Skip to content

Using scipy's genetic algorithm for initial parameter estimation in gradient descent #1

@zunzun

Description

@zunzun

I see you are writing Python code for gradient descent on GitHub. A general problem for gradient descent and other non-linear algorithms - particularly for more complex equations - is the choice of initial parameters to start the "descent" in error space. Without good starting parameters, the algorithm will stop in a local error minimum. For this reason the authors of scipy have added a genetic algorithm for initial parameter estimation to use in gradient descent. The module is named scipy.optimize.differential_evolution.

I have used scipy's Differential Evolution genetic algorithm to determine initial parameters for fitting a double Lorentzian peak equation to Raman spectroscopy of carbon nanotubes and found that the results were excellent. The GitHub project, with a test spectroscopy data file, is:

https://github.com/zunzun/RamanSpectroscopyFit

If you have any questions, please let me know. My background is in nuclear engineering and industrial radiation physics, and I love Python, so I will be glad to help.

James Phillips

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions