Skip to content

Output format #3

@bkj

Description

@bkj

I ran the code, and just want to be clear that I'm understanding the output format.

$ python train.py --which-dataset C10
$ python evaluate.py --SMASH=SMASH_D12_K4_N8_Nmax64_maxbneck2_SMASH_C10_seed0_100epochs --which-dataset C10
$ python train.py --SMASH SMASH_D12_K4_N8_Nmax64_maxbneck2_SMASH_C10_seed0_100epochs --which-dataset C10
$ tail -n 4 logs/SMASH_Main_SMASH_D12_K4_N8_Nmax64_maxbneck2_SMASH_C10_seed0_100epochs_Rank0_C10_seed0_100epochs_log.jsonl
{"epoch": 98, "train_loss": 0.001096960324814265, "_stamp": 1504033169.525098, "train_err": 0.015555555555555555}
{"epoch": 98, "val_loss": 0.2705254354281351, "_stamp": 1504033174.813815, "val_err": 5.84}
{"epoch": 99, "train_loss": 0.0011473518449727433, "_stamp": 1504033324.084391, "train_err": 0.011111111111111112}
{"epoch": 99, "val_loss": 0.2725760878948495, "_stamp": 1504033329.318958, "val_err": 5.8}

I figure the 5.8 in the last line indicate that I've wound up w/ a trained model that gets 5.8% error on CIFAR-10 -- is that right? Which number does the 5.8 correspond to in Table 1 in the paper -- SmashV1=5.53 or SmashV2=4.03 or something else? I'm in the process of working through the code, but to double check that I understand the inputs/outputs.

Thanks
Ben

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions