age_focal`: Age of the focal individual +- `kin_stage`: Stage (parity) of the relatives +- `sex_kin`: Sex of the relatives +- `year`: Calendar year of observation +- `group`: Type of relative (d = children, oa = older aunts/uncles, etc.) +- `count`: Expected number of living relatives +- `cohort`: Birth cohort of the focal individual + +### Period Analysis of Kin by Parity {#parity-period-analysis} + +Let's visualize the distribution of older aunts and uncles by parity for different ages of Focal across different calendar years. + +We first restrict Focal's kinship network to aunts and uncles older than Focal's mother by setting `group` == "oa". We visualize the marginal parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different color schemes. Implicit in the below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. + +```{r parity_aunts_uncles, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +kin_out_1965_2005$kin_summary %>% + filter(group == "oa") %>% + ggplot(aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + + geom_bar(position = "stack", stat = "identity") + + facet_grid(sex_kin ~ year) + + scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + theme_bw() + + theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) + + labs( + title = "Parity distribution of older aunts and uncles by Focal's age", + subtitle = "United Kingdom, 1965-2005", + x = "Age of focal individual", + y = "Number of older aunts and uncles", + fill = "Parity", + color = "Parity" + ) +``` + +We could also consider any other kin in Focal's network, for instance, offspring using `group` == "d": + +```{r parity_offspring, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +kin_out_1965_2005$kin_summary %>% + filter(group == "d") %>% + ggplot(aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + + geom_bar(position = "stack", stat = "identity") + + facet_grid(sex_kin ~ year) + + scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + theme_bw() + + theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) + + labs( + title = "Parity distribution of children by Focal's age", + subtitle = "United Kingdom, 1965-2005", + x = "Age of focal individual", + y = "Number of children", + fill = "Parity", + color = "Parity" + ) +``` + +### Cohort Analysis of Kin by Parity {#parity-cohort-analysis} + +Since we only ran the model for 40 years (between 1965-2005), there is very little scope to view kinship as cohort-specific. + +We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring and only show Focals born of `cohort` 1910, 1925, or 1965: + +```{r parity_cohort, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +kin_out_1965_2005$kin_summary %>% + filter(group == "d", cohort %in% c(1910, 1925, 1965)) %>% + ggplot(aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + + geom_bar(position = "stack", stat = "identity") + + facet_grid(sex_kin ~ cohort) + + theme_bw() + + theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) + + labs( + title = "Parity distribution of offspring by birth cohort", + subtitle = "United Kingdom, ages observed between 1965-2005", + x = "Age of focal individual", + y = "Number of offspring", + fill = "Parity", + color = "Parity" + ) +``` + +**Interpretation**: + +- The 1910 cohort (observed at ages 55-95): Most offspring have already completed their childbearing, showing a mix of parity states +- The 1925 cohort (observed at ages 40-80): Offspring are observed during and after their reproductive years +- The 1965 cohort (observed at ages 0-40): Initially, all offspring are in parity 0, gradually transitioning to higher parities as they age + +## Age Distribution of Kin by Parity {#parity-age-distribution} + +For more detailed analysis, we can examine the age and parity distribution of specific relatives. Let's look at the younger siblings of a 50-year-old Focal across different years: + +```{r parity_siblings_young, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +kin_out_1965_2005$kin_full %>% + filter(group == "ys", + age_focal == 50) %>% + ggplot(aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + + geom_bar(position = "stack", stat = "identity") + + facet_grid(sex_kin ~ year) + + scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + theme_bw() + + theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) + + labs( + title = "Age and parity distribution of younger siblings", + subtitle = "For a 50-year-old focal individual, United Kingdom, 1965-2005", + x = "Age of sibling", + y = "Number of younger siblings", + fill = "Parity", + color = "Parity" + ) +``` + +Notice the discontinuity along the x-axis at age 50. This reflects the fact that younger siblings cannot be older than Focal (by definition). Similarly, when we examine older siblings, we'll see they cannot be younger than Focal. + +With a simple manipulation of the output data frame, we can also plot the age and parity distribution of all siblings combined: + +```{r parity_siblings_all, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +kin_out_1965_2005$kin_full %>% + filter((group == "ys" | group == "os"), + age_focal == 50) %>% + pivot_wider(names_from = group, values_from = count) %>% + mutate(count = `ys` + `os`) %>% + ggplot(aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + + geom_bar(position = "stack", stat = "identity") + + facet_grid(sex_kin ~ year) + + scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + theme_bw() + + theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) + + labs( + title = "Age and parity distribution of all siblings", + subtitle = "For a 50-year-old focal individual, United Kingdom, 1965-2005", + x = "Age of sibling", + y = "Number of siblings", + fill = "Parity", + color = "Parity" + ) +``` + +# Example 2: Education as the Stage Variable {#education-as-stage} + +## Data Preparation {#education-data-preparation} + +In our second example, we'll use educational attainment as our stage variable. The data is for Singapore ranging from 2020 to 2090, sourced from the Wittgenstein Center. The data is aggregated into 5-year age groups and 5-year time intervals. + +Some simplifying assumptions we make due to data availability: + +1. Fertility rates vary with time and education but are identical for both sexes (androgynous approximation) +2. Age-specific education transition probabilities vary over time but not by sex +3. Educational transitions for young children follow Singapore's Compulsory Education Act +4. Demographic rates before 2020 are assumed stable (time-invariant) + +Let's load the pre-processed Singapore data: + +This data includes: + +- `U_mat_fem_edu`/`U_mat_male_edu`: Lists of matrices containing survival probabilities by age (rows) and education (columns) from 2020-2090 +- `F_mat_fem_edu`/`F_mat_male_edu`: Lists of matrices containing fertility rates by age and education +- `T_mat_fem_edu`/`T_mat_male_edu`: Lists of transition matrices showing probabilities of moving between education states +- `H_mat_edu`: List of matrices that redistribute newborns to age-class 1 and "no education" category + +Before running the model, let's examine some trends in the data: + +```{r edu_trends, message=FALSE, warning=FALSE, eval=TRUE} +# Calculate and plot Total Fertility Rate by education level over time +tfr_data <- lapply(seq_along(F_mat_fem_edu), function(i) { + col_sums <- colSums(F_mat_fem_edu[[i]]) + data.frame( + year = 2020 + (i - 1) * 5, + education = factor(colnames(F_mat_fem_edu[[i]]), + levels = c("e1", "e2", "e3", "e4", "e5", "e6"), + labels = c("no education", "incomplete primary", + "primary", "lower secondary", + "upper secondary", "post-secondary")), + tfr = col_sums + ) +}) + +tfr_df <- do.call(rbind, tfr_data) + +# Plot TFR trends +ggplot(tfr_df, aes(x = year, y = tfr, color = education, group = education)) + + geom_line(size = 1) + + geom_point() + + theme_minimal() + + labs( + title = "Total Fertility Rate by Education Over Time", + x = "Year", + y = "TFR", + color = "Education" + ) +``` + +## Running the Education Model {#education-model-running} + +Now let's implement the two-sex time-varying multi-state model with education as the stage variable: + +```{r education_model, message=FALSE, warning=FALSE, eval=TRUE} +# Define time period and parameters +time_range <- seq(2020, 2090, 5) +no_years <- length(time_range) - 1 +output_year <- seq(1, no_years + 1, 1) + +# Run the model +kin_out_2020_2090 <- + kin_multi_stage_time_variant_2sex( + U_list_females = U_mat_fem_edu[1:(1+no_years)], # Female survival matrices + U_list_males = U_mat_male_edu[1:(1+no_years)], # Male survival matrices + F_list_females = F_mat_fem_edu[1:(1+no_years)], # Female fertility matrices + F_list_males = F_mat_male_edu[1:(1+no_years)], # Male fertility matrices + T_list_females = T_mat_fem_edu[1:(1+no_years)], # Female transition matrices + T_list_males = T_mat_fem_edu[1:(1+no_years)], # Male transition matrices + H_list = H_mat_edu[1:(1+no_years)], # Birth redistribution matrices + birth_female = 1/(1.06+1), # Singapore sex ratio (48.5% female) + parity = FALSE, # Stages represent education + summary_kin = TRUE, # Produce summary statistics + sex_Focal = "Female", # Focal is female + initial_stage_Focal = 1, # Focal starts with no education + # model_years = output_year, # the sequence of years we model + output_years = output_year # All years + ) +``` + +> Note: This model run takes approximately 3 minutes to complete. + +Now we need to recode the stage variables to show meaningful educational labels and convert years/ages to real values (since we used 5-year intervals): + +```{r education_recode, message=FALSE, warning=FALSE, eval=TRUE} +# Recode year and age variables to show correct values +kin_out_2020_2090$kin_summary <- + kin_out_2020_2090$kin_summary %>% + mutate(year = (year-1)*5+min(time_range), + age_focal = age_focal*5, + cohort = year - age_focal, + stage_kin = factor(stage_kin, levels = c(1, 2, 3, 4, 5, 6), + labels = c( + "no education", + "incomplete primary", + "primary", + "lower secondary", + "upper secondary", + "post-secondary" + ))) + +kin_out_2020_2090$kin_full <- + kin_out_2020_2090$kin_full %>% + mutate(year = (year-1)*5+min(time_range), + age_focal = age_focal*5, + age_kin = age_kin*5, + cohort = year - age_focal, + stage_kin = factor(stage_kin, levels = c(1, 2, 3, 4, 5, 6), + labels = c( + "no education", + "incomplete primary", + "primary", + "lower secondary", + "upper secondary", + "post-secondary" + ))) +``` + +## Analyzing Kin by Educational Attainment {#education-kin-analysis} + +### Cohort Analysis of Kin by Education {#education-cohort-analysis} + +First, let's visualize the total number of living kin by educational attainment for a woman born in 2020 in Singapore: + +```{r education_total_kin, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +kin_out_2020_2090$kin_summary %>% + # Exclude Focal from the analysis + filter(group != "Focal") %>% + filter(cohort == 2020) %>% + rename(kin = group) %>% + # rename_kin(sex = "2sex") %>% + summarise(count = sum(count), .by = c(stage_kin, age_focal)) %>% + ggplot(aes(x = age_focal, y = count, fill = stage_kin)) + + geom_area(colour = "black") + + labs( + title = "Total living kin by educational attainment over the life course", + subtitle = "For a woman born in 2020, Singapore", + y = "Expected number of living kin", + x = "Age of focal individual", + fill = "Educational attainment" + ) + + theme_bw() + + theme(legend.position = "bottom") +``` + +Now let's look at specific types of relatives: + +```{r education_specific_kin, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +kin_out_2020_2090$kin_summary %>% + filter(group %in% c("d", "gd", "m", "gm")) %>% + filter(cohort == 2020) %>% + rename(kin = group) %>% + # rename_kin(sex = "2sex") %>% + summarise(count = sum(count), .by = c(kin, stage_kin, age_focal)) %>% + ggplot(aes(x = age_focal, y = count, fill = stage_kin)) + + geom_area(colour = "black") + + labs( + title = "Living kin by educational attainment over the life course", + subtitle = "For a woman born in 2020, Singapore", + y = "Expected number of living kin", + x = "Age of focal individual", + fill = "Educational attainment" + ) + + facet_wrap(. ~ kin) + + theme_bw() + + theme(legend.position = "bottom") +``` + +**Interpretation** This visualization captures how educational expansion transforms family networks, showing the increasing educational diversity across generations in Singapore: + +- The total number of living relatives peaks around age 40-50 +- Relatives with upper secondary education (blue) constitute the largest proportion of the kinship network +- The educational composition of relatives changes dynamically across the life course +- At younger ages, relatives have lower educational attainment. As Focal ages, the proportion of higher-educated relatives (green, yellow, and red categories) increases + +Let's examine the age and educational distribution of key relatives when the focal individual is 60 years old: + +```{r education_age_distribution, message=FALSE, warning=FALSE, fig.height=6, fig.width=10, eval=TRUE} +kin_out_2020_2090$kin_full %>% + filter( + group %in% c("d", "gd", "m", "gm"), + age_focal == 60, + cohort == 2020 + ) %>% + rename(kin = group) %>% + # rename_kin("2sex") %>% + ggplot(aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + + geom_bar(position = "stack", stat = "identity") + + scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + labs( + title = "Age and educational distribution of key relatives", + subtitle = "For a 60-year-old woman born in 2020, Singapore", + x = "Age of relative", + y = "Number of relatives", + fill = "Educational attainment", + color = "Educational attainment" + ) + + facet_wrap(. ~ kin) + + theme_bw() + + theme( + axis.text.x = element_text(angle = 90, vjust = 0.5), + legend.position = "bottom" + ) +``` + +**Interpretation**: This visualization reveals the evolving educational composition of different types of relatives across the life course for a woman born in 2020 in Singapore: + +- **Children** (d): Educational attainment increases with Focal's age, showing a shift towards higher education levels +- **Grandchildren** (gd): Emerge later in life with a more diverse educational profile +- **Grandparents** (gm): Predominantly have upper secondary (blue) and lower secondary (teal) education +- **Parents** (m): Similar to grandparents, with a concentration of upper secondary education + +### Period Analysis of Kin by Education {#education-period-analysis} + +Now let's examine how the educational composition of specific relatives changes over time. First, let's look at the educational attainment of descendants (children and grandchildren) of 60-year-old women across different calendar years: + +```{r education_descendants_time, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +kin_out_2020_2090$kin_summary %>% + filter( + group %in% c("d", "gd"), + age_focal == 60 + ) %>% + rename(kin = group) %>% + # rename_kin(sex = "2sex") %>% + summarise(count = sum(count), .by = c(stage_kin, kin, year)) %>% + ggplot(aes(x = year, y = count, fill = stage_kin)) + + geom_area(colour = "black") + + labs( + title = "Educational attainment of descendants over time", + subtitle = "For women aged 60, Singapore, 2020-2090", + y = "Expected number of descendants", + x = "Year", + fill = "Educational attainment" + ) + + facet_grid(. ~ kin) + + theme_bw() + + theme(legend.position = "bottom") +``` + +**Interpretation**: + +- **Children** (d): Concentrated between ages 30-50, with upper secondary education (blue) being most prevalent +- **Grandchildren** (gd): Mostly young (under 20), with emerging educational diversity +- **Grandparents** (gm): No longer living at this point +- **Parents** (m): Clustered around ages 80-90, with upper secondary and lower secondary education dominating + +# Limitations and Assumptions {#limitations} + +When implementing these models, we've made several simplifying assumptions due to data limitations: + +For the UK parity model: + +1. Fertility rates vary with time and parity but are the same across sexes +2. Mortality rates vary with time and sex but are the same across parity classes +3. Parity progression probabilities vary with time but are the same across sexes + +For the Singapore education model: + +1. Fertility rates vary over time and by education but are identical for both sexes +2. Age-specific education transition probabilities vary over time but not by sex +3. Educational transitions for young children follow Singapore's Compulsory Education Act +4. Demographic rates before 2020 are assumed stable (time-invariant) + +These assumptions should be kept in mind when interpreting the results. + +# Conclusion + +In this vignette, we've implemented two-sex time-varying multi-state kinship models—the most comprehensive demographic kinship framework currently available. By integrating age, sex, time, and stage dimensions, these models provide unprecedented insights into family structures and their evolution. + +Our two examples demonstrated the analytical power of this integrated approach: + +- The parity example revealed how reproductive patterns shape family structures differently for males and females across historical periods +- The education example showed how educational expansion transforms kinship networks, creating increasingly educated family systems over time + +These comprehensive models have numerous applications across disciplines: + +- Understanding intergenerational transmission of socioeconomic status +- Analyzing care needs and support networks in diverse populations +- Projecting how family structures might evolve under different demographic scenarios +- Exploring how education, health, marriage, and other characteristics intersect with kinship + +# References diff --git a/vignettes/Reference_OneSex.Rmd b/vignettes/Reference_OneSex.Rmd deleted file mode 100644 index 16662a5..0000000 --- a/vignettes/Reference_OneSex.Rmd +++ /dev/null @@ -1,270 +0,0 @@ ---- -title: "Expected kin counts by type of relative in a one-sex framework" -bibliography: references.bib -output: - html_document: - toc: true - toc_depth: 1 -vignette: > - %\VignetteIndexEntry{Reference_OneSex} - %\VignetteEngine{knitr::rmarkdown} - %\VignetteEncoding{UTF-8} ---- - -```{r, eval = F, include=FALSE} -knitr::opts_chunk$set(collapse = TRUE, comment = "#>") -# library(devtools); load_all() -``` - -In this vignette, we'll demonstrate how `DemoKin` can be used to compute kinship networks for an average member of a given (female) population. Let us call her Focal: an average Swedish woman who has always lived in Sweden and whose family has never left the country. -Here, we'll show how `DemoKin` can be used to compute the number and age distribution of Focal's relatives under a range of assumptions, including living and deceased kin. - -## 1. Kin counts with time-invariant rates - -First, we compute kin counts in a **time-invariant** framework. We assume that Focal and all of her relatives experience the 2015 mortality and fertility rates throughout their entire lives [@caswell_formal_2019]. The `DemoKin` package includes data from Sweden as an example: age-by-year matrices of survival probabilities (*swe_px*), survival ratios (*swe_Sx*), fertility rates (*swe_asfr*), and population numbers (*swe_pop*). You can see the data contained in `DemoKin` with `data(package="DemoKin")`. This data comes from the [Human Mortality Database](https://www.mortality.org/) and [Human Fertility Database](https://www.humanfertility.org/) (see `?DemoKin::get_HMDHFD`). - -In order to implement the time-invariant models, the function `DemoKin::kin` expects a vector of survival ratios and another vector of fertility rates. In this example, we get the data for the year 2015, and run the matrix models: - -```{r, message=FALSE, warning=FALSE} -pkgload::load_all() -library(tidyr) -library(dplyr) -library(ggplot2) -library(knitr) -# First, get vectors for a given year -swe_surv_2015 <- swe_px[,"2015"] -swe_asfr_2015 <- swe_asfr[,"2015"] -# Run kinship models -swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) -``` - -### 1.1. Value - -`DemoKin::kin()` returns a list containing two data frames: `kin_full` and `kin_summary`. - -`kin_full` contains expected kin counts by year (or cohort), age of Focal and age of kin. Note that the columns `year` and `cohort` are empty if the argument is `time_invariant = TRUE` in `kin` (as in this example). - -```{r} -head(swe_2015$kin_full) -``` - -`kin_summary` is a ā€˜summary’ data frame derived from `kin_full`. - -```{r} -head(swe_2015$kin_summary) -``` - -To produce it, we sum over all ages of kin to produce a data frame of expected kin counts by year or cohort and age of Focal (but not by age of kin). -Consider this simplified example for living kin counts: - -```{r, message=FALSE, warning=FALSE} -kin_summary_example <- - swe_2015$kin_full %>% - select(year, cohort, kin, age_focal, age_kin, living, dead) %>% - group_by(year, cohort, kin, age_focal) %>% - summarise(count_living = sum(living)) - -head(kin_summary_example) -``` - -### 1.2. Visualizing the distribution of kin - -Let us now visualize the distribution of relatives over Focal's lifecourse using the summary data.frame `kin_summary`: - -```{r, fig.height=6, fig.width=8} -swe_2015[["kin_summary"]] %>% - ggplot() + - geom_line(aes(age_focal, count_living)) + - theme_bw() + - labs(y = "Expected number of living relatives") + - facet_wrap(~kin) -``` - -Here, each relative type is identified by a unique code. Note that `DemoKin` uses different codes than Caswell [-@caswell_formal_2019]; the equivalence between the two set of codes is given in the following table: - -```{r, fig.height=6, fig.width=8, echo=FALSE} -demokin_codes %>% - kable -``` - -We can also visualize the age distribution of relatives when Focal is 35 years old (now, with full names to identify each relative type using the function `DemoKin::rename_kin()`): - -```{r, fig.height=6, fig.width=8} -swe_2015[["kin_full"]] %>% - filter(age_focal == 35) %>% - ggplot() + - geom_line(aes(age_kin, living)) + - geom_vline(xintercept = 35, color=2) + - labs(y = "Expected number of living relatives") + - theme_bw() + - facet_wrap(~kin) -``` - -The one-sex model implemented in `DemoKin` assumes that the given fertility input applies to both sexes. -Note that, if using survival rates ($S_x$) instead of probabilities ($p_x$), fertility vectors should account for female person-year exposure, using: $(\frac{f_x+f_{x+1}S_x}{2})\frac{L_0}{l_0}$ instead of only $fx$; see Preston et.al [-@preston_demography:_2001]). - -The `kin` function also includes a summary output with the count of living kin, mean and standard deviation of kin age, by type of kin, for each Focal's age: - -```{r, fig.height=6, fig.width=8} -swe_2015[["kin_summary"]] %>% - filter(age_focal == 35) %>% - select(kin, count_living, mean_age, sd_age) %>% - mutate_if(is.numeric, round, 2) %>% - kable() -``` - -Finally, we can visualize the estimated kin counts by type of kin using a network diagram. Following with the age 35: - -```{r, fig.height=6, fig.width=8, dpi=900, message=FALSE, warning=FALSE} -swe_2015[["kin_summary"]] %>% - filter(age_focal == 35) %>% - select(kin, count = count_living) %>% - plot_diagram(rounding = 2) -``` - - -## 2. Kin counts with time-variant rates - -The demography of Sweden is, in reality, changing every year. This means that Focal and her relatives will have experienced changing mortality and fertility rates over time. -We account for this, by using the time-variant models introduced by Caswell and Song [-@caswell_formal_2021]. -Let's take a look at the resulting kin counts for a Focal born in 1960, limiting the output to the relative types given in the argument `output_kin`: - -```{r, fig.height=6, fig.width=8} -swe_time_varying <- - kin( - p = swe_px, - f = swe_asfr, - n = swe_pop, - time_invariant =FALSE, - output_cohort = 1960, - output_kin = c("d","gd","ggd","m","gm","ggm") - ) - -swe_time_varying$kin_summary %>% - ggplot(aes(age_focal,count_living,color=factor(cohort))) + - scale_y_continuous(name = "",labels = seq(0,3,.2),breaks = seq(0,3,.2))+ - geom_line(color = 1)+ - geom_vline(xintercept = 35, color=2)+ - labs(y = "Expected number of living relatives") + - facet_wrap(~kin,scales = "free")+ - theme_bw() - -``` - - - -## 3. Kin deaths - -Kin loss can have severe consequences for bereaved relatives. It can also affect the provision of care support and intergenerational transfers over the life course. -The function `kin` also includes information on the number of relatives lost by Focal during her life, stored in the column `count_cum_death`: - -```{r, fig.height=6, fig.width=8, message=FALSE, warning=FALSE} -swe_time_varying$kin_summary %>% - ggplot() + - geom_line(aes(age_focal, count_cum_dead)) + - labs(y = "Expected number of deceased relatives") + - theme_bw() + - facet_wrap(~kin,scales="free") -``` - -Given these population-level measures, we can compute Focal's the mean age at the time of her relative's death. For a Focal aged 50 yo: - -```{r} -swe_time_varying$kin_summary %>% - filter(age_focal == 50) %>% - select(kin,count_cum_dead,mean_age_lost) %>% - mutate_if(is.numeric, round, 2) %>% - kable() -``` - -## 4. Prevalences - -Given the distribution of kin by age, we can compute the expected portion of living kin in some stage given a set of prevalences by age (e.g., a disease, employment, etc.). This is known as the Sullivan Method in the life-table literature. A matrix formulation for same results can be found in Caswell [-@caswell_formal_2019], which can also be extended to a time-variant framework. - -```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} -# letĀ“s create some prevalence by age -swe_2015_prevalence <- - tibble( - age_kin = unique(swe_2015$kin_full$age_kin), - prev = .005 * exp(.05 * age_kin) - ) -# join to kin count estimates and plot -swe_2015$kin_full %>% - left_join(swe_2015_prevalence) %>% - group_by(kin, age_focal) %>% - summarise( - prevalent = sum(living * prev), - no_prevalent = sum(living * (1-prev)) - ) %>% - pivot_longer(cols = prevalent:no_prevalent, names_to = "prevalence_state", values_to = "count") %>% - ggplot(aes(x=age_focal, y = count)) + - geom_area(aes(fill=prevalence_state)) + - facet_wrap(~kin) + - theme_bw() - -``` - -## 5. Multi-state models - -`DemoKin` allows the computation of kin structures in a multi-state framework, classifying individuals jointly by age and some other feature (e.g., stages of a disease). For this, we need mortality and fertility data for each possible stage and probabilities of changing state by age. - -Let's consider the example of Slovakia given by Caswell [-@caswell_formal_2021], where stages are parity states. -`DemoKin` includes the data to replicate this analysis for the year 1980: - -- The data.frame `svk_fxs` is the fertility rate by age (rows) for each parity stage (columns). The first stage represents $parity=0$; the second stage, $parity=1$; and so on, until finally the sixth stage represents $parity\geq5$. -- The data.frame `svk_Hxs` has a similar structure but with $1$'s in the ages corresponding to newborns (the first age in our example). -- The data.frame `svk_pxs` has the same structure and represents survival probabilities. -- The list `svk_Uxs` has the same number of elements and ages (in this case 110, where $omega$ is 109). For each age, it contains a column-stochastic transition matrix with dimension for the state space. The entries are transition probabilities conditional on survival. - -Following Caswell [-@caswell_formal_2020], we can obtain the joint age-parity kin structure: - -```{r} -# use birth_female=1 because fertility is for female only -demokin_svk1980_caswell2020 <- - kin_multi_stage( - U = svk_Uxs, - f = svk_fxs, - D = svk_pxs, - H = svk_Hxs, - birth_female=1, - parity = TRUE) -``` - -Note that the function ask for risks already in a certain matrix format. As an example, consider the age-parity distribution of aunts, when Focal is 20 and 60 yo (this is equivalent to Figure 4 in Caswell [-@caswell_formal_2021]). - -```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} -demokin_svk1980_caswell2020 %>% - filter(kin %in% c("oa","ya"), age_focal %in% c(20,60)) %>% - mutate(parity = as.integer(stage_kin)-1, - parity = case_when(parity == 5 ~ "5+", T ~ as.character(parity)) - ) %>% - group_by(age_focal, age_kin, parity) %>% - summarise(count= sum(living)) %>% - ggplot() + - geom_bar(aes(x=age_kin, y = count, fill=parity), stat = "identity") + - geom_vline(aes(xintercept = age_focal), col=2) + - labs(y = "Number of aunts") + - theme_bw() + - facet_wrap(~age_focal, nrow = 2) -``` - -We can also see the portion of living daughters and mothers at different parity stages over Focal's life-course (this is equivalent to Figure 9 and 10 in Caswell [-@caswell_formal_2021]). - -```{r, message=FALSE, warning=FALSE, fig.height=6, fig.width=10} -demokin_svk1980_caswell2020 %>% - filter(kin %in% c("d","m")) %>% - mutate(parity = as.integer(stage_kin)-1, - parity = case_when(parity == 5 ~ "5+", T ~ as.character(parity))) %>% - group_by(age_focal, kin, parity) %>% - summarise(count= sum(living)) %>% - DemoKin::rename_kin() %>% - ggplot() + - geom_bar(aes(x=age_focal, y = count, fill=parity), stat = "identity") + - labs(y = "Kin count") + - theme_bw() + - facet_wrap(~kin, nrow = 2) -``` - -This function `kin_multi_stage` can be generalized to any kind of state (be sure to set parameter `parity = FALSE`, de default). - -## References diff --git a/vignettes/Reference_TwoSex.Rmd b/vignettes/Reference_TwoSex.Rmd deleted file mode 100644 index 0c0064b..0000000 --- a/vignettes/Reference_TwoSex.Rmd +++ /dev/null @@ -1,329 +0,0 @@ ---- -title: "Two-sex kinship model" -bibliography: references.bib -output: - html_document: - toc: true - toc_depth: 1 -vignette: > - %\VignetteIndexEntry{Reference_TwoSex} - %\VignetteEngine{knitr::rmarkdown} - %\VignetteEncoding{UTF-8} ---- - -```{r, eval = T, include=FALSE} -knitr::opts_chunk$set(collapse = TRUE, comment = "#>") -# library(devtools); load_all() -``` - -Human males generally live shorter and reproduce later than females. -These sex-specific processes affect kinship dynamics in a number of ways. -For example, the degree to which an average member of the population, call her Focal, has a living grandparent is affected by differential mortality affecting the parental generation at older ages. -We may also be interested in considering how kinship structures vary by Focal's sex: a male Focal may have a different number of grandchildren than a female Focal given differences in fertility by sex. -Documenting these differences matters since women often face greater expectations to provide support and informal care to relatives. -As they live longer, they may find themselves at greater risk of being having no living kin. -The function `kin2sex` implements two-sex kinship models as introduced by Caswell [-@caswell_formal_2022]. -This vignette show how to run two-sex models and highlights some of the advantages of this model over one-sex models in populations with time-invariant and time-variant rates. - -```{r, message=FALSE, warning=FALSE} -# library(DemoKin) -library(tidyr) -library(dplyr) -library(ggplot2) -library(knitr) -pkgload::load_all() -# devtools::load_all() -``` - -### 1. Demographic rates by sex - -Data on female fertility by age is less common than female fertility. Schoumaker (2019) shows that male TFR is almost always higher than female Total Fertility Rates (TFR) using a sample of 160 countries. -For this example, we use data from 2012 France to exemplify the use of the two-sex function. -Data on female and male fertility and mortality are included in `DemoKin`. In this population, male and female TFR is almost identical (1.98 and 1.99) but the distributions of fertility by sex varies over age: - -```{r} -data(fra_asfr_sex, package = "DemoKin") -data(fra_surv_sex, package = "DemoKin") -fra_fert_f <- fra_asfr_sex[,"ff"] -fra_fert_m <- fra_asfr_sex[,"fm"] -fra_surv_f <- fra_surv_sex[,"pf"] -fra_surv_m <- fra_surv_sex[,"pm"] - -sum(fra_fert_m)-sum(fra_fert_f) - -data.frame(value = c(fra_fert_f, fra_fert_m, fra_surv_f, fra_surv_m), - age = rep(0:100, 4), - sex = rep(c(rep("f", 101), rep("m", 101)), 2), - risk = c(rep("fertility rate", 101 * 2), rep("survival probability", 101 * 2))) %>% - ggplot(aes(age, value, col=sex)) + - geom_line() + - facet_wrap(~ risk, scales = "free_y") + - theme_bw() -``` - -### 2. Time-invariant two-sex kinship models - -We now introduce the functions `kin2sex`, which is similar to the one-sex function `kin` (see `?kin`) with two exceptions. -First, the user needs to specify mortality and fertility by sex. -Second, the user must indicate the sex of Focal (which was assumed to be female in the one-sex model). -Let us first consider the application for time-invariant populations: - -```{r} -kin_result <- kin2sex( - pf = fra_surv_f, - pm = fra_surv_m, - ff = fra_fert_f, - fm = fra_fert_m, - time_invariant = TRUE, - sex_focal = "f", - birth_female = .5 - ) -``` - -The output of `kin2sex` is equivalent to that of `kin`, except that it includes a column `sex_kin` to specify the sex of the given relatives. - -Let's group aunts and siblings to visualize the number of living kin by Focal's age. - -```{r, message=FALSE, warning=FALSE} -kin_out <- kin_result$kin_summary %>% - mutate(kin = case_when(kin %in% c("s", "s") ~ "s", - kin %in% c("ya", "oa") ~ "a", - T ~ kin)) %>% - filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) - -kin_out %>% - group_by(kin, age_focal, sex_kin) %>% - summarise(count=sum(count_living)) %>% - ggplot(aes(age_focal, count, fill=sex_kin))+ - geom_area()+ - theme_bw() + - facet_wrap(~kin) -``` - -**A note on terminology** - -The function `kin2sex` uses the same codes as `kin` to identify relatives (see `demokin_codes()`). -Note that when running a two-sex model, the code 'm' refers to either mothers or fathers! -Use the column `sex_kin` to determine the sex of a given relatives. -For example, in order to consider only sons and ignore daughters, use: - -```{r} -kin_result$kin_summary %>% - filter(kin == "d", sex_kin == "m") %>% - head() -``` - -Information on kin availability by sex allows us to consider sex ratios, a traditional measure in demography, with females often in denominator. The following figure, for example, shows that a 25yo French woman in our hypothetical population can expect to have 0.5 grandfathers for every grandmother: - -```{r, message=FALSE, warning=FALSE} -kin_out %>% - group_by(kin, age_focal) %>% - summarise(sex_ratio=sum(count_living[sex_kin=="m"], na.rm=T)/sum(count_living[sex_kin=="f"], na.rm=T)) %>% - ggplot(aes(age_focal, sex_ratio))+ - geom_line()+ - theme_bw() + - facet_wrap(~kin, scales = "free") -``` - -The experience of kin loss for Focal depends on differences in mortality between sexes. -A female Focal starts losing fathers earlier than mothers. -We see a slightly different pattern for grandparents since Focal's experience of grandparental loss is dependent on the initial availability of grandparents (i.e. if Focal's grandparent died before her birth, she will never experience his death). - -```{r, message=FALSE, warning=FALSE} -# sex ratio -kin_out %>% - group_by(kin, sex_kin, age_focal) %>% - summarise(count=sum(count_dead)) %>% - ggplot(aes(age_focal, count, col=sex_kin))+ - geom_line()+ - theme_bw() + - facet_wrap(~kin) -``` - - -### 3. Time-variant two-sex kinship models - -We look at populations where demographic rates are not static but change on a yearly basis. -For this, we consider the case of Sweden using data pre-loaded in `DemoKin`. -For this example, we will create 'pretend' male fertility rates by slightly perturbing the existing female rates. -This is a toy example, since a real two-sex model should use actual female and male rates as inputs. - -```{r} -years <- ncol(swe_px) -ages <- nrow(swe_px) -swe_surv_f_matrix <- swe_px -swe_surv_m_matrix <- swe_px ^ 1.5 # artificial perturbation for this example -swe_fert_f_matrix <- swe_asfr -swe_fert_m_matrix <- rbind(matrix(0, 5, years), - swe_asfr[-((ages-4):ages),]) * 1.05 # artificial perturbation for this example -``` - -This is how it looks for year 1900: -```{r} -bind_rows( - data.frame(age = 0:100, sex = "Female", component = "Fertility rate", value = swe_fert_f_matrix[,"1900"]), - data.frame(age = 0:100, sex = "Male", component = "Fertility rate", value = swe_fert_m_matrix[,"1900"]), - data.frame(age = 0:100, sex = "Female", component = "Survival probability", value = swe_surv_f_matrix[,"1900"]), - data.frame(age = 0:100, sex = "Male", component = "Survival probability", value = swe_surv_m_matrix[,"1900"])) %>% - ggplot(aes(age, value, col = sex)) + - geom_line() + - theme_bw() + - facet_wrap(~component, scales = "free") -``` - - -We now run the time-variant two-sex models (note the `time_invariant = FALSE` argument): - -```{r} -kin_out_time_variant <- kin2sex( - pf = swe_surv_f_matrix, - pm = swe_surv_m_matrix, - ff = swe_fert_f_matrix, - fm = swe_fert_m_matrix, - sex_focal = "f", - time_invariant = FALSE, - birth_female = .5, - output_cohort = 1900 - ) -``` - -We can plot data on kin availability alongside values coming from a time-invariant model to show how demographic change matters: the time-variant models take into account changes derived from the demographic transition, whereas the time-invariant models assume never-changing rates. - -```{r, message=FALSE, warning=FALSE} -kin_out_time_invariant <- kin2sex( - swe_surv_f_matrix[,"1900"], swe_surv_m_matrix[,"1900"], - swe_fert_f_matrix[,"1900"], swe_fert_m_matrix[,"1900"], - sex_focal = "f", birth_female = .5) - - -kin_out_time_variant$kin_summary %>% - filter(cohort == 1900) %>% mutate(type = "variant") %>% - bind_rows(kin_out_time_invariant$kin_summary %>% mutate(type = "invariant")) %>% - mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", - kin %in% c("ya", "oa") ~ "a", - T ~ kin)) %>% - filter(kin %in% c("d", "m", "gm", "ggm", "s", "a")) %>% - group_by(type, kin, age_focal, sex_kin) %>% - summarise(count=sum(count_living)) %>% - ggplot(aes(age_focal, count, linetype=type))+ - geom_line()+ theme_bw() + - facet_grid(cols = vars(kin), rows=vars(sex_kin), scales = "free") -``` - -### 4. Approximations - -Caswell [-@caswell_formal_2022] introduced two approaches for approximating two-sex kinship structures for cases when male demographic rates are not available. -The first is the *androgynous* approximation, which assumes equal fertility and survival for males and females. -The second is the use of *GKP factors* apply to each type of relative (e.g., multiplying mothers by two to obtain the number of mothers and fathers). - -Here, we present a visual evaluation of the accuracy of these approximations by comparing to 'true' two-sex models using the French data included with `DemoKin` for time-invariant models [@caswell_formal_2022]. -We start by considering the androgynous approximation. -We compare expected kin counts by age and find high levels of consistency for all kin types, except for grandfathers and great-grandfathers: - -```{r, message=FALSE, warning=FALSE} -kin_out <- kin2sex(fra_surv_f, fra_surv_m, fra_fert_f, fra_fert_m, sex_focal = "f", birth_female = .5) - -kin_out_androgynous <- kin2sex(fra_surv_f, fra_surv_f, fra_fert_f, fra_fert_f, sex_focal = "f", birth_female = .5) - -bind_rows( - kin_out$kin_summary %>% mutate(type = "full"), - kin_out_androgynous$kin_summary %>% mutate(type = "androgynous")) %>% - group_by(kin, age_focal, sex_kin, type) %>% - summarise(count = sum(count_living)) %>% - ggplot(aes(age_focal, count, linetype = type)) + - geom_line() + - theme_bw() + - theme(legend.position = "bottom", axis.text.x = element_blank()) + - facet_grid(row = vars(sex_kin), col = vars(kin), scales = "free") -``` - -Next, we consider the use of GKP factors and find that it also approximates relatively accurately kin counts at different ages of Focal. -These are presented as examples only. -Users are invited to perform more rigorous comparisons of these approximations. - -```{r, message=FALSE, warning=FALSE} -# with gkp -kin_out_1sex <- kin(fra_surv_f, fra_fert_f, birth_female = .5) - -kin_out_GKP <- kin_out_1sex$kin_summary%>% - mutate(count_living = case_when(kin == "m" ~ count_living * 2, - kin == "gm" ~ count_living * 4, - kin == "ggm" ~ count_living * 8, - kin == "d" ~ count_living * 2, - kin == "gd" ~ count_living * 4, - kin == "ggd" ~ count_living * 4, - kin == "oa" ~ count_living * 4, - kin == "ya" ~ count_living * 4, - kin == "os" ~ count_living * 2, - kin == "ys" ~ count_living * 2, - kin == "coa" ~ count_living * 8, - kin == "cya" ~ count_living * 8, - kin == "nos" ~ count_living * 4, - kin == "nys" ~ count_living * 4)) - -bind_rows( - kin_out$kin_summary %>% mutate(type = "full"), - kin_out_androgynous$kin_summary %>% mutate(type = "androgynous"), - kin_out_GKP %>% mutate(type = "gkp")) %>% - mutate(kin = case_when(kin %in% c("ys", "os") ~ "s", - kin %in% c("ya", "oa") ~ "a", - kin %in% c("coa", "cya") ~ "c", - kin %in% c("nys", "nos") ~ "n", - T ~ kin)) %>% - filter(age_focal %in% c(5, 15, 30, 60, 80)) %>% - group_by(kin, age_focal, type) %>% - summarise(count = sum(count_living)) %>% - ggplot(aes(type, count)) + - geom_bar(aes(fill=type), stat = "identity") + - theme_bw()+theme(axis.text.x = element_text(angle = 90), legend.position = "bottom")+ - facet_grid(col = vars(kin), row = vars(age_focal), scales = "free") -``` - -### 2. Causes of death - -Now assume we have two causes of death (COD). For females, the risk of the first COD is half the risk of the second COD for ages greater than 50. For males, the risk of the first COD is 2/3 of the second COD for ages greater than 50. We operationalize this using two matrices with dimension 2 by 101 (number of causes by number of ages). - -```{r} -Hf <- matrix(c( .5, 1), nrow = 2, ncol = length(fra_surv_f)) -Hm <- matrix(c(.33, 1), nrow = 2, ncol = length(fra_surv_f)) -Hf[,1:50] <- Hm[,1:50] <- 1 -``` - -This is a generalization of the approach outlined by Caswell [-@Caswell2023]. In the original formulation, the inputs in matrix $H$ are the hazard rates. Here, we treat them like a relative risk factor related to the underlying probability of dying. For more details, see section 2.3 and formula 30 in section A.1 of Caswell [-@Caswell2023]. Now we run the time-invariant two-sex model by COD for France 2012, assuming a death count distribution based on the two competing causes; note that the `kin2sex` function now takes the arguments `Hf` and `Hm` but the other arguments remain unchanged: - -```{r} -kin_out_cod_invariant <- kin2sex( - pf = fra_surv_f, - pm = fra_surv_m, - ff = fra_fert_f, - fm = fra_fert_m, - Hf = Hf, - Hm = Hm, - time_invariant = TRUE) -``` - -The output of `kin2sex` is the the `kin_full` data frame that we have encountered before. The only differences is that `kin_full` now includes one column for each COD specified in the input. Therefore, the number of columns will vary depending on how many COD you are considering! - -```{r} -head(kin_out_cod_invariant) -``` - -We can now plot the death distribution by age and COD of Focal's parents when Focal is 30 yo. - -```{r} -kin_out_cod_invariant %>% - filter(kin == "m", age_focal == 30) %>% - summarise(deadcause1 = sum(deadcause1), - deadcause2 = sum(deadcause2), .by = c(age_kin, sex_kin)) %>% - pivot_longer(deadcause1:deadcause2) %>% - ggplot(aes(age_kin, value, col = sex_kin, linetype = name)) + - geom_line() + - labs(y = "Expected number of parental deaths") + - theme_bw() -``` - -In this simplified example, the parents of Focal only died after age 50. This helped highlight the relative difference between the COD for each sex. Note that the sum of the death counts by sex gives the same result as the total deaths by sex at that age in the less complex model (i.e., the one that does not consider COD, see section 2 of this guide). - -You can add as many COD as you want, but keep in mind that this can be computationally intensive. For time-variant kinship models that consider COD, you must provide a list of matrices by sex ($Hf$ and $Hm$). The elements of this list should be $H$ matrices for each year (following the same order than the mortality and fertility components). - -## References diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd deleted file mode 100644 index c519820..0000000 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ /dev/null @@ -1,292 +0,0 @@ ---- -title: "Expected kin counts by type of relative in a two-sex multi-state time-varying framework" -output: - html_document: - toc: true - toc_depth: 1 -vignette: > - %\VignetteEngine{knitr::rmarkdown} - %\VignetteEncoding{UTF-8} ---- - -```{r, eval = T, include=FALSE} -knitr::opts_chunk$set(collapse = TRUE, comment = "#>", eval = FALSE) -pkgload::load_all() -``` - -Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model -of kinship, there have been many extensions to the framework (many of which are documented within this package). -Caswell [-@caswell_formal_2021] updated the original model to incorporate time-varying vital rates, -Caswell [-@caswell_formal_2022] introduced two-sexes to the model, -and Caswell [-@caswell_formal_2020] considered a multi-stage population of kin. -Here, we provide an R function which combines the three aforementioned models. - -In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks -encompassing both sexes for an average member of a population, the sex of whom is user specified, -and who is subject to time-varying demographic rates. We call this individual Focal. -We seek the number of, age, and stage distribution of Focal's relatives, for each age of Focal's life, and as a function of the year in which Focal is born. - - -```{r} -pkgload::load_all() -library(Matrix) -library(tictoc) -options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise output (but also #lose #progress bar) -``` -### Kin counts by parity ### - -In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from -the [Human Mortality Database](https://www.mortality.org/) -and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). -Some simplifying assumptions we make due to data availability are as follows: - -i) Fertility rates vary with time, are distinct among parity class, but the same over sexes (the so-called ``androgynous approximation''). -ii) Mortality rates vary with time, are distinct across sex, but are the same over parity classes (no parity-specific mortality) -iii) The age-specific probabilities of parity-progression vary with time, but are the same over sex (androgynous approximation again) - -In order to implement the model, the function `kin_multi_stage_time_variant_2sex` expects the following 7 inputs of vital rates, fed in as lists: - -1) `U_list_females` A list of female age-and-parity specific survival probabilities over the timescale (in matrix forms). -This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. - -2) `U_list_males` A list of male age-and-parity specific survival probabilities over the timescale (in matrix forms). -This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. - -3) `F_list_females` A list of female age-and-parity specific fertility rates over the timescale (in matrix forms). -This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. - -4) `F_list_males` A list of male age-and-parity specific fertility rates over the timescale (in matrix forms). -This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. - -5) `T_list_females` A list of lists of female age-specific probabilities of moving up parity over the timescale (in matrix forms). -The outer list has length = the timescale. The inner list has length = number of ages. -Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. -Thus for each year, we have a list of age-specific probabilities of moving from one stage to the next. - -6) Same as 5) but for males - -7) `H_list` A list of length = timescale, in which each element is a matrix which assigns the offspring of individuals in some stage to -the appropriate age class (age in rows and states in columns) - -To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed -in another file and simply imported below. The code below reads in the above function input lists. - -```{r eval=TRUE, message=FALSE, warning=FALSE, include=TRUE} -F_mat_fem <- Female_parity_fert_list_UK -F_mat_male <- Female_parity_fert_list_UK -T_mat_fem <- Parity_transfers_by_age_list_UK -T_mat_male <- Parity_transfers_by_age_list_UK -U_mat_fem <- Female_parity_mortality_list_UK -U_mat_male <- Male_parity_mortality_list_UK -H_mat <- Redistribution_by_parity_list_UK - -``` - -Recap: above are lists of period-specific demographic rates, in particular comprising: - -U_mat_fem: list of age by stage matrices, entries give female probability of survival. -List starting 1965 ending 2022. - -U_mat_male: list of age by stage matrices, entries give female probability of survival. -List starting 1965 ending 2022. - -F_mat_fem: list of age by stage matrices, entries give female fert, -List starting 1965 ending 2022. - -F_mat_male == F_mat_fem. - -T_mat_fem: list of lists of matrices: Each outer list entry is a list of matrices where each matrix gives age-specific probabilities -a female moves up parity (inner list has length of number of age-classes). -Outer list starting 1965 ending 2022 - -T_mat_male == T_mat_fem. - -H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0. No time-variation. - -### 1. Accumulated number of kin Focal expects over the lifecourse under time-varying rates from 1965 to 2005 ### - -We feed the above inputs into the matrix model, along with other arguments: - -- UK sex ratio --> `birth_female` = 0.49 -- We are considering parity --> `parity` = TRUE -- We want some of Focal's kin network --> `output_kin` = c("d", "oa", "ys", "os") -- Accumulated kin in this example --> `summary_kin` = TRUE -- Focal is female --> `sex_Focal` = "Female" -- Focal born into parity 0 --> `initial_stage_Focal` = 1 -- timescale as ouptut -- > `output_years` = c(1965, 1975, 1985, 1995, 2005) - -Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage -distribution of kin. - -The first sets of time-varying vital rates in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), -the 41-st entry is U_mat_fem[[(1+40)]] (mortality in 2005). We require consistency between the length of the list of vital rates -and the timescale: U_mat_fem[[1:(1+40)]] = in length = seq(1965,2005). Therefore we use the input lists of demographic rates - -`U_list_females` = U_mat_fem[1:(1+no_years)] which runs from U_mat_fem[[1]] = 1965 set of rates, up to U_mat_fem[[41]] = 2005 set of rates, -and so on... - -> this run takes some time (round 10 min) so we donĀ“t include the output in the vignette. Please try it! - -```{r, message=FALSE, warning=FALSE} -# Run kinship model for a female Focal over a timescale of no_years (we use 40 here) -no_years <- 40 -# and we start projecting kin in 1965 -# We decide here to count accumulated kin by age of Focal, and not distributions of kin -kin_out_1965_2005 <- - kin_multi_stage_time_variant_2sex(U_list_females = U_mat_fem[1:(1+no_years)], - U_list_males = U_mat_male[1:(1+no_years)], - F_list_females = F_mat_fem[1:(1+no_years)], - F_list_males = F_mat_male[1:(1+no_years)], - T_list_females = T_mat_fem[1:(1+no_years)], - T_list_males = T_mat_fem[1:(1+no_years)], - H_list = H_mat[1:(1+no_years)], - birth_female = 1 - 0.51, ## Sex ratio -- UK value - parity = TRUE, - output_kin = c("d", "oa", "ys", "os"), - summary_kin = TRUE, - sex_Focal = "Female", ## define Focal's sex at birth - initial_stage_Focal = 1, ## Define Focal's stage at birth - output_years = c(1965, 1975, 1985, 1995, 2005) ## the sequence of years we run the function over -) - -``` -### 1.1. Visualizing the output ### - -```{r, message=FALSE, warning=FALSE} - -head(kin_out_1965_2005$kin_summary) -``` - -Notice the structure of the output data. We have columns `age_focal` and `kin_stage` because we sum over all ages of kin, -and produce the marginal stage distribution given age of Focal. We have a column corresponding to sex of kin `sex_kin`, -a column showing which `year` we are considering, and a column headed `group` which selects the kin type. -Finally, we have columns showing Focal's cohort of birth `cohort` (e.g., year - age of Focal), and an as.factor() equivalent. - - -### 1.1.1. Plotting kin for an average Focal at some fixed period in time ### - -Let's suppose that we really want to understand the age*parity distributions of the accumulated number -of aunts and uncles older than Focal's mother and father, for each age of Focal, over years 1965, 1975, 1985, 1995, 2005. -Some people will do.... - -We restrict Focal's kinship network to aunts and uncles older than Focal's mother by `group` == "oa". We visualise the marginal -parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different colour schemes. Implicit in the -below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, -while a 40 year old Focal was born in 1965. - -```{r, fig.height=6, fig.width=8} -kin_out_1965_2005$kin_summary %>% - dplyr::filter(group == "oa") %>% - ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + - ggplot2::geom_bar(position = "stack", stat = "identity") + - ggplot2::facet_grid(sex_kin ~ year) + - ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + - ggplot2::theme_bw() + - ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + - ggplot2::ylab("Older aunts and uncles") -``` -We could also consider any other kin in Focal's network, for instance, offspring using `group` == "d" - -```{r, fig.height=6, fig.width=8} -kin_out_1965_2005$kin_summary %>% - dplyr::filter(group == "d") %>% - ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + - ggplot2::geom_bar(position = "stack", stat = "identity") + - ggplot2::facet_grid(sex_kin ~ year) + - ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + - ggplot2::theme_bw() + - ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + - ggplot2::ylab("Offspring") -``` -### 1.1.2. Plotting the kin of Focal as a function of Focal's cohort of birth #### - -Since we only ran the model for 40 years (between 1965-2005), there is very little scope to view kinship as cohort-specific. -We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring and only show Focals born of `cohort` 1910, 1925, or 1965: - -```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005$kin_summary %>% - dplyr::filter(group == "d", cohort %in% c(1910,1925,1965) ) %>% - ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + - ggplot2::geom_bar(position = "stack", stat = "identity") + - ggplot2::facet_grid(sex_kin ~ cohort) + - ggplot2::theme_bw() + - ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + - ggplot2::ylab("Offspring") -``` -The LHS plot (1910 cohort) should be interpreted as follows: if Focal is born in 1910, between 1965-2005 he/she will be 55-95 years old. Focal will have already accumulated its maximal number of offspring, and their overall number will now be dropping as mortality risk begins. The offspring of Focal will be approximately 20-35, and began if not completed reproduction/parity progression. - -The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in parity 0. Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by -a well mixed parity-distribution at this age of Focal. - -the RHS plot (1965 cohort) simply reflects the fact that Focal will not start reproduction until around 15 years old. - -### 2. Now lets consider the distributions of kin Focal expects over the lifecourse ### - -To obtain distributions of kin as output, we simply use the `kin_full` data.frame. - -### 2.1. Visualizing the output ### - -```{r, message=FALSE, warning=FALSE} - -head(kin_out_1965_2005$kin_full) -``` - -Notice the additional column `age_kin`. Rather than grouping kin by stage and summing over all ages, -the output here (in data frame form) gives an expected number of kin for each age*stage combination, for each age of Focal. - - -### 2.1.1. Plotting kin distributions for an average Focal of fixed age, at some fixed period in time ### - -Lets's consider Focal is aged 50 `age_focal` == 50, and examine kin younger siblings; `group` == "ys". -Restricting ourselves to the years 1965, 1975, 1985, 1995, 2005, we can plot the expected age*stage distribution -of these kin over the considered periods, as shown below: - -```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005$kin_full %>% - dplyr::filter(group == "ys", - age_focal == 50) %>% - ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + - ggplot2::geom_bar(position = "stack", stat = "identity") + - ggplot2::facet_grid(sex_kin ~ year) + - ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + - ggplot2::theme_bw() + - ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + - ggplot2::ylab("Younger siblings") + - ggplot2::ggtitle("Focal 50") -``` - -Notice the discontinuity along the x-abscissa at 50. This reflects the fact that Focal's younger siblings -cannot are of age <50. Contrastingly, when we look at the age*stage distribution of older siblings, we observe another -discontinuity which bounds kin to be of age >50, as plotted below: - -```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005$kin_full %>% - dplyr::filter(group == "os", - age_focal == 50) %>% - ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + - ggplot2::geom_bar(position = "stack", stat = "identity") + - ggplot2::facet_grid(sex_kin ~ year) + - ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + - ggplot2::theme_bw() + - ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + - ggplot2::ylab("Older siblings") + - ggplot2::ggtitle("Focal 50") -``` - -With a simple bit of playing with the output data frame, we can plot the age*stage distribution of the combined siblings of Focal - -```{r, fig.height = 6, fig.width = 8} -kin_out_1965_2005$kin_full %>% - dplyr::filter((group == "ys" | group == "os"), - age_focal == 50) %>% - tidyr::pivot_wider(names_from = group, values_from = count) %>% - dplyr::mutate(count = `ys` + `os`) %>% - ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + - ggplot2::geom_bar(position = "stack", stat = "identity") + - ggplot2::facet_grid(sex_kin ~ year) + - ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + - ggplot2::theme_bw() + - ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + - ggplot2::ylab("All siblings") + - ggplot2::ggtitle("Focal 50") -``` diff --git a/vignettes/references.bib b/vignettes/references.bib index a2fc0ff..43cee86 100644 --- a/vignettes/references.bib +++ b/vignettes/references.bib @@ -1,3 +1,11 @@ +@book{Keyfitz2005, + title={Applied mathematical demography}, + author={Keyfitz, Nathan and Caswell, Hal and others}, + volume={47}, + year={2005}, + publisher={Springer} +} + @article{Caswell2023, author = {Caswell, Hal and Margolis, Rachel and Verdery, Ashton}, title = {{The formal demography of kinship V: Kin loss, bereavement, and causes of death}}, From ff59d89b597b66f07ffbc0b5d5277872d06a3135 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 24 Apr 2025 16:41:14 -0300 Subject: [PATCH 73/89] fuera reads --- vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd | 18 ++++++++---------- 1 file changed, 8 insertions(+), 10 deletions(-) diff --git a/vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd b/vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd index e8d4fdc..07eb591 100644 --- a/vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd +++ b/vignettes/2_2_TwoSex_TimeVarying_AgeStage.Rmd @@ -92,7 +92,6 @@ If you haven't already installed the required packages from the previous vignett install.packages("dplyr") # Data manipulation install.packages("tidyr") # Data tidying install.packages("ggplot2") # Data visualization -install.packages("readr") # Data import install.packages("knitr") # Document generation install.packages("data.table")# Efficient data handling install.packages("Matrix") # Matrix operations @@ -114,7 +113,6 @@ rm(list = ls()) library(dplyr) # For data manipulation library(tidyr) # For restructuring data library(ggplot2) # For visualization -library(readr) # For reading data library(knitr) # For document generation library(Matrix) # For matrix operations library(tictoc) # For timing operations @@ -184,7 +182,7 @@ These lists contain period-specific demographic rates: Now let's implement the two-sex time-varying multi-state model with parity as the stage variable: -```{r parity_model, message=FALSE, warning=FALSE, eval=TRUE} +```{r parity_model, message=FALSE, warning=FALSE, eval=FALSE} # Define time period and parameters no_years <- 40 # Run the model for 40 years (1965-2005) @@ -213,7 +211,7 @@ kin_out_1965_2005 <- Now we need to recode the stage variables to show meaningful parity labels: -```{r parity_output_recode, message=FALSE, warning=FALSE, eval=TRUE} +```{r parity_output_recode, message=FALSE, warning=FALSE, eval=FALSE} # After running the model, recode the parity stage values kin_out_1965_2005$kin_summary <- kin_out_1965_2005$kin_summary %>% @@ -233,7 +231,7 @@ kin_out_1965_2005$kin_full <- Let's examine the structure of the output: -```{r parity_output_show, message=FALSE, warning=FALSE, eval=TRUE} +```{r parity_output_show, message=FALSE, warning=FALSE, eval=FALSE} head(kin_out_1965_2005$kin_summary) ``` @@ -253,7 +251,7 @@ Let's visualize the distribution of older aunts and uncles by parity for differe We first restrict Focal's kinship network to aunts and uncles older than Focal's mother by setting `group` == "oa". We visualize the marginal parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different color schemes. Implicit in the below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. -```{r parity_aunts_uncles, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +```{r parity_aunts_uncles, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=FALSE} kin_out_1965_2005$kin_summary %>% filter(group == "oa") %>% ggplot(aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + @@ -274,7 +272,7 @@ kin_out_1965_2005$kin_summary %>% We could also consider any other kin in Focal's network, for instance, offspring using `group` == "d": -```{r parity_offspring, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +```{r parity_offspring, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=FALSE} kin_out_1965_2005$kin_summary %>% filter(group == "d") %>% ggplot(aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + @@ -299,7 +297,7 @@ Since we only ran the model for 40 years (between 1965-2005), there is very litt We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring and only show Focals born of `cohort` 1910, 1925, or 1965: -```{r parity_cohort, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +```{r parity_cohort, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=FALSE} kin_out_1965_2005$kin_summary %>% filter(group == "d", cohort %in% c(1910, 1925, 1965)) %>% ggplot(aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + @@ -327,7 +325,7 @@ kin_out_1965_2005$kin_summary %>% For more detailed analysis, we can examine the age and parity distribution of specific relatives. Let's look at the younger siblings of a 50-year-old Focal across different years: -```{r parity_siblings_young, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +```{r parity_siblings_young, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=FALSE} kin_out_1965_2005$kin_full %>% filter(group == "ys", age_focal == 50) %>% @@ -351,7 +349,7 @@ Notice the discontinuity along the x-axis at age 50. This reflects the fact that With a simple manipulation of the output data frame, we can also plot the age and parity distribution of all siblings combined: -```{r parity_siblings_all, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=TRUE} +```{r parity_siblings_all, message=FALSE, warning=FALSE, fig.height=6, fig.width=8, eval=FALSE} kin_out_1965_2005$kin_full %>% filter((group == "ys" | group == "os"), age_focal == 50) %>% From 56eaf10bbe9de8799710d73fdb3fb07062b00772 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 24 Apr 2025 17:00:36 -0300 Subject: [PATCH 74/89] remove readr --- vignettes/1_1_OneSex_TimeInvariant_Age.Rmd | 2 -- vignettes/1_2_OneSex_TimeVarying_Age.Rmd | 2 -- vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd | 2 -- vignettes/1_4_TwoSex_TimeVarying_Age.Rmd | 2 -- vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd | 2 -- 5 files changed, 10 deletions(-) diff --git a/vignettes/1_1_OneSex_TimeInvariant_Age.Rmd b/vignettes/1_1_OneSex_TimeInvariant_Age.Rmd index c17b222..9f45037 100644 --- a/vignettes/1_1_OneSex_TimeInvariant_Age.Rmd +++ b/vignettes/1_1_OneSex_TimeInvariant_Age.Rmd @@ -96,7 +96,6 @@ rm(list = ls()) install.packages("dplyr") # Data manipulation install.packages("tidyr") # Data tidying install.packages("ggplot2") # Data visualization -install.packages("readr") # Data import install.packages("knitr") # Document generation install.packages("data.table")# Efficient data handling install.packages("Matrix") # Matrix operations @@ -117,7 +116,6 @@ Let's begin by loading the necessary packages for our analysis: library(dplyr) # For data manipulation library(tidyr) # For restructuring data library(ggplot2) # For visualization -library(readr) # For reading data library(knitr) # For document generation ``` diff --git a/vignettes/1_2_OneSex_TimeVarying_Age.Rmd b/vignettes/1_2_OneSex_TimeVarying_Age.Rmd index f82a260..1f3d488 100644 --- a/vignettes/1_2_OneSex_TimeVarying_Age.Rmd +++ b/vignettes/1_2_OneSex_TimeVarying_Age.Rmd @@ -95,7 +95,6 @@ rm(list = ls()) install.packages("dplyr") # Data manipulation install.packages("tidyr") # Data tidying install.packages("ggplot2") # Data visualization -install.packages("readr") # Data import install.packages("knitr") # Document generation install.packages("data.table")# Efficient data handling install.packages("Matrix") # Matrix operations @@ -116,7 +115,6 @@ Let's load the necessary packages for our analysis: library(dplyr) # For data manipulation library(tidyr) # For restructuring data library(ggplot2) # For visualization -library(readr) # For reading data library(knitr) # For document generation ``` diff --git a/vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd b/vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd index c8211ff..fc5f08c 100644 --- a/vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd +++ b/vignettes/1_3_TwoSex_TimeInvariant_Age.Rmd @@ -95,7 +95,6 @@ If you haven't already installed the required packages from the previous vignett install.packages("dplyr") # Data manipulation install.packages("tidyr") # Data tidying install.packages("ggplot2") # Data visualization -install.packages("readr") # Data import install.packages("knitr") # Document generation install.packages("data.table")# Efficient data handling install.packages("Matrix") # Matrix operations @@ -117,7 +116,6 @@ rm(list = ls()) library(dplyr) # For data manipulation library(tidyr) # For restructuring data library(ggplot2) # For visualization -library(readr) # For reading data library(knitr) # For document generation ``` diff --git a/vignettes/1_4_TwoSex_TimeVarying_Age.Rmd b/vignettes/1_4_TwoSex_TimeVarying_Age.Rmd index 90452ea..e593f40 100644 --- a/vignettes/1_4_TwoSex_TimeVarying_Age.Rmd +++ b/vignettes/1_4_TwoSex_TimeVarying_Age.Rmd @@ -85,7 +85,6 @@ If you haven't already installed the required packages from the previous vignett install.packages("dplyr") # Data manipulation install.packages("tidyr") # Data tidying install.packages("ggplot2") # Data visualization -install.packages("readr") # Data import install.packages("knitr") # Document generation install.packages("data.table")# Efficient data handling install.packages("Matrix") # Matrix operations @@ -107,7 +106,6 @@ rm(list = ls()) library(dplyr) # For data manipulation library(tidyr) # For restructuring data library(ggplot2) # For visualization -library(readr) # For reading data library(knitr) # For document generation ``` diff --git a/vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd b/vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd index c9828b3..e96b306 100644 --- a/vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd +++ b/vignettes/2_1_OneSex_TimeInvariant_AgeStage.Rmd @@ -95,7 +95,6 @@ If you haven't already installed the required packages from the previous vignett install.packages("dplyr") # Data manipulation install.packages("tidyr") # Data tidying install.packages("ggplot2") # Data visualization -install.packages("readr") # Data import install.packages("knitr") # Document generation install.packages("data.table")# Efficient data handling install.packages("Matrix") # Matrix operations @@ -117,7 +116,6 @@ rm(list = ls()) library(dplyr) # For data manipulation library(tidyr) # For restructuring data library(ggplot2) # For visualization -library(readr) # For reading data library(knitr) # For document generation ``` From 9d8347a7be85f5c921fec49cdcbcd96c84685c79 Mon Sep 17 00:00:00 2001 From: Ivan Williams Date: Thu, 24 Apr 2025 18:13:24 -0300 Subject: [PATCH 75/89] readme --- README.Rmd | 111 ++++++----- README.md | 172 ++++++++--------- docs/index.html | 236 ++++++++--------------- docs/pkgdown.yml | 2 +- man/figures/README-unnamed-chunk-3-1.png | Bin 0 -> 15508 bytes 5 files changed, 226 insertions(+), 295 deletions(-) create mode 100644 man/figures/README-unnamed-chunk-3-1.png diff --git a/README.Rmd b/README.Rmd index a817bde..42a17f7 100644 --- a/README.Rmd +++ b/README.Rmd @@ -19,76 +19,79 @@ library(knitr) # DemoKin -:::::::::::::: {.columns} -::: {.column width="60%"} +::: {.columns} +::: {.column width="30%"} - -`DemoKin` uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell [-@caswell_formal_2019; -@caswell_formal_2020; -@caswell_formal_2022], and Caswell and Song [-@caswell_formal_2021]. It draws on previous theoretical development by Goodman, Keyfitz and Pullum [-@goodman_family_1974]. + ::: -::: {.column width="40%"} +::: {.column width="70%"} - +DemoKin is an R package for the demographic analysis of kinship networks using matrix-based models. +It implements methods developed by Caswell and colleagues for estimating the number and age distribution of relatives under various demographic assumptions. ::: -:::::::::::::: +::: -## Installation +## Features -Download the stable version [from CRAN](https://cran.r-project.org/web/packages/DemoKin/): +- Estimate kin counts and age distributions for various types of relatives +- Support for one-sex and two-sex models +- Time-invariant and time-varying approaches +- Multi-state models incorporating additional variables like parity or education +- Visualization tools for kinship networks -``` {r, eval=FALSE, include = T} -install.packages("DemoKin") -``` +## Installation -Or you can install the development version from GitHub: +You can install the development version of DemoKin from GitHub: -``` {r, eval=FALSE} -# install.packages("devtools") -devtools::install_github("IvanWilli/DemoKin") +```{r, eval = F} +# install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin) ``` ## Usage -Consider an average Swedish woman called 'Focal.' For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their life; i.e., the 'time-invariant' assumption in Caswell [-@caswell_formal_2019]. - -We then ask: +Here's a basic example of how to use DemoKin: -> What is the expected number of relatives of Focal over her life course? +```{r, eval = T} -Let's explore this using the Swedish data already included with `DemoKin`. +# Run a one-sex time-invariant kinship model using Swedish data from 2015 +kin_results <- kin( + p = swe_px[,"2015"], # Survival probabilities + f = swe_asfr[,"2015"], # Fertility rates + time_invariant = TRUE # Use time-invariant model +) -```{r, fig.height=6, fig.width=8, message=FALSE, warning=FALSE} -library(DemoKin) -swe_surv_2015 <- swe_px[,"2015"] -swe_asfr_2015 <- swe_asfr[,"2015"] -swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) +# Visualize the expected number of living relatives by age +kin_results$kin_summary %>% + rename_kin() %>% + ggplot2::ggplot(ggplot2::aes(age_focal, count_living)) + + ggplot2::geom_line() + + ggplot2::facet_wrap(~kin_label, scales = "free_y") + + ggplot2::labs( + title = "Expected number of living relatives by age", + x = "Age of focal individual", + y = "Number of relatives" + ) ``` -*p* is the survival probability by age from a life table and *f* are the age specific fertility ratios by age (see `?kin` for details). +## Documentation -Now, we can visualize the implied kin counts (i.e., the average number of living kin) of Focal at age 35 using a network or 'Keyfitz' kinship diagram with the function `plot_diagram`: +For detailed documentation, please visit the [DemoKin website](https://ivanwilli.github.io/DemoKin/). -```{r, fig.height=6, dpi=1200,fig.width=8, message=FALSE, warning=FALSE} -# We need to reformat the data a little bit -kin_total <- swe_2015$kin_summary -# Keep only data for Focal's age 35 -kin_total <- kin_total[kin_total$age_focal == 35 , c("kin", "count_living")] -names(kin_total) <- c("kin", "count") -plot_diagram(kin_total, rounding = 2) -``` +The site includes several vignettes demonstrating different types of kinship models: -Relatives are identified by a unique code: +### Models stratified by age +- [One-sex time-invariant kinship model](https://ivanwilli.github.io/DemoKin/articles/1_1_OneSex_TimeInvariant_Age.html) +- [One-sex time-varying kinship model](https://ivanwilli.github.io/DemoKin/articles/1_2_OneSex_TimeVarying_Age.html) +- [Two-sex time-invariant kinship model](https://ivanwilli.github.io/DemoKin/articles/1_3_TwoSex_TimeInvariant_Age.html) +- [Two-sex time-varying kinship model](https://ivanwilli.github.io/DemoKin/articles/1_4_TwoSex_TimeVarying_Age.html) -```{r, fig.height=6, fig.width=8, echo=FALSE} -# kable(DemoKin::demokin_codes[,c("DemoKin", "Labels_2sex")]) -kable(DemoKin::demokin_codes[,-c(2)]) -``` - -## Vignette - -For more details, including an extension to time-variant rates, deceased kin, and multi-state models in a one-sex framework, see the [Reference_OneSex](https://cran.r-project.org/web/packages/DemoKin/vignettes/Reference_OneSex.html) vignette; also accessible from DemoKin: `vignette("Reference_OneSex", package = "DemoKin")`. For two-sex models, see the [Reference_TwoSex](https://cran.r-project.org/web/packages/DemoKin/vignettes/Reference_TwoSex.html) vignette; also accessible from DemoKin: `vignette("Reference_TwoSex", package = "DemoKin")`. -If the vignette does not load, you may need to install the package as `devtools::install_github("IvanWilli/DemoKin", build_vignettes = T)`. +### Models stratified by age and stage +- [One-sex time-invariant multi-state model](https://ivanwilli.github.io/DemoKin/articles/2_1_OneSex_TimeInvariant_AgeStage.html) +- [Two-sex time-varying multi-state model](https://ivanwilli.github.io/DemoKin/articles/2_2_TwoSex_TimeVarying_AgeStage.html) ## Citation @@ -96,7 +99,7 @@ Williams, IvĆ”n; Alburez-Gutierrez, Diego; and the DemoKin team. (2021) DemoKin: ## Acknowledgments - We thank Silvia Leek from the Max Planck Institute for Demographic Research for designing the DemoKin logo. The logo includes elements that have been taken or adapted [from this file](https://commons.wikimedia.org/wiki/File:Escudo_de_la_Orden_de_San_Jer%C3%B3nimo.svg), originally by Ansunando, [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0) via Wikimedia Commons. Sha Jiang provided useful comments for improving the package. +We thank Silvia Leek from the Max Planck Institute for Demographic Research for designing the DemoKin logo. The logo includes elements that have been taken or adapted [from this file](https://commons.wikimedia.org/wiki/File:Escudo_de_la_Orden_de_San_Jer%C3%B3nimo.svg), originally by Ansunando, [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0) via Wikimedia Commons. Sha Jiang provided useful comments for improving the package. ## Get involved! @@ -104,4 +107,16 @@ Williams, IvĆ”n; Alburez-Gutierrez, Diego; and the DemoKin team. (2021) DemoKin: If you're interested in contributing, please get in touch, create an issue, or submit a pull request. We look forward to hearing from you! - +## References + +Caswell, H. (2019). The formal demography of kinship: A matrix formulation. Demographic Research, 41, 679-712. + +Caswell, H. (2020). The formal demography of kinship II: Multistate models, parity, and sibship. Demographic Research, 42, 1097-1144. + +Caswell, H. & Song, X. (2021). The formal demography of kinship III: Kinship dynamics with time-varying demographic rates. Demographic Research, 45, 517-546. + +Caswell, H. & Song, X. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359-396. + +## License + +This project is licensed under the MIT License - see the LICENSE file for details. diff --git a/README.md b/README.md index cee8664..81f972b 100644 --- a/README.md +++ b/README.md @@ -5,119 +5,98 @@
    -
    +
    -`DemoKin` uses matrix demographic methods to compute expected (average) -kin counts from demographic rates under a range of scenarios and -assumptions. The package is an R-language implementation of Caswell -\[-@caswell_formal_2019; -@caswell_formal_2020; -@caswell_formal_2022\], -and Caswell and Song \[-@caswell_formal_2021\]. It draws on previous -theoretical development by Goodman, Keyfitz and Pullum -\[-@goodman_family_1974\]. +
    -
    +
    - +DemoKin is an R package for the demographic analysis of kinship networks +using matrix-based models. +It implements methods developed by Caswell and colleagues for estimating +the number and age distribution of relatives under various demographic +assumptions.
    -## Installation +## Features -Download the stable version [from -CRAN](https://cran.r-project.org/web/packages/DemoKin/): +- Estimate kin counts and age distributions for various types of + relatives +- Support for one-sex and two-sex models +- Time-invariant and time-varying approaches +- Multi-state models incorporating additional variables like parity or + education +- Visualization tools for kinship networks -``` r -install.packages("DemoKin") -``` +## Installation -Or you can install the development version from GitHub: +You can install the development version of DemoKin from GitHub: ``` r -# install.packages("devtools") -devtools::install_github("IvanWilli/DemoKin") +# install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin) ``` ## Usage -Consider an average Swedish woman called ā€˜Focal.’ For this exercise, we -assume a female closed population in which everyone experiences the -Swedish 2015 mortality and fertility rates at each age throughout their -life; i.e., the ā€˜time-invariant’ assumption in Caswell -\[-@caswell_formal_2019\]. +Here’s a basic example of how to use DemoKin: -We then ask: +``` r -> What is the expected number of relatives of Focal over her life -> course? +# Run a one-sex time-invariant kinship model using Swedish data from 2015 +kin_results <- kin( + p = swe_px[,"2015"], # Survival probabilities + f = swe_asfr[,"2015"], # Fertility rates + time_invariant = TRUE # Use time-invariant model +) + +# Visualize the expected number of living relatives by age +kin_results$kin_summary %>% + rename_kin() %>% + ggplot2::ggplot(ggplot2::aes(age_focal, count_living)) + + ggplot2::geom_line() + + ggplot2::facet_wrap(~kin_label, scales = "free_y") + + ggplot2::labs( + title = "Expected number of living relatives by age", + x = "Age of focal individual", + y = "Number of relatives" + ) +#> Joining with `by = join_by(kin)` +``` -Let’s explore this using the Swedish data already included with -`DemoKin`. + -``` r -library(DemoKin) -swe_surv_2015 <- swe_px[,"2015"] -swe_asfr_2015 <- swe_asfr[,"2015"] -swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE) -``` +## Documentation -*p* is the survival probability by age from a life table and *f* are the -age specific fertility ratios by age (see `?kin` for details). +For detailed documentation, please visit the [DemoKin +website](https://ivanwilli.github.io/DemoKin/). -Now, we can visualize the implied kin counts (i.e., the average number -of living kin) of Focal at age 35 using a network or ā€˜Keyfitz’ kinship -diagram with the function `plot_diagram`: +The site includes several vignettes demonstrating different types of +kinship models: -``` r -# We need to reformat the data a little bit -kin_total <- swe_2015$kin_summary -# Keep only data for Focal's age 35 -kin_total <- kin_total[kin_total$age_focal == 35 , c("kin", "count_living")] -names(kin_total) <- c("kin", "count") -plot_diagram(kin_total, rounding = 2) -``` +### Models stratified by age + +- [One-sex time-invariant kinship + model](https://ivanwilli.github.io/DemoKin/articles/1_1_OneSex_TimeInvariant_Age.html) +- [One-sex time-varying kinship + model](https://ivanwilli.github.io/DemoKin/articles/1_2_OneSex_TimeVarying_Age.html) +- [Two-sex time-invariant kinship + model](https://ivanwilli.github.io/DemoKin/articles/1_3_TwoSex_TimeInvariant_Age.html) +- [Two-sex time-varying kinship + model](https://ivanwilli.github.io/DemoKin/articles/1_4_TwoSex_TimeVarying_Age.html) - - -Relatives are identified by a unique code: - -| DemoKin | Labels_female | Labels_male | Labels_2sex | -|:--------|:----------------------------|:------------------------------|:----------------------------------| -| coa | Cousins from older aunts | Cousins from older uncles | Cousins from older aunts/uncles | -| cya | Cousins from younger aunts | Cousins from younger uncles | Cousins from younger aunts/uncles | -| c | Cousins | Cousins | Cousins | -| d | Daughters | Sons | Children | -| gd | Grand-daughters | Grand-sons | Grand-childrens | -| ggd | Great-grand-daughters | Great-grand-sons | Great-grand-childrens | -| ggm | Great-grandmothers | Great-grandfathers | Great-grandfparents | -| gm | Grandmothers | Grandfathers | Grandparents | -| m | Mother | Father | Parents | -| nos | Nieces from older sisters | Nephews from older brothers | Niblings from older siblings | -| nys | Nieces from younger sisters | Nephews from younger brothers | Niblings from younger siblings | -| n | Nieces | Nephews | Niblings | -| oa | Aunts older than mother | Uncles older than fathers | Aunts/Uncles older than parents | -| ya | Aunts younger than mother | Uncles younger than father | Aunts/Uncles younger than parents | -| a | Aunts | Uncles | Aunts/Uncles | -| os | Older sisters | Older brothers | Older siblings | -| ys | Younger sisters | Younger brothers | Younger siblings | -| s | Sisters | Brothers | Siblings | - -## Vignette - -For more details, including an extension to time-variant rates, deceased -kin, and multi-state models in a one-sex framework, see the -[Reference_OneSex](https://cran.r-project.org/web/packages/DemoKin/vignettes/Reference_OneSex.html) -vignette; also accessible from DemoKin: -`vignette("Reference_OneSex", package = "DemoKin")`. For two-sex models, -see the -[Reference_TwoSex](https://cran.r-project.org/web/packages/DemoKin/vignettes/Reference_TwoSex.html) -vignette; also accessible from DemoKin: -`vignette("Reference_TwoSex", package = "DemoKin")`. If the vignette -does not load, you may need to install the package as -`devtools::install_github("IvanWilli/DemoKin", build_vignettes = T)`. +### Models stratified by age and stage + +- [One-sex time-invariant multi-state + model](https://ivanwilli.github.io/DemoKin/articles/2_1_OneSex_TimeInvariant_AgeStage.html) +- [Two-sex time-varying multi-state + model](https://ivanwilli.github.io/DemoKin/articles/2_2_TwoSex_TimeVarying_AgeStage.html) ## Citation @@ -141,4 +120,23 @@ Commons. Sha Jiang provided useful comments for improving the package. contributing, please get in touch, create an issue, or submit a pull request. We look forward to hearing from you! - +## References + +Caswell, H. (2019). The formal demography of kinship: A matrix +formulation. Demographic Research, 41, 679-712. + +Caswell, H. (2020). The formal demography of kinship II: Multistate +models, parity, and sibship. Demographic Research, 42, 1097-1144. + +Caswell, H. & Song, X. (2021). The formal demography of kinship III: +Kinship dynamics with time-varying demographic rates. Demographic +Research, 45, 517-546. + +Caswell, H. & Song, X. (2022). The formal demography of kinship IV: +Two-sex models and their approximations. Demographic Research, 47, +359-396. + +## License + +This project is licensed under the MIT License - see the LICENSE file +for details. diff --git a/docs/index.html b/docs/index.html index 6bba705..862fa09 100644 --- a/docs/index.html +++ b/docs/index.html @@ -62,178 +62,84 @@
    -
    -

    DemoKin uses matrix demographic methods to compute expected (average) kin counts from demographic rates under a range of scenarios and assumptions. The package is an R-language implementation of Caswell [-@caswell_formal_2019; -@caswell_formal_2020; -@caswell_formal_2022], and Caswell and Song [-@caswell_formal_2021]. It draws on previous theoretical development by Goodman, Keyfitz and Pullum [-@goodman_family_1974].

    +
    +

    -
    -

    +
    +

    DemoKin is an R package for the demographic analysis of kinship networks using matrix-based models.
    +It implements methods developed by Caswell and colleagues for estimating the number and age distribution of relatives under various demographic assumptions.

    +

    Features +

    +
      +
    • Estimate kin counts and age distributions for various types of relatives
    • +
    • Support for one-sex and two-sex models
    • +
    • Time-invariant and time-varying approaches
    • +
    • Multi-state models incorporating additional variables like parity or education
    • +
    • Visualization tools for kinship networks
    • +
    +
    +

    Installation

    -

    Download the stable version from CRAN:

    +

    You can install the development version of DemoKin from GitHub:

    -install.packages("DemoKin")
    -

    Or you can install the development version from GitHub:

    -
    -# install.packages("devtools")
    -devtools::install_github("IvanWilli/DemoKin")
    +# install.packages("remotes") +remotes::install_github("IvanWilli/DemoKin") +library(DemoKin)

    Usage

    -

    Consider an average Swedish woman called ā€˜Focal.’ For this exercise, we assume a female closed population in which everyone experiences the Swedish 2015 mortality and fertility rates at each age throughout their life; i.e., the ā€˜time-invariant’ assumption in Caswell [-@caswell_formal_2019].

    -

    We then ask:

    -
    -

    What is the expected number of relatives of Focal over her life course?

    -
    -

    Let’s explore this using the Swedish data already included with DemoKin.

    -
    -library(DemoKin)
    -swe_surv_2015 <- swe_px[,"2015"]
    -swe_asfr_2015 <- swe_asfr[,"2015"]
    -swe_2015 <- kin(p = swe_surv_2015, f = swe_asfr_2015, time_invariant = TRUE)
    -

    p is the survival probability by age from a life table and f are the age specific fertility ratios by age (see ?kin for details).

    -

    Now, we can visualize the implied kin counts (i.e., the average number of living kin) of Focal at age 35 using a network or ā€˜Keyfitz’ kinship diagram with the function plot_diagram:

    -
    -# We need to reformat the data a little bit
    -kin_total <- swe_2015$kin_summary
    -# Keep only data for Focal's age 35
    -kin_total <- kin_total[kin_total$age_focal == 35 , c("kin", "count_living")]
    -names(kin_total) <- c("kin", "count")
    -plot_diagram(kin_total, rounding = 2)
    -

    -

    Relatives are identified by a unique code:

    - ------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    DemoKinLabels_femaleLabels_maleLabels_2sex
    coaCousins from older auntsCousins from older unclesCousins from older aunts/uncles
    cyaCousins from younger auntsCousins from younger unclesCousins from younger aunts/uncles
    cCousinsCousinsCousins
    dDaughtersSonsChildren
    gdGrand-daughtersGrand-sonsGrand-childrens
    ggdGreat-grand-daughtersGreat-grand-sonsGreat-grand-childrens
    ggmGreat-grandmothersGreat-grandfathersGreat-grandfparents
    gmGrandmothersGrandfathersGrandparents
    mMotherFatherParents
    nosNieces from older sistersNephews from older brothersNiblings from older siblings
    nysNieces from younger sistersNephews from younger brothersNiblings from younger siblings
    nNiecesNephewsNiblings
    oaAunts older than motherUncles older than fathersAunts/Uncles older than parents
    yaAunts younger than motherUncles younger than fatherAunts/Uncles younger than parents
    aAuntsUnclesAunts/Uncles
    osOlder sistersOlder brothersOlder siblings
    ysYounger sistersYounger brothersYounger siblings
    sSistersBrothersSiblings
    +

    Here’s a basic example of how to use DemoKin:

    +
    +
    +# Run a one-sex time-invariant kinship model using Swedish data from 2015
    +kin_results <- kin(
    +  p = swe_px[,"2015"],        # Survival probabilities
    +  f = swe_asfr[,"2015"],      # Fertility rates
    +  time_invariant = TRUE       # Use time-invariant model
    +)
    +
    +# Visualize the expected number of living relatives by age
    +kin_results$kin_summary %>%
    +  rename_kin() %>%
    +  ggplot2::ggplot(ggplot2::aes(age_focal, count_living)) +
    +  ggplot2::geom_line() +
    +  ggplot2::facet_wrap(~kin_label, scales = "free_y") +
    +  ggplot2::labs(
    +    title = "Expected number of living relatives by age",
    +    x = "Age of focal individual",
    +    y = "Number of relatives"
    +  )
    +#> Joining with `by = join_by(kin)`
    +

    -

    Vignette +

    Documentation

    -

    For more details, including an extension to time-variant rates, deceased kin, and multi-state models in a one-sex framework, see the Reference_OneSex vignette; also accessible from DemoKin: vignette("Reference_OneSex", package = "DemoKin"). For two-sex models, see the Reference_TwoSex vignette; also accessible from DemoKin: vignette("Reference_TwoSex", package = "DemoKin"). If the vignette does not load, you may need to install the package as devtools::install_github("IvanWilli/DemoKin", build_vignettes = T).

    +

    For detailed documentation, please visit the DemoKin website.

    +

    The site includes several vignettes demonstrating different types of kinship models:

    + +

    Citation @@ -249,7 +155,19 @@

    AcknowledgmentsGet involved!

    DemoKin is under constant development. If you’re interested in contributing, please get in touch, create an issue, or submit a pull request. We look forward to hearing from you!

    - +
    +
    +

    References +

    +

    Caswell, H. (2019). The formal demography of kinship: A matrix formulation. Demographic Research, 41, 679-712.

    +

    Caswell, H. (2020). The formal demography of kinship II: Multistate models, parity, and sibship. Demographic Research, 42, 1097-1144.

    +

    Caswell, H. & Song, X. (2021). The formal demography of kinship III: Kinship dynamics with time-varying demographic rates. Demographic Research, 45, 517-546.

    +

    Caswell, H. & Song, X. (2022). The formal demography of kinship IV: Two-sex models and their approximations. Demographic Research, 47, 359-396.

    +
    +
    +

    License +

    +

    This project is licensed under the MIT License - see the LICENSE file for details.

    @@ -67,11 +67,8 @@ kin_results$kin_summary %>% x = "Age of focal individual", y = "Number of relatives" ) -#> Joining with `by = join_by(kin)` ``` - - ## Documentation For detailed documentation, please visit the [DemoKin diff --git a/_pkgdown.yml b/_pkgdown.yml index 9f99da5..c5d9973 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -1,11 +1,11 @@ url: https://ivanwilli.github.io/DemoKin/ template: params: - bootswatch: simplex + bootstrap: 5 + bootswatch: minty theme: breeze-light navbar: - type: reverse title: "DemoKin" structure: left: [home, tutorials, reference] @@ -28,20 +28,23 @@ navbar: href: articles/1_3_TwoSex_TimeInvariant_Age.html - text: "Two-sex time-varying model" href: articles/1_4_TwoSex_TimeVarying_Age.html - - text: "One-sex time-invariant model" + - text: "One-sex time-invariant Age-Stage model" href: articles/2_1_OneSex_TimeInvariant_AgeStage.html - - text: "Two-sex time-varying model" + - text: "Two-sex time-varying Age-Stage model" href: articles/2_2_TwoSex_TimeVarying_AgeStage.html reference: - - title: "References" - - subtitle: "Estimate kinship count distributions" - desc: Indicators to evaluate the degreee of age heaping - contents: - - starts_with("kin") - - subtitle: "Ploting kinship count distributions" - desc: Indicators to evaluate the degreee of age heaping - - contents: - - starts_with("plot") + text: "Functions" + href: reference/index.html github: icon: fab fa-github fa-lg href: https://github.com/IvanWilli/DemoKin + +# reference: +# - title: "Model estimation" +# desc: "Estimate kinship count distribution" +# contents: +# - starts_with("kin") +# - title: "Kinship diagram" +# desc: "Visualize a kinship diagram" +# contents: +# - starts_with("plot") diff --git a/docs/404.html b/docs/404.html index 9a326e9..d9a2111 100644 --- a/docs/404.html +++ b/docs/404.html @@ -4,84 +4,130 @@ - + Page not found (404) • DemoKin - - - - - + + + + + + + - - Skip to contents - - -
    -
    -
    +
    + + +
    -
    + diff --git a/docs/LICENSE-text.html b/docs/LICENSE-text.html index 606ba6b..19092ed 100644 --- a/docs/LICENSE-text.html +++ b/docs/LICENSE-text.html @@ -1,62 +1,103 @@ -License • DemoKin - Skip to contents - - -
    -
    -
    +
    + + + + -
    +
    + diff --git a/docs/LICENSE.html b/docs/LICENSE.html index 102b7d2..75d8d27 100644 --- a/docs/LICENSE.html +++ b/docs/LICENSE.html @@ -1,44 +1,77 @@ -MIT License • DemoKin - Skip to contents - - -
    -
    -
    +
    + + + + + -
    +
    + diff --git a/docs/authors.html b/docs/authors.html index f77dc27..fd1a3c8 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -1,50 +1,83 @@ -Authors and Citation • DemoKin - Skip to contents - - -
    -
    -
    -
    -

    Authors

    +
    +
    +
    + +
    • -

      IvƔn Williams. Maintainer. +

      IvƔn Williams. Author, maintainer.

    • @@ -59,39 +92,52 @@

      Authors

      Caswell Hal. Contributor.

    • +
    • +

      Benjamin Schlüter. Contributor. +

      +
    • +
    • +

      Butterick Joe. Contributor. +

      +
    +
    +
    +

    Citation

    + Source: DESCRIPTION +
    +
    -
    -

    Citation

    -

    Source: DESCRIPTION

    -

    Alburez-Gutierrez D (2025). +

    Williams I, Alburez-Gutierrez D (2025). DemoKin: Estimate Population Kin Distribution. https://github.com/IvanWilli/DemoKin, https://ivanwilli.github.io/DemoKin/.

    -
    @Manual{,
    +    
    @Manual{,
       title = {DemoKin: Estimate Population Kin Distribution},
    -  author = {Diego Alburez-Gutierrez},
    +  author = {IvƔn Williams and Diego Alburez-Gutierrez},
       year = {2025},
       note = {https://github.com/IvanWilli/DemoKin,
         https://ivanwilli.github.io/DemoKin/},
     }
    -
    -
    +
    + + + -
    +
    + diff --git a/docs/index.html b/docs/index.html index ea8f86b..e70e20d 100644 --- a/docs/index.html +++ b/docs/index.html @@ -6,7 +6,7 @@ Estimate Population Kin Distribution • DemoKin - + @@ -22,7 +22,7 @@
    -
  • - One-sex time-invariant model + One-sex time-invariant Age-Stage model
  • - Two-sex time-varying model + Two-sex time-varying Age-Stage model
  • - + Functions
  • +
    + + + + +
    +
    + + +Content not found. Please use links in the navbar. + +
    + + + +
    + + + +
    + +
    +

    +

    Site built with pkgdown 2.1.1.9000.

    +
    + +
    +

    >j ztRPY3J~y5TRwhxT`RE#|T6?72)+Xv8KC1w8O1kBidNKw*d;gHH!z8vRn{<9eZA@oB z5nSH5YL$uuR10Fg&quA}o%M(+Jcj{AS!|OLBPO;sCv6nW?_%J8(w`r}&e0_Q-f* z?bd$XW=$`d?MC%SJjL1Yqa9Va{+0t);{^)n5*0jqQw9%&n~7Bwt?!3mlSH1;DHfcj z8z?ts??8?UbrOo9F6gU?p{+k4&3m|r#d&@$H5)|)%~&*N45b1}D|6%-^9Uy3BxM*} zg2WFq_hx zA@$UDdHsh}Oy6r#^-X^Rm}o33?1)OA*oP8@hgp<4L3(Qx4R_Qo8J1SSGC|;2-?}UC z3fiVvSzi@Eb*MmUAt~#CLQf$DaFT(2pt)TSd(T7^8<*#oFj-os_q$p;`PZnkNwsR- znxram7#=>SWx~Z#00DHZN2$A6Ih8{ua~1nwSocq-rtY5@_a#qpAb3nvWMF4oPoMA* zY20&5pd=Gle42E)rX@HPIlL?g4ul= z=|*dD@5QXEZpG#BoY)&W+;MdArhsGmh&K_@SCNi!VF%{AZ#)>WfyR7o!th6f>5aqA zJ<(+i(_{@3Fg%ZKttu6mA-Rr!EI@u(rBWXqmp?KsT7?OA*l|O}S7BM>bpQXDQ_=pr zZcG~*qkv=&{|7SbdXP`CZjl_JM~HruvSK`CPB{ALslK7(ZKqn3rz3jsN< zQlEzQxfp+WdjXqlpFdZxzQNv}Z@r?Q7*F0sIW>2eE;|k`SBBiD-{zQy8gL`UgoO zFKQ59#)N%N68!Dfc6DYEyG4B-&$o;p-W-ceQnq_YA*yyCg@0v33I8tZAB8#M3u z6jUwTH1?k0i$rV+nWe_O?UWlC7dM_^SfO=EBJyNu06xD^q~$CrrYEM>9U|%&I-cJ7}8 zFoRm(Kf+JBCz0`{*n}+`x3LU{eB!tlow8Isli*I<<35yg{i(_xp*(TSAs;0+>q+1e zvr!vT1(W27Dd%>PxejJ^^qIV!@zH96kEmjl!qH+w5E1$2cJG92gGFK2)Xo8sW1Tw= z@2Sj|2`ME3@!(VYB063HgVXsv{6&7W(A1Hiiv3yv&8nQbjsEsG3$*1Fkagygffe_b z#-TWX5S>6-kw94{fpcA^U_NkNuVH8Vg;hf=m4eY*?A>+!mJ8>Ey=2DKB{7W%L%<}K zDERm^CQ|jg*=WX;aEqeR#m0q&nsN$^0{tz? zfIHO~{B(f+rmy*3khME&8?X|s5Th#LVICH@vcqJ@r;Z#$Hp5D)cY&T@hh%Sedjzy))6d70ta*kgQpkod<&FCK9MR1Qr7J*1lo5<+^E&Mefg+VTtA5>A!^$5gGh&oWZWQ7uN1m z#nFFG>Vo1{Y}zH_*7Wi?X`>1SY&!^)a{|qYvt#qrBXOrE?zpjus{buK^LKlN{L0vq z#|M)K^m|LNvg@L!u$dE+obW)FO}nW_ht!pKnbLKQ8L8M=PKl@KxW0rDWvP$#?oV~6HG)hzst&ah<-J;Ef;y-V9?2G*A8`;qY|{< zXPW!rUOk5OJ1e;)B0fclu8My6J>)`Mdw5#5)%q~3OXHR-05^bV`={Eaf_{H0Vnr<$ z&Zg9TZ;F9o^@c+?=I#om7!Ot%%|77WbmGQG&qcy=A+IQHO$X`R`*`ikQAkHf{rmIg z39~j=nJ)>3Q=tT-UBY#XpQeTI5Z%qWu6np67>498U8ujV@U12`?)Rh?Ji-Wq!*YfkMX#uuw9mQ;Qh=d#QzhRQ-G7s5Pm zuumabElr0p>Ob2j)B`#13C7(={rHvQ(lWcriU?U;S$~LvHz_&_# zt{{SCtP|1l^7A|@4Q=*F!IM%WytWt*t(UJb%F)SsrKx}f0&8d|{`=-YNW`RQ$nLk; z^zw*b=cKQ9gDbeY7+&W(em6Tr6x+DXTs*H)%beo4Rq5GMvoiFz272A`dZoRgu%aCB81HN%Bru+M9=g*Tu%Qxu5p0I?*B~j9)xmm% zy-XuPF-RHOT;XRiaxb)fjb4*R6QD{~5jy>NS=V1>%>7nFGI3u>!vJ0?{FY#0hB{{( zAKm4Hl|*5T{n~y7>Q#AY6bbJtvz#UGx#&r#zK)m_Z?7_cOyP6_(pBj~*d!Iu9_XK? z^`?nZ*!FAJOm@dn2!)d;MuK4lL8q-F(%fi_uh%J8@{0kp(5|KU;RjAf7O=M0v@8+ea)!Pk5{@@zSg?Gtwf4p z$3d!rUk#_;deSLGl_xBCTvnTP>fc&$ainLAiXIVVVFbnM3{zKwF)6QK|HH@0(#VqgYHuMh^|2iHN#6y4&h3-|dWDLv9k@*7! zKI`_&+4hmnVJHn!arw4cez`CQLg+rLdp@7Y8g-=nZdj-CX95d}4)Z>5I4y^SX?J<4 zR4bpC<8R&nlW!J@f{tdmXXp8LO&Mzh-q}fHhF8>mZE&%sAht#35_tF`G1<_fho2vr zY8czOSFrcB`bpXxbOpoh4cg@Qs~{Y+1!t~$SHpN3vncJ}$EID?gq-ttemk&0jCG%r z5$pVmS?A(Tx-ZfeC_^?W(9g4;?Kh++#$pRwsyxbYJzQYQzW=jt)tv6TjWY;5&IR0Mw;P;1yatLMQJo35JME!C6J%XrQpa|9 zPHkI3F$PhT)TqJItACnSRtKD!^#^c-0}WE6D=sRTeqDAo?U;lijfi#jw^Gv8>EEk! zxU4!g4T2L$RKzOG%+z_}Ag|d;yL1kw=ne`2KrP%2&RL+v+g2{n5kUNqdn+X9^%I+p z``ID`PF^hh$Pd*9=G)X}M*9!=P;k(C73lT-554R1IXYKW-xK*ViE1Ip<}r%g>Jqg>V4W+ZYSBE+Q@R>IaXp~7u;LHwDl1m{+<_61Q3SZZakR(`Z`0O`67;I zE7ZN{%DkW8M#pGbqQ|UL1HrOEj{L1jLa%gJPiuqD#wb7CC|&;5ZGx=Y^4M>I+ZgOL zoRkf#egQp;kT#|4IP7;R)aNZV6o_jj3Bu|2CdG31qv^ttXe<0Hn#ViPYvb7MS6w(z z#>?TZ2%yX_~R zqC3FHeT9YbqoXjBj^Cns!u$XMA>fh%!BSv}!-vTgFc#wS*#3Y41vHqp1}QI+k&Abq zi!N0F>$B}KBGX+)P!)x6d~8oWySA!F%G~)RwZ8ir#u)PGY|TZ>d;h_x&k~mK9`6eG z^7UJ%cHjA~+~IvFD+2ipZ_5$(EWx`&Bxg%;uUhZ8IbOKh1KO+v5AA;JTA=F04$_>~ zhsP*^$@xpH;OCoVkv(nWqrZL@yZQwr9z#K{8vE5ego7P<<8uaODE#OkO=(I9mV7C! z*1`PZanTE|C&D4LnyDnp)vP+Hh@l;9xY3Xc*ex`WKu1-pN{b>?dTVRh)kq%{D4=y_ zwmc+x8*lFOI*xPLQSApKYMax~8^w-l7R>38$)Sl<;kITK7*BfCNvzuY~Z1R|w{ZQVhpwK9Ym zi!$g3SHyf3wK!ch_yQTueKC2lV%UF2Dhu8%Su?=YSIIQkj&G!%DU~y+9KrTvcwa;! z?43w~;HlIei;5)6Xw`v|RA0zdv(F;hd`3i=f?tO8)-q^bwqF>!<;Ja#=S9$@)5kYm znZyhbT{4sG`$n8`b^9rB3s~Um3+B3YmWWL)pW!mcU0`VT`4|NT;XXEcb>56YO73P3 z6~Lvn*!wXj;4`op^aa&VFqdgp86-rYH7y$P>*rD-H3O$1p@2k6LlueGPfl&^_S13r zw@F?if((0!jK-!!L0weXSAc$L=G@O41~uo34#ZrsAHDdAl6@+{7Trm<)~Ffti%@w?=$rEw7@9ss7qsOs`IhUket(x|*2rX)ER zmTlSx2n9c@{Rc(OhT8H)U=Kxm-bddd>PSfe#7bx0t-YH4yGzH(W())HlHdJ&gj2K?C z%u=Z8BhJL>QwLgk2|Q0OY1uGd`1YfDh^{iwpBOErvnm0Hj-tJe=am$p^belRN-2zN zW!s~Zy>sRyxu|co#o1RpLY7tO8%wXq^CdCSRa{|2u1K0B(5fMf~aTgCsG(lp6Kh0QS}s$i+t#`a9} zvVHb{WA3iq!M*8%7z=O-(!Z(o7fJndSpjWvthcJkI*qqSi`QbyRF1kQ)^qLG5xtHJ z!!}8FRhuO9{3qGq4GDZ6@Je9uI_7Cv%HoQust!MUO0E6#d#GoMOBc*8g=1cO`sM#K zb;s2C@wOuxVGH~|^W?bz_7Oh8J#=OvujTJz&G8!Sl#-q^P)P01z=l2iGv?}lDWF_5 zhv|x+-o*k*jR~3ZU|KxHLtxa&TnDdaRui1r7Z*;PS58G!C)*#>FJC#Vtf#jMkBX+U zou#E1W=#K^TAlO<4FNtnm990>al?%7RLgq;0s+3zH<(IuiQg)tlGbVvKVP<5emXhPc~Lo&0wY4bLRDx^<@ItHy z1c?`4g|7?hQKL?KRV*%yug#8s#bs>q(+*f~>6Hx{$jj7jt^-AMn{cMrg(c`!29WF4_c>#Xs$ z!;-OFf33;rr^gmsqa0yEADF(GCTRxc^(=w!5>AXDkrb#CAFPv&d&N5`80#*BS9edL z|4^_s?PS{VX^2sQ9SJk3i~%E$zcUN`<3@lTAY79-BCVqGwS8K;8X03#2l$9-tI<&~ z-{*P^UAjqWgA*absAo>>yU0bODN-pqd;NQ|h}yGA)Il~RFv`Bm6OAwZg>Ri>?|>3J z)iEu)vB^ir&u>Y0IgQ^b7@C&e!mn}p)vtC zF3w%)7W)~K35KiE=ISx2VaQkLC2SC1liePSG}FQrQImy9^LxyIX>_dbVO`3IIFuD1-DTnL;h-7@A)BK%7>ya-eHF16>oOL+oNaYvOll zd_y36_^npz{4mMMj7@;|p|ATU+uTo#uiP{eX(?zq?fqT&H{%_#`X=(v0|BYbWk}Vj zYUC86M*;lWfvlHRY~3xm1y6miEU|0%o@tt1kk6{!^fjEQAoo1_JKB-p>z#NbxTV4U zP-d3Z^ZLbhgSDE`XiZJOJK{c}tbe8WQl#BaCb%o;W8XcwK3l_I)OVPQG_#vdjGiASDnzkNI8etuu|D%Nq^ybXQ-EVk543VX-KA|ejKWK|v}wYJI_TR{-b|LM1YVKKo9 z`CG2g`E2v$uZk)p%v^MH^OQbDjE`|g;tc&gT_F5!>wYj7`6=S@;f_F_>*wDUxwN`G z2+;H32WoZYZN-@ePlm1$5{p$Se@D^qFbH4u*_`2_^%f^`I-NRHkulk|>S!CFRB2eb zbv3{adApS^in?0(spm1&yL5E3=HT>??#UT@tKqbe_^hpx>>;=!!LnIjX~@dn;qIjNo8&pf^@wTe8-snRPW z8_Wx#KYifI`^&b3x4j!qd(RUhO)v%R1+JgDzfM%Jtn9?VmJa3TJ#YCmm8)HOpJyYM zQr^{zS0Yp*kw;_IVI!G8KW=C!Ya-0DwH>QZ$wLH&6?t^WS1I%1zZo3bd#z0>E!NbCM;{KNNE#{@P>AK{1?Gq7vyyfa|NmmXBvaFs| z@Bvhs*~vX4>Un8qpf2Wmva*P-(ji+v2Y0f;!Xa+#RZ6Du*3%5AcwmY6dF%5F@|O`_IUN9#UL6oWS3SMC0BW( zXqTS(stO69&JHrJF(`Xydn=x`2Cs^!l&6I`s#x&5HiJwn-^^5^1QlBxWw+luhWSY} za6=~Nx6!ab#R{7);@JLryke?SMZreOi5mRSgWZ_;tfT_^MU}gC{C%nibkjrUqGIeA zNv`ifE-N-6aQn%}XWZ}Rva5#?sPpBV_)o(!MB~w8DLl4OVjHq4GiSOK@g#ARqV1gF zgN6eVF~*@zmGCv@dUiEpz^&s$OJe>`HYiqax_Q~IvP1;_)V~Q=%-XBVMeSkg**B4C zvBLkqPfXsyAYGS{fnI>siQk)wcryJZ+!5-ZuztTL%Es6ArEEm9u06oym1=CGz=l=q z*M>FSU!SP!Hy8PlPXqs#5Xw?DMA6BT<;}n7?=r>_2zb#)%zRWJ*j80( zA7G;B{BI5lHTD?^)nJlX_yp|&bY1^jelJjYU~@5>Q=uOD=fFKCyPBV!h?uU4gEJ0d z$SxVi%H0n%^cZz%Ihl3vv)wVJm&ORjLX8*8&C<|gxA4Tcm6R5Z+ZgECGeS|fqZ>>P z(6ySf{p+DxfzlGQ0eFiTRk3yZW<>NXK54y{i#O~~d`Nfv;w$EVBW|Gh-2!0?L8&42 zR1A9R8ig9aWwYZA4@5G~O9*D~B4;KxPX`6NHt+9q1a$FJbnn(%3XW`RCDHiUBeLA@ zlC8&JbN7XK?pCd#B=&RWAq3%5*ESI38!kY_r26(Ltt>Mr!*@)6Ev(jXEasP(o11)A zQ!P>{jz183bL{?jc(9FVS0>8qb0O*Z_WX;Ef-Sbpyo*}bg$v$3ggu`1rZ=890&)he zqNj^Ib5VhdCQUx{S6$^)jfhS;>;o^OeM5u8S;|^GoV%Mcsu@^k3C-!UQXu_P;7+?$ zNEB7bZf^8bqgr&tL(w%|=qYWe(6spGLoY1zV|HXM3fK`#t&;7N)jXR_Nbsh$~4|Cq+4@`JiYx>1_u#$OZydh$6B$r zq0SSPEhnL)UFF15ci0woJx3#^mdV+(uo=U5%pjL2qb9;TqVS$YZOof8)lzQ$b5&(7 z=%wb|#ATF^`mnF`=dO)ZEX{gXlku@T;*l zQ5K^63C+DR!k{xwEpmR1&q~-*y$zw9uv6pZARa z2wX-edVSUdJhMh*GWSZOi7|J|?s5=t~KiUD6I})q70YvqCP4%=$`1mXGD(78?;r+ttm) zynt@bO;AR^P6)1H#blhjd;ngX_AnS5^AEP+pe86C&UOx`EW3``tdEzEb_fhb1jr%H z=~~N_LQi%NlEG+JFVa$C_%hkA@l%NpsQxC>6IAd5zr81T z_y$wqYyoeGUYX?obW&rV^!6a1q0%Yo>iDkD{UiAI-c-Qqc6O`&Ct(){3B^gb&QFn+ zCUZ}NR(upv2BsADwZ61E6q63iKg}@1s(OJ5~&X@~&ARu1kiQw+vZyiq=d#`fr(m{#BWdNDYK#tG-tePq$ zOo=Cl@zRSwZ^4gWwN*j}8XR!ef1A9}q$>0R19{x8dea@He`n@6yT`^rOZ?u-{;gdz z+J5r3c5>KcB=0O{yl83aCTQNWxfER({HshrL!SotsPesVpp8#6+b-k^OG7#EEi``P zl|w)U?hH;B0HnGaQZBHTL`H??2nzve7LjsP%nshW^`qZRPIbt9A2+||A2$KR(tOEg zD;Nwp;kGU+)#Bq>f5Yr*yH8U}BO3vvF#=;pB~AqyhileCrYb--G>s3?&w6uJGe?fQ z#oIV&$;aVYO+HZ<$@Uc7B!G-|<-QWYh}+^&Cy&IMWE2J*jv)qhe5`SE=P~%v8Lo0F zoITNeHkRy62s?{P)811HO-pw@vMnh8=&^OH$Xsl1%{HUBB$UaLIyfX}g7mS^&O9UvgrXVnb8o$Us;z3j*GaecTRipFSBp zvEP_&*Q#d=%Q!@FV{9iXSe^zRGiI;5+^nPEbv;y#l1+5@@^!rAj9$vHO|W4%pM9vq z(s&5`$wDDjM&N zO*csnva*>NS+$Y+vt0(q2?IWY2u>$!b+YyNy=0q8P2WZrZe+QehrR-`)+^Y+7lPrx z&gUI}FeBc0%_TwV-;>jve=+Ha!ts<=3NM%tM4HWO8f`hi@LXAQHqJ_0p*(*@LYt9j zXE8}8o(wGc_x#i3=sgrMo+o!vMiQ`p_7%GLcC*31r|0GDg8n7zf(+E)`kZ^@Jv55c zoEII1Re-7K68^@4MgHgXxIbnPbAG?l2WF1Nz`EX*m03qJqKFMs`NQ*D|KwiW|0MtZ z|M25+MbT^z@IPzQAGgzJx6Be$J6+P$?zWr?*0my3;s3i5N*^^Zh^W@|k^8HPt6Uls zMhWpT;~N=a+!ebQ6m_sY;&3#-V(x(uU)aW;vAf~!O8)$AVs6RYCT zzzza`-~M0J+$#({Jzx$`Soa`7lV$4N+S|1hY26T27zgFWe^_^j8 zdVdW~>!pa1=PA$W!pZ$>WFE&hKz=-h4;Oz4DIPu%O+VI&f^BZ5$*B;#G->+!+3ZOe zLre4dk@^S89j(jvVSe-f)~GKrt>F1;U4=Tx&0Ohq3+}O$#HCHJGIt`m)LJ$KZu~L0?Qg8*2=JeYS6kEeB_*1t04LbR>>f%Eh_Y46e(4OS zURQ`1Im61v)Xcp9Zbxy{s1&xNSRft+CZ1k*1MuLV9{UEhNOaoJ*)Vd4rh*hENq-n% z1uK4S+0b;1FKbxMc%aIJoDzy_!^4$hSGn+cK^t~kbSnTi-ML6b_~XFubK@_>UC|}! zvo|eh2~7Jw`W)thR*KHKdtZBt{e*mw=o$hFs6DE-yS4KVC-{D+9YgX2`fg`WwuiSL z7*s+F`N#jMQ`2z%sTGFo@$93cXPkVeoZ`E&jOO02m{qV zi_rzY{{~-qKcY6pR*dgw(;T==g*ciou{Cj1~i9TvDeNphPptOeQ3I7j{;&(qZ zHRDRO(^U0!Jf3GJ$sti*^v?P<50z+$b3*t*z!b+yOnv2(tW|MV!MaV|Ej1zF>`vQ- zLiUfW)wqs7CE?|IzwI`j$}(OD)3YWHAqMM`yTvelhko;Yy8^`j9XadaOp99i+`_CA z-GKb@N%)`*Zf&s4FQ;;7jqY)unZ1aRt*!M0DU?texrogdkyd+y*W%b4Hz8x`l;Q;+ zV*!WNIR0l1R*HXb3dAx`{~k6g5J|f6!+HAhbPw`lHrUh2NY4YtmB^5LvyYtp=1Git ziJH={uBE`}h9S9#Nx$^`=;IrQ`v_pd+C-zO?7)yBAQlAc;^)l(&B5{fl6LIS@eiP) z(6e=m2)G6EZ(LKm&l*QF3%?y>CPyfD*b58?rF%cB36dNQyuC$-+6f`!lCF*(H<{xR z-m+O_{J@fKCJdOLpoW%Oq30LdlNX!_A$8| zIk_RyCEC5|{x)ZKhcZm$8RzVjfMiSMgZkFNWfR4ZlAr`5y&LDS`_#t@Uw#D6na zWGH>vLl#8tVRUphyG$2CuXW)^`h!Ed$3`|&sprBBk`y#M@&2Q*))qcz-foLn_4Mx3 z7UO_B1z+B|uqjEkd(`O`^dMK4yV)zIiop-xCDGgq3nOZo_2dld=SMg3*sHsHzSkL@ z+XrS8MUD|AQ21K$K+gjOZ@3aHg;^LW<_bFq@Z%5WnYLtBo|3)tQ&3@fZ>HO|kMh`L{5wyd`Z$&}e5K}8VLo=3b9Im9C=;pGm z)kzVsc$II;(Dq5>QA~9$fZw~@rrEv`yv)~Ujccs4W(%uz{_{}en_{0&4Gu5wUpR%= zIYfWOv>1G*23vb~638`VoFr=3$^lmbcH@%;3SbQcJO`)|5NMQSY9wTHbwBR)#GWWf zT`$Rwu2YjD(G;6j_c)4BHaf7{J^>NRM|ypZ*FC9#hmWCnik#5@8qS1v?5#{`IzFZk z?jZRoVXISr2NuOG5T9B;l|E@fCP{O)^slD#WEik={ZoRDxs5XP8w{LH*VomR} zxAng(oj1=e$LzQijScA3ye|8d)GARiqr&t!7IyJXUxfBJI;ICw18*DAqlWA6REEwn zX;cnx>z+37ZNgHH1Rvl*mWDF&Ed>1c4(!Av3+g+SWi2+Ld$?NY+$hO9ToAVQ@vhpB zu~;`o8D_?P!K;8OEX5vPM9pW6^v$yZ%$Wo~;biQpn2rfP&E*nee;4-Fz&) z4;fWR8us7bKLlO$-(A;V&q>rrHFwrm4;GYhiYhv*ORT-kwe9A@o>a1&+5#`g}6H}|k}E^8YvLj_Idr$;YaX@te@Aq3BR zt>Ng+b;Cd04=?S*Dpd*W4KA=#&Tt9POHH)a-Y2Ox#XmW8wuUG{{;glR&%tbsVzqD1 z!_-!dCCd3&X|Fw%I<~D28X};aI zch;RX+Y6+aRzr(wG1~Fs1XKeE3)#3MR6jMv#b#y=itFL6A z_%UtH|L=!Sn`!qX8YRQp3N(Jm_OhPd;xi=NEE^?5=dSlS(R2r6SsN^E9J&^A;pHa> z+k3FS^^dn?gP@#=54MLrRwNid%pH6S-LUUo@aC!a7=LbES)_D$hSDc?(>5cu{x?d> z`9~<@%Iq&QYt;@ZWjOIh{*Bt*LR1^~HXFUWTLh~j2aC}BrrhbXh=3AWvhpP!iK~Ce zF+6WldM$y12g)boSOBeTLHEsdi}4ibVX1O_zu%B0{?9>OS{9NOOZuV7x3(c=SPYuv z)4)1d7iurZ+R5Gfc(<)s)euPDHa)w3gl-e-#=x@LM10-QblrT%tl~Q<+1wVlnjItJ zLm`@18w!r0)=}GX{YzHYEfwQJmm&Ew%nK?7VVSHB@pJi>W143)QfMh-!LHTC_tKP; z)rW>9XGt-2zh_o>sn`zqBKnZ`Tn2(l2jJCul~>25zJ?5Z){h*_7Gd?KOWX~93~1I$ z^+xI*;;;R+dk0g{Na1i@1BQKx<~whQe>dA8!mO7=1dx#eJDKcL#|ty^3fFJaL8+D7 zn03B8J8I-9+Kl=XgvXJm{l0)JRm&G~WiE3O!p@qAr1o1swVYEF^$|J(sM#$|o-c(d>(G_UZ~#9Pw8$AUytKaNqgZ{(m{?^JDb{ud#HQ{b z4YV(*K0A!lGhC%oeXn|dZ9J2&C$*R7Wzjj5*W|-qSUIxG_z+wQh#HsYbAW;~bnx#g z98Kwg-VDLx9^=4ys?N93I?CDB>Gi5J9N0W%k%CcG{C+Yzmrn>mT|<{HNvo`pYD^*W z`XxWu$=B8Hq67kCk0taHsiOYlWYs;5*!IUZCL>~-7O*9el_Iz@Hb&qY70GwDHUl#- zRe^mTrbaJ%UW9j;hc=+IR|0-bQx)#_rk=PJCgjesUG>eNpLo9Hd76f5SAoqY=US7X zA;XCqeHKsNgW5@ck!H}ZmH{q;G;Ww{e}G znd^$Sc=meLM@aaW19qD{gMfm~Ny7!2d0!OiiPu~KxbN8%yF#8nrrl??%#pOE*$`|C ztyJe`^M(X{o(9tAhfNgElkqg$FmzdUbA2YzOo)B7^rUQMU%UQ}ZQ(lGs@-0=I)o7% zLkK#bwb=}p!Mo>g`bs|7F0%H^k3(~*j$QAkUGo|#BxMdM-`d680%%@1^LptJ4ik&C zX<0DfW_bP`{=Bu>5z%ePmaI;IyjHT7e>h4x5jd;cpj9zd5<_eO(E7@p!_ObylM{r| zS2Gi4@uz=@ezu^}WVV1wyi0?}${?1D%{N~6=0q)T=4z^Ev-;@rWzy^^k_w73s)*wb zZTO;Ds-8KztC6p3pNwu+Yb7dRdtYRV5OiWjnaFhwB(_*16X4;6P3ni6w5!&CHr1nP zbvj%I)NA!x7A>NhouKG8O!Pq}=Ni-R_?W$JCCJGWw4bE$5b%0Jn&;=sUW!u>AQ~x( z{HCz~#W!(W48*0@72_|slESw#9)A8c&}X{Vl9FXhu6xm$GvKF)PcOw_ z?^g<{0=?nW>umxP`c@WV*Okc7V}Sdp@FJ28T2a5G0>Ns9nkP+40=iB2=9iMeBqv!Z z>!;FmO_PV+$o5+ti7mOOc#L7T?ti%fv`P*uBjN2D>gfSpZ;Co#>Pbj0XU zmcO25%iGe`yI*DG#xz0-r13TF%a=GL*usq;exD1`>Es1^UKeZrZeTB6VvB~>n7$3Q zU#x0leTp)~;JRZ$oYAj-ICgd1S=(hz^ma#%H;O!2`pwof{?Ze=zwDr5u}3^$fR4?6 z4lc|zZWSNK3p3<&{Pg?jP8R$)tfAjr?T3?MgI?rkDm^HQ(;4V!t1<(RH3z;0)zFFKou#n4jv=vH zB&2=$Y8=_g`Qt2!3(YCb@l62!8yWP#?teHQ7W7?>?fmYf@b6u*rcIotTkX5=Ck}() z#uW(>6;;0DumMQ7s8maP1N5Vq>v$abktVbIr_cLg8Y=6zOLPV`n=dl<7xl~ZP`+lv zJGX6?xXECqDcM#CKE6QyA#Mu!g3U_w^u<)Hm~U^wy;H198f5#Jo@OU;qa<*BC`&O0 z+#TQ3X)%9JP^s*Awjec#{3nA*U=O8{#emO>rjx{rNX85ELLiJ%YNsa!coBoJ=xaH_ zMk3t$9{%P7o@?)bD2jI@2>o7c)TQqO)D?_7$As^QXQc>0`nGZ3J+&|0wyznWhXVF5 z3fZPUA&m&P7gRn6bZCy(@C3Ar7+=3C0`? ziP#3P-Hy|B#HDyF=Kj`jcb>mP$tp^VF!I#0%g1SOPd82{YV(o^DzL+jQ@)=JuksJwGXv8f0wGfv@SCd z0?#=?VNBM=|AGro;t{51{}0~2va7Cc$vSv&cS~@0cM0z9k_2~m4i+Fd1b26LcXxL= zxJz({m-F22J9>=nkNx%^*kkX#)~Z!CYu20>a4Xg_LO%zb8}n%yUOqZ}PWuWa%RKtF ztYl^r+V5V^vQsq%2B+?LA<$Zh-kdDpOwnGCx-aE!bw_Z=NgJ#%wEZXhNlv(E6EwPe z)$0G@eN1QDl7H*%N+w0*7SlM6$~J&97+dNzN4zpH^jHl26o`4!l*gk~dTRH#UJ^$W z2(&P2?)$2p&uZo&L5oxKegG5i|9$}CN?bTL|7|`eC8KXZ`n&u3xn+A%hLXTG>#lz! zUa3~V&qir(f0Z4-el_r14W_|&!}}(sDu}F$MPiKex9{T~ObZ@U{3O6E77|_t+e_0a{AN&eKRVMB(k$I!5qrfvnpnz(rGHkVm0K$8O?a z7ga2SUX2T`w3w?^bPFwb(A;`)tJ{6{)#eSdqik!p*M~1@a$c0xai5S-uPP`Uh^`j? zx>c7Rx=*@4xl{A>-XZPSvVY_ykYhFV;$801Xtsohy zj&$U+Yv(xKZTrPNCm0gAB3jx4L*SYz|F}%NWZ}z9YP9u4(R$=b-?S0fd_dGzj6TQIVn41noRmF zVZmOU;=}tRb?cV!U5D{c8!f5W{hi3a$-}jLw{~=m3_I|RH(2kO(}vvzJRgRi9QwMGXdaA?1dUC;gZ)mto=_5J@84rP88|2J7`HBA2-JWI{%^YyCvKQLC zu>Qqdxm1y?@K9pKp3lUsp!8S|O9OgOUWBOrXF@KL6ai72dAi@X+ zUkN&MC}EpgEH>)*c?sgl|HF@M1l6^DLOa1L@Ov!H?Igi6v8xW_>NJ_q_a#hFdEZSB zG5{#Do89nX3ck|egvkZsb06%*@-`Y_hK@OHXh`uxyl&n%(PJelt#))-yhg?w(%aje z$sddEa|bS!FNSt`P3%!NL4gUy;NtHF_6RA#dQ< zNfWu8r5stCOMKUilWib?P^vT`vq>dnZQvk{rL8TCmit}b^NGVE(_U8aM;b)Jx%@;M zZm6VQ!`HX$1ai$goe6`E7p&nGau^1kHi%f8N%jLP%$gle)%Bu1P}a!FppKU4Dmu}d zo{X!oBJ4`7<7S+}YauYHkfwbFUG_=tHC@p4YxV3yVe~0p6;VWsavJIHvvv$t$`-h> zMs>u_+&?knT=N2s;!xeDCnRB_cj`SS3`X&`I+(m-m^WYZ=}+$YMC<3S5uYW{yDezE z1#4Jg?KxFzMl}L`=b0<5?gpg$Ogc35IcmV^aB1I`Ws&oU-Lg1sZ{0x$mLxy9C_cPS zg;hRybTuG*Qt$4EG1thTgT`r&E%Zt7l5;Y0BZ~LK=_~(Ne4+8NSXW)#D5|LFTqN_v zE{FM5?5j(LKgy<9`mZdBo3-~9``a2TGW#Sk#?&37Ry;V~wqD9jeM)Nrr&_AXU>2i| z$vP{arVcaZ9xnWQ8ZNJ|ClA85`^#;J$Sa(t5PC5CZrV=mr0}t|E_XS=HlZD zPHwb6+G)>85@fI|DV7(J%9mB}3P!oi~h4p9$!yiz*=V z4SG+A4FbB}G;qsJaX}TMLS=nNBIjnpM8Y{HDX$Rh;msQ2rcmBfM}2L{Kw`XlNLr>+ ze-)<||Hl9aQ4tI`zloQpJ-4|{t(*c36>{eE<1(ckt;1y0V}R4gssbvCCy>*1bvdOw z8Yq}P#U(pvXu9HoV>!4jra}gIywWjUeGwdcgd^vr*AZ%`R%g!e#=^#A2@nii_LGLK z&D?E^Oh^_FfXu$|409 z{!l2nMYeYNW=l9Zz(XW;vveyF@eZPx*eYv%UwMvpif~K`k%clNj9`RrE6f&n^v;_Q z#XE$xcOa?0EMjgT;Ha;L)N{U%cRgrQ)OqmyldsRXp=ZEA&+SFX*fIYg&hQ38TRY?V zbZ_q<{-`G}DgZDbcqScz@$eg2=K$IDd?Se|2~5V}25<3t!$Ky7Yi*`EL}+k2S*2`# zMVD?K$TGx5)s=MC80Pdl7biau8y>jRn|d}872`CLX&-q{ZzjCOP#Mgb^Of9e_jq5= z@PR&+U+*iiu|~o(#~hyjcg}?-Hl9y=_>_XWkG&YOlSK3Yd*~}=lXCq`0*Q~8Tf|4N zj#d>p&eQ5gXdyZrt&{0=l**Ynzyjth@^;&eSa+VB2RP{e3@$bnFtky9Wcy;}Cqn6X zJ#v4S75sXO9+~p~tne|g^Hwby=#5`M%5ELzGms`UB@nTO{?bNxJ7d{uBl+3a-qK#~ zZC5rf(295lAMVpm(W~Wp9GxmxsQtvyEu{DK!g%e@nj$u3b#wPN#K%|qWVr1%u9goO zSy=JK79z9^aR!v-4l26(0ZnX;@o+MFD!fM>6cZjRUb#CVaJ>D8X}$WDUcAKjs&p7| zVqNBms+Ph^fNNt8_zteJ4S$pQ3o?H&{2~b+oOB@j!D%K7yOG>Ur|6?tUgRA_hZBR1 zX#%+Twp^nlH~j;@%dn#OP^%8DzdQeW|MZ;=fDkRcthp26K%Fnr`rV;qnCLBCI0Tyn zYA96)r?&JO$IKazHQC@%Nic2>AjE|+<}4<|x`33!B=p_b&I}eu4zBQHt%amSU;mOl z%QIPYDm@kZQ{gVT?RYK_d<4B69iiAF`k!q*H_6G*f6&P7H6!w8STBRD1gKZg65 zx}mPx{<;vi?dxGKzRXXn{e70`q4}mPGic>PKI7h$qGSZ~iv}J9Y>1#dAgqF};Vs&) z2Zn7KoxVHETgl3U+8gsWhtY!+5)jZIb8cA61*Ziy1H)qdIQXt9=W5Yt67^nvykD(a z8IaN8?Nn_7VG)PT7zIbpxo3>*v!Ze7{4}dL*Cu#RVPX!D*fVXTBE&NS{phKchtXTSKo3%#b1QdMh z-hrI5#M2mY^4z^gm9D_u7~;6F@^kbi_6eh5K@y>M^&m|1V}(*?a670BV76bLW^Rn; zy;*pBw&OZ1T!829q!up^@MjH9N70O=dDc<)61qb2$eKv~R<-S8u+d5d4Z9ph=%Fj< z=ia%Oqh3Pq&@*FOE~^2O#lqIr8sdG%cbG4vO>MS?2)M8ZNT}nKu*tEhRoX()E@x*u zRPv%RjP^5n1E9)sRx^Dj9mU#oTbSPkLuQuK>Q6UTY^#-Vd$-~>-}NtJgtpQJV{du zJ-U0e-GNydlcQ}ObD5BKP#bKE|7yRof=UMCP0(6f4IZAjJ)t6gm-UUtd%|}@L-EC# z(-w*HE6cF!gi)n)Rv*^ijC6a9txBgWNO@jTWnE@-iqo(emEeDYN4QC>ueBQ4d^ zqs9P0=VV&XcKThd{G{zJ4%5N^VeLY$(W7ky$gws{76Gn*)>~HN3gESyw$}h2GZvx8&8G_Y;4h z@;NMLRLj93#f~D@?-W6WtO2j`(}%)}*Q}aLqZ5MP_Rd-R(qtH~yuD}-_`NW@zzsW_ z4)~zr5h+ZWmvDU`pSt!GR4Y9^ui$m$yFCHWvT5(2XL8CUAjuvi6(y*XbAw;VQ{j`* zSjb|HOBG8fchS0vs+h($e>g^`$Pd`V|0U4XMrG19_Do%*!A0${0)h2Z63&rKqsT3D zbx#em?IHCktlEk8<6-Zp2h+|hK)d0ihpg_o>#RTX<-aK1d*knH@LL4^a@M0VM%I7L zrrrVoF%twp6SWlW!JV5nelUIQ&H)2h6_b>HLf`c3dx(>I9#B?H+>r80)dIbPB^U{z zF)(Su1BX*d2JyW%boIR~4z-AJ)y;??LwLLs7$C!MV{0U z&%618kN{`Uls=4e8CGp;fCP52;d0R6kXF~5X#d_Ogek6u^8c=_cVE4inL=M>d#rYp zk-qqE)$&(>>7Xp8{REwpve4Ft!%P&DiV9~kH(l@vGi@&B4Db6l*$SV4M_1u@cvhc0 z2AA1Xca#RHzOJ)IejI!^c`F@w6P8V`6PF zpJKyOkWyxL1_-xSrytlleT091f)*iQzj~I>rFU`Z(MF%WY=7(idQOk`89m+sV1E71 zx@_m9gA-_2Ezi~E=1U%8h(Iq+H5Nz%zn;#pGXJNgl7!daBMIp_1<5)mO&=h(!F zzT3&}?Pix4-?*PW=O5C6CY%!9G2+ej#1WpneaH)I8_c>SW0~)Q zf74ZOF&U*uwO;n395*7f$alG6GF>GCE-5Cy#S<}M84x-@SozT;D`|ao=4Hy-=5^YJ zrr|EHNEx~DfApcu*tLE;30_Ny<9|8PzvOifh?yfZ=y=njGvnsvv<7AbLnkM%CNL}` z3>?LbA1$h9x9Kf@*&cOdvTD#=Akd6-K(yYORAcS-vLD>(Csf$|P!)S82aWz2?DTiU zd+^5KZ7NO=*FxPq@_Op}0EP635>Gx+LJc&x@}AjTd~;uB>lkm5>0W!h99<=)p-S_7 z{B)hbfB5b?r#b%D;GG5J(voOknB@^mY@SS=KItv*cc;Yae95l#0XOmj4hEMm`PVPz z%-?b1O1UHXs$al^re96Y+Bp^9Sjt3v-;e@4<$;k`#6qL4I|z&0DxgdDye}P9CX)2T zDen+9R%j|PbOQ?CN;Ew-T5LOC&2R~T$FNW;`UvJ2kRB`OJIpB|`YSPrgnyB=a?;pW zpI_tdH6);jsC2s-=l0h>bAJMhGe5c!cd5AaoAU1PoT`UYI`sw=3vc=39F1sj-UhP) zMYzTs&)m*EG+l0LsJG_XFw$-Zj(R+r(9jpV&ai|5MJ&%~e-F)2KLP=;cb;B51liqP zK^tIf9&mRkcj)NNJcqq1HlRNZ=6IBC8|L~u%S`RCLGQ$~+fB2NIBh8s4I2tJ-*d6M zNom31ev=^1xk7SB)&T^)6L&N@du)+mtle?zdpg0Hi5Y}Lm6S|1F$&v_tAn%h&zEd=Hq!xnc0o@5JeM-}1a`OMp0Y)Ca7Uq8DMu>YAS8LYT~_P`7ML z#PF7fa`W!MB_Xvglm=c1bsV1R1f6h3y)zTp{%*M^6azBoA50{CyxrL&Ukt6l$WRWI z$lu)BB9udL>XP=<8N~y8miLi`pN96o85Zm<#nr{)UXO*anKIAyuiDknxp{u#_oL-? zr#UN8ZDqlR+B|z*{GJ3s3!^yD77=+lio5IP*|E!6ulv6}))*t6j>hmGgGRg2u17hG zR(-=+Ny!yf_Whk@tvvI86DYGX;K0V!`{8Z& z9to-!&@D>x3HH8h7IKXj^K@vCCnD4SqCm>8#$gI8;_XURy5k(b$~YvHN6O3_`6&F% zflY>nrTka@L`3DPlow}J!I=bj=a+W^4x>h7H849u?*!b>=gS1DVUHY5X@8(-W!>hN z=SU^ltYz%ywIS3W^h?Jn+oOwaw*jN}VpRofW!&kUzso3bT`t-8K}SNpzwV+3Fm$Io z*Y>uK$z(%sZm;GjuJzkUJ9yfvD#J}Kw`1u`gVeH*vKgwT-ilZ*ybX!E`Ka1K-lr<0 zT1fdo`>)o4SxYdiA0(B9Rrq7pl%L}^B=yqc`+H74OdD@2X`Kwv{SfeoP7ocw+BX{o zwPcvC1=^=FHp5WliXPuG7YSov;5gq$2*79uvMWYzu+gA*kDCL@KsRkOb3{XL_3sNe z?Bm71Xk#jVg{EPILT^>mj+y>6ilHjj0yaKDn~QIr;`lCpJY;S6b#_?(gd$gUd>_IN zt^-7JS|_NE7iHNebYP%@BI;VroQblsK^hSq)-Vdl{FSbSC6~N3UhV-Bmxu| z;~Oml8!dBKggcSUv!g@Dp;G-6@1-jP*y3-R>03x7>VTp7xvUAHOKpa;@Cqd}Y}Szm zfv>@jh}VOSoD_)_Z7_pxb(-pZ4>e9|7uB7LU|ujL7MT1tpyN6i<#jHz4A!`!-Iztd zt7v)-d4Bm8)KwoWN_2?qe@uXcuBzmpziM)QK>5-5BAghj(g(YiBl>Zr%3VZ8*hvlZ zYpa3c$JouuchG-(rIjG$iT$qO-Il=VegD9Me)Az3ZEknwR4xBV_&JopKyjtZU#a-d z3)04Q7LIeEqq|Fw;)lCb1uKj*qp6ycBL;zbs?G1AW#NyQ?qj-T&f5l$?PbO1X7Qnm zhs^D`@sp5&w>)Fs((02%o|$^ovV++}XQGZ$tGm~8u~GOAyBR@LS<>AJZjnatI$kS_ zVKy~B?iUl#4dFxBgM+L4>6(76LZ8DTi^nY-x$w4Uph8W>>zwOukq|yIAxN~pRCKYn z-iE+OHnkxdEMoYXoT!o+a()XgsX^ zpAEcy-vhml@kcJpT!l`bp)?S?{3az`Sc=nb=evtrmEpyIb$mhQJ6L#JCUJ5RdoNd5 z?bgJn8=1Aoi$|3p3Mv--pTH;i0@j^pjJ`FXr>vyyr|@Ca9_iLAMRvNCMD86rGunky z$0UnT3K+eGm+XLl=^d!>6*E3>vh*1|V!ZDRF-#$0fgAK_ZY;)Cl^l!Ky7^Qsa zHG3KRJl@)ld$UDSsR<-fm8ozuQaOXQcwZ%oyhZwq8X5dLpgMK%o>`4w^ep(k3F6>9 ztB-nRwBbsr_?%DtSc4c>oIv;VRYK9~O7x~|EC}@=ZA$Fu z$3L2V5hSDmKdgP3Aj?qsw%$H6YwFb6{n?C7#^WM@W#^e;Ua!OOmkh(IeE_oY2_vj@ zn?Rs2u>KEs5WZcdy!$f}EvQ)`FnE(r`Dh5R8iY>Y znGp&{s=5pus5J^15EaxcU$Y-q1SU!eI798M1ZzPDbyGb*{N>nL|H{Ee4#befkhFgA&b{)zmB^2lULVG))Z?vlEQvB1tbX13enLNt3z@Q8QDlXD_ z_2@h(;fiP@nmZqbJ*hhYZv2F|sDt;`8->s&UC$BueCb2Hi$6QR%A$oA(v}e0a)qI- zD*zcb%phN{+&xKeNsBO5_1u_a*RT`#y)y0##~a&(l+5l`Oy#tuHaZE^0#J?_f5Gj` zIYVEs+ixYI;u_tb`8+FWfRFVfWhbty=Sr$;s_%F6PvtrUK4H=*?X-+fZ-Vqdkpy-& z;4huaG~;$pM{cf-dyz#p9xV(AIs$8G<5PL*Dj^id$ zC}x1Lbg0o!HA1O*IxVbtRfIIrekX;2z;np8EE9uf>3Y!jIlLM(ro!^X3?V}W-54>k zv=RiA*_#VbU}t-sLI)8wO=vAJ&QLbI6cVqHGMk&!^<#}gaf*5DV<%uT8-q2AZSdw& zVZ;$ggizPo&--=d)I-m^R?$V$6a+QFw#OZ}g>QPhFzQ5lcLDG>=n>ZsV@X93r;MX( z-Y8`%ut?73`I1L638kxr5DD}5_3FoPk`)UvHq`Ktv+OzMTXg~-M6Kz(wU= z{1Bd4K`_Y=arKL0aB!dLnYXzFK|H`p995T(Y0#rbO*>IVaD=E-F(l@Es?pN*Mh7!e z&HF}OwDB3SG^@+L9Qm#PDrr2%g9b-!~#+a|FLwd*3e|D7b!rZMKY7 z0uFCAt^6}Oi3Ckf%P6vdI^)tc(dnmQFnKKFtfmYT!FW~?)l7R}z7VA%-=o284GpTX zSEwy?BDiMv$qtftgwS?6R5|`S8z_a6YDp$v;EmaA_Px+;CQIUc!PrlJ`dT?!Jk0YK zy69B~>Y2*{l?0!<%rp(cBJ-0$#1YajuH!UsFB1GR(@Txxao`t@A~%c6!bwovT*;Rp z(11a8>}oCtb7w&0AtsY-W*zJe)e3)d$IsI}PO_8^`I-AQQs?tOVbOkUL?BM$e*-v+|c z$j1eIeTL@DPdgFh=ns&-qPL#H@?EWQm-r(gBYdX+xXN-vDFXN=Q*f^j8VXHiG~Y?( z`ShL{!J|>(=*!+W>PhxMljG^pf)ykWu6FRuuX2Z;mS0HL*~|?5H|Wa@qXb3Zgo2Uq6>z zd*&6iVAAP1WDr>L!Iqq?#F|^y8ioW$1`ID`p~;iyafS5IQ*%+ZM2|U|Aa`;X*s2w< z64aO^R}?QJ(x|a;o{j^Ww4p3E#`use6lH#7UC>YT3F`GR{)L_sk}Iyc0!v#b&rH`- z<$HTrVeU^Uw)@>uQop7Z_3>)JXK5pc9p|L-)2H@zbFWF;>(uAh1>q&@=VN7utIA|S zt^v;#h`~z2la(GkgX`dpGI>{yp5gRmDV2P&L1JJoE1epAEoL>}y~`V@-f_)eV9ED3 zq$b+?u6eb1Lz}?GN=D#v&K5yxAIV?S28LMBg7mJztJr%`3yu6J>?n8B!de*> zDVQ-$*42oSuoi>GAqxB9aO`tg`@iUL?D9W296$WyaO`=e#ayegbl?AX*Tz=v-$_*0 z(T}L+pIrDAhB9*cqD=3oCLUAQWg3}wxwElRCr`Qml?9c_uY=ej&m9t-Xu&*st<$AR z?DB0%h9F*F$9sc(|NXyg;%33n5H!t_N&;l=e*1(s+&11sAoFNEQ5rfiloTb?arkKHuwUS^?b)+M zVP-(J_m1?9-*c6ya1x%BMnKeis#~^B0Diq}T<|#PqF!*kXA-v|JfBdefg&HT7*CEk zhLmHA^RLgq1^vKe;y{ZRYh(O>+WJwh>clfRf zfu(ZYLV(Mz%XRt=iJ6t8&mOKRw777*cES^MT!{l-)3Jx|*T!Xv;}<3x0i5E?Z<$c6 z3@f519!L(rH!2i>jE%}5(c3vM5Fi=;^(-vo6}?d@24bd}MT_9|kl&avF8lHnY{L?~Z(gQdKDbRl?rP-e@51Q!D%63 z=$}DWWNr;>uxv$6LPJ!8Ks}-gcjqg%GA1*NchS%Ycgp>~@~3*#@)Z=~ZvhI0fab_F z2Hy6KfY+UeAEPdFEm`t%qlp*S8cbGXKSskG6)R9>c7R)-_SX{CM`hX-jT-k(F+$j; z0y~Yd8y&MIyoM)?)i6K{Q4dI3d4zY5(m!k+*ZaJJ+?W$k(NL7R*m#91hY$|59{kW2 z5oUIsVtzNb?K&hjfB61F&_ADYM#3#^`1yiuORy|z1lddL#Ge9`8*>g3Cvlnui7ZCa zTze@@i6hzax7Z*bFE)m1P``eJat8^ojP?-2lpF}I5nD{j0JONbQA96!LMC{MTYLEcFl=OS38rj5h!rf8gms1_^7=~7U({(loZBU>pMRIb1wyb zmwN6aN;CdD<*38vB3B(U-eb`QF`MYZeB1Apw^7rbr50%2QJ#|)o_SBrF9RoU%C3J!xD8 zN;ah@T4jDRQJGToBa}oX<2}rBU^g28j~G>IKJEO#9<=Aj8{t>){F506qyBy7;zTqG zmDtHy>2{~lFh00hPmBGRTXAi6ZH}OC{pKb|X+Xh{Ebs0{Nz=#R@a+bYPYbW;4GT+@ zb?p-FF$>_X=b1U45?st+a@ka@49t@4QfuNX<+oMHwE`L2Pwe$urCJ|VWqWgQV(T-d z<~hE(gZyC3?gtZ1YYkMA*%B=Q&XiF8bj|_1pR+%W4bA^lKtlSWP~~xTbZDWtnioG3 zNg%wm%{bhx{Hgv`cwI&g_7_J*$7LPsr?Q5sbY%7u6iN?ax1cR_&^9SWIk+&WBvqgD zKA%pdH+=iUePv#UvJ9`$oO+=MZTv&MZhy`Sa@XM+`JMpGIr|XcegX%HqrmG*k%K-* zHypVPXYqT+YHGdV3kXbAfR%^c#uN;ZG&+piUkorNPVwPSfFH(N5JRl2^n>$xyjp-z za-;J2=CSJG7s}$4n$`$*ZVFWiX`=*AZe8ziJgE2!5L(nSkOopc60FUaz8oilv=MBq zI)7xX5}0qCJ7y5RY2~Yz7iLvd>#RtBn+hzAJ*Q})9tohCTw>$2C$A6~cXV?ZhMUVD zJW6o)`+Fc;FWJoguL(UR7_Wl_Z@*Ua#<5Po;ejADfyq3GXB{J^p#=_GqTtm6W)7uj6168BXOPmQJOZ#Y4 z=P`xF4CpdFMu|Cr#DqFn%z&fg9OTKuO_A zhd1tL%E?>-KV^oGBk{6`=Rf=0W?1odc~C~Um8I=n&Yt4arLX;F{%e$3Q502#yOF@| zO5fNB7;gXa-ME+|H(-hn)6OGxm`|~tS1+7J?z{R4MmCy|iDyml`-?+)Qy;(PsMxfb z%)HQg6x%i1d7z&Bb>u>G>p=DEF?p-T_P5D=$-tUVilkCCM57|vF*^fRR+UedCQ~W1 zlLLm-^0qsz799VFa#5YbPBTlv-Y(CkWB_H;|8&ipX>i^X=j%N(iRl&JhWY%Vyg3$8 z%vXvTb~5-n@teNoiSmcTEB;s~{F6b_qvIEoiLD>iD2KeUa=x;*Lo`wb!RuDXcgDyR-JZB z`+0`0j(Ygo*}8%4l&hWDJLwd`XmMd?sQq@%s$ML%-4AhM>a*2&ymSvSuqZ^6_XhB#?s$)n7^4h0YSw2UQPFKISS7y8IGYNXHl`_ZdPwZWaHj1ssezbIPrH%$$sk?{;Z^a4;l)7rl z2bP;*df_-nX)8{IEhy4?r*zkNR_WOQh+ggormVTHWb~n)fWn*Zv*pl#=-x2D_r-|C z?gGr|p*z!r65&?$8aAx5(I)3LA4y|GDJzlNSOkLZ~dnDQjT{>+g zP7_CgNPO5zqnYdT!u!fFDWkjJrnK{4%Mjd@u()pAo-#a`5C=J-n(M!wl{EE}rPdp& z79@##uLPf>@i&v~HD}cmuIUe|MX*dVT3Se~f|?-V1qm3uQi4X7Lq{$QE6`7IsFSrp z4OE0{8C#97v`LSnnNL7DkXWL z&!C!{I7_PX!Y630IpFI8I}y4LZ=($##*O&0bqqv2>ZPGaL|a7>i}-P}B}~cnTo<1q zrVndO(9JaWTVpwTx0y=>$CPH^>2-$tK;{XEx71(2|BOlW#Zz^E7C9`0f35NRS?oqs z*4T5wYH(?5cNwfc_v;u9+2EU3dX?=Db|>ePxc*^XN!q3>kI3cEILoUx=TwQ`CL-Zo zjdT(~yQUL<R`tS^%Dq^DI?OHxTq8JraN`q&*H)`lpWP>%Hn#H>T}HPnr=)5wVaq2`Rq$ zaX(8RbBL<9Xlzp;Dc%GJeD3G7N%HbSe;bp>rqkX1y(qumPaW}_dt<`Pe9AN|%0uV~ zO$vJn(5O{tUx1{wzXq?aBKr2X=B5$b2b#8EYKHqS3Q1kFE0Mk`{KAj)y7TYud^)8` zFMbvONXXy++=$A9BXfqQ9%J@Fq8LQOzAg|QdSM^-xy}!nNARATy>Iv`a%Wnn%Rh^} z5RIjMlksJD#gPF>xL`>Ai;ZwUALY5Yk;9DjgF|uBl_J8gAliuiLvUh-;4KZR;My6? z^n@iZsMS2s+Z)CrB6Qf#*5>bXU#0Sm-A3OlB1JIZ)ED?5g?Umd(Jj3b^ZC&v;;#sQ z>^Z3*XrqMi^O7#gi$GHL3T%o)Xo^s-aQ8EAC9`5D!EXzhTQ}c7tgG-{$vI&4o4vL-KGpl4>*Qp8;12d}eQPV9FcjN{$<0Fdw3cYel^J+ZdF*5y$Gfj>^rdh6 zlhntub|`xW&gf&h$>=Qu#LWdX>m;8XvQd6fxf7h!nfi|)oL=o+`kr|uLp>@`W`v)% zZ|uRRe2?9|XIjHj-rNzCt*Y`E5#AY--*u<&7wt$;rglX4{DQMl>w2bm0gPI|7Woqu^qF{S5?9N-;VgkthQT`da1cs@Z zQPr}LkAq~9XP4md1>(TU<1W5TDYHpowjE0l_h6wCGwkUKLN&GG^{N33XXLE?eAqMO zBbL0cyljsD_P`-lE|pEXfG;`jiLc$Vsd9UKxe20kR3wJqiNNr^ z2CFAq=U^kihjh&EDo&+>($4w58nV|&9>lAfr3@6rRrj~f-b|fY;{5R7yZ^TbADpKx zcFMZ{eUb>9pdcqsD-vc^LQ;;QCu8I4?)#*@K_@!hy z|5Uf)6wlIm2)h54k$RI^qH{orCwot}q}(H_)|pe#>a4T0GyB8viR^*^qye0M+J zn}xsm=(GS{@(|4|?y8}kTSnEn@R=bw?zjy)`s4>c@6%4E^VFuu4{iq9@6sH(e z9*?1+_RDcI98rVVeyuC+cqn{q=|$QI6}&Rxu?2@_6jEn|X$?vR=jZT}Sv=1T>~iSd z`9+6ZB}NBgYxHUrVrbC_%VUjxm)*&nl7>t@xPn2{S~1&wlKH&Tp_+7T5Y*!-Vj6~1 zLaN_#eelw#o8_K%nPKn@y~hn^|Awg0J+*_d%5jI{E=>Ardgta}%tJRjG3|G=OtCD} z!2ns_*i!qr3K56fxYB>!38HK=Haj)m+T&$hesfIrzzo>G-L^R1K!_XED6-j0cH7IG z)HftM4}00;ZPatw01L8@?arz3*iE13(77AHg&<}uVw0xG{@#rmc#S0dPl|?rbR*q; zE4i`ZR&(WsVMeSVD?`luZ8>2kgPqsK-`?S>RApRkh|@FI>CEbD(g}pk-~4(KQmb?C z$=YBc9aC33nOSR9n(7WK87+`+E3zeybJM6_T!zj;rlSJ1_fgx8O7l5YJAN%gdM8Ra zpuQeX5QQmm8)^qG#21()R-MH+%{k18I-vIxuQ+8msaX~aF7*iH`6yj=d`PQrMR z0$aX3OC2Q~-)?19-w`c0QJ@%06m;_D9YdOk%%l04oGjr8-s^GMr3qzBz)}K_*mhBe(+sE)C5&L6urSnK z!9Ghd_*Eyy=ySeyi#|p;LHx>*_f=FtQ)W#CF+7;k!e3(l>*73x%jp2_#}x!%IgxMM zGTL2pN;h`?hT z!#l0WL-A{pV($)pv+qnvqIlid?$9xD99KWJmBEr)qE1QB(qga*ZW}I@=so~TgVUMC zh*s6;Enrpe_f|f$Oj3MxmrusD_3)KE3ecAI!CZ?AN0N4i4Ca-c;0rnF!8wadTgyrZ z4z#s!O!w{YyWX#~EKT_Gv^?h^=1k^#{zIQJ`HZWTU?=5Y#KZ4pJxQx!N?s}{*J;tL znj`oLbQ(+&R=!-oRc44PjypgCy}b~)X|GE8qOc*)q^=?6B}TE5&FVf|IVgD#ZXvv5 zJradm?@*WBBE*>*O|Zlh?KbK>V?O?42*qYJ_zX+x@OYR{Xwlm3Kp48e$sjgYBjf6W z%MTOQOT({ngMv1w{;PFi0hE3gujP9WB9jce%xeapFyWM)Hs&zy#@rg#xehID(&WUCqK9qN6oPLA71~~kwsMQ zxHD@41`@nscu?IbEFEnwK>ja)o^oUe;%1cU{rxIuZ)D9_fkXNwv+%y0%I6zOb;dbd z_+d(g#-5X2bpD`9K`L@R8(MZpw@kQ~tfnJ=%`$o-h5$+wk~Nm9W&hKynqY-|J={}l zp`l$X{D3a3sKoxROrg{^SRS7A>a=OHDRmu^B zkM#cF?2IK#6Xno>B)bJwWbhi1tFXa69>EbSODDWp;KcIUSe;Oj*yrarPh6MM#8uSv z3k7z!k-Hs*FSWw$&-FY2YuXzwZH30NYVdg4g&x{$$W&|ggx)%EP#KVFH2y_}9H(3$ zgY0$$O*KSi`fXEpZCGz69_RRzMU(kz+E0NdyM;oz)@l4X$$3Y{9ab*a*DK4ffqPjg zq1)0TBZe(x>SXrz@E@nE^D_809sR)2A|PjB_D_~HX&G-PU0*t)T_dX%#I2IXOQ0*< zLE%Q;ngltHe01K>s=dMP({uN|6;e)eFp0 zXV^1il@I@hV9y@dNnsy!_t7E>ofSEe(*nXxOl)i|6mgcB1cReeA3lQjL;bna47;k7 zyt4d;>zjhmo1Ezz#=4a^ieO|_H7aYq95(ZfdC7Dk{Gd{OhtF(FFec6etl|78Jc{L| zr93OJ{1YDrZgGeVh5=^w58cwqcjOyf!)Db}gZ=tXN;;Wuhm1_UD7mAT)gxZ2g!MR|aXC#k%xC{ZQ4CE(Cd!sxC@gkz`@`8P5@)v|j*_oL@L zJB(*9s#=Nj+g>Tl)aEWXr2%w&nk~z0p{u|CwX)<&8id$*b2i&|`Kf^fUILSvaR zja})nZbM&{lRiY}_XCYDppb0Zxwzq^)tC03)<`0cUB~U<94^ybG-g)81CaX^eyefy zO+-EGOPkT~&7_{86|TVm9~U~5M!%q&N`>KgwY%cU8`Pvea+<(PH>gWv>o(B+vi$Q~ zC%dPE)YOMnFiYY=nRfsUKnXpY_08~`?Y=*)=w4SHGEpR|PeP0zst7;Ke-;?7(T&T! zuw%OKw~v+=vcEf{0>fB=wy!579kT>F41NWwZ37kGkTIu$s<@e$pp=Z(767;8fdxBF zOww;*<6j_{psGw1442&hCs#DoFzJ3h{pknv6-T{7sY_Uj8%tlGtmR9zE9H~{hYcyT zej1z|a6SyW+|gK%!Sf$^sEWd^S}_h%_nE7TR@QN0TEt9m;|9EuAX^MGOukQ|6JHT>}DSKY4w6^IonHixfw@3O->!I6QIK=!&0ZAkJQ~^pBv9>tiC&T|0>j?0ubvOxEbv zFf}jry-Ux`w|>SjuB|~j@$rBxXz899B|V6~TURZSHXsP!;@3#R_KY!Z$r(!hiBsp9 zl+xx-JR&IX(P@gz32Lh$cth;U(5PpWs?uKK&XC#RC__(&~XpIpzpA6>z*)U(?XSF{ zmE$5NaWNkQ+`Dg5<|TOZ;ECl@%h{_3Jq_%R79S_0b=bQAhLOrZx2#WgcQ?puuKLk7+>Ft|{`wt0R|Btt?ii)%CvJAmJ zxI+RVxLa_C;Opg0A*)>m^vgvbu(@glHygTpyLQU*!c zQT~)XS2L!JT5%m#M@pkdC0b;=yvE2}ow7(56$U|3^;zF90_j=voSmb(eaz(JxjXV+ zG9WuP0AMWW#*ceI#SwfmAM>4@{p#=gJsn&S-^zvg6P5O`%!OjT!CKA;#nC`S=aTyK*6^Mb|i;Q*wLtX?Z z@);SKlpcZC1riS?vW?%(u|NdZZVJMO5K3JjDsec>1Uxaj^M?)5V92*MyojnaY=hd7xYG%l7Jl8(4(QVI8FT zgdC@palOXUi7;QD<=1Pcf`s11+NSlu23d8v_9T1H8;oMH?R=yHRj4V&DZj>={3SX| zAuiGH-W+c1k9qiNIP%_Asa|~Gp)lg-8s%rM6FFCRAXn!QH}1P2tF&}l9uu~4K^qLzXs^JZnhr+**r584L`WJ7y8z3n`s;sIjr0E+( zOf-B8Al6|gF#OarTXRx4aR>$&@`drblLam1So*Bav5VfTucIEs_5`QPg`9TDLIp1b zll++hr{5bmoAl#NCgCg|MtNCywtBJzQ154HmHjX+yvL40tA?tX70ifBJl=B1->-|s zu^n>O*1l24c(z;2e!KYPvV>8C6?#cDod|*4is8aCV(M-Yk-wL5rz-1tV&I3@6H5_C ziJ-TU>H9u$FkfjW*^YOxIf3qIxatYZg7oEhk{A@9x_VRFK#?Z2)=jy#LvBz^HquKP z7QxNhc2-VFjDQ2&elB$hNb25|nmMK9i9-H{9O!f_QPSF=2u53ii#&AFdEZ8SNGbJ9 zR2hNu%HpQt(uFdrP7>?ECHxR`_DV1@Mx#*he_3$G|Nl9mUo~Yygj>^)K;!@81$s5W z^BkL~(K+Usrpgo{&N9-}FotU$w|jdx4|WKVkz2dw9VShU)jZ2;2}pqQ)SsC2TCOm< z`R0(8)rTN7^=AjxSLXcylij%f$lJ&Ug7Xpuxr5pTO4d`7=B~N6pjCD%7q-_6NVM_Z ze?=RgL!yl_OLTI9gF4Y5LpSv<^lI~RU;r;g}y(NN?E29$@KhFVm2 zg0&qf9qEFoVcm)&NiE0;AL>Efe-}QfS3b7rnNEvN zb}7H@B8FhOgS?NiSDMP?rP*a~iyZy`_;Go(5P8#wqC@_s?9Ub`qM)mKoTExVT1k8s zc?nUi5ihWj>ifim0!}hRc6o=Keek;QiA3gKL|lUdCU0Df$ut^J5$<4~JoAXp<17zg z@8vo%-1O!363U8Lh}j|KrT;;A5VdCa7$maAhI5{jBDtfd@`$F3NEnnrWfLDrD*d0E{&bG#CACcjvmDtz9JO^OZ79M{=cD z08?_fDwm$+ISo49JMXdnbxHT}4CLl#(v6r=I$W6x!zl=_EpPBEX;`G-pf4koj`nY(P^cQj+&qn1b6X{$* zt6JB5jl==vDQ}x2yna>Is?OcRCEDQjW2)fX6V&czPyfBVp{Sq2=E+wg3*KlD!%%GtRqR#6vvtu-$yPCbbRWr(;iPh)veu@nHVt9CxRjDe(s|&aJyYy*83T>%#$drA5 zYwxNjkXbDa^!iR1BIMhmA6CgmMB02f)%QpK%wuR}>r`7oBOpN7l7Y7&@if2h?fSpd z?)&~ept+R-)X%#aFvl^cNi}sU>Kp}g+C^kDl{y>ecmqueID)Rq$MTn_yp0z*38gP5 zq))4NTEsZ$pa*I10}tL;>Or^KCH;mY*nNFG>YfP;fNMQCaW4K7D~@mE+YI=h7yI2j zFHx!8?URe^COpUos8vkw_J0L#oKd&vSP46qV-V{n{bNDmK>xErjI5UHej1L~PlVy7 zneOR=akz80n|gp^ROf5dz>xbe^7VzCV6`(kSfd zuwIxu_K-5Z(S28Vb=kHHGu?;0Y)0?XjiV9G9AZo)fKj4$(R<6U`i>@?t3+ahDA|zR z9*m3+Ucr9B@&2;v+?qH}g}ghTHpiiL{$89T|H8x%1M<5COeC;!e3dq<*gZ_-GeT<3 z`TLMr{Gj4Yc{tlyZ)-fHiI6$g8T6Uyu_oMzLjD+w;+WB<^iQ2+%v-9s)t;-i!d4|9 zS*fWHyqBLO^jOk#IAHoP|7FVvhw}EEfN)i^z1&_lpY>7euSwR$XDDc@wTKAOiANuBCVo{Mlsdu0P|lv|1=rGi+}<%mGNd(og5tYZ@ZR< zK$mKawQ6bv27<{?3ucLfqcb*0=vo)v%2aPPHBPEBNU)JO_{!W;7Tz+poZpWer2kM; zuJfjo3_Gp~o#1<7Klcm7-V^}2gt5rOTt@y{myt9mNH#)ZZFvW4vp#Zf)}5-}qxRo=BrwR{3vnhn~m7usfv21cN= z5b|)0{eYecTq+$U$jFKek;^6DfSZ9Vu+7qdNkI>kzWb+bjV`&+T2?1n5B5^Cceii;9wqnoyLZ`p zAdeEP;!!$7f4;0}2dKzHw~>UeA#Rf+r9feI;jmOM9gZv@p2al^=RJcZKu6EfRU~`ccUYa)5Q|AXaw61DoUW}fCsl#nINEc9?%ms$ z*EREHRec#5q}XY`9J%AQY9-lPK#I=ayb8o2 zNQ8TZ+XlJrPMq0YU!sP*6Yz9@y1SMJ*f}pQxQ>t}`yhTQ{=wM)9y3wSvFq)j-cFaq z3*%dA^=}*zUa&AThi%`K?C$IKuAC(M)G}cwUt;f?dFdm3 zJqgqNOFq-_7_@kxp{2fS#csfC@u#4~ zCAA2$o~|~w+g2*bZf~P1j3lV%)cl>(j6+M12!YTVQjk+B7i2CJ(}X&K*5c4?myVH9 z>+_00$EGf^Z4jTY7-+K5`q`g{;6lQ07tWp(rq|gm&ru5QLPEBPDaj`^@cY}23MV|y zq&2;3$9~8?iy>6kB7b^sA^9=)sh z@>#-<0LH~T`#ceVZ`SXb4eBjL@&?Q;EtVnR^2^_9d}DbJl_B=?q@T(&iKH~|oCjyr ziTbd(??o+PBps0Fw(Gl+rP0$>d|ps5plE-1KdMF$opqGCVJTts+qUr5EPc~og_q(ACFp-Ed(C<@9^im%mq z3~4|8llZ~^dG~I?)U3IARk!XQ)v9TtB1UmB5~T-FS9bBwpm71SvXE;+JjXUbb+oSz z0Hiya^HvR+Mx~HPe+mfnx_#IYFpw)ya4*HeFhVH`Ymdm?U@Y)M5oU7lbuzWJ!YkU& z7GEzTm?0)`fXbv+DxI?3j;NjaUHp#S(}O!(JWo#rRcMp%QfU7G(JflF6JK*8v^r~n zDL?j!S+kScU|T<}17^%S&t1O3Z)Nlr>~Y)1r|N<(uUw!l!7fon57`!)+RDv*LvEt) zDNegH0?c<7dUGDpgOIqT7>L zBS!NA`l{@)4R7dJ)q$;1o9mWqI>mH7%e)qV`Nd&By9q%u!_q+@p-bui*ghd?_TofUwlz^+T~_8#u*?Q0=bVdn-=X~OT?^1OS7Jm)oF8T{ z8vGDjS|0e>4k8x_;c~Yhj0kz6n%^A5in5f02iu|P7S9_FJp)o9Dq=J}FX^=Y>MPcJWyUpDl3*-v!JHx0d1$S~fgs z@DpITtoI($7*OABx1EV5I--``VVG+MvmBS17H)&o17&|EuzPC4wOLkp7}5wqemYD} zY)s!UOoj%jk~C67V@#06@!+&=m}8yEi7!PFsw`Po5r*$TK3gpHFVb;xK&=-s!65pMl@ImoR2n(An8sydxT`s=A>Eg0xjcql~@+s%T z3sVVTV;^uK^;z-4KKtMpy$sCjw-N}qZ=bEF=cr4n4vxE5wM-SuwSCW1tB0-Ls2wtB z;=fqXU}gYWNYFOasDUxDGUk>NMPb5TabVd)f$;rT8pdPuN>YoaAmXA}iA#asq2@d| zL=K*!ezaa*PNwD3Cyj?M3DWw2b@^6J{|P)Pk8J|*3N{anBh|f&d&@+<^I5rq%_F&he=^OT>LElyfR?^)(G_f3GIH!fe{lUqqbX*qcm+Sr z=)pYO?f%js#VkUbg34+KhbgTEEC5a|7OdK|MB#yNz@763IS3j;Rqw1+z~r zdiQA&7OdbIJp*F)Xo$85ZVaSBtM`ePl8QY?3)e=iYQnF`gI#;06gG{PSG5ju@4BO( zHMfN^#mV!wIKGmpWZN;SSItJftobYH&$o-r1ZNPyPSmr#2Xa29r7#*AsvWl0AMwFh z5@cNqdAS^>A0Z)IUd^Sk^eQiIe!r&rUBd0`thsoAyj)L%U-+ogP4%~I(1I`o%e75OA_lspwppQEmwulwjHuHHV_WjVAoKqo<@We?uzecG<{wQ?lsnoeqTv)@eqxl?W6egIrZT;u1%Vi7i<>~5*-{z#o^BUx7X zhaBjqZeu1465kH?*_-pr5ZQ95qw}dpNY)|$I;ze!i5|<+K>9f{VJ+FilgsG4`-9Ke zC>}^T{?B8pssnQvKG`VPjajU6kH$VRbvt>2ywkn;Xc;jTD>0{KV^~KRt$~~ZLl7KS z)?I5*M4kh{3^(+JbR8qz)0f*Zvfk>}yT$XHRu56#pphiE}rQ~eiML!u~2#@yTih>R- zEbJyjrp>8G{ACMF|Jt9jbL`l94s9e&1n5GqhKZ(D3x{WhkM_+TqDe#TPd0v4qP%bsv(v1`uKK%!q~dtq>|oK$H3UUZ>kJV3V=)!4 zrI6-dk0p0*>B7RHbnPKCKkyV`^5y_oq0|;UTza7u)#ufHh9aO{dP~@{cON#KlLNPv z@y&08lWeJO*eX(`1a;_&EVT&dLURDf`=K z2M-CLAF=3sWV)XW3IYH~s=T<^hF++}g?gK5_W_E)gosX*6&1u%Hg~={XJ`Tnz1J(M za-%NBh!QFbWsL1x5+UP8A|mgZWQIb#?xYkaq^Vkwhw{~osm^3TQ`P#Em-9PGQC$Yo zT4pGrf+OoDSCv1O^!|$C!8ZqB?%2uTI~a2@_Z1;4Sw52JRz zxLtez{#kW6)2JVa(60(+V>)?{>#O$j*ftYtSTph9%+6>5>-@0*-G?LR`#k5|jsbvZ zSQRA94cggzE+jacWbuE7=<@Ia*}}ZQh6Eqv;-ZBAwC2vJhfH5XBfMxI%p)GTz{=?{n`B1 zT&tz1jhr3sawO1TDk$;i$7e6OjR;ZJ0BWZn{>^b8tJ;Lyn1*}mYi`+P>ctNSicpJB zp;VMccL^~+Mz7|0-fZTEj~oe4NJ2;+y@pr05)4I>5T@Trh9oVB`>+c~&#aK={{a&yJDq0tM zPJm*=bF$Z$+wk}TA!GKNGIF#~rC^SxQ_&Zu(BI*y3xOIfua-ZjxI%aX-fdTP!f5(R zZE58${aD;xa$JhRshEkeDc@)OlhST*>?8u2w7GqgX6F3bbBXeYjtkMo4n0>Jz4AoJ z&jT%;BhlZ=drm3AXUe52E79NI2h-RTO8)qz#s z)jtZIW{2MsTGyk!|Mk13b)gr1G@&ZxTj<0W^39|be>tqAE8G0h0iVBAW8gnD8>lvk z9&samYiH)<-X;QF*cE#$9o!r^SdE3kKuc;0$Og-8b$#hscMduGL*DW}18%;r0J1g2 zeq=wzFF6jt&t?xKPQ2KJJ|YkjD3HUuxg9r;(erz{2dpnPP9fpGZc58WAR}1`?=tZ` zLuSv2xqS8{>Rn&R;&}R%@NP2R;wx;9I<4!5=r`Ndm>tO|J5f5+b+z^yiro~%2xFGe ztfpE$B>uh12N||06D3jRzv$-SwR5pdlx9@^L+1bc9{1K9x5}nz&q*Nz;V}BKcDy9` z%+#Mjk0lAE?B;S}*FoCJr?#Q#q$L}Gg4t9ud(o|{uNdy&fKj6N)YxW2wegZKRQ}sb z81hwxZ{-(RGV`l-9y7km1idK{!C2yV*xK++C1NZed^`6jclC(RuPMPbS6IdO;{%|^V0EA^=;QjE~ ztkqr*OkLom$*JJtFZ$8cquK->(3toGf_fv6`u^*v?O*0@|8M^Uv_*{GeE3(y72rDq z{w%r^KJI&@CSA?sG=ceCcJg0MCus=Ir8S7Y6wk@o#fyW=`o7J_EDc(sBxYP|jTPR$ zMx?F2B3y!lUI;86?;0(}*p`rKic>+HYAJbLx+cfO1I(O<oG(QJuJRZxe|AH1%e`P9;^|8=9svbyQAa&N z)xt3Mw^_bom5u##6;^9Y<%UYL6YQTXB_c@QD$dc+gG1_i$`xM7Pf zA_l__(&zLc;Ad&f{HZmggSMYgN5`(M-r9m`E+m78eDK$7bgLP=&z+qH5yM)b&WYP8 zL_txW8GFi!weHL6GXv1W{@eKo zYQPUl{QyzG?=Zf}8z%+FaQHRhm~`=Y(aD=u2y2A-2;Z}drEma0-SNi_Bt z8UwGQ9-555AA3_~pzb=n=y^&pv?gON{BYA|j@8iM`~Ib!&C10$wqwsLZun}Fer-NN z>qXkWMdZ>S*Y3o3hxHX@|CH^bVqifzE1*i0??S*z4x=%KgRoO4{bq7*XT>n`7u=Y)R9Pg0lgy4RIYzf@jOz;Yd*_SJyDF^qwaYT_gXQWeH#Nrnxh27x zL-bn(@Il!juAe%oPrnYj|ZD$c0N+vgB*xYwnDqWCV?%#D5t~!`z&{j3pfO=IVRka#-K`T4_#OVX2f99Td$a5MG!_2Lo}qRv)`uQ)K!To=>gz}$S0oLI2D7I2#YRG6Yvt;*1=#~e7LXj z)hkbs6d=*v$0CM9D5FX!S5e}EPQ%Q*k2_R^0l69YM5U;z!%Zjti zN0}l-plQVSJ`;;Zc6WH}0a61hb-AAQqa=Ix`ghies=tcM4jV88*JKN6pV8Co2M2G`Pb*Cae(aW*vS$ z?$RcJD(Obs3Zb%mk0yEptN^6al&5D0SSvulnm+IZFYcElHuVECit!SG&)VmYu_e_n z$3$*8K;K@41T`|0cWW|VqQY2u}GB|R*iH4p0nQCsNVI*z4&i{SsG`Q7KbvH;Vg zPYgB&25({M+89g))_O%{*kH5mD0-zYOPck9IBCzbj|zO5HkxcriVS=Gs_BJ&kFc6U zS&uLgwKZ-a?{vbk#gNl>kW5T@TQ)ysl(w2#+OC884xeqES;IqMBDmIniwc+E{MPuOMJIsY zDerKM2gQs00l7^$1Am9va%yE5;b!|7$L2olo^8IQ@#p73T;sYm74nl=LB98%p`G|8 zzlmbPVP{P`Jo>LWrt|?>e}HaMj=fwb3Hi=}NRW>vT)D)MIEA#5(G-(t%Onb4;f4F* z6XL)XcMoULr;<|<*-s^?Je(GmWh`Vc*US5FK>16oLcUYJ;Y(V|HO%;u!gVGAd6t?} zGVJbQf={0+eJoREOuT(T*7Lz|${I>_2MQj>@sxZ9j;{pD6!vMvIebA;BXIcHJd6lj z1$IkwgMW64Z&U2kE=kp&CD&DiWL8yKn_kPv=V#oTYar-*VNJk<)jLUS|St{YESh=g^RoPFLr^^}5?0 z2(K|LMm-d^%U(YbVYr4E-0{&&_wV?RTWSfp%%u`{t$2e^)vXG~>|!^0^!4mrnGv41 zcfa6r|N7{$fTtKsI!TjlIQo}Aaynjp0Eg=uO5=$|b!)7QK_c$(rF`;Z3hV!dN9Di` zusPog8A+f9l+Oa6TniDXdkVD{N}GbnT~D%3!U<>_1@{E$bz%Z-^7AANWH|RH2vBv7 zAOf%+%cX&w1K#K&Td3>r)6*k{58Ez$M>M~WAFAQC@sLQWE@a2~WqGob zk9wATBMaVKU}2#2*MDQT6!*0?Pfo?l)_Y8bleGEu$mPoNpz_P7e~>H#Kz@NJ&uMifQO$j`}Lei68TwgwM8qKJN?M_g$z+$HCM1m z=>W<&4DX~{Z1*6hByI>LBI%$x%XIc5oycRSOBXJfAwUyK9b=$OP`;y`yt2#3+pn=C zcR~IpS>r4+n>u>}mRE}j^_u8wc5M>PGQB1;b8@y`<)3qJ}Nu*$;)qS-iAJ&Gr&SkHleH30PS?&WlY|^FNM+36L9@H1`dpG z%s)}K`{+DtrgalCA85Z(ba@!_UiMB7H$S%@+VEjY!7LeK5nV3paqcX!#>vc3t4I}W z3mjg~GujQu4CLMO%}$DdWxr1KYRa|GXa;fQel6l*2m1H0?709^edB&CEyw**>9pPB zG5ALz(6(Mg4*HH}Sd6#T=^?_Oytm6>5E1FxY1-A}VVv{1+Bz(ca{5FVgub8!tHu-1 zK6imJEoKQ!#@&VengKX}p);hd5GZ>nmx0I^ApESnzc=wwVHIBZ^I8ZvqWlj9ZACY4 z=?|ZnGD+5Y+JA8zxgBB_BvUVwsvE&sh@6;(bJ+eIrkK-g0=|iEqX0?xzr+e)#4u^F zGeBYcNxLwo%Q~gcP-07c!zRGXj^f#g8hIze_D_-RF(QX1a})i0LOSG{5oh?%-M$+X zxXLa#L*r4O&Idp+R0rdq*mn8`YqGp({{9hwE<0tA%RD8u8Fh!(W}_-Hr^UUccnaOH z8G@D_e>=wL_1TYm8LY2bb5aGRBlaDw4(&XdM9w!A&>fom?!;HZ+7fS(n# zmVYf?I~yX)8qAooG4(bjy)rkSO+qJ8_Kt#Bum|8)Sd&OAd7V*BB~ulLa-qzNnQwhg z)D_^r{b=y%m^N+Mnv#-FDgNeWlX1OS19E%wth%Asvb)-w{n0M8l*Ie)-v%^b2qB<$ zxh5ypZhv!>c0aogJMpe*H%xlvG1Pdd%oVrz@x9`JWniy3Vo!cn_%y^ls<;NYOdlf`p9rQs^hre5yzu-h{NPR*b`%OZBSj5(C)YXh z@#8{<>-osUM49g9$c;VVUnCQ+6$zOj`^zuPCvC&U$rjBw~wo>pe8Q z?W`ppf(LJ=tb*YT2W`o$za{yV#Hrjl+%bTT!J9uY!ND5zM(dMIltG&dg^(vR|eG(XQacxJ8VSbU9D zx>NeI{lb$LKycN?dPyUswR-s5X|ZFqhn8tgh4r9dMXU0n;K z$XtD*u-$fnY z|3Fe~9@Bv(g7HYrM{4{aB0_9m;tH0vAInH_{LaBT#)~WqGcWW%R`J6Ej>f+luR3}1 zd2e7`Sj;kO;N^toQF}=*(CJH6j*WWn1ldBNlw$l}DlUe1vz;#^v--AZICp_%#3UlGH)CGoBwV;-yAHCKK5tqRyO$aSfDDHVOW#Nay>cpDdq#3?W_XL8+t*~sPo zk@1jbZOrxCFnNT5m(9$MK{)BwHlVq1wB|&K^s^8koq)BAsIIMDpi^J>AtX9yg!Vru zC_Hw``UEAurMk7c6<~??@r-w+9Ei=`iQZ1S`>-}v9_Pin=ZjQs1b46y?DrYA^{1@l z?b~iXQGcQWT$Z87w$Dl*pthl|ILAWOLJoJa^dttNqw3dLG;^nf!@E|KCs>l#zrgS) z_)^AMr<#)vC?cH?m~xm*qO7rzXU>+?l)_e;%H#GvlRMbt?c8_K30k#ddD!L9GCs4* z@HAUa+V_?#ZrqF)Z71AQhn_1xW8i6Nbl=i=m9Mp@pbFc|2ew1eTRkXm)wYvc9r2z$ znv5>m5|I0%?&Q=(A)7FNweoWI&!9_3j?>)T>BEp6d!6wfQW(8ylv?9A={cW1AiqZy z;+EaoN=ioCpy5%CCU=g{=FnYhaI$i+Km-{(rhux55?RJdBY>hWb9_M9Ta24)sW&dc zx8^58fjXn3-sLyqum@(B$O$#cxoZYc?4Q=4A*!{uQv)9M84~R&!Nl%CXS0gs!pJN^ zoj{hx3B(Sumkp_-h|0W|)MP~eQs_^I4rBto=Zoa*K%3vPXF{9vQCCX164h|hT#@c{ zWbIR8!~zP%qAfhCWlvKm3J@XF#NLugSwuEufY>?&TuwJ8StaOl-yel~!v;32-6 zA)lw8HGiFyi%ahQ6m7L^bFQbC)L*YR)O2FYD<~?x9uWML@|!hCsKyW+z{L~K)5} zXEN*T^L$rvq#UoOA?NjN++e5bfj-T{HBhE_Iew1JZRfdR2M~Ihq3?hzejh_{RKTtj zw8YR4uKC8Bpe-s@l&fRx#5{6_QY%4O2X;cZ^=H+(E~vjJ6PKDB ziF!5{OFghW_NE@AliP}QlpZ@^&3P&S?kR>8ldzG9oHUCwu*6b z7xAhCC#Ff>2mG%rrai;L906^%G`|x{uC?OL-k9t7gR=hmbVg!5RijqSckC#9`h?Vgi(VNS3#DsgatHWY zG+}=Tli3lw$0<+l(1SRaGi~+}6RAm!e{Xe}Jnkk!Ipt3b&G69*Y9(D^=n*E1n-4XA z-e*MQ0)Nc4ZQ*~L#1}`w%MIzPJfLaG);z;`y!Vx_SCAy6>9!dkALOe=$g^HH#INE8 zn4)7!H~W6?n0GUOt)&JC=w5LDxbMCX{B5) z8M_QQ`o4Y}#yx;6e}oiO2s-;5Uv*Z`|4#jSuotzLsX8s=`r>63Tlrp$D2r^adOY1_ zVX6T+N#omv*bc8_YLvASNDs<1nji&htQErQjZo35B$|zUBlmDi5~?ugLti-R&R1g z9}OwA!9VQG@+_2|pD|hw4qZ$<5PPH)ttt5G&@dV#6+8Xh&}%C)HO70z2^L$~Sjc}v z;-sAXiNsJSBDC;|E3dMq3tB-9Mb0GSpKTf*V`d*ewE&#?|CkjM_J;At=)B{@h@|7M z`En-8K{c{>_l3UXg-+%WfvB0=pK?F1f~Mr+zLPwXW8->xA@hRO4H&0fT0*#JJmM{S24ZI_8rH6D}yLw zlH~kLS~sjaw=!4=uN*?#EFjsPXBVaXWLi%U8q~pPu3r|mP1&<&(EOBLI4*0wgN5ep z8N;k113_cb55#;~mod#4cC)=2l=^T;hS`%7(epm+_OSlTyK~O-|3Fb67DrcfiQ>K| zd(v0f%0(9befCq)=k!iM$83eJ2(-A?Cz9I?|wZJn4|Qus|ti{X`&dgxA3 z|JN_JA;FNgi@&fV0!#!cNCT#?aw{hFkWkPJJB7SHg$cm_dU(`O$xg4R@>?Q86K`sL zd*Zx(u>zN7|UO{4x| zO5Qj9S~o4}UITQK&8+04=Tue$nR>vu6;1>HLiaX3F03qF_edPqiD(m)(CLIe;i;) z?-{7}zdKPJuaL4;r&GeBmwn}}Ssn`eCWUn2>Mk!6|M*rajRSL!S#Y~OYWS(0iO>~d zTGNDCt4!Y!yzy)UW%z)evU1|VI1)!$$tBI-;_?;}qwBm?mGQW1MHhW}2$@Z^MTMjF zyIx8wu@sE&fCp*9x-t6k-#$dt=@`pvod`)f<*}OF#FgLvQ=wh+@{4o$#=m##>AbI* zg6nK6sQ$rTCWd0!!YdIJ58e)_62RttTN<^%t@yWX3FKu$3&}+s6JUNY0C;51IN&{%%!Ev5XVO z@JL2`M%Q=-uueE%&dSu zSJpzFXHFgAA6F@Q?ZZ7@#`=jXD*1r0_AAR;WX-ow0OcZ9TKk3ukrF;+jt@6K;e`I-c|lD5%FXYyHxmxi)8* z&X=$mYW4*z4KN%!hhJjj?o9p~E~+M&$}%)9-UkaNY7fWj&M+B1*f&er-oFe+SBy{6iCK8TOq)uca;K(qgc=@B`_zpkgQjO&L^&b49pu#;)r zo!v=B1PzVu}HV zBn8}&P!axm*>?%*_O5ueax+Gz^ut`>MXC=>77#f527Ld!&F46@ueT?IL7&ss?`;m= zx92{Z4k&Ft*SlRP(1AvknRn?yAO&Vi)@^CkXCz)LYt^kY7iNB?t{k`6n(8X6(WIC_abvHAd4>@LeGa(q+6&~>>XA-dSju~-WMlSc zYAJ%Z8Yz7)4+{DR833MjE_wvXAI@x&*KQx@0iS^06$Zpn@1xN5fC99L41oS>6%n%d zUzWuDkQ&P8&ZdZjMfzCm_~{Kf_>RO_$djF(K0k8yGjhZ2J*o&9Mr8&yC3^04yl|+8 zAzZ_~qxL}+;a#U;z^jY`fwo{TGWx~QyXj~D`=+m{(CZs-VS++mCz=%$dO>D_t9`_{ zdZ=^z({Xq3qhcO{@~!Zn?T`<^Ue|-<+vaz~Yx}z~APZnuu(`;w9}Z?f z%`gTd@dWZ}>74wxLb7zuRvuNQi$va3{F)6eo+Eq5t^3&cAV*uW|0sNmM)SKfvDY|Z zflnFclzu@rX5%iYaazF@ir1cw9A;0-0L|w4a2${ zzoO3-_|x~A`p+1V35Pox?7`lrn{hRYdLmQtn}WSW%aQ}GQZZzrbMzJH4G*C!^seWo z7?{w@>j~goILCTCY(0>=J_3{MKS-@1-^QP10_t7`BuU&MNQE z_|<4MSCko4e5`q=zC>+Hz7$to*4qTpQ2rZ1RBrjgNmfP(dKJNHJB?+v^resQ(JjyK zr|IJgVoq3;VR6;IdJVWs3X>ZqfuV97-bg!#x?j|F+t z0Z^G+37`M6$>s~#sT)bY{C6rjFX>CogBB{eAt<+p?HS)HCpYz#(MrN=*=CC_(WUz{ z)*Kt~is-^FDpc{N6-p(CG@?oisPm|3He5~~qkp;*TQPJoHP^GCCu_k!xfXwWOLdbh z9i@TkY^q2?nk|UXziV3`5(ic`&cZ#aQhbG|@wP^^81J|~de`8*Nb1`eCQ`Gi+qF;J zl{1vB+h@@?{=J8LXr9+h&mN5UU%j1WP~7dd<%1_^f(H#DxVuZx1b26LcNz#90>Pa? zqru(X-Mw*wTkvjNru#i}r|y|LUvAaZRPljN)Ss69>}Tz@ejER|Q|$vJh5*`qTN3HJA68Zxxeua08aWBnep8-8V3$0KR@ZnR+)+U@9mA*bdbq-P( zXxH+lnTGO4EXvi~7=>`u@$~EMTnPL?=I$vCOYp_q_kitlznus&wtDUo*d(b|xPSzQ zOGDa8dnK&oFB`h#{o1>94)XaFGDWmebT~>{^M{`mE;}yznr}7%NG-oW)X{tTw9E>9 zHxkBEGi9F`kS%lc0LYFT{VveY;d5+XOc!3w>*>~J8|PCl^!DlJcqO7BdXaW>_FjCW zrp&L*t!x<0*R2@KXP}@>#szyur?<^Ot3lnB;;CB=S zMJ27T_?X~IT=P5vHyP%c(%arPujmF`r`sbv`T0J$6kFixyE}83e}Wxp=FH*mZAm0o zPuj7U+}@+tzb|57sg+3DKNV1J-2XPM50KkaL#XNSzntjw!1~GkOdSP8G^^yEdS<;u z1g~B!v5luF3+mFojMa|*CrdKyz#rm23idu$ zxow;O@g>3TuL`p>;?>sGQ92T5zUw_Tje`t)-uXg3X$pHRhc^4R)wVM1V-hsF+OG3) zXjLPtpYRXLNtgcapi4s$;eJFofD6-NPOGN2i&Z7UgIKb71DOMG-B(i$N2lMoU?~Dd z%A*Y2eee>l*>4hX6mpJ*by5fAm)BUph_am3S+oEl6#GB}P2Dms`lo0eUs~6oCAYGs zr%Sa@hL?o+P>^x0UZg9p4^R9r6k$SqJ4Dm$?J>b^ydioZie$Yo?Acr?mP|JyV@W?{ zo_53{)P<5f4d*Hsf$#jSV*>HD^fD3;{^ou8d$j3$A&)v%DWyl^q3~tdBlLbD8M7eP zrjs%ShyAxD2!Cd{n)Lcy*O$jfb4{!P@pyf>%`cm7#PZ4IF(ks0C6sTazYE)-u2blV z40w`2zJw3KF7w0s?g3yFYkS)X^gYC4oqQq^EPX*fwB@~Q^!^KzEI4*Xn|%9X@!rlP zLHH0kvzi^F_|uii@L#+VOh0NBx_U#j_TTDyn1J>|ab$buqeeNPbP>~jkll-oi7hRo z^P!PHzKRd&fXm(&SS=~Wb7&y1joqE{a8$Z_dvMH7U$E{Usqz~S;mOsH`udyWy#=kX zl-h!&edo_YBkv@?2R*Z>p}G90n1QD5zt}cHh90QHvzUMN7mT4!ieKF{kRli>2jAmCf|CGk?F!6fn_xa&5W@)qgP&vq_L*G>P5#`cQ(_d^ zs;k1=oHVaJKHrPn`y`l%M|12rknTe1Zg_igi}Ty)AairPKrN2oRj2$lS~t<64J-X= z@Y|GD&fTP^Bc#{=Yx+wNp*v|;&JY&Ro5eVxoo}j-qzIj;tNNr`g-no2!F!d zrMshv2nB!F_WPO>|6P~lHsNNs{BatSXut$ru)cB+im%tv_$t^mBR^Ye=X3+ zd*p=VB{p=Z0c`;_uK{)$Xn*f(c-bM29?e|H4GOYW&HO-CPg2}V7elV5lpXClXC>>< zV+t-@XD3H-|FksAU4Fq^VXMn0=a|h`3DX!2vo?%r0`@j=2ng2l0Hm5uN-Um! z<2V+@M|Zc@xxVY1-Fc|5GtIWEyeMOU?%MnP2*znP$p*Jy9rU>Q^go@WlHq3wWXaW=V{HgNb2d=wnQqi5_K9+reAeuE4X<;`&MIfhX1oM ztTk~V#+}C-)-6`&-djd{cdgq=qHkLh(2_IR1EYBbwc3xq=kbU_aLLL%1AZJoT=A^E zy?Hf%DQ4-R&+;>C4seml_nKbYc3k0xs)?Z9&un^83fA?U91C}P(X0YTQ?L_CF-sns z4U1_>HPBSxD;0TAB**zbx>MsFk=MB7K`Cpwk|->ir`=RZk)&+0Zldk%BKwzonAG1D z%vbu4VBH;MzbcOqKRn9ztnNymX5dK1yj~J6obK?UyFAl;HesVdqwP$Ndq9*`*D5Ic zo&}mV%?GVdQn*Ypi82^JT2X5kkEA!UFuI_}?*3|1&%Jzw@LH9eLuQ zE|z~|OdZBJ-jmXlJ_@!Dm41Zw8srL)Q~&<|GDf+U6*=v<`tshJ&Zq>(kp0s{v9vli zPvC&~9oKx_pKkv<7)lZ7`JG&LxDT^-}fxbm6r403_7&|p)t4-GB+gCSftPY;*(#x8)8Zh{;BST z%R%8JvT9jjFPMwU-U5fs2dfKoExLH^HwaVV9(3{o3bq+jX9_h=el~}IH9>|Xa=uUh za+hma<_-&b=jiZ15Jwfo`h_mGptmu1l#Xb-&vey&uJ{N;RVBjl{wHjk@9BNi8Ym! zs}6$?yJd|&fk|8+$ihi(6l2N=#u4?Udpu|CWfO}S{rNxgqPPJWko_tba>3;VAqE*R zGh$Y$bKB*f5TYca^o43S;r*iw$9;%MiAG;~5uOO*wueZesvP^}!d!qH)HC_CAF5x_ z@Lid6-hOjr5+S=Ci|f{fhS(e=N0qFo4XvczmdfovTnx+K_1xKn^(2vJ%U68aXtorl ze}4vwL`4jq)^mnL9DS&n6rN;&qR9tpzF)2KCn}#$pVW=FH|Z$A%o|zo=7vzhh2~IwW_Eb)Hb)ld}#;W9r(s1(tE$Pa>UUbRCr6 z_%4ayXp7%0te4%u3(;G60@!f+iT3wNNfThg+f^rko6dzD2=LyWUT9<@UJxG=ZvU zb@IJ8`w-?B4Mj^zpImH-X>$MfDzW?qS?2b&Q4FcJ3`AFD3>SFd*IPze z*sjpXEJp5!y&!bW;OVE_oa|v+Cgz&f;0P(oLGrRgqicGbH=5<2v9Ef%f`S07$A;sR zH69W*Q6r~98zWt}_Z$N3yYw~O@*667nlPZCr5iG+;`NN^HMla)KA|(PVSmAGo<2Zr zLVIRw@#5{6A`wX#JV9Lk?e0UAtZLU^fcE*79eKPrdh;E(doW$@#C1c+IBcrEBN()eQBacqE3|)qN2am`&*YKE_i<;d2kbM-NV(o z5?(GDyAQJLPI6r1ZR?&(_dM!>dy|hrd&u$(3v&ziA9oJ8vDci6;0+5*qogn0XkIt^ zDpx1+gmHs#84v3!T%VW1(G=4v+QtdXI7a=)-;7C?so#txH`f^PGYh%cU)$&7KhloY zebSV$z0u$&9#5SO@ZPm2+dE+RC zJr%~s+tElMedppbWP_{q>U#{9f{zzDu&*KUhQ4?{y_qZw?dNV}>^B9S>)FkSb%u8{ z20Ygp`eckpH5hSKwV8y`M;4OAGmw-`0tt?}I3gqlr5 z%#T(=U?(Lnnb%$%DtiI%)k*Uw1fQLm)cAZWT*GSqE9*1KDi_2Cz(S2g)AAMaMoF*H z{4k;10=LBCy{?*v2B^vdZrsKd`+hJlxVuT+AHjU#v9u_a4_ZfMnS1m1}lGNV(ZW*%Vwnx zU&+LyQN0dn({tOR!x=T;}=IAbE)Kjv|*uk^zz+#$F zi7GcIK9sVl7yIlDuz_$+{LQbXd67RRQ@icKl&}a#7OuM%VwQ8ISRs`Vam~Pzswy1N6v>U{jo7uTx<3H zbp2s>+N?sf8OJxhf<3q0Ih#aE<{e@UHr!P*TV^7d^`iyG>d)Q7h9I2G}qZMQ9gh`CxXr$a#-q5|sZF z)?5958`gXLPhman-TgU=&M|a5a8sETL3RB9F-K{InS-`5Np$;daZZ=NLKhkDiP~E_ zbWl||=u*2+Vg8%Vy#I4no^ayUX~FQtEId}QL3O+b*cdGWxq=>)BnjPP{D0#Onww-D zt?EN$i5bR=E#DkSIZ8qtGo**9$;F$4V?+Zw)x92bNh91ETV5~!{NH0e)ybp@H<>Ph z8HsAeEi@~<%n|YfH06c;x6IzlSl}ue-ew?=y?uOK2R9IUnl~w@ z)QwMAE8j@;x;n2$)oXDcvVhE{oITOo9)wM^X9VBdNNLL=K|#zH1kX0hQ>9nqiuJvY z89y!uqZJHXV}dARvj~}82t(6d?OJbv!OW1-wS!VN8A1{)9wywuKgcT!KZuXarGw3+ z5nyJE*}A=bUOvh%T>33A2|BH= zl;iy#wzWE(c&vvvB@7g-6LuCDY1ol_q=JH&x-I?C)A?H0;JWc@C8Rv=1EH+B-C@XM zky6I*1YdrFpJLYI*3^-49KX}(Rnt%gGIsUE*KC!&GKu8w(=hM5Jym^ZnG=5!VXX6W zD!|4fBn>hXQ=+MmKM}$kG1<;kjH#4yF(ZnXiW~%!uS~W6EJTudo26Nwxjf>cg+XIQ zkF6y`F=Ypt0_N`yOq@Rxnds39dCV+q^%21CFGjn`uHs?gxK7@_mq)%+8W_BEeu|%e zHw>&;b&wjlowc5Mh9hW;SSC6U?qq0TwBHESwUReS%M;&&<^mmjTr^L2WfIFq^jW1J zgrH5RA>>cjpUBB@{g;^mtA;bfEAjz3%%z;%i-Mt+O=H&mPn}Jy@McGZO%t6H7*cee zw1ysRH7G8$ljEk@pp&IL|1_is8>Hl;b!yo87|?$M`Y1a=L18^A9(S0Y{grFi-_Mx< z@8{0a6+^+d=KX`Zn8&*zt@mnf{Yr1;fNaC@sD5VDC%UZQRV;LeV8ZqeEZQ*+Io}zZ ze-H`{0quTqabY`mE8I@E#n6SsRiFEIXz2Mfc1ah`zj^=i%p3_-&bLRGiv?Dq77RrD z?uM>?d0^a_9lAh3Z$G9|9u@_5;*|F#qA!_ZZ8-d08>3qIVxL6l^b3qrr)nE)+1?Qq zF;?ptDHhrVu6xJlD~Vd%VtCt-)EIo|ckR}^q@Pc353)+$g3B|Vxl;F57{Wh#Q>HD! zEI&flF?Zk@N*wsbQK)wDa@}q!!^K^M$wu_<7a!{JT4dMXisk)}x)J%6NF4C-DBWWv zxPNFFq(>@77z{Vs;1V36PLmRpG~s0TuM4IyF>ioo<4Gp0HrCze0jr<*=5s=6Q(a2| z7T)+%%h5Pb_ZC_;AfEkOUsABZPeY%eyG%pO;*_|$zMc0e9zv-z3x1^dhH>kh*A}NU zComnP;;S5A?dTA2;e?b0Lc+q`zrge@-pV{jIi4DB;qkS2!S|fKW7WCcl0}Oh zYPS#l(nk7wov{fYB2z_|xqm~bjjTBVUbnXhCO#s7cW&e;9J{~`k9w{AgAN?cbRcw4 zsI!lzW{~H%93~f4lW%3tG?i zGo|~eD_K@fEnnv0QxJ2_k^JFM7Mxa+4Z|=2rsFjhC}hpR=wF+znGjC)(;I5&GHHK# zbY~K|Au@Q?yT<7feDq%x0f*X>X%*W~r+ao%v`H+tC5gXbTn}lxent1m!LZtV@E*Fg z8NZ{tZ&nD4=cBy+B>nXFiELlz#*U4gpIdz%0c+}PM)OD;=wwskizC&Fy$Y>exlC=s z@!X^oHkOt=1O};#Uu{##7mLC|60-_i*CSvz6`cGD;H*d_?pgGS$@)q+FUqL&)ngos zu=jM*?C57_sg)!7WC4d+;`(7Af>@MwhC&>hb>rLS4S9g=_K4hF01jNn4uL6BaYj8G^qov@g zlXE|huNv!`2xXRyIvP8&A5A)pMblF`p-cD{CoVE}e?q>$&$_JBg?A2ykX@*(ycUfaxhi^pUmQ*l(<)6DMfk&exG#`c7T%))M)NIXS92STD;LyZ_JQyYBspzE$f z4UZ2#lv;+b_+BoXF{EZ+^3U%mkbiTZSNB_sVi8q#U@tjd&GzTu04H@zDsfJ@+a}pM zAMTeXr`m6b&Jz@meiiO2r-C^8y4=7zGIGNx9aY^RloXu?(D)1r9v5Ym^g1r4?>_lg ztqQaV?=S04PAr^PGkT#i08xx|{Z#@mx+Y0*VJRNcKw&U`ES|7RC9 zP1*2^+w=+eaI*2;vi83wdnBg7Ro=YU(z`BL?K`)U&^C&CoHq9hJxPk*1jP+t=HE0a zN!k1!kdKy6e`g1e$Xl>o0%QB&hEkhT`B1e};D2yOy?EDG%8CEsJ>?ftqe22RM3KAp z6D#Ke8?;5~(Z=@6Tql#)#V&C`?pU2?PyZ67j#@D-@K}2DszK8T_N3Wo0j4C)+t@N4 z5B5zpGFV`evweNjue3mdr&XT|f7V)pH6On&R5}68zwu<5FaHvy7Mp$bC;zD4PE5XG zF!l=SaO%(kUk%bi-tc?mFysGB8o8+Ta#cE)VLs^Cpq@&<{!&!skjwOro#|KN-F4QbNl+D%%ro1s+N#T!_?o9+#%t`nfnUD{bGrpK%z* zQLoflQ~TpTjZ~DS**KcKWK}LGGki~Him1%L|9xL>*|%R;bIj(fHFw*~ZMbo@v#b(o zkdFrj7a1yOV5JNvlZ;D&H|eJ-XpZX>(xE*rDKx@4u-cc*u#KO(i}RVFz>6VK$Vg$R+a#w-8a^+OM7~n8t}h zYo0#aHj1!suvPHbjci4@)uV^2=3F0f$?_oTMm>X)apU3B>=m*R>Z-x~*haLR{l!rv zGDBBWPviO8we(OaSbH`=hoCObVgJHioOZ=x{zHBdEMUV^)rPJ4JK~^Q|N6T_CCYgA zC%$k)bUf@VkF`;uH+x|v`4_v4W?nn1*yL_Vc~WzJ#^G2sS?#T@r+Fj?hV^LVqcM3_ zIl`7^y<)I(6;|Ev_sf&g_%PGl8{K{?V}0DcRx9RGBQFFyaMp-kP^WXY4&e|#h4Qx< zK@c4YD?>pGN?K%yT|$Cz;QIY>UvB6Y?d3kb-;QetY}{qmfxmjKMD&$RIy%eK9%0;J zzR@r;Oj*Ht61dZWGPa`rnd&Sowt+jvwMu|gj>|^HCP!eV`Rv9UF3d;*Zo;^6>UWd`tVS{;qSLoGxC7D^OS#c$TQMel)iTzjooo?qCK$VNzI^~`*z}P=HFza zKXML}x32cu_7pq5%XQXEqemf&x>n1#)H$M#91EY!W)8fHOyO=UJo$jlQ%ZF+audk) zavyv3WFW|~-|5n4@pgBv(K* z&3l1fvgcDx0K}MNNULBAUEc z{UEus7}8&;8ld(z$t$sU{N;8V7vTm~VOYFON=%}xet%jfB9M%J-1s?0y_SX#n88m7 z{|6ooF~NggM?YCkB(ywFp`nL9?G1+X#5qFzS|_{7lpYgQ7w}ibL_zf#CGs1enVO`q z{-j~P3}6$~Pv}(HNzUOT?^2Yw=7eAFtU+Umy=bbLxhcgClDU&q4Cz{wsXZ-${Np-9 zxR~2f&7vq&hn+VE4a8o#p0Z1;PLxHN1*87>9ic2Qz+A3`tL}*Ln$tz0@Yj;H@2V5_ zU=1izdgNZ*d^oAb()`{Lro|ez{>IktFV|@#4R=>qN-4OK`a6|daq<1)v(gEo#h}x# zncE@KPl_4vK>5EY0KjF@!?6&eW-5L_lL}0DQ)KOANqid_&ZSAVTsikjc3e?`g$=Vh zXn)cn%Y`U$B{Q`qPNj)a9eUD``~tnujV| z5VqW^fqA#%lXD&$68;Mar&gAx{46R+%1Ja<)!PHJNNp{cCpXW@aaZcZo9S3I^kh5b zr%uenFUEMC21k_NHh)U0kk0w<#13s2e4vG?qhcemf7G*k_V;`j9RQMgsl0E65L#o5(0MtrDv~-bH(E=;v|iBAH(!XVhT@6& zluw7wC`MlN1&RSJCNMnUYTRBYGB`=6XSew&^jHIGwk7iD9kFe$m=yS|lmxP{vQ6$* zdA_bD2n1vo={Ck>w4y*BuC?DK2WBIiw38?Z_p4LsUs*2WWg8eS>w$z2w@o$i$6SPA zhQ@$=BYS6_R};srKFJeVP|y0tw!udc^oNReQ)23Nr2fZ(>iQ1i^aO+~N1ZK%k}P!y zhZkGL#o12VtpjlpQRAs$uW3^z*Qn2O{=)yqPReqB{J!5>OZa7b3=auqG4D>O1M)y@ z>>ssMbKA~iHhJdOmR$7%3Oj>dHd7f~|BG_=2+vCHB}gylfi}TC^W)n~vb7h2rk298dx`$yF`PuXT4p#T^jvuwoz18T}XhiJn)hU3s_X59rXMo zfum68mE>`!U*<|O>iyijPjs!MGJm#rS?LsE9nR)9)VGCu{6=9FCg;!2tqjavz56s} z`Q)rbTo*g*`fRI}kHJC9%7Q$5GcL*S)h+G(L$J zIX38_Z&4?~nv3G8on#=UpwZ3!+@YCmXzw%9{>Uc7{7K}9{RfPdc}9q85HJXTL6+h_ zG$w+%yxG70T%MxD_6K(xy9jGfr&8dOKrc4VCy>QN`8Aux@S+kXoG>k7A|V>XAVYEBQc2&O}&UWuqtq;5gzplj`%WQM2Q0sz`T54)|NB^A6;{&Q4LktkDvG(qM+a&wP_vj1WC zDCl8@PJD{9pe<6&DZREy^_z!-${U?S|pCqz&Sl$r@Oh6@mnjF5IOU-!FRT$2Mji z`|E=_JWP3}bX<7z21>?a0;t~=)7)85`WdKYro~`bg_ZVz^sB`CC!m|G^rgEPk3r3X z((uFOliSCY2xDO-gYXTMU$`fQa=40627d8et2SUjUBL?=Cd(mrV<>MMkkIj#-Y&W< zsS;nMr}gvfJEw*Ub+J&H%h9u_H%6EW?fzyCO!25$ts1~6_$!1C63DpN3~BUBVY}~3 z1YgWHZ-?(ncs~mx@uP*mRIj$GI10K4E$Iuhi~8_1=7+jEULDI=kW9IJ?Q1yyQST$#L;n zYBef)n}XLLudh=`+aYyfct?{WQ1IE~PsHS9^4S#W9Oy!}1AXN8g72<_pc9T+KOKi* z9;a>dfCWJ^5wC`D$BtZqi95?B6LI5J{na5UsyvVDm<>XDpYD z1gM;Js=af{1Csn*iHPrb?o0s5VLLT`oCjr%;<%Npel?f&Hn2q_^PW*m?)f;JZmYiE6rd97r_Q9yF962q4 z#OZUSmMnbohi50a5`>cyX71KN0g;kF!K-hV){C!5Jx98C$D%KqalhMDTN=!g)BW)} zUTLNGre*iAO1YGSy>7j`t@_7IN+phXsj-O>Kzlfom}}3XBpbuiU@HN6WFlroaPlW zA_S+i!0F=tz0ht%EnG{Vj{8j}>(WVXFTV0&4d}GuGY$`XGK^gaGKEY=W5nKCn==tT zoGZ_BG5T*=)3)(hD7`}r4-*IPi+7U1)IC7dk1XATo&6P^q8z+CgzC?Ig{6Gtsknuu zrfzePG9YS;fJ%Q8X;thxC9Fbf6uzq*_3LFcr&xz()P+^1kkOCi8smFDUYlYbw|+`Y z#!H460XQLEhj@Nd`MLM3SM;SiXRcpv5+0ImEL8zf9cG7Isd#7H-?gkCYbrlt>K%hS z1vP0XN10uvw?K{E5xYz`KO^4xv3%AAjs@=Okj#|CQZC4_@9Y(Gz`c-uBJQhKEi+@kYXGk9(;TsLA zB0#1^aQIPi^>0!Dlypvs^GF&;=)f{z;e%_KcN_m%S?cUd9}C2X)uc*U$ihS=nUBsn zF=b-!s4rOPE|GF-Bm6^o{Y6Pxf)SH$L3H!m;I+qWEDI0#D%9!h-M>;KV3iO?7tDfN zqW;RXPH)K*B9e1ktFN5_1afz^V2Vm)loB+>Hf-;2Y__V-2{_y!!OJwthu7CLma0em zl(!L+r$he2_+@v`f5Wx$7i|~I50-#(7hDl6E>vO>+Wl8P=31aiM$j!)gdN$uiPT+EjOb~mZ^SFOz^f3XP^L+abk^p2kmeM;{F l9(l6l%s%3z4M|Y5$Nl)9{|c^@KiYTf>H6_zg^J+S{{kaJ0zm)( diff --git a/data/Redistribution_by_parity_list_UK.rda b/data/Redistribution_by_parity_list_UK.rda deleted file mode 100644 index 1ada6a344456c412409c48be39c56bf64bbc7580..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 338 zcmb2|=3oE=wzn6~dL4EUX?r;NWPETy%ep-r;dfu0YIVJ{L$LK-N=GiIly0ur-kkLZ zDw5PL@rW|-s$rgd=Dc~j+WEUVcCzP>D+zg}^t5a&Q?1*v-_BZm?nOt1i798FoK4Qu zHZ;0;u$ATEN^uUZTG>qRC&!oXPkd{(B+v9h+P-&-PCh%aEh0bILfdQm+L>`O9X%$W zvQ8fj`z<{EcSiL8KXdo>&1RbZ{w-@;-Cn1cm!4g{z0CT2eBWpB-B(?UH<{10UArzX zcdKSu-NvnF=f7R`bK~EdORaa;*ZiJcB~g9jDO-kn>^0@S*N2yQ{xv_jW%cW0i+_o) dUDL)cSMi{cI>ht($}P1_@3^LzwmL8{001a4qvQYp diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index ecaf57d..aee92be 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -77,20 +77,14 @@ in another file and simply imported below. The code below reads in the above fun ```{r eval=FALSE, message=FALSE, warning=FALSE, include=FALSE} -F_mat_fem <- Female_parity_fert_list_UK -F_mat_male <- Male_parity_fert_list_UK -T_mat_fem <- Parity_transfers_by_age_list_UK -T_mat_male <- Parity_transfers_by_age_list_UK -U_mat_fem <- Female_parity_mortality_list_UK -U_mat_male <- Male_parity_mortality_list_UK -H_mat <- Redistribution_by_parity_list_UK -#F_mat_fem <- readr::read_rds(here::here("data","Female_parity_fert_list_UK.Rds")) -#F_mat_male <- readr::read_rds(here::here("data","Male_parity_fert_list_UK.Rds")) -#T_mat_fem <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) -#T_mat_male <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) -#U_mat_fem <- readr::read_rds(here::here("data","Female_parity_mortality_list_UK.Rds")) -#U_mat_male <- readr::read_rds(here::here("data","Male_parity_mortality_list_UK.Rds")) -#H_mat <- readr::read_rds(here::here("data","Redistribution_by_parity_list_UK.Rds")) + +F_mat_fem <- readr::read_rds(here::here("data","Female_parity_fert_list_UK.Rds")) +F_mat_male <- readr::read_rds(here::here("data","Male_parity_fert_list_UK.Rds")) +T_mat_fem <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) +T_mat_male <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) +U_mat_fem <- readr::read_rds(here::here("data","Female_parity_mortality_list_UK.Rds")) +U_mat_male <- readr::read_rds(here::here("data","Male_parity_mortality_list_UK.Rds")) +H_mat <- readr::read_rds(here::here("data","Redistribution_by_parity_list_UK.Rds")) ``` From 04c88a0b15ec797691809d022e57decc7c07b744 Mon Sep 17 00:00:00 2001 From: redshank Date: Sat, 26 Oct 2024 10:01:11 +0100 Subject: [PATCH 55/89] Setting data files as rda for pre-loading --- data/Female_parity_fert_list_UK.rda | Bin 0 -> 62377 bytes data/Female_parity_mortality_list_UK.rda | Bin 0 -> 37423 bytes data/Male_parity_fert_list_UK.rda | Bin 0 -> 62376 bytes data/Male_parity_mortality_list_UK.rda | Bin 0 -> 45457 bytes data/Parity_transfers_by_age_list_UK.rda | Bin 0 -> 136196 bytes data/Redistribution_by_parity_list_UK.rda | Bin 0 -> 362 bytes ...Reference_TwoSex_MultiState_TimeVariant.Rmd | 17 +++++++++-------- 7 files changed, 9 insertions(+), 8 deletions(-) create mode 100644 data/Female_parity_fert_list_UK.rda create mode 100644 data/Female_parity_mortality_list_UK.rda create mode 100644 data/Male_parity_fert_list_UK.rda create mode 100644 data/Male_parity_mortality_list_UK.rda create mode 100644 data/Parity_transfers_by_age_list_UK.rda create mode 100644 data/Redistribution_by_parity_list_UK.rda diff --git a/data/Female_parity_fert_list_UK.rda b/data/Female_parity_fert_list_UK.rda new file mode 100644 index 0000000000000000000000000000000000000000..d121ded36278574979d7f1acb686596d74c3cdb5 GIT binary patch literal 62377 zcmZ6S^H(H}_y2dZZDX@GyEfbQX4{iCyEbj+WNvotX4ho5dE#VE_`c5PxA*t{3-_FR zo_Ji!c%)DNHwfpizUp|O6^>V$5;$0xk|G+a7%D0nd9FZYnxc{)2UNs(3aQ~#g0zCi zd7d*;GZI|%+Gtda%rFQMlb!{hF8Pm(bzP4QkME{RSu)(B-4(V=+r2Bcdftfx_&Q=J zIw&+WCHc}{hK8hteVsp)T9g#7ncJ~I4+R$t!ZGqOW9{v7^&~kbIV287r-ob2?u&d} zElnW4UR!5iomYNLR*X$|K$$D-o$TT8dmr|gx?#EeW_j`@pOcHf@J+% zInm#nvwz zdA?@Tw47=87@wjshik}BHN=`;Fj8!XicugE>$8!gL{J7X5+B-9c9^tknh1SG3ut%2 zQGCho(5rc0!07n)K1qwOQLY-Mj(JQHZCAk^Y!r_5<*GKt z$hSJB%k9T7qD`$K%?izg;CjM(J;+i~MH?riAcvr9B#>olufG`R_)^jp3>Ti9#t9VW!ZLu`8= z?nV23`Y?ilaDJ)FziFGSDC8eC@c3;n>UK1Lzg9u@!Pl`xZ_$MsJzTWt<6)Ualt2 z(9gsS*XYd^YhV@Hq{j07%GU@S3IGXBFQ+$pqD(uFy5e@;7jxc@vdrR&RJJb(l-~}* z@R}H8$TV;4FHBl8heNoSx8J>-FY;uv1!l7%-kI38m>Dp&}`$KzU0}f#1&{ zN|0D`m6)t)^hZ5=BVw`P)rDVXPc!|q>*VoAmcBxw*S#}q?fc5B(p^YTkJ66z3IHmz z2m7(1>H%wsY+yoK6M*q?oNI7;y0gOj-Vpm9;@S@l;e9XEf_`ks3>is(2;3!0eIyIa zh9s`!e>nEMe-u%rek?tF6wTJNm3$;GuDzK-Ka2$QHuG<3_0ilQt6(%wbzGPR)<)rE z6sn8s9D1YNPbjl0o-!em(vfeU?&8xmd{-9RQ#1&tZ-q_?ZwlnqwD*!RzLTnq`8{4RZRT~ic02Y-xWP#N|& z3CTklcU}ki9s2ef^9mlG2-*B{<8;6H21ZY2W^p9dN1Gb~tjvwgh#z0#RQbOwN$`d= zl!>lrF^UqH@cjEa@+W*`_va1=XA7NS#t>?PacwHIX;&Dw=!ZT?-ZX)%S4DNUC~~*y z(?S7{1X}WqV&IhVhL(b2KmNclq-mMlZMleIC z7ZiZYt2Pb=vB^1K4|bvDlSl+3JFwe@6ajvPwSICAfEya`M233c-{S7bZyG7s5BaNbcZSH55Q|}hKW4M4^`$`bF! zlik+_0ai8ez06eINmHm%#wS{A^7RRt_m3p0CM~f9OpDs%>9s zT2bKN^qfT+is62Na3!Bps^e!#v0+^9(uPq}V!j)x`GCn9rV_6hZOXnY#ber64C1vh zQ`YF6qin6?A<9?h=hw$T#h3mggOZP6)wcT&8P0`^g|0s>#8xKFOkDvQf*!1%C zG2APHeq67O=@g5eA?XG}+swO-OZl^XAZ50)jf$HnI}7`jo2^QZE!kuaYOm!F*kp1G zq^iGqOaN3~_1ZotXhrw=r#udD{uWkxh7JvxSD=}nKhMpr#F4CLzAIe!#qO(k?0pq+BgWKu|%qoUsuCRpSa0!AkOLtC~1JI;w#2>H9S}dOwJTeyA zvC))%;^)6jCGP^78fIzEzYYy}K3BL=N4>m?H6v7guY7yTCZ0z_Qz36$Hr_~-_;{CPmOcA-$VkreMDgvS8b&oN-T3)(tA;urZ3A!@)Z#-*ecJ_bDbYTBUii%J>I$m|Pec#x<IqO3 zP6IB?FEKbWd2jy=Q@X8z0=4=!KVjAfHDb3Nhlw4op1?P(%suD4mVU%i$#(muKO;4m zyLnz%m3;c@cN^MmnkNnrfDB)NH!huopv-FeRyJRCW;mnPESI zX~`!k-QBp6=zvATf__;OtbNaEKHbGvpP=I4E(-k4o>SU}g5sXg-PaCf>Ipa>{3r5a zX=3=soB{64f_twXl?CO5auj#H#x7C^uL(E{bWHkfa9qj5QNc%|dC zjFE&7y;lr_QG->F#pQa1qvVJqT-uGDMJl^X-?oFuFfRke*ghuEXTt;D&q9lXoG~Xv zF-xKW`$l@5>wNrg_FWq^pl06ELixo+vEdc$Xq5c9x{wh^Cv8;n-W@UDli^}f{mW<* z49fK}sZ@_%M9}H8=2_JSf*}Tg+@XFgwmf#+b_K!;>~q;E#tEZxuw{%;d(bO-S@vE& zt8uQ>pVDOMX$j@(E?H_?Zv#KcDtBC~Zp=cN(*j9+3BL zi14PR>7aOw?a&#_^*-h0Zkv3iuw zYl}fsdgd|ux)eV4H1tJ<3?p6rxV_tWgT2NoDLugfs?IH&dtxvU9cA@G^R8A)MHa}) zs}8`cL+HlTPu!8s&Cb3c%=Wc&3=R-#fx@qkY#$rv`Nu3nLbUCFwNFxpKs8-9F?iCw zThtrJfvOy=t9L*6m|cb56ewAwI!~+pU!qqSh4S0WHf5q-g}+24v2QqmLQY4>p#|V<=N+s*z1m4fww?ed{&&u9z*~hnjkFT!eFV-v9F%X`ZKEv@QYa_%dfCI$svPB&koAGhgI4;V*!EdQ&Td9}pV-Du{!%g`0x z47S$XL8R6JFdQmJXHLw*UrFaqF0^Q%eK`p&<~Hnqpa;P&JSIkMgZM4|Xx?*7`o18* zCgh<*#N}r5k;dz8o55ludde*h5i>O$t4#=cpk=u{3sUL6X}bdQYH8jK0>afMyEPhaqP zbUp9H1CA`k9pGK4)Hje!)E)PM-X;&cr+V&mt{^Q}>QZ@5E8Eh_{xEys3Cz&^dRk`u z38~Hj`jjOw=T-evSGWs4v3A_CiDOTFa#{A}{Msj^Yl*lk_D%9I|94zX_Gd<;Zl{!= zTd}ETLd4L(3ymqJzo7I$l1@JOv;eUK+J(nKj>%hZ`I!7p?{HDVMw~PD_GD)&uNtax znj69%RRyutM?+FEe7^Ogt<4Z4v5(c8WVVm%yeHH(8mZhdai0jZqdQ-*46SD>9kC^ZhneKAa#)g@5zLycgT@;c(9c0G67iz3kk7!kHdp$ZVDJ6{gVd@i zV`~vod|xrXMoEG=w`}4?FT91~9EUR6W7;EA6TW7v!LQnaX1gWewf_{7(c9P+Zd$33 zL)X;GDo3|8~&T&S+pG{G-^r;a|sXPbCZIgx1!uxJN8-#_jxR;PJdxB93YD)as z;|gAMkH}Sp=L~+?GW!RR*KO@NRWRbsk!5zz%~mHHlJ3F{p9ohvb)Ix;sgjlLDv=M%WJtcj>`Sh_7fe5DG>=4BuWeA9~3&w+{2k zW1qjsk7!A1@;$zh569a|Xr!8RifreLHUU4}C4hw@mM%njr6v6JY=6Efez_3dcmuCz z#dxi_$sOw21df1Y}z0&JL^D-Rn}62wJ}#J^$xjLRM~H(yoXWiP4+Cj?@5O z=(;7!r&P4-^T>9_EM@#(`@%Q|Xc@Z)25H`nDIz18DecZ9)ZHfKSe>|$1S2!>>$(ER zN=j)+nlfY!OGj`vn>nOHDV4#@jr~!U_MLaR78fb4@e0w(!aML zoWJ#To*%tNK>6a2!*$8cxyU8H^V3N|Amv5k9Nlxy6FaydjtG}HrC-EacwjP4y*@&x zSav9Q*hFg_T-)DQduNPrL0O3Q8}by_=K94eqW9ZbYbLNDoD!6J&?tU3s>(x0iCV&Y zC1cX;x(UNVcluCZ)9){YvBab*y(wo}vgdtW;`=6(uB2SyL*#6hd`!#(-jGz!dQJ&` z@5Z?aPVzdS(2{%r(VoaCHOqUJV+e_+CiuY&#?Zuyl`sZFsJ1}KMK^fzg?V9eVHH2l zuS7&-jY3}SMeo}WZ~r?Tt2dOhvHd^U=FN7V-}~m!7964>xbcWs>u(mu9q+7MAt&5B zCT$W`dtKYRxYU)}Ujw{e7df;)Zfvl%m%nYP-M*~%rrBwti+#9fz)$x&=mq4;fYyZ< zeCQnmS_>>7U4sy!^>f80cFH9L^9jes6+&~*Wpp`PsEf;?rM8dL+AUsJu-mJlZ+ z*f2B+(O4Hc`KK}){mN!eJQ-6sR_Dj`dr>bkp$k_Bx2j8iI=R!}(k^s$wQnA8R!sVd zL3#l_g^E$;53OJ|yx1gVAG7FX#H4kzn4X!p{%ml9=oJl`Y^LnuQEQ#v6dd zuA3o4w!K69;_^(x{Hzyn#6%m>RL6?BeG*#OJ4Th3LqfqR{hXaw9_m~hu(NRm+d=xw z+TJHeY8Vf@*>8MMTwI86+zCex0+y5Dl8KBa;LA_Pij!9fQ8$pUn|Yap(L_}Nv!SD z6(Xo_5Yr^*k0Pl7U_9YstSy|A?rY5cw&L?~95Hu$sb}}?*Q$<7^k?kS!nrqNcQxcH z!tfx4UIpx(3`wTu8d8mlGNzh`4cf)-$?C~G_&%lLWd{Gve?E`i5V>RXRk(5)FI2p} zOL(1+XsQ11n*eILIy)@2K(UDDKqR@@?MCGsB_Ht1Q*rlj1QPkRC#HRqSh3P&_`x7c z6S$?VKUnF8YW-O)UPa(SqGo#U5tx|=8t{0p@YxII$yUC-4f6ki(8uZ%e=Mw?>+(BC zdO5lJcNS$p-vn@gYiye4>g&X9x9$z9m-!H5$MQ zlb-fZ_7$ah6`Qbw+&;Es#|Bye-AwGJ#V2z$z0#ROt-%VTt46OIP7$Z+m(`YOK)a}c z^)fB+f3=6l#bRdh4@Zoz;(ijhkGmKVX$1@(6l8L`oiQu#LW9n-n?;ynCZQ9Mm%)`C zK+#ds+B(6p-lBcs(y3C8#Nb5bMIw%3%agn-n}T21Tv58Do=Wlqss!IbD9}!idRtJ| zEQ*g?M}t2Y7AuS6ygz3rd4yUo)M%co64<#d3p|RNF!)%w&2C}jo&w1JwT&HkJ|?+M z*&a(;DiOue4!^s@8UIlmAn$I5Df+GNho6ID3UB*c%-7r?Tf_3Cf0<1O_LCw1xSKg& zslE`iH-_@ZkSKn?f0F3VkVQ|3*$(o#Mh~B`4=BzgBq(Nt0#Zu^@wOHW(Z66!68*FL zGW`lbgJq9CGsQbG|N5u3|I0C9)TL_YGk)p!tF(x<y2*r4Yoi%!{s6Qi ztuOJ5_ZC+oAe-GgYqZU=X2$ogN$Z1^|zMvm!$l2M_XQrN+x*I zU2C4fY3r5u0%|@QQ`i}rF3Aqu$weI*`4YVzB+ooiW`TZ_KX=y|d?>KGvp(YFuCWi(9iIlMv1JdT zLUw(C46~6F;#0QQGaVBl^_nB~y0<%i2cr1tuzJ!W#Y@Adpn^bcxPFfgDf-a)ziF4k zHv8&BL#?)|of!UGJI?iA4XMviG4TtdaJdd%l?W1SQ)+d1$lq`9_rAR34WJle|K+<$ zpFTmCEbkH7(bE}>*6vSuY5ZyoM!&uLqGDba%rWT_gfb!poA?%5SmdzjCRn)*Q_Zpv zZSkdsllpnLg5mLNmov1*6?sz{G7W*8KOB_Q{I?}3Z6={r!v_1p_2}iyN89o9cH&;w zW3Q?S9Fp_oQ8Du1D8nNqTM_zmjeUaIo-CcDxHZ21B<@*_T@%^?)|P37XukGm8yvjJ z$t^N3R4K7cFuXefg_U@LHjVKYnIk&N{wdKU`TY1IsJcz8^sVT?;4jXYX+D>94j<0ofqm+Ig#hp2&6-Gm8G0>ZH3Be0@2Y&Cs-?`fiPKX3t)= zM*>At3TP1THH;$9Xi#0bS@E~>n~J$4nS+~~xa@=mn!$hD3W+rgDP5&cEZIwBv5qhz z471`=R)uekL0())@1>#7J$N0FRn7Ge--l_WhlLM@;eJj@$?!S5OPa7{IVQR2t#6}f_;5&+>ANUj-9`h(;~ z8BMiPb|Y1(?vYzHsHj+0H0alzutS4@Sv6-s0&`@*qs;83>J9~mdr1K1 znEc#=zg749+njHE>6$lq#{k>k?g6L0SB(evHM=OUT^mq%Pt_Helm`FMT9nzI7bmDh z_{Lf*4gZo3hKv>N1CB!98~I25l}|Xo^9w@!o{1>mRSD zd|wR2dL&UylN_f0E7?B#P2-Gf_QqDvYBYQFNF|ycTB! zEf?$iY17pA5%fo$lW0gQxw$au>)J~Z<|X$bf&gv0s*!oQPGoF&sif zjhi7boPWRU)3uRT0TYViJVR0Ve7e-MBZ2eKPy>{bJM141AZg&5D5w4cpwd2zcmKR8 zYg{^B$;5!tCVUI4Gf^0k>l-2~b64K!77IJEbWmzBnx^q`*UR2}MH46gK4swBNj+Ok zU%^)mXCR~Po3GFEv;JS>^}#NU=Jv!+E>>VPTn>135ye*;_4d&(s7}JJj+A`TKol-Q zT5Ohn_0NL5@1dk3E7|5j9ETZI=*U(Hp{#dyvvKxEaG&{Mz0Ur)c2 zB1-Pr77~w2EVjeIiq`XUguBgayYf@4?PTO^tumDja0h}g3P)qbLi*g5i)BN`W~k;x z@;L{s_@Y5%m$Q|n#2?H;7S0Yg>FqZV2Z&vk2}K2fFzeDW$s-CTF$N`)eC@>E#e?VQ z2TA(gz8$O7F9{3_whR+QT%g=YY}8g&4>aRp$-+?N1MbjN&I_Nl+lMsTQ)(;g<-O3vX+szp&rm=ZD;cX{n9^_`?{y*6fZo2Y1=EXj>fcav&4Mi~5F-t1D za-{|q($E_kk;=db?jFmXs}o%A9hT+C#<6#rnBZ;HoXfpXR2zj?raYYa9gKtln%}DY z&(G|b4-2*L6<~LV4LlAhJh61edLKjPW7`m!Yef#Ks9wD+LY772Z48scUy4&IGYEVEog4ex!aSi+ojztx_v6**;41Pw!Shn-6Lsu6MVly~YgaWLr`l0%Qhe z20Mn$O>1m1Ema`Z`UM~gfH84-3Q0{#%2gmlMbo6PkOLhd(`Cc*tf%y(=NpMzW{ zT)ZiDzV#0e{^cf=263poJLCz&y{##`#Gx&Lb8QXia09~ngkPKFSV!lSa-Pdh-qE^x zIl!*djK$6N_PQWp>^cO3+wMFCP}Z6q3wzd&9CyRv4gWeuOzOf{-ox+#TK>ou`;nBO z@3NhN?`WDR+|Kj2IM`-ITsY?hNim3DR%W6XsK3iOcYbT+r(ml?X+g95`=YY)cSnfd ze5%>3j+vKqVjPX1mHkNKTJ9y3g(o44LqGI-&D2?GQ=PfVtDplH3kcBBY~TV!+fnH>E0@?!3pt$1^VcqPvSE4i?=@ z#!JmjfCwmJVCkihrvXCMZabKGH>GBkt;A_xs!r1@{N^}nhp9P+lP*iaOJ$n*6rdZz zTOugX*Y{E%`uh=0kzIDf*j>Qqve{L<$NTu;3`y2+vGokjyIJ@=h_0Mi6xEy^3r9@p zD%4bxrrqesbgW`YBWiJHGt0=~&QLFLN z5uGZlk4+$mh5+4g*?0TWL^APTv`4ZhZ)IMg7pme~Y+TS1%=$J&U6I9`V_y#zMLxY6 zoL&I@=H@i7+l;Wt|5vQIH+by3r_J}aSm_B{-{f;BNPg}+e@TEFQDYp# z_=70Hx2LV|!l~giNS$8Wl2V5-Fg`ng{lik&hG=oS$H0j{z?9dficY-WmbOAQI=U!n zp1RS;LfaCebq1IDhpb-o#6fu3lORU_(lCn!G<3Af+!2{{JK^eji!F_qWwH!~zZE%l zoB+qcytb|SZh)I~AK?-UaaC)Y92LJ$MOm{eFS!vAj_tGw6A7gHCpZ;JkLz^S{S~<{~iut5*U1HI-M~Z+1^hpB-ZZt*RN;g zG`_9scstg@8~Czc>IE*h^!xcffo{jCnQA9yO_1IqL=HQ(T&hhC!(xAd}<$2^B@Io`>b|Zi&sDQGY zh&ddjcX8b(bb$F1MHy4uCQ#CTt~h%r6%EpQP%-Xk#o02>jia~J0dK1DfmSQS+xB5} zT`}WJV!4CQEmFTYNK4^tcD`zCyA4SW-6Eja5R9?LZvDJg;63V)CrkZ6Q(?^{`*s(O zF?q0N7g6|fOH~qt_1^5zX@e8#cPG+Z!;*umi;>?eTu1P|C2jd?{@qp`ZI#1JAU|fK z`w}k8wz>qWAGSZvGGJ#(!kcKyDwR7suay&UX}2YA|Mo9{%8*AaPpRW5HflD=(V}q@NhZ-KN!=VXz=CJIpatdTh}mS`kN6|T zZRM?Pme{5!2?%xn)lW*NS>>|9LcIBH!0Qx%97$iIf|FbDwibOQSwC{k>L1Y&NMk$G z5E_CN(q`d-vRN3}7+>&&7O>0p>v>T}Bx_C2W!WGRx`*tV;}aZ~gi#@1b17nlYBs)I zpZzD1_B?tto`I8DYV>&uirV!|C{SNvEEljljWg<)ZKpDS9#iv%Fi<>xZ?u!3;rp=~ zc7x8QeYTVPn;czsn6r-MZlzW|2ePMMUmH>K7^I{r_mZ-5wFm|dds-d7cLiQY({i~g zYH|}=)9&wD8%8z|rZ}t)O5GHY#J22@uI%8^8YbLU2@Ly7{}%EPGh>mmd(CiVc-_MO zzM}E+Er_9~L`?b3Cp`?Rw7Wod9qWdszYV{JtZy`$Jls$|NG0eV%zpNHu^b^k|BGL7 zv3O3a}{F7U|OPkFSh|qk{)9Cxu@^`-`Gi-h4h)<#ooK9v**wMV_JUI zJYEjH-C_JdW|7(*=9GJy72WM1H;Gupy0w}4=Q(ySJWl4k7EKd*=k|!3&UjCwd5nT5 zC%C_+7sr4Joaacayy8ZzCbzdR{jyqgS$*_4qNB&tcc@6w_d&*{II!GepGWoN^wP-K zBXL_#yC%4E2-4)-ul*>2LBE5ss5%Kz_Xbrc)q>#5RthoJZltLTU7IIN?GT#|E-&)6 z*`y4QENKeG<$iuyI+YS}M*^kcjuyyuP@Nx+U2Cn`U&Rak)$i^F+?-mfYjwz>9pgFJ zcALn3KLOILu6;x3g|u(ycS-!v>^yW!w--&fy6cI4q?A?yxkTR8M9*dWCyyTT@dCK% zeZH8A#`cA`i;Fj{Zs+V+<*1{|75-hQA;gp~@|Cps#mSG_E9n$k^?nN8Xl%FSG$ihg zkIZG(tOEB+z5YIH$Lo^A1gkH104Ebt_(I>&g)VUpAL~b4Gd0?$vfBcA=vrk2z#@|9 zkL|SNe~-*~yt@-;ZG zhz(=XUKG(+0xW3n7x(=B1VL>k3aG#Y>91nH%ut8(1s8_4Fw}2s&4U{}(L@2wh0py9 zMJAT5iQ`WUhSTxo4w9#H6ZXvo{{F}+IOS)Tu1cVPSua8Vj<6gG94GA(Jb=t$kB$S5 z4CzbibxIosB}3HVj{N-;C`>3bZ_39q+bwBN@M0cT4S6o-llu};_qu}%dK^C=oD0}~ zn3KeMQJ22b(Go-??qMLtHC?VA$essxhf@I@@6yLc8i>;42)E#|)cj3!-q^YPbdC<^er z41^ms^v#y!VGv{SPsCWL(LDY4#GkYTplEL|r!abyx*iL8$ma zJA;ZumFhTwj0?YhMoAuHN{|^@jZJGnaGJUz&(B)S$acJGOj!PY-HIfy;XKt$T>GT0SVoofQ1|tl^nFx(<_0l)Ejfl6U?C zXp4e@U(D;WNcv*+cK)9dEY;lA5v2|kd4M*6pG(t>XVa#fV}mf#A#pqJ?sT^DYgYlO z(@xyHiAb{(1G>8MrmZE9RPrY8A=9yjkyYX3`{}+vvBBN}DhdMKnEHmCNKFWVy_wvU zK(Zl?_a>dlpb)$QnWcw;XJ-s>6}SYgBLU6x^5wqRAhkn!6gMiuix{e^+G&&jKprT= zb8rj)(PxId%N_`jDZ6CcK6U*)pQg_gxHIRbx}$dGeEW}a{XbYtyZ|?Z+UQHyxsO`B z)}a2=xa&T?>(ix&`nof7=+GNCo*el$)fqH9D4q9U%oos2VdWZbu`*si)QO)yt`1Q& zEs}cX;1UG>`>xFt#M66qM&u9)C){&>S@Le39oBAvoiih}#-ONG;(w&hX^;+|<7wK$ z8TeJ^EwxpCZXeOE6k@Kk_6D<5p+jk_MN*QtQQlf^)lDXp`^1bXF8d3xUq=N9D%F_= zJ*suld`68#^aEm9o1ESiA0iBZ*;uAABV3!yE+woyNJW6ntokRi|AulTFZ1w0zK;O!{aa>+e;H9k;+ZMDHuZ!E=mu;zR$GW%JW273keiC~h9sN+W z*}x_sA^`{AcyE3&qBIsqoXsDXD1%eAC;5KwE?tf2aC{3H*(b+6kCH>*9mI2$-J3v) zrjO_KxfcH&2mJD1frQrkb))$dIb1z1#A}L1kf=Qv{yZ)#QRY}$BiBb=M2OusGw{_V zV!1bEcjeI~?7PiSEp~cn`9%IpjaGG~c>TeBK{Q!w0NkuhlUqrX>k+l53d=-JwQ58g z9I({WPEMhR9mV}DyQzctMqU`VUb&0Ph^wsVa?-t&A^U@~U0$LZY?3ebkty$Wn%fF; zkwx>|UhQlbjq#iQxHWlDi16Chx5Vs665j@viyDeu^(e|RKc@bOez=Q&e{=rL{AjSD z@{q_Dc*M>sjPce_Zya#jlBdXZ&3?r680%Qki^ zqM|}{UJ+Xn*{+K_I;eCHmv`l9XzB?W?80pQ47u^&;3zWG6f*LXAn6UXJOqB>Pu98SjsOL$LR&HS8*x zaz{^aI(hjNEl>>6S88%^G0^QNe0pr=B@YF9sOCpftG^-wsq4ZH zNx1FB{{lXTA%V-$YZ>I>-qinif|Rp9JPbg3uY6wW8Msv^$v|Y*Ejz;~ajNOOuc5_^ zoA*LJnh>K(Hnc{x*Z<4~5yCM9W6%b*YAoy81WdmCs(L-fC?z>GY1I*rU6dxd{AGzM zk7vC#E3Fch1>45+Zgzrw!loe|z=d3V5lYS%cZ$Tw1BQA}A#WESYq>e$*7uDA8U0|+ znhm?l-k!dD=oh@bvCHYNpe$>UF+%@Gdk|blK1&FZDiH|;*dkRu{T-!mnay?O*yBrJ ziHqI;c^xd5-@q#9!SX1rh7v4+9d51se5H|I-HIRKR$eT^4VX4CgU1gUPzoQ9(C`e4 zdL3X;T&%&o$rrOqjA|eW(hhe8Svh%4X@SU9*h`-^xVz^{*T%Yh`bk?Ag>@m#$wj}) zM7?V}@bGuGoar$Zimu9BhQ&UsSq0Bn_~PSBIjm&CTWX8rq+8E0UZ6;)n`|x5!SN1M z!Yu7Qh0y-ID6uxD7T%o5Z?)Qn{E>2a?3Iu{Hm9%L!|Anzdyz2q$IoU}Ukw6N^qw;w z7_@fUXVT0~IPK3{*QFUO#<5l1VHC(1!CHpHx6+{Q7ZbqQn+zI~Cy`ttNjt19-eqr}oaZVS zh2bqKeEEhr$GpMOZA=td?gU7(ME2F-UW;|~lB`sxJwKugj)R$HHDz33HS79#GZXaLy z(eQSXXxXryBEpI@XQN5Oe+qvb zly0BUSV4pZAD}-txCC4Zy*#?&7r7wxazau=g!RFXQ2E5HuCaTvWO-?0LONXm+;A+9 z<#b>w%2lFy8(K#Q0fk5HO?2kXE~{g6^ji%gtJz(Zs~`5Dz~hB+G-pxSw_i+TyvUKK zkfHWIMu`z{MAvbhvAjnAtClw(UR~Mq?y_dE9ibPPFgOr4LNIBycPkS#l~(vRFiV~& zr0JM`DOS00_TW%d_bFpuqdmMI9vEnxRhqC)ZfzK?T}W0YWq$6z&zhq&)_84buO%K) z%Ys0WASaaKqOWpkkDH8FM!M)dsfPU_2_7QW6(8bxLBEalrWv5#encHNics%P)BmD8 zup=qnCi@euV0z%#p~vrEUtxv*Un+!|vWJ2~CKB_b+X3!WYt+Y*8-`#!c*$cmX~UIU zht2orlK^KFSUhfLJR3SlvB~bLt12SQgl@;#My?C+2+`g2(L{`A7TYBu*itTyY#)E{ zz|l_k91V$AS?0d+)WR;? zz3ZTnY}le?N=OS$Ru~%>mCC*Pqq3B#F}j;`(^l|dgYJ~%Tk0No78>h?q!}UhC+Al2 z_KRmI9o#s)n#eW1hm2Yj(f>z=8*NAcZ?OVAcn{g~n1r{4S%N#{(H}v;@ zlB0;*T&)%;%kA8uMKUgwQ`yfmNl^G-_H+XnZfDaTc9XA4bSQH0aot^amPvoWd(}Nc zmQa1}8)jSb!>eBlY2diBF%1}p53qmrIbUe zmRtw{XY<75Rm-6E-)4}NEnc)3@>cA)D(U{fHq~8?fIA&md-CK->HfJSk)3@qFzQdH z83P7M%KK(YqlgIC_IrIvIGTPB#GSnIxYV5xz#>1Vmpvdp{sZF-@PL z_5@>~Zbaeu=aMcg?j3dtTSZ)hS%IJ{r7zNHYcITq(u|sS+Utq*k$cFPgYUydDYi%s zc9!v|V36fya{E~ULBN^(mbaGhFRTfM0s8js9PpjX?>s;d&$+)@L_;;oV>I70;1C7m z9BncWOR#>9` z%CqF=(W~UjSd7jNMvls1<*M>=km`lUByKI{xUORXX!IPap_s4Y8MhPi0t3xQI)lyL zd?IM=C~N$S$Tj-Uz%awqufgXpNvzMPEk{t_6K9Y_tjxkB-Met9GTdq@=8L54!tko8 zH$J(iO0*1O*xdV><;rJTHm^#6PwH(yeCT*i9akXibf&k5_sIh2_rvdm0zW)n9iBEh zT3!wRn*>WQ0^A8#v=_>+HWF1c>CnsrQAWSz5Vocu>`vte6Q8`0pPjc`1ED}=d0Y!% zWm|AWx>5?}8Nm$IW!66g%TSS$g4b0cJo1=1SG0UmNe3jP7xn$kQg}*+G%-wzfDR4z z?9(c*z1>H|9u68t^R#t!AVs&?fHqrP3nC@{;CEHT1Va zuUv-YVA-^mz!!l;%$(ALQD@@PZ!wB_GX|E@(9Z#cdr~BJ6zvvVU91rZyGdIfn{Aax zHvL+~8wrXTQ^~gR_UhG3U;3E9@dK2K3@AH4X&IcZKtm+FTtjT*L_Qc)`OuTqz&`4E zFUX`PD1j>DSuKG0PymNv`O=jjlRC<3|J-~-U%KF?V&tuwphX;^a zM6zRuH469Y3U{{nUHJ94!4Zm%yIwT1Oj%0)3BtLBaoJFP4+yZLg!AdmL8r zevYNVt+_M_=XpbAj`F+HEwlFg-F$nLlV(ioS#sr(AG`0hQe&jQM}i$K032sU>%qDdPgw&%$=orfbD~YW`9@G4S{Mcu6P;P|zLo*?_dv2G@jz{f`FpTPDIuW%|@#1NbsM)e2r2MTN_7Hz}iXiNO z=E%d>uZ-`VxpulJu!Syp0q&-xuxhU4Sor>tp*>~6@NsNtzXgIVH1>u+C4Nu(x9;Ol zT>T*5Nt4j`Umlq$Spo88Jhk2N4!LVeW-W)S0Yd$hcEwaQyz-V*)9Xtd9e0**Axb$4XijedAzgb_m}UBGNj*tGssk{e zce`~3#u=9oZ1>Mc4!baa3yGFLk4%yS!fBoQ+u0>~qdnFWHW1=&Pr}@bAncD zNff9vsD+g`b4+#aY219s7uKV2{$+O{W(t*tVV2NeEp)DlYO!{60xGnYMbSc4soknW z#Fg~r3g(w6((s6_gemo;iXl6?M9!3w*Iv4zt5=`#F6XY;e{V=89ac?J|E(G0=~0kl zdVs0An9)?;s7?6T%u2IWi)YNNE)sYSLK04)m(09@i1RJn_)S0L8|*n^IjfoGA1mVaZQu zz4rAQDZ{@@v|`mzp0E@LDCvBmObWa z_u<*%0osPsVVM`S`B%*pA^4DvPruGuN^o9zeOC2|(-r<9qM}X_pC8ysUv`6`EL$h; zwqBWc8&qWZp@7UR$=qB;*)4v%og(MmDxIfz4Xd6BZL1wr#Hpa4G|CEsO2x^oZg>}d zIGa*jy8ae??UjbFov^x=PXb@!N$Fw-rs2LXlAWJ!og}ASAxrStAy|hGY#O1EOJPyC z=PHyyx0@=QBDGjf{T%`U4$31Ai#lXK?I|VG1*Z~c=Tu?nJdMgubHD{Rqb8ru_C{xC zPUpo*qw!sw^2jFC4#_XyVcx({eYsT>j&!p$qK#1nL#zWxK3{nwnuoMhyW2ok8KHE-}P#O3lhMPp3f(i)*arDh}lQ zNICjbXYth5Kahw$bz9mEfNGt!#`E9g#fRv#-MjW}PtC0M)9s&A>Rc2cF&*WA2cq&LgMx%(2YM)%P>i}>=%QqaXi zD;-LZP0){EH1{!|g$g0xu!L*jC6^#R^ai08UrK-8K>@#newnwZn~Jk++1;7}YTwMP zjUyZqkUY;A(Q5QSuPM#K%Dvh_MTf4BJan#nyWua&2!P~~)A>so>~_3C`6(6Vy!PKu z|E^LJVhv?^yYHB`w5@x3uKfrSfL}1)(W|!Bb#Ip*<5-W)0u8%yvSl>keUn#buv!F6 zk1Q7iC61mwO)qES8P^&+jMpHn5zE&{)~YUY)^qddW);#VsvWjpu&m@)mPyK=e-YB2 zP94BSn~^}ndy!Jw&kG&VfrXh~gqt6oY1Mz^I)u`Rj7jgqmXDEF{bqQ! zdVSoPOzIHNNoZ{|XnRYlkF<{Oe_`onvTVOBVWRztkgi!p9JKB2%8roV7ui5;pwqDj z&J$}ou@QU{6Z>IAj;zuHW^V)DX4hR?ni6`9aLl9@H#X8c^$nIT^h{1)Q=-r7;VU05 zd#dp^dOzpfVJ64>pZ*qMjo7Wq7?^mH%>~9ht+)DG+MV7ltGPhFeqwb!e!odM@R*Eq zb*07RfWmu;`-$=BeJ~2WX&a$@b7bi|68__BSD{V0#@@h1P=?nf*_J0s@P?lrI@pK4 zhXaP>ucZ-9!SOU6s4~e-#E%0d5@7w1RsOBIWq1Q=Yk3eTZmGAm9(!%Yy}JB!&X$)w zeWn&uELyZ|0dHQog;>zPQDYeGDjl;ekQz;_T1dLVY9UdEcvt-}+@dqLeHQ^thpUMtDT z1(r`eco(Yax!eh?kvvL@~@ZX3x?OQY6; z6X?qWWL(bQ5yWPz%(Oc>$J7CTLKb#KVJgPFNq^qth_Ca)-u*DdRlAejW4juo*P5H& zp~|+FEC^mU(=#U{SVM4tOWoW=`N%3*O#rY>bYNBnqC7r?VeOj^ss$X$B&!x;*T5UA zs%}+E`z6f0s_viBRcN_qxqzje6V>=o9^mfj2uFgNe8_u)DAXV(Uk=LRUg<@S5AX2G zv_v0~18;`eciOQdPP1xO3Tk{@5e@ap_%;SE5B9!=%pf6Wwe(fun})W?DGup|VA<-) zi%{uoN`)&wXsFW=3s`KH^=eE4E;w1I&&NZ9=cGs2PH~XI9t3&nAp?7%DkGUCcF6xM z-oB=L)bQvI)R}j@zhX@%4?EHnAk&RI3R7zIcX#GXBdI)~;-98P<6GGq#u>>HpEbZE z`>obas*ERtEc)-0)p-Hw4Bs3_4CMyZU$|=%#rNUrHu=<~3YvqShRQ~%4?hMuZK*NN z9?K06(Dd4?^cOWLC?8__*gx`H1h76BW<^%ZOb2Y@&QP4n(U^dQv%|S-V%c0Vry~`4 z=ymVbSPLp&v~6Avo^>;USKr_H$4L@d>Y7wtKyA-jF9shAHiKyC7OgGYY@k z4GhL!@3Ud;E+UEZ25~*B<^J@3$%jD|hIMq5;O19ix0~$ZqM<)@p7M?};e|cXmokNO z&4GT8e_8$ zci}V;iGwNO>B|ghQ;lgXw`c6a6M{w@V4D%;*sIgdnF5)S6tj8a<}_$aH0#=n>Xc!S zqS2DOo9x8hBJK?q%&?-oNPiPsFG+q*Jyu$s>H?ccd5vd-qE@OWX0Tz|TOyMRi?Zrv z@_t>E#%g@sFwzc0?MGa*uF}VRxOLOQy~`SN%Pu?lLg*I^@LNJ4eB2UcO}c;ZS?^D2 zp!iI$zE_Up98YY=YngqI0o}}mpHJ_|UG01xSl)s;_7U{8Z^tl)=~3=UzRF2~X16v1 zMLndZ5=;!r62w!?)srHP5Z_{$rZ2%HqeG4-DtEgHf6P1o9=7tLp_w$N)q8ji)-^oa z@3*)APvV1c{Q&fOgIWJH#uiY(KMCEd_(Mc8<9WZP;tWI zV;uK-e!RmQOIlTur0>2?>P+SajoaQKBcz(Kpj9M+;rn-Qm2B9hElv%(^fHO7EmhcB z*0O5D&3?PqkZ$CKBV+rULg`)~V06rJbTxN{lZ}PF%MB>b=L{Vq$A#_ zYIBAN^>yfKeaUgxY$Bg(4x|lj;DFCB(DI-L^xR$8pN`ZC-i#$|7Pi&S4f3EEg(qg2 z2)it`2V%U>ws}Zky~D0w{|?jN6uSFH&3g8?*s};Ut;Pz+?9j*a`1^bDRg?P4Pj)z@ zEs#hpLGfqv^R&y5FpyBR%5&(2_(e#0C?dzCST`U<2OdMPtE_AIsRjj_`Kh`%x0-g9ThYLf(PU)^>lk{UCfQF8-+W5T{C zm4-U%51Ux|b}J#wyHoFqS?SK&XZCPSa@Q#i|MDpX$;prZ5F7W-$0}|_D=Nd16c3qM&~EZhR`e}X zw`XU$Iq6nsLe5!8+>lDOx5vRB9;T~mPs<1kMf%d_3`Yy3@ z8#$b1Hi9kPo8O<-U>L7tES1F6#?rXfn#WKJhRHdE5Bv4@$b-9NK{%PE6ql6%=YBH= z_XJ(j{GgeH-@+CrVM>;AxHIf;PmOr;Z9_ext)FBkxwZD;mQ;i38%?9idgv{k<;Ej_ zQCvP;PHftP2P&2rZsZF^fAcHBDHNz}f$jxf9b)_)uin4vbo*^6 zVCmNaTs(k8{OX?jBDPqxy6ei$q!19zkri-$SkFb5(97cLkOkw{B=S|L-G?jyGNx6! z^eUIi>yXCN6K~nNt3)^eBXxK7A%MvpTI?3jj^d8g!5Q_$XTS3IBfeat^;}*r>&mFK z&?Vy9ZkpgsR_uda7JQG-U(Mt-3mb8Oc zPMI#~*0J*}`^$~37la!}8Sq@7{xCHnX^pGFMC&V=6mLPy zKrd3PtcTqWK;@yN6VQ$L+(A|LEAk)e5BV@+3x-NV`_3}CDE;G)4TW|r7qanJ-ViB| zvy!P%M`q3s{;tZ1BL~B1z<_wYy{re8)3HHsL+o4_df%3B&lGB+NluBWpQQTYC0lUz z%$H2$tel3eBQ>7aP0fcVE(Od8a5uP|a+eK~C^q%=C_f$arhc8EbPuXAm_#c76?h}! ztB!x?QpBrneMV_;I`cQVd()90m#E4s2Prfe?P_~SA5Ass9Oj&gjeh%{^vu zl*p!t22&HCAkHNAB&KXCTrbR}yvidmj9|7qsTDgB* zj`DA1TJa#aio&8xCQoL(s=iSICxiq?)H2l%wjp>ofFA-kHcmkE>%_$MRt{ zzwM&Qp`UmtgKVQ|g<2r^J^A1$r@B$5TJB%cZ2CV+DlIsGmqlzSE{+NTizvxqqMJW!^EC~uB4xQ*)f%Hw-6)vXLA(!QuZFH)!u8|?_6`5qDvZktf| zs~$)ci+(1I*Y)5Ctwz6S5K}$y^@x z*QHtE<){ibUvy+b84Y8>Cr2%KF;kXG@!n#qr^-1+>l(nUr5dJ+@qi8YWm#l6b~=dXg8)pa_IpX9?>x*vG9dxE6TLw0?~Z0PZdNF zvg+H#zU{F;mf8#A^N?@tt#PO!rekI7WytqC(5@Xl8{OT7@F!NPaHpn4QO<^IQey^0 z8PmMd!un+;1Qr2|EG*Dii2`>eq}BjyehRzuCxk2PRM1Nn6ENe$%j6~dzYQ)L4jN5x zcnY6%@X4lNiwvCWf}TrQ@!REe%ri%B2GEms3DAd#(*`Rf51$|-LA-!--hMOK;us85vn;*Uo-==ahj?ZV(Bz&>! zas59d4@$%F(WNxy{)3%42*>^T-R*ix!Bvf+xY0bQ;$jMEobN@+WnYEL-SSnxPuNh_ z*=5$22*QqiofRX1^Y(3|f6QWmcu?(|v1zW)6Fh@fh!$(fULH24Tr-usOksmq;Ee%{{A$ikk+av&wg28jR0=ld%oDyW;%T?Dz#}j9^_CoZA%tg#wDazc4;C+? z zA`PyX;kW8J*S~{A y?Tv^f_mR{4=`Txk6M6moK~X<0;gjTc{!Lc6?n96}2zo(~ z^kPRD(#MI)tdA;Dq@cQvibf-nV{SBI7R{NNnK!q4k}D~}7qqet`I(Y@?i8>$BSP=V zTVQmg5nu|>_K0OQ-nmUYdT2@oIQ)UtTGAP`#olpvmHE}Dy^ zkj%yj?e#5ClJ^KwHk$a`Go2MSGsh&m)U>nI@gy(Z>w-wZ;IPi(;*+fZI-R5c27Fr2 z9VC+F4~Oqa%s6sWm%7!9AW_&E+#X^;L|ajD*lu>78hS_CNMTtx<2AUwo_kzeLm~D)2~>^HzgY{~J?4dy(S&-A9NDWd@-jb* zgxXs7eGjb5GONA+b(Sc_IK6yiW%u=}Wy1F;8V&V~%!Th9Ft16J4X}J4f zf-a$N&5AhPX$3PlP+=?KB?4SB28&sxT3RM_8L$86+s3zAeR&DKe-)rN;2$x#Gm>yv zuh5S39W}00sxELS@gJdvwD)SN{_PUccSJR5E>v}FnWceO1o}QpiWwX=xPErOO2~lP z>IXw!N43Ve8#$8kOdNKK4QPjQnN0plm_pIM66cU2_zrZhjh$H*8RC*+UKM)e$lVdV zs{4~{*KS;1=Mi@3&0jtig>Tw_$ad6n@c{#p7u#bhFi-z`Q#+M88rs`V+`qRYE)qTO zY5r7GaQy0a#dz?z*m}4&oYMIC+6=c%ew5&L)0NSQ<%dhsZ~EK`58J}jTmscZccQfE zchrQT5aQ32w|G(7L$>t$dD}!w1|F9P5E5=b@`ovuiFYYs_H^o$u2e_CQ>|J+7wk8l|Ly6mf$; zyM#A7lvGWeFojC^;!1FS!`X9G2uZ1ZRJg!IvHO=p4(32tJI|$@6oRm4EC!A^ZTGDS zG-j}Jb9DY$BEcpEDFtFV%)M>b;@&H0HDDKpS`@62yF%i*Tk(R?+lCd?L_Ox*{#s_L z939mWMGEbi^JdYvglEC@knJWw0S34Qs9x8|x6BYG3_h52k;lGFwO zSqF=mjq!r$?`#_vkcw$X_0l(*NeaH+tqUe0l^$Yi`rNv~wfHkriYGJh@amY)NG1U6jJyVW^z%4ReK(z`0>2MnYGf~e!gcKfKyu}hrYgs?N z`!eBvGk!N#r_)_JI+OE|{YAA|I9dgRO(!>%*iR{$WQQc}tRlieqN>?(ra(~vkw5FA zL_8=QpCQd8kd(Ubw4GX`hjEI8^CxnR$lhrr1mR-ub7=h4?X-byd!#Z*7$on=WvNNH1dP>*7J_`>0)ISav1t2K#`xQQ2=R+1O*mgEbtAEZTH<9JYuzv-XPK!Dhb4ER<*IxM{yJshgeBYCKHB-v?HOn*B zlD129Z!8(zKW^s*P0>Q_>r{#H4pqXrA?`6wG?Qojdh!V>l`i9~z4m21zo?7E{wkox zD3R@?f)Q=60PfzFg_H?(zp^Crl1>7L`rVxh#W6bJSFM5Hkn|3d`{R#fvqCB-9vc|t zJRmHX7QJy1U&|W5b92VjV4mW4gut6O&)JaFeT4RJkJfk7SM4zr3rsg#!{se?ITlsT zbbN;2g$+H!bo5!`lN}#`Woyx;ku5w%Qg_ueI^!9%8AoXL7^e;xz5d8qpMWHh)+qw%IZR=3Ki z&73{U@q4O537Z9oAxUCT4FW2WD4=8%uSh?7tg!_Nb~LluxV@xzM@2RvV$mOr0ILNBx%rp+0F;zc?ij_uD5pmRdk z6|}fAhfJEM1%EyPuqyU3OnmX9)eh@qtR5G$`?m+V_0pB!6I(*(ypsglr@q2NDW*9X zuk`Pz3ty3@CSG(fXa{oYJq}@@WEY5v^82CMqp_etwN`%~Niy?tnja)*FG-MgN%FawBoN|}|Ph;mmZdj{UbtoU>s9tfcb%s|(GJ7e#5!G?;ZyYg= zhY#y%gNIbP_O}=OT7qvlh5TCxZWTJewdsyBP55*Tfo7E7|2m|0JPZZubBSW#M*v3N z5CUQlrRs3EMd9X+g-Ge)G1=&8)4}7`KwX8I#XSj`@_`Z3bVVzZ+NgOMn)?uVHAfyw)CdU8%YK;ZF41hf>&9 z@wI*e7MtalH#l4)yW5BmeH`M)JKk;G>`0c&wVx~YZ5D-MCvvHrjbX&-)@xd@Xo#23 zS$*j;RlWUb%tAY&fp4;;_5K?%*p+Y}BcQ<<^|e4qes#FaEZE?exlG0vgT^J%7HzHK zz<19WfEq_eEls`Pya+6L<^2(@J1ywzwD6~ac__H#P*U}KQps!HOs2cn>lKG8g?l#> zu2VE7H8%f~xNX8NbN^_VwFOdMA?3C0i4U0VTekENlyaF8DUSX7WudzdL1}K_svQ3- z6+>=7NI~F1I0rF}yvWXf88B-#@Q|vKl%JbB(Wc+{$9gq}C$Lju9Z`-G+vOCnC(PA! zBwNN%zPIYiBZ#I{)>^H>hx`iDorQ1O%d%lRdsK#NYt%Tjrs*;CT^2g43WM!5tO+I+_(dYJFY2TER;0u zSoR{R+E3qIE0ZgtI4qb=B7#LVgG~(lmp#16As8c*!ZfL4Ey#O@5xrLJd^vAQ(Yi^+ zRBifi>Jpy6F^l!}q^%gHJB9*SYRzoVzb^K$YYt}T-#+}%ak6N~M+9`#WbTj2E_(5> zE9;EvrWmA147I?~KfNtYt}oB@%B0d}x1khkHDlC$7SY>2B5&nBL!+0$2$Rk0hN3!X z*;1idK6j+%qydt7njJWBhm3u#f}G)T=k`>u48Wm}rX;`E2C5D5C#uk5^{Q;`msb zgR@1a%h3B1LsF5j%p~3j*(JDHtR1BA7AK4Ca?@M{U(pq^kGL#&~S*C8K3)^OQ1y&jzBW(=#1sUe`ArB(5 zW~QXa+oF%VAq6od8+qS!G=~;2Va;>GY@6-1B7gt!`ksW+03xK$E=8*`@eI zUWNCwz;gt21)al+k~3d2I4vgmQxOU7vme?g$PHSpla3A|xOrqEO&(EvkJ5Z3j1~$wW(*}`y54#_HeM(tf)E%UOpW&*#shis ze`D9%Y@(6izM|wk-rWX|82{;TTJk^IAp;>*890W2B@dyDn^Zm!aIOMWrTlIU1-$O* z94>wZDq3$(2rK6c@*Q%3^I00DBgyq&Ye zycc3pESkSBgefD8RzxeDsASW|xOLJre(0Oy74z%s^DH~v%oxR_4NdD`g^>Huc7xoWFub4VUzS3qzh zzjxWmb^HezHKW#Z-U`bGq*TJJ_4MtkfsQ!nQ87FWQ+h6mh=MRve74C@Z+ev664BZN za0jH&er{u%5+S2`XdS?`K^laXaNf?)ku(FWuNym*+$IzRyj#SgtTdG22`_1xU4AcY z`b=iU=ETeTDXmM+T^w+ocud%GTWdQFg03UkfjKz9@YKWm-TRRnS8p&SoPIY2bnC&$ zy*!N-iM&RrRD1_sWED+53&e+RW7^eTuFjiUh*)^DpuR6pfmmcs%XTL;oh0{QU;4G+ zOy3jp2OlQ0EHj~=AqY1K#q)H>1ir+I=2+lbl za7Br`q9?tD`Fkmo)fNITKy$rN<1f;r%)#eq8khd1=_L8m5w?Yo$>w%Xm+DLfsbt|Z ztn?MnN}^k@cjvbgQx|HAR})Q47}0No>BrAQI>4!EjRT$SQ1O5L-k}AWKz>MY6ngFt z=Q{n9Ig ztoBc3-wjy-t%#;xKf2?{rXj~VUGJHa4zicj*)sN{UKgZ1+I_JV@x)^OdZlt{bmfl& zeCdPQKewDx-Z5FW^!dnhveoFPg|(!L`=|4Cjc3znKHomp-(+pf=2FC;-*&{eAZ9{u z6Hok}s%V(M1Zeia2dTe<6=daZbGiB1r4KkF{ZfqU7~ocZ-@vz!NRp;g%P-d9dwLRe zXZ|fljPy`}GbiAXQNVLyScd<(7y^#?J?I!Tk6i63nn%@7-;IFw% zSCUr!T^!f}F|fCwQeeGE7J}%Dk-z@~`_ZJ2Mullbl&ZoVRj4syX}QO3nO@y3^33Va zcm<%7x5Y2NUvxdpO`&_;XT{}zkVN30-v~jXNcy4+feCib2kLScnZyFSW}K-T*Gye# zG|A_`0?|T#6f)hVCf2yqG1VpUR(xJb;7nf(!B}(&^O!M zOImubS-Cl-O=A}$wL$P|ESRbcd}Rrk^92eFY7b9@0;N z2prQJ{JR%_$TQ6~L~gbahZlAPcfl*r`(*-Is`vW)Hq+AW?>_`}*IvuG#`ax1spzc4 zNFYh4Z!1=%5$Q4&!95`#yIFJp;PmfPAwskt5^ZuCru9yy-~R^neM#16<%bd4I>kvZy1P^^qPPkhsz0l5 z-Abm}q*5ZiP;mB20ztDXlxOPTYiH?}>obL*)b zuVC-tnb9CkWsJQ%*^+n|D=;X5&wXr8YZLsKA3%oGxu6kmYu@q~3 zm;eqf&P!}Mv~WAcGNp4>rVLuXoKXoOYHkmU}ZYmqHbk6k>Z;AahWmFP>E zq)!mQMRNCMqq6Ca88qzC+$)kFHw&MhtcT`ZEDZX~6h^>~DjTfR7#R($*S}qTdl|ghv!Qja}mc{xlc=siFR#ZE55iaPz_z3Ll z4LG%{a?T$LPM^^tlF)P{l$G(@#Y4s3$7O?XxS$y~OeRrz#}L$=SL`=bU|)IDo0QKt z;>e=p#Tm5Xcd=F4%1vq8_m=|58!#9h6-`<}tE%+wqnp2^Sb8avK?)0!Q6dl!Gjh3v zs1^KYZCR%@>JM1v2<6E_&eTmYKZhGc0%(wBBNu?WR9#11#VdH2ifC*{LCXA169P` z#0GmBMbm_wb1FGfNpjH+X^ueHf0GzK2F6|;n0*AF3aSxTlq7v+MVV$47JlySP{o>0 ziv5PUP?Ly~y`8@{gqj~jC zo=Yi)dUTwFU@xkhV6i9s2tX+ZEiQ*w-Ur}Qdi%k=-bLZi`k5D+qL8=;MLCMPB>V!SQ2o?g$NSo}*+qCQk7D)GkBCC;!Ti zG6snu%C;R)ffH5gJHb&7Ns`j@eKLvz(z zrici~uA#`!ZzUQQm*Pd7jIS7 zT>v2yZrt#`)qk~;a7g-0LC@h7fPIn(QLZRqU5nJq$K#l z2Yo{j;vhSRyBP6m(^ncV3m!S?qTPTVJSb}A3j@?SfxTqlQ7Bis7|5g5g6y(rOu^`r zCJHoKHEiUc2JTybI#@Vhkf!=$H7Q3Qk|z{@2_jfxnXl)9$0+^1k3Y-}em0ss{q-+J zsmTFjJnm1b83-~r(zqcRV;Q1GFBi;1P7C(|_^P15CYOrk0vTPsgS3xSbk9G-syq1I ziEUgJM>YfEw%qi&d0o#4FsXr^n+qJaZ;qd|0%9m$Qe1ag(?#ma{o|eMBav~>CRxVt ze(Ed_P1F4RconkvgO|GCGPR26*5zARcajbwbPIQJxS7W}XBuNU{v7#Q+IyTvTuzx) z7F0^3*N)PI3sVHwE3AtEY(zBK?Qr)T0@sdX0`G$>u4&5qx%9rnsB68qUdFxyHFfLv zK;yfw!w)*A^3f_{Ou3gQk0tIPRKY$t!>?V@CsVn0n1J;H%Y3?;m=#(H*2gR=fV$1H zJc$>+Q|TFq>XoaFAKWG>uJ+YS6uk3dK$W-=rG=W7YeBNXTI1y{ZT=EM@ok zMUnp_nr=Kj0pKO{XU4}Nl;$C5T)zGJWnBe7XPGiXZigg!zx^ZSyhl2068A7o`m5Bo zGav-NC00!kf-BguwhvLMc`PL-CfWAW5y_H8+5EF|cewfpHWKy}~Ls zpX(D%^Po@17J+S|G9y0n`R3ooqw!_Ka~@)ANL_hSJSTD5vp0}`;^&Fi6e7x{9SZ)u zt7~p13;a0`q?nU^n1{kAz%b|P+icwYeu{Z+lT5`D#aEmJi8_A{-(0l<+@j>s(yFrv z=rPoHVpT{=y+=lt(QVLq7!kgON@R_GV<^ZQf4t5zX)u)h+c5lb`xUPl{tRXE)x4(}I` z#G6uxBU_k_{(TTu8oTf+rVp<*tTX~gwdgNh27$|@`_6=T=S{nfKgM8n2Fk0^O>rc{ zu@7Y$*>CNSXh5+xzxk8iu^#-Gac)q_})zQxbw3*|Qt-62>xX zx=B5rfL`zyKmOfK(fk-0ovzwU=4jr9m!O^EW`esUTH*1Q6ZAR{^QbC)*pfj=M5{jY zUeKJC-$64+K1uM_t?|vSwSKz$fxIfPX4)pfs#{|I*)PmJl~q8t4omn|rMNC4%C%ny znfT;4*Fe@8&}bFCO{gr21x4cJY;G42RBsYx{KDnG#5Dos=>ahO!*c0f`K>p&;q`6o zZ65bopO$+vgAbq%o8tQQFR-K9|`pgiCVAVh6aAlHO2B1pYVp#nTUv#dh zQ{q>0xgJTO+p%=Sj>_D6b0g{XNU6S7*k9;5m0;5cQ#BtozErF(xX7Qs8j`R3uBD*W-NuilB+EMu|tl`wbs*imop8xAc4eyg|P!Q33@qQS=h(aky_#V6P z`;5)o8q2`!!(H8LnjxERNrJ8oEGY7m4JhOm7G~C(lbnH8kA0MWVWc!{g~(9wdL?>$ zwCTQE_1y~i{idKA!BcEZ4XjG|VBL~7;IX>Iw1Gpx&ytZ=d^M^ffB$ky)`PB_+;$+| z`*<%PUPjpZka({1wRQ8*Eksb0MsSi^7lOwbB88tW_OOTQfL+av?2p<`*6y-i5Vi8( zy3~pG?0MUGDccLl_sXcHtUcNq*6I}B4lzfI0VMS!&i1~IEHbUV9-BCMyf@?7ogiO- z#AH3x@I}_O;Ga?f{Dqo%@(?5?2^jG_2rQJTEuM8GKxE5oV>8ssh^qJ(gvj z%UcME+d~8yFu_ayu;=%R6~*8dh>BHnZ}pp}08nyCH6tKOsL|qL^O{$g^j>yM-7_-C zpx+8rx^(Q>gjz(xITGU-euK)gGl5a4=rw%FVd{alDw)!`K&*aW zyT*+-YLDo)+~jcx?AV-YPVh^L6DuyC>5HRj_6oD%LC6B-=l>Wzc$=snIM|P;EcCt+ zrK7e$htW0MP2QNw4(4ppod@BjxE*_1{8xe2gg6nlNE%FWIyPh*%jSKgkVVL9l}To5 z)HNp`NEGRFb;FLnpe~`B=O$hVXJzu9y*-y%LQ!L@wlavQjm^p2$na3@?-8xYOpdjj zwCM9J2Pqby0_r`|BWZbiayI+SmI!%HMX^gFS7h_NyVT&80b1fWvZcOsmXyz{`qYud zvr$^r@g=pyv%b(s4yT&k))XsTAyQn~fMxivC99#nK9)GJ-+sJ%GRl=8qlS!MUS-@2 zC_SC}<)x9TX};(InNHCPC^gRM7bbw%OMSzy!QIn#?{9(EZ^EAT!G#1N*)g-3L%oZq zuYgvc(uxuRB4hqT3tjqXz|6%-?%Ou9usl<1sF5hZqiphe##|9(a;jaqu_x`~UjT6q zwFLzw`D?xWIb%blxPA4njsJ8yhpMMp7{!hRU zt7Lc~U0o)~wNF^ zy0)_rJ8y`rZ;^l>HZ+>C?%atT?`8a*l>?8#rC0mAbq{)Og$3!wGJr4bME4bD{O{Y$ z#8(v&62MI=Mz>2kQY8D0%Zq%stCh9b-}D`#1BoT|tqj?_H}bEXsuO~qeE9htd>QfA zqpxYLnu)f~H+z3Ia)>yr!VtNR=VNFRW%zD@(~duWR|~w|Ry-o?)$%=F&O@rWVU5ts-4~G< zL9RlUs567DjO61X=XH2aR{+yjio;xmN=Tt{j9EMt;{!L9jPk3mM9+>1lj@U&O* zsw{52Q61Fh^=wiO9JIgG7Lk!>>i)!kXTEJKNFoA}&bdub_0U}(4N zl~Ej+ak&^VOqQ3L^4iuGN2px>ngBXr8*4P7(ltnaxb0}-LbFgd2S`YY^rO<_qbTCC z21x`ioA0jbHjw+*2|cUV(+;+w&pmW={;dsAoYn6}<-2z8KhCP=S~$1Q8A@)k!!d<4d;Q*GPBc(wXO3qrL7 zIKzYExXop}*RHjVs4XU6sypL*n)LWZ%HBoa3d2^m6Jt zHNW#TYpqFbtsAB8w)Uzo%a7e_z|%;z^v!9dpITDN(Y6+M%Y0f>MW%Z>!l4SS4j8FQ zgp0E)MY9vkmvoiur4GG*|2>l%;|L6Oj<>lH9tgXAJ!>;$B}vl|TWAX{3>?I?I0{CP z8HC%%*r?Cv+PHP&-O>!ACY+^ZY15>y-xFyD(dQoO7B8kxmO1nw{Chw=A0*l>MhEC3 zMJuQrewvpxQ#2`yaDxy%h2q|#8+@k?3{Oko`OSi86d0l`vtRU4e7OB?dDe&p+-i@n z*#hARC=+kDOF6Nb85(??TH|^O&#>)?l7wFi9LrvU0)g{(bjZ3zQmWbuiNmb13;!9MQH9 zv4;RF;|KWGv-Z-419<;u>s8Jg!?=MTcD43YEGfjCYCQ`|L*{Di5KjG{S_8W5uEsFv zql#c%#EDY@ry0kwzBUZ zQPu0%tPxXAoAHUPQ&~XNK^X`{_x8k6v<1!w<<-m^aY@JmFmz?y+a)5jyRgG$cBGL; zae#XhMZQ$W_%2CtI1+AnF+Rv?HfgPZ{g&=zxF@bUj>spKQ6{2Q#4c$Z6ocBHJH=U) z7^-{tf+^-3Q%aEVBnx-YSB@$T(M!q-O5@Ibo1VRIR5pD^!q;gLKmS>uCaEG3c_Fs} zka-00*NuMZ`Gf)O@d}pT?ug!Ls+{Zb*8{+0=XK3lJlp;|H|DgvAHOvZP|W*wQ~ZMF z`Q0dWmlC<5w@*dYTUCCxT0A9IHoBO?i+VdH=w6*dE=I+ba0LjOtFWlZ>($2AWYGJa z>QjTn6Th`Ho}!QhO1@7qiYN$Di2c!b$Y`#YxLPk4L=9IabQ<8`zLU^VgF<+~MV$r8N#6q)qe4vQ|}CaB?x zl^duHo#P8en6Q1DWn~Jpx%6Idq9{c1<{52rQ`#H&e_XxeUnOqXxBIK9$+ny9CfisU zlO|8L?a8+7TG?D-vTaXxt5)`&XW#q9{p`QsdUt-V6UX=XGm)M>h-p+x-1+YiCakjrQ?PMGZ z7RvDNZoBA20?zc3mkydI&kCe8|GJI6@m+i(t*A%P6H~0$qb9Pzsa%hXX4T{^N>XwwxB7-Q{*%-b z%$_QyTDPyC6~l*(y#DxD%R=!g_9V0}fGFd`M-TAX#EKN*MZ7(DL9Z#sUa88BhR-GI zwK!YE_*3TkAm9ZveMeidyaZJhb1@Ua6WU{bcSQ^3J6qwKhi%h@#hl5Jc`O)7-Y^vL z`gkSj!=k&>CJ|-Xw&8zwIDza+2YWT)3W`G&sf};Hfx6VrjH<&wo=c>H^vE86U(eT* zOPJykg{yG;Wm68%?~zfC=EzfA<+}nR`>;RRK281E=|jBL(vzM!1UFmrw(9O_@ukzA zld&W!N6KeV&CL#$B|#8(n`WvP?&c!jj}0+iRoTo;&)tStgL=e|)q%Fav_sEiCOvvI z_ipTERv=>WvCv}QqnWZ&salYy8OlE_oRgOktv}Qc^yEKgmXTn%lz%`LWN$F(`g-eg z(t~?d>3<2!|2)s)=AS3k*8PE*{P8urlC=vGnJJmANjf!pOJr$>tUR4cAQ=sKpRCxo zw%qHM0!HIYNRUmv#^hKoUeaaTm?#78k0rS(wsq7sJHvfQ79=|Q>JmK~M^tnclbI6j z;``HF1H9%0MnAFHTJ`Wlh$)6zSp{Y&O^QskBx=}`#^YC?w)jKwE0_5H#UR1A?D&kO zUZMK>gZF+|W`-ffpWviig&qpMIudS#&l0RX^H~}SW6uDPK>=97PZVZkiT_1l+Hr|& zV4F;G?MO`Cv+*ytfn@0FiW$klo3e3L9PQ@}SU9+KBP4w!$mR5;yTZ=+&pmW`B07g+gkk+LHXEi~e)l74wc9)t0A` zkM9RtG3QG-{t>f0tCn8rO$g0deTkILzidy%oitc}L`Jwo zL$$kz$l+Ufq6y%LXe#v9^cI=xvAm(|yCKht#w&}$E1T=gy;hQNL6&S(oPtG~j)kzc zO8adP+|Q|>g>%S>6%eGKY)r(RrB$^lO@A-0EHsEOSHi-HAr6Kt9jiPTbqk+v6C!$R zSgPysti!a7B(|~pQ+Uv^7N3-1H?HDy>$04FyZrOt7MBh*W_6hzO(Pt-+qbos_!8V8 zG^QSB5h3V&1AWD-G_YgBE-R0X5A^NW?}1)j5~Hf=tGBL!r+<~>lT_E4?%y!h!DPY^ zBJknhM4ho05WD*c&>IU>$R0^%C`A29x{Ty!q#I1m{HlSrCro7{)YZmSgQ6|4?;4kJ zAz6DP|8?b!_#oHYukbM$-kF&g_(QHd@wh$v=#E?GfDhI#+gm?Ud~Bp#oM}>(#v7oa z)Q*X>%%cx)Jfp(5G4AEsi&9x*J76QlJ+2=sIPqGdvKUgC+v>Upa0^({j|98{v4zkp z?=8{ILSs_mH-c0)%QI$ES;G2JhsR6PU=BLREqp)fqwa9SPxeg!3D}-?EaG?Q#!MsW zN%OiG9puF-``gH$FTb|DiSXLTAQhLT9dU3_frKI=;o>tFs=gSHYWSO&*}K2+#jqw8 z7nMbD5}J#%umD)I(nQR!jdpLvr5{D<7I=`sRfWPD5j}4T}^dhJC3gKciQxR3MR){fve2XA1j6H)$9M`{j$<;1u3%kDJIn@ChYRIJmO55xn2q17rQU`Bvk+KvuU&v#m3s~?rb55)#c>yI)|v{GN|iissypy zjn%Bbqb0s>Dc*JSW6j&*Ds31B1fHN)u8vQH!6&4=*KYlRS%L1x&(Dzf-YxEc(eTKj zAZZJ`JTZLjDG#W0{KwB!>BWI44q|K7zvhx_GB#_q>OQhT*`41BwP~%+F)%NY4(W&B zYEPD6C(OCN>i{(dhzaA$)qSX=3RxzWm(#*fxkAUx7iO?kGL5{se{SL6_>l1(UKs$i zDP9+begUwz9?Oy|YbAtVpR!>!#SWYzN_D680K?7W1g9SuC1DxFb-paYt6xyXr}hot zDKCZGA&;a_s7yWIdutK3ln}Eo__2O=zduP(o+BYMaCbD!^@Ky5L8m2cSS8~=IS!J9 zf7i>WiuP*y@oNnHt{f~w?3boA4HYkE*}QDu$eVaOCnp5Bo&aK+&f7HC6eNR%-A>|u ziIxm8^v_K~1ov%R?fYO`$HSX@_?|B>Kt8K7Fato^jQuBURHlkpqJ`0xPH54k167Z? z3-)pKhwXdA&vx~)JhL(CkU5?;)vNOR1vNzL) z@4TTY=Wwt(a;4nUE~5KxFMh7$tb|rO6JKQ?+^b4(MRW|a=vfiwi_Pq^75>FV=MD5j>>47DAhI{A++%?r;_l(suCFRtbrx{d``E>vhzS z3X`AX@oxK%X~xQN5ow8XG>O*I-W+@EQPK@!C?rUTRd=sSp!8s7p*w%z3=BlfL*>>VH zqlYWiKb@JLyOrQ^E?uTz-DI&8L*algQ2*0;wQg(Fg=?RB6-b|?OX0vK&<-RpS&%`_>+b{yLPt&;|Rshj34A&!*X)oe&Iw+Gp-fd#c`f=omYO2wxQ-C zA_;S{WswJfybgq3Ezsrtf&}ZjC5pY(EXMk<$bVYMHn0+ldAUYzxsEVFAjFT-I;`L9 zt`UafAp#Lr3ft4vK5$U-2ndOIkiYz%?;CS!R6lL`o~|{{oPK)Zh98c6Naln0SD$``50j+|BE&L7;1g$sUmq>7~82` zIvcpG)xPbajH<86#@$LU$I%rxo~xvM*{*p($ugFVHM!GM)g5{Z zJD+!1ygJkRlj)?cjLW&8A|!oJ8uu&dMJvV7zyq6{x9H~$p5h%B(t&Pwx))^oKR&qi z>93G(vEj>;XwH^xnPYhqyfyxy!L?x_r=aQou5CqboSXY`?m^@-G>c}3J-eT`^0ZFMkQ=Tq5-(hI#c+%QxBBM zh4ubEzu6gjwa-$*D+_KD%x|+NzL3+>#Aj^zz(AHemyib0$QeY=mSS%tIBJ3pdxAGD z8z-7g1Q^4-?>XXQnq+~RpVyNa-ngk7^lFy@_Kq>B)RccSk;b`6jNrkDV)j*Orkn3r zqXE|=!!1>~d=~y2qfRj73nHus_jqz8Q;2@;%?|_!P$DF_L#ULEyhnvunj+Bq-MxmI zjln!arNeW7upG;3sc3;K{mxwaVbf~p%f2}FIV))&t%Cof()Ln%3$;x&;9Hz}s3JjA z$l{#gTqFPfw{f+0AW~+HxbVR7gSU~PDPK=pOYCZ9BZeSoZ!}pD!Zu!t)={!Y6FEg> zrXKvZw*~%wAQjOuqhc==SnYJDt*C*mZ0bwr`WDr=wt7$UWkh96f>F&&8A=1C+P|29 zRh5$M;SQ$z3w*Mg2PdPO%Dx$&tN$9N#$)YJ#G-X!S75RC!aZgRiF#QVevJQ;foTIV9sk?Im-z=mXU`hTZ&wNz1Es~a5w@*FPjeSBe_rToaNPad8Bgf~ zJ~_T-?~iCdDjp2XE{2_NOj?{cG5X@}^#l$ptK!@0!88;vTkqW~CZtp$zEe$zq4FpQ zi}{gUjt%3+rlS=X4@{KXPQsDoWbZxWLC>mYu#(WY!(Ybf65(y47HuU&C-iy1UYh$T zk2Go*26Nw|$uC2>=D1=oMbt^ZUQAo**#8Uj^kPM`PdP@_HFyban&H0Eaws55k^-R@ zzl0KFG?Ng&+%W&Zk5ykX#P7iiazqr;MFSQUMGX}!Ny3BOhqLtf3XHA#A!JwcY69(!z3)LHR!@A$PI;tMs0llrg7bF=lCwBPG-Q9z_!^+f*l zsz=8_L~Pu!(>i3YTrVN<_=G ziZ>q6>CsIr4bIBrj}{PJ(7y|hvg9dY8t9%%BNNrj%`Uwv;8{N;tB^_K4eWZg>98t< zmsucdqS~mMb&Ci*%Bd#o%vgz^&*uF-Y4cuo_@>G!+>Cj2mk%H*7ef>1Mz1`#Z5PTY zQ}J@VI?ryWQf)HFur}-`s%0o8Gx5kxuwaEjh-y^${37jWgc>_*nD0{Nx>@3nbAulZd zre>1TuemHc77o&4I;fdP_2|&gmlK;V>gjU_gx9aCYx0~kOu6GZi=t}EW^MCZlAN^wGfZ<_ObJ)RT;Xal-JF~tyZRYUIkT$0O`~IC@?!OI=vR;RY&7+y z5VE3*?dJYw-H$)sNYLw-@)?U*p%0geORs8HGQfA=g~ye&e4*@b3-#^LyzYjZ5*;y2 zPOI2T)y#+2?QP3RU9X+zwfPZwd>omG0Pj$hqPVlMZjT${FevMhNRxQKe`d2pBrAiY zUbt6UE9HAsYW^4=fZnq88I2Z>5AD%n<>Xr4@8^EI6<5w*ugY&IL$Ctnm!{6%<|3qk zXnqus=Nmqp6$pLB}o>l&h3=a6M{ z6*a5SUw3IAHr5RoMc8#pITJYo0x>1ey@NzMs77d$jhP>E3HggL?BHA&uc_`L_fLw^ z7U*3+6K?Y8o9g2f+MqW--4&KN!DgZnuxi8B3Amy|ML8`~hHS%^Y;|*1E=g?<-dI;H)R(p#j#ygA~iM8`=59PdQD}OQu7R(@7@v9M$hx zA9hiVK??L{3>0!p>Z|K*t%bm*0S`VmI0)BLkBR|bJh9j})roGm(P}TypZ%Xf%{DmJ zBQwmD{s!*^9m_Lg1oj^H0Y>JxmxVE*}JU(abeUcR@%tvkc*W93Tp!gz+=wC@-`;hdkc4DjC*9ptRQ7yTFnyc0`1)hP7#ku*QWhfcjMxsn z*iYr&@y#KGY$iVQl``rNlxFuym$av)zrH?UNud7PYTibd)OVrLv(rIeTyJEDv_vNGH;zqvlRHaXwkzqFE9uunuRHs?Ar!s?zb1EWU1hJUNW`(#i8{hKf3c>MInTAQa znWg9>kKLDVL+FxBTZxO6Y?9=K+b!-@+?zdKbxP5!15QGVuNLd18UJDuBi4RZ9s-U~ zzr4=;-zygx9-Etr>eGH-s+-*YDE_w}1}o=ptMP;30J9Gm1BvA?+xkhpCJ9w`8iv!Z zxE)Sd)G3BS3Gxm*-_DOiayYs8^mPmlq#>*_^JG#zE}!4d1lZ{uztQyu2*v%_PXZY> zvKCyp9W=DZLNu*P=(HBEPXqI9q1iHfL43*+gzooW6$fx@E%o>j?MZ5Mn1)z9pEK@x#zAmeGRnTDqvt2#K z1FG-b|Gwd+j5%ZE1gtHnxVF%l4mOy6eVC&pks>`=&A}HXd?xrEs$YY->fRA=0iYp= z`&J~i^}+&VV>0N5l-Q1WgqcLJ&Ou@qYSZ&!Ao z^YKTNTE{YN&ghw-5;}IN%oNx?>nX%68Y}8aao)T!Z6l^#V!~;qSY^y-3J-)Ro&E%5S27R(<5X z7*JyDgTEfb|JlAQvV=*_gjv!`;vZPaWsIh61ar8x{ziB#Lx&aMOrf`fSGp*q0Xa4( zJkjUtHk_P7nI;`WC72b9+cS@qXyqJLuiz4Rp2xHblK>c)$x|BL6%GZ07b6<^UZnfV zp!yEiX@o@>{}#@W4=%akKiCI-%Pq<_(rgfY-d6r^ouHI`1@Dqv>)Ia>cf>PFddl_y_Uj|)i6+a*(%tvcr!CZx_OX!n!NmE^3zu4o*OyW6rjvls^Gv!LjBVc7Xf@0lk zO-IP;;2Osu!*){Y==e)%uQqH#&&3~OTjN+N;k>XB5mWT+4Y2EQBkAt46>DR@q1118 z*`Ih)u$%tU`FsWq&~T3f4xpEvKTIKR+4AOJU3bzJ>ZnFVdl(m1oP+zuoAES@Yw?O2 z^&A~K$iEQcc>nPDm=rHOGT53Ff&yNS={$}3lhnMG@@OG$&1tH+_&l#*TdQTGb=_D> z4gmjlxsIVOzQ?WJ3aDVl5=RI(-STJgp2h07ib$5a+AY?YKmo7o9iExR0+UFl^2Kp= zc-CWMY8psrRWtg&`Ii0Yf?W@?pH793*@#uN%F_a zj*zCvFV2}~XV73Y3Jdka+O0IB11TmI{PiCNe?$H_K=d`S(e&ncv%kkSvTt&q?wm}= ztA1)uZiH4+Dk4?NB?2QIv3I<$$>D2vFAf15s@+;mf5-EJfujyJHz~g)GBYm9ZM*4H zfQ=V5HV9I}s`DeiJdxM@8_riq{Up}&UvJRF&l4TFoy|GDQRbkjC89|lF_@01hq6J? zXdbDrIPLvWVY~g^b`1&{9U-MYot4?;AD9bC!x63GwI#`wb=*B7mjU_p zA>3P1B6T+lJTjt0+^}o-#&X@pL&#}KlR@Q-(E$zm{44`WB|3rE@X;oOY*dLq0#x{ z73hHQ0Y)d6rAJGWRbk)VA!^PT017(2i7FY_ACeRFARTXu{=fzcASKL|@YYt$`W)!6 zT455%g`y^ps4AKYE=EeG>{Ue#&`)>QNohCxS3!6H6|N~OR|ay}D`2$Vhg(F5ffMVJ z^9cpOb0YHj8KpI+K^yT#Q_MR0E&8?;M@FT6ibirG5_oB{%z34S0pS&AyM7n;Y{mbq zz~~GPpGg5(cFg?s2ZFelUleayzjaXA7nYs=}#BeoaQK&(p{PWSbc>hRoU2oa*E9r*# z!MisP>`<>t{bX zjmOCW(IU#y*=f!ztg#*5N@%W_WhO~0@OT@aHE+&Zvq}QU{QO*F8v*CGwNTzRVJP}9 zgR@rYCD{@;q8QX^gQ;;lPTlf64fJ(3HN;Y5mHV*F)azsl-kWFuOlNr(e^)JgnPG!H zs7AG4@7xaKlz(3)0?1>WKbl0?D>)A!_c1#u?%(tbzSFwLG+{2hOA zE-hWiH<(}g*0G<9%sy_Q&@i_n)ylxU(j+gyQ+A$hl8Tp`=<|n$;`axZGv*IB@Xq$H zsq_9ifQfhl?f6^k)1Utk7d5i)2f>BBtq_x$c;}S44)%o${@AFpo}z)mU7%iPm)dS0 zjXG-%h^n&wzo5|JY}}7>p#7&8r1sWD-Bqv{v!opG{3kVOk2aXju4^={K^7{MUjP|% zkT~&nE=q0Hn24R_zRgfUAZqZae<24=nOx_eL?zQa{uj#j*nU;|ZbkmFKLa~-Yrai$ zJm5WWuFnqDdSbGER!*znk}sYH&tHgMz^NH1p<$`Uy&fu9>w^RM?R&mw{LCuV9GlCV zC=Nn)b`9FOs6Z)eM<;;fF$Pn8T)M~H@yp1Hq3u)&1l}n|2JffCjru&aZGR*{{Wu3M z#qx_KNDF;wNoyBPs>Wi&;*VeoM5b1%Zs5ZJ-4vb)kE)V zr;f12{1OkHJQDY6^NX1y+hHLYDVwdslIM2egzn*v&vz3!o-31c5=2&@xGZa(#YJkD zo&kzX6tYxeny41MhP}T?pSdY-EZWX^r;Wa5T?F%g&)=~K?R0s~uh?P$kSM$CE^#aY zi$pS}X&vzoUk$O{|FX`JT*BT-!6SgH|T0~_u->eG1YkQJB2i>0MI&$*KYNtts z!y$7WkJNYysG&c#Co*p**h=(L*;qBktp|M~N@~;g&XNE;zZhU?#v7^}0vR zHgSVG3#wq;I5Udea3@ov5e5%k2D{X{yrIob-t}@X&K3x=siWf1NL1ycl^5HdPWwu} znm2QtD>G}`#?ZEyboY^!&i(OKSRXp0CJb`dGjuH#1&=%vaP<^KC;2`o1gNb|8 z0jy~T>on`)jwr4d&99ScL1!+Ut?&%F#B-&VCCPe(4qLR*6p7Q(B?LpxqI@wZSi8$T zA7*T9NEjYCPI3$m=gKFwk**w}Nk_3OYFvoxw10mb=&lkV(Zqql^^PR&;cYB>(y5Ah zZ-Eapl~85OL=6=FUNb4E8WojFFhZ7(rBc|exZDq>h+^))E6S!yz_9i3IHI;l(5_N^xpZ;W<;fNPXQ$5l{d@0t>v;g*4)Ck_vhx46doQidVfc z^VWgc)b8ObY3Gj%S~-N&aME$3E_j8O$1_Q#WTprD{$v$53~*~`Qcb8LJ|TAnc8I#& z&2PRSJG@0>nZecossF6=FD*YV)B@KtygRpe(o|QJJ`{F&<8%UZqeJMo@{L(>N{q)4ZUUB_4>a5$ffg*_nJK}pwJ_%w6%ZFqz@N=Hc}F%vPPot zGqifPgaP{}KYV#NnaQ{jif`ck$rlloE;}Q0yB$^aqlLVK@d-(rw@+IHa z6w(T#it1r5)%j1&IKKoiT}{+^LAZ~I64SSdGR6Os{Ry;tYDKp?|Sweg?I z;eXwSrJZMQ!Iaf{_K#A;Q4|d$ZI3U%jKJ2Ce?V8&&Nu)}IrU7IJ1ZiY-iyhA>8;;Z zOy$GZ{5cMew$^LdtilDSk40jGauPS_mq+h8zrbQBDeiN2(J_sY1>hD1{|KgXCrBQR zwO?ABG;ktJO;z?@mS0jO!EpvD+GD{V=HlptD;2b|i%FX5V24PSDc4?10*(Ca{`j^b zYd9wV zn+|4bJL}G|Vq-Fk<`?e`LhT zz+Wfa@DeqgjpkaXGF{a7@HJK17Yp9j2`{w6pvc&6P>WFl$qejqw!OD2IkcRH28tpp zY^EQ&F)e|M0@o}Hd3C`(cYO=p)Ug?53&;W2xFZteHtu3O!B9E0cIB<81!kN&Cbqa6 zg=oOK^ZIZ7y@iI;>UQPH37C;3o39E=MVkq>@GunZHTZGC-c7IGzY{^~upj9A7iccZ zig0uBRy$)SmAFTE7I2`9Bg1oL*ie5U!I9dM-SJnRvl2)YV6_&RC4}bS5AQCyfBRHc z3^oidIArFqQ;*?)>0W&Jfdafm7hztzjO1Tl!Tneg5PiB4&+Y8^s&N4dx^MSXsl5r$ zrqulpcF6n%KtxK(lkaX*F9PelIQ-&mFHbI!v@*rT11-yA9{xNB?n zfpxt7r>f!XwZEIyF^_TbDWhHWgXPI3f|*NPS;qL3;}lBWo|el_KL8PDoTxlp`LuAR z@pg1LuJ%*^h|%lAVt?qfQ_|D{R!78#6pObvDvxYEZOZPW)YXK09?fS7SFfDTVzJy+_|` z`~6rwP+{lZ8F?O&i!E)QAk5Gz>s?dv%%bRrZ)QV=t3f=S47+4XLsmco??u&{S9Ex% zWXjq~aUdfe3j)$lnB6rfmgyoQAnH+;mPl({<*0cFrAUQpi$j3nB@^0snXrZrTduS! zxG(zw?LL8|KE4llBRCKCWWq>OOf1MI65?##7RN+F2Q@{UTIxp0to$1gHDX^%S1Lg(*c8rG1$De&uiHIndW zUw1*WU(B-?eZ|I$C7Q#hIvcdxMVsK zS^{lB{>Gt1Ff8NncoSdMmD*j`CA|xovKFk&<%uCB?B>P;BZ=HxTz&X}z>`0AHg(Iw zeH;8gmf8lfQSo}c7Ppo{gLi^Nz@alIuJdp09#V+$>4E?cJl0^(kEaA?w*Mr#D+k+p zqh?DUewWI=Qxg7Mkjgi(l*GE<)`pGKxBPx}ORf}Bh%GdsrLE~`Lu@XDP=mFPCt627KgN>$riJh1 zW75==1`cg8nssEut`>STTwZir@g;mbQdirF^-_7I@u_IP(k4cAVBj?Gb_R=e;3=dkAz@%4S&H03WcM;>ao55)IghO z9LX>(c~9uprV`FPM{({3Hr>&#CV+hAmF^@+Ay3*=zb;|~bD7H_OYJI8soJ_PXZF}j zhGx8w8~kzPbHuRJ-KTkP=0^E8=c zu4r;a&YjaDvB=(X>MN24E7GzRW^F-Mz8*i%XiSttT}!--PLbqu(P1ht+JT?lD>sL3 zEV6sAkaLfajCg~z9}YocdJMkoOkV$t?+-`IWTKok-Yo1Cs%z2H1=jTmgnA4`?Vr5W z5l5mu2`hXWQ)~)e3tj)tmG8<>tX`MGWus$}qEug=3k?b0KjLMR-t| zxa3VJL?GvrAZ*2xwd!P;q&JN#XDFHk>?Lu69^WsSSC^56u&47=V!5$|WxhLL{akLyi3Uls$@#)3B>dWs^6^-P0wWIEm@<-d z+>s94xd{T`=e~=%fI#BkuV2Jdfk^}ruy`put!6>^Yg_wmBSce`!A+$`4?wMg`TONN zfJs6BpWC!LONA;z*4Z@Ch1y8iUHNa8>SI57UDps=Hi}aR+Iqwf^Z6d)75C^?2!u#v zI>VzHDau*`by8Zw1+n4Br7D1v9sg)1?8YYLvr32UzjoI@A7x2Qr9hXos59hK+!SZs zfA|K;p0e-;&?MDuMee-hzJ6eS$cniKIu^@J-6Wz1Po>?;g4$C1{+1~$e2dy?-`L8z zb02Zo%xqM~bchh$Jbs7UE7L)LeGPj&vqMNQws?nhMa}hNFH2$z#+PaPNo8?Ls8@{y zpkj0cewAAz$&_OU%952?@+LO-eK#0TEJsq6S0^!LPM6H>xe#la=p-_m)!0@N^D_}7 zb#-0S43yI_n@1t_#`crtmpiDJ4y67p%ho>}-RVhgiULzLKB4SeE|@2tF^c#4LGbqY zmAqqP0Ob9iRdd~gPEQ2vLQw~)AsaHK3u-<#Kch!p-UT(F{94IC?=CHcl~_iOb0Me< zhr(q1Uv;nF0zMZ?R=UjlyUd9@_|;7)++Beg&)QS$CTR1&X%>R@4d-a3Q&S9IkuG)7 zKD<0>kW1j;>WHnh#c!D;PS-5u643PHR{e9J?J(BN`R32beY+_!f7KJTuwf%)FIlQm zW1UgyL%wR9vWvK1_{2lf_`-aX$mI|np6}%xzpZ#_*F3^Sd#M(Nw zH&9w=BYf4bo`1>V+4T~*ARY1N8SKh8?s^80ov!bjAQ=TD;23G3(^iJ+J%ab%2H{5i z+-xn?AE+ShY4+7M>fdH6U+#qLEwEXV#KHKuc7MgP0wF-u@t3xTlUh(gzpRX!jj2Fo zSfdSDPbpO3n#DKE32Ch=N-KW13_KL%+f#d?U7&9Fv)NV!V#|m<0`K{o*u7d>xWffJ zaQT!*P(~nTd~I^0;Y+XTgL5x&w*(oYFnC%2LnqpHTncO&Eml%;6Y`y`NbJr{qDNpH z4!xdYCecv^p>`~uCeqa7=eltAEO*=HuV{0Nn?O&_+u5P79p=H7E4sKB3}Mru?#{C= z46e)AxyRjim?Uj&IbM*&-*M?I4j$X|;^mdy93zW>gq8U^VxxGt=Ry(27W%`l0+`E> zM{_~0k5YIwvj_=!_e!?@aBGROB^)65gA=&I{1}$te}BM} zT``e_7mrnl;G)F&+$yL}VtCed3aGT3$pRn1O`FT}Q`AfoXmIqnLWi&!f(D0_n7z%@ zW%mpEbbNPSZJP|81Qe?_XG;8m_D{8gDEyy=Hr~EfDHAWsJ$+t{n<$=QM%#TkH}WLR zRi2?SjH*fe`gp1-dP`eKWfVEkxT9_ym6zmHAEyHF`! z7hb1)m!U-&s$iva*n|9yu1Bab+%-M1GE! zXnjq&{ptWxkfZ(Jtg`!JOQtNQ2EK~TgW1?YD`}c$8btae+z$QlT1?PU?qf%rXARbJO8m<@}uI#V8jNF#dM%ne~NE)%h`N zvFd^*g`TS0&p;{qfqDM?;c{hG1oE*}%8t6FdOI${^Fu7VfCQ zGJi7sosgtUuk4E=9o1^og4lVV3yC+~dd)q=LA z${s(%a7oMyoR~loQ<>PPF7|t$4?LG_@SCvj58%ngXe)72>vvD;^xG=U5w=9YR&gR%uPbmAht1O!tJtMy#Wfw0% zj*Cq(Vl`}WjvZvT6I^O^S*NKTOpzjadWh}#2Hwe!^o*@(gRtrSOe2)On3Kizik&6C zKo%*IzP7<+%Q|Hi1wsW$AJy=$GY`q+hUDG+Ljf2ifajbgS7!2j*?dpu$*-n7@AyeM zf}?u^2GQ0}!Avj4ydo-CrnR8?$G72GQaj4|A`(RQZ2xH0zqrl9=*3+i5%eit%qK`o zs0xu|-uaUBiq_hINq?hw_>VmgBNuB-XOAeVH)Da{%}kBrj@IfSbX`_4% z)_>}}2u?%rZv+IW5-eLUi*>80iiC$UnTKh=UEilUWW$>8ezP3C@?XGeO^&ZZit+q) zz(AEF(*}1|*?{#jFsE`jI!hwUE*8SobaWcN5W%qSK6;VMB9m;a<-)%-C+OAWvS^H; z2ukmKQqNTF9%;Q=eUz|NUuqNi5Jcz7MDD?;EFv#4mGe3T6}msE1xS1Xg+2$wwaxZ-x;JW$Z1e zv9$YqZa2L<(-t@l-z;KQ5V3v+1iazr$+`g>??rLgnK^m7rAnE#-=3u066}V%qE7Nm zt_#|8vXmM4Q$_suYj{K4cRFUMO9Y!)9%cfL_asKnsuVlFAQLI{Y}$G4!4U>+AuTgq z73^lXIkCw?Yh-%w48$I}9AV2 zp{!oMT`Pb^R@u%nCC0axAn_rJ*2){}p9AnP=hW*rWQw+o?9y2@ zw5`yI8Vpc3^!DiV`6NJ(X;)f4+mY5!^YpWQfn5yn!hWB1Mmx(^cw!_o3ry%~J~?hA z;EKTu*g<)ZJxkTMG9c3T4~EfgR!>HmllTH$hek4%=BY+m%&B0bLaW{${8 zL;<5prFnwOk_XyYR?@rQq&-qq9<%0$QK>-JvGtk3YSriIXfSnFDSKn}^wICpo$Fo4 z2N&1eyu%~pQ_&UXM?Ahvq6L~m7xDWzde`L`*D-vs6dpx}{Hco89>zwKbL4>=4;5vN^hl}qhswJ5j4IY- z{GFv4D10+M@T^iviSsvIcK3opMbrj|)%A8MQZLf972|rmk!L8i$XL7fHwWx&iwOGS z*&5@aOW)hqwzj(Wpd%KPm(401f_di?8XQ9~r?l-x+?kb{ z@-~-AvZBju(%`}zl#6dX^xIuup%xF{evsY>#8eu(uYe{yRKDf(ef%gv(cpabr-RWK z4~?4Aw=u>X_cd^=sst229o@A8TCx*9?=*5D3RKS36X(h+qZHkbCWiCqte9l5nGmuF zu{-}VP*hGGhU=wUxe7d&AaQ4yJIiKZ?#`gf#hBsu7JY90U+Z7*wUjP9k#T3?NjBJ0 zr(+|?v)}S)7a}eY&*btfV4gF+*aZJ4loi`9EX4|2d^5cGVffMUIk02ruZ%K#l9fcI z>WRvAShqi<2~vF*-g{6Ir?4IZ;A*{d7cR%8;wv^FLj$JAQe`yNvpv}J@LRWjt=Civ zc`wlIvyZtOV2O{lz8pMsuwc7+sB#En0PKh75Q1YcOyNJx$DcT3N@98x&MmbE>(_d3 z?6{;=D6^k!8)yXcx}%nrnQX$h)WfTBL#dLo z%_h2@*qgTVRsWqi>-K27-YF&vIL2>vRoQV{;oZXplXo%)|N8(efw@THvI`6J^Os|l z$t#JWSG$IeM1WOsVa}{t51t!7eF|PDIAVj6vS0tg_*&y2V+!HNYB;5qCdKcl^ax+J znsluGiqTKC2j9Rw|}K z;l(vsy#mN8jCZOp5++SEo-c6xbM`OTzvq0OcJXvxlkLZF5IKI)`v*OEli(I0xD(uhdtk6Z1`jqk1PK~saQDI8os(O2Kb-gciLS2hz1K=1 zA*mw_&&!}*8hOOF9^YO-E5S)V!!cpq#&BItxmo^T%{v-eLad_hx zN4EgcytFX7ve5A(%`#t`GAmzg9 z$ejT%J_*8Q{eL*XW{X5{-e-0hFUz^b)e4MEe2?%#jPGg84Z_>aovHs9SN z36>OLADN9RU7oinLS@9yo0HGshGAkiwByQdAX8?=4>zA^jJ%xAMcdruhW3n0+lc8} z?+#-z3H*FjoVdhEnxkG1(K=dQb|aKstpVfptl)cd1Ds_hR1UT=x&4~+WX5#M_KaB6 z(3DvP45kz5%<6=_l_zp_?&oFmYUU!qUF%!EM=AK}8)y}x4yUerV(Bqc4%j)_JiRl- z;xB0FnkE*6D{?)L)ElY-uh2a7cOIaknDZlGybJ-p@-EmzrzNFNu*XUaOGv6a96{vj7P44fT& zdpz=6hx_C^dO6DpQPOQWn5>sR_OP$jnYxMC?|S2+OlCh~p&XjwtoBxCuud+|w)VcP z)hBxRX55ZOkQKZ^sq*k0Gv)G2kp}~@bAU7C{&zQqEz=1RXK?&od={^E4rlT0j^g7( zXU75aGKu7;D@2N1%9Zl^^rA0Ik1p}AUVNTrjkCDVANr!(2C+ww!O)sRbP}*4EQjp} z-z7Vr+u!SlXQ zBGW;*+Y>&ax6$U&xY9n`G3K^?_q#||@oEuMCb$det$bwp38nL9Y{kT-IF97`AW5~b z6Vjej<{=u#`5euE#wU9=uwXK+dp(R!?i~mCDqS2fQa}GHh;#IIxxJ#M<9oV)Z4o4j znafpBmqi5*YcyYui@#zf1?K?Av^k(nDqBxOWmrIiJ&5in3i$7Uivm zUXlc#U8!bA&lK~{l^`e~#Z{`PuI>C(%9=fMTgmskfA}Op#>J^%BL~+4Z_eR2{ZXtN z&2VSdMi?R*lM=aEv#YC4SjpSS1kWLs61=49{mdZ)S7BFd4$5Ms=5%EJ+#JzH(>b0yBH-*iud5mM}&Q#uaFS`)aoP(oLnGfTQ2M zd{!`b(bG?Wlx+kH>%{SxN{)N6qpH?q3cIZ?c;J}3K2Jt?tz}L0ALMLzoD)l8Ssy>{ zQM{2dUhYh$*C@%F&^j>4w@NeUzY*2kQ+FLl?2g+rt$(I%nJ~cs)<3+xRaKkqv)7zL zlo!SSDjJb2ShB8-v_!K>lFVj-8VJCzgnkWY@=EIhpH7S12ow8;oMm%DzNf1#+GHJs z4Jw|Z?nCVVy@Ldb`ypK5)Q|xSsC;AZF63)8y&^zX)hOK~6h49slOGdVGd!89lu@Z7 zV)-h3y;t`q_#>*n@6n5(ZqSIfnAKMF=uxiZA+xX6lV2*QMhQXbg5<8`&XjyTRYq`@ zspM5-h&c0KVg-Hu#q-*Br4n0Cj}SbF^vN;pQ#Z&NrOil*lQZyRU20Mt$hxPm_qc3| zTu0!q;5h$oCw^ENXmAcPtUlGva?feQHdsR-vzr^mjaK(<*Ub&k5kL6ToOF?d zdl(|3s)P=;Y{2PCvD(~wr|T4Pk0ZUMr2gHBD@@jnP1eA7j&`*we}3JEHKMs{7O-OnkM?c{F_}|v?E)KB<{ELuo3}(J3QN6zt>Vz@BEiAr<45TMO{BNvZhg$rnba8rU z*>+;0Yw6LVw>&MEc348KEMjE2O*>Z8C8?P)#=yZrliwD=O5EWrP-}50lcl zb|2CtTN|eq1rpP=N>|&FU;R$1K*S3#xiWaMfKY zNEW$Lf^Sy2FJbU9)8f+Wa?v0Q^@roG%K0fY+bq$%Fw7$VHDirVbe$60yR#?w$5g~< zDKP&&VMnV>+^$1FYJRYgH8_axZj4hssK&5()~blD#lK?cxJY<*AjyAtNt7uEm(B3Pj67X3cpPEN ziHRzZEP%HAf!0J-tLt3i-8H|ARS8d1foWsON#F-}*ouTIm432U9fbi=8sd`uOyXw% zTazB|I=MwL@;BJJ%E`W@y+88;u6q(*gqh9p6TZ}=sETrTvN<$Jv}YO&Cfv3hV(5BJ!%*8&A8 zYNRW^ro}&RxHT6Gyva}PO*qeHpK2ZAr^z;tbi^mocNbj&>vS+~&C}oAyM3P{xJL)N z&FxcwiYXBT>#`DmhxxT&IY8L*XBd;hkqcT$tAacWy|`30F;KEbN~~|9FRImsU>zR! z>P&fMtMw1Z^3IujwvL)h@W~~r@re7Su<6gKwkHxvaERrwq2Kc6bWl@!)&W)$Vo{67 zSS_249h7AysMnaDjKYR*Qe>Q1igWyxkfar@WasNp2%2s&?0#vxgw=^pKP$kQE(?^e z-b(XR5v{qpV?BMusMx=$$nF+{>|arbNn@C!P+OCes}+Jv;5=%y4@m?$&ww_#fXe{2 z8M8oUt`B}(ma_s}Z&CuT1Djo1DkaK)O#`}D5H6|Yp1)#x(r&{RJn;6bw|XRwYc`7E z1v!=Rmf3E9JvF>g7Yt(gb0wOUk4q#5*pbRdo#|NG4~_LIcW53YJji?%l?&~yI$|h$ z%_J_qa4lZhG^X;9o%rpF=V_52R795?l^7wYfX|LeO>zh^ZSMKcvXZh&vxe|z$mqwe zoW)p?g4}JeBdA`Ef~+M;D2&L5F@ z6b~Wd;rc7kZ3&XUD)DUEO$>;c?^4`oRwVgyjL=LGYOpmTN_PFH9R7|sRV~M^W6Sx; zc8$6C=KXm8-Su{tO7`u#iZo>F=%Z`JX1gB|)$F>woRFtnA7sBNC45ou;Th|7_8)R| zI6nB=>x)HlvbT`oP6fMmkVyvy))P&TPMR;LjTle%!bV{5Nh14oIE%X-62QIzccGLmH2r4QYPAd5|7kb?6*CEvJ9jprI ziO7~lP8|KD*TYs?nX-uj-nU*~c7;TQ_#JA5f-#X2>@ zc;eP;vfp3Lq@=wevCbLAtDoJMuGA2n@2?4m)V8Slf0(dOTl~vbdyKgKB~;+rQkbtD zYRp0M2ESGKJ$9`qVd&glF<8!!@Cp>(Zb~(3g^sY zHT3>u{)*Hxf7^%_B(*Yjs1AqB3*DNmrJ)sxxf``82z!zU^}OxP>w_>h`HMOMe5epp zUR5$K9VoE<$`pbyiHi?M4d3p-s}r%pUbA95~9=xW9ROxjdQu%~mL{hiT?ZEixKV9P#TO zfjz}WfZ=#0L3>z_MirT7(ea3lO~PKn(Ea8XR~~O3^|@d7y#E!V()Gfg;cFkX%w&gF z`7m_8tRvh~*wG##%K^ugF{XZ*W7WS0s$1f}=p#gQ`>mi~rkGdiVpZ~PJBYyX?#5jM zQ4=)U=^wq>DaxAD#L0elUAVe?Iwwf?gW2pFZDO9f$Sq{h5-?7G#TY^(5JzByu#zFn zW1Or%tS+dG6Ca@(jba<#9dnWF|Ffbd_B*e*M?PGmTSvq78?aOTS6dP6x9dB_J+64p z!FLu?$+Em)nZW!RRMukR`Y9l`MK>Mt`Wv{v=KLa{}Buzo2z{ z5bon5EWw&fY;3J0G@I^z9c%IvZR_Z7&C;BY>qm9oc(9I3t%=^}jtQPTm$62>i@W~~ zp!bFB2FTPWqo*G?!5FLOz6iU^oGox5`A!C5`}#)UZE2r3Uki6&pL4%w9v}G8-={a4 zJLfAN9f>bhw{$6Gai|#O*2@hpJd!Iu4h>VzOE&m&l0G8C&?WpGiXK?A+|(SgM$sEJ zyU|*tA9Vz~lIf7ZmIbcm<7-i*q#^TEm$l%v{asrji@0{HZ|G>`reKZ$N}|!SAIm^1 zhEcO^jPc*o<-&FW|KK2j=@Y=<2 zPWH99`VSv$pZbk!T@wRy2&~L{=%Gu`XG#4S08iZ+2;<)#g`pk#{gkawO=4Gdf>f_UT~|H%i}HBW@P#zW56KW3pLP zn%Vw{$OD5?;b~m#S_jmDO>xaRJDx`pOsZ`*Uh3?2^mY+dHiDA$H*)Qc{Y2g)ZX`5v zgo#=odKKlGBzJtRPQ+f8Sj>@NJy0Qzw0-*=I$f|bHQiz(4T&e@NMZ5b>F2a3EG3GM zahInHSih}N=>gbzkgo>t0Rm`Nn|}A=Aztr5)8aI>PG4^UnQe@f!=+~nO<17f)=l4j zbJXHr%*tw$7le;WW(`v9XZ&qPnU`sN@n zb(S-tUU|uE!67oq15$Kx>?lNb&I&y74*PS7lL%X6nu3&*>`P`LP#kjc3AjExgF}u-TriI;kKAbIxd>D{EgBv~Ct!FHPUI*)>C5qx&>+hyHo$ z<#&!JrlhCDDwNLkJZhq}Zc7wwE1lW#^10i=>g9pS!@w!=d&!g2%D1~ZYBFLN$_cXq znOUy3xg}goRnws3s)GGtXX)jBEF~$6C#UC{wS3n#=YsW85H%kG7F(RT{9Nn2%TF2a z^bm;!;bk?c9I5+mky;-7e9Dc1P1jJvNc!y*V<74ZMf}o5-@9U?5d%8GB^-{Ex&ke(BZNvF?H;C-WKJWpjkNo>TZ>oLGGB}Kp04nBd_hQ=XnYB)b7%RvKQC&^Cmy-cKW%>uY9LKLh!;pYe)}4`e&S{@@@RZ>V$7F5 zD;!@7ZY1$pTbT0NO86d_P1PQ3iZ+&gqj0}vG48H0f3SY0)xcJVXy%&HZPDpVYIcti z5=Vpxs%rM$=KVUaKtvLBxGKdYLbRIH=q4sR^fI|ofU5v?flm4Xsj;S!+rpsNo%U6G zP4y4;0R7TjOzn`MNX8H2QcD%4*gW#URyJlph1l2n+<}N<-u`%9HlJibDHRO=Br$vX z-aVE}XY>82GWg_p%uNKZ#j3{*bG4#Mg3sKr6_OkgRUWTwMN}%i zDtlkTO7q{qFjcv}NHerLP-4n|9c}z)ctPimV3Bgbny_gSPJ)4U@ov8;UoQ|^b6LvpC$^!h=Gg}`r3X8DI5cjVRwji6vn#$y zJ!*{vg@tG>YhfF|x7~2kKO}G#rI2k$SlR4a#cfs>)YBuS$Fd$V0sci0p^r_A%P@C( z(&xX3ID6L~qE|5esX&fpiee;Jm)UbN+bBr^u}}_H@lAhjHtA6nb6H!rS-vgi2W8sb z7N}tI%%_V&FIqICyxNI2CQRC9aryC<&y<&rX7LU*Gcmh=tIY}=6+eGpb)0)pZk?Nv zyh00xXTzf_>tf5Fx_`vWIhpvdL)B10gNt+EwZUIF?fhfH?!7UgD8Z!nKJX)fh`6kK zgX)p=(Y^M5O_st6ct9!Yw{lYk@aL^zk~~|BF~B;HJEl<27<5fgz_y)1SitV&kG38P(z0o*s)C5rM>dMt}b_@-lM7*5!7ujlcTJjWl67 z`0R)J_WRFMMKi2_xQFBaSIy<)h0vJz+DIOn74bx;t}DrfCeu^?GD%@k!|cC?{!-KZ zAlg?ezba6)njrL}<|=NKCTCnP#3hlkNpqkqx@~7zsLe@~r3ht7G|=Ug zS4%oSwo+8qVM``*=MN8rI*hFLgn7NxW&2h7qp*a z2j{OGnwR8ffd=ek6Wnq(Mc?;U%EFnu>AG{=->G>F0){$zY^d*UXRfK_6mfo~izhSK zBW1~+I~XMd_wKYh;i|KJY<6IRnBQ2*o9ztQzQRcOmJ{feuiOivv*KZUkHkNXn#t&w z4WT8qUj29YY^3TB6|D3uXgK?X82zo<`X z8J`+xfMTB(+9K*Y9qd0>u5c9^$0JRqoJ#M_knPmEe@-gnb;PO_cH$5$d^(gR&1h24 z9V7`{s_a349i#pOYGM}iWlepn@+bcTDciyE>>Dol3vJ8Gj}kMJKUAEv8uou2eMT`L z!jGIL=Xcm_CN>hjjOHeGBDChkaW0Gi|pIOZ=_Rvvy`s zLwplE%~&N6+*)3=QOWLxa+(BYESSnH6yG^=HkngzI>j&Nrk7AWUiqE-ua`g_d&#Ac zlrN=vneRonA&+f_#T?_jvROMk3`oIY=9yZNh|YCQW@7@GjDc%(VTxxB+nG> z*IC<0dAmA|Etp19%B&zZGn<#Wsev1L94bP2B;Gjvxqv#!)Dg^q~i=0)jpiNfwMt$34Kl4#q4H4^xY3%#2g14 z5Q1lO`QUJYKxceE#@0pY(FC^z;&JJKIc2g+ zj@tvi<=oFIe-dghJxnIaPh<^paISxTr)=i|7+dj}8oETVQd$RcuGYOd2D)6zLFEoP3I1 a&S%kI($3z90l3z2z4z=}u>0)oF}-_yvp(A)FZ) zEWh%8Eus=ps_*L&ttFM&<@uIO>F(5X#57A!dn_(K>0tAv1lg<0*%Dngm3xRtv6d{R z*BK@oO@+d5Uzz#!pNlV&EQqSsruPs(p(`l|?aboqHe?eu`mTIA%G818;4$A)+15A8 zHn$<{)9JlE$KuwXrxE1w_xHM8lGv!?o`ey9fhOU6AGYMsPSs%O}m`R%)-8j4BJLo1(VlUiW(Y?p@W8n~Nfw03t=|;5}O1h_dFN+F$;saNpesLD5$+6IST5G|(Ol(4c7ocCGwz3( z)4u>$-lHV7bi5})egQ*fyX$yF_TME@8^~*%Q4Ik+*LQ{ijtH#aKBfmr)?$@+Iopb0 zcE>OdgSrOmLYJZYyjTuN0MjBVk9!nZb9by-LW8Ro+b!Qjr6f)S+uY>D5v44K9(7G& zuexq0*}8mHTI@8<80AFTG;^y3l(vvw~TzKP8(u7Wq%sp8E6#Dmd z- zJL>>$=tNbz@KuHR0WsvxOEcr%p$)U_xy(e`VVV}ASKbJ>W+=U=h`Lmw{nmfVwB zd^*|2i=?ZH#(-P~O;h&ZEAPlw)IJs`fCZe2?&`sE6NfNfB#TX%vUljPSaW!!?S}V2 z7qcI6paKe<@`^{x!+V%&X~M;4RR%F8(G9dySELkrW|#c>AGX(TWIpEL;xF2z-*4s- zZ@*a3u3?_b>{NtK5)j;hbxxg}H)LhZkVg#O!v8zMy`S;ky8zv#`%!_iBrAJFIi0KC zVvn4Tuw-Dq06#zeV~14MQ3>!Qg|mxH&UA|fA(Ae0=3BA;0_b~RbsPn2r@-)j>ZhO? z`{+Ea4c(QE*Wu|CvLEN|p-qoza8@roN@64{r+{00ZgT$niFzpY&Du5VTF2AHx{6~m zzfENL0>?JOwu@K{Qz>J)p{z+PpE7ZNl=T>01;j?5u?g?TsE3*g?S0aj%+Q;*}V!EeHAygVmO!;|{Bj1@c(h$DcF- zv)=w@(_Y{7m$olEloZgglFhD5h5ZRX>f)68(PLSLLdMWH$4`GADcUP})e9XxpVLho7PgN2BT1c>?0Ge%YKGjdSf1=)AgBRypI!^|k(4H*=k~-&7^{|677499!=;@))~z;4q2DI$inqY52uRygeNs)Cug`UWS;F(I?HO$hgeXj` z7k={twJ-~b@49p`QU0+ZlF9ZyD1Q0x+$ataLpSl`-$<9Ygrj;)8q7p$iY5zIaZt23CmOmbI0PtV8J@t!jfp!T3bZSJ)bc*etSvsL zMJ3^js#UU~b6WnTZMlv!!qm56pfpRJ%4%?ZvFGcXWpj%)0qFz$`X*Dng8+}7e~c;Wz@=@a=F#2hQ3Zd>}8NiRf!vJ_il4IEN;j?>GC?svNaNOrGrX7oETcvv{E8n z4+pd;!TqS{Q>>rMuCBNnM(}h#Zyt4ykwT`rPO&gfv0rd9L%%si^vm^MobIGDR%J?4Te^l0G{b%s zZGXh(jPG21c|d1@pn!jPo3@=}ar6gg^vRlr6!CC;3Hyu9TuC!H*yG}wt0#1% zp5bV$X0_4U6ZCqYS1h5+D$9g|BZyZuitf|@P};63v=PtPM8;$g_7A+P3S+OOj}04h z_M?Z{Uly6uFoHEFCi4A%w6{H###}p5r+=ghT*&%fS*KkW#WD}5_*>5F9wf@j=|vhG z@kEw3i*_rx1FT1ef{X zZ2goAj17&@?ZhlbSfAwkg^Tl4_3|`S;`y-A;OCRfL6Jn>xs-qe{;cDttJ_sTiqxZ6 zuy_3yQDk9U1ql@KmutX`wWb*SKHyk6;D|a*bR;qdHW&@rJ`0I3lJI!mL&`5 zm-c^cp}sq_5%98>QU&Sht!9goro9j?pFlt^?^Wsf{a(}qB9fdQCbG9_&HLzo1Hq(Q z!#e3>(vgQwoG^+~=I2bGayBnyl}AIai-KDDZ+~1xpS}_9Hd7fmuMrz8Ay=nXO~lXu zliiwlx+y=(!+{>_t75!W%*e_*!#A@Ih1V-{w`fXry&j|SDJjW_L*}T_v(B1wfu%41 zizm$^yaB#6cOtjYlgULhzx}2@;3S+I^1mM=YhwC9a1RK z_>~(zmN6hkIH`x`k*AATM_XVzz1Xx-(LV*}+*=V+i@nq@No6_;Q&@jta0Lv_Fxz^I zueXAe8r;5-G;e;?)&3I_r{5yqEIM~spt&ujw29r)kT3fccn-Tsxd+b~l3Y%oB1+$Y zZo7v`X5CgX@3YILGUDDe`@4>qnNB)_CFxO1>ybFo?4kg_0-vYl+=v@ANuqok52;7| zAAl!5@^XmH;HtUq?>!-D>(^#aZm}X?NS}Y=gqD|Ea8udK9MfPj9#(hR&(wQNV6=M^U~L5L=o!JP#QCsCfAOVaSQJRkFyBT?m4<+`ZnsG{G{pmO4EY#7;;+ zWW*I)L-}8uJD1Kf26ys1eoe|_cahh^8=FzF9n_fp*@{J)a@=EWdBoG!{^W-^f0cb) zd+I`xkfdsun{SVz-x86o&hx~9i?=i^r;>Xk)izyzjk>I|TP_v>Sk(Ibf;99OgDcxi zD)eMc%dFXJ*W91qJ^m4);nM)Gj(&L4y~n+}Ar`GeD~FOtCDEm4*np17Pi$eb{Q}d5 znB>`j)xH3U-&rdaCoEJ{lo>)E8cegj(=2qG5Mrhu>FN|JH=>`_d{VTJ`On{tfd5`j zqU8Ua4hT6_wMDX$P#PavW=;WwUAZrRJecUD_Pj_|>q_9ZX*@>rdS$5@ztYMN#(|{A zRK0>+{=40=B0V`TmU^(>RWL?Z^!$6UNk_H%0L&k~0#IUGy6N`6E0eV16a%m_T>0M0fxxt%x04dy$ zJKnzfgbOiw(8f$NDw#uncn3mVZ@qWR3S`{s{}~%X7k)%ejVSc9oKGY~9t1zQxK0NI4NuL>6QY!Y%u>w+!? z`?o1?LEe+|&sD?gvl5&|`VnGm`CSrq4_f#xzk;v7qmTNwT~Bmd$VEb>ExH-lbkE0v zoT-izjUiB3RYgwFe4Dg^vkYc)KZ|k=JT17($MKr;NVG(d;mhupu#^t_{&uv}bTCh?-f-_CjL{EHA7 zrW(B%MTDj#V7}cJn`4w+{r1gbik02yr=A{)wzks@V**QZcaF%?sC`&d;NRLwg%77h z@Y{TRK7)&90 zCIHyM5`NHX|G5aaGc0ihCfgGg5B;Y18={f_kpj8Y`&ROY?6VhVK=~YE@_1cSM$#x~ zTuy@ec5q{?9#hUm95L-|KT3+V5l!s=44RvmsK27rJ??rJ`0GcWkwE`VdVmJ&t$$enP>7`nP} zzCc6gq?vo1LtKKn0pwiOj(c!LCuD12iFrzY{_1{47Up;G#s_}r^B4}XGuu@Zdr2r2 zJxlsruRM1ytH9nQTJEX2@D}!FZsy-hra-+fJmX9k70!;M)-3qSF&tPr!4!Oo?4V)b z-~I#W14!Bm~#|&{bI1hs!CEV6kS}n4t0_Z0_Zz z>#@?QP%^@;DNoIm?tEdk<=Mr#z54Y?`Gg-qk!Wjhp%j7TI!fjDsNI^H6I5wy{e{8l z@_LpaU{zH^a3p^P4wORLd6)ezNyV_putXkm7%nFAPs$?b?K#5T{bb7;cjr8xb%*Ge zYycVKQRD!rcZs<#3t-h4B;9|#TiUu4DvI{OKQIso6KK#kmIjshxL{T z>H1H>K26?(WR4;yf&EC#Y7GW99or|+5!+Fi?6{!4ub9xEnxnW7bhLr{!4$Wj50}Pz ZENB0p1&#~i9QbOnJuZ&SdI|U6{{g(^Z>#_S literal 0 HcmV?d00001 diff --git a/data/Female_parity_mortality_list_UK.rda b/data/Female_parity_mortality_list_UK.rda new file mode 100644 index 0000000000000000000000000000000000000000..b4a8d7e03743b05ad3d2bd4153ba7e8213ba39c6 GIT binary patch literal 37423 zcmbrmg;$hq-~I~>rPP4ZHPYRkg8~u~(%s!dcL>5rBMk!5(j}e3(4};DNO#vBeV*UD z*4}IH`(10_*ZD7;=Qobyb6k`W=m>v5)Pn~vHH9bAC!Dw0Lp71aueoS>QrL*!>9DZA~# z)x}bw%jLPqXzhsU(RLHtAmf=dU)HpqtgNiIY(B)4c9ZV9T~1+3M}gGlYe>b495pRI zEpI8wcvACRGmByM)RKK-Zvkz&?Sja@{>+n$_U2)g*&$1Qj~w~2eW+YiLi6M4FX@tF z@v?*j5_XN-BSUIEl0oYEC%D-K)#5IxAzR?W0V!J^5H{_7LkZc^|zQ za(7t%3$_f%&W8vgHcte(MW>x;c^p0OwXq0MG(GS2F|_2ihVw3|7s-zem>uRIHk}5{ zPASsl9}Sp4%o*6aoQR_%u-T}ces!DEu;n@tM@3Mu-8K;Qv3>YFMx@uX#)X}H((tYW z#VHjUfy)-}lo~nsQm^rc~MyrU~wvg6Z()?I+FjMo5@=1nijp!nE%a{ae8U5)u>Hjm`J zp2xDo_RXipr>Lh-i=Lbu4pps`sQL(>e`d#ZMNfgBS6`WxlVgNb`2TWSv;^fmkGSh~ zK)_WZb=ytC1=6XpGVMQ)J=IhhEK355UCk3MIQ7Tfh7=FY15utlp7t<-#2cly@I;3dPeK zyb^I z{)9adEQiOpoxFp-FX|tjj_BokUSjm~9SFy#4fEh* zK!DM*agH|fF4a6|EGa4d&iyx3XTi#H%MIRA4B?47o98qO#YVQsZT?$B-@Hce5CnPj zEpt}QLBee!Y{LquYY!`SWf{P}&~ljI5`Ko zdX%la2*y1G)G^QKB|Q0a^qp3{foYgm^CC5r=3dk0 zf5JII|4%0%TFJi=cgpVL16K^M!@>hszTxA7S!zV9@M9HZ9+kaVu=ID8QKdKc6j5Up4tEiMciygw<^6K`b!Q0X>ZO)eAtH_-rxI|Hz@|)i6 zf3LNy;PnepcH<0Hmoj5SMo0C~_0E@~zoc$-)R_CFq()f)wW}FNtRpp{b?Ce93k{s} zyOtmA>=hTI@~|sM?pECglxOx3j2icwhSq`AqQMM&nC6nXmi7=C4R@DuYjMx2KVhk; z76;+XWQ3-SjJ2=rp#~y`;K?MNaJGwMuY1bv#b+2R2v%1?pf$Z8LNF`ETqr5+5AT6nNKAiXX9DFk-Rv?j$wHe zGFESUG3Cx)zkZX+_2WUrDu11)0V8$-aej2DV-F%fvz0#Y3gY+SzvIXU#Qr9=*ouLH zbI4RmE*z1b`Lz`H6S#r4=SFe*WdYTOKE;fbqmFO)*z`-h?uNer6G^q79m~jFDcBgKRIv+e@^zq_DXqF~exSjgsXuf;ZC}>omZs{DZ z*nhkW6!fm7?F4Z&mtzk9Za^X$|C9zci3qrp{^T8osKB#KexwF8ON=EvI?x^_)c`e;1oP5wd(9^E7 zA-psm6n<&g*PQ(dUE441v!(QIXYkopozxUge zS+2_y5?Wq{Z}zI5OV;*Q#+fVg82?rYZh`#M6PlohKcdIxr^(1>_JZ@}rrpseb|uwG zf2Lo(g#q1V>i^T4loh_w1r*Y?pPdvveAG})_D6Cql#RO1CNV*Jyw1u-$uoOrrc7mm z`{;h?_ERy4eTWMyfY)3Kbm4M8ai)YTuI244*OOLLxLB))5)IkANU3$Tmfnzo6^&z* zJKTSoABRyso(0Lo2sCwHzDHI;;Tn-xXuRDYr#6J;& zxDHv$M~Ua%0Vd(fH6|+8rRS-N55`0>;hehzffISPcwMC5AgMFez zlWjO{X({p!D5`;Enk!ZfzukALj#tKkaBfmT91D-2ZBZRO#@6uj%$60}j_tnIuKjGS zeo z#CXDy+TM#Nf5rF#2c>fVfvzjk(i-7aq!7IrCL!~0GP%x0D&>wbvGxoTNGA-{^mvI> zygFG-i(F=BOBzsBwmZ74*pCNqa9t&jRt`W zZIS%=DH=_6zuPW_VU^lF6((e)dFsNo;i-YWPqG(3wqJ`pb<#Ih6i^_1HY}(qTXum} z&;?8DOP9ud^sU8h=Gsar!9qC=x4-5lJsI@r9rlIQy{p5GMUABw9-JyoLkbancySe& z7cCV_gcTw>H1+;DX7fmoI3F6y#pa6fqQWhnTg(j6Wcp@t*LJ@UG zPv7V0&fAyPwT*8^jqiFfwqVPJa!s$NQ&z4Ytwsp2Oa+z$uxD--m3k-S;%8-RD>Y8(@I`L2 zA&F!sD@d(oQD-2?mpe0^Us?YBUizcimiv;ZR*tt7v3M zLEtD7Aa>yssgk=V%EoZLQSgj5)Oeo^*9ElClg_yuBw{;1xAT?`IGgZ70aTrJ=P5dC z&Go`bxZiJ96zS7+wQg@Vz}2c8oPmO>uFpxr9GPZ&r}u^6go4- zcS0}@;wyw%-hi!SE|^T={=MyZ5&|S;?r4v%<CenNoj;t9KtL`$&Y{Lf>I$w*J*IFqJY4OpFsbBH8tO6t&}f`fp;j*YNt0k^*C>;iFeQGhv|QqhCC7@6il>9m*#=?*TTTCZE@P z?uzFyuJBXTsn&G4tagX(_iMmKDU>?;fp>FUun_J1d7o< zykf?lZ&^UU&nJ#+q8tudX0W@cw8hE(zEk$?@n{Kg)PDN-#z*|MY|v$JTd?<={vj+; z#oCk5wGez-Q>x%>t-br+dDI{OYY+duJ|1vC#q{4r@=v!`i*HwrUlzJMf4FTB77lD_ zsJT5ry`N>xMMgtOihb`mI)4U?u)#Q_I1F!iIkcrpYDDv%iZZtfcBzXmOxk3qFkL?ox2fZajl?_c0_~I~S zTbGl8 zZj1kplB;e;X6VdhL` z(snDQ3CgXpOc?4pvuU2-X%=~&vg^Xqfk>@%#8uS&!rz@2ZR>FgcG~0JVYdtVZDoKO z8MLcd`x53^ho7+fCN|vS&;E)q=5uz(aO8_Q=47v?LYODbt$>D84(KoZNSMhaj?|yX zA9kew9&MSxHe#EAdiv@Zh~BJFwrX0R>&PtL%B50m7?v z^$flj$kp1y8lXxcAK&d9W#Bj68#MD)#5URD#`I#=1XM?KSH5=Ce3w}V$>wh?>+t(ptVh_EJWh#HJ z+5eF*ZiIPnGGdfw4H)_p!KcOI-l_H)d6I(nMOtwJreDNOe&rweCi`Kf-PoBH8h{kl z#V?+H1Gmh1*yLiZN!C6_{fzqoHT<&*fy(>5tKO-$RM;4y6@IdZ2-^)o3aMHLjP)De zJI?zozHI1C!SZa?f5Tbxv5T(!SsbXy#i<>+8!}y}x9Qo_sYegPfyDH`p=x>QNjqZi z`qL#oXEs)uz(Y-qt#&Zq+`QE)iOHhcX-3^J>wI6!mr&*x;~Pz0H(14{3nkVYz1vD1 zlzu?pT_JspB-`u#0l{%!T8Hh6y`CEBHnh`Ijbtw=&!tmsY8ulI!(TW)QPp~91&j&P z;ho4INUGtljU8O`_DWOJ(IwE>jj#i#npyb3IX&?DpY?u7&G?ml3tOz8ewVPHHYUul z3=)Lrub9b28{L{YDzZ!h-7LP5&m)BQ;hw?3!1{A2HHF8r@aJ#Hz8McQgSs7k6{PXJ z8}n2(T^*IwQWT45TOm!C)){6-N%_NVg6pIlZ}1kwH26?Lhda|sQLUHkHLPRl1nnO# z+bCuHV$gKvebI`_KP^9xm;~K)WUi>g*pt(96QhG*Yii$4PQpMI^x3Z3SZh-CUwY{x z(IAvrD8p-8fecKqsK(v#phh1~=eBo1EaX8(0+=DTB{SA6AkTPD{nl|oAkDnxWViQ+ z!2E~$yP%kT8`UOkIopew9ad$bzK4wnYTY3EJ;(%!r^4qM5#|I>SIp5if1Gf0YJ)G? zTG7`3OL>b_`u{3#H`fWaR9*SZwAIVC;2Bv8W~@NpaprzC?@$BXX$GbU!6R9NDw<8` z8?c}L7WJb5V;@27HLt@(eii`$=j1v=IyXvnar*WdL4DxRJdc8_Q?$#_$Zr^so6 zh$OeZqn9P@bE@sPuwXUmF6hMw29>gf(Aw$E}zW~0WKCbz!aPBaeyon>*r zF$A(Z7*8EOr~>O*_vayCa;RC2-#f5bhx3gJka3vNd;SQ7zR9hNJnh|ZY12%J++$Z? z00KsmuY0ooM8DoQ#@9y`!OZV+)lV5(`-|=f4H{s`bBnq7HR3waQ@Tr$T;}H4CT=$&K2cA; z*5J(Y6&mi~f;PzdCyh+BIazrkuV`#+N@xYO@6b?(_YZ?XWfa@tji!&#RLS*VfqG7d zdX;KXdpiJG{JNf~e}9$Y%W9n#_rM&%*uMg5j@5HDuDdVY8!uty^$*w~uN3`Ea4I$8 z49w|!c^sZ0voDRw!6v5l=`fNv0sX}h7f@F~XJ?Ruc=vw7_h8G6Xg}$DoByafdF!_1 zG@fLia_QRLrN6Y+{T0Y^ZgAR~*Emd;c2aU{?x-xt$0o00{E*BvqeGVhv%w2$_LF6o zh}v6+r;tF5SXxfm7dR^yZ?+t4D}m5RinoZwKQ|v2p_gDC-I8yVXUNiztwx!PCNV@r zd@R0u$Q=Fv%`|t4XOXor8*XaCMm;;Vr1?}xp^0a9tTMBhE_*Ly2c$ z5Q-w7^9SawtQDC@h=QH9>yP4&UPz2RNgys;qCw4bl}f?;KPQeAWCftdCQ71Nh*ZR7 z{All&pY4|1vw%HMPCKz{%fJj-2UHDgW-&lyRSZYpT`$6GF`glA#T>L_E|cf`>;W>HO+L zDytUX5`=411zz@c=UWTvQCXJb*xN@{cvu$NfyBtIbY~A3r=C=xAwzxD1o`|j?G_-A zH$!CBKCU#~9*D+2ocKqZE zZVcS^sf@)s$`j6jJl#>jRIu~HWIzhF`<9;O;j7nQ{HmPW$G(_=Mw7qzS5`b*BfL8j zjP1?1HMrI*vU;T6QwS#V^ymg36^#bMddLNLf0E05&(uusDh#a5o|J*9COH$XyKCc% zlm_mreyVd>!j!Djh1IJI=7zS$Xc{G(7hd>exubBwWqM;ClT16cK@kuuW-~TNI6!*A zZYz|c5ZKK3yxjl^#-`0rX4Fz>L4zfIpTY`*YiU4apa2cU0#3eS3NON=Mn(Y@{GfHS6ndpSrtr*q-tR4Qb{-jdZX5 z{$Z$#icyl4k2)WH;6sf2HR=w_e9-WI#``qC5Jq0K=7v%AX)~QMTy6KNIo&6wuhaY2 z^iIz8ld>ktkez*AN0sBzUE9j+>gBug85(=l{p~#?`p5Ld@U7Q+HgzUv7fo-=wb~Ct z)6`&<8|*(4Z7Urd4_jAOpN#dzT=MP09_p(p!e`mZdLTQ~-oDKg>aGLIaSod*m1YpQ zOfZPWp=dx$uQE{J0BaJpe>Vn!Rp6ZI^7WqKb(e`;VO7<9?^U9C3FEkkDBlAb%4xOv z#?0WmYQ6l>tNmxw91RX9W)k$7(;p;9+9>-`e#4DhQB4?N#bw14J7gh0Wp;)7`A|@I znH#aM%Z;B;kpyugGi7+5%H900;1`ndB`0|LBy{UDN~0o}O+?+F$cI2i#$&RhClhLz zM&W|J1|ggGsqx^3&Dx(7dVFCX|a+}WBRyK66|*Z$C>B*$dSog2Jwv0lN#yjagRV_>(*g%qZtBm zg{{DIbE}HV8*h-CYsA3=2T|VXmYB-rywP_;n$rS#yr&u0ryZ5p-7axJ-gaYD)dN76IABJvRDuK*P{Wf5dD%wE-reXZ3^#CW>U-uDiGYG=jw)i6<%f zh7w(MEi|}jbC<$(r>IQk5NR0bI$b$UKXr4kku&dcsf~dSn0mQ- zoU|&6AATBP+i@mtyfLUG&TLV2jP0(>5=($DhI99-)Yp`()8HSr4UCkx$zJIdZ~hcrj=_C~nl*_^>Z@521!PE+ZN# zQrluB7C$U#2cqo;L%@~Uyk=`9Z{M2vZ5L}GFzxT(Cmb8CK%^PxhDXC5Z3i)+K>2*9 zq2!)ahWM%1qok(SCaDg#Qkj(|Jv&R9pCzw zi~5gzec}5E%_9 zfKMrcNMn9`yOP*bkL75=KGykQzrc1atYS3AXSG!|$Z}yQkv&2;rFQVG9=F@>f^8jD z)L_1zxF)ue{$Zpi0d5H&OxS;*Kw8ZTonCtm1k0>hC4*8iu`&YPbqOSdX z|8)9+D_3;)H~9;}2Ypo#o04`Vk_r1>9RLQm-+FtYL8=C>4S8h%vz54KVyg29#>UOT zFF2f8%nfQr!8Hu~ zu=H9LYX5JyigRBXfzxI(nGWXlQ+2g#4aI+)8e;yGR;u-vrBQrd;sS-=68&*aang(q zE;n`yMN0p;%#kS{fOwUKIzguG1$u%a>lU?6*WJT<#_ZFbxlsKm+!-MKY*+FZ$pt2L zxX;TBe9Rj^x<794tacCqhbs~{6&C^G_%mKn7PzJe`vpZ7+U5eP89sp;{$FMu!1;hO%7XWKnpdNABFGwR$=64Pt-9Qfk&)0u> zKL1?~NI}L!b?&+2JW3Brjpg}j3nNH&pQ*_3}JgS zWq~LHplS{WQlq6yVPMi6MT+a}Ph6w&Z#4&>0wKTZ<+Z=#67kW@uQ79+S_qH9&8H5w z5()2X3Je2~el?wLZVqyuO%z6g!4i_}^Le*#xH5cEql(5rv#BLe8?V)^a~4g%9jY7k$=(EwGUwEAjKb`?}*rd|-R| z=EaLnsukw>HfwfB(AdSRqSSEv5?)>07r+k= znpBDtOC6Ly{YZ?GMTT#w^>pV}J%f2{o23l5+3YxirGzbF?--@z>Ut70ymL|}Ps@_K z(iG+KwKV)(l&VY{O;9nyOczR%Zxc#H9+>VXMJ0m_$)f!-`nE_(^YpQ%W;2|AH2s)* zTj&D7j7Y6%d5^1+VgHaxE{SQn{@oO}J#vOmEPPA+L*B@b2RvYVXy%b_eDJlo<#$cW zlM1UPyZA|{1m!Sc?I!``jaEAWwAck{G*N!6*Y`q>hAOp4P!`dh=OG7fFX<%i@x1J2 zqoqaCj2d| zr6230k!r5l00-J^*N3sD`A6jR%pe>LEk)q;P_0#eJ480@yp9cHZ=Rm&N&`?&XW>@) zdIM7U0bYJ~8i>@nJeEd$eQPZpM1yVU9hJGBeA2;cOD|<_``nC&H$`HbW^}1$1HX&< zAeDoPj0Jzw$$YM}Z`l3$lBOEy8UWNp{la*}MFvCfUM}DH&~OoZsp)G1cKz?>X-1)2 zb#to(T&uVDU%&v4aQWk}HxMDa?cIB9S_K-p9O0&F-T|J>Nh1b>+&Y#`4o;5*ZRMMQTZW;2FP2dee__M9zOk`R0=yY!HE=&8Wis8y9A{@Y0AAk7B{U zaIa9!Cg#teoGc6Hheavcr}i6E!?8tJmGWZL`EC6;(+h8-)%O`1E)tyUGsgyeicL)wRbn(EYmi{Qm@7lPCCO4(TCnvSoc*aB~$$=;gKzky{ z@3?Sw=<&F`yIEi*oIAtgN7tWhYKbyLKzdC7LlJ;t`L)-M^kWc+(eDZDQJ09>5ZnH2 z$Mo@E)iND6y&T4vd_SYnQbyFKv&n~jPBk1@Qt(3TuFtt`9~1<11I!jv{za+U;ql1& za+L@r&TS%Kc2gN*kw|eOTphhSvTJdT&zUlPk*x7RCVt^79h|_Fth33KY;kbrl2WA{ zWPY)u&W6I=+j#rXXZX~1aXhLD#pf*)+gZ{Z15M6_WNc;2Oi!5-P4oO-Sk3-e=A=J- zbLkIDWWq?~ClCz3<<)LqnbAgZpDfhaZ0OF{5hvWOA6hPhPe{@>`)}S2UiNe{ZU($qt#t%6;(loK;;opUg;hOS z344RgZWi8lEu4by531a+KI(#5NVBVvVAVi~El|{8(oCLE95^gy$tl>4CCRF7u#fio zuW=xT7UWwO4*Imoi+k)<&5zJ7DE#FumfWU7n%rdBeQ>n_V3fYrvvbrznd$ z_U9kh5~_!>uIgbmDi-kmEY8WZ_aZ|9>GWF83 zCF+QiZno1gJw=$3IXrN^$){*<;9;IdmTB{ID3BAqgfMCdhC+5U++F+QlArH?=8t=y zr?oj8xSNgysnKlF`uTc6D0<}v8xDR(qQii7VWUK_RQ4Eomv{wyg&?sk{x~APj_|^Z zbFtWJ^2_A`Z;-$KA1Vau_E(mG>NBEKAxKWCzQuyt)yxMaaMhE{V@cibnywR(h0pMc z7UWLT!^%|+(S)A`ZfLs>+l5}AC2h8{hu?Od&I}cb2Z_X-iIKa!>;n)VAsAa{mk0uh zDTbu>NwmhxXm^QRT-}#h2f$Q>Z4EUfoUER2zSi9Ef)IUXMA%~&qvkTFdk-AAJ$Ytt zIAUuL(mZBDdmV+XZ8q^?+T$bCQE0gas9x*0->Azkb=?7GW9)U7a-+LL99Xp-HS-Xe$4qg=Hw2v6ws@a8&s9U$o;BfD+9; zs3oWzooO0j*b%cxcz&YpI+#!tJ3VhkXdyrEASM|Sl@~YtuYguBFpT2k6g`j*ODr1p zywhT*hCtK>A!u}Bs#b|2$mmy%`KEMh(9_qWKY-E-+!JepWXURfr!wAu;Y9RIj;>{3 z=|jzA8L|P;X8w`!%K_at)rYdmLn=jG!VKZUor)R%#0h1K{WB@FwSVLUfMI&Tk=vIr z{PjjJKrPU4$zq68Q+0@^$nlc8H_v;2ZLEmQqMvy_SX#IMG5R6RV$)#zcn>Z|tVCfk zg_&;kWDKUgvRGVP@R8IAE&!8ZJ1czJNKCI%SthfJo6Vj{!m=oHBBE2Obsi3A;ITCy z$#kD~uHy3wLJpgj${qcQ1uZnR`2N;eLPV6zuWJZN<|a0X@caUQN4?JDvnURfOddU5 zUq5t)fz<7TK=&n&&?+ErvqwqAM;G~6%%y=F6a#;AAhYUVc^UrL5d}JpNdW!{ej~aDv3ndbqH>Y@pRQOb*B4q%kA?sihp*)yf1Y(TxCM0rIXu0xB}6>rFmF*f_!o;HE%xwnga!dSyzwKF+lEC zHrE9-WRj=nRZy%QZ$0EV?5FJ(P7P3tfY%+xnGujlux;7HiyYl7S4ZbVAo0Az8a=)(nB1|I*Ppq>(p)CB14k*A)3>q0h+F)w@8G zj2|!Bg@!-ofaLR8E292IPh^xQb-ZG(%t_m<_=;Mj&Q`|MONkw^tNN{-?`qX4yo-Y^ ze;{8w!2XfikxDH~@xeUcqQYf{_DML|q%14HGhcI4Az*jBWZx;C5k80c`(H3lIsJhj zbNtEoVF5LGRfFs%`w}l&*oJHQI4ru_m!3r7cC4p43`pL!0YaejxlEY|+mWsYQWvq#l9lGAz@iehPp_&%(0oG=oK zkiC8w;iym_R2fjSBwTTT9CUw=QnKuz)m-%Q+GiF3-X9n=n~Q8l%xA$5cL_?aw#rqy zGUyoRQX_6MB$bPGE37LIHmT!Paa3n8=*L!t{2N}3FW)xe5J$sE`a(4;@O1ilX^~Rg zfNIIb3{7uY(@tTtcv{#ViU&>!HNnJArY`4*YMjnPt@BYyR@JHe83?<}-;?;3&-<~x zM!i9sjm%+^{|Q%I&5z!m!?ato(j0pAG@`Lu8Ihi^5@Wc)f}fYSg zL~?(($@jPf4J@|AhhD9Q^!dr)Nfu-lv@{t(EJgh{7U~HV8AC7x`HQ-8{K>YCbK(c@wSzBXsc0>xC%XFhvmHx3^Eo~*zSoaD5W8?)k@hozXpf)2%vyJJdrO6bXM6(mKVBFq!;%%E3YeziE1q9 zV|)Sr{oaPz2KPCVHhW$i$jG|982S2Co7ESd1?YJZ@%8+je}w`wcOYC`U8`LYKHj>h zSFiH}(6UTg8hrfhKZ^ZQf9m7fgPcqFlFe(}WSjqGiBtV20QPK#jr|7{zZti(6ZrN6 zmWgE#e+QA5&iA&R7&3U}DL&Pi=H}u%{6a(u^zK-Zmz<)I|tkUU}!0 zyoyy!CeMu8_EX3ZJ>(#0{i)%{?O(f+$)W%XXl~eAb$h`&dvcC-Xb7CG;Q>OD^7Rfp zz-EOzV@B=+^RMISJRh9dwc$fB%E?}PDvjjQeQ3*l-t7wa;dYV2M)?F{_{6SXQUn`f zWBSa3^Q13`Gk8I%O#n$!Iz}}pM1ffRK0pr{V5{hXG3_C;1>y|Hp^9 zlY*5OJ+wJ+cO3;sat9I#SA9heX(h=x5t(-|Dug0XJNCf(M#FwYe9NE3OQGJ6C4iOE zF7`*VkQ&idwg?jBIb$XhDAbAdpP}u*otY(}3b2rD*dm_HU2XqdrucK3k7Z32XCml$ zvzt5EpQBf2r&X7NQ|yN)7O`L!gYl!ZHi0r?+|u74hA=Uf8Gu}aJol3c5)C#NEtRXP zU{J4HkR8p4$x30AtWcY~;PIclR0SP^VUjZz+ETJ@7TZ7zxvHRDt-MTYI0GZ9YxPfoYIHkKWKi{S@hPhrmRPd&x zcJiLBsub#}QnDousAG3ExH5;?l0`${GtI$(YSqPEys72`#7T=zscNd7tpZ+%MwR0V zb@$Q{;nR0HF)+;Vl2AuMYUpNwq9YQuXma8WMr|8aQuMA)>BO@>OF*3h_S#fH(OVTh zw>O6iZs39Vc4Wd=>kfnvDm2CkFvz#d>m=$!_IEF}?*TKcaA)#V1$X*t!QiX8CW-g6Sj{F!2Tb zA=}!1(Zf2G?PxM zWzdh)!4DNPm_+83i$)B|a2k819j9ad)|o{fK(&|6O(0{yDXfnoGxE*&$T1Ybcy;5e zcPnP>Cdu1$Wu1lL6HFL}qMC@>{ii*apfl`Ua+M5JGZmafS>fkFR;f8$WkIe2 zVx4=lc18mkf5Vh1N*L^LTN(MC-BFkXZg&US?@`4lL}{_+5YFF?wB4S<9L3bA==^Pn zjIRsEW8TFcw$J+yd~5?{ENq^>sV2-r&#za+MClKvf7f$00;+;rMlI1uRrhyvZJx`! z{Ucn!Jwh^!#!~{x?b(JR3aE&=FJ>ps)eU`X#Rui3AsLXb`<`1eBPhka$M5qw_VH}V zayQO(h6j$rf-_x0Q^^wt{~?lyms|?}$<*ch@|bMN=zLl`+k(WhY|mO-<$f0&h5^QS zI0pCbA8^utWDm+>l%DQV<=YZk(@%49sV4jLMfWTdD~&r9!qs-3R;DUyR5tc56#V@a zY97-JHjg9Zi<}!S1|Rnz;kHPy){)gDk+NHTzVkOhF&B*Lf)0~~>Q@&S=nSE?DdwV04f)dK8S2*y&g~vgy{|xe+_aayw~wab zsf_4ooN+zj1>#cwCqv}YgG|Z{NBCPv&^y4+=3fvt+}5?J&)N|C!%co*$b{xXP8DE% z=QS_hcsK%_4eN|Svc1znGRIBbCnCM?8p38S#yy<4Oe)~YtrN)3Vg_;4r+&W^Y4*kw zLk?N;kEd#u7`YtCqSyZc6x;8H0WT7OPKqrQ*!Phm-B!{}KnOYQ*b#{1gP`fWLkf0e z%Pi2v&h;`9&jnU)8ze1XfY^0O;#`he@L&D;w#afUUwskm9T~MP6g&a<&Bp=t5=_f& zA^Dk=WU-~>XMTIQw6U1qzgI`-V6Wvqy#3DXgRquLi5r;@YHBw5dNpAQ;@a7I`u!*g z>~G_H0dC-x_hil|M9<^(+;}U|@p}B1LPv68*iAJq@1-)y%uLPG_pOe2e%rNG19-YG zo96L6+J)9WJI_`fKI4unvtY0`zrp>RjL}uiQvQc?FDRA`zY-_9CI7=6XT$NlM@0qy z?e%du)`gle8$5H-z{5ZL60-4E%6e(7#D=AlrIX0NQ`AfAwV8H1u|6&Iq%TPF6t*R< z7oOO~2`@Wg`l+Ju3CuoF|I`h;!arpl=hEW&eeu&>abRj$6v>dH*B^pP;m^=BxtQK&qK);F@AG2WSZhX@ob6x)4AVc)3|-9dvA1g*Dsd2 z`QYh_9dO;iS~HmMTmZhkqXT>6ViHjk0aa0l>os8fK2PndS0F%bk_PI^@+S8?qFIK| zsU645rF~q*2z35fNQC8-PJN8=iU^?xiR(#dLk+EeA}EskpP%8V+(hE>=AE2pJE24*41WBbt%AU|KsJ|vU zNwd6{P>e5Azr)vp4^FAggT07splc>l0>B5+RdkbQ9Wjwn!p;+j*VP7MmS0`Fx8Rf4 zyOpY0qZ<5&V8B2=e!IK-IPZyS zp2i*|B3%Kmob|w|MM5XB|!my ziA~OS%-zO{j_BeLG=MK%s~qn#P0IdAM&%^hEHx5mS${3U%H3sja^lGA#QrVmDxGgF zRekUCG-hLWzBrY##0XNm|4sFT&2;yu;eae!qiu9&2%!S?za*4I91sV&=NiOJ?0#{y zEd3`y0iS;9`3`k3XqN3)JyAK&TH(|`sfiLCeaSLMW71y#nbduz`vCa|w6IOGOP&w7ryk1?qR zH}~>;bCNJo)v%9^^w`P^uo?9`Y((Q7>w7lP-;l`aN#q$gw!6JX*S-x;W^jwW2Q3pp zx*R9Irs3-Q_sxzz2G{2t^A$=qQ)>tu`!orx^FeX_T&O9Bdm=cOg3naw06|NDJg!tX z2_ZuQ04n3W>2FgynVBS6_bE`^r~__p3Y?`1x<1@mqUNgjF!PRp9W_p*mL*)TPca@b zn{580*Cb`@5MS`m^1&iY(*!Um>lJm1>urYN8pBHSTk+H-SH9y!fU5N2A!fcqOp~|u zEuccV-Td*ev4b0~5EBSAr%%a|33gpP-xXd*3<2?)NE3%?( zmF*rik4Ht5hMXm0i36=M@@3A9>W6M{0Xn7IzFq7iljE-HlMw%#kMLVW44l3X>nb(0 z88#;{BH?*z&a?@x4iZHM-o&xUwFA9MjlCJ$UsXU zRzB0ZjjDrm^Rq0*>YNkg6_%L#a|^2fhadSK*y0WU+rgS0jIFM4SOPTqdU<}?`uT?J zXmq!1MPQ%hhuCHo$`${0LS%=mDx|(i!2UTQ$WEU0Asrk`t4mLaB$!?9r$bNN=g-_4 z;^?W*4^IM)Mg!KW{kM8;TH2VeYV7?2Q}8JtBt-&=u=mt?%V~iMb@JG2CUA$GZxR`S zdOAin4noDj)wG8_gspu~OvE>D^A%&L&%m@!G8K@^1V>O*h+A1v809VR0s>t}evB3< zW=ITNqBc<>eR}6_9@|jt=0)llF~d8{AX$hDH8-9p0`a}{OIfZ)fl}z!z7zJumVB(* zc^uCNnb0?W6GL9zLAz7SIRHbmdYBQBDwM`eg&a`*8C~GXHQ>tN?@>ItBS!@m$5OQX z{YfiY6bg!#!?sCfDkbjZnPqD@vw_~tVjd>@|63lsII-SnqPH!6qzGr(7V$t18Vl=@%?7Le9A9(zuv%JOD15`^d7_|gLCruN{YId&% zjS1j(N2bcAO6kRph9Je%sN#*e#q(*{x1K*DP(4z;z)6kHm;EM(KxYN2Dh2Oz_a*X1|Br5$s)sQMSO#Y+iXHcxacgs@12q3PNfs4q42ce zXzI!g!Wqe-f|~dHd7)%vQn^1QkI_t*NAINE0MX~W3W+nXZVIpN=PKaM&ARvo(aoYJ zEBLsfPRCuRoltyxW8&MB^@Lx4bfF_(At3JkEIP=vw^CI(u+n(`>@Mh=;<&&(10s=N zCfBHsAr`AH!VqnV*j0fQ;yU%Zq7gx1y=#m=(mO-#D_R&Eqhr#EZESVCsz_EakAQ!# zSQV=by>8aVO$@Si4Xtf8uUIfmx2JB;FHR8Wu*E!6kk(@>5Ut_=BJC~TqVCrJZ@Oau z=^7P8y1PaJK`9044(X8Y7y%jS?vU>8uAxhbp+UO4`!{&)`+m5;$FZ-2KY`Dzb)N5d zt;gnhWlCsQQ>wh~BZ?$DTk+vA6#@bCCA^4bBDQzU^%>dUK7`15v}!A91_y5c;SuW?+dT7*cO{Ngm|Bukc)e&` zd$ML9KGE!$=9O2>m%?Y`Y(d4*=6Lw(HSL_g4SfLlSJu-57H2x*b-h)1ZVi?ed>8;4 zW-tm2;TMuxSafPVoS;SZ=7lya&h4Cyp`805UlGO2l#(`@KJE)zU3?80q6(Ip1)GPK zNzk-a(SkEP6#BYBq~-RE8d62DTx9=l+4&nwY;E(q5Fw6S$IV+@&`~CvV5n>Dr#=Nr z#7fVVs?bg*;NA@1A%^j6zH(iN3DWO3WEGo4T#|`4S0ug0&3ZTrUMudwhi* zG-&{@&06#2p#~8sg94;q#a7B z0yb;^LFDAd3`*d;-3YPm0anL5xgdc(b=u#WjavOlH+e)w(sQOk{^@x6r-#*)4yo*k zt+Nu`UIiBn$90kDxiq=`q6|97wL(Px=Yt0hcDURoyUQtV54xFPihqb1Wr-ZkzDn0% zJZDsOb4b5A+xa^*}AK`QZ8igLvlm z*x2ntWrbdK$q+4@@jMCul$9@x!ap|D!Gd|LNW0`Ln9SoBN?-hfD~bX9Uus-71JQw> zsvWcHwpNcdpoGw!ui4KapDo4p1W77ndssmzTHmb}=ddvJ?lX5AM?wEYZPBuU9*P^Y z6(B6pnG_Z{mIPmZs$+Gup>$s2GopWsrsx5(0fV1a`@XnWm0*blcf?bX{$TXo{6Grd zYB_U6(~n_RwPEQ!3PU?4M>IoH$}uY3wUzRP8S}b-)Wb&Xh-eX?1$ORd+{(s*0c0)S zhsx(o%)SC*VmB(jR{_Ob{P=c`QFz!rAT$Q?&xNjHeOTOtfS#l;mueIq{&8|rI9Wz}pxqHg<9vi$KoyTT|lHJJp~Filf@ zvc^)v)kt|pXEm4|hWy5mlifgHo*yvfXsOZKA_y6+NvDm9Ml+nG>3SE11z6w%`Oag# zaNt+ba$*KlX3S3_0#lwU)8oc~|L}|eeQ#?l!R)rqP=1Sw;%frt*I&%lx$)p<4vR>r zm;`@_01kcSM_c~aae2YPrW9MHmwo?-vG;A$Q zit!IZ@Z?az=-K!J?Qj>xU@d{gQEPy-Zc^y29!rs8*~PWskUC_}bTujyZMwU}A)&kF zK{hE)HV;(WWQSZaTMu^eyw>QAaE!FG{T4ksgpUEc@F3#9;J*NR2;ZbVfR6Fo{Hz_2yQ8K3EZ`;5pXz@aM27x zM^%5J#8A`oRW{(B3e6g#zqOa~7WSG|7QD(0abb9M{xPwdsBe)SZp#66ZD(3te}o}G z_P!nqP))0wF#xTCUyRFw-VHn;ZeNK+p~Y68~gnB%wprxNRjnN}|QTE28{=OWJY) za+P?P6Tl+w$4?v>vAJ#KSk3VqTkE9tZs zC5q|xRZ8C7%y?anPod5NnG*Zm^TXA0*|cvZwhvu7Dh)h^o+KaOT6C=CNmq+vTIu>x zp;*fR@8hyk(fm-1Uee>&?Md66OmxG!yVOL-NqRNgfq0^ZLuBoUjo2;mvxAX2=>v+I)!^<>E zNIG-9D;6ed(cgkUazDIIygtSUvae$e4Syr&F)3=+%@0kBw`O5OhduXpqgt3iJpVu$ z?dZw6@<&1krD6eeP|m3)GU{I()2j*zt$2=jeTWNadg#I# z1?f_qyz7y9vb(0aU#GisKCTx`xWliu`{l9XbDzzxvJb5{pPBfv*B|*_2EZ>rGWACn zJfd}THN2^virx4Li{W+c4*&O$!CFi1g2mg_)riguY}G~F@8*+eFFQR<{WioObNF^E zisl;@R^!v*pOZH2>?{SwtwkO#L}x6i-znG^SWI*8f4fZV=)Pl*C-b{`=2ejzGGmO> zJ>p46JnBc_;Y{h<&J4wvgZ$; zZrqy7`D0fVEf;fq`UHy;8$s9>WgUM04ige&w(+2l+l~<>gnlWDu+e{(Ymx|V_kW@b z)FPM!hg5+p;1jM@zotH#qVe1Z@aN_#wQm6^*)B+M)hZOU!z#M6MS`tV+Z_Spf|q|M zWx{Y~9n94DBZk}_3~B~M0WVjbcV8k^u&`L+7&`k82806}N4*g*o;%BHwzKTwcEaOb zoEV>mNyu}6`Z$5-g%s$XGjczv+uL+6;Za=Nqo+GL~pRpbcd z4EjiD=du0Jw4Wgf+qFPC$NVpU{pqVjH&D6UsOLqg$SS@qom2)W`dX7_wUgQ8V#aHh^s?HZVNFd0T0T?_+NPx1`%zRkXn&mj z<6!Su)XRXET(9xEP5-l~uARJ(w^yocg}u*XTaN1Ab&43?O&T_OwylEKboMvTrcF9C z>MRZ|_2pjI0R&Ftm^FC<;c!F=d8P=i?W@!dbU@SJHD6-yMAyOPkE@hL>^~fW5=Y7N zhORE(XVM!1j~M7D|H!@1s+8=*Umi`rbS{DGds_%=Qh~CwLJnYKe$%`epff8o|4s`) zX11eBp;rtUZm7FA&*%bwaQE!rk5Tmvcdyr=_Jh{A<@&nal6y97kO>Fu->CufW^CT( zA3ha1Je$2)q()}pK}Ll-UBB;Q~@7HbnAi>S+wJ9_i%8yl9xGfBTh8g!geEY zl=y<1^2KFz_E>AC5M-q1!}J{F@aaxw7zjy9Uy*<%>n67gj`80NjhQa;0~8~V$sk(z z=04pFXp#n}(vM`8crR4xgAo9))XVkJJ85)!!|a;zkl^Qz>=G*QBYfi}Z=k&Temcv> z>xG)ba?i~Du@FvNszR1(7mj@LA!%az#)s(thMi!@L9~O7GN1m7Sp9#TLgW8rP~J3S zzze%VuT6e@WgNXpdN(mhavGvudyrMIl8W!yi zTX)rYNG^HP`j16lAq#JY59vVJoYx@ahEwgNnw!|*7<@PrOOF=guURId$VVhZREB?h zK_{ZnYWB2f1DZZ3hb}e}R#+;inAng)*>q5Hgn+bv?N)@&PSEQWA{yw}z&Jz;?sX>v zVasm>?)xNhP8aRCA2}l!teT%4@3n?(`pz4zCZmB?k{5$^(y`Yxx$%1!;(fJeXAO?D zk?2_RuCHn!Zh2osF#H1)@R@;4RpW$sZKyAHTX?V`gExt^MFcMJ=J=i8k%xXW>*^Mn zHLzE!yJt#HhrT1Qm+SQB84*=<|Ry^JW&QjB5)LoNSm)WGe# zdgUc-JaqQRG{uxCnIVNq?K2d)V_WH2&6!Yh)R!GFS;aHGD(B_K5uDW~%2faTA=SE08{07*>WSkG<-wDWSTf+YRt zRov;czg_yjXo+vP*2(gVX#2ZHCeFEC>Pt07%X+~E8q@ASYP(3ahLjH#TwXus2`FZrosxUlq97@@bM1j+m0@36ME> zZlj~Vlq`rq_rwKTn0vN8+57&<@EjQlb+N_3O4#cJ7dd;afj9#%D zAKO;$*YW)$|d=Q3P7ZFLC}7DfOq{b2`J?Q<%*u%N#Hhbh9(jf6WTf7q+5T=FqMI1i}m4@G_9-06dE!~07IdSQ(N~JPvfN!=6 z`h+l7To$Icxq!N?f74Zf!Lcf25L8!1UKCJa@Fybx7&H2f;DYvd=^hvpV+61D?8MUO z&tUS+QL@Xl$&ndWOm3em;fGtvQG1UGT-VnA+k>(X0Z}WgZzVn<#>f?zkJ(ufKhsNT z_6m37_%C-K=J|iW{k~`olj*)2GCK#gjV7aQf5bDbuijx#PzhH#d1m4DA(r~RUCx_m zTD;zRC%m?`xuRay(uc|=_vV|nVTI+RAlb5k@!IqH?%@yDHP_)~aPpn4_9H&>vjUat zy_g-ZJib}8N83|c8)qzj?)Bhz=^2!c1Wk=N%)yC%(={fOF|lY6ok})gh|c3M#`8=7 z37KzsM74nsAg%2no}Aj(6HAB%O9MH(eWwS^=?SdtNB4G#< zuB#(P$mI^#3&8!h4FzCWPR%e`wE#-r(>ifai`1}iqr~Wd-FN1e_Z+fh7^QL6(Jnn13RIBl(GUfNz0jnQ25?cyCl!+Nr*lIQj6)W+ zC00#{fvuK`<9nUL*F+)U92SW(ao$b8vL&kpE zZ#tU;y{sm=_Wx)^RB~A@Vk-qJXY};ae#^cIh6fn{GXH>4zxh)KWG>^cz(e#ADIk{g z?iV(j?~+d80If7JPf~z91a@lSK<001{MPsDKM-A@OtP0l55Ey0AC2!~PaO9OU#{_5 zyb(VK-U`Tp%jF)!y7% zj6dp=1{zU0+xcwjZZh#R2Us3-{geCH5I@o2;Ei`cC3?lkBz&{>P=x06H%kK1dcwci z`vQYCPXZa?3my08>A~Z(*39d0Dtrthfnqh{v^sz4S4a>YJLXX@W#rDby2jmoK8TL{ zM$661R^kQI>jf?1oHmUIXt!} zmoaXMY<{!y&(t0DR3p3G!ZH-p4T59C-hEE~CevsyQ5As-oc+fn2JTcpRdY{)lJ(6# z{7C*!9TM6|45VETmUbj@Gta6sjbJdo^oP7yEs1Ssm*laU?)F;&n8BOy!FI}})m9~Q zmKYTC8uRoW)NXqg_IHzkX@}DPBJ#1$_^xyYH;|d?VPaLaW1(y3?h#qnZntt;4|!-s z_mRFtGhF9nf0BPU(rEmV2YJOL>uW-{K`d3)PDKcOrdIEPul8d_RL*dU#?nCJp=N0P zr_~Q*ok-8>yA8~qA_u-$#kzV7Y{GEU@%-1@k}~zcJT{jPXeT*)3o)eB1Z~F0(x}dn zqILXxj_5CXkzcgV)-G|)xBdEfX5cLgEggju7!MFm7;PP}yGlV~B$oU-acFCPA!>l8 zS2iLuh{uQf4=P=1FBe;OMwkMwa^{N-sdP<6rWZvQk=)9k(#+(2sjqlf0wGTS;JMX? z6dJg;JBZLYnLI7yj#ROBQqP5?a7S+i2I(6?&RSlJ`n$;f!(p|ZtA7a(TSx#8*?nFP zbjUeJO`}fzqaDps$w(SPr@}Pn3BrFE67A(0QyVV6Zc950M=9Oy^V9;1e2wfJo99nN zS@iF?B^UBYCLyaepe*`!$G_7y&R9x!OI{8udI42nwrpcGxdtCl#h?jsAL;#5nW>mT zW~2Xmj&HU+G{ea&^G(PSjR+xt9dEmoVwy~nI55jLLBrQ9tk{wmV}09rISAtvUPb}` zjA@vhw!y#%5qXtD^$55U(I5r>!5`kL*Z%tK!*OB_T|HatBZVQ5v# zu)u5+1>_TzCjh-Ys(x0rwsIC9oTU(J^GDgO5BoT)*yznnJd9K6@+hVIjUNB|1I+ z%P;0|q5FhMkl6lbAa3eid$E|4{zY#Ey!k5q&B8Y_Kt~6pNq4~M)`uEF^F#Y;WrQMv zZ5T3fZ-xh%e%YKhjMo1jP)gLf?BX(`ucWn1oWrpyU@)2Nhng|DO0^IAi)$GY;6qieUII=H$dPOH~LsM1Kx!3DhBfSEp z?Mc&g8f4psaX4eS|6`~3LM-`fa<|IDTR$0S;{TXE66_CDR6eVthTw?5@O>uM@5OtLU^oS@k%L{+8hWjD z&i290GbyU;0k>`if)3_wFMx`HJucx=R@X2w&5llX1f--MR*q;N+|up`hQ@^D zi@A`&t$LN^J2PnM-Y(;zJUB(y!EX9M4TSe7lCy1q3LQ1n?QExjmh!rwhv`A4*Ms!G zyAGv|cuXYjOMPy{?t22JQgs%#pt1PiAY^(Ez3exq{KHy8@A(Uh==F^}|DcIDb|%Jl5jP7ARc~c|I8%twoGS<6jMbK;e$10JKMAmu@Vlf#@l0(QY=-jUX}C^;wOEX_}LzB@6Zt^GtUTvvS4kLuO3 zNzD9HQr`8CTMGZb7>`5q`5FwP{p$&=0K(i4kH0(vyI9$31`LP-)#h)?hP}M4v7jpO z!Puv)SJ+LcmgctJNl^D5-}yete*H)`&0-xMc)h6=>mFE!sgj6L=ua76^p%hNr4;Ih z>*84ou}bY#w*9i$;ewV*$mKxco6QxxTk8Vvrp6YrA6l$H>bvo@-m84ZYm#wr7Q$MI z53%%xjO`bDWrK{{Hju$Fg?yAPPV|78(FaA4Sgk`>`0KGE45QmBEueE^sF&Ey3jkkn z;ws+S3^;SJ@!nS?X_KRd)==Z5^|nZ<7wLU->Eiah32>^!2i}h&=tK2jl^_-w8N?R; zlY?gestq1ghA8i?n_nPe1ZDCgR9MRf9oL3rfnZ{$U_3}maWEj_x>A5G!rTMSQTXGw zdm(y4{Q`XENj}SLB^L2&FM<%t(vkASTt(jizvq9Hz63|EK6}|K_%4mI+Tx?F{?^=7Bnro zfFc-Rzqn1XV<`Sia&p}SiNb=%7Z0&|cOvY208^H2to^R|^C9Jzd(NSXP!?`d~bg0v`bSvw@rN{KE zZGFVFN58~U)^8PIOpM##>(BPD^2*tn)$g$OR2;C5ceA(5_JpA9!I!_%RMuP5N# zJ&K93V*^T{UXa3G^oxzpTg8=?8ra#Mo3QJQmjq4jE*Kx)g+zW|$8PZiLy*1Fr9%*3 zOvk%;o)JS!)rew*mYrB08i&sg_<;f3HjKOPeLY=InS7RPfQR?B@6H4f)`qi#&;=ps z8iJgp9;gUz6jvqD7q5ZasN^&3$Bhf=Dnz{eSTaGIRi9KK5_M?{4>t>VFC|i-fwJlD@*v_QMK0Sk&lZow(U_zeO7D4(%zth1+1C$o`I+9 zAeZ|Y{HVI<>QpO(;E~8ho(|K9ge8W197&);_?YH|+j9tYuQ2+sI6`J)Ed5F! zHLx<6d_GSZ7t%aDS7!A<=--f6%kb_B{I$Bb6x?LOul6(Hs;KslR>V?jDvGk_lk+S7N;yRVUt~#S2;#Hzh5%~W4aj+y+#^XOcusv zJJXk(oVqvV0@OpDaRyU<@ESWVKX9uf7p_!Om)qc-xCtWc_Tk>^jTj#9`rA^isF&Qg zz$n!W7L&itBUnuxyOl&p z0cOQgEzM}wyF1qB4eYR)CiG?wiTOtR1J#eR(2}8T6>9~<7WS{y{N$FK)f1<#B6_46 zC2<#T_cX7a4p-(NI<>@>?qZ!56|JkD(6OK)_HZ1#+b>hEm~TxhuIMXM$FYu!ZoS9% z--9F%c4y;&uTB{FIXNU!SX*C--SSfOF$A~B;&ngwzD^GCPDi0rgbkz1C?q_FdV7G4 zN3{~lPw*l(Tll?f!0EE==>jiZIU>;0HWg}jFzIIYXHZ3jfyZ_mNlXP0oi0{AVnO&g zjG^{M?YJI!g4fpPT`ImD_Tx3tv3u{2UeZ_3*=%J_txHd7AVx&@xPzY_Q8T*3&lX=e z6E|I?`ZtD&B_%*NW$Av$s8C$eHP__kiW^sS;YxbRI4dko2Z z)!9W+%HNMp0D$LQN+g@+o1RlwTxz^~I<9gx-Qu5cC zNEE1*9}6yh{_{TdTZxvt#P&2iH>*whra$Ah@PMuGfBqF*U!BE8=|{fDhKBwE(}tlx zPurt#Z@89+Cb_IK%oX?CWcMtM1MJLKviU5JHhofWc2^GYE7HWZk17a@nrGy6?otTb zIEt6&>IA$y-CxW-Hz!P1U0|-E_~s-!$f#bTu*Ab>a9m_&`ccH@(ZuZiFSYr@y2>DP z$fug`mP+mKI zdXp8b-c^%B9md~YkqRSJrr+caJW{;_0S2rt|nAgJtzbGzGnNk|4GW>Q!4S4a{DM2#B?g$N>Rkqtm|Z651L%;Bcl4 z)gvt9g1!CfkQh%+y>5RK9T!Dn`>@mYd6X~~L{@+ncN*L^NDg{wlxpJ`Hx1|)3v=E(1`49IN;BP z!b#UGCSVjVHw;shkESoJMz)6W0Zcp;dbAp11NaooL3vs+R=j9z5DnNt#l$96rm`M@faZnBLoq^0zi&9~ z;st01$FsX%TKPd{OSMf=i)?_kRC1$Vo^%)!seVp!mA;RzNe*QJtl*_ld0~2a$`A2% zgJM>~C?8xdY=^Q%1I8}KYxccSkjln?80o$t{Ws19wSymGUF%C5s-~S|PZYx;vx>lB zuVPz#QL3aM*X(@~Gfv9gU&`N}@fY{rU? z3rt0B(v+Wv(5KsW8W30rc5QLdo)UQ0XR#1h&;&5ucax>f$*`%qRj9-1y$lsJoN1wB1;IA77l<-lse?)Vo?$HcyQ|^Q zPI%$Isi=QryS1G(Ns>M0&u<#5=F7wB-d7lw2WsqB^BIg`iNHIkDevBX33OYfwl5my zj<|ARZ25YIB!d>x=xs)a5AEN(96*5v*SRg-tf8-{=89{METFu|`-wM3lL)*!aXrl) zl>&-Xw8lp#(qnkX?2VSyV6CBEepPlh=H` z<&8Wo)N7C|oqfFpH+{d$eI`h$dQh+4u7eG;u;rKIU|uNY)D#W# zFs$3X*V>;!_~rV5w%?DsipHX_G}0eVO%@xsz+%6_kg6qv{brxF+7?&%RZDrcf(FyD z9!q}_=QYQ|=qMRdbO5{5%^?vMmRb*$!dr>^2jjV*EY}4e9 zz(`SaUX6Cl__%7>TEHH0>A^B@Gl%51TAeLNS@)QEJ6E=Fd?S7yTF!ruws!n`QM32h zfw6L#7G!g|lvsg1`na>&v3+JU{EcL*(5`*YW?*7p@XD7A%wTk(F6ul4Jp|!U)sqzA{%zWhX{z`+P)tH+4 zxF?L^xdeYW<2f=4wh(@6)dtoPa$_j|A93HYpbc7Up=$rJYEsUI4#tlbZZBl_*$@|> z_b@%KgI+f{d6lUc^Ztw9LCfIMA(acNOsHDoz3)AQVTG*giw1->UGt)ltUFhB&NOyq z^t>_a-LW@+1)IHy_B@T{P`Hc4rv9+j??rshJT@hIbKr{dLUg3d#FTI5^=L*DB~8UP zOdd0?K)IqZkahG|*Q}}2ZoF#!y$h;CQcaJ0#qVhq7H=mCUV3*9Ro9f2&Ror2#aWth zlHGt9n&Df+ef{5zu4uu5*sODv@;?YIf+6Ip$?}5=_}zsY*N&I(E)JzBRlXas-f^-J zaBlbRIq}s(D3{n%s41tZc9p%StgjvpwQkeB;vkb;=GX4FQXgu1#`2@l4d2O+#;y^s z%=4qi-osn~O`3A~y5DaY$2^{mnMStOPPtf%C z#zpi2xv!UaG`tCuplLRMDt`}|?sBIPR(I5BdizYYeipUwR70)Sb=A#Sgje8{#CLvm zy_V~Zr|kSB(@PE%nfZ{(!UbzzZ9DNx^G7tG!CEbf~q>|+KR;M1Qd zbB(HD1~FapanKE5XUAJ7Qw!WsXO~`{R^RWvDKz)+tm>DFSW`8rwr6UGs z$ID(s5)cB!Cz>ruYS5t$`{9lvG3c523rcOr@4#luY0CRcXny(QuD`2M`G7bI7hx>v zsNX0ByTz1o08O<^t|I4*M|z**4pXBL?od%t$3w#<%yV-rPP?>z^1LYY^V8vrDfAkv zeSLsU@AQd$As6r8U}E~EQ(C!b3D_^P=@k-!T~G8Jo+)|Qyp21Sf@Xd4W-wVEJrk;n z)?)<(?kJcx=7e-4IW#QwY6HdRMAh}6E7Jwm-6Ckafs3JN3cWXM%hPv+#g|iwDiuCU zS{$!z5LL%l{7+5Glgf%KCFb)jImbTc``ymDSVxO%d8pBudbc-juPFIQ6c3(>(|H+J zSe6CnqF9beWU20#3t1KJ|AvodO{6;C$}I}(C@!Pr+gc;NWjba}Y^ugdT*Xkkt7unm zeORpAv%9Q|l@)7KYEd|MBjjVfX<#-kgKCSNr%N+t2DZ=)3gI?6OOduD=R)R~S)ffx zL6{!l_j)JuA4yZp+O#IbGp2-w@rx0eS_^=tIM~CMJ8i}8_^-iq5rQU*bM7uxqykr` zY?(XqB2ga)S3*D(nWl>gz)%ge&T)(iW&P3LH8tf6QQalEbw+{1yUMPZu7gr1k4f|0E#B>p~VW z;Tw&I{k82qMmGf{*bduP@kj`T&f>&uvJ9eTz!sH-M-2Kl)MEyPm%u-NQU3i5TB}1X zylYE{I74yq`yBpeAMf}ozh?^`l+i}gEpQ675r%_38`3Mtc-WF|M;}43uy3evgRpIL z%31NO%r8iDSHJ9o{#C!8sXGcn^tQTOb%^f|@-^?1?oav`wjM-$nnYx`&lL(%3BlxI zM=8T~bP*4pPG#oOj56FIxhgpQsM|IbQuu@BKwdU070ygS8L{vJ5#d0@{`1^!?pbG) z{x$g-2PRXndQzWN!3mn3_P|gEcQgq8IDUAM(0^qL}&~ewH z2de+o=xXKa0zko^so|5yKnlOO?CQkwZ8HiD%g|#viXXiYvOl4V@ir5G?cgd9^Ie>g zEwP@`mF?}+h&TJcsIP3d_$qeu6GXT23)QYOue65;N{JqrGb{acTA;o0?=@`6p)PI3 zv`nxF$>oOKk2>^LxSqqGS2kc=Q9I1-qFouiNH27_KrQE1&9=ss#)Bp;Tp7=s6%!P6 zYEvia?ts_in(Pb)!)CZlJSul^UfD z>Y8%@y{i*+89($pUVRJ#-C=0Qmvakfsq?2-mbnOSGsSw#D$pgI(7Dj=QV>mOzi!W| zM2ZdlC=j~A%%lrvzk~e`%4Dcx@acY?^d)N8f~h>Xe$Ojm_oapGci2Eu z7fDO;Mh_!~mLq4V`)fe12N0v1Xu zoRz2);nhueCaLZYHqa>vxWuU>ixDA^{2gwhIy!*(JO53i<}MD%wQ$_vQ4<$%Aqv~G zuqD7qo2U&d>MXq9Gn3A(x-vaF`tvLjk^G$RnJeQuvC2Sb23=YA zvz$)SeRiL(*ek8!P{e>&dWk=NYlEv3Lf%;|&F39QR3%ew7e}{aJJF zVNqx~(bRP!=PcU3%@%C1`Y`FZ_MBZ?&43?LQxYDU&X8=6D>H0lTA;1&?AC=`yvnCn zmGIqZvQyFy*GAlPC{Saw{Dvg;xdKE=Y0e)xnKJuhxQ>urf_z?QBwrJ$!MU685K(xO z^E)#K+S>QO`eL&bkyYVa19q9d=#k^1>b!S}X=Ko#`@C-UwR*a1@oc|N7D1qQeRAtD z^z_b~*X4e+LVd}&)n=Fvac8cAFVXsh=xdSTD?`Ij#AhWiedQuPQo~q+IvTS>{8=z> z_Ul)RG)3;8-S(WI?DU74v?32>7cM76UVtW<9!g6UD4T4Z(Hn@y`fZrJuqdWwnQ(l- zA)t**^Dt-;Pf~~n&IS^}`<>FeF_nfu0Hty5?^m);P<7$63{J5cE6x`=Sv9soPXwZ_xh$wNeQoyi# zw49axUMi(SO<20`Q-#!*GN{9iedI2;o-X_q^Z27nFY9B0tML!bQspa~MH zNnA+@dECdGay|L9)c6)*ch3MP$66x`F`h`ECCT~d!H z{EG@~Zh%PT{EvjAmQ+2@RUHVk)DF6idWhQz$6-0v%I}^Z-dbE0aoVj-XXLQKXnzmC z3alPs^a^=Tl!Jvj+RmFX@46FAXo-UAeUqZaFS@Oj>dU6i3h&Rb-<1B7S?5_qS5+-G zuG`;zjps+j9)9u;QvOlW9vDW3fNTEQl114$9gIwiaCY|7^M_gwrYfXKi{q);w?%t| z9PH}|TvKYIS4dTCB#LkHAGj&%PFFXBm-()Po*jf2b;jO|SA4%>VPx$pygAyQF}1RA zQopNGFBWcLzf|s;9oi3LvdPPB(+Spwr;@UqXqr>iV=M8SzX0kK7V1)h<_fSZ%uQWz zc4xvRiU_)x4jE8rrA6)tPY#AsW7UmzoZ(pf?3I~W9bE|f7lSNIyk>;Akh+blO^6Pr z?FiG$5lA+ME<~|&fWY!Y7`!*2|A@%=gS=$!0y`pen4;FY5%Ib&IC0hmEdswWpyv8J z$R5Sxa0$AbvafpC!T<{?CK)Nx%19HR5dM6J5H=p_#<_W#MT^ttr2`bE9DHz zyx29nd3lh=O*}uS|4>xj1d5vlil4#W4_ZV zm4lS~I8awF&2gv!DCA;)NH`ddU*W6aIHrj(QNv1mFvB03s@-KxBc(z2)Q+z_AcJoYn%(6Q5`* z`g)_?R=I-t2>xQIcXJZW91Flz*A(}s6wc8BYu{PR&b$9LP6v-daXZW3Cwe}!Gg{}{ zw6Us6*BxldtK9y4TimG5=OnZX{pslNk>~mcs}&!fPux`Z7b%e)zw`TgD<`Ob<6N@i zAT8KXb)bk(K9ItI)!qJU7@1x1agNZYnKnNS_w*_y?72hwbZGnRjTUGeYrgEHA34pm zq6e*X@0`5ox4+-iXAKt1CMNufQs=CZiURy{zLwM0E3sgeE?%~ZW+Xg4 zmHBP2gl}`)=XIbzX-AEUNP#Ake5Laz`FK-VIj7RYJv(G)XXGmbmp|-Gb_w{~Y~QC$ zlj)VsOu4-yg?1)69p4|$8B+7tT2UJ=)+K(oa33aUsw`IB!}X(<$(>-j`O`F zQI)59T&B_Tk`5tvA}&+z-USS<*Du*;6&|R%Qmrir*86VKhg#pXA5#JB z_6~xAAz3e`5NQgn!5B&>mLbjX_RUsrsSf_yc-L0+0zo`hxPq*CcJOo#vDtMNNrk0Y z)n=Ah#MB6~lC$u0?}9{auW&f{ZM-%26bme}u3b7rR z=?F0`^WB<~SJ#I0PWl|Lpla4X=1SKV#5W`5uKX%o&1U7Gy@^rRN=A%!^tN6|!f%JS zSaGHY(0c@pFl`C($+A3TV_u;lWYxB$mWFc6I22J=%YO#BCrPh(zJ0U9q0qIRM=v9c z!=XcZLqo@Cjg{BtjvMu5uB#f42K`6Uz*KlR*Bh!Vt7iU31julBo0d}(0mKleaH`rC zEwj{tM#RAuuM?Y;#Cu^L*?;FIFP(xHse@#6P_-%4SC5?3Ywt7dA4+4JhNE@z7*+gw z6$g5f4}OG&r?3{3#RF++n3>M^D8ei-lC9;xD3IP%TKa}gkwL>KmYiLX0g5ATR+O5) z0z8#ZUKmXJFp8$&C11^JPS42j-5+r8y+YpC`xP7GhYqI7G&eI=ShdY{(&@3+j@oSr z9<*?2J%b=vPp|Uj#(5TtivNm|N-RUOY zi?6PnZAa^33l)aBW~xA_Dsk8vI9$%AQMYfUSZqm|$131A>2_5&!E$krK8zpUZJ|_j zbAty{wiMIrxPK7P^jgUjhWV!KNh%k!m+|P(wVx8RQk@Nv7Cr9C{}5E?SI|m=)StAB z4~4aa64Yt7woIdnKg!R)squWFD&3MubmTCZ?)0IPK%&rsk16Ln!u3tY>orcp@hNF^ zskdnGCce1^kv2gSi*o^$#Y~aC*jVEuH?m;Iz(+46Dy~ZfIT`5qd zAxSb_iA2Z&#o{*h&P{#q|j?Q3x$XLQ$vX2{`Xp@^__(5=fI*Qsv205CYi^O8{lXkv{Q(jrXUS6?23 z41fISR-s=zV*x`Z-asdDO`_d%vI@s30Y@&)t*9Hl*tcOS1uni;>}ua$KNmD_w+aqY z|GIs*NX&ghVNa0e$M=tcwe*&gcl@b3}gytr?UI`);-CC_Ehug+)2RZ;0s z*{}OAk>0HAAHNo{!<2DPdKFXhh_zDZAv<7537+O;+PGr&036$v2$@YIN($fduzDuo zzSW&gBKolp+EUipR8vELyI$^ReY58Gb8}olR;?B7p~$}K-a+f7v$dD=Q7v}Nf0}PO zwfLE?3;amzruY7d{R;o{b^z};?h1D~L*9!Qhxdpk2h^Xqi;hOf$6JIGH8^%9{W6=0 zol&pC%|#VpRw@vm%imA*tv_@4lWDhbym>Wh(DSWN_v*5@`S~yWDQWX_#r#gEZQj*P z$KplWk=O*H`?Nx}$F2__nL%GhWGOT`G!W%>DMzMn~@E-ByJ&2{oGugl)L0LT^SHs z@tutsCv`9}-CW~~9m=ih@F_H{T4^FkSMtBDyS9$H z_c&9vKI`k6a1t*9$VRUZC$5~Qmo_C}(7jp-*ztm{L7WZ(G9ZDbFNLI8I(J>_OJ@Ff zPB`@1R2}Q`gRLmMPmY~MXw-uHvgSsSHC%g5T4@dADw1x96_F$#zobgg8y0Uc(T9VY z!wT!lLTcSGhw!&zDzly?goh@KD8i7Uzy7RF9C6nV3$_Ia7axc!Ho>$}O>Q(>7%tfm z$JsJ#K7A68@SfiP=;=f+OU@}RNy+2p8{qT~8t{_?E&fN;Ve*qhK34@I>5>3TPK;0d^NRBEvi#gODjXU`Wh!hXSR8_3V5_J+*KB`SN;15hZp zwVfM-iL`VdS}l7#H4(yqc^i-iLX@I)GwEa3(FZN)D+Sf zH_J;e$__*TyG-Vbm450HV=PXZ z;rVZlPApdc&+;jyF7tnC$4>s)9A~5UF-^MiE}a&-4uMj9Xotuf-!7gX{F4&+M`^h)lnoacd!yc)Hf!%=?lv z=4yXh-|@C#qy0LgoRu6BYa2|@&%CJcciNS$-!FYt@LjW`>heQXkL|uEE=Ni+T{5(G zo*Uo8(zzjUxwrZCMwN`fqR^}26MW|Eub;V7uVcRa6{DGN86Np|mmT0#7BFAC+H39~ zMi<8K-zvLg9Ix!X_Uo>UAV+Q6>b=!}#9DmqrKP@KV>|fFVaK;0Vjm9chpjxK;+QF! zGAkq1Y30q}<5#1nJH9;kb@`WD=Ir;jo_yFC-Ar(;#h?GLK5FXym!JP$Ys3C#HU^ zrX{DvIcYUfDCil#z=ce>pY7%3b}b8&T+SuSpMFI(!k#lCCd8X@5# zQBf7T; zV{7c2aDW(?*lNIDR;eaay3J3gNwmESv9}iLC;!VQApC(l$x2-Cx_C3`r`vVGMgD5s zz`E0ZuW}3NI#9;dRp_{NZ^fP6Zsg|T#|B#I#gDBx?Df6|(&}|5XQ7pry#@E*z>$*+ z{zg)g^}d(SGMA5Szn)K_nTPb8qfbFcmdFpEKS@}Sry2k5or4S2O|+~FPsMvNxQEY! z{2ZOwsgEO*&xfWy_wx_2%mjNrj%5z6-yeBikY(GfPtwojJ0T3n(@+v}efE4WXJ+`1 zgj4t5KRl?v*jY|yDmze25o%NRxY1h`ZZ|j4$BfS_SZ?^o6i$Epv)W8YHl>|mmBb;z zG(q)NMMn;P1C( z=-9vXV+-gLk!E%qA38qr-SM7kgA-|v^%}0sJSMuUVUPX{i>p0gS|-Q_KPCa>1mwtT z!hQ*@8Qz0AE2)oMvoV# z=iQ)+=P8CH;LZH>Xk#(!w@B_%8BgkeMSG{vXA7&d+EdNw=oUjE1{KSYo-2Zr>6xM_ zl%Z?%ZfLMMgy3D-W%*W_=5>H4uX_jDTO@8{QBD=0104uCMu8UG5R_T<^v|DyWz*DB zF4P)P_+WK|(^K|QS`mwoDH?NHk3I*e?fKs(#b?3Uz&17XvA^=(`!78#E0`Jdo+se3fg%Eu_@&b7%%vVXH(AvMlM%kr)lFN zhHQ1f1x6To7DY$hXRhf5vCdJjq+A4u~Nvu7al|1 zRO!a`z4-}K#^5I;#;p%m`-^PpUj$DXZCeaDxfxiq6Zqd~m*0eUqKjlr!D7E(z~o@j zcyv%q7u2VrVIjH%&(8V{tCywH?RMJCCr5n}(dqH(_wSIpm-ORLPp|acinxcz=t208 zR=Tl=*gAf*F13k zC-k}O3HcNk|N2>V@hP5Xs4w+NUeWm0oBIjeF>v#kj{gA;zo`ck9_G`+7#aTbAUgo8 z?eU`_rv*{ z`DeF9@ZQI5yVtV^$SiAGp)>6;um!O!+4+5g|Mfrhx5asEgPX2g`v3GDmFLak<8D=i z+I(74;bJkBqinU=L{Z>q7)_F;RRSCu|Co2cr;KK^M{Tw}ke$r=_$EUGsadmQOpRS( z3VrY5H>zKvMjATw_KdlA>>1S)H*QE-jeqv=caR0zpMXQ1L}&<}aC59>D}&|#9VMUX zGF4yZhI0Qk1ZZ@ka7j?_;B1<#78W|YbA^0^=Lw^XE5uZq%8OmXKRi259DBeVs#L`K z3jx^y=I3Byl*v|d%DEjWflZG=W4HyPBo+-Ft)CKyYWYi8&38<{d0OaLA)ML0Ct45< z4`~iFvF|IivXzL!jl(kxW@a=m`B*4&(TAepY*ALL8s=q}yaskG=jmVvY%mYbWjb~j zDTq)P;NHE7D;}x&n%wT;dW$*GfiviT#4DlulS{AGxlf}_+Oo}vPac{|-LYYjT|!hyoQIu3#Aubk1f<=_v}K@xe!t>f;{ z%(8vRaau{kvx#At@&iRLj23>An5qDvPcNWF-`~#-&fu=YhQ*r z(-3sgBjlR(5!_-BUqG=B&xi66vUDA}6pi{z?aAppx~S%YD|vQH`bfuG^eI_gHxVy; zzbbYc<+3D&-n_=TER5uuZA0rX-5l4lpZy~~ub)B+TkP!orG+J{X_n+F-RkS-f$GiP zms8r*Tl6QVg43OD4fizLa+1y@nna2?`8V3ky;MB)y0ZT( zSSR9b{Z%W>XfznS*``AG&>Kb6tM7V$$myQ0F-B_BsE=ZE5Rr6Vgy4Dg z>LuS31=_S2PvxSnXvBAW85Q2&)xq41*ug%&vreDf<1#|VXIR8J4AruU%S}P``6M`B zN%iq#G$hS@Cl}ov)k-~)pwj$NrrS?zImps`X;;)AC;!k?r%lABz=5P1n|L*kxG@Ia|OB*n- zCja5e>a68BBN&9c)nmWHihrV1y6JP0p;k@O+W&UX&**V6Ctyk&y@uUe;R`biz7Gqg z0j9Genr2dXH9cG_)!n{Ars+|{SsyFa+XiVUp#C~={v zVskNP75ePFFm-osNqz=x_u8$5El+T+?0noGf+Xhy0!AohR*`4KWnuu zw}kofYWr3PcM9)R&+E^E@F2S|sYh(M(acN%EqjITo5q`UR}rVyyA5mWmWA7od))XH2gI%u3i| zF5DnZWm>|Os6Q5PL=@;78zZ<4V{M?ixs|UPw%i4Yp);=X%xoB5e0yOa$BMp-qbK|n zHWnd>kT5|_8_z}D-wc~#Qr9!<=`@+%zb37Sf68w0WC$8`0buj%2bAxv2JUtC-#i;E z*`m96c(zynf@l2*n20;ncRqOabc965CWz48(~nFudv=FCF7MMpRAAWGx{D?OR;a;Q zwshDpfqnYu8*Y2=-~kho)*@ghc}MU3q~XtR_;1eZXISV>*!Z{6vWh|Z%|`-sdjj0Z zyXd;1Ohn|DYW7|qL~i0SGdyeG)$Z0GLf3wIYwq8c$98##-NJ<-@6CnM?`>=S^+>@o z#~I8V8CX$m!^7M7s}Z)b68k3w;;V%yI0EMWLd@^DE&W{%OZ>D+vsf7!6)^W-Gl_VyC9!Nezwe)&>|D*3iXmf}Mu zfxbB0TI;-M@9?VO(JEbNX)DW?SWfJRR7Z`5FIb>|RlU4YPAll$>vuU9E9vw59KDmo zs3|f0>w!0V;o@D%p++le6UnXMhCw5?5_a;8!-k=Z-)7GM4Gh%6v?@Z*dEK{%3*u@% z?RC}qj1oOhFKF`)U`!N}o|=4?>fnSk8LUcA&B)nr3ZbIAm8>gHS$kstm4vZ~ki=6X zr!yHTN6|}c_o^_yvjtlVyYv?knaq^fv;U_mE4T41pEudh$g5NwqNAC`n6Sy~@^C&g zWD>H=sc|p1;R!d9a#8#w^abNUkMIM>NqBH$q*2B4Q+Wy(qH1+@pe8oBlM@`PE~9*0hcudC`<0 zmFC?0;e$mJt%(Dz-t!yFq<562Dp9x2w)yW?Mw4sq_D@+)y0FXP9&OCn0d^058$ld) zO}zy#>l@K9XLrVZ*?H3l*Y~3bE@O^;X&%c*A3{l7@9N~E6^;x~PnjDC>b;l~ex1H= z$Op!79&?o?SVO_1{oD{ra7cqmW(y>9w$fqv5lp~+)JtdTmmaGpu^=;bGg4lCX+BB4 zm8MdZ8``QybvWOdO);QFq$4$D|693EVO<#ALjf9KE9#v+vmdjR zQu1HukjJ}UmNfsV8K6RbE55)F%1H@ z=3YFawvN>LCg^;dT2>lbM6M|3^;mf}XAN`)%7FXyM^tIM)0no$1N*N!L3eh3;(;28 z`6m|i4MkmppH2JJ)XIP2qu*iF(ZJYKhIukwgy=3tu834-Dj8+$ixi%(dkX%1KRuBS zBF1g6|1jKw3m`>UzhhEK7jSx^>?^B-FDKp#MD%(eX~EF*PpIKrU>;LXs*euC9vC=i zlpNGcF~H0wLSzkcbG^OlZC z@QDNDz#pOaxU_^HuAtWJh5rRYr|Q&h?g&}(Nr@#zncHKQbUKq?|J7xVgQ!kYhTerU4$a!v(5yyI?rzup3DuWsZRA`nrSdLTaYV^yq8^ zbgWlo$7ZrGQ+HH1&@nOs#^y5t{u~ZutsR^m&XsbNIt>{Y{wbw@_VZIw6km@4w$NxC zE?~B@BR>6vJ5w2V&Puv9Kas~v=}?-)W_3+APh{&-rBx7`4{TiCMXc?_!u6lItqwC* zgOJ*-f{AWA{>!N@#4F7vJ)~%p}(GZaU#FO!pztB0K-}HkOnoSYUHghOW!(;ttzgR#&o1G;?Z+rl5l=D_O91bmw$ zi%2_`2{kXrT_I?HT6uB=cBF%^1@s|mYXgj!UQcYx_76D#?ZTM@kqh)h@2rE0&yV$p zqMU`!t)a*WczELWhEj~5tRf1Vhv-*9b}cXHZ#%nxwFckHv3Xq$_RGS3^3yFc?#l;p z<&mhB;it+9>iNu~2F;=Tyx<3ZrhfzK|KTux)#-dl;LG~^?s5hT#UK`YRW(=A__r1A zgA3;ULM!K$<67W!gRn-V(3#Z*o~e*DW&B~=Mkq*IWMK_~hF)=7+I)g#CZ|Dac;=N$BZ3cAoZ2j{qowBmmOBAJEx1>Ilndju&$6^~kwJ@RZ$#*y40OdW! z)N7&!`*IC^lnr8lGVar~+kxe5LY7*c*hGMMZ89KM@dWJAq4##Kp@09bhSV6ZCxNaT z+r@o=AZSN^x7w6kWS?&tIuZs|Ln2<}J1%481r1l<4Q+*mjKdNq6dC3iHu7Rwu9{wU z%UyUNV1u(^yNsGwD6cjhc?h5w4?pl<&j1u~Q;3>37Z8Q2t5@T-`zIXf;LWfS#4>wH zE|u`m6pJMFe9Ae{VY#4yP{1e@VXF_2OmU|E+{E0u=!<~7z|n4K*qNQ$w~1*fM=Ufx zd#_Da!M^XG&mqq~I#zy{-IKp55vLaVm04Qg3Gmt9$3zap`o@A?Wtw3LWFw2cEIY{! ziLnzePcM&!If0}50+Ej+eAbusc6aU1h_RRBlH6t0+a1^c(#w_CmM0cju;73R-moW+ zX0O@uOiEAacxv(!%ILfl$4TW0a z__`_ZkzsZv3EKF*ZEUBQ>Nu%Cdskm5mh@jU%CvE)yp)H;mT>{!5{3y2@}jS2k(wjL ziqL#|fvlYZqB}iPyP^47fDA{}i%$EaJi<|OA>yxgseoC?wg8p zzxI^dKE~?*D3RLS;yQ1g9xM?2_chLr6*Rk8jqYoEL!56;7SIMR&ThU03mWPpAaRM! zP5J9cZOtUcZJ0)lmWpK>HE~CCTUO?CQIAE?vB%IS98*T^KB3K#LJ$~L0vE;@JimJ0 zPN2*Tm^M9(kaKkvJ;h$*{w!MW`Cq{%+i>XV4CP%q*;>SZ%YEELY((uGCexIP%{ z@h)sUf~M68GKgoE$f7#zL8BMJZ`0nz^pcPslp-FJN^4i0%|C=jqOMp!^T|}kiR3e z^M0e-37xDkOSB3|`-tJ4w}}m5P>R}upPngH$&*6wa!WtHDs-7)&PuHubob|AuUOQ! ztFsunpNJdDU&Sx%@O`kl=dDjTzLU%`Ubx%kvMq0JE60=fBU^Of+e#n9DoQ%J>4cR) z8|SVVBzxt`9~{-=IeD<%ud6!R!XJ}X?$eJVqDD4rnxtbsJD}hh|HD`_O@e6Y_Amr| zqhfr~@i}CW3~8ugM&G&!%-!`+LCFGD&^o2_!dQI|-G_-K=06nPXnZkKz|R+J&bbkls%eEQ3FiRxMMhJ$10Q^!-$9lPC^d8&>VWT&gbsLz1{V|JVF zj3Pbm2s%;neqYg$BFn4qv=8P&u72;cn?EH&;-1^X7j*MxY2L(lceDsy_13rBSey_p zd@ZHuvLEvoEpCJ$=9W#r4W27f+sKt@=Y6}3$?^mFqBnP6&=yM1>Sz-miWr#>M{?_& z%YUOdHzEiJ-M-hRzJIY#5n$_;t?CIa3?0i|@`H>DWz-HWYy{YuY!at1jmxHA(45e6 ziQlqpr;Rl8VRU01NjY!?{4QfkI=ZX)JI`|co$-Z$ti{65Zq1^5J-3?kED_wxlJ^gL zjHG>fD!+%?wS!J4RR6faXOMT4-@M7f_sg+i2%yJNR~f9>`seiVQajAS=2d(<@aWzl z28yVUh+CJX4u0Zuq& zz9b8fNElQ)wHsTMD+j^fHRGf^WXY$}jdvt<_Gh_`^Scj46lD&^t|gP^ zcMM6PXWks1fmV%8|=?dB) zi=1oUjVg@@#%bRfmmOgU^Y=<^HIkOY>^%Ei2cGA%jx@y z2!jK=6P)%?3IU10_Fxp@c+o11TQQ{0z+{GEzOB729(x{@FI<{0ah0b`F5+^M0m`2_ z%pDm7k9BVqMe{!)oi3jYuFLH<{(`na4p~Apc1jG#Z6gAQ8;zSPBl?AYT&zKk-!s%s zdU!MI4EK`Vy~DhbKfQ6&(H1HNHEl&8u|&f^8}o@@%agjvKzTysxP5gbmr0RDuGhtH zajX0|98Q!3ea;qDU=(Er^#KmTjTJ*DJs&4PxMbmQ`feYEeWv*b#zULRr zkaI&T+-85m41=>;OepbcJRL4#x@@A?>Ij=lJhl1}m6ceEE*01}e)hLH%Fo8wwf)*m zN(08+D-Z*X1Sc?q%dVpjpy|sxJcS#NQx{Xd0YNy6x=dSMp3i@K)w8%PE1LCJ?_KO! zM>PESXXibqz!&A9Ux`*|q@8?Af?pLU!u$kdW=w9Jl)^E7+iu__dhdXsdg65EDn z{BHZXq#jqv*8xnie^sJv44P7|JJx@QIr$MytH*Tqz-9co*m0all`8$;@{y>`py=x7 zf{z!8lr*AeiLur7e4B~L)c^deNlUzx_mxKAv(#oqHR^~E$bgv+kH!29JS z0F&m_s;7mm;IDV-c@L1N1fC-*8BYo1S-9smcGZ5;@N+GI8_GX~z=CK6f-& z%QL4(MdM2u^)&>|iI2`9O+-s7M4`U~9LWF^Uru7;)C;RpN1>+iP~^DP$Lg)%0=tCn z=b@0X8L+j9yAy7~<}~sq#nqRGDDS0E@}!GiFmc4M`@iiF34y4z){<{uAJ6j%Mq6ZPv9< z2a29dI!9MjAzLu!haxAj*(`(X_W_uvp!v#JQS!mo_7 zR;H0sE~vJK&pFt_O~LkW`n9qzF}8mhvq;a0bI~0kM zcZH4jY9zZyrr+`7d%&Q}frOzIiom=$iq-LpT+CURIh7rO(DUXy}G9#lJl7Th;~HS7EC|DLau$>ZxIdBifk z$R8@uG=vv&fpjarUR@FO-iU)C^Mx$O`yNHu{yu>TP%_E)`!T;O*zp= z1;%l9Fw({4Z`c+~dYAfqlHD)zxKf0{kBf!B`*WB#c%ew@GfE{wu-;O2V-LypP&4t2C6TWB$BD>Xtszvt4P?bi)2 zy(6iC%RkE6XRZtTc-buYtK_P8X5zN%CKT#!MQmKF(#;&)NPASPuHep>@f3iQ?sjUAV2Xcw?i$I8L!(*Bt|}+ zdMrDvuPdrZ0jdwtp@!feji!1}ihqB(-};oJTO*@ybWSb{x}J}O=sq!LS_`9{gvu0Z zD|>3H9@8_H!t#AZ-dA0NlJ9rKxn-j(74>pA&r&&5yQJlieFFb%oBkC$D0Y6(0`Eb! z)VbfeppPBm5O=CrAuRo4XnjD|ChSNN5^m;f$&YC*8r^XYrx5EBy*MN>TeZDcEZ0fg zaDP6ud_^k(t_CM%?fth#!|Fn6pf0`4m#Z60;B~JH+LoR?5BeYl)or^Qh<}=E_W>zU zj(s%TJF|?)Ab9BTGe$V#y*MvbPPG{KmR#)&?3zWuT=P`Ld&Jkv+cA=65=l1e!}QWO zuH(m^@>ZUri0RUQf#gc6=~RF6%9&Q$)S{>+~DR3DzXHFUJT{v0Mh1z_n|G%rl#?2&V0l(KErU3 z?RF666KJt=!H%AWYonU;x0_#v8t9Rl%R)#u2n9GV33+2odRpsE3?WuPnokn)PHfULWCvnQoLN?H z#wEWRD46+HSWD%>Lh#wm~AfEgH zsro4G8v!JkVOo2h(*z+`ZDXG);#EHKbL@??a1>rkIEyUVVqf>C(H`WA^4hicbFjrs8HzB`7@JR~0+f(@sY|AL z3A+H$&8&8hbYU*jd|P)~!Y2s~2y7>b#R4$V^G?nF`P*ZyDHX}<&0~HRC((3BuYx4J z_$_)zpZKup!hLfwnA*9!+(-_gL~J>_vWB{KYI&w0NrPv+A)U`R{!!s+whYV64N!7K!fRWdzQB?`@~do%Tyv$>4(Hg z14txT8Em`zP54uE`_s$%mWpbyc~=mc7n7TBnP|wFWJ|5gKg@YM#8xt6sUe4>8qK%U z{J9^-9cw$oGDGLH#rLEBfL#A$Pv8c>L3;d!*W~yM^5sa5slpGoZxKtaldD@4X4iyD z@mlbdy$U`4n#=+y5N^q*g|Vo`&vNcuJYdacg`X%r7QREdxrwTr0nA$k z23wx1@`%j&;%tY+$fco7bQUk_@ys^6yP}gnsOIk8>DjmhsMUOTTc$>eBD6(VzLz_M z%%&%s4V!abw~CTEUKk*~*>h53yffsp1?W z(eZrq)!n)ej9)H!CjnzHSm)xVM{pngHH;jgu7$s__1tDAbpSA{@u;L&-i)=GorOee zs&%}f!V6w0k8Rm|*9OK%q~k(&uOax{l+ zjwDH+C`!!fB;W3X(I)m+twQo%?>b!)@_=mmTz6b4%RY_Qx67j?uF-vC6%xTz|dNf_;HG!^0Fj!8> zr|Aryqy~;eS3hPR%c)B%giCBfDin!v}hMX)sU?HJOWqsupd22-9 z3C)h(({)C0dXbvWHirJB=&=jk$7vHoHpLgXA$*iDXTGbb@?>wU+o*0NdK$vo;=Xu? zvA0Lt(a!N2#py|E*We1w0<6Zz;H&)9%uL(+^@Q(w$CBNX=nQ=k+A2>{XIaQ2S43U= zNQ@9pw+!^>lGucpBFppfsMS~sn+OrbM44vloYd+UaBmOQ8^~cwU%jP$jen%B+o{+A zL?4ZgL);GL&;e#!N%=on$7O~Gn7D6^*(ewD!?X59aIvh1YN|&%y9--^!_~C_bM*G8_R1B{-6AiLI z_|jetubM;T>W+03*s*2x=r&JNoX`UD8kI%szYVKXjS5WMu4>Sz^2hCvd6 zZ3L_+?BOzQsk4V&tbDo{t~yg|&$}%8F~*hRQdx2C+ZD8%1sHAl-kVSHZ(-nqj_=H1 z8D(@^N1;C#tr4)t%xPcRG4N;~FVu0jIlfjTyIudeSaO7)I8MDt>9|jZ<+^;@o-0rJ z2zkiF9}LGB6J_q4QNSsvd3e&(Tm7r!>7&3>PLgXEbCxr<>)6FhV3yZOjIL~enOo`_ zh8l|u^t71y--U|-R}b;iywHEN)hMCq!z4RmPy6>d$5h2(8GJ4E$y3>7p}N*?`A%zY)8nR91|#)8W=?ajtG`)!0RGxGypE8Vw4ir7%qd+#KH#RKQo zi?8Y&)`LP}$@8jMo^Xzn9Q);6AnNOwHu-MkKtygf|D$j}tO*++E^k~p*mwbPc5Nelol%LAZ49v^AAv=>^I*P? zRK~KDqjiFm@!mr5T(-*{%P;)W7i3o7&DT4`T|g8k3MpG=CB*<-g*-ExI^cQ3u71&g zEY7x?0!Mx}VR_>t^QF>gfPK=RO_qUjuJL5ErPWS=bV6#SFPp@!8`R@hhOyhMMGn8X z>|d1V zriekEU6nes-2xtzyZ1(}44yaV{?Dj2DsQ4NjcoaDdxJ?{2WZ^VKoT#i^Vp8+kAqhc zhxI)zZUJU6GOpkDfIIhgA13~Pk_Tl4HH|E|jDP>y654CyN z%Dz9HDQE9WB(~d*nls#Jw4-}aQ{1pL<(CZK;3;7^QqwofoB251^Mcj=xsQDNN;9gu z2@tOGK(jUmO!6PIBnn<)<(lLK70;VC=(@B=6s;7kzSR(c)p>Zcye$w~uexOB%VP8C zDk?mv;`^_r$sw88d4FlM{C6z&`AHNV(p}y<`p&0l%Lwj&a8W!{0y!YSiKBn+qy9iF z7u%mwf3Wl1T_swrPxg2WScD6FzI0aIuxE@LgmB^9qX82hAm^gvM9%v{-G=B5t>X1( zW;(kYNaMv7?lf$(h41*ks!bf(D{=l6KksfR%|TyCjohD9KN}Rc^a~J_jQ z3N<(G7&&Bfm50Z#bcTrmq5aUpY7q^rZm+Y>*e0%NsfY0Wt*h!!6rAm-xnNzq>LzN( zpGuTZ%FLmQTXj&JwIlgXbPjtM{7GDNcC>OGvaqYcCp)*yd1h^L|4FeI|9~!5PGAO zflgh#rETFbf zii;B;$FxdA-b-BQ1~hw)?ardeAmprqH_xwdF55ayK{}0R^6oyO1zeB?-X$`Vl%HpL zjT+2HHI!Cj7qIlvpOCDnVbujoY=BC?T7(JDO@~w^vyP_8GL*kLlbpyM`cJZ`Conpz zbk2OzVCB48*f(Wj4rKGWf7qi_8QnpA)BUh0bNH552H5)I!?&6M^YFRLqq644Sl6?; z4&dHiRP6&%+fKRdJ)`@9zrQ<;3+6rE`rPdO%jp495S!`X7^4jedl8=6JltaI3Kf}c zgaeXgJRZShWHcO@{rrp9qs);`t=Vi6o?7yg*h8(fC*b#|0^YxdqAG9FnhLV!(beSz zSZF~7QReid4B3iHED|5f8uU5XQV#i=@++;HW*4_HEE}m|uBIOU7B6p!9Xfwc7V$8@ zR^Emqxgk-89j`?S$=x6rcN(`;8%E5I32CfFyvP`d8bY;Qh`D zD*NeFYs45FK2;FHbasEvZcaw{AkajdiC1tqMef?iXbU^-nHD&h$%f^Mn#?GCZcV zFTSc{SG4QJu~4XmxQSuo68=P6QGfF|lK3JJy{RRIQ(=QGT zzJiq`UG60&I9$t5)|@WH0-o=`yu#CGo3xd93Sl*jsGyrAz7&e|R+ZdxpbENkW_gT|OPoco&~z^kTK(Ee zpRV8yr`@7Fn0EAEAZ;J`?!An@NCZxz#$Q+SQh9aiU4Tx3z4|^{I{xh@hkx$NhYCG` z_ls{E2SWRuit=eLgT!M`vS}~+Gu7UGPO`G{Q-a>%=Dw_Lz;plN6^Oh7Lj%7(cMmf% zf|zRX*3uM1VmecTjS_vEz+xic?dUJ%1fz!;1Nk&3ug^-a_n%woytOcVju_|dX*U9> z%v-Zx5^Bi_bsx&UZ_!l6s4C@NThpOm7bnEDjwHZ(ndA;EC*kf;;h=&MKJg48($3a5 zq|ElaM&sx9A~k*I*tt!3H=j)-)F#|~b;eWW>((DB@yLlOYVAdecfZH6z4dU0jo8Nv zdtyk4>r#1}2Sz(8ulhWjuutF?_j7q~WYxOlv|8VBZrET{vdteP6^pjn>#XRgNOt{t z6S|}kQiUR=`@g=k-2b$N8U4G;?AkLNO?>&*9)0j&`q#kb>g87w=5(Ikvok}3EBRG?M&};L_6D$m9 z6L^g!RceUQK~1VF(kpfr!#*t42^E!Bd81lwHkw!~?pn{XlVD7l75{7b`{5hAlL5M)=*{{T-9Td>5 zhtvt&?~}}sIUYxMSpgcoYBUz2x`>{bGH!n@$W!G0<>No&F0fqrs`QHFkqOfkeAx}Z zv#KvbnrrSFamv!Xb|C>Y6fD~7bGv6bUxv5=QK1X(d4o7okJBfXSc_W$#t&(SH*Jdd z$d{vcA|N6^sJS75GpXaEe`As=L*(vNnV8Tk*;%Ig9k+~I?hcnKEpn+I8OtfkKt^qy zrpPm=9>+L9quc@Z);GL`w2{+BAH<@<&;MMc=2cSU6G9z|ft31X&loc!I(rIQ@!izRL9^yTv6>u*HIr09-t&BW&IIf)YH(LZ%0irf-|tk>VAa6kKH6lE!(=e z^fZzcdzUZW4WY+vV~qNu&V+_K@rKsFJODl?reviR^Hx)sjYl*Q!H%i-vPGkk+}!(P zV<4Z9wE}|yacm{cZByS&mZ4~*1A>vF^j1|O>BMw)>iGUCeIHW$J5|TFN%hwWhkYXE zIW7$h%4opLnO5+R;#4K&eIh zxL5HI>5lGQ<<6=gF?=sEFeh*mX8cR(pj3|VInwZg}jsh1DK4*e!oGw`)@#qEzOHYsCn&b}{D{6~XD70ULvJKPHc(hgVd zY7yolYBFgh+-4TPVmL;XT(_9%pAs)q;-Anm%=C-7&YwwL@USzlb$}K&s`Rm*iMTy< zPLCda{%&$sI*YIPpPJMXfU(8OZ<79aRuk+JykAjuw`ail?sOFg?5ncIlMfTQfy3n^5C- zEi9zM@iiYWE%2vYnOD*WS7!14+(?Dr>{kXphY1Qq3C&&CX(H-1^p#Ewa&5p}8*cIr zt~fV>+j-hSgESBR+a^+ug(jmVNLWWPR(*=LUJ1$==R;Lk?KzA@z$7@HcBwpp(n4U=?*5H!C>&pjkK$H_scut7c+zY3JPrJu zJ=@d?dh#?!Qi)LiV)irGaAXIB=e40fZ65?raaxu)bP_4jGooH7^8LWaKHY{yo&F!| zp-25txry_`>gX%2mLw9e)K9r{wHf2{`=t$dSeTRLJ^tR3RAwvUY)RUi5{D&^%vF>< zgi~0zGr=TAK59-(igvI3@GPIh$2@#ZxCAwk0&gK+gMXas5-?v?9lh*pFx!=oC2D>V zaEM>VrivpfmF(jF_WOg7o1|FS2V{lRtb)Tfl;|trm2D(PhR-p+?Mh(B0+Pi13?&bX zmrigKsWFzJ!jd!4!ud!uS)WG}Xs5Ad>R+<@nf4?qlTWhOuC=3a-KKu$^~!^NUZ<1z&Kv5t1b*XNRAJq2|5cZQDaJodseGwujAV{A+qqk7mM2pMdxI^axU{T}GNa=iY{mvYVXtMG+j0%BDC;#>ALe9o^PhuB0>c(^Z~it2-yk&&jZ zr)ip?K}5FY-vPPigqEqo*vqK?7r}0|Wh^T?4s7A{BKkN@R?F54Ruj-Br@RiVZS!K#h_n?{ z8Cr#a-VJxdxkCb~RR{lmku5@HJx#|?1mnRDM`QlWzUyY9Ws2g*n1Li4sx9anE7Emo zDR;U?qE6|y*Qg@4fy<0p8}#+!QwxiGed|@*H6GU)r|H_&FTHCO8x4pNVJ(VdS+Y~E zc+>?MZK!YyJsa3Cw^Oq9gc#?MK&$D7xkoO+Y3HmxTp3&VXI4T1EIaQWi2KJu?H|@) z5xw`?U(W*YcG=XzZa2LDG8RbcBMAEbmJt(jUWBt>zAN{weYQd&ASX^W-3IyYZvzW? zoNrAgP54tHAZ7#eu6xM*txOeBc?>Mmm}4?@oR6O?(3kng%SOSQ();lbZLn(TDi0NG zbGh8NnRlOBg@;HtWzw&=5II{PlsfMCqudH|`qQV|Fc*exZh3Ziz1S4H@_oyYlDE`| z7!x$yrs$?g9Cgs22fDuJm+wP{Bn)(1HA#tNT(wFlVW%bbY>uDv;MOD3@(=s5r`7&G zc(mq{k;co*SQzb?(>3sQZ22GtLR1h>(W<7$w4Rm^tLcu-8uYtxBc$Zvb(27xHw|z86s8eX(M$mMwVG{cE+Ge?htx=Ef&S8n8j!FLzpwR*^lpGA6>x8zP%# zGcN~by#_=}GP>d<+KwCuRCWKl1bY#OZS#E&3w=1SKcEUbaLU7m4Kd->yB=E)Ts}9I zBUq^A%l$4Wa7~F6VW$Mi+JGmN~8QHDKSvkk=q^my}+@R<`OvK%u zQlK`5WxvJcpgKP58~@TcjgY=E+}V z&PVdU#ySF-`=MbY*`?wqJkQ>Hh6^6}`K`c|$tXZxTO#y{59!_H0A7UxqY&3QQz zhRb$9A%MIcf;f(q=xO~@oO_9v{AL!r;m;V1iqjTpPI=%}*Ewh`{qZJ|nzLNCl(VQR zE`JRcqk4X@hXOKWt~W%4dldW0*I(maM_N3(ep{iXD1T_ErIg`C3ht z>{}kdi*;Zo?-+dwLIG`CRt(Su7P+M#<8V_{7xeZAGLw?U(DH9`g1dQqvc*GJ8Ov+E zwN5R0e!{!sDifLT37D~*wc*@1?ceXUUC2`|QpJ{e-D`fY;)Ab3 zJ`lzS8B{07HYk$~B{KEqfBrD|O0oit?G13}QdTMY(q*NCkU$ zZ}}+%CFNM4oTjIDwqBzJgz%$Jz7hNttsS`8kfglT-?*aG=f`-fWjW0NrbFebYiBht zK^II>y*aMSQ+FJfsvFZ%PK=TmeqFBdk744jwo>ZT;exFNGuLNL6 zdwLm2oe;9d!*G4VK(f&R>ZVTZ@o|yKzr)`F?7p|ET0qk7FK_TwBUZB$fa(Vpf+K_t z-iG8ixhZ8J%5p|@N$f!hSmUu+x&iuL?EIiHw&6dx4 z)2%lNqUY41^4nj)Vr+FhY1eHclG$pJRm<2>EVCEK}xrWL(#F_0p+rLNh3ZOAZvD`jFZg6i>(*L@2 zwaTF54OZp6`8TyWBa&-nk>t0W)I`#DI!HK_5zKXFkY;vpMwOC-1^K;3z?jd#uEBvX z`>M?K$I}AzhM~?(di>$1Ahh`4CPm7&?^CVmz3_xD;fqM7*s;0#G|RZWAy9QaxURMX zgb(2%F0n3R%n;g6X%H61Pi5RkswJ#*fT(kJ!XDl2RoCMlN!uPevIA~njC6CYsq z+`;uh(RwL=N~O|EPIAKxkymt*yrbI@mrRQ^v2HHyRq?M92kn#c4n7gP`%J;jArRiL zb$t!KMt)f8imjsjNC=%_39lQ9Y9gqgcniI~7!R-<+mJrn_}DSNyyx7e*HpV4#Oh-} zyCy-F2HsArt#|<(fpRf=dU=szv0~upAZx_eQ0B4Id$R6c>jQ*m!68MC#~(KrvIt95HIiCmNd~^Am3i|dt11$^{Di=`-$=d6CB5+j>_rBeKS}Q zeOgE4kKC0T&V3)kKL$@W`yfjyN|1G4R{)QsF3{B&trC5UnKBzh{28gJT+ou?<_L&K zl84EFXKRY?Wo&uH+N)g_4ZdwC%7?nP7g>@WuF#Os{g7gw0t+)kONss7gK=jHk;FI* zGDNM4++Xb{sAZm9*K9sm+Ab5oXSQ`gY!xf%2Nf>2MF*^~CWg&3>>t2DJEQ)|&oA4G zUhlyJw|dRUn~?Q!60{epvt?E5&7Z>=)PuKbq-j=!{43lyu@_F8GY3OKrar4->2<>9 zY8l>+lmlN#S%+axDNCW4PZN!f;-BB(me0#!G*^YL@F>`h{z6o<=f;%S;90CXzulD^ zLC(Sr7E&WLvL{~dI6l_2 z=vc;-lm;YTBt_s!%D~lbL%z ztsH^;VYOK0R?~05Ih{tobGi?3ERoR14lC?)c8>CkpUS8cJAA*s_hlpWyOU?546cF5 z@K6hXY*1?3B}1p67RHuwO3lMWly^;^lUzUe`>Nc5RtO?eszCu>zZdZX8_-4;f#1IV z^xllw_!Dx;+~!q~Z$Q4rAC+?C6W*;*?c%r-ipPAm6PaY2D*CYa?#aRZ7TdC#FjsJc zSBh4Jo95lhaSyOHu#r?WAl-jU@^X?f(HrYn`P@_FgdL^5ZH~@vTX)hC;?jEuclDF0 zUOma}ea{h;U=u2`Yyv}snJrTwZKgVd)Kt4Zp5~>C(El$#Hw#jrPM- z+e^R8+GL9jC&`<~Kh)!*vWh8g`45|LM$!RA#D`fb{)~N6u>ugmN z8xPio)k2NqS9khF`cq4V{x61x5zqKT^b>i#D4o>I=Ij?%J;$ss6F`)%wu^(0{{@;x z(A(Tl_7`Cil#VKXIVbl^HoO$mzJ~>(7wBDe8i&@;Rx+apAH~U6B@AV{*?RKGKY88; zAS2balA)j3i zCx&wu&cyBGmt@Y2+}%CgAaI-4x(6i`z4Y8IEt&2%C$j&C%~}#sPz~>+-DLb%#Q`(F zmkBiEi}w`SL=SQX2UB@v_=ni?=X49Il;8AvnfjnSS`2PmjzR^6Pp$(P;h(b`No)tjg({s2vh4um0Lk<1P+b-WR|%$sigC(#s?hi2DoR8qWLuDMieXlGUW zM4?fzNJ6%qPO`0msKWMi!;>6AyAyqQbp&p}8Pg{6w|fKjr^%N!J`a>;hoy_5Ra-jp zca_?(FK@i(%pF-f64|ETw?>6urpxLmf1x)`3AYrRz274UAUA~ZoTN_`;w-Y?`eBa) ze2VlkPo&Pa57QZBDCk`QRav?f(e3COT{)f_;_sh7!$^wjJ#>r&q zsmW>jaqnNOhp;kGyr13BjxY-Yt-1&w?d{T84g+?%t4M%byS<(dzvg;XK13q?O32r~ zn{y$fv-WI%o)mMBp#DK-B3O!9iM-A`EU2te@XM^;>mjbkg8ooi+R{rN#?Li)8)a75 ziMB2Y0V98!LzvrbCxdnc>zu60?G(Ppa_KtgD8xJ&yYPea7h(k~R|Wbzb54KMdZ&Ir zE@~ZHBI+rgQjud}R@EdaPhrHX6=6Z~p1Za&!$CyttP}<7vjly;JR7zANAOyex<{6A z?a+jE=J#-qFsA|42-o*_XQQ@UP*05~cy#SfZ7b~9#I5%oNE(N~i|MP6YazS+*&5LH=c`TR|%|o%P z*}@8Awd(Uy*UznM38-(6LR!bx9x~;3etJ6iw0Au1I<1BP`8jvz1KP1o-1`Tw>d=8S zaU(W76IfN#s_phNE~Ogi7cb>>0dsnOYHQeE_r)+5rl3!g%Hoq;JqiIHd5-PiSmOl9$R=-Ey zx6$m>NWTUv)3DKl?)H6txuCgj^@JuJj3fwB++tTV}2ONJckNgCt&mQc0nwiK468LxEL#0 z<&1+##g_X|VMj`@bc6KGyKgNa`b&RkKjYWVgLq#L*d6 zo@P0g19*;7ts+r7RvWnPA>Mn8KU5b3CDq!eM*8@!bRptDpe1os!h>?u32 zHupEda=|9Cbx)V4@yVb2uqW-jnezV5R{%X79f(l+OgIZA1tBLlg}0N|GEQ>lI=($} zqR9vS9+r7DPO!p=d#{hU6%q?{bJ!Krt@?GHMJo7F!Uv9WoAqE&d6Su%5QdsmO#d8e zsnS2-CXLSqw}2DJ-txjmNt*Tpy!nFc@Vxmv|Z-P7W-3)ogh9h;nw^ZqxgAOG{`8JaIfRb)-RI=S65-)vC%A) zi7t`PnT^$9(G7g`X?EdmwNer^efKUpI`Fha4Z9M6G03n7VGPOv5Dps=79u6Ek0Jj%Q>iM#>_m#6g;{ND3m2!SP zv?I?Q!ybK-Ri{ivl+VZ-g`*oYhtr)Z=G1zdY1v(JQ-H`ej$3d@a{njYFDMMr;m>=& ziUfWK_~>Mt$)|^mkJamcUhO}*Hs-Kza|o}NW8QeSiv9gbPfLM?OoW)TPS=?!lqs## z%Se-q@OIJ(|6Ga^RG7WLTIalXe-JrfPb#r(dsVE`Z3lk!WTsuGKrxxVD{u$-K*S}b zS^strsQJPgi?BxK6pB6k+{NRu1PEca)U5@#o&aAmB0`nu;JnWq*}#Hyi8DSAUl<2J z66x;`a&@Lx4@c!35~agnmsgLdF6P`<2*d1+X}J<~+QGl;7b%0qG%mg}Xz@hfjN1fy z7Le%YqKY;v7-+9`>pkwB9kehDeR_dnYH)re23l^CRkk3xx)bxCO#Kp)vEhY#7`dVX6(hHEE( zhPT|@n7bE<>}Kj(O}8^Om^vzyuNR_%7j8mUi(+_A_EqF?jmY^}kEoM+(uF2`<1YFj z3p{s;w{9Fma7wj|VLexodO@F`WFqPN>ZO`1Y_=KW@gn?WW9?t;Md7`dPlhXdePAb_ zP4o4|k1C$`f?_#nZOglzBe$-~lE7KDdvk60X#>%t8QWx^8kecJ(7oBfA|CJAbdmB9 z;US0Yl07_Pjzm`TvxQxg|CH6lpeJw&t|QVf_`J3QYD(WlZ0q~t5x`7Mjmv<3!(~8ifr8@4%G1 z==BF(AF7|+G_i`(IC`>b_{n-hy_r#ilZ%#!jU(A<8=*}-I%*2Rg;Qi6fXZwzGFwRP z@u&t-#s!4LwA14JMIrdV&T@76+?&|Jbs*_5eJOzB>_4Ab`l zdi^$q1=2gLf=EkAy|hw#1P`^u$6usRrO8Du2UA}ozK_hD^ztdwgp(z}PEusWKEEA) zQUGSwG}T3bCFr4%%19F1t_%Yu?N2mok-GyG3X^|bjx&qt^l_O(d2!6(>#wFf9%`^Z zz5mZ~2lBE*gZaAXEYrEW5p zE9J$`?gJCx0rET8r6@k*BHC#fSEcaWhYg? zJ{8O-{lwA?n2E1~#Up!5h!**9FCAC5JU~i8iLK#8%s%5-kk`|9|1E-&(OSO^1nMdP z>v|7zvJ~hHahM_nz%MOTBOBfJl+)j7aUaXmp=tD@N9K?f*<8sLr9RbK=8K@pEaccdG3 z=I&4%#`7wOY6Zk7zonBZJ(u=xrmMZVjW-IF79qDG6byn?Oo_&Pj=r1`c1bwT zh0&2ha$|ZZ|J#@aOaRlvK3vnH+6JHbEsW6Y$B}w8zYQjwpZ`X$-k2#6H$%WgkIJSy z9OPK8NV3qN2+wky zU<3|ij4Gc}aTQZ72x$#52OS$l>-DbX(m(LM#VYSo$r_z$YqzpNl-~X_Nr3=+(_Yfb zNA3RQ0hEnu4M6F#(~GpPX%eLy%j=Pc(wLqG9_ZvAkT8~xEatRmQ8;XLkx{H zc;B=1{1l*Lk~c}vJS9SaZBp7X&N05n8{)kPRu~NZ}@MjMzu^@l6Iiy+Bbd|oGwD>nY-Z!5_GuO@C`vXZr-A9dy@j80S zhpjb~b@5MDuUD>dUPITD+$~qma2DqqlK$n3vA^uOUCK@2!D@zUpC2wLt?!@4^5y}T zO{+`JZ2LGmPiny}i(@|%w35$m>Iolw+4Y>7WB*%BX3q1+D)`@f2W26VYv0xs1pz+m zw`b~-zl)5ZpWEgcf9BdhD2j3)XrFnE3Ci$d>U%^`4b{+rvmxAOEx0{V#}&nrN) zFh`BGT2GxE;0?y>vGEX8&vhxeY5<_2s!VxRH&cX$Svnf zBVfdJl$`gf{kwAT8JpRrxz1uGE$n7#@RS8{Y+F#8^ugk`%rP{pTq?#JU0oS^+EH_5 zSf~0anwa`8st1)&6QJ%`SDTCzVoY1sBPw9}x2qhT_uGb<+pRgzR+2J{byc)x{Do7< zQM$H=-y)U$L&#IDv=99rLQcdJ<~_!Kj22s~FA8N_Ge8-Q+VD7XCUWZD?Uek78Xab5 zWOS8eL2roV^p(ogqv|cmN{PSVI$N#ZPt!turnzW5QnBdXLD#&iRi6rs4&CA|+1pv8 zB}}!2monqFGbQ_Co+$TiO4)S)-`Jv8xr}_O~-Pb zi`jlScidp|e$^xk_^6=Cx`IX*&XjTRIfuiiX^jXuEsVk1Bf2#&b#l2^`a3)- z@?6x6_ZRSq*+XL4?0@rnZBir4bl~Z=myW9I(ui~?i6Kw4n8C_OLuR<6AZa2inn#w}Vw0)5ULc5o zhu4|nL?0pMmfY=!O$Kn>ZIC$dg$LE&v_! zbAz0!c@#77)+r8|#M=DqLP$Z<=|9~;8nznJCSc6%ZX@yx{uI9Ukr|-F|I>`Bi?*{0 zin*|+JKnc&zjWnNK%%YT?~(ifiM~&tlWmS%t`UtOhul>m+OW^rZ)^3-^8TIp5ri=; zHq&*OEX;uH2-`He(N`}i=#TRDT3OTJ1zFe8b3m@Sh0&Z%T$I?^AT}wmzoHnr3ut^O zfz5D#*9C??6?S#6t#(U5QMSy9!{)(-y-d)u0JC z&OQ}u+e@n3AJLemeLh=Vxy8j$aAOF`&;fq-jaGpg@y}g*liI6!1Tfa==#MU8sn$OS zsU|h$+;$vf{pUf6!-VDr6)uw6P-{eg7buEbo;_1xyF|1wSTs*_nWNfXLX08QpaNo5 z4!yEtiHD|_87nPVJUZ0Jjib)@Mj14X##MbWaIF>pFqY>#=b{!ujJXVKtZK~o)dL#p z$d-Td0O4XO$C>WChJPg?cu@}(B+d&zyME6&saM(dp>>dF&0 zpX3{r#CSsWKT5B-iT5)1S-9v_v|~$y%Ihrg6)W*lt#KVq`js-ZAJJHCD%sbrFcb#C z6ilBWqV1T{hw``m(DEj3vD3O}Q`ityZ?fo&>A;`ad=w^JOZ}ag>x`(tPuEAY&NAC9 z99Yb>8BtaNpqvYV2z|`MiNuVV^$yE!dsMzn*-vj)Ym%d1Xe_}+2nJVxqQ2y4^UWI) z>manGgTJiz*=;Ex=^_nl5hHY<+wzKZgmxM)WRAJpO?9+GAKDFw)`wgEgpsj8_nvUE z<+K97r9L`q>#AYAC#qnTGEL_n7&^ac;iefj2R=6YPhHMs`2uRtj#)dy0Qypaj4hf2 zyAHj@Uk#YzyZi<{-?5C?T~()78@d-Je4$EsJJ*%B{Z;PO zq{bxk^uHkw4I}TfI}5a3k<2u~gfzHUw#$bQE*;UH;=?%Pe6!f2F_)xK9eDR5eN$4? zV{xCmK%iaxH>8ebKqc*DEKL)N*wH_1a&7S?#(d}UD zuMh;7Zx{7^X%%P~`7#fZ1NIu(SIfNRIN`iZ85FZ<}rE_qdSMtd#V{9G3EC>F;Mi;!j(z%ZzD zj9HR3iIhOdd}E}`5lQ%Pa}q-wd#Zwe^mW+^T|l<57=4&KFO%uAV!fS4OZOv|c&t-2 z!pmZOVgJH>3S-riAsDAYtcH}jWUm;h4pH$%IwD-Dkr$n&L&+tu;_kST9|s=@nDOBb zZhw$BxS=kJbCwo1kLJR*zyv0AHG|?F8JS<1<4AM+wUOw0Z!j5$Y7SQhl^@-?!|eoa zx-*09zI{w&*wJgt z)Vlws-M#%@FoGJ@Qd_hN2Si63E!N2qOm&kuud#WN3wV)kXa%DCVKi-a%UzeAQ6~Bd)?CaqZ>DBjHEp5Z*1E3S?u5At8|r`NR|D8TcVr%JPIW(A zVxMtD$qOM_bhJvm5L?qKuVzZ#ckhAU#5SqOAxsipPI;vy*K#LLD+evjHw^s)esAAo z2fad)1!8iz+I5aRsu(@oDWQ$LwSU1_?R|5b^QjV>0fDLCk9^DUqA`^bJK!0!jqF0zfCFosB}%@cJt zu8&kk{VMSqfA7Yu3VBFxQamK_6F&j@oukDN3X=Qwj`knaYw`c+~e8P~2veLiXzeTE5GSkRUZj7iN#xlEENz3QBue zm+}tzcT+t3+NoE%ovR9uCzQ0|769P|uD(jBeYj|$ps@_BwL z8u_&XLH>!E+$X&HJ3!FlE=OneBWF^S9BDAr!id+Lqgd^!xVjt8+mQrzRB>lDJK#_R zF8gyU8xtE~I#m+1eYjhH^Vu9Qbr*J|fT`8xbJ)V(N*+ih5w|m6V&48?tH5rK>6~*t z-6w2PJV9p2A?OT~r2hew`JjNTZKXO9p717?hL%lDuZxM1qZ`n0VlHRxm!TM>4?*Uz z53DK0ueltmR3fND5u1G6VqFjn&g@XayAJKDY)zgA-MO~G>p!)Lcs{+1*Tjgl^fqT_ zzFxMxkU__gIA*aZA)=mpsE$_zm00&1ov#@P8q!3?o2OeKbgo^Wgv>_hB6ce8%521h z;)x4-(){$jZP#=UBeuYOC8;BWtf*E0Nl9wwgE^VXTis#|)?IhU^>U$qF;#_#v||xA z53rTn^u-Fi?Y!Gw?8rTW_G)~{Zyc4oDM)HWFdyrywt^E`H-yM!T{@BqlA@&Z?|A=u z*DVuuR~#UXu$xq4L@jBYkaJ2Yfg?^1=m2m!<9te_I_DO!{6*u%^PH50unJmhzs<%q zptN>(XcB_xKFU>Thr`GsN_4c8tO~t&wR=q;d<}P0`A&z;GgVRoF=r|YocP-9R&kR7 zwFgZ7JEQ(1b{b?X!YaO0TzxUHK6 zq}hd`lHC~;Z=~Dhl7U0QPXs&A9Qh$mU;3xMr=o|a^2)eQIpHR zP~7m=$VpluDhm;@-9>(gwQt*~uoNf&bEct&JqP@`>M`|Vj627z#YvH^`^I`RGY^Qgv9 z25vjXqb8R7-qj!Ew2>ivFOQ>&Hh!e@cr`B_LeXur>yQwO6eUBqSf=Ac!bAnvj1zaN z-{Ao$)3&6P#dCE>(v@>7S?aVTGQ@wtjw5cx_7F0j*DA&rp9e_r3*(jF-?HKrl|>iz z7!q8Is%%r+dWh4%v1;`Vw`>Ym8vFqISJ$T(qDg)OW3G!hIl1;gRm=J9UfTfa`~{Y} zH=qCFB+?TtAFwc;X!e5xYWanTN^@_EK-=_Qr-55Z>+EN5mw`Ja4BREoX$s!+L9*G= zfk&F(>No8kb@4|67f3!R#5m2Iu5W_h(_|$y%nft#ra?}Q=?#0W&pCrbk{>vuFE*Wg z)oR+hlKR#TC3?CD&$2ohA3~jBex!C`r23XdTfb+JH_UNwzvyd)&gufQkJn6IQe1BB zVK=y*7oxM+3K1VBeI)Ul#v;a@73;qQ_5-Z!VRN)cPfsGh5lNLhCrY5@Jzq0Bca9k( zb|gv{tD1_x-|aOUaF7~b;{Wl*&J&M3Bu_|=cf}l{9joOzivc;E%D(k-vm13h`rQGE zRXNY7j(d|J%`Q@2@~=3pw2dUu#r$~}F*V&&nu@nxwRQ#5sZtt0cH%dtF`TOV6gNoQ z0vfsd_sqJ*%y}5n(p&EkV7I-N1(j#aU#&mr1VnM2fpb@X#}_~YRCBb2?}me4DOj;z{P95E0&iq{OCGp2%Ifn1D*%WcoSIjGsg0#ao@w2v@7Q3Q@5Ane!vjO|CMcG_JM*o%pbB2O5FKDX;Y)AYiW!#cUp5z>UyL+--1CytE!y8_*203n2x3{JeeF9@^sz0JJ`}J()x|3KvZ1Twvz&XvfTQQ z-v!K@5;%J@Kqw#C(m@-KZ^DzvUjC}rn{`p(*fFLowO!2M<*KiA!zQKJQv`T87cTdl z8`^=g0xZsai6G55z4WA8_89(+7jrJcL_V75Z?i-y@9+jp3I4LF+o6qAfpAUr=>$LL z=Xjk&z!S+Hp*T`i{sCmi*GE{Jm;oT)I^J%z}<)hh*jK{*NH^7i9ysKy}LJX<=eaYVeU17YJ!kSGm0s_ggVoSkr*KNgNBB+%m% zGULuJh0RdpzW4NiasGuLSE9a)Qpg#Nik)c>-JSo@s?rAz%+{$cKZL|N3?Df6^APrR zMHb;HH;U~=vYFl4VZrix?GSB*2Z1tVWJ+C7NuKeSHlxD+2JZKj)WDnZrR&W_c{`l{ zZ!fO0?)fa@`*<+FOz?Amvhby%JSUMAgDA}5kRi{Yh;e*kBvbq^O0z%FW36Ju?w--S zv02y>S;=3GdL-d+vQ9!faT@${1926z|I#NC*^K;J8y9Q2XfkWX6faIhe9^gpgfSMl zQq^!o6?gWLEuGvE^Y}L`Kh*o=c?>nat^cKEOz+#s^jeJ$&(PH;BRT^eT^Mwi<(blt z{P^bCasSDke{&U(5h|tLT9$NXVV8gR(k^DkvqP%r5o<9)q4lzZ;#$Wk9uyf=|AS@A z=CoGmN)u559bo%d`CwO9F2it@Pv?|)$Td)_o3r&QBvvwnpP9E1mgP-1r7kYttj`pV z=BR%BbJWSHvJ6=>OHDFafZ}cJ&<-l1&o=(ABT=}N$oP{0Ka}MMz5~B@gkIO8_q)+M zG~%@!JH;-0OR&yKn$JWT z4{csdTmD-6xdP|7C@NWYny)e7qg9KT#_`_zG{mz;dO_^dmY*42cGVMGG5=8Z5Tb5?*Vvo}2uYw`oBVe3 zF*Rr->((UiVgO3vi+@<88&O%p`|_>IDW|uKOZ0YJyIvB?KvY5P$8P2bG4CZ}>FHW6 zb8nyizHjnvrYEMg%@KatGfK(ZFZk!rXY3@WL*!&8E+vIUYLER|T3Pw~44##^DDeg? z_h<5p*qbxqH_s3S<8US7dG0PyDe9t0M6Pfs*BvR+E-}!JuG>~Cn!ryku%rr<-Q!sP zR8GEXvg9t(>8)>wd@z!DWm*0^Yl)~zn8u%Gp(OS0+OO={{DOXJiT>H!`ft{Z|MNk}5I0aENy7YSXELd|r$- z8-LvM3qQr3MM${S+%kMnsCjlWmUsu+&vr z3k6YI$UFn0SMeRv+;+luu`|MpOj%P;@YB)vsgUAq`Uezu!~TV)bvq)Fy_o1cDC0}L z-Y7{pF#4ub)+=xgNn!+@TV}|CFxgk+;Y-P4@}Z&vIcQD5PbXc{Bi)SXA=@f}5_oZt zf1XL==G&T@IQoDTot@43c1y9U$NH=NcDa+aLc6i=Jsu9stbrj_W6g?yAkWbY6u&&=+n_|GMZg^=gBPdF~$-<+7FJ5kVlhfdEDBMoS8 zZ~Wzl(Tf>8gNRCosi6R58S(S54e4OM0~pmGKsQ_1~zGO9rvX#Zi7Ue z&N9s{iqSwC6U|Vb5elc9<`!CCUI|4kIh(JC=(lU-wVsZBSRK4>iDGnGups%9z9?WQT^3l*UOP8ERguDONPwuwk_GZoYfs=;S#R zR7f1sc?k8A9B-ZZ9AZ{bj8RODBcvym8| z_&KYL>5u1wV7JzViYK8y%8PnXjZS*RO!@Nq4yjO2FRp+6gy4d`Az^A`zM$w{E7FD>1&?Ll>ud&2Uf2DL z`GhdvNI1gHrVfrP5V2W+`qzdY2u~8=DYZ`C2s!7mBFUA+TwWMS*v4vTcq&tIasfOZ zxH-PwEsASs<$T^@sWhoug97(9aMef0BoK(o)n;@q{miWJ;dE<-Nn~!yykYVU-VgR9 z>B!NcchV6XO)^2RDG$6I`MS*lTz@ZQ%+NT*O6gf;J%oIRdd76G(MT1Z=~z+sbK9;u zfoG~zX~YbMFUDTeM83Z&6B3aEMZVO9ZLobUN630rr-^wEbfqv14)^hYimQZz#&x zR2(fmjDIc+W%yS{yxU994Z6uqI(~P>&cWuo;lS@pr&gvl=aU^vTmgN`ey5wyBB6+~ zGWTbdQYkq+d5$^oude8p%};4Nn6r>0*+_hANy|UFWRX2<(`Al5Ot@($yKDjRFBC<8 zcnAj6(Vmu*$vJV+|I!!+1s#F^8wufR6sXy=zHBW1IcQ8dG{0iwzqskg$Fi9JF#==5 z^bqr6BZy%5W`SC>v1nfV&AD1_O!V_0obZW&{oGl_m9gDCjF_69>*cw#s(c`(TGNj_ z%AKFwb~=nB`MLVM=4FsTh0~H@s1=T`axEHtmBhRKh6?^?R;oHraS4$wGzLOcIea#6 zaj$uU%|(qW3Xck*CvYWQPb0?UO&izWGEcb)%{DZ?vlnN!I~As}Y-{HW@=k=4q>G#Z zNf=-4tpC^P@c;KotsPeqb*iv^sxz&9=&*CVWXqLbK5;)_5~i3?8mWC>Fm@ zbmZJ`v>WQMXlNv949x(xB^t#`4xPlFRy$aT`VqBRhAI)to-4h2Kx%OJ=c*F&X)2W5 zkK;{MN7Pg=zPB|t6@8k&Yg>XI1}P=1j(ty210+R$u?MF#(gKA zomj}87-l)8FI>*G>Tv(>i9#1wptohH(Vlom*dF<)QJak{URiXe(J#xZ2g`8J2SKU_ zej9V8GJ|{N(w=us#hZqBf{wLOg`sjwr0$j>ZC3*_n=q1R)sFCQ`FwjPQ>)k6!4Sz_ zK;v{*IV~Nfjh%(>dH5j<>Bznyv{}J)GKL;s%m9M#ALOOBv)>`R>u<(KHQ3O#rijwD zTU-Ho()A{w4f{`Rt@lGyd?(>?_6-18z`4La==9bLI&DFZqLB?$RGW$FW6OZj@-o&m zMndY&`zeC0%FXq4!?*y`|FogLNA453dgz&|PR+ge`X3eM)Z4S-5p>^E#|L3q>J!>Q z5pU4FEciDtlqG(>-vgZ_TVgJnwJe}E{xWle=1x)xJDP46kH8w+zKZ!@O9KU>c_(5! z5q9G5`%9;?Q!`HJb@kedv?-=;6+hf!*`a8(uL1S)9~fn+v%y_>u(_`A?P*&vrdB5( zPN@t^ZYuAzE$AABhz|IrLLLCQmm4wY&tjch!!ULxln2cRHED&=G=o|3zj>yXN6f^8 zS$aG%)7SnHX}uoAetHi0mM+sev}~%j`0~QZ>B2!@RgV!%y&&Z1)AY}PAC^sj@B6y9 zb4ZX7HhDSWjVa+n_&FpZ=t>7W=I0f~U9H;=7gTTJ{m0KP^rnZ&{-X+h(HZjwj_p0_ zN_Dd(QmV0^d?L%#h7aJ|LQN$eICzxjtJc*Twk6Ad5}){ z)U}=*Uz~MBtArRl8P69{zK6qP@-hL-HI0#fF@|7Vkq>H}Bt(3p0eXLjJSa0DGRvvF;&LU;NDOCZLZp*e=`xYLxS*MQhd3<2XKkHL3P9!kh_tNuW z8bR!3rAu-;vRiGafVJEK(IsAyYdPY)8yaJ~tTI7h-gRZq5`Xo(TxAEdsjqsyi; z&RZ-BuZigpmCQ@xZInqwR*+J(TGJ}Au2TGLIbRShK%Us9&v||=%d?nynN4&QKXRre zJdXFFDVN@Ikd01}7UyW?$&;Ibd?_aRKUB9)~ zd7Z~`G+;1-Yq7K56S<1>t5>FOZ@^d*#{TQ(rtI18AV#dyD3G{G&OU$nvLh;Q>Q*8S zIWtA*cb6S>B7R3Yi3>Z8V?c|DZu#mq*|YpBcev!&d}-!Q-Onocu@Gm}C??oEa*C{# zgN9iY$)SHu0t4~IxnH-@H{J_Rq-C`Tx}plTx>Q8wIOS_Gkt`ZK1qq5Sr54}N#(t8z zU$G^Ns?_Z1Wkm5}Bd7~B5-9czpP5(`P|Y<(d@YkE4-IG$Ubb3w@#9OwtEq8Hg%__55mnFVX>phGilQ`o=%M% z$-WzXnc)vxc+5B7b8Dn1SF9A^ZiMm;3FY8nK3H%THBE~%Sj^og3$WFnaDKh@ zI_}23Ecd;D<$IoEcJa-TZ0Y*IO#JwoSuadEQA*QhMe!Ub)nm9Y}={z!teY)e~BqdnA%WL~_jw9<)x%M6BnGd@)9nUd(oPVJE6byh>UQ7 zhH7&jmc={&MD52O){yV1;VC@Z4Z5M|y#ZuI;*~_;mCUwhUn`0`AxqRNOu`~fMMGGc zrF_;2?q}6bL)m3T^9WLp*T-W{Qz}{%r@j}K=j+FoDq`V85eGsRkCYz_yM#`*2oXKi zL2A0(YcNg2@hxn=^(**XI?N~EF8=(t$*B#ESy^I3T@Q!u@@@4cwg@)> zjj`KNSP(i_Ur*sO<;p&8hlSh93;K5ScYlu#iDAXmW=!$XAURQ=cE24T|)9P)CmMIy{e<_3Q<}KcD8UKWfc9yyMc|=Y_S&^wbL%8yzkcW1LW-_5`Xc zwqoKeaqGbwO)K-Rk9j!vpp;ix_ghJFjp;=TjK3BsF9elmH#_eFUHlgH!hvsKY(ez$ zdl0&5a8y$4dVumqY1&LOb4VZR&{%N_%zpcrx%WqH#2s$v@t!d-4%^*^S?mtoh;cYI zVNM654N$1Ow}t%q@@vzR2(NV%Qg%_?76S+6Pbe%LDmHzt;*IgBiob!Gx$_HO6l;88 zK}i@VuCXu!3y3u{RrD#7&We$}i!;zCesH{@{fo*J{5uBzNMF%R&$$y6GcGh5hU!EA ztRkN;zT>+=1n1i*%q=jTfgTaV9~#Rv%AMzQ6qP=B3F}9KdEX zTDA6$7XP}baM#6$HD`^hxNhL*e~enbGBzFpAD8rAz4-@b8M+HUH%QJpKe}4&Yc@cGp;5D0=aCi4=IlOc+zD=0z2e&pf`gloEo<89Zt>KaH)NZs^JNa}x*0i;VZ+QXi;A z{yIPS3y8h>Sdv&?EiUx>lnJXLy6+HHtTUwx9BLdRIQhW%hv+7*@n#NO`GP7oxu*|L zaUtjmc_e*8W$gamQ;n#ph?sfKhxN1T{YjkS3<;T@tF3OfI~3yBaZ=QRRW#<6WhX)S zcdc}?V7ICdze?Zd(hd}4yEv&~pl~t6>S6r`Xy9p|80Y7F0*Y!lZc$&8lMLi{If(hh zgXp8^o*M)S?prup_pYq%4{q+^yT81Ec`Zt==z&tEY(HTm(v?Ny%?&rTg9|R~D7($1 z$;nEm)FL`19+Ke_Qk=g?D{)x~G`#}m9BVq2X(8gfd)A+~b31S$~v%)RNVBC6r42UR9~8e&tY`StuMe0OY|0?s~T2X{6tZk4%$AU0dXlj!w{|^_T%}2?} z?yFgNL;GICUE`X!)Wwp=WX)Y3g0${>s$NKMQ6+wmNu>+{f?48n+A&t4J?by? z&0DF}GLQC;KwpLi*-armNDl{!`+38D>2I9e&;`p^yAMnEZSZ=ou ziMo@oAN^2F0rg>{bk1*jOK&rlt7${Y`>Pf)Z$lgKn*h}hj{czfmIfqIXB}nCmSeAJ zU0lh&sr1zB%{aF+xdGEiGm|yhTtU{e5EJ(1;Dg1V0}I#t)TR#x3tW=wfElTk$@`>h^&4o-uN zS5LT6HOs^CER&ya+N%d;nl~b**^NpK`S5rKenoGcFbK6nD)Y-7+{~7cp?t?SG6^yr zcUJcMEU7--?L`D9U&7#L=gyXY458?$(SxjWNLJR{FPyL`hShwV7>?u4v+~c87SwD+ zBq0vg41iyU$G+gJIl7!rfIv-`c%i4N`DiZ|;HSAv9SgCjhjaL*^DrX>Li{MD&GOCW z8euRN!XIWKzcoeW1qUUEfDn%d`OD}2zCNo;`O}*B>015N;io%p=)v%ZMDEpI3=((Z ztcxMpk>cTh&P{O#zNo}sE%<@2#47kzeMieDi1Z>H=s121+F>c1{8ORzriFE&1h~>Q}uX_+z76*9>pij@JAJGIcf~zFj{T+j2;HV zNa%O5eg(yUa@&qJ1$Gt;ErjlRs_nw~=J209I+#&UUWOP-Ct2tpgUwIf6(n!-qubSs zr~MbzTDRR45w%t6oUfD~m_vbmKa?8f9CSKFU-lARHW052u?sT#n`FWjfiQ+~hyOL9 zRN%K~B{$-d*-0L$ob;`}#?Ig*bq+3c;clju;^>GO&6ZQVY*oFWWEe?A8{g@w=nTGv zoXt5cT%KzFNq10F!sVD(7L>Xtjro=EqM2l%?}iQFDfoGVr*OxKw6D{Z>H*pMj~8xj z>MNv6bm-zZlA~!$`bf?gZl2$)?Vmq4wf9)l`!@5BT!#z_^7p&nd&O?lN5rj#BZ0V%+LQP?lMfV$ z`L(`YzuD+}v`&*k%kysI%x*KszW`{cW79UhU?5BFi%0`#0D9rm#poMx_Nst`?!XOD z{dl7>KSPM;J$r0agA7>X^Lir96E}ICPW8gi);=nkisElN(ij(sA^a7hsBJ}x$;La@ zh~M?_P*VjiuetB~hyx5@UYKS79#6Jt649r%@qqvVN|*$95S5~y=P*A*Ll}CmtH(g2 zK9GB`cxd(ymVHSzB@KAF&yiCvWJ(o%$s5NuYdPhkS>PXI=pSgvbQ zpvh-&OmnOPzW=RXsqPP#UM0@oxBuX&r*FvB)zTEboL-M22-qD-6o9af6{EEk?NWzN z5}B$6zU^*aeczW1YnxWKmGrN4xYJTl$5t}&rgeUcs9#;VC;2k0JSxth>Y)Usj#BAc zNWh{(!TN9q)Aa>DQPquu!9{t`l-JpJ6;u7OdN6FkGQZQm&~yGCGl@j4q?2MW*ocJI zBFK%xZgnrpcTwM@j+mD3?cvMZ1EHgP73kZg{CR(IVRe{wGttxRdDNd5x+)x3-&Teb zTE9>BubF$pT8|3*{WA+8XX_K@#|{kMxVzo{LrN<6*19ltg-e#Z_X=@I6^QSYj`FaglMoZm<_- zUP{CDTKR!o_h@oU|0*)h7>r>xQm^Mz7TUH<&R`D~G~1*jR2}`7;D%|gOHI2xq6Enf z^um{5VvI%-;+GqyANbK~iw5}Jcmei^f;wp6f`W*_yhRC^;6YL?JO!&bTj!FU06$iv z2!x$e*dugj&yRP*Y*7KrlaF%uRA@AOO&`zlAwx`h2-B-G9-k5O6q)6A409o#LBuw4 zp%s7NfZ(7{=+D&Y}>R>|e6?t~1Hl5~sEiOt2X=g2w zZ>`GV5g0j43XDq9?i=GpjKjX({c=m6r#nXR(pM~*#CkMtGA|%fr|+G0*2)P<&Ek=P zQQ9YDFY|4*1ulgrX2qtS$7?7tRvYh0K)+Q+WJ4U#;3K z^5LcD$r>ovD`s56{13A#3ER__W9Kq?eot7vmmIvQa0oSG9^T~wNlHc0_`A@{&#YSo z(@K;*>@UwUTWQr~EH#VB5G9Mx7Y~FyyR1s_H`*9+PQK7rnh+D?o%8))!-E**Y}RTM4yg%O?xB|&h9^sin!J`|R1Gp$ z*)}=y!uYb9Q1V|JgPGT!1YaB;-MGepb@ax>IN9aTP>Sgltu1P8W8)W#j{~1ttY^c? zFZqyV6>JyRH_JZ!v3i0YpQO)d#4y~$YW#3Ll4t_nd~}wXV+0zBhOboWHjmj{(mWo`fCVn6KYmW7l!CSt#{MNl z(HS4YM^x0<%DrW2IJ+m&I+&D|A-_I?b{-_VO`XGUXVczLCAJT|#-;|5K{Q&M%u${pTu3bKUxV^lZ%xD> zTJ$+`ct#D}Ptgc3g*ZK!Bt*W*O+CI6!YL0wUCOEdgtyeh`FzT1kXkeugq%z;s%5Es z&-k#3s1J~*Go>e&T~u3HYiZ60H}t#ly1+p=7rT}9d1Hx1zp0FOxr|hLbo|--8PI5j zV>vv{MB%IdPSCbQ6pzWTeyraF088$6inx#qoR_Zlq}=wqqG$CUmHv9UNK4$AumWv+ zuzYin$7Q1`GJCzaK$nZu`T5PZSD8cWKvEjtlAOeq_CQ~%;ty8!^^9qw`5>G|_RiPm zKnwS^WWKo3PQ4Z%`WX||4Rivf*pNvoj-%@4LbKSc)%OV&un;d5=&##<$t6uNpI)UZ zTWa=J2kSgzirHQ&1Gr%YR^B~p+Cg!NJPtZL$*63(DpzzZT4HODd84d|v}PRZ|rBc~?=-ngE~28%ua zEI?zk_h|8qSKrt-Y>n?gxU82_QI}G$@g8@!HG?R;`#zm&ddFoELllA0Zns1t5Le)B zq)el)F-3Qg##h$sjBCqL^i!(sSri4A{Mjmpm5F*3lrM`z^_g4w-Qd6H*)P0FN7-|8 zqk@qUB9V)|e@(H?on1^KXY;NLPoK{Oz2dxl$Wu$GNC~1bkxlb)rPsgZ%I06iQl=Xu z=%g2;4?lKYybYpDFmA>#l(R|z^0%5?E4VhgJ!%vqS^6CW7hcWRNYmslqr+BzmH*=; zqJDXu{y!rZX>O~VvdWV_Z_1nOz6idzANtE@Z!56_p+M6Q7=7`jFI##EJ;rerHtGgb z&bVz3SX4;{f^l+o+uzQPg0eU`dG)mQ_oW~#(sN{z-A{XUVYA_n zMrmGXjgupVTey*_`V^#kB#xCu+?p6p&TLF_*9hbv#qlhPMyosF{V0EC-V2cMM}j$4 zdD9xl8zd@vg%aUL+v}UYdTt%j9W!Zh|9Z!mof1;h*X3 zF6>u%=lXXIFJ{OZ1rV?_q2gLYr`uU!`t)Lskc10&XEX+$7x5b7x2b#$?@x2vkT82$C@=7sqzAE(7)m(9;Qb&?#t-qbw zyw1iRQL61rv^XNC1Bz(bB-4{%cP%>&g%{--X*bk)-ao!r-sZ+kF(}zw1Jtt)yg3nt zouuT=_W@_u_iFfJl6st!(nH3S1_Nk-f88b z=Yn66kr)126yIm-lJFuXfDyB(nZ(z>oYM$R%Mj*ZbM1}rNSYSQ&yier8?SglP#tol zpMR{!+hs5@i84hxib^me8nbH_E#AyAqE^Pq|2&6j5h4!MHyvrZ-zgh^Z=Y5gt zErIGiSfdsaX84;w4H#H-!GEv~_?BIeX{b>r^1P+=-x@(N+cMq-K=axc7<0%yLVC^2 z^i=fQR@Tx|G!;|rqs)t*i2C=^cIcH1FWDE5!&||P9dWPfz@TM_apR~O83sOz)a{?+ zs@GXgaIQ4E;tIZBP>7di|Gb$pXQ$vN&7y{yoL-^Zp{e+D_ADK2Ge^>;qMP6HP#F1| z$EvoV#r`#pewy`!Pu4fR?Mx5xH+q#>g4sjjBTl!iPm`o zlIREj?Q|YRU3iaKx#d^Jj3y2fYPjXg;5m)fYZjI$cD7llGKK^~DtTPF(dq)&HBog6bUQqVfg#bMVRY{~R@eN56LGM1!19ob(!pwE$8awGtc zv1cFEGs&0~giKnNXms)qx zC4uYDtE>HNaXnPJv_Oa)9EiPVesx|vk((7vH(9`_zF(Cy*QL$ z-g?&cS@LK#ogXk5{O;MLh6>pn&S&b$7OCDcuA+yaQfB%xEqXJ@QN0&D(|L8tRTllNP8v_>{V%saPE{1IOc3RcRrL_eWd$pHmmVRK)Ck%x(i&YmTme+7~3t#x< z)&_BHN($H9%mWU=+jCe9B8f+T)O$Z7!Dq(Ywg6#C)6)m-+2v7M`8M}ht7KBGL>4s? z%Nhz5UYEPo392AXHv*W+t>0d|9-q1tq(AlE1>RmoI2lo#HKl>og-&D&s*7?ocfpal zV`b>T(0&F7r^QDQ$%>Ho&L9;>6c7cS&RB(v^AE`}dVsd4d7posIhX?GQfPBCYHhaT zpi+JU%!#5Zho~Zwd{u~)NYSH$>Zh0Ls-4to`fq}81IwI~mM`^Xv6rvVdLC{OA^Hw1 zi;lFmyVp1JpMC*B9KuwFt`(QX1Uo9@T|@E=RjlV8Qy<^LqFAk4i874E7Rj+=MFj zGDnKcN}9=FU>qIs!L-4A74{Cdl3L$`>T_6RY~Yo$H*T-U^gB9w zQ`mQx&U)`g@@|v7sI_8Da7N{<53IvhRY@kV0}(Nt4VdMtkSP9q^e)^#l3&+?x_>3y z5I=bK_lwH0FlX3p+ z15mpi?-MPcES{cZy}}yV;4KGdi-OWgn!!g~_$)cImKqh}V5aBiD(f&fm(BUomT?0S ztasRI#g{}7ZdhSQyA`JT?HEID0e>vsHBLNA6{EP|OK4YBemfs`Ss(jJPVnS^oR2rFN+C z6O$BiS)Yx04JI-C8K`1NSc|EI%e*l6x(@jtjrP(1XTtq4@#JuwPxBpN-6V5D;dku* znUqvM??7(xTiaeXGTWHGeBJD}WHUX}zoHXAcgb0%aWYJ2Vt=7*jqX*X?v&*o`O>pNH|JV4 z#sc5{XM1f>EypKnXJj?=E_h?9@q7j8_#GO-;_4t(uC-u+YA+n%Z|}2Rqh}V$#^`LG zc(D#-N9Ta;^D>l@R&)YL4nrX2$AxRu9iOy}DB5-fzyF;=c;H?t+=$mh%hpF6)Q>ap zVl|6i#PL3-+$!u zd?UJvnB$|2hxsiBt|>703;g6D*wWNo@JAP3@lfDGGOSX(!Z<^%YEBeo@tHYDM;E=f zl`6~{^Ghsr;&9BX)h{OYOuP9+q)gT}5clo;G3~=0ulELWEN42$LG8f{%Coyc{L6)qU+enHnlv04{a9=9bC)g&UV@n(_#UCW*1IpFpz+n$40Mk_@! z6b_m5Xt>HV&$#e@>+hiJh@SqXH$gq(AcEzsZ7H=0QAEe=iZnpMSHN=}#1i&RLAc8C zA@J#8VmWX^q+y|Xb@MP0Kp&+f711e`c$|2PS{XD&{qyrAK1)<1NCTgyO71SQp*ol(?7M7A3auhfB(UnZU&6yeU6t#Op2< z>-Y`oOh*~R`l(^~x+|F~wb0ezMW9o)(;M2%#9a^9!c3k3s~Rc}wRlA?T4|y6$&|Om zt63xanG%zhbremLaaS){@$4UO`L)4QD#8F)T?6N05zhR-Ya6v>+7jCgp(LAsp9wmS zwt#l|+Konk>mOOw80H0^UO3QAwT`qq*P08hRm|;=VyLk<&zB4MEh07ovN>%H9s%sa zy++(MLYSJaBxO2s8Ymz=s1_6Z}?T~}NE{6g=uk#KdjN?|T+w5XvL zeZvB~(TYE{WLILORNieo{zs#IoArdWN>05x-d&+aCe>T+Cb-G4BUqa*GcbUBLvQRF zu@7sK#xljSuq}e?LH+BvQoxZDXEQWSHvUYpX;GpUq0Jg?BuV^aWD&uDqaarl3fAUg z*NX`o8xn$d6(cbUhjZzbTu)ny(4ei*88IfvdD6Ex26k2U6K`P0;Cx3CbMrJ3Ic`_M zyf?>(nT)G2Vx$5KeXp7jP>G00CKx8m#Zu01R9Nb}B9CC|yDP|~jKh0BQDSq$V!Ns| z7idruTQmD&q?gWXbj6O*XH9~kP3hNU?hKn_a4eC56#HlE;DLX0vgG?E!n)&aJPK*j zSgXBPXj@0zipbMq6BNK1DUq?m(K3&%JbmJi$g}$}6#mwf4Us27IGJ(*zgK zvlX@ieSlyX_Ve6s==wkD2sQISQ8s=Puc|h56FSMhzo_5hG#%mW>IeMKI~4>>PX$KK zjajf_KfcQBIcD{?0pi?$XnSyKiC`9V9J{)stz`}9weWl|lw6ch?@dHgSaAHtERO}= zV_6fdxj|V3`fS_T`bIlV}?AD_%#z)wQgppdE??+N$s3xIQ9MWSN6=G9FD4} zSx*)*gsE_78QVMsqv?T`K*|3sb1y(2=c@i|X`bzy+$k!{iXZYjJTcn-*^$A#OGJA~ z5|1jqSU8!LMFecZ1rsav>HG)Sj&Pc3-D}>GuB%X`bXTS(&q>9slgZx{ECuq z(4r+va{TIojL-&ec7#Q1@0u6Z<#t0~Sk^7@_<6%%OyFx(JzPxjKo>B&!q>w8{62c! z913ZfL0RP>8*<=;KDHMbpoC4A_q0gDFU+LB&%mLBJAE#-wD+gBPW&~_S6i$weU*^4 zL~8Fh^O_Vb+niZu>r{tveu)0oyVW%qEi1) zVfnxI!&1&NH(^Su-TOw!W5^4JkhaE_UWQ?-0Uyv6)zfxB6AoSDrS`IL#`i)paBB0n zWfQs3RbTe~!_BoSR*O)9sUzX&fUNj+x}}kOjxVqniVAxiowSUjWPZ2>fjfRDR()YH(a3^}TbrE`LLU;mr4M2Y%w^BvW@U0)v%G<8 zafUvWcX`I@sz0SwlQiucP^bgzHg}SmhPXy&O7kyY(cD|S;MV91R=H1ZZ3AG!Fj&`x z6o&JSi!5yo&Q+WveA`R%3I^2XwG#X9~@MTVk5eyhn`2r4zf)Z4#Z z?B|96+P>=?t~B@;Jy670y0DKlp~?`%a&WZ+T{->6m;gXm?RB>0-xCfW=YhYSs4(9rl& z?6^3)eSQxUbkt9$r4=p)J)f?W1_Bc3ibA_z^CayR!n8)Aq60J9!wqut>kJvb#2y-Q z(DT&@)xAUvWuiIPC{GpiK737<^2UO4%~JKfsdkr-S`LFb3Vjth+ zY8a#r>&oN1`S%tYPP5CIJIilchHS1PAQ^2s(A>>Hq(}e9Ia?Qw zN#T`2VBP@}yNy~D-%HoR!w(ejExIt%>P0x;(lYMHBEQJfjaYVj+gJ7Tj)41CcjfAv z&`b)Q|6m8rUVucT6x_M4R<**gjtfICp0;uT@r30`PHt!!ZY%dCISq_GY@IS(d&C`U z(+{kptv?lYr>}ioEcQ7J6HjTaDj&>GPGL-(VoK6RC+sIsYPK|-HhO-DIAcVmp-LzD z)AhF_LowB#dWQ@iALe_5pY0MRcCgyQUZhw&JrOx%LxWpQe1H#&{I*;O3=^&aMaVup z2wzxVI{7SA1}g#F?esfjih~wlea{7zn^$yr zheV3%axpLi9y0>cPnexmDCVgGA~5PrB>dWdgfLd1(4M}SQ+Ux6 z2bYH0*T9h%kzoqkud6*9q?kkyrs)}xGJS3*=ZaroeB2swl7Y_G%{Zhkb(81Q`)Vle z%eLl(WV?`KEAons7fm#aPkB0E)kX*naN#D}n9qWdIUejQ0C7rRBA^@rJ4GGaYZ{&} zphv=6YHoEkVOAMq${ZUQMp}*|$GYu*Q+AlTW7R}!>(e=!va4ai3sv|PB6KXF8 zBZ9!z9ll1vL@>-_@Oa~2)f8Ku*Cagi88hZB%;bn6MQmn9{loEGoSeP*K>y=EHdZxD zLcQyJKNedCuu<`PJQg+=g9En%gs+09kDce!rJXXIfu1HWjt2JjiON4k?Q6gM4YJi!zg_)@A-6jF{v~>2N_knE$SlW~CY1 zC1ZU1%FE?9V1S(RU;nf`wvx)JL%_Fx*klfkqt6Luxvlm6no%YrxVy;)xq74J5aXTvq9o2te zIp?As@Y^=wym)-c2yl@mB;TwpdZw?GazC5{qUYW9GwXp~OT)&$N_GB+&o5}WtU!se zsXBfk#{R7xgC{d$DtS;}VH*Ptm8=xwHs&fQ39DcjVDudYv5orETT4+=5z?)1ONL`2 zv20td_YtsqKA+mEKtc--dQ`EBk-g~#OF z+O-@Li;jf%mV^J{C{H`>vY3qD*Lb?sd@bwyF1leG4#Dmm`hpJ@3`Kv{WqtptjyA_I zoMuw=9@nKsDU^PO;@AalxT9H#>+qUWyb~vdJZVw>I*$^_W-5g&wkkg*Yw5h4+F~yn znDRhw@W+ss%C3mBrJjQVm*mQL)lj1?Ue66Bq8~xyf#uN_Ln*91asV=y=%MxJsehUW zk;JmBJBI~g;oYU=S0r^7q$LZ?>b#6xT|VxSs0h27rdVn10*U8>gJd4GeIJ`wE_R)0 zWY-=+$8JGsu{tRq9D?}ND14deoW5!AANHU`qO4V(4D2MzYmt+AmbGz&S_}oPpFEXe zha%l^%e?A<7gKvajZMjAYJay%`Q78njk)_$vq07Y`gb}dn3?$e(e%XGpqPgOJg9VB zKm!UR~>^5-VL0O%;9ebd*N#W`#rf~LiABif$TzlbG+69~d!@shTiO#|>(H}_hGi6+Yf8;T7dz?yk;_e*y` zTuW{xo;q~(Vslds|Zc&g~|Ob-C_s1ybrMoyR^#$f+W)I zp%L}uB~AX?Nll>w*zjYLW#Eane{Cl0`Ua)ba=Wd+HrGENWk^gUJ1%HYrvZ~(uC`eqesch`RdQ7fMgw#G?mJrrgSOv?TZbEs>x97O~yBzL|CB zI&8O*Uay2{7bdcC^bWUMqK*Fg8uEB*gAiwA{toGknC-(}lE4;-Ez$Ck%-|4Ls~Gk} z#c1>YD!WROF3Sd%Au9p##5eYS*Y8&-MN*MdBQar0mB{Ws7i}7ECo-K;-%=FyF%}?o zc3#!+msK~NLm~CV_L1R}-LIAMr}`|()H@j2?oMooxT36oLfHe&o5i0pi1qkD@OJqW zJ)@(5fIjz%*{%VHCjvIXi2dZCb?M@HRWGZbk;5T@FC9N$+;I8+m|< zrn%K`CD^_kdi?FL^^>J^WoUM7pxkd=Y04fr#x-5c1BxHqYeA2(1RIS1dz~ZN+M%_M z!dwgCt6t^YOBVNz2md+gurK#OXRcA_Gmz|LZO<6V&@T?hP#vA7JXrVfYWHmbZp6pM z8l?6>329BSt*lb}HeLR5CunPq&72^1g^z3VS2V*P0!AHsX?ZxV?#Sztkyf=b;V%!V zw<7BvTPvZk8c74cj8{oV|(OtEPn7ox_8d zPN)T>`J={GC)Vq}^r$>I_7Hc8lOYOSE$Mw|M_P|bUYSIS78TtDeJ3jry>k)o<{yJY zuO*+3w^v4}9*w0AH*x#9CX_kD)w1y`(#-tE-<{)jX7Fp9Ss-Xx2lt#lWGdLzamI<> zc?moFsOt`sq@^Xx0}}r`CY9OFZHrE#nkVyXewKYU!KMc4>JgF}kX+~V%E z`2~G4wlk-?MTSn&5v@9FLi~Y73VA~m`p;YoZ_lEbkq70TE~m;x1WzHY<-U{)c>?A# z$G`|i#W;3tEZGFTsU;{q7g5sbo7P{6dz^(&9!~B!vLLDAi&%VGF55CigSp6JVB)l) zFU^%J$1EO=gnjkznV$xQraRH}6wIZQm&D*--qVgIiTw0e_>s=smIa-E9~+Ezpprb! zJx+Kpf(!ofD-_RQ_jA`fAE8EZS2@TgpS63)-z_Iq3;7$QpTyiU@$1pzZ;E>vMboce zOC}vW_@GJQY)P$Uvwl|%C}5c<(|p&R^|dQMiR`$n30haQ*o*0yZK5Q@DxzKAtd(1d z2IsC7TSJA4>K8S#Ty2jm4&d=(s0R(9Wj(|WX)E8KB}TVhW1dDDkz+M~&m;60&&~1> zsjVutUFk;(u(utUQF2{qN|(V@$5*y`Fdf}*CN0-INhIEsRavxtirVspEsk88mXhLj z@8BfgYuci1j*_vNO1i|e^4@kCP5oN{NbRO)3>KJq-O zGHOkw3R-}@47Ld&X`$Q^iozOS)Of12f8-cW->^GVK0D)nG0cYejlJ!EW_+PlaeT~J zs5qxiqND8c(N~OoV46F7xLBSMhJ0)mvmrD(U3$_1AaEv@bqda!g0t;=Bg$JxIsl+I z|6&IpLjAJ*$#{swLYXATnm37vU{8C+!2BLKVU8EKCn5Hr&LeQV*CW5klR!H4dHsBBO7j1^ZuOsOgTb}0oI^elAvxc7Wb)KH$9{|3YD zPy?B!3#?7(bQBI4`j6`$_&|2g@#B9bD%|x{KfRpZaxw7rQka|ROM`$&drm)kog`{T z4`ydoD6)Ycf+w;B^^oPKm?}Xr+ZBX+f)eAA#45gGYj+F};dG_XI5(h>Qin-<6IaAQ zi7y%cc2L5FN9K8fw#pPY<2GGlWP~Q#;tRMXFXO&{BIToo;4^Q-hO@cPQJp%M7b&T|=KACFd_- z_VW!bVHQhsN;pTvh77) ze`ZON-j;zxP>m9^JfXaVmrCf@>4!vs0icU-&<~>s_?)%q%mm1l$#r*}_-exaj-QYv zFtW?9A8Gj%$oOK!Bdm;NQr$84_%<{{YC|zsK!V7Y=^Lr?7q?Ley|A-G7=2O)^9j-v ztW0E|bG9h8thw56+*dCa`eWD4(8&_h(Jg}V&4~YZ<5PHb_})v{)>zFOkP6@TG?rP) z=OM_dzwTrXnXENOGA(s+$RiTH-cD!4=z2Gu9UJXfv{JtGts>Vr&Icl>4uJ zdde*67P!;$I;@xeS>=O~84?*b(IC!-!;{eYF#0vuk@IY3=|m$5!Xpr4o0BkmGuU4t7kMPK5kfGSwmYxN z-0JnY)$r~}ljksWvw&Gf#PaFq_lBP%;{vX~7r|j;;^6L*EN0Srdy;gCvl;4)ILxOeEjEVdJq2M;Ne)w8VIs zx0B}Lz$yc+p6~E9_Zh!BO zx}#7!n&M{#7&ZsK#4Wl=OdXiauH}gSdhsaTuP11|ec)kX;po5o38i{6TUv`_NI$CL z@qfNjB1g{l^5NqS3orbPq%ijPXhF)R>h^$Z7IDJcOUB)*abfi?DrW*w9`!aCk8T8|G4hP-$#_-GN+4sWU}}~vx2|osWHwsvqToc z@)#A$jpLjkZfGMJ3C}*`)^HU$%&H%T#r&N|mZ$nF6`v;~fm9jAZ1t5>hrdU*uXpSp zoSd_B4i1q|M3$Kz@p#jT=BW>y#O`D0oR^}UNAa&D@kk;sKKNyhR}55YYt2GqGJ(Mw z+jRb&*0Yt%#Q!A-vlqusev9*TY{H~+64}!8>VK1?lvYtvBD0)>K1m-wSjXT4B%dgt zs?r6%wLUD}WO>HbEO-BHniD@0Uo74Br7T!|7#&H>k^`?ll$F%eAtm1*DCyiYC|i>8 zwHK$M@J@Tdvq&by&)sy|+zSX6Q0X63*4iXVzDUuOjp_1)pQ2PFWBs%5?6a{hAn1u@ zs*eRPes5jf-0a$g4x3k6GA*+U2c}(TKjshsd&+jj5`BQvd)@3 z6&(i1e9NJk4?9OZmCZ4Sc~1Lc75JZEMs%x?Bnxce&CtS!!AIL?|F(^<63WbRMgpaZ zJ1XZv&EB9!hswLq?t`Kjx#b`bSM!}Ke<>yzU!e{e8aOqYEUlrI>Bg3W-@N&2t*Ttm zbDnmOZPZmCOKi0HW&fd#8QaB8g|?_QVlY6xA(%2GSa+UG2HC z;gnLQ$b7c0qZY{Nig?-q!+G^$_I_7@p7?i~=1N9>Z)^Cobq8i+dZoG5knAiSmq}sW z=U38y(eP_*ao+xF)^4K0KW|G9;v5IyD@qNW3_6`5wcM4S z1qU|2x%GhL{~3L64_g8P7C<$x;%}GNF!%i@{*xZ`pyMR14tHLdMPA<6T>Z5WLV8wy zqziNK2;WfY6>G#CJBRRPO=>|NJKgbOH_!feAEhpqfv70PdqH+1R_TJ|gUc}k$)b{t z2HNiEo0hW`-|bn;)<~P4Nk(%xhHo_$nK7H8T|;>jchdX+djTwtsX+Xq6RYFrFZ&AP zR}uq{R&{N0Ka0ZrtQpmAJQsYrB)s;kuyqQGKD~3JYxVuKNrWFOp%j`LBeewiQZ)Xie##T! z+IaOq9r3{lYI?1hw%b?iRq;7iEm>sXh^r!*qHHQG{w1yOdW+=j>*budQ$^a&<7a@o z;*FAR?Y}u|6LU;#ep9XG?q6-lzoYua#JM(?Z(Y$dCWaN3v|rM!(JP*SpawTED;cml z`iyQexx0*1gb{bbIbRb(|NnG#mR)TyOtgKF0!53vyBBwND+GrkE$&d<-6`&cU_pWx z3l2q!776Yi+}*j{Z}+`_V%DsgbM_8RyWJi0O~h90?8(JgR+BOexcV#i{Bdag2wOWJ z(X~yZa#_f0N*RmZhhFqwyY;$}EFjBk&g$ zU>}(bDx97+$wQ>Y&YF_W;D%tL*EC~FE+8W&g%8)CsSP~r&qP{XWCwQ*OInF&TW$|x zF!6o7mF+pjh?^o`4$#`0pLfEQoGk!jbu8dJ6FuxDMpSmzQQ5ufvm}Nzv$pgY)R5#E zc?`y5sf?=l-Q`CzHLj;6lPab{z-`NGo?8j{@ds!Hq6Vj?eQf47T?W`b-Z;6{$KuOx z?wleLfGc!9i_jUY1TRzH_jT-}qL}a@U_1{39C_<2@~tBe!v>J=zHk=&(~aFdSwv>) zED*d2d_pqC#5yyML6=!;R~b>sj~;65Dk)Rm4o@2s!eh)lrM8m03jUCT6AI1>yg3^F zqs4U`j9$ikOqh661}5#Hi#h0RaiD4>^0`_+FO}X4pD%-^JE*?a>aCH|msa?F@xdwX#e>(~xM2q8=|gW+>%gaBWH7Y)0G$}D0Ly0m$$P=Z zq@r@j<{=&}Eu@xNctkyv{P6sH4?;e5w=VcyWbkL&XnXvUp!TP1GrMn7j0uuZg<8hb zz!1Ottjr5y?1dfi7%|$lkAn?Xqt(O{|L>V2!l8A`% zsLLHbzNf+R!LY(6%P#t+Z6{bbvuLG|F$3HQ^i(=D`;5|YJ-YnWsVJ8CX+Ke=paasD zUFs$h%kdP&cgibs+CTqwO8aUEoy;>9;3!q(H(WROB7lAPda<>vs^xvMcV!wNf|W}@jmn#kgQZwNyMv z-U*zb@d4g4KAkiUMB51{WzZ4)NMpBukB3)AuH=28e=DXh9-u_^cHLp7nP*C<(?INX zcDr7v`C}vKqtbGJOdQq@e*95V55JwyoLpug zSK;F?fTUG8Gt2nVsB*Szk)4XhL^7L|Hn{(Yt1eesXtjA&M5Lx@XN&_&d`TBC_Cc(H zB2M;Hy2l{Vg22K*z`IgC;J;y&oD)|qyHD*mry9YMT?i6-2OVUxgM!mk7c4XPLkAR2 zQ1>7<@9!Y~qCN;GI3=jx6e`!yvjcIAqEi6Ks2HTVg}{fCV)9`ktA`~~mM|!mhc8`* zt@UXC0)IsH^*($S&<+^Z6gA(B8ad37IAHSDc=So(_)?5tGB2?su{|kQN0}a&X(Vyk z5G2O*k4Roucj2t2O|jUD!z~CGB6WO3^VkJ)Kxs8l|aF(0q<<0hQG1+Xh_zXfi(1ggy?Gqic8WnoQ*KQVw_erDkT z;fcd6)Nhl3q}#v!M_-f@FfgAwzUy!$A(>+(f5D*OH*%d|6tKxX=x`#_wCi7zowbbak>Ab!M+TjI$o|P&TcMU~E zR1w#rlJPrPE>fL+>u{bV>b9dZlhD0Ac81Bgu*&Fp&(f?^=FP2nv4l5O&Hy%5a9lp$ zZ|nM<9ldWIZ(4rfjv7_?w`f@}VNoGfp31*QdZ9wGrIIfAf;l`Fnk9d*~BFai#QOZmUmk)gf_MfI^$$<$ML+{9B z^~-~o^mD&!YBlKt+T1&doVBuFaEYm^33TgnqJI46Czdch(U1EF`K(Zdy-K{0-yP&s zXTEc9kZKA#JFEkfREtLAQ}+_+3Gzh>@Tmchh4qO%KFIA>#xIHeBuB-48SgVC`W0Lmf+U5Ne&Nb5CWnz;I zR7ei*Uy~94H^ip_%Lc-hzQGvf51r78Tjb@K>BJ72^nI2#rUDwFvq~w;o6T)Lek{n|%1jH?9#oLa9L1@}Vu)D>rVitQ|-Aq3R+DuTMS_}0r z1+=EB_O-NOgCgI?LhBn0()XecJaJGxFI@8653VYFFQnzn69tkqzmoJftsu$sj5^ zcP?7qFr;*o8UN#q>u#DCP)M5;nGh}@kH>~dMSK7;YU=*atb(Fay_(=x(8$Nm?1dQN z{G9jL+b~tM?y%-wo*ZnC@ennS2mIN2slne{Vua&u2q z@!d2j$x~2&yPQok;A=Yu)+2R*R;o9Lr6_mS{JMYOaRS>_7_+N2C2eL|K#k%U(g!Q7 zeT!ey81bnwIi}OGdL0LHHzo+NsyD`!#eIO=UZIiu%Bn3~%+2*`YEOI3!&j)hR%H zM`~&e$cuM>8%WUa&uCKP>|3f!*uY7y#o_gDCJgk?%1 z#t(mTOmn%pm;d4tBy>oVD5+Ru6nTL9G-L^CZU!gp)w&&gID$fX51xxyuucpx9=UWH zZT40&C}^&UEwV>&>t^<(D!z!!^;L&KYMNDiKaAU?F8pJyIYQj}9>RZRCdAtYHDo7# zh2Ja)j#({?A3Sqa2$a<)xCDi@8PU!peaZ1z=4(d-%;b}LVkY#|`i9mWhH>Pw=zD%P zc|mHPyJ$K~zIzFg6v~tz> zx$QJoI3^>Bsu(xq@u{4qO!%8r>n{oPk4Kf-~4AF5H--dkM zPk*cezb&-;OC_m$;nA?AW&CdZ;N8Y1XD&}J)tOJ%obM%~;??}F{!1^k^y@Z_(m}{v zX?vKNkev-erY*KJLv-B|`-*QjRJ+)B!Ap?v=0|>?bP-E8m-hOrS73+Q@76-tALlpnI~=j>iK)BI zJfUgnvRLc^BBv_i{RDGCHl>I8K>KTL7l&m#!Z4FxVdZk;sQcIY@zI4X3FCf3gR>04 zNszmT+;*h6s zcqq15)!eC=$*ydWQzttx|3IejFgQdpCsFUsLGpkMLl^h8Exc#RbWyd#8bNPR??P*q zde9Q+Ork{so8>!~jjcwKkOa+9UethB_jarVO=H{4f1sn08G+gTCGOrD0%;J)_EG7C-qi8p+K+q@Hvj7NxYp9?HlAM2GmEu*EFU-<|9 z!6lEi=*!b-Le-WK$lk>`6FGjWpxHQR05$mjWue`Av>%?bFQjjF5=ZTG&NRT&neEgvCsKi+wDk)B|{r(D-kiQ17IeqV}`$(YQsj^|b;pHTN-UbHD0HRbB7rrp$1J z*C{O;&)Y^Mx1o8t;UVi6CsWxxhxi>o8 zB@zx|P0bn5?6%W&g@%A(K8A-yZDp9gs2}yuM><2D6t`}j%aDBm?B~=o0z)UhbasxZ zq8O7#g)=0KLq7Ti6H8H~o_*3+#5Fmc0Se4Q+D35kDA1d2<>%#}zMO+tBLM#l)mxc8 z3cc5Mg|pR~bYTqgXil!=4)?y?krNqb+%7EHcqK8JA#c8W<(l|nodpA70F2$5UnKxb zh3kfqo*miyZ60!u`#0IJRwd>~W6m1%cV_OXfYyvd>ZIs8H#(=Os`1Q$QrFaNl$r6MJQp&T>GlN#q} znwY^wS2hmVt;pLPbd+4|#ZZtiyK}g&TF7-?am-sR22kuuPk`;3 z<&_dZ|6kr0KwnxjXYY59EV*zY!h|sX#`fm<|D7JLJymrQ?tzqPiO@6KhhNC7oTHVs zwuyi2qxD3bp@`o*>3WtezeIzMaR`QDB`-k>YX~8dhdT$(UrASzAR2cM4vqrcx39%1 z;v~@y;ve6lw)%$FD~u`U$s>z02R5}}DNJaqmxT{os4T*mk$EhOkt_|r61g~UG~7Nj zc*I(UG3%0D2Z%}l+Dnb+|7FE3Wwu5-$Ez32y||huq?6g@)f4#RXUpk0wtgH`#2gV@ z`)nJnQLx}=VPN&Z=9>38{<<4qp-so&>9rKTf9Y_Ui+zN~d;EBQBb-u{>2Lf<1MpkW zj_(BZG_^NDRn80_*S7_Axr9R(y2q`L0rey)`*HknbG6Li7{NQE_p+!_kK>aeNYZLGVm z1L&6IU}^>hL@<09lUyt}`ot{rl#4pn<@ARa@$|)Mvw9@~N+@A?#|c?ecdjv< zS{rYN6@kY`qb|a@&F0-Mm@DO#;=I<+l3{{RXk1@Wd5!QbS|CZ`k!5j8=7c3uD>8S* zEY$z?4^fus3O7Nk{KY4I*U-j(h2?i_3lu8(tqK_>V#n)g7VY$j00yzgsR6PW(l;A} z9eOzc+~fAyZec_nm3*~Cd>+tYRj_a+5!T4lSdN6r>(Bbc@;Ogai6RRwBdX8QvsiNL}IM@-sz+a4Q@0x zc@AY3Vi4qCGkd{qrOQkfGtD3H-0khmEp=I>e*V5R=&T4G0CxT(QSbzL6wz>~+Mrg8 zlbedvuoSfNd0G!8z9WG%DFm(BLrZ5?%WpC}q3&+U-DY)&@$kO!#cuXqsbzLr;u0+o zo)wq2w39V&^6mjQ`*{4rHf4P|H4gT^$2woZl*7+)>$isZ!uYQ}cm5yog~eoC>s1b= z4(~Mgsx#%6!TpMnf0P>2fxm9_6XjT&4FMLpT+t0OK$;+4sbaCGfYb+iUN;m2WIpwR z3*V`D?IYEhXb`7x5GyC;@Q4=o*3@Y9urMUXJu3L~@bmB?Yp2VdCf>>m7t*-dz>^Q^ z>z}`mFmG3CR1^BPb6yi2AFyrNn`8A$L^Dnxbq-5*@|wugT1+n0;5!->TXl zM0#uFR`?57;st+JU&fA5XOHOwIYlvQYE6B~?2sfFYO*01vAWz@?@wIRb?dDve`F{CCRD__!g{&MV+oe`o z#qIx4G2g8|9QBe`&(!6F*(!=H+!n44KAgP|yG^v-=$lP38tJ=!gqV#I#oF5*o3mY1 zea8lgYa|&%Ukg|F>!V#Z1QHa^Ah)#R@N)Y?`~D3Z#UI-~!j>NI;Gt@>Y`Q%4tHUH8Z6v#M0teuu#V0Fwk+eDkUFPk#+?J|TVUp|83=1Lv39z5N3 z9Z*rxeBUod^KA6$-O^>F9&l3SQtpVdXT`15QMY|oY}1rvQcI_PA+oQXTwrFc4}OV|aV!*4XAvyN&dUTv3nAoP6-1k~k%3H1&uWtz zh9`PoKrxT=t>LvDwl?1?mN^RyL0fb4B1Mhm4isk1hkPGKo>24% zxDjib@O`ytW)IjBze|d2n(TOV@E&s`R?Kn15Urp5nn#^rY!76|_TBV;64PUq6EvdO zE?b&g`QPy|j#L>X?_3^|JJNnsjduJwAm?Sb86+;6UMWvB#`4Ma%?{&lLR2*0YZFhW zFPzeQ3=r@YF-h4k9D3qPHZ_E6-F`Ti5K#q>*YYkxI*7!ff{w@qyKf9 zGoHMo>!bV0y!*_fs`vO&Y?1uf!)OL24;XLUl`Vz7@Y)#Us>w`v`Qxa6>cPaq=XYWj z4<-L70>>Oe}W~!PSNsHhp7Z}Fx?||pS(6S&k67MokG$!RYt3+DC zezVWJl=DsbZ+y*#+t&%QV;Q|{?5khF6m1x05KEjXX!9x_+y&i#>7)2u zaO5gXZ8lG%Ey^U>mXxaOm&BiH&s4g;7DooB9v=llgGYN})1E}gHmDo7FH*}^Z7ywA zIVEr-AN}P1m_8j2FcP3_|otipsK{imMZp)S;jclp+AM(tUth^(w za_U1rpWNB7FKqsO97Z0Cdsm3;oE0`T;dLt~7Em*uW@hxD{?eg0vq=b$Mp$1sBle@1 z0XELOHR2#kKlYb=>TU=7tmCy?>+w}EZ;z_9j%skdoVyzkOV zY&BkS^xc{|XSo-G!e3wenl%(C35IC>Fq*2L3W^_)5bMM`+0QXxUH_w5q!!tw`5|XeycRl%oue=Utlj%{{9^t?n=LjMIYL}R%X1vy<2Pu$vxZA(6D)yRPgd=Kst@44y4ClyLtp{-GTuwD6e+*ST9pT~ z*@d#})z(`SI1S$A#;{8O7#B#mT_Z`Gx?)u0>zy@NZ+OQmB(TF-XD7xFDP%BosHzKk z)U-QD*W@Zw-(`HG6yvE=Of9C615F)-dRMYf_$1MB*`w$Np^N?_!OVFotGsFccwfsq4mFs<67C$ccgw$=)afY z(_e6H`e+V(Uu7m+?{9fW*Ld9lD4seFtr6qUnIfGr9rrbTqHmqVapQv@ikZvI_jj<~ zSo(27#w*i=F3U~!i6FOM-&zoW*MoVFoeP5Ft-n{;=eG90l@6PJ`z_-)_~All(KU(L ztAll{P^z+U6v(O9IB5gE^o(dh?PazHn8GP*uk0^1vJ2rxFk6-?d4>#$Hibo4t$X%& zGWihs%cH<4ExR?}zlExl#Gijtp%-NoSw}l@MoOk*a>}dwX?68V>SY2h`mR|Ld_9MF z^WBtY74uAbyF6q9AO9Atbz<+ZE+cJ>JgoN`_TM4S-L&WKIp{XchZ2-2QPC~J;ZXS+ zb7+5vB@Oci`1tT0*`~0Jh=V7{9h{`Ir!4KEt5+{|$1PNLC_B@AWyGGAkOm5A~pO%`6Q28@Nl6rJlq)rZ7~27}IPxIU4PWd&S4 zq64WF65r^PBeGu-Q7mm|?GZ?pAC^=sH*F@r3!ij=8+t6&6Oa)AU?tYhhnJYo73#9t zwPTfquA0${KO#wBr_G#buXG^)c6>heJC(FzkAx^qSt@bY@L5^l#WOTkV^1G0|%MLs@+Hza_ZVb3bL1MTaD-vL6$ud7;>67f16Q!3ry1V<9Cgl9T;| zEN^;)pMd6-*YX>rI5aay+ErhZ>9$BZ<4iHj{Ze;T9#xX(>T+yhX7Jpry9Vq1LGt5k z1wVX1%}jz~J5HU96n`xVrL#Qui=O{GGl)gR&`$XHFT&|H{;*C&0VsA?pquP$Jlsp@ zv1}qwXnZDf(%K)12Ky>GNu3ER-!I&q6$#l87zC6s4~^sCM91zE`db%0Xm}oE)D)f3 zpc3;&)+k!i+AsaqG+VNSZXn^rmK|;eI8&`QRIT#x!o8FjUBW}ytqm-4+!B$4rjO%RnIa+eY?Ll0@q2Hr&rWtk%6 z^0I?NRpqxs2<{GNO(PD`lE{=-$)<+MHuLtz=+`HRJ~_S%Qyr9sDvYVBi&xP8CfM)7 zt&g8L;yPBI@6lPF8_w(F{99{Lil(tZ$&Hd-glqD`xPJq%J^VY4H;N>c?6vZu=cgon#S@I!rCd2va^Ucmuw{5li&1z3c!;o9c#Wx&H zzYG=%F?XrZ)6o4QB#9!Delp${hfkun5s=%fPaR!13AK+Ce*jc2&LrvVY_YLTRpVNc zPjJ-cGn!~^@j5+E%Vy9ehx+wd zn~{U8?+Z++7=h~J<9WV6+gcw>qOa_!(mqo9&u0c#)N0m7GS30Z|CRB$28gh5c#s4J zy^>iDI;ij;U=@JFd7O^}I4-Tl1I*E%LUOqn1Tx1EhU{?Nh(H?hZKa2K$pjw7fu&y9 zo4;iJV?x5UJ1~n7)+Ts=<6u8lK0gi?yWg+Z`*lP8jOEXE^&ziIhsYj@_8AayI` z?_Rxz7n&MYLi~k&W$Q6xEXW6f`|T?F?NEmZ4<$z9@}!n4Zk}bJlvGNieuBe+GNgWe zQob+ERJW&={2msPDj*%5l`IjG)Mvt_V+hFUtuigI&x5L8Sc1dttISPm(;oUie=y1B zkXG8LRK$Tj2aLRg=_$jjjMW2K`9YuaJikWn$6sfW#~%bcO_X{Lt3-N>$W zB$r0+E{czGaG-~}%4knzW75)&u#LS(&V2?D>7^=c^)5e%n>IdbYyJ(2)oqq*5}7^7SKpFU-1yX7pC{u8JcC^)-+^cKi7%#35T&j` zH(f)-GcGHbcUfhU>9McseVvC)jK}SP5_G5~bx0g&){%hU{!de~E=2X}#F5?&2UNqp z_rPN>Ia$OeaOG@QaCcDZ+LiI6ON{V$lBZwTA!TKzT$DD_N7R@M2UVRm(>21~cfRaP zf%Lh276J&&{5pm&Kj0K!{N0^je5EKb_b>Rm|8wQxE9s@jcmI6%yZfKMLKNZMvMis9 zJBokn&LUOfE!WW&q%+pWbZWgpNcGc+#~pG2YSv_+tUsGKCG8Sr5H|lRB>FZgYW3dL zOp*hY>64fzzJ-pev)2;Fl*xyZ(^xGVKFF1E>RK#Arm273yh(@)T`Gg=i`a;Hvqj!p zTLQd1pN=?-TrqvwWAps%+eA*!eDr*f!p5i5 zP%W#?YUcc&=QYbO1$wOj+!iQ~+4liX<>A+;%BSr?iWmAwFWDt*9s3*qk%gBE(=(v8fL#{kwpE04>DFrtS zG-L@7xonHTnpx$RAAgpTQ5gVOV9Kdi1~p0!@YnxVy+uzci$7{_38Ef9E{qME6_RBU ziCBaOOAiQQ;u?e$bwzMWWD$O%Q^%)V0>MILUUl+ASE0xJE2}|~HPn#p$(&h=V$5xIY1rM$=J=-=U!_fK zTgrT*poB`Oi+8tz&my6=*3uEzXusCiU!R0X_wtSE zqmyR*R(k!!|70$gA2U-@QltyIePNvGnPR5hfDkeMOj9FQz83kW>Xoc{#CP^)0DONr ziIBZJ9T2iBYYJr~pwwP8OdR|OJF?&Zx-rs9?s^cf)E2{SQM--g_Q+5%IMT=s#Db(o zRXhTm{=3;WCpkVVlDxOrkvBwF;DZ?5Qrw5d!m-?rVB2e-^G>-QzQ`Ix$m0g|%lqV4 zV59q+hnlt3qd^vdLqOsF;(8c&efqK9_>hQ0BeQ39KDu9WQb`CY$!&DXncl039|_#g zTb|y!_;XP?(E4-}DyeN>SUW;(Pn~D;GGxsB{~H^E=RSn?4JdRo9FN3=ZZdbhZQ7VY z3>0=(T+8x0Jx7aLu?JK_;rJ8>srIGP=z9@)?H`^#2{bD_0?T@*hqJ z;kS5sfzVTZCBj3S#9PG7y~lpHeNnmdx2_vr;faRRnPrQp1fjR*0z5bO;uw8mQJ8$x zv>&jYIc&eh=3607M`*$_Or|?B4*Emq59CYUM{?v6&l`!KGEW{Her24_tt zFZJzKc~d1{#rr*xAGvp; zsI!>A$Jl35<_`bG&QH*N3=umx+g%3HbD3p91jj z_`}8Z#2Gqnx=qy@$Go*;%;UeEBi#H*4TU@F#W^pGaH3kmol+_2nM)O`(4R3aUytTeSEH=>hzvIV*XfjoiRHYd`j#8VVG#Lsx=DL+Hx< z**rC^y?V}3Hc>I=I*?;UGxpvYoq)BTIr=f}$oyc*ZM>r(`W#;( za+>(9PHFZ`MxL!vq|9A?{x$T~#MrloRGw;2Xxf1`GK>vdwMpQGeaOFLoH6hO+4hT` zZ`)ra*}=GnPIwtAd98^uy2`?fsJ}8SkT7tq<8Fx`PpqLl8fY1?1>O~Jy&ruRtuS+r zux%ojYLyAATI(PlF=Fn=;Y0y3$>0Alk7hviiVv**sV%>z3zuCi&TPTBK2GUF(A2|4 z+ik8@u4sT$U6zs|)$z<^#l3@lbNTy$;t?;LJi$uuTrnKWd4$sEL9-<#JD|eK;yb(PoO_SRu8^A^!3 zNe?p0t-uaa>lAfe;>W7iOT2TuUE8pAX&iqY`NA8U5a9DQH?i$XbRuufR+g`h4c1dC zsO>um`#f<6l0J->0QMmy=o-bOHC@{{fZ#5H0`! literal 0 HcmV?d00001 diff --git a/data/Male_parity_mortality_list_UK.rda b/data/Male_parity_mortality_list_UK.rda new file mode 100644 index 0000000000000000000000000000000000000000..86e1a5531f91c8b73ffdab4426bcb14e4f7e8537 GIT binary patch literal 45457 zcmbTdWmH@LgY}EMlv1F04Jhtzp%iF~yF*)w1uyQTSSi*P_u#=bI0Px>hg)zhP9Ovi z7IHgt=XvhTb7$^d>wn&zw`ZMw_IK~kKJ2k1IRAbT9b){&3`4QlL?=MfGcjJ}$tU{H z%GfwGiyrHOi3xRsi_#avg9qdP;K zFkN|yAvG6)omS&cRlDA>F-O$ys{LBcl9}tR|Ez*6rLSOCZQz%$U;lahqpnabHjbtr z%l)ivIB0W75$jXgJsj5#P?zD)N7Wc zdnfB3gHk2y-+w)gwBe!pgKO*l&qjKbjZ6Zg)G@(pyFcmiHVMZg9wYt2)X{QOge>2r zlHErJ>Tse(sOVV8J@|U-9uGWZDVIv!(CN!hP{xnuq~d28c6Zn`Nl+$^7D%AOwvs%1 z#_O@SX%cB8o**uTGhoJY;Qn~sB(d+o01*qbhjVWo;{ZL2s#KhZbN`1gHp~e~DW7$r z{yN%dMk-I1c6XEY+Fy0d(R5T!ED}=A9`k=5SlxC?9eN!0)v-t8C*T*+PLb|Mc)gN& zn)6-jzAWcX5&Ogwiy{}eU$bTXrTY!F8O`pEuZ9i9)Lmld9pnByox`rWoQI;GT`Ed2 zMrXAkJ>~bV*E&hDE?cnQ*t4rHtl{OJJRtt)kot=f7&gk2I~G9fH41ftW#cWfUzCU4yKv-j!>ININ>PQ4 zxp*s8Zq?^v^lKmMgNahSSptrsiYDZ=PUnEsIx z&rnX#XryH|WgyJ;)+<1Ybv(SR-lo=paUxFi8wSb%a;@G+xL_mmtlJ@K&fF7}Lcx1# z^b=6QQ#QUjyqmQ0gUe|@`L4CBRrH0x#Ej_K!xTzT_1%r|vkQ@lZM7;{txCeSPtQWz zX>zsi`}7?frouvCABG5yaKYBZf)W!s#9qIDCIO!fgS5D7(yu2U?*+P^7R(_*U8372 z(eaWKG%>0}oIn6EuVM$vi*&Esz@uMu6mSb+*JvrEZag^q(rWqxu#`8k@;!uPk9Bx8 z{lprVGH4z~Qqz2c2||ab0>&Gbylz}YCTQVKkLVML%Qth-q&q?2kPHn>ZY>dHd9gH8 z!U!NQ=Nx34$)&TahIp~Fi({Kqe->enqhr?oPRjoP#H2{(qaG6uJ~@dk=q!HnhRMYq zdO}Zf>1j_j%LoG852IUbFx_r`taVymrm9ei-ysrHnlnrZKm||PWL5Rb{V-d?@ z$_6!D)H?g9Q3?NXNi?eE$u(I^BD-lTbcOI}=$B0HkluRoa-HwzA)*A87vU%F&uh*5 zvM=jlc(-4#A{Hbl-g_U7)%u*_rMi9d9$^%AU}j{(h;DE;S_-|*xqtsuh&bUN%Y;Qr zjk)%c&nH6@i|3fThAmeI@w_XbasaN-x4F}h&IFv_CB2O~QyCL_A{KHDr!N~H^Sc4N z+8$&MTM)CkID&Sns6QpdtUSwpphdzJLEB6EC&K-e)YJcbdy4+E6}n79>$|+W?hW4z zT@j?cX2qmE#+(|4`@Y_~Gj--}!Xxz3d@&6nHp~g(9&gU+6H;Pq7|@ zhKGs&U^}N|ZkuedBC=u+(U8bOM3`#|q%-I(xhAJ!uB0@HrenkAEc2B@zecbK^BSr# zZ=v8}+>Y(z)M7dEc;_Du$9Ip!L}F+Ilh1`@Wf~tT;H`Mda$;v6bj{`pZFKh|hqV!9 z_uUw361jHr$%!bmoIjey;U;savtdyRySKwwxvczHQHZd~a4qTahBrT!;(iC5e zZ+n=U@o9RyY9jOz)0{N6b9+fR&%4X?mZD+Mc9C36TB3^8otI6tTDcxUv(wc0>n-Dz zzbcjBQdrbrK!JsO8;SmFZxDh>Oe`-}M3OT&KMGNy*^K|7b5CGo_WL>QN&w0zmMuzS6q9pbk_6M4y8j~v0Elx)xN zBA{4fiC~R=VQZ&#g9R^3B069)@6RF~Kyit?)$0S^MB?4HOXnoyh!YsGRVe*CxjOiH z%&rIjYx@~yxkPde?!h}Iuy*AiXsS96lFjnGoQd-I{q72{HyZ$z3fu{PZL{RHU4brk z0UUhWO0@?fR_C3SuW7vf|(Edw$AXUd0g%ZTiq^%yFDB zb{eofPOy5IfkqKi;WYcHUO>Uz-B3uJh+iw2RQxIzYvN?LM{a|ni8#$X(m!k3gueUI z)9Ci66s}1pW87=3-g|%kp+7YvQB9W-kZpYKi5(e?1K`r-{pVMbq36`NCH|nMvn1b% z8`p2%43@-IJhS#=4iq?>W>dFID2Nx}hSZgEw0W8ha;Zp2Z z^NRm!a~U~zk;A25qMn9!HWY%YWsYw)BD}z%_W`9Gy3}5MO&vsKq>$&={XHUW5Jlc0 z?-E%sn?G-md5p}f=v%@L>FAsDtKkj9KLFokzRHl;w&_6<3X`+P;=HyEHN1#-(Wvz8 z8a($~O1IF&6JoO`$gHkWa%j1KhEp6fP}kXbJbx6Th_6%@tDE&Wwc+wJvrb@c>0nWT zg!r4@f#)s3D_42sT3{{sHNog;MgJ$nNcwvsFN{`6vLmD2Q9P;efk$A>aWTG>TW}s~ zHyUDdL2+wCZ<$V)RjhL235OYt2PN$4)=WxnNHgv&$_|lF>B>6&8f_w*Iz9^|2;f(> zytB&lS@P$dn5m+xkVE5P4At*3p74Tk+*~5qIG&}Il}RHX-rkg{Xp`S6aoazErwTRt zfKYb?meHGNkA-*V()jAyn#q`c27LLca?Diz5t$d_Ok^!C(+Tc2U;K5k zG?Zg%BT0B7mMq#=5}c}q^_<8QAT)FC=W5s81R+jMx_lAzUT$zv&3scU5(5(VBM*BCeA zo=&o?%4wM=wTUGi#nfQ{GnLR~&_K6f5RKP?isW(doUtICHU3?{_4XR7i=?Cc?T&nY zK=;{o(+hLGhkl+Ls(EB?_(#M8)(1svcyqe)!OmNh>&NOfjMhuIENRv`FlrY9iL{1; zrXHU6?1(@pn|EG6qh#z7^nr=1G}Xt0#{8;VEyIpt;>H{~+m>E&*2UlRwjt77ICjUG zgwbyNAfvG}QPj3>J4Gz*epXZW*BbusX?xMBxS6e+L5~_u;^@d(;88p5DM_!g;ot>M zZr|uM8Zq(QJu|h{@UkJ_cKuYaRZQEx$m^Uv3vT-vA!?}8P|{B^c;RJ5rX-rR2g&tG zW(cfsEU*tui^%^SW0xq+P3^U00hv=CbzqW8s{O?vz8BaPZb6qj;Hhi-)?2QoHa>f@ z2M`JzWOiz%-+SlSFKTqF6F!^Ax)6Dzj~tZx5J24wgLRD;;Xnsm1mW*8G#W_;n!9|7FnzZLYTI{ZCnll5Od3GHdU+>Be*+Pvl%-x9iZ9 zB92#e&ns^bDI#r1X4K3HY^_;ubvem+F6V8lC)6w#VIv}{i|0Jc) z3Y^P7`(W9W%D_vjYNI&@aJ|g!U-U~Eb8{Z_b6XXh8uyEhQj6f7hWy^a(uW6P3xRy7 zdCD)hQ{-G!I#1>cUoy@!l7C@j3SL>R>c*0dMrRR<#4@ep_>Q&#eW2I0}EY4()^> ze>4)UdOKEWhakJnks;R#n|SUEd6`<7BY4%Y72OK(LO0z-d;Q02vUQ8tAhGxlRM`vT zWbJ(`Ak4bHy0`^y(`Ea3pwkd2r6weFF6zPi49+XYVrC`tBzP0FVL&Ns$+UQz;T!0B z^T_~bKYn_}RxdR}maX(t)mXD##zs_nt+fgN0v`fPb0w8MB-fAXeRUhzX`X z!8iY@n%RMJ)Ybnvlae~PEO@j}#W?zZI@?{D{~I4kp+?bJHh5vbF~M`= z>C{_xL3XvxucOSsc9sHHh0q7$j)P{qZuk(*ZMUwQlzbzX4?I#Vud06TpU6CoUU*>@ zgyEgAEEBaaCcs@mcFv2t(b=sH7JT)+LftXS5?VoQccyj3w>OpK5~D7JUDu>qf=hmm{I+iiJuT4}P>@13e9y5d z+4NWqGU`f+9N^ECfke)gwM}iD4YOPy2kgByd)5E{&2w5JdMT+j9B_J@H+0kEWrfXs6E+*>Y# zn_e^x*pMuW)+&L>%&Z@4+d_{pJ~eSG#eoZMPi$8V>%!PHP(L$3H_&xgBJ>lTIpf)y zrYb^&gUbm$hZ$=JKo}j=SeovuAy)< zBY*Cj}ZiYZfSUVVAroS92aAW_i}6qji_sxacu5=3h;D znZ0>g_i{TMQl9HHw;4qb1s0@wk1>i5ThQ(@9{-%AQbyhkX7W7;AkCV$T>jw$FL8D$ zN*Ki7pjR{&D6yRq`Bf!@Bp1K?6`f08B2srRqrBirJZKJK!gd{Bi~iBjNB9`z0~<1J z>SoU%W0{|L=ZU;3b@?`+`{E{1-XJ2x)Na(cq=9Z;0;}DcMXZ@P)ECYV&;0F3-#nn* zH%E=?JboSQY_f3Q8lr%hEuFE*XPZS)GTu^*H;)x`jwmqi>ITl!CS;!JJLmNh!z6Pe>L~Yq0viGe{j3PrzTs)V#Lc-?9@labnQ)^z zh(s!Pj#zXC7Oshar(bkN_nn+^2tN~LzsHdg;GO0`(@gw;@s3iU@L4~{ZWdVLoim0{ z?(Up{E_X({_<0G>e>g3UtLVZmn-p@38SonS$NX}NxB$#sR+35O1ZL*Q-bsBJ$jW^{ zGJ==9F?ryc{0AQRrsh&gdlPTw?w^G{J7%D<(&!W;1-!bXO8+C1ZhNKpDQimD=Rj!0 z%ni-UO-G(2mgO+L6Fs=Y4_x4gajT`DJVD;MZwRa(PigP^73jxHk|yK5_~H2355k)59FV!(=3(Y? z!!TrLrvG;< z@V|AE1f%BqbbW3e;*|0qP20cgWKgjo3HJHgtG|VOb8SrtNy^OU{#y|(tuN2gL7^M% z>aI#GhNr2y7AUzzFo6_an_GRYc`ZLX^EnZJ=ee=IBfP5GrCOEU_v5{fxEzKC%Ddw^8C7Pt0Q#k<7z8ybXUB-IM9K_lPhxIq;Ew$?r5}o zJ6)oW&kHd9zM;oXp#tXJyy2-4#OZ~5~6Zp2-QkcEVSz+sa5=T1FzLS z`pqV%)mJ3R!Rd6oW^GEjFZo{P+>wv!!M&>ba#L6e#B$&_b<|q-H8p#vAGP;cyYg9e z<*1*64`-qJL(u)hVK$vx{PWU8&f6k1KBn%#)WZ#TLgjQCjxY!t6TM6v>7+O}w`|BD zj0TOh(aItTY4^@``Sw2rg4v}V->J^w=9q-MdiGcmRmG1^ifs#{a(d&me95v$o-0@y zjK;b7)w1jo*cj%Mi17n0;5PO(C0I^!fh5#}%pF0C?Oj~+CiE9tOaBzq4&m)xd%Sb% z+XSVKB)Qa7-~rz^jZcze0Ky$1dWf?yo*EPXtz9B;y@Bi5SPKqau=~lY8UVP1mq&Zl zf)HL!w`#q*aXI{OI~fhb0V00g(QdFkagg!%avl+RAeZbfbFpaqfF)RCm{|M^z&E_j zto!qNBAnfFn-%YF*D#J*pA#n(8?S7n6tu3MF@5%$CoGNkUX{4VOyj zk`H%*OKJs^WraFHJNNrjonZmbj`Ku4a1oDIpk4V7bh4H$M5qK*;%^QSFQRJNeOJr< zc)wg%y&gEjpO9~F-=xp$uhf6&VnywRDtH;rzJGg^65>lw-sIAEfW}044&}WA!;b9JtaOOmdjH9gefnrmPjl=_ z2p2Ioq8$6F880Wx?crwlb*3l~Tt&RMo7CXUuM^AW#2#YaNVxan!2c|D(|_6D>BE@= z>%<)TO~B9r9;=uhQ;xR#vo z?RaS0<2enmHe|FDnCQ97@z~?s{0K4U4?l@^R9Y z2EIeZPm1JA3MtlvE|rsdtwoS)1>^}!K2ncj?U55b68FTjE2^5a6Itgm0Mp;fVb&9<8}Lru-Q%wA-tD>R+aY*Y*>|%XWYhcg}U%?-zA*^J}6J) zC79}6G1BUmY`XBNuML46bgQ?@^$ImSXSo#9)*E}ew-kTVciVD&7Zsd-6s=u*CRD0; z*-;R&1S_rS^MFx|pLKs$~6{$eq|v)%37j~Rfai{mcKL2w08Xgh2w%=Juq&G0j= z!_MLJC|b$a`BN6zTh)_U}gVm z<)U#7X!Ws;yxRWzLAqW#QE4Iw z0k!z0|3Jk?i0WD1t8j2#_cJ39BA*#uXs*)m3S%7R+CS3XQ`Toj7|nA z0y8!%e)@N-XW6{;w;?*Nd`*{)#om)N=(#jQ@KwGQ%QaesDKlNE;` zNVuD!o9kx^%K=Y0*SgWxZeOa`y$T0;A0+goNYZs@-mmB`QAxgY+oNL;- z=8HG|0o`>HZ=Zj$IkvTMxI0naWmwx7jvM!n=J0zRrpHMaMWyewqf*sl$2%6$WM-=4 zu4_rI)T3M+mkF4^Drr+wD9$XR{U71WE2-;S_gAUf*zIPcxBm;7{2S1`6P3N@P1CmY zDe}$jR$TLsZ|`>&%)fkzR;iRtVA`U8UK4jSl~J4~F-hR<*rHlvNiF`)W#knPooJ6A z%9sXTQAVRH=<^}B2J4WhDGps?O#t1KJ zD7TyDuP-^&-@!vPy^wbZsd2@<# z1&O~<@~%=<^WcI^PA3ca1lQ9v^joThsjmi*jjimj!xXbn7I#JDe*RoX%dkGY)qK(v z`!7ymlH0TM@?CV@@ph~AVid$jl_jH!ztlmVr6qF(&SLI6A?i15Z4bRGrj~o*`17Zg zW&Fe%pp@fd_tBzf?+4k3ZcjgQG;;7|TudI3HjZuv20hTn+gYef8BVkU&6Wu6y4H+? zjJ{5@isw+rwe(r2-Lp6_&c^ePi$~GtktF_hP;(PY}?mV~#qeYfz3 z*Hn*|st%%lZQ8Xlj#Ts{uLZj1;^&U1uo8OeCdqJp)mAJE4=_66@ElMX`6^p-2D3Tx zd2}w=ojgr({{r6c#%b&t-|JN$*uL@rTD6wK#2mr+IpF9(Pos4Lsm7r*T+Jre_>w`K z&&AqpAn0%M2o&h*Mf%|}FW|u0awE1envkq)V|2WePL0Xaie52Q9oS(xj3{4AM9jjL znI3;dP8I%+dAAH(j8cR>+_PS!)Z((kvkXSYT{FP*$M3F*coIPZO9qu8<;;7%Yo+|F zUHCV_F?LFSG{M$uAArH1)i5&jIma&K6OPQyTGhq`H}|)uHw?#eHi+LZLz$?(9N0t4 zD_>6R+Ezp(Rq>If7pcMQ;{)3h1FhzHI4%uGbJ;e2!EyGV?Nqvm18mi>afhP-K>=39 zD%^3WfKihJZM85qQQM@CjTAb`e{7HLn*o?p-fj1fJveVpF0ZtP@nb<<+BO<#8`ht=IUW!9V8O+?qjiiuq@$0er`~&c3LQY@7~c z(sIB3AZ}U~i`_Yp!(EU`jubjiX%Ts&ZQYiDzgtxUxV-URKNLIB{9}ff_106oS`)8n z%{!}d+rK+?;=aiGAXetmW;9w9*!|P8^7q>L!$pAvg+Q5I8KFR6m%1YxZprkS3YyJ1 zVm9w-sh1ruprSv`v=fz!vuVDt!bL0+_Q9(0cs+t)LNDdk%jZVjVd2{D+Bnwvza#el zE1QS1YyES&54)S?`QIy;zu7z~)Q&53`_wVzcf7QHX<^gW;D8f%;ZddaMk6g&1I06; zi#}J=T&!(EM?C}@|2VlF(T3=@X$;g|r0?2W-FwqFOuazHkO612MXkqDZDe43O>$BG zo0eO_`MLed$p~tAwOXsLpwYTq#(`_KD(iuNns0;qgNq6?U`rRfzVv188jD=@S^>X^ z)3Mx;NLlG+y64=gQ17N!)K@iu*OdE>%uh*9-=H|HYfTD8!c3JxV0|{l1WaMnXDy#soc4wChy+fn)j-F zLliIpLlqryaX)zU_Kq#x8;`)43^MDh0x{>3%42<@B&1#;ZoW)(rJ4Qvwv0NAeR8_- zHkI{wj?Im6o{3B@gyHP+jll6oxrK`9B~WvI($XH7WVyTp(L5j*<}@?wD^<=SrAfQ1 zF`hxqqUQb5L4ne_DcWjGena4D;)XOwx7cp3h&&r!RfgarC*CHd3JpL^;kOq;9dQ;*_~l@g?@M}{?i6O( zea1`?uyDKIUB}7Gq!S%#Nuntt(IwV}bGhkBfd6lrPHL)vNn11fKW8XgH5LlnG0fK^ ztuX<#H@R8>{{8YU@6Xplz{$$Z%^|x2&IPx`Mm5X5z*>|1Kw_Z5=JpJ8n@&Y)hm+zN z{dDQUsyQ44`qEF2Spu;oH|Es_5pf=mtMXoL(~d z)A`p}jrCj#T4dNzd$>Q^e?qM3gynfThO`q4F5V~ev_V2$A0FT;c{p; zGAe(Pwv+Dz5vfn0Yw#z zOiTU>gLs0Yj5qbc3&dP`ls3Jem8MAZmVf|Jn@?6qbusS5S~!B0zQ8B=`oWV$6t34b z_^xm20XUXnY0HQRH-}eV?gBrg%ec>jICoqH`B7;W(+4OukVuRj!MkzoWxe4C>L*9; z{xHplSSB^q2CIOm{z+0irc6B8o}R9Z%sX4}%x#K)4#@JT_(Z+#&*Y#WE*HoO9hUqh z+CvXL=+xhkh3}t~*|SHd;?FpWmYxO5=s;<$5Tl*A1|dz3VTFP^iPR@#dGom5wmYm@ z-(mpLO)!tQp+xYujZ9jaRKRG=0kyOO!51qOW3w;UmnSu8%sx-a2$cBTcDBWz%-`6= z-KR)ActaN%Y28kChcaz2l}yD~+-o$4Pk637Ma4^l_lY|euN*W7#Jk(SSIc}3p>sS)P~*$QrRZ$~gV>o+wD@_7_j2(NWvRTs&|Bm|L26j*$^s zWtOAF!tvu&uHTiCRpoEze#Q`Pb4@(6FFE2i!XK5yADeIZ{i?wLIMeje+kx!5^}S&| z-M?JqCPUAwH@d0e=_$|2R{9~*+Buy2z$zT2j zs|=j2AHM~s8U#cz?W8{O#}zMq;;nmii+;$M_ z?DIgbTx$T5Y|-`ED2>9My?gbX5nKRC>?MvcnU*5VqJ(%u>8+;}4F6h54qcrTXmO?( z+MtWOr%lBFR?9EDz_n{q&J(;QU*W1SP3)C=V7_K_XQ53m|9v^4E%g_LX2>tR8wq{> zdRFM^VlO#V)E|)NTb5>xedw@Ox=3s}jvHJg`eK_CSdEMUODdNcc7tZe!qr<7LO#@gEM$d6Nj zkLa{y@s<(ait<-Ix}gCb{GSGh*Mn~RrQ4*brDXfZv#Lgkefm%R+jz;sTpASvn^b9P zPnpIaT~gyZZO2y7z+U9@KYwAj#>?Sg-XZuFQ$i&~>pdOa86PHXbXd{3%jV$i?hZur z;i|6Q{s9PTzJECu^ZnPEqx5F8(4UrHp{b7BSr z0gbmLJ1c#%OApWqpW%@qp4_E7TvFJi){i-BCw_9&4c@Nl9QwFsl4ke%x)C3C1j_?spg;UXPiYA^hs zPPB^vSDtf(tv+dM-*@JkSWI2>ZQ0y4cqcr(5}s#XAnucIN2p_2v+~78Ul;aDNl1YN zB1c??9AFI#C|WwLWDILNJU2KD64XhssZQT^2Z?-DOr9_#hRb2%lM(h0DDKm1LZ46* z^v^V|q~1PhIh8XQWSBm0r;mpf3>uA_I+VbsKY$rp)ui2==( zV~0}58+LCjeNTvU2ZaO9S^?{`Zn6iVMJz4E@n>92()en%wj()_HXzTS!asVG?cHov zq4)eYl(oU(4bGhxpc$GIhs%q<5HD!gXLNdS;`bY}c%cwA%rkowk$O?~!9~y6VXQS@EVVp* zXPc`bc}PKdIw{J46B z(69alWx4T-V#B_Na7&0TQMW4PZ-k_^jD>5nUv7txQMsF^5%05uZoAkb_V#;)# zwT@a8_RFjaA@OzqBe#@<1xH+dHXmVLAp<;MpIP6JNd!(LM+}@uBs&De4qyt9GcVvm zGuKefN4eVHE0r3ga@X7$oQieG&HM0)C2Ug5Mg!uptC&i$X%vxNaq-~+F z8n>@8zY4OgHPjyII#OJx%?SAbI}6p^$Unju9n4DIFn zRNNI4y^~Mb>=RH0_KHqV(0#szQ1>JJn}cQxLQ!~!cD?kU#I(OFk}{xEZ03#DPQtfe z7T^X~jYGdc+P%^#uFuOwVOpmP5SShNgfPl-87_d&$`gV-vVb=>ELj_9-;*|?N6qSf zC<0{Z;?0DYa2#U$7<~M|QLgDCtF2-W_H4&%a&=z^8!hwGZKA36-dZUzKQ;tls7{u} zn+PG9zY2-zy>Kr6Kx20~X~1koGCAJ46mSmmDye>ZfON9ZrNdWT!W+q*>LxZjP47CW<`D@iWZyF z;;Y6ZBCV@Jt#A(R?u_Pu?H7qk?@MPCXPtm}m*tI82c>xLQ*zpTHqLQsD>cVf7dWY0 zSfp#3KZ{H>_00yXs!9mu2@0-RwLVUtE~zAKl%c5VIy^s5HFyu-;g)DW27PeU*%t~F zY&6jJ_iDV8Z9Ig?2A-Z9IozNBvr``+Aja(Pq$Y9juiFKeBCyb^pyb>j??p3ZHLYFQl-$$td%~)x?FQfx_VCkBbW4hX77@X)*M*R_u?%62bS5_tlJQE>|Ggu6&-Bslan-LwLX_grS@ z=Gt)|lm0N1!??M?Cz2_leLq6F|KpiucJo2zSutETUGJVl(5k@a`k13pM7RCndH?Do zuulp>>|>)sA1L+^`>Q*<>~v{E5;&I_lOam1)2`s=QsJnENMFV0NpTydjn~ zFYvdz@J82{Tfc{AF3t-V8fp%z|Y* z{|1L1luaNq%!fX7pEG{Zw(Pt&HFCF=CYO0v4nLrEv?1kBbXYFx%qK7m)(GmJBM zQiA*4UH`&>SAX3?OrYKyPt3`ePqe8N%sm>A_$HX+UrrVV0fPboR``ffpitYm8q&1G z25F!S&)>gIB?gyJ#9f$-pn4CbxZL6wg-pct4(8&x-9;d5;Q<_%(khya`XQ0<;?eW~ z(k}jJ;ScWN_m0a)MlKfrd|HOxYPwM(X1Wt(OJ2nzwB<84qT41Fm5?UEv~1|}g&)DM zMiF;3%bB44BAFF`37~>h`7xWi{S{2230Tl)|k+aqe?OI(Za(z?U$Sh2F75YZIe>j0w22ZJFN`0e4p#| zGNw<3K8B$Rm4B!HZK)@H{?8zm_x8oMce?FUa(czbLCRSyv)Z|&=hBW1i==+6K@v;> z-wHWp^Xm3i*TWZ~NdMK{C5WZxiyG5TVzaDG-~a%rKg46X!AaHl`m5C+Nl$QFiH1c( zHw`57z}s{H6Luqnj4}H_qBGcx_tSPWtW63Pu0dYXxt(s@Ab|%J@hXhxCQR1&Q~YCC z_X#*^=qSVl|H~ZDv-pospGfUj*A1LAlB{2>-pDEfgzUW1`JEnLsr*JEQn_*0LbZn{ z`NO-dKPd(*cYj*PESG*yFCggvV-Ac=4{)>xdhTx{_`65tTRhJ)sMf3XPi8DWGfA;a zd5FR^@e-7PJ$uv5VL7OwKl~OXhZk}Cy61ZD=^htrzr4Up{qTEd`mGzd%H2+XH)C?5 z=}%l#8_1#aPL+dl|6YsBz zjb8%-YrZB#?o308tvNfxOS+)#ULs8S`zAmC#9Gk&%f0M=<;dUTHH5fxAxFQ;OE+{w zS$p_ziz)+4KkLU4A8hrTGlXX-(MD67H|1-U-A(9x?Xe&hpMvNs&r**ks!%eX{xn-$ zN%WsV5f4*}ezv1KYdd}lC}V5~3Q<>f85KpGr35RKZ+>ZY&KnHZkkfhv99|_)2j1cj z$PaApjwAhFqlYlYh($Ws+3CVZc=bFhZDiXk=J?pzS~cXNxh?t$JM_RW`zH&Klj~OoE9k85 zNFY#zEpcg)@54t#*y4;-hcg$#+%o)qiRnwAaqtTJ*)7D`3c;cF_nQso1`$R1DU+S#I``! z&<)wTG(e#7P8aqwp+hNy|H*+)BLA1EJ0N-3>U%nu5SDSZz(Hy6w~S!A=#}54m3RRU zdEEz?bn?bU?W2G#vGHxd;nhtW$j{laUgU+ z$J-=Td=BroYyV*6NLohOp++&`>naDeb%PcUu68SKa~>%p+u8-CBk_9X!@jz~LU6E! zmXq@yC{XAPAZlX_uwKDEv+w3cU?s0SviynixSA8#!qkuFcA;<(n-vvij>sxC>7Z&^ zT0Gw}RK+bF;-aU*vSNxER0NP6izGq}eipuYnY@=Q*m2%;WFLnYsUQi@q1g;yCkN+rk)a5TijHjm2 z{ibB>_YL-6iZGmtJrhL;rk{Zh>s_mf&)I){q=FM&1cV?Mu^Q-{knM~@B9O*ed&!4XHjf}&p zc{e-c7xou!&4iM^n0=J|n5!;pN6QDV_8oqxi){-v_VUya)@QbM_#ZS*2wx zH$zW%#qccUoaZIU#QD)dwLD3L=La!)=oB{G8`B64IPKltAj4;v`V0KvSY7!VewMun z?@DEqHcl{S$h!YIF1SsEtOh0)l3O$ShNF?jFx0y27cF`S@Jv&Pg9^-m!LPLml~zt zbd^H73lpwuy{djI)^Qz?K)Y~!MeY8LX}8mf0w+O*zA~K$?-0R)Nmt|OUS(^~k#|+7 zeW%Sn;Xy$#8`ashOODWm&03Y|O@%iVYqy6Rxe?iEyz=!9Ruod{3w)$q3OJ~1kUu(e z4%0;~oJsgT6!M`P$!NR~ZZ!Dh%Z6>GHw~5J%S-e& z_xsmt!dW_QH^VcDrGLLM7ArLOq|lc)`)7?lf0~Wx64KrkD(tK7HSK>)u;{GxWrqSo zhGMpO(^dOj>j#8a%#q`Nf|MoIkcZvZQEWw~@zCGM>)R5cNNUolpWHk?zpsPdX~`FP z+&6PU!-Iv2i=R0wZg`yiWW)SI-^!hT_8t7l6LfR0a^*53cuT-}E2JC{oVfiyzyezx zzI0($#?P$R9g+BleMC5gdV)c)z?G7>+-%eTVtMU}UHIap%_02L^SdUXy?YZrlv++h!}~fme6buMR4L?6fM^6xpHm{+3rXSPAe!u!LV|&%xz^2bPfz z=f+&!>>q9hFt0Z2h_xfhxmu)lt0N?y{aY$5DU{Od^3S{^4Ga{bpmGjvVVX!xMJDLl z;0N!jB_m&}fNOFfxx@8@Hys@Yo*^$L6bP441EEBV(j1<45^Qsy?W=-#atES%CV6~y zoS-OvJ@OP>vq8UsQylox+q=D0>3RUhYPLCOkQ5w}Q+sZ)fCsXMz9l={~aLPSqSmh;`S`m97&UZ zRC<5cV|4xTImxFfNlP1E9GHTYlY1=wv0LRkwq-+-pg!LfdpALRD|Fk%X4b>7wB%5J z3sXEldS)iOmMi?UX-uE2EPc!Bz`6Qx8lJD1;s;lZ`FezO;sv-F*IuHp)uae_o(4Cb zkeDcp{|M3E(*D4N%lSp0pjEg;z*%3{e$&Lx-;QFuFS5Hbx1MLxPf>`nM&;nhH+q&q z4>pX^QabqZ6?t17iSzs&XEB#F(_?+Jclu))%IdX?-?)d8@@*@vf7-vL5z7*i={-$E+ZnUm1p08NqGw#`WfcnO{B zknb8ftQfd)v=h^6F{;tXH2rz#)Z|aIaqyD8Lm?H#N;%8RK1}oxV{4lHFU&W(PyZKZ z@BIyTAAWl?qt}EWdJ;hpEqW)2MDM+YXd}AOdxAR=afj$_5R6_&Zy|`@hS7~W%ouI- zdVJS<&Tr?OXRZ5>_JnvK#VlaB~Gh^+_D<6ysI>ddpF>jRC25ghl zCI(R+UWZg^zeRn)4}H7k^3DSvlzJa-`bGw?JWF9_qW^J=~!QfQ3o&*d8cK)9DB zU-;-Sz%+Qpz$ygLjPcQvR*lHP%=-MTKmy$a0pbA71|T|7srS!YRmf@8U8!&aDV(=w ze~V{8QENeWz42OzWL`r2&sJ#^((2$%DqQCY2`>eo$P{s8$=|A8AkULDn7Xi}7tsNu zyuczqLnOO|ks8&j2oK}ic!`6D=j)%oJ9Rn}EC&PUhW6yTa7;lp7GRo#J}X9<@F`y8 z8%voR(FI_WkH;}aP>X1^;PF`g=OCnWzrKvaugIJCCke3TXI;xh9}DK1m`!0x%yep# zk(+SL6A^!wdaziniphfV!d}dRvJV>&m+UgTRmo(lEhx!+;UZgqxy|PB&K&>SK2I!M zM+#ssGhCJt^w3IzB;Y**+PP#a;?dI{Wj8iW`q?dhycT=If9_o2;+IO6hhcEO-;FGvBxU8pcdHu30z&p` zt=nBhL8+fKix|;tbx)LzU+p0l^`veH(PlleKUDbx@256m##*FG*rU3YhCvqCkS#*k z241E=)G*iT*&1T9-|f(#h{~c>;QeBL^-Ma5sF37%-7Lo?CSdWiSEFH}9yLdhw}E*I zJ}Z3C{FoxaKVN?ef6iF6**2npR1llu#v(d34 zh4%^P+4;YKJfc6&C|e}_J??nb%DDC9MSHR5OKk#zhp6RVDlB0n7C%!T&pte_dH7?MLA0IJ}kl zwM^S2h4EhzwY-$q2$}qHHR0)7o9j30$zAfU`sEM6q_g>7 z;JP?}TPt+tsn1S`t=20u+#-T@Ui(|6Y{4?2W{T@=9y@J>%c+Pf$|cZw#Om&CcqCPQ zseE&RVF%q~>id*ZxibX?;dwSFgxK6&WUnm9E6>6F-$3&$HqltYhemuID*yShm{#|+ z+>ADdW9qx?P;PK`pQSo+sL~ClL00OY3?Yc4!FtO5ihDt8*ktVvnWu1;OkaZYyc)DG zAk(8IidmjE-S4p!<@waNe!O2xC6#bFGP9z99eVe}`6)W}MSt}@@6`~y0#;moq2c7VdM|V~n;U;t2 zp*(W(^B18y!VZ}NRwk-TgKc)T8&8YcR*vghbz48g+M7m0t!T$ag(sA-Oq}$ohj`nk zIS-;4r}SFg!y4z^;^)Dr!cxH;_WivP1&L-wAGY(b&@ZR~b(s347hrp4FCNxO2(=ni zrGEV}qH?AEFl|i@5^g0hIW|LhxsVxeR}|2Zj8K&>x^J!urzRUmAjA?XC3pR4V6J=Q zbg&Vq6;~r81tY|uE{8P`#=0F)wnyy(bwb3NXt$=49QS^n5)ihCJhjP9WuB)ze&76v zi`d3OG(ga}>jKeVBkHZ?YK-42IP&Ajg4l36GS$ZM zBOdzXFV0o45ij|{jc;r;sV+XE&|^83cyK-xwAk$nN%2T($!(y2@y=+#a76G4QY-D~ zr7Js$^(h0_?GfSc9V(aRxsV4RZ5LJ+Kke&)LY^fbP@WsD5Gy}^(?#9xV`lC1@IWFh z$Lq40AVAqJOb3_(5L_Rrv38(DvU)4DZ6(ors;$ved;<}<|6MIXIGqCg`;HXiV9z6y zM8Bpw)jyET$PF{!w;|sh4m`}|(2S^H<;UnJ5|=Y1K3(Hz=`s&9+qkXmA5Re*48}es zbWU2)T{tgzoR(T7PyRNGyu#Ohyp6+p9CR^z+OEwgw0z})Wi2H6MpxYZNDv3%Tz`N& zlCyEvgN=KH%g|@AKelYVW+NIo0`2-^>;AjB))@LgRa;eXS{|VLERJbfVZg2s9yH7~ z(Vs-5o0QX;CbP$gHW-g|wa?Zo_VWzyDCw^E{&$`swz+ENt>yXc`?@+8sFX6BgNGlL zJzGc{8cn|_sE#mI!AJ27)*UH^ZtshE*@gW!yx3{CIA`WptDUDl5=NndC7kocr$gBq z4*J^k{3~CdGxJzT(TbC@tBaz3yz~GR)l`mVG^d3{)32JRQIE7)NZ5sWbd=m*^|+2_r@V}xKM6i?JbVwCTlaCQmd6`e z%;uoCjGPDaelRDFo=OmeKqd~Y@V z2Y{+jt4ytVajYu#$Skpr1SWA}k#7A*4qgc?4IW*;LdaC*$jB4J`2GzFIN$~$eqwW9 zdgdtiY<*jDhgx-NbWD@N;#y1pbWp*{c;qs_pm@&g!{(pvD!ugDX;NW;SN?ML!9^>E zhKh12{Un8#^}DyFo<)2OHZKVN%LX-A`#scc9#Ly~GqS7nL^s3wD8~Z@5EJg@%;zO0 z7%nPDS-L*>kTdjBJTzgx@W-aF92-F<+UAQ1VT2;@`H3=PFcN|8m}_(8Kj3&HzaNSv zxYkn7YASt-r2NQepc4%g9C52$3~)fssg+k71pyaxO7Lx3-2rFU-Psbkarpk|48n%~ zwumI#nPSK?fCZ*ps5$s(cIQXjX7K>fV*U5mU2sR2dU*4|^;^zrQFTAPi8u)V4I)zG z!U^KGytdJfwU1!*c2D%L;i*5JVQXb#pspZJ3GEEG#QQeLcj=*d9QnR2ARzQW+L?ze zh4h1}(vb9MqJIpFb6D$~t&kU;Xw};W>qG8u|5+lH(u%vUw*|nHW^w}=KS34JEn;R> zyJK(LCbF3Yu16kC+ix{Mb-vb={3aKc%FXE$P^w7O3zJ>|_-J({rHQ1CD&%VF^n4rF zjJv+L`{Ys4fJq;tN6#9jTh6!-J76_(G4JM zE+i{B+$oE$$Qo|~tmURE0(kp%TLt7T)3gfw0v!e5D*Tsjxn+spn5JFyE1$(O&D0zf zdlS&!YkAaZY@==~&HcO6EkH`DlR^H5(8)+rv@Z4k3Xk__4 zd%9k3m~}gmulh*5%2J$S{|<2xsvIbNJ^JI!wI&zW)2cw%fj94;@IHG&50XvP$iJ2i zn7>{m&#nq+pV7*wyFF2X?=YkM{uC^aX7s>XA5$K0BhkdMf_S~wn@4#j3{V~T_N5OC zB&Yx0i7pfI_8A&*%@Dj`#~_idNs+I_>Q`<~U+HSVeSf<4;c-ga+nJ2HJP`d38qJ-j zj_T(VSM97Jh(uL4eEDPjU>n8rZ5~4qC9Fgvn8QjKmVVf^D%{aU{jzoXx`gPQX`T#Q zyVK>`hV%Th_w1lsMU0Dc4&V`w88QR#Bf~~-m}+!Mn~d`wk~3iT@8qsn%YQmZEfs4gqF5B#|mnAB$_!__b#@#0Zon<6y?kQ3-LWD9S z`)=@iXjJgA02g6}R33O;;JFg!x)8VgvYPPC+w@Pad7?sph#=8XuaMkN`xD*bpq{VR#H8#*kBnvakqoPT zyP;Ol_i~i$`?)5++p5zz+i4BJn0yuZ&pl{dI7Jb}FHqKy&O;eHf9iF{4Tp~QE|Ndg zgIcZ8ij*(vwpIpy{5BUcPuCPu@=gJSn2={&^=R=tb);@niT~iHFdd>o1mhE~z)U$q zGP%F=PIX~1a{f#4O%%sf^J?;Pn~LE!3T-3iG~0rGjPaO*%ampR%=Syh@r$0gmnVyn zVXb9icFjcNW;$yMt`MrCB}ti9G{g9pwWnd;07${LM~Hvl#V10qp;txtthTu!ZqCBv zYOUEbti1@o;AS2RUBP(urC-S`k=A)jUUrYc9!hN{7;1PuPjimmo?0YYOQH1FG>M^o z_iFKyOayPoRukGmKvxHN7J7`pL(hYo)76q9ys>FDQq9aS)>$XzwU{H!&wag*zP*L~ z;YzscD4-U3-Tzfz5;aE3gCDBgI*_XpUAtBN%%!1 z@IX0f3}p;FkT~hckO~q%P;*;jHP|P#_B&oo@Uw|@3blQAFeuk`b7RIofaLP5s)P@V zT~b(XKF6Aicp*2`(WkTJgx{l=I?8sR*y1*qhtjo)PSazg5^U4}!9iJfyuDIg>I=An zm*;HNTQ|`3IT|XrJYuX4Yb#(lZ?wVjM_iXLsjnCX`R5s?FDuljOXadcW!zj%f8-&* zr|CWnAT+$@=-ZT{Jd`RipYW(X&*5r}^;BVl^#6h|{GUR^|BG`oRBU11$eqTNPn4X# zXRq~|-&+AR_bvRC`meQENm=)>w$&X6`H9QET6>jn_ll-oS|dp#bB2|voh-4z{(&%} zFfGNvF}kAfI4I}tBXiN1eRCewqP*m*^(BieZgE=!TcOe1JxeFs$o`>~z>noLXgx%k zUV2ZO4d$mRpK$J%$7avTPFy-Hj=VGxBZw<;^3H4~skw}Voqz_nUFy|F!=)AZi-YNE7Iex9s;!$I4z~cShwF%jNEE zv9_lvJ!r~f<);{*Zjbbc!ckp+fuD<~dll2C`ICIF#6mWZ$?<+0B@AlC-G2efr2(a8 zWzc~5h7{|Jc&TBSsOeARA&|_lJ}U9dJU@OHVXK*_c{<27GM{*SrGxFB+())ONF8kb zlMi^~1s!Z$AcMK~ZW;Mh;bpI<m}oEggMl8tLbu>9fH!iSjwpe zZoey+z;ts1PAmfd_#P2J!lWwesDFp#`YwmEIO@B4brBB7wJh!k%qvQnD)_Cl6N9ik zjn5D-AsaNJn^3j~6dO14dzIu-I&|dqaQRQj(O$--{mQ5=hml{1g>Om_1c!I+ds&jc zLU09`pC~M^Z*N!D1)2NSnWy0+VMhx52d@&>!K_nI#%MONwWSlpc1r;H+uWsh?W(JS zacDl5gVM4p!GmUM4B)TsY&vw~hy0bss{3t@Jj;Q?;@^*Wey8t$STX;MXm7abh|3kJ z{u(Nt`z{#pGU@&8$d-UJ-{65d>v%-N^vOv^O=`r2-E~Z=Yi2}A>CFct44HGglLEis zHd8(CTjo*eTdK#0K1+V_)PymM`PK3ln%XU_`y zcYr^&krb-xoun1wCUoI6ojQ;&(7yBI5rm2|h6Nq+I7-@~^vOfs5NN`ZM8DJe=gwsB zi_mGZJjaUk3I1#BPoHeIsRH2yzOO+)kzwxCdnOdCvZERlsm^O{S2?eusMZcY){nh% zk34uPr=9!q^NKu7&PN-n7n{~-Qfjy7GxU)G1m9c!`eD_h$khEffTV@%x*oq9{GtqUDrzuqJYg2 z-d7FAcvm!)+jm;HhhFsJE<$@8Crg;%mE@#DVvYCON(5_89^uZ;U2GA9P#r(DP(wWf znXIZ|Th;Ej*8PH+AHL3m_nL|l1VD()&$g&BsMU=_+r=K#s-?Y8%RsNSjgEa~R0TV@ z$o0ON9LDEoGOGb^PZ;j;!5v<13d&_0PsGiGW$lb8X<-;QZ!-%q5Q3Xq%aII(xDj+$ zV9{&UMi++}s$gGf*f~k$`|elBw5Y4ItD@fF8T!0g$dwe-y(-(B#UxoQ8LJV%Ukdsc8%((hHCIeqt2=wOK-N$1~CQfs%;!0 z%}6CuSG1)1{o0?v>%-N^WQ}-7SBo7HbGpov^14l$H=_B^ z%~FFQRmMox(z^xaa2h_jOEbbdkhqV9CBYT?5dhzf1lLDyP`vci@sszm9apCSZ<<~?BXRXhX-Rhdz zXH1DujnFvmXqe3VL9>ZuC}(Kmz(Q_VH_OzC=q?2ajx0%o7T*Qln6iT_JrajniySr6 zQv?|<@9JzYi6wV)`!#Qg+->gl(`TkBjO*@QAXic8Vpw(s)GGcsWmZvBCf?@|%CRJV z6vwr80XEYrIrx3;cG#cvgYWv3SI$QUWEy9uHy+zp4xfu)9NS{ zT*?o+r>@5cNl#Ym&{oy@m@XIla2nv-^ZRITP9w7NodPHQKKb$4??REEN0GNJDz1pf zZ33GG-div4;Y;D}wvq*>9pOh(oAjesmr>I-I+#dpl!w?w2if-Xz8*0_HehI(UwP05 z3#6xGekj-q|MI$@g+~N#wjXaJ;>eO0uAG z#c)yY$9W*PZ3&$-QzVaYNK8;aSTR|v-1->Hrn@utVxKZ!F}h6fn&}^=tv<_tw+<+w z6^(R)ZY`8>yQx4bjZ=Iv?U2z79^NPS%Now83jjgF-QN?00RHcih|%_Bf2C@zU(jl2 zX_Bp+=Jt&dBcudTV5qSI!Sw>MpYy%y>)34Jl(3`%*aTIY?gtPfjVS6(Iro9fHGI?w zp_TYKDsvoG7;R*cW`HPM{9zMwd?%Lb;V3pCMn?<<+ z{v))6{*#>0yYw9J>0oKu-xOI4I^?}v_nVd z9VgZ5a+EP&>ff;^zyJkzY%urk}qT-bQ|Azqm`Tvg5 z%#iO8dv^8!yt$X>Qs^^HJw3eSfLhh{C!`7yx6H|?UOhy+-k8`2E6Y}86kh+!r2(%T zGO@{F0UoDj-fndUMF=F3h%W*a8M0bo<(o9)9#;lGSvmnXN6x2)Y&rW$O$L-&v=JTt zc{0wxusvrJlM_QNNL5DT?a!A4m%F?RiXMCrxlbdOTgdCHdB3@4BzWn)ZL{10^R}3m zG10mpUWK%6LAwl%v)Q{I?s9L)Wsux-5DH*~@H{I?lhJLCPDa-TDlUb~9{EO6=sFd& zJ7Nt0gQKPchtUspTY7AA6Z)}5MY$LD{nsm zJSEiOpKM2extVnC06VeAMrV4ci10Dg#^kCda>192aHWYLgb_hDLt}wVuDhB+x!~=0 z<3|&e)pQxavo4R7SUqjD+Gi|dR09#4R`bj_j3mDAx&0u#U{FFngjin{*u%Os%EmvSrBNZn4_zDien7jT9k1Nenm1LiCq!qXRkqE=d=2sXfgk_aH3uWVU6ODbnE0;sLXr3=LB2r&@3=;&(`SoEasT3a;;o0+ zxCN(^`hXFjqOs=!jWiea4rZ1S~SPOj2G{067Te&4(>%1#<%*#dGlgpS7aWj}HD4l=N(C5b|&Bg||^5Y9D)9?yjG zeG0eKq9!QN=9C&RCuKiMVpZ}8`Ent3R?zU+u?(5hEifEuR?M~1vl~bUcaD)7fo~5y zT@05p0o=6}6Z>UXEHZuRmy(yUYdBaa(m5k6=I^Dr2F+cw`JgTdr#`Q|F$!9C`J-rs z&bgDv0~eevnDBkk9$v}8^^>uaJ?GS-B!Ox0$ji+fGo55tEo zB>XhU#6B+J#x)l^V{c&NWC@7%4?J~V_q2rZtOf9SU<+IQi@*)?PFP0PeORfuZp4W1 zmH>n(geWh3h$uo-ycg)kbnWlYako&y_&6#mNl#+2-k$!W4v_R)Z;j_{fTfTNi>^oT zw#&3KqeRL5Dm7-KU%GW2?MzZn+ex+uTi2al_F@dA_vdJMbRf9(a$|pHz>Tpx{JTvp z)T)tPYNI~S&nUk2igZjtIDGjJsf}K1j^Nq+w=0`wC(H1s54J@fUP)}-5X>7aH~(vm ze=Ogy-Cfso_r2I(`NM%v)EG$V$O$q%1K%~hc)abhvhR?CCI)$0{2ku%gfPX)0>obe zN^RqfFg?_Ya>M3Mq61{mI2k`|F(#rG;l^sv`3Rbflif?r0jR&ZpZKNHJ$az}-VGWX zWw`@ksp5P>;xIaI;Y~{5XXawRRUf5zLL)2LK!5(p*rxGOAK=anUE-0?7a6|hI_~U8 zad2{3WICwf6d^@k@>wXxEddZiD?*U z$?UqQb*XOn4$NxjM>ie&s@+L^E!M(#XVtleK1#@A(MJrZ0-)R7ZDL+zYxc#oG& zeug$kyw(^iX?aHj9A66+mCdt^`R`wa&l~&sEihEcAGC0B1XV4yS+sg42nGYkU5@J+(6y+81>06j z*t;7Js6_<~C_{*DiYeF&T|NQj#ylh@4p`O0gx-JRHsBtI;_iKa&^6$x&FhEl!EU z4Wt-)DAQpZ^judkVOL^VmcS4m)Kejxp~$-M!sF;W5I!@aykJfnp)Y*fY~Sq;dE+r8 zI{hz!lGs^<(v|ar#dSevY!(548Xsea5PeWyz|Oy`hZp&we|55hv#aW*ymD1xh~ z!#qGwR{oKZ$P@~W;#GJ=!hVT^Q%fa8Z)T8pryjl=3`XQu^w4~5u(1?QrT;KhI}d>{vfGRlRB z`*pepmp}VDpWN#3E~M?iqO7Du#P}YRk&V$B`zxXI4e zwH9vv(pNFGhR3FN3yr(cE}00l+~>nvPJW8!sNF0?@2kOeTk}=a>TdK}7c(S6_}^g7 z$LZJC@s8E*`su%&D5647|DCHO@Er|V67=W;+;sa(YBtkt*L$tEJ6_;rpZ9VJ9r2G( zG)`8k=e>!RzW&l|M{s;mSVaA&3Lo1(kL+cmhEP{pl!udmr$au$iFHE4Z?qZ{0cg}qSzoCZed(6v2j-k~Cv zFQ@Le!z-Y&LwQ|a;(9gh1Y8+7@2UWpA^Ea8>jyz(2cVUr8H4pmhB=%Ra`7>8 zhs)YAhmpvA+HQ2*%?8;bCy_XMO}R*V$rH!77?ETs^qw`2lI0}7T&Ic}PX=R_&c#PI zTedIyW*`Nx?8)|7*CoC!WAOKd^*l1SUgMl8W5F14V9mOhdx-6p?3s~v0EMPi@Ex~} zRi2pg+Rr^xG3RMt>bden@^4O)lYAd0Bl8Z|PP_HI#uGa%?s+MM=5S*DUe}xdzK!_K zeL7kc-I;7B;qBx@0s7ITrA~?-RlF=iWU3Vim<`c0khAZJ^sQeNaojJY|1b%rMO|2b zJcAsZj1_#hk+<`^J`QTa+g|;G8O@Q8lUl9b@?GtT+-R_&czweNAFsr|Uu(lSxkxYf ztYa^I4zJ|l1zn$Zeq*~mN~qBEWbAuW0obKn{9&QZcs{+JAVk}RFAEInZ}|eoB$jUy ze&%&kmgY{T9P}xTw9SW47ZX%wtvP-XIpFSzRo2?k()XfgO=unq?fgktwCHNltOBpd zn4ph?-hGO_RY`ply9Uk!UYb|s?U7~~igwG~|NXJjj1P%Loi3Ua-`n=kHtv$33XY z^DnglH{Q23wL1ZA+%6bzo&4|13^1IT5Wx3a_R8cKKh#Rlz5bFe&+px@6=QWJY>-UI z8xMtXZKB$|x?F&pS^e>h5D4j5KslflV9m$7`wHhN->b$K^d<)=ryZ2tbY>4BC~nX! zPK>x5d}X!$m>kY$P)0|or>NSe^(|wI>gPgoVT#~d#Qa8QXi*@e?$PL;Sm%}ExQEw` z_8-855MQ0<;Nzzx&v1rfrKu6NoxbLKU%8*?%0N5hjA_q-W;^i(uOjbwdB9%cAVf`q zI_>M5h|aX|xYj$F19Q&e6f_7Z=x63R_{S4j;a^#H8$j4p!T%0{(Ccb<#x%$U6MGtU zVAP%Eh)4Ue;pzqsk#!t;dJ6iavqtnfAd~6{H(|Y%P60wwg_YD{GGAayd}`on2*2}{ zL!DR2jJk7O0Bieph=fpCu@A%bTjHXUGv40b*gROiwC`RC;dl!_de6;))zJ7_JKR#@w=3m%q-wW6M-vF}z(~R~0n$iD*zXWaw-pRis6Wcc1EkF%_yGr;`*%_gy^b2XZ^r6ZZ39WY&7D0%l4f;2HX2;kGHXyp!(9Lw=<+n*Aa zFkKSK`qcbuNLrcA2Q+IK2ya@xRb^LZus;elRQPj;3Qg1f()?@=Zh7trk=tjrg9(k@ zNiJ_iFy=QSsnE8$GpF^=@PuU>_aP2tVPI8Ty8v7~8BUpZuT}%~4a__>Gn_bzdJw+q@4?<5LpHz7}M-FWpLNuls&|~KJ z>G1FYm63f#l!`#bQWWA)^~)Qy{I#WvnU%~bq-c2sWziBwG~UQf#axO6Q;tdF-0kqj zQ%}F_OhWazsfM?Alv#bH3=a=_7$I)oa~i4MU`6FSyc5k7#xHM=Wtuk?1wHjNu)lE` z&ack?HseF2;oO4BcK9dC-lh+12o1H1kpq*K5Ib`m)_R|CQ2FJD-7GmpM*hWg8e8(8 z`4i=={Nhg@d%El`*-}Owb)eLundr-e7F-Zq51QPi8o4oCB*yIPW|~fsifbw9UvjAq zhWdC3&%7eTjYkR(i|<{5pA)E)013-wZD9eE1Pr*uQ1*M^jm`FQemKSRY+euuA2cN1 za~O$Dw4lcG&(oY3ow4ZRLA%AvUNB0&Stq{URE@Bz-F+}DL%JK^pwK^x1sebEjb}#% z;SV8q;&hw+oP#^xdcooP&QoV3(=<51){q47ig+WkgdhF*>5J%@V>cV}jP^XROS{S* zNY3_G&Z0zU5S0-9$fz&Y639=z{13y=&e)WT8S%O#1kHbAY1|WDY!Nn`Ygy{u2p9bKt0uP?4vDL%{g{Ty5856 zN$HohOg?+x<4O6uJu1RF(b80B2HSG&mISDY%==`2EN*{%!D9UT{N{)Dbu#A9o#1?- zhj;B`@1B>B5E}$v{3XWUdclC01w!A^k%Bv*KJ8;+^q?2EWR9xli#_2s&cO$dKxVnh zi$}rK!s{6-8iyfQuZUm_A8a$YauOxFu?vllMnDhckBjZUmMd&cZZ9R?ugNC;St~BT z%ui1UB*h}~g3S&v$Hw;sHS*Ix>~FAxgRDMuV|60X;N|lBYZrpe@{_qlqTmv@^!p=` z*F(X}Ip;*8XGaNI_sts9bjMNuL)@h*WP0##b@YfgP zHYS#?p|b4TwS$aoHitp<(wzSsTLCYZ*psW916XZT<&s5ItTe;(8u%ZA1?HsRxm*ZB z)>RzO!a@MY@xL&eey9j4VYb}y_k_nT{57(4aOFlXI&d|)b88=zO#^TKxog$NM6_a6 zM`^9(TQcWl>zf!-Xmk>8jFYGhzf`7txF(oX7u+zZLA3(l4bKx>62*tM_6N5-vcU(x z=D2LMlGoj8OU|C4Q!L?}1{>Z0Kv_3C-v=ljT+2Q-uz(OpU16>*W|$(ntVUz9?Fj%k zw?@Zbv!6V;<3eP+0I$0b`SNQ`fOkJnG8eb~yKHU)C=tXk4WTUVI*i-_+sBpaH^KY| z4W%R0W6K1Vk*#9c_Y3@thwk34M4r>FUkyH~M&MMPKD4njOB&19mhs^ttUT5re##GL zuYTr?)X9>U&)g~`&Wa2*PpbTS&stwoG`9r(9@7Bahs*ML0O~f8x!Id(r!>hKoOrEFu+n>tN1Twqp@!iNr^0_f-IenXZRX@x z=~u`t{j*E1t*&nLYbp3I^5G+Oc;?fRKT$2JX*IzFAO@d;d+zE#B!v z_^aU&EwcqZgBX9+z3`NnW*$EbeMq?T5O^VqENe{iFBtnYYh`1jga!WP7Tf=IkP$Df6OO~Z53*+ zX}A2$!}?fSMC;{SVi@Mn)gLXWYId1}zcjltwiX$yqa^oh5vR~e zqKqZ$kelBS49(GBTzK(szI+fv(gM$J&bUR}aGL^>orG6T@#jARdqx?xgd|iZkfOvqp4LpmU!`c1lR+>ZQSYQUY|s ztNhVX;;_!2AB|!}4n+8jF?2)tD-Ho_^CfOwCi-%a>Rr(T(8myW&m25KS;-HUA;1IC za+v^T!^kT=Y3#%&aMzMa*k7|nfFzKC{)G%Xk@g>S(M&>QS2|tD#v)9$>-&($S9mA> z{T*T)u^UI1`V3DXc!|+eW6>nJ@|Mi)tTH~-bs(m}ETzV$j3$Cn-Xjosy43Z^;|gwh zpY3efs5OzXv!UDtI&w&cn>^yTS$Fj;+9_h7)iERA3_tfpVov+l-D~z_5cBBgxr;;|p z!mEhQA@{`UR-kjv^l|-;y6{{&2TTyW9H=a!7f3|?fJ9VAtI<1BY2Bk zSGkORF)M%)T>jefC#agBWp)5lrYqwU$0&GxAnho)$Y}K$Aqd>AK@~=ZiC!4l5P?7; zH)dh$9*_by54RLsywHOXd32_M5zDTxeAV1!`=-zwyd8}g9 zI;Q-)4aKqkng6ob{fQO+fBa+{@t{8#+2~6#5g?gbaF2uxgx5PcHTM*Vez!(;=}oPh zdPM=!c@6}7F3i}O@Ihvl8v{E00lIa>yX*cN5fOr|8*p&=gSN%YelheUj@^5If0%VuHEWDfj1z|)Yq-_uoX_VkHo6+KA2?*Jh|7c%FC&&G=*$Eo zPzsn!=CN1E5qVs9;3O?_t2%t}xfStV4i?Bh697bwX-Fa1XSzt4GGQ{~Y?A9X=zFU@gr`5H_~<Q>R`1W$Zu&`EOg$fLt%Hl? zl+9Dnp<#$Jz17UHTlZ%`Jc za|Vv@%|qXH22tQVt&jdBq;co;6Y<%$I9ZOif4O2c&fO8XrY~1U7X(5HfqvvBA=aPg z9lSa>j;H=7=e@;l9+FNYf6R?q=2`Udmz;{& z(qMU?N7kLY)85oFy5u7C{)9a2c$cfdB^2qpZtJ7#Oh7&uscMoMEI$qiTTz(G! ziBw^T$QKVfvrvor&<`}q5%eAkC(=z=@6T%dhKHU^yRi!)g|K9K3lbCI!-_(dpU>$j zj!a6@U2YSQNII$7j7pM5p{Qq1cKm=+2c(> zUf`;hS4umMSPvSXvoBm>B@a{$@++Im0Q<`GnbfrA5&q75&el8XNG(}kId8NpvZ!6x z(!LJRB%_j3v)2yLM$Lc`=Pg}QQy2LG#ScBXJg$t^tI1{?^%N(sMiU)Buwjp*i{jK)ohBI~Xl z4c4@>70ug!E~gtSxx)Y^=U5|t@VdAr2ja}+@m*l2=LGv|qh&S&BIk8G=mv}(eBzj* zH^!te3}In5hkEh4P+#BAIEPX4t>KSgd_pf#A|Q2>jJJn)_njP!X>zUfc(%@7oU4C< zpIErH$OZR!{cr@s6(tC6Rwc+IF7x;J zHYJImP6p-SmDND>V9r7J$TLN$!sHL8%fy4W+d6GiT#zmI>E^W&AbzLQJc4~l@!!JG z9Stve5`ZibuT6TSEv}9um%SlE@vA%ZpF_N`&F3JSK|LgKuuHb52e9LPh5xTg{)5}c z9~2lX0m~RQ4o<>1T?@e{8-bpHoWI|_sEu;)&i3HUn+7crt$UfWOU2Y#DVZ*lT27Jc zvbp<*tD@C&nh%q$UfQy&CsuB{6VsnT24PcG5u3G&;h*Yd>kku}PC}ES#Sv}9d^XW| zNjZAqN24!nTiBBW8IY6}tkD*#r?|Y6S<7}06NiWich}@qTHv>W#_R6Wu}FHf)9{Z9 zukkf;>Bb3^zuTuyg0RPWP;{<~Fms76L9L%%@px0Q|Uf;cA5ns5$( z{v!XZVz%2rg^nnI=Fw=-K(v2b_v^;j%nZL)9^I! z-r1FXt`h9HaybWxteJlOa*(G;iqkRIyc#=QIDK@(eKz1n-Wc3@U3?&6wwuJgNH71~ z*}=IWTX*3@o5<#2Q+pNn)iui-EXew5lv=FHsjYZ>SP*KH@vd*~5^7_tP-(%P7v@sJ zK6Fmy8+$g$6bxsR4qgxX!Vb0KC@S%I8M(zgJ0Q94s=c1xu6%E$N11L`^NU{5|NV0p zLh5Vp1$>leJk6@@K1>0)>>tXiK1q$ZU4uyb(t@i#dhb4E8@2d1zOIt!a_RR}%)@}2 zy5raD0{3@)Yet!hp5=t+)3qAlx#+G5RE$MZ@TY!2^X_OvFF8l>P6`+(jv?X0_q zk@bJ5$0C=L`8(ImImR;`7yqr!B{{C`qf?s~-h38&qLLp$zmmbtTS#KqpB88HCM19O7;Y&Y8@F9 zjZU9DTu7DxI&J+O!I;EG+#pY|9!oo2)?3L!Q+s&T-qZUF^rLtwtGl$*4*KK9vONBd zKbY#>7#UkppB@Sg?TnmxXGJ!*?~q+>20GugG)+#d0L@1dJ_ee2u|Hm!Ix6Nf# zwF;T&l)fzK%?gz1k$8mCGB}HGis=u&9J-xg*Op>zkCc&zGYsHi6in-=$r4KfCh%f z-!5F+kfCZ4WS>P|tkLwCL2a0W+&=IL`&&2by^oeUwL)86XN4LttQ4Cd4|_&cdGbfW zos6u4k}*5-;fNF>c=g`gZWTE?MT)6{iwb89 zqXyCrK`tJ&l%Kg0B6YrJ`NwWQ)u+HI^i&wO^%%HW6%z2IwBLpbkZM*v`) z#>5E`S_c3L+5Z}!rh@hzylVU*p-A_ut&xYB((nk8;)+^~l!k!=EX6uJdLR7Q83L%+ zgk?~l4hkHnmyAD&3~Rwf(#{HDE79KY>W!9cZr%uvPJ6?sdZOx1Mz-&1H-x5|Y4>+B z2+GH^@?Woybulem-V78IIg``f9}0d!lc*es? z&T#v4%DpQ2U!8qrTolm0Eii;Mf^@2cG)PM~NVmiQ(hO44&4_?Bigbg(&`9@;w9+ti z=g80uosaYGyYHU&-hJo8`MAIT*Ke=2_Fn4`pll;~eB1ronL&Ju#^h`hEU$kZ;6 zI9*84;Dp_}2wI#FfWC!Sl(Q2d}58Rt%nZ7&GiCwn)J8quL}=i zxqb&`$G;IW^YMJP*mp}$l};8#{c(Nc4t+>x^g^_=`zi+7KKGiwffIDsaeLu=i))f9 znyKSsc4|>cnv-xcZ5kVQnIXCTafJiU-f?Xm;NBKoNk`3r`;cA7$-4KtQ%c)us2hbO z?qHXaf4ZU-t=W*&Gou(VIBjeB$1|Ig{#mfNcg69|+~uKDXWZgw7r|+&+n?m0Qqe$!4M+PQH|_UvZFVrCSsW!AoL~jLLTZ2-oRIhrL)HHl93e#J8QQ# zqDlJ;%~iy+Q*TDeNCaoio_>>UK`_=XN6ec0T$R;Rk(*Gv>3MjHTc}IAG!XF}A2f4O zTv;%q)3(eL-$;Xgy`cCoj?&raY-Y>K8h8xssL&ZrMbA(D&E)%%aou|6AMejUw&Pq3 zWoE>9E$S>$Kk>ufa(<@XB^qy=<7^Wd??e^r>|Qa z^s?J#MOi&XfiTm=(RwXKsFzT;7 zjsDx{MEzH)%&O6>;|kPr#fb{vb${!#=gY~_Fq4;R+AkUv8E;)>-2_j2tUSQ1xmOO) z!p_WR#7a6Y<_^zHcH7SzfSE&vSe-E|Yys6qFvd2IcSqq{u(s^#en}vpeKOgun9&ZP zrRv`W%65VcyRaXW?_pLQbF(MVmWK-Db$aSW)3{~%oJIB!V%VQn10uRp(3E|S23BP- zYRGDn5?npODSf%qZ+D~fZ69I=Sws{<8}5n?n!ga#>;W=Z>feA_ScJ8TiWoD1JZ)+A z!;#zXM)%O}3>`+IQWn?TFful_EBt2yQ$Nay}OWj3U zm=tA?X*#gglg;DqfA&7P*xU5c%w3+9@cG<{naE@(F;N9M}K5y~k`nHG&Iv+W1lMac!&ZDY{?zc%+ z4A!7OXVEH;y=c7k3FN&$^X|TaIqa%+=4>UZq%L+_T@BxJ1c;mL^+7LIX+y0odrhUS=GFX6lAoOIZnGws1wPEy^^eZ1pW`d!9Lz-<|3vn;#ia4C zldrgm10x5o8LupP62)HAU91R6*t)-c>@m*pA8%%Uj2Ox1vh)>t+dj^<{N3|-@<_}C z?Y8)59Yiu6YtF*c8PzzSCok2;M`;^4txFIu;a!LE-5UMs7`h=B4Q1{aiKE%q7D(+2 zj_mklx-dl1-ti#vYq-qY!tPWv`F+knApsZz)ZTn@0Dfa4Q|lu5YNw#Fh)DcW;Z!Wq ziST|c#{I#*YfrzfD^x+$G?&>o3*0Iz!o>~VJ683b$9^3$ zj;~e8CR0yKs#aX+GFbiEH`N^{4ZKTSt;7jHIUlT#Gt;HnFTKoW97IcM|Cl=xL1NiO z8fz=}66`KE`>u-@$F5Y?EhCnl?;EQs5!jyzQo6iIDTR)?6Fy%|nIy9c{i_#i!tsP) z(5Xk`vE9=C3kZ3mzDik~aN@y_9vs?h&|8=pTAfVhX`8@x1d48&{o()^omnl^*QGfs zrY>WA2f|(KQxkf5_d3++u9Aac>BkYP#RU1qn~*7$kk691j8fJ(T*A8 z7dFJ(U)E`C;h%pgVvXu)ts{`JIR<;ZKQF6zSs?O&WQwT6&puGnK`nA|zTSO5`^MFC zV#*!f2BrOIy&FSzc##*@*78~!88I&zz7qF!`Gg{QL#6$GD!Xb|n|?^=*SUe-ixTD@ zdJ-w8Ue%CB9+1MJ;uUv;J^!FkU8ld*^+nY^Lrf`4vBShwZf}r(<%V3Z86WSL23PXs z{WqY4=FP3k`^#=>rKb?nrb*^eh_y>K-+~985T|wiS9QGj$h3Do`P-glA9y8W5G7&K zx1m-1iHvOC398Amck?2hX01djyK!1CQ`Rr+zF~Cvy_LCiXLq+fhXB>$Iv2f^_Bk%E zW_Pg@`)(cd2+<}iCoU%(=@K&>u*#1i?+qT4+;fqkfm!=5KdS%@<&S+&?28Y(p$wUi z|4pyXbI)6G(EKU_Kb)gBWF{sUJ8IqbJkZt@M zcJ$pdXJipDl)3zOb-afKgc1fVxWi zK*HCNex?Cn^35@-nW@FWMD*_@q}^jwUjQ58!CBRuyYXCfA>s%EI4%gI=ar&kkp%OpeBMZsNU~FJa>&Q?QiVl$ol_Cng*V65iyRIMbt4Ngkuo zU@xoh3Jc4)2ED4X!GRia?n~Q>?2wBy1!1$ea9s} zwWt?d!HXoR!+HD9ONidrvzWt$waeixH9aS{cI&P!2wR%6x#?zxHBYdJ5q*OL6VtfB zH7^};cJ{U~WB-jZO|Tq2RpN&+v&qX``=7V%Tiz1oq!)}HcCizfa3;faV7h3$M(r}4 z3_X%RM`*o-YWpmK!ZNCwSEVIHrg=aszFOUmJh4-CtGxQV6;ZZ-uQh+CIq*GGQK)gt zy1E$1Ov|Y07b;4W2)j~Lf}zf=blasGVBk31fot` zm2>&7!tic;+MXv((}JJ3N{hff5OEhle!r{JLf<5BRiC|!0l}we=!*^j3k23hv#Pd>pWTz>c!}Of=v~U3m#1A`LsOVZ!uaLZc2>~ z8hg@ESskUbkiZ_~BamWQEgL9vBGuce4TAFLQW&^#+(kh-O6uQ)aaYZB^g!FN! zM5?V#`~1+YMYlcD)`KirgI;U-CA6}9Y4!~sVkNNwKK3*mQDK^Qf(&(5WGo?Oya8(r zPc~@uM7-e}47 zEzuaM-qGB4uc^a$k}*R-_mg)y$-qHMSM2FEN@ecJ+I%r@#IPPK;n;T$KLxhtCmFBV zZZrg?vEnqM!uu52@*M9Q#wm{7|6hvqUy!(`)BJn7BYiu;@ko*W_tlUDwP%BRT%T@- zHP6jdXqys=+Tm$eUsu}G5Z3aWnsidB<+Dyb`yBfmqV)oFtpM-{`k|4|Q+zw*W%Ifi zm~;l$OZ&}27F%q6okiW~{U;>oAf(|#o^#c^LUub}ZOtz2#m=dq+z-6)s%XTBJ$ATH z5|1k1Z~41)N?iN zab|<(xkTMpVlT^qdw z>2dyv<3%#37Yt6#Kl%K?Jksq*1e$@pka)pVQTLTCTNvGOG1cwkrWX?-wnZ%M78pL7 z%_sh(=|PMqfjcK=o_ziJA6e(1rVa%=DTW8yoqi$JNU%h88byjF0ke-)gu2O#L>!#g zHuA?3OXjqBz;J(R=!^GUaC9+|eD-!L>BPJ}(l8Y$<>i1i55 z`JS5tD2&L#gCQh`^~RLV;>2YMZ+P$)opCIVZaqR#g6F`EJao5Dnre{?H~{6KAG2z1 z80T?g-%VfgqAiR;_inn$$4IT{Zs4<+CMhG5TLMFb?@IK;5-Ri~wsX7j&ybvXEe~aW zttv!qrBV_X&H1jr9Bp#&`xt(FqI3y$ard_6mM95*)P#M>l*KDsJq(F!qS&fxr@w%Op ze%HLv$xH50lDU1pmWIoSBa4GloxdoP8hQw_>tB8KD;7erIO6RUQrMKHwus-y+jrM~ z2D$fptg_g$AS(wvCRDdLF+V8Zsdh>gDxvEI44*o8Df&qXb4twgJ)_lqQSdpJ_W7AV zE>iDsIwz`OC(ZN|HxE~rdhDdGTsCsbOI6z>%JJp$sciGCR`gjc2E3;8>C=s~(KT;^ zmiEDLh(WsrB4qtyU+20;y#=G6sG)9YonKKgg-bqYw{6Red$ z1ukd(+jpwhkrC+q>F$!Z(;n)UH$}?bX148C=Ts`Zscg^>wU*pOB<4;TME; zgRl5ql?w}K`6|4U|NQ2%Jkg8w$>>4%u%20KNjEKGYe>k>ifqv1Z=B2)6R2b6vT_wBHLFLDS)bwq3f}n zkEJ)JW)SyM_fysEN!+MZW^vtbs9!9vTMMs!Jo?a6TvXyCXJ`WhLI_CrWO^x z%!J%lO}c=}D_EzWtcnmFvjvZ&;!oZv#JtlDFVF=9i;VP3+e>S~Gk-xdcM zx-4p!;}AB<6WnFF{S(WUWg>Y=6W_J|H6TQz+h#Yg-%1mg>{+Yzh@4HY~q=fbH;nRV4ST1B59X*n8)bDts?*Jk5s z@(ikcQJTxMQ206Kb|{A%C39Kv9oaBy_`X;{8bqqRM0(nTz2@C&10VG(;PE1w*;;5%~kE6Mj>42qaBrRJW(a{r_QEDV?ySwm-|`!D~6IB+4Xx`pha_61hEG$2ou}acDFxP6s6iY(9Rp3R}?b|Ma$a zMzo-KztPOgJB6KuZNWfoAef1Q(pd4PW+t2m&=0BwLoA4kL zkB(}vw)C-N=3@-%D9fG%x6tS33B=>84;9Kr)#t)K@aS+mU1ATlCmgOIfA!! z#7G2*CB(g*S)WWK86@>dqk*C3yURa$Wi2-=Qd~dcV7_=bky>3DE$1aP2iyV>0*&z# z^7}NR`ZW?Hz7=*!?$*(vK8>RJFm?=IR4*B&BNXev-e@PEkubFFW_sbtxFl@K)6iD= z6&gZTVIzLJ5Ej+Kzi8L`!i_70FF5=PM)V>|T#!Kq|EY9i4fKgg6}?0mH6>QXvNE?R zaTVsY^Ud9ML+99{$nWIuuHnVgt?ov;f%(6uL>w**L>xeFhaY@sl>WcI5$@LJ=-Ow^ z-1~0c%8CE-jpW3y0=!SeOSA+=Kz_!-m=h%zYw*gpMFUW;MRUKA*be%Z_X~QuAs3eX<$WcV47ME(B?}_0fBnq~L!3 zom(h$@SKDvz<6BomhNWqcR7P~Xw5V}b`=qt<0VMvE+1<^#M%7l9sJL{JFSw7LR{HF z)aL03hHfc*-r0|80B7gWb!!C8uVLdiOmAi{ttsGP#yv&0~Q%csIiGG?`8hnhX8x;1dW3Zp60pnPAV z7h7na$Byv&G3Q(7$crEd@UY&{#TzT)%ehjg8Nm=O@uTMw36og-`pj_;W2n?Zz+!m~ zt*-w>FMQY3Qk`DQE{6s;HV_)`{*n@Nap_zSQ;BJy^JU0~k9RJ5!2uU2rua`#9K4y<qX7ge1*|_k~>wbezAF79RX|**0x_ zXLmUDJ@SjzSA`{H6hV8l27`xFaY(0jo5Ecofi_z}flK{&ZkY}_V|R}pLEg77AVy1j ziZRG@E2aLnKN~kduvFNHFT*T*^oCa}+o&r~a~qu==QZ&V!=D(L-tfW8;&HT8s%%uTa~F>zT0t zK{lgjDof=pDB-+#!yA%1Q)}?|1@FM+dTf>SxO`()Lis<#qPs=PM%3{PGEp zFCkScj))FVU2Z+~r@s$)&cYo%j)*E|24hP;ZL;HHe{LJ&lS{;3x@>|^R!-x{1bbPx z9hc77D`yhXWyllyAxv=lM%3DCLKtsT+^KjkMsPby>E*rDs%gKT)!iK4lIEc-OpOi5L}4re=Dj6g4lJRu|Xpe+2Qb)zo* z{UT$QNUh2q?e<@?R<$mE$@-V^?OpW_fq{2;#go|1KDW1d8ujCCwsLp=#YvoId-fN& zD|l;GGB*+P9KGx3QdFhYxVOCf^TKJ5J!+sCXl}Bsf2R4q?q6kYlc`t1cj$I^V@%mw zm#tR2JG$_%IrBU_X4wxDTv5k9ZyvhTJqUNJx&lF+Z(d`0fg30n%5$xt;*m? zSB1F0VtNh^H8hi_k(n-sfE(>U3XU#!8-%pH>CsQ-Z0)XM zxMetm%#EEz04Mij2K+m$@Tz%EJ)bOqZZo8&`wlI!T|2jFcu9r<0hRtqD#Ymw4I?ik z+_XdFeavG6QSM~~KZPQqkgmD0Z^4+m_(tzBYC|$&fxkqV&Nuv%nRNt)pH=n>4`LYe zoml$*wPoUfDjgn4;wl85d={EJgL$?D`)0e7rXgJqD)I%i+jK?Z@L!>`3j1Te(n4o_ zHPgg|V(0Vb);&SxpcT$Zt0BE#@vYaB?t9A=u`E)KXwy(qvxbwyuUpRo{m7X)LRV8SMbhfxXhOE zG9-)^)R!D({%tB`;YlYvLMU@5)>Q5&4C)EZ={sYCJOx;UETOW&zkhUQn8aS&*iiJQ zc1fg6HR<|N?!M7Fd?Pfp=vRig<<~RyS+t0HY>xcWPdSuXHXi*vEotRmmwb5`d18pX zcUd$?WwS)N^2bFSuO#OMhtHo}6i%Nl&HK(h2!V8a%Ch~>(sm1qv&_QM&pXOSF}!x_ zy!)nt(ux`oarK`^Rg5e7FDT}Zg|Ii{5LMi zaxbzC%6d-c4Y*pvwm+RPxhKkh?HBB13IH717>QJ++ zOIHx%?3is6NttXXk+1RJd+r*=J7d(KQDTVs8kVNe`h!$XalM!pm&iQ|2^Tvctf@>A z0vuT>Pdd6eN%7h@V?+PEWPR&`fqbtww?6$2UU}F*Nw%DK5J*_NpYDpY88f0#6e!J< zJJQdP=|-enq{Z9;AuHnwMH?%xN+Sd?M7Hzpt`mT;^jCmm|GUXlQe z@PoxcO%a(>_3Ch7df^^a*8sc&9IF}bq)Ka@Z=j)&5A_@GVq}>|S8w+|vOy8UKF2l$ z)V#;#Ytw{Yx{weIwd2!`c07l@!eewU#Q#*SHb>bxg#9bdxt7(ijOhpzw6`})j8XS= zCsPOjUTJZ=UH&u<3n`midUsB7S>f2&o;zkr_* z%$jDvZf>z~bhq?vqm02S0|XqR?wQHdLhf^S{mii2k$@L6_}p)l&hTM5eX}AeH0-#M z5H^F@f`6WozY#SzO7{e=Dk$*{@nVi{48!J!{Q}9sFLaB@j=+hwPqLdCzX*=E7mxnnU zZ*?M2YC%Q69$YzI?H*lPLb@W`gg2q!K!}e~U~>-~D6qiPAFZ@MPqy*u0!?L#n!J+V z100xT9^#Jy(*Hfdk0R8WiGJC{b%&pTYB?SnjywuPaM5|Kq~SAHzVwUXM4s$#2-#Dv zy7%BD9wU7_t<1|ppsyKJ9K3D9`>dHdb>zzpjsx~**#}z3(QM+DcTC@32CaI-^J#}= z1eK9l&SDrgrx6mz;U=(K0>68~0h%=b-PbskYp`eB;>(u8lxfWjIH>V`7-qr*|584B zEU+x;&uB8N!dKvIOvJ-dX>(Zm;|Lw5(0u|UZ6M|^`nKnQMtRwq?BxDhQ;biJa}0O* z$zUzRgg2n)7`F@DvIfD~u$2$a;wBrIN6G}iDN7M7Uw51=kHtH1Q=WBiy9Q3^0^ey4 zl|8oG9q*R`Efji{=i7oXD`7X6_BTLxdww_g$j9A=6^u3`byoXvPfJeavbljWnL#@; z;!L&lv4V0P`!anZu8Rn@IRRxfwXMaSi74>cCdF!zr<0JN!IhVUrha&z^0i{24~u-^ zC|%UrQ~7_>KSi869^ZV<20_rJQS(s=Pmzgr`Qb$Ov5aQdFE1DMhR7LnS$nO{ootv3 zu?fuGvlfB37Cxn|qDxx@y@BWGh8$>DLh22IKwlB3z{cnnyyED$+6kD&@*i8lgf7yY z-cSzW$y2@a^B4%w*jdBa4g$oj#*9$o(<|atKUNF^=^fhOQ|`1d`1EQ%?MF|gv!+;2 z6VrnmGMT|kT&k_5;-MBX){plIhpN96BiQ=gL5(sw3SrFVy0$J`0!>I~3$*)_P)kG$ z|CXalM=rJ)a#2uHqC&czp4a18s8eUS2^>*@>HGRwRMJdx{;(oDs77tx@ZY}{7MwwpfuVXQpKlUux zryvZ!kPj98Y-(^`3!RPmVHtC~8==M}tZx>3o6uX*M6T=>EP4}}gDVwNgJATJ-M1BS z3OtE}qlmbx&v$gWcc}r7uZekt7LEH)uxgvudPY4d5{KP0d65|arH1!q~-<{8n-&!&d+= zu=qo9nH*bs;;*x+{3?a_OB?2`B2OPX@io|}bx_Q!4}Vn=dhM03`Kw=P9`!~hQ^JfH3LPhvC^^%1|MT)FINx$&u^>abV<=e9ye+j|k3X9Zz aKly*nlQtimuAe>J5jV~q9(9Caqx}zg-%X+b literal 0 HcmV?d00001 diff --git a/data/Parity_transfers_by_age_list_UK.rda b/data/Parity_transfers_by_age_list_UK.rda new file mode 100644 index 0000000000000000000000000000000000000000..1a8932cd26dae89ff24bacb7b330b03546e7c52a GIT binary patch literal 136196 zcmce7Ra9JEw`FjL;0{R$u0exCut0EkcXxLJ1a}J85Zv7zg1fsrg-aDs4PXC#@BPQ^ zm+l^;>+L+$9{ZfN*4%T=H8*(#;=6x-@Tbp6+EHK#1Wcdzi$*Ezv!du1LFWa4b#pv~rt z!RlREPr4C8X`r57PPK=iMX$@k@y$e?EAREe`ScI&rvhlKBE3iwLqn&Ue>+EeN5AfLxM4#}GsC z2Yz>ku_MiLMY%Ag%~bDn+$GB_aFUiJ{kSj98-EGI7{TjBa8`(5XU z(R)EVuw5YOq?2K3RM*!Y5Ao?f!*P9Th@B~fc@Q-bSvAcOdHsMqlV0QMS*~yQnL4Et z86?O8S)Sj3-h)eT$iCnD%q7axHM~*#?#6-kSZ0jW98}HR(cZi%7q|z;uj&j3V^sOs z0PVJ}0@|(i0{+f{RSlX z-vmFXN3~oC@nfaU3*+IC{*u~qVN$0^1G`h|2mt-2Fp4+nLKo*OE}uT3|5$j&u%Fo3 zTg<8`zCz}Xq-{=HbDCy5;9TU$){F?j&+LM>6a8i6FafgQ3c&;6u<+Iw>H&;%yWE3% z_dxnL2MCNhEnIMCzBYt}rVcs$?wA+t^T=b5(U(s^&KyB!jd&L+f#nk{?EL}l!4(}( zDv5m6+!a-W+m1ZMzzNKkWAChXA_;lR;Bzco>>G(+lh$r{W;0{^~b{YcTV$K z3)_i>+Z;ym&?DL;p$qOFHJ&V^lTNav7#~2Gnq(lSuM#yRdC45i&Q&TygL#8+wpNXV zR5ZaX`?b6r2GpjcMy=5nT{#cU9z3fkJjGrYO(Q#ey(am(H*x~H^)fy-g1Kqv zT3)3Tkw&P5x4ZvWyrm5G5N!7~}tDyDm`COk+pok`s(f4R9uMDZNu zP_06?D49*TcM_YbejsJj>1Sp8zP{~{31qMz!)7MTh zDOi{rjh?jXv?76I91;s6k=Lj~4(}xIS3GyKk2v;|_@Kpyd;aJz6c@>N+M!pwF9%;^oS%t{ZKYDW_4qN z7MqFbdRM#hfk0$SFHa1lz;wp90c!Z7E-PDGxES)$tLHb&7hbc#$KYHBhiC39u7QE} zj<0BurP&zk-Nwo{Qput*e&6593q_}5#A_vb*7GA5pom$Y)3t){!IlRZOBS?T-yERw zRq=`Of|9jhel%$jjK;|wQ?w=ZWuLJPG) z`Q2RAF|Ft9Z#={7ONQ$CPv>CO0Be%WC;2eK_bIBlY-Q-;m-s%d^uVi_~Yo4~Dd z6Ky}O=tw@t0zoJO>i_OBEl6@2FoVGI1B2Rz{wJ%^4yN#e%&0TR*u~& z0_xLwS!t}oF^rd#@4&DEzZ-r{KArwQ8o-$>sc9Y;-V1e~8Uh z->tIYh%D8=$XL_#rw81kDrsp14Ey_y%bPJ!A59f{%AjmB@lTRQdW`(NhPR4P(P7P; z3=~=lxoO6p@E?oKHmR}4{gmWK_3*L@)xYOgxv9(CqxE>t2?U|L4tEc%S6X4Vp3WFV z?9AymXPN71Hlk?Qi8HCq-eA72wx%^UPxdP)J0=d->5fC*k$wbDhTnn9{U~O%?lH&J zGVE;jWFT{8<6w1v3I-g}^5eYL;a62BWdF~pTNN4J)oL?tU?gcxCNCNQ>vg$aVDfDe zFa&Vnq6^i4Km!O4C^UWS6$DmaE=;23oX+Fb;;=jT>?Q`7Hoh;~qrTBTFBiHf7Y^9Z z5A9l?-*T!KM;MAAvt^N9eM4bppGJWjA*2j9EsHOOjR8_5flR(05}w)*=?N zA*-{!i^Lm(89#LGx1{S_!M3unik^9tcy6mu3-V0nYY*^1PoD1m=#7?~(?TCH z@t3^k5iTyu6GKGEWT^i7Ea7MAY9cu;zHNY_?N#IVX|bHpjmUtNVc2Ynr31(#Puf6()OxZ`OLkXqR}*cn9+@boKo1(vr?rkmT$ucX0*htJ&b zm_=bPUp8?0;0JluxEwlbp_SdNB^``&LE(1uojn?0@|A9cL`|T8qb?xWdd+hGNv-~k zXZ;^P90Af_8jrp~gl*nv+JFB22tp~-xnrDE=@VBQZPUesAKIsdC7v<$LwbJ(B`Or-B?|*5z8~!j_DJv$a`PmsI5U*ub}oZpfAN4I?N}55@oO-uBnqkG1;E#C@#N^bWxO8HwgTqXY&I#Xq z*+ZCVuJnFed%~9wPuF?D<{ys(slvP5#(}6W;H-|orOT;|`)O&M44xAWhCeYc z^PieKNQjovD&U7UbkT^~eI50y$2?vn!7S7MnT+j#R^ws|Q7 zWG#AA!nT9ovPUc%{#xclL5kPG+3Fi1NYL`Dx)zx@xQ)WQ=h{U`V(HPO5Iot}->xk( zLRv>UqM~P0C3HBfGQ}QB32M1o} zFiT;iSGvx`J-a++^_^!;@Q3VtW+LUd`;m)l3E;w0V`Iyqd&!P!t8Rw)9iQ8#vzS@)8$^#ZY*^h18lONj!0dA~Q z-OS&%%Dy}Qy9N6)PxG3~Bvg49@5JYQ1kInV_($29Z`22HQ~N8nDTZ!m*+w=wBxk6c zS@-_&-STcS;&(|^qYuJ2OB6@nXGyLvk*8c?pVM#l5N{P{QAqciGgt`gkoCTVtqhx! zSvb~9pM8GF*u-dC@Vo4}r7vk*(Q)(^#IFm&<7%{Vm9RQ$Xrrx7(f|J08|08ntdgu* zO2sVO({*qZowebb<7q*=fzoX-nbyF(&!!%>KQ6f+V{`usryW-XY-M^s1w@kW_En+< z1aeZ>)~n>)kTh{;@NV6+;CdaRJbs-JD$8nA+VAA^5NHzRZ6T)?p|%3OOpMtM?Uff69ScBL58-l5}F8EOitFQoI{M zXCDrw?Cu+5sB)_p>Y7u2pp7O0tf1}c@@7LTm6oOvq~reJg>*3`N=oQ<0$)gAD#rO_ z5yi(srvfgu17NfBcf8j~S;?a3Xi|sKEwV0gZp>Vkc@J*#)=yL}3V+eC^p=$zNz5tq z`L%GF1#_kVMrMx2DQNb=mVjFmQUa&sr@wB#VI_x3-q)SH?_ZA&qnO3JKfga}srQ{3d=K zDhjVlDDgRaR&|8(jxqITEN*}-W4rz(VdP6g0NlANji5rskw8`KE3LJova>SbLR;$C zaLeppOzV*LohwU*PW{N{(J@%_68@Tuow}HfxnJ8kw6t7^fEJnLONdD*pE1xLR>GX4XVNWnYnmWXep}6Ozn&zP_s?z;S`MSo{)a;$ZVDv-djWAo<-Q%=3ogvnQs< zUk!)oO_Qo18C48Yd!dYmiHOg-CROo)f&GMgeN_+$%rAD5Pngf5@-x5;0Vjv|_v(S93-o2(OsY~E3tJ&6j03C+7$aTb$My`^ z8R60(jc&>P?zb?+Orwks`ELlrv{&5oW>mApYA|=RBSB1@@J$2rAqTT5?gXP7Ip`t6&7S zJb7NzX9;Kn5W|^P>Y--~#?R+GS(|K6E7mBt5iMslb3KyuFmL{TnPtnvIi)X+x<#LH zfY9+(7C9-nyvDv2XvrNR(hn+tH%h-(>rMzT>dUM6NQcrGYr z9z;kpk~eAt<>Zk6V%af#sZh1TPg3&`_@0BLuJr8pTkF$F-=-k$ggssuG1-dBA;e*7 z2~T^-8TEH_=&8w;P#h$~P9sfs7k2<= z_Mh87HotAo?F8Ko$l7%@kZ2-yk1TX+63I67fErOCJNAPbHOMou+9knTpbT)_IUnH* zTf*LGzICr=FW_x1;*rTgLuwHdydhx^HeX4`r-pySxoj+n;}V(Nq`!6s^w$J9945o| z{+P0;=vQeW!$F2j8Xe8{I3Y2umNtx;v@TtuKl~) z(-|F))S;>jnnDQ(2uAtvH-E^9VDHJnaDkPp`iuAjB&>3b`X7<%KiSW}QKA2nhno=@ z<9&>OiC+I&544l+J2*tAcWcA70&CFN-gk-{_xvAB%EHEsY5}dsc7&9CM6-cw`x$C6!Z($1={hnn|=Vi}A=JN&(A zBXoIwSPUDT{?96_e*Vu^UVbP53~S67?6IVl?{jTn$@5F-$w+Of-F@Vo+tt4~%@=f& zfL~$2P41vSY!!FCFvot-S9UztgOb3%JJM*z*B6J(yl(I7XoW*5+|DIdf~rWsF=sgu z<)>DM)xrrUOb6>tN$&W^bl@ z6=Xsv^Q71{ff`yun8IMa10UjVXVo7@f@e&G$Tb}sM;B0UN8~p4ELTxLT#s~f6n~2F zpI)jtmC|1iAt3kmh9?IaF7wY3E3z|a8L>i8&kR%@r)M=j*xWEDV;my0Ows>iPul~ZABKYvnwEj-wsX8}Dp+2^8CRB^@mTElv5<1dbdU+F01#&ipesbdMK#Cu1k7b)ullxv*LYf+MK2X$#Vu&(pRWRwArcAy98oZL}D+m?f-m zJ~^HI_(npRhYwWs!laG}4YL#O0_P2qntT)B)0`G8m~bWEIh{>?Mcao?JZ7+3A{M|M zjnW%9ny$=urtrNm)fo_qIAKyr$S<;e_*=oz^y3W?POUL9lSP`PJ!dlCb5AyAOr5fs z!;}~QyBYT_6uB}L`HH3SU5boKEqPr=%wZ9+}%(Tpd7$X$I8RyK!O{JG16SVnO)Yoh=33N_dFg z)3C$|hByzu`1y642~Y?iQ4}APg+uDsps+> z>gyCb)s-8c=zVXe?(pThGVIQ2DBItgu&tQ__M@m@Lvax4*(HlTV#L>KwLY=J(%NDA*dbfsq4U0rb%|k1 zVI%T%IjNEu`BV40r?ZwzGDkcYIpA*v5dOqNBstFmo$dAj27tAZP;rYpz#X>z|;G@o|whnabTheZufEIcv{;83L$)@v|>En+mSoStRr~6gJ7$b0X}4?M8Cra zS|A_vU>cNi#W2yrS_aHG4sC`Z>QG{RQi8AIMR$|Y^ng`};T`rCMu7JClR1minA!hJ`f|A_^ zAtkkg8np5p8#-t)pGPvLoEhcOhEp((` zx8~Q*;LtX&opGiL@$Kw{oh=>Mejlatwb8av;oB6w{DgG>{sVH4#pVTRb><9&O*}?H{cCQeCtPhpD-p{@!clve3utZXz4C%Id2s4 zsgR4Cf($zVM_Fg@L;}W5oErf-S)i7Y%188(KpRh>c8d^YW|Y1CW*~Swl(}En^u<0z z&^!${qZuo0B#=nNFgXa6lmCH-6_r$MQ1gW_U07k}My(>LKMcbFBaO_Opq2VG_B#){ z`f&|_)N>1!uB~@d6Hc)0Ps$-84hH1^BaLcLck;r{S)8kRSigKXZtff7_WUBAVmE^w zDCp94;~(+`GMox~ZD+u9FQg{x;2_?~5yz{*dq)8=*&fDG^X(q-ix(JJG-W};OP=i@myjEhs93j(k;wg?dvvK=r`PCxZ|yz)+7C~VUy zaN=fZxyZ(zM9iRv)=DEnn0I;)pj!)DeniWmMQA1@r&W2O-@r%YD&P#5?aU%@jZ+7cUDLNJKBd{AIUX!I{%aIdVCO`M?PVM@apGoWCPM&&9gX2cL&1L@ zyfb%BKi2Ed<+T2rd7$Ws$Nr>0usTziw_(~N3jf%}jyAgD1g3qzAls~n>DU5)(0A_* zmt(+37oOxWxZ>D_S}vqeXIH!7iPx=@JjGVV8#NgE49R4JlvTtk`-9@0D$^`gmow6Z z!(V5^h6|#JdBOrn0kEdF+7ZhW&?**&HLn%you5LZmP}1Ik;x0uJz_L(*|=kHP4!ph z>RveLP|!cbbsj_OjFAE~Tik1-eu-`2QtKVWXJCC2sxVaqtx4HiS z^B&R$)%P63i_qlvCNQAHi#oz{l&PC86Emn@q|w^OrfmWg1ro!nYTr}yP>b3LuIVev zaF=*nbj?WpO$R?jHbaUMyAwS%hfijMyQmPOm7nJldo+4l{gIs`a4m=86@2H`?2i#q z-%-n9*%veqdVII1v-3-7zm9-; z#yd6LEMF3CX@-lK(m#42-XKsMHS$5rXEV1k?$}_dYww-l)ZJ46d*yC(T`={1&nipj zHA1|L!^6#LXS!*0DYjkqx#?gzVfh3PWnS|HC~d)i`t=ud5OIfD;fcWq8`*=zWy{&q z$iJ3;z3^6JCHT~=Tpt!j&%tVJVpY2fwm4Y?;ThR2i<5PTkqtk$%h0kFbaVMtY;)PW z4-QvQ@KwcV20baX=3XR}&EN?Zn(&K>;q&vH9=_%6kycGdPZZBBhD*DB3C2@Vs0zH3 zRZd|HD6=tP>@5Ly@o_FG*p%Q%B~wjIqcBjs@+h-TzBWEjXx93W(L9h|U^9a!m`lVY zk*Z@y=ZO=&EGyhZ=bW$Xxb4haSlt5?o+d&Y&@N?rz?M;2g*~It_of?1P(tQ!K0&`%m<@k zGNQ!n81%jTLAjYB0Q!1mx(3PjB#v2w`zS1%=#7{asS7{R5`I3GW$8FXtdjj9khzK< zaJmX#4SNpM2dV&?n=H}ePn9^co;^sd38{6eC8fSEef0?F;`mVoYo3V^LLYmet$$i} zk@R{FZO9iticBLf6=#camXHNS4sUJGKw zn%L!1DHsgW@tU7em`9y*<8m+G)PimBvzZ=Cqiqrt(04OihN`0Dtk~*oz#+_TOb_jw zds8meY`~m4!nkgoe>aHF6<~Rd_RdO9o%^ax%~TGgVL2r2jsT5Fh}qnBt0z9~`uB$f z%y(O2%2m!%WUF0dh5WM(H+0h-S--N5E#8_7!P7P0g&bU{;_A`yCLevjs%IVot1!g0 z>+TG9ac9R(Btz(gh_E%DdI z+~{eqJqJScz_*XLw)aA31@W~vi-_JFk2f~wFgcOTY?U%k;aUjzslm*nF!k}7w9IX| z-4Va9JMKLLZ2+|t+TEm=oRa)XAnZ3KPocr8Re+;=MqkEgZZ6;Q@g<45=8SWCdV zaU$#yT+%E^hOn_7aG;jiEL@DxC!PJl{~fN$;M54K{z3CsE1wwQNHd69gbUmol+fL) z)nL;(c&xCe8L5*Nk=PovW@a@hx_*h*tU^&vuIgUU_G_|jskDE1u#_i*-{=tK?w$}0 zIN1u@%lXV%?u0@A?fYat47gzXZEyT=&(Uyl`q*QYA3h!;lzg#X9PEUfATxJZ zn!+N@`psRp%?sw(WW8dOiy`HVku{6@H}tVbdPViNm^v(}_0&=^pQ{|9rq@s&0l*`Y z{`k{T&S_J=S&QWs$b6drdSzD<&+H*Pq<4M7M8wLoK)tjNS02a(cPObPGEu1YQS5=5 zCfp^_#{*s#abVm&_fLT5M?OD8VY<$l$OLhqq|UZV$koX36QZBdD>1GQWu-UG1#>Jxe~7PY;5 zht*pm< zH`Nx{iKf97XEE6svyZNQy6tm;KiuhcXBS`n|1o?R0_+^ehO#H#;F@WhZdO* zv265TS02dtW+(87UcCq9291O?t}(zbmfMNbTwrI~y`dqm;A~J9-jCvNFKjSRbX5T& zvJ+zS4x8OBG_Z+q&HO0!qjh{XY|F^aq$9HmyEpyi<7Hd&8~;IXKl<~RR2>;u97WU1;6E!=uNE4W z|3MtN+f&57^Z~YEk6T@52zTf4fFrV zrz-kMg`7Hs*bP^C=>o%~>U;BSC)WMgsw04Xq460W83cg{s(=~Ym=Ti2q8$L}++m$GjL zOJfH4tA3Q98K%TevY_`(L+kWq35@UW%Xemq3G`wI(d{DgCn3~UpU8wSz~X#1=kHLt z!x@zw^2mMSrun)=^%2h-Co-{p*z<|3Xz{+Sx8B766=2B!?wsF_ZdV3KWx}zo3HjN7 zsAQNXybZ?P*1pr$A7icbqpgGWuw;7dr6v!mcfT%V!}p8@YY)?iOX5nuz!Z$&4&e$HY6f^Gh$`D4#Xb!Z_HC-k?wcC#R;JMOn=$B=a4qP1VbFhz z+H0$)p|+@Kdbz^E8H$A0-p_ajtc8xw6kZlyLUJ7r5;l$wZ)a8&Xp{owbKM12->n z^R%nTmM2=VouCL?jVWFE_+j^*z&#V`O7dNu(o!yjsgJ#w0$xXTv{dc<-!Ji%S`2ZK z_Yqq6-{lMMu2>^0oXo*_MFbf^#lXeipX*qYL10c@(siDWMdC8bmYAIlDAZYJMmor1 zgl(Iin{Yq98iynv3h$W(zUU$#nKj@>a#lc{%vvv9_zN2Yid&)uix3*Z#&|P-G1rcArVLPwdf!w2cH}mp<<{_?U=kl!+epn( zR;4URk=S&8;{R;9FYTdGg-yOTqK+H5*h`JiCTQh<*1_2tKHl@Zds>F+bFHN{s6Fm(YDWgZf6iGAZWu5YjpK>UwJKe>p4i z^zyKioz_{*7B&z4!cF;7ar>lOB_3TGJYVq1XYI+TC+X!)XSD47^K6H`Z0}|pv(=$V zSVgRSs&%0C0TekK2RFT%BU-Y;^++y$=(EFIUYpkK>vS~mdjeU7YC8;rp69>1tOJ$I3Tp!%^D2;>fz z<|y}NzfA6lZB`#+TW-RcG}kqNZcSI+SuKhU{nD8`5Q-sl; z6YsSJI(2LUKfW<{gC7j^kFeH1)h;9(=YlNHyyiLbVO$r?Mv1a&ag@`C%5tVkt5*DU z$2}tWi?jjLxNhtYV!#%eiyEUG_8kEFf{$p|uAO#5Q`(y@D81GSKOU-2;Bl3uv}_{J z3_KIGro&(hDogZdwUY;a(`BN^>$b>;TjSk`(%Bf#8oZ_@YtSVprDie;O~ zwKsFtPI)4aFS5)(qUyjVIqf7E`*2tMY^qSR$baj!1tWJSoXff#d?BIOBu7R7a%56n z(ZNfRm}uOJ3_({7&aL%sr^&GI6;layu(z&98hmYNGwWJ=ie`h+AvLv~zpi|HlcK|! z1?iIiKMwXNRLBgpORMjDwI=Meq`31R`PXm3#0DLzR~a?dc;oxaXs&F3u-`0F)rKMG zX-Q4G_hnW}TP1>+3HRChFLZ~U2K#a?t|)8q7+>_z`sEZjbM&msIOuN0cUCLh4&2F} zC9Aw4(06JM5U9J#vu8$afvS+3V5$9rPdYY>`s1JcCOx6AIAWahxH%1kl|Av`Imhl) zTEJ*7*M`L8aAQyZlSv)0VT9XmeY@Lol0`}Og)48?Phai3HMdRW606WdzA61d14vY4 z=i@G5$zw;d+pueEw_Y}O4twO6_I&P?X#iz*`EAUoRpI?1ZRNEhb?j{UVLka3ei<%Q zj1q^qJpS8($DUgd8R-zUqW}h4GP)de0l+`&11%4B%%uHjpP-F44X6=hO#lue9n#)Y)FScdWZo9|G}LH#j~8do~fX92^BQ zd4to3c;M5{sZfZdNTHs+W=`!&^W-Ns2r25$px>00sPcA-tFKaZ-V11`lK!Tjo8?b_ zV{4AdFokAj_y=IE--Z;<$g>s5O-pHEI`22G%`O?v0`a|TMNEj`aopt6JNgLgVV+$~ z{unQ9q3YF~xw6W-DV-PQFN;B^ zjM>!u>jgza<{e}!{Dd$ucMMOQE2MMXmCQ)}HE**F)Q!>?P9m}*b9d!t)@1nQHA;Z# z9$_wJpYjKTIBtS|rO&+AF?ru|W@wDMNm+~=5BcRD14}Xk$Ird+^*5!@h7mbY>Jh-W z%x8*k12ii}%|mB9*rcrnKy#a@a0E!;=Ar46ru9Ps^mB^-@Ob8ohCNY1mOP8P7NYp# ziI3#-wfvUpoX_M1Cwv}$d8~%UPa-R=J(%#1CzbZV&EuBLcEMsKGRtf1YI|9zp_v=`(PTeazL%TYfrn^P8IxNTKsA< zI(U-6=E|d1pE-s6U|seRGt&E-QKAy194Z1LYlqOtb@dI0GnK8TJHt(_BLc!Y{CPg= zFj)3Yr)e!nv5T1&o7!0+OVBV1jSi%JRh>q1nIs5DcIN{r!AmMFW+aZ8NgF04yYN;s z*xB3oy?=EWG5PKzuu?*e#F<*WMZ+wBn$7pguVl}xiH#ZqJx%nZ9JB6;J7q8wMB-M@ z^+ia=V{!%#_}J~J|KqgC=z~}8hL-1}Pn9&f^3zwF@KYkdJzH%;cbnJQ;ULmDO?*TW ztKaaO7TSp=lv$r3gtwEUb$I8d--Oh1Zu1z9On0y|18UZHIod5q=NAi!-i-dCb`Uft z(9D}%5Q19xvzHhKwaeJ}2)J-2;hQ)$$*=3Es5^cEwo+9XB&TT48yweBM<31SUC{C5 z36IAG&i*{O3LHC_b60%Aot7@E2ex}7-95B&TVYUtDxarmt^$8mr(@jlZMpeyFp$Zt zBtY_yhYRB>oBOtzBrHEYk-;{~|8aQ8+BbvnDi!+)F5NCh2UzZ|@W_T08q=R07lWV$ zE*UNNiitIMwDmb#OkkNuYj_;AxQ{j2+OhVvL4Qq@jX#PvAsIZ|wON&BocsPRz|+wf zsgqa^HtiGbb3G$doZ;CD-Tvp_TnX3GquqBIuE|(OJwAS0b2I4p0ZHz9tGt(-tk_n9 zlvJ5-+)*w2Bs}~%{4h|Adkqt$|K;xSueh~@r?ui@Qa0N_#X(C>ms-Rjt0tm}JNfD7 z0e;$(@?R>8?L8G9*NaA7Nl3$JCvjUs{1KxnZ+>D73+?nJFCxq^H)S^FXde?|QA$Ej z#1_XwA!TP^@#@tjaCNJ`2gTt8%Y<@%AY5k33x^ zy+IR4MZ|=?pa0ICQxt$dCXkLDCuYS48b1Loz?9lWSVh@QVI*OTU9fA!IrV)JVv=Gr z8}H^&n{B)3JmIWvZ+*>@+WUv23jS;lwl`!_^VL{!5>vlNgO%}fg;Acc^dU6SSiB+s z`us4^B+i>T zWrp5lXJ2%4x53pWZCyzoNT*uxePsLQuA!G7!_@y+uvT5kfkJl87fVmQlB>bVyuUrU zQQwL2N_7piTWxYu?|#O{>^^IAu|iBG^;-MnC34J#NFrklr#054h($3KAMMhBn}-0< zEj6#Wuulqu^g)F`dcH@$+MtLLZ$9V+Zei|gz1Ycd!F*+oC9?^$(?WMa_+mi3i0NAx z?j1(tkcULL=!MVYX1c3K$mPZoR$$gVYS7#mnWN57=WvPdICfGDPSIwRaC6L8O6#}L zdw&~__?#u;$(vxv+Ucr5AJA44&YzKXV!rroTU|^3uls!erYQYiJUlyMr#_1OyNUhf z;m?Lc&G6sg%Q2pVD!U`FD$vLEKYUVptR?x>llq)aBbRngC2u|{_R6^@CSMpX>T=?P z$?02a!>bqUQ9Zb4uFQlR6XBDu9VKSrwlA)vGZ+f&X`Gs8ci$1u(ebAf75`R3K z^VH?^e_GBDwY)}M>xJ%e4AQUC>2um?GPYcJ$;P6ckh2O1^go28gZE}{i@uPPIh$*S zH}X8~G-hW-*!I6*F5ud9vONI3K*;l>9LOkQ6(8j8R}ZH4$c0+nzM1S>+t#`3*-EuS zaADX!Nte{h1E{lfdn)T!WT(V%a?7KsoGpV~jS{E0i*IRjye^ zauMBKE8SF=#X3a-lru;2*#Q9}VF+#!tKv2R;ud~FJn$tG+>sAJ2@bCf=dEFcH}xmr zmbuBMGJn(vNaIvUZ@x|pm|L5W7!mnW4*+fJFOuR+W!4fUp$tRw=QrwaUI!#9oiyfZ z));25PZ#S;FETod>0qgxzC=z)7XD-8LKq3;bXm-Ado{Y+R*2f zjWVG2qt#?UktVxcLwaWviKQ*lqp>~yTmLniPg{ehKEo}C6Lyhsl5hSemGQSiuEg`X z-60b!X?R$?&^dX>*rhOX6-%y(MICCxWd6>nH$(=1*+`+q>t2%*Os((DymLabDf~El z*?yEJ%_6(F&`DDFZEr7C?o74f%~Hc0G?OUPs8BG(-=Xvsrf#&xu|DM9T!ZV}%n|tN z?=74&>)eR=c3m2*89k@J{yxbAdobwJ3Y>7v%7Cl*rStj43cE65B3koj;x`p83ah9i z=DCQkkP_H7kH~K7HafbdG}$KD%~#)vGTQA5T1JZdyU;K)=k@1fPC<_x0b z@rXJOUipjtga07k8aDY|ZPC@Tz%DmJ1e+mS_YJnXv+I^E&Z8Ggudnm#!4d5$Td`c{ zd&d&4#at;^rG|9F8PyY`Y9+5n$m{eRa;snLCp(0i6_^nOw#|x@fgQ0?wCsE~G`>~w zRH^hvHubQ%v?#U4iDVBqO+S8X0kh#elUHpe0%9EtVjI}t%PJVBoJ@0Fbqb3|?w|D^ z&%6bjo>6MN^%jq=&S6LNENm5k?`u}CIV0?5-zB(oHoAq8UfHQyFR$0Xj;U_W;PNeE z@(H5b zQ&oAO%J|Llhy$Bql}K+{QF`A1Rd!Fu0FEopfCOw@lL43FD1+r|w~(hScwVm-L$*lo zE0lZ5sfaf$?NP4quHkPNS8hS?cYbI2`u<0Fb%BWvQe8OXwakvb(<{+8;Ql+PtID#SwGw+wYmtMeJVk-evuMkwShdhvW+QHUW{lqx<2GtU zzTuTsOz@Lw@c*4uRJ5HHe7l;3QKy$$(v0pP%u_4sebrTi>plTqV67Wmq7@W}J^e*K zlM>~H3D$KDS^eTw1w@3G@B>I>=*4(G&P(b$F{>AlG~rrIh;^Q!ue~{Hfah6`di+od z3Krq()rH-7hB~@`lEY?^iytLwy}E5lIQMyc;HD5N|4hk%x|no554@Lj`>d}o!c$pY zCsNv|CQ5seEe2cp%02bozxH{>mq0fjZj%qICJ!KI0iMMcG|b*yyEq!-r*$J2_@d%K zu7-?#krY`e;Mf6k*Ngm$<&n5V--(tJn2n)Jl~YRaksrF{T7=J({4E(n!-rM9ioA-lP8E^mA)jp3GEPrS!5Q}i%j;I1M@9;c)W{kVL16K~WCc&pZSzBIC>q2Bvu zWWCR~Fp0_HENb_1t7P%CrEzL-dn7}ib_{5cP}>TiqoZ&py`~4>Fd^4Hd?kMZ6H5cC zjqE~-oSJ)hUZ?P$34i`HZ4?v(BXv9Q)QtwKa*z4 zLUghOR5sXW&H%?RCyP5Am@i+3O|SiUg3?M$j;EXubF&vlm^AKxzCya*niSWg2X3_R z!d(o#6iku}I3(jjsVSUqXxUi>R#|3bIg#;Ti^e)bKgS(Ud3E7FIZkjZx9a+q^k5{X zF5&*y+EVmNR70N90o_}%l6T^@f0aX0^-We$9lR29NikOQ{u+!j_M?ZIwiD)7RD(*w zo~JB2E4rQK>Ai9=2)7-Eck_2gyUq_cee0!VfV%`YbO*z2KK(xO+m}1a|HM|YxV78V zXe}{8oC8AXF=8ItnLWpr&>86$o>Cn-)3$<1nBU+2W5pofE{r$6GTy~gT5-D9@m;?7 zJP-xDb?c9o@k)E;n^Q{AT+_z=8J8WfWb54#40W7vIVhXNWL}9o#W}70#kJXEDlE|4 zJQc_0o|YY)vA}l1D9w$;&vF(TV9B0rYAxtO2AXza3cxc$fWR{2H)VRpq{Ccu)7?o zNBV(l?a=FjhMKcn6hDe5NZ-PK!v6(r`Y#vs{?nBX+M{B<4*jo}_rlnpFaNo{7x%Mb z9p5YGcM^%`V-k}Yd*@)QuOG!Ieu(5_Wn(X&vQ3P6KSkhUBa4g&MImS5mMQJdqpi~A zzbR97qy6w}G<^-$?ChDhL@+I`(G!2jM9T-E*R7&V{<~eux&!4$As^6${Cah(p$HuI-?KAZU$R9R8=#L&AmM1F2~d5=K6Nk?n0G*?=j;Ec&Hk+v~)fQ{+C^fRJS>q zQ2Qqdn_zjYNqmmn$$D*r!N;@`Y`qb_=D+~!`pI?hj6yAI|3Q`k_u(FEJf%Q;5jns9 z=mH7){yYQ}FbxN}4SGu)LDRVLLb$)!-s5SupWcBIC0#iqI`fLJ=b)Erdk7vn+-W|R zkg1f!s zo_C%zbLOmd&Zp-OWbGtdu6@})nilF#*t;@s853`;(?!6b%@b_Nbj{z~2F-8M2ELw| zH|5?yRBk^05qOyAh4Eogbw$2dJfd)DOqYwpK7{k(ya=d%AS_wYbDN+j%!G8*{JfA9 zj%~i8{!tuKhZ&wQFcW!)NLPET$$6VeM@$+ajZ3(f!I4Y5F^9;*R@Jx@7bqlcsx*N~ zL5U3;-3IdF_la)!t)|AUaB1^&%pnLvMVi-;(%X()L9Hd+swX?NU0BB#j zeKJkT{Paa{&fEEz9>Mt7h)>*th2eh0k{pB!qxf0Vs?2;u@fi^G%It7jUfn(LZb*#^ zOHWqs9xr`cF`yx&m_O`_>gXb%HKqCKySMRoFM8b=|7Spn-n9WHvHYk)v3_6BnX6r1 zj>0BFM9P|-OW9LhCbpW2#So_FvIzLQy$ffon2P^NY~npZ`#PgBy0Bmbp4ph&(}e@HR}Ut7V-85TE&th*|EtQxD@$|Y7X)1X|$S>cVk zqGni(qD4Gf%o`N2P89Z1ZJL*J$0?ZjSKBSJgY=Czvq!#@I^Mtkvjv!)-_((6zh zvJ``%fgp0hgX}ORifC`2`kFVpdWuBWoIH}9Dn6tA{8epdx^-s88yF^tPoEZln<1+= zuS_BfWByX^_-Nh!j9RR)L!8g#<)SO8`kG1=b z$Xxd|EabJAfBY!0By*fTT;h3Sark*f8|vi1@I@~#ZH{&w{feFpSc_gEQ$E-Tru>Ce zvnF4vwF{gX?Fq|>DOt#`Tyk0t&^yY`myux-vtgOMone;d5JsEuMYsa(q zjIi~}^`siVji(p@$wvNqLWIPBa&b86z4!(=dszDV*+WSVGmgiHODtH)KuIDVJs7U*$CDHRjKv`6kcIG)eV4(o*$oJa(4U~Q{x_cx9#8Cz~^YrwCEB=)bj)uon>e3zl(Kt=hR|7ZO zK#rju>2dB1BI%qyEXF(0%$v6)SxUdu%LBKSBKtc(oz zJ8*zMLQVux^}{{sV?gcmQJ%vVce-_b5L@J&DGu$G7Ln_>=UCgU2$$ z)>e$;jq@^%W_!fyjrBkW?e7k>kI{2PQU0*SA4q8t8Q8em_Aw{D@Ele3sdDFmwye$6 z{5S{bK_proxi8h|(K&K!uz$rID`F}=$w{NSF(96%ol`<7lIreiEj3AJ+fcAvi^jrDJV6om9xwt?51B#dQVbugnOK^S6m{9B{{STK`RVU5@meqo_S3b0Xt|Ft8EDtxhv&A*!5Cy63XN`oVK_7z2DkQzam?E zrfuN{|99;3e*{VYQA72Afn1ZUJkg25|6374l-(UUZIKsAJ*ATazxGlhnCq z)4?@QhgU&odC?8R-~7b1#an%x7m?4xWz1qlf_bUWot3o3_2OTBQ!wMXi%2K68%Jg` z4Fq*+65iO&GRUv+D$)EPAr&xpAC&a_D^(Xj4{l$CjIxmAk1UG>QQqh6Cd!E^9 z{kAp*E7pDkk|~hRGQewx4e3xwYPiWL==-=!4L!K~31JiBysapA_u7dJWU}P!>@*qn zdb#`zkZALPlo`pruA96)IM?NmZEHAM*hYO49<6Up?$tP+FhNy`H=c7=%^ncx*;`S+ z{Y;0a0pQ79X^DL{rN9kGe!Va79g-C?c(9ece`Jt{xP~xABg4l6*6#_M?q_jo!7NYbfi0SYO!JmO#aR4*&JAnV z)}L*_&7;dgSI78Q-lNf*7Re@KHw+sh%T1jI7epn=?RtTZ-WglBo}b!(4HG~c9Z}TK zcC`c37$i;e_IL#)-s zOH|m~zTC<)6ZXIB+(s~q*I#eQ+g$T4X3+`X(^$-BzGH(+kgr+ij|ja_5+tLbgl&I} z5yWLVCQ30aHPVCBxEBP%0%XYI<5daAlCx+&Z0PfMe2<^-zuaQTv$7(dUu7)fCSWRM z8<*S%f>CpS1>}gUP!A}yRNzDn!I}^__y2-E6gG+8{#ElLy);W7tvMpQam15%Ku?|C z-tqhB);2ijgmX4hPY9f;Y{#V-O;G>!qY3jdQDbJ)*P?^A;InGbdc#uul{hAB(G{Xn z@XbCbKZRUE_x(x72!iV6=qNu;d)f$3BT_SZsTxc929DNGhamk z0H2&1gxueNS{I|16yMM8l)R`wYh*N~luLvGU*v|nE4^^i!IegY#M~Lmz>?5lNm@;Z z5Qo|{wqNsq=CWJaP>b1eCRBVILm>fW(x>rG}GyBi=M*xNIzc=N{{Uh!Ws;x#2&xRYddK-< zma6>F<~vriXP`C7(W|gP_ZK-1dC3O(OR@JnUFwUByLP!qtof_L`K>%H9#`FY=HHIua-%km*eEs>>xqZgG8O%yg9 z{vgy;cLyp%_JYfvp#m0LeREs49f-&NZy*g5yIlZaIgiAL1&RdG%KKmO*W4T?QJfE; zM#R_^c}Wj0gn>o4HUX!BZ+{IKLXAU5kLTXNxpoLZ${G>hSk(a5D(qjEi*tYDP$0vp zg*fg@fmq8iTWr#bSp5U89vg_X8etOk;YQ4XP|HG8mrVu^cA7PESg-P96HxH1!K{E> zHvd)QWb>no8BykbrjROd%6}O*yTLC$$Xqt)cAdMn{c6WC_zyewHKKW_@cchL1LG5a zk0-fs7L5p3jXaQxrx3Z&jS+wCjn1B5W+3OwO3GpBu1kHk3-)MK!O3@+6~g=^O`US& z_!0W`-JF9f4Uym^4w>`#U{~rt$tO0q1;^CO;IpyhRz(`D!=qk_qdc|uS`scx$cNdVA;CoGI7M!N{vb*S?5j>K&Hn^& z9lf~|XE=WdKQ##Q{?z=~hT||vX<;&li`>|LDJ{V>M`?s=6z?C>KU^MW$3%+dWQ1M61b%-WwaVY;GC$+X`4UDFlJRX_4 z_QIHz{`qL=g=Jhvea^!)k7-x>Fmzb}O&=%;3Z-c5D2N9{8x)}DtAZ-BT|d_8-f>u= zF_Qj1T|6z~-*B+XTUjPO2E#U{+;Lsc#$`icg&o;8?j3gPel4C<`PHts-}PsT;R_%A zmwnH0<~*Q>1Wxi4je0!n&iZ^Q3wWFqy^2U%#)j-MCh*|dGDf%$gs`FAUj@i6hx>M) zs)a92$)|hpXkVYao++~gfcP`e_D%h}>wo^3_jpeB-ZJieOtmmwYlN=(O?9a8k?f`8 z##99ix^@VPcx*N>xyN*q2&p)X35FtdcF^coLVH*PueB?Q(BR9-f+j9|D_CYwk}qu<18N4U=I^hgda}7K5QU={;bI0 z0*20IY#H1kA9=u=2Mj~(TDS}kJ+x38BXB?CYrR|5cSD%!t@?@WeZ6jOve#Zq=$)P> z00z`a;iyjv7p8fc{Ua5A!!6576noUE_<4BtVwKWW2?7fSE+pjdHD1{vUAm8~7EfS) zo)F3#yp$rN`*PRaoxSsUoO(NhCXKfSV}6KHoxTULJ8C_uD+u&&e&Pb|p3zeGt!%L3z>kn%0}3#plL12j1a(RwuXrwN2_1kxoTni~nvl zO>=6!kO47spY@V<=ohE!YQa&O|ASR33W4azU@}^>DEGmj#~tG^g6$XXk=W7S!5R;t zJ>t0=83CS4>U{}u7MA(yz5memFd$8DYvPFZ_(v5IY1ChPtQN+Tec3XvYpu>W!QmmU zk(Y`h0AxBE_Rfn)A*~2jP`p{{3B$^%9|YI6KBu<-sv$a4M z-*Y~F7yw*jP~MosN$noVtQ1%&uO+XK%~ruyiJkDHlJO-Fe~|Ax%|)nxX>XP#@SKEH z7uj+LaPK#-k-5qC7Y}jiZ)JjI@{f5O%dzGaBt(G39_hVHn;UPTV81)bz)_ue4+v&V z2GgEQ-cFnSW_C$C``Ju*(dp5MO}Qgx42=WUKMA*e8)Lu!{P2oboU>Vh{&P693Xc^Q zeJ<7PiSzYsWJRizkN!yGy)s>~tiYV+?LQexI`r=ed=NAOowW(iCLX^QeJbPLOG$I< zze@tDt~kYYD+Bbdz0vdKA))i!l*LM9!*YU&eYn%}ADc$eimSpb?adr zVO~8@7h024B~YDD;$$RhI^>IuyPaKBV7Tt(B4G6OftHUfVBgE+YgvlnDl6QK$X$D2 zii?b*bJL%K46K>0lDJ!Vfxa{vfpYdE)E9C~Sk^Y`_cWU7Tdni&K!3E|)Y9$vr&=ZO zsY7pWsCBtyLoIuh>$^+)%A4&@);7Xc7xOR(PIi-(2^7Zyu4s(LbIJ~f!!*(|;+lF8 z>%}FCI@@o@>8W(rAl$N1MT#^NpWLEGD3&^;$Td0gwmhzy68r`zF(CwhL|KJtKz20N zk}(_+kl9O%JOuU=v};aq;8%+@?Z%@DHeEY^0(7hdkX?(r9mdsMgCm|Byblt>3>ZNt#P;x_xb`AXA|&c>PsaXzGtRX?!PMrSmMu-;f8|B?1K@*lCx zG;z1znehxY05aA?ct|8wV`LB20I$mrYFT8g0aSMrS6V^B)`GKAWDKC z%_M-jqfXDYgI~1#oKshjj=pP7ptzBJI`L&mfaw^LE4_t{Txw7Ih8E$}z09|lszgi( zL;l#gE@OZ3I!_=^qet0`AXZ5Bdi#6sy`Y{uk{G~+nHUs@=6W!%a9jj_!`zgsaE?II z(oO=Z4Z(X3Wexsvf;(3;_WF?gZre4hS;j+Rr+U>Dsajapq^F}E;yOwu(p_9CM5Pc1`76zp&9F=e;xF`gQVaoN~r^-4ncN zkxz05BYwj`(ZoPRbjqWiVUxrcUQ0Y(K}eU97f5N#+*0?jw}VmM%2^!t*o0HzVRsqG zn+M|=7!I6xAliN+HhU5MyP{GGVhiMPrYp9xWo!J&=$)*0<_5@{oZQ*y3EePENdA09gEZMiSu(|Ya>xvR6 zBmUYV&z*Ke*FPqh?ST!KZ)J!QATVzHM= z7XWF=o>yT)uVGp;3L$S;4UnPKyj{)b_I8poJOLgvsIqdYgNqBW$-4lZ!+!2|(_2-ei_5lUN_G zBTM%5ZD-kI5i(*P#I|Hs<~YtRa!(@3M>8JFyW2rKmP(_cI?dQk0b7|z$)1RBVKYvg zQn0|YM+wipwcKnut0HyHt-M@_K-$f@dDy6`=R|tMCw1xPBh@#jhHsuC-m0mo4|O=b z82sy3siuA&bHjKSpNY8tzTL9znfiBjAVh3b>vmM!S3#F?fOh|@0|DH`_pKT(H*AO2 z?x;zI?U~T*m*n_(xTcQxqsX0%!2me8|6Y;Jhu{Ljb`JPsxBVc<_-4&cyr z=Hr%)xYj^dr*b3U`F~o@ZOBzt5WU5kW^qqN!lW<|T88!hR1t8o=b4g6q4=$|0{zss zc&5lMDrT|J9#Q*RcZMjhDxqmX#X{L{BOCTAWnNwI#}4|<)tCoEx6ziH5il%leHMXB z`Fz}}^UD#$Q=LbVpw}6&*n&|HUcUO4&CDJWM51)&{3ObPErXA z?TvVB`Q}_M@d<-=Pf&U#^zo5P2M%_Eb4o#ev=f?mN=C|=$@zmS+lSW4eoAHaHr6UY zP;WW9+Qy+C_$ocVA0>{cFv_25Cq&vwGpYcP5=7Hp8&7sf~Kk z9=3)og^2;ve$M@XruH;C%!q$-K0d??i$Xm2m>i5H`k?I0Zd9&SP4G4DXQV*01s&>x z&`!G!$a&QZXG?oC6l8U&xJN0`4&CtY7Ecfzy(#A0(V`;d{-PIF z=Ye00%Kf)-2|fB+RdG+V7mY31Rez1SInr;ArqDi=lbDq-o;%r_Kx z1^9@#tn?s7Q+za}GL{;uZ6)z_ysuk-7-i~}+?K86-vju~rSFgLH*+561h)*&L(N`V zxkJU~B9wU8;KkCo1vEs*aU9md3tq#%t=4yJD7~;~;vLO_R`j4K5Ugd};K)Ks+%L>^ zE%9TTt<~r%h^wzJnZ4=S4^fjMdWTffC3^a^8@0_7M){1#CwW=TfF)zh>nz84SXQaW z$vt&#%TpP8Iw`k)!Z@~(s!+vHEaA^`owH!)*|seR@f#D%o|hc_s$=!)Dm(7=?Kn7k zo1cH%%l(69?TqJN>{F_PY{#ZD8^o7t07lB**mx&h5&9^ZrN?%0;y>$S&${;S_xW#HG-i$Rse(pZ6`m23vTTW_H>tW#-t$plmnXx8wJ#){Xq?=xmWy@b3%<)faIsMVf+ zH}}$3Jm1M*X&0*$t>%(^t0%Kj5W=N_9UVdoV_m@_(I*~1gYzkg-S`(u96u6I=k^%o+)1lM{P2xI*>pt<#?2FW^XHCd0J;{DU#9`T^a^A|9+ z;l+HOL$=TS>+kf-YXEaN;pr!7NIsaVOHPsQs);DB-nRkdK|)ju9#y-iVE_Z+c-7D& z-4MFeHyd=)^yT7>W!Df3simYkY>LuF*gOF*ud7q0hB|Ncmh70qw=K2OZr$Zw)75LZ z4?+X*=2$5{uZ-&k^hJG=J-%%=@X^V9Pfzh97!Yy|Z618hU!VxNP{uL>o{VFY<>0(n zhvs_+0X_Ghsg1oUKt{S(Q{V(sGOP{l=lYRWw3-olj zIx*Kg-+qNw>moFc>(uy{A&xJo)Zb(L!#3hc56vQgr4QRD9|XUX7<`n}<$bXJ$dN@{ zJo(qo|NC{N;l2ZCX<6%D=ctl8Kkj@#rbk}nM18b>Eo;R1I$VRAQ8n((ZN}r$nL8nD z8rQlTb5}25N$TS(r&C+v;9l^N~%Ho%lYG@64BE8P$$L?u~{D+XH zw?G@^6f;n)-JR4n9vm2Y{3fkX*4d1HCC)=hj_BgKB<4SX;ueK$+ozQuJIoiU@yO6Gm2DCVBm0VpBNCpS)z>ePQ z7;9a^rT~pLs)`3e@^o9IJj5tG8F7OSxiA*DEW9-%?q1(!xxqwJe>H9V(fF7&-YR2) z*Wp9C8>|;B>HmZuJdG__3Ao-PKkks%cCKT!X8JwN31(DDIBChDrC`&PF8VZvz2LLa zq!^ZoWJLdVc)J8BD{{9w|L3)8zKht2mJpilmmVj1$bAx0>LcS2cWEVDH?i8>Y9Dfz zL(Zj!(4=TJvoH?s>1)?qWDZloRM>(Qk8u$_xDpkd%w%4*UYpwjbBGCxXK+7(Sb?eJ z`O){}kDjz*dlEIG`aT_VmxSvof5Bq9#hdc0D-~SN(_W<`F=#2Cmnvq+7^p&kn_gA9 zZM}eo7+=rDstQ_VaqXd@+rB5ec$8JgV za-{v^gU;z;AUe?qf3jJj0(NuV`4^sge&+O{t0*FyAhZ+Pt&)!2nQw-p-h%o^N>=16 zp$&}k`#}F^%{jR;6%BtoWraUu9@^%q@B5vEq=W|~wIVD0?rUwsw)>iA`tjcUJ%xg) zbJVB*$nbp+nh@mClgxZfHl)-h8)N)%h)ceb`IJ2E6|uL&cA_U90qEsdwTqG?BNjky zIJ=g$O07+=&|SR@9e=i&n>a@Jr|Vo$<3xRRA1zxCT7c>Oi0b?|n)*quHPazMMrt~w z-T+@1W3Y?rb5A1T|FV&T{?g>MI4zeldMs zZ2g=G=u^VoM9msS)ZJN0Q*9t3E%Rty$`P!IYz_G<|HeD`%!#%;>Q=(v!FJYgd@whE zsdwZ&IUg~8Wp$6L-eWVIKaIXX|DQG}I`X@!Zv=_@?$~J;mx$i_!7jbGAI%S2>KTBy zBy4dhw)J!)VzO6mof$#j4F-yps)PWM6XicxvKFBRcS6&U_btSdJQ6{3U@%Nyng*II z@Dfo=d#@hGmu04d>4&w12C*Z8+~O%^^AZ2LEx+y@Hlou>hh8bfV}Ct0F2$8hQ0Dt^ z3Y}grFks=We5e|e`|S!2@8@TKDRgTGfJhQeZ0Um@BFGAtSyJGZc_t>}41)rZ?&XiM zSzn#+=&s=hz1dWpFW;`|a%7tyzen4LQbF!**7pmU4Mw=)FY+VB=V#J#1AC8P2MF;V z^plGUzR>9B!_s)TJNblp+7^V&_dD84Ikyf5so@qt^HoXLjV!r!cLD>OF#~Hik{>$V z%?@YaNWc0W1w9+#pD~5xXqQ_Wu(iB!%z4B5Akoj@xj5Dgm#$wIPEoXM{yXIpi>)AL zu}6+EeU(KYUB8xd^AHhJeHc&7k{k_^V~*O_lkl*XjPJWX_bL@`3e^CVBbfoX2E*e zp?8Q((hXrqN4%AJ0L&xiKQKB@U&v7LR6+FjijO*P>oe2tk&_O*nR;dm)0z0UGotcZ zg|!u;GnD?%ClbcJyye)HUNm0jQtLrEGCs{X#f~dE1V>TP?BBniu4OX8=&k_{x@l`n zw8WWY?*}G!gM6R7t3I=-@4De`2_G?P>a9{7&EDYBOa~n9J0L8o-*$8n2?n>;@I3VN zqLe3$K^Rn9#lB>NCJw?uFwf5mNZjcr%+jm_Rcv`}B)cx*8l?hFJWaGp}zK=#-)+)wS&eQ!0iUcFM z`lha}exmJ4Y0%W;2EsyettY=^J56v*O3MrSi~eiOK6#?iDencK@-3lM+a3NLXGG-kX+GPU7DSoW^YK<0rYQ%T z{>G@$erI`_{4OrkX68xHjuEQ)(18OA)vv z26o}`%{CPvSMNwO4l1Dldye#+H}%-&s9yv8a9wa5I1I0Ev*ciyz>Z2A6NvDhW2f3) zWz@7BxM<#FYcKjuX)S^Qk0u`vT&?a>wKg+YO>MUk|AVhuc%b8m%oZdRE1D{Ubbo#o z-#w{LO{HosnMjxV!o(@cMh;@MT1UJYi_I&;dc_YN2nzEhdgGaw>dHZf^7~xm{9CHP z&FtYblZz8$ei*}DBglNsV>CL5b}BEDSzP%3L5leeL#x|@n5Z5M|0K14EEouRDbK1s zW?jU#RESVF`|<%Q|1FD_0qBbcaddiivU4j*1J>yE!cSqw5uN&7+cVGqy-%KrtuWn< z$u(?XhJF=hb-sj8JnAQDIr@IT@q|_P-a6Wb`;mq&b*o~jfY$zgm#ev}8c)>p>bjZ1 zHR!;0MHU&H;NJkw8?z)q#TM0~?BtI~k928m$Qln>gz~GHG1tR73|bT3Rnm8p>%B&d zukB3A7hrD0WJkt7{x0SEZ%1}0 zlCTP=y)%@O1P{Lq3CkVbye@pMDvHzkpn#}%)|_$wda5%mkdc$rkdxEo{zQOY3DtC> zbi;cURB~ zsYs!w+slMj2>xU{8swN3uP+O%9{Hd$<`yexH{X-kT<@C!dHB|Wk+>?b3@+^E>ef!@HPXEhD{{Q5W`mYH>8C zsom-@ee(PEf~Ng{A}W)*dCIb|plE;33n_V4nDKl=9UsU!)6u!@k=6M2`CotvMo`6> z=lBZ416z|#avULu)T~loBkyHZgOm9s2ofLuCqKp50r{g7D|x|R3a3aQgi#Lt(g z@tt16Gy9&3_^&E9nvjc#nvsoG4WwB3^({~8t+7hYy;(l``rkZ+D{HqX-^)f4x$T53 zg|p#kPQ5H*;^jA442M7VPuI;{+Bw_nroD&kx8PK>X;-RN&Ra|RTk-x$@m+l>7`08E z{KWxTS1?-?7_=>1*=Ae0z|)dCM+2gvr>%iYPJFf5Q@c693?1+hr2tkOc8gTt$S*THYxpnKsm6%-#iR4R|h zfzUhiP(l=^HrgUpy4#=$POpXS3)EuT!|+T>MvmX6)P@l+^6y!_>ygIopSrqpSsB|2 z3%Gy~ANT@ksKS@;qi{uXfTP8{>t7k1+6V1T^#&Hx3KTk(*u2RL>n@G4FsO%oNt1WD zFCMay-StCSARU_x>uHXM;LrN@G=2+NhLY@ZPmyJ zb#pS!sP2fJ4<6LUTdSSqvIt;KuWA*nJ1YTY$0oPa9ZnbGIUP*{7jL|Mvte8<4H~qX z90JC*M80(k?08}(xz~$~tj+rs6wt*w??M4SGHWen2o$Y?ih~1=My8=U>r;t2mMPqnr zaLCjTZ)!7(^=Z3cPwn+m_w{$M>vQr>b?wUFFIHuO@x&x7smikO#Ua{!C5vwvG4O4+ z>^32@e4*xh)N+SMioTC@G)vh+M9Mw&UZvda#{3&N!zNG2UC^=C-P)6vr|xz?L%JV) zD@Nc9nb!#39sK#M@pj*#CxJ1|3#qu!i9nr#l9}TR;3Czye zZMy>ODmTty8D#w7(rD|fqR&)WHAq{!4Z^StN|}jdK!V~gQMCAMUCnK|BU1EGI^@k2 z$txII4?pWE)0NZW;5gb{~qic_7sZS>kWDBg1bpcZ^e-G2%Aq%HFL zx5FXb;326k{h$-2o;&jI@%XJRg(&+$mbvrC0G@Oj7qeb)t@P(nwMlH`{tr$sEe0PM z>RXa@QO1?N7mPSz9uCo!8cf>+??F9*U!5`OW@&eH>^N3OYd?FXt*=!K@Hsp%Vrg^8n7HiT~l30%~S?5o-l)bUWrTb zk_YqB9|!q+=z?9kDycr}cB$AZboWi({k6zed?JBl{^~$`chEN53&8rCRI8BUXSJ8h z#$0RN3&#c9otR@S7FDrUlQz}EHcjZ2G_q7?7=(h3Qxg-dS@o4L zdz^L)&ezh7I3@Qx36vyV&>EeFS2^UlFU!a0jDHwAW_$N}=smG4d8U?1#^PHkHrEyU_LVGX^g}m;FP?6qF*yzs3 zhKY6;Xrx+{1qKy7$IzFU9AW@&T%vrMvLZS^iV}gq4hJG!)wJ&oj7Q$=B6EUE6HP86d$c5>l<0~@87E{Z(_`Ids%nlJ?9qekhob)lHD zn7&8cH;q+TCXrR`BEZx&?dJ!IEV-rp)RNPrhn(8k#GVY-6KT7WSjd{}Oq>Ug+t`|| z1Fxpl^0YuMu7l;HQm4)ZtHd0wf= z$pB?gCRVQJBTh?nc=Qg2&yCLg-g&HpdBsYo){wSw0)#U_g=K9OZf{#tPf=LMaNDrB1K^$K{!B&f+oSzp-TsVtX7bU;p~& zR1n&ipS=I7MX<2QOOAzhY#OAeB%xxrKWP6swQX^=R9Sm^u-I(7?)a}!zR~^aiyUk} zhwJEeytHjJHd2}^)?r8S+gP5!yP|^sy|43rb_gtAO&J)AGyJLPsl%HUDgPdCAu~m( z#GtRZuFe1THb5%x3|aM9-;3?9_u_vPpI1;!>r$o%+?@4i`pN=CTOE28ns(7h(K5SO zMu>ZU%qLtUyX&R9ChT5uB%vei=MoKY3yWVK#PFUC3;qAC2sMXjo$ts@v%kibRx|P; zG#FKc_&Ize-J8T{NxQ=c98)=H>bcDSa;@EblJSXHC$tdjSRrfwK;-BmmM>kg&c_?l zjcRVRmvA*?jQ64+XjM6AOYh*nYd+jrlI5@YAw|G+ccO_hjCO9#z0!|Ftu!N|@I$Qo zk-Wxni=SQOI9WYLE69?0mb9hXu5F6gGSuZlx_?DnSyyZ`yD4QYXyib-F*SgR-676c z+E`Sd!hC|O5=A~}UE#y%Uqt^$r*r51j{`vYBo!tf)bO?018iYsky|mV{=;NQ`&5dW zvAYi5M^7x5RB&t1%R(sw*=?Yb^KQOPY`*NZHXg$sl-sg`h#EulNBkPu4Lsa|z}BzQ z%E}!X{*~voKa@O& zE~ywrZCnlbcIP>5)RkeLIR=c3HhRAu`WP<>=C&2HNSN-3UF3mX+%6Z1$Snkau45-? z-3bw-^V2!Rq03|_pY$h;GYFQ$p=e7jS>ZT#U^vNm`G=E83=LX$J;=#;e$@#cMO#qv3A6 zd?#q&DAt$NX|R>1>U|}PpLnlbs=yQd%IbVvbWi)TPxpOJa*jUi#tX@fNt?=xn$Y4o zqJDYeDsBJa;UMSIT!fblG|A=xF6TEvfj$8u`l5{wMgd-rx%J*K*MEVWlas5SdG3p|ew zGB27<#s!FKj^CBR%0%tmp6q1Hq8dgy(zT_OHLgg5LVqNf>>u@21GDZ%hf3+UJSM>V zZFk%7FeRdsemafac3?_(LVF8wL7`ZxNE5qp+Rf&R!wKYo*+3h0^RuR!DE^ta5ipnM zTm}_CBf6CAFS~i+S%Q)nsIUPuo9}iaFDQ;8jSc>=>S|Nc`wgT9a*V$9YgeGKH^X0& zKC~RhZVdNsXDJH)bYBqq=hSX*a)%jVaiba^DDfEzF?ZO1VtRRuxC2t%rs|{n&hhRh zR+v&5-bvo?l)6>vcaoX#uSS~JSIHVYsZ09rIkNJA-%KdyzV_Nzr+Y}){!U4;Izn(& zIo>s$XOK89UriNmfmxoOZQFPa&Oc?((t1z+xC zAKQ=S?MGh_mB;5}sbs)jTeQ_@NH0UUpU>V!F z7^n>@STrfFTdLjY-xXOj+?2%NC?yv>#AsW+!S9xPdDITsvJ=jo9jduRuzaG+wD)Gt z`A%r&ia}x@%=>|Q3Knraj<0O+K4i@NcIbh&712&QW7_-~&(~RUecpy@p<3bwx?6E%p}q%lv7GI5;$F$ZvDkeU!<#&6J<|U z`6-D6?rOOfJyf4UDh0GZG!4%xqDw(nphWlLGCcL9n0b6<3J}WjZs*o{{@l8KFLhL5 zy0`ii+`ocy^yIY-utb6(@5eWc_mzy$&|{^_UlB;2!7Mz`c`6BsG@JXnb=3TKIhe_m zK3!_++m<=0M52hF4p@`e5m$sB-LXFMrC(jJ*e|#s0BOARxputXz>xR)GJ0AbrbF|s zZ?OS@l&+hOvTWmfT~>-Ex0~K8)gH0lz1feeN!OXX{pBC>>*g(&JHcy)b_;Gl7YTpc z5)`@LeOS`-Fs~(xDlK z5KHeR`2G1BeB&H8&3(C|x7y8EQ$h6Yk%c2;8C<8t;UkFC`kaC^oG5wRD!r;-p;60t z@e-~nD?jC!=I7-btY8=j<5AgS_!aTbh=UMePS?b4T+MS2GzbLjE zE+HGXk?sEJD*!aE;1Cg>>}ws#Sc-g#)4CRaVFU4gompqzf4t+Q=K3ApsFs5ljxF+} z{H2tIYlfrBK?}E{A;_eL=`Ac34fas7t3Ra)OZ<~~Q#&|`zi$-YrjZiG77Ds5y7Omy zUGFphQ5X?&UpoZCfHJ@#%O*L=A=|{iakK!Kj&xkzO1Ag%co>xQ$-h5cYF)pJ`8!h1 zMkGzm_m|$PJjJ87KK^`q^R(537Y1v3{3*raeH1#dRKLXYl;2z9{NKe2t@8)15gCIm9OrEBg{+Eh#xeD3Pp6C-H4OccSIE=*oM%<@mR%jD<3w z8I3>^3VL4lS#lb^9s)uWm(COSqK*@tQWAGI8b(}7oxIBqJX(R2Wow_G5+8l3-nnRKruq4*^lYlljvho`WuSiB`}J0CLuxo(g$}&I~H% zJEjs;Xq=LmFB?(m@KWU0)tgdUfj;dze4z|QCr~c@wYMbvjV-#J7J9@u2luy{JMAX$ zv!%+>qr1zl+%G}j(4+h~!vsak1WM^#o91Ci=tSp^qV?$+a&x`c@YiM4-v};(mP)u% zWzxmZ$A~&^%Wsr9N?iWH7#zz)^}6eP#+VZ`8Kw)QyDvtqebpqIZAlL#X?*g*nc>~ zY#FpE#6fJ6cLIah7_FDcSEX;HGh(4bTMA@tH=jbj7nc6?%WK6#68O-`^SJ{skvy|x zDlB4Fwa-eAEP8>7u4!tmAQ_QPBBvyY@RbLw6D5VWnF48A?IVz91I<&Yqk|&-=8uKl zlhyn(phD&TEtHbm%JdIdqZ)1A4)7=SyCAZ67C+H(N~V7jVk0#WyTEr| zz`smbm{98sb@o^u6>*ZW+QEFndQ&F90Q|6lDCL~EKZJ~~>~;ThyXGTBGD0 zeMcw|U|-MMDy=*g@bVMEw98(+Z>49uSZU|k8MzF&@|{xp5Jhpp#2#4*LG<|frG&yH zH5(VG+O}~mP~-7o-IksRChS-h5wD%={*n$uv*6}NlpmN>o~uPuYxOU}{#^TG>m_u( zyJ(edz5X{T+wgU~g7N(BS%gf)O#a+ERTMMTAhl>`o=Q$>ZLLQz?86R5s`WzICG-|) zDo84@UwYG^6S}s$B#aO`W6B)7(k!eEHN;=5unlk5}izpvj^JML0LGasP z!H+!0`XbvG&6FiG=rEp-;D~3AsV-{i9;f?KgWEq|UAMtm5`%%K#SDQj4L zQl@x`^)hp_`;ZW4|DM*@t$BOJdW|$3ko?2zZ6n{O5KV*&Hkq?U#iYSH;CFZ8_8^s>}&K8zAPS1oZP zTm=dD7bdV$NrWCWkA^S9Mwh^#D_tu=rSrb-t}ca4(>N%IIilp(Xa4hdDn)p|IUpAL z>?(E1dAx3n!${S@)}M!B1a8$!Z@F7bu&)5nj(+azH(v!aJpMo4zA7lLuG=3bOXCiWySuwD;`jA=BNhCvD6rn#quYfgBER&xZ%3Q9svi5& zA`xw!77i8Y9-kQst4-)ep;YbB&OImRb1$+i-S$8q1Hzt^9SzwW5g?19oh4p%y0);_ zWL%()CaDUa6SBw3pAvtkUW6}$$^*X~8B$KSJaM=1NiDf93aU~DRvVY`Wq=z*nqZb} zg-WPmG)z?Mm)SSQXMV^IcH73ll)B2pI!{giuM`ONH2y##$g=kDr>0vM(*-=$bHP(K z^qP)C+y1)hu)ewbte3SB1V`sJ$-BC&8Tj&$$(U>*w9jM-zu&NqBlW)m;x5hMiA)tb zdK{uGl_=9Amw1CkC4Wt`-4>&UcuAioZf^8ch+wk&Nm>AKKMF~8nL&69>OaYS z<+(7O_6HLr%_~#cNFzjWi2QqN_^bR0j9HUA9B*4JeMgJ}-b`NbX5ja<>2mYILNRbeXb6wbX^uR zPctPFz${jOw_q8Kc4{Zrl2hd^InhlwYa!lQJJ`o?5eo{k^{V}_OH0+;5u6lZ|2o0ExY+8JCdq&rqlQzal5QtwnCIk`m!*u?VBiD zaLLj)Wn4=5B_QG|KvTAFNA)pRVh(szKwY0r4*k*fHf_y}BmJt90SfVzSGzmIZ$s_w!xOt(730j?9uz6SY|> zDu2g0i#oQC3tLTd|IvQ$%l*7W1$H*Qh=y8Oy}^KR%(_bM;H5>UE#-hm(5JsMd*~Yp z;jf%j>>R42@b_~<{VOmB?eOdxaXcm55K5}u{Fq{lc99bU?#Kh-WI+YG^ja@yt zecEamDK>dOlvV1=X66OCNfECyu;u>z_!(>-tU0D@bj>ZyZeYYcHVvz90*Z#T)R=0&ei4 z4gJgng5d+EL+|2vR6IJ7V~G+W-mdmKTtgp%f!iN7mf@JNOejpJp~bi$!93RWFZ~-n zEj63c7p_}jJ7!8FEK3739V8^!ie< z3cGq@;=~=taL0jKX*iO&>;MD zI;)ZG?1H@#hr92uAm-XS_-8UB(Ig;!^q!8C10Am_5gdx_dmGX-XkaoA_x6K1bJYx9 z?CD`NX0C~~ljhAc;y;e-;6mx$7Uxi~)k(Tdr&#|l^9*0BI~2aQxauxhLDlr8d8d(a zuZk#s5DAC1%pr*-Q=T(kDINn}3M1nOuI9YCdNp)KGh4kud5sqJfW@rVAByj`ae)jz zE^A6^+YYO=kiqw8d|J0X9V?-Q5&PJJ{6A1j`0jh7-Ml{7dZwm4`qS$Q{4ikT#bR}v z+Plv;=)mRQO#t4bEUYZr?8pfqR|?{a)mGE&F1fF@VcR8;D8X&wtM^iJKe)L zijCM_={A0)tdY*-a`sv`6T3*vMf_!W{TgPSe)}S=$F{l;<>blolxIO9@{Y`v^(Bc} zlW=c3zk65zX8g8k7AC42cA>dNMeBmsVf64FY&k*DeK|bw6SwM#57E{%l=X;^uJo@k zxD36tj~4jtykXR0lhYz{P!-$>4kFOi?DUrlWq8ivkSG!cK$iGxdXL)t zV9X*93{Eyh{3ndoe|?~=7R2K74KpvrD2|gt92gf-p91C^-;cySb06kw{ka$Y6inU9 z9(;y3A3-%cO&2LK?9}JP+jEa7@v&wtX;hmkL!-Yvq}tq}QME_$sA#fONMEyyU+zz! zSA5zSQ^!A*`g`}`*I~+>@!YFwyv#G1!u`~|E_UzsIxvy$Oi@ff<6J&l>mK63mfeEe z#Ju?gX~PvjpPluEzcSTkjP<~tPWGm_MfdPXa)_sLz?TUhbNnb=+?CPzYsD-;o@v!;VML&WI>kebg#15rjMI5f2uc+j~CDxaOdE@3NT=Q#aOIxUF1{OYFJm zV{%rEKGj@IYe?TmCaNOHZq}?j({SwhH>bjt!Qyu)6>H;EnAn$u7q`<#<&N~oi~uP8 zv|jc}P;|;-CVmza?bobx++Lt%7Pq8Jj+!4uf$A?*Dvj$ixtA^}Wl2T+NSs=@(|kCl0XLRm@yKY5$qiFcgBF0vj_($svB zblb60H<%Bse4kZE<3)N}@|12yxc6=BK~~P%>d%bp;dXxm-87K2w^wE=l3>80aRz+t!+bGRllQPME{L1e( zaC$y6`RY1~*P&vJ>+RgeGvpQ)RP=E>svtVOCuIQu1q9miJ-BS|Dkyeif+KHSg(V=~ zEeLyi)H$b8rz^D~42UI`AIlJl2WYGUn*@x(=BK`0nMzvWd*x^crQ}in&3hj+!hR#3 zyk)6Drm!B)Rv6pFoahwcTq4go=8`~K2=Y3nx9~`-HfWZBr1KYMa2${U+5$(H80mwS zs3b|WpoQ*H8`)#_7Ox{E5wA|XtN30HE^p8X4)bxG8#wQyom%FlcHZgzK5Amdq#CTm zvoYDCs@<4mIm(97vp5fNhq+q|faWiDm2e8713W-i9r@m%k@4OhcUx7NAERXsZpybMejXl*95k#4H2oNJ8+#`Xukll9 zr9T_`4PWr!Dm=4uPcSO#NcIISZO(B874Ljp8NVd9gmxuYLz@*}-os<}{s-ki`;^Rg z32gq2%yoB^%DicwFwy+D%9K{ zUNmSV)d+f>S?;GM^!8rR^x~f2H=OtiZoE5|tyLr_4Cr!!Gv{uOTXGwggJy(mW2k?L zS{lqxf}bTq0|Flk8sK=>fHNrQvsZ^Br^{}D9~r%hXfI#DeBi1c_*i{ND&CXCM;C)R zaM!b7oc=_Ntz`D0bY=fs@TJOlG9Xsaz76U_!tg1^iliQd$|2$S^1(%z&Ef94oOcQR z&P}JJU{Oca{cZS6kJf!yX#!C>cCO9sqP+TD7FEt=)$ynBj=|?5Sadxus z-8))eT0z?m=~MFwOiQzWKN;LjGPMWMs>vBsQ?xdWd1G5rZ+&zL39jt)8QTd4s2=Y( z4^{!6TorU(mw@H7YNWF!Orh%Ip60usp8d_boBGV@21ZJZ0)HnGWsb)F0Tq}ZE1yaO zl?@fo-(XCSvTHqR&!N6g`DirNWKQh3+6z$+5Zpg`gC)pM5wA;K6b(gm4P4%P4CKhi zulSY7$^PSAr(Z~;%laZFer;2MbRu;Edc?}r{F{oux>?U04EcIqSItP@PmEE?ygNxS z_qCGuCAaGaCvoH_fPgX~MpvKm;W4Q+aTAydM^ttf@HrG*ZeF?FtoEnAE^}S%&9^rD zUqrV9wS|T)Zq9SDl-wi=@(?D4A9k~Mv%&Q*hHV@i21TTPz%3th6cUNa_e!GeKjE=_ zaU`@8N<(x@I;;d1X@!m4UVPHCspYJ^-nVNsQnTX-N%@LH$4>F99oO56!&io40TA29 ztJ3@=e=(YPK+qWhceVA}Z9nTxz;A>IkFreq^pC3zAP1UYjyEj|aON-HutUom7J`}6 z;KPPiOvMC>j*&uU1hbE8N96{%vUig`bW1nn#_ph0(mGc$9zd;NjY3So>%ybbrar%C zvIJxEZw_jZn3?`>L*PkVP#Q4jR)eHGux_Vz9tyxH)E-`IaGNC8)hlr#7@p+5s+VT2GXe zR5g}_pJ=tc_u#XxGj7$BaIjE#=~delJ$GqnEOgChMAZ;ZyeFu`rfA>3SgK6{GeS9V zW*Asq`iTtn^nd~y0!zkbCy%K}f3oq6>*%zz=HS5?oXB*pXMwHifBj`V-fh-v^*8>J z4Ngeig083$5BLTtjQLo9<%b8GYqe1DI6gb?efJ%im<8kka|Hw$T^1^_Q?0$mcQ_-s z2Gyk~R{W)}s&tG&(LkOd{}-Dn+CnGdm;T8ja zQpfdXqtlTH7E!F?4k+D#Kzp_*ZpyiOY#+nI)HcqM>{D`g z>jOb9S(D3GfRD78^WoA8a8ZMhipM9?8Cs~u&2N<=X<}b8*u*;DlD?=&sEfKOZ~IQ3 z7=IW}@y`gNStRiayZcM$@Sb%~$cenrevZc^vtEj#}X*VZ1@6Z=)5zs6}X_ zl}aq88^T8Kc6s41%W~fR@lTZbwX~Z$S;zOPw`p~dm_uYK)tl4LSX1(p)v;=>;r#ir z)pYWg4IY`*l=JS5R63SwR=dcMwT?!y*OSdwf`vz@wDqI*-H{V|arrw_9hN|WaAH-- zzdRXya^46JE%eOAFM|R+gCydo=QF&zTT552pT9)Rc-9D&^5XFWuU8WD@#;Upw;LThDbUej4mcLOWEC0p=CIv zZ@O^!w-qLGrG$3CA&vGah1C)_ygotpzSbFSGMbRS%6huSsV)hv-WWFOC#OzTqR>wd zB!$ByiK}-?p7*(i9K+=f_mGd6m&)RSeQ}{^(k^1i^A)avdR!{FIgnXR#+3*8dhsk7 zzN18LKek*ibU1-h{EPWbC6MAS@<<`lY(#=&Wv`XTL4=lc1@H*Fds?_B7-K!S-ML|F zu&pFpHG=T`+uoWii?!@p-k~aMKgKVt7{~I+-9pT=<-5eC;uUgDv7L&ObVSFkj42-F zNoWDAl*4~?w~E!7Rc7|lVZ{uv*n37>{c=29ORhyKwXc0@aZ!hu?4N-i7*o#iH2cUF z1Q%%=5D&Ye(1%X!Gdki1$dVYA2;_@xxl?1=l0wx}`Q|9v;J_4gceuhl6h|2=Z^$HpP(XVCrg%g53DF|I1 zw#$-mjdNU8u;z5V4zL?#=k3zpysf4C>@(&_Y~6RY<^xM%Qe={TqCX}80MvSM&=&2g z9el+$K567PF{U;`s%od%0 zl{p@07m99_}5z%NjQP!V}D6sjjm^h3yN5j zDgIZY%P81sqZW&%&6&ZG&E!QrJDLYBavQN9~BuZP-y>kJ0)t6RuH_iK=>By1rI)@oFLH7XR3&=UukD>ry0Z# zJBj>R_Kzsbg{J!$RPKwDwrTVE^Q#a6MK||1Qe`H+5{^CGnuIm&zkE4M|!k>3^eo7@i7EV_=yLlnZuwxQ#G~py>j+7W`TKUb>WN+@I z;*t_E|bPG)U>@JD|U(Y)oAluvc#Q993 zx2$)F*6lYSOXK@jPBc}ayHOM)2k1&0smk_bg2k(+nnIS#Xo=T}19F-vaeAaezw=!^ zec`Juzl>M{qvpN*CZw0zHH9nJH)6Z`TTfg=_9Rdcs61e*S(| z;3Gvsp?A(+m4_0QZc+Vl;x_5a+aTv4+%?UL(oPS-r#x{NkLfj%VSwN62zC_-QGfVD zV+A)10T4U|Y@77wmps|ng@b>{V|m(7mdqho$12kNNT4AB~fQw~IQN&y;YML4s!R2NPuS3l}F z%l;;QL2zuWo%;UXQ3mFn#ofJhviAhB>}M_?0%%Cyhr8JaD&@YK?h zCNDrv%u*`xz9!@33|&%{-Q2@Ph^*tRe8Ki%m8}9s0Ic5I?dtsc_(ss>81! zDiWJ#zW;=D#)j*i_^I`qeT%ZraI~dGJu=hW*4X&RAy+*ob6*wTq6=#awV% zVV=*J8SYyEJ3)ys7e*fF(`k((l~GzuTJ`-Zo@zlk^|;>xDwKFi!(IEqIDotcPg`B` zyXLl*uvi9i`moH`cH)>G5B$r;$MVebtD%Qkk1;x4_C03j1}A2gf#0l7-$S4noTe{? zluB}i^7EXKCq8FLZ2`~n7YPo{s<*_c=

