From 41244c5566e900c333ba0a0171a196a2a98effe7 Mon Sep 17 00:00:00 2001 From: nmik Date: Wed, 2 Oct 2024 13:32:33 -0500 Subject: [PATCH 01/31] Still work in progress --- cosipy/polarization/polarization_stokes.py | 382 +++++++++++++++++++++ 1 file changed, 382 insertions(+) create mode 100644 cosipy/polarization/polarization_stokes.py diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py new file mode 100644 index 00000000..8d925ea3 --- /dev/null +++ b/cosipy/polarization/polarization_stokes.py @@ -0,0 +1,382 @@ +import numpy as np +from astropy.coordinates import Angle +import astropy.units as u +from astropy.stats import poisson_conf_interval +import matplotlib.pyplot as plt +from scipy.optimize import curve_fit +from cosipy.polarization import PolarizationAngle +from cosipy.polarization.conventions import MEGAlibRelativeX, IAUPolarizationConvention +from cosipy.response import FullDetectorResponse +from scoords import SpacecraftFrame +import scipy.interpolate as interpolate + +def calculate_azimuthal_scattering_angle(self, psi, chi): + """ + Calculate the azimuthal scattering angle of a scattered photon. + + Parameters + ---------- + psi : float + Polar angle (radians) of scattered photon in local coordinates + chi : float + Azimuthal angle (radians) of scattered photon in local coordinates + + Returns + ------- + azimuthal_angle : astropy.coordinates.Angle + Azimuthal scattering angle defined with respect to given reference vector + """ + + # Convert scattered photon vector from spherical to Cartesian coordinates + scattered_photon_vector = [np.sin(psi) * np.cos(chi), np.sin(psi) * np.sin(chi), np.cos(psi)] + + # Project scattered photon vector onto plane perpendicular to source direction + d = np.dot(scattered_photon_vector, self._source_vector_cartesian) / np.dot(self._source_vector_cartesian, self._source_vector_cartesian) + projection = [scattered_photon_vector[0] - (d * self._source_vector_cartesian[0]), + scattered_photon_vector[1] - (d * self._source_vector_cartesian[1]), + scattered_photon_vector[2] - (d * self._source_vector_cartesian[2])] + + # Calculate angle between scattered photon vector & reference vector on plane perpendicular to source direction + cross_product = np.cross(projection, self._reference_vector_cartesian) + if np.dot(self._source_vector_cartesian, cross_product) < 0: + sign = -1 + else: + sign = 1 + normalization = np.sqrt(np.dot(projection, projection)) * np.sqrt(np.dot(self._reference_vector_cartesian, self._reference_vector_cartesian)) + + azimuthal_angle = Angle(sign * np.arccos(np.dot(projection, self._reference_vector_cartesian) / normalization), unit=u.rad) + + return azimuthal_angle + +class PolarizationStokes(): + """ + Stokes parameter method to fit polarization. + + Parameters + ---------- + source_vector : astropy.coordinates.sky_coordinate.SkyCoord + Source direction + source_spectrum : astromodels.functions.functions_1D + Spectrum of source + response_file : str or pathlib.Path + Path to detector response + sc_orientation : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile + Spacecraft orientation + """ + + def __init__(self, source_vector, source_spectrum, response_file, sc_orientation): + + if fit_convention == None: + self._convention = MEGAlibRelativeX(attitude=source_vector.attitude) + else: + self._convention = fit_convention + + reference_vector = self._convention.get_basis(source_vector)[0] #px + + if isinstance(source_vector.frame, SpacecraftFrame): + self._source_vector = source_vector + else: + self._source_vector = source_vector.transform_to(SpacecraftFrame(attitude=source_vector.attitude)) + + if isinstance(reference_vector.frame, SpacecraftFrame): + self._reference_vector = reference_vector + else: + self._reference_vector = reference_vector.transform_to(SpacecraftFrame(attitude=source_vector.attitude)) + + self._source_vector_cartesian = [self._source_vector.cartesian.x.value, + self._source_vector.cartesian.y.value, + self._source_vector.cartesian.z.value] + self._reference_vector_cartesian = [self._reference_vector.cartesian.x.value, + self._reference_vector.cartesian.y.value, + self._reference_vector.cartesian.z.value] + + self._expectation, self._azimuthal_angle_bins = self.convolve_spectrum(source_spectrum, response_file, sc_orientation) + + self._energy_range = [min(self.response.axes['Em'].edges.value), max(self.response.axes['Em'].edges.value)] + + def convolve_spectrum(self, spectrum, response_file, sc_orientation): + """ + Convolve source spectrum with response and calculate azimuthal scattering angle bins. + + Parameters + ---------- + response_file : str or pathlib.Path + Path to detector response + sc_orientation : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile + Spacecraft orientation + + Returns + ------- + expectation : cosipy.response.PointSourceResponse.PointSourceResponse + Expected counts in each bin of Compton data space + azimuthal_angle_bins : list + Centers of azimuthal scattering angle bins calculated from PsiChi bins in response + """ + + self.response = FullDetectorResponse.open(response_file) + + target_in_sc_frame = sc_orientation.get_target_in_sc_frame(target_name='source', target_coord=self._source_vector.transform_to('galactic')) + dwell_time_map = sc_orientation.get_dwell_map(response=response_file, src_path=target_in_sc_frame) + + psr = self.response.get_point_source_response(exposure_map=dwell_time_map, coord=self._source_vector.transform_to('galactic')) + + expectation = psr.get_expectation(spectrum) + + azimuthal_angle_bins = [] + + for i in range(expectation.axes['PsiChi'].nbins): + azimuthal_angle = self.calculate_azimuthal_scattering_angle(expectation.project(['PsiChi']).axes['PsiChi'].pix2ang(i)[0], expectation.project(['PsiChi']).axes['PsiChi'].pix2ang(i)[1]) + azimuthal_angle_bins.append(azimuthal_angle) + + return expectation, azimuthal_angle_bins + + def calculate_azimuthal_scattering_angles(self, unbinned_data): + """ + Calculate the azimuthal scattering angles for all events in a dataset. + + Parameters + ---------- + unbinned_data : dict + Unbinned data including polar and azimuthal angles (radians) of scattered photon in local coordinates + + Returns + ------- + azimuthal_angles : list + Azimuthal scattering angles. Each angle must be an astropy.coordinates.Angle object + """ + + azimuthal_angles = [] + + for i in range(len(unbinned_data['Psi local'])): + if unbinned_data['Energies'][i] >= self._energy_range[0] and unbinned_data['Energies'][i] <= self._energy_range[1]: + azimuthal_angle = self.calculate_azimuthal_scattering_angle(unbinned_data['Psi local'][i], unbinned_data['Chi local'][i]) + azimuthal_angles.append(azimuthal_angle) + + return azimuthal_angles + + def compute_pseudo_stokes(self, azimuthal_angles): + """ + Calculates photon-by-photon pseudo stokes parameters from the photon azimutal angle. + + Parameters + ---------- + azimuthal_angles : list + Azimuthal scattering angles (radians) + + Returns + ------- + qs : list + list of pseudo-q parameters for each photon (ordered as input array) + us : list + list of pseudo-u parameters for each photon (ordered as input array) + """ + + qs = 2. * np.cos(2. * azimuthal_angles) + us = 2. * np.sin(2. * azimuthal_angles) + + return qs, us + + def create_unpolarized_asad(self, bins=None): + """ + Calculate the azimuthal scattering angles for all bins. + + Parameters + ---------- + bins : int or np.array, optional + Number of azimuthal scattering angle bins if int or edges of azimuthal scattering angle bins if np.array (radians) + + Returns + ------- + asad : dict + Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin + """ + + if not bins == None: + if isinstance(bins, int): + bin_edges = Angle(np.linspace(-np.pi, np.pi, bins), unit=u.rad) + else: + bin_edges = bins + else: + bin_edges = self._bin_edges + + unpolarized_asad = [] + + for i in range(len(bin_edges)-1): + counts = 0 + for j in range(self._expectation.project(['PsiChi']).nbins): + if self._azimuthal_angle_bins[j] >= bin_edges[i] and self._azimuthal_angle_bins[j] < bin_edges[i+1]: + counts += self._expectation.project(['PsiChi'])[j] + unpolarized_asad.append(counts) + + return bin_edges, unpolarized_asad + + def create_unpolarized_pseudo_stokes(self, bin_edges, unpolarized_asad, total_num_events): + """ + Calculate the azimuthal scattering angles for all bins. + + Parameters + ---------- + bins : int or np.array, optional + Number of azimuthal scattering angle bins if int or edges of azimuthal scattering angle bins if np.array (radians) + + Returns + ------- + qs : list + list of pseudo-q parameters for each photon (ordered as input array) + us : list + list of pseudo-u parameters for each photon (ordered as input array) + """ + + # I would like to radomly extract an azimutal angle for each photon based on the unpolarized response. + # There might be an energy dependence here, so we should thing carfully + + # Create teh spline from teh unpol azimutal angle distrib + spline_unpol = interpolate.interp1d(bin_edges, unpolarized_asad, bc_type='natural') + + # Create fine bins and normalize to the area to get a probability density function (PDF) + fine_bins = np.linspace(bin_edges[0], bin_edges[-1], 1000) + fine_probabilities = spline_unpol(fine_bins) + total_area = np.trapz(fine_probabilities, fine_bins) # Numerical integration using trapezoidal rule + fine_probabilities /= total_area + + # Compute the cumulative distribution function (CDF) + cdf = np.cumsum(fine_probabilities) + cdf = cdf / cdf[-1] # Normalize the CDF to make it a proper probability distribution + + #Invert the CDF + inv_cdf = interpolate.interp1d(cdf, fine_bins, kind='linear', fill_value="extrapolate") + + #Generate random samples from a uniform distribution and map them to azimuthal angles + random_values = np.random.rand(total_num_events) + unpol_azimuthal_angles = inv_cdf(random_values) + + qs_unpol = 2. * np.cos(2. * unpol_azimuthal_angles) + us_unpol = 2. * np.sin(2. * unpol_azimuthal_angles) + + return qs_unpol, us_unpol + + def calculate_mu100(self, polarized_asads, unpolarized_asad): + """ + Calculate the modulation (mu) of an 100% polarized source. + + Parameters + ---------- + polarized_asads : list + Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for each polarization angle bin for 100% polarized source + unpolarized_asad : list or np.array + Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for unpolarized source + + Returns + ------- + mu_100 : dict + Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins + """ + + mu_100_list = [] + mu_100_uncertainties = [] + for i in range(self._expectation.axes['Pol'].nbins): + print('Polarization angle bin: ' + str(self._expectation.axes['Pol'].edges[i]) + ' to ' + str(self._expectation.axes['Pol'].edges[i+1])) + asad_polarized = {'counts': polarized_asads['counts'][i], 'uncertainties': polarized_asads['uncertainties'][i]} + asad_polarized_corrected = self.correct_asad(asad_polarized, unpolarized_asad) + mu_100 = self.calculate_mu(asad_polarized_corrected['counts'], bounds=([0, 0, 0], [np.inf,np.inf,np.pi]), sigma=asad_polarized_corrected['uncertainties']) + mu_100_list.append(mu_100['mu']) + mu_100_uncertainties.append(mu_100['uncertainty']) + self.plot_asad(asad_polarized_corrected['counts'], asad_polarized_corrected['uncertainties'], 'Corrected 100% Polarized ASAD', coefficients=self.fit(mu_100, asad_polarized_corrected['counts'], bounds=([0, 0, 0], [np.inf,np.inf,np.pi]), sigma=asad_polarized_corrected['uncertainties'])['best fit parameter values']) + + popt, pcov = curve_fit(self.constant, self._expectation.axes['Pol'].centers, mu_100_list, sigma=mu_100_uncertainties) + mu_100 = {'mu': popt[0], 'uncertainty': pcov[0][0]} + + plt.scatter(self._expectation.axes['Pol'].centers, mu_100_list) + plt.errorbar(self._expectation.axes['Pol'].centers, mu_100_list, yerr=mu_100_uncertainties, linewidth=0, elinewidth=1) + plt.plot([0, 175], [mu_100['mu'], mu_100['mu']]) + plt.xlabel('Polarization Angle (degrees)') + plt.ylabel('mu_100') + plt.show() + + print('mu_100:', round(mu_100['mu'], 2)) + + return mu_100 + + def calculate_polarization(I, qs, us, unpol_qs, unpol_us , mu, W2=None): + # + # + # + # contunue here below + # + # + # + """Calculate the polarization degree and angle, with the associated + uncertainties, for a given q and u. + + This implements equations (21), (36), (22) and (37) in the paper, + respectively. + + Note that the Stokes parameters passed as the input arguments are assumed + to be normalized to the modulation factor (for Q and U) on an + event-by-event basis and summed over the proper energy range. + + Great part of the logic is meant to avoid runtime zero-division errors. + """ + if xStokesAnalysis._check_polarization_input(I, Q, U): + abort('Invalid input to xStokesAnalysis.calculate_polarization()') + # If W2 is not, i.e, we are not passing the sum of weights, we assume + # that the analysis is un-weighted, and the acceptance correction is + # not applied, in which case W2 = I and the scale for the errors is 1. + if W2 is None: + W2 = I + # Initialize the output arrays. + err_scale = np.full(I.shape, 1.) + pd = np.full(I.shape, 0.) + pd_err = np.full(I.shape, 0.) + pa = np.full(I.shape, 0.) + pa_err = np.full(I.shape, 0.) + # Define the basic mask---we are only overriding the values for the array + # elements that pass the underlying selection. + # Note we need I > 1., and not simply I > 0., to avoid any possible + # zero-division runtime error in the calculations, including the error + # propagation. + mask = I > 1. + # First pass at the polarization degree, which is needed to compute the + # modulation, which is in turn one of the ingredients of the error + # propagation (remember that Q and U are the reconstructed quantities, + # i.e., already divided by the modulation factor). + pd[mask] = np.sqrt(Q[mask]**2. + U[mask]**2.) / I[mask] + # Convert the polarization to modulation---this is needed later for the + # error propagation. + m = pd * mu + # We want the bins to satify the relation (m^2 < 2), since (2 - m^2) + # is one of the factors of the errors on the polarization. + mask = np.logical_and(mask, m**2. < 2.) + # We also want to make sure that the modulation factor is nonzero--see + # formula for the polarization error. + # It's not entirely clear to me why that would happen, but I assume that + # if you have a bin with a couple of very-low energy events it is maybe + # possible? + mask = np.logical_and(mask, mu > 0.) + # Create a masked version of the necessary arrays. + _I = I[mask] + _Q = Q[mask] + _U = U[mask] + _W2 = W2[mask] + _mu = mu[mask] + _m = m[mask] + # Second pass on the polarization with the final mask. + pd[mask] = np.sqrt(_Q**2. + _U**2.) / _I + # See equations (A.4a) and (A.4b), and compare with equations (17a) and + # (17b) for the origin of the factor sqrt(W2 / I). Also note that a + # square root is missing in (A.4a) and (A.4b). + err_scale[mask] = np.sqrt(_W2 / _I) + # Calculate the errors on the polarization degree + pd_err[mask] = err_scale[mask] * np.sqrt((2. - _m**2.) / ((_I - 1.) * _mu**2.)) + assert np.isfinite(pd).all() + assert np.isfinite(pd_err).all() + # And, finally, the polarization angle and fellow uncertainty. + pa[mask] = 0.5 * np.arctan2(_U, _Q) + pa_err[mask] = err_scale[mask] / (_m * np.sqrt(2. * (_I - 1.))) + assert np.isfinite(pa).all() + assert np.isfinite(pa_err).all() + # Convert to degrees, if needed. + if degrees: + pa = np.degrees(pa) + pa_err = np.degrees(pa_err) + return pd, pd_err, pa, pa_err From 113b275f884faec07430f9e75411743444189419 Mon Sep 17 00:00:00 2001 From: nmik Date: Fri, 18 Oct 2024 11:37:45 -0500 Subject: [PATCH 02/31] work in progress: testing on Stokes_method.ipynp --- cosipy/polarization/polarization_stokes.py | 319 ++++++++++++++------- 1 file changed, 221 insertions(+), 98 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 8d925ea3..123d0d07 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -10,7 +10,35 @@ from scoords import SpacecraftFrame import scipy.interpolate as interpolate -def calculate_azimuthal_scattering_angle(self, psi, chi): + +#we can define all these functions in a separate file to import + +def R(x, A, B, C): + """ + """ + return A + B*(np.cos(x + C)**2) + + +def constant(x, a): + """ + Constant function to fit to mu_100 values. + + Parameters + ---------- + x : float + Mu_100 + a : float + Parameter + + Returns + ------- + a : float + Constant value + """ + + return a + +def calculate_azimuthal_scattering_angle(psi, chi, source_vector, reference_vector): """ Calculate the azimuthal scattering angle of a scattered photon. @@ -27,27 +55,63 @@ def calculate_azimuthal_scattering_angle(self, psi, chi): Azimuthal scattering angle defined with respect to given reference vector """ + source_vector_cartesian = [source_vector.cartesian.x.value, + source_vector.cartesian.y.value, + source_vector.cartesian.z.value] + reference_vector_cartesian = [reference_vector.cartesian.x.value, + reference_vector.cartesian.y.value, + reference_vector.cartesian.z.value] + # Convert scattered photon vector from spherical to Cartesian coordinates scattered_photon_vector = [np.sin(psi) * np.cos(chi), np.sin(psi) * np.sin(chi), np.cos(psi)] # Project scattered photon vector onto plane perpendicular to source direction - d = np.dot(scattered_photon_vector, self._source_vector_cartesian) / np.dot(self._source_vector_cartesian, self._source_vector_cartesian) - projection = [scattered_photon_vector[0] - (d * self._source_vector_cartesian[0]), - scattered_photon_vector[1] - (d * self._source_vector_cartesian[1]), - scattered_photon_vector[2] - (d * self._source_vector_cartesian[2])] + d = np.dot(scattered_photon_vector, source_vector_cartesian) / np.dot(source_vector_cartesian, source_vector_cartesian) + projection = [scattered_photon_vector[0] - (d * source_vector_cartesian[0]), + scattered_photon_vector[1] - (d * source_vector_cartesian[1]), + scattered_photon_vector[2] - (d * source_vector_cartesian[2])] # Calculate angle between scattered photon vector & reference vector on plane perpendicular to source direction - cross_product = np.cross(projection, self._reference_vector_cartesian) - if np.dot(self._source_vector_cartesian, cross_product) < 0: + cross_product = np.cross(projection, reference_vector_cartesian) + if np.dot(source_vector_cartesian, cross_product) < 0: sign = -1 else: sign = 1 - normalization = np.sqrt(np.dot(projection, projection)) * np.sqrt(np.dot(self._reference_vector_cartesian, self._reference_vector_cartesian)) + normalization = np.sqrt(np.dot(projection, projection)) * np.sqrt(np.dot(reference_vector_cartesian, reference_vector_cartesian)) - azimuthal_angle = Angle(sign * np.arccos(np.dot(projection, self._reference_vector_cartesian) / normalization), unit=u.rad) + azimuthal_angle = Angle(sign * np.arccos(np.dot(projection, reference_vector_cartesian) / normalization), unit=u.rad) return azimuthal_angle +def get_modulation(_x, _y, title='Modulation', show=False): + """ Function to estimate the modulation factor. + _x is the central value of the histogram bins + _y is the value of the bins on the histograms + """ + _x = _x[:-1] + (_x[1:] - _x[:-1])/2 + popt, pcov = curve_fit(R, _x, _y ) #sigma=np.sqrt(_y), absolute_sigma=True + pcov[0][0], pcov[1][1], pcov[2][2] = np.sqrt(pcov[0][0]), np.sqrt(pcov[1][1]), np.sqrt(pcov[2][2]) + print('A = %.2f, B = %.2f, C = %.2f'%(popt[0], popt[1], popt[2])) + + Rmax, Rmin = np.amax(R(_x, *popt)), np.amin(R(_x, *popt)) + print('Rmax, Rmin:', Rmax, Rmin) + mu = (Rmax-Rmin)/(Rmax+Rmin) + print('Modulation mu = ', mu) + + perr = [popt[0]+np.sqrt(pcov[0][0]), popt[1]+np.sqrt(pcov[1][1]), popt[2]] + merr = [popt[0]-np.sqrt(pcov[0][0]), popt[1]-np.sqrt(pcov[1][1]), popt[2]] + + if show: + plt.figure() + plt.title(title) + plt.bar(_x, _y, align='center', width=0.07, alpha=0.5) + plt.fill_between(_x, R(_x, *perr), R(_x, *merr), color='red', alpha=0.3) + plt.plot(_x, R(_x, *popt), 'r-', label='$\mu=$%.2f'%mu) + plt.legend(fontsize=12) + plt.ylim(Rmin-500, Rmax+500) + plt.xlabel('Azimuthal angle [rad]') + return mu, popt, pcov + class PolarizationStokes(): """ Stokes parameter method to fit polarization. @@ -65,12 +129,9 @@ class PolarizationStokes(): """ def __init__(self, source_vector, source_spectrum, response_file, sc_orientation): - - if fit_convention == None: - self._convention = MEGAlibRelativeX(attitude=source_vector.attitude) - else: - self._convention = fit_convention + # This will need to be changed into IAUPolarizationConvention hardcoded! + self._convention = MEGAlibRelativeX(attitude=source_vector.attitude) reference_vector = self._convention.get_basis(source_vector)[0] #px if isinstance(source_vector.frame, SpacecraftFrame): @@ -82,17 +143,12 @@ def __init__(self, source_vector, source_spectrum, response_file, sc_orientation self._reference_vector = reference_vector else: self._reference_vector = reference_vector.transform_to(SpacecraftFrame(attitude=source_vector.attitude)) - - self._source_vector_cartesian = [self._source_vector.cartesian.x.value, - self._source_vector.cartesian.y.value, - self._source_vector.cartesian.z.value] - self._reference_vector_cartesian = [self._reference_vector.cartesian.x.value, - self._reference_vector.cartesian.y.value, - self._reference_vector.cartesian.z.value] self._expectation, self._azimuthal_angle_bins = self.convolve_spectrum(source_spectrum, response_file, sc_orientation) self._energy_range = [min(self.response.axes['Em'].edges.value), max(self.response.axes['Em'].edges.value)] + + self._binedges = Angle(np.linspace(-np.pi, np.pi, 20), unit=u.rad) def convolve_spectrum(self, spectrum, response_file, sc_orientation): """ @@ -125,7 +181,9 @@ def convolve_spectrum(self, spectrum, response_file, sc_orientation): azimuthal_angle_bins = [] for i in range(expectation.axes['PsiChi'].nbins): - azimuthal_angle = self.calculate_azimuthal_scattering_angle(expectation.project(['PsiChi']).axes['PsiChi'].pix2ang(i)[0], expectation.project(['PsiChi']).axes['PsiChi'].pix2ang(i)[1]) + azimuthal_angle = calculate_azimuthal_scattering_angle(expectation.project(['PsiChi']).axes['PsiChi'].pix2ang(i)[0], + expectation.project(['PsiChi']).axes['PsiChi'].pix2ang(i)[1], + self._source_vector, self._reference_vector) azimuthal_angle_bins.append(azimuthal_angle) return expectation, azimuthal_angle_bins @@ -149,33 +207,13 @@ def calculate_azimuthal_scattering_angles(self, unbinned_data): for i in range(len(unbinned_data['Psi local'])): if unbinned_data['Energies'][i] >= self._energy_range[0] and unbinned_data['Energies'][i] <= self._energy_range[1]: - azimuthal_angle = self.calculate_azimuthal_scattering_angle(unbinned_data['Psi local'][i], unbinned_data['Chi local'][i]) + azimuthal_angle = calculate_azimuthal_scattering_angle(unbinned_data['Psi local'][i], + unbinned_data['Chi local'][i], + self._source_vector, self._reference_vector) azimuthal_angles.append(azimuthal_angle) return azimuthal_angles - def compute_pseudo_stokes(self, azimuthal_angles): - """ - Calculates photon-by-photon pseudo stokes parameters from the photon azimutal angle. - - Parameters - ---------- - azimuthal_angles : list - Azimuthal scattering angles (radians) - - Returns - ------- - qs : list - list of pseudo-q parameters for each photon (ordered as input array) - us : list - list of pseudo-u parameters for each photon (ordered as input array) - """ - - qs = 2. * np.cos(2. * azimuthal_angles) - us = 2. * np.sin(2. * azimuthal_angles) - - return qs, us - def create_unpolarized_asad(self, bins=None): """ Calculate the azimuthal scattering angles for all bins. @@ -190,17 +228,18 @@ def create_unpolarized_asad(self, bins=None): asad : dict Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin """ - + print('Creating the unpolarized ASAD...') if not bins == None: if isinstance(bins, int): bin_edges = Angle(np.linspace(-np.pi, np.pi, bins), unit=u.rad) + self._binedges = bin_edges else: bin_edges = bins + self._binedges = bin_edges else: - bin_edges = self._bin_edges - - unpolarized_asad = [] + bin_edges = self._binedges + unpolarized_asad = [] for i in range(len(bin_edges)-1): counts = 0 for j in range(self._expectation.project(['PsiChi']).nbins): @@ -208,9 +247,122 @@ def create_unpolarized_asad(self, bins=None): counts += self._expectation.project(['PsiChi'])[j] unpolarized_asad.append(counts) - return bin_edges, unpolarized_asad + return bin_edges, np.array(unpolarized_asad) - def create_unpolarized_pseudo_stokes(self, bin_edges, unpolarized_asad, total_num_events): + def create_polarized100_asad(self, bins=None): + """ + Calculate the azimuthal scattering angles for a 100% polarized source. + + Parameters + ---------- + bins : int or np.array, optional + Number of azimuthal scattering angle bins if int or edges of azimuthal scattering angle bins if np.array (radians) + + Returns + ------- + qs : list + list of pseudo-q parameters for each photon (ordered as input array) + us : list + list of pseudo-u parameters for each photon (ordered as input array) + """ + print('Creating the 100% polarized ASAD...') + if not bins == None: + if isinstance(bins, int): + bin_edges = Angle(np.linspace(-np.pi, np.pi, bins), unit=u.rad) + self._binedges = bin_edges + else: + bin_edges = bins + self._binedges = bin_edges + else: + bin_edges = self._binedges + + _polarized100_asad_ = [] + for k in range(self._expectation.axes['Pol'].nbins): + polarized100_asad_ = [] + for i in range(len(bin_edges)-1): + counts = 0 + for j in range(self._expectation.project(['PsiChi']).nbins): + if self._azimuthal_angle_bins[j] >= bin_edges[i] and self._azimuthal_angle_bins[j] < bin_edges[i+1]: + counts += self._expectation.slice[{'Pol':slice(k,k+1)}].project(['PsiChi'])[j] + polarized100_asad_.append(counts) + _polarized100_asad_.append(polarized100_asad_) + + return bin_edges, np.array(_polarized100_asad_) + + def calculate_mu(self, bins=20, show=False): + """ + Calculate the modulation (mu) of an 100% polarized source. This sohuld not depend on the specific events but only on our instrument responses. + In this sence we can pre-compute a cube of modulation factors to pull from. + + MN note: I don't think this should depend on a source spectrum: this can be + + Parameters + ---------- + polarized_asads : list + Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for each polarization angle bin for 100% polarized source + unpolarized_asad : list or np.array + Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for unpolarized source + + Returns + ------- + mu : dict + Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins + """ + + be, polarized100_asad = self.create_polarized100_asad(bins=bins) + print(polarized100_asad.shape) + be, unpolarized_asad = self.create_unpolarized_asad(bins=bins) + print(unpolarized_asad.shape) + + mu_list = [] + for pol100asad_pa in polarized100_asad: + asad_corrected = pol100asad_pa / np.sum(pol100asad_pa) / unpolarized_asad * np.sum(unpolarized_asad) + print('be, asad_corrected:', be, asad_corrected) + + mu, popt, pcov = get_modulation(be, asad_corrected, title='Modulation', show=show) + mu_list.append(mu) + + mu_final, popt, pcov = curve_fit(constant, self._expectation.axes['Pol'].centers, mu_list) + + print('mu:', mu_final) + + return mu_final + + def compute_pseudo_stokes(self, azimuthal_angles, show=False): + """ + Calculates photon-by-photon pseudo stokes parameters from the photon azimutal angle. + + Parameters + ---------- + azimuthal_angles : list + Azimuthal scattering angles (radians) + + Returns + ------- + qs : list + list of pseudo-q parameters for each photon (ordered as input array) + us : list + list of pseudo-u parameters for each photon (ordered as input array) + """ + + qs, us = [], [] + + for a in azimuthal_angles: + qs.append(np.cos(a.radian * 2) * 2) + us.append(np.sin(a.radian * 2) * 2) + + if show: + plt.figure() + plt.title('Source Stokes parameters') + plt.hist(qs, bins=50, alpha=0.5, label='q$_s$') + plt.hist(us, bins=50, alpha=0.5, label='u$_s$') + plt.xlabel('Pseudo Stokes parameter') + plt.legend() + plt.show() + + return qs, us + + def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False): """ Calculate the azimuthal scattering angles for all bins. @@ -227,14 +379,16 @@ def create_unpolarized_pseudo_stokes(self, bin_edges, unpolarized_asad, total_nu list of pseudo-u parameters for each photon (ordered as input array) """ + be, unpolarized_asad = self.create_unpolarized_asad(bins=bins) + # I would like to radomly extract an azimutal angle for each photon based on the unpolarized response. # There might be an energy dependence here, so we should thing carfully # Create teh spline from teh unpol azimutal angle distrib - spline_unpol = interpolate.interp1d(bin_edges, unpolarized_asad, bc_type='natural') + spline_unpol = interpolate.interp1d(be[:-1], unpolarized_asad) # Create fine bins and normalize to the area to get a probability density function (PDF) - fine_bins = np.linspace(bin_edges[0], bin_edges[-1], 1000) + fine_bins = np.linspace(be[0]-0.1*be[0], be[-1]+0.1*be[-1], 1000) fine_probabilities = spline_unpol(fine_bins) total_area = np.trapz(fine_probabilities, fine_bins) # Numerical integration using trapezoidal rule fine_probabilities /= total_area @@ -244,64 +398,33 @@ def create_unpolarized_pseudo_stokes(self, bin_edges, unpolarized_asad, total_nu cdf = cdf / cdf[-1] # Normalize the CDF to make it a proper probability distribution #Invert the CDF - inv_cdf = interpolate.interp1d(cdf, fine_bins, kind='linear', fill_value="extrapolate") + inv_cdf = interpolate.interp1d(cdf, fine_bins) #Generate random samples from a uniform distribution and map them to azimuthal angles random_values = np.random.rand(total_num_events) unpol_azimuthal_angles = inv_cdf(random_values) - qs_unpol = 2. * np.cos(2. * unpol_azimuthal_angles) - us_unpol = 2. * np.sin(2. * unpol_azimuthal_angles) + qs_unpol, us_unpol = self.compute_pseudo_stokes(unpol_azimuthal_angles) + if show: + plt.figure() + plt.title('Unpolarized') + plt.hist(qs_unpol, bins=50, alpha=0.5, label='q$_s$') + plt.hist(us_unpol, bins=50, alpha=0.5, label='u$_s$') + plt.xlabel('Pseudo Stokes parameter') + plt.legend() + plt.show() + return qs_unpol, us_unpol - def calculate_mu100(self, polarized_asads, unpolarized_asad): - """ - Calculate the modulation (mu) of an 100% polarized source. - - Parameters - ---------- - polarized_asads : list - Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for each polarization angle bin for 100% polarized source - unpolarized_asad : list or np.array - Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for unpolarized source - - Returns - ------- - mu_100 : dict - Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins - """ - - mu_100_list = [] - mu_100_uncertainties = [] - for i in range(self._expectation.axes['Pol'].nbins): - print('Polarization angle bin: ' + str(self._expectation.axes['Pol'].edges[i]) + ' to ' + str(self._expectation.axes['Pol'].edges[i+1])) - asad_polarized = {'counts': polarized_asads['counts'][i], 'uncertainties': polarized_asads['uncertainties'][i]} - asad_polarized_corrected = self.correct_asad(asad_polarized, unpolarized_asad) - mu_100 = self.calculate_mu(asad_polarized_corrected['counts'], bounds=([0, 0, 0], [np.inf,np.inf,np.pi]), sigma=asad_polarized_corrected['uncertainties']) - mu_100_list.append(mu_100['mu']) - mu_100_uncertainties.append(mu_100['uncertainty']) - self.plot_asad(asad_polarized_corrected['counts'], asad_polarized_corrected['uncertainties'], 'Corrected 100% Polarized ASAD', coefficients=self.fit(mu_100, asad_polarized_corrected['counts'], bounds=([0, 0, 0], [np.inf,np.inf,np.pi]), sigma=asad_polarized_corrected['uncertainties'])['best fit parameter values']) - - popt, pcov = curve_fit(self.constant, self._expectation.axes['Pol'].centers, mu_100_list, sigma=mu_100_uncertainties) - mu_100 = {'mu': popt[0], 'uncertainty': pcov[0][0]} - - plt.scatter(self._expectation.axes['Pol'].centers, mu_100_list) - plt.errorbar(self._expectation.axes['Pol'].centers, mu_100_list, yerr=mu_100_uncertainties, linewidth=0, elinewidth=1) - plt.plot([0, 175], [mu_100['mu'], mu_100['mu']]) - plt.xlabel('Polarization Angle (degrees)') - plt.ylabel('mu_100') - plt.show() - - print('mu_100:', round(mu_100['mu'], 2)) - - return mu_100 - def calculate_polarization(I, qs, us, unpol_qs, unpol_us , mu, W2=None): # # # # contunue here below + # make sure that the output PA is a polarization angle object. E.g.: + # polarization_angle += Angle(180, unit=u.deg) + # polarization_angle = PolarizationAngle(polarization_angle, self._source_vector, convention=self._convention).transform_to(IAUPolarizationConvention()) # # # From 0a7b58b6c9e1f45ea8582b6d841ecb8d63a2b81a Mon Sep 17 00:00:00 2001 From: nmik Date: Fri, 18 Oct 2024 11:39:04 -0500 Subject: [PATCH 03/31] test unit in progress --- .../polarization/Stokes_method.ipynb | 1009 +++++++++++++++++ 1 file changed, 1009 insertions(+) create mode 100644 docs/tutorials/polarization/Stokes_method.ipynb diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb new file mode 100644 index 00000000..84a022bc --- /dev/null +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -0,0 +1,1009 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4e111ad9-5599-451c-83a5-f89a79b0dd42", + "metadata": {}, + "source": [ + "# Polarization example (GRB) - azimuthal scattering angle distribution (ASAD) method" + ] + }, + { + "cell_type": "markdown", + "id": "f9b8addd-aaa4-488c-8041-385881689986", + "metadata": {}, + "source": [ + "This notebook fits the polarization fraction and angle of a GRB simulated using MEGAlib and combined with background. It's assumed that the start time, duration, localization, and spectrum of the GRB are already known. The GRB was simulated with 70% polarization at an angle of 110 degrees in the RelativeX convention, which corresponds to 83.015 degrees in the IAU convention.\n", + "\n", + "The data to run this notebook, including GRBs simulated on-axis, 10 degrees off-axis, and 20 degrees off-axis, can be found on the COSI Pipeline Google Drive: https://drive.google.com/drive/folders/1kCkqQv07APSSlexeuIgK2Jj7eqJzNNgQ. However, with the RelativeZ response, it is not possible to fit the on-axis GRB.\n", + "\n", + "Caveats/limitations:\n", + "- Currently, the source must be stationary with respect to the instrument, and the spacecraft must be stationary. The ability to fit the polarization of persistent sources will be added later. \n", + "- The background simulation is used as the background model, and its ASAD is subtracted from the source+background ASAD. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "26c12d83-7afc-4000-8b8f-d353e0b08d12", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
18:45:45 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=274616;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=435315;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=757501;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=854574;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=136397;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=570250;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=50576;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=296885;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559184;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=936347;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:41\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=144196;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23680;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=412819;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=655680;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
18:45:45 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=912655;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356240;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=509101;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=596182;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=831172;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=347031;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=291824;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=729259;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=235721;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451117;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=981147;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=852351;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=119236;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951119;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=224630;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=604510;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=590223;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845577;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=746520;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=515883;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from cosipy import UnBinnedData\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.polarization.conventions import MEGAlibRelativeX, MEGAlibRelativeY, MEGAlibRelativeZ, IAUPolarizationConvention\n", + "from cosipy.polarization.polarization_asad import PolarizationASAD, calculate_uncertainties\n", + "from cosipy.polarization.polarization_stokes import PolarizationStokes\n", + "\n", + "from cosipy.threeml.custom_functions import Band_Eflux\n", + "from astropy.time import Time\n", + "import numpy as np\n", + "from astropy.coordinates import Angle, SkyCoord\n", + "from astropy import units as u\n", + "from scoords import SpacecraftFrame\n", + "from scipy.optimize import curve_fit" + ] + }, + { + "cell_type": "markdown", + "id": "ce33b697", + "metadata": {}, + "source": [ + "Read in the data (GRB+background), background simulation, and define the path to the detector response" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ac0ad83d", + "metadata": {}, + "outputs": [], + "source": [ + "path = '/Users/mnegro/MyDocuments/_COSI/COSIpy/eliza_pull_request/eliza_data/'\n", + "analysis = UnBinnedData(path+'grb.yaml') # e.g. grb.yaml\n", + "\n", + "analysis.select_data(unbinned_data=path+'GRB_20_0.hdf5', output_name=path+'GRB_20_0_selected.hdf5') # e.g. GRB_20_0.hdf5 & GRB_20_0_selected.hdf5\n", + "grb_data = analysis.get_dict_from_hdf5(path+'GRB_20_0_selected.hdf5') # e.g. GRB_20_0_selected.hdf5\n", + "background = analysis.get_dict_from_hdf5(path+'background.hdf5') # e.g. background.hdf5\n", + "\n", + "response_file = path+'RelativeZ_200to500keV_1ebins_12pbins_log_flat.binnedpolarization.11D_nside8.h5' # e.g. HEALPixO3_200to500keV_1ebins_12pbins_log_flat.binnedpolarization.11D_nside8.area.h5" + ] + }, + { + "cell_type": "markdown", + "id": "2cc0300a", + "metadata": {}, + "source": [ + "Read in the orientation file. Here, the spacecraft is stationary, so we are only using the first attitude bin" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ecb484f2", + "metadata": {}, + "outputs": [], + "source": [ + "sc_orientation = SpacecraftFile.parse_from_file(path+'ori.ori') # e.g. ori.ori\n", + "sc_orientation = sc_orientation.source_interval(Time(analysis.tmin,format = 'unix'), Time(analysis.tmax,format = 'unix'))\n", + "\n", + "attitude = sc_orientation.get_attitude()[0]" + ] + }, + { + "cell_type": "markdown", + "id": "c6951d6c", + "metadata": {}, + "source": [ + "Define the GRB spectrum. This is convolved with the response to calculate the ASADs of an unpolarized and 100% polarized source" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "26cec39d", + "metadata": {}, + "outputs": [], + "source": [ + "a = 10. * u.keV\n", + "b = 5000. * u.keV\n", + "alpha = 0.880\n", + "beta = -2.384\n", + "ebreak = 195.613 * u.keV\n", + "K = 10. / u.cm / u.cm / u.s\n", + "\n", + "spectrum = Band_Eflux(a = a.value,\n", + " b = b.value,\n", + " alpha = alpha,\n", + " beta = beta,\n", + " E0 = ebreak.value,\n", + " K = K.value)\n", + "\n", + "spectrum.a.unit = a.unit\n", + "spectrum.b.unit = b.unit\n", + "spectrum.E0.unit = ebreak.unit\n", + "spectrum.K.unit = K.unit" + ] + }, + { + "cell_type": "markdown", + "id": "39c52ea7", + "metadata": {}, + "source": [ + "Define the source position and polarization object" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "41cbf55e", + "metadata": {}, + "outputs": [], + "source": [ + "source_direction = SkyCoord(0, 70, representation_type='spherical', frame=SpacecraftFrame(attitude=attitude), unit=u.deg)\n", + "source_photons = PolarizationStokes(source_direction, spectrum, response_file, sc_orientation)" + ] + }, + { + "cell_type": "markdown", + "id": "eb4a7306", + "metadata": {}, + "source": [ + "Calculate the Pseudo Stokes parameters from the scattering angle for each photon in the data and background simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "26df3de8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZIklEQVR4nO3dd1gU1/4/8PdSFqmii6IIsYGIGlssCbgqWIlKNKjRXI09xoLGJGrMTbPFaG6KxlhiI7FiNCgmii1EY+8VRNSIWOiI9Hp+f/jb+bruAiuywOD79Tx57t0zZT9nZoG3Z87MKoQQAkRERESVnElFF0BERERkCIYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiKlMNGjRAgwYNKroMIqqCGFqo0isoKMCqVavQpUsX1KxZE+bm5qhduzZatmyJsWPHIiQkpKJLrFROnz6N//znP6hfvz4sLCxgZ2eHxo0bo1+/fli0aBEyMjK01lcoFOjatWvFFEuywc8JVQZmFV0AUXEKCgrQt29fhIaGwt7eHn369IGzszNyc3Nx9epVbNq0CdeuXYOfn19Fl1opbNiwASNGjIAQAj4+PhgwYAAsLS0RHR2NI0eO4I8//sCbb74JV1fXii6ViOiZMbRQpbZ582aEhoaiVatWOHToEKpXr661PDMzEydPnqyg6iqXzMxMTJo0CQqFAvv27UO3bt101jl27BgcHBwqoDoioufHy0NUqR07dgwAMHLkSJ3AAgBWVlbw9vbWac/JycHXX3+Nl19+GVZWVrCzs4NarcbWrVt11v3777+hUCjw5Zdf6q1B3xyNwMBAKBQKBAYGIjQ0FF27dkX16tWhUCikdQoKCrBixQp4eXmhevXqsLS0hKurK8aOHYuoqCit/eXn52PZsmV49dVXYWdnBysrK7Rp0wZLly5FYWFhSYcJAHDlyhU8evQILVq00BtYAMDT0xP29vZafQCAQ4cOQaFQSP89fSy2bt2Kzp07S/14+eWXsWDBAuTk5BhUGwBs2rQJFhYW8PDwwO3bt6X2a9euYeTIkXBxcYFSqYSjoyPefvttREZG6uwjLi4OH330Edzd3WFtbQ17e3u4u7tj5MiRuHXrlkF1aM5namoqJk+ejHr16qFatWpo1qwZlixZAn1ffB8YGAh/f380atQIlpaWsLOzg5eXFzZs2KD3Pbp27QqFQoHc3FzMmTMH7u7usLCwwMiRIwEAqamp+Oabb+Dj4wNnZ2colUrUqlULfn5+OH78uN59ai7PxMXFYfTo0XB0dIS1tTU8PT3xzz//AAAyMjIwffp06dJg8+bN8dtvvxV5LDZv3gxvb2/Y29ujWrVq8PDwwLx587TO67N8Tk6ePImBAweiTp06UCqVcHFxwfjx43H//v1nPka5ublYsmQJ2rZtixo1asDKygoNGjTAG2+8gQMHDhTZJ6raONJClZpKpQIAXL9+3eBtcnNz0atXLxw6dAhNmzbFpEmTkJmZiW3btuGtt97ChQsX8NVXX5VJfdu2bUNoaCh8fX3x3nvvITo6Wqqhb9++2L9/P1xcXPD222/Dzs4Ot2/fRnBwMDp16gQ3NzcAQF5eHvr164e9e/fC3d0db7/9NqpVq4awsDAEBATg5MmTWL9+fYm1aI7V/fv3kZGRAWtr62LXb926Nb744gvMnj0b9evXl/5YANCau/DJJ59gwYIFcHBwwNtvvw0bGxvs2bMHn3zyCfbu3Yt9+/ZBqVQW+16LFi3Cxx9/DE9PT4SEhKBmzZoAgNDQULz55pvSMXB1dcXdu3fx+++/488//0RYWBjatm0L4PFIkpeXF27evIkePXqgX79+EEIgOjoaO3fuxMCBA9GoUaMSjxPw+Px0794dDx8+xJAhQ5Cbm4vt27dj6tSpiIyMxE8//aS1/oQJE9C8eXN07twZdevWRVJSEnbv3o3hw4cjMjISc+fO1fs+/v7+OH36NHx9fdG/f3/Url0bABAREYH//ve/6Ny5M/r06YMaNWrgzp07CAkJwZ49e7Br1y707t1bZ38PHz6El5cXbG1tMXToUCQnJ2PLli3o1asXjh8/jvHjxyM5ORl9+/ZFXl4eNm/ejLfeegsuLi549dVXtfY1evRorFu3Ds7OzvD394e9vT1OnDiBzz77DAcPHsT+/fthZmZm8Odk7dq1ePfdd2FhYQE/Pz+4uLggKioKq1evxq5du3DixAm89NJLBh+jkSNHYvPmzWjRogXeeecdWFpa4v79+zhy5AhCQ0PRvXt3g841VTGCqBI7d+6cMDc3FwqFQgwbNkxs375d3L59u9htvvrqKwFA+Pr6iry8PKk9Li5O1K9fXwAQR48eldrDwsIEAPHFF1/o3V/9+vVF/fr1tdrWrVsnAAiFQiH27Nmjs82sWbMEANGvXz+RnZ2ttSw7O1vEx8dLr7/44gsBQEyePFnk5+dL7fn5+WL06NECgNixY0exfRZCiMLCQtG+fXsBQLRq1UosXbpUnDt3TuTk5BS7HQDRpUsXvcuOHTsmAAgXFxfx4MEDqT0vL0/07dtXABDz58/X2ubJ41VQUCAmT54sAIg333xTZGVlSeslJycLe3t7oVKpxNWrV7X2cfnyZWFtbS3atGkjtYWEhAgA4v3339epMycnRzx69KjYfj5ZHwDh5eWldW6SkpJEo0aNBABx6NAhrW1u3Lih9z19fHyEmZmZuHv3rtayLl26CADi5ZdfFgkJCTrbPnz4UG97TEyMqFu3rmjatKnOMgACgBg/frwoKCiQ2n/99VcBQNSoUUP07dtX6xgfPnxYABD9+/fX2pfm8ztgwACRmZmptUzzefzhhx903r+oz0lkZKQwNzcXjRs31jkWBw4cECYmJjo1FHeMHj58KBQKhXjllVe0fiY0EhMT9dZBVR9DC1V6QUFBok6dOtIvbQCiZs2aon///iIkJERnfVdXV6FQKERERITOstWrVwsAYtSoUVLb84SWp38RC/E4bFSvXl1YWlqKe/fuFdu3goICUbNmTVGnTh2tgKWRkpIiFAqFGDRoULH70YiOjhZdu3bVOlbm5uaiQ4cO4uuvvxapqak62xT3x2js2LECgFi5cqXOssjISGFiYiIaNmyo1a45XllZWWLAgAECgAgICND6QyuEED/88IMAIJYuXar3vd9//30BQAo0mtAya9YsQw5FkTSh5fDhwzrLNOd15MiRBu1r+/btAoD45ZdftNo1f5ANCZtPCwgIEABEdHS0VjsAYWVlpRPO8vPzhZmZmQAgbt68qbO/Bg0aiAYNGmi1tW7dWpiZmYmUlBSd9fPz84VKpRLt27fXef+iPieac/XHH3/oXd6/f39hamqqVXtxxyg1NVUAEJ6enqKwsFDvPunFxMtDVOkNHjwYAwYMQFhYGI4cOYLz58/jyJEj2LFjB3bs2IF33nlHuu6elpaGGzduoF69emjatKnOvnx8fAAA58+fL5PaOnTooNN27do1pKamomPHjnBycip2++vXryM5ORlubm6YN2+e3nUsLS0RERFhUD0vvfQSwsLCEBERgf379+PMmTM4deqU9N+yZcvw999/o2HDhgbt79y5cwD+77g9qUmTJnB2dsa///6L1NRUrTlHWVlZ6NatG44fP46FCxdixowZOttr5m5cvHhR73wizSXBiIgINGvWDF26dEG9evXw9ddf49y5c3j99dfh5eWF1q1bw9TU1KD+aJiZmcHT01OnXXO54+nPx507d7Bw4UIcPHgQd+7cQVZWltbye/fu6X0ffZ8PjaNHj2Lx4sU4fvw44uPjkZubq7PPpy+nNGnSBLa2tlptpqamcHR0REZGht7LY/Xq1dOarJ6ZmYmLFy/CwcEBP/zwg97aLCwsDP7MAf93Lg8dOoTTp0/rLI+Pj0dBQQGuX7+OV155RWuZvmNkZ2eHfv36YdeuXWjdujX8/f2hVqvRsWNHWFlZGVwXVT0MLSQL5ubm6NmzJ3r27Ang8STX7du3Y/To0fj1118xYMAA9O/fH6mpqQCAunXr6t2Ppv3hw4dlUledOnV02jT7rlevXonbJyUlAQCioqIwe/bsItdLT09/pro8PDzg4eEhvb527RpGjx6N48ePY9q0adixY4dB+zHkeN65cwcPHz7UCi1paWk4d+4c7Ozs0KtXL73bavq+atWqYmvQ9N3Ozg4nTpzAF198gZCQEOzduxcA4ODggIkTJ+LTTz+Fubm5Qf1ycHDQG3Q051PTbwC4desWOnTogJSUFKjVavTs2RPVq1eHqakpbt++jV9++aXICcn6Ph8AEBwcjIEDB6JatWro0aMHGjduDGtra5iYmODvv//GoUOH9O5T32R04HEIK25Zfn6+9DolJQVCCCQkJBT7mXsWmnP5zTffFLuevs9xUccoKCgICxcuxKZNm/DFF18AAKpVq4aBAwfif//7HxwdHZ+zapIjhhaSJVNTUwwePBiXL1/GvHnz8Ndff6F///7SL+7Y2Fi92z148ACA9i9/E5PHN9E9+Yv9SQ8fPpTuuHnak3cLaWjWLepf30/S1DFgwAD8/vvvJa5fWk2bNsX69evh6uqKv/76y+DtnjyejRs31lmu73gCQO3atbFmzRr4+fnB29sb+/btQ7t27fTu++LFi2jZsqVB9Tg7O2PNmjUQQiA8PBx//fUXfvrpJ8yZMweFhYVFToh9WmJiIgoKCnSCi+Zz82R/vvvuOyQlJWHdunVak1CBx3ff/PLLL0W+j77PBwB89tlnUCqVOHPmjFa4BIDx48fj0KFDBvWjNDR9a9OmjTSSVlb7TE1NhZ2d3TNtW9QxsrS0xJdffokvv/wSMTExOHz4MAIDA7Fhwwbcvn1bumOKXiy85ZlkTTNULv7/baq2trZo3Lgx7t27p3NbMQCEhYUBgHRHCgDUqFEDABATE6Oz/o0bN7T+1W2Ipk2bwt7eHpcuXdJ7q6e+dU+cOIG8vLxnep9n9fSx0jAxMUFBQYHebdq0aQPg8W3hT7tx4wbu3r2Lhg0b6g113bp1Q2hoKPLz89G9e3edW3k1d7OU5o+PQqFA8+bNERAQgP379wOAwaNHwOOAqrmd/kmafmr6DTzuJ/D4LpenlTZc3LhxA82aNdMJLIWFhThy5Eip9mkoGxsbNG/eHFevXkVycrLB2xX3OXmec2kIFxcX/Oc//8HevXvh6uqKI0eOSKM79GJhaKFKbfPmzdi/f7/eZ5XExsZKlxY6d+4stY8ePRpCCEyfPl3rl2xiYqL0L/HRo0dL7U2bNoWdnR127tyJ+Ph4qT0rKwtTpkx55ppNTU0xceJEZGVl4b333tMZ5s/NzUVCQgKAx0P3AQEBePDgAaZMmaIzVwJ4PJoRHh5e4vv++++/WLJkid6QJYTA/PnzAWgfK+DxrdL6Ahvwf8dp3rx5Us3A48tzH330EQoLCzFmzJgia1Kr1di/fz8UCgV69uyp9Ud+1KhRsLe3x+zZs3Hq1CmdbQsLC7XC0tWrVxEXF6eznqbtWec6zJo1S+vcJCcnS/OKRo0aJbVrntHzdHDbu3cvVq9e/Uzv+eQ+o6KitEKtEAJffvmlQef6eX3wwQfIzc3F6NGj9V4qTUlJ0RmFKe5zMnnyZJibm2PatGl6H0+Qm5v7TIEmISEBly9f1mnPyMhAeno6zMzMSrzNnqomXh6iSu3kyZNYvHgx6tSpg06dOkkTSP/991/8+eefyMrKwhtvvIGBAwdK23z00UfYs2cPdu7ciVatWuH1119HZmYmfvvtN8THx2PGjBno1KmTtL65uTmmTp2KuXPnok2bNhgwYADy8/Oxf/9+ODk5lTiZVp8vvvgCJ0+exK5du9CkSRP07dsXtra2iImJwb59+/DNN99Ilxo+++wzXLx4EStWrMCuXbvg4+ODevXqIT4+HlFRUTh69Cjmz5+PZs2aFfueqampmDp1KqZPnw4vLy+0aNECtra2iI+Px19//YVbt26hdu3a+Pbbb7W269atG7Zs2YJ+/fqhbdu2MDc3R+fOndG5c2d4enpixowZWLRoEVq0aIGBAwfC2toae/bswZUrV9CpUydMnz692Lo6duyIv/76Cz169MDrr7+OHTt2oEePHlCpVNi2bRsGDBiAV199Fd26dUPz5s2hUCgQExOD48ePIykpCdnZ2QCA/fv3Y/r06XjttdfQpEkT1K5dG3fv3sXOnTthYmJSYh1Pqlu3LnJyctCiRQv4+fkhLy8P27Ztw4MHDzBx4kStYDdx4kSsW7cOgwYNwsCBA+Hk5IQrV64gNDQUgwcPRlBQkMHvqzFt2jS89957aNOmDfz9/WFubo6jR48iPDxcmoBqTKNHj8bZs2exbNkyNG7cGL169cJLL72E5ORk/Pvvvzh8+DBGjRqFFStWSNsU9zlp2rQp1q5di9GjR6N58+bo3bs3mjRpgry8PNy5cwf//PMPatWqhWvXrhlU371799CmTRu8/PLLaNmyJVxcXPDo0SP88ccfiI2NxZQpU3QmJNMLogLvXCIq0Z07d8TSpUtF//79RZMmTYStra0wNzcXderUEb6+vmL9+vU6t9IKIURWVpaYP3++aN68uahWrZqwsbERXl5eYtOmTXrfp7CwUCxYsEA0atRImJubCxcXFzF9+nSRkZFR7C3P69atK7L2vLw88eOPP4r27dsLa2trYWVlJVxdXcW4ceNEVFSUzvv/+uuvwsfHR9SoUUOYm5sLJycn4eXlJebPny/u3LlT4rHKzs4WwcHBYsKECaJNmzaidu3awszMTNjZ2Ym2bduK//73v1rPh9GIi4sTQ4cOFbVr1xYmJiZ6b//evHmz8PLyEjY2NsLCwkI0a9ZMzJs3T+uZIBr6jpcQj5+94ujoKCwsLLRujf3333/FpEmThKurq7CwsBC2trbC3d1dDBs2TAQHB0vrhYeHi2nTpolXXnlFODg4CKVSKerXry/8/f21nrtTEk19Dx8+FBMnThROTk5CqVSKpk2bisWLF+u9xfbo0aPC29tb2NvbS5+l4ODgIm+X19zOW5x169aJVq1aCSsrK6FSqUT//v3FpUuXpOekhIWFaa2PYm45LuqYl1TLrl27RJ8+fUStWrWEubm5cHR0FO3btxf//e9/dR4ZYMjn5NKlS2LEiBHipZdeEkqlUtSoUUM0b95cvPvuu+LgwYMG15WSkiJmz54tvL29pfNTp04d0aVLF7Fp0ybeBv0CUwih55nVRERVlOZyz5NfJUBE8sA5LURERCQLDC1EREQkCwwtREREJAuc00JERESywJEWIiIikgWGFiIiIpKFKhNasrOzERkZKT2IioiIiKqWKhNaoqOjMW7cOERHR1d0KURERGQEVSa0EBERUdXG0EJERESywNBCREREssDQQkRERLJgVtEFlJeCggLk5eVVdBllwtzcHKamphVdBhERUbl6IUJLeno67t69i6ry8F+FQgFnZ2fY2NhUdClERETlpsqHloKCAty9exdWVlaoVasWFApFRZf0XIQQSEhIwN27d+Hm5sYRFyIiemFU+dCSl5cHIQRq1aoFS0vLii6nTNSqVQu3b99GXl4eQwsREb0wnjm0ZGZmYsuWLQgPD0dERATS0tIwa9Ys+Pr6FrlNfn4+Ro0ahejoaEyYMAFDhw7VWl5YWIgtW7Zgx44dSE5OhrOzM4YNG4bu3bs/e4+KIPcRlidVpb4QEREZ6plDS2pqKgIDA+Ho6AhXV1ecP3++xG22b9+O+Pj4IpevWrUKGzduRL9+/dC0aVMcOXIEc+bMgUKhQLdu3Z61xBKd3RZV5vvUeGWgm9H2TURE9CJ75lueVSoVgoOD8dtvv2HChAklrp+SkoJffvkFb7/9tt7lCQkJCAoKwoABAzB9+nT069cPX3/9NVq2bIlly5ahoKDgWUskIiKiKuiZQ4tSqYRKpTJ4/ZUrV8LFxQU9evTQu/zIkSPIz8/HgAEDpDaFQoH+/fsjISEBV69efdYSZSMkJAQeHh5o2bIlZsyYAQcHB9y+fbuiyyIiIqqUjPpwufDwcISGhiIgIKDIeRhRUVGwtLRE/fr1tdo9PDyk5VVRfHw8Ro0ahe3bt+PSpUtwdXVFUlJSRZdFRERUaRkttAghsHjxYvj4+KBFixZFrpeUlIQaNWrohBrNaE5iYqLe7RITExEZGSn9J7dvdz5x4gRatmyJZs2aAQDGjBkDpVIJAMjKysIbb7wBtVqN4cOHV2SZRERElYbRbnnes2cPbt26hTlz5hS7Xk5ODszNzXXaNX/Ac3Jy9G4XEhKCwMDA566zsngytB09ehReXl6YMWNGlXkgHhER0fMyykhLRkYGfv75ZwwdOhSOjo7FrmthYaH38fq5ubnScn38/PywatUq6b9PP/30+QsvR6+99houXbqEa9euAQDWrl0r9dnT0xN3797F8OHDcfPmzYosk4iIqNIwykjLli1bkJeXBx8fHzx48ADA47uEgMeP1H/w4AEcHBxgbm4OlUqF8+fPQwihNdqgmd/h4OCg9z0cHByKXCYHtWrVwtq1azFgwAAolUr07t1buiSmUCiwZMkS7N+/H0FBQfjvf/9bwdUSERFVPKOElri4OKSlpeGdd97RWbZ+/XqsX78ea9asgZubG1xdXfHHH38gOjoaDRo0kNYLDw8HALi6upZ5fZXlWSpvvPEG3njjDen1mjVrAAAjRozA/fv3YWZmhl9//bWiyiMiohfI8vuhJa4zwal3OVRSNKOEFn9/f6jVaq22lJQU/O9//4Ovry86deqEunXrAgA6deqEpUuXIjg4GNOmTQPweBLvzp07UatWrWIn8VZVW7duregSiIiIKp1ShZbt27cjPT1duoRz9OhR6Ym3/v7+cHd3h7u7u9Y2mstEDRo00Ao0tWvXxqBBg7B582bk5+fDw8MD//zzDy5duoTPPvvshfpunaLulCIiIqJShpagoCDExsZKrw8fPozDhw8DAHr27AkbG5tn2t/48eNha2uLkJAQhIaGwtnZGZ9++mmRD6QjIiKiF0+pQktpLl/UrVtXCjZPMzExwbBhwzBs2LDSlENEREQvAKM+EZeIiIiorDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwY7QsTKzNDnvpXWhX9tEAiIqKqiiMtREREJAsMLRVIoVDg4cOH0msHBwfcvn27wuohIiKqzBhaiIiISBZeyDktlV1WVhaGDBmC5ORkNGjQAOvXr6/okoiIiCocQ0sFMjU1RUFBgfQ6OzsbwOMvoPTy8sKMGTMghKio8oiIiCoVXh6qQK6urjh58iQA4Pfff0dGRgYAwNPTE3fv3sXw4cNx8+bNiiyRiIio0mBoqUDff/89pk6dirZt2+L8+fNQqVQAHk/QXbJkCd555x0EBQVVcJVERESVwwt5eaiyPEvF19cXUVFR0uu5c+cCAAYPHoz79+/DzMwMv/76a0WVR0REVKm8kKGlstu6dWtFl0BERFTp8PIQERERyQJDCxEREckCQwsRERHJAkMLERERycILE1qq0kPaqlJfiIiIDFXl7x4yNzeHQqFAQkICatWqBYVCUdElPRchBBISEqBQKGBubl7R5RAREZWbKh9aTE1N4ezsjLt371aZb1BWKBRwdnaGqalpRZdCRERUbqp8aAEAGxsbuLm5IS8vr6JLKRPm5uYMLERE9MJ5IUIL8HjEhX/oiYiI5OuFmYhLRERE8sbQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREsvDM3/KcmZmJLVu2IDw8HBEREUhLS8OsWbPg6+srrVNYWIi9e/fi0KFDiIqKQlpaGurWrQsfHx8MGTIEFhYWOvv9448/sGXLFsTGxqJWrVoYOHAg/P39n693REREVGU880hLamoqAgMDER0dDVdXV73rZGdnY8GCBUhNTcUbb7yBgIAAeHh4YN26dZgxYwaEEFrr79y5E4sWLULDhg0xdepUtGjRAosXL8bGjRtL1ysiIiKqcp55pEWlUiE4OBgqlQrXrl3Du+++q7OOubk5fvrpJ7z88stSW79+/VCnTh2sXbsWZ8+eRbt27QAAOTk5WL16NV577TXMnTtXWrewsBC//vor/Pz8YGtrW9r+ERERURXxzCMtSqUSKpWq2HXMzc21AouGWq0GAERHR0tt586dQ2pqKvr376+17oABA5CVlYXjx48/a4lERET0jO6HJ5f4X0Ur14m4ycmPO1y9enWpLSoqCgDQtGlTrXXd3d1hYmKC69evl1+BREREVGk98+Wh57F582ZYW1ujY8eOUltSUhJMTU1Ro0YNrXXNzc1hZ2eHpKQkvftKTEzUWvbk6A0RERFVPeUWWtavX48zZ87ggw8+0JqjkpOTAzMz/WUolUrk5OToXRYSEoLAwEBjlEpERESVULmEloMHD2L16tXo06ePztwVCwsL5Ofn690uNzdX7+3RAODn5wcvLy/pdXR0NObNm1dmNRMREVHlYvTQcvr0aXz11Vd47bXX8OGHH+osV6lUKCgoQEpKitYlory8PDx69KjISb8ODg5wcHAwWt1ERERUuRh1Im54eDg+/fRTuLu7Y/bs2XovA7m5uQEArl27ptV+7do1FBYWSsuJiIjoxWa00HL79m3MnDkTderUwcKFC4u8zNO2bVvY2dlh586dWu07d+5EtWrV8NprrxmrRCIiIpKRUl0e2r59O9LT06W7d44ePYr4+HgAgL+/P0xMTPDRRx8hLS0NQ4YM0XnWipOTE1q0aAHg8ZyWMWPG4Pvvv8fnn3+ODh064OLFi9i3bx/GjRsHOzu75+kfERERVRGlCi1BQUGIjY2VXh8+fBiHDx8GAPTs2RMApBCzcuVKne179+4thRbg8YPkzMzMEBQUhKNHj6J27dqYPHkyBg0aVJryiIiIqAoqVWjZunVrietoQoyh+vXrh379+pWmHCIiInoBlOsTcYmIiIhKi6GFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGShVF+Y+CJafj+0xHUmOPUuh0qIiIheTBxpISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWTB71g0yMzOxZcsWhIeHIyIiAmlpaZg1axZ8fX111r19+zaWLl2Ky5cvw8zMDK+99homT54Me3t7rfUKCwuxZcsW7NixA8nJyXB2dsawYcPQvXv3UneMiIiIqpZnDi2pqakIDAyEo6MjXF1dcf78eb3rxcfHIyAgADY2Nhg3bhyysrKwZcsW3Lp1CytXroS5ubm07qpVq7Bx40b069cPTZs2xZEjRzBnzhwoFAp069at9L0jIiKiKuOZQ4tKpUJwcDBUKhWuXbuGd999V+96GzZsQHZ2NlavXg1HR0cAgIeHBz744APs2bMHfn5+AICEhAQEBQVhwIABmDZtGgCgb9++CAgIwLJly9C1a1eYmpqWtn9ERERURTzznBalUgmVSlXieocOHYKnp6cUWACgXbt2cHFxQVhYmNR25MgR5OfnY8CAAVKbQqFA//79kZCQgKtXrz5riURERFQFPfNIiyESEhKQkpICd3d3nWUeHh44ceKE9DoqKgqWlpaoX7++znqa5S1bttTZT2JiIpKSkqTX0dHRZVU+ERERVUJGCS2aMKFvREalUuHRo0fIzc2FUqlEUlISatSoAYVCobMe8Dic6BMSEoLAwMCyLZyIiIgqLaOElpycHADQmmyroVQqpXWUSiVycnJKXE8fPz8/eHl5Sa+jo6Mxb968566diIiIKiejhBYLCwsAQF5ens6y3NxcrXUsLCwMWu9pDg4OcHBwKJN6iYiIqPIzysPlNJd2npxzopGUlAQ7OztpJEWlUiE5ORlCCJ31ADCYEBEREQAjhZZatWrB3t4ekZGROssiIiLg6uoqvXZ1dUV2drbORNrw8HBpOREREZHRHuPfpUsXHDt2DHFxcVLb2bNnERMTA29vb6mtU6dOMDMzQ3BwsNQmhMDOnTtRq1YttGjRwlglEhERkYyUak7L9u3bkZ6eLl3COXr0KOLj4wEA/v7+sLGxwbBhw/D333/j/fffx8CBA5GVlYXNmzejUaNGWo/8r127NgYNGoTNmzcjPz8fHh4e+Oeff3Dp0iV89tlnfLAcERERAShlaAkKCkJsbKz0+vDhwzh8+DAAoGfPnrCxsYGjoyOWLFmCpUuXYuXKldJ3D02aNEmaz6Ixfvx42NraIiQkBKGhoXB2dsann36KHj16PEfXiIiIqCopVWjZunWrQes1bNgQ3377bYnrmZiYYNiwYRg2bFhpyiEiIqIXgNHmtBARERGVJYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFM2PuPCYmBmvWrMHly5fx6NEjODo6onv37hgyZAiqVasmrXf58mWsWLEC169fh7W1Nby9vTFu3DhYWVkZszwiIiKSEaOFlri4OIwfPx42NjYYMGAA7OzscPXqVaxduxaRkZFYsGABACAqKgrTpk1D/fr1MXnyZMTHxyMoKAh3797FN998Y6zyiIiISGaMFlr27duH9PR0/PTTT2jYsCEAwM/PD4WFhdi7dy/S0tJga2uLn3/+Gba2tliyZAmsra0BAHXr1sWiRYtw6tQpdOjQwVglEhERkYwYbU5LRkYGAKBGjRpa7SqVCiYmJjAzM0NGRgbOnDmDnj17SoEFAHr16gVLS0uEhYUZqzwiIiKSGaOFljZt2gAAFi5ciKioKMTFxeHgwYPYuXMn/P39YWlpiVu3bqGgoADu7u5a25qbm8PNzQ1RUVHGKo+IiIhkxmiXhzp27IgxY8Zgw4YNOHr0qNQ+fPhwjBs3DgCQlJQE4PHoy9NUKhUuXrxY5P4TExOl7QEgOjq6rEonIiKiSsiodw/VrVsXrVq1QpcuXWBnZ4fjx49jw4YNqFmzJvz9/ZGTkwPg8cjK05RKJXJzc4vcd0hICAIDA41VOhEREVUyRgstBw8exDfffIONGzeidu3aAIAuXbpACIGVK1eie/fusLCwAADk5eXpbJ+bmwulUlnk/v38/ODl5SW9jo6Oxrx588q4F0RERFRZGC20BAcHw83NTQosGl5eXtizZw+ioqKky0JPXubRSEpKgoODQ5H7d3BwKHY5ERERVS1Gm4ibkpKCwsJCnfb8/HwAQEFBARo2bAhTU1NERkZqrZOXl4eoqCi4uroaqzwiIiKSGaOFFhcXF0RFRSEmJkar/eDBgzAxMUHjxo1hY2ODdu3aYd++fcjMzJTW2bt3L7KysuDt7W2s8oiIiEhmjHZ5aMiQITh58iQmT56MN998E3Z2djh27BhOnjyJvn37Spd2xo4di0mTJiEgIAB+fn7SE3Hbt2+Pjh07Gqs8IiIikhmjhZbWrVvjp59+wrp16xAcHIxHjx6hbt26GDduHIYOHSqt5+7uju+++w4rVqzAjz/+CCsrK/Tp0wfjx483VmlEREQkQ0a95blZs2YGfX9Qy5YtsWzZMmOWQkRERDJntDktRERERGWJoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGTBrKILkIv74cklr+Rk/DqIiIheVBxpISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZMPp3D0VGRmLdunW4fPkycnNz4eTkhH79+mHgwIHSOpcvX8aKFStw/fp1WFtbw9vbG+PGjYOVlZWxyyMiIiKZMGpoOXXqFGbNmgU3NzeMGDEClpaWuHfvHhISEqR1oqKiMG3aNNSvXx+TJ09GfHw8goKCcPfuXXzzzTfGLI+IiIhkxGihJSMjA1999RVeffVVzJ07FyYm+q9E/fzzz7C1tcWSJUtgbW0NAKhbty4WLVqEU6dOoUOHDsYqkYiIiGTEaHNaDhw4gOTkZIwbNw4mJibIyspCYWGh1joZGRk4c+YMevbsKQUWAOjVqxcsLS0RFhZmrPKIiIhIZow20nLmzBlYW1sjMTER//3vfxETEwNLS0v07NkTkydPhoWFBW7duoWCggK4u7trbWtubg43NzdERUUZqzwiIiKSGaOFlrt376KgoACffPIJ+vTpg3fffRcXLlzA9u3bkZ6eji+++AJJSUkAAJVKpbO9SqXCxYsXi9x/YmKitD0AREdHl30niIiIqNIwWmjJyspCdnY23njjDUydOhUA0KVLF+Tl5SEkJASjR49GTk4OgMcjK09TKpXIzc0tcv8hISEIDAw0Su1ERERU+RgttFhYWAAAunXrptXevXt3hISE4OrVq6hWrRoAIC8vT2f73NxcKJXKIvfv5+cHLy8v6XV0dDTmzZtXFqUTERFRJWS00KJSqfDvv/+iZs2aWu01atQAAKSlpaFevXoAoHWZRyMpKQkODg5F7t/BwaHY5URERFS1GO3uIc3k2iefyQI8nosCAPb29mjYsCFMTU0RGRmptU5eXh6ioqLg6upqrPKIiIhIZowWWry9vQEAf/75p1b7n3/+CVNTU7Rp0wY2NjZo164d9u3bh8zMTGmdvXv3IisrS9oHERERkdEuDzVp0gSvv/46du/ejYKCArRu3RoXLlxAWFgYhg0bJl3aGTt2LCZNmoSAgAD4+flJT8Rt3749OnbsaKzyiIiISGaM+hj/jz76CI6OjtizZw/++ecfODo6YvLkyRg8eLC0jru7O7777jusWLECP/74I6ysrNCnTx+MHz/emKURERGRzBg1tJiZmWHUqFEYNWpUseu1bNkSy5YtM2YpREREJHNGm9NCREREVJYYWoiIiEgWjHp5iIiIiIzr7LaSv6fvlYFu5VCJ8XGkhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBE3GJiIiqOEMm68Le6GU8N460EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSzwOS1ERERV3A770xVdQpngSAsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQK/e6gMLb8fWuI6E5x6l0MlRET0oqgq3ytkCI60EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLJRraPn111/RuXNnjBgxQmfZ5cuXMWnSJPTo0QP9+/fH4sWLkZmZWZ7lERERUSVWbo/xj4+Px4YNG2BpaamzLCoqCtOmTUP9+vUxefJkxMfHIygoCHfv3sU333xTXiUSERFRJVZuoWXZsmVo1qwZCgsLkZqaqrXs559/hq2tLZYsWQJra2sAQN26dbFo0SKcOnUKHTp0KK8yiYiIqJIql8tDFy5cwKFDhxAQEKCzLCMjA2fOnEHPnj2lwAIAvXr1gqWlJcLCwsqjRCIiIqrkjD7SUlBQgMWLF6NPnz5o3LixzvJbt26hoKAA7u7uWu3m5uZwc3NDVFSU3v0mJiYiKSlJeh0dHV22hRMREVGlYvTQsnPnTsTFxeH777/Xu1wTPFQqlc4ylUqFixcv6t0uJCQEgYGBZVYnERERVW5GDS2pqalYu3Yt3nnnHdjb2+tdJycnB8DjkZWnKZVK5Obm6t3Oz88PXl5e0uvo6GjMmzfv+YsmIiKiSsmooWX16tWwtbWFv79/ketYWFgAAPLy8nSW5ebmQqlU6t3OwcEBDg4OZVMoERERVXpGCy0xMTHYtWsXAgICkJiYKLXn5uYiPz8fDx48gLW1tXRZ6Mn5KRpJSUkMJkREVCUtvx9a4joTnHqXQyXyYbTQkpiYiMLCQixevBiLFy/WWf7WW29h4MCBGD16NExNTREZGQkfHx9peV5eHqKiouDt7W2sEomIiEhGjBZaGjZsiPnz5+u0r169GpmZmZgyZQqcnJxgY2ODdu3aYd++fRgxYgSsrKwAAHv37kVWVhZDCxERvbA+O7CpokuoVIwWWuzt7aFWq3Xaf/vtNwDQWjZ27FhMmjQJAQEB8PPzk56I2759e3Ts2NFYJRIREZGMVIovTHR3d8d3330HCwsL/Pjjj9i1axf69OmDuXPnVnRpREREVEmU22P8NZYsWaK3vWXLlli2bFk5V1M5cXIWERGRrkox0kJERERUEoYWIiIikgWGFiIiIpIFhhYiIiKShXKfiEtERFTVGXJDBT07jrQQERGRLDC0EBERkSzw8lAZuh+eXPJKTsavg4iIqCriSAsRERHJAkMLERERyQJDCxEREckCQwsRERHJAifiljPeu09ERFQ6HGkhIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWeBEXJk6uy2qTPbzykC3MtkPEVFVYMjv1rL6vWnQU9RJC0daiIiISBY40lIJGZa+Gxu9DiKiqsSQUZQd9qdLXOcVlDzSwlEU4+BICxEREckCQwsRERHJAi8PERGRURjyBPAJTr3LoZKyxSebVxyOtBAREZEscKSlCiurCWVlpar+q4vkpzxva62qKttoQ1k9BoIqN460EBERkSwwtBAREZEs8PKQTBly6YeIiKgq4UgLERERyQJHWspZZXtKYmX7DiNOkCSip3GSLWlwpIWIiIhkgaGFiIiIZIGXh6hSqWzPlnmR8VIdPS9DLoefPcZLP2Q4jrQQERGRLHCk5QVnyMhG/4fty6ESouf3ok/YLKunTht0HD0NqahkcvwdVNluqHiRcKSFiIiIZMFoIy0REREIDQ3F+fPnERsbCzs7OzRv3hxjx46Fi4uL1rq3b9/G0qVLcfnyZZiZmeG1117D5MmTYW9vb6zyiIiISGaMFlo2bdqEy5cvw9vbG40bN0ZSUhKCg4MxduxYLF++HI0aNQIAxMfHIyAgADY2Nhg3bhyysrKwZcsW3Lp1CytXroS5ubmxSqRyVlZDqmU1QZQTTak8GPI5O+V5s8R1DLmsY9DPmFPJq8gRnxL+YjBaaBk8eDA+//xzrdDh4+ODUaNGYePGjfjss88AABs2bEB2djZWr14NR0dHAICHhwc++OAD7NmzB35+fsYqkYiIiGTEaHNaXn75ZZ1REhcXFzRo0ADR0dFS26FDh+Dp6SkFFgBo164dXFxcEBYWZqzyiIiISGbK9e4hIQRSUlLQoEEDAEBCQgJSUlLg7u6us66HhwdOnDhRnuVREQwZdj11v+Th7aqKl5mIiMpHuYaW/fv3IyEhAaNHjwYAJCUlAQBUKpXOuiqVCo8ePUJubi6USqXO8sTERGl7AFqjN0RERFT1lFtoiY6Oxvfff4/mzZujd+/HE8pycnIAQO9kW01QycnJ0RtaQkJCEBgYaLyCiYhKYMgomyEjlU6oWeI6hjyDhaiqK5fQkpSUhJkzZ8La2hpz586FqakpAMDCwgIAkJeXp7NNbm6u1jpP8/Pzg5eXl/Q6Ojoa8+bNK+vSiYiIqJIwemhJT0/HjBkzkJ6ejqVLl8LBwUFaprks9ORlHo2kpCTY2dnpHWUBAAcHB619ERERUdVm1NCSk5ODjz/+GDExMfjuu++kCbgatWrVgr29PSIjI3W2jYiIgKurqzHLIyqRIUPyHdC4HCohqlz4KHuqCEa75bmgoABffvklrl69itmzZ6NFixZ61+vSpQuOHTuGuLg4qe3s2bOIiYmBt7e3scojIiIimTHaSMtPP/2Eo0ePwtPTE2lpadi3b5/W8p49ewIAhg0bhr///hvvv/8+Bg4ciKysLGzevBmNGjWCr6+vscojGTNkYuMr4C3G5aGsvqCvrPYjV4aMWjg1K3myLlFVZ7TQcuPGDQDAsWPHcOzYMZ3lmtDi6OiIJUuWYOnSpVi5cqX03UOTJk0qcj4LERERvXiMFlqWLFli8LoNGzbEt99+a6xSiIiIqAoo14fLEZWX8nx+hiEMqccQL/KTdcvqGBqKk7CJKh+jTcQlIiIiKkscaaEqqap+Tf2LPmG1PBl2Sy9HWojKE0daiIiISBYYWoiIiEgWeHmIygSfjlk+DDrOTsavQ8OQes4eM2ACrWcZFEMGMeQS4317/jxT5cSRFiIiIpIFjrQQVRJlNXnYkFuDK9ut05z0SsWpqhPr6dlxpIWIiIhkgaGFiIiIZIGXh4johfMiX27gpHmSM460EBERkSxwpIWoGGU1QfRF/pc9lQ2OkBBxpIWIiIhkgqGFiIiIZIGXh4iekxwv/RjyLBc59ouIqjaOtBAREZEscKSFqIrhCAkRVVUcaSEiIiJZYGghIiIiWeDlISIyqvK8XFXel8Z4KY6ofHGkhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBz2khIlngM1GIiCMtREREJAsMLURERCQLDC1EREQkCwwtREREJAsMLURERCQLDC1EREQkCwwtREREJAsMLURERCQLleLhcrm5uVizZg327duHtLQ0NG7cGGPHjkX79u0rujQiIiKqJCrFSMuCBQuwdetW9OjRA1OmTIGJiQlmzJiBS5cuVXRpREREVElUeGgJDw/HwYMH8e6772LixInw8/PDDz/8gDp16mD58uUVXR4RERFVEhUeWg4dOgRTU1P4+flJbRYWFujTpw+uXr2KuLi4CqyOiIiIKosKDy1RUVFwdnaGtbW1VruHhwcA4MaNGxVRFhEREVUyFT4RNykpCSqVSqdd05aYmKh3u8TERCQlJUmvNeEmOjraCFUCaQ8SjLJfIiIiuYiMjDTavuvXr49q1aoVu06Fh5acnByYm5vrtCuVSmm5PiEhIQgMDNRpnzdvXpnWR0RERI+NW7XdaPtetWoV3N3di12nwkOLhYUF8vLydNpzc3Ol5fr4+fnBy8tLep2Wlobo6Gg0adJECjxlJTo6GvPmzcOnn36K+vXrl+m+K4Oq3j+g6veR/ZO/qt7Hqt4/oOr30dj9M2SfFR5aVCoVEhJ0L71oLv04ODjo3c7BwUFnWbt27cq+wCfUr1+/xBQoZ1W9f0DV7yP7J39VvY9VvX9A1e9jRfavwifiurq64u7du8jIyNBqDw8Pl5YTERERVXho6dq1KwoKChASEiK15ebmYvfu3WjWrBkcHR0rsDoiIiKqLCr88lCzZs3g7e2Nn3/+GQ8fPkS9evUQGhqK2NhYzJw5s6LLA/D4EtbIkSP13uVUFVT1/gFVv4/sn/xV9T5W9f4BVb+PlaF/CiGEqLB3//9ycnKk7x5KT09Ho0aNMHbsWHTo0KGiSyMiIqJKolKEFiIiIqKSVPicFiIiIiJDMLQQERGRLDC0EBERkSxU+N1DldHZs2exf/9+XLp0CQkJCahZsybatm2LMWPGFPmwu6clJCRg6dKlOH36NAoLC9GmTRsEBATAycnJyNWXLDExEdu2bUNERASuXbuGrKwsLF68GG3atDFo+7Vr1+r9CgWlUokDBw6UcbXP7nn7B1Tu86eRlpaGFStW4PDhw8jJyYGHhwcmTpxo0EOfvvrqK4SGhuq0v/TSS9iwYYMxytUrNzdXmoSflpaGxo0bY+zYsWjfvn2J28rhHAGl72Nl/znTyMzMxJYtWxAeHo6IiAikpaVh1qxZ8PX1NWj75/kcl4fn6d+ePXuwYMECvcuCg4MrxV1GERERCA0Nxfnz5xEbGws7Ozs0b94cY8eOhYuLS4nbl/f5Y2jRY8WKFXj06BG6du0KFxcX3L9/H7///juOHz+ONWvWlPhBy8zMxNSpU5GRkYFhw4bBzMwMW7duRUBAANauXYvq1auXU0/0i4mJwaZNm+Ds7IxGjRrh6tWrpdrPhx9+CEtLS+m1iUnlGLh73v5V9vMHAIWFhZg5cyZu3ryJIUOGoHr16tixYwemTp2KVatWGfTLRqlUYsaMGVptT3/burEtWLAAf//9NwYNGgRnZ2fs2bMHM2bMwOLFi9GyZcsit5PDOdIobR81KuvPmUZqaioCAwPh6OgIV1dXnD9/3uBty+JzbGzP0z+NMWPGoG7dulptNjY2ZVXic9m0aRMuX74Mb29vNG7cGElJSQgODsbYsWOxfPlyNGrUqMhtK+T8CdJx/vx5UVBQoNOmVqvFzz//XOL2GzduFGq1WoSHh0ttt2/fFl27dhUrV64s83qfVUZGhkhNTRVCCBEWFibUarU4d+6cwduvWbNGqNVqkZKSYqQKn8/z9q+ynz8hhDh48KBQq9UiLCxMaktJSRG+vr5i9uzZJW4/f/580bNnTyNWWLKrV68KtVotNm3aJLVlZ2eLIUOGiPfee6/YbeVwjoR4vj5W9p8zjZycHJGYmCiEECIiIkKo1Wqxe/dug7Z93s9xeXie/u3evVuo1WoRERFhzBKfy6VLl0Rubq5W2507d0S3bt3EnDlzit22Is5f5YrslUTr1q11/jXTunVr2NnZITo6usTt//77bzRt2hQeHh5SW/369dG2bVuEhYWVeb3PysrKCnZ2dmWyr4yMDIhKdtf88/avsp8/ADh06BBq1qyJzp07S2329vbw9vbGkSNHpC8cLUlBQYHOV2iUl0OHDsHU1BR+fn5Sm4WFBfr06YOrV68iLi6uyG3lcI6A5+vjkyrjz5mGUqks9WWOsvocG9Pz9O9JmZmZKCgoKIOKytbLL78Mc3NzrTYXFxc0aNCgxL93FXH+GFoMlJmZiaysrBKHnQsLC3Hr1i00bdpUZ5mHhwfu3buHzMxMY5VZrt566y34+vqid+/emDt3LpKTkyu6pOcml/N3/fp1uLm56YRrDw8PZGdnIyYmpsR9ZGdnw9fXF76+vujTpw++++67cu1bVFQUnJ2ddS5JaYLIjRs39G4nl3MElL6PT6qKP2caZfE5loOpU6eid+/e6NmzJz7++ONK3y8hBFJSUkr8e1cR549zWgz022+/IS8vDz4+PsWu9+jRI+Tm5upN5pq2xMREvPTSS0apszzY2trizTffRPPmzWFubo5Lly4hODgYERERWLVqVbnPiyhLcjl/ycnJaNWqlU67psakpCQ0bty4yO1VKhWGDh2KJk2aQAiBkydPYseOHbh58yYWL14MMzPj/2pISkoq8TjrI5dzBJS+j0DV/jnTeN7PcWVnYWEBX19ftGnTBtbW1oiMjMTWrVsxceJErF69utJ+t97+/fuRkJCA0aNHF7teRZy/Kh9aCgsLkZeXZ9C6SqUSCoVCp/3ChQsIDAyEt7c3XnnllWL3kZOTAwA6w22a/T+5Tlkoi/49q0GDBmm97tq1Kzw8PDB37lwEBwdj2LBhz/0eGuXdv/I+f0Dp+piTkyPVU5oax48fr/W6W7ducHFxwapVq3Do0CF069bNwOpLLycnp1THuSLOUWmVto9A+f6cVZTn/RxXdj4+Plr/0FWr1ejQoQMCAgKwfv16fPTRRxVYnX7R0dH4/vvv0bx5c/Tu3bvYdSvi/FX50HLx4kVMnTrVoHXXr1+P+vXra7VFR0fj008/RaNGjQz6AkcLCwsA0PtHSHN9T7NOWXje/pWVHj164KeffsLZs2fL9JdpefevvM8fULo+WlhY6L1e/Dw1Dh48GGvWrMGZM2fKJbRYWFiU6jhXxDkqrdL2sSjG+jmrKMb4HFd2LVu2RLNmzXD27NmKLkVHUlISZs6cCWtra8ydOxempqbFrl8R56/Kh5aXXnoJs2bNMmjdp4dx4+Li8OGHH8La2hoLFy6ElZVVifuws7ODUqlEUlKSzjJNm6HPejHE8/SvrNWuXRuPHj0q032Wd//K+/wBpetjzZo1i62xNMfCwsICdnZ2ZX4Oi6JSqZCQkKDTXtJxrohzVFql7WNxjPFzVlGM8TmWg9q1a+POnTsVXYaW9PR0zJgxA+np6Vi6dKlBn82KOH9VPrSoVCqDH3L0pNTUVHz44YfIy8vD999/b/AvFxMTEzRq1AjXrl3TWRYeHg4nJyeDwo+hStu/siaEQGxsLNzc3Mp0v+Xdv/I+f0Dp+ujm5oZLly6hsLBQaxJcREQEqlWrVqrnI2RmZiI1NRX29vbPvG1paJ55kZGRoTU/Izw8XFquT0Wco9IqbR+LYqyfs4pijM+xHNy/f7/cfs4MkZOTI00Q/u6779CgQQODtquI88e7h/TIysrCjBkzkJiYiEWLFhV74OPi4nRuC+vSpQuuXbum9Uv1zp07OH/+PLp27Wqsso1CX/8ePnyos96OHTvw8OFDdOzYsZwqKxtyPX9dunRBcnIyDh8+LLU9fPgQYWFh8PT01LrOfO/ePdy7d096nZOTo/fuml9++QVCiHI7h127dkVBQQFCQkKkttzcXOzevRvNmjWTJinK9RwBz9fHqvRzBjyedBwdHY38/Hyp7Vk+x5Wdvv7pO4fHjx9HZGQkOnToUI7VFa2goABffvklrl69itmzZ6NFixZ616ss56/Kj7SUxty5cxEREYHXX38d0dHRWr9MLC0toVarpdfz58/HhQsXtE7agAED8Mcff2DmzJkYMmQITE1NsXXrVtSoUQNDhgwp174U5ZdffgEA3L59GwCwd+9eXLp0CQAwYsQIaT19/Rs0aBB8fHzQqFEjKJVKXL58GQcPHoSbm5vW8ygq0vP0Tw7nr2vXrti2bRsWLFiA27dvS0+iLCws1JnxP23aNADA1q1bATye8T9mzBh0795dusPm1KlTOHHiBDp27IhOnTqVSx+aNWsGb29v/Pzzz3j48CHq1auH0NBQxMbGas0fk+s5Ap6vj3L4OdPYvn070tPTpcsCR48eRXx8PADA398fNjY2+PnnnxEaGoqgoCDp6bDP8jmuSKXt34QJE9CkSRO4u7vD2toa169fx+7du1G7dm0MHz68wvrzpJ9++glHjx6Fp6cn0tLSsG/fPq3lPXv2BIBKc/4YWvTQPDth9+7d2L17t9ayOnXqaIUWfaysrLB48WIsXboUv/76q/S9KJMnT640Q4Jr1qzRev1kP5/8o65Pjx49cOXKFRw6dAi5ublwdHTE0KFD8c4776BatWpGqfdZPU//5HD+TE1NsWjRIixbtgzbt29HTk4OmjZtilmzZpV4q6+NjQ08PT1x+vRphIaGorCwEPXq1cO7776LIUOGlOtj4j/55BM4Ojpi7969SE9PR6NGjbBw4UK0bt262O3kcI40SttHOfycaQQFBSE2NlZ6ffjwYSmA9ezZs8hH1j/P57g8lbZ/Pj4+OHHiBE6fPo3s7GyoVCr069cPI0eORM2aNcul9pJo/t4dO3YMx44d01muCS36VMT5U4jK+phFIiIioidwTgsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDC1ElsnbtWnTu3Bnnz5+v6FKMonPnzpgyZUpFl0FEMsXH+JNsPXjwAG+99ZZWm5mZGWrUqIFWrVrhP//5Dxo3blxB1VVOQgjs378ff/75J27evInMzEzY2trCwcEBzZs3h4+Pj9bj5b/66iud7xsh6ty5M1q3bo0lS5ZUdCn0gmFoIdmrV68eevToAeDxN3SHh4fjwIEDOHz4ML7//nu8/PLLFVxh5fH1119jz549sLW1haenJxwcHJCTk4ObN2/izz//REZGRonfiUNEVFEYWkj26tWrp/ONoqtWrcL69euxatUq/mvw/7t48SL27NkDNzc3LFmyBNbW1lrL09LSpG/FJiKqjBhaqEry9/fH+vXrce3aNaktMjISGzZsQEREBFJSUmBlZYW6deuiU6dOeOedd7S2T0lJwYYNG3Ds2DHEx8fDysoKrVq1wujRo9GoUSOtdYsbKh88eDAAYOvWrVrtcXFxWLFiBU6dOoX8/Hw0adIEY8aMKbZPu3fvxs6dO6Vg0aBBA/Tv3x++vr4GHZOrV68CAHr16qUTWADA1tZWa1Rq8ODB0jfbPnkZ7um+Xr58GevXr8fVq1eRk5ODOnXqwMfHB2+//bZB30YshMDSpUvx22+/oXv37vjkk09gZmYGIQR2796NP//8E7du3UJBQYHU5z59+mjtIycnB8HBwdi7dy9iY2NRUFAAe3t7eHh4YPjw4XB1dS22Bs2lxt69e2Po0KFYvnw5rly5goKCAjRv3hzjx4+Hu7u71jaRkZHYvXs3Lly4gPj4eOTl5UmjfkOGDIGZmfavV81nYc2aNVi9ejWOHDmC5ORkzJgxA76+vqXe39q1a7Fy5Ur8888/yMzMRJMmTRAQEAB3d3ckJiZi+fLlOH36NDIzM9GyZUtMmzYNLi4uOsfg/v37WL9+PU6fPo2UlBTY2tqiQ4cOGD16NOrUqQMAOH/+PKZOnQoAuHDhAjp37ixtP2vWLK3P4j///IPt27fj+vXryM3NRb169dC7d28MHjwYpqam0np79uzBggULMGvWLNjZ2WHjxo24efMmqlevrvNzQ8TQQlWaQqEAAERFRWHSpEkwMTFBp06d4OjoiPT0dNy+fRu7du3SCi337t3DlClTkJCQgPbt26NTp054+PAhDh06hNOnT+P7779Hs2bNSl1TYmIiJk6ciISEBHTo0AFNmjRBdHQ0PvzwQ7Rp00bvNosXL8b27dtRq1YtvP766wCAw4cPY8GCBbh+/br0h6Q4dnZ2AIC7d+8aVOfAgQMRGhqKGzduYODAgbCxsQEArbktYWFhmDNnDszNzeHj4wN7e3ucPn0agYGBOHXqFBYvXgwLC4si3yM/Px9fffUVDhw4gEGDBmHy5MlQKBQQQmDu3Lk4cOAAnJ2d0b17d5ibm+P06dNYuHAhbt++jUmTJkn7+eqrrxAWFobGjRvD19cX5ubmSEhIwLlz59C+ffsSQ4vG/fv3MWnSJLi5ueGNN95AXFwcwsLCEBAQgB9++EHrvO/atQvHjh1Dq1at8OqrryI7OxsXLlzAzz//jGvXrmHevHk6+8/NzcX777+PrKwseHl5wdTUFDVq1Cj1/vLy8vDBBx8gNzcXPj4+SElJQVhYGD744AMsW7YMH330EVQqFXr27Im7d+/i2LFjmDlzJtavX68VHMLDw/HRRx8hKysLnp6ecHZ2RmxsLPbv34+TJ09i+fLlcHJyQp06dTBy5EgEBgaiTp066N27t7SPJ4/xypUrsXHjRtSqVQudO3eGjY0NLl26hOXLlyMiIgJz5szR6UtYWBhOnz4NT09P9O/fH5mZmQadM3rBCCKZun//vlCr1eLDDz/UWbZmzRqhVqvFlClThBBC/Pjjj0KtVovDhw/rrPvw4UOt1xMmTBBdu3YVJ0+e1Gq/c+eO6NWrlxgxYoRWu1qtFgEBAXprHDRokBg0aJBW2/z584VarRa//PKLVvvOnTuFWq0WarVanDt3Tmo/f/68UKvVYtiwYSItLU1qf/TokXj77beFWq0WFy5c0Pv+T4qLixO9e/cWnTt3FrNnzxZhYWHiwYMHxW6jqfX+/fs6y9LT04Wvr6/o1q2buHHjhtReUFAgvvjiC6FWq0VgYKDWNk8eq4yMDPHBBx8ItVot1q9fr7VeSEiIUKvVYsGCBSIvL09qz83NFTNnzhRqtVpcu3ZNCCFEWlqa6Ny5sxg7dqzIz8/X2k9+fr549OhRicdG81lSq9VixYoVWstOnjwp1Gq1znmPjY3Veb/CwkKxYMECoVarxaVLl7SWDRo0SPq8Zmdn69RQ2v19/vnnWsdo48aNQq1WC19fX/Hjjz+KwsJCadm3334r1Gq1+Pvvv6W2vLw8MWjQINGrVy8RGRmp9R4XL14UXbt2FTNnztRqL+4zf+rUKamfmZmZWn353//+J9RqtQgLC5Pad+/eLdRqtejSpYs4ffq03n0SafCWZ5K9e/fuYe3atVi7di2WLVuGyZMnIzAwEEqlEuPGjdNaV9+/+qtXry79/+vXr+PKlSvo1asXOnTooLWei4sL+vbti1u3buHWrVulqjUvLw9//fUXatSooXPnU9++feHs7KyzTWhoKABg1KhR0mgH8PhyzsiRIwE8HmIvSe3atTF37lzUrl0bBw4cwOeff47BgwfDz88PX3zxBc6ePftMfTly5AjS09Px+uuva92lZWJiggkTJsDU1LTIuh4+fIj3338f586dw8cff4xhw4ZpLf/9999haWmJadOmaV0WMTc3l87pgQMHAEAamVEqlTAx0f6VZmpqCltbW4P7ZGNjg+HDh2u1dejQAa+88gpu3bqFyMhIqd3R0VFrtEJTy4ABAwAAZ86c0fseEyZM0Ps5LO3+Jk6cqHWMunXrBgAoKCjA2LFjpdHGJ5fdvHlTajt27BhiY2MxdOhQNGnSRGvfLVu2hJeXF06cOIGMjAy97/+033//HQAwffp0WFpaavVl/PjxUCgUOHjwoM52Xl5eaNeunUHvQS8uXh4i2bt37x4CAwMB/N8tz927d9e65dnHxwfbtm3Dp59+Ch8fH7Rr1w6tWrVCrVq1tPYVHh4O4PGclrVr1+q81507d6T/fXpuiyHu3LmD3NxctG3bVucPl4mJCV5++WWdyzdRUVEAoPfSkabtxo0bBr1/u3btsHnzZly4cAEXL15EZGQkLl++jLCwMISFhWHYsGF49913DdqXpi59dxs5OjrCyckJMTExyMzMhJWVlbQsOTkZkyZNQnx8PObNmwcvLy+tbbOzs3Hr1i04ODhg48aNOvsuKCgA8H/nwtraGq+++ipOnDiBsWPHomvXrmjdujU8PDx05oGUxM3NTatWjZYtW+Ls2bOIioqS5rbk5eXh999/x8GDB3Hnzh1kZWVBCCFtk5iYqLMfpVJZ5OemNPuztbWFo6OjVptKpQIAODs768wp0ix7cl+auU537tzR+5lPTk5GYWEhYmJi0LRpU721Pyk8PByWlpb4888/9S63sLCQzt2TPDw8Stw3EUMLyV6HDh3wv//9r9h1mjVrhsWLF2PDhg04cOAAdu/eDQBo2rQp3nvvPbRt2xYA8OjRIwDA8ePHcfz48SL3l5WVVapaNf9a1cxjeJq+9szMTJiYmMDe3l5nWc2aNaFQKAz+VzDwONi1a9dO+ldtfn4+QkND8e2332LDhg3o0qWLzqTT4vpSs2ZNvctVKhViYmKQkZGhE1oyMjJQr149vXOD0tLSIIRAQkKCFEb1yc7Olv7/nDlzsH79ehw4cACrVq0C8DjM+Pr64t133zVoQnBxfdG0p6enS22fffYZjh07BhcXF/j4+KBGjRowNTVFeno6tm3bhry8PJ391KhRQ2vk40ml2Z++CdWaoKZvmWYkJz8/X2pLS0sDAOzfv19vXRpPHu/iPHr0CAUFBcWeO30/P0Ude6InMbTQC6NVq1Zo1aoVcnJyEB4ejqNHj2LHjh2YOXMmfvnlFzg5OUm/6KdOnQp/f3+D9qtQKKR//T8tPT1d65KOZv8pKSl619fXbmVlhcLCQjx8+FAn1KSkpEAIofcPlKHMzMzQt29fXLx4EXv37sX58+cNCi2a90xOTta7XNP+dG2urq7o3bs3Fi1ahKlTp+KHH37Q+oOlWd/d3V0KICWpVq0axo0bh3HjxuH+/fs4f/48du7ciW3btiEnJwfTp083aD8l9UVzLiMiInDs2DF06NABCxcu1Lqsc/XqVWzbtk3vfooKLKXdX1nQBMqvv/4anp6ez70/a2trKBQK7Nq165m2K+rYED2Jc1rohWNhYYE2bdpg8uTJGD58OHJycnD69GkA/zdErRkyN4StrS0SEhJ02h88eKD1L3Pg8bwYpVKJyMhI5OTkaC0rLCzElStXdPbj5uYGAHof7X/hwgUAMPjumOI8Of9AQzNHpLCwsMi6NDU8KS4uDvfu3YOTk5Peyy2vv/46Pv74Y9y5cwdTp07VCgtWVlaoX78+oqOjpVGAZ+Hk5IQ+ffrgxx9/hKWlJY4ePWrwtlFRUXrvWrl06RKA/+vz/fv3AQCvvfaazjwUzbrPoqz39yw0o13P8pk3MTHR+5kAHv8MpaamIiYmpkzqI3oSQwu9EK5cuaITEoD/+xe0UqkE8PgXeLNmzXDw4EG9kwULCwt1/kg3bdoUsbGxWu15eXlYunSpzvZKpRLe3t5ISUlBUFCQ1rI//vhD7y96zW2lgYGBWpeB0tPTsW7dOq11inPy5En8888/WpcGNO7evYu///4bwOP5Gxqa26Tj4+N1tunUqRNsbGywe/du/Pvvv1K7EAIrV65EQUFBsc+Q6d27N2bNmoWYmBhMmTIFSUlJ0rKBAwciOzsb33zzjd5LCffv38eDBw8APJ7Uq29idFpaGvLy8qRza4j09HSsX79eq+3UqVM4e/YsGjZsKI1AaeaRPB0o/v33X2zYsMHg99Mo6/09C80jAIKCgvQG0Pz8fJ26bG1t9X4mgMfnDgAWLlyI1NRUneVJSUl8iCGVGi8P0Qth06ZNOH/+PFq1aoW6detCqVTi+vXrOHv2LJycnLQekvX555/j/fffx+zZs7Ft2za4ubnBwsIC8fHxuHLlClJTU6U7V4DHD/k6ffo0ZsyYgW7duqFatWo4ffo0bG1tpYmPTxo/fjzOnTuH1atX4/Lly3Bzc0N0dDROnDiB9u3bS6M+Gq1bt4a/vz+2b9+OESNGoEuXLhBC4NChQ0hISIC/v79Bj96Pjo7G0qVLUb16dbRq1Qr16tWDEAL37t3DiRMnkJeXh/79+2vNM2nbti22bNmCb775Bl26dEG1atVQp04d6QF106dPx5w5c/Dee+/B29sb9vb2OHv2LCIjI+Hh4YEhQ4YUW1OvXr2gUCiwYMEC6VKRg4MD/Pz8cPXqVYSGhuLy5cto164dVCoVUlJScOfOHYSHh+Pzzz9H3bp1kZCQgDFjxsDV1RWNGzeGg4MDHj16hCNHjiA/P7/EGp7UsmVL7Ny5E+Hh4WjevDliY2MRFhYGCwsLzJw5U1rPw8MDHh4eCAsLQ1JSEpo3b464uDgcPXoUr732mhQADVXW+3sWSqUSc+bMwYwZMzBlyhS0bdsWjRo1gkKhQGxsLC5duoTq1atrhae2bdsiLCwMn3zyCdzc3KTnHzVu3BgdO3bEiBEj8Msvv2Do0KHo2LEjHB0d8ejRI9y7dw+XLl3CmDFj0KBBA6P1iaouhhZ6IfTv3x/W1taIiIjAhQsXIISAo6Mjhg8fjkGDBmnNu3BycsKaNWsQFBSEf/75B3v27IGJiQlUKhVatWqFrl27au27Q4cOmD17NgIDA7Fv3z7Y2trC29sb48aNk25JfpKDgwOWLVuG5cuX49SpU7h48SKaNGmCb7/9FufOndMJLcDjOTZubm7YsWOHNFegQYMGGDNmjPSwuZL07NkTVlZWOHXqFG7duoUzZ84gNzcX1atXR/v27dG7d2+dvr366quYMGECdu3ahaCgIOTn56N169bo1asXAMDb2xs1a9bEhg0bcPjwYemJuCNGjMDbb79d7IPlnqzLxMQE8+fPx/vvvy8Fl08++QSvvvoq/vjjDxw7dgxZWVmoUaMGnJ2dMXHiRLzyyisAgDp16mDUqFE4d+4czpw5g0ePHqF69epo0qQJBg4ciI4dOxp0fIDH5/7DDz/E8uXLERwcjMLCQrRp00bnibimpqZYuHCh9FTja9euSXV17NjxmUNGWe/vWXl4eGDt2rXYvHkzTpw4gStXrsDc3BwODg5Qq9XSrdIamm/qPnfuHI4dO4bCwkLUrl1bultvzJgxaNWqFbZt24azZ88iPT0ddnZ2qFu3LkaOHCl9VxjRs1KIJ++pIyJ6AT35GP9PPvmkosshoiJwTgsRERHJAkMLERERyQJDCxEREckC57QQERGRLHCkhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZOH/AV1WTLa5WcaGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Creating the unpolarized ASAD...\n" + ] + }, + { + "ename": "ValueError", + "evalue": "A value (2.8142254911886946) in x_new is above the interpolation range's maximum value (2.8108986900540254).", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[6], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m az_ang \u001b[38;5;241m=\u001b[39m source_photons\u001b[38;5;241m.\u001b[39mcalculate_azimuthal_scattering_angles(grb_data)\n\u001b[1;32m 3\u001b[0m qs, us \u001b[38;5;241m=\u001b[39m source_photons\u001b[38;5;241m.\u001b[39mcompute_pseudo_stokes(az_ang, show\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m----> 4\u001b[0m unpol_qs, unpol_us \u001b[38;5;241m=\u001b[39m \u001b[43msource_photons\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_unpolarized_pseudo_stokes\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43maz_ang\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/MyDocuments/_COSI/COSIpy/eliza_pull_request/cosipy/cosipy/polarization/polarization_stokes.py:392\u001b[0m, in \u001b[0;36mPolarizationStokes.create_unpolarized_pseudo_stokes\u001b[0;34m(self, total_num_events, bins, show)\u001b[0m\n\u001b[1;32m 390\u001b[0m \u001b[38;5;66;03m# Create fine bins and normalize to the area to get a probability density function (PDF)\u001b[39;00m\n\u001b[1;32m 391\u001b[0m fine_bins \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mlinspace(be[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m0.1\u001b[39m\u001b[38;5;241m*\u001b[39mbe[\u001b[38;5;241m0\u001b[39m], be[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;241m+\u001b[39m\u001b[38;5;241m0.1\u001b[39m\u001b[38;5;241m*\u001b[39mbe[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m], \u001b[38;5;241m1000\u001b[39m)\n\u001b[0;32m--> 392\u001b[0m fine_probabilities \u001b[38;5;241m=\u001b[39m \u001b[43mspline_unpol\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfine_bins\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 393\u001b[0m total_area \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mtrapz(fine_probabilities, fine_bins) \u001b[38;5;66;03m# Numerical integration using trapezoidal rule\u001b[39;00m\n\u001b[1;32m 394\u001b[0m fine_probabilities \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m total_area\n", + "File \u001b[0;32m~/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/scipy/interpolate/_polyint.py:81\u001b[0m, in \u001b[0;36m_Interpolator1D.__call__\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 61\u001b[0m \u001b[38;5;124;03mEvaluate the interpolant\u001b[39;00m\n\u001b[1;32m 62\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 78\u001b[0m \n\u001b[1;32m 79\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 80\u001b[0m x, x_shape \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_x(x)\n\u001b[0;32m---> 81\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_evaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_finish_y(y, x_shape)\n", + "File \u001b[0;32m~/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/scipy/interpolate/_interpolate.py:766\u001b[0m, in \u001b[0;36minterp1d._evaluate\u001b[0;34m(self, x_new)\u001b[0m\n\u001b[1;32m 764\u001b[0m y_new \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;28mself\u001b[39m, x_new)\n\u001b[1;32m 765\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_extrapolate:\n\u001b[0;32m--> 766\u001b[0m below_bounds, above_bounds \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_bounds\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_new\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 767\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(y_new) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 768\u001b[0m \u001b[38;5;66;03m# Note fill_value must be broadcast up to the proper size\u001b[39;00m\n\u001b[1;32m 769\u001b[0m \u001b[38;5;66;03m# and flattened to work here\u001b[39;00m\n\u001b[1;32m 770\u001b[0m y_new[below_bounds] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fill_value_below\n", + "File \u001b[0;32m~/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/scipy/interpolate/_interpolate.py:799\u001b[0m, in \u001b[0;36minterp1d._check_bounds\u001b[0;34m(self, x_new)\u001b[0m\n\u001b[1;32m 797\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbounds_error \u001b[38;5;129;01mand\u001b[39;00m above_bounds\u001b[38;5;241m.\u001b[39many():\n\u001b[1;32m 798\u001b[0m above_bounds_value \u001b[38;5;241m=\u001b[39m x_new[np\u001b[38;5;241m.\u001b[39margmax(above_bounds)]\n\u001b[0;32m--> 799\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mA value (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mabove_bounds_value\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m) in x_new is above \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 800\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mthe interpolation range\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms maximum value (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mx[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m).\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 802\u001b[0m \u001b[38;5;66;03m# !! Should we emit a warning if some values are out of bounds?\u001b[39;00m\n\u001b[1;32m 803\u001b[0m \u001b[38;5;66;03m# !! matlab does not.\u001b[39;00m\n\u001b[1;32m 804\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m below_bounds, above_bounds\n", + "\u001b[0;31mValueError\u001b[0m: A value (2.8142254911886946) in x_new is above the interpolation range's maximum value (2.8108986900540254)." + ] + } + ], + "source": [ + "az_ang = source_photons.calculate_azimuthal_scattering_angles(grb_data)\n", + "\n", + "qs, us = source_photons.compute_pseudo_stokes(az_ang, show=True)\n", + "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(len(az_ang))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "da3b6513", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Creating the 100% polarized ASAD...\n" + ] + } + ], + "source": [ + "mu = source_photons.calculate_mu(bins=20, show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "b3417867", + "metadata": {}, + "source": [ + "Create an azimuthal scattering angle distribution (ASAD) each for the data and background simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "641b46c1", + "metadata": {}, + "outputs": [], + "source": [ + "bin_edges = Angle(np.linspace(-np.pi, np.pi, 18), unit=u.rad) # Define ASAD bins\n", + "\n", + "asads = {}\n", + "for key in azimuthal_angles.keys():\n", + " asads[key] = grb_polarization.create_asad(azimuthal_angles[key], bin_edges)" + ] + }, + { + "cell_type": "markdown", + "id": "52e46d5e", + "metadata": {}, + "source": [ + "Calculate the ASAD of the GRB only by subtracting the background ASAD from the GRB+background ASAD" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6ff34198", + "metadata": {}, + "outputs": [], + "source": [ + "source_duration = analysis.tmax - analysis.tmin # Duration of GRB simulation\n", + "background_duration = np.max(background['TimeTags']) - np.min(background['TimeTags']) # Duration of background simulation\n", + "\n", + "background_asad_grb_duration = (asads['background']['counts'] * source_duration / background_duration).astype(int)\n", + "grb_asad = asads['grb & background']['counts'] - background_asad_grb_duration\n", + "\n", + "asads['grb'] = {'counts': grb_asad, 'uncertainties': calculate_uncertainties(grb_asad)}" + ] + }, + { + "cell_type": "markdown", + "id": "e3cda8c6", + "metadata": {}, + "source": [ + "Calculate the unpolarized and 100% polarized ASADs, and calculate the modulation of a 100% polarized source" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "4cddef85", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 0.0 deg to 15.0 deg\n", + "Modulation: 0.309 +/- 0.003\n", + "Best fit polarization fraction: 1.0 +/- 0.016\n", + "Best fit polarization angle: 160.234 +/- 0.3\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRaElEQVR4nOzdd3hT5dvA8W+6J11A2XtvBNmFQtkgyhJB2XvjQuXnFkRUlKGizCKKbBVki2xklyF7llmgk+6V8/6RN4eGppO2J23vz3VxkTznOTn3SdLkznOeoVMURUEIIYQQwoJYaR2AEEIIIcTTJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERwkLcvHkTnU7HkCFDtA5FAL6+vuh0ulw/zscff4xOp2PPnj25fqzMqFChAhUqVNA6DCEkQREZu3jxIhMnTqROnTq4ublhZ2dHqVKl6NatG0uWLCE+Pl7rEHPNkCFD0Ol03Lx5U+tQzFqyZAmjR4+madOmODk5odPpeP/99zPc76+//sLX1xc3NzdcXFxo2rQpy5cvT3ef5cuX06RJE1xcXHBzc8PX15e//vrLbN0rV67QrVs3PD09KVu2LBMmTCAyMtJs3ddee42KFSsSFRWV8QmnYEzoUv6zsbHB29ubbt26sXXr1iw9nnh2v/76q/pa7NixI9264eHhfPjhhzRo0AAXFxfs7e0pXbo0zZo148033yQgICDd/UeOHIlOp8PJyYnw8PA06xkTQOM/KysrihQpQvny5enatSuzZs3i7t272TldkctstA5AWLZPP/2UTz75BL1eT/PmzRk8eDAuLi48ePCAPXv2MGLECBYsWMDx48e1DrVQevPNN4mIiMDDw4NSpUpx7dq1DPf57rvvmDhxIl5eXrz22mvY2dmxbt06hgwZwtmzZ/n6669T7fPWW28xe/ZsypQpw8iRI0lISGDVqlW88MILzJ8/nwkTJqh1o6Oj8fPzIzo6mkGDBnHnzh2+//57Hjx4wNq1a00ed/Pmzfz666/s3LkTFxeXbD0Hbm5uTJkyBYC4uDhOnz7Nli1b2LJlC3PnzmXSpEnZety8MmHCBF555RXKlSundSjPbOHCheh0OhRFYeHChXTs2NFsvXv37tGyZUtu3rxJpUqVePXVVylatChhYWGcOHGCOXPm4OjoSMOGDc3uHxkZyapVq9DpdMTGxvLLL7+YvAfNadOmDb6+voDhPXr//n0OHjzI1q1b+eijj/j444959913n+n8RQ5ThEjDjBkzFEApW7ascvjwYbN1Nm3apPj6+uZxZHln8ODBCqDcuHEj149148YNBVAGDx6c6X22bt2q3Lx5U1EURVm2bJkCKP/73//SPYa9vb3i6elpck6hoaFK5cqVFUA5dOiQyT4HDx5UAKVy5cpKaGioyWN5enoq9vb2Jo+1atUqBVD27t2rlg0ZMkQBlAcPHqhl4eHhSunSpZXhw4dn+nyfPhdAKV++fKptS5cuVQDF2dlZiY6Oztbjt2nTRimMH5Hly5c3+5xm5OLFiwqgtG/fXmnUqJFia2urBAUFma07fPhwBVCGDRum6PX6VNvv3bunnDhxIs1j/fjjjwqgvPHGG4qdnZ1Sr169NOt+9NFHCqB89NFHqbbp9Xpl3bp1iqenpwIoM2fOzPhERZ6RSzzCrJs3b/Lxxx9ja2vLli1baNq0qdl63bt3Z9u2banK16xZQ+vWrXFzc8PR0ZG6desyc+ZMs5eDjNe8Hz9+zBtvvEGFChWwtbXl448/ztR2MFyGGjJkCGXLlsXOzg5vb28GDBjApUuXzMYdExPDrFmzaNy4Ma6urri4uFCzZk0mTZrEgwcPANDpdOplj4oVK6pNxE9fnw8NDeW9996jZs2aODo64ubmhp+fX5pN3JGRkbzxxhuUKVMGBwcHatSowTfffINerzdbPz2dO3emfPnyma6/dOlS4uPjmTBhgsl5eHh4MG3aNAB+/PFHk32M9//3v//h4eGhlleoUIHx48cTHx/PsmXL1PLAwEAAmjRpopYZbxu3gaH1B2D27NmZjj+zhgwZgrOzM9HR0Zw7d04t37VrF507d8bT0xN7e3uqVavGu+++S0RERKYeNyEhge+++46uXbtSvnx57O3t8fT0pH379mleUsro/WuuD4qx/0ta/4wtAUZJSUn88MMPNGvWjCJFiuDk5ETDhg357rvvzL6vFEXhu+++o3bt2jg4OFC6dGkmTJiQ6efBnEWLFgEwdOhQhgwZQmJiIv7+/mbrHjp0CICJEyea7edTsmRJnnvuuXSPZWVlxZQpU3jhhRc4c+YMR44cyXLMOp2O3r17s27dOsDQYnz//v0sP47IHXKJR5i1bNkyEhMTeeWVV6hTp066de3t7U3uT5s2jZkzZ1K0aFEGDBiAi4sLW7duZdq0aWzfvp0dO3ZgZ2dnsk9CQgLt2rUjNDSUjh07UqRIESpWrJip7du2baNXr14kJibywgsvUKVKFe7cucOGDRvYvHkzu3fvNvmwCwsLo23btpw+fZrq1aszbNgw7OzsuHbtGsuWLaNXr154e3vz0Ucf8ccff3D69GkmT56Mu7s7gPo/GL5wfX19uXnzJj4+PnTu3Jno6Gj++usvOnfuzE8//cTIkSPV+vHx8fj5+XHs2DHq16/Pq6++Snh4OJ999hl79+7N0muUHf/88w9gSGye1qVLF5M6md3ns88+459//uGTTz4BUC9VnDhxgpYtWwKolwCNydTff//NkiVL2LRpE25ubs98XuYoigKgfgH+9NNPjB07FmdnZ/r27Uvx4sXZs2cPs2bNYtOmTRw8eNDktTUnNDSUyZMn06JFCzp06ECxYsW4f/8+mzZtomvXrixatIgRI0ak2i+j9/fThgwZkioJAdi/fz///PMPTk5Oapnxfb99+3aqV6/OgAEDcHBwYPfu3UycOJEjR46wYsUKk8eZMmUK8+bNo2TJkowaNQpbW1v+/PNPjhw5QkJCQqq/z4wkJCSwfPly3Nzc6NmzJ7Gxsbz55pssXryYqVOnpkpCvLy8ALh8+TINGjTI0rECAgI4ceIEHTp0oGzZsgwZMoT169ezcOHCNH9IZaRt27a0atWKAwcOsGHDBsaPH5+txxE5TOsmHGGZ2rVrpwDKokWLsrTfoUOH1MtC9+/fV8sTExOV7t27K4AyY8YMk33Kly+vAIqfn58SFRWV6jHT2x4aGqq4u7srXl5eyrlz50y2nT17VnF2dlYaNmxoUt6/f38FUMaMGaMkJyebbIuMjFTCw8PV+xld4mnTpo2i0+mU3377zaQ8LCxMqV+/vuLg4GDSzG28bNarVy+TY1+/fl3x8PDI8iWelDJziado0aIKoAQHB5vd7uzsrADqZZGoqCgFUFxcXMzWf/TokQIoxYsXV8siIyOVMmXKKEWLFlWmTJmi9OnTRz1n4/YKFSoor776arbO0yi9SzxLlixRL/HExMQoN2/eVOzs7BRXV1flwoULJnXHjh2rAMrIkSNNys1d4omLi1Nu376d6njh4eFK7dq1FQ8PDyUmJsZkW0bvb+MliN27d6d7vqdPn1ZcXV2VokWLKlevXk21/4QJE5SkpCS1PCkpSRk2bJgCKH/88YdanvKSXUhIiFoeGxurNGvWLM3nND2//fabAiijRo1Sy3r37q0Ayt9//52q/vz58xVAcXV1Vd5++21l586dab4nnzZ69GgFUFauXKkoiuGzpUSJEoqzs7MSERGRqn56l3hSev/99xVAGTRoUKbiELlPEhRhVs2aNRVA2bp1a5b2GzFihAIoP/30U6ptly5dUqysrJSKFSualBs/wE+dOmX2MdPbPmfOHAVQvvvuO7P7TpkyRQHU5OXBgweKlZWVUrJkSbNfFk9LL0E5deqUAih9+vQxu+8ff/yhAMr333+vllWpUkWxsrIy+YIxMn6Q5maCYmtrqwBKYmKi2e2lSpVSAOXevXuKoijK3bt3FUApXbq02foJCQkKoNjZ2ZmUX7x4UencubPi7u6ulCpVShkzZoz65TF+/HjF29tbCQ4OVgIDA5Xu3bsrDg4OiouLizJw4ECzXzLmGBMUNzc35aOPPlI++ugj5Z133lG6dOmiAAqgzJ07V1EURZk+fboCKO+9916qxwkNDVVcXV0VBwcHJS4uTi3Pah+U2bNnp+p7oygZv78zk6DcvXtXKVOmjOLg4KAcPHhQLU9OTlY8PT2VEiVKmH1Nw8LCFJ1Op/Tt21ctM/6NLl26NFX93bt3ZytBMf6gSdl/adOmTQqgvPzyy6nq6/V65b333lMcHBzU1wpQKlSooIwYMSLN5yoqKkpxdXVV3NzclNjYWLX8zTffVADlhx9+SLVPZhOUBQsWKIDSpUuXTJ61yG1yiUfkqJMnTwLQrl27VNuqVatGmTJluHHjBhERESZN+w4ODtSrVy/Nx01r+7///gvA6dOnTfqkGF2+fBmACxcuUKtWLY4dO4Zer6d169Y4Oztn6dzSOnZERITZYz969Eg9Nhj6nly9epWyZctSuXLlVPV9fX3VyyT5XfXq1c32ydi/fz8//PADa9aswdPTkw4dOvDw4UNWrlxJVFQUEydOJDY2NtVon/RERESoz5u1tTWenp506dKFCRMm0LVrVyD996WHhwcNGzZk3759XLx4kfr166d7vHPnzvHVV1+xb98+7t+/T1xcnMl2c0NWM3p/pycqKoru3btz9+5dfvvtN1q0aKFuu3z5MqGhoVStWpXp06eb3d/R0VF9D8KT56JNmzap6rZq1Qpra+ssxXf16lV2795N9erVad68uVreuXNnSpQowR9//EFwcDBFixZVt+l0Oj7//HOmTp3K9u3bOXz4MCdPnuTIkSMsXryYZcuWsWDBApPLowCrVq0iMjKS0aNH4+DgoJYPGTKE2bNns2jRIsaOHZul+I2Upy4JCu1JgiLMKlmyJBcuXMjy/ADGTnYlS5ZM83Fv3bpFeHi4SYJSvHjxdD8Y0toeEhICPOmglxbjHBvG+RJKly6dbv3MMB57586d7Ny5M8NjG58bb29vs/VKlCjxzDFlxM3NjeDgYCIiItR+ACkZYzS+Nsb/0+o8aSzPqO8GQGxsLMOHD6dXr1706dOHnTt3EhAQwIoVK+jZsydg6Jz94Ycfcu3aNbNJnDnly5fPcJ6azLwvgXTn0wA4fPgw7dq1IykpCT8/P3r06EGRIkWwsrLi1KlT/Pnnn2Y7gmf0/k5LcnIy/fr1IyAggJkzZ9KvXz+T7cb34JUrV9JNblPOMZPe+9DGxsYkkciMRYsWoShKqgkGbWxsePXVV5k9ezb+/v689dZbqfZ1d3enX79+6nlFR0fzxRdfMH36dCZOnEiPHj1M4ly4cCFAqmPVqVOHRo0aceLECY4fP07jxo2zdA5gGPoMUKxYsSzvK3KHjOIRZrVq1QowjHrICuMXWlBQkNntxh7yT3eMzOjDO63txsc5ffo0iuGSpdl/gwcPBp58kebExEzGY8+dOzfdYxtHuBjrG0cJPS2t5ywnVa9eHXjSspTS/fv3iY6OpkyZMmonTGdnZ0qXLk1UVJTZ0Q1XrlwBDK1jGfnggw8ICQnh+++/B560LKXswNyoUSMAzp8/n5XTylB235dPmz59OrGxsezYsYOtW7cyZ84cPv30Uz7++ON0O2hm91f5xIkT2bJlCyNHjjQ7R4cx3p49e6b7Hrxx40aqfcy9D5OSkggODs50fClH6rz33nupRhsZR2hl9APCyNnZmc8++4xWrVoRHx/PwYMH1W1nzpzh6NGjADRv3jzVsU6cOAE8SWKyavfu3QDZ7mgrcp4kKMKsoUOHYmtry/r16zP8skj5i9E4sZK5abuvXr3KnTt3qFixYqZ+cWdGs2bNAMOlg8xo0qQJVlZW7Nu3j+jo6AzrG5u7k5OTn/nYrq6uVKlShbt375qdUC0vpjo3XuIwNzTceEnm6csg2dnnaUePHmXOnDnMnTs31S/3lO+fpy+X5JT03pfh4eGcOnUKBwcHatasme7jXL16FU9PT7MjbHJ6FNbs2bNZsGABHTt25IcffjBbp0aNGri7u3P48GESExMz9bjGhNBcvAcOHDD7Xk/Ln3/+ycOHD6levTrDhw83+69SpUpcvnw5S8+Pq6sr8OSyCzxJPHx9fdM8lqOjI7/99luWZyX+559/OHjwII6OjmprnrAAedfdReQ3xhEnFSpUUI4dO2a2ztatW5W2bduq940jBCpUqKA8fPhQLU9KSlJefPFFBVCmT59u8hgZTQyV3vbg4GDF3d1dKVasmHLkyJFU25OTk1N1PhwwYECmR/G8/fbbCqD8888/Zo/v4+OjWFlZKUuWLDG7/cyZMyaTkxmf0969e2syiuf69eu5PlHb0+Lj45VatWop3bp1MynfuXOnAiiffPKJWmac0M1cJ+KnpTeKx1xdW1tbxc3NTbly5YrJtgkTJiiAMmLECJNyc51kO3XqpADK6dOnTcoXL16sdvRctmyZybaM3t/mOsmuX79esbKyUurWrZthp+EPPvhAfT8/PYJIUQyTnqUc4XbgwIEcG8XToUMHBVBWr16dZh3jczNgwAC17Msvv1T+++8/s/X379+vODg4KDY2Nsrdu3cVRVGUmJgYxd3dXbG2tlbLzHnttdcUQFm4cKFaltFEbevXr1cnavvyyy8zOmWRhyRBEen65JNPFCsrKwVQWrRooUyaNEmZNm2aMnz4cKVq1aoKoDRu3Nhkn6lTp6pDT8eNG6e8/fbbSp06dRRAadWqlRIfH29S/1kSFEVRlL///ltxdXVVdDqd0r59e2Xy5MnKlClTlN69eyulSpVS7O3tTeqHhoYq9erVUwClRo0ayuTJk5W3335b6dOnj+Lq6mryRbFt2zb1w3zq1KnKZ599psyfP1/dfvv2bfV5qF+/vjJq1Chl6tSpyoABA9Rz/vfff9X6cXFxyvPPP6/Wnzp1qjJq1CjF3d1d6dGjR5YTlEWLFimDBw9WBg8erLRs2VIBlHr16qll5mbGnDdvngIoXl5eyrhx45QpU6YoZcqUUQDlzTffNHucN954QwGUMmXKKFOmTFHGjRuneHl5KYDJ82HO//73P8XNzU25c+eOSbler1caNWqkWFtbK8OGDVNefvllBTAZcZKerCQoiqIo33//vTq0dfjw4cq7776rNG/eXH0fpPyyVhTzCcrWrVtNHuONN95QWrdurVhZWanDqXMiQXF0dFT4/5lWjSOUUv5LeYyEhAT1vVO6dGll4MCByrvvvqsMGzZMTaCffh9MnDhRAZSSJUsqEydOVN544w2lcuXKSuPGjZWSJUtm6jm9fv26otPplKJFi6b6m04pMjJScXFxUezt7dXnuH79+urzPmTIEOW9995TJk2apPj5+Sk6nU4BlNmzZ6uPYUy+X3jhhXRj2rNnT6rPJOPz26ZNG/X5mzp1qvLaa68pFStWVADF3t5emTVrVobnLPKWJCgiQ+fPn1cmTJig1K5dW3F1dVVsbW2VEiVKKJ07d1YWL15sMjTT6LffflNatmypfjDVqlVLmT59usnQQKNnTVAUxfBlNX78eKVKlSqKvb294urqqlSvXl157bXXlN9//z1V/aioKGX69OlK3bp1FUdHR8XFxUWpWbOmMnnyZJMWD0UxDB+tUaOGYmdnZ/YL8fHjx8qMGTOU5557TnF2dlYcHByUChUqKF27dlV++umnVMOZIyIilNdff11NnqpXr658/fXXyrVr17KcoBiHQaf1r02bNmb327hxo9K6dWvFxcVFcXJyUho3bqz4+/une6xly5YpjRs3VpycnBQXFxeldevWyqZNm9LdJyAgQLGxsUlzPp3bt28rL774ouLs7Ky4ubkpgwcPzvIw46wMid2+fbvSoUMHxd3dXbGzs1MqV66svP3220pYWFiqumkNM960aZPStGlTxcXFRXFzc1M6dOig7N27V/0SzYkEJb3X1NzrqtfrlZ9//llp166d4uHhodja2iqlSpVSWrZsqcyYMUO5detWqvrz589X39clS5ZUxo0bp4SHh2d6qvtp06YpgPL6669nWHfkyJEKoHzzzTeKoijKyZMnlc8++0xp27atUqFCBcXBwUGxt7dXKlWqpAwYMEDZv3+/yf4tWrRQAOXPP//M8FjVqlVTACUgIEBRlCfPr/GfTqdTXFxclHLlyildunRRvvjii1TJs7AMOkVJcZFPCCGEEMICSCdZIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXHyZYISFxfHpUuXcm1abCGEEEJoK18mKIGBgYwcOZLAwECtQxFCCCFELsiXCYoQQgghCjZJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhRRaMSExXFi3RViwuK0DkUIIUQGJEERhUZMeDwBG64SEx6vdShCCCEyIAmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDg2Wd0hJiaGVatWcf78eS5cuEBkZCTvvfceXbp0yfRjHD9+nBUrVnD58mX0ej1ly5alf//++Pn5ZTUcIYQQQhRAWU5QIiIi8Pf3x9vbmypVqhAQEJCl/bds2cKsWbNo3LgxI0eOxNramlu3bvHw4cOshiKEEEKIAirLCYqXlxe///47Xl5eXLx4kVGjRmV63/v37/Ptt9/Sq1cvJk+enNVDCyGEEKKQyHIfFDs7O7y8vLJ1sD///BO9Xs/w4cMBw+UiRVGy9VhCCCGEKLiy3ILyLE6cOEG5cuU4fPgwCxYs4NGjR7i6utKzZ0+GDRuGlZX02RVCCCFEHicod+7cwcrKii+++IL+/ftTuXJl9u3bx88//0xycjKjR482u19wcDAhISHq/cDAwLwKWQghhBAayNMEJTY2Fr1ez+jRo3n11VcB8PX1JTIyknXr1jFw4ECcnJxS7bdx40b8/f3zMlQhhBDpiAmL48Ku29T0K4uTh4PW4YgCKE8TFHt7e2JjY2nfvr1JuZ+fH0eOHOHy5cs0aNAg1X49evSgZcuW6v3AwECmT5+e2+EKIYRIg3F18PKNikuCInJFniYoXl5e3LlzBw8PD5Ny4/3IyEiz+xUtWpSiRYvmenxCCCGEsAx52iu1evXqgKFPSUrG++7u7nkZjhBCCCEsVK4lKMHBwQQGBpKUlKSWtWvXDoDNmzerZXq9nq1bt1KkSBE1gRFCCCFE4ZatSzzr168nKipKHVlz8OBBdSbY3r174+LiwsKFC9m2bRurV6+mZMmSALRq1YpGjRrxyy+/EB4eTpUqVdi/fz9nzpzhrbfews7OLodOSwghhBD5WbYSlNWrVxMUFKTe37dvH/v27QOgY8eOuLi4mN1Pp9MxY8YMFi9ezD///MO2bdsoW7Ys77//Ph07dsxOKEIIIYQogLKVoKxZsybDOtOmTWPatGmpyp2cnJg0aRKTJk3KzqGFEEIIUQjI1K1CCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIixYTFseJdVeICYvTOhSRhyRBEUIIYdFiwuMJ2HCVmPB4rUMReUgSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERIhfEhMVxYt0VYsLitA5FCCHyJUlQhMgFMeHxBGy4Skx4vNahCCFEviQJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiI0J5OaCSGEeJokKEJzMqmZEEKIp0mCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDhZTlBiYmJYunQpb731Ft26daN169Zs3bo1Wwf/8ssvad26Ne+880629hdCCCFEwZTlBCUiIgJ/f38CAwOpUqVKtg988eJFtm7dip2dXbYfQwghhBAFU5YTFC8vL37//XfWrl3L2LFjs3VQRVGYO3cunTp1wtPTM1uPIYQQQoiCK8sJip2dHV5eXs900O3bt3Pjxg1Gjhz5TI8jhBBCiIIpzzvJxsTE8OOPP/Laa689c6IjhBBCiILJJq8P6O/vj729PS+//HKm9wkODiYkJES9HxgYmBuhCSGEKMRiwuK4sOs2Nf3K4uThoHU4hV6eJii3b99m3bp1fPjhh1nqHLtx40b8/f1zLzAhhBCFnnFl9fKNikuCYgHyNEGZN28ederUwdfXN0v79ejRg5YtW6r3AwMDmT59eg5HJ4QQQghLkWcJyokTJzhy5AjTp0/n/v37anlycjLx8fHcv3+fIkWK4OzsnGrfokWLUrRo0bwKVQghhBAay7ME5eHDhwC8//77qbY9evSIfv36MWHChCz1TRFCCCFEwZRrCUpwcDDR0dGULl0aGxsbnnvuOWbMmJGq3ldffUWJEiUYOHAglSpVyq1whBBCCJGPZCtBWb9+PVFRUerImoMHD6otJL1798bFxYWFCxeybds2Vq9eTcmSJfH29sbb2zvVY82fPx8PDw98fHye4TSEEEIIUZBkK0FZvXo1QUFB6v19+/axb98+ADp27IiLi0vORCeEEEKIQilbCcqaNWsyrDNt2jSmTZuWI48lhBBCiMIlz2eSFUIIIYTIiCQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCFCAxYXGcWHeFmLA4rUMR4plIgiKEEAWIccG7mPB4rUMR4plIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqCIQkGvV3h0PQKAR9cj0OsVjSMSQgiRnlxbzVgIS3HjaBCHf75AdKhhVMPBJec49fs1mg2qScUmJTSOTgghhDnSgiIKtBtHg9g1J0BNToyiQ+PYNSeAG0eD0thTCCGEliRBEQWWXq9w+OcL6dY5vOKCXO4RQggLJAmKKLCCLoamajl5WnRIHEEXQ/MoIiGEEJklfVBEgRX71ERVSSQRavuIMJtHJOuSsFKscU/yIiK0JqXw0ihKIQoPRVEIjQ3leth1IuIj0Ct6vBy9KO9enqJORc3u83QHd8/yRbCy0uVl2EIjkqCIAsvR3Z4wm2COFNnNf04nuO54kUSrhFT1PvnHhqaXm9KpcicG1h9IBfcKeR+sEAVUkj6JrVe2suHiBv6+/jd3Ht8xW6+8W3l8K/jycu2X6Vi5IzZWNtLBvZCTBEUUSGcenOHjs5/wR6U/UHT6dOsmKUkcvH2Qg7cP8tGej+hcpTMf+35Mk9JN8ihaIQqemMQYvj/6PXOOzOFe5L0M6wdGBLL89HKWn15OKddSDC09ilIb62On2JvUM3Zw95vSUJKUAk4SFFGgBMcE8+aON/n59M+GghQtwV4J3lSIr4pXYnHs9PYkWiVgUyuRywkXuBJ6BQAFha1Xt7L16lZ61ezFvM7zKF2ktAZnIkT+pCgKq/5bxRs73iAoynSUnKONI03LNKWaZzWKORdDh44H0Q+4FHKJo3ePEpdkaCm5F3mPGRc/xq2SJ/0ejqJxpA86TC/rHF5xgfKNveVyTwEmCYooMH6/8DsjN40kJDZELSvpUpI+JfpT8UhDXIOf9DNx9nKg2atPmokDwwP59eyvLDyxkMCIQAA2XDA0Sc/pNIehDYfm7ckIkQ89jH7IsD+HsfnKZrVMh44e1Xsw4rkRtK/UHgcbB7P7xifFs/3adpYELGHjpY0ARNiEsrDUFxyJ2s3goCm4Jrup9Y0d3EvVkv5jBZWM4hH5XmJyIm/teItea3qpyYm7gzvfdvqWa5OuMe/V2Uye8yoth9cGoOXw2vSb62vSPFzevTzTfKZxZeIVfur+E97O3gA8jn/MsI3DGPrnUGISY/L83ITIL47cOUKjhY1MkpMe1XtwZuwZ/njlD7pX655mcgJgb2NPj+o9+POVP9nc7G/qRT25xHra5Qiflp/AVYfzJvs83RFeFCySoIh87XH8Yzr/2pnZ/85Wy3rX7M2F8ReY0mwKjraOAFhZ6ShWyfDrq1gltzSbhW2tbRnVaBTnx59nSIMharn/KX/aLW9HSEyI2f2EKEyeHlmz/NTPtPZvrXaA9Xb2ZsPLG/jzlT+pU7xOlh+/QdkGTLj7EWPv/g/XJMPfbbhtCLPLvstxl/1qPUd3+7QeQhQAkqCIfOth9EPaLm/LPzf+AcDWypb5Xeaztu9aSrg8W+c5T0dPlr24jF97/YqTrRMAR+4eodWyVtyKuPXMsQuRX904GsTqSXs4uOQcAJ+u/5whfw4mIdkwQs6nnA8BowPoWbNnto9RooYnLp6OPBfVkg9vfke1mLoAJFklsbDUF/zt/gfOXg6UqOH57CckLJYkKCJfehD1gNbLWnPy/knAkFDsGbKHCU0moNPlXKe5AXUHcGjYITXhuRh8kVZLWxEYHphjxxAiv3h66YjNnqtY5f2Tuv3VcoPZNWgXJV1LPtNxrKx0NBtUEwD3ZC9evz2DlhEdAFB0Cqu9F/Jfq73SQbaAkwRF5DthsWF0/KUjl0IuAVDatTT7h+6nRdkWuXK8+iXqc2jYIap6VgXg9uPbtF/RnvuR93PleEJYoqeXjtjl/id/FPtZvd89uD9dTw7CWpczYy8qNimB35SGOHs6YIMNg4Om0D24v7r984uf8MOxH3LkWMIySYIi8pXohGi6/9adMw/OAFC2SFkODDtArWK1cvW4FT0qsn/ofqp5VQPgauhVOqzoQHhceK4eVwhLkXLpiMOuu01aTvo8HMaLIQOJCYnP0aUjKjYpQb95vrQcXhsdOr586Qs+afOJun38lvH8dva3HDuesCySoIh8Q6/oGfzHYA7dPgRAcefi/D3o7zyb+dXbxZu/B/5NebfyAJx7dI5+6/qRpE/Kk+MLoSXjiJlLjmfwL/mNWt4t+BU6hfVJVS+nPN3B/YM2H/Beq/fU7UP/HMq/t//N0WMKyyAJisg3Pt37KesvrAegiH0Rdry2Q23RyCtl3cqya9Audd2QHdd28Mb2N/I0BiG04OhuT7DNA34s9TnJumQA2oR35cWQganq5SadTseMdjMY0XAEAPHJ8by0+iVuht/M1eOKvCcJisgX1p9fzyd7DU27OnT81vs36peor0kslT0rs+HlDdha2QIw/+h8Fp9crEksQuQVl0p2LCj/GVE2jwGoHd2IAQ/Gmszwmlcja3Q6HT90+4F2FdsBhhF9vVb3UmeiFQWDJCjC4t0Iu8GwjcPU+192+JKuVbtqGBH4lPdh4QsL1fsTt05U+8XkpZiwOE6su0JMmHwwi9w1efskbtlcB6B4QilG3puKFdYmdZoNrJlnI2tsrW1Z13ed2nk9ICiA17e9nifHFnlDEhRh0RKTE3ll/Ss8jjf8autfpz9vNn9T46gMhjQYwrjG4wCIS4rj5bUvE5UQlacxxITHE7DhKjEyo6bIRSvPrsT/lD8AztbOvB31Oc56V3W7s5eDJov3eTh6sP7l9TjaGCZk/PHEj6w8uzJPYxC5RxIUYdHe/+d9jt49CkBlj8r82P3HHJ3n5FnN7jSbBiUaAHAp5BITtkzQNiAhctj1sOuM+WuMev/HHj/yxreD0l06Ii/V9a7L912/V++P/mu09EcpICRBERbrnxv/8OWhLwHDLLGr+qyiiH0RjaMy5WDjwNq+a3G1M/yaXH56OX9c+NNkGnC9XtEyRCGyLUmfxID1A4hMiARgYL2BvFbvtUwvHZFXhjYcyqD6gwCISohi6J9D0St6TWMSz04SFGGRohKiGLFxhHp/pt9MGpdqrGFEaaviWYV5Xeap94esGsr2ZYZhjweXnGP1pD3cOBqU1u5CWKzZh2Zz5O4RwNCCmbKlwtLM7zKfcm7lANhzcw/fHf1O44jEs5IERVik/+36HzfCbwDQpnwbXm9u2Z3fBtcfTLtihqm4I6zC+M17gbotOjSOXXMCJEkR+cql4Et8tOcjAKx0VvzS6xdc7V0z2Es7ReyLsOzFZer9d/5+h0vBlzSMSDwrSVCExTlw6wDzj84HwNHGkcU9FmOls+y3qqJA74sjcUp2AeBokb0EuBwyqXN4xQW53CPyBb2iZ8SmEcQnGzpfT2k6hWZlmmkcVcbaVWzHxCYTAUPH9RGbRsilnnzMsj/1RaETnxTP8I3DUTB8kc9oN4MqnlU0jipjQRdDsQt2of+DsWrZb8V/JE4Xq96PDonL0WnAhcgtC44t4MCtAwBU8qjEZ+0+0ziizPui/RdU9qgMGH7sLD+1XOOIRHZJgiIsyteHvuZyyGUAmpVpxqSmkzSOKHOM03s3jfSldnQjAMJsg/mr6Eqz9YSwVEFRQby368lU8otfWIyTrZOGEWWNk60TP3R7sojg2zvfJiQmRMOIRHZJgiIsxu2oW8zYPwMAa501C7svxNrKOoO9LINxem8dOgY8GIuN3jDL7N8ef3DX7maqekJYqnf/flcdtTOswTDaVmyrcURZ17FyR16p8woAIbEhvPP3OxpHJLJDEhRhMT44/j9ikwyXRCY2mUhd77oaR5R5JWp44uzpAEDxxFJ0CX0ZgGRdMr94f4+CkmfTgAuRXYduH2L5acMlEXcHd75o/4XGEWXfNx2/UaclWBKwhIO3DmockcgqSVCERTjndJLNtzYB4O3szce+H2sbUBZZWeloNqimer9LaF+KJ5QC4KrTOY657svTacCFyKpkfbLJRIPT206nmHMxDSN6NiVdS/J5u8/V+1O2T5EOs/mMJChCc0n6JFYV/0m9/2WHL3FzcNMwouyp2KQEflMa4uzpgK1ixysPR6vbtlT+lZLPuWsXnBAZWHxyMQFBAQDU967P6MajM9jD8o1pPIa6xQ0tscfvHZdp8PMZSVCEWXm1CJ1er/DT4UUE2d8GoHmZ5gysNzCDvSxXxSYl6DfPl5bDa1MnujEt3H0AuBt7h3lH5mWwtxDaiEqIUuc8Afiu63fYWNloGFHOsLayZnbH2er993a9R0xijIYRiayQBEWYlReL0N04GsTySVv55uKXalmnswO4eexBrh0zLxinAdehY6bPF+ocLjP2z+BR9CONoxMitdmHZvMg2vB316dWH1qVa6VxRDmnQ+UOdKvaDYA7j+/w9aGvNY5IZJYkKEITN44GsWtOAL/rVvLYJgyA5yJbUvph5QI162otj9oMazAMgMfxj/lk7ycaRySEqQdRD/jq0FcA2FjZmPTbKCi+7vi12iI06+As7kfe1zgikRmSoIg8p9crHP75AhHWoezwXA+AtWJNr0dD1DoFadbVz9p9hrOtMwA/Hv9Rpt8WFuWTvZ8QnRgNwOhGo6nqVVXjiHJejaI1GNPIsCJzTGIMn+8veElYQZTlBCUmJoalS5fy1ltv0a1bN1q3bs3WrVszte+JEyf44osvGDBgAB06dKBfv37MmjWL4ODgLAcu8q+gi6FEh8axseivxFsZ+ri0Du+Kd2JptU5BmnW1hEsJ3mlpmIchWUk2udYvhJYuBV9i4YmFALjYufBhmw81jij3vN/6ffWHwk8nfuJm+E1tAxIZynKCEhERgb+/P4GBgVSpkrUpyH/88UcCAgLw8fFh8uTJ+Pn5sXv3bkaMGEFIiMz0V1jEhsfz0PY+B9y2A+CQ7Ej3kP5m6xUUrzd/nWJOhiGbq8+t5syDMxpHJAR8sPsDkpVkAN5u8TbFnYtrHFHu8XbxZnLTyQAk6hP5dO+nGkckMpLlBMXLy4vff/+dtWvXMnbs2Ix3SGH8+PH89ttvjB07lu7duzNq1Ci++OILQkND2bBhQ1ZDEfmUo7s9m71+Q68zzEnQIawXRZLdzdYrKFzsXHiv1ZPpw6UVRWjt7IOzrD2/FjDMPfRG8zc0jij3vdXiLdwd3AFYfno5F4MvahuQSFeWExQ7Ozu8vLyydbAGDRpgZWWVqqxIkSIEBgZm6zFF/hNZLIR/i/wDgFOyC+3DXkpVpyDOujqm8RhKuRomb/vj4h8cv3dc44hEYZayw/a7rd7Fxc5Fw2jyhoejB1NbTAUMKzZ/uLvgXtIqCDTvJBsTE0NsbCxubvlvYi6RPTMOTEf5/9aTjqG9cNI7p6pTEGdddbR15H8+/1Pvf7D7Aw2jEYXZmQdnWH/B0EG9hEsJRjfK/5OyZdakppPUS1lrz6/lVNApbQMSadI8QVm7di2JiYm0a9cuzTrBwcFcunRJ/SetLfnXpeBL/Hr2VwDcbT14QfeyyXZnLwf8pjSkYpMSWoSX64Y3HE55t/IAbLu6TdYHEZpI2f/inZbv4GjrqGE0ecvZztnkh4JxgVJheTSdKvDUqVP4+/vTtm1bGjVqlGa9jRs34u/vn3eBiVzz6b5P1fUw3mk9lSEtunJp920OLjlHy+G1qd62bIFrOUnJ3saeD1p/wIhNIwD4bN9nbHttm8ZRicKkMLeeGI18biSf7/+cB9EPWH9+PecfnadWsVpahyWeolkLSmBgIO+//z6VKlXinXfSXwq7R48eLFq0SP33/vvv51GUIiddDrnMb2d/A6CoU1EmNJmgzroKUKySW4FOTowG1R9EBfcKAGy/tp0T905oG5AoVFK2nrzb8t1C1Xpi5GjryNst3gZAQWHmgZkaRyTM0SRBefDgAW+++SbOzs7MmjULJyendOsXLVqU6tWrq//Kly+fR5GKnDTrwCwUDJOvvd3i7ULRKc8cW2tbtaMeIB+OIs883XoyqtEojSPSzujGo/FyNAz4WHl2JddCr2kckXhanicoERERvPnmmyQmJvL1119TtGjRvA5BaODO4zusOLMCAHcHd8Y0HqNxRNoa2nAoJVwM/Ww2XNjAhUcXNI5IFAazDs5Sbxe2vidPc7Fz4fVmrwOGET1fHPhC44jE03ItQQkODiYwMJCkpCS1LDY2lqlTpxIcHMyXX35J2bJlc+vwwsLMPjSbRH0iAOOfH08R+yIaR6QtBxsH3mz+JmBoYv7ioHw4itx1I+wGq/9bDRgusRbm1hOjCU0m4GZvuMS8/PRyTp8/D8Cj6xEFZqmN/CxbCcr69etZvnw5W7ZsAeDgwYMsX76c5cuXExUVBcDChQsZOHAgjx49Wb31s88+48KFC/j6+hIYGMiOHTvUf/v378+B0xGWKDgmmIUnDdNpO9o4qrM5FnZjGo/Bw8EDgF/P/CpTb4tcNfvf2eqssZOaTMLJNv1L64WBm4MbE5tMBAyzy87YaVij5+CSc6yetKfALFqaX2VrFM/q1asJCnrywu3bt499+/YB0LFjR1xczPctuHr1KgBbtmxRkxujEiVK4OPjk51whIWbf2Q+MYkxAIx4bgTFnItpHJFlcLFzYXLTyXy892OSlWS+PPglP3T7QeuwRAH0KPoRSwOWAuBs68z4JuM1jshy9LTrz1f6r4m3iuOA2w5eCHkV12Q3okPj2DUnoEBPe2DpspWgrFmzJsM606ZNY9q0aVneTxQskfGRzD86HzAs5W68rCEMJjadyNf/fk1UQhRLA5byUZuP8Hbx1josUcDMPzqf2KRYwDDE1tOxYM3SnF16vcKlVQ9obd2FnZ6/k2iVwG73v+gR8qpa5/CKC5Rv7F0oRhhaGs0nahMF26KTiwiLCwNgQN0BlHeXEVgpeTp6qsvAxyfH88MxaUEROSsqIYrvjn4HGH4kFIY1dzLLuLK6X9iLWCmGr8Pd7ptI0D1ZqLQgraye30iCInJNYnIi3x7+Vr3/Tsv057sprCY3m4yNlaEx84fjPxCbGKtxRKIgWXxysfoj4dW6r1LWTQYnGBlXTPdKKk7jyNYARNk85t8iu8zWE3lLEhSRa9ZfWM+dx3cA6F6tu8zUmIYyRcrwcm3DlP/BMcHqcGwhnlViciLf/PuNen9qy6np1C58Uq6Y3jG0l3p7h+cG9OjN1hN5RxIUkSsURTFpPXmjmTQrpyfl8/PNv9+oywEI8Sw2XNjA7ce3AfmRYE6JGp44ezoAUD6+CjWi6wPw0O4ep10OAwVzZfX8QhIUkSv+vfMvR+8eBaC+d318K/hqG5CFa1SqEW3KtwHgUsgltl7ZqnFEoiCYc2SOelt+JKRmZaWj2aCa6v2OYSlaUTw2AAVzZfX8QhIUkStSNiu/3ux1dDr5A89Iys6Ls/+drWEkIr/S6xUeXY8A4O9Tuzl8x9AKUM+7nvxISEPFJiXwm9IQZ08H6kQ3pmR8OQCuOp3HY3CyDDHWkCQoIsfdCLvB7xd/BwzrfbxS5xWNI8ofulfrTlXPqgDsvrmbgPsBGkck8pMbR4NYPWkPB5ecA+CbA08usU5pOkV+JKSjYpMS9JvnS6vhdeiUoi/K2shfNIxKSIIictz8o/PVPhTjnx+PvY10MMsMK52VujYIwDeHv0mnthBP3DgaxK45AUSHxgEQavOIE64HAHBNcqd5XFstw8sXjCurN4lsSzEHw2SS686v4+7juxpHVnhJgiJy1OP4xyw+uRgwrDdT2BcFzKrBDQark2it+m+VfDiKDOn1Cod/Nl1scrf7X+h1hh8JvuFdCVh5Q9aWySRbxZaBVQcDkKwk8+PxHzWOqPCSBEXkqCUnlxCZEAnAoHqDKOokq1VnhZOtE2MbjwUgSZ/EwhMLNY5IWDrjZGNG8bo49rkbOlnb6G1oE95VJhvLoiHVh6lzE/104ifikuIy2EPkBklQRI5J1ier09oDTGk2Rbtg8rExjcdgrbMGDB+OCckJGkckLNnTk4j967aLGGvDoq3PR/riluxptp5IW0mnUvSp1QeARzGP1FWgRd6SBEXkmG1Xt3Ej/AYAHSt3pGaxmhnsIcwpU6QMPWv2BOBB9APWn1+vcUTCkqWcREyPnl3uf6r324e9aLaeyJhxlWMw9KtTlJy9RBYTFseJdVeICZPWmbRIgiJyzPfHvldvj39eVkt9FhOen6De/u7YdxpGIixdysnGLjqdIsjeMHtztZg6lIuvDMhkY9nRvExzGpVsBMCJ+yf4986/Ofr4MeHxBGy4Soy0bKVJEhSRI66FXmPb1W0AlHcrT7eq3TSOKH9rXb41dYrXAeDQ7UOcvH9S44iEpUo52dhu981qebuwHuptmWws63Q6XapWFJG3JEEROWLB8QUoGJpAxzQeg7WVtcYR5W9PfzgaV6MVwpyKTUpQc3RxTrscAcA90Yv6Uc1w9nLAb0pDmWwsm/rV6UcxJxlyrBVJUMQzi0mMYWnAUgDsre0Z3nC4xhEVDK/WfRU3ezcAVp5dSUhMiMYRCUu2Nfl3lP8fWuwT0Zk2w+vTb66vJCfPwMHGgdGNRgOGUXUy5DhvSYIintmq/1apy7n3q9OPYs7FNI6oYHC2c2ZYw2EAxCfHsyRgicYRCUuVkJzAopOLALDR2dA6vDPFKrnJZZ0cMKbxGJMhx/FJ0mckr0iCIp6Joigmlx+kc2zOGvf8OPX2D8d+IFmfrGE0wlJtuLCBh9EPAeharjvuyV4aR1RwlC5Sml41DdPfP4p5pC7jIXKfJCjimRy+c5iAIMOaMY1LNaZJ6SYaR1SwVPGsQpcqXQAIjAhk85XNGewhCqOUI+iGVZdLrDltXOMnPxTkMk/ekQRFPBMZWpz7JjRJMeRYOsuKp5x5cIYDtwzr7tQqVosW3q00jqjgaV2+NTWK1gBgb+Bezj86r3FEhYMkKCLbHkY/ZO35tQB4OnrSr3Y/jSMqmDpX6Uwlj0oA7Ly+k2uh1zSOSFiSH479oN4e13icrFqcC3Q6HWMaPVlX7KfjP2kYTeEhCYrItsUnF6vTsA9vOBxHW0eNIyqYrHRWjHpulHrf2BlSiIi4CH458wsALnYuDKw/UOOICq5B9QfhaGP4jFt+ejkxiTEaR1TwSYIiskWv6NWF7HTo1AXuRO4Y2nAotla2ACwNWCrr8+QzuTWt+YozK4hOjAZgYL2BFLEvkqOPL57wcPTglTqvABARH8Gq/1ZpHFHBJwmKyJad13YSGBEIQKcqnajoUVHjiAq24s7F1fV5HsU84vcLMpIgP8mNac0VRTG9vJNixJfIHWMaP7nMI51lc58kKCJbFp5cqN5OeflB5B6Ta+An5Bp4YXfg1gEuBF8AwKecj7o0gsg9z5d6noYlGgJw7N4xTtw7oXFEBZskKCLLHkQ9YOOljQB4O3vTvVp3jSMqHHwr+FLNqxoAu2/u5lLwJY0jElpK2RfJONupyF06nenlbPmhkLskQRFZ5n/KnyR9EgBDGwzF1tpW44gKB51OZ9JaZewDJAqfsNgwdQSdh4MHvWv11jiiwqN/3f642rkC8OvZX4mIi9A4ooJLEhSRJXpFz+KAxer9Ec+N0DCawmdwg8HYW9sD4H/an7jknO10KfKHX878QlyS4bUfVH8QDjYOGkdUeLjYuTCwnmG0VExijDqKSuQ8SVBEluy5uYeroVcB8KvoR2XPyhpHVLgUdSpKn1p9AAiNDWVT4J8aRyTymqIoJpd3Rj43UsNoCieTzrInfkRRFA2jKbgkQRFZIh+M2kv54bj8sr92gQhNHL17lLMPzwLQvExzahevrXFEhU9d77q0LNsSgP8e/sfB2wc1jqhgkgRFZFpwTDAbLmwAwMvRi5dqvKRtQIVUy7ItqVWsFgBHHv7LXbtAHl2PQK+XX3GFQcq+R/IjQTspfyjI5Im5QxIUkWkrTq9QJwgb0mAI9jb2GkdUOOl0OvoU7a/e3+e+lYNLzrF60h5uHA3SMDKR2x7HP2bVOcMEYUXsi/By7Zc1jqjw6lOrDx4OHgCsPbeW8LhwbQMqgCRBEZmiKIrJ3CfSOVY7N44G4bmxGnZ6Q4L4b5FdxOviiA6NY9ecAElSCrDfzv6mTrH+at1XcbZz1jiivOHkbk/DXlVwcrecH0UONg68Vu81AGKTYvn1zK8aR1TwSIIiMuXg7YNcDL4IGCaFMq7sKfKWXq9w+OcLOOtdaRzpA0CsdTQnXA+odQ6vuCCXewqowtoHzMnDgUZ9quLkYVmjlVK+BotOLpLOsjlMEhSRKYX1g9HSBF0MJTrUMLy0dXhXtXyf+1b1dnRIHEEXQ/M8NpG7Tt4/yYn7hplLG5VsRMOSDTWOSNT1rkvT0k0BOP3gtPr6iJwhCYrIUHhcOGvPGSaFcndwV4e5irwXm2Itl0px1SkdXwGAa44XuGt302w9UTAsOiE/EiyRSSvKCeksm5MkQREZ+vXMr8QmxQKGFVMdbR01jqjwckxxDV6HjtbhXdT7+9y3ma0n8r/ohGh+PWvo4+Bs60z/uv0z2EPklX51+uFi5wLAyv9WEpUQpXFEBYckKCJdT3eOlV9u2ipRwxNnzyfX4Zs9bout3g6Aw0X+IV4Xh7OXAyVqeGoVosgFa86tITIhEoBX6rxCEfsiGkckjFzsXOhfx5AwRiVEsfq/1RpHVHBIgiLSFRBykjMPzgDQtHRT6nrX1Tiiws3KSkezQTXV+056FxpHtgYgxjqKE64HaTawJlZWOq1CFLlAfiRYtpSvScqlQMSzkQRFpGvF5eXq7VGNRqVTU+SVik1K4DelodqS0jq8s7rtTK19VGxSQqvQRC747+F/HL5zGIC6xevSpHQTjSMST2tcqjH1vesDcPjOYf57+J/GERUMkqCINMXpYthwcz0Arnau9KvdT+OIhFHFJiXoN8+XlsNrUzmuJlWcqgFwIuwY5x6e0zg6kZNSdrwc1WgUOp20jlkanU5nMjeUdJbNGZKgiFT0eoVH1yM4WmQvMUnRAAyoO6DQTAqVX1hZ6ShWyQ0dOobVHq6Wy7TbBUdsYiwrzqwADBODvVr3VY0jEml5te6r6qrSK86sUFebFtknCYowceNoEKsn7eHgknPsc3syKqSrfU8NoxIZ6Vupn/rh+PPpn4lNjNU4IpET1l9YT1hcGAB9a/XFw9FD44hEWjwcPehbqy8AYXFh6rplIvskQRGqG0eD2DUngOjQOG7ZXyPQ8QoA5eKq8HCZXqZQt2Du9u7quixhcWGsO78ux48RExbHiXVXiAmTX4Z5RSZIzF9MLvNIS+YzkwRFAE+mUDfan6L1xCe8EyBTqFu6Uc896cScctRHTokJjydgw1ViZBK4PHEp+BL7AvcBUKNoDVqVa6VxRCIjPuV8qO5VHYA9N/dwJeSKxhHlb1lOUGJiYli6dClvvfUW3bp1o3Xr1mzdujXjHf9fZGQkX331FS+88AIdO3Zk8uTJXLp0KathiByWcgr1eF0cR4rsBsBOb0/TyLaATKGeFVosbtaibAtqFasFwIFbBzj/6HyeHVvkvMUnnwxXHfncSOkcmw883Vl2ScASDaPJ/7KcoERERODv709gYCBVqlTJ0r56vZ533nmHv//+m169ejFmzBjCwsKYPHkyt2/fzmooIgelnBr9uOt+Yq0NK6Y+H9kaR72T2XoibVosbqbT6UxaUWQkQf4VnxSP/2l/AOys7RhUf5C2AYlMG1R/ELZWtgD4n/InMTlR44jyrywnKF5eXvz++++sXbuWsWPHZmnfPXv28N9///Hee+8xdOhQevXqxbx587CysmLZsmVZDUXkoJRTo+93T3l5p0ua9YTlGVh/IPbWhtdo+enlMpIgn/rz0p8ExwQD0LNGT4o6FdU4IpFZxZ2L82KNFwF4EP2ATZc3aRxR/pXlBMXOzg4vL69sHWzv3r14enrSunVrtczd3Z22bdty4MABEhISsvW44tkZp1C/axfINUdDX5TS8eWpFFddrSNTqFs+T0dP+tZ+MpJg/fn1GkcksiNlB0uZIDH/MVlAUDrLZluedpK9fPkyVatWxcrK9LA1a9YkLi5OLvNoyDiFumnn2M7oeHLdW6ZQzx9GNxqt3s6NzrIid10Pu87f1/8GoLJHZXwr+GobkMiy9pXaU8G9AgDbr27nVsQtbQPKp/I0QQkNDTXb+mIsCwkJMbtfcHAwly5dUv8FBgbmapyFVcnn3DnhbRg1YKO3pdnjdoCh5cRvSkOZQj2faFm2JTWLGtbr2Re4j4vBFzWOSGRFys6xI54bgZVOBlvmN1Y6K4Y3NEyeqKCwNGCpxhHlT3n6zo+Pj8fOzi5VubEsPt58B8yNGzcycuRI9d/06dNzNc7CasOFDYQnGiaF6uLdHWe9Ky2H16bfXN8CkZxoMbJGCzqdzuSywMIT0oqSXyQmJ7LslKE/no2VDUMaDNE2IJFtQxoMUZPLJQFLSNYnaxxR/pOnCYq9vb3ZfibGMnt7818cPXr0YNGiReq/999/P1fjLKxSXis1DpUrVsmtwFzW0WJkjVYG1pPOsvnR5iubCYoyTIj4QrUXKOGS/38YFFZlipSha9WuANx5fIft17ZrHFH+k6cJiqenp9nLOMaytDrfFi1alOrVq6v/ypcvn6txFkaXQy6z5+YeAKp7Vad58RbaBiSeiZeTF31q9QEgNDZUpt3OJ6RzbMFiMnmitGRmWZ4mKFWrVuXKlSvo9XqT8gsXLuDg4EDZsmXzMhyRwtPXvWVSqPxPLvPkL7cjbrPtqqGTejm3cnSo1EHjiMSz6lK1C6VcSwHw1+W/uBd5T+OI8pdcS1CCg4MJDAwkKSlJLWvTpg2hoaHs27dPLQsPD2f37t20aNHCbP8UYSo31kNJSE7A/5Q/ALZWtgyuPzjHHjszCkvfkLzmU86HGkVrALA3cC+XgmXGZku2NGApesXw4214w+FYW1lrHJF4VjZWNmpn2WQlmWUBMt9XVmQrQVm/fj3Lly9ny5YtABw8eJDly5ezfPlyoqKiAFi4cCEDBw7k0aNH6n6+vr7Url2bmTNn4u/vz++//87kyZPR6/UMGzYsB06n4MuN9VA2XtrIoxjD69SzZk+KORfLscfOjMLUNyQvpZpZVuZjsFjJ+mR1WnQrnRXDGsrnYUExvOFwdbqGxQGL1SRUZCxbCcrq1atZsmQJf/zxBwD79u1jyZIlLFmyhMjIyDT3s7a25ssvv6Rdu3asX7+eBQsW4Obmxpw5cyhXrly2TkA8u5TN/7JiasEyqP4g7KwNLZP+p/yJT5KlCizR9mvbuf3YMA9UlypdKFOkjMYRZUxaPjOnvHt5OlUxLLh6M/ymOseNyJhNdnZas2ZNhnWmTZvGtGnTUpW7urryzjvv8M4772Tn0CKHXQ+7zs7rOwGo5FGJdhXbaRyRyEnGzrIrz64kJDaE3y/+zit1XtE6LPGU/Ng51tjyKTI26rlRav+ihScW0rFyR40jyh9kBqBC7ukVU2VSqIIn5WWen078pGEkwpz7kffZdMmwXksp11Lq0FRRcHSv1h1vZ2/AsM7Sg6gHGkeUP8i3USEmk0IVDq3Lt6aaVzUA9tzcw+WQyxpHJFLyP+VPsmKYxGtog6HYWGWrYVtYMFtrW7VfUZI+SR2UINInCUoh9tflv9RJoV6s/qJMClVApeose0I6y1oKvaI3ubxjHPEhCp6Ur+2ik4uks2wmSIJSiKVcSC6/XPcW2TO4weAnnWVPS2dZS/HPjX+4EX4DgA6VOlDRo6LGEYncUtmzMu0rtQfgWtg1Dgbt1zgiyycJSiF1M/wm268apl6u4F5B/cMRBVNRp6L0qtkLgOCYYP64+Ie2AQnAtHOsjKAr+FK+xj9fWa5hJPmDJCiF1JKTS1BQAOkcW1iMbjRavZ2y9Uxo41H0I36/8DsAxZyK8WKNFzWOSOS2l2q8RDEnwzxTW279RaR1hMYRWTb5ViqEkvRJ6qRQ1jprhjYYqnFEIi+0Kd+Gqp6GYaH/3PiHKyFXNI6ocPv59M8k6hMBw8q3xktwouCys7ZTByMk6BP4t8guHl2PQK9XtA3MQkmCUghtvryZ+1H3AXih+guUdC2pcUQiL+h0OpO+RimHmIu8pSiK2dXDRcHXyeZJS9l+t20cWPIfqyft4cbRIA2jskySoBRCJpNCPSedYwuTwfUHY2tlC8CyU8tISE7QOKLCaf+t/VwKMayN1KZ8G3UYuCjYbhwN4saix1SPqQdAkP0drjj+R3RoHLvmBORKkpIb67flFUlQCplbEbfYenUrYFgxVWY0LFyKORdTO8s+inkknWU1Ip1jCx+9XuHwzxcA8AnvpJbvc9+m3j684kKOX+7JjfXb8ookKIVMyhVTRzQcISumFkIpL/OkXIdJ5I3Q2FDWnV8HgIeDB71r9dY4IpEXgi6GEh1qaMV4LqolzsmuAJxwOUC0lWENu+iQOIIuhmoWo6WRBKUQSdk5VlZMLbx8K/hSxbMKALtu7OJq6FWNIypclp9aTlyS4YtqUP1BONjIKt6FQWyKFgxbxY7mEX4AJFkl8m+RXWbrFXaSoBQi265u487jO4BhbYjSRUprHJHQgpXOyqTvkXSWzTuKovDjiR/V+2Maj9EwGvG03Fyh2fGpx/SJ6Kze3ue+TZ324el6hZkkKIVIyoXi5Lp34Ta4gXSW1cL+oH3qWkhtK7SlRtEaGkckUjKu0OzkkfOtWiVqeOLs+eRxSyWUo0pMbQDu29/imsMFnL0cKFHDM8ePnV9JglJI3Ay/yebLmwEoW6Qsnat0zmAPUZAVdy5Oz5o9AXgY/ZCNlzZqHFHhsOzSEvX22MZjNYxE5DUrKx3NBtU0KUvZirLXfQvNBtbEykqX16FZLElQComfjv+kNiGOaTxGVkwVJpd5LKmzbH4eFpmecOsQtt42/Ego4VKCl2q8pG1AIs9VbFICvykN1ZaUxpGtcEp2AeCkx0Fc68jnckqSoBQC8UnxLA4w9DOwtbKVFVMFAG0rtqWyR2UAdl7fybXQaxpHZJCfh0WmZ7/7dpKVZMAwgs7W2jZXjpOb/SjEs6vYpAT95vnScnht7BR7+pZ9BYAEfTxLA5ZqHJ1lkQSlEFh3fh3BMcEA9KnVB28Xb40jEpbASmdl0hdJOsvmniR9EvvcDPMPWemsGNko9/qA5WY/CpEzrKx0FKvkBsC4JuPU8gXHF5CsT9YqLIsjCUoh8MPxH9Tb454fl05NUdgMaTBEvdy39NTSQtdZNq8uJ+24s41w2xAAulXtRjm3crl6PJF/VCpSiU6VDRO33Qy/ybar2zLYo/CQBKWAOxV0ikO3DwFQt3hdWpZtqXFEwpJ4u3irfSEeRj9k06VN2gaUx/LicpJer7Dw1JM+PqMbydBiYWr88+PV298f+17DSCyLJCgF3IJjC9TbYxuPRaeTHuLC1OhGo9XbC09aTmfZguDG0SDmTvmVg+H7ACiaUILwefayMJww0bVqV8q7lQcM81VZSn8wrUmCUoBFxEXwy9lfAHCxc+G1eq9pHJGwRO0qtqOSRyUAdlzbwY2wGxpHVDDcOBrErjkBbNP9oZa1juhCbGhCri0MJ/InaytrddI+BYUfj/+YwR6FgyQoBdjPp38mJjEGgEH1BuFq76pxRMISSWfZnGdcGC5BF8+hIjsBsNHb0CriyeKcubEwnMi/hjccjp21HWDoDxabGKtxRNqTBKWAUhTFpHPs2OdlUiiRtqc7yyYmJ2ocUf5mXBjuqOteomweA/BcVCtck93UOrIwnEipmHMxXq79MmBYUHL1udUaR6Q9SVAKqD0393Ax+CIArcu3pk7xOhpHJCxZCZcSvFj9RQCCooJkZtlnFBsej4LCLo8nz6NfWA+z9YQwStlZ9odjP6RTs3CQBKWAmn90vnp7XGMZWiwylrKz7Lyj8zSMJP9zdLfniuN/3HG4DkDF2OpUiku97o4sDCdSalq6KQ1LNATg2L1jHLt7TOOItCUJSgF0I+wGf1z8A4CSLiXVNVeESE/7Su2pWdSwVsi+wH2cvH9S44jyrxI1PNnrvVm9b671RBaGE0/T6XQmrSgpf2gWRpKg5ABLWzvku6PfqevujH9+vNrxSoj06HQ6JjedrN6fe2SuhtHkb3cib3Pc/gAAbkkeNIpslaqOLAwnzOlftz+ejobEddV/q7gfeV/jiLQjCUoOsKS1QyLjI9V1d+yt7RnVaFQGewjxxMD6A/Fw8AAMH45BUTIUNjt+OPYDevQAdIh/ERuerLvj7OWA35SGVGxSQqvwhAVzsnVSF/JM1Cey4PiCDPYouCRBKWD8T/nzON4wauC1eq9RzLmYxhGJ/MTJ1klNahOSE2Q+hmyISYxh0clFgGFxznnvz6Tl8NoAtBxem35zfSU5Eeka32S8OqpuwfEFhXbIsSQoBYhe0Zt0bkzZXC9EZo1/fjzWOmvA8OEYn6R9y2B+svLsSkJjDcOHX6nzCiWLlFAXhitWyU0u64gMlSlShr61+gIQHBPMyrMrNY5IG5KgFCBbrmzhauhVAPwq+lHXu67GEYn8qKxbWXrX6g0Y1udZ9d8qjSPKPxRFYd6RJz8SJjaZqGE0Ij+b0myKenvOkTkoSuGb1E8SlAJkzuE56m1pPRHPYkrTKertwvrhmB27buzi7MOzADQr04znSz+vcUQiv2pSugktyrYA4L+H/7Hrxi6NI8p7kqAUEGcfnFXfwJU9KtOtWjeNIxL5WbMyzXi+lOHL9VTQKfYF7tM4ovzh60Nfq7ffaPaGhpGIgsDkh0KKH6CFhSQoBcTTrSdWOnlpRfbpdLpUTcwifWcenGH7te0AVHSvSK+avTSOSOR3PWv2pJxbOQA2X9nMpeBLGkeUt+RbrAC4F3lPXbW4iH0RhjQYom1AokDoU6sPpVxLAfDnxT+59viqxhFZttn/zlZvv9H8DaytrDWMRhQENlY2Jv2YClsriiQoBcCcw3NISE4ADNPay6rFIifYWdsxqckkwLAE/PfnCveslum58/iOOtLC09GToQ2GahyRKChGPDcCFzsXAJadWsaDqAcaR5R3JEHJ5yLiItS5Kuys7ZjUdJLGEYmCZEzjMRSxLwLAqqu/EW4dyqPrEej10mk2pXlH5pGkTwIMPxKc7Zw1jkgUFO4O7uo6WfHJ8SajxAo6SVDyuR+P/0hkQiQAg+sPpqRrSY0jEgWJm4Mbr5QaCECiksDfHn9wcMk5Vk/aw42jMssswOP4x/x04ifA8CNhQpMJGkckCprXm72OrZVhNuLvj32vTsZZ0EmCko/FJcWpnRd16HirxVvaBiQKnBtHg6i6szk2esOslvvctxBjFU10aBy75gRIkgIsOrFI/cIYVG8Q3i7eGkckCprSRUozsJ7hh0JEfAQLTyzUOKK8IQlKPvbLmV/UtVJ61uxJNa9qGkckChK9XuHwzxdwT/ak+eP2AMRax7DXfYta5/CKC4X6ck9cUpxJ59g3W7ypYTSiIHu75dvoMMxC/O3hbwvFDM+SoORTyfpkvjr0lXp/aoupGkYjCqKgi6FEhxpW6O4Y2gudYvhw3OXxB4k6Q6fs6JA4gi6Gahaj1pYFLON+lGG12Z41elKjaA2NIxIFVY2iNXipxkvA/4/cPPOLtgHlAUlQ8qnNt//icshlANqUb0PTMk01jkgUNLEpVucukViGhlGGWS0jbML4t8gus/UKk8TkRL44+IV6//3W72sYjSgM3mn5jnr7q0NfkaxP1jCa3CcJSj6kR8/s07PU+++2elfDaISWnNztadirCk7u9jn+2I5PPWbn0L7q7S2ea0gi0Wy9wmLFmRXcirgFQNeqXXmu5HMaRyQKuqZlmuJbwReASyGXWH9hvbYB5TJJUPKhUy7/cj78PGBYr6FT5U4aRyS04uThQKM+VXHycMjxxy5RwxNnzyePWzGuGnWiGgEQYveAf9124ezlQIkanjl+bEuXpE9i5oGZ6v33faT1ROSNaa2mqbc/2ftJgW5FyXKCkpCQwIIFC+jZsyft27dn9OjRHDt2LFP7Hj9+nMmTJ/PCCy/QtWtXRo0axfbt27McdGGmKAqbvH5T73/Y+kN0Olm+XeQ8KysdzQbVNCnrHvKqenuz52qee7UyVlaF7/235twak5XDm5dtrnFEorBoX6m9uojg+UfnWXd+ncYR5Z4sJygzZ85kzZo1dOjQgUmTJmFlZcXUqVM5c+ZMuvsdOHCAN998k8TERIYMGcKIESOwt7dnxowZrFmzJtsnUNhsu72FOw7XAWhcqjFdq3bVOCJRkFVsUgK/KQ3VlpTKcTVMWlH22+3QMjxN6BU9M/bPUO9L3xORl3Q6HR+3+Vi9X5BbUbKUoJw/f55du3YxatQoxo0bR48ePZgzZw4lSpRgwYIF6e67YcMGvLy8mDNnDr1796ZXr158++23lC5dmq1btz7TSRQWycl6Zh77XL3/vs8H0noicl3FJiXoN8+XlsNrA/C/Fk++kGfsn6Eus1BYrDu/jvOPDJdYW5VrRZvybTSOSBQ27Su1p2XZlgBcCL7A2vNrNY4od2QpQdm7dy/W1tb06NFDLbO3t6dbt26cO3eOBw/SXiMgJiYGV1dX7Ozs1DIbGxvc3Nywty+cneyy4sbRIN55eyYXos8BUC6uMtHfuchEWSJPWFnpKFbJDYD2Ddqq/Z5uht/k59M/axlankrSJ/HB7g/U+x+0lh8JIu/pdDo+8f1EvV9QW1GylKBcuXKFMmXK4Oxsus5EzZqG69RXr6a92mmDBg24ceMGixcv5s6dO9y9e5fly5dz6dIl+vfvn43QC48bR4PYOec4qxwWqWXdQ/oTExovs3kKTXzU5iP1dmFqRVl+arnJ8P4OlTpoHJEorNpVbEercq0AuBh8kTXnCl5XiSwlKCEhIXh5eaUqN5YFBwenue/gwYNp27YtK1asYMCAAfTv359ff/2VTz/9lDZt0m8iDQ4O5tKlS+q/wMDArISdrxln8zxSZA937Q3nXTG2Gg2innTKK+yzeYq817xsc5NWlMIw9XZcUhyf7H3yq/Vzv8+l9URo5ulWlI/2fERicqKGEeU8m6xUjo+Px9bWNlW58bJNfHzaEzbZ2tpStmxZfH19ad26NcnJyWzatInp06fzzTffULt27TT33bhxI/7+/lkJtcAIuhhKeFgkf1ZcoZb1ejRUnfIYnszmWapW6uRRiNwyvd10tl8zjML7dO+nDKo/SF35uCD68fiP3H58G4Du1bqrIymE0ErbCm1pU74NewP3ciX0CotPLmbs82O1DivHZKkFxd7ensTE1BlaQkKCuj0tc+bM4dChQ3z00Uf4+fnRsWNHvv32W7y8vJg3L/3lo3v06MGiRYvUf++/X3h6zceGx7PPbQshtg8BqBX9HDVi65utl5NycwIwUTA0LtWYfrX7AfAo5hFfH/pa44hyT2R8JJ/vf9JBfXrb6RpGI4SBTqdjVvsnk3Z+vPdjIuMjNYwoZ2UpQfHy8iIkJCRVubGsaNGiZvdLTExk8+bNNG/eHCurJ4e0sbGhadOmXLp0yWziY1S0aFGqV6+u/itfvnxWws7Xkp0T2Oy1Sr3f+9FQs/VyejbP3JwATBQc09tNx8bK0BA7+9/Z3I+8r3FEuWP2v7N5FPMIgFfqvEL9Eql/JAihhaZlmtK3lmGW54fRDwvUD4UsJShVqlThzp07REdHm5SfP39e3W5OREQEycnJJCen7mWcnJyMXq9Hr9dnJZRC45eQpUTaRADw/OM2lIuvnKpOYZ3NU2ivimcVxjQaA0BMYoxJH42C4s7jO3x58EsAbKxs+NT3U40jEsLU536fF8gfCllKUHx9fUlOTmbjxo1qWUJCAlu2bKFWrVp4e3sD8ODBA5OOrB4eHri4uLB//36TlpKYmBgOHjxIuXLlZKixGYHhgXz1r2HFYmvFmpeCB5qt12xgzUI5m6ewDB+0+QAXOxcAFp9czIVHFzSOKGe9t+s9YpNiARj//HiqelXVOCIhTFXxrMLYxoa+J9GJ0Xy852NtA8ohWUpQatWqRdu2bVm4cCELFixg48aNTJkyhaCgIMaMGaPWmzFjBgMHPvkytba25pVXXuH27duMGTOGNWvWsGrVKkaPHs2jR48YNGhQzp1RATL176nEJRmWux9ScQQVXSuZbHf2csBvSkMqNimhRXhCAFDcuThTW0wFIFlJZvK2yShKwRhVdvTuUXVZew8HDz5s86HGEQlh3getP8DVzhWAxQGLOR10WuOInl2Wp7qfNm0affv2Zfv27cybN4+kpCRmzZpFgwYN0t1v0KBBfPDBB9jY2ODv78+SJUtwdnbm008/pWPHjtmNv8DaF7hPHddezKkYs/vNMpnNs+Xw2vSb6yvJibAIb7Z4k3Ju5QDYeX0nf1z8Q9uAcoCiKLyx/Q31/se+H+PpKJdShWUq5lyMaT6GhQT1ip4JWyfk+x8KWRpmDIaROuPGjWPcuHFp1klrVE6HDh3o0EEmNspIsj6ZSVsnqfc/9/scNwfDLJ7G2TyLVXKTyzrCYjjZOvFNx2/os7YPAG/seIPOVTrjaOuocWTZt+LMCg7ePghAda/qahO6EJbq9WavszRgKVdCr3Dg1gF+PfsrnV1f0DqsbMtyC4rIfQuOL+D0A0PzXMMSDRnawPzIHSEsSa+avfCr6AcYJm8zdizNj0JjQ3lzx5vq/Tmd52BrnXoOKCEsib2NPfO7zFfvv73zbSITHmsY0bORBMXC3I64zXu73lPvz+syD2sraw0jEiJzdDod87rMU0cTzDwwU50WPr95Z+c7BMcYZsbuW6svnat01jgiITKnU5VOvFTjJQCCooL4eJ9hZN2j6xH5bsZxSVAsiKIoTNg6gaiEKABGPTdKXWtBiPygVrFaTG46GYD45HhGbhqJXslfUwgcvHWQxQGLAXC1c2VO5znaBiREFn3b6VvsrQxzWK24u5RrDhc5uOQcqyftyVdrt0mCYkE2XNjAxkuGIdwlXEowq8OsDPYQwvJ84vsJFd0rAobO3vlpnZ64pDhG/TVKvT+j3QxKuZbSMCIhsk657MALQQMMt3UKy0t8S6IukejQuHy1wKwkKBYiOCaYCVsnqPfndZ6Hu4O7dgEJkU3Ods4seuHJyttTd07lzuM7GkaUeR/88wHnHxkmnmxUshHjnk97MIAQlsi4wGz7sJ6UjzXM2XPf/jZ/ea1U6+SXBWYlQbEAiqIw+q/RBEUZstru1brTp1YfjaMSIvv8KvkxvOFwACITIhm+cbjFX+rZH7if2f/OBsDO2g7/l/yl/5fId4IuhhIdGoc11gwJmoK1YugTts1zLYH2V4AnC8xaOklQLID/KX82XNgAgJejFwu7L5Rl3EW+93XHrynpUhKAHdd2MOfwHG0DSkdUYhRD/hyCguFX5WdtP6NO8ToaRyVE1qVcOLZMQkW6hrwMgF6nZ2GpWcTpYlLVs1SSoGjsWug1Jm17MufJohcWUdK1pIYRCZEz3B3c+bnnz+r9d/9+l5P3T6a7j16v8Oi6Ye2p3B51kPJYr+96neth1wFoWbYlbzZ/M71dhbBYTy8c2zWkn3qp56HdPVZ6LzBbzxJJgqKhuKQ4Xln/ijpqZ3jD4fSs2VPjqITIOe0rteftFm8DkKhPpP/6/ur7/Wk3jgaxetIeDi45B5Crow5SHutAkR388XAtAE7WTnJpR+RrJWp44uz5ZBV6G2wZdf8d7PWGSRP/ddtFQKn9+WKBWUlQNDRhywSO3zsOQGWPynzb6VuNIxIi501vN53GpRoDcDnkMsP+HJZqCu4bR4PYNSeA6NA4k/LcGHWQ8lh37G+w0vsHdduA2+OxvuqSY8cSIq9ZWeloNqimSVnxxFK8FvRkEMZy93mcDz6X16FlmSQoGll0YhFLApYA4GjjyIZ+G3C1d9U4KiFynp21HSt7raSIfREA1p5fy8wDM9XtxlEH6cmpUQcpjxVpHcEPpT4j0SoBgNbhXWga2TbfjHAQIi0Vm5TAb0pDk5aUZpFtaR3XCYDo5GheXPUiITEhWoWYKZKgaODv638zbsuT4YuLXlhEPe96GkYkRO6q6lWVX3v9ig5D5+/3/3mfPy/+CTwZdZCenBp1YDxWoi6BH0p9xiM7Q8tMubgqvPJwdI4eSwgtVWxSItUCs5s/Xs9zJZ8D4HrYdfqu7UticqKWYaZLEpQ8djroNL1W9yJJnwTApCaTeLXeqxpHJUTu616tO5+1/QwABYVX1r/CgVsHMj2aICdGHcSGx6NHj3+JOVx1Msx34pbkyfi7H2Kr2OXosYRIj5O7PQ17VcEpFzurWlnpTBaYdbF35o9+f1DcuTgAu2/uZuifQy12CgBJUPLQlZArdF3ZlciESABerP4i33T6RuOohMg703ym0b9Of8DQSbz7yu7c4Gqm9s2JUQcObnb86v09R4vsAcBOb8/EOx/hmVQ0x48lRHqcPBxo1KcqTh4OGVfOQWXdyvJ7v9+xtza8x389+yuTt05O1S/MEkiCkkcuBV/Cd7kv9yLvAdC0dFNW9l4powVEoaLT6fB/yZ+OlTsCEBEfQf+DvXlU/Ha6+zl7OTzzqANFUZh161P2uW8FwEqxYuS9dygfXzXHjyWEJWtRtgWr+6zGWmf4/vnu2He8vfNti0tSJEHJA2cenDFJTuoWr8um/ptwsnXSNjAhNGBnbcf6l9fTtHRTwLDMw8xib3PVMe1RBc0G1sTKKvuTFyYmJzJs4zDmHzUsRa9TrBh+/20aRDfL8WMJkR+8WONFlr64VL0/+9/ZjNg4Qu1+YAkkQcllGy9tpMWSFuo09vW96/PP4H8o5lxM48iE0I6LnQvbXttGi7ItAIhMeszcCh8QUPKAST1nLwf8pjSkYpMS2T5WRFwE3VZ2w/+UPwA6dHxV/1va2nbK8WMJkZ8Mqj+IRS8sUjuvLz21lJdWvURYbJjGkRlIgvKU0Nic6b2fmJzIR7s/4qVVLxGdGA1Ak9JN2DVoF0WdimawtxAFn7uDOzte20GHSh0AiNPH8UORz9nru5ZEXSIth9em31zfZ0oYjt87znMLn2Pn9Z0A2Fvbs7bvWt7sOSnVCIdnPZYQ+dGI50awus9qbK1sAdh8ZTONFzXmVNApbQNDEhQTAfcDKPNNGd79+10exz/O1D7mpuY+FXSKVsta8em+T9W1PfrV7seewXvwcvLKtfiFyG+c7ZzZ1H8TIxqOUMt+ub+Mz8pPJND1crYvtcQmxvLBPx/QYkkLdQp7T0dPdg3aRe9avYHUIxzkso4orPrW7svWV7fi6Wjoe3U97DpNFzdl5v6Zml7ykQTl/ymKwuvbXyc2KZZZB2dRbX415h+ZT3RCdJr7PD019/qft+M3rRvP/fQcR+8eBcBaZ830ttP5rfdvONo65sm5CJGf2NvYs6jHIn7q/pP6K+6+/S26bO3Ay2tf5tzDzM94mZCcwMITC6n5fU2m759Oot4wx0PT0k05MeoELcu1zJVzECK/86vkx8lRJ9VZnxOSE5j2zzR+PfOrZjHZaHZkC5OkT6JF2RYcvnOY+OR4HkQ/YNK2SXy05yN61+zNizVepGnppmrfkRtHg9g55zgP7O5x2e0sJ10Pct45wOQxq3lVY0XPFTQp3USLUxIiXxnVaBTNyjRj4JpBnAk9DRhmnV17fi0+5XzoW6svfpX8qOpZFVtrW3W/iLgIDt0+xJYrW1h1bhXBMcHqNlsrW95p+Q4ftPkAO2u7VMcUQjxR3r08B4Ye4MPdH/L1v1/TrEwzXqv3mmbxSILy/2ytbfnc73NGPjeSt3e+zfoL6wEIiwtjccBiFgcsBgzXzT0cPIgIieRx1QiSrFLPwueY7ETPuIEsfm8OjnZ5O8ZdiPysnnc9tnfdxeuz32dX+fU8insEwP5b+9l/az8ANlY2lHApga2VLWFxYYTHhZt9rM5VOvNNx2+oWaym2e1CiNTsbeyZ1WEWPWv2xMvRS9OpMCRBeUpFj4qse3kdp4NO883hb1h7bi2xSbHq9vC4cMMHopnXrGhCCXzDu+ET0QknvQthV6NxrCUJihBZYWNlg194D2ZOeZ8/Q9fx04mfuBD8ZK2eJH0Sdx7fMbuvvbU9L9V4idebvU7TMk3zKmQhCpxmZVIPwc9rkqCkoX6J+ix/aTkLui1g+9Xt7L+1n4CgAO48vkNIZChKjA4nvQslEkpTLq4KdaOfp2x8JXW4Fsh02UI8CxdbFyY3m8ykppM4+/As269u5+i9o1wJucLD6Ick6hNxtXOlrFtZ6hWvh095HzpW7oi7g7vWoQshcoAkKBlwsnWiZ82e9KzZUy27dz6ELdOPZrivTJctxLPT6XTU864nC2oKUcjIKJ5sKFHD02QZa3NkumwhhBAi+yRByQYrKx3NBqXf8U6myxZCGOXFyrVCFDSSoGRTxSYl8JvSMFVLikyXLYR4mlYr1wqRn0kflGdQsUkJyjf25tLu2xxcco6Ww2tTvW1ZaTkRQgghnpG0oDwjmS5bCCGEyHmSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCiExxcrenYa8qOLnbax2KEKIQkNWMhRCZ4uThQKM+VbUOQwhRSEgLihBCCCEsjiQoQgghhLA4Wb7Ek5CQwJIlS9ixYweRkZFUrlyZESNG8Pzzz2dq/127drFu3TquXbuGjY0N5cuXZ8SIETRq1CjLwQshhBCiYMpygjJz5kz27NlD3759KVOmDFu3bmXq1KnMnTuXevXqpbvv0qVLWb58Ob6+vnTu3JmkpCRu3LhBcHBwtk9ACCGEEAVPlhKU8+fPs2vXLsaOHUv//v0B6NSpE0OGDGHBggUsWLAgzX3PnTvH8uXLGT9+PC+//PKzRS2EEEKIAi1LfVD27t2LtbU1PXr0UMvs7e3p1q0b586d48GDB2nuu3btWjw9PenTpw+KohATE5P9qAsxGeophBCiMMhSC8qVK1coU6YMzs7OJuU1a9YE4OrVq3h7e5vd98SJE9SpU4d169axYsUKIiIi8PT0ZODAgfTu3Tvd4wYHBxMSEqLeDwwMzErYBYoM9RRCCFEYZClBCQkJwcvLK1W5sSytviSRkZFERETw33//cfLkSYYMGYK3tzdbt25l7ty52NjY8OKLL6Z53I0bN+Lv75+VUIUQQgiRj2UpQYmPj8fW1jZVuZ2dnbrdHOPlnIiICD766CP8/PwA8PX1ZciQIfz888/pJig9evSgZcuW6v3AwECmT5+eldCFEEIIkY9kKUGxt7cnMTExVXlCQoK6Pa39AGxsbPD19VXLraysaNeuHUuXLuXBgwdpXh4qWrQoRYsWzUqoQgghhMjHstRJ1svLy6QviJGxLK0kokiRItjZ2VGkSBGsra1Ntnl4eACGy0BCCCGEEJDFBKVKlSrcuXOH6Ohok/Lz58+r280exMqKqlWrEhERkaoFxthvxd3dPSuhCCGEEKIAy1KC4uvrS3JyMhs3blTLEhIS2LJlC7Vq1VIv0Tx48CDVSJu2bduSnJzMtm3b1LL4+Hh27txJhQoV5BKOEEIIIVRZ6oNSq1Yt2rZty8KFCwkPD6d06dJs27aNoKAg3nnnHbXejBkzOHXqFPv27VPLXnzxRTZv3sy3337L7du38fb2Zvv27Tx48ICZM2fm3BkJIYQQIt/L8lT306ZNU5OLqKgoKlWqxKxZs2jQoEG6+9nb2zNnzhwWLFjAli1biIuLo0qVKsyaNYsmTZpkN34hhBBCFEBZTlDs7e0ZN24c48aNS7POvHnzzJZ7eHgwbdq0rB5SCCGEEIVMlvqgCCGEEELkBUlQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEKKAcnK3p2GvKji5m1+KxpJleRSPEEIIIfIHJw8HGvWpqnUY2SItKEKIQis//7oUoqCTFhQhRKGVn39dClHQSQuKEEIIISyOJChCCCGEsDiSoAghLIr0CxFCgPRBEUJYGOkXIoQAaUERQgghhAWSBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQcoBMLCWEEELkLJmoLQfIxFJCCCFEzpIWFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxbLQOIDvi4+MBCAwM1DgSIYQQQmRV+fLlcXBwSLdOvkxQgoKCAJg+fbrGkQghhBAiqxYtWkT16tXTraNTFEXJo3hyTHh4OEePHqVkyZLY2dlpHU6uCwwMZPr06bz//vuUL19e63DylJx74Tv3wnreUHjPvbCeNxTecy+wLSju7u507NhR6zDyXPny5TPMOAsqOffCd+6F9byh8J57YT1vKNznnhbpJCuEEEIIiyMJihBCCCEsjiQo+YCXlxdDhgzBy8tL61DynJx74Tv3wnreUHjPvbCeNxTuc89IvuwkK4QQQoiCTVpQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYnHw5UVtBFBwczLp167hw4QIXL14kNjaWuXPn0rBhw1R1J02axKlTp1KVN2nShK+//tqkLCEhgSVLlrBjxw4iIyOpXLkyI0aM4Pnnn8+tU8myrJw7wNmzZ/nxxx+5fPkyzs7OtG3blpEjR+Lk5GRSLz+cuzlbt25l5syZZrf9/vvvqXr7HzhwgGXLlhEYGIi7uztdu3Zl0KBB2Njkrz/v/Pp6ZUVAQACTJ082u23BggXUrl1bvZ/Z97kliomJYdWqVZw/f54LFy4QGRnJe++9R5cuXVLVvXnzJt999x1nz57FxsaG5s2bM2HCBNzd3U3q6fV6Vq1axR9//EFoaChlypThtddeo3379nl0VhnL7Hl//vnnbNu2LdX+5cqV45dffjEpyw/nnVvy1ydYAXb79m1WrlxJmTJlqFSpEufOnUu3frFixRg9erRJmblhajNnzmTPnj307duXMmXKsHXrVqZOncrcuXOpV69ejp5DdmXl3K9cucLrr79O+fLlmTBhAg8fPmT16tXcuXOHr776yqRufjj39AwfPpySJUualLm4uJjcP3z4MP/73/9o0KABkydP5vr16/z888+EhYXx5ptv5mW4zyy/v15Z0bt3b2rWrGlSVrp0afV2Vt7nligiIgJ/f3+8vb2pUqUKAQEBZus9fPiQiRMn4uLiwsiRI4mNjWXVqlVcv36dn376CVtbW7XuokWL+PXXX3nhhReoUaMGBw4c4NNPP0Wn0+Hn55dXp5auzJ43gJ2dHVOnTjUpc3Z2TlUvP5x3rlGERYiOjlYiIiIURVGU3bt3Kz4+PsrJkyfN1p04caIyaNCgDB/z3Llzio+Pj7Jy5Uq1LC4uTnnllVeUMWPG5EzgOSAr5/7WW28pL730khIVFaWWbdq0SfHx8VGOHDmiluWXczdny5Ytio+Pj3LhwoUM6w4cOFAZOnSokpiYqJYtXLhQad26tXLz5s3cDDNH5efXKytOnjyp+Pj4KLt37063Xmbf55YqPj5eCQ4OVhRFUS5cuKD4+PgoW7ZsSVVv9uzZSvv27ZWgoCC17NixY4qPj4/y559/qmUPHz5U2rZtq3zzzTdqmV6vV8aPH6/06tVLSUpKysWzybzMnveMGTOUjh07Zvh4+eW8c4v0QbEQTk5OFClSJEv7JCUlERMTk+b2vXv3Ym1tTY8ePdQye3t7unXrxrlz53jw4EG2481JmT336Ohojh8/TseOHU1+aXTq1AlHR0d2796tluWXc89ITEwMycnJZrfdvHmTmzdv8sILL5hczunZsyeKorBnz548ivLZFZTXKytiYmJISkpKVZ6V97mlsrOzy9TEY3v37qVFixZ4e3urZY0bN6Zs2bIm53ngwAGSkpLo2bOnWqbT6XjppZd49OhRhi3OeSWz522UnJxMdHR0mtvzy3nnFrnEk0/dvn2bTp06kZiYiKenJ927d2fIkCEmX1RXrlyhTJkyqZoNjU3LV69eNflgsHTXr18nOTk51YJatra2VK1alStXrqhlBeHcJ0+eTGxsLLa2tjz//POMHz+esmXLqtsvX74MkOr5KFq0KMWKFTN5PixdQXi9smLmzJnExsZibW1NvXr1GDt2LDVq1ACy9j7Pzx49ekRYWJjZBfJq1qzJ4cOH1ftXrlzB0dEx1Wq/xvfHlStX8t1lwLi4OLp06UJcXByurq74+fkxZswYkz5GBfG8s0ISlHyoVKlSNGzYkEqVKhEXF8eePXv4+eefuX37Np988olaLyQkxGw2bywLDg7Os5hzQkhICGC+r42XlxenT582qZtfz93e3p4uXbrQsGFDnJ2duXTpEmvWrGHcuHEsXrxY/aLO6Pkwbs8P8vPrlRU2Nja0adOGZs2a4ebmxs2bN1m9ejUTJkzghx9+oFq1all6n+dnGZ3n48ePSUhIwM7OjpCQEDw8PNDpdKnqQf57f3h5edG/f3+qVauGoigcOXKEP/74g2vXrjF37lz1h2ZBO++skgQlF+j1ehITEzNV187OLtWbLyPvvvuuyf1OnTrx1VdfsWnTJl5++WV1JEB8fLxJJ7OUxzRuz2m5ee7GeNM6p4SEBJO6eX3u5mTn+WjXrh3t2rVTy318fGjSpAkTJ05kxYoVvPXWWwDq+RrP6enHSu/yn6WxlNcrt9WtW5e6deuq91u1aoWvry9Dhw5l4cKFfP3111l6n+dnGZ2nsY6dnV2Be388PcDBz8+PsmXLsmjRIvbu3at2fi1o551VkqDkgtOnT6c5lPBpK1asSNV8lx39+vVj06ZNHD9+XE1Q7O3tzX45Gj/g7O3tn/m4T8vNczfGm9Y5pfyi1uLczcmp56NevXrUqlWLEydOqGXG8zX3hZWQkJBn55gTLOX10kKZMmVo1aoV+/btIzk5OUvv8/wso/NMWacwvD9efvlllixZwvHjx9UEpTCcd3okQckF5cqV47333stU3ZxawbJ48eIAREZGmjz2o0ePUtU1Nq0WLVo0R46dUm6eu7G+uUsXISEhJuejxbmbk5PPR/Hixbl161aq+iEhIan6Z4SEhKQaxmrJLOX10krx4sVJTEwkLi4uS+/z/Cyj8yxSpIiajHl5eREQEICiKCatrgXp/WFvb0+RIkV4/PixWlYYzjs9kqDkAi8vL7MTEuWme/fuAZhMbmQchx8dHW3S+fD8+fPq9pyWm+desWJFrK2tuXTpksklkMTERK5cuULbtm3VMi3O3ZycfD7u3btn8vpWrVoVgEuXLlGrVi21PDg4mEePHpmMiLF0lvJ6aeXevXvY2dnh6OiYpfd5flasWDHc3d25dOlSqm0XLlwwec2rVKnCX3/9RWBgIBUqVFDLC9L7IyYmhoiIiFSf4QX9vNMjw4zzmejo6FRN+oqi8PPPPwOYzLrp6+tLcnIyGzduVMsSEhLYsmULtWrVynejIlxcXGjcuDE7duww6V+xfft2YmNjTT648/O5h4eHpyr7999/uXTpEk2aNFHLKlasSLly5di0aZPJUOQ//vgDnU5HmzZt8iLcHJGfX6+sMPfaXr16lYMHD/L8889jZWWVpfd5ftemTRsOHTpkMoz8xIkT3L592+Q8W7VqhY2NDb///rtapigKf/75J8WKFaNOnTp5GveziI+PN9s/bPny5SiKQtOmTdWygnTe2SEtKBZk+fLlgGF+CzB8IJ05cwaAwYMHA4ahpZ988gnt27endOnSxMfHs3//fs6ePcsLL7xgMmSvVq1atG3bloULFxIeHk7p0qXZtm0bQUFBvPPOO3l7chnIzLkDjBgxgvHjxzNx4kR69OihzrD5/PPPm/xh56dzf9rYsWOpVq0a1atXx9nZmcuXL7NlyxaKFy/OwIEDTeqOGzeO9957jzfffBM/Pz+uX7/O77//Tvfu3U1+cVm6/Px6ZcVHH32Evb09derUwcPDg5s3b7Jp0yYcHBxMOk5m9n1uydavX09UVJR6OeLgwYM8fPgQMMyk6+LiwmuvvcaePXuYMmUKffr0ITY2lt9++41KlSqZtDwWL16cvn378ttvv5GUlETNmjXZv38/Z86c4YMPPsDa2lqTczQno/OOjIxk+PDhtG/fnnLlygFw9OhRDh8+TNOmTWnVqpX6WPnpvHODTlEUResghEHr1q3T3LZv3z7A0BT8008/ceHCBUJDQ7GysqJ8+fJ0796dHj16pBoVEx8fr65vEhUVRaVKlRgxYoTJL3FLkJlzNzpz5oy6RomTkxNt27Zl9OjRqdYoyS/n/rRFixZx+PBh7t+/r/ZJaN68OUOGDMHT0zNV/f379+Pv709gYCBubm506dIl1Zw4+UF+fb2yYt26dezcuZO7d+8SHR2Nu7s7jRo1YsiQIZQpU8akbmbf55bq5ZdfJigoyOy21atXq8s43LhxI9VaPOPHj0/1Xtfr9axcuZKNGzcSEhJCmTJlePXVV+nYsWOun0tWZHTeLi4uzJ07l3PnzhESEoJer6d06dJ06NCBV155JdXfbX4579wgCYoQQgghLI70QRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRHp2rp1K61bt2br1q1ah5IpAQEBtG7dmqVLl+baMVq3bs2kSZNy7fELi5dffpmXX35Z6zAs3tKlS2ndujUBAQG5epw1a9bQrl077t+/n6n6efG3lp999tln9O3bl/j4eK1DybckQSlgvvjiC1q3bk337t1TLSpYUOS3L7aIiAh+/PFHBg0aRIcOHejQoQN9+/ZlypQpLFu2jNDQ0DyJI6Nkc9KkSekuOVCYxMbG0rlzZ1q3bs0333yjdTi5LjIykp9//pmuXbuqU9CLZzNkyBCCg4NZu3at1qHkW/lrsQ6RrpiYGHbv3o1Op+Px48fs378fPz+/Z3pMHx8fatWqhZeXVw5FWbg8fPiQcePG8fDhQ6pWrUqXLl1wdXUlJCSE//77j2XLllG3bl2za+wUdN9++63WIaRp9+7dxMTEoNPp+Pvvvxk/fjz29vZah5Vr1qxZw+PHj+nfv7/WoRQYZcuWpWXLlqxcuZLevXvj6OiodUj5jiQoBcg///xDbGwsL7/8MuvWrWPz5s3PnKC4uLjg4uKSQxEWPkuXLuXhw4cMHz7cZFVmo2vXrhXa57d06dJah5CmzZs3Y21tTa9evVi7di379u2jQ4cOWoeVK5KSkvjrr7+oW7euRb8m+VHHjh3Zt28fu3btonv37lqHk+9IglKAGD9UBwwYwLVr1zh58iRBQUGUKFHCpN7SpUvx9/dP83FKlCjBmjVrAMNlgZkzZ/Lee++ZLH/eunVrGjRowAcffMCCBQs4duwYCQkJ1K9fnylTplCqVClu3rzJwoULOX36NElJSTRp0oTXX3/dpLUgICCAyZMnM2TIEIYNG2YSx/379+nXrx+dO3dm2rRp6v2UMRiZ2//ixYssXLiQc+fOYWVlxXPPPceECRNSNWHv27eP3bt3c/HiRYKDg7GxsaFy5cr06dMHX1/f9J/0DJw7dw6AXr16md1euXJls+X37t3j119/5dixY4SEhODs7EyFChXo0qWL+jokJiayceNGDh06xM2bNwkPD8fZ2Zm6desyePBgqlWrpj7e559/zrZt2wCYOXMmM2fONDn/lM9lytvG597o2rVrrFixglOnTvH48WO8vLxo2bIlQ4cOxc3NTa2X8rUbMGAAixYt4vTp0zx+/FhdydZ4mc74XoMn7825c+cSHBzMb7/9xq1bt3BxcaFt27aMGTMmVUtGUlISq1at4q+//iI4OJhixYrRrVs32rVrxyuvvJLqHDJy69Ytzp49S4sWLUySfXMJSsr3b4sWLTL1fgPYu3cvv/zyCzdu3MDZ2ZmWLVsyduxYhg8fnuo5SU9mX4/0HD16lJCQEAYMGGB2e3x8PMuWLWPnzp1ERERQunRp+vTpk2r15ZTu3bvHihUrOHbsGGFhYbi6utKkSROGDRuW6vMIsvZ8GN/Lq1atYt++fWzevJl79+7h5+envs5hYWH88ssvHDp0iIcPH+Lk5ET9+vUZNmwYlSpVSnX8rNS/ffs2v/zyCwEBAYSEhODg4EDx4sVp2LAhEydONFlRvnnz5jg4OLBt2zZJULJBEpQC4ubNm5w7d45mzZrh6elJp06dOHHiBFu2bEn1xd2wYUOzjxEYGMju3bsz3ZQdGRnJ+PHj8fLyolOnTty5c4dDhw7xxhtv8PnnnzNhwgSqV69O165duXz5Mnv37uXx48fMnTs3W+fo4uLCkCFDWLduHQB9+vRJ85wuXrzIb7/9RsOGDenRowdXrlxh//79XL9+HX9/f5NzXLhwITY2NtStWxcvLy/Cw8M5ePAgH374IZMnT6Z3797ZihdQvyRu375NrVq1MrXPmTNneOedd4iJiaFJkyb4+fkRGRnJlStXWLdunZqgPH78mPnz51OvXj2aNWuGq6sr9+/f5+DBgxw5coT58+dTs2ZNwHCpLioqigMHDtCqVSuqVKlicswhQ4awbds2goKCGDJkiFpetWpV9faBAwf4+OOP0el0tGrViuLFi3Pz5k02bNjA0aNH+emnn3B1dTV53Lt37zJ27FgqVapE586defz4Mba2thk+B8bHbNmyJc899xxHjhxh/fr1RERE8OGHH5rUnTVrFtu3b6dUqVK89NJLJCYmsmbNGv77779MPd9P27x5MwCdOnXC29ubBg0aEBAQwL179yhVqpTZfbLyftu8eTOzZs3C2dmZTp064eLiwuHDh3njjTdISkrCxiZzH8vZeT3MOXHiBAC1a9dOtU2v1/Pee+9x/PhxKlWqRPv27Xn8+DHfffddmp8j58+f56233iI2NpYWLVpQpkwZgoKC2LlzJ0eOHGHBggUmz2N2n485c+Zw/vx5mjdvTosWLfDw8AAM77lJkybx6NEjnn/+eVq1akV4eDh79+7l2LFjfPvttyZ/i1mpHxwczOjRo4mLi6N58+a0a9eOuLg47ty5wx9//MG4ceNM4rW1taVatWqcO3eO2NhYucyTVYooEObPn6/4+Pgof//9t6IoihIdHa107NhR6dOnj5KcnJzh/qGhoUrfvn0VPz8/5cyZM2r5li1bFB8fH2XLli0m9X18fBQfHx9l/vz5JuWzZ89WfHx8lC5duihr1qxRy/V6vfL2228rPj4+ysWLF9XykydPKj4+PsqSJUtSxXTv3j3Fx8dHmTFjhkl53759lb59+5o9D+PjpXwujKZPn262/O7du6keJzo6Whk8eLDSpUsXJTY2NtW5T5w40ezxn7Zu3TrFx8dH6dGjh7JkyRLl5MmTSlRUVJr14+PjlV69eilt2rRRDh8+nGr7gwcPTOo+fPgwVZ3r168rHTt2VF5//XWT8rReS6OJEycqPj4+ZreFh4crnTt3Vnr16qXcv3/fZNvff/+t+Pj4KN9++61aZnzt0nptFcX867hkyRL1/RMYGKiWx8XFKQMGDFDatGmjPHr0SC0/fvy44uPjowwbNszkdXr06JHy4osvmn3/pCcxMVF58cUXlS5duihxcXGKoijK5s2bFR8fH2XRokWp6mf1/fb48WOlY8eOSseOHZVbt26ZHHfy5MmKj49Pms/JyZMn1bKsvh7pGTlypNKmTRslPj4+1Tbje+att95SkpKS1PKrV68q7dq1S/X6JiYmKn379lU6deqkXLp0yeSxTp8+rfj6+irvvPPOMz0fM2bMUHx8fJRevXopQUFBqWIeO3as4uvrqxw5csSk/NatW0qnTp2UwYMHZ7u+8e855WebUURERKoyRXny2XzixAmz20XaZBRPAZCUlMSOHTtwdnamVatWADg5OeHj48ODBw84fvx4uvvHx8czbdo0goKCePfdd6lbt26mjuvo6MiIESNMyox9Xtzc3ExaOHQ6nbrt2rVrmT637Kpfv36q/jddu3YF4MKFCybl5n4VOzk50aVLF6Kiorh48WK24+jVqxf9+/cnKioKf39/Jk+eTNeuXRk0aBA//vgjwcHBJvUPHDjAo0eP6NChA02bNk31eMWLF1dv29nZUaxYsVR1KlasSMOGDdVLazlh+/btREdHM2rUqFRN9H5+flSrVo1du3al2s/T05OBAwdm+Xh9+vShXLly6n17e3v8/PzQ6/VcunRJLd+xYwcAgwcPxsHBQS0vWrSoyfsvs/79919CQ0Np27at2urh6+uLg4MDW7duRa/Xm90vs++3AwcOEBsbS9euXSlbtqxabmNjk+pvKT3ZfT3MefToES4uLtjZ2aXaZrwsOGLECKytrdXyypUr07Fjx1T1Dx06RFBQEP379ze5xAhQr149WrZsyeHDh4mOjgae7fno378/3t7eJmWXL1/mv//+o1OnTjRp0sRkW9myZenevTvXr1/n+vXr2apvZK6VuUiRImbjNLbsPHr0KN3zEanJJZ4C4MCBA4SHh9OtWzeTP5xOnTqxY8cONm/enOqPz0hRFD7//HPOnTvH0KFDad++faaPW6ZMGZMvBUAd7VOpUiWTa7Eptz39pZwbqlevnqrM+GUeFRVlUh4WFsavv/7K4cOHefDgQap5C54lXp1Ox9ixY+nfvz+HDx/m/PnzXLx4kcuXL3Pz5k02btzI119/rTYhG7/Mnn/++Uw9/pUrV/jtt984c+YMoaGhqRKS8PBwihYtmu34jYx9ac6fP8/du3dTbU9ISCAiIoLw8HDc3d3V8ipVqmTqks7Tnv5ygyfJWcrX7+rVq4Dhy+9pderUyfJx//rrL8Dwt2Pk5OREq1at+Pvvvzl69CjNmjVLtV9m32/G5NxcvLVq1TJJAtKT3dfDnMePH5tNdI3xOjo6mj2/evXqqZfDno7r1q1bZudHCQ0NRa/Xc/v2bWrUqPFMz4fx8mVK58+fBwx/0+aOf+vWLfX/SpUqZbm+sZ/Rt99+y4kTJ2jatCkNGjRI89IfPElcIiIi0qwjzJMEpQBIec08pUaNGlGsWDEOHjzI48ePzWb4ixcvZvfu3bRv356hQ4dm6bjOzs6pyowfKOlty6lf9elxcnJK8/gpfwU/fvyYUaNG8eDBA+rWrUvjxo1xcXHBysqKq1evcuDAARITE585Hnd3dzp37kznzp0BCAkJYc6cOezdu5evvvqKZcuWAai/LNP6wkjp7NmzvP766wA0btyYMmXKqOd94MABrl69miOxg6G/EcDvv/+ebr24uDiT+8Zfj1mV3vsn5esXExODlZWV2Q6hWR26HRwczNGjRylVqlSqL8zOnTvz999/s2XLFrMJSmbfb8bX19zzktZ5mJPd18Mce3v7NOdMio6OTvO9aO75Nca1c+fOTMX1LM+HuX0eP34MGFrC/v333zT3jY2NzVb9kiVLsmDBApYtW8bhw4fZvXs3AOXKlWP48OG0bds21b7GHzwFeZh6bpEEJZ978OABx44dA0h3dtMdO3akavLeunUrK1asoG7durz77ru5GmdajK0sycnJqbYZP7xy0+bNm3nw4IHZYcC//PILBw4cyJXjenl58f777/Pvv/9y7do1IiIicHNzU4ccZ6Y5eMWKFSQkJPDdd9+l+kI1/jLMKcYvYH9/f7OjINLydCtaTnNyckKv1xMREZGqpSCrE+Bt3bqV5ORk7t27l+aEdQcPHsxUq0RajIlXWFhYqm3G88hMcprd18McNze3NN9vzs7Oaf7yN/f8GuP64osvaNGiRYbHfpbnw9x7y/h4me3cntX6YGgd/uyzz0hKSuLSpUscOXKEdevW8fHHH1O0aNFUl8iNSVB23zOFmfRByee2bduGXq+nXr16dOvWLdU/4y/2p5tiT506xddff02pUqWYMWOG2evPecE4ysDcZZQrV66Y3cfKyspsQpMdxuZxY9+dlM6cOZMjx0iLra1tqiZsY7O1MelMz7179yhSpEiq5CQuLo7Lly+nqm9lZfhzT+u5S2+78RKUsQnfUhhHI509ezbVtqyM4lEUhS1btgDQpUsXs39LderUITExUe33kh3GYeXm4r1w4UKm39c5+XpUqlSJhIQEHjx4kGpb5cqViY2NNen3Y2Tu7yOrceXU82Fk/PvJ7PGzWj8lGxsbateuzbBhw5g8eTKKonDo0KFU9W7fvg3wzIlkYSQJSj5m/FDV6XRMmzaNd955J9W/adOmUbt2ba5du6Z29rx9+zbvv/8+9vb2fPHFF5pm9uXKlcPJyUm9DGUUGhrKzz//bHafIkWKEBERkSNrXBg7GD79Ablz504OHz78zI+/atUqAgMDzW7bsGEDsbGxlCtXTm3KbtmyJcWKFWPnzp0cPXo01T4pf+l6e3sTGRnJjRs31LLk5GR++OEHwsPDU+1rvMT38OFDs/Gkt71r1644OTmxaNEik+MZxcXFaZK8GOcm8ff3N3k/hISEqMPRM+PUqVPcvXuX+vXr895775n9WzK2Mj6d7GdFq1atcHR0ZPPmzSZ9R5KSkliyZEmmHycnX48GDRoA5lvdjJeNFy9ebJIsXLt2zWyi1qpVK7y9vVm9ejWnTp1KtT0pKckkscmp58OoVq1a1KpVi127dpntJKzX603iymr9S5cumW3ZNbYmmfuhd/78eby8vEw6AYvMkUs8+djJkye5f/9+hp20unbtyrlz59i8eTM1atRg3rx5PH78mMaNG/PPP/+kqu/i4pJna93Y2trSu3dvVqxYwYgRI2jZsiWxsbEcPHiQBg0amO0A2LBhQy5evMjUqVOpV68eNjY21K9fX/2gzYqOHTuycuVK5s6dS0BAAN7e3ly9epWTJ0/SunVr9u3b90znt2PHDn744QcqVapErVq18PDwIDIykvPnz3P58mXs7e1588031fp2dnZ88sknvP3227z99ts0adKEKlWqEB0dzdWrV4mPj1c/uHv3/r/27i6kqT+O4/jbVVsPzISc+RAW9ADSYHRqjdQIhxcVlYM/u/FGS4KoYQ9QRJThoKCnGym6aQm2EsG6EC3DWYpwcrbFsFFXQVChzSJkEtQa/i9kw39boebfTfq+rn+wc37nMD7n9/D9/cPz5885cuQIZWVlaLVaAoEAnz59YtOmTQmHy23cuBGdTkdrayvhcDgeTGNTW4qi0NPTw7lz57BYLGi1WtatW0dJSQlZWVmcP3+euro6Dhw4wNatWyksLCQSiTA8PEwgEMBoNHL16tU/6q/p2rJlC+Xl5Xg8HqqrqyktLSUSifD06VOKiopQVTU+MvQ7sdAR23mTTGFhIUajkWAwyKtXr6Zc12YyvV6Pw+HgypUrHDx4EKvVyrJly+jv70er1ZKdnT2labHZfB6lpaXcuHEDn8+XsIYitvbG6/VSU1ODxWIhHA7T3d2N2WxOGDHQarU4nU5OnTpFbW0tiqLEF8wPDw8zODjI8uXLcbvds9ofk9XV1XHs2DHq6+tpbW1l/fr16HQ6QqEQwWCQ0dFRPB7PjNo/fvyYtrY2TCYTBQUFLF26lLdv3+L1esnMzEx4fz58+MDQ0BA2m21a9yAmSECZx2J/qpMrvCZjtVppaGigu7sbh8MR/9L0+XxJtyDn5ubO6WF8NTU1LFy4kI6ODtra2sjNzaWqqori4mJ6e3sT2ldVVTE2NoaqqgwODhKNRqmurp5RQMnJyaGhoYGbN2/i8/mIRqNs2LCBa9euEQqF/jignD59GlVVefHiBQMDA3z58gWNRsPKlSux2WzY7faELyuj0citW7dwu90MDAzg9/vR6/WsWbOGioqKeLvi4mKcTidut5uuri50Oh2KonDhwoWklYIzMzNxOp00NjbS3t4efw9iAWXPnj0MDQ3x5MkT7t27RzQaZefOnZSUlAATVTFdLhfNzc34/X58Ph+LFy/GYDCwa9eupNtO58KZM2dYvXo1Dx8+5MGDBxgMBux2O4qioKpq0gWsk42NjdHb28uSJUvYsWPHb9vu3r2bYDBIR0fHjAIKwN69e9Hr9dy5c4fOzs545dRDhw5ht9unXG5+tp5HXl4eZrOZnp4ejh49+p9RAI1Gw8WLF2lsbMTj8XD//n3y8/NxOBysWrUq6ZRGUVERt2/fprm5mf7+foLBIIsWLSI7O5vt27cnbMeerf6Iyc/Px+Vy0dLSQl9fH48ePUKj0bBixQpMJlNCdejptC8vL+f79++8fPmS169fE4lEMBgMVFRUJN32HBtl2rdv37TuQUzIGB8fH0/1RQghxGxrb2/n8uXLnDhxYl58wb5//57KykrKysqor6+f09/2+/0cP36cs2fPpixo/iyV/TEbfvz4QWVlJXl5eTOunv23kzUoQoh57fPnz/z8nTUyMkJTUxMLFixg27ZtKbqy5MLhcMK23m/fvnH9+nVg4liCubZ582YsFgtNTU2/LEb3f0nH/pgNnZ2dfPz4kcOHD6f6UuYtmeIRQsxrd+/e5dmzZ5hMJrKysgiFQqiqytevX9m/f3/CsHuqBQIBLl26hNlsJicnh9HR0fjBnoqiYLVaU3JdtbW1dHV1MTIyMqd9lq798acyMjI4efJk0iJ3YmpkikcIMa95vV5aWlp48+YN4XAYrVbL2rVrsdlsSU8gTrV3797hcrkIBoPx3VYFBQXx05f/toJe0h/iVySgCCGEECLtyBoUIYQQQqQdCShCCCGESDsSUIQQQgiRdiSgCCGEECLtSEARQgghRNqRgCKEEEKItCMBRQghhBBpRwKKEEIIIdKOBBQhhBBCpJ1/AZSUt9WYsomeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 15.0 deg to 30.0 deg\n", + "Modulation: 0.31 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.018\n", + "Best fit polarization angle: 175.396 +/- 0.344\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTKElEQVR4nOzdd3hT5dvA8W/SPaCTXfbeIHsUyt6oLAUFKks2qLhwK4g4QfmJsofKFgXZIBvZZe9VZoG2dO/mvH/k7aGhaWlL25O09+e6uEie85yc+yRpcuc8S6coioIQQgghhAXRax2AEEIIIcSTJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERwkLcuHEDnU6Hv7+/1qEIwM/PD51Ol+vH+fTTT9HpdOzatSvXj5UZ5cqVo1y5clqHIYQkKOLpLly4wLhx46hVqxZubm7Y29tTsmRJunXrxvz584mPj9c6xFzj7++PTqfjxo0bWodi1vz583n99ddp0qQJzs7O6HQ6Pvzww6fu988//+Dn54ebmxuurq40adKExYsXZ7jP4sWLady4Ma6urri5ueHn58c///xjtu7ly5fp1q0bnp6elC5dmrFjxxIZGWm27quvvkr58uWJiop6+gmnkpLQpf5na2tLsWLF6NatG5s2bcrS44ln9/vvv6uvxdatWzOsGxYWxscff0y9evVwdXXFwcGBUqVK0bRpU9566y0CAgIy3H/48OHodDqcnZ0JCwtLt15KApjyT6/XU7hwYcqWLUvXrl2ZPn06d+7cyc7pilxmq3UAwrJ9/vnnfPbZZxgMBpo1a8bgwYNxdXXl/v377Nq1i2HDhjF79myOHj2qdagF0ltvvUV4eDgeHh6ULFmSq1evPnWfWbNmMW7cOLy8vHj11Vext7dn9erV+Pv7c/r0ab799ts0+0yaNInvvvsOHx8fhg8fTkJCAsuXL6dHjx789NNPjB07Vq0bHR1Nu3btiI6OZtCgQdy+fZv//e9/3L9/n1WrVpk87oYNG/j999/Ztm0brq6u2XoO3NzcmDhxIgBxcXGcPHmSjRs3snHjRmbOnMn48eOz9bh5ZezYsbz88suUKVNG61Ce2Zw5c9DpdCiKwpw5c+jYsaPZenfv3qVFixbcuHGDChUq8Morr+Dt7c2jR484duwYM2bMwMnJifr165vdPzIykuXLl6PT6YiNjeW3334zeQ+a07p1a/z8/ADje/TevXvs37+fTZs28cknn/Dpp5/y3nvvPdP5ixymCJGOqVOnKoBSunRp5eDBg2brrF+/XvHz88vjyPLO4MGDFUC5fv16rh/r+vXrCqAMHjw40/ts2rRJuXHjhqIoirJw4UIFUD744IMMj+Hg4KB4enqanFNoaKhSsWJFBVAOHDhgss/+/fsVQKlYsaISGhpq8lienp6Kg4ODyWMtX75cAZTdu3erZf7+/gqg3L9/Xy0LCwtTSpUqpQwdOjTT5/vkuQBK2bJl02xbsGCBAiguLi5KdHR0th6/devWSkH8iCxbtqzZ5/RpLly4oABK+/btlQYNGih2dnZKUFCQ2bpDhw5VAGXIkCGKwWBIs/3u3bvKsWPH0j3WL7/8ogDKm2++qdjb2yt16tRJt+4nn3yiAMonn3ySZpvBYFBWr16teHp6KoAybdq0p5+oyDPSxCPMunHjBp9++il2dnZs3LiRJk2amK3XvXt3Nm/enKZ85cqVtGrVCjc3N5ycnKhduzbTpk0z2xyU0uYdERHBm2++Sbly5bCzs+PTTz/N1HYwNkP5+/tTunRp7O3tKVasGAMGDODixYtm446JiWH69Ok0bNiQQoUK4erqSvXq1Rk/fjz3798HQKfTqc0e5cuXVy8RP9k+Hxoayvvvv0/16tVxcnLCzc2Ndu3apXuJOzIykjfffBMfHx8cHR2pVq0a33//PQaDwWz9jHTu3JmyZctmuv6CBQuIj49n7NixJufh4eHB5MmTAfjll19M9km5/8EHH+Dh4aGWlytXjjFjxhAfH8/ChQvV8sDAQAAaN26slqXcTtkGxqs/AN99912m488sf39/XFxciI6O5uzZs2r5jh076Ny5M56enjg4OFClShXee+89wsPDM/W4CQkJzJo1i65du1K2bFkcHBzw9PSkffv26TYpPe39a64PSkr/l/T+pVwJSJGUlMTPP/9M06ZNKVy4MM7OztSvX59Zs2aZfV8pisKsWbOoWbMmjo6OlCpVirFjx2b6eTBn7ty5ALz22mv4+/uTmJjIokWLzNY9cOAAAOPGjTPbz6dEiRI899xzGR5Lr9czceJEevTowalTpzh06FCWY9bpdPTu3ZvVq1cDxivG9+7dy/LjiNwhTTzCrIULF5KYmMjLL79MrVq1Mqzr4OBgcn/y5MlMmzYNb29vBgwYgKurK5s2bWLy5Mls2bKFrVu3Ym9vb7JPQkICbdu2JTQ0lI4dO1K4cGHKly+fqe2bN2+mV69eJCYm0qNHDypVqsTt27f5888/2bBhAzt37jT5sHv06BFt2rTh5MmTVK1alSFDhmBvb8/Vq1dZuHAhvXr1olixYnzyySf89ddfnDx5kgkTJuDu7g6g/g/GL1w/Pz9u3LiBr68vnTt3Jjo6mn/++YfOnTvz66+/Mnz4cLV+fHw87dq148iRI9StW5dXXnmFsLAwvvjiC3bv3p2l1yg7/v33X8CY2DypS5cuJnUyu88XX3zBv//+y2effQagNlUcO3aMFi1aAKhNgCnJ1Pbt25k/fz7r16/Hzc3tmc/LHEVRANQvwF9//ZVRo0bh4uJC3759KVq0KLt27WL69OmsX7+e/fv3m7y25oSGhjJhwgSaN29Ohw4dKFKkCPfu3WP9+vV07dqVuXPnMmzYsDT7Pe39/SR/f/80SQjA3r17+ffff3F2dlbLUt73W7ZsoWrVqgwYMABHR0d27tzJuHHjOHToEEuXLjV5nIkTJ/Ljjz9SokQJRowYgZ2dHX///TeHDh0iISEhzd/n0yQkJLB48WLc3Nx48cUXiY2N5a233mLevHm88847aZIQLy8vAC5dukS9evWydKyAgACOHTtGhw4dKF26NP7+/qxZs4Y5c+ak+0Pqadq0aUPLli3Zt28ff/75J2PGjMnW44gcpvUlHGGZ2rZtqwDK3Llzs7TfgQMH1Gahe/fuqeWJiYlK9+7dFUCZOnWqyT5ly5ZVAKVdu3ZKVFRUmsfMaHtoaKji7u6ueHl5KWfPnjXZdvr0acXFxUWpX7++SXn//v0VQBk5cqSSnJxssi0yMlIJCwtT7z+tiad169aKTqdTli1bZlL+6NEjpW7duoqjo6PJZe6UZrNevXqZHPvatWuKh4dHlpt4UstME4+3t7cCKMHBwWa3u7i4KIDaLBIVFaUAiqurq9n6Dx8+VAClaNGiallkZKTi4+OjeHt7KxMnTlT69OmjnnPK9nLlyimvvPJKts4zRUZNPPPnz1ebeGJiYpQbN24o9vb2SqFChZTz58+b1B01apQCKMOHDzcpN9fEExcXp9y6dSvN8cLCwpSaNWsqHh4eSkxMjMm2p72/U5ogdu7cmeH5njx5UilUqJDi7e2tXLlyJc3+Y8eOVZKSktTypKQkZciQIQqg/PXXX2p56ia7kJAQtTw2NlZp2rRpus9pRpYtW6YAyogRI9Sy3r17K4Cyffv2NPV/+uknBVAKFSqkvP3228q2bdvSfU8+6fXXX1cA5Y8//lAUxfjZUrx4ccXFxUUJDw9PUz+jJp7UPvzwQwVQBg0alKk4RO6TBEWYVb16dQVQNm3alKX9hg0bpgDKr7/+mmbbxYsXFb1er5QvX96kPOUD/MSJE2YfM6PtM2bMUABl1qxZZvedOHGiAqjJy/379xW9Xq+UKFHC7JfFkzJKUE6cOKEASp8+fczu+9dffymA8r///U8tq1SpkqLX602+YFKkfJDmZoJiZ2enAEpiYqLZ7SVLllQA5e7du4qiKMqdO3cUQClVqpTZ+gkJCQqg2Nvbm5RfuHBB6dy5s+Lu7q6ULFlSGTlypPrlMWbMGKVYsWJKcHCwEhgYqHTv3l1xdHRUXF1dlYEDB5r9kjEnJUFxc3NTPvnkE+WTTz5R3n33XaVLly4KoADKzJkzFUVRlClTpiiA8v7776d5nNDQUKVQoUKKo6OjEhcXp5ZntQ/Kd999l6bvjaI8/f2dmQTlzp07io+Pj+Lo6Kjs379fLU9OTlY8PT2V4sWLm31NHz16pOh0OqVv375qWcrf6IIFC9LU37lzZ7YSlJQfNKn7L61fv14BlH79+qWpbzAYlPfff19xdHRUXytAKVeunDJs2LB0n6uoqCilUKFCipubmxIbG6uWv/XWWwqg/Pzzz2n2yWyCMnv2bAVQunTpksmzFrlNmnhEjjp+/DgAbdu2TbOtSpUq+Pj4cP36dcLDw00u7Ts6OlKnTp10Hze97f/99x8AJ0+eNOmTkuLSpUsAnD9/nho1anDkyBEMBgOtWrXCxcUlS+eW3rHDw8PNHvvhw4fqscHY9+TKlSuULl2aihUrpqnv5+enNpNYu6pVq5rtk7F3715+/vlnVq5ciaenJx06dODBgwf88ccfREVFMW7cOGJjY9OM9slIeHi4+rzZ2Njg6elJly5dGDt2LF27dgUyfl96eHhQv3599uzZw4ULF6hbt26Gxzt79izffPMNe/bs4d69e8TFxZlsNzdk9Wnv74xERUXRvXt37ty5w7Jly2jevLm67dKlS4SGhlK5cmWmTJlidn8nJyf1PQiPn4vWrVunqduyZUtsbGyyFN+VK1fYuXMnVatWpVmzZmp5586dKV68OH/99RfBwcF4e3ur23Q6HV9++SXvvPMOW7Zs4eDBgxw/fpxDhw4xb948Fi5cyOzZs02aRwGWL19OZGQkr7/+Oo6Ojmq5v78/3333HXPnzmXUqFFZij+F8kSToNCeJCjCrBIlSnD+/Pkszw+Q0smuRIkS6T7uzZs3CQsLM0lQihYtmuEHQ3rbQ0JCgMcd9NKTMsdGynwJpUqVyrB+ZqQce9u2bWzbtu2px055booVK2a2XvHixZ85pqdxc3MjODiY8PBwtR9Aaikxprw2Kf+n13kypfxpfTcAYmNjGTp0KL169aJPnz5s27aNgIAAli5dyosvvggYO2d//PHHXL161WwSZ07ZsmWfOk9NZt6XQIbzaQAcPHiQtm3bkpSURLt27ejZsyeFCxdGr9dz4sQJ/v77b7MdwZ/2/k5PcnIyL730EgEBAUybNo2XXnrJZHvKe/Dy5csZJrep55jJ6H1oa2trkkhkxty5c1EUJc0Eg7a2trzyyit89913LFq0iEmTJqXZ193dnZdeekk9r+joaL766iumTJnCuHHj6Nmzp0mcc+bMAUhzrFq1atGgQQOOHTvG0aNHadiwYZbOAYxDnwGKFCmS5X1F7pBRPMKsli1bAsZRD1mR8oUWFBRkdntKD/knO0Y+7cM7ve0pj3Py5EkUY5Ol2X+DBw8GHn+R5sTETCnHnjlzZobHThnhklI/ZZTQk9J7znJS1apVgcdXllK7d+8e0dHR+Pj4qJ0wXVxcKFWqFFFRUWZHN1y+fBkwXh17mo8++oiQkBD+97//AY+vLKXuwNygQQMAzp07l5XTeqrsvi+fNGXKFGJjY9m6dSubNm1ixowZfP7553z66acZdtDM7q/ycePGsXHjRoYPH252jo6UeF988cUM34PXr19Ps4+592FSUhLBwcGZji/1SJ33338/zWijlBFaT/sBkcLFxYUvvviCli1bEh8fz/79+9Vtp06d4vDhwwA0a9YszbGOHTsGPE5ismrnzp0A2e5oK3KeJCjCrNdeew07OzvWrFnz1C+L1L8YUyZWMjdt95UrV7h9+zbly5fP1C/uzGjatClgbDrIjMaNG6PX69mzZw/R0dFPrZ9yuTs5OfmZj12oUCEqVarEnTt3zE6olhdTnac0cZgbGp7SJPNkM0h29nnS4cOHmTFjBjNnzkzzyz31++fJ5pKcktH7MiwsjBMnTuDo6Ej16tUzfJwrV67g6elpdoRNTo/C+u6775g9ezYdO3bk559/NlunWrVquLu7c/DgQRITEzP1uCkJobl49+3bZ/a9np6///6bBw8eULVqVYYOHWr2X4UKFbh06VKWnp9ChQoBj5td4HHi4efnl+6xnJycWLZsWZZnJf7333/Zv38/Tk5O6tU8YQHyrruLsDYpI07KlSunHDlyxGydTZs2KW3atFHvp4wQKFeunPLgwQO1PCkpSXn++ecVQJkyZYrJYzxtYqiMtgcHByvu7u5KkSJFlEOHDqXZnpycnKbz4YABAzI9iuftt99WAOXff/81e3xfX19Fr9cr8+fPN7v91KlTJpOTpTynvXv31mQUz7Vr13J9orYnxcfHKzVq1FC6detmUr5t2zYFUD777DO1LGVCN3OdiJ+U0Sgec3Xt7OwUNzc35fLlyybbxo4dqwDKsGHDTMrNdZLt1KmTAignT540KZ83b57a0XPhwoUm2572/jbXSXbNmjWKXq9Xateu/dROwx999JH6fn5yBJGiGCc9Sz3Cbd++fTk2iqdDhw4KoKxYsSLdOinPzYABA9Syr7/+Wjlz5ozZ+nv37lUcHR0VW1tb5c6dO4qiKEpMTIzi7u6u2NjYqGXmvPrqqwqgzJkzRy172kRta9asUSdq+/rrr592yiIPSYIiMvTZZ58per1eAZTmzZsr48ePVyZPnqwMHTpUqVy5sgIoDRs2NNnnnXfeUYeejh49Wnn77beVWrVqKYDSsmVLJT4+3qT+syQoiqIo27dvVwoVKqTodDqlffv2yoQJE5SJEycqvXv3VkqWLKk4ODiY1A8NDVXq1KmjAEq1atWUCRMmKG+//bbSp08fpVChQiZfFJs3b1Y/zN955x3liy++UH766Sd1+61bt9TnoW7dusqIESOUd955RxkwYIB6zv/9959aPy4uTmnUqJFa/5133lFGjBihuLu7Kz179sxygjJ37lxl8ODByuDBg5UWLVoogFKnTh21zNzMmD/++KMCKF5eXsro0aOViRMnKj4+PgqgvPXWW2aP8+abbyqA4uPjo0ycOFEZPXq04uXlpQAmz4c5H3zwgeLm5qbcvn3bpNxgMCgNGjRQbGxslCFDhij9+vVTAJMRJxnJSoKiKIryv//9Tx3aOnToUOW9995TmjVrpr4PUn9ZK4r5BGXTpk0mj/Hmm28qrVq1UvR6vTqcOicSFCcnJ4X/n2k1ZYRS6n+pj5GQkKC+d0qVKqUMHDhQee+995QhQ4aoCfST74Nx48YpgFKiRAll3LhxyptvvqlUrFhRadiwoVKiRIlMPafXrl1TdDqd4u3tneZvOrXIyEjF1dVVcXBwUJ/junXrqs+7v7+/8v777yvjx49X2rVrp+h0OgVQvvvuO/UxUpLvHj16ZBjTrl270nwmpTy/rVu3Vp+/d955R3n11VeV8uXLK4Di4OCgTJ8+/annLPKWJCjiqc6dO6eMHTtWqVmzplKoUCHFzs5OKV68uNK5c2dl3rx5JkMzUyxbtkxp0aKF+sFUo0YNZcqUKSZDA1M8a4KiKMYvqzFjxiiVKlVSHBwclEKFCilVq1ZVXn31VWXt2rVp6kdFRSlTpkxRateurTg5OSmurq5K9erVlQkTJphc8VAU4/DRatWqKfb29ma/ECMiIpSpU6cqzz33nOLi4qI4Ojoq5cqVU7p27ar8+uuvaYYzh4eHK2+88YaaPFWtWlX59ttvlatXr2Y5QUkZBp3ev9atW5vdb926dUqrVq0UV1dXxdnZWWnYsKGyaNGiDI+1cOFCpWHDhoqzs7Pi6uqqtGrVSlm/fn2G+wQEBCi2trbpzqdz69Yt5fnnn1dcXFwUNzc3ZfDgwVkeZpyVIbFbtmxROnTooLi7uyv29vZKxYoVlbffflt59OhRmrrpDTNev3690qRJE8XV1VVxc3NTOnTooOzevVv9Es2JBCWj19Tc62owGJQlS5Yobdu2VTw8PBQ7OzulZMmSSosWLZSpU6cqN2/eTFP/p59+Ut/XJUqUUEaPHq2EhYVleqr7yZMnK4DyxhtvPLXu8OHDFUD5/vvvFUVRlOPHjytffPGF0qZNG6VcuXKKo6Oj4uDgoFSoUEEZMGCAsnfvXpP9mzdvrgDK33///dRjValSRQGUgIAARVEeP78p/3Q6neLq6qqUKVNG6dKli/LVV1+lSZ6FZdApSqpGPiGEEEIICyCdZIUQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFscoEJS4ujosXL+batNhCCCGE0JZVJiiBgYEMHz6cwMBArUMRQgghRC6wygRFCCGEEPmbJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLY5vVHWJiYli+fDnnzp3j/PnzREZG8v7779OlS5dMP8bRo0dZunQply5dwmAwULp0afr370+7du2yGo4QQggh8qEsJyjh4eEsWrSIYsWKUalSJQICArK0/8aNG5k+fToNGzZk+PDh2NjYcPPmTR48eJDVUIQQQgiRT2U5QfHy8mLt2rV4eXlx4cIFRowYkel97927xw8//ECvXr2YMGFCVg8thBBCiAIiy31Q7O3t8fLyytbB/v77bwwGA0OHDgWMzUWKomTrsYQQQgiRf2X5CsqzOHbsGGXKlOHgwYPMnj2bhw8fUqhQIV588UWGDBmCXi99doUQQgiRxwnK7du30ev1fPXVV/Tv35+KFSuyZ88elixZQnJyMq+//rrZ/YKDgwkJCVHvyyrGQgghRP6WpwlKbGwsBoOB119/nVdeeQUAPz8/IiMjWb16NQMHDsTZ2TnNfuvWrWPRokV5GaoQQgghNJSnCYqDgwOxsbG0b9/epLxdu3YcOnSIS5cuUa9evTT79ezZkxYtWqj3AwMDmTJlSm6HK4QQQgiN5GmC4uXlxe3bt/Hw8DApT7kfGRlpdj9vb2+8vb1zPT6Rv8U8iuP8jltUb1caZw9HrcMRQgiRgTztlVq1alXA2KcktZT77u7ueRmOKGBiwuIJ+PMKMWHxWocihBDiKXItQQkODiYwMJCkpCS1rG3btgBs2LBBLTMYDGzatInChQurCYwQQgghCrZsNfGsWbOGqKgodWTN/v371Zlge/fujaurK3PmzGHz5s2sWLGCEiVKANCyZUsaNGjAb7/9RlhYGJUqVWLv3r2cOnWKSZMmYW9vn0OnJYQQQghrlq0EZcWKFQQFBan39+zZw549ewDo2LEjrq6uZvfT6XRMnTqVefPm8e+//7J582ZKly7Nhx9+SMeOHbMTihBCCCHyIZ1ihVO5Xrx4keHDhzN37lxpFhKZFnw9nL8+OMALU5vjXd5N63CEEEJkQKZuFUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGERYt5FMex1ZeJeRSndSgiD0mCIoQQwqLJMhUFkyQoQgghhLA4kqAIkQvkkrQQQjwbSVCEyAVySVoIIZ6NJChCCCGEsDiSoAghhBDC4kiCIoQQQiB9xyyNJChCCCEE0nfM0kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEKILIt5FMex1ZeJeRSndSgin5IERQghRJbFhMUT8OcVYsLitQ5F5FOSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQVk6GeQoj8ShIUIayYDPUUQuRXkqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4WU5QYmJiWLBgAZMmTaJbt260atWKTZs2ZevgX3/9Na1ateLdd9/N1v5CCCGEyJ+ynKCEh4ezaNEiAgMDqVSpUrYPfOHCBTZt2oS9vX22H0MIIYQQ+VOWExQvLy/Wrl3LqlWrGDVqVLYOqigKM2fOpFOnTnh6embrMYQQQgiRf2U5QbG3t8fLy+uZDrplyxauX7/O8OHDn+lxhBBCCJE/5Xkn2ZiYGH755RdeffXVZ050hBBCCJE/2eb1ARctWoSDgwP9+vXL9D7BwcGEhISo9wMDA3MjNCGEEEJYiDxNUG7dusXq1av5+OOPs9Q5dt26dSxatCj3AhNCCCGERcnTBOXHH3+kVq1a+Pn5ZWm/nj170qJFC/V+YGAgU6ZMyeHohBBCCGEp8ixBOXbsGIcOHWLKlCncu3dPLU9OTiY+Pp579+5RuHBhXFxc0uzr7e2Nt7d3XoUqhBBCCI3lWYLy4MEDAD788MM02x4+fMhLL73E2LFjs9Q3RQghhBD5U64lKMHBwURHR1OqVClsbW157rnnmDp1app633zzDcWLF2fgwIFUqFAht8IRQgghhBXJVoKyZs0aoqKi1JE1+/fvV6+Q9O7dG1dXV+bMmcPmzZtZsWIFJUqUoFixYhQrVizNY/300094eHjg6+v7DKchhBBCiPwkWwnKihUrCAoKUu/v2bOHPXv2ANCxY0dcXV1zJjohhBBCFEjZSlBWrlz51DqTJ09m8uTJOfJYQgghhChY8nwmWSGEEEKIp5EERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQFstgUHh4LRyAh9fCMRgUjSMSecVW6wCEyG+e/ED1LFsYvV6ncVRCWJ/rh4M4uOQ80aFxAOyff5YTa6/SdFB1yjcurnF0IrfJFRQhctD1w0GsGL+L/fPPAsYP1BXjd3H9cJDGkQlhXa4fDmLHjAA1OUkRHRrHjhkB8jdVAMgVFCGywKAYOH3/NDtv7OT8w/PcjLhJQnICdno7PBK8ST7mRNWY2pSmIvr/z/9TPlDbTawvv/qEyASDQeHgkvPpbo/WRzJjxWwcw+O48ugK4XHhGBQD3s7elHcvT1OfprQu1xpPJ888jFrkNElQhMiEe5H3mHNsDvMD5nMr4lb6FYsa/3NL8qBFeEdah3XFM6kIAAeXnqdsw2LS3CPEUwRdCE1z5cRAMqddjrLT4x/OOQeg6AxwIP3H0Ov0dK3cldcbvE7Xyl3R66TBwNpIgiJEBsLiwvhq31fMPDSTuKS4p+/w/8JtH7HRawVbPNfQ5lF3uoW8DCHGD96SNbxyMWIhrF9sWLzJ/bPOx1lVdB53HG5k+jEMioF/Lv3DP5f+oUGJBnzV/ivaV2ifw5GK3CQJihDp2Hh5I8PXD+du5F21TK/T07FiR7pU6kJTn6aUdy+Ps50z5w9c56/FO7jhdJkzLkc543KUZF0yyboktnv+xcHC/zLw/jjahNXV8IyEsA5O7g4AROkj+L3Y/zhaeK/Jdq+EYjwX1ZxXe/al5XNNKOJcBJ1OR1BUEOcfnmfnjZ2sOreK2xG3ATh27xgdlnZgUN1BzOg0Aw8njzw/J5F1kqAI8YTE5EQmbZ3Ej4d/VMvsbewZ22gsE5tOpLRb6TT7lCxagnLxVSgXXwW/sG6E2YTwr8d6dnj8TYI+nijbCGaXmkro5essajwfR1vHvDwlIaxK8Wqe3Cp6mZmFPiPcNlQtLxdbhe4h/akd3ZBCXi681MbPpMm0kmclKnlWokfVHnzT4Rv+ufQPn+7+lBNBJwBYcnIJ/17/lz/7/UmjUo3y+KxEVkmjnBCphMSE0Pn3zibJSedKnbk09hLfdfrObHICxg9UF8/HSYd7she9gv2Zcn0u9SObq+UrbvxB60WtTa7KCCFMLTm1mGmek9TkxCW5EEPvTeL9m99TN7oJemxoOrB6hv25bPQ2PF/teY6NOMa8HvNwc3AD4HbEbVoubMmSk0tM6uf1fCsxj+I4tvoyMY8y33Rc0EiCIsT/uxNxhxYLWvDv9X8BsNPbMbvbbDYO2EhZ97IZ7qvX62g6qHqaco8kb0bd/YDX7r2Fo96YwBy+cxjfhb7cCLuR4+cghDVTFIXPdn3Ga3+/RqKSCEDNhPp8ev1nmka0RY8eFy/HLI2I0+v0DH1uKGdGn6FlmZYAJCQnMPivwcw4OAPQZnqAmLB4Av68QswT/W3EY5KgCAHcCr9F60WtuRhyEYCiLkXZOXgnIxuORKfL3Kib8o2L025ifZMrKQCuXk58NGQS/w3/j7JuxkTn2qNr+C705VLIpZw9ESGslKIofLzzYz7d/alaNqbRGI59epBu/q0AaDG0Ji/N9MvWcH2fwj7sGLSDUQ1HqWVvbHmDCb9PkvlWLJQkKEJzWl/qvBd5j9aLWnP10VUAyruX59CwQ7Qo0yLLj1W+cXFe+tGPFkNrAqYfqPWK12P/kP1U864GGC81t1nchpvhN3PsXISwVp/s+oQpe6eo97/v+D2zus7Cwc6eIhWMzTNFKrg90zB9ext7/tf1f3zm95la9uOV79jisSbdfQ4uPS/T62tEEhShuby41Jle+3JkfCRd/+jK9bDrAFT2rMye1/ZQzr1cto+l1+vS/UAtVbgUu/13U7eYcTTP3ci7dP6tM6GxoWYfS4iC4Jejv/DFni/U+z91+Yk3mr2RK8fS6XR83Ppjfuj0g1q2uuh8DhTeYbZ+dEgcQRfk71MLkqCIfC+99uVLB2/Rd1VftYd/Wbey7PLfhU9hn1yNp6hLUbYN3EYlz0oAnA8+T49lPbI0z4oQ+cXGyxsZs3GMen9m55mMbTw21487selE3qj4tnp/cfEfOOd83GzdJ+dlEXlDEhSRr2W0nsfoZePYcnULAB6OHmx6ZRMlC5XMk7iKuBRhy6tbKOZSDIADtw4wbuO4PDm2EJbi7IOz9FvVD4NiAODt5m8zvsn4PDv+W/Xfoc2jHgAYdAbmlJzOQ7u0fU5S5mUReUsSFJFvZbSex+FCu9nh+TdgbJf+++W/qV4k7Sic3FTBowIbX9mozokyL2Aec4/NzdMYhNBKZHwkvVf2JjoxGoC+NfryVfuv8jSGEtW9GJo0gTpRjQGItonk55JfEK97/IPGxcuR4tVkTR8tSIIi8i1z63kA3LW/yZLiM9X7n9f9Et+yvnkZmuq5Es8xt8fjpGTsprEcuXNEk1iEyCuKojBs/TB11FzdYnVZ/MLiPF8vR6/X0XxQTYbee5tiCaUAuO14nd+L/U+t87T5VkTukQRF5Fvm2o0TdYnMKfkV8Xpj4tIsvD29PV/O69BMvFrnVcY3Nl7WTkhO4JU/XyEqIUrTmITITXOOzWHl2ZUAFHYozOp+q3Gyc9IklvKNi9NjfEsmRU3BwWCM4T+3HZwscUBWINeYJCgi3zLXbvy311J1wbFS8WV55f5onD20n3b+247f0riU8TLz5dDLvLnlTY0jEiJ3XA29yltb31LvL3x+odphXCvlGxfnzR8G81m1L9WypUV+QldFOq5rSRIUkW89Of38JaczbPU0zndga7Bl2L138PR0t4j2ZTsbO3578Tdc7FwAmHt8Ln9f+FvjqITIWcmGZAb/NVjtd/J6g9fpVb2XxlEZ6fU6hjZ9jcYRfgCEx4czcO1AtQOvyHuSoIh8K/X083G6GBYW/x5FZ5z/5PmQgfjEl7eo9uXKXpWZ0XmGen/khpE8in2kXUBC5LDv//ue/bf2A8ZO4t92/FbjiNJ65f4YyriWAWDfzX38cvQXjSMquCRBEflayvTz//j8QbC9cfhg5ZiavKgbYJHty0PrD6V7le4ABEUF8e72dzWOSIiccTH4Ih/u/BAAHToWPb8IV3tXjaNKy9ngwszms9T7721/j1vhtzSMqOCSBEXke6E+d9jm8hcA9gYHZrX6hf4z21lccgLGWS5/7vqz+sE99/hcdt/YrXFUQjwbRVEYvXE0CckJALzZ7E3NRs5lRsvirRhWfxgAkQmRjN44GkWR6e7zmiQoIl9LNiQzcsNItR25R8gAnqtR22Kadcwp7Vaaae2mqfdH/DNCZpkVVm35meXqKuHl3MvxeZvPNY7o6b7u8DXFXY0/Yv659A+rzq3SOKKCRxIUka/NPjqbo3ePAlDNvTrtQ1/UOKLMGdVwFE19mgJwKeQS3+z/RuOIhMie8Lhw3tz6eFTaT11+wtnOWcOIMsfDyYNZXR439by55U2iE6I1jKjgkQRF5Fv3o+7zwb8fqPe/afI9tthqGFHm2ehtmNtjLjY6GwC+2v8VtyNuaxyVEFn30c6PCIoy9v96odoLah8ra9C7Rm+6Ve4GwJ3IO0zbN+0pe4icJAmKyLc+3vkxEfERAAypN4SmxZppHFHW1Cpai9GNRgMQkxjDe9vf0zgiIbLm3MNz/O+IcVZWZztnZnae+ZQ9LM8PnX7ATm8HwLcHvuXao2saR1RwSIIi8qUzD84wL2AeAIXsCzGtvXX+8vnU71M8nYzztPx++ncO3DqgcURCZN7b295W+3994PsBZdzKaBxR1lX2qszEphMBiE+OZ9LWSdoGVIBIgiLypUlbJ5l8MBZ1KapxRNnj6eTJF22+UO9P2DxBJo4SVmH7te1svLwRgNKFS/NG0zc0jij7Pmz1obry+NoLa9l5fafGERUMkqCIfGfzlc1suboFgLJuZZnQdILGET2bEQ1GUKtoLQCO3j3KqrMymkBYtmRDssl09l+2+1KztXZyQmGHwiYj697d/q4MO84DkqCIfCXZkMzb295W709vPx1HW+3X2nkWtnpbvu3weMbND3d+SGJyooYRCZGxJSeXcOr+KQAalmzIgNoDNI7o2Q2qO0j9oXDk7hH+PP+nxhHlf5KgiHxlxdkVnHlwBoAmpZrQr2Y/jSPKGR0rdsSvnB8AV0KvsCBggbYBCZGO+KR4Ptn1iXr/2w7fotdZ/1eNjd7G5CrKB/9+QJIhScOI8j/rf9cI8f+SDEkmH4xftvsSnc5yJ2TLCp1OZ/Lh+Pmez4lJjNEwIiHMm3d8HrcijFPDd63cldblWmscUc7pVrkbLcu0BOBiyEUWnVikbUD5nCQoIt9YcnIJV0KvANCmXBvalm+rcUQ5q6lPU16o9gIAdyPv8tOhn7QNSIgnxCbGMnXvVPX+536WP2NsVuh0Or5q95V6/9Ndn8osz7lIEhSRL8QnxfPZ7s/U+6lHvuQnU9pMUS+Xf33ga6ISIzWOSIjHZh+dzb2oe4BxUrYGJRtoHFHOa1GmBT2q9ACMk7fNPz5f44jyrywnKDExMSxYsIBJkybRrVs3WrVqxaZNmzK177Fjx/jqq68YMGAAHTp04KWXXmL69OkEBwdnOXAhUpsfMJ+b4TcB6FKpCy3KtNA4otxRs2hNXqn9CgChsaEsvCh9UYRliEqI4qt9xqsLOnT57upJap/5Pf4x9NX+r4hPitcwmvwrywlKeHg4ixYtIjAwkEqVKmVp319++YWAgAB8fX2ZMGEC7dq1Y+fOnQwbNoyQkJCshiIEAHFJcSaXlfPr1ZMUk30no8PYt+bncz8Rr5NLzEJ7sw7P4mHMQwD61exH7WK1NY4o99QvUZ+eVXsCcDviNgtPLNQ4ovwpywmKl5cXa9euZdWqVYwaNSpL+44ZM4Zly5YxatQounfvzogRI/jqq68IDQ3lzz9lyJbInsUnFnM38i6Qfy8rp1bNuxov1XoJgOC4YPa4b+LhtXAMBpmXQWgjOiGabw8Yh8LrdXo+9ftU24DywEetPlJvT9s3jYTkBA2jyZ+ynKDY29vj5eWVrYPVq1cPvV6fpqxw4cIEBgZm6zFFwZZkSGL6/unq/Q98P8igdv7h7z5Svb3FczU7FxxnxfhdXD8cpGFUoqCaHzCfkFjjVfCXar5ENe9qGkeU+xqWbEjXyl0BuBl+kyUnl2gcUf6jeSfZmJgYYmNjcXNz0zoUYYVWnl3J9bDrAHSo0IGGJRtqHFHuu344iFvzY3gu0tjPJtz2EXvdthAdGseOGQG5lqTEPIrj2OrLxDySJiXxWEJygnr1BOC9lgVnUcuPW32s3p66d6pMoJjDNE9QVq1aRWJiIm3bpj8kNDg4mIsXL6r/5GqLADAoBpPlzyf7TtYwmrxhMCgcXHIegG4hL6vlmz1XkYTxw/Hg0vO50twTExZPwJ9XiAmTDoHisTXXV6nznnSr3I06xepoHFHeaeLThE4VOwFwI+wGK86u0Dii/MVWy4OfOHGCRYsW0aZNGxo0SL/fwLp161i0aFHeBSaswoZLG9RZY5v6NKV12fwzIVR6gi6EEh1qvIJRJr4idSObcrLQQcLsQjhceDfNI9oTHRJH0IVQStbIXlOsEJllwMBPZ2eq999v+b6G0WjjA98P1LW/vjnwDa/UfiXfTBCpNc0SlMDAQD788EMqVKjAu+++m2Hdnj170qLF42GjgYGBTJkyJbdDFBZMURS+3Pelen9yy8kF4kMh9omrF50f9eZkoYMAbPVcQ7OIdujQpaknRG444XqQy+GXAGhZpmW+Hd6fkZZlWtKkVBMO3TnEqfun2Hp1K50qddI6rHxBkyae+/fv89Zbb+Hi4sL06dNxdnbOsL63tzdVq1ZV/5UtWzaPIhWWanfgbg7eNn4x1ypai25VumkcUd5wcncwuV8ptiYVY6sDcMchkLPOx8zWEyKnKYrCJs+V6v2CePUEjLPLvt388QKl3xz4RsNo8pc8T1DCw8N56623SExM5Ntvv8Xb2zuvQxD5wNf7v1Zvv9/y/XyxGFlmFK/miYun6erMHUN7qbe3ev6Ji5cjxat55nVoooDZF7SHG07Gqyd1i9WlS6UuGkeknReqvUAlT+O8YDuu7+D4veMaR5Q/5NqnenBwMIGBgSQlPV7tMTY2lnfeeYfg4GC+/vprSpcunVuHF/nY+Yfn2XTFOHtxWbey+WbF4szQ63U0HVTdpKxeVFOKJpQE4LzLCQr1TEKvz//NXUJbs8/9rN5+t8W7BaKJNT02ehvebPqmej/1qCaRfdlKUNasWcPixYvZuHEjAPv372fx4sUsXryYqKgoAObMmcPAgQN5+PChut8XX3zB+fPn8fPzIzAwkK1bt6r/9u7dmwOnIwqCmYced8ob13gctnpN+3rnufKNi9NuYn31SooeGzqEvqhuXxa5SKPIREFx4eFFtt0xdgwt7lCS3tX7aByR9vzr+ePtbGwRWHl2JYFhMtr0WWXrk33FihUEBT2ea2HPnj3s2bMHgI4dO+Lq6mp2vytXjCvNbty4UU1uUhQvXhxfX9/shCMKkJCYEHVCJFd7V4Y9N0zjiLRRvnFxyjYsxsWdt9g//yxvvTieLSdXEBwTzIozK5jWbhpl3MpoHabIh64fDmL8n++Ck/F+y1udWTNxH00HVad84+LaBqchJzsnxjYay6e7PyVZSeaHgz8wo/MMrcOyatlKUFauXPnUOpMnT2byZNN5KTKznxAZmXNsDrFJsQAMqTcEN8eCO8GfXq+jSAXj+ZeuXIyx9o8/HGcenMl3nb7TOEKR31w/HMS6H/ewu+JmAOwNDrQM70S0wThJYLuJ9Qt0kjKm8Rim759ObFIs8wPm83mbzynsUFjrsKxWwehZKPKFhOQEZh2ZBRhXSx3fZLzGEVmW0Y1G42hrbPaZHzCfqIQojSMS+UnKJIH73LaQoDcOY28R3gEXQyG1Tm5NEmgtvJ29GVR3EGBc3XnRiUXaBmTlJEERVmPV2VXqooDPV3ueip4VNY7IshRxKcKAWgMACI8P57dTv2kckdBCbi1JEHQhlIjQaP71WK+WtX3U06ROyiSBBdnYxmPV2z8d/gmDYtAwGusmCYqwCoqi8MPBH9T7bzR9Q8NoLNe4JuPU27MOz0JRCu6v2YIqt5YkiA2LJ8D1AKF2xoEPdaIaUzzRx2y9gqxW0Vq0LW9cuuVK6BW2XNmicUTWSxIUYRUO3DrAsXvGScieK/EcvmWkQ7U59YrXo2WZlgCcfXiWnTd2ahyRyC+c3B3Y7vmXer/9oxfSrVfQjW/8uPn5x8M/ahiJdZMERViFn48+nnNhQpMJBXrOhacZ1/jxVZQfD8mHo8gZd91ucNXJuFBlqfiyVIupm6aOTBJo1L1Kd8q5lwNg85XNXAq5pG1AVkoSFGHxHkQ/YNXZVQB4OXkVqInZsuPFai9SqlApANZfWs+NsBvaBiTyhV+P/aLebvuoJzrS/khoOrC6TBKIceK2MY3GqPdnHZ6lYTTWSxIUYfHmH59PoiERgKH1h6ojVYR5djZ2jGw4EgCDYuDnIz8/ZQ8hMhYWF8bvp38HwNW2EG1sOptsd/FyLPBDjJ80pP4QnGyNk8UsOrGIiPgIjSOyPpKgCIuWbEjml///5aZDx+sNX9c4IuswosEI7G3sAZh3fB4xiTEaRySs2eITi9X5h/zrD2bwj11oMbQmAC2G1uSlmX6SnDzB08mTgXUGAhCZEKlOMCkyTxIUYdE2Xt7IzfCbAHSp3IUKHhU0jsg6FHUpysu1XgbgUdwjVpxZoXFEwlopisLso7PV+6MajTKZJLBIBTdp1klH6iHHvxz9RUbVZZEkKMKipe4cO7rhaA0jsT6pn69fj/2qYSTCmu28sZOLIRcB8CvnR40iNTSOyHrULlabFqVbAMZRdQduHdA4IusiCYqwWFdDr7L5inFK7XLu5ehcqfNT9hCpNS7VmLrFjCMtDt05xMmgkxpHJKxR6j5MoxqO0jAS65TSHwxQm6tF5kiCIixW6svKIxuMxEZvo2E01ken0/F6g8d9duQqisiqOxF3+OvCXwAUdy3OC9Ve0DQea9SnRh88nYxDr1edXUVITIjGEVkPSVCERYpNjGVBwAIA7G3sGVJ/iMYRWadX6ryCi50LAL+d+k3W5xFZMvf4XJKVZACGPzdc7XgtMs/R1hH/uv4AxCfHs/jkYm0DsiKSoAiLtOrcKh7FPQKgX81+FHEponFE1qmwQ2H61+oPGEcSLDu9TOOIhLVITE5kzrE5AOh1eoY/N1zjiKzXiAYj1Nu/HvtVOstmkiQowiLNOz5PvT2ywcgMaoqnST00W5p5RGZtvLyRe1H3AOhRpQel3UprHJH1qupdlTbl2gBwKeQSu27s0jYgKyEJirA4F4IvsPfmXgCqe1eneenmGkdk3RqWbMhzJZ4D4Ni9Yxy7e0zjiIQ1mBfw+EdC6r5MInuks2zWSYIiLM784/PV28OeGybr7uQA6SwrsuJOxB02Xt4IgE9hHzpW7KhxRNbvhWovUNSlKABrz6/lQewDjSOyfJKgCIuSkJygdiKz09sxqO4gjSPKH/rX6o+rvSsAf5z+Q6bdFhladGIRBsUAwJB6Q2QEXQ6wt7FnSD1jZ/9EQyLLrvyucUSWTxIUYVHWXVzHw5iHALxY/UW8nb01jih/KORQiFdqvwJAdGI0f5z+Q+OIhKUyKAbmBxivYurQyQi6HDS8weOOxn9c+Q0F6SybEUlQhEVJ3TlWRg3krNTNPCmjM4R40r/X/+V62HUAOlbsSFn3shpHlH9U8KhA2/JtAbgWeZXLTmc0jsiySYIiLMbNqEC2Xt0KQHn38uofssgZ9UvUp2HJhgAEBAVwIuiEtgEJi5T6R8Kw54ZpGEn+NLT+UPX2PretGkZi+SRBERZj2ZXf1UueQ+sPRa+Tt2dOS2kDB1gYsFDDSIQlCo4JZu2FtQAUcS5Cz6o9NY4o/3mx2ou4O7oDcKzQPiISwrUNyILJN4CwCAaS+eP/O43pdXr86/lrG1A+1b92fxxtHQH47fRvxCfFaxyRsCS/nfqNhOQEAAbXHSwzx+YCJzsnBtQaAECCPp6/bqzVOCLLJQmKsAhnXY5zN+YOAN0qd6NU4VIaR5Q/uTu607t6bwBCY0NZd3GdxhEJS6EoiknzztDnhmZQWzyL11JdyVx0ZhEGg3SWNUcSFKEpg0Hh4bVw9rhtVsuk3Tt3pR6VkTJaQ4iDtw9y9uFZAFqWaUk172oaR5Q/XT8cxOVpEZSOqwDA6agTfPvGQq4fDtI4MssjCYrQzPXDQawYv4uNi/ZyyvUQAO7JXlR/9JzGkeVvfuX8KOdeDoCtV7dyK/yWtgEJi2DSOba+/EjIDdcPB7FjRgDRoXG0DO+klm9jPTtmBEiS8gRJUIQmUv+hHiy8E4POOClU87D27P7xtPyh5iK9Ts9r9V4DQEGR1VUFUQlRrDi7AjAuMNm3Zl+NI8p/DAaFg0vOq/ebRPhha7AD4GDhf0nUJXJw6fkcb+6JeRTHsdWXiXkUl6OPmxckQRF5LvUfqoLCf27b1W3Nw9sD5MofqnjMv54/OoxLCCw8sVCdNVQUTKvPrSY6MRowzjrsbOescUT5T9CFUKJDHycJLoZCPBdlXGcsyjaCky4HiQ6JI+hCaI4eNyYsnoA/rxATZn0d4iVBEXku9R/qTYcr3HEIBKBSTA2KJRo7x+bGH6p4rIxbGTpU7ADAtUfX2BO4R+OIhJYWnVik3k65uiZyVqyZBKFF+OM1jva5b023XkElCYrIc6n/AA+47VBvN4ton249kfNSz4myIGCBhpEILV1/dJ3dgbsBqOpVlcalGmscUf7k5O6QpqxaTF28EooBcM75OCG2D8zWK6gkQRF5LuUPMIlEDhfaBYCdwZ6Gkb5m64nc8Xy15/Fw9ACMl/jD42TCqIJo6aml6u3BdQfL6uG5pHg1T1w8HU3K9OhpEWG8kqnoFI4W303xap5ahGeRJEEReS7lD/WU6xGibI2r6taPaoazwUWt4+LlaNV/qM7uDtTvVQlnC06yHG0d1QUEY5Ni1U6SouBQlMedpHXoGFh3oMYR5V96vY6mg6qnKW8e3h6dYkwKjxTZieSHj0mCIvJcyh/qgcKPO8c2Czdt3mk6sDp6vfX+pTp7ONKgT2WcPRyfXllDqedEkWaegmffzX1ce3QNgPYV2uNT2EfjiPK38o2L025ifZMrKV5JRamRWB+AwJgb7L+1X6vwLI4kKEITrjVtOFv4KADuiV7UiKkHGK+ctJtYn/KNi2sYXcFRv0R96hWvB8ChO4c4++CstgGJPJW6c+zguoO1C+QprOGKZGaVb1ycl370o8XQmgC0GFqTt/tOULcvPiHD/lNIgiI08cfpP0hSkgDoU74femxoMbQmL830k+Qkj6XuLLvk5BINIxF5KSYxhlXnVgFQyL4QL1Z/UeOI0mctVyQzS6/XUaSCGwBFKrjRp0ZvXO1dAVh5biUxiTFahmcxJEERmlh0cpF6+7Xn/AHjH6o1N+tYq5drvYyt3hYwLiCYbEjWOCKRF9aeX0tkQiQA/Wr2k7lPNORi70LfGsbJ8SLiI/jrwl/aBmQhJEERee5k0ElOBJ0AoHGpxlRxr6ptQAVcEZcidKvcDYC7kXfZfm37U/YQ+UHqHwmyerj2UjexyezORpKgiDyX+o/Pktu9CxL5cCxYboXfYsc14xxEFT0q0qJ0C40jEr5lfdU1srZd3cbtiNvaBmQBJEEReSoxOZHfT/8OgL2NPS/XelnjiARAtyrd8HLyAmDthbUyJ0o+t/TUUhSMS0kMqjtI5j6xAHqdXv2hoKDw26nfNI5Ie5KgCLNya4GpzVc28yD6AQA9q/bE08l65zrJT+xt7Olfqz8AcUlxaudJkf+knvsEjAmKsAypX4vFJxejKAV7PTJJUIRZubXAVOoPRv+6/jn62OLZDK4nzTwFwcHbB7kUcgkAv3J+arOC0F4Fjwq0KtsKgAvBFzh857DGEWlLEhSRZ0JiQlh/aT0AxVyK0alSJ40jEqk1KNGAGkVqAMYJvK6GXtU4IpEbpA+YZZP+YI9JgiLyzPIzy0lITgDg1TqvqkNbhWXQ6XQmH44yJ0r+E5cUx/IzywFwsXOhT40+GkdkWSxhQrg+NfrgZOsEGD8z45JytpndmkiCIvKM/HKzfK/WeRW9zvixsOTUEgyKQeOIRE76+8LfhMcbO0D3TjU5mDCyhAnhCjsUpneN3gA8invE+ovrNYtFa5KgiDxx7uE5jtw9AsBzJZ6jdrHaGkckzClZqCQdKhhXV70RdoO9gXs1jkjkJOkDZh2kmcdIEhSRJ1KvLyFXTyybfDjmT3cj77Ll6hYAyrqVpXW51hpHJNLTplwbdeHGzVc2ExQVpHFE2pAEReS6ZEMyv502jum31duqw1mFZXqh2gsUdigMwKpzq4hOiNY4IpETfj/1u9pkN7DOQLUpT1geG70Ng+oYhxwnK8n8fup3jSPShrxDRa7bdm0bdyPvAtC9SneKuBTROCKRESc7J/rV6AdAVEIUay+s1Tgi8ayenPsk9ZByYZlSz4my6OSiAjkniiQoItdJ51jrk/oLTEbzWL9j945x9uFZAFqUbkElz0oaRySepqp3VZr6NAXgzIMzBAQFaBxR3styghITE8OCBQuYNGkS3bp1o1WrVmzatCnT+0dGRvLNN9/Qo0cPOnbsyIQJE7h48WJWwxBWIiwujLXnjb/AvZ296Vq5q8YRicxoUboFFT0qArD92nZZF8TKSR8w65S6I/OiE4s0i0MrWU5QwsPDWbRoEYGBgVSqlLUs3GAw8O6777J9+3Z69erFyJEjefToERMmTODWrVtZDUVYgZVnVxKfbJyNdkCtAdjb2GsckcgMnU6nXmKWdUGsW3xSPH+c+QMAR1tH+tXsp3FEIrNeqvUSDjbGOVn+OP2HOo9UQZHlBMXLy4u1a9eyatUqRo0alaV9d+3axZkzZ3j//fd57bXX6NWrFz/++CN6vZ6FCxdmNRRhBVJn/bKku3UZWGegelvWBbFeGy5vIDQ2FIAXq72Im6ObxhGJzHJ3dOeFai8AEBIbwsbLG7UNKI9lOUGxt7fHy8srWwfbvXs3np6etGrVSi1zd3enTZs27Nu3j4SEgpUd5neXQi7x3+3/AKhdtDb1itfTNiCRJeU9ypusC/LvqT0APLwWjsEgyYq1SP0jQZp3rE9BHvafp51kL126ROXKldHrTQ9bvXp14uLi0m3mCQ4O5uLFi+q/wMDAvAhXPKPUnSsH1x0sS7pbodQfjr/smgPA/vlnWTF+F9cPF8y5GazJg+gHbLpi7CNYslBJ2ldor3FEIqs6VOxAcdfiAPxz6R8eRj/UOKK8k6cJSmhoqNmrLyllISEhZvdbt24dw4cPV/9NmTIlV+MUz86gGNQExUZnwyt1XtE4IpEdDWN8sTcY28APF95Noi4RgOjQOHbMCMiVJCXmURzHVl8m5lHBXYMkp/xx+g+SDEmAscnORm+jcUQiq2z1tmpza5IhiWVnlmkcUd7J0wQlPj4ee/u0nSRTyuLj483u17NnT+bOnav++/DDD3M1TvHsdl7fya0I4xWxzpU6q78AhPUwGBTOLrtN/ajmAMTYRHHK5ZBJnYNLz+d4c09MWDwBf14hJsz854HIPGneyR8KajNPniYoDg4OZvuZpJQ5OJhfQdLb25uqVauq/8qWLZurcYpnt+jkIvW2dI61TkEXQokOjaN5eDu17D+3HSZ1okPiCLoQmtehiUw4HXqKk/dPAtC4VGOqF6mucUQiu2oWrUnDkg0BOH7vOKfvn9Y4oryRpwmKp6en2WaclLLsdr4VliUiPoI159YA4OHoQY8qPTSOSGRH7P9fwagWUxePRG8ATrscIcLmkdl6wrKsuPq4KUCunli/gngVJU8TlMqVK3P58mUMBtMl3M+fP4+joyOlS5fOy3BELll9bjWxSbEA9K/VHwdb81fGhGVzcje+bnpsaBrRFgCDzsChwrvM1hOWI4kk1lxfBYC9jT0v13pZ44jEs+pfqz92ejsAfjv1m9q3KD/LtQQlODiYwMBAkpIeP4mtW7cmNDSUPXv2qGVhYWHs3LmT5s2bm+2fIqyPrPmRPxSv5omLpyMAzcMfj/7Y77YNBWO/ExcvR4pX89QkPpG+My5HCY4LBqBn1Z54OslrZO28nL3oUdV4Nfp+9H22XNmicUS5zzY7O61Zs4aoqCi1aWb//v08ePAAgN69e+Pq6sqcOXPYvHkzK1asoESJEgD4+fmxevVqpk2bxo0bN3Bzc+Ovv/7CYDAwZMiQHDoloaWroVfZE2hMQKt7V6dRyUYaRySyS6/X0XRQdXbMCKB4og8VY6tz1ek8dxxucMvhGmXiK9J0YHX0ehk+bikMBoWH18L5z227WpZ6unRh3QbXHcyf5/8EjD8Eu1XppnFEuStbCcqKFSsICno8vHDPnj3qVZGOHTvi6upqdj8bGxu+/vprfv75Z9asWUN8fDzVqlXj/fffp0yZMtkJRViY1HOf+Nfzl7lPrFz5xsVpN7E+B5ecp1l4O646nQfgcLGdvNarD+Uby+gsS3H9cBAHl5wnKPw+JyseBsDN4EGV0LoaRyZySpdKXSjiXISHMQ/5++LfhMaG5uurY9lKUFauXPnUOpMnT2by5MlpygsVKsS7777Lu+++m51DCwtmUAwsOWVMUPQ6Pa/WeVXjiEROKN+4OGUbFqPCNm+WH/iVJH0ix7z2UKpB/v1gtDbXDwexY4ZxtdvD7rtJ1hmb1puEtWH3j6ex1dtKMpkP2NnY8UrtV5hxaAYJyQmsOLOCUY2ytuSMNcnTTrIif9sTuIcbYTcA6FixIyULldQ2IJFj9HodFauUUedECY4JLnDrglgqg0Hh4JLz6v3UzTvN/n+IeG7MVyO0kXrahvw+mkcSFJFjTBYGlHbvfCl1Z9mCuPy7JUqZrwbgjv0NAh2vAFA2rhI+CeUBma8mP6lbvC51ixmb7Q7dOcSF4AsaR5R7JEEROSIqIYrV51YD4ObgxvPVntc4IpEbasTUo7iTsdP7hssbCtS6IJYq9Tw0B1JNpNcsvH269YR1M5kT5UT+vYoiCYrIEWvOrSE6MRqAl2u9jKOto8YRidygx4a+FV4CjOuC/HH6D40jEinz0CSTzMHC/wJgo9jSOLK12XrC+r1S5xVs9cYupEtPLSXZkKxxRLlDEhSRI6xhantndwfq96qEs3xQP5OXK/ZXb6d+3YU2UuarOetyjAhb4yy/daMaUyjZTa0j89XkL0VditKlUhcA7kTeYcf1HU/ZwzpJgiKe2fVH19l1YxcAVb2q0qRUE20DSoezhyMN+lTG2UOu7jyLKu6PX+MTQSc4EXRC24AKuJT5ag4UTt051rR5R+aryX8KQmdZSVDEM1t6aql6e3DdwTL3SR7S6qpQQWkDtxZute057Wac+6RQkhu1oo0Ly7l4OdJuYn0ZYpwPdavcTZ0DZe35tYTHhWscUc6TBEU8E4NiUEdz6NAxsO5AbQMqYLS6KvRyrZextzEuTfH76d9JTE7M0+MLU8vPLCdBMa4K/2KZPthiS4uhNXlppp8kJ/mUg60DA2oNACA2KZZV51ZpHFHOkwRFPJN9N/dxPew6AB0qdsCnsI/GEYm84OHkwQvVXgDgYcxDNl3ZpG1ABVzqS/yvPecPQJEKbtKsk8+lXussPzbzSIIinonMfVJwpX69ZU6UjMU8iuPY6svEPIrL8cc+//A8h+8Ym3fqFa9HLc/aOX4MYZkalGhAjSI1AOOPxSuhVzSOKGdJgiKyLTohWr2sWNihsPqLWhQMHSp2oLirsfngn0v/EBwTrHFElismLJ6AP68QkwtzkZisHl5XVg8vSHQ6nckPhdRroeUHkqCIbPvz/J9EJUQB8FLNl3Cyc9I4IpGXbPW2DKxj7HOUaEhk2ellGkdU8CQbktVO6rZ6WwbUHqBxRCKvvVrnVfQ641f5kpNLMCgGjSPKOZKgiGyzhrlPRO5K/Ytd5kTJe9uubeNu5F3AOKqjqEtRjSMSea1EoRJ0qtgJgMDwQHbf2K1xRDlHEhSRLYFhgey8vhOAyp6VaebTTOOIhBZqFq1Jo5KNADh+7zin7p/SOKKCZeGJheptad4puEyG/eejzrKSoIhsWXhiIQrG1VFl7pOCTeZE0UZwTDBrz68FoIhzEbpV6aZxREIrz1d7HjcH48zBq8+tJjI+UuOIcoYkKCLLkg3J6i83vU4vzTsFXOo5UZaeWkpCcoLGERUMv536jUSDcf6ZQXUHqa+BKHgcbR15udbLAEQnRrPy7EqNI8oZkqCILNt+bTs3w28C0KVSF0oVLqVxREJLXs5eJnOi/HPpH20DKgAURWF+wHz1/tD6QzWMRliCYc8NU2/PC5inYSQ5RxIUkWXywSieNKx+qg/H4/njw9GSHb5zmDMPzgDQvHRzqheprnFEQmsNSjSgbrG6ABy8fVB9f1gzSVBEljyMfshfF/4CjCtqdq/SXduAhEVoV6EdZd3KArD5ymZuhd/SOKL8TX4kiCfpdDqTqyjzj8/PoLZ1kARFZEnqdm//uv7Y2dhpHJGwBHqdXv2iVFBYELBA44jyr6iEKJadMc4542rvSr+a/TSOSFiKV2q/goONceHQpaeWEp+U8xMD5iVJUESmKYpi0rY5pP4QDaMRlsa/nr86YdSCEwtINiRrHFH+tOrsKnWCxJdrvoyrvavGEQlL4eHkQe8avQEIiQ3h74t/axzRs5EERWTawdsHOffwHAC+ZXyp6l1V44iEJSntVprOlToDcDP8Jtuvbdc4ovzJpHnnOWneEabyU38wSVBEpkm7t3gakw/HfDKSwJJcCL7A/lv7AahZpCZNSjXROCJhaVqXa01Fj4qAcabhwMgb2gb0DCRBEZkSGR/J8jPLAePCgH1q9NE4ImGJulfpTjGXYgD8feFvHkQ/0Dii/CV1x8eh9YfKBIkijdT9wQCWXf1dw2iejSQoViY3l23PyMqzK4lOjAagf63+uNi75OnxhXWws7FTJ+5LNCSy9ORSbQPKRxKTE1lyyrharZ3ejoF1B2ockbBUg+sNxkZnA8BvF5ZiIJmH18IxGBSNI8saSVByQF4mDbm5bHtGUl+uTz2UTYgnpf71Ni9gHopiXR+KluqfS/+oV6ReqPYC3s7eGkckLFXJQiVpU6Q9APcTgjjrcpz988+yYvwurh8O0ji6zJMEJQdolTTklTMPznDw9kEA6harS4MSDTSOSFiyyl6VaV22NWDaZ0I8m1+P/arelj5gIiPXDwdR7XhT9f5ety0ARIfGsWNGgNUkKZKgiKf65egv6u1hzw2Tdm/xVKmvss09PlfDSPKHq6FX2XLV+CVTzr0cHSp20DgiYakMBoWDS85TK7ohbkmeAJxyPUSYTaha5+DS81bR3CMJishQVGIUS04a272d7ZwZWEfavcXT9a7eG3dHd8DYfyk0NjTjHUSG5hybo95+vcHr6nwzQjwp6EIo0aFx2GBDi3BjIpusS2af+2a1TnRIHEEXLP9vUt7lIkN/Xl9NZIJx6e4BtQbg5uimcUTCGjjZOTGoziAA4pLiWHxiscYRWa/4pHgWnDDOzGunt5MJEkWGYlN1NWgV1hmdYrzivcdtM8kkm61nqSRBEelSUFh06fGU5SMbjtQwGmFtRjUapd6efXQ2BsWgYTTWa835NQTHBAPQu0ZviroU1TgiYcmc3B3U215JxagT3RiAR3bBnHY9bLaepZIERaTruuNFToeeAqBRyUY0KCmdY0XmVfOuRptybQC4HHqZf6//q3FEaWk1bD8rUvcBG9VwVAY185azuwP1e1XC2Qq+6AqS4tU8cfF0VO+3Duuq3t7pvgEAFy9HilfzzPPYskoSFJGuXe4b1duW9MEorMfoRqPV2z8f+VnDSMyz9BF4Zx6cYe/NvQDUKFID3zK+Gkf0mLOHIw36VMbZw/HplUWe0et1NB1UXb1fM7oB3gnFATjncpwHdndpOrA6er3lD3aQBEWkYTAoXL4YyNFCewBwd3TnpVovaRyVsEbPV32eEq4lAFh3cR23I25rHJF1+fXo46HFIxuMlBF0+UhuXoEq37g47SbWx8XTET16Wod3UbfdaHeM8o2L5/gxc4MkKMLE9cNBrBi/ixnrZ5GoTwCgaWhb7gdE5Nox5VJx/mVnY8fw54YDkKwkM/eYDDnOrKiEKHXmWGc7Z5k5Np/J7StQ5RsX56Uf/WgxtCYtwjtip7MHYE3QCmITY3PlmDlNEhShun44iB0zAogKjWV3quad5vc75erkPnKpOH8b3mC4Ou323ONzSUxO1Dgi67Ds9DIi4o0/DPrX6q8O2xYis/R6HUUquFEo2Y3ny70AQGhsKKvOrdI2sEySBEUAjyf3ATjvHMB9+zsAVI2pQ4mE0oD1TO4jLItPYR96Vu0JwL2oe/x98W+NI7J8iqIw68gs9b6MoBPPyr/q4+Hps4/O1jCSzJMERQCPJ/cB2O7x+AvE71E39ba1TO4jLE/qTtaW2FnW0uwO3M2p+8YRdE19mtKwZEONIxLWrnGRJtQpVgeAg7cPcuzuMY0jejpJUATweNKe+3Z3OO16BADPxCLUj2putp4QWdGuQjsqe1YGYOeNnZy+f1rjiCzbzEMz1dvjG4/XMBKRX+h0OsY0GqPeT/0es1SSoAjg8aQ9/3qsV8v8wrpjg43ZekJkhV6nZ3yTx1+0Mw7O0C4YC3f90XXWXVwHGFel7VOjj8YRifzi1Tqv4ulknP9k+Znl3Iu8p3FEGZMERQDGyX10Xknsd9sGgL3BgVZhnU3qWMvkPsIy+dfzx83BuFTC76d/50H0A40jskz/O/I/ddbdUQ1HYWdjp3FEIr9wtnPm9QavA5BoSLT4viiSoAjA2Nv7RssA4vXG4WdNI9riYihkUsdaJvcRlsnV3lVd5Tg+Od5kjg9hFJUQxbzj8wBwsHFQv0yEyCmjG41WR9X9cvQX4pIsdxZlSVAEAMmGZP64/3hBt7aPeqq3XbwcaTexvtVM7iMs19jGY9WVeH8++jPxSdKnKbWlJ5cSHh8OQP/a/SniUkTjiER+41PYh741+wLwMOYhy04v0zii9EmCIgDYcHkD1x5dA6Bd+fb0G2hcv6HF0Jq8NNNPkhORI8q5l+PFai8CEBQVxMqzKzWOyHIYFAM/Hv5RvS+dY0Vumdhkonp7xqEZKIplTh8hCYoATHt0T2w6gSIVjH0FilRwk2YdkaMmNp2o3v7h4A8W++GY17Zc2cKF4AsA+JbxpX6J+hpHJPKrJj5NaFKqCQCn7p9i141d2gaUDklQBMfuHlNXmq3kWYmulbs+ZQ8hsq9F6RbqvB4BQQHqYngF3dcHvlZvv9H0DQ0jEQXBkz8ULJEkKMLkg3FSs0lqHwEhcoNOpzO5xPzNgW+0C8ZCHL5zWP0VW8WrijrzrhC5pXf13vgU9gFg/aX1nH1wVuOI0pJvogLuauhVVp9bDUBRl6IMqjtI44hEQdC3Zl9KFzYuofDPpX8K/MRtqZO0Sc0mYaO3yaC2EM/OzsaOt5q9pd5P/UPVUmQ5QUlISGD27Nm8+OKLtG/fntdff50jR45kat+jR48yYcIEevToQdeuXRkxYgRbtmzJctAi53z333fqnAsTmkzAyc5J44hEQWBvY8+k5pPU+9P3T9cwGm1dCb3Cn+f/BKCYSzFZtVjkmWHPDVMnbvvj9B8EhgVqHJGpLCco06ZNY+XKlXTo0IHx48ej1+t55513OHXqVIb77du3j7feeovExET8/f0ZNmwYDg4OTJ06lZUrpSe/Fh5EP2DhiYUAuNi5mKyXIkRuG1p/KF5OXoBxVsvrj65jMCg8vGYcZvvwWniBWJzy+/++N/mR4Ggrq3qLvOFq78rYRmMBSDIk8f1/32sckaksJSjnzp1jx44djBgxgtGjR9OzZ09mzJhB8eLFmT074xnp/vzzT7y8vJgxYwa9e/emV69e/PDDD5QqVYpNmzY900mI7Jl1eJY6Sc+IBiPwcPLQOCJRkLjYuzChyQQAkpVkPvrrM1aM38X++ca28P3zz7Ji/C6uHw7SMsxclfpHgqu9q6xaLPLcuCbjcLI1Xjmfe3wuwTHBGkf0WJYSlN27d2NjY0PPno87cDk4ONCtWzfOnj3L/fv30903JiaGQoUKYW9vr5bZ2tri5uaGg4Os75LXIuIjmHXYuJy7rd5WRg0ITYxpPAZXe1cAVtz4g3vhpmuDRIfGsWNGQL5NUr7/7/vHPxKekx8JIu95O3sz/LnhAMQmxfLToZ80juixLCUoly9fxsfHBxcXF5Py6tWrA3DlypV0961Xrx7Xr19n3rx53L59mzt37rB48WIuXrxI//79sxG6eBazDs/iUdwjAF6p/Qql3UprHJEoiDydPBnx3AgAkvSJbPf4y2y9g0vP57vmnuCYYPVHgr2NPW80kx8JQhtvNnsTW70tAD8d/omohCiNIzLKUoISEhKCl5dXmvKUsuDg9C8NDR48mDZt2rB06VIGDBhA//79+f333/n8889p3bp1hscNDg7m4sWL6r/AQMvqyGNtIuMj+e6/7wDjKrMf+H6gcUSiIBvg/Ro2ivHDcZf7BmL0aT8co0PiCLoQmteh5aof/vuB6MRoAIbVH6YO+RQir5V1L8uA2gMAeBT3iJ+P/KxxREa2WakcHx+PnV3alTVTmm3i49NfV8POzo7SpUvj5+dHq1atSE5OZv369UyZMoXvv/+emjVrprvvunXrWLRoUVZCFRn435H/ERpr/LAfUHsAlb0qaxyRKMjc4z1pHt6Ove5biLWJYZvHWp4PSTuSJTYs/6zbExobyk+HjZfS7fR2vNfyPY0jEgXdey3eY+nJpSgofHPgG0Y3Gq02v2olS1dQHBwcSExMTFOekJCgbk/PjBkzOHDgAJ988gnt2rWjY8eO/PDDD3h5efHjjz+mux9Az549mTt3rvrvww8/zErYIpWohCi+PfAtYLx68qGvPJdCW07uDnQJfQkbxTj3x3aPv4jSR5itl1/MODiDyIRIAIbUHyJNrEJz1YtU5+VaLwOmzY9aylKC4uXlRUhISJrylDJvb2+z+yUmJrJhwwaaNWuGXv/4kLa2tjRp0oSLFy+aTXxSeHt7U7VqVfVf2bJlsxK2SOV/h/9HSKzx9epfqz9VvatqHJEo6IpX86RcoXK0CO8IQJxNLFs815jUcfFypHg1Ty3Cy3GPYh+pa1/Z6e14v+X7GkckhNHHrT9WZxL/5sA3RMSn/aGQl7KUoFSqVInbt28THR1tUn7u3Dl1uznh4eEkJyeTnJycZltycjIGgwGDwZCVUHJFfFI83x34ji/3fql1KLkiKiGKb/8zXj3RoePDVnL1RGhPr9fRdFB1uoW8jK3B2Or8r8c6ImweqXWaDqyebxat/OHgD+oHv389f8q6yw8uYRmqeVdT+6KExoZqPqInSwmKn58fycnJrFu3Ti1LSEhg48aN1KhRg2LFigFw//59k46sHh4euLq6snfvXpMrJTExMezfv58yZcpoPtQ4MTmRer/WY9K2SXy++3Nuht/UNJ7c8P1/36tj3F+u9TLVvKtpHJEQRuUbF6fv2I60i+sBQII+ns2eq3HxcqTdxPqUb1xc4whzxoPYB+pkWHL1RFiij1p9pF5F+e6/7wiPC9csliwlKDVq1KBNmzbMmTOH2bNns27dOiZOnEhQUBAjRz6eYGjq1KkMHPi4k5uNjQ0vv/wyt27dYuTIkaxcuZLly5fz+uuv8/DhQwYN0n79FzsbO7pX7g5AfHI8H+38SOOIctaD6Afqeh82Ohs+8/tM44iEMFW+cXHmT56Fg974Y2WP90ZaflE53yQnAN+d+kYduTOy4UjKe5TXOCIhTFXxqsKrdV4FIDw+nJ03dmoWS5anup88eTJ9+/Zly5Yt/PjjjyQlJTF9+nTq1auX4X6DBg3io48+wtbWlkWLFjF//nxcXFz4/PPP6dixY3bjz1GTfSfj4WicKGnpyaWcCDqhbUA5aMqeKerY9hENRsjIHWGRSrmVZEi1YQDEG+L5dPcnGkeUcx7Y3WXJpcezxkoTq7BUH7X6iIF1BnJ+zHleqPaCZnFkaZgxGEfqjB49mtGjR6dbJ71ROR06dKBDhw5ZPWSe8XDy4MNWH/LW1rdQUHhn2ztsHbhV67Ce2dXQq/xy9BcAnO2c+bj1xxpHJET6JtR6k0WnFxFrE83CEwsZ32Q8dYvX1TqsZ/aX91KSlCQA3mr2FkVdimockRDmVfKsxJIXl2gdRtavoOR3YxqNoZx7OQC2XdvG1qvWn6B8uPNDEg3Gvj9vNXuL4q7555K5yDvO7g7U71UJ51we7uvl6EW3EONwRwWFSdsmoSjWPYtsQPBxjhTeDUAR5yImy9wLIcyTBOUJDrYOfNn28Siet7e9TbIh7egja7Hv5j6Wn1kOGNdcSL3EvRBZ4ezhSIM+lXH2yP3VdtuG9aCMaxkAtl/bzuYrm3P9mLklKTmZt/c+Tkg+9P2QQg6FNIxICOsgCYoZL9V6iYYlGwJw6v4p5gfM1zii7Ek2JDNu0zj1/hdtvqCwQ2ENIxIic+wUez6s/7j/yaRtk0hMTn+uJEt1/XAQ49/5kJORAQCUiC+Dx2/V8+3ih0LkJElQzNDr9HzX8Tv1/vs73reoJagza86xOWpH33rF66krVgphDV4o14smpZoAcO7hOXVyM2tx/XAQG2bu5w/nX9Wylx+MID40KVdXaM6rpjghcpskKOloVbYVr9R+BTBOWPPedutaKyMkJoQPdz4eJfBTl5+w0dtoGJEQWaPT6ZjVdRY6jBO0fbrrU26F39I4qswxGBQOLjnPBq8VhNsaJ5yrF9mUGjHPqXVya4XmvGyKEyI3SYKSgW87fqs2icwPmM9/t/7TOKLMe2/7e+qCgK/UfoWWZVpqHJEQWdewZENGNRwFQHRiNBO3TNQ2oEwKuhDKxejzbPP8EwBbgx39HppewcyPKzQLkZMkQclAcdfifNHmC/X+qA2jrKIdfMe1HcwLmAcY51uY3n66xhEJkX1T201Vh+T+ef5PNl7eqHFETxcZGs2iYjNI1hk72HcO7UORxBJp6uWnFZqFyGmSoDzF6EajqVe8HgAn759k2r5p2gb0FNEJ0Qxf//iX2vT20ylVuJSGEQnxbNwd3U36hL3+z+uaTr+dGb8/XESg02UASsSXpmvoy2br5acVmoXIaZKgPIWt3pa5PeZiozP23/hizxcE3AvQOKr0fbTzI66HXQeM/WhGNhz5lD2EsHyv1H6F9hXaA3A74rZFN/VcDb3Kt+e+AkCn6BgcNBE7xS5Nvfy0QrMQuUESlExoWLKhuqhXkiGJwX8NJiE5QeOo0tp3cx8zDs4AwNHWkXk95qmLPglhzXQ6HfN7zqeQvXH+kEUnFrHu4rqn7JX3Uj4fYpNiAWgT1oOKcdXN1s1PKzQLkRvk2yuTPmr9EXWK1QHg9IPTfLLTstYIeRT7iAFrBqBgHBXwud/nst6OyFfKuJVhZufHQ41HrB/Bw+iHGkaU1pd7v2T/rf0AlHMvx8x+3+PiaTqaJr+t0CxEbpEEJZPsbexZ/MJibPXG5Yu+2v+VxcxuqSgKw9cP51aEcQhm67KtebPZmxpHJUTO86/nT/cqxlXH70ffZ+DagRgUg8ZRGe2/uZ/PdhtXCbfR2fBHrz+o1bwiL/3oR4uhNQFoMbQmL830k+REiEyQBCUL6hWvZzIN/qt/vsrtiNt5dnyDQeHhNWPnwIfXwtU5FH4+8jNrzq8BwNPJk996/SZznoh8SafTMbfHXHVUz5arW/hy75dP2Sv3PYh+QP81/dVk6ePWH9OsdDMA9HodRSq4AVCkgps06wiRSZKgZNFbzd9Sf8GFxIbQb1U/4pLjcv241w8HsWL8LvbPPwvA/vlnWTF+F8s3/WnSYXB+z/n4FPbJ9XiE0Epx1+Is671M7V/18c6P2XZ1m2bxJCYn0ndVX/UKZssyLZnsO1mzeITILyRBySK9Ts/iFxZTxs24kNl/t/9j4oFxat+P3HD9cBA7ZgQQHWqaCAVGBDL8wGskGR4v4f5CtRdyLQ4hLEXb8m35zM/YnKKg0HdVX849PKdJLG9ueZM9gXsAKOFagpV9VqpNwUKI7JMEJRs8nTxZ+9JanO2cAVhzfRXrvX7PlWOlTJn9pCh9BD/6fEKUbQQAHSp0lAnZRIEy2XcyPar0ACA8Ppxuf3TjftT9PI3hm/3fMOvILMDYT+3Pl/6kRKG0E7IJIbJOEpRseq7Ec/ze63d1nZD13n/ww74ZOb62RtCF0DRXTuJ0Mcz0+Zh7DjcBKJpQkhm1f5Z+J6JA0ev0/NH7D+oXrw/AjbAbdPm9i7rEQ25bGLCQd7a/o97/pdsvNPVpmifHFqIgkATlGdSNaMqAqMcToX157VOGv/Nmjq5S+uRU2HG6GGb5fM4Np0sAuCV5MvH2FzjEOOXYMYWwFq72rvwz4B9KFy4NQEBQAB2WduBR7KNcPe7vp35n2Pph6v0pbabwWv3XcvWYQhQ0kqBkU0q/EL87Pege3F8tX1BoBu8s/oBrh+7lyHFST4UdaRPOt6Xf56LzKQCck11549YUiiSWkCmzRYFVslBJtg7cSjGXYgAcv3ecdkvacS8yZ/4GnzTr8CxeXfuqOmJnfOPx0ilWiFwgCUo2PNkvpGfIq3QJ6aveX110AcPXjiA+8dlnmy1ezRMXT0eC7G7zdem31fU9nJNdmXD7c0ollJMps0WBV827GjsH71STlICgABrPa8yJoBPp7pPesP30JBmSeG/7e4zbNE4tG9lgJD90/gGdToYOC5HTJEHJhif7hejQ8WKwPz2DX1XL/nX6h5a/+nL90fVnOpZeryO4wyWmlJtAkINxzhX3RC/eufk1FeKqATJlthAA1YtUZ+fgneoIu9sRt2mxoAXzjs9DUUyTj/SG7afXPHs38i5dfu/C9P2PO6JPbjmZn7v9LMtJCJFL5C8rG8wtka5DR4+QAQy9+za2BuMQw6Mhh6n7S11mHpxJYnJilo9zO+I2vVb0YvyJkcTrjWt7lIwvy7s3v1WvnMiU2UI8Vr1IdQ4PO6x2Vo1JjGH4+uF0X9adyyHGq4/pDduPDo1jx4wAkyQl2ZDM3GNzqfG/Gmy/th0wLiD6Y+cfmdpuqlw5ESIXSYKSDRn192ga2YZJt77GO8GYNEQmRDJxy0Rqza7F3GNziU2MferjXw65zLiN46j4Y0XWXlirlr9S+1XW+W3GO6mYTJktRDqKuRZj5+CdDKv/uBPrxssbqflzTV5f/zqrf9+U4f4Hl54nOj6GpSeXUnt2bUb8M4LweGNTUHHX4vw76F/GNRmX4WMIIZ6dzCaUDSn9Qp78BZaiYlw1voqcy4F2a1lwYgEAl0IuMeKfEbyx5Q06V+pMi9ItqFGkBoUdCpOsJHM38i4B9wL498a/HL5z2OTxiroU5cfOP9KvZj9CbkQQwHWZMluIDDjaOjK351x6VO3ByH9Gci/qHomGROYcnwOecyjtXIFa0Q0oFV8ez6Qi2Cg2RNtE8tAuiMv2Zxj53UkiEiNMHnNQ3UH80OkHPJ2kv5cQeUESlGzQ63U0HVSdHTMC0q3T9tWGDG3cnZENR/L2trfZHbgbgOjEaNacX6OunZMRZztnxjUexzst3pEPRSGyoWfVnrQt35av93/N9/99T3RiNAC3HK9xy/Fa+jumapFtUboFU9tOpXW51rkcrRAiNWniyabyjYvTbmL9py6l3qhUI3b57+LI8CMMqTcELyevpz527aK1+abDN9yYcIOv2n8lyYkQz8DV3pXP23zOnTfv8GndKZSNq/TUfQrZFmJw3cHs8d/D3tf2SnIihAbkCsozKN+4OGUbFuPizlvsn3+WFkNrUrVNabNNLw1LNmT+8/OZY5hDQFAAp++f5kroFWISYwBj23ZFz4q0KN1CpsoWIhe4ObrxUc/JVNnenLu373Ld6SL37G8RaRNOsi4ZR4MTnolFqOpYg3e+GYa9rZ3WIQtRoEmC8oyyupS6jd6GhiUb0rBkw7wITwiRyuPm2TjqRTWjHs3S1Gn3Wn1JToSwANLEI4QoUDLbPCuE0JZcQRFCFDhZaZ4VQmhDrqAIIQqkrDbPCiHyliQoQgghhLA4kqAIIYQQwuJIgiKEEELkU87uDtTvVQnnDJZosVTSSVYIIYTIp5w9HGnQp7LWYWSLXEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhFnW3LFKCCGE9ZNOssIsa+5YJYQQwvrJFRQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWJwszySbkJDA/Pnz2bp1K5GRkVSsWJFhw4bRqFGjTO2/Y8cOVq9ezdWrV7G1taVs2bIMGzaMBg0aZDl4IYQQQuRPWU5Qpk2bxq5du+jbty8+Pj5s2rSJd955h5kzZ1KnTp0M912wYAGLFy/Gz8+Pzp07k5SUxPXr1wkODs72CQghhBAi/8lSgnLu3Dl27NjBqFGj6N+/PwCdOnXC39+f2bNnM3v27HT3PXv2LIsXL2bMmDH069fv2aIWQgghRL6WpT4ou3fvxsbGhp49e6plDg4OdOvWjbNnz3L//v109121ahWenp706dMHRVGIiYnJftRCCCGEyNeydAXl8uXL+Pj44OLiYlJevXp1AK5cuUKxYsXM7nvs2DFq1arF6tWrWbp0KeHh4Xh6ejJw4EB69+6d4XGDg4MJCQlR7wcGBmYlbCGEEEJYmSwlKCEhIXh5eaUpTylLry9JZGQk4eHhnDlzhuPHj+Pv70+xYsXYtGkTM2fOxNbWlueffz7d465bt45FixZlJVQhhJVydnegfq9KOLs7aB2KEEJDWUpQ4uPjsbOzS1Nub2+vbjcnpTknPDycTz75hHbt2gHg5+eHv78/S5YsyTBB6dmzJy1atFDvBwYGMmXKlKyELoSwEs4ejjToU1nrMIQQGstSguLg4EBiYmKa8oSEBHV7evsB2Nra4ufnp5br9Xratm3LggULuH//frrNQ97e3nh7e2clVCGEEEJYsSx1kvXy8jLpC5IipSy9JKJw4cLY29tTuHBhbGxsTLZ5eHgAxmYgIYQQQgjIYoJSqVIlbt++TXR0tEn5uXPn1O1mD6LXU7lyZcLDw9NcgUnpt+Lu7p6VUIQQQgiRj2UpQfHz8yM5OZl169apZQkJCWzcuJEaNWqoTTT3799PM9KmTZs2JCcns3nzZrUsPj6ebdu2Ua5cOWnCEUIIIYQqS31QatSoQZs2bZgzZw5hYWGUKlWKzZs3ExQUxLvvvqvWmzp1KidOnGDPnj1q2fPPP8+GDRv44YcfuHXrFsWKFWPLli3cv3+fadOm5dwZCSGEEMLqZXmq+8mTJ6vJRVRUFBUqVGD69OnUq1cvw/0cHByYMWMGs2fPZuPGjcTFxVGpUiWmT59O48aNsxu/EEIIIfKhLCcoDg4OjB49mtGjR6db58cffzRb7uHhweTJk7N6SCGEEEIUMFnqgyKEEEIIkRckQRFCCCGExZEERQghhBAWRxIUIYTIZbK+kBBZl+VOskIIIbJG1hcSIuvkCooQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKFZGhisKIYQoCGSYsZWR4YpCCCEKArmCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghCizpdC6E5ZJOskKIAks6nQthueQKSg6QX2FCCCFEzpIrKDlAfoUJIYQQOUuuoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLY6t1ANkRHx8PQGBgoMaRCCGEECKrypYti6OjY4Z1rDJBCQoKAmDKlCkaRyKEEEKIrJo7dy5Vq1bNsI5OURQlj+LJMWFhYRw+fJgSJUpgb2+vdTi5LjAwkClTpvDhhx9StmxZrcPJU3LuBe/cC+p5Q8E994J63lBwzz3fXkFxd3enY8eOWoeR58qWLfvUjDO/knMveOdeUM8bCu65F9TzhoJ97umRTrJCCCGEsDiSoAghhBDC4kiCYgW8vLzw9/fHy8tL61DynJx7wTv3gnreUHDPvaCeNxTsc38aq+wkK4QQQoj8Ta6gCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOFY5UVt+FBwczOrVqzl//jwXLlwgNjaWmTNnUr9+/TR1x48fz4kTJ9KUN27cmG+//dakLCEhgfnz57N161YiIyOpWLEiw4YNo1GjRrl1KlmWlXMHOH36NL/88guXLl3CxcWFNm3aMHz4cJydnU3qWcO5m7Np0yamTZtmdtvatWvT9Pbft28fCxcuJDAwEHd3d7p27cqgQYOwtbWuP29rfb2yIiAggAkTJpjdNnv2bGrWrKnez+z73BLFxMSwfPlyzp07x/nz54mMjOT999+nS5cuaereuHGDWbNmcfr0aWxtbWnWrBljx47F3d3dpJ7BYGD58uX89ddfhIaG4uPjw6uvvkr79u3z6KyeLrPn/eWXX7J58+Y0+5cpU4bffvvNpMwazju3WNcnWD5269Yt/vjjD3x8fKhQoQJnz57NsH6RIkV4/fXXTcrMDVObNm0au3btom/fvvj4+LBp0ybeeecdZs6cSZ06dXL0HLIrK+d++fJl3njjDcqWLcvYsWN58OABK1as4Pbt23zzzTcmda3h3DMydOhQSpQoYVLm6upqcv/gwYN88MEH1KtXjwkTJnDt2jWWLFnCo0ePeOutt/Iy3Gdm7a9XVvTu3Zvq1aublJUqVUq9nZX3uSUKDw9n0aJFFCtWjEqVKhEQEGC23oMHDxg3bhyurq4MHz6c2NhYli9fzrVr1/j111+xs7NT686dO5fff/+dHj16UK1aNfbt28fnn3+OTqejXbt2eXVqGcrseQPY29vzzjvvmJS5uLikqWcN551rFGERoqOjlfDwcEVRFGXnzp2Kr6+vcvz4cbN1x40bpwwaNOipj3n27FnF19dX+eOPP9SyuLg45eWXX1ZGjhyZM4HngKyc+6RJk5QXXnhBiYqKUsvWr1+v+Pr6KocOHVLLrOXczdm4caPi6+urnD9//ql1Bw4cqLz22mtKYmKiWjZnzhylVatWyo0bN3IzzBxlza9XVhw/flzx9fVVdu7cmWG9zL7PLVV8fLwSHBysKIqinD9/XvH19VU2btyYpt53332ntG/fXgkKClLLjhw5ovj6+ip///23WvbgwQOlTZs2yvfff6+WGQwGZcyYMUqvXr2UpKSkXDybzMvseU+dOlXp2LHjUx/PWs47t0gfFAvh7OxM4cKFs7RPUlISMTEx6W7fvXs3NjY29OzZUy1zcHCgW7dunD17lvv372c73pyU2XOPjo7m6NGjdOzY0eSXRqdOnXBycmLnzp1qmbWc+9PExMSQnJxsdtuNGze4ceMGPXr0MGnOefHFF1EUhV27duVRlM8uv7xeWRETE0NSUlKa8qy8zy2Vvb19piYe2717N82bN6dYsWJqWcOGDSldurTJee7bt4+kpCRefPFFtUyn0/HCCy/w8OHDp15xziuZPe8UycnJREdHp7vdWs47t0gTj5W6desWnTp1IjExEU9PT7p3746/v7/JF9Xly5fx8fFJc9kw5dLylStXTD4YLN21a9dITk5Os6CWnZ0dlStX5vLly2pZfjj3CRMmEBsbi52dHY0aNWLMmDGULl1a3X7p0iWANM+Ht7c3RYoUMXk+LF1+eL2yYtq0acTGxmJjY0OdOnUYNWoU1apVA7L2PrdmDx8+5NGjR2YXyKtevToHDx5U71++fBknJ6c0q/2mvD8uX75sdc2AcXFxdOnShbi4OAoVKkS7du0YOXKkSR+j/HjeWSEJihUqWbIk9evXp0KFCsTFxbFr1y6WLFnCrVu3+Oyzz9R6ISEhZrP5lLLg4OA8izknhISEAOb72nh5eXHy5EmTutZ67g4ODnTp0oX69evj4uLCxYsXWblyJaNHj2bevHnqF/XTno+U7dbAml+vrLC1taV169Y0bdoUNzc3bty4wYoVKxg7diw///wzVapUydL73Jo97TwjIiJISEjA3t6ekJAQPDw80Ol0aeqB9b0/vLy86N+/P1WqVEFRFA4dOsRff/3F1atXmTlzpvpDM7+dd1ZJgpILDAYDiYmJmaprb2+f5s33NO+9957J/U6dOvHNN9+wfv16+vXrp44EiI+PN+lklvqYKdtzWm6ee0q86Z1TQkKCSd28PndzsvN8tG3blrZt26rlvr6+NG7cmHHjxrF06VImTZoEoJ5vyjk9+VgZNf9ZGkt5vXJb7dq1qV27tnq/ZcuW+Pn58dprrzFnzhy+/fbbLL3PrdnTzjOljr29fb57fzw5wKFdu3aULl2auXPnsnv3brXza34776ySBCUXnDx5Mt2hhE9aunRpmst32fHSSy+xfv16jh49qiYoDg4OZr8cUz7gHBwcnvm4T8rNc0+JN71zSv1FrcW5m5NTz0edOnWoUaMGx44dU8tSztfcF1ZCQkKenWNOsJTXSws+Pj60bNmSPXv2kJycnKX3uTV72nmmrlMQ3h/9+vVj/vz5HD16VE1QCsJ5Z0QSlFxQpkwZ3n///UzVzakVLIsWLQpAZGSkyWM/fPgwTd2US6ve3t45cuzUcvPcU+qba7oICQkxOR8tzt2cnHw+ihYtys2bN9PUDwkJSdM/IyQkJM0wVktmKa+XVooWLUpiYiJxcXFZep9bs6edZ+HChdVkzMvLi4CAABRFMbnqmp/eHw4ODhQuXJiIiAi1rCCcd0YkQckFXl5eZickyk13794FMJncKGUcfnR0tEnnw3Pnzqnbc1punnv58uWxsbHh4sWLJk0giYmJXL58mTZt2qhlWpy7OTn5fNy9e9fk9a1cuTIAFy9epEaNGmp5cHAwDx8+NBkRY+ks5fXSyt27d7G3t8fJySlL73NrVqRIEdzd3bl48WKabefPnzd5zStVqsQ///xDYGAg5cqVU8vz0/sjJiaG8PDwNJ/h+f28MyLDjK1MdHR0mkv6iqKwZMkSAJNZN/38/EhOTmbdunVqWUJCAhs3bqRGjRpWNyrC1dWVhg0bsnXrVpP+FVu2bCE2Ntbkg9uazz0sLCxN2X///cfFixdp3LixWla+fHnKlCnD+vXrTYYi//XXX+h0Olq3bp0X4eYIa369ssLca3vlyhX2799Po0aN0Ov1WXqfW7vWrVtz4MABk2Hkx44d49atWybn2bJlS2xtbVm7dq1apigKf//9N0WKFKFWrVp5GveziI+PN9s/bPHixSiKQpMmTdSy/HTe2SFXUCzI4sWLAeP8FmD8QDp16hQAgwcPBoxDSz/77DPat29PqVKliI+PZ+/evZw+fZoePXqYDNmrUaMGbdq0Yc6cOYSFhVGqVCk2b95MUFAQ7777bt6e3FNk5twBhg0bxpgxYxg3bhw9e/ZUZ9hs1KiRyR+2NZ37k0aNGkWVKlWoWrUqLi4uXLp0iY0bN1K0aFEGDhxoUnf06NG8//77vPXWW7Rr145r166xdu1aunfvbvKLy9JZ8+uVFZ988gkODg7UqlULDw8Pbty4wfr163F0dDTpOJnZ97klW7NmDVFRUWpzxP79+3nw4AFgnEnX1dWVV199lV27djFx4kT69OlDbGwsy5Yto0KFCiZXHosWLUrfvn1ZtmwZSUlJVK9enb1793Lq1Ck++ugjbGxsNDlHc5523pGRkQwdOpT27dtTpkwZAA4fPszBgwdp0qQJLVu2VB/Lms47N+gURVG0DkIYtWrVKt1te/bsAYyXgn/99VfOnz9PaGgoer2esmXL0r17d3r27JlmVEx8fLy6vklUVBQVKlRg2LBhJr/ELUFmzj3FqVOn1DVKnJ2dadOmDa+//nqaNUqs5dyfNHfuXA4ePMi9e/fUPgnNmjXD398fT0/PNPX37t3LokWLCAwMxM3NjS5duqSZE8caWOvrlRWrV69m27Zt3Llzh+joaNzd3WnQoAH+/v74+PiY1M3s+9xS9evXj6CgILPbVqxYoS7jcP369TRr8YwZMybNe91gMPDHH3+wbt06QkJC8PHx4ZVXXqFjx465fi5Z8bTzdnV1ZebMmZw9e5aQkBAMBgOlSpWiQ4cOvPzyy2n+bq3lvHODJChCCCGEsDjSB0UIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEVkaNOmTbRq1YpNmzZpHUqmBAQE0KpVKxYsWJBrx2jVqhXjx4/PtccvKPr160e/fv20DsPiLViwgFatWhEQEJCrx1m5ciVt27bl3r17maqfF39r1uyLL76gb9++xMfHax2K1ZIEJZ/56quvaNWqFd27d0+zqGB+YW1fbOHh4fzyyy8MGjSIDh060KFDB/r27cvEiRNZuHAhoaGheRLH05LN8ePHZ7jkQEESGxtL586dadWqFd9//73W4eS6yMhIlixZQteuXdUp6MWz8ff3Jzg4mFWrVmkditWyrsU6RIZiYmLYuXMnOp2OiIgI9u7dS7t27Z7pMX19falRowZeXl45FGXB8uDBA0aPHs2DBw+oXLkyXbp0oVChQoSEhHDmzBkWLlxI7dq1za6xk9/98MMPWoeQrp07dxITE4NOp2P79u2MGTMGBwcHrcPKNStXriQiIoL+/ftrHUq+Ubp0aVq0aMEff/xB7969cXJy0jokqyMJSj7y77//EhsbS79+/Vi9ejUbNmx45gTF1dUVV1fXHIqw4FmwYAEPHjxg6NChJqsyp7h69WqBfX5LlSqldQjp2rBhAzY2NvTq1YtVq1axZ88eOnTooHVYuSIpKYl//vmH2rVrW/RrYo06duzInj172LFjB927d9c6HKsjCUo+kvKhOmDAAK5evcrx48cJCgqiePHiJvUWLFjAokWL0n2c4sWLs3LlSsDYLDBt2jTef/99k+XPW7VqRb169fjoo4+YPXs2R44cISEhgbp16zJx4kRKlizJjRs3mDNnDidPniQpKYnGjRvzxhtvmFwtCAgIYMKECfj7+zNkyBCTOO7du8dLL71E586dmTx5sno/dQwpzO1/4cIF5syZw9mzZ9Hr9Tz33HOMHTs2zSXsPXv2sHPnTi5cuEBwcDC2trZUrFiRPn364Ofnl/GT/hRnz54FoFevXma3V6xY0Wz53bt3+f333zly5AghISG4uLhQrlw5unTpor4OiYmJrFu3jgMHDnDjxg3CwsJwcXGhdu3aDB48mCpVqqiP9+WXX7J582YApk2bxrRp00zOP/Vzmfp2ynOf4urVqyxdupQTJ04QERGBl5cXLVq04LXXXsPNzU2tl/q1GzBgAHPnzuXkyZNERESoK9mmNNOlvNfg8Xtz5syZBAcHs2zZMm7evImrqytt2rRh5MiRaa5kJCUlsXz5cv755x+Cg4MpUqQI3bp1o23btrz88stpzuFpbt68yenTp2nevLlJsm8uQUn9/m3evHmm3m8Au3fv5rfffuP69eu4uLjQokULRo0axdChQ9M8JxnJ7OuRkcOHDxMSEsKAAQPMbo+Pj2fhwoVs27aN8PBwSpUqRZ8+fdKsvpza3bt3Wbp0KUeOHOHRo0cUKlSIxo0bM2TIkDSfR5C15yPlvbx8+XL27NnDhg0buHv3Lu3atVNf50ePHvHbb79x4MABHjx4gLOzM3Xr1mXIkCFUqFAhzfGzUv/WrVv89ttvBAQEEBISgqOjI0WLFqV+/fqMGzfOZEX5Zs2a4ejoyObNmyVByQZJUPKJGzducPbsWZo2bYqnpyedOnXi2LFjbNy4Mc0Xd/369c0+RmBgIDt37sz0pezIyEjGjBmDl5cXnTp14vbt2xw4cIA333yTL7/8krFjx1K1alW6du3KpUuX2L17NxEREcycOTNb5+jq6oq/vz+rV68GoE+fPume04ULF1i2bBn169enZ8+eXL58mb1793Lt2jUWLVpkco5z5szB1taW2rVr4+XlRVhYGPv37+fjjz9mwoQJ9O7dO1vxAuqXxK1bt6hRo0am9jl16hTvvvsuMTExNG7cmHbt2hEZGcnly5dZvXq1mqBERETw008/UadOHZo2bUqhQoW4d+8e+/fv59ChQ/z0009Ur14dMDbVRUVFsW/fPlq2bEmlSpVMjunv78/mzZsJCgrC399fLa9cubJ6e9++fXz66afodDpatmxJ0aJFuXHjBn/++SeHDx/m119/pVChQiaPe+fOHUaNGkWFChXo3LkzERER2NnZPfU5SHnMFi1a8Nxzz3Ho0CHWrFlDeHg4H3/8sUnd6dOns2XLFkqWLMkLL7xAYmIiK1eu5MyZM5l6vp+0YcMGADp16kSxYsWoV68eAQEB3L17l5IlS5rdJyvvtw0bNjB9+nRcXFzo1KkTrq6uHDx4kDfffJOkpCRsbTP3sZyd18OcY8eOAVCzZs002wwGA++//z5Hjx6lQoUKtG/fnoiICGbNmpXu58i5c+eYNGkSsbGxNG/eHB8fH4KCgti2bRuHDh1i9uzZJs9jdp+PGTNmcO7cOZo1a0bz5s3x8PAAjO+58ePH8/DhQxo1akTLli0JCwtj9+7dHDlyhB9++MHkbzEr9YODg3n99deJi4ujWbNmtG3blri4OG7fvs1ff/3F6NGjTeK1s7OjSpUqnD17ltjYWGnmySpF5As//fST4uvrq2zfvl1RFEWJjo5WOnbsqPTp00dJTk5+6v6hoaFK3759lXbt2imnTp1Syzdu3Kj4+voqGzduNKnv6+ur+Pr6Kj/99JNJ+Xfffaf4+voqXbp0UVauXKmWGwwG5e2331Z8fX2VCxcuqOXHjx9XfH19lfnz56eJ6e7du4qvr68ydepUk/K+ffsqffv2NXseKY+X+rlIMWXKFLPld+7cSfM40dHRyuDBg5UuXboosbGxac593LhxZo//pNWrVyu+vr5Kz549lfnz5yvHjx9XoqKi0q0fHx+v9OrVS2ndurVy8ODBNNvv379vUvfBgwdp6ly7dk3p2LGj8sYbb5iUp/daphg3bpzi6+trdltYWJjSuXNnpVevXsq9e/dMtm3fvl3x9fVVfvjhB7Us5bVL77VVFPOv4/z589X3T2BgoFoeFxenDBgwQGndurXy8OFDtfzo0aOKr6+vMmTIEJPX6eHDh8rzzz9v9v2TkcTEROX5559XunTposTFxSmKoigbNmxQfH19lblz56apn9X3W0REhNKxY0elY8eOys2bN02OO2HCBMXX1zfd5+T48eNqWVZfj4wMHz5cad26tRIfH59mW8p7ZtKkSUpSUpJafuXKFaVt27ZpXt/ExESlb9++SqdOnZSLFy+aPNbJkycVPz8/5d13332m52Pq1KmKr6+v0qtXLyUoKChNzKNGjVL8/PyUQ4cOmZTfvHlT6dSpkzJ48OBs10/5e0792ZYiPDw8TZmiPP5sPnbsmNntIn0yiicfSEpKYuvWrbi4uNCyZUsAnJ2d8fX15f79+xw9ejTD/ePj45k8eTJBQUG899571K5dO1PHdXJyYtiwYSZlKX1e3NzcTK5w6HQ6ddvVq1czfW7ZVbdu3TT9b7p27QrA+fPnTcrN/Sp2dnamS5cuREVFceHChWzH0atXL/r3709UVBSLFi1iwoQJdO3alUGDBvHLL78QHBxsUn/fvn08fPiQDh060KRJkzSPV7RoUfW2vb09RYoUSVOnfPny1K9fX21aywlbtmwhOjqaESNGpLlE365dO6pUqcKOHTvS7Ofp6cnAgQOzfLw+ffpQpkwZ9b6DgwPt2rXDYDBw8eJFtXzr1q0ADB48GEdHR7Xc29vb5P2XWf/99x+hoaG0adNGverh5+eHo6MjmzZtwmAwmN0vs++3ffv2ERsbS9euXSldurRabmtrm+ZvKSPZfT3MefjwIa6urtjb26fZltIsOGzYMGxsbNTyihUr0rFjxzT1Dxw4QFBQEP379zdpYgSoU6cOLVq04ODBg0RHRwPP9nz079+fYsWKmZRdunSJM2fO0KlTJxo3bmyyrXTp0nTv3p1r165x7dq1bNVPYe4qc+HChc3GmXJl5+HDhxmej0hLmnjygX379hEWFka3bt1M/nA6derE1q1b2bBhQ5o/vhSKovDll19y9uxZXnvtNdq3b5/p4/r4+Jh8KQDqaJ8KFSqYtMWm3vbkl3JuqFq1apqylC/zqKgok/JHjx7x+++/c/DgQe7fv59m3oJniVen0zFq1Cj69+/PwYMHOXfuHBcuXODSpUvcuHGDdevW8e2336qXkFO+zBo1apSpx798+TLLli3j1KlThIaGpklIwsLC8Pb2znb8KVL60pw7d447d+6k2Z6QkEB4eDhhYWG4u7ur5ZUqVcpUk86Tnvxyg8fJWerX78qVK4Dxy+9JtWrVyvJx//nnH8D4t5PC2dmZli1bsn37dg4fPkzTpk3T7JfZ91tKcm4u3ho1apgkARnJ7uthTkREhNlENyVeJycns+dXp04dtTnsybhu3rxpdn6U0NBQDAYDt27dolq1as/0fKQ0X6Z27tw5wPg3be74N2/eVP+vUKFCluun9DP64YcfOHbsGE2aNKFevXrpNv3B48QlPDw83TrCPElQ8oHUbeapNWjQgCJFirB//34iIiLMZvjz5s1j586dtG/fntdeey1Lx3VxcUlTlvKBktG2nPpVnxFnZ+d0j5/6V3BERAQjRozg/v371K5dm4YNG+Lq6oper+fKlSvs27ePxMTEZ47H3d2dzp0707lzZwBCQkKYMWMGu3fv5ptvvmHhwoUA6i/L9L4wUjt9+jRvvPEGAA0bNsTHx0c973379nHlypUciR2M/Y0A1q5dm2G9uLg4k/spvx6zKqP3T+rXLyYmBr1eb7ZDaFaHbgcHB3P48GFKliyZ5guzc+fObN++nY0bN5pNUDL7fkt5fc09L+mdhznZfT3McXBwSHfOpOjo6HTfi+ae35S4tm3blqm4nuX5MLdPREQEYLwS9t9//6W7b2xsbLbqlyhRgtmzZ7Nw4UIOHjzIzp07AShTpgxDhw6lTZs2afZN+cGTn4ep5xZJUKzc/fv3OXLkCECGs5tu3bo1zSXvTZs2sXTpUmrXrs17772Xq3GmJ+UqS3JycpptKR9euWnDhg3cv3/f7DDg3377jX379uXKcb28vPjwww/577//uHr1KuHh4bi5ualDjjNzOXjp0qUkJCQwa9asNF+oKb8Mc0rKF/CiRYvMjoJIz5NX0XKas7MzBoOB8PDwNFcKsjoB3qZNm0hOTubu3bvpTli3f//+TF2VSE9K4vXo0aM021LOIzPJaXZfD3Pc3NzSfb+5uLik+8vf3PObEtdXX31F8+bNn3rsZ3k+zL23Uh4vs53bs1ofjFeHv/jiC5KSkrh48SKHDh1i9erVfPrpp3h7e6dpIk9JgrL7ninIpA+Kldu8eTMGg4E6derQrVu3NP9SfrE/eSn2xIkTfPvtt5QsWZKpU6eabX/OCymjDMw1o1y+fNnsPnq93mxCkx0pl8dT+u6kdurUqRw5Rnrs7OzSXMJOuWydknRm5O7duxQuXDhNchIXF8elS5fS1NfrjX/u6T13GW1PaYJKuYRvKVJGI50+fTrNtqyM4lEUhY0bNwLQpUsXs39LtWrVIjExUe33kh0pw8rNxXv+/PlMv69z8vWoUKECCQkJ3L9/P822ihUrEhsba9LvJ4W5v4+sxpVTz0eKlL+fzB4/q/VTs7W1pWbNmgwZMoQJEyagKAoHDhxIU+/WrVsAz5xIFkSSoFixlA9VnU7H5MmTeffdd9P8mzx5MjVr1uTq1atqZ89bt27x4Ycf4uDgwFdffaVpZl+mTBmcnZ3VZqgUoaGhLFmyxOw+hQsXJjw8PEfWuEjpYPjkB+S2bds4ePDgMz/+8uXLCfy/9u4upKk+jgP4N9OztDRD53yJFWWRazRdvpBbhUOiRuVAduONlgVRYm8oFWUoFPR2kZRd5DJ0KQPzQlxZc6ZFy9m2hi17QamHEm0mZbPMdPVcxIa28/Ro+ejk+X0ud/5z5/zP8fD7v/3+f/3FeqympgaDg4Pg8/nurmyJRAIulwudTofW1laP74xu6fJ4PDgcDrx8+dL9mdPpRElJCT58+ODxXdcQn91uZz2fXx2Xy+UICAjA5cuXx/yey5cvX6YleHHlJrl69eqY56Gvr8+9HH08rFYrurq6IBKJcPjwYdb/JVcv48/B/kRIpVL4+/tDq9WOmTsyMjIClUo17r8zmfcjNjYWAHuvm2vYuLS0dEyw0NnZyRqoSaVS8Hg8aDQaWK1Wj+MjIyNjApvJqg8XgUAAgUAAvV7POkn427dvY85rouWfP3/O2rPr6k1ia+i1t7cjJCRkzCRgMj40xDODWSwWdHd3/+skLblcjidPnkCr1WLFihUoLi7Gx48fER8fj8bGRo/y8+bNm7K9bvz8/JCeno6Kigrs2LEDEokEg4ODuH//PmJjY1knAMbFxeHZs2fIz8/HqlWr4OvrC5FI5H7RTsSGDRtQWVmJ8+fP49GjR+DxeOjo6IDFYsG6detw9+7dP7q+27dvo6SkBEuWLIFAIMCCBQvgcDjQ3t6OFy9egMPh4ODBg+7yDMOgsLAQeXl5yMvLQ2JiIqKjo/Hp0yd0dHRgaGjI/eJOT0/Hw4cPsWfPHqSkpIBhGFitVrx79w5xcXEem8utXLkSHA4H1dXVcDgc7sDUNbQlFovR1NSEY8eOISkpCQzDIDo6GhKJBMHBwTh+/DgKCgqwfft2JCYmgs/nY3h4GD09PbBarRAKhTh79uwf1ddExcfHIzU1FQ0NDcjKyoJUKsXw8DDu3LmDmJgYGAwGd8/Qr7iCDtfKGzZ8Ph9CoRA2mw3t7e3jzmszWmBgIHJycnDmzBns3LkTMpkMc+fORUtLCxiGQWho6LiGxSbzfkilUly8eBEmk8ljDoVr7o3RaER2djaSkpLgcDig1+uRkJDg0WPAMAyKioqQn5+P3NxciMVi94T5np4etLW1Yf78+VCr1ZNaH6MVFBRg3759KCwsRHV1NZYtWwYOhwO73Q6bzYb+/n40NDT8Vvlbt26htrYWIpEIUVFRCAgIwKtXr2A0GhEUFOTx/HR1daG7uxsKhWJC10B+oABlBnO9VEdneGUjk8lQXFwMvV6PnJwcd0vTZDKxLkEODw+f0s34srOz4evrC61Wi9raWoSHhyMzMxPJyclobm72KJ+ZmYmBgQEYDAa0tbXB6XQiKyvrtwKUsLAwFBcX49KlSzCZTHA6nVi+fDnOnTsHu93+xwHKoUOHYDAYYLFY0Nraivfv38PHxwc8Hg8KhQJKpdKjZSUUClFaWgq1Wo3W1laYzWYEBgZi8eLFSEtLc5dLTk5GUVER1Go1dDodOBwOxGIxTpw4wZopOCgoCEVFRSgrK0NdXZ37OXAFKJs3b0Z3dzcaGxtRWVkJp9OJjRs3QiKRAPiRFVOlUqGqqgpmsxkmkwlz5swBl8vFpk2bWJedToUjR45g0aJFuHHjBmpqasDlcqFUKiEWi2EwGFgnsI42MDCA5uZm+Pv7Y/369b8sK5fLYbPZoNVqfytAAYAtW7YgMDAQFRUVqK+vd2dO3bVrF5RK5bjTzU/W/YiIiEBCQgKampqwd+/eMb0APj4+OHnyJMrKytDQ0IDr168jMjISOTk5WLhwIeuQRkxMDK5cuYKqqiq0tLTAZrPBz88PoaGhWLt2rcdy7MmqD5fIyEioVCpoNBrcu3cPN2/ehI+PD0JCQiASiTyyQ0+kfGpqKr5+/YrHjx/j6dOnGB4eBpfLRVpaGuuyZ1cv09atWyd0DeSHWd+/f/8+3SdBCCGTra6uDqdPn8aBAwdmRAv2zZs3yMjIQEpKCgoLC6f0t81mM/bv34+jR49OW6D5s+msj8kwMjKCjIwMRERE/Hb27P87moNCCJnR+vr68HM7q7e3F+Xl5Zg9ezbWrFkzTWfGzuFweCzrHRoawoULFwD82JZgqq1evRpJSUkoLy//x2R0/xVvrI/JUF9fj7dv32L37t3TfSozFg3xEEJmtGvXruHBgwcQiUQIDg6G3W6HwWDA58+fsW3bNo9u9+lmtVpx6tQpJCQkICwsDP39/e6NPcViMWQy2bScV25uLnQ6HXp7e6e0zry1Pv7UrFmzkJeXx5rkjowPDfEQQmY0o9EIjUaDzs5OOBwOMAyDpUuXQqFQsO5APN1ev34NlUoFm83mXm0VFRXl3n35/5bQi+qD/BMKUAghhBDidWgOCiGEEEK8DgUohBBCCPE6FKAQQgghxOtQgEIIIYQQr0MBCiGEEEK8DgUohBBCCPE6FKAQQgghxOtQgEIIIYQQr0MBCiGEEEK8zt/AjA6TUlQfbgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 30.0 deg to 45.0 deg\n", + "Modulation: 0.307 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.018\n", + "Best fit polarization angle: 10.124 +/- 0.367\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSTklEQVR4nOzdd3wT9f/A8VfSveiGsrcs2XsUyl6KyhRlVIYIshRFwa0obkH9ioJslD0E2SJ7b5A9yyx00L2b+/2RX4+GpqUtbS9p38/HgwfJ5+5y70uul3fus3SKoigIIYQQQlgQvdYBCCGEEEI8ShIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUISzE9evX0el0BAYGah2KAAICAtDpdPm+n48//hidTseOHTvyfV/ZUaFCBSpUqKB1GEJIgiIe7/z584wZM4ann34ad3d37O3tKVWqFN27d2f27NkkJiZqHWK+CQwMRKfTcf36da1DMWv27NmMGDGCpk2b4uzsjE6n4/3333/sdn///TcBAQG4u7vj6upK06ZNmT9/fpbbzJ8/nyZNmuDq6oq7uzsBAQH8/fffZte9dOkS3bt3x8vLi7JlyzJ69Giio6PNrjtgwAAqVqxITEzM4w84nbSELv0/W1tbSpQoQffu3dm4cWOOXk88uT/++EP9LLZs2ZLluhEREXz44YfUq1cPV1dXHBwcKF26NM2aNWPChAkcP348y+2HDx+OTqfD2dmZiIiITNdLSwDT/un1eooVK0b58uXp1q0bX331Fbdv387N4Yp8Zqt1AMKyffrpp3zyyScYDAaaN2/O4MGDcXV15d69e+zYsYNhw4YxY8YMjhw5onWoRdKECROIjIzE09OTUqVKceXKlcdu8/PPPzNmzBi8vb0ZMGAA9vb2rFixgsDAQE6fPs23336bYZu33nqL7777jjJlyjB8+HCSkpJYsmQJzz77LD/99BOjR49W142NjaV9+/bExsYyaNAgbt26xf/+9z/u3bvH8uXLTV53/fr1/PHHH2zduhVXV9dcvQfu7u6MHz8egISEBE6ePMmGDRvYsGED06dPZ+zYsbl63YIyevRoXnzxRcqVK6d1KE9s5syZ6HQ6FEVh5syZdOrUyex6d+7coWXLlly/fp1KlSrx8ssv4+Pjw4MHDzh69CjTpk3DycmJ+vXrm90+OjqaJUuWoNPpiI+PZ9GiRSbnoDlt2rQhICAAMJ6jd+/eZe/evWzcuJGPPvqIjz/+mHffffeJjl/kMUWITHz++ecKoJQtW1Y5cOCA2XXWrVunBAQEFHBkBWfw4MEKoFy7di3f93Xt2jUFUAYPHpztbTZu3Khcv35dURRFmTt3rgIo7733Xpb7cHBwULy8vEyOKTw8XKlcubICKPv27TPZZu/evQqgVK5cWQkPDzd5LS8vL8XBwcHktZYsWaIAys6dO9WywMBABVDu3bunlkVERCilS5dWhg4dmu3jffRYAKV8+fIZls2ZM0cBFBcXFyU2NjZXr9+mTRulKF4iy5cvb/Y9fZzz588rgNKhQwelYcOGip2dnRIcHGx23aFDhyqAMmTIEMVgMGRYfufOHeXo0aOZ7uvXX39VAOXNN99U7O3tlTp16mS67kcffaQAykcffZRhmcFgUFasWKF4eXkpgDJ16tTHH6goMFLFI8y6fv06H3/8MXZ2dmzYsIGmTZuaXe+ZZ55h06ZNGcqXLVtG69atcXd3x8nJidq1azN16lSz1UFpdd5RUVG8+eabVKhQATs7Oz7++ONsLQdjNVRgYCBly5bF3t6eEiVK8NJLL3HhwgWzccfFxfHVV1/RqFEj3NzccHV1pUaNGowdO5Z79+4BoNPp1GqPihUrqreIH62fDw8PZ9KkSdSoUQMnJyfc3d1p3759pre4o6OjefPNNylTpgyOjo5Ur16d77//HoPBYHb9rHTp0oXy5ctne/05c+aQmJjI6NGjTY7D09OTyZMnA/Drr7+abJP2/L333sPT01Mtr1ChAq+//jqJiYnMnTtXLQ8KCgKgSZMmalna47RlYLz7A/Ddd99lO/7sCgwMxMXFhdjYWM6cOaOWb9u2jS5duuDl5YWDgwNPPfUU7777LpGRkdl63aSkJH7++We6detG+fLlcXBwwMvLiw4dOmRapfS489dcG5S09i+Z/Uu7E5AmJSWFX375hWbNmlGsWDGcnZ2pX78+P//8s9nzSlEUfv75Z2rVqoWjoyOlS5dm9OjR2X4fzJk1axYAr7zyCoGBgSQnJzNv3jyz6+7btw+AMWPGmG3nU7JkSRo0aJDlvvR6PePHj+fZZ5/l1KlTHDx4MMcx63Q6evXqxYoVKwDjHeO7d+/m+HVE/pAqHmHW3LlzSU5O5sUXX+Tpp5/Ocl0HBweT55MnT2bq1Kn4+Pjw0ksv4erqysaNG5k8eTKbN29my5Yt2Nvbm2yTlJREu3btCA8Pp1OnThQrVoyKFStma/mmTZvo2bMnycnJPPvss1SpUoVbt26xatUq1q9fz/bt200udg8ePKBt27acPHmSatWqMWTIEOzt7bly5Qpz586lZ8+elChRgo8++og1a9Zw8uRJxo0bh4eHB4D6Pxi/cAMCArh+/Tr+/v506dKF2NhY/v77b7p06cJvv/3G8OHD1fUTExNp3749hw8fpm7durz88stERETw2WefsXPnzhx9Rrnx77//AsbE5lFdu3Y1WSe723z22Wf8+++/fPLJJwBqVcXRo0dp2bIlgFoFmJZM/fPPP8yePZt169bh7u7+xMdljqIoAOoX4G+//cbIkSNxcXGhT58+FC9enB07dvDVV1+xbt069u7da/LZmhMeHs64ceNo0aIFHTt2xNfXl7t377Ju3Tq6devGrFmzGDZsWIbtHnd+PyowMDBDEgKwe/du/v33X5ydndWytPN+8+bNVKtWjZdeeglHR0e2b9/OmDFjOHjwIAsXLjR5nfHjx/Pjjz9SsmRJXn31Vezs7Pjrr784ePAgSUlJGf4+HycpKYn58+fj7u7OCy+8QHx8PBMmTOD3339n4sSJGZIQb29vAC5evEi9evVytK/jx49z9OhROnbsSNmyZQkMDGTlypXMnDkz0x9Sj9O2bVtatWrFnj17WLVqFa+//nquXkfkMa1v4QjL1K5dOwVQZs2alaPt9u3bp1YL3b17Vy1PTk5WnnnmGQVQPv/8c5NtypcvrwBK+/btlZiYmAyvmdXy8PBwxcPDQ/H29lbOnDljsuz06dOKi4uLUr9+fZPy/v37K4Dy2muvKampqSbLoqOjlYiICPX546p42rRpo+h0OmXx4sUm5Q8ePFDq1q2rODo6mtzmTqs269mzp8m+r169qnh6eua4iie97FTx+Pj4KIASGhpqdrmLi4sCqNUiMTExCqC4urqaXT8kJEQBlOLFi6tl0dHRSpkyZRQfHx9l/PjxSu/evdVjTlteoUIF5eWXX87VcabJqopn9uzZahVPXFyccv36dcXe3l5xc3NTzp07Z7LuyJEjFUAZPny4Sbm5Kp6EhATl5s2bGfYXERGh1KpVS/H09FTi4uJMlj3u/E6rgti+fXuWx3vy5EnFzc1N8fHxUS5fvpxh+9GjRyspKSlqeUpKijJkyBAFUNasWaOWp6+yCwsLU8vj4+OVZs2aZfqeZmXx4sUKoLz66qtqWa9evRRA+eeffzKs/9NPPymA4ubmprz99tvK1q1bMz0nHzVixAgFUP78809FUYzXFj8/P8XFxUWJjIzMsH5WVTzpvf/++wqgDBo0KFtxiPwnCYowq0aNGgqgbNy4MUfbDRs2TAGU3377LcOyCxcuKHq9XqlYsaJJedoF/MSJE2ZfM6vl06ZNUwDl559/Nrvt+PHjFUBNXu7du6fo9XqlZMmSZr8sHpVVgnLixAkFUHr37m122zVr1iiA8r///U8tq1KliqLX602+YNKkXUjzM0Gxs7NTACU5Odns8lKlSimAcufOHUVRFOX27dsKoJQuXdrs+klJSQqg2Nvbm5SfP39e6dKli+Lh4aGUKlVKee2119Qvj9dff10pUaKEEhoaqgQFBSnPPPOM4ujoqLi6uioDBw40+yVjTlqC4u7urnz00UfKRx99pLzzzjtK165dFUABlOnTpyuKoihTpkxRAGXSpEkZXic8PFxxc3NTHB0dlYSEBLU8p21QvvvuuwxtbxTl8ed3dhKU27dvK2XKlFEcHR2VvXv3quWpqamKl5eX4ufnZ/YzffDggaLT6ZQ+ffqoZWl/o3PmzMmw/vbt23OVoKT9oEnffmndunUKoPTt2zfD+gaDQZk0aZLi6OioflaAUqFCBWXYsGGZvlcxMTGKm5ub4u7ursTHx6vlEyZMUADll19+ybBNdhOUGTNmKIDStWvXbB61yG9SxSPy1LFjxwBo165dhmVPPfUUZcqU4dq1a0RGRprc2nd0dKROnTqZvm5my/fv3w/AyZMnTdqkpLl48SIA586do2bNmhw+fBiDwUDr1q1xcXHJ0bFltu/IyEiz+w4JCVH3Dca2J5cvX6Zs2bJUrlw5w/oBAQFqNYm1q1atmtk2Gbt37+aXX35h2bJleHl50bFjR+7fv8+ff/5JTEwMY8aMIT4+PkNvn6xERkaq75uNjQ1eXl507dqV0aNH061bNyDr89LT05P69euza9cuzp8/T926dbPc35kzZ/jmm2/YtWsXd+/eJSEhwWS5uS6rjzu/sxITE8MzzzzD7du3Wbx4MS1atFCXXbx4kfDwcKpWrcqUKVPMbu/k5KSeg/DwvWjTpk2GdVu1aoWNjU2O4rt8+TLbt2+nWrVqNG/eXC3v0qULfn5+rFmzhtDQUHx8fNRlOp2OL774gokTJ7J582YOHDjAsWPHOHjwIL///jtz585lxowZJtWjAEuWLCE6OpoRI0bg6OiolgcGBvLdd98xa9YsRo4cmaP40yiPVAkK7UmCIswqWbIk586dy/H4AGmN7EqWLJnp6964cYOIiAiTBKV48eJZXhgyWx4WFgY8bKCXmbQxNtLGSyhdunSW62dH2r63bt3K1q1bH7vvtPemRIkSZtfz8/N74pgex93dndDQUCIjI9V2AOmlxZj22aT9n1njybTyx7XdAIiPj2fo0KH07NmT3r17s3XrVo4fP87ChQt54YUXAGPj7A8//JArV66YTeLMKV++/GPHqcnOeQlkOZ4GwIEDB2jXrh0pKSm0b9+eHj16UKxYMfR6PSdOnOCvv/4y2xD8ced3ZlJTU+nXrx/Hjx9n6tSp9OvXz2R52jl46dKlLJPb9GPMZHUe2tramiQS2TFr1iwURckwwKCtrS0vv/wy3333HfPmzeOtt97KsK2Hhwf9+vVTjys2NpYvv/ySKVOmMGbMGHr06GES58yZMwEy7Ovpp5+mYcOGHD16lCNHjtCoUaMcHQMYuz4D+Pr65nhbkT+kF48wq1WrVoCx10NOpH2hBQcHm12e1kL+0YaRj7t4Z7Y87XVOnjyJYqyyNPtv8ODBwMMv0rwYmClt39OnT89y32k9XNLWT+sl9KjM3rO8VK1aNeDhnaX07t69S2xsLGXKlFEbYbq4uFC6dGliYmLM9m64dOkSYLw79jgffPABYWFh/O9//wMe3llK34C5YcOGAJw9ezYnh/VYuT0vHzVlyhTi4+PZsmULGzduZNq0aXz66ad8/PHHWTbQzO2v8jFjxrBhwwaGDx9udoyOtHhfeOGFLM/Ba9euZdjG3HmYkpJCaGhotuNL31Nn0qRJGXobpfXQetwPiDQuLi589tlntGrVisTERPbu3asuO3XqFIcOHQKgefPmGfZ19OhR4GESk1Pbt28HyHVDW5H3JEERZr3yyivY2dmxcuXKx35ZpP/FmDawkrlhuy9fvsytW7eoWLFitn5xZ0ezZs0AY9VBdjRp0gS9Xs+uXbuIjY197Pppt7tTU1OfeN9ubm5UqVKF27dvmx1QrSCGOk+r4jDXNTytSubRapDcbPOoQ4cOMW3aNKZPn57hl3v68+fR6pK8ktV5GRERwYkTJ3B0dKRGjRpZvs7ly5fx8vIy28Mmr3thfffdd8yYMYNOnTrxyy+/mF2nevXqeHh4cODAAZKTk7P1umkJobl49+zZY/Zcz8xff/3F/fv3qVatGkOHDjX7r1KlSly8eDFH74+bmxvwsNoFHiYeAQEBme7LycmJxYsX53hU4n///Ze9e/fi5OSk3s0TFqDgmrsIa5PW46RChQrK4cOHza6zceNGpW3bturztB4CFSpUUO7fv6+Wp6SkKM8995wCKFOmTDF5jccNDJXV8tDQUMXDw0Px9fVVDh48mGF5ampqhsaHL730UrZ78bz99tsKoPz7779m9+/v76/o9Xpl9uzZZpefOnXKZHCytPe0V69emvTiuXr1ar4P1PaoxMREpWbNmkr37t1Nyrdu3aoAyieffKKWpQ3oZq4R8aOy6sVjbl07OzvF3d1duXTpksmy0aNHK4AybNgwk3JzjWQ7d+6sAMrJkydNyn///Xe1oefcuXNNlj3u/DbXSHblypWKXq9Xateu/dhGwx988IF6Pj/ag0hRjIOepe/htmfPnjzrxdOxY0cFUJYuXZrpOmnvzUsvvaSWff3118p///1ndv3du3crjo6Oiq2trXL79m1FURQlLi5O8fDwUGxsbNQycwYMGKAAysyZM9Wyxw3UtnLlSnWgtq+//vpxhywKkCQoIkuffPKJotfrFUBp0aKFMnbsWGXy5MnK0KFDlapVqyqA0qhRI5NtJk6cqHY9HTVqlPL2228rTz/9tAIorVq1UhITE03Wf5IERVEU5Z9//lHc3NwUnU6ndOjQQRk3bpwyfvx4pVevXkqpUqUUBwcHk/XDw8OVOnXqKIBSvXp1Zdy4ccrbb7+t9O7dW3FzczP5oti0aZN6MZ84caLy2WefKT/99JO6/ObNm+r7ULduXeXVV19VJk6cqLz00kvqMe/fv19dPyEhQWncuLG6/sSJE5VXX31V8fDwUHr06JHjBGXWrFnK4MGDlcGDBystW7ZUAKVOnTpqmbmRMX/88UcFULy9vZVRo0Yp48ePV8qUKaMAyoQJE8zu580331QApUyZMsr48eOVUaNGKd7e3gpg8n6Y89577ynu7u7KrVu3TMoNBoPSsGFDxcbGRhkyZIjSt29fBTDpcZKVnCQoiqIo//vf/9SurUOHDlXeffddpXnz5up5kP7LWlHMJygbN240eY0333xTad26taLX69Xu1HmRoDg5OSn8/0iraT2U0v9Lv4+kpCT13CldurQycOBA5d1331WGDBmiJtCPngdjxoxRAKVkyZLKmDFjlDfffFOpXLmy0qhRI6VkyZLZek+vXr2q6HQ6xcfHJ8PfdHrR0dGKq6ur4uDgoL7HdevWVd/3wMBAZdKkScrYsWOV9u3bKzqdTgGU7777Tn2NtOT72WefzTKmHTt2ZLgmpb2/bdq0Ud+/iRMnKgMGDFAqVqyoAIqDg4Py1VdfPfaYRcGSBEU81tmzZ5XRo0crtWrVUtzc3BQ7OzvFz89P6dKli/L777+bdM1Ms3jxYqVly5bqhalmzZrKlClTTLoGpnnSBEVRjF9Wr7/+ulKlShXFwcFBcXNzU6pVq6YMGDBAWb16dYb1Y2JilClTpii1a9dWnJycFFdXV6VGjRrKuHHjTO54KIqx+2j16tUVe3t7s1+IUVFRyueff640aNBAcXFxURwdHZUKFSoo3bp1U3777bcM3ZkjIyOVN954Q02eqlWrpnz77bfKlStXcpygpHWDzuxfmzZtzG63du1apXXr1oqrq6vi7OysNGrUSJk3b16W+5o7d67SqFEjxdnZWXF1dVVat26trFu3Lsttjh8/rtja2mY6ns7NmzeV5557TnFxcVHc3d2VwYMH57ibcU66xG7evFnp2LGj4uHhodjb2yuVK1dW3n77beXBgwcZ1s2sm/G6deuUpk2bKq6uroq7u7vSsWNHZefOneqXaF4kKFl9puY+V4PBoCxYsEBp166d4unpqdjZ2SmlSpVSWrZsqXz++efKjRs3Mqz/008/qed1yZIllVGjRikRERHZHup+8uTJCqC88cYbj113+PDhCqB8//33iqIoyrFjx5TPPvtMadu2rVKhQgXF0dFRcXBwUCpVqqS89NJLyu7du022b9GihQIof/3112P39dRTTymAcvz4cUVRHr6/af90Op3i6uqqlCtXTunatavy5ZdfZkiehWXQKUq6Sj4hhBBCCAsgjWSFEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExbHKBCUhIYELFy7k27DYQgghhNCWVSYoQUFBDB8+nKCgIK1DEUIIIUQ+sM3pBnFxcSxZsoSzZ89y7tw5oqOjmTRpEl27ds32axw5coSFCxdy8eJFDAYDZcuWpX///rRv3z6n4QghhBCiEMpxghIZGcm8efMoUaIEVapU4fjx4znafsOGDXz11Vc0atSI4cOHY2Njw40bN7h//35OQxFCCCFEIZXjBMXb25vVq1fj7e3N+fPnefXVV7O97d27d/nhhx/o2bMn48aNy+muhRBCCFFE5LgNir29Pd7e3rna2V9//YXBYGDo0KGAsbpIpgISQgghxKNyfAflSRw9epRy5cpx4MABZsyYQUhICG5ubrzwwgsMGTIEvd4q2+wKIYQQIo8VaIJy69Yt9Ho9X375Jf3796dy5crs2rWLBQsWkJqayogRI8xuFxoaSlhYmPpceu8IIYQQhVuBJijx8fEYDAZGjBjByy+/DEBAQADR0dGsWLGCgQMH4uzsnGG7tWvXMm/evIIMVQghhBAaKtAExcHBgfj4eDp06GBS3r59ew4ePMjFixepV69ehu169OhBy5Yt1edBQUFMmTIlv8MVQgghhEYKNEHx9vbm1q1beHp6mpSnPY+Ojja7nY+PDz4+PvkenxBCCCEsQ4G2Sq1WrRpgbFOSXtpzDw+PggxHCCGEEBYq3xKU0NBQgoKCSElJUcvatWsHwPr169Uyg8HAxo0bKVasmJrACCGEEKJoy1UVz8qVK4mJiVF71uzdu1cdCbZXr164uroyc+ZMNm3axNKlSylZsiQArVq1omHDhixatIiIiAiqVKnC7t27OXXqFG+99Rb29vZ5dFhCCCGEsGa5SlCWLl1KcHCw+nzXrl3s2rULgE6dOuHq6mp2O51Ox+eff87vv//Ov//+y6ZNmyhbtizvv/8+nTp1yk0oQgghhCiEdIoVDuV64cIFhg8fzqxZs6RaSAghhCiEZOhWIYQQQlgcSVCEEEIIYXEkQRFCCCGAuAcJHF1xibgHCVqHIpAERQghhAAgLiKR46suExeRqHUoAklQhBBCCGGBJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERwopJt0ghRGElCYoQVky6RQohCitJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUITIBzLLsBBCPBlJUITIBzLLsBBCPBlJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUWGDD8vhHWSv92iSRIUUWTI8PNCWCf52y2aJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCiAImDX8fTxIUIYQQooBJw9/HkwRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBYnxwlKXFwcc+bM4a233qJ79+60bt2ajRs35mrnX3/9Na1bt+add97J1fZCCCGEKJxynKBERkYyb948goKCqFKlSq53fP78eTZu3Ii9vX2uX0MIIYQQhVOOExRvb29Wr17N8uXLGTlyZK52qigK06dPp3Pnznh5eeXqNYQQQghReOU4QbG3t8fb2/uJdrp582auXbvG8OHDn+h1hBBCCFE42Rb0DuPi4vj1118ZMGBAthOd0NBQwsLC1OdBQUH5FZ4QQgghLECBJyjz5s3DwcGBvn37ZnubtWvXMm/evPwLSgghhBAWpUATlJs3b7JixQo+/PDDHDWO7dGjBy1btlSfBwUFMWXKlPwIUQghhBAWoEATlB9//JGnn36agICAHG3n4+ODj49P/gQlhBBCCItTYAO1HT16lIMHD9K7d2/u3r2r/ktNTSUxMZG7d+8SGxtbUOEIIYQQwoIV2B2U+/fvA/D+++9nWBYSEkK/fv0YPXp0jtqmCCGEEKJwyrcEJTQ0lNjYWEqXLo2trS0NGjTg888/z7DeN998g5+fHwMHDqRSpUr5FY4QQgghrEiuEpSVK1cSExOjdv3du3eveoekV69euLq6MnPmTDZt2sTSpUspWbIkJUqUoESJEhle66effsLT0xN/f/8nOAwhhBBCFCa5SlCWLl1KcHCw+nzXrl3s2rULgE6dOuHq6po30QkhhBCiSMpVgrJs2bLHrjN58mQmT56cJ68lhBBCiKKlwHrxCCGEEEJklyQoQohsiXuQwNEVl4h7kKB1KEKIIkASFCFEtsRFJHJ81WXiIhK1DkUIUQRIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCiCLPYFAIuRoJQMjVSAwGReOIRK5mMxZCCCEKi2uHgjmw4Byx4cZ5pvbOPsOJ1VdoNqgGFZv4aRxd0SV3UIQQQhRZ1w4Fs23acTU5SRMbnsC2ace5dihYo8iEJChCCCGKJINB4cCCc1muc2DhOanu0YgkKEIIIYqk4PPhGe6cPCo2LIHg8+EFFJFITxIUIYQQRVJ8RGKerifyljSSFUJDqYZUrkdc52LYRaKTokkxpFDcpTjl3ctT2asyep38hhAivzh5OAAQq48m2P42D2xDMOgM2Cq2eCX74pdUBkfFWV1PFCxJUIQoYEmpSaw+t5pV51ex+fJmIhMjza7n4+xD2wptGVBnAF2rdMXOxq6AIxWi8LoYdpHZt2ezpPIKbtheNbuOTtFTOaUad0P6MyRqCKWLlS7gKIs2SVCEKCCJKYn8fOhnvtv/HXdj7j52/dC4UJafXc7ys8sp7Vaa9/zfY2iDodjb2AMZx23wKl8MvV6Xr8cghLU7cucI7//7PpuvbDYWZPEtqOgMXLY7x4c7PuTjnR/Tr1Y/Pm37KVW8qhRMsEWcJChCFIANlzYwesNorkVcMyn3dPSkTYU21PSpiY+zDzqdjnsx9zgTcobdN3YTkRABwO3o24zaMIrvD3zP78/+Trn71WTcBiFyIDw+nPGbxrPw1EKTch06arvXxTe4LB4xPtga7EjUJxLpFsJtnytcjLkAgEExsPi/xSw/u5zxTcfzadtPcbJz0uJQigxJUITIR7HJsbz/9zv8dvQ3tUyHjuerP8/rjV+nTYU22OrN/xmmGFLYcmULvx75lXUX1wFwOfwyAfMDaPegB33Ch2LLw2qftHEb2o+vL0mKEOlsvryZwL8CCY55OKZJBY8KjG48mkF1B+Hr4ovBoHBh+032zj5Dy6G1qNa2LHq9jqCIIOYcn8OMIzMIiQshxZDCt/u/Ze3FtSzutZgGJRtoeGSFm7TAEyKfPLAN5dnNXU2Sk7YV2nJ8xHFW9VtF+0rtM01OAGz1tnSr2o21/ddyaNghWpRtoS7713Mt35R7hwe2oRm2k3EbhDBSFIVv9n5D1z+6qsmJp6MnP3b5kQujLzChxQR8XXwB0Ot1+FZyB8C3krtaXVreozyftP2EK2Ov8FGbj3CwMTaYvRh2kZZzWrLw5EIzexZ5QRIUIfLBybATfFHuDU6HnwLA2c6Z3575jW2DtlHXr26OX69x6cbsfmU3n9b7AluD8a7JVafzfFluAsF2t0zWlXEbhIDk1GRe+esVJv4zEQVjwt61Slf+G/UfY5qOUdtyZZebgxsfB3zMsRHHaFSqEQAJKQkMWjOIz3Z+hqLIj4K8JgmKEHns4K2DvLClBxF2YQBU9KjIoWGHeLXhq+h0uW/Eqtfpecl3MO/c+AavZOOvvnC7EL4u9zZBDpdN1pVxG0RRlpSaxIsrX2T+yflq2cdtPubvl/6mlFupJ3rtmr412fPKHl5t8Kpa9uGOD3l769uSpOQxSVCEyEOHbh+i06JORCdHAdDYtykHhx2kVvFaefL6Th4OVEh8islBP1AmoSIA0baRfF92Mrfsr5msJ0RRlJSaRL8V/Vh1bhUADjYOLOu9jI8CPsqzcYUcbB347dnf+Lbjt2rZd/u/Y/ym8ZKk5CFJUITII2dDztJpYSeiEo3JSbXYOvxaZT7eTj55tg+/6l64eDninurF2ze/okqcMfGJs4lhWtkPCLG7i4u3I37VvfJsn0KYE/cggaMrLhH3IOuh4guSoigMXTuUNefXAOBo68ja/mvpU6tPvuxvQosJzHp2FjqMd0Z/PPQjX+z+Il/2VRRJgiJEHgiOCabbH93UQdeqxdZhzO2POTbvKkvH7sizGVH1eh3NBtUAwNngyrhbn1Ix/ikAIm3D+aHM+1Tt6yvjoYh8FxeRyPFVl4mzoOrED7d/yKJTiwBjcrKu/zo6Ve6Ur/sc1mAYc56boz5/f/v7zDo6K1/3WVRIgiLEE4pLjqPH4h4ERQYBUC6hCqNvf4SD4gjk/bTtFZv40X58fVy8HHFUnBh761NKJpYFIMT+Lm9fHUNyanKe7EsIazH3+Fym7J4CGLvy/9nzTzpU6lAg+w6sF8jXHb5Wn4/aMIpdQbsKZN+FmSQoQjwBRVEYuX4kh+8cBsAr2Zcxtz7GUck4gFNedv+t2MSPfj8G0HJoLVwNxfij1XL8XI1jn+y4voMJWybkyX6EsAZH7hzhtfWvqc+ndZnGCzVeKNAY3m75Nm80ewMwjmHUe1lvbkbeLNAYChtJUIR4ArOPz2bByQUAOBicGHPrYzxSzbf/yOvuv+nHbahdozor+67ETm/sgvzToZ9kfAZRJITHh9N7WW+SUpMAeL3x64xtOlaTWL7p+A0dK3UEICQuhJ7LepKYYjlVYNZGEhQhcun43eOM3jBafT44eCxlkipmuU1+dv9tUbYFv3T/RX0+asMoLodfzmILIayboigMWj1IrV5tVqYZ33f+XrN4bPQ2LO61mAoeFQDjnZ33/n1Ps3isnSQoQuRCfHI8L696mcRUY8LxSpVhNI5u89jt8rv777AGwwisFwhATFIM/Vf2V39ZClHY/Hb0N9ZfWg8YZ/9e3md5jgdgy2vezt6s6rtKjeO7/d+x9cpWTWOyVpKgCJEL7//7PudCzwHQoGQD/tfnJ1y8HLPcpqC6//7U9SeqelUFjL/gPt7xcb7vU4iCdjn8sklbqwXPL6BMsTIaRvRQ/ZL1+bL9l+rzwWsGExqXcVoKkTVJUITIoV1Bu/jhwA+AcRCoBc8vwMneUe3+m5lmA2sUSPdfV3tXFvdarLZH+Xrv1xy9czTf9ytEQUk1pDJ4zWDikuMAeK3ha3St2lXjqEyNazZO7eJ8N+Yu4zaN0zgi6yMJihA5EJMUQ+CaQHVujyntpqijxKbv/puei7djgc8w3LBUQz5s8yEAqUoqQ9YOka7HotD4bv937Lu5D4DKnpX5ptM3GkeUkV6nZ/7z8/FyMt41/fP0n6y/uF7jqKyLJChC5MBH2z/iWoRxSPlW5Vqp3QrTpO/+C9ByaC36TQ8o0OQkzTst36FOiToAnLp3iq/3fv2YLYSwfNceXFOrLXXomP/8fFztXbUNKhN+rn583+lho92R60cSnRhdoDFY4oi/2SUJihDZdOreKaYfnA4YR6mc+9xcbPQ2GdbLbNr2gmZnY8ecHnPU+Uc+3fUp50LOaRKLEHlBURTGbBxDfEo8AGObjqVluZYaR5W1QXUHqV2Pb0bdZPK2yQW6f0sc8Te7JEERIhsMioGR60eSqqQC8J7/e1TxqqJxVI/XsFRD3mr+FmCcRG3MxjEymZmwKgaDQshV4xQSSw4vU3vtlHIrxadtP9UytGzR6XT89sxvONs5A/C/w//jyJ0jGkdlHSRBESIb5p2Yp9Z5V/Wqytst3tY4ouz7OOBjdVyGbde2sfr8am0DEiKbrh0KZunYHeydfYYEXRwfnX44psj0LtMp5lBMw+iyr6JnRT5r+xkACgpjN46VHwrZIAmKEI/xIP4BE7dOVJ//0v0XHGzzdzyTvORk52RSD/7m5jeJT47XMCIhHu/aoWC2TTtObLix7cQG72U8sDN21X06piENoi27audRY5qMoYaPsaff/lv7WXFtmcYRWT5JUIR4jM93f05YfBgA/Wr1K7AJyPLS89WfV+MOigzim32W1+tBiDQGg8KBBQ/bS4XZ3mOrp/HOn63Blv73R3Fw0fk8m9uqINjZ2DGtyzT1+adHPyZBJz8UsiIJihBZuPrgKj8d+gkwNoz9uqN19oTR6XRM7zIdW70tAFP3TJWJzITFCj4frt45AVjlO58UvbGbfPuI5yieXDLP57YqCJ0qd6JHtR4ABMffZYP3Uo0jsmySoAiRhUnbJqlDxb/R7A3KuZfTOKLcq+lbk9GNjXMHJaQkyAizwmKln7PqquN5DhXbAYBrSjG6hfUzu561+L7T9+ow+Fs9V3PqXN7Ncl7YSIIiRCb239zPsjPGeuLiLsV5t9W7Gkf05D5o8wHuDsYu0PNOzuPM/TMaRyRERmlzVikoLPf9XS3vEfYyzgbXDOtZE/1lFzpGPw9Aij6ZD7d+xNKxO7h2KFjbwCyQJChCmKEoCm9vfdhT55OAT6ymx0BWvJy8mNRqEmDsOj3534Idk0GI7PCr7oWLlyOnXA5x2fmssSyxLP4RD4ezL6i5rfJSWsPfjrd74ZTqAsA+93+4FHORbdOOS5LyCElQhDBj85XN7L25F4DqPtUZ1mCYxhHlnbFNx1LarTQAay+sZe+NvRpHJIQpvV5Hk4HVWOOzUC3rGToYW2zV5wU1t1VeSd/w18XgRpfw3gAoOgOrfeYDcGChVPekJwmKEI9QFIUPtn+gPv804FO1cWlh4GTnxCcBn6jP3/nnHRmTQVicY657ueV4FYDy8VWpF9Mc0GZuq7zwaMPf9g+ewz3FeAfohNt+rjies8qGv/kpxwlKXFwcc+bM4a233qJ79+60bt2ajRs3Zmvbo0eP8uWXX/LSSy/RsWNH+vXrx1dffUVoqExDLSzHuovr1JEe65SoQ6+avTSOKO8NrjdYHZNh7829bLu2TeOIhHgo1ZDKhzs+VJ+/1+gDdOg0ndvqST3aoNdBceTZ0JfU53/9/90ia2z4m19ynKBERkYyb948goKCqFIlZ0N9//rrrxw/fhx/f3/GjRtH+/bt2b59O8OGDSMsLCynoQiR5wyKgQ+3P7wwfhrwqTqXTWFiq7flozYfqc8/2fmJ3EURFuPP039yPvQ8YJyU8/kGzwLazm31pMw16G0Z2QnfJGOydc7lBJcdz1plw9/8kuMrr7e3N6tXr2b58uWMHDkyR9u+/vrrLF68mJEjR/LMM8/w6quv8uWXXxIeHs6qVatyGooQeW7VuVWcvHcSgEalGqljFhRGvWv2Vu+i7Lmxh+3Xt2sckRCQnJrMxzs/Vp9PaTsFnc46k5L00hr+pmeLLd3CXlSfbyy51Ooa/uanHCco9vb2eHt752pn9erVQ6/XZygrVqwYQUFBuXpNIfKKQTGYjA3yacCnheLCmBkbvQ0ftH7Y1ubjHR/LXRShuUWnFnH1gbHtSfuK7WlToY3GEeUNvV5Hs0E1MpQ3i2qHd1IJAE7ZH+bwnUMFHZrF0vzedVxcHPHx8bi7u2e6TmhoKBcuXFD/STIj8sPaC2s5E2IcF6R5meZ0qdJF44jyX99afanuUx2A3Td2s+P6Dm0DEkVaqiGVr/Z+pT5P35i7MKjYxI/24+ub3EmxxZYXEl9Wn3+6y/JnaC4omndNWL58OcnJybRr1y7TddauXcu8efMKLihR5CiKwtQ9U9Xn77d+v1DfPUmTdhfl5VXGC+THOz+mbcW2GkcliqrV51dzIewCAK3Lt6ZlOeuaEDA7Kjbxo3yjElzYfpO9s8/QcmgtBrRux5b/reBG5A02XNrA4duHaVy6sdahak7TOygnTpxg3rx5tG3bloYNG2a6Xo8ePZg1a5b67/333y/AKEVRsOP6Dg7dNt5arVOiDl2rdH3MFoVHv1r9qOZdDYBdQbtkXBShiUd/JExuVXgHEdTrdfhWMtYa+FZyx9HOQR1AEWDK7ilahWZRNEtQgoKCeP/996lUqRLvvPNOluv6+PhQrVo19V/58uULKEpRVKS/ML7b8t0icfckjY3exuTi+PU+65wQUVi3rVe3cuzuMQDq+9WnU+VOGkdUsF6p94rJAIppvZiKMk0SlHv37jFhwgRcXFz46quvcHZ21iIMIQA4eucoW69uBaCSZyX61OqjcUQFr3/t/pQpVgYwXhzPhZx7zBZC5K0vdn+hPp7sP7lI/UgAcLB14I1mb6jPv9v3nYbRWIYCT1AiIyOZMGECycnJfPvtt/j4+BR0CEKYSH/3ZGKLiYVq1NjssrexN7k4frPvGw2jEUXNvpv72Bm0E4CnvJ/iheovaByRNoY3HK7O+bXg1ALuRt/VOCJt5VuCEhoaSlBQECkpKWpZfHw8EydOJDQ0lK+//pqyZcvm1+6FyJYLoRdYdc44Bo+fqx+D6w3WOCLtDG8wHA9HD8DY1fN21G1tAxJFxpd7vlQfv9vyXWz0NhpGo51iDsV4reFrACSlJvHToZ80jkhbuUpQVq5cyfz589mwYQMAe/fuZf78+cyfP5+YmBgAZs6cycCBAwkJCVG3++yzzzh37hwBAQEEBQWxZcsW9d/u3bvz4HCEMM9gUAi5GglAyNVIdUKub/d9i4Lx8RvN3sDR1jHT1yjs3BzcGNVoFADJhmSmHZimbUCiSLgQeoF1F9cBUKZYGV6u8/JjtijcxjUbh53eDoAZR2YQnRitcUTaydW97KVLlxIc/HBa6F27drFr1y4AOnXqhKurq9ntLl++DMCGDRvU5CaNn58f/v7+uQlHiCxdOxTMgQXn1Im69s4+w4nVV6jaz5eFp4zzX7jZu/Fao9e0DNMijGk6hu/2f0diaiK/Hf2N91q/p95VESI/TD84XX08ruk47G3sNYxGe6XcSjGgzgDmnphLREIEs4/PZnyz8VqHpYlcJSjLli177DqTJ09m8mTTbmLZ2U6IvHTtUDDbph3PUB4bnsCUpV+T6GucmGtYg2Fq3W9R5ufqx+C6g5l5bCbRSdHMOT6HN5u/qXVYopAKjw9n/sn5ALjYuTCswTCNI7IMb7V4i7kn5gLw/f7veb3x69jZ2GkcVcHTfCRZIfKLwaBwYIH53igpJLPD828A9Do9Y5qMKcjQLNobzR82lv3p0E+kGlI1jEYUZjOPziQuOQ6AIfWHyN26/1fTtybdq3YH4GbUTVacXaFxRNqQBEUUWsHnw9VqnUcdLraLSNsHAHQp1Y2KnhULMjSLVt2nOp0rdwbgesR1tX2AEHkpOTWZnw/9DIAOHWObjtU4IsvyVou31Mc/HvpRw0i0IwmKKLTiIxLNliso/OO5Rn0+qOTQAorIeoxrOk59nL6NgBB5ZfnZ5dyONvYUe7bas1TxqqJxRJalTfk21ClRB4ADtw5w+PZhjSMqeJKgiELLycPBbPklpzPccLwCQPmEKrSq0Kogw7IKnat05invpwDjNACn7p3SOCJRmCiKwg8HflCfpx+DRxjpdDrGNnl4V6kodjmWBEUUWn7VvUxmDU2T/u5J9+S+lKzhXYBRWQe9Tm9ycZx+QO6iiLyz7+Y+jtw5AkA9v3q0Kd9G44gs00u1X8LLyQuAJf8tITgm+DFbFC6SoIhCS6/X0WxQDZOyELtgTrjuB8A9xYuxvUeg1xetIbWza3C9wbg7GCc0++P0H4QmhGockSgs0t8NeKPZG0VuWPvscrJzYniD4YBxbKKZR2dqHFHBkgRFFGoVm/jRfnx99U7KLveNKDrjwGzDagynWrNyWoZn0VztXRla39g+JzE1kRkHfwVMB7oTIqeCY4JZeW4lAL7OvvSr1U/jiCzbqMaj0OuMX9UzjswgKTVJ44gKjiQootCr2MSPfj8G0OiVyuxx3wyAnd6Ot3tIvffjjG4yGv3/XyYWXJ5LKqnsnX2GpWN3cO1Q/txujnuQwNEVl4h7YL4HlrBuvx/7nRSDcQqUYQ2G4WBrvq2YMCrnXk6dmyg4JrhIdTmWBEUUCXq9jv36HcTYRgHQu2ZvSriW0DgqK3DJiTrRTQCIsAvjpOtBwDjQ3bZpx/MlSYmLSOT4qsvEZdILS1ivFEMKvx39DTC2cxrRcITGEVmH9F2wfzxYdLocS4Iiioy5F+aoj0c1HqVhJNYhbaC7NhHd1LKdHutN1jmw8JxU94hsW3dhHbeibgHwzFPPUN6jvMYRWQf/cv7ULVEXgIO3D3Ls7jGNIyoYkqCIIuFE8AkOhxh//df0qEnLsi01jsjypQ10VzOuAb5JfgCcdTnOPbuHsxzHhiUQfD5cqxCFlfnlyC/q47SJKcXj6XQ6RjYaqT7/7chvGkZTcCRBEUXCjMMz1MeB1YZKr4FsSBvoTo+e1pFd1fJdHpvMridEVi6EXuCfq/8AUNmzMh0rd9Q4IuvyUu2XcLU3TsT7x+k/iEqM0jii/CcJiij0IhMiWXR6EQAOBif6VOqrcUTWIf1Ady0jO2FrMM4tuq/YVpJ1SWbXEyIzvx75VX08stFItWeKyB43BzcG1B4AQGxyLH+c+kPjiPKfnCGi0FtwcoE6IVnzyHa42rlpHJF1SD/QnVuqOw1j/AGIsY3iiNtuAFy8HfGr7qVZjMI6xCbFqrPzOto6ElgvUNuArNRrjV5TH884MgNFKdztvyRBEYWaoigm9d4BEd01jMa6PDrQXYBJY9kNADQbWEMGuhOPteS/JUQmRgLw4tMv4u0sozfnRl2/ujQr0wyA0/dPc+DWAY0jyl+SoIhCbWfQTs6HngegeYkWlE6qoG1AVib9QHeV42tSOtHY6+KK0zlKDbGnYhM/jSMU1iCtazFI49gn9VrDh3dRfj36axZrWj9JUESh9vux39XHgU8N0TAS65U20F2roU/TJt0dqLUJyzWMSliLk8EnOXzHOBNvfb/6NC7dWOOIrFvfWn3xcPQAYOl/SwmPL7y96CRBEZrLr5FDH8Q/UEdd9HLyolu5Z/L09YsSvV6HbyV3mkW1w9nWBTD2JIhJitE4MmHp0v9IGNZgmIaRFA5Odk4E1g0EjFNQzD8xX9uA8pEkKEJz+TVy6KJTi0hMNb7mwDoDcbTJOLOxyBkngzO9KvYGICYphmVnlmkckbBk8cnxag86J1snXq79ssYRFQ4jGj0cgffXo78W2saykqCIQklRFGYdm6U+l19ueWdA1UHq4/S/joV41MpzK4lIiACMVRPuju7aBlRIVPepTkCFAAAuhl1k943d2gaUTyRBEYXS4TuHOX3/NADNyjTj6eJPaxxR4VHfuwG1i9cGYP+t/ZwNOatxRMJSyY+E/DOs/sP3c/bx2RpGkn8kQRGFkkm9d325MOYlnU7H0PpD1eezjxXOi6N4MhfDLrIraBcANXxqyPQSeaxnjZ5qY9nlZ5YTmRCpbUD5QBIUUejEJMWw+L/FALjau9Lv6X4aR1T4DKgzAHsbewAWnFpAYooMdy9MPdo4VqaXyFtOdg/b9MSnxLPkvyUaR5T3JEERhc7S/5aqvUv6P91fnb9C5B1vZ2961ugJQGhcKGsvrNU4ImFJklKTmHdiHgB2ejsG1hmobUCFlMmdzEJYzSMJiih0fj/+8Jfb8AbDNYykcEtfdZb+PRdi3YV1hMSFAPBCjRfwdfHVOKLCqX7J+tT3qw8Y292dundK44jyliQoolD57/5/6vDPdUrUoVGpRhpHVHi1rdiWih4VAdh6ZStBEUEaRyQsRfrGsfIjIX8V5vZgkqCIQiV9vffwBsOl3jsf6XV69eKooKiTwYmi7XrEdbZc2QJARY+KtKvYTuOICreXar+Eg41xRvFFpxcVqvZgkqCIQiMhJYGFpxYC4GDjIINCFYDAeoHodcbLyJzjc0g1pGockdDa3ONzUTAOHDa0/lD1/BD5w9PJk141ewEQHh/OmvNrtA0oD8mZIwqNtRfWqvNS9K7ZG08nT40jKvxKFytN1ypdAbgZdZOtV7dqHJHQkkExMP+kceh1vU5PYL1AbQMqIgrrmCiSoIhCI30VQ/p6WZG/0g/AJSPLFm27gnYRFGlsi9SpcidKFyutcURFQ5sKbajkWQmAf67+w/WI69oGlEckQRGFwu2o22q9d3n38rSp0EbjiIqO7lW7U8KlBGC8ixUaF6pxREIraV2LAXVCO5H/9Do9Q+oZZ2tXUJh7vHC0B5MERRQKi04twqAYABhcd7DUexcgO5uH41wkG5JZfHqxxhEJLcQkxaizh7s7uPNc9ec0jqhoSd8ebO6Juer10JrJVVxYPUVRmHdynvp8UN1Bma8s8sXgeoPVx+k/C1F0rDi7gtjkWABefPpFHG1l9vCCVLpYabpU6QIY24Ntv7Zd44ienCQowuodun2I86HnAWhdvjWVvSprHFHR83Txp9UxZ47dPVboBowSj2dSvSONYzWRvlqtMPxQkARFWD2p97YM6d/7+SfmaxeIKHDXHlxjZ9BOAKp5V6Np6aYaR5Q7zh4O1O9ZBWcPB61DyZVnqz2Lp6Ox9+LKsyuJSozSOKInIwmKsGoJKQnqxIDOds70rtlb44iKrhefflGdQHDR6UUkpyZrHJEoKAtOLlAfB9YLtNoBEp09HWnYuyrOntZZPeVo60j/p/sDxgkE09oEWStJUIRV++v8X0QmGqcZ712zN24ObhpHVHR5O3vTo1oPAO7H3mfT5U0aRyQKwqNjn8jEgNoyaQ+W7u6yNZIERVi19PWsUr2jvcJWBy4eb/+9fVyLuAZAx0odZewTjTUu1ZgaPjUA2H1jN9eir2kcUe5JgiKsVvqxTyp4VJCxTyxA5yqd1TFR1l1YJ2OiFAFLrvypPh5cd3AWa4qCoNPpTBopL7tivd3+JUERVkvGPrE8tnpbGROlCEnQxbM26C8AijkU4/nqz2sbkABgQJ0B6vVw6ZXFGLDOMVHkii6skox9YrlkTJSi45jbPuJS/n/sk1ov4mTnpHFEAqCUWyk6Ve4EwM3Ym1x0Oq1xRLkjCYqwSunHPmlT/uE8FEWNJXaLlDFRio59xR5ODiljn1iW9O3B9rlv0y6QJyAJirBK6ScGtMQLY0ElDpbaLVLGRCn8bsQEccHFmHw+5f0Uzco00zgikd5z1Z/D3cEdgGNue7h+6Q4Gg6JxVDkjCYqwOvHJ8Sz5bwkALnYuFjn2iaUmDgVFxkQp/JZdWaI+Hlx3sNWOfVJY3T0WQaOI1gAk6hP436pZLB27g2uHgjWOLPskQRFW568LpmOfuNq7ahyReJSMiVK4KYrC0v/vHaJDJ2OfWJhrh4LZNu04je+3Vcv2u28jNjyBbdOOW02SIgmKsDoy54d1kDFRCq9dQbu5HnMdgOYerSjtVkbbgITKYFA4sOAcAJUSquGXaPxsLjifIsTOmJgcWHjOKqp7JEERVuV21G22XjU2zKvgUYHW5VtrHJHIjIyJUjhdOxTMx79+qT6vebaZ1VUdFGbB58OJDU8AjHe3mke1V5ftL2ZsLBsblkDw+XBN4ssJSVCEVVl4aqGMfWIlHh0T5c/Tfz5mC2Hprh0KZsP0/ex32AGAU6oz9WKaW13VQWEWH5Fo8rxZVHt0irF90P5i29QxUR5dzxLJ1V1YDUVRTKp3ZOwTy5e+Ci5tvhZhndKqDo657SVRHw9Ao2h/HJSHDcGtpeqgMHN6pOegV4oPNeLqAxBqH8xlpzNm17NEOU5Q4uLimDNnDm+99Rbdu3endevWbNy4MdvbR0dH88033/Dss8/SqVMnxo0bx4ULF3IahiiCDt4+yIUw47lSlMc+sSa1itcyGRPl9D3rHDBKPKw62FfsH7WsRVQHk3WspeqgMPOr7oWLl2nvwRaRD6t59rn/g4u3I37VvQo6tBzLcYISGRnJvHnzCAoKokqVKjna1mAw8M477/DPP//Qs2dPXnvtNR48eMC4ceO4efNmTkOxGHEPEji64hJxDxK0DqVQk8ax1in9/CxyF8V6xUckEmZ7jwvOxrFPiieVonJ8TbPrCe3o9TqaDaphUlYvpjlOqc4AHHHbQ53+5dHrLb9beI4TFG9vb1avXs3y5csZOXJkjrbdsWMH//33H5MmTeKVV16hZ8+e/Pjjj+j1eubOnfv4F7BQcRGJHF91mTj5w8w3CSkJLD2zFLDcsU+Eef2f7o+d3g4wzp8kY6JYJycPB/YX+xdFZ6zCaRHZAR0Zv+SsoeqgsKvYxI/24+urd1IcFEcaRaeNiRLPMZe9WoaXbTlOUOzt7fH29s7Vznbu3ImXlxetWz/seeHh4UHbtm3Zs2cPSUlJuXpdUfitvbCWiIQIAHrV7CVjn1iR9GOi3Iu9x+YrmzWOSORGiWqeHPAy9gLRKTqaRbXLsI61VB0UBRWb+NHvxwBaDq0FwIjWw9Rl1tLtv0AbyV68eJGqVaui15vutkaNGiQkJFh1NY/IX+mrd2RKd+uTvkou/WcprMf+2/u4Z3MHgOpxdfFOKZ5hnWYDa1hF1UFRodfr8K1kHO6+U932VPEyNsv499q/BEUEaRlathRoghIeHm727ktaWVhYmNntQkNDuXDhgvovKMjy31iRd+5G31V/dZdzL0dAhQBtAxI51rlyujFRLq4jLM7837p4cvnVJi59Ytk2tavJMhdvR9qPr0/FJn55uk+Rd3Q6ncngiQtPLdQumGwq0AQlMTERe3v7DOVpZYmJ5ttwrF27luHDh6v/pkyZkq9xCsvyx+k/1LFPBtUZJGOfWCE7GzsG1BkAQFJqkjqXksh7+dEmLi45jmVnlgHgZu/Gl59PVqsOWg6tRb/pAfmanFjirN3WaGDdgWq7oXkn5qEolt0lvECv9A4ODmbbmaSVOTiYP/l69OjBrFmz1H/vv/9+vsYpLIeiKCY9P2TsE+uVvmrOWurAhdHqc6uJTooGoG+tvrg5uqpVB76V3PO9WqeoT76ZV8q5l6NdRWPboSsPrrD3pmU3li3QBMXLy8tsNU5aWWaNb318fKhWrZr6r3z58vkap7Acx+4e47/7/wHQomwLqnpX1TgikVu1S9SmQckGABy5c0T9XIXlS59QShsw62ZN7cEKNEGpWrUqly5dwmAwmJSfO3cOR0dHypYtW5DhCCuQ/u5J+vpTYZ3Sf4bzT8iYKNbgZuRNtl019t6p7FmZVuVaaRyReBIvVH8BN3s3AJadWUZccpzGEWUu3xKU0NBQgoKCSElJUcvatGlDeHg4u3btUssiIiLYvn07LVq0MNs+RRRdSalJ6vwtjraO9K3VV+OIxJPqXzvdmCinF5FiSHnMFkJrC08tRMHYVmFw3cHodNJLJy9o1a7Gxd5FvZZGJ0Wz+tzqAt1/TuQqQVm5ciXz589nw4YNAOzdu5f58+czf/58YmJiAJg5cyYDBw4kJCRE3S4gIIBatWoxdepU5s2bx+rVqxk3bhwGg4EhQ4bkweGIwmT9xfWExRur/56v/jzuju4aRySelI+zD89WexaA4JhgtlzZonFEIisy/1X+0bJdjbW0B7PNzUZLly4lOPjhrJW7du1S74p06tQJV1fzg2jZ2Njw9ddf88svv7By5UoSExOpXr06kyZNoly5crkJRRRi6at3pN678BhcdzCrzq0CjHXg3ap20zgikZn9t/ZzKfwSAG0rtKW8h7T/KwxalWtFJc9KXH1wlW1Xt3Ez8iZl3S2viUWuEpRly5Y9dp3JkyczefLkDOVubm688847vPPOO7nZtSgiQmJDWH9pPQCl3ErRsVJHjSMSeaVrla74OvsSEhfCXxf+Ijw+HC8nGX3UEsn8V4VT2pgoH+74EAWFhacWMtk/4/e11mRACWGR/jz9p9o+YUDtAdjobTSOSOQVGRPFOsQnx6vzX7nau9KrRi+NIxJ5KX11naWOiSIJirBIJtU79aR6p7Cxpq6ORdWa82uISowCoHfN3rjYu2gckchL5T3K07ZCWwAuhV9i/639GkeUkSQowuKcvnea48HHAWhcqjE1fTNO6S6sW50SdajvVx+Aw3cOczbkrMYRiUelbzwpXfwLJ0v/oSAJirA40ji2aEj/2cqYKJbldtRt/rn6DwAVPSriX95f44hEfuhV4+HM8EvPLCU+OV7jiExJgiIsSoohhUWnFgFgp7fjxadf1DgikV9eqv0StnpjO/2FpxbKmCgWZOGpher8V4PrDpb5rwopF3sX+tTsA0BUYhRrzq/RNqBHyFknLMrmy5u5F3sPgGerPYu3s/npD4T183Xx5ZmnngHgbsxdtl7ZqnFEAmTsk6LGksdEkQRFWBQZ2r5oSf8ZW9rFsag6ePsgF8IuANCmfBsqelbUOCKRn/zL+1PRw/gZb72ylVtRtzSO6CFJUITFeJD4gL8u/AWAr7MvXap00Tgikd+6Ve2Gr7MvAH+d/4sH8Q80jkikbw8kY58UfnqdXr2LoqCoVeyWQBIUYTHWXF9FUmoSAC/Xfhk7GzuNIxL5zc7GjpdrvwxAYmoii/9bQsjVSABCrkZiMFje2AyFWUJKAov/WwyAs52zjH1SRFjqmCiSoAiLsfTKYvWx/HIrOtKPc/PDXz+xd/YZAPbOPsPSsTu4dig4s01FHvvr/F9EJhoTxN41e+Pm4KZxRKIgVPSsSJvybQC4EHaBg7cPahyRkSQowiLcsb/B0dAjANQtUZe6fnU1jkgUlHp+9ajhVguAy3bnuGt/Q10WG57AtmnHJUkpIDL2SdFliWOiSIIiNGUwKIRcjWSP+2a1bEh9mdm6KDEYFBrdbaM+31dsW4Z1Diw8J9U9+exO9B11duny7uVpU6HNY7YQhUnvmr1xsTOOFrzkvyUkpCRoHJEkKEJD1w4Fs3TsDnbOPsGBYv8CYKvY0Sq5g8aRiYIUfD6cesGtsFGM8y0dKPYvBlJN1okNSyD4fLgW4RUZi04tUsc+GVR3kIx9UsS42rvSu2ZvACITI/nr/F8aRyQJitDItUPBbJt2nNjwBE65HiLa1ljvXS+6Gcd+CZJb+kVIfEQixVI9qB3TGIAIuzDOOp8wu57IH4qiMPv4bPW5jH1SNFnamCiSoIgCZzAoHFhwTn2+x32L+rhVZGdAbukXJU4eDgA0j3p452yf+z+Zrify3t6be7kYdhEwjn1SxauKxhEJLbSp0Iby7uUB2HJlC3ei72gajyQoj7gfe5+d13dqHYbm4h4kcHTFJeIe5H09ZPD5cGLDja/7wDaU/1yOAuCV7EuNOGPjWLmlX3T4VffCxcuROjGNcU0pBsBx133E6WPUdVy8HfGr7qVViIXe78d+Vx8PazBMw0iEltKPiWJQDCw8uVDbeDTduwVRFIUBqwZQ5vsy9FneRx2Po6iKi0jk+KrLxOXDbfX0t+r3F9uGojPWe7eI7IgeG7PricJLr9fRbFANbLGjaXQAACn6ZA677VLXaTawBnq9Ls/3nZ+JuLWISoxi+dnlALg7uMvYJ0Vc+uq9uSfmajomiiQo/0+n05GUmkSyIZmQuBDWXlirdUiFVtqtegWFve4P519pEdXB7Hqi8KvYxI/24+vTnu5q2V73rbh4O9J+fH0qNvHLl/3mZyJuLZb8t4S45DjAOIGjk52TxhEJLVX2qmwyJsq+m/s0i0USlHSGNxiuPk5/y1PkrbRb+pec/uO+vbGOs0ZsPXyTH34JyS39oqdiEz8mfjeMai41AbjmdIFa7/nkW3IijNI3jh1af6iGkQhLMbT+UMq5l+OjNh9pOheTJCjptK/UXp00acuVLVyPuK5tQIVU2i399I1jW0Z2NFknv27pC8tmY6MnsFag+nz2cfmhkJ9O3zvNoduHAOOAeQ1KNtA4ImEJ+tfuz9WxV/k44GNKuZXSLA5JUNLR6/TqLwgFhTnH52gcUeHlXdeZ4557AXBOdaV+TAuAfL+lLyxf74p9sTPYA7Dw1EKLGDCqsHr07olOJz8KBNjqbbHR2zx+xXwmCcojAusFqgMUzTk+h1RD6mO2ELmx5L8lJBiMXzzPlXkBe8WBlkNr0W96gCQnFsrZw4H6PavgnM9tgzwcPGgY3QqABwkPWHl2Zb7ur6hKTElk4SljLw0HGwd10kYhLIUkKI8oXaw03asaG+rdjr7NpsubNI6ocDL55dbAeNfKt5K7VOtYMGdPRxr2roqzp2O+78s/sov6eNaxWfm+v6Lorwt/ER5v7Mrfq2YvPJ08NY5ICFOSoJiRvrGsXBzz3n/3/1PrveuWqEsdL5kYUJiqGl+LKsWqArAzaKc6iJjIO+k7AkjjWGGJJEExo2vVrmrDoL8v/s3d6LsaR1S4zDr6MOkbUn+I1HuLDHToGFD14XgM0qsubwVFBPHPVeNovRU9KhJQIUDbgIQwQxIUM2z1tgypZ5xRN1VJtZippwuDuOQ45p+cD4CjrSMD6wzUOCJhqfpV7o+d3g4wTv9e1AdPzEtzjs9BwTgA15D6Q2RiQGGR5KzMxJD6Q9THvx//XZ3lUzyZZWeWEZlonBiwX61+Uu8tMuXj6MPz1Z8HkMET81CKIYXf/7/7tl6nJ7BeoLYBCZEJSVAyUdGzIh0rGcfmuPrgKtuvbdc4osLh1yO/qo9fa/SahpEIayDtwfLe3xf/VieBe/apZylTrIzGEQlhniQoWbDEi6M1zx1yIvgEB28fBIyNY5uWbqpxRMLSpR88ceuVrTJ4Yh6QHwnCWkiCkoXnqj+Hr7MvAKvPryYkNkTjiKx77pDfjvymPh7RcIQ0jhWP9ejgibOPzX7MFiIrV8KvsPnKZsDYOLZT5U4aRyRE5iRByYK9jb1aP5uUmiQjyz6B6MRoFp1eBICLnQsv15FBoUT2vFL/FWx0xlEtZx+fTXJqssYRWa+ZR2eqj0c0HCGNY4VFk7PzMUY0HIEO4y/9X4/+KiPL5tLi/xYTkxQDGGdMLeZQTOOIhLUo5VaKHtV6AHA35i5rzq/RNiArlZiSyJwTxh9Zdno7Xqn/isYRCZE1SVAeo7JXZbpUMY5qeT3iOhsvb9Q4IuujKIpJvfeIhiM0jEZYo9cbv64+/t/h/2kYifVadW4VoXGhgHHk2OIuxTWOSIisSYKSDaMaj1If/3L4Fw0jsU5H7hzhePBxABqVakTDUg01jkhYm3YV21HNuxpgHFn2zP0zGkdkfX49mq5xbENpHCssnyQo2dC1SlcqeFQAYNPlTVwJv6JtQFbGpNeAhhfGgprsTuQ9nU5n1T8UtO59dzbkLLuCdgFQw6cGrcu31iQOIXJCEpRssNHbqF+sCqbVFSJrYXFhLP5vMQDFHIrx4tMvahZLQU52J/Le4LqDcbFzAWDBqQVEJUZpHFH2ad37bsbhGerj1xq9Jj3ohFWQBCWbhtQfgr2NPQBzTswhPjle44isw+zjs4lPMb5XgXUDcbF30TgiYa3cHd0ZUGcAADFJMSw6tUjjiKxDVGIU807OA8DJ1kmmlxBWQxKUbPJ18aVfrX4AhMeHs+zMMo0jsnwphhSTBo2jm4zWMBpRGKSv5vnf4f+hKIqG0ViHeSfmqT3oBtUdJNNLCKshCUoOPHpxFFlbd2EdNyJvANCtajeqelfVOCJh7eqUqEOrcq0AY7uKnUE7NY7IshkUAz8d+kl9PqbJGA2jESJnJEHJgaalm1Lfrz4Ah+8c5uCtgxpHZNl+PPSj+nhsk7EaRiIKE+lynH2bLm/icvhlANpXbE+t4rU0jkiI7JMEJQd0Op3JL5AfDvygYTSW7fS90+y4vgOAp7yfomPljtoGJAqNnjV6UsKlBGAc2yMoIkjjiCzXjwfT/UhoKj8ShHWRBCWH+tfurw5wtOLsCrUKQ5h69LayDKkt8oq9jb1a3fpoFYZ46FLkRZN5d7pX7a5xRELkjHxr5JCjrSMjG40EIFVJ5edDP2sckeUJjw9Xe1i42bsxuO5gjSMShc3IRiNxsDGOZzPr2CyiE6M1jsjy/H7+4Qzso5uMxkZvo2E0QuScJCi5kP7iOPPoTGKSYzSOyLLMOjpL7Vr8Sr1XcHNw0zgiUdj4uviq3WWjEqNkIs9HxOljWXLlTwCc7ZwZUn+IxhEJkXOSoORCCdcSvFzbOBtvZGKkeiEQxgnJph+cDoAOnXQtFvlmfLPx6uNpB6fJRJ6AwaAQcjWSXR4biEuJBWBQnUF4OHpoG5gQuSAJSi6lvzjOOPULBlIJuRqJwVC0x2X48/Sf3I25C8Dz1Z+XrsUi39QqXovOlTsDxok8i/osx9cOBbN07A52zDnBNo+1AOgUHb1dBmgcmRC5IwlKLtUuUZuW3sb5LG4kXOeU6yH2zj7D0rE7uHYoWOPotGFQDHy7/1v1+dst3tYwGlEUvNn8TfVxUe5Vd+1QMNumHSc2PIFDbtuJsAsDoF5Mc67Niiqy1yRh3SRByaVrh4JpeLK9+nyL5yoAYsMT2DbteJG8IGy8tJGzIWcBaFm2Jc3LNtc4IlHYdazUkVq+xrE99t7cWyTHJjIYFA4sOGd8jIHNXqvUZZ3DewNwYOG5In93V1gfSVByIe2CUCu2ISUTywJwyfkMl5weTgFfFC8I3+z7Rn0sd09EQdDpdLzR7A31+df7vtYwGm0Enw8nNtw4S/Jpl8PcdTAOfVAlrhaVE6oDEBuWQPD5cM1iFCI3cpygJCUlMWPGDF544QU6dOjAiBEjOHz4cLa2PXLkCOPGjePZZ5+lW7duvPrqq2zevDnHQWst7YKgR0+X8D5q+Uavh/PzFLULwuHbh9Vhx6t5V+PZas9qHJEoKl6u8zIlXUsCxoHbzoWc0ziighWfbobkLV4r1cdd/v/uibn1hLAGOU5Qpk6dyrJly+jYsSNjx45Fr9czceJETp06leV2e/bsYcKECSQnJxMYGMiwYcNwcHDg888/Z9ky65p4L/0fepOoALySfQE47XqYGw5XzK5X2KW/e/JWi7dkYDZRYBxtHZnQfIL6/Ku9X2kYTcFz8jAOeXDV8TwXnf8DoGRiWWrHNja7nhDWIkffImfPnmXbtm28+uqrjBo1ih49ejBt2jT8/PyYMWNGltuuWrUKb29vpk2bRq9evejZsyc//PADpUuXZuPGjU90EAUt/R+6LbYmv1Q2eS03u15hdjHsIivPGX+5lXApwYA60mtAFKxXG76Kp6Nxlt5FpxZxPeK6tgEVIL/qXrh4ObLZa4Va1im8F/p0l3cXb0f8qntpEZ4QuZajBGXnzp3Y2NjQo0cPtczBwYHu3btz5swZ7t27l+m2cXFxuLm5YW9vr5bZ2tri7u6Og4N1fZGnXRDStIzshFuKBwBH3HYTbHerSF0Qvtj9BQbFABi7XzvaOj5mCyHylpuDmzrXTKqSyrf7vn3MFoWHXq/D4wU45rYPAPcUL5pGtzVZp9nAGuj1Oi3CEyLXcpSgXLp0iTJlyuDi4mJSXqNGDQAuX76c6bb16tXj2rVr/P7779y6dYvbt28zf/58Lly4QP/+/XMRunb0eh3NBtVQn9srDnR88DwAik5hs9eKInNBuBJ+RR3W3svJy2SmWSEK0pgmY3CxM16bfj/2O8ExRacn3dzwh3ewu4T3xk6xA4x3TtqPr0/FJn5ahSZErtnmZOWwsDC8vb0zlKeVhYaGZrrt4MGDuXv3LgsXLmTBggUAODo68umnn+Lv75/lfkNDQwkLC1OfBwVpP3tpxSZ+tB9fnwMLzhEbnkCbiO5s9FpOvE0sBz23Y1stWesQC8QXu78gVTGO4PlGszdkWHuhGW9nb15r9Brf7f+OxNREvt//PV93LPy9es7cP8OKs8bqnRIuJZj43Jscm3eVlkNrUa1t2SLxQ0kUTjm6g5KYmIidnV2G8rRqm8TEzBuF2tnZUbZsWQICAvjoo494//33qVatGlOmTOHMmTOZbgewdu1ahg8frv6bMmVKTsLONxWb+NHvxwBaDq2Fs8GFQRVeASBZSWbqnqkaR5f/rj24xoJTxmTTw9GDMU3GaByRKOrebP6mOk/W/w7/j3sxmVc7FxZTdk9BwTikwdst3qZcVePdEt9K7pKcCKuWowTFwcGB5OSMdwaSkpLU5ZmZNm0a+/bt46OPPqJ9+/Z06tSJH374AW9vb3788ccs99ujRw9mzZql/nv//fdzEna+0ut1+FZyB+CN5m/gau8KGG8xX3twTcvQ8t2Xe74kxZACwPim43F3dNc4IlHUlXIrxYiGIwCIS47jyz1fahxR/joXco6l/y0FwNfZl9cavaZxRMLSOHs4UL9nFZytsNNGjhIUb29vk6qWNGllPj4+ZrdLTk5m/fr1NG/eHL3+4S5tbW1p2rQpFy5cMJv4pPHx8aFatWrqv/Lly+ck7ALj7eitDhqVbEjms12faRxR/gmKCGLuibkAFHMopjZQFEJrk/wn4WTrBMCMIzO4FXVL44jyz6N3T1zsXR6zhShqnD0dadi7Ks6e1td5IUcJSpUqVbh16xaxsbEm5WfPnlWXmxMZGUlqaiqpqRlnG01NTcVgMGAwGHISisV6s/mb6syh80/O50LoBW0Dyicf7fiIZIMxqRzbZCyeTp4aRySEkZ+rnzqLdmJqIl/s/kLjiPLH6XunWXx6MQA+zj6MajxK44iEyFs5SlACAgJITU1l7dq1allSUhIbNmygZs2alChRAoB79+6ZNGT19PTE1dWV3bt3m9wpiYuLY+/evZQrV87quhpnxsPRQx3m3aAY+Hjnx9oGlA/+u/8fC04a2554OnoyocWEx2whRMGa2HKiSXVrYRwXZdK2Serdk3daviN3T0Shk6MEpWbNmrRt25aZM2cyY8YM1q5dy/jx4wkODua11x7WfX7++ecMHDhQfW5jY8OLL77IzZs3ee2111i2bBlLlixhxIgRhISEMGjQoLw7IgswtulYfJ2No8su+W8Jp+5lPcqutXnv3/fUC+OkVpPUO0ZCWAofZx/GNx0PGKtbP9n5ibYB5bFdQbtYf2k9AGWKlVHvGAlRmOR4PPLJkyfTp08fNm/ezI8//khKSgpfffUV9erVy3K7QYMG8cEHH2Bra8u8efOYPXs2Li4ufPrpp3Tq1Cm38VskV3tXJrWapD5/9593NYwmb+29sZe1F4x30Eq7lZYLo7BYE1pMeFjdemI+J4NPahtQHlEUhXf+eUd9/mnApzI4oiiUcjQOChh76owaNYpRozKv78ysV07Hjh3p2LFjTndplV5r9Bo/HPiBm1E32Xh5I5svb6Zzlc5ah/VEFEXh3W0Pk62PAz7Gyc5Jw4iEyJyHowfv+b/H21vfRkFhwpYJbB24FZ3Ourve/nXhLw7cOgBATd+aDKpbuO5AC5FGZnTLJ052TnzZ4WEXxwlbJqhdcq3V8rPL2XNjDwBPeT9FYL1AbQMS4jHGNBlDRY+KAGy7to0NlzZoHNGTSUxJZOLWierzL9p9gY3eRsOIhMg/kqDkoxeffpEmpZsAcCbkDLOPzdY4otyLS47jrS1vqc+/6/Qdtvoc34ATokA52DqY/FB4a+tbJKda7yjP0w9O51L4JQBalWtFj2o9HrOFENZLEpR8pNfp+aHzD+rzD7Z/QGRCpIYR5d43e7/hZtRNADpX7kz3qt01jkiI7OlTsw/NyzQH4HzoeX498qvGEeXO3ei76thKep2en7r+ZPXVVUJkRRKUfNaibAv61uoLQEhcCO//azmj4GbXjcgbfLX3KwBs9bZM6zJNLozCauh0Or7v/L36/P3t73M3+q6GEeXOu9veJSYpBoBXG7xKPb962gYkRD6TBKUAfN3ha5ztnAHj/CBH7hzROKKcGb9pPPEp8YCxTr+6T3WNIxIiZ5qVacaQekMAiEqMYsIW6xq7Z9/NfSZjD33WrvCOUi1EGklQCkB5j/J83OZjABQURvw9glRDxlF1LYXBoBBy1VgV9eehJaw+vxqA4i7F+bDNh1qGJkSufdXxK7ycvABY/N9iNl/eop7nIVcjMRgULcPLVGJKIsPWDlOff9r2U3yczU8rIkRhIglKARnfbDy1i9cG4NjdY/zv8P80jsi8a4eCWTp2B3tnnyFOH8OH/01Wl/3Y5UcZlE1YLR9nH77u8LX6PHD+ULbPOQbA3tlnWDp2B9cOBWsVXqa+2P0F50LPAdCoVCOZEFAUGZKgFBA7Gzt+feZh47zJ2yZz9cFVDSPK6NqhYLZNO05seAIAK33nEmkbDkCdmCY0jm2tZXhCPLFX6r9CQ4/GAATb3mKNzwJ1WWx4AtumHbeoJOX0vdNM3TMVMLb/mt1jtvSeE0WGJCgFqEXZFupU8LHJsQxaPchiqnoMBoUDC86pz885n2CXx0YAHAxOvHzvdQ4uOm+xt8GFyBZFR7+rI7E12AHwj+caLjidNlnlwMJzFnGepxhSGLZumDop5zst36FOiToaRyVEwZEEpYB90/EbdeCovTf38u2+bzWOyCj4fLh65yRGH8Ucv+/UZT1DAvFK8SU2LIHg8+FahSjEEws+H45niB/PhxpHX1V0CnP9vidBF6euYynn+ZRdUzh0+xAA1byr8X5r6+sBKMSTkASlgLk5uLHghQXoMHbT/WD7BxYxR0h8RCJgbMS70O8nIuzCAKgRW4+AiO4Z1hPCGqWdvx0fPE/VuFoAhNnfY2nxmWbX08qeG3vUMU9sdDbMe36exc234+zhQP2eVXD2KBwz0QvLIwmKBlqVa8XElsbhqpMNyfRd0ZeoxChNY3L6/4vMbvdNHHPbC4BLqhuvBL+JPt1p4iQXI2HF0s5fPTa8EvwmDgbjl/4ejy3sL7Ytw3paeBD/gJdXvYxBMQDGOa+alWmmWTyZcfZ0pGHvqjh7WlbiJAoPSVA08knAJ+pASxfDLvLKX6+gKNrVe/tV9+Ju8WssLj5DLRsUPA7PlIfdGV28HfGr7qVFeELkCb/qXrh4Gb9QfZNL0v/eSHXZohI/c9v+uqbneaohlZdWvcSNyBsA+JfzN5kZXYiiRBIUjTjYOrCy70q12+6qc6v4Zt83msUTEnefX/ymkKI3TmjY9sGzNIhpYbJOs4E10OtlBFlhvfR6Hc0G1VCft4zqSKuITgAk6ROZUfpzarxYUrPz/IPtH7Dp8ibA2C16Uc9FMhmgKLIkQdFQJc9KLHxhofr83X/eZeXZlQUeR1xyHD2X9SQ40Tj8d/Wk2vS9P1xd7uLtSPvx9anYxK/AYxMir1Vs4kf78fXVOyn974+kbEIlAO7Z3+aNyyNJTCn4NiiLTy9WuxTb6GxY1nsZ5dzLFXgcQlgKSVA09sxTz/BRm48AYwPVl1e9zN4be82um36E17wa+TLFkMKLK15k3819AJRyK8W2dzbTZmhdAFoOrUW/6QGSnIhCpWITP/r9GEDLobWwVxyY3Wo+vs6+AOy4voNh64YVaJXrlitbGLxmsPr8+87f07Zi2wLbvxCWSBIUC/BRm48YVNfY7TExNZFnFz/LsbvHTNZJP8Ir5M3IlwbFwIh1I1h3cR0AbvZurOu/jlLFSuJbyR0A30ru+X67W3oDCC3o9Tr1PK9fszbr+q9Te8osOrWIsRvHFkiScvDWQV5Y+oI63smrDV5lTJMx+b5fISydJCgWQKfTMevZWXSo1AGABwkPaL+gPYdvHwYyjvCa5klGvkwxpPDKX68w58QcAOz0dqx5cQ0NSjZ4wqPJOekNICxB0zJN+bPnn+oQAD8f/pnRG0bna5KyK2gXHRd2JC7ZOA5Lzxo9+aX7LzJbuBBIgmIx7G3sWdl3JS3LtgQgIiGCDgs7sPXKPyYjvJqT05EvE1IS6Leinzo7qo3OhkU9F9GuYrvcH4AQeUTLO2ov1HiBec/PU5OUX478wqA1g/KlTcr6i+vpvKgz0UnRALSr2I4/ev4hjWKF+H+SoFiQYg7F2DRgE63LG+e8iUqMousfXVhrWIZC5glITka+vBl5E/+5/qw6twowJkbL+yynb62+T34AQuQBre+oDao7iAUvLECvM14eF51aRLsF7bgXcy9PXl9RFL7Z+w09lvQgIcV4V7Rrla4mVUxCCElQLI6rvSsbXtpA96rG0VtTlVSWlPiVmSW/JNomMtPtsjPy5YqzK2gwswFH7hwBwNnOmXX91/FCjRfyJnghCokBdQawvM9ynGydANh3cx/1fqvH+ovrn+h1g+OCeX7p80z8Z6I6EFu/Wv1Y8+IanO2cnzhuIQoTSVAskIu9C3+9+BfvtHxHLTtSbDcfVXiNne4bSCXjBINZjXx5IfQCPZf2pM/yPoTGhQJQ0aMi+4fup1PlTnl/AEIUAj1r9GTPkD2UdisNQHBMMM8sfoYXV7zItQfXcvRaiamJ/OuxjlZrm7L2wlq1/MPWH/JHzz+wt7HP09iFKAwkQbFQNnobvuzwJUt6LcXVUAyAaNtIFvn9zAcVh7PZcyWRNsZqHXMjX6YYUvj32r+8uOJFav1Si9XnV6vLXqj+AoeHH5aZUYV4jAYlG3Dk1SN0q9pNLVt6ZinVfq7GgFUD2B20O8sZyW9F3WLq7qk0W9OQxSVmEJlkvAvq6+zLuv7r+KTtJ9LmRIhM2GodgMhav6f7UvFBdUb99TpH3fYAEGIfzIris1lRfDalEyvQuGJDTm/fiq3eloiECC6FX2LfzX0Z5vfxc/Xju07f0f/p/tJLQIhs8nP14+/+fzPn+BwmbZtESFwIyYZk/jj9B3+c/gMvJy+alm7KU95P4WbvRoohhZtRNzl29xjnQjM2cH+59gCmdfkBH2cfM3sTQqSRBMUKNPGvw3KH5Sz4cwVL7WdzzuWEuuy2w3Vu37nOmjuZb+/r7MvYpmN5o9kbuNi75H/AQhQyOp2OoQ2G0rtmb77d9y0zjswgLN4443d4fDgbL29k4+WNWb5G7ZjGPBc6gJohtYkuk4JPk4KIXAjrJQmKlajYxI8PGr1O3+09WLlgM7fanOJY6kGO3DlitoePt5M3HSt35Llqz/FC9RdwsJVB0IR4Uu6O7nzW7jMm+09mxdkVrL24ln+u/kNEQkSGdW10NpSPq0qt2AY0j+qAb7JxNObYROP4RTJ9hBBZkwTFiqSNfOmXXIbX2vbFp6I7cclxXHtwjbsxd1EUBWc7Zyp5VsLP1U+qcYTIJ052TgysO5CBdQeiKAp3Y+5yJfwKianG3nQlXUpx+LMgUrLo/X9g4TnKNyohE3AKkQlJUKycs50ztYrXolbxWlqHIkSRpNPpKOVWilJupdSyO2fDSAkPynK7tPGLStX0zu8QhbBK0otHCCHyWHbGJcrJekIURZKgCCFEHstqXKLcrCdEUSQJihBC5DG/6l64eGU9bL258YuEEA9JgiKEEHlMr9fRbFCNLNdpNrCGNJAVIguSoAghRD6o2MSP9uPrZ7iT4uLtKF2MhcgG6cUjhBD5pGITP8o3KsGF7TfZO/sMLYfWolrbsnLnRIhskDsoQgiRj9LGLwLwreQuyYkQ2SQJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIUQh4uzhQP2eVXD2cNA6FCGeiEwWKIQQhYizpyMNe1fVOgwhnpjcQRFCCCGExZEERQghhBAWJ8dVPElJScyePZstW7YQHR1N5cqVGTZsGI0bN87W9tu2bWPFihVcuXIFW1tbypcvz7Bhw2jYsGGOgxdCCCFE4ZTjBGXq1Kns2LGDPn36UKZMGTZu3MjEiROZPn06derUyXLbOXPmMH/+fAICAujSpQspKSlcu3aN0NDQXB+AEEIIIQqfHCUoZ8+eZdu2bYwcOZL+/fsD0LlzZwIDA5kxYwYzZszIdNszZ84wf/58Xn/9dfr27ftkUVsYaTUvhBBC5K0ctUHZuXMnNjY29OjRQy1zcHCge/funDlzhnv37mW67fLly/Hy8qJ3794oikJcXFzuo7Ywaa3mnT0dtQ5FCCGEKBRylKBcunSJMmXK4OLiYlJeo0YNAC5fvpzptkePHqV69eqsWLGCHj160KVLF55//nlWrlyZi7CFEEIIUZjlqIonLCwMb2/vDOVpZZm1JYmOjiYyMpL//vuPY8eOERgYSIkSJdi4cSPTp0/H1taW5557LtP9hoaGEhYWpj4PCgrKSdhCCCGEsDI5SlASExOxs7PLUG5vb68uNyetOicyMpKPPvqI9u3bAxAQEEBgYCALFizIMkFZu3Yt8+bNy0moQgghhLBiOUpQHBwcSE5OzlCelJSkLs9sOwBbW1sCAgLUcr1eT7t27ZgzZw737t2jRIkSZrfv0aMHLVu2VJ8HBQUxZcqUnIQuhBBCCCuSowTF29ubkJCQDOVp1S8+Pj5mtytWrBj29va4urpiY2NjsszT0xMwVgNllqD4+Phk+tpCCCGEKHxy1Ei2SpUq3Lp1i9jYWJPys2fPqsvN7kSvp2rVqkRGRma4A5PWbsXDwyMnoQghhBCiEMtRghIQEEBqaipr165Vy5KSktiwYQM1a9ZU74Dcu3cvQ0PWtm3bkpqayqZNm9SyxMREtm7dSoUKFeQOiRBCCCFUOariqVmzJm3btmXmzJlERERQunRpNm3aRHBwMO+884663ueff86JEyfYtWuXWvbcc8+xfv16fvjhB27evEmJEiXYvHkz9+7dY+rUqXl3REIIIYSwejke6n7y5MlqchETE0OlSpX46quvqFevXpbbOTg4MG3aNGbMmMGGDRtISEigSpUqfPXVVzRp0iS38QshhBCiEMpxguLg4MCoUaMYNWpUpuv8+OOPZss9PT2ZPHlyTncphBBCiCImR21QhBBCCCEKgiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihCiyHL2cKB+zyo4e5ifpkMIoZ0c9+IRRYNcuEVR4OzpSMPeVbUOQwhhhiQowiy5cAshhNCSVPEIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJipWR8UmEEEIUBTIOipWR8UmEEEIUBXIHRQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCiHwmAywKkXMyUJsQQuQzGWBRiJyTOyhCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4thqHUBuJCYmAhAUFKRxJEIIIYTIqfLly+Po6JjlOlaZoAQHBwMwZcoUjSMRQgghRE7NmjWLatWqZbmOTlEUpYDiyTMREREcOnSIkiVLYm9vr3U4+S4oKIgpU6bw/vvvU758ea3DKVBy7EXv2IvqcUPRPfaietxQdI+90N5B8fDwoFOnTlqHUeDKly//2IyzsJJjL3rHXlSPG4rusRfV44aifeyZkUayQgghhLA4kqAIIYQQwuJIgmIFvL29CQwMxNvbW+tQCpwce9E79qJ63FB0j72oHjcU7WN/HKtsJCuEEEKIwk3uoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDhWOVBbYRQaGsqKFSs4d+4c58+fJz4+nunTp1O/fv0M644dO5YTJ05kKG/SpAnffvutSVlSUhKzZ89my5YtREdHU7lyZYYNG0bjxo3z61ByLCfHDnD69Gl+/fVXLl68iIuLC23btmX48OE4OzubrGcNx27Oxo0bmTp1qtllq1evztDaf8+ePcydO5egoCA8PDzo1q0bgwYNwtbWuv68rfXzyonjx48zbtw4s8tmzJhBrVq11OfZPc8tUVxcHEuWLOHs2bOcO3eO6OhoJk2aRNeuXTOse/36dX7++WdOnz6Nra0tzZs3Z/To0Xh4eJisZzAYWLJkCWvWrCE8PJwyZcowYMAAOnToUEBH9XjZPe4vvviCTZs2Zdi+XLlyLFq0yKTMGo47v1jXFawQu3nzJn/++SdlypShUqVKnDlzJsv1fX19GTFihEmZuW5qU6dOZceOHfTp04cyZcqwceNGJk6cyPTp06lTp06eHkNu5eTYL126xBtvvEH58uUZPXo09+/fZ+nSpdy6dYtvvvnGZF1rOPasDB06lJIlS5qUubq6mjw/cOAA7733HvXq1WPcuHFcvXqVBQsW8ODBAyZMmFCQ4T4xa/+8cqJXr17UqFHDpKx06dLq45yc55YoMjKSefPmUaJECapUqcLx48fNrnf//n3GjBmDq6srw4cPJz4+niVLlnD16lV+++037Ozs1HVnzZrFH3/8wbPPPkv16tXZs2cPn376KTqdjvbt2xfUoWUpu8cNYG9vz8SJE03KXFxcMqxnDcedbxRhEWJjY5XIyEhFURRl+/btir+/v3Ls2DGz644ZM0YZNGjQY1/zzJkzir+/v/Lnn3+qZQkJCcqLL76ovPbaa3kTeB7IybG/9dZbyvPPP6/ExMSoZevWrVP8/f2VgwcPqmXWcuzmbNiwQfH391fOnTv32HUHDhyovPLKK0pycrJaNnPmTKV169bK9evX8zPMPGXNn1dOHDt2TPH391e2b9+e5XrZPc8tVWJiohIaGqooiqKcO3dO8ff3VzZs2JBhve+++07p0KGDEhwcrJYdPnxY8ff3V/766y+17P79+0rbtm2V77//Xi0zGAzK66+/rvTs2VNJSUnJx6PJvuwe9+eff6506tTpsa9nLcedX6QNioVwdnamWLFiOdomJSWFuLi4TJfv3LkTGxsbevTooZY5ODjQvXt3zpw5w71793Idb17K7rHHxsZy5MgROnXqZPJLo3Pnzjg5ObF9+3a1zFqO/XHi4uJITU01u+z69etcv36dZ5991qQ654UXXkBRFHbs2FFAUT65wvJ55URcXBwpKSkZynNynlsqe3v7bA08tnPnTlq0aEGJEiXUskaNGlG2bFmT49yzZw8pKSm88MILaplOp+P5558nJCTksXecC0p2jztNamoqsbGxmS63luPOL1LFY6Vu3rxJ586dSU5OxsvLi2eeeYbAwECTL6pLly5RpkyZDLcN024tX7582eTCYOmuXr1Kampqhgm17OzsqFq1KpcuXVLLCsOxjxs3jvj4eOzs7GjcuDGvv/46ZcuWVZdfvHgRIMP74ePjg6+vr8n7YekKw+eVE1OnTiU+Ph4bGxvq1KnDyJEjqV69OpCz89yahYSE8ODBA7MT5NWoUYMDBw6ozy9duoSTk1OG2X7Tzo9Lly5ZXTVgQkICXbt2JSEhATc3N9q3b89rr71m0saoMB53TkiCYoVKlSpF/fr1qVSpEgkJCezYsYMFCxZw8+ZNPvnkE3W9sLAws9l8WlloaGiBxZwXwsLCAPNtbby9vTl58qTJutZ67A4ODnTt2pX69evj4uLChQsXWLZsGaNGjeL3339Xv6gf936kLbcG1vx55YStrS1t2rShWbNmuLu7c/36dZYuXcro0aP55ZdfeOqpp3J0nluzxx1nVFQUSUlJ2NvbExYWhqenJzqdLsN6YH3nh7e3N/379+epp55CURQOHjzImjVruHLlCtOnT1d/aBa2484pSVDygcFgIDk5OVvr2tvbZzj5Hufdd981ed65c2e++eYb1q1bR9++fdWeAImJiSaNzNLvM215XsvPY0+LN7NjSkpKMlm3oI/dnNy8H+3ataNdu3Zqub+/P02aNGHMmDEsXLiQt956C0A93rRjevS1sqr+szSW8nnlt9q1a1O7dm31eatWrQgICOCVV15h5syZfPvttzk6z63Z444zbR17e/tCd3482sGhffv2lC1bllmzZrFz50618WthO+6ckgQlH5w8eTLTroSPWrhwYYbbd7nRr18/1q1bx5EjR9QExcHBweyXY9oFzsHB4Yn3+6j8PPa0eDM7pvRf1Focuzl59X7UqVOHmjVrcvToUbUs7XjNfWElJSUV2DHmBUv5vLRQpkwZWrVqxa5du0hNTc3ReW7NHnec6dcpCudH3759mT17NkeOHFETlKJw3FmRBCUflCtXjkmTJmVr3byawbJ48eIAREdHm7x2SEhIhnXTbq36+Pjkyb7Ty89jT1vfXNVFWFiYyfFocezm5OX7Ubx4cW7cuJFh/bCwsAztM8LCwjJ0Y7VklvJ5aaV48eIkJyeTkJCQo/Pcmj3uOIsVK6YmY97e3hw/fhxFUUzuuham88PBwYFixYoRFRWllhWF486KJCj5wNvb2+yARPnpzp07ACaDG6X1w4+NjTVpfHj27Fl1eV7Lz2OvWLEiNjY2XLhwwaQKJDk5mUuXLtG2bVu1TItjNycv3487d+6YfL5Vq1YF4MKFC9SsWVMtDw0NJSQkxKRHjKWzlM9LK3fu3MHe3h4nJ6ccnefWzNfXFw8PDy5cuJBh2blz50w+8ypVqvD3338TFBREhQoV1PLCdH7ExcURGRmZ4Rpe2I87K9LN2MrExsZmuKWvKAoLFiwAMBl1MyAggNTUVNauXauWJSUlsWHDBmrWrGl1vSJcXV1p1KgRW7ZsMWlfsXnzZuLj400u3NZ87BERERnK9u/fz4ULF2jSpIlaVrFiRcqVK8e6detMuiKvWbMGnU5HmzZtCiLcPGHNn1dOmPtsL1++zN69e2ncuDF6vT5H57m1a9OmDfv27TPpRn706FFu3rxpcpytWrXC1taW1atXq2WKovDXX3/h6+vL008/XaBxP4nExESz7cPmz5+Poig0bdpULStMx50bcgfFgsyfPx8wjm8BxgvSqVOnABg8eDBg7Fr6ySef0KFDB0qXLk1iYiK7d+/m9OnTPPvssyZd9mrWrEnbtm2ZOXMmERERlC5dmk2bNhEcHMw777xTsAf3GNk5doBhw4bx+uuvM2bMGHr06KGOsNm4cWOTP2xrOvZHjRw5kqeeeopq1arh4uLCxYsX2bBhA8WLF2fgwIEm644aNYpJkyYxYcIE2rdvz9WrV1m9ejXPPPOMyS8uS2fNn1dOfPTRRzg4OPD000/j6enJ9evXWbduHY6OjiYNJ7N7nluylStXEhMTo1ZH7N27l/v37wPGkXRdXV0ZMGAAO3bsYPz48fTu3Zv4+HgWL15MpUqVTO48Fi9enD59+rB48WJSUlKoUaMGu3fv5tSpU3zwwQfY2NhocozmPO64o6OjGTp0KB06dKBcuXIAHDp0iAMHDtC0aVNatWqlvpY1HXd+0CmKomgdhDBq3bp1pst27doFGG8F//bbb5w7d47w8HD0ej3ly5fnmWeeoUePHhl6xSQmJqrzm8TExFCpUiWGDRtm8kvcEmTn2NOcOnVKnaPE2dmZtm3bMmLEiAxzlFjLsT9q1qxZHDhwgLt376ptEpo3b05gYCBeXl4Z1t+9ezfz5s0jKCgId3d3unbtmmFMHGtgrZ9XTqxYsYKtW7dy+/ZtYmNj8fDwoGHDhgQGBlKmTBmTdbN7nluqvn37EhwcbHbZ0qVL1Wkcrl27lmEuntdffz3DuW4wGPjzzz9Zu3YtYWFhlClThpdffplOnTrl+7HkxOOO29XVlenTp3PmzBnCwsIwGAyULl2ajh078uKLL2b4u7WW484PkqAIIYQQwuJIGxQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhSRpY0bN9K6dWs2btyodSjZcvz4cVq3bs2cOXPybR+tW7dm7Nix+fb6RUXfvn3p27ev1mFYvDlz5tC6dWuOHz+er/tZtmwZ7dq14+7du9lavyD+1qzZZ599Rp8+fUhMTNQ6FKslCUoh8+WXX9K6dWueeeaZDJMKFhbW9sUWGRnJr7/+yqBBg+jYsSMdO3akT58+jB8/nrlz5xIeHl4gcTwu2Rw7dmyWUw4UJfHx8XTp0oXWrVvz/fffax1OvouOjmbBggV069ZNHYJePJnAwEBCQ0NZvny51qFYLeuarENkKS4uju3bt6PT6YiKimL37t20b9/+iV7T39+fmjVr4u3tnUdRFi33799n1KhR3L9/n6pVq9K1a1fc3NwICwvjv//+Y+7cudSuXdvsHDuF3Q8//KB1CJnavn07cXFx6HQ6/vnnH15//XUcHBy0DivfLFu2jKioKPr37691KIVG2bJladmyJX/++Se9evXCyclJ65CsjiQohci///5LfHw8ffv2ZcWKFaxfv/6JExRXV1dcXV3zKMKiZ86cOdy/f5+hQ4eazMqc5sqVK0X2/S1durTWIWRq/fr12NjY0LNnT5YvX86uXbvo2LGj1mHli5SUFP7++29q165t0Z+JNerUqRO7du1i27ZtPPPMM1qHY3UkQSlE0i6qL730EleuXOHYsWMEBwfj5+dnst6cOXOYN29epq/j5+fHsmXLAGO1wNSpU5k0aZLJ9OetW7emXr16fPDBB8yYMYPDhw+TlJRE3bp1GT9+PKVKleL69evMnDmTkydPkpKSQpMmTXjjjTdM7hYcP36ccePGERgYyJAhQ0ziuHv3Lv369aNLly5MnjxZfZ4+hjTmtj9//jwzZ87kzJkz6PV6GjRowOjRozPcwt61axfbt2/n/PnzhIaGYmtrS+XKlenduzcBAQFZv+mPcebMGQB69uxpdnnlypXNlt+5c4c//viDw4cPExYWhouLCxUqVKBr167q55CcnMzatWvZt28f169fJyIiAhcXF2rXrs3gwYN56qmn1Nf74osv2LRpEwBTp05l6tSpJsef/r1M/zjtvU9z5coVFi5cyIkTJ4iKisLb25uWLVvyyiuv4O7urq6X/rN76aWXmDVrFidPniQqKkqdyTatmi7tXIOH5+b06dMJDQ1l8eLF3LhxA1dXV9q2bctrr72W4U5GSkoKS5Ys4e+//yY0NBRfX1+6d+9Ou3btePHFFzMcw+PcuHGD06dP06JFC5Nk31yCkv78bdGiRbbON4CdO3eyaNEirl27houLCy1btmTkyJEMHTo0w3uSlex+Hlk5dOgQYWFhvPTSS2aXJyYmMnfuXLZu3UpkZCSlS5emd+/eGWZfTu/OnTssXLiQw4cP8+DBA9zc3GjSpAlDhgzJcD2CnL0faefykiVL2LVrF+vXr+fOnTu0b99e/ZwfPHjAokWL2LdvH/fv38fZ2Zm6desyZMgQKlWqlGH/OVn/5s2bLFq0iOPHjxMWFoajoyPFixenfv36jBkzxmRG+ebNm+Po6MimTZskQckFSVAKievXr3PmzBmaNWuGl5cXnTt35ujRo2zYsCHDF3f9+vXNvkZQUBDbt2/P9q3s6OhoXn/9dby9vencuTO3bt1i3759vPnmm3zxxReMHj2aatWq0a1bNy5evMjOnTuJiopi+vTpuTpGV1dXAgMDWbFiBQC9e/fO9JjOnz/P4sWLqV+/Pj169ODSpUvs3r2bq1evMm/ePJNjnDlzJra2ttSuXRtvb28iIiLYu3cvH374IePGjaNXr165ihdQvyRu3rxJzZo1s7XNqVOneOedd4iLi6NJkya0b9+e6OhoLl26xIoVK9QEJSoqip9++ok6derQrFkz3NzcuHv3Lnv37uXgwYP89NNP1KhRAzBW1cXExLBnzx5atWpFlSpVTPYZGBjIpk2bCA4OJjAwUC2vWrWq+njPnj18/PHH6HQ6WrVqRfHixbl+/TqrVq3i0KFD/Pbbb7i5uZm87u3btxk5ciSVKlWiS5cuREVFYWdn99j3IO01W7ZsSYMGDTh48CArV64kMjKSDz/80GTdr776is2bN1OqVCmef/55kpOTWbZsGf/991+23u9HrV+/HoDOnTtTokQJ6tWrx/Hjx7lz5w6lSpUyu01Ozrf169fz1Vdf4eLiQufOnXF1deXAgQO8+eabpKSkYGubvctybj4Pc44ePQpArVq1MiwzGAxMmjSJI0eOUKlSJTp06EBUVBQ///xzpteRs2fP8tZbbxEfH0+LFi0oU6YMwcHBbN26lYMHDzJjxgyT9zG378e0adM4e/YszZs3p0WLFnh6egLGc27s2LGEhITQuHFjWrVqRUREBDt37uTw4cP88MMPJn+LOVk/NDSUESNGkJCQQPPmzWnXrh0JCQncunWLNWvWMGrUKJN47ezseOqppzhz5gzx8fFSzZNTiigUfvrpJ8Xf31/5559/FEVRlNjYWKVTp05K7969ldTU1MduHx4ervTp00dp3769curUKbV8w4YNir+/v7JhwwaT9f39/RV/f3/lp59+Min/7rvvFH9/f6Vr167KsmXL1HKDwaC8/fbbir+/v3L+/Hm1/NixY4q/v78ye/bsDDHduXNH8ff3Vz7//HOT8j59+ih9+vQxexxpr5f+vUgzZcoUs+W3b9/O8DqxsbHK4MGDla5duyrx8fEZjn3MmDFm9/+oFStWKP7+/kqPHj2U2bNnK8eOHVNiYmIyXT8xMVHp2bOn0qZNG+XAgQMZlt+7d89k3fv372dY5+rVq0qnTp2UN954w6Q8s88yzZgxYxR/f3+zyyIiIpQuXbooPXv2VO7evWuy7J9//lH8/f2VH374QS1L++wy+2wVxfznOHv2bPX8CQoKUssTEhKUl156SWnTpo0SEhKilh85ckTx9/dXhgwZYvI5hYSEKM8995zZ8ycrycnJynPPPad07dpVSUhIUBRFUdavX6/4+/srs2bNyrB+Ts+3qKgopVOnTkqnTp2UGzdumOx33Lhxir+/f6bvybFjx9SynH4eWRk+fLjSpk0bJTExMcOytHPmrbfeUlJSUtTyy5cvK+3atcvw+SYnJyt9+vRROnfurFy4cMHktU6ePKkEBAQo77zzzhO9H59//rni7++v9OzZUwkODs4Q88iRI5WAgADl4MGDJuU3btxQOnfurAwePDjX66f9Pae/tqWJjIzMUKYoD6/NR48eNbtcZE568RQCKSkpbNmyBRcXF1q1agWAs7Mz/v7+3Lt3jyNHjmS5fWJiIpMnTyY4OJh3332X2rVrZ2u/Tk5ODBs2zKQsrc2Lu7u7yR0OnU6nLrty5Uq2jy236tatm6H9Tbdu3QA4d+6cSbm5X8XOzs507dqVmJgYzp8/n+s4evbsSf/+/YmJiWHevHmMGzeObt26MWjQIH799VdCQ0NN1t+zZw8hISF07NiRpk2bZni94sWLq4/t7e3x9fXNsE7FihWpX7++WrWWFzZv3kxsbCyvvvpqhlv07du356mnnmLbtm0ZtvPy8mLgwIE53l/v3r0pV66c+tzBwYH27dtjMBi4cOGCWr5lyxYABg8ejKOjo1ru4+Njcv5l1/79+wkPD6dt27bqXY+AgAAcHR3ZuHEjBoPB7HbZPd/27NlDfHw83bp1o2zZsmq5ra1thr+lrOT28zAnJCQEV1dX7O3tMyxLqxYcNmwYNjY2annlypXp1KlThvX37dtHcHAw/fv3N6liBKhTpw4tW7bkwIEDxMbGAk/2fvTv358SJUqYlF28eJH//vuPzp0706RJE5NlZcuW5ZlnnuHq1atcvXo1V+unMXeXuVixYmbjTLuzExISkuXxiIykiqcQ2LNnDxEREXTv3t3kD6dz585s2bKF9evXZ/jjS6MoCl988QVnzpzhlVdeoUOHDtneb5kyZUy+FAC1t0+lSpVM6mLTL3v0Szk/VKtWLUNZ2pd5TEyMSfmDBw/4448/OHDgAPfu3cswbsGTxKvT6Rg5ciT9+/fnwIEDnD17lvPnz3Px4kWuX7/O2rVr+fbbb9VbyGlfZo0bN87W61+6dInFixdz6tQpwsPDMyQkERER+Pj45Dr+NGltac6ePcvt27czLE9KSiIyMpKIiAg8PDzU8ipVqmSrSudRj365wcPkLP3nd/nyZcD45feop59+Osf7/fvvvwHj304aZ2dnWrVqxT///MOhQ4do1qxZhu2ye76lJefm4q1Zs6ZJEpCV3H4e5kRFRZlNdNPidXJyMnt8derUUavDHo3rxo0bZsdHCQ8Px2AwcPPmTapXr/5E70da9WV6Z8+eBYx/0+b2f+PGDfX/SpUq5Xj9tHZGP/zwA0ePHqVp06bUq1cv06o/eJi4REZGZrqOME8SlEIgfZ15eg0bNsTX15e9e/cSFRVlNsP//fff2b59Ox06dOCVV17J0X5dXFwylKVdULJalle/6rPi7Oyc6f7T/wqOiori1Vdf5d69e9SuXZtGjRrh6uqKXq/n8uXL7Nmzh+Tk5CeOx8PDgy5dutClSxcAwsLCmDZtGjt37uSbb75h7ty5AOovy8y+MNI7ffo0b7zxBgCNGjWiTJky6nHv2bOHy5cv50nsYGxvBLB69eos10tISDB5nvbrMaeyOn/Sf35xcXHo9XqzDUJz2nU7NDSUQ4cOUapUqQxfmF26dOGff/5hw4YNZhOU7J5vaZ+vufcls+MwJ7efhzkODg6ZjpkUGxub6blo7v1Ni2vr1q3ZiutJ3g9z20RFRQHGO2H79+/PdNv4+PhcrV+yZElmzJjB3LlzOXDgANu3bwegXLlyDB06lLZt22bYNu0HT2Hupp5fJEGxcvfu3ePw4cMAWY5uumXLlgy3vDdu3MjChQupXbs27777br7GmZm0uyypqakZlqVdvPLT+vXruXfvntluwIsWLWLPnj35sl9vb2/ef/999u/fz5UrV4iMjMTd3V3tcpyd28ELFy4kKSmJn3/+OcMXatovw7yS9gU8b948s70gMvPoXbS85uzsjMFgIDIyMsOdgpwOgLdx40ZSU1O5c+dOpgPW7d27N1t3JTKTlng9ePAgw7K048hOcprbz8Mcd3f3TM83FxeXTH/5m3t/0+L68ssvadGixWP3/STvh7lzK+31stu4Pafrg/Hu8GeffUZKSgoXLlzg4MGDrFixgo8//hgfH58MVeRpSVBuz5miTNqgWLlNmzZhMBioU6cO3bt3z/Av7Rf7o7diT5w4wbfffkupUqX4/PPPzdY/F4S0XgbmqlEuXbpkdhu9Xm82ocmNtNvjaW130jt16lSe7CMzdnZ2GW5hp922Tks6s3Lnzh2KFSuWITlJSEjg4sWLGdbX641/7pm9d1ktT6uCSruFbynSeiOdPn06w7Kc9OJRFIUNGzYA0LVrV7N/S08//TTJyclqu5fcSOtWbi7ec+fOZfu8zsvPo1KlSiQlJXHv3r0MyypXrkx8fLxJu5805v4+chpXXr0fadL+frK7/5yun56trS21atViyJAhjBs3DkVR2LdvX4b1bt68CfDEiWRRJAmKFUu7qOp0OiZPnsw777yT4d/kyZOpVasWV65cURt73rx5k/fffx8HBwe+/PJLTTP7cuXK4ezsrFZDpQkPD2fBggVmtylWrBiRkZF5MsdFWgPDRy+QW7du5cCBA0/8+kuWLCEoKMjsslWrVhEfH0+5cuXUW9ktW7bE19eXrVu3cujQoQzbpP+lW6JECaKjo7l27Zpalpqayi+//EJERESGbdOq+O7fv282nqyWd+vWDWdnZ2bNmmWyvzQJCQmaJC9pY5PMmzfP5HwICwtTu6Nnx4kTJ7h9+zZ169Zl0qRJZv+W0u4yPprs50SrVq1wcnJi/fr1Jm1HUlJSmD17drZfJy8/j3r16gHm77qlVRv//vvvJsnClStXzCZqrVq1okSJEixdupQTJ05kWJ6SkmKS2OTV+5GmZs2a1KxZk23btpltJGwwGEziyun6Fy5cMHtnN+1ukrkfemfPnsXb29ukEbDIHqnisWLHjh3j7t27j22k1a1bN86cOcP69eupXr06P/74I1FRUTRq1Ih///03w/qurq4FNteNnZ0dvXr1YuHChQwbNoyWLVsSHx/P3r17qVevntkGgPXr1+f8+fNMnDiROnXqYGtrS926ddULbU506tSJP//8k+nTp3P8+HFKlCjB5cuXOXbsGK1bt2bXrl1PdHxbtmzhl19+oVKlStSsWRNPT0+io6M5e/YsFy9exMHBgQkTJqjr29vb88knn/D222/z9ttv06RJE6pUqUJsbCyXL18mMTFRvXD36tWLw4cP8/rrr9O2bVvs7e3/r727C2nqj+M4/nbV1gMzIWc+hAU9gDQYnVojNaLhRUXlbnbjjZYEEcMeoIgow0FBTzdSdNMSbCWCdSFahrOU4ORki2GHugqCCm0WIZOg1rAL2fDfVqj5d5O+r+sf7JzfOYzP+T18f4RCIT59+sSmTZuSDpfbuHEjBoOBtrY2IpFIIpjGp7YURaG3t5dz585hs9nQ6/WsW7eOsrIycnJyOH/+PPX19Rw8eJCtW7dSXFxMNBpleHiYUCiE2Wzm6tWrf9Vf07VlyxYqKirw+XzU1NRQXl5ONBrl6dOnlJSUoKpqYmToT+KhI77zJpXi4mLMZjOapvHq1asp17WZzGg04nK5uHLlCocOHcJut7Ns2TL6+/vR6/Xk5uZOaVpsNp9HeXk5N27cIBAIJK2hiK+98fv91NbWYrPZiEQi9PT0YLVak0YM9Ho9brebU6dOUVdXh6IoiQXzw8PDDA4Osnz5crxe76z2x2T19fUcO3aMhoYG2traWL9+PQaDgXA4jKZpjI6O4vP5ZtT+8ePHtLe3Y7FYKCoqYunSpbx9+xa/3092dnbS+/PhwweGhoZwOBzTugcxQQLKPBb/U51c4TUVu91OY2MjPT09uFyuxJdmIBBIuQU5Pz9/Tg/jq62tZeHChXR2dtLe3k5+fj7V1dWUlpbS19eX1L66upqxsTFUVWVwcJBYLEZNTc2MAkpeXh6NjY3cvHmTQCBALBZjw4YNXLt2jXA4/NcB5fTp06iqyosXLxgYGODLly/odDpWrlyJw+HA6XQmfVmZzWZu3bqF1+tlYGCAYDCI0WhkzZo1VFZWJtqVlpbidrvxer10d3djMBhQFIULFy6krBScnZ2N2+2mqamJjo6OxHsQDyh79+5laGiIJ0+ecO/ePWKxGLt27aKsrAyYqIrp8XhoaWkhGAwSCARYvHgxJpOJ3bt3p9x2OhfOnDnD6tWrefjwIQ8ePMBkMuF0OlEUBVVVUy5gnWxsbIy+vj6WLFnCjh07/th2z549aJpGZ2fnjAIKwL59+zAajdy5c4eurq5E5dTDhw/jdDqnXG5+tp5HQUEBVquV3t5ejh49+p9RAJ1Ox8WLF2lqasLn83H//n0KCwtxuVysWrUq5ZRGSUkJt2/fpqWlhf7+fjRNY9GiReTm5rJ9+/ak7diz1R9xhYWFeDweWltbefbsGY8ePUKn07FixQosFktSdejptK+oqOD79++8fPmS169fE41GMZlMVFZWptz2HB9l2r9//7TuQUzIGh8fH0/3RQghxGzr6Ojg8uXLnDhxYl58wb5//56qqip27txJQ0PDnP52MBjk+PHjnD17Nm1B81fp7I/Z8OPHD6qqqigoKJhx9ex/naxBEULMa58/f+bX76yRkRGam5tZsGAB27ZtS9OVpRaJRJK29X779o3r168DE8cSzLXNmzdjs9lobm7+bTG6/0sm9sds6Orq4uPHjxw5ciTdlzJvyRSPEGJeu3v3Ls+fP8disZCTk0M4HEZVVb5+/cqBAweSht3TLRQKcenSJaxWK3l5eYyOjiYO9lQUBbvdnpbrqquro7u7m5GRkTnts0ztj7+VlZXFyZMnUxa5E1MjUzxCiHnN7/fT2trKmzdviEQi6PV61q5di8PhSHkCcbq9e/cOj8eDpmmJ3VZFRUWJ05f/tYJe0h/idySgCCGEECLjyBoUIYQQQmQcCShCCCGEyDgSUIQQQgiRcSSgCCGEECLjSEARQgghRMaRgCKEEEKIjCMBRQghhBAZRwKKEEIIITKOBBQhhBBCZJyfgJok5WbOtSoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 45.0 deg to 60.0 deg\n", + "Modulation: 0.309 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.017\n", + "Best fit polarization angle: 25.51 +/- 0.349\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRcklEQVR4nOzdd3gU1dfA8e9ueiMhCb13QkcQEAgEQgdBqYI0KSqdnwUFu6KIFURFQbqKNFGQDlKD9N57qIEU0nt23j/2zZAlm0qS2U3O53l42L1zZ+fM7mT27NwyOkVRFIQQQgghLIhe6wCEEEIIIR4nCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQFuLGjRvodDqGDx+udSgC8PPzQ6fT5ft2PvzwQ3Q6Hbt27cr3bWVH5cqVqVy5stZhCCEJisjahQsXmDBhAvXq1cPd3R17e3vKli1L9+7dWbBgAQkJCVqHmG+GDx+OTqfjxo0bWodi1oIFC3jllVdo3rw5zs7O6HQ63n333SzX++eff/Dz88Pd3R1XV1eaN2/OkiVLMl1nyZIlNGvWDFdXV9zd3fHz8+Off/4xW/fy5ct0794dT09PKlSowPjx44mKijJbd/DgwVSpUoXo6OisdziN1IQu7T9bW1tKlSpF9+7d2bRpU45eTzy53377Tf0stm7dmmnd8PBw3n//fRo1aoSrqysODg6UK1eOFi1a8Prrr3P8+PFM1x89ejQ6nQ5nZ2fCw8MzrJeaAKb+0+v1FCtWjEqVKtGtWzdmzpzJnTt3crO7Ip/Zah2AsGwff/wxH330EQaDgWeeeYZhw4bh6urK/fv32bVrF6NGjWLu3LkcOXJE61CLpNdff52IiAiKFy9O2bJluXr1apbrfP/990yYMAEvLy8GDx6Mvb09q1evZvjw4Zw+fZqvvvoq3TpvvPEGX3/9NeXLl2f06NEkJibyxx9/8OyzzzJnzhzGjx+v1o2JicHf35+YmBiGDh3K7du3+eGHH7h//z6rVq0yed0NGzbw22+/sW3bNlxdXXP1Hri7uzN58mQA4uPjOXnyJBs3bmTjxo3Mnj2biRMn5up1C8r48eN54YUXqFixotahPLF58+ah0+lQFIV58+bRqVMns/Xu3r1Lq1atuHHjBlWrVuXFF1/E29ubhw8fcvToUWbNmoWTkxONGzc2u35UVBR//PEHOp2OuLg4fv31V5Nj0Jy2bdvi5+cHGI/Re/fuERAQwKZNm/jggw/48MMPefvtt59o/0UeU4TIwKeffqoASoUKFZQDBw6YrbN+/XrFz8+vgCMrOMOGDVMA5fr16/m+revXryuAMmzYsGyvs2nTJuXGjRuKoijKokWLFEB55513Mt2Gg4OD4unpabJPYWFhSrVq1RRA2b9/v8k6AQEBCqBUq1ZNCQsLM3ktT09PxcHBweS1/vjjDwVQdu/erZYNHz5cAZT79++rZeHh4Uq5cuWUkSNHZnt/H98XQKlUqVK6ZQsXLlQAxcXFRYmJicnV67dt21YpiqfISpUqmX1Ps3LhwgUFUDp06KA0adJEsbOzU4KCgszWHTlypAIoI0aMUAwGQ7rld+/eVY4ePZrhtn766ScFUF577TXF3t5eadCgQYZ1P/jgAwVQPvjgg3TLDAaDsnr1asXT01MBlBkzZmS9o6LASBOPMOvGjRt8+OGH2NnZsXHjRpo3b262Xo8ePdi8eXO68pUrV9KmTRvc3d1xcnKifv36zJgxw2xzUGqbd2RkJK+99hqVK1fGzs6ODz/8MFvLwdgMNXz4cCpUqIC9vT2lSpVi0KBBXLx40WzcsbGxzJw5k6ZNm+Lm5oarqys+Pj5MnDiR+/fvA6DT6dRmjypVqqiXiB9vnw8LC2Pq1Kn4+Pjg5OSEu7s7/v7+GV7ijoqK4rXXXqN8+fI4OjpSu3ZtvvnmGwwGg9n6menSpQuVKlXKdv2FCxeSkJDA+PHjTfajePHiTJs2DYCffvrJZJ3U5++88w7FixdXyytXrsy4ceNISEhg0aJFanlgYCAAzZo1U8tSH6cuA+PVH4Cvv/462/Fn1/Dhw3FxcSEmJoazZ8+q5Tt27KBLly54enri4OBAzZo1efvtt4mIiMjW6yYmJvL999/TrVs3KlWqhIODA56ennTo0CHDJqWsjl9zfVBS+79k9C/1SkCq5ORkfvzxR1q0aEGxYsVwdnamcePGfP/992aPK0VR+P7776lbty6Ojo6UK1eO8ePHZ/t9MGf+/PkAvPTSSwwfPpykpCQWL15stu7+/fsBmDBhgtl+PmXKlOGpp57KdFt6vZ7Jkyfz7LPPcurUKQ4ePJjjmHU6HX369GH16tWA8YrxvXv3cvw6In9IE48wa9GiRSQlJfHCCy9Qr169TOs6ODiYPJ82bRozZszA29ubQYMG4erqyqZNm5g2bRpbtmxh69at2Nvbm6yTmJhI+/btCQsLo1OnThQrVowqVapka/nmzZvp3bs3SUlJPPvss1SvXp3bt2/z559/smHDBnbu3Glysnv48CHt2rXj5MmT1KpVixEjRmBvb8/Vq1dZtGgRvXv3plSpUnzwwQf89ddfnDx5kkmTJuHh4QGg/g/GL1w/Pz9u3LiBr68vXbp0ISYmhn/++YcuXbrw888/M3r0aLV+QkIC/v7+HD58mIYNG/Liiy8SHh7OJ598wu7du3P0GeXGv//+CxgTm8d17drVpE521/nkk0/4999/+eijjwDUpoqjR4/SqlUrALUJMDWZ2r59OwsWLGD9+vW4u7s/8X6ZoygKgPoF+PPPPzNmzBhcXFzo168fJUuWZNeuXcycOZP169cTEBBg8tmaExYWxqRJk2jZsiUdO3akRIkS3Lt3j/Xr19OtWzfmz5/PqFGj0q2X1fH9uOHDh6dLQgD27t3Lv//+i7Ozs1qWetxv2bKFWrVqMWjQIBwdHdm5cycTJkzg4MGDLFu2zOR1Jk+ezHfffUeZMmV4+eWXsbOz4++//+bgwYMkJiam+/vMSmJiIkuWLMHd3Z3nn3+euLg4Xn/9dX755RemTJmSLgnx8vIC4NKlSzRq1ChH2zp+/DhHjx6lY8eOVKhQgeHDh7NmzRrmzZuX4Q+prLRr147WrVuzb98+/vzzT8aNG5er1xF5TOtLOMIytW/fXgGU+fPn52i9/fv3q81C9+7dU8uTkpKUHj16KIDy6aefmqxTqVIlBVD8/f2V6OjodK+Z2fKwsDDFw8ND8fLyUs6ePWuy7PTp04qLi4vSuHFjk/KBAwcqgPLqq68qKSkpJsuioqKU8PBw9XlWTTxt27ZVdDqdsnz5cpPyhw8fKg0bNlQcHR1NLnOnNpv17t3bZNvXrl1TihcvnuMmnrSy08Tj7e2tAEpISIjZ5S4uLgqgNotER0crgOLq6mq2fnBwsAIoJUuWVMuioqKU8uXLK97e3srkyZOVvn37qvucurxy5crKiy++mKv9TJVZE8+CBQvUJp7Y2Fjlxo0bir29veLm5qacP3/epO6YMWMUQBk9erRJubkmnvj4eOXWrVvpthceHq7UrVtXKV68uBIbG2uyLKvjO7UJYufOnZnu78mTJxU3NzfF29tbuXLlSrr1x48fryQnJ6vlycnJyogRIxRA+euvv9TytE12oaGhanlcXJzSokWLDN/TzCxfvlwBlJdfflkt69OnjwIo27dvT1d/zpw5CqC4ubkpb775prJt27YMj8nHvfLKKwqg/P7774qiGM8tpUuXVlxcXJSIiIh09TNr4knr3XffVQBl6NCh2YpD5D9JUIRZPj4+CqBs2rQpR+uNGjVKAZSff/453bKLFy8qer1eqVKlikl56gn8xIkTZl8zs+WzZs1SAOX77783u+7kyZMVQE1e7t+/r+j1eqVMmTJmvywel1mCcuLECQVQ+vbta3bdv/76SwGUH374QS2rXr26otfrTb5gUqWeSPMzQbGzs1MAJSkpyezysmXLKoBy9+5dRVEU5c6dOwqglCtXzmz9xMREBVDs7e1Nyi9cuKB06dJF8fDwUMqWLau8+uqr6pfHuHHjlFKlSikhISFKYGCg0qNHD8XR0VFxdXVVhgwZYvZLxpzUBMXd3V354IMPlA8++EB56623lK5duyqAAiizZ89WFEVRpk+frgDK1KlT071OWFiY4ubmpjg6Oirx8fFqeU77oHz99dfp+t4oStbHd3YSlDt37ijly5dXHB0dlYCAALU8JSVF8fT0VEqXLm32M3348KGi0+mUfv36qWWpf6MLFy5MV3/nzp25SlBSf9Ck7b+0fv16BVD69++frr7BYFCmTp2qODo6qp8VoFSuXFkZNWpUhu9VdHS04ubmpri7uytxcXFq+euvv64Ayo8//phunewmKHPnzlUApWvXrtnca5HfpIlH5Kljx44B0L59+3TLatasSfny5bl+/ToREREml/YdHR1p0KBBhq+b0fL//vsPgJMnT5r0SUl16dIlAM6fP0+dOnU4fPgwBoOBNm3a4OLikqN9y2jbERERZrcdHBysbhuMfU+uXLlChQoVqFatWrr6fn5+ajOJtatVq5bZPhl79+7lxx9/ZOXKlXh6etKxY0cePHjA77//TnR0NBMmTCAuLi7daJ/MREREqO+bjY0Nnp6edO3alfHjx9OtWzcg8+OyePHiNG7cmD179nDhwgUaNmyY6fbOnj3Ll19+yZ49e7h37x7x8fEmy80NWc3q+M5MdHQ0PXr04M6dOyxfvpyWLVuqyy5dukRYWBg1atRg+vTpZtd3cnJSj0F49F60bds2Xd3WrVtjY2OTo/iuXLnCzp07qVWrFs8884xa3qVLF0qXLs1ff/1FSEgI3t7e6jKdTsdnn33GlClT2LJlCwcOHODYsWMcPHiQX375hUWLFjF37lyT5lGAP/74g6ioKF555RUcHR3V8uHDh/P1118zf/58xowZk6P4UymPNQkK7UmCIswqU6YM58+fz/H8AKmd7MqUKZPh6968eZPw8HCTBKVkyZKZnhgyWh4aGgo86qCXkdQ5NlLnSyhXrlym9bMjddvbtm1j27ZtWW479b0pVaqU2XqlS5d+4piy4u7uTkhICBEREWo/gLRSY0z9bFL/z6jzZGp5Vn03AOLi4hg5ciS9e/emb9++bNu2jePHj7Ns2TKef/55wNg5+/333+fq1atmkzhzKlWqlOU8Ndk5LoFM59MAOHDgAO3btyc5ORl/f3969uxJsWLF0Ov1nDhxgr///ttsR/Csju+MpKSkMGDAAI4fP86MGTMYMGCAyfLUY/Dy5cuZJrdp55jJ7Di0tbU1SSSyY/78+SiKkm6CQVtbW1588UW+/vprFi9ezBtvvJFuXQ8PDwYMGKDuV0xMDJ9//jnTp09nwoQJ9OzZ0yTOefPmAaTbVr169WjSpAlHjx7lyJEjNG3aNEf7AMahzwAlSpTI8boif8goHmFW69atAeOoh5xI/UILCgoyuzy1h/zjHSOzOnlntDz1dU6ePIlibLI0+2/YsGHAoy/SvJiYKXXbs2fPznTbqSNcUuunjhJ6XEbvWV6qVasW8OjKUlr37t0jJiaG8uXLq50wXVxcKFeuHNHR0WZHN1y+fBkwXh3LynvvvUdoaCg//PAD8OjKUtoOzE2aNAHg3LlzOdmtLOX2uHzc9OnTiYuLY+vWrWzatIlZs2bx8ccf8+GHH2baQTO3v8onTJjAxo0bGT16tNk5OlLjff755zM9Bq9fv55uHXPHYXJyMiEhIdmOL+1InalTp6YbbZQ6QiurHxCpXFxc+OSTT2jdujUJCQkEBASoy06dOsWhQ4cAeOaZZ9Jt6+jRo8CjJCandu7cCZDrjrYi70mCIsx66aWXsLOzY82aNVl+WaT9xZg6sZK5abuvXLnC7du3qVKlSrZ+cWdHixYtAGPTQXY0a9YMvV7Pnj17iImJybJ+6uXulJSUJ962m5sb1atX586dO2YnVCuIqc5TmzjMDQ1PbZJ5vBkkN+s87tChQ8yaNYvZs2en++We9vh5vLkkr2R2XIaHh3PixAkcHR3x8fHJ9HWuXLmCp6en2RE2eT0K6+uvv2bu3Ll06tSJH3/80Wyd2rVr4+HhwYEDB0hKSsrW66YmhObi3bdvn9ljPSN///03Dx48oFatWowcOdLsv6pVq3Lp0qUcvT9ubm7Ao2YXeJR4+Pn5ZbgtJycnli9fnuNZif/9918CAgJwcnJSr+YJC1Bw3V2EtUkdcVK5cmXl8OHDZuts2rRJadeunfo8dYRA5cqVlQcPHqjlycnJSq9evRRAmT59uslrZDUxVGbLQ0JCFA8PD6VEiRLKwYMH0y1PSUlJ1/lw0KBB2R7F8+abbyqA8u+//5rdvq+vr6LX65UFCxaYXX7q1CmTyclS39M+ffpoMorn2rVr+T5R2+MSEhKUOnXqKN27dzcp37ZtmwIoH330kVqWOqGbuU7Ej8tsFI+5unZ2doq7u7ty+fJlk2Xjx49XAGXUqFEm5eY6yXbu3FkBlJMnT5qU//LLL2pHz0WLFpksy+r4NtdJds2aNYper1fq16+fZafh9957Tz2eHx9BpCjGSc/SjnDbt29fno3i6dixowIoK1asyLBO6nszaNAgteyLL75Qzpw5Y7b+3r17FUdHR8XW1la5c+eOoiiKEhsbq3h4eCg2NjZqmTmDBw9WAGXevHlqWVYTta1Zs0adqO2LL77IapdFAZIERWTqo48+UvR6vQIoLVu2VCZOnKhMmzZNGTlypFKjRg0FUJo2bWqyzpQpU9Shp2PHjlXefPNNpV69egqgtG7dWklISDCp/yQJiqIoyvbt2xU3NzdFp9MpHTp0UCZNmqRMnjxZ6dOnj1K2bFnFwcHBpH5YWJjSoEEDBVBq166tTJo0SXnzzTeVvn37Km5ubiZfFJs3b1ZP5lOmTFE++eQTZc6cOeryW7duqe9Dw4YNlZdfflmZMmWKMmjQIHWf//vvP7V+fHy88vTTT6v1p0yZorz88suKh4eH0rNnzxwnKPPnz1eGDRumDBs2TGnVqpUCKA0aNFDLzM2M+d133ymA4uXlpYwdO1aZPHmyUr58eQVQXn/9dbPbee211xRAKV++vDJ58mRl7NixipeXlwKYvB/mvPPOO4q7u7ty+/Ztk3KDwaA0adJEsbGxUUaMGKH0799fAUxGnGQmJwmKoijKDz/8oA5tHTlypPL2228rzzzzjHocpP2yVhTzCcqmTZtMXuO1115T2rRpo+j1enU4dV4kKE5OTgr/P9Nq6giltP/SbiMxMVE9dsqVK6cMGTJEefvtt5URI0aoCfTjx8GECRMUQClTpowyYcIE5bXXXlOqVaumNG3aVClTpky23tNr164pOp1O8fb2Tvc3nVZUVJTi6uqqODg4qO9xw4YN1fd9+PDhytSpU5WJEycq/v7+ik6nUwDl66+/Vl8jNfl+9tlnM41p165d6c5Jqe9v27Zt1fdvypQpyuDBg5UqVaoogOLg4KDMnDkzy30WBUsSFJGlc+fOKePHj1fq1q2ruLm5KXZ2dkrp0qWVLl26KL/88ovJ0MxUy5cvV1q1aqWemOrUqaNMnz7dZGhgqidNUBTF+GU1btw4pXr16oqDg4Pi5uam1KpVSxk8eLCydu3adPWjo6OV6dOnK/Xr11ecnJwUV1dXxcfHR5k0aZLJFQ9FMQ4frV27tmJvb2/2CzEyMlL59NNPlaeeekpxcXFRHB0dlcqVKyvdunVTfv7553TDmSMiIpT//e9/avJUq1Yt5auvvlKuXr2a4wQldRh0Rv/atm1rdr1169Ypbdq0UVxdXRVnZ2eladOmyuLFizPd1qJFi5SmTZsqzs7Oiqurq9KmTRtl/fr1ma5z/PhxxdbWNsP5dG7duqX06tVLcXFxUdzd3ZVhw4bleJhxTobEbtmyRenYsaPi4eGh2NvbK9WqVVPefPNN5eHDh+nqZjTMeP369Urz5s0VV1dXxd3dXenYsaOye/du9Us0LxKUzD5Tc5+rwWBQli5dqrRv314pXry4Ymdnp5QtW1Zp1aqV8umnnyo3b95MV3/OnDnqcV2mTBll7NixSnh4eLanup82bZoCKP/73/+yrDt69GgFUL755htFURTl2LFjyieffKK0a9dOqVy5suLo6Kg4ODgoVatWVQYNGqTs3bvXZP2WLVsqgPL3339nua2aNWsqgHL8+HFFUR69v6n/dDqd4urqqlSsWFHp2rWr8vnnn6dLnoVl0ClKmkY+IYQQQggLIJ1khRBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWxygQlPj6eixcv5tu02EIIIYTQllUmKIGBgYwePZrAwECtQxFCCCFEPrDKBEUIIYQQhZskKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQViz2YTxHV18m9mG81qEIIUSekgRFCCsWG57A8T+vEBueoHUoQgiRpyRBEUIIIYTFkQRFCCGEKGDSPJs1SVCEEEKIAibNs1mTBEUIIYQQFkcSFCGEEEJYHElQhBBCCKRfiKWRBEUIIYRA+oVYGklQhBBCCGFxJEERQmSLXP4WQhQkSVCEENkil7+FEAVJEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQohCKvZhPEdXXyb2YbzWoeRYjhOU2NhYFi5cyBtvvEH37t1p06YNmzZtytXGv/jiC9q0acNbb72Vq/WFEEIIkbHY8ASO/3mF2PAErUPJsRwnKBERESxevJjAwECqV6+e6w1fuHCBTZs2YW9vn+vXEEIIIUThlOMExcvLi7Vr17Jq1SrGjBmTq40qisLs2bPp3Lkznp6euXoNIYQQQhReOU5Q7O3t8fLyeqKNbtmyhevXrzN69Ogneh0hhBBCFE4F3kk2NjaWn376icGDBz9xoiOEEEKIwsm2oDe4ePFiHBwc6N+/f7bXCQkJITQ0VH0eGBiYH6EJIYQQwkIUaIJy69YtVq9ezfvvv5+jzrHr1q1j8eLF+ReYEHks9mE853fcwse/As7FHbUORwghrE6BJijfffcd9erVw8/PL0fr9ezZk1atWqnPAwMDmT59eh5HJ0TeSR3aV6lJSUlQhBAiFwosQTl69CgHDx5k+vTp3Lt3Ty1PSUkhISGBe/fuUaxYMVxcXNKt6+3tjbe3d0GFKoQQQgiNFViC8uDBAwDefffddMuCg4MZMGAA48ePz1HfFCGEEEIUTvmWoISEhBATE0O5cuWwtbXlqaee4tNPP01X78svv6R06dIMGTKEqlWr5lc4QgghhLAiuUpQ1qxZQ3R0tDqyJiAgQL1C0qdPH1xdXZk3bx6bN29mxYoVlClThlKlSlGqVKl0rzVnzhyKFy+Or6/vE+yGEEIIIQqTXCUoK1asICgoSH2+Z88e9uzZA0CnTp1wdXXNm+iEEEIIUSTlKkFZuXJllnWmTZvGtGnT8uS1hBBCCFG0FPhMskIIIYQQWZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXFstQ5ACJF34pLiuBx2mfvR90k2JOPm4EZlj8qUcyuHTqfTOjwhCj2DYuBu1F2uPbxGXFIcOp2Ocm7lqOZZDUdbR2Mdg0LwtQgAgq9F4FmpGHq9/H0+ThIUIaxU6kku2C6Ij3Z9zMHtezly9wgKSrq6JV1K4l/Fn/51+9OjZg9s9Zb7px/7MJ7zO27h418B5+KOWocjRJYSUxJZe34tay+sZdu1bYTFhaWro9fpaV6uOS2d2lD5wFM4hrgBELDgLCfWXqXFUB+qNCtd0KFbNMs9SwkhMnT9UBArf9vAH3YLOFnlAMrN9ElJWg9iHrD8zHKWn1lOObdyvNXqLV5p+gr2NvYFFHH2xYYncPzPK1RqUlISFGHR4pPj+e7gd3x74FuCooMyrWtQDPx3+z/+4z/0nnqesmtFr5AhlE4qT0xYPDtmHcd/cmNJUtKQBEUIK3Mq4DKTVv2P3cU3oegMJsvKJVSmWZWm+FStiZ2NHWFxYVwOu0zAzQCiEqMAuBN1h4mbJzL74GzmPTuP9lXaa7EbQli1fy79w/iN4wmMCDQpd3dwp3XF1tTwrIG7oztJKUkERgRy7N4xzoecB8CgM3Ck2F6Ou+2n3cNneS5kKA6KIweWnadS01LS3PP/JEERwooE3NzP81v6Elz8nlrmkeSFX3gPnolsj2dyCVyiHBkw0s/kJJeUksT2a9v56ehPrLu4DoCrD6/iv9SfCc0m8GXHL3GwdSjw/REiOyyp2S82KZbJmycz/9h8tUyv0/N87ecZ03QMbSu3NduEevdcKEs/X0+A+zZ2e2wkyjacFF0K2z3/4ozLEUbde5NKoTUIuhBG2TpeBblLFktG8QhhJRYdX4Tf4rYE2xiTEweDE72Dh/PZ9QV0DxuAZ3IJAGJC4wm6YNoGbmdjR9caXfn7hb85PPowvhV91WVzDs2h/dL23I++X3A7I0QOpDb7xYYnaBrH7cjb+C7yNUlOOlbtyIlXTrC6/2r8q/pn2L8rLjwB7+RS9AodzIxrC3k2ZBB2BmMTa5DDbT6v+AYH3XYRp/E+WhJJUISwcIqi8O6/7zJi3QiSlWQAqsX58MGNH+ga1h87JX0/ksxOck3LNmXX8F3M7jJbHVWw/9Z+mv3SjCthV/JnJ4SwcI+PrDEYTPt1nb5/mqfnP82xe8cAcLFzYV6PeWwZvIX6pepn+fpOHo+uUDoojvQMHcx7gXOoFF8dgGR9Er+U/YKf736fV7tk9SRBEcKCKYrChE0T+HTvp2pZ+4c9efPmF5RIyrgzXdqToTl6nZ6JzSey76V9lC9WHoCbETdps6gN54PP503wQliJ64eCWDFxFwELzgLGkTUrJu7i+iFjx9cTQSdot6Sd2hG2ikcVDo46yOgmo7M9fL90bU9cPE2bp8okVuDtwK9pHd5JLfvy7Aze3/k+ipJ5x/eiQBIUISyUoii8sfUNfjj8AwA6dHzb6VtGJU/GBpsM13PxcqR0bc9sbaNJ2SYcHn2Y+iWNvwDvRd+j7eK2XAi58OQ7IIQVuH4oiB2zjhMTFm9SnjqyZsP27bRf0p7QuFAAmpVrxqHRh6hbsm6OtqPX62gx1CdduS12DL0/iT7BL6lln+z5hHf/fTcXe1O4SIIihIX6ePfHfHPgG8CYnCx+bjGTn5ls9iSXVoshPjkaBVDatTQ7h+3kqTJPARAcG0zX37qaDJvM6vK3ENbIYFA4sDTjK4ahtvcZvHcAD+MfAtCyQku2DdmGt7N3rrZXpVlp/Cc3TnclxdXLiS+HfsbsLrPVss/2fcacg3NytZ3CQhIUISzQ76d/58PdH6rP5z07j6ENhwIZn+RcvBxzPY+Cl7MXO4buoFHpRgDcCL9B99+7E50YneXlbyGsVdCFsHRXTlLF6KOYXf59wvXGDufPlH+GzS9upphDsSfaZpVmpRnwnR+tRhqvwLQaWZcBs/2o0qw0E5tPZE7XR0nJpM2T+PvC30+0PWsmCYoQFubg7YOM+HuE+vzLjl8y6qlRJnUyO8nlloejBxsGbaCie0UAjt07Rp+F/dg+61iGl78lSRHWLKPO5AZS+LnsDO453AKgsnMV1g9cj5uDW55sV6/XUaKqOwAlqrqbXPEc32w8U1tPBUBBYeCagZwIOpEn27U2kqAIYUEexDzg+RXPk5BiPHGOajyK15953WzdzE5yuVXWrSybXtyEh6MHAFvvb2Zr8TUZ1j+w7Lw09wirlVFn8r+9f+W8ywkA3JLd+a3tSrycC25ukuntpzOw3kAA4pLj6LuyLxHxEQW2fUshCYooMmIfxnN09WViH5q/pKs1g2JgyNoh3Is2znPiV9mPH7r/UOA3+atTog6/9f5Nfb6mxGIuOp0yW9fcnCtCWAtzI2tOuRxio9cKAPSKnsnRH9KiaZMCjUuv07Ow10Kalm0KGCdVfOnvl4rcyB5JUESRYSmTPWXki4Av2Hp1K2DsuLqi7wrN7pXTrUY3xleZDICiMzC/7EyibMz/gpOJpYS1enxkzUPbEBaW+Vp93jt4OC8NfEGTqecdbR1Z1W8VxR2LA7D2wlq+O/hdgcehJUlQhLAAh+8cVocV6tDx6/O/UtKlpKYxTWkylToxjQGIsH3Ib6V+MHun5KzmXBHCkqV2Onf2dGBJ6dnE2BjvWdUkoRUzh07X9OZ9lT0qs/T5perzt3e8XaSmAJAERQiNJSQn8NLfL5GipADwju87+Ff11zgqKOdTgnHx03BJMXYMPOq2j4Nuu0zq5GTOFSEsVZVmpQkfdpGzLkcBKGFfks3v/E3V5mU0jgx61OzBpOaTAOPdk4esHUJSSpLGURUMSVCE0Nj0PdM5G2wcwtu4dGPeb/u+xhEZ6fU6ug5uzeCg8WrZ76V+JNwmVH2e0zlXhLBE1x5e481tb6jP5/j+iLeL5dywb4b/DGp51QLgyN0jzNg3Q+OICoYkKEJo6Ni9Y+rJxlZvy6Jei7CzsdM4qkeqNCvNW6Mm0iq+AwBxNjH8UfLnJ5pzRQhLoigKYzaMITYpFoC24d3wL9dB46hMOdk5sfT5pdjojDNIT98znYshFzWOKv9JgiKERpINyYxcN1Jt2nnX910alm6ocVTpVWlWmrXvLKe4rbEp52ixfRSbECfJiSgUVp5dqXZOL+dcnr4PRmockXnNyjXjjZbGqzxJhiTGbhxb6Ef1SIIihEZ+OvKTOgFTg1INmOo7VduAMlHC1ZtPmj+6YeH4TePUX5xCWKuI+Agmb5msPp/RbCaOipN2AWXh/bbvU9mjMgD/Xv+X30//rm1A+UwSFCE0EBwTzHs731Of/9T9J82GFGdX/6ovUCumAWCcCv/j3R9rHJEQT+adf99R7znVs1ZPulbsrnFEmXO2c+b7rt+rz1/b+hoP4x5qGFH+kgRFCA1M2zGN8PhwAIY1HMYzFZ7RNqBs0Ol0DL4/Hnu9MZH65r9vuBp2VeOohMidk0En+fHwj4Dxi/+7LtYxx0j3mt3p7dMbMM48/cGuDzSOKP9IgiJEATty9wgLji8AwM3ejc87fK5xRNlXOqk8Y+tOAIzt4G9tf0vjiITIOUVReGPbG+q8Pu+3eZ9KHpU0jir7ZneZjbOdMwBzj8zlUugljSPKH5KgCFGAFEVh8ubJ6onxI7+PKO1qXZ1NJ9WbTCmXUgCsOb+GvYF7NY5IiJzZdGUT269tB4yToU1qMUnjiHKmfLHyTGk5BTB2tp+ybYrGEeUPSVCEKEDrL60n4FYAALW8ajG+2fgs1rA8rnZuTG8/XX3+2tbXMCgGDSMSIvuSDcm8sfXRnCczO8zE0dYxkzUs0xst36CsW1kA/r74N7tv7NY4orwnCYoQBSTZkMzUHY9G6nze4XOLmvMkJ15q9BL1S9YHjE1WhX00gSg85h+dz/mQ8wA8U/4Z+tXpp3FEueNi78L0doX7h4IkKEIUkKUnl3Iu+BxgPDH2qtVL44hyz0Zvwzedv1Gfv7/zfRJTEjWMSIisxSbF8tHuj9TnX3f6usDvFp6XhjYcSsNSxrmTjt07xoozKzSOKG9JgiJEAYhNiuX9nY+msJ/ZYaZVnxgBOlTtQMeqHQG4Hn6dRccXaRyREJn78fCP3I+5D0Afnz5WMXouMzZ6G77q9JX6/MPdH5JsSNYworwlCYoQBWDu4bnciboDwLM1n8W3kq/GEeWNtH1RPtnzCfHJ8RpGI0TGohKimBkwEzDeMfwjv4+yWMM6+Ffxp22ltgBcCr3Eb6d+0ziivCMJihD5LDYpli/2fwEYT4yf+X+mcUR5p1m5ZvSs1ROAO1F3+OnITxpHJIR5cw7NISQ2BIAX6r1A3ZJ1NY4ob+h0Oj5p94n6/KPdHxWaux3nOEGJjY1l4cKFvPHGG3Tv3p02bdqwadOmbK179OhRPv/8cwYNGkTHjh0ZMGAAM2fOJCQkJMeBC2Etfj7yMw9iHgDQt05f6pWsp3FEeetjv0czyn629zOiE6M1jEaI9CLiI/hqv7EpRK/T80HbwjW5mW8lXzpV6wT8f3PricLR3JrjBCUiIoLFixcTGBhI9erVc7TuTz/9xPHjx/H19WXSpEn4+/uzc+dORo0aRWhoaNYvIISViUuOU6+eALzX5r1MalunhqUb0r9ufwCCY4P5+cjPGkckhKlvD3zLw3jjlPBDGgyhlnctjSPKe2mvonyy55NC0Wk9xwmKl5cXa9euZdWqVYwZMyZH644bN47ly5czZswYevTowcsvv8znn39OWFgYf/75Z05DEcLiLbu8RL3XRx+fPtQvVV/jiPLHh20/RIex0+/X/30tfVGExYiIj+DbA98CYKu35f2272exhnVqVq4ZPWr2AOB25G1+PfWrxhE9uRwnKPb29nh5eeVqY40aNUKv16crK1asGIGBgbl6TSEsVZIukTlnZqvPC+PVk1Q+JXx43ud5AO5F32PJiSUaRySE0dwjc4lMiASM972qWryqxhHln3d831Eff77vc1IMKRpG8+Q07yQbGxtLXFwc7u7uWociRJ7a576FoLh7ADxX+zkalm6ocUT5a2rrR5PQzQyYWaiGOwrrFJcUx6wDswBjB/W3WhXue0e1KN+CdpXbAXA57DJrzq/ROKIno3mCsmrVKpKSkmjfvn2GdUJCQrh48aL6T662CEuXbEhmS/FHzZbvtymcl5XTalq2qUlHvcI2aZSwPktOLlHnPelbpy81vGpoHFH+m+Y7TX08Y98MFEXRMJonY6vlxk+cOMHixYtp164dTZo0ybDeunXrWLx4ccEFJsQTWh+4jlB744mxc7XONC7TWOOICsa01tPYenUrAJ/t+4yB9Qei12n+O0gUQcmGZL4IeNRB/e3Wb2sYTcHxr+JP07JNOXL3CCeCTrDj7nbAReuwckWzM0dgYCDvvvsuVatW5a23Mr/s1rNnT+bPn6/+e/fddwsoSiFyTlEUfjj3nfr8zZZvahhNwWpTqQ2tKrQC4FzwOdZdXKdxRKKoWnV2FdfDrwPQqVonnirzlMYRFQydTse01o+uosw6/U0mtS2bJgnK/fv3ef3113FxcWHmzJk4OztnWt/b25tatWqp/ypVqlRAkQqRcztv7ORk6AkA6ns2oH2VjJsvCxudTmdyifmb/6z35Cisl6IofB7wufr87VZF4+pJql61e+Hj7QPAwQf/cdXxvMYR5U6BJygRERG8/vrrJCUl8dVXX+Ht7V3QIQiRr74I+FJ9PKzEaKy4CThXulbvSp0SdQDYe3Mvh+8c1jgiUdRsv7adU/dPAdC8XHP8KvtpG1AB0+v0TGk1RX2+rfhagq9FYDBY18ko3xKUkJAQAgMDSU5+1JM/Li6OKVOmEBISwhdffEGFChXya/NCaGLj9n/ZcnUzAF6JpXBdV5kVE3dx/VCQxpEVHJ1Ox/9a/E99njoHhRAFZdbBWerjN1q+YfU35syNFnHtKGYoDsAxt/2sW/Kv1Z2LcpWgrFmzhiVLlrBx40YAAgICWLJkCUuWLCE62jjN9bx58xgyZAjBwcHqep988gnnz5/Hz8+PwMBAtm7dqv7bu3dvHuyONmIfxnN09WViH8rkVEXZ9UNBTN/46D47HR8+hw02xITFs2PWcas6MTypF+u/iLez8eroyrMruRVxS+OIRFFxMeQiGy8bv5squVfiudrPaRuQBq4fCmLfnHO0DesGgKIz8G/xf6zuXJSrUTwrVqwgKOjRDu7Zs4c9e/YA0KlTJ1xdXc2ud+XKFQA2btyoJjepSpcuja+vdd7hNTY8geN/XqFSk5I4F3fUOhyhAYNBYcuy/Rz23A2Ac4orrSI6mdQ5sOw8lZqWQq8v/L/mnOycGNt0LB/v+ZgUJYU5h+bwRccvsl5RiCf03cFHHdQnNJuArV7TwaoFzmBQOLDU2OfEL7w7mzxXkqxPYq/7Zp4NGYSj4mQ156JcfXIrV67Mss60adOYNm2aSVl21hPCGgVdCGOz8hfJemOTpm9EZxwVJ5M6MaHxBF0Io2yd3M3EbG3GPj2WzwM+JzElkXlH5/F+2/dxtTf/40WIvPAw7iGLTy4GwMXOhZFPjdQ2IA0EXQgjJsx4Nb9YigfNI9sR4LGVOJsYAty34R/e02rORTJBgRB5IDIsmt0exquCOkWP38MeZuvFhScUZFiaKuVaisH1BwMQkRDBouOF4w6rwnL9cuwXYpNiAXip0Ut4OHpoG5AGHj/HdHjYS328o/jfGEgxW88SSYIiRB7YGbONcDvjHbkbRjfHO7mU2XpOHg4FGZbm/vfMo86y3x/+HoNi0DAaUZglG5KZc2iO+nxC8wkaRqOdx88x5ROr4BPTCIBg+3uccj1ktp4lkgRFiDzw253F6uP24c+arePi5Ujp2p4FFJFlqFeynjrE81LoJXZc26FtQKLQ+uvCX9yKNHbG7l6jOzW9amockTZK1/bExdO0L2SHh8+pj7d7/G015yJJUIR4QsfuHSPgVgAAZRMqUTvW/E0BWwzxsfhOaflh3NPj1Mc/HP5Bw0hEYTb74KM7h09uMVm7QDSm1+toMdTHpKxeTFNKJpYF4KLLKbyft7GKc5EkKEI8obSXlcc+NRZXT9POsS5ejvhPbkyVZqULOjSL0KtWL8q6GU+O6y+t52bETY0jEoXNmQdn2HdzHwA+3j74V/HXOCJtVWlWGv/JjdUrKXr0+IV3V5f/k2AddzmWBEWIJxAcE8zy08sB8HD0YHLPcQz4zo9WI+sC0GpkXQbM9iuyyQmAnY0drzR5BQCDYuDnIz9rHJEobH468pP6eEzTMUVyYrbHVWlW2uRcNPnZ8TjaGhOWxScXE5MYo2V42SIJihBPYOHxhSSkGHvDj2w8Ehd7F/R6HSWqugNQoqq7VVxKzW+jnxqtzkcx/9h8EpItfwSBsA7RidEsPbkUAGc7Z4Y2HKpxRJYj7bmoRq1KDKw3EIDIhEiWn1muZWjZIgmKELlkUAzMOzZPff5q01c1jMaylXErQx+fPgAExwaz+txqjSMShcXy08uJSowCYGC9gbg7umsckeUa+/RY9fGPh39EsfAbhUmCIkQu/Xv9X649vAZAh6odqO5ZXeOILJt0lhV5TVEU5h6Zqz4f03SMhtFYvqZlm9K0bFMAjgcd59CdQxpHlDlJUITIpZ+PPupLkdrHQmSsdcXW1CtZD4D/bv/HiaAT2gYkrN6hO4c4HnQcgKfLPk2Tsk00jsjyjW2a5irKkR81jCRrkqAIkQtB0UH8deEvAEq5lKJXrV6ZryDQ6XQmV1HmH52vYTSiMPjp6KPOsdLEmj0D6g2guKPxLscrzqwgNDZU44gyJgmKELmw6Pgikg3G++6MaDwCOxs7jSOyDoPqD8LZzhmA307/pk5LLkROhcWF8ceZPwDjCLoX6r2gcUTWwdnOmeGNhgOQkJLAkpNLtA0oE5KgCJFDBsXA/GPGX/86dIx+arTGEVmPYg7FGFB3AGC8P8+qs6s0jkhYq6UnlxKfbLwp3rCGw9TEV2QtbZP0guMLLLazrCQoQuTQtqvbuB5+HYBO1TpRpXgVjSOyLmkTutRET4icUBRF+oA9gVretfCt6AvAueBzHLh9QOOIzJMERYgckhPjk2lRvgV1Sxgnjwq4FcC54HMaRySszX+3/+NCyAUA2lRqg08JnyzWEI8b2Xik+viXY79oGEnGJEERIgfuRt1l3cV1AJRxLUOPmj00jsj66HQ6Rj01Sn1uqSdHYbkWHFugPk77RSuyr2+dvhRzKAbAirMriEqI0jii9CRBESIHlpxYQoqSAhhPjNI5NneGNBiCvY09YOxLIDPLiuyKSohixdkVgLFPU986fTWOyDq52LswqN4gAGKSYtT31JJIgiJENimKwqITi9TnI5+SX2655eXspc4sGxoXqg7ZFiIrq86tIibJeB+ZgfUGSufYJ5D2HGaJVzIlQREimwJuBXA57DIA7au0p7JHZW0DsnLSWVbkxoLjj5p3RjQeoWEk1q9JmSY0LNUQgIN3DnL6/mmNIzIlCYoQ2bTo+KOrJy81eknDSAoHv8p+6u0BdlzfwdWwqxpHJCzdpfCL7L+1H4B6JevxdNmnNY7Iuj3eHyxt8mcJJEERIhuiE6NZeW4lYGz37u3TW+OIrJ9OpzPp4GjJE0YJy/D7lV/VxyMbj0SnkzuFP6kX67+Ig40DAMtOLbOo/mCSoAiRDavPrSY6MRqAF+q+IO3eeWRow6HodcbT0JKTSzAoBo0jEpYqmWRWXjPOHGunt2Nwg8EaR1Q4FHcqTp86xv5gYXFhFtUfTBIUIbIhbefYlxpL805eKetWls7VOgNwM+Imu27s0jYgYbFOux4iOD4YgF61e+Ht7K1xRIXHqMaPmnksqT+YJChCZOFK2BX2BO4BoLZ3bZqXa65xRIVL6n1BABafWKxZHMKy7XPfqj6WuU/yVtvKbalWvBoA/17/l8DwQI0jMpIERYgspP3SHNFohLR757GetXri4egBGJvSohIjtQ1IWJyg2HucdjkCQIViFehYtaPGERUuep2eYQ2HAaCgsOzUMo0jMpIERYhMpBhS1M6bNjobhjQconFEhY+jrSMD6w0EIC45jnWBf2sckciO2IfxHF19mdiH8fm6HYNBYfGRpSg6Y/+koQ2GYqO3yddtFkVDGw5VHy85ucQibiAoCYoQmdh+bTu3I28D0LVGV0q7ltY4osIp7bDtP67+rmEkIrtiwxM4/ucVYsPzb9TH9UNBrJi4ixUX/lDLvP6uzfVDQfm2zaKqkkcl2ldpDxibtVOHc2tJEhQhMmHSOVbmPsk3Tcs2pU6JOgAcePAfD+zuEnwtAoNB+19xQhvXDwWxY9ZxLsac57aj8e7hVeNq4xbixY5ZxyVJyQfDGw5XH1tCfzBJUITIQNohd97O3nJjwHyk0+no6dlHff5fsR0ELDjLiom75IuoCDIYFA4sPQ/Af8X+VctbRLZXHx9Ydl4S2DzW26c3rvaugPEGgrFJsZrGIwmKGYkpiVqHICzAijMrSEgxXr4eXH+wenM7kfeuHwrCa0MtdIrxlLTffTsGDMSExcuv5SIo6EIYMWHxGEjhkNsuAGwUG56ObKPWiQmNJ+hCmEYRFk4u9i70q9MPgKjEKM3nRJEE5f8pisKyk8votKwTT89/2iI6CAlt/Xr60ayVwxoN0zCSwi3117JHiif1YpoAEGYXzEXnU2od+bVctMT9f7+WC86nCLcLBaBe9NO4GoqZrSfyjiUN+5cE5f/pdDp+OvoT265t49T9U5y8f1LrkISGrj28ZnLPj9Qbaom8l/prGaBlRAe1fH+x7epj+bVctDh5GKdeP1Bsp1r2TJrmncfribzTumJrqhavChgHCdyKuKVZLJKgpDGkwaMhpMtOWsY4cKGNX089unoyuP5gmfskH6X9FdwwpjnOKcY28GNuAcTpY83WE4Vb6dqe2HoajwEApxQXGsQ0M6nj4uVI6dqeWoRXqKWdE8WnhA93ou5oF4tmW7ZA/ev2x05vB8DvZ34n2ZCscURCC4qiqAmKDh2D6g/SOKLCLe2vYDvFnmaRbQFI1CdwzHWf2XqicNPrdUR0uEGCPg6AplGtsVNM+4C1GOKDXi8/HPLD6KdGc3j0Yc6MOUOL8i00i0MSlDQ8nTzpXrM7AEHRQey4tkPjiIQWDt89zOWwywD4VfajgnsFjSMq3ErX9sTF01F9/kykv/o49RK//FouerbErFcfN0/TvOPi5Yj/5MZUaSZzEuWXMm5laFq2qeZXjiVBeYxJM4+FTPcrClba5j25Y2r+0+t1tBjqoz6vEl+LkollAbjofIow2xD5tVzE3I++z9arxnvvVHSvyPCB/QFoNbIuA2b7SXJSREiC8pjuNbpT3LE4AGsvrCU6MVrjiERBSkpJ4o+zxlkrHW0d6ePTJ4s1RF6o0qw0/pMb4+LpiA6dOt+FolMI63ZJvpCKmD/O/EGKkgLAi/VfpFQ14zm5RFV3SVSLEElQHuNg60D/usZsPTYplrXn12ockShIW69uJSQ2BDDexM7d0V3jiIqOKs1KM+A7P1qNrEvzyHZq+caHcm+eoibt1eu0V7VF0SIJihnSzFN0pf28B9eX5p2CptfrKFHVnZJJZXi6RHMATj84zckgGfZfVJwPPs/Re0cBaFKmCT4lfLJYQxRWkqCY0bJCS6p4VAFgx/Ud3I26q3FEoiBEJkTy90Xjr3UvJy86V++scURFW7+q/dXHaYd956WCuiOvyD6TIf6FuA+Ys4cDjXtXx1lGp2VIEhQzdDqd+odhUAz8flrurloU/Hn+T+KTjV9UL9R7Qaa211ivSs+bDPtPMaTk+TYK4o68IvsMioHfTv8GgI3OhoH1BmocUf5xLu5Ik741cC7umHXlIkoSlAxIM0/RY9K8U4h/uVkLT0dPutXoBsDdqLvsvLEzizWEtdt3cx+BEYEAdKzWkVKupTSOSGhJEpQM1PCqQfNyxjbwU/dPcer+qSzWENbsduRtdl43fgFW96yufvZCW2kTRfmhUPilbd6RzrFCEpRMyNT3Rcfy08tRMN6Mzpqmti/s7dg9avbA3cE4kurP838SkxijcUQiv8Qnx7Py7EoAXOxc6FWrl8YRCa1JgpKJAfUGYKu3BfKvDVxYhrR3Ln6xwYsaRpIzhb0d29HWUb39e3RitNqJWRQ+/1z6h4iECAD61OmDi72LxhEJrUmCkglvZ29pAy8C0jbhtSjfguqe1TWOSKQ1pOGjK5n5NZpHaE+ad8TjJEHJQtq5MKQNvHCSE6Nla12xNRXdKwLGifTuR9/XOCKR10JjQ9l4eSMAZd3K0q5yuyzWEEWBJChZeLbWs2ob+Jpza6QNvJBJMaSow8ht9bbqLMLCcuh1evWHQoqSwh9n/tA4IpHXVp5dSZIhCYBB9QZho7fRJI7C3qfL2kiCkoW0beAxSTH8deEvbQMSeWrXjV3ciboDQNfqXfF29tY4ImFO2n5BafsLicLBUob4F/Y+XdZGEpRsMGkDl5NjoZL285Tmncxp+euyTok6PFXmKQCO3D3ChZALBR6DyB9Xw67y3+3/AKhfsj4NSzfUOCJhKSRByYbWFVtTyb0SIG3ghUlsUixrzq0BoJhDMXrU7KFxRJZN61+XaRNI6SxbeBSVqe1FzuU4QYmNjWXhwoW88cYbdO/enTZt2rBp06Zsrx8VFcWXX37Js88+S6dOnZg0aRIXL17MaRgFSq/T82J94yVmg2Jg+ZnlGkck8sK6i+uISowCoK9PX5zsnDSOSGTmhXovoNcZT1m/nvoVg2LQOCLxpBRFUa9i6tAxqP4gjSMSliTHCUpERASLFy8mMDCQ6tVzNhzTYDDw1ltvsX37dnr37s2rr77Kw4cPmTRpErdu3cppKAUqbWYvv94KB5PROw2lecfSlXYtTadqnQAIjAgk4GaAxhGJJ3XwzkGuhF0BoH2V9pQvVl7jiIQlyXGC4uXlxdq1a1m1ahVjxozJ0bq7du3izJkzTJ06lZdeeonevXvz3XffodfrWbRoUU5DKVA+JXxoUqYJAEfvHeV88HmNIxI5YTAoBF8zTgIVfC2C+1EP2HxlMwDli5WnTaU2WoYnsintsH/5oWD90s7QLc074nE5TlDs7e3x8vLK1cZ2796Np6cnbdo8+jLw8PCgXbt27Nu3j8TExFy9bkGRqyjW6fqhIFZM3EXAgrMABCw4y1sffUKKYpwZ+MX6L6pNB8KyPVf7OVzsjDOMrjy3Ur37tLA+iSmJrDi7AgAnWyd6+/TWOCJhaQr0rHzp0iVq1KiBXm+6WR8fH+Lj4y2+mSdtG/hvp3+TNnArcP1QEDtmHScmzPSLbI/tVvWx/HKzHi72LuoXWXh8uDq5l7A+m69sJjQuFIBetXtRzKGYxhEJS1OgCUpYWJjZqy+pZaGhoWbXCwkJ4eLFi+q/wMDAfI0zI9IGbl0MBoUDS9M3xQXZ3ea60yUAKiVXp4533YIOTTwBuZJZOMgMziIrtgW5sYSEBOzt7dOVp5YlJCSYXW/dunUsXrw4P0PLtsH1B6t9F5adWoZvJV+NIxIZCboQlu7KCcDBYo/uqdQszI+gC2GUrZO7ZktR8NpXaU9p19IERQex4fIGwuLC8HTy1DoskQPh8eGsu7gOgBLOJehYtaPGEQlLVKBXUBwcHMz2M0ktc3AwPwFUz549mT9/vvrv3Xffzdc4M2PSBn5W2sAtWVx4+oRXQeHA/ycoOkVPs8i2ZusJy2Wrt2VgvYGAsR/DqrOrNI5I5NSac2tISDH+3Q2sNxA7GzuNIxKWqEATFE9PT7PNOKllGXW+9fb2platWuq/SpUq5WucmUnbBh6RECFt4BbMycyMp1cdzxNiHwSAT2xDPFK8zNYTls1k0jaZ3dnqpJ3aXob4i4wUaIJSo0YNLl++jMFg2rn0/PnzODo6UqFChYIMJ9fStoHLHY4tV+nanrh4ms56esD9X/Vx88j2uHg5Urq2NA9Ym0alG1GnRB0A9t3cx/WH1zWOSGRXYHgguwN3A1DLq5Y6fYMQj8u3BCUkJITAwECSk5PVsrZt2xIWFsaePXvUsvDwcHbu3EnLli3N9k+xRKlt4AAbLm3gYcJDjSMS5uj1OloM9VGfJ5PEYTfjsWdvcOCpqGdoMcQHvV6nVYgil3Q6ncmcKKl3pBaWL+1nNaTBEHQ6+fsT5uUqQVmzZg1Llixh40Zj80ZAQABLlixhyZIlREdHAzBv3jyGDBlCcHCwup6fnx9169ZlxowZLF68mLVr1zJp0iQMBgMjRozIg90pGLZ6WwbVM07JnGRIYl3gX9oGJDJUpVlp/Cc3xsXTkTOuR4i1MR6fTRNb031SK6o0K61xhCK30t7heNmpZSiKomE0IjsURTG56pz2MxTicblKUFasWMGCBQv466+/ANizZw8LFixgwYIFREVFZbiejY0NX3zxBe3bt2fNmjXMnTsXd3d3Zs2aRcWKFXO1A1pJ28yz8uoKDSMRWanSrDQDvvPjcoMjatm0l16T5MTKVXSvSNtKbQG4GHqRo/eOahyRyMrxoOOcDzEO/fet6Etlj8raBiQsWq6GGa9cuTLLOtOmTWPatGnpyt3c3Hjrrbd46623crNpi5HaBn4u+ByHgg/wnN09gq9F4FmpmDQZWKDIxAh2PzT2PynhWILO1TtpHJHIC4MbDFb7M/x66lealm2qcUQiMzK1vcgJmd87l3Q6Hd2LP6c+P+hmnEp9xcRdXD8UpF1gwqxVZ1eRYDAOa3yucm9s9QU6BZDIJ33r9MXBxjgKa/mZ5SQbkrNYQ2gl2ZCs3gne3saefnX6aRyRsHSSoOTS9UNBeG2qqT4/4P4vCgoxYfHsmHVckhQLk7bdu3/VFzSMROQlD0cPnq31LAAPYh6w7eo2jSMSGdl+bTv3Y+4D0KNmD4o7Fdc4ImHpJEHJhdQp1L2SS1Iztj4A9+3vcMPxslrnwLLzGAzSac8S3Ai/wd6bewEonVCBhl6NtA1I5CmTOxzLnCgWS6a2FzklCUoupJ1CvUVke7X8YLFHc2zEhMYTdCGswGOzRrEP4zm6+jKxD/NnVt7fTv2mPm4R2V6GNRYyXWt0Vae6X3t+LVEJGXfUF9qIToxm7YW1AHg6edKtRjeNIxLWQBKUXEg7NXqTqFbYGozTNB9y200yyWbriYzFhidw/M8rxObD+/X4sMbmkX55vg2hLXsbe/rX6Q9AXHKc+kUoLMef5/8kNikWgP51+mNvYx1zXgltSYKSC2mnRnc2uNIwpjkAUbYRnHc5brae0MbRe0e5GHoRgGdKtcQ7uZTGEYn8kHa6dLnDseVJ+yNBRu+I7JIEJRcen0K9RcSjZp4D/9/Mk19TqOd3c0hhk3ZYYz/pHFtoPVP+Gap4VAFgx/Ud3I26q3FEItWdyDvsuLYDgKrFq9KyQkuNIxLWQhKUXHh8CvV6MU1wSXED4ITrAeJ1sfk2hXp+NocUNkkpSeqwRgcbB3pW6llg23b2cKBx7+o4y1W0AqHT6dRf5gbFwB9n/tA4IpHqt9O/oWAcMCBT24uckAQll9JOoW6LHU9HtgEgUZ9AfJ87MkupBdh2bRvBscZbLTxb61nc7T0KbNvOxR1p0rcGzsUds64s8oTcxNPyPN4HTEbviJyQBOUJpE6h3mpkXZpHtlPLt8Ss1zAqkUpOjEVLTa+aNCvXDIATQSc48+CMxhGJk/dPqp9DywotqeZZTeOIhDWRBOUJ6fU6SlR1p1q8D5VdKwOw49oO7kTe0TawIi4yIZK/LvwFgJeTF12qd9E2IFEg0s6JknZ4udDG0pNL1cdDGwzVMBJhjSRBySM6dPStahzqqKCofR+ENv48/yfxycaOxAPqDpBhjUXEgHoDsNHZAMa+DwbFoHFERVeyIZnfT/8O/P9Q8Lr9NY5IWBtJUPJQ36oD1Mcy1FFbJs07DaV5p6go6VKSztU7A3Ar8hZ7AvdoHFHRte3qNnVq+2drPitT24sckwQlD1UrVo3m5Yxzopy8f5LT909rHFHRdDvyNjuv7wSgumd19TMRRUPa/kbyQ0E70gdMPClJUPJY2pEEcnLUxu+nf1eHNQ6uP1iGNRYxPWv1xNXeFYBV51apTX2i4EQmRKoz+no5edG1RleNIxLWSBKUPDag7gBs9baAtIFr4fFhjTJrZdHjbOdMH58+gPGLcv1FGVVX0NacW6Mmhi/Ue0H6gIlckQQlj5VwKaGOGLkTdYddN3ZpG1ARI8MaBTzWzCN3OC5w0rxjOax50khJUPKBye3fpZmnQKV9v9N+DqJo8avsR1m3sgBsvLyRkNgQjSMqOm5G3GTnDWMfsLRz0whtWPOkkZKg5IOetXriZm+c+n71udXEJcVpHFHRkGxIVhMUO72dDGsswmz0NgyqNwgwHherzq7SOKKiI+38MzK1vXgSkqDkAyc7J/rW6QtAVGIU6y6u0ziiomHzlc2PhjXWehYvZy+NIxJaStv/aOmppZnUFHlFURST91r6gIknIQlKPjEZzSNt4AVi8YnF6uOXGr2kXSDCIjQs3ZAGpRoAcOD2Ac4Hn9c4osLv6L2jXAi5AECbSm2o7FFZ24CEVZMEJZ+0rdSWcm7lgP//ZR99X+OICreQ2BD1SlUpl1Iytb0AYHjD4erjtAmsyB9p32PpHCuelCQo+cRGb6P+gabtGyHyx/LTy0kyJAHGE2PqUG9RtA1uMFg9FpaeWkqyIVnjiAqv+OR4dWp7J1sn6QMmnpgkKPnopcaPmhkWnliIoigaRlO4LTqxSH08vNFw7QIRFqWESwl61OwBQFB0EFuubNE4osJr3cV1PIx/CECfOn0o5lBM44iEtZMEJR/V9KpJqwqtADgXfI7Ddw9rHFHhdDLoJMeDjgPwdNmnqVuyrsYRCUuStj9S2kRW5K2Fxxeqj0c0GqFhJKKwkAQln41o/OgPNe0fsMg7adu95eqJeFzX6l0p6VISMP7KlzlR8t6tiFtsvboVgMoelWlbua3GEYnCQBKUfNavTj9c7FwAWH5mObFJsRpHVLgkpiSqo6TsbewZWG+gxhEJS2NnY6f2B0syJKn9JETeWXpyqXr/q+ENh6PXyVeLeHJyFOUzNwc3tbNYZEIka8+v1TiiwiXtLKHP1X5ObukuzJJmnvyjKIr6nurQyVVMkWckQSkAaU+OC09IM09ekrlPRHbULVmXp8s+DcCJoBOcCDqhbUCFyH8P9nP14VUA2ldpTyWPShpHJAoLSVAKQOuKranuWR2Af6//y/WH1zWOqHB4EPOADZc3AFDWrSwdq3bUOCJhyUyuohyXqyh5ZfmVR1Pby48EkZckQSkAOp3OpFf7kpNLNIym8Pjt1G/qvBZDGwzFRm+jcUTCkr1Q7wUcbIx3dP3t9G8kpiRqHJH1i9fFsi7wbwDcHdzp7dNb44hEYSIJSgEZ2nCo2nFs0YlFGBSDxhFZN0VRWHB8gfpc2r1FVoo7Fed5n+cBCI0LZf3F9QW27diH8RxdfZnYh/EFts2CcMRtH7HJMYAxAXSyc9I4IlGYSIJSQMoVK0fnap0B4+3I/73+r8YRWbf/bv/H2eCzALSq0Ipa3rU0jkhYg7RNEAuOLyT4WgQAwdciMBjybyLF2PAEjv95hdjwhHzbhhYC3Lepj6V5R+Q1SVAKkMyJknfmH5uvPn65ycsaRiKsiX8VfyoUqwDA5subWbdkJwABC86yYuIurh8K0jK8PFFQV2suhV/kirPxR0KdEnVoVq5Zvm5PFD2SoBSgZ2s+i5eTFwB/nv+T0NhQjSPKmCVfkg6PD2fFmRWAsd27b52+GkckrIWN3oY+JV8AQNEZ2Oe+VV0WExbPjlnHrT5JKairNUsvL1Yfj35qNDqdLl+3J4oeSVAKkIOtgzphVEJKAktPLtU4ooxZ8iXp3079RlxyHGC8MaCznbPGEQlrYTAoVD/YFJ1iPPXtc99CCikmdQ4sO5+vzT2FQXxyPCuuLgfAQe/A0IZDNY5IFEaSoBSwV5q+oj7++ejPcgPBHFIUhXnH5qnPpXlH5ETQhTAcQtxoEG1sjgi3C+WMyxGTOjGh8QRdCNMiPKux8swqwhPDAejk1Q0Ph/ydINHZw4HGvavj7OGQr9sRlkUSlAJW27s2bSsZ71NxMfQiuwN3axyRdTl89zCn7p8CoHm55tQvVV/jiIQ1ifv/K4JtI7qqZbs9NmZYT6R3/VAQM1Z9qT73Odoy3/vvOBd3pEnfGjgXd8y3bQjLIwmKBl5pYnoVRWTf/KPSOVbkntP//wKvG/MUnkklADjjcpRQ2wdm6wlT1w8FsezHv7lgfxqAMgkVqB5Xp9D03xGWRRIUDfT26Y23szcAa86t4UHMgyzWEGC8l9HyM8Z2bzd7NwbUHaBxRMLalK7tiYunI3psaB1hHPav6AwEpOks6+LlSOnanlqFaLEMBoUDS8+zx32TWtYmvCs6HnWOlf47Ii9JgqIBB1sHdc6AJEOSyf1kRMaWn15OTJJxUqgX67+Ii72LxhEJa6PX62gx1AeA1hGd1M6ye9N0lm0xxAe9XkakPC7oQhgPH0bwn/sOAGwNdjwT6W9SR/rviLwkCYpG0jZPzDs6T2aWzYKiKCbNYdK8I3KrSrPS+E9uTPli5U06y14ucxL/yY2p0qy0xhFaprjwBI667SPWJhqAplG+uBjczNYTIi9IgqKR6p7V8a9i/PVx9eFVmVk2CwduH+B40HEAmpZtSuMyjTWOSFizKs1KM+A7P15t/qg/2Lmn9ktykgknDwf2uG9Wn6ftaPx4PSHygiQoGnq16avq45+O/KRhJJbv+8Pfq4/HPz1ew0hEYaHX63j+qZ5qZ9nNVzZxNeyqxlFZrgfFb6szx5ZJqEi1uDrp6kj/HZGXJEHRUK9avSjlUgqAvy/+zZ3IOxpHZJmCooNYdXYVAF5OXgyoJ51jC7OCnPPCRm+DX3h3ABQUfjz8Y75v01r9kOZHQrvw7iadY1NJ/x2RlyRB0ZCdjR2jnxoNQLIhWa6iZGD+0fkkGZIA45TajrYyF0JhVtBzXrSO6IyD3pgMLTyxkJjEmALZrjUJiwvjt9O/AeBq44q/TXeT5S5ejtJ/R+Q5SVA09mrTV7HV2wLGOVHiky3v3jdaSkpJ4qejxsRNr9ObNIsJkRfcUtzpXcV4P6fw+HB+PfWrxhFZngXHFqi3lxjRZATDZ3ej1ci6ALQaWZcBs/0kORF5ThIUjZUrVk692V1wbDB/nPlD44gsy18X/uJu1F0AetbqSSWPShpHJAqjUbUfjQqbc2iO3IIijRRDCj8c/kF9Pq7ZOPR6HSWqugNQoqq7NOuIfCEJigWY2Gyi+vi7g9/JyTEN6RwrCkIDr4a0qtAKgLPBZ9l1Y5e2AVmQ9ZfWExgRCEDX6l2p6VVT44hEUSEJigVoUb4FTcs2BeB40HECbgVoHJFlOHX/FHsC9wDGexi1r9Je44hEYTah2QT1cdrEuKibc2iO+jjteyREfpMExQLodLp0V1EEzDowS3087ulx6HRyGVnkn94+vSnjWgYwNi3ejLipcUTaO/vgrDpHUw3PGnSu3lnjiERRIgmKhehft7865PjP839yK+KWxhFpKyg6SB014OHowbCGwzSOSBR2djZ2aidsg2JgzsE5WaxR+KW9ejLu6XHodfKVIQpOjo+2xMRE5s6dy/PPP0+HDh145ZVXOHz4cLbWPXLkCJMmTeLZZ5+lW7duvPzyy2zZsiXHQRdGDrYO6skxRUnh+0NF+xLz94e+JzElETDe/dnNIf2U2kLktVebvoqDjXHI8c9HfyYiPkLjiLTzIOaBep8wV3tXhjcarmk8oujJcYIyY8YMVq5cSceOHZk4cSJ6vZ4pU6Zw6tSpTNfbt28fr7/+OklJSQwfPpxRo0bh4ODAp59+ysqVK3O9A4XJq01fxU5vBxhPjpEJkRpHpI2YxBjmHpkLgK3eVtq9RYEp6VJSvVoXlRhlcv+noub7Q9+TkGK8r87LT72Mu6O7xhGJoiZHCcq5c+fYsWMHL7/8MmPHjqVnz57MmjWL0qVLM3fu3EzX/fPPP/Hy8mLWrFn06dOH3r178+2331KuXDk2bdqU6bpFRWnX0gxpMASAiIQI5h+dr3FE2lh8YjFhccY7og6sN5ByxcppHJEoSl5v+bo6S+rsg7PVK3lFSUxijDq02FZvy+QWk7UNSBRJOUpQdu/ejY2NDT179lTLHBwc6N69O2fPnuX+/fsZrhsbG4ubmxv29vZqma2tLe7u7jg4yM2lUr3R8g318bcHvi1yJ8cUQwrfHvhWff76M69rGI0oimp61aRX7V4A3I26y++nf9c4ooK36MQi9UfCC/VeoIJ7BY0jEkVRjhKUy5cvU758eVxcXEzKfXx8ALhy5UqG6zZq1Ijr16/zyy+/cPv2be7cucOSJUu4ePEiAwcOzHS7ISEhXLx4Uf0XGBiYk7Ctik8JH3rVMp4c70TdYfnp5RpHVLDWXVzH1YfGG7b5V/GnYemGGkckiqI3W76pPv5q/1dFam6iZEMy3/z3jfr8jWfeyKS2EPnHNieVQ0ND8fLySleeWhYSEpLhusOGDePevXssW7aMpUuXAuDo6MjHH3+Mr69vpttdt24dixcvzkmoVm1Kqyn8ffFvAL7Y/wVDGg4ptL3nDQaF4GvGjogProYz4/oMdZlcPRFaaVmhJS0rtGT/rf2cDT7Lpiub6Fajm9ZhFYg/z//J9fDrAHSq1kl+JAjN5ChBSUhIwM7OLl15arNNQkJChuva2dlRoUIF/Pz8aNOmDSkpKaxfv57p06fzzTffULdu3QzX7dmzJ61atVKfBwYGMn369JyEblVaVmhJqwqtCLgVwLngc2y8vJEeNXtoHVaeu34oiANLzxMTZrz/0Pw/fuVwBeOIsIalGtKlehctwxNF3Jst3+T5Fc8D8OX+L4tEgqIoCjMDZqrP5eqJ0FKOfpY7ODiQlJSUrjwxMVFdnpFZs2axf/9+PvjgA/z9/enUqRPffvstXl5efPdd5hOTeXt7U6tWLfVfpUqF/34sU1pNUR/P2Dej0F1ivn4oiB2zjqvJCcAGr0fNWaPLyMRsQls9a/VUp3XfdWMXATcL/wzPGy9v5Ni9YwA0Lt2YDlU7aByRKMpylKB4eXkRGhqarjy1zNvb2+x6SUlJbNiwgWeeeQa9/tEmbW1tad68ORcvXjSb+BRlPWr2oE6JOgDsv7WfHdd3aBxR3jEYFA4sPW9SdsnpNJedzwJQOqECHturYDAUrqRMWBe9Ts/brd5Wn3+0+yMNo8l/iqLw8Z6P1efvtXlPfiQITeUoQalevTq3b98mJibGpPzcuXPqcnMiIiJISUkhJSUl3bKUlBQMBgMGgyEnoRR6ep2e99u8rz7/cNeHpKQY1P4awdcirPYLPOhCmMmVE4ANXo/u4twtrD9xoUkEXQgr6NCEMDG4wWCqeFQBYNu1bfx36z+NI8o/W65u4dCdQwA0KNVAHckkhFZylKD4+fmRkpLCunXr1LLExEQ2btxInTp1KFXKOFX7/fv3TUbaFC9eHFdXV/bu3WtypSQ2NpaAgAAqVqwoQ43N6Funr3oVJeBWAO+98Q0BC4xXGQIWnGXFxF1cPxSkZYi5Ehdu2lfpmuMFzrkcB8A7sTTNIv3M1hOioNnZ2PGO7zvq88J6FUVRFJN9e6/Ne4W2Y76wHjk6AuvUqUO7du2YN28ec+fOZd26dUyePJmgoCBeffVVtd6nn37KkCFD1Oc2Nja88MIL3Lp1i1dffZWVK1fyxx9/8MorrxAcHMzQoUPzbo8KERu9jclVlFX2i1B4dNUkJiyeHbOOW12S4uRhmoz+k6bvSdew/thgY7aeEFoY2nAolT0qA8arDAduH9A2oHyw4/oOdb/qlKhDb5/eGkckRC6mup82bRr9+vVjy5YtfPfddyQnJzNz5kwaNWqU6XpDhw7lvffew9bWlsWLF7NgwQJcXFz4+OOP6dSpU27jL/R61+5DuWRjp+Arzuc473wiXZ0Dy85bVXNP6dqeuHg6AnDF6SynXY0jdzyTStAywh8AFy9HStf21CxGIVIV9qsocvVEWKocDTMG40idsWPHMnbs2AzrZDQqp2PHjnTs2DGnmyzSgi9F0P3BC8wraxz6t877V3xuNlKn4gaICY0n6EIYZeukn6PGEun1OloM9WH7rGP86b1YLe8ROghbjMPYWwzxQa+XDnrCMgxtOJTpe6YTGBHI5iubCbgZQKuKrbJe0QpsvLyRfTf3AVDbuzb96vTTOCIhjCRNtnBx4Qk0iWpNmYSKAFx1Os9J1/SXmK2tv0aVZqWxfzFCHblTKrEcLSM64OLliP/kxlRpVlrjCIV4xN7GnnfbvKs+f2v7W4Vi6H+KIYWpO6aqzz9p9wk2ehsNIxLiEUlQLJyThwN6bHg+5FE/nTXei0khJV09a2JQDHx35yv1ea+QIbQZ2YABs/0kOREWaXij4dT2rg0YO62vu7guizUs3++nf+f0g9MAPF32afr49NE4IiEekQTFwqX212gU/QzV4oz3PApyuEWA+1a1jjX211h1dpU6IVR9zwY0iWpNiaru0qwjLJat3pYZ/o9uxfD2jrdJNiRrGNGTSUhO4L2d76nPZ3aYKfOeCIsiCYqFS+2voUNH3wcj1fJ13r+SoDPOJWJt/TXikuKYsv3RTLnTGr+HXg5FYQV61epFywotAbgQcoHFJxZrG9AT+PHwjwRGGKeD6FytM+2qtNM4IiFMybeCFajSrDT+kxvT0PkpnooynhwjbB/yb/m/rLK/xtf/fc3NiJuA8WZk/mVlOm1hHXQ6HV90+EJ9/t7O94hMiNQwotx5EPPAZORO2itDQlgKSVCsRJVmpRnwnR/T/T5Frxg/to3FVkKNOI0jy5k7kXeYsc94MrTR2fBt52/lsrKwKq0qtuL52sabCAZFB/Hx7o+zWMPyTNsxjYgE46zULzV6icZlGmsckRDpSYJiRfR6HU/XbUz7hz0BiE+O539b/qdxVDkzdcdUYpNiARjTdIw6U64Q1uTrTl/jaGucy2f2wdmcCz6ncUTZd/jOYRYeXwhAMYdicvVEWCxJUKxQz9DBlHQy3lbg74t/s/HyRo0jyp69gXtZdmoZAMUdi/Oh34faBiRELlUpXkW9kWCyIZmJmyZaxbBjg2JgwqYJ6ozUH7b9kFKupTSOSgjzJEGxQk4GZz5q8on6fOKmicQnx2eyhvYSkhMYvX60+vyTdp/g5WwdE8sJYc6UVlPUKfB3XN/BqnOrtA0oGxYcW8DBOwcB8PH2YXyz8RpHJETGJEGxUn2q9KNNpTYAXH141eLbwT/b+xkXQy8C0Lxcc15t+moWawhh2ZzsnJjVeZb6fMKmCYTEhmgXUBbuRN7hjW1vqM+/6/oddjZ2GkYkROYkQckDzh4ONO5dHecCnCxNp9PxQ7cfsNMbTzAzA2Zy+M7hAtt+Tpx9cFbtGGurt2X+s/NltkpRKPSs1ZNetXoBxpExEzdN1Dgi8xRFYdzGceqIo2ENh9GhqoyeE5ZNEpQ84FzckSZ9a+Bc3LFAt1uvZD3eb2u827FBMTD87+EW19STlJLEyHUjSTIkATCl5RTql6qvcVRC5A2dTsfc7nMp7lgcgOVnlvPXhb+0DcqMlWdX8vfFvwEo6VKSbzp/o3FEQmRNEhQr91art2hSpgkA54LP8eGuD7UN6DHT90xX27xreNbgvbbvZbGGENaljFsZZneZrT5/9Z9XLaqp51bELV7d8KhJ9YduP+DpZF0zT4uiSRIUK2dnY8fi5xZjb2MPwJf7v+Tf6/9qHJVRwM0Apu+dDhjnPFn2/DJ1aKYQhcngBoPpUbMHAPdj7jP8r+EYFIPGURlvBjh47WDC48MBGFB3gNxvR1gNSVAKgXol6/Gxn7GTrEExMGjNIIKigzSNKSwujBf/fFE9SX/o9yHNyzfXNCYh8otOp2Nej3mUcC4BwIbLG/jmP+2bUT7b+xl7AvcAUNG9Ij/1+EkmRhRWQxKUQuLNVm/SuVpnwPgLbuCagZrdyCzFkMILq19Q7/PRumJrpraemsVaQli3Mm5lWPb8MvX51B1TCbgZoFk8225v5YNdHwCg1+n5rfdveDh6aBaPEDklCUohodfpWfb8Msq6lQVg141dvLblNU1ieeffd9h2bRsAJZxL8Hvv32XUjigSOlfvrCbjyYZkeq/szY3wGwUeR5DdbV7dO0qdkO0jv49oXbF1gcchxJOQBKUQKeFSghV9V2CrtwVgzqE5zDk4p0BjWHxiMTMDZgLGIcWr+6+mgnuFAo0hI1oMBxdFz8ftPqZdZeOdgR/EPODZ5c8SlVhwNxQMiw/jh3IfE5lk3GZvn95M851WYNsXIq9IglLItK7Ymnk95qnPJ2+ZzNrzawtk2+surmPUulHq8687fa1OJmcJtBoOLoqW1MS8hmcNAM48OMPwXUNI0iXm+7Yj4iLpu/F5ghxuA1CvRD2WPLcEvU5O9cL6yFFbCL3U+CWmtTb+YjIoBvqv7s/fF/7O123uvL6TAasHkKKkADCx2UQmNJuQr9sUwlJ5Onnyz6B/1PlR9gTt5seyn3DnygMMhvy5Z8/5/67Tano7TkefBMA92ZORF94m+ER0vmxPiPwmCUoh9Un7TxjacChgbAvvt6pfvk0gteHSBrr93k2dJG5Q/UF82+VbGS0girSaXjWZ12gJjgYnAM64HmXI1hdZOnEz1w/l7Si7UwGXee6vXpy1PwaAc4or/7s1HdcQT3bMOp7n2xOiIEiCUkjpdXoW9lzI4AaDAUgyJNF7RW++O/hdlusaDArB1yIACL4WkekvvnlH5/HciufU5KRHzR4s6rVILimLIu/6oSDCl9gy4faH2BuM/Z5Oux7mY9fJrJ2zM8+ShhsPA+m1qRuXnE8D4GBwYuLtjyiXWFmtc2DZ+Xy7ciNEfpFvkULMRm/D4l6LGdJgCAAKCpM2T2LYX8OISogyu871Q0GsmLiLgAVnAQhYcJYVE3elO5nGJsXyyvpXeOWfV9ThzC/Ue4E/+/+pThonRFFlMCgcWHoegJpx9Zl4+yMcU4xXUq47XeKTShNYvHzFEycN269tp8lPTbhhdwUA1+RivH5rBtXifUzqxYTGE3Qh7Im2JURBkwSlkLPR27D4ucW84/uOWrb05FIa/9yYrVe3mtS9fiiIHbOOExNmej+fmLB4k8vEewL30OinRsw7lqYzbvPJ/Pr8r3J3VCGAoAthJn9HteIa8Natr/BI8gIg3C6UT9xfY+yK8Rn+WMhMRHwEY/4ZQ8dlHQlLDAXAO7E0b976girxNc2uExeekIs9EUI7kqAUAXqdnuntp/Nb799wtXcF4OrDq3T+tTM9fu/B3sC9pKQY1F985igo/Lr8T3ou70XbxW25HHYZAEdbRxb3Wsy3Xb6VuU6E+H/mkoHyCVV4J3A2tWIaAKDoDPx86UdqfV+Lb/77JluJSlhcGF8EfEHV76ry09Gf1PK6MU14N3A2ZRMrZriukwyvF1bGVusARMEZVH8Qzcs1Z+hfQ9l/az9gnJJ7w+UNVHerQTV9Q6q61qJkUlnsDQ4k6hMIsb3PVafznHY9xB2HQLj06PWal2vOkueWUMu7lkZ7JIRlyigZ8Ejx5LXbn7LZczX/eC0nSZ/Iveh7vL71dd7b+R5dq3elQ9UO1CtZD29nb/Q6PUHRQZwMOsnOGzvZcHkDiSmPhiu72Lkww38GnsvqEGfIeBizi5cjpWvLDQKFdZEEpYip5lmNvS/t5bdTvzHt32ncjjTOl3Al6jJXvC5n6zXKuZXjQ78PGd5ouDopnBDikdK1PXHxdEzXXAqgx4ZuYQNoa9OJ3S3XsPbCn4CxX9ea82tYc35Nlq+vQ8fgBoP5uN3HVPaozHWdsXk2Iy2G+KDXy6g6YV2kiacI0uv0DGk4hKsTr/Lr87/iW9EXfTYOhWpxPnzz9BwuT7jMqKdGSXIiRAb0eh0thvpkWqfni+35c8Aazo09xytNXsHb2TvL1/V29mZy88mcG3eOpc8vpbJHZQCqNCuN/+TGuHiaTkLo4uWI/+TGVGlWOtf7IoRW5BumCLO3sefFBi/yYoMXuR/1gBkf/Mj1pKuE2j4gRZeEDbZ4JpWgTGJFasU2oIxHaQZ08ZNfYkJkQ2rScGDpeZMrKS5ejrQY4qMmDT4lfPipx0983+17Dt05xPF7x7kQcoGoxCiSDEmUcilFZY/KtK7YmoalGmbY16tKs9JUalqKiztvEbDgLK1G1qVWuwry9yqsliQoAoBSbiWZ9MKrcplYiDyUk6TBVm9LywotaVmhZa63p9frKFHVHYASVd3l71VYNWniESq5TCxE3pOkQYjckSsowoRcJhZCCGEJ5AqKSEd+8QkhhNCaJChCCCGEsDiSoAghhBDC4kiCIoQospw9HGjcuzrOMg28EBZHOskKIYos5+KONOlbQ+swhBBmyBUUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXFsc7pCYmIiCxYsYOvWrURFRVGtWjVGjRrF008/na31d+zYwerVq7l69Sq2trZUqlSJUaNG0aRJkxwHL4QQQojCKccJyowZM9i1axf9+vWjfPnybNq0iSlTpjB79mwaNGiQ6boLFy5kyZIl+Pn50aVLF5KTk7l+/TohISG53gEhhBBCFD45SlDOnTvHjh07GDNmDAMHDgSgc+fODB8+nLlz5zJ37twM1z179ixLlixh3Lhx9O/f/8miFkIIIUShlqM+KLt378bGxoaePXuqZQ4ODnTv3p2zZ89y//79DNddtWoVnp6e9O3bF0VRiI2NzX3UQgghhCjUcnQF5fLly5QvXx4XFxeTch8fHwCuXLlCqVKlzK579OhR6tWrx+rVq1m2bBkRERF4enoyZMgQ+vTpk+l2Q0JCCA0NVZ8HBgbmJGwhhBB5zNnDgca9q+Ps4aB1KKKQylGCEhoaipeXV7ry1LKM+pJERUURERHBmTNnOHbsGMOHD6dUqVJs2rSJ2bNnY2trS69evTLc7rp161i8eHFOQhVWRE50Qlgf5+KONOlbQ+swRCGWowQlISEBOzu7dOX29vbqcnNSm3MiIiL44IMP8Pf3B8DPz4/hw4ezdOnSTBOUnj170qpVK/V5YGAg06dPz0nowoLJiU4IIcTjcpSgODg4kJSUlK48MTFRXZ7RegC2trb4+fmp5Xq9nvbt27Nw4ULu37+fYfOQt7c33t7eOQlVCCGEEFYsR51kvby8TPqCpEotyyiJKFasGPb29hQrVgwbGxuTZcWLFweMzUBCCCGEEJDDBKV69ercvn2bmJgYk/Jz586py81uRK+nRo0aREREpLsCk9pvxcPDIyehFFnSX0MIIURRkKMExc/Pj5SUFNatW6eWJSYmsnHjRurUqaM20dy/fz/dSJt27dqRkpLC5s2b1bKEhAS2bdtG5cqVpQknm1L7azgXd9Q6FCGEECLf5KgPSp06dWjXrh3z5s0jPDyccuXKsXnzZoKCgnjrrbfUep9++iknTpxgz549almvXr3YsGED3377Lbdu3aJUqVJs2bKF+/fvM2PGjLzbIyGEEEJYvRxPdT9t2jQ1uYiOjqZq1arMnDmTRo0aZbqeg4MDs2bNYu7cuWzcuJH4+HiqV6/OzJkzadasWW7jF0IIIUQhlOMExcHBgbFjxzJ27NgM63z33Xdmy4sXL860adNyukkhhBBCFDE56oMihBBCCFEQJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQohCxNnDgca9q+Ps4aB1KEI8EVutAxBCCJF3nIs70qRvDa3DEOKJyRUUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUYZaMBBAi78jfkxA5J6N4hFkyEkCIvCN/T0LknFxBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBbHVusAciMhIQGAwMBAjSMRQgghRE5VqlQJR0fHTOtYZYISFBQEwPTp0zWORAghhBA5NX/+fGrVqpVpHZ2iKEoBxZNnwsPDOXToEGXKlMHe3l7rcPJdYGAg06dP591336VSpUpah1OgZN+L3r4X1f2GorvvRXW/oejue6G9guLh4UGnTp20DqPAVapUKcuMs7CSfS96+15U9xuK7r4X1f2Gor3vGZFOskIIIYSwOJKgCCGEEMLiSIJiBby8vBg+fDheXl5ah1LgZN+L3r4X1f2GorvvRXW/oWjve1asspOsEEIIIQo3uYIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiWOVEbYVRSEgIq1ev5vz581y4cIG4uDhmz55N48aN09WdOHEiJ06cSFferFkzvvrqK5OyxMREFixYwNatW4mKiqJatWqMGjWKp59+Or92Jcdysu8Ap0+f5qeffuLSpUu4uLjQrl07Ro8ejbOzs0k9a9h3czZt2sSMGTPMLlu7dm263v779u1j0aJFBAYG4uHhQbdu3Rg6dCi2ttb1522tn1dOHD9+nEmTJpldNnfuXOrWras+z+5xboliY2P5448/OHfuHOfPnycqKoqpU6fStWvXdHVv3LjB999/z+nTp7G1teWZZ55h/PjxeHh4mNQzGAz88ccf/PXXX4SFhVG+fHkGDx5Mhw4dCmivspbd/f7ss8/YvHlzuvUrVqzIr7/+alJmDfudX6zrDFaI3bp1i99//53y5ctTtWpVzp49m2n9EiVK8Morr5iUmRumNmPGDHbt2kW/fv0oX748mzZtYsqUKcyePZsGDRrk6T7kVk72/fLly/zvf/+jUqVKjB8/ngcPHrBixQpu377Nl19+aVLXGvY9MyNHjqRMmTImZa6uribPDxw4wDvvvEOjRo2YNGkS165dY+nSpTx8+JDXX3+9IMN9Ytb+eeVEnz598PHxMSkrV66c+jgnx7klioiIYPHixZQqVYrq1atz/Phxs/UePHjAhAkTcHV1ZfTo0cTFxfHHH39w7do1fv75Z+zs7NS68+fP57fffuPZZ5+ldu3a7Nu3j48//hidToe/v39B7VqmsrvfAPb29kyZMsWkzMXFJV09a9jvfKMIixATE6NEREQoiqIoO3fuVHx9fZVjx46ZrTthwgRl6NChWb7m2bNnFV9fX+X3339Xy+Lj45UXXnhBefXVV/Mm8DyQk31/4403lOeee06Jjo5Wy9avX6/4+voqBw8eVMusZd/N2bhxo+Lr66ucP38+y7pDhgxRXnrpJSUpKUktmzdvntKmTRvlxo0b+RlmnrLmzysnjh07pvj6+io7d+7MtF52j3NLlZCQoISEhCiKoijnz59XfH19lY0bN6ar9/XXXysdOnRQgoKC1LLDhw8rvr6+yt9//62WPXjwQGnXrp3yzTffqGUGg0EZN26c0rt3byU5OTkf9yb7srvfn376qdKpU6csX89a9ju/SB8UC+Hs7EyxYsVytE5ycjKxsbEZLt+9ezc2Njb07NlTLXNwcKB79+6cPXuW+/fv5zrevJTdfY+JieHIkSN06tTJ5JdG586dcXJyYufOnWqZtex7VmJjY0lJSTG77MaNG9y4cYNnn33WpDnn+eefR1EUdu3aVUBRPrnC8nnlRGxsLMnJyenKc3KcWyp7e/tsTTy2e/duWrZsSalSpdSypk2bUqFCBZP93LdvH8nJyTz//PNqmU6n47nnniM4ODjLK84FJbv7nSolJYWYmJgMl1vLfucXaeKxUrdu3aJz584kJSXh6elJjx49GD58uMkX1eXLlylfvny6y4apl5avXLlicmKwdNeuXSMlJSXdDbXs7OyoUaMGly9fVssKw75PmjSJuLg47OzsePrppxk3bhwVKlRQl1+6dAkg3fvh7e1NiRIlTN4PS1cYPq+cmDFjBnFxcdjY2NCgQQPGjBlD7dq1gZwd59YsODiYhw8fmr1Bno+PDwcOHFCfX758GScnp3R3+009Pi5fvmx1zYDx8fF07dqV+Ph43Nzc8Pf359VXXzXpY1QY9zsnJEGxQmXLlqVx48ZUrVqV+Ph4du3axdKlS7l16xYfffSRWi80NNRsNp9aFhISUmAx54XQ0FDAfF8bLy8vTp48aVLXWvfdwcGBrl270rhxY1xcXLh48SIrV65k7Nix/PLLL+oXdVbvR+pya2DNn1dO2Nra0rZtW1q0aIG7uzs3btxgxYoVjB8/nh9//JGaNWvm6Di3ZlntZ2RkJImJidjb2xMaGkrx4sXR6XTp6oH1HR9eXl4MHDiQmjVroigKBw8e5K+//uLq1avMnj1b/aFZ2PY7pyRByQcGg4GkpKRs1bW3t0938GXl7bffNnneuXNnvvzyS9avX0///v3VkQAJCQkmnczSbjN1eV7Lz31PjTejfUpMTDSpW9D7bk5u3o/27dvTvn17tdzX15dmzZoxYcIEli1bxhtvvAGg7m/qPj3+Wpk1/1kaS/m88lv9+vWpX7+++rx169b4+fnx0ksvMW/ePL766qscHefWLKv9TK1jb29f6I6Pxwc4+Pv7U6FCBebPn8/u3bvVzq+Fbb9zShKUfHDy5MkMhxI+btmyZeku3+XGgAEDWL9+PUeOHFETFAcHB7NfjqknOAcHhyfe7uPyc99T481on9J+UWux7+bk1fvRoEED6tSpw9GjR9Wy1P0194WVmJhYYPuYFyzl89JC+fLlad26NXv27CElJSVHx7k1y2o/09YpCsdH//79WbBgAUeOHFETlKKw35mRBCUfVKxYkalTp2arbl7dwbJkyZIAREVFmbx2cHBwurqpl1a9vb3zZNtp5ee+p9Y313QRGhpqsj9a7Ls5efl+lCxZkps3b6arHxoamq5/RmhoaLphrJbMUj4vrZQsWZKkpCTi4+NzdJxbs6z2s1ixYmoy5uXlxfHjx1EUxeSqa2E6PhwcHChWrBiRkZFqWVHY78xIgpIPvLy8zE5IlJ/u3r0LYDK5Ueo4/JiYGJPOh+fOnVOX57X83PcqVapgY2PDxYsXTZpAkpKSuHz5Mu3atVPLtNh3c/Ly/bh7967J51ujRg0ALl68SJ06ddTykJAQgoODTUbEWDpL+by0cvfuXezt7XFycsrRcW7NSpQogYeHBxcvXky37Pz58yafefXq1fnnn38IDAykcuXKanlhOj5iY2OJiIhIdw4v7PudGRlmbGViYmLSXdJXFIWlS5cCmMy66efnR0pKCuvWrVPLEhMT2bhxI3Xq1LG6URGurq40bdqUrVu3mvSv2LJlC3FxcSYnbmve9/Dw8HRl//33HxcvXqRZs2ZqWZUqVahYsSLr1683GYr8119/odPpaNu2bUGEmyes+fPKCXOf7ZUrVwgICODpp59Gr9fn6Di3dm3btmX//v0mw8iPHj3KrVu3TPazdevW2NrasnbtWrVMURT+/vtvSpQoQb169Qo07ieRkJBgtn/YkiVLUBSF5s2bq2WFab9zQ66gWJAlS5YAxvktwHhCOnXqFADDhg0DjENLP/roIzp06EC5cuVISEhg7969nD59mmeffdZkyF6dOnVo164d8+bNIzw8nHLlyrF582aCgoJ46623CnbnspCdfQcYNWoU48aNY8KECfTs2VOdYfPpp582+cO2pn1/3JgxY6hZsya1atXCxcWFS5cusXHjRkqWLMmQIUNM6o4dO5apU6fy+uuv4+/vz7Vr11i7di09evQw+cVl6az588qJDz74AAcHB+rVq0fx4sW5ceMG69evx9HR0aTjZHaPc0u2Zs0aoqOj1eaIgIAAHjx4ABhn0nV1dWXw4MHs2rWLyZMn07dvX+Li4li+fDlVq1Y1ufJYsmRJ+vXrx/Lly0lOTsbHx4e9e/dy6tQp3nvvPWxsbDTZR3Oy2u+oqChGjhxJhw4dqFixIgCHDh3iwIEDNG/enNatW6uvZU37nR90iqIoWgchjNq0aZPhsj179gDGS8E///wz58+fJywsDL1eT6VKlejRowc9e/ZMNyomISFBvb9JdHQ0VatWZdSoUSa/xC1BdvY91alTp9R7lDg7O9OuXTteeeWVdPcosZZ9f9z8+fM5cOAA9+7dU/skPPPMMwwfPhxPT8909ffu3cvixYsJDAzE3d2drl27ppsTxxpY6+eVE6tXr2bbtm3cuXOHmJgYPDw8aNKkCcOHD6d8+fImdbN7nFuq/v37ExQUZHbZihUr1Ns4XL9+Pd29eMaNG5fuWDcYDPz++++sW7eO0NBQypcvz4svvkinTp3yfV9yIqv9dnV1Zfbs2Zw9e5bQ0FAMBgPlypWjY8eOvPDCC+n+bq1lv/ODJChCCCGEsDjSB0UIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEVkatOmTbRp04ZNmzZpHUq2HD9+nDZt2rBw4cJ820abNm2YOHFivr1+UdG/f3/69++vdRgWb+HChbRp04bjx4/n63ZWrlxJ+/btuXfvXrbqF8TfmjX75JNP6NevHwkJCVqHYrUkQSlkPv/8c9q0aUOPHj3S3VSwsLC2L7aIiAh++uknhg4dSseOHenYsSP9+vVj8uTJLFq0iLCwsAKJI6tkc+LEiZnecqAoiYuLo0uXLrRp04ZvvvlG63DyXVRUFEuXLqVbt27qFPTiyQwfPpyQkBBWrVqldShWy7pu1iEyFRsby86dO9HpdERGRrJ37178/f2f6DV9fX2pU6cOXl5eeRRl0fLgwQPGjh3LgwcPqFGjBl27dsXNzY3Q0FDOnDnDokWLqF+/vtl77BR23377rdYhZGjnzp3Exsai0+nYvn0748aNw8HBQeuw8s3KlSuJjIxk4MCBWodSaFSoUIFWrVrx+++/06dPH5ycnLQOyepIglKI/Pvvv8TFxdG/f39Wr17Nhg0bnjhBcXV1xdXVNY8iLHoWLlzIgwcPGDlypMldmVNdvXq1yL6/5cqV0zqEDG3YsAEbGxt69+7NqlWr2LNnDx07dtQ6rHyRnJzMP//8Q/369S36M7FGnTp1Ys+ePezYsYMePXpoHY7VkQSlEEk9qQ4aNIirV69y7NgxgoKCKF26tEm9hQsXsnjx4gxfp3Tp0qxcuRIwNgvMmDGDqVOnmtz+vE2bNjRq1Ij33nuPuXPncvjwYRITE2nYsCGTJ0+mbNmy3Lhxg3nz5nHy5EmSk5Np1qwZ//vf/0yuFhw/fpxJkyYxfPhwRowYYRLHvXv3GDBgAF26dGHatGnq87QxpDK3/oULF5g3bx5nz55Fr9fz1FNPMX78+HSXsPfs2cPOnTu5cOECISEh2NraUq1aNfr27Yufn1/mb3oWzp49C0Dv3r3NLq9WrZrZ8rt37/Lbb79x+PBhQkNDcXFxoXLlynTt2lX9HJKSkli3bh379+/nxo0bhIeH4+LiQv369Rk2bBg1a9ZUX++zzz5j8+bNAMyYMYMZM2aY7H/a9zLt49T3PtXVq1dZtmwZJ06cIDIyEi8vL1q1asVLL72Eu7u7Wi/tZzdo0CDmz5/PyZMniYyMVO9km9pMl3qswaNjc/bs2YSEhLB8+XJu3ryJq6sr7dq149VXX013JSM5OZk//viDf/75h5CQEEqUKEH37t1p3749L7zwQrp9yMrNmzc5ffo0LVu2NEn2zSUoaY/fli1bZut4A9i9eze//vor169fx8XFhVatWjFmzBhGjhyZ7j3JTHY/j8wcOnSI0NBQBg0aZHZ5QkICixYtYtu2bURERFCuXDn69u2b7u7Lad29e5dly5Zx+PBhHj58iJubG82aNWPEiBHpzkeQs/cj9Vj+448/2LNnDxs2bODu3bv4+/urn/PDhw/59ddf2b9/Pw8ePMDZ2ZmGDRsyYsQIqlatmm77Oal/69Ytfv31V44fP05oaCiOjo6ULFmSxo0bM2HCBJM7yj/zzDM4OjqyefNmSVByQRKUQuLGjRucPXuWFi1a4OnpSefOnTl69CgbN25M98XduHFjs68RGBjIzp07s30pOyoqinHjxuHl5UXnzp25ffs2+/fv57XXXuOzzz5j/Pjx1KpVi27dunHp0iV2795NZGQks2fPztU+urq6Mnz4cFavXg1A3759M9ynCxcusHz5cho3bkzPnj25fPkye/fu5dq1ayxevNhkH+fNm4etrS3169fHy8uL8PBwAgICeP/995k0aRJ9+vTJVbyA+iVx69Yt6tSpk611Tp06xVtvvUVsbCzNmjXD39+fqKgoLl++zOrVq9UEJTIykjlz5tCgQQNatGiBm5sb9+7dIyAggIMHDzJnzhx8fHwAY1NddHQ0+/bto3Xr1lSvXt1km8OHD2fz5s0EBQUxfPhwtbxGjRrq43379vHhhx+i0+lo3bo1JUuW5MaNG/z5558cOnSIn3/+GTc3N5PXvXPnDmPGjKFq1ap06dKFyMhI7OzssnwPUl+zVatWPPXUUxw8eJA1a9YQERHB+++/b1J35syZbNmyhbJly/Lcc8+RlJTEypUrOXPmTLbe78dt2LABgM6dO1OqVCkaNWrE8ePHuXv3LmXLljW7Tk6Otw0bNjBz5kxcXFzo3Lkzrq6uHDhwgNdee43k5GRsbbN3Ws7N52HO0aNHAahbt266ZQaDgalTp3LkyBGqVq1Khw4diIyM5Pvvv8/wPHLu3DneeOMN4uLiaNmyJeXLlycoKIht27Zx8OBB5s6da/I+5vb9mDVrFufOneOZZ56hZcuWFC9eHDAecxMnTiQ4OJinn36a1q1bEx4ezu7duzl8+DDffvutyd9iTuqHhITwyiuvEB8fzzPPPEP79u2Jj4/n9u3b/PXXX4wdO9YkXjs7O2rWrMnZs2eJi4uTZp6cUkShMGfOHMXX11fZvn27oiiKEhMTo3Tq1Enp27evkpKSkuX6YWFhSr9+/RR/f3/l1KlTavnGjRsVX19fZePGjSb1fX19FV9fX2XOnDkm5V9//bXi6+urdO3aVVm5cqVabjAYlDfffFPx9fVVLly4oJYfO3ZM8fX1VRYsWJAuprt37yq+vr7Kp59+alLer18/pV+/fmb3I/X10r4XqaZPn262/M6dO+leJyYmRhk2bJjStWtXJS4uLt2+T5gwwez2H7d69WrF19dX6dmzp7JgwQLl2LFjSnR0dIb1ExISlN69eytt27ZVDhw4kG75/fv3Teo+ePAgXZ1r164pnTp1Uv73v/+ZlGf0WaaaMGGC4uvra3ZZeHi40qVLF6V3797KvXv3TJZt375d8fX1Vb799lu1LPWzy+izVRTzn+OCBQvU4ycwMFAtj4+PVwYNGqS0bdtWCQ4OVsuPHDmi+Pr6KiNGjDD5nIKDg5VevXqZPX4yk5SUpPTq1Uvp2rWrEh8fryiKomzYsEHx9fVV5s+fn65+To+3yMhIpVOnTkqnTp2Umzdvmmx30qRJiq+vb4bvybFjx9SynH4emRk9erTStm1bJSEhId2y1GPmjTfeUJKTk9XyK1euKO3bt0/3+SYlJSn9+vVTOnfurFy8eNHktU6ePKn4+fkpb7311hO9H59++qni6+ur9O7dWwkKCkoX85gxYxQ/Pz/l4MGDJuU3b95UOnfurAwbNizX9VP/ntOe21JFRESkK1OUR+fmo0ePml0uMiajeAqB5ORktm7diouLC61btwbA2dkZX19f7t+/z5EjRzJdPyEhgWnTphEUFMTbb79N/fr1s7VdJycnRo0aZVKW2ufF3d3d5AqHTqdTl129ejXb+5ZbDRs2TNf/plu3bgCcP3/epNzcr2JnZ2e6du1KdHQ0Fy5cyHUcvXv3ZuDAgURHR7N48WImTZpEt27dGDp0KD/99BMhISEm9fft20dwcDAdO3akefPm6V6vZMmS6mN7e3tKlCiRrk6VKlVo3Lix2rSWF7Zs2UJMTAwvv/xyukv0/v7+1KxZkx07dqRbz9PTkyFDhuR4e3379qVixYrqcwcHB/z9/TEYDFy8eFEt37p1KwDDhg3D0dFRLff29jY5/rLrv//+IywsjHbt2qlXPfz8/HB0dGTTpk0YDAaz62X3eNu3bx9xcXF069aNChUqqOW2trbp/pYyk9vPw5zg4GBcXV2xt7dPtyy1WXDUqFHY2Nio5dWqVaNTp07p6u/fv5+goCAGDhxo0sQI0KBBA1q1asWBAweIiYkBnuz9GDhwIKVKlTIpu3TpEmfOnKFz5840a9bMZFmFChXo0aMH165d49q1a7mqn8rcVeZixYqZjTP1yk5wcHCm+yPSkyaeQmDfvn2Eh4fTvXt3kz+czp07s3XrVjZs2JDujy+Voih89tlnnD17lpdeeokOHTpke7vly5c3+VIA1NE+VatWNWmLTbvs8S/l/FCrVq10Zalf5tHR0SblDx8+5LfffuPAgQPcv38/3bwFTxKvTqdjzJgxDBw4kAMHDnDu3DkuXLjApUuXuHHjBuvWreOrr75SLyGnfpk9/fTT2Xr9y5cvs3z5ck6dOkVYWFi6hCQ8PBxvb+9cx58qtS/NuXPnuHPnTrrliYmJREREEB4ejoeHh1pevXr1bDXpPO7xLzd4lJyl/fyuXLkCGL/8HlevXr0cb/eff/4BjH87qZydnWndujXbt2/n0KFDtGjRIt162T3eUpNzc/HWqVPHJAnITG4/D3MiIyPNJrqp8To5OZndvwYNGqjNYY/HdfPmTbPzo4SFhWEwGLh16xa1a9d+ovcjtfkyrXPnzgHGv2lz279586b6f9WqVXNcP7Wf0bfffsvRo0dp3rw5jRo1yrDpDx4lLhERERnWEeZJglIIpG0zT6tJkyaUKFGCgIAAIiMjzWb4v/zyCzt37qRDhw689NJLOdqui4tLurLUE0pmy/LqV31mnJ2dM9x+2l/BkZGRvPzyy9y/f5/69evTtGlTXF1d0ev1XLlyhX379pGUlPTE8Xh4eNClSxe6dOkCQGhoKLNmzWL37t18+eWXLFq0CED9ZZnRF0Zap0+f5n//+x8ATZs2pXz58up+79u3jytXruRJ7GDsbwSwdu3aTOvFx8ebPE/99ZhTmR0/aT+/2NhY9Hq92Q6hOR26HRISwqFDhyhbtmy6L8wuXbqwfft2Nm7caDZBye7xlvr5mntfMtoPc3L7eZjj4OCQ4ZxJMTExGR6L5t7f1Li2bduWrbie5P0wt05kZCRgvBL233//ZbhuXFxcruqXKVOGuXPnsmjRIg4cOMDOnTsBqFixIiNHjqRdu3bp1k39wVOYh6nnF0lQrNz9+/c5fPgwQKazm27dujXdJe9NmzaxbNky6tevz9tvv52vcWYk9SpLSkpKumWpJ6/8tGHDBu7fv292GPCvv/7Kvn378mW7Xl5evPvuu/z3339cvXqViIgI3N3d1SHH2bkcvGzZMhITE/n+++/TfaGm/jLMK6lfwIsXLzY7CiIjj19Fy2vOzs4YDAYiIiLSXSnI6QR4mzZtIiUlhbt372Y4YV1AQEC2rkpkJDXxevjwYbplqfuRneQ0t5+HOe7u7hkeby4uLhn+8jf3/qbG9fnnn9OyZcsst/0k74e5Yyv19bLbuT2n9cF4dfiTTz4hOTmZixcvcvDgQVavXs2HH36It7d3uiby1CQot8dMUSZ9UKzc5s2bMRgMNGjQgO7du6f7l/qL/fFLsSdOnOCrr76ibNmyfPrpp2bbnwtC6igDc80oly9fNruOXq83m9DkRurl8dS+O2mdOnUqT7aRETs7u3SXsFMvW6cmnZm5e/cuxYoVS5ecxMfHc+nSpXT19Xrjn3tG711my1OboFIv4VuK1NFIp0+fTrcsJ6N4FEVh48aNAHTt2tXs31K9evVISkpS+73kRuqwcnPxnj9/PtvHdV5+HlWrViUxMZH79++nW1atWjXi4uJM+v2kMvf3kdO48ur9SJX695Pd7ee0flq2trbUrVuXESNGMGnSJBRFYf/+/enq3bp1C+CJE8miSBIUK5Z6UtXpdEybNo233nor3b9p06ZRt25drl69qnb2vHXrFu+++y4ODg58/vnnmmb2FStWxNnZWW2GShUWFsbSpUvNrlOsWDEiIiLy5B4XqR0MHz9Bbtu2jQMHDjzx6//xxx8EBgaaXfbnn38SFxdHxYoV1UvZrVq1okSJEmzbto1Dhw6lWyftL91SpUoRFRXF9evX1bKUlBR+/PFHwsPD062b2sT34MEDs/Fktrxbt244Ozszf/58k+2lio+P1yR5SZ2bZPHixSbHQ2hoqDocPTtOnDjBnTt3aNiwIVOnTjX7t5R6lfHxZD8nWrdujZOTExs2bDDpO5KcnMyCBQuy/Tp5+Xk0atQIMH/VLbXZ+JdffjFJFq5evWo2UWvdujWlSpVixYoVnDhxIt3y5ORkk8Qmr96PVHXq1KFOnTrs2LHDbCdhg8FgEldO61+8eNHsld3Uq0nmfuidO3cOLy8vk07AInukiceKHTt2jHv37mXZSatbt26cPXuWDRs2ULt2bb777jsiIyNp2rQp//77b7r6rq6uBXavGzs7O/r06cOyZcsYNWoUrVq1Ii4ujoCAABo1amS2A2Djxo25cOECU6ZMoUGDBtja2tKwYUP1RJsTnTp14vfff2f27NkcP36cUqVKceXKFY4dO0abNm3Ys2fPE+3f1q1b+fHHH6latSp16tShePHiREVFce7cOS5duoSDgwOvv/66Wt/e3p6PPvqIN998kzfffJNmzZpRvXp1YmJiuHLlCgkJCeqJu0+fPhw+fJhx48bRrl077O3tOXHiBCEhITRu3DjdzeXq1q2Lg4MDq1evJioqSk1MU5u2nnrqKXbt2sV7771H8+bNsbe3p3r16rRq1QoPDw8++OAD3n//fUaMGEGzZs2oWLEiSUlJBAUFceLECerVq8dXX331RO9XTjVt+n/t3V9Ik18cx/G3q2Z/mAU5809UEAWCMFi/IZkRDS8qKnezG280JIgY9geKiAgcFFR0I0U3LcFWIlQXomU4KwmenGwh9lBXQVBhTSJkEpQNfxey4a+tMPPnJn1e1wd2nvM8jM9znnO+5x9qamoIhUI0NDRQXV3NxMQEjx8/pry8HMMwUjNDv5IMHcmdN5msW7eOiooKTNPk5cuXM65rM53NZsPn83Hp0iUOHjyI2+1mxYoVDAwMYLVaKSwsnNFnsbm8H9XV1Vy9epVIJJK2hiK59iYcDtPY2EhlZSXxeJy+vj5cLlfajIHVasXv93Py5EmamppwOp2pBfMfPnxgeHiYlStXEgwG53Q8pjt79ixHjx6lubmZO3fusGnTJvLz84nFYpimydjYGKFQaFbtHz58SGdnJw6Hg7KyMpYvX86bN28Ih8MUFBSkPT/v379nZGQEj8fzW9cgUxRQFrDkn+r0Cq+ZuN1uWlpa6Ovrw+fzpd40I5FIxi3IxcXF83oYX2NjI4sXL6a7u5vOzk6Ki4upr6+nqqqK/v7+tPb19fWMj49jGAbDw8MkEgkaGhpmFVCKiopoaWnh2rVrRCIREokEmzdv5vLly8RisT8OKKdOncIwDJ4/f87g4CCfP3/GYrGwZs0aPB4PXq837c2qoqKC69evEwwGGRwcJBqNYrPZ2LBhA7W1tal2VVVV+P1+gsEgvb295Ofn43Q6OXfuXMZKwQUFBfj9flpbW+nq6ko9B8mAsnfvXkZGRnj06BG3b98mkUiwa9cutm3bBkxVxQwEArS3txONRolEIixduhS73c7u3bszbjudD6dPn2b9+vXcv3+fe/fuYbfb8Xq9OJ1ODMPIuIB1uvHxcfr7+1m2bBk7duz4Zds9e/Zgmibd3d2zCigA+/btw2azcfPmTXp6elKVUw8dOoTX651xufm5uh8lJSW4XC6ePHnCkSNH/jMLYLFYOH/+PK2trYRCIe7evUtpaSk+n4+1a9dm/KRRXl7OjRs3aG9vZ2BgANM0WbJkCYWFhWzfvj1tO/ZcjUdSaWkpgUCAjo4Onj59yoMHD7BYLKxevRqHw5FWHfp32tfU1PDt2zdevHjBq1evmJiYwG63U1tbm3Hbc3KWaf/+/b91DTIlb3JycjLbnRARmWtdXV1cvHiR48ePL4g32Hfv3lFXV8fOnTtpbm6e19+ORqMcO3aMM2fOZC1o/iib4zEXvn//Tl1dHSUlJbOunv230xoUEVnQPn36xI/vWaOjo7S1tbFo0SK2bt2apZ5lFo/H07b1fv36lStXrgBTxxLMty1btlBZWUlbW9tPi9H9X3JxPOZCT08PHz9+5PDhw9nuyoKlTzwisqDdunWLZ8+e4XA4WLVqFbFYDMMw+PLlCwcOHEibds+2oaEhLly4gMvloqioiLGxsdTBnk6nE7fbnZV+NTU10dvby+jo6LyOWa6Ox5/Ky8vjxIkTGYvcyczoE4+ILGjhcJiOjg5ev35NPB7HarWyceNGPB5PxhOIs+3t27cEAgFM00zttiorK0udvvy3FfTSeMjPKKCIiIhIztEaFBEREck5CigiIiKScxRQREREJOcooIiIiEjOUUARERGRnKOAIiIiIjlHAUVERERyjgKKiIiI5BwFFBEREck5/wIoGllyGcrEowAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 60.0 deg to 75.0 deg\n", + "Modulation: 0.307 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.018\n", + "Best fit polarization angle: 40.702 +/- 0.364\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACS4klEQVR4nOzddXhT59vA8W9SN6pAcXcfLsWKw9iGjMGwIWPYYGMGEybwgznM2GA4DB8Mho/hDHf3ooUKdW/O+0feHhqalra0PUl7f66Li+TJc3Luk5wmd85jOkVRFIQQQgghLIhe6wCEEEIIIZ4kCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQFuLmzZvodDoGDx6sdSgCaN26NTqdLtf38+mnn6LT6di1a1eu7yszypYtS9myZbUOQwhJUMTTXbx4kbFjx1KzZk3c3d2xt7enePHidO3alblz5xIfH691iLlm8ODB6HQ6bt68qXUoZs2dO5cRI0bQuHFjnJ2d0el0fPTRR0/d7u+//6Z169a4u7vj6upK48aNWbhwYYbbLFy4kEaNGuHq6oq7uzutW7fm77//Nlv3ypUrdO3aFS8vL0qVKsWYMWOIjIw0W7d///6UK1eOqKiopx9wKikJXep/tra2FC1alK5du7J58+YsPZ94dkuXLlXfi23btmVYNywsjE8++YS6devi6uqKg4MDJUqUoEmTJkyYMIETJ05kuP3w4cPR6XQ4OzsTFhaWbr2UBDDln16vp1ChQpQpU4YuXbrw5Zdfcvfu3ewcrshltloHICzb559/zmeffYbBYKBp06YMGjQIV1dXHjx4wK5duxg2bBizZs3i6NGjWodaIE2YMIHw8HA8PT0pXrw4165de+o2P/30E2PHjsXb25v+/ftjb2/P6tWrGTx4MGfOnOGbb75Js80777zDt99+S8mSJRk+fDgJCQksX76c559/nh9//JExY8aodaOjo/H39yc6OpqBAwdy584dfv75Zx48eMCqVatMnnfjxo0sXbqU7du34+rqmq3XwN3dnfHjxwMQFxfHqVOn2LRpE5s2bWLmzJm8+eab2XrevDJmzBheeeUVSpcurXUoz2z27NnodDoURWH27Nl06NDBbL179+7RvHlzbt68Sfny5Xn11Vfx8fHh0aNHHDt2jBkzZuDk5ES9evXMbh8ZGcny5cvR6XTExsayZMkSk3PQnFatWtG6dWvAeI7ev3+f/fv3s3nzZiZPnsynn37KBx988EzHL3KYIkQ6pk6dqgBKqVKllIMHD5qts2HDBqV169Z5HFneGTRokAIoN27cyPV93bhxQwGUQYMGZXqbzZs3Kzdv3lQURVHmz5+vAMqHH36Y4T4cHBwULy8vk2MKDQ1VKlSooADKgQMHTLbZv3+/AigVKlRQQkNDTZ7Ly8tLcXBwMHmu5cuXK4Cye/dutWzw4MEKoDx48EAtCwsLU0qUKKEMHTo008f75LEASpkyZdI8Nm/ePAVQXFxclOjo6Gw9f6tWrZSC+BFZpkwZs6/p01y8eFEBlHbt2in169dX7OzslMDAQLN1hw4dqgDKkCFDFIPBkObxe/fuKceOHUt3X7/++qsCKG+//bZib2+v1K5dO926kydPVgBl8uTJaR4zGAzK6tWrFS8vLwVQpk2b9vQDFXlGmniEWTdv3uTTTz/Fzs6OTZs20bhxY7P1unXrxpYtW9KUr1y5kpYtW+Lu7o6TkxO1atVi2rRpZpuDUtq8IyIiePvttylbtix2dnZ8+umnmXocjM1QgwcPplSpUtjb21O0aFH69evHpUuXzMYdExPDl19+SYMGDXBzc8PV1ZVq1arx5ptv8uDBAwB0Op3a7FGuXDn1EvGT7fOhoaFMnDiRatWq4eTkhLu7O/7+/ule4o6MjOTtt9+mZMmSODo6UrVqVb777jsMBoPZ+hnp1KkTZcqUyXT9efPmER8fz5gxY0yOw9PTk0mTJgHw66+/mmyTcv/DDz/E09NTLS9btiyjR48mPj6e+fPnq+UBAQEANGrUSC1LuZ3yGBiv/gB8++23mY4/swYPHoyLiwvR0dGcO3dOLd+xYwedOnXCy8sLBwcHKleuzAcffEB4eHimnjchIYGffvqJLl26UKZMGRwcHPDy8qJdu3bpNik97fw11wclpf9Lev9SrgSkSEpK4pdffqFJkyYUKlQIZ2dn6tWrx08//WT2vFIUhZ9++okaNWrg6OhIiRIlGDNmTKZfB3PmzJkDwGuvvcbgwYNJTExkwYIFZuseOHAAgLFjx5rt51OsWDGee+65DPel1+sZP348zz//PKdPn+bQoUNZjlmn09GzZ09Wr14NGK8Y379/P8vPI3KHNPEIs+bPn09iYiKvvPIKNWvWzLCug4ODyf1JkyYxbdo0fHx86NevH66urmzevJlJkyaxdetWtm3bhr29vck2CQkJtG3bltDQUDp06EChQoUoV65cph7fsmULPXr0IDExkeeff56KFSty584d/vzzTzZu3MjOnTtNPuwePXpEmzZtOHXqFFWqVGHIkCHY29tz7do15s+fT48ePShatCiTJ09m3bp1nDp1inHjxuHh4QGg/g/GL9zWrVtz8+ZN/Pz86NSpE9HR0fz999906tSJ3377jeHDh6v14+Pj8ff358iRI9SpU4dXX32VsLAwvvjiC3bv3p2l9yg7/v33X8CY2Dypc+fOJnUyu80XX3zBv//+y2effQagNlUcO3aM5s2bA6hNgCnJ1D///MPcuXPZsGED7u7uz3xc5iiKAqB+Af7222+MHDkSFxcXevfuTZEiRdi1axdffvklGzZsYP/+/SbvrTmhoaGMGzeOZs2a0b59ewoXLsz9+/fZsGEDXbp0Yc6cOQwbNizNdk87v580ePDgNEkIwN69e/n3339xdnZWy1LO+61bt1KlShX69euHo6MjO3fuZOzYsRw6dIjFixebPM/48eP54YcfKFasGK+//jp2dnb89ddfHDp0iISEhDR/n0+TkJDAwoULcXd356WXXiI2NpYJEybw+++/895776VJQry9vQG4fPkydevWzdK+Tpw4wbFjx2jfvj2lSpVi8ODBrFmzhtmzZ6f7Q+pp2rRpQ4sWLdi3bx9//vkno0ePztbziBym9SUcYZnatm2rAMqcOXOytN2BAwfUZqH79++r5YmJiUq3bt0UQJk6darJNmXKlFEAxd/fX4mKikrznBk9Hhoaqnh4eCje3t7KuXPnTB47c+aM4uLiotSrV8+kvG/fvgqgvPHGG0pycrLJY5GRkUpYWJh6/2lNPK1atVJ0Op2ybNkyk/JHjx4pderUURwdHU0uc6c0m/Xo0cNk39evX1c8PT2z3MSTWmaaeHx8fBRACQ4ONvu4i4uLAqjNIlFRUQqguLq6mq0fFBSkAEqRIkXUssjISKVkyZKKj4+PMn78eKVXr17qMac8XrZsWeXVV1/N1nGmyKiJZ+7cuWoTT0xMjHLz5k3F3t5ecXNzUy5cuGBSd+TIkQqgDB8+3KTcXBNPXFyccvv27TT7CwsLU2rUqKF4enoqMTExJo897fxOaYLYuXNnhsd76tQpxc3NTfHx8VGuXr2aZvsxY8YoSUlJanlSUpIyZMgQBVDWrVunlqdusgsJCVHLY2NjlSZNmqT7mmZk2bJlCqC8/vrralnPnj0VQPnnn3/S1P/xxx8VQHFzc1PeffddZfv27emek08aMWKEAih//PGHoijGzxZfX1/FxcVFCQ8PT1M/oyae1D766CMFUAYOHJipOETukwRFmFWtWjUFUDZv3pyl7YYNG6YAym+//ZbmsUuXLil6vV4pV66cSXnKB/jJkyfNPmdGj8+YMUMBlJ9++snstuPHj1cANXl58OCBotfrlWLFipn9snhSRgnKyZMnFUDp1auX2W3XrVunAMrPP/+sllWsWFHR6/UmXzApUj5IczNBsbOzUwAlMTHR7OPFixdXAOXevXuKoijK3bt3FUApUaKE2foJCQkKoNjb25uUX7x4UenUqZPi4eGhFC9eXHnjjTfUL4/Ro0crRYsWVYKDg5WAgAClW7duiqOjo+Lq6qoMGDDA7JeMOSkJiru7uzJ58mRl8uTJyvvvv6907txZARRAmTlzpqIoijJlyhQFUCZOnJjmeUJDQxU3NzfF0dFRiYuLU8uz2gfl22+/TdP3RlGefn5nJkG5e/euUrJkScXR0VHZv3+/Wp6cnKx4eXkpvr6+Zt/TR48eKTqdTundu7dalvI3Om/evDT1d+7cma0EJeUHTer+Sxs2bFAA5eWXX05T32AwKBMnTlQcHR3V9wpQypYtqwwbNizd1yoqKkpxc3NT3N3dldjYWLV8woQJCqD88ssvabbJbIIya9YsBVA6d+6cyaMWuU2aeESOOn78OABt27ZN81jlypUpWbIkN27cIDw83OTSvqOjI7Vr1073edN7/L///gPg1KlTJn1SUly+fBmACxcuUL16dY4cOYLBYKBly5a4uLhk6djS23d4eLjZfQcFBan7BmPfk6tXr1KqVCkqVKiQpn7r1q3VZhJrV6VKFbN9Mvbu3csvv/zCypUr8fLyon379jx8+JA//viDqKgoxo4dS2xsbJrRPhkJDw9XXzcbGxu8vLzo3LkzY8aMoUuXLkDG56Wnpyf16tVjz549XLx4kTp16mS4v3PnzvH111+zZ88e7t+/T1xcnMnj5oasPu38zkhUVBTdunXj7t27LFu2jGbNmqmPXb58mdDQUCpVqsSUKVPMbu/k5KSeg/D4tWjVqlWaui1atMDGxiZL8V29epWdO3dSpUoVmjZtqpZ36tQJX19f1q1bR3BwMD4+PupjOp2O//3vf7z33nts3bqVgwcPcvz4cQ4dOsTvv//O/PnzmTVrlknzKMDy5cuJjIxkxIgRODo6quWDBw/m22+/Zc6cOYwcOTJL8adQnmgSFNqTBEWYVaxYMS5cuJDl+QFSOtkVK1Ys3ee9desWYWFhJglKkSJFMvxgSO/xkJAQ4HEHvfSkzLGRMl9CiRIlMqyfGSn73r59O9u3b3/qvlNem6JFi5qt5+vr+8wxPY27uzvBwcGEh4er/QBSS4kx5b1J+T+9zpMp5U/ruwEQGxvL0KFD6dGjB7169WL79u2cOHGCxYsX89JLLwHGztmffPIJ165dM5vEmVOmTJmnzlOTmfMSyHA+DYCDBw/Stm1bkpKS8Pf3p3v37hQqVAi9Xs/Jkyf566+/zHYEf9r5nZ7k5GT69OnDiRMnmDZtGn369DF5POUcvHLlSobJbeo5ZjI6D21tbU0SicyYM2cOiqKkmWDQ1taWV199lW+//ZYFCxbwzjvvpNnWw8ODPn36qMcVHR3N9OnTmTJlCmPHjqV79+4mcc6ePRsgzb5q1qxJ/fr1OXbsGEePHqVBgwZZOgYwDn0GKFy4cJa3FblDRvEIs1q0aAEYRz1kRcoXWmBgoNnHU3rIP9kx8mkf3uk9nvI8p06dQjE2WZr9N2jQIODxF2lOTMyUsu+ZM2dmuO+UES4p9VNGCT0pvdcsJ1WpUgV4fGUptfv37xMdHU3JkiXVTpguLi6UKFGCqKgos6Mbrly5Ahivjj3Nxx9/TEhICD///DPw+MpS6g7M9evXB+D8+fNZOaynyu55+aQpU6YQGxvLtm3b2Lx5MzNmzODzzz/n008/zbCDZnZ/lY8dO5ZNmzYxfPhws3N0pMT70ksvZXgO3rhxI8025s7DpKQkgoODMx1f6pE6EydOTDPaKGWE1tN+QKRwcXHhiy++oEWLFsTHx7N//371sdOnT3P48GEAmjZtmmZfx44dAx4nMVm1c+dOgGx3tBU5TxIUYdZrr72GnZ0da9aseeqXRepfjCkTK5mbtvvq1avcuXOHcuXKZeoXd2Y0adIEMDYdZEajRo3Q6/Xs2bOH6Ojop9ZPudydnJz8zPt2c3OjYsWK3L171+yEankx1XlKE4e5oeEpTTJPNoNkZ5snHT58mBkzZjBz5sw0v9xTnz9PNpfklIzOy7CwME6ePImjoyPVqlXL8HmuXr2Kl5eX2RE2OT0K69tvv2XWrFl06NCBX375xWydqlWr4uHhwcGDB0lMTMzU86YkhObi3bdvn9lzPT1//fUXDx8+pEqVKgwdOtTsv/Lly3P58uUsvT5ubm7A42YXeJx4tG7dOt19OTk5sWzZsizPSvzvv/+yf/9+nJyc1Kt5wgLkXXcXYW1SRpyULVtWOXLkiNk6mzdvVtq0aaPeTxkhULZsWeXhw4dqeVJSkvLCCy8ogDJlyhST53jaxFAZPR4cHKx4eHgohQsXVg4dOpTm8eTk5DSdD/v165fpUTzvvvuuAij//vuv2f37+fkper1emTt3rtnHT58+bTI5Wcpr2rNnT01G8Vy/fj3XJ2p7Unx8vFK9enWla9euJuXbt29XAOWzzz5Ty1ImdDPXifhJGY3iMVfXzs5OcXd3V65cuWLy2JgxYxRAGTZsmEm5uU6yHTt2VADl1KlTJuW///672tFz/vz5Jo897fw210l2zZo1il6vV2rVqvXUTsMff/yxej4/OYJIUYyTnqUe4bZv374cG8XTvn17BVBWrFiRbp2U16Zfv35q2VdffaWcPXvWbP29e/cqjo6Oiq2trXL37l1FURQlJiZG8fDwUGxsbNQyc/r3768AyuzZs9Wyp03UtmbNGnWitq+++upphyzykCQoIkOfffaZotfrFUBp1qyZ8uabbyqTJk1Shg4dqlSqVEkBlAYNGphs895776lDT0eNGqW8++67Ss2aNRVAadGihRIfH29S/1kSFEVRlH/++Udxc3NTdDqd0q5dO2XcuHHK+PHjlZ49eyrFixdXHBwcTOqHhoYqtWvXVgClatWqyrhx45R3331X6dWrl+Lm5mbyRbFlyxb1w/y9995TvvjiC+XHH39UH799+7b6OtSpU0d5/fXXlffee0/p16+fesz//fefWj8uLk5p2LChWv+9995TXn/9dcXDw0Pp3r17lhOUOXPmKIMGDVIGDRqkNG/eXAGU2rVrq2XmZsb84YcfFEDx9vZWRo0apYwfP14pWbKkAigTJkwwu5+3335bAZSSJUsq48ePV0aNGqV4e3srgMnrYc6HH36ouLu7K3fu3DEpNxgMSv369RUbGxtlyJAhyssvv6wAJiNOMpKVBEVRFOXnn39Wh7YOHTpU+eCDD5SmTZuq50HqL2tFMZ+gbN682eQ53n77baVly5aKXq9Xh1PnRILi5OSk8P8zraaMUEr9L/U+EhIS1HOnRIkSyoABA5QPPvhAGTJkiJpAP3kejB07VgGUYsWKKWPHjlXefvttpUKFCkqDBg2UYsWKZeo1vX79uqLT6RQfH580f9OpRUZGKq6uroqDg4P6GtepU0d93QcPHqxMnDhRefPNNxV/f39Fp9MpgPLtt9+qz5GSfD///PMZxrRr1640n0kpr2+rVq3U1++9995T+vfvr5QrV04BFAcHB+XLL7986jGLvCUJiniq8+fPK2PGjFFq1KihuLm5KXZ2doqvr6/SqVMn5ffffzcZmpli2bJlSvPmzdUPpurVqytTpkwxGRqY4lkTFEUxflmNHj1aqVixouLg4KC4ubkpVapUUfr376+sXbs2Tf2oqChlypQpSq1atRQnJyfF1dVVqVatmjJu3DiTKx6KYhw+WrVqVcXe3t7sF2JERIQydepU5bnnnlNcXFwUR0dHpWzZskqXLl2U3377Lc1w5vDwcOWtt95Sk6cqVaoo33zzjXLt2rUsJygpw6DT+9eqVSuz261fv15p2bKl4urqqjg7OysNGjRQFixYkOG+5s+frzRo0EBxdnZWXF1dlZYtWyobNmzIcJsTJ04otra26c6nc/v2beWFF15QXFxcFHd3d2XQoEFZHmaclSGxW7duVdq3b694eHgo9vb2SoUKFZR3331XefToUZq66Q0z3rBhg9K4cWPF1dVVcXd3V9q3b6/s3r1b/RLNiQQlo/fU3PtqMBiURYsWKW3btlU8PT0VOzs7pXjx4krz5s2VqVOnKrdu3UpT/8cff1TP62LFiimjRo1SwsLCMj3V/aRJkxRAeeutt55ad/jw4QqgfPfdd4qiKMrx48eVL774QmnTpo1StmxZxdHRUXFwcFDKly+v9OvXT9m7d6/J9s2aNVMA5a+//nrqvipXrqwAyokTJxRFefz6pvzT6XSKq6urUrp0aaVz587K9OnT0yTPwjLoFCVVI58QQgghhAWQTrJCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDhZXosnJiaG5cuXc/78eS5cuEBkZCQTJ06kc+fOmX6Oo0ePsnjxYi5fvozBYKBUqVL07dsXf3//rIYjhBBCiHwoywlKeHg4CxYsoGjRolSsWJETJ05kaftNmzbx5Zdf0qBBA4YPH46NjQ23bt3i4cOHmX6OuLg4AgICKFOmjMmKlkIIIYTIH7KcoHh7e7N27Vq8vb25ePEir7/+eqa3vX//Pt9//z09evRg3LhxWd21KiAggOHDhzNnzhx18TMhhBBC5B9Z7oNib29vdpn2zPjrr78wGAwMHToUMDYXyTxxQgghhHhSlq+gPItjx45RunRpDh48yKxZswgKCsLNzY2XXnqJIUOGoNdLn10hhBBC5HGCcufOHfR6PdOnT6dv375UqFCBPXv2sGjRIpKTkxkxYoTZ7YKDgwkJCVHvBwQE5FXIQgghhNBAniYosbGxGAwGRowYwauvvgpA69atiYyMZPXq1QwYMABnZ+c0261fv54FCxbkZahCCCGE0FCeJigODg7ExsbSrl07k3J/f38OHTrE5cuXqVu3bprtunfvTvPmzdX7AQEBTJkyJbfDFUIIIYRG8jRB8fb25s6dO3h6epqUp9yPjIw0u52Pjw8+Pj65Hp8QQgghLEOe9kpNGRIcHBxsUp5y38PDIy/DEUIIIYSFyrUEJTg4mICAAJKSktSytm3bArBx40a1zGAwsHnzZgoVKiRzmgghhBACyGYTz5o1a4iKilJH1uzfv1+dCbZnz564uroye/ZstmzZwooVKyhWrBgALVq0oH79+ixZsoSwsDAqVqzI3r17OX36NO+88w729vY5dFhCCCGEsGbZSlBWrFhBYGCgen/Pnj3s2bMHgA4dOuDq6mp2O51Ox9SpU/n999/5999/2bJlC6VKleKjjz6iQ4cO2QlFCCGEEPmQTrHCqVwvXbokU90LIYQQ+ZhM3SqEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihAiU2IexXFs9RViHsVpHYoQogCQBEUIkSkxYfGc+PMqMWHxWocihCgAJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQggh8lhezcxszTNAS4IihBBC5LG8mpnZmmeAlgRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUISwYjGP4ji2+goxj+K0DkUIIXKUJChCWLGYsHhO/HmVmLB4rUMRQogcJQmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCIsi0/cLIUASFCGEhZHp+4UQIAmKEEIIISyQJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISxOlhOUmJgY5s2bxzvvvEPXrl1p2bIlmzdvztbOv/rqK1q2bMn777+fre2FEEIIkT9lOUEJDw9nwYIFBAQEULFixWzv+OLFi2zevBl7e/tsP4cQQggh8qcsJyje3t6sXbuWVatWMXLkyGztVFEUZs6cSceOHfHy8srWcwghhBAi/8pygmJvb4+3t/cz7XTr1q3cuHGD4cOHP9PzCCGEECJ/yvNOsjExMfz666/079//mRMdIYQQQuRPtnm9wwULFuDg4MDLL7+c6W2Cg4MJCQlR7wcEBORGaEIIIYSwEHmaoNy+fZvVq1fzySefZKlz7Pr161mwYEHuBSaEEEIIi5KnCcoPP/xAzZo1ad26dZa26969O82bN1fvBwQEMGXKlByOTgghhBCWIs8SlGPHjnHo0CGmTJnC/fv31fLk5GTi4+O5f/8+hQoVwsXFJc22Pj4++Pj45FWoQgghhNBYniUoDx8+BOCjjz5K81hQUBB9+vRhzJgxWeqbIoQQQoj8KdcSlODgYKKjoylRogS2trY899xzTJ06NU29r7/+Gl9fXwYMGED58uVzKxwhhBAiQzGP4riw4zbV/Evh7OmodTgFXrYSlDVr1hAVFaWOrNm/f796haRnz564uroye/ZstmzZwooVKyhWrBhFixalaNGiaZ7rxx9/xNPTEz8/v2c4DCGEEOLZxITFc+LPq5SpX0QSFAuQrQRlxYoVBAYGqvf37NnDnj17AOjQoQOurq45E50QQgghCqRsJSgrV658ap1JkyYxadKkHHkuIYQQQhQseT6TrBBCCCHE00iCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoOSAmEdxHFt9hZhHcVqHIoQQQuQLkqDkgJSx8zFh8VqHIoQQQuQLkqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihDiqQwGhaDr4QAEXQ/HYFA0jkgIkd/Zah2AEMKy3TgcyMFFF4gONS6GuX/uOU6uvUaTgdUo18hX4+iEEPmVXEERQqTrxuFAdsw4oSYnKaJD49gx4wQ3DgdqFJkQIr+TBEUIYZbBoHBw0YUM6xxcfEGae4QQuUISFCGEWYEXQ9NcOXlSdEgcgRdD8ygiIURBIn1QhBBpGBQDF+9d4rTLYSJtwkjWJeNgcMI7qTDF48vibHBR68aGxWsYqRD5V0R8BOcenuNG2A1iEmPQ6/T4uvpS2bsyFTwroNPptA4xV0mCIoQAQFEUdtzYwZLTS9h8dTMPox9CybT1dIqe0nEVqB/VnKbh/jh5OOR9sELkU/ci77Hg5ALWXVzHkXtH0q1XxKUInSp2YmDtgbQp1wa9Lv81iEiCIkQBpygKK8+t5LPdn3EhOOM+JwCKzkCA0xUCnK6wzmcRZy8PZHKxTyjnWS4PohXC+j05bN+rTCFuRQQweddklp1ZRqIh8anP8TD6IYtOLWLRqUVU86nGJ60+4eUaL+erREUSFCEKsDMPzjB8w3AO3T1kUu5i50Lrsq0pnVyeiP8M2Ci2xOijCLYL5IrzOe463ATAoDOw8NQC/jizlEl+k5jkNwl7G3sNjkQI6/DksP1d807y4daP2Oi2kgSDaXNprSK1aFaqGZW9K1PIoRBJhiTuRtzleOBx9gbsJTIhEoALwRfou6YvPxz6gdnPz6ZmkZp5fly5QRIUIQogRVH49r9v+fDfD0lITlDLW5RuwdhGY3mhygs42Bqbbm5UMf1ABYgqHMrVhkdYenchYXFhJBoS+Wz3Z6y5sIZVvVdR1adqnh+TEJYuZdh+inv2t/i92FfcdrwOBmOZl5MXI+qPYPhzwzO8KhmXFMffl/9mxsEZ7L+9H4D/7vxHvd/qMd1/Om83fdvq+6hIgiJEAROTGMNrf73GynMr1bJqPtX4ruN3dKzQMc2HWrlGvpRpUJRLO2+zf+45mg+tQZU2pdDrX2VK3KdM3zedbw58Q7KSzNmHZ2k4pyELXlhAz+o98/rQhLBYTw7bP+VyiDnFvyJeHwuAjWJL59ieLHr3VzydPZ76fI62jvSq3oue1Xqy/fp2xm4ey+WQyyQZknhn+zvsv72fRS8tyq3DyRP5p7FKCPFUgVGBtFrQSk1OdOh4p+k7HB9xnE4VO6X7i0uv11G4vDsAhcu7o9cb63k4ejC93XSOvn5UvawclRBFr1W9+OnwT3lwREJYh9TD9v/xWMfPJb5Qk5Ni8aWZFPA9L9weROzN5Cw9r06no0OFDpx64xTvNXtPLV97cS3+i/wJiQvJuYPIY5KgCFFA3I+8T5uFbTh67ygArvaurHtlHV93+BpHW8dneu66vnU5OPQg/Wr1U8vGbh7Lp7s+RVFkIjchUobjb/D+gxVFZ6PojG06DSL8+DBgBqXjK5jUyypHW0e+bP8lG/puwN3B+GPi8N3DdN7QgVDbIKtcQ0sSFCEKgHuR92i9sDUXgy8CUKpQKQ4MOUD3Kt1zbB8u9i4seWkJH/p9qJZ9tvszvtjzRY7tQwhr5eThwN9ey1jvs0Qt6xLSh+H338dBcTSp9yy6Ve7G3tf2UsShKAA3Yq/xbamJbF6wjxVv7rKq5SkkQREinwuLC6PD4g5cDrkMQBn3Mux5bQ+1itbK8X3pdDqmtJ3Cdx2+U8sm75oszT2iwFsRvoi/Ci9W7/d+OIyXggehT/U17OLtiG9Vr2fel2tAYd46P50iCcUBeGh/j+9LfsTDsCCrWkNLEhQh8rGE5AR6ruzJuaBzAJT1KMvuwbsp61E2V/f7VtO3+LbDt+r9sZvHmnTKFaIgWXdxHRO2TVDv9344jA6PeqSp12RANbV/V3aldMb1SSrK27f/h1diYQDuON7g5xKfk0Si1ayhJQmKEPmUoiiM+HsE/974FwAfZx+2D9hOGY8yebL/t5u+zaQWk9T7g9cN5sT9ExlsIUT+c/TeUfqt6YeCMSEYW+EtXtL1M6nj4u2I//h6lGvk+8z7S90Z1zupCG/dnopbkrFPyhXnc/xR9BeiQmKtYg0tSVCEyKdmHZ3FgpMLAGMHuvWvrKeiV8U8jWFK2ykMrjsYgNikWF5c8aJxCn0hCoCg6CBeXP4isUnG0Tr9avVj5qvf0ueH1jQfWgOA5kNr0Gdm6xxJTiBtJ1vfxJKMvfsZtgY7APZ6bGWnx99WsYaWJChC5EOH7x5m/Jbx6v2FLy6kaammeR6HTqfj166/0rhEYwBuhd+iz+o+JBuyNpRSCGuTbEim/9r+3I28C0DzUs2Z130eOp0u3WH7OcFcJ9tycZUZFDhevb+iyG+cSz6dY/vMLZKgCJHPhMaG0mtlL3U9j7ebvM3LNV7WLB4HWwf+7PMnxVyLAbDr5i6m75uuWTxC5IWpe6ey7do2AIq6FGVV71Xq7My5ybeqFy5eaacNaBLZho4hvQDjEhVvHnuDsLiwXI/nWUiCIkQ+M3rTaG5H3AaMU9dPb6d9MlDcrTjLey1XFzKbvGsy/93+T+OohMgdB24f4LPdnwGg1+lZ1nMZxdyK5cm+9XodTQZWM/vYS8GDqBhTHYCA8ABe3/C6Rc9TJAmKEPnI8rPLWX52OQCejp4s77kcOxs7jaMyalmmJR/5fQRAspJMvz/7ERkfqXFUQuSs6IRoBq0bhEExTsT2aatPaVOuTZ7GUK6RL/7j66W5klLI24X5XRbi6egJwKrzq1h0ynKnw5cERYh84l7kPUZtHKXen9V1FiUKldAworQ+bvUxzUs1B+Bm2E0m7piocURC5KyJOyZyNfQqAE1KNmGinzbneLlGvmY747Zo1YC53eeq9cZvHc/9yPuaxPg0kqAIkQ8oisKw9cN4FPcIgD41+tCnZh+No0rLVm/L4pcW42znDMDPR35mb8BejaMSImf8e+Nffjz8IwBOtk4sfHEhtnrt1uRNrzPuS9Veon/t/oBxIseRG0daZFOPJChCWCmDQSHoejgAiw8vZfPVzQAUcy3Gz11+1jK0DJXzLMfUtlPV+0PXDyU2MVbDiIR4drGJsQzfMFy9P73ddCp7V9YwoozN6DiDIi5FAPjr0l+sOLdC44jSkgRFCCt043AgK97cxf6554jRR/P5uY/Vx2Z1nYW3s7eG0T3d2EZjaVrSOOz5SugVtUOhENZq2r5pXH90HTD2txrTaIzGEWXM29mbX7r8ot4fu3ksobGWNXmbJChCWJkbhwPZMeOEOlvkOp9FhNsam3bqRjahdkRjLcPLFBu9DXO7z8Xexh6Ab//7lgtBFzSOSojsuRxymS/3fwmAnd6OX7v+qo5Ys2Q9q/ekV3Xj0OPgmGA+/vfjp2yRtyz/FRRCqFLW2Uhx0+Eyuzz+BsDe4MArD9+wmnU2qhWuxgfNPwAgyZDEuC3jLLIdXIiMKIrC6E2jSUhOAOCdZu9QrbD5Yb6WaEbHGbjYuQDw67FfLWo5CklQhMgFMY/iOLb6CjGP4nL0eVOvs2HAwB9Ff0HRGb/Uuwe/indSEaJD4qxinQ2A91u8T2n30gBsv76ddRfXaRuQEFm06vwq/rn+D2BcKfyjlh9pHFHWlChUgk9afQKAQTEwZvMYi/mhIAmKELkgJiyeE39eJSaH17tIvX7GEbc93HC6DECx+NL4P3rRbD1L5mznzHcdvlPvv73tbXXdkryQW4mkKBjikuJ4b/t76v0fOv+gjlCzJuObjFc79B64fYDFpxdrHJGRJChCWJGUdTYSdPH8WXi+Wv7yw+HYYpumnjXoUa0H/uX8AePcKL+c/ynP9p1biaQoGH449AMB4QEAdKjQge5VumscUfbY29jzY+cf1fsTd0wkOiFaw4iMJEERwoqkrLPxj+c6Qu2CAKgZVZ+aMfXVOi7ejvhW9dIqxCzT6XTM7DQTG50NAD+d+4FIm3CNoxIiY0HRQUzdaxwur9fp+ab9NxpH9GxSJ1j3Iu8x4+AMbQNCEhSzEpMTtQ5BCLP0eh0V+viwyXul8b6ip1fQMJM6TQZUy9HVUfNCjSI1GPac8TiiEiPZ6L1M44iEyNhnuz8jIj4CgNfqvkatorU0jujZfdnuS/WHwpf7v+Rh9ENN48lyghITE8O8efN455136Nq1Ky1btmTz5s2Z2vbYsWNMnz6dfv360b59e/r06cOXX35JcHBwlgPPDacfnKbHih68vFq7lV+FeJrFkbOJ1xv7abQM60yJhDKA8cqJ//h6lGvkq2V42Ta51WS1/X6XxyZuRt7UNiAh0nEl5Aq/Hv0VABc7F75o84XGEeWMqj5V1R8KkQmRfL77c03jyXKCEh4ezoIFCwgICKBixYpZ2vbXX3/lxIkT+Pn5MW7cOPz9/dm5cyfDhg0jJCQkq6HkqCRDEt3+6Mbai2tZd3EdR+8d1TQeIcwJCAvgt2O/Af//wdjR+AGSss6GtSYnAMXcivF2k7cBSNYlMe3EFI0jEsK8T3d/SrKSDMC7zd7Ns5WK88KnrT9Vhx3/duw3Lodc1iyWLCco3t7erF27llWrVjFy5MgsbTt69GiWLVvGyJEj6datG6+//jrTp08nNDSUP//8M6uh5ChbvS0TWzxe1GnyrskaRiOEeVP2TCHRYGyCHNd4HFWrVgBM19mwZu82fxdvB+MsuH/eXG1RczIIAXDu4TmWnTE2QXo7efN207c1jihn+br68m6zdwHjsOmg6CDNYslygmJvb4+3d/am0a5bty56vT5NWaFChQgICMjWc+akIfWGqHMybLqyiYN3DmockRCPXQ29yvyTxpE77g7uvNPsHY0jynmudm68XvzxFOGfaXyJWYgnfbr7UxSM84S83/x93BzcNI4o501oNoFfuvzC+dHnaV66uWZxaN5JNiYmhtjYWNzd3bUOBQdbBz7yezzJjlxFEZbks92fqZeVJzSdgKeTp8YR5ayU9YVKba2HR6LxR9Bfl9bx9/btGkcmhNHJwJOsPr8agKIuRRndaLTGEeUOV3tXRjYcqS5FoRXNE5RVq1aRmJhI27Zt060THBzMpUuX1H+5ebVlcN3BlPMoB8C2a9vYd2tfru1LiMw6H3SepaeXAsbLyuOajNM4opyVen0hO8WezqGPO6p/vHUyNw4HahidEEaf7PxEvT3Jb5JVTspmTWyfXiX3nDx5kgULFtCmTRvq16+fbr3169ezYMGCPInJzsaOj1t+zJD1QwDjCfnvoH/zZN9CpOfz3Z+bXFYu5FBI44hyzpPrCwH4hXdks9dKwuxCOOn2H8v/WM/7DYbni342wjoduXuEDZc3AFCyUEler/+6xhHlf5pdQQkICOCjjz6ifPnyvP/++xnW7d69O3PmzFH/ffRR7q51MKDOACp6GUco7by5k903d+fq/oTIyJWQK6w6vwqAws6F891l5dTrC6V48irKStsFVrO+kMif/rfvf+rtD/0+xNHWUcNoCgZNEpQHDx4wYcIEXFxc+PLLL3F2zvgymY+PD1WqVFH/lSlTJlfjs9Xb8knLx5fypu2blqv7EyIjX+3/CoNiAODtpm/nu8vK6a0b5BfeUe2LctLtP47dPpaXYQmhOh90Xl3IsrhbcV6r+5q2ARUQeZ6ghIeHM2HCBBITE/nmm2/w8fHJ6xAypW+tvpT1KAvA1mtbZbij0MSdiDssPLUQMI7cGdkga0P7rUF66wbZKfZ0Cu2t3v/97qy8CkkIE1/u/1K9PaHpBBxsrWetK2uWawlKcHAwAQEBJCUlqWWxsbG89957BAcH89VXX1GqVKnc2v0zs9XbqmPBAabvn65hNKKg+vbAt+q8J6MbjsbdUfvRbjktZX0hc/zCO+KW5AHA33fWc/3R9TyMTAjjApYpHdS9nLyk70keylaCsmbNGhYuXMimTZsA2L9/PwsXLmThwoVERUUBMHv2bAYMGEBQ0ONJXr744gsuXLhA69atCQgIYNu2beq/vXv35sDh5KzX6r5GEZciAKw+v5orIVc0jkgUJMExwcw+PhsAJ1unfDdyJ4Ver6PJwGpmH7NXHPB/ZFzAzKAY+O6/7/IyNCH45sA36vD+sY3G4mrvqnFEBUe2RvGsWLGCwMDHw/727NnDnj17AOjQoQOurubfwKtXrwKwadMmNblJ4evri5+fX3bCyTVOdk6MbzyeSf9OwqAY+PrA18x+frbWYYkC4odDPxCTGAPA8OeGq8lyflSukS/+4+txcNEFkw6zLt6OfNLnA7bvWUN0YjTzTsxjcqvJFHYprGG0oqB4EPWAuSfmAsalJcY2GqtxRAVLthKUlStXPrXOpEmTmDRpUpa3szSjGo5i+v7pRMRHsPDUQj5t/SnF3YprHZbI5yLjI/nx8I+AsbkxP84a+6RyjXwp06Aol3beZv/cczQfWoMqbUqh1+sYHjWcGYdmEJsUy0+Hf+KzNp9pHa4oAGYemklckjFhHlF/BN7O2ZtFXWSP5hO1WTp3R3dGNRgFQEJyAjMPztQ4IlEQzDsxj7C4MAAG1B5AKXfL7a+Vk/R6HYXLG/vZpF5f6K2mb2GrN/6e+unIT0QnRGsWoygYIuMj+eXILwDY6e3y3Zo71kASlEwY12ScOuXv7OOz5cNR5KpkQzIzDz1OhAvC1ZOnKe1emr41+wIQGhuqXnYXIrfMPzmf8PhwwPgjoUShEhpHVPBIgpIJvq6+6odjWFyYOuxTiNzw16W/uBF2A4COFTpSvXB1jSOyDKlH1X3737ckGZIyqC1E1hgMCkHXjQlJ4LVQkx8JbzV9S6uwCjRJUDLprSaPT9AZB2eoE2cJkdO+P/i9ejv1eVfQ1Spaiy6VugBwK/yWOnGWEM8qZaHK/XPPATBr5Tx1SHv78u2pWaSmluEVWJKgZFId3zq0KdsGgCuhV9h0ZdNTthAi647cPaIuUFm9cHU6VOigcUSWZXzj8ert1L9whciu1AtVpvjHc516u6/XIA2iEiAJSpak/jWb+leuEDnlyasnOp0sjpdau/Lt1Cavfbf2cfz+cY0jEtbM3EKVAQ5Xuex8FgDf+JLYb/HFYFC0CK/AkwQlC7pW7kolr0oA/HvjX04FntI4IpGf3Im4oy4K6OPsw6u1XtU4Isuj0+l4s9Gb6n25iiKehbmFKlNfPfF/9AKxIQmyUKVGJEHJAr1Oz7jGj2fznHFohnbBiHznp8M/qR0/RzYYiZOdk8YRWaYBdQbg6egJwPKzy3kQ9UDjiIS1enKhyjCbUI4UMk466pLsRtMIf7P1RN6QBCWLBtUdhIejBwB/nPmDh9EPtQ1I5AuxibHMOT4HAHsbe0Y1HKVxRJbL2c6Z4c8NB4xzE/169FeNIxLW6smFKnd5/E2yzvgjoWVYZxwUR7P1RN6QBCWLXO1dTT4c552Yp3FEIj9YfnY5obHGy8h9avTB19VX44gs26iGo9DrjB9fs47OIiE5QeOIhDVKvVBlEons9dgKgI1iQ5uwboBxuQXfql6axViQSYKSDW80eAMdxs6Lvx79lWRDssYRCWv3y9Ff1NujG47WMBLrUMajDC9VfQmAB9EPWHnO+pbRENpLvVDlcbcDRNg+AqBuZFM8k3wAaDKgmjqjschbkqBkQ3nP8nSu1BmAgPAA1hxbB0DQ9XDp7S2y7PDdwxy9dxSA54o9R6MSjTSOyDqk7g/20+GfNIxEWLOUhSr3+jyeOqJNWDdcvB3xH1+Pco3kaqZWJEHJptS/clN+/e6fe44Vb+7ixuHA9DYTIo2U9T7AeF7J0OLMaVG6BbWL1gbg0N1DnLh/QuOIhLWKKhPERfszABSLL8VrfV+hz8zWkpxoTBKUbKocWgefBOPJe87lGA/t7gEQHRrHjhknJEkRmRIcE8zys8sB8HT05JWar2gckfXQ6XSMbDBSvT/r6CwNoxHWLPW50zqsG0UqeEizjgWQBCUbDAaFI4sv0zqsi1q228N0ZtmDiy9Ic494qnkn5hGfbBzC+Frd13C2c9Y4Iuvyaq1XcbV3BYyj6sLjwjWOSFibiPgIFp9eDICzrYs6tFhoTxKUbEiZ3KdZRHtsDXYA7HPfRrzu8YQ/0SFxMrmPyFCyIdlkiOzIhiMzqC3McXNwY0DtAQBEJ0az5PQSjSMSuSHmURzHVl8h5lHc0ytn0eJTi4lKiALg5fJ9cDLIjwRLIQlKNqRM2uOW7E7DyJYAxNhEcdRtj9l6Qpiz5eoWk1WLK3pV1Dgi6/RGgzfU27OOzkJR5MplfhMTFs+JP68Sk8OfqYqimIygG1xlSI4+v3g2kqBkQ+pJe1LGygPs9PwbBcVsPSGeJEOLc0btorVpVqoZAOeCzqmLLQrxNHsC9nA+6Dxg7HRdw1NWLbYkkqBkQ+rJfcrGVaZMnPGXb4DjVQIcrgAyuY/IWEBYAJuvbAagtHtpulTq8pQtREZSd5b99ZjMLCsyJ3XnWPmRYHkkQcmG1JP76NDRKlVn2ZSZCGVyH5GReSfmqVfbhj83HBu9jcYRWbde1Xvh7eQNwOrzqwmKDtI4ImHpgqKD+PPCnwAUdi5Mj2o9NI5IPEkSlGxKmdzHxcuRhhGtcDAYF3Y7XGgXTcZUzrXx87nZWUzkjWRDMvNOGpdI0Ov0vFb3NY0jsn6Oto4MqWfsPyBLUIjMWHRqEYmGRAAG1x2MvY29xhGJJ0mC8gzKNfKlzw+t8R/SgEYRrQCI08dyyHFXru0ztzqLibyz5eoW7kTcAaBrpa6UKFRC44jyhxH1R6i35xyfI51lRboUReH3E7+r94c9N0zDaER6JEF5Rnq9jsLl3fEL76SWpaxKK4Q5qc+PlIUnxbOr4FWBduXbAXDt0TV2B+zWOCJhqfbf3s/F4IsAtCzTksrelTWOSJgjCUoOKRtXSe0BfujuIc48OKNxRMIS3Yu8x9+X/waguFtxdU0nkTOG1Xv8S/j3479nUFMUZPIjwTpIgpJDdOgYUGmQel+uoghz5p+YT7JiXP16SN0h2OptNY4of3mx6ot4ORlHz60+v5pHsY80jkhYmrC4MFadWwWAh6MHPav11DgikR5JUHJQr/K9cbI1dpZdfHoxsYmxGkckLIlBMTD3xFzAmNAOfW6oxhHlPw62DgysPRCA+OR4lp5ZqnFEwtIsPb2U2CTjZ/OA2gNwsnPSOCKRHklQcpC7vQe9a/QGjFn6mgtrNI5IWJId13eoM8d2qNCBsh5ltQ0on0qd+ElnWZGaoijSvGNFJEHJYalPeGnmEanJB2PeqFmkJk1KNgHg9IPTHLt/TOOIhKU4eu8opx6cAqBxicbUKlpL44hERiRByWHNSzWnmo9xErc9AXu4FHxJ44hECi3nkAmKDmLdxXUAFHEpwvNVns/zGAoS6SwrzJEfCdZFEpQcptPpTMbUy4ej5dByDpmFpxY+nhSqjkwKldv61OyDq70rAH+c+YPohGiNIxJai0qIYtnZZQC42rvSp2YfjSMSTyMJSi4YWGeg+gW08NRCEpITNI5IaElRFJNEVSaFyn2u9q70qWH8AopMiGTV+VUaRyS0tvzscqISogDoV7OfmsAKyyUJSi7wcfbhpaovARAUE6TOeyEKpoN3DnIpxNjU16pMKyp5V9I4ooJBrmSK1FIvfyA/EqyDJCi5JGVdEIAFJxdoF4jQ3PyT89Xbsu5O3mlcojE1CtcATGcOFQXPpeBL/HfnPwBqFalFg+INNI5IZIYkKLnEv5w/JQuVBGDTlU0ERgVqHJHQQkxSDCvOrQCMzQ69qvfSOKKCQ/qDiRQLTy1Ubw+uOxidTlaatwaSoOQSG72NOmFUspLMktNLNI5IaGHTrb+JiI8A4OXqL+Ni76JxRAVL/9r91f5gS04vITE5UeOIRF5LNiSz6NQiAGz1tvSv3V/jiERmSYKSiwbXHazenn9yvkwYVQAtu/p4JtPU54PIGz7OPnSv0h2AB9EP2HJ1i8YRibz2z/V/uBt5F4AulbpQxKWIxhGJzJIEJRdV8q5Ei9ItADgfdJ4j945oHJHISyG2D9gbuAeAil4V1XPBWjl7OFCvR0WcPRy0DiVLBtcZrN5ecGqBZnEIbaR+z1OfC8LySYKSy1J3ipx/Yn4GNUV+85/7DhSMV80G17H+dm9nT0fq96qEs6ej1qFkSceKHfF19QVgw6UNBMcEaxyRyCuPYh+x9sJawHg1rWvlrhpHJLJCEpRc1rt6b5ztnAFYdnaZLCBYQBgUAwcK/QMYFwYcWGegxhEVXLZ6WwbUHgBAoiGRP878oXFEIq+sOLeC+GTjxIyv1npVJki0MpKg5DI3Bzd6VzcuIBgeH65Ody7yt/8eHCDI3jhyq135dpRyL6VxRAXboDqD1Nsy7L/gSP1eSx8w6yMJSh4waeY5Kc08BcHya49/pcvcJ9qrUaQGDYs3BOBE4AlOBZ7SOCKR2y4EXeDQ3UMA1PWtS13futoGJLJMEpQ80LJMS8p7lgeMPcpvhd/SOCKRmyLiIvnrxjoA3GwK0b3yC9oGJADTRFGuouR/JldPLLBzrLV2Os9LkqDkAZ1Op/6BKCjqmHyR/9w4HMi7H35BrCEGgHohzVk/4RA3DstEfVp7peYrj+dEObNE1sjKx5IMSSw+vRgw9kHqV6ufxhGlZa2dzvOSJCh5ZFDdQegwjuJYcHKBzImSD904HMiOGSfYZbtZLWse3p7o0Dh2zDghSYrGPJ08ebHqiwAExwSz+crmjDcQVmvbtW3cj7oPwPOVn6ewS2GNIxLZIQlKHintXhr/8v4AXHt0jb239mockchJBoPCwUUXeGh3n8vOZwHwjS9Fubgqap2Diy9gMEhiqqXUzTzzTswn6Ho4AEHXw+W9yUekc2z+IAlKHpLOsvlX4MVQokPjOFBou1rWPKKdetUMIDokjsCLoVqEJ/5f+/LtKe5WHICNl/5m84L9AOyfe44Vb+6Sq1z5QGhsKH9d+guAIi5F6Fyxs8YRieySBCUPvVT1Jdwd3AFYdW4VUQlRGkckckpsWDwGDPznvgMAnaKnSbi/2XpCOzZ6G54v3AOAZF0yhwvtUh+Tprj8YdmZZWr/ov61+mNnY6dxRCK7JEHJQ052TrxS8xUAohOjWXVulcYRiZzi5OHARedThNoFAVAzuj4eyV5m6wntGAwKFY82UO/vL7Rdne03hTTFWbfUU9sPqjso/YrC4kmCksdMhjrKuiD5hm9VLw4V/le93zy8fZo6Lt6O+FZNm7SIvBN4MRSPoCKUj60KwB3HG9x2uG5SR5rirNfZh2c5eu8oAM8Ve47aRWtrHJF4FllOUGJiYpg3bx7vvPMOXbt2pWXLlmzenPne8JGRkXz99dc8//zzdOjQgXHjxnHp0qWshmG1GpVoRDWfagDsCdjDtdBrGkckckJEQjjHnI39GVyS3agd3ThNnSYDqqHXW/d6PNYupYmtWXg7teyA+/Z06wnrsvDkQvW2TJBo/bKcoISHh7NgwQICAgKoWLFilrY1GAy8//77/PPPP/To0YM33niDR48eMW7cOG7fvp3VUKySTqcz6VW+8NTC9CsLq7Hy3EriDXEANE/wx0553O7t4u2I//h6lGvkq1V44v+lNLE1jGyJncE4J8oht10kkWi2nrAeicmJ6twndno7+tbsq3FE4lllOUHx9vZm7dq1rFq1ipEjR2Zp2127dnH27FkmTpzIa6+9Ro8ePfjhhx/Q6/XMn19wRrX0r90fvc740i88tRCDYtA4IvGsUo/Kmjr2I5oPrQFA86E16DOztSQnFsK3qhcuXo44G1ypF9UUgCjbCE67HlbrSFOcddp6bSsPoh8A0L1Kd7ydvTWOyDJY84y1WU5Q7O3t8fbO3hu/e/duvLy8aNmypVrm4eFBmzZt2LdvHwkJBWNmx+JuxelUsRMAt8JvsfPGTo0jEs/iYvBFDt45CECtIrWoX/w5Cpc3jtYqXN5dmnUsiF6vo8lAYxNrs1T9hPanauaRpjjrlHruE2neecyaZ6zN006yly9fplKlSuj1prutVq0acXFxBaaZB0zXhpDOstbtyXZvnU6+3CxZuUa++I+vRwPHxngm+gBw1uUoiT4x0hRnpYJjgll/aT0ARV2K0rFiR40jEjkhTxOU0NBQs1dfUspCQkLMbhccHMylS5fUfwEBAbkaZ17oXqU7no6eAKw5v4bwuHCNIxLZkWxIZtFp49pKtnpbXq39qsYRicwo18iXvj/407tcHwAMOgPRfW5IcmKllp1ZRqLB2I9oQO0B2OptNY5I5IQ8TVDi4+Oxt7dPU55SFh9vvuf8+vXrGT58uPpvypQpuRpnXnCwdVAXsIpNimXVeZkTxRrtuLGDe5H3AOhSqQtFXIpoHJHILL1ex5AGj5sCFp5eKGtkWanUV6Flavv8I08TFAcHB7P9TFLKHBzMd+Lp3r07c+bMUf999NFHuRpnXkn9hyTLv1snS1/SXWSsQqGKVIypDhjn0Dh2/5jGEYmsOv3gNMfvHwegYfGG1ChSQ+OIRE7J0wTFy8vLbDNOSll6nW99fHyoUqWK+q9MmTK5GmdeqV+sPjWL1ARg/+39XA65rHFEIivC4sJYe3EtAN5O3nSt3FXjiER2NIt4PCeK/FCwPtI5Nv/K0wSlUqVKXLlyBYPBdFjthQsXcHR0pFSpUnkZjuZ0Op3Jr+7UnS2F5Vt5biVxSca5T/rV6oe9TdrmS2H5GkS2xMnGCYA/zvyhvqfC8iUmJ7Lk9BIA7G3s1aVERP6QawlKcHAwAQEBJCUlqWWtWrUiNDSUPXv2qGVhYWHs3LmTZs2ame2fkt/1r90fG50NAItOLyLZkKxxRCKzLGFJd2ue48BSOBmc6VbmeQAexT1iw6UNGkckMmvTlU0ExRjXv3qx6ot4OnlqHJHISdnq6rxmzRqioqLUppn9+/fz8OFDAHr27ImrqyuzZ89my5YtrFixgmLFigHQunVrVq9ezbRp07h58ybu7u6sW7cOg8HAkCFDcuiQrEtR16J0qdSFDZc3cCfiDjtu7KBDhQ5ahyWe4lLwJf678x9gnPuknm89TeJImeNAPJtXKrzKqusrAWOHy941emsckciM1J1jpXkn/8lWgrJixQoCAx8vSb5nzx71qkiHDh1wdXU1u52NjQ1fffUVv/zyC2vWrCE+Pp6qVasyceJESpcunZ1Q8oXBdQez4bLxV9uCkwskQbECqZcoGFx3sMx9YuVa+PpR2r00t8JvseXqFu5F3qO4W/Ece/6YR3Fc2HGbav6lrHLCLEsUFB3E35f/BoyTX7Yvn3aBTmHdspWgrFy58ql1Jk2axKRJk9KUu7m58f777/P+++9nZ9f5UrfK3fB28iYkNoS1F9cSFheGh6OH1mGJdCQbkll0yjj3iY3Ohldrydwn1k6v0zOoziC+2PMFBsXAktNLeK/5ezn2/DFh8Zz48ypl6heRBCWHLD2zlCSDsQvBgNoDsNHbaByRyGl52klWmGdvY69+ycUlxbHi7AqNIxIZ+ffGv9yNvAsY5z4p6lpU44hEThhUZ5B6e8HJBTInioWzhD5gIndJgmIhTOZEkanvLZpMCpU/VfCqQMsyxnXCLgRf4PDdw0/ZQmjlZOBJTj04BUCTkk2o6lNV44hEbpAExULUK1aPOkXrAHDwzkEuBF3QOCJhTnhcOH9e+BMALycvulaSuU/yE5M1smROFIslEyQWDJKgWJDUv8ZTd8IUlsNk7pOa/XCwleG9+UnvGr1xsXMBYNnZZcQmxmockXhSQnICS88sBcDBxoE+NftoHJHILZKgWJBXa72qLnK16NQitQOYsBzSvJO/udq70qt6LwDC48P569JfGkcknrTx8kaCY4IBeKnaSzKgIB+TBMWCFHYpTLfK3QC4H3Wf7de2axyRSO1yyGUO3D4AQM0iNXmu2HMaRyRyQ+r5NKSZx/LI3CcFhyQoFsakDVw6y1qU1EsRDK4jc5/kV35l/CjnUQ6Abde2cSfijsYRiRQPYx+y8fJGAEq4lcC/nL/GEYncJAmKhelSqQuFnQsDsO7iOkJjQzWOSMD/z31yOtXcJ7Vl7pP8KmVOFAAFhcWnFmsckUix5sZKkhXjciAD6wyUuU/yOUlQLIydjR39a/cHjJ3Blp9drnFEAmDnzZ3qL+nOlTrj6+qrcUQiNw2q+3hOlPkn58ucKBZAQWHZ1T/U+9IHLP+TBMUCpf7Dm39yvnaBCFXqvgipJ/QSOc8SFkAs61GWNmXbAHAl9Iq67pJ4LOZRHMdWXyHmUd6s/nzL4SoXws4D0KxUMyp7V86T/QrtSIJigWoXra12wDx67yhnH57VOKKCLfXcJ56Onjxf+XmNI8rfUhZA1HpKeOksm7GU6ftjwuLzZH/73f9Rb8vcJwWDJCgWKvUfYOrOmSLvrTq/itgk43wY/WrJ3CcFRY9qPXC1Ny58uvzscmISYzSOqGAyGBTuXn3I4UK7AHCydeLlGi9rG5TIE5KgWKh+tfphp7cDYPHpxSQmJ2ocUcE198Rc9bY07xQcLvYuvFzd+EUYmRDJ2gtrNY6o4LlxOJAVb+7i11ULiLaJBOC5qOaEnpYJ9AoCSVAslLezN92rdAfgQfQDtl7bqnFEBdP5oPMcvHMQgFpFatGgeAONIxJ56bV6j5t5pD9Y3rpxOJAdM04QHRrHfvfHc0I1CmrDjhknuHE4UMPoRF6QBMWCpW4Dlw9Hbcw9/vjqydB6Q2XukwKmeanmVPSqCBhXsQ4IC9A4ooLBYFA4uMi4HlmYTSjnXI4B4JVYmKoxtQE4uPgCBoOMrsrPJEGxYB0rdqSoS1EANlzawMOoIIKuhwMQdD1c/jhzWUJygjr3ib2NvTr8WxQcOp1O7Q+moLD4tMyJkhcCL4YSHWocHfSf+w4MOgMATSLaosc490l0SByBF2WeqPxMEhQLZqu3ZUDtAQAkGhJ579PP2T/3HAD7555jxZu75DJnLtpwacPjNT+qvoS3s7fGEQktDKgzAB3GK2cLTi6QOVHyQOz/jwxSUNjn/rh5u0V4B7P1RP4kCYqFSz0nyk67zSaPRYfG5VpbbF7PcWCJUneOHVpvqIaRCC2Vdi+Nf3njlOrXHl1j3619GkeU/zn9/xw4l53O8tD+HgBVo+tQOLGY2Xo5xRLm4BGPSYJi4ar5VKd8YhUAbjle47bD9TR1cqMtNq/nOLA0t8Nvs+XqFgDKuJdRv6BEwST9wfKWb1UvXLwc2ee+RS1rEd7RpI6LtyO+Vb1ydL+WMgePMJIExcIFXgylSejjL8cDhf5JU0faYnPegpMLUDAmfa/VfQ29Tv5UCrIXq75IIYdCAKw4t4KI+AiNI8rf9Hod1fsW55jbfgCck115LqqZSZ0mA6qh10un9fxMPnUtXGxYPI0iWmFrsAXgYKF/SdSlnRNF2mJzjkExMO/kPAB06EyGmoqCydnOmf61jJ2kYxJj+OPMH0/ZQjyr/fY7SNQnANA0oi12ij1gvHLiP74e5RrJelj5nSQoFs7JwwEXgxv1/v/XQ5RtBCdd064LktNtsQXZzhs7uRl2E4D2FdpT2r20tgEJizC8/nD19pzjczSMpGD4/fjv6u0xbUcB0HxoDfrMbC3JSQEhCYqFS2mL9QvvpJbtTdUuC7nTFluQpe4cO6zeMA0jEZakrm9ddaK+4/ePc/z+cY0jyr+O3z/OicATADQq0YgWtZoAULi8uzTrFCCSoFg4vV5Hk4HVqBJTmyIJxQG44HKSh3b31DrSFptzHsU+UhcG9HZ6PJuvEADDn0t1FeWYXEXJLamvnsgIuoJLEhQrUK6RL+3H18c/oZtattd9q7TF5oKlZ5YSn2zszzOg9gBZGFCY6FuzLy52LoDxXIlKiNI4ovwnJjGGpWeWAsa+P6/UfEXjiIRWJEGxEuUa+fLdJ59jqzMuIHjEdycvfddMkpMcpCiK6dwnz8kvN2HKzcFN/cKMTIhk5bmVGkeU/6w5v0YdJdWnRh919JQoeCRBsSK+bkXpUrorACGJwWy88rfGEeUvR+4d4WTgScDY7l2zSE1tAxIW6fX6r6u3pbNszvv9xOPmnWHPSR+wgkwSFCszsNJg9fbs47O1CyQf+vXor+rtN+q/oWEkwpI1LN6Q2kX/f8G6Owc58+CMxhHlH5eCL7EnYA8A1Xyq0bRkU40jElqSBMXK+BVrSeEEY7POtmvbuPHohsYR5Q+PYh+x/OxyANwd3OlTs4/GEQlLpdPpTDvLylWUHPPbsd/U28OeGyarhxdwkqDkgLxcv0Gv05sMOU7d211k3+LTi4lNigVgUJ1BONs5axyRsGSv1noVR1vjdOiLTy8mNjFW44isX2xiLAtOLgDAwcaBQXUGaRuQ0JwkKDkgr9dvaBbeDludcWbZeSfnkZicdmZZa6L1woSKopg074xoMEKTOIT18HTypHf13gCExYWx5sIajSOyfivOreBR3CMA+tTsI6uHC0lQrJF7shedSnUBIDAqkL8vW3dnWa0XJtx7ay8Xgi8A0LJMS6oXrq5JHMK6pO4smzrBFdmT+jUc2WCkhpEISyEJipUaWHmwejt1u63IullHZ6m3pXOsyKzmpZqryez+2/s5/eC0xhFZrxP3T3Do7iEA6hStQ+MSjTWOSFgCSVCsVKtirSnrURYwdpa9GnpV24Cs1MPoh6w5b7w87+PsQ49qPTSOSFgLnU7HqAaj1Ps/H/5Zw2isW+ofCSMbjJTOsQKQBMVq6XV69de+gsKsI7OesoUwZ/6J+SQajH14htQdIjPHiiwZUGcArvauACw5s4SwuDBtA7JC4XHh6syxrvau9KvVT+OIhKWQBMWKDX1uKA42xi/UeSfnEZ0QrXFE1sWgGEyax1L3KRAiMwo5FGJg7YGAcYr2RacWaRyR9VlyegkxiTGAcXkJNwc3jSMSlkISFCvm4+xD31p9AeNIgj/O/KFxRNZl+7Xt3AgzziPToUIHKnhV0DgiYY1GNXzczPPLkV9QFEXDaKyLoiimfcAaSB8w8ZgkKFZuTMMx6u2fjvwkH45Z8NORn9Tb0jlWZFeNIjVoVaYVAJdCLrHjxg5N49F62H5W7L21l3NB5wBoVqqZOkOvECAJitWrX7w+TUo2AeD0g9Psu7VP44isw9XQq2y8vBGA0u6leb7K8xpHJKzZ6Iaj1ds/H9G2s6zWw/az4odDP6i3ZWixeJIkKPlA6qsoWn84WiqDQSHoejgAQdfD+fHQjygYrzaNbjgaW72tluEJK/di1Rcp7lYcgPWX1nMr/JbGEVm+gLAA1l5cC4Cvqy8v13hZ44iEpZEEJR/oVb0XhZ0LA7DmwhruRd7TOCLLcuNwICve3MX+ucZLyTvmHWHOQeMSAU62TrJiqnhmdjZ2vP6csZO1QTHw21GZm+hpfjnyCwbFABivntjb2GsckbA0kqDkAw62DuoIlCRDErOPySrHKW4cDmTHjBNEhz5ujz/gvoNYvXHUwAvFeuDl5KVVeCIfeb3+6+qVuNnHZ8v6PBmITohWF1m0t7FnRH1ZXkKkJQlKPjGi/ghsdDaAccro+CTLb3/ObQaDwsFFF0zLMPCv53r1ft3TbTAYpGOxeHbF3Iqp6/MExwSz5PQSjSOyXEtOL1HX3Xml5isUdS2qcUTCEkmCkk+Uci/Fi1VfBOBB9AOWnV2mbUAWIPBiqMmVE4Dzzsd5YH8XgCrRtfF+WJzAi6FahCfyobebvq3e/v7g9zKqzgxFUfjh8OPOseMaj9MwGmHJJEHJR1J/OH7333cF/sMx1swohh2ef6m3/cO6p1tPiOxoULwBfqX9ALgQfIGt17ZqHJHl2XFjB+eDzgPQonQLniv2nMYRCUslCUo+0qxUM3XI8ZmHZ/jn+j8aR6QtJw/Taevv29/irOsxALwTi1AnqrHZekI8i7eavKXe/v7g9xpGYplmHpqp3n6z0ZsaRiIsnSQo+cyEphPU29/+962GkWjPt6oXLl6O6v2tnn+qt9s+6o4eG1y8HfGtKp1kRc7pXqU75T3LA8aFPM8+PKtxRJbjQtAF/r78NwClCpXipWovaRyRsGSSoOQzL1V9iXIe5QDYem1rgf5w1Ot1NBlYDYAwmxAOuv8LgFOyCy3DOgHQZEA19HpZOVXkHBu9jUm/ihkHZ2gXjIX55sA36u3xTcbL/EMiQ5Kg5DM2ehvGNxmv3v/uv++0C8YClGvki//4euwpvpFkXRIArcO64u3lhf/4epRr5Jsr+3X2cKBej4o4S/NRgfRa3ddwd3AHjCNWHsY+1Dgi7d2LvMfi04sB8HD0YPhzwzWOSFi6LCcoCQkJzJo1i5deeol27doxYsQIjhw5kqltjx49yrhx43j++efp0qULr7/+Olu3SieynDak3hA8HD0AWHpmKYFRgdoGpDHvOs7s9twEgK3Blg86v0Ofma1zLTkBcPZ0pH6vSjh7Oj69ssh33Bzc1C/g+OR4fr8ocxPNPDiTREMiAKMajJJVi8VTZTlBmTZtGitXrqR9+/a8+eab6PV63nvvPU6fPp3hdvv27WPChAkkJiYyePBghg0bhoODA1OnTmXlypXZPgCRlqu9qzrxUUJyAj8e+lHjiLQ159gcIuIjAGga4U/1qpWlWUfkunFNxmGntwNg7sXZxOijNY5IO+Fx4fx67FcAHGwcGNt4rMYRCWuQpQTl/Pnz7Nixg9dff51Ro0bRvXt3ZsyYga+vL7Nmzcpw2z///BNvb29mzJhBz5496dGjB99//z0lSpRg8+bNz3QQIq2xjcaqH44/HfmJsLgwbQPSSEJygjqSQoeODqE9NY5IFBQlC5VkYJ2BAEQkRrDbY6PGEWnnt2O/qT8SBtUZhK9r7l29FPlHlhKU3bt3Y2NjQ/fu3dUyBwcHunbtyrlz53jw4EG628bExODm5oa9/eP1FmxtbXF3d8fBQdrpc1qJQiUYVGcQABHxEfx8uGAuIrjszDLuRhonZutUqjO+iSU1jkgUJO83fx+9zvgxu91zLTFJMRpHlPfik+LVjsI6dExoNiHjDYT4f1lKUK5cuULJkiVxcXExKa9WzThS4urVq+luW7duXW7cuMHvv//OnTt3uHv3LgsXLuTSpUv07ds3G6GLp/mgxQfqh+P3B78nOqFgXWJONiQzff909f6YGjJjpTCV252ZK3lXUqe/j7QN54+rBW/6+8WnF3M/6j4AL1V7icrelTWOSFiLLCUoISEheHt7pylPKQsODk5320GDBtGmTRsWL15Mv3796Nu3L0uXLuXzzz+nVatWGe43ODiYS5cuqf8CAgKyEnaBVcGrAn1rGpO/kNiQAreI4Krzq7gYfBEAv9J+NCrSWOOIhKXJi87M7zf7QL0989QM4hILzszFicmJ/G/v/9T77zV7T8NohLXJ0iD0+Ph47Ozs0pSnNNvEx6f/h2dnZ0epUqVo3bo1LVu2JDk5mQ0bNjBlyhS+++47atSoke6269evZ8GCBVkJVfy/iS0msvTMUgC+PvA1IxuOxNE2/48sMSgGvtjzhXp/cqvJGkYjCqobhwO5uOgRtZwacsb1CIHx9xj/wSe83+etXB1FZikWn17MjbAbAHSo0IHGJeVHgsi8LF1BcXBwIDExMU15QkKC+nh6ZsyYwYEDB5g8eTL+/v506NCB77//Hm9vb3744Yd0twPo3r07c+bMUf999NFHWQm7QKtRpAYvVTXO1ng/6j4LTi7