    >j ztRPY3J~y5TRwhxT`RE#|T6?72)+Xv8KC1w8O1kBidNKw*d;gHH!z8vRn{<9eZA@oB z5nSH5YL$uuR10Fg&quA}o%M(+Jcj{AS!|OLBPO;sCv6nW?_%J8(w`r}&e0_Q-f* z?bd$XW=$`d?MC%SJjL1Yqa9Va{+0t);{^)n5*0jqQw9%&n~7Bwt?!3mlSH1;DHfcj z8z?ts??8?UbrOo9F6gU?p{+k4&3m|r#d&@$H5)|)%~&*N45b1}D|6%-^9Uy3BxM*} zg2WFq_hx zA@$UDdHsh}Oy6r#^-X^Rm}o33?1)OA*oP8@hgp<4L3(Qx4R_Qo8J1SSGC|;2-?}UC z3fiVvSzi@Eb*MmUAt~#CLQf$DaFT(2pt)TSd(T7^8<*#oFj-os_q$p;`PZnkNwsR- znxram7#=>SWx~Z#00DHZN2$A6Ih8{ua~1nwSocq-rtY5@_a#qpAb3nvWMF4oPoMA* zY20&5pd=Gle42E)rX@HPIlL?g4ul= z=|*dD@5QXEZpG#BoY)&W+;MdArhsGmh&K_@SCNi!VF%{AZ#)>WfyR7o!th6f>5aqA zJ<(+i(_{@3Fg%ZKttu6mA-Rr!EI@u(rBWXqmp?KsT7?OA*l|O}S7BM>bpQXDQ_=pr zZcG~*qkv=&{|7SbdXP`CZjl_JM~HruvSK`CPB{ALslK7(ZKqn3rz3jsN< zQlEzQxfp+WdjXqlpFdZxzQNv}Z@r?Q7*F0sIW>2eE;|k`SBBiD-{zQy8gL`UgoO zFKQ59#)N%N68!Dfc6DYEyG4B-&$o;p-W-ceQnq_YA*yyCg@0v33I8tZAB8#M3u z6jUwTH1?k0i$rV+nWe_O?UWlC7dM_^SfO=EBJyNu06xD^q~$CrrYEM>9U|%&I-cJ7}8 zFoRm(Kf+JBCz0`{*n}+`x3LU{eB!tlow8Isli*I<<35yg{i(_xp*(TSAs;0+>q+1e zvr!vT1(W27Dd%>PxejJ^^qIV!@zH96kEmjl!qH+w5E1$2cJG92gGFK2)Xo8sW1Tw= z@2Sj|2`ME3@!(VYB063HgVXsv{6&7W(A1Hiiv3yv&8nQbjsEsG3$*1Fkagygffe_b z#-TWX5S>6-kw94{fpcA^U_NkNuVH8Vg;hf=m4eY*?A>+!mJ8>Ey=2DKB{7W%L%<}K zDERm^CQ|jg*=WX;aEqeR#m0q&nsN$^0{tz? zfIHO~{B(f+rmy*3khME&8?X|s5Th#LVICH@vcqJ@r;Z#$Hp5D)cY&T@hh%Sedjzy))6d70ta*kgQpkod<&FCK9MR1Qr7J*1lo5<+^E&Mefg+VTtA5>A!^$5gGh&oWZWQ7uN1m z#nFFG>Vo1{Y}zH_*7Wi?X`>1SY&!^)a{|qYvt#qrBXOrE?zpjus{buK^LKlN{L0vq z#|M)K^m|LNvg@L!u$dE+obW)FO}nW_ht!pKnbLKQ8L8M=PKl@KxW0rDWvP$#?oV~6HG)hzst&ah<-J;Ef;y-V9?2G*A8`;qY|{< zXPW!rUOk5OJ1e;)B0fclu8My6J>)`Mdw5#5)%q~3OXHR-05^bV`={Eaf_{H0Vnr<$ z&Zg9TZ;F9o^@c+?=I#om7!Ot%%|77WbmGQG&qcy=A+IQHO$X`R`*`ikQAkHf{rmIg z39~j=nJ)>3Q=tT-UBY#XpQeTI5Z%qWu6np67>498U8ujV@U12`?)Rh?Ji-Wq!*YfkMX#uuw9mQ;Qh=d#QzhRQ-G7s5Pm zuumabElr0p>Ob2j)B`#13C7(={rHvQ(lWcriU?U;S$~LvHz_&_# zt{{SCtP|1l^7A|@4Q=*F!IM%WytWt*t(UJb%F)SsrKx}f0&8d|{`=-YNW`RQ$nLk; z^zw*b=cKQ9gDbeY7+&W(em6Tr6x+DXTs*H)%beo4Rq5GMvoiFz272A`dZoRgu%aCB81HN%Bru+M9=g*Tu%Qxu5p0I?*B~j9)xmm% zy-XuPF-RHOT;XRiaxb)fjb4*R6QD{~5jy>NS=V1>%>7nFGI3u>!vJ0?{FY#0hB{{( zAKm4Hl|*5T{n~y7>Q#AY6bbJtvz#UGx#&r#zK)m_Z?7_cOyP6_(pBj~*d!Iu9_XK? z^`?nZ*!FAJOm@dn2!)d;MuK4lL8q-F(%fi_uh%J8@{0kp(5|KU;RjAf7O=M0v@8+ea)!Pk5{@@zSg?Gtwf4p z$3d!rUk#_;deSLGl_xBCTvnTP>fc&$ainLAiXIVVVFbnM3{zKwF)6QK|HH@0(#VqgYHuMh^|2iHN#6y4&h3-|dWDLv9k@*7! zKI`_&+4hmnVJHn!arw4cez`CQLg+rLdp@7Y8g-=nZdj-CX95d}4)Z>5I4y^SX?J<4 zR4bpC<8R&nlW!J@f{tdmXXp8LO&Mzh-q}fHhF8>mZE&%sAht#35_tF`G1<_fho2vr zY8czOSFrcB`bpXxbOpoh4cg@Qs~{Y+1!t~$SHpN3vncJ}$EID?gq-ttemk&0jCG%r z5$pVmS?A(Tx-ZfeC_^?W(9g4;?Kh++#$pRwsyxbYJzQYQzW=jt)tv6TjWY;5&IR0Mw;P;1yatLMQJo35JME!C6J%XrQpa|9 zPHkI3F$PhT)TqJItACnSRtKD!^#^c-0}WE6D=sRTeqDAo?U;lijfi#jw^Gv8>EEk! zxU4!g4T2L$RKzOG%+z_}Ag|d;yL1kw=ne`2KrP%2&RL+v+g2{n5kUNqdn+X9^%I+p z``ID`PF^hh$Pd*9=G)X}M*9!=P;k(C73lT-554R1IXYKW-xK*ViE1Ip<}r%g>Jqg>V4W+ZYSBE+Q@R>IaXp~7u;LHwDl1m{+<_61Q3SZZakR(`Z`0O`67;I zE7ZN{%DkW8M#pGbqQ|UL1HrOEj{L1jLa%gJPiuqD#wb7CC|&;5ZGx=Y^4M>I+ZgOL zoRkf#egQp;kT#|4IP7;R)aNZV6o_jj3Bu|2CdG31qv^ttXe<0Hn#ViPYvb7MS6w(z z#>?TZ2%yX_~R zqC3FHeT9YbqoXjBj^Cns!u$XMA>fh%!BSv}!-vTgFc#wS*#3Y41vHqp1}QI+k&Abq zi!N0F>$B}KBGX+)P!)x6d~8oWySA!F%G~)RwZ8ir#u)PGY|TZ>d;h_x&k~mK9`6eG z^7UJ%cHjA~+~IvFD+2ipZ_5$(EWx`&Bxg%;uUhZ8IbOKh1KO+v5AA;JTA=F04$_>~ zhsP*^$@xpH;OCoVkv(nWqrZL@yZQwr9z#K{8vE5ego7P<<8uaODE#OkO=(I9mV7C! z*1`PZanTE|C&D4LnyDnp)vP+Hh@l;9xY3Xc*ex`WKu1-pN{b>?dTVRh)kq%{D4=y_ zwmc+x8*lFOI*xPLQSApKYMax~8^w-l7R>38$)Sl<;kITK7*BfCNvzuY~Z1R|w{ZQVhpwK9Ym zi!$g3SHyf3wK!ch_yQTueKC2lV%UF2Dhu8%Su?=YSIIQkj&G!%DU~y+9KrTvcwa;! z?43w~;HlIei;5)6Xw`v|RA0zdv(F;hd`3i=f?tO8)-q^bwqF>!<;Ja#=S9$@)5kYm znZyhbT{4sG`$n8`b^9rB3s~Um3+B3YmWWL)pW!mcU0`VT`4|NT;XXEcb>56YO73P3 z6~Lvn*!wXj;4`op^aa&VFqdgp86-rYH7y$P>*rD-H3O$1p@2k6LlueGPfl&^_S13r zw@F?if((0!jK-!!L0weXSAc$L=G@O41~uo34#ZrsAHDdAl6@+{7Trm<)~Ffti%@w?=$rEw7@9ss7qsOs`IhUket(x|*2rX)ER zmTlSx2n9c@{Rc(OhT8H)U=Kxm-bddd>PSfe#7bx0t-YH4yGzH(W())HlHdJ&gj2K?C z%u=Z8BhJL>QwLgk2|Q0OY1uGd`1YfDh^{iwpBOErvnm0Hj-tJe=am$p^belRN-2zN zW!s~Zy>sRyxu|co#o1RpLY7tO8%wXq^CdCSRa{|2u1K0B(5fMf~aTgCsG(lp6Kh0QS}s$i+t#`a9} zvVHb{WA3iq!M*8%7z=O-(!Z(o7fJndSpjWvthcJkI*qqSi`QbyRF1kQ)^qLG5xtHJ z!!}8FRhuO9{3qGq4GDZ6@Je9uI_7Cv%HoQust!MUO0E6#d#GoMOBc*8g=1cO`sM#K zb;s2C@wOuxVGH~|^W?bz_7Oh8J#=OvujTJz&G8!Sl#-q^P)P01z=l2iGv?}lDWF_5 zhv|x+-o*k*jR~3ZU|KxHLtxa&TnDdaRui1r7Z*;PS58G!C)*#>FJC#Vtf#jMkBX+U zou#E1W=#K^TAlO<4FNtnm990>al?%7RLgq;0s+3zH<(IuiQg)tlGbVvKVP<5emXhPc~Lo&0wY4bLRDx^<@ItHy z1c?`4g|7?hQKL?KRV*%yug#8s#bs>q(+*f~>6Hx{$jj7jt^-AMn{cMrg(c`!29WF4_c>#Xs$ z!;-OFf33;rr^gmsqa0yEADF(GCTRxc^(=w!5>AXDkrb#CAFPv&d&N5`80#*BS9edL z|4^_s?PS{VX^2sQ9SJk3i~%E$zcUN`<3@lTAY79-BCVqGwS8K;8X03#2l$9-tI<&~ z-{*P^UAjqWgA*absAo>>yU0bODN-pqd;NQ|h}yGA)Il~RFv`Bm6OAwZg>Ri>?|>3J z)iEu)vB^ir&u>Y0IgQ^b7@C&e!mn}p)vtC zF3w%)7W)~K35KiE=ISx2VaQkLC2SC1liePSG}FQrQImy9^LxyIX>_dbVO`3IIFuD1-DTnL;h-7@A)BK%7>ya-eHF16>oOL+oNaYvOll zd_y36_^npz{4mMMj7@;|p|ATU+uTo#uiP{eX(?zq?fqT&H{%_#`X=(v0|BYbWk}Vj zYUC86M*;lWfvlHRY~3xm1y6miEU|0%o@tt1kk6{!^fjEQAoo1_JKB-p>z#NbxTV4U zP-d3Z^ZLbhgSDE`XiZJOJK{c}tbe8WQl#BaCb%o;W8XcwK3l_I)OVPQG_#vdjGiASDnzkNI8etuu|D%Nq^ybXQ-EVk543VX-KA|ejKWK|v}wYJI_TR{-b|LM1YVKKo9 z`CG2g`E2v$uZk)p%v^MH^OQbDjE`|g;tc&gT_F5!>wYj7`6=S@;f_F_>*wDUxwN`G z2+;H32WoZYZN-@ePlm1$5{p$Se@D^qFbH4u*_`2_^%f^`I-NRHkulk|>S!CFRB2eb zbv3{adApS^in?0(spm1&yL5E3=HT>??#UT@tKqbe_^hpx>>;=!!LnIjX~@dn;qIjNo8&pf^@wTe8-snRPW z8_Wx#KYifI`^&b3x4j!qd(RUhO)v%R1+JgDzfM%Jtn9?VmJa3TJ#YCmm8)HOpJyYM zQr^{zS0Yp*kw;_IVI!G8KW=C!Ya-0DwH>QZ$wLH&6?t^WS1I%1zZo3bd#z0>E!NbCM;{KNNE#{@P>AK{1?Gq7vyyfa|NmmXBvaFs| z@Bvhs*~vX4>Un8qpf2Wmva*P-(ji+v2Y0f;!Xa+#RZ6Du*3%5AcwmY6dF%5F@|O`_IUN9#UL6oWS3SMC0BW( zXqTS(stO69&JHrJF(`Xydn=x`2Cs^!l&6I`s#x&5HiJwn-^^5^1QlBxWw+luhWSY} za6=~Nx6!ab#R{7);@JLryke?SMZreOi5mRSgWZ_;tfT_^MU}gC{C%nibkjrUqGIeA zNv`ifE-N-6aQn%}XWZ}Rva5#?sPpBV_)o(!MB~w8DLl4OVjHq4GiSOK@g#ARqV1gF zgN6eVF~*@zmGCv@dUiEpz^&s$OJe>`HYiqax_Q~IvP1;_)V~Q=%-XBVMeSkg**B4C zvBLkqPfXsyAYGS{fnI>siQk)wcryJZ+!5-ZuztTL%Es6ArEEm9u06oym1=CGz=l=q z*M>FSU!SP!Hy8PlPXqs#5Xw?DMA6BT<;}n7?=r>_2zb#)%zRWJ*j80( zA7G;B{BI5lHTD?^)nJlX_yp|&bY1^jelJjYU~@5>Q=uOD=fFKCyPBV!h?uU4gEJ0d z$SxVi%H0n%^cZz%Ihl3vv)wVJm&ORjLX8*8&C<|gxA4Tcm6R5Z+ZgECGeS|fqZ>>P z(6ySf{p+DxfzlGQ0eFiTRk3yZW<>NXK54y{i#O~~d`Nfv;w$EVBW|Gh-2!0?L8&42 zR1A9R8ig9aWwYZA4@5G~O9*D~B4;KxPX`6NHt+9q1a$FJbnn(%3XW`RCDHiUBeLA@ zlC8&JbN7XK?pCd#B=&RWAq3%5*ESI38!kY_r26(Ltt>Mr!*@)6Ev(jXEasP(o11)A zQ!P>{jz183bL{?jc(9FVS0>8qb0O*Z_WX;Ef-Sbpyo*}bg$v$3ggu`1rZ=890&)he zqNj^Ib5VhdCQUx{S6$^)jfhS;>;o^OeM5u8S;|^GoV%Mcsu@^k3C-!UQXu_P;7+?$ zNEB7bZf^8bqgr&tL(w%|=qYWe(6spGLoY1zV|HXM3fK`#t&;7N)jXR_Nbsh$~4|Cq+4@`JiYx>1_u#$OZydh$6B$r zq0SSPEhnL)UFF15ci0woJx3#^mdV+(uo=U5%pjL2qb9;TqVS$YZOof8)lzQ$b5&(7 z=%wb|#ATF^`mnF`=dO)ZEX{gXlku@T;*l zQ5K^63C+DR!k{xwEpmR1&q~-*y$zw9uv6pZARa z2wX-edVSUdJhMh*GWSZOi7|J|?s5=t~KiUD6I})q70YvqCP4%=$`1mXGD(78?;r+ttm) zynt@bO;AR^P6)1H#blhjd;ngX_AnS5^AEP+pe86C&UOx`EW3``tdEzEb_fhb1jr%H z=~~N_LQi%NlEG+JFVa$C_%hkA@l%NpsQxC>6IAd5zr81T z_y$wqYyoeGUYX?obW&rV^!6a1q0%Yo>iDkD{UiAI-c-Qqc6O`&Ct(){3B^gb&QFn+ zCUZ}NR(upv2BsADwZ61E6q63iKg}@1s(OJ5~&X@~&ARu1kiQw+vZyiq=d#`fr(m{#BWdNDYK#tG-tePq$ zOo=Cl@zRSwZ^4gWwN*j}8XR!ef1A9}q$>0R19{x8dea@He`n@6yT`^rOZ?u-{;gdz z+J5r3c5>KcB=0O{yl83aCTQNWxfER({HshrL!SotsPesVpp8#6+b-k^OG7#EEi``P zl|w)U?hH;B0HnGaQZBHTL`H??2nzve7LjsP%nshW^`qZRPIbt9A2+||A2$KR(tOEg zD;Nwp;kGU+)#Bq>f5Yr*yH8U}BO3vvF#=;pB~AqyhileCrYb--G>s3?&w6uJGe?fQ z#oIV&$;aVYO+HZ<$@Uc7B!G-|<-QWYh}+^&Cy&IMWE2J*jv)qhe5`SE=P~%v8Lo0F zoITNeHkRy62s?{P)811HO-pw@vMnh8=&^OH$Xsl1%{HUBB$UaLIyfX}g7mS^&O9UvgrXVnb8o$Us;z3j*GaecTRipFSBp zvEP_&*Q#d=%Q!@FV{9iXSe^zRGiI;5+^nPEbv;y#l1+5@@^!rAj9$vHO|W4%pM9vq z(s&5`$wDDjM&N zO*csnva*>NS+$Y+vt0(q2?IWY2u>$!b+YyNy=0q8P2WZrZe+QehrR-`)+^Y+7lPrx z&gUI}FeBc0%_TwV-;>jve=+Ha!ts<=3NM%tM4HWO8f`hi@LXAQHqJ_0p*(*@LYt9j zXE8}8o(wGc_x#i3=sgrMo+o!vMiQ`p_7%GLcC*31r|0GDg8n7zf(+E)`kZ^@Jv55c zoEII1Re-7K68^@4MgHgXxIbnPbAG?l2WF1Nz`EX*m03qJqKFMs`NQ*D|KwiW|0MtZ z|M25+MbT^z@IPzQAGgzJx6Be$J6+P$?zWr?*0my3;s3i5N*^^Zh^W@|k^8HPt6Uls zMhWpT;~N=a+!ebQ6m_sY;&3#-V(x(uU)aW;vAf~!O8)$AVs6RYCT zzzza`-~M0J+$#({Jzx$`Soa`7lV$4N+S|1hY26T27zgFWe^_^j8 zdVdW~>!pa1=PA$W!pZ$>WFE&hKz=-h4;Oz4DIPu%O+VI&f^BZ5$*B;#G->+!+3ZOe zLre4dk@^S89j(jvVSe-f)~GKrt>F1;U4=Tx&0Ohq3+}O$#HCHJGIt`m)LJ$KZu~L0?Qg8*2=JeYS6kEeB_*1t04LbR>>f%Eh_Y46e(4OS zURQ`1Im61v)Xcp9Zbxy{s1&xNSRft+CZ1k*1MuLV9{UEhNOaoJ*)Vd4rh*hENq-n% z1uK4S+0b;1FKbxMc%aIJoDzy_!^4$hSGn+cK^t~kbSnTi-ML6b_~XFubK@_>UC|}! zvo|eh2~7Jw`W)thR*KHKdtZBt{e*mw=o$hFs6DE-yS4KVC-{D+9YgX2`fg`WwuiSL z7*s+F`N#jMQ`2z%sTGFo@$93cXPkVeoZ`E&jOO02m{qV zi_rzY{{~-qKcY6pR*dgw(;T==g*ciou{Cj1~i9TvDeNphPptOeQ3I7j{;&(qZ zHRDRO(^U0!Jf3GJ$sti*^v?P<50z+$b3*t*z!b+yOnv2(tW|MV!MaV|Ej1zF>`vQ- zLiUfW)wqs7CE?|IzwI`j$}(OD)3YWHAqMM`yTvelhko;Yy8^`j9XadaOp99i+`_CA z-GKb@N%)`*Zf&s4FQ;;7jqY)unZ1aRt*!M0DU?texrogdkyd+y*W%b4Hz8x`l;Q;+ zV*!WNIR0l1R*HXb3dAx`{~k6g5J|f6!+HAhbPw`lHrUh2NY4YtmB^5LvyYtp=1Git ziJH={uBE`}h9S9#Nx$^`=;IrQ`v_pd+C-zO?7)yBAQlAc;^)l(&B5{fl6LIS@eiP) z(6e=m2)G6EZ(LKm&l*QF3%?y>CPyfD*b58?rF%cB36dNQyuC$-+6f`!lCF*(H<{xR z-m+O_{J@fKCJdOLpoW%Oq30LdlNX!_A$8| zIk_RyCEC5|{x)ZKhcZm$8RzVjfMiSMgZkFNWfR4ZlAr`5y&LDS`_#t@Uw#D6na zWGH>vLl#8tVRUphyG$2CuXW)^`h!Ed$3`|&sprBBk`y#M@&2Q*))qcz-foLn_4Mx3 z7UO_B1z+B|uqjEkd(`O`^dMK4yV)zIiop-xCDGgq3nOZo_2dld=SMg3*sHsHzSkL@ z+XrS8MUD|AQ21K$K+gjOZ@3aHg;^LW<_bFq@Z%5WnYLtBo|3)tQ&3@fZ>HO|kMh`L{5wyd`Z$&}e5K}8VLo=3b9Im9C=;pGm z)kzVsc$II;(Dq5>QA~9$fZw~@rrEv`yv)~Ujccs4W(%uz{_{}en_{0&4Gu5wUpR%= zIYfWOv>1G*23vb~638`VoFr=3$^lmbcH@%;3SbQcJO`)|5NMQSY9wTHbwBR)#GWWf zT`$Rwu2YjD(G;6j_c)4BHaf7{J^>NRM|ypZ*FC9#hmWCnik#5@8qS1v?5#{`IzFZk z?jZRoVXISr2NuOG5T9B;l|E@fCP{O)^slD#WEik={ZoRDxs5XP8w{LH*VomR} zxAng(oj1=e$LzQijScA3ye|8d)GARiqr&t!7IyJXUxfBJI;ICw18*DAqlWA6REEwn zX;cnx>z+37ZNgHH1Rvl*mWDF&Ed>1c4(!Av3+g+SWi2+Ld$?NY+$hO9ToAVQ@vhpB zu~;`o8D_?P!K;8OEX5vPM9pW6^v$yZ%$Wo~;biQpn2rfP&E*nee;4-Fz&) z4;fWR8us7bKLlO$-(A;V&q>rrHFwrm4;GYhiYhv*ORT-kwe9A@o>a1&+5#`g}6H}|k}E^8YvLj_Idr$;YaX@te@Aq3BR zt>Ng+b;Cd04=?S*Dpd*W4KA=#&Tt9POHH)a-Y2Ox#XmW8wuUG{{;glR&%tbsVzqD1 z!_-!dCCd3&X|Fw%I<~D28X};aI zch;RX+Y6+aRzr(wG1~Fs1XKeE3)#3MR6jMv#b#y=itFL6A z_%UtH|L=!Sn`!qX8YRQp3N(Jm_OhPd;xi=NEE^?5=dSlS(R2r6SsN^E9J&^A;pHa> z+k3FS^^dn?gP@#=54MLrRwNid%pH6S-LUUo@aC!a7=LbES)_D$hSDc?(>5cu{x?d> z`9~<@%Iq&QYt;@ZWjOIh{*Bt*LR1^~HXFUWTLh~j2aC}BrrhbXh=3AWvhpP!iK~Ce zF+6WldM$y12g)boSOBeTLHEsdi}4ibVX1O_zu%B0{?9>OS{9NOOZuV7x3(c=SPYuv z)4)1d7iurZ+R5Gfc(<)s)euPDHa)w3gl-e-#=x@LM10-QblrT%tl~Q<+1wVlnjItJ zLm`@18w!r0)=}GX{YzHYEfwQJmm&Ew%nK?7VVSHB@pJi>W143)QfMh-!LHTC_tKP; z)rW>9XGt-2zh_o>sn`zqBKnZ`Tn2(l2jJCul~>25zJ?5Z){h*_7Gd?KOWX~93~1I$ z^+xI*;;;R+dk0g{Na1i@1BQKx<~whQe>dA8!mO7=1dx#eJDKcL#|ty^3fFJaL8+D7 zn03B8J8I-9+Kl=XgvXJm{l0)JRm&G~WiE3O!p@qAr1o1swVYEF^$|J(sM#$|o-c(d>(G_UZ~#9Pw8$AUytKaNqgZ{(m{?^JDb{ud#HQ{b z4YV(*K0A!lGhC%oeXn|dZ9J2&C$*R7Wzjj5*W|-qSUIxG_z+wQh#HsYbAW;~bnx#g z98Kwg-VDLx9^=4ys?N93I?CDB>Gi5J9N0W%k%CcG{C+Yzmrn>mT|<{HNvo`pYD^*W z`XxWu$=B8Hq67kCk0taHsiOYlWYs;5*!IUZCL>~-7O*9el_Iz@Hb&qY70GwDHUl#- zRe^mTrbaJ%UW9j;hc=+IR|0-bQx)#_rk=PJCgjesUG>eNpLo9Hd76f5SAoqY=US7X zA;XCqeHKsNgW5@ck!H}ZmH{q;G;Ww{e}G znd^$Sc=meLM@aaW19qD{gMfm~Ny7!2d0!OiiPu~KxbN8%yF#8nrrl??%#pOE*$`|C ztyJe`^M(X{o(9tAhfNgElkqg$FmzdUbA2YzOo)B7^rUQMU%UQ}ZQ(lGs@-0=I)o7% zLkK#bwb=}p!Mo>g`bs|7F0%H^k3(~*j$QAkUGo|#BxMdM-`d680%%@1^LptJ4ik&C zX<0DfW_bP`{=Bu>5z%ePmaI;IyjHT7e>h4x5jd;cpj9zd5<_eO(E7@p!_ObylM{r| zS2Gi4@uz=@ezu^}WVV1wyi0?}${?1D%{N~6=0q)T=4z^Ev-;@rWzy^^k_w73s)*wb zZTO;Ds-8KztC6p3pNwu+Yb7dRdtYRV5OiWjnaFhwB(_*16X4;6P3ni6w5!&CHr1nP zbvj%I)NA!x7A>NhouKG8O!Pq}=Ni-R_?W$JCCJGWw4bE$5b%0Jn&;=sUW!u>AQ~x( z{HCz~#W!(W48*0@72_|slESw#9)A8c&}X{Vl9FXhu6xm$GvKF)PcOw_ z?^g<{0=?nW>umxP`c@WV*Okc7V}Sdp@FJ28T2a5G0>Ns9nkP+40=iB2=9iMeBqv!Z z>!;FmO_PV+$o5+ti7mOOc#L7T?ti%fv`P*uBjN2D>gfSpZ;Co#>Pbj0XU zmcO25%iGe`yI*DG#xz0-r13TF%a=GL*usq;exD1`>Es1^UKeZrZeTB6VvB~>n7$3Q zU#x0leTp)~;JRZ$oYAj-ICgd1S=(hz^ma#%H;O!2`pwof{?Ze=zwDr5u}3^$fR4?6 z4lc|zZWSNK3p3<&{Pg?jP8R$)tfAjr?T3?MgI?rkDm^HQ(;4V!t1<(RH3z;0)zFFKou#n4jv=vH zB&2=$Y8=_g`Qt2!3(YCb@l62!8yWP#?teHQ7W7?>?fmYf@b6u*rcIotTkX5=Ck}() z#uW(>6;;0DumMQ7s8maP1N5Vq>v$abktVbIr_cLg8Y=6zOLPV`n=dl<7xl~ZP`+lv zJGX6?xXECqDcM#CKE6QyA#Mu!g3U_w^u<)Hm~U^wy;H198f5#Jo@OU;qa<*BC`&O0 z+#TQ3X)%9JP^s*Awjec#{3nA*U=O8{#emO>rjx{rNX85ELLiJ%YNsa!coBoJ=xaH_ zMk3t$9{%P7o@?)bD2jI@2>o7c)TQqO)D?_7$As^QXQc>0`nGZ3J+&|0wyznWhXVF5 z3fZPUA&m&P7gRn6bZCy(@C3Ar7+=3C0`? ziP#3P-Hy|B#HDyF=Kj`jcb>mP$tp^VF!I#0%g1SOPd82{YV(o^DzL+jQ@)=JuksJwGXv8f0wGfv@SCd z0?#=?VNBM=|AGro;t{51{}0~2va7Cc$vSv&cS~@0cM0z9k_2~m4i+Fd1b26LcXxL= zxJz({m-F22J9>=nkNx%^*kkX#)~Z!CYu20>a4Xg_LO%zb8}n%yUOqZ}PWuWa%RKtF ztYl^r+V5V^vQsq%2B+?LA<$Zh-kdDpOwnGCx-aE!bw_Z=NgJ#%wEZXhNlv(E6EwPe z)$0G@eN1QDl7H*%N+w0*7SlM6$~J&97+dNzN4zpH^jHl26o`4!l*gk~dTRH#UJ^$W z2(&P2?)$2p&uZo&L5oxKegG5i|9$}CN?bTL|7|`eC8KXZ`n&u3xn+A%hLXTG>#lz! zUa3~V&qir(f0Z4-el_r14W_|&!}}(sDu}F$MPiKex9{T~ObZ@U{3O6E77|_t+e_0a{AN&eKRVMB(k$I!5qrfvnpnz(rGHkVm0K$8O?a z7ga2SUX2T`w3w?^bPFwb(A;`)tJ{6{)#eSdqik!p*M~1@a$c0xai5S-uPP`Uh^`j? zx>c7Rx=*@4xl{A>-XZPSvVY_ykYhFV;$801Xtsohy zj&$U+Yv(xKZTrPNCm0gAB3jx4L*SYz|F}%NWZ}z9YP9u4(R$=b-?S0fd_dGzj6TQIVn41noRmF zVZmOU;=}tRb?cV!U5D{c8!f5W{hi3a$-}jLw{~=m3_I|RH(2kO(}vvzJRgRi9QwMGXdaA?1dUC;gZ)mto=_5J@84rP88|2J7`HBA2-JWI{%^YyCvKQLC zu>Qqdxm1y?@K9pKp3lUsp!8S|O9OgOUWBOrXF@KL6ai72dAi@X+ zUkN&MC}EpgEH>)*c?sgl|HF@M1l6^DLOa1L@Ov!H?Igi6v8xW_>NJ_q_a#hFdEZSB zG5{#Do89nX3ck|egvkZsb06%*@-`Y_hK@OHXh`uxyl&n%(PJelt#))-yhg?w(%aje z$sddEa|bS!FNSt`P3%!NL4gUy;NtHF_6RA#dQ< zNfWu8r5stCOMKUilWib?P^vT`vq>dnZQvk{rL8TCmit}b^NGVE(_U8aM;b)Jx%@;M zZm6VQ!`HX$1ai$goe6`E7p&nGau^1kHi%f8N%jLP%$gle)%Bu1P}a!FppKU4Dmu}d zo{X!oBJ4`7<7S+}YauYHkfwbFUG_=tHC@p4YxV3yVe~0p6;VWsavJIHvvv$t$`-h> zMs>u_+&?knT=N2s;!xeDCnRB_cj`SS3`X&`I+(m-m^WYZ=}+$YMC<3S5uYW{yDezE z1#4Jg?KxFzMl}L`=b0<5?gpg$Ogc35IcmV^aB1I`Ws&oU-Lg1sZ{0x$mLxy9C_cPS zg;hRybTuG*Qt$4EG1thTgT`r&E%Zt7l5;Y0BZ~LK=_~(Ne4+8NSXW)#D5|LFTqN_v zE{FM5?5j(LKgy<9`mZdBo3-~9``a2TGW#Sk#?&37Ry;V~wqD9jeM)Nrr&_AXU>2i| z$vP{arVcaZ9xnWQ8ZNJ|ClA85`^#;J$Sa(t5PC5CZrV=mr0}t|E_XS=HlZD zPHwb6+G)>85@fI|DV7(J%9mB}3P!oi~h4p9$!yiz*=V z4SG+A4FbB}G;qsJaX}TMLS=nNBIjnpM8Y{HDX$Rh;msQ2rcmBfM}2L{Kw`XlNLr>+ ze-)<||Hl9aQ4tI`zloQpJ-4|{t(*c36>{eE<1(ckt;1y0V}R4gssbvCCy>*1bvdOw z8Yq}P#U(pvXu9HoV>!4jra}gIywWjUeGwdcgd^vr*AZ%`R%g!e#=^#A2@nii_LGLK z&D?E^Oh^_FfXu$|409 z{!l2nMYeYNW=l9Zz(XW;vveyF@eZPx*eYv%UwMvpif~K`k%clNj9`RrE6f&n^v;_Q z#XE$xcOa?0EMjgT;Ha;L)N{U%cRgrQ)OqmyldsRXp=ZEA&+SFX*fIYg&hQ38TRY?V zbZ_q<{-`G}DgZDbcqScz@$eg2=K$IDd?Se|2~5V}25<3t!$Ky7Yi*`EL}+k2S*2`# zMVD?K$TGx5)s=MC80Pdl7biau8y>jRn|d}872`CLX&-q{ZzjCOP#Mgb^Of9e_jq5= z@PR&+U+*iiu|~o(#~hyjcg}?-Hl9y=_>_XWkG&YOlSK3Yd*~}=lXCq`0*Q~8Tf|4N zj#d>p&eQ5gXdyZrt&{0=l**Ynzyjth@^;&eSa+VB2RP{e3@$bnFtky9Wcy;}Cqn6X zJ#v4S75sXO9+~p~tne|g^Hwby=#5`M%5ELzGms`UB@nTO{?bNxJ7d{uBl+3a-qK#~ zZC5rf(295lAMVpm(W~Wp9GxmxsQtvyEu{DK!g%e@nj$u3b#wPN#K%|qWVr1%u9goO zSy=JK79z9^aR!v-4l26(0ZnX;@o+MFD!fM>6cZjRUb#CVaJ>D8X}$WDUcAKjs&p7| zVqNBms+Ph^fNNt8_zteJ4S$pQ3o?H&{2~b+oOB@j!D%K7yOG>Ur|6?tUgRA_hZBR1 zX#%+Twp^nlH~j;@%dn#OP^%8DzdQeW|MZ;=fDkRcthp26K%Fnr`rV;qnCLBCI0Tyn zYA96)r?&JO$IKazHQC@%Nic2>AjE|+<}4<|x`33!B=p_b&I}eu4zBQHt%amSU;mOl z%QIPYDm@kZQ{gVT?RYK_d<4B69iiAF`k!q*H_6G*f6&P7H6!w8STBRD1gKZg65 zx}mPx{<;vi?dxGKzRXXn{e70`q4}mPGic>PKI7h$qGSZ~iv}J9Y>1#dAgqF};Vs&) z2Zn7KoxVHETgl3U+8gsWhtY!+5)jZIb8cA61*Ziy1H)qdIQXt9=W5Yt67^nvykD(a z8IaN8?Nn_7VG)PT7zIbpxo3>*v!Ze7{4}dL*Cu#RVPX!D*fVXTBE&NS{phKchtXTSKo3%#b1QdMh z-hrI5#M2mY^4z^gm9D_u7~;6F@^kbi_6eh5K@y>M^&m|1V}(*?a670BV76bLW^Rn; zy;*pBw&OZ1T!829q!up^@MjH9N70O=dDc<)61qb2$eKv~R<-S8u+d5d4Z9ph=%Fj< z=ia%Oqh3Pq&@*FOE~^2O#lqIr8sdG%cbG4vO>MS?2)M8ZNT}nKu*tEhRoX()E@x*u zRPv%RjP^5n1E9)sRx^Dj9mU#oTbSPkLuQuK>Q6UTY^#-Vd$-~>-}NtJgtpQJV{du zJ-U0e-GNydlcQ}ObD5BKP#bKE|7yRof=UMCP0(6f4IZAjJ)t6gm-UUtd%|}@L-EC# z(-w*HE6cF!gi)n)Rv*^ijC6a9txBgWNO@jTWnE@-iqo(emEeDYN4QC>ueBQ4d^ zqs9P0=VV&XcKThd{G{zJ4%5N^VeLY$(W7ky$gws{76Gn*)>~HN3gESyw$}h2GZvx8&8G_Y;4h z@;NMLRLj93#f~D@?-W6WtO2j`(}%)}*Q}aLqZ5MP_Rd-R(qtH~yuD}-_`NW@zzsW_ z4)~zr5h+ZWmvDU`pSt!GR4Y9^ui$m$yFCHWvT5(2XL8CUAjuvi6(y*XbAw;VQ{j`* zSjb|HOBG8fchS0vs+h($e>g^`$Pd`V|0U4XMrG19_Do%*!A0${0)h2Z63&rKqsT3D zbx#em?IHCktlEk8<6-Zp2h+|hK)d0ihpg_o>#RTX<-aK1d*knH@LL4^a@M0VM%I7L zrrrVoF%twp6SWlW!JV5nelUIQ&H)2h6_b>HLf`c3dx(>I9#B?H+>r80)dIbPB^U{z zF)(Su1BX*d2JyW%boIR~4z-AJ)y;??LwLLs7$C!MV{0U z&%618kN{`Uls=4e8CGp;fCP52;d0R6kXF~5X#d_Ogek6u^8c=_cVE4inL=M>d#rYp zk-qqE)$&(>>7Xp8{REwpve4Ft!%P&DiV9~kH(l@vGi@&B4Db6l*$SV4M_1u@cvhc0 z2AA1Xca#RHzOJ)IejI!^c`F@w6P8V`6PF zpJKyOkWyxL1_-xSrytlleT091f)*iQzj~I>rFU`Z(MF%WY=7(idQOk`89m+sV1E71 zx@_m9gA-_2Ezi~E=1U%8h(Iq+H5Nz%zn;#pGXJNgl7!daBMIp_1<5)mO&=h(!F zzT3&}?Pix4-?*PW=O5C6CY%!9G2+ej#1WpneaH)I8_c>SW0~)Q zf74ZOF&U*uwO;n395*7f$alG6GF>GCE-5Cy#S<}M84x-@SozT;D`|ao=4Hy-=5^YJ zrr|EHNEx~DfApcu*tLE;30_Ny<9|8PzvOifh?yfZ=y=njGvnsvv<7AbLnkM%CNL}` z3>?LbA1$h9x9Kf@*&cOdvTD#=Akd6-K(yYORAcS-vLD>(Csf$|P!)S82aWz2?DTiU zd+^5KZ7NO=*FxPq@_Op}0EP635>Gx+LJc&x@}AjTd~;uB>lkm5>0W!h99<=)p-S_7 z{B)hbfB5b?r#b%D;GG5J(voOknB@^mY@SS=KItv*cc;Yae95l#0XOmj4hEMm`PVPz z%-?b1O1UHXs$al^re96Y+Bp^9Sjt3v-;e@4<$;k`#6qL4I|z&0DxgdDye}P9CX)2T zDen+9R%j|PbOQ?CN;Ew-T5LOC&2R~T$FNW;`UvJ2kRB`OJIpB|`YSPrgnyB=a?;pW zpI_tdH6);jsC2s-=l0h>bAJMhGe5c!cd5AaoAU1PoT`UYI`sw=3vc=39F1sj-UhP) zMYzTs&)m*EG+l0LsJG_XFw$-Zj(R+r(9jpV&ai|5MJ&%~e-F)2KLP=;cb;B51liqP zK^tIf9&mRkcj)NNJcqq1HlRNZ=6IBC8|L~u%S`RCLGQ$~+fB2NIBh8s4I2tJ-*d6M zNom31ev=^1xk7SB)&T^)6L&N@du)+mtle?zdpg0Hi5Y}Lm6S|1F$&v_tAn%h&zEd=Hq!xnc0o@5JeM-}1a`OMp0Y)Ca7Uq8DMu>YAS8LYT~_P`7ML z#PF7fa`W!MB_Xvglm=c1bsV1R1f6h3y)zTp{%*M^6azBoA50{CyxrL&Ukt6l$WRWI z$lu)BB9udL>XP=<8N~y8miLi`pN96o85Zm<#nr{)UXO*anKIAyuiDknxp{u#_oL-? zr#UN8ZDqlR+B|z*{GJ3s3!^yD77=+lio5IP*|E!6ulv6}))*t6j>hmGgGRg2u17hG zR(-=+Ny!yf_Whk@tvvI86DYGX;K0V!`{8Z& z9to-!&@D>x3HH8h7IKXj^K@vCCnD4SqCm>8#$gI8;_XURy5k(b$~YvHN6O3_`6&F% zflY>nrTka@L`3DPlow}J!I=bj=a+W^4x>h7H849u?*!b>=gS1DVUHY5X@8(-W!>hN z=SU^ltYz%ywIS3W^h?Jn+oOwaw*jN}VpRofW!&kUzso3bT`t-8K}SNpzwV+3Fm$Io z*Y>uK$z(%sZm;GjuJzkUJ9yfvD#J}Kw`1u`gVeH*vKgwT-ilZ*ybX!E`Ka1K-lr<0 zT1fdo`>)o4SxYdiA0(B9Rrq7pl%L}^B=yqc`+H74OdD@2X`Kwv{SfeoP7ocw+BX{o zwPcvC1=^=FHp5WliXPuG7YSov;5gq$2*79uvMWYzu+gA*kDCL@KsRkOb3{XL_3sNe z?Bm71Xk#jVg{EPILT^>mj+y>6ilHjj0yaKDn~QIr;`lCpJY;S6b#_?(gd$gUd>_IN zt^-7JS|_NE7iHNebYP%@BI;VroQblsK^hSq)-Vdl{FSbSC6~N3UhV-Bmxu| z;~Oml8!dBKggcSUv!g@Dp;G-6@1-jP*y3-R>03x7>VTp7xvUAHOKpa;@Cqd}Y}Szm zfv>@jh}VOSoD_)_Z7_pxb(-pZ4>e9|7uB7LU|ujL7MT1tpyN6i<#jHz4A!`!-Iztd zt7v)-d4Bm8)KwoWN_2?qe@uXcuBzmpziM)QK>5-5BAghj(g(YiBl>Zr%3VZ8*hvlZ zYpa3c$JouuchG-(rIjG$iT$qO-Il=VegD9Me)Az3ZEknwR4xBV_&JopKyjtZU#a-d z3)04Q7LIeEqq|Fw;)lCb1uKj*qp6ycBL;zbs?G1AW#NyQ?qj-T&f5l$?PbO1X7Qnm zhs^D`@sp5&w>)Fs((02%o|$^ovV++}XQGZ$tGm~8u~GOAyBR@LS<>AJZjnatI$kS_ zVKy~B?iUl#4dFxBgM+L4>6(76LZ8DTi^nY-x$w4Uph8W>>zwOukq|yIAxN~pRCKYn z-iE+OHnkxdEMoYXoT!o+a()XgsX^ zpAEcy-vhml@kcJpT!l`bp)?S?{3az`Sc=nb=evtrmEpyIb$mhQJ6L#JCUJ5RdoNd5 z?bgJn8=1Aoi$|3p3Mv--pTH;i0@j^pjJ`FXr>vyyr|@Ca9_iLAMRvNCMD86rGunky z$0UnT3K+eGm+XLl=^d!>6*E3>vh*1|V!ZDRF-#$0fgAK_ZY;)Cl^l!Ky7^Qsa zHG3KRJl@)ld$UDSsR<-fm8ozuQaOXQcwZ%oyhZwq8X5dLpgMK%o>`4w^ep(k3F6>9 ztB-nRwBbsr_?%DtSc4c>oIv;VRYK9~O7x~|EC}@=ZA$Fu z$3L2V5hSDmKdgP3Aj?qsw%$H6YwFb6{n?C7#^WM@W#^e;Ua!OOmkh(IeE_oY2_vj@ zn?Rs2u>KEs5WZcdy!$f}EvQ)`FnE(r`Dh5R8iY>Y znGp&{s=5pus5J^15EaxcU$Y-q1SU!eI798M1ZzPDbyGb*{N>nL|H{Ee4#befkhFgA&b{)zmB^2lULVG))Z?vlEQvB1tbX13enLNt3z@Q8QDlXD_ z_2@h(;fiP@nmZqbJ*hhYZv2F|sDt;`8->s&UC$BueCb2Hi$6QR%A$oA(v}e0a)qI- zD*zcb%phN{+&xKeNsBO5_1u_a*RT`#y)y0##~a&(l+5l`Oy#tuHaZE^0#J?_f5Gj` zIYVEs+ixYI;u_tb`8+FWfRFVfWhbty=Sr$;s_%F6PvtrUK4H=*?X-+fZ-Vqdkpy-& z;4huaG~;$pM{cf-dyz#p9xV(AIs$8G<5PL*Dj^id$ zC}x1Lbg0o!HA1O*IxVbtRfIIrekX;2z;np8EE9uf>3Y!jIlLM(ro!^X3?V}W-54>k zv=RiA*_#VbU}t-sLI)8wO=vAJ&QLbI6cVqHGMk&!^<#}gaf*5DV<%uT8-q2AZSdw& zVZ;$ggizPo&--=d)I-m^R?$V$6a+QFw#OZ}g>QPhFzQ5lcLDG>=n>ZsV@X93r;MX( z-Y8`%ut?73`I1L638kxr5DD}5_3FoPk`)UvHq`Ktv+OzMTXg~-M6Kz(wU= z{1Bd4K`_Y=arKL0aB!dLnYXzFK|H`p995T(Y0#rbO*>IVaD=E-F(l@Es?pN*Mh7!e z&HF}OwDB3SG^@+L9Qm#PDrr2%g9b-!~#+a|FLwd*3e|D7b!rZMKY7 z0uFCAt^6}Oi3Ckf%P6vdI^)tc(dnmQFnKKFtfmYT!FW~?)l7R}z7VA%-=o284GpTX zSEwy?BDiMv$qtftgwS?6R5|`S8z_a6YDp$v;EmaA_Px+;CQIUc!PrlJ`dT?!Jk0YK zy69B~>Y2*{l?0!<%rp(cBJ-0$#1YajuH!UsFB1GR(@Txxao`t@A~%c6!bwovT*;Rp z(11a8>}oCtb7w&0AtsY-W*zJe)e3)d$IsI}PO_8^`I-AQQs?tOVbOkUL?BM$e*-v+|c z$j1eIeTL@DPdgFh=ns&-qPL#H@?EWQm-r(gBYdX+xXN-vDFXN=Q*f^j8VXHiG~Y?( z`ShL{!J|>(=*!+W>PhxMljG^pf)ykWu6FRuuX2Z;mS0HL*~|?5H|Wa@qXb3Zgo2Uq6>z zd*&6iVAAP1WDr>L!Iqq?#F|^y8ioW$1`ID`p~;iyafS5IQ*%+ZM2|U|Aa`;X*s2w< z64aO^R}?QJ(x|a;o{j^Ww4p3E#`use6lH#7UC>YT3F`GR{)L_sk}Iyc0!v#b&rH`- z<$HTrVeU^Uw)@>uQop7Z_3>)JXK5pc9p|L-)2H@zbFWF;>(uAh1>q&@=VN7utIA|S zt^v;#h`~z2la(GkgX`dpGI>{yp5gRmDV2P&L1JJoE1epAEoL>}y~`V@-f_)eV9ED3 zq$b+?u6eb1Lz}?GN=D#v&K5yxAIV?S28LMBg7mJztJr%`3yu6J>?n8B!de*> zDVQ-$*42oSuoi>GAqxB9aO`tg`@iUL?D9W296$WyaO`=e#ayegbl?AX*Tz=v-$_*0 z(T}L+pIrDAhB9*cqD=3oCLUAQWg3}wxwElRCr`Qml?9c_uY=ej&m9t-Xu&*st<$AR z?DB0%h9F*F$9sc(|NXyg;%33n5H!t_N&;l=e*1(s+&11sAoFNEQ5rfiloTb?arkKHuwUS^?b)+M zVP-(J_m1?9-*c6ya1x%BMnKeis#~^B0Diq}T<|#PqF!*kXA-v|JfBdefg&HT7*CEk zhLmHA^RLgq1^vKe;y{ZRYh(O>+WJwh>clfRf zfu(ZYLV(Mz%XRt=iJ6t8&mOKRw777*cES^MT!{l-)3Jx|*T!Xv;}<3x0i5E?Z<$c6 z3@f519!L(rH!2i>jE%}5(c3vM5Fi=;^(-vo6}?d@24bd}MT_9|kl&avF8lHnY{L?~Z(gQdKDbRl?rP-e@51Q!D%63 z=$}DWWNr;>uxv$6LPJ!8Ks}-gcjqg%GA1*NchS%Ycgp>~@~3*#@)Z=~ZvhI0fab_F z2Hy6KfY+UeAEPdFEm`t%qlp*S8cbGXKSskG6)R9>c7R)-_SX{CM`hX-jT-k(F+$j; z0y~Yd8y&MIyoM)?)i6K{Q4dI3d4zY5(m!k+*ZaJJ+?W$k(NL7R*m#91hY$|59{kW2 z5oUIsVtzNb?K&hjfB61F&_ADYM#3#^`1yiuORy|z1lddL#Ge9`8*>g3Cvlnui7ZCa zTze@@i6hzax7Z*bFE)m1P``eJat8^ojP?-2lpF}I5nD{j0JONbQA96!LMC{MTYLEcFl=OS38rj5h!rf8gms1_^7=~7U({(loZBU>pMRIb1wyb zmwN6aN;CdD<*38vB3B(U-eb`QF`MYZeB1Apw^7rbr50%2QJ#|)o_SBrF9RoU%C3J!xD8 zN;ah@T4jDRQJGToBa}oX<2}rBU^g28j~G>IKJEO#9<=Aj8{t>){F506qyBy7;zTqG zmDtHy>2{~lFh00hPmBGRTXAi6ZH}OC{pKb|X+Xh{Ebs0{Nz=#R@a+bYPYbW;4GT+@ zb?p-FF$>_X=b1U45?st+a@ka@49t@4QfuNX<+oMHwE`L2Pwe$urCJ|VWqWgQV(T-d z<~hE(gZyC3?gtZ1YYkMA*%B=Q&XiF8bj|_1pR+%W4bA^lKtlSWP~~xTbZDWtnioG3 zNg%wm%{bhx{Hgv`cwI&g_7_J*$7LPsr?Q5sbY%7u6iN?ax1cR_&^9SWIk+&WBvqgD zKA%pdH+=iUePv#UvJ9`$oO+=MZTv&MZhy`Sa@XM+`JMpGIr|XcegX%HqrmG*k%K-* zHypVPXYqT+YHGdV3kXbAfR%^c#uN;ZG&+piUkorNPVwPSfFH(N5JRl2^n>$xyjp-z za-;J2=CSJG7s}$4n$`$*ZVFWiX`=*AZe8ziJgE2!5L(nSkOopc60FUaz8oilv=MBq zI)7xX5}0qCJ7y5RY2~Yz7iLvd>#RtBn+hzAJ*Q})9tohCTw>$2C$A6~cXV?ZhMUVD zJW6o)`+Fc;FWJoguL(UR7_Wl_Z@*Ua#<5Po;ejADfyq3GXB{J^p#=_GqTtm6W)7uj6168BXOPmQJOZ#Y4 z=P`xF4CpdFMu|Cr#DqFn%z&fg9OTKuO_A zhd1tL%E?>-KV^oGBk{6`=Rf=0W?1odc~C~Um8I=n&Yt4arLX;F{%e$3Q502#yOF@| zO5fNB7;gXa-ME+|H(-hn)6OGxm`|~tS1+7J?z{R4MmCy|iDyml`-?+)Qy;(PsMxfb z%)HQg6x%i1d7z&Bb>u>G>p=DEF?p-T_P5D=$-tUVilkCCM57|vF*^fRR+UedCQ~W1 zlLLm-^0qsz799VFa#5YbPBTlv-Y(CkWB_H;|8&ipX>i^X=j%N(iRl&JhWY%Vyg3$8 z%vXvTb~5-n@teNoiSmcTEB;s~{F6b_qvIEoiLD>iD2KeUa=x;*Lo`wb!RuDXcgDyR-JZB z`+0`0j(Ygo*}8%4l&hWDJLwd`XmMd?sQq@%s$ML%-4AhM>a*2&ymSvSuqZ^6_XhB#?s$)n7^4h0YSw2UQPFKISS7y8IGYNXHl`_ZdPwZWaHj1ssezbIPrH%$$sk?{;Z^a4;l)7rl z2bP;*df_-nX)8{IEhy4?r*zkNR_WOQh+ggormVTHWb~n)fWn*Zv*pl#=-x2D_r-|C z?gGr|p*z!r65&?$8aAx5(I)3LA4y|GDJzlNSOkLZ~dnDQjT{>+g zP7_CgNPO5zqnYdT!u!fFDWkjJrnK{4%Mjd@u()pAo-#a`5C=J-n(M!wl{EE}rPdp& z79@##uLPf>@i&v~HD}cmuIUe|MX*dVT3Se~f|?-V1qm3uQi4X7Lq{$QE6`7IsFSrp z4OE0{8C#97v`LSnnNL7DkXWL z&!C!{I7_PX!Y630IpFI8I}y4LZ=($##*O&0bqqv2>ZPGaL|a7>i}-P}B}~cnTo<1q zrVndO(9JaWTVpwTx0y=>$CPH^>2-$tK;{XEx71(2|BOlW#Zz^E7C9`0f35NRS?oqs z*4T5wYH(?5cNwfc_v;u9+2EU3dX?=Db|>ePxc*^XN!q3>kI3cEILoUx=TwQ`CL-Zo zjdT(~yQUL<R`tS^%Dq^DI?OHxTq8JraN`q&*H)`lpWP>%Hn#H>T}HPnr=)5wVaq2`Rq$ zaX(8RbBL<9Xlzp;Dc%GJeD3G7N%HbSe;bp>rqkX1y(qumPaW}_dt<`Pe9AN|%0uV~ zO$vJn(5O{tUx1{wzXq?aBKr2X=B5$b2b#8EYKHqS3Q1kFE0Mk`{KAj)y7TYud^)8` zFMbvONXXy++=$A9BXfqQ9%J@Fq8LQOzAg|QdSM^-xy}!nNARATy>Iv`a%Wnn%Rh^} z5RIjMlksJD#gPF>xL`>Ai;ZwUALY5Yk;9DjgF|uBl_J8gAliuiLvUh-;4KZR;My6? z^n@iZsMS2s+Z)CrB6Qf#*5>bXU#0Sm-A3OlB1JIZ)ED?5g?Umd(Jj3b^ZC&v;;#sQ z>^Z3*XrqMi^O7#gi$GHL3T%o)Xo^s-aQ8EAC9`5D!EXzhTQ}c7tgG-{$vI&4o4vL-KGpl4>*Qp8;12d}eQPV9FcjN{$<0Fdw3cYel^J+ZdF*5y$Gfj>^rdh6 zlhntub|`xW&gf&h$>=Qu#LWdX>m;8XvQd6fxf7h!nfi|)oL=o+`kr|uLp>@`W`v)% zZ|uRRe2?9|XIjHj-rNzCt*Y`E5#AY--*u<&7wt$;rglX4{DQMl>w2bm0gPI|7Woqu^qF{S5?9N-;VgkthQT`da1cs@Z zQPr}LkAq~9XP4md1>(TU<1W5TDYHpowjE0l_h6wCGwkUKLN&GG^{N33XXLE?eAqMO zBbL0cyljsD_P`-lE|pEXfG;`jiLc$Vsd9UKxe20kR3wJqiNNr^ z2CFAq=U^kihjh&EDo&+>($4w58nV|&9>lAfr3@6rRrj~f-b|fY;{5R7yZ^TbADpKx zcFMZ{eUb>9pdcqsD-vc^LQ;;QCu8I4?)#*@K_@!hy z|5Uf)6wlIm2)h54k$RI^qH{orCwot}q}(H_)|pe#>a4T0GyB8viR^*^qye0M+J zn}xsm=(GS{@(|4|?y8}kTSnEn@R=bw?zjy)`s4>c@6%4E^VFuu4{iq9@6sH(e z9*?1+_RDcI98rVVeyuC+cqn{q=|$QI6}&Rxu?2@_6jEn|X$?vR=jZT}Sv=1T>~iSd z`9+6ZB}NBgYxHUrVrbC_%VUjxm)*&nl7>t@xPn2{S~1&wlKH&Tp_+7T5Y*!-Vj6~1 zLaN_#eelw#o8_K%nPKn@y~hn^|Awg0J+*_d%5jI{E=>Ardgta}%tJRjG3|G=OtCD} z!2ns_*i!qr3K56fxYB>!38HK=Haj)m+T&$hesfIrzzo>G-L^R1K!_XED6-j0cH7IG z)HftM4}00;ZPatw01L8@?arz3*iE13(77AHg&<}uVw0xG{@#rmc#S0dPl|?rbR*q; zE4i`ZR&(WsVMeSVD?`luZ8>2kgPqsK-`?S>RApRkh|@FI>CEbD(g}pk-~4(KQmb?C z$=YBc9aC33nOSR9n(7WK87+`+E3zeybJM6_T!zj;rlSJ1_fgx8O7l5YJAN%gdM8Ra zpuQeX5QQmm8)^qG#21()R-MH+%{k18I-vIxuQ+8msaX~aF7*iH`6yj=d`PQrMR z0$aX3OC2Q~-)?19-w`c0QJ@%06m;_D9YdOk%%l04oGjr8-s^GMr3qzBz)}K_*mhBe(+sE)C5&L6urSnK z!9Ghd_*Eyy=ySeyi#|p;LHx>*_f=FtQ)W#CF+7;k!e3(l>*73x%jp2_#}x!%IgxMM zGTL2pN;h`?hT z!#l0WL-A{pV($)pv+qnvqIlid?$9xD99KWJmBEr)qE1QB(qga*ZW}I@=so~TgVUMC zh*s6;Enrpe_f|f$Oj3MxmrusD_3)KE3ecAI!CZ?AN0N4i4Ca-c;0rnF!8wadTgyrZ z4z#s!O!w{YyWX#~EKT_Gv^?h^=1k^#{zIQJ`HZWTU?=5Y#KZ4pJxQx!N?s}{*J;tL znj`oLbQ(+&R=!-oRc44PjypgCy}b~)X|GE8qOc*)q^=?6B}TE5&FVf|IVgD#ZXvv5 zJradm?@*WBBE*>*O|Zlh?KbK>V?O?42*qYJ_zX+x@OYR{Xwlm3Kp48e$sjgYBjf6W z%MTOQOT({ngMv1w{;PFi0hE3gujP9WB9jce%xeapFyWM)Hs&zy#@rg#xehID(&WUCqK9qN6oPLA71~~kwsMQ zxHD@41`@nscu?IbEFEnwK>ja)o^oUe;%1cU{rxIuZ)D9_fkXNwv+%y0%I6zOb;dbd z_+d(g#-5X2bpD`9K`L@R8(MZpw@kQ~tfnJ=%`$o-h5$+wk~Nm9W&hKynqY-|J={}l zp`l$X{D3a3sKoxROrg{^SRS7A>a=OHDRmu^B zkM#cF?2IK#6Xno>B)bJwWbhi1tFXa69>EbSODDWp;KcIUSe;Oj*yrarPh6MM#8uSv z3k7z!k-Hs*FSWw$&-FY2YuXzwZH30NYVdg4g&x{$$W&|ggx)%EP#KVFH2y_}9H(3$ zgY0$$O*KSi`fXEpZCGz69_RRzMU(kz+E0NdyM;oz)@l4X$$3Y{9ab*a*DK4ffqPjg zq1)0TBZe(x>SXrz@E@nE^D_809sR)2A|PjB_D_~HX&G-PU0*t)T_dX%#I2IXOQ0*< zLE%Q;ngltHe01K>s=dMP({uN|6;e)eFp0 zXV^1il@I@hV9y@dNnsy!_t7E>ofSEe(*nXxOl)i|6mgcB1cReeA3lQjL;bna47;k7 zyt4d;>zjhmo1Ezz#=4a^ieO|_H7aYq95(ZfdC7Dk{Gd{OhtF(FFec6etl|78Jc{L| zr93OJ{1YDrZgGeVh5=^w58cwqcjOyf!)Db}gZ=tXN;;Wuhm1_UD7mAT)gxZ2g!MR|aXC#k%xC{ZQ4CE(Cd!sxC@gkz`@`8P5@)v|j*_oL@L zJB(*9s#=Nj+g>Tl)aEWXr2%w&nk~z0p{u|CwX)<&8id$*b2i&|`Kf^fUILSvaR zja})nZbM&{lRiY}_XCYDppb0Zxwzq^)tC03)<`0cUB~U<94^ybG-g)81CaX^eyefy zO+-EGOPkT~&7_{86|TVm9~U~5M!%q&N`>KgwY%cU8`Pvea+<(PH>gWv>o(B+vi$Q~ zC%dPE)YOMnFiYY=nRfsUKnXpY_08~`?Y=*)=w4SHGEpR|PeP0zst7;Ke-;?7(T&T! zuw%OKw~v+=vcEf{0>fB=wy!579kT>F41NWwZ37kGkTIu$s<@e$pp=Z(767;8fdxBF zOww;*<6j_{psGw1442&hCs#DoFzJ3h{pknv6-T{7sY_Uj8%tlGtmR9zE9H~{hYcyT zej1z|a6SyW+|gK%!Sf$^sEWd^S}_h%_nE7TR@QN0TEt9m;|9EuAX^MGOukQ|6JHT>}DSKY4w6^IonHixfw@3O->!I6QIK=!&0ZAkJQ~^pBv9>tiC&T|0>j?0ubvOxEbv zFf}jry-Ux`w|>SjuB|~j@$rBxXz899B|V6~TURZSHXsP!;@3#R_KY!Z$r(!hiBsp9 zl+xx-JR&IX(P@gz32Lh$cth;U(5PpWs?uKK&XC#RC__(&~XpIpzpA6>z*)U(?XSF{ zmE$5NaWNkQ+`Dg5<|TOZ;ECl@%h{_3Jq_%R79S_0b=bQAhLOrZx2#WgcQ?puuKLk7+>Ft|{`wt0R|Btt?ii)%CvJAmJ zxI+RVxLa_C;Opg0A*)>m^vgvbu(@glHygTpyLQU*!c zQT~)XS2L!JT5%m#M@pkdC0b;=yvE2}ow7(56$U|3^;zF90_j=voSmb(eaz(JxjXV+ zG9WuP0AMWW#*ceI#SwfmAM>4@{p#=gJsn&S-^zvg6P5O`%!OjT!CKA;#nC`S=aTyK*6^Mb|i;Q*wLtX?Z z@);SKlpcZC1riS?vW?%(u|NdZZVJMO5K3JjDsec>1Uxaj^M?)5V92*MyojnaY=hd7xYG%l7Jl8(4(QVI8FT zgdC@palOXUi7;QD<=1Pcf`s11+NSlu23d8v_9T1H8;oMH?R=yHRj4V&DZj>={3SX| zAuiGH-W+c1k9qiNIP%_Asa|~Gp)lg-8s%rM6FFCRAXn!QH}1P2tF&}l9uu~4K^qLzXs^JZnhr+**r584L`WJ7y8z3n`s;sIjr0E+( zOf-B8Al6|gF#OarTXRx4aR>$&@`drblLam1So*Bav5VfTucIEs_5`QPg`9TDLIp1b zll++hr{5bmoAl#NCgCg|MtNCywtBJzQ154HmHjX+yvL40tA?tX70ifBJl=B1->-|s zu^n>O*1l24c(z;2e!KYPvV>8C6?#cDod|*4is8aCV(M-Yk-wL5rz-1tV&I3@6H5_C ziJ-TU>H9u$FkfjW*^YOxIf3qIxatYZg7oEhk{A@9x_VRFK#?Z2)=jy#LvBz^HquKP z7QxNhc2-VFjDQ2&elB$hNb25|nmMK9i9-H{9O!f_QPSF=2u53ii#&AFdEZ8SNGbJ9 zR2hNu%HpQt(uFdrP7>?ECHxR`_DV1@Mx#*he_3$G|Nl9mUo~Yygj>^)K;!@81$s5W z^BkL~(K+Usrpgo{&N9-}FotU$w|jdx4|WKVkz2dw9VShU)jZ2;2}pqQ)SsC2TCOm< z`R0(8)rTN7^=AjxSLXcylij%f$lJ&Ug7Xpuxr5pTO4d`7=B~N6pjCD%7q-_6NVM_Z ze?=RgL!yl_OLTI9gF4Y5LpSv<^lI~RU;r;g}y(NN?E29$@KhFVm2 zg0&qf9qEFoVcm)&NiE0;AL>Efe-}QfS3b7rnNEvN zb}7H@B8FhOgS?NiSDMP?rP*a~iyZy`_;Go(5P8#wqC@_s?9Ub`qM)mKoTExVT1k8s zc?nUi5ihWj>ifim0!}hRc6o=Keek;QiA3gKL|lUdCU0Df$ut^J5$<4~JoAXp<17zg z@8vo%-1O!363U8Lh}j|KrT;;A5VdCa7$maAhI5{jBDtfd@`$F3NEnnrWfLDrD*d0E{&bG#CACcjvmDtz9JO^OZ79M{=cD z08?_fDwm$+ISo49JMXdnbxHT}4CLl#(v6r=I$W6x!zl=_EpPBEX;`G-pf4koj`nY(P^cQj+&qn1b6X{$* zt6JB5jl==vDQ}x2yna>Is?OcRCEDQjW2)fX6V&czPyfBVp{Sq2=E+wg3*KlD!%%GtRqR#6vvtu-$yPCbbRWr(;iPh)veu@nHVt9CxRjDe(s|&aJyYy*83T>%#$drA5 zYwxNjkXbDa^!iR1BIMhmA6CgmMB02f)%QpK%wuR}>r`7oBOpN7l7Y7&@if2h?fSpd z?)&~ept+R-)X%#aFvl^cNi}sU>Kp}g+C^kDl{y>ecmqueID)Rq$MTn_yp0z*38gP5 zq))4NTEsZ$pa*I10}tL;>Or^KCH;mY*nNFG>YfP;fNMQCaW4K7D~@mE+YI=h7yI2j zFHx!8?URe^COpUos8vkw_J0L#oKd&vSP46qV-V{n{bNDmK>xErjI5UHej1L~PlVy7 zneOR=akz80n|gp^ROf5dz>xbe^7VzCV6`(kSfd zuwIxu_K-5Z(S28Vb=kHHGu?;0Y)0?XjiV9G9AZo)fKj4$(R<6U`i>@?t3+ahDA|zR z9*m3+Ucr9B@&2;v+?qH}g}ghTHpiiL{$89T|H8x%1M<5COeC;!e3dq<*gZ_-GeT<3 z`TLMr{Gj4Yc{tlyZ)-fHiI6$g8T6Uyu_oMzLjD+w;+WB<^iQ2+%v-9s)t;-i!d4|9 zS*fWHyqBLO^jOk#IAHoP|7FVvhw}EEfN)i^z1&_lpY>7euSwR$XDDc@wTKAOiANuBCVo{Mlsdu0P|lv|1=rGi+}<%mGNd(og5tYZ@ZR< zK$mKawQ6bv27<{?3ucLfqcb*0=vo)v%2aPPHBPEBNU)JO_{!W;7Tz+poZpWer2kM; zuJfjo3_Gp~o#1<7Klcm7-V^}2gt5rOTt@y{myt9mNH#)ZZFvW4vp#Zf)}5-}qxRo=BrwR{3vnhn~m7usfv21cN= z5b|)0{eYecTq+$U$jFKek;^6DfSZ9Vu+7qdNkI>kzWb+bjV`&+T2?1n5B5^Cceii;9wqnoyLZ`p zAdeEP;!!$7f4;0}2dKzHw~>UeA#Rf+r9feI;jmOM9gZv@p2al^=RJcZKu6EfRU~`ccUYa)5Q|AXaw61DoUW}fCsl#nINEc9?%ms$ z*EREHRec#5q}XY`9J%AQY9-lPK#I=ayb8o2 zNQ8TZ+XlJrPMq0YU!sP*6Yz9@y1SMJ*f}pQxQ>t}`yhTQ{=wM)9y3wSvFq)j-cFaq z3*%dA^=}*zUa&AThi%`K?C$IKuAC(M)G}cwUt;f?dFdm3 zJqgqNOFq-_7_@kxp{2fS#csfC@u#4~ zCAA2$o~|~w+g2*bZf~P1j3lV%)cl>(j6+M12!YTVQjk+B7i2CJ(}X&K*5c4?myVH9 z>+_00$EGf^Z4jTY7-+K5`q`g{;6lQ07tWp(rq|gm&ru5QLPEBPDaj`^@cY}23MV|y zq&2;3$9~8?iy>6kB7b^sA^9=)sh z@>#-<0LH~T`#ceVZ`SXb4eBjL@&?Q;EtVnR^2^_9d}DbJl_B=?q@T(&iKH~|oCjyr ziTbd(??o+PBps0Fw(Gl+rP0$>d|ps5plE-1KdMF$opqGCVJTts+qUr5EPc~og_q(ACFp-Ed(C<@9^im%mq z3~4|8llZ~^dG~I?)U3IARk!XQ)v9TtB1UmB5~T-FS9bBwpm71SvXE;+JjXUbb+oSz z0Hiya^HvR+Mx~HPe+mfnx_#IYFpw)ya4*HeFhVH`Ymdm?U@Y)M5oU7lbuzWJ!YkU& z7GEzTm?0)`fXbv+DxI?3j;NjaUHp#S(}O!(JWo#rRcMp%QfU7G(JflF6JK*8v^r~n zDL?j!S+kScU|T<}17^%S&t1O3Z)Nlr>~Y)1r|N<(uUw!l!7fon57`!)+RDv*LvEt) zDNegH0?c<7dUGDpgOIqT7>L zBS!NA`l{@)4R7dJ)q$;1o9mWqI>mH7%e)qV`Nd&By9q%u!_q+@p-bui*ghd?_TofUwlz^+T~_8#u*?Q0=bVdn-=X~OT?^1OS7Jm)oF8T{ z8vGDjS|0e>4k8x_;c~Yhj0kz6n%^A5in5f02iu|P7S9_FJp)o9Dq=J}FX^=Y>MPcJWyUpDl3*-v!JHx0d1$S~fgs z@DpITtoI($7*OABx1EV5I--``VVG+MvmBS17H)&o17&|EuzPC4wOLkp7}5wqemYD} zY)s!UOoj%jk~C67V@#06@!+&=m}8yEi7!PFsw`Po5r*$TK3gpHFVb;xK&=-s!65pMl@ImoR2n(An8sydxT`s=A>Eg0xjcql~@+s%T z3sVVTV;^uK^;z-4KKtMpy$sCjw-N}qZ=bEF=cr4n4vxE5wM-SuwSCW1tB0-Ls2wtB z;=fqXU}gYWNYFOasDUxDGUk>NMPb5TabVd)f$;rT8pdPuN>YoaAmXA}iA#asq2@d| zL=K*!ezaa*PNwD3Cyj?M3DWw2b@^6J{|P)Pk8J|*3N{anBh|f&d&@+<^I5rq%_F&he=^OT>LElyfR?^)(G_f3GIH!fe{lUqqbX*qcm+Sr z=)pYO?f%js#VkUbg34+KhbgTEEC5a|7OdK|MB#yNz@763IS3j;Rqw1+z~r zdiQA&7OdbIJp*F)Xo$85ZVaSBtM`ePl8QY?3)e=iYQnF`gI#;06gG{PSG5ju@4BO( zHMfN^#mV!wIKGmpWZN;SSItJftobYH&$o-r1ZNPyPSmr#2Xa29r7#*AsvWl0AMwFh z5@cNqdAS^>A0Z)IUd^Sk^eQiIe!r&rUBd0`thsoAyj)L%U-+ogP4%~I(1I`o%e75OA_lspwppQEmwulwjHuHHV_WjVAoKqo<@We?uzecG<{wQ?lsnoeqTv)@eqxl?W6egIrZT;u1%Vi7i<>~5*-{z#o^BUx7X zhaBjqZeu1465kH?*_-pr5ZQ95qw}dpNY)|$I;ze!i5|<+K>9f{VJ+FilgsG4`-9Ke zC>}^T{?B8pssnQvKG`VPjajU6kH$VRbvt>2ywkn;Xc;jTD>0{KV^~KRt$~~ZLl7KS z)?I5*M4kh{3^(+JbR8qz)0f*Zvfk>}yT$XHRu56#pphiE}rQ~eiML!u~2#@yTih>R- zEbJyjrp>8G{ACMF|Jt9jbL`l94s9e&1n5GqhKZ(D3x{WhkM_+TqDe#TPd0v4qP%bsv(v1`uKK%!q~dtq>|oK$H3UUZ>kJV3V=)!4 zrI6-dk0p0*>B7RHbnPKCKkyV`^5y_oq0|;UTza7u)#ufHh9aO{dP~@{cON#KlLNPv z@y&08lWeJO*eX(`1a;_&EVT&dLURDf`=K z2M-CLAF=3sWV)XW3IYH~s=T<^hF++}g?gK5_W_E)gosX*6&1u%Hg~={XJ`Tnz1J(M za-%NBh!QFbWsL1x5+UP8A|mgZWQIb#?xYkaq^Vkwhw{~osm^3TQ`P#Em-9PGQC$Yo zT4pGrf+OoDSCv1O^!|$C!8ZqB?%2uTI~a2@_Z1;4Sw52JRz zxLtez{#kW6)2JVa(60(+V>)?{>#O$j*ftYtSTph9%+6>5>-@0*-G?LR`#k5|jsbvZ zSQRA94cggzE+jacWbuE7=<@Ia*}}ZQh6Eqv;-ZBAwC2vJhfH5XBfMxI%p)GTz{=?{n`B1 zT&tz1jhr3sawO1TDk$;i$7e6OjR;ZJ0BWZn{>^b8tJ;Lyn1*}mYi`+P>ctNSicpJB zp;VMccL^~+Mz7|0-fZTEj~oe4NJ2;+y@pr05)4I>5T@Trh9oVB`>+c~&#aK={{a&yJDq0tM zPJm*=bF$Z$+wk}TA!GKNGIF#~rC^SxQ_&Zu(BI*y3xOIfua-ZjxI%aX-fdTP!f5(R zZE58${aD;xa$JhRshEkeDc@)OlhST*>?8u2w7GqgX6F3bbBXeYjtkMo4n0>Jz4AoJ z&jT%;BhlZ=drm3AXUe52E79NI2h-RTO8)qz#s z)jtZIW{2MsTGyk!|Mk13b)gr1G@&ZxTj<0W^39|be>tqAE8G0h0iVBAW8gnD8>lvk z9&samYiH)<-X;QF*cE#$9o!r^SdE3kKuc;0$Og-8b$#hscMduGL*DW}18%;r0J1g2 zeq=wzFF6jt&t?xKPQ2KJJ|YkjD3HUuxg9r;(erz{2dpnPP9fpGZc58WAR}1`?=tZ` zLuSv2xqS8{>Rn&R;&}R%@NP2R;wx;9I<4!5=r`Ndm>tO|J5f5+b+z^yiro~%2xFGe ztfpE$B>uh12N||06D3jRzv$-SwR5pdlx9@^L+1bc9{1K9x5}nz&q*Nz;V}BKcDy9` z%+#Mjk0lAE?B;S}*FoCJr?#Q#q$L}Gg4t9ud(o|{uNdy&fKj6N)YxW2wegZKRQ}sb z81hwxZ{-(RGV`l-9y7km1idK{!C2yV*xK++C1NZed^`6jclC(RuPMPbS6IdO;{%|^V0EA^=;QjE~ ztkqr*OkLom$*JJtFZ$8cquK->(3toGf_fv6`u^*v?O*0@|8M^Uv_*{GeE3(y72rDq z{w%r^KJI&@CSA?sG=ceCcJg0MCus=Ir8S7Y6wk@o#fyW=`o7J_EDc(sBxYP|jTPR$ zMx?F2B3y!lUI;86?;0(}*p`rKic>+HYAJbLx+cfO1I(O<oG(QJuJRZxe|AH1%e`P9;^|8=9svbyQAa&N z)xt3Mw^_bom5u##6;^9Y<%UYL6YQTXB_c@QD$dc+gG1_i$`xM7Pf zA_l__(&zLc;Ad&f{HZmggSMYgN5`(M-r9m`E+m78eDK$7bgLP=&z+qH5yM)b&WYP8 zL_txW8GFi!weHL6GXv1W{@eKo zYQPUl{QyzG?=Zf}8z%+FaQHRhm~`=Y(aD=u2y2A-2;Z}drEma0-SNi_Bt z8UwGQ9-555AA3_~pzb=n=y^&pv?gON{BYA|j@8iM`~Ib!&C10$wqwsLZun}Fer-NN z>qXkWMdZ>S*Y3o3hxHX@|CH^bVqifzE1*i0??S*z4x=%KgRoO4{bq7*XT>n`7u=Y)R9Pg0lgy4RIYzf@jOz;Yd*_SJyDF^qwaYT_gXQWeH#Nrnxh27x zL-bn(@Il!juAe%oPrnYj|ZD$c0N+vgB*xYwnDqWCV?%#D5t~!`z&{j3pfO=IVRka#-K`T4_#OVX2f99Td$a5MG!_2Lo}qRv)`uQ)K!To=>gz}$S0oLI2D7I2#YRG6Yvt;*1=#~e7LXj z)hkbs6d=*v$0CM9D5FX!S5e}EPQ%Q*k2_R^0l69YM5U;z!%Zjti zN0}l-plQVSJ`;;Zc6WH}0a61hb-AAQqa=Ix`ghies=tcM4jV88*JKN6pV8Co2M2G`Pb*Cae(aW*vS$ z?$RcJD(Obs3Zb%mk0yEptN^6al&5D0SSvulnm+IZFYcElHuVECit!SG&)VmYu_e_n z$3$*8K;K@41T`|0cWW|VqQY2u}GB|R*iH4p0nQCsNVI*z4&i{SsG`Q7KbvH;Vg zPYgB&25({M+89g))_O%{*kH5mD0-zYOPck9IBCzbj|zO5HkxcriVS=Gs_BJ&kFc6U zS&uLgwKZ-a?{vbk#gNl>kW5T@TQ)ysl(w2#+OC884xeqES;IqMBDmIniwc+E{MPuOMJIsY zDerKM2gQs00l7^$1Am9va%yE5;b!|7$L2olo^8IQ@#p73T;sYm74nl=LB98%p`G|8 zzlmbPVP{P`Jo>LWrt|?>e}HaMj=fwb3Hi=}NRW>vT)D)MIEA#5(G-(t%Onb4;f4F* z6XL)XcMoULr;<|<*-s^?Je(GmWh`Vc*US5FK>16oLcUYJ;Y(V|HO%;u!gVGAd6t?} zGVJbQf={0+eJoREOuT(T*7Lz|${I>_2MQj>@sxZ9j;{pD6!vMvIebA;BXIcHJd6lj z1$IkwgMW64Z&U2kE=kp&CD&DiWL8yKn_kPv=V#oTYar-*VNJk<)jLUS|St{YESh=g^RoPFLr^^}5?0 z2(K|LMm-d^%U(YbVYr4E-0{&&_wV?RTWSfp%%u`{t$2e^)vXG~>|!^0^!4mrnGv41 zcfa6r|N7{$fTtKsI!TjlIQo}Aaynjp0Eg=uO5=$|b!)7QK_c$(rF`;Z3hV!dN9Di` zusPog8A+f9l+Oa6TniDXdkVD{N}GbnT~D%3!U<>_1@{E$bz%Z-^7AANWH|RH2vBv7 zAOf%+%cX&w1K#K&Td3>r)6*k{58Ez$M>M~WAFAQC@sLQWE@a2~WqGob zk9wATBMaVKU}2#2*MDQT6!*0?Pfo?l)_Y8bleGEu$mPoNpz_P7e~>H#Kz@NJ&uMifQO$j`}Lei68TwgwM8qKJN?M_g$z+$HCM1m z=>W<&4DX~{Z1*6hByI>LBI%$x%XIc5oycRSOBXJfAwUyK9b=$OP`;y`yt2#3+pn=C zcR~IpS>r4+n>u>}mRE}j^_u8wc5M>PGQB1;b8@y`<)3qJ}Nu*$;)qS-iAJ&Gr&SkHleH30PS?&WlY|^FNM+36L9@H1`dpG z%s)}K`{+DtrgalCA85Z(ba@!_UiMB7H$S%@+VEjY!7LeK5nV3paqcX!#>vc3t4I}W z3mjg~GujQu4CLMO%}$DdWxr1KYRa|GXa;fQel6l*2m1H0?709^edB&CEyw**>9pPB zG5ALz(6(Mg4*HH}Sd6#T=^?_Oytm6>5E1FxY1-A}VVv{1+Bz(ca{5FVgub8!tHu-1 zK6imJEoKQ!#@&VengKX}p);hd5GZ>nmx0I^ApESnzc=wwVHIBZ^I8ZvqWlj9ZACY4 z=?|ZnGD+5Y+JA8zxgBB_BvUVwsvE&sh@6;(bJ+eIrkK-g0=|iEqX0?xzr+e)#4u^F zGeBYcNxLwo%Q~gcP-07c!zRGXj^f#g8hIze_D_-RF(QX1a})i0LOSG{5oh?%-M$+X zxXLa#L*r4O&Idp+R0rdq*mn8`YqGp({{9hwE<0tA%RD8u8Fh!(W}_-Hr^UUccnaOH z8G@D_e>=wL_1TYm8LY2bb5aGRBlaDw4(&XdM9w!A&>fom?!;HZ+7fS(n# zmVYf?I~yX)8qAooG4(bjy)rkSO+qJ8_Kt#Bum|8)Sd&OAd7V*BB~ulLa-qzNnQwhg z)D_^r{b=y%m^N+Mnv#-FDgNeWlX1OS19E%wth%Asvb)-w{n0M8l*Ie)-v%^b2qB<$ zxh5ypZhv!>c0aogJMpe*H%xlvG1Pdd%oVrz@x9`JWniy3Vo!cn_%y^ls<;NYOdlf`p9rQs^hre5yzu-h{NPR*b`%OZBSj5(C)YXh z@#8{<>-osUM49g9$c;VVUnCQ+6$zOj`^zuPCvC&U$rjBw~wo>pe8Q z?W`ppf(LJ=tb*YT2W`o$za{yV#Hrjl+%bTT!J9uY!ND5zM(dMIltG&dg^(vR|eG(XQacxJ8VSbU9D zx>NeI{lb$LKycN?dPyUswR-s5X|ZFqhn8tgh4r9dMXU0n;K z$XtD*u-$fnY z|3Fe~9@Bv(g7HYrM{4{aB0_9m;tH0vAInH_{LaBT#)~WqGcWW%R`J6Ej>f+luR3}1 zd2e7`Sj;kO;N^toQF}=*(CJH6j*WWn1ldBNlw$l}DlUe1vz;#^v--AZICp_%#3UlGH)CGoBwV;-yAHCKK5tqRyO$aSfDDHVOW#Nay>cpDdq#3?W_XL8+t*~sPo zk@1jbZOrxCFnNT5m(9$MK{)BwHlVq1wB|&K^s^8koq)BAsIIMDpi^J>AtX9yg!Vru zC_Hw``UEAurMk7c6<~??@r-w+9Ei=`iQZ1S`>-}v9_Pin=ZjQs1b46y?DrYA^{1@l z?b~iXQGcQWT$Z87w$Dl*pthl|ILAWOLJoJa^dttNqw3dLG;^nf!@E|KCs>l#zrgS) z_)^AMr<#)vC?cH?m~xm*qO7rzXU>+?l)_e;%H#GvlRMbt?c8_K30k#ddD!L9GCs4* z@HAUa+V_?#ZrqF)Z71AQhn_1xW8i6Nbl=i=m9Mp@pbFc|2ew1eTRkXm)wYvc9r2z$ znv5>m5|I0%?&Q=(A)7FNweoWI&!9_3j?>)T>BEp6d!6wfQW(8ylv?9A={cW1AiqZy z;+EaoN=ioCpy5%CCU=g{=FnYhaI$i+Km-{(rhux55?RJdBY>hWb9_M9Ta24)sW&dc zx8^58fjXn3-sLyqum@(B$O$#cxoZYc?4Q=4A*!{uQv)9M84~R&!Nl%CXS0gs!pJN^ zoj{hx3B(Sumkp_-h|0W|)MP~eQs_^I4rBto=Zoa*K%3vPXF{9vQCCX164h|hT#@c{ zWbIR8!~zP%qAfhCWlvKm3J@XF#NLugSwuEufY>?&TuwJ8StaOl-yel~!v;32-6 zA)lw8HGiFyi%ahQ6m7L^bFQbC)L*YR)O2FYD<~?x9uWML@|!hCsKyW+z{L~K)5} zXEN*T^L$rvq#UoOA?NjN++e5bfj-T{HBhE_Iew1JZRfdR2M~Ihq3?hzejh_{RKTtj zw8YR4uKC8Bpe-s@l&fRx#5{6_QY%4O2X;cZ^=H+(E~vjJ6PKDB ziF!5{OFghW_NE@AliP}QlpZ@^&3P&S?kR>8ldzG9oHUCwu*6b z7xAhCC#Ff>2mG%rrai;L906^%G`|x{uC?OL-k9t7gR=hmbVg!5RijqSckC#9`h?Vgi(VNS3#DsgatHWY zG+}=Tli3lw$0<+l(1SRaGi~+}6RAm!e{Xe}Jnkk!Ipt3b&G69*Y9(D^=n*E1n-4XA z-e*MQ0)Nc4ZQ*~L#1}`w%MIzPJfLaG);z;`y!Vx_SCAy6>9!dkALOe=$g^HH#INE8 zn4)7!H~W6?n0GUOt)&JC=w5LDxbMCX{B5) z8M_QQ`o4Y}#yx;6e}oiO2s-;5Uv*Z`|4#jSuotzLsX8s=`r>63Tlrp$D2r^adOY1_ zVX6T+N#omv*bc8_YLvASNDs<1nji&htQErQjZo35B$|zUBlmDi5~?ugLti-R&R1g z9}OwA!9VQG@+_2|pD|hw4qZ$<5PPH)ttt5G&@dV#6+8Xh&}%C)HO70z2^L$~Sjc}v z;-sAXiNsJSBDC;|E3dMq3tB-9Mb0GSpKTf*V`d*ewE&#?|CkjM_J;At=)B{@h@|7M z`En-8K{c{>_l3UXg-+%WfvB0=pK?F1f~Mr+zLPwXW8->xA@hRO4H&0fT0*#JJmM{S24ZI_8rH6D}yLw zlH~kLS~sjaw=!4=uN*?#EFjsPXBVaXWLi%U8q~pPu3r|mP1&<&(EOBLI4*0wgN5ep z8N;k113_cb55#;~mod#4cC)=2l=^T;hS`%7(epm+_OSlTyK~O-|3Fb67DrcfiQ>K| zd(v0f%0(9befCq)=k!iM$83eJ2(-A?Cz9I?|wZJn4|Qus|ti{X`&dgxA3 z|JN_JA;FNgi@&fV0!#!cNCT#?aw{hFkWkPJJB7SHg$cm_dU(`O$xg4R@>?Q86K`sL zd*Zx(u>zN7|UO{4x| zO5Qj9S~o4}UITQK&8+04=Tue$nR>vu6;1>HLiaX3F03qF_edPqiD(m)(CLIe;i;) z?-{7}zdKPJuaL4;r&GeBmwn}}Ssn`eCWUn2>Mk!6|M*rajRSL!S#Y~OYWS(0iO>~d zTGNDCt4!Y!yzy)UW%z)evU1|VI1)!$$tBI-;_?;}qwBm?mGQW1MHhW}2$@Z^MTMjF zyIx8wu@sE&fCp*9x-t6k-#$dt=@`pvod`)f<*}OF#FgLvQ=wh+@{4o$#=m##>AbI* zg6nK6sQ$rTCWd0!!YdIJ58e)_62RttTN<^%t@yWX3FKu$3&}+s6JUNY0C;51IN&{%%!Ev5XVO z@JL2`M%Q=-uueE%&dSu zSJpzFXHFgAA6F@Q?ZZ7@#`=jXD*1r0_AAR;WX-ow0OcZ9TKk3ukrF;+jt@6K;e`I-c|lD5%FXYyHxmxi)8* z&X=$mYW4*z4KN%!hhJjj?o9p~E~+M&$}%)9-UkaNY7fWj&M+B1*f&er-oFe+SBy{6iCK8TOq)uca;K(qgc=@B`_zpkgQjO&L^&b49pu#;)r zo!v=B1PzVu}HV zBn8}&P!axm*>?%*_O5ueax+Gz^ut`>MXC=>77#f527Ld!&F46@ueT?IL7&ss?`;m= zx92{Z4k&Ft*SlRP(1AvknRn?yAO&Vi)@^CkXCz)LYt^kY7iNB?t{k`6n(8X6(WIC_abvHAd4>@LeGa(q+6&~>>XA-dSju~-WMlSc zYAJ%Z8Yz7)4+{DR833MjE_wvXAI@x&*KQx@0iS^06$Zpn@1xN5fC99L41oS>6%n%d zUzWuDkQ&P8&ZdZjMfzCm_~{Kf_>RO_$djF(K0k8yGjhZ2J*o&9Mr8&yC3^04yl|+8 zAzZ_~qxL}+;a#U;z^jY`fwo{TGWx~QyXj~D`=+m{(CZs-VS++mCz=%$dO>D_t9`_{ zdZ=^z({Xq3qhcO{@~!Zn?T`<^Ue|-<+vaz~Yx}z~APZnuu(`;w9}Z?f z%`gTd@dWZ}>74wxLb7zuRvuNQi$va3{F)6eo+Eq5t^3&cAV*uW|0sNmM)SKfvDY|Z zflnFclzu@rX5%iYaazF@ir1cw9A;0-0L|w4a2${ zzoO3-_|x~A`p+1V35Pox?7`lrn{hRYdLmQtn}WSW%aQ}GQZZzrbMzJH4G*C!^seWo z7?{w@>j~goILCTCY(0>=J_3{MKS-@1-^QP10_t7`BuU&MNQE z_|<4MSCko4e5`q=zC>+Hz7$to*4qTpQ2rZ1RBrjgNmfP(dKJNHJB?+v^resQ(JjyK zr|IJgVoq3;VR6;IdJVWs3X>ZqfuV97-bg!#x?j|F+t z0Z^G+37`M6$>s~#sT)bY{C6rjFX>CogBB{eAt<+p?HS)HCpYz#(MrN=*=CC_(WUz{ z)*Kt~is-^FDpc{N6-p(CG@?oisPm|3He5~~qkp;*TQPJoHP^GCCu_k!xfXwWOLdbh z9i@TkY^q2?nk|UXziV3`5(ic`&cZ#aQhbG|@wP^^81J|~de`8*Nb1`eCQ`Gi+qF;J zl{1vB+h@@?{=J8LXr9+h&mN5UU%j1WP~7dd<%1_^f(H#DxVuZx1b26LcNz#90>Pa? zqru(X-Mw*wTkvjNru#i}r|y|LUvAaZRPljN)Ss69>}Tz@ejER|Q|$vJh5*`qTN3HJA68Zxxeua08aWBnep8-8V3$0KR@ZnR+)+U@9mA*bdbq-P( zXxH+lnTGO4EXvi~7=>`u@$~EMTnPL?=I$vCOYp_q_kitlznus&wtDUo*d(b|xPSzQ zOGDa8dnK&oFB`h#{o1>94)XaFGDWmebT~>{^M{`mE;}yznr}7%NG-oW)X{tTw9E>9 zHxkBEGi9F`kS%lc0LYFT{VveY;d5+XOc!3w>*>~J8|PCl^!DlJcqO7BdXaW>_FjCW zrp&L*t!x<0*R2@KXP}@>#szyur?<^Ot3lnB;;CB=S zMJ27T_?X~IT=P5vHyP%c(%arPujmF`r`sbv`T0J$6kFixyE}83e}Wxp=FH*mZAm0o zPuj7U+}@+tzb|57sg+3DKNV1J-2XPM50KkaL#XNSzntjw!1~GkOdSP8G^^yEdS<;u z1g~B!v5luF3+mFojMa|*CrdKyz#rm23idu$ zxow;O@g>3TuL`p>;?>sGQ92T5zUw_Tje`t)-uXg3X$pHRhc^4R)wVM1V-hsF+OG3) zXjLPtpYRXLNtgcapi4s$;eJFofD6-NPOGN2i&Z7UgIKb71DOMG-B(i$N2lMoU?~Dd z%A*Y2eee>l*>4hX6mpJ*by5fAm)BUph_am3S+oEl6#GB}P2Dms`lo0eUs~6oCAYGs zr%Sa@hL?o+P>^x0UZg9p4^R9r6k$SqJ4Dm$?J>b^ydioZie$Yo?Acr?mP|JyV@W?{ zo_53{)P<5f4d*Hsf$#jSV*>HD^fD3;{^ou8d$j3$A&)v%DWyl^q3~tdBlLbD8M7eP zrjs%ShyAxD2!Cd{n)Lcy*O$jfb4{!P@pyf>%`cm7#PZ4IF(ks0C6sTazYE)-u2blV z40w`2zJw3KF7w0s?g3yFYkS)X^gYC4oqQq^EPX*fwB@~Q^!^KzEI4*Xn|%9X@!rlP zLHH0kvzi^F_|uii@L#+VOh0NBx_U#j_TTDyn1J>|ab$buqeeNPbP>~jkll-oi7hRo z^P!PHzKRd&fXm(&SS=~Wb7&y1joqE{a8$Z_dvMH7U$E{Usqz~S;mOsH`udyWy#=kX zl-h!&edo_YBkv@?2R*Z>p}G90n1QD5zt}cHh90QHvzUMN7mT4!ieKF{kRli>2jAmCf|CGk?F!6fn_xa&5W@)qgP&vq_L*G>P5#`cQ(_d^ zs;k1=oHVaJKHrPn`y`l%M|12rknTe1Zg_igi}Ty)AairPKrN2oRj2$lS~t<64J-X= z@Y|GD&fTP^Bc#{=Yx+wNp*v|;&JY&Ro5eVxoo}j-qzIj;tNNr`g-no2!F!d zrMshv2nB!F_WPO>|6P~lHsNNs{BatSXut$ru)cB+im%tv_$t^mBR^Ye=X3+ zd*p=VB{p=Z0c`;_uK{)$Xn*f(c-bM29?e|H4GOYW&HO-CPg2}V7elV5lpXClXC>>< zV+t-@XD3H-|FksAU4Fq^VXMn0=a|h`3DX!2vo?%r0`@j=2ng2l0Hm5uN-Um! z<2V+@M|Zc@xxVY1-Fc|5GtIWEyeMOU?%MnP2*znP$p*Jy9rU>Q^go@WlHq3wWXaW=V{HgNb2d=wnQqi5_K9+reAeuE4X<;`&MIfhX1oM ztTk~V#+}C-)-6`&-djd{cdgq=qHkLh(2_IR1EYBbwc3xq=kbU_aLLL%1AZJoT=A^E zy?Hf%DQ4-R&+;>C4seml_nKbYc3k0xs)?Z9&un^83fA?U91C}P(X0YTQ?L_CF-sns z4U1_>HPBSxD;0TAB**zbx>MsFk=MB7K`Cpwk|->ir`=RZk)&+0Zldk%BKwzonAG1D z%vbu4VBH;MzbcOqKRn9ztnNymX5dK1yj~J6obK?UyFAl;HesVdqwP$Ndq9*`*D5Ic zo&}mV%?GVdQn*Ypi82^JT2X5kkEA!UFuI_}?*3|1&%Jzw@LH9eLuQ zE|z~|OdZBJ-jmXlJ_@!Dm41Zw8srL)Q~&<|GDf+U6*=v<`tshJ&Zq>(kp0s{v9vli zPvC&~9oKx_pKkv<7)lZ7`JG&LxDT^-}fxbm6r403_7&|p)t4-GB+gCSftPY;*(#x8)8Zh{;BST z%R%8JvT9jjFPMwU-U5fs2dfKoExLH^HwaVV9(3{o3bq+jX9_h=el~}IH9>|Xa=uUh za+hma<_-&b=jiZ15Jwfo`h_mGptmu1l#Xb-&vey&uJ{N;RVBjl{wHjk@9BNi8Ym! zs}6$?yJd|&fk|8+$ihi(6l2N=#u4?Udpu|CWfO}S{rNxgqPPJWko_tba>3;VAqE*R zGh$Y$bKB*f5TYca^o43S;r*iw$9;%MiAG;~5uOO*wueZesvP^}!d!qH)HC_CAF5x_ z@Lid6-hOjr5+S=Ci|f{fhS(e=N0qFo4XvczmdfovTnx+K_1xKn^(2vJ%U68aXtorl ze}4vwL`4jq)^mnL9DS&n6rN;&qR9tpzF)2KCn}#$pVW=FH|Z$A%o|zo=7vzhh2~IwW_Eb)Hb)ld}#;W9r(s1(tE$Pa>UUbRCr6 z_%4ayXp7%0te4%u3(;G60@!f+iT3wNNfThg+f^rko6dzD2=LyWUT9<@UJxG=ZvU zb@IJ8`w-?B4Mj^zpImH-X>$MfDzW?qS?2b&Q4FcJ3`AFD3>SFd*IPze z*sjpXEJp5!y&!bW;OVE_oa|v+Cgz&f;0P(oLGrRgqicGbH=5<2v9Ef%f`S07$A;sR zH69W*Q6r~98zWt}_Z$N3yYw~O@*667nlPZCr5iG+;`NN^HMla)KA|(PVSmAGo<2Zr zLVIRw@#5{6A`wX#JV9Lk?e0UAtZLU^fcE*79eKPrdh;E(doW$@#C1c+IBcrEBN()eQBacqE3|)qN2am`&*YKE_i<;d2kbM-NV(o z5?(GDyAQJLPI6r1ZR?&(_dM!>dy|hrd&u$(3v&ziA9oJ8vDci6;0+5*qogn0XkIt^ zDpx1+gmHs#84v3!T%VW1(G=4v+QtdXI7a=)-;7C?so#txH`f^PGYh%cU)$&7KhloY zebSV$z0u$&9#5SO@ZPm2+dE+RC zJr%~s+tElMedppbWP_{q>U#{9f{zzDu&*KUhQ4?{y_qZw?dNV}>^B9S>)FkSb%u8{ z20Ygp`eckpH5hSKwV8y`M;4OAGmw-`0tt?}I3gqlr5 z%#T(=U?(Lnnb%$%DtiI%)k*Uw1fQLm)cAZWT*GSqE9*1KDi_2Cz(S2g)AAMaMoF*H z{4k;10=LBCy{?*v2B^vdZrsKd`+hJlxVuT+AHjU#v9u_a4_ZfMnS1m1}lGNV(ZW*%Vwnx zU&+LyQN0dn({tOR!x=T;}=IAbE)Kjv|*uk^zz+#$F zi7GcIK9sVl7yIlDuz_$+{LQbXd67RRQ@icKl&}a#7OuM%VwQ8ISRs`Vam~Pzswy1N6v>U{jo7uTx<3H zbp2s>+N?sf8OJxhf<3q0Ih#aE<{e@UHr!P*TV^7d^`iyG>d)Q7h9I2G}qZMQ9gh`CxXr$a#-q5|sZF z)?5958`gXLPhman-TgU=&M|a5a8sETL3RB9F-K{InS-`5Np$;daZZ=NLKhkDiP~E_ zbWl||=u*2+Vg8%Vy#I4no^ayUX~FQtEId}QL3O+b*cdGWxq=>)BnjPP{D0#Onww-D zt?EN$i5bR=E#DkSIZ8qtGo**9$;F$4V?+Zw)x92bNh91ETV5~!{NH0e)ybp@H<>Ph z8HsAeEi@~<%n|YfH06c;x6IzlSl}ue-ew?=y?uOK2R9IUnl~w@ z)QwMAE8j@;x;n2$)oXDcvVhE{oITOo9)wM^X9VBdNNLL=K|#zH1kX0hQ>9nqiuJvY z89y!uqZJHXV}dARvj~}82t(6d?OJbv!OW1-wS!VN8A1{)9wywuKgcT!KZuXarGw3+ z5nyJE*}A=bUOvh%T>33A2|BH= zl;iy#wzWE(c&vvvB@7g-6LuCDY1ol_q=JH&x-I?C)A?H0;JWc@C8Rv=1EH+B-C@XM zky6I*1YdrFpJLYI*3^-49KX}(Rnt%gGIsUE*KC!&GKu8w(=hM5Jym^ZnG=5!VXX6W zD!|4fBn>hXQ=+MmKM}$kG1<;kjH#4yF(ZnXiW~%!uS~W6EJTudo26Nwxjf>cg+XIQ zkF6y`F=Ypt0_N`yOq@Rxnds39dCV+q^%21CFGjn`uHs?gxK7@_mq)%+8W_BEeu|%e zHw>&;b&wjlowc5Mh9hW;SSC6U?qq0TwBHESwUReS%M;&&<^mmjTr^L2WfIFq^jW1J zgrH5RA>>cjpUBB@{g;^mtA;bfEAjz3%%z;%i-Mt+O=H&mPn}Jy@McGZO%t6H7*cee zw1ysRH7G8$ljEk@pp&IL|1_is8>Hl;b!yo87|?$M`Y1a=L18^A9(S0Y{grFi-_Mx< z@8{0a6+^+d=KX`Zn8&*zt@mnf{Yr1;fNaC@sD5VDC%UZQRV;LeV8ZqeEZQ*+Io}zZ ze-H`{0quTqabY`mE8I@E#n6SsRiFEIXz2Mfc1ah`zj^=i%p3_-&bLRGiv?Dq77RrD z?uM>?d0^a_9lAh3Z$G9|9u@_5;*|F#qA!_ZZ8-d08>3qIVxL6l^b3qrr)nE)+1?Qq zF;?ptDHhrVu6xJlD~Vd%VtCt-)EIo|ckR}^q@Pc353)+$g3B|Vxl;F57{Wh#Q>HD! zEI&flF?Zk@N*wsbQK)wDa@}q!!^K^M$wu_<7a!{JT4dMXisk)}x)J%6NF4C-DBWWv zxPNFFq(>@77z{Vs;1V36PLmRpG~s0TuM4IyF>ioo<4Gp0HrCze0jr<*=5s=6Q(a2| z7T)+%%h5Pb_ZC_;AfEkOUsABZPeY%eyG%pO;*_|$zMc0e9zv-z3x1^dhH>kh*A}NU zComnP;;S5A?dTA2;e?b0Lc+q`zrge@-pV{jIi4DB;qkS2!S|fKW7WCcl0}Oh zYPS#l(nk7wov{fYB2z_|xqm~bjjTBVUbnXhCO#s7cW&e;9J{~`k9w{AgAN?cbRcw4 zsI!lzW{~H%93~f4lW%3tG?i zGo|~eD_K@fEnnv0QxJ2_k^JFM7Mxa+4Z|=2rsFjhC}hpR=wF+znGjC)(;I5&GHHK# zbY~K|Au@Q?yT<7feDq%x0f*X>X%*W~r+ao%v`H+tC5gXbTn}lxent1m!LZtV@E*Fg z8NZ{tZ&nD4=cBy+B>nXFiELlz#*U4gpIdz%0c+}PM)OD;=wwskizC&Fy$Y>exlC=s z@!X^oHkOt=1O};#Uu{##7mLC|60-_i*CSvz6`cGD;H*d_?pgGS$@)q+FUqL&)ngos zu=jM*?C57_sg)!7WC4d+;`(7Af>@MwhC&>hb>rLS4S9g=_K4hF01jNn4uL6BaYj8G^qov@g zlXE|huNv!`2xXRyIvP8&A5A)pMblF`p-cD{CoVE}e?q>$&$_JBg?A2ykX@*(ycUfaxhi^pUmQ*l(<)6DMfk&exG#`c7T%))M)NIXS92STD;LyZ_JQyYBspzE$f z4UZ2#lv;+b_+BoXF{EZ+^3U%mkbiTZSNB_sVi8q#U@tjd&GzTu04H@zDsfJ@+a}pM zAMTeXr`m6b&Jz@meiiO2r-C^8y4=7zGIGNx9aY^RloXu?(D)1r9v5Ym^g1r4?>_lg ztqQaV?=S04PAr^PGkT#i08xx|{Z#@mx+Y0*VJRNcKw&U`ES|7RC9 zP1*2^+w=+eaI*2;vi83wdnBg7Ro=YU(z`BL?K`)U&^C&CoHq9hJxPk*1jP+t=HE0a zN!k1!kdKy6e`g1e$Xl>o0%QB&hEkhT`B1e};D2yOy?EDG%8CEsJ>?ftqe22RM3KAp z6D#Ke8?;5~(Z=@6Tql#)#V&C`?pU2?PyZ67j#@D-@K}2DszK8T_N3Wo0j4C)+t@N4 z5B5zpGFV`evweNjue3mdr&XT|f7V)pH6On&R5}68zwu<5FaHvy7Mp$bC;zD4PE5XG zF!l=SaO%(kUk%bi-tc?mFysGB8o8+Ta#cE)VLs^Cpq@&<{!&!skjwOro#|KN-F4QbNl+D%%ro1s+N#T!_?o9+#%t`nfnUD{bGrpK%z* zQLoflQ~TpTjZ~DS**KcKWK}LGGki~Him1%L|9xL>*|%R;bIj(fHFw*~ZMbo@v#b(o zkdFrj7a1yOV5JNvlZ;D&H|eJ-XpZX>(xE*rDKx@4u-cc*u#KO(i}RVFz>6VK$Vg$R+a#w-8a^+OM7~n8t}h zYo0#aHj1!suvPHbjci4@)uV^2=3F0f$?_oTMm>X)apU3B>=m*R>Z-x~*haLR{l!rv zGDBBWPviO8we(OaSbH`=hoCObVgJHioOZ=x{zHBdEMUV^)rPJ4JK~^Q|N6T_CCYgA zC%$k)bUf@VkF`;uH+x|v`4_v4W?nn1*yL_Vc~WzJ#^G2sS?#T@r+Fj?hV^LVqcM3_ zIl`7^y<)I(6;|Ev_sf&g_%PGl8{K{?V}0DcRx9RGBQFFyaMp-kP^WXY4&e|#h4Qx< zK@c4YD?>pGN?K%yT|$Cz;QIY>UvB6Y?d3kb-;QetY}{qmfxmjKMD&$RIy%eK9%0;J zzR@r;Oj*Ht61dZWGPa`rnd&Sowt+jvwMu|gj>|^HCP!eV`Rv9UF3d;*Zo;^6>UWd`tVS{;qSLoGxC7D^OS#c$TQMel)iTzjooo?qCK$VNzI^~`*z}P=HFza zKXML}x32cu_7pq5%XQXEqemf&x>n1#)H$M#91EY!W)8fHOyO=UJo$jlQ%ZF+audk) zavyv3WFW|~-|5n4@pgBv(K* z&3l1fvgcDx0K}MNNULBAUEc z{UEus7}8&;8ld(z$t$sU{N;8V7vTm~VOYFON=%}xet%jfB9M%J-1s?0y_SX#n88m7 z{|6ooF~NggM?YCkB(ywFp`nL9?G1+X#5qFzS|_{7lpYgQ7w}ibL_zf#CGs1enVO`q z{-j~P3}6$~Pv}(HNzUOT?^2Yw=7eAFtU+Umy=bbLxhcgClDU&q4Cz{wsXZ-${Np-9 zxR~2f&7vq&hn+VE4a8o#p0Z1;PLxHN1*87>9ic2Qz+A3`tL}*Ln$tz0@Yj;H@2V5_ zU=1izdgNZ*d^oAb()`{Lro|ez{>IktFV|@#4R=>qN-4OK`a6|daq<1)v(gEo#h}x# zncE@KPl_4vK>5EY0KjF@!?6&eW-5L_lL}0DQ)KOANqid_&ZSAVTsikjc3e?`g$=Vh zXn)cn%Y`U$B{Q`qPNj)a9eUD``~tnujV| z5VqW^fqA#%lXD&$68;Mar&gAx{46R+%1Ja<)!PHJNNp{cCpXW@aaZcZo9S3I^kh5b zr%uenFUEMC21k_NHh)U0kk0w<#13s2e4vG?qhcemf7G*k_V;`j9RQMgsl0E65L#o5(0MtrDv~-bH(E=;v|iBAH(!XVhT@6& zluw7wC`MlN1&RSJCNMnUYTRBYGB`=6XSew&^jHIGwk7iD9kFe$m=yS|lmxP{vQ6$* zdA_bD2n1vo={Ck>w4y*BuC?DK2WBIiw38?Z_p4LsUs*2WWg8eS>w$z2w@o$i$6SPA zhQ@$=BYS6_R};srKFJeVP|y0tw!udc^oNReQ)23Nr2fZ(>iQ1i^aO+~N1ZK%k}P!y zhZkGL#o12VtpjlpQRAs$uW3^z*Qn2O{=)yqPReqB{J!5>OZa7b3=auqG4D>O1M)y@ z>>ssMbKA~iHhJdOmR$7%3Oj>dHd7f~|BG_=2+vCHB}gylfi}TC^W)n~vb7h2rk298dx`$yF`PuXT4p#T^jvuwoz18T}XhiJn)hU3s_X59rXMo zfum68mE>`!U*<|O>iyijPjs!MGJm#rS?LsE9nR)9)VGCu{6=9FCg;!2tqjavz56s} z`Q)rbTo*g*`fRI}kHJC9%7Q$5GcL*S)h+G(L$J zIX38_Z&4?~nv3G8on#=UpwZ3!+@YCmXzw%9{>Uc7{7K}9{RfPdc}9q85HJXTL6+h_ zG$w+%yxG70T%MxD_6K(xy9jGfr&8dOKrc4VCy>QN`8Aux@S+kXoG>k7A|V>XAVYEBQc2&O}&UWuqtq;5gzplj`%WQM2Q0sz`T54)|NB^A6;{&Q4LktkDvG(qM+a&wP_vj1WC zDCl8@PJD{9pe<6&DZREy^_z!-${U?S|pCqz&Sl$r@Oh6@mnjF5IOU-!FRT$2Mji z`|E=_JWP3}bX<7z21>?a0;t~=)7)85`WdKYro~`bg_ZVz^sB`CC!m|G^rgEPk3r3X z((uFOliSCY2xDO-gYXTMU$`fQa=40627d8et2SUjUBL?=Cd(mrV<>MMkkIj#-Y&W< zsS;nMr}gvfJEw*Ub+J&H%h9u_H%6EW?fzyCO!25$ts1~6_$!1C63DpN3~BUBVY}~3 z1YgWHZ-?(ncs~mx@uP*mRIj$GI10K4E$Iuhi~8_1=7+jEULDI=kW9IJ?Q1yyQST$#L;n zYBef)n}XLLudh=`+aYyfct?{WQ1IE~PsHS9^4S#W9Oy!}1AXN8g72<_pc9T+KOKi* z9;a>dfCWJ^5wC`D$BtZqi95?B6LI5J{na5UsyvVDm<>XDpYD z1gM;Js=af{1Csn*iHPrb?o0s5VLLT`oCjr%;<%Npel?f&Hn2q_^PW*m?)f;JZmYiE6rd97r_Q9yF962q4 z#OZUSmMnbohi50a5`>cyX71KN0g;kF!K-hV){C!5Jx98C$D%KqalhMDTN=!g)BW)} zUTLNGre*iAO1YGSy>7j`t@_7IN+phXsj-O>Kzlfom}}3XBpbuiU@HN6WFlroaPlW zA_S+i!0F=tz0ht%EnG{Vj{8j}>(WVXFTV0&4d}GuGY$`XGK^gaGKEY=W5nKCn==tT zoGZ_BG5T*=)3)(hD7`}r4-*IPi+7U1)IC7dk1XATo&6P^q8z+CgzC?Ig{6Gtsknuu zrfzePG9YS;fJ%Q8X;thxC9Fbf6uzq*_3LFcr&xz()P+^1kkOCi8smFDUYlYbw|+`Y z#!H460XQLEhj@Nd`MLM3SM;SiXRcpv5+0ImEL8zf9cG7Isd#7H-?gkCYbrlt>K%hS z1vP0XN10uvw?K{E5xYz`KO^4xv3%AAjs@=Okj#|CQZC4_@9Y(Gz`c-uBJQhKEi+@kYXGk9(;TsLA zB0#1^aQIPi^>0!Dlypvs^GF&;=)f{z;e%_KcN_m%S?cUd9}C2X)uc*U$ihS=nUBsn zF=b-!s4rOPE|GF-Bm6^o{Y6Pxf)SH$L3H!m;I+qWEDI0#D%9!h-M>;KV3iO?7tDfN zqW;RXPH)K*B9e1ktFN5_1afz^V2Vm)loB+>Hf-;2Y__V-2{_y!!OJwthu7CLma0em zl(!L+r$he2_+@v`f5Wx$7i|~I50-#(7hDl6E>vO>+Wl8P=31aiM$j!)gdN$uiPT+EjOb~mZ^SFOz^f3XP^L+abk^p2kmeM;{F l9(l6l%s%3z4M|Y5$Nl)9{|c^@KiYTf>H6_zg^J+S{{kaJ0zm)( literal 0 HcmV?d00001 diff --git a/data/Redistribution_by_parity_list_UK.rda b/data/Redistribution_by_parity_list_UK.rda new file mode 100644 index 0000000000000000000000000000000000000000..1ada6a344456c412409c48be39c56bf64bbc7580 GIT binary patch literal 338 zcmb2|=3oE=wzn6~dL4EUX?r;NWPETy%ep-r;dfu0YIVJ{L$LK-N=GiIly0ur-kkLZ zDw5PL@rW|-s$rgd=Dc~j+WEUVcCzP>D+zg}^t5a&Q?1*v-_BZm?nOt1i798FoK4Qu zHZ;0;u$ATEN^uUZTG>qRC&!oXPkd{(B+v9h+P-&-PCh%aEh0bILfdQm+L>`O9X%$W zvQ8fj`z<{EcSiL8KXdo>&1RbZ{w-@;-Cn1cm!4g{z0CT2eBWpB-B(?UH<{10UArzX zcdKSu-NvnF=f7R`bK~EdORaa;*ZiJcB~g9jDO-kn>^0@S*N2yQ{xv_jW%cW0i+_o) dUDL)cSMi{cI>ht($}P1_@3^LzwmL8{001a4qvQYp literal 0 HcmV?d00001 diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 40f5c01..ecaf57d 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -50,26 +50,26 @@ iii) The age-specific probabilities of parity-progression vary with time, but ar In order to implement the model, the function `kin_multi_stage_time_variant_2sex` expects the following 7 inputs of vital rates, fed in as lists: -1) LIST: Female age-and-parity specific survival probabilities over the timescale. +1) `U_list_females` A list of female age-and-parity specific survival probabilities over the timescale (in matrix forms). This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. -2) LIST: Male age-and-parity specific survival probabilities over the timescale. +2) `U_list_males` A list of male age-and-parity specific survival probabilities over the timescale (in matrix forms). This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. -3) LIST: Female age-and-parity specific fertility rates over the timescale. +3) `F_list_females` A list of female age-and-parity specific fertility rates over the timescale (in matrix forms). This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. -4) LIST: Male age-and-parity specific fertility rates over the timescale. +4) `F_list_males` A list of male age-and-parity specific fertility rates over the timescale (in matrix forms). This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. -5) OUTER LIST with INNER LISTS: Female age-specific probabilities of moving up parity over the timescale. +5) `T_list_females` A list of lists of female age-specific probabilities of moving up parity over the timescale (in matrix forms). The outer list has length = the timescale. The inner list has length = number of ages. Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. Thus for each year, we have a list of age-specific probabilities of moving from one stage to the next. 6) Same as 5) but for males -7) LIST: Length = timescale, and each element is a matrix which assigns the offspring of individuals in some stage to +7) `H_list` A list of length = timescale, in which each element is a matrix which assigns the offspring of individuals in some stage to the appropriate age class (age in rows and states in columns) To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed @@ -77,15 +77,20 @@ in another file and simply imported below. The code below reads in the above fun ```{r eval=FALSE, message=FALSE, warning=FALSE, include=FALSE} -# Lets construct these lists as model inputs.............. - -F_mat_fem <- readr::read_rds(here::here("data","Female_parity_fert_list_UK.Rds")) -F_mat_male <- readr::read_rds(here::here("data","Male_parity_fert_list_UK.Rds")) -T_mat_fem <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) -T_mat_male <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) -U_mat_fem <- readr::read_rds(here::here("data","Female_parity_mortality_list_UK.Rds")) -U_mat_male <- readr::read_rds(here::here("data","Male_parity_mortality_list_UK.Rds")) -H_mat <- readr::read_rds(here::here("data","Redistribution_by_parity_list_UK.Rds")) +F_mat_fem <- Female_parity_fert_list_UK +F_mat_male <- Male_parity_fert_list_UK +T_mat_fem <- Parity_transfers_by_age_list_UK +T_mat_male <- Parity_transfers_by_age_list_UK +U_mat_fem <- Female_parity_mortality_list_UK +U_mat_male <- Male_parity_mortality_list_UK +H_mat <- Redistribution_by_parity_list_UK +#F_mat_fem <- readr::read_rds(here::here("data","Female_parity_fert_list_UK.Rds")) +#F_mat_male <- readr::read_rds(here::here("data","Male_parity_fert_list_UK.Rds")) +#T_mat_fem <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) +#T_mat_male <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) +#U_mat_fem <- readr::read_rds(here::here("data","Female_parity_mortality_list_UK.Rds")) +#U_mat_male <- readr::read_rds(here::here("data","Male_parity_mortality_list_UK.Rds")) +#H_mat <- readr::read_rds(here::here("data","Redistribution_by_parity_list_UK.Rds")) ``` @@ -124,9 +129,13 @@ timescale from 1965-1985 -- > `output_years` = seq(1965, 1965 + 40) Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage distribution of kin. -Notice that the timescale argument `output_years` = seq(1965,2005) gives a sequence of 1965,1966,...,2004,2005 of length 41. The first sets of time-varying vital rates -in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), the 41-st entry is U_mat_fem[[(1+40)]] (mortality in 2005). We require consistency between -the length of the list of vital rates and the timescale: U_mat_fem[[1:(1+40)]] = in length = seq(1965,2005) +Notice that the timescale argument `output_years` = seq(1965,2005) gives a sequence of 1965, 1966, ..., 2004, 2005 of length 41. +The first sets of time-varying vital rates in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), +the 41-st entry is U_mat_fem[[(1+40)]] (mortality in 2005). We require consistency between the length of the list of vital rates +and the timescale: U_mat_fem[[1:(1+40)]] = in length = seq(1965,2005). Therefore we use the input lists of demographic rates + +`U_list_females` = U_mat_fem[1:(1+no_years)] which runs from U_mat_fem[[1]] = 1965 set of rates, up to U_mat_fem[[41]] = 2005 set of rates, +and so on... ```{r, message=FALSE, warning=FALSE} # Run kinship model for a female Focal over a timescale of no_years (we use 40 here) @@ -134,13 +143,13 @@ no_years <- 40 # and we start projecting kin in 1965 # We decide here to count accumulated kin by age of Focal, and not distributions of kin kin_out_1965_2005 <- - kin_multi_stage_time_variant_2sex(U_mat_fem[1:(1+no_years)], - U_mat_male[1:(1+no_years)], - F_mat_fem[1:(1+no_years)], - F_mat_male[1:(1+no_years)], - T_mat_fem[1:(1+no_years)], - T_mat_fem[1:(1+no_years)], - H_mat[1:(1+no_years)], + kin_multi_stage_time_variant_2sex(U_list_females = U_mat_fem[1:(1+no_years)], + U_list_males = U_mat_male[1:(1+no_years)], + F_list_females = F_mat_fem[1:(1+no_years)], + F_list_males = F_mat_male[1:(1+no_years)], + T_list_females = T_mat_fem[1:(1+no_years)], + T_list_males = T_mat_fem[1:(1+no_years)], + H_list = H_mat[1:(1+no_years)], birth_female = 1 - 0.51, ## Sex ratio -- UK value parity = TRUE, output_kin = FALSE, @@ -171,7 +180,8 @@ Some people will do.... We restrict Focal's kinship network to aunts and uncles older than Focal's mother by `group` == "oa". We visualise the marginal parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different colour schemes. Implicit in the -below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. +below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, +while a 40 year old Focal was born in 1965. ```{r, fig.height=6, fig.width=8} kin_out_1965_2005 %>% From 6998f19482b7b77bbcb1e73610e17ee083f665cf Mon Sep 17 00:00:00 2001 From: redshank Date: Fri, 25 Oct 2024 15:19:22 +0100 Subject: [PATCH 54/89] rda --- data/Female_parity_fert_list_UK.rda | Bin 62361 -> 0 bytes data/Female_parity_mortality_list_UK.rda | Bin 37402 -> 0 bytes data/Male_parity_fert_list_UK.rda | Bin 62360 -> 0 bytes data/Male_parity_mortality_list_UK.rda | Bin 45435 -> 0 bytes data/Parity_transfers_by_age_list_UK.rda | Bin 136173 -> 0 bytes data/Redistribution_by_parity_list_UK.rda | Bin 338 -> 0 bytes ...eference_TwoSex_MultiState_TimeVariant.Rmd | 22 +++++++----------- 7 files changed, 8 insertions(+), 14 deletions(-) delete mode 100644 data/Female_parity_fert_list_UK.rda delete mode 100644 data/Female_parity_mortality_list_UK.rda delete mode 100644 data/Male_parity_fert_list_UK.rda delete mode 100644 data/Male_parity_mortality_list_UK.rda delete mode 100644 data/Parity_transfers_by_age_list_UK.rda delete mode 100644 data/Redistribution_by_parity_list_UK.rda diff --git a/data/Female_parity_fert_list_UK.rda b/data/Female_parity_fert_list_UK.rda deleted file mode 100644 index 9feb9d5e86f51a49d6728f979f484bf0c7b95901..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 62361 zcmZ6yML--}*M#{cxVyW%ySoI3Ai;yXy9ak^G-yNP9^4_gLpK^c!QHi?VcwbDKX-lB z_f$QniYgKLfB)Y@Jb&}k!iTJKz0rc;;XZ??X{qC=scDsYgHdRUK|l7XN$|g@Aj)_u zdd`U)6~q=qTB}tNOKa)Eqa)`Wi63o>UR4|WT$x|N`m(tbZ3BHZ=WF_c8s{5MNk^w0 z-|!vr<>lqY;+5m#<9#pJ-*fD9nimKtEkG9%8=Ah@0BnGp+hpVM&$G2-VzOL396X5g z6*kR!Q^xy;ee2%kBQRtG@G8~u+7am~hUtv7?5pKA9!3%DE@t1c2lgf3#_YcM6Uqmo z+Zg;sq0|xSA(rBTwCKz2hBWO3N9yAthNwd>M9jH;j|cKWy!4S1>1)>S^e%<<+PI~- z(e(OZFWbH~B0Il10S!BRFmH5u_j@y+zmmS+AyVa}_Y@AZ;l~=nqfg9W_VBan9*Ky(V{{$*Sy3Z1ELuS}o!IJI{rZlp{{FH%oN*>1Rl6x_0Pe_(m3zqbgF2#npX%WHyQqw>D<#WhlhShPRAl~n)E3isYw)n=~(Kwux;@Jh6Fu> ze68^SnC0Q{qG!|3zVGq+%hD7za)E2o3P7=Hnh(>L_)(T1neTGrTX8}6NPu4&5^Cmv zq-2du%8Xm?&G{2~ny(8V*YiB*$SCmbtJzRoT3)5%0B-bOj&`@hIBy!0&znU@2||04 zM}eOMu0oC_<~*98I#CO^RtOj6^oT)wNexV}A0_f@8-iJ}JX&YzJx_huh)?)UE7gRh zz}M)rtR8{mYL}Uw+J@u?o*mS?XSd^Hqkivb2#E{Vi>_`4I>fP{t8{A=o1-)kRb%`o zc*J5}(B&Yudl_l`_@PuwFO6a}?1`K8i?W-o3Z=ZrxS^ye>bVn?OUKhiWYuqJTr#_8WVv5~&cgMVPJa5B)rM(TM5C;~w z+q?DR-`y|l+~9whr4DyI;POM3rT+@^4##13q-guTQ`vhBqWQGp*)QMe^r~ls6KXV~ zyuL#0`6X`!|?RmuV3}0JLu*fa<{nvz6#&5WC z0%+q*hk4wc*Ktz2RhWSWKn@O|fUFztQeub=w9Shb zTq)Fk8wrAl&TeNmd7;j_jJx7=J(Td=jkC?~^;UH(i`Tpk;|iD>W+}96>@7}Pu||I2 zvTnb7yId3~!Hv%_2Vyz{;UAC_o?G2Liycb z<0DeCr#Q4k=9c}!-IOsdCxB=VID*X!HqqrYU8J_RKK;i{&62lo&XBZ4c(^CB zSh>)F5pec5JzOeo&k~hx{}W!tdzjTI?F;vidtyP6HrcSvCtC>zSz^kAjJJ`j1dDgP zO!9LIV#oe(EwR2Rayks-Od+$}T2-)^zHcNUixqImVwvE*C&o|)0gA#pvd=Ma8uk+E zH?GgZIC+VJR4h@6pm$wUaOs(lHqK?QiZNa?Z{A2ZLa6}$r2%$7NhpqCtY6<2flRz^ z3|?2q{VmRLJ3hVt8KbPB6`v93-S4lh3T~Zd1R865ZwR8X-+gW&zrUpW9EW~r*yb@K zQcT7W1|<&@pLfwca@J$P@gJz7^Wqb0;C+Z%cMQbj2K9fmOGNBi>}1LaANm_KZ{yC&>|3o~B9&NNZJn@E`Yf&YG4y#@ z3bC%aa<(@Tfh@1?9Nu~9GE-ok>9k(xqZr0QUT^jQHyETcxd6p5;o{s*X@Ew3Q2ms< zjV)bLJ2j@=h|Wm7qwsNivkEm&nt2S*52fVjDgaH9(p~S?;omxxOc3keoiS`h~38o+ngbp1V3qy z$sIG;qdE7D;6Zdf-77*OG$8_8{jIL$XrtYELDs9+90YjFksD3*s>;`$lv)~(tcms0 zSU0RM@jTbb){UTNy~wvu)iVMW#5%z19n&>LdJF=Y{!FCoN~vjQ>*2iVmktIAmSheE9B73Dd>08di=Mj~6LLFBZ}8Gm(f;zYPipS4qOI$B`SsNfUAi|S+i(n+i_hn6%mg4g(ZIK4rAB9ChTdDub!YM9}JyYol)_}P??3c z7?{*a8McGX`>eVe35@~%tLA0T|8~BMsE%_{h|@s=dH6wZb3OnF2GU; zf0@b-oB8&6`D;@MO0LPVD(|s(mRJJK9Wdzm>pIUHeb>~<267C;WWro9;cs_|wN*PD zUt-IHzWc9b*m5DEz_kcno~6+9dvpiHn2MBdPW2aK#UG(iWTav`;c))w!s|s&P)tLdBYa zIXi|{+U(B>k4=7gnH#%=W9YkvFvKd zTqSMExuuvKey(04ijK~_@Oy59vprANRT&cAgNiiHsInke0c$Rzul#|pDw%I}m!(fb zH#IqOF~IZR^@>z4}FnH`tPmJ@)XmUj8Z3Iv{8^t3L8mUC*n;LF#t32f6M2pf$Aug zvZ2RA4BGx$@+x+*iJ<81!QRowc_S_6QBwSKi5^)rsK|@2P^N|ZJx#9@bn}n$A^WIN zn`q?Tq&68tV8GPezMw`)ffG13QESKS_FY_v(>RWI&=et5iCJ4wrY?j%i6Yv`Vh}^p zW+HhDS#1s2G0WTWwCZ1;_U_%v@I1kse%U(JzkDE@q>lkuz!w_Q2;6GY{}TaR?3&lU zO4-#$EZN{NKzcgkJni+P8i#EFHCcK+hwuIteFT2DH{XDH&PN`XY(KB)HT2J_hvi+i zE8ja~kkI4$lxm*%jFiYSd6N}9l9DYeDqVHVn?gP8v9doba)wg{Z_~<5u4GyR`Ugcn9*TsDTZmfi~b9{6?C{^}$W`J{V^C+vWlSCVHM zI~I;%>E(jcpktafmyRI=D!G&du?@_=E~UxsSN@AfhKxj|ij~P*yzKrIjMtS0q_3=5;P86s=Wa;AA<3K(rH0s^rG&Yk$#0+W3!c2-Nd+8n(S6dmguV8 zy7H#;T7PlesXu#J@aC|Vkc(ITzkwbfy{eu<&b*HaEjm&$UkryD46b%$FQmy9v1^g| zhw3VoqirBTFQ$k}wWx?9lQ5+rF&=NR$F@9w@|b{O?ZuL)k_FHlTH+ITX3JL=rR+~~ zWqVSMMbHEqu2Ye_ooV74?(g~H!{LJ?a(q))jU^xPJ=R;hboa5`Fl$qZm+a-q@pVJh z3-EHHrJ%IzS~k}+X>hUb+`Y~hkQ5k}g12JfWQIMKpmwl#n#hwfe2Zg#Ad3$)+R<=o}D*A)MpQtdM4|0Lk<7jQW2lcVkAxBi)Z zXW%73fd(yG=n=8Yq)1L`+N_*K#Sk6m`FShH7i72HboXE-*pra--uYe;pvMyO1+3ru8v9gf)|Ya}S}9|S?{M_wj(SOjs4xW?|Hui&@ zoZlnaf7KB`ec0tNqL`6N?D8nF5k7;KoQ=QNo+mF;+{>yjumkG#L|CgC`}t69LHGUG z8Oj>C39>(}B`E1>ueL|K>-$?KRPMVvD`7M`Zq1SpJ7IVp-WiAnJ)Jlnz#0IP6Dkd1 za|^%A`!(l;E%4(P6(^>d!dt4Sh1|T{oX93zB>!HS5<`QQHmL`w`De_^b{Y$A4#NF` zb~K-q;n4pEIuq4?P$D)4zXKlbIS^w%lsPXihSTV0BT*oH#F^JeE0SFCgWPit*Q=zkBP{#-U(bR+F{k9vh|ya6qQsKQ{w$l=MNIGPgWNA$ zMoLZ{@ULG`75K*wIPY6XidPirWgMV_tj4bXmzk?F4zkd}NXy;{zbp?`0(6Bji4@~; z;dnrSu*ksyTe$r!rYS?(Kc0_QgFQ2~YwP5q%Go}3e$y1!#V)S(X)%gBR8>J=HNEXX58N_~oEb2^!_NO(Y)TP)i zdOilH-bAMKa}A??0GwicADn$UGCo&|Sa^*4*!W9jm3B_$BR}Xs#4&TzX*C%LQZXEi ze^jELiX{l!_$FV%Pc3QFRze!h%j=xo6_$2nKsZlBp3JUb)m|<@P$rSy_w>br3D+wr z6di&|9W(j>%hP5XDgqSo$6fpY0{#@jAh(4p2_SBpUT49BMWe5 zPTeuMR0r83Oam6vPhRjy4m-z0iK zW|?Ab+Bpx#KH~^l`pSd~2xi&?o~hDOE1zXf%q#dGN3D+l7oz%hgmSh_fbR3QHzwd3 zI<-nVWO7^UW7rn{{gDk(_bhxMEi@XU?g3%7O88tzN66|ISr4|M>g#l3B`JJZ&CUW& zgJ63ZpHe8yA&<#XDZhy9`=FjnUe|O+>Ee%eus`t?`=v6iG5u9ekIBa0OXat=zmf}S zjFyOw#>X8^sOt7|n%y@H{P3JSS;E}AIJ+S)WehP!M&*-Qm=7~h+@1%dY?e+<*b1kc zwelzO+npAFrJIan;!a@(5K|}YK4C6Uz>rxr!)M}I{OSEsr!eM+ty&+(fh!qd#*+Wp zmjArVO~EtT8tvUf;nmgMEO)K%vt*P1|4O#F#uQHHsqb<=O&8jbWwO?vQAtups3_bi zjcdHiK5)6|(-5dH!CI>tx5VNZ+x~h{85lw~YeUOB4AJZR_*^Pm+6~TF9vj5oQb4l} z^k=w{n8;tvf;7UK6cZbsqOQA9NsAPrTEXk7q=hB|_3bvg>{CGuW`U^-D_@Y@0z>!R z;wOw0-sD|JRR_!aS*@2S8uOHw>yvJeW*4bDz4Pj=uvRtD%tHvug6T=6ujc&pY{xaiHj6-%q3DTDA|r+W9Y ziCfpEabW)W63e^@2Q2}_zxFyIIpq=k=otdqrw-l*ro$|upS*D`fmE-}MD^2pJ4H|6 zlK7)OTnP#i#~fwZDkNHM4{n9oUL%BZLxf4neBFuspJ^AEB{H@iKlDwPW#}3DfG~ab zXl8u^frlO7&CedNPppFIrg{{JBgt*}aCo*y^9p|VvfN^Hl1Uf*4570Z?~dL;@9pz= zq5|d9)VeV~QU?OJa6VX66SiOH=0PHw#Yo#wRrC%>mt8h2ynD$vjEC20N#D8Ab{u^= zWwdyWXczkV!Tw&bE%WqFuF!nxZuhHGRhxJtj*1uIvg_)0&Lm!G`pZoZf-L4#Yc&HU zln*pAVkB|$;I!Z9bhwQ-t)MYzoIr}FYTY`+#7?$PEiiQ~V^oNMt8qrAvVE_hd)xRp zlQD*DV{S;R8}(7D zO_0fhEcko@m)Fdvi&kB44R$4rGA1LQO}NX!bvNEp*4k?)?+4#)Xr?F+SWuNtO3S8y z{R)*udtp3`Fx`Lw@nq*a%$q(L?i%=$Bgz9pO|HB~O>N4|kRKTy7!`sIP|MF7T;&VX zOX}9$QnjuckW2~du1!(fBnQtBJH#4;q(rfX8M!$?#=o%r=4xN0$e{=sD|aHN3X%T1 zcQi9ca>9X+DK-lxt#Yg5SX&$w^2c$&Amxk)6w_O(GD@>-xym+JTfPnwgwtImc*p_E z$c1o#&%|31?W_wZ8vhEh7UlT;aUeY(T4?(B zF!TJC(IgjGA@}Y!vGtUU+34rF!`5o5c#Sv3;US`R;;DJ5iMB#_FxMBMT$XgV=XUXi zzL?`IVJ6S%Pf-%40Lgq!44`YtIPav=%`bs7t3|=Htw-xD!_=gAmzOuIX{q+Naj#u2 z>*?hT^O(;KqQ7_l2GsAwieYO6rc4C5lN%m@%wEru+DSYLC7*Q>SO>_^&4bRu^EM8h zj7`k7E4>tZxEv5M*h<@1Rhc2XbS-W4Cn&O!o~Wh*66^CwYiUR+Ak!@WBjON}^_k_7 zO?Y&f?;-;qDxp%Ou_g#^Qxl++LnE@}ZZcLonC7hA0%(T$j09nT0QCsyG^Z3uC#IkO zsH}ytu&7%0x%rZIG(_V5e=nbRt63CQHy`PSf*%VFa}guVrvQ~4AK~*eW7n`W>&_8G zGbTso!N~Ea4J!MU-#?GH?1*-_tBRV5LIXl^R6HA*Sn}i`67^fsyT6h?%_%O-G%E4@ z_3XS<07xRjnY^lchFToYW#*g9pdw0r$qU;C#t*VEmahh~6Mt(zF!F5~|1PP}Y;Vei zIFI8(s9`?z`$2qq7i;g>&1So_f-Rw_y)H6BHsV-R$o90~gTiH7-JnZg1YDORaU@h7 zX_V?^O*BHG&2sTrC3uINU@Sr`z*-5=w7MUSZA2$&2-zKn!2wK`9%piC2mrO49EFxb z*k#hpzueOzj{tTAwC_sah1_YQ@7IGiyFj)7zI+ew{*B`!r$rClAi>-HSFno1$SW5exHSEIsB@?sAeTRoEme%%C z!i&{s;_ThkEBEA6bN{u@jgu&i-1dO=pf%y-y29c=E^``<=6RO7Vgj6VI?c7hZEEYO z>AMg;fna5fsVb_(-_hI5n&wmJSp1i^YxSCg*7n6sQrCD(YNVV9%f_-UHc+i3T>-{2 z$+!D`62%S|;GFs(*>T?utZ=Ky#Cy4#KP-+_0V(KAuQ1~k487fE&xHw=K3x=W>Y2($ z!kYe64$o^%d)~B;M@cwt?iv!dOlk9M9IkpmMOb^CwQDiG{ZQ(s7Cq?Hwj4P30&qxrRmgDELjE)jEK~LKyg-7IBCrt9KlCE}}TY29{0V z2#GOtHiHckkBkcL&JHnnfE`DcSin3V_}U2Dy!W>r|9osyF? z{lrOSgR|2=l3cj>peg!!uBjc@`T*5EBCTb>d-vzFsyH$Cp&=iksU_>ihm$S&$?4L8 zM*1S9_?6D9$P)wRwE8!eUMrlg;Nabgz1j)x-XPh#DU>o!7MO}{i}Y?D^;NvrJocJh zm^W1+dxR8=(=}Lo=*%|~HnQv>Jk5OpCH;=t5j)J0gPZ&R;?$;t|JcW#$PH1mf_^1?NJ#8EF;`J~m%DNZq+Z1y$yC7Sqpv_(ZVS0&maK38!CA2KQWUX4cs`v#SP z8J!EtcF~#F(ah=Cfg`5CPP0c{5*$txB1NVOY;ln9&t({*cwfZGEPv|n0HoMwj0=Kq zQukXNHlY}Z9R~7Lc>^OHS9`PYVYXHK99i2|VsV^6E9>wOj^hKiO3TRwIVmz-~m_4<-U^Z`M;xi*TYlo9@C7dv0x z-R}^+!+${(N`K}M!`dZ}BZFpo8YKOjiB9h}&o2bkv_xmh*>IXoIX}Y<>2=jX26Jw7 z(w;d)HHi=yNU*^&4rA4q0*Qi_yQ{F&TxoYw3Dtl8`056JeH9yaG0J4TCv6yO7U`&X!2SCUg6k|aON(gN-9oc}u1 zb$CiL5MsLCj^@l|3^`89-E_Bzqi^$u9Ps~)&}qG;V{+r!RH2blSW=6LC(BKzOPvI_ z_$t4F;FIhkBSNuTvGh2%l(OJ z5*#!cy*}f3W+lIEsU!2n6V@_`M*ojv4E$(N zbp3Ok03v=*kRo#wc_1c!^CK{RMFBttgaY&%@q|)w4N*U&H6f zHfudpyzCP>kT(eSBijx61V-&xsFUEuMPH6d@`NStYF)k*yV4nck&8zZn0kW+-R@}% zynST>iy#qnZ&{$7&ubl8ei0dg%Vdq`L%66_u!t5j?9L!XwKutUuC)QodtVAf55ZYC zVhSYm(i6Hr+(N=iJoW!Pz5A|iHcW+|S{fIbi9bZ-M zylb0_kKKwW?8UTO+9xciClsL+VT1i&-Qg1`kw~}L^-EdmILP6OEJ`m#B#-u2bW&)- zPkRaqe3Zi|AX$@~VP|4ajs_!Z_r9NxwsT`M6^Vb93kFDWtZ@%O#&$aURC(x8S6Z$6 zU1ydFBZ|mwLNAbA`rFI>_Qw~d^~>7koAk&5sz!zcDU2MJ8lC`FLIjJNK$ePq^( zXrVGRe696QDnsu0w_J=Bk^#OB`I>~Qhu_H-rYA(<~++> z+T!4#KPiS&ACrC8Q}6}ybIqQOCi6$0hf%q4Ks_@S4e(9iAaaOKD9Xov3=r~Nu{`*l zUk8=XW#JAN$Glh+_na^#?v>tPK6;VnyOK-S_a-4qj(XH~bo*hb`s(0Lx6t>Y9`im{ z0W#Lfq*V^CeVG#_X!!K10>tOOAOu2+XH?%>qvw|as&Aoqb$W&97k;}h%Orr8AZ;*m z(BtoVT~O$_l9f;bpMH|%bDWVN8}F7ZO$WPw?XvADcsh7G;~^@(zewR?!`jr|EN^}A z2cbmQK1ey3?I^m=$B>ip#_xp3ZolyU?S(YW7q?;(h{r#N;@Yl5vdcx%w{}-*BS($-kp+6eW>eLBO-npvjK!fN+}%t zr>tI|!ZTKb?6e_(?iC6P847}>4PMSnSmMQJ&R~Ys( zgTC}gg*cu!1?3f|0r2PjFJseRh|I9Uz?UzX;YxHbHkw{6-^T}o6?^LNE9|Jqi_ZL! zl3Q(G{PbJEh1R#)mMlu8O90dabuWJIZnr#qZBVj|+;Vp*cD+bVhOA~A*z#>9hQX!B z)bHVMoGe$30j?~`+&#$g>{>nXfv;*`KehSPMtY67Zwbmmg^!g?wJpRMCwryW_9GE@ zf~+fa<7UxjUu#a)CA2@K?wgVno*S?Am(hY}=#kI@Or;v8;*jPDj8Hq#rbiUyxe&Kb z`8od-YW7n+75PhH=iCo<_}SSu#U{!~Km4P4t?e^+7vx35_MSu}r2Z}LPzzMCYBzR1 z_S*j+^4JT`;Py@-c-o!&#pI4pEq`Qu=n@eqC`GfJ*MLQKdy$j&qj9@Wt(VIGGBL3c zWp0M6m2m0p`+R&a+tbMNjwJU}w)JF93+ET1+Al7cOR-!laO4`zY^nASP z5DYuGE_ZE(Q}4y4rV?l7lrsxD9qw+BLCYf1XaefkP|x&p*Ie?q`cwoHk&Mp+3Nf3k z0epYLKyIy;1DLhE!+q9h>R>V4TZe=jBv+ImoGFEk67PL9ucI!KR>MFvwSH=aRWyU3 z!eX8KLzClrAdR9q&2hGbwn)XNJ!RivMMBM^PcQ0Ess1zr678`%*%3LYVl z@}>ELDqu;2a=H1=>?UljWib)L(jn%t#<{#30 z@A@w#g#2OnVB$3?D;`+1woEV^jf7d)Cq~8o+n=c(G76h7#{Xqr;x3BQ;k$+TYeHA< z2?9Tkm!kk46L%!+`xYYzEU)DE+k$k5EkNI&q+9Jnh4bB)@i2g|`>#?Pr71t#Z_Bz- zYV@(7TR47-0gV%$hYE_B6!xVHSRxUYqq2nBqXx{KHI46fX2@N7j40tDhZCn&{kSk{ zloJF-!*|zAG^ReCG;N-;TZ-c!b%ScLmr9Tz;YNby$Bv>FzcG)d$|Cu>~{u)!KeuO?4-y z-Pe&3aGy5vG?Z%pMF6$g-x?P;|fO^O^4AeWF=&P+yv z#RXvv?faoyN@plFKv5w@I1G=hXP$-_P{uS#B0|KMk2 zwD!-y-%FLQioEDt?W}Mz-MyEW*c#YF_LORlTlk+o!Kgz4QWGL(s<*5Fcwk+lwzZU{fpOq_p>L4Et6w$s=#=D~(MD#Ie?H6k32HkM@-Cp+{*=rLvRjBWM9<*Cb z)w{vS^P`xYdujNQoj_t2Nkm{@OoXqg{t;P&CTY5x%*ovM=sl4wg!=N9ulG14mc|g~ zcU5LYvcOA)_wptZL4Tr8wHq%NS5zPj6(2&d;8IE{oY9ChU-GC}zgW&NpepU&HMJD3 z)Dqjc5dF+XrB^bC$a@?%@N&8D^Eq?6KBjc$w1mC(N}~6J+9<)7t-@R+YHp^dm$Rb^ zlF!pbcQb`@Ptp7E0yubF*+smI3KWK-1I@bJrE&Z4(p%KJ437zHvD6+`rFT;LC=wy8 z$ENI?x>*_uS1!A;rUT^=i9qR`<}nJ>L$y|vdpEF0Ec1Y$Kxj`=x6NGZK`Bc$$B@hu zj-!7+#mTXjYyfn(vL}{S+kFA~ibW0ZVl|#NT2H3j>}7-jgh=0$@E2M>s3_-10s1Is`}gz_8;6HoOUiHk;s3HKBya^nA@basRMTyzd7vB zYOXuzet8jQaPAAI^wb1P)sa69McMD3fm?A}8}Gg$0|WkNxTOMH!wTpOopsAGctGtI zI+{~(zf{OcC)#eujIJLKN|_9a2e`eN`Ji{`^N;@u9`kIZ`j#umoOX67{=|> zf;>soMFCJ524i_$P#l=O-?2x!{@XI-$(;X?ga9GQkBNId8f8vQ#N|Ei)DH@wIt#C? zWy)gt^cZ5a?-5)IQ`uy+m7xj0&cHPHPCJ9=h)VDbk{utG)NlhGJq?r%I$I=Vj|NopsuStd=34yhGBHreUBgH|@OCCAb=x6x!9x0P{vj?;(mZ`p19ggzTOMje6f6{IC-=VqyIU|b7Dz+2EKMxp( zp*y97MdSy+cbx(D+`0P<=g!U$?}YL1gGEC#W*qAfQ zx3hYsV{gr^Z^s4)t90J&ecxBLmr&7s{MWW*VAH$`ZsoN6g&xhCnI-afGbNVI%&PoH zz4lgb-(#Q*PLSg9Cy4USa7FhkLXBp%#9RfxtVpW5llr8uh_~Q_9!Y2td-7Pm%srxV zZC>dW&|Bd%Au86j0?kzS(uv%(PZY#h&xjm($5wRbeRC4pLR?15%&{pvCN!l8be@6NoO{U&*POJ`(b<>cf%3z=JG8TEvH3JjI{t}F6A zrGHv!YTf4qd_;8(ZHAKFt49H=54&R}qfJdZZo9!7XY{uUH^hOpp>|T%Gm2DVEZXgV z#RC~`cOV!j#gz;fPBQi2=bBzgAVoS0?5Ug76eC8Yy~D;IrZ_E4#|6xeizo?7c^=)A~E;$iBg2wEXo8ur5i^dxbYex zErO!6aTb$gVz2E;IE@IQ{nL`+X>(^zQ;e4Y?P zGy@G2AAZ01;`AtQyk{9)KrY})e3E>qxANrn=dncauc@T@Yk;omq;+DweK9WPP|1`H zGX+b5+6tHK`)USrA)exYVJVeA9lF*Rw@DnESuyuLmyG#hPjo(w;KgYUOJ!Xmbb=Fn z8FWb2UPt;aPQP!Xvtb8zNk&J7ch(clFRo*;oL+67j- zRVO96Kak~lCoZtKMS)>yPf9jg2CPq03B1Hfvn_Y6G~0McupP@=C9c)P`qdBH#(1{g zoFYIwv%-Me;PF$yQjM7MFlt)BH~=i`M|@J7?AhMDVcgy^b0FnMy)1l{P(OxJ#<+0Z zN^U9*BHjqKb>tl(|5bkTp^~cXHc7jV_XXJn>-?AYg0ysr#ZF_X#xk{kLx4v_QwrGgG0oGt8vqhox8QH{o)( zpd%a@7UP57FkRAdop+lGH+3AM>eE}0iP0xsa@e+Rd)&6{bN=B$Dxs2)jQJ!t%71_1|41cWYcjCuX@Q^Dd?J#{xG6Jh&D5}fQYu^cD?jy_1yx*#Px5O5otNcf z-yx($IUe`*Yb{OEF&ha=s%JVjx!13^7ISWK0rQ;@218UP(GndiRMT%w%%fwjjDyn6 z$(qbCxJ(V6ZLNM1lozZ2>MYj%_VZVc)xm0sDTVBWTQ^7$D6Q}0UjZJYil=ffrE3+ulO$~OPUzMZoq**j?W&hJEslqJ(zhFL zblHhD9pWX>T+_yUx!mZ&#FI7#uz#g@ z#7$VS-o5Uq~Yi)Cr!Ppmc|SA;M$#g|UxFC=YZQ>|Fl5*EdB7Uv=v?0Jb3O*cjk zi^5TL(=n84N}>Q)UG+-`yj1*yvn8KtO`H$e=Vu2&sS$oC#$BQx?GVlO6WXM4lvYp1 zH%7IgodxQ4#W?h$Sz0@%UjKjnz>aSaZp69r$08sLsm0~p5MR0vnqTQHQz$-y?31Rv z(dwP!CiLYb$OV-ylh*~`uKW^YdUNc?iS&6&-~V(Y-?iir$;0f4B9wm~ry(_TPdY<< z(WZ32)?WV<9a%s{;Q``hDARPM#lTw-6a>PysT|P!f{zc18m_d95eTR~ouX5f zoxkC^6DouCnlGxIM|!`HoRH+JmE8_3ukF>RW}3cNm>+E5%>Oldq&Y&hJRZ#)R#w2- zR+teBR6{8-xJt$!n;aVF-ybO|QTP8Fvp!vA<*puJ%;jE+C^#;N7pTU}Hq{;uk~C17!BLUy@cj_947S2p=+d+&=%#NTi!BN9i z#`V{dV+UHF&xu-!?%A>NpT>`~Ia0(C66Yu@R!C!7z465N)c#YB3oDP@W1?-qQBV?I z$fxE}ku&+@($Gh%T2rLHHAc1QD`hZS+drSUbiA#u|GX-ld1=dGu@*r-+d4f)r@8QW z>00Y8N*Fbpvpftzma0_Av{h1n&fLAYq`}hX`1)DR2(iJ}_E+$4C;pM-af>@@L zxP49XshFB(i_Nok3F)5y{w|?PDf2C^ExvYVfK_9u3neOMmf>XRTCz#00wN(Qt@TZH zXrD8FQfu?1!$PYez3-d2iN7;^(~0$+r-wk?pFisL4;2_C<6h;J-5Q5jQBcK{4w;g7)|oG=bi<`&0*u92|V)@tgW85#2l z$F84$YU@E(4JW_;NMo;ug`A6iuS>=hnAh+O@1W*3ZZU{)D}G6LZJ-PhC0(J+hTx@w zDiX%BX>`!Cm^8!`?RZMxpv51b@boiJHM+vSY)3}e!3^j&hyc^hJ2vAFNV#G=9OU1> zE9P;FDYQM%m6;?3f9r53^-ziy{E3Q>{jfj2QgSRE6>4?9iLI|B4UQ!}Vsv>H&V3BP z-WX2yoK!P!!^0ZbISRs&L8*N#NSStw@1*OlW3fw*+(218tcQteZRQjj)^TDmc<62Q zy`3I^l&y+SUX!TvqMq#WOWLRF6L;8TBGRyWh}tEiTp*pB#$h>t0^UBg+%Q=1$9bP; zA2lfmV2xj(_Sx#z*oKOKRg2WQV2oF%F~@(`k~DjcAs4ZTOl4fD0?=3}jCFeb??ha4 z{O~S0t-?<;Jl__+nmufNnt2=`+~n)l(uvMPPiBX?F-Ch^HcpUJZ{=?iV(H(hgWnHa z8rLID{);oj;VM$_BNph7^{_+uW0u#is-_1~jfFM&Vn*;g5#H$zECKp|L+bQKbQm>T znctm{=xM&np}HN0X!MA9V}E@6=Ls1T=jDK5J=synZpWRi1R&zzb9iBjQW49N6x9_@ zcP6SNEJ(>$>{SsS7Yl^h#IB2HVKhT_on4b+FblNBq}&! zMx_Exiu8p1xyC20V%7vwtca}B#(_=MI^97t zGW5Od!5qC%ai^pT7_#~XndWK!iCY(bX~hx!+ByREP-N1sNI-pn#PkosybCGme;8U3Tr z_^=H~xZt>CQ^T|;pbMa7IP)kRv&f@qQ6#|uGO3B!#ebwZ_s?T?Fk<=KEnfkhtNlIAT&Sd8f#0y6>r0q~@+;f6 zyk&Yi+M`hn*xG~BDwhDC2Yo31dvAZZ+)UK)XW*78_iK#zGh$`syo|S5JqGMH@kh#1 zmr^OJ9eAx7N8~qtv|xJ+%RY?X9;2%xmS&$G`L(D&$?IGpva0)Xw*K2v@2hXA#V!u( z-F=`&a|h_{BtqEW1uqj3`BMB=g(%wZW5#~$g-%K3Wz?}4pEocEiLp}z5X!lFzP^o0 z@6h^j|JP9Ny!D_vv0j9h2!n2GVC(mu`|FNucGh*F5%MKLT})5IDF@}1bEgX!^8ax4 zj@@-I&=zjf*tYGY4IA#*X5+@TZQIt4-PlQEW5+gjZ0o-F-Y@5zKQYHx&zgWyrs?Ok zeQ?VLpkMx{7EifjAsTCEpNgKrO1yTQQZi)0Nx|K;+52!35{-OrQ`JTLZRtMWQh#ZO zX`3mEy9Mubl4qVJG|4KfLrHz&ibXM=qWY0z{ntyA)mHd029T0miQpCH{E2Cwv)ll^Z*n#DQznHV$t& zAa?Ca=;bG4hQPJkTQ}u5H`RAUQQDTz|84Z(Kl#3HPj7~Y6K)SKi|nuJJP;nfLmI3( zn~U&C7c-M6>FPfsJjj0@lovdS-$R?TQVc{(k*-<$S;1Lk6t_j2^C!egqQ;1R*`R!J zqrRVMJRpqm&Cb_*AYyoQs4lf^xJ9#5mYbG1ukdBzWJ7{ffTM+|PQ}eL;??R5Q#{eN zTz?ASqrHZg`pC4V=}uL2&|d+4_th~IFr5&xKnch5UV%W`<(l~T$7snt79C{!I<^eu zfo@hc*{=NjO<2bu8PmNtY~(bO{np;@-zBPStJyLQ6YbG|mf6aGvsxJ`PM0((D+u24 zh(CpBL1sct>=-rTnkxH>7h=m=Nt#sc_~6bz=Tcn{@WD7A*%Q34c&{Ee6W@>3k+%4S zWn4eFVUWL+R>hHwb{3nF+TF$RJp9RxE_*m(E=hE7gA)TwzYLhxS=%}R^^(3xQU%A6qa+O_bQt_uCm1|mID3y01?o#;zr*0-E{+&-)dy(S)2DCs-u+E(+LZQHbqM9!1n z!rc8c$A2>lWybH>ZHmiVP;Xk5#Gy%`Cbnjt#pAfJS|#VD%86+P{yRH~@^X>lrY?z< z2Iej#Irn{hhZCm7{6(Z+lv#7zI76@Ps+A};y zit}MX9a_hm~ZQSxZZKlT&j*{pC}FuW)`f_f78X;~mkV*~<_AG)g6j z&mq`PT{?wM-nm;Kq$iH(;7si>r7UfHZ4XJN9R(>)n9IQJ9Ib}e7T?DkU zJ#FoFYple|y#mXyW*6MAx?@jmUT6}ZEhHOb*xk~%>-p&ck-xp7yQ$o_h6REmMyM+Fzws?OTs|Gv8w?YjD@WW4X0DI*b= zzze#8P#I-FlcLPpZTbdm;Vo5nizPRKtFNRyN>tHjjkJ0z6Ky3VuyQm~U8$aeePMt; zLcX^0=YposhG*SA!_idm=8SMDMd6WlJg}pL2qz zi}a^%XjQXzK3d+MZK>vL$iFlcT-62_5B{tJzX>_yyQD<-&_fjt8}}`-H0a_n1NpIh-jqh8;Updr12ve#cvhnJKlV8CwZx8 z{H+U3_L|+nvMb}?`#>m1xG=3yRvLfWia$7~4%ke@bO?H0vqkO#7etL7?I#nAS3f)=-ex!A zA&{u71+Mg{M81ZIS#Q-LL9E;Teez9_Jt44eUWlJy-x624doI2XL72QrzPSj6RJi`& z7uO~QbZUJH9kKbdWCCcnhVu768~El!@pCCZx;0ca4>roKk+h}7yaZ0t27OyDESJuU z!K3`Zx_AI>&2&g_W#ddUSo1p5$WN5;1XA`jY`(sfYnBpu&)4w=X3(m4HKa*ZXezVE z<5Qj5>utpk#YwD4w)1?R@WWOxwFd{-ixc^{6Jkta@O#!PD!llgE?kHRA+DpQ83)gF zjAU}J@W+gGGK;!)c`4uhJM_ce<1tlYy7yX~6OCT}%E&w2(Mcjg)wn2VupW(^$N50| z$Jh<@3E7=&1NQ1qoML%%FplaGrC`ysla4r|5!I6P)5WwX*hW-ggO41_!~S#W(mg0V zTOs@mk>{7Qmqpi-ZOBXE?)0OGsGu+yUmNTXG2Y86NW zQ7PHUeUia6vzkkqv&t8pN-ij{v{;zY*r)WXv^dB8kE?-i*?WBYR5>Zn~Mm z9A&|5xjbqR9`4y|4qAmO#?z2?ADSZXNHrL{YJu+eN4=H*aV{~~7s=X?2nCg)0sRTr z67&|Y^)MNL>tO4g_U3$yn-lWEjc5?vH(nCE*LV*P);PN|x5o_K+a1`iJzrBIDD2AO zSP3!gezOkGya#IPEjT z);I$wKD_S=V4}HII-h!fp?7u5{Swi@ey@je91r%9gv3DaW^d)%p7{=HD8gN)Ge$E} zOEIQ5_zs|ub?)pAzxk0}qPoY8Y4dyL&g)`o;A7dQ_-rHB;mo>6<@w^`e}WH*mS4W7 zwqtMKgMI7_);6QB7aAn{ufpKc~0cL z!D}l`=~BXFnc;oyArywaO3ylNQv}@ha8y3*<3RrNIcLpDw*zjsL~AxR(PQ{}W5sH3 zUlg@;;7b)v(=wZri{)|Q%1KYjL@MINd&~Z^x%X@(|J#vA3@Wc~Qs}S21rX(9uJ3UO z&MRWW=4wboi{~D*g#KKhaHe2pW}!Zk_M(sNsn&?lI`w|_PfR4NwiAC1cCjz>=*(>i z?^$j?jhBuGzI)HC(8wRXLUq%h)hHAwE|RX1cbdor1Dy#w>~8S3-g4W`?4-iUQgf5( z+mYpC>~~+P{ZS2+4;OkYf}>xnj71nS;YeQ5>{^C65sHivsp3UA; z2G3l&W$Z3F_Fns+`n5#$1_lM&DsrE}$1G|MQXHf<2g1}vt`7nIl1Ta-*%Q|&HD?}a^RC8F)J-CN=HigP4`dDaGC(`uG>b6d~e1xu` z+wtdTwb0qbvH}33c-BdIX-g!4;DH!22APXi zS=Hl@pnWVXwj%8ivp#j<`G@Zq?WY*s^xLz^uOpJ%zZM)ruQ;nPorB>LJc$*eBD*y9 zF$>!$3tJ!NXuU`1HPr8T%GfAT5c&paOT6X3F;@cu9((~_Iwbv#=X)hdVZIK>T!w{T z^bmZzYg3T}ynh>_JFA=quwHu~w<8NL!Z$ARidni_mE1jQ7S88m>%SZktr@)#&giac z4vJ)H?tCr}NzepKvaL4ZB)$J_a&>O;S#awcBp~?(ELCF6TTY^%Yaw10i&iJ?d4%l^m5*DFgyDG)#duj|8a{cEO$xWSV9eFMa>7kN$!*o$(c?h z27n6}WVdi*5{FO5z5FvER*}3SyCTh7H0M)#B>`;(KdR1dW=UXEypkkIk@AH-NAF}6 z57U%*?4-Phw-7mbN$q&C!-^h_Z?Cb(gcnu~5bOT3NPOtG_GQOhDVIqQGRb&DHBV^P z&<1@LoTinDdy0^b|Gu({>6|P0@tCzUrG;@Y_QG_%wHA23NvayDaz!rQ*Cjm+MoC)q zXSavKL>sDmI+I#}3L0h};TWUena0}NFIR_rV^tYnw4(i^-r^kT)r0O;_QTo+4I*?T zXLX|Nu&`r+hxA?jTgaG0Jm1p_$dF!8G@M`TgbHqiUN`{`l3-2#bMPi7KUkkeCR*6L!` z=$pgK#LJGL3DeyAjbbxpVw}UhFe+#N@pcb(I=oN-(NIIV3cl`emf+-(RR0>#$=1CV z9jOL3B%DpgA(}&l-};I`tvC1O_DF?qP2W)sU%)&1a*L=|vhV`jq~5NOK`qf)tU0n& zYj2UPi9gHnj3DBOCEbjOn&pb&;swYT4xUo*k6fuMFL^sp@x0-xymc2hFcb_yzz`Pq zV}?jsdy0yHSpYhCnJeNavpLn-GKiktS-mN_uZAn5ODj`10I@9&CEU{pwQ{`H!`*>d5Bac86=ohtDZrJV{t z^0}hH+DnQl!#P zD7PgRfu(KFBA!BSO0|CKp%H`>dHydZ&%(#yWg6yph$t@KIPgsD2CK%VZQA3MEV+7a zuUKO|PbZDGb+wip=To%79mLF<;H)uzC)v)$@eEX&PX$ z$qfm(v}ruFamab3W`GhDY;s4{6yQg`swc>N>6=PnX-u#}MItXpPW*#z>X>ZW`f3cp;YNA$`~%u&=Jbrs_+UFbYI9|MyNGS z0VZA9CZ>k4j{lMu(M1YZvdGq#%KAiZHz39HNE)N$YjkC!Kc$|_RAJtJd85o6eScUS z(j9EOcoSQ^CP6o8WiyW4M4$9aI&{@5_ZRcwL&TXzGY`w(y7hW%kpPA{~{LYi+ zI}YNtRD)TL1I@+%hNi{m1V?F-#D@J36A6hL*jpHV)GB&Q5iiy4V)o96mY#&zuOqDq zQ(m`wcTK?9kg}4R=jo_zJy>gDjl~JC{SS!c8-Sk(# za)GZtyS!^8SEgmoG1(a9W6I=x!SPw~N%O-Zed$bLg3 zEiCxed~W+_q05wB+uAXrhK%pe8pp_qORyMPCxD1HwX{=5D^+u-Vfo^B3_# zB4Xu`DnblJkf{D$-n|R?YY00c=4eXe8^VO$IKa+!hAH&N+_u1%Hd_3IxCLod`&0Bj? zm3MA6fZfnM%rJXwnR7tm*#}S6NAnhrj*_NY!Cl${**717*f9*=pgbri|M#dR^0WP{ z$R&%-I=$`riuhrY==Ku(j&e$_l|}~q2!`Ylj4TOty69iOVafTGg&~F`?7- z=^=Ru56;HO#J9SAP=+In=M}^+UG0lay&1&l2HN1eIz{0+W*eX}Gs-wlwo#r9NC~mN z8y`14Fj8Xkc@~x3qLCnx&Dkf!ElSD@l2OBD{GFHfP8Q8J3ll$?{!LgahXU|%L99&) z*=AAAEv)3}<~3-9FF)?mk(QQfkw8@cm!&H}+fyXC^hj2XUey5`H3m3oa!{?02^l4I zgpbp7km%nUL??Ad_jNF zcO^=?wOprOc9~cZBezPe5g+U!{Ke$;K#6t!@%3+O41))9B)Y}?-Fy0fW^3(D5LYw2 z8dfzoK3?=Sgege`37s1CTp1%6vwA#iwb1dAX6|wABq=0o^B>k5T@N0QVuo*s#CPq+ z%9H!-mEXOYXg0}_OhFGNp5gulBJyJ7|GM$i{X-4}Sz-!Hh4U*NqhXp!^CC92?L;@# zfxgq?V&%z!g_oJ><++&Bmc1X4sr&viDc;V?wdWUihtxbWCWAre7f6Zjw@jNc3%}Ts zwWOvE7=_lXf9@Adv?gHHkc@mB(e!t##4&@Q$#m=fGRIZo3VL?FutX{R6YLNx=9I;L zl6cO=58F2!^e>ea2u8eZ%-{TS5DWpX_3b3Im^CQ_+El)bh>1bmG(!g@1;-7Oe|3k% z?_($GP%sIBUo&HkZ#?op{@@fHEgc2~uC*?^cB2?x&s{wpooV5@bl73mjD`r$T!^R} zhkYJyt1@k3fc>BLnxy@3Url0}@p@njJ9DYB1=zpqnROIJzo~&fML+HkaDT#)s)MIj zo{F~o6#WQ0e=rz~k_Z|K#U^#V5YCsukM>+e98B>^xsh{wk^19;R@0m1cq@18cMp7y ze?e|UHaI0ksT2$Un9hUrONETx zU-VrXQF)2<-9*e4|UBq@biv@kHGwqNB+rB{lL@@;INwq1ds|a3UObFAP>GypcaQXsz zEIY%ZLIBB6SD*x4A4UBky{@TkTbOgwDD||MH7xW+gFjPj7Pqt7x?@Va zKVC61TRDGL@V-sxb^+ccCEWKX>XO8|5htNE94%Zg^u{ITO`+$ggOPs#Gl3>{{K3gg zfguRsaOOdBDt)B}X3G^j>Odzd_ z1X{8%$;}}mw?!nwmAIHO-NLXQ7TdEooKZ0{5iS3Tler| zHw6}drh~dYLCwaMg0@p8aG)$drL-A#)4kkJtnNZAUv~_obMXn*TrMH6MgR9ruQZ^I zl@sPSYc9xwKNw=E*E+R6>G?|9dm zO;Zp!@+S!RSS@)h;`4|CL++Aea)}~19HCKHGFOzmV3ARo{88WzwP=C`s{7~x-Y-53 z$78c5u&Z`lFZm)`hVspI-PclPxdt%g7ean2&H&(A>VmB+J)Bp)zjZB?2g_RfiK=1W$5PN9@5J3U~pOt;P@*qT-|A{@$S zcM)4&(xn=0&p)RGd>6-mxp6lc{V7{GIyELayl;uXEkIv7f| zKei<*S7cVhqF@9<(&L1*Tftu+o`n+nJ=I&|kB%a6iV7o$&ofzKdEimV{4nTr6a{kQ zeP7z&`ycFY`xBKS?y!vTr5Vh-{fzUav8F0CNySbvtn6pDjw`=C=7I^4@Jn#|bc8~a z=Rz6$;7j4+<+ygh5EPuFIm(tGZpd&>G#e2mdpYHjpvovk@M%$;{y^6r-P4YbRK){& zN&RCD^X9Qqx#tdcauMmR1%Rr;RbK=rHN#e&8GVl7t&=9=D8b6Xi+dhlWiT&$Yrt+i z;(8nCd5LifS2_E0%D4yRY5;YerFYA$Gz;6C${O;VOGW`b#BTpms|J(xKizf@DKDN> zfn$&}(`bFa5{ewB9pBrB;Whp(*uIuGK&H3~W|tsoLLC;%Jh5|@<9nGR-{y3Aj?SC= zK_#LSv}{HIVnyREB5n#}n(eaevHw(L)#l)9JdJAx_H1eYt|)+P2D+@`U^$kT9<Yn{Y>?~jt>K+rzRp)qIIGh=@y9wgRSsz^ zaaE?US}N4lzwULoY+u1UiwD&A3of@!X&!h@;by}vPUn^4CDS*4+u?3fxntsK>VFT^ zXXSs@PW~q<6={(wA0g)A^+0n+#3l4iTG)9bleE~C;>1v60<`(k3Ljmlj|m{FjQY0g z(+d+sccs7Zz5P}wEZBX*$G;+^tL$PKMiNco`YNE-eUG^H2@Eu-+9E=eR7pASihEdwL49`Sr-1?QTT*;q3lAxQzG9RrX*$ds|L9 z>&$Ph>=YdVm%1sfXG=)on{n3Ff@?7@awD6rspMXC5tTUQYeYS-_o9Fd#x6W^rz@&M z|499@$H*a<$EB|dXe$}@Op!APpjB3=%F?8-L5eg)$rVq!aU4i7cICs^D#*c)<=zYY z6XkZ~UHk#k1Hb-op@*0U`(l;%v1mm5G4v31bRyz`Q*_`o-$Eejr$B@Gc6dKHGdC#l zA_BSAUl(S0@nX<@ePW%EA!nj+9`iFKzr^0Gmy%e)^V9hkEgrG@kfOD(!tgFNb5I7l zsFEX}k-(fk%1u3!Z{j@Y(WT?*QS^LS(>AQ~(Mge}!NG)4Mx2nz>KYVUPr%zwB%01v)XXyWmn(n9{ z<#CxJMfx}~lGaNq((jJEV5_?HQfM=oM2Kph7NiHBX}Y|p>9y0!hPd6{USV`bw@!4X zH@)XdS{TNbxi_E-f4I_UOZY)7SgGMchqM)(UXxS%8?&li>;L()MIJx5Rf_)fY zgm2ed9JKLUknz#nY_!YWo~OHopd!8GSI^(Se%bYAGRWDY4CT@VFoP1*-fmbU z#ixBA(vCvB9y@IR<|=~ZR`|&VQj9m0RMWbuOS)H)m>~cIx#;O{Dk`Hn`3GL@Kr@bsXc56Y7%5Ws^;0pzvjZpZo9%8X>yn zq1Rxz29}JL zPDMV_!~IO96-?wSG;p|lSw@g;LM0~jB5=mq+_qs!w_dSN_rw6{n6_K+rO;Ij(ti^% zezyzd)ZoBWUAZT6lxz%W437*UBEYdAFnudmIx~MtDVv8|Jm{1d=b=#sZM>ZgVv?qu zu*u%sK^IW{)1YhvAcqd}KMH<#8s#}kr4TNSkTbEawCNI80a~CGMeza!YO~9GWkj9> zIRtEr1fOMbyPO0Qpj-I|r0eV({>G+~XtMGIc`Gn8XcKjN;CY@$cw7#dzCJ#jKYF7G70d5Ps1ZFFZP>>`y89`nf0xiX*bk3I$HUW;^BK@T=*@C> zYOb6^ws16?5jM9LH#++!sZ2rxzP&BRVkqmlDmjoT($1yn4t&3VWY7~1HerTuh8Wg$ zbNwifeZJiq&kV>49aGeUEmOjFPdj>=2`>N3tH82VAHUo+ z=ldKm{fX4E zsp;oQ>*z?qS_gyE0~x;GnCSwE4X!(3;etyD zqIIA}lh>p7-_a-csk1Ugn|H0T@TUdI!ij8zJ%eDd%=0?(3_y`1O<_g2pGL|7|s;u62Q&8q-qWuL=$rSZ^=x(fG4+qZT~lixV8Y z)WzpD2y&$~e~Mdu1OFhYx#6P-dW@OphpOKu%jjO^Wn>OGGXJ=ILwW>8_AP|wMiaQQ z0|k;lb;~;j^Yt4Zk+EqjbB(m=lnA=>cE~K_f->f#OBT5k-%20y&JH+DT(b|~R=mkS zVz-m~a^a=uwbS=B97J^IF4$_aMI$=yyW7@YDMftYD(?*RcJ4-vxN@qoYR%VBNie^V zvmb7*{Yv!ycA0K?9bA&#BbI5~1S1wY2tFsCd}o*M#zfcuu-vvTFxjq=9f z#W?J0BZcP*8-3@^#&GrxSxxi@Z`c50wu}78pjk_<8?nTMNE;8M<7F&EjKy4Nf5~ z7~igT1NGoy2UQ6i+xd#0fU69$uu|x}+z!xI%bA?gHv5gZP{?KJvXkR9Q7af)#eP3Q z{LHLFPH$5|BSCYz3yb0X9y~pHsf`$Fe!g*rD|`Oek9g>yuoeN6G&<$O-={F8uWgW` z1>ppuyV1USt3X^x-MN(1;^CSG4L81EV9w#3+X&fPUo;K>=Ppz{jSjwT&G{^Zs-x~N2~aN+=mPPQX%%}>%sX*kv9iE zUI^PO^;}noeD8pMBftiW%#JzHUn$t}tz8mX{r1C%#Ayh4)LgSJpP4jxcLB37tUnw+ z#Pf?t-%Y6ko)9R`aDAHw#{g3GXORjW{xIl9o=bo*)15}i3KxkaB(C1#)MNG!ho_OM z0a}(CQGsUKiAu5W2#AVl$EW}y1G6-?_%#$H6|E+O%N&uJ)hG6lStu9lnFgQ7wcxlU z`mA85DT`xxA8T&=P>p54fkY$gEbzB>qw5VHK@-)ZegwI=t&$C_Gy_j%zfJ$V;9Ma^ z%Ey$bC2I@Yb|lQL@1c_iK!vP_q_abP5bu(9Vn5=KqLlCPi1hH9N_%#xonsO36Use~E_OG=rY#^ly z=(Fly@C7)5JX8wtu~Q;0nAGEZqcB3_frl(JN)G2ccWsXsKFv9d{l}sShFjAQ`su_K zG06y?=JAwikC*K&tt4=yi_Kn1GcW*5yN(OkjrM^p_F1Cffs&+x6bR@IfwViF_)H9i ztW=nr&;R?U75A-Z@r^})dWPkfSv*F&c8HebWx|nWtNX35&?9z4u}-e7>30w*<%}d? zDC!qc`O>MkN0-6poV~V;Dz4|7?DMffX9=*Y9G{70D?%gJXyH-w7!J=P5C|H75LSJW z^;Ra<^3wig1<83MBT2>fR6vssvi4CX=B%GlDI0B5Zub9h?v3DPuwsdn>72B!OKU?Z z!Gi~SP`erxMB{j_0h{lpj}!1KaBl|^Fe|c|%a);kp{46|^tTCxJAkg{L2SopO?yeJ zA8~jj$C+VIRaJev0ZP7UB~&qL`L`YN&BAiME2I*Iu<=Uolig*lN1 zQ%=dPE4X~NnMmjJ_p|Srd4_)_LK*VwHw|gaje6vQHEDCW#kEgVUx_d!UKu&uPT_Fj z+;PcJWEODtKE-d}q>WD^pC>vfqFG;M*O$mGCSC*pX;C(*&|6@w;$&;o?CS&Hc01^U zjEE#ErCLFJzuVopUpTrPQ9Xv{l3vvH5v}TFY`^^dl~(2v72;50#$;lpr%+8^B{uI9 z2jTS@jxjNE^pVNH6lq-yrX-Ng9TPn%KhZl^mr7W!?Lm~GgFK|U_b0<=UT=3t>KW6mg=K+f zqbQmHliZuU`xkl6^H) z<7b#9Vrs0YrLxDzh}l7Te+Zv`U}~Q!t4YD_r#Bi?h?^wWzf%}viI4)ix!GKyAW|qV zo4g1dsC_tJQuE-}CA;2{@>2~NtXz#+DGGF+Ckk}JzB9m!cDGlo^S}92`+&j_hT7@P zk|VXj3mPgd>Po`q2@YM;T6Xtsq!zCorXg`zxJdlVx}bWYEs1P?Xc4U^>epK%j^48T z#oq`LvW9+LLV2VF|MeJmT{Z|$wGP6>zy46Wn&MuJDHk1D%+(L~AX4fGHnJ$4gdJka zF6IOCDSKR%>TV`{cgpmXfL)?ac*$NV0X9R?lf>eB4S$hsJ(p(2$R z>uKghFiAF|b_ZXI9MIAcjz~VfMPnjXch(7n7u{$3CC?cDA6|Olu(9t}Gyiv^hF^>D zg9IWZ=JuEuHqm0(LFn#~(PSDSAMu?jmjBkH3fflv01?oAy|noqx^;{}uokJ{n*C)! zv}uy=XX#$#t0zLqJh8dg7F=Oa)X%jVQKVEDF5p$h~JGnV_tF0F~TPjDqmztbwW}7(rfcf&4YX zPX8`VR}*lb(T102;@dlg3;TEqn-0Rw*0oZ?4eG(bJqEupI^L1 z(P8M;0*eWvu2ZbJPQ`a!35VQ9_i6`1qJ0vnR4mmutX z(U@(CtD;~scN*;{ejXYFYDOG@TjnV(zJJC2uKPClMk3xnpnO%}Q%XZ**AYhS&xafx z@$OuF=$TTH0kn08AC%5yDmP;+5o^wNB){UPxCQ+d=AW@5h`Zd?D!8X?6y$ zCQ#I{^%6pi&C+>h8bktY`U*(x`X`EYAT18&Az3- zKXRSzFXg&TA^Z?6JqDx(+HvA_A+3p(=e|V~ZxCI3({6h8MWDpn0T@Xqio$GHm~EW~ z#4bOpHkeLXL&YM}{ETDT=17iAU-rAeqk#a_9cKd!WgyslD4Mw6qI z?|0U^UG6-(;&b?H9*x1LL?frkSX_vmpeg$s?$SkZjT0@y_!lHJ*N4hH!8mnynl7E; zCf?k0xIT6p7VG}?)N>R^xnbS66jQTB}G4=BGU)nsO<%gjCtX8bY2quZi znsdaG0AOIfI!Y zGK!m9v=o`=I|9-W5pC0Cj6*@>%KB5~;!+-siV-hT*cim{GHZT$-S z_f&!iUZv`J`k8>Y=|o)2Xfy|Io6lM$Yk{o6%F1z1mjV515xuUIAhIf^R_Kx;7g@c! z)$Y_hpyP<8@=vgih{-=zFev2^Qek4fY8$5zu`fA3UtK|cGOA}{Am8aRFAJy}Vzu~1 zM=}Gi7i=`Spec#q)uf~PV*frVVz2nxF!t05CillZF4Kvwt>Av+Vs$MX=w%mrpVDa( z$D_-xrV9LF?p$CoK)?*_U9WoS0?A#N3eHhPbgVl|ta{5U`NpOFF?qyHy*EcpXJl7W z*rxJ30dmR6Kjm<(CdP`yVu**4UM1XJ2n=|KE0{!qG8Q;`B`c9<#Q$41i(tPaM!>`q z^Pugs(+yio9Uw>0RVCU{# zOCwXe&M}X&#CzA9-thFWf{#bRiq3n$4vAeN%$p|WHoP>x-&tE>0jCiW5za>j1;xe{ z4g_nB=B|mZG36n)PO-vr^(qyL+a749UqP*Lye&z@dlUu7mA#||acftt$f)DBgX*or zGv533$bRAe%)j3hxl4+@#YQyda6`3L!GKaa!!D;K%MDsn-QrW9d;;FiR}`Qs1C%fE zZx0~6x7~UzUlIVkVZaHZc^GDAIt;$yFNPa*C&n0hz$^{Sr!SJ@ z8I+Tr#;R?e<)(M7Y!q7XS@LVE)6U0g51joS4UuJqZ;Ic z&%nGhbvJtyox&%Ae1t_9Qm^^5E_XzUqATyg=N`=pu(|c2brg%lw&2mf&@ujdBnE?o zc~#-3)POjeY-|@^y%Pb3lX$K`LCMx|ev1ybYwx%%&4uc!4R;TXD1<^8k-mLwEGw>g z(=M+#rlWR+y9N^~14sGgnf9oNuuaHnZ~mS34x?uGUd(D_!RB;$s(%4p>fV%Fa8`32 zDlRtcV6c8?sl{JJ0k^=-vn$$J=e8N%RY&YxW+&XC)Q{Q3X@-`WE7UbB*GQR(tKdJ} zy8Do-oNx^8PZly{Gl zfL0o}S7`F@F1(tli~4HzKZ5e!uf)w+3Hn$k@*Ps?4Bby#-v7-QBTddG($IYm0)D56B4fb0 zzxLjuo!O@4@l@;?X=@w{ky|;pHmkp!>0V)<*NgojYAtarg8Y0%vfyyXIYe11JfDik zx)Qa()X9$*+Fqo29HPme`L;WPGz-;{^riSRYkriOVKoTH3h=4d>^eqL|+{V>t zY<0(0xi4-^ETO7-9jdMu(owrs`YRQBP2-aEY26KN@O7TRsJjkiVte|hDkBgk4$*7L zb+3F~XMb#~5;~}|>vCuFtUL>jveK?zLVU2#VyjIpMOwVqZdOAWK6gbm8MI8-QEWo2 zq#ypi-&Mu}qbp(d6cXm+N36m|kjA3_8uDB@&{J2ZFM6--d0V8b7-CDFckFH+p!t-R z)96O*u=aGOe_E!I0a!iV0{EaWF>Z^-MniqJ@c;jlFrNQ!Jz4vr9;Z*4{&%w}lPmA- zqa6dW>^4(Rpb zxq$DSZi{GzY$+Rs&ksVzjN=ssw9>NLg|`dTQ{^dDGEV{$RSttDMH?WZT7V$O7Q6H z;&zEY(#2JFOh4d5c%<`fY|fZ=w%s0Az5RsIC5yMiK635Pzm}%=nJE^qSC(OyKR?W- z>v;Ui$;)ifyb@lmU}RopF=3>^FOa;QnvpHOu=!@RDAMw8P)`SjxgQX}cslaNaw**c zv|iC>bP?LYT=tvoWL-Ix^mFAuu#h6PBp>Jd8h4%w{1%C(L)97mK=Mm4yqs811J;y! zm#NO73?#|q7!zSd;BxhTf052gnv4IRYA?uo|gjLGbwVf$0!Bt?h5GeWKA zOd!!$zf=P=baBjD{0K5|w!;g&>aI-LheSo#)N_I(XoT{vS zdNMURH&W8KBqx)u_B?vG!xYO*O6B^96doO#`ALJBznl9;5%$gogMy2=-%dl)we1Hxmu15&R}ujFjJ(J645P;tB)n~Ti2z03nE~))0`&ce-3+1*Yrto6ASp$xI|~J z7rNFc?M?)f&9xSBR@pA_q@>kg5Rk@-SK^FKX@6-iuDlRuppYj=H`o010RKnq@^9_m zml7Hi+dZCr-ikPm*DJwpFHnSkF)LmnOMp~!LD(X@8(jAvrW}LcP%|qR4W{D!gy%Lf zru!NHf&F%k*0`?I4n zW%&oJHsvDDT<9qOn1_1p0lqV1Hx-?@o+P5tX+H_4J4iKreWz+x#6F-+y|Gv5HsjF& zHR`8mf?h}ar!Gn|!U;aME}XE0BzOIU1rRSXx}JZ$C$yrt?+|bQrR+vP)d;OEF!Oi2 zEax<>dNTo*VU?peMb4?>f+%5fJ^%H#8EsIZ!AK`Njtez*)76!}zW8I%wRe*Tdi&Nj#8qTpY+-BN|I{|^8 z9+A^N_Tn>20IB-EZvoMrO|QT6QavLcG>C9@LIuDztzOU-w1ZfmxC zfv(>5iMzwbmx(P3DPQ-c{^EKX%5}?9QyPOO>M^|ZbRABQ7(m~pkm--~Z%ydU7@ZK9 zJ3iiazRX=A8~bLkttdR^+&-Mkgq6T|lJrpEfn0tiHZy!>DW#tC3t(>v{{9om%2AUr z82-)u<|A=}nWVQuXiNxVt1JEF@#tyRmtj-mV;$c0wpjo4oj=On`-6h=1A$Y+(DML| zErPR}KQrNoYjzzwH=B+v95e1ULv3VfcF;RY8H*(}R50@ihi9&ALxpo?I5+lmCc;{^ zySc2&73qn$B+NO;knGAduAr%mN}F_pFofac^S00<{)@)gww)Pm&2YL+PgweyiEEXEM}o3}l$P*zdlJ5u$n-xB z&ok86mJm66^&Z1nJy%2PYv~_4$w%qkO!nXX&xLYtesJPh2Oh@FP9zNlvUZkB)v|1% z{Cd|?xC7lR2Z|3&i65u^LHDQ$jj8hC&gT+`IXId1Gb8bPCdgLj*`ZCar+4&6>IvvM zb2ks#g2ohwi%5c)5`#U14DVTVD9T;S)($f;E5OOu7w>eVDFX8Clo99!9l@~OKS8sL z+A%f$B=9`-4`?xh8%}f#>D^UVIH>DH`0J}EJT4_S3ZLf47Ge)o_kM-GbN{3Q_eI#T znB*~-B#Y!gVK&CO)--}81}%r2Y$Hhx zv2H@897oY4)ptq*|IkKCRpn@G6%DF@k?a`$vFiY(|Q)$7QK0~ z^?)B8Hcb%ZzZ5p)O_7LCMH?Q7WEdcbe)$~uc|izvcVuod?CcQ_7}_sCLL4Uj2=i~{ z?bpoNdI5ypeBT^j0xclrZ?y8xaB45e<9+9!Ec4J8?!Z@ETOxP{XB?G=C_x>671nEi z3zUe?V9r>?sex)N!d+=&ZF zeUd3CgVo@(I~j~S{jBIjjeAz1@gi0~n1SOmn@i7ko@I_$!u)qPUgRSwym6xEts5p|9hClhHBhKXq)aU@&-0@twvytYilxlYk@-quH6i64q6-fR8=q@$ z{wq7K{DS~xx;uNapA=pcMF zjl&kT1%E8-G7(M}BbMd^Ni>70?aCAB=6{JQp0*WtMVC2oyy<%?by4y}tX=%NY`XA= znzGH?&4vxP)zbWS`2fhPQP##<0AaSCsN4KTMEca3b?og%S+qu<-O~FBHbhWC$C7A zre&>d>!k_U`tpgleQh03L#IL@vJ-}(Azg-s7jALjFT!v$XzIJ%E4*P7iP z8*P=sHvd5;jljZV@S+D*4~-w3Ins?Rx$b=qx)Qi1_~m2dr;kySjn28|Mp@_eb`vJK zjD@Xk>udt_MLIZeUyyO2l1_Qz-U(;_+pLr&F{B&9qSO7lxibs1RgqQQleu1Ca=ZHc zZSix>Nb|71jti^;bt&vh@P>R=;CnyU^}{#w4hXYcarz+ty(q0@?%DaPr~SJWZ2Km^@n5JxN98rZDsj*B zh4Lhi7chYw#%>%m4v3UK?qA^@v4g5w934V>>wLOvzPNebVCUli4gF> zhfsD_U3!qIMjwZkC2MYcQ!Z~!5%PWGtvG!DRF5W*P?)qz;Qyhq_&jN_oi`A9y5kV? z+`q2;0+21T423mwu)qpDZpkONpL@z}r;iNIVPoR!B)M8n3!lK88f{7u^fq2b7&Etp zpQx-4FW(ze7(bT+74H81?*khQEj(}?KihFMEbaZLsuzT)D*G^sY=kf!_Tsm`wq0s<>8w9Ti>+$U&G!Zr=u$o0z_4*8kNN@(bb}Lc1TGGpryT#} z;d$w!Mb6P`5Zl1Fngy(Ad?h##@M2*4SQ@j7e7fI_dOyw(r@le}47|f6A4;YZgQ$e- zrW1_~xdU&HQ9Dm!wLu5p)x{?2PhvrfoN?E;4S zA4_7|Pt7J|hE9)cB(n)glO+XsSt;GcnHnqq7<;KLJ74>tEG6Y6l(8CIhrsa)(rQ5r zyJY{IYYNmWU{k6*DL1l86EeHMRzD`>Ye;BTHdunUhf9{Z0ciuOkC|ML6qy}by<-bG z_RUj2Y3@7^$$OODjjtBpb7@kqe&tfwhJNFruN1nGE}PAx%q@8|bVzZoW!k?M_n`X` zs=xlM-D^ z@L-{a)P1+^10MTOIPS=CdtpoD3&KkAQQ6i~?H{)NvRr!0k^-;jQvv)w@`qaL-mXh( zVMp=$e@vOjHkhNWUQBnO?jO#GO*sf4@1W?7IV>yd?u6;IVa5hGh=|4*Z|uKetGj7C zrN;&&q(1qj2Uc`}H5LNgWAv~dA7U*>wN!sEqjncI7@O~hned@PWVE%&zYuKjks(6d^oir#IZv*jS;x1$uQRTMiu|H8y91v#o#>s-jc8nBV6KdFnY$6ES-h%>S%Sr zh6?7#OCL!fY3ej7#!>ADG3@Q%TV)FE5GfY}44~ST*OyULt_?Y`?)aHgN?i3qyUAV4 z@L>n|zdE|R|4)Y7?Oc|1p~Xj-&Tf@!)gbcwuUWl*7+OLDkLcLmyOXJgxlnsUP2gr; zD-IjPPy!VIWRfgL zPSDE9*hV1UNrFWZbOpCQ^_UxL)+h>XcS@961%AwZLi!8YFy?VBXQ63R=UDm9fN+y~ zhM=YE9^N9)ZnJh-{%yaz+IQIYya)*YyMciJSI2)AewqA>5uUbsr)ZMQt*j zHdX@oW8D4Bz2am8V&ZX1gvlM{FjxJs+={J2qv9cAS|h8@{iQcD90Ab*HhGZ9ncLb- z%aZZ|lPqW4j)o0~#5q>SrD$Epl>Fs-<;4@d%^~21>G7we^B4(Z&R$wO)H{no=uaCj zm)w?!L(_ziY686z7~pBec|jBkciN1MZyrIx6e%jv(2l~;v{7oeq& zCB@{4P#mvf5TUyliTcW#qc^ic!R_wm3YU{gS>j@iv=Dlv>{{hi_0S!4%SpS$B)fP4 zw*J-RjS~pB`yfxqDo);E3wGLJCV{YGa;Q%rq{u->m(dqbT;Awn`(J?#OmEYU@Z~I& zZnAv|F1!2y!)=Lh5d-{r8mxMf5|)!cvEJ^02ih@zw#z!2B5b=-XG)%9gYc*9D;j`` z4U~T3_&J*=<-?J(KFw$adeHy=H4Be^^=b- z(kyeec~f}G14?qo?Tb4jEb}=4uV;jiFs*sK@!~kjGFjx7x~qR818CdTR%=|GXtN$s zD!0C|OQC6a_F6m}w zIAjOf2~WBtRUkbZSz4*!N{q)W6CIM%k9wYzo4Q2$BDU`Q!XiRsfw;6@_;;)r@^*gM zNucER8|c~-&sqciN?&ejf8>>pJ~{ct|AH990S_+PRBc&bYqQ$X_A_yO*(xA;hFGhU z@!=jmYjjt-;3x+V}lmhOt>bgqFdZ~;#OcYBA;13>EXG<8~0=^oCO z-hin067W0jro~SQ&<5bi-7s^7LYizPm;Qy&_YOO75#=*+jCurQc_9eznRrUhiNcvx zZ0OL(e)wsJY2bWKp}KlWxTt)dQj zv4-~ZhQ}hNVl47tAw#>28~B_3V*}j`GDCG-T|Bv>ysp{7PE5rj?8^BR5oA;0ThQf9 z$P*}9nCg8NuYKnpFj5a;wL-fXo2M)J-u24nT+KyF;a)M@Z7rf4H3$ee757|KYV>C~ z3cDcY4w_NwyWe1;8pv3g?YT1${g+N}Dl0wpxUoT!irHExx*1qt*)Sdz&%7wkd#*g* z9jzHarMFiwVL20tRK+`ha0|U~-9+a`oCN5!e^bvND`_KP%_T(0lCzxFx09M8k*WShYI5u?C6X-4^#JiQPep;c`*j&+c(_m% zF=kxdV!kSUYkUtb)H8g=#Yx_n7y+1-L46a{)5oWym_U&|sinIW??>XNS8+xKIeu1L z3hZ%FhWHjS!4%OQA{o|R@>W(klGrQnjh85r@LwHd>8+A72QD+jDVO&B{wXQ3O)l z_&aP@Xccrzj&C!qu10>cU$cP=8+ zG>VUnx+h6AvB*_gLtnZ4# z?_(|}`#T#Xb{%F-$e$kh0AHyv;H%yDGh9}SJ4uAqz?y)56@qnVnfx`7BAyS`--p8r zdQHY&o>iRt5V$`zj8o_wPvW*(%BifJS(4gBDe=YU^Dnx#rxrQ_=d z^x~lqL5^1L`mRU?_r!}ey5C`R`t+#C^4=K<3PNwZW4^Agf-YFeG z1~NZ24WeI94MG&z&Pv|aiA2~xkC;=bx#O=*S7xhtL;|Y9ej*jSWatTz8s$S7_Po`P zkLMD*G7im20G~I!+i=IC_S8e!m-Nsha}$o+r&G0m1%>c0a%nrhcQ6f`LBfW9nDNf$ z7mn!!Wy(*Gcv}yXY`J#@Xr^0quG878H$4k4TOg5uH9rV{XbLyX)+)YS)yDm{m}35C zSZvpLs$~DMSQPk9If|LfeN3PNc;G~{f{&l(U$H!q@X9mh^DPK5UJ0&&D&v6L?!5n+ z*ksLWnASyVc0XeArySx1cJ+0xWqxcWFD?c$Qk1=`J*jib|5x3Mw3Fm42z5Jo%1hi2WN+8azWBG(Zc&Z64oyxcN^!`+;s4h$Gki43l z2)*S4s=?V>QE%m3e%8dGNHpCwG<(gD?$LEIucb##&OpohH^LG7t_2LO4&uuA@FT?e zj}mjX?wmxM3G`Pl7?=w6M*eq^SjQL%*Y*)D=+b2jiFg^dks?rBINhBzHBd9;}$S23;LH0F2a$|Q|#Ot*650^bz zFVh_XQ{FS$xz!B>qu|RF3ZZYZZ^FaTHQ`e%WDXL0o&@d3I1MkkcBvtk(`K$}X$L}> z3Hr;%Fb<|J*436;k)CqHA9;3x1xh|NTbl|F09o!;D@MInT|%cWy44^WKXh4%D!B)Y zHx|zkBhGsn{-2L77tNncH{IRZ50&~)hE4ZE)~mqvNuH-wK0ypbi=HgXo|P%B#&L*l ze0Q_E`%NhH#ug&3Kcy_p< zPCH+nSWF2PQvYqFcvm?jwvx5Ni`%H_Mm7)ONcgu0>vDWhXPlU>A76l8_lS-Lh(Mb2 zL#N_Jk67+i;!f@P&w1nZAxKvIFJ34WifgTgu8R;rExFxCRg@0&wq_8NZ{DAnM9gG)E)J_x69McZ5 zswdR7TiwajH9JIp7e^SN?tcaq2eT5f*QscCcX+luCXML-ssk4>U$Bnk=;HGovlPNp z(Ns1@s;o9^NkLA*#=CF6*S0L5YGkg^NO?3KbIy5vAIctf74Yt}xsmO@N$n7~8brrg z29%*{?Di@(Jdq3!TS~3mUcc* ztIt;8;e1EG!dNSn9WEAaM+}446+|jC+)K)gyd`?8IkA^?>4moJ+(jwkNNMb{NM!|N z*KqWPR7}krNz+(x+mCjHy4*d27%T>>SAtFwM2={lOL;T*pfN~~ zd-T$Euq6L{1eKp%N$eWU`Sg+R^PE5U3E>dY{TcE)s9^{L6u5Z40wU(vlRbw#^7hXH zZXf*SvOds=HJJ_0RJUII1+D9XMdUAM$GFPyDwY;_p5O=98EfGAf@WFyY*l8uSq%7r zOI4a-%DT6Ax@*WtryZqA4r#rAC|}|Aa_*_-=#iy7+*Zgd4pZc;?{ZXLK%+gBB?igw zbFA&I+E7DjCUMyuH?&1pj*?&{y((9EKKeZlwYv{gR zbTcmhm`tOJ(r@;6#gu-dwv2IRWc^1pwh|L9>Jly__u?|bhhv)Doo)>5jk49ysj*0N zx0hex8lh$4C42g#ApYM66^Oj(bi22^FLNctFm5=QSSk6%?k3;|dRZmsS;UT*lkLGs zF3|xs(8a7|%?%er!B-+oY(S;m6;RqAq)=wS?IELX^aBDuhKu1{NoDKv4y1o{RCeqs zNg=HicN;)QF{A{gvhJC{V3Gs|=jM)09?nC01jHz<8{#z8J9X$ycSnzy3Mu6w$`x)( zMHOM2BJ9KMN*d8(8c-9O`A|27uoYUdB#L_l2L^56FQ#S~6{OS%Z@3UDFur@Ky8p9O z39Fbbv2B6}=snTK{`ayxG<0hiX^F?@L>l6b13HH2T~ou8cOqd031~sdyl-4!pSZ;* z1`_sYd4Qc{p+b)^A;mv^PXQk!;6=+Sm3VG}#4%n_)(lPoSvrTjQDvMV#QEp5bsPIAa=E>f2C>zcHvLgnDX|O%p|&5-jp!+ z49j-hehc=_z_}eg3aNE!#Pa4I_E%a|s7UxT=P2zmk3aQNpC^}y$pBIn;yMLnqX*fZ zH({ymC(|!6d7=Zq>EBR`Rq<^0?@`*v=&aqK3EVZ~1WLPADpYU8n{_pNsRk1i4U+B% zY@2}is^=S8`d)zm0fw zktfh$6PHk`_>?|k$}_#Qbi&;l{b@+fICY;O-$PBSWoZDl^+K>j-e)^%1Nuns=$R-# zp7MUuomrWZZ{HY3h&WE3WV{@PBj@uS(wjBCvc4bngS>k>DU`0IMFx~9gY$vr= zIK4Yfpg`TRRx9B#kKPW+XS3OJDPryyIAm|&OI~x%tJ*3VLfx$+;`F&6p6#u&Y10qAdE)YKpZrfq_VL?qhHCt5QVMKtr~Oizpy zZ|nJxkrb7S{LfHx3sUP>tl-Q0!9TNZK=RWWW|&M8t)XAC%D%sKG603>7<6p0LV{HJ zqE=Z|Av+T2y1^$BTr$K=uM2smmz1X4+B2T!<-tu;P=g(;E`!?^q`_;vq)pPF)-%U& z{Jpag>{x^W-4hoc9a#!Sn`kWuhh%vC)G1DTw;kc;%S;L0(BdNUQ|vAzLSj;Saoghw zs;<|H?Gof0f3lw_WlVnmDC%)d^vz{kzXNJ*c?OHX!J4lM`9hiou%Q{0#s!+Xk3QzD8M?3x3tQOJRYK@FPr*oDsnq#j|CTol zw)Kcl4S&ORt_EwGRL&f>XcDu=G|sx_hztNt3NGxtEQ`3@*Ef*^Ls#YKbm&klsR07d z=kaK`u@D|5PT67#!Os!tZM^EowE9__{y4=;U|e$Nhz0a3SEaSw9I}Yf_z6dhqI1)E z6mmkNqn+=9s{0y<4MdUV1b&Y&Cn6i@EnbksG+eG+X1m(rLXnT_W7a{;`j1TR5<7d% zJ{=^0n4d@7KQgkG3p|CT^IBnW1AfFU*VckjDF4j6E7gn);kP(`v@ZvMcDz@M%})MA zcSgF<@lRV;z9<+KKcFg{-XWNC)?0!~@VRdm@HrTf2-$m`#FN;dmtrITTNK=wdtWOB zYi4?HIifY>vqqj72CYf|%nd=`$>rkYq2A1lqOSU5HOO_dSCR~9tW~*>V+WmLGhp%j! zL>+g{@V`W_e#+T}42=XbFz2I1z^LnniGIOr7szN(*SR7qdJ7FF59o~#$JSp}7sx>S z<$G@QPp%O*<&#!}KEmY=`YP=&|&rxxsaqEdG@gxJ>^3lj_*hWA|HP7m9={gN-C z=I+{ilL0?<%#iTqBD~{pwLa#-*3R%+XTUIPwDJqb`3@$Ih?7UKAoHkIg>NeP-2HUA zMzt(k=yTU%szw5gOu`;XKAM6h*%~>F<)dmax^$#mBbW22{QWxv8OPze))yGuesNjHMzrewdF=bvEmo%p(G_XZ&#?dB|GTsuIqu zpx{WeGl#7_RemK3ebS3V7emRMvr;DDZB;a8bpKej}s9_@H^Yqp-R0dwx|Ge1aRDj6y4ikNq=ZHN!&h;tB!5%%Fy8VI!F(o#R zHu@7dUU?a-K6vKIYaU|l3dA=jg(LRDG=uS8Gk)pm1}N!fDY>?Tg=5c~TFh#GWbD7MLH{@*e%Yz^8Z7;J+k#}E;WaXA?st+&8vrXFJL`@_P=LUg z&4jcb79a-K-n<-d^2xoU zdx6f%Yc@dh4@P?179dbt3dXXqM{0A?4^s(u?)cu(cLa%8<8@-s{gs;}Sfm9>N0bXa zbJ_F9ue)f~%uB5-xEDoWdl>xXugcUP1Jr+OFZy{Kk)%T$i(jL8wDIt)z(_ul0f#kk5xBz`)$A- zwG8i-9)GU)LwMa>5GqzZAkUm`^7ZzSxTISCgNvNHkK^Q*v=_Ws{_PJ3DvNn|*i01; zC9lo0v4=>sU%swNt0EnyX;Ed^Meko5f2W%64$v}LdJ6G2+~wCwzhQ9#zUyBfA?sQP z=f)4tTg-!(Z7N!?cYLDLCUYqw<;{!bnH?p>5a@q(PHNr0&kRR>xkZd_!!`Lm@>4qc zVF(CCM|In{3BNChx(FS>>U?`{evYBcGW&JK)2<*@FKW=sB@)fzIty}>Y#;_-Jqfg? zHBZX($a@xhwqjg)f%QRSF>;&tHefw^hPZ^z^8M;FvMs&TpjslC>M-t{d-(UZQK`EsVzGVq`(kF|d^ zLJhH_WA5Y7{?o15wH~j%UCQSj{XYIpKjh8e5+APcP0RigM{;iY`al;VzX^~ z{AD7tw+_<5Rij@hJ90s}`@RhL?}-HYAElI@Mu@T&qaG?|9ZY{CxL&pdmomX5N3EYN zfkwiVvy`7I(0b>yXI+~xS;4pB(U>=;a65?Wg6Ncl?>AA9%08fI=jInFeHN(*7l%FL z80uaxFFPT?J|M1aYKwqXYENC(#;@XmmR?c*y$9rsu9;2q>E*^Zmrc!vTzikskoSFq zo->P&%sOE#aFDqAXh&B@{}Xu&d>ROSH*Gq?+$-add}`0x zR>}jLI2#orF=rjWiH18J=NSZYHMF?ffQ(0TFg$9nfoagjS35A*ig%d9O7Y$MPsV-X zn$j3tdPy*iM$NB)!K$VJRDrJJ%F$E-k1?yf=Ke7V#|5L8jKY|TP?qg@(iCwos?A=y zFqz5?k};bc42>hRv$hUoi3OVr*jP5G_6=-xE2?mapuuPKyDRIggoo~h^xuZhn>#6b zak`2`Cu9P|UNRa$-MrtB=o%2DUIs-zsA*7?Zwvi)=P)9%#)jA<>^K76f;53f9S^^IpImhtx3@XYRisK8H7eDK zr~j;6{4w^ZFKs8~y_^lc1}y8=;Dz(=IPg8fc|?End&coUKBn7r*UH`fNQX>8lEn?{ z;UWIq&8ef>JPkJ+3ncUSA&sl>p>~Qir~atTKOTe-0}DSDX;xUaEppHZXywOkJI_#5 zI?LAyY}gcwf(?$WQ;L%?Q}H;~R;sh3Ib~1l-FZ6wPb6GIx~>;bgGgHr>`OeKw0bGj zt>?Rs0v)=n35u6mL_W3(7r#tls%ixT#IyLgn)81ms7AYCyDLYLEo%=rJ}ct%>kiH< zUSb8$pzvmNHG6Sq*LKBE7T7&( zfjM>O!LLa_$R-vV=53}E;mRioi!CiY{0*JC2OjGGn(>(u<0m4=&9t`gA;D<#@UN0D zydvQ;`yqyYY3rgr2&F! zh*4nM7U}_wXACs6vNs~hW4rNdeFb5WRxHby^c#tHqqGm}3LeNy#o|P%j>O}sDCang zA9T|w{dW}yz^kixQ0Y`~P1o3RzqCbN(L3%4+Gk0|sZ!hF;f=Y4g|1Fhbt%KgU3gp@ z2*b@k2Nf3!1i!NocE^9K2N#|In7ywb9gGU2c!<_d)5y%g=v zQgU%OIsr+jRiglQ^($j=PP@JM zOlbpF)Oj8lU z>hl7{y0w8O29Hnd^5EPe{R#2Xu$U64+bJA7kHOBQ3T35#bat1uN&I$hQJr!G9dS`m zA@52PZe)|SeM2Ax{2IeDMo%I3VRNQe;17|dBrO)fMKO!E^+RHuAXOR)ofW)@ZCXi* z+?U4;H$PZ?fTG~J* z9-4kV0AK(^XsRNpJqZ;WUnAMALd!JczVJz%!4Z-h_*hd+m6HVJ=Nw6`f{eOCvlOuk zQ_FZqbr>Ufeb<7l)7-em^DDb@0$+zc`Hznqs=-n!#*6Uy@2OuCU6V(RV!-4+6}URb z6MB8AEHHLtOmFap=SrqXm$ZWY-at%)ZrS&^IB~+kH=022i2Z9eQ!n%}I@s0(+0xR- z(7?mm#@!KnOeY9Fkp(?*{y6?{QOv% z<*qT)Y?!d6VM;YCN2HZ%$L|k%w%v z(69duVh2A^AxM63xR}%T5D7_&FIgUSS4S{g5%iG*2Wy-WolT9Y(Uh8ZJ!NLX#Xelv z^6FP<^}3trP{Xi}+d_3*ehE4)rAOLXMNzI^Q1Fa*$4+U?Xf=WM1D+rF@py#^qWf%D zcfL1ct|dopk6{K$%k0A%35o|DpN0B(BqI_3mdGXB%SY8qB2qvdyR2*SJ*?63!LSwz9$oal08`XAfSaa zk1Az$-w+$flB6x%QAX#GM1^qlp;;-0GU>z@5#%w%>rQ?kQOhuswD9fTY3VddtHV? zAc|?uKV6~1bJ?R<#2ON(v^5guxJ?z}x%=~tYu>60!-Ck`3@^w#FSB7wBClZ1Up}8m z9J3Qpubrpj=}0N8Si8pQ{(zIks?Ljvw!ikVx}|N6qk?O&7xHiLplWz1XWHi8jB?%Y zQMh@xmwqPk-%xnKEUd}C(fgGbXqZ3!Fs(b}$Rr0-4!;S%@srP9rr#HvDz&ouT6^!( zDweH%XSrZ`#o>N{_uwn}W$cRsTDcH($x*Jgra-MG?e*4`jd`J4v~sagTi_4+=#(=< zwLIEBz9oKjjx{V|hbj`F1$3DAPc(|dO)@ID7Aw-m^MOikz@c!}gbJL0_ z9Z{hucA@v9AX+ln8A4a2DJV=lk+*vxN_M19@%O5Y4rF5MEHSd$;D%L00eazLy4n0EQLy)-#mSW?Mb4{YTFx%l*j~XQwMlE5* zgNlO)$5~i{z>Y)EZ)I8SOlJ%?ry}^R(#F~RK{xei8Jq{CKzDL&`Jnh#>erwrWa~tz z7vJY1<*Auc%Jf@&jH_<%nbGcT>acSgroc3nUx1b7yawF0QbPJpgf7w7R9=sX=MFOmUwhGV4Kfd94oo){jWvxYY!?GtL;JDCDg&@JvgVc46?+D|1x_i{KV5# zL2JpaOtZy|ES)*sKXXRd25@oH?M5dx1s2giE zj`Hnje7J(aGIiFUA0r`*H6%aIlO1Q+9_KZbX#^RO)cJlv&;=WI8mS~X?FeIwa) zqm@K=&lq+%;V1jWX5+U$N~mn9h_tY$kvDoB><-M~z;98y_{2%VvQQ_Y2O%Msx>84b zM{_wkQ8(a%@sWVK1Yds9J2i51A1dzi*At1a-R`MfrZ9Pn#$3;_jYN~^I2FZZD@;1; zM*G>llPCTbKLv0; zRN3q-fYwyU(%vgdR=45#ChC-UBN~7)Cor-r;>5#|r|wGY|30ki1ar~jk|!q(u+%@# z`wr(%uvqU^)9|oCs0D`Y;?u2Cpn8P*w)=KuKvY z=(<j6ZCCT|F$%>wk;>+;{5>W5k?%Oq!rgxdSxWLk>j!_}9K`lzx8urs?k`=RKG}$|opP#{dSg21 zZ(djL;mf{msb32Y2p73BuC)Zm!AN|q=4Q;;tg)Fsd+=WImgqX?yEr@E;jrp?>~mC- z>p%U{KQ8g$)Q;BAa0E%Iro{VZ7zs}P0lDV=(n&Q7EYoae?I8ve!|#Jf9MOQOz5 zj;nA^5?QvR7%T$mMpK9cTyb#KJ!)WpwL29e}s#ruGbQ-GJaT-Ug^ z(FS$YeT<@NO1mTK5}qCoW&hT{F*D;bv~LnuWiouFkz-?Lr}q#fa%o=Ggz65IQxS>D z9t=fh<9h7HGjGgmDe^5=cerF&2Achb?Bmcj}>($Ae-$^EMi$CF3!vWb^s z{(m0W8olQ=9vLnLqTE3r#nN~cmX9CGFde~g7+IamgXGCCUAvkZagsORg~vE+E|Ra4 zO5TGEY0$5o+1(hazQxO10m#~;}3Zc3?4(WGL3N{VzZOz5~|8LuT1$_Y&-j!bTz#1OH_u<5-++agA?r@#x7j+sZTEp&3#B? zH=}`QP&j0x$e&ZmH&)m(IKCOna}D7}jsE)^*3tQroOf%+3ZDGl7&ikdNRNROfkv4S z=?pcmwRId~K~89QYwi@5Y}zx+(J6&$wxg0JUkLo)tKsh>GS z3i??5^-dcm(%lIT`CY*984%wfwp_O@|#OH5PLhCa)5*^pEGz0d*0fE zJq=p`&$?5eouz4Xzj21CaB(IS>TW{dP&anRT%S=+aEn&jF+nf3u=LwBWReiEP@S#x zbs9B#&Gj-2$HCD)^)??gju)q!*h=Y*lvZfBQ1QXrcUY+)sGSWC(E#b-VqVI99e9#anJ3b;Cb_R!b8;PS44bpki==Xj?7={H`3=?}Q~mqLvm z{}ys<$+^cTFoEL_jheK4B4uMWV1VMG6KP1gBN@#cs>PBfBVMp6F+})3Rh?sd9BkKc zug12G#%gR%oCXs%Zfx6)Z8gTkZ0w}5Z8wcE@l2dNeZRf;pE!?w9(%8~wBVS)(>V|d z+9cmlLDJTokml#3*w{zhq`p2GrB2tTK7rCN-SMapkM2PuD2lJ8CJ zqRF-fdOHvwJ3wYuQEdw@#%K#SNI$C*e~hu}$pS?YiucesxlpZ>1;6)#y!g*H;TPM& z&x(PZ2k>wG);ufGvq2C?*;EN#)Y0g3Yk$_}T9Gp@+deX&VE?zUv!SYn4h>S)mhRCO zGL~58fZ$kF7CIm{(`~BC+t5K_m~h`6JL+B7q)DF>ne5a*vK?v( zC?_UTjb|%6Uaosl3DYf#Zk)2t;6+?==G*JE6(e6RTlAMjLQkisapcsUvEpnqEw!tj zI+|uxJU#7<=o$T8YGuY@cNScH7~0Bs5|y=3R$bERHi%%hDYT{M8&C>#;qoSWtO$hc z%XT>Az+_jf4Ih=Mf=1T+H^B`Qwqj0xrJRm1QoB2-)d@PlHo$eH&pbX>w=Dw6Vf2Ke zpFyry1+lFEd^N7`7L3vE{Aei(^ICXoaVKPEf9n-ZyZ%H@vp*2Yx?57UC0aRW)M*3^v|v6TF;TpLAMQ(m_$f zFx}#*Q!v#)`isO|YKarvIz%>qb=5L5mUPejvBF)m*#WD7B-*#fe6$TW>HA*PI;t+%&(&191FgyKxh&rZe=p^Zyrlb4{O& z^V;wrbVnf~ucZqdgiyz?mjSWEnz~8Ry4}#CPuZQCKO0j!7(pVZ-sH`}+u$YAFX6ck z98c4zbyW3b4l7Jhn%nb~P)|xuNf$|yms81s-T4MEW7ctoFr; zX6bEzxGk&fdSmvu@7a@#&sfZuLtG8ss;3#B@DRwO#x0y#s#k22J^)EnrWC55a;W?+ z6f+YreBZM7Fy}I>o-$w&%1v@L7HqqGLet~j_EO9ybU^1-F;!DU+cmG|s_+SXz9a7V z^;gkbvV2ia*e|7J zUDqcmtNrCTU~+CFs6x4P4?U{$%4vhpw)mZmdc!6jd)YCCRe|*{qyCDwu%8ZkhiIPS zyMmH@yg1(V!I*}09gxhd2q|p$=%m3gc;5Lo!}(^N8^H_yEOLT5{6q~ed70U4==aa1 zw%lE5o>l1=uxKFc(4d0mzQ>2#_}L)+WH{@RRn8U`M^IQqnCiN#Sl8Sbj#7cEBfN6% z*H#eeVLRtxk(WZ|1o9#nq;4ck5AmdpK+L%-p_ZCj&v|qqx*>JD~`1c9e3EoP)I0_$Y^9d zhJi=oC$lBP$VZ?SS5!_?M{YSp>qhSH7a<}IE#8vHxv`x-het+!5*9=wy1-gV<>&u|t)_gi>b@Di2He0hrwc&U z;3fxkC&TxlZN=~RLSGC%+Memz4I2^ z6S!bb9mG5>g9}EP>RGXXErNS=2wmw-S zW`ns)&a+#T>cTtdji?AYT}fELgZqEs6SPdeBD!Oj*XQ}jm@>~$7#B#q zBg>J&{0c2l6KTbLtIg()uiZ@qB%s|*$ftVmIL^!CX~QpIr!KvY((C|TD-$jVf_i^V4^J` zL#&4C+(@{NogTSyzKp!TSlhbVvRklM8uRZ&Px{(y(A>RR9o+#115($-3WVv$tyfx# zKW4hxufw}Y$yKV7YGEPr{baeN$by5#7nZ$;6F_#@f}Frr5MPffFDwN^7MVhCtT)vD z&*tPry*JL>qPR|R;*1UxjERr1#15q9!$DtEeu-kChko3;YwJ`Iw2AqbPWZu!Nz?jy zzsa$$ENtX@I~(D6XueSPB_WqF@tJ|}p>NMt#^E)#a5`_jf^)NIfr&oSHr0!eQo$c^ zC~RC#a@NE6ap->oMK()|4(OSq5l*B*j_!%{|Cwx8IKeGE+0s9u8n?7fAny_%qb~3J z;~S??kY2ENSY9}~%OrC*{O5!1)Yd_lSpDYF?bt8nKet}j_VJrj4*$Bf^Ax#3xC7Nb zhLRd?oBK;&tUWm9DJhVpoQ^XLbtYztHCkUnTIBhJCam*4vN?YkWWTU+ITOl{ZYF#X zR7g)=H4Q6htytHvKdi~J%ZcVV19%b%Y<0bQm{OahA=ZG|Gg3ZHyCId_Bz=j}d;=qA z2Ri1pw5Ayca=G;~xjti|7SPYKu17T^lv|^r3J0UtVEdh@e!rqL`P82sQ2#c>zv5BQ zO|lc|p~?DV`WfB9pnw(qJ{fpNgB1E^oih`N#gn91JmtL+S(i#q0NKL~PYl|2`OsWK zW@xHs!5ryL_=aZ`OsLMX($^O@PU*c}>9+nBv7?CG;9dHYUXd3mIVyB=WT!aBZ)6f& z3l1H&L7#>+MYRj`*myqDaDBNOa6QEM|DC<1N@CTfl+K98PRyz<;fq+Qnd~%MJzWQ; z8NPQc16`2d9roo0WxgeerUu;ly|bGe{dDjjmW@47IJF)pf558sOYF5vzp(n8#Wm|WxPCv~36wtlSe^aYJsTH~cscOgqAd^ zlzaQa`xZtqbvRUT2~SO8o$7GaEYTj4W@y+XBtLD^6sR~RJBLGrDwe|kfmd=iaaz3<8UH?4^?j9z*M*U(vkVEw7kgcH3;5a+)jBMUW#z?m&08VYFry7=DxjP6)_ZbkU~qcw9e2L{8kc(A|_AnlF?PVW0+&Jz`J2~mFu_dVN9 zhwrlmdbyOB2p^&^U5XVxEMO%d zxpU`V3pqeeI;x*;cn$|Cw~ff8EWp+(dm#?HF3lmZFVgIM#WHKrZ-)eeD&--+uAJG= z_QfK@rLBJa=?JsDu_$aHkY%(0dj46HioLG4pII zKu&^{)_>j21aA5&){DNrPkQ@qS?#$Fe(CSgKUtcCrbC??j#8oQ)42v)JSGGvJ8bHD z5J`l>5(%3=QvgtTAccLma~yMj`Fz_jNjh%iozbNL%PDvHFH~S6?VKK5pvaBey=)Ao zpYYl*$_;(+%CivI&aj&O1Ah6R1N88Zv4=2IYGTG!n@Qzw)q}1FVO#b3XxI5KRM*!? z3)H`PHY^(Ek@|R3jJ!>L~OUr(Zx=wz{?D}bqd}h&c^>=~^w~5K3H9_V# z20XWz6U6@a3sN^)?0Y|#DAI^63;YQkLvPC+eW~Tp)P}`&RdTw}d3oMz#Qz!syJp9y zoqO>-M*k8K2(+u|Lq*url!;q}NA1DpL51|YrJa0j#Ocb%c#cBZh4$&SSqh9O;ppL^ zG`r%|FSMhHuo$Grsd!y~J`2aK;U1wO!pdUZOPp%n=W#nTd~`!ocVSyYsx@2-gGpPS zVF#{!&`1$cPHWyI`f|cUw^Zds>N>JO`=)UejSx%U9tn5yH$8vV3iQ0~#1iYorsAf7 z++RU07$0L_pS+Se1QHk6d4;IWEpZ%?h{WCJ_#FM)cTx)-8CK*7a=-GFbY?59 z|56KY9!cJ74q$LUXZTR5XmgHv8!$oh4R=Qu(!JG%(tT@v<`-g-KQm+ zY)~z9Q01NpVn-BOFt)bexes-}S*ZC?pl{|i;3_GpkgFcuKG7<2Y!)Lu8#B^DZ19Fk z5kVB1t3DqGRv*C5JJCEc?6Ng)*)r=Jl*r)rSSRkFlPuXO{_2_VMhlte{|AD{R>g^u zNy%9Q6*7fyzO@q{21oKQ;&&9=S4h6Au3{-(j%e*pb%#sgVrK9Q29H_H#jb1%7!gcQ z(ss2|(khG82X&ls|LxNvL5Ks=x{B*MO)$U)PV(=pu0jWvEpnf1=e564ier;kHAVSx z%x22=bitT~%KP^Fl}qYX-lu|ze-}OlbDxq0p7^(e(dnKvrA#FN`JmzD!`R0ps{O`AWNoV6b#-;+Naw=N5dF_GfWLdDKq~PCCb9 ze2)$5#v5NGteGja@p@vaTxz#@!Y>#<{OjDBvwm;|Uj}#>STKr+_D1*b!gOpM+vnGD z(=65u1-!&w$w6>!K+yHo;$_J1HK9&ZIiiJa_e-gN%+AB zat%F*Fu_aXi@U9S?bHrMmv`$Mj^-C{3UmQHSnK{c@0i1p$$eT~Vs*l3G92-P9!(OJ>a_pfJolL#6$0w*utfyJK6U3FQUge@Fy=({8Z z616XfBV;UsOClC*kIY=LRU59j3CUz>e%&SuSVa;I4`Yo}x4H)+CM2gpED7$_jnFq` z_^6iUHZ#36nd{v3`hH|_Z?zcGbSvTh_c2I5pbT)$`i;NR&h+=Mf*7*pJ^A}#+-Gy% z&+~*16svEWI6doobt!i(C+jWNjFoN#hCnOs%g*|u^8wONPhZ5{-`WW>I8Wm*2m7)Q zb8F^%wu{VljF3Bbm;?H}Z+JQ{N#F4}kYsi2z(ZCWHSz3R&kG&FD(>v%wsTu z3zX2b70Rb`0fP_S6aF6(~s(B`B_ zd&uDr>V74*pwy@Z_XbLjo3=}Q#}Y;{q}{b0o~PkY0hX)Yk#KP@n6GE6yq0ukC(t@l1knrbs0y&<63L6ew!!(H~#=c!pYMnH0F-~VL zO6k)`eoo#c9pG2DfG&|~GL#hQF(;4{Rk_I@$#ZFfMghY-H&rreTfdlWr+$&Y%bf&^ zQf1iVS-M?f%L%{#>sYS3Np-F+4>}-xh0~^&{pzP9Qgn64z_p%-IwEea0r*Taciw9! zQMyi)H~Vfy3LtF@xq8B3cK3}qFwa~HUAiir(dUS71x6>M1*clG2=ksdP{e9GwiJ&E zm|l=O1*q0&t3R1bUH zQ;bh0DNm`(I=*|CrHt(_W@x#?aSwNRufeep4ZF$6#C=^6n3N6R&avf4r6cKr6`VBeB)={EB;fw=pTe-L>2fi1} z>p?E6a1?Z_i;kzjM|h`b;N%A`G`qD(A6%ESdinztWdqF?>Ye2qlvOQE>&wTFwgO|cci_22k%&7vlxK25hNBLe;9{J9U` zCC%%g30^^y5*O#?$Kp{5G~b#0sFdc=*duoq8%f?mMqO4vXKUlwE~?n~oQ%eFjwDV$ zPjXu~lPaVf97=#H{otnWIC+|E`Q@7%iWLmcBfw1BJlWS8TJnJaz`(^y!v#aduD(y2 z*(0(o?E<40Z*`$Bm)y#THoR7Spd!7;g~VY)G3mDFPK7fOR#)yL`61y?%2o2Uh=rWW zCO3xqB6&VNc>w_B6NByUrN<3GV$L|jq_l?%-U*wK5gVTNmjkrql z*%a&Fh|f?5*v+i$Fom%&g@9_0IfX^d8}+%exR81`WMiMjx!;;?#u6eb~L5LHp_@7nh$fRx9i}tl40x=HCqqHYs z$>LccH$hQ!pU#+t#H!IG$Zh%qb{(rZl7St|eVKICqAtbY56>ZSVKC_`cl>qf>g4Q) zf2i?a7=6Y`llHrI_jx$-;9B#}?Rq`V6Wmf|ZHHH9RY0GX?jNiTN}#e>5u2pn$ntt? zRgU#0lZu(Vf5J*zF#kU;K@w-*IF3RzIODJAxomGNRVRfS)_QBdVRABvhW4xV-}%i| zc9V#aGn{DC%$^GU2~i=b%^yOxsa-kjYQ=m&^~=Rvf~xf1C#Erb*+Z~f+$5ZEnz8T{ z8^u6qieeI;>#2*Q!3@n#nWY%e0eR zfH$*F{FiJks)P4sk{EJKY`a%GD_;mqN>mR0zjX>#Iur@Cc_>hl%rN7*TuZ%u@#$qA z!OYyy+^dneGjyx-B--o!j?ulFM(yF9eqw3)%$x2AcoQ|sIkE!3>>hak?EMMmN&@_s zjNEpYmyzOmF|t#$;p`UxuLAe+glU&CZsXwobff;X0+Mx|yNWLppM96fCT^+5lzaH? zvy#+lm+WDQI{U%?N_6R6&)DsEN=_>kX;aOYnS>k0FptUWRjkQ9huQ4Dp91J|2pci4 z2o8^HjJIE%8$#1a_v$#aL!nive46@a^ES=={b@0zhWp2@`GRYabzHPZyq`qfNr&tw zKbL@5`Y#@*Eg0OHRy5A#7YZl&)yF0R2n?|^4c*93=Sw@TLZ`w*vn%sB1l z(7jI0-J&*^U2wokDv7$Mp^+EmiiAR^iisTi)RWS5k1dH!CEa_C zt(9|S%(!scdoY8kK0n0%RrrrNlf@K9C_~MC9-8Tr&cih+_EYbGo62Z6)4xp~{S(9b z>Ra)r%usx$2QPu&0PE3x2Gy?lgZWP5KzcODQ%pu1w5CYxYN|%E365mR4@OwusL*8b zZSyn@WPROhFL=7yHQ$rXI$u*&_-@mP0Jx-E3jDy?Hou782#`z^WhGEc^*#HsvO}Ty zZ*-|{ekuy_UKi5Y#6CpWo0LO901Cauw0<0Wq#-HQULRo;{b2PweWeyXSP5KKtx%9& z@$=1JoEVVDJo8;2B8vEImcWrgKWJ`sr_j%7Qi$+qc?u!G9~EM_nnvdBc@N6AgN z)weO^(2tJ+R&7D=Sdf~#6CF;Ox<;Gkvw%0*xSH4dH5dy?#mpu&R1F*71=!g!1*TI- z0#vp**h2AnsuhRk$X>z_dK-4Rp&}K+HkBVXbQodx(Mr^TUckFvCePVATTP9T%uLtJ zBGc!+)6OLCw8W`^Mq9B+E~CNH0^DWB4OJ@wSv|R4RB+To1&k~6WSwjskhZ$LxLorQ zaY2lK`Px`shKm8QI>i>wv`w6y&6G_#>|S~MGocQgP~V3b!=G3=NxmzqROkSG-Ld{_ zoe$C0if?kz6kHibry$)t;N<6HfmaJdVX(~B%ycIy*g)83$GQasj#jbBzZTet+udxd zz7Dp=!?SJs7O^7wl5?511-MIZeVd`pw)Q8QGBn$bd1jO1ZHsU!N)TgBl7o`i>OV*- z+@T|x`uXbb;Hm}06i4$LVBvF%*+K557I-&zVzd^cco@MSIq$Kv z*Frr0mFE6G;6D8BJ$~XO6V%?)o3(!HCJsVr0ez?F^Y63a{r*Rv|S+2d@LKC{idKlQ}{tLo07t~wF z`&Ddy1a5#XA!w?Ft6m3bN~ga^PpQ9sTY}TCGqM<$*iN_-#MKWhR{6ziet^br8-SZd zVzFDOeP)xZ6-0xiQ&o_+EE+*lC7~x7np5G;-yN&XfLjX45Y1&M1v>ZHFP2sznAiTC zF|t;cQ~x#E4H=o0u~$aVYt{`v)~Jib?6XYeL%4?{M&W%&PYemt)G++x@m@k0k8>?%*kzt(}DfO?2 zpO)w@%fVB7a$u%AFHSIUt<<%w1u!)=E+gsa}#m`!40cr)pYg=JlrA~dU zXccO#Z!)!Ya-YI=@r5+0=AcVW+2Ivu4AoEFUVd``Vy7h1PWrk{t)8Owl|ilqOwXuL@SO>$`=vzo?ma% zab50eqP~3}ddu8PO$oc*47X?wZHe@CUlu~!dGE0{R|R>3Ftprvy-?97P?|F*2IdO~ z-8X!IR-u#mWS9uWYN^`3cQ3dmngvl@#yL8G!xF5feKg*QZ6{-bR|VN8PZnFf%S=Xv zb27}*DB0l2NkdiQ&q+BMPv%2&1nV}!9B)~iGDoM8N**nX^5OtZzKWh;xLCwxKf@nH zLBn6M`4q#d?c{e*y+VSvoH!6dP1^$xeA8ROj5V%rDYLu&NTC}l^sCK|M5sxhr}4e# zSlWL(iJM|9wAcO6EkYO@@q}ThzzFrq`IOk+hUcKv5nLFZsP$f-KrJ+?eH#Cp|Fd+(YUQ^!8igTVU&1~z z^#}Ut%==85S~LE|iD5YN&grJ!=#RME9?AV%Stp>g@7T7lsz}Tvd)OE7oXpdwohCeF zk_s~1pQzifq|0Vr2||9ClC?CuohjiQXRSSP?43K28*b6)gcEH)3IXhs8uNhZYA=|6 zrv#9qMp7Q#XDs}Aj>j44yP}H)Hba?z5)UqGG{fWx*_CFK(xGnJ6xFc4`lJfU&sudy zd($`9?2~7dxeno=@B3lWqlj=sB8Pt6n`A?RwCSSKh9iv45CVP{nGRxj}w1kPfBO`AffDXdVRJRMHLrF41kj5h__2Z9pC7Z-L8kXeKO zY%m71dpAC`}E!?u)P~4k!kP3&FP+U|(vaSX=8S!Lo$1Z&xD;PuUh_>EoK1)QJIwG^lIIZF)ZJLJ+Tv^mT%~9& zNLZHBdoHHuekxjK^D>9k-1O8Hhj>;gn=#h*P_$z7k+Pc!v-G~BASA4c91?AD9sIIX zVWLDwqQ_Z$W}w)x794*(e^1Kh^zwP4m;dT3dx0F&rbyqk8eEJfWs?7x`k1QjA1yJ5 z*zOeZf;y+&kP8pvd8ZsGb*ck+vhjni1j?!<;(HPTw+%lpgB~c&8zpG{yiVnPf$9K0 zruGgvCpU%^1cN00?C>z_f5XGK)6FaY0fm(ssVF6IC#?>7Xd5nWNpEIzOhG=-Pdq63 zr_$b`kwJQ(W^d-R*F~{xkI#5fy0hr3o=;ok9Q*~OCwo`7X8J8NNYt(?$vsA4Po;@`U&UjwmUj-);)-&uEC?$Z%Ry%7i1_!hL&m%-oSV6O| zj_f&zNz3#{Uu28o+?AI_Y1z)?-@aba4Dd!j;=m$TdXq~db{E)ur=z*od4eP=oL=`? z++9-X3sDGqH<6;N^_SgNRQQVXq6H?3O&`A@1Nxe^9iH6pqs+;1#)aZOMK5bcFXJU~ zECpo{iiWmooj*kui%X*TC!#Qa95lZOouqTaK%@E662fsws4)4>L(b@F}nLG0&PbnDjQ z9|R~?p50Rlqha?=zJM;VIcMiB(KweaOEE3q$OlIgHayr-ev z0VmiSQa45hiM6Lq#&M*?M|N3UID8cxc-)IB8QyFod+aySM0TuUvjDjGvmJ%MEETORo1-T0_E`( z&Cm@9X3#+2pP;4Df4-O(aG~8;E=s0Au7%gHVxo|2fjZRzpMpNu3%Y*uWriMsR}j7CH$?%vF-HV-`>N*WeVC-@r<0v$NQem8+`e7l zrvpn{#c(C&lkb-%L0Jt67#x>v(Y6^USdXsbO_CH~vz1{7Km7ULl0GZ9pHv&?mzd9Z zUy9zM9=~0S$u^6>)7W=9V1qF+yKWALei-1XQTbjlk5&ELxojpa=|NH4#xI| zaOAZOX-WgR2cfWam)Fv$k{y;YKQmn6k zO;mTY#y`hupR$tZRctcd_AgHn!UfbhvMFgVg{_JoWMj&w`e|l9(bTqR&-g!T9tCG~V_ZjIQ_R(l@LgRY*^B`^bS?>aE?wvnTv44OB;eGxLjt!36r zH_aH^Dfv|^AQ}fz2;lPYgr1N^YV@V+2h4g`QK#+sSkJxf0l^)jxk;2&Sq*~C)$wJ{ zFAC`eXZ@rjO^&~(aM9(hJk+jyGvXcQ*wmE|?coppKRDVn)-}Y$M3`NUa#boqOEqMF zJ8-HHG35xQop}BJc}Y{cVz=|rBs5QI43ncV+e>0ECyUks~OlMj71N`9IMFw zm^$ZbH&%ch0vx3YhDJ(!-H?un!ig*nT5eQvVX znzhD-o;Wd-hFS@hpXUObZnyrm2g(CO1hxt@Bi-|fk?kwD!{=LwK=eX13N-^ewmIaC z{%=T9(B;n^`-&yDe1+jXH~Ue9 zsG?q|P-;iV#Cy;ew$IP;z4F@rQA<5eTVk{4v~MpL`Lz!^$vu?;22!<1KH4IF0Y*1P zj9cH|jy@5m-MAj-1@uLsfI@rym9#5%GGErjR>)iIL6I2=2C}top>=CvWVVqSDSGhI zYJOMO8k0k4~<0}@=^HNFV(DO|lxjW$R^YJB_7&&MlLRM&T znf#@|y<^ADKfR=iUrZR;o)=_hEn|1knUCzJytfciL11x>$265*nr`;lTVJ8pw?>}o zDy)){l`>@#4XOZckH++QIGd-Rh6V8`8ys*$Hr7I*?S>TgrFjZ4GW#qf`gqPK=FdmK zxs7|i)pljuI0m`f`;#Qo(TO~61DE$iJVyD0ke3F+yvzJ=DLQX>^0vvyKy*UTe$@|$ zJP}+W3`Ou+5K$!b+yJUljZBqeY{NpCE|(MSFR?PXZ=IEOpR?tI=Akl9n>hGc&0|^r z{A&mf%9T4s@s34k9E%No@M}O67~|ez3={B0V*qEBU0fhFmR5|e@;3nd$94}bA1Hz&=m(05<7?rWlpsC=Q`@&(}G=Mdgl3WJ%)9&8#s`x@l^&f^rD2z z*~Z!{5+qKeMJQ@%MWtr>v{-I}?b}y^98XzI%RaBaTMaR{4ZX#|FA};+#?Ixo?25(q zy?h;_a{YpDm$Oj4F+))--=#y=#+Kra`rUef>`Ff0DmSM*d9Scxdnw+{E)lD?xds-5 z>0$F=iy!W8?#)K+Cj2<*W2SQ~(fg59$!m+U-!!#qH!|*EZp3-x{iPMMFj^eey+n7NcxUbtgiVT`KMiCr$FNMz-hwnbdt!p9t9aTyo}2xaD)p`ZSAjFOUw?e=`_GSj_zUsPr~m#BTOi_2 diff --git a/data/Female_parity_mortality_list_UK.rda b/data/Female_parity_mortality_list_UK.rda deleted file mode 100644 index b814dd7951c28d23962671f3168e89a039a29f12..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 37402 zcmbrmRZtvk+pUSaG!Wc61lQmWjS~nG++BiOaCi6M0YZQf+=6RxC%C)Qjl1to-fz#; zOwGK1)&6*@IOr2j?!INMYe5-}0`vC=>FCK*P2q*~1zRR>q&9|FoP&ldot0RkFiAX& zs^HgeBiXQ_bWcSZt_UiecPeJ|-v$zr3Iwt}I~Y~IEzgOZ)CxZNw6D3oJU5k-ve_Kn zT&)(lTwe-}*NvH;>@~9vGh9gXWU zG~8v@E@_R6-ptz7%j(6|D#$*+l#3Ic=L}b;KjJ?Zr6j3r^~$|G*@VcOF6^FVL%us% zMagsOsV$Umb{)4Pva-B9l&RS0Ev`=zq`5Wz>Mh|K8Tj(%Q@23-S%rHPNY?A{cZKH92odb?g zUr&0I11)W$aew1md~_g$ik>0%mpL=*mLqZeFoGUTT4W>91_x@|VB`B==8UXUju~;$ z?5v!Q8Ii-xdhZ?CdwVg`78=vHOah~6SX~^eyUbZxXB+3&Ik4028kswL3DQCvnY%*U zuH_x8yL&0p3LBZbdjqY-x$`oW6@JjF;gt-ol?=XIATQ|LAv(|!+VHa~ow*9#N%uS5 zU9ZL0z4V8FE-G_Q@h_`>e52s+8O_*kUe^Y8c5kwWtQ|hVkcN`;O-8&G+pfk%hHULF9bm)SnMgdlx0UPD~;TeXI_P7-izripmse|E}2R= zl|!Uso|F+4f#AiA28pvoayvJDKH}>u2*= z+}ZP#5o$J~hWrGECsgf=^_1;7OZ#8BU9ua^|L8!?D>uzh@8@~3jOWt-|i$k0k z1M;=i<1&T_Ngo!siW-R%`ei!MkVX;CtM-O}8{FO?Uz5{jN_}OmA%}0Oc1jwHw+5!c zgT15;x|^#c>`K3by2{b&rPslhV=8P zf`S>Of!4jY%COCAi)+qSy1uQ++$+AM5SWP}k79lohJ;^(O8HNOupd5Py(exWO{c<7 zyW&I-e8+U2?O`MMwwi@Q&YKa|rJ}&Db&SRcqC#MId4LtO(ONIBU>NwbwR&~_*+wiA zxApRI^ix8Pm&NUc9ce-{32#ZwN4TVBnF@59ihvMiMTY}FV(L9}LxhA|0sU7>-HTk8 zi;D|}ATnZ7_w66>5i+l2c0=ca=-rQ-wSS!f7e$7yCUoHe7Pjo?>5jM|?r#kA#@n%ssET3=;euk8`5MfSR7e6{usJ^zq?b=cQHB=Y?mgWyUb!H$lT& zo3!|)QnH-pWo3NujeI$D6q;({lHXa9(tlbw zlP86E90l|#so|T^qG`vnao-9$FV%pxC`;Otzo;cp$aql2vn&y^eE@t}Hz$oA7Ske^ z5z&~GRw4IlcTm7GAe^ztZ>T`%s^wfPjh~C&;k$VNMfC{NVv8juC1ZHLB$`tL?^?=5 z9JC@r`Y2|BKz{&qvm!!hov<5B-jbV+vr; z{z1$uLO^u%eR$Gh4WSs~SQNzNW0QKSfhL<>Iu~AG5j4HK)0c-dB}S#+l&3uamq7M& z>DXQs4L6I0&Q^dn$n3MjdHaJRu)V2hzSrL;Mb2E^O}8tTh;P z&>W<$Nh^%7+OA4!hop~eAjmuUr3jg3wa7GX>=?Z_=tS<_pnRT|pOBQ2nl}ciHj)%x z7%TSxsm#B8g~WaTe2F?93`ZLuOypk5OP?QK&bic&ig0~>?lqTn3jgO}s;R1hpd#9@ zB>eK~EVz)a$gGUtdr^N_eVwSmAYNNO%|bFx@{2&*`e9#gqp-r`hA3skWkkNNEu|Dt z9k@l-lU+J4B782ztW&dfK=Z(y*%01V8S7%^y9;5TWYuK#n5cD_}cO6q*P^ z8?ON&ZFet;C)3KDdGYgeA5unuQC#xlUmLW&)I9Xt0Z*Fo^@KwEuV#(r9y1zO2ssQ? z*X^YHcY^XGe638A;wtsAw(V1$YopFU_M`~fj2oV7EYE)KE)GCV^X1US!o8W@Q-+>W z$yn{SsDOceTvxt4p>KTW!U^51O5uHP`i^{B3l(q360YP|^&|Vh)h1v1-I??Z6V25o zD8>!r-bub(_%R6!DaL-{`G!%TeP1RuP6lY;62&-i!%C0mV1<>w-qYy(Vk!C+dn7Zu z+s(2FzIJ`1nUs_cHvhv1=ih6X1!c>9;t3Yl>2qru#04$iwYrAn60jyCN}X8X->IJs zTiWRcZ@cB`uUt+6jW?F`5vh-Y(1kl@gKoh_bkA8Sz#NDV{SOICK#GIIaohUqh}6D* z+iEw&*A%TS0-Liusj5?AKP-Gt>~_=uwlyOZG*}4jWbSwROT=?IzL<~eehrEkGa-|& z!+lkvVLe!V$!8351CmIQ`#v9!gyRzXg2m3Hv{i_rmascEon5$I*>QSsE!@5JVe~ed z9DQN;(Xm?eEI0!k;{D4@7VW3IJUbBevq|}X_3^rz>_qU zcwVyOY16rcK*CF$HzK*b(ES9|s^jaai6_&;vK$jhSz*ZUxuNH+_j0nwRSdb_J}eUQ z>G&nkg2xIPxcc!;H7tsYF^zHO{u*T=Oq>M}PvuSZfk7qzs(6w`g6G68ly9fT;T)9` zQR8f_Dj?8x^1$6M676yG{^|6j{Mf4{77l#NBZFO!@#|>VLp9K<&?frWrb7ZF%lwhC zuUbr}PPH^0)#EW&jnap;=Yq{A>B0IC7Ib^W8V>@g{3Tp-9SyO8}TEYODpAvP#mOa!$h@1e;ciWN|c2+!a8S}JG<1js}qZ#rKzKfUz(PeqqZ&5x34H$F|xEgKG59ra~ZkX?*j~KgN55aPp z*2?ssYIb5&w4Igta~kPXV`iy=hQyPa*kzv<8u!f-#%Ahnj&qQcbOiIX&)5?R8a~DQ zagbB@PmU{MtiUJn8z=SQa|8WYqT_=+cA6Zl$0C7AV4Cx@huL9cOcb!&U2LrlhPWH2 zOf+cz%q=Y62@PfYKub)MZM2P6HNd~CaE62lj~nK!F{S zB-8F1X@RT7`=Esx$vF$?^zuUS&Wo!f z`-TuWiPbOTA#9Uikt+Y`;(~wXc`w8iYML@iV?BvH(l8TjsYggV~K|X5pHk zRUdSoi0n|JzA+qj1m*@?=iV<X=*+U>i+qL!Zd-#jCN@yvtZCVZ{&nwapLUf}$^0ssZ`(uC2?B-XdjW}RHmgR5V>=Bqaf%-% z$Zli1G_YH)0diTZQHL+b1xwfLJ9Ae!HXuTZOT!f7GuZZ&XCc|FRXSgLT`ebdLUlG(R(JtWZ?gXz$!hYo!YhN$QBVf$J&M zXTp+Mdt0kK^8U4zF>IUn=JUzOi=*LJKCH+X_*Wi1#tCM!k=+Ltm=;9?mU)gRdsQ(u zwA8B$Ouxh@VaC0XrDF%54Slv$%9s5b!Chd}Eh4g#PSy&3T)~6xb|k0hSTPaUq?39_ zq1tLOm#@z0V^UETzY~8yEU0#g6x?XVFvt+}}fmMWl z+x!6)$Uck0p`K9Ge~SFqsZc^AiDnW3*7o^KW#y+h_(=MkU^8@Tqjyu4{bw$=4p}#( z0g$FP<04&v$=u=KhpeQ4vI8^!f-PfUv_x|$5|1>5WXY}jr!a`Ne52Ix6C#IzxAdT` zP$l%XsvXV`C>H65BYS&($(pPqv|*{~Vsz}F!0b?lJn|hYC~nuhljz5>n!H$yrLI`9 z2tx74zxOM!jkhEIe5@acIVVlyDrU_!_33n7Ai+n+W25-|O@f}M%k3&Yegeceyo@>^ zeYA(i3(Ms0EUHB`bMLJ>p5#RBGKK3ETw+X^ZopgaBA`Zl#)?x6m{n(r2v=I$ z@6L*b7}%WRuRKe-o>h?9QoJZ`bs7e;ys%LgNIR0=MroC@2shCc3dZH}Ugn^bLvmoc zq?^mTZM4i4+yJzmQr{w;MWCV@ zcnyV|IOdicdJ3UzMwJl`bM-!yAh|ha&J#3r_mR0XPL`6*rjTCMx6LU8ddDmT%q?-h z;?(7{-OL1_CJ7+l$Sae%`wpqcSu&5fia!Ew(uJtIQO%uXq;^zV z^mH_4qb-U}Xwk#ISs3USS@wTTByHq_vD4^Bf>s)r5s;A-$ z=cwkUn?Z-Ykj=I?kj=q0Lo;NLC6`;AgLZxdHJM(e^yZGP&6EnKV_H#C{Wa@KoS};? zmx+n^yRO|w4q(l&2|Ts+2(g7UJ7l5n~>k*|jCwSvUkSFa%Y$Cwz?* zf7s;CzC*ImUW82NHIRCAZsONDAd+QP3?-rTM=^23l}noe8hje|wC(Z$+?;9uX12$Q_=Zcx zVMiB;LQ7xin}gLgiGvc>4Qi~9%I<>;;*Fe}5zK}ctMS#)FQY@zTJ&$Byd9|EDFlE0 zsS%&O3Rf7stklj|gYQv8AyXbWM;$p@D;^2m2q55_uUb5ty~I&F>C*q+-uiF<|Jqx2 zyiyY_hhDP^)q_5INcML1B+S6x&_?laHoiyChDO~}sD^49gG$L-MXc8IAy-1?h60uP z*`EJsYsvMBy@}nVlkE%$F?G<7oRmqW(s0#Zh)W;&ru$r)&%^+A={wTR_;ZDS%xwy# zt=Bu$GkKTGl9>yf{5ZbmUaCG>b9T8hork-j>L?45<%jgxL&pNOM86%2T3Jo|j|4R^ z;M?q95AoddagVN%F?+AlHFHx_ij2W$rTP36i!Wmz85F(hjP@vcDvhH>SS0oC`DTs9 z;)g-!l?uA84V6@*_Z6roF5n|jO=VFl?>nhSlkij^tN9<>f0T}2~ZV|tKnA#mNt8eI5?pXv?^@5G~~tg;faiAFp)mHF_I#r(i~pkp;-w5XuI3IK1Dp+B(OMI6-9Jf z>S`xPo(`1dS?WiSL}E^3Lrk3f@~zN6l1K04}W>3nK*W^L+FEQXzAgiCfqBE`hR;MOWKKH~bH! ze|yhlxxf31UT(|POa2+B|MWTkBHE6NvxA+3m7X_G7$-u=*&Ae&!nea1P zbIYNrkH%W0cISQpw>MJxDFgqFI{i~Qky~WxP6s<-=!YY`EE;Q$PW?PQ zb(-q~#hnNa^%Lc*Q(w0LEuQ-xv>q%4%(c%U!6 zdW<|<0B--y18b!XYA>6agvwW<8@qR~X!x9zbYy6> z;&r>n&=Z#VuwXffM1LCHU01SG_v{%Np&KN|NtL?wTv6?*+RKb@A12qtDHtl@q^Fme z+D+rUd;fcO_SVbYZ3t;|DzH9fCCB86EmU?OhS}zWSMa3`65O|NxTSP)9=6g>ev6E- zj?5aksm5t*U$2y`x~@^JJM-^ygD&y;Sprmj(z~HAC^C;KPTHcifHRww1-l0v$_tt1 zt1ro@)cyKT;ru3+W3D?CR6PrXOgBuU3`plbg9peDnLxklmmGM{<>Hgj@sy}t(VA7R zh(LEujLV#R3|ZUd#C)ukKuNG?9lsA63aL)4q>wp-JG*_F`mb)Z0g;rCf_tMNvlb~I z-4ssi`3Da~H*GhajvFgY;2)V@`pxd3blnL2WLFg!CZEr!XVk)e-wCbSCjS&n1A-*E zcEk30TT4$G^;Blm@&HFQf^U|NXjLFjc%KIC@AEb&f@DDUt5#O&>no*mEs5EG(XWSKW7buXvfHWk#?g<+JQsJgY0Jb09VFnE0sE6C3Dcsw`;A5 z+;9g=HabJ#Pu`6yc6wMHb7uq*iP}&L`XUph&Mqy(hS{A>nPJHqhFzm&RU)g%G|aDJ z2a7Q}9KSK|z?AkDqjG4bK8shl$z?^199xf+RROk>M0NV2^w{9ls8HwzHo5}^$&n;2 z+3b$q&XY*0n&}q?nEw(RJqd7p3Lk#IK?oRX;SNC|{wV=Sc_ijeYH6q7xhO^4_yDg9`pRVwK>2D$T|K8z-yc#eN zsg!7D$5}U23a<{-?jU#-o=UipontdsYo;1KF(6ce&Zfxu6p*mSf83Xj|p} zLc))t9|Nq;=fF<#amG7!i0;_#Plgy5;T~T70%427~xkXBt@Mp6~ur!goqZu z$J~p)k*3&Nb0%vi3igu5%Z+?h3usdctvMC|%@c^{$8)D=Q<0XyZ5M8Av!+qP4sw)y z%-zDG9^DvHGVH18UtA&d+Jk#nlCAExs1c~|v})^33DnH>_1d<kA^?%ADE-J&dW zh-^&pb2Hhe0EXu~q-Sh-+BZAaN|CYv^@QEB9?&O?|QGlh9_cgnWSEtB(65Zy5o?#9_RV!hSHTR5QaOgBfu(sm+Br$|$m!2krR z#hpwpo!P|2jv*a{x*Y9=x56LHhdAMD(}|sL4iN0^d;m5%T$x!ekR*8cGzfV6(8>PM zliBWoacNFO5$1Vw*FdjNlm@Mi2sqw^MpmyQw)yCnCn^ZS&>i>Ivd(6&!9P2NF-XoiAMnL9}Pm3@G z99O@^%PS+qG9aJgk>-0xrH%c`xAxj=*<~M_o=qXP4=GPoHQoFb#w^Fvj23VSI&CGJ zY2%LM47P8czr3(_3N#yigX`vdEFoT{R!RB51;1%gqZVs=@iW4>&esnsE3m)!d~5}Y zVQ$R6nbz<2{;`p8RS@5!Z&dHDrZH5z#ixf`wP>u(f@!i*Z|KTp=X82!EW#3JqtscN zL8Y3k9l9FkERni3GpUs8xd8dY0FhT&Wk25cRDKe)p)CG}n(#HBe-IlfNV%@uStfY8 zgsf$?7CELdGs`xK6MmeO_i$nMRkgg!?xdd-$l!qNWMc^t1)Zk!JB%ka1$+HRq6D*4 zZ@KEtek2OmF2xdUPYT)hGL=eGrU3)e3F}wrQS>>gDTSS^{wr*pi}`V@?1@ur+=!d! zpAngW*ERNnp!a*%pL}A7_;#eiU+PE~7SjQ`3PH0jGkkG1u*T8~AiK@!L=D-; zZD*5p8*U`0wmo@$)dEbdj8=e4<$CfWlSEwb=9r5^oT#$FcFi4w&wKO;F|NsD0VeSJ z;|`oD{O*vMt2Whu^)$xu|I~Xd%=>#1Z6GC&m^=+VFoad0>Yx`9_-pT`O+QM2%yqw_#eo}8PZN)2 zAft_)hXwi)r%o2v4%@RRb1qOqo&c5Nj`fS1^7I^d0q zj{@JNVUok{MhPtCpb!!IwtSW%4K$XhVQGhZ<52%*6ly*}YDfygPpa1uCuwYIxEbX@ zC9{p7gB_NHf-3!Rl0dVm+hsd>C;gk{C?|?FvBxt1+Eu~IV2{Jeu39)5z~CC)`O#ye z>Y6NIXzEuN%h)iRz8Y*`>q2rTI6y)%;}ycFVGOnqJL)Z1$3XNoGhBPkQPwpsA-z6j zQYOD0?ddkBy4*IAzRA;tUr{{MSFQG3lOt}UJ5!ifh}#`={nrR#AQ5~tQrQ>3O`l>##xy@g`BC~cNCFaENFpK5{TGrTvi1XGzT zsvPYaF`3spxvk6E>pms%8P3nb*6xU$>a*qyn&1{ZVy{xf9jFP6Q!d6Z@GR{*^)U9 z_q2GB*&Ag*)_kg%?;cE~weEbw76^#*$Ga>I_~MjH-4^UMkhKiRW%||zz6xj@4r>Ma zaYIGUs5#GS+W|Ca(W>jZ_KZw0^B#j9YrO4*%lO|qKM~^$7x4yoawg36Tj0OtkaIz@ z2xcBbkEw=4!(a$TS(W#q{N4L==VahJm(ygN^8Ha?zb3>8nStojGSYO>priJ{-GRtbnbq}%vp^vWGIKWq44|cb9Gj{4O zC~@jL@PBSSU3KDoVgEcJ-HH*giGHmU#@PL}aq9>}X3OlqaIdUE(rv==MBQBqCpl3W zG;7kVlNcF`FfH4hDu-E*j-$TYTD@`ST8?#Mb$FThl-)PgYI6-@PdhGGoa(oKum;=T zY7z2-Lr(8!gUw-P?OBE!cr^>OI}k~G#$p`a21~{1>P>w+YZ5#Z@Up0r>)m>v&ug5c3*npK3 zx|KC~ME?f3>XXgAZgOBS(KK*6kPs4m(vE-g4kdxYR`1o7eOF(UOJL#_U9h9z(Z2H*F_c_q1Srn4$zd2p!n(!OukS#0R$OhN_epv~S(YLfz(68b?VP|dr9!O#pD z_tzi5;XPDp$ymOX&ceq5rjBRgP#S`PIAO2dP_+W!Cc<#SDT;4{P(<6zWROtM>!pEC z!N1kZhnH>KK+&NG?jdG!hraErPC0p!VtX|=4H7g<-PK=JPrIBl}qf+JkrF1R+@#;hu z`$Z^J>x0W-^6@AQrb@ZOycI>%Cp+OVCxzfKatfV!w7Hot4kt2t#Wl*FriuAK43n?W zm%gb##-oljZpd_dx0;%bDIyKfFG5vuqD|YFew!z+k0-5O<}@B=A{y!HO5e^L}Z|)rcQZ1bMWXI&EHb<-fAU$cb0a^;Z3P>Qa-)?Lm=g z+W_nlopDdXV=(U=ua(~oSn#IQ^$R|Mp&?W)+lV; z4I2@AYH%2tK+Nbk4M-DP>I(Ir&fq5?E(FP{%b@9`onAlSr$5HQz6)T$vJ@pr%K#5H zm(CmhG^@7TbNZ{=YC*Bu%8)2MnETX6C7SLL0!4!|0Lon|FW;2u6&bRcU(b<5EevwV zoBW#s`$Os9HP}z@^ndT7Nio*yyh!g47$MG1^KNaZlsfBesuW+WN1z6{Wt4@uQsq!0X)`jmXkd zzJ-!=QUwJ+BS09&-nTJgU+&Huxp)`UCSL7dc;ZD)AeVXQD4oDFEE&I)mmzP?{iQ;* z2>-|uG4m-wKsb<@ulue=ETDN_M2UvY@Qm1|WpjBJk7 z+=xYlsDt+E!?z!7%<-c>_jm&rd?!=vGJ!$~XIOw#g62&4#EoBiJr#l6D>~oe*kvql zR=#0SJ8wWuU7V>PUIc+GLwMY(@X-sng_R#ip1#Y+Ji#)_+1T*fOBJ5sb{>!Q$=@{$ z#J+GJ2~B#uJv2|?t%w)cwC*sUEBD{LE0Oc8jWL9Olj=$bx0`MI1MMy0wX0MYeAtSD zE#g~dA)D{;QxDc37lK@Y=6`A7fXnL1ug-hdK-VemGhJg?6>T?OT{;JJj!mtXcjHp_*{)??lD}xR$~`p<<3HAlT0Y<=%LSbkFgTq zac?f|O-}!!a?&5_!ogye@Io)6lMF60TSc0A!+cIakn zt-)U5YJnc1(A^&OWvm{-c^bxK?$&nCCL*y`L8Ap}!;@&tre*q7wQGROZS`d>Xt8=F z?i%(@E^+rj7C!qqtwc=O&6tqUF6+;2Y+>w?^(M)!V1$Bie@zAE&H+9_PDjwTqB@b6&`a$RE7N|e#_2^IZP zfP+*2F;Y{+uIS{36LxH*yriuM-?X_v5Kl=V4a$5XYn)|(|IX-!x29SE8~E2WoE%;K zyJb!wn#Zp*!Rtu7yzRXwManc?iNPA;EMWm@kW=%Xt?xJj{VcK2S?QD>Jz9<0;`w64 ze=!qlexA8?z%i9*KciVE=ul_?w8^tFB4A7BUK*- z*Dvs-o(;Sy()Pt(r2oQJ}R8D z#st*wB*L0}iG_5*5p&YzQU4;1C_BJBoYo$_UtN+j+E&OT@|>cg<)H??w86f8Q2TcD zg%`fowz~f-r*}Zccc=OfU2;Zhb~ELV!D9E-*`!uu@K&;8TPF(?Q40)zb$0b&NfBM? znhK+tly}%-RQ=RvM;BmGJz8LD2Wt|Td9lSo%dw9D;F>Pz`zrzkAaLA%JNtHW()Gw)v&3)ShwD>yHgWcf8e zLgs0^>V{_RbZuz(UQnJ% z%(zb?accM=>V|o|oY>-HwKQroUfuSNs))&1`yqq>!sa9enoZNzlD8#aKA=4^{$t<* zF_u_9GMmgL;D%2{L~qu?lZbwhdORd2;-)2y_^MX7@Nt>aA@!`3NT#QvVi>u@3ub%E zE*L0J1H3!A%0<|8^-Xj6em7Kz_SjVmd0Bsxu*We5S|0M{b``Z}`;Q3v@Yh*G-*$V< zG|fM|n#XRJZ3M9@orw4%AJXK%BL{lCV#8j)TBNHdw~m^d_+!AV&8m%e+nndhyugMON?_y+v+yR!GY$1~b4Hu|p2^93P2B;x(jyQu(vpOYx(V;UoZ zo1D~L0Q^XVM7)|0V3-7IyE@hr6fD%(3jkM)7e9_nyiLedoQ@%-M4xQBDYD*D^vqDUjkMYa^8MwBiUQLy5!2LyWpjq`4|3an)^!^JQfmn{utO*c>%S4? z0TZsoNl@WZcT3~~*m7sOZYBUp4>g%5m8Vv!U$ z>v^F1he#n~rK|88)2%p0mC~#9-a?(G&rIRE=i@V`vy~~`!gtIm_r#2P)+sj67xFuC zExXfnD_QbTEg+kaSH6&w;c+arhi3ecCEYSvp%_^! z3zt>U9NSIOpCuU3@tpNee0$VkU|6XHTV%^GXHoK4j{K`^`Ko2pK5jxwMdxYc`h4S{?;(g4c4^eA`P9{qre;1aO*oe+#_Q*gDtOeX~ zmZ=zHzoXTJ88}(UKLP5@Y?fc36(oO}X9@gim{oRkmk&~zFL@9c4+bXc=NtnMh;n>| zcZ4GrX5X)@fNbl9?)1JPMQn4LN-m9$RGr4cy{>)VZKyyTQmQeIPAYFPauWX*c=R+GBPZ;=~&2{a> zfHaexOjxH|bN{>$%dgZbMe0YqOwt@CfXj*m;TW0+OoY3MM7 z>#4Al-!iQ?GVd;C2^gTSLQf!cpTFh?aR{&yk{w}7@{ktbCm@4$)pj9bkgig@V1X)O zFO#GIJtydOgE}{UV_vid^xNU0?BF3o5v(q7VFNC43oT_*(c1r$--?)GcO$__=-nxE z2GR1iPgqDH0P5@F5|I;*n;-Pt-vuO&6B(Or%sqEjoipMYQK=WUYI6o?kGrwm!^M2? zq9pW|Hxi(}*}?yWR2-A)6?pkKe0BwDHdCmVmO_>Fw$r&&+lEalSqgP??E@~bfzJ_e z?XsJiuUCQXi+|;9kWdSLmOEmikR8h+7e(bX3&54!=v9#`ddT^%bkJdzcNF}ZPu0wNh#n^jatwU zU%PqQPcr(H$d=cf&bZ(wq%b@9AaR_0U41=c1){xD&iI)Rh)88%oFb78-+I%UGm7+m z`EQsq;O^%s)K-@1?78+Mdi4QgB=8wBO=PrPD^C=hqpK3r0G}^l65zN+nm}bH@HBvM z@Z54#q_>YgIjGMnO6@HcrR)XnQBDx@=rZ#;!N7&?*Mnesz;K7dX7o*Y4ul!L+V59& z0+WN-r<~ZV!@vR6zJB1NW3KfNx(o4xkv^|1o=T ze|y=H+q5me(89nbz^Ia~w^-|^fl5ldTp*kBjBWoUz$Ddfu(rK7#|5rDP{-5kq-<&U>bR~I$MP&j>Ck`)f*ZN#BVQ~Ezbz<1 zCxfQw4y>{6-hA;J`?e$<`??;lNMWiTmK*OIe=@i(ZdDWivJ=to=@~(e06eR*kN2uv z|H%-ETE4HUR^fX3RT>C`L9N+`3Nql$;pR9YO(>%$XbmvqBcWT9jCn6A$o}bu2Y6#n zij?%pr#u*;QkQJpWhBHqLSNJuneNT?5LCHE?y?9YKW%j%W@S#uj&JxX2{MCvsvwQQ zTg-v36lN5-484Za0eMa!#Ml7z9{kuo)3U)2n*Tucga!8|owNQZ?4WZX3zNNH+H#zp zT?W!j@bRY^$y?jX*L&7RI{)a;1-V|d`Z_b11^x3L6`Znvd~;z((t`6Nd96d#Vc5Y% z_O%9z4{(DZd8U>hJ3x^|f60~_WMIx6&Mz&rZ!JtnUP{muakBk${IL>3BE*IhHbl2J zq(Q|i5Tp|<P@(JOw;-kRSvg0Ig0CS$m-Q2*r(=5FCZOM24z>)bYWl1GoZ%=-`DpvPQ&hgSq(yS;}680;Y#8;%)F~lW()S_hd&Ok;vn=2u?_pA9|+gbXd#M%110n#^gp2DWYnWACw;;( zv|Cb|c$ATrYRp!O_u1<^gf+Gj$Bj+zHHff9bZg7Xg>vn6RCV`%9ruWSr8Qf{(nSpF z@&WhF@*|Mh#WlyDr%Hdf{^&-xA%M?U({*vfxf0E;mT`cML(+2I!yN(__i$gqiAOwgs;ow4nJ6+nTd^{jYLA7GLD z4h%gDP|})Oe8|?}f+}l_*@5$TalllV$AS6AH!|eVD}BcWNlw$&0J?c0P-J29=)$&U z)I4A+Qwf$yLw}9?&|ll%GwfHPMDe}<{_ke3>c4>jdOBw|mc06SqEgm%6b+3F)EkS? zEDdRadK05k?rf2|_a^pAew5DIcDQ`;^W=M;!_7@B{Eq zA`X48k-j&UPoX;?Y-^~!xbs^E^k~?&8{D8okO|7BuXUz;&kp=z!cWR>t<+-E6pXXf zT4X_uDFQ3W)3pr%q~`RUz?u9BiI7r^^I;=sKMJ@o%Zw0$=5Sw}V6zJJRf?X4uQ zixm?iUIbJ7bYEb>f(6s9D85ibPL#oH8gS4)c43s83^eBe>@v(OF>&u81nf~zmI@GYVt*`5b-@@hYIbG<7*rkpHV_KoA_fdq>!)izO$^&| zq8v4U@#2w2MK~ws2zpnvc1IHj*Y16pe4tDUSuoNV!v^!#cPD^M)VPLrnk@^ym`SdIXX}H zwTG(3%MXpyjA<%625F{5;o8gBVAUVz-$kw}T{zYFpj8CxH0sYca$h*BX94?N>>}6Z zO=^cgc_%9t=Yk>Fpn;@7YstOE$p&TfV-0k4*G7Gp&E=iH-v_phH%b&+4hwE9h7qk(fV?U7U4sS z(lmSyd(7)6wth{_6rd;Espt>eRsVCM0~JBL#?|?C0^Z?bk!w;Qq+wG2Hf+xIPZAKq z2V@0X`jz#8TbxCgW|1Sb&nA?5;3GDw4Ai%D;3mvkwt=iXq8yg03NTPVHvJVb9o(Dz zmg7!HLT_%MacwzLb7u^M+d}>`|JxEMf&xsLSW-!-`BeXcEW1bcXnQzKTwv?)m5C~0 zU|SO@vQ#In;jBJFKRH(X6G@;Jfpj*SiNr+s9gA+jezp4W&)_}KHf7eas6HB%TT=9) z1R%$+N{MC>E9BOy6&HAV&n5hQ%VIr^<4)WOE@iHCg?CN8&cyV03y)-3b)@Q@`PHm8b<%Yu z*HYyB+uHV7#g7_3Ww6pulOshGEsdWK_il^#IG=fYb#jAJOtqkJ9DAu>2bqNv)b3zV zXN7)jpR#5A1o>=e@!e4&#`>=a#N-&=J@U_SfYb17!z0mN!@fw2_E@6#PY9L`3J-U_ z>R}6Zb)(aJRXlV48lG(*44>FuCB%a_uKB2Zm5mS|ZFg6TF)s0Y;>$KNJcAS8%B41u zhIY)WYMYJFqM`U#(4gVN;KXmzx70Y*OnpuhES5bLa}3sW-|($wF2|pEq#NMQ*O?iE zv{IMTG=Cp3n9TVzC^#P-rpIMq2UZFDWNvuo`g@I6K9TgW=6=tlRJP=K;75tKDK#&; z@;-A>RE)jPm0n4Mc-&jK2mpvvVqrMkFa!}1QAq2BJ18R#xngT$aRU;!7%p0GW`5To zcIwp}x;R7;ycOX%MzC=5lE2xf>%2^HH57*=om&uhATbE?_g?VJ25-4T@Rou;)m**H zd67-v(XFA?-Qtvm?%U>M5j$(>P5}?&!~cu4xBiN{Z^L$hp&OBs8p5DO zq-zimlv27oq@^2%PzI0?ln#}KAqJ#V7#JGq2I-igyZ7MzynF3m_Vcdw+{=Ff=X+h} zb)3gXvPwpxab{}eSPgWv)OIo7he-}|cEh6|i#Kjzc2qE_Cj6Tl zS?5NgUt5jfy9+i%sc++F;i>a1Jq`x#>kyOMvSNR2!f-bBg69q9QT$ek9gVGpWkkd6* z`<4oVn=bM;sRk>|w$gdv%$oRxpPtua@~#OS?y!?S+#A~y6X2fJIzPs1FEXcD*O#n& zf89FG_!4)4;r7Eftl5GBPw1%AVI5te|Kcv;n-%lRq=yh%pjP6#sdnCX?_4?ZHsz~& zmibrV(?Yef(z~H~2&1?5^!h-Qw0MjEQ#-fMVb(<+2%QZUw>&4h5M0$?_z6LCY<2NJ z%Q2vbMblml5w)vA0Y#WHv*ybMGP+YD`PHmVJ!7w1ATT@?u>VxF0y%D2|I3rq=*f`+-Aw$Sh zDXo?UEXeY5wh0czq>Iz-kX+&MX1OV`CHkEH?p7W&?LcZforj%lH}!_fbh4fK5RiIVi2T@MgG;kP#`lAFz}~ID|GSP10xRcDn!&`2J01FT|;Fm3AscX zR1Dro|7-`V&3ILY2{bvb@Ua;*AoN=IZHTv*xjNa`SK`5_>$|hu(sAN;RMG}MxQmn~ zwmmrdgC|y7^^<2!*p@jc=D5HtPn=JkhmN~m-op)et^RjWuQ87DqnVO?;io!=PBGeI zxP8WVxKS@y@1LEw6*zLVJ48i$jOt)cCB`cBKZ$y7*l7T?68JHY0<>yx5a*PMrxUU4 zSo8r-!J1iFX9?H=)mbTKi+D>6iIm}B@4ISrz7JSY>hR_LS+R4AGr9kFNy`*_dbzBN zNA5JhH!_t+5JGg}i)KJWKzh^w+#7WIoaE$ZO;zw6uIyS4okBI&JIc?2z|r!bm{k8;TXO+;t=Lq z)oEOMs(c4^W=4*3))?PPkv6PwOkS)>8|r^m%I>lGKFW-zQ};-E_Ht!YpR{aiq}cF~ znYXH^U->-uoGi)sy1EPX#-SItKPYkHV*Mej=k)~iqo$D0TY)k{7_u<}z5$3k&{6L# zNd*0^rN}z42vk7jHz6i}Rb><{FF)}-_&A~0>N>9uY#c19(b~Z{;PBk73qGq0iOP?A zQ*QUS;2(EaC+2kouzSr6pV7j9>db{|`^%zyraG5gO&OPx5JM`AZ_0l1zd}r~l1h!r zlh2T>kkY$#94dFc_Hp4oR_;*!EF9N&-?go_Sb#Hk zHL9OjODs_w0KLG?A3d)WfCp1-@PZ!!F@8Eg)S@krx>}FIths@LTqvhu4eu#;ItS)c zVS}G^-U@iMq9;#L_|%2MPnR913VB-Hr`H>{uYBTq+UmJL4;~{g0P2W2nuSy+z~-Bi zwgJ5EOYPl{>)f~mGy3oJiQ?Y*ldlVj;hUeIM@@9qiv`!Vpn^d6fs`0>l&Ud7wMasI zHfE#D`8nD!>QWf9KN9rE)oGSnkOF_2SFoQq7Ax>>l@Q_!Ra*g+2Vj_a${~i<_>t(N;1xlOa&@*RzZ%w$+V>i@b@~QtB zXiXSyWJsu$`MLzb?K8s6+pmA?MOw46TdbDrTKVS2SwJ2A@e2t)4qAWuHq&$UeF;-T z;Hwfe2}-4$eAH5VT$0qDs;We9I-=Fr5hlBuC5V@5LYoB)RG zJN{mRo_)$Zr@@mCOVE)XK7QNQkXkLXu}pqG?>hK?f0|>3uVCB@y$NO@v%ek&&Ozoj zXHH@A*Mkd>Wj(e9^c_9zYy3^!Lgza;SE6}hKE|uNF7eJXn#XooE@LW)#JCsW>Ga!M zV)yRysnLQ(@ae(f0fzZ;@XatyB4p67FSJ>59CwMTexo%n2{hiLN((88YBnNd5*F{4 zqmy<<%i@sB#BuW@!wlwMzy%QNon1@9PryRA_bu3_naa*~iFEkN@9yjZM5fhUBJ{L( z6K*0D$9hk$y5zoMhq&KET}6=ZV_-?w1b)u^Fk6fh3}|IQY|8_P@YjxB>G~!a?&$&O zPG4u%E}jMOKXa;)VkPfwYwHABE7TgE;s3Zq(U>xuPvqeARm=nXOmV0~$;TW%za_-# ze6L$pXaWPELHQz{Ip)d95I78I=)+Z+F?sJ`<-Wu3x-K|ra{7Ulk5-&d+ua+zQ<=HwsK3_YW%AyEGH0E(! zApPL#UOe@EN8!;NERKYj1v-BWnEl^1AI`fg=!F-flcW8QhhX8gf@YSu1hJxvrSVzp zd*DBDuL?ic!&4EgSV{8^xt8@T{Ssu|XWM96BU4Os}!^-w^_S=eBXjaZTNR6n1e}l5$Y>Y zNstiAooLt&0QX4Bi8|vXzdJb;c!Kh(U%q*XqGw%J2hLeHNz?F?D`s;NeHBh@ZKOM0 zbo@^6lw-od@sS*WEkTcpmP`*tmE7HCb>2D93aq3f9l_uzTV1Lp?FL#^)<#`~j&{te z`;ma%;oE0|h$9edRsgHnqMbQ~qPsyx=7U>uICsEW0AT+P|#5< zYz=6xRe_IT7J@_M2}BKfplA_D;M0EImLnq!EcC|v<#R)@vq;&t`iRb(p5c~ffZRLd zlK30!Ml^GYzC+4HNc0>213O86JA*-^?*EHlp}Bt;6nGT6u$v!ho`|1x0L`*xb?(u~ z(qB!ze6JFOUheq>w6n0x(Z+=-RZVS_pdq6* zO{+Ce8Pu@+nrL7vDb#F>!QQ-CQgBlTDiu6@KN~>Mm0QAyJNOXP=9(I75|!+w-x&(h-8d@8 zst_0FS==)KR?I6^f@`5!=dcGZ6WVCP6u$+pbLLr0%nkO0emDa4IwK`OXDAon^FLvzh1B=mCwcj>Fnr} z7f+mc`@?Z(@&qTk{^yLJ5PruPM8hD~(0hkt{^Sj%1vY#)7%N|<4p!VEKrvnB-5^gR zy3`>ToVe(+w<)$D?FUD*@#e&q5u~^4jr<_%W6o5E=mk8$ScVyW868v%vv>fhhOy%&}l2~7Y7PDE$$0+z=9(p8u+Zb@+r zIh5AeD1d?v*)7F(4^uMu59*H+UyBfKb7LV{3mWXjjm-nuMt*wy{ioUy zca6dvcs;Fg_ohhm3CBF^^ZQhw?k}m27!les`yJggr^$F4|NGZZqk8Pqq80p;Hrdf- zqir1N>idsM#Wx{($GQ*IzK`c?PJOhq>w8MgP3SM-7T;wFqWE?Ob)U4X z_NYk0(ID1f7W%~`?e>hYns~qS`1UF2v;NmX)xvo%yX@$bTcO)U>-_fu8qM#H=;~!? zV8y-V70IFyBYSNXJzMmogscdiJYM)j&Pr$&jEPV5iarmpc#aHA8N%$!|JME^P7p*0 zbz-1x$72=$^a?buty(v-O=Lbn;ITcz1}k3&_`W`?0UKtGLOTNCoQa(EzAT=CDFWY=ILUn~8C^fE)<}X@YGs57TZ}_w zK)+Z#KUQS84!w7Aj5zPU3s5E$F5~_3 z5jOrm5?w&Z&naOWe*xTJJ5!6nn-TDBYfjp2_T?LND?r_DYqV|xb=(?t3^6>lWZaux zuPwfP8h&puj5M0T6Xas-Csd~N-|al>|IN-5`a08(VJ^&jf2g+)nfSwpG>NoCEvd&Q z_lnHPML<39RsQ($IG^qKMV>T6r%R!(-UJi%6##&8gRpN2zP2Iy#;F5BG7y zmW89?CaUw)EdEDDw%SgM-5Z6wLQ-Vyo&Jp#55J<|VNmjqb24Gs4^0eeyIiTaUHjmt zAKQJk7JZZ^%~-*cR5b^)!h*mnzv6~@r_jk7P5-) zZH)K$ju}sNECDaW?h>FwtE1aUDSx%(m(O{T0$w@R&fm@{sFYxIIJb6k|;SvDSRjPdAgZTf0<8aA-|ZzP0M=Psxi)V7$y9 zLIoU>hG@?FzeuDHaNmO=1Mz5>(%bH_}4Nx^dC^xgFA|Cze!&^5B4*ivBPa_(f2 zsl8kk2PB6}_&Jdt#*hCTiGQGt&FE?_*^98=OD{IiB)UU#MiBulZ$@Bo?}c^>D`i#D zp1sd;*RK=&;^bAsVPrtu7;C{ueN;=_xG%ZG^|kZGt2phnlS1P++=v5n&47*bz<+^! zXl9zPq|UvsZCg~6bfTJ-gbv(F|Dmekjk*?W<=#0q87?}We7Im7P{|}Jbgd=;bP^&A z*JD86J&KrmYwvS~TivbpO+984d?F_$(96;>2)$q_I}bM~*nr{V9dbZW(7JW(u~Z=d z;?yAH8NG<~@ZNIGw*;E>%&YheQS2*G2WgtpOu6~Bt9k)lC4fuCj+Z>`*F+@p%xg7r zsEb)&gH=*s)`3vXQxxHf1TH1!-K2l?+#RSdTnS7PX5`szHP!^qx!>mX$}~pz8e=OB ze-K&LjIEPYOMxa)@3>L#sD|4E}2I0%!fhtYe;g9T zX&#P&c*&zY%Z}NXSZ>C5M%e(<$=`Mh?53R}#zfEcv6PekPTRnKy;(o~ zY1g%NLpU+}ZwdFrwcNMJ7AjBTuo zy;`qgZQ^vk(HJSQIzL&17}*WfoH{!`6}Jjdv|D=)G{LzO(Ce5^B+cP_o9WJJeL+L4 zoc9LbO%@8H5h0GLOd)E>irnj|(dfuX)Cdx|AUgUj82 zqQ~Y?yoq`5kID1$tLv88 z7vR$BO^)H@plgZ=;f5HSpSwQr?LaX%hd(LK#jb%Nl5NN-hq(WUQh<6bD~y>~ilZMb zMQNOIV2u%a#{j`M^_v7<_IEG@Um++!@VaPH-z67PqXk)iSQlN=g+-I^n`PaDV52std2aJDz0{ zfS432R*2a@tm4xHYbJ>#Xcd(=AzNTt`d_#(f#qAW zelIl5pYWs${_9~Ep^KJiTR*K%WHIl$NsXmfxDl_Nwtj5Dp7!QYS{0%^ZDFrsx|ZJrOjSzAfDUfImO$^Ja&PZkBx`moX&y zxp(K)@QrS`^G>`d9`aMQxgb2L9vOg#?PE?NX;BR-#587P%PyO=XcF1JE`1Lr<**@k zX*!vSNA(Hn@_iL?Ob-zpI=oQ4@-Y$5H?r!~n7tj+oCm=3r+IojnMp0SgPtsetMr$u zc~5p>+b4_@QHn2KE|p597Jo#R3KRQtm!EiuP5vS@$;$fe{fSE(8LS;m2vd!vh}9ch z(w)7K6NW=ITLk#0bi)HyW|jh5!X4vDssEfyCvQ%((jp7uy{19 z@s^_3`XJ(toRYk@U<`&sec0Q1tPfs$ygx|1jykNb#Hq|YcH-1Lm z5*f#Oh)) zd>ldfn9ApF*L9+1t(I!XH(&ZO-1O%1JmzIgNd*hVuAVR@TZuK8pGsg_AF&N#Icu1v zE*KrXv6WP09=JdG5rwxoPNBvtmx;3(rt*kN%LmwfSvV&zj>9evT~nd-$Bj4-7#;*+ zFC9H8k`@}HYEQF5E}z`%`{&3tntYt``P)KhcV+T_@VrM zci@L{@=^lqnZT`!ueka*>|6P2rypvEV%}6dGI^QL^I_P&T8Q$;@i%vQ1QiE$L~HTP zGugsN^xh>jBD)oS|JTw?-|Q)|2qc}~t{mlD0zIv~c6 z3TR3+HInp?H4z)9ijK#6p_hIzznLGBONOE zjZ<|76S)S=N&=L}%>KSz<)&^?J?mtN8Jk|PZ*rj;cORjy+*=QHOdp%ogojVNtWS)y zG+!0?#T_g@ETuOx7izF@9CGdyRDq_=mMT11UMOpv6wnJ-$!|`T!rezIyk3swcOWTd zkai##-`?V2WQB>HY99u*nvdT#k1UM*F586Q$*JU*j>vrpJNUxA_)GJQCcjo90eA`5 zx)V;7+-y&}@z@&s_$AhaO9ISORY@`yap>`R%+8h%Ui#JKl(#v0(#imqx6THoMv4z8 zaF=vl9dwb`n0Pu?R0L5+nXt}?mXNp9?+VXlV#}>GmpT%dvj(|R0tDbwOZH2ZCfULM z6_X7sZy1)6TJ$zfUx5xR=lsDdVdo1QH8hGRjUNcOb}@YB{YKWQ&+3j2A_PM406u?w zb}WlCLGg2$M!zco_n2);3*#dv1!oVmK3Af@8tii(;D+cza?-zsX^v^A}2RB<8Ol=w^0G)*ygAhF1)=xuQ`jzq|w5tu_ zk4XH%lU4*=Ei0i%d*eD9OEaOP@7q;tfIM+RPF|;)aw3W$016D6P|Ke)9m_?Yz`(NA z)#{e}@W;gZ1$53hZ%g#u@*7IXYc8A<`rc!G-XUs=2Ls6oA2~SOaAJfd4!^={5X6&N z8nbYg9s_?{jW^!$BgJZ2f#}S99dDg@U+dy#FZ9J1hd%321r2y|OxEWLe~D=_KJD_L z_`*j(wu`2h9Od%a5UtD;VP+!EDEx)QeekCo0oJ z#Yfj7Ue8j3; zu+_)7Edz1P)wJ?Aa;IzNU+q*vzkFsS)Am788=}kYL&4cFlfS~?&meiAQwF~%cG45kV-GXYs0j~K*|$( zlklr-5ad3{S!_B8n&x+ zEJm!p95 z>xDoI;up_4~YcgK*1B9J8HgIijW68{?@ZPi@?W5c3;B; zuOs#}bCUbX(eTvsU*2|jQ1NJAPS|eHyT@~ZO!gIOC_ACmtyB1OTl8hMcAw~ZK&YfWi$${L!pFSi6e}BaXCz_crVHzp z-&#pr)-F#&r7j>53v7}tWU}1FQxe~dh$MC&gl@dTb%?A9KnNSpm8U*PFS6@fn%I~W zhop>UhcdOQ!b`gS;Dh8z%`cg2wT6jdT(b6Fze;fnwL*WL3X$Tf2Z{&w^GgCP7xQ?6 zA)@Lgl@Ho^L2zN3*-%bkTZrEhueYRk9Y4_^>&>2i({Y9{VHd(Lbwqj(?5~I_bG*b+ z+{ta?V{0UD821BT?~NVuT%3m_%QF$(gi&iVCed6RvqO_2u2-?n|K#IfK2!yJfdZT zq2rDz^+Yb?nKegmA8ZLV?7H{9_g_es?NkY}#-zKjl(%)|h%4=#4(d)N_$1NM=Px03 z*)zA_D$(^*NO=KUd854kAaNvk-&jINb{d;D>Y-Vg*9~^w?Z?bgJx3W%6>m3f9~?!> z>~QFoH(^ei|8b3SH`eAKVSrSf&hW z^iDf1Q40h*SzTnW&Z+=i3AcdTp9$LdVuhVA46)lNk$$2ndLe%lx^J!`(|~)@+X7#` zXwKp*LY++HTA5F(t!9diTZOw99FKk2zD#>1zoQN$@P^s2DX*#G&et7!UeF`{&8EPf zPba{c3!!46Vj&i{&v~@1Z_K;Y_qE^%U2;l5F)<7qeDDY#VYML`|C)9Z@CI?={^Mk* zU$+dUN#)-vHom7QPYHcH-LHnS)F}QX?5b~8l`d#XBCcd5zag;P{YF|m*U2>LoBmab ziGid|%Gfh#fC3dUvLjE|NTH*0(n~kP*^RhZX=Fx-LibwP-nr#h{rsrRF6H>x%~%GW zkoQ7q$VOzY_f?hDdUZvmHg$`xY@%3r+{58J6NTL=DaSt z3{2oCEJXzOowZuodx_=>nLci20uJSVO z+$S@xVEpFo&rbIM9Fp_)XA#eU51+197vshKfa$B*lV=@BH?O5#VEMEl+P2ZBL}68> zo}Vt4eDy8Y(~M=e8VmS-BhDZu=Is&>2I(YL`Wws@&)W>ThP|sYDW>!rroqFdSy8wT zMVx>yv%bGvqmr93bIT3OS3ywq&n(yPyVyY9GVMfX1hVlgGGRam zE~*iA9f7xh`R&$fqhk0Rg!>p*Q8pa#wl|I3EHwFewLN&;{xFyWqFR4~Vt?u~j=NeT zj_GEe``Ral|0$CG>k6|2=BIAm?AH@Dt?m;LDZTHQ!wmal)z=IlUv07Kp&!a|yopC* z%mG9>+deaw{%Iuf^logG(f%Ow;>3mZV?uJB(r2~aHMsEbtP^0Wql^SMVt0Anm0Xh6 z{ZMj>^v4a$skP7yURylL!)3hn;PTv=sq?|+(ALxI<5$ejK;_>K|A^a{Vn~0RIm5UC zJSlm1Gn6N*^hCvvB7r^~D>w0R#puqxKaA$k0~6A)c!P;keR=JFld&{hT@SeEfJeQ* zPLWN%8(7b|)Qgq}skF zciUpsipOP@8k3~+Q3xP;l6uQf->^uL<}~-kG)0W6*l+THSP~kbT@z^gVJ1lDX}+F4 zl!iXqsAEYd|E@y=|_# zowAA0pA+>OrLnx5|~drc*UuoAPBm{m1e^MY=*PB6o`a)Kt7rNRD&`&YGTw#; zU$xp$Xt5DkBFn=nN;p%YQzKNs8M8~$*oli0UIRBOd4?qmhWG21OwZwVQK3PU6K9Nj z)eib&@9crWoB{0*?K8+(e=H3H~Q1{%t$ZXC83XARelt4xlxS7Ny{Gm zb)uJZstQ1jH7zl;6OlB~ZSlRyX!iB_)>1D|aN#PI;uSq0;nuVE)u6iRPFY1DGaJSu z|DlghW|~^Pvn1oJP65evhvB$64uF@}k&pEnuyW#^0kS_DLB3PfQ^DB_GF!gVYBPgO zIjPkM;WR_+S56*@LFV}j0cdyGINj|q5BQ0*vn`UZ)kv91aJ;X20 z^DTCfo;pI(Z-(E8I<5(cI|i?7ypg!%Z@xve9)6{lsru{kK5sT+02}k`H z3C!MhJGS(cqCtwJ>8hI&R;(>8;P5amQb!>Yo&}pe6b^rk$rAD1!v>ed6GxMj(gZXc zpDf`YKmvJJDg>E)FWP(e$GN=3$DW(-z&^N1p@#EjX0trfAdill6 zo5XUbtNdHPcY4CX{3V?Z7TwSs?^+I7+>Q`4rP97wK|vMiNfGwPtSgT^1&pUDF&%Qf z_{qsKJC98maI9~uh0U@BgJH}|U#2-Ik{1DkQ~pX=n}a&1sh(d#p0~f#?}#&u+o3i% zDo@8%UvAT;VoMEOIZW=Ubfb+kbk>*1c2tN{p8q15?@A5Hjp$3{bS6jS_A!VF5WtPD zYfd-)Xyqb|jRu(`@P_QZmf5M0$arhf_Ay`Kgb|fQAwGKH$?U}$*^h()_ud6bb3-xC z#K$*iFFLS-&K=6w9;?0B3_l5d79K8ZdzP>iAJGuJ&g#C6It}?Z>jKf4ravYBreC&& zK{G4qmACHba%MFvj{d~;cQtSBarC0Pl~(?-u=Aam#oVog7ekcJ-Sf(ctY}$~*cHo- z!)>9MjR}Uhh5YpR`xOv$Dq5{Gy7R&32kG-P$W)kC6@;%!SXL=yl8&>-J}cj^;xdha zMyDfBv+Tap>?e=@L*C37-OG0+%|n>T*@WyX8?&Z)W9KPOYD8P-ZYBZR3SZqn)1(Zy zqYyDYWsrzv9gBO*2Gg$b{T6$9&C>VI>4WZ>MT75ayy~ggU#bfMp1Ne>(AtlP+iO#a zAhMV6>bwN(okSs;L z?>{(6>Vpxw&rfIJsq0IP7w8b1PYC%{Eoy_LzRt$#C@|doezyTuA^;uC(;8}*y+qm3 zSXEdP#wGP%P@&(G>i=Ckr;EOc4<)0lB&6Y++Uh0O{=gc)=_}$F4$VK7JPbss6gO@n zM`g}ISUj=mDaX`Zu*a1BJXK&+_aqbQLZZP}&hSJhLj`q3Pjm5B-v~s=N+iWd(2=DarB^b8(&iNhS4ysowuo44N<|G)D zY>ba%=R~W8H~U^wvYWLVnlQxzBKE0&Rs8A%@^;q=1ZIjt0(zZGxRtS827ysB-IOx- zuisf8Lm9}UALJBQ4Pb=ji!q**jbWHASoD{kPzV2c<%q21gia5}c)D-lUOCb?NP1IX z=IRLY##~rI?nVWUI^jX z*)sIxDJ(027*DqGb`qNq%5R!dFj&C^s-U^-~? zpz;jWow=Ai^QqvN0FO#|CiZ-=N)nc66>~ZijI!0$;ZeRn@#mx+;h*e5TI@VTw-lz! zUZo;ZUME9%Jef-wKIP8IU|Z=&p`BIJF0o&0ZxbeTYL;TFA;%pkzcn-3Crmw( z#;oDAW_>hH3mUQ`5vsCtW6`E_K?a}Pd}Gv=jWl1{h7~D%MHr)>mpLds{vMHSbRT97!lYsdv*mBi-l9J}%wZ2Ia^Ki18wp$@_gA0=Egs zWl+IM5)zrifcn6G1E6O{<2zsM{mqfC`R-Sc6r2!1)*MCn0=;zR&pe*E3Bd5Kf-Z&+ zf3CsjgI91~yv?TEYEWji+q3O9p~SP{2r@(E9Yqz3sgj43h1S{V6hOJ0EGhW_Xn%i{EnFc-M5ZdR}oqYR;W zQwK;QC-d-{J;;hgjFqhH#NeEr=f#TI6aNOh^z}CuZ`W>ZOr8@tE1-Xx#MUTOe}uEv zTEnz2ht(Gu^UMCI2TWI8tJHh_8d%b3z;AZV8kbk47=3dedpN_HzU6p>czDx-`=$IS zIH$VJqLn=;PEJkV(c70^vCr?($%HY!`J*?cd49xjdRE_QUVQAgx$5<&mwdq2ob~Rx zXM&LDk3R0q_W%}Qk~9`%mZ5*_FOO3NPC{FA``0b{6|hjNcU)y%KYxOh{`X;>)DXb%~TAASZcBFoAQ=*-g&?~sn_s2{m>l@^5d&+Zf~dD>mfRCQI! zp~Uppf6YW_aa^_<;JP4319}T<-N8MF{3O zt*`QcI5SJ;RzIAnQw!CvwGsityzOIx(Eb0tHR!XYPl}O$KAf>b8DM!UBIXl>C(Lp2 z$wT#yEf^frP_vml`ncG}x@pe%>WVxP7+8zM?>S#0O-?1zMu*NF8tlXKx3u1f2zF( z5#=tXt!M6^&DfJxf1^w59Y{dy3RD6*!wX1W!6}JhdX2rd!qvUD($ESO&>8v(Y*n7# zbJ6TGHx&zbHosrbqqs2RbuDI3tvEI_N$pQv`Ey{~a0u^r;vZd%e!2 zn2utKdO3%KHe)*(J#fZ#sgD?$B$Ea?m?l|0@WYTh*Qw?bMN=D#AH63_-jg?bYFVfb zU@fBdc-N&r;r<#?$)4b1#*xXd-#hzm-Fo`eMKZ;i^h$`T0n6DyW)o4o3G2rSUiTQs z(1&B}&W9*36g&M36zaLf#AsHx0)?=)liN++sRC zmia>^o6Q)Xokq;zLrYq4o|m*yd+{+v#XVqNg8P_W5FGDVP8>cQiPb3C%)L1sP@G)*LGa);fdXP zFR3pUH0l72kx|QHDfQ2ywW(%uIlN4SM?~)*rv_x$xXW-u^=KAun|a1vEPBUT)&kOO z3-TryU|hX+9rJJCB@>Ub1k@~=uJ|1V%+1E&`^=?_#|4J*ffI}_P*-^JTb+F|twvIq zVaz3uaM7022ZYRgMktZD@$h6G8N(nZ1!AYP79zsw%J}E|G&KbHu%)w$2xcD^h?+hI zNlAW^nqqV*+}rs1lj@5;4_jti$hW5mi-mPhX)=oF(TNeK2qzxWwNyT_ADq(LR{JzDCa09OJ3o%*^Jr zNa*vLX_*;0oSb|g_JPOub4Zt;rw8hX{A|Y<@%X+g6F;2y{-SsSs8=nijQrygS5WAG zefESB&fnANcSr`FygF;ps-X{l()rC-<C6yABvl+Qp_+Yt|~-6 zD;<2trQO?RchmFIk8iwMCCyQRyU^(T;xaW_H$P~~#*GO1quDCf*fawaxW;ZKc(mg; zNsNs5m>D>M*H^nthY09qga;}0n=b_YzS`4;KB_7z+clM}T05kg-Hpv2d(2yJLDJQ& z`n==f;Pr?+mW0Vro6Mj;>|${KOLC~k^3U7|2-kvmKWcJ@)}?rLCdz2C?^Q(EU*FQ1)(Kc~n#Tip&nu8cYI1rwW4K!E!jc1v^Sh z+JN_>&zJSO%nvpYqrV~_K${%)KraHxd+nTuPhmrn?BGQKvrjRqT7Ch%+WbELx*HU^ zBA`lWp!Mn94jR|z;X9fmV=s%@9tb_l<$6_NjLptv4SO{#2Hz+}S69E4#`+l=2{G*R zh_;ILAz9)KN|y2nvVflbsZypQ7!mGvc?Tzt%_k<9D>3%>zgZ9~I}uoVfhYQ-&H~HO zdumQ?5Q0x&*CPT@LEGb%^$gp5e64k|K_mDRk&@_Bz+l7fmp-cLXs|oo_}5ob*nK*Z zy>G(1TUSzQ^!-~2ll}V7Bk(912CA}{;}dZEstX`E`GFV~`%p*we0|gBC(RYm0gS?e zEG^J4M@G=kO0|);@G0O*Zi(pUNzyQ>F^@nG51=Ng_+*}% z6uz(2_D}a!`#&w5!ZXq}g60$BHh9hrp#L=A-q>9NBPRmb_FTu+l2cG}|Lb;u#w=Qz z1suYYkJ>NZ%~t9`xXLCDiKpBPPeeW|2}22@6OB@$1!qk4!Ii9EFDj#_GYKF{(s;ZN zCK!WaZW*k(A*c^QL4EXC*Y5+qXy1l$8YUSF@V-WDT`x8cyoPFM8lBphj`+`?$gv)&PH0x{5D-Ebw z3E8Ccubv6NmPt|`lR1(nG#fF*3*)&I`wr!1 zCG7cXs%(uMFfpmE)=F8v5Qk>tHa*(_tQ-zfmo$>+OCh#qy*(IV_P9ePU|pT+_8S8| zGI%M-x$`X%taqwu#77BuZ%~Qv69wQr-}jLL+x%Cd{p-{=SyU?Hg7_l9Jn5FS_XT{I zY?sMl2SS_T|8=SQp|I-xA>UZ8L{kA1(B$~ zmWcb{<*;_iVog_EXtK`^Ix-m-)nx6oD^)+hha(GoFMHmlCAD6GRXN082cJ(uHm@vs zo)X}_PTPdyt<|34!rHgy4}aSCYnkSijrqCm-g~;us!vaK4A=~xBkj=933-0@%JgzI z3M6(qx8khLC^Ow`gcc_)$;8*|b(A4IOM|M{$0M}lc#((})Bv7~+T$_g zcqqu-Z7-xqpc?q>(9?U_l`8D5*W*|EO?cmX!ZMv+rvUfn78J!t>CQ}Ow46v(aRW!% zmz%dG2y=yn3X>SSv5i;5DOhj}z%_FBvwX*~Upoas94NK_=l=!hccV?N-``y12%C4( z==3A}C`>|*xSz3-M|mFAI@ugLi414$EYq#Y!nP=zTPI2Qs3w#x}08)D1g?4Jdm) z=oUiy=((5)+(65CGHlIPLp*Mcz7wXs2v}W7aV16C-EIv4V5RYEJmL^Rc9mE1G|0~g zF8@cSlB2He;d8nOQn8>0-2I}y{7o;RF|oXS-lw(AvW?Qyl*RV7`=1JRFYR8pR3i?J zOB1AF7{~%+#@%sqkH*~=0+*srKC9UPA~^TkkrDcrl`268qdsqS?^2nHm$UVUB%FH} z0Rduig0!cXT8_|faB7&6O^S`M|FzOCnAwY$)l;RVCjbAL%*Rc4s=d~K>_}fy_3V84 zae>`7^N*-KD4nQhlX8pA(ErWd+!Lpb6q=fwe{KEOR@(aWGz^}D`zlIF5T9jt01@5fq)r*$=4~4&!Zj_IHXH=l@!Z*G>NH(ht@Kl zJo5AR^qH@le*ARQoqUr|;og=E_BjSjg_n1&x^hz9L8Ksm{_+!oE_bun-ajkYcp-hq zt=-4-9dCTuys$7oS0IP4CA&YL(f&`;R4*T)DbpO6b%v=;nPpoVv$s@o%Db3)ul2RX i4`OG_$n7wlL1^&waCdii4bI^1?gV#t4-UaSxD2krZGaF0gS!sy?k)rS?%wU!zoDP5 z>QhA?hw$nD4cytAj~dR*68jrf2`tQ)5(+Ac7zzq1Ij%rNs-lt~dlZB?@(OU`?lSI^ z0*86gdEu5yl>}mHTCgYxS%<=hYl4?mhF+JZm(ZR}jyP+7Z`G;lo`8m_`V*qTG5a?h zdmJe#DWO=onAlkF3&?wxZC2APE}2=$xyY)jH%1CZii-lb#k0c$T3+IoOcGAudkM0m5hW6b*-fB+p_ug+y{qXJK-a=?j;O+CG)x>i?YQZK_ zlvOuRA%gbZWp55A_*?Jaj^OL_@9Su7=lqSNXRB`RLi}yv9zrTk@JrsVA0NkgA3lYb zACn$XtHb9$G$ZDc53=8-QXkM;Qx{)1q51X!YaudhXp%TIM8NiNzx&|h_V)+GsfD!r zBZF`Uq;=lc0*e)s?x$h}T%JMDpgN`r|zWI{pVY zn|Dp|uO02HGD>$Qp0xT%r{^dX%y1GPk!KvRGxPQdTiKn?*2;L#_kNEWQUF(IZf7G4 zPrqN>Sfb}S>?INe@%Vg>WCKCRlPP8u{~cQwjZ@d%%P<25Ng$uYWG&)S@hI(@sTT>^ zUn&!)G;T^*={K$9EcxI(PWyINe28uQIHT4m5Z*Idz~6X#!mHvuH0ZRlN#O`vQjuqk zIXGu6TMa@_3P&MlAw`NH4`LwPw;}H^_A6@h{7&%TyiSvTC*;!wcz8ZM1w3G7g||XrXQwU2BGaw>RPIXq94~54>NI*z@Tw zkZ5oCEt7C6cLtet97Cr{$JWZ=YI9R+!r48 z^vRDK(HpxY^Z`jV(<@F+oFZD0l!B8-{_M9)B zrX41ohT#Q}AyD@T=8IPz; z^58h96I^K+vo7BgPxr_xv&eW((0IQM=G#ar{=PHfFxAUE zERcMk`)I~Ci+nhy$!eIw)uL;?bpvNk#fK()F)MyFCG=8_&2!~Zx46OW{^x*hpn2k1xFzr9yxtHg22&01BE^*1g4*(798M zVa5^qQt*S!r=xrRKtpzMY-3c|L~8E%BiB;`tHY1bZ}=cJU7=7N5%$4V9zxsgyPV&B zVLzAf6}q)e=@ zvyez$9No5uJs%GXwwBnIEre=SA4kZ7mZ4vbI}1EW64#F$cYf-D+zCl@zFymvXWLq= z6Ar3^@ayKzlnI3@rq{gB@KOxPiMT^RH^P%~{)Q94E&z-AT!ywjPq&C@k8nBH6MON_ zx$4s5q<*^mRiZpmp49d=BV~9XrR5E13R?v5lSgL&CYKzFd4Bur#A1*4>GA}tkGvXn zGtp;6$RYKkE$}@lHe+6I>d(+k|3^+p?0Zs{58=t!=K2nr5h%}4whQzV%LhRFqh$_F>-V*WPIt<7w5 zsha^lg;U|quXElyStF9J(L|N^QXAWJu$qG6j3y1@p$aH-xc0g6 z?>#D_IK^tyUVo;>uP%+tVzZFi1n97&qEn-^4<8e@avI@%UreKm*j5)EQ8lU}H~@%` z^lyX~AH?wn*k*CiXuAi_E}_6gLR^;PGG_Rk1gASB5k-Psc62r7W=6Uwzw>WJEY9Iv zMkQevciP^jNOUlqs4jdJ=?cci-JYyz;hkXs%GVll7)Wjhf8EaA#!vC`U0OB9Oqa9b zPYFi#pZbP8XRpE%HFnp(jVpqtTDPc)YYMk2Rl8 zakOn*;*aky5Hi1kNsMsP}m=2GPSte*KQRY~8xyEHS+| zF!lVv{MDb5=|QycfSp_7csYrgkqfN0_S=gaoP_thNFD?k&Q2~{o(%TBBc8=sD@D`n zraH#Hx3#U|EgAG!wF3xCR;IMSJYnMdIz*loV>bPvj!aw9zvStEDc#6Z8A3rRNc2&_ zX_?9+E&id95>&z{WA& zq%WlOxg)0P4M0`_`sLjU285Y^Q-T4#PGfYeJm6PaqLB~*tvCMYF8Pc%$splMf8WE> z`~@N=Fq@S;tz5}$Z|s9!8SSWFhxe0wVv!!_?=xI0q?<#7jf5!(wV}w7_U9E|%L2X~ zl|p-QcdPWAK2t_>8zZbB&0NgIT~p?Y*2o`2AkEzNpWEe?6jDcRQ4`7sib+55-9q^K zCjT}72zGgf*CsTQ`svvT3PJo)@0N=xmAT9WrG@cO!Y~hM}=MCQ!0;=;~Rwi+tN>cv<8}@7WC1hsqTaQC*?;2%=;tU$MQ`Q>qin`>LbCibLXFb4E;Hb(xg;9(xtxa@7dLM z)YW~eo{`!Bb`j*C+PgYWg=CWZ^~U}c_<0&O zztr&=98aqzg1efPJQCSU6Rx7$2_)e9=!^!Gkq)S)*5vgjeAi2@JsP+9jIxv#6oh9M zO{ue?2#`kNoIiZbW|hO0JO`^xC0l>DJ&9>uggB$TTwQ1_Q=K;lr)DO?!FwFw=h)^m5x9qJjzD%X0snFjo*#*mTbdD>*qXryzCg9a)Ry$ zXFq*iiH{`#CnWRodNjG_;8i^cq9C8~#5}*qr$x!(C+RL09Iv^+=8KLv<8jA(QEW9wBa?j?-)ahrUfQ;i6j$*dO%_t|nk=Ey$;arTb(**yP zoopGxy1F$$s9s)`E5>cNc>r=Iffm(ulXJ0Wd2+0==0pa<4`EXgf*1*P*2U2R#J%;1 z31$sJ%ieD5{M+kwPG&MV2r4A%Co7 zZ&4%NCD;0124(&g5W}TgRN#S3Bp)4a(%$JM2+lXu52%}>`X^ekW5fPzCA?m|xV;~3 zcM-P(UAoD;`sOB$zf0kR-B(Ys&|9$ak$%c6hZQv+3h>Pl@*wY`>qjyZkzc60_`MT( zi7QRDLYCETSMMW-s{FO~ZtUVg{!uq@Lmst+FL#mSXMayAmG2t>K%A^Yg?L8 zYs(3L(xHBmq;BVS)T;*UrFvS z7|5(Jy4KyjT>CCcCIcSb*7~5&>3^B|gwZda8{nfJTG!bhg=5H05?qY;Pgd9NDvq7w zq^1^=#i`W!UeZluNtiq(+WYMq8r7XV?}A^~%E+T1zCV+D3%uDe5!V z#InqG8=%y}NWAoaO;6)Kx#9b+z%_o8w0&SQt2{GOIiGg?LxE^aa=jwytu7kXE_O4D z8^4-F{^o_dS9fiyfCg99rQ`&GQ@ITyfGG7i4py`=)b*ENKv z)N-@9?)kiG`U2mUIH1tO?10js??WA^zrhyrEO-TXwM^Ah)5=`3&Hwl4~Fc0wUo#>^oLvfK+R3ZdnPIYl%?x?D)Pw%1r zQ+{d{F0~5)=;gT1_7RMdbGw<=*fS=>N@))~Shmp8dF0y1bWyG7EuHPLZchnmXzT0Y z!Ot#4)ArOlmpK9D25Mh$m29f5CD8Q7f){Y()`&%}Y~7R$MZF1C%1o$Q?@WFt+i{o| zrG%?YNBCkw>9maK5a~%QIJT-cDV(a4dMU(r*@1o2r%trrrPX8`XkL?|&R9JYH{*T1 z&d4CFyzRm56Tpf5dYX~-PjvyJArNX;1lGd?c31j78H=!y_JZ>VR6a0UkeZgn#FFy< zf=5+lo9ptE6=kHm3*B`;v8*~>cV^A2V)AOg4J9WlSysqaa? z&rWB+D|48Ef2JQ^V|z-i(uhj6Y0Yzq=8#ElJI{vj;e3ycn*aJsluxZV6WDq`SgfJt zv=OED;ihHeNNCh|O=e}GB@VY{#o%mgCzR11Pi6MgB0cmm#q>RB8<fBz+JgG-)%)j^6)(RLB(YAh|?j6@ZA%?k^HTIt%!g zSkQqOpy|Qpc}?T}?SZC*T7zBd0uvizfd6W9<2S9qh;y$Y`YA%^KIm;c&sI=ht_FKO zOr~v*w-ev3(#nN8=)t!euznK1_AjLP##?VNWBgNkopF=W@P*U}`+9s(?*qd@>Yk&5 zXrxhY*oX-EP0I1>cGg0tAkDwYHPB>AoZg66mZ2;kMwfQ7CE+u&34PhcWk4NFArdiZ zoO3}RYhlQLQk?nWtMV4_ zPpX9c_(nSjG-2N;S?GUj{zZ&$5Y=2y-W7b-H@cy>F3vtrGl8{YkO54!-w^_Sr&G8@ z=8WB=DQ1X}U)&X^y16i}T|E(stCcE@3xJSQ-P4_Fen9y!W%=w}TjPi^AFGJ`n#wWE zDTNg04$v>d93P(1U$=L*wEulnVt>06-pd;h;gI82@z>fx!Y#w3XNt44Jx9%^a?=+x zCDZ1=O`}D*it8SRJunB8m_3d$mD?V*|%JRZbSO>w$hAbQ1WV80vfTpNrY(7i7=Z zd9`>e{w^$4lkzaSkO1UJqkV^{ZK~?RI#@ zrxA?ArfHh=V#O?;O>2K4B)jbk;k_7yRh3co{|3!7nzaJ*L1-X$+EjA|qn4LmgdP!VqZHr(Nm>2Ss$ji@OmD->HC^ORIz5c{losOGl z8vPPJz$;v3hx(ebxrbjW>|yA+R#8#974SkP>ADA#R)zF zW1N37*E8B|AZ(>NBRrN5Uq*W(j9nK{yCS)G={r-3q~CU3&)hr*VP6oD(xYXhd25rJFfNxsY0816{S%m(*QDbn)NJeJJiEnQE8LF!4# zCACJWA)kuvOJ?OV-F$u*-9%}&kG{l?gU5hC&5cUmQMf_~f3NAciC4{by>IVQR%-Et zc%JRCYkk~U<7&)Et*gepKzh<_HIPLg-7;_|dQNoxa|fp(LUZ1N4gswN=9gUqmkf|I zg(f!6qaPgmt%rB`4lPIist64=Mca0z=z|r|%9#=EIeSBy!4i<}PT3=aQ@-a_`JwE4 zW=yU2Kh-@Q5RTDFjfBklb#<(kNa+E1jlriy%F)r(?xzho)f;xnag-cJI@M7M$-XTc+sbb5Nvr!>W*mmZdCmXU6V3PA&&vQK? zise43B75DRKNJIG@8~21<`s>!*xg~2n1xwk52*xAJZ{S0==v$f92A1i4+)ew%EpD9 zW5siONM@4SS2S5Q)kJfnKMN%i2kA2%jdAE>mleqPEb!*-;ET~yK0G(F2h4OC-JkoR zljittFwe}T6nn?gMEFx+;lgXqkJo6ciYh<66Xh4uaH+NIz8f3H_JE;KG=JY z|31@0$qAyYXID#-anV$)5(UgZON+3JwniC@-4Ye^*r=a-p9f_Nb24R<_Zd>`6)EK! z>=Xm26_jch(oFhf-n*i6ua6o01oQ+a4V}XC0#L+Z>@noe7`V`wOy~TUVrc$&Y z_EW-k@oEnl`~9mTSIzjOmO8p%>LCWeoF>oj1h2~g;^0p{RE7JCk4ItwZa)sQ;=b^p zHvLt)Y%$L}zSinr!}8}9BD)=eay|x%O*!mD3V|j( zG4!J3e*;A$fHs$UbQ97-o*fj(iBFx;Jo<&xv>)Op+g1Xe2CJssj9wV$Un>65 z=RFiHSYHbbNZYjhE_kg<>mXMypZoG=dI1at#0}g$qs^BS*VCok1DRM3zy%FRmA{eP zn^A=0Z{F%N-o6;83$XXe)%1pzM2-|J20@2`3QK0r&SGtq@4Tb9+NEQUsh(-sRL@Z^ zW4jQC7?W5Js&*2w&$cmGvuJ6UC? zQ*YbgJ+7CaP0MSl_4IEp`+%MZELKr2L&ekr3Lb`vY3(^6G%y*}Z;Jt<9qW@glT|!n zq&%+t2Lm?q_O)T}5$HCoeN`UMa$;NGI#bzQ?7sLhA4tbK8sAi)eq~tf`rdgESjyLA z(Q20jyFek*BgI5<%BHclB#EBPPEnAf;W^<1pc=Q?%+9c*cq$|DgWQlmjXR=jqRU4q zI&OKDL}3a02KGTitx@A+H-fycQNvFd1Gcjc@r!95{ZmT>aMtG_s5EF}1Y3?Y6L0=F zFl^DMCOF3y9DiE-Xb$nCE|fZ-aZA5nrIkJ(LbD0-%r*S$z+s_QhV@o_0VoHWG;xdf z=2s*$*4uZqC`MDwEbknN?>Yw}_FW}Mc4LAJ3^XzI9v0;n#7i>=>z)~gk|-1YD;~jV zf|d9Dvfkorm>ILqN%q`HMI9O8>Ogm*XC4{Tz^BpVZ3unv8USNN+G#3}Py@4bbbXf5 z8%7){;tMjofG?S!4&_b=tTzn3hFn7rIG?$Tr~nqP5}8DuPisH)XC_9^wveAEC-;Tv zeV_Aemj{VZB)dV$F!4* z;`9#XKJ)$Fo{h9p+oy8T?}eCGY4AXN2}PYYg!hfiMU*MbRA7xRP3m|H@sYIIjluk2 zgS$c_8gy~_Ei0Rh;uM)3x33(VYY(c3r(~T{Ys^FXeuKM1^P2Y;$pEuo^d^1%7*(Pi zB)qAsJrF%#6#vqQV04slb5}NgCARCFx&DHq6a`203Ih!F?3DMufa)3%T} z8BkR%F!Nk}I9|g6g>DdUZmyhZoTSrF(%uVcTQNL_K^_TQX5)>xqB zStgGQ5`05xWx-bsP+A5Ku@+cy){x*fI|Y+g6axQt%cM*D=BA-JIp0puFz6)raUS7C z1v)q0V%36%gN3VdgC$B71K2au!);)_2Pk0Zt61xQ8JnPcQS&6c~akZf~Ze|c13 z#7y;@2y>f572Qeo;B>C{Ee*7jI)9MW)Aeiz_2$4qmvp&20HmSYX)kpT>ncY#kA~}m zE}_n{6LCsX9!F1s_n(4Rv0Fmk)!KAi@z4E(G{z!mTRO=CFI){=b8}g1E+StjelIS| z`GJ9y|7;karguq~6Ue5=QW`_kzqv!)nFNU^F2D>1*;xowd91NP|Pkd`j$UR@Zv0+c-k@ zm8QXh-z8!NAr0qo=R(t!=C3c$y5BH{>#vBRd7A~!2e9zR=hM9|!SZrL$WHiim2B2S zVaW#B17#}VQA7!M`m>jnJ!gT9LvNhbIF}pPLe0cwz+2CCO=gB4FMn-<%`G2;jhMAl_dvU4)C3*NlRXrHm@w6$>730iN9g0r6bA@mA?(oR z@TIb8_6eYSPbpTX7q*PFY4- zK>hdnF?prNGtDgMm7A%Ak5x*6M6I5Uom8kGezxNB{zw{6UFybWvTF?04~{EHiE zxHf$CENW(V6v?yESmrVGRZduw&E4PX3nwu&cu9aBgHm^8cym31Bh9wazeE#Z+8o6x zWFIl9${2G((sY}^Q&g{a02{qB%hnjDvzQ!u6*^iRKJBw&#xwkkHUWMIqeCoL{+;B{tBkU9|B8LeZc6j)|M-rIrDlGveB`*h@ZPM4UU9vJEFj|-!{MWf znApV`@s#f>Po0=T>5<*Oe#e$2C5pki_=68juPLF?kVOi6%Qr!?&c>3Bzz};fuwahD zSGtA3SutO?D5Em)mxv72OK72I$$2jmF}oiV0wABiz-y``dvUi&+?K{3S4uWgI~k4u5eWVk>sz2JNQRMh=yy zhn9=NIpY`R4KfK0Zeg1f08N_EK&;%W{=77wo?X6vEgN2_IFyXuscSviW{aWMUkG#b zAVCLY1V7E@l@e_)PinmRWSwA+Gh=ffgwGj={NnS}6TIq%2*qEC=!@hixl~@6aE6n< zGZZBe4l+T3a_uz?`AJL{PMnqh(@W^}Th!*dra$UtrSSP@kJ3|`ZJKj2QMCFB>R*iK z63orC&H!Q0*xL&9jb-B`WGA#?Ng!4dR%mx+Ed9K}xEV3k6lD;0m(+{4CRu^E)*3xj zr7q)`qZ47ry#88E-S4~|)1m5qZ^Tdf#d|&z882XWX14nK*pF|uo1Ua^bpbGRpx1>O zjppLiao_bD39|IyQu2;KV;p1IsTKS>&f*1y8UrsrMu^~QV_zG&(?YDYs)D}wG;q5* zLq|HTo88#+m2KVwwvLQ~2RO9W>{ffq&4h@`m*LPh=4Tq*N9OTaVe{gt>E;jVps|8s z5`B(ZhrvhM!M)SogJVZZ!FwzVvYqt=jzXzVMaVh9xj2%3*v&8y?%ye9$ka)L3=jR` zlI|ui=0kz{%Ajv9Gn(vF@WXj@`$nDwX+J?ymp5sJvv+h)!yZqX4J8Y#q= zJ-4wnbEZo~$q4B;z(MV+v;e5B=Mn zi9XYE4w)e~yvXbFbmX*|?mP;lRYl7@vM|8ca(PTz2my~)oeV27XQGYV z!4L{cIc+Be7|WpTgXRwoPltbc-Em*jNoHz|$2NonQ?ECqLmJZIsva1J)5)aGzhlo$ zN*=^K2VNdVj@-s1&&QskEK5zV89Csba{9`;y`${+pe;plgr`5)vl$%iO;sOQFhffDdV_Opa%uhrxO9HrzROaEFyglA)gr2@5;60KRsso?VS zn=Z-KKYu*1G7i7iERhnc)qxGvl5v#^GddRUY&(}6JeQY&H=%Jcw(oCI4Z}V z%rI~OdHyuwVT*<~ht9|&#eNt6)qRX<=NF!Z>&P=U4=`SL8iI+^jfKjwKLT;SMi^`J zfen(qUU%4>qi*Gr(l`q4X~@%nzr(nYh;!+ooZAs3{A}2|~6qf8!S$wU8>v_Hy_X1~TuH+!dCF3s-zg3rurQDjV8 z!LKLDfFt5w_Abay%tq6gNERBYjOq#>V#=a|r-utucA|E%2Vh0Y0>}nQL=^Q6&_hu+ zy0*YiEmfn&OWm40Pr8Ys&MYZdQs-zEvz9)KidVJg1WWBEzuDNDckX>Ex%APaosyw` z+bev(tFW6stkXEqdM3`w_Ez6t!DETE?v=joG6Y>J?jX7uQCDQX|C8l;@WLVA1NytHDvY}Nf#@ z40>v^$@kR#OPN@$YQu-osHGH+{4NuT;z--Mf8{nI50s$fZZ~1Y&y;M1!}>Q4TjVs! zb?JFu9&OA>%)x*GlhSxEQ7_y_n}>{CAD!I-slU19`GrL_W3-TJKJ?DNy6)}vbgobY z@b>kNeEjIFo5<~Zm~-gYNe9NIX%k=IziWFsgR~aG9s9meS6g@J0U!4Kx=>ehcqlb@E;-Y=?wunWVFzA%l|V{ic2Q{Q}|lDML>~ zBesb;d3msq!T_{vm~rw+iXV>UGHeaDwr&@^qdRBzD~}(L$$&=zEF0mhEnf%I02hehAYa%D;V|DR?4uyZ;K&QL77{at3vg zWxO5(kg|j&1=^z^lVE0s-r!%3ap%ZL8n`GTk5?2~?&U{iTS!f1Jspu9D%5k<)k2P& z4;?_jYF)L^&pXmrQ)Ay?vZ_EXQiPQ4+wJ3tcE(P@W_h~nD%$4Z&FT3+@*$rN+{j#oE@bbm}c zS9pb@yyJ1^GVEye<187ir)=znL>^9dEJrmT>C=GSYG$HMcY5^AfJ8hiOa}-L8%E$a zs2=WSk>66vS>7d*ZPhQgZ@%iGaQ@=g^LK#CuB|!Rjiazx2i0gtKVb4ypS~442uAH;%FomI7MxQ@!-C24nch6bPyg?h~ zfz;Z(UQhk|MjiLWks|#4G51o%gkG$3&7Oa>mTa`?Wnx-TWm(@@O11cIqBS z)I*3Zg!SJGxY=)5NUrbf!s^VSS{V(Tx;oB4hNqbkq7)cQ&y6%Od-$Ujf_itpyxK@m z7q&6@S6Ta5>u!TCc=_ItXdMXe$>^{)V>Kz2EA|0L>JxJlpu5{XR%v+fU&@-33ZWwL zBrlFSTun(tqfM`15AF(J!1_v`a8>XZCmZ06qQBM^N+VRUa7BnJRp@qnSQaN+)YW-E zSxNAO!un4>q%7*x_&UYk9&zok(~H_l72^&`A((ukA#!#y&u+&Vp5e8*3A7~glMK2t z^<~p;y1o-Kbcc;(WCUDZiz3fynO&0|c6MRd^rvuc-$7YqpPT@a0~= zO_BZKPmt=u(D*!~{7>GyN6Xzy9Orf>X9fHP0sGK>5l=AYN8LU8P4(qgUE|A>(B`ML zu(o=n5TP$ZHk`*2iMt&&qmKilZtO}ibiHWG#Nw}lNs(9C@W~5x^M%ml=+mV)Z$IsZ zq5zKzBiKU|Pe#A%^N=UhI@MQESPzyWuid9q>3uXFX%~`Us*{AS+V}kz5$DxiZD9eH z8D!j`%>f01DmAP?hPlk-D2YRK@x1?3W@6?DE7%o#Wy!XWzxPzC%R5ZH3mIO+bdR34 zr$ORpOSAm!Z|WWPCyi3aPD=Na3WRPnQi;9?(s5^3DYYGsS9UnAtAOs)lWit1U+b3h zw(`Uw;3+us@TtozAeS--Vh^Y_e^7`$C5@(3_ecUmzNBa8Y{-mxN@^xM>7Beg&HE*K z<=@P#lF=^#JTHo*&X;dzx8h(Zrmyz7D?ebjQ+kLAtJsO08>h3*<0M+GT~z$tG)^dGRJ80apVISYzqFLFlHZ!1}wrmREmuR#$kh&NxQ2e2$FFR2T7`NLZp zs1J-#bmT~V5T|~th+`f83S2Z|+hKUHeGIOVX;Dg;C=V6*doI*4{cucmByWFGH%xui zeGmS9@I>D+a#+|+CV&P%m%9(@b>;|Z9%20qvy6feGHj^yv3m1gT>D>Un{@ckbQo`h zt$TeAYn}ts?`G9Qoge0D6Kgs$qgjBljw_0@8I_Z2Li{_mUlf)b${i_tA0?!l)6J1=B zl*eS;w;^=vO4BAhRR2KoggX((>Tc7bmvqRkqXKpM?Q+Xvx?`54jizbFHh6f}7DOoJ z@}s3%;N@Ljm*#u%)hAP&l3K-l(H0|Ff*$R%!O$zGw)yoWCFgJ(&rDk4b%eZSjo}__ z#p~~vOP>UmfYV*L?P4-*jRE7mj}I=8<2Z?RH#gGl8W0;d>$l+9Pb*_ zu&j_Lfx1*5r0dC_{0(M%@o?V7mSDj1kGOY7m6>=BuU+_c<=#Quve`3w|H`~7@?cx% zuusv^&&4}U4PAZ17?8|Q2O!Fs$++BHE+oWpG#X`*Zw|XL^9b`J_{#}kAv*qeg7~cg z5*L-7QP^m@Fuue2G^H;fq}hzl9@R= z>Ac#c=uU_-@`uxjslFmOI|tmjh#q?>-gHImS5-X}WM9ontRG-*6y2O!yCVc42Po#Lf(o`C@sOpf-8! zI8(&kxg{nph6bq*uJ;2OqE3vc??$C;*qT@ceMC8t+rw<^-?kRYwx%n!E&qgL+NL0> zHj0`}`8#3>rP>P-iJcWN+k+b|jR;bdUSykE{%dR}*LUjN)ae1xctjHES)+=Q^6FPh zQNjF&VJr~L%t*HF@Hm?3g^Vfa=b)hLNB#vlh(5SRBpjXBC0SgFe62bmJcNw#$E`{D z$&+H#Z-HN~cKM+&)-2ROQFtH8)tkLQ*JN6)m@H>Lt_ZQt5U@dQ9xGCCwr@|jZa5QF zox69BH%|nqF%S2$1Yr)(b*L{`t}lwJsf4Rd#oRlu0hy9c~R!fpMseV&*- z6{_mk%vYM9jpsJybduwr4T(M)?qcpTSxQ7wBBmeypb^ue!r~A;Km|`=FQ+{i`MVHx zH}}+WghTHM&)2zv-#A2S|6B)WQP(;|o-m-LL;pYT5%=%!8%2HsE=qn6cZ4={%K{s6 zIMIjiMofo0_|I+Fw+}d}n@G}`5l})O*;^Dd!&Dyl>vP$O(^pC(JBF!v6OV6d(u0Lp zv){Qe=SeCk0Uxng_e9}u6=?dv?HX(Hg)Kv#Yy$FoEqB>8WV_(`aW)=1-ln?sQ<=J( z#DxG7>PjmoRZ?a)=|LZ#+}HsghQKP_M%8KT?80V#qrrbE5MJvMoP{J<+?Bb}?k|{D zy6wC?;t3qpV)y)^n+TSD-?jCIKexNvIITPiT_r<;Trg$?ej!(NNnH|zievbgNYgRn z_>gxgvhyK*{YFX#DMM&!(i5!U`&A_QO&od{LEW{oxzTml9=Q>fGCc0+e??)j+3 z>mR-Ljh!_T_-LaC-s&RpM{Z#J;4g~bXx9Rd$*)Y0VcVP3I7OKl8iU`-D`tSD%W|9x zNzMik>O+IX5=qI;M4OM#Eu;5itoSm;jJXB3wtq?ImArSD@;R915xbvb3QPWYaPM-L z@pI8zZ#s~P#HBMd0$Pdw#`LD9Trtoi_H)9I0baijXx`qh>!y~umS8jSmQP3G#%Va7 zS!1EltUg7|0>qASc2W0pQ<4Eg0?E<`aSw0xnWNyAqva9v8PX7pI(G9c6ccQqmA|QA z`w&UaQ?!=Q094)Q2~YFb383X5t(cVOBD+tz0)}!us^ftyD02m22HSV!kYNGE-;efh zw}&Y9CIJG)A=L;guPX6S(XBX?NkjU)ybFrf@$Qk7NrdajnoX#v26Z``y9k&X3v=mT z46Z7eA|j79Qd|MEmy<>3^W)?n$pYo=D-F@Sea8pa!22HyaiR&R?B>7rdh<^?KDXeG za7mZY73)FspAPV?hKb0Ru0Ywyb|+aO)sqn=tvrA=0|@%L1R9hosUe&LOxWH2ik0Jc z+id#O2~^khPncbY_X=1yL2bb;(x5xhxoZEOo)njyuHFq)dQFC4!wKRH6>yJ~bjFYn zH)MQEkR0xEJnHu>#Xgo<*em#UEvMeAV%+|QbIl%+RA_xGsRZ2Q=<}tgBH0P*O9n|J zv)n!@qd-i^D~=*fO%ee9kVxJP>6Urq*wF6is{2JUu5G&Ze`!)MZ1^u8l~Qf+`XP6%0x*Z zUJGa2_#X%ePRH=S-;guQV+mA}R5>GrM8G>&_QVUqEv2{Lf8n$L?omsfaBGOJWF?VI z_4awuC@YtJU+#ZyhwpWIhhq?~(jM?RL&>}Ub^o>{iTFMycP6CGp$L~y5w5raWRn=U;*1ouOuzn#hKMO^iMiLQm?=urAV>>ayEy=P$(gaZ zrDCfc$pyiE^pRDjab3ngWx%rM7bX^6Ts@RYRg5Gqq88T$P6EE*N+T(Q;(J5l?1h8h z6-F6u=iR`Uhg|&k`P!qu5@HXP5I#EsI&9^Gjn!u3Nw4bQwBEmUbd;AxLYLyc4~t?+ zE`+2zaEf)_-P49ylY4TliM^4~m%fWyGqJpW8UAuCDAGz-B+A24&Bm-KURG@IHmP4P zn12SJ!Z5E{B|`MX2G9oan$C6ltM!x!+oM5j63rkmlW$lT47lMHbU;JWZtN^kp8fF} z=^>n>%v^W{-&E2jyqG+oh=U7-*Q3e_F46kQ;z=EZyy8Cy|18=oVV|>d#aCbx)2ZWl zy`G6Bo&;B*J}wfidzaO7n-=d15j=6wV*mN-pXZ(vcvz$gwYoZbbZ1xzwh1apMaf89 zwRs%HFWD8$4SXJ!_B0mtud>=8Jugdo{#C(0lS6GbrJ4-8&2_vj(->`QJFJ=f@qo}O z**O$m4yo)NxZ^R5BFC-fOq6AFF6Q}3#cn2p8JWxXAP6}q-crlXILlfe<~6YVUQ8i@ zS9r2CCets+oSR3doGWb(o*IY*%V6ZHd}GJg4Ub7!pEq!UVE7B``d7cAzX39CM-&AA zHXmpYG<$gqql92Ixm04Ko8uBhw3L0nS-vOLzrnYidc2(7ED7hT$;?uG^O4I%Y8oTC zi>%Fzi|v6h2_EF2#i7C$LzlqyFhh_dwc9fqd|%`*&Ab6tPjETx#|I}f6+p9dGeVJT z2K#DTM?$JrHNTw}3r{@m(FXJvat<@;s*Cj3tUVD1-^CE#rXbAD@dsmXqmbmz+x5Sn z;jBv$n>Doz0TQEw!_i*I6_`F+w&7J`pVd`^9Z7$pNgeSGO`@84!NLYrx;f8AC8gOF z!Z(VnF=UP3X$xIny$1E-W2XPMpE~ZS&5RK$8Ow2}6X?k2aN2-0zzhbhWDlOqs$uCa ztdBJ$zN`9Aq@fhf&;XM~Rd&Pa>>}L^W$Z9Yuqr$je@zGf*@%2frpp17a}b+i$%M;+ zo&CrRwQgP4>ZcuK%Ipuo+=Dy}3(l#_I5*PU==-~oF2gC<-=1vE6Nm`0bS&eA;FBkB zJsm|i5$yaQaXRc|l1FbUdg9$lVzC__zr~GVNH)10{B~lYQuQ}-TM>)`FVIItGfQv3 z$_E*h%^;9buI*$FAo@PVKB|2*2TyFBR#6P`yVN0$g{B;s88@|&x_1x@-YsezyUP6a+z72->4A)`NZRme6cm&cJ z-(6YC0F|^9OtcS0Gq~0DuAIfi`UawjzGxos@p6))mko^2qkE_BZ z-`>AM)9u!I0YjEYH0Qs&j|T0>eAqO^FUph@aGJD$q5V2Y6cx;VHxBQKrr!z#r=Gsi zR||WN+HP$9RF()>QKuBOgK1Hansd07FQIiBF}&5JBH~e<874Xbs&wroV!Odr$J%M= zb$wCqmp_*-J&c;&Y{!vZjaC!R*QO8+{1hp~(}R50mTcj5qak<2#FgMYt^Tu5%)Yys z=k^=(E`aY~Z)J{Zw2X;C#fo;$yuw9*RXVd@dlY^a( zU^mE!;IZpgzMEKFs8p_~$`l<*CCS=^HDLQElsP0-z)CLK#nu0XMCxz>GR@wHa3q%> zz*FrCm(NO^0;8mEYax^?v7s8im>dv5AfXcW`|@~odW9ND@Y88&u>Hl!` zj_q|YT(tGwG}ex7G`4NqjT`SIjqS#^jUC%YW7~GJV_R?E>wG!S`59}hImbjXBdeU( zv}<`m-<|SV_1I3A2Nrc*ekF0i7VT>W7DBR8^Q?H)^ThlzW$!Rqp5Wz;@fw9u4hNZ) znmwwUa=~`vCyZ7%1D!?%n2J6BtFpRslB5}*eGWEYt`|jkXzH;L^zjH^+a#OrQmoC3 zIHB#B-zQ13Jz$vJ%9H%Oqt0m4^f(y63%QxpC4c*))a(ukH#aDqGo%JfYP0I}B322V zfON@BpA{$m-rzb4n7R)`L)ml)H^Vauw(}mSGTz}jyLP`k_i`7A^HHk zS}FZNP9kmySp9C-vdstai)*ll+1dE)e}f(aiHx-$DaIj24$mRJ8PuKaazv*5)506= zjL{=*GN%8&iFCiaMLxroHVzU$sgX&m9x-4=(ih4J6Lr{VkH9{CaFV6w3$!VYAHh14 zgme=Hh``qRtECpMC}5P{yN-v|Z?C2fXQ#Pc+zh4cDVzIQF_ZBdTC>#9(wb&L6%6gr z)5Z7xlA>r8%jp6i7b#X*#w;D?ubMYRFrtjKKtNo7ZuxbuF197$hq=!(4(eucuD8M; zY@_C}Ec{>qO5+0ukHeF-du0wc`PUKj`Dd-OwX02^qwytrWC=WCcCZZ1v8`x$RqazN z%6Dfp8)$Jp@>v~cN{-J3Mdxfv4~c|K|89h#m;v2fX5eg3TO}wqKNh=(-ritvXA-?o zec8`s<{FT!KR^O)pg$hxr4{7=giUsIscW)xIU8@ODRQqxBx`CgFK+m#ml7C^<7uwv zBh?)T>X>`AWiP_y4QM+Vg!apOAcbj>aN#+{FVnyEP0h1%I?Z`#(@6^HZV(jifoa?4 zJ5jw95|Ml&I&Bfm3e&>X=_KmHH_Gn(VMy-V|Fm~67t(TS4`)zR#OV|K=A$~vGK~1k z{VBC9stF?Lh5B+ye<4V7u1fP1*61F^BeU%jDDqUmd7?ck?u-fBnNwXV73!>}x|T+< zCd0sky}|Sc#hKN=f0rX;l~(AD;8y&j^75<&ZMJkYug1~KlPEbvu4~+Lh#H@;rqb6F zrKm&wQI`8doMqKFP_E2&B+_$bw{ks{ew1tCv{z1=FWzKch&h15|0UzY!j1H`I3RW< z{Hr}#=X3Cy4*-d!RO@<2-^cf>nu3-djd8kAayhi~dPgJ=k8JS_61CA_Rj#kn9dHq(g+a%04~{A0B#8csiRldM z+q1?1TD%MRzR7dzXiFJX!?WgF+FXoo&@-I6R8`;jjflA{`!skU3#ubtY<*eqK$smE zdhbjJ?=@DCGcfVSS+Iz|pIh_=)o1 zy7%g{4h&MbIxzMgjQn%wnNw1vw$pn&`Iplb#kL(Fbiq##`NoG~fE(~+#LJjD<>`s| zswUNz!=D~v3~Z2)Q$MrAs1-vBX5m`T>FzHyu1hPb_ zAFhpHCvU|+b9a&jjuYa@tvl6rX=qp-8Lh{ARK#Ab2jkmX&ZV{24vEipqJv(v8?yS} zQ2RAnbt)dIV1sPnMbeKa6@Mx-N z39=hf9`#}0{ui0TrTo$I%z-)p6HgO)=a~iKe<$xspUK_R9``ZIEzJK_foefhc~;Do%qU3b zK^*-f7Z)MI<5Lwwz%)}GIJLHjSC9PgYbK*o0mrUkDkZ$d!0M78wzCENLq{Ja*Um|* zw0v~zZ)7c!+*u)J-#wC|(F9jJ;UilG!pJREm6dLjEVT@l%A&M*Sq7dSd^S^iFlrw+1+`I92nXPnEb%` zD_p;Hw`~TBuy+ZTsr;gf90LqxJ7~UBE5OZLbGS%M`M^)-C5sm>C)&zvSghxmPbx;l zOpw36K0D2w%0E}|zUf8!LgmsNaW%#Z))v}v6Ixq+7nmd2!p61}u6)c?kmiG0$U2EU zHqe0D)*cGoctR7AHRljp7Bj&;wg{#cjYbkl<80^cOa7oK&Vzw2bkRRgM|Ky!RPL=O z&aK^XfovtAL)M#;X~cM!znPo|HVs96k^7Bj$m^P5J#UE|@jV2mV+4jIiWI)+d8NWq zc{j*@j7sE`oejUJZGpLK*_&tf1E;j;O>9NiKTdz}{UqoKd34&kT%v>kdWcGRt()K~ zKpYMo0F0I299^9s=h(}A#V-zSX{02;=>0_a#7SxmbC!~4`C%+eRqltd^~5~V_}l#c z=d4C&wv70u=X3^iX$ry-M#;`v8w3TqFUjw=x+L#UB-@bvw&Da?&t&*A!hb9^c4B|g zwSJ{(Oe4B~TjsQA6LRzIm09s?xNgF!)LWw#l*|2N+w|%C$f-h2B*=d`R*h7II#wYQ zsDQK7(c_vXL;S(CoSBksm_P2j@tfxfR|oWiOATXi7K_)@R;L)x#=JVRc#Hw)r18M> z{^M6>_K^&I|FE+DfELlPT1>{<`N50Gu`;>whSOCR9Tn`t(s@9#n$?Gc;y?1>)h}=}8msk#^gnz`1odk83&&m4kgC2!}&(k5A6;WsJSKD7zg(tSi1yuJ1Le?e0_)5!Uf zt&~nC=8@yaqRlQ?C5A|7hzA^FprAP;laIt&koNaOH>v~XXeP?YH*&*5DYpGnBn$y0 zkLR%#v?Ba2p@p(4mCyWY=cQNXa(Q{~Ry{0br{$k@@;UHLPC}T(-nbH*YoC)aZ!O~_ z3R{DZm)Z+np}t{1eZzFv)?CexIMoGzZ|Py93gg1<#$N|&V8pm}89CWWe!eK7jZdXZ ze--&z8(Sfr_~J=k=_r!i{5b6J5seJHwyAvf_$BlnK5a0cv4!9^Ywg^j-Dl+2Dv+7+ zfnWJE0VA!)O4N&iTq@O-C?fk(w_UGoX3CDw*QXh#YOKL7X81X;pHe$aOrB7{cze}N z5t!dYvYxF#ZJkNAWqd$Mh?8`Zn2vion5QwhT%6;A*r?Asg~!$_?4S8*!6A0<*PQlZ z(+K0UZ;@Q1+as1+qMZhNhj4#-K7C5EC+w!4%I&xKA8#iDoS;eSO!M%)KHnWGdpO0U z_e*wI20z=E5M?DbpX&D3;a=c-ZWk+UzVk?43wI)>x&L!x05?>Xv3L}rCmvJJw_L4` z(EDJ!eivS`;g@2r%d5jN)VBwySBAj@A@@sB%1H6MUP&T#Rvj$>wfDe|1SsnJ#R6C} z#yNFYMnpWc^@(Zy=gBHUs` z?`zx`T~=95ZqO+r33OyQLxVfbrWQ~|VQf0Oc`$CQ#Z zI)&DiyJncUm(-6tfKQk$AIJ3+^S9j=$455qO$m}N{c8~}WOr7cm%`6y|Ij3B5n-t35 zbFXd-m%Ja+XmQ@947%GbRx{$Z68Zr!j3*G!{%E>}KQmsqa>4H$eI|0TYV0j&lv3{S zUi2gb1IleZbdsp<^P?WBhg#{7;7w}awz4QiaApIV(_2?U zI_;SwY9o;XFX*-rI3JCeU#8zSxSB!nv;UJL3Xx zvlT65&M;gv0&T!wH;>G`2rl7GXPGm_Xv@s^{`iwZz9j}ZXOb8B$C)%Tq||Og73um_ z;hligo-Dwn*brG4;g>oe+6k-_@x3y+_veMKL;8P^BP#Tfw8_0@l_&kbV<;*aXqR1& z@p@-Gh25z^kS)^WgAI?>A`k27Om>V-pbJc?&$e8tfSw{$c6<2Y+sYkE-{j7_CN3huM*4V9_3srezjqaeP3&7lZ)f!~xSZ#_ zfm2VmqNI$Y?pC`56iZz~*ipox3;k&b@Xn|t=jqZKKaj+h`=W_wH(tT@EQaGzelgWF zM!{=Kq|WvU6|1uw!n$p)SJr!MBtcAEL}&G4AT4vSR=4s3J73hck()3jNaKi(%Oh#> z^KpTfGdcls_oG_iWQ1$XhkWH0g2$qW-!F-eJdwYvJf$AOvV6M(V4y7WzJ9EbqzxUm z3`Kd#4o4M)R)knKP85^L-G^NWOl9 zc6I;7QdkecSvGEuW;pY-)lZ zDH8Eqi+Aq>(g#>|C}`EPY7glRpDjtg*Qx`zlc^ta85I1mXI;t0P#P z-TTBWa(Blq?N*lX`1Vh^>0vSD2P8lXQ)Wc-{qU{HKi50vEn%y+yi*J@ z#%56^TH8r)Fa!=bu4I(33zWDUnDeLMKbC^R3m`cV(Ub^`(Kdob$~DbQ5}^=zYw4Z0 zHU92gO7)<#Ca~D^ndZLyMtOx(0j&+rfrU`Y4Kp6T2?&MlZy&MdSv)ODiF2jRyc`VV z7m@D+W7(y-0EA+ZmO=hKVVtK=*m|DkGeHsZDpWTnsMP=BM`Ld?-_r-F7<#T#$+VSo z?n_W8$?&Av!7@yJU)Qz6JO#4+r&x9%?+WCzJshFfaBSv!SKXLg>cG=0R157QU1gx( z96h)hVY6OvwS~eCwC;brG7RV8EazTARHG*T_CB}E@5R@s0c>ym%z-d6sX2!$(QI7c z0z1{P=d1jArjlBaT8Ph08)^H5(g3|t;kak3ICyB&vYj)JO<7=%{4NER3i>*x?m!(p z_|a0dO~lYY=5L6_cEvM(%Bn~Ez{!Mk9x6rhqdHkW74AQ{!Mb@RzYB)r`+q|0TlD;c z6@^v{$7)(T1>JqD$$1E879S$HMCrY)epmjz7*t@#EDi%!#=wBdPz&r%0+Muh*E3yQ zC`LQVHQl&*V-m(h8iuuR`ngl!bYF<}#_8qxH2QpUunfu5a1D^KUa&eH z7`^nd_8^e`3Ouh%(|s+DEM8y23&{+d@u)cR-n?b4NCz_!V0-+jU`GZYMfYmAZLqt;#tz`iGv1cZs)hR@;O-l zL=JhPLnd34NYSUv7Rr}cTWW_xkD?-+^&yldQ?UcBy2X=Op|o!PQjf_?PMvbFURcy|~eZ1vE~PhMt4hv8kZr^K~1Qw*MlQUH%{-oD2-}a`)Vo%|`1>H#P}_i-AoZ z$M-O`KrlR+k_%aywT~>^6k)9Xk1s#)c!nG14sf1LAJ1mr3G^E3IX?ftJ1&yVanWT| znLdM?xmRYG?0dTnq+IJ7Edi|sCy~o3nDM>W@_xIn6pjb4+C2igQnq$eK!Rx%jLVcL zUfg%A!Jc8`Il?|=EPcZaw`UmI1#t|BjYyRTDe24oJ{&8&`!c*1pz_;p_)66w=Yl@v z+OeK^5HBvyY0f`@%oCsVxGtp3^I0O^#)W-2wk2q2kN^^wq#xOuLh+!Qo|}}8CTB|z zK6r0}DD1*wLvHs*keNMo*s!xD+n_sKLDT=Q?*V>&uherlu_g1W01SB!k`vcyPVQbf&6D(44#yJ}yk8{7lsLo*y zHvAMAoMZ6+bYoJ?JaEfbT3QL%^+IW1m#JT6BcCxV=4)?N!n_b#5UR094ZKzfzKrq_ zI=y&0XsJU0-3FiUqC+oGk7o9;_+I^i+b_6}$xS?kIXpa|y;6Jexr`%%L z{$^9tQI-9~{UsxBeizoWSK3j>^W3A^{?m+RV4NE=O13V&-^p^ zHt0QhJcmzSE!n2aa5I0Q45F6Y?01aCmqVQ>oqeS3?NF7)OQOZ0^hy=&UT}w z=aK)M3}Sl|&IH8d#uaR*;wxixW(~%JBF8TuxoS8^#AJ2SZ{tYVBvoB!74_YNs_kt3 zC>Ve<7jI6K1Qi0pO40TNf#ryB-w zougpMWZ@0xco~E-!+TdD0e3)=@e}+ufr@Z`+wmgpFw#K;aZl$j4+!l_fLBO|RUD`0 zP5f=CK!RHJ0W`3c+iY z`*Tt&?gQL~SS$jCQns*^#|rk{FPlaN&4&0O`+#fRzZZh2#2KN8RF5z#1r8cF(m9`q zcvv6bTVjs$bM6&`8RxatDGil$j2IubOH--M=BRJyG^IplDhdWd&qlO*xSQBQ zv9wKDH4TV|;%PPR(&bk;mr6*@gUpp-S_aA2xF#xDg=HkKaI}jI9_gu`s1YTw@6Ls zZGiIKk(-waE}@?N-yNj#_yU5kjW7U}-Y@o?~9A)MTG?K$ZY` z`DgW;>^*%F2B8Ysjk@F~b~0_rAGHzWa#jIPJuJ&!U%O7-==hOd9CtD^ zNEX}!R71f;5^l+(0`EL7h|#my(dO&^qFEI;QBPPbrP2{<%~1zFp~e-iNupcxW$WMD zbfUe9a9R(=vtu8Zg_Nl@yxy-emO5TDKB1>l_iKvxqsatai?rx z@J>z;BRuMF8N$Z)eXQjNUdUNb!Lssn#^D)>C&QpNB>mCM#goyXvkI|(WiXAa`5Dk~ zihqrhG_bjp9ywD+1I5bwC$CI(!AX@)^EI9R!iPuF>Gt^_JW4G?{|j$Aq*cwK_5$VV z!ol_UqZn11M}cT1IBMmjcw#@P5P}Abh>a|7Q~sP{`}sss*{j4k7b&y>f%sgDI3h9e z+f`u23Js)9FtjIueNgJ>?AiTs@(!!&U&A&FsOATXHF+}9)Ll8xcp zM0``p+4Kor&LlRw-!*LGQUZl-1bVSKBS8JW8QzkBCm9!-zh7I%ENt__hHKCl>3f-7 zsms6>*O0kJ-sp&~T|H)t)%^OqZELceos?*gsg8f7&laj+rQbX~Z@%%?>%6tA2cc(J z9|JF!{C}fTCez3u&kZ9`AdEwcecddT3{p41F$gP0om^z_HgMey&2-Bkd1Ia=cq8>J z8LhBx#4Ek0A@&dh9?v&7{^p-&WbDj%f?3@14xrOF7)w2kjq}_z7Ck2G=!jS6uHF)F zpDn*;4u4~S6lqc|<-UVdlTA}-kVGKo>t zc3I+6PLyx2B5HkdhI9bQT>PS_FXcJQOxLgBO3}?NtIA#wi&N2{wF#m?&6%myefp2e zo4_l^P0u#)c#8`2Lg1zLQ=R-d(FKq9Q1r~~p;wvT`0lyahlo1ieX7OrOsrqb;pv}z z5opmZwMM)dTn!LQMPrWMlJdtpH*Nx#?2YGlbo}vGYzww;Qo=!5Cs24l3Hhd$I4Tg} zj{|I|Qu?S2?8TWKUZ!4VzODoseT946D>e3*GrR-{Uc9f`MlORnm=DT{lZ2OP6|M&# z?48eZsmI{3B+kY=4U^F8fI0`XN6F0+RUV1K5({=o9OaWY9wDSXtmKbsuQr9)7%7Pl zRb+|@box)P4v;a0Jc2xKxV8W)Xt37!uQLH!Ar1?uer%zG%ADNbh*bNxEC@bzXaloL zOSPf65vrD3RImFaG~X;k7KtaifGAh7(zKRvFa_?qbSrB6!a0{E%k*>`(IhB&_0IL z-A6gvk?6w)V?Xnd39qM=dFzUJPwj|(1O)s&>)f$Tte&vayO$QOaK;^nW%Qn1DxGWF z6VuY|H^f+?D(FttvfztD7P{N)OJ*;pev)e|3fr&RpIGC7UXmiJ^w(RHN3bs?@P@SA* z@I`N=146&thsbovo;sdTXy%CTDYs9ig(J-IQYZFd2Pzh58ZgSp=8h9cHfyNdCrEP> zjf)_dtjc|xA%$9_uOoVvYyW&GZWUIbsnl{8Z7`D$!Cw44CFU(JS8j8q6?dn`rPV-R z&I0BJps0E5p|_#GLLKM$Rn>~W&D72u0tK^$hrMgA4yjfL)h zM9`Lx$_v@2F4^~So(_jZ;jng*z5mZtVzPx12&a`1^eJ}83tg(f*E&GJY(JagTk?k* z+LQZ5V1sPt>-@NQ(iZK$>*s{~Z?njpXrRjAi=Okmpf(l;v&gXVVUY%_Q=?|PuFDsy zlpKDdZ=^S(l@QSt39YS!MDEUPmk@)BbQAcXRtZ7-ypvKTa5;{Ie`s!sBya{nX4CdN zhCSbJucE*wgx{BbAVF-(fR1Bctb^Dik?iiE=i)uK(x9Hr>&k>aaMG}It~>W@Vi9MF z>fVf8U!1)L1?uLf4DP1v7`T;QgW}5+uvWyB&8XEC#d%}5y;RKPZ@(eOaWFuJ2kDe0 zN=%ohxpNj)F@~?6e*CI4n37kp$W&O~iBxpe^aRO_lK<1=Z~qPt(k)|y-}UmoxVch` zQr8SsVX%I_&6-MV5NKGyTu%W-rj_EUUmTLuwt7xPJL~$;iaZm)JQRQ5Hnrcd?3Y_X z-?g{`_a(~@ez@4{pz50H0AQaKb!V=^i>Dl+Dr@}FVM_!F9?qL)5EnjZ>>}cG!-9ny zIN1S`BGBh@biGRJibdX^#p@v_15R^KilMwA1*~RPHOxT(eV4Afr++bJ;K=K*w3VuG zk*~3xOb3_Cy`NB8Z!0?#tkDz)Lln)P!67FcQHSw#{nYV6Z?n_6YEv{2(`?c1j_typ z+kO_n-AMnFRNz8m3q>_Rxyd-+&J$EBw;fqgB}BFmn#cRK2qhRxZ{9yDyX#r}vBPq+ zU8_wDxYAmK8rL1FlDb3|?XfQ(fpn6J=t*z3dDAsHfPg& z*v)ixf}c8#@HR)=G{cD)zz1)b=yEzioNdo8x;`!_pGj(H<#e-!ySF>1$+YZ)*I}^N zkomi1T|2(U0t?xG=zh&nup00U^1~P*Dk6Ob=fnKrtg~4uF--W>uVQv@9Wi)NlhM4^ zdKV+{pSbpyTZE<)e`Lk37*xwnGK7%2L=b<|UA3%{{&rn>Tf6sprVG|HadQ15^}5I~ zW_MGY>Hhaso(b@y_-(TzV`Jy%i*1Ew#_j)x#2ANP*YM|v`UE_Y+{}^Wo^#R90T%qB zK`PVz$I?oq^XVU~vB3nl+=k|a#+RbL4?*g735@VvJc89frVFUWDQfStNMt3FQCjZN z%{(8z zgTD7Jbn=JZ*@J&=M;kR_tieomI4nZ=p`WK_p4cJFV7FWKZ4__+Po_nG>~rf`rB&x2 zR@+4P(1!@Qv=n)|wKXdKjF8#%skfI0&7g~^{E$PccpxbP(66W~@!KsF%-gj0?F6%uIqaz1g_-27Znqu)`@)KInD@oRZV)WOYoQ{X!JiyJb zlh=E1j(0)LtG-f}BCqz^)Z_E|`@NYt&0XomUy@{rik&H%`z#+JF<1rRmPh(=iy8qi zb$S60^>UPJ&fgZ-J58X=hnOw<8w5i{5r-~z4@gAL_$nAjbpd+NHLfrLL_6_=|AL&5 zR&;fnKj~3))#!0)yyHk&59LGpX%^>piz|3C(Vpxq&wPf!?Z+Hh*bl#(7_u9UpU;+L zeByG=7>XgsYT2OQ6FS z2+-}VZ=^MaipVKmCNi_q$Q{D_$VRF)k-l3mJwfQi7R0Vb6rLO*{>x_?OfnjY!^kbL z^j!OZuU*`&aRnhoH+*53c6EW~>)51Z4k$=Dc0&Y-Q+ZQmOdh|+AT%Cj%#DY&lm$1u zI5=3)ic%3JbKdCl;(W!5_CwJe_jAyRi{~XcQ|n6)67fvgQ+#;3Cu@`L&$9ic?8qPM zTsGT|&BAyc)HJq!0s5j4U2}ZI0NY|p&cltIH`Ij>x5%4zwdv9}ZdmIu^HLA$-JwFl zhB410k{Uc1sY@p=42}+GY7x=jhZT}yUXYnwh$JlB+r}0RT<&irX6%G!*ao`oLjORv zCyf}utPzQNDfrSOJ$az027N4wh0I*5Z50V0;NdZVmM*y}@(naW{#R3YRBda;A*+gas~#QaNGl z!!zid2ce}IJ?oS)0c~t8Wj-Iu3yWN%%hS;bkNd^t?;F%?@TkUSnPR~f-r%xX@=`rw z_T-*M?8W$^l3)<0GJ1`(IGGc`$`Q9~2zyZl{f*uwA_`yQZCU6k(j8QAlu+6@zVT=k zex@7|PZFV}N(J2xj4xr(;k)uiPLKB_6++~RZ(nuv)c^C{p{#uxXY`2?*JhqNn#+EBBM98^pVt6N z3hq7+$eRNRfdB#K$Q>D!OSfR1`%Q75(93nRGpEw#qN{Bm7RaKIZQBm&RkG<(rA6Uo zG)vZANV8$SFnIm(y2IGu?H1pVmy&Y(wLHMD4#mFU*k(mGlL-ZFy7zZ6HWjsIUNE^yeEsXz%J}y+XI` z)8SLzU7c$sMN;9fuhTh5>5}=y&U`9eQ3ka8XQ!0TUGny0pzW;A#&nC3T=mZ-@P?^Ux%VnDK}>|c zWg5@$x5VNx3RckIxf_u_kgQ!MF5D8zZz7Ti4r2D@;rpQ~&WStD#41U8e>3kzt|o;d z%(JIhQSwczPb<;zB)ryVV0`*o8@ISXlggD2qCL0=vE7V1FM)X>GqZiNVS0EB+on`G zE7O=Wy);y69IU#?dgs!ApKV^IiWLBmRQ7-0$mBfY`&9x7uVFue#pmiA&hmMaI&yJ)v+ns8?|{8%yNr`kXEGffLG``7 z9|7uE)?^IqyS-I7idjPNFb-wEE@uI?+;xB3-`1SCWqVGzUicsXH{!93JS zIhNQodxa`ILhV=Wgc5F!2*YmJEqYXW-S&5SZiGCxMQ27+qWgOOAJk(|w$H5G+aLQ6 zUMNwBUwk|Y&4f0mG`B>VchjNxI2whv6bH1)JD_a&Yd&7DtU;hko;!h)9&~iDnLp(3 zxd7W;e*U%@h_^L900Y4UvQpAtxBTv?UfAWE(KZ_}S7xuhuc(+*Ys!ukMJ#-I`^3@B zRxo0|3W`f{|5nC++8??B9WMkh^w+$x?=u|Cr&FvbDkgCjYldS*bJ zupkzE#9=q;@*ox)9=R*C^tA5n@TuT>FQk;>HnRU z=^3;*L+outs_2L6bLxbBVX`(mjOjjnpv&jkokqFA_kpS3>Bz*nEHF!ig7sB7h#F)| zcvr*L4#cTjQbXbiI*n{#e{l>|epIE+S53x!(MsG8`DZ;R{rU4#Apnmh$4}l+c3YC9 zgZgZ#QHW^Psq`K&-|4AE&3-#A zB`*kXF@A}%dX=c2WVBVEc&fkT9SL<@O*NYu?WH#Rh1g)Y8Y{X;)T{}@9%;LB6i!=( z!ew6;>_~SdJrw^@)eY7fFc`tn?_iFy&o+^jt??uM+oaTar9#0^@PIsKVb!-=Y`t>R zGG7}uA|&-11LJ9OpKj7fJtTF06#|&_{BwX)Pr*N{cXB+5jeHa#T45om#1B6M=FW( z#cv@j4YzgtRx2T! zb3eG`gS6eRFBaE}X2MB?2x@(aWS6}88h=g+$Fme(t6Cw`ejYD3G{wWu6-RbSt<$n_ zQ2Ai-9tR^Iu}_2g!}j0u%itToV(qfCp?3SD%&|QLGjQQeEyX2fo^6M1W3%N-a|IGw zarXZ3cAr@tBikCLiu5nriYWksCLC<8Vc@m#bxWP?NR~Tv z&AWV2ag~(REVl6_$DlHoF|`g*zF2c4#TTLD*}69tdt^{HuEQ9B|#iYd$5IqboP zJMLURpw*W4sfO{gc7MAX2tAIb|L^=l+t^VH6DtQk76op`vEk!iA&ybg%A)_^Hpn9v z_1@xSR9UO#`=Yb7Jz3A7^$#w1mV`YeAv_HF;zJ}r z)9C6E-m^Sb+2B<-0vk&9Ag`u9aP2P;T(hjyaeHytqNR(oCEA>l&u7SG!$Um*Ysn0# zS^_ICHE=7y1vPcP3H;!-c`S4k+dVSv>Hp#iPNjXf*O$fkklB{?EAkcDzH*Yd52yr3 zo4|S-w*Sdd*z+R(9zM&kEYeQ)BRYn!Djms~Z$>tM)WfX|Bie)yvc_s4Us7jppaO#| z>4UMR$x9+ebYA)vrY&UT+2iuwO!hm);O%Wp1wGllrsq^n^oKnY)_4IL#HE)j{Ikw` zKuF-;P1Xzt^^m-eOJSZ=2S@VP&@}!1V8t@O1JhIU?z8HU;_p7!c_K*K+rq4ZW~7?gdypZQeS{3~A;x26{wC+yv5!DkOrBHzl1 z*pgU}afE8QD=thfLB0KH&2MM4<*-{xYJ6sRmQMv0{3j;=JeLz|5=a?%TwSK!NGIu- z!$c{v{*bMD@GvdnPMVMU@dx{1Y5WXw(sp5r%ZmSJ=_XO^+j=@1k1}IZ`*6@9`B)lM zCXCxpkZ_mLj8iLAo6qmCki#~QJfaiyL~v39a@rd4Hm8gYa5EJ0K0ZiHXP881SJ90(H8->qrG)3+0@i4 zU>silwBU_0fx^kXHv9E=$6t2{m^urRzAi6{c?u17Huqs%ykPeXI~sRTQ$&?|a6CR? zhilj<@di|Y6Y8DJHUm4;Dz#x9v!uyW?GH+k|C$W^Jt5|3N(BzP)CRqoXoa%jUr`>= z4|7PBh-#l~o-$JaFCY`@_6Zi78P-s;I+OPrG-A@0zO>u#HfZ&FLzubKA0nrVhcD>! z!ze9^B+F*Wn@8zOUB~T(uq>^DWqx!pTe;O#hwz;N`^O~{LOvtSsR(*ZKFu|9XDJNf zLMQQlx`O}47yd0U++;oDuO@her`?*dRKmxML9TrhNz!`3c&s7cb+*NL=)N0i^`>R{ zGY7L8WSV~h5Q@LsH)=G+fpIJvQ%I?ojbkF6Kc--b>EnBJ!-YGc&M%qdt`QDot@)I@ zv=~=L)nKQ#I0>SSNKg5>=%L=#Hd&Pu7j89t!uMY2rA&zC-1tfXMa$Q&&CPqPOw?}H zpF|on7n%9V#U7yoT#~quD+t?Ao&%S3XvRsT#W!o>Nv#EA`y`U0Ni%zEC>MP~#y_%o zfe4;R)#H<2XBKhXzkJ&<3x7g~3Yk8-(z+Qj-ri*?i~>sO{OFxio(4wlFy> zCIVscDm7*euKg{nv7vnG1qfvBDtsVJjc$$xJgA5PIQJtF+YK_odudNxfra|5{A?s( z8M|+AMyJ$7ve5i~BV&EKx5$KwA;V0FhXoxsIqDbcU*)Uera zRwA-3lgvcE`QjHB4$@7mpL-~*vSH3HGGg%=D@3l-+Guc;ecG8Jf?>$AinkXZeoar? zEGj;`>tH0>2zc7C71Sc?(lAwV5k^$hZzmG*TZNI%WpiFvUH^8Br~V=mS_Y7jP}7nW zz!n&b0D6vnZr^M&7Bz+{(N1EAaNP0@f+i@ z>xbV2R7p?Pj|Zxx@p-x^x)+H$`MjGcI|>~v)I;~LjFAex-HH|OeQOo3tYsE}7k;rH z(xghsLfXQ@JWrE{Y}4sbxPIkBDLKrzH`LCvIsA0!v4Ih(6sjU!dc#v#Dn@ROzy&xbBflJhO3+&7vz2E(dKo);Eoj97o0CjYp(5uBxS!eysRJV5*~hJ*)>| z0-+`&61B3477{A0*eGFyA%MNPAnVm7p|KE?R!M&@O13THG~06d@sT~R-4`4GqZ7r- zF*6-5F{1PYMS;E>FVyPg4uQXcO1aFHfh@t&WNr0zo~JFCaFAWsxrz%wB2-u*YQc@Y z%4sXsNo7mA>3TLOrV1~;#yOLy^iwoy1JEnILc%Y)o}4I&FL)W^RbFG-|1vP>N;`Q~DFeNwlp;a@mK*=tI1i{U!5w-V zHkr{cc@N9Z0SNFS1@E3Fg3DyvBPbKQ2{m4JV|^~WrNT`&4^~R9Mhs}+<6!F~>N|d3`R_Z0t<9Rb zC~Km1&vz7d!&>#-m~KD>+K^o)4`z9BQhb}_^4Bs6K${`Tu}%Jvht?-b@gg3jFF4~U z+3|cJ7`b8kSCvo|9xMHD-yngnstC>T!R8Ph#|{}Q*og=az1kP(Zfm!gC z;i+7i56-|3sAL44l(t`Mp4CEfjUD!xGbOsHyt1e$Fy%r?EX_%2eY%qw`puZL$zb!W zSDt$M8A=W@LLVk$K_m=hSWI1UiX_o!Th8a=1nIpKn6Td9ZnZHPk1(0+*w-=VSnr|I z3lS$W@aZcqhle$@4wn2InIyq+S(Cd!D2t@5i}KrU2$jnryUv7N|~`e~?7 zp>rV}*LxK9M!>;DYQ?aA0t&hrXoYSr)cy|OdnJfR3N(Ccq0V4wg>PF3)?n;aytVw{ zH7kJgG0WgJhWq`3OR!pkl_<_dwv%+?37@rwiI>XuAfmm_Jn!wFfnf=*K@+iOmi_VK zY-hMS`lkHj-FK5a>_k+`3bRG{wH~W zd`$V%%)QPe`QfZro%n$19$GOAk?}7XmSFJv1Oo9MPM8AM>nmlh z#V1Ye2pQIBQRZnkw%AJCq0K;o$kb?Lm`nZG(hb2V{<{uLNhHX@>HU+jVp-SiRLzo7M-dI&*5`38#rZp`syl+e(t&!+vT0^k5bg*lWw~- zvpsx|&Lf;B#HeY<#PWVDv2r8>g?GOy){wz2dO7){EP6N^;?XqSS|v4F1Rh z(=6ylj>$jTSO4;)<9Xt`QGURakMvBSt~&=TCtR?ydcr>EQVgXa2F6JgE z6cB+u9}nGm4l{bRGe$EkJfp<;0svJWm}eSCwH|ndwF*lQzqsPU@4Gld?_~>&I$-ZH z83Z=7Yy)*$_N4b;p(mssi(q20@}xXsR$h0w=SzjM+lD#5K)k2y_I19hE^sCg?y>}r zJwp;GxRt4PH9l+3+5xcgSOjHR(fO=KgXo40Og7W=@n5}>@P%RGhbAp#GxLO}9F?)< zX7Gs(bN4AVjg|kw`v8(>3hRB{tr%YittuZLqU?pnDssC+@fX*{cJw{Gzg6x#!J+WN zDP=Dlz2MfxVd{#^9Muyy&jzfFzvPhTzxU=x6UTFy6Kw6-!8mZMPsv}>uHrKLQt^^V zI$igvU-xn9G-GaB0Au`Rn@U@M_O=2(1{cA00tLbu^6&Q2^l+TJ7(V})FB^{ci=+5v z>Rj`u*Yg&jfcRgkT`xpq!WB!j8@du=)dKKrB?cpYikJSN?-q7bP-(=gP}RH*Sbg*x&ZeY*c;<PzL{@m2Iq_6?}(3nX91G-m2N&KEoLK;w*06zf;eD9q;$d zXSKFMD>Uss5nB&6sSJH=DsCjVGS8YsPs|?S@*Vw~ksH{dR?T|niy>AO45=Z1%y~oP zHkY+29Vu9nXQNil2%vj@QV$E}8>sIQqB0y9W)>BGq?nZ>ItbZ67i`0r|;iA87Xj0uq@Xzw+%@vbnSK_czy^sc5*IV zlaZKbzpAyER2(=%RL5Uc5TBJ>GCr z6|}Djbz6;uX@7O{aCb4C;EJ`5m?<87L&C!0WuahjRCE4apS5{YN zr}K-ytysULLojeCPQjG7gN!dJOV&3|=@d--+VIZ8K(Cw5-xpj)%t`&~dlJcO!+Z3=5|Z5B?tHp@eCkNojp%HG?U&<0b3cPsJT?~3jGgK|G~xc6hCjV1{%1lgT56EnP3!TPPjUzkyDlm>^Kjn; z$`)L5Ll81NIiC@u72eQ7k;I}%7q847imeDWrIf$+e0%dvAD^)(_Gr#sOom*dJzr*omWg3{+)Ue#1L;%b0 z1i!;|aA#vU$_nzLP3CO`kG%i5sFh1a*CWgMbgsnTe2{UWzqkl2H#+Z~6LzV2qR+ev zx+StslPD#65&uXb`qb3;xZV@#UcJVxDjTtE=Ku*prk&G})Q+;rCB@eSjl;6SexlA7i$u9HV*3}c<*!qOGSkFW$>K@nAnr*~c z4>i?v5JaXCKehJV(a51bLer|yv-*wGxJat6wymW zOz^ecN;h!YXbI@_`{T>%8f}!tV`hFJ`F==!y~t`mqiL6Zt+Y(tQ!dZCz%+nTR{xJd z_+(sSB54K0j0d$q!$dqxwwwMv>GNW~no(~kjWp(-9ZzhB`6rTbsY={oqZ?4&?u3cY z9Rli=yw%P-TIV&Kbg%TFqaacK;!9+ zUtbJ53dkVgRQlXiwNJub>20le zWc|GBVsy8KqQupmTDa+Fj>E{1W{L8ejIbqA>k}4tb}Nqr8T5I*KGE9(5}MQ6mO!sJ z4aN$xOgb)-TkRU%Vro%fho~Gz%ks1>dwtKCRsDAaUXGZP(Eu}ovSILMKf2=g&xo7x z(-;US87#&RPe5fRIEtpsV*S_JOaC!Z8J zlh&I>wCTDKJi^Y+uSdj{%kh7eulSmAuRJIff_w&L5k>o1phkWNDg1*3Y5I`Jc*-#H z?vcqRp-SYDAR{c@dPknBzD`x^Q4nPrXV~#d9MS>D_J}`LNf*ZzBV1k@u@fGJ8XRK? z;3jPE`t=u&!2@W@a7mw6=D%Raxl3(HHI$Q+=k~?O@g&Bq2*t94DRh!m7j&}Oh!?NJ zoWx_VZr5fIP!~9sPAhxf9W^$)9H=(v@6^jFJsl-C-WIe$ToONe4S_di5?*^ zI+DzFUPq~;3qHY7BR|)KZ)7`UloniFAhfa!y1p@Tc6NVGihj-ubW#)i6#v4Ha9h+r zfRexAV6_{tCe}dch|d00mA7Gid92ON=saEgVKmDBJ0_7O0Q!0Xn7hHJG+r5u!gaad z8-25GG_KHX|FAOjeuC^QQ3u2|R_~6Z3}_0J5b2UaD2Ok6LF|7NM^nx>KmDqqu3n4R zkP((wvrKskvOu1Vp5)ZKVwF~8BiHNvOBA3y)h$xN5hlaDVTgVC{qNV^G8L5tUPW=K zF4No#ahX4Z&l2ZrGp2Vt3fGxN&Nk+8EhW6MO|=>c<6~NA(XYya#bC*QO%l@ndu3o- zV^*tGE;#`K_bn96BFJbd5ZARIm3!=sDEaFQ+(N#@(v(ANfw9?|mY)H1l7fe%VM{|8 z`+;}5bp|ZmVq~lnakKPC0w!(v-*CNOGz+nd=Og?M3Afh?LbE5~gD%!tvU!X>dMp;Z z9=hciYAdm#tyC!j{`prw6Op`j3t?WxpH&{KQu~ke=hVy{V1aFsAFAl*AxWk!%_}#M zVdYNs^Tc=3?QfLWqZqVtZhp)>%vfJ7UVf#Rcwx7puuW$rYDnPTz5qNiVdFe1w;HlU zB8EaW`?5Z6!MmJCMkTo7F4@S{haF*b_kNIbv?f6qFm3;=#Q{{(8At4{*(QDB|_Utajy-!&+xQ}d)0*^ z@owxAG3h9WsP7&FT56@|X9>~f=huq=5;b-7G_v{`o=nSScWzM`IozRlWHMiqZhnkX0_-d9lU}%$4Mez^A;N+;l-2naJ{~jI*1x7-i zm9IbZ7mY`SmxI29&J9aKHBqL^8)R@bk)5FgEQA9BQgq#IH0f&}GF z)U_To)}=q9d5>9Usp@?7d@4OD;Vt|b)H~)I!=^gs&pxhDK~1lI*V||kf2+8eV=mNN zrfj>`uGL|=PJ{9+6wb7GlI1B?QqH84Ij2G?NxK{+bJ_%$!FwM*>74?#|P^71%9D!HK60Bnu z)%T6CNTqW(3wb9-KsTzVF=Z#N!DTa2gZag=RWI3GOpY1bagO3)OGhsh@pv4 zzZiw%a`Q~KL0KPReB}mfqFpXMC$kYS_j%Yc5Cp-%i(M}+*a;}yeiw2|rDb>9s;FwS z4CM`^KkZ2-g?qrWJAF(F%}m{G)t5HE>hV?x2wFhyeMe$RSMHXGE2EvHpz`n(AOU;Lp)#U&GxmCwN;v zr3i>(=Vd#jxlW7Vj0$bx?DXIW4g~4BZY6+b9DR|Zlw@fJg6``gH*E~RJjP{k|*VN;}V38avZ2e*(_YJa!}|y z=j)QA?=ngN$I}~@VmGl9dzJ_CxxghgRm`Y(anQVVcPFv2g##kv05e_$O?d|#yo6F= zKT6U1I1t;t51XVd>Y?JPr;KBr%j*-M-Q$^>)}Vv+1=snr zc#ihmXXpjm5-8+1l)Tx7l)rwLoMV{?ww2z5GApG{tP#r)0O#mSE!{{oM+{n9#*SIB z1CA4+eQpKWR}xM>X)(#~YF{<73y_T)P|HYSKBKR8pV^%JB++?$%5bxn;7}*3%M}7S zYZwXFoHCo?ieY~UWv5Mv$8MLu;I781^0j@CC+rKEgsj;_kxWnwZG_Ei07ckiH_sbe z$U{3~Q_B#AG-ljQYOZa4A!Ro&fWBKbUv(kBPIFYpYL&g& zh5^a~KtMjzJcNb7o*Mn#`@e3ff+J%+*3MH`b9OggKvbn3)KE&^)SFv&+$>=0XnHOMi8eNu*ndOwQu>-2w>(|TVv>ef$+H( z+Q7{QduUBDly{*n1h`Co^gDs`Ft-JtB}q*y9Ip=_Lh>bBMvqeAh!KveT&aCJqtDa? z0*`%}pK^YNAtQ@Xp~TM)4F}_zr?DbvO2>Hb*e2 zzvU`Etrm4OabsU!fSK(->Nxs}8>eh$r~lm5i#^F1X?Fc14oj+-F0oEjFPi79#4{Wx zxE-Nn%TLtiV{XP{zZ99IFrq%IT6)`jGVC~t$b`6y1Y_n35gxX!aiJj@&3c!Z^C25D zR$7_WHw(TuFk$EK;pu7(?~TvN(nX*=6KqHg5eE)LE58+Xb-_O zNAfm&V=LBfHALsvU{-T|v#R+&z0QJO>`Sb=HL64=;E;6br9=lJNGf2ysh?G~QTmLW zF)FV^H`8#J2;Ou@MLFp76_nIgBLA_@h}Fqh@)+6L+PgxzLJrA40$8tb7)gOiXJ|B| zHPoS)us<3px3-{)5^mtV$|eAC%WTmtbCR{_tqmNSLkr&F2eq`J^lvJCD^zpl_``rh zxAh7yDo~()@B$*kSrdL=}E_={}H zyDL<{8#v_>cctSS#hrda2~p4sB*E)+5ov?D$As^LC)|ylw!gG=UqvblX+HccT#c|S zwYr<^u%_$g;4kV)37OqEzPMb)14s(6>Xy?+6Ls|=CPuf8ym{x{@sxj=O(oWjQmTj_ z7@oU&3Pmz@dd;5HUZh;-KbLyAEr*+Cfjoof3 z_r;pyOEMJxh@0t)j_o(?^oKsn`FnBo6vPW=Tocg(ag~$F+#huF>*blPv|k#9ejtjh zR2L+7-yO*33#?jN+OmFTh}&4+`ty)P1M#r4Qdw5~+qTfXd|~B5@sKm-t_CugGM%;K z524_ss^~TsrZ3ne56s=vbgFd)&uSy$r_$~5wOmcRR0tfrK~svtn|S7WO2Y!s@nxWJ zpJZxT)q~rT`6F>_IpkN*3>r{Oy?x9uBN{nXn}_3lba~8Yn~%h`JKJJm+&%yzOB;nA+@QfMKjL654^fSCi}HnE-2dg#!jV3f-Nw{%%(}cK6xBo*4@+G%B|Ld{P(rm0U7;bTNHFS%FruAumnpQxk?Sy5ylWi)1t9glbECyZkf>Q6O0ImE zUi*|_RY%@fXBKZpb0pdM`~AYuW6Ap^X3BJN`_UnnFTnuOy{@M*H1LL~g<;tb-Nol@ z2zjprthiyo_`;7LOpkl%P&rF!brW1BaqdFJP!c1Y*&1|p!V;LbLTIldc$sT809jt1 z8|p_24k_}#KsX+8alR<9DDylH>axF9aW6*mKMM_>d6BqbGG?4Qmp}bH21TiciGQaSEo!Z&d*)8GnYdI!pk)1VwqP zGJ+R}++w41xqr7f#kkPbBit`4Pq@BGfj6)kGAzs^2%5C+)+_@7or5=X8)mfXH*^WJ zP4uAof~4$T4I(K`7+OdCf_Sfw_kJrko@Gbrbx)x*5`5a z>x8?596A%0E^v+1BHhWz*LhW5FL$obh(J(x&w`vE#sq|evzD6@$kL#-kb4V1StaJo z%J@WTl$1G9A=OmXo9|)d2c{hs&6xTpU-9p(gi$~l?~?N0uBqhW_Ya1UoO?ZL25VtZ9#NGkIuJKHB6gCeBn&S+n-j;Eh) z&OZ&^aLT73?T2`iYy`dtitrs2jZvm`Vk`Vry!XZk9cSoMeUgY^%k5k1Bh{F+eSrTg6Ph45N?Bacmu);(C=^m&EcO#j;g+q!b>fdHrpYtSy zHLU4-_6&$&=hrgJ&@TbZ%xgLGauOvgq`EN(E(e_iJEclufr)nN57LZ2iD6HdvpldBLRP^x>X(1E8tmmF_ zyA3aCMUT!ocZOckE8yXM&n|d>yRIT7-SglS{csHy`NrQeA!d_~kE3&p&>(a;v)5Nm zYf2k~;{ryo8Ix|08+NJQfs3=#*JJuD3Tvvxr2P&|6^l{6$`oqs#loeK*mN?D8|dDM zi8p|yr$5^Ea-oguqIa-=yZPcV^|81{$}Vb2+}H-7g_{MN=PhF3$|kr_n2F2GaJNil zoZi4UKr;^~XOtA2AE(%`5A6fr>v+taHW<;KbF z)_Tr?P+V3`HH=#`n|l{-b}3P9X5@4t1vmE0fPDbXCMN<5!)kHhMk7R+v1kyhDGlv?J27KuXz9o6j;?;^AH20_pgLPOY!Y@XqqL5XXR}IZ z=JSf#Y@W{tSxY$Z5D>x_j>gK^5uQV{6&{ypO!}g2|joo&RCZDyEN>v_Z(TJF3=CF^R+5-6}A5(7|{*M5b&A&QM zjYxy0o1+P5rz2|B?a$LUTSdD&%Tb}NUTxMT(hi0lRAzjeUp;wTOm&5r9M&#=jSU=jw)ogj zy2N~b%}D=P3Lzj!q750#?=u13-)=i6F>j>D0=J@E&E89?BcrbiT`PE=3OEVUV&&Sk zJ0&HiV@@Nhu)s7}dYOa|5|Kw<`!xlGf+D{j*I$pA)gv{L^d5vmEKS>B4Rc{YOs9I0 zT5GOJ%qK_}>oY;1%y%7UTBUg1n);#hQxcN{TJ5ug1(}_(DoPhC^|0A;Y^+0(n2}c8 z!OoCKIAx6I*2fJm_u&!|&ucQA2l!fLn8EFDN>6Dr9W(HZ3h-+)bY%fF>9p^wO1!8$V7WQM)6&QdO#djycl<`W9efUcAsnHYfTR zy`rhnJ8qOVWx#Qhr=EXJccde3<=>8!zT=?F%d6D)t_}_m-@Mw{h^Kqb>+`Apj_Hiv7fnlvR-6^m*h#A4q|D_>LM;MNkW{#mVWk@_<_Q z-KSkA2!^DlQJp7!$y%v21Ls7j8<5Dm+<~q5LH2!=d5XO3nzd*JBZthH4~=+QC8c=e zUiCv%RnIMAwye`O`f~faZ%O+K){u~quB~ugZ{T-)T$bucpxHY{tD7j+z`P;{?hS|Y z!2MAr5xo@bWs>Wzj_8R3?aCovfslyjLbMECVcgG<_c<+59A1uXmlrx& zvry}5F5Cd7B3Zn3a;O{mi@!=Kym8sh;U$XMu<1T$raLoRWEOfc9K5(t7%K9N)ij8* z;?B4mD3@ZHi7lr%ux1V53^0THO@6oz%RsONgv*;$`yp3X{tNi>bz-6#;A?K#_CpQT zqr!7#*gPx#ETOf}u>lpmu{HDla;DE~`(8?sr9Z{StA)He4E#hLe z5$3cqt4CM_{&MbjMlt2qaTd3-7nW|27Tb_fYzIqIt4-iYszs-)aJy1I>4j9<=THlx zn!R;NGeW@{3|+I{P1ek7YI`#+LqPJ!hlw`2(A{;%VP~iZLny#*H$47Q8y$Zkds4~a;V`*r?=civIO`Zev>MbmUGUBvg_%- zDCMmu_y-ntiIk^xUfRf&T+!fF3z5Vbww^^k<^8|8VkovGx{Twzo$sJoGy@+{>qD-gGB9<_nU z@2D3)ora&+qzMaCj0}hy`Ns###^#iH?dV)Cqnqq~k6 z{)k(@Tj*^4{d(zoDXJ^Q`AXxnsTB8xjlyiLE*}eYNC~`xxIY_N4#Yhv~gR^;@ zMqmBg_uL0~*9T{t&o4whMU+jwOo^B2sy?KvoqHZ(@7eJ=I(JDES@3)Qu@&|R6Qm?w ztA0n>+$G_D?xwt+-lsZO_@%$he^=&su`M=yGf_O$jC#fUOX~q2)2Sijn<4S5GnyoO z@ZGcC%3if-xB|hj;P6VvbXMAE9t)LNxa9tl|md3y))vZ zcms>;Tsd&P!=wp8 z$_Cy<_NJ}%K$`5>40+0Pl)*U5m~jC@nLMlVkKfKZp*xqRk73Ir^rTZTJ}D;8*cP-O zN^Oz!5xg9e4~@|8vGc;>%2SnmagW`*D|(^3AFd=T%QN@g@&_F2fP$6lb7FrMTq5a_@l#1>1B}Ak^Rg$ z+m3wSVG&DVahiasB1d9;k0Z{(aF5R4trq=l{cEmTxZj^{x&GtA=hlIn@fvk(`G~*Y z{0H;p0P;mX{~cArV(KeI1PxIobk84snn`-B@|eg&j;VKCxh9}l4aGgTxJ=C|Jxqjj zCST|&qq2DS^U4V~>@E%rwG?pM<1@VmhE>E+Temd+l_Dqe$=dw(4|0sKY>*ARq`t^! zHb2)w!-2B8E1nQ_ucWo8-}*~=krxzV`5AmkA;@hV2Q)O`T=x5@jlM>b2@3QK{&0p| z=+(PD8D0cnuQ0jo(Q=hNoL`n_?~AR>msqkE&(WO-xzBy%lhi>zu;Fp#$h;88Quo!- zV>qkr9wacKf0Rq?#vkH5g{`h{kUL>17d0G|=v4RZ3=CWH?2*FXHeUHX2A`^& zDa)E9<-|W>9WIfhKBQ><#5-GDOoO*eheq6DbH1=j>#i$P_L7p;x4pv?+t%J@f2DhM z*m;GYt(-ynSS7oCop5+`v15uhMM_#n4fA_MI{E2A3q50=q=vK9PZH9q?Pv}$8VK6_ z2kWRsL>}@X83p*wDaadZpIX|bolNEdJHoe@x`*sr|SeU-%> zK%lM#;-^w}yPI0*Z*axp}$PFgRBr7%cXN$AMC7%e-Dl6>a%g%hu@6- zq57Ox=x~$?xr4e1@6}fsqn*OU>xlciaAsbl=mSm3G&0T5}I=lwUz=>c6xsGsYXEy(hh=pZ3o=PH&R`x zKrzhf*k~U{0@A#G0&S#FJS36*b3$bI44(Tu8RKB_`(@0BcDKj|wL^_y8+nbhxsXCH zlgK-yn9lcn#h!@r6GwH+L+e{LYj1siX#3AR>*pXN1rLsm!8Nvc6*0Nhe-ThuDa!8T zVTPUk>20eD^(@nJbFb{q+&7hrM+C%@zN2w&86}4f`F)_)rrP&!#MB!)l<{ojK+S&*{q%x zvGzLGT9l9uSEJG4%H_3zY7v>MY+B6PL{oXkT{oDTYl%!YT6LdIg8%o!&O`Yv*t+#Y zgR^6R_m|1+wuF%{Z5_n6&&v%yS1OHpItCVmuo-mNzWBJ zmd|FBD-;F3Cb98QZDgBRWE8H)izsZX65m{7tJ!0&9HKGi{NSs%9{jq%HtKa zr*str6dT7t4nmp4fCMNKI-eIQFTStbAbLc^Q0y6^5!@U85(LR^B<10<_M=s*tC(at zqU>bdwvT!1Z_?^TBKzTA_}Tw$z3ds&GX{4QWOEQEO-8@8Q1s(K@Isj`38D$zWBM#T zPzfL%y8cu{_hmk$Wm}tP1+{EscnKboyeq6sB>DE?vUiqsVnrzKc2@ zzH!SWWn+@50eDSK$HZF>oG-cF9*#R}M3B`AULUh2;$id^^I;Ilbi~d237!@-v_qw3s-O8JB_jB8dLg)JVN*zwkrEchj_3EkQ=6E`oOq6O3*Lm~gW)>v$3mt};Km!W z`lqZSw+t@}tk_Qg&!q~1U4OV0AhnIH(Sz-xh67_*))-Vv%M{ysC1OFWax&pWi*z-6 zTh8_6M9*t(j+)omk~rN)L^i8T-+iQxnpHl;^@ioD( zOPxI}?U1dmwYzgm81kkbel`15ajUyfAhBdjixsUON(}!*%=x_Z%ec!}QcPQlqSOkt zR2+yw!R8Pt|6z6}MlfySS#!$xG5}7vvGU9JIqeleoeJ{5`};SUl34+mV@fAPs04qL zKaRc@tCq)1vBo6hNgPz|CJBMWUBDeeVN_4RTxKGkU8t~`$Dn^O9OH8d*km7$Q^Amw z+h*=IfM?m`XDxSe2%${eh%yb`#4H3iSsARS`nT*4;5?$XqbY0rOef7kHbf4;ufcS+ zhmS)H-+TNmm8k&omOPQpy!v1Z%pCmBI!8P+3Xkg^6Ju{)q=ruJEsdaE=*I5yWk}ki zS`^Rc5v9JDw>9}0Y8^!d!j5EP-06pYR_@c6*6JAK=&>A0lBL<`#$<-Q9~!w`!{$-ccZLD{SvS-Maum7v^$ z{EdV+Drt#a%6Ymg1T^yhAuGO`XN!P+$8N5oiN7xJZv??wgaY_7Jp^3;@{Ac=q!zdx zN%S6Ww2d2D#VfTQWm~g_C2{7U9Y}D7b=i)%$vl67(A?w0Kw;?RdY++*KSNPiGsj## zNFlVIIb#w=i!~!@TP9nwMmzT$56~Z+Zk<*}@l+0;%mCeXq#A&BA5u6}gfXVCXZO!1 z1*DGD8{H1lUf^zYUXm%#uE|91%!{~-)_=bfKoU=MdT!}TY6C%a3WF^%*4LnqZ6DUOB_2@E!mr;ek zKrc84y*+hMcngCF{)4bE{`NsY?VowI{gd2r?lq(tS&>YiPtSAg6%zET*?}P=s{gZB zBFC^7_Ak?^v0!BqbV0>^`KfPz;Rw0Va@(iHcnt%j)NcncFmJej1 zLd*hp1-y`!9KhTJPJpLYBCA_W{(wO6)Nde#o{>Gu;~2#=9Kv;OtwOi zc~HP-c&b%sSm|NuY>oqOcw~zy@j%Yr#hFG;hv~c3z{jE@)3e(%5vUZ7S(Dsiu~Tsa z6~efBsl?^uu=Jj6zeaDf?!eQQviB3$yB%Uuj@G8*q?G^UN4Lk@%h zX*towl)klCl>JB11eYmCda--1Aec6fb z@08`aSi_pS3<)B=Y2Hw`BR?6#p9;RGe}X>IyX??FdaMhIYwPK(nW))Kp;`}hFm7E% z$i=?MIp9rvwIR0jd6yQcQ2S6x&wVp=`a&&#VUXyVyb;76T-ZD{ZZXp(<+;)IPVgeL z+1;*AzG9f9%y8aWBlS#8Zn_>>-2RXC*F-zcEZYvlo>joh7ps%={gu%d&J~^NADFz?<{ki0EjP8kjF4Hpy<_EJ`6YHQK zrAwBT&`=-Zbt$*g=ITw@x2@qfUqMpeUz+#qNx6S%E;K&)OwlwGv@T?(@p{Z&Q}iwL zCjT?0NH;-Q*~NTvKopG64r=ZvT>*`}l^NV)j<{L{`S~piZ%4Xm_30%vKM1yJ8)Zh2 z1@eXaosm51G)j_?St%}QZ;wfDE=CS5QWcvQrQ?_9FClj`RqKT867|&?$DTv>1xy_Q z*C+Wpr1v=L^}cv3x9{9=Fhxm4^jZL1nYL*kenez>J(=;@aAn9KtBbz-fVx2T0f0;9O-(XaK{f$cGG{QFOT;*>8)GqVJx&Ob!t}h zh&bx`7E+_E29*@jRExpd6TPMHbe_&wp)!`FPwEnqEfDrALL7LInUAsof})_Wde+^M zai*8bQSx|&&_BVbUt9TCv=!v2AWuWj))BaG=ck=60#iPvxMQ5(j|R&Hh67norvI+^ zV(cLnYLz^(2Her*)@M{f?{OSss>H1PJ}V}bNJxbJ;XP~xK=zB1GDJFrwG8;}o=@gq(EhTs?YW@N!qw);v;`e`B#$ zRuaEZjt?@lhK<7!nc;HKBc1stPy7T!^{c$k41%X}>}`0t^)t31m+Ike>sEQ~(8V8Y z5Pu*U2s(xAd=&~yKAsm5h7Md7q|bUf5y((!)XKf%mXM%gO-y}YCs5NeyM&X@J06hQ z^zwfL*7;RgSF8q@!M_iyp?iRL;S*MEcY;qShcE^*7{PFME5(H0qssavx>*fgq9ZaR zEC)GpRk=NSmnTO+L<6$&&LW zy!C@mR8U=;H#YS>OoC9zD;sv6eXchSF8=7KQF_5an8y#I`dqH!e!K)_MEGr#ax`Hz zW{ZOF_5=W_HI($uIcSUTXO_w({28=%t}#0QBrcENadR0s${v>&iC=x;qRU<$hI3&- zG>N@D;u=^%Ns9E<-aPXtekXQE-QjKaJcGxeelYVl)+@~mnP~M460IPbvgD&RwBzu) zvgCUk(+Rp(?BxsNEq~*&Udc}L(h(ustD{&K(%B`Ls?B0}Nn>5?^T;kuNyb9&?>oMc zzv=6<+m%T}hi4|#*!jEM-CZoM*F)F772v6PdyYZ7U2b_b8D2nfPV(mHP`K>we_qCt z_H&e?Xf%<4#fyUvikra=)RCm!V3fLvG%fTECnOTARJB_oU%2K2BjkN? z0qKNe3ZFrkMOGC*dOKs|MJRzQcF9p$0*!}+W@+)hd&lb@v@leETvbWy+Ws9?vY2$% zIN%gTE|c`QA>B4f4)=r2mWdgEG6=n3HBl&1^D$KacS=F`@DaQdb%nYcXYO2t8sCn0 zy?VEKPzZaW9Q-)bCYp_Du`eoHrF60xG)UJ)Y!wVYt)F-pp*}7}j!uZLerSwuoW}Cl zeQI<~Rqc8nxGT^{0bg-*R_(oqohV!?yIqPv2B0sE>b$Rk z$1$p7mAZewu*QN&buPqw65;*!3z*PmQ*qw)xC=tAcP`uWy8)ebj1yJ`-p*#@S%f_)&qL{ru_IhtVa}yRnZjjN+>vD6yk9tZQh+g+1#2z)0_3F|o3oAru&xFE6lfE%kbM@<4~e~udJ&HXBFho&dc2mErk z7AwiQCXDZq-~{ioCcL1|ZJJ-#^=47-3oU;xA=8XiPk!iux?Lp8{+&OkxiY6jreUBw z3%e=0PIl{vN+TVS7SP$7Y(%lnoTEn*!k@1Ite0=CA%Nj&Z*SMq`{M92+QxKmgC;}3 zjuWE_;wwL2j;Wpl`yr6~%|rs7)A+WVY@njo6W7`#oMxOSZhEfHEjT}_5L0bMez#>A zj#2uC0`A8zJX85_8G<;L4I>)zBh0o?gYy)?sH4K$zXw+ z+f2L&p=ZS6rtxA##kIVTu~PliUI>ExUjoImt?1|`iCecO1o8S}`lGi|WTZ|%ZP4;$ z>d}`KeCm8^Uk*(uwi znP08ND4=QwkgAo8W5V5VBfH9f+p!A1?cw#D!kVfCwV8STI}-Mf;io$xX@F|?(#PPm`1qnOb7>|RxrVxR{pa$q`6Mr#!DhA(SK_rx0Uczw+Vkf0{j;Cc zdoC_>wXZcxcuDCb;cx#@0K=`5at3F+8RH@%*}7PF?=qq`%m2dz+i)gfdX7DUP$+|M z#2<+ryi6opBK48FB8ckw#1LNX_r~O*RIf4OS&Q!-#d)!x{l;=wRkOs{HVXdwD(EB; zeZSfE+l_X-V4P614F^8~Z%ab>|AiOVIcBezycD@y+XM#e`@uts&eP%P5y@w#Ln1_i zw~Z+`{g)tq{Z$6(F>N#`iH0qaBB_Z{CA+Hf#=M9N^|rl35jv;oE?K&_z`n5Nq#vOS zaU4ufjn_DY>;xS`J6;HAhfIFkDbsdAIMYz1SR)}`B2!;ms{?9W{qCQm*Xeo7P<_T4 zJcD8C8vD}=T^q2FN-g|+{U`tZ;$!bvkib2>9EZrP&QD~n5onu0&)#L)s zw)`E1@}OqECO0+1R^0QeWhBa#m7Q{T!8ooSgGzvpG@#5}f4LAp~yx&(&qt}i|G4Bg$`J@Ds#cK=?)wU2%6&$-q) zqb3tSx!SIK#`&Ry|8Jd18>4)gV`p=?*!u@xK;YpYaTOw4cj3J#z6ArM4JNbtX}H3H zE3urR#f}M0h>K=J8U0e}UctBa$6fLrg>A5=oF8$l-%wSxx-}7I{yrG-EH;PNN3i>ma-Yylcq} zGx{fp>X7tl2mG6Y?rWLD36P#Bc7NWWjEBe!aZVHf%cI6pwK*xIFPNnenxPVVm2NfWC5Tit3*llGp@ORUiPd7gH#C{02`5e6!{S-<{^~S5Cvv zsTje8G>$K%tD5_n=Z`$Ci7`X3H^UhP)`d^Tq>5hjE5=Hmd7G1GOH!zm&@Wt~EN+#E zLH2QDw-obD-N(W3o_#{WINlvTPUnB3L! zhb+fQ&#tbhbiCJqEZiopwXdUH+AdmVnX*%Nu?bq=;o#vD{j168+={|wwvB>*5>~5x zq!#Pf{*;^~e9AkLC2_N2*HwsxR**8HyPJMWF+Iq|I+&`G%jwm~Vyr}fp@C6jluD+y z_dQAYx(~OZX^Kt35dC97D#+V+L|K#5j1umQnlz`)Kjr2i2eWvs9>}tUWZnBHrQ1@Z z1@x+Lma@vbu?x<&zS2pqh#C21*q~Lx{a(r(2TiVau5K<7w47#@^qtiyWDt1kTy;xn z)3q55Ugxj#u7;OW(25H7mvz1wlY+3w?^tLV4fq5KE@H{R+A(aCQJ!t=i}_MUE@8u? zBto^M7__PQ(9To%)&L^uB0KZR$<#Q~!kXekz>7`1vPEO&&ke+gg0kBad&T%^u?1Z^ z_@R z{~nGhgQHu)C5s-d033NxmUdOHUt8Vc7Z=Ht<~6z#ODz}uRcio|1U3#~TwKao%ikxl z?$v#YVX3)h+|!2k4VeqKs>hOQuw@wWPRO!OwC+!`(`g!Wqd}rMWcs~JMSx(7L>EPde5S@LIu7HyaLpC~67KOqGPXO*bzRwxBNZhrpLC zdtmUcDkPidHFmP`sv)6C>A6_ktM}Tb@te!-3iz`kEC=7_WAQtJLa z$&e_9|NNEiM9OD&GlL>*3j%R(;X1EF)iv85;|Kgpz*{dVB7Z`Bm#kOHL=HSB7g9wH960$u@{dWVmJLKeKa7q!dn`6uOQmdg$s%k{inbH48D4?ntIaY zUUyC$O4x1-x0?9a*-`!+N&g-Iccp#Y_e-Y6PH95eHk^1|Yn%y^KKZg@ml)kRl2ysm z3a2uvb@fk?3@H*5J-W41v_@a6uyIl$!?3MCgG5|{{au`2Nh`Id2f9!em(yZM>d2Y0 zOkKcy-kui;ef*l8SMH^Gt5KK6<3x@*9I|QibDvmiuNV^J=Y1hz#4R67Me6DdNXwu5 zplo2yYjQ_~`5;Ls(`e%ocb4wYZ}$~rH_eJ+DbP)Re6@4CFxMCuLH z=|gQn(mWj6L7LOf4^$RBTAp=IviG@uD%22;v}ujP+9{+ulZjs3?Wct7#(ZukQjFk< zNVA*p^rdbTL@Tpysdk@PL3&^At?+@89ZIP0%Ds$Up% zKKoVxfdUoLPrL*LZ0=AyaE!tBVGJBzS{;4$Yq(PQFUoGD21jNN5aN6Lx3GI1yBp#p zG~s+8Jh1=$SDKZSvRfkYZ!=~$B{Py&s)Bj^c*5#?u77|`9K?t)Cf&p3I`H$ev|+dF zM}l2t-xRDfxrLn^eR6^@H7Fm5#~>JKfqQ|zYwt{QH)LTz=U2Uac2aE0vNIN}^=`lI zmVxFMFt?HBoJqvn%B=HV^FNSmBIDIB{!Hbya#ES37k~KkYen|68N?r?wZ(1#*kC0v z;6K|8T5JnP35%7Vzs=-x!EQtIf6dEjB^boYZZf~0zgZ6_>r7(6R*A(@O2s?o$ zO4xxB-0i(qTWp_8<88hy-BljF7^^LoO2?|$BZ2#M*p>WKg<4z3-H2N#Hi|k@Z{u#5 z`pHm(h2yP`rqI+_EIoTJkFLmHDdqP_Nf_TjfLn;R>cR|fSf{l+FtJI0-1~kfJYh#O?{U1|-SoDJ7gUK?;>YqfzyyprVeePJ zV9@wrld&$-Z0?oZ12JP2p! zPA?|pNQfuLL&G7Db&k`45fm#}|gvs*jmC^PZQ<33w)CkvK+#8-k;!s8;L2hcP zcEKc*Hr$SFmY!cCA63IytjY4F5*DIP=Oku@VH@)#VZ z0=y3z;NllU-SaX+cOp;4R*hBhlT(CJc4xl=zhZiK(PQx$Jm&%AObc-P_+qIIXXNF1 z=RX^A?<7>M;u?Q*Nt`AauW(ilWGu5{>ESPGns2s8mxHO4?YBWHZzs%})~063sD5nA zYK;erTe5ahqbFkSarCgOJ9DAYo1b}gVYy@NA1bzdvC4ECBz4Z`Y}|v`+yE`*<*@dP zdkT@~5Z6$=ZNS8wo@(|xo0mnhGGl>7H#>u`i~#7Oo2MF!9ESZm7whI2BByp+i2fOW zdZZ@S6XssN=&9=udAE-!*-wK;?NyRv*+%0L>o%HcI%n9Ko^rH*W<&Zx6iFHF9gmj5 zIE8kg?gf&s_@@&;SW45RSGU>wWNWDHeztMR$$pwdYdN4}G)-_i!0!G9CBmWjuFBoO zi{n&eHO~E$&_Tyzwd+q4Dj$D6+5Jh^mQgFj~gf zMaP(Iv{-xn6H};?D@OxF_k9*c84f4@9L$@2uX*two=;LG=Kj)lft1kqSHUhG$j;Mv zxB@KbpIgcJiYH1B2Ks5A{Qerxp76K8dJd6T8d&g{PBXb^3ax0ICHaP6?5Va!O1njQ4kOShjvt4GR#;)WIJLofR8i@{SWf<+aQy}+3Ia>^` zpBH)`9Q=9bcW)x4a#8wk95F zRtXxOGMCZ!l+-<0Vod^qJ~dcOY)LL8skga~&Z^uZ+g=)$+PP+^FSw~}6cwNjYcHgy z1?Q{Hs|he%!trXwT%HBitDQv^YCfsd_J#vY#+^8RB1&K-smQDeB6wa-*oi#=elj-; z(IS&HtCxvUJ!cPAJLkraFJfJ{=?XyLZhc$n8G=G=1N&d}9gF5ZNzcKm`tO1lp$l;N z$XfwsA?8ukC!HgxuC_|5C_xz%3NE;?*S_x@HHi`cLoP(^G@QNUeiT7H!JRmgV@ z?%ez(GS+r+Huzy~-z#%lgo`Znc2dL2W8VPjVOK=>3_~TJf-SN$wKatAV;#0qF$nvU zXrX~uPJk><9iW5#qeQc>_Gay~ktRj*MT-YL3X(G1w6eQbzAMcNWa~zhZ?+oJn#SF$ zDpgw6l7ykMLb(d%A>K%6sb0zs>9AJe6s+cWK1ols>*B2&43p5Oh zw}Zsg9$iWG9vfL89y1X$&rep+I|^59$3`v{z|SyM-k#uS@a;)XJBv6 ze{JC5`Q9&X!Gy_fEqHMu8R`^XUfhNW%)_B1+plgIdD{*KH)Esv3_KSI`ay_DpSMe12w) z9|4Z<9thEJjVUfSb=}8)-6Z7JwX>AY0fL?oR;VR0uT*NQ5dWKEwEcT|DjSr^W+ z*W(Ng^|-rj{om=q_LuiIZ2Te% zq<~+k0j@=!z9^5efrQLpH&lamNzFq0igUM+!WMJjpGwUyj{eA?&bU2#+qwFqbYfTa zC$72kiVM`~R%3_JnnbBFjoH8|>N;>KEC0slA&HhjQaTJAG<@GUmJya5nQ^?LgqNmG z`6ed2wKdJ(KlFjZMKZdG6KQag%<~}R!e({vM!e%VgEK*MA;gJ5_dl(4AJLymAnN3? z(#9frs@hVxK-jMHN*60EgZz|9&^RjFFe)@r$O=Z_&bL+hMAFLEjuVe{B{dgkXF~jE zbzk(kOm}>UWMzq5(PJk$_o!m>E{aIC;HYy$^&;@6Tf?l1U(wj&K6L?m7U{n9Uf`26 zVXW2u-`9sHjUI+Y) znXuhxN^5K@|1XwG0ik7q=yQaL&~rCVo8x?*aNqrGORr7xd>V|Q5-85D+WLNsz0H(K4Tf7Ypp`|vrlaTfD|tG;{lkLXV2veEuD^OFlp zPN0Lbefg*&Z8(m$Xqk={w7D)-cMIZBucFx(f~uT1Q@mw2sD;GSG;oUk07Kcln?xA= zr2|cB6>fN`R+D)J|LcZN&UF$6IuT-qW6*7XOQH*hB^JBNK#MonXItFJ|-TaFvF0mO<(J z6{vtXKrtceeKz$Dm~Pir;dts@xAs`2N*=yDSB=i>ZDqbu?DOiTw$S0_%9ik)L+;CD zWr`30IIVIvwUB`wd6>ezmp;F*ZnA!cL+Xl0t1Rq^XhSC69k6`@lOcpei+#PJc11op)wPh*LBMThD@4I5i?z|RxowIwS~7{MOyR!>B2C z1yQzuL)20vB!dp7@@TxRM!3kuLkj6aB~dJc58LplzY3+EC-Y-qd~<(7(zJuE z3)TW4em-W)TA0T$H`$YJUaN|okD6jY`GUmR@L_=|e4ULkHivNVNb~w?k<(})NI-LPi zD8@b=&(9P5_q1%)A+=Jw2L)0)|M5`kT0*ajl~?JL@T74k;6h{Z-4GW+LD`62cqcEF z;Hv=s7s{?$F4owLX@x(vuDkv^r!zBA0rDtZ=n0Eyzv^|o*nK1 zQOs5vyZLK@jIfX72M7hkWnaehfR$BpD&gs|dO4^Q-iGSaU_t+d zOS6y3J-V?nwO^Au?KD-Gb|gg|vVI7yMX_Mr;<)Zgf0b=GJN_Ie`J)NlAESnB^|t&W zDq_mXJhuYk2n~&kd4qq6gymasPDu&`t*eA=q#6n-vSfYnzLhk?ctH+FX+gk!CT>$B zJg8KY#AxF;NugHU(bzQu56M(hKtt?Tj8;FIkn-iXt;BhOcP@d#F#SmsV&D~B3H*~4 zQjfO(eA}VhGeJf!#%Hk?{UUDF!`kFTpy)R6!i8NwEhRSu#Tg#rww_>#+_+^%Qb==m zNclo2z4sI{+o#JzM-#C0gpDHU(#4RCnCsF)O_ytiDnn%NPpqRrQ+FIxA|r~hc>^5s zjGD%FN(8R3lQ;?fNO18FLl6n}5CL7*lPXhGJndNZsO3~yd)rNr9A1r&lJF?K?dd-<{Eg%ys;AK$PqEP;wW;HjlTr>R zI`H6hY4eWaJ;4f==&mdjYw#$j9+MAuvo!hVzTF0m^@?MnDy}`Y-6r9! zjb!#w4DqKran-Qc>AB1`4*v^7aRD=96%Hm&U9ER%cnbmsb@(+l7H3dCo_ z{%g~xv;QnTtlPeV=wa~N&%@jd4O~EQY{aX#j_(JOAAKjwhCjP8+QN(3`$@Z~ zaRp=d9l$m;%5YhUJdY>~>y^5$1C=2FkFm|tnMi)bKv?%O?`;Kmjat*y?w;^)zxRW; zc~xGcJLOwB@^7lf;-($I`g}&^9FywhP@By7g z*2_mhyh8_KUj0?;nf6*%~++Bp9iGl##|N7S`)^nD^FTMBF^)9%BIeLgfV!j!YjR z;uNKRLLelJSF8N`+#M6WeZIqUeJpG1p~trJorF(uRYkDZ-8{5|-SMnBYT0-51ID?W zL`p%j@_S}Q%T)?HReNzHt$V~*IT_7^90W5A7cTPjf`1XK$OeJD0kU`9iPvcM_z#5kA9G zTk+Y*gX54{x35UPqxz1|27R;BP=yRFFVP*J`=1(AWVQAmq*Hy@+wiY7%-7yQ?vPpw zcfN^po#nI}F9l)t*U|5_-NU?@H1_X`+Vhe`c;zV`<6_$1=LPTrXmJ1o7Y-rt; zk*rNn!F0X)(w4|^(oYEG{ARF+=HEO!Zs=Lh8^$3&sG;7;Tyml_pU8V>K}VFHxqn{f zHM)pM2L*{z+WPg#$VcBS+2|hDXU$ZdO!}ByJF%XHf;`r|ZY@_kk%S}|TC0`VIuZgF ztcT3v5s{>Z8I817`5c9#JVR{QX~iDZ(Bq}pW+Gawpb3;OR5re+gs;XWM1=ZYRH{ae~Fv=-q#Z^`eWa4!YMocPLv zkEkAo{jtRjH$jWzWT5G6t~0aiOSv1*!4UfyF?FCaTmnqS&ct422~hqnvw(cl5;UgF zpz(M+((@awf6{pR&<9`buU3sz$lS*V1Kc7|T**UxC< zj}i1{ZGh5j>d=DSRY5+I;7(toLSG%qRec4F+M;r&^Hv!@@#Prgi+|JG_;%LJ33RBv zQ_xRKYopCd$TJ0ZPgPm~DZtVFm@oAN)Z@u|6O9HCt}lgE1I&`T+EbHx12>_$<>J02 zEMyo$--@${-1(Z1hc13nq4C-j@^^{h$lgRSTs3&}YO0`d3XiK5EW>Xtx^v8v9Gmis zc0dt{_2U<6k=FRl?aMbw5+7P@(o|*9?Gv&ZuO@SdHO#X?&6+yGG1uJE7D0=o^3`5y z9dk(G7doT(CI!;Xt)bf;PW1PK@LN+3hR`FqN*$Y}*dC@i_J`-OFb?pExr_2qXw5r? zNrM37j=)dPw=}y{F-K^B32cA=`bF;)c*p@69Gmnc`6Z{n5H)E<69#K!r%mdwK&lY3 zeR8N!$g`kS&#cJ&6vMUZS@fK*mSaGT?c4sjVOf~%`fq}GZpQ=PbE{zKZqisB2#G0U zZU}MDmEqNV;G{h<+$Cko+Yz~sR5y6&&dyY~_)Q?O@z_w(j9dV!Y%%6X9WT$}G-l5smGqWhrhm;Zs_1c^YZ zL(CZ%lgB)#y4@Nan*b0zo#;H=R|(dbM2eDr|6}L%@N>TFujEw}KPkyzpR7oC=0s_O z0?&()FYb<$ehU7KlR_Tc6$anLij0&M+<;-ufEMUjmpZ^>4_voLG0k*Y!K{0q@31topML}d15)Rm^87xb2yNGj5CEpz zedw{DcLhp$kQQ_$Kd9rt1JAzkP!6-LOln;lN`DC&fD)AaGFK+mRvZ}g z{=Q>Nu}X$@R$Knky`U|C#-}3h<|qEUTcdNZZA>DQ`@8qIaVb*I^5pFX`S`Vab5usU z-^&zax@s4nPdGs@>gY{S6W_Z6Yit^!B##Up2EN>@C{5~(eHFLEqv$=@rDOH>d%V3% zE+N8^JF@*;$-yXb#vF|$n1mWodUXD+XyMwWxHo+Na~kgqh4=5+lMd}P44nOSGto;W zX515>il~6jEGkD0EdBI5DZ2ynx5+P>-rPvWrz!Hj$08v$gEB`V#Qzo;6Ej#C?=vt_ z&W=G`*4|Ytx-7f=gngh?gNKr7fQxTU6r!J+&~nfMx;GG{GV<%em)6LplD#9S*DE?* zt}G2saW!c@Xge*CNnJHdZ^Xio5YFft@ygA%HIMM~rL;Y{VSfNJil3Zi{j0l5qWb&e zBW1H{3`wJAejWi$>3AW26#2Xtg>o0{vQahv*!OCD`_en9cI;{iT_#ul=KW9@OUQE) zlF`moBZT?k>frH~6=HNp0B^LRiO#oL-mH4Eh^Xl!FmC z*a@8lQ3TF4tzKxo5(}Uqo+=mAhRCSbq|A7uS&LDbN9);2G}SP9`RlXj=_@R4(xr)a z-pH%8dKVnCeh+q{+?2HIO)2~tx@6tb#bbQi_J;V9bEA`5)OMc@Ei7onsq^b};X8vc zg1I(=&K_~qZnO?(IQoT{k{{e;D;?$f3srj0CUOdn|Jo0|g>dkbopxh7CS+bliyfm) z#NxRJws&j2-|5<$Vw&L(%g<@9a8KsPPETC3Q5*aTXXlKMkDQZm`|m03qc*jqf3orG z-z3aeeZDiy+QO}bApSPkJAz+Kagn8W8oldx`%`|aIULtYb~7oea&hvrUlPiDKga)2 zPX3|%{y`FMc+A&%bi*9XGUm8j3Drc7X zDw(n3F@55nJn7nu8T?~!(89qE4641&3`oP$q9OB+bP)t|0LKd33-B%0E>GPGPsJH2 zkC0xb8W<|??d8PA1KV%6A}dI@n4W%Xxy%rA{=>tK)gG9m$z%A*Bj!N>Qz^0QP4dKk z<^l}ryK{^DODbi1jqm9-L)fY!3Er5@@~Epzdi@_gY06Y!=bx^WyY&?FpndFq%Fl=^ zGC_L8nFW#A-W2iyYjNx3#7)fDEw?O=4x31uSkqRGtg=)vb1cri3;wUhMMP$b!?Nk$ zlk9Hg*||1XP9d`d)V}w7K}s#lkc_Tv)MnLXiN)(tB0dVI$b1 zSO|WlK!$=!wy8bq3a+^7$P~S#Xdq#xF>1}C3J2A%5(x&8#4c@6T;YSi!(MHgb;x&u zfpceJ(s?|y|5lZZ&)NczjK`Q?Np*< zQ>XuCX3R}}etpfni=b=`=4jHTOVJ&x$j9X z9?wwx9!}S_3+M!t1QqX!p*_Bj!;1@JTMTiZcF`Z)kt&`pAD3f|WUj#GrH&u?^(4`a zx>gt?K4O)%506ZOyR4JP^YcPlv#2Qz#{49pdxx{N<}%7&aH-0NpPIreBQ0#sC|YC~ zNmuM;>R+x)>1EFPK2jE+v}LzT9e9sj5|{8ZP_<|%6*|fpHJt~v>JLED#H_7{1R_WC z_HAzB2qE*bgegPW5|{PPK%zVLzBGWQbG1;IyhSl~8)OW{R2%cl&}u0Ck{}$YD!9Qw zj{WMTjBrQK6NfbDA+a>q#kO~kKE2Sk3Sxi1} za<5Z!L`XYZ&{HyxxQMw*8n+ip-#_JlkRQ%G*4`zR6BxN5zi&ZsLwuB+=wX-20H9J+B-!PD@KqF3evGuiYtF{S^y_b{cI4J|x!9vF3AnkNyyj6eQ z+#UgCWDmxyBSpLfF}vsL!d(=YLuh}b$vor`*b;YQwxT}5=VN^Uv6vR(-;Y#=nFVs zTBW*DGzmpp`^A5pNR#{;^!mig@hNc&Hw)lgxTJVyXc6}!IrD)e`3Wq0{n8-E3p1-2 zk98|o#@8nbE%5Q;9PK3dt8K?twZu8rpbK(@L zM4O)-;?CR3ovwTdbGGgpw>Ya$e^>jE+<2+(U7rR)HV25rrlcu!4P_0g?Inp^3Vi#Z zrPI+c{*@u`TxIXep&=inInfdqvKBUfDsCM5%z?;F%i?@;8N}Tpu&I%VCNhnw;)#w6 zy%veCqk$mw$#Kd&+5Q!Oen|{m=R(VWw?Y${)#l`qGb+moZQtF_Sc7B{f_ld6w?x ze;wYn`?KVVpE-5*@~bLjc?Ka*&TyPspE>>M5iVqIeq!Sazzdq*XqyVrSHyXZ={A+& zLsHLi=~5mCN^xMVkn&dr7AUi^kBkG9`Ae zUX*PSt91K5r+C`HlG~y#q_nE(hrTK})!2ceYSaAheJ{=~ou4Ru)`t&C=Da*F)n4-b z9@sYxW9@E^vg#w&CT_xtWHZb3ME+?xa$3g~92Jc;44&5UGa39+Y0M!%Hjzy5`%%Ok z&|%UWm9VPhgki`M6V;z-`jF%8r3adcd_DooZO>m!1dK}gH=2`N;i;7U-$F(5jVSom zq;dkQdtt|D6cOhe$`3T`#%MZRb*eMbEam2`pzK!DINzZIx&>F^pFH1#<|wY-bfk!F zUo*DYf$?&3WyD(pv220^I&0r#VA*4jli5^Qm%|>qyI_m@l2kdBrQN)n!;8+bRZeV_kw(#0VYkf)fr+3^YbL^&y(Pmbh<5X0H={xacKH29!uh+BU)mznB z*c)Wa*0YiwNvIX^zFNpSZ)U})Qx96RpL_q>)bB2eQ-3fR&Q9U|VpG4T{^8(L_5>fn zo}ze1K58j;l&qw;>jt8?o-$TCc}v#cdw0Y9v@q@Q(+0X&S3#GgJ&zHq&J21korLY%3r%@N(*T(-@<*ALRFcywTH!sSh^4^EK>@#L zPdk3Y@gu@^brtt*@H0gID`8za6Tp3Q>clrYQvb|pjDe*d=xA2PER;3j7$d`UIJz}0qb#VSqQ2M!Y% z)&543vw0Tb4miF~SaP@zNt8ewWUSd4CWv*4v-lBby`>^BQ4}^EZCyzpjP|_s50&Le ziK%FCtaD{SBud0%p-dppnmv@q{ijts7)0YeAA(9WVpoF^0Tnsp6s#w>$*kPJoDNp* zTFqU-poI}L66bX3RG^x>8?mQoam1EJwSw*s;`Vn>qhPe0dbmC#x5laHNVvl=(Gfn_ zj#NY%kx%MBkeUX3Is($=tIfKeWZn()JS(0%1a(Plna3u{AZWk58s-54NCi|nj{P6( zb{qTjON;?-Aza$6B{WU@=O5ZEz5*5t5zBu^lI?PgtYn?q;ZueGhLcUS++f2oF&Th~ z#zp@dPjLi2()|%*3TfqLKIXx8I5;v}8(UCE0$Exp&yh9-C@H=Vcgo?_-_bxl-`>G< zN^3a(=z^zj3DcAf*$1(zkOyjgi2zHoysPf> z6#qgW_U%GcLB8pcGQqN+0?+;I!>-u^(T(o@!x24H1+II7>tS#pQ*ja1amd+`9O6PM zJg^jd0 zD({CkUa~l+jWjX2`o6bRSTj|0wvK%_^K8_^?Ms^Y$!#LLZ8JVq8v3ucHGkT&I26H* zl&h;Ular^mntDmj0A+DDR2GE|1eCZ{rnvGcQ2Up>K9;GV0L3^?Y${QjjwKvB z9MoZ>k)*m=ToO?a>cYpCJ`ZufbO5XH>Ajc&5DLicki403b=9%6op|LJ26t{Vl|4E} z7pwF^1)?LHjePfdiNIXfBa5LW2Fp4~vLOw>L_V9_S9B?xmT}{iGQsRjS%#_CQh-A9 zK6jx^yalE9T@xwRwVrX98A>sFMQCR9Hg2GKZ`kZuYcYD3VS)?lrh*uDDYT%_Okz3=m_)m-Dq-$D-;KIoX2I9{b;$MZZ*M7gUP zMY|iYIGy-1c(Zou$#a%~HWgi>>VQw{7SE;2>jk3^cYa)Q`w-NHN-%%Hm3E(5e(ST# zrt&y^U@$^z2p$W#nT$SI?Edr76SvDnpnXo@vBP@|MlV0w7jCDvH2E=+H_41Q0R0|I z$0-3Wg?B#PZWC_0l8cDC6JyOG9T&%es`O~o6qcmQ8D(pNd@iGZq<%?|`+utL zKZ$T?H8$*Cc$oo7?w^!oh!(CEq_&%h0>0%`|=U?+*9TU+o{myOU73rpVMI zrc%d+x@ZvE1gxR^AM63{@6fth#hkmJJwm7q>Gd_v5@MYE4WdlH?P~`Cl+H}An&|>Q zQe!BB{ixA6_3 z9v~lb{vapUEMW+lE!IQ1dy}utH!VK8#76&icJq>MU5nIvb} zLym}Vsxt0wcOWkd2^Fa#3yIr1I_g|4h!CZX&hJkdgq-Q< zVeQE+T(U;6QuT1iJijsY#iL#1=2n#x6J9? z81+}2v*l6K(c<|fsOS7N$PcMz0xYDeqTWm1XR*c)!%eT2=vJvegfU24lm`IpxpYFb zxbQ$t@wisP6p-E3)7{ww&$Zi{T3h}ulB)#xFnl$FHrOO>G)xU0y>ssIruqBxlkJ~L z$_y(cOEk&w**9?Fnv&3)-@n+p*E4M;x|#`Ph2ip1Tnl9HgQzgE>bxD7m64J_ z7DnDF84nPxoz-KJNg5$SNx#AC7q0cp0*tZ{sxcLQ-cPa>s*O5^N7N$ET!D(~++o{z zl5$y<$d3h|2guVh!BwjN)vf-MZXT@vIqrL4p^VM6v;03T=TEJ*@|cNP$|W8C%}8Fu zk-8~_E!~8TB(rEXul7rOyya9wakf+@m1M%iq|Su8hwp;>UMB&1fBa8jswKoI{W!2( zP_>gT0P7SdKiOtDUg^LIocqSh?FP{}G?Vf=Quwf__sjpAYQ&n&)Qs>0^(6W+PCrA= z-R3s^+Sr^)NpBv9FCst$CY-d5Uom;7csLamZ0*1%R}urlAyZ{$J%teIQ}Hf8E{jO2 zRTLU1(B%thKD`&5o>5T|g>UeIX(fLaw|z(DU&3at+UyiEsrujd3eJ1OtRA6(Nu@aI zJ5DK*xg8EQof~NAUb8!sPuOy*kw`5*R()jMN1bxKT;7m3{@m2X*~8|N6SE`vNd@@q zC~CXt?|8jnMW<`6BQQyNet}US8QkTIUP|Sof)oN6pVmDdqK$-NhL{Ip$G

    C zokhJ-Q8gb9Yx#g9KoX~Vq6lAK4H(XJ)%eI1Y~LFH`j0IX6Y*qiQO(Gc*Z5P{HQD$zrdHL(I5Q zL#I^$VIgu}sfe6WDmC&L@@HvLbS-t}BjpElkc{Nl!$*6?j`~8pVZL+EPeugEstA^g zN?#LCg??H;=}|VHa=jAe%-pi4hA?OLUH}K|IK<=WZ^unDpkEnIAB6218H-_aj-|?e z{B=C6I9RkUxi}@JuyWJrmV_L$%n!gFr5{gR(S~d)WGK$i^T1Q>UL?rOn-#}V2c5khhKlsSjpv=X6*=?ljt{V5`gxn@_DEiRj zIWoN<0ei6ab1m*)Ph4(opqtRAzsrLqG{k!8u)C}PvnC&;MxA9VGCd8LYyYwbsb6oH z0NQ8v4f{{GH-qSd#A{7ZvH6z3DLzFL`uoKe=j|iz#mz?K9pogz$D~2ZSYM%^^({Y+ zcA^m!cgrOm(L9?xdwqIOoUBBZegoj)LD{|mmBmduggAi{r2NM3g8};WonuD+mU{zigR-zy4bs?*HTC>6Drc9P;l$!lw&4Y=@eWU!Z0=S}%ttF}t#X zUoihW6RK9a$K3GVI#~dPT#u#6q4c;!KDc_$*;S;^QkuC>GY1$++ zm)IB~BS{i<?&QGf~%OxzHs5a{I}c^WWWw2LIq3l+1W#gv*qoR| zqSv4TGju*C#9r!;a_6PoBdTej@kh*8r-4DDcK_^3ij`XzNi?<$yDUCF?4>}TSNRce zRpuZ_z=j*gx2~RRw3`m1FZ_mBp(H=2V~yk@C~jtNME_kT0FovA7_7Q>hfwV#_)f@c zbOKJ8agFH{!k6iIcX$!6MybuQ8OCC#sZ(C!D$MZieZ3w><;?CsI%jIR&R8-Il@e{w$&OV>R+q#KQwQHoh#jORc zkRl)=fkLMG)a37++cp>t9m#hG_-bK7+#8bPF^?uQlXm`@c^#EE$?r=G*f3BF^FB~O;mb9kMXG4d|mJ=12;LkLsz z*}r51!a7Y2<3Xu5?ovA0C7?U4#9QxD$+xSyz5lUK?^~R=v}XX{#O}^SK+n zQJ&x*N@?8NAkwku{ zt-|e+NEJ}8<9*iXaWs^ybaBX4kqQN~FTKIjO!mZ@6w>0{V-R>G5NQ9~7cCrRbe#7~j<}Y^dMGe{?l>*t5g5sLH?GK+uhnSk6ec=te7p{y2Qi z(c8W;lg~d+=!79o&S=buNYP-+WJ4+ltKM(e;R0&MY;^X%3zZ^#^=kLH zLDy?En4PA36&`sA22)2Gr%yE)lEciI5b|SKszN3&6)hseN#-=h=LvXAyZT1+pHu+MsyPisPolD@ngfPpxGxA#ZATwsH${AThN!nE_Ql zgg)D}H`_5~_K{loW0WowWS66LfQ1qRvef3%ZWmicD`pkxAA7>8jI{-+kE3IHtT$Dx zBE;fw{aMPw#+mgh;H=!r2CygazmQ@@!D3n9%>AlC22z+(b5cmdEh+*UfT zXo_KL$9NxFHjVmdT01Ogi)%beMqIV+uciMkPU6>n+$=G7{gdgACdgu$)%|!fF-oEK_xxR&&cUtQT{8i9oa(eW1 z)Jjkc3BiBdYYh+Mts8cBJG`(7i^RmY(P?93TchPdP<<|6redPBrv)$h*kNS69%6~R zsS=Ykg9jOKO#dKac4;Kd@5=b@1T!pD^+_AW_=)KgWub$?A7o2|Rq*{g!aeCO2ng*< zZGnc;B7*XVv4Dzj*{u$5utNSTTlUcLtXI`dxZgxGyIg7Fe-!%r!TuNa9^ql5-pdT) zHDmv*&?#$V;gs2@10UiIz0{9o25D z7<3{_`tl;J&TyyvruI;m-0btf|6o>m3`G&AV;~O$j|wEt8To%>Dex2L9kDEAJJ;!V zZ%AzOTQIrd!2BH_F@Nu=p)|ze>Hngn?r9?QI~*yk)wXs7Th{{|?zZx()wVvzp|$g! zO5Xg3+PuBCMKm~)Uuu)AP=#H1V^OF{U$_;k#sOnxh~RCcHPd{z`8k;W(oP<`-eO17 z9E@dUGqz2qn11-`1sR zN}E^km&9)BX3y4tN_sjvhcc|q{rY5~)FH0$B-+Sh?=>oCJa^(g+f=##*1X8p^w+1> z-0riCfZx=l@W}EBOt*A&{(Yx^Ml6z7*SymT|R-=xX6l zT{DDH(PcxdxjbVvJ4Wzv1t4XHyHBZ9)%0hy4z12#9Mg#=Lu_qWJ!@nG-C*^LFuQj- zZo#P=nVK9r!dm{%UaC4Y&d{)AeKEQ&EC#u|itPYYp}V}tGU3;^-;+v@{OYJ=k5fck z1Brr&m-4+H!z`N1ol^w|1l2Fb$MoGOsnU^JvY{Bqjwb2oEJ>74(Q3#u~EjvE3U-_$9Jv`9!K~(PsEu+ z-APgKJ3ZgE*tNU06(N_7B4|x^eujT?IIc>Fds7;kx?q=j_)6X`9&%*q=Z3{6%yb^h zhx!f7Sxh$11o2TpL`uHe8mwlK4uckcZixYTu^{v!FPw6vRPI8hrZ>L@BFEv3k4i}@ zw?M^@w|(V5wz;4;bO%e+EuWHFzVLEMEz=33x$fmdr#!tx2Jva{ksc6C1jqT$Bzi%tp0tf>9oqZaenSLU)Y8WxY3n)XovD zjii!))VDWyU^PKe{949c}h0qZ&u>z9B3s!XQ#wu@9y{7G+L0bxP{XSdd;H zr%&U{dO}cZvc9j0uB9uf}~5RtU5}3 zZo1p-y_6nXfS=%_i)PTM$wqe9hMwVaELAoz#l=!{Mr!VelYez)1!WR6S}p&p_i$Qt`Q<_;mQ$N$-XOwo zAblrKrppnUIuf2eQXFJ3j>A}jcw1>6zC&h^AYu^P`fc7NdSm%Qy-&Q`Jq{5E~^bYaVX?e0b~R(>$V z9~^o1A*<3dSuIny6FJd>FVk;y@75}F@GAQAE+2%X*D&!X;cu-=OuyY_)r2`88%NMS zzQ(=Z^A<^-o%j1vtU3(Bk)m*8Su+Lwc)my*xi#1MH)Ul&kEvqMj%iEa8>fIl2VZ3gGg(E`-1VkMZVpk4nfL)5N+8kRAq`Qmcr->d-XmdF7VL^#Z zO&TSaQf%yqa{;}C$_h-ImBBMNYD;BZm*a$9$MgX|HydbYedb>;6KorxOj~NWJLIpv z7Z5<)Y3}%E&Kb-RO8zU8xxx#^GGq7|e>4!Y&=Zhw!r-7da$`BDU@bAV`Y6(&BwrTt!yZfAX)Db~vuKVGllWa%8( z)cZ6Ny1#6zXu3zV-;CGeyPhPc+v(~bOOMt1W8KdHGCc^shsv2lWreO`?%^z@F&mh& z_dWg&-4b<-ZJ({mLqgOOXFg<)n1eOH`a*Pijr&P+{j7#WLBy54vfWvGb-|*X}4oHK}DxPWf6}R zvkd#;00@7*f1@SkE6jMDe(O=fY2RFEm}<-q7hfQ=G#edqK5EBz`s5&7?6x-nks|Mz z+fNnRr`A?nQ$hEBo<^zFZ?5G{v?cVViZ5aABt%KdtHbP;TzNHFg-n3PpIU?l(Z%{} zCJui(^gqwbA{dK3RDxKOHVBdxJXxx@c=x)ZgBVCAen#H!vDDrTloZ(Mo27f99L0o9 zR@8rOYAZ8;xT~Xmot;m$J?ZAhbZ8b6SYkh=e2eI8^3 zx_w=TlMQNZRlY{0`Jbbw+-BWDzl=T)XW6y)zr_C^sROH<(b>P4;oe1mR@c6NVR^wc z?O_k&{Viax;;G-D*Z@-K+qvgX_Qii~*(XhRJA0H5`?E6b(RiQ>lO@v97X5N1*pY^| zH?RTO7mESn>-W^!^aA^^2!5i}v8~EPtHc>Hm;SbpR;kuT)BU$~400qxM^~Ri%TGnd zaqSi0y0SGL?XzZc7#j9p^i-TtL*(KL>i^>HtD@rSx-B7S(BKXU?hxE1XmElBC%C)2 z1PBhngS)$HL2xbH-Q5c-q^a+}{rA12`=!U|zK`{C#;CK;UVHAj=A7&DPu(0~MF^|D zys1zZNUp?kTzf9rD*PDFoE6cA6RNH&N)iv=GobQXC5~s7c+w0m6POFfBJkc?>kQnL zZ>sm*h!!7$sd8-M4eZC?araD&ZWUX`Ulg7d0W=$uB&+gUCXk?Y;=G5ms+XderovUG zKMk19YV!XC_VZQxbnoX2*&|IXcc~2#UK90+oqO*i5wgNM@}oN@S?u=uaIR86?OgGitV> zQ04M-Nv~o-iyf`a=(dBE9PA$lc&RfCZZANrSfDtGjDx$XESWbr;AZ|z3|K?@>iDJO zFoGI*wwa=7ORQRVwIC&kK;%WbH z9=!uCj+XDjP;DBdTlh3feZ8y+uX&vw>~1RSe{1BdfFy-@w8va3G#&}P-O%QKao~Y% zS1G;P!9^BnTQZrn+D`lEBf{uA`Yv*LJQ#kjP5DUBh^!|yeZMX=tA710irRW7L0DS* zXdB^?82DW!(fTcep=m{*5vEW@bL1Ec5IfLD=~;I3jg`tBeT;oxQZ#o+(27Qs6~_#_ z-_evDz-nT*j^zfyj3Zm&UFly33tUH4IkVn9MtZ%o;%UsjeQ;qBv=mIS<4Le(o{_lC zSyWi>nZ!vg ztg;;|POUTo#2^cyC)DC3tDZ99U! z*SbR;aZi?6zs82cm?41=?_~Vlb+gppEjgQ=kzIkM%~nWoY*jUXI?FM~)v;f>(BVCy z^Xbxr8TqH;%NOF`7MQ3>gL5=0EY-1kxYxHYnFZU+>zI_z-f@|`o*G|o@KOexNdejo z&<_K9seV42kfyT{zvLhr6Y>V4~|lqsO@GMT5h$ozaY(UkN5e zTcj46fhK_6zq=!X(o@Vr_KRDBDb8M%yk-n>I88ZMlBnEo+z;SK&F|)RqFS=kQE9&= z_*U7&zYNza%Fiage`mJb3?8hG&YxP4-=FULAq`bRA7B1r=;Mt{Ig_1q%BAl7leO9sT&Q2Zf1o2 z>d5)6)<}+pE*N?Dk(!_%iMAk_0(T_2)tV)*vwz1CN0LC$UG zly*V<$CZLA^^hEEMzcQVN7HKGU%JT;?#RlaK%oV!cIcT=9gl%ThhH~{LPxQl?-?~Z ze7dvFK7BSZ?Vhc2dSkiIEt!4uI*geyzb9?AjTQz?g3nypl6k_HLIjW*rbKNXgq$K@ z>Ary4Dw!kD;i;^yo~IanettjmWh}nMDSu@D$5VI12=6%1>|Z358n7$P^_Ub%&HX)};VoOuQ^@`~ z>V40BCV9VcV$w&E{*McAH}dCCj*so+YG0nN?mYyXx>H;_2-$#54!eczP`j3xm0V?* zP1|3njC~SCSJgArnyC@j@Q9zA8npwa&K4U=MG4$cB8;)~)ghoU#vwBy>k=!#^C-Ag zdE3f;Z>g3+hU|l|Rm6>4BA-&~8m3A?i-XZ3p7e_)tlGgtivA;>4lEk3wyK){RMj3R zqD)d`J?$o`4#L897R_sAjS$((n#t~mZ<1ugI=7xZIDP!$v%aL6xIH2hA$|)SBwrw^ z%1p=MMxW_9VP@~_Xin#88Y(>IrHxspxUN&!Q18toyGA&G>{nu}3^G36X4?d38+m_W zTK3)OiE-6?mYs`AcC>e(TM3a~QQwqn9O*`Ft{_j1d`I6~%@lfLSRb?om^UGe@Q@Rp zj#yq*`)72B(@t2M*uNI9nt*;n-@yz;wKK%?I@i28AHQjdg&wN!DtrqWtDnwF@bQp) zB^y83t*JfK)IIjCpJP)5X zg{S8~8y7P)Hx`!N30l$ND#Dj?^R_+d6hyIf&+U zsM-LCd)xc#Bn4?gv~cVl=Chh(zq9pdkA;Y^fZYX8NOz@Gya5_ zZSBjGTcN0J*~fHn{-~%6V#-AcAg~}fckG%U>rnOjzbh+>wiU$a!cQM3K0v?y&H6Z9<4D5WTk zMoSkCR$~Q{&f`XW9CH14d&0lL@dhogFemGM&v*-f%yY6$#~_eraDH$rm!TZ~bN%n< zY=9Q!lusLh+MOW_-)sl0{LIQ3>AD0*=3>K+XUNgNMCUuE096y2kCl}J*Oz=a6CBz= zg^ni_)K6m}K_hIFb}b{{s~OPIo8Un?>WY22Cx1{i_hbV`?ebQ zqq4^7l2NzZ1Y_C_pF(f$57~LO*S5KAKjPMMP9AhM$uwA>ro^CG-`Yn@Gb}@eQV^=G ztGF8zuwRSxtMejABKj4Q_Gb4jHD?JN>mKFwr$&y~97v=G@=_GjoeD+Fkm8uwHrf?8 z+*0yca~$mL$9x;(snvlX~8EW(uO*Cj@Rh-shok4wkW|C8?T-EoSpqRN!0rIgz%q=MLCVN-PE@fX8gXZ<2OfUsh^eB+ zpx9yJt`LYb#9$$clQHT_YO#MPM*W2qdb&Pm zL6r!PY^T4KnZM4gb@nwKoGP%UJ1(8ItVJ5EcYh-NBQ%vE3qG-w&%8v+J^{eQP+fu zxew6$mBCG|L#ecG*xTuG+wUK9E7HscT64J64V^mrq#%e);PThGn^tW1%z`_$27zeEtQgBrX< zKuf9#*UnkWn}@eePDn~0MU*S1YS;eWb|M9{o!w6}`z%}Q$1;j0E4dtwX>?wJP6lU7)6_HPfTTR&1^cxfuT@>|K&gl_?>A9!bt(O=K}dl}-qcgC51tY7%#{m%^ zyZu}egUBb>&$mlI$q!Q_XJ8p7)*aX7@!pHgg62sPfLw-%a^b?fjZgBo;!YpT z^>K*wW%b{XbJ>}Fz`B7$KJNl!w76;KO#q7a%cZdT_UfMs&27K(B@f2gbc;U zG$b7ZbyK_p9edGn?2#Vtn(|8(;8;I95^i4CA}zaw2c#}%**!PfX=T#RbaZIz@xa`S zMI<^svgEir8G~?je^kRVF}SjJel)tQGodG%?jrVHsn7TnRDO+%Lqstjxn1>#M8#Yn z`gJP4kp=SVs-AxY%poZ5u=sk(6;oi{L&bV_;ga5ShM~;!Km#Fju34EH30L#C z*@zaUkhAfL0olXMPb&J+*@XSh#^6G5$Sac|Tt?nVe)d?qTgI`tYT-Ege#Fs1R$mXg z>|#85{aOcOKM99wAsKECX=&F0tSRm1_IFO#4!PUx7)ir==`MuleSX>lA$$@;U=BFA zLD>suxFvec74rnD3_a5>2pQv4P}gM%Rk2zU$74PGL@XicFkZ7j&455yd!=oQ>9-mK zjcR|G@|9UILI&u={LwBr+z%RZ+Aey}V!81dDn5mKSmX%#LaApu z0(D^@-f$R})cXA~OMNnv?(Sh~fC#hT^wVRNY#Zjq*SP5po{(9xK)gdwid#rFVU45&CXvWe@KhVQk|pe+!!3!Cwm~z#&~lf8^_$&E zbST7_{JIqPI}7-GBfhYB1=;mbBb ziaD7RsV>bmNpgBLI=);76#ds#8Ta4ZIu_?mIoIs8OF_jYD^WZhn&cL?y z#0tRW?ehYV)l(v?NulNm^a5`T>GvuSz1Fv1or5diFv;%*G^?a73t3&?|KVAi9HpTAZNLoRe$o5CYQz7FQ2hVyhhJOR=+meFDqQ#T zo)%9pXX9&pa*Bt$mG7WmZMf$9pMAYL;N3||82NZ=u-p|(vnYgwk{PCE58bsFG&QOJ z;<=yo>woFYV-hTAI>Hcg(!^0#e3yf20`^rY@5ohGBJuyI6yMWyJH8?;03yIF)qaBO z!hd(+j~BbS^Vm-@R9ZEp&;6MXNN6&OxGwXCh0Py}nm%O@6*N6?_2z6|2VB+aT?<2d z1dcz^RerDOHe}w4giXlN3+yA9a-$(0RxY-`)Z=cGC!;|eAYew|vb30i8po0XRkuW*x9}uNW!fLeZN=Z%f zCvVyUS?l5%ok_o4nGAGfn6`j5K^FbFy;35#)OKofV0~3Y-_DqnCOu;5xsZR1vC(j& zN?CZ_YC_!f<>@uxJioNc{VUj13-Ikov;X9+tS&UE?+~Nd+ zIGk@yFfjB&K{U46fzwB&VRGCluWnmk&-MVmgB4%j0;tY#n&P<;!=kQCj`e%}lRBKH zZ%C`+Z*=farmHSlqgUbr}$5JLb4MR6Yh#gW8ik5tfieOURwFXvI$Cq zR^F%d9+mD3el(DnJZ-}wumnpBtv~H*5Qr?OG|HcKJk|Y;)t#m)!cWLwrmpHGCI%N$ zr37_Wa}(}k)4=r)8iicuG3&wYGk9XUak}E8I3%peq>r8Mp@>Kt!Pd(SokWpR!B3*^ zZD?JUW0hL{NFs>}#_rI@MJ>SLs^j7i2I}R^{3bI(``iG{hb4a#g%Hj8&MB0-=n~ zB+uGSOlU`KM<=)S-)jw6ZzcvSD&b9-n^34inJOBK1nBbA9ROk6uJAtDAl?yG+L!FlNari0KBUQz5gf^%Q6>l#L<0uF(_d)nM8IPh5BZ9OF4L*p zS18FrRC{S=N^Q`GW+4$-jpJ~~DGRqq7`*xU`W%?FHgN0*U1OZK;e&!YOG-;JXK>@B zon!OvVTY!J{G~VKHRGtxc_*XSFH^;z7dtiTls=S41S6wGDSWv~S}q|1Np?AME`MlW zA`Tm>D_p%wfi3ju34E!z9mMi-uK$wJ-qb_t`%OAU3J9~4Ff471+8g*nWq8|Bw^)pM zUE;<|g{=NIt)z}lD%N1?&q-+me0g<;dYYo=C(+~CpuO#I1NjntCq6f*RK@AjtK)G(;zCBSG%4c`=y$%9$5-^ zMLcpUscby##el^0eLB+amm?(6ni$hJkxE4q-i#SXU&^YuOu?VA<3nGAo2RApCT2p3 zXJl08XF#CVO?P1j51d<()`_g;I5d@#qj=Ul2?hcZ*XuAoJi}5>>#O3#I|CE>9bj=`2r_k_F{|pzn_IOHAvJQ6?d$BhC zHx&|>sC*}ZbhN^4!9)cn^?;6{;Qc(8Vs@n~w`vwUy z=a=^Duo61dZ-O{wF2=4ct6%>h58sA~H6C!@R}5brEL=d(Ton@K!t4D?k>s@=mnOeI z*-)8+VO~>vK|J(Ga7fZbP15YE#F@j8-uq5Hp`Q&!f7qP#^cQSj5LUs$>rJNmSl$r9 z8EK!#c+P)1il+o_Rnavs!myUU4jbZxWB_Z=Cl$2Z_MDfu)hw=wR(GP;`+{+Q7ORAO z(OCU0!YLOguv$wJ4FIEE6YWLW*~!ssdXPo?lzc9~xHLH|UBeR2@xH$S&d_^LLBe8V zh+d}B+F@)tIc)5Fq=Wt+zKSQI;UO4yXb_&Qb45PNLo?^A}FAXWGYK_i;4o~FC<$Q{*g>Fm;k`r^11YkFhp%rN7L z9|~Jn2#}u%mxoF9K+=vU^4Su3@9N}dPB}TJsukLi?`>&up)^l9*W!oFjvxqnTKhZg zYL3Ue)_A#5LMrSpv^DzT@6voy@2P(00i)CtT-Q39B-V2tv=aVjYHANcGqwv04d&rMl7W{- zqwdMyti|qv^C0UIk^!>mLMCGoqbuJq8Y>i0mpi27XN4dFzoHdmP#DMZe;5C>i*Q%) zb+RYc3h%{5v-an|8+hj)F?LR*<4XtAWW;PVZ~Aif3QseGEz}kF1RPw-g=ZQ=$7iBZ z0P>@L$^#6rrJ=JCF;#cX?fBZ2bq+r4NJ2RDg+ONuph zj9}#0Ts>8(qly-GYdXq;Z>36a5FY*an{%DM^8O1?EXyBQr7P&qs zn68M%PqJqlhY(NFc+$`4A(E|=$h@FZI4k~zV5YHx&DAXZL+j4Z^XaIi|LEZ17-!M4 zPyPBCYqZu@;VrW4wGC2v`NZM<)8N@Xf9)v{o=gC#Y&vJ$wrjzmfQLmmFxWn~?7+h_oO17XZg zP8yuBOy&V4!^s}SigJtkl*&jUt?TG+E-(pJsmRGzbzMr{cmgBk*t?oyNNzgn0f%d2 zPKsq@EfPkX>0eAB`=hKMV;x2}_FmU$JGED6Vx@v)UFh-GVzqtXaYC%3W`ATA!I3&Wh2y6yGy7KgjJ$V`h0CJK zS4qXIT4d*P@euBqqByOykH}*BNr;Rd_MpxiNSUr8e)=3fZRX71ePPEc`(#g4uus;k z>T>UoLEU0KfGU(w3819Cyv2t1o|7>pvh8}-+CAkj-+`PK#BV|XDoctw!&Wf8BEbYV zSIb%6UY`0bYSgD>^pNRuZ9^K@JnOU3?57Ms*NnT@tMVG#4uitD>m(MjUjgxg5cpYW zX5784e%uja`2l(}NiOHPz%G8%Jk(cTedps*JZuVVD(=8lr+*m5iL@d!Bfy8xxtY%6 zkGu=*+EMVkyLA768E?IaqI$N@%I^W7=ds6%o^uWEGgV0 zQe0i)^or84fv2S<3+iag=}6Y;fq2ep$WW`{NY_DRR#HyxPs5kwu_kM_Zl&LxHf~zK zt|CoHt?)`9fb4EOgBiC0>tQA_Bz^rUy8~BWxIQzw^$b*=(4{o2!ynd!Qdd0e~x zf&P7e9gdnJSGq*a+5UMUH=zi?yL(Og8S$<4fcM8V7W}t16nMQ^|B$3Xi*o3_S5Ak# z6gp2~`QgiI--qs%l5vAhVP;}M#-Q@GXTdCIsxF*jrrmSTbp3U38nS+hUUlrCxI3zI}nwu&X2 zF^k15q#;s<|I?dE*Wo?kdH>KfcW1@&3dd)c-}-%*=vd)z~&;1--HEDuhAjpIEZD4rfRdZP=ntOu zi~~DM2Vjo?Rq(1M@x9gIgi| z@z)F}!$@Cf{ml!~(NX;{7(8-zD{ZCexG`lS#`-Y%r@)ac_?QOFubB|I<(UMM8%K=m z*!NmjJ5O$rK3PwHSXr_v=JYu{O%M76S~VGU^l+i~~UAXEGTN z{JpTa@=T9U5RIE++fB;$5mc^Xvr=#ti~o>7s!PWdtY*L#njrC~Y({Q@S67*LzEtU6 zdrdS^c1}VMtIcG-iC4;HctieL=H<6XQiNx=!+^=t!#C|>chTHbk<2`^SW0(CY$qae zHSrD^!2Vctsyijq0N|=rlS_=U=+;cPt8-WK8BH};@oPsT)JoDA|8I_O?=0_z*ONX8 zV?0sFuvLIDAvN9mE5rJX@BOp&M2lkvOu4Au8il9^#_a5D4XZI`u~yb3$|BG{Df9Qu z+1~xZ5F8&&->EtrD+Q*_8(!v(J)`TXA5@Llhq!2^kwF4*QM0}Ut@Lu{8P7E*>rl8y`!1>ma4_%<$&8E%GcR0 zYY7zKbA~YFY$c)NlsjCm#*VpRWqh%E#F0%WAcp66`!kRvFSdP8IzXzu<`1u;8~U0? zQk;XF3KQy`(?V^z`sN)OAOo6XZ)hXQo*^Qqb>IIt@=sb$>Z2#9w?3Q#Ez8>R|He>$ zt%F8q_~RjT3*X}BKaBcuUDI5c?4<#lC(nikT%IrgGyeq4tbkuHOc%efYB<>S7&9nG z7bHKSibkrcXj-S)dH&zi${&@s+no;y#rHcg1soShZn#-&6iTL)c1bC0v)nK_NKfGx zH8ae;4_3L04sZVjqKq581?r;lE>-S+uIau)!x-U$;3x{s|BwrQBro=VIZRWdyVMi# z1kfoeJd@KN)*-Pin|(AkpWKSA9R3egd8?*{O1cwl76n;zA3pj?|zcrBNH!?zBsqcQPNbSQA{8NIX-bM}>c z>hs5~D%!28pSbaXXz_urkUF}(niR3JA4^G9{_8qAn?%?w&p`(c^>gdi`_H=u)+K%{ zLdWd%9Lqwck9zNn7F&IT<5*RZ9+NbNqyu+F`*?2F#kT0iHN33%A#RD&Vn?Fw9%;V5 z8fr}|L361yj#WYCz>vp!?#vofgB^`hlTtg8F#4i^vPuMe$21#q7L=T)yf{L|8BJEB zJc0U3Gm4^psZM+J7I_k{`?ho6*H52AW~#nChPnZvPs`>HY11fYDm)$6G)JLOrn_LH z3x{a0zxmv>UNNK`;g#9hd4+kOPUI|m-3E=EK-i^nf_pV{~3X=tU$%dC-f*i+r z^ITKHhPaqhzt%~U3L?L8t02mCefe^>t?_8fvvw4LXP8io>~1I`}r$ByeZq5@&N_6W9<~I6e&&s-SlEo0XGaBL(&4jJP_LH zD#;Gr38Z`v>LmqE|1$uo>QM~_V43&5_37_q4}(Zn!a;6|P~?(+QD>)6HO6Qs1(DQu zyjV3qaBaOCd5T*m1FT()c;#Nr(sPSBC+tHpX5G7K z*XNawR2VxXmkvDXmjQ2Qx1DsvRLA$9?Pm%40zddglfy}+`8^OC%9yQ4-;cr`U+BJ` zp0>r&(=S-?A-s3@9oX$J2hOYj%N)f zmyVoRVZH0f^OO@RLR9OdP=Rl(ggQQ2OjM`Ne2e5ho_(Gz>SAN(FV{;7Fg{D&^3c`@ zTI5jcYW|G9nCRm@)BuSsd^#wB7PfJUy*}-DVWUE3mE-4$KAu$Ct9gui%Gaqz!t~Q8 z^A2q8DvK!1yzy7VJ#saf{kWAs9x@vKh&UG*v|Nt%=OYCu)+=Jm^DU{}i~q^u3}td; zkf(9X(CpX9{UY*t5q73MwlBX~7C|R`dE8ID#nAK*Cfk0Y%pK4(GmmzrixCdzd!%}2 z<5>nRcKJiRBvQHCW);*9!jMwuA+p>s5Fq`ibzQM06zi+j1a2#Gy;YLlvv>L`fc7sq$L`A<0L24TR53Y4IIz4$uKle*!wz zMwi&kIl$PoIfkR3ny_&^gKy5lX~(RVc%M)|J6w|W<--+k`xT)RBsSr7G)bn<&Fe$; z^UB|)WR|W+oq3(SHdy6zr`aXAF%h+wR@X-(gi3|h6M>}&5w-pn|)La zO39h|ntSkFG3d(#g!v-Q%NYMR-96nr>&F_K3s#s_MwBsMmemMW$16rkcDU>44n4rFsOVv+%G5jk*(!j&iTi;OHb=Xvw7sRQqbm? z#U^6=D_;rm^GJuMPbMYmc|j8byMCT&mjX(w{JN2Bat7+#*p*v~re3w7uUC#y&AmR~ zMbM@sEd4o-&-E;{hMwFQ(SV|4ce_cK z?B$TJHr<8)qIkecLAc?=3?rxq9nDsJ=kxM&;}0il$ix;OxMR~hxO4w=>GoS)(b8dJ z4n0s#I`GV#Q96F5wu9*AWh$U#FQ<4awT!d*nz|5DR$g!>4!$e$a&NE(fOIP;crgNQy?22Ex0Jv#Y+mBG+T9fjywp45+ z*O~AypqZDrZh;Bx*45#@%)FfC61TlD4%S{fy_Y!e zcQ_?3Qw-N`fi;rX7g5^%#kA{$6Am<}jJ_4of*lTnJS}${ZTF6Eh3RG2>@XaILb`S| znWt_NgQEsNhvf`BQS33KTpj@@sX7FW`t5O;SS-!R0CRFBj@o3f}`ywCG={Owr}QZ<`{4}S{Q}uB`R9)ko zfcwA@!S;ESQ1o<&TfWX%BQPi4k+y>pez*Pb$IDib!8pItq@NphFc;M;+3guSb+~WL ztB?T<9FB7JN8A%~R|yH>TylB1L_-)0u5cMVXgF9{IJ!W@DX+veuk%3vUxA3f5^N}b zg)i7v`n|Y0lBTDFm%zhcZ+4`(0(`ot&*#rZ$4AGCL8@S&~Z=&e>(x8=hSZ~fn&QcqW`fhi@#>w;(gE05?6Q>mGe${>i zqi;E`P0(RQnTcz3yVTvU}TfSBsSyHXkK_7aRJS;9JY zTxqx*)U?-*iAe+9l!9(t>Cils$}sh&CnhREp3^(qCF+35BV42W1|(jyjw^X#ZU})V zJL+}IuqrlQd{RWFj^)){)x%HIK_=P)bh$%Mb_>!Zs&#xUQIie>Kd?Eh_gWrY&Cx}u zG{@?>AMO%IV6Zwi>aHt)3R@xBw;gI=f&_K=;k93O=i@KRMoWLUdj7L8^qX`fbu#$s zvb!(hPkMJg(wZ__U7WRW8+cqBp_+$E=2RsTH_dGw0IFe^v zbDrvkzSPZ@4k~{%LN(-8z--ntg-?>H?6|Fy?3F0)u*68Ye_iljO%4r@`$J8hl<~#2 zcA*DQw-#zgk1+MvGwV&{7nqa8cTeufjD)5$&U^Wds62lRx%aQvhoKR+6}>Bh@&)o^ zuqXmX$wW}H)@}m2GY;e()rPLsA(U!J|HW5rAmepa>Mk7C- z&-Wk0qgH3XQDy<8^&_rkExJCa3V#>lGiP^?oL~Uy`0`tKe?zk29hLobreddiVft2D z<^nhiBr^+b?RtIE3k08diAKR1aA(U&6ik10X`YVxm8@n)^E+F5Ua&o3ps7X2{mC{O_k-je>LWrl8L^A6ZYaX-cj2o!&j;`N=*}4Jd!f6l`uqf1_uiUs z-9?43GaeUKSb<*}g}%4O;xP`mX|JtqesMPUxvuX=Q-U6`%gV4q-)H$_W*dv+K2A*}Bz+8rN8Lt$2>*cYh2Km`^aY+->K?$U5!bQWw!*=H&MP%l56 zYFDzNBMFlxween-bEGsC3l1~$URoaMH&97>E)RXmdM3(0s#hs ziYdXVcE5qGd^N_fHhATPK~8NBXP?K>ArNW`DY~bL(VpSL)y&~RKd~ zAHU~MB!2T(aZN^t=BKNl!Jmd@S#5*y zOABhrXDjJm-VXu}N3&4mkBf-8KVa}T`V1}DpiJ^L3JRSBTJDAt1+D?QMb;B@^wsny z>Q&?-w;zd>;PL!MBNyOU;tL3m?b@F+y8YHiG^*2m+t*g80?lJ~_dO+&49sH>jpIuq zkDMHz1u-fEw$8xp4vOKG@)vrT0q;>k`0VC*=ml6$+sIha2ie^rE80yyj}B_4v%HY^S>4OVJe)nngD+ z#idRMezD&6CU6rgMAoUcrjY&{!1re0g+1ukL!##r8d7 zp#tYBhx!kGZk0mn(F?&WO~Y+Fiymr7S{6t$UT;Tmg?cNS7bOIKex_`)<~lrUCg`Xy7h?lWscz24xyIPhvM}P`JXX=493f z#ap0gjxjZ|5ROg8EFxfuhoss}PJY)w2k)y0 ztcqFMYWD)iU1yAxW0P~A}UFo-_K(`}wX&nog z$s{s6ZlMY4bk^$+6F^T`jn+->)`#tnPKpTS>djM9Xv!I3fR|eX#jJqdvS6_*H$GS) zYfa32b;5yDc5vI+p00hnDC53p+E}EW;SGN8w$6A~L#>}oW@e`pS7ydtnyl@`j?_RO z4f+!wS2wE`AO(buyvupEN_Qo1d+4caH>=I&pOH<@Ps{#!X?;<4{}27?|MXi+@4d0E z^p+gb68h5e%Y67T0d3Q)k7}Va@u*Y3jhYzd;D=6fjr110$dGLMl=tbqhtEm7IegHK&{S# z;ogc?k|{A=PevIiDx0YIjW_ayr-w%>(JVU=p9B@i=YMs%$|*TA0HNK4xT$8xZKN`5 z?+q<5a3*Na!1MuDO1>BJPA5L7tQ8~?ZeuKxkGcE8ZfB40_oBgM&)oSGDxbuqR%Br! z5yBfjQC!FFo8oc1p1uukL>3NqVd!>ebF6ApKySWvHO%nq`zX_aySrr;t>ehw00ia>oj%cT%4hu6eZl~0~A3f~AZRF(| z4F5q)yv|iKy+bDHQGO;K98;niSID2@Ge`0Gxn24!-R^@r_Pf1U^+AtJQOcs2r<5ce z#KIS`(7|4?H2S>9>Jw}9+YV!K-8}BswH!n-U)rqKg{}uG%QLJ)?J~GTFt2B!%vmZr zR8~yK9rWro(q<1%{wnyLn2SI&7a@+Lk^FB(C4|CL++{lDcZC|d zE$d%vMh)s7_F#IHgI>Jjinwc*2%O!&*;zZSLmcy@bh2zE{=Q1h-oNTb?p*EwAUyB= zoij@Zw)G`4^t!_rWJjaCw`;tFvJBvlKiO@ja zeE%{JbT?#;GSMbSwM2-vNhsH(rC%QcgJ@YCldO9*{0 zc9X|?21t7{`7JI?Ye& zbJ24Cc|K2utQ@$65EV1^VQXG_wMGt4b&fa#d0V%7-N_;`<0K;td?(DKw)XRR>#OcS z{aN4?V};LgMMx-&GKROQ;aeT{CM(%ufd|;L40Sk5T;eKO0;B2WdEaG~@T>Zkv<6rT zmLHP<-kWBi5;!C`1zNT@IJ*qWtSl&g=3<)_@z6TmbBpVJo)}XP80vsj_1wg5w7);9 zSAP_JzP-XN&PIq&qOuOSZdvB<5LRfPLO2oPJrm6^jrI+Ae(1D{ai=iU({DE3JQ{e6=O=`Q#X-vB-XTuFeB~K(R4_c-r{*#5Ig0l#MF0Lkh9CGk4f{pzB%gcY3oltw@F(B zDa$#{&-s+awbIL#EXWR4FapGp{31Rxcz%2F;nP+<_1Z8u)R~bC1&q!TsB9tj%NtvRePjM$7rP?%?ykQ_xH3lsVbrH=bpG%#KjS zbT2pvuhD8i2P6H!=qJj3q5Pit3I%p^c!j&I8URZ*3m7~nEPUj7M*8y8rZ-4Y+h54h z+cA1W5c_=4h&kLlI0qdtmm${~XgTz?lny-p9~f%u`1B65A47=CFsJrVAVf%>^TGKH zzjXf2PU|ik6Gj-ioKR$%lAphAhAI07W<0;wvU_Bfqp>k~^y%R>KnR9$e)xH$9q*&( zaXi^`FfP7fyNho=7ul@T$(ndDLXe(d5XBD`)IK|HUs}hqfT`i@ku=?(p|h2<0YQP; zVe9Bbqc~EDH%=-pIsXX#_&FO8JSjft7CPNNL^w`tY;hKe;Hsrp)v^`31?Yiwq?dlf z^i_EL;P|01(Vt`@wEjf0E6b>{^L4b_AX^sPi;DWXukiuW9k2u3t)cMtWA8U))hjo5>Sz#Jc;P;%<>h={s~D~2W^^Y9$HhHN3YO%jleC* zL*rPK=&2$V^iTGWb~o!KCEr-lUom+lFDqC*ACq_Pn{}=~&P#X~@iyr~$rl($iIqUp z8+Dej3o$?_Jq^8A>}C)Lrjd|%*sLDHm_1`lJvnJ&Z3LB6XhL`ONt+;O5oO2jC|!M< zRPfUHS6J%&BgLz_lE2QAB#Hn(#z9RPo;;t~@OtanCrEd2T_`Mtsg{5)J_*nvIE`6f z`)e`T)GFKiUMojoQ;>D$8{fK_oMbn2-ou!sUAK<*-s86;Og5FZhp#bn{-*Z(ooAt@ zs-z^gT(P5&ISVuy=_=brQK|#78dHrmBKqkd25B#16J}Z73^}~OoR-2Ic}bE7VJCqY z^-+Xtf9;T8$Yg8>dY0_9nf|!d-;Q0UKhm#&Y#n#3Ab(advD4MF?gK$v$lN?)SipEu zt7$j9TEeVkmLEA8oaE{^_QNvaSS*lk!K?=czJ8&(mF~7kqa1_LOe(T7j@0t`Id=|+ z>j8h&3p50hrC$oJkd4KkONAS_aBbf6}3Z88_S(x733MW8!%P{9Pk8K(q zw*ZeXrk9z6*v9zk@0snm(iYHv`R%ozVL7IWo#XWvLs$kQg`INHhJd{|!XZg9!I8L!wL zY6JbQXTEPdgVsKfcDMCW6iYJ)yJyi9(;So;$r7WG-TnzYSX->aT7pv~rHvYQa$`Du z_&<1i%b>Wrb!#+16EwI(aCdhLArLgUI|O$ccL^Tc-Q69!k>KtQ!QI`z?)TI__w2iW z+^X;1`~B^%TD4}aDPxXjJYzTt=||ays!b7!*EZ|s-y~BcBOIwoeQ%fes;n%&TxkwD zggV-I8U=Sm3jdB}nXUNv_qpq4Jf5Ntp_+geP0OL@+_yBw;;dt6o?MnrteC13d5Xh= z`Tic%uXKj_S+L}|c!qa+7|X?QfeIhMl6-J7Kyzj*UT{QA3MtCbR}oaAR)FsnhqO() z%@f-z41@K!P{%~lFYBX0#RIPobE+B3P3?y<3QD7l3uMry?Kl2$^JFpjHO6g~FA&X^ zckNOaED8N@3v$6~sUuk2v;rdLmGvO8y2QD}VjX=!rZXksYZyf;+Lj}BtS*ORO(vX0 z|NZJ-BAjl`uFamp={hwssR+RHVKfC~)^U%@UPDuU)4jO*x;=rzvgUwN;Vk5zZcf5B zjX>7vPEA>Dgou&jT>j|0x7>M{&d64EK;C`(g8A`j0%=aFC?icn@mCpw-AT$FIA*|E z|Ab{P<3l9oA9z&d?J*O-146BuRtZ$|7Fuh{){<;h8H8UyRsyJ-bZ!76J}?#=zkRZz z=%Bg}dt^PS5(BdraohsIR(ac&=PH8*5NwfEWv0948d&_P17mDAN8f&ZM|$X!WNgq= z_+Ti#XvyHYbu%s^326*F^?V1kbGfsRLQ|7xGbElzJG_!(HC;Q;*p3kC6mg1g(he}?)S z6~vafk!h=OkzNj`KsQJ}tCrOxSxIeSyyKxT%CP7-9%pd6adDhsU!;W48sirOpx8$qbbEYR57}yKKPfZ4INw)@El6DzGpevbSU142(9^9d zZA3$w*%>PKI~60^oSJi_a+E`kNDiC;d>7&B`vtS~qngr*Ob_c#;DNlwPu3aOmPDIk zh0J@OBIYJgLZ|waf$)568Dw?sh44ni9qZels+k}~Q0WdnP4B+a1g$nCuJ)d)Vl1FT zZ4pZ;0Bp0?uv$N2&Th4e*l==4$UL$y$5Fk$O}L%BSX3+6^4&JxY}kUE{9J8>{%0KV z{|g)Rm_pDhxSj0xzhxyC3Ih)S>E)N!eE~E0QiPtmH5EpMG#(tF{w8l9av9B~%JIp> zX1n~@y_wZ5hF2_*!^p zv*q^1(qHt;Az6lAD7ybdQQ4+mz}T85LeX?B3%NmcUsl1|8-r-*u+7Y@+2?yW4g!P7 zW@gdi^oveKx5ZWA_Yd3|57W1?nRaSO2D&a&{HwPCeGN`Mt|lC%z?H;|CtY}GJ*LAM zVxK^&*9!E9#E-yla0l{ODVO{KZ@{D~{Re9o6~eY~ngBmRLhMZ3$NKew z{dp?os;3q$!>RWZAO$E;>RFEKL6>nRQzWZO2FVH;!JEE>s%ejMg&?R5oig zNRBaHvcr8AD3vbE8t~ zx%EFtNB#T)o3p>**>m7r*U8hWMkPjv0UN!W0K`*-`_AKRCclaxusUacclwhP0?HgO zf6YCR{CY`v4(lTg&fz;bGQFu&ShWJ$${O+FP8OYlGI()XuspgDeH1Kp;Z5=-sN#o}Sr+3j|M-($beZQ~(NbKlyLg!XflqB&+=sq9DAsN;6_;3~ zXBilb4g%UX4_yClPu z(V!GOcM*j1f8G{K^Zcr09^lvc?DkJ8Um5En7D39l#rme|;oFZtMaTPWbv^tLLL5Z9 zUPATL@$t16Vj`hJw{shYQTdv$S<)~<0L+imCof91rd7@((@~9TJP_10WfY(1u>>FA}wWKuF{6FD^$kZN2$&s zd>!Yl6NEkb{UW9A+@cSatYrNxR%J$BrmH`^Kl+l*PdIgVm6H?L%Xf<72u_j-7{3S3 z7Czsi8Hev*0_0K_W}aO%7)u-lhxUF3o&tnF?xNwW0uV!DE+{&@^dl*8br!+x7Tmwt zy~djjx^*YweHiRAbVG&$@w_7|jE|8#?(NO)S4_xb(wZ-FjBNP##S#*FZEzH^r{?eS zZrPG)8QYRLKakDt=iXOWktNqvf*YUXz9fp98m&c{WUmULQ(c=FT85N$k$vF+r`879 zMs8;FcMsrfJaZX|U^)qHL~MDGE2{1_GDS<0$ixxo6_wvev{wEZYvgcak#C=8nV7!?dS)+}px96|4EClrv%n`K+opT$MW zASQqMa)>K~?HdA&sGFWQ-&pE-s=yWO1J??!NPQtI6Be>)g{xo`;+PVOlcp+HQhVc2%T zr2ZV&lQxrk5kEvj1h|F@zjLMq<-U(?Oh3-O`sUxl>2fooA}}yBR_;EL3^CtcucKJ$ zp215gYk5S;V1!x~v3t3}c%e~=5UOE*K~Q&4A;qp^Ce`h?Kkl0M!0`A3-x{`DdhVoH z*Et}L%JO1ce8#^2C3QhpR96^cTL&Dqbk{0ooO+lK9P)XFg#)mjl^#ve3_V~e+g{-_ za7SX$_eXtpU+v~5RrTm(W1B$S!Ic=9V8R0DIVU^y6&%!A|0YCNNHFg3g^&z6JM`mD zS`=Cqrz2rmomKW9&mS>E((CIblH~KBITtDDj`HEU$&}mAX2X0{behU;Q(?MgqxREx z8=$^>d%iljV{ayKSY?usiQg`Cn-O_uUIP_iFLcj%$*~Ll-J}-(HrEPG(T~BVW`x6X z+M3CJ3&w(ym#-lBaS6j&)^uT3L+(!{VP9Uz_*=o@cZ3;pHtrPVm)bH(8j|3by;{eVR7n}2ve;cjfs;l6 zH`;G>w51jG?G>iCZe9D=Qh0V!k4MXH7F2?!Wrr{?3Lwhj2P3l#)oBqXtV+q|m{jyb z|J*^q)JEjbNaXIG&o7AXH~-}Q@;3yxQipF4_a8NikU2n2Z<}ltKnYwsrPFnKq0C$@ zPzz=i^%%Y+YQ%vmpl9n_)!Ss?up=nP{l|3Rb~wB3SBDAiP}jWY?RPOCH=Z^NONCd9 z1;J%Ly@M-a1^IYPq+Rna6G6vbS0}vUyJaM~A!qTbQvMJWiGZ_^`N^1MY#OqT;C3Ea9bW2)J~|Pk0Q`Cj4X>8>y7>VdiT8h$YhI0xPZrQmmLK5~7Z+`@}si z`1Z+W1-kUJ&*D6ePW8>bAz*yb2I|Rf7Q2Lm$JXllkNe>#nmK|pjidYQhLw$;@R-n9 zWu0w0gCp&g6@3buFnBqxTZy+60?wm15SPoM^urT$Gbg3an*&cE)YH(-U;+rOIqjMg#?u|B$np>VDW zH^4+>+mckW?0$~+C~!S})kj`1V;+uJLI5J(g9e7&zGFl77w zRN)EmZ|uA1N^5{B{y{#8$&}e+1L+we+ z=CWG(YhdGk=21JoOX%MzD!YyH+rXDr%ef^Te-qD-ot9x4O~o#cdD6h7 z54k``f37HBgO1j3JnZNXWChdML!eF({T$KTX8hElvvPNqt$%_|7d4smKpJ?oMeBdy zQZnF2xdu*4SLBqR?FfZeYS1ItAJPg6;1sLn{v7w}sfnxsfT})ftZWZF7`cshzPHuY z^0(7o%K0+DrItjbb$wLfW_s(2Tt2fuOa-?6VG{neZ1Npitf{_XD(|V_2%-WW3cq~W zu7vq<4;o2TY$0KYn(}&4_4@X>F!-ik3Nvz(5bi>K`qlL3R;hC|7v%CJJc?_1l@@B% z@LLCge^rEly(H;0HQXUab{y`EDxg=7VkV^?O8&`o$##$az2(;-X=`pl3L?WkpmrJZ z?(-HeVO#U>hI!Y$@eJd97I3W*mMceRR%~F2%PhI*8@7|$cZrUzX@yHGgAxl}5_N>h zzOe%AUr8?B=2Neq%4eI5rfs~xQz{Pw@NXu&gWX3eOk=dS?93bkG*Jt3nU82OsjOQY7I`{5KD|K=#QvT^l`Vz+-mU zVYMkucNdIYZOU7Lmv2H}jZxRV-{J%bdOodQJPb_I2I$|`6ALsmLJ#&Fo;{7H!%|LH z&ut&r+{+1GJ!gJFDSqkbQu7b``^01*_p+Iw-|=X-YBMenXddNdK=>U(r>GJA6h5vB zKYtokjh4glbKcwTC=X9V)6pt8Mi=pOC?_D6Lh6KWk^;oPd=cU8P&6E(-SD&WbTjni zE^cvjza?4?6G=P2B`P9;ELhq}G{6{h$i<)2gIIJ@4TU(D%IJ>zcU|6yXAK{k{G?s; zhAb`v#GO}2gVbiT(NT%m+%=Ixipl|NVOi9PfgYMtKe9H4rOUABNJDTIdYTC0G~9b} zPhHA0&U$V{%{S*~{LWl?`f9$!ZwVE*n(2Kt5#HMM451}Lq0Bx6X*(`y!+nR>7!obG12%rx#ohuJjb1vRkoad6++THtEHTiX_ zgbyzjjzFbU+?v<}H6E(g|&Y89K1LcX;lPBJ`K_w{tY zIPKN6sEQ9;`g0AUYLo+)T-~xLvJxAs0II#s;tfR~y{-a@bXHc@!r^3d2@rHmic_o> zSE;;WA27%m)cfQz2${cS6bLx7iop$X1HU4N5EWW9bja*us`%YH~FiA*0(?OD5^kORL$jruXw10M5hZ;r%S=BLn{~we@0p)pziKr0T)iZ|O zt9pn>&n_y~*FRi|TNcfgOiw5zES9+*Q$bRVBehG*ezrE-mnGO&Z9M&3F%SB~xKAR= z{1Lj|kvvka@Y&-PrJ(mu7c@oYM9*95uFL2DwwhW4TTQ)pZZG4WyWsE~lGwse(9{2Y zs^IVtz;qbR-Zy^I76xp&q8<-R^-p3Z067(Ty@Dasc#80hRaLUddgABbcy|>%`ozHk zJ$+_+wRITm~11EScJFH9;YDA`)<11-0g_gAX}aj*h8G9rP+Kgt&k$*@BG(oTVyJ7caw9c?Ak&(Pq5YhA5E z_4JD9%W9jW>U0w<$16(PWr(Fh!U=Dm%=Ej}{e>S#e&jT(I?my0Pk2A6LGxqU7sv^N z?aXCJyM{j}{ruOSdW)|f|5)Fqw_h&y%tzX3d7P0Mve$BH^PPZAFO7N(%%ByBl!3!5 z(}>p_)mL}B>t8RJ9NUsal|(GDwl(Y3(RZXK^@!K9Lj9V?jV$)m^32~_iXO)!Ao@TL z9PeeOCajN}(vq9V_$=3gO>)L>8p>Cr*7lDF$bGLG-=iHpzjiSfkzgAQWuG}URdZU1 zF4j(&2vbh6*zwz@1RY`t?Ag)&6{dwy342;PZA}-jv0N*>)I&Fz^^unKg;kDXv!cjl zNpvszxGtls?q5GVWY%#oS;fB(Flu^^q3@%4Y$0X+yb2Sbmx)Nc(fsSNz)dky_y%In zH!`Ob8O-uqa@9HYdl2A`VxmUiU9m%)^QY>wpyT8AyG{ z$5YX?)0xy*ok8srkP$vLQ$D;hii}Rh@JAKCnr|14u*=galJQfAeTFjD$G#@5Ts5J{ z&mO%aKx0bs2{jZN>*Lkn+TkUMC&tE45CoPb<5FBmNv`#qyN)IJ_iOJVEBRO{F^ha)M=GPbKT=0dM$-<^x5U%wGA;rz zpm2AhUik&usAN1j%7z62L@RacJOZgJnECJ$6Suu@L7(dDNQoA;OgVgH8i3j{KRb#{ zSM@bt=UFycm(NFDZ5Z0des`6F8cF$GJT>Y^gq90FZX`dj;uAn3D(<+n^2ykj&f{JM zD{YUiTwG2nEy!IN{U`K1gQ2>-Vx^b7Rt@8VT95=`sSb<%C2eKNYtPpuHsXVZO zkL-FTYoPyXhaOuXY)kut5avpaEo48W?b~kaOWkrQlnlS5Z5;)CzLym*U{j8{%goYJ zl44{&HH1K8`XD6H7|Yk2Y`%K;H-$7ijESC-W9L$y&rOQvC-m)Y7;HX9Sj(+B#7(;0 zZ`&18+PD}nrlsZX@@AiZAS0ThGNVK8?91WJ9@gd}_?%l~v-HuT%wS9Y5egK{Xl=ra zmwQBpB%T2Dagi^2JRJ=nJwk>pmDe!Jv`<&NlZ#Rj_ALEk{@f-!q;7XjCEW5t5D?+x z*$;YqF`%$SNsjFJ2_t?m{dc6oL%~kGWWTG|SzqPk4bRE}cH>U?gTuTwG(BnEL)n?t z7n>`K*8Q=MbAzUlDo)s&(t6Cd@#tW|647!D>aezgUZ`ur+~o#GhE;0YXi`hl zOH>^c-^~nrRUJKC(Wdqec^GZ@qcl~?D^8ohfg561&SB#637pVIoJ!JKZik!s1qdPj zY^R4&(fIz0D&PFIduxEkV>;(O_1UPNRlGk zq%FGY&hcG4PYksk49f92@_ub1YBja+(Q7S05p7k7@3*9>es3g($6~(Z+be@7q}+~LhCTOnAMx@t<@v}Y z{7B>+t}IH+j$ehj*eUt6nSQuP2N|h{oY;ll*NsAZN8^K3achNCc{cecAtmp5YO z*@r@JRxd6v+|K5HdUtN_Z+HD$yKF&aObEon_;vJWXOPdjmx1tR z0)TO`)N^2v!hDDIhZJz+43%!nF1{VFk?rmi>b-6VEgm%{g?uZRtvjy65Xc;0><0l!~$hN78`t`tqcG+8|rV zO7%MiLHC0QC5XlzSs`L))s5UN=gM@D6gXg#oqD^UwELwqS523~Qydw*zCgL#a#DJ5 zR*A=2-8c`p%860aD;qWoRoE>WE=ljhRQ_lQ>>$?P`uyR!<5m!7gh%Y{uv28vJA6Kj$l+eU4Mb|BJb5rs@5uNU z>9ji#L6l+=ZtpTMJY0K83V}=&k2M4jBL=E%ueAl&ufk|?PwV=xIumc*RwSU?V_sAK zjm^vFG?zoR>v@_;osEScQ}IX*0&l_lIDNO*fBBmegZ<4feOp~w_yI@A0xJgs$y*m6 z0}9ubL!ySZQWnyGu{TtSB$WiW7BEYhl#tv>*@emI)@vHxthpYGn;%PtkI=-)S{`iaUr#CJ5T7<2m)VEF<+;o#8BW;~); zqd!^X+;Mb%sdPO{RNi+h@v{g>mFq2uR3u z<$Sn~JfoXm-;`W@J%Xk##PYqZ=&NK^g4(Imi%cljje0GQ$4So%nLI|zzSJ2AgplOB zJ+<4loFB9v^UjO{h<;9=@Bo3jp`|$M!0|gy7(p6iJ6mxkX~K$e$9aZ#UI@;v{b_RX z$i%qn8^@tJai&2}_2b!G&L{OHyU~y{oOcrk=k=3B;D-O_0%YXulP%Ru7kW6A>DE~H zqICF|E9a^^JWGXk3){zp8_jGzzMK?Sewc!#6t2tkTin>^M^_teXyN$GlQZ(^}W^L)F+x(SsLeLOPJ-RYG z|F2A((~QPMBH=!dW13jPOYuB;6j)-(_&klS*CeGQk>2GT(4Iqyiywx2=4}vsI1T4m zvBl+UfB31QjEex)W7)`U6UEQlYdNTeoLLdU{w2_QBfH{9!>^rF(b?W&6Epq_$XJgA zw&xmU#B&e1#ZSHhCgwP~M;6*(RfZ0n8QEQY4U%gvC$@yPJxYN4zxSbDZVn48pb2Si zXBn3AuQ0^jm0wENxMt|iY-czlA-V;2$y1HWypiAKS=HoyqFD9F6{ii1OU1FW3^uY2 zFnQG;Cmp}(2Xtb}%i` z!tMg+AE7HKxib=ILNDXp45ttrA!BW#K*ss1M(R~qebySwHxZxSR@SkkpfO?oLL~?n zk=31NV$?m5$@%8Qo#@9)Z|AV?=P}SqKJyx!iSpQLF#b0ik49-N!3fXDBuZA}suliJKHwFBb#Gk&kjgwG>^u!z{Y_Oat0NwbeJ$M?vjSe={k+HYHu zh54RoO@KJ$8XK?c=qR>}BXN45@y*w%C*r^Z?xa)QTfWEnjTCbV!wlwiAL2&_8U%5F z;(_ON#O{s%h!@bu({eSkrWjB1UF&qX15ZY;?0bb);pdZyF!V@E=1!!A#?Qx_Hu<6H z>)o!6SP_@8W#M^iqXHO65}oYnRP%v||kN;#nG#Iry{AJ$Smu z&{EID>=4acnKpm8&PxEd3z_HCKMEFLm?7^jU6E)bLL^p`yLuVOF1MjM7wPNf( zna@4HR6(0(`>d`MA7%J%N}v}6hf3@7Cc5hJ(?so`zoz3MV^n!=$;K*WAfQb@5CPZd zJD;8B==InU2bI3u1ojtz@o@-FVI`sUrSUBTD8hlJ9ri*dFZiRy z0r3h4`@nIVGB>qq^zwQQ_fQ;7w8??ITCVaB<>Cd*J69>cQbbaU8>FPYQ^oi3I1#O=doFJ{gMxH=+Pv9>fX^+J2_{Hi1(dz79QRD9klK(g7ro! zel|=i52`XN+P-hnr1l|XkHcWZ>6oACroP+=PJ6-9SERSh*pv7i&#Zl-YRp+2*pv5+ z7QNBQcYZQ?RFLf%U2lQhw3(@X(wX7$l8qTuCeEznO5qu^wn7hSZvnk|t;rDv5%jwr zQq?FZ?A0}>g=luCJsGV<6uKxN`)M`Es&+eE^%^Av^JRyba*&|R1fHznsmb@+`8lA0 zrmzN)o30VZN`uHCuXe3^#_*N>*iw&MzOoJut9jQTKUpB1oeyR@WhuKgfM)S;Q*$9F z|98iO55-ATKRi**dalpihKaECM0;B_vED}fwpubZdiw_#@NUnwoKDj<>pRg7m(vGXnSCSru@n;aj&u)A?8hmxIH6zk6F{&q8C?dH%3$7OubZ z)bly*{^Qa4TWwq*lt-HbGe@OF7f!`dTafb%t$Ze`3Sn9GjbP)AIWtW@_1|&N|F!_? zz?M5EML0i{Bj*1SKpjNeJ`z!vJ^!95kLC{|>ehR~pp34Oyz=loy5sJCrYOCiI$}|F z;7H(;8AAhC?iNcDi&#(CA~ciey@c8Bz&U%b|H|2;{;DKu9Li4!pN!5OIG+QuX;R(F z=l=z2WMUcNg~04>|(PUDwB`bx(6R_p+8Pe;tKRK?V$BXnv>ru{fMCew2w(Zz46 zb%xfEtsrYlJHX3>-CvTK?rVEh&qQ*E!^{npGV^P?t70vtQ$t@u7Sn7lNB;38->Az( zKvjCp+c^^Dt(oUnN=p_6BewW_=1{7h2g4l83`koP!(%*AU8F9lGArrN^7#)Oz~9KR z8XCo=Eft+jR<7zt@8=eGez=$6AvM({<5G|=wHNF_`tB=$&3ci(#350!2 z!#8MS45e{7wR>uO`LG{OQpDL$lRZLdrxXl_C)!E;`bg64A5BGS54s0Rb~WI-^V^mx z1(21V{Q;eoF~av)tR^ilbH;$^b|;i~vh+XbCLYZKgL27X2a)>zSp2Lw8P7<8S8#cJ zsy8VUf>dQwNX*iAEPj5yEEt#-&n(2nH~+o3>WMkKY_UE%YV~fbMdit#ByWIKCs?+Q zvr}Q*LHcSn#Ge=5672urKS#1?dMysSgTo{#B_j_h8>v}6--}Ga&{{Y0p$0PhQc--K zR~QjfakcQc0l2XMskqj^+lbv_%fIjp^XuoI?enPP1Zg9;BnTQHXKS?_b+}Ug`tkZ> zCz;wFy!m;S?LgxreE$u!sP<=eU;0zHi@9tfUzJm8v!ArH0XA^pUA7w-`KS>*?8ztJ zD6?{wGR`^;uaN}$JO9F-o#Y)IvAPt!sR*Pu!NI>+rE`UCrv~{XMc?44bcoR7iXXgwvu5A-A=(>8*k}~L_GnwjVt4|nrSZP%8 zo5kcmihggJ7N6~0Qjg4plY%aai70{7$_oCFq2PB%bEc>)%m<_HDYwuEJ5nz295{Y> z>fDP5Gx+%zk^qildYG--el^7`5P6ok<@bhTNEzCj`V94CWqv^8(v``&g6HSjvZRl; z^jC=~{F(#Jr>=;&@iG)7Q47PBT7mZ{ELpHH@N>G7LoX6>_ZT*QF`kxj$%ls9n&a(Q z#XQmAB_TYcHm;fPf4r?0y{cB~+gE;XHNqy@a{RZ{I%M8&kyALTi``Gq5+GyuNW`+P z_Jk>aB6)e$z6C1H0#_E8Gd7-ZHDE(WsZmcMclkFbTp?fp#v=RD=m=K7sGh2v>|*tM z6K-7i0|d#=)JFU3Kx*OG6&{CW^*nt>WzI5KT+)sSYVs46j^MCzfX4$KwH04eb+{5lU=LPuJm|?!l zoybZBGjHA;OFZSC254*wTZbKM=6kNF-{i7{gNJ(NX{x&$!jX?^hUb$Wgju5X?i= zFyk6H5n_60ktkY_UBTzStG(1_uZ&f08%0(3lt}u8YIo7DOR`$q$F9iT>dSRuWTCb2 zz&Y~mxj2rc#ma;zh2_b;=P(}&v@-Xpj2Wr*1#1y>k+!Im2c1fBf9KtP_QIPp#|HNlWweJD5FFz^eS z+PTbQq859x7Bg9tOH`*(f&T+(1-e2~KA(r_%tnqvi(HZtZZRx~51NRHG~2b-FL&?< z*uKH6IRp=ETiMqQXxUhSz0>Teau;7<_eZ;BMnWM58i(^5g~XP1{JokINDT11X2x-2xo&XoDD z%n?f^GiaS|RrbD17|Qz1NgTzmx;C0_@lR?wb2=<)W>d&w<|Gs4xqm5_dQIIrnkwgr z(3<~nHqBl%y=7{)dDoMBe;?~TargMRtPdW4DAE&~?zd6>8-Ug&gtRB0g`&k?$XjVY6a&#QRVGv zZODNp_FOQm3i#BbGqw{f!yYVMnc+qIggv_jFVM|L)V0u98^SjgDHd6X8s)8>o#c9k zuXXCXStWIqlpN_hR>sP6x$?kTvnOO->Q zfbFY$4S@a(l z06JZ1A&!_wu3EORB{!?s(`#cZ^f5(e$Ki$ zV~i@SdATTt|68-A(`$6v9QUwofL2JJXjYBcD=yR#I!>|`u-ay0Y{F4v=uYJqb26gd z@SUi|qc$MZIt$gkpgSP45kpJ-WxOok+Z@6OMpiMbf94Bw3Xqx0vmrv_bf1%ny_Rs6 za_N@@eqiavO8PZVC|TYEGcER5&0n%(TI%|ZpB2G0WMwsBJU&aiNf^pp(Srr z6^=HOTuVKFx2u`rgkHRS+uuA*V(#?GQsGLf-?>R|P6@BV_L@4YS*ky60VG~?e0#d6 zHXt|V)98R%k9l$r8TKLt7JQBa^r(O;Oa9cF3-Bl zoY;AT{11)V)ofN!c?zs+?bPpEJa5rz$w?tk1339fQS-&D5_uiGBr>*5W&}}MXWn6I#AU4%Z>=wb#7`W9uQeYQkbsi$(+9ER~|~8oC}AI9LCV+5)ea# z8YQ>5FQX{~jmsG%Cgm`X+xIw^=H@g;biEx5?Z^zTL`aA!Uamvu@y%zg2<4F;Vb{fs z-?jz+IHm*M$$f4jOv{)E$|FQX5MEmh~$qs*{U6V@2lHU9ej=j zBZ}Mmjwp%H^kwC2xXO8>@~>mma@~zf89nYJH|CaST4M~?sdJfn-v>*#-scS-DcXr` z0S(nS)UlZ1?$SoYUDbLN-;V0;*z_L>Q_0yF-Kp-p+hT^e47*fPb!|$S2@2{=T5OhOxWlQTCs`_dQqK-qlCX% zQ6Wd&bv{lizNvup@rrI}KRTU$<0usHy9xCO=C70t5W(oN>o}qXlc`tmrYy2qeoCx7 zvfeR;ryIMs%RhqWIn-7`rqP2Ms$=vCNM=4=SHhR|>A;VFUN#p$18gb&L9eV;GVUhz zxF1`RbiL~M%cXzbQPSfEHO)0;alkDgol7rxfC8n$e))IBj-b5IR2anHgsJSOK(&{K zzpy*ja&kNeHAKZ^l5UD^t6wtuz@le?q%Gc<6y zP{L@rYrdU}^0P1BEquc-ex)5u{hHFuR*Cy8GKQ$!`y7XeJ?Y~83ICkecNn# z_;>#3|AveH2eb75_|K~gM#_Wuzmr?9_l4{BwL_?mW6{y$MroVy868SU|7{HA?asx_ zUWqfrSD|YkdkN{q1IlXsy!ehZuZEZ8xX<{A!P@eMyt@wj!aVXUwKGuuZ6%byDJ|Nq zsIq&4FkHeggIzI+_VN6e$LN15$>Wh%&lRR{1yEc|4(!Le71qfrW)NSCfx9LxTVW)) z*R~RErrwe+1D7TI8EVh}Weeq%j*fr$;u>)~X$_yiQg3VOa(9k6BU|>VG4b2GJWY>L z)e490?K%YK5RWd`YkRzx0m1D--RDma6bJu>qDU8pmUR<+I}@6m;0xEgew%!_3VNWM z0k<4SYE{4oPf9~y5z=p`HNg$oY9Y3s#Vs;+lhJ(iO3vE##;O19HRc?gS5w^|MtszF1c-bJXtcNIn$34`v3XS)Df|*9* zI)ww@hwS7wX5X#S+V$v1ypvvAPf`*7=N2UY!=sj&i#TRFBWk2AJB)OxVnt)Lu~;>O zOga6+(Xb&7x@AOR`{*P&mhKHU;`~Vg3{0FbbhEc+&m_nVO%EK~!!V5+8ZyS)D8!c1dG{L=TT#OK=OhE5 zh=v708){7X3#r;?>x-q`kDh>jt?>v{(la^w=&}v1i8jWAd4v{4Ps`VjCFa`>GvL@_ zyuwp>+1?mJySWx{J10cdODVk zYP1#hjlrC_7Fcr_+?d}Qm=Z0pApQtXz|@p&t#FQ#jJwls1^UHg{jNQ?sKvyZ%}NHN zLM*5UXMeeWh<-JT&n;PmdA-|2EllSe&}A|8^5#K}m_~&*QBG5=Rx#5JN{1xA>IDm_ zoky~^b)l3G;QlNO?b7+PsI|J!zxWZ89^}H4Ii;Rf9IQ`P3uJ0g;J6jIn|cs30tR5$zC-9M=LBh zz`UpP?(6(FcSSi?hvu6xJL?SygJ*{H)8nI@RTF)}bQRG@SnGr7jSb}X;#yvc8p)iG zBWi9hwHct_wI=4`W6$RLvi8ka##*?sxpj2W#_ezc7c_Z$tJ=oGF=~%2b`YmDy=8U1 z-V0dX8W(RBqYzOgVWrQ5Y$7{?S$ORs37x41V+RMjVHAshU;Sp`J2f#pL>j{VzOcW{ z>po-H4$x_`3!9uu24CXrVf0f$090MuoL!SEIbePymyk$j!a>z@Ba<*VOad;~Hif%u ziJeo_Va<|)=JDGp;xz1ck2VtV0+N~xMa?#G@y=_FW>*bl;i(xe1QfFr2n=|_&hp%P z#9Xx9Gyizs769b_S++T17=N*{`a|^oovyKnc( z4CHt7?QP>Q`^T3DA{#sO{de>xu73}7MZY-R@gRgt`f{o@yUsm+5nx<-43~Fj2TwcU z6Lll9b-8?9yP7*M3dFvG)XNq?A~}d+=VZ|vPQ6OL>PKc_cr|&M7DSVR#bl(I}pGUW9eMd2VoCVaz#o$F$y z`hADC&z=2=R<(ODMjGZEY5mj7rL8101b)(2WeQf;!fbdWVyy)#=~vV_*cz{jZqlYm zrHjdCpK3F!V<#a3CJPy|wg4hJO($GSf8NU4}WC0VEFM@t~p$fVf0pLrk#H zYV)};w59GZ=&mKxD(9VguQ|M&1s|zr{i*Y45{m*Wz~>ZC&ff?pWRl{{IU7oFrZPUI z`{AQ?LEAo=0-bjhEAQGl?-Y&j!e59Alv{1+&E*D4pb6E&-8w_P|Lly{Wwi(%c(%mF zjtYFI(xH1|b%CZn886S^)W*TNfUlstK@@r z^Pf`k9jE*LLp^I(J7*uN{%eA4H!t1Sx@tVEgEHA7nK4*#*2mHI+9H~2W;DLFql^El z>7h_EeTsE_(OqfYI8)|zMTIp=EnvQ{o= zj7MzC!oO(c5<%)Zx!ZsEm6b~`lg7i%UwCTk8@BBIs~eA0ug##doO0qq2bFGT|1|B3 zSLXXE_dLC2g(sIyA;mi-a0$lIYhnf^{xtD+SpwNzQsXECn zDJ=X-c>Tb9oasBwqU%r>#0xZZ$gxLAX55XQlpl&hs+;p(!e1=n6{7T&?X-{c_uoeCCy{oM=D}@w>xgERk5^!kj7HUS4ka8`qkH~f`Y=&!h?KV%FvKs zbb~K(<0*Fqji+XsPO5aoorR00Ev4Vd=TvGHMu{?-T|paW%f3-jpWNhek(rjotH3sd z4Be)u*Qw<&buPB#BdR8)zk<&}F(Fi^bDVLRCD1st;F??gGoKZb-$P-{x#d&@v|+K} z0!T)D)6*o2ghj!!e|B?0B>r7Z{RnX4!!M;(6ZJYr6~^~Kn*njMxs(P_2F599KC39S zp5#Z3(A9u8kjYt>^-D;XXw7hh=a29WG8H64Ev+sAOJ@AEIM?pxErea75AkCm>_U44 zO=7p_8(-%M95Dt}i zjckbJP3dm3UB@mn4})tK+Jc_o9lmxWf;ft2u&O*2Se10ogV-6vW##s8em0mckxAKR zfA2pM)$OLI?_!-vqQ+837Cv*I4SsCdi_iz-&%D1#=&R%SbGA7z)-x^Hp9Y2Kdxj$K zgq-({bqi85))>wqK-u+w^y3e==?DF5%@v+4eGjV$TS(-A$*~bGt_LF$CS1ht9X+_@ z+2Cd_c#Ajg(2 zb6Z=U0~{tviU+-9a#SZ>ldW-|ugsQQ+%W&78%&GWzDDI(9)?;~$7#Zjd@B^)RC@no zg*--+2_dZ8#4j$j?>a= zk<+XF-DhmK^coE{G3YR}B^upx#;2}h%~~Rbspv6$-lYiay#TJsx!6$7(LVh^2(*H) z7WTLMX2Shb6GecS2#9F7Hd5%E#~7i*hCTS+9rn+;P&Q_-21nw3NnNjuK&bKk@I;?A zQE>j`@hdzMOIsxcH1Rwd!spZ^|I0}0(yrnf zKnyvnBt{c{L?$;D?BKt!Jgr%0G%8uAo8M`Kg^-LX&_R!JL>%;Y7Z1lWGww#+tK_t;HyM&TV_$Z!^x@^Jh(R%fE#Ll zT!b2EiRRLrcz)}}+|kOsuHL4NV3V~tsp9_pI&!!))tX!r%1IsJJbOR2b*4Ms{Gcpq zs**K-Z_y%YE2vK2$4k0}_f9Ci+P-yApn^@crr>l`T-3nAda}*70nGWtQBtHz_nJm|@ zHd9Og+~boN0x0}T92nfderIERl%KreFN7vA;+EY;;B_!trXX;H6c_(EdWO9au>Z}p zn8N~=Ow657dBbzU*S*mXwy+~haNrEwm>7!WO1a#GAWA^iU3R=s6?9vq zF6>2ZR+FCXzi%)Xup90iLvOnHjMUwZ-PmU00B%DeDCgkK(*mA4>gsPu({*7{+z0UM z`L6YkGXFFbI3*FP1xSl&_-8r4&VXvd_p;*p6B-Nn0pr$+_2!~c9{rS zjL+=FWfW+z`OD=BU5Gg7UMfl|)Feb~7XcbF9G+zlaRCY}U&b0d!u%IH@p!Oo{a_D1 z-C2z+w(**g3)s^CmO(+ITC+I%HL{VXH8Zyq8Go~PNY0w~_i-5xX37Jua=Oym-lofV z{dAbi{)OAdz}p~HXI6}4*+9t!N9+H={n8D3f~6qigMF+l;e`<~D*K{5^xt1@f$U z%og>4`$`tyXOe6Nitp_8za^9gx7p!3rxw{7pImkHPmMe_RKqti>JI6~xCCa7D23GK zw@WOOL$HEX!AI||Pm#(ZQw$>)3T3OeIgFd z_A-yM5;G1YZ)KazLx0xx$crOF|BTuV6rA*E#_4^d$)8?k2s2YyOz3p(;UHUsA*rrA*+FL>tp(pviA!VSSqibKpugQc zdJfrG;{XZJXK@1GkIV9q5k7cGd_X)>@ms~VVT#|qNZ?B5>r+O5>{j#}i3SuvZq_-5 zp9khe?UF%OlA*l){uZ^qa;ZbQn#+5hSYyXokEU zMycr4PpwuoP^hNJTA@}Q>Bv>cv<>&rt1P;pW^Z;_acA@f-MersO+Zd zpU=$hMkp7YMOahs)%x$fzY2ioO*T1=%DDTY;rc+zkM4ITzAa!& zcplD^whz9BA=+g1o>e?n(Wc|`(@#2j<6O@!IWJCVMb~!XWY`XGE^G^)k-oC$9Fd2b zp(o5&+c*5WqHIAmPmPiWU4wlhDOftSm4lZ$@^RaSaA6>Hqfh!vTO-xfh}rLUGh(y1 zyura_z|5+J?mHAq-h|dc-hVTe5ySl46&V$8hI@%Fs;yHa4f5+;$LhhXZO_AjQmr9} zvQzcb?_+Ra#y=fOdq(ft2=*sS<-RRY#!=%}omSpADt2)-JnhbJc4(Qf481OXs6L-R zL44`;9RMtk&P~|#{Jl$V$xWU3itdh=xnHYpjaFUBsbE%aQ2T?`_DFL7g3@`0iWQ#O zB4O>3D{WX&DEUORtWk$%JI8UvsKzJqr{7%p*NEyD0+8a7d+&TomGWgCw~pyV$BmR2 z#7Puo3?fhDS6(H315@2lfMmfjJz$IR+RNnZ$#-)^SDAS`GW8BYum*Mv1fJkZO`96H^K*T7m^e^iRW zCt$_Gn5n+lGjGN0+Efd-c}Lx&z<%ll6RUvTAuL(MznL*&xzLl_MCf<94GveU&+n1CFvAK zHdn3JWPKe5K(g@A3h@H<%0b`5Kw1&c70$j4y8r+oACpDqYX<$nDg4|TpZ(Rt4;P?v zGw@20l?dyhiDm8k?E7dRN1AU!r3}$h*{QwJGi{vLd)67p-CWD`2_)k>CtcxGdj7G(A-&5Q_*yVP z1f+|ZmQu;h{7vSSx)c!CzO-T0I}m_hIz*BE%*CmJSwBO1Lqq8{@>_AmnLlIW!4Ddf z_IGo-ieK!BAmb4}PeH!CWBW|rzmW*{HQt~}_vH2iKe#En06GjKYW0efjcDE8>MHpx z^T|pG9VKlxK^5PTw>!IZ$;#j=Kg9>vi&_2Jv&p%2Is2lJoAoP7jJlx*_XI7mj(8dY zt@(CFaLwX!))Yko3r02a+*hCqY|16yh8}3+6_b3tQR5wUSVCV5OglU$Q&xKl-8g5{ zzF|bi!eE2D;!RY+al-7K81+gv2K^blWGZm}0QbONz5EFAfYG!E?1+2Ze}9pfyPT}q zFcp9WDP1x7=5rE{Eg7T`#CoKI27!O_z#68i7g`D&B!T437Yz|QG+@RYWaWdm)jDr$ zSq)WpQ#86|U-vI|WKsGB6QLvh9O&o8d)hd}x#Q?+VcY!bAZB`H)F4}H1q(AoUUFey zZ}!^nS89?bPJkYQKsM(tJS`!WQQo_5%Qv%zMOqFG`;Y%~S>=NHSa+tz2H8+CWB>lx z!-+@o)%&MV);_k|&=Qs--5_2)+*m2ZM|iz1!A9SY$RG|25q}Uh)*Wi*4M{ zY7YKalhKu-R+dBNJnpyQHB^MT{nZoq%b4e%r{;zi_=ma8Cu(hSg);I9HX@%%r zV^rwVvF@P1I^oC4DAcs1T0|o{JWlcTG zhTIX+5itbZ;}DY^4l^zPZ5D9wb@A>pp!WJ`jY=3&egd&= zbE#q0g!f^W$wR`@jv)_1&&~eq!;KXNJ9#Mfv;N6e z`wqz0kTrHfZKfTFzVib=V?X*|bV(0;2Qgv8S&0PP0%22gieQgdW`$mz9U>d0<0|;D};R3JWG@T*$iW5kijL z9iOnl6c5mlDomf0S3~s8Gm7I4^;n~^$V(FP_(=H4V6(dKq>3~8&TbnFf);-yCU(0f zu{}s%OdP&`uzc=HSP(){=F%h5;O58JNr^FqivRfnpsv4DYwV=k#M&I97aIM}yj|;z zap?!(TV;8DK2tk>J|%Aj^&hU6-#-5|8X)=f8RSgCrbAjI!sM)%zAR2dZG8PWNUwj) z!*)dN3CE^}Or*y~h!|}uQ<hPGjJK5M$=Sr_&nWa{LBP?5=k&eDUZ%5)?+uxyRTi zBiTF`k+D4O$BhuU0}`G@x04^<%2_&fvyI zZsGhoXC`;?DFi!wRW0QF4lDgnSg(OQxLP^2(ijc$_h^v7TFPqO6;b2ay~Uni!ul=? zfhldjQO)o5ZtGNjd+*uZ8~OHF=M-AaSpd2bdXpuuiqCZ-sHgFin*+3yVgQdK*{iW- zNR-)6(*_58)k1ayQ!h0IXawaubfq_R$koj*>BZV4QSF4Is4^so?9EbtvRmK_n~Rv; z-LKxtv@H;A7myp>X>xyBd<`ao1t>gT7ZZ;OUk@A!#*{B3$+n&U+lL4!*Igf2*6E@I zvrOOH?!Spr#X4qnKStVd^l;A65k1GP&ev`V)t6elZmqlz3W=*!vx^79*0nvgJEp!N zAjN!H0L_12sM;1!Ws^vpMn2WnDUC?InZ>ijCBgsi)Z9?YAVCMDO}%G+mlZdyEZ96> z!pC{tEsqP7a&sf%x4?BC;3YG*tdP3A%Nst z_fIm&hbhj$F}cKbkwzvKjMM*GYS%)FTd)cPiOu0$T+aE6@JDx^H_>p^RbnU}QPpup ze^%uKOi4VDNJl)<>?qrx{)Wla%*^=?GC0{>{XQ+-$9Y}b$x7VCFvrOAL4`1ReF&=V zJt`lxM4ua6PtoW2D<*jjYCxVMqJ=faeEx6MTLSM=z5F9;+cAT?#HD^I{06g}eY9jBuz?Dn zmr+A#PuMzA(p9d9_Asg(r0wM`-XYL%CCro2p?X?Fg#7NY6tuMUjQ)cBSEtayZ#^{i z0j(2tS>JIZFG3NfdU9TGwa+1Jo7uEPFyyvzf9!@q)cdaHxSOjHnA0SxtCBu{pE+7$ zwJbpWam9Hu?)_+9hFtI8an)A8F@OtbCCH%SK7~V7d7p}7$kR4Sj~Rw6V*4`X4v?u< zbfuz6ThQXNCZvZ-`QD8!A6O}TgdgP5cMm-^X{hzw7<#__5W}=l9&^*Og`$JX`2D<-T3n-eTDaO1d~ zL1zA4@lA8t%&i%Z>4B;4U?gS<8Gpi(lnyn*?RonnJhu|>z9b%b7*Jv1R2$ZO!otoM zeGOXKLXo0cI+{?W=g$-T)-+U)puFspd7UNSKyRx@VH8ACfV(1Zz5!{l-fP$gZ^i`D zboHLYGra*WXDWu})50!ic=J96s`tkb++CgbjH^IihJy5WuVGd4C^BK*C9_FB4b|4N zyY_GQMQ<|C_u4xZb@EwXbI67dG|kp$&`NIUn;Po%+rho&J_49dzIvV3+mPM03VQxD%F*A z&&h#b%-xow>tTkFmtF8>Qq#|+=JC4LUvZQLyCgz@w>vfvKE2PjjRJH#LP(pPt>dHe zj(7}LNStQ29(t!r+F&gD34VdfQ5J5xCKmt(7bj(viX`9vBq=3fbjWSpdk=8rYsVfl z`Tu6V@bvPx*@}M+>xYuLjh+R+l2S5Bl168lsM2EtLc{;{PVB9DZk}l@;6fqG9opwN`nYh0}8w4JPWvOyOIC?ENl8~cFY^0Q-y)ur`wD1y9Lhug>kBYj7Z^r*|RHG1vvwH zKiy6yEk4ka;Ii2B&^fH}dowo%^QU9kJPm;N<^M%eb~jCFowTRP>7=@Yr||CUZj}l5 z5_A`s0xo5gSRt`RXw^=3inqc7w`DJ%$2G5i6jYXF^2>hzv{k|3$0h%DHtm_*-qnon zizX(lUNJ^}>9gcN6$LriDt8f$JBMDRz>_LmTk*ZPLU~zDfB+|nE+R2(<`!2$5%QXi zMw&74L&aytUnOo2L>Nrx!-)-<$1jhXGOyKzXvypr+)IUcoJP%r`wmSr^wbciA

    Jr4y5R%VpAK^Qf^j7_I^|eD=N^OdR1BP;_O-=l;n)hX(1g|b zRo1!&&;{@lb8GFF^i1@mq2|V8)dR%|V3az84X#YC|AAvtyO7^&-hv1iy%QfRg+Ob{ zr$kKnntmYtJLo01!7TGz5JJNs`TZa)o+)uS-g}Y!2lax|&b&rF*7yfi_lH_DVuG0C zLrHSijus6v?Ry~Vp5?_ilxFsh>5R|01kMyb55V&4Po%6Zrip|fQ-WG9u<|`IIACTX zpYRyg*w6^Bo)e!j9`AdoYxbZ^&hG;#*lx#ngHln z`ZqB^NKhU4eUeHk4@8CL3 zT_LBcs5*(iF?iTOAne=$aW^hKC~p1n&DzO4xRa1IJ1#}%z$|3Cm%eyXQx;a|vwud; z$z(;A3QX>2=pbnxkj7f#CM%@bupF;NJ?SSB2PEvD2+NGL-SJ42{jqmwdOvpX6rjYv zS>}F?lE5=sKbo^ZX>Td8%1Z`z@?vt!i+I}U$j0jD?Pp88sUWJ!G&*k0jG_|^t>;&* z?l^C;?@7FRr|5&uOoG<-W=N%&8+5{&<#<&?t}%#cN2j9-_)0iXxQ}Gl(hu{DJGQS` zVnDy|XmZLw2w{!il+0N=nT4@=;SF*YT6QoTVJEja!~IKtXaV#!A*%`yW#?SsQJuP3 zg212EhoH#)Kej0<8STcN1OTvAT~HnI4{nVtD|$GJ>fjlt?&A1H;!D?P;Nf_RDgh-mFeJ-xK`^Q$amp-1bOVO*D(>>TBEdD_xK8s)ONl2r*Ou#_lqV} zP~utxdjGAti8?ajE2g%*4ji?2`c))7%yw1!e{M^ss^E75C@`?i4Xq zzqjqOXy#qw@32zOI#H{_r*Dhy;`V%o+xM<2DE?>6uUzS(|7?RxH_`+!x6?kYc&U_L zn+kmT6CVE2!L!vTLh2$4JANOwO9JB@eQ`J6HSSCz^u=oGo8JzRe(Ir?J3ZVxdYv~2 zZYR(Z_=!B1%YZ$IKl7ajqW7=HjUTnG!F<)~bAdewF`r}D*YhtgR0ukUg>>8){t4b!Q8WLVH# z#_E2$0=dSGraR^KEv@Tjv10VqyY_L(xL^j|$y!<(a@WwJ%z!jE(2LSlp4g4PmYtq# z@xK5`3p8(z^|}lj5&=UFkeusP)ECdQCAUe@|1J*yzm7rhYz`cLq?G+{%5_h-sgrLS z+op3@y*+#C0xz4x1inB27bDf)3)FaAK>?dO^6E)0iL$=ne6IFleEN-9Q~#(C0Ks|w zuaV_bsOedaEVd$c4?o#YezWeR+Q+$TdQ%Zhcx%VY|8E#6G|Gw9qxb8lRiT@u#kjiz zeuLg4EDBZf0`yb>@(>Zs&574Zji-Z#I=RJ9>3<%RM;{wWS}9Ih=NJj(;M_g3 zB_@nbV~}F-Z3-Q|R$3LDmkyAFK!Q>U@$~SJ;NufPQ~NCb-XurOO6Y%Tq&DWK7y}QY zPR*9%Andjm-(M|PR?h#7W85d|+4%C{Tn3i)Mx;-&Z!Nhc;zrQN6X1NEg&h@{pk%o}qz8#rV&CX1tZ9ss8>?Q8;)sZC1p$MW=1#)?27{WTHbD3s{kkSg>yRuG`eh zs?#!lrp5TX{Qbtg^d}OUhxi$J@Y1Vpqtn!*HYfCBg~WNC>{rrVjPdD$)8HE!MG`7w zw@hoi1lp@~C*7YCe!zwTb6<*t{B~RO_vu2tc{3p=e#xEh1YOQC$8_+U?#$3~BQ3qE z{nPJTZ9Bbqezdl%9XkvXbCl8-8_JUjo`6gSLZpLR(fV_f<#ujm%%P zZbLwm(0_lKB3sXUgr%Ig&0OGbtPhkG3ggZnUG1n6e3Z%uhf77kimh5RduFVHYeP8g zR-aZkB0Q>$KPIq=gp9P~Mk=O!_?>$2we!Uj(tHCdxcC;fnar%Ur(O?HP#SemoG><@ z5-PWXFdL{^PN*yhYiJavQps$^{Y;k5P0Td+Bap;lXJA}V#NQsT%Ve8Gx_HV-snMBV zc+rQ}16)@GJv`m`J)PRe?%V{SZoh+G*jQ_aX%K?ksSB%AT=m%7N%WlrywY18=^S61--)8%fC%U znuWVr6`r8O(W!P6pIfmDE9MgXGdMhx;W370Ln=-HYO;N23bksy(_BLj1Er+q6^XP7 zT_kTzpJdVlI_e)Hf`ZGe&jbjy=-cGZ^!VPcUik{IgU)96(*y?8dsu}d(K6UK&+ml zlc#Bj;J!|&0AjfK4La}#;;wVsTN)HUf2yGDWWNM!Ma(o@D?V3T=u>Y_+aBX9H=db7W&6I=|w##s>il%HZe_KU_EwplQHs|t-k$Aqy5^|X7Fs6A_q{1%Eb}) z=b-g-D(+(NVc2M0m6Z6IeUM%PIFaZ#-uam9@<<$_mljFf2C225Tl)KpNaW^@C~E?d z5IdXsS+mnBHF)()BHenQCfjK$cgTK%lK!lULv5RB1WCpv%S61ATk5kB38y;2QH`Iv z@pD!^Kb-c#bbE_huJC?LE8wnJOJ8g-uGvH^pfx$CTxPoiY>l-W%ZLM_CAmBuKYqg^ zQtP;DpTlRb%~llo^K~&%0`vT(Kd;SaqISXe*|0)4*f}kwZ5~a)-sUTc75ACK(l_Dr z?5}RRhwRQGM1pd*5ARd}JZ+*QD13Q>{Pg2U1ChbqU=z{Tn`9w*XMBYrv0;$@(1rZI z*6=g4^#B_I)&<*wm5*pe-$y&dUeb42^`8}~0a&wD&gTUew(|qn&Ym`PoYN~U~NWU@2b&|MNC(Jc;)9(4MwsB`TfXG zw>Pfq^xa@qkuBS}*)9Aq9g-bX96-{!x4b>^D%i>+$w9aGQXcAsTps58 zXzS6%0UD;)KkV}{N}44~3Yq%|@dOS1LGYbvBbtgll(=59xw`?*SPq7FyS~7c05j*g s%HE6i-$i$xEy?nq*&+jFjHvJu`$hlHzuwp9wZlo~ReChi5WV?-05`V0L;wH) literal 0 HcmV?d00001 diff --git a/data/Redistribution_by_parity_list_UK.Rds b/data/Redistribution_by_parity_list_UK.Rds new file mode 100644 index 0000000000000000000000000000000000000000..8603776b6b3bedca910216f9dfbec80b6bbd139d GIT binary patch literal 321 zcmb2|=3oE=wzn7d`W-e9IPkH1Zoe33%azXd1bt!Vj$U4sFzqd&EV`k$7xteOPB?eO z%{RnFMdJU&Kb6mm|5RHE3Tp2(OyZvF_3=kRxuvMGaBPfcn!d|otMe+;3nirA`fZ*1 z>G5^j4SnpZB+hP`xjx&}IOe9% dplyr::filter(sex_kin == "Female", group == "ys") %>% + dplyr::select(age_focal, age_kin, stage_kin, count) %>% + dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) + hals_output_ys <- kin_svk1990_caswell2020$ys + hals_output_ys <- as.data.frame(hals_output_ys) + colnames(hals_output_ys) <- seq(0,109,1) + hals_output_ys$age_kin <- rep(seq(0, (110-1), 1), each = 6) + hals_output_ys$stage_kin <- rep(seq(1, 6), 110) + hcmp_ys <- hals_output_ys %>% reshape2::melt(id = c("age_kin","stage_kin")) %>% + dplyr::mutate(age_focal = variable, + count = value) %>% + dplyr::select(age_kin, stage_kin, age_focal, count) %>% + dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) + + ## Older sisters + jcmp_os <- joe_output %>% dplyr::filter(sex_kin == "Female", group == "os") %>% + dplyr::select(age_focal, age_kin, stage_kin, count) %>% + dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) + hals_output_os <- kin_svk1990_caswell2020$os + hals_output_os <- as.data.frame(hals_output_os) + colnames(hals_output_os) <- seq(0,109,1) + hals_output_os$age_kin <- rep(seq(0, (110-1), 1), each = 6) + hals_output_os$stage_kin <- rep(seq(1, 6), 110) + hcmp_os <- hals_output_os %>% reshape2::melt(id = c("age_kin","stage_kin")) %>% + dplyr::mutate(age_focal = variable, + count = value) %>% + dplyr::select(age_kin, stage_kin, age_focal, count) %>% + dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) + + + + + expect_equal(jcmp_ys$count, hcmp_ys$count) + expect_equal(jcmp_os$count, hcmp_os$count) + + +}) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd new file mode 100644 index 0000000..239ba5c --- /dev/null +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -0,0 +1,255 @@ +--- + title: "Expected kin counts by type of relative in a two-sex multi-state time-varying framework" +output: + html_document: + toc: true +toc_depth: 1 +vignette: > + %\VignetteEngine{knitr::rmarkdown} +%\VignetteEncoding{UTF-8} +--- + + Note that this is currently an R project and not package. To run code in this vignette we need to run/source all files in the folder ``Matrix Model''. + +```{R} +library(DemoKin) +library(Matrix) +library(tictoc) +`%>%` <- magrittr::`%>%` + + +options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise output (but also #lose #progress bar) + +``` + +In this vignette, we'll demonstrate how `Two_Sex_Time_Varying_MultiState_Kinship` can be used to compute parity-specific kinship networks for an average member of a population, the sex of whom is user specified, and who is subject to time-varying demographic rates. We call this individual Focal. We seek the number, age, and parity distribution of Focal's relatives for each age of Focal's life as a function of the year in which Focal is born. + +### Kin counts by parity in a two sex time variant demography ### + +In this example we use data for the UK ranging from 1965 - 2005, sourced from the [Human Mortality Database](https://www.mortality.org/) and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). Some simplifying assumptions we make due to data availability are as follows: + +i) Fertility rates vary with time, are distinct among parity class, but the same over sexes (the so-called ``androgynous approximation''). +ii) Mortality rates vary with time and are distinct across sex, but are the same over parity classes (no parity-specific mortality) +iii) The age-specific probabilities of parity-progression vary with time, but are the same over sex (androgynous approximation again) + +In order to implement the model, the function `kin_multi_stage_TV_2_sex` expects the following 7 inputs, fed in as lists: + +1) LIST: Female age-and-parity specific survival probabilities over the timescale. +This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. + +2) LIST: Male age-and-parity specific survival probabilities over the timescale. +This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. + +3) LIST: Female age-and-parity specific fertility rates over the timescale. +This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. + +4) LIST: Male age-and-parity specific fertility rates over the timescale. +This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. + +5) OUTER LIST with INNER LISTS: Female age-specific probabilities of moving up parity over the timescale. +The outer list has length = the timescale. The inner list has length = number of ages. Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. Thus for each year, we have a list of age-specific probabilities of moving from one stage to the next. + +6) Same as 5) but for males + +7) LIST: Length = timescale, and each element is a matrix which assigns the offspring of individuals in some stage to the appropriate age class (age in rows and states in columns) + +To avoid further calculations these lists are constructed in another file and simply imported below (See ``Examples'' , ``Matrix_construction'' for details). The code below reads in the above function input lists. + +```{r eval=FALSE, message=FALSE, warning=FALSE, include=FALSE} + +# Lets construct these lists as model inputs.............. + +F_mat_fem <- readr::read_rds(here::here("data","Female_parity_fert_list_UK.Rds")) +F_mat_male <- readr::read_rds(here::here("data","Male_parity_fert_list_UK.Rds")) +T_mat_fem <- readr::read_rds(here::here("data","Parity_transfers_by_age_UK.Rds")) +T_mat_male <- readr::read_rds(here::here("data","Parity_transfers_by_age_UK.Rds")) +U_mat_fem <- readr::read_rds(here::here("data","Female_parity_mortality_list_UK.Rds")) +U_mat_male <- readr::read_rds(here::here("data","Male_parity_mortality_list_UK.Rds")) +H_mat <- readr::read_rds(here::here("data","Redistribution_by_parity_list_UK.Rds")) + +``` + +Recap: above are lists of period-specific demographic rates, in particular comprising: + +U_mat_fem: list of age by stage matrices, entries give female probability of survival. +List starting 1965 ending 2022. +U_mat_male: list of age by stage matrices, entries give female probability of survival. +List starting 1965 ending 2022. +F_mat_fem: list of age by stage matrices, entries give female fert, +List starting 1965 ending 2022. +F_mat_male == F_mat_fem. +T_mat_fem: list of lists of matrices: Each outer list entry is a list of matrices where each matrix gives age-specific probabilities a female moves up parity (inner list has length of number of age-classes). +Outer list starting 1965 ending 2022 +T_mat_male == T_mat_fem. +H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0. No time-variation. + +We feed these inputs into the matrix model, along with other arguments: +UK sex ratio --> alpha = 0.51 +We want all of Focal's kin network --> specific_kin = F +We are considering parity --> parity = T +Focal is female --> sex_Focal = "Female" +Accumulated kin in this example --> dist_output = FALSE +Focal born into parity 0 --> stage_Focal = 1 +age-increments by 1 year --> nc = 1 +timescale from 1965-1985 -- > seq(1965, 1965 + 40) + +### 1. For now lets simply consider the accumulated number of kin Focal expects over the lifecourse ### + +```{r, message=FALSE, warning=FALSE} +# Run kinship model for a female Focal over a timescale of no_years (we use 40 here) +no_years <- 40 +# and we start projecting kin in 1965 +# We decide here to count accumulated kin by age of Focal, and not distributions of kin +kin_out_1965_2005 <- + kin_multi_stage_time_variant_2sex(U_mat_fem[1:(1+no_years)], + U_mat_male[1:(1+no_years)], + F_mat_fem[1:(1+no_years)], + F_mat_male[1:(1+no_years)], + T_mat_fem[1:(1+no_years)], + T_mat_fem[1:(1+no_years)], + H_mat[1:(1+no_years)], + birth_female = 1 - 0.51, ## Sex ratio -- UK value + parity = TRUE, + output_kin = FALSE, + summary_kin = TRUE, + sex_Focal = "Female", ## define Focal's sex at birth + initial_stage_Focal = 1, ## Define Focal's stage at birth + n_inc = 1, # width of age class + output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over + ) +``` +### 1.1. Visualizing kin ### + +### 1.1.1. Plotting kin for an average Focal at some fixed period in time ### + +For an example, let's say we really want to understand the age*parity distributions of the accumulated number of aunts and uncles older than Focal's mother and father, for each age of Focal, and for each period in time from 1965-1985. Some people will do.... + +```{r, fig.height=6, fig.width=8} +kin_out_1965_2005 %>% + dplyr::filter(group == "oa", + year %in% c(1965, 1975, 1985, 1995, 2005)) %>% + ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + + ggplot2::geom_bar(position = "stack", stat = "identity") + + ggplot2::facet_grid(sex_kin ~ year) + + ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + ggplot2::theme_bw() + + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + + ggplot2::ylab("Older aunts and uncles") +``` +We could also consider any other kin in Focal's network, for instance, offspring + +```{r, fig.height=6, fig.width=8} +kin_out_1965_2005 %>% + dplyr::filter(group == "d", + year %in% c(1965, 1975, 1985, 1995, 2005)) %>% + ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + + ggplot2::geom_bar(position = "stack", stat = "identity") + + ggplot2::facet_grid(sex_kin ~ year) + + ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + ggplot2::theme_bw() + + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + + ggplot2::ylab("Offspring") +``` +### 1.1.2. Plotting the kin of Focal as a function of Focal's cohort of birth #### + +Since we only ran the model for 40 years (between 1968-2005), there is very little scope to view kinship as cohort-specific. We can however compare cohorts for 40-year segments of Focal's life. +Below, following from the above example, we once again consider offspring + +```{r, fig.height = 6, fig.width = 8} +kin_out_1965_2005 %>% + dplyr::filter(group == "d", cohort %in% c(1910,1925,1965) ) %>% + ggplot2::ggplot(ggplot2::aes(x = age_focal, y = count, color = stage_kin, fill = stage_kin)) + + ggplot2::geom_bar(position = "stack", stat = "identity") + + ggplot2::facet_grid(sex_kin ~ cohort) + + ggplot2::theme_bw() + + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + + ggplot2::ylab("Offspring") +``` +The LHS plot (1910 cohort) should be interpreted as follows: if Focal is born in 1910, between 1965-2005 he/she will be 55-95 years old. Focal will have already accumulated its maximal number of offspring, and their overall number will now be dropping as mortality risk begins. The offspring of Focal will be approximately 20-35, and began if not completed reproduction/parity progression. + +The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in partity 0. Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by a well mixed parity-distribution at this age of Focal. + +the RHS plot (1965 cohort) simply reflects the fact that Focal will not start reproduction until around 15 years old. + +### 2. Now lets consider the distributions of kin Focal expects over the lifecourse ### + +To obtain distributions of kin as output, we simply change the function argument: dist_output = TRUE + +```{r, message=FALSE, warning=FALSE} +rm(kin_out_1965_2005) +gc() +no_years <- 40 + +kin_out_1965_2005_full <- + kin_multi_stage_time_variant_2sex(U_mat_fem[1:(1+no_years)], + U_mat_male[1:(1+no_years)], + F_mat_fem[1:(1+no_years)], + F_mat_male[1:(1+no_years)], + T_mat_fem[1:(1+no_years)], + T_mat_fem[1:(1+no_years)], + H_mat[1:(1+no_years)], + birth_female = 1 - 0.51, ## Sex ratio -- UK value + parity = TRUE, + output_kin = FALSE, + summary_kin = FALSE, + sex_Focal = "Female", ## define Focal's sex at birth +initial_stage_Focal = 1, ## Define Focal's stage at birth +n_inc = 1, # width of age class +output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over +) +``` +### 2.1. Visualizing kin ### + +Let us now visualize the distribution of relatives over Focal's lifecourse using the model output +### 2.1.1. Plotting kin distributions for an average Focal of fixed age, at some fixed period in time ### + +Below I plot the expected age*stage distribution of an average Focal's younger siblings over the years 1965, 1975, 1085, 1995, and 2005, given Focal is of age 50 + +```{r, fig.height = 6, fig.width = 8} +kin_out_1965_2005_full %>% + dplyr::filter(group == "ys", + year %in% c(1965, 1975, 1985, 1995, 2005), + age_focal == 50) %>% + ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + + ggplot2::geom_bar(position = "stack", stat = "identity") + + ggplot2::facet_grid(sex_kin ~ year) + + ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + ggplot2::theme_bw() + + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + + ggplot2::ylab("Younger siblings") + + ggplot2::ggtitle("Focal 50") +``` +As expected, the discontinuity reflects the fact that Focal's younger siblings cannot be of age >=50. Contrastingly, when we look at the age*stage distribution of older siblings, the discontinuity bounds kin to be of age >50, as plotted below + +```{r, fig.height = 6, fig.width = 8} +kin_out_1965_2005_full %>% + dplyr::filter(group == "os", + year %in% c(1965, 1975, 1985, 1995, 2005), + age_focal == 50) %>% + ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + + ggplot2::geom_bar(position = "stack", stat = "identity") + + ggplot2::facet_grid(sex_kin ~ year) + + ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + ggplot2::theme_bw() + + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + + ggplot2::ylab("Older siblings") + + ggplot2::ggtitle("Focal 50") +``` +With a simple bit of playing with the output data frame, we can plot the age*stage distribution of the combined siblings of Focal + +```{r, fig.height = 6, fig.width = 8} +kin_out_1965_2005_full %>% + dplyr::filter((group == "ys" | group == "os"), + year %in% c(1965, 1975, 1985, 1995, 2005), + age_focal == 50) %>% + tidyr::pivot_wider(names_from = group, values_from = count) %>% + dplyr::mutate(count = `ys` + `os`) %>% + ggplot2::ggplot(ggplot2::aes(x = age_kin, y = count, color = stage_kin, fill = stage_kin)) + + ggplot2::geom_bar(position = "stack", stat = "identity") + + ggplot2::facet_grid(sex_kin ~ year) + + ggplot2::scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) + + ggplot2::theme_bw() + + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + + ggplot2::ylab("All siblings") + + ggplot2::ggtitle("Focal 50") +``` From 9aec5b480c6bb8e69f72af426ee5cb5ca2b8075b Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 15:53:42 +0100 Subject: [PATCH 39/89] removing function documentation -- optional --- R/kin_multi_stage_time_variant_2sex.R | 6 +- man/all_kin_dy.Rd | 48 -------------- man/all_kin_dy_TV.Rd | 94 --------------------------- man/create_cumsum_df.Rd | 41 ------------ man/create_full_dists_df.Rd | 41 ------------ man/pi_mix.Rd | 33 ---------- man/pi_mix_TV.Rd | 31 --------- man/pi_mix_TV_parity.Rd | 35 ---------- man/pi_mix_parity.Rd | 33 ---------- 9 files changed, 1 insertion(+), 361 deletions(-) delete mode 100644 man/all_kin_dy.Rd delete mode 100644 man/all_kin_dy_TV.Rd delete mode 100644 man/create_cumsum_df.Rd delete mode 100644 man/create_full_dists_df.Rd delete mode 100644 man/pi_mix.Rd delete mode 100644 man/pi_mix_TV.Rd delete mode 100644 man/pi_mix_TV_parity.Rd delete mode 100644 man/pi_mix_parity.Rd diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index c930147..e2842f2 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -301,9 +301,7 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, #' @return a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: #' nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) #' yielding the age*stage distribution of kin for each age of Focal -#' -#' -#' + all_kin_dy <- function(Uf, Um, Ff, @@ -510,7 +508,6 @@ all_kin_dy <- function(Uf, #' nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) #' yielding the age*stage distribution of kin for each age of Focal #' -#' all_kin_dy_TV <- function(Uf, Um, Ff, @@ -706,7 +703,6 @@ all_kin_dy_TV <- function(Uf, #' #' @return A data frame which gives for each age of Focal at each year in the timescale, Focal's experienced number kin demarcated by stages (summed over all ages) #' - create_cumsum_df <- function(kin_matrix_lists, kin_names, years, diff --git a/man/all_kin_dy.Rd b/man/all_kin_dy.Rd deleted file mode 100644 index 261be62..0000000 --- a/man/all_kin_dy.Rd +++ /dev/null @@ -1,48 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R -\name{all_kin_dy} -\alias{all_kin_dy} -\title{Title time invariant two-sex multi-state kin projections} -\usage{ -all_kin_dy( - Uf, - Um, - Ff, - Fm, - alpha, - na, - ns, - Parity, - sex_Focal, - Initial_stage_Focal -) -} -\arguments{ -\item{Uf}{matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial)} - -\item{Um}{matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial)} - -\item{Ff}{matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage} - -\item{Fm}{matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage} - -\item{alpha}{scalar. birth ratio (male:female)} - -\item{na}{scalar. number of ages.} - -\item{ns}{scalar. number of stages.} - -\item{Parity}{logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting} - -\item{sex_Focal}{logical. Female or Male} - -\item{Initial_stage_Focal}{numeric. Any natural number {1,2,3,4,...}} -} -\value{ -a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: -nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) -yielding the age*stage distribution of kin for each age of Focal -} -\description{ -Title time invariant two-sex multi-state kin projections -} diff --git a/man/all_kin_dy_TV.Rd b/man/all_kin_dy_TV.Rd deleted file mode 100644 index c390385..0000000 --- a/man/all_kin_dy_TV.Rd +++ /dev/null @@ -1,94 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R -\name{all_kin_dy_TV} -\alias{all_kin_dy_TV} -\title{Title time-variant two-sex multi-state kin projections} -\usage{ -all_kin_dy_TV( - Uf, - Um, - Ff, - Fm, - alpha, - na, - ns, - Parity, - sex_Focal, - Initial_stage_Focal, - previous_kin_Focal, - prev_kin_children, - prev_kin_grandchildren, - prev_kin_greatgrandchildren, - prev_kin_parents, - prev_kin_grand_parents, - prev_kin_great_grand_parents, - prev_kin_older_sibs, - prev_kin_younger_sibs, - prev_kin_older_niece_nephew, - prev_kin_younger_niece_nephew, - prev_kin_older_aunts_uncles, - prev_kin_younger_aunts_uncles, - prev_kin_older_cousins, - prev_kin_younger_cousins, - previous_population_age_stage_structure -) -} -\arguments{ -\item{Uf}{matrix (block structured). transfers female individuals across stages and advances their age (conditional on survial)} - -\item{Um}{matrix (block structured). transfers male individuals across stages and advances their age (conditional on survial)} - -\item{Ff}{matrix (block structured). accounts for female reproduction, and assigns newborns into given age*stage} - -\item{Fm}{matrix (block structured). accounts for male reproduction; assigns newborns into age-class, and stage} - -\item{alpha}{scalar. birth ratio (male:female)} - -\item{na}{scalar. number of ages.} - -\item{ns}{scalar. number of stages.} - -\item{Parity}{logical. If true then we omit mothers of parity 0, and re-scale the mother's age*stage of parenting} - -\item{sex_Focal}{logical. Female or Male} - -\item{Initial_stage_Focal}{numeric. Any natural number {1,2,3,4,...}} - -\item{previous_kin_Focal}{matrix. last years kinship output.} - -\item{prev_kin_children}{matrix. last years kinship output.} - -\item{prev_kin_grandchildren}{matrix. last years kinship output.} - -\item{prev_kin_greatgrandchildren}{matrix. last years kinship output.} - -\item{prev_kin_parents}{matrix. last years kinship output.} - -\item{prev_kin_grand_parents}{matrix. last years kinship output.} - -\item{prev_kin_older_sibs}{matrix. last years kinship output.} - -\item{prev_kin_younger_sibs}{matrix. last years kinship output.} - -\item{prev_kin_older_niece_nephew}{matrix. last years kinship output.} - -\item{prev_kin_younger_niece_nephew}{matrix. last years kinship output.} - -\item{prev_kin_older_aunts_uncles}{matrix. last years kinship output.} - -\item{prev_kin_younger_aunts_uncles}{matrix. last years kinship output.} - -\item{prev_kin_older_cousins}{matrix. last years kinship output.} - -\item{prev_kin_younger_cousins}{matrix. last years kinship output.} - -\item{previous_population_age_stage_structure}{vector. The transient "population structure" (age*stage distributed)} -} -\value{ -a list of matrices. Each list entry represents a particular kin. Each kin is chacacterised by a matrix of dimension: -nrow = 2* na * ns (2-sex age-stage structured) and ncol = na (Focal's age) -yielding the age*stage distribution of kin for each age of Focal -} -\description{ -Title time-variant two-sex multi-state kin projections -} diff --git a/man/create_cumsum_df.Rd b/man/create_cumsum_df.Rd deleted file mode 100644 index ea72c96..0000000 --- a/man/create_cumsum_df.Rd +++ /dev/null @@ -1,41 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R -\name{create_cumsum_df} -\alias{create_cumsum_df} -\title{Title Accumulated kin by each age of Focal, for each time period, and cohort of birth} -\usage{ -create_cumsum_df( - kin_matrix_lists, - kin_names, - years, - start_year, - na, - ns, - n_inc, - specific_kin -) -} -\arguments{ -\item{kin_matrix_lists}{list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale -so list(X_focal) = list(X_focal\link{year1},X_focal\link{year2},...,X_focal\link{yearlast})} - -\item{kin_names}{list of characters. Corresponding to above lists: list("F","m",....)} - -\item{years}{vector. The timescale on which we implement the kinship model.} - -\item{start_year}{. First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990)} - -\item{na}{numeric. Number of ages.} - -\item{ns}{numeric. Number of stages.} - -\item{n_inc}{numeric. The size of the age/time increment (if abridged). NULL corresponds to 1 year intervals.} - -\item{specific_kin}{character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14.} -} -\value{ -A data frame which gives for each age of Focal at each year in the timescale, Focal's experienced number kin demarcated by stages (summed over all ages) -} -\description{ -Title Accumulated kin by each age of Focal, for each time period, and cohort of birth -} diff --git a/man/create_full_dists_df.Rd b/man/create_full_dists_df.Rd deleted file mode 100644 index a8cd151..0000000 --- a/man/create_full_dists_df.Rd +++ /dev/null @@ -1,41 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R -\name{create_full_dists_df} -\alias{create_full_dists_df} -\title{Title joint age*stage distributions of kin by each age of Focal, for each time period, and cohort of birth} -\usage{ -create_full_dists_df( - kin_matrix_lists, - kin_names, - years, - start_year, - na, - ns, - n_inc, - specific_kin -) -} -\arguments{ -\item{kin_matrix_lists}{list of lists of kin matrices: list( list(X_focal), list(X_parents), ... ). Outer list is length 14 = number of kin. Inner lists have lenght = timescale -so list(X_focal) = list(X_focal\link{year1},X_focal\link{year2},...,X_focal\link{yearlast})} - -\item{kin_names}{list of characters. Corresponding to above lists: list("F","m",....)} - -\item{years}{vector. The timescale on which we implement the kinship model.} - -\item{start_year}{. First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990)} - -\item{na}{numeric. Number of ages.} - -\item{ns}{numeric. Number of stages.} - -\item{n_inc}{numeric. The size of the age/time increment (if abridged). NULL corresponds to 1 year intervals.} - -\item{specific_kin}{character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14.} -} -\value{ -A data frame which gives for each age of Focal at each year in the timescale, the full age*stage dist of kin -} -\description{ -Title joint age*stage distributions of kin by each age of Focal, for each time period, and cohort of birth -} diff --git a/man/pi_mix.Rd b/man/pi_mix.Rd deleted file mode 100644 index 0ed3c83..0000000 --- a/man/pi_mix.Rd +++ /dev/null @@ -1,33 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R -\name{pi_mix} -\alias{pi_mix} -\title{Mixing distributions for the time-invariant multi-state 2-sex model: Non-parity case} -\usage{ -pi_mix(Uf, Um, Ff, Fm, alpha, na, ns) -} -\arguments{ -\item{Uf}{matrix. Block-structured matrix which transfers females over stage and advances their age} - -\item{Um}{matrix. Block-structured matrix which transfers males over stage and advances their age} - -\item{Ff}{matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage} - -\item{Fm}{matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage} - -\item{alpha}{scalar. Birth ratio male:female} - -\item{na}{scalar. Number of age-classes} - -\item{ns}{scalar. Number of stages} -} -\value{ -list (of vectors). list[\link{1}] = full age\emph{stage}sex distribution -list[\link{2}] = female age\emph{stage distribution normalised -list[\link{3}] = male age}stage distribution normalised -list[\link{4}] = female marginal age distribution normalised -list[\link{5}] = male marginal age distribution normalised -} -\description{ -Mixing distributions for the time-invariant multi-state 2-sex model: Non-parity case -} diff --git a/man/pi_mix_TV.Rd b/man/pi_mix_TV.Rd deleted file mode 100644 index 5f39775..0000000 --- a/man/pi_mix_TV.Rd +++ /dev/null @@ -1,31 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R -\name{pi_mix_TV} -\alias{pi_mix_TV} -\title{Mixing distributions for the time-variant multi-state 2-sex model: Non-parity case} -\usage{ -pi_mix_TV(Ff, Fm, alpha, na, ns, previous_age_stage_dist) -} -\arguments{ -\item{Ff}{matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage} - -\item{Fm}{matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage} - -\item{alpha}{scalar. Birth ratio male:female} - -\item{na}{scalar. Number of age-classes} - -\item{ns}{scalar. Number of stages} - -\item{previous_age_stage_dist}{vector. Last years population structure (age\emph{stage}sex full distribution)} -} -\value{ -list (of vectors). list[\link{1}] = full age\emph{stage}sex distribution -list[\link{2}] = female age\emph{stage distribution normalised -list[\link{3}] = male age}stage distribution normalised -list[\link{4}] = female marginal age distribution normalised -list[\link{5}] = male marginal age distribution normalised -} -\description{ -Mixing distributions for the time-variant multi-state 2-sex model: Non-parity case -} diff --git a/man/pi_mix_TV_parity.Rd b/man/pi_mix_TV_parity.Rd deleted file mode 100644 index 9a95ab8..0000000 --- a/man/pi_mix_TV_parity.Rd +++ /dev/null @@ -1,35 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R -\name{pi_mix_TV_parity} -\alias{pi_mix_TV_parity} -\title{Mixing distributions for the time-variant multi-state 2-sex model: Parity-specific case} -\usage{ -pi_mix_TV_parity(Ff, Fm, alpha, na, ns, previous_age_stage_dist) -} -\arguments{ -\item{Ff}{matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage} - -\item{Fm}{matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage} - -\item{alpha}{scalar. Birth ratio male:female} - -\item{na}{scalar. Number of age-classes} - -\item{ns}{scalar. Number of stages} - -\item{previous_age_stage_dist}{vector. Last years population structure (age\emph{stage}sex full distribution)} - -\item{Uf}{matrix. Block-structured matrix which transfers females over stage and advances their age} - -\item{Um}{matrix. Block-structured matrix which transfers males over stage and advances their age} -} -\value{ -list (of vectors). list[\link{1}] = full age\emph{stage}sex distribution -list[\link{2}] = female age\emph{stage distribution normalised -list[\link{3}] = male age}stage distribution normalised -list[\link{4}] = female marginal age distribution normalised -list[\link{5}] = male marginal age distribution normalised -} -\description{ -Mixing distributions for the time-variant multi-state 2-sex model: Parity-specific case -} diff --git a/man/pi_mix_parity.Rd b/man/pi_mix_parity.Rd deleted file mode 100644 index f3874c8..0000000 --- a/man/pi_mix_parity.Rd +++ /dev/null @@ -1,33 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kin_multi_stage_time_variant_2sex.R -\name{pi_mix_parity} -\alias{pi_mix_parity} -\title{Mixing distributions for the time-invariant multi-state 2-sex model: Parity-specific case} -\usage{ -pi_mix_parity(Uf, Um, Ff, Fm, alpha, na, ns) -} -\arguments{ -\item{Uf}{matrix. Block-structured matrix which transfers females over stage and advances their age} - -\item{Um}{matrix. Block-structured matrix which transfers males over stage and advances their age} - -\item{Ff}{matrix. Block-structured matrix which counts reproduction by females and assigns newborns an age and stage} - -\item{Fm}{matrix. Block-structured matrix which counts reproduction by males and assigns newborns an age and stage} - -\item{alpha}{scalar. Birth ratio male:female} - -\item{na}{scalar. Number of age-classes} - -\item{ns}{scalar. Number of stages} -} -\value{ -list (of vectors). list[\link{1}] = full age\emph{stage}sex distribution -list[\link{2}] = female age\emph{stage distribution normalised -list[\link{3}] = male age}stage distribution normalised -list[\link{4}] = female marginal age distribution normalised -list[\link{5}] = male marginal age distribution normalised -} -\description{ -Mixing distributions for the time-invariant multi-state 2-sex model: Parity-specific case -} From 8dd7ad7830c1c753abf6e3ec9dfd7776f1c8b004 Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 15:55:33 +0100 Subject: [PATCH 40/89] using tictoc in DESC --- DESCRIPTION | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/DESCRIPTION b/DESCRIPTION index 62a4398..9dd070e 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -32,7 +32,8 @@ Imports: igraph, magrittr, data.table, - lifecycle + lifecycle, + tictoc URL: https://github.com/IvanWilli/DemoKin BugReports: https://github.com/IvanWilli/DemoKin/issues Depends: From 7d633aa53a3eddff08b0a51ba1fb72d86741b004 Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 16:15:25 +0100 Subject: [PATCH 41/89] removing n_inc --- R/kin_multi_stage_time_variant_2sex.R | 16 ++++------------ man/kin_multi_stage_time_variant_2sex.Rd | 3 --- .../test-kin_twosex_multistate_timevariant.R | 1 - .../Reference_TwoSex_MultiState_TimeVariant.Rmd | 6 ++---- 4 files changed, 6 insertions(+), 20 deletions(-) diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index e2842f2..f3e3d6c 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -19,7 +19,6 @@ #' @param summary_kin logical. Results as a data frame of accumulated kin by age of Focal if FALSE, and kin by their age*stage distribution by age of Focal if TRUE. #' @param sex_Focal character. Female or Male as the user requests #' @param initial_stage_Focal Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0) -#' @param n_inc numeric. The age/time-increment used in the discretisation of the continuum. #' @param output_years vector. The times at which we wish to count kin: start year = output_years[1], and end year = output_years[length.] #' #' @return A data frame with focal“s age, related ages, stages, sexes, and types of kin for each time-period @@ -39,7 +38,6 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin sex_Focal = "Female", initial_stage_Focal = NULL, - n_inc = NULL, ## n_inc is the age-class, time-class increment (e.g., 1year,5year,10year) output_years){ no_years <- length(U_list_females) @@ -269,7 +267,6 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, output_years[1], na, ns, - n_inc, output_kin)} else{ kin_out <- create_full_dists_df(relative_data, @@ -278,7 +275,6 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, output_years[1], na, ns, - n_inc, output_kin)} return(kin_out) @@ -698,7 +694,6 @@ all_kin_dy_TV <- function(Uf, #' @param start_year . First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990) #' @param na numeric. Number of ages. #' @param ns numeric. Number of stages. -#' @param n_inc numeric. The size of the age/time increment (if abridged). NULL corresponds to 1 year intervals. #' @param specific_kin character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14. #' #' @return A data frame which gives for each age of Focal at each year in the timescale, Focal's experienced number kin demarcated by stages (summed over all ages) @@ -709,7 +704,6 @@ create_cumsum_df <- function(kin_matrix_lists, start_year, na, ns, - n_inc, specific_kin){ df_year_list <- list() for(j in years){ @@ -727,8 +721,8 @@ create_cumsum_df <- function(kin_matrix_lists, male_kin <- df[ (1+nr/2) : nr, 1:nc] female_kin$stage <- rep(seq(1, ns), na) male_kin$stage <- rep(seq(1, ns), na) - female_kin$age <- rep(seq(0, (na-1), n_inc), each = ns) - male_kin$age <- rep(seq(0, (na-1), n_inc), each = ns) + female_kin$age <- rep(seq(0, (na-1)), each = ns) + male_kin$age <- rep(seq(0, (na-1)), each = ns) female_kin$Sex <- "Female" male_kin$Sex <- "Male" both_kin <- rbind(female_kin, male_kin) @@ -767,7 +761,6 @@ create_cumsum_df <- function(kin_matrix_lists, #' @param start_year . First year of varying vital rates (e.g., if years = 1990:2000 then start_year = 1990) #' @param na numeric. Number of ages. #' @param ns numeric. Number of stages. -#' @param n_inc numeric. The size of the age/time increment (if abridged). NULL corresponds to 1 year intervals. #' @param specific_kin character. names of kin we wish to analyse, e.g., list("os","ys"). If null returns all 14. #' #' @return A data frame which gives for each age of Focal at each year in the timescale, the full age*stage dist of kin @@ -778,7 +771,6 @@ create_full_dists_df <- function(kin_matrix_lists, start_year, na, ns, - n_inc, specific_kin){ df_year_list <- list() for(j in years){ @@ -796,8 +788,8 @@ create_full_dists_df <- function(kin_matrix_lists, male_kin <- df[ (1+nr/2) : nr, 1:nc] female_kin$stage <- rep(seq(1, ns), na) male_kin$stage <- rep(seq(1, ns), na) - female_kin$age <- rep(seq(0, (na-1), n_inc), each = ns) - male_kin$age <- rep(seq(0, (na-1), n_inc), each = ns) + female_kin$age <- rep(seq(0, (na-1)), each = ns) + male_kin$age <- rep(seq(0, (na-1)), each = ns) female_kin$Sex <- "Female" male_kin$Sex <- "Male" both_kin <- rbind(female_kin, male_kin) diff --git a/man/kin_multi_stage_time_variant_2sex.Rd b/man/kin_multi_stage_time_variant_2sex.Rd index 8eadc67..d6938ef 100644 --- a/man/kin_multi_stage_time_variant_2sex.Rd +++ b/man/kin_multi_stage_time_variant_2sex.Rd @@ -18,7 +18,6 @@ kin_multi_stage_time_variant_2sex( summary_kin = TRUE, sex_Focal = "Female", initial_stage_Focal = NULL, - n_inc = NULL, output_years ) } @@ -51,8 +50,6 @@ a list of stochastic matrices which describe age-specific male probabilities of \item{initial_stage_Focal}{Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0)} -\item{n_inc}{numeric. The age/time-increment used in the discretisation of the continuum.} - \item{output_years}{vector. The times at which we wish to count kin: start year = output_years\link{1}, and end year = output_years\link{length.}} } \value{ diff --git a/tests/testthat/test-kin_twosex_multistate_timevariant.R b/tests/testthat/test-kin_twosex_multistate_timevariant.R index d89b8e7..d6fca9d 100644 --- a/tests/testthat/test-kin_twosex_multistate_timevariant.R +++ b/tests/testthat/test-kin_twosex_multistate_timevariant.R @@ -33,7 +33,6 @@ test_that("same output in multi_stage (caswell 2020)", { summary_kin = FALSE, sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth - n_inc = 1, # width of age class seq(1990, (1990))) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 239ba5c..7b95acc 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -114,7 +114,6 @@ kin_out_1965_2005 <- summary_kin = TRUE, sex_Focal = "Female", ## define Focal's sex at birth initial_stage_Focal = 1, ## Define Focal's stage at birth - n_inc = 1, # width of age class output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over ) ``` @@ -193,9 +192,8 @@ kin_out_1965_2005_full <- output_kin = FALSE, summary_kin = FALSE, sex_Focal = "Female", ## define Focal's sex at birth -initial_stage_Focal = 1, ## Define Focal's stage at birth -n_inc = 1, # width of age class -output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over + initial_stage_Focal = 1, ## Define Focal's stage at birth + output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over ) ``` ### 2.1. Visualizing kin ### From fef124883d20ed5841224f749c8d3dcb098d1e48 Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 16:24:03 +0100 Subject: [PATCH 42/89] re-naming data (to show we use list) --- ...e_UK.Rds => Parity_transfers_by_age_list_UK.Rds} | Bin .../Reference_TwoSex_MultiState_TimeVariant.Rmd | 12 +++++++++--- 2 files changed, 9 insertions(+), 3 deletions(-) rename data/{Parity_transfers_by_age_UK.Rds => Parity_transfers_by_age_list_UK.Rds} (100%) diff --git a/data/Parity_transfers_by_age_UK.Rds b/data/Parity_transfers_by_age_list_UK.Rds similarity index 100% rename from data/Parity_transfers_by_age_UK.Rds rename to data/Parity_transfers_by_age_list_UK.Rds diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 7b95acc..72aea83 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -9,7 +9,13 @@ vignette: > %\VignetteEncoding{UTF-8} --- - Note that this is currently an R project and not package. To run code in this vignette we need to run/source all files in the folder ``Matrix Model''. + +```{r, eval = T, include=FALSE} +knitr::opts_chunk$set(collapse = TRUE, comment = "#>") +library(devtools); load_all() +``` + + ```{R} library(DemoKin) @@ -61,8 +67,8 @@ To avoid further calculations these lists are constructed in another file and si F_mat_fem <- readr::read_rds(here::here("data","Female_parity_fert_list_UK.Rds")) F_mat_male <- readr::read_rds(here::here("data","Male_parity_fert_list_UK.Rds")) -T_mat_fem <- readr::read_rds(here::here("data","Parity_transfers_by_age_UK.Rds")) -T_mat_male <- readr::read_rds(here::here("data","Parity_transfers_by_age_UK.Rds")) +T_mat_fem <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) +T_mat_male <- readr::read_rds(here::here("data","Parity_transfers_by_age_list_UK.Rds")) U_mat_fem <- readr::read_rds(here::here("data","Female_parity_mortality_list_UK.Rds")) U_mat_male <- readr::read_rds(here::here("data","Male_parity_mortality_list_UK.Rds")) H_mat <- readr::read_rds(here::here("data","Redistribution_by_parity_list_UK.Rds")) From 9c71361374aa111fe9caa7d3f2e3dd02a860103d Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 16:35:13 +0100 Subject: [PATCH 43/89] updating vignette --- vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 72aea83..86e77a0 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -90,13 +90,12 @@ T_mat_male == T_mat_fem. H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0. No time-variation. We feed these inputs into the matrix model, along with other arguments: -UK sex ratio --> alpha = 0.51 -We want all of Focal's kin network --> specific_kin = F -We are considering parity --> parity = T +UK sex ratio --> birth_female = 0.49 +We are considering parity --> parity = TRUE +We want all of Focal's kin network --> output_kin = FALSE Focal is female --> sex_Focal = "Female" -Accumulated kin in this example --> dist_output = FALSE -Focal born into parity 0 --> stage_Focal = 1 -age-increments by 1 year --> nc = 1 +Accumulated kin in this example --> summary_kin = FALSE +Focal born into parity 0 --> initial_stage_Focal = 1 timescale from 1965-1985 -- > seq(1965, 1965 + 40) ### 1. For now lets simply consider the accumulated number of kin Focal expects over the lifecourse ### From 95607fdc98a02a7f0dfe532540c381373e00eb81 Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 16:36:38 +0100 Subject: [PATCH 44/89] updating vignette --- vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 86e77a0..3e538f2 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -93,8 +93,8 @@ We feed these inputs into the matrix model, along with other arguments: UK sex ratio --> birth_female = 0.49 We are considering parity --> parity = TRUE We want all of Focal's kin network --> output_kin = FALSE +Accumulated kin in this example --> summary_kin = TRUE Focal is female --> sex_Focal = "Female" -Accumulated kin in this example --> summary_kin = FALSE Focal born into parity 0 --> initial_stage_Focal = 1 timescale from 1965-1985 -- > seq(1965, 1965 + 40) @@ -177,7 +177,7 @@ the RHS plot (1965 cohort) simply reflects the fact that Focal will not start re ### 2. Now lets consider the distributions of kin Focal expects over the lifecourse ### -To obtain distributions of kin as output, we simply change the function argument: dist_output = TRUE +To obtain distributions of kin as output, we simply change the function argument: summary_kin = FALSE ```{r, message=FALSE, warning=FALSE} rm(kin_out_1965_2005) From 1bc314d37231cc34ba2810d9dccb4a923943656c Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 16:44:38 +0100 Subject: [PATCH 45/89] testthat file -- we don't need to pre-load data now --- .../test-kin_twosex_multistate_timevariant.R | 22 +++++++++---------- 1 file changed, 10 insertions(+), 12 deletions(-) diff --git a/tests/testthat/test-kin_twosex_multistate_timevariant.R b/tests/testthat/test-kin_twosex_multistate_timevariant.R index d6fca9d..f04f42a 100644 --- a/tests/testthat/test-kin_twosex_multistate_timevariant.R +++ b/tests/testthat/test-kin_twosex_multistate_timevariant.R @@ -3,22 +3,20 @@ + + test_that("same output in multi_stage (caswell 2020)", { - load("data/svk_Uxs.rda") - Tf <- unname(svk_Uxs) - Tm <- unname(svk_Uxs) - load("data/svk_fxs.rda") - Ff <- unname(svk_fxs) - Fm <- unname(svk_fxs) + Tf <- svk_Uxs + Tm <- svk_Uxs + Ff <- svk_fxs + Fm <- svk_fxs Ff <- (1/0.49)*Ff Fm <- (1/0.49)*Fm - load("data/svk_pxs.rda") - Uf <- unname(svk_pxs) - Um <- unname(svk_pxs) - load("data/svk_Hxs.rda") - H <- unname(svk_Hxs) + Uf <- svk_pxs + Um <- svk_pxs + H <- svk_Hxs + - load("data/kin_svk1990_caswell2020.rda") joe_output <- kin_multi_stage_time_variant_2sex(list(Uf), list(Um), From 4abf7e4640247db3753ff7f8aa3d2437da6bab9b Mon Sep 17 00:00:00 2001 From: redshank Date: Thu, 24 Oct 2024 19:18:03 +0100 Subject: [PATCH 46/89] updating vignette --- R/kin_multi_stage_time_variant_2sex.R | 12 +++---- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 31 ++++++++++++------- 2 files changed, 26 insertions(+), 17 deletions(-) diff --git a/R/kin_multi_stage_time_variant_2sex.R b/R/kin_multi_stage_time_variant_2sex.R index f3e3d6c..7b8c3e5 100644 --- a/R/kin_multi_stage_time_variant_2sex.R +++ b/R/kin_multi_stage_time_variant_2sex.R @@ -13,15 +13,15 @@ #' @param T_list_males list of lists with matrix entries: each outer list entry is period-specific, and composed of #' a list of stochastic matrices which describe age-specific male probabilities of transferring stage #' @param H_list list with matrix entries: redistribution of newborns across each stage to a specific age-class -#' @param birth_female numeric. ratio of males to females in population +#' @param birth_female numeric. birth ratio of females to males in population #' @param parity logical. parity states imply age distribution of mothers re-scaled to not have parity 0 when Focal born. Default `TRUE`. #' @param output_kin vector. A vector of particular kin one wishes to obtain results for, e.g., c("m","d","oa"). Default is all kin types. -#' @param summary_kin logical. Results as a data frame of accumulated kin by age of Focal if FALSE, and kin by their age*stage distribution by age of Focal if TRUE. -#' @param sex_Focal character. Female or Male as the user requests +#' @param summary_kin logical. Results as a data frame of accumulated kin by age of Focal if TRUE, and kin by their age*stage distribution by age of Focal if FALSE. +#' @param sex_Focal character. Female or Male as the user requests. #' @param initial_stage_Focal Numeric in Natural number set {1,2,...,}. The stage which Focal is born into (e.g., 1 for parity 0) #' @param output_years vector. The times at which we wish to count kin: start year = output_years[1], and end year = output_years[length.] #' -#' @return A data frame with focal“s age, related ages, stages, sexes, and types of kin for each time-period +#' @return A data frame with focal age, kin age, kin stage, kin sex, year, cohort, and expected number of kin given these restrictions. #' @export #' @@ -34,9 +34,9 @@ kin_multi_stage_time_variant_2sex <- function(U_list_females = NULL, H_list = NULL, birth_female = 0.49, ## Sex ratio -- note is 1 - alpha parity = FALSE, - output_kin = FALSE, + output_kin = FALSE, # enter a vector of specific kin if we only want to analyse these (e.g., c("m","d")) summary_kin = TRUE, # Set to FALSE if we want a full age*stage distribution of kin - sex_Focal = "Female", + sex_Focal = "Female", # Female Focal is default initial_stage_Focal = NULL, output_years){ diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 3e538f2..2cb29b2 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -15,6 +15,7 @@ knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(devtools); load_all() ``` +In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks encompassing both sexes for an average member of a population, the sex of whom is user specified, and who is subject to time-varying demographic rates. We call this individual Focal. We seek the number of, age, and stage distribution of Focal's relatives, for each age of Focal's life, and as a function of the year in which Focal is born. ```{R} @@ -28,17 +29,15 @@ options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise ``` -In this vignette, we'll demonstrate how `Two_Sex_Time_Varying_MultiState_Kinship` can be used to compute parity-specific kinship networks for an average member of a population, the sex of whom is user specified, and who is subject to time-varying demographic rates. We call this individual Focal. We seek the number, age, and parity distribution of Focal's relatives for each age of Focal's life as a function of the year in which Focal is born. +### Kin counts by parity ### -### Kin counts by parity in a two sex time variant demography ### - -In this example we use data for the UK ranging from 1965 - 2005, sourced from the [Human Mortality Database](https://www.mortality.org/) and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). Some simplifying assumptions we make due to data availability are as follows: +In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from the [Human Mortality Database](https://www.mortality.org/) and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). Some simplifying assumptions we make due to data availability are as follows: i) Fertility rates vary with time, are distinct among parity class, but the same over sexes (the so-called ``androgynous approximation''). -ii) Mortality rates vary with time and are distinct across sex, but are the same over parity classes (no parity-specific mortality) +ii) Mortality rates vary with time, are distinct across sex, but are the same over parity classes (no parity-specific mortality) iii) The age-specific probabilities of parity-progression vary with time, but are the same over sex (androgynous approximation again) -In order to implement the model, the function `kin_multi_stage_TV_2_sex` expects the following 7 inputs, fed in as lists: +In order to implement the model, the function `kin_multi_stage_time_variant_2sex` expects the following 7 inputs of vital rates, fed in as lists: 1) LIST: Female age-and-parity specific survival probabilities over the timescale. This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. @@ -59,7 +58,7 @@ The outer list has length = the timescale. The inner list has length = number of 7) LIST: Length = timescale, and each element is a matrix which assigns the offspring of individuals in some stage to the appropriate age class (age in rows and states in columns) -To avoid further calculations these lists are constructed in another file and simply imported below (See ``Examples'' , ``Matrix_construction'' for details). The code below reads in the above function input lists. +To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed in another file and simply imported below. The code below reads in the above function input lists. ```{r eval=FALSE, message=FALSE, warning=FALSE, include=FALSE} @@ -89,16 +88,25 @@ Outer list starting 1965 ending 2022 T_mat_male == T_mat_fem. H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0. No time-variation. -We feed these inputs into the matrix model, along with other arguments: + + +### 1. Accumulated number of kin Focal expects over the lifecourse under time-varying rates from 1965 to 2005 ### + +We feed the above inputs into the matrix model, along with other arguments: UK sex ratio --> birth_female = 0.49 We are considering parity --> parity = TRUE We want all of Focal's kin network --> output_kin = FALSE Accumulated kin in this example --> summary_kin = TRUE Focal is female --> sex_Focal = "Female" Focal born into parity 0 --> initial_stage_Focal = 1 -timescale from 1965-1985 -- > seq(1965, 1965 + 40) +timescale from 1965-1985 -- > output_years = seq(1965, 1965 + 40) + +Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage +distribution of kin. -### 1. For now lets simply consider the accumulated number of kin Focal expects over the lifecourse ### +Notice that the timescale argument `output_years` = seq(1965,2005) gives a sequence of 1965,1966,...,2004,2005 of length 41. The first sets of time-varying vital rates +in our input lists are e.g., U_mat_fem[[1]] (corresponding to mortality in 1965), the 41-st entry is U_mat_fem[[(1+40)]] (mortality in 2005). We require consistency between +the length of the list of vital rates and the timescale: U_mat_fem[[1:(1+40)]] = in length = seq(1965,2005) ```{r, message=FALSE, warning=FALSE} # Run kinship model for a female Focal over a timescale of no_years (we use 40 here) @@ -126,7 +134,8 @@ kin_out_1965_2005 <- ### 1.1.1. Plotting kin for an average Focal at some fixed period in time ### -For an example, let's say we really want to understand the age*parity distributions of the accumulated number of aunts and uncles older than Focal's mother and father, for each age of Focal, and for each period in time from 1965-1985. Some people will do.... +Let's suppose that we really want to understand the age*parity distributions of the accumulated number of aunts and uncles older than Focal's mother and father, for each age of Focal. Some people will do.... Here we look at snapshots in time of the years 1965,1975,1985,1995,2005 and plot the expected age-parity distribution of an average aged +Focal. Implicit in the below plot is that we really plot Focal's born into different cohorts -- i.e., in the 2005 plot a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. ```{r, fig.height=6, fig.width=8} kin_out_1965_2005 %>% From 74039f5f7256a8707d971e340ae6749c385998e8 Mon Sep 17 00:00:00 2001 From: redshank Date: Fri, 25 Oct 2024 13:41:01 +0100 Subject: [PATCH 47/89] Working on vignette --- .../test-kin_twosex_multistate_timevariant.R | 24 ++++++++++--------- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 2 ++ 2 files changed, 15 insertions(+), 11 deletions(-) diff --git a/tests/testthat/test-kin_twosex_multistate_timevariant.R b/tests/testthat/test-kin_twosex_multistate_timevariant.R index f04f42a..1dcea27 100644 --- a/tests/testthat/test-kin_twosex_multistate_timevariant.R +++ b/tests/testthat/test-kin_twosex_multistate_timevariant.R @@ -1,8 +1,14 @@ +# Here I test the two-sex time-variant multi-stage function against caswell 2020. To do so I restrict the input years +# to only 1990 (so the model becomes invariant, and restrict the output results to females only) +# Technical note: to ensure that the two sex c(pi_f, pi_m) has a pi_f equal to the pi used in Caswell 2020 we need to guarantee +# that the spectral radius of the block structured A = U_proj + F_star comes from the upper-left block: - - +# A = [U_fem , 0 ; 0 , U_male] + [(1-alpha)*F_fem , 0 ; alpha*F_male , 0]. +# If lambda spectral radius of A[1:n,1:n] then lambda*w[1:n] = A[1,1] %*% w[1:n] = (U_fem + (1-alpha)*F_fem) %*% w[1:n] then w[1:n]*(1/(1-alpha)) %*% F_fem[1,] is the same pi used in Caswell. +# However, if lambda comes from bottom right block of A then w[1:n]*F_fem[1,] is not the same as pi in Caswell 2020. +# Numerically check! test_that("same output in multi_stage (caswell 2020)", { @@ -16,8 +22,6 @@ test_that("same output in multi_stage (caswell 2020)", { Um <- svk_pxs H <- svk_Hxs - - joe_output <- kin_multi_stage_time_variant_2sex(list(Uf), list(Um), list(Ff), @@ -37,8 +41,8 @@ test_that("same output in multi_stage (caswell 2020)", { ## Younger sisters jcmp_ys <- joe_output %>% dplyr::filter(sex_kin == "Female", group == "ys") %>% dplyr::select(age_focal, age_kin, stage_kin, count) %>% - dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) - hals_output_ys <- kin_svk1990_caswell2020$ys + dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) # Joe's + hals_output_ys <- kin_svk1990_caswell2020$ys # Hal's hals_output_ys <- as.data.frame(hals_output_ys) colnames(hals_output_ys) <- seq(0,109,1) hals_output_ys$age_kin <- rep(seq(0, (110-1), 1), each = 6) @@ -52,8 +56,8 @@ test_that("same output in multi_stage (caswell 2020)", { ## Older sisters jcmp_os <- joe_output %>% dplyr::filter(sex_kin == "Female", group == "os") %>% dplyr::select(age_focal, age_kin, stage_kin, count) %>% - dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) - hals_output_os <- kin_svk1990_caswell2020$os + dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) # Joe's + hals_output_os <- kin_svk1990_caswell2020$os # Hal's hals_output_os <- as.data.frame(hals_output_os) colnames(hals_output_os) <- seq(0,109,1) hals_output_os$age_kin <- rep(seq(0, (110-1), 1), each = 6) @@ -64,9 +68,7 @@ test_that("same output in multi_stage (caswell 2020)", { dplyr::select(age_kin, stage_kin, age_focal, count) %>% dplyr::transmute(age_focal = age_focal, age_kin = age_kin, stage_kin = stage_kin, count = count) - - - + ## Check equivalence expect_equal(jcmp_ys$count, hcmp_ys$count) expect_equal(jcmp_os$count, hcmp_os$count) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 2cb29b2..d556522 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -15,6 +15,8 @@ knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(devtools); load_all() ``` +Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model of kinship, there have been many extensions to the framework (many of which are documented within this package). Caswell [-@caswell_formal_2021] updated the original model to incorporate time-varying vital rates, Caswell [-@caswell_formal_2022] introduced two-sexes to the model, and Caswell [-@caswell_formal_2020] considered a multi-stage population of kin. Here, we provide an R function which combines the three aforementioned models. + In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks encompassing both sexes for an average member of a population, the sex of whom is user specified, and who is subject to time-varying demographic rates. We call this individual Focal. We seek the number of, age, and stage distribution of Focal's relatives, for each age of Focal's life, and as a function of the year in which Focal is born. From dce01e5c80d45988b3bfb48a311ca273c6343225 Mon Sep 17 00:00:00 2001 From: redshank Date: Fri, 25 Oct 2024 13:44:11 +0100 Subject: [PATCH 48/89] vignette --- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 39 +++++++++++++------ 1 file changed, 28 insertions(+), 11 deletions(-) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index d556522..52e4eda 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -9,15 +9,22 @@ vignette: > %\VignetteEncoding{UTF-8} --- - ```{r, eval = T, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(devtools); load_all() ``` -Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model of kinship, there have been many extensions to the framework (many of which are documented within this package). Caswell [-@caswell_formal_2021] updated the original model to incorporate time-varying vital rates, Caswell [-@caswell_formal_2022] introduced two-sexes to the model, and Caswell [-@caswell_formal_2020] considered a multi-stage population of kin. Here, we provide an R function which combines the three aforementioned models. +Since the inception of Caswell's [@caswell_formal_2019] proposed one-sex time-invariant age-structured matrix model +of kinship, there have been many extensions to the framework (many of which are documented within this package). +Caswell [-@caswell_formal_2021] updated the original model to incorporate time-varying vital rates, +Caswell [-@caswell_formal_2022] introduced two-sexes to the model, +and Caswell [-@caswell_formal_2020] considered a multi-stage population of kin. +Here, we provide an R function which combines the three aforementioned models. -In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks encompassing both sexes for an average member of a population, the sex of whom is user specified, and who is subject to time-varying demographic rates. We call this individual Focal. We seek the number of, age, and stage distribution of Focal's relatives, for each age of Focal's life, and as a function of the year in which Focal is born. +In this vignette, we'll demonstrate how the function `kin_multi_stage_time_variant_2sex` computes stage-specific kinship networks +encompassing both sexes for an average member of a population, the sex of whom is user specified, +and who is subject to time-varying demographic rates. We call this individual Focal. +We seek the number of, age, and stage distribution of Focal's relatives, for each age of Focal's life, and as a function of the year in which Focal is born. ```{R} @@ -30,10 +37,11 @@ library(tictoc) options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise output (but also #lose #progress bar) ``` - ### Kin counts by parity ### -In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from the [Human Mortality Database](https://www.mortality.org/) and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). Some simplifying assumptions we make due to data availability are as follows: +In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from +the [Human Mortality Database](https://www.mortality.org/) and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). +Some simplifying assumptions we make due to data availability are as follows: i) Fertility rates vary with time, are distinct among parity class, but the same over sexes (the so-called ``androgynous approximation''). ii) Mortality rates vary with time, are distinct across sex, but are the same over parity classes (no parity-specific mortality) @@ -54,13 +62,17 @@ This input list has length = the timescale, and each entry represents the rates This input list has length = the timescale, and each entry represents the rates of a specific period in matrix form: stage columns, age rows. 5) OUTER LIST with INNER LISTS: Female age-specific probabilities of moving up parity over the timescale. -The outer list has length = the timescale. The inner list has length = number of ages. Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. Thus for each year, we have a list of age-specific probabilities of moving from one stage to the next. +The outer list has length = the timescale. The inner list has length = number of ages. +Each outer list entry is comprised of a list of matrices (stage*stage dimensional), each matrix describes age-specific probabilities of moving stage. +Thus for each year, we have a list of age-specific probabilities of moving from one stage to the next. 6) Same as 5) but for males -7) LIST: Length = timescale, and each element is a matrix which assigns the offspring of individuals in some stage to the appropriate age class (age in rows and states in columns) +7) LIST: Length = timescale, and each element is a matrix which assigns the offspring of individuals in some stage to +the appropriate age class (age in rows and states in columns) -To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed in another file and simply imported below. The code below reads in the above function input lists. +To avoid the need for tedious calculations to put data into such format in this vignette, these lists are constructed +in another file and simply imported below. The code below reads in the above function input lists. ```{r eval=FALSE, message=FALSE, warning=FALSE, include=FALSE} @@ -80,17 +92,22 @@ Recap: above are lists of period-specific demographic rates, in particular compr U_mat_fem: list of age by stage matrices, entries give female probability of survival. List starting 1965 ending 2022. + U_mat_male: list of age by stage matrices, entries give female probability of survival. List starting 1965 ending 2022. + F_mat_fem: list of age by stage matrices, entries give female fert, List starting 1965 ending 2022. + F_mat_male == F_mat_fem. -T_mat_fem: list of lists of matrices: Each outer list entry is a list of matrices where each matrix gives age-specific probabilities a female moves up parity (inner list has length of number of age-classes). + +T_mat_fem: list of lists of matrices: Each outer list entry is a list of matrices where each matrix gives age-specific probabilities +a female moves up parity (inner list has length of number of age-classes). Outer list starting 1965 ending 2022 -T_mat_male == T_mat_fem. -H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0. No time-variation. +T_mat_male == T_mat_fem. +H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0. No time-variation. ### 1. Accumulated number of kin Focal expects over the lifecourse under time-varying rates from 1965 to 2005 ### From 48eeaa2160f22bd50eb88a602f3e065f02beadf4 Mon Sep 17 00:00:00 2001 From: redshank Date: Fri, 25 Oct 2024 13:48:04 +0100 Subject: [PATCH 49/89] vignette --- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 43 ++++++++++++------- 1 file changed, 27 insertions(+), 16 deletions(-) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 52e4eda..b951e3b 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -40,7 +40,8 @@ options(dplyr.summarise.inform = FALSE) # hide if we don't want to see summarise ### Kin counts by parity ### In this example we use parity as an example stage. UK data ranging from 1965 - 2022 is sourced from -the [Human Mortality Database](https://www.mortality.org/) and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). +the [Human Mortality Database](https://www.mortality.org/) +and [Office for National Statistics](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/adhocs/1887fertilityratesbyparityenglandandwales1934to2022/). Some simplifying assumptions we make due to data availability are as follows: i) Fertility rates vary with time, are distinct among parity class, but the same over sexes (the so-called ``androgynous approximation''). @@ -112,13 +113,13 @@ H_mat: list of matrices which redistributes newborns to age-class 1 and parity 0 ### 1. Accumulated number of kin Focal expects over the lifecourse under time-varying rates from 1965 to 2005 ### We feed the above inputs into the matrix model, along with other arguments: -UK sex ratio --> birth_female = 0.49 -We are considering parity --> parity = TRUE -We want all of Focal's kin network --> output_kin = FALSE -Accumulated kin in this example --> summary_kin = TRUE -Focal is female --> sex_Focal = "Female" -Focal born into parity 0 --> initial_stage_Focal = 1 -timescale from 1965-1985 -- > output_years = seq(1965, 1965 + 40) +UK sex ratio --> `birth_female` = 0.49 +We are considering parity --> `parity` = TRUE +We want all of Focal's kin network --> `output_kin` = FALSE +Accumulated kin in this example --> `summary_kin` = TRUE +Focal is female --> `sex_Focal` = "Female" +Focal born into parity 0 --> `initial_stage_Focal` = 1 +timescale from 1965-1985 -- > `output_years` = seq(1965, 1965 + 40) Accumulated kin are outputted by the argument `summary_kin` = TRUE. In such cases, for each age of Focal, we sum over all possible ages of kin yielding the marginal stage distribution of kin. @@ -153,8 +154,11 @@ kin_out_1965_2005 <- ### 1.1.1. Plotting kin for an average Focal at some fixed period in time ### -Let's suppose that we really want to understand the age*parity distributions of the accumulated number of aunts and uncles older than Focal's mother and father, for each age of Focal. Some people will do.... Here we look at snapshots in time of the years 1965,1975,1985,1995,2005 and plot the expected age-parity distribution of an average aged -Focal. Implicit in the below plot is that we really plot Focal's born into different cohorts -- i.e., in the 2005 plot a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. +Let's suppose that we really want to understand the age*parity distributions of the accumulated number +of aunts and uncles older than Focal's mother and father, for each age of Focal. Some people will do.... +Here we look at snapshots in time of the years 1965,1975,1985,1995,2005 and plot the expected age-parity distribution of an average aged +Focal. Implicit in the below plot is that we really plot Focal's born into different cohorts -- i.e., in the 2005 +plot a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. ```{r, fig.height=6, fig.width=8} kin_out_1965_2005 %>% @@ -184,8 +188,8 @@ kin_out_1965_2005 %>% ``` ### 1.1.2. Plotting the kin of Focal as a function of Focal's cohort of birth #### -Since we only ran the model for 40 years (between 1968-2005), there is very little scope to view kinship as cohort-specific. We can however compare cohorts for 40-year segments of Focal's life. -Below, following from the above example, we once again consider offspring +Since we only ran the model for 40 years (between 1965-2005), there is very little scope to view kinship as cohort-specific. +We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring ```{r, fig.height = 6, fig.width = 8} kin_out_1965_2005 %>% @@ -197,9 +201,14 @@ kin_out_1965_2005 %>% ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + ggplot2::ylab("Offspring") ``` -The LHS plot (1910 cohort) should be interpreted as follows: if Focal is born in 1910, between 1965-2005 he/she will be 55-95 years old. Focal will have already accumulated its maximal number of offspring, and their overall number will now be dropping as mortality risk begins. The offspring of Focal will be approximately 20-35, and began if not completed reproduction/parity progression. +The LHS plot (1910 cohort) should be interpreted as follows: if Focal is born in 1910, between 1965-2005 he/she will be 55-95 years old. +Focal will have already accumulated its maximal number of offspring, and their overall number will now be dropping as mortality risk begins. +The offspring of Focal will be approximately 20-35, and began if not completed reproduction/parity progression. -The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in partity 0. Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by a well mixed parity-distribution at this age of Focal. +The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. +However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in parity 0. +Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by +a well mixed parity-distribution at this age of Focal. the RHS plot (1965 cohort) simply reflects the fact that Focal will not start reproduction until around 15 years old. @@ -234,7 +243,8 @@ kin_out_1965_2005_full <- Let us now visualize the distribution of relatives over Focal's lifecourse using the model output ### 2.1.1. Plotting kin distributions for an average Focal of fixed age, at some fixed period in time ### -Below I plot the expected age*stage distribution of an average Focal's younger siblings over the years 1965, 1975, 1085, 1995, and 2005, given Focal is of age 50 +Below I plot the expected age*stage distribution of an average Focal's younger siblings over the +years 1965, 1975, 1085, 1995, and 2005, given Focal is of age 50 ```{r, fig.height = 6, fig.width = 8} kin_out_1965_2005_full %>% @@ -250,7 +260,8 @@ kin_out_1965_2005_full %>% ggplot2::ylab("Younger siblings") + ggplot2::ggtitle("Focal 50") ``` -As expected, the discontinuity reflects the fact that Focal's younger siblings cannot be of age >=50. Contrastingly, when we look at the age*stage distribution of older siblings, the discontinuity bounds kin to be of age >50, as plotted below +As expected, the discontinuity reflects the fact that Focal's younger siblings cannot be of age >=50. +Contrastingly, when we look at the age*stage distribution of older siblings, the discontinuity bounds kin to be of age >50, as plotted below ```{r, fig.height = 6, fig.width = 8} kin_out_1965_2005_full %>% From 02f702d160bef4c091fa6be732dc904e774ab4a5 Mon Sep 17 00:00:00 2001 From: redshank Date: Fri, 25 Oct 2024 13:54:32 +0100 Subject: [PATCH 50/89] vignette --- ...Reference_TwoSex_MultiState_TimeVariant.Rmd | 18 ++++++++++++++---- 1 file changed, 14 insertions(+), 4 deletions(-) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index b951e3b..46e5c1f 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -150,15 +150,25 @@ kin_out_1965_2005 <- output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over ) ``` -### 1.1. Visualizing kin ### +### 1.1. Visualizing the output ### + +```{r, message=FALSE, warning=FALSE} + +head(kin_out_1965_2005) +``` + +Notice the structure of the output data. We have columns `age_focal` and `kin_stage` because we sum over all ages of kin, +and produce the marginal stage distribution given age of Focal. We have a column corresponding to sex of kin `sex_kin`, +a column showing which `year` we are considering, and a column showing Focal's cohort of birth `cohort` (e.g., year - age of Focal). + ### 1.1.1. Plotting kin for an average Focal at some fixed period in time ### Let's suppose that we really want to understand the age*parity distributions of the accumulated number of aunts and uncles older than Focal's mother and father, for each age of Focal. Some people will do.... -Here we look at snapshots in time of the years 1965,1975,1985,1995,2005 and plot the expected age-parity distribution of an average aged -Focal. Implicit in the below plot is that we really plot Focal's born into different cohorts -- i.e., in the 2005 -plot a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. +Here we look at snapshots in time of the years 1965, 1975, 1985, 1995, 2005 and plot the expected age-parity +distribution of an average aged Focal. Implicit in the below plot is that we really plot Focal's born into different +cohorts -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. ```{r, fig.height=6, fig.width=8} kin_out_1965_2005 %>% From 16aeb2578bea0e43ead5083669dd54714f7e6204 Mon Sep 17 00:00:00 2001 From: redshank Date: Fri, 25 Oct 2024 13:58:48 +0100 Subject: [PATCH 51/89] vignette --- .../Reference_TwoSex_MultiState_TimeVariant.Rmd | 17 +++++++++++++---- 1 file changed, 13 insertions(+), 4 deletions(-) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index 46e5c1f..cb1dbe3 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -248,9 +248,17 @@ kin_out_1965_2005_full <- output_years = seq(1965, (1965 + no_years)) ## the sequence of years we run the function over ) ``` -### 2.1. Visualizing kin ### +### 2.1. Visualizing the output ### + +```{r, message=FALSE, warning=FALSE} + +head(kin_out_1965_2005_full) +``` + +Notice the additional column `age_kin`. Rather than grouping kin by stage and summing over all ages, +the output here (in data frame form) gives an expected number of kin for each age*stage combination, for each age of Focal. + -Let us now visualize the distribution of relatives over Focal's lifecourse using the model output ### 2.1.1. Plotting kin distributions for an average Focal of fixed age, at some fixed period in time ### Below I plot the expected age*stage distribution of an average Focal's younger siblings over the @@ -270,8 +278,8 @@ kin_out_1965_2005_full %>% ggplot2::ylab("Younger siblings") + ggplot2::ggtitle("Focal 50") ``` -As expected, the discontinuity reflects the fact that Focal's younger siblings cannot be of age >=50. -Contrastingly, when we look at the age*stage distribution of older siblings, the discontinuity bounds kin to be of age >50, as plotted below + +The discontinuity above reflects the fact that Focal's younger siblings cannot be of age >=50. Contrastingly, when we look at the age*stage distribution of older siblings, the discontinuity bounds kin to be of age >50, as plotted below ```{r, fig.height = 6, fig.width = 8} kin_out_1965_2005_full %>% @@ -287,6 +295,7 @@ kin_out_1965_2005_full %>% ggplot2::ylab("Older siblings") + ggplot2::ggtitle("Focal 50") ``` + With a simple bit of playing with the output data frame, we can plot the age*stage distribution of the combined siblings of Focal ```{r, fig.height = 6, fig.width = 8} From 4a3ebf17bbdf1856b2980c1154d354228177b02e Mon Sep 17 00:00:00 2001 From: redshank Date: Fri, 25 Oct 2024 14:42:46 +0100 Subject: [PATCH 52/89] vignette --- ...eference_TwoSex_MultiState_TimeVariant.Rmd | 36 ++++++++++--------- 1 file changed, 19 insertions(+), 17 deletions(-) diff --git a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd index cb1dbe3..40f5c01 100644 --- a/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd +++ b/vignettes/Reference_TwoSex_MultiState_TimeVariant.Rmd @@ -159,16 +159,19 @@ head(kin_out_1965_2005) Notice the structure of the output data. We have columns `age_focal` and `kin_stage` because we sum over all ages of kin, and produce the marginal stage distribution given age of Focal. We have a column corresponding to sex of kin `sex_kin`, -a column showing which `year` we are considering, and a column showing Focal's cohort of birth `cohort` (e.g., year - age of Focal). +a column showing which `year` we are considering, and a column headed `group` which selects the kin type. +Finally, we have columns showing Focal's cohort of birth `cohort` (e.g., year - age of Focal), and an as.factor() equivalent. ### 1.1.1. Plotting kin for an average Focal at some fixed period in time ### Let's suppose that we really want to understand the age*parity distributions of the accumulated number -of aunts and uncles older than Focal's mother and father, for each age of Focal. Some people will do.... -Here we look at snapshots in time of the years 1965, 1975, 1985, 1995, 2005 and plot the expected age-parity -distribution of an average aged Focal. Implicit in the below plot is that we really plot Focal's born into different -cohorts -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. +of aunts and uncles older than Focal's mother and father, for each age of Focal, over years 1965, 1975, 1985, 1995, 2005. +Some people will do.... + +We restrict Focal's kinship network to aunts and uncles older than Focal's mother by `group` == "oa". We visualise the marginal +parity distributions of kin: `stage_kin`, for each age of Focal `age_focal`, using different colour schemes. Implicit in the +below plot is that we really plot Focal's born into different `cohort` -- i.e., in the 2005 panel we show a 50 year old Focal was born in 1955, while a 40 year old Focal was born in 1965. ```{r, fig.height=6, fig.width=8} kin_out_1965_2005 %>% @@ -182,7 +185,7 @@ kin_out_1965_2005 %>% ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + ggplot2::ylab("Older aunts and uncles") ``` -We could also consider any other kin in Focal's network, for instance, offspring +We could also consider any other kin in Focal's network, for instance, offspring using `group` == "d" ```{r, fig.height=6, fig.width=8} kin_out_1965_2005 %>% @@ -199,7 +202,7 @@ kin_out_1965_2005 %>% ### 1.1.2. Plotting the kin of Focal as a function of Focal's cohort of birth #### Since we only ran the model for 40 years (between 1965-2005), there is very little scope to view kinship as cohort-specific. -We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring +We can however compare cohorts for 40-year segments of Focal's life. Below, following from the above example, we once again consider offspring and only show Focals born of `cohort` 1910, 1925, or 1965: ```{r, fig.height = 6, fig.width = 8} kin_out_1965_2005 %>% @@ -211,20 +214,16 @@ kin_out_1965_2005 %>% ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5)) + ggplot2::ylab("Offspring") ``` -The LHS plot (1910 cohort) should be interpreted as follows: if Focal is born in 1910, between 1965-2005 he/she will be 55-95 years old. -Focal will have already accumulated its maximal number of offspring, and their overall number will now be dropping as mortality risk begins. -The offspring of Focal will be approximately 20-35, and began if not completed reproduction/parity progression. +The LHS plot (1910 cohort) should be interpreted as follows: if Focal is born in 1910, between 1965-2005 he/she will be 55-95 years old. Focal will have already accumulated its maximal number of offspring, and their overall number will now be dropping as mortality risk begins. The offspring of Focal will be approximately 20-35, and began if not completed reproduction/parity progression. -The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. -However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in parity 0. -Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by +The middle plot (1925 cohort) shows Focal between ages 40 and 80. Again, Focal will have completed reproduction and can only lose offspring as he/she ages. However, Offspring at Focal of age 40 will be around 10-20 and still have high probability of being in parity 0. Whereas, Focal at age of 80 will have offspring aged around 50, who in turn will have completed reproduction as demonstrated by a well mixed parity-distribution at this age of Focal. the RHS plot (1965 cohort) simply reflects the fact that Focal will not start reproduction until around 15 years old. ### 2. Now lets consider the distributions of kin Focal expects over the lifecourse ### -To obtain distributions of kin as output, we simply change the function argument: summary_kin = FALSE +To obtain distributions of kin as output, we simply change the function argument: `summary_kin` = FALSE ```{r, message=FALSE, warning=FALSE} rm(kin_out_1965_2005) @@ -261,8 +260,9 @@ the output here (in data frame form) gives an expected number of kin for each ag ### 2.1.1. Plotting kin distributions for an average Focal of fixed age, at some fixed period in time ### -Below I plot the expected age*stage distribution of an average Focal's younger siblings over the -years 1965, 1975, 1085, 1995, and 2005, given Focal is of age 50 +Lets's consider Focal is aged 50 `age_focal` == 50, and examine kin younger siblings; `group` == "ys". +Restricting ourselves to the years 1965, 1975, 1985, 1995, 2005, we can plot the expected age*stage distribution +of these kin over the considered periods, as shown below: ```{r, fig.height = 6, fig.width = 8} kin_out_1965_2005_full %>% @@ -279,7 +279,9 @@ kin_out_1965_2005_full %>% ggplot2::ggtitle("Focal 50") ``` -The discontinuity above reflects the fact that Focal's younger siblings cannot be of age >=50. Contrastingly, when we look at the age*stage distribution of older siblings, the discontinuity bounds kin to be of age >50, as plotted below +Notice the discontinuity along the x-abissca at 50. This reflects the fact that Focal's younger siblings +cannot are of age <50. Contrastingly, when we look at the age*stage distribution of older siblings, we observe another +discontinuity which bounds kin to be of age >50, as plotted below: ```{r, fig.height = 6, fig.width = 8} kin_out_1965_2005_full %>% From 590b087c028dd0bdc0ea6d88c934c4a142eaeef5 Mon Sep 17 00:00:00 2001 From: redshank Date: Fri, 25 Oct 2024 15:16:08 +0100 Subject: [PATCH 53/89] testing rda files --- data/Female_parity_fert_list_UK.rda | Bin 0 -> 62361 bytes data/Female_parity_mortality_list_UK.rda | Bin 0 -> 37402 bytes data/Male_parity_fert_list_UK.rda | Bin 0 -> 62360 bytes data/Male_parity_mortality_list_UK.rda | Bin 0 -> 45435 bytes data/Parity_transfers_by_age_list_UK.rda | Bin 0 -> 136173 bytes data/Redistribution_by_parity_list_UK.rda | Bin 0 -> 338 bytes ...eference_TwoSex_MultiState_TimeVariant.Rmd | 62 ++++++++++-------- 7 files changed, 36 insertions(+), 26 deletions(-) create mode 100644 data/Female_parity_fert_list_UK.rda create mode 100644 data/Female_parity_mortality_list_UK.rda create mode 100644 data/Male_parity_fert_list_UK.rda create mode 100644 data/Male_parity_mortality_list_UK.rda create mode 100644 data/Parity_transfers_by_age_list_UK.rda create mode 100644 data/Redistribution_by_parity_list_UK.rda diff --git a/data/Female_parity_fert_list_UK.rda b/data/Female_parity_fert_list_UK.rda new file mode 100644 index 0000000000000000000000000000000000000000..9feb9d5e86f51a49d6728f979f484bf0c7b95901 GIT binary patch literal 62361 zcmZ6yML--}*M#{cxVyW%ySoI3Ai;yXy9ak^G-yNP9^4_gLpK^c!QHi?VcwbDKX-lB z_f$QniYgKLfB)Y@Jb&}k!iTJKz0rc;;XZ??X{qC=scDsYgHdRUK|l7XN$|g@Aj)_u zdd`U)6~q=qTB}tNOKa)Eqa)`Wi63o>UR4|WT$x|N`m(tbZ3BHZ=WF_c8s{5MNk^w0 z-|!vr<>lqY;+5m#<9#pJ-*fD9nimKtEkG9%8=Ah@0BnGp+hpVM&$G2-VzOL396X5g z6*kR!Q^xy;ee2%kBQRtG@G8~u+7am~hUtv7?5pKA9!3%DE@t1c2lgf3#_YcM6Uqmo z+Zg;sq0|xSA(rBTwCKz2hBWO3N9yAthNwd>M9jH;j|cKWy!4S1>1)>S^e%<<+PI~- z(e(OZFWbH~B0Il10S!BRFmH5u_j@y+zmmS+AyVa}_Y@AZ;l~=nqfg9W_VBan9*Ky(V{{$*Sy3Z1ELuS}o!IJI{rZlp{{FH%oN*>1Rl6x_0Pe_(m3zqbgF2#npX%WHyQqw>D<#WhlhShPRAl~n)E3isYw)n=~(Kwux;@Jh6Fu> ze68^SnC0Q{qG!|3zVGq+%hD7za)E2o3P7=Hnh(>L_)(T1neTGrTX8}6NPu4&5^Cmv zq-2du%8Xm?&G{2~ny(8V*YiB*$SCmbtJzRoT3)5%0B-bOj&`@hIBy!0&znU@2||04 zM}eOMu0oC_<~*98I#CO^RtOj6^oT)wNexV}A0_f@8-iJ}JX&YzJx_huh)?)UE7gRh zz}M)rtR8{mYL}Uw+J@u?o*mS?XSd^Hqkivb2#E{Vi>_`4I>fP{t8{A=o1-)kRb%`o zc*J5}(B&Yudl_l`_@PuwFO6a}?1`K8i?W-o3Z=ZrxS^ye>bVn?OUKhiWYuqJTr#_8WVv5~&cgMVPJa5B)rM(TM5C;~w z+q?DR-`y|l+~9whr4DyI;POM3rT+@^4##13q-guTQ`vhBqWQGp*)QMe^r~ls6KXV~ zyuL#0`6X`!|?RmuV3}0JLu*fa<{nvz6#&5WC z0%+q*hk4wc*Ktz2RhWSWKn@O|fUFztQeub=w9Shb zTq)Fk8wrAl&TeNmd7;j_jJx7=J(Td=jkC?~^;UH(i`Tpk;|iD>W+}96>@7}Pu||I2 zvTnb7yId3~!Hv%_2Vyz{;UAC_o?G2Liycb z<0DeCr#Q4k=9c}!-IOsdCxB=VID*X!HqqrYU8J_RKK;i{&62lo&XBZ4c(^CB zSh>)F5pec5JzOeo&k~hx{}W!tdzjTI?F;vidtyP6HrcSvCtC>zSz^kAjJJ`j1dDgP zO!9LIV#oe(EwR2Rayks-Od+$}T2-)^zHcNUixqImVwvE*C&o|)0gA#pvd=Ma8uk+E zH?GgZIC+VJR4h@6pm$wUaOs(lHqK?QiZNa?Z{A2ZLa6}$r2%$7NhpqCtY6<2flRz^ z3|?2q{VmRLJ3hVt8KbPB6`v93-S4lh3T~Zd1R865ZwR8X-+gW&zrUpW9EW~r*yb@K zQcT7W1|<&@pLfwca@J$P@gJz7^Wqb0;C+Z%cMQbj2K9fmOGNBi>}1LaANm_KZ{yC&>|3o~B9&NNZJn@E`Yf&YG4y#@ z3bC%aa<(@Tfh@1?9Nu~9GE-ok>9k(xqZr0QUT^jQHyETcxd6p5;o{s*X@Ew3Q2ms< zjV)bLJ2j@=h|Wm7qwsNivkEm&nt2S*52fVjDgaH9(p~S?;omxxOc3keoiS`h~38o+ngbp1V3qy z$sIG;qdE7D;6Zdf-77*OG$8_8{jIL$XrtYELDs9+90YjFksD3*s>;`$lv)~(tcms0 zSU0RM@jTbb){UTNy~wvu)iVMW#5%z19n&>LdJF=Y{!FCoN~vjQ>*2iVmktIAmSheE9B73Dd>08di=Mj~6LLFBZ}8Gm(f;zYPipS4qOI$B`SsNfUAi|S+i(n+i_hn6%mg4g(ZIK4rAB9ChTdDub!YM9}JyYol)_}P??3c z7?{*a8McGX`>eVe35@~%tLA0T|8~BMsE%_{h|@s=dH6wZb3OnF2GU; zf0@b-oB8&6`D;@MO0LPVD(|s(mRJJK9Wdzm>pIUHeb>~<267C;WWro9;cs_|wN*PD zUt-IHzWc9b*m5DEz_kcno~6+9dvpiHn2MBdPW2aK#UG(iWTav`;c))w!s|s&P)tLdBYa zIXi|{+U(B>k4=7gnH#%=W9YkvFvKd zTqSMExuuvKey(04ijK~_@Oy59vprANRT&cAgNiiHsInke0c$Rzul#|pDw%I}m!(fb zH#IqOF~IZR^@>z4}FnH`tPmJ@)XmUj8Z3Iv{8^t3L8mUC*n;LF#t32f6M2pf$Aug zvZ2RA4BGx$@+x+*iJ<81!QRowc_S_6QBwSKi5^)rsK|@2P^N|ZJx#9@bn}n$A^WIN zn`q?Tq&68tV8GPezMw`)ffG13QESKS_FY_v(>RWI&=et5iCJ4wrY?j%i6Yv`Vh}^p zW+HhDS#1s2G0WTWwCZ1;_U_%v@I1kse%U(JzkDE@q>lkuz!w_Q2;6GY{}TaR?3&lU zO4-#$EZN{NKzcgkJni+P8i#EFHCcK+hwuIteFT2DH{XDH&PN`XY(KB)HT2J_hvi+i zE8ja~kkI4$lxm*%jFiYSd6N}9l9DYeDqVHVn?gP8v9doba)wg{Z_~<5u4GyR`Ugcn9*TsDTZmfi~b9{6?C{^}$W`J{V^C+vWlSCVHM zI~I;%>E(jcpktafmyRI=D!G&du?@_=E~UxsSN@AfhKxj|ij~P*yzKrIjMtS0q_3=5;P86s=Wa;AA<3K(rH0s^rG&Yk$#0+W3!c2-Nd+8n(S6dmguV8 zy7H#;T7PlesXu#J@aC|Vkc(ITzkwbfy{eu<&b*HaEjm&$UkryD46b%$FQmy9v1^g| zhw3VoqirBTFQ$k}wWx?9lQ5+rF&=NR$F@9w@|b{O?ZuL)k_FHlTH+ITX3JL=rR+~~ zWqVSMMbHEqu2Ye_ooV74?(g~H!{LJ?a(q))jU^xPJ=R;hboa5`Fl$qZm+a-q@pVJh z3-EHHrJ%IzS~k}+X>hUb+`Y~hkQ5k}g12JfWQIMKpmwl#n#hwfe2Zg#Ad3$)+R<=o}D*A)MpQtdM4|0Lk<7jQW2lcVkAxBi)Z zXW%73fd(yG=n=8Yq)1L`+N_*K#Sk6m`FShH7i72HboXE-*pra--uYe;pvMyO1+3ru8v9gf)|Ya}S}9|S?{M_wj(SOjs4xW?|Hui&@ zoZlnaf7KB`ec0tNqL`6N?D8nF5k7;KoQ=QNo+mF;+{>yjumkG#L|CgC`}t69LHGUG z8Oj>C39>(}B`E1>ueL|K>-$?KRPMVvD`7M`Zq1SpJ7IVp-WiAnJ)Jlnz#0IP6Dkd1 za|^%A`!(l;E%4(P6(^>d!dt4Sh1|T{oX93zB>!HS5<`QQHmL`w`De_^b{Y$A4#NF` zb~K-q;n4pEIuq4?P$D)4zXKlbIS^w%lsPXihSTV0BT*oH#F^JeE0SFCgWPit*Q=zkBP{#-U(bR+F{k9vh|ya6qQsKQ{w$l=MNIGPgWNA$ zMoLZ{@ULG`75K*wIPY6XidPirWgMV_tj4bXmzk?F4zkd}NXy;{zbp?`0(6Bji4@~; z;dnrSu*ksyTe$r!rYS?(Kc0_QgFQ2~YwP5q%Go}3e$y1!#V)S(X)%gBR8>J=HNEXX58N_~oEb2^!_NO(Y)TP)i zdOilH-bAMKa}A??0GwicADn$UGCo&|Sa^*4*!W9jm3B_$BR}Xs#4&TzX*C%LQZXEi ze^jELiX{l!_$FV%Pc3QFRze!h%j=xo6_$2nKsZlBp3JUb)m|<@P$rSy_w>br3D+wr z6di&|9W(j>%hP5XDgqSo$6fpY0{#@jAh(4p2_SBpUT49BMWe5 zPTeuMR0r83Oam6vPhRjy4m-z0iK zW|?Ab+Bpx#KH~^l`pSd~2xi&?o~hDOE1zXf%q#dGN3D+l7oz%hgmSh_fbR3QHzwd3 zI<-nVWO7^UW7rn{{gDk(_bhxMEi@XU?g3%7O88tzN66|ISr4|M>g#l3B`JJZ&CUW& zgJ63ZpHe8yA&<#XDZhy9`=FjnUe|O+>Ee%eus`t?`=v6iG5u9ekIBa0OXat=zmf}S zjFyOw#>X8^sOt7|n%y@H{P3JSS;E}AIJ+S)WehP!M&*-Qm=7~h+@1%dY?e+<*b1kc zwelzO+npAFrJIan;!a@(5K|}YK4C6Uz>rxr!)M}I{OSEsr!eM+ty&+(fh!qd#*+Wp zmjArVO~EtT8tvUf;nmgMEO)K%vt*P1|4O#F#uQHHsqb<=O&8jbWwO?vQAtups3_bi zjcdHiK5)6|(-5dH!CI>tx5VNZ+x~h{85lw~YeUOB4AJZR_*^Pm+6~TF9vj5oQb4l} z^k=w{n8;tvf;7UK6cZbsqOQA9NsAPrTEXk7q=hB|_3bvg>{CGuW`U^-D_@Y@0z>!R z;wOw0-sD|JRR_!aS*@2S8uOHw>yvJeW*4bDz4Pj=uvRtD%tHvug6T=6ujc&pY{xaiHj6-%q3DTDA|r+W9Y ziCfpEabW)W63e^@2Q2}_zxFyIIpq=k=otdqrw-l*ro$|upS*D`fmE-}MD^2pJ4H|6 zlK7)OTnP#i#~fwZDkNHM4{n9oUL%BZLxf4neBFuspJ^AEB{H@iKlDwPW#}3DfG~ab zXl8u^frlO7&CedNPppFIrg{{JBgt*}aCo*y^9p|VvfN^Hl1Uf*4570Z?~dL;@9pz= zq5|d9)VeV~QU?OJa6VX66SiOH=0PHw#Yo#wRrC%>mt8h2ynD$vjEC20N#D8Ab{u^= zWwdyWXczkV!Tw&bE%WqFuF!nxZuhHGRhxJtj*1uIvg_)0&Lm!G`pZoZf-L4#Yc&HU zln*pAVkB|$;I!Z9bhwQ-t)MYzoIr}FYTY`+#7?$PEiiQ~V^oNMt8qrAvVE_hd)xRp zlQD*DV{S;R8}(7D zO_0fhEcko@m)Fdvi&kB44R$4rGA1LQO}NX!bvNEp*4k?)?+4#)Xr?F+SWuNtO3S8y z{R)*udtp3`Fx`Lw@nq*a%$q(L?i%=$Bgz9pO|HB~O>N4|kRKTy7!`sIP|MF7T;&VX zOX}9$QnjuckW2~du1!(fBnQtBJH#4;q(rfX8M!$?#=o%r=4xN0$e{=sD|aHN3X%T1 zcQi9ca>9X+DK-lxt#Yg5SX&$w^2c$&Amxk)6w_O(GD@>-xym+JTfPnwgwtImc*p_E z$c1o#&%|31?W_wZ8vhEh7UlT;aUeY(T4?(B zF!TJC(IgjGA@}Y!vGtUU+34rF!`5o5c#Sv3;US`R;;DJ5iMB#_FxMBMT$XgV=XUXi zzL?`IVJ6S%Pf-%40Lgq!44`YtIPav=%`bs7t3|=Htw-xD!_=gAmzOuIX{q+Naj#u2 z>*?hT^O(;KqQ7_l2GsAwieYO6rc4C5lN%m@%wEru+DSYLC7*Q>SO>_^&4bRu^EM8h zj7`k7E4>tZxEv5M*h<@1Rhc2XbS-W4Cn&O!o~Wh*66^CwYiUR+Ak!@WBjON}^_k_7 zO?Y&f?;-;qDxp%Ou_g#^Qxl++LnE@}ZZcLonC7hA0%(T$j09nT0QCsyG^Z3uC#IkO zsH}ytu&7%0x%rZIG(_V5e=nbRt63CQHy`PSf*%VFa}guVrvQ~4AK~*eW7n`W>&_8G zGbTso!N~Ea4J!MU-#?GH?1*-_tBRV5LIXl^R6HA*Sn}i`67^fsyT6h?%_%O-G%E4@ z_3XS<07xRjnY^lchFToYW#*g9pdw0r$qU;C#t*VEmahh~6Mt(zF!F5~|1PP}Y;Vei zIFI8(s9`?z`$2qq7i;g>&1So_f-Rw_y)H6BHsV-R$o90~gTiH7-JnZg1YDORaU@h7 zX_V?^O*BHG&2sTrC3uINU@Sr`z*-5=w7MUSZA2$&2-zKn!2wK`9%piC2mrO49EFxb z*k#hpzueOzj{tTAwC_sah1_YQ@7IGiyFj)7zI+ew{*B`!r$rClAi>-HSFno1$SW5exHSEIsB@?sAeTRoEme%%C z!i&{s;_ThkEBEA6bN{u@jgu&i-1dO=pf%y-y29c=E^``<=6RO7Vgj6VI?c7hZEEYO z>AMg;fna5fsVb_(-_hI5n&wmJSp1i^YxSCg*7n6sQrCD(YNVV9%f_-UHc+i3T>-{2 z$+!D`62%S|;GFs(*>T?utZ=Ky#Cy4#KP-+_0V(KAuQ1~k487fE&xHw=K3x=W>Y2($ z!kYe64$o^%d)~B;M@cwt?iv!dOlk9M9IkpmMOb^CwQDiG{ZQ(s7Cq?Hwj4P30&qxrRmgDELjE)jEK~LKyg-7IBCrt9KlCE}}TY29{0V z2#GOtHiHckkBkcL&JHnnfE`DcSin3V_}U2Dy!W>r|9osyF? z{lrOSgR|2=l3cj>peg!!uBjc@`T*5EBCTb>d-vzFsyH$Cp&=iksU_>ihm$S&$?4L8 zM*1S9_?6D9$P)wRwE8!eUMrlg;Nabgz1j)x-XPh#DU>o!7MO}{i}Y?D^;NvrJocJh zm^W1+dxR8=(=}Lo=*%|~HnQv>Jk5OpCH;=t5j)J0gPZ&R;?$;t|JcW#$PH1mf_^1?NJ#8EF;`J~m%DNZq+Z1y$yC7Sqpv_(ZVS0&maK38!CA2KQWUX4cs`v#SP z8J!EtcF~#F(ah=Cfg`5CPP0c{5*$txB1NVOY;ln9&t({*cwfZGEPv|n0HoMwj0=Kq zQukXNHlY}Z9R~7Lc>^OHS9`PYVYXHK99i2|VsV^6E9>wOj^hKiO3TRwIVmz-~m_4<-U^Z`M;xi*TYlo9@C7dv0x z-R}^+!+${(N`K}M!`dZ}BZFpo8YKOjiB9h}&o2bkv_xmh*>IXoIX}Y<>2=jX26Jw7 z(w;d)HHi=yNU*^&4rA4q0*Qi_yQ{F&TxoYw3Dtl8`056JeH9yaG0J4TCv6yO7U`&X!2SCUg6k|aON(gN-9oc}u1 zb$CiL5MsLCj^@l|3^`89-E_Bzqi^$u9Ps~)&}qG;V{+r!RH2blSW=6LC(BKzOPvI_ z_$t4F;FIhkBSNuTvGh2%l(OJ z5*#!cy*}f3W+lIEsU!2n6V@_`M*ojv4E$(N zbp3Ok03v=*kRo#wc_1c!^CK{RMFBttgaY&%@q|)w4N*U&H6f zHfudpyzCP>kT(eSBijx61V-&xsFUEuMPH6d@`NStYF)k*yV4nck&8zZn0kW+-R@}% zynST>iy#qnZ&{$7&ubl8ei0dg%Vdq`L%66_u!t5j?9L!XwKutUuC)QodtVAf55ZYC zVhSYm(i6Hr+(N=iJoW!Pz5A|iHcW+|S{fIbi9bZ-M zylb0_kKKwW?8UTO+9xciClsL+VT1i&-Qg1`kw~}L^-EdmILP6OEJ`m#B#-u2bW&)- zPkRaqe3Zi|AX$@~VP|4ajs_!Z_r9NxwsT`M6^Vb93kFDWtZ@%O#&$aURC(x8S6Z$6 zU1ydFBZ|mwLNAbA`rFI>_Qw~d^~>7koAk&5sz!zcDU2MJ8lC`FLIjJNK$ePq^( zXrVGRe696QDnsu0w_J=Bk^#OB`I>~Qhu_H-rYA(<~++> z+T!4#KPiS&ACrC8Q}6}ybIqQOCi6$0hf%q4Ks_@S4e(9iAaaOKD9Xov3=r~Nu{`*l zUk8=XW#JAN$Glh+_na^#?v>tPK6;VnyOK-S_a-4qj(XH~bo*hb`s(0Lx6t>Y9`im{ z0W#Lfq*V^CeVG#_X!!K10>tOOAOu2+XH?%>qvw|as&Aoqb$W&97k;}h%Orr8AZ;*m z(BtoVT~O$_l9f;bpMH|%bDWVN8}F7ZO$WPw?XvADcsh7G;~^@(zewR?!`jr|EN^}A z2cbmQK1ey3?I^m=$B>ip#_xp3ZolyU?S(YW7q?;(h{r#N;@Yl5vdcx%w{}-*BS($-kp+6eW>eLBO-npvjK!fN+}%t zr>tI|!ZTKb?6e_(?iC6P847}>4PMSnSmMQJ&R~Ys( zgTC}gg*cu!1?3f|0r2PjFJseRh|I9Uz?UzX;YxHbHkw{6-^T}o6?^LNE9|Jqi_ZL! zl3Q(G{PbJEh1R#)mMlu8O90dabuWJIZnr#qZBVj|+;Vp*cD+bVhOA~A*z#>9hQX!B z)bHVMoGe$30j?~`+&#$g>{>nXfv;*`KehSPMtY67Zwbmmg^!g?wJpRMCwryW_9GE@ zf~+fa<7UxjUu#a)CA2@K?wgVno*S?Am(hY}=#kI@Or;v8;*jPDj8Hq#rbiUyxe&Kb z`8od-YW7n+75PhH=iCo<_}SSu#U{!~Km4P4t?e^+7vx35_MSu}r2Z}LPzzMCYBzR1 z_S*j+^4JT`;Py@-c-o!&#pI4pEq`Qu=n@eqC`GfJ*MLQKdy$j&qj9@Wt(VIGGBL3c zWp0M6m2m0p`+R&a+tbMNjwJU}w)JF93+ET1+Al7cOR-!laO4`zY^nASP z5DYuGE_ZE(Q}4y4rV?l7lrsxD9qw+BLCYf1XaefkP|x&p*Ie?q`cwoHk&Mp+3Nf3k z0epYLKyIy;1DLhE!+q9h>R>V4TZe=jBv+ImoGFEk67PL9ucI!KR>MFvwSH=aRWyU3 z!eX8KLzClrAdR9q&2hGbwn)XNJ!RivMMBM^PcQ0Ess1zr678`%*%3LYVl z@}>ELDqu;2a=H1=>?UljWib)L(jn%t#<{#30 z@A@w#g#2OnVB$3?D;`+1woEV^jf7d)Cq~8o+n=c(G76h7#{Xqr;x3BQ;k$+TYeHA< z2?9Tkm!kk46L%!+`xYYzEU)DE+k$k5EkNI&q+9Jnh4bB)@i2g|`>#?Pr71t#Z_Bz- zYV@(7TR47-0gV%$hYE_B6!xVHSRxUYqq2nBqXx{KHI46fX2@N7j40tDhZCn&{kSk{ zloJF-!*|zAG^ReCG;N-;TZ-c!b%ScLmr9Tz;YNby$Bv>FzcG)d$|Cu>~{u)!KeuO?4-y z-Pe&3aGy5vG?Z%pMF6$g-x?P;|fO^O^4AeWF=&P+yv z#RXvv?faoyN@plFKv5w@I1G=hXP$-_P{uS#B0|KMk2 zwD!-y-%FLQioEDt?W}Mz-MyEW*c#YF_LORlTlk+o!Kgz4QWGL(s<*5Fcwk+lwzZU{fpOq_p>L4Et6w$s=#=D~(MD#Ie?H6k32HkM@-Cp+{*=rLvRjBWM9<*Cb z)w{vS^P`xYdujNQoj_t2Nkm{@OoXqg{t;P&CTY5x%*ovM=sl4wg!=N9ulG14mc|g~ zcU5LYvcOA)_wptZL4Tr8wHq%NS5zPj6(2&d;8IE{oY9ChU-GC}zgW&NpepU&HMJD3 z)Dqjc5dF+XrB^bC$a@?%@N&8D^Eq?6KBjc$w1mC(N}~6J+9<)7t-@R+YHp^dm$Rb^ zlF!pbcQb`@Ptp7E0yubF*+smI3KWK-1I@bJrE&Z4(p%KJ437zHvD6+`rFT;LC=wy8 z$ENI?x>*_uS1!A;rUT^=i9qR`<}nJ>L$y|vdpEF0Ec1Y$Kxj`=x6NGZK`Bc$$B@hu zj-!7+#mTXjYyfn(vL}{S+kFA~ibW0ZVl|#NT2H3j>}7-jgh=0$@E2M>s3_-10s1Is`}gz_8;6HoOUiHk;s3HKBya^nA@basRMTyzd7vB zYOXuzet8jQaPAAI^wb1P)sa69McMD3fm?A}8}Gg$0|WkNxTOMH!wTpOopsAGctGtI zI+{~(zf{OcC)#eujIJLKN|_9a2e`eN`Ji{`^N;@u9`kIZ`j#umoOX67{=|> zf;>soMFCJ524i_$P#l=O-?2x!{@XI-$(;X?ga9GQkBNId8f8vQ#N|Ei)DH@wIt#C? zWy)gt^cZ5a?-5)IQ`uy+m7xj0&cHPHPCJ9=h)VDbk{utG)NlhGJq?r%I$I=Vj|NopsuStd=34yhGBHreUBgH|@OCCAb=x6x!9x0P{vj?;(mZ`p19ggzTOMje6f6{IC-=VqyIU|b7Dz+2EKMxp( zp*y97MdSy+cbx(D+`0P<=g!U$?}YL1gGEC#W*qAfQ zx3hYsV{gr^Z^s4)t90J&ecxBLmr&7s{MWW*VAH$`ZsoN6g&xhCnI-afGbNVI%&PoH zz4lgb-(#Q*PLSg9Cy4USa7FhkLXBp%#9RfxtVpW5llr8uh_~Q_9!Y2td-7Pm%srxV zZC>dW&|Bd%Au86j0?kzS(uv%(PZY#h&xjm($5wRbeRC4pLR?15%&{pvCN!l8be@6NoO{U&*POJ`(b<>cf%3z=JG8TEvH3JjI{t}F6A zrGHv!YTf4qd_;8(ZHAKFt49H=54&R}qfJdZZo9!7XY{uUH^hOpp>|T%Gm2DVEZXgV z#RC~`cOV!j#gz;fPBQi2=bBzgAVoS0?5Ug76eC8Yy~D;IrZ_E4#|6xeizo?7c^=)A~E;$iBg2wEXo8ur5i^dxbYex zErO!6aTb$gVz2E;IE@IQ{nL`+X>(^zQ;e4Y?P zGy@G2AAZ01;`AtQyk{9)KrY})e3E>qxANrn=dncauc@T@Yk;omq;+DweK9WPP|1`H zGX+b5+6tHK`)USrA)exYVJVeA9lF*Rw@DnESuyuLmyG#hPjo(w;KgYUOJ!Xmbb=Fn z8FWb2UPt;aPQP!Xvtb8zNk&J7ch(clFRo*;oL+67j- zRVO96Kak~lCoZtKMS)>yPf9jg2CPq03B1Hfvn_Y6G~0McupP@=C9c)P`qdBH#(1{g zoFYIwv%-Me;PF$yQjM7MFlt)BH~=i`M|@J7?AhMDVcgy^b0FnMy)1l{P(OxJ#<+0Z zN^U9*BHjqKb>tl(|5bkTp^~cXHc7jV_XXJn>-?AYg0ysr#ZF_X#xk{kLx4v_QwrGgG0oGt8vqhox8QH{o)( zpd%a@7UP57FkRAdop+lGH+3AM>eE}0iP0xsa@e+Rd)&6{bN=B$Dxs2)jQJ!t%71_1|41cWYcjCuX@Q^Dd?J#{xG6Jh&D5}fQYu^cD?jy_1yx*#Px5O5otNcf z-yx($IUe`*Yb{OEF&ha=s%JVjx!13^7ISWK0rQ;@218UP(GndiRMT%w%%fwjjDyn6 z$(qbCxJ(V6ZLNM1lozZ2>MYj%_VZVc)xm0sDTVBWTQ^7$D6Q}0UjZJYil=ffrE3+ulO$~OPUzMZoq**j?W&hJEslqJ(zhFL zblHhD9pWX>T+_yUx!mZ&#FI7#uz#g@ z#7$VS-o5Uq~Yi)Cr!Ppmc|SA;M$#g|UxFC=YZQ>|Fl5*EdB7Uv=v?0Jb3O*cjk zi^5TL(=n84N}>Q)UG+-`yj1*yvn8KtO`H$e=Vu2&sS$oC#$BQx?GVlO6WXM4lvYp1 zH%7IgodxQ4#W?h$Sz0@%UjKjnz>aSaZp69r$08sLsm0~p5MR0vnqTQHQz$-y?31Rv z(dwP!CiLYb$OV-ylh*~`uKW^YdUNc?iS&6&-~V(Y-?iir$;0f4B9wm~ry(_TPdY<< z(WZ32)?WV<9a%s{;Q``hDARPM#lTw-6a>PysT|P!f{zc18m_d95eTR~ouX5f zoxkC^6DouCnlGxIM|!`HoRH+JmE8_3ukF>RW}3cNm>+E5%>Oldq&Y&hJRZ#)R#w2- zR+teBR6{8-xJt$!n;aVF-ybO|QTP8Fvp!vA<*puJ%;jE+C^#;N7pTU}Hq{;uk~C17!BLUy@cj_947S2p=+d+&=%#NTi!BN9i z#`V{dV+UHF&xu-!?%A>NpT>`~Ia0(C66Yu@R!C!7z465N)c#YB3oDP@W1?-qQBV?I z$fxE}ku&+@($Gh%T2rLHHAc1QD`hZS+drSUbiA#u|GX-ld1=dGu@*r-+d4f)r@8QW z>00Y8N*Fbpvpftzma0_Av{h1n&fLAYq`}hX`1)DR2(iJ}_E+$4C;pM-af>@@L zxP49XshFB(i_Nok3F)5y{w|?PDf2C^ExvYVfK_9u3neOMmf>XRTCz#00wN(Qt@TZH zXrD8FQfu?1!$PYez3-d2iN7;^(~0$+r-wk?pFisL4;2_C<6h;J-5Q5jQBcK{4w;g7)|oG=bi<`&0*u92|V)@tgW85#2l z$F84$YU@E(4JW_;NMo;ug`A6iuS>=hnAh+O@1W*3ZZU{)D}G6LZJ-PhC0(J+hTx@w zDiX%BX>`!Cm^8!`?RZMxpv51b@boiJHM+vSY)3}e!3^j&hyc^hJ2vAFNV#G=9OU1> zE9P;FDYQM%m6;?3f9r53^-ziy{E3Q>{jfj2QgSRE6>4?9iLI|B4UQ!}Vsv>H&V3BP z-WX2yoK!P!!^0ZbISRs&L8*N#NSStw@1*OlW3fw*+(218tcQteZRQjj)^TDmc<62Q zy`3I^l&y+SUX!TvqMq#WOWLRF6L;8TBGRyWh}tEiTp*pB#$h>t0^UBg+%Q=1$9bP; zA2lfmV2xj(_Sx#z*oKOKRg2WQV2oF%F~@(`k~DjcAs4ZTOl4fD0?=3}jCFeb??ha4 z{O~S0t-?<;Jl__+nmufNnt2=`+~n)l(uvMPPiBX?F-Ch^HcpUJZ{=?iV(H(hgWnHa z8rLID{);oj;VM$_BNph7^{_+uW0u#is-_1~jfFM&Vn*;g5#H$zECKp|L+bQKbQm>T znctm{=xM&np}HN0X!MA9V}E@6=Ls1T=jDK5J=synZpWRi1R&zzb9iBjQW49N6x9_@ zcP6SNEJ(>$>{SsS7Yl^h#IB2HVKhT_on4b+FblNBq}&! zMx_Exiu8p1xyC20V%7vwtca}B#(_=MI^97t zGW5Od!5qC%ai^pT7_#~XndWK!iCY(bX~hx!+ByREP-N1sNI-pn#PkosybCGme;8U3Tr z_^=H~xZt>CQ^T|;pbMa7IP)kRv&f@qQ6#|uGO3B!#ebwZ_s?T?Fk<=KEnfkhtNlIAT&Sd8f#0y6>r0q~@+;f6 zyk&Yi+M`hn*xG~BDwhDC2Yo31dvAZZ+)UK)XW*78_iK#zGh$`syo|S5JqGMH@kh#1 zmr^OJ9eAx7N8~qtv|xJ+%RY?X9;2%xmS&$G`L(D&$?IGpva0)Xw*K2v@2hXA#V!u( z-F=`&a|h_{BtqEW1uqj3`BMB=g(%wZW5#~$g-%K3Wz?}4pEocEiLp}z5X!lFzP^o0 z@6h^j|JP9Ny!D_vv0j9h2!n2GVC(mu`|FNucGh*F5%MKLT})5IDF@}1bEgX!^8ax4 zj@@-I&=zjf*tYGY4IA#*X5+@TZQIt4-PlQEW5+gjZ0o-F-Y@5zKQYHx&zgWyrs?Ok zeQ?VLpkMx{7EifjAsTCEpNgKrO1yTQQZi)0Nx|K;+52!35{-OrQ`JTLZRtMWQh#ZO zX`3mEy9Mubl4qVJG|4KfLrHz&ibXM=qWY0z{ntyA)mHd029T0miQpCH{E2Cwv)ll^Z*n#DQznHV$t& zAa?Ca=;bG4hQPJkTQ}u5H`RAUQQDTz|84Z(Kl#3HPj7~Y6K)SKi|nuJJP;nfLmI3( zn~U&C7c-M6>FPfsJjj0@lovdS-$R?TQVc{(k*-<$S;1Lk6t_j2^C!egqQ;1R*`R!J zqrRVMJRpqm&Cb_*AYyoQs4lf^xJ9#5mYbG1ukdBzWJ7{ffTM+|PQ}eL;??R5Q#{eN zTz?ASqrHZg`pC4V=}uL2&|d+4_th~IFr5&xKnch5UV%W`<(l~T$7snt79C{!I<^eu zfo@hc*{=NjO<2bu8PmNtY~(bO{np;@-zBPStJyLQ6YbG|mf6aGvsxJ`PM0((D+u24 zh(CpBL1sct>=-rTnkxH>7h=m=Nt#sc_~6bz=Tcn{@WD7A*%Q34c&{Ee6W@>3k+%4S zWn4eFVUWL+R>hHwb{3nF+TF$RJp9RxE_*m(E=hE7gA)TwzYLhxS=%}R^^(3xQU%A6qa+O_bQt_uCm1|mID3y01?o#;zr*0-E{+&-)dy(S)2DCs-u+E(+LZQHbqM9!1n z!rc8c$A2>lWybH>ZHmiVP;Xk5#Gy%`Cbnjt#pAfJS|#VD%86+P{yRH~@^X>lrY?z< z2Iej#Irn{hhZCm7{6(Z+lv#7zI76@Ps+A};y zit}MX9a_hm~ZQSxZZKlT&j*{pC}FuW)`f_f78X;~mkV*~<_AG)g6j z&mq`PT{?wM-nm;Kq$iH(;7si>r7UfHZ4XJN9R(>)n9IQJ9Ib}e7T?DkU zJ#FoFYple|y#mXyW*6MAx?@jmUT6}ZEhHOb*xk~%>-p&ck-xp7yQ$o_h6REmMyM+Fzws?OTs|Gv8w?YjD@WW4X0DI*b= zzze#8P#I-FlcLPpZTbdm;Vo5nizPRKtFNRyN>tHjjkJ0z6Ky3VuyQm~U8$aeePMt; zLcX^0=YposhG*SA!_idm=8SMDMd6WlJg}pL2qz zi}a^%XjQXzK3d+MZK>vL$iFlcT-62_5B{tJzX>_yyQD<-&_fjt8}}`-H0a_n1NpIh-jqh8;Updr12ve#cvhnJKlV8CwZx8 z{H+U3_L|+nvMb}?`#>m1xG=3yRvLfWia$7~4%ke@bO?H0vqkO#7etL7?I#nAS3f)=-ex!A zA&{u71+Mg{M81ZIS#Q-LL9E;Teez9_Jt44eUWlJy-x624doI2XL72QrzPSj6RJi`& z7uO~QbZUJH9kKbdWCCcnhVu768~El!@pCCZx;0ca4>roKk+h}7yaZ0t27OyDESJuU z!K3`Zx_AI>&2&g_W#ddUSo1p5$WN5;1XA`jY`(sfYnBpu&)4w=X3(m4HKa*ZXezVE z<5Qj5>utpk#YwD4w)1?R@WWOxwFd{-ixc^{6Jkta@O#!PD!llgE?kHRA+DpQ83)gF zjAU}J@W+gGGK;!)c`4uhJM_ce<1tlYy7yX~6OCT}%E&w2(Mcjg)wn2VupW(^$N50| z$Jh<@3E7=&1NQ1qoML%%FplaGrC`ysla4r|5!I6P)5WwX*hW-ggO41_!~S#W(mg0V zTOs@mk>{7Qmqpi-ZOBXE?)0OGsGu+yUmNTXG2Y86NW zQ7PHUeUia6vzkkqv&t8pN-ij{v{;zY*r)WXv^dB8kE?-i*?WBYR5>Zn~Mm z9A&|5xjbqR9`4y|4qAmO#?z2?ADSZXNHrL{YJu+eN4=H*aV{~~7s=X?2nCg)0sRTr z67&|Y^)MNL>tO4g_U3$yn-lWEjc5?vH(nCE*LV*P);PN|x5o_K+a1`iJzrBIDD2AO zSP3!gezOkGya#IPEjT z);I$wKD_S=V4}HII-h!fp?7u5{Swi@ey@je91r%9gv3DaW^d)%p7{=HD8gN)Ge$E} zOEIQ5_zs|ub?)pAzxk0}qPoY8Y4dyL&g)`o;A7dQ_-rHB;mo>6<@w^`e}WH*mS4W7 zwqtMKgMI7_);6QB7aAn{ufpKc~0cL z!D}l`=~BXFnc;oyArywaO3ylNQv}@ha8y3*<3RrNIcLpDw*zjsL~AxR(PQ{}W5sH3 zUlg@;;7b)v(=wZri{)|Q%1KYjL@MINd&~Z^x%X@(|J#vA3@Wc~Qs}S21rX(9uJ3UO z&MRWW=4wboi{~D*g#KKhaHe2pW}!Zk_M(sNsn&?lI`w|_PfR4NwiAC1cCjz>=*(>i z?^$j?jhBuGzI)HC(8wRXLUq%h)hHAwE|RX1cbdor1Dy#w>~8S3-g4W`?4-iUQgf5( z+mYpC>~~+P{ZS2+4;OkYf}>xnj71nS;YeQ5>{^C65sHivsp3UA; z2G3l&W$Z3F_Fns+`n5#$1_lM&DsrE}$1G|MQXHf<2g1}vt`7nIl1Ta-*%Q|&HD?}a^RC8F)J-CN=HigP4`dDaGC(`uG>b6d~e1xu` z+wtdTwb0qbvH}33c-BdIX-g!4;DH!22APXi zS=Hl@pnWVXwj%8ivp#j<`G@Zq?WY*s^xLz^uOpJ%zZM)ruQ;nPorB>LJc$*eBD*y9 zF$>!$3tJ!NXuU`1HPr8T%GfAT5c&paOT6X3F;@cu9((~_Iwbv#=X)hdVZIK>T!w{T z^bmZzYg3T}ynh>_JFA=quwHu~w<8NL!Z$ARidni_mE1jQ7S88m>%SZktr@)#&giac z4vJ)H?tCr}NzepKvaL4ZB)$J_a&>O;S#awcBp~?(ELCF6TTY^%Yaw10i&iJ?d4%l^m5*DFgyDG)#duj|8a{cEO$xWSV9eFMa>7kN$!*o$(c?h z27n6}WVdi*5{FO5z5FvER*}3SyCTh7H0M)#B>`;(KdR1dW=UXEypkkIk@AH-NAF}6 z57U%*?4-Phw-7mbN$q&C!-^h_Z?Cb(gcnu~5bOT3NPOtG_GQOhDVIqQGRb&DHBV^P z&<1@LoTinDdy0^b|Gu({>6|P0@tCzUrG;@Y_QG_%wHA23NvayDaz!rQ*Cjm+MoC)q zXSavKL>sDmI+I#}3L0h};TWUena0}NFIR_rV^tYnw4(i^-r^kT)r0O;_QTo+4I*?T zXLX|Nu&`r+hxA?jTgaG0Jm1p_$dF!8G@M`TgbHqiUN`{`l3-2#bMPi7KUkkeCR*6L!` z=$pgK#LJGL3DeyAjbbxpVw}UhFe+#N@pcb(I=oN-(NIIV3cl`emf+-(RR0>#$=1CV z9jOL3B%DpgA(}&l-};I`tvC1O_DF?qP2W)sU%)&1a*L=|vhV`jq~5NOK`qf)tU0n& zYj2UPi9gHnj3DBOCEbjOn&pb&;swYT4xUo*k6fuMFL^sp@x0-xymc2hFcb_yzz`Pq zV}?jsdy0yHSpYhCnJeNavpLn-GKiktS-mN_uZAn5ODj`10I@9&CEU{pwQ{`H!`*>d5Bac86=ohtDZrJV{t z^0}hH+DnQl!#P zD7PgRfu(KFBA!BSO0|CKp%H`>dHydZ&%(#yWg6yph$t@KIPgsD2CK%VZQA3MEV+7a zuUKO|PbZDGb+wip=To%79mLF<;H)uzC)v)$@eEX&PX$ z$qfm(v}ruFamab3W`GhDY;s4{6yQg`swc>N>6=PnX-u#}MItXpPW*#z>X>ZW`f3cp;YNA$`~%u&=Jbrs_+UFbYI9|MyNGS z0VZA9CZ>k4j{lMu(M1YZvdGq#%KAiZHz39HNE)N$YjkC!Kc$|_RAJtJd85o6eScUS z(j9EOcoSQ^CP6o8WiyW4M4$9aI&{@5_ZRcwL&TXzGY`w(y7hW%kpPA{~{LYi+ zI}YNtRD)TL1I@+%hNi{m1V?F-#D@J36A6hL*jpHV)GB&Q5iiy4V)o96mY#&zuOqDq zQ(m`wcTK?9kg}4R=jo_zJy>gDjl~JC{SS!c8-Sk(# za)GZtyS!^8SEgmoG1(a9W6I=x!SPw~N%O-Zed$bLg3 zEiCxed~W+_q05wB+uAXrhK%pe8pp_qORyMPCxD1HwX{=5D^+u-Vfo^B3_# zB4Xu`DnblJkf{D$-n|R?YY00c=4eXe8^VO$IKa+!hAH&N+_u1%Hd_3IxCLod`&0Bj? zm3MA6fZfnM%rJXwnR7tm*#}S6NAnhrj*_NY!Cl${**717*f9*=pgbri|M#dR^0WP{ z$R&%-I=$`riuhrY==Ku(j&e$_l|}~q2!`Ylj4TOty69iOVafTGg&~F`?7- z=^=Ru56;HO#J9SAP=+In=M}^+UG0lay&1&l2HN1eIz{0+W*eX}Gs-wlwo#r9NC~mN z8y`14Fj8Xkc@~x3qLCnx&Dkf!ElSD@l2OBD{GFHfP8Q8J3ll$?{!LgahXU|%L99&) z*=AAAEv)3}<~3-9FF)?mk(QQfkw8@cm!&H}+fyXC^hj2XUey5`H3m3oa!{?02^l4I zgpbp7km%nUL??Ad_jNF zcO^=?wOprOc9~cZBezPe5g+U!{Ke$;K#6t!@%3+O41))9B)Y}?-Fy0fW^3(D5LYw2 z8dfzoK3?=Sgege`37s1CTp1%6vwA#iwb1dAX6|wABq=0o^B>k5T@N0QVuo*s#CPq+ z%9H!-mEXOYXg0}_OhFGNp5gulBJyJ7|GM$i{X-4}Sz-!Hh4U*NqhXp!^CC92?L;@# zfxgq?V&%z!g_oJ><++&Bmc1X4sr&viDc;V?wdWUihtxbWCWAre7f6Zjw@jNc3%}Ts zwWOvE7=_lXf9@Adv?gHHkc@mB(e!t##4&@Q$#m=fGRIZo3VL?FutX{R6YLNx=9I;L zl6cO=58F2!^e>ea2u8eZ%-{TS5DWpX_3b3Im^CQ_+El)bh>1bmG(!g@1;-7Oe|3k% z?_($GP%sIBUo&HkZ#?op{@@fHEgc2~uC*?^cB2?x&s{wpooV5@bl73mjD`r$T!^R} zhkYJyt1@k3fc>BLnxy@3Url0}@p@njJ9DYB1=zpqnROIJzo~&fML+HkaDT#)s)MIj zo{F~o6#WQ0e=rz~k_Z|K#U^#V5YCsukM>+e98B>^xsh{wk^19;R@0m1cq@18cMp7y ze?e|UHaI0ksT2$Un9hUrONETx zU-VrXQF)2<-9*e4|UBq@biv@kHGwqNB+rB{lL@@;INwq1ds|a3UObFAP>GypcaQXsz zEIY%ZLIBB6SD*x4A4UBky{@TkTbOgwDD||MH7xW+gFjPj7Pqt7x?@Va zKVC61TRDGL@V-sxb^+ccCEWKX>XO8|5htNE94%Zg^u{ITO`+$ggOPs#Gl3>{{K3gg zfguRsaOOdBDt)B}X3G^j>Odzd_ z1X{8%$;}}mw?!nwmAIHO-NLXQ7TdEooKZ0{5iS3Tler| zHw6}drh~dYLCwaMg0@p8aG)$drL-A#)4kkJtnNZAUv~_obMXn*TrMH6MgR9ruQZ^I zl@sPSYc9xwKNw=E*E+R6>G?|9dm zO;Zp!@+S!RSS@)h;`4|CL++Aea)}~19HCKHGFOzmV3ARo{88WzwP=C`s{7~x-Y-53 z$78c5u&Z`lFZm)`hVspI-PclPxdt%g7ean2&H&(A>VmB+J)Bp)zjZB?2g_RfiK=1W$5PN9@5J3U~pOt;P@*qT-|A{@$S zcM)4&(xn=0&p)RGd>6-mxp6lc{V7{GIyELayl;uXEkIv7f| zKei<*S7cVhqF@9<(&L1*Tftu+o`n+nJ=I&|kB%a6iV7o$&ofzKdEimV{4nTr6a{kQ zeP7z&`ycFY`xBKS?y!vTr5Vh-{fzUav8F0CNySbvtn6pDjw`=C=7I^4@Jn#|bc8~a z=Rz6$;7j4+<+ygh5EPuFIm(tGZpd&>G#e2mdpYHjpvovk@M%$;{y^6r-P4YbRK){& zN&RCD^X9Qqx#tdcauMmR1%Rr;RbK=rHN#e&8GVl7t&=9=D8b6Xi+dhlWiT&$Yrt+i z;(8nCd5LifS2_E0%D4yRY5;YerFYA$Gz;6C${O;VOGW`b#BTpms|J(xKizf@DKDN> zfn$&}(`bFa5{ewB9pBrB;Whp(*uIuGK&H3~W|tsoLLC;%Jh5|@<9nGR-{y3Aj?SC= zK_#LSv}{HIVnyREB5n#}n(eaevHw(L)#l)9JdJAx_H1eYt|)+P2D+@`U^$kT9<Yn{Y>?~jt>K+rzRp)qIIGh=@y9wgRSsz^ zaaE?US}N4lzwULoY+u1UiwD&A3of@!X&!h@;by}vPUn^4CDS*4+u?3fxntsK>VFT^ zXXSs@PW~q<6={(wA0g)A^+0n+#3l4iTG)9bleE~C;>1v60<`(k3Ljmlj|m{FjQY0g z(+d+sccs7Zz5P}wEZBX*$G;+^tL$PKMiNco`YNE-eUG^H2@Eu-+9E=eR7pASihEdwL49`Sr-1?QTT*;q3lAxQzG9RrX*$ds|L9 z>&$Ph>=YdVm%1sfXG=)on{n3Ff@?7@awD6rspMXC5tTUQYeYS-_o9Fd#x6W^rz@&M z|499@$H*a<$EB|dXe$}@Op!APpjB3=%F?8-L5eg)$rVq!aU4i7cICs^D#*c)<=zYY z6XkZ~UHk#k1Hb-op@*0U`(l;%v1mm5G4v31bRyz`Q*_`o-$Eejr$B@Gc6dKHGdC#l zA_BSAUl(S0@nX<@ePW%EA!nj+9`iFKzr^0Gmy%e)^V9hkEgrG@kfOD(!tgFNb5I7l zsFEX}k-(fk%1u3!Z{j@Y(WT?*QS^LS(>AQ~(Mge}!NG)4Mx2nz>KYVUPr%zwB%01v)XXyWmn(n9{ z<#CxJMfx}~lGaNq((jJEV5_?HQfM=oM2Kph7NiHBX}Y|p>9y0!hPd6{USV`bw@!4X zH@)XdS{TNbxi_E-f4I_UOZY)7SgGMchqM)(UXxS%8?&li>;L()MIJx5Rf_)fY zgm2ed9JKLUknz#nY_!YWo~OHopd!8GSI^(Se%bYAGRWDY4CT@VFoP1*-fmbU z#ixBA(vCvB9y@IR<|=~ZR`|&VQj9m0RMWbuOS)H)m>~cIx#;O{Dk`Hn`3GL@Kr@bsXc56Y7%5Ws^;0pzvjZpZo9%8X>yn zq1Rxz29}JL zPDMV_!~IO96-?wSG;p|lSw@g;LM0~jB5=mq+_qs!w_dSN_rw6{n6_K+rO;Ij(ti^% zezyzd)ZoBWUAZT6lxz%W437*UBEYdAFnudmIx~MtDVv8|Jm{1d=b=#sZM>ZgVv?qu zu*u%sK^IW{)1YhvAcqd}KMH<#8s#}kr4TNSkTbEawCNI80a~CGMeza!YO~9GWkj9> zIRtEr1fOMbyPO0Qpj-I|r0eV({>G+~XtMGIc`Gn8XcKjN;CY@$cw7#dzCJ#jKYF7G70d5Ps1ZFFZP>>`y89`nf0xiX*bk3I$HUW;^BK@T=*@C> zYOb6^ws16?5jM9LH#++!sZ2rxzP&BRVkqmlDmjoT($1yn4t&3VWY7~1HerTuh8Wg$ zbNwifeZJiq&kV>49aGeUEmOjFPdj>=2`>N3tH82VAHUo+ z=ldKm{fX4E zsp;oQ>*z?qS_gyE0~x;GnCSwE4X!(3;etyD zqIIA}lh>p7-_a-csk1Ugn|H0T@TUdI!ij8zJ%eDd%=0?(3_y`1O<_g2pGL|7|s;u62Q&8q-qWuL=$rSZ^=x(fG4+qZT~lixV8Y z)WzpD2y&$~e~Mdu1OFhYx#6P-dW@OphpOKu%jjO^Wn>OGGXJ=ILwW>8_AP|wMiaQQ z0|k;lb;~;j^Yt4Zk+EqjbB(m=lnA=>cE~K_f->f#OBT5k-%20y&JH+DT(b|~R=mkS zVz-m~a^a=uwbS=B97J^IF4$_aMI$=yyW7@YDMftYD(?*RcJ4-vxN@qoYR%VBNie^V zvmb7*{Yv!ycA0K?9bA&#BbI5~1S1wY2tFsCd}o*M#zfcuu-vvTFxjq=9f z#W?J0BZcP*8-3@^#&GrxSxxi@Z`c50wu}78pjk_<8?nTMNE;8M<7F&EjKy4Nf5~ z7~igT1NGoy2UQ6i+xd#0fU69$uu|x}+z!xI%bA?gHv5gZP{?KJvXkR9Q7af)#eP3Q z{LHLFPH$5|BSCYz3yb0X9y~pHsf`$Fe!g*rD|`Oek9g>yuoeN6G&<$O-={F8uWgW` z1>ppuyV1USt3X^x-MN(1;^CSG4L81EV9w#3+X&fPUo;K>=Ppz{jSjwT&G{^Zs-x~N2~aN+=mPPQX%%}>%sX*kv9iE zUI^PO^;}noeD8pMBftiW%#JzHUn$t}tz8mX{r1C%#Ayh4)LgSJpP4jxcLB37tUnw+ z#Pf?t-%Y6ko)9R`aDAHw#{g3GXORjW{xIl9o=bo*)15}i3KxkaB(C1#)MNG!ho_OM z0a}(CQGsUKiAu5W2#AVl$EW}y1G6-?_%#$H6|E+O%N&uJ)hG6lStu9lnFgQ7wcxlU z`mA85DT`xxA8T&=P>p54fkY$gEbzB>qw5VHK@-)ZegwI=t&$C_Gy_j%zfJ$V;9Ma^ z%Ey$bC2I@Yb|lQL@1c_iK!vP_q_abP5bu(9Vn5=KqLlCPi1hH9N_%#xonsO36Use~E_OG=rY#^ly z=(Fly@C7)5JX8wtu~Q;0nAGEZqcB3_frl(JN)G2ccWsXsKFv9d{l}sShFjAQ`su_K zG06y?=JAwikC*K&tt4=yi_Kn1GcW*5yN(OkjrM^p_F1Cffs&+x6bR@IfwViF_)H9i ztW=nr&;R?U75A-Z@r^})dWPkfSv*F&c8HebWx|nWtNX35&?9z4u}-e7>30w*<%}d? zDC!qc`O>MkN0-6poV~V;Dz4|7?DMffX9=*Y9G{70D?%gJXyH-w7!J=P5C|H75LSJW z^;Ra<^3wig1<83MBT2>fR6vssvi4CX=B%GlDI0B5Zub9h?v3DPuwsdn>72B!OKU?Z z!Gi~SP`erxMB{j_0h{lpj}!1KaBl|^Fe|c|%a);kp{46|^tTCxJAkg{L2SopO?yeJ zA8~jj$C+VIRaJev0ZP7UB~&qL`L`YN&BAiME2I*Iu<=Uolig*lN1 zQ%=dPE4X~NnMmjJ_p|Srd4_)_LK*VwHw|gaje6vQHEDCW#kEgVUx_d!UKu&uPT_Fj z+;PcJWEODtKE-d}q>WD^pC>vfqFG;M*O$mGCSC*pX;C(*&|6@w;$&;o?CS&Hc01^U zjEE#ErCLFJzuVopUpTrPQ9Xv{l3vvH5v}TFY`^^dl~(2v72;50#$;lpr%+8^B{uI9 z2jTS@jxjNE^pVNH6lq-yrX-Ng9TPn%KhZl^mr7W!?Lm~GgFK|U_b0<=UT=3t>KW6mg=K+f zqbQmHliZuU`xkl6^H) z<7b#9Vrs0YrLxDzh}l7Te+Zv`U}~Q!t4YD_r#Bi?h?^wWzf%}viI4)ix!GKyAW|qV zo4g1dsC_tJQuE-}CA;2{@>2~NtXz#+DGGF+Ckk}JzB9m!cDGlo^S}92`+&j_hT7@P zk|VXj3mPgd>Po`q2@YM;T6Xtsq!zCorXg`zxJdlVx}bWYEs1P?Xc4U^>epK%j^48T z#oq`LvW9+LLV2VF|MeJmT{Z|$wGP6>zy46Wn&MuJDHk1D%+(L~AX4fGHnJ$4gdJka zF6IOCDSKR%>TV`{cgpmXfL)?ac*$NV0X9R?lf>eB4S$hsJ(p(2$R z>uKghFiAF|b_ZXI9MIAcjz~VfMPnjXch(7n7u{$3CC?cDA6|Olu(9t}Gyiv^hF^>D zg9IWZ=JuEuHqm0(LFn#~(PSDSAMu?jmjBkH3fflv01?oAy|noqx^;{}uokJ{n*C)! zv}uy=XX#$#t0zLqJh8dg7F=Oa)X%jVQKVEDF5p$h~JGnV_tF0F~TPjDqmztbwW}7(rfcf&4YX zPX8`VR}*lb(T102;@dlg3;TEqn-0Rw*0oZ?4eG(bJqEupI^L1 z(P8M;0*eWvu2ZbJPQ`a!35VQ9_i6`1qJ0vnR4mmutX z(U@(CtD;~scN*;{ejXYFYDOG@TjnV(zJJC2uKPClMk3xnpnO%}Q%XZ**AYhS&xafx z@$OuF=$TTH0kn08AC%5yDmP;+5o^wNB){UPxCQ+d=AW@5h`Zd?D!8X?6y$ zCQ#I{^%6pi&C+>h8bktY`U*(x`X`EYAT18&Az3- zKXRSzFXg&TA^Z?6JqDx(+HvA_A+3p(=e|V~ZxCI3({6h8MWDpn0T@Xqio$GHm~EW~ z#4bOpHkeLXL&YM}{ETDT=17iAU-rAeqk#a_9cKd!WgyslD4Mw6qI z?|0U^UG6-(;&b?H9*x1LL?frkSX_vmpeg$s?$SkZjT0@y_!lHJ*N4hH!8mnynl7E; zCf?k0xIT6p7VG}?)N>R^xnbS66jQTB}G4=BGU)nsO<%gjCtX8bY2quZi znsdaG0AOIfI!Y zGK!m9v=o`=I|9-W5pC0Cj6*@>%KB5~;!+-siV-hT*cim{GHZT$-S z_f&!iUZv`J`k8>Y=|o)2Xfy|Io6lM$Yk{o6%F1z1mjV515xuUIAhIf^R_Kx;7g@c! z)$Y_hpyP<8@=vgih{-=zFev2^Qek4fY8$5zu`fA3UtK|cGOA}{Am8aRFAJy}Vzu~1 zM=}Gi7i=`Spec#q)uf~PV*frVVz2nxF!t05CillZF4Kvwt>Av+Vs$MX=w%mrpVDa( z$D_-xrV9LF?p$CoK)?*_U9WoS0?A#N3eHhPbgVl|ta{5U`NpOFF?qyHy*EcpXJl7W z*rxJ30dmR6Kjm<(CdP`yVu**4UM1XJ2n=|KE0{!qG8Q;`B`c9<#Q$41i(tPaM!>`q z^Pugs(+yio9Uw>0RVCU{# zOCwXe&M}X&#CzA9-thFWf{#bRiq3n$4vAeN%$p|WHoP>x-&tE>0jCiW5za>j1;xe{ z4g_nB=B|mZG36n)PO-vr^(qyL+a749UqP*Lye&z@dlUu7mA#||acftt$f)DBgX*or zGv533$bRAe%)j3hxl4+@#YQyda6`3L!GKaa!!D;K%MDsn-QrW9d;;FiR}`Qs1C%fE zZx0~6x7~UzUlIVkVZaHZc^GDAIt;$yFNPa*C&n0hz$^{Sr!SJ@ z8I+Tr#;R?e<)(M7Y!q7XS@LVE)6U0g51joS4UuJqZ;Ic z&%nGhbvJtyox&%Ae1t_9Qm^^5E_XzUqATyg=N`=pu(|c2brg%lw&2mf&@ujdBnE?o zc~#-3)POjeY-|@^y%Pb3lX$K`LCMx|ev1ybYwx%%&4uc!4R;TXD1<^8k-mLwEGw>g z(=M+#rlWR+y9N^~14sGgnf9oNuuaHnZ~mS34x?uGUd(D_!RB;$s(%4p>fV%Fa8`32 zDlRtcV6c8?sl{JJ0k^=-vn$$J=e8N%RY&YxW+&XC)Q{Q3X@-`WE7UbB*GQR(tKdJ} zy8Do-oNx^8PZly{Gl zfL0o}S7`F@F1(tli~4HzKZ5e!uf)w+3Hn$k@*Ps?4Bby#-v7-QBTddG($IYm0)D56B4fb0 zzxLjuo!O@4@l@;?X=@w{ky|;pHmkp!>0V)<*NgojYAtarg8Y0%vfyyXIYe11JfDik zx)Qa()X9$*+Fqo29HPme`L;WPGz-;{^riSRYkriOVKoTH3h=4d>^eqL|+{V>t zY<0(0xi4-^ETO7-9jdMu(owrs`YRQBP2-aEY26KN@O7TRsJjkiVte|hDkBgk4$*7L zb+3F~XMb#~5;~}|>vCuFtUL>jveK?zLVU2#VyjIpMOwVqZdOAWK6gbm8MI8-QEWo2 zq#ypi-&Mu}qbp(d6cXm+N36m|kjA3_8uDB@&{J2ZFM6--d0V8b7-CDFckFH+p!t-R z)96O*u=aGOe_E!I0a!iV0{EaWF>Z^-MniqJ@c;jlFrNQ!Jz4vr9;Z*4{&%w}lPmA- zqa6dW>^4(Rpb zxq$DSZi{GzY$+Rs&ksVzjN=ssw9>NLg|`dTQ{^dDGEV{$RSttDMH?WZT7V$O7Q6H z;&zEY(#2JFOh4d5c%<`fY|fZ=w%s0Az5RsIC5yMiK635Pzm}%=nJE^qSC(OyKR?W- z>v;Ui$;)ifyb@lmU}RopF=3>^FOa;QnvpHOu=!@RDAMw8P)`SjxgQX}cslaNaw**c zv|iC>bP?LYT=tvoWL-Ix^mFAuu#h6PBp>Jd8h4%w{1%C(L)97mK=Mm4yqs811J;y! zm#NO73?#|q7!zSd;BxhTf052gnv4IRYA?uo|gjLGbwVf$0!Bt?h5GeWKA zOd!!$zf=P=baBjD{0K5|w!;g&>aI-LheSo#)N_I(XoT{vS zdNMURH&W8KBqx)u_B?vG!xYO*O6B^96doO#`ALJBznl9;5%$gogMy2=-%dl)we1Hxmu15&R}ujFjJ(J645P;tB)n~Ti2z03nE~))0`&ce-3+1*Yrto6ASp$xI|~J z7rNFc?M?)f&9xSBR@pA_q@>kg5Rk@-SK^FKX@6-iuDlRuppYj=H`o010RKnq@^9_m zml7Hi+dZCr-ikPm*DJwpFHnSkF)LmnOMp~!LD(X@8(jAvrW}LcP%|qR4W{D!gy%Lf zru!NHf&F%k*0`?I4n zW%&oJHsvDDT<9qOn1_1p0lqV1Hx-?@o+P5tX+H_4J4iKreWz+x#6F-+y|Gv5HsjF& zHR`8mf?h}ar!Gn|!U;aME}XE0BzOIU1rRSXx}JZ$C$yrt?+|bQrR+vP)d;OEF!Oi2 zEax<>dNTo*VU?peMb4?>f+%5fJ^%H#8EsIZ!AK`Njtez*)76!}zW8I%wRe*Tdi&Nj#8qTpY+-BN|I{|^8 z9+A^N_Tn>20IB-EZvoMrO|QT6QavLcG>C9@LIuDztzOU-w1ZfmxC zfv(>5iMzwbmx(P3DPQ-c{^EKX%5}?9QyPOO>M^|ZbRABQ7(m~pkm--~Z%ydU7@ZK9 zJ3iiazRX=A8~bLkttdR^+&-Mkgq6T|lJrpEfn0tiHZy!>DW#tC3t(>v{{9om%2AUr z82-)u<|A=}nWVQuXiNxVt1JEF@#tyRmtj-mV;$c0wpjo4oj=On`-6h=1A$Y+(DML| zErPR}KQrNoYjzzwH=B+v95e1ULv3VfcF;RY8H*(}R50@ihi9&ALxpo?I5+lmCc;{^ zySc2&73qn$B+NO;knGAduAr%mN}F_pFofac^S00<{)@)gww)Pm&2YL+PgweyiEEXEM}o3}l$P*zdlJ5u$n-xB z&ok86mJm66^&Z1nJy%2PYv~_4$w%qkO!nXX&xLYtesJPh2Oh@FP9zNlvUZkB)v|1% z{Cd|?xC7lR2Z|3&i65u^LHDQ$jj8hC&gT+`IXId1Gb8bPCdgLj*`ZCar+4&6>IvvM zb2ks#g2ohwi%5c)5`#U14DVTVD9T;S)($f;E5OOu7w>eVDFX8Clo99!9l@~OKS8sL z+A%f$B=9`-4`?xh8%}f#>D^UVIH>DH`0J}EJT4_S3ZLf47Ge)o_kM-GbN{3Q_eI#T znB*~-B#Y!gVK&CO)--}81}%r2Y$Hhx zv2H@897oY4)ptq*|IkKCRpn@G6%DF@k?a`$vFiY(|Q)$7QK0~ z^?)B8Hcb%ZzZ5p)O_7LCMH?Q7WEdcbe)$~uc|izvcVuod?CcQ_7}_sCLL4Uj2=i~{ z?bpoNdI5ypeBT^j0xclrZ?y8xaB45e<9+9!Ec4J8?!Z@ETOxP{XB?G=C_x>671nEi z3zUe?V9r>?sex)N!d+=&ZF zeUd3CgVo@(I~j~S{jBIjjeAz1@gi0~n1SOmn@i7ko@I_$!u)qPUgRSwym6xEts5p|9hClhHBhKXq)aU@&-0@twvytYilxlYk@-quH6i64q6-fR8=q@$ z{wq7K{DS~xx;uNapA=pcMF zjl&kT1%E8-G7(M}BbMd^Ni>70?aCAB=6{JQp0*WtMVC2oyy<%?by4y}tX=%NY`XA= znzGH?&4vxP)zbWS`2fhPQP##<0AaSCsN4KTMEca3b?og%S+qu<-O~FBHbhWC$C7A zre&>d>!k_U`tpgleQh03L#IL@vJ-}(Azg-s7jALjFT!v$XzIJ%E4*P7iP z8*P=sHvd5;jljZV@S+D*4~-w3Ins?Rx$b=qx)Qi1_~m2dr;kySjn28|Mp@_eb`vJK zjD@Xk>udt_MLIZeUyyO2l1_Qz-U(;_+pLr&F{B&9qSO7lxibs1RgqQQleu1Ca=ZHc zZSix>Nb|71jti^;bt&vh@P>R=;CnyU^}{#w4hXYcarz+ty(q0@?%DaPr~SJWZ2Km^@n5JxN98rZDsj*B zh4Lhi7chYw#%>%m4v3UK?qA^@v4g5w934V>>wLOvzPNebVCUli4gF> zhfsD_U3!qIMjwZkC2MYcQ!Z~!5%PWGtvG!DRF5W*P?)qz;Qyhq_&jN_oi`A9y5kV? z+`q2;0+21T423mwu)qpDZpkONpL@z}r;iNIVPoR!B)M8n3!lK88f{7u^fq2b7&Etp zpQx-4FW(ze7(bT+74H81?*khQEj(}?KihFMEbaZLsuzT)D*G^sY=kf!_Tsm`wq0s<>8w9Ti>+$U&G!Zr=u$o0z_4*8kNN@(bb}Lc1TGGpryT#} z;d$w!Mb6P`5Zl1Fngy(Ad?h##@M2*4SQ@j7e7fI_dOyw(r@le}47|f6A4;YZgQ$e- zrW1_~xdU&HQ9Dm!wLu5p)x{?2PhvrfoN?E;4S zA4_7|Pt7J|hE9)cB(n)glO+XsSt;GcnHnqq7<;KLJ74>tEG6Y6l(8CIhrsa)(rQ5r zyJY{IYYNmWU{k6*DL1l86EeHMRzD`>Ye;BTHdunUhf9{Z0ciuOkC|ML6qy}by<-bG z_RUj2Y3@7^$$OODjjtBpb7@kqe&tfwhJNFruN1nGE}PAx%q@8|bVzZoW!k?M_n`X` zs=xlM-D^ z@L-{a)P1+^10MTOIPS=CdtpoD3&KkAQQ6i~?H{)NvRr!0k^-;jQvv)w@`qaL-mXh( zVMp=$e@vOjHkhNWUQBnO?jO#GO*sf4@1W?7IV>yd?u6;IVa5hGh=|4*Z|uKetGj7C zrN;&&q(1qj2Uc`}H5LNgWAv~dA7U*>wN!sEqjncI7@O~hned@PWVE%&zYuKjks(6d^oir#IZv*jS;x1$uQRTMiu|H8y91v#o#>s-jc8nBV6KdFnY$6ES-h%>S%Sr zh6?7#OCL!fY3ej7#!>ADG3@Q%TV)FE5GfY}44~ST*OyULt_?Y`?)aHgN?i3qyUAV4 z@L>n|zdE|R|4)Y7?Oc|1p~Xj-&Tf@!)gbcwuUWl*7+OLDkLcLmyOXJgxlnsUP2gr; zD-IjPPy!VIWRfgL zPSDE9*hV1UNrFWZbOpCQ^_UxL)+h>XcS@961%AwZLi!8YFy?VBXQ63R=UDm9fN+y~ zhM=YE9^N9)ZnJh-{%yaz+IQIYya)*YyMciJSI2)AewqA>5uUbsr)ZMQt*j zHdX@oW8D4Bz2am8V&ZX1gvlM{FjxJs+={J2qv9cAS|h8@{iQcD90Ab*HhGZ9ncLb- z%aZZ|lPqW4j)o0~#5q>SrD$Epl>Fs-<;4@d%^~21>G7we^B4(Z&R$wO)H{no=uaCj zm)w?!L(_ziY686z7~pBec|jBkciN1MZyrIx6e%jv(2l~;v{7oeq& zCB@{4P#mvf5TUyliTcW#qc^ic!R_wm3YU{gS>j@iv=Dlv>{{hi_0S!4%SpS$B)fP4 zw*J-RjS~pB`yfxqDo);E3wGLJCV{YGa;Q%rq{u->m(dqbT;Awn`(J?#OmEYU@Z~I& zZnAv|F1!2y!)=Lh5d-{r8mxMf5|)!cvEJ^02ih@zw#z!2B5b=-XG)%9gYc*9D;j`` z4U~T3_&J*=<-?J(KFw$adeHy=H4Be^^=b- z(kyeec~f}G14?qo?Tb4jEb}=4uV;jiFs*sK@!~kjGFjx7x~qR818CdTR%=|GXtN$s zD!0C|OQC6a_F6m}w zIAjOf2~WBtRUkbZSz4*!N{q)W6CIM%k9wYzo4Q2$BDU`Q!XiRsfw;6@_;;)r@^*gM zNucER8|c~-&sqciN?&ejf8>>pJ~{ct|AH990S_+PRBc&bYqQ$X_A_yO*(xA;hFGhU z@!=jmYjjt-;3x+V}lmhOt>bgqFdZ~;#OcYBA;13>EXG<8~0=^oCO z-hin067W0jro~SQ&<5bi-7s^7LYizPm;Qy&_YOO75#=*+jCurQc_9eznRrUhiNcvx zZ0OL(e)wsJY2bWKp}KlWxTt)dQj zv4-~ZhQ}hNVl47tAw#>28~B_3V*}j`GDCG-T|Bv>ysp{7PE5rj?8^BR5oA;0ThQf9 z$P*}9nCg8NuYKnpFj5a;wL-fXo2M)J-u24nT+KyF;a)M@Z7rf4H3$ee757|KYV>C~ z3cDcY4w_NwyWe1;8pv3g?YT1${g+N}Dl0wpxUoT!irHExx*1qt*)Sdz&%7wkd#*g* z9jzHarMFiwVL20tRK+`ha0|U~-9+a`oCN5!e^bvND`_KP%_T(0lCzxFx09M8k*WShYI5u?C6X-4^#JiQPep;c`*j&+c(_m% zF=kxdV!kSUYkUtb)H8g=#Yx_n7y+1-L46a{)5oWym_U&|sinIW??>XNS8+xKIeu1L z3hZ%FhWHjS!4%OQA{o|R@>W(klGrQnjh85r@LwHd>8+A72QD+jDVO&B{wXQ3O)l z_&aP@Xccrzj&C!qu10>cU$cP=8+ zG>VUnx+h6AvB*_gLtnZ4# z?_(|}`#T#Xb{%F-$e$kh0AHyv;H%yDGh9}SJ4uAqz?y)56@qnVnfx`7BAyS`--p8r zdQHY&o>iRt5V$`zj8o_wPvW*(%BifJS(4gBDe=YU^Dnx#rxrQ_=d z^x~lqL5^1L`mRU?_r!}ey5C`R`t+#C^4=K<3PNwZW4^Agf-YFeG z1~NZ24WeI94MG&z&Pv|aiA2~xkC;=bx#O=*S7xhtL;|Y9ej*jSWatTz8s$S7_Po`P zkLMD*G7im20G~I!+i=IC_S8e!m-Nsha}$o+r&G0m1%>c0a%nrhcQ6f`LBfW9nDNf$ z7mn!!Wy(*Gcv}yXY`J#@Xr^0quG878H$4k4TOg5uH9rV{XbLyX)+)YS)yDm{m}35C zSZvpLs$~DMSQPk9If|LfeN3PNc;G~{f{&l(U$H!q@X9mh^DPK5UJ0&&D&v6L?!5n+ z*ksLWnASyVc0XeArySx1cJ+0xWqxcWFD?c$Qk1=`J*jib|5x3Mw3Fm42z5Jo%1hi2WN+8azWBG(Zc&Z64oyxcN^!`+;s4h$Gki43l z2)*S4s=?V>QE%m3e%8dGNHpCwG<(gD?$LEIucb##&OpohH^LG7t_2LO4&uuA@FT?e zj}mjX?wmxM3G`Pl7?=w6M*eq^SjQL%*Y*)D=+b2jiFg^dks?rBINhBzHBd9;}$S23;LH0F2a$|Q|#Ot*650^bz zFVh_XQ{FS$xz!B>qu|RF3ZZYZZ^FaTHQ`e%WDXL0o&@d3I1MkkcBvtk(`K$}X$L}> z3Hr;%Fb<|J*436;k)CqHA9;3x1xh|NTbl|F09o!;D@MInT|%cWy44^WKXh4%D!B)Y zHx|zkBhGsn{-2L77tNncH{IRZ50&~)hE4ZE)~mqvNuH-wK0ypbi=HgXo|P%B#&L*l ze0Q_E`%NhH#ug&3Kcy_p< zPCH+nSWF2PQvYqFcvm?jwvx5Ni`%H_Mm7)ONcgu0>vDWhXPlU>A76l8_lS-Lh(Mb2 zL#N_Jk67+i;!f@P&w1nZAxKvIFJ34WifgTgu8R;rExFxCRg@0&wq_8NZ{DAnM9gG)E)J_x69McZ5 zswdR7TiwajH9JIp7e^SN?tcaq2eT5f*QscCcX+luCXML-ssk4>U$Bnk=;HGovlPNp z(Ns1@s;o9^NkLA*#=CF6*S0L5YGkg^NO?3KbIy5vAIctf74Yt}xsmO@N$n7~8brrg z29%*{?Di@(Jdq3!TS~3mUcc* ztIt;8;e1EG!dNSn9WEAaM+}446+|jC+)K)gyd`?8IkA^?>4moJ+(jwkNNMb{NM!|N z*KqWPR7}krNz+(x+mCjHy4*d27%T>>SAtFwM2={lOL;T*pfN~~ zd-T$Euq6L{1eKp%N$eWU`Sg+R^PE5U3E>dY{TcE)s9^{L6u5Z40wU(vlRbw#^7hXH zZXf*SvOds=HJJ_0RJUII1+D9XMdUAM$GFPyDwY;_p5O=98EfGAf@WFyY*l8uSq%7r zOI4a-%DT6Ax@*WtryZqA4r#rAC|}|Aa_*_-=#iy7+*Zgd4pZc;?{ZXLK%+gBB?igw zbFA&I+E7DjCUMyuH?&1pj*?&{y((9EKKeZlwYv{gR zbTcmhm`tOJ(r@;6#gu-dwv2IRWc^1pwh|L9>Jly__u?|bhhv)Doo)>5jk49ysj*0N zx0hex8lh$4C42g#ApYM66^Oj(bi22^FLNctFm5=QSSk6%?k3;|dRZmsS;UT*lkLGs zF3|xs(8a7|%?%er!B-+oY(S;m6;RqAq)=wS?IELX^aBDuhKu1{NoDKv4y1o{RCeqs zNg=HicN;)QF{A{gvhJC{V3Gs|=jM)09?nC01jHz<8{#z8J9X$ycSnzy3Mu6w$`x)( zMHOM2BJ9KMN*d8(8c-9O`A|27uoYUdB#L_l2L^56FQ#S~6{OS%Z@3UDFur@Ky8p9O z39Fbbv2B6}=snTK{`ayxG<0hiX^F?@L>l6b13HH2T~ou8cOqd031~sdyl-4!pSZ;* z1`_sYd4Qc{p+b)^A;mv^PXQk!;6=+Sm3VG}#4%n_)(lPoSvrTjQDvMV#QEp5bsPIAa=E>f2C>zcHvLgnDX|O%p|&5-jp!+ z49j-hehc=_z_}eg3aNE!#Pa4I_E%a|s7UxT=P2zmk3aQNpC^}y$pBIn;yMLnqX*fZ zH({ymC(|!6d7=Zq>EBR`Rq<^0?@`*v=&aqK3EVZ~1WLPADpYU8n{_pNsRk1i4U+B% zY@2}is^=S8`d)zm0fw zktfh$6PHk`_>?|k$}_#Qbi&;l{b@+fICY;O-$PBSWoZDl^+K>j-e)^%1Nuns=$R-# zp7MUuomrWZZ{HY3h&WE3WV{@PBj@uS(wjBCvc4bngS>k>DU`0IMFx~9gY$vr= zIK4Yfpg`TRRx9B#kKPW+XS3OJDPryyIAm|&OI~x%tJ*3VLfx$+;`F&6p6#u&Y10qAdE)YKpZrfq_VL?qhHCt5QVMKtr~Oizpy zZ|nJxkrb7S{LfHx3sUP>tl-Q0!9TNZK=RWWW|&M8t)XAC%D%sKG603>7<6p0LV{HJ zqE=Z|Av+T2y1^$BTr$K=uM2smmz1X4+B2T!<-tu;P=g(;E`!?^q`_;vq)pPF)-%U& z{Jpag>{x^W-4hoc9a#!Sn`kWuhh%vC)G1DTw;kc;%S;L0(BdNUQ|vAzLSj;Saoghw zs;<|H?Gof0f3lw_WlVnmDC%)d^vz{kzXNJ*c?OHX!J4lM`9hiou%Q{0#s!+Xk3QzD8M?3x3tQOJRYK@FPr*oDsnq#j|CTol zw)Kcl4S&ORt_EwGRL&f>XcDu=G|sx_hztNt3NGxtEQ`3@*Ef*^Ls#YKbm&klsR07d z=kaK`u@D|5PT67#!Os!tZM^EowE9__{y4=;U|e$Nhz0a3SEaSw9I}Yf_z6dhqI1)E z6mmkNqn+=9s{0y<4MdUV1b&Y&Cn6i@EnbksG+eG+X1m(rLXnT_W7a{;`j1TR5<7d% zJ{=^0n4d@7KQgkG3p|CT^IBnW1AfFU*VckjDF4j6E7gn);kP(`v@ZvMcDz@M%})MA zcSgF<@lRV;z9<+KKcFg{-XWNC)?0!~@VRdm@HrTf2-$m`#FN;dmtrITTNK=wdtWOB zYi4?HIifY>vqqj72CYf|%nd=`$>rkYq2A1lqOSU5HOO_dSCR~9tW~*>V+WmLGhp%j! zL>+g{@V`W_e#+T}42=XbFz2I1z^LnniGIOr7szN(*SR7qdJ7FF59o~#$JSp}7sx>S z<$G@QPp%O*<&#!}KEmY=`YP=&|&rxxsaqEdG@gxJ>^3lj_*hWA|HP7m9={gN-C z=I+{ilL0?<%#iTqBD~{pwLa#-*3R%+XTUIPwDJqb`3@$Ih?7UKAoHkIg>NeP-2HUA zMzt(k=yTU%szw5gOu`;XKAM6h*%~>F<)dmax^$#mBbW22{QWxv8OPze))yGuesNjHMzrewdF=bvEmo%p(G_XZ&#?dB|GTsuIqu zpx{WeGl#7_RemK3ebS3V7emRMvr;DDZB;a8bpKej}s9_@H^Yqp-R0dwx|Ge1aRDj6y4ikNq=ZHN!&h;tB!5%%Fy8VI!F(o#R zHu@7dUU?a-K6vKIYaU|l3dA=jg(LRDG=uS8Gk)pm1}N!fDY>?Tg=5c~TFh#GWbD7MLH{@*e%Yz^8Z7;J+k#}E;WaXA?st+&8vrXFJL`@_P=LUg z&4jcb79a-K-n<-d^2xoU zdx6f%Yc@dh4@P?179dbt3dXXqM{0A?4^s(u?)cu(cLa%8<8@-s{gs;}Sfm9>N0bXa zbJ_F9ue)f~%uB5-xEDoWdl>xXugcUP1Jr+OFZy{Kk)%T$i(jL8wDIt)z(_ul0f#kk5xBz`)$A- zwG8i-9)GU)LwMa>5GqzZAkUm`^7ZzSxTISCgNvNHkK^Q*v=_Ws{_PJ3DvNn|*i01; zC9lo0v4=>sU%swNt0EnyX;Ed^Meko5f2W%64$v}LdJ6G2+~wCwzhQ9#zUyBfA?sQP z=f)4tTg-!(Z7N!?cYLDLCUYqw<;{!bnH?p>5a@q(PHNr0&kRR>xkZd_!!`Lm@>4qc zVF(CCM|In{3BNChx(FS>>U?`{evYBcGW&JK)2<*@FKW=sB@)fzIty}>Y#;_-Jqfg? zHBZX($a@xhwqjg)f%QRSF>;&tHefw^hPZ^z^8M;FvMs&TpjslC>M-t{d-(UZQK`EsVzGVq`(kF|d^ zLJhH_WA5Y7{?o15wH~j%UCQSj{XYIpKjh8e5+APcP0RigM{;iY`al;VzX^~ z{AD7tw+_<5Rij@hJ90s}`@RhL?}-HYAElI@Mu@T&qaG?|9ZY{CxL&pdmomX5N3EYN zfkwiVvy`7I(0b>yXI+~xS;4pB(U>=;a65?Wg6Ncl?>AA9%08fI=jInFeHN(*7l%FL z80uaxFFPT?J|M1aYKwqXYENC(#;@XmmR?c*y$9rsu9;2q>E*^Zmrc!vTzikskoSFq zo->P&%sOE#aFDqAXh&B@{}Xu&d>ROSH*Gq?+$-add}`0x zR>}jLI2#orF=rjWiH18J=NSZYHMF?ffQ(0TFg$9nfoagjS35A*ig%d9O7Y$MPsV-X zn$j3tdPy*iM$NB)!K$VJRDrJJ%F$E-k1?yf=Ke7V#|5L8jKY|TP?qg@(iCwos?A=y zFqz5?k};bc42>hRv$hUoi3OVr*jP5G_6=-xE2?mapuuPKyDRIggoo~h^xuZhn>#6b zak`2`Cu9P|UNRa$-MrtB=o%2DUIs-zsA*7?Zwvi)=P)9%#)jA<>^K76f;53f9S^^IpImhtx3@XYRisK8H7eDK zr~j;6{4w^ZFKs8~y_^lc1}y8=;Dz(=IPg8fc|?End&coUKBn7r*UH`fNQX>8lEn?{ z;UWIq&8ef>JPkJ+3ncUSA&sl>p>~Qir~atTKOTe-0}DSDX;xUaEppHZXywOkJI_#5 zI?LAyY}gcwf(?$WQ;L%?Q}H;~R;sh3Ib~1l-FZ6wPb6GIx~>;bgGgHr>`OeKw0bGj zt>?Rs0v)=n35u6mL_W3(7r#tls%ixT#IyLgn)81ms7AYCyDLYLEo%=rJ}ct%>kiH< zUSb8$pzvmNHG6Sq*LKBE7T7&( zfjM>O!LLa_$R-vV=53}E;mRioi!CiY{0*JC2OjGGn(>(u<0m4=&9t`gA;D<#@UN0D zydvQ;`yqyYY3rgr2&F! zh*4nM7U}_wXACs6vNs~hW4rNdeFb5WRxHby^c#tHqqGm}3LeNy#o|P%j>O}sDCang zA9T|w{dW}yz^kixQ0Y`~P1o3RzqCbN(L3%4+Gk0|sZ!hF;f=Y4g|1Fhbt%KgU3gp@ z2*b@k2Nf3!1i!NocE^9K2N#|In7ywb9gGU2c!<_d)5y%g=v zQgU%OIsr+jRiglQ^($j=PP@JM zOlbpF)Oj8lU z>hl7{y0w8O29Hnd^5EPe{R#2Xu$U64+bJA7kHOBQ3T35#bat1uN&I$hQJr!G9dS`m zA@52PZe)|SeM2Ax{2IeDMo%I3VRNQe;17|dBrO)fMKO!E^+RHuAXOR)ofW)@ZCXi* z+?U4;H$PZ?fTG~J* z9-4kV0AK(^XsRNpJqZ;WUnAMALd!JczVJz%!4Z-h_*hd+m6HVJ=Nw6`f{eOCvlOuk zQ_FZqbr>Ufeb<7l)7-em^DDb@0$+zc`Hznqs=-n!#*6Uy@2OuCU6V(RV!-4+6}URb z6MB8AEHHLtOmFap=SrqXm$ZWY-at%)ZrS&^IB~+kH=022i2Z9eQ!n%}I@s0(+0xR- z(7?mm#@!KnOeY9Fkp(?*{y6?{QOv% z<*qT)Y?!d6VM;YCN2HZ%$L|k%w%v z(69duVh2A^AxM63xR}%T5D7_&FIgUSS4S{g5%iG*2Wy-WolT9Y(Uh8ZJ!NLX#Xelv z^6FP<^}3trP{Xi}+d_3*ehE4)rAOLXMNzI^Q1Fa*$4+U?Xf=WM1D+rF@py#^qWf%D zcfL1ct|dopk6{K$%k0A%35o|DpN0B(BqI_3mdGXB%SY8qB2qvdyR2*SJ*?63!LSwz9$oal08`XAfSaa zk1Az$-w+$flB6x%QAX#GM1^qlp;;-0GU>z@5#%w%>rQ?kQOhuswD9fTY3VddtHV? zAc|?uKV6~1bJ?R<#2ON(v^5guxJ?z}x%=~tYu>60!-Ck`3@^w#FSB7wBClZ1Up}8m z9J3Qpubrpj=}0N8Si8pQ{(zIks?Ljvw!ikVx}|N6qk?O&7xHiLplWz1XWHi8jB?%Y zQMh@xmwqPk-%xnKEUd}C(fgGbXqZ3!Fs(b}$Rr0-4!;S%@srP9rr#HvDz&ouT6^!( zDweH%XSrZ`#o>N{_uwn}W$cRsTDcH($x*Jgra-MG?e*4`jd`J4v~sagTi_4+=#(=< zwLIEBz9oKjjx{V|hbj`F1$3DAPc(|dO)@ID7Aw-m^MOikz@c!}gbJL0_ z9Z{hucA@v9AX+ln8A4a2DJV=lk+*vxN_M19@%O5Y4rF5MEHSd$;D%L00eazLy4n0EQLy)-#mSW?Mb4{YTFx%l*j~XQwMlE5* zgNlO)$5~i{z>Y)EZ)I8SOlJ%?ry}^R(#F~RK{xei8Jq{CKzDL&`Jnh#>erwrWa~tz z7vJY1<*Auc%Jf@&jH_<%nbGcT>acSgroc3nUx1b7yawF0QbPJpgf7w7R9=sX=MFOmUwhGV4Kfd94oo){jWvxYY!?GtL;JDCDg&@JvgVc46?+D|1x_i{KV5# zL2JpaOtZy|ES)*sKXXRd25@oH?M5dx1s2giE zj`Hnje7J(aGIiFUA0r`*H6%aIlO1Q+9_KZbX#^RO)cJlv&;=WI8mS~X?FeIwa) zqm@K=&lq+%;V1jWX5+U$N~mn9h_tY$kvDoB><-M~z;98y_{2%VvQQ_Y2O%Msx>84b zM{_wkQ8(a%@sWVK1Yds9J2i51A1dzi*At1a-R`MfrZ9Pn#$3;_jYN~^I2FZZD@;1; zM*G>llPCTbKLv0; zRN3q-fYwyU(%vgdR=45#ChC-UBN~7)Cor-r;>5#|r|wGY|30ki1ar~jk|!q(u+%@# z`wr(%uvqU^)9|oCs0D`Y;?u2Cpn8P*w)=KuKvY z=(<j6ZCCT|F$%>wk;>+;{5>W5k?%Oq!rgxdSxWLk>j!_}9K`lzx8urs?k`=RKG}$|opP#{dSg21 zZ(djL;mf{msb32Y2p73BuC)Zm!AN|q=4Q;;tg)Fsd+=WImgqX?yEr@E;jrp?>~mC- z>p%U{KQ8g$)Q;BAa0E%Iro{VZ7zs}P0lDV=(n&Q7EYoae?I8ve!|#Jf9MOQOz5 zj;nA^5?QvR7%T$mMpK9cTyb#KJ!)WpwL29e}s#ruGbQ-GJaT-Ug^ z(FS$YeT<@NO1mTK5}qCoW&hT{F*D;bv~LnuWiouFkz-?Lr}q#fa%o=Ggz65IQxS>D z9t=fh<9h7HGjGgmDe^5=cerF&2Achb?Bmcj}>($Ae-$^EMi$CF3!vWb^s z{(m0W8olQ=9vLnLqTE3r#nN~cmX9CGFde~g7+IamgXGCCUAvkZagsORg~vE+E|Ra4 zO5TGEY0$5o+1(hazQxO10m#~;}3Zc3?4(WGL3N{VzZOz5~|8LuT1$_Y&-j!bTz#1OH_u<5-++agA?r@#x7j+sZTEp&3#B? zH=}`QP&j0x$e&ZmH&)m(IKCOna}D7}jsE)^*3tQroOf%+3ZDGl7&ikdNRNROfkv4S z=?pcmwRId~K~89QYwi@5Y}zx+(J6&$wxg0JUkLo)tKsh>GS z3i??5^-dcm(%lIT`CY*984%wfwp_O@|#OH5PLhCa)5*^pEGz0d*0fE zJq=p`&$?5eouz4Xzj21CaB(IS>TW{dP&anRT%S=+aEn&jF+nf3u=LwBWReiEP@S#x zbs9B#&Gj-2$HCD)^)??gju)q!*h=Y*lvZfBQ1QXrcUY+)sGSWC(E#b-VqVI99e9#anJ3b;Cb_R!b8;PS44bpki==Xj?7={H`3=?}Q~mqLvm z{}ys<$+^cTFoEL_jheK4B4uMWV1VMG6KP1gBN@#cs>PBfBVMp6F+})3Rh?sd9BkKc zug12G#%gR%oCXs%Zfx6)Z8gTkZ0w}5Z8wcE@l2dNeZRf;pE!?w9(%8~wBVS)(>V|d z+9cmlLDJTokml#3*w{zhq`p2GrB2tTK7rCN-SMapkM2PuD2lJ8CJ zqRF-fdOHvwJ3wYuQEdw@#%K#SNI$C*e~hu}$pS?YiucesxlpZ>1;6)#y!g*H;TPM& z&x(PZ2k>wG);ufGvq2C?*;EN#)Y0g3Yk$_}T9Gp@+deX&VE?zUv!SYn4h>S)mhRCO zGL~58fZ$kF7CIm{(`~BC+t5K_m~h`6JL+B7q)DF>ne5a*vK?v( zC?_UTjb|%6Uaosl3DYf#Zk)2t;6+?==G*JE6(e6RTlAMjLQkisapcsUvEpnqEw!tj zI+|uxJU#7<=o$T8YGuY@cNScH7~0Bs5|y=3R$bERHi%%hDYT{M8&C>#;qoSWtO$hc z%XT>Az+_jf4Ih=Mf=1T+H^B`Qwqj0xrJRm1QoB2-)d@PlHo$eH&pbX>w=Dw6Vf2Ke zpFyry1+lFEd^N7`7L3vE{Aei(^ICXoaVKPEf9n-ZyZ%H@vp*2Yx?57UC0aRW)M*3^v|v6TF;TpLAMQ(m_$f zFx}#*Q!v#)`isO|YKarvIz%>qb=5L5mUPejvBF)m*#WD7B-*#fe6$TW>HA*PI;t+%&(&191FgyKxh&rZe=p^Zyrlb4{O& z^V;wrbVnf~ucZqdgiyz?mjSWEnz~8Ry4}#CPuZQCKO0j!7(pVZ-sH`}+u$YAFX6ck z98c4zbyW3b4l7Jhn%nb~P)|xuNf$|yms81s-T4MEW7ctoFr; zX6bEzxGk&fdSmvu@7a@#&sfZuLtG8ss;3#B@DRwO#x0y#s#k22J^)EnrWC55a;W?+ z6f+YreBZM7Fy}I>o-$w&%1v@L7HqqGLet~j_EO9ybU^1-F;!DU+cmG|s_+SXz9a7V z^;gkbvV2ia*e|7J zUDqcmtNrCTU~+CFs6x4P4?U{$%4vhpw)mZmdc!6jd)YCCRe|*{qyCDwu%8ZkhiIPS zyMmH@yg1(V!I*}09gxhd2q|p$=%m3gc;5Lo!}(^N8^H_yEOLT5{6q~ed70U4==aa1 zw%lE5o>l1=uxKFc(4d0mzQ>2#_}L)+WH{@RRn8U`M^IQqnCiN#Sl8Sbj#7cEBfN6% z*H#eeVLRtxk(WZ|1o9#nq;4ck5AmdpK+L%-p_ZCj&v|qqx*>JD~`1c9e3EoP)I0_$Y^9d zhJi=oC$lBP$VZ?SS5!_?M{YSp>qhSH7a<}IE#8vHxv`x-het+!5*9=wy1-gV<>&u|t)_gi>b@Di2He0hrwc&U z;3fxkC&TxlZN=~RLSGC%+Memz4I2^ z6S!bb9mG5>g9}EP>RGXXErNS=2wmw-S zW`ns)&a+#T>cTtdji?AYT}fELgZqEs6SPdeBD!Oj*XQ}jm@>~$7#B#q zBg>J&{0c2l6KTbLtIg()uiZ@qB%s|*$ftVmIL^!CX~QpIr!KvY((C|TD-$jVf_i^V4^J` zL#&4C+(@{NogTSyzKp!TSlhbVvRklM8uRZ&Px{(y(A>RR9o+#115($-3WVv$tyfx# zKW4hxufw}Y$yKV7YGEPr{baeN$by5#7nZ$;6F_#@f}Frr5MPffFDwN^7MVhCtT)vD z&*tPry*JL>qPR|R;*1UxjERr1#15q9!$DtEeu-kChko3;YwJ`Iw2AqbPWZu!Nz?jy zzsa$$ENtX@I~(D6XueSPB_WqF@tJ|}p>NMt#^E)#a5`_jf^)NIfr&oSHr0!eQo$c^ zC~RC#a@NE6ap->oMK()|4(OSq5l*B*j_!%{|Cwx8IKeGE+0s9u8n?7fAny_%qb~3J z;~S??kY2ENSY9}~%OrC*{O5!1)Yd_lSpDYF?bt8nKet}j_VJrj4*$Bf^Ax#3xC7Nb zhLRd?oBK;&tUWm9DJhVpoQ^XLbtYztHCkUnTIBhJCam*4vN?YkWWTU+ITOl{ZYF#X zR7g)=H4Q6htytHvKdi~J%ZcVV19%b%Y<0bQm{OahA=ZG|Gg3ZHyCId_Bz=j}d;=qA z2Ri1pw5Ayca=G;~xjti|7SPYKu17T^lv|^r3J0UtVEdh@e!rqL`P82sQ2#c>zv5BQ zO|lc|p~?DV`WfB9pnw(qJ{fpNgB1E^oih`N#gn91JmtL+S(i#q0NKL~PYl|2`OsWK zW@xHs!5ryL_=aZ`OsLMX($^O@PU*c}>9+nBv7?CG;9dHYUXd3mIVyB=WT!aBZ)6f& z3l1H&L7#>+MYRj`*myqDaDBNOa6QEM|DC<1N@CTfl+K98PRyz<;fq+Qnd~%MJzWQ; z8NPQc16`2d9roo0WxgeerUu;ly|bGe{dDjjmW@47IJF)pf558sOYF5vzp(n8#Wm|WxPCv~36wtlSe^aYJsTH~cscOgqAd^ zlzaQa`xZtqbvRUT2~SO8o$7GaEYTj4W@y+XBtLD^6sR~RJBLGrDwe|kfmd=iaaz3<8UH?4^?j9z*M*U(vkVEw7kgcH3;5a+)jBMUW#z?m&08VYFry7=DxjP6)_ZbkU~qcw9e2L{8kc(A|_AnlF?PVW0+&Jz`J2~mFu_dVN9 zhwrlmdbyOB2p^&^U5XVxEMO%d zxpU`V3pqeeI;x*;cn$|Cw~ff8EWp+(dm#?HF3lmZFVgIM#WHKrZ-)eeD&--+uAJG= z_QfK@rLBJa=?JsDu_$aHkY%(0dj46HioLG4pII zKu&^{)_>j21aA5&){DNrPkQ@qS?#$Fe(CSgKUtcCrbC??j#8oQ)42v)JSGGvJ8bHD z5J`l>5(%3=QvgtTAccLma~yMj`Fz_jNjh%iozbNL%PDvHFH~S6?VKK5pvaBey=)Ao zpYYl*$_;(+%CivI&aj&O1Ah6R1N88Zv4=2IYGTG!n@Qzw)q}1FVO#b3XxI5KRM*!? z3)H`PHY^(Ek@|R3jJ!>L~OUr(Zx=wz{?D}bqd}h&c^>=~^w~5K3H9_V# z20XWz6U6@a3sN^)?0Y|#DAI^63;YQkLvPC+eW~Tp)P}`&RdTw}d3oMz#Qz!syJp9y zoqO>-M*k8K2(+u|Lq*url!;q}NA1DpL51|YrJa0j#Ocb%c#cBZh4$&SSqh9O;ppL^ zG`r%|FSMhHuo$Grsd!y~J`2aK;U1wO!pdUZOPp%n=W#nTd~`!ocVSyYsx@2-gGpPS zVF#{!&`1$cPHWyI`f|cUw^Zds>N>JO`=)UejSx%U9tn5yH$8vV3iQ0~#1iYorsAf7 z++RU07$0L_pS+Se1QHk6d4;IWEpZ%?h{WCJ_#FM)cTx)-8CK*7a=-GFbY?59 z|56KY9!cJ74q$LUXZTR5XmgHv8!$oh4R=Qu(!JG%(tT@v<`-g-KQm+ zY)~z9Q01NpVn-BOFt)bexes-}S*ZC?pl{|i;3_GpkgFcuKG7<2Y!)Lu8#B^DZ19Fk z5kVB1t3DqGRv*C5JJCEc?6Ng)*)r=Jl*r)rSSRkFlPuXO{_2_VMhlte{|AD{R>g^u zNy%9Q6*7fyzO@q{21oKQ;&&9=S4h6Au3{-(j%e*pb%#sgVrK9Q29H_H#jb1%7!gcQ z(ss2|(khG82X&ls|LxNvL5Ks=x{B*MO)$U)PV(=pu0jWvEpnf1=e564ier;kHAVSx z%x22=bitT~%KP^Fl}qYX-lu|ze-}OlbDxq0p7^(e(dnKvrA#FN`JmzD!`R0ps{O`AWNoV6b#-;+Naw=N5dF_GfWLdDKq~PCCb9 ze2)$5#v5NGteGja@p@vaTxz#@!Y>#<{OjDBvwm;|Uj}#>STKr+_D1*b!gOpM+vnGD z(=65u1-!&w$w6>!K+yHo;$_J1HK9&ZIiiJa_e-gN%+AB zat%F*Fu_aXi@U9S?bHrMmv`$Mj^-C{3UmQHSnK{c@0i1p$$eT~Vs*l3G92-P9!(OJ>a_pfJolL#6$0w*utfyJK6U3FQUge@Fy=({8Z z616XfBV;UsOClC*kIY=LRU59j3CUz>e%&SuSVa;I4`Yo}x4H)+CM2gpED7$_jnFq` z_^6iUHZ#36nd{v3`hH|_Z?zcGbSvTh_c2I5pbT)$`i;NR&h+=Mf*7*pJ^A}#+-Gy% z&+~*16svEWI6doobt!i(C+jWNjFoN#hCnOs%g*|u^8wONPhZ5{-`WW>I8Wm*2m7)Q zb8F^%wu{VljF3Bbm;?H}Z+JQ{N#F4}kYsi2z(ZCWHSz3R&kG&FD(>v%wsTu z3zX2b70Rb`0fP_S6aF6(~s(B`B_ zd&uDr>V74*pwy@Z_XbLjo3=}Q#}Y;{q}{b0o~PkY0hX)Yk#KP@n6GE6yq0ukC(t@l1knrbs0y&<63L6ew!!(H~#=c!pYMnH0F-~VL zO6k)`eoo#c9pG2DfG&|~GL#hQF(;4{Rk_I@$#ZFfMghY-H&rreTfdlWr+$&Y%bf&^ zQf1iVS-M?f%L%{#>sYS3Np-F+4>}-xh0~^&{pzP9Qgn64z_p%-IwEea0r*Taciw9! zQMyi)H~Vfy3LtF@xq8B3cK3}qFwa~HUAiir(dUS71x6>M1*clG2=ksdP{e9GwiJ&E zm|l=O1*q0&t3R1bUH zQ;bh0DNm`(I=*|CrHt(_W@x#?aSwNRufeep4ZF$6#C=^6n3N6R&avf4r6cKr6`VBeB)={EB;fw=pTe-L>2fi1} z>p?E6a1?Z_i;kzjM|h`b;N%A`G`qD(A6%ESdinztWdqF?>Ye2qlvOQE>&wTFwgO|cci_22k%&7vlxK25hNBLe;9{J9U` zCC%%g30^^y5*O#?$Kp{5G~b#0sFdc=*duoq8%f?mMqO4vXKUlwE~?n~oQ%eFjwDV$ zPjXu~lPaVf97=#H{otnWIC+|E`Q@7%iWLmcBfw1BJlWS8TJnJaz`(^y!v#aduD(y2 z*(0(o?E<40Z*`$Bm)y#THoR7Spd!7;g~VY)G3mDFPK7fOR#)yL`61y?%2o2Uh=rWW zCO3xqB6&VNc>w_B6NByUrN<3GV$L|jq_l?%-U*wK5gVTNmjkrql z*%a&Fh|f?5*v+i$Fom%&g@9_0IfX^d8}+%exR81`WMiMjx!;;?#u6eb~L5LHp_@7nh$fRx9i}tl40x=HCqqHYs z$>LccH$hQ!pU#+t#H!IG$Zh%qb{(rZl7St|eVKICqAtbY56>ZSVKC_`cl>qf>g4Q) zf2i?a7=6Y`llHrI_jx$-;9B#}?Rq`V6Wmf|ZHHH9RY0GX?jNiTN}#e>5u2pn$ntt? zRgU#0lZu(Vf5J*zF#kU;K@w-*IF3RzIODJAxomGNRVRfS)_QBdVRABvhW4xV-}%i| zc9V#aGn{DC%$^GU2~i=b%^yOxsa-kjYQ=m&^~=Rvf~xf1C#Erb*+Z~f+$5ZEnz8T{ z8^u6qieeI;>#2*Q!3@n#nWY%e0eR zfH$*F{FiJks)P4sk{EJKY`a%GD_;mqN>mR0zjX>#Iur@Cc_>hl%rN7*TuZ%u@#$qA z!OYyy+^dneGjyx-B--o!j?ulFM(yF9eqw3)%$x2AcoQ|sIkE!3>>hak?EMMmN&@_s zjNEpYmyzOmF|t#$;p`UxuLAe+glU&CZsXwobff;X0+Mx|yNWLppM96fCT^+5lzaH? zvy#+lm+WDQI{U%?N_6R6&)DsEN=_>kX;aOYnS>k0FptUWRjkQ9huQ4Dp91J|2pci4 z2o8^HjJIE%8$#1a_v$#aL!nive46@a^ES=={b@0zhWp2@`GRYabzHPZyq`qfNr&tw zKbL@5`Y#@*Eg0OHRy5A#7YZl&)yF0R2n?|^4c*93=Sw@TLZ`w*vn%sB1l z(7jI0-J&*^U2wokDv7$Mp^+EmiiAR^iisTi)RWS5k1dH!CEa_C zt(9|S%(!scdoY8kK0n0%RrrrNlf@K9C_~MC9-8Tr&cih+_EYbGo62Z6)4xp~{S(9b z>Ra)r%usx$2QPu&0PE3x2Gy?lgZWP5KzcODQ%pu1w5CYxYN|%E365mR4@OwusL*8b zZSyn@WPROhFL=7yHQ$rXI$u*&_-@mP0Jx-E3jDy?Hou782#`z^WhGEc^*#HsvO}Ty zZ*-|{ekuy_UKi5Y#6CpWo0LO901Cauw0<0Wq#-HQULRo;{b2PweWeyXSP5KKtx%9& z@$=1JoEVVDJo8;2B8vEImcWrgKWJ`sr_j%7Qi$+qc?u!G9~EM_nnvdBc@N6AgN z)weO^(2tJ+R&7D=Sdf~#6CF;Ox<;Gkvw%0*xSH4dH5dy?#mpu&R1F*71=!g!1*TI- z0#vp**h2AnsuhRk$X>z_dK-4Rp&}K+HkBVXbQodx(Mr^TUckFvCePVATTP9T%uLtJ zBGc!+)6OLCw8W`^Mq9B+E~CNH0^DWB4OJ@wSv|R4RB+To1&k~6WSwjskhZ$LxLorQ zaY2lK`Px`shKm8QI>i>wv`w6y&6G_#>|S~MGocQgP~V3b!=G3=NxmzqROkSG-Ld{_ zoe$C0if?kz6kHibry$)t;N<6HfmaJdVX(~B%ycIy*g)83$GQasj#jbBzZTet+udxd zz7Dp=!?SJs7O^7wl5?511-MIZeVd`pw)Q8QGBn$bd1jO1ZHsU!N)TgBl7o`i>OV*- z+@T|x`uXbb;Hm}06i4$LVBvF%*+K557I-&zVzd^cco@MSIq$Kv z*Frr0mFE6G;6D8BJ$~XO6V%?)o3(!HCJsVr0ez?F^Y63a{r*Rv|S+2d@LKC{idKlQ}{tLo07t~wF z`&Ddy1a5#XA!w?Ft6m3bN~ga^PpQ9sTY}TCGqM<$*iN_-#MKWhR{6ziet^br8-SZd zVzFDOeP)xZ6-0xiQ&o_+EE+*lC7~x7np5G;-yN&XfLjX45Y1&M1v>ZHFP2sznAiTC zF|t;cQ~x#E4H=o0u~$aVYt{`v)~Jib?6XYeL%4?{M&W%&PYemt)G++x@m@k0k8>?%*kzt(}DfO?2 zpO)w@%fVB7a$u%AFHSIUt<<%w1u!)=E+gsa}#m`!40cr)pYg=JlrA~dU zXccO#Z!)!Ya-YI=@r5+0=AcVW+2Ivu4AoEFUVd``Vy7h1PWrk{t)8Owl|ilqOwXuL@SO>$`=vzo?ma% zab50eqP~3}ddu8PO$oc*47X?wZHe@CUlu~!dGE0{R|R>3Ftprvy-?97P?|F*2IdO~ z-8X!IR-u#mWS9uWYN^`3cQ3dmngvl@#yL8G!xF5feKg*QZ6{-bR|VN8PZnFf%S=Xv zb27}*DB0l2NkdiQ&q+BMPv%2&1nV}!9B)~iGDoM8N**nX^5OtZzKWh;xLCwxKf@nH zLBn6M`4q#d?c{e*y+VSvoH!6dP1^$xeA8ROj5V%rDYLu&NTC}l^sCK|M5sxhr}4e# zSlWL(iJM|9wAcO6EkYO@@q}ThzzFrq`IOk+hUcKv5nLFZsP$f-KrJ+?eH#Cp|Fd+(YUQ^!8igTVU&1~z z^#}Ut%==85S~LE|iD5YN&grJ!=#RME9?AV%Stp>g@7T7lsz}Tvd)OE7oXpdwohCeF zk_s~1pQzifq|0Vr2||9ClC?CuohjiQXRSSP?43K28*b6)gcEH)3IXhs8uNhZYA=|6 zrv#9qMp7Q#XDs}Aj>j44yP}H)Hba?z5)UqGG{fWx*_CFK(xGnJ6xFc4`lJfU&sudy zd($`9?2~7dxeno=@B3lWqlj=sB8Pt6n`A?RwCSSKh9iv45CVP{nGRxj}w1kPfBO`AffDXdVRJRMHLrF41kj5h__2Z9pC7Z-L8kXeKO zY%m71dpAC`}E!?u)P~4k!kP3&FP+U|(vaSX=8S!Lo$1Z&xD;PuUh_>EoK1)QJIwG^lIIZF)ZJLJ+Tv^mT%~9& zNLZHBdoHHuekxjK^D>9k-1O8Hhj>;gn=#h*P_$z7k+Pc!v-G~BASA4c91?AD9sIIX zVWLDwqQ_Z$W}w)x794*(e^1Kh^zwP4m;dT3dx0F&rbyqk8eEJfWs?7x`k1QjA1yJ5 z*zOeZf;y+&kP8pvd8ZsGb*ck+vhjni1j?!<;(HPTw+%lpgB~c&8zpG{yiVnPf$9K0 zruGgvCpU%^1cN00?C>z_f5XGK)6FaY0fm(ssVF6IC#?>7Xd5nWNpEIzOhG=-Pdq63 zr_$b`kwJQ(W^d-R*F~{xkI#5fy0hr3o=;ok9Q*~OCwo`7X8J8NNYt(?$vsA4Po;@`U&UjwmUj-);)-&uEC?$Z%Ry%7i1_!hL&m%-oSV6O| zj_f&zNz3#{Uu28o+?AI_Y1z)?-@aba4Dd!j;=m$TdXq~db{E)ur=z*od4eP=oL=`? z++9-X3sDGqH<6;N^_SgNRQQVXq6H?3O&`A@1Nxe^9iH6pqs+;1#)aZOMK5bcFXJU~ zECpo{iiWmooj*kui%X*TC!#Qa95lZOouqTaK%@E662fsws4)4>L(b@F}nLG0&PbnDjQ z9|R~?p50Rlqha?=zJM;VIcMiB(KweaOEE3q$OlIgHayr-ev z0VmiSQa45hiM6Lq#&M*?M|N3UID8cxc-)IB8QyFod+aySM0TuUvjDjGvmJ%MEETORo1-T0_E`( z&Cm@9X3#+2pP;4Df4-O(aG~8;E=s0Au7%gHVxo|2fjZRzpMpNu3%Y*uWriMsR}j7CH$?%vF-HV-`>N*WeVC-@r<0v$NQem8+`e7l zrvpn{#c(C&lkb-%L0Jt67#x>v(Y6^USdXsbO_CH~vz1{7Km7ULl0GZ9pHv&?mzd9Z zUy9zM9=~0S$u^6>)7W=9V1qF+yKWALei-1XQTbjlk5&ELxojpa=|NH4#xI| zaOAZOX-WgR2cfWam)Fv$k{y;YKQmn6k zO;mTY#y`hupR$tZRctcd_AgHn!UfbhvMFgVg{_JoWMj&w`e|l9(bTqR&-g!T9tCG~V_ZjIQ_R(l@LgRY*^B`^bS?>aE?wvnTv44OB;eGxLjt!36r zH_aH^Dfv|^AQ}fz2;lPYgr1N^YV@V+2h4g`QK#+sSkJxf0l^)jxk;2&Sq*~C)$wJ{ zFAC`eXZ@rjO^&~(aM9(hJk+jyGvXcQ*wmE|?coppKRDVn)-}Y$M3`NUa#boqOEqMF zJ8-HHG35xQop}BJc}Y{cVz=|rBs5QI43ncV+e>0ECyUks~OlMj71N`9IMFw zm^$ZbH&%ch0vx3YhDJ(!-H?un!ig*nT5eQvVX znzhD-o;Wd-hFS@hpXUObZnyrm2g(CO1hxt@Bi-|fk?kwD!{=LwK=eX13N-^ewmIaC z{%=T9(B;n^`-&yDe1+jXH~Ue9 zsG?q|P-;iV#Cy;ew$IP;z4F@rQA<5eTVk{4v~MpL`Lz!^$vu?;22!<1KH4IF0Y*1P zj9cH|jy@5m-MAj-1@uLsfI@rym9#5%GGErjR>)iIL6I2=2C}top>=CvWVVqSDSGhI zYJOMO8k0k4~<0}@=^HNFV(DO|lxjW$R^YJB_7&&MlLRM&T znf#@|y<^ADKfR=iUrZR;o)=_hEn|1knUCzJytfciL11x>$265*nr`;lTVJ8pw?>}o zDy)){l`>@#4XOZckH++QIGd-Rh6V8`8ys*$Hr7I*?S>TgrFjZ4GW#qf`gqPK=FdmK zxs7|i)pljuI0m`f`;#Qo(TO~61DE$iJVyD0ke3F+yvzJ=DLQX>^0vvyKy*UTe$@|$ zJP}+W3`Ou+5K$!b+yJUljZBqeY{NpCE|(MSFR?PXZ=IEOpR?tI=Akl9n>hGc&0|^r z{A&mf%9T4s@s34k9E%No@M}O67~|ez3={B0V*qEBU0fhFmR5|e@;3nd$94}bA1Hz&=m(05<7?rWlpsC=Q`@&(}G=Mdgl3WJ%)9&8#s`x@l^&f^rD2z z*~Z!{5+qKeMJQ@%MWtr>v{-I}?b}y^98XzI%RaBaTMaR{4ZX#|FA};+#?Ixo?25(q zy?h;_a{YpDm$Oj4F+))--=#y=#+Kra`rUef>`Ff0DmSM*d9Scxdnw+{E)lD?xds-5 z>0$F=iy!W8?#)K+Cj2<*W2SQ~(fg59$!m+U-!!#qH!|*EZp3-x{iPMMFj^eey+n7NcxUbtgiVT`KMiCr$FNMz-hwnbdt!p9t9aTyo}2xaD)p`ZSAjFOUw?e=`_GSj_zUsPr~m#BTOi_2 literal 0 HcmV?d00001 diff --git a/data/Female_parity_mortality_list_UK.rda b/data/Female_parity_mortality_list_UK.rda new file mode 100644 index 0000000000000000000000000000000000000000..b814dd7951c28d23962671f3168e89a039a29f12 GIT binary patch literal 37402 zcmbrmRZtvk+pUSaG!Wc61lQmWjS~nG++BiOaCi6M0YZQf+=6RxC%C)Qjl1to-fz#; zOwGK1)&6*@IOr2j?!INMYe5-}0`vC=>FCK*P2q*~1zRR>q&9|FoP&ldot0RkFiAX& zs^HgeBiXQ_bWcSZt_UiecPeJ|-v$zr3Iwt}I~Y~IEzgOZ)CxZNw6D3oJU5k-ve_Kn zT&)(lTwe-}*NvH;>@~9vGh9gXWU zG~8v@E@_R6-ptz7%j(6|D#$*+l#3Ic=L}b;KjJ?Zr6j3r^~$|G*@VcOF6^FVL%us% zMagsOsV$Umb{)4Pva-B9l&RS0Ev`=zq`5Wz>Mh|K8Tj(%Q@23-S%rHPNY?A{cZKH92odb?g zUr&0I11)W$aew1md~_g$ik>0%mpL=*mLqZeFoGUTT4W>91_x@|VB`B==8UXUju~;$ z?5v!Q8Ii-xdhZ?CdwVg`78=vHOah~6SX~^eyUbZxXB+3&Ik4028kswL3DQCvnY%*U zuH_x8yL&0p3LBZbdjqY-x$`oW6@JjF;gt-ol?=XIATQ|LAv(|!+VHa~ow*9#N%uS5 zU9ZL0z4V8FE-G_Q@h_`>e52s+8O_*kUe^Y8c5kwWtQ|hVkcN`;O-8&G+pfk%hHULF9bm)SnMgdlx0UPD~;TeXI_P7-izripmse|E}2R= zl|!Uso|F+4f#AiA28pvoayvJDKH}>u2*= z+}ZP#5o$J~hWrGECsgf=^_1;7OZ#8BU9ua^|L8!?D>uzh@8@~3jOWt-|i$k0k z1M;=i<1&T_Ngo!siW-R%`ei!MkVX;CtM-O}8{FO?Uz5{jN_}OmA%}0Oc1jwHw+5!c zgT15;x|^#c>`K3by2{b&rPslhV=8P zf`S>Of!4jY%COCAi)+qSy1uQ++$+AM5SWP}k79lohJ;^(O8HNOupd5Py(exWO{c<7 zyW&I-e8+U2?O`MMwwi@Q&YKa|rJ}&Db&SRcqC#MId4LtO(ONIBU>NwbwR&~_*+wiA zxApRI^ix8Pm&NUc9ce-{32#ZwN4TVBnF@59ihvMiMTY}FV(L9}LxhA|0sU7>-HTk8 zi;D|}ATnZ7_w66>5i+l2c0=ca=-rQ-wSS!f7e$7yCUoHe7Pjo?>5jM|?r#kA#@n%ssET3=;euk8`5MfSR7e6{usJ^zq?b=cQHB=Y?mgWyUb!H$lT& zo3!|)QnH-pWo3NujeI$D6q;({lHXa9(tlbw zlP86E90l|#so|T^qG`vnao-9$FV%pxC`;Otzo;cp$aql2vn&y^eE@t}Hz$oA7Ske^ z5z&~GRw4IlcTm7GAe^ztZ>T`%s^wfPjh~C&;k$VNMfC{NVv8juC1ZHLB$`tL?^?=5 z9JC@r`Y2|BKz{&qvm!!hov<5B-jbV+vr; z{z1$uLO^u%eR$Gh4WSs~SQNzNW0QKSfhL<>Iu~AG5j4HK)0c-dB}S#+l&3uamq7M& z>DXQs4L6I0&Q^dn$n3MjdHaJRu)V2hzSrL;Mb2E^O}8tTh;P z&>W<$Nh^%7+OA4!hop~eAjmuUr3jg3wa7GX>=?Z_=tS<_pnRT|pOBQ2nl}ciHj)%x z7%TSxsm#B8g~WaTe2F?93`ZLuOypk5OP?QK&bic&ig0~>?lqTn3jgO}s;R1hpd#9@ zB>eK~EVz)a$gGUtdr^N_eVwSmAYNNO%|bFx@{2&*`e9#gqp-r`hA3skWkkNNEu|Dt z9k@l-lU+J4B782ztW&dfK=Z(y*%01V8S7%^y9;5TWYuK#n5cD_}cO6q*P^ z8?ON&ZFet;C)3KDdGYgeA5unuQC#xlUmLW&)I9Xt0Z*Fo^@KwEuV#(r9y1zO2ssQ? z*X^YHcY^XGe638A;wtsAw(V1$YopFU_M`~fj2oV7EYE)KE)GCV^X1US!o8W@Q-+>W z$yn{SsDOceTvxt4p>KTW!U^51O5uHP`i^{B3l(q360YP|^&|Vh)h1v1-I??Z6V25o zD8>!r-bub(_%R6!DaL-{`G!%TeP1RuP6lY;62&-i!%C0mV1<>w-qYy(Vk!C+dn7Zu z+s(2FzIJ`1nUs_cHvhv1=ih6X1!c>9;t3Yl>2qru#04$iwYrAn60jyCN}X8X->IJs zTiWRcZ@cB`uUt+6jW?F`5vh-Y(1kl@gKoh_bkA8Sz#NDV{SOICK#GIIaohUqh}6D* z+iEw&*A%TS0-Liusj5?AKP-Gt>~_=uwlyOZG*}4jWbSwROT=?IzL<~eehrEkGa-|& z!+lkvVLe!V$!8351CmIQ`#v9!gyRzXg2m3Hv{i_rmascEon5$I*>QSsE!@5JVe~ed z9DQN;(Xm?eEI0!k;{D4@7VW3IJUbBevq|}X_3^rz>_qU zcwVyOY16rcK*CF$HzK*b(ES9|s^jaai6_&;vK$jhSz*ZUxuNH+_j0nwRSdb_J}eUQ z>G&nkg2xIPxcc!;H7tsYF^zHO{u*T=Oq>M}PvuSZfk7qzs(6w`g6G68ly9fT;T)9` zQR8f_Dj?8x^1$6M676yG{^|6j{Mf4{77l#NBZFO!@#|>VLp9K<&?frWrb7ZF%lwhC zuUbr}PPH^0)#EW&jnap;=Yq{A>B0IC7Ib^W8V>@g{3Tp-9SyO8}TEYODpAvP#mOa!$h@1e;ciWN|c2+!a8S}JG<1js}qZ#rKzKfUz(PeqqZ&5x34H$F|xEgKG59ra~ZkX?*j~KgN55aPp z*2?ssYIb5&w4Igta~kPXV`iy=hQyPa*kzv<8u!f-#%Ahnj&qQcbOiIX&)5?R8a~DQ zagbB@PmU{MtiUJn8z=SQa|8WYqT_=+cA6Zl$0C7AV4Cx@huL9cOcb!&U2LrlhPWH2 zOf+cz%q=Y62@PfYKub)MZM2P6HNd~CaE62lj~nK!F{S zB-8F1X@RT7`=Esx$vF$?^zuUS&Wo!f z`-TuWiPbOTA#9Uikt+Y`;(~wXc`w8iYML@iV?BvH(l8TjsYggV~K|X5pHk zRUdSoi0n|JzA+qj1m*@?=iV<X=*+U>i+qL!Zd-#jCN@yvtZCVZ{&nwapLUf}$^0ssZ`(uC2?B-XdjW}RHmgR5V>=Bqaf%-% z$Zli1G_YH)0diTZQHL+b1xwfLJ9Ae!HXuTZOT!f7GuZZ&XCc|FRXSgLT`ebdLUlG(R(JtWZ?gXz$!hYo!YhN$QBVf$J&M zXTp+Mdt0kK^8U4zF>IUn=JUzOi=*LJKCH+X_*Wi1#tCM!k=+Ltm=;9?mU)gRdsQ(u zwA8B$Ouxh@VaC0XrDF%54Slv$%9s5b!Chd}Eh4g#PSy&3T)~6xb|k0hSTPaUq?39_ zq1tLOm#@z0V^UETzY~8yEU0#g6x?XVFvt+}}fmMWl z+x!6)$Uck0p`K9Ge~SFqsZc^AiDnW3*7o^KW#y+h_(=MkU^8@Tqjyu4{bw$=4p}#( z0g$FP<04&v$=u=KhpeQ4vI8^!f-PfUv_x|$5|1>5WXY}jr!a`Ne52Ix6C#IzxAdT` zP$l%XsvXV`C>H65BYS&($(pPqv|*{~Vsz}F!0b?lJn|hYC~nuhljz5>n!H$yrLI`9 z2tx74zxOM!jkhEIe5@acIVVlyDrU_!_33n7Ai+n+W25-|O@f}M%k3&Yegeceyo@>^ zeYA(i3(Ms0EUHB`bMLJ>p5#RBGKK3ETw+X^ZopgaBA`Zl#)?x6m{n(r2v=I$ z@6L*b7}%WRuRKe-o>h?9QoJZ`bs7e;ys%LgNIR0=MroC@2shCc3dZH}Ugn^bLvmoc zq?^mTZM4i4+yJzmQr{w;MWCV@ zcnyV|IOdicdJ3UzMwJl`bM-!yAh|ha&J#3r_mR0XPL`6*rjTCMx6LU8ddDmT%q?-h z;?(7{-OL1_CJ7+l$Sae%`wpqcSu&5fia!Ew(uJtIQO%uXq;^zV z^mH_4qb-U}Xwk#ISs3USS@wTTByHq_vD4^Bf>s)r5s;A-$ z=cwkUn?Z-Ykj=I?kj=q0Lo;NLC6`;AgLZxdHJM(e^yZGP&6EnKV_H#C{Wa@KoS};? zmx+n^yRO|w4q(l&2|Ts+2(g7UJ7l5n~>k*|jCwSvUkSFa%Y$Cwz?* zf7s;CzC*ImUW82NHIRCAZsONDAd+QP3?-rTM=^23l}noe8hje|wC(Z$+?;9uX12$Q_=Zcx zVMiB;LQ7xin}gLgiGvc>4Qi~9%I<>;;*Fe}5zK}ctMS#)FQY@zTJ&$Byd9|EDFlE0 zsS%&O3Rf7stklj|gYQv8AyXbWM;$p@D;^2m2q55_uUb5ty~I&F>C*q+-uiF<|Jqx2 zyiyY_hhDP^)q_5INcML1B+S6x&_?laHoiyChDO~}sD^49gG$L-MXc8IAy-1?h60uP z*`EJsYsvMBy@}nVlkE%$F?G<7oRmqW(s0#Zh)W;&ru$r)&%^+A={wTR_;ZDS%xwy# zt=Bu$GkKTGl9>yf{5ZbmUaCG>b9T8hork-j>L?45<%jgxL&pNOM86%2T3Jo|j|4R^ z;M?q95AoddagVN%F?+AlHFHx_ij2W$rTP36i!Wmz85F(hjP@vcDvhH>SS0oC`DTs9 z;)g-!l?uA84V6@*_Z6roF5n|jO=VFl?>nhSlkij^tN9<>f0T}2~ZV|tKnA#mNt8eI5?pXv?^@5G~~tg;faiAFp)mHF_I#r(i~pkp;-w5XuI3IK1Dp+B(OMI6-9Jf z>S`xPo(`1dS?WiSL}E^3Lrk3f@~zN6l1K04}W>3nK*W^L+FEQXzAgiCfqBE`hR;MOWKKH~bH! ze|yhlxxf31UT(|POa2+B|MWTkBHE6NvxA+3m7X_G7$-u=*&Ae&!nea1P zbIYNrkH%W0cISQpw>MJxDFgqFI{i~Qky~WxP6s<-=!YY`EE;Q$PW?PQ zb(-q~#hnNa^%Lc*Q(w0LEuQ-xv>q%4%(c%U!6 zdW<|<0B--y18b!XYA>6agvwW<8@qR~X!x9zbYy6> z;&r>n&=Z#VuwXffM1LCHU01SG_v{%Np&KN|NtL?wTv6?*+RKb@A12qtDHtl@q^Fme z+D+rUd;fcO_SVbYZ3t;|DzH9fCCB86EmU?OhS}zWSMa3`65O|NxTSP)9=6g>ev6E- zj?5aksm5t*U$2y`x~@^JJM-^ygD&y;Sprmj(z~HAC^C;KPTHcifHRww1-l0v$_tt1 zt1ro@)cyKT;ru3+W3D?CR6PrXOgBuU3`plbg9peDnLxklmmGM{<>Hgj@sy}t(VA7R zh(LEujLV#R3|ZUd#C)ukKuNG?9lsA63aL)4q>wp-JG*_F`mb)Z0g;rCf_tMNvlb~I z-4ssi`3Da~H*GhajvFgY;2)V@`pxd3blnL2WLFg!CZEr!XVk)e-wCbSCjS&n1A-*E zcEk30TT4$G^;Blm@&HFQf^U|NXjLFjc%KIC@AEb&f@DDUt5#O&>no*mEs5EG(XWSKW7buXvfHWk#?g<+JQsJgY0Jb09VFnE0sE6C3Dcsw`;A5 z+;9g=HabJ#Pu`6yc6wMHb7uq*iP}&L`XUph&Mqy(hS{A>nPJHqhFzm&RU)g%G|aDJ z2a7Q}9KSK|z?AkDqjG4bK8shl$z?^199xf+RROk>M0NV2^w{9ls8HwzHo5}^$&n;2 z+3b$q&XY*0n&}q?nEw(RJqd7p3Lk#IK?oRX;SNC|{wV=Sc_ijeYH6q7xhO^4_yDg9`pRVwK>2D$T|K8z-yc#eN zsg!7D$5}U23a<{-?jU#-o=UipontdsYo;1KF(6ce&Zfxu6p*mSf83Xj|p} zLc))t9|Nq;=fF<#amG7!i0;_#Plgy5;T~T70%427~xkXBt@Mp6~ur!goqZu z$J~p)k*3&Nb0%vi3igu5%Z+?h3usdctvMC|%@c^{$8)D=Q<0XyZ5M8Av!+qP4sw)y z%-zDG9^DvHGVH18UtA&d+Jk#nlCAExs1c~|v})^33DnH>_1d<kA^?%ADE-J&dW zh-^&pb2Hhe0EXu~q-Sh-+BZAaN|CYv^@QEB9?&O?|QGlh9_cgnWSEtB(65Zy5o?#9_RV!hSHTR5QaOgBfu(sm+Br$|$m!2krR z#hpwpo!P|2jv*a{x*Y9=x56LHhdAMD(}|sL4iN0^d;m5%T$x!ekR*8cGzfV6(8>PM zliBWoacNFO5$1Vw*FdjNlm@Mi2sqw^MpmyQw)yCnCn^ZS&>i>Ivd(6&!9P2NF-XoiAMnL9}Pm3@G z99O@^%PS+qG9aJgk>-0xrH%c`xAxj=*<~M_o=qXP4=GPoHQoFb#w^Fvj23VSI&CGJ zY2%LM47P8czr3(_3N#yigX`vdEFoT{R!RB51;1%gqZVs=@iW4>&esnsE3m)!d~5}Y zVQ$R6nbz<2{;`p8RS@5!Z&dHDrZH5z#ixf`wP>u(f@!i*Z|KTp=X82!EW#3JqtscN zL8Y3k9l9FkERni3GpUs8xd8dY0FhT&Wk25cRDKe)p)CG}n(#HBe-IlfNV%@uStfY8 zgsf$?7CELdGs`xK6MmeO_i$nMRkgg!?xdd-$l!qNWMc^t1)Zk!JB%ka1$+HRq6D*4 zZ@KEtek2OmF2xdUPYT)hGL=eGrU3)e3F}wrQS>>gDTSS^{wr*pi}`V@?1@ur+=!d! zpAngW*ERNnp!a*%pL}A7_;#eiU+PE~7SjQ`3PH0jGkkG1u*T8~AiK@!L=D-; zZD*5p8*U`0wmo@$)dEbdj8=e4<$CfWlSEwb=9r5^oT#$FcFi4w&wKO;F|NsD0VeSJ z;|`oD{O*vMt2Whu^)$xu|I~Xd%=>#1Z6GC&m^=+VFoad0>Yx`9_-pT`O+QM2%yqw_#eo}8PZN)2 zAft_)hXwi)r%o2v4%@RRb1qOqo&c5Nj`fS1^7I^d0q zj{@JNVUok{MhPtCpb!!IwtSW%4K$XhVQGhZ<52%*6ly*}YDfygPpa1uCuwYIxEbX@ zC9{p7gB_NHf-3!Rl0dVm+hsd>C;gk{C?|?FvBxt1+Eu~IV2{Jeu39)5z~CC)`O#ye z>Y6NIXzEuN%h)iRz8Y*`>q2rTI6y)%;}ycFVGOnqJL)Z1$3XNoGhBPkQPwpsA-z6j zQYOD0?ddkBy4*IAzRA;tUr{{MSFQG3lOt}UJ5!ifh}#`={nrR#AQ5~tQrQ>3O`l>##xy@g`BC~cNCFaENFpK5{TGrTvi1XGzT zsvPYaF`3spxvk6E>pms%8P3nb*6xU$>a*qyn&1{ZVy{xf9jFP6Q!d6Z@GR{*^)U9 z_q2GB*&Ag*)_kg%?;cE~weEbw76^#*$Ga>I_~MjH-4^UMkhKiRW%||zz6xj@4r>Ma zaYIGUs5#GS+W|Ca(W>jZ_KZw0^B#j9YrO4*%lO|qKM~^$7x4yoawg36Tj0OtkaIz@ z2xcBbkEw=4!(a$TS(W#q{N4L==VahJm(ygN^8Ha?zb3>8nStojGSYO>priJ{-GRtbnbq}%vp^vWGIKWq44|cb9Gj{4O zC~@jL@PBSSU3KDoVgEcJ-HH*giGHmU#@PL}aq9>}X3OlqaIdUE(rv==MBQBqCpl3W zG;7kVlNcF`FfH4hDu-E*j-$TYTD@`ST8?#Mb$FThl-)PgYI6-@PdhGGoa(oKum;=T zY7z2-Lr(8!gUw-P?OBE!cr^>OI}k~G#$p`a21~{1>P>w+YZ5#Z@Up0r>)m>v&ug5c3*npK3 zx|KC~ME?f3>XXgAZgOBS(KK*6kPs4m(vE-g4kdxYR`1o7eOF(UOJL#_U9h9z(Z2H*F_c_q1Srn4$zd2p!n(!OukS#0R$OhN_epv~S(YLfz(68b?VP|dr9!O#pD z_tzi5;XPDp$ymOX&ceq5rjBRgP#S`PIAO2dP_+W!Cc<#SDT;4{P(<6zWROtM>!pEC z!N1kZhnH>KK+&NG?jdG!hraErPC0p!VtX|=4H7g<-PK=JPrIBl}qf+JkrF1R+@#;hu z`$Z^J>x0W-^6@AQrb@ZOycI>%Cp+OVCxzfKatfV!w7Hot4kt2t#Wl*FriuAK43n?W zm%gb##-oljZpd_dx0;%bDIyKfFG5vuqD|YFew!z+k0-5O<}@B=A{y!HO5e^L}Z|)rcQZ1bMWXI&EHb<-fAU$cb0a^;Z3P>Qa-)?Lm=g z+W_nlopDdXV=(U=ua(~oSn#IQ^$R|Mp&?W)+lV; z4I2@AYH%2tK+Nbk4M-DP>I(Ir&fq5?E(FP{%b@9`onAlSr$5HQz6)T$vJ@pr%K#5H zm(CmhG^@7TbNZ{=YC*Bu%8)2MnETX6C7SLL0!4!|0Lon|FW;2u6&bRcU(b<5EevwV zoBW#s`$Os9HP}z@^ndT7Nio*yyh!g47$MG1^KNaZlsfBesuW+WN1z6{Wt4@uQsq!0X)`jmXkd zzJ-!=QUwJ+BS09&-nTJgU+&Huxp)`UCSL7dc;ZD)AeVXQD4oDFEE&I)mmzP?{iQ;* z2>-|uG4m-wKsb<@ulue=ETDN_M2UvY@Qm1|WpjBJk7 z+=xYlsDt+E!?z!7%<-c>_jm&rd?!=vGJ!$~XIOw#g62&4#EoBiJr#l6D>~oe*kvql zR=#0SJ8wWuU7V>PUIc+GLwMY(@X-sng_R#ip1#Y+Ji#)_+1T*fOBJ5sb{>!Q$=@{$ z#J+GJ2~B#uJv2|?t%w)cwC*sUEBD{LE0Oc8jWL9Olj=$bx0`MI1MMy0wX0MYeAtSD zE#g~dA)D{;QxDc37lK@Y=6`A7fXnL1ug-hdK-VemGhJg?6>T?OT{;JJj!mtXcjHp_*{)??lD}xR$~`p<<3HAlT0Y<=%LSbkFgTq zac?f|O-}!!a?&5_!ogye@Io)6lMF60TSc0A!+cIakn zt-)U5YJnc1(A^&OWvm{-c^bxK?$&nCCL*y`L8Ap}!;@&tre*q7wQGROZS`d>Xt8=F z?i%(@E^+rj7C!qqtwc=O&6tqUF6+;2Y+>w?^(M)!V1$Bie@zAE&H+9_PDjwTqB@b6&`a$RE7N|e#_2^IZP zfP+*2F;Y{+uIS{36LxH*yriuM-?X_v5Kl=V4a$5XYn)|(|IX-!x29SE8~E2WoE%;K zyJb!wn#Zp*!Rtu7yzRXwManc?iNPA;EMWm@kW=%Xt?xJj{VcK2S?QD>Jz9<0;`w64 ze=!qlexA8?z%i9*KciVE=ul_?w8^tFB4A7BUK*- z*Dvs-o(;Sy()Pt(r2oQJ}R8D z#st*wB*L0}iG_5*5p&YzQU4;1C_BJBoYo$_UtN+j+E&OT@|>cg<)H??w86f8Q2TcD zg%`fowz~f-r*}Zccc=OfU2;Zhb~ELV!D9E-*`!uu@K&;8TPF(?Q40)zb$0b&NfBM? znhK+tly}%-RQ=RvM;BmGJz8LD2Wt|Td9lSo%dw9D;F>Pz`zrzkAaLA%JNtHW()Gw)v&3)ShwD>yHgWcf8e zLgs0^>V{_RbZuz(UQnJ% z%(zb?accM=>V|o|oY>-HwKQroUfuSNs))&1`yqq>!sa9enoZNzlD8#aKA=4^{$t<* zF_u_9GMmgL;D%2{L~qu?lZbwhdORd2;-)2y_^MX7@Nt>aA@!`3NT#QvVi>u@3ub%E zE*L0J1H3!A%0<|8^-Xj6em7Kz_SjVmd0Bsxu*We5S|0M{b``Z}`;Q3v@Yh*G-*$V< zG|fM|n#XRJZ3M9@orw4%AJXK%BL{lCV#8j)TBNHdw~m^d_+!AV&8m%e+nndhyugMON?_y+v+yR!GY$1~b4Hu|p2^93P2B;x(jyQu(vpOYx(V;UoZ zo1D~L0Q^XVM7)|0V3-7IyE@hr6fD%(3jkM)7e9_nyiLedoQ@%-M4xQBDYD*D^vqDUjkMYa^8MwBiUQLy5!2LyWpjq`4|3an)^!^JQfmn{utO*c>%S4? z0TZsoNl@WZcT3~~*m7sOZYBUp4>g%5m8Vv!U$ z>v^F1he#n~rK|88)2%p0mC~#9-a?(G&rIRE=i@V`vy~~`!gtIm_r#2P)+sj67xFuC zExXfnD_QbTEg+kaSH6&w;c+arhi3ecCEYSvp%_^! z3zt>U9NSIOpCuU3@tpNee0$VkU|6XHTV%^GXHoK4j{K`^`Ko2pK5jxwMdxYc`h4S{?;(g4c4^eA`P9{qre;1aO*oe+#_Q*gDtOeX~ zmZ=zHzoXTJ88}(UKLP5@Y?fc36(oO}X9@gim{oRkmk&~zFL@9c4+bXc=NtnMh;n>| zcZ4GrX5X)@fNbl9?)1JPMQn4LN-m9$RGr4cy{>)VZKyyTQmQeIPAYFPauWX*c=R+GBPZ;=~&2{a> zfHaexOjxH|bN{>$%dgZbMe0YqOwt@CfXj*m;TW0+OoY3MM7 z>#4Al-!iQ?GVd;C2^gTSLQf!cpTFh?aR{&yk{w}7@{ktbCm@4$)pj9bkgig@V1X)O zFO#GIJtydOgE}{UV_vid^xNU0?BF3o5v(q7VFNC43oT_*(c1r$--?)GcO$__=-nxE z2GR1iPgqDH0P5@F5|I;*n;-Pt-vuO&6B(Or%sqEjoipMYQK=WUYI6o?kGrwm!^M2? zq9pW|Hxi(}*}?yWR2-A)6?pkKe0BwDHdCmVmO_>Fw$r&&+lEalSqgP??E@~bfzJ_e z?XsJiuUCQXi+|;9kWdSLmOEmikR8h+7e(bX3&54!=v9#`ddT^%bkJdzcNF}ZPu0wNh#n^jatwU zU%PqQPcr(H$d=cf&bZ(wq%b@9AaR_0U41=c1){xD&iI)Rh)88%oFb78-+I%UGm7+m z`EQsq;O^%s)K-@1?78+Mdi4QgB=8wBO=PrPD^C=hqpK3r0G}^l65zN+nm}bH@HBvM z@Z54#q_>YgIjGMnO6@HcrR)XnQBDx@=rZ#;!N7&?*Mnesz;K7dX7o*Y4ul!L+V59& z0+WN-r<~ZV!@vR6zJB1NW3KfNx(o4xkv^|1o=T ze|y=H+q5me(89nbz^Ia~w^-|^fl5ldTp*kBjBWoUz$Ddfu(rK7#|5rDP{-5kq-<&U>bR~I$MP&j>Ck`)f*ZN#BVQ~Ezbz<1 zCxfQw4y>{6-hA;J`?e$<`??;lNMWiTmK*OIe=@i(ZdDWivJ=to=@~(e06eR*kN2uv z|H%-ETE4HUR^fX3RT>C`L9N+`3Nql$;pR9YO(>%$XbmvqBcWT9jCn6A$o}bu2Y6#n zij?%pr#u*;QkQJpWhBHqLSNJuneNT?5LCHE?y?9YKW%j%W@S#uj&JxX2{MCvsvwQQ zTg-v36lN5-484Za0eMa!#Ml7z9{kuo)3U)2n*Tucga!8|owNQZ?4WZX3zNNH+H#zp zT?W!j@bRY^$y?jX*L&7RI{)a;1-V|d`Z_b11^x3L6`Znvd~;z((t`6Nd96d#Vc5Y% z_O%9z4{(DZd8U>hJ3x^|f60~_WMIx6&Mz&rZ!JtnUP{muakBk${IL>3BE*IhHbl2J zq(Q|i5Tp|<P@(JOw;-kRSvg0Ig0CS$m-Q2*r(=5FCZOM24z>)bYWl1GoZ%=-`DpvPQ&hgSq(yS;}680;Y#8;%)F~lW()S_hd&Ok;vn=2u?_pA9|+gbXd#M%110n#^gp2DWYnWACw;;( zv|Cb|c$ATrYRp!O_u1<^gf+Gj$Bj+zHHff9bZg7Xg>vn6RCV`%9ruWSr8Qf{(nSpF z@&WhF@*|Mh#WlyDr%Hdf{^&-xA%M?U({*vfxf0E;mT`cML(+2I!yN(__i$gqiAOwgs;ow4nJ6+nTd^{jYLA7GLD z4h%gDP|})Oe8|?}f+}l_*@5$TalllV$AS6AH!|eVD}BcWNlw$&0J?c0P-J29=)$&U z)I4A+Qwf$yLw}9?&|ll%GwfHPMDe}<{_ke3>c4>jdOBw|mc06SqEgm%6b+3F)EkS? zEDdRadK05k?rf2|_a^pAew5DIcDQ`;^W=M;!_7@B{Eq zA`X48k-j&UPoX;?Y-^~!xbs^E^k~?&8{D8okO|7BuXUz;&kp=z!cWR>t<+-E6pXXf zT4X_uDFQ3W)3pr%q~`RUz?u9BiI7r^^I;=sKMJ@o%Zw0$=5Sw}V6zJJRf?X4uQ zixm?iUIbJ7bYEb>f(6s9D85ibPL#oH8gS4)c43s83^eBe>@v(OF>&u81nf~zmI@GYVt*`5b-@@hYIbG<7*rkpHV_KoA_fdq>!)izO$^&| zq8v4U@#2w2MK~ws2zpnvc1IHj*Y16pe4tDUSuoNV!v^!#cPD^M)VPLrnk@^ym`SdIXX}H zwTG(3%MXpyjA<%625F{5;o8gBVAUVz-$kw}T{zYFpj8CxH0sYca$h*BX94?N>>}6Z zO=^cgc_%9t=Yk>Fpn;@7YstOE$p&TfV-0k4*G7Gp&E=iH-v_phH%b&+4hwE9h7qk(fV?U7U4sS z(lmSyd(7)6wth{_6rd;Espt>eRsVCM0~JBL#?|?C0^Z?bk!w;Qq+wG2Hf+xIPZAKq z2V@0X`jz#8TbxCgW|1Sb&nA?5;3GDw4Ai%D;3mvkwt=iXq8yg03NTPVHvJVb9o(Dz zmg7!HLT_%MacwzLb7u^M+d}>`|JxEMf&xsLSW-!-`BeXcEW1bcXnQzKTwv?)m5C~0 zU|SO@vQ#In;jBJFKRH(X6G@;Jfpj*SiNr+s9gA+jezp4W&)_}KHf7eas6HB%TT=9) z1R%$+N{MC>E9BOy6&HAV&n5hQ%VIr^<4)WOE@iHCg?CN8&cyV03y)-3b)@Q@`PHm8b<%Yu z*HYyB+uHV7#g7_3Ww6pulOshGEsdWK_il^#IG=fYb#jAJOtqkJ9DAu>2bqNv)b3zV zXN7)jpR#5A1o>=e@!e4&#`>=a#N-&=J@U_SfYb17!z0mN!@fw2_E@6#PY9L`3J-U_ z>R}6Zb)(aJRXlV48lG(*44>FuCB%a_uKB2Zm5mS|ZFg6TF)s0Y;>$KNJcAS8%B41u zhIY)WYMYJFqM`U#(4gVN;KXmzx70Y*OnpuhES5bLa}3sW-|($wF2|pEq#NMQ*O?iE zv{IMTG=Cp3n9TVzC^#P-rpIMq2UZFDWNvuo`g@I6K9TgW=6=tlRJP=K;75tKDK#&; z@;-A>RE)jPm0n4Mc-&jK2mpvvVqrMkFa!}1QAq2BJ18R#xngT$aRU;!7%p0GW`5To zcIwp}x;R7;ycOX%MzC=5lE2xf>%2^HH57*=om&uhATbE?_g?VJ25-4T@Rou;)m**H zd67-v(XFA?-Qtvm?%U>M5j$(>P5}?&!~cu4xBiN{Z^L$hp&OBs8p5DO zq-zimlv27oq@^2%PzI0?ln#}KAqJ#V7#JGq2I-igyZ7MzynF3m_Vcdw+{=Ff=X+h} zb)3gXvPwpxab{}eSPgWv)OIo7he-}|cEh6|i#Kjzc2qE_Cj6Tl zS?5NgUt5jfy9+i%sc++F;i>a1Jq`x#>kyOMvSNR2!f-bBg69q9QT$ek9gVGpWkkd6* z`<4oVn=bM;sRk>|w$gdv%$oRxpPtua@~#OS?y!?S+#A~y6X2fJIzPs1FEXcD*O#n& zf89FG_!4)4;r7Eftl5GBPw1%AVI5te|Kcv;n-%lRq=yh%pjP6#sdnCX?_4?ZHsz~& zmibrV(?Yef(z~H~2&1?5^!h-Qw0MjEQ#-fMVb(<+2%QZUw>&4h5M0$?_z6LCY<2NJ z%Q2vbMblml5w)vA0Y#WHv*ybMGP+YD`PHmVJ!7w1ATT@?u>VxF0y%D2|I3rq=*f`+-Aw$Sh zDXo?UEXeY5wh0czq>Iz-kX+&MX1OV`CHkEH?p7W&?LcZforj%lH}!_fbh4fK5RiIVi2T@MgG;kP#`lAFz}~ID|GSP10xRcDn!&`2J01FT|;Fm3AscX zR1Dro|7-`V&3ILY2{bvb@Ua;*AoN=IZHTv*xjNa`SK`5_>$|hu(sAN;RMG}MxQmn~ zwmmrdgC|y7^^<2!*p@jc=D5HtPn=JkhmN~m-op)et^RjWuQ87DqnVO?;io!=PBGeI zxP8WVxKS@y@1LEw6*zLVJ48i$jOt)cCB`cBKZ$y7*l7T?68JHY0<>yx5a*PMrxUU4 zSo8r-!J1iFX9?H=)mbTKi+D>6iIm}B@4ISrz7JSY>hR_LS+R4AGr9kFNy`*_dbzBN zNA5JhH!_t+5JGg}i)KJWKzh^w+#7WIoaE$ZO;zw6uIyS4okBI&JIc?2z|r!bm{k8;TXO+;t=Lq z)oEOMs(c4^W=4*3))?PPkv6PwOkS)>8|r^m%I>lGKFW-zQ};-E_Ht!YpR{aiq}cF~ znYXH^U->-uoGi)sy1EPX#-SItKPYkHV*Mej=k)~iqo$D0TY)k{7_u<}z5$3k&{6L# zNd*0^rN}z42vk7jHz6i}Rb><{FF)}-_&A~0>N>9uY#c19(b~Z{;PBk73qGq0iOP?A zQ*QUS;2(EaC+2kouzSr6pV7j9>db{|`^%zyraG5gO&OPx5JM`AZ_0l1zd}r~l1h!r zlh2T>kkY$#94dFc_Hp4oR_;*!EF9N&-?go_Sb#Hk zHL9OjODs_w0KLG?A3d)WfCp1-@PZ!!F@8Eg)S@krx>}FIths@LTqvhu4eu#;ItS)c zVS}G^-U@iMq9;#L_|%2MPnR913VB-Hr`H>{uYBTq+UmJL4;~{g0P2W2nuSy+z~-Bi zwgJ5EOYPl{>)f~mGy3oJiQ?Y*ldlVj;hUeIM@@9qiv`!Vpn^d6fs`0>l&Ud7wMasI zHfE#D`8nD!>QWf9KN9rE)oGSnkOF_2SFoQq7Ax>>l@Q_!Ra*g+2Vj_a${~i<_>t(N;1xlOa&@*RzZ%w$+V>i@b@~QtB zXiXSyWJsu$`MLzb?K8s6+pmA?MOw46TdbDrTKVS2SwJ2A@e2t)4qAWuHq&$UeF;-T z;Hwfe2}-4$eAH5VT$0qDs;We9I-=Fr5hlBuC5V@5LYoB)RG zJN{mRo_)$Zr@@mCOVE)XK7QNQkXkLXu}pqG?>hK?f0|>3uVCB@y$NO@v%ek&&Ozoj zXHH@A*Mkd>Wj(e9^c_9zYy3^!Lgza;SE6}hKE|uNF7eJXn#XooE@LW)#JCsW>Ga!M zV)yRysnLQ(@ae(f0fzZ;@XatyB4p67FSJ>59CwMTexo%n2{hiLN((88YBnNd5*F{4 zqmy<<%i@sB#BuW@!wlwMzy%QNon1@9PryRA_bu3_naa*~iFEkN@9yjZM5fhUBJ{L( z6K*0D$9hk$y5zoMhq&KET}6=ZV_-?w1b)u^Fk6fh3}|IQY|8_P@YjxB>G~!a?&$&O zPG4u%E}jMOKXa;)VkPfwYwHABE7TgE;s3Zq(U>xuPvqeARm=nXOmV0~$;TW%za_-# ze6L$pXaWPELHQz{Ip)d95I78I=)+Z+F?sJ`<-Wu3x-K|ra{7Ulk5-&d+ua+zQ<=HwsK3_YW%AyEGH0E(! zApPL#UOe@EN8!;NERKYj1v-BWnEl^1AI`fg=!F-flcW8QhhX8gf@YSu1hJxvrSVzp zd*DBDuL?ic!&4EgSV{8^xt8@T{Ssu|XWM96BU4Os}!^-w^_S=eBXjaZTNR6n1e}l5$Y>Y zNstiAooLt&0QX4Bi8|vXzdJb;c!Kh(U%q*XqGw%J2hLeHNz?F?D`s;NeHBh@ZKOM0 zbo@^6lw-od@sS*WEkTcpmP`*tmE7HCb>2D93aq3f9l_uzTV1Lp?FL#^)<#`~j&{te z`;ma%;oE0|h$9edRsgHnqMbQ~qPsyx=7U>uICsEW0AT+P|#5< zYz=6xRe_IT7J@_M2}BKfplA_D;M0EImLnq!EcC|v<#R)@vq;&t`iRb(p5c~ffZRLd zlK30!Ml^GYzC+4HNc0>213O86JA*-^?*EHlp}Bt;6nGT6u$v!ho`|1x0L`*xb?(u~ z(qB!ze6JFOUheq>w6n0x(Z+=-RZVS_pdq6* zO{+Ce8Pu@+nrL7vDb#F>!QQ-CQgBlTDiu6@KN~>Mm0QAyJNOXP=9(I75|!+w-x&(h-8d@8 zst_0FS==)KR?I6^f@`5!=dcGZ6WVCP6u$+pbLLr0%nkO0emDa4IwK`OXDAon^FLvzh1B=mCwcj>Fnr} z7f+mc`@?Z(@&qTk{^yLJ5PruPM8hD~(0hkt{^Sj%1vY#)7%N|<4p!VEKrvnB-5^gR zy3`>ToVe(+w<)$D?FUD*@#e&q5u~^4jr<_%W6o5E=mk8$ScVyW868v%vv>fhhOy%&}l2~7Y7PDE$$0+z=9(p8u+Zb@+r zIh5AeD1d?v*)7F(4^uMu59*H+UyBfKb7LV{3mWXjjm-nuMt*wy{ioUy zca6dvcs;Fg_ohhm3CBF^^ZQhw?k}m27!les`yJggr^$F4|NGZZqk8Pqq80p;Hrdf- zqir1N>idsM#Wx{($GQ*IzK`c?PJOhq>w8MgP3SM-7T;wFqWE?Ob)U4X z_NYk0(ID1f7W%~`?e>hYns~qS`1UF2v;NmX)xvo%yX@$bTcO)U>-_fu8qM#H=;~!? zV8y-V70IFyBYSNXJzMmogscdiJYM)j&Pr$&jEPV5iarmpc#aHA8N%$!|JME^P7p*0 zbz-1x$72=$^a?buty(v-O=Lbn;ITcz1}k3&_`W`?0UKtGLOTNCoQa(EzAT=CDFWY=ILUn~8C^fE)<}X@YGs57TZ}_w zK)+Z#KUQS84!w7Aj5zPU3s5E$F5~_3 z5jOrm5?w&Z&naOWe*xTJJ5!6nn-TDBYfjp2_T?LND?r_DYqV|xb=(?t3^6>lWZaux zuPwfP8h&puj5M0T6Xas-Csd~N-|al>|IN-5`a08(VJ^&jf2g+)nfSwpG>NoCEvd&Q z_lnHPML<39RsQ($IG^qKMV>T6r%R!(-UJi%6##&8gRpN2zP2Iy#;F5BG7y zmW89?CaUw)EdEDDw%SgM-5Z6wLQ-Vyo&Jp#55J<|VNmjqb24Gs4^0eeyIiTaUHjmt zAKQJk7JZZ^%~-*cR5b^)!h*mnzv6~@r_jk7P5-) zZH)K$ju}sNECDaW?h>FwtE1aUDSx%(m(O{T0$w@R&fm@{sFYxIIJb6k|;SvDSRjPdAgZTf0<8aA-|ZzP0M=Psxi)V7$y9 zLIoU>hG@?FzeuDHaNmO=1Mz5>(%bH_}4Nx^dC^xgFA|Cze!&^5B4*ivBPa_(f2 zsl8kk2PB6}_&Jdt#*hCTiGQGt&FE?_*^98=OD{IiB)UU#MiBulZ$@Bo?}c^>D`i#D zp1sd;*RK=&;^bAsVPrtu7;C{ueN;=_xG%ZG^|kZGt2phnlS1P++=v5n&47*bz<+^! zXl9zPq|UvsZCg~6bfTJ-gbv(F|Dmekjk*?W<=#0q87?}We7Im7P{|}Jbgd=;bP^&A z*JD86J&KrmYwvS~TivbpO+984d?F_$(96;>2)$q_I}bM~*nr{V9dbZW(7JW(u~Z=d z;?yAH8NG<~@ZNIGw*;E>%&YheQS2*G2WgtpOu6~Bt9k)lC4fuCj+Z>`*F+@p%xg7r zsEb)&gH=*s)`3vXQxxHf1TH1!-K2l?+#RSdTnS7PX5`szHP!^qx!>mX$}~pz8e=OB ze-K&LjIEPYOMxa)@3>L#sD|4E}2I0%!fhtYe;g9T zX&#P&c*&zY%Z}NXSZ>C5M%e(<$=`Mh?53R}#zfEcv6PekPTRnKy;(o~ zY1g%NLpU+}ZwdFrwcNMJ7AjBTuo zy;`qgZQ^vk(HJSQIzL&17}*WfoH{!`6}Jjdv|D=)G{LzO(Ce5^B+cP_o9WJJeL+L4 zoc9LbO%@8H5h0GLOd)E>irnj|(dfuX)Cdx|AUgUj82 zqQ~Y?yoq`5kID1$tLv88 z7vR$BO^)H@plgZ=;f5HSpSwQr?LaX%hd(LK#jb%Nl5NN-hq(WUQh<6bD~y>~ilZMb zMQNOIV2u%a#{j`M^_v7<_IEG@Um++!@VaPH-z67PqXk)iSQlN=g+-I^n`PaDV52std2aJDz0{ zfS432R*2a@tm4xHYbJ>#Xcd(=AzNTt`d_#(f#qAW zelIl5pYWs${_9~Ep^KJiTR*K%WHIl$NsXmfxDl_Nwtj5Dp7!QYS{0%^ZDFrsx|ZJrOjSzAfDUfImO$^Ja&PZkBx`moX&y zxp(K)@QrS`^G>`d9`aMQxgb2L9vOg#?PE?NX;BR-#587P%PyO=XcF1JE`1Lr<**@k zX*!vSNA(Hn@_iL?Ob-zpI=oQ4@-Y$5H?r!~n7tj+oCm=3r+IojnMp0SgPtsetMr$u zc~5p>+b4_@QHn2KE|p597Jo#R3KRQtm!EiuP5vS@$;$fe{fSE(8LS;m2vd!vh}9ch z(w)7K6NW=ITLk#0bi)HyW|jh5!X4vDssEfyCvQ%((jp7uy{19 z@s^_3`XJ(toRYk@U<`&sec0Q1tPfs$ygx|1jykNb#Hq|YcH-1Lm z5*f#Oh)) zd>ldfn9ApF*L9+1t(I!XH(&ZO-1O%1JmzIgNd*hVuAVR@TZuK8pGsg_AF&N#Icu1v zE*KrXv6WP09=JdG5rwxoPNBvtmx;3(rt*kN%LmwfSvV&zj>9evT~nd-$Bj4-7#;*+ zFC9H8k`@}HYEQF5E}z`%`{&3tntYt``P)KhcV+T_@VrM zci@L{@=^lqnZT`!ueka*>|6P2rypvEV%}6dGI^QL^I_P&T8Q$;@i%vQ1QiE$L~HTP zGugsN^xh>jBD)oS|JTw?-|Q)|2qc}~t{mlD0zIv~c6 z3TR3+HInp?H4z)9ijK#6p_hIzznLGBONOE zjZ<|76S)S=N&=L}%>KSz<)&^?J?mtN8Jk|PZ*rj;cORjy+*=QHOdp%ogojVNtWS)y zG+!0?#T_g@ETuOx7izF@9CGdyRDq_=mMT11UMOpv6wnJ-$!|`T!rezIyk3swcOWTd zkai##-`?V2WQB>HY99u*nvdT#k1UM*F586Q$*JU*j>vrpJNUxA_)GJQCcjo90eA`5 zx)V;7+-y&}@z@&s_$AhaO9ISORY@`yap>`R%+8h%Ui#JKl(#v0(#imqx6THoMv4z8 zaF=vl9dwb`n0Pu?R0L5+nXt}?mXNp9?+VXlV#}>GmpT%dvj(|R0tDbwOZH2ZCfULM z6_X7sZy1)6TJ$zfUx5xR=lsDdVdo1QH8hGRjUNcOb}@YB{YKWQ&+3j2A_PM406u?w zb}WlCLGg2$M!zco_n2);3*#dv1!oVmK3Af@8tii(;D+cza?-zsX^v^A}2RB<8Ol=w^0G)*ygAhF1)=xuQ`jzq|w5tu_ zk4XH%lU4*=Ei0i%d*eD9OEaOP@7q;tfIM+RPF|;)aw3W$016D6P|Ke)9m_?Yz`(NA z)#{e}@W;gZ1$53hZ%g#u@*7IXYc8A<`rc!G-XUs=2Ls6oA2~SOaAJfd4!^={5X6&N z8nbYg9s_?{jW^!$BgJZ2f#}S99dDg@U+dy#FZ9J1hd%321r2y|OxEWLe~D=_KJD_L z_`*j(wu`2h9Od%a5UtD;VP+!EDEx)QeekCo0oJ z#Yfj7Ue8j3; zu+_)7Edz1P)wJ?Aa;IzNU+q*vzkFsS)Am788=}kYL&4cFlfS~?&meiAQwF~%cG45kV-GXYs0j~K*|$( zlklr-5ad3{S!_B8n&x+ zEJm!p95 z>xDoI;up_4~YcgK*1B9J8HgIijW68{?@ZPi@?W5c3;B; zuOs#}bCUbX(eTvsU*2|jQ1NJAPS|eHyT@~ZO!gIOC_ACmtyB1OTl8hMcAw~ZK&YfWi$${L!pFSi6e}BaXCz_crVHzp z-&#pr)-F#&r7j>53v7}tWU}1FQxe~dh$MC&gl@dTb%?A9KnNSpm8U*PFS6@fn%I~W zhop>UhcdOQ!b`gS;Dh8z%`cg2wT6jdT(b6Fze;fnwL*WL3X$Tf2Z{&w^GgCP7xQ?6 zA)@Lgl@Ho^L2zN3*-%bkTZrEhueYRk9Y4_^>&>2i({Y9{VHd(Lbwqj(?5~I_bG*b+ z+{ta?V{0UD821BT?~NVuT%3m_%QF$(gi&iVCed6RvqO_2u2-?n|K#IfK2!yJfdZT zq2rDz^+Yb?nKegmA8ZLV?7H{9_g_es?NkY}#-zKjl(%)|h%4=#4(d)N_$1NM=Px03 z*)zA_D$(^*NO=KUd854kAaNvk-&jINb{d;D>Y-Vg*9~^w?Z?bgJx3W%6>m3f9~?!> z>~QFoH(^ei|8b3SH`eAKVSrSf&hW z^iDf1Q40h*SzTnW&Z+=i3AcdTp9$LdVuhVA46)lNk$$2ndLe%lx^J!`(|~)@+X7#` zXwKp*LY++HTA5F(t!9diTZOw99FKk2zD#>1zoQN$@P^s2DX*#G&et7!UeF`{&8EPf zPba{c3!!46Vj&i{&v~@1Z_K;Y_qE^%U2;l5F)<7qeDDY#VYML`|C)9Z@CI?={^Mk* zU$+dUN#)-vHom7QPYHcH-LHnS)F}QX?5b~8l`d#XBCcd5zag;P{YF|m*U2>LoBmab ziGid|%Gfh#fC3dUvLjE|NTH*0(n~kP*^RhZX=Fx-LibwP-nr#h{rsrRF6H>x%~%GW zkoQ7q$VOzY_f?hDdUZvmHg$`xY@%3r+{58J6NTL=DaSt z3{2oCEJXzOowZuodx_=>nLci20uJSVO z+$S@xVEpFo&rbIM9Fp_)XA#eU51+197vshKfa$B*lV=@BH?O5#VEMEl+P2ZBL}68> zo}Vt4eDy8Y(~M=e8VmS-BhDZu=Is&>2I(YL`Wws@&)W>ThP|sYDW>!rroqFdSy8wT zMVx>yv%bGvqmr93bIT3OS3ywq&n(yPyVyY9GVMfX1hVlgGGRam zE~*iA9f7xh`R&$fqhk0Rg!>p*Q8pa#wl|I3EHwFewLN&;{xFyWqFR4~Vt?u~j=NeT zj_GEe``Ral|0$CG>k6|2=BIAm?AH@Dt?m;LDZTHQ!wmal)z=IlUv07Kp&!a|yopC* z%mG9>+deaw{%Iuf^logG(f%Ow;>3mZV?uJB(r2~aHMsEbtP^0Wql^SMVt0Anm0Xh6 z{ZMj>^v4a$skP7yURylL!)3hn;PTv=sq?|+(ALxI<5$ejK;_>K|A^a{Vn~0RIm5UC zJSlm1Gn6N*^hCvvB7r^~D>w0R#puqxKaA$k0~6A)c!P;keR=JFld&{hT@SeEfJeQ* zPLWN%8(7b|)Qgq}skF zciUpsipOP@8k3~+Q3xP;l6uQf->^uL<}~-kG)0W6*l+THSP~kbT@z^gVJ1lDX}+F4 zl!iXqsAEYd|E@y=|_# zowAA0pA+>OrLnx5|~drc*UuoAPBm{m1e^MY=*PB6o`a)Kt7rNRD&`&YGTw#; zU$xp$Xt5DkBFn=nN;p%YQzKNs8M8~$*oli0UIRBOd4?qmhWG21OwZwVQK3PU6K9Nj z)eib&@9crWoB{0*?K8+(e=H3H~Q1{%t$ZXC83XARelt4xlxS7Ny{Gm zb)uJZstQ1jH7zl;6OlB~ZSlRyX!iB_)>1D|aN#PI;uSq0;nuVE)u6iRPFY1DGaJSu z|DlghW|~^Pvn1oJP65evhvB$64uF@}k&pEnuyW#^0kS_DLB3PfQ^DB_GF!gVYBPgO zIjPkM;WR_+S56*@LFV}j0cdyGINj|q5BQ0*vn`UZ)kv91aJ;X20 z^DTCfo;pI(Z-(E8I<5(cI|i?7ypg!%Z@xve9)6{lsru{kK5sT+02}k`H z3C!MhJGS(cqCtwJ>8hI&R;(>8;P5amQb!>Yo&}pe6b^rk$rAD1!v>ed6GxMj(gZXc zpDf`YKmvJJDg>E)FWP(e$GN=3$DW(-z&^N1p@#EjX0trfAdill6 zo5XUbtNdHPcY4CX{3V?Z7TwSs?^+I7+>Q`4rP97wK|vMiNfGwPtSgT^1&pUDF&%Qf z_{qsKJC98maI9~uh0U@BgJH}|U#2-Ik{1DkQ~pX=n}a&1sh(d#p0~f#?}#&u+o3i% zDo@8%UvAT;VoMEOIZW=Ubfb+kbk>*1c2tN{p8q15?@A5Hjp$3{bS6jS_A!VF5WtPD zYfd-)Xyqb|jRu(`@P_QZmf5M0$arhf_Ay`Kgb|fQAwGKH$?U}$*^h()_ud6bb3-xC z#K$*iFFLS-&K=6w9;?0B3_l5d79K8ZdzP>iAJGuJ&g#C6It}?Z>jKf4ravYBreC&& zK{G4qmACHba%MFvj{d~;cQtSBarC0Pl~(?-u=Aam#oVog7ekcJ-Sf(ctY}$~*cHo- z!)>9MjR}Uhh5YpR`xOv$Dq5{Gy7R&32kG-P$W)kC6@;%!SXL=yl8&>-J}cj^;xdha zMyDfBv+Tap>?e=@L*C37-OG0+%|n>T*@WyX8?&Z)W9KPOYD8P-ZYBZR3SZqn)1(Zy zqYyDYWsrzv9gBO*2Gg$b{T6$9&C>VI>4WZ>MT75ayy~ggU#bfMp1Ne>(AtlP+iO#a zAhMV6>bwN(okSs;L z?>{(6>Vpxw&rfIJsq0IP7w8b1PYC%{Eoy_LzRt$#C@|doezyTuA^;uC(;8}*y+qm3 zSXEdP#wGP%P@&(G>i=Ckr;EOc4<)0lB&6Y++Uh0O{=gc)=_}$F4$VK7JPbss6gO@n zM`g}ISUj=mDaX`Zu*a1BJXK&+_aqbQLZZP}&hSJhLj`q3Pjm5B-v~s=N+iWd(2=DarB^b8(&iNhS4ysowuo44N<|G)D zY>ba%=R~W8H~U^wvYWLVnlQxzBKE0&Rs8A%@^;q=1ZIjt0(zZGxRtS827ysB-IOx- zuisf8Lm9}UALJBQ4Pb=ji!q**jbWHASoD{kPzV2c<%q21gia5}c)D-lUOCb?NP1IX z=IRLY##~rI?nVWUI^jX z*)sIxDJ(027*DqGb`qNq%5R!dFj&C^s-U^-~? zpz;jWow=Ai^QqvN0FO#|CiZ-=N)nc66>~ZijI!0$;ZeRn@#mx+;h*e5TI@VTw-lz! zUZo;ZUME9%Jef-wKIP8IU|Z=&p`BIJF0o&0ZxbeTYL;TFA;%pkzcn-3Crmw( z#;oDAW_>hH3mUQ`5vsCtW6`E_K?a}Pd}Gv=jWl1{h7~D%MHr)>mpLds{vMHSbRT97!lYsdv*mBi-l9J}%wZ2Ia^Ki18wp$@_gA0=Egs zWl+IM5)zrifcn6G1E6O{<2zsM{mqfC`R-Sc6r2!1)*MCn0=;zR&pe*E3Bd5Kf-Z&+ zf3CsjgI91~yv?TEYEWji+q3O9p~SP{2r@(E9Yqz3sgj43h1S{V6hOJ0EGhW_Xn%i{EnFc-M5ZdR}oqYR;W zQwK;QC-d-{J;;hgjFqhH#NeEr=f#TI6aNOh^z}CuZ`W>ZOr8@tE1-Xx#MUTOe}uEv zTEnz2ht(Gu^UMCI2TWI8tJHh_8d%b3z;AZV8kbk47=3dedpN_HzU6p>czDx-`=$IS zIH$VJqLn=;PEJkV(c70^vCr?($%HY!`J*?cd49xjdRE_QUVQAgx$5<&mwdq2ob~Rx zXM&LDk3R0q_W%}Qk~9`%mZ5*_FOO3NPC{FA``0b{6|hjNcU)y%KYxOh{`X;>)DXb%~TAASZcBFoAQ=*-g&?~sn_s2{m>l@^5d&+Zf~dD>mfRCQI! zp~Uppf6YW_aa^_<;JP4319}T<-N8MF{3O zt*`QcI5SJ;RzIAnQw!CvwGsityzOIx(Eb0tHR!XYPl}O$KAf>b8DM!UBIXl>C(Lp2 z$wT#yEf^frP_vml`ncG}x@pe%>WVxP7+8zM?>S#0O-?1zMu*NF8tlXKx3u1f2zF( z5#=tXt!M6^&DfJxf1^w59Y{dy3RD6*!wX1W!6}JhdX2rd!qvUD($ESO&>8v(Y*n7# zbJ6TGHx&zbHosrbqqs2RbuDI3tvEI_N$pQv`Ey{~a0u^r;vZd%e!2 zn2utKdO3%KHe)*(J#fZ#sgD?$B$Ea?m?l|0@WYTh*Qw?bMN=D#AH63_-jg?bYFVfb zU@fBdc-N&r;r<#?$)4b1#*xXd-#hzm-Fo`eMKZ;i^h$`T0n6DyW)o4o3G2rSUiTQs z(1&B}&W9*36g&M36zaLf#AsHx0)?=)liN++sRC zmia>^o6Q)Xokq;zLrYq4o|m*yd+{+v#XVqNg8P_W5FGDVP8>cQiPb3C%)L1sP@G)*LGa);fdXP zFR3pUH0l72kx|QHDfQ2ywW(%uIlN4SM?~)*rv_x$xXW-u^=KAun|a1vEPBUT)&kOO z3-TryU|hX+9rJJCB@>Ub1k@~=uJ|1V%+1E&`^=?_#|4J*ffI}_P*-^JTb+F|twvIq zVaz3uaM7022ZYRgMktZD@$h6G8N(nZ1!AYP79zsw%J}E|G&KbHu%)w$2xcD^h?+hI zNlAW^nqqV*+}rs1lj@5;4_jti$hW5mi-mPhX)=oF(TNeK2qzxWwNyT_ADq(LR{JzDCa09OJ3o%*^Jr zNa*vLX_*;0oSb|g_JPOub4Zt;rw8hX{A|Y<@%X+g6F;2y{-SsSs8=nijQrygS5WAG zefESB&fnANcSr`FygF;ps-X{l()rC-<C6yABvl+Qp_+Yt|~-6 zD;<2trQO?RchmFIk8iwMCCyQRyU^(T;xaW_H$P~~#*GO1quDCf*fawaxW;ZKc(mg; zNsNs5m>D>M*H^nthY09qga;}0n=b_YzS`4;KB_7z+clM}T05kg-Hpv2d(2yJLDJQ& z`n==f;Pr?+mW0Vro6Mj;>|${KOLC~k^3U7|2-kvmKWcJ@)}?rLCdz2C?^Q(EU*FQ1)(Kc~n#Tip&nu8cYI1rwW4K!E!jc1v^Sh z+JN_>&zJSO%nvpYqrV~_K${%)KraHxd+nTuPhmrn?BGQKvrjRqT7Ch%+WbELx*HU^ zBA`lWp!Mn94jR|z;X9fmV=s%@9tb_l<$6_NjLptv4SO{#2Hz+}S69E4#`+l=2{G*R zh_;ILAz9)KN|y2nvVflbsZypQ7!mGvc?Tzt%_k<9D>3%>zgZ9~I}uoVfhYQ-&H~HO zdumQ?5Q0x&*CPT@LEGb%^$gp5e64k|K_mDRk&@_Bz+l7fmp-cLXs|oo_}5ob*nK*Z zy>G(1TUSzQ^!-~2ll}V7Bk(912CA}{;}dZEstX`E`GFV~`%p*we0|gBC(RYm0gS?e zEG^J4M@G=kO0|);@G0O*Zi(pUNzyQ>F^@nG51=Ng_+*}% z6uz(2_D}a!`#&w5!ZXq}g60$BHh9hrp#L=A-q>9NBPRmb_FTu+l2cG}|Lb;u#w=Qz z1suYYkJ>NZ%~t9`xXLCDiKpBPPeeW|2}22@6OB@$1!qk4!Ii9EFDj#_GYKF{(s;ZN zCK!WaZW*k(A*c^QL4EXC*Y5+qXy1l$8YUSF@V-WDT`x8cyoPFM8lBphj`+`?$gv)&PH0x{5D-Ebw z3E8Ccubv6NmPt|`lR1(nG#fF*3*)&I`wr!1 zCG7cXs%(uMFfpmE)=F8v5Qk>tHa*(_tQ-zfmo$>+OCh#qy*(IV_P9ePU|pT+_8S8| zGI%M-x$`X%taqwu#77BuZ%~Qv69wQr-}jLL+x%Cd{p-{=SyU?Hg7_l9Jn5FS_XT{I zY?sMl2SS_T|8=SQp|I-xA>UZ8L{kA1(B$~ zmWcb{<*;_iVog_EXtK`^Ix-m-)nx6oD^)+hha(GoFMHmlCAD6GRXN082cJ(uHm@vs zo)X}_PTPdyt<|34!rHgy4}aSCYnkSijrqCm-g~;us!vaK4A=~xBkj=933-0@%JgzI z3M6(qx8khLC^Ow`gcc_)$;8*|b(A4IOM|M{$0M}lc#((})Bv7~+T$_g zcqqu-Z7-xqpc?q>(9?U_l`8D5*W*|EO?cmX!ZMv+rvUfn78J!t>CQ}Ow46v(aRW!% zmz%dG2y=yn3X>SSv5i;5DOhj}z%_FBvwX*~Upoas94NK_=l=!hccV?N-``y12%C4( z==3A}C`>|*xSz3-M|mFAI@ugLi414$EYq#Y!nP=zTPI2Qs3w#x}08)D1g?4Jdm) z=oUiy=((5)+(65CGHlIPLp*Mcz7wXs2v}W7aV16C-EIv4V5RYEJmL^Rc9mE1G|0~g zF8@cSlB2He;d8nOQn8>0-2I}y{7o;RF|oXS-lw(AvW?Qyl*RV7`=1JRFYR8pR3i?J zOB1AF7{~%+#@%sqkH*~=0+*srKC9UPA~^TkkrDcrl`268qdsqS?^2nHm$UVUB%FH} z0Rduig0!cXT8_|faB7&6O^S`M|FzOCnAwY$)l;RVCjbAL%*Rc4s=d~K>_}fy_3V84 zae>`7^N*-KD4nQhlX8pA(ErWd+!Lpb6q=fwe{KEOR@(aWGz^}D`zlIF5T9jt01@5fq)r*$=4~4&!Zj_IHXH=l@!Z*G>NH(ht@Kl zJo5AR^qH@le*ARQoqUr|;og=E_BjSjg_n1&x^hz9L8Ksm{_+!oE_bun-ajkYcp-hq zt=-4-9dCTuys$7oS0IP4CA&YL(f&`;R4*T)DbpO6b%v=;nPpoVv$s@o%Db3)ul2RX i4`OG_$n7wlL1^&waCdii4bI^1?gV#t4-UaSxD2krZGaF0gS!sy?k)rS?%wU!zoDP5 z>QhA?hw$nD4cytAj~dR*68jrf2`tQ)5(+Ac7zzq1Ij%rNs-lt~dlZB?@(OU`?lSI^ z0*86gdEu5yl>}mHTCgYxS%<=hYl4?mhF+JZm(ZR}jyP+7Z`G;lo`8m_`V*qTG5a?h zdmJe#DWO=onAlkF3&?wxZC2APE}2=$xyY)jH%1CZii-lb#k0c$T3+IoOcGAudkM0m5hW6b*-fB+p_ug+y{qXJK-a=?j;O+CG)x>i?YQZK_ zlvOuRA%gbZWp55A_*?Jaj^OL_@9Su7=lqSNXRB`RLi}yv9zrTk@JrsVA0NkgA3lYb zACn$XtHb9$G$ZDc53=8-QXkM;Qx{)1q51X!YaudhXp%TIM8NiNzx&|h_V)+GsfD!r zBZF`Uq;=lc0*e)s?x$h}T%JMDpgN`r|zWI{pVY zn|Dp|uO02HGD>$Qp0xT%r{^dX%y1GPk!KvRGxPQdTiKn?*2;L#_kNEWQUF(IZf7G4 zPrqN>Sfb}S>?INe@%Vg>WCKCRlPP8u{~cQwjZ@d%%P<25Ng$uYWG&)S@hI(@sTT>^ zUn&!)G;T^*={K$9EcxI(PWyINe28uQIHT4m5Z*Idz~6X#!mHvuH0ZRlN#O`vQjuqk zIXGu6TMa@_3P&MlAw`NH4`LwPw;}H^_A6@h{7&%TyiSvTC*;!wcz8ZM1w3G7g||XrXQwU2BGaw>RPIXq94~54>NI*z@Tw zkZ5oCEt7C6cLtet97Cr{$JWZ=YI9R+!r48 z^vRDK(HpxY^Z`jV(<@F+oFZD0l!B8-{_M9)B zrX41ohT#Q}AyD@T=8IPz; z^58h96I^K+vo7BgPxr_xv&eW((0IQM=G#ar{=PHfFxAUE zERcMk`)I~Ci+nhy$!eIw)uL;?bpvNk#fK()F)MyFCG=8_&2!~Zx46OW{^x*hpn2k1xFzr9yxtHg22&01BE^*1g4*(798M zVa5^qQt*S!r=xrRKtpzMY-3c|L~8E%BiB;`tHY1bZ}=cJU7=7N5%$4V9zxsgyPV&B zVLzAf6}q)e=@ zvyez$9No5uJs%GXwwBnIEre=SA4kZ7mZ4vbI}1EW64#F$cYf-D+zCl@zFymvXWLq= z6Ar3^@ayKzlnI3@rq{gB@KOxPiMT^RH^P%~{)Q94E&z-AT!ywjPq&C@k8nBH6MON_ zx$4s5q<*^mRiZpmp49d=BV~9XrR5E13R?v5lSgL&CYKzFd4Bur#A1*4>GA}tkGvXn zGtp;6$RYKkE$}@lHe+6I>d(+k|3^+p?0Zs{58=t!=K2nr5h%}4whQzV%LhRFqh$_F>-V*WPIt<7w5 zsha^lg;U|quXElyStF9J(L|N^QXAWJu$qG6j3y1@p$aH-xc0g6 z?>#D_IK^tyUVo;>uP%+tVzZFi1n97&qEn-^4<8e@avI@%UreKm*j5)EQ8lU}H~@%` z^lyX~AH?wn*k*CiXuAi_E}_6gLR^;PGG_Rk1gASB5k-Psc62r7W=6Uwzw>WJEY9Iv zMkQevciP^jNOUlqs4jdJ=?cci-JYyz;hkXs%GVll7)Wjhf8EaA#!vC`U0OB9Oqa9b zPYFi#pZbP8XRpE%HFnp(jVpqtTDPc)YYMk2Rl8 zakOn*;*aky5Hi1kNsMsP}m=2GPSte*KQRY~8xyEHS+| zF!lVv{MDb5=|QycfSp_7csYrgkqfN0_S=gaoP_thNFD?k&Q2~{o(%TBBc8=sD@D`n zraH#Hx3#U|EgAG!wF3xCR;IMSJYnMdIz*loV>bPvj!aw9zvStEDc#6Z8A3rRNc2&_ zX_?9+E&id95>&z{WA& zq%WlOxg)0P4M0`_`sLjU285Y^Q-T4#PGfYeJm6PaqLB~*tvCMYF8Pc%$splMf8WE> z`~@N=Fq@S;tz5}$Z|s9!8SSWFhxe0wVv!!_?=xI0q?<#7jf5!(wV}w7_U9E|%L2X~ zl|p-QcdPWAK2t_>8zZbB&0NgIT~p?Y*2o`2AkEzNpWEe?6jDcRQ4`7sib+55-9q^K zCjT}72zGgf*CsTQ`svvT3PJo)@0N=xmAT9WrG@cO!Y~hM}=MCQ!0;=;~Rwi+tN>cv<8}@7WC1hsqTaQC*?;2%=;tU$MQ`Q>qin`>LbCibLXFb4E;Hb(xg;9(xtxa@7dLM z)YW~eo{`!Bb`j*C+PgYWg=CWZ^~U}c_<0&O zztr&=98aqzg1efPJQCSU6Rx7$2_)e9=!^!Gkq)S)*5vgjeAi2@JsP+9jIxv#6oh9M zO{ue?2#`kNoIiZbW|hO0JO`^xC0l>DJ&9>uggB$TTwQ1_Q=K;lr)DO?!FwFw=h)^m5x9qJjzD%X0snFjo*#*mTbdD>*qXryzCg9a)Ry$ zXFq*iiH{`#CnWRodNjG_;8i^cq9C8~#5}*qr$x!(C+RL09Iv^+=8KLv<8jA(QEW9wBa?j?-)ahrUfQ;i6j$*dO%_t|nk=Ey$;arTb(**yP zoopGxy1F$$s9s)`E5>cNc>r=Iffm(ulXJ0Wd2+0==0pa<4`EXgf*1*P*2U2R#J%;1 z31$sJ%ieD5{M+kwPG&MV2r4A%Co7 zZ&4%NCD;0124(&g5W}TgRN#S3Bp)4a(%$JM2+lXu52%}>`X^ekW5fPzCA?m|xV;~3 zcM-P(UAoD;`sOB$zf0kR-B(Ys&|9$ak$%c6hZQv+3h>Pl@*wY`>qjyZkzc60_`MT( zi7QRDLYCETSMMW-s{FO~ZtUVg{!uq@Lmst+FL#mSXMayAmG2t>K%A^Yg?L8 zYs(3L(xHBmq;BVS)T;*UrFvS z7|5(Jy4KyjT>CCcCIcSb*7~5&>3^B|gwZda8{nfJTG!bhg=5H05?qY;Pgd9NDvq7w zq^1^=#i`W!UeZluNtiq(+WYMq8r7XV?}A^~%E+T1zCV+D3%uDe5!V z#InqG8=%y}NWAoaO;6)Kx#9b+z%_o8w0&SQt2{GOIiGg?LxE^aa=jwytu7kXE_O4D z8^4-F{^o_dS9fiyfCg99rQ`&GQ@ITyfGG7i4py`=)b*ENKv z)N-@9?)kiG`U2mUIH1tO?10js??WA^zrhyrEO-TXwM^Ah)5=`3&Hwl4~Fc0wUo#>^oLvfK+R3ZdnPIYl%?x?D)Pw%1r zQ+{d{F0~5)=;gT1_7RMdbGw<=*fS=>N@))~Shmp8dF0y1bWyG7EuHPLZchnmXzT0Y z!Ot#4)ArOlmpK9D25Mh$m29f5CD8Q7f){Y()`&%}Y~7R$MZF1C%1o$Q?@WFt+i{o| zrG%?YNBCkw>9maK5a~%QIJT-cDV(a4dMU(r*@1o2r%trrrPX8`XkL?|&R9JYH{*T1 z&d4CFyzRm56Tpf5dYX~-PjvyJArNX;1lGd?c31j78H=!y_JZ>VR6a0UkeZgn#FFy< zf=5+lo9ptE6=kHm3*B`;v8*~>cV^A2V)AOg4J9WlSysqaa? z&rWB+D|48Ef2JQ^V|z-i(uhj6Y0Yzq=8#ElJI{vj;e3ycn*aJsluxZV6WDq`SgfJt zv=OED;ihHeNNCh|O=e}GB@VY{#o%mgCzR11Pi6MgB0cmm#q>RB8<fBz+JgG-)%)j^6)(RLB(YAh|?j6@ZA%?k^HTIt%!g zSkQqOpy|Qpc}?T}?SZC*T7zBd0uvizfd6W9<2S9qh;y$Y`YA%^KIm;c&sI=ht_FKO zOr~v*w-ev3(#nN8=)t!euznK1_AjLP##?VNWBgNkopF=W@P*U}`+9s(?*qd@>Yk&5 zXrxhY*oX-EP0I1>cGg0tAkDwYHPB>AoZg66mZ2;kMwfQ7CE+u&34PhcWk4NFArdiZ zoO3}RYhlQLQk?nWtMV4_ zPpX9c_(nSjG-2N;S?GUj{zZ&$5Y=2y-W7b-H@cy>F3vtrGl8{YkO54!-w^_Sr&G8@ z=8WB=DQ1X}U)&X^y16i}T|E(stCcE@3xJSQ-P4_Fen9y!W%=w}TjPi^AFGJ`n#wWE zDTNg04$v>d93P(1U$=L*wEulnVt>06-pd;h;gI82@z>fx!Y#w3XNt44Jx9%^a?=+x zCDZ1=O`}D*it8SRJunB8m_3d$mD?V*|%JRZbSO>w$hAbQ1WV80vfTpNrY(7i7=Z zd9`>e{w^$4lkzaSkO1UJqkV^{ZK~?RI#@ zrxA?ArfHh=V#O?;O>2K4B)jbk;k_7yRh3co{|3!7nzaJ*L1-X$+EjA|qn4LmgdP!VqZHr(Nm>2Ss$ji@OmD->HC^ORIz5c{losOGl z8vPPJz$;v3hx(ebxrbjW>|yA+R#8#974SkP>ADA#R)zF zW1N37*E8B|AZ(>NBRrN5Uq*W(j9nK{yCS)G={r-3q~CU3&)hr*VP6oD(xYXhd25rJFfNxsY0816{S%m(*QDbn)NJeJJiEnQE8LF!4# zCACJWA)kuvOJ?OV-F$u*-9%}&kG{l?gU5hC&5cUmQMf_~f3NAciC4{by>IVQR%-Et zc%JRCYkk~U<7&)Et*gepKzh<_HIPLg-7;_|dQNoxa|fp(LUZ1N4gswN=9gUqmkf|I zg(f!6qaPgmt%rB`4lPIist64=Mca0z=z|r|%9#=EIeSBy!4i<}PT3=aQ@-a_`JwE4 zW=yU2Kh-@Q5RTDFjfBklb#<(kNa+E1jlriy%F)r(?xzho)f;xnag-cJI@M7M$-XTc+sbb5Nvr!>W*mmZdCmXU6V3PA&&vQK? zise43B75DRKNJIG@8~21<`s>!*xg~2n1xwk52*xAJZ{S0==v$f92A1i4+)ew%EpD9 zW5siONM@4SS2S5Q)kJfnKMN%i2kA2%jdAE>mleqPEb!*-;ET~yK0G(F2h4OC-JkoR zljittFwe}T6nn?gMEFx+;lgXqkJo6ciYh<66Xh4uaH+NIz8f3H_JE;KG=JY z|31@0$qAyYXID#-anV$)5(UgZON+3JwniC@-4Ye^*r=a-p9f_Nb24R<_Zd>`6)EK! z>=Xm26_jch(oFhf-n*i6ua6o01oQ+a4V}XC0#L+Z>@noe7`V`wOy~TUVrc$&Y z_EW-k@oEnl`~9mTSIzjOmO8p%>LCWeoF>oj1h2~g;^0p{RE7JCk4ItwZa)sQ;=b^p zHvLt)Y%$L}zSinr!}8}9BD)=eay|x%O*!mD3V|j( zG4!J3e*;A$fHs$UbQ97-o*fj(iBFx;Jo<&xv>)Op+g1Xe2CJssj9wV$Un>65 z=RFiHSYHbbNZYjhE_kg<>mXMypZoG=dI1at#0}g$qs^BS*VCok1DRM3zy%FRmA{eP zn^A=0Z{F%N-o6;83$XXe)%1pzM2-|J20@2`3QK0r&SGtq@4Tb9+NEQUsh(-sRL@Z^ zW4jQC7?W5Js&*2w&$cmGvuJ6UC? zQ*YbgJ+7CaP0MSl_4IEp`+%MZELKr2L&ekr3Lb`vY3(^6G%y*}Z;Jt<9qW@glT|!n zq&%+t2Lm?q_O)T}5$HCoeN`UMa$;NGI#bzQ?7sLhA4tbK8sAi)eq~tf`rdgESjyLA z(Q20jyFek*BgI5<%BHclB#EBPPEnAf;W^<1pc=Q?%+9c*cq$|DgWQlmjXR=jqRU4q zI&OKDL}3a02KGTitx@A+H-fycQNvFd1Gcjc@r!95{ZmT>aMtG_s5EF}1Y3?Y6L0=F zFl^DMCOF3y9DiE-Xb$nCE|fZ-aZA5nrIkJ(LbD0-%r*S$z+s_QhV@o_0VoHWG;xdf z=2s*$*4uZqC`MDwEbknN?>Yw}_FW}Mc4LAJ3^XzI9v0;n#7i>=>z)~gk|-1YD;~jV zf|d9Dvfkorm>ILqN%q`HMI9O8>Ogm*XC4{Tz^BpVZ3unv8USNN+G#3}Py@4bbbXf5 z8%7){;tMjofG?S!4&_b=tTzn3hFn7rIG?$Tr~nqP5}8DuPisH)XC_9^wveAEC-;Tv zeV_Aemj{VZB)dV$F!4* z;`9#XKJ)$Fo{h9p+oy8T?}eCGY4AXN2}PYYg!hfiMU*MbRA7xRP3m|H@sYIIjluk2 zgS$c_8gy~_Ei0Rh;uM)3x33(VYY(c3r(~T{Ys^FXeuKM1^P2Y;$pEuo^d^1%7*(Pi zB)qAsJrF%#6#vqQV04slb5}NgCARCFx&DHq6a`203Ih!F?3DMufa)3%T} z8BkR%F!Nk}I9|g6g>DdUZmyhZoTSrF(%uVcTQNL_K^_TQX5)>xqB zStgGQ5`05xWx-bsP+A5Ku@+cy){x*fI|Y+g6axQt%cM*D=BA-JIp0puFz6)raUS7C z1v)q0V%36%gN3VdgC$B71K2au!);)_2Pk0Zt61xQ8JnPcQS&6c~akZf~Ze|c13 z#7y;@2y>f572Qeo;B>C{Ee*7jI)9MW)Aeiz_2$4qmvp&20HmSYX)kpT>ncY#kA~}m zE}_n{6LCsX9!F1s_n(4Rv0Fmk)!KAi@z4E(G{z!mTRO=CFI){=b8}g1E+StjelIS| z`GJ9y|7;karguq~6Ue5=QW`_kzqv!)nFNU^F2D>1*;xowd91NP|Pkd`j$UR@Zv0+c-k@ zm8QXh-z8!NAr0qo=R(t!=C3c$y5BH{>#vBRd7A~!2e9zR=hM9|!SZrL$WHiim2B2S zVaW#B17#}VQA7!M`m>jnJ!gT9LvNhbIF}pPLe0cwz+2CCO=gB4FMn-<%`G2;jhMAl_dvU4)C3*NlRXrHm@w6$>730iN9g0r6bA@mA?(oR z@TIb8_6eYSPbpTX7q*PFY4- zK>hdnF?prNGtDgMm7A%Ak5x*6M6I5Uom8kGezxNB{zw{6UFybWvTF?04~{EHiE zxHf$CENW(V6v?yESmrVGRZduw&E4PX3nwu&cu9aBgHm^8cym31Bh9wazeE#Z+8o6x zWFIl9${2G((sY}^Q&g{a02{qB%hnjDvzQ!u6*^iRKJBw&#xwkkHUWMIqeCoL{+;B{tBkU9|B8LeZc6j)|M-rIrDlGveB`*h@ZPM4UU9vJEFj|-!{MWf znApV`@s#f>Po0=T>5<*Oe#e$2C5pki_=68juPLF?kVOi6%Qr!?&c>3Bzz};fuwahD zSGtA3SutO?D5Em)mxv72OK72I$$2jmF}oiV0wABiz-y``dvUi&+?K{3S4uWgI~k4u5eWVk>sz2JNQRMh=yy zhn9=NIpY`R4KfK0Zeg1f08N_EK&;%W{=77wo?X6vEgN2_IFyXuscSviW{aWMUkG#b zAVCLY1V7E@l@e_)PinmRWSwA+Gh=ffgwGj={NnS}6TIq%2*qEC=!@hixl~@6aE6n< zGZZBe4l+T3a_uz?`AJL{PMnqh(@W^}Th!*dra$UtrSSP@kJ3|`ZJKj2QMCFB>R*iK z63orC&H!Q0*xL&9jb-B`WGA#?Ng!4dR%mx+Ed9K}xEV3k6lD;0m(+{4CRu^E)*3xj zr7q)`qZ47ry#88E-S4~|)1m5qZ^Tdf#d|&z882XWX14nK*pF|uo1Ua^bpbGRpx1>O zjppLiao_bD39|IyQu2;KV;p1IsTKS>&f*1y8UrsrMu^~QV_zG&(?YDYs)D}wG;q5* zLq|HTo88#+m2KVwwvLQ~2RO9W>{ffq&4h@`m*LPh=4Tq*N9OTaVe{gt>E;jVps|8s z5`B(ZhrvhM!M)SogJVZZ!FwzVvYqt=jzXzVMaVh9xj2%3*v&8y?%ye9$ka)L3=jR` zlI|ui=0kz{%Ajv9Gn(vF@WXj@`$nDwX+J?ymp5sJvv+h)!yZqX4J8Y#q= zJ-4wnbEZo~$q4B;z(MV+v;e5B=Mn zi9XYE4w)e~yvXbFbmX*|?mP;lRYl7@vM|8ca(PTz2my~)oeV27XQGYV z!4L{cIc+Be7|WpTgXRwoPltbc-Em*jNoHz|$2NonQ?ECqLmJZIsva1J)5)aGzhlo$ zN*=^K2VNdVj@-s1&&QskEK5zV89Csba{9`;y`${+pe;plgr`5)vl$%iO;sOQFhffDdV_Opa%uhrxO9HrzROaEFyglA)gr2@5;60KRsso?VS zn=Z-KKYu*1G7i7iERhnc)qxGvl5v#^GddRUY&(}6JeQY&H=%Jcw(oCI4Z}V z%rI~OdHyuwVT*<~ht9|&#eNt6)qRX<=NF!Z>&P=U4=`SL8iI+^jfKjwKLT;SMi^`J zfen(qUU%4>qi*Gr(l`q4X~@%nzr(nYh;!+ooZAs3{A}2|~6qf8!S$wU8>v_Hy_X1~TuH+!dCF3s-zg3rurQDjV8 z!LKLDfFt5w_Abay%tq6gNERBYjOq#>V#=a|r-utucA|E%2Vh0Y0>}nQL=^Q6&_hu+ zy0*YiEmfn&OWm40Pr8Ys&MYZdQs-zEvz9)KidVJg1WWBEzuDNDckX>Ex%APaosyw` z+bev(tFW6stkXEqdM3`w_Ez6t!DETE?v=joG6Y>J?jX7uQCDQX|C8l;@WLVA1NytHDvY}Nf#@ z40>v^$@kR#OPN@$YQu-osHGH+{4NuT;z--Mf8{nI50s$fZZ~1Y&y;M1!}>Q4TjVs! zb?JFu9&OA>%)x*GlhSxEQ7_y_n}>{CAD!I-slU19`GrL_W3-TJKJ?DNy6)}vbgobY z@b>kNeEjIFo5<~Zm~-gYNe9NIX%k=IziWFsgR~aG9s9meS6g@J0U!4Kx=>ehcqlb@E;-Y=?wunWVFzA%l|V{ic2Q{Q}|lDML>~ zBesb;d3msq!T_{vm~rw+iXV>UGHeaDwr&@^qdRBzD~}(L$$&=zEF0mhEnf%I02hehAYa%D;V|DR?4uyZ;K&QL77{at3vg zWxO5(kg|j&1=^z^lVE0s-r!%3ap%ZL8n`GTk5?2~?&U{iTS!f1Jspu9D%5k<)k2P& z4;?_jYF)L^&pXmrQ)Ay?vZ_EXQiPQ4+wJ3tcE(P@W_h~nD%$4Z&FT3+@*$rN+{j#oE@bbm}c zS9pb@yyJ1^GVEye<187ir)=znL>^9dEJrmT>C=GSYG$HMcY5^AfJ8hiOa}-L8%E$a zs2=WSk>66vS>7d*ZPhQgZ@%iGaQ@=g^LK#CuB|!Rjiazx2i0gtKVb4ypS~442uAH;%FomI7MxQ@!-C24nch6bPyg?h~ zfz;Z(UQhk|MjiLWks|#4G51o%gkG$3&7Oa>mTa`?Wnx-TWm(@@O11cIqBS z)I*3Zg!SJGxY=)5NUrbf!s^VSS{V(Tx;oB4hNqbkq7)cQ&y6%Od-$Ujf_itpyxK@m z7q&6@S6Ta5>u!TCc=_ItXdMXe$>^{)V>Kz2EA|0L>JxJlpu5{XR%v+fU&@-33ZWwL zBrlFSTun(tqfM`15AF(J!1_v`a8>XZCmZ06qQBM^N+VRUa7BnJRp@qnSQaN+)YW-E zSxNAO!un4>q%7*x_&UYk9&zok(~H_l72^&`A((ukA#!#y&u+&Vp5e8*3A7~glMK2t z^<~p;y1o-Kbcc;(WCUDZiz3fynO&0|c6MRd^rvuc-$7YqpPT@a0~= zO_BZKPmt=u(D*!~{7>GyN6Xzy9Orf>X9fHP0sGK>5l=AYN8LU8P4(qgUE|A>(B`ML zu(o=n5TP$ZHk`*2iMt&&qmKilZtO}ibiHWG#Nw}lNs(9C@W~5x^M%ml=+mV)Z$IsZ zq5zKzBiKU|Pe#A%^N=UhI@MQESPzyWuid9q>3uXFX%~`Us*{AS+V}kz5$DxiZD9eH z8D!j`%>f01DmAP?hPlk-D2YRK@x1?3W@6?DE7%o#Wy!XWzxPzC%R5ZH3mIO+bdR34 zr$ORpOSAm!Z|WWPCyi3aPD=Na3WRPnQi;9?(s5^3DYYGsS9UnAtAOs)lWit1U+b3h zw(`Uw;3+us@TtozAeS--Vh^Y_e^7`$C5@(3_ecUmzNBa8Y{-mxN@^xM>7Beg&HE*K z<=@P#lF=^#JTHo*&X;dzx8h(Zrmyz7D?ebjQ+kLAtJsO08>h3*<0M+GT~z$tG)^dGRJ80apVISYzqFLFlHZ!1}wrmREmuR#$kh&NxQ2e2$FFR2T7`NLZp zs1J-#bmT~V5T|~th+`f83S2Z|+hKUHeGIOVX;Dg;C=V6*doI*4{cucmByWFGH%xui zeGmS9@I>D+a#+|+CV&P%m%9(@b>;|Z9%20qvy6feGHj^yv3m1gT>D>Un{@ckbQo`h zt$TeAYn}ts?`G9Qoge0D6Kgs$qgjBljw_0@8I_Z2Li{_mUlf)b${i_tA0?!l)6J1=B zl*eS;w;^=vO4BAhRR2KoggX((>Tc7bmvqRkqXKpM?Q+Xvx?`54jizbFHh6f}7DOoJ z@}s3%;N@Ljm*#u%)hAP&l3K-l(H0|Ff*$R%!O$zGw)yoWCFgJ(&rDk4b%eZSjo}__ z#p~~vOP>UmfYV*L?P4-*jRE7mj}I=8<2Z?RH#gGl8W0;d>$l+9Pb*_ zu&j_Lfx1*5r0dC_{0(M%@o?V7mSDj1kGOY7m6>=BuU+_c<=#Quve`3w|H`~7@?cx% zuusv^&&4}U4PAZ17?8|Q2O!Fs$++BHE+oWpG#X`*Zw|XL^9b`J_{#}kAv*qeg7~cg z5*L-7QP^m@Fuue2G^H;fq}hzl9@R= z>Ac#c=uU_-@`uxjslFmOI|tmjh#q?>-gHImS5-X}WM9ontRG-*6y2O!yCVc42Po#Lf(o`C@sOpf-8! zI8(&kxg{nph6bq*uJ;2OqE3vc??$C;*qT@ceMC8t+rw<^-?kRYwx%n!E&qgL+NL0> zHj0`}`8#3>rP>P-iJcWN+k+b|jR;bdUSykE{%dR}*LUjN)ae1xctjHES)+=Q^6FPh zQNjF&VJr~L%t*HF@Hm?3g^Vfa=b)hLNB#vlh(5SRBpjXBC0SgFe62bmJcNw#$E`{D z$&+H#Z-HN~cKM+&)-2ROQFtH8)tkLQ*JN6)m@H>Lt_ZQt5U@dQ9xGCCwr@|jZa5QF zox69BH%|nqF%S2$1Yr)(b*L{`t}lwJsf4Rd#oRlu0hy9c~R!fpMseV&*- z6{_mk%vYM9jpsJybduwr4T(M)?qcpTSxQ7wBBmeypb^ue!r~A;Km|`=FQ+{i`MVHx zH}}+WghTHM&)2zv-#A2S|6B)WQP(;|o-m-LL;pYT5%=%!8%2HsE=qn6cZ4={%K{s6 zIMIjiMofo0_|I+Fw+}d}n@G}`5l})O*;^Dd!&Dyl>vP$O(^pC(JBF!v6OV6d(u0Lp zv){Qe=SeCk0Uxng_e9}u6=?dv?HX(Hg)Kv#Yy$FoEqB>8WV_(`aW)=1-ln?sQ<=J( z#DxG7>PjmoRZ?a)=|LZ#+}HsghQKP_M%8KT?80V#qrrbE5MJvMoP{J<+?Bb}?k|{D zy6wC?;t3qpV)y)^n+TSD-?jCIKexNvIITPiT_r<;Trg$?ej!(NNnH|zievbgNYgRn z_>gxgvhyK*{YFX#DMM&!(i5!U`&A_QO&od{LEW{oxzTml9=Q>fGCc0+e??)j+3 z>mR-Ljh!_T_-LaC-s&RpM{Z#J;4g~bXx9Rd$*)Y0VcVP3I7OKl8iU`-D`tSD%W|9x zNzMik>O+IX5=qI;M4OM#Eu;5itoSm;jJXB3wtq?ImArSD@;R915xbvb3QPWYaPM-L z@pI8zZ#s~P#HBMd0$Pdw#`LD9Trtoi_H)9I0baijXx`qh>!y~umS8jSmQP3G#%Va7 zS!1EltUg7|0>qASc2W0pQ<4Eg0?E<`aSw0xnWNyAqva9v8PX7pI(G9c6ccQqmA|QA z`w&UaQ?!=Q094)Q2~YFb383X5t(cVOBD+tz0)}!us^ftyD02m22HSV!kYNGE-;efh zw}&Y9CIJG)A=L;guPX6S(XBX?NkjU)ybFrf@$Qk7NrdajnoX#v26Z``y9k&X3v=mT z46Z7eA|j79Qd|MEmy<>3^W)?n$pYo=D-F@Sea8pa!22HyaiR&R?B>7rdh<^?KDXeG za7mZY73)FspAPV?hKb0Ru0Ywyb|+aO)sqn=tvrA=0|@%L1R9hosUe&LOxWH2ik0Jc z+id#O2~^khPncbY_X=1yL2bb;(x5xhxoZEOo)njyuHFq)dQFC4!wKRH6>yJ~bjFYn zH)MQEkR0xEJnHu>#Xgo<*em#UEvMeAV%+|QbIl%+RA_xGsRZ2Q=<}tgBH0P*O9n|J zv)n!@qd-i^D~=*fO%ee9kVxJP>6Urq*wF6is{2JUu5G&Ze`!)MZ1^u8l~Qf+`XP6%0x*Z zUJGa2_#X%ePRH=S-;guQV+mA}R5>GrM8G>&_QVUqEv2{Lf8n$L?omsfaBGOJWF?VI z_4awuC@YtJU+#ZyhwpWIhhq?~(jM?RL&>}Ub^o>{iTFMycP6CGp$L~y5w5raWRn=U;*1ouOuzn#hKMO^iMiLQm?=urAV>>ayEy=P$(gaZ zrDCfc$pyiE^pRDjab3ngWx%rM7bX^6Ts@RYRg5Gqq88T$P6EE*N+T(Q;(J5l?1h8h z6-F6u=iR`Uhg|&k`P!qu5@HXP5I#EsI&9^Gjn!u3Nw4bQwBEmUbd;AxLYLyc4~t?+ zE`+2zaEf)_-P49ylY4TliM^4~m%fWyGqJpW8UAuCDAGz-B+A24&Bm-KURG@IHmP4P zn12SJ!Z5E{B|`MX2G9oan$C6ltM!x!+oM5j63rkmlW$lT47lMHbU;JWZtN^kp8fF} z=^>n>%v^W{-&E2jyqG+oh=U7-*Q3e_F46kQ;z=EZyy8Cy|18=oVV|>d#aCbx)2ZWl zy`G6Bo&;B*J}wfidzaO7n-=d15j=6wV*mN-pXZ(vcvz$gwYoZbbZ1xzwh1apMaf89 zwRs%HFWD8$4SXJ!_B0mtud>=8Jugdo{#C(0lS6GbrJ4-8&2_vj(->`QJFJ=f@qo}O z**O$m4yo)NxZ^R5BFC-fOq6AFF6Q}3#cn2p8JWxXAP6}q-crlXILlfe<~6YVUQ8i@ zS9r2CCets+oSR3doGWb(o*IY*%V6ZHd}GJg4Ub7!pEq!UVE7B``d7cAzX39CM-&AA zHXmpYG<$gqql92Ixm04Ko8uBhw3L0nS-vOLzrnYidc2(7ED7hT$;?uG^O4I%Y8oTC zi>%Fzi|v6h2_EF2#i7C$LzlqyFhh_dwc9fqd|%`*&Ab6tPjETx#|I}f6+p9dGeVJT z2K#DTM?$JrHNTw}3r{@m(FXJvat<@;s*Cj3tUVD1-^CE#rXbAD@dsmXqmbmz+x5Sn z;jBv$n>Doz0TQEw!_i*I6_`F+w&7J`pVd`^9Z7$pNgeSGO`@84!NLYrx;f8AC8gOF z!Z(VnF=UP3X$xIny$1E-W2XPMpE~ZS&5RK$8Ow2}6X?k2aN2-0zzhbhWDlOqs$uCa ztdBJ$zN`9Aq@fhf&;XM~Rd&Pa>>}L^W$Z9Yuqr$je@zGf*@%2frpp17a}b+i$%M;+ zo&CrRwQgP4>ZcuK%Ipuo+=Dy}3(l#_I5*PU==-~oF2gC<-=1vE6Nm`0bS&eA;FBkB zJsm|i5$yaQaXRc|l1FbUdg9$lVzC__zr~GVNH)10{B~lYQuQ}-TM>)`FVIItGfQv3 z$_E*h%^;9buI*$FAo@PVKB|2*2TyFBR#6P`yVN0$g{B;s88@|&x_1x@-YsezyUP6a+z72->4A)`NZRme6cm&cJ z-(6YC0F|^9OtcS0Gq~0DuAIfi`UawjzGxos@p6))mko^2qkE_BZ z-`>AM)9u!I0YjEYH0Qs&j|T0>eAqO^FUph@aGJD$q5V2Y6cx;VHxBQKrr!z#r=Gsi zR||WN+HP$9RF()>QKuBOgK1Hansd07FQIiBF}&5JBH~e<874Xbs&wroV!Odr$J%M= zb$wCqmp_*-J&c;&Y{!vZjaC!R*QO8+{1hp~(}R50mTcj5qak<2#FgMYt^Tu5%)Yys z=k^=(E`aY~Z)J{Zw2X;C#fo;$yuw9*RXVd@dlY^a( zU^mE!;IZpgzMEKFs8p_~$`l<*CCS=^HDLQElsP0-z)CLK#nu0XMCxz>GR@wHa3q%> zz*FrCm(NO^0;8mEYax^?v7s8im>dv5AfXcW`|@~odW9ND@Y88&u>Hl!` zj_q|YT(tGwG}ex7G`4NqjT`SIjqS#^jUC%YW7~GJV_R?E>wG!S`59}hImbjXBdeU( zv}<`m-<|SV_1I3A2Nrc*ekF0i7VT>W7DBR8^Q?H)^ThlzW$!Rqp5Wz;@fw9u4hNZ) znmwwUa=~`vCyZ7%1D!?%n2J6BtFpRslB5}*eGWEYt`|jkXzH;L^zjH^+a#OrQmoC3 zIHB#B-zQ13Jz$vJ%9H%Oqt0m4^f(y63%QxpC4c*))a(ukH#aDqGo%JfYP0I}B322V zfON@BpA{$m-rzb4n7R)`L)ml)H^Vauw(}mSGTz}jyLP`k_i`7A^HHk zS}FZNP9kmySp9C-vdstai)*ll+1dE)e}f(aiHx-$DaIj24$mRJ8PuKaazv*5)506= zjL{=*GN%8&iFCiaMLxroHVzU$sgX&m9x-4=(ih4J6Lr{VkH9{CaFV6w3$!VYAHh14 zgme=Hh``qRtECpMC}5P{yN-v|Z?C2fXQ#Pc+zh4cDVzIQF_ZBdTC>#9(wb&L6%6gr z)5Z7xlA>r8%jp6i7b#X*#w;D?ubMYRFrtjKKtNo7ZuxbuF197$hq=!(4(eucuD8M; zY@_C}Ec{>qO5+0ukHeF-du0wc`PUKj`Dd-OwX02^qwytrWC=WCcCZZ1v8`x$RqazN z%6Dfp8)$Jp@>v~cN{-J3Mdxfv4~c|K|89h#m;v2fX5eg3TO}wqKNh=(-ritvXA-?o zec8`s<{FT!KR^O)pg$hxr4{7=giUsIscW)xIU8@ODRQqxBx`CgFK+m#ml7C^<7uwv zBh?)T>X>`AWiP_y4QM+Vg!apOAcbj>aN#+{FVnyEP0h1%I?Z`#(@6^HZV(jifoa?4 zJ5jw95|Ml&I&Bfm3e&>X=_KmHH_Gn(VMy-V|Fm~67t(TS4`)zR#OV|K=A$~vGK~1k z{VBC9stF?Lh5B+ye<4V7u1fP1*61F^BeU%jDDqUmd7?ck?u-fBnNwXV73!>}x|T+< zCd0sky}|Sc#hKN=f0rX;l~(AD;8y&j^75<&ZMJkYug1~KlPEbvu4~+Lh#H@;rqb6F zrKm&wQI`8doMqKFP_E2&B+_$bw{ks{ew1tCv{z1=FWzKch&h15|0UzY!j1H`I3RW< z{Hr}#=X3Cy4*-d!RO@<2-^cf>nu3-djd8kAayhi~dPgJ=k8JS_61CA_Rj#kn9dHq(g+a%04~{A0B#8csiRldM z+q1?1TD%MRzR7dzXiFJX!?WgF+FXoo&@-I6R8`;jjflA{`!skU3#ubtY<*eqK$smE zdhbjJ?=@DCGcfVSS+Iz|pIh_=)o1 zy7%g{4h&MbIxzMgjQn%wnNw1vw$pn&`Iplb#kL(Fbiq##`NoG~fE(~+#LJjD<>`s| zswUNz!=D~v3~Z2)Q$MrAs1-vBX5m`T>FzHyu1hPb_ zAFhpHCvU|+b9a&jjuYa@tvl6rX=qp-8Lh{ARK#Ab2jkmX&ZV{24vEipqJv(v8?yS} zQ2RAnbt)dIV1sPnMbeKa6@Mx-N z39=hf9`#}0{ui0TrTo$I%z-)p6HgO)=a~iKe<$xspUK_R9``ZIEzJK_foefhc~;Do%qU3b zK^*-f7Z)MI<5Lwwz%)}GIJLHjSC9PgYbK*o0mrUkDkZ$d!0M78wzCENLq{Ja*Um|* zw0v~zZ)7c!+*u)J-#wC|(F9jJ;UilG!pJREm6dLjEVT@l%A&M*Sq7dSd^S^iFlrw+1+`I92nXPnEb%` zD_p;Hw`~TBuy+ZTsr;gf90LqxJ7~UBE5OZLbGS%M`M^)-C5sm>C)&zvSghxmPbx;l zOpw36K0D2w%0E}|zUf8!LgmsNaW%#Z))v}v6Ixq+7nmd2!p61}u6)c?kmiG0$U2EU zHqe0D)*cGoctR7AHRljp7Bj&;wg{#cjYbkl<80^cOa7oK&Vzw2bkRRgM|Ky!RPL=O z&aK^XfovtAL)M#;X~cM!znPo|HVs96k^7Bj$m^P5J#UE|@jV2mV+4jIiWI)+d8NWq zc{j*@j7sE`oejUJZGpLK*_&tf1E;j;O>9NiKTdz}{UqoKd34&kT%v>kdWcGRt()K~ zKpYMo0F0I299^9s=h(}A#V-zSX{02;=>0_a#7SxmbC!~4`C%+eRqltd^~5~V_}l#c z=d4C&wv70u=X3^iX$ry-M#;`v8w3TqFUjw=x+L#UB-@bvw&Da?&t&*A!hb9^c4B|g zwSJ{(Oe4B~TjsQA6LRzIm09s?xNgF!)LWw#l*|2N+w|%C$f-h2B*=d`R*h7II#wYQ zsDQK7(c_vXL;S(CoSBksm_P2j@tfxfR|oWiOATXi7K_)@R;L)x#=JVRc#Hw)r18M> z{^M6>_K^&I|FE+DfELlPT1>{<`N50Gu`;>whSOCR9Tn`t(s@9#n$?Gc;y?1>)h}=}8msk#^gnz`1odk83&&m4kgC2!}&(k5A6;WsJSKD7zg(tSi1yuJ1Le?e0_)5!Uf zt&~nC=8@yaqRlQ?C5A|7hzA^FprAP;laIt&koNaOH>v~XXeP?YH*&*5DYpGnBn$y0 zkLR%#v?Ba2p@p(4mCyWY=cQNXa(Q{~Ry{0br{$k@@;UHLPC}T(-nbH*YoC)aZ!O~_ z3R{DZm)Z+np}t{1eZzFv)?CexIMoGzZ|Py93gg1<#$N|&V8pm}89CWWe!eK7jZdXZ ze--&z8(Sfr_~J=k=_r!i{5b6J5seJHwyAvf_$BlnK5a0cv4!9^Ywg^j-Dl+2Dv+7+ zfnWJE0VA!)O4N&iTq@O-C?fk(w_UGoX3CDw*QXh#YOKL7X81X;pHe$aOrB7{cze}N z5t!dYvYxF#ZJkNAWqd$Mh?8`Zn2vion5QwhT%6;A*r?Asg~!$_?4S8*!6A0<*PQlZ z(+K0UZ;@Q1+as1+qMZhNhj4#-K7C5EC+w!4%I&xKA8#iDoS;eSO!M%)KHnWGdpO0U z_e*wI20z=E5M?DbpX&D3;a=c-ZWk+UzVk?43wI)>x&L!x05?>Xv3L}rCmvJJw_L4` z(EDJ!eivS`;g@2r%d5jN)VBwySBAj@A@@sB%1H6MUP&T#Rvj$>wfDe|1SsnJ#R6C} z#yNFYMnpWc^@(Zy=gBHUs` z?`zx`T~=95ZqO+r33OyQLxVfbrWQ~|VQf0Oc`$CQ#Z zI)&DiyJncUm(-6tfKQk$AIJ3+^S9j=$455qO$m}N{c8~}WOr7cm%`6y|Ij3B5n-t35 zbFXd-m%Ja+XmQ@947%GbRx{$Z68Zr!j3*G!{%E>}KQmsqa>4H$eI|0TYV0j&lv3{S zUi2gb1IleZbdsp<^P?WBhg#{7;7w}awz4QiaApIV(_2?U zI_;SwY9o;XFX*-rI3JCeU#8zSxSB!nv;UJL3Xx zvlT65&M;gv0&T!wH;>G`2rl7GXPGm_Xv@s^{`iwZz9j}ZXOb8B$C)%Tq||Og73um_ z;hligo-Dwn*brG4;g>oe+6k-_@x3y+_veMKL;8P^BP#Tfw8_0@l_&kbV<;*aXqR1& z@p@-Gh25z^kS)^WgAI?>A`k27Om>V-pbJc?&$e8tfSw{$c6<2Y+sYkE-{j7_CN3huM*4V9_3srezjqaeP3&7lZ)f!~xSZ#_ zfm2VmqNI$Y?pC`56iZz~*ipox3;k&b@Xn|t=jqZKKaj+h`=W_wH(tT@EQaGzelgWF zM!{=Kq|WvU6|1uw!n$p)SJr!MBtcAEL}&G4AT4vSR=4s3J73hck()3jNaKi(%Oh#> z^KpTfGdcls_oG_iWQ1$XhkWH0g2$qW-!F-eJdwYvJf$AOvV6M(V4y7WzJ9EbqzxUm z3`Kd#4o4M)R)knKP85^L-G^NWOl9 zc6I;7QdkecSvGEuW;pY-)lZ zDH8Eqi+Aq>(g#>|C}`EPY7glRpDjtg*Qx`zlc^ta85I1mXI;t0P#P z-TTBWa(Blq?N*lX`1Vh^>0vSD2P8lXQ)Wc-{qU{HKi50vEn%y+yi*J@ z#%56^TH8r)Fa!=bu4I(33zWDUnDeLMKbC^R3m`cV(Ub^`(Kdob$~DbQ5}^=zYw4Z0 zHU92gO7)<#Ca~D^ndZLyMtOx(0j&+rfrU`Y4Kp6T2?&MlZy&MdSv)ODiF2jRyc`VV z7m@D+W7(y-0EA+ZmO=hKVVtK=*m|DkGeHsZDpWTnsMP=BM`Ld?-_r-F7<#T#$+VSo z?n_W8$?&Av!7@yJU)Qz6JO#4+r&x9%?+WCzJshFfaBSv!SKXLg>cG=0R157QU1gx( z96h)hVY6OvwS~eCwC;brG7RV8EazTARHG*T_CB}E@5R@s0c>ym%z-d6sX2!$(QI7c z0z1{P=d1jArjlBaT8Ph08)^H5(g3|t;kak3ICyB&vYj)JO<7=%{4NER3i>*x?m!(p z_|a0dO~lYY=5L6_cEvM(%Bn~Ez{!Mk9x6rhqdHkW74AQ{!Mb@RzYB)r`+q|0TlD;c z6@^v{$7)(T1>JqD$$1E879S$HMCrY)epmjz7*t@#EDi%!#=wBdPz&r%0+Muh*E3yQ zC`LQVHQl&*V-m(h8iuuR`ngl!bYF<}#_8qxH2QpUunfu5a1D^KUa&eH z7`^nd_8^e`3Ouh%(|s+DEM8y23&{+d@u)cR-n?b4NCz_!V0-+jU`GZYMfYmAZLqt;#tz`iGv1cZs)hR@;O-l zL=JhPLnd34NYSUv7Rr}cTWW_xkD?-+^&yldQ?UcBy2X=Op|o!PQjf_?PMvbFURcy|~eZ1vE~PhMt4hv8kZr^K~1Qw*MlQUH%{-oD2-}a`)Vo%|`1>H#P}_i-AoZ z$M-O`KrlR+k_%aywT~>^6k)9Xk1s#)c!nG14sf1LAJ1mr3G^E3IX?ftJ1&yVanWT| znLdM?xmRYG?0dTnq+IJ7Edi|sCy~o3nDM>W@_xIn6pjb4+C2igQnq$eK!Rx%jLVcL zUfg%A!Jc8`Il?|=EPcZaw`UmI1#t|BjYyRTDe24oJ{&8&`!c*1pz_;p_)66w=Yl@v z+OeK^5HBvyY0f`@%oCsVxGtp3^I0O^#)W-2wk2q2kN^^wq#xOuLh+!Qo|}}8CTB|z zK6r0}DD1*wLvHs*keNMo*s!xD+n_sKLDT=Q?*V>&uherlu_g1W01SB!k`vcyPVQbf&6D(44#yJ}yk8{7lsLo*y zHvAMAoMZ6+bYoJ?JaEfbT3QL%^+IW1m#JT6BcCxV=4)?N!n_b#5UR094ZKzfzKrq_ zI=y&0XsJU0-3FiUqC+oGk7o9;_+I^i+b_6}$xS?kIXpa|y;6Jexr`%%L z{$^9tQI-9~{UsxBeizoWSK3j>^W3A^{?m+RV4NE=O13V&-^p^ zHt0QhJcmzSE!n2aa5I0Q45F6Y?01aCmqVQ>oqeS3?NF7)OQOZ0^hy=&UT}w z=aK)M3}Sl|&IH8d#uaR*;wxixW(~%JBF8TuxoS8^#AJ2SZ{tYVBvoB!74_YNs_kt3 zC>Ve<7jI6K1Qi0pO40TNf#ryB-w zougpMWZ@0xco~E-!+TdD0e3)=@e}+ufr@Z`+wmgpFw#K;aZl$j4+!l_fLBO|RUD`0 zP5f=CK!RHJ0W`3c+iY z`*Tt&?gQL~SS$jCQns*^#|rk{FPlaN&4&0O`+#fRzZZh2#2KN8RF5z#1r8cF(m9`q zcvv6bTVjs$bM6&`8RxatDGil$j2IubOH--M=BRJyG^IplDhdWd&qlO*xSQBQ zv9wKDH4TV|;%PPR(&bk;mr6*@gUpp-S_aA2xF#xDg=HkKaI}jI9_gu`s1YTw@6Ls zZGiIKk(-waE}@?N-yNj#_yU5kjW7U}-Y@o?~9A)MTG?K$ZY` z`DgW;>^*%F2B8Ysjk@F~b~0_rAGHzWa#jIPJuJ&!U%O7-==hOd9CtD^ zNEX}!R71f;5^l+(0`EL7h|#my(dO&^qFEI;QBPPbrP2{<%~1zFp~e-iNupcxW$WMD zbfUe9a9R(=vtu8Zg_Nl@yxy-emO5TDKB1>l_iKvxqsatai?rx z@J>z;BRuMF8N$Z)eXQjNUdUNb!Lssn#^D)>C&QpNB>mCM#goyXvkI|(WiXAa`5Dk~ zihqrhG_bjp9ywD+1I5bwC$CI(!AX@)^EI9R!iPuF>Gt^_JW4G?{|j$Aq*cwK_5$VV z!ol_UqZn11M}cT1IBMmjcw#@P5P}Abh>a|7Q~sP{`}sss*{j4k7b&y>f%sgDI3h9e z+f`u23Js)9FtjIueNgJ>?AiTs@(!!&U&A&FsOATXHF+}9)Ll8xcp zM0``p+4Kor&LlRw-!*LGQUZl-1bVSKBS8JW8QzkBCm9!-zh7I%ENt__hHKCl>3f-7 zsms6>*O0kJ-sp&~T|H)t)%^OqZELceos?*gsg8f7&laj+rQbX~Z@%%?>%6tA2cc(J z9|JF!{C}fTCez3u&kZ9`AdEwcecddT3{p41F$gP0om^z_HgMey&2-Bkd1Ia=cq8>J z8LhBx#4Ek0A@&dh9?v&7{^p-&WbDj%f?3@14xrOF7)w2kjq}_z7Ck2G=!jS6uHF)F zpDn*;4u4~S6lqc|<-UVdlTA}-kVGKo>t zc3I+6PLyx2B5HkdhI9bQT>PS_FXcJQOxLgBO3}?NtIA#wi&N2{wF#m?&6%myefp2e zo4_l^P0u#)c#8`2Lg1zLQ=R-d(FKq9Q1r~~p;wvT`0lyahlo1ieX7OrOsrqb;pv}z z5opmZwMM)dTn!LQMPrWMlJdtpH*Nx#?2YGlbo}vGYzww;Qo=!5Cs24l3Hhd$I4Tg} zj{|I|Qu?S2?8TWKUZ!4VzODoseT946D>e3*GrR-{Uc9f`MlORnm=DT{lZ2OP6|M&# z?48eZsmI{3B+kY=4U^F8fI0`XN6F0+RUV1K5({=o9OaWY9wDSXtmKbsuQr9)7%7Pl zRb+|@box)P4v;a0Jc2xKxV8W)Xt37!uQLH!Ar1?uer%zG%ADNbh*bNxEC@bzXaloL zOSPf65vrD3RImFaG~X;k7KtaifGAh7(zKRvFa_?qbSrB6!a0{E%k*>`(IhB&_0IL z-A6gvk?6w)V?Xnd39qM=dFzUJPwj|(1O)s&>)f$Tte&vayO$QOaK;^nW%Qn1DxGWF z6VuY|H^f+?D(FttvfztD7P{N)OJ*;pev)e|3fr&RpIGC7UXmiJ^w(RHN3bs?@P@SA* z@I`N=146&thsbovo;sdTXy%CTDYs9ig(J-IQYZFd2Pzh58ZgSp=8h9cHfyNdCrEP> zjf)_dtjc|xA%$9_uOoVvYyW&GZWUIbsnl{8Z7`D$!Cw44CFU(JS8j8q6?dn`rPV-R z&I0BJps0E5p|_#GLLKM$Rn>~W&D72u0tK^$hrMgA4yjfL)h zM9`Lx$_v@2F4^~So(_jZ;jng*z5mZtVzPx12&a`1^eJ}83tg(f*E&GJY(JagTk?k* z+LQZ5V1sPt>-@NQ(iZK$>*s{~Z?njpXrRjAi=Okmpf(l;v&gXVVUY%_Q=?|PuFDsy zlpKDdZ=^S(l@QSt39YS!MDEUPmk@)BbQAcXRtZ7-ypvKTa5;{Ie`s!sBya{nX4CdN zhCSbJucE*wgx{BbAVF-(fR1Bctb^Dik?iiE=i)uK(x9Hr>&k>aaMG}It~>W@Vi9MF z>fVf8U!1)L1?uLf4DP1v7`T;QgW}5+uvWyB&8XEC#d%}5y;RKPZ@(eOaWFuJ2kDe0 zN=%ohxpNj)F@~?6e*CI4n37kp$W&O~iBxpe^aRO_lK<1=Z~qPt(k)|y-}UmoxVch` zQr8SsVX%I_&6-MV5NKGyTu%W-rj_EUUmTLuwt7xPJL~$;iaZm)JQRQ5Hnrcd?3Y_X z-?g{`_a(~@ez@4{pz50H0AQaKb!V=^i>Dl+Dr@}FVM_!F9?qL)5EnjZ>>}cG!-9ny zIN1S`BGBh@biGRJibdX^#p@v_15R^KilMwA1*~RPHOxT(eV4Afr++bJ;K=K*w3VuG zk*~3xOb3_Cy`NB8Z!0?#tkDz)Lln)P!67FcQHSw#{nYV6Z?n_6YEv{2(`?c1j_typ z+kO_n-AMnFRNz8m3q>_Rxyd-+&J$EBw;fqgB}BFmn#cRK2qhRxZ{9yDyX#r}vBPq+ zU8_wDxYAmK8rL1FlDb3|?XfQ(fpn6J=t*z3dDAsHfPg& z*v)ixf}c8#@HR)=G{cD)zz1)b=yEzioNdo8x;`!_pGj(H<#e-!ySF>1$+YZ)*I}^N zkomi1T|2(U0t?xG=zh&nup00U^1~P*Dk6Ob=fnKrtg~4uF--W>uVQv@9Wi)NlhM4^ zdKV+{pSbpyTZE<)e`Lk37*xwnGK7%2L=b<|UA3%{{&rn>Tf6sprVG|HadQ15^}5I~ zW_MGY>Hhaso(b@y_-(TzV`Jy%i*1Ew#_j)x#2ANP*YM|v`UE_Y+{}^Wo^#R90T%qB zK`PVz$I?oq^XVU~vB3nl+=k|a#+RbL4?*g735@VvJc89frVFUWDQfStNMt3FQCjZN z%{(8z zgTD7Jbn=JZ*@J&=M;kR_tieomI4nZ=p`WK_p4cJFV7FWKZ4__+Po_nG>~rf`rB&x2 zR@+4P(1!@Qv=n)|wKXdKjF8#%skfI0&7g~^{E$PccpxbP(66W~@!KsF%-gj0?F6%uIqaz1g_-27Znqu)`@)KInD@oRZV)WOYoQ{X!JiyJb zlh=E1j(0)LtG-f}BCqz^)Z_E|`@NYt&0XomUy@{rik&H%`z#+JF<1rRmPh(=iy8qi zb$S60^>UPJ&fgZ-J58X=hnOw<8w5i{5r-~z4@gAL_$nAjbpd+NHLfrLL_6_=|AL&5 zR&;fnKj~3))#!0)yyHk&59LGpX%^>piz|3C(Vpxq&wPf!?Z+Hh*bl#(7_u9UpU;+L zeByG=7>XgsYT2OQ6FS z2+-}VZ=^MaipVKmCNi_q$Q{D_$VRF)k-l3mJwfQi7R0Vb6rLO*{>x_?OfnjY!^kbL z^j!OZuU*`&aRnhoH+*53c6EW~>)51Z4k$=Dc0&Y-Q+ZQmOdh|+AT%Cj%#DY&lm$1u zI5=3)ic%3JbKdCl;(W!5_CwJe_jAyRi{~XcQ|n6)67fvgQ+#;3Cu@`L&$9ic?8qPM zTsGT|&BAyc)HJq!0s5j4U2}ZI0NY|p&cltIH`Ij>x5%4zwdv9}ZdmIu^HLA$-JwFl zhB410k{Uc1sY@p=42}+GY7x=jhZT}yUXYnwh$JlB+r}0RT<&irX6%G!*ao`oLjORv zCyf}utPzQNDfrSOJ$az027N4wh0I*5Z50V0;NdZVmM*y}@(naW{#R3YRBda;A*+gas~#QaNGl z!!zid2ce}IJ?oS)0c~t8Wj-Iu3yWN%%hS;bkNd^t?;F%?@TkUSnPR~f-r%xX@=`rw z_T-*M?8W$^l3)<0GJ1`(IGGc`$`Q9~2zyZl{f*uwA_`yQZCU6k(j8QAlu+6@zVT=k zex@7|PZFV}N(J2xj4xr(;k)uiPLKB_6++~RZ(nuv)c^C{p{#uxXY`2?*JhqNn#+EBBM98^pVt6N z3hq7+$eRNRfdB#K$Q>D!OSfR1`%Q75(93nRGpEw#qN{Bm7RaKIZQBm&RkG<(rA6Uo zG)vZANV8$SFnIm(y2IGu?H1pVmy&Y(wLHMD4#mFU*k(mGlL-ZFy7zZ6HWjsIUNE^yeEsXz%J}y+XI` z)8SLzU7c$sMN;9fuhTh5>5}=y&U`9eQ3ka8XQ!0TUGny0pzW;A#&nC3T=mZ-@P?^Ux%VnDK}>|c zWg5@$x5VNx3RckIxf_u_kgQ!MF5D8zZz7Ti4r2D@;rpQ~&WStD#41U8e>3kzt|o;d z%(JIhQSwczPb<;zB)ryVV0`*o8@ISXlggD2qCL0=vE7V1FM)X>GqZiNVS0EB+on`G zE7O=Wy);y69IU#?dgs!ApKV^IiWLBmRQ7-0$mBfY`&9x7uVFue#pmiA&hmMaI&yJ)v+ns8?|{8%yNr`kXEGffLG``7 z9|7uE)?^IqyS-I7idjPNFb-wEE@uI?+;xB3-`1SCWqVGzUicsXH{!93JS zIhNQodxa`ILhV=Wgc5F!2*YmJEqYXW-S&5SZiGCxMQ27+qWgOOAJk(|w$H5G+aLQ6 zUMNwBUwk|Y&4f0mG`B>VchjNxI2whv6bH1)JD_a&Yd&7DtU;hko;!h)9&~iDnLp(3 zxd7W;e*U%@h_^L900Y4UvQpAtxBTv?UfAWE(KZ_}S7xuhuc(+*Ys!ukMJ#-I`^3@B zRxo0|3W`f{|5nC++8??B9WMkh^w+$x?=u|Cr&FvbDkgCjYldS*bJ zupkzE#9=q;@*ox)9=R*C^tA5n@TuT>FQk;>HnRU z=^3;*L+outs_2L6bLxbBVX`(mjOjjnpv&jkokqFA_kpS3>Bz*nEHF!ig7sB7h#F)| zcvr*L4#cTjQbXbiI*n{#e{l>|epIE+S53x!(MsG8`DZ;R{rU4#Apnmh$4}l+c3YC9 zgZgZ#QHW^Psq`K&-|4AE&3-#A zB`*kXF@A}%dX=c2WVBVEc&fkT9SL<@O*NYu?WH#Rh1g)Y8Y{X;)T{}@9%;LB6i!=( z!ew6;>_~SdJrw^@)eY7fFc`tn?_iFy&o+^jt??uM+oaTar9#0^@PIsKVb!-=Y`t>R zGG7}uA|&-11LJ9OpKj7fJtTF06#|&_{BwX)Pr*N{cXB+5jeHa#T45om#1B6M=FW( z#cv@j4YzgtRx2T! zb3eG`gS6eRFBaE}X2MB?2x@(aWS6}88h=g+$Fme(t6Cw`ejYD3G{wWu6-RbSt<$n_ zQ2Ai-9tR^Iu}_2g!}j0u%itToV(qfCp?3SD%&|QLGjQQeEyX2fo^6M1W3%N-a|IGw zarXZ3cAr@tBikCLiu5nriYWksCLC<8Vc@m#bxWP?NR~Tv z&AWV2ag~(REVl6_$DlHoF|`g*zF2c4#TTLD*}69tdt^{HuEQ9B|#iYd$5IqboP zJMLURpw*W4sfO{gc7MAX2tAIb|L^=l+t^VH6DtQk76op`vEk!iA&ybg%A)_^Hpn9v z_1@xSR9UO#`=Yb7Jz3A7^$#w1mV`YeAv_HF;zJ}r z)9C6E-m^Sb+2B<-0vk&9Ag`u9aP2P;T(hjyaeHytqNR(oCEA>l&u7SG!$Um*Ysn0# zS^_ICHE=7y1vPcP3H;!-c`S4k+dVSv>Hp#iPNjXf*O$fkklB{?EAkcDzH*Yd52yr3 zo4|S-w*Sdd*z+R(9zM&kEYeQ)BRYn!Djms~Z$>tM)WfX|Bie)yvc_s4Us7jppaO#| z>4UMR$x9+ebYA)vrY&UT+2iuwO!hm);O%Wp1wGllrsq^n^oKnY)_4IL#HE)j{Ikw` zKuF-;P1Xzt^^m-eOJSZ=2S@VP&@}!1V8t@O1JhIU?z8HU;_p7!c_K*K+rq4ZW~7?gdypZQeS{3~A;x26{wC+yv5!DkOrBHzl1 z*pgU}afE8QD=thfLB0KH&2MM4<*-{xYJ6sRmQMv0{3j;=JeLz|5=a?%TwSK!NGIu- z!$c{v{*bMD@GvdnPMVMU@dx{1Y5WXw(sp5r%ZmSJ=_XO^+j=@1k1}IZ`*6@9`B)lM zCXCxpkZ_mLj8iLAo6qmCki#~QJfaiyL~v39a@rd4Hm8gYa5EJ0K0ZiHXP881SJ90(H8->qrG)3+0@i4 zU>silwBU_0fx^kXHv9E=$6t2{m^urRzAi6{c?u17Huqs%ykPeXI~sRTQ$&?|a6CR? zhilj<@di|Y6Y8DJHUm4;Dz#x9v!uyW?GH+k|C$W^Jt5|3N(BzP)CRqoXoa%jUr`>= z4|7PBh-#l~o-$JaFCY`@_6Zi78P-s;I+OPrG-A@0zO>u#HfZ&FLzubKA0nrVhcD>! z!ze9^B+F*Wn@8zOUB~T(uq>^DWqx!pTe;O#hwz;N`^O~{LOvtSsR(*ZKFu|9XDJNf zLMQQlx`O}47yd0U++;oDuO@her`?*dRKmxML9TrhNz!`3c&s7cb+*NL=)N0i^`>R{ zGY7L8WSV~h5Q@LsH)=G+fpIJvQ%I?ojbkF6Kc--b>EnBJ!-YGc&M%qdt`QDot@)I@ zv=~=L)nKQ#I0>SSNKg5>=%L=#Hd&Pu7j89t!uMY2rA&zC-1tfXMa$Q&&CPqPOw?}H zpF|on7n%9V#U7yoT#~quD+t?Ao&%S3XvRsT#W!o>Nv#EA`y`U0Ni%zEC>MP~#y_%o zfe4;R)#H<2XBKhXzkJ&<3x7g~3Yk8-(z+Qj-ri*?i~>sO{OFxio(4wlFy> zCIVscDm7*euKg{nv7vnG1qfvBDtsVJjc$$xJgA5PIQJtF+YK_odudNxfra|5{A?s( z8M|+AMyJ$7ve5i~BV&EKx5$KwA;V0FhXoxsIqDbcU*)Uera zRwA-3lgvcE`QjHB4$@7mpL-~*vSH3HGGg%=D@3l-+Guc;ecG8Jf?>$AinkXZeoar? zEGj;`>tH0>2zc7C71Sc?(lAwV5k^$hZzmG*TZNI%WpiFvUH^8Br~V=mS_Y7jP}7nW zz!n&b0D6vnZr^M&7Bz+{(N1EAaNP0@f+i@ z>xbV2R7p?Pj|Zxx@p-x^x)+H$`MjGcI|>~v)I;~LjFAex-HH|OeQOo3tYsE}7k;rH z(xghsLfXQ@JWrE{Y}4sbxPIkBDLKrzH`LCvIsA0!v4Ih(6sjU!dc#v#Dn@ROzy&xbBflJhO3+&7vz2E(dKo);Eoj97o0CjYp(5uBxS!eysRJV5*~hJ*)>| z0-+`&61B3477{A0*eGFyA%MNPAnVm7p|KE?R!M&@O13THG~06d@sT~R-4`4GqZ7r- zF*6-5F{1PYMS;E>FVyPg4uQXcO1aFHfh@t&WNr0zo~JFCaFAWsxrz%wB2-u*YQc@Y z%4sXsNo7mA>3TLOrV1~;#yOLy^iwoy1JEnILc%Y)o}4I&FL)W^RbFG-|1vP>N;`Q~DFeNwlp;a@mK*=tI1i{U!5w-V zHkr{cc@N9Z0SNFS1@E3Fg3DyvBPbKQ2{m4JV|^~WrNT`&4^~R9Mhs}+<6!F~>N|d3`R_Z0t<9Rb zC~Km1&vz7d!&>#-m~KD>+K^o)4`z9BQhb}_^4Bs6K${`Tu}%Jvht?-b@gg3jFF4~U z+3|cJ7`b8kSCvo|9xMHD-yngnstC>T!R8Ph#|{}Q*og=az1kP(Zfm!gC z;i+7i56-|3sAL44l(t`Mp4CEfjUD!xGbOsHyt1e$Fy%r?EX_%2eY%qw`puZL$zb!W zSDt$M8A=W@LLVk$K_m=hSWI1UiX_o!Th8a=1nIpKn6Td9ZnZHPk1(0+*w-=VSnr|I z3lS$W@aZcqhle$@4wn2InIyq+S(Cd!D2t@5i}KrU2$jnryUv7N|~`e~?7 zp>rV}*LxK9M!>;DYQ?aA0t&hrXoYSr)cy|OdnJfR3N(Ccq0V4wg>PF3)?n;aytVw{ zH7kJgG0WgJhWq`3OR!pkl_<_dwv%+?37@rwiI>XuAfmm_Jn!wFfnf=*K@+iOmi_VK zY-hMS`lkHj-FK5a>_k+`3bRG{wH~W zd`$V%%)QPe`QfZro%n$19$GOAk?}7XmSFJv1Oo9MPM8AM>nmlh z#V1Ye2pQIBQRZnkw%AJCq0K;o$kb?Lm`nZG(hb2V{<{uLNhHX@>HU+jVp-SiRLzo7M-dI&*5`38#rZp`syl+e(t&!+vT0^k5bg*lWw~- zvpsx|&Lf;B#HeY<#PWVDv2r8>g?GOy){wz2dO7){EP6N^;?XqSS|v4F1Rh z(=6ylj>$jTSO4;)<9Xt`QGURakMvBSt~&=TCtR?ydcr>EQVgXa2F6JgE z6cB+u9}nGm4l{bRGe$EkJfp<;0svJWm}eSCwH|ndwF*lQzqsPU@4Gld?_~>&I$-ZH z83Z=7Yy)*$_N4b;p(mssi(q20@}xXsR$h0w=SzjM+lD#5K)k2y_I19hE^sCg?y>}r zJwp;GxRt4PH9l+3+5xcgSOjHR(fO=KgXo40Og7W=@n5}>@P%RGhbAp#GxLO}9F?)< zX7Gs(bN4AVjg|kw`v8(>3hRB{tr%YittuZLqU?pnDssC+@fX*{cJw{Gzg6x#!J+WN zDP=Dlz2MfxVd{#^9Muyy&jzfFzvPhTzxU=x6UTFy6Kw6-!8mZMPsv}>uHrKLQt^^V zI$igvU-xn9G-GaB0Au`Rn@U@M_O=2(1{cA00tLbu^6&Q2^l+TJ7(V})FB^{ci=+5v z>Rj`u*Yg&jfcRgkT`xpq!WB!j8@du=)dKKrB?cpYikJSN?-q7bP-(=gP}RH*Sbg*x&ZeY*c;<PzL{@m2Iq_6?}(3nX91G-m2N&KEoLK;w*06zf;eD9q;$d zXSKFMD>Uss5nB&6sSJH=DsCjVGS8YsPs|?S@*Vw~ksH{dR?T|niy>AO45=Z1%y~oP zHkY+29Vu9nXQNil2%vj@QV$E}8>sIQqB0y9W)>BGq?nZ>ItbZ67i`0r|;iA87Xj0uq@Xzw+%@vbnSK_czy^sc5*IV zlaZKbzpAyER2(=%RL5Uc5TBJ>GCr z6|}Djbz6;uX@7O{aCb4C;EJ`5m?<87L&C!0WuahjRCE4apS5{YN zr}K-ytysULLojeCPQjG7gN!dJOV&3|=@d--+VIZ8K(Cw5-xpj)%t`&~dlJcO!+Z3=5|Z5B?tHp@eCkNojp%HG?U&<0b3cPsJT?~3jGgK|G~xc6hCjV1{%1lgT56EnP3!TPPjUzkyDlm>^Kjn; z$`)L5Ll81NIiC@u72eQ7k;I}%7q847imeDWrIf$+e0%dvAD^)(_Gr#sOom*dJzr*omWg3{+)Ue#1L;%b0 z1i!;|aA#vU$_nzLP3CO`kG%i5sFh1a*CWgMbgsnTe2{UWzqkl2H#+Z~6LzV2qR+ev zx+StslPD#65&uXb`qb3;xZV@#UcJVxDjTtE=Ku*prk&G})Q+;rCB@eSjl;6SexlA7i$u9HV*3}c<*!qOGSkFW$>K@nAnr*~c z4>i?v5JaXCKehJV(a51bLer|yv-*wGxJat6wymW zOz^ecN;h!YXbI@_`{T>%8f}!tV`hFJ`F==!y~t`mqiL6Zt+Y(tQ!dZCz%+nTR{xJd z_+(sSB54K0j0d$q!$dqxwwwMv>GNW~no(~kjWp(-9ZzhB`6rTbsY={oqZ?4&?u3cY z9Rli=yw%P-TIV&Kbg%TFqaacK;!9+ zUtbJ53dkVgRQlXiwNJub>20le zWc|GBVsy8KqQupmTDa+Fj>E{1W{L8ejIbqA>k}4tb}Nqr8T5I*KGE9(5}MQ6mO!sJ z4aN$xOgb)-TkRU%Vro%fho~Gz%ks1>dwtKCRsDAaUXGZP(Eu}ovSILMKf2=g&xo7x z(-;US87#&RPe5fRIEtpsV*S_JOaC!Z8J zlh&I>wCTDKJi^Y+uSdj{%kh7eulSmAuRJIff_w&L5k>o1phkWNDg1*3Y5I`Jc*-#H z?vcqRp-SYDAR{c@dPknBzD`x^Q4nPrXV~#d9MS>D_J}`LNf*ZzBV1k@u@fGJ8XRK? z;3jPE`t=u&!2@W@a7mw6=D%Raxl3(HHI$Q+=k~?O@g&Bq2*t94DRh!m7j&}Oh!?NJ zoWx_VZr5fIP!~9sPAhxf9W^$)9H=(v@6^jFJsl-C-WIe$ToONe4S_di5?*^ zI+DzFUPq~;3qHY7BR|)KZ)7`UloniFAhfa!y1p@Tc6NVGihj-ubW#)i6#v4Ha9h+r zfRexAV6_{tCe}dch|d00mA7Gid92ON=saEgVKmDBJ0_7O0Q!0Xn7hHJG+r5u!gaad z8-25GG_KHX|FAOjeuC^QQ3u2|R_~6Z3}_0J5b2UaD2Ok6LF|7NM^nx>KmDqqu3n4R zkP((wvrKskvOu1Vp5)ZKVwF~8BiHNvOBA3y)h$xN5hlaDVTgVC{qNV^G8L5tUPW=K zF4No#ahX4Z&l2ZrGp2Vt3fGxN&Nk+8EhW6MO|=>c<6~NA(XYya#bC*QO%l@ndu3o- zV^*tGE;#`K_bn96BFJbd5ZARIm3!=sDEaFQ+(N#@(v(ANfw9?|mY)H1l7fe%VM{|8 z`+;}5bp|ZmVq~lnakKPC0w!(v-*CNOGz+nd=Og?M3Afh?LbE5~gD%!tvU!X>dMp;Z z9=hciYAdm#tyC!j{`prw6Op`j3t?WxpH&{KQu~ke=hVy{V1aFsAFAl*AxWk!%_}#M zVdYNs^Tc=3?QfLWqZqVtZhp)>%vfJ7UVf#Rcwx7puuW$rYDnPTz5qNiVdFe1w;HlU zB8EaW`?5Z6!MmJCMkTo7F4@S{haF*b_kNIbv?f6qFm3;=#Q{{(8At4{*(QDB|_Utajy-!&+xQ}d)0*^ z@owxAG3h9WsP7&FT56@|X9>~f=huq=5;b-7G_v{`o=nSScWzM`IozRlWHMiqZhnkX0_-d9lU}%$4Mez^A;N+;l-2naJ{~jI*1x7-i zm9IbZ7mY`SmxI29&J9aKHBqL^8)R@bk)5FgEQA9BQgq#IH0f&}GF z)U_To)}=q9d5>9Usp@?7d@4OD;Vt|b)H~)I!=^gs&pxhDK~1lI*V||kf2+8eV=mNN zrfj>`uGL|=PJ{9+6wb7GlI1B?QqH84Ij2G?NxK{+bJ_%$!FwM*>74?#|P^71%9D!HK60Bnu z)%T6CNTqW(3wb9-KsTzVF=Z#N!DTa2gZag=RWI3GOpY1bagO3)OGhsh@pv4 zzZiw%a`Q~KL0KPReB}mfqFpXMC$kYS_j%Yc5Cp-%i(M}+*a;}yeiw2|rDb>9s;FwS z4CM`^KkZ2-g?qrWJAF(F%}m{G)t5HE>hV?x2wFhyeMe$RSMHXGE2EvHpz`n(AOU;Lp)#U&GxmCwN;v zr3i>(=Vd#jxlW7Vj0$bx?DXIW4g~4BZY6+b9DR|Zlw@fJg6``gH*E~RJjP{k|*VN;}V38avZ2e*(_YJa!}|y z=j)QA?=ngN$I}~@VmGl9dzJ_CxxghgRm`Y(anQVVcPFv2g##kv05e_$O?d|#yo6F= zKT6U1I1t;t51XVd>Y?JPr;KBr%j*-M-Q$^>)}Vv+1=snr zc#ihmXXpjm5-8+1l)Tx7l)rwLoMV{?ww2z5GApG{tP#r)0O#mSE!{{oM+{n9#*SIB z1CA4+eQpKWR}xM>X)(#~YF{<73y_T)P|HYSKBKR8pV^%JB++?$%5bxn;7}*3%M}7S zYZwXFoHCo?ieY~UWv5Mv$8MLu;I781^0j@CC+rKEgsj;_kxWnwZG_Ei07ckiH_sbe z$U{3~Q_B#AG-ljQYOZa4A!Ro&fWBKbUv(kBPIFYpYL&g& zh5^a~KtMjzJcNb7o*Mn#`@e3ff+J%+*3MH`b9OggKvbn3)KE&^)SFv&+$>=0XnHOMi8eNu*ndOwQu>-2w>(|TVv>ef$+H( z+Q7{QduUBDly{*n1h`Co^gDs`Ft-JtB}q*y9Ip=_Lh>bBMvqeAh!KveT&aCJqtDa? z0*`%}pK^YNAtQ@Xp~TM)4F}_zr?DbvO2>Hb*e2 zzvU`Etrm4OabsU!fSK(->Nxs}8>eh$r~lm5i#^F1X?Fc14oj+-F0oEjFPi79#4{Wx zxE-Nn%TLtiV{XP{zZ99IFrq%IT6)`jGVC~t$b`6y1Y_n35gxX!aiJj@&3c!Z^C25D zR$7_WHw(TuFk$EK;pu7(?~TvN(nX*=6KqHg5eE)LE58+Xb-_O zNAfm&V=LBfHALsvU{-T|v#R+&z0QJO>`Sb=HL64=;E;6br9=lJNGf2ysh?G~QTmLW zF)FV^H`8#J2;Ou@MLFp76_nIgBLA_@h}Fqh@)+6L+PgxzLJrA40$8tb7)gOiXJ|B| zHPoS)us<3px3-{)5^mtV$|eAC%WTmtbCR{_tqmNSLkr&F2eq`J^lvJCD^zpl_``rh zxAh7yDo~()@B$*kSrdL=}E_={}H zyDL<{8#v_>cctSS#hrda2~p4sB*E)+5ov?D$As^LC)|ylw!gG=UqvblX+HccT#c|S zwYr<^u%_$g;4kV)37OqEzPMb)14s(6>Xy?+6Ls|=CPuf8ym{x{@sxj=O(oWjQmTj_ z7@oU&3Pmz@dd;5HUZh;-KbLyAEr*+Cfjoof3 z_r;pyOEMJxh@0t)j_o(?^oKsn`FnBo6vPW=Tocg(ag~$F+#huF>*blPv|k#9ejtjh zR2L+7-yO*33#?jN+OmFTh}&4+`ty)P1M#r4Qdw5~+qTfXd|~B5@sKm-t_CugGM%;K z524_ss^~TsrZ3ne56s=vbgFd)&uSy$r_$~5wOmcRR0tfrK~svtn|S7WO2Y!s@nxWJ zpJZxT)q~rT`6F>_IpkN*3>r{Oy?x9uBN{nXn}_3lba~8Yn~%h`JKJJm+&%yzOB;nA+@QfMKjL654^fSCi}HnE-2dg#!jV3f-Nw{%%(}cK6xBo*4@+G%B|Ld{P(rm0U7;bTNHFS%FruAumnpQxk?Sy5ylWi)1t9glbECyZkf>Q6O0ImE zUi*|_RY%@fXBKZpb0pdM`~AYuW6Ap^X3BJN`_UnnFTnuOy{@M*H1LL~g<;tb-Nol@ z2zjprthiyo_`;7LOpkl%P&rF!brW1BaqdFJP!c1Y*&1|p!V;LbLTIldc$sT809jt1 z8|p_24k_}#KsX+8alR<9DDylH>axF9aW6*mKMM_>d6BqbGG?4Qmp}bH21TiciGQaSEo!Z&d*)8GnYdI!pk)1VwqP zGJ+R}++w41xqr7f#kkPbBit`4Pq@BGfj6)kGAzs^2%5C+)+_@7or5=X8)mfXH*^WJ zP4uAof~4$T4I(K`7+OdCf_Sfw_kJrko@Gbrbx)x*5`5a z>x8?596A%0E^v+1BHhWz*LhW5FL$obh(J(x&w`vE#sq|evzD6@$kL#-kb4V1StaJo z%J@WTl$1G9A=OmXo9|)d2c{hs&6xTpU-9p(gi$~l?~?N0uBqhW_Ya1UoO?ZL25VtZ9#NGkIuJKHB6gCeBn&S+n-j;Eh) z&OZ&^aLT73?T2`iYy`dtitrs2jZvm`Vk`Vry!XZk9cSoMeUgY^%k5k1Bh{F+eSrTg6Ph45N?Bacmu);(C=^m&EcO#j;g+q!b>fdHrpYtSy zHLU4-_6&$&=hrgJ&@TbZ%xgLGauOvgq`EN(E(e_iJEclufr)nN57LZ2iD6HdvpldBLRP^x>X(1E8tmmF_ zyA3aCMUT!ocZOckE8yXM&n|d>yRIT7-SglS{csHy`NrQeA!d_~kE3&p&>(a;v)5Nm zYf2k~;{ryo8Ix|08+NJQfs3=#*JJuD3Tvvxr2P&|6^l{6$`oqs#loeK*mN?D8|dDM zi8p|yr$5^Ea-oguqIa-=yZPcV^|81{$}Vb2+}H-7g_{MN=PhF3$|kr_n2F2GaJNil zoZi4UKr;^~XOtA2AE(%`5A6fr>v+taHW<;KbF z)_Tr?P+V3`HH=#`n|l{-b}3P9X5@4t1vmE0fPDbXCMN<5!)kHhMk7R+v1kyhDGlv?J27KuXz9o6j;?;^AH20_pgLPOY!Y@XqqL5XXR}IZ z=JSf#Y@W{tSxY$Z5D>x_j>gK^5uQV{6&{ypO!}g2|joo&RCZDyEN>v_Z(TJF3=CF^R+5-6}A5(7|{*M5b&A&QM zjYxy0o1+P5rz2|B?a$LUTSdD&%Tb}NUTxMT(hi0lRAzjeUp;wTOm&5r9M&#=jSU=jw)ogj zy2N~b%}D=P3Lzj!q750#?=u13-)=i6F>j>D0=J@E&E89?BcrbiT`PE=3OEVUV&&Sk zJ0&HiV@@Nhu)s7}dYOa|5|Kw<`!xlGf+D{j*I$pA)gv{L^d5vmEKS>B4Rc{YOs9I0 zT5GOJ%qK_}>oY;1%y%7UTBUg1n);#hQxcN{TJ5ug1(}_(DoPhC^|0A;Y^+0(n2}c8 z!OoCKIAx6I*2fJm_u&!|&ucQA2l!fLn8EFDN>6Dr9W(HZ3h-+)bY%fF>9p^wO1!8$V7WQM)6&QdO#djycl<`W9efUcAsnHYfTR zy`rhnJ8qOVWx#Qhr=EXJccde3<=>8!zT=?F%d6D)t_}_m-@Mw{h^Kqb>+`Apj_Hiv7fnlvR-6^m*h#A4q|D_>LM;MNkW{#mVWk@_<_Q z-KSkA2!^DlQJp7!$y%v21Ls7j8<5Dm+<~q5LH2!=d5XO3nzd*JBZthH4~=+QC8c=e zUiCv%RnIMAwye`O`f~faZ%O+K){u~quB~ugZ{T-)T$bucpxHY{tD7j+z`P;{?hS|Y z!2MAr5xo@bWs>Wzj_8R3?aCovfslyjLbMECVcgG<_c<+59A1uXmlrx& zvry}5F5Cd7B3Zn3a;O{mi@!=Kym8sh;U$XMu<1T$raLoRWEOfc9K5(t7%K9N)ij8* z;?B4mD3@ZHi7lr%ux1V53^0THO@6oz%RsONgv*;$`yp3X{tNi>bz-6#;A?K#_CpQT zqr!7#*gPx#ETOf}u>lpmu{HDla;DE~`(8?sr9Z{StA)He4E#hLe z5$3cqt4CM_{&MbjMlt2qaTd3-7nW|27Tb_fYzIqIt4-iYszs-)aJy1I>4j9<=THlx zn!R;NGeW@{3|+I{P1ek7YI`#+LqPJ!hlw`2(A{;%VP~iZLny#*H$47Q8y$Zkds4~a;V`*r?=civIO`Zev>MbmUGUBvg_%- zDCMmu_y-ntiIk^xUfRf&T+!fF3z5Vbww^^k<^8|8VkovGx{Twzo$sJoGy@+{>qD-gGB9<_nU z@2D3)ora&+qzMaCj0}hy`Ns###^#iH?dV)Cqnqq~k6 z{)k(@Tj*^4{d(zoDXJ^Q`AXxnsTB8xjlyiLE*}eYNC~`xxIY_N4#Yhv~gR^;@ zMqmBg_uL0~*9T{t&o4whMU+jwOo^B2sy?KvoqHZ(@7eJ=I(JDES@3)Qu@&|R6Qm?w ztA0n>+$G_D?xwt+-lsZO_@%$he^=&su`M=yGf_O$jC#fUOX~q2)2Sijn<4S5GnyoO z@ZGcC%3if-xB|hj;P6VvbXMAE9t)LNxa9tl|md3y))vZ zcms>;Tsd&P!=wp8 z$_Cy<_NJ}%K$`5>40+0Pl)*U5m~jC@nLMlVkKfKZp*xqRk73Ir^rTZTJ}D;8*cP-O zN^Oz!5xg9e4~@|8vGc;>%2SnmagW`*D|(^3AFd=T%QN@g@&_F2fP$6lb7FrMTq5a_@l#1>1B}Ak^Rg$ z+m3wSVG&DVahiasB1d9;k0Z{(aF5R4trq=l{cEmTxZj^{x&GtA=hlIn@fvk(`G~*Y z{0H;p0P;mX{~cArV(KeI1PxIobk84snn`-B@|eg&j;VKCxh9}l4aGgTxJ=C|Jxqjj zCST|&qq2DS^U4V~>@E%rwG?pM<1@VmhE>E+Temd+l_Dqe$=dw(4|0sKY>*ARq`t^! zHb2)w!-2B8E1nQ_ucWo8-}*~=krxzV`5AmkA;@hV2Q)O`T=x5@jlM>b2@3QK{&0p| z=+(PD8D0cnuQ0jo(Q=hNoL`n_?~AR>msqkE&(WO-xzBy%lhi>zu;Fp#$h;88Quo!- zV>qkr9wacKf0Rq?#vkH5g{`h{kUL>17d0G|=v4RZ3=CWH?2*FXHeUHX2A`^& zDa)E9<-|W>9WIfhKBQ><#5-GDOoO*eheq6DbH1=j>#i$P_L7p;x4pv?+t%J@f2DhM z*m;GYt(-ynSS7oCop5+`v15uhMM_#n4fA_MI{E2A3q50=q=vK9PZH9q?Pv}$8VK6_ z2kWRsL>}@X83p*wDaadZpIX|bolNEdJHoe@x`*sr|SeU-%> zK%lM#;-^w}yPI0*Z*axp}$PFgRBr7%cXN$AMC7%e-Dl6>a%g%hu@6- zq57Ox=x~$?xr4e1@6}fsqn*OU>xlciaAsbl=mSm3G&0T5}I=lwUz=>c6xsGsYXEy(hh=pZ3o=PH&R`x zKrzhf*k~U{0@A#G0&S#FJS36*b3$bI44(Tu8RKB_`(@0BcDKj|wL^_y8+nbhxsXCH zlgK-yn9lcn#h!@r6GwH+L+e{LYj1siX#3AR>*pXN1rLsm!8Nvc6*0Nhe-ThuDa!8T zVTPUk>20eD^(@nJbFb{q+&7hrM+C%@zN2w&86}4f`F)_)rrP&!#MB!)l<{ojK+S&*{q%x zvGzLGT9l9uSEJG4%H_3zY7v>MY+B6PL{oXkT{oDTYl%!YT6LdIg8%o!&O`Yv*t+#Y zgR^6R_m|1+wuF%{Z5_n6&&v%yS1OHpItCVmuo-mNzWBJ zmd|FBD-;F3Cb98QZDgBRWE8H)izsZX65m{7tJ!0&9HKGi{NSs%9{jq%HtKa zr*str6dT7t4nmp4fCMNKI-eIQFTStbAbLc^Q0y6^5!@U85(LR^B<10<_M=s*tC(at zqU>bdwvT!1Z_?^TBKzTA_}Tw$z3ds&GX{4QWOEQEO-8@8Q1s(K@Isj`38D$zWBM#T zPzfL%y8cu{_hmk$Wm}tP1+{EscnKboyeq6sB>DE?vUiqsVnrzKc2@ zzH!SWWn+@50eDSK$HZF>oG-cF9*#R}M3B`AULUh2;$id^^I;Ilbi~d237!@-v_qw3s-O8JB_jB8dLg)JVN*zwkrEchj_3EkQ=6E`oOq6O3*Lm~gW)>v$3mt};Km!W z`lqZSw+t@}tk_Qg&!q~1U4OV0AhnIH(Sz-xh67_*))-Vv%M{ysC1OFWax&pWi*z-6 zTh8_6M9*t(j+)omk~rN)L^i8T-+iQxnpHl;^@ioD( zOPxI}?U1dmwYzgm81kkbel`15ajUyfAhBdjixsUON(}!*%=x_Z%ec!}QcPQlqSOkt zR2+yw!R8Pt|6z6}MlfySS#!$xG5}7vvGU9JIqeleoeJ{5`};SUl34+mV@fAPs04qL zKaRc@tCq)1vBo6hNgPz|CJBMWUBDeeVN_4RTxKGkU8t~`$Dn^O9OH8d*km7$Q^Amw z+h*=IfM?m`XDxSe2%${eh%yb`#4H3iSsARS`nT*4;5?$XqbY0rOef7kHbf4;ufcS+ zhmS)H-+TNmm8k&omOPQpy!v1Z%pCmBI!8P+3Xkg^6Ju{)q=ruJEsdaE=*I5yWk}ki zS`^Rc5v9JDw>9}0Y8^!d!j5EP-06pYR_@c6*6JAK=&>A0lBL<`#$<-Q9~!w`!{$-ccZLD{SvS-Maum7v^$ z{EdV+Drt#a%6Ymg1T^yhAuGO`XN!P+$8N5oiN7xJZv??wgaY_7Jp^3;@{Ac=q!zdx zN%S6Ww2d2D#VfTQWm~g_C2{7U9Y}D7b=i)%$vl67(A?w0Kw;?RdY++*KSNPiGsj## zNFlVIIb#w=i!~!@TP9nwMmzT$56~Z+Zk<*}@l+0;%mCeXq#A&BA5u6}gfXVCXZO!1 z1*DGD8{H1lUf^zYUXm%#uE|91%!{~-)_=bfKoU=MdT!}TY6C%a3WF^%*4LnqZ6DUOB_2@E!mr;ek zKrc84y*+hMcngCF{)4bE{`NsY?VowI{gd2r?lq(tS&>YiPtSAg6%zET*?}P=s{gZB zBFC^7_Ak?^v0!BqbV0>^`KfPz;Rw0Va@(iHcnt%j)NcncFmJej1 zLd*hp1-y`!9KhTJPJpLYBCA_W{(wO6)Nde#o{>Gu;~2#=9Kv;OtwOi zc~HP-c&b%sSm|NuY>oqOcw~zy@j%Yr#hFG;hv~c3z{jE@)3e(%5vUZ7S(Dsiu~Tsa z6~efBsl?^uu=Jj6zeaDf?!eQQviB3$yB%Uuj@G8*q?G^UN4Lk@%h zX*towl)klCl>JB11eYmCda--1Aec6fb z@08`aSi_pS3<)B=Y2Hw`BR?6#p9;RGe}X>IyX??FdaMhIYwPK(nW))Kp;`}hFm7E% z$i=?MIp9rvwIR0jd6yQcQ2S6x&wVp=`a&&#VUXyVyb;76T-ZD{ZZXp(<+;)IPVgeL z+1;*AzG9f9%y8aWBlS#8Zn_>>-2RXC*F-zcEZYvlo>joh7ps%={gu%d&J~^NADFz?<{ki0EjP8kjF4Hpy<_EJ`6YHQK zrAwBT&`=-Zbt$*g=ITw@x2@qfUqMpeUz+#qNx6S%E;K&)OwlwGv@T?(@p{Z&Q}iwL zCjT?0NH;-Q*~NTvKopG64r=ZvT>*`}l^NV)j<{L{`S~piZ%4Xm_30%vKM1yJ8)Zh2 z1@eXaosm51G)j_?St%}QZ;wfDE=CS5QWcvQrQ?_9FClj`RqKT867|&?$DTv>1xy_Q z*C+Wpr1v=L^}cv3x9{9=Fhxm4^jZL1nYL*kenez>J(=;@aAn9KtBbz-fVx2T0f0;9O-(XaK{f$cGG{QFOT;*>8)GqVJx&Ob!t}h zh&bx`7E+_E29*@jRExpd6TPMHbe_&wp)!`FPwEnqEfDrALL7LInUAsof})_Wde+^M zai*8bQSx|&&_BVbUt9TCv=!v2AWuWj))BaG=ck=60#iPvxMQ5(j|R&Hh67norvI+^ zV(cLnYLz^(2Her*)@M{f?{OSss>H1PJ}V}bNJxbJ;XP~xK=zB1GDJFrwG8;}o=@gq(EhTs?YW@N!qw);v;`e`B#$ zRuaEZjt?@lhK<7!nc;HKBc1stPy7T!^{c$k41%X}>}`0t^)t31m+Ike>sEQ~(8V8Y z5Pu*U2s(xAd=&~yKAsm5h7Md7q|bUf5y((!)XKf%mXM%gO-y}YCs5NeyM&X@J06hQ z^zwfL*7;RgSF8q@!M_iyp?iRL;S*MEcY;qShcE^*7{PFME5(H0qssavx>*fgq9ZaR zEC)GpRk=NSmnTO+L<6$&&LW zy!C@mR8U=;H#YS>OoC9zD;sv6eXchSF8=7KQF_5an8y#I`dqH!e!K)_MEGr#ax`Hz zW{ZOF_5=W_HI($uIcSUTXO_w({28=%t}#0QBrcENadR0s${v>&iC=x;qRU<$hI3&- zG>N@D;u=^%Ns9E<-aPXtekXQE-QjKaJcGxeelYVl)+@~mnP~M460IPbvgD&RwBzu) zvgCUk(+Rp(?BxsNEq~*&Udc}L(h(ustD{&K(%B`Ls?B0}Nn>5?^T;kuNyb9&?>oMc zzv=6<+m%T}hi4|#*!jEM-CZoM*F)F772v6PdyYZ7U2b_b8D2nfPV(mHP`K>we_qCt z_H&e?Xf%<4#fyUvikra=)RCm!V3fLvG%fTECnOTARJB_oU%2K2BjkN? z0qKNe3ZFrkMOGC*dOKs|MJRzQcF9p$0*!}+W@+)hd&lb@v@leETvbWy+Ws9?vY2$% zIN%gTE|c`QA>B4f4)=r2mWdgEG6=n3HBl&1^D$KacS=F`@DaQdb%nYcXYO2t8sCn0 zy?VEKPzZaW9Q-)bCYp_Du`eoHrF60xG)UJ)Y!wVYt)F-pp*}7}j!uZLerSwuoW}Cl zeQI<~Rqc8nxGT^{0bg-*R_(oqohV!?yIqPv2B0sE>b$Rk z$1$p7mAZewu*QN&buPqw65;*!3z*PmQ*qw)xC=tAcP`uWy8)ebj1yJ`-p*#@S%f_)&qL{ru_IhtVa}yRnZjjN+>vD6yk9tZQh+g+1#2z)0_3F|o3oAru&xFE6lfE%kbM@<4~e~udJ&HXBFho&dc2mErk z7AwiQCXDZq-~{ioCcL1|ZJJ-#^=47-3oU;xA=8XiPk!iux?Lp8{+&OkxiY6jreUBw z3%e=0PIl{vN+TVS7SP$7Y(%lnoTEn*!k@1Ite0=CA%Nj&Z*SMq`{M92+QxKmgC;}3 zjuWE_;wwL2j;Wpl`yr6~%|rs7)A+WVY@njo6W7`#oMxOSZhEfHEjT}_5L0bMez#>A zj#2uC0`A8zJX85_8G<;L4I>)zBh0o?gYy)?sH4K$zXw+ z+f2L&p=ZS6rtxA##kIVTu~PliUI>ExUjoImt?1|`iCecO1o8S}`lGi|WTZ|%ZP4;$ z>d}`KeCm8^Uk*(uwi znP08ND4=QwkgAo8W5V5VBfH9f+p!A1?cw#D!kVfCwV8STI}-Mf;io$xX@F|?(#PPm`1qnOb7>|RxrVxR{pa$q`6Mr#!DhA(SK_rx0Uczw+Vkf0{j;Cc zdoC_>wXZcxcuDCb;cx#@0K=`5at3F+8RH@%*}7PF?=qq`%m2dz+i)gfdX7DUP$+|M z#2<+ryi6opBK48FB8ckw#1LNX_r~O*RIf4OS&Q!-#d)!x{l;=wRkOs{HVXdwD(EB; zeZSfE+l_X-V4P614F^8~Z%ab>|AiOVIcBezycD@y+XM#e`@uts&eP%P5y@w#Ln1_i zw~Z+`{g)tq{Z$6(F>N#`iH0qaBB_Z{CA+Hf#=M9N^|rl35jv;oE?K&_z`n5Nq#vOS zaU4ufjn_DY>;xS`J6;HAhfIFkDbsdAIMYz1SR)}`B2!;ms{?9W{qCQm*Xeo7P<_T4 zJcD8C8vD}=T^q2FN-g|+{U`tZ;$!bvkib2>9EZrP&QD~n5onu0&)#L)s zw)`E1@}OqECO0+1R^0QeWhBa#m7Q{T!8ooSgGzvpG@#5}f4LAp~yx&(&qt}i|G4Bg$`J@Ds#cK=?)wU2%6&$-q) zqb3tSx!SIK#`&Ry|8Jd18>4)gV`p=?*!u@xK;YpYaTOw4cj3J#z6ArM4JNbtX}H3H zE3urR#f}M0h>K=J8U0e}UctBa$6fLrg>A5=oF8$l-%wSxx-}7I{yrG-EH;PNN3i>ma-Yylcq} zGx{fp>X7tl2mG6Y?rWLD36P#Bc7NWWjEBe!aZVHf%cI6pwK*xIFPNnenxPVVm2NfWC5Tit3*llGp@ORUiPd7gH#C{02`5e6!{S-<{^~S5Cvv zsTje8G>$K%tD5_n=Z`$Ci7`X3H^UhP)`d^Tq>5hjE5=Hmd7G1GOH!zm&@Wt~EN+#E zLH2QDw-obD-N(W3o_#{WINlvTPUnB3L! zhb+fQ&#tbhbiCJqEZiopwXdUH+AdmVnX*%Nu?bq=;o#vD{j168+={|wwvB>*5>~5x zq!#Pf{*;^~e9AkLC2_N2*HwsxR**8HyPJMWF+Iq|I+&`G%jwm~Vyr}fp@C6jluD+y z_dQAYx(~OZX^Kt35dC97D#+V+L|K#5j1umQnlz`)Kjr2i2eWvs9>}tUWZnBHrQ1@Z z1@x+Lma@vbu?x<&zS2pqh#C21*q~Lx{a(r(2TiVau5K<7w47#@^qtiyWDt1kTy;xn z)3q55Ugxj#u7;OW(25H7mvz1wlY+3w?^tLV4fq5KE@H{R+A(aCQJ!t=i}_MUE@8u? zBto^M7__PQ(9To%)&L^uB0KZR$<#Q~!kXekz>7`1vPEO&&ke+gg0kBad&T%^u?1Z^ z_@R z{~nGhgQHu)C5s-d033NxmUdOHUt8Vc7Z=Ht<~6z#ODz}uRcio|1U3#~TwKao%ikxl z?$v#YVX3)h+|!2k4VeqKs>hOQuw@wWPRO!OwC+!`(`g!Wqd}rMWcs~JMSx(7L>EPde5S@LIu7HyaLpC~67KOqGPXO*bzRwxBNZhrpLC zdtmUcDkPidHFmP`sv)6C>A6_ktM}Tb@te!-3iz`kEC=7_WAQtJLa z$&e_9|NNEiM9OD&GlL>*3j%R(;X1EF)iv85;|Kgpz*{dVB7Z`Bm#kOHL=HSB7g9wH960$u@{dWVmJLKeKa7q!dn`6uOQmdg$s%k{inbH48D4?ntIaY zUUyC$O4x1-x0?9a*-`!+N&g-Iccp#Y_e-Y6PH95eHk^1|Yn%y^KKZg@ml)kRl2ysm z3a2uvb@fk?3@H*5J-W41v_@a6uyIl$!?3MCgG5|{{au`2Nh`Id2f9!em(yZM>d2Y0 zOkKcy-kui;ef*l8SMH^Gt5KK6<3x@*9I|QibDvmiuNV^J=Y1hz#4R67Me6DdNXwu5 zplo2yYjQ_~`5;Ls(`e%ocb4wYZ}$~rH_eJ+DbP)Re6@4CFxMCuLH z=|gQn(mWj6L7LOf4^$RBTAp=IviG@uD%22;v}ujP+9{+ulZjs3?Wct7#(ZukQjFk< zNVA*p^rdbTL@Tpysdk@PL3&^At?+@89ZIP0%Ds$Up% zKKoVxfdUoLPrL*LZ0=AyaE!tBVGJBzS{;4$Yq(PQFUoGD21jNN5aN6Lx3GI1yBp#p zG~s+8Jh1=$SDKZSvRfkYZ!=~$B{Py&s)Bj^c*5#?u77|`9K?t)Cf&p3I`H$ev|+dF zM}l2t-xRDfxrLn^eR6^@H7Fm5#~>JKfqQ|zYwt{QH)LTz=U2Uac2aE0vNIN}^=`lI zmVxFMFt?HBoJqvn%B=HV^FNSmBIDIB{!Hbya#ES37k~KkYen|68N?r?wZ(1#*kC0v z;6K|8T5JnP35%7Vzs=-x!EQtIf6dEjB^boYZZf~0zgZ6_>r7(6R*A(@O2s?o$ zO4xxB-0i(qTWp_8<88hy-BljF7^^LoO2?|$BZ2#M*p>WKg<4z3-H2N#Hi|k@Z{u#5 z`pHm(h2yP`rqI+_EIoTJkFLmHDdqP_Nf_TjfLn;R>cR|fSf{l+FtJI0-1~kfJYh#O?{U1|-SoDJ7gUK?;>YqfzyyprVeePJ zV9@wrld&$-Z0?oZ12JP2p! zPA?|pNQfuLL&G7Db&k`45fm#}|gvs*jmC^PZQ<33w)CkvK+#8-k;!s8;L2hcP zcEKc*Hr$SFmY!cCA63IytjY4F5*DIP=Oku@VH@)#VZ z0=y3z;NllU-SaX+cOp;4R*hBhlT(CJc4xl=zhZiK(PQx$Jm&%AObc-P_+qIIXXNF1 z=RX^A?<7>M;u?Q*Nt`AauW(ilWGu5{>ESPGns2s8mxHO4?YBWHZzs%})~063sD5nA zYK;erTe5ahqbFkSarCgOJ9DAYo1b}gVYy@NA1bzdvC4ECBz4Z`Y}|v`+yE`*<*@dP zdkT@~5Z6$=ZNS8wo@(|xo0mnhGGl>7H#>u`i~#7Oo2MF!9ESZm7whI2BByp+i2fOW zdZZ@S6XssN=&9=udAE-!*-wK;?NyRv*+%0L>o%HcI%n9Ko^rH*W<&Zx6iFHF9gmj5 zIE8kg?gf&s_@@&;SW45RSGU>wWNWDHeztMR$$pwdYdN4}G)-_i!0!G9CBmWjuFBoO zi{n&eHO~E$&_Tyzwd+q4Dj$D6+5Jh^mQgFj~gf zMaP(Iv{-xn6H};?D@OxF_k9*c84f4@9L$@2uX*two=;LG=Kj)lft1kqSHUhG$j;Mv zxB@KbpIgcJiYH1B2Ks5A{Qerxp76K8dJd6T8d&g{PBXb^3ax0ICHaP6?5Va!O1njQ4kOShjvt4GR#;)WIJLofR8i@{SWf<+aQy}+3Ia>^` zpBH)`9Q=9bcW)x4a#8wk95F zRtXxOGMCZ!l+-<0Vod^qJ~dcOY)LL8skga~&Z^uZ+g=)$+PP+^FSw~}6cwNjYcHgy z1?Q{Hs|he%!trXwT%HBitDQv^YCfsd_J#vY#+^8RB1&K-smQDeB6wa-*oi#=elj-; z(IS&HtCxvUJ!cPAJLkraFJfJ{=?XyLZhc$n8G=G=1N&d}9gF5ZNzcKm`tO1lp$l;N z$XfwsA?8ukC!HgxuC_|5C_xz%3NE;?*S_x@HHi`cLoP(^G@QNUeiT7H!JRmgV@ z?%ez(GS+r+Huzy~-z#%lgo`Znc2dL2W8VPjVOK=>3_~TJf-SN$wKatAV;#0qF$nvU zXrX~uPJk><9iW5#qeQc>_Gay~ktRj*MT-YL3X(G1w6eQbzAMcNWa~zhZ?+oJn#SF$ zDpgw6l7ykMLb(d%A>K%6sb0zs>9AJe6s+cWK1ols>*B2&43p5Oh zw}Zsg9$iWG9vfL89y1X$&rep+I|^59$3`v{z|SyM-k#uS@a;)XJBv6 ze{JC5`Q9&X!Gy_fEqHMu8R`^XUfhNW%)_B1+plgIdD{*KH)Esv3_KSI`ay_DpSMe12w) z9|4Z<9thEJjVUfSb=}8)-6Z7JwX>AY0fL?oR;VR0uT*NQ5dWKEwEcT|DjSr^W+ z*W(Ng^|-rj{om=q_LuiIZ2Te% zq<~+k0j@=!z9^5efrQLpH&lamNzFq0igUM+!WMJjpGwUyj{eA?&bU2#+qwFqbYfTa zC$72kiVM`~R%3_JnnbBFjoH8|>N;>KEC0slA&HhjQaTJAG<@GUmJya5nQ^?LgqNmG z`6ed2wKdJ(KlFjZMKZdG6KQag%<~}R!e({vM!e%VgEK*MA;gJ5_dl(4AJLymAnN3? z(#9frs@hVxK-jMHN*60EgZz|9&^RjFFe)@r$O=Z_&bL+hMAFLEjuVe{B{dgkXF~jE zbzk(kOm}>UWMzq5(PJk$_o!m>E{aIC;HYy$^&;@6Tf?l1U(wj&K6L?m7U{n9Uf`26 zVXW2u-`9sHjUI+Y) znXuhxN^5K@|1XwG0ik7q=yQaL&~rCVo8x?*aNqrGORr7xd>V|Q5-85D+WLNsz0H(K4Tf7Ypp`|vrlaTfD|tG;{lkLXV2veEuD^OFlp zPN0Lbefg*&Z8(m$Xqk={w7D)-cMIZBucFx(f~uT1Q@mw2sD;GSG;oUk07Kcln?xA= zr2|cB6>fN`R+D)J|LcZN&UF$6IuT-qW6*7XOQH*hB^JBNK#MonXItFJ|-TaFvF0mO<(J z6{vtXKrtceeKz$Dm~Pir;dts@xAs`2N*=yDSB=i>ZDqbu?DOiTw$S0_%9ik)L+;CD zWr`30IIVIvwUB`wd6>ezmp;F*ZnA!cL+Xl0t1Rq^XhSC69k6`@lOcpei+#PJc11op)wPh*LBMThD@4I5i?z|RxowIwS~7{MOyR!>B2C z1yQzuL)20vB!dp7@@TxRM!3kuLkj6aB~dJc58LplzY3+EC-Y-qd~<(7(zJuE z3)TW4em-W)TA0T$H`$YJUaN|okD6jY`GUmR@L_=|e4ULkHivNVNb~w?k<(})NI-LPi zD8@b=&(9P5_q1%)A+=Jw2L)0)|M5`kT0*ajl~?JL@T74k;6h{Z-4GW+LD`62cqcEF z;Hv=s7s{?$F4owLX@x(vuDkv^r!zBA0rDtZ=n0Eyzv^|o*nK1 zQOs5vyZLK@jIfX72M7hkWnaehfR$BpD&gs|dO4^Q-iGSaU_t+d zOS6y3J-V?nwO^Au?KD-Gb|gg|vVI7yMX_Mr;<)Zgf0b=GJN_Ie`J)NlAESnB^|t&W zDq_mXJhuYk2n~&kd4qq6gymasPDu&`t*eA=q#6n-vSfYnzLhk?ctH+FX+gk!CT>$B zJg8KY#AxF;NugHU(bzQu56M(hKtt?Tj8;FIkn-iXt;BhOcP@d#F#SmsV&D~B3H*~4 zQjfO(eA}VhGeJf!#%Hk?{UUDF!`kFTpy)R6!i8NwEhRSu#Tg#rww_>#+_+^%Qb==m zNclo2z4sI{+o#JzM-#C0gpDHU(#4RCnCsF)O_ytiDnn%NPpqRrQ+FIxA|r~hc>^5s zjGD%FN(8R3lQ;?fNO18FLl6n}5CL7*lPXhGJndNZsO3~yd)rNr9A1r&lJF?K?dd-<{Eg%ys;AK$PqEP;wW;HjlTr>R zI`H6hY4eWaJ;4f==&mdjYw#$j9+MAuvo!hVzTF0m^@?MnDy}`Y-6r9! zjb!#w4DqKran-Qc>AB1`4*v^7aRD=96%Hm&U9ER%cnbmsb@(+l7H3dCo_ z{%g~xv;QnTtlPeV=wa~N&%@jd4O~EQY{aX#j_(JOAAKjwhCjP8+QN(3`$@Z~ zaRp=d9l$m;%5YhUJdY>~>y^5$1C=2FkFm|tnMi)bKv?%O?`;Kmjat*y?w;^)zxRW; zc~xGcJLOwB@^7lf;-($I`g}&^9FywhP@By7g z*2_mhyh8_KUj0?;nf6*%~++Bp9iGl##|N7S`)^nD^FTMBF^)9%BIeLgfV!j!YjR z;uNKRLLelJSF8N`+#M6WeZIqUeJpG1p~trJorF(uRYkDZ-8{5|-SMnBYT0-51ID?W zL`p%j@_S}Q%T)?HReNzHt$V~*IT_7^90W5A7cTPjf`1XK$OeJD0kU`9iPvcM_z#5kA9G zTk+Y*gX54{x35UPqxz1|27R;BP=yRFFVP*J`=1(AWVQAmq*Hy@+wiY7%-7yQ?vPpw zcfN^po#nI}F9l)t*U|5_-NU?@H1_X`+Vhe`c;zV`<6_$1=LPTrXmJ1o7Y-rt; zk*rNn!F0X)(w4|^(oYEG{ARF+=HEO!Zs=Lh8^$3&sG;7;Tyml_pU8V>K}VFHxqn{f zHM)pM2L*{z+WPg#$VcBS+2|hDXU$ZdO!}ByJF%XHf;`r|ZY@_kk%S}|TC0`VIuZgF ztcT3v5s{>Z8I817`5c9#JVR{QX~iDZ(Bq}pW+Gawpb3;OR5re+gs;XWM1=ZYRH{ae~Fv=-q#Z^`eWa4!YMocPLv zkEkAo{jtRjH$jWzWT5G6t~0aiOSv1*!4UfyF?FCaTmnqS&ct422~hqnvw(cl5;UgF zpz(M+((@awf6{pR&<9`buU3sz$lS*V1Kc7|T**UxC< zj}i1{ZGh5j>d=DSRY5+I;7(toLSG%qRec4F+M;r&^Hv!@@#Prgi+|JG_;%LJ33RBv zQ_xRKYopCd$TJ0ZPgPm~DZtVFm@oAN)Z@u|6O9HCt}lgE1I&`T+EbHx12>_$<>J02 zEMyo$--@${-1(Z1hc13nq4C-j@^^{h$lgRSTs3&}YO0`d3XiK5EW>Xtx^v8v9Gmis zc0dt{_2U<6k=FRl?aMbw5+7P@(o|*9?Gv&ZuO@SdHO#X?&6+yGG1uJE7D0=o^3`5y z9dk(G7doT(CI!;Xt)bf;PW1PK@LN+3hR`FqN*$Y}*dC@i_J`-OFb?pExr_2qXw5r? zNrM37j=)dPw=}y{F-K^B32cA=`bF;)c*p@69Gmnc`6Z{n5H)E<69#K!r%mdwK&lY3 zeR8N!$g`kS&#cJ&6vMUZS@fK*mSaGT?c4sjVOf~%`fq}GZpQ=PbE{zKZqisB2#G0U zZU}MDmEqNV;G{h<+$Cko+Yz~sR5y6&&dyY~_)Q?O@z_w(j9dV!Y%%6X9WT$}G-l5smGqWhrhm;Zs_1c^YZ zL(CZ%lgB)#y4@Nan*b0zo#;H=R|(dbM2eDr|6}L%@N>TFujEw}KPkyzpR7oC=0s_O z0?&()FYb<$ehU7KlR_Tc6$anLij0&M+<;-ufEMUjmpZ^>4_voLG0k*Y!K{0q@31topML}d15)Rm^87xb2yNGj5CEpz zedw{DcLhp$kQQ_$Kd9rt1JAzkP!6-LOln;lN`DC&fD)AaGFK+mRvZ}g z{=Q>Nu}X$@R$Knky`U|C#-}3h<|qEUTcdNZZA>DQ`@8qIaVb*I^5pFX`S`Vab5usU z-^&zax@s4nPdGs@>gY{S6W_Z6Yit^!B##Up2EN>@C{5~(eHFLEqv$=@rDOH>d%V3% zE+N8^JF@*;$-yXb#vF|$n1mWodUXD+XyMwWxHo+Na~kgqh4=5+lMd}P44nOSGto;W zX515>il~6jEGkD0EdBI5DZ2ynx5+P>-rPvWrz!Hj$08v$gEB`V#Qzo;6Ej#C?=vt_ z&W=G`*4|Ytx-7f=gngh?gNKr7fQxTU6r!J+&~nfMx;GG{GV<%em)6LplD#9S*DE?* zt}G2saW!c@Xge*CNnJHdZ^Xio5YFft@ygA%HIMM~rL;Y{VSfNJil3Zi{j0l5qWb&e zBW1H{3`wJAejWi$>3AW26#2Xtg>o0{vQahv*!OCD`_en9cI;{iT_#ul=KW9@OUQE) zlF`moBZT?k>frH~6=HNp0B^LRiO#oL-mH4Eh^Xl!FmC z*a@8lQ3TF4tzKxo5(}Uqo+=mAhRCSbq|A7uS&LDbN9);2G}SP9`RlXj=_@R4(xr)a z-pH%8dKVnCeh+q{+?2HIO)2~tx@6tb#bbQi_J;V9bEA`5)OMc@Ei7onsq^b};X8vc zg1I(=&K_~qZnO?(IQoT{k{{e;D;?$f3srj0CUOdn|Jo0|g>dkbopxh7CS+bliyfm) z#NxRJws&j2-|5<$Vw&L(%g<@9a8KsPPETC3Q5*aTXXlKMkDQZm`|m03qc*jqf3orG z-z3aeeZDiy+QO}bApSPkJAz+Kagn8W8oldx`%`|aIULtYb~7oea&hvrUlPiDKga)2 zPX3|%{y`FMc+A&%bi*9XGUm8j3Drc7X zDw(n3F@55nJn7nu8T?~!(89qE4641&3`oP$q9OB+bP)t|0LKd33-B%0E>GPGPsJH2 zkC0xb8W<|??d8PA1KV%6A}dI@n4W%Xxy%rA{=>tK)gG9m$z%A*Bj!N>Qz^0QP4dKk z<^l}ryK{^DODbi1jqm9-L)fY!3Er5@@~Epzdi@_gY06Y!=bx^WyY&?FpndFq%Fl=^ zGC_L8nFW#A-W2iyYjNx3#7)fDEw?O=4x31uSkqRGtg=)vb1cri3;wUhMMP$b!?Nk$ zlk9Hg*||1XP9d`d)V}w7K}s#lkc_Tv)MnLXiN)(tB0dVI$b1 zSO|WlK!$=!wy8bq3a+^7$P~S#Xdq#xF>1}C3J2A%5(x&8#4c@6T;YSi!(MHgb;x&u zfpceJ(s?|y|5lZZ&)NczjK`Q?Np*< zQ>XuCX3R}}etpfni=b=`=4jHTOVJ&x$j9X z9?wwx9!}S_3+M!t1QqX!p*_Bj!;1@JTMTiZcF`Z)kt&`pAD3f|WUj#GrH&u?^(4`a zx>gt?K4O)%506ZOyR4JP^YcPlv#2Qz#{49pdxx{N<}%7&aH-0NpPIreBQ0#sC|YC~ zNmuM;>R+x)>1EFPK2jE+v}LzT9e9sj5|{8ZP_<|%6*|fpHJt~v>JLED#H_7{1R_WC z_HAzB2qE*bgegPW5|{PPK%zVLzBGWQbG1;IyhSl~8)OW{R2%cl&}u0Ck{}$YD!9Qw zj{WMTjBrQK6NfbDA+a>q#kO~kKE2Sk3Sxi1} za<5Z!L`XYZ&{HyxxQMw*8n+ip-#_JlkRQ%G*4`zR6BxN5zi&ZsLwuB+=wX-20H9J+B-!PD@KqF3evGuiYtF{S^y_b{cI4J|x!9vF3AnkNyyj6eQ z+#UgCWDmxyBSpLfF}vsL!d(=YLuh}b$vor`*b;YQwxT}5=VN^Uv6vR(-;Y#=nFVs zTBW*DGzmpp`^A5pNR#{;^!mig@hNc&Hw)lgxTJVyXc6}!IrD)e`3Wq0{n8-E3p1-2 zk98|o#@8nbE%5Q;9PK3dt8K?twZu8rpbK(@L zM4O)-;?CR3ovwTdbGGgpw>Ya$e^>jE+<2+(U7rR)HV25rrlcu!4P_0g?Inp^3Vi#Z zrPI+c{*@u`TxIXep&=inInfdqvKBUfDsCM5%z?;F%i?@;8N}Tpu&I%VCNhnw;)#w6 zy%veCqk$mw$#Kd&+5Q!Oen|{m=R(VWw?Y${)#l`qGb+moZQtF_Sc7B{f_ld6w?x ze;wYn`?KVVpE-5*@~bLjc?Ka*&TyPspE>>M5iVqIeq!Sazzdq*XqyVrSHyXZ={A+& zLsHLi=~5mCN^xMVkn&dr7AUi^kBkG9`Ae zUX*PSt91K5r+C`HlG~y#q_nE(hrTK})!2ceYSaAheJ{=~ou4Ru)`t&C=Da*F)n4-b z9@sYxW9@E^vg#w&CT_xtWHZb3ME+?xa$3g~92Jc;44&5UGa39+Y0M!%Hjzy5`%%Ok z&|%UWm9VPhgki`M6V;z-`jF%8r3adcd_DooZO>m!1dK}gH=2`N;i;7U-$F(5jVSom zq;dkQdtt|D6cOhe$`3T`#%MZRb*eMbEam2`pzK!DINzZIx&>F^pFH1#<|wY-bfk!F zUo*DYf$?&3WyD(pv220^I&0r#VA*4jli5^Qm%|>qyI_m@l2kdBrQN)n!;8+bRZeV_kw(#0VYkf)fr+3^YbL^&y(Pmbh<5X0H={xacKH29!uh+BU)mznB z*c)Wa*0YiwNvIX^zFNpSZ)U})Qx96RpL_q>)bB2eQ-3fR&Q9U|VpG4T{^8(L_5>fn zo}ze1K58j;l&qw;>jt8?o-$TCc}v#cdw0Y9v@q@Q(+0X&S3#GgJ&zHq&J21korLY%3r%@N(*T(-@<*ALRFcywTH!sSh^4^EK>@#L zPdk3Y@gu@^brtt*@H0gID`8za6Tp3Q>clrYQvb|pjDe*d=xA2PER;3j7$d`UIJz}0qb#VSqQ2M!Y% z)&543vw0Tb4miF~SaP@zNt8ewWUSd4CWv*4v-lBby`>^BQ4}^EZCyzpjP|_s50&Le ziK%FCtaD{SBud0%p-dppnmv@q{ijts7)0YeAA(9WVpoF^0Tnsp6s#w>$*kPJoDNp* zTFqU-poI}L66bX3RG^x>8?mQoam1EJwSw*s;`Vn>qhPe0dbmC#x5laHNVvl=(Gfn_ zj#NY%kx%MBkeUX3Is($=tIfKeWZn()JS(0%1a(Plna3u{AZWk58s-54NCi|nj{P6( zb{qTjON;?-Aza$6B{WU@=O5ZEz5*5t5zBu^lI?PgtYn?q;ZueGhLcUS++f2oF&Th~ z#zp@dPjLi2()|%*3TfqLKIXx8I5;v}8(UCE0$Exp&yh9-C@H=Vcgo?_-_bxl-`>G< zN^3a(=z^zj3DcAf*$1(zkOyjgi2zHoysPf> z6#qgW_U%GcLB8pcGQqN+0?+;I!>-u^(T(o@!x24H1+II7>tS#pQ*ja1amd+`9O6PM zJg^jd0 zD({CkUa~l+jWjX2`o6bRSTj|0wvK%_^K8_^?Ms^Y$!#LLZ8JVq8v3ucHGkT&I26H* zl&h;Ular^mntDmj0A+DDR2GE|1eCZ{rnvGcQ2Up>K9;GV0L3^?Y${QjjwKvB z9MoZ>k)*m=ToO?a>cYpCJ`ZufbO5XH>Ajc&5DLicki403b=9%6op|LJ26t{Vl|4E} z7pwF^1)?LHjePfdiNIXfBa5LW2Fp4~vLOw>L_V9_S9B?xmT}{iGQsRjS%#_CQh-A9 zK6jx^yalE9T@xwRwVrX98A>sFMQCR9Hg2GKZ`kZuYcYD3VS)?lrh*uDDYT%_Okz3=m_)m-Dq-$D-;KIoX2I9{b;$MZZ*M7gUP zMY|iYIGy-1c(Zou$#a%~HWgi>>VQw{7SE;2>jk3^cYa)Q`w-NHN-%%Hm3E(5e(ST# zrt&y^U@$^z2p$W#nT$SI?Edr76SvDnpnXo@vBP@|MlV0w7jCDvH2E=+H_41Q0R0|I z$0-3Wg?B#PZWC_0l8cDC6JyOG9T&%es`O~o6qcmQ8D(pNd@iGZq<%?|`+utL zKZ$T?H8$*Cc$oo7?w^!oh!(CEq_&%h0>0%`|=U?+*9TU+o{myOU73rpVMI zrc%d+x@ZvE1gxR^AM63{@6fth#hkmJJwm7q>Gd_v5@MYE4WdlH?P~`Cl+H}An&|>Q zQe!BB{ixA6_3 z9v~lb{vapUEMW+lE!IQ1dy}utH!VK8#76&icJq>MU5nIvb} zLym}Vsxt0wcOWkd2^Fa#3yIr1I_g|4h!CZX&hJkdgq-Q< zVeQE+T(U;6QuT1iJijsY#iL#1=2n#x6J9? z81+}2v*l6K(c<|fsOS7N$PcMz0xYDeqTWm1XR*c)!%eT2=vJvegfU24lm`IpxpYFb zxbQ$t@wisP6p-E3)7{ww&$Zi{T3h}ulB)#xFnl$FHrOO>G)xU0y>ssIruqBxlkJ~L z$_y(cOEk&w**9?Fnv&3)-@n+p*E4M;x|#`Ph2ip1Tnl9HgQzgE>bxD7m64J_ z7DnDF84nPxoz-KJNg5$SNx#AC7q0cp0*tZ{sxcLQ-cPa>s*O5^N7N$ET!D(~++o{z zl5$y<$d3h|2guVh!BwjN)vf-MZXT@vIqrL4p^VM6v;03T=TEJ*@|cNP$|W8C%}8Fu zk-8~_E!~8TB(rEXul7rOyya9wakf+@m1M%iq|Su8hwp;>UMB&1fBa8jswKoI{W!2( zP_>gT0P7SdKiOtDUg^LIocqSh?FP{}G?Vf=Quwf__sjpAYQ&n&)Qs>0^(6W+PCrA= z-R3s^+Sr^)NpBv9FCst$CY-d5Uom;7csLamZ0*1%R}urlAyZ{$J%teIQ}Hf8E{jO2 zRTLU1(B%thKD`&5o>5T|g>UeIX(fLaw|z(DU&3at+UyiEsrujd3eJ1OtRA6(Nu@aI zJ5DK*xg8EQof~NAUb8!sPuOy*kw`5*R()jMN1bxKT;7m3{@m2X*~8|N6SE`vNd@@q zC~CXt?|8jnMW<`6BQQyNet}US8QkTIUP|Sof)oN6pVmDdqK$-NhL{Ip$G

    UJZ(r z8Va4)a6yW+oV~AL0+e4UMK<~JATZ;$Usj^%b`{c+iHKzgBAx-OFn)w!^>2x|@5M*N zib19qNc;tN>?f)lI)H*1w|vSgn?}E2F6$hsi@*uDB2p%Nsuha9vwG41c=|fI7N{V| zcOQ+X7-d9o`4`fiKx(bXY3eJ!@yPFXzXTC{^yzlL8Fd&awAozU+eJ=)QVtrw%0sZ_ zSN`WK9SwSa`ut4>8^}_eE=*FE_JtT4TD6bgXc=2%GXdrFX-*oZ6Zat zQxs6%O`M_?7pPJF!I{tuc|07yB@pc=bT%pZSPiV%Q`1iuG@^LjE zscF{@)`m?j+9_wv<(nswhmPUm>^LW>ho?(=hTRL2?UWey+($I_HK`OT*6*pSAFN*7 zSq2oDTxgze88k-w{66t*T6);z9TfNeBp6>v*on{mPFS_kKCR6YEF}rsN^&I<0+n4# z(JxcmxD*aMHy1cUQ12PQq@41mKr_Einb-_G5L-eM#ZQaPxAckAYVnl zoHc6u#mv%6Axq$*$?As%Kj+pu3)%n|JwJ`VR8T1%Gu#GJ;j8W5H7$gw$)g|IvpPtg zgxCR?K@0F((14e7aaS8eFyw3e&6WR2`i2;IAI4AB=kF8Qd7B;siAv&7FQ542cm#($ z56{w5pZS(TdMe90JJ=erxptYYDb7~7zLO@C?|a%4QuyhBU4jF1zTJ3MEx6=0iBuI* z)SF3XEK~_B;k;B33jKT@S*b17mE3+QX0e89Bi`-BOA?h}-KAkHm}q)t(8mae=5A44 zBy@C>b0bU2XFu0{XV{I+-`HCSiq`G0E~{Ih+_j>^ul-{{)2AzR0t6f?O^8e<<`Xo* zs}-CY*>_8}rVU*d@Hz_{-P@?gy@Y8L$^!5^dweI?ITiKfi>8>mQt+w`Me|O4B@t8n zIFUZ6K0I|WRDl>A$rmeZXOnz`whzr5r9{>e2T8P&g4(+pBB35a`Wo&DEidEraHx3%C20W3ll~j2K8N# zkM3vlY95zFdO*xKa8wG|BGnO6O(TH|H|ZKdx- z@o*EH7w?!|3l&g$#2Uf;x?U4B`k!18go)V;i=o;zsnp$n2~89j*>tb@L>}k=B>cSD zX}hnZgqS)5IhDidEH5Q-b!H00V^V$n)a1uS^S+l_8uJGKedhUh7r`m#{k=6EbzN%m zPl537=heUU3HPJAxZy3MklZB;c}lR=T}TYCT@kLMKL09`2651HCRZ|uH)aRboH==d zni?9c`k<{3d+SbzKE}?WOLFzbt)#}v2Od&7 zuOKqQI0uE71}%y$GT%!IjN3%M@csVOzRB;2D`DRCie)wm4sFffgiU>Y1dg)ii>KnC zxDbKnTdYgyXDZ8tcNN9o_#cSgZd)QND>_R&i)JNt8(WnkS-T>Gk3aFE9Q%eZC(!2x zEy~r~P>kDT8ez+_T!C64WU>{Y-Y;0HM2$ zVW=#g|Mgti+b8h z5_|Hh$QRn|>l0Fhk43g{TS|2DosFAwFxT$iR_siNbl?f*L}i&mnkE^SOAiY^aEkSG zq;UKVv;}=C*!d8w6Ev{@TnT^SF{VA+m>aPGWJ)f$p}P2>(DlUH0$i#%ZWs3mZzc*l z7{bZ~+140;C9|jxBL`-T+k*q8Jo4$L;})E%zaB$~zAaX9|Cmhyu;>|O|5+pX7N1%C zDuGhpv1|CS_x#D#cli0O5F?q|1QU7UU#fMTYF^s#r)1yDR0`1ELMQN}+;X=z(kmw2 zCDeTf(bWi$B2XHLU;EPTZ_Qew6{y1WAkKocLrUEpqdiZsv|$kmrJ#t0trs0B_bGJq znXmLWUXL$rT-qH|c~TP{xd{-LmZAoai#Yuk zE{?Kz?vm2iFbN`2Jt20aNgM^SmOD+3i^-0FMpOQG{otb}?Hi>Q7IbAz{bN@jL7?%g z=Z9`zLeHIR%tMt?v(?>pZG;e|$izWA{e&(n4@y_%kBim8O^wg+p|5M>CAiRgX1z73 zEou?;x2K3=t{p!pIZ#8WvbHjy{fUEs~X|lTXYd<{mc;d=1B+ zF4A-Ki9V6B+-N5L@z zAvw?6$+eqeGZ7y~5iOirSY}#I;9pQ5_3p?Cyo$;h6O^U&pUwa6CXxjxPkH->caaeL z>y43kJN53*GkUt7s|YWTwnA$pvA?;xY^@-6f4* zN2eJUk{XBf4?k0p!Amdo%?%nLhU~^9FohBmY}puu0Jr(Ufz>CtGsYIXj2Gn{_r&@} zyxWBjF?g!eLnV%m8KAYI(dmjg;h42uM@wZ0Em1oga)uy-FzP#Qm;d%M@_nU~w6(ZpBF=i5 zB+q{Eb*aXi?(E`gSI2eHIR-kDhOLD0fS1Ka{|n%}j7n;aalEBzJF4 z*(64q>K?`vDg?_1Rz`8FNpyNmvy$T5NcI3fDh{*kF34 zWOGfGqu@Iln^*$Aet0{^Xhq=){Av>CoB!%x4kFMmmgbklQlBD)=8r* zT{|Y2NDztOpC%F~Qk&;RRueYf1$(U6Mg0Uz%!P%oKD`xJ$3*+%PuIpHkwanHrLSUh zReWxD1#}(d#keo1VR}EW$D7(_g}Sd(I-Or<6D|k0-gr!N7bQiOyK9Pk7ecxrSu zn%8--6~K>q^NeuD1lRx-*u@8V1jDQGr3XcTOrY;T>;rwcGpFTq7{l&Tcp5X;=v2kM3@<;T1*fM!3&XnLDa~wl zSpCuje>Qy{zKElHvHfe&M0_Or#`;9ybjJv6ONvQMF(F1J|J8%pCI(#da#cdJ$iL0B z4<$K01?`1O1P_bH|5)y{v=Rca9a7YV)j@Tcb0_e)p~3`Mp@IiKt&+t zwlC0=5MAhT?vJ?>T~kPzm8}Y+yK0~*RFamb?6^C$Ts;&7?X2YUZFrI?8cck?NVDip zdX3BH<)pO!)b3+4hr#2uF-+zwC(e`lY^g-kA8qsEbtvZ_s)K5c+G7PjbhYhB99=TQ}k{-=?=WkB1ZU!;k-zI~luh3#mHxW^*iXk+jta_3B z;;BRfo}o>rDeSHlzI)0(xCc#Hb@LTDJ_u{yy5_Pck8-FimG#KvUjEDCSQeMMFxXDNWICwg6coYoxHFkC5B}8rP(PNZuB!gkb}tP_M*{2c4kn5bUC<4)~VG z+I#9Yv8~8l{D5pb+ov|0Ui6tqr*Oi0;DCY_pBA#-!0OQ`XK`~UQK1>OHN%L!Rm6zBCf zV5;uFtd4;BuPY%0_u)HIM~sb~9~VlNnCg#Yfqz>ic8H_2TrzAI{-Q^guCsOqDj{D$ z#V9I_M~OB&?Oy8Fmc9C`^Y^Eau1h0H;7hyXyL#SJEG|9CO#EZ0>1`cWVSL(esxKTs zh1Su%hb}z?&M6qQ1#tO9itI#upad(VX7mT3HX`9k$jgqNM*{g`t&FagGQM+#YKk@P zSfeCyvDyxSu=w^@Hu6!bIiQdg*Q8n%=e2Jup?st2RJ^)mEtvw%0;(L3!r#~lBv^8{ zJ}ha46B`{L{4Nhij+&twJ;+bOTvV7DKIimBD8#12*`*F5ewK5RO9^_ZZEui595VI= z`>gfhk7~|KXi6eaEhm-T`wuRoSvC8hukbf9u(|2ekP8fvjPR`hr6{fLPK^)TD*uy zqHTA6ba+Uh@?LpI7+6Rl&ZnL_gwY}B3qP%x`*T5#V4LZ+FoK!j!=)-!BqRm@*#LD^ zbZ8{9rK^JovTrvxiutIAk5z*Trjf94dXghJ8_4Wb9HLjNF?Z}7txc6Otr)k1#TluYi z_tX@@u{_2F4{GpNzF9e9u1xV{azaL?MA=&#bENMdiV%_-~Qn%PB(O?&(Lq|)M}xuaejk0hicGV0#VYQT6A(kaKMs@e~-Tn0^rRYHj^ zbG!0joyw$^PjrKj{>q{o)P5Y-eqbkanP$Z~X3OxWimW9ZMb{Xdl>=9e>bb#~;#$`S zo&vIRn|9h9c7akl(*)Z8ah6n*y}tGSw*_SDzga*8GWE^_7`m!^RWOSf=DMb7{g~&& z>2zoM2`fhpg%|Wvd$0RA?C??3?B#{pcYa+W3a?(`Lw`gK-)sPpIgzBp*HceN&BQj* z6NE~S>v6Q7&Z&M--|PiZteVZT(sOrI1^DJ$Zkr=(R}xI^^jF(+CC80CA$|c*+Rh+$ zHo1C9sjFXZ$NVL-%wqW9m?cG0#R35Z^6g@t0Nsa$k%pw`9~)ZR$q8AsLE1Y}gG+}m zcI~41%31E-KoVB9YnE6)?Y+YU!kz%F-~v+8WDnQzGdGe29|bgOS@@eHpphBeprPZM~Z5C$~g!b#y<4s0^nVJ$eTaOHvxk3>x+!wX=%@V>sqo4ET-{7WX)#)nPh;Ib_j3wrxPx5}I;BSk5GEz0-{&darOgC}>)6MshI!)Y#tlW{Ebxgc9>`AADb z&bf=6`q{!{JSFF0o_<#r@Qc2YC9D_dX3MOg9!U%NP;PX0!$X+P9uoGL4-6jqc89uGvZk(*f(*TFKFcUH%-T<5qT{1N46PyxT@@FO*0+Z5wEvOY|PT zFKsb$9xYUaeFL9m3OE?dp>aV*bHmJ&;CtLnHtZ3X{^J4mm&owUDMbS9@|}burQc-L zD(bp>qo&cO2_lW5t4jC-Ee$X|>UVg39j@y=4@AJF{FuFii%dkr`Pf-4BrN`XjjU^CSf92OrB|0= z_ynI9FAvjlrbf-3SX@O`?~J`VjJNyl`jAA@?9}4M!3$Y~qhBZs zR?bTQTx**5>QJ+w1IWo~c3#2N_7(!7S`?^k1wm|DKCC|j0;T-aQP14L0#dJZ;Kqpy zTZMk(7HrTewB`(nV$?CZ)99H##@41qW$q8bg+%h#!>JuWdCko1<>02Cb&2s4Ea~ox zfzeM9*ML~-obVb>41KG=wt4|A!q)BvoytoXQRhCITm2G{yZ={RQVpKRnv7jwBOij* zOPosjZLOaMWlGH;R!8*pR^kc)@>q-KYX>s?xTagv@xQgy79pRv&vC%X#PUjAs`}aLFd4^bz5#zr!U+Y3h%=FB4xF%(ruz z$Gl~6Bae~lI3!%~rHx-9#O6}iT z(B&RXzOHpxjQk{5pwYf1%lNr?$<5=V@|ODEFm9A-?e~Shd;*qMCkdYhaT~z---en7 z+6!Yxt7>{T+xQm_GQJGT{4FZssIt8*zW5uOl^eDpGNyhAG;=-e-aPDZYv`__o<2#i z8}ZVfjBxZXC<6 zvNFLgv?wOCfy2zFsJR)*Ju7a2-`(AKa#Z|HfVVnK1js(^kK&wtgRC{7Dil0v&3WfJ zWMfU~e<+Q$)*=MMNoN!U|2n)mdje=$CEPtzy^bw?0$>tp9;&7!kT(krMv>k{)_&fk zRxC_d=>PEJHWs8?@t%_@oA_e+qr!z1vg`%L#Ir^<0~n8o!)-hP$KSkBYivhzBjx25 z6!4v%FeMK*jcDmj(;?38O-V#JF!)j)nCTVg@<9kV7gqi=2r|8CG@(o_L|QrRth74UfcH$OQAJdojPwb8lJQ;;+g;no5v z+UcI7Wb*?|(*#3LCv%eBql2E<1pK))U#r-Od~s_{z7*6}CCsdWAG8U+-M52S6$Ts` zB~L^GYmy%hiq5{K>ScAP|7xq}k09*}F|#7m24+cwlHGO}Kl#G^C6p2~Lu{~h4mCVqo3|E0Qk;Q~{N;uElRra> zSD1L(-o{5{7>9mj-OhL%f-m)5Moz)Yk?yEvFE=w-d3*Gdn0pLj=S&}Ijf)vf|FN3( zFk#Qwn5Uk^ugI;#?ir^HY`jqj@BHhuvqXrtLX3i*fu4Mb(Na`b??v^ZC~H8O(ZQs) zi5#+qZIBqoZvgvz5k7iyen@Yo6t8AeyNB`xz9WCMHOpV?{m1)2(f{O8jb41 zW%n?;ity+KhNk7ea-M}>O{`hhRzqwSXm)|f`Z6DKX*T_RpitNMh{}JgL|)*n4*|4F z%iX1f08vP3nVRRV@^U%6BxD-^4>Mg3FQeHNoNMW-zUnLx41L`8AVBB~OU_*!@r6g3 z6x(Mn^G$d^^AL6TqZ649c*Q%cQ{75TFl_cv$<~{1ifV%&z zl(b&$JCZd2V4D0rs=-EOz`vfim#fp*9krT&&cC{DB}M)uKpn)|Hp}3xbX6Br$PlH<`X00L2uwE@7WZxQFz<= z8Q73%0J|xUr=oW*=J7dDYAn_-H;!5yDZZr4(V54F5R|RbO>03sVoq}tDUTc(<(Vnl z9C2~k!Nh0}{hiW{Wp8B7FRxIGLs`AKV~#Bd1$Ns|cTCS4$LrTG58uQEb2{%Yi83+v z+o^k?eDeC;0UUc>LH_+yTUqp`HeZ61<&s#POyVmZ9V_WUoLCiFwUL=eGbI@1f~Vms zMd80#;CfA2|IiWN-BS~ybQDqM_FI`LUi$F%0LHGHCmk^K;LkxGh=cpo2d+~CxM?0& zA^V4$Ql|($H!)OZWm)i3ARXLkA##=kS)0vZsb|0|SH`4qdsQ51V~b^|DT&+)rmV(MZBgS^mQQfe!Zq>Km$xMH+TD~b49_NGcr418$iGMMvikwD zBX2}dCv6enaw(R-V?!iA_Jwv16dHD{9{L`yi%Y0^rpTWXVV3wi!O1$Bno?n|tDM}m z78PQVVv2w03fFiZ@&o}B2QEM3j$V1(4%>Uri&)554Qk!Q7;B1+EXS-`6-xycITP#K z)GmK;G%|pzsfsF-K@>?V4hK1+L%%Pc{a}f1Ke#YH2p7>$cC5+T@&<{=seD72kRlba zN#9T|4=Hh3wNa00i27%mmNRZ2x1K2)4>3(&wDa?__~nGnPak7Ib}(#R%ZqL3gRUdZ z*k~G3!Efjkf|SsfAL9qICmYVMZGuio3x>o(&)WcNvtA1OQQz5HNt4cbS>*^d>YPUN zKRJT@!b{c-Ct=;3woy1CN2=XwVGpsp}>Bwp%`YCva?f2r=-QJc;idB)!P% z64;m%oo!ZM0car38lIsL-PK;^f3cn z;oxET-gUgKNHU``W_ydb@!PQSKMZG#6(#5PznH!Mp%3>AI?Ej4hkx13GyiG46h@7I z@oPyg;khUy?TGLvfX0OsR}>^INR9*@AZ;K9B(V2^84m4!z2R4C%kt@52~kHhrmxZ4 z6%N!&=DljwtT~>ucApo-f^(`P$pT!#hksPXL`FSQTaK`5hoL@jUk>|m=`h5%kGH4N z-&{izZn4FOGtZHtGuKd^N1S?p|4?m|Pd%EnyeP8zO;~v(o@))Jh5^e0Xq^6Bz!ZnK zJkU|g*iN-On{A@nl7YW$Zg~1Gj|%}+=Bn!S1L2CSMY|sn-t4zn6H6dF^cv*WQ!?>v zm@9zp2{|{q+sW}it-+0++6Td5^tl9ugFo`{$Qs$y zxM*jr_fHd#8MCbassd18NU{`L#B)vPV+srgfA-80Uulzkxa%}gTVU{4gz1tH!zPA$ z_l>PG8?y-jOMSW|)l3Y@`B_5B=#Ph9hbHXs(1JNlODmH{->6BGbQcDp%RP|HhxLMI6u8umRRPxZEufbkcHitZb6qFDI~1&u_Txd5JY{v)!No;}u|0B| zPa1Xta&Xh%6Acq-GS&<6Z@N=xI)EsIon4r^;x2w|H-rjHvW2*7Nbmp8xcvXEm*Q0c zme>}TT^JXBO$Zjc6H0T^5@*nlk=5=**{|D_$;bo*6bobL-#&4VVU^0e-spMx50Ei- zW)Po6!L25|R)|)wLWd?>IUe~h1%XMYH&$AoeQJ$ZsXy~D%>ugDR#12sSQ(9$j=znU z*1k`YpFVZ~dT=D%y8A?`TvKk314=t$g4si4L_)lJkfBe_6K{~`H%A)jomoMz3YR~e zU*-iOREp!>3Rf9IIsCA9O&5{c55`iftPEgkRD;X@y?JlzuZ71K1IDfmQ5@QQ_o+-G z2C(oeI?HT`&4Zh_UgY{P%?~drs|;WZQI}C~?Z=I;JxI7g;M>_Xb%ndlHUSYJ$1)2nf#Jv>`hWEVkA@gMV zq&B&kfs}aA%L}Wt@@2pnb%Ia8A>dF`HZtG=7ZI@p!%jzmAhM>KHf>5D#vVSf==JiD zHArSnj^;|p%}HsaryIWay-P@g;)<<{(!ZG)zt-JkQfEkhjhn}AZf=gKV9yvf5W@r- z`TgQ8a~grQOlIM1>VEVzS3%^(hR9l8RLI_4oq~56a&h&HmGodlNp(+2&^{$qcDubA z&%Ep0gHh@AM`_E|zvX;c7ubU;xh;PaG&V_kplkK*g=Z+EI#oF>`-(fE(-P5>r-Skl z$xlQ_IUL?R1e(q#>?E|2Al}NhbPc&Zk=(InWtx}A&w(mruq+xOzBzYleD6yAmm@cS z=Q}2)T70y#6!Y><$)(^*ePHDi6yhRcgizmzWFS;!jtSPO8jP`Z>1}2|40QPto_eC*b zRM@zIr4mfA3`##`CQgUy2u@m)rPmwMZq<<ufgP@LR6edfz7* zONAaWKQ*-$N6ppLPK-tvzz-%ev_;hpeJ6px^8e9%I=biWl@igp@eXfs*Xj01hn*j_ z>v*q26)RG2*3dZ<;{>+iIEwvrMB46lkL3=F1=TDD)tb|%9G7F2V#P-EVV69~#%AEa zE%S1P;y{LpJKb!JqQL8{3f6ZefhJMPKMZL6+cQr4LY_iwa4w}zcLuO2MZ?mQVD((~ zS-pY>7jkZm3lD-h!=+h6<4brH3hQ@Q)?yZ*haoFFix3;X=d~7{q?Wmxz(K&F(J;Tw z1`l=9UvakUGJfFpGHvU|Zdypret^XwHu^^N@QbAbnf_1q7Srhf2(g=`JIa-*OE5Owy? z5^`t0dO2{6%HYFajnW&L6pHD#d#4h*)ctM^yHx&nRxw!z7`tz3v5%)W*n_+MDAYZs z)arMhO}$oQbUI`0%PPwy>mvcz`G=VT_Uul#MCTt5uM1g|9iS8U3@!}q8JJ7;UZ4pw z90sxqRW)wH6=m`A)NJQ6R@&>UiN=Py-bl?W4taRic|V@iP+Rbv2{K!iK91NyT!OYPqnS5;Aj4IzlDk>&$T8e)0rR!2$z{(){Q${r>ShJwmy1^F!PF z!l4-LB|SCZ$O=Uk@Ro2;X%M?J`YntHStnGu`kRbP`C_wp#ymoM0`}m`Y?f8CT^jyq zTOU4?Pgg;Waf>oCzQC|bDOR5?%#;0!0OF@~lgU48L5|+{$;Jm-V77+o`bK(J&G-11 zAaM)n@07L)BabjjBNQnzMS;u9+>sJwP=Uyut;T+cO}zpSdB7)WR;Fr)lm%$Z@R6!A zaPCx=TMntM8z-Sau;aLFbNNp3s0C`#`xA)|t?~(;*G0Cplk{je>LY7z+EunO1~Alc zHcUTFIV|uwcLZ_!&(Vzu2r(cEF+A_FPwIbZ{K-W`1wVh1R?@%{e^*078XgKJyvR>T zo*(4F=a>yp*5C@jEa83zy%hmn){I8nZ;>N(Mb0+nia4!^O0Q=a@j83>7w%*^Q!Z2e zP^sbo0cu#1o(1v6bJMkCsZap6>utz<3mH_)Na*-l7wij9peAS4hu!UGiYQVdKhdw# z()9rjucasM&G7UEkW-huNhF%6)UL0$ArHNCRe;rWq&*3<4vuMUk54AdFbaI17XpIp ze94JF)Z^2xMq=@B8nEK}%@xA?3lL?0KB(KwsB(IBg{&j=b5`3B>za)Y(pxH?cm)+P z%OpdE--49Us}JVzZh`I%RV5PWrdzZx^;@r*N9t$KFp?d}Lt9zc@P9K7_0d~kK^W1U;p}l$Pe+aUjU7FQc>CObZ=41{$=esP!gnb2&+(ON_VLs4ojL3*^gDK%= ziSe~!1*JWt{TtjG`q1*IygJJBE1ri`vX6EC z68_gOCk9_CrX0$Wfdk|MT}sXr>Aw39nqrcQBj2y+zm#(JWX(fJpl?Pony;C8Zf(xo z_}2TPf*sYN2DRVIj}sanDc`wZVZ6BB*!$LrNT!4~XDwn1sK-g_KM$+i@^(}-O zFRf>vE?Qo7Apx3g9jOM7s#fi^PWm=Mno-d_7!Mnk~I2~^((XTXV!4h4=@25=vbmy$PGjTz~<_P zv%aNpO_G4UCE&$VYMGk2!D@mB+aTH!NTPUP1zM+x2$dUPUj2&?yb>;D-MOQz|HbNN z!%q_=uTDypph7yFY$J2DuMNJilzevtjvSgT$P9W*SD$C%?HfG)QI89GFsHVtt6|f z^1E>4OveigI|#gNz3%2$iU16XJv3*#yeSZYXkabFN;TimEMzDjQd@SiWQjdkoU5b{Tzb>}+eFl5YIYD|_;oqtZpYGf{^G~?$s+O`Kdu3< zG8(l;+q+ZBd)t5AF?z4*BL?5Ab?%9nsT6!zIQI$AxZ*_?@0L$YFMJBB=4Tg4e-$y6 zgz%W|XKxF&I93ME+&-haJs|0=y{6X7-;qDD+uTYwUyd;$yIV)8{l-@p*n|_$8IfBe zo?B7%(1?^R`%vrqnwUkjWrYx%VfV+Bb*@pdbQ%PcNU!#Ap_9N*5de2AwYt6_P8*`a=t_OE-s1< zfmUYgfUkwzqFe71$?>q&+(Li8Q6SRGskdt-iEc`I%a#ZM7)y2cYu^8^vLwv}=!bgqRT4l$c5gok;lauRG9 z_qIk;Wrh^TzBSi$1qgHj!&vcY7_a(WhhqpH>hO7_|1rA-I8tQas_PGtK3vy4wB|iN zD#CVFqGSx9l=WE4N(mozN8&Svpj&Gg&R8Reub4nZC1HIB8rj3G=W|e4A3NTZZfSuOatcLTa6;a_d4r*d z#b}A#b!)*Xyo0#tfe(a)-HbtKnrAz(Y@OE*tNvE5eh7<}opm*PQ$34x z*AA|%&vV5A7?}D#MaAk?WH~rM_2*^8oLV$3ciL1MJ5?f|P$}QeXc4!$NB^U(A%ys> z$WY^VvK&1oUF@DOYt9Wfp_$(7e|e7n|Ers=EawQR4}S#IntJ`RKo+HYQhi$sGl)$_ zU8y*Nd9ovxPj@MR)8sN+u;Wib6*;Z2khj8S67uUkqFB&f(LozUs( zx+v_`krU0SUq5-nN^dNwPgvvDz8J6B0Utf;e{pu+-)#T!+ZTIlDQfrA)~ZeI6;*uH zrl=9KR_wh;s%UGqwf8Dw&)Bnysu3#0-aA$hE5Yr2&-dKF+~?dseEx^L@_t^|^SU0- zRHMI--FX+5A2K0N=+jTrjct>UrONC7vX)vA6NUa|?m;Y%-bFG`$`0Heyh7wGNypDC zEc78vmfs)5wBD@NEz1hisK>Py#s#jR9{EX?TvqT|L!Zg>qSt+ogU`~u|DogA4` zy3D*Vw96J@=Pu?$9;=z4p+K{!rjKqW|$hzGKjZ5-X@ zA74&t_(7!txwR2~QgQvIg=V;~G1Zaj0UZucEur#MJIUS(#U+TbG}JThC?lf zUCiCOdylGC(A#h7@pe8-QvX?)R5|$mMvLtspq#7G`{qzT|Aeaw8psYn6b%E|lMW)< z-s_5p=s$$spt`{$w)n6=$L)b{M0F=65SIdqlpoIHsp?wGp9C;=OmJf8NI#JG{TVq^ zvU+jij0TdE+E?jQYG(sNq7y0nhgDVvwWhvBQm$mBgs)SD5Z+$qug?lGLoSwp=k>uf z#~slY`$jp09iGMmW6O=?Ef0~}ilgUvhYKt>*BVKXQ=Wkao&t8MxjKY4lap2WyBk~A zYSP+f-g!rfLt>+Y4b}c{K338gncpL9B(9)%{)wsc@uv3G^YQG#o)A0crq&AL^ht^_ z)i7q7DuuQ|v+qWD>%o8i!5Ad;%ut_}msosEP5fg4;ubBi>wI12;{5F8whw%AQ386EqteGtJk+NxN~af%tCj8bV~n^b?l|D@z?2^kB_ z$!ZijzloN*TXoGovu){qEy-}t4p;I7k-y}grT{a0P5;4RUl&D#d9u*9WEEvix@n>TR@XG}5kc4NzXw*-^- z44OXm^rD=4nt%d7Hp8kH?T|S;BaavVQp231s=g?Rf|1$FDbJXJ{&D2!@c21Z#ZP=o zi9wu~skRSdu-l0@m?q*2IB2>;GG6t->+8@<^A+v^^Di#;{~>-2*o2uUvuR_Kdl0mn={lReuo@aemON zz;g8a{GUsmo@C_sdmg7aq=7L$%u^FO!$!^%Mbx?V!e2?aarV|NTAK9D5ie^j9YE<< ztACwxu##19PYL3hjg;Z>Ii@3(KmqpTjnlRIO6hwaVZ%JUW$Rl**rX*yQ5IaFb01WI z1>BMpoAk7=HT(ZWi}x5X{iQCuAaonMUTls}!}nJ^9!fTLS!oPY|81mAn6Mo8AyLu= zBLA1Mdm@0d7M}Tt?==X&$?>T;0>}0)?YiW~T!!OalIFDB1?FQDT@fD~>JLcT%naWd zB(%!B8JP<-WjFOkD*m<1C#WjdIpj%kCmM*9MKSU*6DR}1N|~1-sq=Bzatm|E42Ji) z45cKas~WGTz6kxtt;Ky}5Jt;t99Y1BkrAk!31qfpzcN1aznixhSEth?e3a ziBUhg)09iafE{>fvC5v@Lf6R*^cCVGq`+T%8Y|4G^(Ws`@us~}d90`lv-njyl!w(I zJR|+to~nDS)6VU7dfH;?f%q>3X?(*~bldZQwy{;RF7_L5wXmuf#z(92GUTkS+pjdKkyUpk>t(3AVP3< z^|8@EVC1g`Z%rTFcGb`Qc5--ao!qaj2Ye9KS<6*^W<`FBfn|HKgM;nCr*JL7@obVV zOUpISdi|>JVcB?XuwdH*cK|reYa;RiOFqiqU9RNv;f`fm>{){^seZ^ZFnY`%1-C44gLPN~}!0gQ#>+vv4JmSt`dWGw;n}R#PSq zIq^e9RvR@&jPh@g+ndpT1flN)qlS8s3{*?8^d7euG-{zzHDbCpFWGaE)=~P3L%z6$ zLnPjOGSd)<*6{v;n+6#Au56|;u|x#PpWx<(1%RBd6&J0o@!$6N?q*$VLhAkUn45*! zpqukQ?v*If8+}7j!&3^<0J;*n;W?5IX*W@yyF-*b+LTS*Bsd6JX3ixqRT(g_|`&1 zP{a&j@e0_(WOVlA)ZySZ0_rQzQ02THA z)8!|@+Eh!1*6w|gM!WbEi{O6&a~qNfiQD_WcX1gUpLY8d-{Rw!N1qrQO%<9#YYd3v zF2YQM)p+r3`^$v;hvgiHq<(dTz!^>73Y^U^-@8vF#7Kee7^Q{|W-JKH|KBylU(t-n zeH2ulk3IQ!p(;kF{v9ujy+Qp9{R4pbu`RTf5FCB|$Y*8lodcqbZ6VLST)2w$$9cc? zVTCv?V^{dhz6&#W?5o;rR!(0!2}ey^8<8Sou`_>R#Ob3=lfZn1vx`hAk#4JU+}V-< zERxHx7@8;Qsdt6 zMFfn@8X-V`gMt=Nd~iV`nedYK4aieO^(dEX)_I}d75|XQ$GNQQDovra`)>(gN`4!C zgUT_6v*kt3(f=zicS#3x{&TLwAO$b5_8xGPL{u+xF7JJu>jxRySjNmvCFhR*T2ID` zC>}gGf0EkbV_rxBHr8)!y?T}3rNEr@~vy<%rA05qw- zwLgFIfJaLx5Z>$!$xL6P)k`73w>Oyft`;X1h1)S?b*UZv{q5DpPV+$vQ}e3=ANYhG zcU=%Cf9&kL?6L%7xP165@1n~O|CWnW+kEQ5F>zB|S?Nzm+LnZ|TZicJ{xhSQ7o7k% zI3l73Bnb%)TOG@S_eaS3j^fYTTJ)$3qYQN20SR*j`doJ8`)9xVPbN1YRcI@fa~Vsk z;_ij_VLxc!F>|&`Ws2E>mFeXxekQ@w#G+9!-VyP`F3m$L$b=$FS{3AgwtEdGmW2{)m+m3_g3B% z8B4RLh1{Mx3f>W?gvc8aP~LyKsvN$wGe*UDYyV|W#M=zP-9Lj^iAvAb(Xma-HyYwm z%yEUZa;>P3Fllb*>6DaOt2&mb+~V$fK@|rI{<1KhJ9RlIZtRUo|6zR+YmPv{9eTB6qufx+=08!+rR2|A-)}V`&)eC!wI+3<`0* z*s%HS^5;dWzM07tzYC&$D{*D4y{`{m+}^7R0Yvrd?!}T4D5%tamL^X5pgzQ#2hBFl zFJMNqz7A|YJTf$)C-<3**9dl7^_-#~joWu6x^{5?QwqAgZC0rmAWytF9WVLG#t8*| zVJ!-T!UD}c@HsBrvG^M{_|K@>BTDm(YXCX=-p}+do{oE7Lw2Q65!Bt@8#ku=+qmOH zohYG*^F`Zt4nB_@OM6{o14<(#6fa(F^X1m~CT&%Q%RltJ9%yAlLz^46JPrg^3FKv3 zu6tK0fOW>LAv;qogdd$|Zy;6Y`EqUJEs{C*9 zs|_80eHf5g5q251Sd1e~K-n;@AIwKAPMR$~5hQlGs|teSlp*3iUJ8;8WbaBjG+s=Y z_RyBGHJbUb&y8uh#Cly)YxZiN2DA7^I4!Yv#;PkhYdbEsP^gc~gzt7pQn)}K>Tj)> z@=#IM(Yzo-p5$-tXT@%Q{xU9i@?rKu?m_0wq~wT@V?;@AGFG+=Mfaau5y;n7f-Rrg z5Xh=+F=awup2KL&wl<n!sLA{s*dOa*wr)RFRh&MZy_wwE-ySe4Eo^M!B8mOZ|r z0`aqhKWvgr+<|9e@eEEm@^QhHg@!cTRz-}9MBHgb<*5OMA~KJ!2<;(oSabGssC5pi zmXo3o^U=i0O4^m({(XtI0$8~w>7=o!Go8=ve8k#nY@sDEhM+`y9wN1RzQsszWs}bS zr!EL;&}pqw6Zw&bfSfPa|2Wn|_Pk3FQJWi$zJOO)S-czhzVx}Q%~$U!_>DiJUy;~A zw_T3C{7Z9zpDVTnO9y_tZF3m)i3cHw{>)_L1_dGIBnDi72ju2mh#&XT*fB5eSP~=^ z+(2Scs9N8Y2Ud6*IhT??jd6N8K1!#S;y_VK!?9#9Kz7Es z9yj0{5Tb?O=m(0@fN{NB z$u8M-TRO#HiN?n}MT^>~gf-{(&V^(FXqsxV+ut_{z?$(xDUrCg<|j)P z7!vSYvN@dRq6mm7;V}FQCM*|OJ)S&d1JYZ1n`1;7p`{S4!nHG=??KzbNRc|Q)o)}b zdx0t$P3@FdLIo5Ek&zBmeXeVhG#I`-LHxn87aeT-9C%#&(l}UOiZq1#Wg-ev3bGt!m1nsul0YYvUEmAJ1|6!k*Yq?f z)IJZ`WM8?xtxSFILDynz4Blc6C9d}R?pKu|<>AHY8|*TTKlsya+0gGn?UmQjrY1K5 zR}J4j?&j0=56?CWE&(84{xHH+^$>DC2`|m%|IUtjM1^w@(MrR*72_vtL?ej zJd%?zBEvvYQ_vCXks9AWg(>Oq*Kz!`QP(e*1+Jt@P+O?btSJ9dRqduNTbW!}7OZkW zS~+%}n?qRW;Pb-GV=?;*)J|6VY86Lzg9tLGLv)K4Y!nlx!g^T4y;}ESDP)8V6=(>R zUu=!Zf;rr;+Q_JfU%6f%WYyaff!~#0sfC>fAOxw#4h(H|+bv#d*CUhbB!2bC{puUC$%? zBD+-qpet*5te0KBBDLX_pIL!l)l3KYkUrmA&imHo)j=@&tr(mQKEIw=Vg`Q$2$gjA z+b2UzKwY>ti-~=HpZa)!h2$K;04%sFxGWwjq3E8olI+LxZJ+UatMw9d_%| zCHuHpU$DEz^dCf}xL8|McaB%}q;1g4El(A_L|R<-d?c1$St{|AwvRJY>Zq$UE#Kv&g@CZzloFF6swD+O%7vZ;(HHH&)*o1gt}!Myo#S&H2cPn8+|k!Z;|w|`}10E zTi~w9h}Dqv{0HHqKp01S|Hzf0ht_3nzOiSNVpOKRcbM5naq#r-0*-m}kKGydi(ztm z`iTV+?N1)TP$rvMPEbkE#e1gW0J(1W8BH0($T{DCtXsGI5Q6R{AZNh%!TN^J@Noy} zTo`J{{C=pyK|?P{!N{9SyChA$_Axf(*@VhLP||~a922afJ5F+$4W`kIY;k%4PHSFU zpTAE+Wz0Y4_b>44KO_(S+;;ITFu+YAw;NYnI{6|pzHj21csiAQHboLH6qV`>OZP?K=hgGVxqzwM{WCO&Mf71zVt{;8=D~*X1xCFnI?5ANeE9cC z?bT$*>l}g)QT6SV%T0LQ&gen;0pFhRpo4yR-c66<&bz%U)rXf2#^Txui{u?b2H}e2 z$HYr2V^V#gWIYCPU;kwlXKxV_D{*vz6C6$peLq^$#xHFR-7|tvdxVtyi`;7_Xh)8W zy5bzIg1z*GgyIN{g7L7o_VQM(+GfW~Wz2I@i5E!1R^_bD>w^7~q#m4L5S($Q=Vf)3 zCA&MIibJ%-H(^7$;;@))H~3`)I%J>Pp@G#3nj#zfCL}5~nFZhk8qer)m|mcXvLX_v=k! zm>J>+o3@*HjYy0d_4aRajwQO?$FXfE&7s_NJN*^NGMEo?LOM-;wRzCRPw(X zIh#SpJT|YL5D>GpE|*wpoK`t-rPwTF6c&laf@nRgIZMWZsnik0UHwTv=W>KMEALyl z-xY>74s;Z)6Ly1`{fNcE$8R+elXo3qm5DM)$)Qby6BPmXCQ?pbnDm$Gp9!r`G1W!Kn3X9aW#HzZ!Wpzm~}T z%sAlUg}k>c*eZBXyOkfov*+*|qMsde*YyOZK;w8AxjIITkoJQfzR_dK&qz`0(pJ%O z$&inEIEC-i*L!j}s{yH2SL9?kqBy(gEfz~Yf!wyec1Avy6WT2D+TtI)q6l}hk}5jy z3O|wFWEjI)-NmoE$akI(^oa|x6NFayRR(Ra=J$2Y4F`h&*SJAeUNMBp zQM`GXFk3#&@yRZHCT$irL#`g0PnC+5TY@a>6b-zTV%^RYKmA}m&YOSRk=Q*wN&4t? z1r;>t3rx|fv^YCp*WHEl98nblqbh`O%%7OI2F$;19aBN8n(2jH+o%vWlY!J4=Kyi- zkg-hO7f+zFotz)8@Cg&|eq)e=fZno*vCb5KrCO~Y&{{{C`x)B@@l=e!AX245? z#KRVr<{uku2Kd^;#fba@!yakoPCLZJRL|j&JDaQ?{miy2{;%&21i>fsChJHYJfo2X zMmm;j2FZTTJ zy4&YMu2D=Ia}=|%uB5Q|Q#{PBU(cv>#Yg`t3(RLVDkiUyTuz9Lh)GENg`&iGF z;SE&}1za_-I*YI!{A^m;zHT~?Hxw8^ARmmx^)LJisBL7Nlmpj5c(=L)#Q60^KqTEQ zar9w=Yo&fKOKe;}n^Wx>75(Ky&!#tnzRw?g^zT;azT#ttp^&bgd2Wd67whb$N%z?d zWzFFUC`iR=iUl3)vvoLx%)s{AuB?`~$+LYHY zYP#+Ai5x=K)IJUVU(TN)kk>T>=g|S?;u=@~Xr)3yX*FGP(!@JLk~gE_7(5WyLzfnk z2tg@-XOm&h{N?jf9_cWm>&=P%GC8>=ZqHKYOfJ08qgVdp#JHu2>gv6+OrWK>`wg!N z>DjDd6J*H<7)+eiI?{V}0XwMo?mcbm>+uS1k{owltE3#T#548nQ4RKgK3@MlTIby+ z5Q7OS$BYq`SFau#i1_DwQSeRKokq0X1#Il%Gv$w|29M5_5+>)=eP5?|mhThOt-z5u zucf7UI(W!MN=ThK0AGSU*;bKq9t?XxSoStdE(0Hb(#$}gfv*^sDe-8EkzNKlNs4UN}-+M#9+S9G5=>rwX8pnrat~>%<=o# zR^fQv812~~O=bD)Os42}P?1PFe{aEb0pE+ReO&uv+x_EUO^3%mG=uR7`(!C8Gefy~(nPONWYw_7)^@ z6-;At%Eg18bYx*>ehxcFnfk5-cveZ2*mcc#`WJ+S23SAu81_BwCtCOH4vkiod_yUW z)MjF7RD#+WTCg-*y~t^MpA{8kh(4`fwpdk;N+nW@?=yeE{2h{sG#F|jR1=NqkU!AvXZ&{H&%LH_*pHllhyyKZlFJyOst`*&V5ILt-ai6C|X1 z{N-HG{bqF+#tX>w{3_17kzo7} z(xM+$u%#YiqsePY@OH4JS{AMvQ7-Yw%;!{ISBRj*A%`4q&*;1mL+uPXp$CQTdXVYL zZtiWbZ1WiAB*9s?2soQU$D#*vo;Z318Q9)0owrw+=i?nBRu*DRkBkY7>X(phdF4>-N5udt$tcZ{06`U5xCh@z1T;hFkMl0yWF?hfpX@^?v85Rp% zadnTMd2~RtaIW}5{Y@eyIMjY@hnuPgRMOcO#<^#VX_{`1LP2buzYZT<1NH|B<--b@ zd;DfZp9`{3RyOH~e4{Xh_|CjFR(GIkMALRt$%Rn4s?`rbmt6oQD@6m4{Lei;6%DcI z>1d-&>S`%RlB&a{%5?eWh>4}XF0>=3a6+K>&#=3Q)C6|7-^@ae=;JL=hg`~k4t#^z z!`DBs?Wx?QlCg+0+MF-2NQ#nUcDlk$c7+gJlY8S?P`=1;b1fReB5h9TAyYDrlO#4J z_mIz5(icTdkL@c~a(@brKuk)xmizVt=@E|6(xZr-p?`2VuWG{EKpmQW8M9V#+6(Ux zzh5q^izPZ2M5O}#lsND#j@^6vnrQN)f6)v1qn9@Mg1+!@j)=Ai>_J7!Ywj&~_?2xG z4bk`SCB*k2nAEGbn_Asrza01W+q{j`%7XEE$#cT(&X$`Iej=j45dF_;3^87L`@4bt_H4L zT^cCqY;`aX|L4Ju*h8%3)(zpD!BXp23&5E|)6UO^%PTgWqv+o&7le6J zA2#5?imI~Nx)YJ{$*$#LxhWdNO4HYj(N&;0Lm;8cJHofU%oWoy91%h3urbH)^tz1x z`*S)-fL+bJOi388F5ha@-}9N{A2mB>(4}E)7xZUnOY^4d8=6*|6pfTGIXc zzXKyqM36ns01p>|W0I;aH{Lj++j)e+@@r%KyI;usiT%ebD2(MK4~oblFJvUQl%Z#M zE;(Q`i0imA6m`U|Md+3X{yy+ga79&uE%3sM0F0z^P4bn5oZ3xVxw4T+1skdgrV0>9 z_)qD!H1gFZW>GIR1>(6p9PIiLtkpvNbzpn##mj*Afo9sQ+-*qr3Yv5lGBur zAf3DNrczA%l`~EM*GbWjMn^I3n&s^HMcb*t8UX;|jv5}Ui~GmaTm#>v=fwH_SjT`@ zt(5;=R&2!$G>)QlBM%Wx_k`!zx7{u6udTKoO~`p7imRm6X!0H`gHdtl>9{oj zMKeL)Vaa_Rc(^t;bI|Ebpof4&;o*Y>85aio3?mK_#X&`>_LGw1L!_cDhg(lz+G`5@ zu=U$GSeIGhAqK?UH~9#RSiQN4;iiD`>fqSHmU(R-TwK$1Yw)*+YlYR=5@er+NPYb? zoA^J`sD(Y|w#eNpa|@bnR4lL9`NJg`v!d2)YD{ajrT!i1o{{rGk0!u=Tvj!YWoxZH zuWMaS{`0wk17E&h=doO9GXbn(aKE3fqG7#o z!WZ}oJ-hn`nKKl5(B#SlM#8Qx$VK(qX{#v{+M?!CaN@&(GWQWzrok7-a<_lx8hl!x zgOT&W`}4+n?Ms)X*v5RnK$xorjGzrTn!FrweU^%mcwa6(E_5Vl+6eI7-7TXsxrUai za~F$;7mY2RyT8#GC6-w@8hRR|10=c1{Wo)ww9)d-=;6(!^ft|e-kdei?6wigpgcPN z@9>)&W`f29$EowTi19!&C#LOv2t#}eMy%m6&r*N>Hwp3lu1hvcVR>3;n%X&wJ3Iah zaOdjuW3BuI*JR1SK>!%FRp44h1}uAgw;*CIsaw=+mkIv&Lw;s(Pk!i2(nB<3qn|cD zBqqYQ&Y78XdLohGoF@WUzwY6*OuJ&7T9+%ILxTJIIH{D24$?h=zOr@WI979lYqlcD zJF@ivG%0+LX2q?5+PC<}17mq!9)FZqxa0#Hjh?c#WSvdJb1%uI_Hk{w=++)|kRR{7 z1i_3lJ-xG>KtyP+P>z2f-VE(}l?2x>0H3~e^;t2XwuJHIY^qe*Omir&VlAn_)vwh@ zx#+R5t)dX(H#6~8M@_|8w4V|R6nSBAHe6sRBHl9ND=2(8{EqNfE5NpwS7i}?l)niu z7*_y`{^wV57LmTxJdK4av3IN3I~6gg-ytNjAsJWGv%aLhPR46FSz77xN+}%VA8Bp^ zbtlpiGenC+RvAY^mJ{1qgi)EXg6NO_70jF6dsxL5XUtIcWNrTpW66uzID ze#{gP3km)yf%s8lt1weAeO6Mj{}$fsvTK!20n?Be9B#(<_WtTv$+<-~38fiLH@13S zPi!C=jjG^ZxV`X4*`^n81y+2_Lu!PH()iYIUj*Ljb+M%G~{kzwz+X0h)iuL`c{fEoeCBl?G^RF*b zV%_rnU~cl9@q>DIeyiAr;)rUVi3yi*gkbX)m1V46J40jtr4-)H#9bYct^9akp8WeJ zK0uC`<;8GT9kBbDjoQGCNXB&`pvFW2$Q@Qk78gR{b5_+@p%2w7pbodGehdf=E88VN zI|GAjBm(LN33eh;3@DCQAo1lVm|nVN%kI|j$=yJpv#aa1&o0?`gI$hH5KF{$k{$i= zAPv+=V|{4tFEHh-s!i;QOxH;S99!y2yeE41?vVIxwR_Cz0IIT`|#1)c~yQ}`|I;p0b%_*FHxN9YVW&z))$D7x;= zg<)oU{6!T!Du4`^h> zluw_9TzCp4N#O=burG%^Mu@-Lf6w0)7ca|*#+@} z0@m6ZO5rxzQkBx6OOGe52aJ)r;l$#N&cW$YN7p8q2^SvW?YHK*E*cEau~m>q`?27Z z(&DStzEI|xPOMl2Q%Q#>C-~h_ret115d$WHqS&ZN^=$7*p*oy?Qp@^Z_XlDSe>Wm9 z$bBl7Oh!?7mZ~}w%G;^_Vytjo8o&)kHi5XGtwn6{D;m=}#m&KPb+u>R^3Awp_!pPr=M3#w%mg}|F-`sN z`KSdEF2Jp&HTTnXGP+{=_T)e6gp;I!A*uEmcK)y;hlXXgY5@1L;9V0p(=RW#hG ziiq7L=Dsd`9E27A6cnS`HVA1fbl8v{U;lyp9IQzE#sfU;^MVXo!#^37PzUT3g_%w~ zAbR_L;TP2D5ZDSb0bf0(hHBl;J7lH-IFI%%PTOe+Zy1nAulezM)h?3T)i^#p5!Ep) z3L+yt*C^er4#3BUMefbpibE8?rYuRlpu4R3uFvRDh8 zmLBsgB?4rJ{^3VNF~dNIxk2eiU`|7aDuI$#vjG_naO8(3O9_@VaMeeNSmZ?Pm_I>7 zkc@wCqK{Q(P>sHM$YWE!a^>w@Q@pDA!oww_X@F{!5MR-6hR5?Rsi`u=uQd9>aE3bU zc)jZq>XwA_KkwlT9NNR|n9DHbvI}Owm*qXc7e`X>ucGi8*KDg6z#w3nxdxEUy zy7AGr<-w!YmO=C27b(<*7SLKH>BK2hB6Kk^HPt!DZDc)$iNsm*QBlLrhTevbu3MN?x8eLTi{}RF({9?zK&T6q#q{QZ#!IJMH^E-~N^a`T; zUyS(8!N>@!&BhLf+Q>dk4F)hwnmqa1VrRcrN`R}cd(#_gzLIC??S$hc2yw{5;7r!sXu$Q;x7BQOOG5gr;;=_^XY#LL zzd9nWPDXof0fAQFSQ%B)HwEIM^T-eO?v5Z+p>OS`G>^-;FSPP<3F1^5#6Yr0;Bchm z8qwxafn67DbbkZ(-(LjH{8Vzy@jr^u4q+KZs#I^WEV3XqEtwVcG>5N4?Xb$t8}_}) zz?gRQ^s9q8l>EmzVSZoPs4HfJb2Vj^I^DkaC0&&R+3mKruVRm@r;dz4gR9$*f^>u! zdjrqxTc|LrIN7svhWkpsw8>G+PvTYg93IVI;YZ%IWX`9(2n&T1r3mRi{o?0%V11QW zIYN8pM-6#V%;f1GOujK(94|A@vCBo7PH#VG#w{t2v~W%6%Pn=qDIE|orI&mz-H7+V zo(rfnnBI?PyXj9+iLEb#nm67es?R`b6=8*bzKz2htARTf3^o(l8<8NT%$VitQ4RH0-M>dQ@y-9$!+HD0*rRzY$w?e%tj>{ryyKc+zfc> z-X~&-V&*o#Z|xKSRzYQBEbVUR;6tPfR`+Ey?2ce|2ye3$ zB_LF!89*@XKvr&L?owgIPdw5ZthXOSfZgHroi^O0zq*Hf?=Ql1d*Hr6_osRk?QXav zui1{%6fOENN(Z!*+e7<7G#w=Kl9dw{6dhII)4m2tfboi(R%yOpl>Nu7g-n1srg{xw z^>8I*f{E#9kT@YFaewcRoE0)l3c9FEc&ed@g%z zK#pY<*#Td)lww`?qx6Po{`*x4?zLYfjfDx6Ev<;ouFul7wQai8;=A|_9kdwxe_zz) zyFIkuUt*m$K=Af=IK*07mt$u@(h03^eC1%2-rfe&eu(5%&^K&ev9;Tm#Wtd4jybQz zrhNQuF={VRFzL3Wbl?jT-@A-s1;Mtt9LEU!#%T)ti8r};WT+3d`2nUTzT}3_8S_Q=@Kd8Xcd!C zVHi=q_;=eW;1RR~+6Y|d&!^3$T4Gh8O12z*JJUkS(=b6X|EdC_527>S)<-PkYaXe7InpkTo=Vb8%`n1LY!tPtCYBrFH=GNUOoOyOW*v! zEXOHtX?XZ$sXCZh@>sIDdnjnAnHZPxmNVaeLTXI5+;7bzTG49$3BJyAq| z#$q6Jb!}xB+b16OL>$uot`BS1PqLn3-0{pjXK+gMq_y9D-&lbBiKl5V42vteU(I(q z+b)~d7r3U{?JtxQT1CUn*jqv+h5P3f#M9K3P`lg-D9JFwfpK#^x*{&C%es*;wk&`^ z=k8|`_rr+P^{@jrccE9OM;MPU=+yu0s|H<*ZEs=&p~{M>;j&6a>?XkY36~LfGiC=D zRaa3-+r~g^quDyKqe5+0SB-{OTFgyY^bh3#|8g_+pxWp5Jt#_*o{rQLxp{gq=;iod z51e^2N<@q=TS$ElPUCB{a)lD}bU{>ibf!`K)r*Brr6udRUoVwnkZb6(D7bGc*FD(c zrU1i2Z6k;JLqg$^1 zn0>+%dfxtd#MHnpUJ=|&m?Jn+$dl0r+gPhoL!0%+uoB@ zxsOOwN|&WTK}Xv)akNXYKOM55(npR#-xrRKFhGh%H^U%*ywQftT!~PAuyMlsOA7yc z;w!G9@m&`PyW2)<#-}j_uep2>z-#m?2e=IL9ADe(o*Kvg&a2A&!sVAgXVbnFrd7;xsv4}V9zU0>EQGGd}_CO(|s@zVh+myztF}5pGSn^ z5?CJ`+off<9nySA3vM`>ywAV7eCfTUefA*TCvf8 zeGVDL#TQXc9;Kef3C9Im;J@a!>69bR@J8-`o$w9*+GvpVv6?C$q2pkAN~j;IifmU3 zRv$+gjK97kh(j}cqr<|LHO77W+3k7%yMJVk`oQgK3RT8&GFPYRC7yTZn0{oIxO6tV zSYU)|&1Z#Oy7cp(1l*WFP1<~JVI6l1#hLPU3?)-(XBC6OG~1jyxKDv=fiAW9CBXxm z3t5+~eS2byQU1L$KNK=!OogqQJ^Hs*pdf||4Q<7ndyh%{ZhUPx`CgVwUucsxXZ<6+ z{rIpO-t*5%gzj=eM|MYW_LA~09S4%cW8jG5z>(|PN+ z_>cl24hcaQab>6Zi$waqqjwzpxFM&$AY`EEyAUR)Gpd&BGQ6*H@FkRiSAh&x@w8!@ z9Ik<3fh(KJKtT;CEPZLAU(P~^$(x8d!;6qD9=Y(@icNOEd0@1B3w@<-6Zq8dW`*Ym~XFKUC=% znUS3mFM6DwX~#$2{w5#OdU_sY@XQfZ{o5h=zSdxLV^`fvDs1$cuetk*Okh^_G+1x= z|2reO{{Jp-DHT0G+FQ#ziYzrt&21jU>FwqlMz;Mx3%1R&o}R3KsfDKtG!ItKo`mOv z*r_Acp)AVWe5%t0sg%T3kIE!f56E?x*S9~+`Ksw_N)W=JP;}Ff#E6=6f*Y)t@-xVN z|KqOA%f;Um-ZA3t!%Ui;5tC^$!p7YhxQCbucaRQ_u=@DWP{4OxLh~8&!uauBV7JEv z$113LEY?}4zyfyL=4banY#8bg&tb2dKqY{XN@*ks14BVu-g%3PU*_l^r=Bv27xQWT z2#B~3$@x~kF=5*oJ+U{$Fz3?`hz==4HJz;K;R?F0z4)zw zXYkgcg8|!*dq#lYS*tJpqHs-T@BP1XrZ|489c)7#b|^Y?WVT9n zHk6&ip-@RMH)`zmSvr>lYgfs#Z+p;l9WY&*>y!HdYb-P;=36E;F1B$LL*qth z`YVqcgT~k0ch6jvq=>jKJmlMyB8EB`REAgA-m{8xkAIFn1xgpEynnYu^2cgNr(=>U zf6HyEb#0UY(CsjXS8uwJFkIySflby#Y}NzA zBOB%J4*<1bLX)B-kR2p^mQi>~xq9IzV?0)E94Uc}D^yi%QD!RVrv;c9^GYwa1xoz0OWAJ&6+^~c1RM(P)%7};8pqF$B!gyNqSJ{w zHF>#Jl)qAzUQx6@n~bJz198LP{Qjd`35}toR~m>9w;Wr0P0hk8%a43XImY^O?efH# z8W8?HccNSC9FkW2_UQ?8>3EuV>NXW0YlOP6PM7#%Ywx~%J}v-~o$8osV&UiW=Z|i< zFNXXmnuEJ>rN@#c`$^mj3<}R3?Hr48bm!l9h;4dych+!YajdEbU<>RRjd+biN9oRp z5Y#eLePH$)YH6fcZN^;?=2XTpd`aySbMc2c7{M+RydL!V9>M>tq|BWkvc)npB(?6W zy`Isj%%49$#(c9{SR%^s``29vnUAd}!J`7Bsr&Te2qpgY;Ba;=CN1K2Enmim&bP+J zYyThiF|)7n4b{Zgi@lT44+Cx+&R(qx<`G`kjWL%zWe+c8=-i;%Gj9y)h%sRsFDRe4 zL?=NM=!~T_$b3g_1NtxSla>*q>z`=gkfjuX?sd~=<5~6#Uu*M7&*}&0)#gMtpT=Nb z7e+8FXL7$NCVe}Y9&7n17tb)sm9+v!3zZCYZ!(p{qt6N9>-1#P9TdRXvFWz^eKEbN z>xbwMn@@Ob2$SBXzw9jbi^xCo?c3B-Q+fc)A2a8AM2P+Ayj3Pg4B0!TIs7BK;(eMZ zZ~ZU+-O>YA?;x^}_D$O1%isvbQCP`#I?u6!V!&lNR^+&28zsYp1h@w|z!RWFJ)t+N zQ5L5>D|6)tV^f%i^C^-94qLxRQN}S5H!GL}_r={Fi>(yl$wRza zuc@PXhB3U<)qT1tJNCc&TORu1(?ZU=7<@{y+*@3csl8?5v3@+kZqOrl(!&n-y_EGQZ zN~ViuB8uoCak}^ULHy5~Gd4cdG`fGiT^9XzIB;asdGv3x$OZcE`SM_+;NrwTh!*06 z>&J+cTb8BhSYoty94xU&@AR7arunM-(U>hq;A{NTe$MCy-EN7qx!*=MhaFx;KgqrK z+Y#-T^4Jo=E}fd5o0yzf{nt6DFfkbm56a2V+iC$SsC7d;Gd-*DqBCsKMz8NziA?t# z;HCI+*!&V2YW-~ssl5^wU=u&-UyeU2SU>-gxjVdK$#n__z5fNf3Tamnw^A-7DN#N4Ka*fY# z>Nm=wz4;`=O*%+@b@eJduxn&M4f7n(#V9$nH}2ajW7&M>`=cnTOL&G~PnJqtUg{26 znpNj`lk6d;@4I}LUG&PYON1zRMsI!57|4^yTL-wyel|jJ%kME+=0J}`_0RF=L=fkR z*G(FaNsSz`znGd*;gHMW-z>-Bv{`Q<|K z5^xE6WcU1&Tl)Yhn{!4h5o@>b>W8(jyuXmgD-t-npf0%cnDYhR?&oycJQ1F3sL$-G zhBT>Mywp%=fJiH?{%MmVu=+opePvjb;o2<>Eh$J!3W9)?bfXf|rF2O%bk`7LfPjS3 z&49EtLk%&CbSeWwx5Us4%?upAz0bbB@0_!*^JD*f|G(?H@3o$FuVvDed#VSaF*ES| zOkuxH{U2Yy9c=aaPGM9R`ag-d-Q^1Z@l=$k!a>7+g9b#))alxyLO{d1Fu~Lhb_Rr_ zQ%xBQB39dpB3<+$+IuPs2C4bmiEX0wTxfq86vAuax4zdybfAsB4wqwpOyW6_u$uhR z+6Bd?(9N;q(4C{9?DYJ2Y3+u`*>crQb;0|01XLqPZqVFQL}JzTEMq9FQm^y`mAKcl zcLnvaFXO@lj#g*X4qaR+Rf$k0Rw|y9T#%`N6nSMPb*QcB_XNz-!Mqdx)qZ+Gfx9Ma z=M6_oNYKO9{Ev)VLO(LV=!h69%lUUT+79=G?9QTwO`UI;xAL-O40)D=x1c@}ZxDbs zepSn7V%8UW?1ps>WxBat^25E$0W2kB`?>G~-mN`_5Q;=&o0)QtA!Y2nsW)`p*m}#J zM;>RmBj2Ir0xLKR&m!7JdFc_=2ioQ;HAMj(mdx(rcS+uHH$|I8yKGXLk!x)L!X7X(LZ}?0E-`fJ(9+~Hw2H^@YJp3 z#knn5qBKvWUe=YBlQ_Hu9t?K@L#`DBe-}7&7p8DfUq&gPaFFvoR(Zvj!u6F)B^mO- zfjIL8wZ6uEeO}0m7ff8VJ+8FLSQLr+k-g;dTN`2dD2(t&q~C9p^I#r)E3t zXHd)Qp9aedqms*ccfDNO8l-5-hRD)Kq8`PI;>(WB56<5N0FWnXjmUUfIODiQJBJFM zRJH6CWe+*P2~iW)+f9e77IApEtOTf~sZUO<34EW{o8QFe8Vhkah#Pt=sT>JCEg8|j zZ)zh=D6Z)o2+%ZhOEA+^6oXj?Gz{mEj?^vAJddgx&!G`$9ofbg>l?8;s=gHb`@!dh zG$cn)=Lt^=%^=DD{7hDirjZG|qP*);k%i=r>p1f?(#(?Vtsl$`9ONi;)aeI)fG{R0 z+%?8x*Yu(vr0IBzE6Y>+m&-nGmz_+&j{jxa;OFPn#9S)s1v!EYXg83^E?d1s!mB>I z3#}eE`MX1T3SfEn6S?d~p{W3(Fav6;TuBD}+!9 zBw#z5MP~nTBfG0_|DUvj;OuLrbW?xGj1wix(h?Vg9GeUWjjQJ-;;t5z7> zx$-o!sko9c-}}{dzM3sz4Hs*J6$+6lBCTl+7C+h@wSUZ3w3X2aol7A;-Ps_lu>jpp zH}s7eubq)9=k3paHmzIjgT-ZttkN!d$yyQ(T{U2YHwRc*6Rr=K^6G_)A3*uF8=SSM zfyj@LG3qsa*nYm@xDu9Ql$HqJw9GO(&WZ@Kcqowt923X+>4GU{UXGhhty_>Kg&xAt zUcSX7N~nWQqq_%#Hze z7b}btehn^quEGWt@SncnDI5b^xDv~?QJqI{&p($JWq$Rca!>tTALDm6pYBzWs129H3mvQD@JGYWjJvD3CEQlCkAx3)sjfyyQop z@JJ0DJSFh=%7iXs{cq^W6bpb`?#FA1r_>D1*!ag79~-)dA4>+Z@Hk!4)*raxyvstx zhpF{}**o<5Ft*gh0D4gD?^gt1@8I~B8Or5bxo>$_HwuTO6KaGlnYfDmsEXq+vUkl|H#FgXfAH#%wKc)$ zo^{)`XD)t%I`V!fo}x{fKn*`k4*Ft~pLIEXbU;?;IXhucu#!(luD{qbnsHZ4T~g zxie;M2OV>7P3KFI5`tR8`l+fd8aC1NLcj2E)(#VL<5YGjOKGD`J6 z5xB-lN^Fp;n(`|M@JHq-e!PxgLD)4DoC+@;O?Zs4vnReu90>_$eq|OiMfwm?mwmaU zNTi0_I^VKUB92-i5nZX5yt@#W9KK6WTQ#(iwEE5ftz5gpu_o=WkclW}mSvAyl=rW> zAhF+w{^ZaQjgx6xJ@F+z>{AN9$CwsjRB7S4U$3Ce;)!ZtfG6IDdj0qH4JsR3eDhB_(y|L8#=kSxo8c!yiAL#aX3sds!Qi{D^zYvn_(}%gP zJ{JIDF#w8ee-fw5d#mTN(*T}`ij|t(!3Xg$=8eV(z}W;za|Za}n!aP&gRNw8>2_*v zU6**et6BMb30lh~W2u)?76dJEw^iu*w_Ic0B1BT>C=bP4E^_A9*LCr31UAuXyNLl+ zgiY(s?E!zEI+welXZ59MO%&~hN9Fkmr((WPW8Vvb{hMd!Tnk9D>`Jt?C|{{zHEu7H zyg&Ay$4PB6x39p|rlDyQo&Wbh_@DFPhFNFpWLxpBPH69+82HD0NbYjt>GHi2n+a{i zl!qgdhBnuP5>?3uwf$mtR0OWhSB31C5%)z;pKG0^F%D4{>8MNzftDlJB-4eotA89d zd8ZfU*|3JYr@F?p9_Cha1Ai;&6$YMIOR>uEkJt$&oNF*fykKESavL|ByvTQ|!?geP zmTRCsXY*B6cVGrmRSrY6nEMeSwUgT!6+%%8HI!~YVSvYM{ zC&^#_niN}#Tu_fIN2itLTdt~4rmeeL(m)GcY;IZ8$!EhEGY%jw+<$YU|skBvZH7Q8iGHbYcp zTj|b*Lp-$i%_3ey`QD78S;Dfso$vog6ZT~JD$>AMPu z(nl5;weiPY_^)!;9~6Z)gF&5cC77T1uT;EGJ(5e678j(w-X&i1v&!ylJl$QJX`T0V zG>o+0P7`+zrdSW3Zi~zPs^qZ;LM2}l_os54?Z+;Gm9=wR`JDki&Z>*q4=`4Xy6sB` zD)DpnK|FMa`~Vy+QFRQa~Is+a7;v39@p* zBYr02Y+(!{1F%JqXP0@h3ma9X!@MZ*?^Sl4vYZ`K{|nfhnupg+ zZNoF!EXCWLWNS%z#C}aL;We!oV?FtF#;FYtXZCx{okfx?nL@kqO%_uvHR(O@r+(0@ zeV?d@NC#Yx7&?-Vr|<=v2sILC?dy^;cn05N%BCjOj?+<^n0GDuzPk4RZb<(P2#j>j z`1VA^Me&=v4e7rD5izC{zIn1e67AhkJyX!Md)Gy()PZWwefzAx*Ujb9mM=c*wV~Im zm;!|uXNIra8LpgrgC`=ij^8K?dNqe@R{yS4v)R;Zx*gfOn!c=Q6&y}4=q17Mq;ofs^ zo3Sn#d&%d(ss}*Ez%EYIz^(klk4wdh$}fYE6}`NbPCsEr=LG%FrH>m>wE+qC2CYSyIGF3FD}>5LhpUs`kZNL)jady!kWVBEV+vmdDdmixb9cp{#_|$e#QXS++9EQH^XcC-1cA*%qO`DxMlv&s%w7d?@%L#xZKar~ zV4R(lkgb)!72_D+AjtDD0fwGBHdqsN$ulxZjyd9kMln{!GHhp z|6mONABy0KT`Ik@t7gr*%Y2{Ti$_}^I4t7^(_G5bh&IdV3JJ;QQBOErKgMCFKbJjU zV9YTpD~!3zT6(fOFp z_lwhy>5nb>%~q3&2atdcj4Q}r82CF6)KgGZrZ|8soqS@8`kvLM((+`i&#`AyCd2ln zhVtt}U(RpVLNCHl3-h9#5-h%kWs@HXGGe@E`R;OQt~^NihD7#$Wh)TVU#r*U8bvZq zNj|duz9K!JAd()~N(GHQ-@)i&I_3G;(#njMr^^G<)Z|La`U@YId0GZqo?jOA`c1W( zcPUlvU=H=wHAwv{6(tVT?r+rEc;Etu68BUbum7v3$n?s^IFk5kUs{_5ev&EJWq}Xn z|Kn*j^o)IX5C+TH#Bl*I4iK*tDhf`j1@9?!_Ehrm-{K$lbnmt>uOjCI#XV$noofx*Z}mJ?AO}tsrRP-HM6!>LQpQgZ55TvjhhG+_Px7*RuIN8icfP` z9$z_Nvwds42#(2UsM4RoW0=a)n6#%8zT_>L8(EEPty?SDe+;@^9xe~8mjQd5P~Z2s zq|FGH-BbvfqWHY~{PZ|^l>LJ16Rsr<6<3K)DC-a|xF)S;CK`t-qv0~R5DGsarK)bj z$Eb0?^s#>kj<7*5@JBO)DOpJ#a*;=#-xOG^naM8amdmr|tpMb(ZQ8J(YvAkCUgoaU zV>tO|(}z=r6c(aOm1x~pcsyeq0=UePG#jfeE;6K2G`&$%AFwz9sX*5jEu30`J;Prw z#UX!pH|U4z?F&?PjexZRY$o)Zj+Ko%_(t{@+f;wKojac`%Gw|#oz*p6P#|V9?T39^ zW{cW||1mk>edF_iEk5K=QPMI$LQp8}dd~|{bV(o1JP)1~)2beg5Zn0X^&G;pv3o{$ ziOgUcIo0qy^bPi>Q4#ZYV|CWA((=z zO6{kxnqXGI1P-*)C+?u$wIzbT6dE&od+L@l8CxmPNlcHO$-$BW}n$%HGRM zvJ#q+itm3NaM8!GE|iA1xyMrr9*erB?Y>-TFsLwAGzVu==T34Zv_0O6A^)-GHvr5- zt6HL%tGheiGhKDt2jpHkiQkw^ckh&+72HJfHq z5Fqc-5b|jj*?ztAm1R$V>nS8BMn3S&*Tn_r({^VXz|v+ zVbEA}y}lP3B~wyGC3}rl-T@`jRP@)has5{8M)amCp|!|M54=8LJ=ocbVj|BiX4au4 z)SnhL0iTT&pmzeGp>{S-UR=U#*su!A32-Y5q)al3R7-2BKzUZzMk1{&T^xkxINIlH zzVC;_X-A{D_DPO7iztr;CV_{)J%CcTyR(ar7xB9QR}U(Z-NZmDrD@3)^y zyzryeC^GyHC;Iwkh9^&o4`t{`LHVbfB2t5Ey$)oRl=CFJ8Lw(KQqd;#Pc z+wa&ofRU%s&<1u0>_6vS<4~n2cCPKk^EVq(4)qvLeGuX7b51!EJc*aZBquv(8KwVk z1fzcqhf7~6$VBPwp=RYj1fzegLpOQ3n9=Qt&keH*Q*7W9Mv#>Mjvx?OxH`j2uOG)< z-B#Mf&|q|OwK$W}+EKMvQl>BZ;A?c_YRlkrZ)wzEK_$?S3kbJ?XE+?+*(;DbTU7i# z^9uuQ;bevmfA)1uwRTbmWw{Oy{s^^J-oUZ;V`*$*4A7l=n}8iU1beT`XEBc&p64K& zXPt}5_7${waWldU9X7b!ndbgsqTI5g$NUe)ff}Q@V`R(+?P5!_24%(-iPZWup=0Tc z1T$|1ANrm@W_7BWPa9+q0^O>aM(66mIumUF=vRhJ>2$Hpat}+6ITe-o=?YmQO+H`Z z8=3Mz92pf1azklfsqJy@n2Bgnmb&L9>otd~$Io{W`-(VpG{gNzJTh55V zS&^M@Q$?z8&Xs*aoB-voUG|z3h}Yi_pEn;nMYhkL*)Q{+9a>mkWxnD}YCpz$EKDQA zO7~?_&z1J!HIfp1O4S7B%J$}XF$2qG_D5jm7;ElF0r&dzTrk8i4|b24n83cZOVjgl z&A~C&{y#4@>_+N2xJBbNPP6?4xPhf>TwoI7`hzFT*$nsI71TAj zPjG|b&#vrrmKdl$z2SCu55mX18+2}N^jl`j$Uke}VL0^P7?llMVhB1VN_qN#2OzXN zlcRl>08ei8t?U%U@dz*S?!Y=Ow{c%MkbI6bG)`rf^yc)!y#5>^UIiGPZE;=Qqybyb zdWy}vJg6O!W|EaY9zPa}qxe9#=}JmOU(zFDVO39R?&U6A6jbjqeAMN`NtX8Q|YCoUWy6^ ziKm6K=X5+S{4!wJQMJ$pL)PjT$+9K?Wo|XIrsZiQ! z9ep9C)arRkrgtRJ{aMG_wH4n`7xa}2Wu$9=*duT+Bm018a2tnh@ zA_WO0CLYS#r+T+cA&Kkjv4HZ>Vp%5^lrxmAu0@>bRclz^CV6FK$_%6Vyjn*{gGk^Q zja+qlFsE%J9bjNP<6tiG$}hsZ_|2*;J8yV5qy)GBG!GH3jcAIa?!9ZzPrxGT z?|`z>D7b~ZKViL3a>*U1{_W(69DGr0|3o=>8!uBlVAzHYc={_VIFIilurPGZPE7|# zb(}t_sgWVWAckC7pFE>alShq+l7O4zXvq0J48B{{5~)h`dD0b(!W}N}3=MGi#(OUL z@+3hE|9M@N^J!lLdyAi>_0+KhagOKf59EtP;CJYlm3nfxP;(-gR1YA$eJ6zGhIM(a z_tm#wu6PI0sM2yYXKs_MCRW0)-M13NTW$#@W81VgkIOzNgrq$wAH@ zr&Wf!Fam9CIuW9D@7=~9QSS*m#TSN{Op+gU)Z;X7FaGjC+B1o_*Y9bwek0`o+HUdE)?7fm985Ug(roggs z0QUF=Hl!q--(uHkljQc^img&;)NJLi)iZ?*=jwYmLVL5%GGxvufXJ@=)aN1DR(pE8 zY651zpM+yM9I@k69mN-IK0Dh6h%b4wf|(W_w|}0-)CJ1i{?ziNJgEK&0=7PTM&PR( zSupRq=q_qle)kZn}?nj!5)YR+Gwu_FIP zjYF8AuHA>8_geBtIZM*wF3T)!v-`q7y%=E%>iK+4@=ajMKJ`A)D_HW?2QNguM5}k9 zDR-Hr?7h-0>z4~5+v{}?{L{K7{Gf_?L>`bpqXQ~-ZC6P}{{_l#J=f*0#^n*!A_{-> zgD|HuW;`$oyvtpQB1{iAd+LPsj2jf^_y+z)B$FFaJCQ6ZYl6L$%Pw3ajpgR}i%C!`dQ zq%U{ogNWP2pf8oe7_51uy4-t0N zF|0*n4XUd zFSJ89FeKuoecD1iuY%|+Z)1xW_A(lXJXIlQ{-ss%BYoIF-v}*PDV7O$UMo<<7u4pR%>IE%s1M2g+eT<+WmV0B@wVQ4M@TbkVb5~1X zBg@?<`>-Wb{P|Kv03@I_yhi8e!I1eMXjnWxRY2l4%)2aF+kw>FPQSU6O;z^$q@FAZ!15nhD_$0bZ%~~6ZHHW@GucSyqxOJ#>N_j-ch40~fA;Ex zqxnK2B{!!GvL+C|?Yc*gr`lfL{#((%3aIMc`)AhWDEP^!>-4G#nU>`qYTM{#Wbp5w zY`n9$TJ1Vp%0rZJW~RMEuZ2f80XgAE3r`+oNYhI#!YFZzo`M?V6^J_p9jz~(k>X1> z^=HnMy@!{c)>Zl{5O^~ zpwC*0IkZh!h%U)FdTAdQQc!m*wDh~F=|3I`ja&bC0WY)EG?vxQjb%buR@KHPnx%Bf zed8kZcS%F;O*$UtI~6LYq&_u?xwPt38?q=fe@pF#X;m=E4qmtqwG&>HQG8uy3bEpE z_P42?n5DjA^xX&!=%n;G-=93?D-*#3ZX*MFR&EUZF=IJ*c>(>&!$-u9 zl}C6GL6+E+h^&t@Rzd5cKfY@mUCu@w9HcNCo)S-3T-%PacP@hd*aY5B5O37jEMPqi zI%d=DjN&y(ec($4MJ;UpR{Lm1$82s5iC%kr3ZO@P&HL2WPgLe>Y0B@{(;%Yh0lJci zl(ye|h4w8o=P7LCE(i~}`ov~>PS#Jk+4G!qU9TBcQKab?*;xE)x?!})gFtl6vlPHl zPU5lVb*-$T;m?b@f7>wgJ%bq`=pbEFT9(M%j0wXH3OAX9TC+Z1aJ5lz?3V>xI@amr z(Z2#_U9VNL&k0mSMDxINliic zFF<|g)#7?W8|XS{WF|O>`RKX*ckaBJjP$Ifn$HB(X)LB9SP`n*GRP$AqNB;3-hR;; zr+#qxq{<7U;3bQK$2+o{8H6~QQ{XW|1$9B462gj<@)1n7q*@*BnaO8fHnC~Up0(oy z+|_*pKCfkkA)Kef&Duo09Fr=0n?5#a9hsoz?8m~K#~Z8)P9*QL;C+el3h$N^x|49P zA?(wGgLcwS0Y6gQYHlto;5__ltaa45H+yMG6_Gm2o{dm8aV-9!8kyzqWnq#a?`sQR zIXtjrjonNR`E}%+@JSwn6O$L7(5EL_M|jm*8imO|5?&tdGM3&>9A09hK0E%40GP3s zgwv1LHkGQt>4Ea+L#m=eFwJv_N<>I*tA=!~+{3#RJ_g*UP~TF`KBAY&YDtNMRjK2z zX~&PG^jVl1$l_G@UPY;P%}{r9M*TZ)#lKj>|DP(ao|DXp>*0lOKxq_d5FEyK{PGw^ z#g+@Tt=7_vAq55P*q+_|yf2@bgoAp5Z3B-Y7K%|DKIx(l&@)6P)x_&a;nP2UD+}L` zW`JqH3?Pt0o;pKkU|Thy1v@<5fs)fg>&}=96$Usoi947T1Uzo1W)S+RmD(yiz;;@$ z-H%30X5=QXbeS(m;2X017|?*p^u)rVNTz7kJ21 zee&BQ`l*!=QFTiVbsdOa|5lTME4d?ZHp&^d95FoZVogTwT+Ty|y2- zXNI&9u*@p$Uk*&a4#)NBKK`DoESNMjw)rINXL!Qc)e!pbIWfuKy2*_cuO7DYYs`-> zDc<{`5Xu~2n%8QRyX(k)WvJ#$mMhhx0@8k4S(E zKk*~YgCMIBeDGd7>%asqJA*!OQplYWqtR>OU-jgWGi7MA#}aS@keo<~#=`j*R_#HI-baApzWk+?TF# z6FxTi;!;-a82VZssF8wf2ccQLhjxUaH;q};=FC2yV&V-)<6ak9+V^T?o+=QOt~pZiHH!|AdF2H!osWL`b{Kr>C#pI=t&yvLU3 z#%ks|j{Bdj+UM(Q=57S*RCVoYZnqt_`XVX${8PPF+%u{TqqZiM!1X3QP1RuH)=nO~ zZvKwyaqmM20K?{5@oyS=zlegxF&}S~&(qD~53+gpjTeV4l)gfAxqeZ_mk{ul$|EHo z3FvBOv072JUla;C34J-*dU3>Et4{q(n#NNNJrg^sJo1HBM!yW7G#&Rrc}^-Z)}NbR zAQz>XFa5#p5o1JJ(a)AEFZaMPfQ`4zZ0GI@L+gvf(f33|sX`1nd8qWkzn81Nm**GA z%f$x8^NTU3?{%i69MSXMhHx&h(rt79MSe5ye|d^#e(48Zi`hLH62(Djr#>lxx#ycLJ^D6*r(HfTe66>cO3TOhK&jD3Ana2BJNTvT1cc%$4h}6Bg^ferBmRyX zE)bah1WJAek#Q+8YIzKOch3YmH~bj96T^-?RD((C^vW3y7A4b)3$0Cta}?lK00$SgwzD zqJd$CZLtyA78i7vT)*h=>Og0788R4*+ei>?ITthdZW3 z%b&<=@{@=4I-Ik_Y*z+<-Q`$Blj$cjYhb1DGObl@G3iJq+}PCYt(VVD{gJ}Pa;B7X z6I$iJ7YbB-a5*=W%6tMfJT^`g`Yjf7J-2*9L!dn(XPrmN6%(^Km=a;IxU(J}V2_47 z=?eEdtKXYQJ0lu@u@iwvCedgYZs)eMav0liqZ7N6^-eMV%1qEqeCFB}Qr#2R^Oj34A_^Ove%OV+rMhs#v+okdIW z%5`ZiBxc<6YDf_lNIWaS{ zS*#+Ba-XLrUo;CQ)u*JX`^kblJr}(f7(^Yn3eLvxFD@+gw)5Ud=wx_AB+9Jfw#v=% z1Gx`b&C&y-%i@w~tKUx(i$uHjEEcshW*dr+P)aZ>N>Y-^-s!9d52qU%=Kn-SK;4Rv}&L+w}{sVR-d_=pD>t8t>S(AL0tFmGQ;(vf|5Ounrs;urXlvtjw78KaWZ<+$maBmeY#Iu zuMJ|I-)Xm%wrY<_m7O7ECl%79aOWdOK%w(KSz762Bx8UQ+~XvxSntXlKOiQmY%C@R zwhtV{H0PGr;*R9^9(5P{#%r+h3y(F&t~>p*uY1VzJHz?J%_JnR6Ztbb@; zk;HJ?!%AT5{plIc%DK}zh89iebdRPEl`8wFan3k?RikwKaiw5z-YF8BKB=4k&6v0{ z4;|6LsH7wxRwX=_q{s}UR~j!vjM4Kc9HDCu`K4Bo+q(86)oEF2jPfa*m;INQ0C~u_ zsrz+0&tF(JploDy1CNzVibwfd72$;%4UB%k;K!i5o8rtt)4N~ahZ9C!6{HPpZCqtC zNxSyoGjTw|c0Zdxd|tYkf*KGn9IQ6CxZQo&HI=K{wiK#r)m(OtmJ?UwWZ~-0fjxF2 zFAay|#s*(pM|zv!X+5%-6s}-=j#^F#nRHx!OMWZXWCaU}EE`G4N@!u1IsFKyeiLde zqZqC?@Z4|n5~TUFl5nH^$t%Up7fEPG-1Ka|{oxhGXwIw8HDE9kj!_Iy}lL2zFF{d)?m63_L$3T|nB zPa&~LO=bjjZkkm?2M)akRFQh>e6`Ns5~d)?b|@ z{3>0Er(__s^H;IFY?Pal%nAWV_%AcUXHq{!-`!4Wo^O7OTny7X6rgWNXlR``Bf4L0 zY;3O~#5*yIAY;QVK#StVLhJQEBpJb<*mJ~5v%}DV6p3XdFw=`h3(pM3S3y&^rfJ6wn#t)JMPE4;Bt7ppzKx#KuOJ^*NRwco=3z~&!UuZW${QSH#g?WtOne=_>B)h zFDPBtb>TcphsZVYfbS&WZ%3B|+u!*Bz!6hq2Bkl0J^@X)EwesD2;Xa!}7FFT!@ z$u~!vK2E@X{0BPnOPd9Q&hM72P^$CvE1|%bj>1YKSMR#@c5Yk*x^Z`caN;ab{kICX zkYLxIQVG;X%|NNjOfs$G5c89c(}m)j{Y)-31DBsv6m{cm-pX#sX9}g|_X^*$RF~+@ zbKF0^1~zcAu*WAi|ks%`sAEn1+gkl%usG0-0$%2JJ}WrD^Nriu!r9I zJ!ifl3>`qCnuaI=@_ogS9?rYC-TsgTv3CMf>Bw(xDK*xTEB-wexa!PX5$_Wi^G*i~tus^p~O-t8?yYyu$qZ|(dC9%leAFG;wicJ>`(M_h!iE_QWdR2u` zSvuX1^MpqmNp}2K6s-=$OgcTrj&V_)l(|UA-AuT{UaPL*;>|$i9R5z=pj#;zGoa$h z)$q{*hs0|%CA@j2OV6X3_FRfd#^+v8z0CWS{a6_zAAd=9-oAM}9p_j-9NGG1G~-P~ zPBf1H?Tt&#FSBlKXhr@hK91QXR+Ip06xNz5upPD=AOORD!*U(#@jU-V47*pn*)5xZ zxpMRnT=jtO^)@`I=_rFU9s5K1Fvg~g@AJnV>W1{j^p1^}*J_sOk9jp#xD6=bJhntT ztbKz>LeH!tQ%|~{K5TG%)rwxSwI$~@{Gj^FbCj6yjUXpWn#;j;3zdDYv4VN>M0&Pc zFn`dX??3!!=uqfdXgSvFCiHXS6dijFx!XgTn^f=6p#3sIB;4=@Y-8c@j~{Gn<3%J2 zh)12x_FNjEFJt*}vTRzuh`AtJBmY+Nq39&*W-R7UuW+Brw2)Do8f*hT6B;+NkvA-; zveJ-+kx}&(ByVd*DPuR?iY-ka*aR*yB^kpeexGnG_mLPlT_GsNtAUd{ZFZ;xe9Mhk zQUe3Cf3G_Qj1z2Ww(#^K7Q?1)E#2Y;XcK|01Rh~glko5PPnNOfboY#t7s0V>4`!P8 z83;z&7l#yaq9HcRf3(qRSUS}x*Jy6aF=&=#${#jQU(1I#sd8ol9mBt*3NWJ$&AUYV zmhg&8wI8d_L@5b`$hUGq48j=--&jaifnaL_tsv=c-4KzOW)p#=`6yR*u6woJ3MGkb z+p%X`n9#RkGy;z`JR0!(fENQ&af?|75T#=h!jJukrz6hyfZpI5G*>R_^hpQHUF|Z| zpXKuB-tc7THxXx+tsrs!zkxxOK1tqEQ0(G)|C7fz08nIh^%_x@h`+=eud;sZ3Pzqb z-ckPm3B4|73t)^(P>pmw0C&Vy*4cX9oT?>Yy7#-1$Zb@b0u@i%EAd$C)M7 zw;1-=9QNOzj03+YO`oL+`Z&D5(+VJ;XDaJr)lkr$-w6IYO3SH?HQX6?_>&noEldtV z-1VKH>+Kk#r_ja*{lGAi&lPtqS*|z1zlt+D(|hG8A9@}oihY^)#gzQTd+$rMpB2UB zMN6s$O5YnV!YpaFPjzKfw0eb#Q>%bj@8n5=X|LIuS#)b!Pl|gAz^mylL6Xq-Z9l+Q zq^yvI|C)572Xm+bxU=#h*5h-SKfrN-uXiY)Xd9|T_S_~qBvwYfO_-&HgzPuH#Aon7 zbZNik*G+(HbusSxJ#_3bJZaBwD5cj{lLM(DbqIY4wZ6|a%3d8XN7Y1ml}S~%Mi#HG zygTRD+@uWTF}zuzUpS$_)b^J6O@g_!=-M6rx;ZfZ8hvg(_TKc@eSN8vEE2Bz0Gx&% z(F$4C??B!n)K&CpSZ#iCy%xpIA1FnB#nQ8M=AEtl#*5=U#ir3Hqfzq0xlMOtj+#x~ zdT+Jrl8MzX19I#iS6g^&f|>`ONH4&G5I+|9=gmJk_Qs8Rk%IVX!@a3n1TtDd4; zcmBx4Pbt{c(KbdBUs2cJeMa5nlV^Jsz6JLdz>1;NF0Rr>zLpatge3`-R!%;Nt?qv}G_5l>Oxl0qonp(z@8@}YP!TZl zLrXq>x)Asb!{|I^NBuB<4rz8gNIB5}VMBqN)>q&E&sx=g6QTcmpFBI_CO=62xAq0S zF918#3~9nG%kxSsn6Ytqef=Q@;0E=#`U0utbe0bWT>{zlUA!!M;*A3y8rj?9#?$ao ze^o+K`My#`0jX%u#JZl;CxAU8nXHxqFSfhC83k1P*_bg~Zl5i&0jLx1<3+nQCHtB1 z!*^^(K>RyOqnD*MaQ6f1J4ez}yct71}ppdL;3* znb>ZbZsxP2Sql6SJkMV4>&FDI9@#Bv#^j;y{oB%9rbt&%8E|3czE#mUL<^8W3(0-;K6q>(+I81 ze2X0NppR=lhx8uxdQ|@X@9T)8)HU~5KI?uw3!!Ud^~(_T9sJ%*Qrsy z_ep23E7EQzT5CsLq5!%o}U1;B0zsWmy!g)3^ zZ%~>+4K3H4R=W7y)V4dRFrnsB$|g)MZkX7Q9oI)>2c_!0Z6|9TD!Tz<5{%6Tan5E{XJ)Ch~Y-D%OsSxc; zo=cxBzXtp}9_lnQiAm)HLZ~W= z&S0jWrtCf*h11_A8v<Syz&%@5#vb ztih+q8F(RoMgkcjV@02P@?@>Y|FKb)fcaaVM7!{p zAh%Qc_@H{I*N8uO48#32Tt@W8>*AEJU{MKj9&IMX z;KgF2(C>Gv>Ru6Tp~PGB`uZ4iO-JFgXt*(VCzrLC=zdmrsdSj>B7n36oQ{PJfD&!Ky;qzI67^(~r)1 zmv=Bv_)N_izFT>uqJXIS-O^$GUv4C+j6SSetRtrdRlL*9&ZPjs8%&|nJ=v9gw?U~vNZ0HXhm1epLsEG zZhQP``vTt?0jy}XnLJgzqelVn5)Wumq9Nu#<}18c zmENP=CQ|E`)|SP#9sK>`>cgisK3o%B?j8^^xYB}V_buRI*8>`-zcv8m_SpJU!2DKm zXCI0u5$&<{GaK?Y%qX<#(zgtK(?YNRbP%4gM0ARdj;C@QhWvW2^5C#!T_}ZpBs{|u zzuY73_)0-+G&qjgyk3LU{HRV)imv`9tw_)Lke=#B{^r6))w~A>mgCVj&t7o++1w40 zVc~=kqW7rp{q#!H0Z{FnrSrZ~jqq|FQnu62(ZrxnRwr(2rTFOyN?)v91SO zl!wWxcphTgRH(vj`=bJ9L0NOGrPAT^agVfYoEN}fgt@>oOcxK^S2d3%gUK)b{#^1m zqnHVn07x}f9k!H9(E8GV?FUf@r~LPlH!+{G)%p24nzG5(<2JW80CB;vt&kxDL;6=a zRJbMYeG!7fFijvGm2<+k-*UvAr~ETKmOI8@L{90i@DJV{2~F$LeIhz=l2qCLH22o! zRkjVEa$5zwR7lFp7TUq&8xdE{TqB)&8B#EowN>nr(2|u#7NL|lnF}}%2 z4Z?@ME4q59it>pU7_bRS2d*?GbSuv{kh+C4@%&2}#(GM>)Gff3bp%@$tC|Q4Z}q>( zd^@^wtf+wJVrpQy3Ii2mD=U8Q@3#o1#B@_&p9mQJwHRf4*q23;K@5HRgb+e(HAVr* z6QA{V;}Il)m99{!4@@?l4;hVB2@`{3dvrPWYs|^|caq?=Mnsh-(r6sw!tsW4H#Pq* zmYf_4bhjR#p*TvFB;k_WZkxv~u>ezJI>iA%2?QoqTItkHex^_c+ z@liDF+H5W~*Y3+ZY%f=9 zgGmT1jxg7}J}RSJ-}J&o>T2YCPcwYZ_Tzk`JqNY<%Khg=Vcow}=V}N7U7Lp4+RagP zrd6#P*cAdZXe;lH8emCWzxgtRks_R|p}-AliPpJi{$v+;#;beItogShHL25~GZyrH z?Dq(^=+=>{6Lbtae*AiQHBA(YTb}tyTiI{!aclOBX}rge&uJ}>jkf4u33${SP@OIz z)H3A}NqBf;#}HX@1lPWsp9v_UIJ6|}_ucvWswzi69-Mo!!QuDe7G@p^qA%?X;xp{I z<+!NK53HF{c4{$;M9CTvmM}*}`IhDx8}$?>DtE^Et!9EwiDFtW*)yXCjnL z{rmBzw)Sx-S1>E8Wr%n|+b?w|t~*W)jyYk0;c_zWpWrwg|DTo#&f6qzQA0v%}PhGFo>4B6FF*mDrQ&X}VAW z`nSh?x}h7nr!5i5jGZMYx8Bfp`S!*j*ZeKXNu4ZC%-I}*#oEGS&# zuq$TAo0Y>iB^-Tc3VKxQ@VhE1GvXGJ(UW)+q(C}uj!;|=JTtYV(HLQ5NMP)>E(J`{ zIN@5#1uqJ7#idJ_;A70)Mq%GX3o<+Cc3%C6RkB0vYj5r1fe~IM_J!ax89wY0Tn6Pi z?dwUn71U8Ul6~>tzyNbi-*Ck67COn;@>sck`B4ut4y-qy4c|&WinX@8doFFp(L%N6 zLsmrpI;JR6X0HP;rTf`o4l+((Ig!lRsFbqqbbS(pR!XI2(jHrG{z6^C1s7qx63!hF zpgbwy{c-XTQ_He{cgD(2qM-G!Nq7pqmV_5A<5;5j++0nfalM-nMf!1(s5&Z*Y#iVK zDe8@JFG=nyKeKh|5wxGA#-hsLf-hKoNs%-Zduy^E6=SlW1fWX2j#XBt z^*TtYA9J08qhsX||6&6E?YNcXxH~KWW&uA2D5UR?@k#pWz+vJ;HNTWcbqv@awNVSd zXi|ZM*S*$Y#i}$Dz8-sZ1#L@Y*q2I!16i(f4wHjnRG387S!J_2pBn0H0y2d!X_)9l zE>!8>q8OX$w-`gwUjvNY+i7?%_+=cUs}5a#i;r z5@*D@@}*6}37z{YKbTPbLufj=S58E3@bn7ypCkNajyZ*trr%YgJ^2&Rj8Jo9_v0k& zqqGp&hHBfmhyl9p$K%Mdf5XJ+RW7bNXGPG6f71{0>IWA_^BEV;@jTMkt2YKr_XPeY zhN;fA=BTI9SPQes4U}bJ7}ocdEMNQfYzaO(@cgIm(FMtCs`ae0q22|1#dnTrd9*SL zk#m$SYR?MbO2|(cLUwFny8&aQcb@ia3nDGF;Xdxz_{`~lkoc}|@9oqt>4G6PO=VQRG_XoNRSQ=dS4bw!_fbj|fMPxa+RGt1f zb569_C(CN@;$)+7O-qi%wCI@~p*-2{{{+dZ%uriK^~Sufk8k_3h>};)HnR^etf9Q9 zORAR`ecbSfH7;m#&j0J~2HKT)`40divc1GP)j``?dxp{Sjt!Qkvvixh%6L5V%Nw7K zKUu0!lt1Uzo7UpFL8iZ>DaAZXMFp)e2anu&Dj8%So<{d~HM*@or~~YjNMJao>5xB& ztM@uw*Pt(Wu#PQ(P2X=VzRWu6!@RMmq349-Uov`Yf|0vK8c2*Gx(jw8bQSUX5qSj1 z@Ch_F_dN5I6{KfO6oL&T@gWXQr4Dq)@C%wI}_xEX8?(;TotRBW{rsxnveOy-HDs-Xu4?81Ry1Rv2Ar1dw zrH?CN>r?HNc%TP=LgXsUEJI7?7_6wu1!bf~pN@E+L3p<2=b7Bdb&r9z>lG%qi&7lm zxmEzkamG%RK+<2yH!fL zl1CsUnDbXPuff>KCX^L)%)Dh5aAcY1>JLZMN|i6aWgur!S6K2!8To|sF@vGw#TXG3 zm8RoCihoV{{y}|zVay};Vh|#O%{+7OL*~|jh~H|ylTbZQq0I}~bpcHq7Cg~){QttE zBJdD>Y?hFBw6m>+zPkS(b3JcDhN7Y1<|+y%r(mS6C*8l8*$##e5Qo*h>+Y!%v;R_~ zBEDPh=oey3Hb=i`Rbe?t=Dc5~b>pTTX=*-)xl#<+c_gd?g*{?b0d3FhH!l5eo-@8z z4dUgEr!F#Fu~XD3)?hP?E97V^Ogcn2!dNUeBhV2 zn)ERc*Zr9n1U2y-7EV%Hdb@m&^2b;jM#^{-cLqzjh2>*)U>6wK(_?dz9@}l^WuncP zv=e@GIs1d16rYZ#IdbYQo&PDPNZpDo1_oHh+gG@f=C%3eGUZDDOvRg9wKa18Rg6ZW zc7eH?uLrSQ=+~Hwy$%8-I%)?H{-8Xb>h?`Li@eStwvs}**8&qHa&+=wNu>2uy)!t& zQzTT|0M(dAe9e=NzReg-J8Jq#@0ys&R^mGDRU4gPW}ODZgvr%5IJnBs{$~;D@j%F>%pz|tz<4;of^aYA#sh_c9+2CfVUxrduK*+xoYU;(<%c~U`G^- zkiLVL?DXVRnqy8XK#1s3r(`=vN@-E=#j<|X8y)Ymt@b1}B1NDM7fs)b{pU$!@^=e# ztEEvM#Rr`?=+ieTXWG|Q;xK7A9G*PLdN5?+uGy84?af`>+txDL{>__C8uO*sF*B-O zr@-iU#si5Evp*xqr&d8`!KhQ|i)HGa-pmprr#nUPTY;Q4H@CJT&aGiJGt-+9n1JVM#reMMJ5&=^&ds%`4=a67Ao(e$TS$L%C)z` z%Mn*BlHyA#k%*QxoDK`JyQ_HzORXyLoM&l=9l^a~pV(z&>R0f4#^bRX{IsONzE@|A zC_Boi&>5rmyeCG1ef3gJw+h~B+F4SQ-1`wZ#))rH+lmzHxt4@5Dut$s8=(|rf2u1o#eb~d?R`j`4z4Q8aTf{(!fS1Bgz`CemD zm0gHtFX(bFYyC^=FRgQIc9q+r{VT65ld~(#`9zpEDE$!KI?pu>LS%Fy7;%Ps?t-?} zd;`o7YW#Lubn@pJ&VlAn;A|JSZewM-qt9*1XDS%(OPo3}Y!R99us_@-v1*cq)OcwY z^!k3R6%ptLT%6%O{`~pQ;||i7-Z=8Fv)qr!6^GA?6K9N`oB~l+GPnJU|L3SaiAQb2 z3V*ZrInFD`3^igb2at>^q7fh65ppcutWR z9eN~nX!*VBj4vCp`zy4*dAj9<%kD303zKqNrAzNgi!_(77>h~C@+5>w+ z!W_FiEyT_gMi71+$0sa6uRr`9KS2|-myv*Z;bf>c`>~7lN~7|p3;y2Te&{undl+g~ zVi#NBK_bGU0-Kxu_N=5>NF^sjb7zii1B{!5-%}b@E^lvYQig5+DEG}qBklZ?Y;b#{ zh3?pM(qI1GL*cbm5v#YqxVUKf#@}9VROf)9MF$uTMnb1*l^b<=g7K-6w_Q6hsQDV8 zDOEKSEMBEf8`S2-f%N@R1ke8I8fLiOA@(K1`$xN+Sreh%$Jg4?UyhZqsvNzb6kV=b z!s_4Krm<=9h=1@=nG3);5RiVqZ_ror{vU;4_1_0=T${W4MRjL_Q#t@ZooK*6VXtq$ zF;QYSYVG$SF2@`1u~%iPXWsp20{XXAI(-{hE;8=A|49DHU~P-+Baqx?DPA>fc#V4M z`vdpUx_i}hfpX?9EwzSGU(?)`S0{-;0fkOd*tN@5G^!>9*IVJd_=fbZUEZQ+wOK^U z%i65dPO08L-9B`GS|x<=n^Pc8u^o6Hh@5>V-%&Sah4?rc8u&=Fg{}R5x*Y;l+uDpz^Rj<*TXQGc9*Clx^MpMVvH$Il&v(6up}PkJ zV;qjwCr8ey{#**K9s}%C6{V48emWXu>JSXlnOudqV;|0 zoh`7*`!PiYb($QZ3ucSIypYB|^HDWR8BU?jEawBx&v{2Y?Gt3viG@gp#-LO~j~JSQ zj2%x!T9E($6sZU`k6#YueHmExA|PAVorv8#_xUsXUk^HqPD3@?{BhQN3!{G(*k1^C zd&7u5tu;11S8FRGgG!-akaKyeZ`uSE@&o#}EMmn{w zrSEuL|IZF763+LG$w^_(H^w~z;ZG7rCiIpMW!rf8D;fn{( zS_k;2*J9n^KF*cb-)jgk)#gUX|35w{7C9kLw>iOWUza4UN)Nm`G|X@rdR`rxps_2) zV^|TvKZ@Jl6eMM28SpY}Fd`Bv&a@QS8%4#yr6#3o`wMNcTU;z*h`swY_|3!0H7u03 z2~5c{`q##u2}0s7trFQoH=Ask+-hz+!JGiIHG!PIpx*rC`!O~Rr+JXy(&+@ z{YMZTa#yej*7%y80pgOfI6`=%Qi8ewuWgQai^mF5qCf9OwH&i=QRwP){u*EkalpXQ zv|UOSPAPHaD_*8W;p~stw-#~r7J=#R&07z-(dkc8czr^-tdJl_Ln8w%jD)Hg@1f>{B(;qOPc-XPc~Y+@!Zi zgBK?v#fibaZG%urprIj7m>Kpfni6+tKHGAOC{3OhIhrwJ)V0d8jt+52$^K3j@1{ay z4=eoUx=Se$Bwpyy7a(LbU^fTMxI|DFf=^$)WA5xcSW3XQA+W-_X3}3OmU+#Ud4sx% zgEeHv9$PjikI(>u8=w6P4w|}!b6ErkM^}8hP+{#lo{UJgMN`B3h^l$7ILKah_le#e zOztw#Z-cte=4RMdWwz?KOrviTb<&b?1rR+?Ls?$0U1}kgPXD4^wn**kIF62?mJLQO zTr%0oH9vb{b>wsLB$^x`Su| zXCsIxA~}s!k1eV)Mju-~e6_!McH-y6*BOp|UUaxS#pp@Nvi|O=Iz!yYr3zjHe+KfO_<+;BuMz#{lqi@5Alg|7Pxo;$Fn1$NZ7WA zH0;k(-5%wC9OP?%uyfbNxoUW^6;E7at+zHlqJVgHT2D<$$DjL+RbyzAf$+6TzR0|D z=~IB!j)1evUS9LxpxtjN++kuYN{d!J+6$P?PffCe;t{t5EVJpSV`)5YpL!<>a;D*6 z+9I>V$HkgeDOOTGDECR;xetE#5a>Cp)c#8D6>%L#A>?K(z#e_9<#upDFQd_>N|-T> z#+#|Rg>s?!jjMjH`RyC9=1SmCxVD5Wx5c5J>{??)tf$jf_MO9mVi)={?$< z8k(Bp4bM~>^gieD#a+p9)y_T#2&G3Cr9b_|S%HvOcA`C|?ztvaj zyDL1V7fd@7P#7^T2YzN{eBCX1Yga?S7pVfZRV<9qQ9R^Cw+FKhDBchuy<^XaGE5xmmpY0|#rhmEy%Hy=vX z1ab1+1mBxBL>ObkQj^4tcQmWqgCdo1UG*EVL&7dbA&0_?VihP3sp#tPqLy#J)ki-G zy_v3)P7f-hB~DB~+E}8i8A>hwSygwBlyqhXvc(D$=b(RyJDZ~^=ISG}h|fX^&%8_> z!!=59+@Hx@^TbAVDBkl+(BRb(hV2{CeIbwX+FU`zEbeFhF4fdiuhmg}IR}%PM{>o3 zzK__nkioJo%d?=lIExDiTZqmcM<1Qm?^%t~h|9NY2&{RLcFzb8KV7Q7u^*m_a78De z-&R9yWRggS(WDL<&D8MyY?@0 z#4{AR^)-u{@9z&PL^8i}y*@UOrm^<26OGm#2E07b6;5s33XT|Gd*S*_?B;%(M@hdN zJi48^=^Z1xm6|#&kwEc!%OMSBFOH2Ak!(p^`+M?CO8!RQmSXGtC)Bt8_#mOi!HMdp ziFGTc{0l>o8-A%uo|%J{?s9ep5|{W*ra@VL9SohlSSVZBJms=L-KIgQZdEgZN2!9S zhs~lVi^1av8imWz^X;$Dx8*_(r-v=OmH4n)nU@)14|A;tQg?;;FY^tcU;62bu;N~4 zTKE%Y+?Dr-?muk+YGBZM3ke;cwPE`V1YhkW|JdxbrAZB2NXc>H&8_w#YWINh5nke0Ux%{M{%WqxAZ|E>|I$Ymuq;E5rCcOt*rvjn=nOCuLJJ2U*FAh*&@?v`7bub zp;$j;p7N2`DQ>wA78m_|($2<9JF>-KH3!9Y=6|+Hm4fzEj$*&$X&&R=>L(&BP26PG zmZDBD>kBjN2GS$ifbi@y6{SzQAEtxbqo61Qpo0-gIP2)eio^j5ZYxy}Cxkk}Ag(sM z{@g_eg|1pWN%Vg|oj_@f(Inv;5+Mco?xn+GzRShU`x=Lo4*HX~|HE=Vs+ZfOw2gXs zJ?2ZH4~41o>Q@Jh?Mj8;?G)5K8gj5xch?C%!XKitQUc1kdpfDWah%p;S*PB)P+t!o z^!>F`=24x9rBVY)VaM&2k7OHMt-p}mXqd9afeCh7?b2Dv++iX|8R2trSn2J5y8Ek$ zxpuJNv&VLSru_KMzdyKaol6GDm9RZO31YY)datOJ5G^>PFWjPTvts>*&Ea0b1&gqF zK8O4uHu-nljdi_tNp%z5OAd)5EQoOSNU8q{U9%y1a)pvUh=`c96bm$tr1c0X`Oh#1 zL`9-U?3*C0+2i)6Q>E!+luA#1NB1HjIB=RYD(f z_y9bNgz*TTQuckFd(RAXJB>LyH71qNsbV9!1sdnCk~r$e(1`Kxh5xx+h%_9)>$;HJ z_Kn)xu7cfSHr$c+cl&297hi!L8?-)6rdBgr75dEf?{Zhy4(x4m?u{LPKKEWt`?NJc zjF@kD+;EE|5+rhQ)W_cFPbGoR%@&1N3Gd^=x&F~RmQLm6!z@Z29J&x&MvHe&&yYyM zB~#@V>v->Kwyh(wb%}?Wi}nK@IrgaKc@UX!$j~rX=2Ch5TODExoQ{udRL<`e z=}_f|s~f3tya~Ru(B?Y@IG*vca}~}4K;Xd7;iW-KQL{#C?-M+5`va+#5hS9Q`&^|i zoKMe}xz&*4F`7S-zM(=SZc#_{bCGaq`Fh(N5x2S9$cVn`L>pTdRXqr8q{|hugc3V2 zUp+hve8L#9Z`z8duBN ze1jG5!Hd1e*ZFmCQLYMQOY~x1M7`xnJ9lTwi0$&V=UdG@MU@fh3?Ksv=E!k|6%cZW_g*DM#G4*4w=fs1jR1qN)}NUR#F7&$ecxU$QyA4_-D{GE-Qb?Q(?&4 zitu-uPuv%(Rcfu69@%*mt$K28qg=T~(C%P6zIJ!>+o=?8EOJBEKJ`fb$7c~R*aBW| z{fGI$$HZ%QwDkF00CF2}QP;1GF8$+9UtcOb86kM>29LCbhH+K)c8E;*-O=jgv(Kz* z>{`vgpwcr|t+U5zgGsy?JIw<*ru27nr_+-d5_$v0QJ%>`#&2bS5Aa#H})Q3}h z3`ee+76sI3t!(xFZmCq7@)%z%Yr&nA0nMzSZI1b!?vM4a2nOaK_O z9Jc0E!O+ClgX(P}-ws)!?L~X|Rv;oG(|UqQtDbe&dkb?}S+=#B8y$u|R>0ipNX z{$@<)8F!Ut7LB#4z7fa^*kT17q<0@~+mF$kb8n5n*yvHv3O{}jMdT$*T<5Mql?=^K zw5g16-(~!k$hExJ=BQ&UOe2u=Q2Ca;P8;o(Cin;BR{$no_~Ckr4=KApq@bnxDD2x`NFHo zt~u-9M3_F|Up~g&QIv9t%j36IKj2YzJF9xyivnS8LzXm{_ynm8z$wd_#wZP84iMtP zq;D!?6pNj`Z_cJ+9rtf1q#;HU{_>gWh5q_%&ha-Bc#}z__=NiHh*qn^+dF$XKi#Br zpCj{7m2#jCrK@D`twhaCQ+LR#*f@xS>;PtOzdO-OBZ0 zE5+GQ5V9qRYsu{3hIn9SDRArQEiy;y{yB-JIWhEKn$hbLd_k9RC`dqZ%Rp$&Ubo4S zA9F3JrI%k-#KbMF5uIFK{+)bGt|39-Q5uUayQ7^t2k!4e zSm_977IPB%bJ84~6wjBY4`5A)CkmWL9}s>Ul>jkx<)9?7Tu*;LK!+j|&fTxuM~B4F z;|-zFlCA&NovMTfR}}DPo;5X6oetMI2I(ay?5XJqucB5Ba5pG(O+;S`xr&;ttSCf~ zup!z8u7fRfZ|QZY(Q+_e`V+mS!Cp_9q^N9}Z~IqfxBB+?xxP}WEGwP40vk~*Y2!F} z$$YM?&5n-7uqPC(Uh>K_enZ6kxHjG6G2RusI{b7&&9^9dxv$^v^%&yc1E{;4T2K^W zP9KM1(K%#$e82yc;Fgt9G_Z}V(BDj5Xu^gr2Cts&@D=#t%5Q07JwHcEq}y;yyQUoK z$0oZq5Y`O)x;t-3(Le-~D?i66%ktzEVi7dpd_fkKzxn7Md*0DOsczO$Xl|*quD-eH zfCNp=J|_QaZn|o$gvqO!4@a$}b-nwaUDE;nqU+ho+hstk6m?R4AVRrW18Ii6xgX@m zWwmNOnxOSp=ZJcZ2z@&P=e7?dO9fw-y-``js|oPPW^n>GhV?lv%BszZyK+pF;$cEW zOoS=h24h6V&O<0rMxIDeTxOF*;$$nMPa=@)%hY|cJ#5;mE|%d;?sjF`9g z`DLVU)fOWu9aa0?>6kA5&s-|?tb2+fsO_7O$2hRC18!ftk?az7YqCnvDcHRX2GMzs zl1G=$f601{uRc-tSs03;C)QhtSfqI}mUVzPrXRlVqCb3=EGkJuM`!k;A#RTy34_ zW&Wb-vT2=6r^y~uPO;<#6tvPPxL@I7L~7TQs`*z)c$51mf1lFRwQ^}Frqr?y@_i#J zd;QE)&voxS0>-tcQX*oCHh3~l zL@hmaVnBBijM7GZ9C_~;7!wG=WRI^G(z^hns%5R4#Qp)=lqE#!dRguN3vXxH7T4FL z`{2QYJ0uW-OVFSlf;$9v3GQx2{>*|{dO{G^AAAY5~1*G1{2+;?e2+P01uEO*m7`FF1nO{%$bYwOjZ(`ovsuO;2= zmYwdJls@*kPvbDPBLk$NZ;^Q9c7O3s>iWDjo$m@QnQygSM(LN>AZkm@ zu|SYML_@}uc3jkWjp#^Nz6+XM^v2CX7(%}Vby(ivZ=hz6XR+H{K00#fL_Ci%?Vy_& zZfwZPJ<`f(+kZ3pPM9nxNJ2p;Af_lW4|c|!^_{qcG(LV4jBfz)F*#Gxm~Er^L;$b) z@w^ICrGAvJZ6V%I`p0B*dog8BPoC`Z)M1!B<&=x8|Xd*vtmf z&+_`ClV@)){hxPN~LSd0)cKP5Z->XlW$L6+plN9aj?^Xxir19}*^D~o~3*h91 zz`Aud&j9Mq2eFOFDq4h+K4LbKZq#tF@f}A-QttgNnnEf0n8L!3jHy}+j~!h zV7~fb^GZcXBIR_e&bf?z-T}tKokWeQiOW2HoCu}#S{U_{&7@dxUeMP=6zD6qCgydr zw;|?%WNow3E&rqcY}FwvLP_zQ_v%&`ORrLXv9U!bRMcN*_36=eS&D@xZGAqnDT{6C zjMkBCm>Lzb8j6g&j;QGXxp(fxbt(5;t!m70(8FCX@`622us)hLor*13LT4~+iAecv zjKUj(VeTaYSk!O0OIQ}0$hzDFWZHqwCHvncH4!|W*k+xM(iCa1KJT^;#gZ-$e6auw$6-xl| z&B!NVC9Dlwj7+fZ3%(V;Yj0xU8<8Owwz&)mSgjbqFWztBx%16QahRD@uX?%Cmb{6% zz?sOctVajDk3l7z{HWke1D?I>=n3)paDb-8@9Kk+&)))J11PJtzcN*FC*81p-7g-A zVgNV?cnNsyCI+y)*k0w!f^K5ykijNXb zZ{ky15r{eDeX(Ef8r_(A!mnnS@PRfiO&p(4c{9<% zrAk`|dA^q9?(>w%`}3}}3uDw(=ti_jb?23VIvaF=(SZ@fv{9D3E2w;(URiD5TIpwoSDC4v_=o)4But%5T~=AD`J;V@BI` zue$K2uOklot!;WUF2xP?_%WbQFp2kX9^#`wxTN^p)MFZjyWz}>tVYM(^oJ5$=5&teEkdN)D%ffU2n;`qj+#55v8FwF~7 zImT;e&0YOBMp?<_e$Ex$XuvcHvX@IT>3Z+WrAY?dJv{olM z$7>mdjQj9Goe;YXUy#$+aoX3#d|1Oyyz_WCaFP!S2x1H{&{L0mGBK}shGT4RD3*w_ z)OeDk#5V1|tX13pY5j4l=8af!;Fm*{BpGqJRMj7eFlnysX;*0^!NXJdB6j-{RxwKR z-*cb;ePVSvEc@yi`0pau{Z`sP7zDB7e(mK5uP(%0%C@ugiAVC2`==;YJun-DUa*tj zB7cwTSq=We)*zE_ox?Vl%VxWk09}vop2qO}8D~Tf;fZ_Xv1qa40E?e!LN@LM9()*3 z#U{`)VEsl#N=t1-AN=?~jpxR&{F!1=??s=VN1cxdSS!01rPnPN2QkHoFVOnAo z*(>IARGl)chfJ#gFn8P;cT>MWYhA$~t4GWRm*o(8~nv#7F2eEG#YGAAxADfz z-k5Ekd)(!FkPuotm(-J52^q`c+P5!l}D11KVe7j@=r(DT^1Id+7a;Sqyj zjXoj}7ADFq+G>_#nCw40G!1&trk$L8(+skO3j?<2v_3P;ik0I zHg^4XXuMTYv!3>CWQTFw_*urcUazvutC$$5h@K!WGy9#5R#I;%?+6R|KAa*mDj>&f zvHK?1G6;|yWCge4O^ou#GdMpf$>059-8yVIn0B&m7T7%wuO!hmlv9LdOtU&4DsF-e zZ5Li?0I*fovL6@d1xGy`|C%mcqkA@mfdgdA6?|i60mIJiJiF@*F#j z!rnn@K+KtxvaDj%gWsna|BM=$`nRw_Ri&pIr?j!BQA?h1z)Hr7O+6W2HTk@+4wmmH zC#Rb3+7pvH%7rOvc*J{Cr!nt~4Halj8a{A=KINt;XvlK)yBza!azW*&DsF<6Zr5w@ zKwQ7grP$4#itNC)an*-+4|W!lsq@nw{O|EaFZz2+EcI(HCZsh1;rd89U*m56SKb5M z@$3`zEXXQ;teI_U|K1vnaX_6nng!YUI4w$y!rYe$H(gMY6|txeoaenlt$)H2DOnfu zZ4y2zy@^=9vl!W{koH$_q@2N@4P&FO52m-mZB=)AnIB%(^P|y8L|N@t%DfjYS_

    QPLH-LNXi&2>e*p884`m98(!#;0(BX9jG1 zw>Y^V=7`I6^5&~JF%z@**6SMX)2(sx9z z+--@izRz_^Mn{}e4CZID++Vj1LzW92Qv?ET&O5YAKw%fV|8NlIL(Df6|7^Tu9v*Tdl>7NJu4VD1(Fmd^BH@ymtPL(5+MHZr{o+b>;zQnJDXf|NC++E^9D^Fa|MUCZj@U zt0%Fi*7M}o=xXF-&>4ZW$(?up1uX(P6{_?tMS{6)%D8Z_P1e+WRn=`7nPX)Rk1;z= zfj+9%Llfw^?hI4x1PCHEHifQ>h>nT=f0qXXE*{~h$EQ%mj1@O{aWc6v;vo8?4|@o# z0*!&#FTd)u)=Fss7#QciY#6Vq>SB2RN~Y&(;^&4j(U%o%C?+(u$&s?Qx)igb>M0Y`(RLn-ma-B z8tE1#JK&cpsxC&m~x*u74u>h#jE>)JcNp$(p-f%YLu%e6 z=0Tlz%eugGH|xB45rynu&v3*NlnZovKy;MO>?qQFE*Jyzz0xs->{d)#GuGa5^my(g z8&Qm3r5|=ik8*{!*IS;A#MTdRRD=c#d_dbMwTe%`R&& z=`-A!5x6D~*AqFIU#S1U=Rzf)7qi&U%yUP=l>-W1nAl{KPZ$Rm@msUCsskY`GfJa?;#mP`@;NNCbHoNZigBw2( zIkHmtnkSK~dK$TcAH#lBnXakg?ZiaCb?xH7FBUJ|7co~hD6g(A)|11PJG2fqHYnkF zJlt*_cB{0S-L6meXKO5ZJ>Ha9Feb=tBTk97S+~^G>{F7Eh+(-bIL#ei-rf&{d9*AZ zUUsdPZ~E%CiB2wG{LD=~ojv{F2WMS<={eQ^s`|Qd!flDx@nyAcw;%UZjmb7WG%a%&V@C;NG zi?q7^e2M5dARWow-f^X759OXbxkzBiSOE_Ql}%&MYiJg;F`IBD5W0$F23IG)MOS`7 zNekjTH&luTcwb+FksNLB{+iv%faqi31eopauzx_o59vIJ#{X(yHrf-%^DV}bu{6ol zbhKbZ{KWm5O?sfwv3+FO8z|H-1(K(k_sNnkW#`*_$L{zwJ2W~a9lJm!oeARg!V+K9 z#T8OogEmmIf1o6euz4H!l=7aPsT?ZO-14)~ZDD6lE=kL5gGXX+Ae%H8j-DASup_bN zK!?>A+dJL~ASzVfuR%OpMqePm(FUQ2^8i>WVc$^R<}&Tk#<|9chPBcy?;iBr>I3hHPvaIh>t2vDF?eLb3P1*DM6eV_&lq+{pq3Pb(K% z+o^^Y9GC4y3p61)W(`T-)dAWKGS^M?(SkbWOT>kc<_^1hY}a)h4sfK;LhNAknA5wJ zvTr%NhYK8ADQ*+ms%)h zwR(&Pv+?H5n⋙AwY`_z2mvvnAA1d(lUXgT1{px4q4u;d<_zbx&~Twt`C%-KdQPR zZ@x(R!Th^>I#+q{tZ5Dcb^1t4N9u93YyYt*i7zqt)@@DFz;K`dUn@sgi#>Cbv-!X( zi3ziguFr!n`+6t=;nu6JReY0$<{tCejA2=$pcIi0>OfSAU(F2JJwFTWma1o3x`~bG zr0WVik-CbKN>lAKPf{a>d74EVHV-2I=7 z`oDjyt{6G5_s!e6oVaa&F6bX~fId?vzbjoFHqcn}-s19Vj@{znYKG?W-XGUkYBwiI zF2qU@G}he!<)^p%mV4VfTvNL_RZ^?@-pM|b;jxXr*BW;F*-;iL(WWN06?&U2oy(Sl z5%w)8qr+}$*PiqKfnBmvyByBQcEGhs_nTlIh1wg}CTY(-Un%xcoRZS>_3``*VsbI| zgG;Wag|a`orMX#+mTYR0u4Fk^@6?!MF|NL68Z+$K->lv=SCG86^jA2(cG>rsDEUe` z?e^pQs_Cx%1YIU$)Pi(cXdJIZgQi(f5etg8h&zvl%pC9s^ptz&XVuSz*os!bgF#Es z?eLcS@zSvip~=bELvp%Bk2e;TAB3kL3lS?K6)mWc%Xzin&W-tAr`?bDzBxJUjM|mi z%-}Hw4)V3QtlWI3;PVxUcmLZ{F!d+sA<)L~-Q6u$f$BmLqJdqN5$Hf2<5 z>m1=k@~4lt8$dGj-ew!Y@m`#%xN3!*)t8u0{0UNHPVj?-Nkl1KwfAUO3c$Bn?PYP8 zio=ihmSUroo(BOhu44F-SsBjAKxA=f>qp=YLxhR9KlGi;WD^9>z2sdZ`5@mvQ8G>S z9DS1eFa9C)37Cf&1u|v*Ol|ug{$WIWQb6pg6bK!ebJ-Z;yv8en#b)X|#>W_{op?^v zG5fB{snL8wo&TAuyX-WsUh`|xdLR?X0Z2g;^y>}Ju3t5KVbj4V5uzU&1sSW*XbO5n zj(LK_ArClxP)$au-H;vo>U#mUa!qwttRE)j9pkXx6xSB2fM&P10Et%ovP}aB{qy)^ ziW!t(m}V#@C|Os5g|1dDJM_;6i^OTMa`b`Xo_Un#L6n3-a|P_WHEm`+fbuHk8al>T|Y!d0ziLW7>IS z^q4X7wL;bJ;}2~avgFfe^a_ybJ+u8jtzBqJhw+&u9W-i8=Hbe=+vuaRXWgH=E@2k+ z8pBd}kjCX-opII2Cort92V5OF>!+OmEFAUxVsamVgZO_@XEOZ^S{m4d2FT{GJ1Dh_|L^35V=qvb}y^OQ%=0P>r?Xz62dz}3Gq|{s=s;T_@|2QY4{i<9+nhvTS^uf_r7b&WJ^o^v z+LBrxjg)u0*%@&8wPPOn2SJGT@<_pqsiINDtIf&PXGJ(H<_3+gd79lhOhhhph%d#% z%NZ#-hN2m`V}A4pzib*CG(X{TTO{`@`@H=Y>|&hbm%bAp z%(%*2y&x*nEKi$FIqUbs@=uhM&PXIyjD~0QH3Knb^&Z^#sT`ADq%W#Wc)!K@8gDLY zM$qw2A8kTQgRj>5$PHSlHAR7)oN?7mseaX2WroFf0$N*-wJT^a)ikzT|4hD_2Nn9{ zhrc#m|I~q)%M?qd)uM2O zD-OX@`cYV(!e!G;*p=LmA6|H#RE*JtM{_1aruO34ryBHAoiqrw*G$^3lubiWO}er# zI`?A&r9LXza&0N`_0fW!N*CMw@1R0%se)LHg`DAiZJ2<5l-(Dg_CKa<3iDhd*?G#pOEFX?*8ePr1S{`CE!4AS8 z$asOFP})lUm%sQ!+$a2@j=V4gz1vS+9LdS2to*f%BfWMfm?Nlu(L+%RKK+0ir~Ea+ z80L6+Io1w%KJ>FQgA+gqu8f20l4M}L0k$rytot~LF1ApSIyEc5io=y@y^DRH<8ao9 z`%l=rV2t*M{8#(=OkWW3*aB9^!5lIzmHIrZCH5zJ$EFgNjB3YWPyzV*VcZ&I=F$0X zCkAGm!U!klw^l$42~dJO@t^UPcR6lZT~s}Egz6{sUkC+kfPRMNU=oSF3%mVLOs=-l zLnTOiAm@6vTpZM5LP_g-{gC$Zikc*6kYVOPqU!P{!U%-2 zv&R@B41jc91M0h7|7u3V-!>+PwF_B7+3RDgNR@`D`1dO+8(sLDj#texZ*;Lox<_FZ zR1|tSxNYSek~*7myP~5*#lu60p@>oG-@(t-7!~8ZerkBq+~ag~r*4kCX4uB%CKAlf zR0^9mrZT#4(K%Yz{m^}#HHQ_Y`he@Moy{FA&^vx7ql zT)DrQUxKGACkw3H_C)MRKbNKIv`;RVDlC}bOKIy}oBm6^cP=v!W1m_811Ncdy40At zX@>mj0BZ0e>MmxUaMRwQ4|h7x$TKUP30O=U9&Aye2nV>+bxLIY(pBS`-Jd1{3p&mW z(qUXt+=ugz%&EZ!jbKFQv6kSwFa_KPOWI<7<&}{gWU|xjJ6}@4O00`9Cek+~nZBzP z-;mDj?=4$3z!cI_@KNPBb)N`<)$Fb7ODbkBThm)%jQ=Fimz7b3P9*@YanG=CE@@>- z=GA!KAGdF?n)Y()H z+=mcV)bENX$kikH+1KCeUA$RD z5H1F1fwpTq+>0cjt-4r!my2}{hL|%4g`zTeF!&8Ow+07;c+eH&TPRBdQ$_+eGe`rV z9R3f%0+Xyy+vbq&t*<3xevU^14Bv(Z$Ucv7i}uSR+x)ai6k~;K&NmSKbd&nETeW-0WMPCpd9&FPk zB=*~8va-81)eIwt1y{}$cs^6>GD}Ng1&xa~dPpM#;QsMNS=dGJlkF|}ND9b)KQWJU zk*_O|7%YIL${fe3Q+5f6j)=BacZqd2I-BF`vL6@f7$GN_`XU0mJnXm_d*i-%8AwDe z>=J;3o!E`ZOM|H_!V-Jza~T2lCL4RFib8dHQI?;RODJP=&vLq$VN&`vL2p`x!Xly& zmIb$u>C!d~m%6G0MVu*tO0oFjjb$4tQp0PHKZ68li=K{WTP<;Oz@deY@$cgb#!LW) z=wAx~0}~gy(4|p@RBB_Fnk?niCkWH?zoHVvI4m6au{0h@{XieL1_TZlmksBXOOxPD zXQN#50!t|ZL)%EJq=|6%cBB7mXtwtb`f=nP|2`QT zWsTipMkml)_1o~r3fR7sGyblAcCY8!mD`pHLA^@Nhltka$L206H;)?G^z?w=#@^nU zpfi>I^%twC2RgtCE&*UqOj*C3dFp*dt>zF}>`SS0_Y->^gGx1~OL3Gk#tKFr+4DCA zjd?29J}+Ij^Oji%y~|Lyi3&XP#ogZ&8qtb}vKA$)8TLLiVBn8+XJ9}uhj51mvf)?NRc>y-F)o zT`-`00Mf^%`_0+GeBtuZ^f2(dXu<#RfgAUM7kb}Py26+L7Lq+Fwz|K6b=bF(LF9B< z?|mKA3`HT;(z?-^*7BbZB*pgmkL=`XVh?AV-3+ZWhc-m9l~~QGTH$7uY0$>@+W!8G#E)wpUh`pe<9bWq#$FrF(>qkD(QZa{r!}0?{3D7vmkIq@vfl`# z{Tz|q^};-P^JnYG2gx8nOk~xm$oOg@V%qs^&V5*1MCT|mXQd+I@V5CdII%FC&T#}T zTt<4ZQRY#!W5MHbt%jsKUzlC(%;(B1#LK@~ew0rfpoL*m?;b^ytuz<5!jpiN5RC4F zU}4rCBZEqnFaMhkkv!g+VoB{52+OFkdmzF^b_Ybb{a2CIaj<}LL&|jm&;h>_SW=KvNDM`J*oTA z)mq=}sq%!Eza{C=H!^L-$5(1A{~M!v?o;K6#ss-rJjL4wn!21jZq-ubjWfcEU}g@mw? zog)|oNT0o|A>30RNp1xPV-Zpvdk3uQKG4`~IyZxmq@7V4BW}2R!zb){b)%{JWD$_j zV?!V6Ed*U{&#g}$Y;FlAhP@B9kWvlUDw^!i_Qo4zD7o@`TP(>@7Y;*u(pNH8zS9;s zLJFjU#YOl2tOAEKQ+bKX4qRj%JQBhN7 zJ4C!JVv>d`vje9=d8V!BPfu-T2{wphVnURVyg*M3mWaXUBuhcyeE#iYO{GE{Utvbd z7AYRCnVO4ODsykLF#D9M;aPl(3iGo98Gp~trD@rY|AtWQa1rYNvBm!UviFW4GTYHe zkj0hoFYHnF<|%CCyCSN(bX*34zs*v!Roam0dIy@65Mxp1youGOB0<%1cl*Ip8@4kQ zJH~($%9wCeP&u-}IZRFtHyGbEF@2&9pFWntop8|!cdbdju$_|jYPnCZSPs!%7}d}X z)UW$afQDF~f!bR06Rp{QB(n2ILg(r*Q!3KKM5bN2}vw)qS`M3iNN5q(MqlM6NmA{k4yd71+rkPl3 z8sSzFR_fHu57dtCODia^4nCd8O=C?O;B0xx2%jyM>jTC~%0Evkp#~+6GLNO$v$6{! z8;Tk|j3r$vY&5&wnID>a8ex>0Wirj+8Z&-}`v&@Qo;=(?$P4Cuqsc{FF#Ur6uk*~{ z>3MeFHfYk{(p$N#xIZoJsmbKF7;8~zcQ$_+S$gxRzEyCB$qY0m<%K0($Rj8t?k6yJ zcejpCTwc8Ot%k18K-72S3@5%0>Sy*@%o{=^Q_xDcNmM(e?!W5;=T z5Ii8KgXSJng#=OU8|2p#_6}6$h0Ho+Zc6R)_w^W;3Li!vJc5awKcZH}`ml;&Rp%|t z9+QEMB1F-$&Xi-|5&P7bzU?uW0rzyH3aN0lDqlOVB-ASZKdn3nHKC?Wj<;vERtCDZ zUKCz-iA$}>t=_-zDY-HMAhAF5n_=sbvcP}&H~RbX1pRHrIBmk>#1~$e<+hYK6cqmq z^RTAA^q!n_oKFptX>u&R@IeU^CXVlv_r{FukE@fc{9}4OQyuQ|zg_^#ET&tv#MuY` z)#ZgV`Y&RLJyGSbs>*Rl1m%(q#@9+Usk~-2cY`P~kCO=b2VL}) zuSmugKZds-gv$LqT6!FKUR3r$esV@YuHHHG8(q1SP{7$|3>u5u4Niy?$0UPmp}r+` zjylA6`wDmc#n41)Qc$lU0vC?hpob%6P2xxlMDWoZ#008n_8CGGg=lx0b17ub<0%Oz zvN)I81p{!LLFz`Uz5*NM(o(0?n(&=cl;=G|=$ke-1nW8jrd)+x4)-dVJ1NHdKLD+F z8b-OM%t*9@9O3P|W{Eo)f2q(r^<1_I@G9QEM0sA3(99QRmW>vLtB8(k7h?=Nw?l1WA)K@sYVYx!CY zS0nCu@dbRF3h1KrCj9n{v^1*-OxJG}>zhq_S*K1hf*a^&k+Qx*>i_9SOITxiuh*<_ z9%eh^x4W6%BfKcmZ)jb+F^$(&CY~KvH9{1s+6WbZ*G#wj{!yPGG*=Z({P#GTr>!eY zq;^#afQ}2_hRIwW8l&Oe_m-}|gJ6zELB*>H02~ zloGHd$vHrzO^eqUnPP~K;=Q|)J5sa)g}r;BRk5|V^QZv-4ByubKh%>KMG1SH+=m%> zuqqsED%*(Jrpj+K7&XB>{Q}P1Bej1I@KM&pZ7WhMs3XU(#e^hb!xyCE= z0N1D$hE$8W5o^)lOQlXS;}fmGXlq13y&C&X2T|@o9&fNQPxeIqd86=-_z&TnNHZS= z6Q{x#8G=Ig%e;Bj=}ai z)(2iZ9KhaBEurEF$@r(<{@p*=Kh4Hu#(E}Ga68pJnw9rM{rXk2c0v5!FkRL=CLdIC zqlH2vRj5i)eu>$j#mvLcC|n<-#?2O43EP02-2POIcZbZ`?MJNbMom30+r}(<+Uy)1 zt7Fw1el46Ws+Bb2ftnG`HNi5nxsfk_68Cm%tm*N14p@MyApn*AD zIhij@x0$mvu#7ELCG>&1oA3;JGgu$qCO`5@;5dkmMW#N*rX)vQ-F^=I`&mBAH(Bx3 zY9kmDl61Bh34D!WV85hEoDlvHX&>0S$xXDOlijo2$pfbC{`;$ZN>nh515yJLWR5KX zN4oIr0^|Eby}{2Qe2}fp#f~aismqv|a*ny6$EOmb7yQSgG?FJ?+yogm6OS^|bpr72 z00FBwj*h3)t=?<_Pu2kOQjCMDr4Jz4k%Qrh+^^l6O45E?KXyzZ`eDK}+`aR^_$W1l zgHWeK(Eg<=_}*>Oackw*?m61zaJkFEZ}VM_C}aI6a37Pc%gfo>qLgBrGnfw_`xNc} zL@j}hH!dpG4V+&s#k()NQTI9|iVihM(JdbmF|o~A_fW83MJ?OS4PusXf9;choX#bA zXn=*r*8$M{hjuRQ+j=r5XTaHcELpH!FM|Olc|9ob-_!RDt1D7n9zbI=tser2Wg?fZ#1C}MdC&1 zF7GanpPRv{dVcMJtaU44HZ};WJ~_HPqt+6~VI9Kw5soU8wJ1crq7?C#;U15Y5x$sI zlMpTcO5P}wG6jAr>tdGQnDd&yfbE+sAvRJ|O=f0Nb4O8X>j74{fhl_VpI z{}KVBYqVB)7yV(}>{RaGYOT(PCk+~3YzXX90vF&&q98>b(N-RZURl}`e8UPAW~~em zzz^)49cO8Nva(QXA1vq7}0CuPaZ7(tK6*}P}Lk|rRd1D~FEuqHKM0~t~NS#gaq4tOrg z!56@`aa6&s5uN)1!5ST0UJ(n*UPI(vUykR*HAyK|Y-5(B6Y|0y@dlYbPX{GfzdBc* zXA}RXBr0GzHyDU-XT;wKwA~~q&vDEii*tR4w9z84(gsD~ z%Lz?Fk8C&mi;sFDzdC$0(ISEGiO^{2VY!MishHckYXw(`G0ORXvN!1J6V`tO6~Zi!vgoOy^IKxc(r^cQDk4OFrnZoMU#Ud&vR%wxdhCiNnPbnTr(ss*eGeiH0xjOU7Fg{_6{FAv=7OyM`355W~+1-D|7gdpP%dxl2NBw=aIrCQP#2g zhuvLlHPZZtEX5SN%nJ=YbT`p)(NCH8?Z#Aa#IUD2mM_zp8irzsibq7={(1q@0EA7K zvI;=)epI94a^1KjHmMUL3=f-!m5vpCqTl+JGcM>FG{*Ay0?0`*^PcObE6xLX!I=4` z|IsXKwky3L8Yb^Mv^_SRx6r5pQLXjjpYQh7c)6^{K2hN({&{iK`HKeuEUiutnJYb) zi!A#=$QJ)EijL&ra~U>aawm_SXq(i9l zrOJp6q_2C+Rri$LbV{=0aahszQB|hF>0W18yL`jR`gE}BOO5%!ZEYJFbvOKXM zXkga3E>+E#4{Rz*1j1jLxii)Fu@`(KaD+P)X%;WdjS6(u6$c zy-#`Lm%7n?FuDhd%R{JaFbUlMapwACOgtu>p2>-7&Dc|V*=e_7j)D>gR&>lr!lf}-zYi&2-!vJ`% zLC+cg^zwS|Znrv(d7!L#(@M!cqms2&{0&%*N8k!Q6)0)bZ05Uh<9&j;hR?pJ+(^AY z{LJEcBsBUlR~1_qkBZnKOD3I+z)e&^OFquiE2ukMK0cD}{Fv|lT;q6bG3Yb*1`qiK zcHh_dydmQmT+GF|^-dH3gwS}%QrZP(zzmT;x?a@uu9NMr2z%e^+nAMv z_e5oQSZ2DZM-57?pVKVCf)X~YGMO6C(1QpLRE#c-1ctZaf1VF z+5dcRxK))Af}*CplfZXQm5S2>F~<|(6aI~dNIDjzaTTl`B1P75a)r#mM|Gk0dh%Xx zYL}{`y)?7?;?66R*Iky;F7Pv6S|jkKBMyj{q69B@(n0-NP>>W%Iz=_0K2@RpRi-A0 zo|r6p#P(f30mC2PwjGrYN?l9F&{6p~6K~5UE}Q}0Wj>CBpV7G0d4$QGWIUi{oyAOJ z+7CJM7f!3U7cEFbcpB9U;DmN03D7_qeCBK3#;iSagW`>+V|T5Xorg0fT|MxtD%i&= z!ajvU3dWb$0pujcu(;Ja=RZ7u)ERl@S#F9$087gybbO1 z#}ns5I0_h=qhrZMp(I3sqaX)9xc1pCOWJFXySj>(0z^J508d=K{r3s{l;M&U2QNx2 zhomSENl8>0xCV1ITs0p;&r|IQULk*R*~+7FkwL4s5CMiBL^7iL`4Pz~_fMbu>%9Lw zMdXA!nd9N&?Uv}W~4fp?2hrP_7mM2E}TP=jk{;ULAc5h7Zy**^c5x-iA)!vumn5{bn z3Yh$+iN!{_JqnISwM%hF48$(7c)4?4U;_h%%Q@MMz=A6Q3qDl_Q0Ky|St!r*V$}%t z+Abj@5J*9TX)Zbyu~(3RV6EEZLn;sfEL>It#i+p)tt8h5Apx+E5$l_C9ZKAkSUy!p z`UnXkG`Y$+WLIG5+O~9Z7s-EAsM2zCrIx>u5uJy^rwyj0g-o>ZREYV*#m(1`){?Q7d8F0@MTC(pqH$M3%M;Ml#U?Ma;~oWYOdg+zWK1G zJeev)yrgBq9p3dkg`)p;{}23gmtR>?q%dRTbrSe!b5j zfX4ieoLBW-qiXqS7c>?$V24#8Z}9$Fy8yZ3hX!OGQ>a(Vux#S?LeW!m>v1>3^Th`_`{&F3GLwwFof>*fe=!5pPsuH` znBnd@tJPlr`auz;i^(c4BpMA*)yrpmytA|ARQ7(M%^e$If&{bP7?r*EzmTq1yk1m^ z;qUFs;M@I=IU_aBBL58@2_a>IRw46tyB|P?`xG#W+qXXc)blJb<{3);6F>MUe8Cf7 z(Er|_@YrFg_`v`JBmeqQP&P%?1pqa~*Cih=qJKg;p!qX?Z_=Pvb9x!n~6Y4!|xZJG^FlTfSWF3 z-HsE{mJ8}L#%6BuC(3lA^twHY-<_%&&rP2zoap$GMk1A~Cq37Ae>cauMMw}~$9)?+Wp zrR7GB5~{-u%&@a5NW%AG6JUoIJhj=TKs3;DdCvGDGZ+T*c9*=qx1HQ`ym4 zpbqoid0zG-QycR?4-EDavdDzH zBt_x;&xE$m8h;u$b!qJswiwXcPy^4+D;O(K3o_pmI)9;RB5&@WRt+_}?ty<@6jB?- z;IB4+r)@7J*In6>4$+;}>qZ`+zqWQ!Kh5Uxw-+9y`m|*xO$aC$`ze*WsgH?|G679K zYlW5TZOgn7>7a1I)M{&dcG%{mQZYFWOq7he=sQ9KNJ3M*bP&N`h;5$ z@*&7UI_P!_xVJYq9^}LcH8WO1%mmGpdp7aZeuI?|TwJL~dB*PcXguW@_I?zhd)JfJ z`1zP9OBkoHw*@+0#Q~F8a@)Q%u3xB*2NGkGs|cuw&3^Svz1z0UV{$dW#4DJ((h_{Y zB$Jpc*N5u0D-BTi_E=gUkZup^79##sLS!vw{6=5*kZ{W+Me8Ql1bibt5}T33@EAaB zjg1atwtGZ-avbY85F^1MeT?RX{{_syP6N&+HeP7lEfYC_t^a20q@EsL&l46jchhcm zZ-52-s)UO(_FMpd*!AP0*xt7Fi+bw(mo$~If$#o5x>RE-Dk@qB;RFEeq08?2(g17t z1NR^jN9n7lgVLyK9isq~Ql}Cyq4&ww*gjC(H{WokhniwNuP?alI}$Fo#D!hwA7u}q zUr3GdQ!^+@Q7g;WkgmqKMv?5nZ0^&ciHzi#I=kWrhID+@Mw)=SV=csxvFudK(h%Y2 z4IA*hFL7nI|NX&2Pd*sNATV~~awNW^5a(6Q`DAeb z5{*B=<{}lF=%#L|Yg`glO1Y{n+gd-%F{^-sWWoW13jz2q&Dt_*TL(mWX=&3Cz)fYo zsKJ9AY?W<;pV;;jek5ljMq!35uYkSJ-b_-yZwXS^cS~(Z17&j8FyXdFeh5WM!g3`a&vGRKW}Zt4-)`z+A)Bzn zz-?xAuu5n&Jz zF*DBePyhz{F1H+(k#;E!fj&^_=Ka%@6J2oBJnf$$MLFF|Th{Zs(QDC=zqlEFrkJ)O ze>B*V;ASt@a@YUuAf%|J-m5(=;R}Rrj`Ti9^W21`9%!WAO=xRUkaLe0@N)W`89+K3wOeoN4hWkF@ zl_>zW&h7me%i?x86!V^!$gj{b5z>K@oH3W@WSz2*#twWnjR}jro`E1yQ3$)w8|CDP z>UA-{E^um9l+|3+n?nI)r0{Q##)LUUl@mcps_}?=IT!l(;pNTyc6H_D z-Zu_MjMdU`=olq9l5W75^UbR4p^kLp!$7uqhjwh`nC@rEYRm@VUt|dds_veIj)278 z1ob$%U6#9P!J5V{|M*knug>|y(=CnOjk&l&+Zg1o*>^F?(&{H%m^mD9*2=nz&#QQ4 z(tE4;L6%@xePWZ^SP&}A7j92p|396poOLS(&|V3FaM5#720{`Y{D<`8qTg2Q7<|^j z<`=B~eElPfRTBYXq6^f5tD@siQfdwNP1M>o(KUajwN-u%@I| z7R^dD);XF4Vsd_f6Ls`uCK(^*#7+_7@*q!3?s>EZOdH(Or8yh@4oZ9WSIepNbmAS& zhhXI9czU!{|Hy@G`qEU&)JQZFxThe!gL2sWhh+)5&-r~p3cfm{{eG@p4@$;rk-n{V z{lklOQY|&|dUK%nI8R&oZVl4#(gax=1N0@AW2IS(i88`JNYt$1jHA-z+IuIkIv+8J zw!*fiI+yvHjYC$p$2&b!8&BeXC!E(*jIeS8JD#i{Te~SLLO#QQ`S_Rm}!c? zSLJ+C((qJC+PPx-9ZgO)ll7wpaOM|0KdPx+u%jE5TyN$SXV%Vum1!~==cC1I50l-T zJI^LCqz^~0X0HSxh3Z@UXII#)0N0~LauF-}Q2s?X=sbHuH}Gk>n2KEba^H&sXdV38 zCv@wh@fY>+VPnA?!ZFo(svZCk-=dzGD!TGNMnbf*%HhQb+&3~H5d4q1Q6I$yj*tsK zG$viB+h^M^Xzzjd25O-~C*I8OKeFpD1-!#Wvj`@({v3+89bZTxi(D{7G$-bFpDRn1 z>VuY9Dz@Hd?4~lmLM@p-Dw6~R#nJ;olkB0G4l6T?@AS4M7y|IieYAEdq=xjk+XW|= z{M(#7Jh#8|br~5i62^hh=mv(s(wED4pk+Ez+MVvnqk+p~jZ26~*-gFr`81KSz2pNC826NfY%N z9k{|v|G)U2@AN6{STUl`1-Q>xs~DBdr!1TYjUO4&Jn=KagZyl_nYq#)Y;H?oIBQ=I zzZE`CuJe>Xn)*t8OUqYQF2fm`ZPr>hX;$8KQbPDclz`X^V6C$Lr7E@572_M-LR^O{ zqT*`EUXCUJ^ytH*%lk(*WrzFFl&2-G7usJ5k#BQk!vTKM|GW{2VF1?~5WeJ~(e1O_uY-u~`j?f!t-~a` zTcKU|9=QN%kh{&#E?|sPTJg+;^$-c^M`|6KVK`t(+)YF%ws;fG*&z9H*~MT8pC``e ztIT16HCFKVdo|W@?98SFnj;ZAU^J(8;7+9D5z9OzzoioB$g7RZ|8L-7?4N3ZBnFj? zH6`ZN;*-+46-^c?B7&8S~0u}ToAr&Rj(q*ff@BsJ9JOI zfSW*={DYj^bxye_k_{`%U!@75pB!xOklsQ6x~YrGyQpc><(GX3Z%5uJzZ;$GkhK;(1n%(}EmG@^&o{Ub`wCkq zS#_w*u0kbVHD$^9;b3RJL52-4ylDtjZ3i&EgBpy5JM>8tLO;8q96fq*sm0NNEq*_f zWStH+O`NQc(Z;LH;?W;tCz!Le8mZR6C zkCGOV$&wroRyr8mvG~rbtzmRGdz^nM4u0|TlR0pj$^JEE2(u&j1lj#D22q_JoJPop z&*Rib9-a=iOe`|mGvh??1W<#C`zns@bH%u!=pz!o>>)1&e8cgic*icC+fi!nagxcK zX2PD!l17#2n1sSrzDAEF^#BMOEP#SnF+NgjMyW=v$vpLlGqV*Qq>d5Kvz)Pd zq*=7kfdQRA4{h|FlxuRcptwY&&#K3!wT*K5UP=G$MN@K(ROAru0&=*gkE6)( zE*Uq$Y$`at6FRW7?ls==twryJf;;Tk_lhC#?Si*(iai>P!mD1?Lz_3kt+4WzaQ9Ho zy1hL^HX;E|;vOuf!wl-*cyON|?-Db-TLN}Q_PtEC$m0ph32cmi-8TgTeoAT?GhU(&Ms&K?Y}`uuZj}jWqzDs(l4UCbDK2Y z-!4zyCHnD^J8gr=)bw+j)QqO}^*2ES#f+_$^5LleNWboc+_raFr<}K2b0|s=~PN<_P3~1xi?0@;?H!RsjzF6j?C?42d z16gt%GpcUJ@&t(~s)Vk!B-C$4>G?MAv=RQEUpX>1uhqonOs?E&mAXosaZmP-sC=Xr zW*0N}u*{}`dGG7@=Emxjo;gTD+!N^bCM5~|J%o+G{56mHeFR|3j6S(A3f~7#nD5Kz zL@)kAiY!mXiIZ&d@u|5UjVjkAqBVPylSAm2c@db~d?b2Yf8|k^hr-HVm<}m6Li3x% zzTp}&v(VpMEv7Z=pSKk~VfYy2Ls$Nk!%1oirD1q>Vi9H;%qQm!Q5l!-2t`)NJd zU6%!?($PRrQ3ZRJ4Da%y69s`QH}W&({xU&e4)=@LDw}E`dV<4xoO|ak$pBpqyu(17 zQF+)G-y!kg!$qcXxe9g0?WGkSTdfnVb+91M>@P`B(8#T+gt9D+S_vK9f(#j*r4(7z zC8qi?aK8i4{`)V>wYHb*6081tAS5;-vAtI;DvX?YN8^|5aZDIQg6HV4dc!(Ls3d79 z-}R>Yl-8f#TQ!xh7K6rbMgbn~RB?&YKi6cr_S?X-LZt&N1l8)FCp5ktcC{?J=PnJp zPJjXQrdQz#yptk>fN|rC0ZU{tXlH3;AbL9ux9lDCRV`;HA?Ed_X5`=3o+5#vIZcyVv+fBfmr|fhI88igyAmJ^fp6>4*xWo6P7Osg~ ze$sOs-Mg3Ka-Ye+<(X4XtTuZH^!w~m=GUH+MjEx@XXBU;iKh`4rPWi<6mgHZ%M`e74=kc zwNiw)k3xv5M5}pI$pRJoWFHeQ3nE?1dy{jUB;Bfw(tc>Ju!! zwi)$zU0nF}BFr@HZ@X+8dF-1j?G49lnN!Xl`$$#3K8X^DJ*8KFSPrWLp zw6Mgo(4^9Wa?xn?F8(L=aYJoP=Q`Z=IMpPSJMvz);auwSWUu-GgBOKIR(zr`b1Moy z7lz33bLHxf^D^9JgHPzVw-Vn&o16uFe)1s&*MuXf7 z+K*cAm)7H%?4>N-+RA}&|8QQ(&D$lz2Nx~!h`W>3;Z6P*(k&%jmJ`#3vi```mx86Y zpE{XiTG^qlXm;ni<76|undX%Th6b`gFKWK;|k`p z{`A)HDkhI{6!51=vR3|mzC7)(^ug|ly}5w3vZ7Yl=l1TH>ObETmpoFO#SVo;j)dQB zi+OwR+A$ARl6iw)gS1y`Q?15QRNsD;%3Q)5Wy)5(Gw@uhy}?>|d3{Z5dg$lskmD~Y zmZW&sX`xBazsoi2zrA0xU1(v+xVXE1mu~;R`W?F(#^-hM(j%gLC^TNuC`r-XRBm@~ zeQf3@&0OH$v~O_c$1PW-hc7}^l%B>)TX@NzQl4km>b^d6tzOV=Emg+!t{SwDP9BPe z7MHAS{s}i*A1F4$bwBrAZ~Qh_XIWq8zmzM;T!a=-5>GVg;eod{7I%9^0%65-Do3sg zsN~b#lzg4odGH)~_`k_fj^3UI>`yM-j8+ZG`$nZy@Kc=gTE&;zYSk+ZY3YQCgW-A3 zmF#4E`PXWhuV^l{H4uF{&|7PNs7b&37f%2rZ`14M(`z!{y8cMqiS|>9COiH6b9r#u zfy=~Z#&@~zxray5^YhG+G3ng(%X!_WVlg$iY(AH`&MAlWu>`;aDxp)^z5lQ_koP77(s~ zJ!bOorlVU;mfzT%Db=5kO|>LWm6}1ulc^Wkubmd!pWtRNGi9JR`nb_rbku1d=RN}g zu_<4JKG_q^6Y+nKxvG5sda0$`E~A~yR{ix@vPI(8q2W#jl@A$@(^sDk_ylGj%2v;L zXMIQfc|s!fagAk$-hNr)61~pDwF;%m{*y*pl~zvEW1*EvNfP_Cm%dH5tgrlDM)6w@@a4Kiu}6Tj`yDDhUv{9x88ky^Yc;b!KG=4#a#n!yK0L4b}lYO;bT6ECe?dh z9goU$HdvP{cdBgZz8CYzEr$M$N|aJYr5s5)+aBZ6ptA1KqRz2=-E3Gap(D*`vyAF( zV93;n!o2Cz?K;^YUsGD|EUuq+!uqdMkBpCQYdhshIV0{#mEn80OI}+yiqxN=IUCw5 z%$t!jQr13}ogljCI9o}^H{7T)(bqQ6)WmEvM^#^~YCU|)(_QS_6K(>}<Ef$IZ9b4Ym31@S8J7Dn8k#({)C7PQ<+PRwvnXhvTnGp8D6-%j9{h$k5oC_H46- zGWb$NMv{B`J#t=gcz0p(o0b!gDNmbJ9~vu%Z}g#~{O_(df$e?ke}9~M>eGLczkDS9 z&tBWCC;V@pSEAJNiVB{u(77iJ)=n$W1BBj9^!`g!zR(zK!qumr`}4@j=9lRr)uJKo7HbgdR<4!us|+toc9$q)8A#`HKkIk`1|o;B&tb(hd*`}8WQ@uh+C{x_k2 z3WDF1B`&kZNtKn&3oHNT+$-+>eO+Ybt(GB?0>{;n-Y74Mp3FOCp0;jI0!ediVJ5<@ zYqh3cl&qT9+2wP43a=5K5ToMERO9=1cXqs&;V-6btu|dv#E37>o<`h=FR@^x?4OOG z*mrt;=h<&T`1g#x_3ZlWE`2|&LStzZcgy4SQsK8oPc_E)L>p%1xZz^G1BtZXntNR} zIPV2`xaTC~-kKY>Gc*k2{q>PAj@-G#Fo#@gy8O+g5i^!`+Pil3@DEw7SFucMV2s0RA7fy^Nge3!0_GLiGP->l)iD=e7CQk z{uSB2ED?7=w5BuXRkq54v4ZEyx6ulM!urCOMJ6P7M8w6v&CgYEy!vt1;!q9}o;DzN zOSwn%6cyPi_K08oU?XRB@<2yP4I}0m4D!xTExiTbe@g0+J3xGc!)4NQ{rXjIMuCW= ztdpy(g?GTL`sXGlOjeiOW90tyS9g!8!McVKeMR9Fu?zm%N9FnIwQuqY+I^_v^{m|= zJe1yRH{S5sQtED1Cy^yff&-k9R2@%`sb7$xf1&aQi!( zYeDja{s{kxtrCeVdM9JRMyBV4M8l0)k~fu!!&4@|n%Cr9{B=o^IkaYWy`jB%WLAoR zm?F{J#WUiR*TX+HS2C|Gk1E{}dlCQfap&dlAyX^UtF#QKowGX+pPVtTNs!rdZT}GW zVfN+fiJ~^9%aw+<-MKwuy+t3YE_^YM``AiXO<7CIW8E8YL!9}3khk`kGK0DPGn)Fg z856TLZl~WVljv3k_Qe<8G$Wm0S$`ezJtD@=JwNm_??q?L`A_b)x@&Q|lS1X~osuG= z5+^#G)^FUbl)s~AWQZvxy?2o}4^eL7<)vvkInH?_E&9xjh)0LzbAR|;Adt@;w`{WXwzq>Jux|3Fu~utUtJpSduKWNu6Z9{9NEiwA})S0?^?m)Y0{}rF6#X$7A!-OpNv8rLF<7Z z-3rK+ryIjps2s;RUVe3{KJK1Vf2nof_{XPWs@;DHl19U{@`Sy3=KEXnlGcSF#*{9< zFR+j=GVfu?{jvE(B(`-Wy4ZQcYr$Vu&F-0@*MGZ%>)?}+;H1KM9;oSC&e{K4VRdNh zum6}%?zL(V=25oZ1Rpl3%u@)(w^{c1)7BEl$guiraD?Z<%cmo!V?1Mz)pjuU|7{6e z``suxn$-}JbbuwgJA64YaeY;Bkl`?sxRjzoeb}{W{$GwPpDS7ZE@pU?yc+Yjw-p@= z{bOj-*&tu~xn`|4aO6nrElgWQTi=l|tW(ElztyGwmrZ&l}6K zdv#}j(X}{D{Q-6s$@N)r#eGAX{><;H1NQIBG81;2NlOaa_bsm7w4M4AyqWY!+v&!j z0nfDzUCZlc@?1tGsDHAJHSM13&3ZE!$`al^@oOkC-SYK&?|(mQ2S3X{G6= zRBgHHrkNA}MM!C3L2P~TyLV5PpwmqHZx=>Ai6U#JmfX;5(N-*s3CxTMoQh$Xw#AaB zTT-4&|9)S$ACy-Kt8Pr>SYBQxPZIAQCoCGsGA8Uf-X^o~>vax%{ZhZ|&HMOwf8XS} z*yawjO4gSVl6)SSwR?~JB;f4AzLQEKDp{x0S5&y=qU zqx^O%CV`wq($)H5_m@c5f!?0qF4ga5W@-m(7{2jO`n2T*j z692?4;gU=Rt9=UIGo#&2p@|7e-v5@3*8X;`{|jw0^DWliy0>21c9-*uiYwDSY~Nn= zF^oyc>XEYl1#8(H6Mikdb0_|HlW4(iQ>}28tdgFrKP2W7Q zc}%~*UgDHI|A`p-#-N8HtTvKMDy%C% z>Ps2c@H03u!P@%mH(3~&m>45nA15ee>YmN&uB@zFI-W{Q&ODze@$0Cfy#uupCO_-N z)(bdTBaGTh;bYXBLrwSVydZo{!aK(@n2$VhZvR?fOZ_z()3!H6ei<{L3O z<^4=|twk9f^s+zy30c2tcqKAay)oDEx~1K?KK*3r>N{^yF|Xo*+(%0HdzGi=D$04z z9T!~JXxiJSNM>Xg*?n<-R;uatYVW|nKw+UenZRRhJ7Mn&=|c79B>}uK;19l~dSBHM zu1;V76E#VeL|;FrlWl57TG2of!4_8h;xA*>JxGH7T736@{q&kAMS``hcfL&3rgfs#B(`huHH4)%qusx=$a=y; zYX+a%xG}FRm3Z*YtVMUm$)XWwwXKD3`h7Y%=W4CaRN{QLuSoL#F1w$_5KF!ixtLTjhJNG1PZZmK3G?=$ckCusF>h%b@J_ zM18^HAA5LL1JcEOoP868Sk_%F{%?XzbMp1;mzHv`OuqDeC{{Nb5d1aldwc9i%XC@O z;_+#3*VO@!gvRgtSS~MxyFN*O@PvxwHfLV@Nqw=&Z_kw9hR(ckf3=?S0x9JW$X`uj zawd9mo;Pox{tyU{1LXWoAt$pyufGZ2I3l|bz?k)>m~8F1jC=%z%{pJBS?b`RA>5ei zpxfyv3U5Q~6k`rHTXnp$4ltE8jXX&g8J65h*U(N5pCMezaxoIBU@+0vE zWK$&xeWO>(qQAbCBeC1>lpgoy$JZB@V?N&}hL$VE4w8_QlfN&t6=wg|7?AZLyM^@x z(cNEWzyA(aGCG?%l9L651U>E3YmB2m6Yg%N0WRb`|0(>Z#k$YhGe4#UKOOgLOCOdMF{iisdhMx`>zM zaI35le)ze{ry!-Y53>P6^3F1SNpRMsVJnu>qJ@tWQqLxy$h5?dgiU7;Hv}E|nMB`y@yTO)yt+dG zPNr)N-6g*#9c3M3T5~IJW{}I%OFiaLEHj}%y70yH={NIkgmBm5eSd68tod}*2TI?w z48N%_uwD*px)tK}Z*2a)`xTNVaF1(a_v5;K#-GBcXTs1xGmu^MgeUF*aqraX$p%{c zg|wWK1jnK;SbUvmXXnzUbf23U3&MNzj~JNm7sdcg{}?JR#2nBh9-KdBJ_IjP;+=(% zbp}!qh9V5XU`Py+_AM|-p{MzY)h#g8ha~h zsXeT`%m0v8Ce2fFue|65mGA5J>?Nx+Gc$UXny1d;LF(E&H)*lxooRo_Zf0d_S-M;F5N#MIB zB9bsNy)5->NI6g6Ms)PAW|a)bSnW#w&+}U27(*`1Kq1Xy>YD~2-f?CU?)l6?NYcoZS zLo6|6&y7nD&Nk3#K0$RB6hoQp@rc7lgQoD6wb0GhV=~RE-L|!YWp!>=WC{1rFb_{p zSHCMk%FUdzcY^BULn=FIm6!SY#HB30_k81La1wJ)*D-W&?$)f<;)E52Yd&XOM*Nn-7m4uVT^Evv>&3a<^3NBEzrNSEe9?0KXZ37q z$}ua^(LQCl7t&vo;`hYk1svwmKv7CA)| zcI&Y4saX0mre=gDwC9`U#$s45WeBnJM%avraxLji4`V4;4-geWv@Fdqk@{|76nT zVOm;q^Nh2t@D(ukGrY}V?oKO0GZE`*L zB#N>EAJ(<6$?u<(-rHu|OU(N6Q0G!)iv;uPz?k8u&Qt6^&8zn;NO3`8c$C`p#0y=v zjQgP{+^zVTUc_)4)IJKhVa5|2BfxiRP~A+P)k{EDKSFcBPLYa}d|R6Ywe-iVtfwDS8d=|;)Z#w`(Ze?q|UDTuIJ+}o>b z0-BFb#BDrH!Vl3npVh{2@_kk7nkjSsndOVssk9gO+1jwg8)~!=NRfp}7ODN|KU4iO zH~8tXYdO!YMYV6(AD)jrg?B5n@Kyf56?kncuXyeY3C}1R85c1Re#nnY-@I=Lq*3hc z8j!p2)XF=x+L?8tH#Xa@#INb*15EW*tK}Br()B|xZVIwfW2&o_>z(%myJgpfy^Z2~ zbRzJ1ZMsiK>~9}Mb=|Wb=Xp+Df7TG>8bg0e;1s?RG+F5syX4REy%SP@v!3=OX^+e) zxWnLMlGJ0*HJ3?m1|G!N+1h;vqCq8@dGV}BQ1H?W=KEC8U0etrs{0idxF~BwR*xu@$+@NZimJ%wQ77-!{Np; z%9h?#rxjn@L%TC@QE^KDUAOg@aR=S(DP#V4@g$DE2 z$G+~rzu6k^VASql);gekUco$Vqc1L@v+RM&dQt9z9LSm>e$?1`T$g<@vvcpO)$v~j zc6*)&P0?@__Xg!M!)?>8Ce)wYLEMoBe8f$+c)z!Xj~q%#0FnGx=m!HpQ=4mQePEX6N$yoor>0#3Z3s2>ryF2Q( z9*$>C?x?Po>s{V0as0ijHGh7Mf%!<8nKT(J2&JIMGu<+r2UnUK4tz8Nkx4^8;u zI3CDd5XNu1D;GK&9qIMB$1%ZGr2e((+LQry;r-OATj*g;{i~-Ldh@LX*{vG_PJFl% z(@b+^sb^k``sp{1GvBmX7mm@o-j40;>PROxeVU{2{0l>tYZKc(r59!&&oP_vhdOQ7Unh#M;nS8#Jlu+$FVK5P)laz4Y-n2R2`_GR>HCKff&+$0BKE){A&pCao$=h;%$YuScw%ecng5JG-i&EwH zt`6`=THhM%w*T156!YHRkUDN!)lJYfeDEfB@spB~N~W_9=D&Z9EbSa>GrpI#f@`$- zB#b`S)GrV^Yfxe($nIMLo#S6DQG3(B5-T1_3ODGT#cG+Bs&tg?^9mLIr6b!i*4{wp z&@(Q83MQcHVg4guk{)fz3k;W^$U5f)|0r9%IaQLYj&wQdUD?iqedn`wb?LB73(&Hu zWJ&UR|E5Dqc{zM>Wnyiv!rkyFth?X>)gjEi$-8K&mzG4cbO!AVi}aMC@#QP@EX`?W zYZWWb+ehbn3&t4f$0tNRmh6(9^hs?)YD5jz?JvVZi)4K?}_|ybIN`F-kc25Wv8dUBZrRSqM}Uqo$o#PYdLz}{@f(BG8F3VwZ3@!<$LAj zV|n$S z&@J!P8mX|R&SJP7BX(jMT7Q3v@-%sy3XpT2H7CHGJLmL;NO{G3j-O9VA6r`+s5}G=OH39vg8kSq%grmnF-dAD%&Z6e_ zoin{si?2pY`Fd>n^8NeDY!RGQ0Vn*-(zQfmVky~R(NRbxqKWNvoYi|trFVb$TN<Y&R?fcP)<_KcM?M z$00foe!KvnBE1J+xrkE4M9#XU9d zPK_d)I_X6xv6@?Ni&CVcCkkHSBia=TE?Y6-!7lON416LJIwg)E(xn>mh${NHr>chV zq4C9^^DN)rt$WlMrCF|5$BhtA9$mzAJN(Ok!-goO(M9mwLav2XQJpK|$q@>XAV5rp z^MD9$7}u;mpJLj&7{ban_*>hE89|I|o}muWUuVyr!Ns2$sU>ZYc*ZnBDVov#%Za$s zGV0`7lFn%+hmwS=u#oHaM}LX63ZgK)5wz_^nZzfkZAZ+Oj9Zi7iEL!*V5NfPBai1> zac?61|KgrBwTZ>OgXgta;lj~y;barMV@9{RkdpKlhyPZNvv|20)t$&VcKeBmYO!_K z) zQJgbo^Q1tuLqiugX=0f;b{;4D#u*QNjId13yF%x@pnrv>aJ zd`~Ucac%JgCo$E-#!*Tm(|u)(p=OtSK)#BtYd;%A@Q@cxBU@knC|BOKkegd#Vo?-6 z`WCvkU(kNfJQ}HF2;+8}jt`T$G0!^*Kz5uEoF-YuuGoLWCkj1=*~4um&^#2_Mgc zYpydnAqbW!1I^-%mkGH}v8lV7*^4WgOgiKK+1daT;qW}z3|%6|btj{5%$FQSu-*y@`VM(&sz)<6JOwJppKp4S6cZ)}b;hORvf)QQlLaNw)r zo$y>AoEi0Ak*KCZ^ku&cFz}FqBRIq>KA-Z>yTkE9%2mF|c#kGUy z&!EInz_XsiJ7zJZ;0*{0W!)kN2?vhcCC0-( zUyPvG5{Tq3ffVYKX5Xgjy$ur9MXBq;Z^_o<4Ta+h6jQ+Ydx_;(372~@hf^M5+O$-R zLd+tEDK0V-B38qLTaObP*YEOhU1kD8jV%JG=|qF+m~aBC=X#;>?lsvT!#_C2bQ6Oa4)Ed_-;L?U7AZbA@*`d#y9*4i9m-4Z&|X z-?@SU3lpGHGQwiG{<~>f>N~uJVqvvyeg1x*L5q)8% z=0GMwB;_Z8?B+F$#ddRlP9XnN3(FSwhtY?!G^~T^KFpGPuh%E7FNOY`jpX`JT3R|? zwhT%2LXU#04{;9vjq?q!dE%NzlD?O%MtH3J695~EIZ4iWxlIUNG4YmiMFWu`+>=tz zNQlH%9DA^Nb?LUfJ6|R4Ixdi3t?2L(Y{BZOAU>7|wdnRMA^_FQt)vqxe{d)1%#|>) z@K0rcH)^T!0hEPMH=uWg5S{uzhl7$cB{(%R0!0+ zU2EWWZk~(;)1F^uD7^*0yP@9p2`cl+FJIv2?T&o1&MqYhX_KD3MP-1VfZ{2+1wDb3 zy7NCL$m~AhDrw_QhhmuWFLcW3=A`#&sZ*e#=~%R7Am>FZVSV)>R9^aRxT7ox?ke>gtK zY)7cFmv)_Ss;c>uJS`B!`SLE*yjabS+rgA^?gbSk#gSbO@>SpySEUqhcy2-U1RP;~ z0)C@7d-UvXCHM#L(pqM9bD?|_Xm#TPs6$Jp{4%^-rmW1njGFDx`K(ykH|Pndmb={0 z6S%3z{&ND=t`khC&xapovf9+LF)dgG)=Vw?KT7zz3#k5=NP{h@N-a0FZ0wAl@KLSs zKPR~DKH&oCNz1v^EiEUYuYfvyaTS2Ovo7{)*L$H@_X*@bQFKVz(lRb~#$Gx?zWW4R zScW;FBiTzpD7nRROUq8-AU+GxLlV1Xn)!H_Ohv1k9XMN@x3ugO1HX0QUvvjr+gejS zx=U*X51#Y}8J+?Zpea@EAYiz>Lv`>!Q?}aWN-||gPnuB~m~F}ki#`ouOd6D z#O~tgd3CeCyg5D01x*QzQP*S5a#d>g@m#wD&#$UxRnC?xTQexSh@NnC=)Wg~?z%ug zRr5u8maPl)6T#$itHse6zGFF^sNkFY%E@23fpT_{HPT?7-l(s#dvCS^q`QZPA@^T6-I%(9JRZ(}_rNhkrAC~5K z0fU6qkA{EgJ^YU5N5~CS;$oj?QGdOIyxmSaxT^W@(UwK{mNm{HX~)48%6-sJTkjn2 z5BoL;cD}lKM(z#m7LX1Cv)DZaHtj20SsilyV(q38&`cU_H{z%&Kt0 zPHfKEg>4?%^Qkljx-dmFa$;Yjp!_qN23On>634C!K*@IYQi{~}1<;yJ`Utbm?h7EW zZ)`)VEpB3wm~wj`@!$gM;cAHsk*oWQqxr#@uaIY9dVs?AdoeC+FILB?^JxPx$F z!|v2CSTl>c&^vr<-=&WCnT)^p)cQ?B@W=5$mn>B*^rp}(0K-G z2_Q;(JoQgzknu7QGuC?+RF{fMby#PgP{@x=@c>9ab&j)JFh;7mZlOkKCs_HbhfpV#@Mf#5Y~=Ip`=B4Z?bg7>)g?bg9X&CR0)?6o8J(rvRwz znL(iV4J*Nwt{X^V<^8?F>{8;5#2blA9r`Owu6@)m{g`MXBCUNqwJS4-)eA7!C5hWc zj7waL@mtgxtL4G;^e$rvTh!^RmiZ^`&O z5M?e{VeaC)Q?FUi=j*xZ!$f^vFI?9AAVMO8$&Uo2l7TF($s$`c0c6stt~2-`P@ALR zRfV8r2Z4UQxMhF?hixf3Easf$rkRf?cn~n#`<;R_kYNVE#SD-+L5=S4ovF zQ+ZxSj0ujX8l(%}RRtk5JK(nQu^)eP5!I!Ne8m8=ENCJrBNQB!X#d$CCLJ3oK^*FnB9B_SjV;ixcXfkExsixH823O9lAx{xi z=byDj^MwMM$jq#Fmw3}&$`iaZINfu(Z(Sz!QTfynB| zU1MWblAF0=3?$cCXP?-UJhdpAp#39KB9t2=VsZ$`J>q8Xx=jBnVAH(%Wp>E1M<$}= z-n0Tau5-MU2e@M5)gU+EV*jfuKf?wLxN@VL2u0N7VeLzdukM2tJdU7z@ieIG{HAM} z5!|77ojL*NiN~e@J>GNsC_^~yc!9m-Ad!cH_&`mOoBcoU>M2MmRxGUH;1x z;Ons1S=&I7lmj5OCtU1Ba_9jYPN{s)R>GDWd(Bu^fcbI_8>6J)S#Lq%u5VEg6M&wNTm`!YS{L%|dRn4P_vJRvG|{5bI-c}B{Ipu^z^%G8a$I2s=Zw%Kx# ze&A|cSAArm(>I=y| z4=Ql5f#n{-$bR40i;}~JyxmTIr_7ljr!^2AH1cJai$8{AD@-F>A zRg{V-TNhAq%A$MGk$h=~t)2#gHoUxwD(V5cN41Jpp;OP_eCuc#H9jc zg-jLvC#onVC>4ZP(Jb(F(CvKj8&C~NuzsFD#(S#ZL9}Pl|M3`Ew6I!x6aK;m`Ns4@V%_O z7Y~bxpggZ8{{;mVC8kOho!+%Pf9fjA^DsTtBtf=48+%c5((2n>8S5*chRB(k3Wm7o z8~wmm#6MgHG2V-*`V>L=6zuxbIeGy>uz>k)VKyGSs!t$%jr1TAz!$m~9S;NdZ{^T* zk6ew5%uYY1Vq+u`JbRE3p;48$RianB3)AC?pwtJUsm4sQr%)=`DuD^XQn1CwUK}BK z0s3Z1g&klNq_SpyoX9B1Frmk#A81SMe_I-5i|`HChQr#A+e9)OB&lTl!7*%*V~wEv z1}eslAGfzHl0bl*)ci4-Sq4ds_hn@SYW4`q_$NVKiV&n}>PSAT0$<@|N54`j*!qDj zT18OWfXCnRr?SJ_wkUs%gO1sh|8XN5>iG0qoe`sM2Z<9cb@i2s95DGyy5AO-yO@OI= zF>QNbUqv~=0UqHnM)qtSiIe(fxnj4Yy8|)AegrXO!!JqhyNR?AAk1k&{nB;*B|so8 z8QnxVTCRFkMahWDNVv}bItUxW5soGQ9lt(jwvJkI(T#P$`m?zsA7q%rVa*g}>?jxe z%MF>!>;-zyUy)U-RZ&K;0%Hd-RcaBG5y_h<_`2hl4Fsr2hv-N-KTtA%o<^`o;i%N0 z&FR_WrY9AU094p<)2mXhBdJr{oF3V>!^0{+CiW9;APVLF@QNusTnxvKBUdUK1Ho2g zm~iX}RGU-q+{8TP2- zB)O|9zX~D+$9Wel716jp8{qzco#Y(AfT_;kof|ec8Pe$AX6R4%S#ojuy?&|mq*IE% zl_K#~IHvsN>E~rPm`VYfs^JDaH~rcD z2AaFM5o%7LH!3yAPX)pLt<431t;-v1DbmXr!;k1lW~7Bi4Q@Pq@W`0tv$3rqWk{dx z6cNIc7Q`xoiHL^NWg{pFA^s(EF6*)%RG>h`WEIf@{uJGd8~g0GUDMf#c;dt$!t*D^ zh<%RbRkX{A+`Ml81L&m&vF^u2gly1*7y}Zll@JIvSMS*ABZ4Bv@g)hh}Lm|(?lS&Ur+$KDLEB?JQBjng!3+`b{l(f)EMix zy^E|l2VIyT9izT)r7-8n4W!(pjs(Ix8mUX)P3 z^md$qhiNMw##Z#_vN2{2Tn2uW>1C{-bprfAYIQ*g_`&=w6XgtH6$XBUxl=>9aeFuT zsov(Ns=%D1OPs&zmHFweXuSip16;wimWPpCKf$|_T&ZZ-OG^z(CdaY0x8tZCp(kpC z!GgcS&;vGYaCOH9RpswKIY#8;<8SNlcTfl#p%_BQ5@b;4sX#A-W(gW*XI>opLE?sH zL7bQ`2XP1B*h0j1aAn&-a6bAkDUphqk8_}{?Z=-Jq=@!;dYR}5H9cUaRZYJ6D9kmo zn`Rs(U>(w; zbtFsafCj#h%AFQ6edLd|evFOF8>4!Z8p?e(LiBYnyJL4ZCyTo5q^F4$G&g;D)o zpsygoO)!;*-HwnQ6;!xj-R52#PeeOB1vIi(4Bt7D+6Zh-z1H_75R4Cj20J%9U4Y75~#}$p>n@S zUjfhtxsUVgu_FY)qikJ-P=@Zsv9(iuB}=eZ@bmao9F-M0P^m+Q_zDqAK5nM=EskW>EbK;3FJiZuiNhi z(O3ob8@~wXZod0+pdw>M|3(62vbh%}lVNS8_em6PBz>PR4k(M6GNh1*0E<9F>GAy{HiAq1@Uv>+@o;1?a( zk{wf)kiUE99w|{0I1tzLjXCVayw*umh8f8F@sX?dd7zeZixYui`5ei>H z{E(C&G=Z@t!4NXS3m?%g!?#I5f2u!-?-KnaTp<-Ci4J4i9W#m`L!H*0+0zj2SKKc9 z5^#ql%Htt;U_!QanTKJr3TpD@14Mu(|Aqs7L_bJG&|qB{(Lw}xj^DJWT^)h|ekxMx z)&*l*-}7AQz9Xv8^{gY|lBK^23hM`3=1Q9e=BTZQve`ngXbU9&X%GNMdaDIO7ru>r zk;F&F$(e?z8l)Z#P3%Rpbv!xlR5TG~gn~hCUKh|7C{cQ}ic&QKxEhXVp@J)1+(g-~ zegp9-DpHN+Zs3ajSUPEjGJ+<2nbP!;C|6)lnaO#;Rhsow!m$wSJ`@}oLD1on-UG@( z2VL+ES7E?a>`fxz>NMrwG~f!Z*Uptn03s5B)adyb;Eh$R#AAUHtbaYTz79H-N18TFEqx9iawi2y{a*4uOLB z$05T+N4dy0D9Qx@{7OHWNJDJ%W#exjMUo-C16Kfg$62`r+bux9_r$WnK?Ui9z!l_~ zoe`AHfE*ktqMfYtK<+gT7r{fMjMpkPX1=)bi+r%7x)O8{NS*?ca`ZMZKh$wp9K8-C zYpjs~_GGjGgZv0X2wevpJ*>=*U6ulCHbaMjwTHg@Pb0~MaM;tJ4saE!Q1yPTyDE?H z-@WFHUrpH@1zJ>%XgLnp+A8GachcOyU-=JNbI^%&_*L{T8O1%Yb*cIpLWXe3)8jRA zrw#!us8fQl!|Jd>ifK40V@D`-41`9F$p;q(w!XpH)J{%f0G!DXvH)k+IL;U`goICm zpc;cT7B(s0!J@+D^OIx&?5rd(!xpa8*$7IMX&j}couao8@a0Q&8)T(M87>BM@JZ_Q8G{}cvX6$N=c--K%{Gs)Lc5Bdq{k#Jw#}4H^410-mb;Ri2tp^HG z9>CgG5FyYCMY{rsDv0}arV+4Y&osdWirWv0gDxc6vA~gPKDh0fbMHPfW{tK&?a%Y^ zw^w*b0T(+fE$9SFW2``5l1!-O|m=7>t=rQ1EB=7WTjh_{;SA;(^PA(|8 zQqh(ULaLEKh4dV>0(mHc`pDL2V6f%P^b7F5m4_jq{{9HcZPzmDw1k>^K9q8yRRn zK7b8q&`YzRBG&Qky$>R00U7`XBml&W4r!}hG_ums={(9lOj@>F8cR}h1_x+)@Ly!0 zE$j3k?9B-tb|g9WF+L%F)(5%q3{^D^5ijbtJO`)h;QC64jpVz2eWzZuNS`Oi-1>X zoJcQ#E@oIUgbufC=ymAuSpDnb?$0|b;2lRL2d)c^us9N}F)HvKZ1YWWtPcyqZ{0XH zj{JDcBBe9Ggp=VPHWYA#btH7?f`}nRi9u~W`Sd(I){v~MtX3(LNhYWbK3#%b3#xQn z*9|3i;iuX-dczeuSOwTCq^ zmoHylTzN%HOPgiLw_#yvAZ72ROifQ{eA0OYsiU_J_$l{<{K6o!Y|^%&x^S=J#;65@Db~1ccN=7fmK+A)gUTTX84ar@LyFaG4z`XECtspDgP@+P zs}fpI=pa0kq@2;wv_S%qzBDV&=l$y0+2mWZgU9NPJX~Gh{%vxG$m9!d_a=yk4xn4~ z>Uj|94FYLfEiJ7qLvK5~S1Z-vu+R<#9I{=DP;{hrz|E$(A$>_XY>!LJ^LsbjpY21# zCM!RN5Vy>E9oXd4EojcxJ%@)~(zLl$e4U_Q4klU*C^^05i?w&D7a5HQw}K!Wl5MV= zU;EkKes!D}oRI~X$HoO6hIjCv9OIf8{r=zFiq6|(c>dSh?VauHe)r!%VP z;^N}9`&XTFy3SrOFz^O)mpq>1PLhX@aQL-G(r3sQU}Je06} zhQ|jd6luooxJ*|s-n8GylIDQ1ZXO-4kue^+LW|lBQVeMu6m>}R2|GfZym8`&@4KVN)UnEUG!Xm^3g{oU7p?P@PB=_IUh ze3o%QB2pGM5ufMgP4bBCknZ8Wg+q*nDTlr1T#87XUxF_|o5=wKB^o>KGRWRgaOi5b zd%0#QDG^jDc~^q02T}L*pq{uPHAFgK1H2GW%P{{vFFduc!R;gd^_TbI1L>x_#8a0p zg3#B*dT644@v$9NnG7m0VaFh@au>xxrNKK&kg-6|!29N|h2Klqzs|pozx|f!(0&CH zGzX3k#Q39T=qN01VT}Cizg4GTLcUG9HE6>27&K2FeD~10A2xg=?xm(H$ZC>1|}h3P`4V|-W{-0 z+wcGS>&5}kI`IoSfuk$_%W^nu*>dn^q0J*=7*tDxJ{yb@r18(72YdsF`5iQX0>*Zr zzS;Ki?j3L@e;t4O?H^KDHi{p=h!7U_Qr)-%llp2SsFe@yIs(KKXmcFYflODQ9KHvU z!hjA2eevDkJsh#0DPhbT1Bw{@Lc15fk$@Y<^b;z1adUZ?-iW8;1Tc7(cg zt18rU$N-LY4hKIEJ4u4s!bW**HEg2RD>2EFc^KSW8_E-xqn2#CQJ*ZnGO6e}XpLHL zLU_zDpNM~whQcfIDS$8KIceK19lx8fRS_k=(4<)WYE&HDq!aWBze z)(G>P-N9HrT~CKe%;Iu7zu0En+9%VEE-!IHQ%CiS%4trSMu<5;iD1Uc5TRk6+N}#|@2(;WLNf z=1B39%{C2!=L&o+=!e+VMa*@DmV`c!>2_2>*J{GdEg+2*uXTK$c*0=CNyiv~m>0SG zTMt2+Tbt(6j`y5LcU$9~A7{NKX!T+HwjvS~TSjOeL8+G#&@xa<^ak%xz$>uof57Yn z`0Ushu=KeYK7HEVWdC}f8}ZJFJ{B_Rz7Ewa`e|=;aq%T)2hLF4TbwLLDTUy>`qufW|`FyaI!uccSh_dkm{j~iQij*<`v#zIn&t-vCou@;CRr3@C3 zo$Iw0^IS@<^7@%ZSQSUDuV&B*$Cs{D8>8&X)`u^+qMo)k!y#0! zD_}Q&5o-EyS-B3Y1S0W`#qK4tr$g$NN41{b@F6-xtun;oMYI#(nf=O zr9@6SerW39P&DS$ETU2)3S}ZCCvP{-80D0YV#Kr#zsWk)&|6cdhS035(xjk2Tt2w5 z*aLIFu~F}H4(3`$%}Kap>YUQfCtKw#_8V{X*mO*N?q^lKUtr8}YCA&Q`Qt|y-w}H= z&iftb8W8z>=pDcNIQOv``fI^v67{;Hj=Z8PTjj+MhG zLtj=IvDR3JX&;rKJRDr2Y|5G8I*>I&ty-$1QGdzFCyUpqj!=~85C@BxQ5(aPJ+{pW)9IbYHSG6A z3r?9{00Ye4FN0tkG9Uz&pQlf{nWeosTV$P(0so#W&aD((vh>bAE1DtHyn5|7UBdt- z;5g?9^(Rbksi&#gRXVJrV+f6I1>g}$YfZe#OyXX3w1${57c%W4sOQalb2v;FZ$=&_ zNqy?}zF>3Ri(j2#I$Y-=cEfS5u7|aAVQu;*UBgB{3b)nLk~FWteJmoetCxk%Rxz!e zZ_J2oGyT~J>ln(@c{;JN^$Y*gM3mR&HT~<0-`yXlbtQ(LJuFd@E5e`EyV!C>LeJ4* zBQ3Ta5scEY?J;TdX%{CfPE*v)_Tm5CstAwE(Px!=tn2sX82M>pq8ni>%ujj!qsFYT zUBL~i>;-nyb+HMD;f9e;3De2R(@jF$z%A~|08)~ah1nY)26)aJq|zxZJs!oY3fcWl zLL8_K+hqO{`l+1Jo_fdbm8&9H&-Cco334D8dq^(-)SBp$-3D@TSk+RYYdTT86OUzH z6Z`IJ`wG=Jwug6YhR(SqHTP_kcOvfAt1(7m?&csrTFylhoR|$=Z1h$iaZHALbfqVA z6>YpzvC?_f{iVIFORW!|EbUjbQqxkP>enN2FB-JonpY_@w7b{mx_`QOZ6q&ee0dXp z^bySrzaxxEFs$i^+!JThC(kTA2W!{X0z0|hQ@GjQMONBG-hnqt_J}GrcbW%fhuLOk|J1#jU_wrM}+;wFtC@ zCGL$7+&JfZ^(eW@5!Up~Co8g}GsI{7I$LuhOjZ(dM$`1VwOCy98?{q9hJxO2O@(7_ z*<+k_?A8_tR@t289*q^@)bQ)s{~S~_*Z2&{aL^g5w)bclt6*MoGO%39lFR2Jf}Yj z(GqOcKXVux*9LEk>TQ{8=7G59YsbwcW{n)4XCL*IgJz>o( zx#kScU}i2bO7D2sT2#2{u#yIvBkv0dr%Fg_+;8zv#GEhAr~55?t581Ct;R$;nEv>* z!^b3%;+Y5_{Cv&N^bYiVK1`(F?zhg5(@IX533wdtbKG2HVakTT1pj+Y@bHijwKxoG};M z-H`rex1%X5xoqn*?PGb`_A2)`&?1EwG!ub2T@li&gV)JvnmqyJ_0%ZG*^?+V zI)we$Qzp_&?b^@M-TQP(Ra2|%+L=fl(;{$f%*S;4>8HoY!`E)Lsl!EZg7M-YztBjS zQXqnZt@#@BMKYD&yqF}v-#VW5{yyur+{(OZbhgBPGS&>Hp~5xlIz#XxBEx3yZBZSQ zL5?9XnC|6|NobSP(4u!t=Glw=FjmPCUh7NiXuEZ3G9u`6b#?1f>QkSsDfO$toZtA9 zD<4D>OHk5tK3FS6je=;~TwZ|W6nXS~I{yQ7eMN})`e*b-Vmu6r{#AB&^*72!<+Sh% z!8!yXO}DU0xTmS36Fafo4{56(BmywXXNJ7rl;PTF!TQTy`csRZ9_}Rd%rpJ>yhT*7(Bi-r1?pWNV9ff-NMX z-V=A(Gelx31ea|lf7(XDxdhf&K2gZKJEnAZ2YI+8Q<@Fn6OctE;P%I$cq&qao48fH z3vNl#;Abp>rl=_ABwmtjTdLmWl#fFVyvFlfKLlcBhV$U$cXi@C@}p<%rG%wnFs^lF zHDg}&Ou3w$`T=%JYR_!EmxTpATQC|wy@Z!F0_$U6(ns#K|Odd_M*?)&MYnTAOlzc!@yTK3O3BjA>kGT7pgIKD(m zZ8KDSf{+1UsWW1E{OMN_=R>+M>{H^2YZTfr8u`-17M2Ren(~$ey5||AL@PS+@l84U z__UM|<7~U{TuTGMGe(XJ9ZmVdbMAddQdfX4IP~_VX146%1Kohf+%cXAJ>S+yAkodC zitq@|W2!|fn@U+Nd3{93xSb!h$_bc9$gOAseXVLxiog=si8|iZrJtEbBhA34&^z2QI0PK5J-jvKS zl#|_hC89wxYB7GSQP@8j$=UN}#u>;t=%3vKmEJLqQ{obW#7$IT07@6Ikt*&>{PnKH zo3%|pRhf!q(E*+m%;`ua!DmpT|F7>dX<#UKt&PsGfnSoZx+yG8CK{>(qq$uA=G4n(p~O6? z3yvv#AE-q)5FV~xo0BXu=lk_BoJud5oKTy(DU ztNfv{wHy~GN=rA=18(;MhKH2-q_#FnD6e)1#0udz--7!L6}M&M?flsK?)a?}BA?yW z^nE#MI8M=Y8~`9W;58?ZhazQ zrxk>Pl}7Pfl$|Kurl?(lU)t~4o4AFa$>(wtPBMlG3L;+SM69BNx z^_IZ7$HReZXDfo`O~OZSLH=1PuxWFx8~fTZMCQmK_{t6LsnFMLv?T~!W?H)nT`=b^ zoC|ohzk13BaJl_MqZRG^HA5)Vb=h7JImC)inJMV>h}36 z3SX}lB*KSHI~5WBw2tdj7y&Q>3Y%mtJ`AoeHuU7=55}a-3)`YCD~m2hoy=I1x*2;F zlOpb!?YS|vrFOrzw;2sW!SVwjR59+Z%xTfo;O+0jXz0&T?l>BZEJ^-Si(`H5LM-DK z!x3J-(oTz&4M-)=dz@`&@BA1$n?*sLrDQB#w7yD&txJ%M%VB;+&e65yz`wyzZI>YJ zb;|y7eWE};GXqQ@+>rOF6kBoj>wD6xP{>G@lsFv*2IXYA|Dibsy-*OiV2=s*<$Kg; ziZ8Zvp3?Ws5s4X5n5DnQ3vi>%Ys260E9pE!94nApi8Al;txbE;0CwRsVbLDdI*k=> z&$`oFl)q?Eiu>%x%6|VMcK{b;#}byzM38$DZ&kGKkeGWW!&Nz`@Pozur?F zN2FV#Bh0QT(jG2fUqRktxwK=P5KqBkM zrZcV(8#uwyd2}sB@nAtWOcKv(cRfmo2_d}wlqsk4T@<>79ehp^gy_>Cy*_V~QW*8? zoTFEln8%aB@?J&@-A=)OVBVfGrg2Sz%8W%SbUURjmjy4=4#y3n5sQ)kG#ed0%rE+| z_J?Wr^oN&q7mIyUrqH!@>8;o;$wA!a7`19{i1yqU4kO{{rTU@nP$(Pu#0c}Qj>g^G zR3Zof9|b?ZnlhzY_huaAY71$xQ89C+x&|52r5of+x+E~M3&44($PlyioLVuQRU)$^ zvsh zHw;RAPHm53wNNexy8EqpdUlW5N(Fbs>Z~{SG%}N4c+9TkWKP5Po$J!RbKQ_>KxyaDUR&r)ivPlL*Z6GzYA>+5#*}u^y0rGV zw^6)~YgG$N#_UXPdGR(<-qbmHsIL^;t>8SV5{ zWfE&Q*|GPC_~8!>`ZPK>t+4aIt2+GyI|VM~*#R>kx*X>qHT&_pBW@oHRNmUpOy|RE z4ZA`F0U+>+2zpy>El!_JyLg+kJ22vV3U&!SIn>><7$ttk{R*6>X!-VfIfSl@W;bPC$j4naar%dZxE!xyS@Ak!0 zh_BE4>%6(c@$vXdwRVn3oCbNz#Up_Hwme-~2c*w>A;ZYaj?+o6aJfV8+xCIWen4iL zq1F$%e?}}{TEA67VYCj1VzmR&Hng$<%Q-D2WT4jgd6!;f;ylpuRgpw9i*bSg%8&^#vY2ako>!Cb^^fcj;-eBMdE+_)D3#DC|R5z!E68q3uT0ez5Z9 z0$5>U?c`AVmdp6pesh6-fJ*0mC_+NQH122wmzcQ-*$wJjefkz(L5Kr;_6OTIUjbN& zs(tBSFY@pbb;szd+sEX(`RQkbjj({fTx&@NCU!NlEyy<8k zAWm*v1>$>u3B1tsWmcyx+O!et`2plN$9Hck6rP??C;$qtDYG`7PQeQgKsF5UGyKgD z)coQCP%~p{Fsb4$@lg1FzX}OTl|VX{+86u+noWkNOPvy%Yy4Ry{U0b~^&D4fml7k~ zF=qj8NZ}nCd^|I!DxawjEo>AltU9C8a0m2d$Flj)v^wRh^iB_nH6%FQT?_xwUl2d5 zk6wb(4U8DFeEvPb{n9wFd{Qs?Y#!Vmppy}`lZp4>siEHzw8_QurNy^g4Uj5t(V7L0 z221l>3EH0ep3@VfvEf~^1<|ur!0niNrNoMZ5Od$1JAUDfMxX61<~QBGWJ1;y08CCU zlCAG&4|NdI6W*>hnLd6)Urv2pok70mi|-Ko21P@Dko}G(P7F+ZhUYbSobA4Lrx#F$ zvQ>cv>~_;6{^R6qBh>LC;(~oHN^$h?kFrL@($ORi(IjH9psTe3e9d&)L!x*1Y@)Av zK=vL5G9qZ~vqm{jEaV%z!klQv+n?7I4FfXhYu9&(hGJZ%u}1!2z3eb5Ex{2Re1vE^!>V z`&O*hPn>!(P?Ik{mTwg@Hb|!~%=jzB+8QckK$M3ier?W&#i?t$EZCaA|Ft3y@9O_D z!YMB;GJJGfmb&j0BG?CWZ6R4wjiuuXJvW8`l&AU>;I|$3brY40U$1tYIsET_f%Hd- zk>Hb<2qZ@9kHpWdopgO)pb?MOj1flB2t-FCFB22PybtkR7`zB_5>2dTT8W^m^7Bou z&dMbAmL&CJyPb+)xv`_ye`!$4O6*v#HS!V8ar1Z8mYECp@;Cj*+cnyKGf+;vUIg{} z4rT3qC}}SqmA$JoGgNN3r-Ji)K@8|(~iHkc>&5W2HMXm4+`5Wpb`^eqCF9+l)@ux2@!wDy^KS0VDhV= zXz{0W-mdOJ%<3`5&ii-j);|FU1=~cTzG)7n)d+wO0dq`6tv~T8fyXI`-w*miN}KRg zX`^+x7<^Da5Z&EFW3Yf0K>h$ABT2S3zOmJkiSFwFVSGH2LL(^pp^K+7op1PiFnO>F zB2w220$1ls%p@19=ngz3E4ILvTjalj1mbA0>e(aW@nqHU+R%rShTEE|DkI2hXeysQ zC=(7J$l;+SV5%?|eR<^71Zu$0)T^`=tdGg{7_Nr#H^H2s$7oKf}i>q(rV&2xK!mypQm(BmCbzm1gxavxY zy{q>AH}Ve*3Yd=fjs2bY%*YX0{nLZDj+B=-DcQ15_KnI7zv^%Kau&(KkbUkwWAuox zi@iVg7|fgMJZ*5H5(R=`eT}OV>)!5PYt?@lQUC6CD{L0!-!*FqsRlf{1UjO$QZ5gg_irDL|>v=Kc9VR+QD8 z9#pO~8;Txcdd7Jo9yy>|aA^aG;Jb)H5LCo3Fw9Q>>x1QhP#u@A@>%V|S8=Ix#m?BR zPWRF@Q$F|ul6C20+sCC;g;)vxZ&i31%h@0ukyw-(9UgLBZaCGuE!awrFDnFu}frd*y(0DN&ajg zi1tv8n{mGlz*CTvK=F6otHKX@1zieqCk>H(PBaUP7-o)*t$Y zA>+!E1TUepkDV>C)kd-Bk1MKv64C*~d6Y<{6Nqc)cH$7Xa8qYDC}-#vICp}|JNS#F z)|a9;(LHce3->ISDSe1a9sTB7x1H6xzW%1I(sTZUa1P!_zdq~-==VG+;Fy;NrIB7m zN{Ut-=`$XA?(3_V(jSkzL(m>)2XD<{w%VpCR@Rz4qxF__ZeQu|WpA*^qvLUN%P05M z7w~iO_Qzg;dH)U%B9-DT{%&2Izc{oG`Yfd4^js{ER^v! zlJwt3NwNl|AcP=RxSU~Kvw7(giXP*sC2Bk#Ai+$3=!Q&KQ<)5)59y!r0`^UxX)jE% z9AuQs!v&4ZL1GYDW^rXa4Ujtc#{Oq)W(+9&isX7HMLfP|!sO9Wjr{Ahp7Uj06z>iZ; zu52!NAFzK;4!NgVbVB@HTL2$Hn)i@kip0HR3{;VEH@dP|BSx_QvNQ_hP)n0J-%Ml> zZk{uqMrAt(_qraYvD0zCL2(A9PAX`-q_mR25oWZ~J$oN9u2vVmz>(&)y&w{(5)2=F zaj>Af`wJrbe88podOZd%FneN}r>>~>>L^)oaKUJ$7vVhAml)anWYr**UpIy<*_4#9 zSsvHxzIHtC!s(M3ynW$m?CYDH)SglkccW{Zqme`~nQOHHPJmT|ct5wKDcuzkQ=&yCKG+u;8;1ln$3zy@F$7#lKxk??{k(ie$rpJR zft{J*GNyAn#nic-eIQ{DSN8wfY==t61 zDT$WAuEpR60^U@Aqwex(PG@Wjc0REk)%#gGx|j~B!;npT4b)V}#C3*OFk0z=Jefeg zI*NeH<;M(l^rlCUia*?O3zg_%xMSdmO$slrVQg|56poo0mroz8CF=YiYf(Q~i*tD1 zI5W!F!^njnA5ol~`NY9!v&0JxYNue{^7Ww-(j$$4J+YE}Q+j`v-I>`-8MMki2U|El z0(Kdjmv`M0H~n1FdV38pF6Rp~q73wN359%61I|feaN8v%pb9#l%yecaNPFw;7k_0; zKM%mx`VWun(0zJByxPLFX+uk4|~8q&}=T= zJ-<;z&Q>64<`dgG)U)9qb=FG3kxME2>G($qE~sq@x{DTASI?ZDTGkT)L!PUZ2gupp zQl+vEB$|wIlPhbFx((tXj>>VzXnUvOqycBUGewuaF9{C1LQvH<;A)vkEjWi-^@VCcP6Tmt9U zD2>-Wzc5IF;yv{S{511K+vjIdE7suxmQ&&&Qg@%gZncyPp?5(1JGbyP<{433GU|i~ z6g0}1?wH0YSv=!*jJv(poFm$Aufqa9KUC+iU#|9&5`{v)O?>j$|ysN1Jf#O>8%6}Q?*-NwZBXF9Jj8kwiPrXJj4TD*n_AxARk8c(rTBk8caZCh*_<=-Sz-nN|}o<^GQCy-NPqO_rpeeZ5L!cj9w8lSftHvpHmBOlRo7=JD ziLjHEUrIA~D&jzLK%HArXS)oQ=|#_R69|gn)BJw6>F0)<)&NlGI5DVfn%Gw>+Gjc^ z7LRUFL4WQCp|3D%Zr(Oy)_SAuITZ1874yJ{OdfBFLZgt{CYdY1PDHOm?YoNkPXB9| zLk`sttRV}_ZlkR-eD?>eiQI=Zzn%j+{&iP7Pca7tS~Hq6g5S}+!8H-v}C-#BhRo@0g67@F9Q5T&KJ*7D;>$rcLCa@|#snM0SFSYt z4304`U~lK9<}4+s&Hc>jsqbmFt#cj715;j8hV+3)KX_#L$Y#(xy)rWxj%~2h(RBXS zavNv2+EPa)Td!R$ho>S6R>Tt(!Q@0r#L#^6&y9Nf z94bQgjwKFCY&Dz)mOyi5*O(q#nexopf!{V}BELWSQ}Xk_*j8IjR4Vlj?JLu)4$#M; zkpDLkC4)zlvSU3FV1y2|NWPG4NN#Ax+JPya;UcFj_0*Y!rLONkmvZ#gvJ`t?sMeK; z*=4GjKcm;&a~Q9D{8oi~K70)H#~a0tr50>D3-Q~{g#u&Se`V(NpGI?Wj!=q``oL~Shjy@G!s3;EFB@s*@fm55Z z$KqGo>!Cl2RloKsCONgSvRwq(DDULOHD~3rQ9UMzJi{j4`cO826@wf}EH&OEZmX>l zu{xGE+s*}jM*ffTpNlE}mR zW(7=LVw02QVoj&bBDX$Kuppay((#zshDtjFBVl~#Jk(ByQ-w^VL~5{l;M7#X6a_uN z3xE_q@g77x2g@G@YECM2R59Rt(3ZXW$7J2d8@ZZprRo!t9B#@FV&hW9y!a9*1YNzb z>Yws6y91oVtF=>{t%yROW7ES0=$yg0R>7(v9~vvB4Cd@mYS5f6=qXr@t55(Gk)Fg| z?E4M%s8%bQQ?xHl+RM5mw`YT_liB#kKQJzn>TknUMWdioy0DbUn$?RRcVfB(dPpe( zaRs)sQq;ZRMlW3^NMBxk=2;XZ#lbsh1Jc%1*Pq&g?qgd!wS6llYtf z)ULF;^Z>e!_aCnn`#R*8ibNGrZVVqLxPR!WUv)A5akt)@VI?u)0u1IG$$-cx7MNSf zOfP%%Mm%b)je@)%wDt{ZMc*}s4nMceIYSJCF zsoPsE>u#NL}3rOoZ>TRTT zw%Bb2+md1vG>?hlCCi%- zC|rKa#yB)N>}e^3{&2wqL;~jo!_&&F1S+xTgsna>@XJK14aea&kO?84&aK?CZ~0IT z&5fmFzW|Za+T4Nwv&$$kLALqmrx=nnc<8pgn4i8_Gr`(2AI4rAHDk=7!faZdhcz4Q|uZVf#EoI z%Iz6mgC(xPB48QrDAoE)?okkEuX4smUmDBHP30hHn$^X`%&sS2bO1BSWg1~rT5{6P zlj}5{oMeNKR6d3Rcd@=Br6eg%oUO)c+Xe=9BN)@+z5%S~D8p32w4z$YD${T8c?K|y z(g)nnKWo)wqra;hO_eAEO20goL|z%oI3;6Z9>=a5Bymc1lt@j#q7-!ecq4~tXS-K%w zN+{tT_z_}$D4}gfJEh-naiQLE>%nsG?D7d(D78_h{RTlpf8Y<8^lTp{y$o0w`WZMp z-l$s0K@oqsUd#=t0{yJ_Jo!JaDc>mb!z9BhVXcXsQDTWy@Sutw$;FixR-I11J-Q)Xo!_ z-MxYoBGZHy7_S_^WjNL5olANI=AFgs)h8(80QlHU3OT`q?WiuB0;0OnW&MLO$y;M1 zBOm+Ccf1QW0RN+TwUFA*SGu`6xlulOvh(cXarU)2odkOLjO##%SQqLT)^E~njb!NE z2QZ`V)o;N#=YQ^PLNqGxK?q*DrGq^J_&XX7d8X={b9GX0qn3YY=65&-^{*b%JuM@} zqDNY}<4s_`_3QjdLs!f=`}H?PsIApubW1;DX02gop$?9|VSYDfUg3k{BrY$}ZpWt;Zt|)HPHZ?lftCo@k^0Ba> z4_zEO#hJ9O_V6NHT)WRbqMOZEEdqZX64S|VheDFHz=s;NY!tRNN_Z5XxAxWU`(-d~ zI>1qTxwl!<*gg`#we-(?A40)*q3zv~{X9Y(kgDsg^oflIIt@$;N|liBx57cMKzt72 znSpoQ6wV@fPwe|KhS>KN6tqHYBo*Ugz-;r~)NqeSwpbA2GqSPnWE_fe;>Nt%Gs*;?w z-o?S1_G1y7Ri0mtkUqTuq7)Oj!9w}=%v0!Q3uwD>eE(eA@4+Tv4Y1v&(yOPZ_lP0wVMMQyF5%mOfJ~MF3@haXe^Hi^c_vdBhZ6-^BDY zmTnX!upc5024+=3C3+uddb@=+7qX_uQC0&S7R)zD3I%BWy14770-^gMcXxH7YFlRS z`{lqp8cS%TF}_g1t*GNKS=>1o<=ffq-P$GVMqm!$9rG9bdecTq;3@W`6tOQrcuaoZ zcX~}QnUKHF=J9g#Dq+>yQ`~IT;XJgn38rYY@;>zvXnnZ-B@qb%vVYeKc1{YGczZZd zm^Bcm4G?FUOzQ5;Bq*6N?T`*`?(1NRuu-zN)4{(J5zxr=U`pDy+Rg%6<)zsEF7o@W zk%JwiB)3b#QV}ntNZV%B&QH>#qH^a56azI21sJb;%I3MsuFU^xN>b7r%C}1#=?tcp zMUXA)Pjd2+&Rn4ODRW%7UPQTkbGah+yg-MMEYT@n*Yg4ViS}}l!~`P3KPc+nLNf*1 zlZu{`!x9Lg#?9h>WcbH)Bt!rBQBCo#T|rI=9r8U`)$Xev(xjP@mdZ8M+lT18E2Y4< zy{DzScdb|S;9)5HJ9@vrhe#i})SShfXGPdFcf1hG9=VpPhi*WlEi@es7wTqAzWV_= zlCfG+!_J*~eG};N;CBJY4*frCAS;}bwHj(0k++&2n4gG4z!@woMB_99`U^$F;u~I1 zM@j4dUVSlH8xx#Z7t(+^n_Q>_ZvHH@X>!~FEoEQ-c=pxaLd$NXWz<*OX^=FKFfgV! zC{$bb#>wg(~F5UT3nF{_d;{>?Y?TsvgVnb`^B@9;nM$;l)o5`T^T!DV-L!S zkfWKfAV=s8FktbbE9sf)Q zUfeU-q;7Ry%+rlUH1v8ZM{K2+}45&fzv{z?${A`oVoXCWBTYXC~eCp&O&o2flIeaGsqLQpWsDkj8Ni zrn_Dd7UmWc%xX#s!=K1zZ!hBUiZyd3{m@0gqA?vybYhg`kD&ntsdr%ZuE}#*>_2p6=Ugz!Bz$|FXB0r1lqz-8r}ExN zQ(RIG#P-hOelFB@PIl{TMhxS6XSbBOsa#VMa|&vo&$wQHnkuY{NUskGLhyz#%3nRx zhw2E=8pi!}^mMs4QpK1)dP%yux3JkvkiTi>B(R;QBU`q5S+>Pq3v40$pfQ;;AIM-O z%8=0T8u^eLfQ0(r?SAtLvZtOWSzd#{3#Mf+aJ>8<;Y73}Vo83i+$?z=7u+~XagIR| zjR5?1++6WxvG}_+)l&VUXX)sI6_Vk|NGJ5&HTG^jo>_9f#RZM5s;<^!7LR1 zEykQ^^?D3r!rQpHFJdkPeIH$3zDUov9CP3U%(I~LBK6<~&E^MzrJoDA=@Pol)+3Kd zynNd)DkjKI{Y~*xwUog)d2n^LRPr~)V~D$oY~9!-!ynf}+r~DQBSCL;vpRmO-?jte zKqoWi6zZhfk|{F#DiM zRW0Wyg(wZusCsI8Q3h1pmG;ULAu^U8`tEwO&A)0!wiXv^1BZquo9aTq1M4~G-ujVg ziuAlGIP;iT?}{*;HRZc?DYGY8%ACFhFEf{iTWvM0A1&*>0CAHcbH+@}P;$fVq+Iu= z@#xE5u+FlE1BbZqw?mvu(#hK>aJNL*rAeIAp*&pcK5EaZxjay$-=gS<4yhEgakR9u z)lcdhJIRn5X?JQE>mwJ+VWs-h&!R}NK!IA@qS2qO@OpU2r9xyOceel+H)vr#>~U9m zd(Pb8XUB4QoNNbKMS9GPHk}<2>;^no%=1Zc!D|c5$KOLnqxQx*v#KD}4UFx((EQ)& zh4Ohx0{=#yvn7J3^lRJ1#E?31(Ndp?4PQ@(k0yefG;LJV-D+ z9vB&FN9xL8AhSD2HDQg>bX(4N^EYDA^=dEfGsugq8nVv#SzI;z$?yeOD2_`gN4>9K zOWrp?M)B$yKJZ{{%P|)aZF?;C;u_7Lj{)8GwhQ;Pu$g*zo%ZVraQQKIHLum_iQiL` z?+htR@4$<ep?G7+dpXpVB5PoE0T7=k|^ZABX}CkN{FBXcmw zw;zEBN=^Yq7YpTL>zVSkz|Gy(u`p{x5=@oBZjkJo++ln>W+%+; zdOygF|CYdQr9IROwdMKm!pX**>f-!6;`no1-x3T&yeRc2B&@hki9b@1&YBlgXeJ5A z{%ma~0d$R&IQ~M6xB%JpRi?EE3oUUoCalx1U!-f-j*KTb@GhY~m2$GQRk&ZJ@WQ6A z=4YjWC?xhgI0=sY1YawHV$!ti9*7~D_3_-NG7@Pe>y$_@^p^7Rg zII1I_LJ*i%?!!QvSrAp;<%%_3_TZAaij+E;L$hhYN98)-)H0;a8u+^n)opTp3?Ij? zjqXTJNCxBD8}|bQT!?F}y`Iyxkza|) z!v)H(%`uOwmq<>8Bpo9}F$5dMWUiO+Nm+|v2F}SS!ok|p*Rdny0sL^2ow^OYz ztvrA*>%r!F6L$XK9e8!ac&gRbYDl#oh_!3u=G^Dng(PdnPzSxv$)Pdjj!X@n&XUh< z9FM8n&N03vtlqhr>i4v0L4__c&yzE+sI0G%ZZ^I-ro%Yv`8^_?(hSD}P;eYlr3ynD)k?}P(*we#5xB>mWM-Xf0k z!iCY+WdDW`gvXNe7q_%zp1Rufu_MJfd{J)pu2tS;CG|b3!--3wAA;5COO}{OE2QNZ zx3EH_`h&?xRqY&|`^j_F_uprXw(8{Qx@K>#99$)MrM4u2`m2n1r`14&eLBH|<$UoN z6$2WD(?t;*56-efqJ%4);Z~F5ckln5SQTJAQ&ygUWR8BkjP@Zl`j3ea`yD*Bar=DU z=kEh2zQY8Nm{WsRD{8+d+tR8s&`KFVbvaC?n zTQX7SVV4x2i)PdPmb}98Z*b0Ed`vZB)qBZlkphI-@P``rL#r@3&^*||c7yVdrq9LMi|n37aL#b%GUjA! zMO!(I0VAH4=q=_wI5ud(nCw5tZ1-cUAj48yS6jy%9e_iAu8!I2iABuRTzsvTz?gf^ zj(~oMkOlJ;G@Hvyl#g5q0v*_ruD)fCma`a-j)u=wlS8$0`r*D+-<9>euJ_`L6GKs2 z7S}&HT?za1tYut(ql{nAGMhRcy0UG4oc{nqX>mc%)pwk(AnmD#-0`qaCW+WGSRO`H zkX&ON^SYeJ<5HJhWhl~zc4vqN@z^D*aa7^bDLKD}p9|=z@Q2AQR-D&`;~#2!&_8%# zxRn_1Dfy?3d1o9vq;qFgzfzh~ES@BP6HS$967Hi4eZ#COq zGVi02%+ZHB^*~mKC-Hvg5IS%Xz%>-=r*IksPLSM_zo(v*me*X$%q|HpX&#ANPgKUN z{O7W7Z2pZvG;1Fg&g;9Ck{o}KfV2JO^SFz5b#mNt1X1d)bwW5BAjPxH%JAN!sKqi` zkF6nluRN{<*;1VHg`E6Hf_;w^)-tdDDOcThe`_=UoBexb8GD!D4QpZP^Up5M_0QU# zrw;0Kq4b;|M4(zLg1_MKEqa0HDTXrV*(p8(EKsq1VX@%8rWf}O5^#yr@5o%r7ZxV<`VvzAFjXydYRgQ1UIzeN{gC zH1n*FHfrW)owGvg>WeCPf)&|3>wn|+4-(ui3$b^efvx}#zSs$L{d*#8*n+bYn~4#K zk9<<7jkGp1nb{S%+U4=F&j8*{b~6tjZ-#znaeo_l_CJUW%9I)P!V~|xJI%3fYE=X) zr$v3sI+bTtGoDNShUNaH@u<8tc0W!({r?0?k9pMJ;NS+kml_bs&HI@Y7!rwamSVdQ zZ9K!_Ll+#hAjYMUNH_t}2vZhNum3Kct$!|kRvumhF?(V^y;1TQxn@QvU7&T02X$q;1k_(Wv6b+BJ0Py}{ zU!T``56XkRz;7J#{e5m9PQ22EtpRbim5ehdpMS>{aYzMKVfBrc)^+3xMKrmF>Nh?Tw zJO=8p8UxWZfbkEu{|$D;y$`pv=@KE>mmWsSGQ2=)-0iIW!X{Tcjk*OCksQq=IwH?k zQW*~p0&?uHzoRmZv(s=2xUr8tV(x*h!x|tCx~W}e{U>Q=M$!@4)psYog~X>yVbbT%^^_g? zJBAZ)!{^FSF;}e9nry*`@6-v^H_3|Z#J5(gL=X;|=+;(%?*)W99tIe9|B$%)SR;vo zc&Vr=CGEjpGkp65nz#Pv$T~BXo0dU%kPB7Mt2scDAMe>HpvS(|gEAh(f_xM!Jhl4P z*2*Zc>SfYw#qycd|HPvV_P=f87SpzE_{8<6^|FsDgVG-(kf0%yJAF>$+yd^1k4{bLL{ubA>@`*SS%OFS(?Q8||Ig4!HKYzXA z0g|fIu;pP+;_|Mw=~l;TX+4a8Pm?%Gp?Vn9BKL*@6%Eur|0hr9qyNr-WPT~qftEqq zn+`|~KYNRX@X2`}X;4#kqDTC(@Sn41?Ju@Qz}xXS53|+bOs?_Q3CJ8qd!R6M+JE)I z|F=FW^)?3G=@R+lqY71PH`%-xbLg{{ZBpZ|7{L3ikOdZ+AW_dnsca89pd&jnkadzC!(*;M!?hzm;h37M@F; zPXn4o*TZ|wmtK=cyukY85ngR=Wi@fJ&f^V7k9+z_PDUswEY71-4?gW+phk zQdbF(mS4SnQPwB%M`mlUgZ<s?ojo zHZCrQp2v3j|JeEpuqd}^?NL!M!K6e$S`ZKrkXCeP5u_WWySpSrr9nbc98$Ww8w4bV zPLb|rsQLE?i09t>f6sZ&!#NByd)D52t#`fe+G|^5KRWk~q2_>sc$)Ys3{Rhf%$4vp zsQiE5{t>4k#&G~nIR+uG64_Qx1%U+$C~-L|d+UF1h)2hWURK{FfwiZXYPw()wbD+1 zoj!^Ayek`v0E{gPT#$M``X;mvPv#@ye@A@AmxC>TIPDdN7ZfPaDLngA-%uax8FCTP zKe?jYk_LJ73@FQ0mNfGjx0xnU7Py2*T}K&twjrbJX;Om>|09(vBK<$BCwQ9)#R_Iv zwxtrx@Kf#>AdXnEZ$WAI5bpvb@rv*z_405PIZkv!f>*SP0)OVwk5{J+98OJUs{Frk z9^NB_Kikz$zYv8LiYYdkq0oVul^Nf}M%>Due%4%e5DKK4A)20?Q=+LMuN+jN42d#@GyK>*(4?r)fOIC}KFEW+WtB-omD{|0mK{1eyCH^G zCBGZ10bod+?{~Nytv9xgL&DL8Pf|>_rs&Z_uUN;>7=i^wC;n6!hQq^s)k+za3db!0(~11+ zqh)2!O;@T746}lw%EFda$1{fh2E$v-2E7LU(a25fWj~YA3cq%=aK94H9Lx7 z!+t0M4ZAHfhuDNpPHeaFAd*^<``m45E;7azM;7x5A(`6d0_m9NVSEh5Ml8u677L)_ z;iu7^-w1NrlaIe`N2LtGBIDi;=KOLaG4}zxGuyqr2dBuTR{hW7Vj83t96zhEfq{Xc z@7iCB+rPOiE1eqlS=Fh~?9MVO?l}&5=oL_WQMWxVqwi4v+n+aot)?PG?vW#ED`|q5 zhEtHEa-Qv0N_|IVn==vKubN{e-r@uNmSOqeAz zXEmV^@C++m`1uKI!F&u)D;*TVmld9H7lsw*XWcV5WKu1b{5CQbQE}ACio2v_$owgx zzT@N@;BmU_#4Ds?x>O#euOB2uQx?0U6^6NJU*{KFmWRhU4w_H9BwX2N;P5s{Thd~> zY7mFJC(ug!V@WIKVygIH>3o*U3r;)kOj4k>DSdlZ!ZXZDV90MV^pTJsbj<)mQYPj= zRI}1WOXQaw0W~y@i1ktaM7P{EQr7H z1px3>r;k+S1wq2?E~N^1L9#`VmPKEP)LS0k2lirM%gtfC6sTMcTcwZgwED(O;F!Pl zY0Yuc`W*?d5*e_P*k3EP!D`;`TC)jH4L1$T^j8P!lsz?~4=oUv>6Xao9j&*PPSW!; za#rHBy`E|6o-+4Jx^>~I1{vT^2NQxull__(Qo_QCc`>vAb?wStV4<5Y}N z=esDV5*wdYdk2YZ4@+fa*-5^S7-T_qh~%~{?!2GxBu_-1{+L-1O4U>Ipx=lgz8LX9P^ z!*c&pGINP2P=AQgZ@@R7_O)p;ejcKsy5iB|(fu(bnb%fjVR_ zm9ZE+uQP*IEd6gSz@DUlNlfoxK8o|#UhXCkj-2frEOu-w%@5kW<~RQ=T2`8uRhCAp zs))ub{4~o8jl3_E8D_|X32toXKuky|s?Kt;eQ!0^pu&PxNdsuzwT@0zHO<;^*q|#^ zXHg!;CT=ZcWpmiNRs*DdZA5jpW`$%_$^3a=F<1dj>a(0B)a!~z41MX2|vAa#d_MU$h zzv|&s#a&p{(}{x4RlMXO_!RQ}^@F0iLrxhbc zw;!IYs5oYGYwO+>aIon3+3omOHQ?1`dO+9g# zl?0}SU-lI?9T}MAGGS$!0=157>>%iEGs;Akxf_xF%VPPiH*dk`WkEXP6-|NK*Fs@X z%5LsMymfAT`WOCn;^;|ix|(uPkfK349Lqko2cXld5RT246FSJ z%L%^De{L-JMAUYUd*D<#GNI`5O4hb>^lr}6($5=4%Fo!C3ayYd!5gJhHI|W7(z4o< zam0g!ovob1AO|pgKdrl4WW*wRX`w)Z#(~pOWXPs((}nIDP8%o{6wzUEw1n4cW^o|U zd3$%P-Y>nnAn^b3LE}-3oE0^T_Yng63%4i5SS=_+{l!)CMt>1Pq9oDG+v_)o4e9E- z7m)3#_j!Qy5wG+0_H!KYzj7V86_?B(cVmL_HBvFOc(OuD6JB)7J)3qQ8wZPBB0AQL zhr&ae25w!0;m-O1@2{KuC1=F1X!e)bsd2#ne(^|))90IFWaQ)C?-_|`jqduxk@}ZS zotVYVft&UzBYklNVM1)8#G;RlW430^3bPIED(8p-W?$j@vqAbtJ=b;ejgan*4zF@T zlO8j#nB3saYLfnaQp-Ix91P52q~wr@5-s37Y-6W&n}ErrAd?v#mijvP{rZ3s=)x=& z0#WPl0I$jDY|40xON2qfEqAu$%GwVW;QWtQlfpkV>+tttnFwGJpJ|C z{BlFI+ByORJWDKqGe&=BziT~*RhKixdLB0uu*gKx(06|x04RJo>p-cb=OJK?y!{_P zDBl==6l@*N(_hW+P^i6m1cTMK8X+c_)CzrnbU5p+-?qGG^T*R?G~E}l!|kn?sR#>DYJ7bt{y(-SqIjw`fXw`oypug5gs z^a3XcAQ@>2L#^>tI;?&ftZkix!+!)hWJ|2k4vve>?E_}cH2CJboz)F591peyIl|-z zKq1M@P=$iM%qJ|$%KGUU(q!iyx*UFdz?E4L)=Zc73SEsQ>Dkss^;UUb z3KTYUeu)NvnvOL+*DiBpEpJBJU~7D(uTnY&{l#G2W6D&7YNj&$@K3GyN}YSZ9QIy! z^)~>LMD+YVxB@JoJ#I{B)swa9Un-)U1TfMLz$LEjy8YLbbnak)6}8pVwcQNW7Y!Sp z@{!*t&X(1M#*FdzeHzR34 z;1!~|wv8ZTH7Y@V$UBT(U-214Qx=GP;FbCY402Fp-S3OboGrDxzCizBBR^fC{qaxb zr#s8(QszfP$eK-+wvSL1OmwWjdr5+3X!U(k%AbSfwWEQ#W^WDB$QS}b?$~EHF{*V9 z4K2?^vC7hLK`W)k2LF16MykT3l6C1|owCF$`y+zH*A$$p+-eVMgv)8KcDp{VhMCet zcdB*cUymHztKq{aRI&uyk)RWl7AIK3U%s={&o8q8DqC6jN5ghd$+8VTxP6`kuzJrK zL+L?*!`S1WHlrjM&sR-E*1r$C180n-F|aO_&>ivCJ2Ip@8fVV^IZj>M<=NIEQBYg8GKheG4D0-b^`*Jh}}bYJSQWI>x0RBQZ18KmtyRfDjnCkW!O z@2t;9rN6n6^=7mMQ#Q-~RNsYr9Q}dzZ~KLYrZwo(D^*M`Z${y*cM4Y zPRYa~>cFh)YumH*PM5s|EF(-z*Y8p&wDWLG2=nbNFnzHV`}9Bu=9|%-Rb5~1EVECj<#4mI&(X{7c&DaCE{r8(_kYU;n+>d(>(tSmS#z6T z(+_P`x~x_(^j@5N_u20X<(oSzE{6(ssC6XqbJJCoH>!`mf=s9S&|!zzd3|Dpvo=yt zHhoDth8vCQkaa1$=2pAmFDFJR`FwT!Xa>CIK%Rq@r1~?EkD!g8w=w@BKSlFlk;{s= zKM!iL<>n`oE`0Q^326Cjx8gk@&O;bv*}NcpYNjucnMh0stwIkvd3p4X_a)pCenD7= z#qd%NvwnUv^)vL6zIsV5asfC?X2R&13I?Otv_wvx$QysFNB@_dBvXw_BuprbiV^wy z_*UHOMoOkjVN9w2CzagjpjP_I!T7z3e z$T$#CP+@%>Yl3`Z6B}lEoAY@@7wCyX26#X~0-Q{75Hxm16GG3FM_=Vi(5OQ%8=f); zss~`h_iao@9+*at`#u14@!8wC58yu?(EJjmdPEs4)|gRNr$U*V)hoZ}z@$pUyKGI? zaPiaullc6nxHAkZcc1nrJ<~&}mV(dpatBOW!R0{vs5IjMZP$oq9q;xPQD#S*{ z+dp?MWe%wRJ3ym=Xg|2uG_erzA`<|=EOE>Pe2||=j+R(khbqRj6O=xZI58d%as9|V z2VsG|!TW`b`u*x(#~^q{rjvL;j_2_QI_{{?ww;}gWAv=V*?=ncw(X25%@VQJb3oSz z%heh9yiR{G6KRrNF`Fg%spz8((q-tGzBxOPQ|RfBdPi)%jb?J#KnWoqSW)yY70BPy z%NiXb&sN~pZpXXK)E6L8!%Le55(sQbbLXAiKd+>o5H3C9HNhjz-EFpHpamx+t3b?b zGqr+)Qa>Q52g0)&bEbj;IL6e;aH=%+I*A!ouz#rZG1B|1MJHC+SC=n-&J)1qkKs@i zTxaGG=ZsA=aQCUo_G-UoC)-{qDry!wFOObT+&@gJ)ovuNd#9|pPlONx>F@(1)gPz+$0tmg-2?tt*Jfn48Wm;0jBOB^3J_jp?X~Z|7 zJC-h=AZPo~KA%uz=Vi+7nDv5`I%NEvUIK@8m)5q8ZTqRNB+7C!GqiE0u-*hxwE*+N zUl=((>cXNAsJ}Hi;?K`!{>Q*IFKrh{92Q0+HdKY^h-1ranUH-o+s>o9mdUio-wo!yK4;Popq58wv!byUPC_`HL4pM3Yor7>no{owfyxax04NL*J z3MB`ym$CRQSQr5%M}NU_XjVg|6@Y_wnAFz6Vb}t(@)iFHq6pA|MCjz*v;sI0-rRye zvc`}A#3p+0w>GnO*r61DXqo(t2diiCfbT7CEPx*<0p+2gXNOrOvEF7^1O3A(bZVn=trNy#|ib=c`1?9Jc4Zo5Aby-$c& zpFenu1p8&`7E zzOd5USO3;A0q2^QW%%XMClywE=Q7pSgKbsX+-#d8c4g${xTpT04%?F)AtfXZVr0Fq z>`mzq+DsX5ZtizzFJk`}k51G|SDt?dm}Yc)k4DyvnTY9}c?eZ56HhUWb`+}~R@&R% z_0TFPTQfD|z)B>pP`SKzor~1Qz?kFvTdU3Owu}2eu}2SXictW(N6}0z?e~B|>c-%M z=&_8k$j@;R-SDS?0|yTus~oFv2sr~G5%*Ew-aeYSl4zu*6J;HnZo_d$V*?ntp8DiQGdM1^y@@dtee7dkxBj(8nN6$M8+TJN19D)!IK8J_?VqhuPj7+r z!+kTdx`#DSp1sX5%0C)>Bo4P}Pa!O17}X*I`l@4Sho?gGGv{Z94OaT#+B|p7FO+SA z=2n^DZm6Wo#X70vCp4Cx_5iimt#ZSj-8rwF{Kwn?Uz<+Na&6%nMBnfn<+3ojRv(dOt(z*G*2`UXk%O}KW0L$4~D{|RXWQpm|{@s@tAwFr*Gm*+Z5fu(( zxY~D%{TXbY=tHwnllG9AlELYo$vLV*%ve2>g&B{%WRHw-e0L{@x@LWk$#TW{PM8*HJnNz7t?c|?TOUWjkXrc9mI~a1EC5{+2021 z-2YBxaj@GTWNsNZIPI-z7J2@3elk{{>`uk|v^JfLj9!`ElG*U66|eBNKwe`hYCjUI z9f%MuV91i0f6&F!3r{wNo)+?p@t>|+k6gnq4=<~-{-~65*x|i`^xZF(6M1I5Ghm;@ zFB1q_m3e{TT^5HwH{BiDUr!{?7>)dl_y8u-d&J*)qu{0r&B=<`{MRp$U2!src)J8& zwrQr8ehT5p7Wr)FQ7WgpY|zDHLqBr!-{R_ATyx&nMjxD8j=+Gqg3l;zwP7845aqmU zuf_U7BZ%^@&`CAMt+pHqdvd1%-5FHrx`siPS;3Cc&7sH6F#&})V6I>;<^nf0Ex%v3 zpV&?h;FPguu{$&-O?-P21{nW!5FQt8BQCsALST!MoVBU?TDB=KJINZ0!=2`zUnnI^Ood}=HeygHeNv3Z$#XD7GEb@i%2^HWFz$3`r z3Qq~#)k0|Fh~m1F$Q?X-LUFO$tKg%K+@1zyi!gWvV>9*BTd_W`4d>lsaQ`!cKnMZrM(jro_l_NR}(Kp&$ zNP8c{Pd7fufv&W4;F{WJa0AkG^#7P(a3 zv0nU!7HV>3POQ3YJig~0ZAy!O-E*jrveseCn76IGML#)qx_zU~!hfM0upXLU?tvvR z=rStKt5lwpWQ$!Rb^>Suj6;1TYjPwi=NWoAh!hSSS^t`rqASpcz^k%ipSV6`DxAOZ zPeRA<$0rtbb^hl~mm+wLi7eU7_tpg_Lf2m(1TRU~4Un zlg{2ZJRF|%Rt?!21t-m{f+QZX7$kUZ55>`QkE{n*P^tf&cxEv1Y6HnGoE<|$!3Rdi z`x!X-YT)Dr#h4;WDv^5&9lfe96(zCWrJ*8WSIxpsCtCGin;ljGUfzKf^VuX~ft+(z zkI;HyWG>GPKgbK-yMJW89J=yiD^jxPq9t1I(!$kNQlpKGO5L$HPEn;3h?i)7f!`J|p;4k6{>Pw-%K^-}rB>$OOc!(*u(>K6Jg9M)fw1>#~ zO%?W=p0xGvack@|cV4B(+0n7oW<5M5ax;ctyvPO9y?`0ihF|7_)PxI=i7E85mU*vU=ej0^I>o+ z0KEXT$P|PI%bmKjcSaAaAAc{s*ap0H>uOtMLZfe7bea7Aj@|yKH!Ye*{Kk?dIFKBw z`Nh&#K()~39_S3xBeFvGN$_+NyatwP&*@Y<4$>^>gdH51Yo!oehzj4+1T5^o3#>}$ z%s%ma{|R>?RmG@aE=}D_0gWs382Zx&E@e`)JMvOOZfUUZniXz=28KzM+ z7<+s8Jg&rym(6G6mjqk46Mu!T$M+76JqnmT&D>g{ptg+zWaLPPOv^0}2YkFH_;an&|eY0wXB>JE6R11FjNs zxxZ}1y`AewU-sg4i<4vVP@F?$`Ssi&%OSf8yY2U2txJCK{L?blzO(Ifs9zy9@Qh$F zZ>yzk%i>0dN#Batb!&j7m|idm=Z#EpE_G_}P5cMW)>o9s<2gbX;V62e@40)2uE zlghGsx7DCX(v0_6$eoY#E~73kFV>jMOwg(beV;kC+{Y2-;@fn8(I7+T5?G2yjUurT!2)~GkJ8w4Yjma z&dypr4O#6d%^g#gGJ{8d`>1YYiWXV!Cy+#3F`84%aehR!XGC-t#+XBnXaZYTI&)ab z#KF{T5_zcfCn5f2P7uj+&_uPW3ba|j1`ejHnbt^X(h*XGX(6hk%LDEJNC#n6EeeD% z=m>C52p$N&t_aiTrp*z;;v$14y1${~-xUa^!^^o_%a|^EW**mv64ztlHaUj+y+`E( z+vA(HeYDvlRLOZc<^3HS+mHG(LTw1Sx!&0n=lxoHEmVSi9(0`2{2~Vh42!k{Ya_}J z3SFdjr--4eE=NK`o|V8YdS+>5Vl1>`_4Rq!Y7BUNQ0E&K7Z;1pfSM)60-|Gw2_ye^ zO5XHm=aA}edUd=T07ctezAObfjQO}-!j-mO6&||Hjk@wJPsfy;Ze+i9dR~_G-q?|U z&4Kl>32+9V$nYtoa;;@_))JEJ=d41TP62F+`T%tt9pUx*XUdv?=M`)NiZ7ZhbS7h# zgBF|qzlXO{1cgsV^9?kHIdLtpc=*5lyIS~yhuG$F^nrQ5PpL<|9x#*LdZ5Qf|S?+J)E~N{P(qzyXfV;&(Hz@ET z;rq?hkAgaXDGh5_>@E8$-3jp_Kb=}UkAEoOC$X2q2zG^|-lH<%L8mV(6=EZ!CMNu8 zi(3=iqGsjtyjC#TC{Fydm(15i0LxQ43R6Z_J}UQNFI|TFgWbX-aONF zuyihEz0LoGCUEwzN!13Z-vg621MqM|AP?MVKTh6E{hk~_TCz%5u^UoZdIJ6gDbHGS zbj2g}mD#lo9Ur<0=llR$dYIx`GuX#PB7y+*Mr9ep*u!D zf(`No`k}}Jkp(h<2d(hhoPERc+CZ@8?uFD)ffgS)LU8q9pCADyg2eWb0d&EpXMvyk z-?pyj{s9+a00d0eNV=wG*O0W0+jnuN3xfy1NX?6wMs{*{dU4ki8i@-ZPxjoLMeI(d77MmH}4Fe;X-n4{XTOkAS6=0s? z12ylI*i)$LmAXqq0SA}=NlL(v)0zGXHjibf?+2Y3l(rXHw~fi4?`a@g0Iu`}XiV1E z*&*IO=(0K5Rk*XM3tGp5N09Dpbdrhxne$|j2^EQ`eH`7I;6(K+Oer`!8lyUm$zmet z8BMWk+9G8s8(v!v?kcJ~?{CFsE_d|r5PBOYP8lcKz{a_osYQb%zAw^`=~bfUHfyDK zHs?q@g-k60ieUteTKML{4>*@5s6|74Z`J2?;w%C1Wg2g~->dm0#D^N%Ij@by7M^H^}@?vJrA4^y@NfIo$vs_}nFg2ySeqh7h@ne*Wx_3|wZWU_2V%zziT znrU1uJtv@l`nLNv373eO)?`)%(?W$H==;LQbOreuWyw%Zf)yHL9CBF3D`Fo^a{R`c zu3CsUz#As+d2h3AME@SPG6E?Ao`>e0N6otZ5Hyamu$@zkK6Qt;#Lik{*sd%^9s;9b zMQ~0PA4Ip^;HDbgPeQ#c$A2YJ9$r#uwQK3jo+%9$-Qi5?KC|_~dDyR~&D2lkLn0T9 zu<4D{LccRmpd@2Yk*OUB7az0`af5ah0~5z_ff`VeB-a773h?=`JUc@*<5*r^csyv> zr?XZte0zCkxzS~EF@#Dnhx5|(-t)c=c5s+%NgoAhhVOe%q!skIqZw}OF>MT`(&h%& zQhz*W$xLd)oP7b7Bna0WSzeFc=8SDO>C@IorWjxf#>j;(ng{^arvXj1_-sAMasa$C z{X27^yoFa|0T3k(^l9Q~*4?$%2f-3Ei8!>pkQD50=y8qv*EEJ{ZoG}yEDR?dez<0? z_s~TrcVo2AZ@V`YwN^aXxtdBKs5gaNm{;S*Vlz<@8imd%eh(hi>`4o`*E{$?8Ny-w zPntujPuIOiP0mepa;2^d?-)(Ha_r|kP)+(VT(izBx-=KuhrKH;?{0lEhPtyRX0Ri( z&F!!UaBOA4udfw|)KMeNW%YFhEd%JaOI^Z)wP_sj(iV5A_OLm`5alnlf641&L z;#;YOj-Prej5bjt!xf9Gn7KFhJ z+7`RM0aQy0)YrWqOkHzM=jz|7JKJIn+dkhcOHvBtWY;&BmaNF^r;ap-+r7$2i&rotfnV}XU7l_z)RCG<8NYUEP z4pv&d+(E!Mc1Gk+=_`(YbuO|udE}>mOa0~PzGM7NN9g(ONF%*A5bQYhJGILFQ6$Im8#^#wmziuWQ?)ew`;&aJi(MM8UY~6ErJ66^reH^}IxtMwo=TK9 zQf$2?VZqJ-*GW``3Em0Q?ozWswQCQ#Zw%#s#nTt^xe2VHzIV~}rJ3HPkDhb5u%HIy zSC%ZpJAQlK`8NbUTl6J8e5`fntMfS$38e_33(eHzrRcuV-nHl#R{R!?0pJ(VP+cef zE%thabeUlaK1WK6x532&U82PW>pzZk7BYFURZX~*q86`~-tZn?U|#&zNs9$#jCC}dg}-f&KhT1oPpWE;y3 zSncm0!hpoR0wB=#G{uVOSb3m#&Ml57z89+A6vYQ!50Vfh@IM-gd%AyMeHhcbD5OSk z5+6(c`PJzgMk4e1|l%}jL9OR8fr6v?7WtXVwz<`jYFwbxQNLif}j z!=fK1L>bq5-A$cHRqfL-)dfY%U;%vezwiT*no_69!@K-DPBb*Z<>cWMlqxVm5?o!^ zk6&%ik$hD`Far-)KHyX^Iw1&nyJkR#zB+lytPf};+1xql*;4&gfW^kg^%L&#iooMI z3+%3GUmuMqrlak4?ca@0-^Rq&FXg96!S)rfKygMoBoW7`*p~nlbn!W(l}qYYiNgIq z_xGi_!L@WG&I10KqXS%rYH{{*k)IF|c`fk2YcfI$vHCyZP*pKGB8$bK6EqhGa5V2|_RTPsar>*f2fS#U2hz!*L4Wl0^IwMd6$i$O0Is_Ha= z3Q6n%!svn!#?=Yka5}o`$xAo#zh8Z7kYE7FLgH9pJLwoh2U~M( z=rv{~=-bP(8woA1(H&p`?e*DiTJ3W?eWpb}n{4D&7E%9ezGy83<6j3HY6BF6Tl`E{ z+Cb1{-p>K4`BR${HeT=_c!bvj!wpm5B#84C6mGi@FCK=-X0nA|apHD3eC5%GvJMmJ z8)Op!;cnB?Airl$zIb4;ccO&^3ZbD7*!Em_h{FxfkxVG135fmT65`=lN=ity2rhUA;T-u>c z8X0v%3?vb{%vKkweifIUkM{$ws~Nw-$rbAR5O`^&|9WXljrmKiaTaz&51Of&pcw~{ zONVQ?O`GDo=KP7CWdHBVCoG88EA^mzX1gIUOc8|$=x9`a@erbXy=b{@V&ohu2;onu zmgrUG7z+(#QC_!F3;-agRY4d|e&4BitGQb`r2w;HJ z7(}?Ji21Fbl-+c&csCJNzGTr{SirrEL4Ga3kB0ibDEOQE1WU*;nM1$4LO;MyfxiXB zuvWm5*tF}njBaUDT+)oVcx>?+#F^*62asQpNYjVm#;{5H_p4$fV}mM-YtKwZS!<}L z+()L?Zj4~Mqm~9mu`^lhR*(z62`?%=(-@STdKPz@EnDNS!${2niEaUM2jYkdFmc&r zL^{KmZr%EdArLJ@2z&AS;njeLltwTt|AoZ>Io8h}T8J#9s^#ub**A6@r$=3q?2#ug z<0KD~AU|~n<=b9Yk+m_bv^RNzS&xVO3-io3!CQ}4^{=FciA-*v3dd$6v-T&74ydf8 zdrtej2ex-)o;?4R7Q$ggd@VF4G%E>CV!s|zvaie|wA9?}oPNS{=n=PN0)P72c^E6Lj^J0x<}fwFOsZ4mtZ zb0K(C=GyE6=Kc~k#EnsGwFW$;lsg_TiPRa%p!qTt`57#YCKslW!*SIck#TpKl20ht z3G*qWezw;drpXaj>X+#C{9Nk|aDEyCh*SwjDo(w=Y+|U z0}tmOUF_BLfVA+koe>S}TK++dQCk)pi}LR3Ij_{6#66d#VSpi)>L0L{5a-(EmJOl5 z3IwIxg-JF}?cWcQD4Gx1zVk*2B|fkuMi$^h9QN%XoL7A4Li{-n>aR+-Hut{To zM%#qG?nNuocJxbeS*FX-0;ZA#G&Uv;@Tsxb=5}%e2qIf}6B)GvsP0dgBiA2ilsQ`Q z;_5%Gz2$Q2B|ytiBmlJ2IX)H-1StSHfR+gCw{vcYybqYWQ~1zM4v1QelXoS<_e_vi zARZ3|Kf3cFJRz{MA#KKcGyO+ zk2c@gG|aUd7AyG7_4o>)l{sft-dO}%k z2w`MB0G4M#su93f(^*AF7^uC48+|00dEy@6-XKL3BE!Ef%Jfi-z<=5}Bi1>qXnh@! zrknLXOsB-yN7sMEn9}lOtFpfn5KaM|T;`NJw$%@qJq?hN+O3qmD+(exwtc+67MY~s|Kvoz1p5g3+f$4csHPMZ#qFQGkdN|= zObU3KE|VIm4v1o)!%CvWON_e;Tx{{QDVzxHS4s>c4>fr9f|q-KILr`XPi?~wH%XMx zCQG`ro|?X4UvV1w_JdRasr@@yJ092*diYq*V2SH(zyLQW*U0;g9(8T? z1MzV6O7pj_8IhZ@YqM*Wy&Xh2gG;`N%O*w)+nYX++RaaM5r~GtK21flrx{m#uohX@ z4=Cfh87&L$e+kiiNw7$-nz9^ipZ12k=k#DPQ#_C+85Z9I|a_h9x|erET08hKYM%uR!f0@ z{Uy`G$?vb-1|aP}2z$+ocp%=(u|ACcZ|V&H3@sVTIaSC9E(l>wf@n$`(`mmR0edx=9j*iI$A9EPsBbcL|-ZScC z>a4i){P=TS)BYu+ksz00s|A^8O$NEAdEs=4(Tmkqb>^SKJi7Of2A6)dhArM$LP{NV zUv0bt`Zq@fBUPhDyB!8Mr~E%y{AkyfQI+)`xiRV}gPj}7vS5B?$^6A7SPi)Pkq=nv zp_toO$WrUTQc!M5a@PZK4p_<)j84UDxg_(Ypa&UDkf&J}7Id>Y|9Ic`yxSN8q@mmo ze7jR;ghTN!>_+=mFO}%MSZ#-B=JY@1Kr$)0U%Xi_njE6pEr7aOx&}D4>r+wyL@^Mo z&ou_~KSLH%t{A0}8}B%jgmaxEd8afyBm~z~@(^OI6^(%fJfUBPIWgLu=i4r-D9kl{ zId6HySq{nX0LO5gzF>)*EJ!bj%go}i=Uq3p>H-fQb}-ekDRG{hjqRHlP)q3rD(r@^ z@`EY?x!OI|1bn5Zf)HFxWpB~#X083Z(p~DSsDn4JtpZc_(ROmP`kI=hW9MLk_nJQ% zdefiIUkjK&ElB@kmn?EJV1j6vCYW#m^+Tq54}|1cX^BB@9MLc#^@ zKLD73RJ1mON?N-@=~{1ZDP9q902pu8!)`;4XoQcgajqM9O%nDMv7^n&iLz{E$1h}P0#}_0 z!fOGy`+ZH9UiBF}O78dP`!s*&yZpbw=lcM|bSdHP!ivCz%qJMIBHzWVQ;1a`y&cGT^mH3EP#Aqmo#pvULl z*(BzqA@!}EnF9f#N4P6#6D27-35i7J6wh%E%!>Mu>}-vf+onWn2aHFS1n{FX*s3<3 z@7&hj31)=hK#)1;Cc;ooh!Fu905tnon}vQLn}8s)pzm3*`%H!bGP!s^%^u$7j~>ag z>o%`#R8;Nv%=7PvJjHl_>K^LOauV2)_PbRfNaTLH99FBHY=!as7yChes+qCh?T7>h zZ6KVp0Cm^1$UyM!TMC$FOzWW#7zu5wkf~atFsz9y%)#~Q*GHh=e9`Y%&4G_!k}KsF zOyf_3n_J2)7*og85qa}R3_w8_94jXv}h=1CEvm9PM6`ZlLvA3W)S*KVCp4$t#_FJie+ zSF?E)CNw!e%+?BzuW8@tc49wzazZ<@*Mnbu`rS3m*8DM?h`YjG$71ErJCJ5&F3)Jt zc&YqfO2!o%craiEA>mf+tIF4gc)6|>`c1Exl;9^mtsxn$7+7&MUE3I#ee~%$C<_62 z@_H~iD4)SSyiHEVWDp-bP9hovV|=Kzd9GbO2*b5=qQu1wL^`$qMmq9v@^fl0i)Ld< z@NXgzjk1|iR>YzN;C-M6hwR@H%0%h|fFwL++-B7sZnPoK{qvEZv$OeY0S}iuvZ49# z*)bqLau6%+X=v+G?NO_inf?U3EiO8f_AN@B0nZH8B}E>h`3Vprx0)`Ns0Q7{zbk+1 zzWV>BR`#_9KGvn4PUMJcb$wIaRoLY}=SLWT)uND2jB>-joETpLz6N@#ew{%C##<$0 zv8=2-H}xszn5@vL3G^Qh&HJxqf8@O(zH)=R79tyP44TR|M*o1RtmW(kln4F&To+sR zvfI{E-wQrMYLJvrjukKWASlHC1d==friYOaMcf7;iv1FRpceplPD1E`I0DXo;&==G zrhVcF*1V>xW)E@mM?A|}p8g+gb&{`fFnsN`ik0N)Wv%^wKO(&e_6zjZz+M=I8}CSKq4g1-0wLEO8~3!Zt!Cmd6c)6 z3s{X*E#&NpKAXmzoqp-a}LS$XUH^>{djntOZ^~ zzKc!K!kgpDm4n-%JpKy{J)Oi}GmdQ_S9>=c8pV+)4->o?ws-^>Zoxkgt*U*Fqh*yHi~pxj_6Gm3T*$W={S8P!?6X zbIy%}Akrp>#JBupqwU7MHh`XJM8w4wq9%K*FY*I(dRgm4HFO%MbJK&(d`}u+?#TQu zAS__3R!Y1E7fu`-I{@d575EkCTfHJSg6^oTLGj;+Iq12+F7NN`+!aSw!#iDQz|7Ax zHx`k~p;~S?s$G8rDsN!_KTc$HWjdi{i z{wZgptoHmH#*-+J)5d}Y!*IR@R@+5Tlj8Y%aT$>MYgWXDJ+!ioncVDaBZMP)S_CIp zI*9+Tp6MFct)CBKfv@?L$xH`vwygXJ{ydG1zER{WaX|as61FHp08YsOyO)zKVJLID zk(N_HJ&IG3bILQH8T-x;FLk3rs7Q)(#i`J?Iv~y^nuEh+1F#(C;Vb+F;R@$StduJD zAL0`Qhd}cp;)ba1xdKa>T))m}2@wfova4WXI2v*!4*m<`b|X(1h*E~2&L=^gSv|Bw zCD6~;) zkL6S|dza6WmrIme>X^XK{NXmMiAu`L9#V$;fF@__>)>KKG~F7NYSM{)EbEPX4S&8b zB^Oj~S`Ir_>`L3^v0aFSopaqeVBF*6pdoA(b-+{`dHffJltDEf`p^vKg;) zj5(sNuqrcWLPxcMS&UYA_K(WhP5irH)m1WqJI#hMCNjkDERw`DAz$2^-t;{VhbZOWP6jP++J8=RM|D3=pki_m+ zZ`YTzDGteT*i?=7cKDJ;8zjjr_1~k%a#I7PBFyn`qkq|Mj?oujRNj{GDtprdm8*Rf z0J`|APAil3Q5*1m2T~oCIjnI-TL9qm<{?) z^DKAsY&;7ULgKc=Em2aC?ZV$bC3D>XyN&VTaUA1l&XF+uFPdaZOG;T8Q8*~ILj8Jl z9`-?;Y2IJcGDx$h5?;>KI|>~aI@EV|)S&x=UYE@{JRFPmjI{Y-u%NR;bkO)Q@p0>E za{RBzi}CxS`ao=(G}sR3K9`&`SDMqbj$Usl zr!f!q5@+c1#J4cP=*dF%#S~0Zbb!xmycbLaPsyS%n4$W1DGM4*yer)_u=wayJ5@Tu zXi$nnS=!Odd7oyu;wios1;+ECM`aH@U;*?&5~}2g+vJENmIrN9oCltYw;nr7hZeMJ zah$B<`(?Cw|Jm$N{#Ou5h(7ar_pr**8WG}Jfozj zJ&cdand)?Ho6R0P0V`Ylm4dMLb@sXIMUvPs@=(pq_nMY&nmxGZmP@7k(@1q3BDQRT-a@4qj$TB4YnxF;x?lz|s`qM;IQBTK^C5mKEu(c=2Ya*`H?iY9JOTwlryLt3q;IDAvm{?@=i5LIGQQmIP9|az=UM_C>(Jr>$&>m7;eUBA)5Y5Q&4Sy=@Ww;7+--9d_@R8GDMS< zu@4<3bRyE4m?|11jYzvALC~@%DVMBvYpvIR(n2Qh{e<39Njp%;`|N1qgA))C8r>scW5v zMg|URZciK*uA(GO(5p8hW{h6b|1|M;+^LSCEQv{c10$gy8Ln8}U#VO*HjQfrSmGWk_Uez@j@)EvkFzp?X)xu9hdcsB~w?H?>{9>Dt*I3D9{$YH#yZc z+`s$mI+fdRjjh$p^mWbISE{-N+cVq0Uzr>^gBdTL%BYlDBG_tdO)wy0qr&|GRfIXK zauFI{zU1m-xBf?HhmF3+Jxeu60teIw!NpjE)ij{h+LDHU4muT6_3^gfo)!QIfR8sm z=0YJH{YqYl(zDZPH9AISBuXMB>Z5W4YJS|FSYJ>zzA&~RhDs%GVTtX6qDpGqdBgX+`V-8L&Iw&O;Dt(Kr z!U{0sHEpzg>!5_J!5?k&*kx+4jT4!Fcq4k-Z9LXyOQoMMy%Yp24y9sK+3jitEmGc5 z1Hu|@AgC*FR9fe+CHFMS}zk8R@!Z})XAktI^+$p>pR;XBo8F>s?fLjD$CnujTUph zfQsUJ^=a73+&ZN998(IZe!9rdue@xXSxmg4Xl6FKnu#@r%mDhFetE_{h6lSD*C)W+ z$A?6<_m;Ob=CFn=7UceRbWRU7EUp9P#GpNuHqdoExk-7?O0^A&vqKO z!Sa{N3cGfdwF#kS!dspom0HH!cOZlb=2V-A?N*}qD@XnxTh|>=_5c0fWF_kop<85= zB$1m<**jZSa?P^Jo*5BBkrAQD%t*@KWQ8Oln=-Ta{=MGU`g|Xc-|HXlI`^FC+2{4T z?>A{wh!XgfnlWZlSfdIig*LAO;?6NugYh-wy$%eTQ6Ais5{yXjz=6jr#&>VfK5eUS zx7q*9bN=Bqnoc#;bm{i6ozwi_g&j%oGkO^*-|&zh49zA#JL6(e{?qq%4eAUlsdWx- z3Hoy0YZM#+J@9e$X$$-Twiu4=GS_nOyFpjBTur?X)|G?0&)wy1$#B%x_m}g&4}6z! zxF3F{I%3@bC~(`$Q#mzS^9ITO*0RPGN?}%eaOCJ0*j=r$txz(%{LQ9PspUMm00k{% zQVWVDJW$777G(kw7I`zp7_sm|Nj9D`Q0zU4QxM)rVI6zabAp3?J}S{}4_mU23g#a_ zY@C8_vC_O@pm}i(1g@ij8&lA6s@%!$vRvgI6e;OsF>3}Vp1RM=>(6Bh%iDdVb-G)m zS6uP&@nRl)wq4xmxzeE9YIn=*rHAiD)a*W%>~5iFa-F|ulbV1-3>96pgPP0hgB}gK ztCSZ|gHsM1GY*+J(7S7O=MkR!yX(TwqeGM;LQsiJF*3l~Y=ih1jc`Dq5fdCSR{^YR zV4|zM;kVnmvR_sNUagkYc#6R81`ZsHgMo3w!3p=kK=k2+;>uS}^+WV+`+LAI$$jsF z!(0Z;Q;r4O`@N-J7YA~ty=&cea5wM*!%^Z?ZFfRi&V+nZRTL_Z#oN z&{eMYR&LBi?EksDzuQz;`D;BOwkZ{rxxF>)k=B{f;dLF#3**VWMI%lwa{ge9t>b)j z2{&)iJd4Xk+C-ker0MoISogPmhjtdgoi7vjNB3UN0@m0K-Dl3&c#LHk?#soahea1g zq(!$owug$>CkHT`i&n1x&Gp!O)Vjwny0?%#w7bSyxm|7Jc~@j(HCK-PZ?x!seW%w- zy`W9>o#wlS8^$in*)}^JiF=E5<(r%B^*j7JT@7@5D^8+Yv-|D~afbWTzDp~WiB5x_ zs&XzfXAE~f@$WCSUaj1GMY;F+Ux5X4Q4b-Ww=-?Ii1rN;G405XPmzddw(9Cg1hgOk zz?o42;NXs?^CUh`A2ajXj;-8VXWefq9dZMg0}I~SlB zgKypV^0|xPv^{MzK}h-)6)W8u7zx&SC@^{d z;gOLb!h=Di%lQ+B;J${&f%KG-SQLF{r3Vb?%H|&ntnSm{LKoGfs_NViW7!Xv`zuFx zo~Rh!rV(Qvot%Ly(-;?)X~FJ3+anKumadf&dY(;OrUZm%U2 zHJVEU749@2%&K`xTvn&MCKC_L3-V5~wzj^pyQ!79Q_-P}tj}SN zdX6LB^_zSI5F*6GBM+x2k$^i2kO`_Jhgz1c$e^OXHn>%z3_G+)5ecyCw{aP(O3ah^ zfLXi#jmL+KR-yU%`MdW=U`7X&v2DM%nu)mW(%sMkTaUQK=bZ)K1o2?AyaTCZAQHh% z3}8iG3iY=57o4n;xP;}c3O|{6Sn`z#i5=AJP}TJt4{^^0SBt5~Y5D|b8$r}pYMN@c z*9l)Cxba~cZ$rFq!oEyzhx2X32r0RpN(wzr1y61~I2f&@jAH?|F)P9B8g*kEuplP# z5rum$(|6wTVCTb@W7ka3s02(>Bao54l*8`q+L#FR9T;N%ku^8A9b2EOqvCfd25aoQcnRd9+^Sv$T2iGdP=At zT&AYBn$gVDp@k-|)|{@%UnB$o*<(lmfFuDx&jCQuzw9FI0G=p-Sn(0c3bn@oJ-820 zt^p|5og3L0u4wTEpOpZgon>RBKLb?8%N**>SyHb$C=0Id&X2}189DTJZVJ+)UlrxG z{>mOUzD7-bZ${4cBP9{!A&Ek1lk_9irNjsUHs*3PSnNRUNqlxVDc^5~=7#}g-(_c{ z$2~Hkrjxkb3NWhH0R{UoLp-gJr3Ry8~L>?t%3P8zUBkvarfe>&>*eQ-{y=p_%f z&ym(+!tlX)Ow8)3HRdLZ0$LB`tZ}KnGhdU$gI#k6fXm-ZKp+pK6Mn`>|KXz@Z*MpR z*~WqwmktAA%*zuZO@K)F0g-#v(^|N|b;E(i1=OU(;7~RR;tUqH>J@N{l31Z@EhEZhEs+H>;8Md zF1);bkG(+*m&*5v>Ia-tVqypq+$cmLHi!}+>Oi9)_yH*(0!buRGE-18TKWuRbOBIi zRy`C8dEyGwJs)9LKv_3v<~^Z-%sFbFRXth90;K!^DF8K$G!!U>#JZIdoLp~41R1#k zQVjZsr2dT^Bb51(n&`19KuF@5Efol@L;#^SfDo*8pmaz~VU%E!(*j9z1M)6rXH5E( za;Wb--(!8J1Ecx=9M(5;jd&HR8+wKK{v0p@tPeImC{O{3HDD6PsD=;0$?9=L`N1i8 z=*A*+34;&>z0x7V6UYO*U3Rxo*xI85Sip_&VLX5fUjR7Li`d~j=9Wg%h(g}a03W_L z!He)3cD+b{V1ZDQ2#CUJaJ&j7nAoow+yh3d2HqwkPJ^Wg+=>2-9S$#_4l?!@bX#^6m?#pdtc{LN5-v+onV`EH00NMXAgnCP*hA^Hw4RK#amp20$hm-im8oy&h z3Q{y!_}My#zD;@(@5X^|m%{OmfC0G_Hyi|FfFqpccq0*cae#kQ0P+A;7-Q!dh?@e9 z^Y4rEAwc~n79*@pgy#rbOsynpP>ZEx2rzO1W`qWOAPF$C3H%Y?PCeurRHX;#`X1s^ zbYlDh!1x~+1LJ=hZ2QHgBF>|kpa<5q+8wDX763uaD-`w(g!Fo>8RTuj#%Kgs!9Z)9 zcx?NV4aVHI%m7+$O+Pgc^q>`>0Y_+v1!VZk!03#uN5K;)*KbCrAcb2rSXv-tVAg-& z$N_M)=L1phOQL@8@A`|NafINA0&2!8Q13!{*mmFvq`pxN7Brp|;%x@#!ppniB(T_k zz;XuINfihz%dgPZ%RtB2fL~6K*v`Rm^8(;Q3@O}_ehT^q90Gn0Lxc4s zp={euv0i(wI>j!GVzl}=Q>i=09%Hu-`;Ph^Z zL}2R!71h zYmO46GKD_n21(V0{opm24yxuj+Tx)3sZH%on0wsMK>w&lY!k9v@WDHu!BnJasuf@= zzzIQ2`O2esKm~pcL#6SUN*($d^|%p;1zW+koVi8OT0kJUZ1-l2M8N(6A(=vrNJiPP z?^8mcn#Q~alkgrpf!AD`3Wk?@w($U7H%U~)gp`4PGr=7-fS?8&ql_Y;^phc!p3m;= z^G!lXMvg|@^3YzAs7`eKrrt=V86=REb0fS4b{BF%Ga?J48x)CPdJmACCYKJ6LdsJ^P{GsJuA#8<{F&?v(on@|6c!}ws7;S(r#)((#ZRv{OLTr`+S##NX#NllSrb_+}tcDYOOiXQ*AfHTHhq@g6 zqBs&^0*W)t(p@;t?y<;z;xE)h*%$Oq-vCXd;BC~Ci9LO@W&$4=7m(lKG!Ly@3Z+Nc zMTXK4L5(sr;^bVS zH@LrCyaDe4;Teks{{jooaC%|Q99bDPYuL@9pw}|BLUn^gfNHF6WH+* zkI`TdrawX${{-P{!PVUH2P9ks3uoV{O2L&WM6E{KuD(@XzOof0!cDE+3?n#ER=!W4m^&aQ@wKzdp`oLhm(&uDru${{*Zj_cB~ za<1o56TN|xaT^2j)1xLX5bxi>n0iMdK${9d#^lo9V^O+KnusxI0Igw|NV_~ihI~<-U?_AL7(5@s(Nvl6CE||v$E|;osA`!?G?P=Zpqq6`&$Z`5mFeRwF|5XSh9Ef5E!l6!t z`v$_UH7r~uf!S1lO595xA26)IR8Ie3Wq~MX#BW!JJ1z{-pF`u69+6NvA+hrhua;%) z2}~kwGRW%jCy+?sfC%EQk0MO#LmlD)Luk>{YEoF?)o>*QFM9f8h365LRxfaFSHby= z@iEu;>{~R|aG_GQ5{bZ6E+52@)t~ARcVofn2Vl9F=U^Ise~$}XDo`YI!Sx$JMo6na z;cgg@&l#8oLnJ~E)NjzQOQFNqc6B0B;utiJ3zo(cQS5;zr+_F%pje;ikGmVoA z@Bv?mA;As?u zA=+@WIP6e|kVi;AHUbp~&mAdFxTl5}(+Rri#c=mPp;7NK3>Uaxf^C)BuG|DQ117(N z_TLy6i05tgj8T(5bn;t2Ml9_ohhoXJ9_Ph{{eO7ZFT<+V^rNt^r@Wby8WQsgX2P{O z5Oh%x1S;fja>#2zSmbcnz6P2i3^UwV$L3N+mv{b~0*F#owusP%Vq^nJb6_m2i#1iL zZ*ak#7l$%t84V-=heXAs4qpRAye*FF4d`NKDJ;=-iGgE@xO0kV8nBuJPs5~0?nr_9 z4GXf3M;T*}2C9TaVn|_LgGrrCTc89}{+JXvX5t`}>We9)DVqaRfYm^h?2IqrdhRE4 zsEiyE5!H(k=mk9Sg4ch>B*WyT)l9}9N-+f5Ud$;XlYZD7cpE11oQ;tjuEh!%LqViM zBwnI`Q~Zm-BN8#kd1#oX3sZ|(W>sMNyDBaONo_HqG-Gq%223fNopDqRP)VFD_!KO=3g06$hbZ?b91Q-L2 z-zUR`TiFm$)MHlEi3#_#yK;MIfzud)60#!zW$emw z2QE@?!-)p7PRveq76xYc^XI#GTp&se#}EVz2Hmy6Ne;oZ^x=U#@8FhRj0?CW@ThCA zv7ugeMp{^b@cK`)`STusOb{%N2|}r?cwS1oIS@_&Fpgjt3PFEBY>+{Io> z2PX-5Rh>G{_1>>v&%w_9$*SZ)OZO0MC6wT@%3?Hj@YKc#_yj05!A1d@G#EQ4QEOs( zv$HXV9${N{Qo++jNuNoDl!rg2Lolw9NKdm zS$!WIngiWYAROBZ-zl4--R~){JCjlh|5wP|J zWj*{RNt3MrXjNT77l4`qf}H9)n(Giq6Ho`Iz74^|TbLN?WElQkV}Etn_?ENZUR+f@ z4>zPvIiejW|4>1J<_cV-RpB<9BVfznqL2`nH>fK^eT$7FfGkdbGcE1*F2-x(6Xu&m?B_EK)fddNotEm3`n1e zV2~D0L7Bm}uUqwRP^E+boIvMFkLJaK1#5Vgd^(VE^4o_q&^KusMcDh`_5I1Q+td3! znW--1JZ)$*OuKMp`6BdP!tc?8ddVB0t;NKk?}0pWaBvk99A!g*LXyT63yi&zF>wl} zwR>FeK*lr`7u_2Y7P3bKtDHhyz()`yAB$`7*4dNIVXIk53jwt$__?JYDo6?`t_>~) zVPxFQMti6_F`N_C1&;p16Xjmdw2j9d#wT)yNrmQ8u6GafMRvdiDLkIM1zRT=PZEQI z|H6H4h?^hHdjvQ==P}@7=J&dN=l={)kd&TsZ_vYs3P9EWI?l?L82uBj1-&^VRpDs@ zM2?W24P=aY>Ou|0B=A^DAA%Jgcmh_y#!U6Ol_6wk<)YgYI}&J;z9!@I=x^EwX(2Z- zk};zT;3CLd=UK919pb}RBO-Wo^6)4w#e|&Div2lLt!ET;3MzSKYtrh^hmxUb1=D`0 zYBjRs0}L0ao`CNSqbPWwJQ6hTQAVu7J%Oq20k|b8I8h=HY^$AJl#Tb9J^3H}QDj;O zyx#+<_@kPYkm3$fXvj#snN9G>NnRaS3s6MfrFee}Vu+f#MwV~=XA&Pe(jS(ZEJtzCKfZpXM6`5AswV2@`{X_qZEwUBO3&KbV%m%0-C*gV#)R4({M+sQ&|G7?BA69@XnRKw2e z^c}8RPd=7{23Lze?oGr_+E3{9Oy$i74A{^w#K?}09Tsts4@?`Aalkf&Dh(Jnx*l<9 z8-DBn;JZICAVnUn5&<@b1B3QS!}gQ$;Q#46Q7~)p3a|Ok#yI#yYum&pH?xD+z;~$n z-HV}rB!2Xm>}22v-fO}TPc8UH2|!%p+CAEXxW4Ax1o16BK_8u5>vQ)frYj_yJR@lu*7vD7pkTq+s7|Mtn0 z7+7)1@+NX5Qrj;ATw?oReOL5*5=;N-*3o0Kfd9htogtnS79cd^SO7C|7BdDS#PMUY z{|ewE00bZjkVGXN3vf!3`t4~R#bW_#|0_TsTg}HjSb)dJ0uY@uiDIeI1`czuLQV=P zAV3r>fP%K)Ba5Tg$>jXrzNTN6JbKI>^j`tQ7~=6T8hC%qu$XwN6$26N(c`NB5kLZ? z0Ut?J=&=CRlGLA0^Vl5=@aDe)P+zUNgb{%ASb!8VlR=i6$zuUl{v4MUz=u*`0dTba z)Xa|<4p;K4j-$UWbM*N8|7hSIL;S7)tbwE>hQ;oPv)D2aF&;nuk0U@39xMQfrzFb# zSOAJZ?jQ;ij?+h9@cN`|0)BtjkI^u#lf9a|PORF2JA=1Soj5e8`^iUAx~Coo*$%^AhFL6BCUUGbRpdvH)lZ5q zP^c8c2*qgmC7VLfe#78Enb429&3jjg2bsuj(Q`j1{_2>*BD6AUVoSyTLTsT|Mlq?{ zw%w#F*fvFy>PPA+)|E>!o!r4~61sA}=iVreBVu@CqPUT{OZ@sFD@T(CwP316JQKN8gIp7rj6j&91iY7&B2-AC^$B@DKo;P8IM zU5V<|S*3TY>8IIc?8>&57MDk7+-<%a$=yRaJ1md4&L~~Ij~wx!zS}wW>w_QzLC&Z4 z5rMkSkv^eM`1Ae|f74zZe_hrpK6)OIKU^v{!Sxc9;Mfva-c}UKrP*@SIjwDT0PdE(}(`v2ZpArb{E(%4jfZJf*h}(4UpLY@fKac6Upp=${>M~Fi z{r0Fgj5fU{KQZWocZsRi&k0+}(XPC{X(4$!BK(LZo}e%5@7Q#e@b1OTjq#6prU@$Y z6&>>Oo&LW%{gwktph%@nhGSUS&ArcNFl&!5xV!ktHoffO_?TTK z_?=bBzzBzkN8adE-{LM;*V00&+KW|D4Q)b)?3}mlBfsl9t<&~7-E8wizRdKR|FkNk z+pz=Y``mP9^@c9VkN0HOUoY6L9e$aX+<&d2-uPp>L{m0L=jmDZvER5Quk0XoYAUhAJWCF2KDv~oa?tvW($fc_G;orDnyZ1$f*vUg1C&AuW-1X zdl@_iAbI#%V7KNGeq!H)@m-|}XR>=jvyNZS4SnKBuaQU!`tWSjPj~gEUb6G=hr%;W zwbk~e7gv98?>8xdQ{8DKm*UsaM+U6Nh_TZH#>Ff(*giQtdZgz6?*73u-Pr@y>r$Uq zUC&=R6LN_NzlH60PWLC(+-_^SR;xxsAjSGz#h*X_=BY_oTFgtgd7}3?AltvAU5|Sn z0%dQqNLCn9KlQCPDc0jko|GkD@+}%=)8&eesHPve&=E#oGqNI1Ho|p&QOC5451p-H zBB?@2C5`3qSyaj~PmeX^jm^60%wPI}8xtM~*q`8~mG*hSx@GX-w<_=xNjEs|=w}i7 ze}x~Q3`08=LHV0Re&DV`lJD9rU`Nh8`?HYNaXYrc7!_0I#XqevRSH#I+U|@X$?SLD zRVbsaP`vIFFfu&8TiP8v<}>EJ`gbfqGBc&N7O&-DO;6@{p3GD;Z%+G&dC3;>nC|Qj zzKllNw;Y_&B_zbtkBTg_Mh2N$ZI`$_f*#m>L8gE!$ks=rR;6HAz)HXNA5~Xbz+wJx zL8gl4L74X*vsNQmCb)zw%hko)G4uPy_d)bTtR0S5+{nCN%SPa74shl<^Zj$&8oS-= zTl%MZ)zwjHZurrxqs;x`Tn)9@4EbA>5G%J zNDyK^wmO>svT|C3?JdUYe2fn`W$K)3{gshVzDB@0?|O4qY4GJlGEr1V$xHSi$W~&s zYQT0WBj~<<*=xtUZ#-ZAtG4CVk?Jdpz^Ai4ay}X>;ZPBUcj~ z*BeL^C}LwbN)EmQ>|GzCvVq$soN_U4*8=|N_oq2|B zY{-AA^^5dZa0|zfUmC&Keg33v6#k?JJZ=jHz_X=Wo(?ilW-!bIX6B`2R$KN=h=HG5 zS@tB-ZQ0}+By^ioNIn|RXFimFTJk?ZYT+jwq%uBmL=qhYsbQhnja}msZH) z(*q{&P=F-3q>xK^CWs^dOJ;^;7tEA6nX)J{gpQ~tQNYY5iC>=E*e}8@_GBevuB$*_LG5S}-@Vg=%F@Jw_oNO9uiJ_i{#@N^3_Rmjr$G zOqvG1vtj!u!9ccwvLUOXkh6QK{;fr(%0)~*sIM{SU|fCWVTY>nI}d+}p29dmP3x$< zqS-87%c{%`LWuYWCaSLmth(OFG$84*?3oP#Ad^J(@qC@`nvllQm>qm@fw@dR^D)6^fOG5jCPa(zc4nq9q89TVtE! z)!XTDtso5+l-!c+u<+TCuHRQm8=?!FSl%@K)GOqM>-MSl!T9oG(a;pQuw0Zj7|&TR zhkzVfwjf8YVIODqb82OxecL8UiYi!=lJGvLWT=VJDL3xahMwk!r7J4FWk(2n&Z8%6X`P^0{)?QJ5CvU9QnV}30rc!^N}s7?fPy7 zgHkO`^kwJyYT!69qmvu|mKbnKf6n625@5=la=YnJ2oCWHc0vC1_npv5S^HGw4hmigGpCA?u>7K5{ zRR*eZXE&k%b*o1B7Y2hD$-Z(Z628uFIADG&kIfK|eW7FQ*EQugU= z-Ex%t=d>?a>4hsmgr93YSmyGk*mZaM(|SfR%Oa?hSqxhVyG%!mgq+`?=$E9AB8sSM9t| z-;H!WCf$b2i=2Ne()ONHdPm+cb-Pmii*zDOK(~_Du0i(pTe-{{o|K>ujo4hb_UM6k z%n4b-Uc$tB*ws0Yeo=9;(n_xAc{pp?JulatJKAX@(a>2)YCyC;$J-ihZ&48JLmQYj zptP^EHf%!ku=`U-dbhRc#ux~e=UacxJS;$_$Y1IY5zKz;4JDB+h6yE?k(XFWBp`Uz zC<*m3-Qqtj3cUwXW}jk*lqS@<1Ha2WOnDk{XtlU2rY$Q7zqrK)!Yc$pX>{Y;dwM(c zklwGcXoXNh)fq9RVvBxoX8pr8rGS}49EFeJfNktq z=Cd3_|EXj-Dg5u>7TisSD|D9G+wlmldDF&P&;*MPI=9`c0(xFr#D zC=@o(#ZSf8vAi(BqniObIZSs_nUmJqa)TP@PWQA&^{{eSS?0#+bm`=r0f9QP9Ey`wHj4~Rv z1_nY^Ws@gBfQwNeQT}TZ({$R0zDIF9lIoUuN=42*hvhFcL1J$i1V1tKHkG}J2^+Sndvd*k zFg*y0p9!@)$C+EJ5xDXnu3?ngr|Kr1Exw1GFBzLw}LB$D(;auxhTY? zO7H4{u=q7ghA)fb>{@22GvDsUC7n4VR7`)Fi}3WDiYp?hhzOHgaW0kDN%14r=U+bH z5Iqd0UW)zrZwNR^W5@;^R3Ol=J?7L6Zcam;93dEODh!Q~26v{&^xwj4M6&9Y9 z2HgLhyzaZWeExmz(Ae<186MgZ&@Qe>s+C^IGbf~F+cK@D0*Hq4d`p47Pp?>%&F!G! z@O}w`Kj=xB6zGU*t3gZJ2kHd5D3K!248h(tdm|{ySO4DQ;k>n(xU=1|&da*jusAIE z`lCf+vj1rQPhEb|GE79V2JZ1x3qU_O^JW&*Rj=Je`!1H#;fxsZfT~t{$nE?Ue8s)d z@8<8%{UG!i9v_#wl>Mk4=3y$41h*{iTkP|EY3w;udoVL8h-aGI=U)a5Ef~8*m!9Fj zb3WtJl|%EtWYLX{Tg~N@_YGGZzb3S%Db4;q0&BP=C5VpmCJU;oVz9+Nx$Y9B&L?&M zzjwtdj!grv33Xr^U56H5#TTU2MA(I2t^aZBzg+<92LrFh?skuR{qbEtl=W2Sxe(>h}J-T zQ$9XG_qX+iL=t~$gU zczo04Enm-Rnz`7l;$JUMsndY_hk1*I8ss2){$8^muvzEC9F{IcJd2jUK`AB+f0+r* z-@707V(GeO%BhIAKT9XR)Tbk)R#jXqC>8Zwh$q~8mV3s#=CkyC?)4$*dyMI?I3hn_ zre0XNu6>GAOf47n+7sUY_&a9Jz$!~PB6*8|l>5#px5M-&m!W|(vX`I6LV-1$e}|HR z6m&MYb1m#yBTwG{loc{u&)cMWQ+%sChaoE_GcV~(numkaZQ%(BuQ~DnW!j#WgCwRd_mF{r zG*b9N8GkGRbS^T7%q8QLgV1b(4uHAsw}1ieKAL~%J=5P9 z7E;|9W(KpQ*`RK>o3v|_tzSAuf*FyV$)B;M)H^(+2uEa;n7XK`Op$|S34iQX?aOTi=I9)SxSNaId0LCvj2-xi(um!(*c7FU9& zj9Q@kLTcF)frJX-;=!?$w90*uR!12^q%s;yQaLymvD?Tz1WS{FFVm-CqPX{E=EKaI zBYxPy1XE>sWe%KY<}e`bP7{W^IukOHA`wh^*~fEL7d2|`5w?)l)_Z=kl{|!cTotL?v8AZ?*cK5DDK<<+2+d#q7w*<%TAmiWu|)!xw8tb6N^H;iP6m3H)%2D8X4&9w@W_4F zKy%TR?N%xO>uhiV^6t3wS#ozYE8I3nOW)wc4&K9+D2z}Vd+_zW2^nn$R#22n9;PsD0PTmT9_7dDVS%9Y zu+;WY$cr2`(Ao4|w2U!nm9{6Pfcp-lXe?c3-k%JHtV)p7aXzrJihEa)bm zAf)xgcvTtL&isIdw`EWzCs$!l<)IM`KBt8zeaWjIv_66!B}q(!O$5^t-O=lMx!C5+ zrw}PZO%yd_8Tt8P*sqrAsY*>vyi1T|$s{i*fFX!Dn%&2CkdErSIJL4U%q<~`n}tqY zY0oHV-TCEAxx81{ZA(g>ZFPUN5&ZshDvbw-t|AV9M5*}7JsXXBmZ^ioY_aGHag3Xc zY%ZiJRos1mnevr>GH92o!N(%(_T0?;rw;)u^r<&i_0Lz+V5`&+&kB<@#z_RF<(^QJ zXqKi%-yo-)`aduUcu$@2uA4 z$r7f`_I?eyE{^6_I4_Rc&`tWtP1&EBGRw^4b<(&E7vqptbt(*ZpD6vg0Iogerc8^{a}9r>viFjVu-q z^u3-JoEUkm@m|gSGi~RkbD{@@1X{Om_RBvH018-3kzAg(`oXkp0hMYGE3m6pWq8P@ zDxOHmI^z$PRoL)7Sfx1YU^#d$fP+j}8^67zsoGv}=E5d^Q`%#WfzO&Yrp+=Qddn3k zTk#Bh5Ij*#4Vzq@n$UMLc2B#a=w+O)Cm!kRKV8dSd&1j6`RWeDwbiZLPPuNgzdg50 zz&O33kS^g(c>%E~*n;q+Zl~CL$FJ?_s@3%9Vs5IT$kmsgVXT%tG3`Z;PD74AFORh( zbeJpi|Fq@a0> zokn(%iHjpKKBfIFE7w;IGv2p1m5f-GZD+b!6_@$R7szeQeXgXi>glvn64oh^=S3>m zdyvcYivKBhna;Wwz5J@Ux$mv7f)ukUPv&n&#mx_=y=iYuZds`ZxMv)MqO7Ik0d#m) z7x$u7*T^3=ea)MNpuHR!+|S>n(swq5P?xqGUFls{^H~_lAh9k`2yAs1ln{c}-={=^ zG$rN-OCnI z=$^s5eW2go8vEw&&mXsm8CZc~9p%KO2>cMPmz~gxc?vQWV^PAnfEq6(}=jQspfR|V74cFF$&<}v! z_XrQDfGRgFMn1==G~)GC&yIOXwx$#6P0lEthaDITNBGgbng61gIxV}@yAWOPa-Q?w zE$(j#!UZuYI{@BNET3+i&c}(6270G;Z<~)*X6!!rGfc6j=h!Fx(32JQJp1j z$0X7nYdKe&pYPw{^XBj}js=d78`R+~4)niOuSAc;4i7 zLzPkGAonY3yqFZ9@;&`Qghi2p$cKI)vdt*g>QXT_=!yOy{4Ut6VE@!;uEtEk?r_}n zvE9efCLY5dBho-C_x8VfQ*MMcb=l#Z#*5;M^JApVJJ&#?rS@cWa*@M|rA-{nD7A>o z|Ea$eo>S7b?zXm`Vw4tsP!Q`VgvOnIz5555n=0Gf%la`ktYNo}YdQlq1poa9YPy6y zv*VRJ?VAs8L&H-nf3R#;vd~` zf9PcR+4@R<*7h6i&IE(ynWoWF5@xF~9+71E-c?ewl_0(_ONO{q{Wh&}U7G+BZW@P+ z5vm%C^j1O>$`#*kR%kw-3AZ|kGb#@cHwBZffqlI{Hh(oLwLziWvF%YmQ|VdAM3Z#q zosH)HDd>+isMnZ0^8V?k2RLtCvWOp^%Vkacahi4Bk~_K6ExPQYt*3)GR#8f%?*%wy znWz}!j9B&z@nhX^Hq6?n-p1~&ci+>u8$lAbf03S+K&&HZ$-X8$Tyv zM&apLN98G5#wh-bDoCw^4~nn)ka=@FtMt0!b`B~EZ&UtTp^UGU!qDOS13yBJPdZ{L zxBGqOL$?)?O{P$S8Xr(_V82KHgOx#_{1UV%^`u;8pLN{M=cYECF`2*m!b59-U-9!+ ztI+&b$1Iq9%{&KNLyqUKT)jJ8Sl;Js!yA`f7(L{^_f~MR>1lYgX+Qf&bUB3~1Kd$L zmM1)SEqB}=$;~K@DzK6{EvGquhlrX^?|!&YqNX27}M&(zmRX|`hb|D^rf{?hL2Y1&SkdG4w~ne$?>;m*7L zEW_QkiA1l2y)EpUe$vqqQ;&EaY*@}$SoZ2VC!KaO{_N@M!8xDsAet&-Ot`@`p5X=y zFclXjy1}^h7Uu*ZWz3jDHj!QVG;3j4&a6)qR$(6~K$u<62qJ}?quS8;mL50bLP|#a z-j*v!32)@EB(G&wo2Zj9mBkg6PI-B@By!=}UZ-;^nJ~;1_#@@mxSDXF*V9LOC78c$gF*YBvBvoxU0a5U-u6bdzQ#y0I|JBTF1)>_?=YnAvioP%;ZZi-t_-~6^*8&1HP|7ZMK=?j zBP#(%5E@2JcwVocx!D;Izd;T*PqWRE2QwTN!GQb=SAp@0X@YduqOT!8=swL$_1o7B zzmzMyr3R&%pdMN@Zj-96&0s+oG+!}ZIZIdDfU0^0^Mz2KlT~vEJZZP>xju%Avibh=T#V)tmP1}9V@!I?X@H=zHoJ~^{rQNsaGSj`$SvQcEEL@ z(Iv0u?Y$9M(MJ!ibpc&Y7m6Cv`z=(J@OUU?5*uy~XwB-LS$}QM`YST6o53~T`L)f) zaJI?EYsJ!ZgT)KWCZWH<9UaPrC)OCi#!YbfkAb;XB}uZU5$3{zo1AYX)VL-FNMb_- z#u#TD1q;HOzz3shqY>cVCVk`WEx7Kb zCqB|0P6p6j#zB~5ov(OMA^GtwIo~^`awR_&|LXucI%OqwPKC^kPpGh5vuJX=`azoQ%Z;CS)xJu_RrwR7f+;mO zUdsJ~PoH>A3vKM%i@Jh?7;btsFRb!}7H_u4+ugEHN!$cFZQpMY-48yszfiq zrF@;#W#xMDkf_j%S!izNR(FsVFp?%HdJC6*K;MutaeRK4}nJ8|#&B zr%&U3`K9AQAG{1kTWaTGTD4!53@(D^w?{y8Uif!Tgoc|}I+)fKKASNy%cOfF))XA@ ziMP6Q&hpH9gNwA_*|>8Ez4U1}AD?*|aG5d2tM61wAFcfhyRQFbitBgZyWyrbvun5? z&+m2CzC9<5*Ye;6T_NAla;P&$&Mg7?l5UfWZmUb1BUdITyXr? z;~#tNhuergda)f)+mdClvOjqB%#b@74yo4bsYlJfZ7+bJ_d~a+J5TWAZ_#q9-iYj{ z13nQtVYkT=oJm@4l`|52dP+|`sBW&y9`D}#=$ifP)rndKsrTD|Xa`Az&3HJtX}ZW3 zSAGuE8O3tQKLXb(ef+IhiflSu&C{MyzywY$KPV3SW`}d2)71H^mr?f&CG^Azu6>$O7(4!0{|;o2ZI1x2Fv0 z_@3n%(mO_Fv~!nfJT6;>HfFDxUtku-jk80bhl1Ic;`HVf2jjxhZ0NeFNNTyiC5JAJ z+?fKC1288(E7^ySIRjzf^E7Q=BUpYtpi0i9WgYdam5rP_7k2hq*-dF!74Eha2ddyX8e#AOJ2s7dgmTgH z&I{F5&zBoY$S$NxccV$O~ekl9(qKnYiZnwic**ungm5IRq!-m28+hKGheu8fzbZoD-JN94nc5SdtcI^cmTu9A!ha#Jj!u&V2{njfep`5Th(z%a7UcQ2*8ulr4i=?rI_M*{65 zwjfIonZY3=Mf#HN=L$I^H1;-}lT32<)NmCPR7g>139NyC%6n0v;(qtDy=!BAK=ieg} z%Uf8bnLuuyY<-s^Y0f{^)`a~7#IlO!)#V?}m34ODAV7{;vcY!Kl*PK#OdbB#Tj5oI zcoPAfSTj4{TPRxIA)pxg({%BDxZ#>oo79B8#@gUt5fH|kzdwBlITR>jtL&fW?*z3;PJFB|H z>5qe(qSjRT)yDt*Hy(nupXUZO&LuE61v%#p@LF8+XOcn|QPDM8@VSrP64JJg&~E?X zM1|knHxbiGmNJ8C7kEE)eztQX*_M2uAr4b4#1$=U4|}W%%$%Bc`Lit|{j@g0pkmX$ zDaBoWycmq)n<^i@NY?toxT_G^w|lEi@z28UtuLM|xo!KkkXB*YPZe4%tgD%ZD^P%hEixeDw`HKzSEH^!qA*IKlq2Mm5lw26}mW$jeT z2g}e<*%gkQ?Rx%5IRvG@_zrGtW9;A_-eH}tB9riek!`;z)^L6e zXlEwlbD09}Yu@jtku?j19-wN}1x4A@JYgs_VW8j$*=n@>dtQt8!S3Kt&xe(jV%#&1 zL^mjfjYsXq0is0%(W^0h$^jZTs6YPHn5rUovAMExkUcB+IlR!Y%0Wsbn75~d- z8&wPU{f)=P2tF9tK zm74JFRs0> z13J`Kzd>93c{dad%=1S4#ly35%Wyo&qCh{>-GqQYeD2Yk{y?21jktx8e~g3%W>*oykZ(Z2(wqFA{|Wm==0CS2MZsE` zpT?bIkS)+ymxbmB_HrAS0sR(=rwU@^S;xFgrirG!^U?o2z`QK&m-@b;I5q^Ob$ zzfa071>bAmG@yPikVE}A7glsnJKhWDy*oDh{nh?n$iQAhDLnZ$iM%=?U)$gGU|#V` z;W5xF?4{+tJAHF`)#Qdltfh5XqNgLq4R8-W=g+G!uE|x+SvE>bKogn@3}75`J0^hL z+$a&l-!C+%BRxGs*r~i*S`*w;kgrqUb(B;Q)f_uBS4MS5t82Xt&1kpw5KB8_pcM=| z`+s|QTIGV%YbrSwx1NO4Xs~fiAq3Tnt(vNsLHEb=^O`_;W;X7M=XDOBc!SCgjf~=a z&M`$>;0*DmktoD(qo`MYx^Lp;wNG&r5+ndcE{TAS{ku@A!I!cA9;iapS_%rriaLQ> zp$ea>=W*o@IIm*wH^lLXhKZ0k8bEXux{3wvvHOD8Bh_pxZ%ZYWl0KAYA{Ji7OpgL#Ms@et~ z{xOz&Y#x^c$0G58#@bUjqLNmp;iDL!JEdN7rK+l5K_5SjUk~7^JH108UkK5h=!kE} zWx)xgO&?p<=Bw{-Ch|?HdV8$P;!fuBf;u&VOYzBSY1TJ`cwJ6*F z5qRigV=ONQSZmCrIJJCL=d3*|7QW3h^R#jIx&5YP>9+=QopHt9c)aiNHV>ZixqMIG zVUDwdS(5LYAiYC;=Rj$?WH!nyXLw-t^AMC9(&}g`CFc^+cxy^ocpf5Hu5>{%d3rjpr{47Le>dxOI>;-YsA7&?uZ=8fGRh- zl<9f_y>!+JAO*&O0uEwJytUWpR?ZiY9r~aNFPtno3zhUL}!KDqW8P zrUoOX_Wrreq-`QxRxkNvJUkh$T#k`zF8*k|nq*+DU1BqhZxH1TuPWT z?KvpU1oHQ-T`Xh5^VP44FKh;0i*e@bPc+T7#cXZQ%s%Ke(G?~Rdjp^5DjYXzw3!2J ztZL8WLn4ybb)ndH!F%<~j}akk#Gw-SG={`s@vLXzDQYy+reTIZ#Z=*OZSKpJ;NE=} z-jl~7hz+~xLaXLTlws+)@Qto(@`w`zf7&tTKFC@V&Tm<#Za^ zf?J@?)cm$>xbvPmt8Jn2tZPIOQ!KdOR2Z&k4;PhbfaZ8HL|^pKTa}66kEYi4(ISy2 z2jJfP=R(m{&rKol7YPT9JIX7^1nkjge6@DGB zmQd%l;7dEcX#=1QCNi-s<#X?U9NY*uTf}O+ty=&180MnI+f^@cPuV{0A`|bf$nyHn ziDSbqfI|}Fktb*j9XVNaf5zv=vXMJ@K9k~)PG8iuksXQm3v&K+b9ny-DSqs$ctkb# z>kgOi^I>L==5f0{Zp}3ff7B}laG}36mger)=Nf9;*&iK+V}fZZ6RMYHG`BTC#sHC+ zg+%oI&UkaZ{{!BUFA5sgV2=G&O^!y>R0R(q4Y!FD!#$;T6T9cN$fY2i!)+M^4`2b! zbBu1tSB>>CXh<#NU3uCN48`u|2}Hf~=1UF6S&B zu2W!N$nnVGVk&U$YyuHM2T_VAHV+~Q7q*^9w2Yl{;34)YSip@NAp?Ds=HsdnI*<1o zPT54Yqk2w4CoW-ec3p-_AvdM`*MO}Z6p~pIiD>jF+&Amsd~{}qaZ-l2+ep~E!CpJw z6N`wm7PxkLdu$+b9lpBP;c{q4Jm~Ys@wKohuh&YxUP>i_CV}NIx+zsHmV(tI?VBr4 zw}~tNGn1-XytPnE{>_0*SN?9y?B%^f&P;=OVxkU!@I1QOB*qz1F5+H9)jFG$CVcBpma zY#%IOd2MHWnx{`EVD}-8-gt+)xkGJJ6DzpgYpZoxIvI$x0wXWbLkxLfCRGSV>{K>h zt@ZR+xQE;omTMI=(xVR_k(poXRy5iteS{S}dcmd~lUZWf)TDYKutnUrk^9W!Uh-x+ zva8Vq|4vMmPD@wjPdCt7sgFbr~F~oJof#;5b zg&=L9V6=C&;&X51WCtCs)C4I`tk?*pWloe3a56KfOR|0OrR#5H;>WXs=IaT6`M_er z(quTwL7!?fcHrMSECD7>zuHhiXME*<1z>pu6}aeO`8Ml*1@={Ocm2Obz{-Im`n&o^ z#2VbkbvwjprbriMAez&>$z4Q&VSAr`j-*T%%)H) zoD@f3`)>W0SmSZQ?`KJMLCRA>0xbr*Ww{?eFL};3TP~ZPNy_l9?^cR@7P=ISc2ub7 zq3C`ksmCGz@GSu_+z<@MgZ9BO&OSvAC;MsBRK{v|eAsJPfvjd(wI^EoY917m{je@- zG)*_x;M?Hi(*Io(^wu3U_j3A}tjzBD*LY`^2k@@aNipvmy1?XWxsBE1Fc4YjaWazx zMmk^a$ZX(qpP5o4OBgwVvo{^#tkgX?d+}CEH(ixU#J9<5PHu8N$^Ojet32%kyh}QJ zafr#eNFc(4-kbDK8Sp*r1)s;~d5Quxcy7i7wFg_*i{*p$6W?p)v!nDxFyUeg(g~^Z z2|-~kct3MP{MYRQb$623Z>DWd4|$)-6`XqvYd^7USQSW2<&%I~gN}Jng;s##tIzN- z=pGo=gR71_)>9S`TS*Z~v-tqFFo1L^6(Uxd=aV|L z1D4ke2(B}6x6HF%+m^#J*Su&K@na9F2`T*1qH=52g`)V~^cime>b%(KEu7;qf<6Dm z5SV%4hc_=x^fuBJwv>3wwd{qdbW1_ZNd9T(7qHW4jQ`3E_p!&BMSC}gGrv>I;YZl~ zLRq+5$A*Km{M3w^%H2F1zPU4hV6gO|Oahe+^eo`C8}y*A_@}k&Z3c(LsC_8X;qtVZ z>g$=#)v|gc;)4Aw1456jdR2=c4omOWIuXdp3mWwdyDT%)y-^-7`rM+~0@^>ix2c-w zL4OP?bh!5J(D$ye=Q4Me=I!qg!&{9G_G{W~d^R2;J^*lGta^z6rZ(BCUq}iO~uFVss5( z$t*n7Z#1Xz=ZflLOBaAp0=Q+k*f@HX5?E$R!?5IDk>5$UZ1ZD4RBXtrpj^0hp&8C9<#O@?X(z?=5(n<@3T6$V0!_a1u0#fbgA3p zz6rZ<0N2nQ2!~NTSFkCuo>tkHVXxmrolZ0g!jDU;s?ne4=Nh}35PJEA2MqN%NH__k zm+8zB%pE%q7OpiGr9 z0K;W^_iU^F`LVrc&FA)^o`Zs+`cl_l&C)9-)!?iTpkoR|CWh4_Jafnjxyu@Y2!@gP z^i`QT^<#}W#q3ZC)!P^W?A(5ZJ`lkXk&+;yh!uPw_skiH_@teNkzHBz+kHO@VSUFu zp~D6%X!zvo?SB!V4=~XTB#(MA3qJ#T$QB*`*kYoK-R7AY09so_mbJ=dT(;e#^#F7Z z5LE&j*=k7lSvQ2 zsDHF+3mpJ!KzGt$T>kt*rfQq;LCPcAnJ0jr#C5P zsIL#`Ni}*)e`bC+M>c|^Jmfci5%T4%&&J&&Gz69qd0xw9C`!j$3lz{x6w<>u`u46H zf8`z;uOgO1Z+LDO$bRbDjWLf00vaa7^!b$4cP0gH0P`o+vdH7^SP$TpN)F-A`~d^o zmVb;~4VAR2Ktm&Y%psv+;gJ&oan`Vsy3cmdD@az=Lg7A?B5q~?290q|hbh)ho&^ddnX6g@`It{`hGu}(f_Rp3t|p%Iov4y~AtDO#zcA^$M3n0hO(1naT# zZI$opE$(!IRz@#xyXOjNO7!>?;{jtmeLkbNH-txBZKwJuvNp)&f7vO~p@(s+U3B+a zM=C>bQvCIw=q%H{{cJS*H{53!$>Z07su=N-#pwIVp#o$_Wx~y2tt474< zqc%$~-zzFOF#cu%{{EVct|NOFK`k4q2pUKs1>8%(bfA3Wuh!esviA9POF`;m&%`CY z>OTGwRSU%#u&191S3c(hCM@85fY-Mg;|K4FOGzPE;0Fv!880~ZhWNLh_mhe^CEpkc zL@vOMqChM_UQTDaoG+sI+WBVrcb=?jr$Vjbt2Hy7Mgp2P=t?|#X=R<{ z@SW?hOG&QwH6pWZKMUH`IE(5GY(%ne=^~I@3KESMr5~w$Fk^lX-4|zM$&5=4&s4`A zca5=jF+&N+ZoGG&Ed`cvg+sPjVmN{g*#p|mLdItpSf_l@oAjUc7lH3|W6=CxJEQZ< zD%zEJ?UQVOwNWxUKLQc>B^Pt%>e(S{+-s*~$eEtA{OnL70iY=1oe^4K<;T#OEUj3l zaAF5Q=YpeSmCKYZcqbc|cFTXBMkD9zAw_e*ya~N=S4olR1ps*HrJ%BzzC+d8X~0Q= zAv-4C3^e5K)5I@pt7^4E+6PuN;z{$h-sIgRLQ@SlYB3Q~g_VT@Bz@x=+;BnvO~puH zHN~QG=4AIb?$zd?@}3Bi6)&dX;e%R-<*jVlRNDnY^N<(epKU0U&5N{>X3D1PHF8?R zB0Op2NQ+qLAP#tE6e9Qu8keO!GEYT*mRRX96LmA zeYr8^j1I1v8KUxVsucZ!1Iu2c%ubLQcH3B6vHO? z4dmsb#-YGokq88U@H8e8ljV;e$DBX_NizQx(_ zy$K%Mry4SRCvT}+QVkH*UG`kAZlO1PZy5etjx?h~BDoMCGuix0YVwfk&dmFE0Ae;6 zPseh%k;GA+h)teBr5yECo8`tUh{vQOKR`edoR7!$ddF}S3G5{SM=Q`>Fq>PIAtZ>&1IN?ZB9#->^#y}*JI2YDi;u|F1FyDvpd!oQ_O?w)!rSN;uwF(Nq7_~aSIqU zM)nkp$|3+J6I)wsLjl}>g{cW56Z`tf9gs3s41)odipL8sJ)dP|!TNC7kI~=eW$Kg> zLjtlU)3uy03w=#lOyar>2@HW&bL(Jg287n!>#2WvF`w2=cO~p|p=wg=A^U;1k#KsT zRk=i0pcVt8UPAX8@B%7($_m4rco!9PDuB}!?t@yja{$lpyG#|{JOhiA16``Z@`MRgNQ$CvPvMam3K3cpiVB&K zS}|duPhd_ho5AyP$hk_t*l15%(Uxi{__>l2a`Ege9JBnkE?0+M59J*Bq{bOdIY|-A z#%s0#8WVK}Nv+omN-3T|wU{?J9M}k{=u{!i#+E0920-YQ;b56bV|&B6@K54OuK`W) zW0Ag6<}txe54u;m{>7`$2vGb3yiu9dhd{Z9fO`t{s?`G3p z{Kam(X|ev1N}-w-UniXuK!fHfkV;35ZoX%D&!c^eB+(7ZIkHv((81%vAF0AYidue| z>IFdMEIiemdZotRflh51YvpWxYrSI}Bp8(rP2TxxnIjYf>DQyK*K7ZZQ~u)lS}ca{ z-~JJf&g-jpL_%}C4$-4V`mij-(U@3;?Pgm>X{j`%N>&WUvqp=b;Z}GqH9g9b%VhL! zV$M(H>G;#58qzV%s+gm;bEnHw5gc5GA;_=#FAqRAD zIV3Uelx8_f(A~x`OKK16PD?U%`cqPR!y*j5c}`*(vyUDv+cipZFA`H8Me%Ybum1jO z8_oQ7;YR^*|9Ysx?6g-TLUegDOvpzt(H7=_jKPBzLN^mPP2@?LS?33?0D_o&0C`TIeNL#s+ZGH3{ z)uJ<;?2znB_|QCdp9ylj4PL{{3#^$;)L3ruI5)OMFTmv~mmDdlSN+KRj!LSpy%(mv zb$s<~>b|l0CP_PI@0Q1|v3c6^mujLjXFax;OJlQg+k=X1p_Pv1p9;!8S+8dh5pT0k zX8P4;$(iX9WqUW3$Hxy^CufhYKe_)V$5A1vZHbNLd$IGP^E&hWy94by>BJhW8c|jc zl{e``7Y4SS_w(bk-}zCeb$&w?k`T#lbCUZ^Jq#KR8m-kC?+lwRc^>JMxG#Q`abc4|6DUT1X{VD;!LY zsV9j&>{0)DaxPT7si`=$@0!zj-Q=ji4f=;e0Lg0yhbTvv6U7X0zxr7)J zmpiMksCT{QxzPPNb9GS^^%;kLB>a24k<=pYU5`j2#5NzFYw!v(WrkKQu>Kx0NApe! zzUb@%_{#KZ&Jomrg4wI%>Jt<7i(p>99}Uh_he58mf35NtjJF4zySSRhHPj1e^%p&f zQ2MPSMtULq|034^pNM}`wjnkukg*{^#rlT}fY-#n)z_4eFdaZ#m>tPh@scT19FrwN zv*KPh?T09u`Y17;HR;`&<{BSqV@W{Zr{zSEp|lDgUbgt!J$6V~a;nfOc*Y!4S}eNe zAfEJ*(}CgFyHl@>tJIF$p}WKP6(&;jE0^DADFtVT^v@`jIx@OyzE7l3T2o`ZP;|{T z`}o^TEj6UJq;j$ldT-;{nK*#aUeLulA5-D6;>7fb#pfs4B-tUaKBZMyVW)SobTyPt zU|*8#!2jO(dpdGL*ouHZ$Kvl&=o)`j&f;pHm>8L)7lmu_RlDqt;5{mz&hX#%m>vX~ zh_2qn-RJD3NlQqPzA&SYn$%dnfOrAv3L^JA&H@!apzT-0KWFo!5)(w{rtbrmsnv|` zoYZB@2KUFC!SiOC&sx{+$G;-MFnMcK5dIaB6)6qZ*1>d`mS=QMmaS@y%^{ z^YSPqRtbtIxx~2I$0-R7zj%;}SQj#l(W~DxU?uvM1>Xuo5>EJ4DB}CLrq47^EPgDA zn1WnxJJW=ak`?hw4`|2P@IvrK?NY3VKXI~CyDP?qDLnrD3LOm8^s&>i`yqE>9AxHy zT2ug1mYrY{XF_0q7};gKPcKxS*as~`^)flzt7;(a%JKw>eajOLl|PD{GRNL=$97)c z&E9n3?R_>2Vic(J*p)kA8IKfU^r=EQ!AFo!M75z_6@wkW#0Bebi5hv!M9sb2>NAA9 zj8t()^^mB2WDf|urSL2qbFQV!8$!%-lP-)`GCXC zNci2V$Uz`=K!5(7t0Q$J|FCt~=N}*f(HcI|I@=JxIX~)#$>I-gDt#vPU0SJ$0xM#D zrZfRO`sr5WHT-&0@_Tgy8^vh2(*gO{1#Gn_IlXZ*j~JjuqODOY7q5H+=K?rScc z5WI{v89%+A)&gHXD_ysVV58=1jONQrmUPcGg`&uLABLgQPzIB_-pt0)bFX@SSF-SG42MATEt+RV{-oo(oV&(#LX&FWLNZv*$P1G&)7$(ecZ zgK^i#EIV>!N^>DPDh|CeeGlHxr9TgnD>3PBSp9`#6fT|`roZKl&FmicRori$>XkB% z__pvL1G@vrrT(9RQNI0xs@{7u*fp5+RWb84paCjtKB;_m#K3}G%eP|GfOUd&Iev0v z2yTzyK*r~)^c7Aem70*$bjx9?Mb_V&Zv(mIa`+tZ`5mZY>oX8dphY(7nW?_$d386& zMyAuDAbYr`>RS&<1=_rRO$2ZrVczEXNsAed*|Mc_r04CAru_q-}mRG(t_7x zd`Es6|5ve0ZdE*Vs>jJe8EW$G>g!2m_WIpCwX%72C=80SfMbO320zPFfh#=TlvnGn2r3^Sbj^l|0yk#AQ*n~g5V(9B!VC@r z_rEOmG2e*Gp&!q1xEI6m!hjtc0ed3k#OOSTLwsRYo)9ec?C)7NS&{#pMcYh4a0MoD zR?diLKe4kRFGZBZ(S9>yyknsvWhIze4twh~_HGY|@28S?Zy4(y)r6#tKy`5+)IQki zTb6!`uIYe=zT9f|h=T#~+wnJ3VhSA8>=PI;qNSM{NI>ccJXuVGKJeer`v-CGEx z2@~pDHccR~y1$jkrchMCko|z_%@gZ(^^{QxGr)n0PqV}BX>zFl5EL7<0sRS}?v&p)qQ@v*`XjSCeEN=W}``eiTKYm4qG2U5_r90#O(==_qWXk245Ijr@o_V$(HBmRfP##)~}`K?^|%s2C&xNDA{+E1LqC%yxmeCh`I z9|$?8`L_$>Z%5=oyNIF(70i4m^HH3R!v18-^MMrOx)QIF-Y?m ztSyh5TPP*e}K;RLwE7juKm+9ytrKr^V9YCMY!W39+waP z{EtTXp(@srn=pglpka{W=3{XRPRUa~^%D_Cz-Wx4GaRr1qxr~=?XHv-2D0|s#{JY~ew>2%^=r0?X#kR}hoU`EwE{jHZy12__1 zs$Ur72&`uRNJ`-Ue&DF0SiIq{AwLcIbnh9juWkYM*LRHzE%qUf{~`Tw%8`;ROj zQ`L>eGNof~QNL{79(h{Cz`KZi`@{7XJF?pY23w}kmod~zi7L&e#L9m=xf2}hwI^QUA1M?j7DQb8|_TJY259nBv|g_X*z?J zW#Z3+ueNFdNwF5k4{WsJlLkM;z5yeJ$k5{(N03!_G$$S!1?S6R4pu+cl&aR*4o{n=#(TMqfZ~^83hDd zNst{2tXO=`{9{%Ohfcv!8z&4>XgGjF?A*Y~$A|eE%%9-jcbkqWlKd9aBR2_QHq?4YQFt;I7$$GV;-g;AN{~#lmyWbA*n>DZxuL{i!}JO6~Ezv{v0_s5cd%agyi%0Uk65hl#aie=|LGRN^&m%!$>&Wu%!2p>o^UU`i5v4Oz< zw}JJ9gy&cG9pH~g@^ckvg}~DYYExJ5A=80PnzK~hj0Z~Bsq!C`bQrxQizTxxnB%>NR=p7m=*=D z*~{gfy-W=&7Yzv{WemrqFQEI>Z|*#jKhp3X38ODy0H61M|7!*Y8OT{Q@(5U^@>Z$n zdTp0&d<7urCEr<6D^O&qD&TlJ# zn;g4F?*=ry5%d@I)maP8q%C4v%kWgHl9}$9w5j^P3hzazHWfj&^s&)&>E-DhqGezw99W zKS$RKwW;+2eEbTo6eB~F>t5@Y>)#3OoF0eQ%+~|Y{`l{+)2am5sZ{RMn6`%{ys(NZ ztnnlNIrsK}vUmK@fUr4JY1=Qs7DWL3c9T<>E1h>rdgx(@`paz z(fS?09ihwT{#Lo^_#Rg~Z2*-Pa$l5*O;kicoC4N17sqDqh~(7E6(sHxxUAl><14XI_|?ckq6_K`PB)>Oo2$+g4PbS*&i)Z1~~>Pu?=6 zBJoe{b&GZ68YNGf$?CZ_h$+jgw9njK$_`wk@9gU>!j%$;#ESXibqK`b+QXoDcP*_y zAzmk*%p0k5*#FveCB66(0u1xnJ4pJYbEQcXrdH|4oZjZ=UdG3hw)8`WbGn2`0qWh* zfHf+)sp-Bb)qLH>I@}SYE=^U}h=^D4M;QnwJ%01)wm9R{_7SF{csI!DygWN1)Ew1v z;P!qg3wPN@T;UbTm>_*BOfvQ3mN&IluNfKF9|_$k3;3T;$SRwuTgNzBax$Z+Nd%S> zYfheZvGjMvHtT{LOkN?V`p+v|+&y>oF(o635-j3}G!=QoDc%EB)~%@sOXYWu6$7c= zCv)TuDET))sPs$l$6j9hcd<{i)hubd4bsH%t}`IspI`i1Y@FF|vEvb=t>4G$W+-(} zxYS}zfq>I`jU~Qp`0ik#vrbi~y8W0dvFOq*OHfeex55bXM^zqg=gxj){XC4+>fm;d zFuTWy=RuAXqv(fB2RA?Kn*~K~n^b`ZKXQ_i1Ev@)dVW|)tQ&$NB=L#X^J&%rdSKVi z4O8eYZQ!|!0C+H7XZ$B^+gcFPfIUY_R(vZ=yy?f!X=32I(Vs8L{BN-X_>um3B~w+4 z08gB1#;ALQ^qPzT#Y?Vw0Ix6vzW8lWz*L>yOHCZJw$0m2Lq#7#J$Nhd2HA(7$NWxR ze(rp*sJ0hj#p>~GB`};W{Hru_37n2xFx0g{U>e+yc;UgOoJw(>H8Q{b^Cl-T(^qe~ z8$Y|;RkBfL6=eOe@?NIok?iSODf0VA)&!O#)%>;jiB;Cc=oY7d+KWq06Vac?pDpm- zbvl{pzs`!_XuwuQ#V^pJ7Q0JIW5kiCA-?=-a@&yZY$_&G1HGRDCN2 z|2m}zu!-tt&V%Z2!8;fF_B(I8)&x$k2G5UQu8zZdV&l8!KeFfClNC3mdIU`Xu85QO@4j&ka}X$U8C zWROW{Yu|avE^H%r%!a$5b{ZbnY?eXJ_qb2WiXJa>DoyvZYYX6obkvXSt!jZ-#q4*0u3?!TiZaH(X7s`Lx-a^H zO>~J1NKo~wP-EQJtf?#`G|c`GF=eXurEC$&7;JxI9d(F3yAi2k?~dT@x}ZPh5+`P?j{Vuk?J>+zdet9!Rz|Rs&90wd=Q<51w5$M^=7>I z@d&68bXS?3M%?(wLQHzrfU2V$UwEkT|*P*4}RtG#B!{fs{t zNt#^}_x#?k=$wX33W!-0V0aQy-0c50#je zoZ?-frIw;CL0l1akE#xp=yoFo|4;P7WV(F6*#d;G7{G4VfEyvtCfl_~OYcrU2MW1> zuB>%7lJu7T&}sF$p%4A6f1X2+%1s(9Nzp2U68o-^ z_-sOhJ!ch@=7b2S-d~~70tMoK)jMq9K&wQ&9$)m^>KhrcR6MrrGYUJ=FmZ26XYB)o z*lP3&Z_APscl^tkp0%3$S28b_E=Qm|M&6+8 z0xYju`c9HPD5ulELeRA?=RU~Q6c*|EP$yW|{*xJ^SNLQe6uAS$x2%yvLQAWL3#7JN zN~p;B%mNb~J~ovPrT5??zq8`O0H8_$UF^_Q|Dd?+>Z{FS06->Bhi)Lu>0gIA(_)Ua zQ?4WOn}5XE^FQF~tA_L*cK^Dgc^8MLtR)bt-n>pKYSDf&n9uWTj zi160Gvbg9?OkhKg?6%Soxmm!Zqc`zdX(e_8+1oF8ua8w10?!SO>_}WwEBzoFmXfJW zdTdYbUsY8kStK0VPzli*0*J?t)VsoWJtabCoaF;%_$+ zF^B|Dy`CA44<6|&ERP$7e{8po&JDWP&S!HvD&Bg+B+mk2d2xF{hg8ThKwt$^tgBx9 zgIO(j^17%{Ef?OHjH|S22w|0fQP)7rjz!jt<$L!4hP}HHRA|V72;Zr4awa=rtTWrb z8QVjGXfh;-P!bRC{+A{7g#P1)eFs_&u3dM%bbA*e-B#^<0{XA&UzqShULK1*P_1X! zPaX;;%%aH0aBl{ZfW}0Tswjo4w|{~T+8L{w48f<1{4Um4?t{j#WPGnpk*7+=Y8?Sc zd1qRVyl*#XPH@%Av?TS=n7IzuA2#ld8=Ev6dy?s!aQlxOz8&C~hZ!-1G7Y)RcRiOJ z2;6w;mundhKY!u=lIj;uHq1E5sA@S`Sgx&Rd+Nv0P|mlw)j7p1{M;_sNtDxS%uXcygblP_AFn&`;2i}l%-~$sXC;_t5_s6G2@bR_p)e6i zMx~uTKPmE);63p>cVe0)A240}Ss~~Dn@>1LgYtQGb}>cV4;1OB)`KnN73s%9&gmED zEN`8RoZ1{y9=$rGy%+a$53F&R7!KthOMs^Rykije(WFr8&XR4U*DG`e431L41VjU@ z`}>pbQ#hOfRm5gS`T$=M_I_U>D)0LpQBJRi*bf%B2zg&G-RdgY6N5eIFtp*LFzV64b@`B>0++3OG~!f8GGm{=6I~M7i$wU9_E)$D9Bd4Ssr_T;+p&j2mAIa%z$H z_yH;*O7ArJfW_lm2WmHDCioeFD83Muv(Y20zNFEv#-~-Gj`s%Q^Mbux*p$z3RTx#R zPo-1-mISXs&k?hca+YyFC7AZtB|IJsD;3W0@kLy4;CN{5R8pVnj#B7;=G97JG2*^y zXdmOgz`w#BIROowK2D4be=TbZ+vQtX6TLWQ@T4HdLsj2Ii=*#JP|KmWsQPNmI^5qK z4Fq3q?btf7`nx{9I=14fzp2@QmELoBo-4cq9buwOk+!ir7STr3C&2AFrgUY+>zfTD zm1xgQe=aBtQK2^pfRF!wLb0>71$G8Op|t{`{LBXY$Ar--x_@qRLL)>4oD(PVw<^a0 z1G$%vvG(d3pOD`fQLFB+WO=9Diu|4U^gcyGJ1E54N)wmjDLT%G$^jZ$feVbW%S693 zp9~HojsAE&d-`9TiO~FhDISeSk!v%%TL`k3B_}d1OU1olald?(g=<e?@-651z%cQZ`Y%##ieX6GqBe^7E|WiE~$n8mPp1jJ;O5XxTq5Kyu`Vz<8LZM~@n zt%u^Lz^ma28$1|bH-aM$sN~XtscM$}K2`vqb!2G#a^Zj6=rt|=c;T^(o5fV!pfJL|J|a0InD7&MK1TUp z&nf+=ko>OKh`X_Lsno!qI{0dCrivm_s}&T2sya~?dyDsr;N*_z2)uUL(xa-ogK2&< z-y-#xUfc|J^V*Qc{{g>W5dgv|I(D{NbNaj)*0Qu+Tk~Q?M(*i&(Ytg>8ugOjY&p-D zcjg$Te_4~BBn3{CeBY7Co)4`4hRDy5TMY29KWpyqnkojpa`H^*og(YEiDHiQC&s<2 zH0@jJsE5(CGsK|9yyiDjg6NfT(cEtWhWh@RpP;rnFGF3A8Ne>PjprjEQ+HL0RW?9U z_3kbhX<5FPLZ%E^xs@@t1D5pgZ(UgkKvsblI~H4^ROVBGe=JM!-wqXEWNZ)b0j!-} z?b*RY!Ym>Soz1)T_VuOT$xg0pN=frE%>IA?mG;8NN;Jo3AcL3_$TH2AH`FV-hagy- zW*AdR6Z#12m~|D;63FV{>tv;X`!B0kJV&zWGXj_t%3FoII;(OU9u^K=GRVmGDckiT z%*V-aRBaQ^TEQ`@$@|7i?^>W6?_ogJPehm6R02RHjN>Zj^^!CTbHWRE3P!2oXGbpu z`i72n#92cl_+9&*G?r_my+k6B3>HcC?sGFcLmlz!N2#V49>ywbaQ}~JFJ#@U1!tuU zI2S9UZ3`E5(#6_I!FiX4fOKdiQ~mXiVT_~X`s4zLPQQC?>@GQd>JL5k?i=C7ZY~ou zL|c7zhYR|fp;Wuu@qfxAyZ<1CG-0pb`@vqAQSmq4I@$FhJmGT6+aY&}+Hqmv zg`Q+n0nJ~=fXN@^l#GNZ{2vzp&{rRuES31{|0zU1J|0)-Sg>Q`=*05-ub9 z)bXcPG`5qBdT}JaOI<8*JVP-p_cx?rp2%I@9oQl`OHxG&3RX4*+@Rrd`F`E%`2QPD zBsWIpG)xe`RBoNXlx}bx`B2`P){;<}x^8x#*tF~dr-DI1A{Sao*|sn>{p+*-;L^d3 zFd+FVryR3)dci?RkwAkVXnZ~7c{B8ul=b}2X6~zQ{qx~E)a~dC2wOgK*HK% zh>xT|ZKQx_eowgynGqC&oT@##s=jO*B`GUs!PIuRxDUovwr%o*C+o6@03l~$(^5m)KZcb zLxe+BQ-5nL+9FzeowsGmMm0Onk-Pd8_p@8lpI-6?T^Fr9^7^3UB17FY*B29={9!!d z;-|YzmMWy=G86<0$O8mV-_u_Cw|Js7Z2?rxi+7rrEend;X5)28V?mvg^~5w>+&~o~ zhU))+5WHK7xqEtz?miAGLd z%wWXNokd5;&DNCg;AYNz(xhM@Nl_V5XL3E2HpbsqU)${pc|VZap1XW1inSznymnk3 zEAGvOI!`Wm?!^WtE{AcfK`Eq9IE3oJS>*%OpaUzeH9QZ*Tndl#@VvD_$K1s25eY`y z(FMI)cZTtnOm#l@x>xPdOVw9v4LX7Nny7;frk(}iIui@qKcUcacXSPK{Yhrt*z1fpG-I+az0iJT zX#{%50E{O@C6kH=&U~LZ9BU;e+8tNzt^oDom=US=9XJo)(@?FBm=>gtwfmdTO*((V z&`b$yHGT$|eM>xA&T{xLuP+}a=9XxvvE1L%wwISGH+RRB;OR``oWT|4kat$ofgnNG zPzeTEINp}|q{|wZ4uKc zbQ;m$x(*v>3%7m~w!r7Z!+(SNP8@^$Z$Hkvc&Kvi zZo83lgWLdA53DJ8Ow~qWe9j{SIPFG^kS*M&fanwk3vbMTpKW$hM4m!X`S_Yvmag_^ z<(?07u(xI=apzEFcC-jr7vK9#UW!8EF-o1>uX|n$M*1n%`4!j z8=aY}pp1R580mr*MQ6C+;-WL_cm&mw0sV!UUFTdX)KcDpUT*z?dkwPUGiKBsLwAG}%f~>VilYD$t{x=2q z01u9074>aD&hi!aaTwApQh`cPOaiDZXF3NcJ=EmYE?dIO(G2^b-MOeEOaW!GbOQ11+fTBKae(3nwzfO;cgmZ5{{rTZ zITcd}p)u{Yj#fxF!HM`i!56RAO6-cG<~pKf<$NL0V!O348U9=Kst(}0-FB34*Kex^ z36(~7=WCQ2FErW-t(j-87Io21t_zb19v~P4RI0hQw*flSA;Zcvr}p9harNARSa;t) zmDh+8k(Fc%A$!k^>_j9xJF+seWhA5QJ+sLuD|>IUcSvUTmi@cW!uR+5(ffLy&pr3t zv+p_Q-p|DQ>e5uRKN96619fj{&4ub^?9mg~Umx{K96}jerroEN<+wLXfJt5FwmnrY z*@x!OPRyT|7b5ii%^us038BgrBgeOA1<9L&3$uT^cNsU14v(hVPo^#0z{`-f51jMn zG{vXZsC(v;?Y3T=%J*AQL80Cp2Ypm3*T-RpoKsi-Tb6^5z4` z+2MyiC4TT$NfeztMCZQSzILkBY(?GjjtFyD+`G{VvofhyZcePTguJuO?BFg5Hk01o z3GO*V*egFEkj~3_WD>3R^#O+g>xWuhek0f+j50KJ-kmMhAZbY&PT7={bl0D|;YGAM zil+JFO#Iyc^5M~a`U9WH(V*9<8^JFFUnp4I+vju4c=K9Px16F{kXR@)mp|A~=ujnz z(&g5Oq^){O?SuFQ`K=%G%jk=ZQZDF}9DAS-$nRd90CHCtmaN59-kh20LpK=slV)wR z@2hoR>%@_a;t#cjk#oE+ioUOWh<-W|8F@B^NkH<~6Ufb*jUBn1|GMAiC1yFEDV8Mu z?LKLck=x^;C2+&9?A;dBcC%;R|FBkT>P^6>GOgIQIgCratr_Tvnty?4|xwRB*+dbwx6 zZW=cxKz+8%kLG@n}9rIPKN)Mk4J8yK6LQAfYgDoiVyP zKQj36zJ%#Y3uwhCNj&Fi=CcEwJV^=yakG^N&4@*(%H8>T^7b-=L>lW^jnqZ zroyN__z3@j_RA*!mi5K$}lFrgC?DMzo@CEyQx5?VzubC z3N@FEvZsW?){PFW&kAyr1tnhrYX#Ne)4xE6cc4gHpffy@Pvc=@neBC~V4S79I6=$7{=XXRTd(A`$V^;2ls5d$yYD z<*<~gwfpRI)qqX`gX0Fdv*N1VsR6Mzkc67iv#b&{-r0woZ(Bvto1%+s%k|@`O{;j3 zN*!=1gW>ZmSB3d;Y_UV}*hmnacB+=Sf-pf&T`YdsD>5VQm-K@anH2$7c>{*t8^JxZ z3H>z5m)H!A;B7mg(&O)1!M-u0D|<3){P@a~XF@UKBDhs=i z7B7Ew1~+zaXqiRA^lm+1KIbLoD*@(5<70T$KYehNKwVeMtZiNf5~p?|lW5Zvs*J*4 z^E%s2f(_cJEH&*nI&CNJM^TODef}=*mhJlWMFiE85P_Nx3*P?YrMN~?)%6wvfogwG zY^fyPRxci@N1%*h)?gduh^z5Z<>E4HELQ3avg#DJc^9ipeeMXU-Ays2P4eCUV1b^z zTVY-y=6G^v%gBOMRBig|OYD1|A4GRelJ`cX?aW3SU5L}Qh7Xye#|A&TN_3ovg}bJc z?PEJ><$DM&xSeUAe&{t;o+C|gKIxj8>^NOLnL3?co9%ohN~#EmlN}sY%938ckjk`#6c@>a`!~D~4=cZWQ+Z2b&f-7Q{tq1oPlP}g!5#!; z$|O+%*^*iE(&*$``%tdu)wtjYW=7!?@K-l=WPM^?^|<+NS<`GW$otk()z;xl7qCf* zf!%cr_RY61mAMqYJ%=U#$9BZ~Vo7kr{RZrL=xNWaoq6(1M0mPnQg%hBuaks)vTBw& z@XxD`ugd&1^nM=RNaFKgwd?ltm1flr5)*RERIm;1u7Fhh$eF@Ydg-d*Dsp=NtL+c{ z);petZ}IF%U)}-{waZ<~;@ePkepY2^7BapLfieEgI*sXh>4ZTPQQpJ`~a$I?i1xlArJ8p%#dH z7|VRL=8gH#yNE2ysMheds>OkGgMJ&dj_;_zc#n7HMAhU+tF3FPDXA!DnaOW767Rx= z03#XiO{*yq!!|01Op~>vr+7^!G3nw@@hZeHhR>Q$*6X#OJ55DqH?kLvcN>?xWsY_4 z{63v_H$1!xnmH0r=b!VsDf%9b*MM7K6FV2Stsi*_R344B#NlKcP$vj4JMFQr%6IN% z3=c6Ir(MgOUd!FRt&=V0Aw8`E!VR;UIIi8_hTlJwipfemA~Fa*^J`J=I z;aSZp4cW7dSk`O`c;2ht1A*7OS&CaF8SG{lBzgYhNG~^Y`j+^qD7Y_m3++k{52!ui z6i2JO5Vx-LmQc7VvM9;uq?SP78A)W3(!Gd6FwDkEmeYzP{$+L`=#ayw!7P08`_MIP z?WeqBn$!%)hKqbZVs`=!Lh6EtzGHq^PSc_`F4HYz^@ZP@1)O(TZs#u7`;Sbij<~Il zR}f1lk#G#hQ+w=vUzc-rw#eT1d&oJw#~^i8rhKXowuSwhr^dh2?8G-?%bd>PN*Rd9 zhZ2l(1AjYG2w9E9?yadd+iUCNk^2*743o^ zLt85*^YKwt3i-L(Jxgdw_GNO(&PT>pcf!6`k-X)t+Hacdc;`RI6)I3gs>kZrM&~~; z{KVWF`+9P9_5QB^bLo^+G1n%)n=gDDtU9x^yOFW;rTwj0l3I=yx~?^fF0uJnjfYQD zC*ScYeQY<$BX&NW8*$VDok3Q)IZmdXZ+zQL<$36B29pbo9~ukigIL+$XM$x=gYp$c z_TICT*4<&{cYEJ?ubNP%;qRZl9RJW0ASmE3690$N6Q|5}i$mY+BN<-604rfu7u5g8 zRpBDjgZGoADBTpvT`V8Q{f=eG|!-r6&gSDbYts6Cd!i4ve0>Xr0o7p)*HqXaa6 zfKta9iolsgOAE$I#n;R-Y={T)>QatE5J^581=-pFi8c#or);?)E`zQ3dTEn=)t!JcL&FL)Z%SXWsWz^|m zh4q?efn<21zMq8x-85D@?}r7Duk20?6>>dO{A997=goCu{NCNBY|phR=hc z3VSSW!x11fHC|v{4GtpsMawL5s$&w@!ZJuC>6JXp7@ZZerv$>>qo?|{hbNBV_r;w_Zu{{Ph9NY-$5<-+(4jvC1QKYkaq_$T>S z@eufd5NLRmnC}Zmz@Grn`kSoG!wZXu^Y}()Vf`#->qL9?;??Ry1VJ`IDaBvDm)1ml zUt)L%9CO}74ZNoEN>}eYKzomR-uH`U-N?^5YJv9p_PwB2upncoKEjk66aYO?>c_aM z`MAsjxV?(}97GSREF)yE+Os&A^5cL0ssAEEb|`-Hxy1@<=t-IUpUsNFUVr@VcVvTp z2Nup5fzDa@Kebv+GCOLr)?6jf$xqj&j{R%CI-DtL3x!rhlI4E|w@;)`LX%Q$jkjD+ z4tJL`6#VyvPXA5(kUji82AXp#)?J-z)SM5&Ps3d-_1B2Jez`oTQX!DYEDZ@X}cZa{~jw7@2;AyHu<+~hSkr26ra=ha7B$M~^e^2BRgR|&P3S7|M zw120BpQvLKLv zORe%Hia9E0_c4w?MSgWl2F1}=bEakgM9A?}IgCPMY5eL4?6)cXts8QdUPs1wCscT1;LMsQz@#0#_jJi?X2{z z-IOpb;{vx)ko-U6f9s3yNgV@+4~D^u?+og%SO^DrS5xC*ZPFAwrrD&c-k@2xPm!-2 z*QioMg*j`*+p!%}XyA?(laZL@e3Mp@*|05k#BgNEn>vr9FE=c>CL<#U%gbv%F_@Cd zZ~vJX%#Wj~|5o(m>Z)c#|6tC(K^3@>bMoj}p;cl`z)!7zS({NK3nkJG_6&WCbGLG` z#2hEc-&!uWlbz0#eE!X1ZhN4eos}4DxpJBu?K(gHnv{8L=tOLJ;4p3iIP6KcePjN6 zpWP1s?#)yUu-1F72~AF(vfumMGV@{h)M``3HzV9n)N+52o0L-7pA)s^1GAih|GNnar{dtp^hqi9tk52!Vxs-qAvQVdyvP%tI<9F{`7F$5+8VZm# z;w|z4oicW(Nl!aM0xILe9}yLI`5Eb0a{oBJq_`Tx9=IPju{gr0NNs5|-8uq%zHz3|Z!#PZ{=}+MVU(mtcQ8_hpp`bZ-uA@oURwsHbobRef%nGQVcD zes)lClJMHZE^my)i$KYu9-Qlt$G;%LOpS=m8x8J&n0wpS5p~t3G z>-Rcpnmt@BhPKdszz1!ogQciUGD}T!o%&(%Q2~0a?RTKgE@$UyPTDW7g#ZhK<(Ppx z^70?dGIT#Gj*KDIwtVe!no~GqnlaJURr7c+ii*&;DSKRe%Aehu>)P%5rtf2pT1L)% z@iK{7v%J-JpKAy^KR%qcy!Y54ZQ*3%nS$>O8Q)O|X7cv6np0E~rG2i2xHwY2cq3Xy z6;2dTG+$g@yjIa$5IYx;U;lB;Tm{tsLqAQek+Jh*i!1$+XN~=F8rhUP6c5g>SQOi( zP(FOASn{bGy4!ettFqUYurB}9*x4z6c`$Wn{%`5~emF;q855w7#gLdfws!dQ~{y9Nm|l$7(5@cA)WNuP#fVjUJFpiZql){_SciUTN8`&+_^FY*j_wd=ypVxk(WZ`LehFoEhEYr~Ct| z-P^~TQxj8e|F#TfYL1T&w(|%&+lxkD{vLh$YdDX_%$T($V(d`74#}X>h*kuj3<4Vm_yzGr|x2D7w}Kouk~C zc+}q1L=t?GSg=T(%$1`2m@M5*NS&c4WD{m8Ip8d0WAf{yfn0M9M1H;7eRUSqX9o-G z43%n6wht^$9geq6N0o^6T6}t$N+a?X$9|7|qfsWXNzi(EDmwNi(Y&T6tuJn9D@-yh8sr;=iiK?8IN*9XI*JM3RFQn1Y= z8{Q0UST9kx2hW_E4q5s2Axz+ zd|(LF-1dqx9$<Z^#w-tJD+c46t>ZX6w5JU-6#!G0`0UY-_Q!^3>6xS@$Y&F}i|=XNRg*F(yqXXFPT zq__6T1f6jbOUHV&cJW=@Hdybjo;E}t{FE8q<|qI8QzB!5mN$kcn=k0jAMS=t2W~CZ zLnc3p?(L(DH}4c`jyL9RI`!=rS?}F7S`7Hm@GYv!@oxspM}diY$KQBHMn->jc8+Ho zZ8eRC#edw(PLRkBRNdxZUom^@cv_NHC;mP0V2=5$?d-_y?4;%_@x;w-Bk?qaS=)7c zN&JT!cRFaT__@!M(kr#1AvW^$z`0s5L~Ggk^%X`p$N%g`i?N$Q$946Sm##eHZ`m+t zQnY{_x=!LUF!ABQS%J(J%pvXdPfS+B*`_L5Z|&XWsPVvWMl{mz@#TDo1YVEGrLABh z)EYhSAiO0?<#F^*T`YGyyJQQu-aF4znf|4Qg~4Kj2oG9`T{fTk`$LbC0nE8Z%&xJn zR|UGUs);@7!~+Xvv96y4(-&^jy9h5Xx@5}J;AR33v)6sZN&OW@-&})F9OvF};?3Kdw&yY|sEm5M zR5JY(G-;B`^$8x61(g`xrO|%Ak*qJsw$~j;bT!i>mZj;h9j{)yO+eM##7$)-MB;Ql z?kiW<>jYJ|JhGZoZD#*g0`ZtBmmdkVN0_z4T01AbGsQVI9%2lGr}b8MTde3a2-Loa z8ReHm=Dkks`%-!m(6*0FT5hTzAd$kPf6K2$xG~|;*J6mM+Ud@9eg<&v;=jb{aFrbM z-0C>F>gYz|(5Ftjd*r<|%%aV&9sPgGzU?6&&+JE5fhRW6%*oCR9+@8CoWwJQ1ECI@ zwc5}A#5XfjDfZBq8P;BFl?cT>6#XkC|DJAee<;@O%`L}2au&90S1l($&BjP@#NDtPeF014W4~Cn1@1M#VqR`dr!4%weu+7 zK==h2iJiYsB=ws;aZan^iItqW7?U4mHqE65g4^5VRH3z`(B!CeMiO)rj`eHe1*Kd` z7AGpB%T0VNN6>{qf5f_9dgi!Uyz&T8q<3-HWTm3-uV?x0%8Rd`6>hWYcNf%G%5z#R z6F(2f`&N^Y?_77fBLY2giV-k?st0;*D!LOUvnFVF*aTJ(Cki1u{ma_-8pOwISa^S0 zf-b1Y9F=PH{Z5sIW9U%^_`Lwb?0h#N?tx&-O;CTP-YtRx`TfL-Yf38?FX1Ke5ZYT{ zN0D@$xztFM1}dL|UbnIbf9E#k{6HaJ%2LXY2!Ezvu(&fX{KVk|KL7;9WkO#GZz!h* zpM7Dn`JtxOmS9Huk)+!+;1zdVW?EKKslJ)26N$uEdRKGD*N-GmZanAQPLG$#_>l7X zZb@}?ZugCfgSv9Fe?AHNDXS#AuipOprE=pg2!YJvd0C;!<`xrmyr$(s@CqSl!dV=e zS^lN-T}WO=CU$AhU1h>qQ0RI30xV8u!H0wrODASzSvf2&*V862xG1}|Zg|GuGGSK> zT|8MdIvhrnupom_rr;H!mVi)hPvyAQg`$$V)w?ziz4Xt zWzy|UK0K3=?5pWTV+~Naoutc^_4Z#guVv-iVb#Xd`y*tv-#$mg@{xK_Vt;3hmVIAq z3zE4Z%jJ0_D4|qspPbv%3)L&w-nNG_bZyTooGMRqtXs6K3q3eKF$T>BuJO(JWQzKv z{OjVxM{k0hgI$ZY1pIf`OzH)~SCUe@Es6g-lQ>*0yu*f$SysfytWgvuID#v&Bn|ey zbs*P)noy;VTJfPFoR9S|8g&Z#atr7urc`C4>J|RfaNP9QUt7-L_1oac=#mtc?)V4L zomm`zqyxIP`6Ak`Of>7`!G}OL|-cILYPI(qNHj#B$fNQ>=|9IQ2KSyv>Wdk zzY>fr!b040OE9bLzyGPYC5mq3JQ&<&3V|^8Af)%<1JJ*`EZC6aqe^qd1>9ADB=)^a z#O8w*Bv9%qgP^yZI15SpkI9S>fFh9Rst)?Jw?A(`n)fX~TmQn3PL;0T94_;{i)!GB^^`EK@xvueQ1{1le9b8Q5Jq_0*A`#1BSbfR zN+O0x8Ewv_1M!c&Z_&T-Z9|ibFaLfoP;g88Lt6PQ^WLa?94khvfzi?*Kj(j4-$_|L z$|d#FEHkW+Wx|_0>FJsfP9{}8=sYwwQ>MXE%MQcb%%r(>eRDHo^D~+laGt&SXB$E* z?;7LgbLQrMdU2GjVPL04N2SL}nWUs0U z6z6@V2u$l+i-{WIc^|C4bV8VAUucy&)YbDK>{EcUPka?I8lN|13ewF&Fjv(MX5^SF zUTkWjH<6uPfz;xF1B#TOB1Lu;lH}GGOUhu?u)QXD>spBpD?Hx}>V&s1>V%8epu74^ zhXiO&(7El)LiSL2r~Mp|^GcIy#_*^lGwzPL2J4U{{i~C(;@yAARVIQtHW~FBO1V7X zw9(CbF}40I?O*8n*grYDu~?S=Ve;CjZ_2LUkCeMN$>~Qi1)5^&YHdBAgc!8#dR!g) zuqgA28_y<{Ls6c$NZQ^^<+a7}zf(}e6W!nw)qTrSP+TNW?N(62yynsVEo@DReX(tk zaw>TsY~}t`$^af@B-q%$c_&p@=(TO9vb6KB2x{OYu|PVr88K^ZvV7r>JlVn!JZYbP)|$38Xrhytg4r((_%-V8d)M#j}C;iGGv3ibdW@j6oh2IK5LZ{;Z!D4J6%bNGNwXJ0zCI2)Vuc_N0pIQVUhr zbuujPBHP9xI^h(P-?nHgmv-8v_jd;KOO0qX1vMZLS)@A2jTPHv_7fSqlSTy~j?O~V z3=7nA#{>~4oWWfHVHBU3?3#|VHY+XP+MW)P^5Q?wAP{%7w-HeIe!>yl@OSm=^zNZJ zahX&9>k@~4jYs98Yk~FRlft&A?8L2Z14?#rWC9jT@1_S==c@N;ckijZRK+<$TYC2a zTtsty;KS5X_;vH|d=?t>Cmjjaj5W~|C0`n! zpcFM6`czq=Jp3Fjx@)$)VQCm%aT;F*tyRviis9tdJvzcHk|rrlg7I|4m{lS(UMD#$yR8;c=;lR-DA2a5LNV(uute@( z<8PHtlC~$ z#j4O_SSWdXpfFucCjK-o9mEyTQq!sHiG?4#+zhv$^As5t>b2n;G)MhtRhGfbvGO2) z&D{`Pf6xXEG5h1m4&6ZuaFy*smE||n`!0&;kK!KI6KhvTbYX()sb<01FrJ(+*9YL1 zqK|wVl)DxR{LUU9+TShkdZzS|glD>g-W*fM8PM>y(@bFX(dM1|7@9&JN6iV1jk-*S z-#<}~5mC2>cY;x`n@sXXn9u~QZFp#=8Cln1F4UeaAwD0+xd@ZhXY&bMq zcAF3=n&TCm{MFSy`|O5MM>{rWJG)UJA(zf7M`AaF>M=O)Nme~*!_EiF<-1!~n&7pq z5BK=}cXv(n9C!xD9(wz)=JyeOiexCm;gq>*4~hWgPI(fV(2fSnYac%w@U7u6Jd_76`$&nVyKs~OjW$jIB6`s?huBSBGsU zZ0V+7FT2g4im*geJt^U`wd}&o@OK`SMV(@TMq_gwbVi}I;du*ZYG2(Ha!+kn^lVJ@ zi<`6@K;`R?cv{H5lR?|#N1u{GU_N#9U!G9eP)V%B5o`F~ldBK^%N$IZE%NbM8Ev%L zSe?imQrbW*im=1qOcvcgGPpfFoKXB6lvF&QyeGaX5mS|-uuM>Nc!kR2XM`f1{T!zO z#>jX9R~XUP*MH5x;pD-`hdv2cWcz^?!_4W7T{2fOys5@#%<%o$OO$Cl;8sLIJ6^a} zk=z9ycKF(RXQpk&js;ITxyu?Yi6CS&JLQ+u)AYlp56d=PC=2CdaEhJm7EUwrCg165Q}I zOg6K5-#*1NA(pImD^RN$mR|W|8S%QiN-a`%Xjf$E$vx-k&1Di0vFF#+=2{d;&2aM` z-?+{^aMZ1g4!QGZ;?lSGIiLSpeMhV9M0Ypo zyYEcmQN%=PL1|`#8MC4^l2ll~DVv{=|3o=Q9mo$PyE%&)O8RC2g1Y-OQYCWxs zXP0NZ`*S+>Jkhj45}qRSWWZtiPf6F|v3Q%i4{7D!VEWEJ{AvN_%JQnaywvhC;1vVm zi$^#8zubD~xW4=8sxnkUDT+XK~(ncPde& z(UX1h+FJlga{fN?3?? z<5uFi9Q(LJ@ZYS>4vf~b7c(rQejSrua&|nMQ6O9AsO;Ia$Q$TN`uVB(i_teNLAe#7 z1V8PSUJIKe((#0mzXPc^DR=!#^-?2@CZuv>N1xF>l>dQ2E-U23$00OADlYWO73xfq zY}&tJ+O|Qh&0QI{D+LsayoZ#F$g18PSNk`hZ07@r{=^e$>%WsgH&lj4k$$5PWyy zGWT4yS-8T!ciL=$4c;VVVZ0*VT6t%r_;S=6!v93})O_+#V$6 z`;)blhO?qq{r&U&PwcZ3$0ez)NBb`VGCqn)yXA)yzrf`2nt0c&n`)TK)X^MVeh*bX z8C*;>G?vV7nrZXKsDSUiYx5%X~O@#zIr|;Xl-$JpkK!k6X2Z_){IiWy| zzaM4&7*}X;pT3A_MpiC&p!VGO1PW0g{Q$kPabfWIO#*>DxZ_3rp;0`YvRmt69@UE3Lrz%;U)@v%fXhzpQd2dO=yktA-Mb6V7)N?P-E3*v z67Tm}j{D>yTBJ1bfl`CMnfipn;h#G8D9BSP5JHNoQEiY9-8`r^UQrCI65QMHd%q5W zu`z? zKz1MG&!>pvO%zi%yLKyQAHbr+(YcT&@!&}fjSg3S<~VxSICf%`Cv&R7E}t#G#jO6a zRl)l^0aBO8HqV#*ck2HRrj4!=VjDkX@tI4(KJ@dM2>T+n{w9z1V|#SO-8yh&R(ri} zw{l~tq*)f{1vLqw-0K?7rFrL*om1_z-IgP#ETKK{>z>j{bBmv{&@Sd=I1yP z-r@JxeHko)tNq$#>Tz)T*t{)2Ge1duj9^y3T)+T5Vb)9NjbL_(RV8Q@AbkSVCm_WN z^*g3_D^&GXN|#l?s_w~Wm6|R0R5&Id$1`)^T`tEchnJj6prVY)^|shjMxM5Znx(UnA&x`b$Gwn@g^r z9eaSBIkF?&B&MOEVZO3n-l&9v)WL_*c~UfJX>gTEGL} z#|pvEiR(gk!^1+ybrBr~HVz~A$Z956v3DkV{XI-G&Q6It3S$*4IRACk91K+-{j5Hl z+S({^u{u89l^N_;*_;sd$Ugns;C#@0uVdmxX!nGGTerPX-A!$?{j+yd55K1;upS*9 zEmsTeMXu*D3styS2`%u`XUk`8?d4x*&y8r9ZCMYVtkT-DqUm2;p_PH_kXT%l0P54gL zy`AU$gbt)u0N2!!SPuH4O^6~N8c2@mFuCT**JuyzdOHagH`_y^!lor4=>=NxHEzS2 z+L|sdq8dyJH^*mYhMBbmchM`f;!h8k{#2vsVMnphF~db7bAtJq8(cJ?|Nf!E+bJ^7 zNkT(>WjMdI`seqev%qePag1RV?@88%%R9T24N?dVKI_XU7DJ3$?xBSYNi=^|3+C!F z!4dYZ!NI1can<}gXlQ7Xk{LO>C*9wc2M>DxoGyEIwWXoS`u;Y6he>JH7uO!SyS>$n zRP+y3#71280g?R!oB1t=?&guBtz-8`-_Q;Piv+oC4~Y9Z6&8_C=gX@snY#e+>dF4K zGb>x$P1A4O+}ymp0%wjNEvvNR?~#JeUzgtm%-yawN?6toaOWfZ@#Y%~i;Pony({AL zSSqvriSd819i>G7%1Xm#U#}AKUiojG@R3~?Pls^5i>u# zHQ(?f5e4E9Qzi*PE#eh$uzl3JUddl!rHqBTfLLJok--u+au!JKPI+E`Ju>pZnjejw zQYbm$P$jU?et7fdr%&?Ts>|ep1EoVb+x;n?p5FEL5IU*)5#3f48i>ow#2S+MLmeCI zzlZk&>N@CPQ0eV0ot*e~kvVIyyOYLf;=&*mhW=Xn&(T@vF9#)f-|frzdzE7g&JEV@ z`bt{zwV4wHmb2VlsmRJt#)mCkEXPDX1Dr3M4mYFKy>J6$geDpLf5}nC)p$r zr!nc+>eY*+U(?HY zG3h4v7(KP~hk-c&m($B_54U_y%m<%)YwykuspXl@{%w5EaD4~SQInv!ve?gph8}6e zl{o3p?)B&$f@{T>XU+1;CKcd=PRe3)^VU^J?J<^3L$X^(XrYiGH|7;c+9MJSVWH<4 zX!%TsCl58rygnk4k9UneM6v*kF3DSFUxC7bex5n(&G)Z%jan~#-prh9o9m+WUWX`t z@#<|1dLRec`|i-Y?wPaf$wG=$olxk45ufc4MbrKgbI~Rw!&yF7Ozwv^{@I^v8=dRQ zz-Hd9x+eTh)DZ7>Gsl&YiNb{sCntt^*!8oO@LWccAao^&Pp9~>Eru;8MltdzN^N68 z)xpN!dDg6dCo&U9BrX6mPcPl3pfWj#-PTrVq1HXMNZQCeY*ADsb{%!AtE&U&c`}H5 z9kucZRnY-#il>gwwtsI>K_Gaqt9aec)>fMa-zMt3v)((hD4)ENBtK7kWn>U40d|QW z2IofS$nJ5H2Svi`83VOfM3IQPw^J)Gu#ee5|8_ruS+`^JDy^!s-HE2b%)#~c$tyZ{ zu#~PAq)aH>Vp0H{{%v*p3zDg$mzbLQLe%6_Gc+#&`ArTZg^+r_s#~?&{+?dz+Wy>D z>d8szFmvJqCp34WM^7*!)*0~74n<>h7I?&g<{IsnIX zp!dxoeV!EZ?*owx#O}LR{;Bg>Ud8E})mwnby^=Ab_5CCofHa3sS<{AN~iri;whAZzKMs^S>nOO){AYCgYsRz84efh>`by#_&u+JT5G9iLrEQ zK$g?kFy>$i3x9%7iqI1)8XdVC@cVs{|Q;@v4r6Yv>Hd6P?| zks1cjU1UWAFF`lP^`RA;mqIf3?j`7tWikVxxC>w4uA@)>EDYmX8e%$O^h>yl+5*bl z2~~`_pbSg0msNXEn-b!29qUWbsif(Aq0pHwLANHi3CEyJM?79zbP4y?K7c!itf=?} z?!sYSS2}`Tz}{*IhUm~=f{yYe(-R8)?gjMwimj;z^*s*|&{;4p;Z6bNDoUuL?*;C+ zm~>}Z^$(FL7Q)M1?U$i*gF?T40X+$wyf6~uRVEVms7tsro~8$orcFk46j_i1SF-+x z+srCPql{#$$fdxJrNm1wvc&wh>6;5|vT;}wqgk?%^$M((OA@~crOn?EMe_^VD5iOd zbOlALAOPr~U!r^fRdRD0kVz%PWt-p`cRz1gGa9UXq)b-XTts3zmcSa|{h-1dy}$+p zsEdZJc!*p4AU%|q7V8tPIMxRopZCRLYrlGRTG9j*BEh>@T>?)BH8#am14Ea{mu;C503TLJ6*h1IenX|+!KgL$96Z}4 z@P}cFtx)g+7vLd6=+WD0g8=O z0q#Ds4ak*~Tw1w~J%#~;`8bVo_XYR@&mi!wj&Ev+Z**>75{s2D%jI4%;a=s)`)|QR zdtoei#H?hPi0Ao#UXr?8YUP|F^H@dp3#k)k7EKqsjcR}tYDt*?hYv3B&RfQnR>5sI zKmY^(S=6kLGHz{TM0{h(e2Ed9;fkqHM&w?^<&bL_(FAgY@kmCv&R;O1wjas}#V45| z7b>ZPg5jA$&Q^o~Ut4;K_zt3?=1}5OvtFPRK%@VjT{j9z{D1A2R*MF;olzl*cQ003 zONA@(L@eDDxmtu5hQf3IKoyn>B@WT0$Gt=irEfRCM&fsAt*!&WJ_tyQ%3WG3Ij)b4 z*t{9yX`P>!aQ`PSN)5&Rzeg9iKgNh=l_UItAdUOzB|-S@4=CTRh%2po@wjg|%Nt_W zcSy#vU5=9a+2us9K;hf6TnzBSjOLRgtV6;tyQINU6##y=0xrGI#p7V30x@l6WI}w? z+48@!XXdZEy1G{F-p42fWnSf>Uh@Rd2i=p~0$>AtUeVm4^Bn;@W9Vn^0=a_7O)l3X zJ=3dFnJ-M(b74QL1QEfAB>U5nF-X`9u@#}TJU1~TqGf!wu`H5T3PThNzG%XhKo`~t zgML5a!3!N(JxUlPNR-#Py49X6X+b9Armtrzh-OKrsKQ5ibuNB_52W+8dZB}^m%@h} zi+dsK?17}e%?V50zfcckEh@o~(`yUhq-BGtX?=9;e|zMdV{wS}xo=*Wej9zXAKIua zN$42(^nrKqp;+Dj*qN!#3PbRI;1zWpF})PmkAZM}31iOjWg+17XwfCS#!4NQVJr`u z6Sp;>nH)Z+byVtqYt)>?ACPmBUtr5oh{6BRlPKtZGD})-Gz>*qX+!ph(KygaSa>Ll zYe~QL7Bx!1=iF&J*NV&_gWv2l>^k%qDi0iCA%uHYYd~KsjEU|h(YfBExFl&fBrt3s z1+?c9pM=ZlA)~8)tvOinbDuFhw2`1?qxXi>Hp+|qWfbGu3T&|=%VC)_eKA5 z_n^W{F&2kGmY`&#kB5&Wj5c|h89tKv7ReRP3)#VIrm@VGwGw6qx#8NH*MCsKXMB`C(M>xz85kg`gk#?Xp|) zX6zW>U@U|{zFlCz$a7R{%M7t#GEy0dLOW(mUQF$^g<~LW7$#u|Qy=ASV5bJ8O<__BmQi?JjcA-2?} z(ZJ>WS7$~&5W^lL2bC=M)7Aj``*3m1)>R{*q2kPTM~W-Xg}C-d>64AnZ1m8K-r_v1 z`$dHpW6TCefPyVM1c88imL_5JNTxJW3{d}^dy0T|)(u%TY#(x}uqbv%S=iKqtpSFj z@TKE*{bLFcHehEGiw#-l~} ze#H3ax$Iu-O$djgj%qnQwgbz^%^1B*sgxtw)n#A^oU{h~i$DPI_t07l9`Ut6D)~s@ zIrmw@toA(2uSUL(yP?}a9>$dX_3<+dD1ZX&Xq?ZXa6wLE8O3zMCE4UgazFMWm^u=Os2LujnVQtzd~Wm=h?t9gQ=C@FE@o zR~kwiB?80{0Nl@sU%=5(E8FDAQY@WG+RFpO*-XZ;Q5k_V@pf%z+=y=$QfUo4&h6yL zdlwztksIkW7%G&3B`}@Tkzu6-_8CTcI#kbS+HW`*NQt@RjLr0upyXb8m9(p~O%*_s ztpB(Hjxv5Ujt64qo44ybKaBVaBiQABaN+tASQ-Jpbq+Zi9SgE>QNtA(`xfuOw55cc zjUo}wZz&z+sHKmAt+br5ML{wX&eyyVHL3c3^%`5;q`l{j2$mo(X&e^{DAKjS+TlHh zs|*zjn`~|)_!B`g#YgAd`t7>s@gQtMCxm*ymp$e&Y`NyG0Z8u~6*sL*Ps#a35s5ne zg)0>LjxGD&3hHgTWZ}n7@HO*9D4>8^lF@`52h_5n*DIh%W?%V9z5fd_pHZT#?`l1I!?f z#C7_r!-Esx*BH{d^(alLk>t7%5goFq7X>7p|8VI=i64?fr>t$(m+16>(>W^W$}4Gd zPQ9B*MvI>-rhD1474?W9%Yoys8=Q9aGq~*{?4Ho^kl0Y7M+|WHuOmtmh(XJ#_Z&Ii z`#i{VKUjKAHp0q6z4TgOWCKG;h7QH#?Ryvi5&*ym0RUIxQyUeh-nnfuIFI7odA?&~ z*{`7XS9sCi61Wc?S?i-OVJQh`v26XyBc4X^Cz8e2&&eGXuk{>=$g@x_J5RafAjPv@ zV+c&bIBD44lOaTWlSq`tV+7sxK7wYg3+G0aO^=N5o-S9E3l*N5@d*rNPAazdlE{(K z5{C48ln!19K3&S)bb5#DID|Cm*aa!>^)4R4hk{9I5sca-k}-4!Lqm{5BhKY|pj(i| ztmzF)tW4%X&n66AGbuxqmk28|!0G#0#g8k zDtz-|(jXU|#o!5@>Tt!`-o>r+N$;Ics+lgSM+w{pOi>{BJuX&icowd6RJ&1lV(%H4 zrF=iRUd#=a6Dc5%#=#PSvp1j0UAz9gK7(UZ#SP6w*W1l2!;6opQ zp$N$c=wx97hQ7`cIrR3$Q0WmgAFGiY3CUjdH_c%QFsMwi+(d*qtk1g4WXw=zkZwY@ z{@h}k7A!~?074HXRMbg4mkw6!>s|Z{Up8QHFk;z{h%5|k^eBO+hc8=4|6GR^`5Ee1 zF#PKVWil6fy5O{yH$(|Vm=8*}h0f4M2^M68RC|#OO48Z$(6zSn%n4I$>ouM`pS10K zQipkRJ<2F#_^xx2kW-{*sJm6KXK8@j&dqKG8wu1`1Rc5F(C%YkugH;^MJ z{{n=reu0%ICVE9O#S^w~9Es{gM~2hEL>}{>M$r3^{>A5F^Xolo12rC4EpIG)akII0 z;Atc1)Qrff3wzjTIp3=x?d4IG4o@QM}JJidmEE8x9^aq`#D=@-?I;^fP?Kttc8Uks=2tHV7X5XyD$V*~qf| zxgI553_`M!n9n6E=yf7gp@Lo|PUti|JdvjB?MZ^qEMtgbi;%AwHW5vtZ#V-Y2zz-c zgN1HDO=zn3$iW(;i70Rl3%XhzCsxYLk8meJnD}(b6p)JsNiKnNmneMqs8%t}<&Gyw zMcvVp%+8+3^LbSeD-LCOrpf*dNBIeIUhH!l(yB*IxKz^pra&Z;lxjeqJqDKea9?c; zNP2^C56(V0n1I*i$jI|jqDutu`K}t)JvmVkA3HeGXsnb`*AP;I@odNdhotT`O!gxEB%PLiV((Qd0-2WuFbhQR|fF-1#+`!cCpK(0D3|6osd7s zix*21KJpD1DTefE^LY&)19g0mT7`&q|GDk0C2-_11YY}BrR(H!jqQ0VRTR5Kk|?St z)^#hb`&VBPFi~kp{jTr3a}!-D6CFK7Pk;$aNq4s1+grq=l1~5rRZkUkuh=Gi%3Rh( zlEvGdckC)lCg&%kk6hh^l&DftoPIXW?Twb)6!16+SB3Zq5y+ z`ldU(m4mPdR0?cFxIGc85AGi$0xLH{dWkrxYof53AQ09xD#Ar+-HlN{%V=@M!XrlL z_wJ2t0q%MFFh?f*>F)T?fD!aXqy?~yL-j%o)|Y(3ax1w0cR$`Vu|MxGT^I#Y0m~j! z!CAI7cWgJ-C?Wh9NdZds`>?SCK>`Z|0Hs4=)P31p!$7M_3ndy-`IF z&N}J3&GjFE`hO7GCTxB|eR@Fs2U(W7mNf~N2TK*2C&Zusc-CY}vnFj^Wp zTHs>z78sqCtpyz&hc0cs3=;@N3RcSdDuW&H?OcfU{Yr*!I6?G?eW`+(5|28>{|Ev|^}n=lw_=|RG1_DcZV3n=Q|3`7H{(;`u)xj_AjKo|;I z_InSi9Yy@Rv+95V{!~Tqw`wW@mDy4%hpT(0CvW0C0+K85kdA=k!q}YvV>g?_=v^oN zgP)?u1-7M=3hYF0RegaFp65&N0yNA}WVJ2n!}|GeL>4D6 zu*VS&A{>Cw++>5LSd$W#>=K|LWnf4J@2R`0LVA6%0}E6s_P(cc-Lx9sqdb1tD2Sf6lr^Z(uVD z{1l;jPmUluE6B86&p||{wI772b#AeH-BYTZ0Bx zJ-~YrelyWO(EUBqJq@Ou+l);*3{+|INGRHnL#|}Ay=dHkC(D^gM8RmX3?1Z~~1f32OsczKg z>UPT$EL`LJ1E|bmt7F3i{sr()bAMQ0KygX>C+*0jX@(N!k6bs_#k%R=Jh4ooCv1KB zEBp6-L#V<#pudH`QR6#s>e95UaEZN-lg5|C#CcU3xi?n!IhUBnU#JM_vVM5i^?n9! z#u_ab4eBV|1Awgxk!FU=jMVcN^4WlXA;@Ic;DyZ%Zp^*@92W~u@()yOdd>*|d?Oum zWE*Tj22cGcmx0(+BE{xE|Q;6B(Iwf%;p zXou9;m2-_v0vEUnbL?mXp;;!mIsr#K4wy+(%V?ONRitR*Zv^YkM#i{dG3V=ki<1NO z6^i=bu6urt%Xv`WbOS+t9zg!^ULd(p`Uh2gi8lnw9u7hj=--fbnRDO%6Ob-5>K@e7 zy%0+}x)1$1hylpXBZTaK1TmZe7p46wUX(q9)zRtRJAaOB5zu4?qHs=<0ii8;PzIo>BmrRv2H?0YnbuX_ zX2A79kr(LF<90;+Ub#BRvt3+VTuIR94P+VzDbo_`b5$^uz(0O;SPhGwV0nXfGtGf3 zw1aRbI|+ev?(e+s_{R6g{o{ULhU1Jw_Rd~&&GO7=&b9X5 zClGZVSdd8ZDIQiDSwT|)Y6bG!!cbSD6l~os!*m*~oxFgt)Fw z0fYy=5)qbHDzuk6S{&%kn=hgm%<^vj5=EZcg}&q$LqM^qV)ZKm^nZ_}8fQmfBLVv3 zE(>HmdC>rh$P=9m{_%S$={#LsllZ~9mNZ!kCUEIb?hmxf_60#%ZOxTGH2=o@4N4@k zqa`XZ&aFP&Gdz2PmC?o26 zK+lO|(nVa`A2Q~Tj^QTNi2gF*N@S%!j8^xTj5rUNYitB=3I$f(72uguM}M7U?GOYf z27QA*<-3I2p2+We;+^lC{9Z}{D%dQ-4=mc$z{OF1k7k~rK?mE9u7F1SlmR!rk9E_J z&S!2Kl*dAlKnP%}{M!u1RUn`(b!t+ zPBaZH0RLVFFrcB+oyVdW-C+YR#`cdmZxSQ>+=Xj@m9SeCPw2;|^YcFm-8N_b7z$eP zo=1%>a~Tk@h}C{|_}#_zQIu#w6cAMQ@QXK6Zeacf$q1c-L$5s9XGi99@t4g;iY;e?VbE;A?a{J$ zwtCk@gjaAy!f#Ov3_nC)h^euof=ZBrP>2wl6FE=wT1vv(Cnhnq9@~n4$w=fBRu-)( zpYTBXYZ2Exd-q(dXxE-p8RrxVoFv%9tvQfO#;OO9W3f#Jp{~;$Tcr$8vw|D;=gZGv zOW}`SQ+H>wX25L4MTgppXhG#wM}pVKBL6CQe;(~opvy0?xz2qE4-HlFZ9rsgYM|{Y z#K%VS#d!Uw5ty};jxic#o14lc-RlNb(6R2Gf65N4QhB^^f%B-P3x!ehcdu%ZwX#6g z7>tR#7Y$rQpRTb{c|GOnFg5BpNapsLV#UcmUlU97Jb!7*{9miPp2vV$xrPo)Cz?d9(BFE73XD$DSG1!J^mW|IobD7n8eV1Mg|`&+@_qV zz;XZi`#yS#1+y0(J~ec)xVv`0iWQT#;@it-p#()9S707i1l&QetQ{4@{jDnd6kP=pP1aMBh)@txE9IEeX_Fs4bn-V$msDM!gC zbk5NhFNl=_4dOBqV;X>y+|2H(E4(4p5cdp|*cfb@UALd&!>=}%up zZt@LvIgn7mng15E5Nv7uC3I)d4P{vOXB*wb)TD))sMF#N%8PKCJXbJS{4(^^Smpgs z`I?;ZKri&u(a!g%!&m0ZyS>`4o4ME~RSS_nIR_vXvBEK^MYA4+35mlD1( zthb$s?(R|FXQOfdezN>y1=NARunUX2(%2vWkL#kopg(tNjHN7$YMUG9(5jX9gT{jR ze>AL*!RD#_s`_aT=l^ z427sWlZ3?^^my5XE5D2g1qrJ5-Ue#f9R{}fbDl*FBzJHw+;sn8N|w9^_g3I zvPv$6Un7!_OL@DHSUYDI@a>FF+Z(%=Jv}VT zzgc4(=s_(*tY!odCi>dwKD1^5i`{c}K8zCNTI_ke z7egoc!-chH0lH{rBGl#WZ}qD^g;Sow65EUo;yktSqZbMmQbW#}v#G|(A)BJvTPEhM zh^@TvqTGwZ>uG!rjz6y*lgbgN7nVeIeT~TWl{t!T4Z9VkQI4z+=@>UJe?&M2@T=0o zJve&^PFQ%_JCvs4WpqV#>3s;^Z_ia^>(7t9F5{s7_3KQYO_>io32lSGQn!GcVB}Y4 z=Kgsp69}mS$|eGe!;nu(KZm^Kup}zKBJ9*@UP{z`d-p9LG8i32fXhS}r*h-=8w?|D z;a9kTEBrgpYGpIAq^+W|Kj;%;w_!w=+hRZOS1I8|;olXgW9wBj%N`?@6B@9|Wf3+_ zBV$`j)wO*xbEm-p4*_=rx>bMZOW6>a_xsTkRnMz>TwUnEkr+fU-7%QjK)>w~z znHO#h^f;sA%IzgDQuY5?6&TH$cw zB`rur*U@}YI`1p>#8N;whr1;KuEV~y*7Lk=8+DXqZGb*|3+maAu)rdz3O`$Ye&gBsLqgs^3!Ps%Cf3&}5y`WJY%D%O&*+SwUnBS;pt0FY7N$M&PZEO0;iuVx0al1;M-9Q=gf_$#-Dr(Rm zfYB}vjYqE#yZE&}9xZWpE*JO9g$$aE#R)#qxkXNKrSKk(_28T~5s)lVKcN3B=S|v@ zl74T;CL8@^pdTKlO^23 zwZs@+O?~NN<9sA6hBQzLPsZ-24b`XIJVSI0E^b_8ds2|eZq!;3I||F>&^wR{9mVya zEj4iaaf$Sa{;Eqt7Z0HAGX`*L5yc2U$qtU2v`czUzl2*bjt7dFgI4Ks2Fq1;l63Q-CWQTMwzc8bxqQEa>i+5QLHRe z^_uU8aZV0P#*>H*%1H$8j9qzCaBX8y4-NnB+o$AT#z~88uHw^cBQE{q zIVF4KaWznr84&M89}-HJMcJAF$eSou#vHpsNog~7v^6!j+EX7joMgax zD!2=*hNPV{qg+kb`?pBn;D0N+*}WiK{M3161CJ_@X_d3l`B+1E+Q{0~{*?lY@H-fq zf5}eN(>yd{R4cV>P%ounmnIB-aEqT`#r;|4U@1yScMb=5_+Pf7*?!EBx3_)a3^b%; z(z;8ueoO+TqYFD>3KUZz8(&l}lyaq#8({4=DzFY! z7*I5|`-;Iuon4oF6si+|QR9Gl@tHHWjZ#wGGAWm{;Ta%{EG`&P3FKXCwkL!;sq1m+ z+fgkSnQ>nFNKJNIQ=l~ycd}u`XMA;z8DXPvG~BteqnUK*cKL!{9=cq(+-@wPJq#Ym zJe)Y#6wzcS7`4lMq@aU2_@yJNmAjX`Lb)na%rnq-*Y22mV=E%tIhz0gg$|QK^lXG) zpE4tNIf5}Kx8h0{XBUI@ruk{>O#O=9i*YhH_}I3#m6Ho9`MMS~jCr^PpiVavB5e*E zw=myq{CQH{wO;?b)*Hzncirp&DQ{_Nw>V+{VPFSDIqDkHA|d8i?~C7N@5IE04>Z8JCHa&rBN zrHNlo7meMQ0Im#x&TAu}@|~82=N4ZM&ADAW{#_JM{R+8*HzY*X>cY5R9%S&lv zfwZMO*x6JuJCk?!+~pfO(`a}2@@Kf^dT&-cy=X=rV!8vbpUXB64hvLm6pTU67`Eb)}0u~7!mhpcLp2KDDul;JUk(?kNkq=lIyn^xXDT!)II>rvsLea z7B&=f4Umw{S+%GJbVt|j%lCJ#i*2}R9dwz&`ep7}OS`afPvdQ4$0 z$DogJnHf`C3(Jo+UFczMly%~msouqO0{r2j4^x$5x?qk8{f8!*$CY6-b;-lWt}71b zdKacfePZKMhP>+r(3LY#eVuktKoQ|?y@mk~pg+xz(iaWRYa&BLKCI3y7c}Z$E#6mH z^DKVDF;`hh?zlc}PL=N*Ih!4p%&9!$xIZ3CIrw5mPz>#g?ybv$M|L}{=X&htF3Lr@ zt~c)(aA9^dfW9k~!2HGxTm+sH8&2#_!82(e2(*b>Tfzpsbb^%*_B1oGaPYAkTR_KW z0Gx{l)da16y#zx{=6KU2Q>}0|2FJMU)p}njEh}^FD1c8On+Iu<1WShCkJTkw$9!G- zmiuc2qYgKc2aaLm$;TG6$!&Ym%d1PIT@(zm0&h4c>7$;a1_g(EQ(P)2}M^%E7?g*bzgfvT^l;m+S&8sf|QIdAik#gzx<9x zfuK_q2r7(%a5Q>-b6Ws9V4{rTtI#<(KCgb@%l&VIO1G>v#j;~ZBh2a4tIM1qVM(9W z>kTt7Kp0fozj?G9abA>kP3l+KCjt-5-AC?zArPsIR=7YN~XFg1(SGD}ki0-3Kh_KOo>o;?Q?=4>gEJO?;hNq+mlYRe; z;c@_nO!3Y{P;9l$Kly2@5sfysC-UkP;X&NBKJ`Uw zw-B3K)e`;0*-pC~MTA3m9T1);!>{+g3KJ2y9?ZVol*VKaZ=f25jJ|Jbto7f9S^^Ed zgJ86yfr8vo>R57BT;mEh1Mh(!%&C!I=TALp$5THz4M(Buiyh$T`R!|K>Z5?S3efpj z{4ueZJd&YeuOm)(vNJ}&D}IswwlZbgmz|G31|A!S`jmGA^DZ6^kJ6OX{r#;0my|6W zBM|jd+Z1-5`py+z_OBOLTe-M`;{<@zKCrj=DcX1rruugwNKb|M4lKi|H`-h!WP6Jj zVz0fia!rRSw&UIX>?;~2l&QCQP*>16stnn?Y&XX&)lPRbu#ue<>`Glv{Qh}BZVo!b z-Ue!JtwTt*sXYZd4_|b>Z2ZTQR0Zs^nK3|LpnTot&bF^8d+`NPEzL$;_65ozw9>y>9_dEmec}Cyb4Z zm=Qb)zzZ*d*fE@FcVU;xk>+rQARYMTZ>dH~#!HD6V0OoVUL>Bbms{kL_?laDZ7+uD zbcsQZ7^Egw_wf_nc$qOuT#H(rOf&lY|%Z#mXy-n4p^hFc_2l}y4#YtVT3JP^0N=?dZgAp))#31C}JAiUV4@#osKrlc5E zdETxu@4>_=MpMl%2eyn_jX>m9ZyLSP9w zP!b$o27K&Dn*i!P0hSWc9~rB^O-rvCF%B&Zbmcyno%i^|CvfR>B$?BZzQ6jL_ZJl% zij9eL_W{|FRTO352s52kSd=Ani_5b*`hN4=?f1dxE!My?C2iKu@aykd3AMFA+b|8- zyo?&3R@_9S+7JBXj_Je_V$SWaEmIECq5xO!t)0vtII)P&Ml`b6#q@(;XMUx2IKKld z1X`5By&8WKj*X4_@2vX_Iw!C~w*sJ^)nRkjFQTmpn*EKI5Hr{K%USJ=qUi^N5$0yQ z{KIpE>5YQr`+XwggaXg7-dlg#;1@Fdq%~kG0px#=5SjBRb8=ePIB<`KMC$_U7_6el z8}n`%$y{@xG@(3kTKdMeMh+7rs4kI1p4|I4g$wkm{HS4NtbsdYP(=CVG*dLyYsdRC zz(!Nl0qTd^G+zwX`?-3$M6<@sca?1NP{}WcurX9Gdv~XoB$e~t4fI;K`*Du_afWG( z>G`U_Smp`yck)o9=ZnNRx2|6*jwecfSVvUq;JyCN!>eg6$o;Oz=Z`<`7`?wV;PDlg zneZI$x1k>&$^P1SN2L7BfZ+uz@*)z)$t&M6vZ*j&#(KN)0I|@0s5W28T=wD?lP3HE zDBA1v$#p`$4ToF^sYwY1hO3Qaz39Dh8>iZ>#NoLPCULTa-&z~r=EWd4h$+CQ1b5%!>#SE|mb2+2 zV{u$Y-~BRAA2Ti!v7!?sI$w`|I31vC_sO7_v_lOXfq_mzcrH`%im=9<)NC3UlwUGm zz4}ALyN}eD;KFz2&QqZ*L#Avb3LHckvl3#iQS)@Ux+-_Th;thf#5;Rv+rZQSIe9&tt`uS9XQo$t=}GVTwLp;8AUHF zf#Sv2j1Cc)ds{*7`0uq>g$2}f_q9@e2c7->|U=2dN9o=&I+J0Z}!J&7cy zorU<3=5%P(R)lxaDD(I$|F*~SS82vD>m~8ecZR4=FYl{YDnr1Pn2nl(&DOzI@*$(| zV8j|7?`R4`sXuDgz`SuTVz<*0d=R&Q<8N8snbW~2Qy8Vp&nL>H1eE#V)N<{m z!MkqCW~Q!@uD`>V4Z^IuOhs(IW2A9kCByFf0TKLQmYbxofk@u(aMiGKvYhRMwe7c- z*dO$|m4x4lTKp}E*#$z)Rv@SfyzCu48~3e9rt7r@$MRvXo$oBG?z>jlvVu)ZJs9u( z7(OXg-Po|)6vQ34G;EKM`k_yk)c;7Vps_xM!XsTgO#kMiu2uAs3y7$oXbpC%&mXL; zaB3>1+#{Cl@`~E-4pqR(`)cGD^6w>LuP(rfz52V(`@}wltZmZ?l)8W608gWhQcW)( zQI2R6Eitx5?Cw3AWoc$4f2SpoU+c1m1}>TxZI>oKzQJs%Dorq{BZ{beO2LHkK>Qm6 z4jbbhq4lkVr)Fs5dZ$@R&#p7t)Ti`nC`cs-9X&9P2G@KIvWNk+&0=6RSmc`sc&vBHkk zS-LsXH?PR*4&4o!QH=1QZSTKD5S?5YkGI=lC8a9ewWeRP8R8lyS3Gl5k$v)B3t>lWz7lxbqT)SkSuV?{f`(-`R_x_d<&YWpi2O8_*xF0M zjbKr!l(6j_b&^T15Bsz4x>c{s9I&6v${ix3jpxipnC}9()B)xzo%{NbD8N^6edC01(YEFbB48ZH2?9=4!KxlA< zfc3qn>O*FgW6^69_InXavWCnx=$U{(QtT0>y~5kW@SOoRjP)iyzP`EI@!6NJAXyJS zs0f=nYD=}&?R$>J4(~Jc6H1>^8n+=r0NPQyH*dR`?jsPx$6BEHG>t#D%?|DaAlx<6 zXP9}++sUNwU@`r(w3*hEndJ%+XQNvbf+4Cm+3TH4tdsgwPX`G&br27RuP^ic4JoO1 zs7XX+mS8q}6NnYk9bj@@WkYV^zmEzQi`k#{=$g&;ZM4L=;6hr#^2diqESoN5^jZQ{ zwJw+(K^hAf^MI}I&y{3V=|?&5|Dt)-h6aaA(u3Ywp^r!6u8=ANnas6N9*oQ{2&U)V z8lBnST6#Jv8ZC+i{=c~`9$ofvXSG5et~A)VE=(LgXD+qF>q&j-TTkN3(Da~G*6Njy zm43FE+$Y*uM>=jtT!~!XI>coWn2I>7eyRmHBDcgmn@$pAZ^AzRVr($1Vq6Xzn~RilF9Zj2H443-otgV#6L z%2+Xb7C==m&gO_%8-E1JF8Vx^Eh!ePFpl-43BEIDmFgW-$b)t44&m+$#6KaHmdI4l z$g=Caanz{kzn6P5h$>)>2a|w0E#G5$UBDn^oK$SNN58l2Rok={=QBeaQDA9fxD#lG z=0YG)>3i%QlvVDpX^BmBA{)i{n?8Mg;%Z&!u>eS%^S(Q6SHHlt^{7pX!Uuk{p@Bqa z+Gj+xqAY(%{N|%5E#5>A0KzS2tKBbcu~N>#&<<8y)$6zL;ZJX3z!WrYrT#mfA06t6 zfk5^mcu&LhDb<-_(c)`gVz&km8`Je*LKR9qw>`Ie-Q`k=!``v7C&5(1jzw}1_Y1&B zNd%l=ukKgM3s~<#hYMK&7#lSM%cR>L8eNhz&h{N7gQH0=XhCLGWr0D`1EAxZwX!rx z@))NtZlWVy`_=X9{@09i!Nz}XkqyI_Lmz0)nT zBx~c8`94iqk0tCO;MUsf59T#Ex?Dm@ngoAGh zG1pzF+in|d*PtI)_TKq&@?0jSl&c3JSJMs|jR!+K7Y#@*{~Hw({(eTqXv~)s1zap_ zQ?HvpSi#+ymsXAP68s8L4d)&wpB=aFC=#Y1u_oNip{(k>w53HkCysWp;vm4NF(U=P zq2)*&#Js=L<5Zh>#~pAWIsg2DsVkx-2fcmYFO9t}9k%Zg)Q}bpe~oKH(M5s<;Fo9U zs2{;}J#R8$di593bG~E*R_t(z)nJr}ISk5t5MsS%nbZq4-n?F|VAN6A$;~1awzf#nmKTV0W@H$LfA1xFtf~e}P+B&JahQPU-V02%mp&2Eu!dy#T;< zR-=N+C3RU~m}lD1?!6XIX$MeFguk)fnKd3TQ8=Pl)=}8* zzylUM(E5Tg_gz|i<9ZV=X2md|x^uJ{SSj&J9NF`?66*ohJ}>phy-*Lvc>6+4(+>Fy zol>G)wh$mv>Z8Sh*usE+r~PSQ35B7GASdLcrn$45o>^kyx2qItmDT|ida8FqZ+=O( z)z(+i$eR7hyJX#$*wRvV&Hlm~|HC*Wi(EPBbRe1qgDjGKN|XZi%bab&`$qSmmRgA# z%9U((wu|xUG%bYF#iQt(%|P)q2?P4qeNc4;krt{7ES6jJ#`^0)E4FBIul{xhJ*Iug zjL-NPm9C`bbf)F5nt^6{f9h9aTm~ipJK={Iw2v}IyUm-pZS`rhMe0Zu*wS=oO&lb6 z!IA|eva{MGMeVNF-fhKo4rfO5g^3y&_MaVA39-4dSQN2XC%81{N#rOlN#bwx`?s*;GulJ#5^|$e1Papm$~KL)?tOfY@qu<7D@$IN zS1El!;XS?SplzZz+0|e+`y2VHWa;ua9cw|$gpa%K%04`ibSkFW}m!!ij6EWkEE?DFt6Rd-dRA( zMsQXV)3~zA7*FcZld>(R_oc&myDh3P+&)C0LV4@*l1^9-#^E<876lS6NsxXS?1|IU zuY_sAWs*-lp6blwxp)>^u6zVC!|H?e7=yL2SvkGU7+u8tmTgY#L@hy$P16G4Ts|WW zW(l>=Z#mZ*9W z9xUASW5s;diNBQyx10@@LoT!XwAl9(O1VVGf{!*81k3c(VJ-HuIzPbC6Kiqww$8A8 zw+R!sy#7GP6J*hUEfp4ExA{Z-nR<%|n=1=HBv+YNz)2y}S2yS`+VO;(5Bz?zsMG67 zy97ZvN2ldWe__k$*w-9UZEo`z{{&SX)1H>nHHJ$ev%JY%cCionkN2PjYMW|}T)VIF z?L(y~TcDzxkP>pS9zz`+tsf4}zpCVP_2%`nMoW<|jPC7cyIh6&!wcpi$N3cn;0CjZ zsdg0!u7*`cKidIIM3D{Wacv+MWDnWG{ILW4Gk*7|K6oV$EV#HIq6xhjJR044;Tsu+ zImNWJD@v|+HYwz+2JLTX@bAiHD9j<%8`1Ws4AXaImT4iEqeW%8O;H(uF7SB*QML%^n6n&8;D z5@&{;7fUS@J-c0Y$q?raXkN1TtQ3<9f3??K-&*C`%r?GG0-8!z;CluOO< z1iV_8+lOBBZCxi9xP@*xyA$^Mk;(X1czW{cYkV5=Uv6$uVzf{GOeqxJKDTCeGl@G?J6lzbPe(Ar12eHjm0JRb3Yjzs&0o`DTV#46yDL@ zZ__he3Jw7xvZWpodt2am&w!D%UKBN|7Yx_Z@2*5g_DDq$_YLb>i$K+n&Rfq}C2TIB zA%hCgY1LJGs!T+F`3*^O*mjxRFd=p8ulcoOCuS%-%HpomiAKemMLk5~-jqu{Cfs3& z00T`V!G|aLNPkZng1#jdrFy0>KB)!Gc3V4hMgn&RVb_*I9X+h9gCpX<8G zAfQ`VSX=XM^AP|VOZqj@>P8vw$gQ~8v0($_8V-64miR29~+n+E=&=KPqgW`rb zy`K(?i_4$nE^s1v{qyh>H7_9Kj;e`RKIMqkf2?Zpo-zmJxIyCtP-45pBOULW+ zfN31!kCzdI$BfUAXwa^6_RM4d@Dv zlp`L-w2hBGF0l;pJ;^|OF9*Hfyit}K89OjxEZf}d)6S(DJc4M5m&3M1b2E*@r55HP4Q`4ku*ygFdX@J~BG6T> zijB(MRYW5dqrnPE`>(v}M00)FBH3}t`EOmxt@S?{(7UGhgxb7+$eAxAc8}mi!w;@| zz(_Xq|?DJz5AYuxo?#UXyXvyqEKQY6^!c+8#f6}I{0>#;OcuC zv;ijwju-7Q4uLV~>3^%5QU$>W``gvj;Sj?EYRvc1XDw*quV>@~lCf5^R-parCkrFmmi`&ZEF!?}e25oV`@qW>p8c`1-GtLQP1nxdAUV>l&< zMdB3f|9Q64;(F1FQOne_N4@Tv9EP^JPimjmoBuew^La=?BG79D+9?9RPNx050UPcA zI29CcZx?4;kddf_FX#I5q)q?X|I}apak5Z02dCR3KxClW{s~XT9IIMC>zGoX!TeuB zRG#}Ogj*qKSqUBj1^i!_B3@|F`vR!#*heTTZ3WA9S_!yKb0E#O_7AtMsnCP#5# zy{zk@;vp4I;r96K0FmMU1N0z8qUkZ$P;>Cn%Ntxn@6H0gxkT(EG8{g)@rID?Ts(wW zXWCTfs14mpP?HD3*CifPx6?=sdJD^e^Ih~EjgS4jC7h7RY`E2*KmB6<72P#4i5?`H zQKL^aA_C~dio>xh1tf^%aZHc?A5#PV@JIom&UP1w$xBz$U`5$U4Gq~dfXuZAUiA%= zW?FO2vpq?K7Y9Qw^q}tu26ma_|GyRcoGc1Bzr3FZh;~Gj-+SX??tc?7{yv%eG2Ye( zsySb@A<1}9)BlB;eu4xreXF+zPh%H7s+R*6J%~PHq3hm%@D1rF8b@&IQ2%+VY>CEP zR*VMxaQ?&D8ckW{YArjwC+Z^8`wyNU=cF_o=+uJZ1ipV#>`zuyy8Z)7tfw-|4Zei4 zV{VWHf$nMjJDRMg`Y>1eo3Ue+P5tOU4Ifcj^esR;Zu>~*^jx<8bZ(T|k?j-fN=CN& z80fHZi7xF)YXkJ*-(#=p)i=)q?ZOuOo~=MlP6q29lCK!;gFrML{|;>vv?SKq8s_c# zJkAdRPH@LOd-hw-uagzbgtq_iqw6Gc#vx(6`!R`xgV7u7fJf0r z61VB)jiWa&0cP_nJzH`Emg0PJHVRph%jgaO6D5FmNJ&hYC>ol3&12=ahT}#{hx9m3 zAHpNhchO|7yNDeMwD%%o7j(=lSh4&k^E3%82&z|uj-s;Op*)045^%bsC``)ndko|@ zq$IY++=+90fI81$TsE7UA=E0Pj9vFfZN&M~DaqYobNKL=(q@WpQD}s|fH!BXeBE z@drPWWX5ljWa0HVe_bSC6{LRF)bN59-}AB2>QB;7OlsFZ*;y9&x-)%LE`E5?I(DWjptLV{}BL2h(cXA-}Z-T-SlLeXFwlgz^20!rTe| zJA|?QcYtgH{a5&j4E$Z-yG zcR$MGoxc5A-Lo9E%S>0nTrRMowyv)~dY4)<5{CNA1d&52l(&!e>Gr0^E>fAB6S>%1 zmRlrS6tF~Edr_p^Q4C1$o8BqvDg@$w)dR+wgjld!dW?Y(#oOJywq%#YU zWeV)3GB}KP_+hH|2rkIiOF7cowL3MH4JokDIaY{{JVtuKXr7mT3@j{i1D90p&Tpn( zsY>p?aT`*J{E*~)q={}-#oIUe8H8nA&V7a9JTAf}z5I1tsl2np=$ zD;n8ds19~YK0NrnIRi9PiUyK29!tB~Zw%MO)V!Olc^A~N|By~d3B9Mx;#;ftR**u$ z%KCf^|H*9(K-exDSbr6-cEtMDd;F+jsHKg#aLU2>s;#53g#-miQG)tddoEZD)w<>TgL1p1+v;D_A{ ztbYi}$D)cmQ>V*I4M(fhvCMQXG3&Uob58QSF7QTQ|M@F|#bpNz-Ep{E$Er@@zWGDT z+)h^e-D=a_Qrw@CiMSm-8|2ws{*-alEx8_1P+J!0-vCTd?rVb;pT+1+za31ls!rycKUT z_P`5{C;#lN*l>AK8@%SlPG1FID6`f={kZIj& z1)K5qw>$_L@;uAZeKf4lf!@U+x`Ot!`E~=DV^u@o4dPCZYkG*$Zto(gCt{tO zcIin;M2w#HR_)Q-p%+BJ^JGyXSv<;l6Y6c=Z5hzzL1nuIdX^~~L3h%uk30YyVjn^S zicpB)&%5uSotJpA_s9c!D4l#ObG7}3Xx!~WMNPf?f+$;r9EMRrzf~IO8u_wMdzQ7S zd=w|a@6hOD*iykfzcZeqDea!^-r?3VYJu^OaS|cgL_&?%#%b453ZJl#LBX>Pj!A@e zteGd>%F(lWh&!x#dA3ZSBT33+wIk5e91lq^n42%CWR_pbs}w%CifotwPMApsZoDGG z;muP@Vn|ghVe|?aY(XedW-iB6Wbz&7t3G8b^K;O0zSOIY^zh5N(X9`bY;ku^6lrVJT(u*?2GU80UUaG=&fYgCq)Sj3h^>b#W{hq zA^GeogLIM@?&Yvm<~8J@e!Z2Uwvm;#Q7$6ur(cf|=DbdwgQXp(p(hx%g4Po&D=U+n zm#D@b$lz(FqETkpp@KsxlaI^@{%E)d0mLG+G%9R{R-f>+^|w~}hxCM@VLhpFvqVPI zMt)f3s6(2;S-*qLBm;<{enn0DzXD>_1oECB5>oZELq)CezCVuwNJHf626z*tPWLeY z_Zf22$Ucc{@Q4+Sf{`Z=h-jzgTzWSZRTo{3SD(7S1}+w0+kS!D3FNeGL>`i-^1CPJ zPZl5@k)DJnQNyu#*~wHuP2Vyj*j0h0wi?+(M&RyYzath+J{`yX)n!E-rA6A1LAhk$ z9@2SE_&6l1)hkAT3`baitFU7-7FwA zmaGkvVskWoyh4oDjyuH1oS2j6xRgyWv?HeEAy*!UeXQG0lWwe6|D#OOr|d!tH0moFA+RcPBwN#_QC4E{z$156wK{CAgGBc5WJf3 zi27DReHR0lV&uvrNfWnD;%HW_t6MC`vS=Af0U`kYlct?p(6wGsHH)^!4&fRMXnxn@ zvM12!?2pI@kShE2b?zR#PDu3OO~}!Vl|Q+$EYHWECulFpW7aGn?rBC2g~5|0m6K=G zQPZAIgZfj#1Hnv=K{i`s+9}^Tsv~a4-2lJ~hOcRISgQJ3^FBbrdI2Axn!8si>ZWT5 zUR}NkV_s2Azed^>Ff_FgB333@Bx#~J*GNo{PI#b~;TezU{LM^&oO6tTH6OJaFb#eL zwlIBcZuxA^5L-@1fW~+C0P4y`ljojm-As2CvF>?RV??GiN`X0P*Ej$GOn|HpWctwY zDy~W^{e+lV378i#bwE_UEHY;8<4Vu_X1ctyt&lS_SqPnQWvoVPt}{ee!Sd-5Vjs#? zhz5A7mSmX@F;$9m|InXcX-q%Tf^sS;uI~SUTW7&;plce}xIQN)DN%?Kre6M}_wyx=n>()`EuacCp0uDFGzmS7un0z)!bzbVuw z?rNK^Z3#YPT84lT7P|B?P69(3nuht;Tb#e3Vck8{$NVKWlYo$V*jA2^R~i&13E$o! zq?LKqk+D&DDUQk-V-}V4_-j{Gt)c%^t z-l%z6!N4QDhk!&ZJ0_;0;uf5qPaA5FFxw9owAm73AEbY23(LM3J20~5-kP{+RnjFZ zvGy?O{E7Rp)QR4C?h<@qzuMO@jOcu(=&1C`8pfxyPFwV13u$1i(Nw#E8kDN6&qZ%+ zvqSpobg7$P;mvtFBr=dB%9pi30c>XD^y7P-?N6EENW4B`wODY$_2CZ8j=h%=8IL$s zDIREE;mg_Aa?3ccQG4L15a+YPUyrt=5JMf;ujlEQl`>G==~4`+T}Jh&WRgKZFru9E zrY0Wg<=G@>yLq?NIwfJX2EAA&iJKnr#lHoqrmq}Htj;;G{tz$FH=b+u4q`C z_btI}rJ`ocO&hq)zi&7@e$18=p{8bAxUv%>D$ZJ&i~-(Dk}knFJZcm3#l63uWPDKN zS<%O#sO*$K?4q2O|4TZh}t0uffD1Z>X6a$7SwHc z#c!MHRsN7)r3&;i!n;bxNh+qDg=uBK335jpV<68>tcI0SmB}Eb`KYhosIo%u;CEDCUbjk`YkC?**kzU;+Jzgd9 z;!h2oT@$-xRk|?CViq6wK3~U1>x9i|>0Y&X6%4K<(bG(o@hN*J zx_Fo07e`BnC-AmHFvv@Jmwo9eKz(L`jIIH8(9~Q`Np%~BG5Cklt@_cuz4YhgF{zor zyU9ddp4a5x+95k(JDrbCGsnbrl%wJmZE4>nHNFq9YvI+XNec=k4YPXHSLXDil@T_> zE4$l?B^H7uK5gwz32I*kHbNk#u?f4NDk^KA!Te zn5@59Z${nr!A!gC4G!^ev0B-LLYiukh{fM|TO)=@Pkhctf zN~b+Os}}?501r}Q>wI7~aB~|qw~PX`bwGE775j_}p-Q(HB}d35f1{rm4w|r;q98sU zZ&7$3lOFY=24+bTj6TXQCLBH#Q9GtOl@yB13{dO1gLj2)=CpFZ<1P zfrQqqq0c_n+=gleVA@T%fBc+2W~4zmq_TmMQ{&cf{mFgKymg{J#N$ENGes+~Z}*4} zJhkC^iG5#8r!(_StBo6*B_mw5T1Bhn`~i92On`ET-&JdKvD+Xw5oZ|Ey6QO!+sQ>w zu9HSrfj>#h=?0Emk?6M!3`^z){P7bO#^NuW!I=Klbnxdf)!UUsI`=i{T~rCmb|&^% z+F$3IIJ?f~3o^ASkOsSfVUyFEVYRD_Osx(TkI|!S<0vZx8U|@x5GIm1Q(^qMjVpgT zPbl`^5W4B}nF?(xmWC_x#SMm0Il>Uy8S#i&+PE%eAcK$Wb?NsNO}*#G-LH$x=cY3} zaXg=<)ZX4h4Jg#{jocQ9W%H-}6_)|Oq09EauZ)LG~fr$H7_SQZPU^oYTR5wX?=j9w6VdTugh}VusMpIkYFf>WNDb1;+zX7_~ zH=bnXPpgbsD(-X#!unK=FV0556KgaFnB`?>T!3KyIIjRaWXEkotlkq*5P_pwc5Jys zUnh!!$tea*)Gkoxrj1!O;QKy6LmEPcQ!dZ;jed3fa)ZgM;=lAm7RyuM0#t zU3%^LZ0J76W|9iNsI{R|*PBYSI!WV$iPQul3Wm{2^0cNQt=YX7JG0fpg5$s)q^o1? z`swvn4~w~7ocH=CP|e-`=KE}}i1U(gpu>&x2t8{yNxiypT?J(&$C8nEiF|_mp#~3W zftP2X#1na8(ra1A6&Zmw8y1K@G~ySN>;fHJ+5%mrrj7Nt}s)- zRqia1mITb}B+UWJXkwbdIldhT;0`xT-!8wRcn@aI;N0d$=FD4G-M*^vo0t!{V8fd#`*heL?g7&%xVQZNp0RUF z9vmNWK1@H>5=#m4ti+faDu}}P#zG&hwmz;R6_sM%oy+a4+&CpV% zh+&_w$9cAgBu;*O^~tzMAs~Z`;i}v?P_nSMEqVycIF{UY+k$3?@ejpP-dQWN0oqTI zA0YX8Z1&T@Ymi&lU=YIg46KYpcOGt%ri+Wk<7 z5S;Nz5jk|Qlr0wN+M-TkdSvu8N(^FH5y-=Ck?b&k&LS$nN@=kLDn6*>zw z&z~|Bd;C<`h*;Dq+bbnG^g&Y>NzjtP`T0L6Zt#V-@IE#`n8Iz?LhQ|L>G95A@D~Hg zfJ$q}qPn#@&wVc6+=p^WX;4MP>}iqDNJCv<_Y2>{yRsnJQ`QdW!VV8sGs+K5Z9ObA zl!bJCK-!S4(>!6Z0K;KdAp1%GlLfU=UwFUB;l^+j#BKbmS|!l_#Bk&J;X8^Ot{+76 zO58TvCZnJ*VLb=L8>+=QUxfuyS{6;wHq}He@;Kvj zpJ?S!YyxwM&SXcMdvIO%XU$Gdbe?I6mTOS&e=JtIcgmK?P$~b;OVx^ypthfYq$3)tCKV}zAD4>v8D?j=Ot55 z%fI7$b3{2jOo3TC&x|JzCYy^?F<0CmmO|oD85%%&AXDXWTZ<6m>AF~!<)^x_E{Fo> z#gU$c-wV}&pVMS0{FTt{Ws9nqcWWO_mOBCD?w&;4ucghYDYDlfMMiun^-qGT=x0!{ z&^R==G`GpxF;DvOtJ%RQ=f0Xo4JL_iZ3zr`Zc*NlUW(JA3mX<#G6KfPU>P%y1D3Sm zM<(fbI)8?RaD3H|v4iP41z6zP9oE`H= z863Ex^gfyI>l^g4S!C^_e`RLyIVaQw%$03!DW4AP#4RkGBp)Uzx73OR;ub=x)>bZHuok z6jjBk{c2A$gvdd2K=}4yhE5a>N=l=C+ReUtU`R@Jq1pO|i}d@ud|#hnri%xr+w#51 z)axA-XM*X`U9^gU_}y!8w!ACr~}< z0S(ydbhtX^mGi- zD0S%nKH1C%bwPZJh=T4S6uW%Bw5Z()5LH~$Ei}FFHLgmwoX(PrZNq#<9Hn8zHZc@P zvIYw4GtxMICQqd&-FM|GSD+b47iM<;`6PSZZM@^JCrJqXRy-|1hSjFVfUpqXrFKIF z-nFIO^azn$!A&`aPa5SBUg+x1v>3H^4~e=;1%$~zzXdjh34lABC3FB8*V>C>qpNP^ z1WazK!^B+oI&e%*93~6~#;P)BLDa&PaC|hmah{n4xSy{2g_RO7C9O5WtD;{?HFs)P zB(H6vZ5JX@O+|-|_wn@*-Qe}$JctkogdG_+=q|)9DMgxR_Rl>jUSB8rqAkPQLZoxQ z;v_xyTN-uHn@EhA8R0mTntt={8^15LhiG39zAA`Dm1TKPJOB0-szvuzA9}_9gu03v z0PGgI4>9=V8hjx)I5OuF!}3|-yO~O#u~`jDoWVkr4|Yv^rL<+XZ@*gMuhCoV{^c;N zLP_(tICoc{u7Bfl40##XV9!C{x~ve!T_NmhfN96O0Z_@Rj4CGMAU2DQ4ZGNIQK*Xq z2xf*DLO(86FDLaVJby|A?2Kp}OWa)V4fYcH>?w1=R2eNJbEE8(4?!r3c_RJ4r_O0Y zWJ+vs4w9iaP)W!HF?H@k3>3Nc+NZuLb++_vb@HkSvM3HK_qYSaQWZv4tE|646K?j#_ zn{&=FXq=8~{D7v!m*$Ht{{B|etQx^Rzq&B%Bsz|Eo{aW@l$^t<*xo1Wog@xKL@sJG zSDHw4S>I}G*P@ehm%~5p^|@yK@Z;^%(0XV04?cRhp>)*GdRWx^$}9jpe|&wkB3>^4 zLfAMG9j)XyK5GAaVT@QfOY+V0T8v!f;SLQ+lmnmxP!!L{DsY_F@wuM?NKJyz)@4yC zWzWy-Zk`)$R7H`3faPK2>6ajgZPgA6q3nkyD)w2(`zyD)3NMtS&V5+!&Xr)mU`Nu7 zuGJCqcG6v?tEO|;2riGCz<6E0Bci%IK+CXQ_J?{$5QrmDq;4oRiR#KZG{H@isfgpDZ|*op1J#>^vh&)!mowClc$rm z`a{3T?SKHxR|x;3H5VhvIytG@;v3q`Z+qEZdfS3I0(d%d?vSl(O`a$`1u2;_Q;DGGowG8 zT`8Y3SX@7+D_!AzzeRM*hV$>}xq~@N1vx4dezV`Q3Wf_U8Rh?m02u4mA>np62aAA0 z&*OqryLT>C)JB?sY(L%^eE(^Eeg47&wcR<|y+6PVl=oOS8U1N{)*o8@dcWORrseMK z-{;W+*Ci6AWMu!>))h#HGHf=fWD75afy>6A`3Qs#q*(y%lW#uwQ-D3x|Ju>|EWYcT z?bg#(VAQu%S9~VCM!H;qO9}!zMEAUCm@byyXL1}ZUWvg}bAB;o&a!~A$yrr&QW2ZI zU|&9KgG(z^;Al0?1H9nZVz9EO^hRr1eMw`krekIw-wpl}fKEOXnze-HXZ-D2imWN28Rb$CM!L+tjn*F|;rTI$Qs5624xAv_lymwU z%z-QQuL!$u`h;=>1S^f|t^Ak$*gtBEHwFEO3fdLKJ7)d{8`BvEEtpdZ=6( zCEoviL4I0*E~G0IA2T&d1Ia63YNtW0c2>1*LTx08?J7p%IKgTyyydgEKs6v3>o>!W zguSZ=j+Lg=<*NCFb>Gf*y9c3vKU3Z~0C?yFDv_`8|U6$q_}>By;3_ zemDcOZpPr5xo;1yL;{KA&+qKg|FBlfj}5#L41ZEmo&J5O^0ClfIrK&Z?fLwSufzYc ze&}z-E`8y>r|`cqb)s3{+P5RPP+E@4Tt{gC<{e}OlugqQsDp%k%j|XJ`{39`0-4>EOB?@%! zO1#)bRjo(6W*$KH^hcBEp+G=M7>H_KF&_QxFu_OHbtKep7=;{QGbzNw4w-#Ub7??sjbc8vI{>7~qZ12?oqhJ`{`vS`R}5F)K0oSx(^eYIS>gJL zE|9Em`}l7o8bld}?qzZ5-Wu003i{MO<_XMK2(bWM&(j|0_=S_j(YBIIe;CwQI#^yG zY|RG^Ivp~1Dwquk)d0~7CQY>rzUP<{Dw;uyhGXTZ_!$t?^a{Tj^^X7f6K!1uLZu?r zuV%I-wxK5RZh$)2-B%IfQr1VY!zzF-{2+Fy|6j2KGM>0vGz+Y$_%54oI6c1kh_1LQ z{k#6nU)uJm+n=B~lgw<|#dzd5Sn8mpV>-Pv|2!=iU0GbI4^{!$yx|MW@-1mg&B+mZ z(4-Te0=bh=eaDYB$3K!5;6*;=UIWu^K&c*NDmh>igLXK8S{uoYm%y>o;FdS@2`vJd ziOZU@3h(zk7-=;B5&jtzqZOY(9k`(n!5ZHovbn`s?;%}$d53$R7dcz%&_$6o+7L-W z`h~RGR^oE##a85jCQyDSfROhjSDq> z1tDC-zcE73R4#@`2~1H_pv?FjU^!f1(0XXRc%VMVw_0;-Y=Sq@QSVaD`YtPq2YsFQ ziPL!nFQoK(N^`C0UIeyi{(VX76M&@E6ym>5_?+&exI716=;zDy{Ij18oWO-m=;nKyA zuj}cl)z%*3vF9T8l*`*kAu{Lf^VQ<%)knEzawTo06Yq8tSP5-)o{eR$x*RShu*`*o zUecsT&sl>yR8ma!T~OR&u`6ZN!S9Av7Bz7h^HG%ay4~#3)xj zmo?cpNcUh^SAFdIvwsfzb|bA7M)p4!ii%&w++u*d=JY-a@PK}!dhoA}!Ji4RBESkY zfWF}Xsq7TbPrZEB=h1Cb7R>Dl2t{ffsu?oeYSQ4bDf{;B+T@?H@1O8vSAGq9QeXBM zoA4A7CbMpliy9?0lL0yI!+BhoTUaYBn6nA*q-n($#V^SYF)BiEtdd zu~~xWkuFZ~WOr4nc`_?$jD6gfSp2=VX1U6r`EZUsqcqH_&};XM-d<8yIj!EeKokN9 z80T5@<=d+a7{7eFKoKnA7B21>4bn@riV#t~5 zx$Y3%&G*5Zx{e9X_mXv8esy zRh+uJy6VVIWz3uco*SSqow?`1bZP8AkeIB?mC||VZf)+Wp~`HoV(ybe{&vcZx}@I6 zf6GY4bcLHKh-mc-4jrRCMbuBXM|0hGhh+0urvs=&qHC(0$KTAb z_h*_moI7~vqbNSUS2VKj$L>PII(H`G0tGFk9<^6O?$0r0y4*E@xL@^MNbs;a;fZ|Q zSqveC6y!abs-5o|EXyY;2mdmH@7GJh?Y$JEu&)>ySNI+%Xq#D3G_dInX%LBBPF%;V zN6iG9{dSqWlp;H({<2Hy;+kEThqa?L_)C{seubx^)G{<%YS~o?=)C8LQLYkW+oh|G z4xL_Hne3?Tmkb6Uv#dVKqvJtZYR=@smWvrU*ScX|NQu)?Rq$UD`HW6_r{zczm-#Azj}O)hz-B%zSY6bkG-Dc;JD=2 z{&_RU$(^{sGkFEzK#Zxj%JqNn+|wUejA{WMi(Wk2- zKRUNS!a#AlB_kkjv)w4!$h}8?!Nr%jM?$z?Y~1+elhsFHHRf$ z`=t0GYN}Sc6|wSP*@cG$DGyhKEz2vyMg~V~rn~+QttL?4Cvk6}(<(dc4X-%S>EdQw z{pg!k)5yE@(e=efCWT1NL%C8OVTjoIqM9wMro zUhW7kw^RJ`w~}1WiEOrKAE(NYT+W-pgvRHOvKCe4BMVDRb1iXYJ3nU%d_dg9_2SJ= zg>|qRjmLfI+m9hswZ$s2H~~IUPS)>*SU>ARn<~fo$}b(x0+K@ul0(wyLHxSLB^&s8 zwvx<)*kP(drxmrvMDswk>_Pyze;S&ChO{|1^>VxOEy#{ouMOAC>WH&tNZ!JtaU0wm z5Rwj=t9z)ZQ9s^AZBIL)?>-@p5mrKO-Md@$swK9zpKlONPI~SroUE)p@bsXVdLTuy ziFcny$T6_JZ@8b$*!D);$b`+pWiTyk$EVL0n&#WjSP4{Zef&P-MdwYNE#f3_@0Qc< z#*d~a@xzoBS~bPxV-r8kqvC9#aUv3#!BP27jZ`Ftc8v;}-$aFomOq??7uXE>TXozc z9`hy^-&!}!+4-ueuf8Ox9E@&S%4@M%F{DRnjgDyi)g~O(ExYA% zYpayYabm-0apH_7JL)r7&%Cs2<#%)WV4-oNL6A596~_A{|1g7wzVa=uubH$zE45~C zduHdy?=;l)hCX}+;J8`vY97atmyo%YR&XX>`0x-&||q3ekDax^>XkC z4fQ4;r{Lj1pKPS~8#oVO_A0oEq52i7!*RGFzI?mkLDY@byM4@f*r-7RXC({c^p{F4 zvx(U77S9fj3jG)<6|tEZZ@jnye4xXV%;7Ti4TZN4_7@XnX9bN8H>)^Rdxq-{{>;vs zMHWC40gR}MOP**bnL1BR18Ts3EpN8B8((ynB=Q~f>5Bvkkn^^BdVFM-P>nGD{o-Hh zkmutQag*EWg2Tc$>dZP-UV6!*_wsaEawdOk$q-MY%XHCP9LuiS9rS`Q$qRTⅅ$0 z(Y@Sa^d@#t+c|6LHoP%ES=AE}7MY<`g^i}a;()pycR=0L53Mox1H&5qrK)srtXxU+ zMAeK*PJxi9y>XG6HkbEIBh%&EJUI{cZN7!G(VG94Av=^<>!~> z38X0c7tKR9-n6^+(@;g`zo$hH|@-So9Orv?8n};ZQxOGMpH8`=KO1Fp+#%Q$zH}F}EW=vX{H@p4C$?t6knf_pSF%G^UjvEhj98Q!&R4pf5f5MG;UA03!dHGG zi)|*L>Ubj0p6$L7TGUgL=GK9+#jl-HlY{5_RnP1Po+WX9Tmo`RFrED@b|Yv%H$H_E{**WgV*zm8V?<^+E`eJ-GG zQ2?CRUF}k;E~ZlSo!_}Ru8e}n?^#mE=jtC-37L;HMhNS@DRLPubv&Z@^0@j9OWhsJ zkv1j*QA!yGDk{SOQ*Cb5Up=Ea($OBEcGm+_J4BZF2d`Whd;7$Zp`t*0Lw;0c#=Nl_ zjD!{*Ntku|0y=;Jj35qFa;9Fr5OwGOOfg1k4{;FR#@RlN{>r=)t!)Ar>!COfpn|IGG`7h`oX&z2zhtq=3=I zMj8$-F*z#eyekPSq?)%E&;^i}Z0AI8pjpBJYZ4ux*<{TID7e?ps-||yE_E+=Y|bU* zm@ksrh|N!;mO`|DXmxzVXt=I)8AU`Gb`Y76y4tKS@~gbDo}P*I!n)L z2$D*~JRO&8%;yX@K~$ubm5$Tzg#rLy`q+H;Fop(E9y7&CU)rT`TH6N4B49 zf9snQSZh4z+6kc#$9VTBYSB}0U&n_O-|DQT&_1g2z+wNx3oo)W+z%P}OfaWzScSV;%XLsG<>=ZcppBRv_ZYJ25k>~cT9TC#mtitCEZJQ$5rS94hEn3fwbEMY z{SqaVJ>nTGIT~_CC#~VSVqw$(!OtM9<{zE^aY^hJnY2GEI<1>{jk@;usXRk8Yu+|< zJ*K5A#uTn-kCwGr=UJ8r_H1i7h+U8z`7Aj?i2gM>=!P4o$^bZX=ON zn=f(F+zZY4x`u~|>+ru*h1mbm==fh@5n|^``uRvS3_xrL7s{ufL|67=!ObJ`;L2O* zHDoaZ1SS`-q&O;OGKcAN5VKOCH?xTu3WfcXWax!%kQSDjFIH%-h#rGj4{mIFNc5~+ z9L2mPN1`Q1cF;c{R{*m@V)#odns>enf#s|{j53FbfhF7 zf|SA^5#pH|Uqw%c8LWkueiMuiC=;#quhL5J(4$A5c(n+Q=*p+69_;v|WzF3r8n{MU1t8^_2@zOhPU2B;?u21o}FaK%3u>5UyA zBW{HU^7(bV6Gge(=r`VLe5#p9!h>Ejj2v)!e&$>KAM_v)+(9_k6ZC0#{`JoJ5urr= zr{;oBVV`Zm$aVY|6NbrY$N>WX1Xy%Uj?xokQGm%@Fy&1F<=?}UX90I?>fIfuptjStN-lT)~s%t#NaP-0CI=zB34A>=<7^f9L#FoziDiiw+}tK9$2-zJhh zE&QAR3T62Dq)EuF;`1^`I7C6o%>H*FS!kmEws|^Sk)PwZP z0Rm=VMWBBpOz4hgAFt1$NDWT`>}Nx+U@}mM3qY;gu$Q#IT!6#OsRyi#P;X+$)!4xUvQn9*ri-lXHeti0h_9hn~ek7R_gd35Mk6h=sW zsl7shCIU!H%Hkd%j!wv8)+`yOTJ&;3inZij4ywXvwIWz`73v2o!mTfoV$?9Xk&kdj zQBj~#Pfv)Y4&4)EtefC6oe9{*!9fih?Aj|ha;Lr2=ip$0$^8dd_+%J0a)%8NkiCOv z@>A%jfj?*<1UL8ue%t^jU%20c23Uyu^Qf$%NCk#O1`nwn(8?F4734}e2(d#tDkLX9 z1R~=JH-OwViMMVt~Ruf`u;v*pXD&6(dgI$_rv~z$IXahcJ+YJsc7sTec+J7-#gK1U%u7Q|F*P+}Zx(<&v*PtIfU zJXt)>1KhiFi)=^|qd7=N(7*z2parmz1yST;d1?!xO^}&-aL62#?6r#mH1+0%dHUAQ0|y!VnDMOULuF35%tJ zm@Y=3Uks3b%uQ6&f%)cdl@~XToqk(TzQ~G3YRKX@SMFSe%^M`BfHt>a+Wdyb ziFFXaBTqem$LX&gVdyL}3arXES>&zXpQl|hcj`hCAsvm;T4a)cFl1QJO^``i8Llv4 z5nT!$5A-@D=|lZ6vV@QTvnz+Yyad=WgWc703Abngp`S`dc>N*97AHOi-MoRjsectr zD}n7s-|zzFYyku!EYwiFzd)C3pyHWg-BP(mpU*5(#mZ zB{VE{M6XegS+henR}JHW$bjvqhp_@=`~9)!q9k66oP|%61Bb}b8b9SQ);&M108i{vld=I-BL|eEFd|?+t`ay&te@+*mW{WKH(M~OTn92YZ=E2-kJd=0+izF;% zibsxJTBXA>SD)jO1l$>UYY-OOA!ZqPUShEwg5_V)WbOOsJg00o$X+~xt?|!MW0j3izG{W<%9{=`*}w@1`S zFS=vm%{I^&&=lPb#DWa$^>k@II92Bku;h3vMMDPt2noDuq7cjg;8kA&NQoJvsohb8 zE%s)`@!aYr^@lgGo0IncN+1ive_B@ktISy4Nz{odh2wJMpVs`FhZ5yXIV-v+$rD2} zDjk*4uZBR}X&Cp=0xQf6CW(GPi-(i2uE*tdq2VIv)EVL|uqd&x{BwH^5Io1q|Cfn} zBbc=?U?%yOdL(XsynG6$1>nL}tcyefExm(tk!c1=*Z_~59hJXFIul>n=6PQFCEQ=| zHLjO$U?Q5ZD%4gQ`I$(4|8xM$34C`w^f00&z)?Xk0TaOi z8ClrzNgtgzt7veGZyN7n=JDNH7_cE3!>)7#nxJ0+Lh^eQSXm6iZKOa{exkVlXyybu zf~j3HkmP=cv2zGXdY+_otb(0A+U{6+hxa{WH$FOxgIoruOI?69GDzP1UO2V~@*^1R zq?v~%996(Pj&MU#M)%+i@dzjeJ&VmlnULYY&`n>$2iCDw18_C-m z1b_`??XvmzBK%Bg)4?X6EU_4Q3cwC!tH>Cp$CWvO?Tu5F3v?r zDn5kTaRr36)!u<8=6jWk9?PS&xB-7MECn@=d=XicC5Jthp4DXVv7kGNXEh*8TtJJ zg$)*uBbRYSPlQTZK82g?T|R0Ro)-$vbeNqwpb%!t1(U{F()=4hz34Y0R*qzfMa5m1 z&xD}=!w#dhA|6J&>{@~}#9l!7_|!JYx0i2kIZvZMEq4)dG3|TZ zHEaV09P&lXD$DV1z4f(LGJSSDVdWQQH7d8)*R*3WQN%p-lku=1O!4TTPukPBzk4ZM zKSh+&M80%=(G^1!C}|HnE(C}mW&L64Le3uPnN4~XwVR~EmhwE+PcEHRbVKAu=#@q| zjfeOK_6Ja4$9n5XVe~I4@NTiTXP<6am2)N5et(0i!RYZ^3EUYz2GsC$_@-Z zSfl46e+BCtaA4iiUtr+zuar;d`;T*VYvZiv(0%DSaVA3n9Qwo6^AxwS(H>Ids4wql z1gRaEat}hx1Jtu%#Elg94}OSEDCiyCT_twcgdnwkm>m65F=qqGbSxQCz=;A_GSreC z^?=ty{5qJI8}ak7!0}MX($zUWExoDIzlkmPyvhruI}=87DdCDu$6pJ5NPhE@Li&{# zo=`X0``TBRWGVP5rE0$Db6$K%aWnUQt+gH}xgPtD_B37wOQd$j1(`P&WP}yEO!nHs z&K**PO@)r3PaT;u?ntxv3QwE#$xxcbeK;p>O^@?%UB)^@)i;TZFif$~>zK~RHer1- zG@XxaqDYEsV$E7f=SEH4glRJLHMZONJuK%M9fjZntowzs2`8H$18Dur5v2rXwMpF};?^9eh#@<7{dJ%UY zCgmUDabY4gOeg(dT=8&=pKVb*LtNOaC@BbNF{S{4ke%MltdCE|v|z4}#XuCqi)XM+ zC?&?tx>lxqH$FF&5%b$w{SJ)PN7fd?jbeRpV^6f1^0Xbe2tTlR`oDjBA9unA=6#6B z}QB=~R7sc5l_(Ei&~gn-z8j^%&+%npg0 z*8lh({xFTeQRu%t?mC8(f&cb6@x)2&t+)T}u^9dltNzP#@%N>?5S`%H(dlsNa#6m%FT-Dq0u>U`PH*z$arnRC3`{@OCi#kF+I`2n}Oo0DiS-7!R$ z=Rz;kh!p^83h;+h#i!>05oc?+yAK%U5HjM@IWl&TJQMYG+DEQNG#)&$=NQ= zU7J1)UzJUM@8tAL;@}M}@EiF5^9_p0LJFU*V&0PQ8x=CAfB1ag=KAcJG)CPAQbi$| zmi-gsdWCPr2@qmAr3w&^KxQ)ihuWV;MJC@l6HFa7s?I1Ac1YWf|(3oUCoh3{zD*Sm6B}H{3%Xe=svObw=csupu9y>yfP2p2=-IC0P9=G~U9`)kg z>!|#8{RuAZd6QTvOq%c= zR>iy`iRmmzb(bOY9XG$+sp`z>&U+x7yTmZOZN20^!3~H_gdqdsrKmP$a~^IeT~y;Y zNA}sk*o|(zN|NJUNSk-4(8-xvU3TK5Jcs86I0~dwCTuFwlH5)O66HEQK1w+nAlgW_ z$01Uv?`M6f$n3x7-yFV45`GbnD!Em^pf&$*E7C~7Oz64ZuCUn-6LPdAGPy2%t;I6l5RTuxTJ#f5DzVBPh9LG~bCPfkys_fdC;0iP^`QNr`MU*& zK_ey0GBCREd50NOlIAA^P6M>Hr&cDXWw!K)@AJ&Cu&r%#=%mERl#OYH2wG#X447r) zDO#+DL{kk}?!C-1uSGEKHSZ!qLxk^DXTtsN9s#?Y$bPgC*}Qf(G?K2TPsn_qPFmAo0$1!;6K27Dt z90vw2f_@r7J4l9l%P>QWf4GV2u`*H&TvYayq!>vXoEV>HN;v>*+OZa4kP0Eu}u=B;_ zO-cdVSy!qncIFOmKYZ~wo>IMOeXR3rlIr4}HuU5&7hd zNluEKXU!k6ERpN&146-sJ~h^N*}O>Bu|hk-f+Rd_e*0MkH4%RD3}>r?fk6XspAp_v0wu?YYJ~%_hs$WozJ)m-@je{Tl)rZV{%4%A2~c&p{S) zZNt8g`lB^3pu77|5p)$eJN`fLgo)Vp$$C7WCqkMjQ2!Z!h%Nh9mlaRbUHX=Ru4K8e z#iqOi(lODUfA@qA`&s@UqugcmdcArNX!{}(gb z<-PQ0qetF}o^V2?d|2f*U8Nk|C2;~N8A#fZwgPls){sm@$MnWd;ZreL{o>m5s2r-w zO-gQMlxrkMNL}k)-YKhzi%!vCevuNPdmMq}u}(n882$eV=(zQ_GP0JRKB<&-1X{@I zYh6JiPS9L*%WEwxY(|fRj1Z4X7E=Gjrw>|awSZB{4svL;I>%%tk>hJ@dWWxqLes4< zKiMRIz@WnJvfORN>y}8GgkYM_DeQr2F%tze-M{wvAA<8z5}g-%=O*gV##TTQhH_%= zD+c^j!FWWHNYY{eLosUsl4l-PNhGTOUwyGfBok_8;!JwSw`G2%c%~YiJ36SB4O~A| zj)8$z^{#B?al~i!m_N#5-qj{}GGcLjhh=+WJLwmAsu*beoHLfT;vGc8|+r=|u{%TSkc;WH_y~e;9UtQ=m8^;X295-~<6$1fs!sgZW zjqWp{!@%HBpObv#d_}B%#m_u`+*&BUvwv>gp<+bD`5)Jc5y&{Y2|;H21%f6qcp(hm zZ(_TAS@wd(^GG2+%Gdo0yH=&L3mIUH$awPVj7tlS51t6g0j4}m`7pfhq_>0@-}i$0 zr}@gHlp(YxgD=GC9c#u&SWa`YA!$=NAwPo3!Te)xF-M^$ipr#B_kH$Qfpfqh{#Fa!Ne%Ip#NT(eTD75c zc5RB!GE3Iu$dR9Ct+fu;1D&C0p@T6NSmP80%c+KE4{gn6Nk@NBZ{>7njt^=cSNyIn zb-F>l9K{nTV<)XJJ*jr^RzRG*QHJfn-V=b3oNL-qwBNs=u?naJhzM?g!VNoA-K0!CdvnDv^>|& z2`DO6$G$f0oEgdnV9DgV4>4b|nF4iX@uY7Ort?A>KDmPSkM;P5#P!Ft186NCF5BpV zp3@Yzb}Wic*6Tq^=|XWrjQCOu)Lkh75f6Bb=#qzHi$vS7nM4PRtYh!lrPkTa+cQ6W zH47QuX39xCVK~_e5S@t3=K#jQMn;r_sG)kX`u(IZ70%+-JlWjZE5BRq?1E3Zh2ei7 za8!ZbYH_hCv+aua>4Fmq*I9sWi*0^x9&v5j*{1QO;eYEI8HZCc2XCIEiS#FEK&wNf1>@vHf|Awo+Ghw8 z$%9a#(ovnhIW^EfAKbq(zgKRc&)^GRhJ-(VL2g9hpwyK0L)>P~yTse>M!(Fdmzc>#jr z*xR@8fq+TDR^tLoklM2u;`;T+cyx-H6~F7oFEbL2GO)=~d;6AVLg}mW)XbvV2A~xz z+*N&GV5=x_*mT#}ZM+tU@*BGzd&lO6W14iAz_(jI@aWj!(RJ}J&qi`on-{3x zfADI;wJVq$382EVc`@)f=8y8fJ>gb2&mUpaZvVwcSQSW6s9sGedvE76`1=6y` z)2#xq41tJ;6_tt+me2B=gbf@)6N9DzBUP9e@ZI*e7N%xhbs2KNgKUG38Px+G_44RO z($`c$I%nC35s4Si0XG>g4^CGSTsBqX^s?U1yK8(bF=ZuZ(L?5E;0D`3(rW4VN#8Tp zYQWbataZl!+7=Pivk7}3xEXalv~Wm+#p5X{3P*vpa`B$)a2%`q=m7 z46T#n8z?m&y%)XS1)YHaAqC1u0A#CO4#6>&%Nc@KW8L4M1Y!YPif+X27nE%&9@;P> zG=PVl{1m%Uyy{3#Fg`Sia`ZE*0dki3^!vn{4{XTrNzrQU@>5`9H7giZr@{soE=)mc zGcwz3ajskfvF;wu&zNHDzCRY1i26(@bEVd%)vi)xZ7g$xb~!`r{+z-Ef)~9$1>Ev# z1$=u&!>1?2>$*oS=KyfZ;~M5d)s!ilQZ^odkvfwqCl%J0OOGCUY9be;Mbdi!01;C# zpK3_YV?*{Dj0KYd*_{6cdyfaO<6C<~*4d*yiHz*1y0WjYB~j=^!@D!lyh7y3^V`;z z-(O7hH>!JltL{<0!)eDyh~P8EG}&CQ*gbNXd?Vq0YfR63&)Jkviy&s--cN`+0G<^Y z7?5O2w3Y>2f{v{wB3tHQVmKuRkYnjREb1ayQGYsqGb{GaKpt5U=G#+DrTnpNk*p(Y_=$3EyhBXC$sBdw&+w@$~WY-eRY=pMR8vmb1;~@hOf@2pp%200ct8^h3X+v zk`;)I)@llFU~q@(y)e4w4V$~^s*9Wi6>COown{v}IYnszFs2RJRjC_-kk}Q=spZ8I z{`7a-ULM@4)7Z&(DvF{MrnnclIVElJPxjDKpFQ5PFwOh3Le^?32>|jEf~bqT%nq`4 zNS#y02{(j1a^pNXrH`pGM4eNa0ZN@XS+8EszjvYS*6?;07e7Q1?LRO@?!pw&@-p+_ z+S&LMOLrMUlQRogXp|G!0a^tNyN{j4i|KvS|31cvvSJ2ZYN|z)BzC- zb-KKR>Ga_*mEtsxq01-hT!b|K+%AE@B=QdoDGtuVQCR<%m~MoH9XI`_4URsvGb@Sw zlo_>j2iZi`fx=7EUU|mm3A`i1M44}w|fY?!OCz#&@>?efK~Bu{WpnjFxAkmD`8sLMqV6(UTu_CATrY|KaITp;+6x-u#K zMg)8-a8t)H&@^Z0b8~Xa9caZ8GGY~DqTJUVBQ3!f;7=FT-14+aL`OZyCj<@0Jh)9- zD!GFH!i>x9@;@))i4xCevjS^}T=gGgPg<}1E%s#t)$itzEp={1sI~fFYhriPYOETZ zIci>_ph+R2M0~QOq@*sB*UHkjfo~0YCv$(^>TtQ_aP@G1@o?Aka8>k>i@;-VYk60+ zw5;sZOV7hiPtWz)_V&5V!FcB|xBZC__Oa^y;z%i_OFybXfVe*QssCR5{juQwDzf)` zMH5a#7Wb4cLA~URRzB;bj$lG5&`c3g=;ec)NPWWIPIDytTmtHfMECqK(IUl|F__~J zGk}hZUMwop09>qnS{iwruAkot;vuZhqc^6t8C$Ik!n27uCh@5WKlcpF<;P%arrX z)%w)8SWDem-5rrC6|+vSvymwY5M(v^{;vSK_KL8OjwaYOsw-4#GH=0FtMkUAOk$E0 z@jz|qWud3LE+?yUY?|kpbFtmw@lEo#K>I@RbmyJyp!2G(TZ!Y{0jUzHvVlpj=v7FU zK;m%fV6EhEU@zftzeeP6IJ~ruUL#NVOb5|hApvx{>1kb@Z~!BXNKQ1fo>rNpZj3M6 zD#$QCEqeX5#;=|2A;nIVc4ABPepcbwv2KH9=RO}>0Ml!gCUv;d531Y$!CTi@!)qTG zY!4)|b6ATwd>>Al>Hai9d-P!n-poQ(C7s7>#^Pruvv}GGBffuFO}1d7l(zUwX)2KS zR`6bOYtr{~DF*mTo1MMd!h*3mUr!l_>sJ4nj+%U9lE1xI{chMz)Lz$)-=nuKt}MB~ zFs|mLsbW9-I=gGaXm!z49o{~)kV0(iD3vK-1mPGt-s6d)`HRg78#PtSdx8i=Ge{Z! zBa5!}eWQ2V=V3Waw-P0H9;NLJpD_WkX!Gj!b&%))@(nUge3XQey@t=9KLtXe82RjZ zH(uxC+-QNIq?OYZwaE%hz1`MspNHlgglTks<^l&_ zS_;BQ#&;rRaYS=9_7*i2F>@1+(Z+p!ng>@+H9wDgq<#Je)i=*tWaXZ6KHBdN3d+8+ zh3`Ev``!9n`C5FAeE`utQmx9BWIwMveM*0`LyG&XY4>?TJqAZVWM7nf*IvG;XgaO1 zz?dbwpiCq>_VS=Cz(8X%SGe=Z!DH=<#`2WitfH~x`qX|g+MR%Mt#eVILT-PP+RXr)K)-G#WK5R?kW8%e!j5>+N3u9w%^q3mW8OA-1A!6D#TiQ0^*6m2(lkl zwvi~MC}cOQDKA&XwR&k+O^SXxXoTXgaR$=N2~8G-2#J@(0R!0}y5X%%RZyjnS1z`xIQEJ`H=gr#^`Zhxs`mV@-$lGmi8QU0YN`&kKg)w3ec3bi zZV#`Ya#wTT;POvx;y6fZ53i)E`ZT}8px7Ybp6f z`Q-RF`rXk!HLzI8B;0M=#(f4I)b%rXa9uzAAaIdj^Kxo*R-A*HNwH~qzjed{wSjts z1y5k(M~zdv;pCz7o^A#2V^{k#2aJghP&L9aLQb};n~MiK{gcnPb3|DqQ8fqaBV%Kf zhdY7&s-kzQKc{exI*3rlu6$J(RsJ(o_TwFy`Nt`~yap#7)<*hO!zglh$7~isK*66n zd~&>(o2p)Bra8q=wc35F|6TWbbcLqBp>cMPeiGFrmGVquQ)<|wNw9Cp5dTMWSS(X_ zLB~auNBg%W36NBH?DBMSU1H&@pBJjx|J|h=2XxRWkoqAB%I6GrrWf0h#BaS5HD1X7 z?B)d}dCc=azmE88KW)u3vt1$JRc#u*p8d_S?~h4K|NgPH>Gz}an;+?8@-4zE<0?PR zA229Rl)I#lz205>o&^Y8DTX1i6qdlULVl+d{q~wm!&d%H&?B#4m0ZVXh)+H^Y zc(!Q!xv~w>P>1NckO0J!P$(@E9KW_9A5(G9YuvhWwAj)-(Y0hx;&)AuYd4G|Q~maHzl;}Z^Ttf8Z@x&hh0+r|m2lYI@yhw>abAWTyDZhuWZQdgrz0G&y ztq_$wkK@^lOo=#=*c_Lhf`!DK$m|f7()-tT-uU=421?;~Of*i2xg%T?=d$f>2@fe>gxqSLX z)*;`vjF+49XMc02e@YlDy5YTK72~<% zH#jwwkM9*zb2zt>aA>m^DJr^2w6M3$KA|#XlHNVP^Fsx-VIMe0eW)3dGar>;e3ugB zI#CW4cIz0H^!yVJ;DkxE@*?MKmX2l>WYCM&hQP3>E_L*XKjBtbpO=pT#VJr(x^OnW zJ4^E*Y2%hg=Z}uXi&_hkq6vhacp-kGXV`{3@*Y^MogaZ1L-o2J|8OmraQE0uYRt90 zE8%trvDbFEhBoy3iG|kA`5lj^-e}-vEu!EFn;!h~YI3VmiJ`G$rbvorbj}j+rc-rh z;q9|rC>QSg5xT1Hf0p1AlPx)*qOd&ydd=Y<~=~M8B>Qf z#OVojCPwE9d->r=xkRq%A1NN03%!CR8$%C7A8k*}FF;5NL5>Y>30^X1Y$#ef>OMVg z0&5cjnJxFJvoZ%-nc4Mu=}&QeYV|(f48K?M6Z2gbUx^IlXy2`y8W#!{el7Q*2Kuk+ zxL0f4?$Vt^dAiWKag;ij>`i$JMGJ2|>V5Y>;fIghvozD^#LB_6gvK)qhW~8Nw*G0^ z6v_)g@oqkdzfbgiI*=sBJTm*&m>CuI!~7ZmpIwA*9zIq%(PtJulU`(Yc@{GHDwP=m zwOt{+7N9;FYGOT8ER=k=WY4gYgZ7d<$zZnhOF80`lgFKl=av)82M)3P=kcXNN;JrNN{mgtc{~1_vJY%YKMkj;a9yhE(pg6fHDR9!gu}Usq}5AgC|BckG+#8;j1sF*!e}mN<{zKL?EVLRNA~b$6)BCfR3Fu0?}_fLh9l&|fO!RZhax zxATTK^yL_O8}8l=moHMxsF3#e@F6ai>y#V@$!w?VS)c2>l{cIOSi1{aFUoNW^H|ws zkV^K1oV4ouFnr!yg*}DQDr0Kn8=Hn(HkW(us^99W3;)cZ)?%Nz(=+Q&9m!%ldOi)Q zS-`!PeVQL+=yJCE{jerwbB0RYmFh#nj1>lXkYLR}C=}7^sJJtG3S0gTzKApnb+_uB z1GN-8`D(X*>*Wi8j7U;%-jd5AMF+|HSLO^{K8BhVwy3I@hD9(VHEa!rQ?4Q=cu617 z3aQ3zE*@$yxLdQwx?4WAZ%c~Lilzk4qMZ?yKXO&Qc<^Rh|G1{--`$I%ew(>zri~4> z1RFjIfsyxhLIO`d_>FR`AqfmhVis`U#E`Un&b9Z`hnR2C_LC7cu|iQIk@qgjgIfNK zP?F$s#`JRwvoVX^yp(vEK7SJR$>0m%WbCF)hd*;`Vl|S(8`=%Fp29OGERI4JQz~~+ zVG3vC9>)hh4@_$PptNRQkj4>2EyNpkP`@Y1?fmIjOykG3B&(?eftY8MC*QH9B&jtR z4L!V5wd^I#7prS|XAGE$ivPpbRmMfNeQo}zAWA6+0s;mpDcu7oozmUi4MQraQqt1W zHFURtv@}D9NO#SEFfhDlQ0~1S-uZ+-#W`o~70-Isv-f87Z9#m<>@_Oy#f9tV0B0xj zM;ga8#SGA^d)X$h?DlcmwlcpT%zlw@&eW{1-!rp~aVZ;#AVJxX{iZdZqkpTo&pivi zWEn(J1T1`7PAC%Rt6_(_>OCnR#M_KqQ-IXek72*-PZ0W!sI*pJvLOS)Gs{7%uiPdt$A0-R!7(iF9r#~oS)Xecoa4QEew*tn(D9*Id*J+Z0xOFFS zG%rTZQwe4Cb`RA;mBo?nLV(BU^(9!0iQ{5!)bxbsH|2TC*mdsOmExkbQNpQkxvaK46Cdn-{TTv^H0 z*UIAd@fO^&YPYklLb*d1b=w)M-YzLFQz+0je?1}S&#+@pvZ=5^4HkjbU`>fni@>!>fjp<94nbmwosMl9Z@dgB2RlmNS86a9C=zH_AzM)pHqi@ zRi8YeDW5ly4W*h-D7ISnJR@sdD7tCDS)GWO5lEH`fWpn z8kLp{4~zbkq{3rKxcZrgh=Ta69)(yb?Hq6^l2W5#4!bsw44(bxKH7NN<&D#h4F%t2 zMdx3tT3k<86CRh|dhp6L_%MJqEpGNfI>u8s+1|VDyQh%)nkVr-APy`|WBtYSjx({# zWSDo$X_6{`@{=7Qu4!hb8J~gChrCLh3RYJxF45dt-a;;HzDxD&$*YXPK^4zu*6@c zt#!@3<vJfeZlR`25Z35cf}6=ur{hK#O(a_@8XklwyO>q& zuI9a=P4+~W+Kc5Kf_j-1;j_Yl3MbT5w8HAS`7SmjF(WT>UyZa2uU+ZTG?lW4#eL2P z;kag<2f*%ISJhoDNNL=4hGZC{9~U@U$YatcF6B03Ob=Ajd-G6gAqh8)OZMnwEeW`z z6c_MgIX`ANi(~pidbPXdd7|$hKVHA##eT~r665>B-I;2f+U$mfSin)CiSZdK&966b69RcO=ao6pAY4$cyO*+kNt-H_b(It` z;Hc6xIQ~zyno519O5QL_6`R+LCL6AlMzDTEn7xo}_7-G3G4|_SG|Ks+B zux}#t693eL=4_HBWKhf1bV_Gr$=h;04aPX>bLrMgoI30i$D3lcFK|!xXd(gRwkfrM z)EQgYZl@k5fo~~Y?VN5lYk4JPr*DG)6i2n2;z--q)C?=qYj!|oYTFk+D8{l*Xb5P+ zb(fShObH0jRNuepJwL(>c$(rv2gCmn^x|%-kGIZyt|S{=s2W4YhS6z;!(nM!!RX{0 zoW+OMym$TK-KMK)S+W@|`fA^np8MeG^P?urM?cghV&rmBeEzo=fCB=oI@JE&tl94^ z(bX$2a6cv07%|12BBpb?yM18*ry+Wy1(;X=*io>ixr-jt1YgC|^N6mMn5>HQ&EEx3*?6VQ zCHrFDsm-o#m~Za>b)WJLe4`1%{iv>ac$()sQuN0g1pzAd{3&3>Vdl7diMFlg)JQmQ zXu=~1fu`O6eyakB%O!Lo5d>UuagnRRR2@^;nQqm1nNu~hm0i&*f*+f&GZ)a_2@+KA zugxHBq279p+2)2UI7(vH>pY26h%AEn2sKQhbQIT3bO`lFpjIpQ>j7%DVeUUE)aRoc zy>Fyek?+D$>l1)-HMzX#GvxG{Q8Is$h}*}6MQeR(F1?Wtfjd5{>Tul<(k*zVZWKp8ZI$1AtQQOJb{79 zN0crDhoXuu@zqd_NqvfZUe<^OEdL{(93YL%+H`4D zW&!%RrBG8kzSp3!T3^%@ASv$Zw_6J(gBEQCo~s_qssr`p;zjM1k~z}g@KF5HF?1Nj~67=Ua)lGO~iS_zM4Gm1egh+pj74P0lRHXc#36lNzI)5q3& ztX&yJq#pF_rTXMb@6lNIS%YmoKDgrIT436w3y90EK-+KultwJG7og;4&#?D;L*ab5 z+BG@=84PGqJx>o;Yp!fu6-{10@tTYXCY+8R@`2S0IRFxt+GV%^KpG4c1uHxZ!pq)u z^SWy7Jn0S1-~8_6QfXH^YtT5qhlsVP$gh6Q+oH^QetbDxN#1xLps=-8HX3KW_6K|3 za-1EU`K(X4N|Xxo`L&~X;vdXj>d=-V%{V^I~_cnaJ{PXC^_Z0cWLWo+MTvu zeUgPa43X{-L#>iw$>{;VVs1YN{S>E5QIS*3ZBVr8oQhcOvK8vyav$`irk)QvOd$&Q z0Y(|K)(OyeIfrt4KYFy!HCPuQ$5qt7+Y5NjrP`TX^0kDsUZ0^9wY1%MT=;y79`AN; zU(P5^pRQ9j*aNo`JemDaILI|~;Y!&J=}afV~V@no4ZF~ zIpPQl!7zab0fTPEi(z{Mt6lVarF**<%53}{hVBj%g}GxBsuY7wU)PXD2d1xWQzbH_ z7B-+|!Rekm4`Z4x8*&BT>eD{a-AZqtDSGd_7S(ccjT6^T@?^My=LJ3%mH#l$c~S$# zo9_fPM_8dud?-0)`+JuN{B5wTgQ3xk`gLA98N6zFP?^uRP^b623SQEM{NudKsViu_y+vP zkf|ngCZ03l^LmAvukQKV-<3=&_xNK;&ttC1mFd*2rFHFLkiOoc+YWOb==V!dcPRZduN=$sbgfXgb2Um1Y#-{Zj*0if;&giB+{>atyUDApTf)<9mwUO(i7<(KQ76W)bC)P56KmdBknL|kNeZ|C<+?Ico`}P24JTNkA z)hE>BpFL}IPMgRSoA?$_HxfFY4qOQy<{Y;E=F>>{mS?#TmtP+1P3-=bH z*i+U%!J@Y1%RJvRpHl18`4TQLtyNvAd{``D$ZFUMIf;5PuE6?N%CjK>YctL))usL3k++G|e2Bvd_r3QT)*^2=(--&Dc^g&GmrRu1f&1zR^>*w*GyJJmQd#tq1f| zi8%_blU=WcITjSr$G)*XfolhSY{{U9JoRKSN~$@`-`t{6eblF5Isxm z>VhHD)f9tIxTZPq^+;QMy#|Ydw-Z;IORQ%Sbaw-@WGv6CzG!?TRh$w z1G8&-WLmGW`hl5C8tvHI`!SfOU`#pAZGTHXK^@2-i&6`OK0BztfO>~kKfYI^URhmf z7s+GAoU|^qu_o{_%{5Kq#5y;a1vRS}C1WUM`ECg?_U7 z89!jk!i!1*K;;m2|NH`nR&J>cEz~=s#p1C3Ju6Cn;H!QqN2c&8b_DQn^D)4~iTLnK zKLO{A;pIpWpV#H+jVelyB~}K~{qoMT?LH6ws>EeMo%398@S)sje(2EaxPJf5mi9ys zx%DM-0cR*dz_P>IlffiCEdVb>kt3R7nkL=k5dPL_4lV_L_pJBnE`J1A|DheXZfHlk zr+TK;dK_Q~a4XcJsR?$-GQ7qWj1N#*9?bhslVpjK<>E~nB>??7p!&}LAui;VG^k58 zeEbR*m{GcnoZPR~kiEw|3nnf)24+3E0ZSLFa?#{7RMTdaUkK;vIP&7(#XX%0fe5tH zHm$5oN=3Ngh~SHbMCMk6jJeI*WSY;@#tS5>^|XN7-1MFYumY%nFB;EJE7B|7>OwNo zZ3lOnl3n7w;`MfOj}{;W&LY}vn{Pzl?7%7lr#7)#59q3rP3j@xGUi#BaCV>FYo~X* z_ejqcLdWge*P`z*UgU6RQ7G_Gu+C#?rBX^rkehAN`@v!~G$T2p4uX$@n2$q)x}j$RkO+$H9&$y@_3d z?LBk&ol{G`fmSt`5tZV#uFWo?#7u$Mw$-6>`sMs?gU`AVJ0s z8={a9E~&@Y)0JH}&7}d+@V$0ltGgOl{>q|iD53>U85db&Y-#A;{5pw3D9M*XzSF%! z9AIR5%2)b5J23YN`ST_zd^}2P3%Xjj`XlCbVnLO75|rwnK~q>~k@mzF@LzAekCH} zv;r?{z<)J9URjMfqyu01$&*sr9Td61o|~sPK(+6xH%4L9Uhb7}zTTt&Ds;BqPl2(Y z!mg`1=S})2d{kN?R^1)Re_;lD0j}`w>8W$kPK%-)3lPB@0X9R7s$O^*bUj09gr;+U z=Pm%r#;kV#{wu93kk{!R8E^E4m(bBqB-Z5PojVa?eRQ#}xHfBE6EQ#iiOy-J`I^+) zgpUnFQJd*24sT)?>52xM#J4;5Gzd3guX;I&G^(EU;9KIb1|V6S!pC3an3#!we&Bt( zm2x{JX-itjzs;b@SFft1MyvumdrgI3L@7n@{zUHBMCADIeH+{q|FT89SL_Sd*EOT!_B7@ge%Eo{?{ z8MQr8nasQbVi^kePc6JmI11_!!I^mJaYgn-Rdn*@83qbN^-4v3sMnET%c zOwf#@mv06^L+Ckwbe*bl&J?+~h*(0NO&gu&6OXe`Ok7(REoHRdEeX#)Fgq(8&a}<}>z&*Xr$l zqoT5VEjsnV&qKEeUTM9ZFtc?2ESd0&V_c|J_pZ#I3I%s})f-LMFJRgwUX$-7`0b9< zc!&{=7${k5J>6rq^}}B(;@Y8kQgHBA{D$RGXLNVVl4KsigFtwf0czc|#t9mEmT>2B-nwd)#S9W34iwZ~1lvYV~Ob^Ve7%kIYohfGeaxJ+7t4!E= zBKMZ6|C{CMEY|}4=E4^?9Ac#SdUWB_>G|k464*o$kG1W!orz{7F3nu%#Nt1~yb>OH zjP@#(eW+}Tw-zM9`d;KWM=AgOWI~5hC3BspuHv8P zMf>*nFV6xz(z|Ga5(6|x!+AJard+4}nq}a+j!ux2Z%M3UK-639#x)oap2W~Dq z0p6jIGCIn%Nv6wV6}4|2y{N!CXEnsYAt~b%WWk#~g>&+v z5Gdsdu5++U8yKNLElsiq2DAbK!cSXcpXP!(449CP_aJBr!7 z(epo(ZOOCoa7GG>v^#gaJ`LV>bF;Jy+s)yMBl@7r0!fq2Hsl&DE&Qm{Z22{#k9K{HdEnEt+D5ljG;q*wcNUbp0Jm9buvE#}?TWU{^WDyIT((XS$xGB&!gLy|t;GwT-L(WIMVqxuP8VDAkBP5MTZ? z-KyY*&YADakMwSbZY8J7?o0Z755b4K1!^K zeN-*@P(HZIHT?cVAWhxwop4amcBnoHJRz1*uHF>WRJE-Yi((A;=D46s*6rxO%0@qP zv15qwvwS$iRn4|`_BpQ;S{oaE+UY&D-{8y85KMEiwzL#aXJ((W?Fi_g6BU*Tfz|sd zSo>D538`7uMPbqpXfoOsN%A&o=z@lZZHXY?+36zEBNThcLwbUKht(Fk{Jmz=_*f71 z*JW=JB(E)bLM@Y-G=BH8L~$LQ8F>n(5iQU^QyEKolNh|`?|@VFoaD_Yg79@tQ{E90 zGl%k1%4)UF?4|>bGWXeOFz?EUY3=F@eu2SnftoY9VlR@;bsgX{S$~`X?H%t8MgYFf zRb-S+HbkFyj-~T_CSGot%p8v08*5q z{l)S#+oWIqf%wv$WzggSO`-wrY-$_eyC}d7KFvx7H2ZHIZv7!K}s97og_NAjLkn_{CRSQi-~k( zeBZxlk_e6xu>l|K=l||kty*H74Sur`noo8oj_Ni+gb9%)Hp4?J+5&2VEtQ8cwJl># zR?^3_oGEdf?k`(y=j@d2mAW2}CYj}Q-nlB98r4>}7jcdtpz2iPv!QN?_q{9M9VC{R z_95B){ELCv|c)8{QUvIH8$yju7RMiMu7)s$DtICwuRt zCk5AM+-n}ww?K0Y{eh_LMi7+Di`4A3x9YSrJXl=N*!@qTc^7uRnbGM7y{bvd+wsRF zzCVehUJy?9PGJ~yb=f@}@@~^Y9p_IjL1(b#s5p$#e{TB?v2x-_#W(GdmsWju0$=n4 zn{HIe{~o=-eeMVvwX;T)VrYkS zM?~!@V9=7^BF_Sy4>gzU-DMjp*5%2yG4i|uhBZy9!#@7BaceEw^woCw$xy;FUDY0aG=eQ|voHvP8&|XUEAfI3fWoRcK;g}g z7UUwp|M0H4N?G?xkM&tlZ3)1WVtN-$kD-HK1re)7Lae^Pk*cOpDA_}J*y>-WSPL^H zu=U48&@|U?jOQBRSk{v=V*u(GOX__FSmpof# z@#Z?UGW?TTKmMCqhm)k`hrKK}tThkV?~Pj1y6``Q8$5?d+A@3Ot?Gcifv}!5Vty95 z6}}zqVmgw_M>K9EoB+pE%zIdMRPu&91k!}8>^IUj9f|Ur31!>-T*~ff=xH6oeNW1E zeoTFlZZ4u*`--y?8ae@>p#h{9(lRbK8-`f(@myf`E}KpLtUz4x?7f5D9WM@fYV!NV zhTZlUo&}oY=+lUd^479*6U`3Ddg;slk_Cf&bDPp@9ShoLXR`o^SvpJbeC8Ifhl9w0 z!Qu)x_vLzPi0soR4S}M)UrvuvYB01P1Pr!SWrs1Xs^(i8fIFV_4B6SAq?9amAInU> zgPeC?ekj7oIcvTJSh6siVaCaI)(0%JOm(!OG(@FGVLm0}``LX8)`uI=6klsO@*&rk zSVz$HA47ink0HfAtL&QHO<$wb{H`I`6G6*ddrkc zo+q}|gZW8H;g8;OCzrs^tyORN1R$hq3M*V!nimvNRbG{<;w^YxX(lXiZU;MNoW_U0 z4`!;MW3T(@V}zC%^&GA4?xSEj{0^pJRdO zO;50HpBDAi6mjEkk!=61GAmUxPx}!oTcC&Zt`rENwt!pF3v;kd{aYCLxay+Uk^GKY z!!iIP8%H*}vT0lBP8s9aFyMterL;n~C@>@?VsJ;Di@93ekE{h)vCmB3Y|3?KuX#E< z^L*4^=;W#sFvhF&Jtk0IZ>NqX+~3FwfI3D%7!-$^qkNJ|n@}tR~=F ztqp&RhtcsVcH(i);w+;lC>4uPcT147Gc2ZtLEol9nRcR)Oj9K{Iv{ucOd$pGtcplrCbK7=$~| zQbH*?&ODJv)r%Nea!jAyf;|l3eJ#P7>H4ZCy3HbrLmK*jK;Kg-Puc;Wbe41E(-Qp{ z%(0{I|MME*E7ID-!J|J)6}Y;nMcx*jW?De7WNc)ra-s(DXzwg_)n=yH?JMsKo#nM7 z`E#f>U*CNOROgb$gJn6pPAk5RS0@&uB5HC*ZrQ|ju|>1Y#o2%#F7fvx&c(*^@gv!7 zXh1#IMq=WW0Zk|WIGx!4>vWo*tLEO7>eNHR>~a?7IJ(w1v=7FGEyLf2R)vfu3S$^C zn!G4!DBG4#{W51qhY5-F3arUwd=yI+s!Fj;H@nr3BoL)r z&)y6N5sD&5xT7CH6Eul-+Q_{aTG^7$r|i))beTR!czPMa!-6$|P{7GIKbg|{Yppz} ze9{7~`c>4E!xVvyG-nyCR7YxtT;$Upo zi|b71ptc>yWw|l?%CYi3fGcx6^Jv`lxE2a-4OUp3ad6X*sqzH4;PjAs;ePb~6(&F>>KJ>0qD&7>67SQesa-@@4% zr%%$d&klf^ zw{d#|E+2EeSG;$I5{Lnj-hn5 z7@`{D1)@tVF)rkaDi&*k$01=N&-{>h3Iw`h9FzWnkV^G=?|}(zV9=uVG!K5-PD(;* z24GJr#i6D|+doj_Tj=?w$R&tv;lAE_d8Aevz|J27}&m1|@b8$1aX=A7Ki(*e@Th@Ah*RV>)LdH>kf&*&Z0Eh6i3W!Hex28KZ~SEV&VTGf4EV_rFBbyvlT4(epGm^^ zA!0Lk@mQQd&)m-^4jh1?${&Y5jbf@Cfh)oBZJLzx9{1&LF%@GSHNjJlj)w>98$_!5 zFl@!>Ir0bV9@ z`J1ubBHRg63@V5(s67uYcWz8R#yzhPN?TWSb+VdiRz+}HmWI#wQ zDhw-A7E!q&rIdV^$X-~WZrXl6IEFu;vC?nO&K>oFT@QWt0FwO5xgdz`Gm zpoAS5t#|5er!5^5TEFuAZWiNPJzt~cRK6EDaspjkV$~X%Vo%Iv9%@gV)J`ZDP~~zf zM?&KuVtw6xu&A)})7cCIyrthVXK|Z97@xgSm`-B1dH-Y#uuAM7tAqnq`SI5(fflub z@fmste2d?ai5qPI-7=dgDM@h*B?SQepK}48Bms^7th2r~dWMP~jjoVd(pvs=R0w=~ zS*$*jodKHfP0pP@@3mh9PrHdX+Jsj}IpBcSKBkk$y^k+gjX^KW?v5N+ujLr@oe-e= zzKo5K0%dCv-0f!TvDQu|3b)vDZ-Z`!-Iz!BKc_ZTImHLbrfCOYm4@w6%dTl61qDw) z@P{c`qHejz(~q8-4KYgAOc!A70+iYKGG=j;@;V7PEH!kf;Y!NoXL0FxdWahpddInU zN~~x=6>|((`|!~GaI5{pJ6>q;wY3eIGclKGiTMeMku>xB*;0`#kn$v*4#-exVI_?_ z{QQmJvHzdPdKV*jM}nk>5^_AHU$?a7aq`m{W>7)p>A>jEP|tLlzK7gj zHuWjo`x*drSfiT!ddCuk1*73MZL80^=^_ahtp<&ls}sEvgK2{kag44Grgnks0r|Xu zl5F_S?p0j?C|Bl#$OM7fK-$J+28V+G$Bi~K*va=9NZ?UXZw z2?-P0|Bf56KsyO5Eut~&8E_FI>oh_B@Xwx7o8~)ex{Tfi1NFD?xn_+9v*~hbv{H$V z{;Bg5of;X=pa+-5l(Ez0H6h)b;aZBxEv8Oo_W@%mS<4}sHpB;N?l^t8v+p0Q$*t3D zoNuo8_D|7b4Zdhw-)UPO31|NojNgzlBj&*J?VS=?{8VRvt{s@#g^lW{V=zb$s9?~D_w#yVna;rbZUc0!0%G*QWqq-BZ1v< zOJB@DVAJjc9^;B^Oz@bZg0tD1fF^;uO3`avZhcePH~w=X+1K<+#tOIIdw@xbeLZ>3 zTjLnq4Yl%X-e-@?t{*oloe*sQyxpHo_h~m7=*-`b?bX^gDUTXbnvybK$dw#Q;YQCh zNnz+rnS-FL#ABrD?i3r`a54IPx$MP8h^ZsUQcpL)@rzd*Mb~t;afVOp_Hr0#R;@-@ z=<)1*YdVe}4L`SBMgCHa3)rb34SS<2lasFpC}{eoFFe-!_R`fLa^u2!J>-5SW3bo$+=?Yk!wkRi0Q@v76Fd4V2!pRxsYvSd5NAkHVx(PYIP=%+Pa zs@FQ%Cv^R;SeW>XHW3y1G&T}T&`u?wiR%XVG^_oSl_~zs%HKXbEm%=|;QhUCgMc)F zUv948;uHCP%xr(uhRJg3L+Jvk)t4?lMR|uEWsX8`tVC>2b}!xy(oMboJag5sI4lv+ zrP*bGfl~=Ee7k==;T?Ct8r}q%-%^Qu2%g%k5sAj=r8WIDIVwa-BOU~TpQO>3yp6w| z>Wlt@yZIF}>Sf;*1Bq7Zwf^gOA-1{j-hCbKctq&xWh8xSLYU<|y{mkg?5E;2mv9af z@H``(tYzxAERIg>J&G@~CvP?A;_Bf)rzNHt zM$rg)|74fq|0G}RC|xm!4{;;iDv<>Jo;;ut&F8H~pAv{Kt`#Cye1WRd@WwuUENR;_oW!;Us`G*30*~b_g3z`M0gKHx{`F zF(miuu3Ty_5c|b`D?5X+Z`B@vcnp>J&*kmHP&)!^pdtCK5y3ZKEqEkXs<*EkF+WZR7&iIYQjlFII{XPx>4}NF*=}WzQw?kd?iON zbnH5x&Su=OQJVi@qnxSKA3RB#?z7Oet#NqL*t@DOS$-&w^(;0^E6^j{diwJuI(4+_ z>#HJ?0GXgmA&qUrh3{-ZbW^uJdr@mwa?H#S-6b7i-Tn_R;{nahdfKo@aZkhEn_G4$ z8}FeI5A|Th=cMcCKSS*M(On(8Qn1MH%aWL?K2$W?;V%EX>Z`!2C$7;TXn@+0?ptds z7FXSt=tgKUzz?xI7vE0&cRHgB+)9 zRBY>|!Mohm^V%_`C{t+6HC3h+h|RAS>|2@r236SZx`X3rk^U0rUva41VWwHAoyln5 z@~iYLjrVB~l+(X^OIZ!wMX>?_1|COml=FG1bAveP;7Ue1Q*!Q+U(454@+6*q>)v3c z`Ub(bQWKy(JPD%aQvDx@o|N20O zf3{X_5{5u}+(>j`x3f0AUH97DLPY$Ux`s!dUT^6lKL?_TNRrGM`n0}hdAfrjhrAT! z0Y4~H45l2}leM2(yy<`dB=Zdu@>A2-iw~phV{OY;Jjg@HNAV3w^Z%4rZ~I-E9@ic} z3si9LZ@suUT^!282Y7rI`S`~yeTDw8HeSQOhUftd5ff~6MjoF$O555OINwHa_ju~m zIMsP2*CnsY(LbB+Wr0bW@+esvxal!m#n;+w)tJzqVcKoMh# z*X%~=qV-A2WTrb4-;UB%9i=1mr>~L+IsmWcq6~}xTa;addmGrT-+u-;LkCp(Cic@- z7nN79asgiedou%O&>Us@g?|e%mVR~Kzh=KUn2RrTd9r;3?1Vd8Z#8edI_#!IXa@RS z9Cq)wn){tzcDCb;9q!3s4VXwYh?l?Br$8i=xH4Q1s^tGbiNkN3E`k6Nqi@>2SB4b` zU!!5_=ZK}Z1pKD>39aNO+dPMGCs*sM7a;w?gwlA~)zcQ=j7f4*Ucho>0Um#kOfr!zkU5Qf)gy19hWLLn=Q%!= zYNJaC7!sDoaKu2pGs5UlR#wD*Y&?VrxVY4mv|+D3l3P}!JGopUrXd|h==TE~Kvrk&tK?;Q1IU}q zn)l(a!9Tq4a!p$*-jCPiLXZ6@5XMaV1e9Mxw#j(0ovtu*CC8#=4vpUtVd#x?!D+hs zxjk{2gCF}EWrA;&sA|Gd?adV#lzss?!aeqhVE*C@H@Hq+Hu?v~Cgoh0yOVVLej0*; zjtjB5M|g^aRJ4)uo?kIu0CX}nnG_DMU}+puXn&hHi{;%kXb{_TaA6r3S;sD5fGx)| z$$){!kJYWeB_Hh@)xSAb*xov3S@k9CBdw>_JH1@eq0ekR7BVpJH2N9i`Hb5UG2wG$8cy6%SGe<+=*35nDfEYy z@OR?%y`k{jW~iyI?xdU^>eu(1?Wb(|y*XQ(&dfZ6^hzTxt}L9f3pJ5~eJv&wZy-H+ zx;Lbav*qK2$q#I*08DfDj#T4a(OFc=CF*A%w%m2??Yn~yJeRDKf3`(b@v8y@ocy=_ zH00KApZej8-&U_6Xa=ppI3g_Fo>U1$c9XEH0flZ(LGm;c&Ud6$3f=JgoWRAz@wH&F z6T5`sW?CWppJ@dQn7i$&i6<~{Q`qG)zPshwp%r)uW@0t?8b)>+GZ>BM{iY4$Ys57Z zgnC9aG%$dY2GB3)`l98%R8ViM--^#@9ODa*2VBpvX*%=D`ZU7_~q{7ythC|H@PPB-KfAIj`uhkXix0Enj7? zoBsu@ht1Ak7!8+cTYm-4M_NkzOl?QU4Um={%9BjcXd8c(TH6RP;<6kP%kcI5{9F5W zd>g(wn5q8pnUDOCUd~l+h*KYsP5O)%eYgwvi;JFXG6Pg1@U6gX)rMRwY8|YnOtZ8% z6heV2OoBl07$W{HOd|h+lXt$=dL*gAzE=$9w5v;&Mw1eD1JOY=?s*Z8@qO%PL!Q0X z&q_>N7>h_C;DwO~KZCS#on z_*V8J=BMYp@4vBqd2!|4)OoU}eqIW2J$S3J-6Y4#>xa)}LAiL$r^!(f%eULuq@sZX zD|Km>yc$82o+xjEWfUw14g8yWG5(u+Cp=AE>YYNqyySm)EH{!kJZ}H&``lhE0oD1K zRv_INNmsQ2TM8gGqeTCj?sI3hVpsy}*y{b)2iGwD;ommkOReWJ9zKXJ0n`(rPL$6L z0w~-OO3k4)cpY8* z)WD_kokryvj2GeM^zWqa?*K(|+|j_nID#=IQ9#;&MD|{Z37I5Ic{4l`(P1>JJ}D5% zzLvA_dk38TPj96-G_9@bCvz95oOAeb2JVM)F(}*GS6Pe#-AFP_ji`!Dd8O zsQne~W`JTwgR9@rSme=cGheJN>To|aGzog!a?pJ)-=m_{hgc)#E5ZmNY_k1vvPy#G z4-~*9z|@9vAADc*Z{>wl`h@_?3#3ca#njD#Twnd|)(<5J={GNQi~)v6iN32_$$l{uNN{?+XQgk7x!?vbw_HFIK_n$%%|G2H(M`8$ zaPQx4(}1p6T|93I+n;QPj|_m{ zTr&IEj9mvVProKnqLXlHGcc64j}o>J@;@+^D089=4tL)QUoybyguK+~(*(dQ4$yJ> ziem#y%kCGztN;^P`X7CNM{IMNF&j8#sKRmB*^U$woVC3<^q{Qq23S@L{{@z4um1xB zIxL&n8g%O8*SV^UJ%KIaJK9Pn+o^yY0^ojvPU_+TiH)P3HZLGQ(&wtZaoL*=ohR2* zU~bFl-d6Zxne$JQg$8Mu%`bZJbYHi0{}4`h{cpzO$y~ooN{&2jJ#R$1AH`1tRv%k8 zN=7+*sJmjH?UX0#{75tdz0WFrh!O4nE(IhJ_?BpPM(ZoC2U1AS zPwB^LF1?w(x>XZ-mIOp8`wLDNa3*cBUfR$(-f-gnvcROsP`xF^$}aEb7-8c-gV6go zgbQoHzwsUGdS0Kc=I+BB?y%#eq z^xonF8ac%}`wl5ACD}NjDV=5KLt(}L;{h-J;{msra#EwU~d>oRo%P^rZ1XXr} z9ya!~aqy1x-uD7+K;DL23cV6R{*?XlI30_5c2`KJLwo6pJjLT=<~Y$0 z7l_SgfzO=gS&gkSd`p9|h7)&}1v&s9;N|P#uSY9ehS>d?3GK9c%G#iO4Zu}z{*%#y zCp}GJ9L8j_Nyx!Z1Ec#jrgAf$d88Wy)`^-28;nwnccvD}BQnMY=vKGAg)!NgL z@Q@PywmK4$bgXE|yu44Q?CZ%$Zcnal>$&>$fjSf!Yw#3myze781E9~{gc4I!G9bx> zc}w#R<_~h0?*|tQUMKn@pnGx|T%1Na+|P5!daop4S$}Tkrn#Ev3xH~0Tk~w zZ}{J=y7AT5^YJ-;Hk8b7q--5Vk_JqPsFTjAw!Fvcmfeo+w{`{-cA*no4tn-8fwEiC zi)p`i7m@Bq6H%!m6m*jT zb<{rNzE-+&{XJdK;C78UEJd)+YU|$aREXhHswewS3TS^jK}vRM;(PqyC|7K|GyO0*r?$TsHubWv|kw43PSFKoFR3b~S zW!uLoMCi6G;hjeN7en6T*6}y>ai8$-m(V~KzT0wHz$R1;seBX-h3j>Ewx=d5?o&Ro z@{(TfpG0ykLyp}~r(ku03GQY;J`16q0KmK zY_Y>t65UfM=b}wSrr?vIXx> zXv*xZQtdB-ylf^nmz!LxnZj&^a@fAkQTvw-8WSu9xKh}gApEi$tNHDO8u+2jh$p5& zF!|ynjNKs{Ir>0+1@~6wtE1x~zaihNWxVLSv=S{G46*qFdON?@DPbl2aI9x<>Ss&r z%MUI+DtnI`gr@phOST&ZkL8{qkVcM1i@q6_2}09yHr)c_*H^Jv&`K5#E;eXMow!>e z#j61rOCO&!Gf%>Hjbqa+iTmId-e6u@c_&1jMprp3`R z710Wb-U+VVx@6&wBu{0(FZ-}bKetcnksonFZXiX=U8GOzVr zbUgUo20P84nUu)ZHw+~7e(ujo8#|vv&^5}S>&ko{-3LF!cF_Wg_I%E%P`&xp5kPRD zc%WTX3cvet?ynw+et?-dKfOetiDcv*lMJHTJiZq=Cj`}j~8 z(cPIW!->w6e>&LW-o0Xu&wPt>3;7aw_m+w)8*@hN?W-5yPODwS+MRYEC(QkFxmyRh z7u!`yOh2x)66uIP7i=`o!WYdp^wzB2gyrKklxISu(WCqlE{UtKXJkNl3JR@)m*=zd z+gE;$jw1)PNZ@3s<7LXrNx#d0A%v{*qfzjm%=Vs7f7gvYk@ST+l=!T?PKQVlxUOB;(4(#m|+E!v*4dg$9pFV1%P!{num4 zV9D0bem16#=HP;L&Q)t4q&M4dYwUm~w_3{~QUzm(0*a9R2{ktAz`TJ?V>d^d1CRX} zkR)Wu)SJ>1&IjdAI0}LmW`My`jo`SY= zsP8izL|w2`VbI@;4!xDt|B6wi(?hWgk?YclIlwy+Omw#)16Wm^e^%8t+~-~X9Acct07!P&+zM;ObHZMOD$ zIfCt@q;KWV2c2xNW|?#`YSj6rXf8bQ(XZMf^PUz=;Ca^M>`U``y}8mm0@|*~)xoXZ z4uE@T1_tlmBQIGt>tf1DUwj-M6>0JE02aqUB2$IeV$iFAdoco8)&d#5qf>`lj*Wc;2LP2Jy=8!0I}vj;Hlj6 zxyYXb^sm~0WEt%KPdx5{g0BgB)RUsUi}a@o4HgQ1<-{!1kAyn8CMOHT#w?7UH!18T zwiY?a8rT%kvr1MS32&!K?_iho-*goqi6zOvl_I4*mu zaO@~w%Dr&NeI|Sh;SNYBiH_jk5~W4zx!gwMn%dpc>hKy469G6r)e&H9fZvGo5}FN& z!p}CD6Huf2b{srFt`4Nt5+Nz1it?m9@GC`WLUe(@>f;&Q9Zv*0k5ly+b;!vag|13k zd4Ep>a^3R%Zh}24mVOT1po~ThMsLudHE@95E%VPWZ8`Hp5K;|U95|N)hw1ZzilxcB z1-3*_sGwTa9co+FKC?GkfL6M(8o4rWkqX1P>%o-^?>Q%DXC$q;W|(nKIE>rsOk?xP zbzA7H+tIu_Z8##x-AaM9;o*Gc=!qH=`4$MHJtgMw8Rf=yi49i}Q0MwGbm|+O`1YQ)lColZu91B7hvtehIwfEBO=;m&7y)|@9x&tQoxQor+d3zu2Tg{+RMuh zbFDBniSjkKck!EQBv-{}5bL!)?X($93-zDtTX?}hOIt<9A0 z4GOc!K{|pmZI#`aL&BoDhfRZnUi* zh*V!zE!fLy0?=V`5e5j6KT3BuY}E^;uXhvp@T>ZjH;z#v`C0mEin)GyBd4LqLtTzL zKtU_lsI#k+?pLxC&=*vxFgFE&#GG25(+W3~tKuxr`%!jjsgk9JO>OxO&DBAb9j;px zd_w)x3)KMog;Fi7lo?gPSWcxW6b`)3Fc$sBqRR%5LPD?@8lgNW;hRi$YK0se- z_|Hu2>;JL$mQhi4Z`|;x2&j}d3Mf*dprC?+bfYLOqM$U=0@5|4QYxj=jii8d=MWOo z-3(nr$AAnm&jG}H=6J95K40Fo-u13OA7F;F&pvzqu4`Yt_wm`?{N?eYxgqdiDUA3{ zNbhU<*I2`?b%!1VZ{CdPo5yQe8A@@|>)93G~6{b^ioF+cIO6Tyz%qweU ziVnER&y!e2Sh6j$@Jp46LJz##SlD1#Bowa1EAQ?yI$v~tkuuo&5>oA6~ zJoEX=tfS^ThU$!5xjAE2GNAB<5r~r}bIeOony6ml{z`RjxvTshp{n3g523t?Z=L9w z_GD{bA@EMysZtHJv@S+%8B0WXAp>gm*2rbe^t zog~twc=ETK21I`AsdfZVqTyQ#C`YQ*1PjW^VJ+EkYZ2*~O6l*(f|l+ZtBed5$dEqT zW3jn_>F=b{UeeuOcz-hyiKN*A3i!$vqiz;Fl{8ovqk{^hk}+O$%UlQ2&TF=ujOEp9 zc@_a258AR<&d}eVj>$)??!JmhJ|bUKGRM7JFMLc4{v=+HgM`nmsH6MN&&Oxq>a@IA z{w8~Nr<|s4Ro5Q~H!rjAYpeEJMb2#NlGc^9Rn~lnywti16j9=Sq;@!eO>FC#GdUnB zNvig`tPnw7VvOA}vI4=w*$iMNrdge-z^We%$MD8F(h9qO~K;i((pSbJllTJ$2 zvcx3L{pYrY< z8nUim!-%#&rA-nhO*51QxZd)K%r;|n;T-&T0oRL>Ddk2gl;?v$Y4{*xoeEh^7j)42 zt4_9`9FWH>hkgJmj%@r04eaFdrM(GB3A=rUmmmbCeYh})ycN^fonmSOXzHThdif;+ zXvz=AP}@|(Cw5J*KW))759G=lo+LEkk=|=}NLofWu%}a#QvN5oSQ6SiUOpk}I76uW z`U;fukt)Z$@NFOQ_X3Kj0vmw)VRi=MtS zQ=OJ8w`5FWpucokcGn*UMD#D1e<*Gr(XrhUyEB5yUS9W|IZ*zukXl`fb31!?o0h0iGDCOR7%*6sgek z+Mswz3xR-2%ZkKN(reSA z_|c^Ap$m}w6&Wg~Ms~~Lnpa~x2TR^+k4`5peV%8;=#_JpX?6DpDZ;e9qEm*$awsWv zK-#G%2&Ule5*9t--~)T|Dpm3pnBfJ!V&gN+`s`Hws%m!y-Kg$i3dmupR)({{FX zukMiP`x1mz43O_o&(MFT+E{pEKl`oRBaMHNW|H3^#dyGg^KGqWuJoRqQ<5|LKx#qt z58T_wOUvUChO^DB_flV7@1AC5;M$ru`-XkJy)6wgCIH!{yCpVpuoaZxn=|IQOEk+=vP#ePf&qD0 z%s^Z|XE?&n-wl}W0}?FKOc8y-p>&r$M- z?4e#7$S+$#tp~)NmM5NV-H)nggq@9}bF02aaz+!ViH^P1+08@%NNw^Rm0qBx;-^z} zPGqmYTrbQ0M>AtzW|Vl~xhZkC=Zy_lDFO|OnSE&_wJ6d%)@G3_vEK*CaK*ggOZ8QR z%8%rith7>XVwaH|0KeRn@J!e}^T67Rk3dsp|;L)A43IoOzn z>>Mmc{R1^@m1#CVhi4Zk6)$c0l2reJSbJA=l?`-V)^`kXU*nZ1@3EDlm2=GUUE$iF`TF%Y*S${Lmj_%5sjHc_^0) z$=rAAc-9zPvB*?BvzcWGIf+T!f( z+0Oem1>xzBe}#U9wb^}E={85iKpoTCU?N#>L*+nzAoSFArVul!7WGfp^)9wie!+U;LlA!YQ5@5XNr z$>lT3k9x=WV73Q86)*Vtx)P#GwME!NIGCo~HHzym*czNIONn!fK@_VJ7MMYmb9TeAd2sb|3$=3v2-}+_2^gV7>;;W z+Q!0M$>7(F$CD`sZ@~a6%C!=j1+az@r`>%B0F-l_XAB%nU(FSqbGcF~?sI2EQ z*%belXL~h{oy?~TN-3WFtp?XFJd}F4H?eO@*M!4J(mHMy)fh7~w18{J_*qzA_mj=X zqkV+#{0EV%!^c2EifgP(s89#*06Y8<@uO|!q$WHhTcQ( z&#T*`rv%a4t<}y;F!UDVPp^bG*>UpK{`R^%x9xbX%8Sa1f*q^W?9?{$wzLj~MojxY z&gI11(#&OlSobBnb`%QH_|4T?%pnPmy6q?M!YUH|Yjtmb|Ep2=b?&!2t_J$sR~Ees z;iqH_uE4|gZ}?96y686n@DMe*K6Z2knBIpx#pH z^2u{1k;7I3aR)KL@0YFp7M{KTUMx=|Te~n}mH$90X`II$Qnelsb+x)?yeUh+lnaMM ziCT!O_uXFN%vE^G=eznEid!@VDW}&e+b(v!c+tm7dCSGLSW$LUoYTUoi*2*_Xpg#7 z^?bSxjWzuSpRB|FF0ykfxW)d<;^xZ0AX)QzX{$O+&1ufjIlZ{WdB_Ro%w?VpM4E;a z7RI1ZJL8u{Qz5y8??~V!uWIo>f}-e zcCF>I`^7D(G$SxU0rrUY!EMXsON)cQmbxTclZ~P^RC}L4KLCGdIKo4wt~YAli{-=# z64tRP;n%>%=k>U20?zxpb8Bl=krH`$?3wJ&rheUiISGeE{M5VBg_clNwhRu_E+pP7x8xSVfgZEk-{J8Y*_I74_)edl{~1f7;=LFn-_!O&mCwTq%z!EcRTiGSh&zNn z7JyH457^j9c(6|oSVf{Vz-g##-}Mg14%tZIT;@o;Ah;(jiqc^8B|X?lkUz-e<-6e| zZSd~5oCKz9jG)=_%y}Ot2~^iOIb50a$^PoUM=^P9Ml@km!QkRRqU(p2O_UnE5{pL_MDD@1*)D?*m{$7gmq$=7WDv;iYg z?};dx5_}R&Iyq+E4Lc7eFAlzt#nq%vjVC@!_W)J4GvD1qR$r+80?1-i8--+~9A+_q zBJEpSpy?$%ZTaGak?)Ph+*|Tlh&2=a4^aFswnZQEO@haN zMJF@mK6*AaB75=F?e7ocS6y1W$f?Dxe@D zwLKu8xzmL*R!JYK*(*k-E@>F2MQqqd;i#Gv4B!5gQ@f5>AO(`M47NxhPeF38wa_y1 zOC3wb^&cuyfw?GDQQQkjb#p=)W} zN17pEpW*MztfJ_<8-Lc6ivU$)F%wN{lwW)f5IKjp;bqZB(r&IiGu$@-cGrELcFwtO zEJv(WlmpFSKB(jYCN&dwZtG_ZnTg~5Vk`06RA=0cS)*P4B=;IP;hm%*0~{u>36~|7|G``8(->H?5~yx{kR;BRROqCnvKd?=tG{HC z_BC;km2!8A5tuqqZuZ5Qjc{UjXe4>vcJ&{@8_wFt=JFG(!n+CYv$ZW(T}ANeBBqd! zi(!9eubTnv1uPVyFJ7`Ey36{g*|l^+WxA2}7#@u`7|Ke)S64M*q&4xpcZ>czqIl9D z-tnZ~^cgG-XB``JYfb+RH@_w{Oa{p4s)QmYyE~&z+l+^sW9>%5^zwam8EXKOr}SLs|$js?Z;)DNosTmFd`1_3d|>AYHw`&j5n(7EB?@r)|_GkXY~TfGS-S=EE!2`c@QMwNf&4bj5L4Oy69oqrv6Mj#HK z=aY>1J*z;x*7^0G=dpGP^_ez36@cZmP%3ZV(S}6E=S7^Y$!2nTa?|+HU3W??<{J8RaHA1}$OwMn4!4fSUhfjthJfd;cEvjTkI z+V000P_7UA5#RkODWqwiHHci8LJXRUGy6(BQx5ew2iwc)u`A_jBC#jasbxABNG^#Q zt{7AvgLnr>26|T4pQfm|0xXpC1jE)(B^>x-r4&a2!M^In%0%Jm3bP6Z-g zw;R`xBgj~*#1Lg&*>l<=EZ>13swRhR^UByk5cQp89_l+#4z1QbC6E-hWEkrG_;|NM z&RU-;l_ieM8^ssP{=6G>e^{qUX5uwHP@ZkrbNS@NkAE2_4kPwp(a!bLS^aWtXVc1= zFPiTV)@y^E!AO2rZa?9t8_`>%4_~(PNY8vfaSy*ak$4FJ27a>>SnLzh@T(qiEn4UY z54*3I8aN=DIRhI+@%`r*QeM6XLYOZqXXyC!?Hv*w1lB z>N(kKmY@wW`>ZECkW(!Al`IuPMl5|MwQUCwE!=5f;#ceePG-m(Ci|IPBdGWAoc3#$ z?_<(Qnj9WsW21_RX2^HUWzkZq*}KOJ$W)|kHQeJyEsWU+`Kvs2dA+8d_>b37A#hMv zI@jNxHaZ4RAM#(D@`&vNSX$9l{}Sqx1Rfor5&l&v7*%VPjLh@j}Wg>2|5X1w?c5 zkm?NqmC#n#5 zpFDUZMbdV4^KK&R;P1+kqz8XK)|tThneWHp5k>wYX|j@&)a0$yy8C@xpbXAuJ{1vp zMulI`E^Se(PuWIVEdFD95qxUjaCPuCxxy=6k`2B#7LZP= z%M@UI+~i3jFmnf4I9pT2YxNB{#=?r+%YC^nTso>3={XcsoIdZ6^Wk9kiX!7vr5^qf zYJclcc4KpC>xRGZ9JvjFI|r z6X@(#nx84tb~$T~wpmR9 zPj~op&i(7hfC-Hp>?&hdH*u^fB-8*-DLK9%Rr9K3n8@+>5k$aNm6GE0R7BlY_)e}- zsQHv#d+&TBOZq$)z51EVB)XETfWO-kc*086%Qtw_ojeV2UAD*1YK~s+wcEYTciExc zhg`?zlw0K`-s^yGHFp*%$C=FAeUB>9|Lw={6M*wq*!{$!bS)N%>?TL@po+-sQBE1F z8gQmuI`}09nmEqdhVelvZfeDA23v@7Q&o3PN!4DFXWf3wBg>sj6&da$CN>9lkBf9R{n$7FJR|)6GLyE&pKAz~&?zY=q6w@+q zqNabCRY2LX`+6?RfrDDe1SYsW^;Vv_&mL9$b3jSJ59fg><)A9KJ*BlYbw+dG;-Mw__ zjGOM&q{sB1g|7QQCCz0=K)7SxXd5Wny@MNMk-;{wIK<6HdD7EWu`Y$K?Zxr1qWlOD=lu(Evj zHga9G^JjYr8T)7DT}u3O+cn?czj5Boo`Z)^=y6)`aHlygLl2MXpN)R#OpdOtrkT5Q z=S~B(d(~EDSDgCxFk0Y9u72w$^^|TgjuDZ(vX<{7dU(Pd1SS6asIuAEIr#LdF+QEQ z?;9yRhue*b>!~G;TjT`=bbJj4@dlTx^x2)tc!w@M_(J(Jdu|u8wzjwU&TqEBPmi$} zDzQ`klsF-1!_p}S{Z6qd+ejdKWLUKvh92kJzabKqNK8``6p#Phw(s$|5xS}*V82sb z`~2|m7;R7iKeQE?_R=ZsbIun=&^VN3@L|>InH5FX@6uf`wOB{k+sseuO&@2g^;iJt z7=y_R)X6S%vX`NgV1dNwP6fkFgG*SO1KE zFngqTZAl5QvU2NboE(4zi|Y^Zq>0|dJZ%IpWju{Ia)(?5lntTS4}fg6Eogk&T|{Yh zHsaH1ca}XOmrqQxAeTQ9JGbb02M48a2k~aqyYNKubNaWpD>pZ3#lJK+ml*`zc3Rmm zvdAnHpkU|)9(GX|&sBTfXq6#7_?U_^{~kDZ#K^isWrOI(k^Ox`*Nas~#Ra2GgFlhY z`>DEQhdC?=Ny37Wg=uCX&9CtO1qXZ9#|KZ!X}w-`D}2fL4N*REl&vWgdgCVU;$2>f zYvJ~txXf-uM+%zO?ON-4V($?;$G?U2wDrPWla@Rk8&+mGo%dT81$Q%1slIg+*J(aW zZ^8MB1Mj)97Dd5^&41ITqEUM5%i_936gPjQ*GJ(g1@1{{#-vA{J4os@o+CQB$o@sA z?gq{#B2Phd?yL8vA0V0>{Jh)(FHD(rOz$31ykbp3Jh-e0Seqr!Ye-Lxyx9K4Da|;6 z5Ir9KsNqSs<3S(&4KSJ-yeW8z$a#M*>0pBzjnl6&_q$ayC*59hM5?P&t4Fj(mF{vx zs*Ds?9>uLS!~>CdQ+Qux9unJiTHd2xURoefD`QH=o&D_&M_v2>RWSN zd1GX>yI)7+OkO4Wd1dh4*bGE7NC(()IlXRISW@cXY;VtNj}mCWo0~)p52k%tsyw3B ztpDqiZgX?Hx+8OhUCB+&5s7p9?9j3jUII;43O5oF+ia=hM+aR8Kl)-ykzu~W+~mfv za&PYuyM5O!4mOGo-U&dswvl)qnGhtNd5Oo){O@54F_sO$e$FHrbT0O6nH{5y zz|CmnCwWTaHvM}^xp3i=9Ba^{yPpK^?A&BDE{(Yt8KKr{0)JB!eDJn5U?a(U#cDY_ z*+c<+AB*2M@FF94(1B`;u(D9~g1L7Mvb|52N{;U>OsnpEO7yPdXC8_+*Y!91>lgeN zN786_=J-#zuD`Tketf`KOYuiw-cYp8=jOU$jvo-E2D5m7>h|Psstr5_uOc3u{*B4z z)$Q*+%uK2hhxLGvCkfr8ZU^*HuH$NZ{d-NssDe3FUnFP``3ttcx)g15v0N-nruLC1 zuX2XUaW7d$#ap^N4xs{}o3sxY4kTM0o}}@H4)<@?pE(1C)IRe{V z%OFOVGSiEN0Ia|VA2y@^E%AmAHN$$pg;}QHS1}3Pzuy5pXy-+qQs9it7rID88na7X9wNEP5|^OoP>Sis!e^ ztOYoUaUFVwKE3*msNgmszr zBv>?HT_!nkLImp{*k9he{F_S0zH<2Ofe>ht*ln)Tf>r?buqM@U%GZbChB9_zb;GX zLGml+6Kdj}&Rv7!7}(+cKOTZ)q|5am;gk+%ati)*4}1^`2dl=+7X`|$EPAw9=8OIr zu(%faM5*F&UKO*inDbzf?|6;##U0TS%tk_lV6}k~vCO2#wZ)p^N3aaG44u`;Ay~)K zSJ(dm;V?@(T$z8j8w-XDU~8!De5`90>ljv}zmz8JE1(hEB37f)2#`(^(tdzf(lB|P zv^bpQiX#{Uv-ickA?Oj$F!j4HN4{-el+?!g6U98ZF0q53X(=S9%wqqEH? z|ILK~jn%OM@=Cc{$L#ZFE0==5d|ewQh(Ld{N3vC&+J7I+qmem zf1$oW^<9bnt_XcKX45uOFmQPtR10UWV_69?mf%KK-(b8qc>1W3b@+tmF`*J-1T*%t z)Rv8yS&g0UOZ4m#e}X#)W1yl3*$Ynsp&hQVuB$1GV)`*y)Z!5Zt*RJ@`|)^IcqQ>3 z|9s7Qg*l^H2zc`Mo<~x5Q7z=BNV<7=VUmg#@JKLkg+QjhvGaf9?c)p#!uO%TnpZq{ z{e1jF9e?#6*8LU1;6@6Hs?aAkpIDwNUS)rSHTm;kY4Rd$iB?+fDyE6#A^>KO7wci0_|d=KoXtz5mB0AO=7Huj&dm$Z+Y9sJd21Y@K3>@$E(yvp+ceCexL6CMQ1 z0teYSr0|?@iagY#jrAU8x49odtXc7@!}WoL2MK1QVhIolN0mEVEnNucFdJF=fqPPH zNF$aY?)Yxb=BDe9NxYbsVB$qTChmBSO_4T2aH9^_jd$43`~eO;%$EE!@7m#-tN!7V zNL&Nv@Sd=N@QZ;pNDw24{)x+$aKjD48XgDe$wD;Z#8v#4uol+)_n_&v@g{WPCE(3{ zd3w){AsDMaFs};vJtnTQsmJoLgc{TCW8^yzhVByfjksznaBWewK@5|=5Hg81J`?Dl zs)?g%c7LIEOSm>qSrh$(_V+6-jxGfJ1=77a;TNIUNai*xbz;eG2;|#G6zv7M22SUj zgIL^97(8hQ-?)6#`SEWF27dhO5;xiCK z5UxynW=fAaTA_?8XA&(&@5XKyIg$Q`b;GFFNRs#SW zo7;2@=4u$t`YX`0LVy&0FISnSXgYz}>E8+|4T##Tc3|mU7xU}?0awk($+~#FulxX9 zfi#A+Sj_q#(NQk|TD=SXUmn8GV!{xkg%Nl^zEGhEbnJgbhr<_gA76lgAt?DqEK+ds zC&^`BOk&2&^n@J+zyI7=VFIw&`bVSgt0w3F{1f=lc0xRAMmhr%Js_jtcGBSP9DrAL zdDg%wpU0SpwJ94)V;NUKa~!1bY;+*!a)Sw$eM-U$mWOsgG*0$1mR8KXfZ50et+%}Y za*(eV&v*XL@E(!(gp%>ym+ypKPn{rF3Cne-5D6x@d&#K&Ns=fLK94Ov&cIhQPZxe1 zy_KgYZ*KTWp1zM0Td9#9(58?=zd^KdHfp48AH^sguiUXdYj@32AYy7%vY3T%hDZJv zV6}3~)3_NV3S;TZRq#UQOC~;vJ!F#OjKVRH^*$)t6+A+0;eGzgwV(EQ$4w6ZYFs7^ zA_R)&ev;|x;{6J6X2+DT6#?J~h?sHahK9H!Nn*7IVbvFGVJbhGSBeETP^0LDqHPd&F&YiV*$BY7x($2b!N69=LqJ&X)(9U=>-fh-5Zvg}SvrE1n^|{9 zPrF9CSIS_`;DW;AFV~i-j&DBv>++Lb2qg(6nZ480w7GL09gn$|T|TTT!Lg(=1mX`6 zrM?Q{`O3ut(;$P?fNiaKS)idWE*<9Mn^;va@fL4V*m`#+!GocF>J!RBwq!|_jsYUa}@M4N7;bi!`A}aXcRpfH#6cpWgJO0 z&JtQnVULdD5m;Ce0i(OXeG?N5DXobgo8{gR(ybwL$GHMq5+=42rz@Iomf1o@f19$Jvm@d zAbdZ7IYV0#;0$*xT~sj%Hu_N{BD02S5Q2I+7~{7QQY>LY&j6y>k1x|F8KOin8wq^| zk4+Buz4`S>YqD_24~zGIfCWB;Tm#RQ;Q`F$-R#yC!Zzj87%g4e!O{de&smosfPdj5 zHlOzb1Y1@}f!#4$X@skgCifGJCqlgc(j(y{BDVNPUQ!P1| z+oR*7wytV3&E-}%8Nrn?2Ox9{B*{lj=-f&bT_Wzw`U#BenlJylw*2r$EQ!dMYj!4> z_*QIy!PxIIab%s#WgEa*YvU;`urGl=X|*R7yLI@~-BN7U;RfH0`&FQRl8b+!e|v3u zUmR}#Dcp$?%Zm6!4jO69GbZ5Vu+?gWtCWZC;{Hsu@iNs+8Q$qOMORk0PuIi~cQ7Yf zAqie6d);`NyLm**i|};nu64NUDu^ZSfYsOjwMc6?b484d9|tFFh*#jJJ#bLke__fA zT4=0`N8|KPQpm}-U(9hunZdoD7&+d@7sVIqKV$0llU*BlUxlp*V(LLdhJ;wI_X?_xl&cQx&$`;=E6nU~2kWMxmN~HWm5`bH zHSsk#CV3%{`bYS5PF!=jIfFQB&r&^@@jmA?+E5D?-3^}NxF8Y|>O-?Bn~!-5MQHCD z$RwpW1rR5@ySXH=)Fwvb3P0vNKY~rH#Ao<)%NJv4r{U_#4fc4oAr_csbVWUAg;ua5 zn1cf?2l|aqKFnN!dp6oF3$<@pp|Ax!1tFMgD3QX6RlA`%b{Rq^xLq(ubioI-7^Naf zMBvOq?GZ1(PnMn3YB9iEVjAE)oQt9a&tj<}q~4zm)7%vL3Ldy6aFmiv!?Qarc_bmDpwBXaJ9j@+V(?yXN&!5msrz(FzIpw9|S=Na6B?F z&JYLR+nD|JgLRWyfaQQ)2IR>tB6`er55e(Gc_8=CeKY&?%G1@EyZe)v`dmmI#E}|n z;+iMCL#i>&Eg>>cBNrGTr{TFT4$3zdV~X;itBtf`%-71~Zq0PyMH`nS*> zxFa4MGx#OnVK7s6QmCCf5OY40;6O0LOME)>r%%t(KHaVK7OcW-O9BoN|3((#xp7E6Y+8kG2F5iZS zdaYY<-wI7%5-iHjRe|m-yxLyFTUJqtY}6BFQ0g%74DFB7qI0_@E|!TUMoF7sa+s?C z;v!Bj#1$Eqw=?3n)7-p=p2XF97R1pbP>zH*R5=V7>LlAiH-=k+_x2~J8oFg|IMLy% zfU;y(w0G`ai>#A+hnxe zu<3%Ve41?OkgZszAiznf(92<%#@^fbV17jndC*`e?}U^2-mlS)qH~&g#ca5+fUNU& z&*){@F&+ac{VT>A@|x;Rn!5%0oyF*`PE^B$e;G4*RnvfOTDR0ZZ|BA%=t@-rqB2u( z``74n;JKNCCGs^rtbzWOS&{NR5O}Oto0WiZxl8UaW?X)eu2QzMB0MoS5#PCwM)SSl zb6nYrOl>TK?Q1VLxUapoO6rj?o1wdJxYa36yf5nLT*8-=ZxIIP6k#F4N~=`^x^A)z zGtdBmeDbYNe}2ddFJCWyS1YvJZ4hM1FmW!n+8cK$$k6Xua^COXgr~x^^(857%KOUh z26q(X5fuo`JyqVV1`dCCgtp(><7~OrghswewL_JzR{IsuP<55;^(FXt`n|c|)6h*V z8z7M|#p@RxzgZH(uBpqR+a$P(xg<2eP5>+2)p^(JC#tfnq3GSBMHDl-G4FRsH~sO`zOLOXq9v*202=-FhI*#-QkF3e7o^dja(j zO>u1ZMffj@|;HP41k1YFQLUD?sp z&atH3E_X0T;006Qv|_$B^>tYqqi1TU8UGLzt>sJwCV@ZQ2TOjO1IbUTbskxnwp|Xh z8WT$-tQzY|QFS&qm>8R2@M3ZC2hMQH=BKAPpDQ*bAXHilPo8%`Oh(YWESPUZ$<9=LSe7R8v0 zo#HP!>~*LbaoYx7mgV;vYs@VzA>B3AUls+L1BcyAv`p8W5FDg0WIw}ffAW_J9A;- zK5ZaM12EeHr}M1~V2I1SSV4sw0e@Rg68Lnwfa#nAciV`B!xZ@E1hPvvTSR#Ln#*AM z7w%e{8qD8_#8XdvWSW&d-1ky^y=;4)csi^!pFVt}n4)6^Y&yHV;~DBt-=cVl znk_5JjZ!XLT@`B@+RtlNQZm_BPE%SUQ&A}{vFA@17$14%jJ1k|PJk7}q~w9w6XTq; zWwN{#mVAK3N7-~0HNUXIodqYh8a=dSuH973;7G3^Tw=X$UuUW(GT~Nv@XeVOEM`3o zVpa-3tOLx-+)PuRymdv1FXs~?j$E+t@_n09;57ekPsxPpG(-F0{c=ki!|PLw=#eUW znmc+M-ECfML>ROG+XSgPv@Td(;#yM~`8|V1c>LFLQkUQSAY5{^511}Fn1>D33$(4F zKrP}bCz#yYEEwi;A7!3N=H1<-%}8oAd6@W%s60JkL)&<3 z+N}3&!)97{037P>z9pd2vUxi3S<`u6?rDr!LssxWaJs}A>}}rCH8NQB*%(o~0i)vH zwulR?bxn(Gg?5nz_rhO3o=A8z-5Sx1!Zf-dE?+^8Q^kw3bQ=-kJd5XzL~x@7d0UoO zIU5?yT#@S0Nh>PGTe=xE_W69lRigZW-K>qqm%llEp)SG_b8t66T|zFj%&kXTI5_S% z_1FK@YYnd!=o#2vi0N(WZcMEfAU!aE&zE9y3xpNy-@ClqE|Y6r-)8d)EUcUm)2dIB zaYi8udx4jMQ?Fgbe7cMHUx+jQL7ZU1RIfzuwVB;wq`Tb0Qzlp*`xl!KvAcNO)0vpM z3oK!Tve+qMKM14vcKE%vX5cDKtGb#bR9Ul8Vf7`&$ms_qloB3K(gzcbDS=nB)~=k#mM^1V@Z^`c_?p&7Tf{ z4~gIcii$#1QG0{E`&%lLFAD;h0M{|bXuxl<)DiYLJ4P)s3_ov}dMl_5aQZwW z<|7~sz919S+n+?FH8j4Hx{^U#|Cp?yZ#ss@L*0c12aI;VOf#?&z4Ena`ivRR(g^#D zHJU?fB!))K;ywe9zXh|>9c|@s;{Omv8Eb~=WP)>6hXqEb6e#)=W2-PS{GRf=ASyX@ktri{f2l?VjwwzcA+JF4 zgq2zZpI;An9|=x4>p#rFy%V^8uXDCSRlI$=H?;_?=x=7iea|8Ntr zg>oJq<#`Jvf{`~#w9K;5$~a@^2g-H0`)kzfpjq7A0X$9iSH9LwtC)TM9j3o9)UedK zI0e^Y!-cqWI`4@;b6pwjkV0mn zU#aIP5GoQCOMe&CU-*7&W3Q%~*KX6EC<9A&UI3>aD!4*m`;&97J`$}(u97o7)+hrK zj^(t#k{-O^&UE6S5v7kb`$g>%%Q~3c;<5@3P`i`;kxjeJ84Eqs&M{@$ekoVYsDE4b=2u| zQw2LAPMf7R;#iEU!BZLq^4}mEdYVYo5`s7QC^%Rm)8j{sP$YV@xmN{Pxh&a_iHXJw z+iwJtt-%il?1I)>_I){6OfEo0qiv0r4HgO&g&O&9MYw$m&F-6wNF&;vE_};-99SzUjM&7Ew-4`8TkTH_XzD`B8 zV^=5|x6V7`;D~2;@9>RV2Q<*2Q1OCd5(D@=v$hkSGw(X{`Q|MF`+lB*Srf;VoM-u7 zo%5}!j>=fbk}!jiWi72@HL_2%vgC5PP7tbl-NwYhYHJTKwCYvSr{;()yU-0OyR>qf zzLX#@M`_}6|3b5p@QFs2{GB|UtKC1zZ5d%$!nlxU{~{7Jyy9&B@NkuM#}(nkXBje# zt}$GSMDIpp+P|Z>2iM7wy*noFX#0{Eoh+R>{DBLbY2gLsh3IWX&b1Hi!ne_NeXhwG zc6k#MsjxTCYuEO|G37Oc50;2L)L8s`l z8%pETZS)hV2W&~?wbW8pR!%nM*~8J-u|UoO8#b(y`FeuM#JIv^B}MJ{`5Q9(^CC8! z-(^}9cG$4=4=n>&R(ib5`4XnfS`?j56ET*!20Mg?cH=YMi8z!l#IAxo2 z-?RN$^oUJ$B$wAYsgAJ9HHma0wakGQlORIi#C1j6nLnIC@->ZoUQabW@M%$CT9nwY ztM@hwBbN5l)j05pqh#XAta%h zGN7U&(m3-OSOI171Kf2!p_ZF&vL^6ys~+it)oF*AAeN6F{xKV z=0cT6_F@3}W8mp=I~*^WMLybxVT9O_njOBs9IWoF#096?mDF7S76Ik?tkk!-soI|$ zUa&P%N@Q*GdRb6qXz<475}GvKcLnu$kZqsu3I;JpKY~g|UB<2o)$^7;UL|~N{n|L~ zUeH2wb(nIEz3X1(xp4a_hpSv%vMwv6p;hC~dR|5C)C=PX>_k9JnxPz4Xcfq%;%qkz zNOe*2YxmxuIP)XUpaabNJI@l!>Va`V^4c+$Iy#xJ**T8qy=0Q!TRH$&J16*J2DAz z@b*xpo6m=qx~snwt)-Ubg-T^aZK>t&W!l!UL5ZHM@zChID87ew{S4jvDBh=i{bDn zyUlE;+|`tOK~fv9NlJTv_S!ST7%{C%BgiQP26K8D zg8{XinECSdj4PnO9kzt`S__=j?RV_;;9dHs;7DEPqs=CXLgh;k7+raQ^+5JiJK#w0jIZ^%ZWtj|QSv$;UBgsu&7# zO9;-N5Ru6O?1|l&V#Pi_rkS0se6jV>3^Y_3&4&N3pjExgb&oTH_YIkDBa3>o&!(Xo z368L7Ti^Z&3v9`x)Q$>=H&1J(LxpmM6jgWV*Ov${(`{@8 zScx}`6l!CYEW)(YRalbZ)J_CHU{qg=+|9-$(r7j~n?)fK-Gk>EsyF5Ez_2AK!k(QJ zTgSMhf^*#(vql#M(}{6IJ0?`vwRl)JHJA`swiZMY9C)cP<+kOyTaH@wWJ5>Fh-D_o zC$n_a2^MbKT@Aywj)Fr#TvWlDd8xDIzB+P6Uj`j{#nMchVJ0*^GnJiXI~Wf;!92oRbhqDji8g0tlsH?HvQS(jUn2Zl#8;+7^z`iwa7LU4enzI*!^*1`oDdx;_R=TAGOq!}1SIlfmZ2gY=i7w-<8-IRXS^ z7!%38v_AV_O}DTMo5vxLSOwLvj7YQXW*VQj(sKg}Q?@*22)VoGyRkCfE|TChEv-^> zgFljuc%elxA1^mS5>J+~R#9*_CiCSbFMTWrzhVkp2u6}tu#;!~NP$r=)itCe5U|OT z-G_+FizCwi(mgNw z0QYnYmMi zGG-r;^!Uu~*AL6Es0P9R*X?_7Xmts;`h;#Y{fMix(E6#y!jqV#n!L*eE4J^*tD08h zj-H*LA8R<1;g`!lvHSzGt8|7xvgzol@1sz($~B)?yUz_pi?>QStdFL$$bV?3uE7t- z>n=dsuTIFOmhdK(=N{-0`*ogC3heql8E`#aJ1Olo{II~GvTY@ksKDlUlaXS(`T3n_ zJYhr*r7#IjrT#s$wJ}#QK>pL(0&3vbL`}xdj)_{Yj33ed`p4wFyoMKkuRJU2uo;!> zGl(n?WL-Yd;zI{%7m@(;%rl{={hMBe4tA)c;zRmFZ0bT>Y{a~}tD)RfNN+Zsv*GrX z*rpHUGnn5fuKq0Y=}|LaAVvC;#_Kg0B42YyzlUNOIu*~sHM^|Z|8yQ&3nCl{I&{5E zAjcL*&~)t=ITlQ6KnffF!ze98{7Y?u(CMDegk|y`n^@&fkxY(?5iN|d$`Hk;wvO?O zmzqVRvGB^)G%0_=pBu1&%)Gjits~grG0EU;&1G{jUO$|6M*n z;D4}S^TF?L|38AI-7rtdxD{{(a5HgS>aEt?M}D$kN+ie~8qo5?M&$kf!!Z~CyNr$3 z(YL=)qd1$Ukh&PUf~toEK}f#Jlp}bz12OeXMFLn$WB2?2DVD5`?S7rdPpU?9sp22V z)%Ksk4ver{nBy({j%^xXUIRYU;{LyS`R|DNFXgx*WTQ!|GkP28lqo;BH!8vte&)@Q z-GgrNxlTWb6*neH_zw&3m*gL}0|z&yeJI6YXAiL?lf(&_9DvTgdEUJL|IXzmClpB! zs@+^z@N3K)ULTJ9Z8Shj&cuEdz_eO~l(AJfgjEFxzliDbU|<9AnyVQpVkcUDd8ZBA zH@Es-rAe-1FXRDi4GK97Up+T{q8j2*Sl(I9sC(8+a_UvAr>vVWcA)FO!c-Cl3Li<6 z+2&pQlRL(9f{}66J%Z>#`eWJ6J7N-WbFZ2JLHVS1i+ zvg7qpU=?W&H8Y6|nXQStmjJa=a{bhY9YXq#$@$J*yVETmf7V0NYOD#Rp_#Le(jdY4 zFsEp5$d;s(S?V(U}xPx)-J?RLA7wlbPwo)d&JIhCGtmKhuTg1f$oFY zR}a=c7|5MV*tCK`P{~>5x{j=6w!WxQUf|iSXOq-aBc(1Dv?5h7SC0!F*p3xK8@0l3 zMyk;eWKYq2oJj?8O3WrQkxo`tYfGKer=u{jJ7gftSwJAO{<_yWiyUf^QU=CvHr_4Q zEB5Hhz>0HBP4c0YoS2V>5S#;znu6zFsaEmO=;Cs7Z%bj6no5|=<|x0GU*jCx9Tq{A zK18K*j33Xo#PXyfX1p2_46e3?I6hIOQ0HH-=!$z4%b6k3!XL&xk3!j+m2jG1dDZU& zAapC}g<(O%aD#GO4Fi}<`P)n?<}(bD74GD?rK7A-+8Ve)22X!TjR}3^N(ynWAiIf6 zz*bYMOmOYtkRc^MBZT z%do1NHehsHfT(~!p&xc87E~QXL_%lw-)xc{)~9u%aX|pi{e*Cr zY${&EPuUXHB;mXFH1{`$6fmA~=I0xq{Aq}RkN-&;J~c!+G>3{3z7BEego7GUBHux% z27A&!TH#Q~LHTyJsAPpgr_R$rc&4pO>lj%FN(!(&#sD2d1Wqz^pEXvkihK^vMlmGn zR8{iOZ~cjHp<_q{At)B>3h2BE3}*PPY`bgi=kJBx0rvcS&(g>AeYNMSo^dT8R_uEU zIi>aDkuMwDi`)Ua-&bF+3RRDi->ck2YG&;Z>>I@$^19*K+FSU%ZpHB)qGqrFY(YJ>PB$X zhnJ{{#+rUP^siur#!%*bysIN96ok#v#Y&r}tPxvxCu;Q6Q^@Wv`e$A__ra_;$Ns)lbWdY_NXnE>2m zS3kJz6H%;!jwe{5Aq2hY+F1H}>6+OJ$=6RZYA75HQf0OS8RAb~>z_#*7LG4bTU}oK zz%%l=<$tXSzP_L97}^1=STnncI78>(~Ysb5O}(|belv&Pr6TXW<-`oBn*V|~y|Zo)he zU}1XH<3*{}jE2)22kh%0#R;>6LKHUfCiRok`)yJOR~I!j48mX^UPGvDEb%{T1I^0q zW*Gz&I&r$PLvupfra8|{v}}6raK6+1$kY2c13jDif0Ut|h-!W{L2%@}ofq$PEr8{(u1e`{=#Cz8^I0!ygJd_^5K0Vm zpkP05{)G#=|KS4rKeWZy>=X&%Swa6!4?;DsX@{N=zvo;rEYubtK2;=!+CubcV0su3 zEO~v#|DOyAQ#{V#UPwb{W#PXp257p@t59@i{|}w8gXGwUq;EUXu`@;Y|8sZV*@Mdf z3F#j$qTh?))d>*}ult0etyPz0zpWvA@s<|)-W$p#vznk6$-TZp0iXHr)I|QEsqvxY zW2=6D$OvU45-8lGqF9fAnCB)|UWW;NngZ+C_|0QY->MmZ?${Zl6YY6BgzfQxhr8CX*~9^P_j}F?7-5Uc6mzDa6^NlL zu>5C*XS2#r1>O6XXc(X5MagWts3lX9s-v@%GSs)acKd>|^M%9ZU!2~*b(kP;_6M|l zIKewy+dTAL-unze1bqTP4yS9_)1n46z-|S;sG_e!3-w#^fy1xs*pY1wCsBVaQL7pa zv<7A@+Q8CAGm0S4a3G+;f{Z=Qc-FBg2Hl)UDQW?-LKG7dlvzcuQ~mmtRpPo#8~GE! z_@9+cq!eIz-a3wjbhB^~UyoNL{3OY-^$dO4pDqyQfU%`Ce>1i$9$!kcd{P+Ib6yV}p?jL&z{5K=q5UC zP9X?`=^4Hq610(!2<5Gbl=HOfbGb{R4cI6os8NJDG#4lpEkH08Ufp*jC06;T^TF`97d_M-N?`y5WI+s4l<_m58_ znJY1SMtoi{j+PC+C{6xJDuq757L+0ZtiEA@OJK9Pm(cZLSScf>;Fnnj2Y3HP+~iA^ zto)t38vXk;XgDoR<%ylGnN4RUYM1L-GEREWTtJ9hYEW<8f4u%{FrU_qHeyB7&Bfj$ zO7v+yLQEFSvj>AJRioO&5LIq?=j%vTzT4ssg?aPF=Loi0{!cBXgEy|T*Ey< zKwmwOUmEZ8#J@*pH=KV02rI}Vk>y1tVRLo|pAFFCYGGa|1#vSktg#*~^F(bC4?V)w z(>8o+=^`S!^59|**LBhlzB~i%0UF@afBJV1S01bqu~vPq8wDaFTVcc5?m^Lo^#&X8 zk#}k+DcWf~N&kaNCFY5CinZDNq@7!q{2t}eNQ(^-d5|M~7wX3S$@qscKNr_-+ZWj+@19Iirnydo6_VKf+`W9U=yMBRt45g>P5sV63l99?wbD^>Cg4 zs7b7U8riLwVUw8(iW?q6Z7q!vOW+(~t$XG8%C^e|O6(?`Jy1PW9)dc^v&F^|yGgIJ zFE7xyL)#3|7HsMzsy$VgpPFs%ZBuX^xz`@I4Wb@<)|M4HZYw4Aa3umyEL1%9Oxk+0 zgFa8JJcQShtAPtN^xwV;GWJ+Z!j0}ZKWOU`@*E;r@^^F7q8PVIIzMbi6cq9HvA%E= zOQ`ya!+<_r&|hJtRF~DN&^SNbr@&!7b(#yyjn9I@V{7gN*pXunIHmR80HTkjnSJpn z@&=ce;uKA@aWQT1Y6U+Y=SG~iz;it8%RH?0jAqS-HMB`f9|BsD3U^$Q4%Cm+thUPq zx^@93T%s9_>kmI?)V_m^HhuVUVL|9@&(_L% zE+F#Dt_V7S>0cmhpjUpWA>fv%#L(#IQNF?vGnVS34lZ(c&)t!h?Z6vv*U!I=^6>~9 z?8Os>j$Enb)~mxiA~yFZ07rvf{7{Vpz{7=g3-3ut#HkzCdG%=f7F~S&s8elaO=ax7 zjWVy;Exe1J!-bfYORUc+?ba?^h|{w48s73O3LYCq0ddTJvRdMW`>df766z*B-rPHV zzp${EkZ+yOLc8+pqdEn;^PuMk1>Dmh^OoopU&HUCqizlxr=vuYEm5k+LvFrZQSeh)isd0BBOR#JgN%nYmjJNeON3`B$TBU0?!) z(XdOd{$dp@-4{%CW2mz~wI5`8>Ai^u`fX@l8qkE!f!EjcQor%d%dyOZpwd9>9f;I< z-5jR8Y7DspDG2IGxT|C7XI6`_>e1eG%kdNNLnr@V@yOIG<1(*s@J&szkD%*%`VmiN zT}T)#$R_it5f~sds6e)c-xAd`2j3^v$qOYv@b=@^E!tWy2KE&*;=O+#`2@E6^D30y z7)2sjo$M$dbXf3xAVNlYoy7NNWC6JJr4OAdC8(g)$Oo@AK@6S6gg-&Yy$&uA!D7=Q zM30P;oxy?vgEd~Kx_M0S zRPU#6u&tv6w>A0(*z}>a`HG~xn*JHgi2=}{#3Y}hIVLI*W;&@47p&<3-QzA&u>A8jfb z3pzSlW1u{6CB53~{){2|lx(TcDUtW|e*<1hhUw+V7A%urU|5Qv3L@-2fIMn2X_GCX zb7}yjmGuMDLAn*9Yr-Cr_zIgtFiZ!*u<)KG-sL3-?uw!7NddY*8N%$JRZdGlu^KE) zzC@F3T5EdpyuJE58%ko7es{kg9fSC76k8ya!eIDFQ-p46SJ0(v#vnckS|9>f37a$ zI)w^JXRT+U+6|+01oU3M+_FUv9bt3wK6t}HU|REoy9fc;MSSqoW59z>piR;AA26uG zzCZ>+JK_~dZ;4V~2lIn-ID{V*>2HZn8G#!UH@>tIqTlfWgDD2k2XG$rZ%wmoOL;91 z=Lnjbfv(GphITSa7isvgwc?51wTdRc37);UO%(}33kj>;fi=~V(fi4v6z%#;eA2^C;D zgg!G2HgH?Kw>e2$aLkDNdRP+sxZ-gy`ha5OU*Nh&&@xBUnqlBefI;CTME*cm8!%WF zZ9qz}P?dXmhwU9oF$Tu3oT=yoplp#ze_zxzoPAe>5444XLX|!AEdjqP$V8CJMDSjD zk^u(q^M{pD@K6;(aizFWR*JR4xU0j$?ZlZ@rsxBlEwfk9w*>r6C;W*}^b=2vG;j|H z3<;%F79bDHz&)Ml^F1Nbs0PnxP8E<6NykL7_T=+bXN{xf3>xqT{^DplhNr&7zF}pN zyCSF_^tm^@a|=N!FyP4tv372ac6QFv$=Ms3vy z;q2$2kVLq?v>mAe zB||JKp+1nHD(3x#*;eJFYK@~`#O&cW8Z|X5>rMz%BV3$ z-@tR|Q4~|A`=ZaKz!Z37^cNd$g-h)*MZie>Q; zcufH`8hSAPH{lcCjYmr$ZpkeC3w-+Lv`WRYTb59jrfB!+8kkhcRsdn)t$=PlrBb{N z!Rrl3-;^+kQ6J^aC%*lMZQF^YvMb;ZAqK=c@5nL*HG`q!ZKR=hrHFv!25chbUy+Dk?5 z8DcSrmHq`X0aWld*zb#)OM`hM4tgu%6b*pD4`4d8Ll0p6WPD?41d<~z22OU74x$t6|kE6ON z?JE~!;lu_}M_o{JYsk9(&+5_DRnXOmp*IFovR*U9^0}j*K=2!ipWl>F&<`Kcij_Z* zQ1@thhN+fw2VJoUH$tg||F!kzbih4*2mJeFuYNoO`KiIsu2sd%85v)Zpn{uCl9)bg zAf3RT0CA#(c_Oh$q?|xDp%waUiSTFXHoUwKw~fC={+S9e(nr@arhmQ8BTfI~S$T?N z?5mGW^#ptk=!1XDL$NTR?D}zoQK})T@2!un2KYIlXmC#?@cc%~vLP1y_sS!EpsP@* z03U>gtB`2MD27hz$~!N)m($2X~dVWArQSkbrlm*w)pxbrZF zSPOLfq_8U#nR4mR)LA+}`FdeLXq)edXi&jDLhwsjU!eR}{OO*4Dbp%?ITm&eDwvd4 zr5YU6dqFsmhF;q66G44ljR|y*DvaQ-LBw&|G{xWxZ(c%!0@(L{E-6z4Av&Tmp_jqI z-l(~!{U!t@C4cin5fwQ*GxH!j6$cl$h!>PMPA>e*9YJ3X26KiA5ctpi&;yg<}?eOVRp>-M17^d&!#C2kC zTX46utc))~e)&GF+i0o_)>l5ASGQhJU^3Ips4(m&v78^AmW4L>Y%qa}30{N{h4Y*_ z#3T@ReNy+8uF%kZ_rVz4&c$uKbVNRU-SN1}9~0B2%#CCKi->DREX@0Z+BbUK2F4j@ zM@M^J?R_ecE6EFq=Y|zYdj!8E=*&eNf9}cHKD6h>rt-BegF8EKI1bBvc@SiiU-#v0 z5te?0FI92Gmfk;8M}iX0Baln-_2k}TwyQpF=%x4ly&4*k25d|ESpoTcy|fa!uNpnb zD=Ur$TV-Ko0<6fcj8v6?g3(oqL{cH`2SIchhZw2YTGQ7&XpvhdkP7I$I-1FmZG>1l>gB<3_t zJIHzS#e;B>PO0Zw#y>#7uV1dUCZJid=dICUy(t8@;6Ju?bp1ph%$XFjfav{$EVCh` zq9(njNqx5Ap;A1$>W9ZraF6!?^a6+$UZ&TmI$vi!KRlopEH5g$D~eU-?Yq&mVhLyW z*cp)nF>@|t8;L)R-3mr2l1OpgJ{OQV%Hcn_I@o(ZaYr&k-`#m* z&wtX2pTvEVmKtuecfMO!cS;`OdA2CDcYe08$+w^6d0H!n#XP`A?vz1PHQVS@CiE<1 zyck`)M`$!zVvIoHJ4}&h)6h1uSRmHOWdrHL8G6H^B`{k*uTf;X6QlQxeY(Wc!0gql zSJj@q8M>3Fiv|r>PWenT9IQ1@JLX+jhs@CDZ$&`UGB0KM<5$E-KQ8->pB=pUQO(;^ zA$U*p&rWxKbYO>FUHmrDB`V+FeB{SJR9Ys_*G)54?kA6ofj14g3w$cxnR9q_f`Y~h zm+%w0dm4fyQJ0xzNcLuz4Ixk0m0N=@ZuAQ(WHx7;MVG0nTfx}pfM8!Rkj`!N81Zbg zzG2j7(%!W(d;axU%zf`yA6--efX|!3pEE-~2g;>}tRv(!A8`H7=4Y0xzwAwMB}^X< zy#B(*Ztp>|$ajlf*~Fx5<@Uism+qPB9+sk=wdQ2}trYrz6jL@vxBonH{vQ;21wkDA zUlBEioAqnXKbQmr55!HJOUhU1g77X|jGncvXNyjpIApBc_9FgVlN2q0?hOgcgE#3F z9e*o)2s7W0;3KZ*;8KEa%>?C_Nha*i7%=)!^JT8hxtDM}G%A`xo~lUhGWIcrYa))O zOlr2XJ3NtMFxX4+lj#R-2r{(Kgashm&*dO_c8s7VQY{lK@8i=As$#8%dyo)u-e8vm zp+s1&vs>Z_T~>vCAXBa4E9`|2V2Yg=_U+aK&zdJp4;a<0P{F*mGSl;ZMIa0noY8gy zxrbdT!x}J{^lfejd4lNYJ9XU~f=3{#Qh5FF*3zZU?R(o~Vg)AFCS%%m@}hdjqHUiG(W*On;ce?#L~no(^GX45Wrlo;_9YA-lI}DOMCu8dMW@#u0*L-Y z7Fq?U3%P>Rh$Q9r)rTl~f^BGGrnoZ+M^Kw=mn>a#7nSbJQV*Q^!557uI_L5%{g|L zsC4*~l{s!15#Gj#v(%XFcyY5-pfF6AxY7o)X;$FdW?<~v{5-^65jtaJ6#HAG>D)Cw zXDFgeuzsXw52!a<4w4sPA9dA;J8LV5m}Psv3}8xE_tj)GO~_?fm=97<%M&D1B;YVD zx!2ePWoUMUS#u)6@M>{Ye}6X{23w}T;FJz>bZJhuh46$=Qv`yek{v)%#F5V=0oEc{ zpt9s8SgRsGiDmu^K&b!yF}(>|b?O{h=?AR53Z3szpLU*#>4RV^UD#-$M2?p8deG~9$zVb_e$j~ z^7+SpOu#0W$=tzp!NL7p1KW)n!@rJrmL$ZHP0}IH?xwbx*8)+ESbsuE7|WIE^oc4(mCE=xwnCK9!@@MT-upu-g5~DH9=fj=7mte?a8|D2qT$Ru=W$YxlK?tv07plR z8dZl`@iISREEUsv6@F!sv1Z9@$$!Y}a>Sk=&bj_!ranf=e*!!TiMBu6lO&KH&U^QKz)fUd4@@~&?#K)%K#gqHJH%J3 zw1!W2?Yfe*ynesy*w-nLMubjBZXEdVE*f~iukA4&HO$eDJbbqWk;2h5cIG!6l(-cW5$g_34Y7H)h~{05xd2`_WXip+v_zGx}L`^ zbGmhEkITDOR>{L}X$2SBM*j>tNh)I`mhL*u z49Z0!7-I3`b{k8wg#&;1SzrbUmOj61m5sG?5*M=}W^vwWId*+NwQzU!+2FdL$5WDh zK7AxI$Kb_;J^$Hu$D~``sX-yv?S{$~s_HPB@e-6dg*yHLajtbZ*_JO$US}mydUg7% zJrBzG^FjH@G6q3px1Zf}R&=9l8wBw>Mx@r7n`-eA{04&3YHQz{abhnUHa@V5qnqs} z7Ecw&$S6MOsd^MT6!oU7?p&3D$PmEwx2x%cQ8bOpMe-tw#+;}>FCUYIo}cs`ci2>g z;*tL(?^}^uocv}MCr|4mLK?-_%zx!M5oXfO87p!RGR8(nC45}k2zI$eR+d%6a8yHg za{?Rx?;Jx;CYnPolz*^X${P)pt{y8F&DT*Yq)|2Yq{BDRs|KWuAaw~#whq|G6oQ+p zK8+-PlC=_^ZQtYlxz)le1bOAwX@J#)biqSH|v`Wqt2g!cpAZ^7rCqsbeqEyIl zO5c$2c#86;NwSq!5HBaVTa`vpYN=x~-(%2~D@4{fonNPO^5#w9oLi`_Yu)Lr?mSMp zm)MwCT$gdt_}Z=n;*dYVlI!a5E7Iz5lHm01RSLlj0up@y!X_~kaog)Z&~@mX+T73G&<#*@FQ{graCsuPPs?r45*8f$c` zzw)p2co{%agZ;A8XL`1dDMIDS6$I70v+NgF{v5E_B-4`QVf%}3QYZ8PHmjtx8*;ax~XgFe}abyG-P`=w*+P+$IjnR9Js+}myF*EJ4XrASf5lddr zqou_pKKSYA4F%{B-?^WCB8Dok}6qG&Frl&*b(`V>kAMbv0kx zCW(7Z5%#>xC2BSI*+*-7i~DM4EUQ;ZwW960TzTtk#&}8-QT{Sa0d!`(NeYrS`wi7S z>1BjXW4mQRS3E!vKZINc(=W5Zl*d~%yvFJ%!ajR@@j_kEb zu@^2RIz^u4Qq~MIe&edC{TAde38FP)cUengC|{}g2F{4^_C(;i#SI<$U;BZ~`GwL| zqmge>5OO*@Dmy1XI}&-nvAMZvx2m7FsJ9Dt;4 zq>Kgh$)@GfrMf9}7YX7uOBXk5FQ@>-M;rZ{~PxFPesR zXSh7c>ERfyS*rfo4(KfF@O2*dDUdP|hIm^2vPX*S-|i&%MFq|MG-?ctApnYtDP31& zkQ*uO4ZTiMPU2Dw#A&H}#6n{$a&$b5n(yDr5NK~3b>-3rVERbKr7xX)W|yP$DgX1; z^4gP-S%sNa*DWBrCWDikE%@n2Pn?!VKbi%%Kb1E$qB2=1s=7tm!|`O zGye*M-*H*k-E?tW&JQ+>LuTsrp15p(h?T`?ipZTs<-Rm``g2M^*c4Gx8GWN`g1xKC z;A(yO-GyOxoD+~W#`1=^+?g?R)~|LLP3Ta@`sTUFssJB)a@kr3|8&HXeI-3E!8(or zL#}*LHSy>j@8(0bqfg znCsiH{bt0P+ztCs>?E5@j5GT2i))00x1Xyb`v3?J^Ao7CaGh~A@?74iPK4&_J6-w} zCDj%j5I#AVI9Q$H-1ullTBGlluFmJC2p8Vv`OF25(bT2t)*>@^wV}(?$8N9LpUWVz zeT>h{&G3Twa#g1Ld_YPCRtw2Jnp1nID+RkU^4`k6C)Jhv$*jX~sOO<%FXicNZgZAL z5-txpHV48L`?F`OQ7eXx)pFa2#oVFB0Nrii_F!>0+sKEEyC>zVN@t|KIq(QXY9+@8%Rre$f};>4LagpchrE5eYbS}@qj@?d539#@3z8%i>ze4+U*z@ZHgd_ z2zFi9jnBq5n#sXx9havu-Cpy5j^>7o-|;082-rUW@uf55MT*SOl}*nfF>d0DZH*hO z#|pia9&{Z=ANq4vCYbW$X}B19Ux+aDww>%2_}e242!u?5n?J+sb^9@i^uNE>{=SaM z6812QlC|UkIpM9oEmtQIN|Ex0(hLLC^#lnhm=jy-P@VTaH{L$g7$LI6j;$H00A&@gT#RDgx=(gtuzltK$Y$rtCwzSkh-Rx|84x$6P|H>jHE4 z=IN!QhbTJh+*Y_n4kn(yj<5)WBXYEWZJ+3|mowF+sr~6?uO-i`dAqU*ayK@-!Kqb6 z66EY@p1-Z^*3ib9b>fhjDrS4!YOj4_dV~n6$9n%WCH~knMDJF>#Ndejp#pp_EZXV! z2D`~!Q%<+uE1Gu5Ez_jM74k0Yy69LLnaYH3FNk%cCaZ3EQ=01HyjhF^o&ZaqT|BSm z{yyV0skARJ_s6gi74=lp7|zyOr(u2P!>IbTo)6XW#<|$O6myvSGrjDn$sCVw`O=Jera$f?mbkYWx?OaQQC5OmoE)3^$ zbsd98@VkGc_@&|G z#4k-HOz^8BZ`k}mmzovF|330XDBE_LjNAu{}Rls4&-k1jl6N>oDdfn9A@zXr=!GEW_L+yG&63+Ms0o>z%_F4sQAr z)@FEDwY2q)x4?cpB$JsL_>Y9qi@UL()5;+L0~JwE8PXp5ReV#AO$uRuCic}+_Uldg zTPXHxJ@Af}AUZST5Z`)z$9EaP2ofw698~vR`zCxa)}3L{gY7#%+(iE7Wq8$mZ|D1> zh&~HDe?>|rAl-UZGN%88-bTX=UN9xDm_RAhx}_XmRBZmnx}Lq{~4JJD;grRp_} zNCy$NU~HEBE9=$&PkEb~DwagiVmT=Ve8h+ul_uwOQ)6W96e(+T{NmJ(6c{PU1lYGF zTkvj@je#7Qf}F+2)6ak`wIpQ;Jzw1qoBagX-HktoT%lRVwpvl!_w6;~)%OX&JT!S!N~KyZpERZToV6H`)Lup0Lg>p$74 zu&sD>bn?AZS+*CeJGxkMNz$&FK2cUi#(!Sb?8Kz1^znR~9Nb|eZ!GHMu}67L902F4 zA!ExAe;7pv`MS_anTC+%%iL}KvyD@#+=%iq1lV*yp6*I!8MJs$W{ETlzC4X=8*J3z z>jmP?B||((Ar?jarU>?gkP$voLKkW$o<8Z8!f>Z`^^8XHHwV$;Gdk*wJ*6Xd7-Me| z9mI#+WeW4l7>jby;Df0g&*q`W^e|Y#iz0t^ESx7v1N=NUydMyJ`NN)L$>x@UTniql z>CN*O5vlNYk}L^#TFwNPxm^9wgS+5t>ePU+7UZ*2Db`5js=!QT~|mIO%md} zoy;H=P19)2xI&@+-t>GPdqSga^fhmm0q%Fr?K#UKvE=Bj)j;%p5WaY|+3MX>2~pK#>8UUG!mK(@B?@L^U{1gF zr6{6VvP{F|-7pWOucK|3G*)N@@;nQlBak?B#ahW`y6^Z;qKDpJh2@|99n{-LHj)=I zc109@Ng7*~`HB4aYW&iV$LQ%+H%K}%ul#x`~z@1y8Svypd-|}Sg z8J9R6Q#m>#wD?Mw=o17ChZ+#{lbB9NcYvfv6(2X+HevpdZn@0Rv5K!TYZTjag33M^I_-GG-ARgAXvc})U>H)tsnv1;}bpJK_grw(P8{AmFla8q5Bnri*4@eThSWm zvECzS2rqdy_WMSWfAPvE%a*u$@rmu1w{FC!HKx!frY*S(0@;HsrEl%=sMn0Ll6HGx z9tgqEZ4X<=tuIaIyPXSIBhjGv`4yrB&8eNN|9m@c=^GUz4FS-- zt?x=1u1CIk>!MSfW*HY5tL=wCf}TGeP+DuiQEH~|EfPQhg!~BnRfE)#~1m4!2nBjz&8UxPb0>tHpbV}GjQwRD zp6I0lf6^S|b(z|$)8zdlTYGRcho5b61_ZlHSjq zjkr~n`)#~{l32EH={XLzbEv@F&v^wr9b7K>?dR4uRQ@Q6r3d`CK&%G`pwG?G1h9K{+%DC(3_(SNEFg0_LpLBO&LX4G4aV=RN4BGcy0Zoi6xC5O6X8?Tr9MvDFU#gs)u9 zPT0NnHDWdf3t@ z)Uf2-My~t<$U`Lj%2wMizgy}jKDe8rRxx+w(~%w-yF&MtyX-r3m7NLcOIDNtn7F!m zsCnppxY)|qf%yW;M0$U+Vx(9lifTh_HNBBs*`jNY9>~oN;*#WA7am1X0!VG{Be)AB z>aql#W%1GPhx5vU5QAf&mNe()%^D8WB=vmg`&_BY>~?(-z>6$^S^NE~2}o0#jR;pQ{C~jOr5Ea$D94 zWb^jJV!%xrmhTfbi_Y}$aWU+Qn`IgiL#e=Oh(mYYWhvZ2m3K9E89b=D^z-84RD`Vw zP(}UsC+i{jTB&}`A}0bOpe~U8IA>nca?zl7Q6WXqE!#uqk7};umNlGg`eI3Gpc2DM z%TJsJ1QA?u@{8L*V1Z~e#A~s`7w>hGYiOFB;aMIA-_oc)Dk@Nu|JymIC&BJOz5+kJ?cH#;aTq4S___) z-v?@nd%W#_Lz6>J_QckQfBwY=?5FC9{t#L|9r#nGrW^am8*sD1x_ib1H~pmN%>COo zR>}Zx=W9>sdU$|@sIB|O!i30zk}N?i8FnF$5Nvn%u_bF4n@&HX)Ae`1{%q4(kf5z% z4hg!sFW>Ryh{+~vuC+)as*-CNTKkPnHgth!F@Utdv!6iHUWEN1MezCU_o$qNK~Aog zxdr5%A@ow}UyTYOqHd8mDJi<)l>B)Aq#}gx2hgq?pT?)9e6@Xruw!?7?yPwrqE4~i zk2#O2A=X<1XyL}SXvdbcQ5V7&1E9%|Abo5h&x-cNz47)mr*jbHMY&ms$4|&4QD;9q zack3#(}5s$GwOu0sf6`Lok9p-F0*AQ>$VT5DMZl(EKomtP506xyajS8V|T@*ay?=M ztJ|b&O!mT51@3UZeO4O*Y(&) zYZo$lngRz^xUeR3-gwBN;XD)4oIe!{L?Fqw?8aketF_<7udh*b&DL7z64r>BoZi?s zQITz7lq~XpX_unW=RtS*AhGb+Uy5s`PA!(7?~{pv0HAQDlO6Cnn-e6&StF67D&$Eh z^jpM)gCPpCl5w4aoA*{3KfYsHK(g_%d+=p_ysJf?!^^buA#^0A6Jt8PQ_7%zpJm9y zCEUDS6ZUtAtndIjOuzHbSY|X)&K`4Bj~*NAZa;dQXr@aj@2lznPscq>FAu03s2xsS zIygNSTsRsdM%eMYJ>Q;V8d_|2qEV%u>_}x+nIVh1#d<{XYQB##a3xzhy;2}9Cx-H- z@vQvtGET>LJY%Ucf?Dm_O_h9&<{orOI)*sS+!Cuwn;6qM6y|v3mEp_!8czT%W>@PN z+p3}jV0Sa;#o@jQrzL@T`oKV6?3#IWvAczd~YdDg~pqe z&D~x>1nQ1lSJjtno=JzToXO7S(_ltlpnAtKF)o=>Z{&75iQYes^A4P@vrQYc!gG`f zctRGsEG7xW6x9?7fKS3C&)lHTw`^tI-tl=5A6^xo!PmrvU)C?Z5p}~ES|iPa_SE_1MWqxUy;1T!na|yeQ#d3 z>zeAzJ}aiV;aW~PJPZ-MPC~K*9C`vGrj3xWm3e_#|TPD@W<0s|J zv6p~qD+Q-D=8}Ea+O1Ri-B{2Y>s6ax~gNiFrx zMzO3|-g;w8i5V#VrNX&g1CGSBRL8Kf`P28xYnj!zOY}HNdU$8g_Rm98_T%1|n8+A7 zWn?VU(dD1t^P4U^x8y9_Xb(G%bjl7g`6cR1JYV(pZGI-8QY-mpviXk(N8)F-ijdBn zB$%fINhj(IhxM1U;GpEx1f-xzS_LG>$8p z%gI7~-GfAqQSZX8+LRm@8)+qlOrGzCp6~9%2}6OmFAKWuN!!TpTow8HmdvT)`1NV) zzI7`1ew3@@+?}<|lEB;|q?@k$d4A7aRk{*>l82zsdH=-xXd@wc$LJ>^GTt@&9yJxQ zqBIiE(K$f=x-Tza#2X+>6DV?erO}w%%V*nP8@;^+c%>DW-7VFO_hYK4ZrnvFd_b-+ z0HfqpG!0joMRQd9r@B@4TA4>=QU&zp1W&skyJ$RF0phGhIUXirAZnX8>lOpD=CwTX zKx>G8?;G_s89}$_H%@JlYZM(7j3cS`iYs|1`apj|u&Pt+B1RYBtegAh7n=3zDNp?Y zbgQddf#nas%BaapqXoHuF5HKo&X(2f=nP;guz1#Rx529$5O$<)t)gGwChRs!Bw~)w zu(-Y@$yK3n=UwxEG0Z#1XU<6ydYm9XY|5?)bX`OpVgGP^`-8ONVTqBzLvKp{t{R45 zKpVICYmX^TGJ0>SdO2%xr_WXi&rlzU??gn? zH~}7#>yug?X9<3i_ClMCRQRs<}BjWnXE8?Cc@omnqpBSykQ7mdF5aQ(7f_oEaM zUh~C+&tp~@Pf+qbq30YnTU#}+MqGh!ZxeKFZ1UcDd{}2I^(>uYs%wiWBOoYXBfYHM?3e*+y*}3r7iG1|BK#9~O#SUDlQ=>usaRyzXrp zM#yAMplbiz!r6uJ8!1}=9m0Je`65Jfp{w&oY5zIcG}O_#!5~wqKk(vMnO{nB)%eGY zGsRuLMn@|+ujiq|!B7$$`#;v9QdWJqa4GYceCyTj;!!v4%WjcW`r4y6Nb802Z>4Oh zMhvq&+H>}(?I3!1_)s0ER9Q&`=Zx3}p1g=`fN;ve zUrKfDL!sfYRS9u$!HWXHd;dw5T%_qOowW=0fi{-$!u$@#)n4knjm1k5H+ zpSbEYD2XG1)+@HdqO+!gv5tf>e5uXgd>MZCA^~Z}gwdG9WuN%KnfjTtY$Xr2;Ujzg z0ZgtK177o5|7yk4ifCQxW6t*orMx3O#Y2r~Gk^<$K(d|{-;Jf`h%26Sg{;a|qL>vk zenNuvSHy0NwHrJ0*;e`YaFoySA(-bODX@*i4D9J-XQ_qnV#5G{jnrCot>H#(7d%O< zFkLS?U!S3fC_dQ%Ocvn&2ip79-Upr+ZBwdNdlV>FbIbo4@WPlvH|J6BgWhCIXQhp} zm^i?D$d&)`pf`uYy1&o$80u zTx(m&5=pZPm&!+7%?TwWzD-HDXXQUD%%y1^+*cZWn1!r*WJM$CW8WC93sf@}!UHkP zDt7B@z?Eekh%G-*yeQ`{npLWrS#Yiaom_y@xDYKs@T8)RkZw{yEEPd5+>@7x|2eR1k+Pj@3r zKD+9$sXKgH(;v4v;R(*Um>awHx=yFXV}|%KE+u{`3vF`u^sOcCihE~PMMqPb2&E2z zxhtzmnyx;!+f{#>@}o9{E%r)@eMf&=1~chJ-yHIkVArJK|5TKw#jbR0e-NH{o2H39 z)md4ZrwAF}jo>&M5RXbY8ruhF=qsAt1t)j!p@}36h9d&#b)unJBr#Q~70{(PFrVRA zbg}}t6C!ayduCM)^X5vb^Ty!`B7@B|T4*k9bQxcPtM*|4oo;kSakzD=bFRs558#hn z)rkJ4Ym>)Sx2%K@ujK{$H`!X@6-7*1okzq3on`*Ioen$^2{hw@Zx;3|OgH3P89L&1 zf-X80jR?vnC$f!s$umEwuo}CH`t_sovemiH~JAE#+d5b1y#m|0=uvDrPIFocA2xdQY%mNmQr8H89)Q z=@q>hE_XE;As@j`sPJQrX!jaqb@_{M@r7?{${&|2?qt8@$?0Y$C_4O;T0bWfg3{a( z?no8Us{Uh>e;|*mqZoa&qw2a)V#Gkq+=mXIo=9FYy1J7iUHIvtgF746)>W*IFCkaP z#RiL9Y##?;>Pj$fTV-GI9hgv3!I+lbtEY9L?)kt$aoZw)_K|g#O}nnW5`TH+*hI%V*S5oWr{rYg2*Z9Xr{|)K~4X16QD6 za1%2_AP$HpJDgAbh2^{UOnDU$Qul2FFN*HlORW~@*RJFJznBW!jY1}=x{2}eiOC-0 zqAj>!Knl?H3%Genq9sMI0W)GJ(9Of3gs?r)#U(3 z?!q5l7@8#2?&m-hf2vkTBEC65biWNZ_bEW5S0{%;=ckKFs=k=;e`1J(9kM>gML! z^fZ!deSLlMxL%t4FtGks-;$q7i$T8c8WFwj zh3uu*&yJ6aZ7{tmrd9!RIx|Au-QC`l|1?H7u-%Nyaxl7pbEs-`^jPgJp16{&ca(wKBwE1a$i;%7F;PCy_c zkk8*7ahRz+-dn47E2+>g)X53A{xsg==<&6NE_dCg9+rc$xb5zw4vpwEU5d#`iX;lvRN9A2JKMvb8lWXyHK|k zIAQ$&xgqYs_JOX7<(MOW)zOAMp?h(OI%ML!bA@VrEg4<$apQv%ATXFP^F|1uzY7K{3Afh;q|(&3BIyu_nY{NZKxu8*;a^|u z0=e>pO_WfxTFn9rM#Kwe;+m62WSbx^dbQJQ98!e>&P_a6@;gPMgd}`A_E<2AO8>Br zfvb_j3V)-{uu;|IWUmLvR(7r8rhnL(He%mgG3>#-i3ZlsyubFy5e6hPik!}B&rj=D zHqV;QTNYQzg3+>)FfR{CI0l1}R)=o+h}b$7uAkQDm$6FZ385d7{pkOU};KU0N997Q#}vy?NkK_^t8cA3M819V;;=dbhO zw&g%;hVv38kO4H5F<_tvI!0NW$rU74wJ$D1m^v?VYEcblGP~zj<&c+u(@@HwlgeB5 zDqFX@FQqKj6vic5=b@$sjoX(3yq-2cA2cqw-A~*(k$~*=PRm+bUiKs>De?4)-cR@+ zalIb=h3)wf&r$asI$R>PQyILqwdlZjUHKUFJR@vM>@U*(aGcb|J;?SCoFC8I)xz0# z^H2mG#_d`JUOhoMl>vB4}&?!}&{if*KZ#m00r=pQ>Ux^{90; zH8tk%)|;1jRwOR+pwrf?;jgut;@}mQA&19ZjZG;!I^zzBRAU0V%&5s(p8@ll8lm+A z5Lp5sXW3w|NDI%?#pU51OLA)#LWi0a>SyI{wN;vf$0I&M%Rbwstmr$}@9eBWmZY|hPP!|;(a1P65!dk(IGt(S!ph3Z_E3IOmiZ6$m%wt{hvy8}&N4L1 z$E~y16%;0QbalDnadFL5QFXsSCziSYEw23+7#A$O@R#iv`tflCtGfF`Gd}1*et8{! zjQ(%ncQ5B{R7^pQ)tjWvJmZpyTJT*nwokxSXdr_?Iq|?ZTTm4%eqh!0_zj!|bPJF$ z^ac-@p76rZKI^DM(j#A?5g*8YenC8T7!1SM)6?Vp&X&nP^OF>VpnVQG-T{N%OQX2o zuS%2xaa=!8~5HZ&K`S=z1Z`O=lMMOHjOJYkrdhu0B8Lmh)rv0 zeSN#`E`HDKhJCyBi*zH!yy=uhY9u6PpKjsjTOj`r%=2qXDysVeQ;Ul?+GEL{^ert3 zMMhF;QgMbKmNS8cx41YR$~taSgE9pbV4wvFQy%nO{%W4rW1cq<6NED>J_myQ zE_?vAZ{*kivW-IHUw{1nC~c-IUlDr&{ww)^L5}?Ie-$2y#{c~Of7s6Dy@;&`&@7de zwcGVAaH%vS=I!Adkb$iOkno$i;isP-b)!l>2J`zt{L!(aMB3;(n3nh5!L)g@@TMcT zhZ>TSXa>+dCSJ+^sv9QNbVv9AMqwN%6lku3@1fh|>u+NNJTT7)We7cBH#+Lnz~ zR|8pyng&Qdum@TwW-cb73xOF>neYq3kn-}sljXe@xqW~Uf$&!`yt@XoCy?Ed@4MBD zEym;4<8@S_BJeuMXoA}gcon5PT?`Q)3I>kvMMl z1R2(`QNYSJw0zH^&|^=i%{{aq?x7l%-&a-!)8bKKev&d(=%Hw<7Lo`u;Oqy4)u`^L zcyp0oZH4xO531SM;Ej{QvgZpuUU_`dn>lsi1aj56ED_X(kpMaYM&6&fSFei(X`}i- z21-(PlF-+aga%p2AJ|s~36mDg6TTu`kyyPhdRYfqlx*K+ZuWL>DbG;Ml(Oi0e*A_k z%EkufGiHDFR-%fMfkh|n{3+Wg$O8$bJoV8<_hm^;IT3qBb93){R-uZ@ zbAY^asK^ja5&Fs`(TSc$%?&WZ&#@v2f`qS5il|(=g&ZeATfi;^XwY^x9?uSMUD<_B z)CS$&3!uHSW?Q_P+b@ZcomA~>55L7@`3V7vl6_iHCZZw*GeHs?Px9g94P<-EpaPZQ zb>D%D1}a{p6TPd4EII*P_5fj5Y17~=z9n+xyr?d^=)Nlox8v}b-k_-@2nPAx4W!hA z^pM-@AT3AG^|%M*3Ni}Z(J*57%&kGv=MUO$8BvP|K`_v%2hb^YnL3slEwgxF9uTTx z(RPz}_TRZ1M#J$CHT~oZn)Pt-6@f&)J1-T2@lS>vK#&*B4ybDxnIuv9#q*+wG7uxE z0&KjJQywrEl7R#tMp1&x2JR+-$WBd)IC`PEUGCjCx}dm6<+)0?zAC#IgCq}fX{Yh* zJv4>!H{l0fd6338M52szE)-Dm)-L{qNc-% z7)ov>o!WIqM#{44f5SX2d^c-fVnS9m!%uD`0cA$}n17KBn?ZTTC3a7J)OE;~PbKG& zRbgUuJ`stoUebJD-HDnGsrp1nGg5*Q2s9|x;^D6@5K-yc+kYO(2O(FD8}e`X2@3ee zk`F|eG~=sDQ6KUuaoOO%LDuzZi8OrY`d{FZiJ;1B09GP=;L@ISn~JLmK2UHV zx!y7dXGgF^iA16=FKHH6lcE&wD6q>Anz)G*VGKQr@|kfD_osX5n$qsD8g9f!HpuQI zi=ewV+t>Ye8=f|sjz&#b6jHe$vM^px|4pR*!1FkocZkZV+gp`?e82X;yrq4D6emKK z8%FTK3f24N{VIU@L{vUlS@ik35OR7RVuSw8)YikZ0q0j_y-&7@ zS6~{Vf;9VsFsQc|qHRH8xlehp$zJe8iplZ}V6W8daBJ)*QGSmbOeXw;HmKnX^^pzX zfwNDU_oxo{8=@4mjAn{hbPl=06o&db@3o8c0{9h*as~{pwT8&u?$`iO;S20loYNJk zJgvA>L>{3X8r#93Ui48XXgEd?zi56WbbBNUmBBJT`x9lh!ix(H%%*pKLGGA%mwu6S zb-rWtcTXA0Qx879+l!Y-vqegD{k&{Jo}$$eBCCRycO8p5^S568n?ObPuJW$|32%z^sj$%Ug6z4REGoo(a0r` zptm+d%P*HjsCmw#GR@s4Gwq ze_0gW)YdJaDYh4JLTu>| z40VD`~e?qin{3p*(F(247w!+2&5@#E~e<0{$-pb_Tbc9ST(8*Ei#ZiYic**I{`sR z-zO{rcI-?7-;&52Q;u!3vwBp(t%+pNpA{7LDy$J6x6pcXSq>zVZqlPHIsnCSnc-;ays<->N)zmRZ5H-gkjz8pI!9(fDtgvzKvMrm7aGb;6(>Rmr3Y)yy?1+iiv ziN`)@mSHEB$?XF2P|Kv-H0aywAj7m)ZWb73VGw3w0Oo8OH)65_H&CvG>;Pyv9I)ja z4LNiK!ERYP$VfJc=pBu#y(h>lDIz}k5>g`yL(5M9AP1$(^RQ3RFN2XWg8jDIT_`-u zb@9B+LH`(8zhDBC6(02h+N3@Ln-UH1I#V1dlmvVlTGn%;M_%Xp%3ea!s3!ry{hR)t zYFYI(2T!{;(y+CNK_k&@vTcdd zh=WH5NeMw{-V$(^rjqh+#0XchmTLJ>Fp+srsWa(EmFo=!k*$iUsRC>+AerNhqz~mad9Q9T1#_N4I=$EXOt7r z_U2Ct+S{4i_wZ?)GL}W|e6883s_M+k^IMGcV4Py}VDp4e+I(C>Qe5^4q&Om;=%4^^ zs^HdCT~10x(Ref-T0g6w0fLWax5^4w#b=9~av|cJPn{zl5x`4$748E^kpBC~zJ!?p z4U3)-#jo*>Clck7T?q{>?dRpMbs_AYVEng)UIYjg{vb)^d9~dyDV(dMmxud@3o!}W zkMB2jsEd1jv1$HyBOl9z+bkicz>r4%9E82oK9fZvU{`rFLnwsk+d z|IzU?i1OHyQ-Ghj-F8n+5%zLi$Ikrx>9rJJWH2aA5g~}yq-D^eqtC+T5>aD9rL-9N zj0rZu`BTyO zRV>ou0tb(AzeJRV2=Ia8@@Mv307T~Ii@LkN3#7A%$((bM@_<%4_iI#p2f_B>d&oV5 zMROt9;4OZ7p?qZFrc*#+whb}u1IuqK{z+ZoeLv>_gMfBnquV1<&6gJ0+B)b{F0*+0 zui`_uN48J^@dBNeY5oO}^pBIqo)hjQiEQ%3L*>TZAdHBX;GegIK|G>~MFTTox8Y2JZ4UYEPtRY6 ztkLui;2HT5Ui?1@_)4udPvXEgFdrR3@I!XxHt&9;=2?VKSd0UHtLz2ur}^#mI;w%r zNCB4})iV_2l*P*OEDvKQ7MJ5Ez2`N*a0+r=52^5Hy3$>8uQ0eSUdncIak-6ws+fz5 zFQgGQmMAkkW<@?OfSi7SApdv&;xVv%FJugD&YN58GPtw8v^Fx@Y31wGr)OxPWM;qJ z!}Tg=IB1)Svt-V8RLW_{yMA=HiiJ`rEK0>}_rc@snpRZ{_s}OK4H0q*W2=2gES5z< zV9y-z%;)(#5(jtI#>Y3#n>F~xFFvAwm1_aVKezd>V}0!rk%}y=y}PbXqroyqh;XBvd=op4%+dwQpFdSbY3wxG8?`!GKG; z^Js57k+U?_>zE14@fBQ>k|HJH$h&2aTgZJe!mOYs4t?9x#Mi#VQ&Yh@{NKrkHp%cV*eky9nne4s{)(GpO<5e)MU z@>1$o=i^=)ZfO~I3D454>6dzA-Rbd+Dty{TpyXb*TP!1Qm!?KZ^9|;V?ChP%2vzo= z+5WDdYa1(XH$$$BP7KOJLlbwxL?)E_k$l^Z?+cp>{%mgkw%K=w3wNi@e{qyBzN#AI zv^SZKKXa6?Z%Ihj*(Dl=nN`U=Sn!duTGCAiuAYxX;`cbNXJuww+}$wz+chy6EJ`wnaj>TMFCJU-tsUEu=`>ZcUA(NVBgy%kS~^IW<>}N5y$- zWU{J$rP(9xU07GL;JTHSyb`@Y!&PJtZ$bBSi*?V7KWnDe1Q%p}yX5{-E@KukSe{YU#w*ZXGuP*HcFzuhSta;MI z-nAwU`Yuiw(|DNoP&`?ONzu^rPxj1NmNNG)Rd3&n(Wv2K2tj%C_)kK=$p#PTD*1ERaGX%2yV^1U(i%pUZapbTp^8JT4VD|pcyJ@*NOv1uGkM} zL=9C>b6s=`(~E20bqtA1=Gd0qC}v1tp-bLMQIz{+@Bt>$wTs>?45Ld=5&qFkigP8kX3A};3Xp_A zm%(^V5JfE7^X^O6LeI zZvwMlHfd3OGm~HXu|z><%K7dG>pjCOEv>c>?5Mqe|5MR@Pq!o?i^qKj8~jJO8F&_v zZJl`wlFKgrT2uDX`b?$O$DnLZ0l~Mmd`Et+ep%tKN7KA<7s$#8eEyd5v+IKDvWkw6 zk{xK73J$suib z;p)A<(N7s~czw6_q~@^s5Xl7g0O@`H_?WYv3S>b7cM|&futn*ZMp0#e0UFEOX`mRV7S~ySBba<46%cDUG zTbKlNG9>T1w(L?`N@gZj3X@#axjv=3r|(6rduF;Hr^or=G*%P0<=3xp7RBAZ&`q83 zGF{a+M+illwd8U!P0GV+?+52!(`4>(k zJ2$MBCe!>vYR#tY1sxsSV}qnihVho}Uu#{vk{`F=(^PVw^lpteCaJx3njqnhbwSV; zYK3n9lE_5Uw;%er8b5Ed))`;(QkR|D+8wJNJh_!ngGRX&$_RD%6zJB7(QYfA=AW^| z?dGrZtcxauNDM8(83#z6EWGDuihzddmAp@UKTEFL&20sDwfh)vuf^@uGT`75WHDZn zl76F?gM}$YGLCP@r0kFiVdUUkaI~;ljhz;tpT!Y2x|B{ z_Ik3ntx}rytM~C#k1XsBL7XIrO0>gPQ&OK#^Sw+WbvI3Ie0;OE)R*c9%vsL0q+}r{ zXOpX&Ruf6^FsJ82DIPNX3_jd9foKV@kyQ+>j!z~m1e4AQxsz}?;9YfNdljSIzZ&sL z3a_1SK#@KCF#J}reOb_!1d>i+tD*=n39U#fx$c5n8Did**Z3kt<(5@wW9c~Npu!Xy zGA2}PW2SF?DPp~ab7WKYwWe>($mB~nkFscJ(BmdTwd@59O(9zYjMGY0hl!D^NzPP# z4Wmka4(09U1EwsI#D13DXcv{ zcszd^-6)^r@s;wmfMfnK+NNInKdZX_(YngFi)f`nJ6_-yhL6y-FWG>11Ocy9*E)}L8)i<~i53tiGL`Em5? z_s8Fs%mkA{@V3NIIK}k704|ptG}R`{Rd3}NoT{L8O)jxdQ1_Wv$rm4&F)+8!amTGU zoRv8^Z@YNCzorvq>&L)nMVov!x+8kx`|gKk-et~6Ua%W^7r}+W{E0$Lk&pA?R4E3ku?SZtBvt;0L8@lWNatDF8oum2 z)Q=m8U9QX#oc}p&omVHu+^zs-n; znX${B!}V13m!dMp7vMYYWZeHK$YBxU2TJFR$NSZ`t!4`z4+UEFFK@+mrBZdPe(4)N zIyAKSZOxgLi}oY$`kncaBqZ=ylYJX@>CU=eFi8?f;5vKT=dFdU80+S0gDQ;CUs2ZI$1ue z17AW9AK9!oXs;_lt}j3@3e&qx#eum%ODVGFW}O^{RV|Ht{Je{Uv#p zE-?ybt_3#n+^5bt@b-I&wAJ9bFlZt-K|pF2+F4z%ol#Q-(BL7Mu`G5jj+_fP;@MI9 zJjL2)ZKGUL-A=o?>g1G~r6ZJGU5i`;`g4y3sU$IE$ySdrn**Ad&BkAobAto)dA@aT zM_>Nnh-m-pRGIq%|4jOgyOTNP%VYfi`;YK6;z4VqMy} zitn`IY9^Me#2;UE%a;kX?_a&pQ(3qzur|`+p6`F0kd=gbOU&GQa=@l?>kiS_C0?{y zXWLyyW&1F~M^!##UcZPVpy*bQsvRNCW6hInY1r()^I=iPq=3uCZg75MaMVXOG{!6n>%cCxx#b&rzPFk_*DD3 zxdok--%d(aqriW01hfo$1$I{5juBP9q925keDlYi)wX&t1SvVLs7*#Y=Wl44Tbu0O zURs;1-Fj4Dpo_FuXaPJSdWe>wBG=^IcL}#JPrrD54a(9-?;6AfBn*t>rLD#l_-JQ~ z7~+;jLpLvGpZNro2Yz^RN-V4V{M#)JE~3Wp?43?hZ(-IrecpzpFc%XYLMrK8w9|EN8)D5p2yO;QeZXZGh6D8Ss7+cN?>{;S5ckh%@I7Ur=0vjwK`Lw6Rir-znMg0a`Mz) zDNtE{t~XWZ+EcYjE5Uc#ylgA8%khzN-A*V2{skVw9W?c-J3Ty2rTKn)RhsvyGH>wu z4VR7bdRB!9!EmrkUtk1Yru^CaZDp|^>zI_^(metj?R@Ev6~U5xtVk0OCIFRB82@jR zpn=~{DzP6Q8cPV3V3>>F6q4p5+~KA;RfJQPIK(hp#8$?;o;W|kjGVH?nt&U42QT~7 zsu``mp6s7O64pUrel*+sxy~4;r`QBzgM5^8(}YtL>#&f zUd`}ZHg<7XzwXFh<}6s>5??X;asd}ax~G@3lpvEjU{W?1k(XvN8?xtcH?K=65r#6{ z@OEKH+tbf(p-@msz$0D4@Exu4n9a`~50i)(uHcxX;%%Zj)}BuK1iRwN(F2q(fRr}{ z7eDK%a0t10&+pV>5#7QyNgq}v-o)3qpqKfc;7f>?wiiCXSoiX6~%t=pI{}9pbCZDKS`wGlQ4ESK5qc zW2b{uH%CRsdqDITNa4$M6Van_Y}`L#K(b&;XU%fy646*@)@eV=M!$F$fo3LLgw*Kx zGhA`joQ(Nw=!s7(T+-c6G=k+HhH_1|9w5_k>L-A^pmsj!>7iT5&0pgFa@?k?>!n4> z_J#)i&6Zeh&EfQomC{DcPUA-ZTs~{WUfdz=7J%K?7xY%=L21Bq5epnB7imcxfrl&3 zS)GO~o9!v#d6d1om+)^yVa~zOypFqXz$%!`1>YU{bT4Ya7uw9?;4I8|Tw-mUs&8f-xq4;{Vdyklfj$`S7E?8~laP)q`JGh6oG-$ z1Z^z(Sf3?58VBe_B&7YL?P5=9>Q?%fe3xhQ)xNTrr9at(^)uE<`Id$ghlKyLxO9^; z)VH_0mNYd|=5d!ALMiI|wmQFU?`}I^jhOmsuS5-NSoMD=gLzOyv^ zLKFlM=gSKI=3D=Tl+@q`cx)Z{6~dCCqYCOH^xw|_9{=;_KGd*JnoK!+Qjd8(-())m zothenEeT3Pt)->XpgH)=QvVtRg>zPP`2Md5Ghy3_|T5Hy#5|OJP zFlpFTc#x`z!K{2|P1C?D%qc$2l^L5qn54>OA@F6lbUnjXZwWPO5MzR$Te#PV=E{}$ zxpvRZ`r%kX>4V$%Elib4HnrU>@>=mSvqmNS#)I+m75~cp_))pv5DV zmRbs(r(}cob9vmx`qOeJv&ahc_RbFZ!Xy4*>+9_m6dwlA1R73@w;=~_FbMvPK2lbf zS~CT?dDT^%7k>?|C9XGOHdzTH--LY38W+6ZqxMDMdS36uHhNTZ=<)>$|9Mu>UNZFt1cx3;@Q~ErXtlSe zD}Fnn@&RjZZ7|_y_6wfhywNjt`=?VOT4B44$8MI^NlWmHiHASE-JAIu?@I~3v7S>g zH-C&vu9=k>*o<#mV7 zgt@C+EE#-A#P()PQL|~-C$0ZDD>d2JKzPTim5@?*7*+lV-|=9duBG`omi~w&jm49e zqyIZ=09fV>^`b&~6Dy&@>>ELIUtOx;MT%?YX@Y9Kb6-`Fv_S9(0JRVbm7Psw@lDH9 zW7|#)o2pN0S@P3Y?HeFxom(E0LDdWZi~))sw;!W4&sFnRzv7FVv(xpf>r!0(1Ay}? zFS07u5S`aTWz@!;;bxtlw<_Gi4zp+#a_4kAS1!lud=9mc#%$Lc)*UJIX6`9=rCFB# z-&rDBe&9Cih2y-dPxTtN7XRt(e1dA)&pi&-;*n%P+n`C7!B-UurInoE7(Mv(R-azm7Kt=-9I}EgVA^ z$jQE_;Q#0&3lht{I!5t>*>NuB14ehUx!K7!&PFim@p5qF{8VW0`j}z*=43>}iys|$ z7uSV~oZL*retrEOH8;M?f~2vmjSQ_T5Vg?es=0&2g!kB-j6Qw@pL+pML0k_)Kg z%w-RNdf4-4MakZN;(B-A@L==NLd`iJf>||9xuuN_yq?%geSDg;2~OlUUh)iI-=#nj zAb;v8>gX8+RoCnk_w)sPNFm}>C@zHw*Bjdj9f*i?M(&`1sIMLJM79G#BRc7uqx}l95E7leB#Avn=;*<%SZ~Mc?p1{ zwrm+Y4x0QgYSc@4BMjs9lVGIi%`toZ}W z*%lqR0oai|zInxA_dDs!@G`dR34CLvNN%AkmB54~behL$C+>7;QH#o*?l{GycHQYbHl0aV%$~KT&+Jlpcib@qWG8DapE?|Wd^Uwx8O;qzS#Qujc~K8F@c?I9uVtNC zW3y(1PaF&15`jg+>FjDBn29FT7bMj6A3`;kH7L%hYwPqe$Zg(sh?deJwEOWDna)MO z18PJ5_1;vJ-@I5g)ua?h6GG5V*S+SmiOi8dz=sdM$HL zVsZT`pRqIV%6`JO6~p{~JdumB;NZhkHZi)gD5DI145A?oYs%Vh*tQDjG4>yF&PB`? z@!tK37Pb)BW8^M3t}h1C5>iZ)1PZGl;WlKC9*a?fq!j5^|bMxbi$0IP#fOp2aW| zEG*iUPN24pK&SRm^tH<>4=8k27eI4N4qsdEW51#7hhxy?O7fAg3M2s#03($6rDC`> zh8c+$B(~3Mu5B1d=*Gb=BoK{4A^~6zY@vTU0Eq0;*qQI|ZIMkUg6tzdLfCvQkeP@7 zFk^An##7gq2U%llpJb6=p&thT>g26);#n|&4}k-8d_Xz2@1pp(l^|+91LPP5n*mq| zb}@Tg=_<&_}4R>W8W4WYtPJfjGs8p zmUT(aeB=PqxUrf5A*ePXEDs3d=a_!ObLt25TSvX`-d2hhBS&SME!P3xZ^P;-Z+qm5 zq1EG@iQ~84ukgY=4xta9+yGVNtbzrHcdGDB3d$(hF}-M4Oqw|U<~ciZiAq=jP`+q_ zJ(#17&#|PQQ9m#i5{o*4#R-;Hnex$ZK1-b+)L(ZUevGWH=AAqfA?m2jCqTWhf%r6M z)Snm|sT+Uy@^kjkyG@^CZ@Xf|PCU($rP$pqJT7EHDm8VN&}7 zUWPH4SX4T>-|(Zk=#i_b$>-FEW{;-%4OfJ+vc#K+J`|&DuRe|B3>pW8E6fR}4l!BZ z4H)3q13MHh-okEUI#VQ5kUzZEjU)q-=cMrrdsN&k-RIe20)r`DSgcV?|2D;KZO*!x zBFrIRoMRDnsEn0>6UNvYKU5jHzcgYHNDf)MpfjwUePG59eFNn&N z6o-T6Z6&RS+mtQUS*WR_3PAV}byj6?d-cfBf>8^7sTCZi>6Lcv&6teNB3Z-o1J$tB z$7#NOgT+5Z|E9YhjXWeF3A>p3jz%)3Hm+P%ZXBr z>bIb3q!5ehW%e7=n~8o(!K71=&a5~~dKX#Q_xhYj-I?uH=)Usi(N@=Mp-LqGY=J;C z5PhbT8#Bw=qMeXgkV=Z;bQDG9kxoHZ2OcvtaPL9jZk(VIqo4NCZ=rwF1=F9{3nTxF zK1XFXyYppjj*znjjoIm1<{hmnDs3bMFSG%t?^tn^MtP5eV7{r7fh&pa#tg-w_ww6I z)m5d`o&{Q8LE^yZ575t;Pb}Jema(*cTJ?HH!>~utHyP(NLR}rc-8DTPtJ9Y5$lBEr zKV=pXVhK#vk~g?bFbB#xToU*KwK8y{@&Tq&eu+hTUqW}!!dACZJuu0_8} z?Y4R?>kgR;>Nx`Hn*b$c`7oAW7kx19#k~C1d#sErZNdYiiqon>v#H}-jAsW4P_}#@ z^aG=w#II6?^RM-8eDC-zHooN2XzjMxH5bv)RMxQSz-8lhY6pD|SnD{@1XKZ!PGXqZ zyg27}vIY1vRx9&7dLySXtCb!fp3Hi!a$39iOj$xmy$-tx2qpTJDE@->X*Ip{{7p*( z!|0{8LE418$l3l$f=$=ygg)H+$QaQoUN>C|)CrwxFu{88CjTmlYUwJ*q2sx0fAP{n zo(Fk<*Y4IfUWMSm`p%p_VPjeT`};`Qe5?YDgiWQm`D(#I8^g&UFNdC6g7dEK^IdTk zMQh9RF1G|V3OCbSE(Vo|9N|Ij-u^)kh(;csN?1$hVY%_BWMM5~mL_Vx7&BdYSV-t+ z-`d)ae`6li&b-gFWA0I}E=>3O*xfZ{5XMT08%450#s9kZ`s7=1xO!vjh4d)QXIk(O`an$oAee(oP8IO--JD1UcSl)f30QMg$@i{}-z+tR%fv0H+x z8EY9S6|?in5qyN684!X4tHU>HL&bGIH^>mj<20u zB*Lo2^4cZ2O5iyX7k@C-9aPiL!@fdabrr@07z$Rq>cYThu6L8~AZhbt_Qz<3l)=Gq zbeF^qF$DGlH)nz1Xy+XmG(a9h)%CHjY2jN7J9ZP{B$UgvXssnA9(Y;_(U0rZfUO-cg zU?e&Pi{dIEinE|7j%#@kR|6OR-3ANMpB1hCea%B#m?e`U$kYp&Awm00zWNChtClaf zGLp|9OaQ>bf;R}9+b`Cik-<(?TZ#kjz7%9QKSKmx8o=%|7<&B~V1{i0?4E*6@xW>v zr;j!zW6+jI8jsTW`=SB90_Ma1o+m}AkDv|WfpVW_9g=ehnrxfK5eyvPU3Zw1!8(PS z#kLLHM=mMK)9-U&^7>sLOEc?VAD}}M3K@gS+@{qXGJD0J1O% z%k~>uO(6>~j)Yx-WowBx?LmG!%EtZn4v?2rtY4%1G@*SY=&a|32iI5v zz7G0xOJ92FVs`f9kK@(Hx$$qjqDX&Q^fY9LA?U{dpA)47-&^^}K58ih(34Ue%4vNHTSndNN6 z$sWE3M{VH?a*?0TfG6>?B|V7Ik6dA&0xQVa5F_Gpn)@i=Zy`cvefX2ju(t%)AD z=sXV87uIbxHmUQWc4TR56c_6>YUjx--nggFk94M6k?dwHkEr|NKWZ;{kim}oBKuPRs zaGE>sVbr7-23$h^7N_@I-h+5bF;j424Rw&EXgF~e8Q|f5?B#FBD&FupS|o=C!Z?`Q z6Uiq8i7`k920HvK;#azH?6;INGD(FlfJchHef~qkXZS8n{f?tOOOMg6& zhE|5?>n{(XroSQKnLt{mrN#O>n})699QC!SXk32L0L+hZE zokX?|LEG>f$m`*z8j*Dahn=GXuO!&iBMZobyYZV;Z+OZFE>j~5+1B3cK?@9Oiw~Sp zraQp-A^`1IY-N6ZL#9yhCH^k3j+NHHI<_T4eY^#wwoNkVT|`jX2Y(vRlsJ^_M%V2# zgJ_yyvF0l^St4AYP=hz&?{tK}k(9$PKGI7DE^>7h@rRZkv-L#tC5GO24!S=V_zZC8=mmh-6&Bm?>iMV|JjWA=y}m@c{67=^z(qic%a+f ziXfl~2t=Dl3Aj#SwLqIAJUn0{jvN!l$w`Kai!Y?u)m7x!OvoD<;=KB)5kQex1iWWx7ljD{H$|nKm z!yst1J(Pw(%F`>QWKPQ;jSoI>m;ril>$(4NwBA4%5X3}n?D0I%A{5(q zY}?t+0LDkVw5@L+J|{qY?2M@Q@X_rMc3``MR$f0)+-*s335J-jm(Q8d^RCt2(?Nnc z0Ur6r(sR6}aitUgNg*SSr^zFRT2m+nci=ZAj@|VXd7XZ;UINc!4y~dQp#1sX;JZko zC6KsJNy1fXh)YN=CrdFme^nwxzhxu>Y)OMAJkQ#t39ucqk& zIKTYuLpzkzVdG&zzW3_u-~V6_fmYmfyRU|L=i|V`^11Azm|=Ogzstfuhyniq@up_c zm2)l7AL9$Z=sJ8ARrohM5Y(~UwxwcgzGIi4_4%DBsW_#DY`&5kK8@}$4C+gf@Iu%GBCCTNP3kj&pYq0P`>gcp!L;7X9IwAV3 z;#pArxzFf$)>~pxL?wc*3&}m4Lk#XqKu`s+vmhm?&(sG&OF?}m{tp|b!DIQT%8-~a zYPJde5rQs(DGs{8DKHmBea7O0W{dhPeE7d?qX7By$A6{09~0O+?Njo^TagB>&5Ta$ zDkElow$=QEKj|B@Cgr?o-|CymA+zMI$BsU}U5_e#MX_8`+yk?dumJ(?sznUEPG3-T0vB8<#X9ep!`qDkA9+0}k%) z&@^V@I(vFpiHLTm2zFXmNs|?mh(qe~gydRl7RFm!;VmDwuU{x7!2I2g zH0U%?s#C{&MS8q~TWH&N4;b(2oK9lJ(efxJjT+~uMZ(m-lNH1WZgX5Dl|3~kM>H_M z^o3A6%993?Kl`arc7a>##Ha{DU=!Z4Xt1&7)mfFcZ)j^Q9j*KCgy`m|L`Fpsz?r{z zYvrZ7yb_)5#B&Fs+09%dvdHQ_yC>fdsE#;sQuqW8{T4%w&79FWB=%P46XSZ-SC$;_ zcCy66SW`nRH2L|>=Fc94+MRtICHw3=;ig=7Z%a5K^P`PXKpC(dBVEfgdVV@G?__=b z;OCY1gu~{^Mn^qD}#MQ=I_>+1&>&vYP3)3k}rdIaW zsTU4HDb;%_B~_Mm`Hw1|>r`raj{v4gsYXA`$ORdoA;a!DNnef#*OH<&%EP@&n)O*} zol2TlCP$^`IJt%w^A13{wWP5_jTD0%GVrZ;kJQ&l|ENkvDD|Gsa>~et2)PySURk({ z)Nk8nU`QmKwP<>s;-uWG4!qWyE%V|o)46#I{rD*l8qcp<{Dt|Y1Ew9*g*7He4nq?~ zUuUdIT57iJWp4<**E>CAZ)@xcP9 zLhc~I{zNCbO&D0iPRccS=i-ImA==Sni|p%7o45agO{VO;S$_zc(fd7_6{h3>gY5GV zIX54GeoilXe6iBdG4tvfD$^o?wF(%^f#mViOvKO&->^Sshpue})c(F$$#_1J^aauL zn!b&lj}a?_L>^uB+s+znM;Cv;>Et`v#uyF{5ov2UOk7B?R|o{j^8^kG{UK_RSrxee zdkH;O7uFp0zL&A4#j9zd;z#7p71ozFPk-dHC-J8l`>qvyDENZ=a#tS>C0_aoR5Ln2 zGpvtWf8oAvDogzG7$B(PTJ5>$ne^T6a;xy@Vr6jk2}syQj~A1E6R{vfEr?E4mgV-8 zG@t{o^!z~YfJ`^#LE`|-wt}A1K}fjIR0iRUUihO^Yk?q{prFSACkj=mTyK^rH?}(L z>zeZ;j6G5)muP9Ox1Qp75;@!fh zA<$oS2+H-sN{xCa>D)a7VGF8lOEOVR$O24=myn%oRJxriJw6?7)i?Y=$2BW50kfOb zK3veH99^_E9V%)9-@#<8kD?fO1dCf%lfXq$Ge124O%Ou7&?3!&Mv#J4`K3g zXc80w5=2VKBCdL?Ur=&q^TaUVQ$;RT89X6btbF+OFK8QO z%EU*r>Lh#Eg_XPPn(g*i)j{|BjU}9LGlGhM#&e;*kLp-C%(2fsE!Op4#$7A$D2f;@ zLg48$tGbU2w_8swjKQ#LyIz;;i9E0p%-ZnEUi3f=$JT^y!7YBmL4n+l2rmf?AhBVy z{;=fgUM%hTsu}CW=_r2w(b?Ar`D#;d!YgzWhtc|r9`Fbk+1C(#T=KSx$l~~){_XSX zq>ez?3tjIJW=$-F9xdnuv!=cZy-XjPCE}CCp~qJEertJj%BruMQC_};%n07z({uzy z_3~4+?poE78jL5!kS6T)UBO}C%G>3B%C<`O#90WM(nTqW96CcLj_qqX6;#(1U8Q~D zW=UAWUQ8Rk=6kS5uk}L}yx^p+g{o}<)c!Ez9BTV*#8z#9(dVM;#(VS9<0_%7;tX}U zUNFcgtTt|=Vn23b#5;+i`_$xCjNJBD&EtE9o)lYFI?`qPTvw9;Pna9eJQXz@T-ghA>zjf)Zb*Fd@Xe4LBOL#maUT+zZMTSW|{uEsm6X zB^32Z4myy)qdHqpRMp~TP4t9c8B6B$QafSjYL*aL`I>%KzL5+5+AY{(9aLf<4pQj6iBQv+4;Etp7hSASKHNJJ6%+{=#tIOq~wKZ;6et~T^)8EB^ zG7P2#g;KMDA3`PJLXqwhb9qbQ)$X~rF6Yl>@9wUr<<(@RX6=Fh7^k+Hnqg{i?8E-v0!vpYUs_ zB~B___D$0lo5_ZgZ<^v|M(GU?vmIn54H+wEwj|-(5jl8_#%O-3SnahhcMFdKF2_uh zMKXl8bZ#Ca$bWc#=F~um+qS|wWpj)~t9VH@$IJnuf5aAT<=iuyJ9qt`{{ugCBG~0h zEPFzXHb%K1^2Hf)rnB%k8q)72i|4pa{S`_G4x_!tG#n(dt39x zuXexbrGn+1+RPE9o%`$8Ui}JRZD1O|^~xZ~FWZT?JM;N(g{9R|z21wXcM3^+FAM%O z>Lnl!l|Jn=COw;Fm^*m8|bIFxDeV&sp9!~ZXWI}=)uKW`?=OII9!&!qYWmyUBG%m8n zpqB5U5+QV@jYES$jxe8}W%aq*y>JdsM-!ErxS5=`#^=_>T}y}ww*pH;%e2%Qaa#%= z9U)b{&o}v_s-Kjud(U^d)%OqVKC8Dr^Ss#R%WnIX~mgRk6OUE3w!>4!DCg58}xtODEp&5c^RTf%xQ{X$Efj%nKd?lcXF{mp+xb<~U` zeAM<#NJRbAyK{09svX1{Mtvn}?}X$$@wVAUZ;oErHSBI8eM>Jeh{y}Fz0kh(WI!*g z_qK@bc}4cXl?@6%?kmm#_1?>uBd?EgXG2!5=4$Z+gdWYnCeemjCu#|NK1VnoRylp@+2=JL82?>mrbA>A>Q@F?7&-k;!Yd(!-B%Na1_vANu1p)~ZnBJ9$ki~s zGDxy5)L^Br&@SDzemlLoSuv!S(Qn?$UmRO+&3oJhuU0w3sK2`a>#4E$H90W zE#L%90IQ)j&dt@Pp zS$p4|%^G?&oX8o^ym4OHm(ZM;bF(?yiS_Sm4#~kO@wYy`( zB57>{{E1ht=48Ef7gB#}sd z2plAXfPlmXNw(xn6Pma2ygLq6-f`dfe%$Ykdq?xDtBbCxJ@?vk&9&F6y}u(+hyUv7 z%jVZGLR&8x__I+)6U_P&=pzqFK?WdfZ*!{P?G3FwMLVYuDT)rZu2*SKtR&CyHf@${ zA*gU7Rs!;cQ{pR$5gRoP?mDbTawGjl-^Db`3$aXd7X6ie6BRw!J0=-fBg+4Z7cp+8 z;;A-8Uvvu7IiH^tQaCb)^AzAM-KS=#X)&pKxEdu}wA;A{Z9fq0J`%It>rAyJm|p7M zlDt}$DY)-j{J>W&Y0vIuRPjw(Itw4xAI(_vTcC@GkS>BLS^?<|O#zn^dVa58yc@|O zto0d>);jl za{alVthN2DZF1aqXi{%`1^YhNn7XwoTe;#NcoUBqwU_Gkyt1+N9b+POyfv7-Mt0Ul zc}k4m)EZgB6{W{=DsuxXU6uAMqRA?(Cp>w`uk=Y*Aj|feZH0n{e@e!Xo-P&)Q@ryo z1BDq@;?OIW%bVMPG4$yrZ1S5Fg>Vrdl>6$lnJ)ES%)N(oCJvLFd4BV0M7}<5g^p4O znBhhF&tPvW2bwl@a2Y*tnUVPxx~q(ebW<}0!=s-L?*i}zIB^I7eb9V>cW#7)#8-)@ zt7rHMrfQA8?XcUl&r#F+=X($p^0qL+G;=C{;3~%M*_6fmJ~zRKY$uv-Z+(ns)x;d~ zU-JqrMXkKtl4{)a>k(mhT3U+OZz!>voQ~nr*bd*6tLF~bdCxECY;8Vo{Vo0jZl~R! zqTt&Q=LOjXuEETnKw%0uTk)EP66v+nMq^VY@#*z}!B)Qg4U)X^m_u3TFV$W zg!<3%$Nqs^B8fg4ZEZ7w{$SH%KgeM1(F4S}c0%-`%XgDWCoC9fbMLM@pMPF%9Z+^K z5wybi&C(I1KL>Nj$Qs;xU_M79L)zcjtsx+Dd2pgy1`y?Z9*f zOkXUj_>IwkhgM6V3Eo*RTVh@3&wJKKk3Qvf4{>wOq;~yBK9T7`6C~1Z6Lr$~tmtj^Yy0bH=D#L1Tde$yA#j1DcY?)IMFZMJ9{3KRrpDUv!S6-6D>8 z74O_Ku9rxmR+4S|^Wr#%#_JxDMzn%PsHkXLe$rr}A<@03W@cDciz`3_|JLyRu#pA^%K{;iT!`AvJTxtWu7TZag99R;+M{mU1Y)}&1d z5Mn$G4fSJ+r}1xR&pX~FKJ3~aYbB* zHx+N5Y#1!j%P*xKjO|tUZv}xqnSWPOSlpPvS zIzis`RIKr?18rvThJlxcYN;Z!Is#lBgHM0IWa7#cyuV&qR>3{QmKqu`b$+T+Ks2Pqon<73B z`zeknazHmp>!{?Jv)?c%?thu%vXsV||SK#XQ3Ztj=N&C$#%>=)3h z9TzZ8>;+s*AJ&kK%erE+@bg&@JLer>jce&wx=h3Z=mZ=2YyOBZJc|s=l~Pfpcp<*% zgy9O=Ow7zrbxX@<3pzgFw_tIV2gNC2zJC^**U8d_RL;0J#8mHC*8Qj8JF4j>mOu^T z9tt1UHFGI(<0O`iG11KnOBe_Dy-#W;3Zpljjdi!$WWvVw$U~Ip(<}PcJz}hjTqhU(WhxIg_hzedNFdMSF)Z)_*MrKnywUAtkZ;C{(0Y0Q*cdI zum7fd4tR!d$64l1qE!c7k3313_i9&Ja)QX5L_&(F|?R37V$ADE7{Zci*|jAOPCcPEZ1bumS)#oAb# z?^tU(3~`#S{ish=7pmO03tHzTx(8UMi3w&XIa-NoSNb{nqlyoStUdc2?;wUWI{vsC z67SkT<6ZCEt7UQHa*xZ@m0CuO8eS;nFtrM9NiTmXB~1RivosFG#+w8I3gZ66=Jtb`_dy7%pR? z3pTexjeGAO>8foQ6=Hw2y-{3f^3?#u8qt|1kC$D#f9W^(t6;Hu)v4SwE!-5w2CJt7 z+*+)^88o0Uc`BtY4GtY$_-sFccvSImk+zaV+}0o3#0z^OKIsgi26RW1g#FQV0+bAq zMR=s{L75O0S)f>i-dqos6yoV$n16M!=4OOG`i9mq_Q145`_mrQvg-rtdmC z4XO4Gwf{-Kw<^(M2|2juegJ9xBmCH#@s%ZJ4wo)yv_4ZZ(z?b%U2R^o$Uf6uS(N5M z8S|XRq zg>WE0k@f7_&#Q0fZBP0}C|6K-mjug37@{a_&lHZ}lY$6dKMR&iT0Ngn^*O$3Wl#~` zyte1Dzg&Si@X~?1!9C1z0UA{dsa?GBWinWsM&ejNc(jsN3P)Tw$aHjkjF+sdB2&&^mO}c<|ORf9GQk%lhJM{s)r$d+(zPoAh;vkUG5BIB}KN<5J3F z1G|sDs}q_GVs&+Ht+c-JlVE4czvGyDe)fWz8@M5Eor99N8X(z3yBp!y^aMWFRrWcSWlCsFV~fCm9@u6HFzFFR@E1|FDP%Uid2p4< zL+chpRmHvcQ2T_HfHN4Z3rdc)g|FT1y*TnAuk>mpuulV}tld5axCC=sBoN0g)VF3q6^vzv;7Be4z0|q>XS{x7&W+l0T2cG z$hMUy*8Y)|S_L#KN86-OXK7A&j(98<2tgja-OC9f@kjVkqCP$QBhevKDs$G&YwTU! z5b{yH2~8f{zL71>G4;hhx-M__{Hqxe&E>~g9M8T->MP4Hvr8=|VZyPGIp1R$!97+V zbr9s6tiN4|JJ2epkzB*jp}A_T_#QaxJ-rI>=X&mn94-z+uRyH(;e)W%kOY=#yw<@?i|j8 zp+pH#TAKeFdboAMNB_olndU2-p0Kw^6q=UVr_|zVt*>u;8U5rq8x$UozM#+RhhR#? z5BTxsx!s#$-jB{l0k@Z7fShpDhFH`mJd`uO&`{7(rnub2-x|48-DI}ouO0FR*ez>} z*C`%%KDxtn`CsiqS{HSvJMBEz?F&HopVgsgiW%^;PMUR8*A{2$4i@^z?@%@iwJ2(+ zz+!mh8k=%(@$;hopV=)8EVK0!K6ZHnVLU247R5xP*mS2n#+A=^7miATDTcP|hy^aa zV`82m#Z)@L(z_+di563inzyv;Dw@p&h_ZWXG`#y@+KF+SA4fwe_745{_2i?M$6bt; zWNvJK(7dGes>kkQ212W|GyX%TS{eGe4yL-Qte&lM>LF_J&(x{c7YhxSo<$!>QZ&*pbX zaISp{v}1H7T*RC5$dU#oF;ecxGEAQE3>7Rn>xzOB56s>ba^)_ zPJc{8Zc}5@R4E3+L!LPaGSxI}XZwcWB^QYdvFRq7jy?#Fw8GNGFFWJ6Zd{Vlbm;x_ z0F4>$tM;3Fv&n6;Q9rH?>?~M$l@@Bzv}B%R-^2z#}U$pcNA+~**wiGS^LpuHOsw-B zN9CO9+u`o40;%nXz!!PG zi?c_7sKDX;?TC?~w#rmb&wD%A^c*9`3jJO$4Gi(e+U7R#9eyD*s+cM|>rOYP8DeoZ z#>obd*q|YD!p_xT@K*w14- zL!|xL4F-8hRYmhc-|F5${^=~VKrx}pFVK;WcKhPtY7j|5b;`e0;N!zKD*PJD`pnh{GyK3eSFx%6eVU@4k*Mg@ z$a@rZ*Q&AHD8vi`U?gk@f)=%Gx6|a&<{TcKX8bAj$(KZpeQgS$6W`AZlBLPmDCw z_EOpMC&i{8J^QAwn5qpoU-DzNGSaJXO{3Ov3wz!24lR2W+o;P0?>Wv=v>7tliV13k zG%z@Qh(>y4GDW*7mC%v<1tUENs+nX?SS61bfFNhr=gs3d6a`B8g!?}d2sKm`ho$?oKO?K zeF3xU7DvnoLibJsBk)JhA>K# z(LpAOaew33#ur1hfyw!vy;GkY9ZjhYZy+mTGo|0KjYeFjA1}wql>#s)@nczxv>ELg zt|20FI&$HAe4;6|F4()^EMK>Idqs_j$j{g673KwHRcWI8Dpg_*y$bC$7_w=wiFZEYgY*|sG?Kl`=F zfIk95AKRuJbeW24RX#ypHDPN$(W2HTZJJl$I3d)WzMznBOW5B&(IpFO?)IwPLhKRK z8_e;H^913gc4gkV!S@xe13>jg-~zK_d+ zMCT~-f5stLCh3Mg0x0Xcf@UZ?VqGR1Fv5@d^}&lo%?bKjuXGPPR?VcH$MJI_99 zP%PX`PcDZ-1_#by%-+|gw&Ds8oi;*ZvO(edUY4CuiK6JQ1F9^Kepr==P_ ziii=R=r!W}HX3yv#|8>^x(c(9mB%dg_9qvXv z0{^u-vzFI;ikIy!6VpBRSUo5fizFI-RMdE^`XdMs2Vk?X4~a4;K2XvWPjTpeV@PFX zPMH!HQ-eQnpz2mC=_j%RE`iN*yj~t9)?TZl-Hl=s=rKc=0zom99uher{&iw9OSrB9 zggZQOJV&aV26FQlsU}$BaW-UV72XAf=ybi6KCAF1ycx}^dwG>Xj8PJwk7<5^&110j7mtIr(V1gzHs zn{`ZAAbAxws1(W5LAy#n&Az{pe5vhVtT1QzY5CcRO{rxox6QkeSe0F0EU^6mWYqZl z{D}+mC9cj!xs1N$gKUHgl3~VLq0MzZ`g7&_?G7JPHTA}vs@XxsLRFJxPW|&W5E?M8 z5tfNt4^{`f+y~jgYy!p3;^aHmvY()6VVtA6C!}$*xjUS1z^}Mp(YQNSpLs`PC}!59 zIIo7WSi~y4Q*Y8zJf1x(S;SR8)Y-B_Ow6fFTdDd9BKq&BB&g1(%HYcsD9)N?NV9d} z)ksgl9<{8um2F!gi0??WSEg)K<$;8}$9>d1Asd}yw`Flem@vz+xmfpe=%QTUSX>j< zJQrz1bTWZVX)|^7+Y~wl?TN0*$P`)SKjWyMZ^|xAPq^E=QX5zDMB)Z3!eV;a12m*C zl=)@cXV-2ME}jBfq~nQN%qg}}8Q$X0V464RgEP%`EcLv*g`9}N$Z7r^0n74XIp-&V z2|UIh1Wk(y^0tMVK|~wn;`?EEjn8q*HJ>-j_Z8dde4emInH+tM*T)CM`zuOJDP7<3 zW}6I)Dl3y4trt{VWw0C-gvS!olSN4&alw)$=<%0`M3m6F>_pOa&%FtY9|7>FAm;Y3 z%1 zP5St@N3T!MoZ(Y{d=^WP21OxR{mdidAEmyYXO}FCdo3!pkfu-@8o>YLnsqqV?usI2 z-7i;HN89V138=vPrYY1pw`7l=9m~A4Y3-)-ePpvn*1fuPO2oybj3aJlb(OA*!be>R z(bN;HktWr%xVDCSP^3SWMtx{?ybU8mueYwBL&fUsIq>`DIC&yda$S>LR^E= zwAPZkjj4Lb09aG+NY_&y`H9^rQ;*}+bX?Sub*kOt;ALRe`q0Ok?+z~Z+tVDEJFYP< ztoxzU{?>)~026bqc1$Ceux+3$*!l@fp#E(xsW!tF?`ZRRbzGh!0NN{)Mh4;v-Cq38~YMlr`q$1`LD^Gh*^T<^n_vRNMyGj zV<;IfBNzj^l*!jHt7nSp(CC6^+$F7W<2km&E<16T?p|Zr9W|MvXE4c~#v`h?YTbat zrmlX%8B7mCg)4FFD^D+NgslikuySgt;(cQlxrLRtY(AQ~)`YMR>gysq&o`aV&n3{dQIMfY8jFlA7Dfd)>!y2hSDsd{)Y4 zyp+87CPy4zsl;f=qzOQXdFfBe0$!$--_`>pi?X$ zhOEyS>ls{7dl5RVaxCmfs0&;8Bl~ahe{gCM7BIWOXk0ywW|U%Uw_3SacOsBEwfSLt zl~eN1zM#qE#`${nHXrhlafmWRLqMi1X9RnBLdb4u3 zxUYXkNI?Unp=DE8Zqn4|f=sVXVgJfQ74xOc{EeDg_vqyGYnQM5T?eTuae6nk)%v~W z5MwPUjBFMD3n)6S*3EoSg~#_X^BNetYE=#cu{y#(eX3^r6ifwq#A|tNC$$D2apN@=D2~NgYszXv19r zboGpLcu=weB#=uGDxY!Ifv&|qd=I!rVoBu=VIJ()-MF*C5s;Z#q32b;ev0dq8tboe z=?K{rzFnK?5&S9&tZ-Xs&h8hX>ur?)O|jO#820Fog`dH5ymsr`lV@skwM`OC8j6Iq zi3GHAnKr+lOt5jA@>>A~^iE+)%4S_1J(@5-KR-mTo?|t0NLaoH(T#0YqqnKSH0@f# z%yKSn=jE>v(JOXwx2$`IFvJmH>s5cpD;3q*o+Nk)D53rAIw=o!AxKlYt*hXk;~Z z3)bxuweNyT>sjJq4`S=%IE!PGm(Nn`cfb4I<$U$StQq>}-8RCzl+De$;gJ!Xza?IB(R*iU$5>V;vq7_Zmtd{4Q)yV=eZZE?w(AZw$<4$ORHV8=|C04hdA6fKG%%X{=3{@o^Rei(TkJb^w=!rDtG(r`K*IRORZmIIx>8FE0$i zvg(5x;^%ey$!I_F@2zBL>G?gPAnV(W7@BSoul(`?psaTKWO*pt64)%M@Q$^w;TgZm zoN)3gqk~9|PX>t(r!WV7ZhbbCzI;3|;Jns8Etx}AA|7x3-gD+XxGXhko@setZi?9r zrush^zEU85)N|W# zIQ5l^MXqODtnDNt+43{Jy`wS_)@`3Moz`&v8u3EDM1>3|0fyL@bty^5{A*O?IOFMp zOES5WUUd{$yXo=hgB^%BmWtZ5PPZ%?I#(p6o+4X*3AywW_@$Yxa-H(z^NT&+=mjwD zn@8tD3j-$g-UnS~{_WiSV& zF0z04*|)uEde#t_=}fl|+piArZK{g7+cNGxlbt8@HWU5e?=2cK``~@?YsRc?ipJ8) zh$OgCOa7;mWHhCFx&Ixsgo(`iz|WGdnIODpdCyQt^+__%dcM6Tg@P3ykx6`UN>Ay> zcX>usVYQLzk(jE!%~URvt*R8S~S?{eK1;to@V{8mr@~zbr1B%-ej<$1wDP@x78*f z=l4THImkKi79Ome8g`o0Xc!>ikkr$^VL~$R-yk6)jp^SoAraYckdTqs`*%!8F6%c; zNPhY^NdCtvvIuT7umsQFdjyb7{kMK4nfh;#{Esztl6n8umn8H44U&J^yuET{D{8n)dfO=0QmiX9h0aG4hxCOV2F^Y3I8@@{7J6&KG{l2?Ku zLh?#5KuDq*1_()1!vP^l5f~yQDFOq8Bt_tWkfaD45t0;vAwrTOFhEFB1O^C6iogN+ z7o^C?|KeSuUza6OG#p(LMZ*vwQ8Ww?5=FxRAyG6Okbi-q;XnP~`F@{ki2+z?{_k}G zNRcDF&q;4|!Vn?J5*Q$)H#*^fkYouA5t1x{0YZ``a6m}11cnGniogINO=80V`PZe$ zfBs(4?sZ8N4M&&s(mf0j5=FxRAyG685E4bh0r}S{de0R|al{@lc0ZDw6bukj903P} z9=kfaC%5b5c`eTTs}-U&Nd{U?8% z+($-o#1MeM0V%f#LxkjrVSxO*bBjODdpnVlol3m>hm7h!k3xzm{=wqcClZyx03lHs z91s$f!4V8*tN)4m9xVRE94u4S%ty4V~kf}jFG<-3=#R< zHo;&_Fsn?AF($^yUw0EC@}Za@@JQrS>Vv`f7$cumK1Af>?n9*bL?WNtKFBK?@@c^O0&yU9QXqc6>*@10L}{(jXr+e=-N z@&?ri_@|c8CM0;q;FRfqo|lLy3Z5;!n8JeR^U`?1Bj%dWOu@67A@L8H&Eh%&Fr|_r zCU};cCN5CLv|6UEMPLilooL#(@NHq*Y*MV%i}7CmRIiV^P63CPLi$E2aYtx-bpo?kWGVOBtwjeh>5(#?6^Z-2_S_o`mda(HCX!Ud; zDzFO6>G)ir3e1xK0n--8fz;+(yg;-o{F=d$L1j0qiLQ!SfKJDV$|EW$jkE7xV?AKc?l)*#J=ErFHu5IC7Y#Dqy^m(Sn z$zdCjUz9!FD^cj7B<&bnTNnMUxd!r!sZkC>uBT;2_0)I-)d59a=KxTD-K(y^joRRS zQ|BU3qNFL9?Vb#X`P~&G4)k#$3e0qWCFHkLaq{RhWw`-7@e&yumAiXCm`tPw0O|bNVpPJvW98Z#<2P_RBU_0R^4#+;Vbw%P9cTJO)6&tLfaXv!bBN z#WXDx>sRE3Vb;tUpn3ZbKv2@dKcE*n5LEqZqDul|-R@oi3f52jp|zHc3WoXJu%hcRQQ9Z(Kd^u!1q{b29zq<$hdm&UtTKdb4JV1hHk5EcjTRG?!7w=|49p=+Q67aX zyFplJ4HWomkqD^jNLB8vrO?)@&432+TxQkkw+qI<={iD5U;p z?jqR4ziw;;jlT06u68lt@OPXYfNUGW)!qS1O}}3(0X%DPsU6!u_&1>rUJ&KSSVy4V z;rRdNHY3Cs)I>1?L{=a~G6C)rUun<`l4GnDb5V0+{y4B0vs&Ee5J04N$e60l!Ix zr_e(5wLF#)upG+zMoScePnzt~g6zaPsG$&@tz;530-}u~sLFL2qi`+|imoaG)Hk!9 z;1OkmS|Ft--U2O!k4;s5z6c`C=SZL+>U)C6HOOI9Kk6STR-L&I?0{W#myMttG82bz zxO-4Nd%0*Kq8*pYaREG=K0Jv+=u3F47+@)sXeDzLg1#NfpE4vPu?&*A!*Dwf z$xzAwnR`ETU7=O{SOxq$U7p8s1Fg?IAr1;DB88$sq4>A0KunV%90wZC%LG$U)454M zD_E1UKh#zoAqVOv%BLGeA~aV6`Xy^;^K@aAz(X8qhgI zB-0SK$~qrw0x=RHB@F3^IHK_H59XeXC?4f3tY1_8-~Eo7scut{D$1$<)>zTvvx zX{9x2p{JU%#OUucP;Wz&YX*@(!(E1o1F+XOdzw(3&({&gVVfA}KyI#2`WZuR&UyoG zvwG=NAV5ETf)yjhLnppZpiX*g{PLe7^7(`G*e zy8CIN4z#)P9U=N6gsh+Q2XYA*(@#?fS%ToePVjS`2*42z68iG<=^50e{9HGPHYr9J zLAnBqt$~pCIzlvb8b6J`0vr@_9pbElkWxCv{}v52IQPwJpmfb4oG0`nA#d~rko2Vx zry4@kbeJl7+CWE>hSg~GYLYzG`56Gx%7=*aSofi>OAKEF9MO4lmy_%z(FQ3otb!mO zs}dGV;X{OH(#zkDY@5C!)F0Hvm7N*kgD&Rdd=LZDJpAw<%Wd=@Hj`4J#xVTbU> zT^mv7I&{+j7+*_0!JvST;|Xv~e1#MVJApk8U0VT=lIsaUn?TnZx(Xp42*d{BTv-fo z79J5=+{V|t>MBSngVCM>b-EBj3cZCCWuZ<(D!_dXlz`6MN;%+(!#vNRea13#2=@(| zU5ddARIs$|!a9e6@3X9pC!&zLr91^OC_F)0ABFt9j=3ZZdPtp~xDpCEYD+E?2A#c5 z`^P*11WuLemJ1-1vj2eCkgb$qDfMz#%7$X43@HmB)?}-75Jxow;#gCx)}-HkOgsdNNgzlo zAkuFA0)QlfAVErD!~lRajv$G_>cWTzAZQ3j+X#80JOo_!%ppFMg0hIf3CCkca+x1+ zn3g9qz!c=MBc;p_wyXf6>qj0Q%O#}twUn^ai{~+lWrA9}dA(kS>vvC-RuD#yF%}h% zUct>9wmCV$=&<JsD17B>8cV^v)a}m2}Kj$q;`#{`~j1 zFbXN(ec)ZFX+qy<$w<}Yr;YJpoCi}!(V|=8ccMm7_uznYJ?Ya8&b`Z*2&Pn-48_#I zAJ5-ocea(B*y)blx-3#VJg>@&ag9Kj|0u9!SXB=x#9X3|#_yP>n4bNG0ik}OSxaYc z-%lAX?x>m6)T8w}y0Z!EY46T>SonmDTW!6fnKbkz^r8i`%Gd9q@ zujW)|QEk!lv8fS76KZqd$Yd`g<+;feH?@PTt6N>@et^_Q;C=0V$4Hr%`e{Y*i+Gfg zRKSSv9KeWMOwRs7-OvZJy#(*^y;UMJd*ikm1-Ewp>}<}JeY?AZabga!Wdv8By2^&E zwG3YnNNOOgpIkp!Y{7Fm?4<`SuFgRR6>1+g4WpfRH9OlnyQC_RoBFsTS?7bx8XjxN zyQEty)@_Y8{jK64^?G1yk^&xhX|>gmi>A5v8L!3dzR#pe#fisuKi_h^72B&)+Sz}Q zJp8r&*;!gw_3@IHo5QuAWmA*fRE7CZ2d)&JmP4vb6B36_q3KMHiN2N{Abo3ItToH5 z;dgM{jZ?34+?JOuuMW`KHCR*uqgUZoxhR`yRuRIq?sHj*9?oO4vVFX<^&JW#v{da> z9U3#+E`K00Ala2XiiiD!_ya5eJl1ri#1ze>7vi-(DdRm{jly;tP!VJw8)}BzSl{lj zZF^TkJ?aml5htc;PA21Z->K}Zq=AAFtX{Mq_xVN&_Qp|#J~diru2ha|i+?%fs@?Db z;A%a>)eWru-EP(?BPZjqR+H-N!!`kg59<>{YnrmP=R$481%Ym!Gvfo{yXywlkFC#G zt}!((^&L41#P64Bvh=sE<3GM=f&rfHpp8=Aw>1spKm2?JS>dyzJs(FjVdNw0? zE#z9K9&qh8N0a&5$UZ-KyY89nPkOAOV1F_EGaHTw?b9P2zyNb}RSsZxWdxUc^8AjZ zHQ#mT(cUB_nmbXjaISI3kOnb?X{=gpv*k<}b8b_1MZtBkwnFTkBi_p*Nmo*6@(xB} zDHy6HaMqi>@xUS2FB!%O(@MnfU{F=l%7eVgYcXG+wUrUwzBRRB3nf2n+vq-h$i1cj zV=c2OH}vRf3}?J{4p9NdD`{`E(0cdT+@JId&rb?VZ7TYG_{9!v-iM)JVHzB`)t05h zR-3Jj%0Il+MK?Zs3l$YAAM*CfYX{)XbT6Wi=UL`%uf?`w<7OHo-1|p>u;P5xeRRf5 zIrd75KA^nAqwS^>byl+pq87L~yw@-r63o5)Sk6Q+&COj9z5Z3#>)jTs9h?C z#}zf=vP)L|I#9M3)L;eGq;UfZDffV(MWbaOxORBqj+)Z!azs}vVMm^=yaTPI?i@wP zHQXDEof#9BZI1W*Z6?Hq@r>NH4RDx|R3d)Y6`^&<8p^V8&RbLe@VUhBKHyVkwg_!k z`|3u$uw~80tlgF$f1}!lj4U|~7;%$($j~}t|2?|C>ZOQjPYOZ<&S``VGXV`T0}}I>_bs|Tw87f!6@XvB5anS|42q4GlfovxMn;lDpC5`N&g_^$-vT}GiKrDQx~<+(icu=>p=s8`axQfl zN)85=f5`p9Xdm|{zWCZ^irNSaS6+EKfJQw0Vw{@vzO#Rdr@!;p&+l!?h#hF913M@+ zxQEhLdsZjJ9?lzA?3~D*7aCfS`>bHJy`Uf&QKA-HsQH6fDa6h^?X&%E`CEhu7+`&g z2P=wK-M&qB`4u$E1D)K1cDVW+)QRF+W?|30uEC7UXgS!2-zo9SeZp{_#3gpym?5lh zft}aW7O?KOM}$^%D9e0jSC^TP>k8<#q89_J$+D86mn?PMx{~QP@?TzFu?*LQ~#r za0jrGlP2W)V6$6QI+<5cHYjD)Fxhp5{lpFQ2g*6+Z79-J*C%nEg)LQhi+FBVRr3?1 z=8rolq}Z@W;X7S-G^VC;ECNtGpi@kicWA^-+tF<;>5f1;Joxtn@9y>ii=uw$&C49 z9y^D3;&wEu{%>odZN<56U3SIZ^ZvP7?cMwFc@5dW_tosCZd}T)HkHh?uxucILfHc{ zVO*+53_S`=*PT7++~)3J6x!OpCuS$BG@Z4RHQs*P9Xn4=JT`3V!4z1U0KE~T5nJP3 z=y+VpSTEys;F$lf=dzbQY#_(B`TY**uj=e;8`kdLJi;rQ97N}Ouva0f zi|s7@v?7uBXum=JjbG1eRi{q6a_iFLrq-QEZ^~r8%4iUeC2ai7L%cz3b;kJh=n-dn>49v?bN1KzG2~y;n!ri! zaM`@jg7Et?u^AOPw`^v>{&H~!FnhbRv*-^}!-A zmv1zCR7Qj}>vH9RpHxuWPay>n0#E^I9^NP`%NAL#zcabNggG@;?Rg+o;e zHKR8D6db!=QGhqSDJ+36DE{!aP&Jf1{!&M`(2r}D4gH#}v?fZ%c0~Y%)NFr{exi$J z7LUBvf}`x8*9XwoIl+5AM{`a;B4&3E-d_f~-5)mSLhPyElqa z4r~r#gH*H*wcF=~*ab61mM4jAU-Jw*^5{iItta0Xo(DTFm>E{mbltwTed*nucc0P` zJ>j7r72RtN#S}u^+F9&;l9O*47PmFE;_%-*N+}UNRJ~d|54AX@t~^OY%Jbdgzsgfv z-k9cu?*H7_eg|o5Pq-)`_lE&l`m!55BXg6`u)%9Rmu_}Ey!E$??GpGK6@9L}Z<)Sp zR6m+*4OvtT8{6{Da#TuNO(HVyOPp)wu_B?+9cR?2W!8ddVmWB3*}MO%xF)m5sbdpf591RZ7V*XpVpkiDx9N>GNSo_E(?e_-zXi+^UhOdh z$}vIwbD6yeqcOC{}yaE@fx)G^8zGM zyvAbCwgTA}3Mtw_?;zk9S)SteC4qkakH{cvS}K2Yv+e&OH~*J}`tL=?Ho{7ni_Q<# z1YS>`c#ZP613(%aPCf*kd9je<4A|fT7hp@V68_sU{Wm9bb1r_hBN-iD1p~?!VI39d zvjk(*QX$3YzegoxLAU(xfzFO%^%c4p4RII~YB28vK~>0$fccG!Jn`LHIG|q;f&=;r z`o8!{^rd9k8PN0YisH4o6CF;W1hQRy@w{B!!tjJTNLOMIqh>)Uu~N)6d8ZGLRo}*V@SHpGM6k7|V0*eIxi30{%H};$!1Jemit0c$@8yZu!soTLC#?!4L!Fip z*bUG#?%fQeaucR$8S${kB-odQwc+aWtAAce#f-|f7CxWK>3KZqcl*E8+RL51{-P?p zQ)Ib)iMcCm5q`Du+les=3tOgKo>ccKy_xG4xstKV3-$t~Re&*hWUdqZF%TOf^abZT zdgVa!6K(*%3gR0W0Xa~x?E_zqKiWR*;3MYxebra!@CB0&10nVu2Y2iM|Gr{ri37Oi50xyGKvqnL}{#K(agvn8Pb%Il$1H^^N}H8OtOm2+r1C#6y)Q3R8*4 zhJMY=@;FFJ7^`8ObyL5?K#ScmxQqP7s2K^lZg@h?ZaF{-`}OPdh?RTpyhP~d%dZ0R zA4KuNjbeCvMfYUd#5X+b%KN0@jCCs|CeDL`4HellxlNm1^7o7{5u?4l07D%SFCClk zYmlOu{WY_TLZoOCzKw+P_wHg1)%oI1pw|kf$RWbC(7g0+ zJx|}puMHB76|&7IURJ`6V^$73Xz)K zs>)k<2HMFYPr#R38nf_5+diZ9ySWjh(>WXJf$0k+fR%tcVIg+%gv=T31CI-lg?;;6 zods|^RPO3J(92iK5nHN8cQntlx45eJ#Pv7xDzs6`8=&ZY5g5)}J6&ee&dCVQX(ODE zOagSf{3Q)zO?tqa%k1K9^j{ZV4)rO;0f%wEG7U7Lu_Qg9-+=-}DgN$(K7Y*$+0H0q^^S_;Z@m1bryL8# zsk#doc9o?6m?^{_DU(WFA&MWbA{fGzM7isBKwCY|#Fejhm{Lz>$Q{fXO4tD1jDa#1 zt+{R%8k>#qgxFi$^TeU+`?C}$iXR-ifbl;9#S|>zEoQn&(noM(Z-zJYu5!=JA{c5x zTfMOjw$3(U&1F&ieAuQN5@0>@Laqi(lU?68oyGWv+~Tf04bA^wuW#RzC+5JZh^V(K zFi>}E0&xc2I1_flf0jMPk(E#L)ntl&Rk-S zEgU?3h!8G{M~FcCu9SwG4>vFzQxRHD{f9thxYK?94G0@4uF=n!i3<bkRFZK&`PJ#^$Ry-0bBaJNrRVUc3F!~|vk5s2Km5}_Q zPw6u3DK(YA@Qy{VV`{zHF`i|8l@ZshFT1U=}fRe7j7)4bJ@ z8TTtV{D&|+1lOg}nF#s??1#X1>mSY_eUkfAZfT(Gz(x^f)KVR)bwlo~6_w2B`4Q_>c{?2g3vVaFy>n^-|fEcQGcyCU< zxauNBsKyliXK2~9`JOWLfdVProqnYJq~K$nVP{W6BMK?~2{;RgIwr;*e$llJJ5o~G z8D!cw@3a`$+a)M@pcLw^Jru`3Q@}UR%fFK1wWwu(=kVS-DE*#epfA{1&nJ50h^*ZF z#D&o$A?Q$l%H)BTC^T#mMq&%<$gEPT$4vfMdx*cU@BLWF^_ZAz&%!eaF4aJ0O1!il zTI6EmS!eK?*xG zI*eIdd@u!~#8`a>V9#D%m%b=K>C=j_uI~FI)gl?d$8pOr;82Wi^jhX? z4cANB4}6A$+5C|>+<*y+ZbynfNX07R8+o{S$x|1?bU{LqMex|n}doNV|# zpq!A(xq$t*(G&8e^HZlL_V;BJH-+~5-5QRW3C{h58*Y0OgC znKGjcP#j51%2{aN773mxKrTYqe~90ql)WItUb5n?*cs&6(uof`h4KFek(?4B(kTV} zS06A|*Ws2aqvc+yF;$GfxLAj?1`yHPOcgj%*17vY$QSw2{=-6x5%f9&1Z`f-R9Oj& z5zYam&3nYy_?^%&<5q_NxHQF5(FXm2qSAKezDIjAikOutsgcC z&nE>!=7_OB&YfD`$8|zYo4EA{ta1rcWj-j108Za&(yccFX`~}=0|>GSY`pqWhhP-baStuuIux- zau7;Z?v}7Waug4FV#*~zNV2fM5`?HJ9|kxn!v2yFqMraEslwDL2(eT?g5uPPNYP4A zrT&`gZs`e7#}=OZBC0~VE|a3|f+)k%;9T=v1jVbb`H>Ae0I&>Bpt`yGI{f{d zg~|qy`f6r7psp)LTMdiObO1#)(wSReA6Wh32S72FqRoXU^P?d3ywnj}`bF6ODtm@e z>T0TDuALzzw|`ooor~ffzaE9!+D2fFVXvE2B!NPdSJ1b>u|;L?Zxo=mRLu1mByX>y zibB5KWopHMuxa1LPGC28=ifv2~2V zibD~W&6h+Wjfe~xPUSx+$yMXlqEv_quBa2k3~VQg!7koocp3#b z3yHaELSp)+fSA!wdx{30^RsyL9T}AIH$WXc##v0vbuPp-wg;HVPWsuaAZCcpI}1=| zMiO&s`@t%~VANt1v}035KGZiqjUYsm&W58E+~RXqn86PDh8Dq)rReC_{U~Aol|Yr0 z`HHhqNY@>vTO`o`=UAB0&}2)GT@ECE>NyvcIL$b7ZWF&k5 z89$8|ZkH#}xfJoz9#Q0rqP2n^3mw8oA7wzsu{imvC}#(+z=&Io`qJ~BDgf>(MH{>U zWbM|!jKDF@DVlgMQtQ6Xwu>;b6w!sH2b%4yQ=Q1KP+F#avt-g=Di+ zW$fsejSi`%Gj^l!Lom^#D}!kw0kq4+%mG^v`8SBkTf)&`OTW?RX zM?o@6;Rh@m_(FjB~RN8mE)=Gh!WfP{*d2?fKx_?o$fHufS$5< zCxqV=rP{+vB6|QaA3J(0RK*+5^`L<~)LGlyXRtp;pP#&r(t7O!Hr&#@>K912wg?@XhjM&1Vm7LFjPFzQ{1;M#X~_>Jp`!CM=>ocZdTO=`As=__-u$gltd+W6rcD=-9EF-l&0LboT~^3mA3*y74h%PR$kjv6FUFh z8d(G}&3xHBw7}Z;&wqD1EM!j*7KJsVfNU=kP_FWiSM$cLnGepXL?|3dDCT z*z-Z_P9VChXjv1bhnCSN9Car-56Pf4-RGxKI?idq%UmomK;N&_FGatYop;=+>))+G zjWJE(oDvFKd*$bkt_?%c=<~h{@aX&7<%PwMMo}(kZ`4q&Vtg}-QQG?=u^?1aTnv9k z90WgO?>+}LCtiR*mxH(WZ^GEmH66ZUzR%GQA@DgYYoDL^Kco^ z_6-PhFb_r1sVe3IjBeE6)KkqseHIFR1(!uMd|m;4!K0&;S5a%xmvZ(Lw4JWT&j!Qg zUa%;Hkzdu0zO;mke$$mss~0tg|Gy1M(h$G96NDh|>7Yw7{gy4m9Y$9_DXY7UPyy-B zSKY*!0Ej$H{wCV_3X;E<8oWbsm`fB_<{kyz?JT_pKoWA|cUJ+*r*?Xykk2PiHEAoL z^C8Q*r=?NIEt{jE!)jb>^!f2CCEzPEF9kdp+1!RkVH8)Tz38jYtKa3Y(tgfI-`5GN zgQ9Qdwcr=d4Lgm#_w%KIJ{)|fIlJmVT-(carT01e-}Y1Q1fu@WGG7O{yhC@(Zcx1s z(|&?fG3TXJ)JI|#sMDUC*hDIX4WhrgJVAa3rD}_9uHzf}oxsHi(9*kmCHhi-tKD~& z-9p!)Xw)6vzW^5kGc;EfCnoH%YI8tY9T7Z!Y;h-(3@a-!w24cv@v4j>r z*4d>1E0LOOyc!6YxhfrHp{~%FLzRIE$rs>m>*Jg+f4JfYD=YoY1uVqZQcwXci@xEG zLscC~a6&2Vi=F6_0ZBhhGd2vF-297W;Z|$gBtkC53;UJWXFLlt{uGj{@`CG!Ev`kn>J2rYvlIg<4)3$$fv zF%yK|MmGq_Fyk-nN(A6Iq$>9Q;=*8h8xT`Bqn(S$|{|?vFVV`UL`=se1Pf=mAok43T65JBZhh!|knhxf}=J0%7 z&{pt-2qolaE*lC(KZh1^p2=fz;rU^~d~Rd7!bWgtYxP?Ym02n*AS;vsAuXGA7Ney; zSdtZB;@;{SIiM`DZ@Al#%*$>y6y;kcLkd>Z%gP{eJ5BFW40krvH2=^Ttz{*Dyge>N2!bCPqvrk(uE{8(o>j?_w zkl!P3!1Vs^_x{u0w}F<+c^D2##Y|>z2C5Rw=C8je#K5HH$1vgB(veGb0R~FRh&M+I z+1in@FsZptz8Wqqbmne>QVNz97W1%;Pz2NNMQEXK=?tx8(31PkHKI~O3Zo+OtNlWNCudqL%7BnfNQtLbto~-)JZK1U^&h!Rspq_)e~5jz(zk*y+)18 zvU3PWf@Xm=Jd74{UdzL-gbfjW0L05Tx012Y3pg)^$==@e1T5Tb{ZIh{W6O6#I4rai z*26=9j3E!}4appo24vcdl!sGTTfj;>%LW40$6x4gk!;TA2AODL0MfM_AD&x z@n${>nQKqRE`^dPa6p8A?>zwvk4S!i$=;S(L%4hxtt%J=05X~qL~QkJ)X7*{9RPH0 zB8F%H>B!atI#vjstw19?Uc!~#YlueR(TRNe0YGO7Lgy`{vr-!JV@t-ahjeBX0XpB` z5sdhneF4{%gNJa)xd>E3tiC^>vp|Aq^a9dRpn=KnO=~hs64DV#2XxLNbT&bLm>EDl zdxmg5kj_}+YLt%VB@wzxyCgbBt6AKDQXr+QK&iXFAks?H>Vi%2tZ@~nD{?X$-eI6-bOZ`oM=*lN61;rgq9|!f zvzUH2)Pdo>p@E%%n;Xe2Em&8)0jLXEr%Qy>t^q?Iw3M@?1TmlAIJ=)nqadl<48M4= z!DCw;3q)5Q!fl1)#?Ayo6h-rtgxr&wO<==@rUUAlyMfGtXU?wPTng%vUyGrVE`x#N zx}g_Z%vqR+MRH(}Crih3u&y))^wr_U z=pLHIY(EF(jG`%_rOqIE*l-T0;Z=qL)DkBznu4yXrm7Cq^}>vDHFOb3`u^tm65zy7 zUX%d)Noot{1DuBoC}r~@!|x6Dpg3~&9y%UTEQNJO zpc8TE21^02-VxrxAxmR#30g+&GUk#wbRJp!Atsq%Kj|a9e)NzKE~`?gcQ^cSrH* z<~)V%un&s90TgIXl(M;yTcJFlIx2Dj0328}Q&~W2)(m<)JZW*W)(_Ou^=K5wAdl8M zr3AE2Hal7HMo05@f9uLzK5t$ep>OK*cZ*c>XThDBoG&d>^jb>h8g{qGR5r(4`k0L@`id_IU~#Q1r@$MPbbD#q|$Z(>C%o` zgGOe@8Z!&IK4~RQqRzD$$s0(+JxM3B=MamzPe(}>AIXiWWkS9S8M(>X}a zCv|-YB}@)9FrJ2t9qdrcz9u1V{?mNjA#JA0gQ8LswSectFM}u+>`Olo^mjM#*Q=kEke zou&qk&!iUNOg|8c*I9F%$*l3o!_AXN-;tlAT#fTf_?c#2a13469Af#oW4%QQx7~U6 zaC6U8Xko+7gNL(HdnY@K^~lf0DhQK#WIVg&g{v%&)z+)a>%GyUtvdSr#V5$XI~~Y? zmM3Mn!bUc5ESVs?i{3HvE1Rmc`_mmiO_g>p@3C&k&*Ycy+zJeaS@T!$;*E$vZgh1DvF(LwycZ-b}q#Zht}1 zUaHL~KBx8y@60{e&P!K;2?ssnj1b$kW%ZC~DTiZWo|tG!a>=Ql;&I5WeHO0NP*--@ zRLjIy=8Rn}_Ul37HPH&(LWXfgS-zZfF2(Xh@exT@C8>eo(XC{L<&5>lggI%M4HR@h zHl=)W0h?ARn{%kvZ)3ZTVbyJjJ>vLU@!U`Ag#9>_r!=EgZ*oB|sN(s!pzMV<*^*8MkB^YT!1h9Ziqw4(^C-H2eZ8EN7AJ#9+`VI@W-DRLqT>&pn4J=FYwf+l zD~cyip2KyQe5>3plY3m4_JxoFS5q}(^Pz9kkftN;wNIBd1JMc9WC^otm&qa`X;w81 z+-MbUz~i~ekKkJ9`&Y+xnb8hu#K{wD?ttNZi#H9hwo;f@%n`+JhoggwGSr-XIfhd< zl2r2hWcT|HB=z?1w|3=|TPRp*$hf9EU|icynMf+lKn@w2GA@(v--LtZ?E_$ugLd~6 zhV$~Fy%_!y*p3ms|ka=ELhM~|a$p+^mR(%088N#yJA3Zm-cefdQV$^x zLzKByE|$=p0?pe`xS16aUCWUZwQyLnJO(v% z)r{G+f*$^n*Y8w6t}Vo#0a=XbM)x}~G__C)iO2nV?Lb#ql4{r?dKl8aFkeE-D-*>a z26v8AIUH)>6N^{JeDhg89_C5EHVV_mppOlH1L)}FA_m0ecJyqb>$Z+}#W5yZSk-}T zVS{~(de$e=BQYFN$d;K8U@I19MInU^_uRNNd;4WZp&~IE&arM*H~_f@kjz69r^TQ8 ze^Rq@mmpGu-3P(jcCF6bfa)xpsgTjVwaux#(aN~l#2OgwUG%&M*bc&q;>jl`>Wp~< zEtyWK0p@S(GgBwW$J2M)P)P8$80Q7rple*BE@p=C-X*+WCd5WgF(bt-gJ@8!oO6?1 ztQ$vSwj$Rzz$x&1C2-Cg?`co>*{w%SFqN8q9SI zHXe)f$i%B<{ho1Y#Vw1G(J2?%hn`nfrzmF``3<+cCl%i*-KP^By8HJ70?CG-W*smr zfyeP!UHwXZOPMAxRy)r><^L&LmTrF5d3?_O5>dPaoWKY&x7~Y$*d#-v*W$>r-IvhS z^3VTQ(ncn`+JD#ASj_+4B8rcM^H)Lc!A_)Hvqae5tXAX|B>CsncOkY({38)p*nVpK zObSD)8PjC`Gk+BoVh=eBboewmm}CK71)SNMYkh)oCL6iS;VgJ9NP>9NHH+>x`$N|y zGS8rQe(!p=^M7JI@9NFfZ8gUqw{`l_Y=3ZE6dpg#j zk-lMrDJ-p|kg;xZc+2Ryo;#eNskq*Q`Jg2+XO*_0_HebKU6^*I zcDnY!#{M@Qa|1e~DEHX&J=!sDEp4ND&3Y}(ehUkB7Z$Lxp<_BxsNo!>VwIXY$5!o5>lGCuqm>zbT8Ioj8po||rC@q`c(#BIKuG~QhlM|SA{;*dLb z^IqHzYH%vBTVaGotir|fKCqK6z?i7FLs4Tuk`4bDnbEybhxauvr~^T zF)-N1;8nlWPVJLPyFBT^Wp}{TAwkxYYn~+C+>FQR?R(xjb!Rj)lQA_gSU@PaM60O( z^yND24bBdlNIjU!{pLJu>2B9P@+9}i?c7>5FEcoi<>z)CPTWKxO}?xsBF7%9x#T3< zk{_tp32lX+5B6;}at}#1qcAn3F^L-K_;Kx}l)vBaAX7*zg3QOtuFaH~3!n#_e?JX{JW@=IRaN5h6jnM51vX-q$68Pn*y%TRai*ba2RHJT}5g2R= zlCQV1kZUW1&WLDd&si?_15SAb*@fweA~cSOB<`g!t@@<@$1i7(!sh-{wnm8ESd%RK z`u=6)=y){r8T^FoD6Ls^_I#pD*L}xxsUEiTAlLjj~vd&NXA#P9ia^O4^X=?m1?hI+Ntz%7vVk>Eq=m_nT zpLaWuWy&lJll+n&**5vRy0cTYLC z2*tlw!CF|y@Nc(t4RcBQZ-=6RkonsI{Wm9r_zr8B#U@CBUM{4V4n4QvVvZY_OYh(u zl7H7nr5&a0Clp*T8*?tbtliW-W{J4XOCNR2u~UA4IW?oAm!V;>W95SNX9qfWz^=vQ+t_LW9vOzzVN_ADC$&!D~75e~n9xI@OchT;00fc@DXbT+TyGlnx!_I9Gn zg){@s?*+NtwCq{*)^5kR-bF{35S{Wv9XM zObS2cx{}(2;k1N|XXUabW~DGbj^utdo!al&k-Y(l-OH0s_CMlHC01z9GH;{9JB0p; zBvptx&G({B_VX-yy|w89-*GQhvaHFZec^bhtla#ij_BnaZy;4E14T z!`s5Hn#B<~<^P~OR3x{@kYU1YZw|DuK-ir6^5cDR=FA7GOY0*pdP21e^4NEViMghG zG|gUWB$ZQ4+J5IsVCYbbYTOjBHxg^_Mo6U);IR#Tb{!DqokV`$b-%n=Mn*^#1 ze=Et;+ub@b8eGKOB28y|U>jsoqUj)j7?5=JAOl+XjGlE==d_Qc&79gro?x5t)M3s zxsl3jbIi1=74hk!`1RMbFAD3xap3X_F#m64%^@1O-0f{&(OI@hdKNt~>Bz9{OBLDc z-pg}mL$7$q0nGXrVXkR< zM%v-_z=)|S$iT&qPO6hxTDGmnw3)FE_w{+HbkT`u zm=PlC1y`Cxk;U+)<#Hn*-*wT(xY8A)GP3lh<4+herkt@tIJdLp-?-t5cB*WhU+57{{-ce-EQ-zho_pdc2Y`?NHPaYv`oZ{V9 zoGddjgU>NPxjud)l6|0kyo+?_bGbsg>gVH@l>8v^FTFj_R4hCvR?W46865nKd7_kp zD85HTOhOc&F5!UuonP>zh-uP$(rN*8Nc`OS4Cf7${D=E@r1EIjWmh^Jv80gvXVO?L zxN(B<+$~;gK@2#iYH@GExkmrv%`O=0Ekx!SexE|$@^AitS8p;`Yt5vGBv+4q zvEw9~=2jHnLrkVejNO7;^ZjF+bwIfx^r8Hl1N5(bL=52=vMiWi%yf&xe{DVF2r?kl z__u{FbHP!DX|-1Kh1g8%?6&nXVT0?%T&4zVsdLSMcvh zC2Ap8Ktgn{fr9Wa zZC$3$+_Gvn!olQT{|M433qP93zfhw3F>p3jlJxgc$aP`6ZXH-jpB2`S1^qAodf0f! z&%*w_LhLDji#F~-hH9rz9!yvYQU-e@`U{0zulEbn20NMusaF z%fEwIAMtFb41{T%(WjrLx&~BtAJC@vmMrRfV#8l1Sp|2@wjlcKjoM`pEk_J{+WM=j zk=y2o+){IGlz&^TfLzvn)QY;2Oq27~Gfp5~vmF*0 zV2(#M9Ypdqi}six*Jn1eIpO1NZ2<@if#fR#u$S&z2DTg>w2`Mdl)&HXH&EuhrzQAEB$&y553t5w7 z%UXjL`xdf?v1dzVtC3wRvM<>q`-sM%$WHd1i4odWLlQH#@ZS6A`+dLf=Y4;FzW+SK zx#ynko_p@O_qq2z9`w5g{&%H8A)8z?@nH$Zi&pMS`aatI77E&vHCe9*6vC@wuX`o2 z{k!Jx-^~b*Xe27-pRmrenH-#y6K}DnCTMpiOI|-};pqKQZui6(bLLZI;A3Ur0!u*0@ z=k+9A!u&?+%6VOvswH2kZX7(wR5@ULx;H596E$*fOpPWQ*-@Ql+ecN_@XRze`{yga zmbI@VAE?T1I->mXI!uEgEHGM^v7@?e3?m^yC*e7h296`|iG3|DRI^q2snf1*vf2)y(t_ z=>kd2GR^MZZe%R!D@<3OQJXEl#n4#vGXQ@oIErAN-jD1@NgA4&F82NDQ|`ClelEpK zwBLO0dx{7{WxDDKJwR9B|A~F%Frd5OHf||UeXD$63%5V*RI|H^4zSe9E$Gw}-Cqzd z5g=}ICqD^Nabq(Ku#H{&)aEVf5jsB6C$0l%@)xASkkf3iduAxLiiw`x>xr)Xy8}Xoc$O!5AV_8X_w$e|6A_2og`Z<;6YW-X#;;QYqf*)jRwhtV^Y6O%DZ0+9e;CLsrl!`s>eyB zzvr^MAO<-OS*QJUIP~t|nI6o*!3k{(02%>u#)b|96{&*l`BzH+G9a z!_OX`T*+>Gu^+(=+_Mi})dZ(K@oFmEJ=a)je;c~1n%MEZ2(sgIjgnnlvqgY}G=LoOG#9r^bv8hfSEcs9h)Us5rG0 z7K$K~ldG718gFCijZdZs;&xLmIq4?Y(7Cz(*;kbRzJ57V>mDdQUYtQ$bn~kr#w96& z>v-_fRaOs}f2mqZtx!kqPlIjZ`)#)u9KknR@qMV3(6RF793MaBm8q6yVI;?0`h}{D zT-8Keu2Xm?`E%mLe|+Wieh$bj=?L&UA+y^0qUEhSW}{2)7e_=)T-zkKzN=R?6FJSN zeXY)Kh$BhqWzM~fu*ze4E3jZ*SJmwPD+DkCDP%RcIg-m^mbBPF+(=l?&>>y_Gd1@N zIaqtrF&yz6qw{;QE@9+aGZ*sI#?|H^+D#j!?+03|VmuOSL4OSMTbWL=ny<|$ipK3E zBP%w=F?7g|KWBA`N-l1jX`4k}@~`!}Ya5N5`tsbR<5k-VzbP%>I>g9?WHYLor|7Jv z^}Evv$f5_;{eQP>U}L(9eW~#NGZU&mf2kVoY^1I>1x>FNEx2w}gBB02+wMG&z2jTf zWL3^fUVkdV&Gv43(RTah`eM<}RwpK^!d7DPj6CnFl}~W(`MXObqKv)KUTjp9f;Cq$ z$;oXhEZEvJ^ZbPCp)&Z^=skjw@k3sU2;(wpX>G1MBUm%-njjXJtwv4oShwv~PZEZ^jD`Qq} z{pHrZwLJ@N82$~iyfv`2w!K(E6Ii*hdx2i=g~DB5I(n|zfonGuX}tXh3Su}_h~5k1 zb*|1XY#)DfE7G^rvihU}9DEKatortDHG}=gM%7Cnm|F{csE&ie%VH6TIv1GH5}CUq zCut+LI1bXiNl#=QX{<*G+4;!e8Wc=51xFwS?B8~Es4ZwRLQ8ZJW}AkEp+vMMy9S<`nLSaN;?TJ` zI}eY56o>DAU+CUKkM}+c-IqQzX|^y3ua16-9x8AFTLdC z0*&6>o>0Y2LpWC;xo;F<%D;QHmWW(#9oT0v8dreMhUk%wXaqfJzq$fFR*9?T2;&(@ z{o22LexUgqu)xKLcj57fFi~zu)|tpT^B&0lEwmb4h>&qWz6{ZPX@m<{=FPNwsgMPr zu2%4$iKc^H)w*Fp#Bq)4@?v9zrRnbX643NwH~Za5Yz2wOHSi5ZI(9;!9@W>~oBX80 zjynU>)%d^N{m@{p%I?j9PN@mwSbtlyIxdGZ^(LiZx=^TGo{PwY?-n<4%yYYGWRh8M zlKbDmj-IsL9R%h&m#c^&Za;23H1c)2LVF52SLmL9ZXv)Y_UV^L;xsuJQ1#E{vOGKW4aj#JlBsS404XikrRe#0G)e0MP} zu?0E@l~VM(f%lj@KOR18F|PW@iP{I@^fr}cz}KMoh=or)uYOEj97M-SCBq-Iub{as zJ@yXA6}??f-x*=|q2jRAks0+q2RKE9HH@wGLOSRx8ptWCXmL%+{N~cx-~aA(j&u<~ zTqMod;c4V#(w;K^2hWY4vcsi}<`cWOBXAhKF#bjvFNhFG;Nj5O<@73A5aFb+Ba*0? zW{e(R7}7iWc?9aO7;TT}#KUVVOEod$s?6Mj2jXDTmxqPz7ktL=x&W8b;{xze2Y&s4g zY$Be2krHGCbo{#GFX_Me0_jj>L*dT{=EPbldThF0^?_YBO5YAaIAbbHYxJ2%bz6-E zf`a}%DHqu+ZbSIl-LpngSDw;qgqg-3li(@3G8n*yPqz-AcYV^Kg?U|P2n@DlXn>1ckrLg&F>LPz6HHUY0P|C*)A6x6@a9X zp*@tk$5oOZJ0a4W(<7-4!04sjyJobGsAQmDY7Z)KmjEQbg?$f8o|! z#Loa7#p2ZN=^Eqq5}P9yM*1_T4$C9}Z)SO_0Dh?A_>IAJACF7aR*tw?LPAlF?;%{x zyG0oYbjdlP2(1glss&3MGMH@8AANnI@{`#3*?ZQR0N(77CI>4F8Fsa*hq37uS2Lr- zARz|y2!yLio?m7Mm!7EW7Uk-~g~+tC5eOm7!>Jn2_4NYr=N%^-*!M`9fHL&kXk=LX z&aUJM)H4c}h_rKr{uo1?xP)->~P)wD3aqT%^em<^)Ipj5D z?&H`F;mx*kE2pNe7x>2FrNYcEvgyJZQ`+IZhyaulK^G%58@s#Q6&#$thQ5|U&M%;A z-F1M(M#Cu=Q4BC;OrzdC1>j$L!f_I#TTuV}-ho#{ndptt{}rMyw3qTAysoh(z$~B z&l2{Cr&^h}&!;E?7<1%#gdAUgh5lslVgae(=lB~Tmsjv;StwN>5@6CuGvJ1;rSS#< zm%1Sc$La0D7v8E(<>dOdU3s~Y+V1&I8PL1@sI>RnU=;g6JirAiTio1lyqmA&Up;(+L(mBam4k8i@jxS9{$qgMzfL z2^K>?VS$Y7S@5K?C{3a&*bqzD*wy$?gNQT9J$@x$Bug=pps%*7GY#-}k6-E~e@T98b5PQ@;->Ffb^TwCjbnMpA z$O@>tRFV-w*Z8}x73Eye5BkzH=ZXW!xqUQ8BIF$Eto2BjT}GC;Or3Q4*<*{p;lG7p zmHpD9;7Mh%&$(MZP$hCiZtTmchp~6zHkwf1w}`7U#3dx3a!2DAeNNb1((eghYd41- zQp-gP)|3iKPnf0zu@{sTcUv$YY?J^nH33swgN*hxn>{n`gK0}#9 zl}6)NYIfShvUHr$a`T@vU^A__K-UJ>r-&VXq%@3UITiIRLK2QWL#dOnpxIMQ%h>O( zRzZHrumxk#+BO7kalo!e)ptcl#X-xroD^{~%OIxN>U*y_l<<288kVB7@q&B(f-DL) zOZHkah~0&QeJF1q5|qB35ay9SP8?bfOMX(kzv_tbI+Aou>mj8sT5`A2ei@eg>d1u_ zNIhJH!_QC$5>C+m#tDZ%KU=`uy;TrVDrDA*ZiKN!jaCrR@bz$1bl$r;^SZL19Xg6} z$PF=-sgD2#Rr8zY?E)?rH_01}x^t$-un~vXkR9inY0wj>`W_oQUENaY9!VZ&N@=-v zw*tUIr=y{Xs9c1ES*1CCmdtfp*3}TvhogJVp~Fpd!!S&RRyiYZXJz}cuDN-R#XhAq zN@-mCzFbIM6Gr2I@3M>Ljwuc$Rdec8l9h(3tf))+FB1iM|%Jaz!Puz z!IKKjZal&)_$(|z<%_l~w*9R5)_JquB8cE=51&+0v~_WhgxD0#1(MB!cOLxFhGc8g zp!ZOX8HUIfJU86bh+OIM4%w#y!zVfs84cCQM~<85KE7e~7*t!&Uy6s-yfk1fs^r8E zN%1SM7voT`t;Dx(_CGoV!_YN2lz@p=2K)2O=gdXVNBG9(*M0+AhwcyAfwjlk)D~J+WO0t(i+n!SghKNRZ4vq}Q7!d>!NeQR|yF5?gmQSRcT5lcC%T>9OfT!pbE& zsyvM`5Zr`BVRyly5~C6Ce(xHQU@ri!^xgi1XcA4#chP?N#Liv#?*@RQC;zsuaMfB72GcLCn$o-5>|0$^(UJlN0v?GWY4apDSxQ!2Knf1nNbRF21|56T?2 z1fCpUAmE!{*@s6P*tsx1qC}Jd^8+KJn1(C*DRPuv)oZo^1ka z;-D<&Gf2X!ZxxhM*;I8Kg&LkY_8P);q7m3J>#DaO525VWwU!UVrPmYfHxLq%XL;n- zF3Tp^LRgz80xOea;MwkBeQGEtObt9I^rRjIlFh<37~LO~6N8I3p`s=c5OMq3BsDMATYj7^XfHER#q1P>l)NUVBFl?<7>Vqtk)oH z;1UAkByoLRyY0j324GqPY6y(2o{MHZw2IXO!uk~v7;6+4+j`_Et0%16cLsqSvgVRo zk7i(oJ+iC!6aqUa&ZWK{C(i5*>-L^NV04?D&g*F&%r_ydhaZ8__Hz2IXGSsKf_1xj z5ZK-f&gAvyz0AH4)^!AdQG0L}tQV7*{b1cLW(1a*75(Y%MDjzJ96Wc7gf4xp|AK~} z%7XDe*vWCy$i)J9XYRc@0n!&>o!4oz&y&07h2kr*6l<&xdeNOQ{y=P#;KbpNj=F*{d`;arSLblZO#hMezRv zeZ>d~F^YKFH>nTlvT)Sj=WLANM$7fGZM&F6eGcU|fWsGaq7p(^z|-tTl3>`eIXD75 z>`Fr@PYC$gzte6_@bgLU$8<=5Arue35EX0?QYY}JH8R4-CJ~dTthpkj^NEW_a%R^MZ*aB z8yMy0HyMC9p+P!Hc~0=YtTD5bQ1kfvBtAGokuN9E+S+-=)2it_K)Ls{8$3V!wKA`a zst(S-wM00IHqO5vXfId)C)+CvGIMK&)xq_De!ocd zc|z5rEWX}nt*E)@9&jdpxi;uonZw`u=jF@2NVO7sy>Cm$#%5rb&!{Xh1m2yA1X#Ju z5eSxURXBym&x@oWsl4bX7R&Gy>m#DF*n8({4}!&Of?%m1I=H|(MI?CJqi5!Hc;h83 z=ic0XpStw$1|8_zYNi@6m%3e-O-~dZuP&eM%6-$}ht*5MRvqS}d^6L~f!^|1HUvDI zO~{i&D!6j5Etmbz=_)P~e%xmrtbx2j{q*brmES_s0eDh9;N>PIu5-iN>l)6$E;CSG za2^z5UErIq(9Wol;Tfax?CC!nQ&U{&*ipWs9Q^|@%Ea3LLJ%I056=vbWsiRPHf0SF zL|t>MSYaUH?Hq$G7|VjoZ^$o2#oo)Rt(BFxEV47W;3^DRoJ)^~9hMOF9OQ56_`Zv&!YicFsEk&6`pNk?K2AXprhbZS$ zZr*P0@04u30!a>uehxPcFlP_~r=l$(f&7U3AQ0{D1-MK^h`mfKuUVB)v=rqjD(KuL z)*got6Y_SeaC1*pBCFgP3{Ujy^wJv8Bhl4g1fqWMjJAOE)V3iF%5xL18iiAemI2>2 zzJ9?cRGvKo3J1Cn&lhDAgEF~hUBfk4wshCEDagzfu|-b51SmJm-im`C#b;M^1NBV; z$NpM>&U$P>IM&jlq%I*m{{)B;Dl2;x+9vas@PdTt!t?doj*KH2*t5~HH&U$BCXT`G zKIaNA5DWe6o`SDEQ|-9?wL0L0yk&rp=*LTbk1Nk|0hAi_3y9)Kp9)bnU7|>T77cFT zeqA$Yf9?LH@+`a)rpCS$;<$aaCVHe3&-yH0TB;RMu?!I>l_=UA6Q1{meFZJ(0z-CM zUcvP6*i2d=H+_?YSl7mr2<5}BSnbxv&$mJ8MCc=!SczP7<2&I#Z73pZ8SW@VM7R75icfZ z5Z62Ixi4y*#szl`XWch>r(&;qWqp^KJ*0IXk5BAjuP&mn(>JjF=-LpXz0EaXyBZl} zJPBumXa*NCfHhH6fGTw|3B-6kd%GDIkLCNyG1y8spHj(Z`UfF)UmFtRz2@dR?%{5@ zcyW_JXM$;;D zuKYwuMN30c{&;-U7;qzR38%jcCW&Nqo&}{bl|;Ht0Y4@%*oQ7~S?_fz~|a_KMp zNxtXXgz?8UrtMX^*D5M&Z-;$L4aBb$7KA=^b#&x~QEqX0{mZy)Y{kbk!)HI&^(Nk( zxS<9LJ$v>+b6F9|2@2I71h$dCBXV6ER!p0WI@u$ULFHc%+28gV0;Jr+pvWvq@tvhAllOuN(oM`+LXfjGoD<;62YjG`7v^<1b6H(V3cZq z9SE0uT4F)T$=&_kDbe=72g?%3K5>!z{^Wd#+~SehMRRb6Xs6^B?tBq*AN3YV5+=JjkUIT#2sERbsTC0<=VLD{bq}oej*F071)1octBliaPJU73hiF}W z5KSMT=?smz%xD+u69#pJShNCbSSeLHH!cC3s|k-lL*()`{G(| z?>+!WCmO*yei7oB0vu5_qk5OGxmA2wCQe(o_K8F^7hSY(%A|S#^)qo10%-0-Bj7Bh zzSsMpy$12*UY2ym@a)6)ws06E&JbmeL+=Yur;OB{2A;+3yL_=K8f%w6;l%vs`HA^d z0{J79KAjp$Pd|oFeRtD{`{roqJ*TZdLZbI>&#Buty?Js7TH#xtCO|!sTi}&9n&;o2 ze*TcEq(>Kq6_C+j}pEpQoow;I13vnc)AjtoXmIHCbgm!9ragvw*$b}IdCddtPIQw2kt z-NqAvL!B={=@6?A)a_A;+vd=Dqp3{|YC|DX5OWbvor*nuAfK`#3}hP)r+`oKOUijk zrXQ`gsbKx>i<@Bx>v{Isq_A=|Z~Yl0#AyNvxdB4MHN^|JQ$wrb$iZD#SQ@hB?=|qX zg6V-2`UE5+F5zX)#a`WTn&rl6+zeYu&$B_+qRIeum_$+19swd+I{H&j&9Z`WtoLQc zV*@mB3EzKz5u49~1AZv2hyXw_PCr3oy_)p3TFm|I)#D$qP7SKK8A7Rc+^XV^K{i`@eKCi80Y`>EvxNDT=u&tR0|=>scZHuNFI4MtAiG5l7Y zlhIT!k!mWQ9IS206_lxSufYzgeWOhZ_J4VIVzv#oc)`&%RKFWDxKARM$)KopMiyo~ zuUz1*hy0v!UbCmKjQLkeH4~f~yz^2tmsv|ISM{M~w%_ex2eM28SppvA)vVW09pxuA zB-UIaW?#A25C9pWsX=BJ>NJL@_Oulxm}#7 zDfW6T+T78FIUta#Rb^6E`G6nTMD5Nuet^MZG`jz#v(c2NcBpOwnLqM$yoRW`{hT`E#sCz{$P;teP z)hRwLggoZse zhJTsaRMha>ma4xCbLvxSulgXql{X49N`4v!8C}rl?tdCZl+&f&=4DC8Y6^zFzWUoq ze0~@qlXe)A;Tgj(WmXqAyw{+L>BgLsN$V>ZsBPs%T*dEcC?s=UpL=*6NJFC9=3vRd zY6{)!zWOameEu+;0$fg^hGZDW@X}dj#SLAjschoNY5Sxz7&86tp+ulkr7}B!Ok8NX zd}-B@Y7chmzrsR_ma#fVswV%oi_aS&WRjKuX6V`&{$|#*;%N*+=#wtY)seJ;nmJqh zSY2q}bUjr-CbFn7X1+vyA)SpXWd9=rf?#5&Z_T+a`ambx&`C~fz<&I7ZP~Sc)$MT=Na8m_l7r=`nBRjV&pP6h9YBcIxLrbsqB@g9l+ zVmy|nK#bIM`B+mxrF1q&#W;?9?$Vi}s;rcIs6!CPU7Gw4C!P(p@EQ~RDUN(8@=S?r z*3)~a!w^Gf7b7KIKDhu;Ntm5QCB%`hw4W)d%FMinVuLs*rB@)8t8~a2^Vvjr>VpYr;0(GEMT(SQEokBp)%eWKthU7-o03iXA zHl3G4>^U2TKx2q=#D3-E z>vGPGO@7Y>NN#l3-D4Hq7y_+!@!ms9ymDR+Ch7|tA~`}%DCx<5uZ26-6Re2e>>CB- zs6H0EnVdc0{%&k-dni5%TO`u(y8NskL!dh%G8%Y16+e%h*Yz^1z^v=;xa^F-BCC;! zcSw$jvIrHbHb`aoyIW%5UFX@2p)Y+-C?&dqUrVmbgiaAx5$Ju?F2KxG;YOo{t6i;) z_%}8+D7oX6PDt4x8ZwhR9;JN-mGp9WW&5GJoA; zmNR6{m+Xl|$azLc<`Q7#U}HVIQR%c7XB&CO9GoDS*+_E|go+Ef!bL59W;riT58?*l zfiQO*S?0^@a5>i%f~HUg9Ow8I9HHi6#cm{vtAtvW6O)nHcgKf?PpK5ts_;(6!2no- zd=2Q~MMLYZ5nLnre7A^G1M|}t_CJ&w$V*-Kp}<=GNl;)8ccL-7DG*q@<~XU~q2FOj z1so9gWiLV|_Qh@b>Omq0!XAYJSx zjteo3$C?X$@SA8liL?$@PZ3aT&n=Yb-Y`9nvrTw-)M2Mo9x_Xi`3RYXXV-{qnv=UQ z`WI{;(O^dq-FiYHvwiNwQmmb+Aj!1*ju@rlB*IK|8D?aMi`{wwvuJFp@b`j=rc$`9 z7n;_L4}Y=xA7J z#ZccmJ+Fq@Qc|BFeweZ=MVBv>V)exezQ9Jzy*G|b1g&6S0Y~l7NJd!A7gWp4u3@y4 zG$4?eDW4Eab>4v07T=5JD+lxxUm%nvl4T+rlo10X~b;|O<*@jm7Ac8wF%7Zdref{2pC@&0d z;GpH8;l%6Xu-fVUuo|YY&{@+cBNJOCNSdTOi!gic@B%V(G{;!^zc^A|(ybf-daM21 z6U13LJV3SYY3V6}7~+^yRv_r?l|F{hN_x?7Z_P??kj(852Aog3l@B?gFdI}0dYFy#JFvjp>bLE+c9YB)j3-_9VJw66x7Ze7Y% zPGB^5O@TC*IFV{k(o;ZhIOUXe2bX=nQWkNX-;A)@%G)3r#g;6Ygg8F~kTFDNu|h*0 z7(4|H={<(e%q!|YPf$`PBr^LOAhA`siV@Vyx|zdhaH}Z#h*MUg6G%bkgkV?7lkEXz zL!5FFML*nR0m(%2k;tr3gyg^pNYd`TXavoBF+pleSKtV06PAc$eb9p|;w$RM!=1`%=41F%`Nc5?1WOG< z8>@c`BIOxmr?buQC@wl%UfI%>)AEqvgrx>_$RS3^%vboP{^qxk?X`8y+NMcOzOAX8 zZOYo>%2vqslqO%$?Va+*wMD+cRg<^RiVmK>NeI#33~1WFGHJ)O)3Le}%sm|&ygJAF za%(#_XXo2S^5Qlns>yr#;{D^K;R2@3$yc~0Ht5Ilh#V;Gz?|rJA#1tJ$q-F{Mfu6w}@Cy$_KVDitha= zFL}AP>g&QEfASiyd4HanA-C0AY}2tq-%5|AQCD*l6(z=n-XG?TcH%R8alFt}vp>iyR&N_uMKV6%k5q>V_iaoqCGK7Imw1vx z`!>+jd;7+G^5WmE)+T*TClqeTK4kgUn&MDU)0T_B+|LI~sg0W*?W{C5lbVPDdf_KI z)HE-w;uCFuO*74X-r1h3*!j|bXh-gskE-phkf<%!BMqxXd@pu}2WNL~`p!kW+Iek~ zR@4o-EgG>+L9)SbKeX*3ynoVhW3R_A!1?o^rYoX=^LKmITT!JytnCg4)$VL`+jy8$ zq@gc=}*^BsHiSs%qe?eIB9o|hT(*7$%FXJ?w9zO z>umJ)c*YKg|LY>&i?3?mFLmFbb6m;NnHJJC;x?%xu`=<^-{_mRiv;7B2hKs>ZOSs=f zUwuJQb*s{Mw>F(*vY_FKdh6GU)gk0c>znR7rDH)i?mMAg9I@Z| zI$9R*Y)JFQt~vcpdp*t&ahp>n&~2u*j7C*%Pc&_y|FqawJh=Dk{eEz@ZL0plEfn9~ zeCO&LOpl4Vx16^`at2kDC#vdfQa7%zHf>P`Rj=+;sQ#V%*pKu7*kt!=ZTeTi4taeo z`Cg3_7)wfp?D4neGVuv-Ir6JQ7nL_Ao;iP)Jz8pKa=!*>PWcyd@k>7udh( z^yBPbjm~W!&L3_OJ;`JRyO6)N89O^uWnmfknO}CO&0CTw6`kT1wYAN}1-pjYoi`)z zLekb!gu5|UEL*of85zCVEG;36nNtK2U;D=hw}Mxgxr@5`B2A{Q;O#K?)%j^!$GV7P zXWEj@&aB|i7xZjof0Xcek$<}?gghT*f4wuqN?|IsR*V;G*ANs~Nim|ZTi|$2Qz})j zjv8LAq|F|@`r2kP7Re`1UW68G=rSIi!4#Xhx)aSeo0f-z{Xz^qFk23$^i$3UO%dak74S7E;MzS+#SXonX^~dp=WLL(@7ap~_wpdeBXgl8% zoCKTy{8M|_{OZ}+l!fh)_IaO(`wD$ZIO~@?c|Yj=Z+kq^S?wAgy`OZFw0U3qE+v(; z+}wgHXR=%KSh1T9ZW&WJmMxqz9Uyw#GFHrJ;z4~}6ffN?>u2e2YU*)(@CBLLWfu;> z0TW+bG~INwW4^InGKYz4x;xzOce>zeGsls(D9lHp75s7Mo{gd3PwjU$NIT0*zC4-% zqwA`CyoSGi7l8H#URHR?p3k=8D2nBG$I@6Gjt?0+cZn;<7Z*-9d3QV-@LgkW?e;2f z(S0(8k9e1a(R!LEpQ~rd$4P_v_R@Z^vmz5?{IOk^!OK3n3v;QYRV8{gTyxLNR?eOm z^Wrd*U`{*?$7utnpKhyGqpXJ*&)#O4{HVKswOP@4l<8M|)%UkNmfzj>_9T(xm-Y}+ zHSLt@XbA6>H76yafelWWPCR%=qN$IoPcm#ANe)8BX=zTx#+UN4{TGKXh}H^gFmSWV z&F2=P{``H}(iVMk9FHMBWN{Ai#GA=gg(wjlGA+kX@+?vVdgc?f=ATVS;X#U65%31cx46LM;Sq24XB7d>OE9 zy#C!0kMH;L6vzWd{wUP55ylpP<=hvz?dB43d+@qnfe2~IiD8q!T2vv=mZ!dy@2ymd~5Wv8F9zTX9b0*+~R{GCWJ#+i)OBUfx*-s!=)P3I9~m_ z$_il0U!Q`%ocqwDf-K%VWQ1z^9yc+4{C5q_>2xss=;vYi ztX_u7-M0F;ayG=NxRWyNb6LfPbwY;$rDlJ*?tL<3siFMw9qX=K;+7v3Mp zVdA{7{5s^$TDpT=dA5A|B}-Mj1GUHRk#!nuOT(>G=xz+hdTS#%zBxE2+4W-H2kG}+ zR4~9Ck{QQu#{5Vqx)+mu{Y=U zKdxD|@K3AIK1m?S3cr!z*;miT^ICmZ7+c%69@l%X&#%>T-;EXauzU2~?V@%PnJ&Ul zhrwb_g!Iyhar2Kgxb*E zn|nZ~vH(sMPJ;#Oqo>5$8dumY>O%+Br~bJm^;7u%{JUCSx_`%>w^<*L$*~6yYkf>N zGve0C!y3K}t(LHi6>^=3uxLc`v@ju0>bnGF#bwWMC+w;Az`eV@(Ai41~e&?XMKXmmyG7Uh1AzR=G zl_4*EsYyj2V@|UNk5||p;=6pMx^R5-ZTtyR;wiM39^tbVH{~N+;0Dm)wq#TKqK|VE zGG|jPghn9hj*T+$8Q^c2I;^RS66AUBu4Z&6)Y$5m6~zb|5kxJUiD}r*c!ha}>tW`B0={b%hY|+t5 z+hEFXVnEZmzf51~uJx6bphnGU#z3NACKaf4cG2hRVJ1CV2MO znUAP!et9-sZZrDREx#*?tj%6oBSJEI&b0XmbPJ0hG0-g#qnx=9TgFP)6h!N&n-0{U zTRzcX8#IrgHXT9^<@@WG6(1BZMVclP+ZlImz6zMtIq=7R5D1Yu+&)LRr8l?w3Tojq zd*%Ir(N`NkyLxT;#NB$|0oUX(b`DCQ!S;7!7`xk4z|~OZi90JN%qfmAG#q$44_-T{ zd6Zy?z%7SOOXJlUEW8_oZg+HkJ{J86#+dt8ke2Yl@m{1<4uZ=&0@y8Hg)a02Bh$T> zG#eoNH3?J0`sqCc!$5`ZwQnD0*(==0cf1A?Q_A5`1q(J2le?gR=N+chkkKF14@pLY9ePyv} zBza2_nGj0Xf!af6xO9JfXmxG`>Tl`I-n!Wl-oQe8G7M;HIIJNq)Q=iB({#%|L~FBb z-GjXH4x}iE=}w3sy;+Aa$|OEnR#w3tG>)bwp*=pYhs(wM0nJtu(v298rVF!k5)mL< zvVl^MlSEwZU-cfsDER1`)odCQd*xfx`QYwA{HTN-@Yl^$36jYvv`r{>6|6fI0lU?w z=R7G9-(-P?k94>N4PWkwTF8~OsXHY-QNe+Vx)!4Uc`Zd_9Sm_(O`euH4%DPQP7NV! zttvqb*rN;;tuN-I;JO0y<8ByC3rEKB5gC?QRxPh&i*IVKwoXW*V^=G_!iHZRL87T{ z9C;@Bz~&cVyqDRBR^-en&d6}q{sH=|$qx*%#jInzFaI88Ar+hd$$w|Ff8M7U7{5U` zl`O_ydHOsd&|F~Ny9mUxpC3aqzxFgDi>C1$SE0|Iv@_hiJJgl^%f6yPahqn7X0b2f zK9s)xu4N9eCW});fN<-!|C<|I9v=ckLq}^HeVy&JU^1h{cp6Z^Csh_6n_+QmNqjiN zlv>lMyj|fUFFA&POdJ4{!hH-DM~{<&$_`UJBE%QRX#)oNRgM{(QworN*Zv;rpi37> zY}x;IJkOQ+S4ejs>w$6n@(SKYH;qgO#J@n;G!vYE_qMhf)A$>=*wdH>^WU&EYbd># zqv6>%!fzA&9&MfWzw+|eucBv#Hfn}b)zOx!PShl@X6P-~8tizxA!N0U=4Ru!|IgZw zgrm6wZRXd;-HBfT-`+Ix#sBhE(0I35kcu{^bo{TtVu8fDw$qe|M7!Ug)}m-Lj>_tC z!SFg~?6MU~gN=$KH;y0JEFYGTG^E|RFTUvj9cG`yb?7k9GC{I8!*0%yt+7)1((m$n zCU@dfD|7u#Goz{MOiNW@a~Y=wSM}ClFc@1DrM|G4G)KZKlOybE2Za~hG;7-x$J2kY zy`t?{D7!bS4eA1wpIh=(h5B*gW~v12XO+NUVP4b(W{XP5Y*(rV)E&A!lI`!S8*MTu zh$(hBR4WC-q;ef*X+swF6%Xwy6_@`oZ}hprfEA|mbGAbkrWKK^P0l1$7ag0K{xr7t z5ij_D#Y6>@2how?n562}N~8OTIhvdkBAZCD1Y8-R|Sat${Um3th_dtCOk7 zvh6<|3KraQ4!Mu6i?X23ykyN_%g^x8`(^uPJ=SQ)8V^QL$|*0x12a!k%Vx|T%SFrh z%2`gEg1JQ(g)O-k^RkHhw@pCTx#$*16khn5wdq`5axA*#px+CT#d7JpTEoSKL0cV( zA*qTh_+z>m&0N)zQ--2R^nP ztQ4u0(^wr*zCE1L6ntBbQu%D@Pn+>--{moX@tXwN)0Lss-}j&W(T!;;jog~~a3_4( zsBx~R5g7{Xkxy}66ZJ9NbePCAct87z&=wvx6S%#6_I$);aTUtUl* z28SCJz|L0DXF022(V@t@*_Jx+%iXeBnV+;(%0i*toVvmw`TE6tFEYuw53kY*^*3I{ z=W}1>nW}gdG8wPpw<6VM7xd@%KAeqqAbC5sEvRCuAvQyl!?YAcfi0aZGO9u({B}FY z%+9|#I%6-YWVvXbT&X%S_{TGW@6|sWa1`#^V0yHX^Ew)p@xr;OVRQA+p`%=!(>f$# zXUHbGLv?46k76}BT({UHXJgQ{nkQ zUY5GG1k%4w_aDmy7@j3IrxPo0-|nW>B#pIkJ4e5N&ph|xjz;ZF85u8w@~XY%x;4|r zs_xx~lDM%l^7`K6j}17T>CJB^faLL&i-8Zn&x?Fj`A?^88-uQJwmXohFw1mybah7s z(?S~j1!mN;v){D#2JYB+vnyzba|v66F4~#kx;3DPm7U`FoI3FSojbng2WOj&w=1;qsYBjhRL{F(+vVV0aB5fa1U)L<^xs^T9=W9t_HSRo?_ z??T0kEg9R-b<5os4+pL(<{S1v`LBN++yDz}bG~}BTc4UjI4&)LwYTNP#6h-t3}q?j zfn?BTTd%5KgPj^1k*Dx3kIT zNFZz*0>RGBC;EFBFaC90I9i93L{fz#_n~{Ii;ayoX1+Q|sE@iH>^Ik68<9tu6s0}H zAGq~fF@JU2|7{M61?5#l@06ZeD-+XO#rsW&_TPsBU@jHxYcd|ZQm=Z<7q4I&yiIBfp-ickTh8~W8%~v2Sz?`iuIIzCX zHRR6N(Ry5t0Gyfa%4St!F^ZE`_eyojs!AlQ0N#eR0WUXl$%FC8JotPX+zfoJz`?Nh zEf}Q|{00mNn^&agC9j7}S6J=vxFHcD65c=-YIc%>_tZ0-61JS1cWN-Cfy=`RO$(dO ze1~5l<3YGo6|}2POLj{654U{gObP?9rf2HD1kjjCJmKM&^p()e1wp<)66cg1*}TmjpCG0|Iu=s zVRJcSmON<(6nOMM3TXTs$6pQ2tGS39*zeS!Np9U9eW1`Zzo}ZYeO?9`N%jjOiRT!} z?KKt3>w#0&!7fbf&wE=P3zD0rKm$1>zm&p3HMJVDQy7Lu{j~^_AeSq?IuWwI@+}}} zj;}lbRxrUffLnE&JJND$;6s$dmW~XC!w72`a$<8c`r3 z9=3o+DH(qiyczzdz<6t8JvD(Akoxk!q{aci3;*TkV88R@qC#`szW){dWp+yM|1G*1 zF#f`RkWxXvVbp*Y%QzWa?H1Z_jzh={J|f0g(g$OQam=Kl~s4Pk2ns{w3#= z^vhCj?GSwPeK1$4s^c1h>^KNd2hW|HKjt%1KFZM%2U64XH0c!MQ zr%=F<7Vjs2oV2CQNinBXq$BS3eEn^iH4^LE!jjOFVdOvoNDynH^-m^|KWjx?149jcVL(fmXzkQGZPW*p9I( zdUIm-&ELNY?|RLfwmvPEha`pnFYcp2E35zFYEDc>!UjH`W&v8|+C{@&k^d@r*k2xT z?0+&3jpFD~UI9*7`dyfi$SmaK2lGE0uHZdE$JrH=&)${we++UEgdxylc18RDpBq(az}qq+RIF;LNoD=m+03uTKWL-u_yGGc5+){uS65LwFDw~!?fvTuX2waC)U zkY&cs_dcJ!-k-<&`}qsLKYV}DG;{B{XTRs(d+xaqS^c zL`Fi^lTBkM3c8KFEy$x*a=lie!&m{b1@FTm)Rwe{6!5f?*e!6(6z3KBn)ECr6J%ll zxxQe7jLvJ(QCLlvJqB|>1k=GsI15XcsRxpL;SF6)Mqk`xn@nCCB~Hr%*k7eve1){@ z|0nJLmRdwkG9}1o?UDyE(#=+#BaqapJ|{v_y9=b2T|lRS6;{Raok7ArIh!sYlA1wI zK^~YKRV#GBK7Cx-{UFHjTqSKGshv?0I}Xl6;=NA3CWVJ&Qo>RT7KWsj1f-^_%l;a3 zKM16M63)V#CG1*|LoU3jt9is17i5!3X`{qzSwI0fES$wRNNNJU#wQ1cPw?ZC<;U9y z;iYI4K%Nh29lcbMwLxL0o@&Jmk!qY46*{6WU?9OVOz^75KvHZ)u_+`r+*1$37L@8q9yGi zsj(=DO)NRyi1(^UAf<+65@4x?$U#!8UUclz(PfXvBxGVb_z5=fWXsnBOYOFvrkxWm z+a?oa4PLSY7j%Hsj4h$MPpZgAHy`LS|P zKl~sADA-->!(DRJtl!`DNr~lP`a^4HoPsa1)7PLCJ-puFzSed4VOtzdI?HAj6axqu z3!ZpSvex8oO)K0@Do?NB}i5!8OE0!^5tbqq}Zbe?~*lJ68qUmmaY*$?Z$7f7`1 zbPUFL7u-Bl-xvGeeAM2oGS6C($x4+iZ*M|M)2)JvI6VBKPLQp@8-7 zcl`4xWE&4&j|L@^kT)d4V&PSJ1di}~C1Ik`$SB;>i%|QlMpN3=FS4)y4X1f`V$iQmCZx3Y!kd*u} zL@9RSu1a};7`QplK{NHzw9txGDHBpM-EBP1@ATQlB zl|wZZJg%BcR|Z>N7y`09($$G!v{L?JW{0WBnk#G4W4rG!l)aW>uF)k|{{y7CYu+er z^4!boF#S`1jH->2xMlwj3#y`#<3=2=L2#U=&;zZV3k%xO$O^IcrRBBlq{A$?`ky~p z0}qyWYY&NG?uQ!(U1}s>g-@7N(@k8`lH-?n(o4?M)JhHCt!l3HCAk(|R#BjggBTk8 zCE*1Vs|Bg*pJovyVcF-9BXM0XLbK4ykq-KEcJjmcx7+)FyC(tm`#kdVQ#uaKGAXN$*78hHvss}Kb(XeYL? zun|oz$0|;SDK9^Yvqwej3b6Gz$?uq#s_2#)(92?t#P{6Td~q!{{t+DyIPH_4UwA}b z>;D~qJjRQU1NXlwgKtYTmnI|^SGw7B=BiRV@f6>T;kES^-8`oh*+)hT6r^}OqM>h zObe8Zn9Y+9`=$|NU4{1+5+iRDmN)jKtfCrG)#m8Qh56Cu*$W^2dhZPTttT9At*6YI z;#3!~HGKf4efs+~2xmS*GRWp)UC{JUM@< zf|M-M81E=FdH2z{f|bWkKe;k;rg8jb)20J+`|mtk7D-quXHGWjJLS#1d z5S{%iHcU;4p(}w~OAj??Te@Ai@<3{$MMc2$FBXL{mS;W4PPy8)OMo?JVb;_&4D{zy z(d3J^{Bb@CJKpnFILM&2wVA7jUG2q73{p#C#>bz}$h?2pr{MeKiuY2yx5}=2ckS25 zlst&e9q9xw?lG))Pfe#>AB8tG{76SE2 z)rk-PQOyLMqJ3~GDA4|+Hb#6@j(fWPhBoTr%z=@W82*@=M;xiWw30gy0(Gk5?*wDi zKTt%C%}P=VYEzTW1yKhdDTzrvfh_ieoiA?Uw$#J!-b7RB%c-tCPY!w;waf~C98;@^ zBWc>vzD>pir;GQEmz}fuQOU=Gh}9V%^N~aGIkQ-hYW{gF?SG(33?p%@!?M0!Z1;_e z8m8B8xi9;y$Et~yM%qIArl7@ip47L84cyQ0iQrG)2#gFvkM$`XI7$!Xth``|g$pwJU@(M8# zImo8f_7|6~R*y|D-b!3%|2#ZM={FGCSZEhnV(ik;bc6Cg?bk!yT0{diMDJx z@Rv~Y)>ilJ;p-lkbTd_$k89 z8HIa;^0@Z=HO9vO#{<^9EsOH@96Ar3i|Y{AOt=XV%VxgyCq;cgL0_YxN%P(5hitRI z4&W&_>OH(fksciGL-iiV$8pNU%KtIYe5R-&jMsl3s>3}pT%(HZH-1tz;V0IKd(GmD zOytLlF_5ozP%-37w8%f>pE{iHm|Z|+px~feEFTsuR#k8Jqs9;Hi{P-+0l9xq=3lly zF8};>kInuYW670)U(bK?&s<`-Srvf{qzEcsYw7GNyB8VEAC65E@`-&XN%?l`HAcyO6{hn7sAd9inqu& z9>GqR2I}uznESVcepLsD_0j`i%i23lGx-vKmTOh}I&aDoN}jZ?orT`T&#_+hjBwmEB4gC@Jhw9{X1H7MFWZw(dR zQ1x1k!fpQv2N%n7%n?L4uGk*hyf>;Epaj5TMbtk~tcL(pyiFr>Ytwl5@Zm_lSWEq< zBiLel^WQ$rC}__qTUrpxSutR3D)1kty<}P5y7xFY2dE^A)m&336E#>G^*=)gOkAKX zJE;VznISdmC%c^Q(L1zdC2m1pyO*+Te7^kOpp+bB9&S|KVwGy_K^#{Bv($Fi4x0%1 zXID8zQBP&=MTGmyGKr^IbGfXV#-LR4QB3W5c^3odJe!>Q37~V&)EQ89Vm-TH|3RJi zW=UgjQ|Qm%r`?s<}ogCI`s!aS7UEkL09QBLdSRcK7gT|ErlR}W{)%%(>e452V3^5jGdBpH7EX>oE z=5xyex-KnA6%_dIG#=L#Iv7qu3(gCbu;YlD8Rj&|0K1|d3kOqX7Z1-zhA~l_Tr1bm zojiq5A%cqB@nhp4NF9KQ4J(s)lJe`moR<8HzrFaCrrq5`ztzdundZ9um!@K~u#U*t zL2?*jZ7lFtc9*yT1l8C#Tw2jw!bB~69n0GIHDda4j3Oq^PspF=!Fzjky^0xt@&9DaYbuv^R>ETMb86qP>B+U*d@r^8AHUK_%^D9 z{QM1yl)G!5#Ux3H|H+rDdN?+#jX<6-j@Yi(K_?Gr=y01a`d`<30=4M&a^_M3A^eIN$$0ngd(9PWtQMKLV#J5dw+Wi zSPk!eO0s5t`45P~HT}Q1weT;;jUJZP_rolYF3a*x`A$35TStL^_R{`u3zW(@z{>(W{i+eo&Gk%AyWbT;Sw>Xlmgy-*jpGS(8|JgMkVZl@(NOGMLBkQiL(t}zQ`?u_i zqd5h7OC1w;a^9?B(qz$dk#NdX)woj;fa}i42x0Y2+cMnrfrub7l089YtYez({Ba}o z48pA$N?3CQ(>?s9EEgrUXK{eL zg{YAIHCofDkV~7Cm=S9oXV`A<*g;)9l`%JyLRNl)I+8fx3?T#wiSURkv#LNPFO;5W#-S) zMDST_U~-=NEJApp`M;1kYZ--mkn~%bwycj}Q%Q6J{EHl{IlcO-UR!={ezCf^__;pgN+||bpsQ4RwrQIXN2sJPwRM(8LA{11$mWqn+<$~ zDZS_kDN)X1eSvA^^@4^>6om|ZN2nZrR}Z51Iq(*!%*pUnAC)_EL2>P z=9?(URfG|_vf(Va^R}lUzMs>J!ueR%l~Mc4?PgX;FW`Skvp1U`LL^^9sJJ)X=oN0> z3z+^H$F!yl&xSO+OSI;P)4U)&;o}$d``LwMb|e8 zj$_U3bYnn_zq@t>N}E%&JY~EZ_Wn3bj3k$V-7Lsj&yW)&$}QenryVz1?`K$>^?~=s zY|lWHT>z9xD-l0aMhrE4yWloo-c;;G$)oU^6cunyneA_JmY+xMjP>Y}qx~ET(oW(T z^7{rQ!ITSTMh-`?qN|Lo|6I3dCB*Qb;keQp1tjhM*ZrCA;Vbj&Q$pcnZB+c$f!-EG=*!#@JLDG|yB0nQ?VW-qB3b9M|1xqzm z!D+ESkH%a|%DdK?-Pb~rb+`?NWx$f$cYjkQV8e|WOVzwJol@^ED?Kf*n& zjLY=uwv`;Kg_3Ax6HOfjY~0ASuaKf?44}ytVX3LKW!O($Om9>>#clk9gYO@$T{cWv zn$U~K)M}0Qn|fBe@?`p*q=k0VE?eH+STWBoUT=_f?1-4J$y-Zm+1LD1E^1#%AWg1S%6} z4CXA~7cpFv7jeMRt-#`$O zMx}^2KM-Q5U_zJ^zelpMXwE-_#&@TwZsqP{-#w5x=5J4NG> ztU`*5X)zA0a4RJ~l3N7QFe_V}rCooaaGza>P#{q^Q`6C7!&my)krfIIZRe!`9wBEc z3o^xYjld$mf1`fee|z)U09|PjM24G#18kJK6?!Uz zd*|WcP0_NM3A{u5u^J1jSMN)5B)H{}jrW*T1oq=kxQHRGNtzo|Y_MNA+) zh!owz?GY|&U=_Ft1!fkF(LDa0C^X&18XP6N+Cg_5+aP9?`WW47P|n(K)hXE1id8rE zx&ws5hcLHpa@H*=bPGV9<;Qa{kiB!nS|V#E;9WG=D+v(($v)ji4RoJ2AIr?P_Eq%o zMmP(uc#I0L%RhgttmQ;+Y#2w9{^s(rnlz#J8ndZ74zuBh>oEm)I5hqWS1)AH>I93z z)ppW-ls;-&QIPoeL-0$$gAyC1={=8$(+rb45ETvFgvlAx8Lv2c+Oij}-ta-hFD+X@ z1hpNu<)yHby*jgLsagS*FR>QwSP^dZKzgc=CS?7(KB}`K9#fF9lAYkX-G;SSm#dhe zvebR(b_BaGLS^C#yCysgDO}J-S7CPh=bwtOHe=a@F5XCKD%xsaN=xFAZcskKsfm(* zcH5FYi{p5guTY2*qWriK{S!#Hf-pT0CgFD2&;MaEy=_&a-Rp)=6O6iuCA=DjP~p)> zwN#{Igwk&+u8hhkD}dO*jCwa;HpS}*_Del{e$x5v5hUBkYUHZQVu=!&(n>?`+L-kx zjO~Ca=art9kssS0Ma=%idYth3RhfGMu@YKVa0$%Q0ep=X8K!VVuLxIsZcVFxtQU!! zz+M@{UgY0@tQ^}RO!BAv;TJT*S>nQtzjKCO%Y^i;{Ioy<-`fS7>xJLai%2WAg|`v zJ#OBB4{2$=;4eczCM-&Sq)#TRZm3ZwRvNde+8owRhH!W`0)wEjbH25Wgthd%80^E{0S2&*w97|bLejPek7zf%E8RIXAAVyrRGp)KGh8@$@%c6 zjO43%VD&)1t=kAKo;f5lAv&^O1Ls%ps@ryP|AmWK5HDr?D=o&($_*B!r>+lI6l!~V|^&B?fqfm$x)1}W+4vPGFjF33c}o> z{yg8N{QK-~3ERdit>||H;CQIv(6s_S&{mSnf>6l$heA}?rq;=6j+84(F8$?yEO@}g z9)^*)Vk#Jq+8?cfm6OdMN-2K3593%agO zEezCL%t8WlKmCHiQ=f#0v8grhmg9(eS8G_>;@zeoG#P>UMkQKDOFHazc(#@u9evZz~r2*L=Z~pL zy9V0qe`qgwS6l&$*;`|ri62BNUJZ-*VBL~iTLJqI$}sRmL38CifN6DdVpxZEu##Ov zi`@0`nbV$vlIDz_YeE3<)!<2<6-ZfCc-r^&+#7{NKj%ImUHl*z-PZPI=Q zYGEpqluHXBv^UXD2 z83E9aFO#T!3b(fBD@}yT+_Q+4 zgn#4AF+Ra>Nad9tZth$2lXpbmtrxqykbWCnkHU56Y}gAOtk{S|-akbB{GOeYP`$io zkIqE+ukNhd_WnH{{YJGgpO^^ZP|~lTk;C{)$&V_(SLQMxR+7p}pXsI?x+)uQcscd{ zmfd7uYM-3fheY6(It(ewg8?*hsEt#$s8pi%Abk>gsZ+k_U>=Dn5(p zhR{A6@-DW&>17zR{+$l`>cU(Q5|H9VB|pnRKNWAep*|JB1-cW&3| zHn;v5H5*VwtZ8KExKYA7qfo$FLvz3(`7mH}Q>F26>++9eW7wZEB|y?{J&7CEiNXbD zRF}_cou+NrxkRgTNxnS%r)%&|luDq_WKq+>aUVpy~!THJTdedetskHnkNIVYh z-?@`OEY)$dNb=~?|KG!Q6gBm2FQrv#6v0a`Eu z#SQwT)zA+gKLy7=LOqTjT|}rfEwjdUmm0RAO6}FbWdLbQa|iGcu`R7Q-)&P!%1x=G zUyW0OowJ_w0UumU22K_u1O&Ci~0= zCycFkYm>$|@B*`Dhnt)7o=bPbML0MwNgad8H=fHO7p`he-f_8A#AIH zFP9@tp3Q|d@688KCa(w29{AiE+X22maPqa;MC3fFHgKD$&h;tqP{8l+XNiMf{pNPg z$c$^x|5{ua;Y>a&`3$?lYOy~TOn>ET1MmgZ2(FgzmJ;)%*~6_2`hWl~^6bIGzyG{1 zI}4=z$`Z z?;BO)Le{4$VlbeR9UNgQyuZg2$`!4*+P57*l{oi+`Pmz8<>c78rbB!<2Rea)JY z{2V^1;;V${&S{X-Z;-Q5cf!SW?sUd*k*YiRZqe+1goll&7q{p@#f!h8 zu!<>F;uXF-9tIz@r)ar?7SzO>ntRHsZ;wj z5@)$+-@${oR@f{nRT3B07ze2}faHQ6X8nl=XQ7AlDb|)Oql^4I3XzmE?tQkAti#0Hjn4D(OT0NBw58&~e`(nHRH}4a_~v*RyyMs01H}p9i%vHHCP9Ws>WV&+ zG~3#&h$R=S5Brzlm?r!9@ywhW)TIfYPI=8_n`e|8cgH*6?DGySdk71AJ(Yq&V&-k+ zv5LM{0XFoJ%roS-a8BVBI7rPw;QED~8uDW}o?|Ng?t~VoW`+23!$|hRfv{2Xn5QqU zMA&*)2>&T*ZJ<=i4&-@tz$t%YJvPu70(qJDN03^~lPZXX;;OI!qMl|ztMVz>mDuq@ zs>JR1`%O-bdF1$Vmwat})=ss$_yo-^H!RvWj!utG0G-6~|8-@A;Wu)>#ZH^M)Ou zRB9cd@812p+epuYO{bJ7o7^Wv?6}6F? z-nu+ki*$Acl-$3gyOo#wGM@%j07>Rth$FOhJ^F6MEsV(s++e6GZp1Ml5i9yXnUpPC z2E;8v_ynYz`!ByK*)=l*WcGi+nz^0?)Lz_Y%(`mlkXQ!7P2g}W|E12U-~EB~Ab%(% z#^hArH~9j{K&*%Ba>!I^j5k1f-*W9=7O53#61ibrZE{;izY^)>36PU@=30Bt7dB6g za)*%%r-6`TerMonUr^$U>$`|(NaQ0_%%oM*Z%YS<)lj4C|Fv5>3EJ&;k5mFR&#@%x zqXA1E$|(LGi{?7dOE85zr3Js82xvqQ%d=@vbbl~{yxEM)b%7+|;`^{vETmdqw zmU}%9K)Z3o*HGf(g0putCf}5(*8~8n$fztljO9(|ChRjn07dgJK>#o1nKdXoJ{TdZ z)#Bb_06;UFXMOH$8f`!pa63>X0%|AhT?<4TY*l?D4e-Rjb3J=jCYf4id>2yP7Kfhu z(5Sk1%WEEg1-yH1T&=PV+9`FCvS$_FglmnX;C7FD^r3dzafaG@lggP+fp5r=ACuG+rN**$t>M#sL%xMw2xvsZkklyQDOz-7VrMTG+|t zohtF04v-W}lK)f+o1=jcK@7GUBSAsX=xm~Xrt6!WOHPxy%EYb!(2krKFvZI5G9o}A z!m9KrUjVdAtaNtIFLaGwt`b6pnqo~VzpOWXf0oN@=?;7EqgO=0Y@VH%I3(J!XP`I9 z((9;>Jl%k)wM|*@pWsm!Yn@?%eZ=UFLm!y-;kp2JI*`BM*_E}6#3e6kD^#EWEdnUI z7el!*mqHo^AjX{PO@tW3tN*9sQNr*q){^O49?94$E@mKMx{1{YbHDH9Dwgiyklk8e zfhtXBhsc|z<;G!avK4N6wwq6OW<>@pFX{34E ziryXqO`=j?fxoX2)5?2o(oQMy7lx9^IZl9XV(a){E00ZWNp9RS9z=Q{Y?$!D-zTo`>v4i}~YR3_C*kz7Qld6$8l3hCeX7^oC5 z1>%_Vm$TK3j<*{aFrb7-c&p;3^J#4lCUW@CF#oVxK*QtiV-TUIev)P)anCk#OsQD` zp+Wh z7xmZI5}LzEygmT@*u~H2U7pa3b=0VfkUB|PE(4G)x1X?=F}Y_W5ptM6 z!Ou_q#7Ux2qA)JLS zLIk~Ioe7X6-ljf-5WMwwSyPYw#;d^=!Ou}{h*+LBi*RM5iQD7W;f#U^z++0O70}M2 zaZ9W=N9M)F+~;(yVWwC<>dWVT(m$+WAXDeuyaUZF*LvhZJEP*4So{d;y{XA*!J)?% zc`TRQ5T)V+4h~kG70G1}S%uXh9B*0feW~GW^@Eq}^!(2GQ^}+cIdoyj6XHuDjUOH}#(M$7Jaz>@rNBD8 zpHSXLJB_6ThhO8=7`X?O86EWHZQfhWOO~ZVRzVQV@D@J^CNs{d{%m#iF%AZPhazk; z$=E6;>}#lma7bfv_EH>xnXNnw#k%p;V~!$DMbrwMMp{?|FX5Sk`?1Q@vWJW^^1_JN z)fhO4cL5Dwe`t@v&t(*uS|i0bf-K@#Xk8Jr=5wn9bKG`pmb2!IQ=Nc8_tNS>ghb(Z z-nEjs8bzzjZKMjIZUs3!y-*ocwj%b-Nxy<~(G_4gEeUNGaNnsUCg&i{SJjU_ylP_G zz0=f6AC3&WJVw3S^i%yd77U-R1yzmI7FA3nP!%x!9D{bOo%k8@{?)jY zL`)cJ9oPvTE`MlLvTCNO*N|d(`vqP+z!1pq6K7*-CC^;X50pd7!-%#!@l7q{H|tZf_PDw-ubyM;R#fm=jeAZHFug0W|&V(;IJia1Cu$4|_fFNFyYzFPV*EbnE zYrD$1#!w5|WZuGEVDyi67Yu29Bl9aRp0t$(xa|-;aU8UKNWxkPJ83#1H69n#elx~u zI(prFD%(~kM990EK?gx3+d(xaT9`S=qXn}lVtl2K7(IMd(G%MJ5?^(YMcVf`7VWLa66nUwak84^Spk=%=ZqU zM!Zt*0mScbmKBPwWaS~3Cf=aGwq@5#6xu4q#)RHH3=RM{4Agb?UIUf45Sl*=8o!ZI zQz$O%eOoFe#gDL$Yx>$o{VPDD6@A0}x<;38Q5GX)M6ZD34N5rSSah}8gd{5%dPPH8 z3~%Bk%YU0~=NBWnc!%~m1`Lmqd%5m&g()3ddVNlWf{&3*^5r;ye8*XP8Hk~8f1C#p zFOcy&xVWIA6SBwW#=1dz_Ws_EUjPV*@=spvjH}LLhk1%NG;KUF~T>^WA_P*T=t0 z&MA4LuatP@dGS{&0$d1;JUjq%Yis)DL`>{of6$CART2En4wm=$!Cq*ZYG`@$DX#!N zc*+=&#U7waeWy9Zzpo`3ngOnO0%Hpr%sYGUXfLmXA5FF9@H87k<7*Ol|0C|mYVsR^ zG#A_G;Tn}B@YNYkHh)Teo7&tQ7Zh_}$u&{TLp9bqL`% zS{DEgp~?D6bh0l$ZJ3UT>v~(OKD~kMPauJvAwDsHvuvw!QatHL6KKhuh5jA^<$Wkr&>n&eJ zKoZpQGSu>QfqsSZA8!zEh+6jnG$ci%hj~+)Q*owFQeSWAf*=3(CV73ayz3$_NI0>Y z2-%!ZDs-ZG>QbKDdH=O%+uiS{3t23#Zh$B-W^!!wa*3+ zyRPo!(Uk;PS2tisU%fn?XERNw%#EL7de=vzunD`yHZ7=`sPON2xnDG6&DFSQ{K-(Y z6dQkb!~$B>OJ}?eR9!ab21s@)LM<<*=Mh=_ysA-S{Gn=D`W4Hkv%ro6W5EoKf;R-v zsQ)U|j9a)mp5~WNR8upKgy+4jR%@d~i&%)cNzxhj5fZ>Rse?9O`Jt8<1f=b-?zXdQk$ z^*Go7f~KnYG(auIhD6@Y%es&Fe(ciC4xT@vodD{S`#-xZbJCK_^e)!_3xHxW55+Lk z!`wvf_XU&H#oB)M)y*0;kBhutr-B+HG44L+BI3@Fm$%}9`CNrx$Jw>DLVjS!RF!faa4-nHw1iCANa{BbahTo{|2T~@;gUtTXO;S0#IFkyde@VH zF?6RvGwM?+jwTySjNaR& zd=J^ttJzsI;4?nW)8?t<2$mdfDofPl6h_npRRPNzVgxj8JA{>5_q=z&`Og4?O0 zdp2W5`!ApN_kwmMS0KSHz8(^P^Ug$HpD6L7XKK&k?k!maQNoJBt*hm(E&TD68(3gJ zPU-@URRf>iloCkt78p68?Cjf*eSh!8G(LPPwVXM!Oo};f7qIt{r8tBGd#|a(om!zR z99IVKspp+{Urt2Fd?m7(y}!z?{rRI3;Dasn$S+0a;OT1a_idB;Wc9przp{_N^dNGo z|CCuZd~3meEAFEvXeb~EH8dUkE-kQx%=@ta<6@76!=3l34UJMCO%*RDdFBcotEC0Y zx)vy+%@*=~%OWu9<0e-7Dx9Uuw{}WqKBUoP8EDGmWCUoSs`AuFTeIHZ?a%j9QORAt zu~W)A4CK>w{$MD%dC-7jdVreL7Com(a@U>e&emXb0?ejh1A7>-8oLA>NU^^_@6i5R{}vNP6vOeldyL=?b`q8 zba9UartyIzVhpdY|DF`9EvM%_84Qo~TIB%9J-uM%<@HYA=BZ9I4dGWj0(fXucjIq? z3ZMeNp(1(0*1dnK%Z>WdDK%)yVS}H0uF@W+4Sr23sY~IAdvNZ?T`ZKyy0fqX7M4Nz zjsX^@oM!s!(v%nw7P!3i=TaA+ z?Sh+6w;lcwHMJ@W;ZRi7APJ5{f)sEZbuXpf*+55G+4k_u&kl(-R9~}k94}08T!VlJ z;K2SSt876;y&D7n-#Irm!g)vHe~6l1TL7x78nvM)c_MH5;?$@(jU-GI1)PI*{v8Bk zM{;URr%UpG`uMNaLVY~1f<9i$s#D`;5mIm;i>C)8z%eKsCFe&{!R0_iSRgXEaS_-j}4HCRY1r5TUC$PTh@^6r!y(eH02J~qv(D0W>78TE&By?Rr=*QMDCx|EHkDq>Z9jiXCLw{qy@)V?r zxvMF_?o?fH?B_zt=zEJf!wSE^oA_UUuJ{7w7%-59(0Y@hbmmDIO#7+!ED}KL`I4&z z12|psMqQ+&4~8~(&V{Q$+XX-MaV_U;I5ts|YV_8S-ku9aS52W?p>ANe0r zdRtKtQWw4G08-m2$Bp>T`2VAWd+$0#M|{Z%K*y)wXnKvU|0MEv0Yq`CHzUu3hU+m6 z%KY>c|GH4`Nkd&?lc6qCPbNF&7{TLFkiup){|3Xi>J0+4GO6753KdUSz_d@V7eK%y zch~^!>z$cg$y7&xaDcjc9=ry+5`Ie#FxV@9YWKO%Ify1;GV?27t0PF`>J^~l_Ft#D z(gJt?VWzbHQ1S2KM8lY%`UercFAsvg93wuLYuP##+&dne@tLXSi$CxO!}o}XhqmIrU>*Z9rF{z6S(hZMb#DeT`M(%ZaaWM*DAsRHie<< zr32K(o;@c9_Veh zmK7w^<7f&Dg5h}*=-blw#{ap@wb5_X8I-YvOWBOZKqnuGLJ#sFe=CYyRl~n3m-^c? zLy40t@G3t_p-K{+1iz8zKG9ZvzGL`x;`}v>up?I_HQ&enK9n1xVZF(9n(YR0h+g53WQX3+Bj`i-lv zT9y5cQC^7a3nnBd;50zvBo?fZC{T|LnE{l@@k@)AheupfhwC97F*F3fF+|n*o$0HP zY@d$<0#V9vt?-g;73XK_=i{qFM+lvv$bNtY3UjYPZunW{G`FJv1|v!ht>o*F$>zcu z7m?{v6E)CwnxaLl2#{8YrL=x@V_Mz^yLbj=h?cIe>SJ>`!x)iyWt^Ay3}7Rb=mLPEOlUYSydYdOcwGQ$b94S4Ab^BvL}_C7Gi=G>BH zUaG5h^(x`2dolQ+T|qbEQkWh zZ?pq^NIF@gUEOoyUP00s@}t_Gb@PJi^JJT&6z{AiK+xBKL%rU$S)t0IL&qlMyF74OG?G)*s+JY2+W!(C6a45++7P?_<)pqD}bW)0W{8;AXtQ zi(V4;6*7rJ!5-j zG@hn;J)dcW~`+8t;ho@5&^P>%e$s3oY+(XAr3P^?yna1OIj26MbN(Ybr z;~5Sbw;R0%q!@q5n(ND2T;6{jdd1pk`E#@up*Lf=o=R4-_&$>YnmHmf-NFABK*-{b zp)~*=c`;#1{Y1UUMKC8@@G&X$y{fs6H|S`x=ddb}@ig94?B@n-VzCnjycG$T?((-m zH(-9!)KN)aF8@{Kz+R;jO$adLMmoJCF~e9O!T}aTYC0ZVY>VP~k7bsR&}kF)hUEqY z9WtFJj*4j#Mw|f7zbPRc=nO3Z4uzdC4zw59qfnv%huZn7f|@CLm)4suonPR8aj zK)yy10$`g{ROrjaP4x3++el88SZf=r1vIvDSe{hLWgIg8eg-(F_Aij9@x?R)XD5sh ztc&gO>^Ho6YV+I)LF96;32jy8eI=IyufI5!J7_dEvPA zV|oh*tA*#-gkgEhady+&gquCTaMLSTQy9k_Q1vPOA>nhU~AWhveGaOsF;R3k(e) zFW-XJ&=dsrX?wX-sQJ3%`S~-P72|Dg-TpbGkt(-tx^HMl@$$)YR_Vj_3!5?HuBU); zl+8nfT)q6Q(H^Z}Y4wx%BT}1CGb04hc>FTgi{1SZQl~O}`YS^U)}FBeq&-=P7(N1n zH09gX)%JL*zf!rzS@gZl?Px$gsi(^AXiV?H`_yq)y0^WKjiiEygqjl+K|~{WKy_L= z`|p`6100eEEzeTbm>P<=THavU15&Mq>Z7kIHx%+()ylOMkib7m;4J5x6_7yR&^!>W z&+_|Kp4yI!SIZ|~(>p3j6i>ePEK5n}M^4^2>1pgv>SAsn0=%q~jR9Vvq3U&;J)RA> zsiruy2HM=Lm9G|%Sh%t}tK3XF+-Xd)eEvA+!2=<4D3 zV?yLwE0uSos;UD+eA@U!I;LHda-quwqCvLKCx+Ga-gPQ-;`b;BFGp|Lnbz*raUlTjatKFeFeF=Woz zn{5Ffh|wl^gyViAzcqolC7pZpL^_?@EO_j1># zmY6OSE1p>j_rI5$@ex}&w8Ne8>DsP>eTIu6QB9sU7+ZI$E{`%JJ_0W*~?7k<-mR4EVahAA|H`q$$YOAb~afnDI5kO?BU9!o$ zJRi61?dUgwfo4_`Ljzxx3rMfPXJZK~lm2Ydbn1B2)v8vPx6ca0UL7aY=fze%#*CDgpEhy9N5ay4;;9 zvajgf7ZH6k5P7ss`Qc8n8UBu=zqpA%rR#D(^o4fL5l>^?jh;yVk`0JAW}@KG!s3~p5ybK%X9#wwNU4Z^~mPef-W;o_{0nk-dklyrHP(5m3zE4ku=XLjuY=r*Wl45k3| z3`Z<)SM+(BC}a(uD$kNwBC8aT{sy{eRs|?$1o~+c$J+v$-q|vZ02}(33y^X1zOj=j zfwi+<8^kAFPT-XO#JPDh-rv`}`?_9z4|K9_3y4TO?f^zNS35#eRq4*OE1>UoCOU1{ z_piMnAw{F^4(Qlz1v>hs{WiNat5})U46%I1qZg3-HGD@_<_?GPn}u$$l+tP_SHrPmk8qn0}k8<}SYbwVL0Ow}+Ma z?HuhK#Dod!uG(c+CXl^T83PQO$*wM{>vCVFCnewatTD-Q2|-OdW8J&>D7_ngb(@}6 z=32?xIhFv{7LcbDLWYJS=)BQw;6xcKr*7q?F3c;V20^b&HyA-1azV8=KI+WPXA$22 z4`pv24|VtckEiaaR7eqJiAqIOb{bkKYbEh#6bV%QBYVc}@5GzTfZn_w#vt?%#hN<~pzIT-WuymUEr+dL2KcE(JTrN zyxLG(JP)jSVqf74pqP4vfZOkzDy`dWrJ)}Ut)RB>T{%=%%WHl=5gjfE{zaFWccaLP z5tNkXfqz`!H#`8k%wKe)=@@ZwhwnnGY4IW_SN2Xs1n-Dz{t|e}#__?iq2`JDypThKX8#(5o{pm@uMyFrY*h`X&pP*tE#&NIe|#V3wB{yt>kS|qGy{N z#3s>XGyohHGi(TWIR*#=7j`tutyy!+=~?yb&>7n0kwY5NkY9r#h=+cw`)+y!+i%*a z)YfXsVn$V*_1SC8L^@i(GhVyqxuS?ENHlFn0! z%=q&`2mS9L9UWh7x$7WiBg)}LUI$xXU4)y!gxHiH-uqfX3^*92wYru!B6yeYrS?Dz zoBpuNL;Q83+c|1O*Mv3$W#LSVs1-tP(Lghg9{|nlWO&Pc)=*zs*ccWOEPv7y==?!I zhOdgfJfM5W>y>X5Ku+GJj>Fb zQ7Up${yDeRWQ*<$}N2kUBk4bk-Z1@K;vDzTY=6i z+n%;BLO0`2kZ_sQ3d_1yR z>JEyF$x~Vz@AoQ21&elh3v5sA2$V2=O%1p>4uKq{EWaOY*Hg4z>6ouQ_YFokgROcO zj98dF7!wqX08lW zi*MNrEnnXGm?GS<81l!{lh6CIsB>n6jCXc-fbC;EX`qd9$gL6pr@G}vfO(&W`j^`q z7~43nJ-ysbm`DLVX7!T`Yn}ZcBm2#-r>=90_*zAsGw*{Zs$H-T^cG!{s!OY2h@R4j ziPB?f7v#$nx#h5Nc?a(8)ILv`EX*&uGedH>XJHDw&|r!g4Pc5z$6EUAjfZJF-J~^Q zsR5Q3&w(}wM#ZKd7jq1}(!8BBap;@4hHWUYUtNkCXlJY`OaSf0r`FzEJjFnSSssu+ zw42cV{K?a@^c0GhboS=_e)A|IZ^E_BcA1Nm28RbWa7`$v0FR1y_LdmiIbwmGxMLVW z+-lyb0@@(qS!}I{gZDlMJVWA7@7T3YG{4%9V3`>Mice`?d04P3Nw(3OV8M=S+>O#_ zl~e2FibitSHa`zONC`+n;u}_a*CrNJf>Bv_L0v4pi64xz0i$C3nkrQ@{043y@lEve zWYDRZb|*?k8N8s|=TMo1xi{}*@~_*ocJu^;mC%NIEdXfV z2k}^y!Hdrlxm0;sXuIb%dsaC-L?{{zvFT9OqG3{cYKX8@Y8w8V&av1%2M-s?fq->R zK77nS9f^;nn!S1rWI6{{DEkWI;GV9t_ajJb#3CT)j%y@QuewtesE_X@TRc)e{Ih=s z5+6rJzbXJj&VwQA72qM@mN=aMPGBeUz`KJogl-Q`ZCN^w!hDI}>-p_L6ww6P_96#Z z=^$9z7?qv^j&d-pviw_6nr(+BFGU)%xsIcP4xD5h#Vfmb?^sV{6wv}{nwbKI9EOLK zoB%`ig;lb@!M^p!y{w$aBnP~)Y)4?A4L$*U{+hoHbnM5F;gRRdU<9cfquK_F}= zgL19e*L$Cvs8uZ0>y5J;jJk6+_~e$7S4hi4P)Z~sS{(eV3m)?R7Z~CXhFmX&4a2`R z8MzJ9_vVl>bHRh?ZD8oK+LuRV?uQg0lszj!7}V?<1+oA)&Ple_j~XjE8J14hk@!9} z0&JM09z=f|LzhX3e5#imq~h;w&+3AQ9Eb)(Y@CyJz2gNAE4O2}()xYS8cLfnbIX^& zH8%`hx^el`b%Gd?>Nkqe26$Q@zJY1!CH)91UepNaR^D{&G;2?xJq=dZQ_5*UJ8|s^ ziw4QN)D9}%kI)2G(V@=I^x&_g9#N0*YXXLs)3Ay%V4W=dmPWCC&X!h5Y;vf!An@&h zR3H#YE`k-L)8hn?5sZ(tY;hs`PB@HgqduY5TOF+i{Y}K7qVN}0$Dy9eD8y#M2*Hqv zj6DtPep=xnu=^cnZ|QN;!r<3;KxnRhlQ#Yy-VBL&W|ZnM5rQDp%n z->qTF0Lh(_c6~A!rb)EQ6t5%bmzZE|Q1>XZ?GF1>CtVsOBdNkYHNaP8fD|Fm&VsJ| zyCdq)RC9n7do+wT8L;( zm%zjJ0ilJTodI_?UrpN8b!nJp+$wefD5?BHBut-m33-e;>DM5cKt)^E0VTooE*60P zC7|z?f#I}yw?xB!=Rv2@v0KgCKrG9ZmfK-9ZT{lSNd)neV3KW&MHeBz0 zB;pPKz0SbXWs<4VrPjW4@(`7j-Vy}_*8qawwA#wE=5eC4w~uHH=;WK8xK5I!xf**C z_t*%S#4i+<^NC=5kfv@$0K_=ZbI~dc1MTwWBkEO#u&uXgC~h)kwc873Q&Kb8KhGq$ z8E88b^yQ$N767q>pk+1ixC`W54`9216^(#wAN&$zQ}d&V(j8D2M{` z&_-bEfzSp(Z!N~S>capcjPmfEosLA@oB7-sXj_(k=a{ffh@}FwnUvo43y82Dh;Y1A z1laCiJ#BZZ_=qCbI~2r{8(5fIir;3>r=fGHgmV=#^eq*ed4<{6WNj$akY zXE(Yd1Rms+(R8d?w<8c)KR|qv0Zpu1PJ4hQ48kfSTT&RUn)?QP4y*?)1i6bv>iW#c zb1K;l{>@0!Gc2*gpomq5Jr2RY2mZD~i?M5?MgU=k=gc1H@@M(3Ky+DplmXi2YMTOd znUwzZ7?3~|NI)ZO1rqG3r(H3C!v?R0$mf%+PuuX%uKxv%IoXZAw(_oKP=kL^0D+?5VP_etqpX92w|pntoDe@$r6X0%xfoR4@04jkA* z$W@Unq@=!NKm8+>vR>Phkh>QuR0PP-1W0-ZKmLkKQflW8WY$vy4U@B;@*eGm&iuAnrXo0VV^eyQWkET7UNMxgdjV^E_fxq;9~pj#R@d2Xw=9 z9=M(=Y6s}IeK~Fj`qVcx(`P0Scds11C%dFPvT{ZaDhsRX3d{nfsJF7VTkK(|jFe7= zqpcEsk zJP|MzA5BGTzqVwKe+~2=GrmrLZ3_qyrMJO+G{JnXmx7IQ>A2zP33|Q0h?>`1)NE=B z6*Mgc%F@$9hWlm;T0 zO3M(aCl!p)sXmQ%ST1YgMjL(R^$RybX68mPsD#2(tWh$^=`bAJlgfd1&hKQXAt9?j zsfBD%=^*L+SYk}H&C&N;M^ZadK`*5gwy&b06tM4+mg|i*c`Ni?`#QW5=;%{=|`i8&ArvUl7 zdRorY*4f|WAby5<5D#X0pBe<@MRDel#PtsVxjK0IqY`j<9VUOX{ShEPU>#2F&1Cy~ z5D%AlpZ=s1Jb67XA(FUpA0XF;t;!|msi#r4Km3#2Hj8cHK~(+VT|W!R565)@@(w_* z3&@R2Sm5b89W;iK2_T2nmYT)Z^B`(|^KR&L_>)}7>@RY#-7T$CPlJp$1Mmmb046F*LoK0Fs3_u$A^t9U{H?>^;yPW1Mij5_uf%=@u{et zQ~Rh#qDKu5mlG>as(}jRIYI>VjL*2G^ya+qU7`2N%5TGfo0lbvD$WmY@io@#CDCJE z$iDfDngX`J|8Ps{J=A?gMW0plHPEY!ekehmv`_51Fh+YZmI~3=_B;eLVOaeFGf8vy zF135oE>2K4WIk#SEWJtJmUu)*i_zhz{7ZP2usNyVh z{8FHqU3~j7LdEylr0bL8v0Gr=KH33rOAuqIwP;ivMxv77%n2+H|4B_9S}b@56Fr29 zUH~GpM#VlPD&C>+)H1)JhQ6odav-2+j$ zR6k%U@T4{sm?oVH$~%S!k^86Z9*6FY+m!N=+9Q8IR(4X&k1|CDY>6+4fPkxw2 zBelvBMsobXhK(j+<{ax&Bu*c;y>m8rkP&#$Q8L+>bzBJJX)_W@K?`e}lG0PDw_$_| zS%3%KhaVIV9@Ii=RVKLQ_@#RwR0%Uith`8^8+eeo^9%5xb77UckC4emtlfebq|Hbu zMOj#zkCdKF)r4oXMFbY?N|Ir?ueSp-_cXXO2Di0nWS_qlDLs)oDhMLoAI#n0(E2fQ zcD;(a5}{)cxXi^QoHDabTLKPkH$g??e%B9}iARiagQTG@Pe7kxo%g`W+JJnxTL@!; z9Ekwf7qMah>_7HU)Hgzd0IE+)e@fBJWEYZJg$Qo@{A1w9+;Ihuncm5`@j*jfj(|SJ zI_QBDwrM-hN)yDGAV;{)Z1n>?Ce~Ro*9dL4O*@yA9!Js4WW7{EM z(OX7nP1lsvCsfUS(8IFUgGJn55&H;ekj+noSZD(Mxg;4%4b$$EOr!`SS$>P|h&_Z3 zeb&ZE9GslKmVN|rX?KU+ViIHjUjM}igj7+7K9l>a={eRcD6}4@p9K?c-^uverlBrD z=rCpVxZ^@>O!Zl_!Wb=NZU&H>Rp<+jz%;5PhU8R^M&Lq_ZFa$ zdj#xsB&>4t(N<$U)@C7$qK#VwC0mi_;XlKRxhiEe)?RrvrBtkO%N13@m+PtP48Oi(_>N{+w@ z0p;8%eFv1Yz22@7C`ZP>F#;h_q^!q`jKCd*OVNk0a#Gd<<;2+~GmbGp!*B~h8I(uv zxQjMzr&$lTVI+}mPl0+m3sFElq$7#GIh7s}IA3HNIK31o~FWI|Et$PV0(*FB_iq5r+fqs(4 zW^^)8(OqiterPi|=~9#{?Vl3~)(6VQKt&D~>Oe)lKt*LhMSqY?cnEUO{WiHH))CB3 zu*4#8@ZR&UlD9xbo9pcifQqF34I&UaMP{d%8zXSrkftYCPl0Pae%1h9XmU7A* z&O&A++%aUV3G-=t;4NhCLu$RSwkxb4 zSMYYyiS0R+Pmhwfn6jP9>PU`k`x?wfv6wM1ti&(_LV~$j+;bF5GKswVQAPFhpdfzTAcWGlCzsFEa zS%hp9uE8BF6BDODD?(G5jkRBdI8VMxm4dTW=RSW0T9-bx6^*K085pBhXDlD#_|t=? zS7a(?AhMLnF-C2`ddePPG)iO&+9~pbtfmIqqRi}!o-29s_@|;Qwkv-UNfMVq0_4I3gC{qXJbswVh z3~GSF%x8YK{xDI_^=Oc^p;N5yP-OX~IE$k8w_LINp^qOLbY>!go1%|qtenqu@dtJ~ zXx#(sbh^xAA~ka6K=fL`)&88yxP~Yq^^$6TP0-4y(&VL;AO0)jKmEUH8p}f; zpS)?+DwDL1qVnlH%UK=vuBz2sT1fXQB9;V1AWAL}GH#Pgy-uWhOA zXy-G_qcLfWJEu9nFjsqgX|-;2t22Kikq=dfot#pX2xgx8G@t?cZf}td4xWURjMlFX zSh}X{tbOhef0K?VL~&YCsd!OS!ak^0Nl4ySt8Vx5Z9Ge#Bx(7I+NO(i^m6<{KUxjE z@u9*sP*LpZRGDjPl0RfpD>dLZViO&yd{9?+iw(Z+_@XJ_WH(Wn-QdcH{vKO}8b(xQ ztH=cyp@%o^z~ue#3_0$LUJP5RH&ga7P?Uy>FTH6EER(cMp<-TF&HJ_M1}&Fu_*s4J zgFHuw(6r+qWEexW{3co!z{Qd*Kftg|gi1^B3M14pBgFMRv%c=il5#OUXldRh*wJF% zWzGe?()JUfbxUb{^xC}nNZ9AAO*}hC^mZJAE;V;8z2zV6soq`dqTB3|EQ1s{1a7rB z&%C%VYI!6UAM-R=nA)*eH@S~4&)G=O2i%(h_a4!*TU_pYnBsu@232x!O_mgUxjQi& zYcSccQy?8r{i!X5p6?G2e=Fb+yZT|m{?IPT?lu+m{Br<-uNh4ph;`L5xn|0TaXC9M zm&I(|%xz*1nX&W}jS@qIsKb|PCcAp&IR^pD1CU`X)e<<*?SEq#p+O$UI(m+}^(`G= zjMVJQ*jbld@7SX)K0*KTQPufH5iTQeX||B|n3Wnt#8jRIx}u;Se+t z{^hB|&FOjkqGB=#4hF1?4Ux;gWT78(>y0J3IR97$aK2_}GdiQcQtQZe;zDqHA+*pG zW?He^IE=5K7c=GEv!dOVEG23Z%XCZIW%e96uGP$N>=uU??D=XNEdb%?+upQ(E0Z*P zO^p@#^&sQa%#B+T6A8pvs!NnGXRSUfdXirpaTS~aeH`lw!affvnW1B^cT__d5m<3; zwc1;Nw^+8G){V0jUwjm9>HoB*DS*|yS@tOT(LobdgGk}RkM9Q)!&6dWUP*uQDxn(c zHbY;A6U2jcSzKP5ggG+$EW`iebszA;D!&^zSBAkgyz6;7l05mdg1<)LZCh2>N!UUqPE41CW#j6d8%c+Zd@$&^yhA^f{s9=9^|A$(#2U-C)vacw_PXq zK}ne;IE0sQ?pnn5fKvLqi#5nY%bA9 z(k)!a`tJ5MtsiLffDtQOq-bF}sNMY~{*tSm9*Za23wPKZkr_k?aK!W1^0Isn4kQrM zsIpPpIH&Yk{FD4CzYP~-4h+YRK1L1>86Nw1V)iH6dy&qAIbtiZ{4s4bSw?2Xq@GjCu8U8p(TA;PI!qtx1y)3Vx?z&@n7YoOTg&!K;F$&FWUYf}&?a)d zR`sMDu|z-+bLJ${aV#RZC-`J_6AP|F3HjiVY~abTN%U}MXw<|12(2$s%O+ONg@r3;cmC)?WjtF6 z*5`BR36DUeA0Q~*B!zgr4?bDXWmiIY1+%-DQ`t6oUIG{HFISG3>9TZLo&MM!&X`>q zdgAOoV)1n|+8DhqY8!@d)+>bG@Q_X!e_;0r_U_|#!K&j-0dyvM2&>@8MH*VF3NKgWcud*7}uo>sFSnyNFci-UfiM(Zh!h=*jL zMi8|fbt;>NY3?5YVtP{e+jjP)r+KhIHm*Mp6xklAqUkcJ@LCRk_m*mz9+sI9e4m;X z$u-^FvtH4%AZ{=b^8)e9Q`9wu6ST>7ma{qLb%_Qd^~RCl!?#?RK)5uz-AF~bYKtm) zi<|+g;aSmwla%tJB*zl5s-{igi+}C+CX?-cqfv+Hf|7KgaT0kPdiWv{DbfTbKT-&) zGWcXOSA|aq;B4x1|C2eDe2F$j_8z_(T8QK{Nr!t!7i($pj=j3C5lP1c`Uz?Eb{#aI zOd!%=ihzq`^K4><*Eok~yQ707hnC1Zx5j&FMQHy>cCK(y!tzl{zzj675YXiVTg z)`F<%ME=_R$ zv-e86a}#d5X)C$)m1FawvNY{QN=e5>){Nb)c~WaZyKO|Xiu$tyAfUWuw6d+cWna`@ zn}lm9V71=%Km`vMrB!Nbc=yDeZdW|3o+N3=g$TB!v-bHY7b2BbUjalar8{W#hKCJw z#;%?lIb+mr#r|pAY=T`FHjYW7jMDTzJ&-w>#Aw{M54vR7O$&}+?y3_B%5&BxNgBMN z^gO1xoZp36XrkAM+uLJYrS?Nsce!z^G#grvvi&#d{D3OQgKm=db$nTv^ujG|{ZOIq zi1qRFTWxo@ih>&{CMJUkFjNQA@?7P-Dl?6g$i zFbqN2joUbv^jUl&-$ZGB)mOP8@+I;t2$6kvjnLYnCU)S3THMT$tbXLw_n*WW*VUir zD9*1vyboMNDwPM3^`##B`LW|-Ki`spPL!0l=9EdE9|G|nVz5a9w_rie{TAc}5aevh z@37bq1;S$0dJq;{FDprm`0KrOnS6|x`jzjpq5xGZDc0NxOlIi8s%q{In&q*sd%MyS z`Hc@Lu-BG(&43wqC5FfX_L#5!f|#8kJlNXA z%KEWfr7$x-!RBqE_jRW}>zrcwp5ey#m3r5!JQgM@SCKN-hKL_CTHE?&O%Vf~iA76%6 z2gCJrJey!)nuPX3*)h~=Ak4$hAzWdE`F{(O(tDf9Tt7^k=pEo!>d{#I_2dJV9j)Gn zKl)JvjtP4WSlN_Um6P|5dCzG|XDl|9Gemmo;lx;q|u9?5l=WUDX0T}nYjZD_3Q zLmzpNcx^Y)ul8s6>TK70RN!QDYe2TEI757-QD{GOiP=f>C?Bq`JG>(Ihb$!hwY-&5 zCV3X3<^qHbo()ENOe6$9re;NK;~0oK9WGb;+1|pffzK4Wfzut+$WX-6V)vffJremSLHdEA| zuD@6mFydy)9{s;8ZcLTeG|O|=5cGxiLFJ0?Y_2(eY47|`A-n^`16MREFl!kthH8!B zg#O)|BQjb?ze_Mu7-6uQ3c8la9Lsv0LrX7<9+D)_fOwfg$@(b8AvMvD+daKFC6?sS z!-+)vDT5~=_Pzsb-5>LJn8u=IdWdUNsqdf4Un2j&(Bf=uYnuYJ9@`vQAAkWo67 z;{MAEPq1eckOF%gnb%C1M^yx24mF1ytuU^Wa?s8Xq}p$LCU0==@{M!XW*_Ts0RM;r z6_9`K3q-&6g;z5ZJ?Rx~kbLbL=0No3*Sgw4{N6(_ssv#!NV2+PZ1CmAaB|4yFzV@# z-CE!@(&ob?okfDWE;eWmn`nP$Jb{=cS3L-jI%%HMN#OOP6OzxA!L>CCEh-h- zTX1alT8R<+lJ?-X@qxL6HDcmFawLJWc!lJkOSWA>`LhApvXJ1f@>WKf8RqFE*s0g0*jCLRC|Vu75KTCd2~AAWvde+Accum_{JNz-h*tB)S_R_+$Y$ zDgP=?14-GzIjmB@Rf;D{a?lP|+6!@lfU~b_Cb9^b0g@>p<2s4HJT%bCM>}5gylvsB1fC^Fl02D471cscmV#8($MroAD>CpsyhaBt zE1B6d{H66m`MiHs;lAL}3|T{Hr$mTATvQ02*a3s6gEC&nJ&Q^o}}|w9oi$ z3U_qLI0$ubp2Q&J_J6?9c%eXdLm;4oV7%=f&jNRHF*Q=ZNHxEkQ0(Btr zTj|`XxJX1OSZg7Q^uL^A-2<*Y#xe&XY8^6G+JtLu8z;vv5ZBr&g;#;KEz+DPrp<-j zu;)Lvlefn_s9qiWPOj-FrFFtp$_5#*NKZ(?(1N_HQmX z9ltF77ngRDU!%JC()`NcefH0*oB9)bE3XWHr?oWSt^Ri&Gmq6X>~OzMid{b7!epIb zvcc(~6}aLWDX)vQgfK|F<8v5NQa*#V&lk9mvbJggkSaRSK~u(;-@>TtA$F(Nvgk%V zcID_#jnnTSzfVL11Z;EZOQ2xI-zKT&_FH_vckI=L&y=2YAchHx2*jB3Tq*b@Ko%QJ zSbj!jiXMPdprLp0MD4qO6UF?w^F(i!ulvHr#9pOS8oLSUe#*FtUP+?%+*GPa7@lzs zaB3}bECdT*hnZKY9Vq$FiN90`mWpn$IOSdkp;{nLIf`< zPDT=MXxh5*+2HLB33I^H>&v$*>wGN9u=EF(xeVK1;O!O10dA-gryK)^M-PDx&Ad(Y z2jRUH$~~>7lC=xvw+;nqL?Of{CF%5!Y^lod%ACrsXwa0&_DY{+#7`*I%#%xC#nSt5fo6S+M{ik;~`uq0S?7^AdPVWyLo?TTLAO zQQ1FR$OVH~9}QkfO}BUqh%C0%PTUIEL%;e(NgK^Tk7eHcO-uVrVBfbWBIZ3?NvT#q zsmZWrGsaaE^8*|R?-b&M&djZk=|RCA`}dcCM;bJwFw*V3F3yUud({Uew_I^-t4nCb zuk=k}#cvOL|AK@3k4)e;gDI%CF{7I0m7k|87{L#mw<7U26fUGGRxF&~Y!_Zi*EM%Q z7F|U2=97xk(-Aso$;&=l0$_P9L99M(}M4~K=3}+di&scbI^4dt6aWx$6Kc9^zQZrTiSDW(s3`Q)~Zh;o2pJ6W? zko#<+iJZXIiRE9_-?RMw5(KF2u`(>kB-l#&Q*A(y^pLERJ=)()Yug6g6+p$!$0yu7 zoT1i2bW5?V@B#Hn8H1CW8kiB1yYO2K4>%y>ZM_H?4xJa@J_pMoW0qgE2%Hj6x6(v4 zuGYc*bUs7yw%yqF>q(fUEqjDJIx1pkdOG42^<4%>C(qteU8={Stapkj$w`4~ivpU$ z4bKV}LNbmnNG^ib)qsZ$!Sb*#^O`AB)k_J=imj41SWT_i;;5Qru z-0rmkUx&Dm>(fE2P_NS!tB4_^r9zfwkAH5ry0xgypKjWm_Ame(O^X{uL9lVUh8i5M zfxe0f4|zT(b0~lb4hKi=^9Ct^cy+vi4%U=sEw9~jRg#8M9z?^7ygei1{JTs0!6C)R zcM~>)JM1^9lMyLtbj&2`wC)lk{{5ZF_FZndR}1)D=<(AN%n!DobwJQ5vUvwO8&)&* zSP3lnipb(9lXz?!rr}rx$omeZye_)S)YMFQwVD!9K@53_3+u$t)=o z>{M^lpvUSh_RmL^!j866OE}kDGwK9FylQ^9cWz{<_OTJ#OXMho1Z~q>dTv7WXAYK)6fqO>pG&yUVSaV=Q=%v#>P&_BdY(-;g zZw&Ze<6u{RE%ylot;XsG`An?}JTf-CS{$3M_c6G1aCp+{r)FKp@}YZK7&fDHsE&A} zv63Anh9NX~hScV@N56GQT+Szv9E!ddsSlAwW#yx;dk`J2H`0l(vZlUnz_a#&6S-!m*NW2gPE4PTx~loTOAt=H7NI z^6)0!1v@%$V_x)8tB+>cQb$MN}1fkhwBAZW+58Jau>) zk(;Kw#8lE<>d>v#cq^-~%f_#ArcR39rhA}LZ1Kfh72HEBcW2D4ew^Wq1k|Y^)sc8g zZBg|a<~H^IAfI1?tlIeYKqB-gSho!iHSoLtw)-ot-3PdKhlBf{cE6Zg`D2Eb2XejY zu3+8OCD}U3-BszeIOtDo zP?=raLHl}pVpauW6in33cTHQy*DQRW)(uvp$pl67w63zb(Se+T8T>?i2`b;tdjvS_F}j+4QC2;Z2F)Pw&|Jy1SQ})E&3esm;TV zAwQk-X`J-lGo`c&;B%WKFqQi}btcL%vV0Xc*cYqaJo=-EHtaHo74qqN|GGtY<+)f& zw5Xh1@EmqSnL|M!vj5v~gV2u*^B)Ps2&&f(O{gJ;%4z9`law4tQanuXLbK=g+bJAq zs&8zWuDvp!%A*@{V@W`l!yF$?Oq~Rqt)r{j3ko<{S+|saPRFnS+b9T|z&sP{;azmM z$>G|a6pTrg9d_QazrXME95$qOnYl`3nC2%?<;~5Qa`@XW_*=Tct9`3WBYgU+&tFWg z!jzTy@`#-Fj0$#{<2+;P8n1p|hi9E7ITTP~(9qqWe`UChR!zWcSya&F zn-pfw;2T`Nj#e;4YLw?jUTCAI92Ps25Fa5uOb5;8Y%G!bLv^l}x!k!gH~NwwCfn0< z`MZMK`_bkJ^=VabVM%-zO6SIJzP1AR4&~S3Q=c8qu*x?{!p*o`#w0&o>vszOQ#(N^ z9Dml~^15Wdtv|@Qrz_CR#nLBnUaK4reBJJaxS2ZN7Zy2{r-h3X;=elZGN1tYH zxxKv*ybSW{;yh@dfcE0t)|=Rw?n?EWw;C&$M5WwSHgPo|&@qO7n3IEE`?Ed>Ri;iZ zGQUf0wzrrW_xRR3d2C^&?VjZgdpXRmC2NvHUcQZP?avoerw^sKb*kOwv6w4S6?HoL zGM`#8>*GPv#wxAKIrKzF5G|%%9Kp#cOaVaY+-~l!*E=mPN;4SrMQGmcGuus90e!me zRsf}X5LG+&5RKQ>s+8sHe?LWcl^xMaW>604vwkSPT7Xo>hiyl(i!-^ox$bn%*Yn>h zka!F8A}Q?sGouxMAcFb(Yw$Y^GBKc8U%c~@ImQMcu{@wXF{{7EaUhr#dfF}N+! zy-pG!Sv|P489f;^$F3v3-IZ0#8CrF?$@?RBb)n7Fk)|u7)Nf+b8GZdr97l_{1xF)^1_|Z# zWi{e2W}YPeo#(H$g%hq`9LLaXwt=|_Cv0L)zCy~~yhR=(M(93h%!-yE=xVq)`uMng z?7VwBy z+(%f1s4vI2?1QvacX9sU+=XBEk7zpvjI}A5Q36^FT9LR0u1qV7`7Vv?t>&cG{aC92 zo4tgpJ~PvVp4-1&7=yEU6nr=M{XS3;kle&zB^#lw(>%O!q*l;N$^LAkySlcJgB|;O zWPZxAZQK6uadiW03#((_RjqUc&J{T*zRNu0N?>NCTog~WPNNoFwq}ajh5F6)h+KCFWsglAMe~TPI}{x(FQA>^I2o*a1I$32 zJM*)D%{+KB+WL;K_ajp4CX&O8Z#H$`*A`~z`twlCcZfQ95Dm&3Y7;mD5nkx-Vje>G zt1hY>RTOOOfrFwJN5OKiNhNVd5`%J%1&-bB$S-0WD!!{iRDNS5n~OSKeEx>2{%e@y z#xgvx9}-s;=V~0(s2kc20gZ#xUnOfhXyTE$9TCJ+<>evm;I7`)`2erJ(v-?I(Q5(c zxNxl$n)0=iELBexXd|><6r2whOg9IJVS@u(>vJkqw`t1@Vjg&UEobrJ3GydQE}(pYt7h@d&ojuWgt|DGy!B!rgj^IywZ21@zii6{7w?Ai7azD_%i0Bw z4=rafPopTZz%V;u5!VA(_@50kv9=HmswLPUcM|8YMFK?YII35t6HA!IF9M$sJ6-^? z;h0NG^CnQ)@AbEkhBkFks=z&~gTIxM>0KM*i}7oyTk3wVILs&rucL(13(v7s4J2UB zU4L^fJ5F{5?pi1`&#z7{=jx94wMjwZD9KthYYbO6i5a;ejCpjd z34{YD1PBKoN~1tH(Ai>&wg!3jFHrxjFvknIp#=r~K?`*#?Bdv{)Q_IKg=7kVp?<+}$jSIG##-d9XzN5@?_g5vA(8`b%m!whU%keV zxg%c@YM?Exc-~i%uuY~ij!i%7N|I23^4C4S#%l-e5 zPj{*AJ|=_tLb+@*B&2oZdNAkHJMwZ4YcVes71p-X5o_TeYZuy3HimR;X?MuVirNkA z8~j_%_CU>$cVfPZ4!P zumSx2%Y#2AJzW8Rw2h+lyk#d ziFBM@Fp6K}%7et44#D}L5I*>OQv~FL%ej3XiUr5WMX^-t2h;*Hd#19|yFmLXWpM3O zRsQH=bJpt3sf!i?Q9AO&O-;>jOloDP{6_A+4&cSV(|UV}nKjYxb2B^)HFW1Ul=&B@ zf4U664*E{^2g0>*g^T}NxO$-1EB~oicFBO-1aaXOODz^$9d1`YJ4>*x(;-$)NFALO zv*NQfUJhjGLMwA|8U8#X#C#A}P*oY?0XK|gnL?Q0OWa5Te`M)Tq#Xv4B<|ml20VIP zUGSNGC_8A`yluT1ZZ*X1mrM>Sy>%P{N4M5vNz7@fpLEh>ge?foUMF zY0my_nrRP3ucQBFno^Lf>(1qYk|VWWmp-7quAlGLjrPu;ZYIR^x7fD2Nt6B^7JL~# zU07LsjyJfy%0BcgehewcN9g9x^RmS+xAJThF0+1tgI2A4;B<1`O&!DBnPf@tXtD=O#+Eh0-)CU-wkUQ%AP-J z)&Xm#idZj@z1T42=8C{-4-Ax>=wlm4uS=}FUa=hwiLzKdYx8Fa`9CK*1Zsxb+t^=j zlDmVRb^a9P*KxG+bDK)Z&5h2Ds%xA2KIb3O^=^k5t{}g0_1y0e^64atEu>vAzsl;v zbbr^ot;BM3Dsk#@k{f)i5qesBIB}{`;c73n5b-d1kb`|Se%s`5p5K8y!>{({-R#_4 zsq!jY-Mpag!|;u7*~%cAN$>8m^M8@DE4H|l-&sJ;juJ0kOb_NXIVuoyX2$wo*4~_A z2>02bo;ggdRPlIGx3jNKNHsYq_c7Ubcom*K;MevOgl^r(*@GLlE@<5Yi287m>?)dH zIlV!>(Xr=avx51-Q(%jHz}z^dalo;e3Sr;ZdAyBc&TgU~Bu(BHj-cL+&7LCb>WwY- z>DwkdkXL8A3MR;EPR50PRIj10p$$b!+frl^liWdiJXYoYu^20tU6%g>0VQ~k6cPno4f>?7u zE3H}aGJ06Z-+vEl@P2b3#9KIleko!hT@%8Iqr9^8nAEnq=R@6|(0Q~A6GdUw{&VTv zVCnXgb~HB({zJOO=R97SZezW5OHfvJ zw;c*~<>Y($zSdW9*8>(SUuVRqPBnDMJ1#Y`b!$^XVhP>u?}n}pelU@^kKmeY>zb#n z(xB+}xs2|4;OTw*L#yI_M4FGasn@&3f$@=M{HXfT?3??yP^5Q52tR++!fhLr?&_C) zP<`8q)-M!xwL5p*NcTLG-4fGMb7`GO)`tf;tqmCNb0pRrz?}p&%-}0V34a%ji$#pa zU`aYXl)bWSsp}AAJbA~W6k%k_>m|4~J%#Q0%aIcJtyHuFlR&q~=81Ow2NQMd01;rQ zviqg(nXykS@%w!vE`8rdW+w!s`ud3TH(AqGu_{h+W^aql_~2VIygsP{zI|4L;Y5NC3nxh zc}5LoSJm<9j;+|{YRZq_wy_0gyjKh&#Eair{}ZXyoPuwWx>~#fADxffVx^4vV&Cr5 z##@NT`Ujj{C!)Sd)PGF+|A5$M-a>)H7d!ByYDRt8YEH{VtE{{UM?XsyS`iQPI(GEE z9GJ|-e>fR;L`sNph4Ue2TNiAnSJ@bJb-Xi_-K8Hetm5RG<>Q>Y_5X-4`0MWimFH4c z>I=8+Dqf5wYnAaZtCh4+Q@`d$ubYb(TZ#MwLlthZLQ$?W+Y43{mjaQPx^(&nwf?20 zl4;S56+dI!gnt-8udk!@hosR$+4ppF$3HMv6n6tz*lmibD}(sg0cZZ1egi4Ig(31? zjl6}}&M zJCV5HE64hP)d zTrcbo?OM)SfvSqEchzvnu4coC{~zNQi!SF$m@U^WwtugqEiXO`wwX{?bzQWG`#6aWm=oXvnR1?j-XF6kzsVK^ zZm}Zf6upPOc1tgX#NSgau-us19(vZ|A55j~TWHsHv;oR^Ox1~9mGwsTCb16nc&u(N z^=Xm&JDCD^=iE&nB;$%p*MV<=N4aeW^~P~fZ=6t7=SnDfp{#HOL<6F$7t#Kw?px0e zNb;HD5_?MbcydV0vwsL7I&UGpzL1x>F=zY(K6iC=%u$Y5yQ|FFZ&ywZCmSRW^Ri;I z_0F+eysul+pbT0G(vqM!d!Dk3J2im=Hk27PC%+68_Q^~2mn%{|rf%h*JZ(8N5loGy z%U4&cc5Ki2hia|hVJ;V}Fha_fM3=pD-b>YRjIo$e347w}R}ptxUTGD+S>ptS8lXV*{RFz6Is^~ad;o(JfQg#1n@NFQx=_)$| z-PQNGMNXjtxTnh|5r0o<*3pgH@I~eqbn3YeBJb1g`p*XiT`~V4Tu_C*(dDR0CBAg? z1n&sM&_93-q+wKCY_`rh_B<6_kjfMKORN$2+G9_}o;*h5Ue*;k)}HmvfeaAcye@r( zs>Ux`5{-!TJWTXqd(>;S*}*uggBXwxYwkY4iEqFdeK7F{pnckQ1b{a5GWwH=s``Fs zIc;ZwgH{x@y3-b|oJB*Pn6WbbM>TAx_k+^XW^@lFQsH(+GocZ}*D_ReTZ5lI1il9u`p}^`qL3P>YUjpuFeI67B zV%{GwQw;s{E4hlsoO@rAPUI=*Pb;IPcUqVF%z9YglUN$~k&&YYL2fP?nRSt)60j@3 z|6sD^K7y+OzBQlSb^`F9`CNG=CuvtgaeQ(y-wt`^!meU133I8IxKoI#c%&X z>5J}<^&ab!lFX>>!mgnVys(RxnkHbF7te38Dv>lVEH>kDjy0fy%V>E*H|+%bK!S0e ziphBly?v}J`&lO&J}(a3HWw2w4nx>ywUt-BEj*#o{!zuMW9oe_mKZYFZMx-hy+C{a zhs*lZ?&Z1UzUy18_D1gTKP1h%xKTS91`^LO0Fq38W(o&vQVk7r&bP&47pga#Ri8&K zG_5WzGzlmdNv(eG|NrQE^LVJg_78YUMAj^+WRFoul6`9tWvyfxLL*BNLWr@X24%?> zvMV8sW+KMYP$StwWgB~CEAz3&$1;ZJjPLip@89!!J+h865U>|I5MOK!cg!WSGT!Y^Y_MpH8XWQ2Xz%cAtakqN+~X8;)pauwS6(>J5v-v`o)zqpE%^CohF;XDK^d0H+J+m( zMjL+YMC6@e4Q|L(F6W*uL+{Z2Z_HtSW+6a9Y6n~HPn^H$T>X1M9XZ5hodG|H@ zoBiwUF7;cBy?ehtxR5lb;0s?VzfdCx7gu#$P`5;nBohq4gPV7Rn!;9_^j>FkyW!2;8uEM|7nF8jj z17;#cd~n`5=a99#uh&<0CvzT9$-4e(ehIFiu5qfUy2~wF314rRq5r+P=CJ8_M^m&< z`bd@aN<-yeO_f@VFZ|QQYBf!rCWFFHu+uVp^}E)+bHMwJY#5bH{l)phLHwM+z(erp z_8I0_u(!u!_=|7|~l_D~_g>PMUCh363m^+iK<#b<&Nl@n*xE$bQm4 zQJlGnjPGW{SSOZm5z+pxLNC5^=BO+8_N{D|M-*M;6h$lFgv#FJMs}yih0KsPi?)a6 z2kx&)&-F_mnX?PSpi({FUkGsR)T#bM-BLk{N|&YtqZ?-AOb)!?WdyE*g0EM_{z}`5 zA`!Ojwi&U=;e%keoabsy@35zCBeG%pWbWcff7GE25woz>N&5I3 z#!|nlZhqNJO8ba`vg!$R*DH*~#q8SF&?VM0l*Z_1E2Yz)oZNKp_j{!WDUOD(T$rgV zB$~&nCd6rRO(!cfgmuktEd@?<@5OISZ_}z(e)f*8m>moRJfHo)Jj-gUbn23*g@CQIKj`_#WPTDM+S=$zSVLX65)T^=3* zWifUBvLAHU%eTEoDi53H2HTz8VK;yEPR6IZF1mqwVi20SZKDO}oTJPdC2V~&?n+vk zT#;-gll!k-_Wki64p-}17@zid|2~LpF|#jb@1ME$fxW6BBV$t&jZWEQ1xPk0T{Yp) zo@zmKybx5<-Z{N5tOfpU{)N(jc z#^hcu;Px|IjeGj_BJ!u*ssraxO{e`MLY;!E=%Sf+1$lHa}tf`V?3Pul?6UIGGY zB|kNSAd_(--k^_!{({PH@{^+BeH378C! zZ-p-DJ?z-Wcpg@xMt@2=?b$?fnVU? zzU6Od_%}qq-_Ua9+?%YByWRbC4^!=neaGlzo${$$FMntEkwwx7(*wCFXop@eRF9hd z|1>eZcR1bAlW3aZdkOzc>XXP(*wD|DHD@!X-Pbo7)d%7%z!&=K*~FwT5Hem2tBsRE zZM(Sj=Ddy4@mwVS6nei2wR0Ce3>e$|nLoYlzv6_uuK8cB z!;Rmp{G|XD$5*~TuytI4Ay}?bgT;KaH(3WrP34Sv;~z^l51$-1J$7$XzuSs^yWW1) zWi@weZit5ZI$ys&ySD6O$XQeIap3CgWPaBB-B%=n3wz-F(5a(AMYm)smXGY_z!1VY^G1%le;_4UUjStZ$=`rvb@#1gpE~`K>1I?b!f_ z&^n6ox>geRSh_evc5!`C^z|@Gk>%+*t)8WUV@Aw)@EZGng!T^jThZHdrUOP%=8;te zQE?sDBJde9sfKvGxlUugX=U|;evxb*lug-KSPij@ZPH~{ZE0dc7Qncs)Pum;85Pe-t6g(z1`ur0=GzEF^H9 zlB+{*PZVhVOj4i9cM^jDDkfD?A^u0gNF3dkA&}zdn7l%X z-iP57gqvf)_35kD*5L_SpkZd?mLnSfMuU)QiR3;D+=#}(HV_b8y8;4&M1NRiVD1!y z*v1Rfy5+o*pS$<`Ef_RvzHshIRmGn*X1g6~Eb(4{L-utSc`oH@{o;YYMz?9aZ4J6} zA%gUfoz|#~>3A@_59=fWsZx00W?j^gv;fuW%|OP3Qh8jFplouF#Z_fuf5}M)?vRwt zHfGTrbj9_Hv#IIxsX-@B&{9u5`g^>4ulhqb&pYH$+SX<}ZMis8*i^)u6?03K`Dx6L-nJ7&ymtV1SjTZ|3El3r(=#^kjE1yF2N`z^vA12eXx#_ICoTt@;$zL4KI_ zEzoALZreR~;RzE%I=r8Obo4Atl>;os&d*6dVWxkl-l?e?@=Uz!8k$l)fB->09~>tl zdUYk=Zq&1>Rgw$M{U(b6l!28gMYfs{R&9@m$_Tr~8H|ANSaeIKQWUo>XFHOLKo}^d z0%_o`w$+fPKgpe7BTS7BaRd?PJLj*j`pWgE*9mdy1m-^%$|ZO$6%r+DT%#?sw8%X0 zf?=!1$JU_W0xT(#otD{a_WSK_@k4Ah=^_0^yd}pHt*c!7*S8_!elUasEa1=@*1}ME zb*1F{RHjEo!GCH2Y6s_M?WN|gdvzV4e#tHx*UNo>r6bOaLcGuMvs=p;wq5Bq6G5|L z?icLfReyB{uilx`dVtqO3XyUE<_=5IlAa$iyz;@C5y99T`~pnJQoMIK)Wg?XV*Ix= zskU-z{Y}Yej(lIbrp2G%lh=EP*RUZmR`ly&+r|*Ydtf_AAj$7#^2*viHimTuIBeec z5KZ})gi7@Gg6@w$wC@g&PHt?!Wd|!+&PU+P0r~i=jG?gFZO2S<+pqZ!jgB2-7vJ${S%99rQ4!Hb{> zjcpG^_rSX4EOLkkk9J02b!c*Ui&W6Q`pTbLy4N`Pp1)TyRO{AtLgDFX#*62+yU`9F zgnO;^oYp_5?})HscD1!IpqTKXe zx&1>4^5|ehNcG5?RRCHcoZvN*p4~XQ{pBzLf#7odZ_iz@S+zE7vbsW37z;QyeZta? zhEZ|26`H(O3zXGJ406{tW%t_ZZW_SqM1-yftbUF(`sw%fN=bw9$2*He-}4^Jj&IyN_hUl}noR+GliGk75fzm)QaRApw8Snu6i9t{a2>cIM6oZ|LEL3(>a)9e=q@(B!{=CO$MFWR_-c>IB_n=q9$11ufuWeE_<7*I6A-sy?R$32A#6y> zIC(1wNQe=01|94K8gIR;cX(@Nk5EaCrs_%U)oTUU;`Y|5jD)YaEed$Qo=QDS>A$aZ zpkdftwbWEZoE5WwUyH^!@DA=iR*btKJZdYj7;Ln|xAzT79jEm-p%dUm&DT*sfqM%V zxZEMEb^3ULIeKLuEAf8ij7KD>ImE0Nt*2d3n5?(zkdGkX7uFV{KW-Y&6=(V(<5{sJ zR%WN{-%cbBW-O_aopz&?dD&`*^$5wvQI8MNq5aSP3rzXi(zSNx9tqs3|TXgU91@KU#`H5lK2-JM=25X zaA2=yly2dJ@Tg@#=nP!Omv?Z&h5~SF;KfUmTJR zm~h*>WIBQa$tzO|`+gmU+83~j!kN33sp|lTVNE!E+U5`MTdMfpnt}b^+<4 z*4*ZtmFvrThwX}VM{#d{*(;p8AF#UAm9KDry$GV!fgJo*R?N#HR(lV*`JRrAHhS^3hFjR9Z@09>+1nD3-=l55_>R{(X{23V#*Of`}Ffg@}8btje zsoirYY-KGzZL4&5p@+`p4j^Y_;P6CC84XqBsgkYLDFrn>&hdMgyyBzBjjyLSi-B3G;P=>Hvr zksyqeDg)>Z67DG$?p_x29IYK@)7bcx2wol9sMq7m2Q zmFZA?O3(PX0u=8qBKS@)i*hJvS6OdJ= z+)wc|vOO=_!T&C$PS{E00W;#Rm?RK~V~kzL?67r^qjErxdFx7(t5B_sz9u2(+4A)x zy`W#r4E!1CQf@Lbd~ZoDjv#o{pAirl@oGYxc9bYDs}D@xqwE+IR@)C_5J95pF8};{ z0>EPt3*dQNhI8}$K2q?=ZBB=n7v@(p>1QO^WW3i>J-#6bpJ96d?Xc`NNAd-o-(OOT z`M;gdUZ*JF&a{|fL%w|k!u|c5`vWfsAWrC?1`(=YZI-6Ym&n^6f>tkV%ZFA5u{(^! z$^KciimoZx4>QOAEz~`{-LGY?N(6|DLl@Yx84-6mmJ1^*2)~sF<~58B`S=Yz4^r2Q zIo=GV5j+pDcxc{XhyS}L(;ycY`m`gn)FXJ|(aR0|HD7i~=#p)w&2Fjo9+RiZ&Bw4L znHLqNcgpQkzoNY+$T~}*%(#oNJ;jL8PE!ubHu*eH7&2L|K*g65+57%?)m} zQO5wjzpU=o0sWJJDsn7&(+4j`7H1kG$NeLe^ z!73nI>nRe7c#`FJE_vm<9v6lQByl-YzuL${04w#VDEc4ad1=vFfvBCn!9_V@8ok5! z#^~tfw-)RIW5>*hGhD$oA4;USf#;Hh+BHv-+`f94gEB&qC_b31*QxQMHR!fP6bWXh zDa-PdOQIb{!^g>^1GHi8p-wa4x!MkP1J9N1=9vKww*(i4|9Z3{Z0!*1IX#)X1TD_( zblWXL6L%dAp!IZcA>;GeFlY(a?5|Fw(}|7te#dqXXo_=g zKw*Zh2s(G^z9=o;#lGB~$#UV35L&_X2aYctmxjDck*z1hSL_zAk#~N4C+2l>N0S^+fI_PQPEZM=gs<_Kk)CfI zzd^Rot41MDq7<$S6Z%8Z4OhSK!;(t{VL20?;$7~) z&Z<0_hvzKjC%p`WPB{kLD4t5aM8RvD=F8FjJ{M=νJnNEOkc;oTaPPL3oMv(qp@ zcXiPX{`!>M4EdYe4I7MbaOS2p2$OeR^HmL8jY>pXNsX}4?u|h)MSkp~A>O2dy1KNm zQTKi&FkK}R95BI0M!xgO`k0P@rE1n$N({dW^^+9Ud7ltmbpo;!a|$De&SD9=A%miN zTe>T*3{T%o0I=}t$xlzco|;1m2?zREv<=bef4V|L*1hofs(XS#`wSF`*T_0=6Pw;m zhFt#qIl1`|mUQ__g{gJ9eaUOalv!RWZC8I7zA|@i%9lZ2+79_sA zlV4h<7>zA&xr`M?f?>$_JC5n}zQ!n>c8Js3kG#7#)y=aQ8?qUfwyomD)K|6R;{HD< zjC%#&qU6GL4=meP8JU;XY6kQCS369oW(TkN2F#&rgM4~_opS72W#zVCC%)y9i%CjM zCvd+v3~BhnX$^3n=7G;$=+Hp71{J@IB$ct(39za^AaG{^HQc_*t>GrhaP#Lr1GC{5 zcT;CfuH_kZA%cQq^MMbiX6#22m0QW9*Gr$5=6OLGfNMGTxUJ^Y*1ncAgXI z`jy7fo`{is*du2t%_`nbl-!^WN3KCU!^=xDf$JKhFPkd|ELf+Lyv&40m+CHeliqJ` zG;*l=`98U?TT(O03%_ZOY|{&Qj47JHcrxXtV;UK3OGyH@+j!n( zXj*5A6`!h`JTRR3-sWv`SHaYi+F8K>D>xL}f1spBiVrSTwWGV#Oxg8iX_-nu%uDos&mXCMl=Kj zC_~{B~2{HOAH>9BoDa=xGQ zvi}^!l(vGUx2}WAB4m68D`w!KOZEdN(%rL-qn#0?JVtPR7xceC(1lT0qmyNVU2XUgqspQF8|7?%E2lJWmAis<~SXjSW6Mlf0syVE(IH_)H7fWm8v7iSDP ze5cO!)8@zX9%`XdXQ2V|rt!A)uUoRh%l@-aW2!use&qoR?%fWFdw_&ix&8Yc682vi z6OI--?A~39r~$-$8l}U?-B^BRsJMiSGBM2ePFsH7M(^+=5s}{6=NZt8-|ug|_)eQs zrIYXCuHxN17yo}d|A+thr<|C;9sRr3P67Joh?Se>vPtCid^$V!0CPFzo$aoinHRqg z6sGAk-?$R_Z0Ip}{&U-1=rEoayJROPybqui99nREPjOaaP88c3f*>QuXmy4ndgL(N z+_ie@`*yMd!z^uBz^%~yl1|D2mu*d6C&1f3@**Qu*=Ur&jwO?NSGiZuFDesvlXa@X zXFYF!FjQygO1q#ERZo&C@c0m{zoRP`8UN32+*){6cX?G$o`JuKcdpEqVMiVLfjIkZxrm2JzlVt{hd*&( zBn4p~OEG@PohU=q1l#b0n`|@^Q{z_9U(*}|5HbWE8Uf|; zPeT=#ppu`-qqA?@fMgi`ZA?K|O4FFJhBm)>hXugI?ZeF0+2@~Q zx5RzmUG4tl`oS$u>+saWAqr40Yr3CA;))HH1H=9=+%~KQAk6yBhP zpn4ar-~!Tw_$csybtp`>VcQTeK6r2pF#ZfMK9`(#z?R>Vq?X(Ml0BJZK?RjR0W48> zK4{QxOsbIUzngMe16i80Vzeb(veleO68jtNwXGwi^q&rxLp zH`_;lFYUW!&yTvCRV{+p-T6 zcuhrIdEjUO%axWO69CHwJ4TU_mp1|bk3)wIcZh8xa~NeswTFHHwo?Jy?R<`@vhPNw zjfJcETmBB2j(r@W^WR=w_dni!c8USH1Vn{;9;Dn|QhP+`KkC@`pyL~VOi{`TwcivOfJ>pagwnK260%MxsC)alt5_Gp3?gv#h zY(L^zHD}nTsw9ACAK%-oAyTe?z0=^VkH&)O^0aVPX^lU7!zE6OG!`6B!S$x$8IZ)I zoxUNpvjp>d^4!lcVWmxv12ZWIpRy9uqMexps@j%Hz|S>oEEG%NEE##2Ne*u?Q5b)6 z^PCSI99WO*JfHs*7ba~||Nau4$Lxftbc@MKNlnUr*aE)&VV{PtEabgNH^hX3+hwQukkO+;<~QZU~|oiU z=$hXBu(Ch!gqndzOeyYsic~!@YVVVSaESucgae5R#{c`GLPEBC1<#u9VZ;xe2f_0N z-}P`)g_gJL+7HPMo6tI@b+?u^EJ0Zq1yn>W zPI#Y2<4u75KfqZboha`0guNk8Cza9orv&_44JfluG}c>!;l=$ws{t>LbOh00VfL{* z{;5jOy=;P3*So2whKn|WE9TGbs;Q%#JLd;4rE_05_KtM)jKGFOXdfnAH51v(2XE+o z(U?wN*>`~h(;*07Wq90uY_xsuja$`G3d!>iH)fiz>zRKZ%=L>|8rg|@Pvth3?t!LmPEi4445oI{9;YE&rLv0gFM@d z1T=n?F;#a;Lb5mxTBaY}YQBC$rt=A-$Y<41utw;mr}Y*7SwIYpz&8)aK5Kd_^T}hD-2q}nc)+X z2wsC_SVF@kJ8*@LR|CCWG;ICbl7Y@s;D1(>+JOJj5-+XE-Um4;E?>3D#(%A!3n2>` z6?B;^RH!a+1>CJ!rd`jduRJTq*E@Wi4O6?xY3&ZyjlA&Th%Xw*$tS~}JTXscO6(tUq{#Y@xn15cLRT{|8PghpB=yX5RqtwdiLvXnQ z6r;%p8S02ZmAtT%EV-Vvef)!mIneKSA5H?5*xdwF;&{1GFx_;}O{;;nhS9?im z4Wa{I`*krT<6Fnq&j)`S_+6CTVbN9KK(~T$>jb1xR_(z2gf|BoZ}|o1dl-ec`a%#4 zM(18@VMKHaXtR_futKC)EqT4G>;Nz&bpZQh*mOWO1Nn%sxZuY9^b(Om#|@8z9NkEh52nIFMu`0Eo?Y= zYsGn=O~)**GXP}h8|vv>4Z*8^(}AZHn){cjm>h+`(>`@>L3BT(_A`hZ2SE%RFZ}LaO}vN4dS1GKO092 zf`ZFzlRMx45$5oRp!3PYHr$w!p1{EnGZ7juTnkc02FWXJAghxu2uJAZ{zFN9hti_O zr(}BffT|@2JPn=aL)=i+*8o1c#Nnf6O%A0SMaomCdGTWVamJ$C?Q?t=+!pUIpWh4) z9lEs2EUKqS^e>CjzOtk>+lh?VX2VSWa>;(w8Z`SWlJte0_L`S5HGVj%i#GE)!(>Td z#3v_rA>f;@!GMZ?rTUJADOH{MkTKnQ&+7E^T91%F$1HM#1BarX%NgP~32 zrFIgsx1njJ2XuvPw=Ro<>rIOH4s1>|Yz0w~Yd@%62BSZkkPTgLXYa7o1;FT55v(?G z#7qR_@irnlHKGz%SU{RNQ4n^QV$7GEJpMY2DNL9_fnU}~c@;B8?^4jISC|OhY#;M@ z-4gou#rmJ7@5#4DL;mVEfZAtK?GQH6u+8o;+DMu@wE@&<4moIfY%_|VK|%C&ZK@9>Bq5KSqz;?%O_6;MV+ z#gYz@M>POH8IIL}pVn)>LPgJqxX@l%1l99>LP+W?5B!-8GnJ_WCi#Ev1<=Hjyn!=3 z-E<$gjHHoc(<-y3%0yxEs0!LE3P&{Q6Ow>D_~1xZ%n-xSVitj+T>z9b96gP&q}$|C z9+X!Gj;Ke;l!oN@!-XKE{d#~2ytUm{m^E~=X}F3N(}*P51k2HcU0r&Np- ziBgSEG|*nr1XcaMOet#Fe%Qq>p4zE%a3GDKYV>v2gT8}H07o^GLuIEtx|67Zpz&h@ zQNPbtirTRswv3AdjSml`5Qv7I;7Pij#u}5uD#xZ&obF_pQijB#*~Ar<)}TjNk_jJE zT?MxRd=&EF^#SkVeFiM^n<*17Mc2$ee_qH3Te4yvIgu`vk4m7uzW21uL5+#P#*+1p zAa2E<1<%PfbwB$i!Kc#kJmb|);}|FKV&CXdwAZ&UUqNakiO!0N*#jCUFd9#qcY4G- zdMdd{gIz>6GI%-AD;}q6NEuSne5Xl!;G|0)6veEkQtr^2hS)D&jBs1ARzz zN937&29E^xoH5ro|MLBvxHD)hi-b6nR|;E#+JV4tgT~y3usCG0A2hzgXngIgI#E2j z#^hpV9v@uGhUs=9iI+3L#Tek-R zuy-pLFpeb-#Od}Hph|`^(<8s1|qu2`34~S*w50q*XiZ1vYt`1u^LS z8+0!J%r`UdxotyAg)iA&7Tp{{;w*nkP<5oU&O=Pez%Q`91l@k2fNtGhPgR{!BnDAk zLAR#lr|cLZr|d9RjF1Y)VyDhYuu*O+)`B?G$Po(eoA^v{4D%mJ6n>ssJQ7)>j>abw z{&EY#(k&XItQe-MIPk^kRuhVl*k{C<_MI=Hd^}h9ecg#3o&fBl&~Wm~OsfVrmK0>$ zeBV_xV?r7{we5(=yREMaz}8bI`b5{H3~4AM!C82Jk=7tk{e&dj*9fr$x{79k(V2_)Nr=UiF9bFMuX)QL9HHOjV1%mJ#4 zs;;6hoFt*;mY_%7=*&JOl)`HRp8FO9H^}8@*-AAH2YKWM^1;X1G_9OShUJ}L?ex9& z+w~2#gd{dhirxXl8Kwi^#-l5pWeJX+m3_u_cJw*2y*Szxi?h1ecSsTvu+hx0Rpx&M zmM-Ff%!sdGSNKfaGv88>Y%3F*9>$V1$erM1#Z#P;DW$Xmtw!`YeK8&U_4_`=0yn2M zfaZ6})i8hgB%yRnac>42@tcDk#a$ALO9(Y3N*SFk-&^fse zydHlJtY5EuDZ3Uqpn}H75|qyN$x2d<_rq;>j(qhv$anQH`0K0Ph~OIs!JEbmeqKJe zEmAi3=+>(>JD zk{%^poGOs$H^qv%;Cbkqhw!1RTxk5`gxv_OlOQV1GqiHvsE|#%bIH6yxJJ0iTXOy@B z4}7>q8u20GEoj|)wNpM9EO`5jaRpmH$o4vDWCSkFtnZQpG}*55ITy$mr^%y=~r$4`m$qwVzc$i?bT4o6oTN1zXZ?Ep3P!=_rqj1Da4uhZ-6HO z^G^9pM^8UE(~J);XVWZpBHbxBJ%v`Vg}q1Kg>an#DQsuHONa*|jQ}7wu(^7wX?PHq zZfr|;XUDW+v%wnr6v~wut$^C{9?8;vs>^j0l1er}JkS{jACwek*`5F&Kw8Pt&?K*a zU&4w{t41j+rpEserK2Tu!CMZkkal`Eg5w|$Pzcq@;j71{EL}QI4_1lVQjDY^5Cjz@ z`C0P9S7%QXGLzRSj9u5`SN0$do{|7c;nP;*eDzD&m;JuC$oA4`S9z2|GOi+nkaoKv zaU?ctuShc=e2Ps1@j>9c1Yo}?%NA7b*W%L8)cqtLfO*+8sbHtoDVq~Z(!)H3rY1D! z)WX4D>%LuxH;4EDL)w$WOF%;>2?I)K1#njeke5NH#x``RU_ccdX_b;moZ<8Z*Z7TNy5A`{}Evo+8McAyWArwXLq zr8~+uzcOk>Ts2V&PjJ3WXoc1jXtTq58a3C>P>dvk5r}b)7|{PmzmNqeS}Ga%eV@(P zbb_EBr6wFFsMiOQmx2@3V1HX{z6ESiioM*6IQg*}Xpywc^nvq=L<#r8_HueB*`5PE zEnRNUftpqU1viog0ZKlkW1yJ8u?4&V&d(%?Kn&((*|IhbM`xY3l7=F9{5_9SBNF^P zrJxA4`}bAl$A^4?h_OAp5XPrY0g3HztGRIbOIdTqlk)ev6$HVvl$vy$;Mu;KY=Yp= zg`Xp_xcM*Ppb||2Fx2rCFk~6qGu3s%?$oR2w(&}?tymI*Y|2t@k3b>!q7^lm#Er=XStVikaTu)|_S1rqnYDgK^z+hExH;`_afkQpdcOm2ybpS8N+G?%Rp^q2A zbjSPXC<1Z#RhCe+ji<0<=OZ?Z47t^WLf%n$iGoZGAAIjC0EYh@&&K2^~;I=qJ$xo0$JaA$$1aMwbS7m7$K8{P@ z(%9O206r*jguMqGI!N&IM?#8vthC|Be>X|vE@Y8MYJh~&RY2lOTg`r%DNFH<;WUB) z&%}*9w{nqioG$_$FLseKt)IOgjvr#h>>=+#5FWk&FqIvaZO^qEz7w0C2t5NCO`Zo~otap%S-KxTZ0IZatt=~pc7g*6X10jc*Nc1Vr4Y83In zzppI8<)Q5Ncv+}9I#lbj0!lX(B<#?-mdk|rxv^&z0jYji zy7f6G1R?P(ABYjBMJ~z{S(v*#*=XK|Y9g=GaH0l%>L~=#A}sh|99yxPl7gkH@q!Q1 z(clA_X%SE~vfI6|>KDD59Qy3k)4elNRD(o6Q)$TH7}!9@s82%K&cbNj=xTt0>+l`~ zV*7HZcC@1>vte#OFMN~V_snH^lx`%>R|Bo9uZR{M`NrltFH2>mDPoxsKUi2y5s15H z+5us1H3HU3#R4nM0x&)09%C$Hxj4Rugn9fcz#8?Rv4n&@+>N-)cOHpA+|SFZQ*9dF z*Q1y(1z}{N2YEK-^{OZ&D|*Zp4akiAOJ)?v<%h~=KxW~hdVm8cJGE8H7T6#Pz##$w z4Bp1laD0)3`O<1YW`RM*0vqB0W`nzuj~HYMbLvDZ0h!ZjQV{Lf(heC>6p|l3W|j!Z z{P~wm=pI1ECDIIx=0#SWVAJqYS$fOyAAk&rKWK+c4A@sC%oltGWZ-|vD16_AxT`r1 z$oxKtZ_TyaC!bUNbl)}A7%8YuX6tZr!w5Mb2^fws%i&(#ob&b^=zr;bo&v?O*fGQIzF=cynSmLX7>q z3?L-LAjBj8{1PCf5hewt3xw%imPK_L_dPMBD9P$T89X0H$np;NSAL)Me3KFG|io zG;9sxDmUGQ)s8A5>nx&=Z(z&7p-(+PN0#Xr0&%b)2O|sQiAyIOUo8@VZF~J0G#XNH z=B(%j3lDVenpR3kn=~7(>=Q^NDV+!3JkQI)uvZQrKCNUc1rc8_G6WOKjw%u(hsGRk z)LBfQq27{UU?3%J zU4sYFV?ZqtOG+7FAh%~~h8WJ~ZQybASmCJTLz~tOm2y*WY)EDhpwa3^uLemdk0W#h z0&_A4e4sv4LoJ@{yU}sfLaL#RfVW!Nb+*zeL>pCfkz8-z3kGsmIc&m(l@|0g81W$F z;1wWAxyj*55N>^);7B3hEol4CmN|vUqlzw*>n&%&2f=<}zg1XiHcv5#2iXU&f)94D z3@i8exD#B0N=n8oDgC#8>=-~K&io|WAwQg87W`>L_dXLggtJ)-@xha$1cA8Gdd*@B zBHunEeX`{1!tgT!(tUz~SdMYuu}tveC}b{L5gu=^i8h-8xi3oM6`*Kx=3OQ)Q*9%b zZx-{`w7lm2mCOl6zSZS6m4)L=Y0Ccg#fRYA4ecAzR0Nq-i+&y@72n! zDsuhnGNy-ats4?3aIq8kK`;v$^sf&OVxvh!X&^py#^QiDTkoN_pyO_=Q}V|XRSsFK zd&xo-gPLNmQ*m8Melz0W2Rm&U>G|8}^)o`3PZkpb>iW75f#5BkHoe+j*0dydO$b13 z=JuC?g3hJB;u!El3F^+REt`L#Pu6KY%Z0eR=aDSnt}sW_P@Z_8-Td5pvZv-+>IDJZ$U{jx4&3kyLlTfE(3t$l|vZLqd}T_ z4HOfmmyaT;*NiAM z8*bW{X|H9W;>Uzlbr4iOy$Redg8F*e9w^(*(7xhtqE-}zBiud4eF{$5C2X_^f)L%( z1pKKVoaH+887NxHl-pm|G%IfBq?aPT4bJVlZwR_RT9?&PVMnPwrW8?7AX0;WF*#qb zkG$1#mJ@MT?vWehCu99>H#0bO;P{4T3rvgY4h^L--e>x z)o_C5;aiVz?HVABjc$0pZ4+!1!RH^Pi1_e=qY5xnH?^wYqkd8K!${~U^Pm{D+*A^4N6GyXrd?n5i>%9(j(!j8KbI z6ht6~-HI=U`3tKs{pAs`*|${C5u+#Dj=3CP&HP8XWU~}x_Yjy;} z(<)HgN}i~1)KKDZKZ|f)$VvFHIHYB>@g~@-0Hmi8u<4P$gm zbMGhpx2g4JeQ>}(OZ(+-e&*`ZH}ssEf}ZAbnmEn~h;}$ifruf~5S1oY;Dx@wu;T=mQr9k6y~1 zfbf|fNuk#p7I&kgR9ZBE;A_&BSJn^2NJ9t&)Vu~pR$lTVuk@L1#Vdz?eAYS23(j&b zAiXX0>tPnKF>nJJc>{q+u(crpBbvp&%hsjIx>URqrF3Oo{7>81R3T8FjDSAMa3B!= z3D)Jhb@wzAs{38TYVM@1@zGvb@%)F^PhQ;tHjE7iF-;~#1cGwG=i3&Z!+@iQSFkY4rA8Wm4$Y)8E;*zOFSsl*Bco%qU%_Oja$ zq}Iu2f&Gqzc=B-v5X^7Cz}$$;NYtAJGGcA0gYQ(bO9gP z23S!AYeac*h5;E|xSnHME`FUM2Z8)k2!z^)$lWs{$|D|i-f&uT$L8qX!PHaesP8*s z5SnWDY_EC-c0UlpEZ_mQyRjZAJ;oPCX1zk;etnkEg-0G;nS}F~cGPTkDMHl+GYa-o z9&pD3bN!(<6jM^_UZ*}f1L0%jHm8bO63?Kc)_nF{?t6hy=LKh0mMV!zgWce8Sf0ga zSJ3_IBNlzG6yN_ zLp%^a4~|Eu4G%;NUT_UN>ogvqJ7BuMV;WLmJ?`!QOfZ|yd{(}*bLnM8L*C)_U4!q; z_5P~U*momt#G(%)5Lv&VhqJFL8V>p_wHpwuEWH3BrWAF}@5!B8j(IAsu0h`i9E?eu z`^pAoOI0;#F}n~qqF*pRoPx-+DHRPoOH1R;Z_S;Enl$!s!))PMS=TV}%cT_+A(N28 zE1%Gq$XWh@+0LzVAe6WXN}Ul!8g&n75Tx)B+T8pIrHu4;Zb{_%xEgE@3^?rRnS)|= z0hL=1MPJ>*C1SEpCCQeu?@JK|2{RbXci!|o&-=XZ?|F~!&);_(-(MY> z>pJ)Cy3X^y@9g=f9=l^UAv%Yka>U+x5n@vB7g|o2Rn(G~?`xZ>Gj8TuHR&w=!nb3! z&@9aNal6C3Bgj zGlPZV^uy`dVa$4!GV3FeA^eh|Zd)o7v}yB6tQJXK26dl9!JAeVfHHd%%VE zPJeq9I7AgGVX1bw`cl=HDIB}*p(8D+SMHiL4asvwn1L&9fO@`?-ZF-wqemwVGLv@1 ziI*Rwo2zGc_+7>x_Pahg+*g%p$%+{nOn$`<&my%9$eyZC3GzMl4*=V&*W{LK?Vofo zBiQT)4=B2Bc5>0Nd?}O1vWz-FxQ`cyzhSp(zx6-BgvlD7+9ARu3Y;DMOb34#Va6Rr zZh3xS3VPoP64`Q)Mvowt`Ie%e&v2$H^cP^>AB4F=q*jLpi#K&L(y=t+6tE)JPQXm_ zZ|Ey<_D4yH)MN3RJ-;&reOv?>^L(oq1m5vXqvuR2aljkt3QefDd_WIkOwJ#2}O3LaOnC1v%cI+KeCJeGX}vk??GXtlE}#Oq1Bxtd*wj5 z&dt>*!QY~Cg|s#BUp(oVgT5F6jFo!K0azSQnnNsyr36HzqhawN!V6?$wG}*bsK~^a znt;f`5AbL6c9h;)b`Gp;e+}lCTnaQwCPSA&IK%^8{RO}1S%^JKSo>3V;28V#C`#`( zoC>nZQC65yV&rZ9P*?N$IFTImR31H(H_1rpvcxT zohenke+ctUwiB3S)tLh(7YelLzw*w^BEkIAa6Hm@1K6;x_ASWaPl>8n>rXhSVw?A( z$oZ*qNaL&mM?@kQXe&zYGvH~h8Qp@#l{eFi*`RI5-Ui?bkuQ*=|GIl-9vSDK2as|X zP>?4{Uy#FfICyzz1K2=B+%A;K9ola#4~!vOXRSHD(v7Gi$aAXzl%@NteE3VAWz0AH zgHcqnL=@GvI_uD40jzZY3}(l*Ux4jt!wg`%n9oiB_2A4R(s+;pT%Gy^y25Wh(Dk4o zf?liExB+{t5o`-Ned4HrI#wlg4Uk6+f$CCKaR(8HxtAPYw|>_E%-7uj^InHKrqGK5 z*i-!rm?st>Go&jX1`?3XZ>V%%RcEM3SOG+Cyvden`01on*WH2udaW-zHL!LEfJ70V z>yRI@r^#0lXM{ENq^UYZr5z>&9|DPb{?0ou;|pheq~=V2XFOhYLgsaO33 z@j|;ep8(2@h?!M!aNBCYH#L5nT$4kC3M^Tku#egJ4-#(yPmSO$ z&TKE$JfpE|e5n@Ea>({lHy)Q@!2c|7Hnhyfum1PI9$!hK2EK4#-Ti1Wj9K;G-ucdn_tn&*y*_Ql|H-hLTri}CS8j6NEB-85$W zV|zy9D5Qo%@Ze+h#aL-u8_CrZRwH%HpKqq~nVOADY{oB@6So(gW6#T*=Z5xZ3Kt5} zChYNoW3qhZ#qkVD?q(J2DZA&n=FEffB^25AAmciAQ1~1_f|%5fu1+cRIgV#YG3y<{ zs*l-Zn=_k7DN?dkG)%<7@F)#vVa8Zv+be&j@0*^fSF!`%zDe7F$X@N$-<>yJt`!SW zP~afkByW-;BO*luYyIqUMVjNXGc!ec(B3w;~~Y+dIj4!w{S_##W*ev$uJ|LM;kP ziZDJRWGprQtX}5Lef14@*HpuiVr~-BN~F6kh%T6luYv_qm!I@%F897^-2Xu>5Q#+> zeAqE^8(kokPzehJ>j1)XuS-KFQSBbm1`7;oWJivn3mg(EU;!I{HoD-&OG#%vA?yN! z3er~atrQQkG`HI$12+7u&1j6 z4jZpOG{6}x?#A==H3wTfaPN=_iB54I?9Uu!-bj)u*kp&rFr1g?I}=su$u*Ao=SwULU6dVwFk zK-hJ4`jNW34Jr7>axf<7X#UJ+8N5->@v{*m6;m$Y%nGVGywx27Zlc$B>BkZ59Y1e9 zKTLqdK3T288BcIulW2Y*=<(N|ZsRVs?nj<@ok4bUk*=QKBC;(zQZ%ZfUXl(OysKjb zg<*;`#i+-7dXZNX*UXGP=(id#LLctL3*Uc8iHK$f{1X&gXo3 z9yA&y$oI6}`B9io`_)io>(Dw#l zRNQw6+K11Ly)7@naKbmIj+J9hv`p_mSt!%;Q5#x4TaLp;Rp_^$(y^7zR|^Xwf90`7 z1elwhd5>Xe`E?AI#jc4%OZ#CY+_rt%>k_AJI`)>3jfuE#Zg%!FfEvC6YvNYWHKD<< z=Ir;M$r86x$}F`-Ys~l{@c0NFVdgyHQqNQ8ll&1Cg!m zv1nK1=;30ENYYsS@)IDv?l6!pvDZZ=vasoDVFK4m-sXr1^QwR%dX}_jCqpc&PJD@j zw$9}T=*{u-`U-I*R;EN57bu^9EmpNc(DC&--vp(0nOcidheXumy_ zwkC-Awv}YZc^5fUlz%6ZWcPUiMcE_*C~IQ~lb;R76!HTx5pm{bfxYxByH_Vp7Uqe5 zw*zUZy1?zeK+Dh9d$g0vEa^oD%{WAk5G!}oF>@aO!x(C5ru!Hri!JmVRFdiSS1&$P zSENicVsHC-U;M@)^5CN#UtML^wmcBSe!euQL9`Rf3Kw0cqjE#^eGlRHu#jWxH1K@i zq_2xnzYJGFvvdEo2cT>AtJBMV9fZpiDWqGZvqORoWAT{~6-k<8T?0jD-sb|zvu|;4 zdC~Lr_in=#Z3QX6l~`oQ?oP#Bj2H{8()dVHV$ce@G!O$z$#)3Gn~cXsdkT;n!R7-G zMHqs1_1ryG=p;@;ZDRMR1oT(Z8v4#QD7)9Wom} z8Wvtan&8#xw{&E}EAoEiiD+kuI6IK`CM%NEvw0E47c#U7L4@|YlY*}?3DM;yb?oBBSOis-N0K_Y#=v#;clmRJK3(!8&Lr*h@uf?3 z@LRniCW_@G8Y)GtUP&tl+HEZzpMLF^Q+q$Fa3d^a$>?z8Xu#DmE%Ia*4MnyOrlXPE3!|pSKS7TU!4G}x z5jO^E@o6o*h@Z5p7`6D~njaAVI02OYX`f48-h{H^Xfgv5&Olw*bQ-^R_iHyX>cYiU zbWvO+EP6YBJ0$ZhNNd-*TD>jUKy#U6IzX2bQM4;0lMFSfz8p8;l-g;Zpskpsn^`o# zQL+<*t~+T!cY@2VQM60@)jT86CO@|oLD(*gKE7}r%vCaNzIk&sLNtAp&k(fxTcKuQ z+=UUy2&uO}iNm4mMZHwkJ7vYM>I}$n2Hd$nTSXooloYNrHE_*?!oEAvzCM40p}7LI4g}Hfa0!;+NiG+boysBrM|m#9Zd=4Y~lX zYpXzg_V`aY72+=glc&aS+v%fDL?!OtoO;Hug2{qgx?~UF;A+P_&;JJlOZuOS5tez!1@qu}L_VD}2y*yzf^o=ZplT<_C4IzoE2%gl z3Atua!5Kv=&K#@(jQ5WMM&5lcljq8tay>gRcuxkL+D8ejz{2bMVmP&jRgi+;ACv%m zB3B(RK5U0DA#flC*)QIiy&H>ppXqu;tSfsrdti}}m7~>WH)`y(B9b3qo)^l= z7?l2nC(<%66l#X}nh1yhc1&3xzByRWooORzE9}fkLSapcp27@gI-L{iniNH09YoI! zd{&NOUs?%mQ-_iKr{;N)VvH=$3ta&gTIRJMfz0=P>AiBbqAB-gI0o;siF_sa0$yw4vfyd*mD6qr{xlPWk}GKqxgD;P zAg3*tbdk2Lq=l`SNMvgvHj1+8rTLmgV*RXPKx6nZXzQmB(Zy~wrfYJAtZi8#2rFmf zLdV%CwXG<{4d}oXeGH+%zGYOp>sY=HUFK8s@RMKZPPk0{jJ6Cv2{dn!<%K?Rimc+3 zg~?vY8DS(}oG28Q!^kq0CAqgwC=5{XS?q_lu$q;ls$>V)4@XWU0;Tatf3N_I({!v0O97@k7?EHQgjZO5d zVo(i|<4;IqRXZ-9IZcj7dFK*^5{$6VCH+cvQ^gl}&sE26m=t=4V6I-17w<|(EyH^c zgv|37Mn4sw0j+DHU^yi`|ToWQgIif)D+OO)inWN zU&hMOd3*cP&S`E$-_M-m>>Az2qOLDz3YjH7w^>BC5R-$Hm{{y8em=I;I{`9O zJqV*S5s|Wrv5cHUKxmhFLbpbUDr+9x5vsOZ4LoZNcjW6cJ3izq< zCv4&D*dHQYmyAZKQkyM6O-g!u$sPW>`_|+|I}!tYg_M{aX2cXk`r{gB*?bDH^~ymS zi3pcfOgiEK286Kg!fP?$lyCEk6o$l^MyUyce16L?=WpQqdM61t4tGe!TS=ROt?^%_ zjlEBk1Hi`c^iY}qNN>=+nFeVMW6s0C`OsYNv=V)QTOFNFVFqfe0@Xm!PAkXr>8{g^ zQyPdXH|cbp4ZagzxqX`a90kG!QN=Qba5>4*CC-5M7>f{D$Ti;U_s7l4Z8NFO;^t^8`F>z zqMh8)-;kE10={TcFa#(V3>Sf((Yeu=3I=1+PAiz8)jlw+` ztQd7`9hH7XmGVJ`xk!Z5w)o$?(sg1uG!ouOT!PejVtK)F{7+=8)PBmvDr9IA`A2{} zmM$*m+Zkpq$!MUbCloHbemrZ?omsK2nh)W||75`39o`{wZ_e=Mi|avcD7Kp~0oynI zQH8+i4$ZoC`|nMunYzop6KWi0zH1u#SWV}2h{#PNh4zc&w8zscw#O}k+DzYrs< zWS4MB*{?GI6u-lI5$^w39UQrvel2KM$zqg3%$@vNnLZDN-oG-=V!@4)9p43Hi^UMa zj7%oue5~l4d5Qfj1h$9|!>|Ui5JlI-wZIyI7($~_`$U}2H9BV@V*i#Fwup~~u~)_y zugRfn9@lNGnKJqYYp&8c?;-ZHcfpz{So8bZadb^Ax@KDufi1xd)?B7@mL~Rd&ay>( zS}Fe58X~OO5<}2U=o$aVnr#^Nh)=z+=GV0gD4ZC=#u|rPE1RJv@8{)Wj|iMIganX! zaTJVltN!TQPfL>cRtB71fD%@y$qZZ$e~KRmH_dv9Jp#3Ph%7g$F>(Y+P{N}Q`^0hr zB&BZUhx~fItP$48b)t%h`mU11OzaNsUqCNSBgt8yYT)KEbsw*1o&f z?T9ZUoRXa444AcQF*z?$yOG}myjxrtRnSRdjR-e)iZ@~YT)UM082#-K`r9%1O&5L( zGk1Do&a9rx>5<_2e-QB`Cn$_s^W+Oob=AK=oD< za__X;G%5)}YeDG4oFD!3Kw-NGGqG}R)h1l;STu7!P{3#%Nw|IJ-W}O>)aTf zrAX&M>FRRD>YJ~lm;*qQzoiXIRPMnEAnJRVLR`{LS81%5-)jG)#+_uwbwEZ@Nt!4{ z_fG>w@i7F|mQlKo5}h;CmDHk=qg}t&0o}743r5}a8cd*xh^4%=Y970ZdCyHs!f`0$ z#XB*6(IgT|F&7h1eC+(_ZEPYd=haE#+VY$9?}lu`C|9$^$)r1|;j^KOcAp>p_N<99 zD0j-dYL&eDY~=5%mf|Fm0OSiScf%2A>O60JaU4Jy_Yl{lgfZ=?tOJ3C0I zXrcmOZ~*~e_PLCM08X^u&97SgwUkJs_D}?>ySYfnGr+nIk2MtFF#tSGfR|uC;Q142 ze`LRvoAp9{F0WaKb}RW+)MIjv!)Bqnrkk+&b0hlFivzG3MJ?J{2Ajn?F~gChrzq-P9oQUjJH7E| z5o&!0{VE^|pxXuNnphxE{IISDquORAeZ7c)CQl*ed}UDZ;i#lTC}oX!04}DkTfY}P zD(EDPCE?q4fyG6VLeZ>gJGv8$>D;L7Sy1ak^BLSYaw*W9Ip}1e9O~Q&2~H59K4#oZ z7@R9YB3a0y?B=eU-0=EhD%_~l65ugHJT``)gYvz*Gh7MZCJKBpq#U=Nen0#vwjDZvs+1j2gFerYDE*ovMnm<2nzi15CGpBLug2EVq`g*&v6Txj0d)l7RrT#trW`kfUVqD zi1P%>cCnCmv6~BWlaNDNZlfq)m#l%WH2qQ8Xb3EHMD>rD91O6nP zi@9n__0v?`aSe|H5ZXAgndSr4&AzM6SCgw&hiJ<^-)SVI9RV>MeQr5$yQcDSgPj{H zORFM~MiAC&nvznnw2zwfEAf&0OxJdr$=cUE+E>reK<}QKw%=1FGbvu7hP4_Vs^DkK zjGM^|-n2lUC%&aUmt7INAaH1rvxQEj7G~OH`7)5iZP{*+#EBRM3c08D+uNStexJ4h z+X_!|&HKQ$<;D57*CAKWv!&dP4^O7S8*Tf3GvD(ETWFOzlb<(pg0pIFWlcjFFMlGR zo`F-WOUAT-_NOk`YH6)`)${jG-y_uQxx6lDslap&dhqv)A>?tqzHzHFIC-zWhN-jT z#Mp@XVt&!8*Yt63%6R9!^44YjCCd#nd(H>4I1H!biw zU5W`vTee1L$=4%#t3xT%(Tiki-oQZM%8X$34)FafL+`>of`!H{V$P7ZnX5N$ae+Q1 z&DQc?Xan@U6R4}RHs-=AEf?H(cpS8GS}-poCyfQts3m>v?uFCd6Sq^mTaM%`tiIx) z3w+VUm}$H~tPJ*_w7WAcSY9Rk?G49c_Dx}&BqTOlt*gVdfMfO9k+Hn#Y12?2Z@G1& zvb4+xqY8M}(>oMiHLctdttc1Y*Ru9!o~1dNvi5z-*In3QSRo+%>h!GlHujmCh}4F* zQ96Uy)8+%8^{BU=`L=x-x=F<3Ncah+-o7Y7<&`Ag<2IUm?X+q;ADMXhjW&dBQGe)y za2Z@3ot7~^WH7dN*u&0`zP84eHmku;{nkGc?%1ZTP%*=<+C;qgc54g)g7>?Nf+S@8ous##{7dHyZNr!X8NnG%t&bWCe`{ap18Lndm$makumd1 zBe61ebt&7%zlHW^G-y5cr`qyJP^~4&Yc08+?jl~w*X4_(oo=pcD4+paohS5fCF0yE z-)W00wNx6_b%vLLlJx6!ls7fRf31k-IucjCY&E}Z*q7%qGH*Q<68xGxYt78RZjfzR z>|}?P!?)IKe=$7%i%otVo9XRlRroS)#)D7y9{(5C5cxO)vtyasl<@$myVs^-CtF|T zFR#8Ex@Eo%-+An2{7WvRG^-I3sf!h|>oR=8xQQ$;C=jR4(^_%F;y|G>SlxbJQPd77 z(YSso7IzNyJ2~08>p|epp>_xY*ieNM->nn5PC{!mVPT%^iez$MWMHpim8jKpcGHKX ztUxoJqFOx---ohW@un~wurUi@n8>PM00}$U|Cfd!b=8>v2;NmIpWfhrR$*R+#f&&5 zr`N}e^i0OlZe4a>p&&a3&gYF&ZADJ2Db$dwsyOxE_gDKVKSZZzZXUdw{(hSIPN4A2 z?6;lQFHY5~TD?}-o@xQN&uVjY6~5fZHq!b-#?$0BLsH)lp{qp{p}W5h?KECDH{t7G zZVRmENBbApkE!8k9kh`o--gBa(J4-9nckW+*3Qmm={SGkuioW4?M4@=zm@iVF@dyO zG0Z@{Lhi^CsF-z@X%?)W0KaM598I#z>ny8N+wmvdG}*MM^e97>iUH~jxWjGp=utbEv)7XPA?7` z)T(>e%)d~)9YcWVZdbXqW6;GZ;0=5>Cs(10=;E`5YjD%23MKAC52I6FR!p`PNpyer z&r5)}yLK0-t$ik~Y3}sSG4x!w{ugwN)cx#ocWtk~Eeo4muSYTso?4o@*Z4S1zbJfX zroM=u%3V(zVb36Kbl2>2!MRS~kWe0xxKT72J;| z^(;LlIae&-o?unJ8&|EoJnG`)JAZqaIs61zcDfd^^1+9IWYu$R6^|a!8^Nqc>X~~{ z-fcY8>g`SC9lw8%$d|4QSk@Y>!ghORa`R7DX)jM|;@$>obayTk`K-P> zux`s|BK^GC0y{FFmZw=!REz%w)1TfbL>j&bV1IAmzfx(EDqCXs?U7qrA6xq~w*}`a zx8dtWPIsKH+%XszS{n;)p0Qq6n*3%SlBAN(3Vh{b`1jH+Bpa%0gT3d`L?i6g5L`?R zDG0Q?wQg!Ap@(6#N&0+ZnQaoTlwQS#{;fO5`?c$CO*U#f$HUEj>_amc&pN;@gZzd? zcM!W!NW%J1lMEy6e%j_!5B#_XN^3T1h(q6?y+P1&nD$dHDI+R>&2{_IQK!P&H`(W( zPpRvfuD$KFHWr$=<5LF2TD?qjGva&twxq-E|01!}LSr^HJ+AuhktZ`!uh&%{5(%n* zcXGdrVXlkW*%iw55sC=OOk^_2_rN0VKAP`zbIhwuY!1gqjJCWYVMF!L{%zEX20+RN4J`||hT|9MFWYVx%UC(UH)&*nBE!ipK z&e!Df=ikA|$=oZZ#W$YJ`StD_Cgbrh4+ z^elJ8w1kqi@#Z1y~)! zAL6RJy=Mw$x`)@jD}nC@c-NI21@{W&5*(}lk)3ZfeSa;wlvL1P!3oopXnB005Y(lK zeybKqr5diP=Ln<$C8W%tDm@R%88SEUqSpYT)r`~Lb)t)Px3^vDYv>t+DqQN z>X~iPu%-$6!`Ze~>`J~_7EYlXlf#2n3k=%iMs{;uGdjBx6Af42_eo40>t*9dRj3pi z{fY^bZG=4Ki<1rXMt!vc`-AmL2sbCuVo^7Zk@{k^H!>4Waht#t_7kJL-_RR<2ji4? z;=8dCt4}n@L99Mtlvvh=$(hyco^&my7oXKiOe|WL6G{sRsSSjL5;6sZoLUP>2yg9O zmrroK4anzm{JJ#+~Tdwg& zy5pML0uT1HUK-`qz_;~{3iiMCULDs;q>@5B2lj4-yr%XZxOwL}jkNE8taCC=oce${ ze-A{N+dltDXF{L&p<~UP3vbzPnp)|&7v9XC=z>g6lP3!}T76=s>5C!R+zntQYahWE z!vRe{@sASUFqXd`W&IE&daZlsA%1P3VahpIv0OweiV22#2f%mhGgtiBST* z5ww*Mp5VtMW1;FD6%6g!OX<}WFV{<*&mWXPH#KR+1k?sDQu-U!@vd;@&`P4(k1B>7 z12+wKCi=W`Or}|X5|;!|hx6e6tx{bjs(5*~O*uU>%xksh*fugp;4N^myC)@GMg*#N zRAmsi&s7?4gW~ea#|=g>z(|;LUFA3?$1tgN#)M>BVvr)YN!9kodW1ZzgDP0kB(cmi zsi(^)sRGlZhL>L(?=Dd8fV-W}W98;m1{9=y(egJOTTg?X>==sj{!VXHR&T?MLjT8g`ejfYsYj?<*%cxyF=y`emA3cmurBkh!zx#B2M>`;?4C|} zQep?ErQ=qwckV#)-{C=9KhaMv*ugDj=81C4fkgx!b2P7bqQ`_-ai^<^ze=Hy!ePm^} z9^_d+fFra$>{t)-YjeGVod6}FM5>%JHLJ$v^^_N1%(#WDy})kX_}Q8{|0Q_lnUC7! zTn=+KQwR}fQ*Ldc7WHn#!fPzWaRGNp#6jz(@f*zf*5Di$S>j2F!ti-jhW2Tkbm@tO{J&QK*B+yE zVS0LbCVST&P363&{3OlzkQOrfoIGx+nQ%eyLg}h8J)mp&KR{)#(&l7?H)7y>n6bsa zpnFWnZYNX-_FQ(Ds(;}-s830M2Om7(2~ggiS{_04Dd?BFpP}dsu6P^@2@#7zCtvXE zb6I9_ZDse#J6K5{*Twb2JO;=*&((v9Yns^xWwPe;@wMf2-QH)Z?k%}iB?og7fzx%E zrcd=!!oeQcL6i4_>d^Cif7hh@jL+Rtm%&gf z)O=LAl&8_%y6g2-xu<#Sm9>Z^KAIJwG>wLm-9b%z!Rm4)JIzXe)6^^{qE`XMf-obo_zZGsw@*gZex^;F^9`k@m0 z8OjryP{4(y38Y;BOoWardUXeL{<2}!Q^9emje8OQbKuj;Cl9z7zIMTNG{oClsNmk# znt9REb>SOHHLcCtVnH26@lc(lU+oOmzTyTRY2%v>-hFG=2Dt5SDiufO48k@5`kh7r z-nVz@$aPUkaY(vbI(?kIwam$;=}-^LmEtdViAly!dI;EnBWD?9kWAs~uAWKAF$ z9>L2yZ_2qG+&{nW-237!Ay8cStl<7rxunEO#r31j#o(aylO6~ z+_Bok!J*JX6*9SFmqiIX2?72}gSpv<7HQIrRQFMTlWXPh?gxF7&z4o-%`Ygz(<=q1 z{u?yA4nm%z@}AfJ1->7j*;%Qr+~7`$RNL#4@w$X31gs83SNUK>+dS-P^+a;}nc_F^ z_WuiH`iG9WOC7rZO>!LdUlYY$r(ca0&7I`Voms*R%Q5Upi}M z!-CGfw4c$w&}V$(A}F{tqOOwsa5bQRXfna`-=ui{Gt}^7k0{UHO!S&MsodQax_xAT zGW+Zl$E}Jdlw7*=V{|b*hdT{#QGeYQAm@f9Vy|o)u0lLP`2%^A6JFFA_Pq zzfMpoQ{JWa?NJ~!KfbPV83<)$t{``BgerP}2vrv!c8$8t2pqnW=%#pC5A=lNN?IA5 zTAMxVRrkH7sDHV(&gpH{;H5&2?*RJ@>kg9Scv6PXNRp3`uZpvdWJllqcDQKR9Fjnq z%v#AQ{sG?>$H}8xA*7h@TGaHj4yrO=Wy>Dy=~Ly zrYL`@wnHKRZn-AnOB?@i;`cybo+o)_sA`Q^od52xSp0dY`5&~+8!HSh_H2Z1^9YDV zXAbrB_E-3yHGMtt+E+0x^3VKRV=j%I(oR)R4m_Y(O*g)gc~E8P>;0%8MRgAZ&C7@U zz11q_TEl}^gng;A9W)Q>s<8WYqVa%$VB1}CPjf$9hde>~0xvPn>D23#ppiZp|C=hn z;c$XeH(I)T%mkNo>}MF-^;_Q2qTKa->iuOYqoe81WO``xoAL@#_mc$o%Sajh0P_4@ zT<%K}Q z(d67`1xk-kBJPh?>twoud)l$p@$dbHRdY)NGgWKo9jWi~z@yipZ7nh`GrsS_*XBPY zYAy}QP-}h3Rn5Lkw$NPKyU#K|&%s<@Y2Mi(Yz<1PHPhwV*D(-v_Cty)wGjRTK`h#) z{E>X+dMcqC<%4tiw!FsGp+T|MXC)f69*({=a$wckwcnB{@K)Kt=vYUZLIAz57wM0o zyT8?RgnMEC4=s@3`Ev7t_mgX$6UWQSL|mbJA?-~>>qY}8&^&5<>`Um(oM+yD+K5Qi z0ubNAjujJX-6fRB&OP_iRfM)It_IKiS$~Xx{|gYtVNXshwQeA-i{9` zA6DB`nlpUAP-Q7=)65zxKYyHlZ4=^@#Tf)a@3}s)^2Ly-k<*OK^`$$=nr^YJ8 zd_Co6zB~pDeqz*^?Hm$WwDQ65q79{beFCNKf8J>23RUlI29<0mQsG8$Q&}Q^rSbAu z5IS@-%a2-IghE`~O^AbBq@1()^xMR`BvgCPFOEO*Ye0uD7DHjy-#{y|egg8?PZqaJ zFbKaniZtT0^rP{@cS5=d+6CiGIRw#m^G%n_Ng!JRV$%eu=xCI8?=+oJmE@{R0NMlm z50KIwtGwnK$`^FUg~hf(ALpY@C`71Z-6ogdE@ZD}{u^bmrwB{og^8gA&yx9Ot`KO- z49k52T?<=D@6-pW?C$KsgLR)O49CrmCU}y^zG-M4gboNxGdvrO^)4dVqu&0|+=d<^ zJ71mpLU- zlpJ4Dxo_3~1lkAwtpfsU)l95sLK8oWn*y{!A4Za{yKS#tz6!7e{ufvUWk~xQjkvX= z@6jfk$4gM*M0%qYJ*eI*wa?}UTYzeJUChx&rmJW2b1fpPcN2%XUw+9UlBl$iDT ztP)pGXAi86r!doc49je481tJ@tN9N?aCfIsDl#$#r)1o0@=a%^H9Y3p6|HOU~I;RgM4*7;C>HnJ#+sG`zIllutL5p>>K8_yGT1E>uK^)=tOVS0mJ|;$$Nm24G#(>G3 zunEH8Y0dq8ie2ZPy3?C-EgiBtD2CzYR{2QevZ}pzj1gmKS(oia<5;-yqHVh2X-V>t z@82nXE?0g1+?wl?vj)_vzN@hXq&L3U3>bF$CG7|Kibkz2%#GCNC9k|*;MPWmV7mCh zpjb2$wRwP71qPLiK*uRD>ST|v%G%fqBMeBKy}M zOW)OHCt;xjRkx|xcK^$&k)Jlv3x+9cPLmli==@M2ss+wR3UT{EdJZgZSs>srEwW0< zz!pcpg&*4Wd9TrFArdO&|H(m8kFW-m# z%qjo7xc)!KoO2Pu0A=oY{)PL%+=;>q=zQA$*%tnP=Kfc+4AM-}X8dA;zr>(|-tAh8 zsqm~%1YH0podqX_{P*>tc?KOgX{coe9hl{FH0Oy3IY{$>Szh5H89^UW%!#5ArfMfIYw@os|`6;W2}XB-E0+r`;~0!&&U;sU;{gM1j(l;yc&U z$LjH?WxE+|<`l=08EtK;r`BsORhUMunpB^dqOB~2gsZ=!Nv;-79M45<^89w9X%-R5 zhiR_VSJF`xt`<;Bd`Og_U7n?&!#ACek3bX*`cp#4t6Xwk-0hg`b-CiJ_fp&9t^xH4 zGfB1f6m?;ZD245Kxj)RfS4{NP>L}fRBye*deJBjJQq{M?*1zJ{p%j)7WF)SR!54lE z=XUunwnYYdjf^Y^FVyC-3&V{?HGh|XMXMWq^#EUr!>kT==O`$3_m{rWO4V;}mARKD9bT=@zWF{-^txv^O-U*%Wo5aE;Cb)?_ zcBW^v(yOd=upSiN5+x zeV6b1nGUZV=#=EAZ+lQN-y0XqYB$-SS$>^nD+d>0r&IFd=Y(ms-I}x&{dw2PHcA;^ za+LGj;qPa=OVEuUxd7MV2$Ng{(Zz9DkQvlV2Z+WTNHgnqn!bbt=Vmv2d(=9G%z2-f z87kkj(;a|G2L!_hSAZ=0Y!Y!V8w4FQuMVkJi*k6@$!oH&9`uUw&GFoQTnZKDZ4hQI zGrq@HQkQnI_MR3*)ays0D~RG$oJ^qPbD`X#4FVZ92<#e7R&5wes>NN*b*BXLYjR3y zxcqV}Jx3Y8rk8|<(A*eM`y3{9o*ZX)mY#?T@ccS?I1RRDW`QeKn8z?%gy%yql|IJg zH?2}X1T#uBQE_fVv}VO}`cHXPYfE|Vw5c{d@Prm?_nUz$w~cswpWKqk1*@tE0Ps}I zU{~Y$vmy-U;+xhZe9I!4)fkFO4U{5+D0GgL-? zJriDA>}m1!U1*F{xh`ezrm5Jq+_$6o9R>`*Zpp8rl}uk9N;Nxs9EnZ3Yo>ya6#q^zuln8E?jF>K`PS(^ z(=l4<;Z-TIU73yi{q-$|ud8{u<=S)_CD6a;`hk7d11C$>l}yHB(NeMa&bm;{|1?es zR6ND*?Zk9zufq=CG4T1%g!l!N-r)^;-zvE4waI(V(v;Z_Q=e%n?4XdtP%Kv_A_a8Yxd0gj7Fz%B-6mxlkMzqD@Z! z#QG|4!!bm*MuRgSva)kwE*?urD)g^--H~$R_jFv+&HEge%vXnp6^pK?TQA-my%2(C zVk=hic{V0|VBpH)qS`?YRj;4Djhg}>;#Sz#^@|kf@d=81^=+8*GxSEAWxrvPit5S1 z-ahd!X9i@Qd^={&q_p`lc^ZtqTx+_N!1~qn^*YHOvMP#yIxucFAzeU1Je5C7x?V#ctEbAJzAM4CIFr zWVaR%>BW^T2xVw3{AWq=9nc)l^D|`LVDB$C(p%*>z%g9^C%EToWxC`U{|lHgAr_@u z6o-lX3x*@d+^p}ZE_Y2foxB0lykAYTHpq-?cJb@l6o9lw>|ZCa@UQc>@L8eUUPx5g zuih+k`|hO`8JSW^2N~hugUY>wfBbUq&35PhC}}|JlDK`H+QocG|0!xtnaR96-7}b# z6}eDYqD6{+U|0UyNC^$IA_D24nWI*=E`jw=rF*YhEb8TT>rqL=$NLg`>9V~r?Ne{8 zG`7RgY-)uLWWE;U;M}E4t4XLW?fx7?lG;jr?#gRUfXo+Ei?(D8JSTcv_GhrV$MGd8 zI5%#8CR4TF);5J>;1ho?DYK!`rxwP4u?(Jm6$T-g!D&jvJ6bF^3no)cuTYU-DT7l8 z+5Q(A+R!ra?Cxzj;=8?FDePUlGWDkBsi|9@-l|thV%J!W!E^orXNlzGpM+(>3VKGV zwTn~t{}sL^bk{_(R2`zHs=?>PE&smPw2b8Z{7tX7mXKEEUlo1s zz2c>>4(U=HaRxIewmeNXk0VJQSkI1}QP&_l<`)(b(s4Ail}mR_DYyz7m*ifRbajsq zm#va8LjEyAd|g?|jcaM`sNSQ*yZo;fnpJH?ES(1svEHBgHu|WnIb^_5T7}!0aIM3n z^pKl@-k3%s)FqrJqQG)2kkZxB4}{6gryvWd(@|>O;?#w|c5MkAP>~!lhv^%>q@VI< zsg>G>kU zNEvNAN!|O<3T2_^TWw#Nm16ai)w}OOfF~k%cWR#$M*7hJ%JV{t>>TX?;EF2mhj15llvHdsr)yG_;laZX=`* z%QiwtH+rB<>B?L^uy}WF$aI@iTYuhiXVYWvIc4dLsh5oAy8K|%zcGW!s5$RDUKprN zn*8e-_2>|U`KIpPr5-&AjdM$^EeV<&VcFJYH!(&R{mf-}yb+IDP`g2_NY{us`Ql&m zwSEdJ%V%(yUcBSS=-~MC{rokY{bjoqule40i*I4XiBt3c&E_@Q$@-_(DR}2Fn>Rw% zg^6!Noa|tb=$04@`FsmAzV0~LWj#2E9WAWYCfWU^xdElwa(1$JcI|uGpF1m}Rf_{p z^k%%(j2HK^n(E#GyVn|q+HjD*S_Lw0YT;s?kW4||Qd%v7b?)+8LyVfl1GuP6yo%$o)cS*VVC^HDbC=Gks$S%>uVuOnN-SeHoAFNf*5$)4UcsnU>g@6i8o`ZO%elbcl+(21-=gLK0s4rz%6KYNBk35&0iC<`3EpdX4?P-_Z20* zdXVio@3CRx8#WL{2QrRny_Fg_Qc8F(}~9O zY-5%^6U+l0p0+Xr>J3$o6<=$b))S;DVHrc=htGrNxm7{)LI`_uI_f8TJy6#ENlhBC z_O{buI`atIx6yuF)lEuW+!N6GpYb~Qj8#IG9V7Mb5Xxx9x zsnR97hy3kt5hvFI9&hqX+5LROgBvb0ItuT3r|u>R*!-pmof-07oGS6HpeAY1mO96o zQeM+Y9qA2>K@xZJ;~pv_ThIzoH{dKeD7fOzhFSeWhcg*68k1(6MM)Cdo&4mz_syjA z{UTp3@m21%*ttH6_mNu}L?ehiQh$PqX8)Z+O&!wxzea8I97Iz(-P2nr{A8%M`B8CU zoNZr~pi0Hy@Ak{lIJ>@0UeBS-7D@gJe(?i2IEu2wrHr!leuJg=a^HZZt3QCHdyic+ zTzh)c>+_~flpg$Eij=0*U#B!El~-KqlZnVn1zz^v&X3!ygy^8Wgq>LD#d(95-wnXa ziHt@m%EV_+dX6S1oVVNW84a~tmMz3jJsg#0GdwwGK)C0AfPx$lr8)EU@bI}#=upA- zzY#q-0i5Dj5y8rIb+Ij>&CtCmw|a+bwR^IU`=5cz__blP*K?cEcFH;(4-X>(V<>~L1jh#L|myL`D=pa6ZKcVY7`@88{vdEiH^iBg*RviYHKMbvM$DS;|>AkwOr8iGtuL8Zu} z^lzwJ{~z|=J1WX$c@+J~Nd-~CL{O4}BnT*oU;ve>%1YTg$)w(K`nB@ly?xp=4aGfyNhXbU!$kv3v$6T`iSD!HjP9GurKt=^ z&Nwfhss}xP-sC~dsAn1?V4n2&RZq&x$iA9i!5Q!UxW9i1#|p`OR@eoLb*JZhgFl&4 zi;xMPutDy$i{J{Q0|)LhITc&3m#61W?Em`7h8){KkbO;Z!Bn1gV=U!Un44&v_ah)A$;4D()(2BVn1)2Jg3f~j z&q(|C?;!0Px!}=_?*9$;h3i?p`xf6=75eU*)4gRW&DJv;2lD9WeteO)9FBlllFY^` zu)QD(C4`&KT|)i-S9KSW>ae-ix2dMwfui%{=-bS4VE)rL_-Qw%$w)-16?5?be_klSAcjg!8oaF6gi&xWhz` zst0kNH+d7KpHK9rs8_RgC7JAArjng|O7hB=XXSbx*}1WZ>j}+e7g9h zZh`+&72sLHGwOhMZhHB?q{lBFUVo##v_uVVK}e}TttYQsa1n5SV%$ro6A^9}i4TSz z=y=_ki!hoPYkB!=nEft-6~8a;tz9lsY;_$t3BZ}T0Q{pxfCJHC;Y59uLwJzr;9a&0 z+(Y*IH+I0LKkfD17FjQ}tKMcUaaye7>CslmJs*C>xl3A`Di#3~*(b)BfK!QS!Zwh| z{KrT^+wK#y%7d4BPFTx*Y5SqU#>eiL+n>{x10&kIJyLZ3B-+gJ7tlLBt@|ciG>xKU z^hK0J$rC4!V$_4eH7%;Qbrt+9+O>PVLz2l->7U;Q`cqnOEc+fJP}9CUXS7am@0v2` zv_Pu;CmNiiR+PC%Ce+E%(cxrgbm}qlbp5voqvH4rw_6PlT<;A#xufT;2(9;_h+R_m z^}+{e1ws-jqK+s+Rv+b{{{&e$RT*XR%J@K4vfQ2sg#)QG_AFP3&$0BX9sGFo*@Ilj zfK->mQqdhD^HX^Cuen@3=*jb~4@la71@(EX3V{8gq zQzZP~MZ=hN26bUO>B2LKkazzRA*cC3_iwLycjB)9&L4Aw4Tr*x@*a9kmCLYH@;jov zqW=B#hq*KIW6r%)img#{p={5ADvwT}$o%vjn8W{|^-9G($>iQL9VI*6rPMZNhNak> z-_KV>to?Q^|NeDDqcZt?kY^#1=b{h;2H{0ACf;$K8mb?%t)(rp9P?~XMMyvGdRy$2`MX1RjGuD!XY3QB_P>e}na&JL^$TN1K$l~!-N<+X<0D-xxmtX@Iq`cds8!cS|I zXq2{iV)t9wpid+me3}MleXZQ9s#e|gFCN|=iWt%ib=Cuhx-TdchF{Y#^z=X0uzUN+ z#NE6wkrvpmxpm%WsfXVOYC+93&GEV^r8Fd-L{*v|Iy1n*Sj*hzMD1*>b`7K=v}Oo0-Wx z8zZK<()=dr0<&Ls7CNm}!I`$B&r4h%r~eYW0q@x`)*_WNgv<|M6LJR=Vn5%?U#;E$ z4NPd=nYwQgo$uGCe`AF{xl;UI(zYi1`c9|pw+HIJ#b+1JfRL{`X#r%;Gbm%TFn0f` zDGb<}X-ad`*+M2H#zJt^{BHP%yg32i+fN^rGI6)uNqHYwTG{&SN=V4{1c!A((xJ*P z_ldSfT6Rg#rxH$ph@V6m-*M-49Jl7u{*%p(TLf`b_I`Qrll-c$Cj%de1U%~vQ&i-Z zO=xm>yZPNh=?IV02QM${ikwHO%?8Q#3Yj-+$UGRmBWSPcmRY>!KMC(sFsK9=f_J%g zoH#~_j&G0ONiA8@of{MQr$KVU!l^YcmwnHMPmWd^?l2-4;?T+k_1t;B^$GE?z3On? zSIik&+k}DlSAN)?8sC2M;q8M5kM4Y!AHjXUH6-wu^ByBDYV9hJr%04hfVym%NUHsF zcj>sgQhvf*ej37^9_;sh8}cE`_3#9#_v3vTj(^T~?=tIoq2udX_UGY8SW{A+tOqKd zjz(2;YF4c2IyW6xqFzH4P;dQ8mj9{Y-ES0yb?*cljRf{xZOPwjRfK40Wxjbm)?o;? zGZ!&(^{-+Vud?P^{ny-Y9}E-fZb_Ryyql0zBlUQ9=uqb~qr$FO-`azL(lcB`Lq91^ zcqrofLB(Vj8%?@%kwL%1p<_9CMwsmISrYx1>$gJSvVCrRfOhpthoRW8;~U>)`MgeE z;iga8a?<%-FD6Ys`SGaEo|xbz70R#9Bi2?U)}lojO}NiD0&C`Hg3F1gMNjhsPt$Nq zGHEw_lam^0NnI|SR$aP`IaG9@cIm@`NSDgI30q&D*phkd-Jf^CIfgJETFrw_JFAa7 zO&L1v^78_I^7CrkVz8h|nH36?b2K(p7WsV0GP*v!$1^`Wz5m+4smYTK9=}+nny;_IpBe!k`cZXkZ*a;U)L^+{=;(_xL2QX{hGp1Yf4FgESs3sIOUxA%d&!oYnajkM+j*Ze~q4J97;={_-?rAx+cR6Ggyx9h#SH{!R! zk3U*oyon<82#DsMT>>rdq%8+8^{;_Ab00=E)%$v6u1v$C?g5Rwp^cT65M2wYdX!slp7%o5R zbl?xuuKP=Hga3@Lo3_Hx=dldF?ZgXlUT94Gx>Vj7zQWuUvEj;`F)cVz9kbRGeKJ`# z%^%Ei4rC$iUeaqTKK5?;QJIx==9$t|=Lfz^c&*W{eXTnO#s*4$e0vhHEjg%f=JjIB zvHcZ4(yf5?O^EeR)ZTSFad7+MrXFPR(B_DJEH$5$Fj3Q>1iDLPWR;~#FidWMlAA2)n&1! z=5BVOL(jEX6_{=eqI=T=&`X~Qbl){}5i#5<`=-93|n z{DfFL9`e^Wm!Wpl<92iz{wku^cE2y4u`Yk4^ZpF2MdS9mylNU5{cW~*Pt&hs0~RNK zx7WBt2JM#TeV(VD@u>gQB*x%15F%Zav0l+ud2^qZ&q6Sm!aF5R#`nc;3l%)v6?XxB z7GjJu28WrPU9R9`n15(U$*gctCnIELLwIM$0r}8pEo-ZSEPXr{>^iUWXFsef*0!*f5vAn`>W<^_8eQkQ@KwD}qC%V>rERychLUO6A;+KF{# zsCV67Ll(1dKt!~SeVG}Mvgqft=;i%Qu{xzrD{Lk#T=ZZTYz6IhICrVxA%s`1d_utm zE$b^TU6Jb4+UJlDejG<>><>UoYVFG!+2WU#+>jMwYhmOl3L;X^$x5`r)N8 zx`|C-ENe|P^l8*XJN*jo8&w6FRUJe2Zo56dTXs8>EEw2wL9 z`_xj2H{@C{8rV2GaN8)O_1SRq=!@FIUFgbRS&LjPCy9zI+a5>-V9d5tiEetk^%|!3bmAo3+3`y3a?0eSGP@-8diC zo%2-d2G#)L>dYT;fEZZ(3J?Q38-f9GKU~EV3y5*<%^D@CjK^^AGr1Q4h(sm=k-qHQ z$2Y)=;^@t4ut7(wq+l(4OR7^^Ax%*o^>&Xfk>=O3e?$Y31ovhY)OyraKpd&c9ftXB z`$c-Q5+LfA6qq4ImGyu)*m%c(z+*_mmp4(EZgVvF0CYkvbOLM(q9<6JQq+D}EHDCX z-IL(v!>4^vV-VWDxl(9zLz$y^SHuDGCb;~Vj0I{Tfs&a$$c>WJZ z{|K-Riwfq$mqfS_+8K5IdUPdOUTQ_-MDVgP;o%7QFs%UBVWa)O`FekVve=&QAwW6M zoc#lKwABff6euB{=f?ui!R(YkqwZTGbwWi2Gma|I~^ZI4d|SodSqx**ua&Rv~3um-IA@lIj5MpU2sKJc}V z3nN&zI~fp7)av1X0#rC$7T9Nz{80_s+bY4;hV~j`y0^qY9F?O3Nu>avQ$TW9tS(^oQ3a}`X%aZX&xmDkHKMkSlzD*9R2dGkjI!3AH?qFS_D+zV; z1AL^Ru3=KQDePu@qER0N8{{a(#1qgV@y14GKvP;cCsXIS3ltGoXIJXR{*2kFYqbd(YsPgJ;cmh>3Wx5YZ1X2@LbDyZ1 zP@Lmopq_%e{#g)+_8zCdfgrUv-2Dx*4(r6zAjD;3BMlJ3Qi6LKC>F2gUPfpF=Y4Yi*GrXXtitpVHoFa(C!ux;8wmC0~`h8v@HC zYxZsE{5i_??_u8|b$eTMFGIGRUI4T~mlmXJ$e_g+D_2rD?WS==fUp{v7PvhcEoc8Ovl z2>OTv*AR2A-0^P(A$61JkuVnNrnpCXoeXtxszGy5UHAg1Gd0c(%?h}gyUB7?F5OI#a#yKq1^3x(msyP5ZcSn= z@T3;tGZ}btQm(rWb*yEXmZEI>^c=x zw<^;T)p?+Mwb{;=XIBP)e-Ocwa0%6f8*tf1a9o8J?e2@Naw~I#S90hNt8&jH6~@wi zt=U5Cc_mHg_PvY6Y*2m3UH>FdJsa-ogyT~59WnWHk$=VRM)I1}Xmt8N+}D@y%L}8F zjf$Ee_R)i5@=@&5P1=XVUf=fMTA4_yU{TXquqDxwrn89jnL2^^2TK^D|8!CQ*K8Ow8xCdmqvxe;pCSwmtLOe7~dsQh+Q9}*mJNyLh*s^`$ zwiEjl_vQ#xRaOU8oee$UF?9^MDj!6ViV2<%JxE{dKM9`SN-;h#ADV-63=hGb>Q1^h zp9H)|M~mRD`lfenHMdJe==w+V;kE-#plVPsAhyi2(182(Et5ATfjNzr;C=uZHo;}( zNQN$a5&jk9huRPsl4QFBzziR#)psEib=F%VKyieEeN6M9L5;dDh$!B6nYECPQ1?90 zW&AKna{<#{s9fg-b=k`GUMSks>YD)`=j}U(l%VuhU#~8Bw}&^W8%``xu)!Yf%V!u& zO@((lRwh4Qx<#8R7w7gvvmfAn0T@*&rtWe;uY23+kn*_Umr-_q$}~p4OgGxxx=^j& z8EMza?Ig4=5%4_?TF+Lia|Wl|Wu2LU!YAtmdUjZ>FPHiDt6=37y6btmm@-uYk0!v~ z%8J`3!-EROP0Kp{+l+rLeK6W9$Tm6}tN;!+6>e2ig?MlAKdCLxpbHNhfSTW0 zalMed)zfaldjpdLzWV{urxUy35)$fjbayH0g8oEQw=np-9;kV_Y