QNqA8svr8anW9j+almtO2XFuNIxIFzY3DgeyYcYLo0Di6hPRRy9c5LmXbjKPcOJy/h/8nJicyde9U9b78SBBZlaUExdvbm5CQkDTlKWU+Pj5mt0tMTGTjxo00bdoUvf7xLm1tbWncuDGXLl0ym/ik8PHxoUqVKuq/MmXKZCXsAu9Dvw/V2//b+z/ik/L3JWaDYuDz3Z+r9ye3moxOJ8OKRd4xGBQOLrqg3q8YV53KMbUAeGB/l0OFdnJw8QUMhvy7oOeS00u4/ug6AO3Lt6dZqWYaRySsTZYSlIoVK3Lnzh2io007W54/f1593Jzw8HCSk5NJTk5O81hycjIGgwGDwZCVUEQW1C9en66VugJwO+I2vx37TeOIctfaC2s5F3QOgCYlm9CufDuNIxIFTeDFUKJD40zKXgjur97e4P0H4SGRBF4MzevQ8kSSIUmunohnlqUEpXXr1iQnJ7N+/Xq1LCEhgU2bNlG9enWKFi0KwIMHD0w6snp6euLq6srevXtNrpTExMSwf/9+SpcuLUONc9mUtlPU21P3Ts23I3qSDcl8tvsz9b5cPRFaiA1Le5Wycmwtqkc/B0CwfSD73LeZrZcfLDm9hGuPrgHQrnw7mpdurnFEwhplKUGpXr06bdq0Yfbs2cyaNYv169czfvx4AgMDeeONN9R6U6dOZcCAAep9GxsbXnnlFW7fvs0bb7zBypUrWb58OSNGjCAoKIiBAwfm3BEJs+r61lWHOz6MfsgPhzLu92Ot/jjzB2cengGgcYnGdKzQUeOIREHklM6w5ReDH38ubvReDm7578pxXFIck3c9vmIiV09EdmV5qvtJkybRu3dvtm7dyg8//EBSUhJffvkldevWzXC7gQMH8vHHH2Nra8uCBQuYO3cuLi4ufP7553To0CG78Yss+LzN5+q8KF8d+CrfzS4bnxTPxzs/Vu9P858mV0+EJnyreuHilXa0XLm4KtSNbAJAmF0If0Xmv2U+Zh2Zxa3wWwB0qtiJFqVbaByRsFZZXuvawcGBUaNGMWrUqHTrpDcqp3379rRv3z6ruxQ5pKpPVQbWGciCkwsIiwvjmwPfmDT9WLtZR2cREG5sWuxYoSNtyrXROCJRUOn1OpoMrMaOGSfSPPZCyABOuR5C0SlM3z+d4fWH55uF88Liwpiy1/iZokPHdP/pT9lCiPRl+QqKsG6TW01W1+j5/uD33I24q3FEOSMiPsKkU940/2kaRiMElGvki//4emmupFRxrUbX4i8AEBQTxPR9+edL/Kv9XxEaa+z42792f+r41tE4ImHNJEEpYMp6lGVkg5EAxCTGMOnfSRpHlDO+2v8VwTHGmYz71uxLvWL1NI5ICGOS0ueH1jQfapyIsvnQGvSZ2ZoZvb7B3sY4weW3/31LQJj1z459N+KuuuaOvY09n7f5POMNhHgKSVAKoE9afYKnoycAi04t4ui9oxpH9GyuP7rONwe+AcBOb8cXbb54yhZC5B29Xkfh8u4AFC7vjl6vo4JXBd5s9CYA8cnxTNwxUcsQc8QHOz4gNikWgNENR1PWo6y2AQmrJwlKAeTt7G3Ss378lvEoivVOGPXOtneITzYO13yryVtU8KqgcURCPN2HLT/Ex9k4ueWys8s4eOegxhFl3/5b+1ly2rgQopeTl8nkkEJklyQoBdSohqOo4l0FgP2397Pq/CqNI8qeHdd3sPbiWgB8XX35qKUsgyCsg4ejB5+1fjxnz7gt40g2pJ3M0tIlG5IZu3msen9Kmyl4O6ddVFaIrJIEpYCys7Hjmw7fqPff2voWEfERGkaUdUmGJMZtGafen+4/Pd+MhhAFw+v1X6d64eoAHL57mDnH52gcUdYtvbqYE4HG0Up1itbh9fqvaxyRyC8kQSnAulbqSpdKXQC4F3mPj/41Xn0wGBSCrocDEHQ93GLXC/nuv+/UKe0bl2jMgDoDnrKFEJbFVm/Lz11+Vu9/8M8HBEZZzyKCkTbhTD3xuDPsD51/wEZvo2FEIj+RBKUA0+l0/NzlZ5xsnQD46fBPrNu2hRVv7mL/XOMX//6551jx5i6LW3n1SsgVdbZKvU7Pj51/VCehE8KatC7bmkF1BgEQHh/O21vf1jiizFte5DdC443DivvW7EvLMi01jkjkJ/KJXsCV9SirtoMrKIzbOYaIUNN1eqJD49gx44TFJCmKovD6368Tl2RcjG1c43E0LNFQ46iEyL6v23+Nl5MXYOwwu+3aNo0jerptd7ZwuNAuADwdPfm+4/faBiTyHUlQBOObjKdWEeNS8Lccr7HFy3yHWUtZHn7uibnsurkLMCZYMqxYWLvCLoX5qt1X6v2h64da9FIUEfERvHPw8ZWeGZ1mUNS1qIYRifxIEhSBnY0d/6v5DTrFeDps8FnKTYfLaepFh8Rpvjz8zbCbTNg2Qb3/W7ffcLF30TAiIXLGa/Vew7+cPwB3Iu6YjIyxNO9se4f7MfcAaFPcnwG1pf+XyHmSoAgAqtnUpHOocbXjZF0yc4t9S7wuLk09LZeHTzIk0f/P/upoo0F1BtGhgiw0KfIHvU7P/Bfm4+5gnNRtyeklrD6/WuOo0vrzwp/qaCMHgyPfNvleFuUUuUISFAEYl4d/PvhVysRVBCDQ4TZrCs8zW08r/9v7P/bf3g8Ym3ZmdpqpWSxC5IZS7qX4sfOP6v03/n7DotbLuh1+m2Hrh6n3+zwcQSnX0hpGJPIzSVAEYFwe3t3LlaH338XeYExCdnr+zRG3PWodF29HfKt6aRLf7pu7+Xy3cTijXqdnaY+luDu6axKLELmpf+3+9KzWE4CQ2BB6r+pNQnKCxlFBYnIi/df251HcIwA6+nSlRXgHi56KQFg3SVAE8Hh5+GIJpej98PEvpIW+M7hrb1zIrMmAauj1eX8p93b4bXqv6k2yYpxl8+OWH9OsVLM8j0OIvKDT6fit22+Udjdemfjvzn+8u+1djaOCCdsmsCfA+IPFJ7kInf8biA6dxU5FIKyfJChClbI8fBebHjQJbwtAvD6O30pNpeHo8pRr5JvnMcUlxdFjZQ+CYoIA6FChAx+3/DjP4xAiL3k7e7O692p1xeMfDv/AolOLNItn/on5/HjY2PRka7Bl2J33cTE8nrXZ0qYiEPmDJCjCRLlGvrzyQxt+7vQLJePKA3Df9g7jroxQ5x3JSRnNWptsSKb/n/3V1ZbLeZRjWc9lMlOlKBAalmho0h9l2Pph/Hvj3zyPY/fN3byx8Q31fr+Ho6gQV81s3dyaisDZw4F6PSrirGEfOJH3JEERaej1OkpX8mXUvQ/xcTSutro7YDcD1w7EoBhybD83DgemO2utoiiM2TSGNRfWAOBs58zaPmvVyayEKAiGPzecUQ1GAZBoSOSlFS9x5sGZPNv/ifsneH7Z82ofmNaPuuIX3ind+rk1FYGzpyP1e1XC2dMxx59bWC5JUES6CicWY2nbFTjbOQOw6vwqhq8fniMrrt44HMiOGSeIDjW9KhMdGsc/M44zZul4fj32K2Bcr2TNy2uo41vnmfcrhDXR6XTM7DyT5ys/DxgnSGu3uB1nH57N9X1fDL5Ip6WdiEyIBKCNjz99Ho546nZaTkUg8hdJUESGnvOpz8peK7HRGZtV5p2cx6B1g0gyJGX7OQ0GhYOLLph9TEFhReHZ/HLtB7Vs/gvz6VQx/V9tQuRntnpblvVcRqMSjQB4GP2QNgvbcCrwVK7t8/j94/jN9+Nh9EMAmpVqxhy/+dhi+9RttZyKQOQvkqBYGS3aYrtW7sqynsuw1Rs/nJaeWcqLy18kPC48W88XeDE0zZUTgERdIvN9v2eH119q2Y+df6R/7f7ZC1yIfMLF3oWt/beqSUpwTDCtFrRi69WtOb6vnTd20mZhG4JjggGo61uXv/v+TbmaJXHxyriJRcupCET+IwmKldGqLbZ3jd4mowo2XtlIk7lNuBySdkr8pzF3CfiRbTDflHqf/9z/AUCn6Jle/TvGNBrzbIELkU94OHqwrf82mpRsAhhXPu7yRxe+++87FOXZO6YqisJ3/31H+8Xt1dmaW5Ruwc5BO/F08lSnIsiIVlMRiPxJEhSRaS9UfYFN/Tbh6egJGNuon/vtOX4+/HOWOs+mvgSsoHDQbSeflh3FdaeLANgZ7Blx7wMG1BiYswcghJVzd3Rn+4DtvFj1RQAMioEJ2ybQaWkn7kTcyXBUXEZuhd+i89LOTNg2QZ1vqGulrmztvxUPRw+1XspUBE9eSXHxdsR/fD1NpiIQ+ZckKCJL/Mv7c2T4EWoWqQlAdGI0YzaPofHvjfnn+j+Z+iXnW9ULFy9Hrjte5JtSHzC3+NfE2EQB4JVYmPdvfUNLh3ZyqVgIM1ztXVnz8ho+8vtILdt2bRtVfqhC7w8G88/8IwCZmkAtIj6CyTsnU+OXGmy99ri56EO/D/nrlb/UDvKplWvkS58fWtN8aA0Amg+tQZ+ZrSU5ETnu6T2ehHhCBa8K/DfUOLtlykibo/eO0n5xe+oUrcOQekPoVLETlbwqpVlE7Fb4LbZc3cKvlWZzIuyYyWONIlrR98FIXA2FaDJSLhULkR69Ts8Xbb+geenmDF0/lHuR94hJjuFPl0VsrLCKxhGtqR/ZnEqParJjxgmTqxuxibHsv72fVedWsezsMnWUDkBxt+LMeX4OXSp1yXj/eh2FyxuXmihc3l3+VkWukARFZIurvSuzus2id43evL31bU49MI4oOPXgFOO2jAPA09GT8p7lcbJzIj4pnhthN9SOd6kVSShOr6Ah1Itqhou3I00GVJNfY0JkQqeKnTg94gyvfj6Mf5zWk6xLJl4fyx6Pzezx2IyNYoN3YlG+Xu9JkbOeBEYHEhAWQKIh0eR5bPW2jKg/giltp5g06QihJUlQxDNpW64tx0ccZ8XZFfxw+AcO3jmoPvYo7hHH7h9Ld9taRWoxuuEYmj7y5/D8yzQfWoMqbUrJrzEhsiA+QKHX7eG0tOvKNq8/OVjoX+L1xlFyybpkHtrf4yH3uHw77bYudi70q9WPD1p8QHnP8nkcuRAZkwRFPDO9Tk/fWn3pW6svZx+eZePljfx7818uBl80dtz7/w60JQuVpLJ3ZVqXaU3nSp2pX6w+Op2O4BvhwGW5VCxENqSMiiuSWJz+D8bQM2gIZ12Ocs75OAGOV3lof5cEvbGOq70rZT3K0qREE9qWa0u3yt1wc3DL6OmF0IwkKCJH1SxSk5pFavJ+i/cB43o6BsWAXqeXNXSEyAVPTozmZHCmYWRLGka2BIwj5RQMdJhUnzI1fNP0CxPCUskoHpGrbPQ22NnYSXIiRC5JGRWXHh063LxdKF1dkhNhXSRBEUIIKyYTqIn8ShIUIYSwcjKBmsiPpA+KEELkA+Ua+VKmQVEu7bzN/rnnZFScsHpyBUUIIfIJmUBN5CeSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyObVY3SEhIYO7cuWzbto3IyEgqVKjAsGHDaNiwYaa237FjB6tXr+batWvY2tpSpkwZhg0bRv369bMcvBBCCCHypywnKNOmTWPXrl307t2bkiVLsnnzZt577z1mzpxJ7dq1M9x23rx5LFy4kNatW9OpUyeSkpK4ceMGwcHB2T4AIYQQQuQ/WUpQzp8/z44dOxg5ciR9+/YFoGPHjgwePJhZs2Yxa9asdLc9d+4cCxcuZPTo0bz88svPFrUQQggh8rUs9UHZvXs3NjY2dO/eXS1zcHCga9eunDt3jgcPHqS77apVq/Dy8qJXr14oikJMTEz2oxZCCCFEvpalBOXKlSuULFkSFxcXk/Jq1aoBcPXq1XS3PXbsGFWrVmX16tV0796dTp068eKLL7JmzZpshC2EEEKI/CxLTTwhISF4e3unKU8pS68vSWRkJOHh4Zw9e5bjx48zePBgihYtyubNm5k5cya2tra88MIL6e43ODiYkJAQ9X5AQEBWwhZCCCGElclSghIfH4+dnV2acnt7e/Vxc1Kac8LDw5k8eTL+/v4AtG7dmsGDB7No0aIME5T169ezYMGCrIQqhBBCCCuWpQTFwcGBxMTENOUJCQnq4+ltB2Bra0vr1q3Vcr1eT9u2bZk3bx4PHjygaNGiZrfv3r07zZs3V+8HBAQwZcqUrIQuhBBCCCuSpQTF29uboKCgNOUpzS8+Pj5mtytUqBD29va4urpiY2Nj8pinpydgbAZKL0Hx8fFJ97mFEMLSOXs4UK9HRZw9zP+IE0KklaVOshUrVuTOnTtER0eblJ8/f1593OxO9HoqVapEeHh4miswKf1WPDw8shKKEEJYDWdPR+r3qoSzp6PWoQhhNbKUoLRu3Zrk5GTWr1+vliUkJLBp0yaqV6+uXgF58OBBmo6sbdq0ITk5mS1btqhl8fHxbN++nbJly8oVEiGEEEKostTEU716ddq0acPs2bMJCwujRIkSbNmyhcDAQN5//3213tSpUzl58iR79uxRy1544QU2btzI999/z+3btylatChbt27lwYMHTJs2LeeOSAghhBBWL8tT3U+aNElNLqKioihfvjxffvkldevWzXA7BwcHZsyYwaxZs9i0aRNxcXFUrFiRL7/8kkaNGmU3fiEyTfoBCCGE9chyguLg4MCoUaMYNWpUunV++OEHs+Wenp5MmjQpq7sUIkek9AMQQghh+bLUB0UIIYQQIi9IgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJijBL5gwRQgihpSzPgyIKBpkzRAghhJbkCooQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEJzMqRZCCHEk2SYsdCcDGkWQgjxJLmCIoQQQgiLIwmKEEIIISyOJChCCJGPSJ8ukV9IHxQhhMhHpE+XyC/kCooQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBAiy2RCOJHbZKI2IYQQWSYTwoncJldQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWx1TqA7IiPjwcgICBA40iEEEIIkVVlypTB0dExwzpWmaAEBgYCMGXKFI0jEUIIIURWzZkzhypVqmRYR6coipJH8eSYsLAwDh8+TLFixbC3t9c6nFwXEBDAlClT+OijjyhTpozW4eQpOfaCd+wF9bih4B57QT1uKLjHnm+voHh4eNChQwetw8hzZcqUeWrGmV/JsRe8Yy+oxw0F99gL6nFDwT729EgnWSGEEEJYHElQhBBCCGFxJEGxAt7e3gwePBhvb2+tQ8lzcuwF79gL6nFDwT32gnrcULCP/WmsspOsEEIIIfI3uYIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiWOVEbflRcHAwq1ev5sKFC1y8eJHY2FhmzpxJvXr10tR98803OXnyZJryRo0a8c0335iUJSQkMHfuXLZt20ZkZCQVKlRg2LBhNGzYMLcOJcuycuwAZ86c4ddff+Xy5cu4uLjQpk0bhg8fjrOzs0k9azh2czZv3sy0adPMPrZ27do0vf337dvH/PnzCQgIwMPDgy5dujBw4EBsba3rz9ta36+sOHHiBOPGjTP72KxZs6hRo4Z6P7PnuSWKiYlh+fLlnD9/ngsXLhAZGcnEiRPp3Llzmro3b97kp59+4syZM9ja2tK0aVPGjBmDh4eHST2DwcDy5ctZt24doaGhlCxZkv79+9OuXbs8Oqqny+xx/+9//2PLli1pti9dujRLliwxKbOG484t1vUJlo/dvn2bP/74g5IlS1K+fHnOnTuXYf3ChQszYsQIkzJzw9SmTZvGrl276N27NyVLlmTz5s289957zJw5k9q1a+foMWRXVo79ypUrvPXWW5QpU4YxY8bw8OFDVqxYwZ07d/j6669N6lrDsWdk6NChFCtWzKTM1dXV5P7Bgwf58MMPqVu3LuPGjeP69essWrSIR48eMWHChLwM95lZ+/uVFT179qRatWomZSVKlFBvZ+U8t0Th4eEsWLCAokWLUrFiRU6cOGG23sOHDxk7diyurq4MHz6c2NhYli9fzvXr1/ntt9+ws7NT686ZM4elS5fy/PPPU7VqVfbt28fnn3+OTqfD398/rw4tQ5k9bgB7e3vee+89kzIXF5c09azhuHONIixCdHS0Eh4eriiKouzcuVPx8/NTjh8/brbu2LFjlYEDBz71Oc+dO6f4+fkpf/zxh1oWFxenvPLKK8obb7yRM4HngKwc+zvvvKO8+OKLSlRUlFq2YcMGxc/PTzl06JBaZi3Hbs6mTZsUPz8/5cKFC0+tO2DAAOW1115TEhMT1bLZs2crLVu2VG7evJmbYeYoa36/suL48eOKn5+fsnPnzgzrZfY8t1Tx8fFKcHCwoiiKcuHCBcXPz0/ZtGlTmnrffvut0q5dOyUwMFAtO3LkiOLn56f89ddfatnDhw+VNm3aKN99951aZjAYlNGjRys9evRQkpKScvFoMi+zxz116lSlQ4cOT30+aznu3CJ9UCyEs7MzhQoVytI2SUlJxMTEpPv47t27sbGxoXv37mqZg4MDXbt25dy5czx48CDb8eakzB57dHQ0R48epUOHDia/NDp27IiTkxM7d+5Uy6zl2J8mJiaG5ORks4/dvHmTmzdv8vzzz5s057z00ksoisKuXbvyKMpnl1/er6yIiYkhKSkpTXlWznNLZW9vn6mJx3bv3k2zZs0oWrSoWtagQQNKlSplcpz79u0jKSmJl156SS3T6XS8+OKLBAUFPfWKc17J7HGnSE5OJjo6Ot3HreW4c4s08Vip27dv07FjRxITE/Hy8qJbt24MHjzY5IvqypUrlCxZMs1lw5RLy1evXjX5YLB0169fJzk5Oc2CWnZ2dlSqVIkrV66oZfnh2MeNG0dsbCx2dnY0bNiQ0aNHU6pUKfXxy5cvA6R5PXx8fChcuLDJ62Hp8sP7lRXTpk0jNjYWGxsbateuzciRI6latSqQtfPcmgUFBfHo0SOzC+RVq1aNgwcPqvevXLmCk5NTmtV+U86PK1euWF0zYFxcHJ07dyYuLg43Nzf8/f154403TPoY5cfjzgpJUKxQ8eLFqVevHuXLlycuLo5du3axaNEibt++zWeffabWCwkJMZvNp5QFBwfnWcw5ISQkBDDf18bb25tTp06Z1LXWY3dwcKBz587Uq1cPFxcXLl26xMqVKxk1ahS///67+kX9tNcj5XFrYM3vV1bY2trSqlUrmjRpgru7Ozdv3mTFihWMGTOGX375hcqVK2fpPLdmTzvOiIgIEhISsLe3JyQkBE9PT3Q6XZp6YH3nh7e3N3379qVy5cooisKhQ4dYt24d165dY+bMmeoPzfx23FklCUouMBgMJCYmZqquvb19mpPvaT744AOT+x07duTrr79mw4YNvPzyy+pIgPj4eJNOZqn3mfJ4TsvNY0+JN71jSkhIMKmb18duTnZej7Zt29K2bVu13M/Pj0aNGjF27FgWL17MO++8A6Aeb8oxPflcGTX/WRpLeb9yW61atahVq5Z6v0WLFrRu3ZrXXnuN2bNn880332TpPLdmTzvOlDr29vb57vx4coCDv78/pUqVYs6cOezevVvt/JrfjjurJEHJBadOnUp3KOGTFi9enObyXXb06dOHDRs2cPToUTVBcXBwMPvlmPIB5+Dg8Mz7fVJuHntKvOkdU+ovai2O3Zycej1q165N9erVOXbsmFqWcrzmvrASEhLy7BhzgqW8X1ooWbIkLVq0YM+ePSQnJ2fpPLdmTzvO1HUKwvnx8ssvM3fuXI4ePaomKAXhuDMiCUouKF26NBMnTsxU3ZxawbJIkSIAREZGmjx3UFBQmropl1Z9fHxyZN+p5eaxp9Q313QREhJicjxaHLs5Ofl6FClShFu3bqWpHxISkqZ/RkhISJphrJbMUt4vrRQpUoTExETi4uKydJ5bs6cdZ6FChdRkzNvbmxMnTqAoislV1/x0fjg4OFCoUCEiIiLUsoJw3BmRBCUXeHt7m52QKDfdu3cPwGRyo5Rx+NHR0SadD8+fP68+ntNy89jLlSuHjY0Nly5dMmkCSUxM5MqVK7Rp00Yt0+LYzcnJ1+PevXsm72+lSpUAuHTpEtWrV1fLg4ODCQoKMhkRY+ks5f3Syr1797C3t8fJySlL57k1K1y4MB4eHly6dCnNYxcuXDB5zytWrMjff/9NQEAAZcuWVcvz0/kRExNDeHh4ms/w/H7cGZFhxlYmOjo6zSV9RVFYtGgRgMmsm61btyY5OZn169erZQkJCWzatInq1atb3agIV1dXGjRowLZt20z6V2zdupXY2FiTD25rPvawsLA0Zf/99x+XLl2iUaNGalm5cuUoXbo0GzZsMBmKvG7dOnQ6Ha1atcqLcHOENb9fWWHuvb169Sr79++nYcOG6PX6LJ3n1q5Vq1YcOHDAZBj5sWPHuH37tslxtmjRAltbW9auXauWKYrCX3/9ReHChalZs2aexv0s4uPjzfYPW7hwIYqi0LhxY7UsPx13dsgVFAuycOFCwDi/BRg/kE6fPg3AoEGDAOPQ0s8++4x27dpRokQJ4uPj2bt3L2fOnOH55583GbJXvXp12rRpw+zZswkLC6NEiRJs2bKFwMBA3n///bw9uKfIzLEDDBs2jNGjRzN27Fi6d++uzrDZsGFDkz9sazr2J40cOZLKlStTpUoVXFxcuHz5Mps2baJIkSIMGDDApO6oUaOYOHEiEyZMwN/fn+vXr7N27Vq6detm8ovL0lnz+5UVkydPxsHBgZo1a+Lp6cnNmzfZsGEDjo6OJh0nM3ueW7I1a9YQFRWlNkfs37+fhw8fAsaZdF1dXenfvz+7du1i/Pjx9OrVi9jYWJYtW0b58uVNrjwWKVKE3r17s2zZMpKSkqhWrRp79+7l9OnTfPzxx9jY2GhyjOY87bgjIyMZOnQo7dq1o3Tp0gAcPnyYgwcP0rhxY1q0aKE+lzUdd27QKYqiaB2EMGrZsmW6j+3ZswcwXgr+7bffuHDhAqGhoej1esqUKUO3bt3o3r17mlEx8fHx6vomUVFRlC9fnmHDhpn8ErcEmTn2FKdPn1bXKHF2dqZNmzaMGDEizRol1nLsT5ozZw4HDx7k/v37ap+Epk2bMnjwYLy8vNLU37t3LwsWLCAgIAB3d3c6d+6cZk4ca2Ct71dWrF69mu3bt3P37l2io6Px8PCgfv36DB48mJIlS5rUzex5bqlefvllAgMDzT62YsUKdRmHGzdupFmLZ/To0WnOdYPBwB9//MH69esJCQmhZMmSvPrqq3To0CHXjyUrnnbcrq6uzJw5k3PnzhESEoLBYKBEiRK0b9+eV155Jc3frbUcd26QBEUIIYQQFkf6oAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoIgMbd68mZYtW7J582atQ8mUEydO0LJlS+bNm5dr+2jZsiVvvvlmrj1/QfHyyy/z8ssvax2GxZs3bx4tW7bkxIkTubqflStX0rZtW+7fv5+p+nnxt2bNvvjiC3r37k18fLzWoVgtSVDymenTp9OyZUu6deuWZlHB/MLavtjCw8P59ddfGThwIO3bt6d9+/b07t2b8ePHM3/+fEJDQ/Mkjqclm2+++WaGSw4UJLGxsXTq1ImWLVvy3XffaR1OrouMjGTRokV06dJFnYJePJvBgwcTHBzMqlWrtA7FalnXYh0iQzExMezcuROdTkdERAR79+7F39//mZ7Tz8+P6tWr4+3tnUNRFiwPHz5k1KhRPHz4kEqVKtG5c2fc3NwICQnh7NmzzJ8/n1q1apldYye/+/7777UOIV07d+4kJiYGnU7HP//8w+jRo3FwcNA6rFyzcuVKIiIi6Nu3r9ah5BulSpWiefPm/PHHH/Ts2RMnJyetQ7I6kqDkI//++y+xsbG8/PLLrF69mo0bNz5zguLq6oqrq2sORVjwzJs3j4cPHzJ06FCTVZlTXLt2rcC+viVKlNA6hHRt3LgRGxsbevTowapVq9izZw/t27fXOqxckZSUxN9//02tWrUs+j2xRh06dGDPnj3s2LGDbt26aR2O1ZEEJR9J+VDt168f165d4/jx4wQGBuLr62tSb968eSxYsCDd5/H19WXlypWAsVlg2rRpTJw40WT585YtW1K3bl0+/vhjZs2axZEjR0hISKBOnTqMHz+e4sWLc/PmTWbPns2pU6dISkqiUaNGvPXWWyZXC06cOMG4ceMYPHgwQ4YMMYnj/v379OnTh06dOjFp0iT1fuoYUpjb/uLFi8yePZtz586h1+t57rnnGDNmTJpL2Hv27GHnzp1cvHiR4OBgbG1tqVChAr169aJ169YZv+hPce7cOQB69Ohh9vEKFSqYLb937x5Lly7lyJEjhISE4OLiQtmyZencubP6PiQmJrJ+/XoOHDjAzZs3CQsLw8XFhVq1ajFo0CAqV66sPt///vc/tmzZAsC0adOYNm2ayfGnfi1T30557VNcu3aNxYsXc/LkSSIiIvD29qZ58+a89tpruLu7q/VSv3f9+vVjzpw5nDp1ioiICHUl25RmupRzDR6fmzNnziQ4OJhly5Zx69YtXF1dadOmDW+88UaaKxlJSUksX76cv//+m+DgYAoXLkzXrl1p27Ytr7zySppjeJpbt25x5swZmjVrZpLsm0tQUp+/zZo1y9T5BrB7926WLFnCjRs3cHFxoXnz5owcOZKhQ4emeU0yktn3IyOHDx8mJCSEfv36mX08Pj6e+fPns337dsLDwylRogS9evVKs/pyavfu3WPx4sUcOXKER48e4ebmRqNGjRgyZEiazyPI2uuRci4vX76cPXv2sHHjRu7du4e/v7/6Pj969IglS5Zw4MABHj58iLOzM3Xq1GHIkCGUL18+zf6zUv/27dssWbKEEydOEBISgqOjI0WKFKFevXqMHTvWZEX5pk2b4ujoyJYtWyRByQZJUPKJmzdvcu7cOZo0aYKXlxcdO3bk2LFjbNq0Kc0Xd7169cw+R0BAADt37sz0pezIyEhGjx6Nt7c3HTt25M6dOxw4cIC3336b//3vf4wZM4YqVarQpUsXLl++zO7du4mIiGDmzJnZOkZXV1cGDx7M6tWrAejVq1e6x3Tx4kWWLVtGvXr16N69O1euXGHv3r1cv36dBQsWmBzj7NmzsbW1pVatWnh7exMWFsb+/fv55JNPGDduHD179sxWvID6JXH79m2qV6+eqW1Onz7N+++/T0xMDI0aNcLf35/IyEiuXLnC6tWr1QQlIiKCH3/8kdq1a9OkSRPc3Ny4f/8++/fv59ChQ/z4449Uq1YNMDbVRUVFsW/fPlq0aEHFihVN9jl48GC2bNlCYGAggwcPVssrVaqk3t63bx+ffvopOp2OFi1aUKRIEW7evMmff/7J4cOH+e2333BzczN53rt37zJy5EjKly9Pp06diIiIwM7O7qmvQcpzNm/enOeee45Dhw6xZs0awsPD+eSTT0zqfvnll2zdupXixYvz4osvkpiYyMqVKzl79mymXu8nbdy4EYCOHTtStGhR6taty4kTJ7h37x7Fixc3u01WzreNGzfy5Zdf4uLiQseOHXF1deXgwYO8/fbbJCUlYWubuY/l7Lwf5hw7dgyAGjVqpHnMYDAwceJEjh49Svny5WnXrh0RERH89NNP6X6OnD9/nnfeeYfY2FiaNWtGyZIlCQwMZPv27Rw6dIhZs2aZvI7ZfT1mzJjB+fPnadq0Kc2aNcPT0xMwnnNvvvkmQUFBNGzYkBYtWhAWFsbu3bs5cuQI33//vcnfYlbqBwcHM2LECOLi4mjatClt27YlLi6OO3fusG7dOkaNGmUSr52dHZUrV+bcuXPExsZKM09WKSJf+PHHHxU/Pz/ln3/+URRFUaKjo5UOHToovXr1UpKTk5+6fWhoqNK7d2/F399fOX36tFq+adMmxc/PT9m0aZNJfT8/P8XPz0/58ccfTcq//fZbxc/PT+ncubOycuVKtdxgMCjvvvuu4ufnp1y8eFEtP378uOLn56fMnTs3TUz37t1T/Pz8lKlTp5qU9+7dW+ndu7fZ40h5vtSvRYopU6aYLb97926a54mOjlYGDRqkdO7cWYmNjU1z7GPHjjW7/yetXr1a8fPzU7p3767MnTtXOX78uBIVFZVu/fj4eKVHjx5Kq1atlIMHD6Z5/MGDByZ1Hz58mKbO9evXlQ4dOihvvfWWSXl672WKsWPHKn5+fmYfCwsLUzp16qT06NFDuX//vslj//zzj+Ln56d8//33alnKe5fee6so5t/HuXPnqudPQECAWh4XF6f069dPadWqlRIUFKSWHz16VPHz81OGDBli8j4FBQUpL7zwgtnzJyOJiYnKCy+8oHTu3FmJi4tTFEVRNm7cqPj5+Slz5sxJUz+r51tERITSoUMHpUOHDsqtW7dM9jtu3DjFz88v3dfk+PHjallW34+MDB8+XGnVqpUSHx+f5rGUc+add95RkpKS1PKrV68qbdu2TfP+JiYmKr1791Y6duyoXLp0yeS5Tp06pbRu3Vp5//33n+n1mDp1quLn56f06NFDCQwMTBPzyJEjldatWyuHDh0yKb9165bSsWNHZdCgQdmun/L3nPqzLUV4eHiaMkV5/Nl87Ngxs4+L9MkonnwgKSmJbdu24eLiQosWLQBwdnbGz8+PBw8ecPTo0Qy3j4+PZ9KkSQQGBvLBBx9Qq1atTO3XycmJYcOGmZSl9Hlxd3c3ucKh0+nUx65du5bpY8uuOnXqpOl/06VLFwAuXLhgUm7uV7GzszOdO3cmKiqKixcvZjuOHj160LdvX6KioliwYAHjxo2jS5cuDBw4kF9//ZXg4GCT+vv27SMoKIj27dvTuHHjNM9XpEgR9ba9vT2FCxdOU6dcuXLUq1dPbVrLCVu3biU6OprXX389zSV6f39/KleuzI4dO9Js5+XlxYABA7K8v169elG6dGn1voODA/7+/hgMBi5duqSWb9u2DYBBgwbh6Oiolvv4+Jicf5n133//ERoaSps2bdSrHq1bt8bR0ZHNmzdjMBjMbpfZ823fvn3ExsbSpUsXSpUqpZbb2tqm+VvKSHbfD3OCgoJwdXXF3t4+zWMpzYLDhg3DxsZGLa9QoQIdOnRIU//AgQMEBgbSt29fkyZGgNq1a9O8eXMOHjxIdHQ08GyvR9++fSlatKhJ2eXLlzl79iwdO3akUaNGJo+VKlWKbt26cf36da5fv56t+inMXWUuVKiQ2ThTruwEBQVleDwiLWniyQf27dtHWFgYXbt2NfnD6dixI9u2bWPjxo1p/vhSKIrC//73P86dO8drr71Gu3btMr3fkiVLmnwpAOpon/Lly5u0xaZ+7Mkv5dxQpUqVNGUpX+ZRUVEm5Y8ePWLp0qUcPHiQBw8epJm34Fni1el0jBw5kr59+3Lw4EHOnz/PxYsXuXz5Mjdv3mT9+vV888036iXklC+zhg0bZur5r1y5wrJlyzh9+jShoaFpEpKwsDB8fHyyHX+KlL4058+f5+7du2keT0hIIDw8nLCwMDw8PNTyihUrZqpJ50lPfrnB4+Qs9ft39epVwPjl96SaNWtmeb9///03YPzbSeHs7EyLFi34559/OHz4ME2aNEmzXWbPt5Tk3Fy81atXN0kCMpLd98OciIgIs4luSrxOTk5mj6927dpqc9iTcd26dcvs/CihoaEYDAZu375N1apVn+n1SGm+TO38+fOA8W/a3P5v3bql/l++fPks10/pZ/T9999z7NgxGjduTN26ddNt+oPHiUt4eHi6dYR5kqDkA6nbzFOrX78+hQsXZv/+/URERJjN8H///Xd27txJu3bteO2117K0XxcXlzRlKR8oGT2WU7/qM+Ls7Jzu/lP/Co6IiOD111/nwYMH1KpViwYNGuDq6oper+fq1avs27ePxMTEZ47Hw8ODTp060alTJwBCQkKYMWMGu3fv5uuvv2b+/PkA6i/L9L4wUjtz5gxvvfUWAA0aNKBkyZLqce/bt4+rV6/mSOxg7G8EsHbt2gzrxcXFmdxP+fWYVRmdP6nfv5iYGPR6vdkOoVkduh0cHMzhw4cpXrx4mi/MTp068c8//7Bp0yazCUpmz7eU99fc65LecZiT3ffDHAcHh3TnTIqOjk73XDT3+qbEtX379kzF9Syvh7ltIiIiAOOVsP/++y/dbWNjY7NVv1ixYsyaNYv58+dz8OBBdu7cCUDp0qUZOnQobdq0SbNtyg+e/DxMPbdIgmLlHjx4wJEjRwAynN1027ZtaS55b968mcWLF1OrVi0++OCDXI0zPSlXWZKTk9M8lvLhlZs2btzIgwcPzA4DXrJkCfv27cuV/Xp7e/PRRx/x33//ce3aNcLDw3F3d1eHHGfmcvDixYtJSEjgp59+SvOFmvLLMKekfAEvWLDA7CiI9Dx5FS2nOTs7YzAYCA8PT3OlIKsT4G3evJnk5GTu3buX7oR1+/fvz9RVifSkJF6PHj1K81jKcWQmOc3u+2GOu7t7uuebi4tLur/8zb2+KXFNnz6dZs2aPXXfz/J6mDu3Up4vs53bs1ofjFeHv/jiC5KSkrh06RKHDh1i9erVfPrpp/j4+KRpIk9JgrJ7zhRk0gfFym3ZsgWDwUDt2rXp2rVrmn8pv9ifvBR78uRJvvnmG4oXL87UqVPNtj/nhZRRBuaaUa5cuWJ2G71ebzahyY6Uy+MpfXdSO336dI7sIz12dnZpLmGnXLZOSTozcu/ePQoVKpQmOYmLi+Py5ctp6uv1xj/39F67jB5PaYJKuYRvKVJGI505cybNY1kZxaMoCps2bQKgc+fOZv+WatasSWJiotrvJTtShpWbi/fChQuZPq9z8v0oX748CQkJPHjwIM1jFSpUIDY21qTfTwpzfx9ZjSunXo8UKX8/md1/VuunZmtrS40aNRgyZAjjxo1DURQOHDiQpt7t27cBnjmRLIgkQbFiKR+qOp2OSZMm8f7776f5N2nSJGrUqMG1a9fUzp63b9/mo48+wsHBgenTp2ua2ZcuXRpnZ2e1GSpFaGgoixYtMrtNoUKFCA8Pz5E1LlI6GD75Abl9+3YOHjz4zM+/fPlyAgICzD72559/EhsbS+nSpdVL2c2bN6dw4cJs376dw4cPp9km9S/dokWLEhkZyf+1d3chTb5vHMC/Ld3S0gzfNSzKItdoupwjtwpFoqRyIDvxRMuCKLE3JhVlOCjo7aBRdpDL0KUMrANxZelMi5azzYat9YJSUDKbSdnsxdzqdxAb2Z5ff6393eR3fQ7drbuf+3l8uO63637x4oXnZy6XC5WVlXj//r3X77qn+Ox2O2N9fvd5bm4uQkNDcfHixXHf5/blyxe/BC/u3CSXL18e9zwMDQ15tqNPhNlsRn9/P/h8Pg4ePMj4v+QeZfw12J8MiUSCkJAQaLXacWtHnE4nVCrVhP+OL+9HamoqAOZRN/e0cVVV1bhgoa+vjzFQk0gkiI2NhUajgdls9vrc6XSOC2x81R5uXC4XXC4XOp2OcZHwt2/fxtVrsuWfPXvGOLLrHk1i6uhZrVZERkaOWwRMJoameKax7u5u2Gy2/7lIKzc3F48fP4ZWq8WyZcugVCrx4cMHpKeno62tzav8nDlzpuysm+DgYOTn56O2thbbtm2DWCzG58+fce/ePaSmpjIuAExLS8PTp09RVlaGFStWICgoCHw+3/OinYx169ahrq4OZ8+excOHDxEbG4ve3l50d3djzZo1uHPnzl9d361bt1BZWYlFixaBy+Vi3rx5cDgcsFqteP78OTgcDvbv3+8pz2azUVFRAblcDrlcjoyMDCQnJ+Pjx4/o7e3F6Oio58Wdn5+PBw8eYNeuXcjKygKbzYbZbMbbt2+Rlpbmdbjc8uXLweFw0NDQAIfD4QlM3VNbAoEA7e3tOHLkCEQiEdhsNpKTkyEWixEREYGjR4+ivLwcW7duRUZGBpKSkjA2NoaBgQGYzWbweDycPn36r9prstLT05GTk4PW1lYUFRVBIpFgbGwMt2/fRkpKCvR6vWdk6HfcQYd75w2TpKQk8Hg8WCwWWK3WCee1+VlYWBhKSkpw6tQpbN++HdnZ2Zg9ezY6OzvBZrMRFRU1oWkxX94PiUSC8+fPw2g0eq2hcK+9MRgMKC4uhkgkgsPhgE6ng1Ao9BoxYLPZUCgUKCsrQ2lpKQQCgWfB/MDAAHp6ejB37lyo1WqftsfPysvLsWfPHlRUVKChoQFLliwBh8OB3W6HxWLB8PAwWltb/6j8zZs30djYCD6fj8TERISGhuLly5cwGAwIDw/3en76+/ths9kglUondQ3kBwpQpjH3S/XnDK9MsrOzoVQqodPpUFJS4ulpGo1Gxi3IcXFxU3oYX3FxMYKCgqDVatHY2Ii4uDgUFhYiMzMTHR0dXuULCwsxMjICvV6Pnp4euFwuFBUV/VGAEhMTA6VSiQsXLsBoNMLlcmHp0qU4c+YM7Hb7XwcoBw4cgF6vR3d3N7q6uvDu3TuwWCzExsZCKpVCJpN59ax4PB6qqqqgVqvR1dUFk8mEsLAwLFy4EHl5eZ5ymZmZUCgUUKvVaGlpAYfDgUAgwLFjxxgzBYeHh0OhUKC6uhpNTU2e58AdoGzcuBE2mw1tbW2oq6uDy+XC+vXrIRaLAfzIiqlSqVBfXw+TyQSj0YhZs2YhOjoaGzZsYNx2OhUOHTqEBQsW4Pr167h27Rqio6Mhk8kgEAig1+sZF7D+bGRkBB0dHQgJCcHatWt/WzY3NxcWiwVarfaPAhQA2LRpE8LCwlBbW4vm5mZP5tQdO3ZAJpNNON28r+5HfHw8hEIh2tvbsXv37nGjACwWC8ePH0d1dTVaW1tx9epVJCQkoKSkBPPnz2ec0khJScGlS5dQX1+Pzs5OWCwWBAcHIyoqCqtXr/baju2r9nBLSEiASqWCRqPB3bt3cePGDbBYLERGRoLP53tlh55M+ZycHHz9+hWPHj3CkydPMDY2hujoaOTl5TFue3aPMm3evHlS10B+mPH9+/fv/q4EIYT4WlNTE06ePIl9+/ZNix7s69evUVBQgKysLFRUVEzpd5tMJuzduxeHDx/2W6D5K3+2hy84nU4UFBQgPj7+j7Nn/9fRGhRCyLQ2NDSEX/tZg4ODqKmpwcyZM7Fq1So/1YyZw+Hw2tY7OjqKc+fOAfhxLMFUW7lyJUQiEWpqav41Gd3/SyC2hy80NzfjzZs32Llzp7+rMm3RFA8hZFq7cuUK7t+/Dz6fj4iICNjtduj1enz69AlbtmzxGnb3N7PZjBMnTkAoFCImJgbDw8Oegz0FAgGys7P9Uq/S0lK0tLRgcHBwStssUNvjb82YMQNyuZwxyR2ZGJriIYRMawaDARqNBn19fXA4HGCz2Vi8eDGkUinjCcT+9urVK6hUKlgsFs9uq8TERM/py/+1hF7UHuTfUIBCCCGEkIBDa1AIIYQQEnAoQCGEEEJIwKEAhRBCCCEBhwIUQgghhAQcClAIIYQQEnAoQCGEEEJIwKEAhRBCCCEBhwIUQgghhAQcClAIIYQQEnD+AayuE7rvZKNCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 75.0 deg to 90.0 deg\n", + "Modulation: 0.312 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.017\n", + "Best fit polarization angle: 55.409 +/- 0.329\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUhklEQVR4nOzddXgU19fA8e9u3EhIAgR3L+4SCAS3Fm9pcStOW2r86oVSqkCF4tYWKZQWikPxFg9Q3IMGIsQ9mfePfTNkyUY2JJlNcj7Pw8PunTs7Z3Ynu2dmrugURVEQQgghhLAgeq0DEEIIIYR4miQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQliIW7duodPpGDZsmNahCMDHxwedTpfr2/noo4/Q6XTs27cv17eVFRUqVKBChQpahyGEJCgic5cuXWLSpEk899xzuLq6YmtrS6lSpejevTtLliwhLi5O6xBzzbBhw9DpdNy6dUvrUExasmQJY8eOpVmzZjg6OqLT6XjvvfcyXe+vv/7Cx8cHV1dXnJ2dadasGStWrMhwnRUrVtC0aVOcnZ1xdXXFx8eHv/76y2Tdq1ev0r17d9zd3SlbtiwTJ04kIiLCZN1XXnmFihUrEhkZmfkOp5KS0KX+Z21tTYkSJejevTvbtm0z6/XEs/vll1/Uz2Lnzp0Z1g0NDeWDDz6gfv36ODs7Y2dnR+nSpWnevDlvvPEGfn5+Ga4/evRodDodjo6OhIaGplsvJQFM+afX6ylSpAjly5enW7duzJ49m3v37mVnd0Uus9Y6AGHZPvnkEz7++GOSk5Np0aIFQ4cOxdnZmYcPH7Jv3z5GjRrF/PnzOXHihNahFkpvvPEGYWFhFC1alFKlSnH9+vVM1/n++++ZNGkSHh4evPLKK9ja2rJ+/XqGDRvGf//9x1dffZVmnWnTpvH1119TpkwZRo8eTXx8PGvWrKFnz5589913TJw4Ua0bFRWFr68vUVFRDBkyhLt37/LDDz/w8OFDfvvtN6PX3bJlC7/88gu7du3C2dk5W++Bq6srU6dOBSA2NpYzZ86wdetWtm7dyty5c5k8eXK2XjevTJw4kRdffJFy5cppHcozW7hwITqdDkVRWLhwIZ06dTJZ7/79+7Rq1Ypbt25RqVIlXn75ZTw9PXn8+DEnT55kzpw5ODg40KBBA5PrR0REsGbNGnQ6HTExMfz8889Gx6Apbdu2xcfHBzAcow8ePODw4cNs27aNDz/8kI8++oh33nnnmfZf5DBFiHTMnDlTAZSyZcsqR44cMVln8+bNio+PTx5HlneGDh2qAMrNmzdzfVs3b95UAGXo0KFZXmfbtm3KrVu3FEVRlGXLlimA8r///S/DbdjZ2Snu7u5G+xQSEqJUrlxZAZR//vnHaJ3Dhw8rgFK5cmUlJCTE6LXc3d0VOzs7o9das2aNAij79+9Xy4YNG6YAysOHD9Wy0NBQpXTp0srIkSOzvL9P7wuglC9fPs2ypUuXKoDi5OSkREVFZev127ZtqxTGr8jy5cubfE8zc+nSJQVQOnTooDRq1EixsbFRAgICTNYdOXKkAigjRoxQkpOT0yy/f/++cvLkyXS39dNPPymA8vrrryu2trZK3bp106374YcfKoDy4YcfplmWnJysrF+/XnF3d1cAZdasWZnvqMgzcotHmHTr1i0++ugjbGxs2Lp1K82aNTNZr0ePHmzfvj1N+bp162jTpg2urq44ODhQp04dZs2aZfJ2UMo97/DwcF5//XUqVKiAjY0NH330UZaWg+E21LBhwyhbtiy2traUKFGCQYMGcfnyZZNxR0dHM3v2bBo3boyLiwvOzs7UrFmTyZMn8/DhQwB0Op1626NixYrqJeKn78+HhITw7rvvUrNmTRwcHHB1dcXX1zfdS9wRERG8/vrrlClTBnt7e2rUqME333xDcnKyyfoZ6dKlC+XLl89y/aVLlxIXF8fEiRON9qNo0aJMnz4dgJ9++slonZTn//vf/yhatKhaXqFCBSZMmEBcXBzLli1Ty/39/QFo2rSpWpbyOGUZGK7+AHz99ddZjj+rhg0bhpOTE1FRUZw/f14t37NnD126dMHd3R07OzuqVavGO++8Q1hYWJZeNz4+nu+//55u3bpRvnx57OzscHd3p0OHDuneUsrs+DXVBiWl/Ut6/1KuBKRITEzkxx9/pHnz5hQpUgRHR0caNGjA999/b/K4UhSF77//ntq1a2Nvb0/p0qWZOHFilt8HUxYtWgTA8OHDGTZsGAkJCSxfvtxk3X/++QeASZMmmWznU7JkSRo2bJjhtvR6PVOnTqVnz56cPXuWo0ePmh2zTqejb9++rF+/HjBcMX7w4IHZryNyh9ziESYtW7aMhIQEXnzxRZ577rkM69rZ2Rk9nz59OrNmzcLT05NBgwbh7OzMtm3bmD59Ojt27GDnzp3Y2toarRMfH0/79u0JCQmhU6dOFClShIoVK2Zp+fbt2+nTpw8JCQn07NmTKlWqcPfuXX7//Xe2bNnC3r17jb7sHj9+TLt27Thz5gzVq1dnxIgR2Nracv36dZYtW0afPn0oUaIEH374IX/88QdnzpxhypQpuLm5Aaj/g+EH18fHh1u3buHt7U2XLl2Iiorir7/+okuXLixYsIDRo0er9ePi4vD19eX48ePUq1ePl19+mdDQUD799FP2799v1meUHX///TdgSGye1rVrV6M6WV3n008/5e+//+bjjz8GUG9VnDx5klatWgGotwBTkqndu3ezZMkSNm/ejKur6zPvlymKogCoP4ALFixg3LhxODk50b9/f4oXL86+ffuYPXs2mzdv5vDhw0afrSkhISFMmTKFli1b0rFjR4oVK8aDBw/YvHkz3bp1Y9GiRYwaNSrNepkd308bNmxYmiQE4ODBg/z99984OjqqZSnH/Y4dO6hevTqDBg3C3t6evXv3MmnSJI4ePcqqVauMXmfq1KnMmzePkiVLMmbMGGxsbPjzzz85evQo8fHxaf4+MxMfH8+KFStwdXWld+/exMTE8MYbb7B48WLeeuutNEmIh4cHAFeuXKF+/fpmbcvPz4+TJ0/SsWNHypYty7Bhw9iwYQMLFy5M90QqM+3ataN169YcOnSI33//nQkTJmTrdUQO0/oSjrBM7du3VwBl0aJFZq33zz//qLeFHjx4oJYnJCQoPXr0UABl5syZRuuUL19eARRfX18lMjIyzWtmtDwkJERxc3NTPDw8lPPnzxst+++//xQnJyelQYMGRuUvvfSSAiivvvqqkpSUZLQsIiJCCQ0NVZ9ndounbdu2ik6nU1avXm1U/vjxY6VevXqKvb290WXulNtmffr0Mdr2jRs3lKJFi5p9iye1rNzi8fT0VAAlKCjI5HInJycFUG+LREZGKoDi7Oxssn5gYKACKMWLF1fLIiIilDJlyiienp7K1KlTlX79+qn7nLK8QoUKyssvv5yt/UyR0S2eJUuWqLd4oqOjlVu3bim2traKi4uLcvHiRaO648aNUwBl9OjRRuWmbvHExsYqd+7cSbO90NBQpXbt2krRokWV6Ohoo2WZHd8ptyD27t2b4f6eOXNGcXFxUTw9PZVr166lWX/ixIlKYmKiWp6YmKiMGDFCAZQ//vhDLU99yy44OFgtj4mJUZo3b57ue5qR1atXK4AyZswYtaxv374KoOzevTtN/e+++04BFBcXF+XNN99Udu3ale4x+bSxY8cqgPLrr78qimL4bvHy8lKcnJyUsLCwNPUzusWT2nvvvacAypAhQ7IUh8h9kqAIk2rWrKkAyrZt28xab9SoUQqgLFiwIM2yy5cvK3q9XqlYsaJRecoX+OnTp02+ZkbL58yZowDK999/b3LdqVOnKoCavDx8+FDR6/VKyZIlTf5YPC2jBOX06dMKoPTr18/kun/88YcCKD/88INaVqVKFUWv1xv9wKRI+SLNzQTFxsZGAZSEhASTy0uVKqUAyv379xVFUZR79+4pgFK6dGmT9ePj4xVAsbW1NSq/dOmS0qVLF8XNzU0pVaqU8uqrr6o/HhMmTFBKlCihBAUFKf7+/kqPHj0Ue3t7xdnZWRk8eLDJHxlTUhIUV1dX5cMPP1Q+/PBD5e2331a6du2qAAqgzJ07V1EURZkxY4YCKO+++26a1wkJCVFcXFwUe3t7JTY2Vi03tw3K119/nabtjaJkfnxnJUG5d++eUqZMGcXe3l45fPiwWp6UlKS4u7srXl5eJj/Tx48fKzqdTunfv79alvI3unTp0jT19+7dm60EJeWEJnX7pc2bNyuAMmDAgDT1k5OTlXfffVext7dXPytAqVChgjJq1Kh036vIyEjFxcVFcXV1VWJiYtTyN954QwGUH3/8Mc06WU1Q5s+frwBK165ds7jXIrfJLR6Ro06dOgVA+/bt0yyrVq0aZcqU4ebNm4SFhRld2re3t6du3brpvm56y//9918Azpw5Y9QmJcWVK1cAuHjxIrVq1eL48eMkJyfTpk0bnJyczNq39LYdFhZmctuBgYHqtsHQ9uTatWuULVuWypUrp6nv4+Oj3ibJ76pXr26yTcbBgwf58ccfWbduHe7u7nTs2JFHjx7x66+/EhkZyaRJk4iJiUnT2ycjYWFh6vtmZWWFu7s7Xbt2ZeLEiXTr1g3I+LgsWrQoDRo04MCBA1y6dIl69epluL3z58/z5ZdfcuDAAR48eEBsbKzRclNdVjM7vjMSGRlJjx49uHfvHqtXr6Zly5bqsitXrhASEkLVqlWZMWOGyfUdHBzUYxCevBdt27ZNU7d169ZYWVmZFd+1a9fYu3cv1atXp0WLFmp5ly5d8PLy4o8//iAoKAhPT091mU6n47PPPuOtt95ix44dHDlyhFOnTnH06FEWL17MsmXLmD9/vtHtUYA1a9YQERHB2LFjsbe3V8uHDRvG119/zaJFixg3bpxZ8adQnrolKLQnCYowqWTJkly8eNHs8QFSGtmVLFky3de9ffs2oaGhRglK8eLFM/xiSG95cHAw8KSBXnpSxthIGS+hdOnSGdbPipRt79q1i127dmW67ZT3pkSJEibreXl5PXNMmXF1dSUoKIiwsDC1HUBqKTGmfDYp/6fXeDKlPLO2GwAxMTGMHDmSPn360K9fP3bt2oWfnx+rVq2id+/egKFx9gcffMD169dNJnGmlC9fPtNxarJyXAIZjqcBcOTIEdq3b09iYiK+vr706tWLIkWKoNfrOX36NH/++afJhuCZHd/pSUpKYuDAgfj5+TFr1iwGDhxotDzlGLx69WqGyW3qMWYyOg6tra2NEomsWLRoEYqipBlg0Nrampdffpmvv/6a5cuXM23atDTrurm5MXDgQHW/oqKi+Pzzz5kxYwaTJk2iV69eRnEuXLgQIM22nnvuORo1asTJkyc5ceIEjRs3NmsfwND1GaBYsWJmrytyh/TiESa1bt0aMPR6MEfKD1pAQIDJ5Skt5J9uGJnZl3d6y1Ne58yZMyiGW5Ym/w0dOhR48kOaEwMzpWx77ty5GW47pYdLSv2UXkJPS+89y0nVq1cHnlxZSu3BgwdERUVRpkwZtRGmk5MTpUuXJjIy0mTvhqtXrwKGq2OZef/99wkODuaHH34AnlxZSt2AuVGjRgBcuHDBnN3KVHaPy6fNmDGDmJgYdu7cybZt25gzZw6ffPIJH330UYYNNLN7Vj5p0iS2bt3K6NGjTY7RkRJv7969MzwGb968mWYdU8dhYmIiQUFBWY4vdU+dd999N01vo5QeWpmdQKRwcnLi008/pXXr1sTFxXH48GF12dmzZzl27BgALVq0SLOtkydPAk+SGHPt3bsXINsNbUXOkwRFmDR8+HBsbGzYsGFDpj8Wqc8YUwZWMjVs97Vr17h79y4VK1bM0hl3VjRv3hww3DrIiqZNm6LX6zlw4ABRUVGZ1k+53J2UlPTM23ZxcaFKlSrcu3fP5IBqeTHUecotDlNdw1NuyTx9GyQ76zzt2LFjzJkzh7lz56Y5c099/Dx9uySnZHRchoaGcvr0aezt7alZs2aGr3Pt2jXc3d1N9rDJ6V5YX3/9NfPnz6dTp078+OOPJuvUqFEDNzc3jhw5QkJCQpZeNyUhNBXvoUOHTB7r6fnzzz959OgR1atXZ+TIkSb/VapUiStXrpj1/ri4uABPbrvAk8TDx8cn3W05ODiwevVqs0cl/vvvvzl8+DAODg7q1TxhAfKuuYvIb1J6nFSoUEE5fvy4yTrbtm1T2rVrpz5P6SFQoUIF5dGjR2p5YmKi8vzzzyuAMmPGDKPXyGxgqIyWBwUFKW5ubkqxYsWUo0ePplmelJSUpvHhoEGDstyL580331QA5e+//za5fW9vb0Wv1ytLliwxufzs2bNGg5OlvKd9+/bVpBfPjRs3cn2gtqfFxcUptWrVUrp3725UvmvXLgVQPv74Y7UsZUA3U42In5ZRLx5TdW1sbBRXV1fl6tWrRssmTpyoAMqoUaOMyk01ku3cubMCKGfOnDEqX7x4sdrQc9myZUbLMju+TTWS3bBhg6LX65U6depk2mj4/fffV4/np3sQKYph0LPUPdwOHTqUY714OnbsqADK2rVr062T8t4MGjRILfviiy+Uc+fOmax/8OBBxd7eXrG2tlbu3bunKIqiREdHK25uboqVlZVaZsorr7yiAMrChQvVsswGatuwYYM6UNsXX3yR2S6LPCQJisjQxx9/rOj1egVQWrZsqUyePFmZPn26MnLkSKVq1aoKoDRu3Nhonbfeekvtejp+/HjlzTffVJ577jkFUFq3bq3ExcUZ1X+WBEVRFGX37t2Ki4uLotPplA4dOihTpkxRpk6dqvTt21cpVaqUYmdnZ1Q/JCREqVu3rgIoNWrUUKZMmaK8+eabSr9+/RQXFxejH4rt27erX+ZvvfWW8umnnyrfffeduvzOnTvq+1CvXj1lzJgxyltvvaUMGjRI3ed///1XrR8bG6s0adJErf/WW28pY8aMUdzc3JRevXqZnaAsWrRIGTp0qDJ06FClVatWCqDUrVtXLTM1Mua8efMUQPHw8FDGjx+vTJ06VSlTpowCKG+88YbJ7bz++usKoJQpU0aZOnWqMn78eMXDw0MBjN4PU/73v/8prq6uyt27d43Kk5OTlUaNGilWVlbKiBEjlAEDBiiAUY+TjJiToCiKovzwww9q19aRI0cq77zzjtKiRQv1OEj9Y60ophOUbdu2Gb3G66+/rrRp00bR6/Vqd+qcSFAcHBwU/n+k1ZQeSqn/pd5GfHy8euyULl1aGTx4sPLOO+8oI0aMUBPop4+DSZMmKYBSsmRJZdKkScrrr7+uVK5cWWncuLFSsmTJLL2nN27cUHQ6neLp6Znmbzq1iIgIxdnZWbGzs1Pf43r16qnv+7Bhw5R3331XmTx5suLr66vodDoFUL7++mv1NVKS7549e2YY0759+9J8J6W8v23btlXfv7feekt55ZVXlIoVKyqAYmdnp8yePTvTfRZ5SxIUkakLFy4oEydOVGrXrq24uLgoNjY2ipeXl9KlSxdl8eLFRl0zU6xevVpp1aqV+sVUq1YtZcaMGUZdA1M8a4KiKIYfqwkTJihVqlRR7OzsFBcXF6V69erKK6+8omzcuDFN/cjISGXGjBlKnTp1FAcHB8XZ2VmpWbOmMmXKFKMrHopi6D5ao0YNxdbW1uQPYnh4uDJz5kylYcOGipOTk2Jvb69UqFBB6datm7JgwYI03ZnDwsKU1157TU2eqlevrnz11VfK9evXzU5QUrpBp/evbdu2JtfbtGmT0qZNG8XZ2VlxdHRUGjdurCxfvjzDbS1btkxp3Lix4ujoqDg7Oytt2rRRNm/enOE6fn5+irW1dbrj6dy5c0d5/vnnFScnJ8XV1VUZOnSo2d2MzekSu2PHDqVjx46Km5ubYmtrq1SuXFl58803lcePH6epm143482bNyvNmjVTnJ2dFVdXV6Vjx47K/v371R/RnEhQMvpMTX2uycnJysqVK5X27dsrRYsWVWxsbJRSpUoprVq1UmbOnKncvn07Tf3vvvtOPa5LliypjB8/XgkNDc3yUPfTp09XAOW1117LtO7o0aMVQPnmm28URVGUU6dOKZ9++qnSrl07pUKFCoq9vb1iZ2enVKpUSRk0aJBy8OBBo/VbtmypAMqff/6Z6baqVaumAIqfn5+iKE/e35R/Op1OcXZ2VsqVK6d07dpV+fzzz9Mkz8Iy6BQl1U0+IYQQQggLII1khRBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHLOHuo+OjmbNmjVcuHCBixcvEhERwbvvvqtO1Z4VJ06cYNWqVVy5coXk5GTKli3LSy+9hK+vr7nhCCGEEKIAMjtBCQsLY/ny5ZQoUYIqVarg5+dn1vpbt25l9uzZNG7cmNGjR2NlZcXt27d59OiRuaEIIYQQooAyO0Hx8PBg48aNeHh4cOnSJcaMGZPldR88eMC3335Lnz59mDJlirmbVsXGxuLv70/58uWNZrQUQgghRMFgdhsUW1tbk7OgZsWff/5JcnIyI0eOBAy3i7IzDIu/vz+jR4/G398/W3EIIYQQwrKZfQXlWZw8eZJy5cpx5MgR5s+fT2BgIC4uLvTu3ZsRI0ag10ubXSGEEELkcYJy9+5d9Ho9n3/+OS+99BKVK1fmwIEDrFy5kqSkJMaOHWtyvaCgIIKDg9XncuVECCGEKNjyNEGJiYkhOTmZsWPH8vLLLwOGqbMjIiJYv349gwcPxtHRMc16mzZtYvny5XkZqhBCCCE0lKcJip2dHTExMXTo0MGo3NfXl6NHj3LlyhXq16+fZr1evXrRqlUr9bm/vz8zZszI7XCFEEIIoZE8TVA8PDy4e/cuRYsWNSpPeR4REWFyPU9PTzw9PXM9PiGEEEJYhjxtlVq9enXA0KYktZTnbm5ueRmOEEIIISxUriUoQUFB+Pv7k5iYqJa1b98egC1btqhlycnJbNu2jSJFiqgJjBBCCCEKt2zd4tmwYQORkZFqz5rDhw+rI8H27dsXZ2dnFi5cyPbt21m7di0lS5YEoHXr1jRq1Iiff/6Z0NBQqlSpwsGDBzl79izTpk3D1tY2h3ZLCCGEEPlZthKUtWvXEhAQoD4/cOAABw4cAKBTp044OzubXE+n0zFz5kwWL17M33//zfbt2ylbtizvvfcenTp1yk4oQgghhCiAdEp2hnLV2OXLlxk9ejSLFi2S20JCCCFEASRDtwohhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIUUBFP47l5PqrRD+O1ToUs0mCIoQQQhRQ0aFx+P1+jejQOK1DMZskKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEKILMnPvQGEEPmPJChCiCzJz70BhBD5jyQoQgiLIldqhBAgCYoQwsLIlRohBEiCIoQQQggLJAmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoOQAGVhKCCGEyFmSoOQAGVhKCCGEyFmSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBB5LPpxLCfXXyX6cazWoVgsSVCEEEKIPBYdGoff79eIDo3TOhSLJQmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLY3aCEh0dzdKlS5k2bRrdu3enTZs2bNu2LVsb/+KLL2jTpg1vv/12ttYXQgghRMFkdoISFhbG8uXL8ff3p0qVKtne8KVLl9i2bRu2trbZfg0hhBBCFExmJygeHh5s3LiR3377jXHjxmVro4qiMHfuXDp37oy7u3u2XkMIIYQQBZfZCYqtrS0eHh7PtNEdO3Zw8+ZNRo8e/UyvI4QQQoiCKc8byUZHR/PTTz/xyiuvPHOiI4QQQoiCyTqvN7h8+XLs7OwYMGBAltcJCgoiODhYfe7v758boQkhhBDCQuRpgnLnzh3Wr1/PBx98YFbj2E2bNrF8+fLcC0wIIYQQFiVPE5R58+bx3HPP4ePjY9Z6vXr1olWrVupzf39/ZsyYkcPRCSGEEMJS5FmCcvLkSY4ePcqMGTN48OCBWp6UlERcXBwPHjygSJEiODk5pVnX09MTT0/PvApVCFFIRD+O5eKeO9T0LYtjUXutwxFCpJJnCcqjR48AeO+999IsCwwMZODAgUycONGstilCCPEsUmaULd+ouCQoQliYXEtQgoKCiIqKonTp0lhbW9OwYUNmzpyZpt6XX36Jl5cXgwcPplKlSrkVjhBCCCHykWwlKBs2bCAyMlLtWXP48GH1Cknfvn1xdnZm4cKFbN++nbVr11KyZElKlChBiRIl0rzWd999R9GiRfH29n6G3RBCCCFEQZKtBGXt2rUEBASozw8cOMCBAwcA6NSpE87OzjkTnRBCCCEKpWwlKOvWrcu0zvTp05k+fXqOvJYQQgghCpc8H0lWCCGEECIzkqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQuRj0Y9jObn+KtGPY7UORQghcpQkKELkY9Ghcfj9fo3o0DitQxFCiBwlCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI611gEIIQquiLgIjtw9wtmHZ7kTfofI+EhsrWwp7lSc6h7VaV6mORXcKqDT6bQOVYgCJzlZ4dH1UB7Y3uanf84RcyOUwOhAAJxtnalUtBJ1S9SleZnm2FrZahxtWpKgCCFyVGJyIhsvbmTp6aX8ffNv4pPiM6xf3aM6g+oMYnTD0ZR0KZlHUQpRsO35+xBzdnzPIZvdhFYMhmsY/pngaONI96rdGdNoDO0rtkevs4ybK5YRhRDCoiUnKwTeCAMg8EYYyclK2jpKMstPL6fKvCoMWD+A7de2Z5qcAFwOvsyH+z6k4tyKjN8ynkcxj3I8fiEKiyvBV+i58AU6HPTmL8e1hNoEZ7pOdEI0v134jY6rOtJwQUO2XNmCoqT9G89rcgUllfikeEZtGsVbrd7iueLPaR2OEBbh5rEAjqy8SFSIYbTaw0vOc3rjdZoPqUnFpl4AnHt0juF/DufE/RNG65YtUpYe1XrQtHRTqrpXxcXOhfikeB5EPODUg1PsubmHg7cPAhCXFMf8E/P55cwv9HB7hV5K87zdUSHysbjEOD47+BmfHfqMxOREtdxKsaZmVD1qRNejVHx5XBPdcXK1p8nkylx/fI2Dtw+y/dp29dbPmYdn6LG6B92qdmN+9/mUcy2n1S5JgpLaO7vfYdXZVay/sJ4fuv3A8AbDtQ5JCE3dPBbAnjl+acqjQmLZM8eP9lPqs0lZy9u73za6WtKlShfeaPEGvhV9021f0rN6Tz70+ZA7YXf4/tj3/HjiRyLjIwlPCOfXEj/y8O+rrC7xC8WciuXa/glREFwPuU7fdX058/CMWuaS6ErnkL60DO+IS5Kr8QqPoEZsXdo3asfoRqOJT4pn0+VNfH7oc04+OAnA1qtbqf1jbdb2W0u3qt3ycndUcovn/8UkxLD31l7D48QYRmwawehNo0lIStA4MiG0kZyscGTlxXSXJ+jiGfrHEF7b8ZqanNQuVps9Q/aw7eVtdKjUIUuNX8u6lmV2x9ncmHyD4fWfnBTsubeLBgsacCbgTAZrC1G4bbu6jcaLGqvJibXOmm7BA/nsxlI6P+6XNjn5fzGppsewtbKlX61+HB99nLX91lLS2dAWTK/TU9+rfq7vQ3okQfl/DjYO/DvyX8Y2GquWLfZbzPNrnicyPlLDyITQRsClEPW2ztMi9eF8XfZdDtnvVsveaPEGJ8acoH3F9tnaXjGnYix9finrOvyOS6IbAPci7uG9zJtd13dl6zWFKMgWn1pM91+7ExobChganG/tsJveQUOxVxwyXNfBzS5NmU6nY0DtAVyYcIGxjcbyZccvKeVSKjdCzxJJUFKxt7bnpx4/8XPvn9UuV9uubaP9ivbqASBEYRGTzgSEEVZhfF32Xa47GK6uOOgd2DBgA191+gp7a/tn2mZyssJzsY348Nb31HVpYNhefATdfu3G7xd/f6bXFqIg+fbfbxm9eTQKhsasL9R4gWOjj+HbvA1O7hn/HTp52ONVwz3d5W72bvzU4yfGNBqTozGbSxIUE16u+zI7X9mJq53h0tjx+8fp9ks3uZIiChVTZ1gpycld+5sAuCa6s7H9X/Sp2eeZt3fzWABrJ+/j8JLzuCa5M+bk+zSOawUYui6/uP5F/rry1zNvR4j87qt/vuL1na+rz99o8QYbBmygiF0R9HodzYfUzHD95oNrotdb/thDkqCko22FthwcfpBijoYGev/e/Zdeq3sRkxCjcWRC5A2vGu5GZ2Jxuljmlnmfe3a3AHBL8OCD8Dl0bNHumbeV0hg39S0lO8We0bfeoUVYBwASkhPou64vu2/sTu9lhCjwVpxewZu73lSff+zzMV92/NJo7JKKTb3wndogzZUUJw97fKc2UHvfWTpJUDJQp0Qddg3ehZu9GwB7b+1lxKYRmvYPj34cy8n1V4l+bLptgBA5JfWZWBJJLCz1Of72hpGe3BI8mHbnc3q/3PGZz8Qyaoyrx4phAVNoEWdIguKT4um7ri8XAi880zaFyI+2XNnCyE0j1eeftvuUD9p+YLIxesWmXgyc50OrkbUBaDWyNgPn+uSb5AQkQclUPa967HhlB042TgCsObeGTw98qlk80aFx+P1+jeh02gcIkZNSzsQ2lFvMWedjADgkOTE98gsGTeiRI192GTXGBUOSMuTWa3Qq1QWA8Lhwevzag8CowGfethD5xYXAC7y44UWSlCQAJjWdxP+8/5fhOnq9jmKVDE0VilVyzRe3dVKTBCULmpZuyq99f0WH4cP9cN+HrL+wXuOohMgb+223s8vhT8Aw6NMP9RbxxjfDc+xMLL3GuKlZY81XNb6jgZeh4ezN0Jv0WddHhgEQhUJobCgvrHlBbQfZv1Z/5nSZU+DnsJIEJYt6Ve/F7A6z1ecj/hzBtZB0JjYQooA4E3CGcVvGqc8HB0ykZ8NuOXomZqoxrikeHkXZ/NJmtdvjoduHeO/v93IsDiEsUbKSzCu/v8LVkKsA1Peqz/IXllvMfDm5qeDvYQ6a1nIaL9d5GTB0fRzw2wBiE6UtiCiYwmLD6Luur3qMD602nFbhnXJ8O083xjUlpVtk6SKl+X3A79jobQD44p8vpGePKNDmHpnLlqtbAPBw8GDjwI042jhqHFXekATFDDqdjp96/ER1j+oA+AX48caONzKdRE2I/GjK9ilcf3wdgMalGjOzyee5sh1zu0U2K9OMLzp+oS4bsnEI98Lv5UpsQmjpTMAZ3tnzjvp8dd/VVHCroF1AeUwSFDM52zqzrv86dUCqH0/8yKLVqwDDJGprJ+/j5rEALUMU4pltvLiRFWdWAOBi68Jv/X/Dziprt2Kyw9xukVOaTaF3jd4API59zKjNoyxi9lUhckpMQgyDfh+kTiMxrcU0OlbuqHFUeUsSlGyoW6Iu71b7UH2+wmsuMfpo4MkkapKkiPwqIDKAMX89GUFyXtd5eXLWZk63SJ1Ox+Jei9U5Q7Zf284SvyW5HqMQeeXt3W+r3ekbeDVgRvsZGkeU9yRByYbkZIXK+5tQI6oeACE2gfxWbJFRnSOrLsrtHpHvKIrCmM1jCIoOAqB3jd4MrTc0z7ZvTrdIdwd3FvV88nf3+o7X8Q/1z/UYhchth28f5rtj3wHgYO3Ar31/xc46965gWipJULIh4FIIMSHxDA2Yil2yYUKmg247OOd4Uq0TFRxLwKUQrUIUIls2XNzA5iubASjhVIIFPRZYdFfG7tW6qzMgR8RHMHLTSLnVI/K1uMQ4Rm8erT7/zPczanjW0DAi7UiCkg0p4zZ4JpZgwKNRavkvJX4gXheXpp4Q+UFYbBiTt01Wn//Q7QeKORXTMKKs+bbzt5QtUhaAPTf3sPrcao0jEiL7Zh2axcUgw8jKTUs3ZVLTSRpHpB1JULIh9bgN3mFdqB5VF4Ag2wC2ua8zWU8IS/fe3+/xIPIBAD2q9ciRCQDzgqu9Kz90+0F9/vqO1wmLDdMwIiGy50LgBT47+BkA1nprFvVchJXeSuOotCMJSjakHrdBh46XH43HSrEGYLv7bzy0uZfpdNZCWJLj947zw3HDj7yjjSPfd/3eom/tPK1n9Z48X/15AB5GPeT9ve9rHJEQ5lEUhYlbJ5KQbBgd+c2Wb1K3RF2No9KWJCjZ8PS4DSXjy9ExxNDlMVGfyK8l5tPslRr5bt4DUTglK8lM2DoBBUPbjY/afkR5t/IaR2W+uV3mqgNY/XD8B049OKVxREJk3cZLG9l7ay8AFd0q8n4bSbIlQcmmp8dt6BH8Eu4Jhvv1F5xOcabIES3DEyLLfv3vV47fPw5A7WK1mdp8qrYBZVN5t/J80OYDwJB0Td42WRrMinwhJiGGN3a+oT7/utPXONg4aBiRZZAE5RmkHrfBTrHnwzpPZjl+a/db6gA7QliqqPgo3tn9ZKTKbzt/i42VjYYRPZvXWrymjvR8+M5hfr/4u8YRCZG5r//9mluhtwDwrejLCzVe0DQeSyEJyjNKPW7DS00G0rZ8WwCuhVxjwYkFWoYmRKa++ucr7kUYhonvUa1Hvh+p0tbK1mgY/Ld3vy0nCsKiPYi+z6xDswCw0lkxt8vcfNX+KzdJgpKDdDodX3X6Sn3+8f6PCY0N1S4gITJwN/wusw8bZui21lvzVcevMlkjf+hZrSftKrQD4Prj6/xw7IdM1hAibyUnK+ocbp8e/JToBMNI5OMaj6N28dpahmZRzE5QoqOjWbp0KdOmTaN79+60adOGbdu2ZWndkydP8vnnnzNo0CA6duzIwIEDmT17NkFBQWYHbqkal2qszngcHBOsdhkTwtJ8sv8TYhJjAJjYZCLVPatrHFHO0Ol0fN3pa3QYzkI/PfApITEyaKKwDDePBbB28j4OLzlPgM1dNgSsBcDZ2oUPfT7MZO3CxewEJSwsjOXLl+Pv70+VKlXMWvenn37Cz88Pb29vpkyZgq+vL3v37mXUqFEEBwebG4rFmtl+pjqx2tyjc7kTdkfjiIQwdjX4Kkv9lgJQxK4I77ctWD0GGpRswJB6QwDDZIJfHv5S44iEMCQne+b4ERUSC8AfxVaSrEsGwPfBC0ScS9QyPItjdoLi4eHBxo0b+e233xg3bpxZ606YMIHVq1czbtw4evTowZgxY/j8888JCQnh998LTmO28m7l1Z4Q8UnxzDhQ+CZ5Epbtw30fkqQkAYbxFtwdCt6YPZ+2+1Q9UZh3bB4PIx9qHJEozJKTFY6svKg+v2l/hZMuhwBwSXSjw+MXZA63p5idoNja2uLh4ZGtjdWvXx+9Xp+mrEiRIvj7F6xJvt5s+SYuti4ALD29lBuPb2gckRAGZwLOqMPBF3MsxpRmUzSOKHeUdS3Lq41fBSA6IZrPD32ucUTC0kU/juXk+qtEP47N8dcOuBSiXjkB2Oi5XH3cI/gl7BUHmcPtKZo3ko2OjiYmJgZXV9d06wQFBXH58mX1X35IZjwcPXi9xesAJCYn8umBTzNZQ4i8kXqU1ene03Gxc9Ewmtz1Tut31MHb5p+Yz93wuxpHJCxZdGgcfr9fIzoX5lFLPTfbRcfTXHQ6DYBnvBdtQruYrFfYaZ6g/PbbbyQkJNC+fft062zatInRo0er/2bMyB+3TF5r/hpF7YsCsPLMSi4HXdY4IlHYHbl7RJ2tuEyRMuoVhoLKy9lLnWwtLilObrcKzaSem22zxy/q4+eDX8EaG5P1CjtNE5TTp0+zfPly2rVrR6NGjdKt16tXLxYtWqT+e++99/IwyuxztXdlWstpgGFky4/3f6xxRKKwS30Mftj2Q+yt7TWMJm+kvt26xG+J3G4VmkiZw+2yw39cdTxvKIsrQ9PwtmodmcPNmGYJir+/P++99x6VKlXi7bffzrCup6cn1atXV/+VL59/5gmZ3Gwyno6eAKw5t4bzj85rHJEorE7cP8H2a9sBw1wfQ+sN1TiivPH07dZZB2dpHJEojFLmcPvL41e1rHvIi+h5Mltx88E1ZQ63VDRJUB4+fMgbb7yBk5MTs2fPxtHRUYsw8oSzrTPvtDIMJa6g8PlhaagntDHz4Ez18dut3s7XQ9qb67Xmr+FqZ2jntuLMCun6LzRx3+s6l5zOAFAsviRN/v/qiZOHPb5TG1CxqZeW4VmcPE9QwsLCeOONN0hISOCrr77C09Mzr0PIc2Mbj8XDwdDzafV/q+USs8hz5x6d449LfwBQyqUUw+oP0zSevOZq78rEphMBSEhO4Kt/CsaouSJ/Sd1ZYkrt17HCilYjazNwro8kJybkWoISFBSEv78/iYlPBp6JiYnhrbfeIigoiC+++IKyZcvm1uYtirOts9qVM0lJkkGjRJ5LPaLxmy3fxM668DXEm9JsitqjZ9GpRTyKeqRxRKIwOXbvGDuu7wCgglsFRjQbBkCxSq5yWycd2UpQNmzYwIoVK9i6dSsAhw8fZsWKFaxYsYLIyEgAFi5cyODBgwkMDFTX+/TTT7l48SI+Pj74+/uzc+dO9d/BgwdzYHcs18SmE3G2dQYM46I8iHigcUSisLgafJW15w3DaRdzLMbohqM1jkgbxZyKMabhGABiEmP49t9v1flQAm+EyQBZIlel7kH2but3sdEXnlus2WWdnZXWrl1LQECA+vzAgQMcOHAAgE6dOuHs7GxyvWvXrgGwdetWNblJ4eXlhbe3d3bCyReKOhRlfOPxfPHPF8QnxfPNv9/wZSe5kiJy3+eHPidZMQyn/Vrz13CyddI4Iu1MazmNH47/QEJyAnMPfkfJ6w1xxJnDS85zeuN1mg+pKZfaRY479+icUff+ofWGEnEn5weDK2iylaCsW7cu0zrTp09n+vTpZq9XkL3W4jXmHp1LXFIc80/M553W7+DhmL1ReYXIijthd1h5diUAbvZuTGg6QeOItFW6SGn6lh7Amju/EKOPYq/bX3QPeRGAqJBY9szxk8aKIsd9/e/X6uNpLaZhZ21HBJKgZEbzgdoKEy9nL0Y2GAlAVEIUPx7/UeOIREE37+g8EpMN7cAmNplIEbsiGkekreRkhWanu6BTDF99fxfdTIIu3qiOzIcictK98Hv8ctYwMFtR+6KMbDhS44jyD0lQ8tibrd5ErzO87d8f/57YRMmiRe4Ijwtn4amFANhZ2TGp2SSNI9JewKUQnIM8aBjREoBw68ccddlnVEfmQxE5ad7ReSQkJwAwrvE4tS2iyJwkKHmsglsF+tbsC8CjqEf8+t+vmawhRPYsPrWY8LhwAAbXHUxxp+IaR6S9lHlOOj3uo5btct+IgmKynhDPIjwunJ9O/gSArZWt2tVdZI0kKBp4o8Ub6uNv/v0GRZHLySJnJSYnMvfoXPV5ykiqhV3KPCeVYmtQJboWAPft/DnveNJkPSGexdMnCSVdSmocUf4iCYoGmpVpRsuyhkvM5wPPs/P6To0jEgXN+gvruR12G4DuVbtTs1hNjSOyDCnzoQB0THUVZaf77+pjmQ9F5ISEpATmHJmjPk99YiqyRhIUjaQ+WFO38BbiWSmKYnRMyRfjEynzoQDUj2xGsXjDGe1Fp9PctrsOyHwoImesO7+OO+GGKRV6VOshJwnZIAmKRp6v/jyVilYCYNeNXfz38D+NIxIFxcHbBzlx/wQADbwa4FPBR9uALEzFpl74Tm2Ai7sTHR+/oJbv9dqUa12Mox/HcnL9VaIfS6P4wkBRFL498q36/M2Wb2oYTf4lCYpGrPRWTG02VX3+zZFvtAtGFCjf/PvkWJrWcho6nVwNeFrFpl4MnOfD6y9MxjHJ0KviiONebGsk5cr2okPj8Pv9GtHS+LZQOHL3CCcfGNo1NSzZEO9yBXcQ0twkCYqGhjcYjpu9GwC/nP2Fh5EPtQ1I5Hu3Qm+x6fImwDBiZf9a/TWOyHLp9TrKVy2JT2h3wNCweMHJBRpHJQqC7459pz6e3HSynCRkkyQoGnK2dVbnBklITmDxqcUaRyTyu/nH56tdZsc1HoeNlcz3kRmf0O5Y6awAWHByAXGJcpVDZN/9iPv8duE3ADwdPRn43ECNI8q/JEHR2Lgm49SB2+afmK+O+imEuWISYljsZ0hyba1sGdVwlMYR5Q9FEz3pXq4nYBibaP2F9RpHJPKzBScWqN/jYxuNxd7aXuOI8i9JUDRWwa0CPasZvhzvRdzjz0t/ahyRyK9Wn1tNSIxhBNSBtQfKwGxmGFnjyQzP3x//XsNIRH4WlxinDsxmpbPi1cavahxR/iYJigVIPbqgfDmK7FAUxei+t4xYaZ4WxVtSt0RdwNDAMaUXlBDmWHd+HY+iHgHQt1ZfyhQpo3FE+ZskKBbAt6Iv1T2qA7Dv1j7OPTqncUQivzkeeIzTAacBaFq6KU1LN9U2oHxGp9MxsUmqE4VjcqIgzKMoCvOOzVOfT2oqc189K0lQLIBOpzO+iiJfjsJMSy4tUh+n/qEVWfdy3ZfVXnVrzq0hMCpQ24BEvnL03lGj8YdalW2lcUT5nyQoFmJIvSHqLJerzq4iNDZU24BEvhFqFcIm/z8AKOZYjP61pWtxdjjaODKywUgA4pLipFedMEvqE8tJTSdJ1+IcIAmKhShiV4Sh9YYCEJ0QzfLTy7UNSFi85GSFwBthHHDbRqJi6DUwuuFo6TXwDMY3GY8Oww+L9KoTWRUUHaR2LfZw8ODF517UOKKCQRIUCzKhyQT18Q/HfyBZSdYwGmHJbh4LYO3kfexfcpoDblsB0Cl6uln3yWRNkZFKRSvRvZph4LY74XfYfHmzxhGJ/GD56eXEJ8UDMKz+MBxsHDSOqGCQBMWC1CxWE9+KvgBcC7nGnht7NI5IWKKbxwLYM8ePqJBYzjgfJcz6MQANIptzccEjbh4L0DjC/C31iYKMLCsyk6wkGx0nYxqN0TCagkUSFAszrvE49fHCUws1jERYouRkhSMrL6rPD7rtUB+3/f8h24+sukhyspLnsRUUnSp3ooJbBQB2Xt/Jzcc3tQ1IWLS/b/7NtZBrgKFHZjWPahpHVHBIgmJhelXvRQmnEgD8cekPAiLlbFg8EXAphKgQw4y4wdaPuOB4CgDPeC9qRNcDICo4loBLIZrFmN/pdXpGNzQM3KagsOjUokzWEIXZTyd+Uh/LwGw5SxIUC2NjZcOIBiMAw+Rly/yWaRyRsCQxqWbDPey6C0VnuFLSKqwj+lR/zjEya+4zGdFgBNZ6awCW+i0lISlB44iEJXoQ8YA/LxtG//Zy9uL56s9rHFHBIgmKBRrdcLTak2DRqUXSWFaoHNzsAEgmicOuOwFD49iW4R1N1hPZk/rH5mHUQ/VHSIjUlvotVXt6jWwwUibnzGGSoFigikUr0qlyJwBuht5k1/VdGkckLIVXDXec3O256HiGEBvDQGK1oxrinuip1nHysMerhrtWIRYYYxuNVR9LY1nxtKTkJLWdoA6deltQ5BxJUCxU6i9HaSwrUuj1OpoPqckh1yeNY73DOhvVaT64Jnq9DBL1rHwr+VKpaCUAdt/YrTaEFAJg+7Xt3A67DUDXql0p71Ze44gKHklQLFSPaj0o6VwSgD8v/cmDiAcaRyQshctz1px1PWp4nOhK3UjDvDtOHvb4Tm1AxaZeWoZXYOh1esY0fNJldNFJaSwrnkiZtRjg1UbSODY3SIJioVI3lk1Skljqt1TjiISl+Pnsz8QrhkGh+pUfiDU2tBpZm4FzfSQ5yWHDGwzHRm9oV7Ds9DJ1MC5RuN0Ou83Wq4YBEssWKUu3qt00jqhgkgTFgj3dWDYpOUnjiITWFEVhid8S9fnoxqMAKFbJVW7r5ILiTsXpXbM3AIHRgWy8uFHjiIQlWHxqsdp5YXTD0VjprTSOqGCSBMWClXcrT5cqXQDwD/Nn5/WdGkcktHbs3jHOPToHQMuyLanqKoNC5TZpLCtSS0pOYtlpw/APVjorRjYcqXFEBZckKBbO+MtxIYE3wgAIvBEmo4UWQqmvnoxqMErDSAqPdhXaUdW9KgB7b+3lSvAVjSMSWtp5fSd3w+8C0K1qN0q5lNI4ooJLEhQL171ad/UPYPOlTWxZfgCAw0vOs3byPpl3pRCJjI9k9bnVADjbOtO/dn+NIyocdDqd0fwqS04tyaC2KOgW+y1WH49sIFdPcpMkKBbOWm9Nn+IDAEjWJfOv65MJBKNCYtkzx0+SlELit/O/ERkfCcBLz72Es62zxhEVHkPqDVFHll1xZoWMLFtIPYp6xKbLmwAo4VRCGsfmMklQLFxyskLlY43V54dcd6JgfGtHJocrHFLf3pEzt7xV3Kk4var3Agwjy6b04BCFy6ozq9SRY4fWGyojx+YySVAsXMClEJyD3KkRZZgI7pHtfa46nDOqI5PDWZ7ox7GcXH+V6MexOfJ6FwMvcvjOYQBqF6tN09JNc+R1RdalTgpTJ4uicHi6B13KMBAi90iCYuFSJn1rHdZJLTvkmrY3j0wOZ1miQ+Pw+/0a0Tn0uaQeB2dUw1HodNKlOK91rtyZ0i6lAdh6dasMnljIHLl7hItBFwFoXa411T2raxxRwScJioVLmfStQWRLHJMMbQ5OuhwiWh9lsp4oeOKT4ll5diUANnobXqn7isYRFU5WeiuG1R8GGAZPXHFmhbYBiTwlt1jzniQoFi5lcjhbxY5m4T4AxOvjOO6yX60jk8MVbH9d+YtHUY8A6F2zN56OnpmsIXJL6sv6S/2WoijS9qswiIyPZO35tQC42LrQv5b0oMsLkqBYuJTJ4QBap5oULvVtHpkcrmCTMzfLUaloJdpVaAfA1ZCrHLx9UOOIRF5Yd36d2oPuxedexMnWSeOICgdJUPKBik298J3agJpOtSkXWxmAWw5XCC5+XyaHK+Duht9l+7XtAJRzLUeHSh00jkhIY9nCR04StCEJSj5RsakXA+f5MLjWELXsfuezkpwUcMtPL1fn/BhRfwR6nfzJaq1PzT642rkChrFpwmLDNI5I5KaLgRf5584/gPSgy2vybZeP6PU6hjUZinWyoe/9z//9TFyi9N4pqJKVZPXMTYeO4Q2GaxqPo5sdDfpUwbGQN8h2sHHg5TovAxCTGMOac2s0jkjkptQ96EY2GCk96PKQJCj5jJudGw0jWwIQEhPCn5f/1DgikVv23tzLrdBbAHSq3IlyruU0jcexqD2N+lXFsai9pnFYgtQTxMltnoIrISnBqAfd4HqDNY7IfPn5xEISlHwodWNZ+XIsuOS+t+VqWLIh9b3qA3D8/nH+e/iftgGJXJG6B93zNZ7Plz3o8vOJhSQo+VD16LqUdy4PwK7ru7gddjvHt5HTI6EK84TEhPD7xd8B8HT0VIdZF5Yj9WzScqJQMMlJgrYkQcmH9Oh5qYrhHriCwvLTy3N8Gzk9Eqowzy9nfyEuyfDeD647GDvr/Hd5tqAbVGcQdlaGz2XV2VXSHqyAuRd+j23XtgFQtkhZOlbqqHFEhY8kKPnUi5UHocPQWGvZ6WVqTw+R/ymKIlO65wNFHYrSt1ZfQNqDFUQrzqxQv1eH1x+Old5K44gKH7MTlOjoaJYuXcq0adPo3r07bdq0Ydu2bVlePyIigi+//JKePXvSqVMnpkyZwuXLl80No9Ar7VSGzlUMbVFuhd7i75t/axyRyCknH5zk7MOzADQv05zaxWtrHJFIj4yJUjAlK8lq7x1L6EFXWJmdoISFhbF8+XL8/f2pUqWKWesmJyfz9ttvs3v3bvr06cOrr77K48ePmTJlCnfu3DE3lEJvRP0nw27Ll2PBseSU3PfOL3wq+FDRrSKQe+3BRN779+Fhrj++DoBvJV8quFXQNqBCyuwExcPDg40bN/Lbb78xbtw4s9bdt28f586d491332X48OH06dOHefPmodfrWbZsmbmhFHq9qvdSW5VvvLiRkJgQjSMSzyo6IZpfz/0KgJONEwNrD9Q4oryXn7pF6nV6dX6e3GoPJvLeL9dWqY/lJEE7Zicotra2eHh4ZGtj+/fvx93dnTZt2qhlbm5utGvXjkOHDhEfH5+t1y2s7KzteKWOYWbbuKQ4fv3vV40jEs9q/YX1hMeFAzCw9kBc7Fw0jijv5bdukUPrDZX2YAVItD6Szf6bAChqX5QXarygbUCFWJ42kr1y5QpVq1ZFrzfebM2aNYmNjZXbPNkgA0YVLItPpWoc21DO3PKDsq5ljdqD7b25V+OIRHYkJysE3gjjmMt+YpMMwyu8UvcV7K3zR6JcEOVpghISEmLy6ktKWXBwsMn1goKCuHz5svrP398/V+PMT54r/hxNSjUB4HTAaU49OKVxRCK7rgRfUWfHrelZkxZlWmgckcgqaSybv908FsDayfs4vOQ8h113qeVdbJ7XMCphnZcbi4uLw9bWNk15SllcnOlxBDZt2sTy5ctzM7R8bWSDkRy/fxwwzBvRsGRDjSMS2SFzfuRfPav1xMPBg+CYYH6/+DuPYx5T1KGo1mGJLLh5LIA9c/wAuGt7k1sOVwAoF1uF+0vjuVkkQCZl1UieXkGxs7Mz2c4kpczOznSjuF69erFo0SL133vvvZerceY3Lz73Ig7WDgD88t8vxCTEaByRMFdCUoLawDK/zvlRmNlZ2zG4ruEzk/Zg+UdyssKRlRfV56mvnrQOMwzMdmTVRZKTlTyPTeRxguLu7m7yNk5KWXqNbz09Palevbr6r3z58rkaZ37jau9Kv1r9AAiNDeWPS39oG5Aw29arW3kY9RAw9M4q7lRc44iEuaQ9WP4TcCmEqBBDe5NEEjhSxDCelHWyDU3DfQCICo4l4JL0kNRCniYoVatW5erVqyQnG7dyv3jxIvb29pQtWzYvw8kxltAtUu6B528ycmz+l7o9mF+AH34P/DSOSGQmJtVUHmecjxJpbehB1yCyJU7JLibribyTawlKUFAQ/v7+JCYmqmVt27YlJCSEAwcOqGWhoaHs3buXli1bmmyfkh9YQrfINuXbUMXdMHDenpt7uPn4pmaxCPPcj7jP1qtbAShTpAydKnfSOCKRXamTy9RtioRlckh1Umnq9o6peiLvZCtB2bBhAytWrGDrVsOX6uHDh1mxYgUrVqwgMjISgIULFzJ48GACAwPV9Xx8fKhduzazZs1i+fLlbNy4kSlTppCcnMyIESNMbktkjU6nY3j9J8Mxy4BR+ceK0zLnR0HxdHuw2ESZDdySedVwx8ndnsfWQZxzOgmAe0IxakTXV+s4edjjVcNdowgLt2wlKGvXrmXJkiX88ccfABw4cIAlS5awZMkSIiIi0l3PysqKL774gvbt27Nhwwbmz5+Pq6src+bMoVy5ctnaAfHE0HpD0esMH+my08tISk7SOCKRmWQlWb0lp0Onjkoq8qfU7cEexz5m48WNGkckMqLX62g+pCb/FNmDojOcJLQK64g+1U9j88E10eulR50WstXNeN26dZnWmT59OtOnT09T7uLiwttvv83bb7+dnU2LDJQuUpquVbqy5eoW7oTfYfeN3eoAUsIyHfA/IHN+FDAjG4xk1VnDUOlL/JbwUp2XNI5IZKRCkxL47d8P0YbnLf//9o6Thz3NB9eULsYaytNGsiL3pT4DX3pa7oFbOqORY6VxbIHwdHuwW6G3tA1IZOjg7YP4R98CoLlrKzwTS9BqZG0GzvXJ1eTEEjpXWDpJUAqYHtV6UMyxGAB/XPqD4GjTo/MK7YXGhrLh4gYA3B3cZc6PAuLp9mDL/GQiVEuWujHzsDrDAChWyTXXb+tYQucKSycJSgFja2XLkHpDAIhPiueX/37ROCKRnl//+1VtRPlKHZnzoyCR9mA5K/pxLCfXXyX6cc42Og6PC+e3C78B4GrnSrdyPXL09cWzkQSlAEp9m2eJ3xIURUZBtEQyMWDBldIeDOBO+B0OBOzXOKL8LTo0Dr/frxGdw+ORrDu/jugEQ+OTQXUGqT2whGWQBKUAqlWsFs3LNAfg7MOznHxwUuOIxNNOPTiFX4BhIK8mpZpQt0RdjSMSOS31icIvV1dpGIlIT+rbO9KDzvJIglJAyYBRlm3JqSej/Urj2IIpdXuwbXe2EKkP1zgikdrFwIv8e/dfAOqWqEujko00jkg8TRKUAmpA7QE42jgChrYOMoGg5YhJiFHbBjnaOEo31ALKqD1YcjxHi+wl8EaYTDxnIYyuntQfIbOHWyBJUAqoInZFGFB7AABhcWH8fvF3jSMSKX6/+DthcWEA9K/VnyJ2RTSOSOSWTlY91ceHXHdyaMk51k7ex81jARpGJRKSElh5diVgmD385bovaxyRMEUSlAJMJhA0lls9AcyVemLAUQ1HaRiJyE03jwVwe0k0lWJqAHDX/ib+dleJCollzxw/SVI0tPXqVh5FPQLg+RrP4+noqXFEwhRJUAqwVmVbUc2jGgB7b+3lesh1jSPSVm71BDDHtZBr7Lu1D4DqHtVpVbaVZrGI3JOcrHBk5UUAWoc9mfwx9YR0R1ZdlNs9Gkk9iOWI+tI41lJJglKA6XQ6oz8+mUBQe6kbx45oIPe9C6qASyFEhRiu1DWOaINtsmG00KNF9hGvMyTIUcGxBFwK0SzGwiogMoAtV7YAUNqltMwebsEkQSnghtQbgpXOMDvu8jPLZcAoDSUkJbDstGFUUWu9NUPrDdU4IpFbYlJdpXNIdqRxhLeh3CqKUy6HTdYTeWPVmVUkKYbvwaH1hsrs4RZMEpQCrqRLSbpV7QbA3fC77Ly+U+OICq+/rvzFw6iHADxf/XlKOJfQOCKRW/OhODz1eq3DnkzaeajIznTridylKIpRe7zhDYZnUFtoTRKUQsBoTBSZQFAzi04tUh+Pbjhaw0hEityaD8WrhjtO7k9es0pMLUrElwbgstNZHtk8wMnDHq8a7jm6XZGxg7cPcjn4MgBty7dVJ3UUlkkSlEKgW9VulHAynK3/eelPAqMCNY6o8LkTdoft17YDUN61PB0rd9Q4IpGb9HodzYfUVJ/r0NHKqLHsTpoPrpnrE9IJYwtPLlQfj2k0RsNIRFZIglII2FjZqANGJSQnyASCGljqtxQFQ4+NEQ1GqBPJiYKrYlMvfKc2UK+ktAjzRa8YPvdTpQ5QrnExLcMrdEJiQlh/YT1gmD28T80+GkckMiPfkoWETCConaTkJPW+t16nlzk/CpGKTb0YOM+HViNr45bkTluP9gAExD2Q9mB5bNWZVcQlGRolD6k7RGYPzwckQSkkanjWoGXZlgCce3SO4/ePaxxR4bHz+k7uhN8BoGuVrpQpUkbjiERe0ut1FKvkCsDwuk8aZebW4ImWMiChJVEUhYWnntzeGd1I2oDlB5KgFCIygaA2ZORYkaJDmU5qe7BNlzflSnswSxiQ0NL8e/dfLgReAAwDWNYqVkvjiERWSIJSiAyoPQAnGyfAMIFgVHyUxhEVfI9iHrHp8iYAvJy96F61u8YRCS3Z6I3bg/189meNIyocpHFs/iQJSiHibOvMi8+9CEBEfARrzq3ROKKCb831X0lMTgRgeP3h2FjZaByR0FrqK5mLTi2S9mC5LDQ2lHXn1wHgaudKv1r9NI5IZJUkKIXMq41fVR//dPInDSMp+BQUfr66Un2e+odJFF7VPavTpnwbAC4GXeSA/wGNIyrYfjn7CzGJMQAMrjsYRxtHjSMSWSUJSiHTuFRjGpVsBMCJ+yc4cf+ExhEVXFcc/uNmxA0A2ldsT2X3yhpHJCzFq43kRCEvPN04Vm7v5C+SoBRCqa+iLDixQMNICrb9btvUxzJyrEitT80+FHM0jIOy4cIGHkU90jiigun4/eOcfXgWgGalm1GnRB2NIxLmkASlEHrxuRcpYlcEgF/P/UpYbJjGERU8j2IeqZPCeTp60rtGb40jEpbEztpOHQ8nITmBZX7LNI6oYFp08sn0EnL1JP+RBKUQcrZ15pU6rwAQnRAtPQlyWHKywqJji0nSGRrHjqg/AjtrmRROGEv9g7ng5AKSlWQNoyl4IuIiWH1uNQAuti4MrD1Q44iEuSRBKaTGNh6rPv7p5E/SkyCH3DwWwOrJe1h5zXBGrFN0lNpcj5vHAjSOTFiaSkUr0bmyYZbjm6E3ZWTZHLbq7CqiEgxDKQyqMwgnWyeNIxLmkgSlkKpboq7RyLL/3PlHs1gKysiXN48FsGeOH0fiDhFiYxiAq3ZUI5yCirJnjp8kKSINo151J6SxbE5RFIUfjv+gPh/XeJyG0YjskgSlELOUngQFYeTL5GSFIysvArDfbata7hP6ZGC2I6sukpwsV6rEEz2q9aC0S2kANl/ZzN3wuxpHlHWWfGJxwP+A0cix9bzqaRyRyA5JUAqxfrX64e7gDsBv538jKDpI44jyr4BLIUSFxBJoE8A5J0PXbY+E4tSJaqzWiQqOJeBSiFYhCgtkrbdWe3glK8ksPrU4kzUshyWfWKS+ejKhyQQNIxHPQhKUQszBxoFh9YYBEJcUx4rTK7QNKB+L+f8v6QOu21B0hqsk3qFd0WNlsp4QKUY1HIWVznCcLDq1iISkBI0jyt/uR9xn46WNABR3Kk6fmn00jkhklyQohVzqngQ/nfxJehJkk4ObHQm6BA657gDASrHGO6yTyXo5ydHNjgZ9quCYw68r8k7pIqXpWb0nYPhx/evKXxpHlL8tOrlInV5idMPR0oMuH5MEpZCr7lmd9hXbA3At5Jr0JMgmrxrunPM6SqR1OAANI1pRJKmoUR0nD3u8arjn6HYdi9rTqF9VHIva5+jriryVuj1Y6tsTwjwJSQksOGkYfFKv0zO20dhM1hCWTBIUwcQmE9XH847O0zCS/Euv13G0/C71uU9otzR1mg+uiV6vy8uwRD7RsXJHqrhXAWDPzT1qA09hnj8u/cGDyAcAPF/9ecq6ltU4IvEsJEER9Kzek/Ku5QHYdm0bV4KvaBxR/nM64DQnHx8HoExiBarGPKcuc/Kwx3dqAyo29dIqPGHh9Dq90YnCd0e/0zCa/OvHEz+qj8c3Ga9hJCInSIIisNZbG7V0//7Y9xpGkz/NPTpXffxOzzdpPdKQoLQaWZuBc30kORGZGlZ/GM62zgCsPLuSxzGPNY4ofzn/6Dz7bu0DoLpHdXwr+mobkHhmkqAIAEY2HImDtQMAy08vJyI+XOOI8o+HkQ/59b9fAXCzd2NY/aEUq+QKQLFKrnJbR2SJq70rw+sPBwxTUCzxW6JxRPnLj8eNr57odPJ3l99JgiIAcHdw55W6hvl5IuIjWHN9tcYR5R8LTi4gPikeMPQakCG1RXZNbPrkNs/3x74nKTlJw2jyj8cxj1l+ZjkAjjaODKk3RNuARI6QBEWoJjWdpD5e8N9PJJNM4I0wGf00A3GJceqZm5XOyugHRghzVfOoRtcqXQHwD/Nn85XNGkeUPyw6tYjohGgAhtcfjpu9m7YBiRwhCYpQ1SlRhxburQDwj73JeaeTHF5ynrWT98k8MulYd34dD6MeAtC7Zm/KuZbTOCKR301uNll9LL3qMpeQlMB3xwyNinXomNJsisYRiZwiCUo+k5sDc908FkCD/9qpz/922wRAVEisTHZngqIozDk6R30+tdlUzWIRBUenyp2o5lENgL239vLfw/80jsiybbi4QZ3DqEe1HlT1qKpxRCKnSIKSz+TWwFwpk93Vi2yGR0JxAM45n+S+7W21jkx2Z+zwncOcenAKgEYlG6mzQwvxLPQ6vdHt1tQ9xIQxRVH49si36vPXmr+mYTQip0mCIoAnk93psaL9415q+c6iv6uPZbI7Y6l/OKY0myK9BkSOGVpvKEXsigCw6uwqAiLl6qUp/979l2P3jgFQr0Q9fCr4aBuQyFGSoAjAeBK7NqFdcEgy9EQ5WuRvQq1CTNYrzG6F3uL3i4bkzcvZiwG1B2gckShIXOxc1GHa45PiZeC2dDx99UROEgoWSVAEYDyJnb3iSJtQQ0+CRH0ifxfdZLJeYfb1P1+rEyuObzxeJiQTOW5KsynY6G0AwwipkfGRGkdkWVKfJJRwKsGLz72ocUQip0mCIgDDZHdO7k/atXR4/DxWijUA+922EquLzpXJ7vKjwKhAdRAtRxtHGVJb5IrSRUrzct2XAQiNDWXxqcUaR2RZvvn3G/UkYUKTCXKSUABJgiIAw2R3zYfUVJ+7JXnQLNwHgGirSA657ZTJ7v7fd8e+IyYxBjAMzObh6KFxRKKgmtZimvr42yPfkpCUoGE0liMwKlBN2OQkoeAyO0GJj49n/vz59O7dmw4dOjB27FiOHz+epXVPnDjBlClT6NmzJ926dWPMmDHs2LHD7KBF7qjY1AvfqQ3UKymdQvqqyw6W20KZRvJDHBkfqc5VZK235vUWr2sckSjIahevTbeqhpmxb4fd5rcLv2kckWWYe3SuepIwpuEYOUkooMxOUGbNmsW6devo2LEjkydPRq/X89Zbb3H27NkM1zt06BBvvPEGCQkJDBs2jFGjRmFnZ8fMmTNZt25dtndA5KyKTb0YOM+HViNrUzq+PG2KGsZFuR97T74cgcWnFvM41jCJ26A6g2RgNpHr3mr5lvr4y3++RFEKd1f/8Lhw9STBRm/DGy3f0DgikVvMSlAuXLjAnj17GDNmDOPHj6dXr17MmTMHLy8v5s+fn+G6v//+Ox4eHsyZM4e+ffvSp08fvv32W0qXLs22bdueaSdEztLrdepkd683eXKF4PNDn6v3fAujhKQEvvn3G/V56h8OIXJLm/JtaFKqCQCnA06z8/pOjSPS1oITCwiLCwNgcN3BlClSRuOIRG4xK0HZv38/VlZW9Or1ZJwMOzs7unfvzvnz53n48GG660ZHR+Pi4oKtra1aZm1tjaurK3Z20rjJUrUs0ZrmZZoD8N+j//jz0p8aR6Sd1edWcyf8DmAYsbJ28doaRyQKA51Ox1utniTDnx74tNBeRYlNiuWbI4aTBB3G74soeMxKUK5evUqZMmVwcjKerbVmTUPjymvXrqW7bv369bl58yaLFy/m7t273Lt3jxUrVnD58mVeeumlbIQu8oJOp+ODNh+ozz858Emh/HJMSk5i1qFZ6vO3W72tYTSisOlTsw+1itUCDCMY77u1T9uANLL2+mp10Lo+NftQ3bO6xhGJ3GRtTuXg4GA8PNI2RkopCwoKSnfdoUOH8uDBA1atWsXKlSsBsLe355NPPsHb2zvD7QYFBREcHKw+9/f3Nyds8Yy6VOlC41KNOXH/BKcDTvPXlb/oWb2n1mHlqXXn13Ep6BIArcu1pnW51hpHJAoTvU7P/7z/x8u/G7odf3LgE9pVbJfJWgVLIol8f+7J6M3vtH5Hw2hEXjArQYmLi8PGxiZNecptm7i49EcZtbGxoWzZsvj4+NCmTRuSkpLYvHkzM2bM4JtvvqF27fQvl2/atInly5ebE6rIQTqdjvfbvM/za54HDF+OPar1KDSjNiYlJ/HJgU/U5x/7fKxhNKKwGlh7IB/v/5grwVfYd2sfB/wP0KZ8G63DynXJyQqBN8L413UPtyJvAdChUgcal2qsbWAi15mVoNjZ2ZGQkLYffnx8vLo8PXPmzOHChQssXrwYvd5wZ6l9+/YMGTKEefPmsWDBgnTX7dWrF61atVKf+/v7M2PGDHNCF8+oZ7We1CtRjzMPz3Di/gl2XN9BlypdtA4rT6w9v1a9euJdzpt2FQrXmauwDFZ6K/7n/T+G/jEUMLRF2TV4l8ZR5a6bxwI4svIiYSERbKm0Wi0fU3xSBmuJgsKsNigeHh5Gt1pSpJR5enqaXC8hIYEtW7bQokULNTkBQyPZZs2acfnyZZOJTwpPT0+qV6+u/itfvrw5YYsckHIVJcXH+z8uFG1RkpKT+GT/k6snH/l8VGiuHAnLM6jOICoVrQTA7hu7+efOPxpHlHtuHgtgzxw/okJiOey6i2CbRwDUjmpE2Aobbh6TCRQLOrMSlCpVqnD37l2ioqKMyi9cuKAuNyUsLIykpCSSkpLSLEtKSiI5OZnk5MLbfTW/6F2zN7WLGW7FHbl7hB3XC/4ge2vPr+Vy8GVArp4I7VnrrZneerr6/H9//69AnigkJyscWXkRgARdAls81qjLng96BYAjqy6SnFzw9l08YVaC4uPjQ1JSEps2PZk8Lj4+nq1bt1KrVi1KlCgBwMOHD40ashYtWhRnZ2cOHjxodKUkOjqaw4cPU65cOelqnA/odXo+aPukR8+7e94t0OOiJCYn8vH+J+1N5OqJsARD6g2hctHKAOy7tY9dNwrebZ6ASyFEhcQCcNB1O49tDB0w6kY2pWKsoedOVHAsAZdC0n0Nkf+ZlaDUqlWLdu3asXDhQubPn8+mTZuYOnUqAQEBvPrqq2q9mTNnMnjwYPW5lZUVL774Infu3OHVV19l3bp1rFmzhrFjxxIYGMiQIUNybo9ErupXqx8NSzYEDINGrT23VuOIcs+SU0u4EnwFkKsnwnLYWNkwo/2TNngF8UQhJtTQ4SJOF8tWjyffMb3+/+rJ0/VEwWT2UPfTp0+nf//+7Nixg3nz5pGYmMjs2bOpX79+husNGTKE999/H2tra5YvX86SJUtwcnLik08+oVOnTtmNX+QxvU7P576fq8/f2/se8UnxGkaUO6Lio/ho/0fq89kdZsvVE2ExBtQeQH2v+gCcenCK9RfWaxtQDnNwM1xR3130T8KsDVdJ6ke0oHxcFZP1RMFkVi8eMPTUGT9+POPHpz975Lx580yWd+zYkY4dO5q7SWFhOlTqQPuK7fn75t/ceHyDRScXMaHpBK3DylHf/PuN0YBQLcq20DgiIZ7Q6/TM8p1F11+6AvDe3+/Ru0ZvbKzSDgORH3nVcCfRI4btRQ3ztOkUPb2DhhrVcfKwx6uGe45u19HNjgZ9quAoiY9FMPsKihA6nc7oKsonBz4hMj5Sw4hy1qOoR3zxzxcAWOms+Kz9ZxpHJERanSt3pm35tgBcDbnKUr+lGkeUc/R6Hf822kKslWHGYu+wzpSKN56Ys/ngmuj1OXtV07GoPY36VcWxqH2Ovq7IHklQRLY0Kd2EfrX6Af//g374C40jyjmf7v9UTbhGNxwtw2kLi6TT6Zjl+2T6hff3vk9YbJiGEeWcK8FX+PWOYcRxO8WenkEvq8ucPOzxndqAik29tApP5BFJUES2zWw/E2u94S7hl/98ya3QW9oGlAMuBl7kp5M/AeBk48SHPh9qHJEQ6WtRtgX9a/UHIDA6kE8PfKpxRDnjnd3vkJicCMDbbd+i+zDDdCitRtZm4FwfSU4KCUlQRLZV86jGlGZTAIhNjGXazmkaR/RsFEVh8vbJ6hfjmy3fxMtZvgiFZfui4xfYWxtuScw9OpdrYVc1jujZ7Li2g42XNgLg5ezFm63epFglVwCKVXLN8ds6wnJJgiKeyftt3qe4U3EANlzcwN83/9Y4ouzbcHEDu2/sBqCCWwWZyl3kCxXcKvBmyzcBw9g97xwwzLQdeCMs3w1kFpcYx6RtT4axn91hNs62zhpGJLQkCYp4Jq72rkYNZidvm0xCUvrTFliqqPgoXt/xuvr8287f4mDjoGFEQmTd263exsuuJAD7H//NGaejHF5ynrWT9+WrIeG/+fcbroYYrgC1KtuKwXUHZ7KGKMgkQRHPbGj9oTQp1QSA84Hn+frfrzWOyHyfHfyMO+F3AOhSpQvPV39e44iEyLpHpyPocfPJj/mvJX4kVhdNVEgse+b45Ysk5XbYbbUNjV6n54duP8jYQ4WcJCjimel1en7s/iN6neFw+mjfR1wNzj/3wU8HnFa7FdvobZjbZa58MYp8I2XemqYRbakV1QCAEJtA/ii2Uq1j6fPWKIrC+C3jiUk0dCue0GQC9bzqaRyV0JokKCJHNC7VmKnNpgIQlxTH6M2j88Xw2wlJCYz4c4TaMPbd1u9SzaOaxlEJkXUp89bo0PHKw4nYJhsGGfvbbTM37C8Blj9vzaqzq9hydQtgaBj7SbtPMllDFAaSoIgc80m7T6jgVgGA/f77WXJqibYBZcFX/3yFX4AfAM8Vf47/tfmfxhEJYZ7U89EUSyhJr/8fM0TRKaz0mkuCLiFNPUvyIOIBU7ZPUZ//1P0n3OzdtAtIWAxJUESOcbJ1YkGPBerz13e+zvWQ6xpGlLELgRfU+Xb0Oj1Ley3F1spW26CEMNPT89F0eNybsrGVALhn588fnitN1rMEiqIwbss4QmNDAXjpuZd4voa0/xIGkqCIHNWpcieG1x8OQGR8JC///rJF9uqJTYzlpQ0vqRMdTmsxjSalm2gclRDm86rhjpP7k6HZrbBieMDrWCcbBlHc6b6Bm14Xcnzempyw7PQy/rz8JwDFnYozr6vpedxE4SQJishxc7vMpXLRygAcvXeUj/d/rHFEhoaEgTcMw4AH3gjjzZ1vcvbhWQBqF6vNRz4faRidENmn1+toPqSmUVnZuEr0DhqmPl9a/Gsex1pWG5QLgReYuHWi+vzHbj/i6eipYUTC0kiCInKci50Lv/b9VR0G/7ODn7Hv1j6TdZ9OHHKjp8HNYwGsnbyPw0vOA/DDmiV8f/x7AOyt7VnTb42MeSLytYpNvfCd2sDoSkqHxy/wXHwjAALiHjBi0wiLabgekxDDwPUD1V47YxqOoW+tvhpHJSyNJCgiVzQt3ZRPfAwt8RUUBvw2gNtht43qPJ045MbAUjePBbBnjh9RIbEABNjcZWnJr9Tl06t9xHPFn8ux7QlhiqObHQ36VMExF9uBVGzqxcB5PrQaWRsA75F12PrmH7g7GG7tbLq8iZkHZuba9rNKURTG/jWWc4/OAYYrmN92+VbjqIQlkgRF5Jq3Wr1Fp8qdAMNEZi+seYHohGggbeKQIicHlkoZHyJFtD6S78t8TIyVIYZGEa2pfKCJRY8PIQoGx6L2NOpXFcei9plXfgZ6vc5o3pqybmX4pc8v6DCM6/Phvg/568pfuRpDZr7+92tWnV0FgIO1A2v7rcXRxlHTmIRlkgRF5BorvRWr+66mUlFDjwK/AD+G/TGMhMREo8TBlJwYWCplfAiARBJZVHI2D23vAVA6rgLDHrxGdHCcRY8PIcSz6lKlCzPbG66cKCgM2jCI0wGnNYlly5UtvLXryRxXK15YQe3itTWJRVg+SVBErnJ3cOfPF//EycYJgN8u/MboNWOJDInJcL2cGFgqZdyHZJJZXvJbzjmfBMApyYUJ9z7AXnEwqidEQfVO63foW9PQxiMiPoKuv3Tl5uObeRrD4duH6f9bfxQMJx4ftPmA/rX752kMIn+RBEXkuueKP8fafmux0lkBsOL6UjZ5/JLpes+aODi42aGgsLb4Qo4W2QuAdbIN4+69R7EEL6N6QhRkOp2Olb1X0qJMCwACIgPo9HMn7oXfy5Ptnw44Tfdfu6uNYvvX6s+HPh/mybZF/iUJisgT3at1Z9nzy9Tnf3n+ygbPZerZlCnPmjgUr+7GunIL+LvoJgD0ip6xD96hekwdtY6Th71Fjg8hRE5ztHHkr0F/UdPT0CX5Wsg12ixvw63QW7m63WP3jtFhZQfC4gy99TpV7sSq3qvUubuESI8cISLPDK43mDmd56jPt3v8xi8lfiCJpDR1nzVxiE+KZ8gfg9ntsEktGxIwhfqRLYzqNR9cE71eJgYUhYO7gzs7Xtmhtgu78fgG3su8Of/ofK5sb9f1XbRf0Z7gmGAAWpZtye8DfsfOWq5aisxJgiLy1JTmU/ix249qr4L9bluZU+Y9IqzCjOo9S+LwIOIB7Ve0Z/W51QBY6awYHz6dVuEd1TpOHvb4Tm1AxaZe6b2MEAVSWdeyHBh2gBqeNQC4G36XZoubseHChhzbhqIofHf0O7r92o2ohCgAfCr4sHXQVpxsnXJsO6JgkwRF5LlxTcaxqvcqrHWGgdwuOZ3h0/KTuOh4+pkTh82XN9NwYUMO3zkMgJ2VHRsHbuS7L2eo40O0GlmbgXN9JDkRhVbpIqXZP2w/DUs2BCAqIYp+v/Vj6vap6lAA2fUo6hED1g9g8vbJ6izhvWv0ZtvL23C1d33m2EXhIQmK0MTLdV9m77C9eDkbkoTHNkF8U3Y6O3xXYlMj0ezXu/H4Bi+uf5Fea3oREGkYQ6VskbIcHH6QntV7phkfQm7riMKuuFNxDg4/yMt1XlbL5h6dS935dfnj0h8oinnd/BOSElh0chG1fqjF+gvr1fI3W77Juv7rsLfO3TFgRMEjCYrQTOtyrTk15hQtS7RSy1acWU6VeVUYv2U8px6cyvBLUlEUjt07xog/R1Dj+xqsPb9WXda1SldOjDkhEwAKkQFHG0dW9V7F3C5z1QTi+uPr9F7bm6aLm7Li9IpMr6g8jnvMvKPzqPVjLcb8NUZtb+Lu4M7vA37ni45fqNNeCGEOOWqEpkq6lGRjp828/uX7bCq7ioiEcOKS4ph/Yj7zT8ynvGt52lZoSzX3apRwLkGyksyjqEdcCrrE3lt7uR9x3+j1PBw8+KrTVwytNxSdTq6SCJEZnU7H5GaT6VKlC6M3j+aA/wEATtw/wbA/hzH2r7F4l/emgVcDKrhVwNbKluiEaC76X2ZXub28uu4KSYpxQ/cBtQcwr8s8SjiX0GKXRAEhCYrQnF6nxyesO+9Pfp2ldxfw/fHv1bM2/zB/Vp5ZmelrFLErwqSmk3iz5Ztyn1uIbKjmUY19Q/fx15W/eH/v+5x5eAaAuKQ4dt/Yze4bu9Ou5ACpRwpoX7E9M9rNoEXZFmnrCmEmSVCExfCw92B2x9lM957O2vNrWXNuDf/c+Ye4JNMDtjlYO9C2Qlv61+rPwNoDLap3QF5MDidETtPpdPSs3pMe1Xpw5O4Rlp1exvZr27kTfifddaq5VqdHze6MaDBChq0XOUoSFGFxXO1dGdNoDGMajSE2MZbzj85zK/QWwTHBWOmscLV3pap7Vap7VrfYhncpk8MJkR/pdDpalG1Bi7ItUBQF/zB/rgZf5W74XZKUJKx1NuhvOhC4MYFuw7yp3q6sNDwXOU4SFGHR7K3taVSqEY1KNdI6FCEKJZ1ORwW3ClRwqwAYZiI/svIiUSGxuAKHl5zn9MbrNB9SU7ruixwlvXiEEEJkyc1jAeyZ46fOEp4iKiSWPXP8uHksQKPIREEkCYoQQohMJScrHFl5McM6R1ZdJDnZvPFThEiPJChCCCEyFXApJM2Vk6dFBccScCkkjyISBZ0kKEIIITIVE2q6N1126wmRGUlQhBBCZMohi13ms1pPiMxIgiKEECJTXjXccXLPuFu/k4c9XjXc8ygiUdBJgiKEECJTer2O5kNqZlin+eCaMh6KyDGSoAghhMiSik298J3aIM2VFCcPe3ynNpBxUESOkoHahBBCZFnFpl6Ub1yCy3vvcHjJeVqNrC0jyYpcIVdQhBBCmEWv11GskmFSzmKVXCU5EblCEhQhhBBCWBxJUIRJMhuvEEIILUkbFGGSzMYrhBBCS3IFRQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExTG7kWx8fDxLlixh586dREREULlyZUaNGkWTJk2ytP6ePXtYv349169fx9ramvLlyzNq1CgaNWpkdvBCCCGEKJjMTlBmzZrFvn376N+/P2XKlGHbtm289dZbzJ07l7p162a47tKlS1mxYgU+Pj506dKFxMREbt68SVBQULZ3QAghhBAFj1kJyoULF9izZw/jxo3jpZdeAqBz584MGzaM+fPnM3/+/HTXPX/+PCtWrGDChAkMGDDg2aIWQgghRIFmVhuU/fv3Y2VlRa9evdQyOzs7unfvzvnz53n48GG66/7222+4u7vTr18/FEUhOjo6+1ELIYQQokAzK0G5evUqZcqUwcnJyai8Zk3DFNzXrl1Ld92TJ09So0YN1q9fT69evejSpQsvvPACGzZsyEbYQgghhCjIzLrFExwcjIeHR5rylLL02pJEREQQFhbGuXPnOHXqFMOGDaNEiRJs27aNuXPnYm1tzfPPP5/udoOCgggODlaf+/v7mxO2EEIIIfIZsxKUuLg4bGxs0pTb2tqqy01JuZ0TFhbGhx9+iK+vLwA+Pj4MGzaMlStXZpigbNq0ieXLl5sTqhBCiAJC5gYrnMxKUOzs7EhISEhTHh8fry5Pbz0Aa2trfHx81HK9Xk/79u1ZunQpDx8+pESJEibX79WrF61atVKf+/v7M2PGDHNCF0IIkU/J3GCFk1kJioeHB4GBgWnKU26/eHp6mlyvSJEi2Nra4uzsjJWVldGyokWLAobbQOklKJ6enum+thBCCCEKHrMayVapUoW7d+8SFRVlVH7hwgV1ucmN6PVUrVqVsLCwNFdgUtqtuLm5mROKEEIIIQowsxIUHx8fkpKS2LRpk1oWHx/P1q1bqVWrlnoF5OHDh2kasrZr146kpCS2b9+ulsXFxbFr1y4qVKggV0iEEEIIoTLrFk+tWrVo164dCxcuJDQ0lNKlS7N9+3YCAgJ4++231XozZ87k9OnTHDhwQC17/vnn2bJlC99++y137tyhRIkS7Nixg4cPHzJr1qyc2yMhhBBC5HtmD3U/ffp0NbmIjIykUqVKzJ49m/r162e4np2dHXPmzGH+/Pls3bqV2NhYqlSpwuzZs2natGl24xdCCCFEAWR2gmJnZ8f48eMZP358unXmzZtnsrxo0aJMnz7d3E0KIYQQopAxqw2KEEIIIURekARFCCEKEBnUTBQUZt/iEUIIYblkUDNRUMgVFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEVoTgaWEkII8TQZqE1oTgaWEkII8TS5giKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqCIQsPRzY4Gfarg6GandShCCCEyYa11AELkFcei9jTqV1XrMIQQQmSBXEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYTZZOoIkdtkqHshhBBmk6kjRG6TKyhCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLY3aCEh8fz/z58+nduzcdOnRg7NixHD9+3OwNv/7667Rp04Zvv/3W7HWFEEIIUbCZnaDMmjWLdevW0bFjRyZPnoxer+ett97i7NmzWX6N/fv3c/78eXM3LYQQQohCwqwE5cKFC+zZs4cxY8Ywfvx4evXqxZw5c/Dy8mL+/PlZeo24uDh++OEHBg0alK2AhRBCCFHwmZWg7N+/HysrK3r16qWW2dnZ0b17d86fP8/Dhw8zfY3Vq1ejKAovvvii+dEKIYQQolAway6eq1evUqZMGZycnIzKa9asCcC1a9coUaJEuus/fPiQX375hXfeeQc7u6xPMBUUFERwcLD63N/f35ywhRBCCJHPmJWgBAcH4+HhkaY8pSwoKCjD9X/44QeqVq2Kr6+vOZtl06ZNLF++3Kx1hBBCCJF/mZWgxMXFYWNjk6bc1tZWXZ6eU6dOsX//fn766SczQ4RevXrRqlUr9bm/vz8zZsww+3WEEEIIkT+YlaDY2dmRkJCQpjw+Pl5dbkpiYiJz586lU6dO6u0gc3h6euLp6ak+T0mE5FaPEEIIkf+UL18ee3v7DOuYlaB4eHgQGBiYpjylfUjqJCK1HTt2cOfOHaZNm8aDBw+MlkVHR/PgwQOKFi2aabApAgICAOQqihBCCJEPLVq0iOrVq2dYx6wEpUqVKvj5+REVFWXUUPbChQvqclMePnxIYmIiEyZMSLNsx44d7Nixg5kzZ+Lt7Z2lOJo2bcp7771HyZIl1dtLBVnKLa333nuP8uXLax1OnpJ9L3z7Xlj3GwrvvhfW/YbCu+9Z2VezEhQfHx/WrFnDpk2beOmllwDD7Z2tW7dSq1YttQfPw4cPiY2NVQPw9fWlatWqaV7vf//7H82bN6dnz55m3fpxc3OjU6dO5oReIJQvXz7TjLOgkn0vfPteWPcbCu++F9b9hsK97+kxK0GpVasW7dq1Y+HChYSGhlK6dGm2b99OQEAAb7/9tlpv5syZnD59mgMHDgCGNz69bKlkyZJZvnIihBBCiMLBrAQFYPr06ZQoUYIdO3YQGRlJpUqVmD17NvXr18+F8IQQQghRGJmdoNjZ2TF+/HjGjx+fbp158+Zl6bVSrrCIjHl4eDBs2DCTY9AUdLLvhW/fC+t+Q+Hd98K631C49z0zOkVRFK2DEEIIIYRIzezZjIUQQgghcpskKEIIIYSwOJKgCCGEEMLiSIIihBBCCItjdi8ekTuCgoJYv349Fy9e5NKlS8TExDB37lwaNGiQpu7kyZM5ffp0mvKmTZvy1VdfGZXFx8ezZMkSdu7cSUREBJUrV2bUqFE0adIkt3bFbObsO8B///3HTz/9xJUrV3BycqJdu3aMHj0aR0dHo3r5Yd9N2bZtG7NmzTK5bOPGjWla+x86dIhly5bh7++Pm5sb3bp1Y8iQIVhb568/7/z6eZnDz8+PKVOmmFw2f/58ateurT7P6nFuiaKjo1mzZg0XLlzg4sWLRERE8O6779K1a9c0dW/dusX333/Pf//9h7W1NS1atGDixIm4ubkZ1UtOTmbNmjX88ccfhISEUKZMGV555RU6dOiQR3uVuazu92effcb27dvTrF+uXDl+/vlno7L8sN+5JX99gxVgd+7c4ddff6VMmTJUqlSJ8+fPZ1i/WLFijB071qjMVDe1WbNmsW/fPvr370+ZMmXYtm0bb731FnPnzqVu3bo5ug/ZZc6+X716lddee43y5cszceJEHj16xNq1a7l79y5ffvmlUd38sO8ZGTlyJCVLljQqc3Z2Nnp+5MgR/ve//1G/fn2mTJnCjRs3WLlyJY8fP+aNN97Iy3CfWX7/vMzRt2/fNKNnly5dWn1sznFuicLCwli+fDklSpRQp0gx5dGjR0yaNAlnZ2dGjx5NTEwMa9as4caNGyxYsAAbGxu17qJFi/jll1/o2bMnNWrU4NChQ3zyySfodDp8fX3zatcylNX9BrC1teWtt94yKks9hUyK/LDfuUYRFiEqKkoJCwtTFEVR9u7dq3h7eyunTp0yWXfSpEnKkCFDMn3N8+fPK97e3sqvv/6qlsXGxiovvvii8uqrr+ZM4DnAnH2fNm2a8sILLyiRkZFq2ebNmxVvb2/l6NGjall+2XdTtm7dqnh7eysXL17MtO7gwYOV4cOHKwkJCWrZwoULlTZt2ii3bt3KzTBzVH7+vMxx6tQpxdvbW9m7d2+G9bJ6nFuquLg4JSgoSFEURbl48aLi7e2tbN26NU29r7/+WunQoYMSEBCglh0/flzx9vZW/vzzT7Xs0aNHSrt27ZRvvvlGLUtOTlYmTJig9OnTR0lMTMzFvcm6rO73zJkzlU6dOmX6evllv3OLtEGxEI6OjhQpUsSsdRITE4mOjk53+f79+7GysqJXr15qmZ2dHd27d+f8+fM8fPgw2/HmpKzue1RUFCdOnKBTp05GZxqdO3fGwcGBvXv3qmX5Zd8zEx0dTVJSksllt27d4tatW/Ts2dPodk7v3r1RFIV9+/blUZTPrqB8XuaIjo4mMTExTbk5x7mlsrW1zdLAY/v376dly5bqPG4AjRs3pmzZskb7eejQIRITE+ndu7daptPpeOGFFwgMDMz0inNeyep+p0hKSiIqKird5fllv3OL3OLJp+7cuUPnzp1JSEjA3d2dHj16MGzYMKMfqqtXr1KmTJk0lw1TLi1fu3bN6IvB0t24cYOkpKQ0E2rZ2NhQtWpVrl69qpYVhH2fMmUKMTEx2NjY0KRJEyZMmEDZsmXV5VeuXAFI8354enpSrFgxo/fD0hWEz8scs2bNIiYmBisrK+rWrcu4ceOoUaMGYN5xnp8FBgby+PFjkxPk1axZkyNHjqjPr169ioODQ5o53VKOj6tXr+a724CxsbF07dqV2NhYXFxc8PX15dVXXzVqY1QQ99sckqDkQ6VKlaJBgwZUqlSJ2NhY9u3bx8qVK7lz5w4ff/yxWi84ONhkNp9SFhQUlGcx54Tg4GDAdFsbDw8Pzpw5Y1Q3v+67nZ0dXbt2pUGDBjg5OXH58mXWrVvH+PHjWbx4sfpDndn7kbI8P8jPn5c5rK2tadu2Lc2bN8fV1ZVbt26xdu1aJk6cyI8//ki1atXMOs7zs8z2Mzw8nPj4eGxtbQkODqZo0aLodLo09SD/HR8eHh689NJLVKtWDUVROHr0KH/88QfXr19n7ty56olmQdtvc0mCkguSk5NJSEjIUl1bW9s0B19m3nnnHaPnnTt35ssvv2Tz5s0MGDBA7QkQFxdn1Mgs9TZTlue03Nz3lHjT26f4+Hijunm976Zk5/1o37497du3V8u9vb1p2rQpkyZNYtWqVUybNg1A3d+UfXr6tTK6/WdpLOXzym116tShTp066vPWrVvj4+PD8OHDWbhwIV999ZVZx3l+ltl+ptSxtbUtcMfH0x0cfH19KVu2LIsWLWL//v1q49eCtt/mkgQlF5w5cybdroRPW7VqVZrLd9kxcOBANm/ezIkTJ9QExc7OzuSPY8oXnJ2d3TNv92m5ue8p8aa3T6l/qLXYd1Ny6v2oW7cutWrV4uTJk2pZyv6a+sGKj4/Ps33MCZbyeWmhTJkytG7dmgMHDpCUlGTWcZ6fZbafqesUhuNjwIABLFmyhBMnTqgJSmHY74xIgpILypUrx7vvvpulujk1g2Xx4sUBiIiIMHrtwMDANHVTLq16enrmyLZTy819T6lv6tZFcHCw0f5ose+m5OT7Ubx4cW7fvp2mfnBwcJr2GcHBwWm6sVoyS/m8tFK8eHESEhKIjY016zjPzzLbzyJFiqjJmIeHB35+fiiKYnTVtSAdH3Z2dhQpUoTw8HC1rDDsd0YkQckFHh4eJgckyk33798HMBrcKKUfflRUlFHjwwsXLqjLc1pu7nvFihWxsrLi8uXLRrdAEhISuHr1Ku3atVPLtNh3U3Ly/bh//77R51u1alUALl++TK1atdTyoKAgAgMDjXrEWDpL+by0cv/+fWxtbXFwcDDrOM/PihUrhpubG5cvX06z7OLFi0afeZUqVfjrr7/w9/enQoUKanlBOj6io6MJCwtL8x1e0Pc7I9LNOJ+JiopKc0lfURRWrlwJYDTqpo+PD0lJSWzatEkti4+PZ+vWrdSqVSvf9YpwdnamcePG7Ny506h9xY4dO4iJiTH64s7P+x4aGpqm7N9//+Xy5cs0bdpULatYsSLlypVj8+bNRl2R//jjD3Q6HW3bts2LcHNEfv68zGHqs7127RqHDx+mSZMm6PV6s47z/K5t27b8888/Rt3IT548yZ07d4z2s3Xr1lhbW7Nx40a1TFEU/vzzT4oVK8Zzzz2Xp3E/i7i4OJPtw1asWIGiKDRr1kwtK0j7nR1yBcWCrFixAjCMbwGGL6SzZ88CMHToUMDQtfTjjz+mQ4cOlC5dmri4OA4ePMh///1Hz549jbrs1apVi3bt2rFw4UJCQ0MpXbo027dvJyAggLfffjtvdy4TWdl3gFGjRjFhwgQmTZpEr1691BE2mzRpYvSHnZ/2/Wnjxo2jWrVqVK9eHScnJ65cucLWrVspXrw4gwcPNqo7fvx43n33Xd544w18fX25ceMGGzdupEePHkZnXJYuP39e5vjwww+xs7Pjueeeo2jRoty6dYvNmzdjb29v1HAyq8e5JduwYQORkZHq7YjDhw/z6NEjwDCSrrOzM6+88gr79u1j6tSp9OvXj5iYGFavXk2lSpWMrjwWL16c/v37s3r1ahITE6lZsyYHDx7k7NmzvP/++1hZWWmyj6Zktt8RERGMHDmSDh06UK5cOQCOHTvGkSNHaNasGa1bt1ZfKz/td27QKYqiaB2EMGjTpk26yw4cOAAYLgUvWLCAixcvEhISgl6vp3z58vTo0YNevXql6RUTFxenzm8SGRlJpUqVGDVqlNGZuCXIyr6nOHv2rDpHiaOjI+3atWPs2LFp5ijJL/v+tEWLFnHkyBEePHigtklo0aIFw4YNw93dPU39gwcPsnz5cvz9/XF1daVr165pxsTJD/Lr52WO9evXs2vXLu7du0dUVBRubm40atSIYcOGUaZMGaO6WT3OLdWAAQMICAgwuWzt2rXqNA43b95MMxfPhAkT0hzrycnJ/Prrr2zatIng4GDKlCnDyy+/TKdOnXJ9X8yR2X47Ozszd+5czp8/T3BwMMnJyZQuXZqOHTvy4osvpvm7zS/7nRskQRFCCCGExZE2KEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKCJD27Zto02bNmzbtk3rULLEz8+PNm3asHTp0lzbRps2bZg8eXKuvX5hMWDAAAYMGKB1GBZv6dKltGnTBj8/v1zdzrp162jfvj0PHjzIUv28+FvLzz799FP69+9PXFyc1qHkW5KgFDCff/45bdq0oUePHmkmFSwo8tsPW1hYGD/99BNDhgyhY8eOdOzYkf79+zN16lSWLVtGSEhInsSRWbI5efLkDKccKExiYmLo0qULbdq04ZtvvtE6nFwXERHBypUr6datmzoEvXg2w4YNIygoiN9++03rUPKt/DVZh8hQdHQ0e/fuRafTER4ezsGDB/H19X2m1/T29qZWrVp4eHjkUJSFy6NHjxg/fjyPHj2iatWqdO3aFRcXF4KDgzl37hzLli2jTp06JufYKei+/fZbrUNI1969e4mOjkan07F7924mTJiAnZ2d1mHlmnXr1hEeHs5LL72kdSgFRtmyZWnVqhW//vorffv2xcHBQeuQ8h1JUAqQv//+m5iYGAYMGMD69evZsmXLMycozs7OODs751CEhc/SpUt59OgRI0eONJqVOcX169cL7ftbunRprUNI15YtW7CysqJPnz789ttvHDhwgI4dO2odVq5ITEzkr7/+ok6dOhb9meRHnTp14sCBA+zZs4cePXpoHU6+IwlKAZLypTpo0CCuX7/OqVOnCAgIwMvLy6je0qVLWb58ebqv4+Xlxbp16wDDbYFZs2bx7rvvGk1/3qZNG+rXr8/777/P/PnzOX78OPHx8dSrV4+pU6dSqlQpbt26xcKFCzlz5gyJiYk0bdqU1157zehqgZ+fH1OmTGHYsGGMGDHCKI4HDx4wcOBAunTpwvTp09XnqWNIYWr9S5cusXDhQs6fP49er6dhw4ZMnDgxzSXsAwcOsHfvXi5dukRQUBDW1tZUrlyZfv364ePjk/Gbnonz588D0KdPH5PLK1eubLL8/v37/PLLLxw/fpzg4GCcnJyoUKECXbt2VT+HhIQENm3axD///MOtW7cIDQ3FycmJOnXqMHToUKpVq6a+3meffcb27dsBmDVrFrNmzTLa/9TvZerHKe99iuvXr7Nq1SpOnz5NeHg4Hh4etGrViuHDh+Pq6qrWS/3ZDRo0iEWLFnHmzBnCw8PVmWxTbtOlHGvw5NicO3cuQUFBrF69mtu3b+Ps7Ey7du149dVX01zJSExMZM2aNfz1118EBQVRrFgxunfvTvv27XnxxRfT7ENmbt++zX///UfLli2Nkn1TCUrq47dly5ZZOt4A9u/fz88//8zNmzdxcnKiVatWjBs3jpEjR6Z5TzKS1c8jI8eOHSM4OJhBgwaZXB4XF8eyZcvYtWsXYWFhlC5dmn79+qWZfTm1+/fvs2rVKo4fP87jx49xcXGhadOmjBgxIs33EZj3fqQcy2vWrOHAgQNs2bKF+/fv4+vrq37Ojx8/5ueff+aff/7h0aNHODo6Uq9ePUaMGEGlSpXSbN+c+nfu3OHnn3/Gz8+P4OBg7O3tKV68OA0aNGDSpElGM8q3aNECe3t7tm/fLglKNkiCUkDcunWL8+fP07x5c9zd3encuTMnT55k69ataX64GzRoYPI1/P392bt3b5YvZUdERDBhwgQ8PDzo3Lkzd+/e5Z9//uH111/ns88+Y+LEiVSvXp1u3bpx5coV9u/fT3h4OHPnzs3WPjo7OzNs2DDWr18PQL9+/dLdp0uXLrF69WoaNGhAr169uHr1KgcPHuTGjRssX77caB8XLlyItbU1derUwcPDg9DQUA4fPswHH3zAlClT6Nu3b7biBdQfiTt37lCrVq0srXP27FnefvttoqOjadq0Kb6+vkRERHD16lXWr1+vJijh4eF899131K1bl+bNm+Pi4sKDBw84fPgwR48e5bvvvqNmzZqA4VZdZGQkhw4donXr1lSpUsVom8OGDWP79u0EBAQwbNgwtbxq1arq40OHDvHRRx+h0+lo3bo1xYsX59atW/z+++8cO3aMBQsW4OLiYvS69+7dY9y4cVSqVIkuXboQHh6OjY1Npu9Bymu2atWKhg0bcvToUTZs2EBYWBgffPCBUd3Zs2ezY8cOSpUqxQsvvEBCQgLr1q3j3LlzWXq/n7ZlyxYAOnfuTIkSJahfvz5+fn7cv3+fUqVKmVzHnONty5YtzJ49GycnJzp37oyzszNHjhzh9ddfJzExEWvrrH0tZ+fzMOXkyZMA1K5dO82y5ORk3n33XU6cOEGlSpXo0KED4eHhfP/99+l+j1y4cIFp06YRExNDy5YtKVOmDAEBAezatYujR48yf/58o/cxu+/HnDlzuHDhAi1atKBly5YULVoUMBxzkydPJjAwkCZNmtC6dWtCQ0PZv38/x48f59tvvzX6WzSnflBQEGPHjiU2NpYWLVrQvn17YmNjuXv3Ln/88Qfjx483itfGxoZq1apx/vx5YmJi5DaPuRRRIHz33XeKt7e3snv3bkVRFCUqKkrp1KmT0q9fPyUpKSnT9UNCQpT+/fsrvr6+ytmzZ9XyrVu3Kt7e3srWrVuN6nt7eyve3t7Kd999Z1T+9ddfK97e3krXrl2VdevWqeXJycnKm2++qXh7eyuXLl1Sy0+dOqV4e3srS5YsSRPT/fv3FW9vb2XmzJlG5f3791f69+9vcj9SXi/1e5FixowZJsvv3buX5nWioqKUoUOHKl27dlViYmLS7PukSZNMbv9p69evV7y9vZVevXopS5YsUU6dOqVERkamWz8uLk7p06eP0rZtW+XIkSNplj98+NCo7qNHj9LUuXHjhtKpUyfltddeMypP77NMMWnSJMXb29vkstDQUKVLly5Knz59lAcPHhgt2717t+Lt7a18++23alnKZ5feZ6sopj/HJUuWqMePv7+/Wh4bG6sMGjRIadu2rRIYGKiWnzhxQvH29lZGjBhh9DkFBgYqzz//vMnjJyMJCQnK888/r3Tt2lWJjY1VFEVRtmzZonh7eyuLFi1KU9/c4y08PFzp1KmT0qlTJ+X27dtG250yZYri7e2d7nty6tQptczczyMjo0ePVtq2bavExcWlWZZyzEybNk1JTExUy69du6a0b98+zeebkJCg9O/fX+ncubNy+fJlo9c6c+aM4uPjo7z99tvP9H7MnDlT8fb2Vvr06aMEBASkiXncuHGKj4+PcvToUaPy27dvK507d1aGDh2a7fopf8+pv9tShIWFpSlTlCffzSdPnjS5XKRPevEUAImJiezcuRMnJydat24NgKOjI97e3jx8+JATJ05kuH5cXBzTp08nICCAd955hzp16mRpuw4ODowaNcqoLKXNi6urq9EVDp1Opy67fv16lvctu+rVq5em/U23bt0AuHjxolG5qbNiR0dHunbtSmRkJJcuXcp2HH369OGll14iMjKS5cuXM2XKFLp168aQIUP46aefCAoKMqp/6NAhAgMD6dixI82aNUvzesWLF1cf29raUqxYsTR1KlasSIMGDdRbazlhx44dREVFMWbMmDSX6H19falWrRp79uxJs567uzuDBw82e3v9+vWjXLly6nM7Ozt8fX1JTk7m8uXLavnOnTsBGDp0KPb29mq5p6en0fGXVf/++y8hISG0a9dOverh4+ODvb0927ZtIzk52eR6WT3eDh06RExMDN26daNs2bJqubW1dZq/pYxk9/MwJTAwEGdnZ2xtbdMsS7ktOGrUKKysrNTyypUr06lTpzT1//nnHwICAnjppZeMbjEC1K1bl1atWnHkyBGioqKAZ3s/XnrpJUqUKGFUduXKFc6dO0fnzp1p2rSp0bKyZcvSo0cPbty4wY0bN7JVP4Wpq8xFihQxGWfKlZ3AwMAM90ekJbd4CoBDhw4RGhpK9+7djf5wOnfuzM6dO9myZUuaP74UiqLw2Wefcf78eYYPH06HDh2yvN0yZcoY/SgAam+fSpUqGd2LTb3s6R/l3FC9evU0ZSk/5pGRkUbljx8/5pdffuHIkSM8fPgwzbgFzxKvTqdj3LhxvPTSSxw5coQLFy5w6dIlrly5wq1bt9i0aRNfffWVegk55cesSZMmWXr9q1evsnr1as6ePUtISEiahCQ0NBRPT89sx58ipS3NhQsXuHfvXprl8fHxhIWFERoaipubm1pepUqVLN3SedrTP27wJDlL/fldu3YNMPz4Pe25554ze7t//fUXYPjbSeHo6Ejr1q3ZvXs3x44do3nz5mnWy+rxlpKcm4q3Vq1aRklARrL7eZgSHh5uMtFNidfBwcHk/tWtW1e9HfZ0XLdv3zY5PkpISAjJycncuXOHGjVqPNP7kXL7MrULFy4Ahr9pU9u/ffu2+n+lSpXMrp/Szujbb7/l5MmTNGvWjPr166d76w+eJC5hYWHp1hGmSYJSAKS+Z55ao0aNKFasGIcPHyY8PNxkhr948WL27t1Lhw4dGD58uFnbdXJySlOW8oWS0bKcOqvPiKOjY7rbT30WHB4ezpgxY3j48CF16tShcePGODs7o9fruXbtGocOHSIhIeGZ43Fzc6NLly506dIFgODgYObMmcP+/fv58ssvWbZsGYB6ZpneD0Zq//33H6+99hoAjRs3pkyZMup+Hzp0iGvXruVI7GBobwSwcePGDOvFxsYaPU85ezRXRsdP6s8vOjoavV5vskGouV23g4KCOHbsGKVKlUrzg9mlSxd2797N1q1bTSYoWT3eUj5fU+9LevthSnY/D1Ps7OzSHTMpKioq3WPR1PubEteuXbuyFNezvB+m1gkPDwcMV8L+/fffdNeNiYnJVv2SJUsyf/58li1bxpEjR9i7dy8A5cqVY+TIkbRr1y7NuiknPAW5m3pukQQln3v48CHHjx8HyHB00507d6a55L1t2zZWrVpFnTp1eOedd3I1zvSkXGVJSkpKsyzlyys3bdmyhYcPH5rsBvzzzz9z6NChXNmuh4cH7733Hv/++y/Xr18nLCwMV1dXtctxVi4Hr1q1ivj4eL7//vs0P6gpZ4Y5JeUHePny5SZ7QaTn6atoOc3R0ZHk5GTCwsLSXCkwdwC8bdu2kZSUxP3799MdsO7w4cNZuiqRnpTE6/Hjx2mWpexHVpLT7H4epri6uqZ7vDk5OaV75m/q/U2J6/PPP6dly5aZbvtZ3g9Tx1bK62W1cbu59cFwdfjTTz8lMTGRy5cvc/ToUdavX89HH32Ep6dnmlvkKUlQdo+ZwkzaoORz27dvJzk5mbp169K9e/c0/1LO2J++FHv69Gm++uorSpUqxcyZM03ef84LKb0MTN1GuXr1qsl19Hq9yYQmO1Iuj6e03Unt7NmzObKN9NjY2KS5hJ1y2Tol6czI/fv3KVKkSJrkJDY2litXrqSpr9cb/tzTe+8yWp5yCyrlEr6l+L/27i+kyS6OA/hX0y0tzdA5/8QKtUgdTZd/yK1CkUipFMQbbzQtiBLtD1qJGQpFfy+SsotchpommBfizJqaFi21aUOXVigVJurMymaZzuV7ERvanrdXc69O+n3AG5+z7ew8zx5+zzm/c45+NlJHR4fRsbnM4pmamkJ1dTUAICIigvG3xOfzodVqDXkvf0I/rZypvl1dXbO+rk15Pjw8PDAxMYHBwUGjY56enhgbG5uR96PH9PuYa71M1R56+t/PbD9/ruWns7Kygq+vLxITE5GamoqpqSnI5XKjcr29vQAw70Dyb0QByhKmv6laWFggIyMDx48fN/rLyMiAr68venp6DMmevb29yMzMBJvNxrlz5xY1sufxeLC1tTUMQ+l9/PgRhYWFjK+xt7fHyMiISfa40CcY/nqDlMlkaGpqmvf737lzB+/evWM8VlFRgbGxMfB4PENXtkgkAofDgUwmQ0tLi9Frpj/pcrlcaDQavHnzxvA/nU6HvLw8fP782ei1+iE+tVrNWJ/fHY+MjIStrS1u3Lgx4/P0vn//vijBi35tklu3bs24HoaHhw3T0WdDqVSir68PAoEAJ0+eZPwt6XsZfw3250IsFsPGxgZSqXRG7sjk5CQkEsms38eU58PPzw8Ac6+bftg4Pz9/RrDQ09PDGKiJxWJwuVyUlZVBqVQaHZ+cnJwR2JiqPfR8fHzg4+ODuro6xiThHz9+zKjXXMu/evWKsWdX35vE9KDX2dkJR0fHGUnAZHZoiGcJa2trQ39//38maUVGRuLFixeQSqXYuHEjcnNz8eXLFwQEBKC+vt6o/MqVKxdsrxtra2vExMSgqKgI+/btg0gkwtjYGJ48eQI/Pz/GBEB/f3+8fPkS6enp2LRpE6ysrCAQCAw32rnYsWMHSkpKcOXKFTx//hxcLhfd3d1oa2vDtm3b8OjRo3l9vwcPHiAvLw8eHh7w8fHB6tWrodFo0NnZidevX4PNZuPYsWOG8iwWC9nZ2UhLS0NaWhqCgoLg5eWFr1+/oru7G+Pj44Ybd0xMDJ49e4ZDhw4hNDQULBYLSqUSHz58gL+/v9Hmcr6+vmCz2SgvL4dGozEEpvqhLaFQiIaGBpw6dQrBwcFgsVjw8vKCSCSCg4MDTp8+jaysLCQmJiIoKAg8Hg9arRYDAwNQKpXg8/m4dOnSvNprrgICAhAeHo7a2lokJCRALBZDq9Xi4cOH8Pb2hlwuN/QM/Y4+6NDPvGHC4/HA5/OhUqnQ2dk563VtprOzs0NycjIuXryI/fv3IywsDCtWrEBTUxNYLBacnJxmNSxmyvMhFotx7do1KBQKoxwKfe5Nc3MzkpKSEBwcDI1Gg7q6OgQGBhr1GLBYLOTk5CA9PR0pKSkQCoWGhPmBgQG0t7dj1apVKC4uNml7TJeVlYXDhw8jOzsb5eXlWL9+PdhsNtRqNVQqFUZGRlBbW/tH5e/fv4/KykoIBAK4u7vD1tYWb9++RXNzM+zt7Y2un76+PvT39yM6OnpO34H8RAHKEqa/qU5f4ZVJWFgYcnNzUVdXh+TkZMOTpkKhYJyC7OLisqCb8SUlJcHKygpSqRSVlZVwcXFBfHw8QkJC0NjYaFQ+Pj4eo6OjkMvlaG9vh06nQ0JCwh8FKM7OzsjNzcX169ehUCig0+mwYcMGXL58GWq1et4ByokTJyCXy9HW1oaWlhZ8+vQJlpaW4HK5iI6ORmxsrNGTFZ/PR35+PoqLi9HS0oLW1lbY2dlh3bp1iIqKMpQLCQlBTk4OiouLIZPJwGazIRQKcebMGcaVgu3t7ZGTk4OCggJUVVUZrgN9gLJr1y709/ejvr4eJSUl0Ol02LlzJ0QiEYCfq2JKJBKUlpaitbUVCoUCy5cvB4fDQUREBOO004WQkZGBtWvXorq6GhUVFeBwOIiNjYVQKIRcLmdMYJ1udHQUjY2NsLGxwfbt239bNjIyEiqVClKp9I8CFADYvXs37OzsUFRUhJqaGsPKqQcOHEBsbOysl5s31flwdXVFYGAgGhoakJqaOqMXwNLSEmfPnkVBQQFqa2tx9+5duLm5ITk5GWvWrGEc0vD29sbNmzdRWlqKpqYmqFQqWFtbw8nJCVu3bjWajm2q9tBzc3ODRCJBWVkZHj9+jHv37sHS0hKOjo4QCARGq0PPpXx4eDgmJibQ0dGBrq4uaLVacDgcREVFMU571vcy7dmzZ07fgfxkMTU1NbXYlSCEEFOrqqrChQsXcPTo0SXxBPv+/XvExcUhNDQU2dnZC/rZra2tOHLkCDIzMxct0PzVYraHKUxOTiIuLg6urq5/vHr2345yUAghS9rw8DB+fc4aGhpCYWEhli1bhi1btixSzZhpNBqjab3j4+O4evUqgJ/bEiy0zZs3Izg4GIWFhf+6GN3/xRzbwxRqamowODiIgwcPLnZVliwa4iGELGm3b9/G06dPIRAI4ODgALVaDblcjm/fvmHv3r1G3e6LTalU4vz58wgMDISzszNGRkYMG3sKhUKEhYUtSr1SUlIgk8kwNDS0oG1mru0xXxYWFkhLS2Nc5I7MDg3xEEKWtObmZpSVlaGnpwcajQYsFguenp6Ijo5m3IF4sfX29kIikUClUhlmW7m7uxt2X/7bFvSi9iD/hgIUQgghhJgdykEhhBBCiNmhAIUQQgghZocCFEIIIYSYHQpQCCGEEGJ2KEAhhBBCiNmhAIUQQgghZocCFEIIIYSYHQpQCCGEEGJ2KEAhhBBCiNn5B3Dj2CoTmWC/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 90.0 deg to 105.0 deg\n", + "Modulation: 0.313 +/- 0.003\n", + "Best fit polarization fraction: 1.0 +/- 0.014\n", + "Best fit polarization angle: 70.287 +/- 0.271\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACT20lEQVR4nOzdd1hT59sH8G/CCHsroCiKOHDvDaIobqy7Wgfuvaq11dqpVv11uNq6BUddxbrFPRAUB+JCRBBBHCB77zzvH3lzJCaMIHCScH+uy8vkOc/JuU8SkjvnWQLGGAMhhBBCiAoR8h0AIYQQQsjHKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhREVERUVBIBDA09OT71AIAFdXVwgEgko/zo8//giBQIBr165V+rHKol69eqhXrx7fYRBCCQop3bNnzzBv3jw0b94cpqam0NXVRa1atTBw4EDs2rULubm5fIdYaTw9PSEQCBAVFcV3KArt2rULM2bMQKdOnWBgYACBQIAVK1aUut/p06fh6uoKU1NTGBkZoVOnTtizZ0+J++zZswcdO3aEkZERTE1N4erqitOnTyusGx4ejoEDB8LCwgJ16tTB3LlzkZ6errDuuHHjUL9+fWRkZJR+wkVIE7qi/7S1tWFtbY2BAwfC19dXqccjn+6ff/7hXosLFy6UWDclJQXff/89WrduDSMjI4hEItSuXRudO3fG4sWLERwcXOL+06ZNg0AggIGBAVJSUoqtJ00Apf+EQiFMTExgb2+PAQMGYN26dXjz5k15TpdUMm2+AyCq7eeff8ZPP/0EsViMLl26YOLEiTAyMkJcXByuXbuGqVOnYsuWLbh37x7foVZLixcvRmpqKszNzVGrVi28ePGi1H3+/PNPzJs3D5aWlhg3bhx0dXXh4+MDT09PPH78GL/99pvcPkuWLMHvv/8OOzs7TJs2DXl5eTh06BAGDx6MzZs3Y+7cuVzdzMxMuLm5ITMzExMmTMDr16/x119/IS4uDv/++6/M4545cwb//PMPLl68CCMjo3I9B6ampli4cCEAICcnBw8fPsTZs2dx9uxZbNy4EfPnzy/X41aVuXPn4vPPP0fdunX5DuWTbd++HQKBAIwxbN++He7u7grrvX37Ft26dUNUVBQcHBzwxRdfwMrKCsnJyQgKCsKGDRugr6+PNm3aKNw/PT0dhw4dgkAgQHZ2Nvbv3y/zHlSkR48ecHV1BSB5j7579w4BAQHw9fXFDz/8gB9//BHffPPNJ50/qWCMkGKsXr2aAWB16tRhgYGBCuucOnWKubq6VnFkVWfixIkMAHv58mWlH+vly5cMAJs4cWKZ9/H19WVRUVGMMca8vLwYAPbtt9+WeAyRSMQsLCxkzikpKYk1aNCAAWA3b96U2ScgIIABYA0aNGBJSUkyj2VhYcFEIpHMYx06dIgBYNevX+fKPD09GQAWFxfHlaWkpLDatWuzKVOmlPl8Pz4XAMze3l5u2+7duxkAZmhoyDIzM8v1+D169GDV8SPS3t5e4XNammfPnjEArHfv3qxdu3ZMR0eHxcbGKqw7ZcoUBoBNnjyZicViue1v375lQUFBxR5r69atDAD78ssvma6uLmvZsmWxdX/44QcGgP3www9y28RiMfPx8WEWFhYMAFuzZk3pJ0qqDDXxEIWioqLw448/QkdHB2fPnkWnTp0U1hs0aBDOnTsnV37kyBG4uLjA1NQU+vr6aNGiBdasWaOwOUja5p2WloYvv/wS9erVg46ODn788ccybQckzVCenp6oU6cOdHV1YW1tjbFjxyIsLExh3FlZWVi3bh3at28PY2NjGBkZwcnJCfPnz0dcXBwAQCAQcM0e9evX5y4Rf9w+n5SUhGXLlsHJyQn6+vowNTWFm5tbsZe409PT8eWXX8LOzg56enpo0qQJ/vjjD4jFYoX1S9KvXz/Y29uXuf7u3buRm5uLuXPnypyHubk5li9fDgDYunWrzD7S+99++y3Mzc258nr16mHOnDnIzc2Fl5cXVx4dHQ0A6NixI1cmvS3dBkiu/gDA77//Xub4y8rT0xOGhobIzMxESEgIV3758mX069cPFhYWEIlEaNSoEb755hukpqaW6XHz8vLw559/YsCAAbC3t4dIJIKFhQV69+5dbJNSae9fRX1QpP1fivsnvRIgVVBQgL///hudO3eGiYkJDAwM0KZNG/z5558K31eMMfz5559o1qwZ9PT0ULt2bcydO7fMz4MiO3bsAABMmjQJnp6eyM/Ph7e3t8K6N2/eBADMmzdPYT8fW1tbtG3btsRjCYVCLFy4EIMHD8ajR49w+/ZtpWMWCAQYPnw4fHx8AEiuGL97907pxyGVg5p4iEJeXl7Iz8/H559/jubNm5dYVyQSydxfvnw51qxZAysrK4wdOxZGRkbw9fXF8uXLcf78eVy4cAG6uroy++Tl5aFXr15ISkqCu7s7TExMUL9+/TJtP3fuHIYNG4b8/HwMHjwYjo6OeP36Nf777z+cOXMGV69elfmwS05ORs+ePfHw4UM0btwYkydPhq6uLl68eAEvLy8MGzYM1tbW+OGHH3D8+HE8fPgQCxYsgJmZGQBw/wOSL1xXV1dERUXB2dkZ/fr1Q2ZmJk6fPo1+/fph27ZtmDZtGlc/NzcXbm5uuHv3Llq1aoUvvvgCKSkpWLlyJa5fv67Ua1QeV65cASBJbD7Wv39/mTpl3WflypW4cuUKfvrpJwDgmiqCgoLQrVs3AOCaAKXJ1KVLl7Br1y6cOnUKpqamn3xeijDGAID7Aty2bRtmzZoFQ0NDjBw5EjVr1sS1a9ewbt06nDp1CgEBATKvrSJJSUlYsGABunbtij59+qBGjRp49+4dTp06hQEDBmDHjh2YOnWq3H6lvb8/5unpKZeEAMCNGzdw5coVGBgYcGXS9/358+fRuHFjjB07Fnp6erh69SrmzZuH27dvY9++fTKPs3DhQmzatAm2traYPn06dHR0cOLECdy+fRt5eXlyf5+lycvLw549e2BqaoqhQ4ciOzsbixcvxs6dO7F06VK5JMTS0hIA8Pz5c7Ru3VqpYwUHByMoKAh9+vRBnTp14OnpiaNHj2L79u3F/pAqTc+ePdG9e3f4+/vjv//+w5w5c8r1OKSC8X0Jh6imXr16MQBsx44dSu138+ZNrlno3bt3XHl+fj4bNGgQA8BWr14ts4+9vT0DwNzc3FhGRobcY5a0PSkpiZmZmTFLS0sWEhIis+3x48fM0NCQtWnTRqZ8zJgxDACbOXMmKywslNmWnp7OUlJSuPulNfH06NGDCQQCdvDgQZny5ORk1qpVK6anpydzmVvabDZs2DCZY0dGRjJzc3Olm3iKKksTj5WVFQPAEhISFG43NDRkALhmkYyMDAaAGRkZKawfHx/PALCaNWtyZenp6czOzo5ZWVmxhQsXshEjRnDnLN1er1499sUXX5TrPKVKauLZtWsX18STlZXFoqKimK6uLjM2NmahoaEydWfNmsUAsGnTpsmUK2riycnJYTExMXLHS0lJYc2aNWPm5uYsKytLZltp729pE8TVq1dLPN+HDx8yY2NjZmVlxSIiIuT2nzt3LisoKODKCwoK2OTJkxkAdvz4ca68aJNdYmIiV56dnc06d+5c7HNakoMHDzIAbPr06VzZ8OHDGQB26dIlufqbN29mAJixsTH76quv2MWLF4t9T35sxowZDAA7cOAAY0zy2WJjY8MMDQ1ZamqqXP2SmniKWrFiBQPAJkyYUKY4SOWjBIUo5OTkxAAwX19fpfabOnUqA8C2bdsmty0sLIwJhUJWv359mXLpB/iDBw8UPmZJ2zds2MAAsD///FPhvgsXLmQAuOQlLi6OCYVCZmtrq/DL4mMlJSgPHjxgANiIESMU7nv8+HEGgP31119cmaOjIxMKhTJfMFLSD9LKTFB0dHQYAJafn69we61atRgA9vbtW8YYY2/evGEAWO3atRXWz8vLYwCYrq6uTPmzZ89Yv379mJmZGatVqxabOXMm9+UxZ84cZm1tzRISElh0dDQbNGgQ09PTY0ZGRmz8+PEKv2QUkSYopqam7IcffmA//PAD+/rrr1n//v0ZAAaAbdy4kTHG2KpVqxgAtmzZMrnHSUpKYsbGxkxPT4/l5ORw5cr2Qfn999/l+t4wVvr7uywJyps3b5idnR3T09NjAQEBXHlhYSGzsLBgNjY2Cl/T5ORkJhAI2MiRI7ky6d/o7t275epfvXq1XAmK9AdN0f5Lp06dYgDYqFGj5OqLxWK2bNkypqenx71WAFi9evXY1KlTi32uMjIymLGxMTM1NWXZ2dlc+eLFixkA9vfff8vtU9YEZcuWLQwA69+/fxnPmlQ2auIhFer+/fsAgF69eslta9SoEezs7PDy5UukpqbKXNrX09NDy5Yti33c4rbfunULAPDw4UOZPilSz58/BwCEhoaiadOmuHv3LsRiMVxcXGBoaKjUuRV37NTUVIXHjo+P544NSPqeREREoE6dOmjQoIFcfVdXV66ZRN01btxYYZ+MGzdu4O+//8aRI0dgYWGBPn364P379zhw4AAyMjIwb948ZGdny432KUlqair3vGlpacHCwgL9+/fH3LlzMWDAAAAlvy/Nzc3Rpk0b+Pn54dmzZ2jVqlWJxwsJCcGvv/4KPz8/vHv3Djk5OTLbFQ1ZLe39XZKMjAwMGjQIb968wcGDB9G1a1du2/Pnz5GUlISGDRti1apVCvfX19fn3oPAh+eiR48ecnW7d+8OLS0tpeKLiIjA1atX0bhxY3Tp0oUr79evH2xsbHD8+HEkJCTAysqK2yYQCPDLL79g6dKlOH/+PAIDA3H//n3cvn0bO3fuhJeXF7Zs2SLTPAoAhw4dQnp6OmbMmAE9PT2u3NPTE7///jt27NiBWbNmKRW/FPuoSZDwjxIUopCtrS1CQ0OVnh9A2snO1ta22Md99eoVUlJSZBKUmjVrlvjBUNz2xMREAB866BVHOseGdL6E2rVrl1i/LKTHvnjxIi5evFjqsaXPjbW1tcJ6NjY2nxxTaUxNTZGQkIDU1FSuH0BR0hilr430/+I6T0rLS+u7AQDZ2dmYMmUKhg0bhhEjRuDixYsIDg7Gvn37MHToUACSztnff/89Xrx4oTCJU8Te3r7UeWrK8r4EUOJ8GgAQGBiIXr16oaCgAG5ubvDw8ICJiQmEQiEePHiAEydOKOwIXtr7uziFhYUYPXo0goODsWbNGowePVpmu/Q9GB4eXmJyW3SOmZLeh9ra2jKJRFns2LEDjDG5CQa1tbXxxRdf4Pfff4e3tzeWLFkit6+ZmRlGjx7NnVdmZibWrl2LVatWYd68efDw8JCJc/v27QAgd6zmzZujXbt2CAoKwr1799C+fXulzgGQDH0GgBo1aii9L6kcNIqHKNS9e3cAklEPypB+ocXGxircLu0h/3HHyNI+vIvbLn2chw8fgkmaLBX+mzhxIoAPX6QVMTGT9NgbN24s8djSES7S+tJRQh8r7jmrSI0bNwbw4cpSUe/evUNmZibs7Oy4TpiGhoaoXbs2MjIyFI5uCA8PByC5Olaa7777DomJifjrr78AfLiyVLQDc7t27QAAT58+Vea0SlXe9+XHVq1ahezsbFy4cAG+vr7YsGEDfv75Z/z4448ldtAs76/yefPm4ezZs5g2bZrCOTqk8Q4dOrTE9+DLly/l9lH0PiwoKEBCQkKZ4ys6UmfZsmVyo42kI7RK+wEhZWhoiJUrV6J79+7Izc1FQEAAt+3Ro0e4c+cOAKBLly5yxwoKCgLwIYlR1tWrVwGg3B1tScWjBIUoNGnSJOjo6ODo0aOlflkU/cUonVhJ0bTdEREReP36NerXr1+mX9xl0blzZwCSpoOy6NixI4RCIfz8/JCZmVlqfenl7sLCwk8+trGxMRwdHfHmzRuFE6pVxVTn0iYORUPDpU0yHzeDlGefj925cwcbNmzAxo0b5X65F33/fNxcUlFKel+mpKTgwYMH0NPTg5OTU4mPExERAQsLC4UjbCp6FNbvv/+OLVu2wN3dHX///bfCOk2aNIGZmRkCAwORn59fpseVJoSK4vX391f4Xi/OiRMn8P79ezRu3BhTpkxR+M/BwQHPnz9X6vkxNjYG8KHZBfiQeLi6uhZ7LH19fRw8eFDpWYmvXLmCgIAA6Ovrc1fziAqouu4uRN1IR5zUq1eP3b17V2EdX19f1rNnT+6+dIRAvXr12Pv377nygoICNmTIEAaArVq1SuYxSpsYqqTtCQkJzMzMjNWoUYPdvn1bbnthYaFc58OxY8eWeRTPV199xQCwK1euKDy+s7MzEwqFbNeuXQq3P3r0SGZyMulzOnz4cF5G8URGRlb6RG0fy83NZU2bNmUDBw6UKb948SIDwH766SeuTDqhm6JOxB8raRSPoro6OjrM1NSUhYeHy2ybO3cuA8CmTp0qU66ok2zfvn0ZAPbw4UOZ8p07d3IdPb28vGS2lfb+VtRJ9ujRo0woFLIWLVqU2mn4u+++497PH48gYkwy6VnREW7+/v4VNoqnT58+DAA7fPhwsXWkz83YsWO5sv/973/syZMnCuvfuHGD6enpMW1tbfbmzRvGGGNZWVnMzMyMaWlpcWWKjBs3jgFg27dv58pKm6jt6NGj3ERt//vf/0o7ZVKFKEEhJfrpp5+YUChkAFjXrl3Z/Pnz2fLly9mUKVNYw4YNGQDWvn17mX2WLl3KDT2dPXs2++qrr1jz5s0ZANa9e3eWm5srU/9TEhTGGLt06RIzNjZmAoGA9e7dmy1YsIAtXLiQDR8+nNWqVYuJRCKZ+klJSaxly5YMAGvSpAlbsGAB++qrr9iIESOYsbGxzBfFuXPnuA/zpUuXspUrV7LNmzdz22NiYrjnoVWrVmz69Ols6dKlbOzYsdw537p1i6ufk5PDOnTowNVfunQpmz59OjMzM2MeHh5KJyg7duxgEydOZBMnTmTdunVjAFjLli25MkUzY27atIkBYJaWlmz27Nls4cKFzM7OjgFgixcvVnicL7/8kgFgdnZ2bOHChWz27NnM0tKSAZB5PhT59ttvmampKXv9+rVMuVgsZu3atWNaWlps8uTJbNSoUQyAzIiTkiiToDDG2F9//cUNbZ0yZQr75ptvWJcuXbj3QdEva8YUJyi+vr4yj/Hll18yFxcXJhQKueHUFZGg6OvrM/z/TKvSEUpF/xU9Rl5eHvfeqV27Nhs/fjz75ptv2OTJk7kE+uP3wbx58xgAZmtry+bNm8e+/PJL1qBBA9a+fXtma2tbpuc0MjKSCQQCZmVlJfc3XVR6ejozMjJiIpGIe45btWrFPe+enp5s2bJlbP78+czNzY0JBAIGgP3+++/cY0iT78GDB5cY07Vr1+Q+k6TPb48ePbjnb+nSpWzcuHGsfv36DAATiURs3bp1pZ4zqVqUoJBSPX36lM2dO5c1a9aMGRsbMx0dHWZjY8P69evHdu7cKTM0U+rgwYOsW7du3AdT06ZN2apVq2SGBkp9aoLCmOTLas6cOczR0ZGJRCJmbGzMGjduzMaNG8eOHTsmVz8jI4OtWrWKtWjRgunr6zMjIyPm5OTEFixYIHPFgzHJ8NEmTZowXV1dhV+IaWlpbPXq1axt27bM0NCQ6enpsXr16rEBAwawbdu2yQ1nTk1NZYsWLeKSp8aNG7PffvuNvXjxQukERToMurh/PXr0ULjfyZMnmYuLCzMyMmIGBgasffv2zNvbu8RjeXl5sfbt2zMDAwNmZGTEXFxc2KlTp0rcJzg4mGlraxc7n05MTAwbMmQIMzQ0ZKampmzixIlKDzNWZkjs+fPnWZ8+fZiZmRnT1dVlDRo0YF999RVLTk6Wq1vcMONTp06xTp06MSMjI2Zqasr69OnDrl+/zn2JVkSCUtJrquh1FYvFbO/evaxXr17M3Nyc6ejosFq1arFu3bqx1atXs1evXsnV37x5M/e+trW1ZbNnz2YpKSllnup++fLlDABbtGhRqXWnTZvGALA//viDMcbY/fv32cqVK1nPnj1ZvXr1mJ6eHhOJRMzBwYGNHTuW3bhxQ2b/rl27MgDsxIkTpR6rUaNGDAALDg5mjH14fqX/BAIBMzIyYnXr1mX9+/dna9eulUueiWoQMFakkY8QQgghRAVQJ1lCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCictQyQcnJyUFYWFilTYtNCCGEEH6pZYISHR2NadOmITo6mu9QCCGEEFIJtJXdISsrC4cOHcLTp08RGhqK9PR0LFu2DP379y/zY9y7dw/79u3D8+fPIRaLUadOHYwZMwZubm7KhkMIIYQQDaR0gpKamgpvb29YW1vD0dERwcHBSu1/9uxZrFu3Du3bt8e0adOgpaWFV69e4f3798qGQgghhBANpXSCYmlpiWPHjsHS0hLPnj3D9OnTy7zvu3fvsH79egwbNgwLFixQ9tCEEEIIqSaU7oOiq6sLS0vLch3sxIkTEIvFmDJlCgBJcxEtBUQIIYSQjyl9BeVTBAUFoW7duggMDMSWLVsQHx8PY2NjDB06FJMnT4ZQqDhfSkhIQGJiInefOscSQgghmq1KE5TXr19DKBRi7dq1GDNmDBo0aAA/Pz/s3bsXhYWFmDFjhsL9Tp48CW9v76oMlRBCCCE8qtIEJTs7G2KxGDNmzMAXX3wBAHB1dUV6ejp8fHwwfvx4GBgYyO3n4eGBbt26cfejo6OxatWqKoubEEIIIVWrShMUkUiE7Oxs9O7dW6bczc0Nt2/fxvPnz9G6dWu5/aysrGBlZVVFURJCCCGEb1U6UZu0c625ublMufR+enp6VYZDCCGEEBVVpQlK48aNAUg6vRYlvW9mZlaV4RBCCCFERVVagpKQkIDo6GgUFBRwZb169QIAnDlzhisTi8Xw9fWFiYkJl8AQQgghpHorVx+Uo0ePIiMjgxv6GxAQwM0EO3z4cBgZGWH79u04d+4cDh8+DFtbWwBA9+7d0a5dO+zfvx8pKSlwdHTEjRs38OjRIyxZsgS6uroVdFqEEEIIUWflSlAOHz6M2NhY7r6fnx/8/PwAAO7u7jAyMlK4n0AgwOrVq7Fz505cuXIF586dQ506dbBixQq4u7uXJxRCCCGEaCABU8OpXMPCwjBt2jTs2LGDmoUIIYQQDVSlnWQJIYQQQsqCEhRCCCGEqBxKUCpAVnIOgnzCkZWcw3cohBBCiEagBKUCZKXkIvi/CGSl5PIdCiGEEKIRKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhKgUmpmZEAJQgkIIUTE0MzMhBKAEhRBCCCEqiBIUQgghhKgcSlAIIYQQonIoQSGEVFvUIZcQ1UUJCiGk2qIOuYSoLkpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEA2lziPVKEEhhBBCNJQ6j1SjBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBEXNZCXnIMgnHFnJOXyHQgghhFQaSlDUTFZKLoL/i0BWSi7foRBCCCGVhhIUQgghhKgcSlAIIYQQonIoQSGEEEKIylE6QcnKysLu3buxZMkSDBw4EC4uLvD19S3Xwf/3v//BxcUFX3/9dbn2J4QQQohmUjpBSU1Nhbe3N6Kjo+Ho6FjuAz979gy+vr7Q1dUt92MQQgghRDMpnaBYWlri2LFj+PfffzFr1qxyHZQxho0bN6Jv376wsLAo12MQQgghRHMpnaDo6urC0tLykw56/vx5vHz5EtOmTfukxyGEEEKIZqryTrJZWVnYunUrxo0b98mJDiGk6tAkgYSQqqRd1Qf09vaGSCTCqFGjyrxPQkICEhMTufvR0dGVERohpATSSQLt29WEgbke3+EQQjRclSYoMTEx8PHxwffff69U59iTJ0/C29u78gIjhBBCiEqp0gRl06ZNaN68OVxdXZXaz8PDA926dePuR0dHY9WqVRUcHSGEEEJURZUlKEFBQbh9+zZWrVqFd+/eceWFhYXIzc3Fu3fvYGJiAkNDQ7l9raysYGVlVVWhEkIIIYRnVZagvH//HgCwYsUKuW3x8fEYPXo05s6dq1TfFEIIIYRopkpLUBISEpCZmYnatWtDW1sbbdu2xerVq+Xq/frrr7CxscH48ePh4OBQWeEQQgghRI2UK0E5evQoMjIyuJE1AQEB3BWS4cOHw8jICNu3b8e5c+dw+PBh2NrawtraGtbW1nKPtXnzZpibm8PZ2fkTToMQQgghmqRcCcrhw4cRGxvL3ffz84Ofnx8AwN3dHUZGRhUTHSGEEEKqpXIlKEeOHCm1zvLly7F8+fIKeSxCCCGEVC9VPpMsIYQQQkhpKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQipZVnIOgnzCkZWcw3cohKgNSlAIIaSSZaXkIvi/CGSl5PIdCiFqgxIUQgghhKgcSlAIIYQQonIoQSGEEEKIyqEE5ROJxQzxkakAgPjIVIjFjOeICCGEEPWnzXcA6uzlnVgE7g1FZpKkZ37ArhA8OPYCnSc4oX5HG56jI4QQQtQXXUEpp5d3YnF5QzCXnEhlJuXg8oZgvLwTy1NkhBBCiPqjBEVJWflZiEl5jfP7ApAvyC+2XuC+UGruIaQSFIgLEJ8Zjzdpb5CSkwLG6O+MEE1ETTylCE8Mh89TH1yLvoZ7b+8hKTtJssFK8s8yvybq5jiieWZ7tMnoAuNCUwBAZmIOYp8loVZTS/6CJ0QDZOZl4kz4GfhG+CLwdSAikiJQIC7gthvpGqFFzRZwsXfBZ00+Q6fanSAQCHiMmBBSEShBUYAxhjPhZ/C/gP/hxqsbJdZN1HmPRJ33CDa+iX/Yn2if7oK+ScNRN7cBsmlSJkLK7V3WW6w+9yO8HnghNTe12HoZeRm49foWbr2+hXUB69DYsjEWd1mMia0nQldLtwojJoRUJEpQPnL/3X3MPTsXt17fkttWw6AGnGo4wbDAGG/C4pGulYq3omjkCiX9UMQCMe6YXMMdk2vokuqGdqKNAGpV8RkQot6yCrJwzGoP5h87iezCbJltIi0RGls1Rh2TOhBpi5Cak4qXKS8RmRzJ1QlLDMP009Pxi/8v2NB3A4Y0GVLVp0CI2jv9/DTqm9VHs5rNeIuBEpT/l1eYhwW+C7AtaBsYPrRpO1k5YXKbyRjaZCgczB0gEAggFjMcnn8NmUk5EKMQ0XoRCDIKQIDpBWRopwEAbpleRs+L3bBVtBWfN/+cr9MiRK3cjLmJ8acmINLyBVAoKdPT1sPnzT/HmOZj4GLvAj1tPbn94jLi4BvhC+8H3rgefR0AEJUShc8Of4bhTsOxbdA2WBpQcyshpcnMy8Si84uw4/4OtLZpjdtTb/N2JZI6yf4/HaEOXqa85JKTJlZNcHz0cTyZ/QRLui5BA4sGXLu2UChA5wlOktvQQv2cxhiRMBlrI70x+v10GBQaAQBSc1Mx5ugYTDkxBbkF1NxDSHEYY9gYuBEuXi6ITH8BANAV6mJR50WIWRQDryFecG/grjA5AQBrI2t4tvbENc9rCJwSCLf6bty2o6FH0XZ7W9x+fbtKzoUQdRWZHIkuu7pgx/0dAIAHsQ9w4PEB3uKhBOX/CQQCbOy3ERb6Fvi1z694OPMhhjQZAqFA8VNUv6MN3Ba2gaHFhw9MEdPDEOHn8HMPxJjmY7jy3Q92o8++PkjMSqz08yBE3eQW5GLKySlYeH4hCpnkskn97Ma4Ntgff/T9A1YGVko9Xie7Trg4/iIODDvA7fsq9RV6ePfA0adHuXo0ySIhH1yOvIz229vj8fvHAABDHUNsH7QdE1tN5C0mauIporFVY8QsioGBjkGZ6tfvaAP79tYIuxqDgF0h6DalGRr3rAOhUIADOIABDQdg+qnpyC7Ixo1XN9B5V2dcmXAFdUzrVPKZEKIesvOzMfzIcPhG+HJl0+zmoP3lfjBLtIZYzCAUKj8iRyAQYEwLSZPQaJ/RCIgJQG5hLkb+OxKb+2/GAAynSRYJ+X8nnp3AKJ9RyCvMAwA0tmyM458fRxOrJrzGRVdQPlLW5ERKKBSghoNkaHENB1OZD9NxLcfhuud12BhJPvAikiLguscVr9NeV1i8hKirrPwseBzy4JITkVAPc9O+RcfLAyGEFgJ2heDw/GufNOlhbZPauDrxKvcrkIFhru9cfLPne5pkkRAAh54cwvAjw7nkZFCjQbg99TbvyQlACUql61C7A25PvY2GFg0BSNr4XL1d8Tb9Lc+REcKfvMI8fHboM1yKvAQAMNQyxPyon9DqXTeZehWRNOho6cBriBeWdV/GlR2puQN+pucU1qdJFklVyErOQZBPOLKSc0qvXElOhZ3CF/99wTWtjms5DsdGH4OpnilvMRVFCUoVqGtaF1cnXoWjhSMA4EXyCww8MBDpuek8R0ZI1RMzMSafmIyLkRcBAKYiUyxNWIdG2S2K3edTkwaBQIBf3H7BkmZfc2X7rTfjrrGfXF3pJIuEVKaslFwE/xeBLJ7my7oZcxOjfEZBzMQAgOltp2PPZ3ugLVSdnh+UoFQR6aXmemb1AEh6R39+9HOZGTEJqQ6WX16Ofx7/A0AyhHhP14Oo9d6hxH0qKmmYYTsP7knDAQBMwOBl8wde6oXJ1aNJFokme574HIMODEJOgeTqzZjmY7Bl0JZiB4XwRbWi0XB2JnY4O/YszPTMAABnw89i8fnF/AZFSBU68PgA1gWsAwAIBUIcGn4IzbVblWnfikgaDMz1MCJ+Mrql9gEA5Avz8FftlUjSTpCpp28m+uRjEaKK0nLTMOTQECTnJAMA+jj0gfdn3iqXnACUoFQ5pxpOODb6GHSEOgCATXc24dCTQzxHRUjlexT3CFNPTuXub+q3CUOaDClzMlARSYNNEwsYWehjXOxcNMySzJCZqp2Ev2ut5Bb/NLTUg00Ti08+FiGqRszEmHh8Ip4lPAMANK/ZHEdHHVXZJSEoQeGBaz1X/DngT+7+1JNTERofymNEhFSu1JxUDDs8DNkFkqnrJ7eejNkdZgOQJA1F5xNSpKKSBukki9rQway3K2CVJxlhF60fjv+svAAAncc7lWtoMyGq7rebv+H4s+MAADM9MxwbfQzGImN+gyoBJSg8mdZ2Gia0mgAAyMzPxIh/RyA7P7uUvQhRT3POzsGLZMkMse1rtcdfA/9SODNzcSoyaZBOsmhjao1Zb7+FtljSKfCSxXGIx8TRPChEIz1MfIBvr3wLABBAgAPDDnADN1QVJSg8EQgE2DJwC1rUlIxceBr/FCuurOA5KkIq3qEnh7hOsaYiU/iM9JGbsl7RzMyA5MqJ28I2FZ401O9og9GbXDFmnAdGxU/jyr95+iXepL2p0GMRwrdcQQ5m3JjKDcpY1n0Z+jfsz3NUpaMEhUcGOgY4NOIQRFqStvX1getxLeoav0ERUoFiUmMw68ws7v7fA/+GvZm9wrrSpKHbFEnfkG5TmmH0RtdKu6IhnWTRNWUQBttLVjxOzknG9NPTwRjNg0LUn3Q5hyM1d+BFWgQAyRXMH11/5DewMqIEhWdNazTFGrc1ACSzXE48PhFpuWk8R0XIp2OMYdKJSUjJSQEgGco4tsXYEvcpaWbmyiKAAL933sDN+Hw2/Cz2PNxT6cclpDK9vBOLw/OvYeshb/iZ/f9szUwPax03QEdLh+foyoYSFBWwoPMC9LDvAUCyqBkNPSaawOuBFy6/vAxAMsT+rwF/8RxR8cxF5tg+aDt3f+G5hdTUQ9TWyzuxuLwhGInJydhv/WFAxqi46Xi5I01tlnOgBEUFCAVCeH/mDWNdSW/qncE74f/Kn+eoCCm/95nvseTCEu7+zsE7Ya5vzmNEpRvceDDGtxwPAEjNTcWM0zOoqYeoHbGYIXCvZFToCat9SNKJBwA4ZbaGc2pfAOqznAMlKCqinlk9rO61mrs/8/RMbvEmQtTNovOLuImgvmjxBfo69uU5orLZ2G8jbI1sAQBnws/gRNgJniMiRDmxz5KQmZSDl3rPcdn8JABAR6yLcXFzIYCkyVRdlnOgBEWFzO4wG+1s2wEAQuJDsP7Wep4jIkR5F15cwIHHBwAAFvoW+KPvHzxHVHbm+ubY2G8jd3/BuQXIzMvkMSJClJOdkotCFGKf9SYwgWSdncGJX6Bmfi25eqqOEhQVoiXUwrZB27gph3+6/hOiUqL4DYoQJeQV5mHu2bnc/V/7/IqahjV5jEh5I5qOQB8HyVT4r1Jf4Zcbv/AcESFlp28mwg2zc4jRiwQA2OU4oE/SUIX1VB0lKCqmXa12mNtB8gGfXZCNry5+xXNEhJTd5tubEZ4UDgDoXrc7JrWexHNEyhMIBNjcfzO3HMWvN39FWIL8goKEqCJde+BEjX3c/S/iZkMbsisUq8tyDpSgqKCVvVZyvzp9nvpQh1miFt5nvsfPfj8DkAzd3dRvEzdbrLppbNUYX3WV/DjIF+dj8QUaWUfUw89+PyFDKJmqolNaTzjmNJWroy7LOVCCooJMRCZY2XMld3/R+UUQMzGPERFSuhVXVnBz+ExuMxltbNvwHNGn+dblW9iZ2AGQdJi9HHmZ54gIKdmT90/w992/AQD6WvoYlz9TZntlzcxcWShBUVFT2kzhpsG/9/Ye/nn0D88REVK8h7EPsfP+TgCAsa6xzIg0dWWgYyBzHksuLqEfCkSlLbmwBIWsEACw3GU5Zm8YWWUzM1cGpROUrKws7N69G0uWLMHAgQPh4uICX1/fMu0bFBSEtWvXYuzYsejTpw9Gjx6NdevWISEhQenANZ2WUEtm9MOyy8uQkZuJ+MhUAEB8ZKpajGMn1cOyy8vAIHk/fufyHayNrHmOqGKMazkOrW1aAwAexD7A/kf7+Q2IkGJcfXkV51+cBwDYm9pjcZfFvMzMXJGUTlBSU1Ph7e2N6OhoODoqtxLi1q1bERwcDGdnZyxYsABubm64evUqpk6disTERGVD0Xi9HXpjUKNBAIA36W8wfcWXCNgVAgAI2BWCw/Ovqc2MgERz+UX7wTdC8iOlrmldzO80n+eIKo5QIMTv7r9z95dfXo6s/CweIyJEHmMMyy4v4+6v7LkS+jr6PEZUMZROUCwtLXHs2DH8+++/mDVrVuk7FDFnzhwcPHgQs2bNwqBBgzB9+nSsXbsWSUlJ+O+//5QNpVpY67aWm1znpP5BZAk/zMmQmZSDyxuCKUkhvPn4g/En158g0lb94YvK6FW/FwY2HAhA8kNhy90tPEdEiKwTYSdw+81tAEDzms1LXfNKXSidoOjq6sLS0rJcB2vdujWEQqFcmYmJCaKjo8v1mJrOyaopuuW4AQAytdJxyfyYXB11mbaYaJ4z4WdwM+YmAMDJyombKl7TrO394YfC2oC1SM9N5zkiQiQKxYVYfnk5d/+XXr9AS6jFY0QVh/dOsllZWcjOzoapqSnfoaik2GdJ6P92DLSY5A13weIY0rVSZeqoy7TFRLOImVjmg3FVr1Ua88H4seY1m2N089EAgISsBGy+s5nniAiR2PdoH0ITJGvvdK3TlesWoAl4T1D+/fdf5Ofno1evXsXWSUhIQFhYGPevOl1tyU7JRc18W3T//0WecoXZOGfho7AeIVXp0JNDePz+MQCgQ60OGNpEfrZKTfJjjx+5WZ5/u/kbUnNSS9mDkMqVV5iHH6/9yN1f67ZWbeceUkS79CqV58GDB/D29kbPnj3Rrl27YuudPHkS3t7eVReYCpFORzww8XPcNLmEfGEerpqdQp+kz2BWaClXj5CqUCguxM/Xf+bur3Fbo1EfjIo0tmqM8S3HY8/DPUjOScb6wPX40fVHvsMi1di+h/sQnSr5wd7PsR+c7Z15jqhi8XYFJTo6GitWrICDgwO+/vrrEut6eHhgx44d3L8VK1ZUUZT8s2liAUMLPZgXWKFniuTSXb4wD+ctjnJ1KmPa4qzkHAT5hCMrOadCH5dohqOhRxGWKJn+3cXeBW4ObjxHVDW+7/E9tIWS33XrA9cjMYtGHxJ+FIgL8Iv/h3WifujxA4/RVA5eEpS4uDgsXrwYhoaGWLduHQwMDEqsb2VlhcaNG3P/7O3tqyhS/gmFAnSe4AQA6Js0ArpiyZUSPzNfri9KZUxbnJWSi+D/IpBFTUfkI2Imxiq/Vdz9Fc7V5weDg7kDt75QWm4aNgRu4DcgUm0dfHwQkcmSBQH7OPRBZ7vOPEdU8ao8QUlNTcXixYuRn5+P3377DVZWVlUdgtqp39EGbgvbwNbUBs4p/QAAecJcXKt1Sq2mLSaa4XyML9f3pFPtTujt0JvniKrWCpcV3FWUP+/+yU3vT0hVKRQXYtWNDz8SvnP5jsdoKk+lJSgJCQmIjo5GQUEBV5adnY2lS5ciISEB//vf/1CnTp3KOrzGqd/RBqM3ueLbvsugLZZ8OF41OwWzFtT3hFQ+sZghPjIVDAzr7q3lyle4rND4vicfq2talxtOnZKTgq33tvIcEalu/n36L54nPgcA9LDvoXF9T6TK1Un26NGjyMjI4GZ/DQgIwPv37wEAw4cPh5GREbZv345z587h8OHDsLW1BQCsXLkSoaGhGDBgAKKjo2VG4+jr68PZWTOf5IoiFArQwqkJul7sI2niyUvHn3f+xHc9NDN7Jqrh5Z1YBO4NRWZSDkIMghCSIbl60sykOTeBWXXzdbev4f3AGwwMf9z6A/M7zYeeth7fYZFq4OMmVk29egKUM0E5fPgwYmM/zF7q5+cHPz8/AIC7uzuMjIwU7hcREQEAOHv2LM6ePSuzzcbGhhKUMuqXNAIB5hdQyAqx4fYGLOy8EMYiY77DIhro5Z1YXN4QDABgYDhtdZDb5hI6BFF346plE2Njq8YY5jQMR0OPIi4zDl7BXpjVQbmZtQkpj+PPjiMkXrLkSRe7LuhVv/gpOtRduRKUI0eOlFpn+fLlWL58uUxZWfYjpauRb4vh9UfiSOQhJGUnYXvQdizuupjvsIiGEYsZAveGcvfD9Z/ghb7kfq1ce7TO6ILAfaGwb2+tdouQVYRl3ZfhaKhkNN3/bv4P09pN4/qmEFIZGGNYF7COu/+dy3ca3cTK+0RtpHwWtviSu73h9gbkF+bzGA3RRLHPkpCZ9GGY+QWLD+tl9U8cBSGE1XoW43a12sG9gTsAIColCoeeHOI5IqLp/F/5486bOwCAVtat0M+xH88RVS5KUNRUQ9NGGNxoMADgddprHAmhq1OkYhWdnfidbgweGkkWI7PIr4H26c4K61U3y7t/uEq81n8txEzMYzRE0/126zfu9pKuSzT66glACYpaW9J1CXf7t1u/gTFaMJBUnKKzE18sskilW/IQaBdpHa7Osxi72Lugi10XAEBIfAjOR5znOSKiqZ4lPMPJsJMAADsTO4xuNprniCofJShqzLmuMzrU6gAAeBD7AFdeXuE5IqJJpLMYp2kl45bJZQCAfqEBnFM/XFaujFmM1YlAIMBXXb/i7q8PXM9jNEST/X7zd+72wk4LoaOlw2M0VYMSFDUmEAhkrqL8fuv3EmoTohzpLMZXzU6jQCjp4+SS2h/64g8zP1fGLMbqxqOxBxzMHQAAFyMv4nHcY54jIpomNiMWex/tBQCYiEwwrd00niOqGpSgqLlhTsNQz6weAMA3whdP3j/hNyBSpSp7zSTrNibwtz0HANBiWuiVPASA5MoJzWIsoSXUwoJOC7j7NP09qWh/3vkTeYV5AIAZ7WbARGTCc0RVgxIUNact1Maizou4+3/c+oPHaEhVq+w1k7wfeCMlPxkAMLDmEFgUWKHblGYYvdGVkpMiJrWeBFORKQBg/+P9iMuI4zkioiky8zLx992/AUg+7+d3ms9zRFWHEhQNMLnNZJjpmQEA9j/aj9iM2JJ3IKQMxEws06diUSdJIlzDwbTaN+t8zFhkjOntpgMA8grzsOXeFp4jIppi/6P9SM6R/EgY03wM7EzseI6o6lCCogGMdI0wo90MAEC+OB/bg7bzHBHRBOciziEiSTL7c6/6vdDcogXPEam2eR3nQUugBQD4++7fyCmonGY3Un0wxrD5zmbu/sLOC/kLhgeUoGiI2R1mQyiQvJxb723l2isJKa+iH4zzO1afy8rlVce0DkY2GwkAiM+Kx/5H+3mOiKi7q1FXuWntu9Xphra2bXmOqGpRgqIh6prWxWdNPgMAvMt4h/9C/yt5B0JK8DzxOc5FSDrH1jOrh0GNBvEckXoo2h9s853NNDcR+SRFfyTM6ziPx0j4QQmKBin6Bt50exOPkRB199edv7jbs9vPhpZQi8do1EfH2h3R2a4zAOBR3CP4v/LnOSKirqJSoriJ2WoZ18Iwp2E8R1T1KEHRID3se6B5zeYAgFuvbyHobRDPERF1lJ6bDq8HXgAAfW19TGk7heeI1MvcDnO523/d/auEmoQU7++7f3NLJ8xqP6taTMz2MUpQNIhAIJC5ilL08iAhZbXn4R6k56UDAMa1HAcL/eo7U2x5jGg6AjUMagAAjoYexdv0tzxHRNRNVn4Wdt7fCQDQ1dLlRohVN5SgaJgvWnzBDTk+9OQQ4jPj+Q2IqBUxE+PPO39y96tju/enEmmLuC+UAnEBjaojSvvn0T/c0OLPm3+OmoY1eY6IH5SgaBhDXUNMaSO5JJ9bmIsd93fwHBFRJ5ciLyEsMQyApMmwhTUNLS6PGe1mcKPqtgVtw5sIyQ+F+MhUiMXUcZYU7+OhxdV5BB0lKBpodofZEEAykdaWe1tQIC7gOSKiLqr7qIGKUse0DjeqLjYjFn/7SC7XB+wKweH51/DyDk2mSBTzf+WPx+8l6zl1seuCdrXa8RwRfyhB0UAO5g7csNDXaa9x+vlpniMi6iA6JRpnnp8BIFnOfUiTITxHpN6GGY/hbl81+/A3mJmUg8sbgilJIQptDdrK3Z7TYQ6PkfCPEhQNNbvDbO721ntbS6hJiMTO+zvBIGl+mNFuBrSF2jxHpL7EYgbBGQvY5tYBAIQbhOC16KVMncB9odTcQ2TEZ8bD56kPAMDKwAojmo7gOSJ+UYKiodwbuHOrHF94cQGRyZH8BkRUWn5hPnYGS5ohtARamNxmMs8RqbfYZ0nISspFz5QPE9wVvYoCAJmJOYh9llTVoREV5v3Am5sFfFLrSRBpi3iOiF+UoGgooUCI6W0lIwkYGHYEUWdZUryTYSe5RSaHNBmCWsa1eI5IvWX//+rSXVLdIBLrAwBum1xFjiBLYT1CxEyMbUHbuPvVdWhxUZSgaLDJbSZzl+l3P9hN6/OQYhX9YJQuPEnKT99M8stXjxmgU5orACBXmIPbJtcU1iPkcuRlvEh+AQDo49AHjhaOPEfEP0pQNJi1kTWGNhkKAHif+R7Hnx3nNyCikiKSInAx8iIASQfr3g69eY5I/dk0sYChhR4AoEfKAK7cz+wcd9vQUg82TWgSPCJRtHPszPYzeYxEdVCCouGKvtGL/komRKpo81/R+TtI+QmFAnSe4AQAqJvbAPbZDQEAr/QiECV6DgDoPN4JQqGAtxiJ6nib/hYnnp0AANgY2WBwo8E8R6Qa6JNIw/Ws1xMNLSQfjldeXsHzxOc8R0RUSW5BLnY/2A0A0BHqwLO1J78BaZD6HW3gtrANDC304JLanyu/aXMRbgvboH5HGx6jI6pkd/BuFLJCAMDUNlOr5bo7ilCCouEEAoFMnwKadpsUdezZMSRkJQAAhjcdXm2n1K4s9TvaYPQmV8wfOpPrLHvH+BqsWhnyHBlRFYXiQu5zWSgQYlq7aTxHpDooQakGJraeCF0tXQCA1wMv5BTk8BwRURVF58ihzrGVQygUoF7DWlxn2cz8TBx4fIDfoIjKuPz2ImLSYgAAAxoOQF3TujxHpDooQakGrAysMLLpSABAUnYSjj49ynNERBU8S3iG69HXAQCNLRujh30PniPSbEU7y26/T1cyqzOxmCE+MhUAsD34w3thZjvqHFsUJSjVRNFfx0V7i5Pqa9s92aHFAgF12KxMdXMboLVlGwDA/Xf3ce/tPZ4jInx4eScWh+dfQ8CuECRqv4df0lUAQC292ujn2I/n6FQLJSjVRPe63dG0RlMAksWonsY/5TkiwqecghzsfbQXACDSEmFi64k8R1Q9TGg0ibtN/cGqn5d3YnF5QzAykyTN7AGmF8EEkuUOOrzuiVf34vkMT+VQglJNCAQCbmZZQNJrnFRfx58dR1K2ZJr1EU1HwEKf5uOoCkPrDYOxrjEA4MDjA0jLTeM5IlJVxGKGwL2hH+5DjJumkvmHBEyArqnutD7TRyhBqUbGtRzHdZbd83APzSxbje0K3sXdntJmCo+RVC9GOkb4osUXACSdZQ8+PshzRKSqxD5L4q6cAMAzg4dI1HkPAGiW2RYWBVa0PtNHKEGpRiwNLLmZZROyEnAq7BTPERE+RKVE4VLkJQCSmWN71KPOsVWp6BorO+7TGlnVxcfrLvmbXuBud0/tW2y96owSlGqm6K9l6eq1pHrxCvbibk9uPZlmjq1ibWzboJ1tOwBA0LsgPIx9yHNEpCoUXXcpU5iOYKObAACjAhO0yuiksF51R59M1YybgxvsTe0BAOcjziMmNYbniEhVKhQXwuuBJEERCoQ0cyxPJreZzN2m/mDVQ9H1mQJNrqJAmA8A6JzWC9qQzBxL6zPJogSlmhEKhNyHIwOD9wNvfgMiVepS5CVuUqh+jv1Q26Q2zxFVT2NbjIWetuTLav/j/cgtoMv6mq7o+kwBMs077txtWp9JFiUo1dCk1pMggOSPYPeD3RAzMc8RkapCnWNVg5meGYY7DQcgmTyxIlcaz0rOQZBPOLKSacZoVVO/ow2sJ2khRi9Scj+7EWrn1YOhpR6tz6QAJSjVUB3TOujrKOmUFZUShSsvr/AcEakKCVkJ3BdhTcOaGNRoEL8BVXNFE0Tpgo0VISslF8H/RSCLOluqpHN5J7jb3VP7otuUZhi90ZWSEwUoQammin44Fv1VTTTX/kf7kS+WtHtPaDmBG3JO+NGjXg/UN6sPALj44iKiU6J5johUtuz8bPzz+B8AgIG2ATqk90ANB1Nq1ikGJSgVwMBMhDbDHGGgRr2vPRp7wMrACgDwX+h/SMxK5DkiUpkYY7LNO22peYdv1B+s+vkv9D+k5krW4BlsPwT6YgOeI1JtlKBUAANzPbQb0RAG5np8h1Jmulq6mNByAgAgrzCPy+qJZrr79i6evH8CAOhapyuaWDXhOSICAJ6tPbn+YF4PvKg/mIYr2pT3heN4HiNRD5SgVGNFf0XvvL8TjNEUy5pq133qHKuK7EzsuP5g0anR1B9Mg0UmR3Kvb0OLhuhcswvPEak+SlCqsaY1mqKLneSP5PH7x7S6qobKzMvEwSeSKdWNdI0wqtkoniNSHarQPEv9waoHmQkS20ym1cPLgBKUao4+HDXfv0//RXpeOgBgdLPRMNI14jki1aEKzbNF+4MdCz3GLeJINEehuBDeD70BAFoCLUxsRauHlwUlKNXc6OYfvrAOPD6AzLxMniMiFY3mPlFtulq6GN9S0h8htzAXBx4f4DkiUtEuvLiA12mvAQADGg6ArbEtzxGpB0pQqjkjXSOMbjYaAJCelw6fpz48R0QqUlhCGPxf+QMAnKyc0NmuM88REUWKTn1PVzI1T9HOsfQjoewoQSHUzKPBiq7zMqXNFGr3VlHNazZHx9odAQAPYh/g/rv7PEdUPVXGLLzxmfE48UwyOZu1oTUGNBxQYY+t6ZROULKysrB7924sWbIEAwcOhIuLC3x9fcu8f3p6On799VcMHjwY7u7uWLBgAcLCwpQNg1Sgznad4WQlWSPixqsbeJ74nOeISEXIL8zHnod7AADaQm2Mb6UewxpVoeMqH2RmlqUFBHlRGbPwykyQ2GoCdLR0KuyxNZ3SCUpqaiq8vb0RHR0NR0dHpfYVi8X4+uuvcenSJQwbNgwzZ85EcnIyFixYgJgYWlWXLwKBgD4cNdDZ8LOIy4wDIOmIWdOwJs8RlY0qdFzlw+fNP4e+tj4A4J/H/yA7P5vniMin+niCxKJNeaR0SicolpaWOHbsGP7991/MmjVLqX2vXbuGJ0+eYNmyZZg0aRKGDRuGTZs2QSgUwsvLq/QHIJVmfKvx0BZqAwD2PNyDAnEBzxGRT0WdY9WLicgEI5uNBACk5KTg2LNjPEdEPtWdN3cQEh8CAOhWpxtNkKgkpRMUXV1dWFpalutg169fh4WFBVxcXLgyMzMz9OzZE/7+/sjLyyvX45JPV9OwJjwaewAAYjNicfnNRZ4jIp/iXfo7nA0/CwCobVwbfRv05TkiUhbUH0yzfNwHjCinSjvJPn/+HA0bNoRQKHtYJycn5OTkFNvMk5CQgLCwMO5fdDQtqlUZJrf+cPnxn4h9PEZCPtXeh3tRyAoBABNbTYSWUIvniEhZONd1RkOLhgCAKy+v4GXyS54jIuX18QSJ0qtjpOyqNEFJSkpSePVFWpaYqHjBupMnT2LatGncv1WrVlVqnNVVX8e+qGVcCwBwIeY8UrWSEB+ZCrGYpsBXJ4wxmWGN1O6tPgQCASa1nsTd93pATd/qyuepD02Q+ImqNEHJzc2Frq78Eu/SstxcxT2nPTw8sGPHDu7fihUrKjXO6kpbqI3Pao4AABSiEIEmVxCwKwSH51/DyzuxPEdHyupmzE1uJJZrPVc0sGjAc0REGRNbT4RQIPlo9nrghUJxIc8RkfKgPmCfrkoTFJFIpLCfibRMJFI8rNDKygqNGzfm/tnb21dqnNXVyzuxqH2xJXff3/QCGBgyk3JweUMwJSlqomi7d9FmO6IeahnX4ubKeJ32GhcjqT+Yunme+Bw3Xt0AQBMkfooqTVAsLCwUNuNIy8rb+ZZ8OrGYIXBvKGrm10KjrBYAgFjRa7zQf8rVCdwXSs09Ki49Nx2HQw4DAIx1jTG86XCeIyLlQcP+1VvRhQFpgsTyq9IEpWHDhggPD4dYLJYpDw0NhZ6eHurUqVOV4ZAiYp8lITNJMnti91R3rtzf9AJ3OzMxB7HPaCEzVfbv03+RmS9ZT2lM8zEw0DHgOSJSHgMbDuTmrTn+7DgSshJ4joiUVYG4QKUmSFTniQ8rLUFJSEhAdHQ0Cgo+zKfRo0cPJCUlwc/PjytLSUnB1atX0bVrV4X9U0jVyC4yc2Lb9G7QL5R8sd0zvoEcQZbCekT1yAxrbEvt3upKR0sHE1pOAADki/Ox/9F+niMiZeUb7ot3Ge8AAIMbDeZ9gkR1nviwXAnK0aNHsWfPHpw9K5lnISAgAHv27MGePXuQkZEBANi+fTvGjx+P+Ph4bj9XV1c0a9YMa9asgbe3N44dO4YFCxZALBZj8mRqK+eTfpHsWsT00DHdFQCQK8zBXZMbCusR1RKWEIaAmAAAQLMazdChVgeeIyKfomiCuSt4Fxij5lV1QAsDVhzt8ux0+PBhxMZ+6DDp5+fHXRVxd3eHkZHi4VRaWlr43//+h7///htHjx5Fbm4umjRpgmXLlqFu3brlCYVUEJsmFjC00OOaebqluuO62f8noKYX4JzaF4aWerBpYsFnmKQERYekTm4zmdq91VwTqyboWqcrbsbcxJP3T3Dv7T10qE1JpyqLy4jD6eenAUg6O/d1pAkSP0W5EpQjR46UWmf58uVYvny5XLmxsTG+/vprfP311+U5NKkkQqEAnSc44fKGYABAvZyGqJ1bD29EUXihH4p3uq8wbvwQCIX0paeKPm73HtdyHM8RkYowpc0U3Iy5CUByFYUSFNW29+FebpmQia0mcsuHkPKp0k6yRLXV72gDt4VtYGihBwEE6J7yobPsq14PUL+jTaUctzKWOK9uLr+5iNgMyVVNdVoYkJRsZNORMNQxBAAcfHIQWflZpexB+EILA1Y8SlDUTGX3yK7f0QajN7mi25Rm6JzWCzoCScflE3FHkV+YXynHrIwlzqubAxEfOlHS3Ceaw1hkjNHNRgMA0nLT4PPUh+eISHFuvb6FsMQwAEAP+x5wtHDkOSL1RwmKmqmKHtlCoQA1HExhJDZB/7qSCaPis+K5tlWiWtK0knHh9XkAgK2RLbV7a5iPO8sS1bTrPl09qWiUoJASfeH4YQw/fTiqFrGYIT4yFbdMrqCAUbu3pupi1wVNrJoAAPyi/RCeGM5zRORjRSdINBGZYETTETxHpBkoQSEl6mHrijomkgn0fCN88SbtDc8REUCyLMHh+dfgv+sJAopMptdHazCPUZHKIBAIZJrtaAFB1UMTJFYOSlBIibSEWtzqqmImxt6He3mOiLy8E4vLG4KRmZSDSL0wvBPFAAAaZjVD5I5UWjNJA01oNYG7Mub9wJsbKUJUA3WOrRyUoJBSebb25G7vfrCbJozikXTNJKmiV0+6/f8SBbRmkuaxNrLGoEaDAADvMt7hXMQ5niMiUqHxodxQ8OY1m9MEiRWIEhRSqvrm9eFW3w0AEJEUAb9ov1L2IJWl6JpJuYIc3DW+DgAQifXRLr07AFozSVPRAoKqSWZ5CVoYsEJRgkLKpOiHI3WW5U/RtZCCjP2Ro5UNAOiY5gI9pq+wHtEM/Rz7wdbIFgBw6vkpxGXE8RwRyS/Mx95HkmZvHaEOTZBYwShBIWUy1GkozPXMAQA+T32QmpPKc0TVU9G1kBQ17yiqRzSDtlAbE1tNBCCZOXjfo308R0TOhJ/B+8z3AIAhTYbAysCK54g0CyUopEz0tPXwRYsvAADZBdk49OQQzxFVT9I1k+J03uC5wRNJWW4dOOQ04erQmkmaq2gHTFpAkH9FrybTwoAVjxIUUmYffziSqiddMynA9CJX1j21DwT40O7debxTpayZVNmzGJPSNbRsCBd7FwDAs4RnuPX6Fs8RVV9v09/ibLhkQVU7Ezv0cejDc0SahxIUUmZtbNugjU0bAMDdt3fxOO4xzxGprspcX8iunSXu2l4FAGgxLXRO6wVAcuXEbWGbSlszqSpmMSalo86yqmHvw70QMzEAwLOVJ7SEWjxHpHkoQSFKoc6yZVOZ6wudfn4aCXnxAAA3K3eYFlqg25RmGL3RtdKSE6I6hjsNh7GuMQDgcMhhZORl8BJHdV7kkzEmkxxOajOJx2g0FyUoRCljW4yFSEtyiX//o/3ILaDRIlVt+/3t3O0pracCAGo4mFZKsw5RPYa6hhjTfAwAICMvA0dCjvASR3Ve5PPGqxsIT5IsOdCrfi84mDvwHJFmogSFKMVc3xzDnIYBABKzE3Ey7CTPEVUvUSlROB8hWRjQ3tQerrV68hwR4QMtIMivbUHbuNvUObbyUIJClEbNPPzZHbwbDJKRG1PbToVQQH/C1VGHWh3QvGZzAMDNmJt4lvCM54iqj8SsRPg89QEAWOpbcj/YSMWjTzeitJ71e6K+WX0AwIUXF/Aq9RXPEVUPBeICLiHUEnxYI4lUPx8vIEidZavO3od7kVeYB0CyerieNnUaryyUoBClCQVC7suRgWHPgz08R1Q9nA0/i7fpbwEAgxoNQm2T2jxHRPg0vtV46Ah1AEgWEKT+YJWPMSbTvDOt3TQeo9F8lKCQcpnYeiI398buB7u54Xak8uy4v4O7Pa0tfTBWd1YGVlzzQnxWPI49O8ZzRJrvxqsbCEsMAwD0sO+BJlZNStmDfApKUEi51DWti76OfQFIOm5eeHGhlD3Ip3id9lpmUqh+jv14joiogpntZ3K3t97bymMk1cP2oA8j6Ka3m85jJNUDJSik3Ga0m8Hd3nJvC4+RlI06z9uwO/jDVaqpbabSpFAEgORXfGPLxgCA69HXqbNsJaLOsVWPEhRSboMaDUJtY0k/iNPPTyMmNYbniEqmrvM2FIoLsfP+TgCS/j9Flxwg1ZtAIJD5obDt3rYSapNPsffhXuQWSj47qHNs1aAEhZSbtlCb6wshZmKZPhKk4px/cR4xaZLkr79jf9QxrcNzRESVTGw9kZs80fuhN7ILsnmOSPMwxmQmSKTOsVWDEhTySaa2nQotgaS5Yef9ncgvzOc5Is1DnWNJSSz0LTC6+WgAQEpOCk5GH+c3IA3k/8qfaz5zsXehzrFVhBIU8klqm9SGR2MPAMC7jHc0s2wFe532GqfCTgEAbI1sMbDRQJ4jIqqoaDPPnudePEaimYoOLS76XJPKRQkK+WSz2s/ibm8NopEEFWl70HYUskIAkqsn2kJtniMiqqiLXRe0qNkCAHA3/g5ei17yHJHmKNo51kLfgjrHViFKUMgnc3NwQwPzBgCAS5GXEJ4YznNEmiGvMI8b1qgl0KJhjaRYAoFAZsjxddOziI9MhVjMeIxKM+wO3k2dY3lCCQr5ZEKBUHYkQRCNJKgI/4X+h7jMOADAUKehNHMsKVG3vN4QMcmXZ6DJFVzefQ+H51/DyzuxPEemvgrFhTJTKBS9WkwqHyUopEJMajMJulq6AACvB17IKVC/uUZUzd93/+Zuz24/m8dIyKcyMBOhzTBHGJiJKuXxX96Jxd2/XqBjag8AQI5WNu6YXEdmUg4ubwimJKWcfCN88TJF0lzWt0FfNLRsyHNE1QslKKRCWBlYYWTTkQCApOwk/BvyL88RqbfHcY9x49UNAEDTGk3hWs+V34DIJzEw10O7EQ1hYF7xzQNiMUPg3lAAQI+UAVz5NbPT3MrXgftCqbmnHP66+xd3e06HOTxGUj1RgkIqTNHLn+ows6wqK/rBOLv9bAgEAh6jIaos9lkSMpMkVyztcxuiXnYjAECMXiQi9J8CADITcxD7LIm3GD8VH7NARyRF4FzEOQBAPbN6GNBwQCl7kIpGCQqpMF3rdEXzms0BALde30LQ2yCeI1JPqTmp2P9oPwDASNcI41uN5zkiosqyP5oZ2S3Fg7t92exEsfXUCR+zQBdtYp3VfhYtL8EDSlBIhREIBJjXcR53f9OdTTxGo772PtyLzPxMAMD4luNhIjLhOSKiyvQ/6tfSLt0ZxgVmAIBg45tI0k5QWI8UL6sgC14PJPPJiLREtLwETyhBIRVqXMtxMNczBwAcenIIcRlxPEekXhhj+Pveh19u1O5NSmPTxAKGFh/6tugwHfRI6Q8AEAvEuG52BoaWerBpYsFXiGrn6EsfpOSkAADGtBgDKwMrfgOqpihBIRXKQMeAm449rzCPhhwr6crLK9yU2j3se6BZzWY8R0RUnVAoQOcJTjJlPVIGQItJmiT8TH3RZmx9CIXUj6ksGBh2Pfuw7g79SOAPJSikws3uMBtCgeStteXeFuQV5vEckfrYeHsjd3t2BxpaTMqmfkcbuC1sw11JMSu0RNv07gCADO003Na/zmd4aiVcPwQhyU8AAJ1qd0L7Wu15jqj6ogSFVDh7M3sMbTIUABCbEctNE01KFp4YjtPPTwMA7EzsuOeQkLKo39EGoze5otsUyVW3Rd0XcNs239kMxmiYcVlcMj/O3Z7bcW6lHaey58bRBJSgkEoxv9N87nbRqwKkeBtvb+TmrZjXcR50tHR4joioG6FQgBoOpgCA3q16op1tOwBA0Lsg3Hp9i8/QVJ5YzBAU8ggPjCTPk62RLUY1G1Vpx6vMuXE0BSUopFI413VGa5vWAIA7b+7g9uvb/Aak4pKzk7lRA0X78RBSXnKj6m7TqLrivLwTi8Pzr+HXS7+BCSQ/EpzjBuBNkPrOHaMJKEEhlUIgEGB+xw9XUWjIccl23N+BrPwsAMCk1pNgrm/Oc0REE4xuPho1DGoAAHye+iAqJYrfgFTQyzuxuLwhGPEpifA3vQgA0BWL0OVtH1omgGeUoJBKU3R43pGQI4hJjeE5ItWUX5iPzXc2AwAEEGBBpwWl7EFI2ehp63H9KApZITYGUnNrUUWXCfA3PY9cYTYAoEuaG4zEkvmHaJkA/lCCQiqNnrYeN/19gbiA+qIU42joUbxOew0AGNRoEC1IRirU7A6zoact6eew4/4OJGcn8xyR6pAuE1CIQlw2/zDrbu+kz7jb6r5MgDqjBIVUqrkd53IfjtuCtnGTHxEJxhjWB67n7i/qvIjHaIgmsjKwwqTWkwAAmfmZNDdREdLp/+8bByBJJx4A0CKjA2zy7RTWI1WLEhRSqWoa1oRnK08AQEZeBrbe28pvQCrGL9oPd97cAQC0sm5FqxaTSrGo8yIIIJmobdPtTcgtoC9cQDL9PwPDRfP/uLI+yfLD+2mZAH5QgkIq3eKui7kPx423N9KHYxFrA9Zyt5d0XUKrFpNK0dCyIYY6Sb5432W8w8EnB3mOSDXYNLFAtHUoXuo/BwDY5dRHk6xWMnVomQD+KJ2g5OXlYcuWLRg6dCh69+6NGTNm4O7du2Xa9969e1iwYAEGDx6MAQMGYPr06Th//rzSQRP14mjhiOFNhwOQTNwmXam3ugt+FyyznPvnzT/nOSKiyZZ0WcLd/u3mbzRxGyTzxlxrcJK73y9pJPdjSqrzeCdaJoAnSicoa9aswZEjR9CnTx/Mnz8fQqEQS5cuxaNHj0rcz9/fH4sXL0Z+fj48PT0xdepUiEQirF69GkeOHCn3CRD18FXXr7jbv978FWIm5jEa1VD06slXXb+CtlCbx2iIputSpwu61ukKAAiJD4FvhC/PEfHv3tt7CEj0AwDULLRF+3RnbpuhpR7cFrZB/Y42fIVX7SmVoDx9+hSXL1/G9OnTMXv2bHh4eGDDhg2wsbHBli1bStz3v//+g6WlJTZs2IDhw4dj2LBhWL9+PWrXrg1fX/pD0XQda3dED/seAICwxDCcCjvFc0T8Ck8M55YAqGlYk+vESEhlKnoVZZXfqmp/FWWN/xru9o+Dv4fLlJYAgG5TmmH0RldKTnimVIJy/fp1aGlpwcPDgysTiUQYOHAgQkJCEBcXV+y+WVlZMDY2hq6uLlemra0NU1NTiETUAak6KHoV5Rf/X6r1h2PRq0gLOy2Evo4+zxGR6mBIkyFoVkOyVs+t17dw5eUVniPiT2h8KI6FHgMgmdZ+UhtPbpmAGg6m1KyjApRKUMLDw2FnZwdDQ0OZcicnyVLfERERxe7bunVrvHz5Ejt37sTr16/x5s0b7NmzB2FhYRgzZkw5QifqZkDDAWhlLemAdufNHZx/cR5iMUN8ZCoAID4ytVpMiPQ2/S32PNwDADARmdCqxaTKCAVCfOv8LXd/pd9KHqPh17qAddzaV192+ZKbDoGoDqUavRMTE2FpaSlXLi1LSEgodt+JEyfi3bt32LdvH/bu3QsA0NPTw88//wxnZ+di95M+bmJiInc/OjpambCJihAIBPjO5TuM+HcEAGD5mRVICtdFVpJkVE/ArhA8OPYCnSc4afSl1T9u/YG8wjwAwKz2s2CqZ8pzRKQ6GdVsFH68/iOeJz7H9ejruBF9A872JX8Ga5pXqa/wz+N/AADmeuaY0W4GzxERRZRKUHJzc6GjI7/CqrTZJje3+OGjOjo6qFOnDlxdXeHi4oLCwkKcOnUKq1atwh9//IFmzZoVu+/Jkyfh7e2tTKhERQ11GopmNZohJD4EwSlBuJcTiKZow23PTMrB5Q3BGts5LTYjFn/f/RsAINISYWHnhfwGRKodLaEWlndfDs8TngAkV1EujL/Ab1BVbM2NNSgQFwCQrBxuLDLmOSKiiFJNPCKRCPn5+XLleXl53PbibNiwATdv3sQPP/wANzc3uLu7Y/369bC0tMSmTSUvJOfh4YEdO3Zw/1asWKFM2ESFSC4xf3j9Tlke4C6zFqWp61+s81+H7ALJeh8z28+EjZHmJWFE9Y1tMRb1zeoDAC5GXqxWq41HpURhV/AuAICRrhHmd5pfyh6EL0olKJaWljJNLVLSMisrK4X75efn48yZM+jSpQuEwg+H1NbWRqdOnRAWFqYw8ZGysrJC48aNuX/29vbKhE1UTHdhL9jk1gEARBiE4Ln+Y7k6mrj+xdv0t9hyTzLaTV9bH990/4bniEh1paOlg2Xdl3H3q1NflJXXVyJfLPm+WdhpISwN5LstENWgVILi6OiI169fIzMzU6b86dOn3HZFUlNTUVhYiMLCQrlthYWFEIvFEItpXozqIi+1AAMTP0xKdsJqn8KrKJq2/sWaG2uQWyg5pzkd5tDVE8Kria0noo6J5IfCmfAzCHwdyHNElS8iKYLroG4qMsWXXb7kOSJSEqUSFFdXVxQWFuLkyQ8z7+Xl5eHs2bNo2rQprK2tAQBxcXEyHVnNzc1hZGSEGzduyFwpycrKQkBAAOrWrUtDjasRfTMROqS7wCZXsiBXuEEInhjeU1hPU8SkxmD7/e0AAEMdQyzttpTniEh1p6ulixUuH5pbv7n0jcYP/f/5+s8oZJIfyou7LIa5vjnPEZGSKJWgNG3aFD179sT27duxZcsWnDx5EgsXLkRsbCxmzpzJ1Vu9ejXGjx/P3dfS0sLnn3+OmJgYzJw5E0eOHMGhQ4cwY8YMxMfHY8KECRV3RkTl2TSxgImFIT5L+PC6/2flDTE+XEXTtPUvVt9YzY3cmddxHmoY1uA5IkKASa0nwdFCcuX7evR1XHihuZ1lnyU840buWOhbYEHnBTxHREqj9Nzay5cvh7W1Nc6fP4+MjAw4ODhg3bp1aN26dYn7TZgwAba2tvDx8YG3tzfy8/PRoEED/Pzzz3B1dS1n+EQdCYUCdJ7ghIwN2bDPboho/XC81nuJO8bX0Tm9JwDNWv8iLCEMO+/vBCDplLek65JS9iCkauho6WBVz1X4/KikyXX5leXo06APhALNW0d2xZUV3OSIX3X9CiYiE54jIqVROkERiUSYPXs2Zs8ufnKp4kbl9OnTB3369FH2kEQD1e9og94L2yLq4Az8oi/5wj5htQ89dHuj+/iWGjXEeNnlZdxl5a+6fkWd8ohKGdlsJNYFrENwbDDuv7sPn6c+GNVsFN9hVaibMTdxNPQoAMDa0BpzO87lOSJSFpqXJhO1Ub+jDVb+/iW6mHUHACToxiJlXJjaJydFZ8c9F3wJx55JptO2MbLB4i6L+QyNEDlCgRBr3D6sSbPiygrkFxY/qlLdMMaw5MKHq5Y/uf4EI10jHiMiZUUJClHIwEyENsMcYVDJHVWFQgFWdlvF3V/ptxIpOSmVeszK9PJOLA7Pv4aAXSFgYPjhzodOiD+7/gxDXcMS9iaEH+4N3LnFPMOTwrnJBDXB0dCjuPX6FgDAycoJU9pO4TkiUlaUoBCFDMz10G5EQxiYV/76FK0sW6NDmgsAID4rHj9f/7nSj1kZXt6JxeUNwchMygEABBn5I1L/GQDANrcuXPP78xkeIcUSCAT4tc+v3P0fr/+IhKzily5RF3mFefjm0of5hn7t8yu0hUr3bCA8oQSFqITh8ZOgpyVJhjbf2YzQ+FCeI1KOWMwQuPdDzLmCHPxbcyd3f3j8JNz7J1wjZ8clmqFD7Q7wbO0JAEjJScH3V7/nN6AKsDFwI14kvwAA9KzXEwMaDuA5IqIMSlCISrAssMa8ZpJhfwXiAiw6v0it5mSIfZbEXTkBgLOWh5GkEw8AaJrZFi0zO2rk7LhEs/zS6xeuf8a2oG14FPeI54jK73Xaa/x0/ScAgAAC/Ob+GwQCzRgZWF1QgkJUxtzmC7iZLc+/OI9Tz0/xHFHZFZ31Nk7nDS6YS0YMaDFtjImbCQEEcvUIUTW2xrZY8f9rZYmZGPN856nVD4Wivjz/JTLzJbOez2o/C21t2/IcEVEWJShEZRhoG+A399+4+/N85yEjL4PHiMpOOustA8OhmltRIJSslOqeNBQ2+XZy9QhRVQs7L0QD8wYAAL9oP3g98OI5IuVdfHER/z79FwBQw6AGVvVaVcoeRBVRgkJUysimI+FW3w0A8Cr1FVZcUY+Vq22aWMDQQg/3jG/giVEQAMA83woDE8dwdTRtdlyimUTaIvw14C/u/pILSxCXEcdjRMrJKcjBXN8P85z8r8//aEp7NUUJClEpAoEAWwdthZ62pMPsptub1GIpeKFQgIaja+BAzQ/DM0e/nw4R+zAKSpNmxyWara9jX3zR4gsAQHJOMhadX8RzRGX3w9Uf8DzxOQCga52umNCKllJRV5SgEJXjaOGIn1wlndsYGKadmsatY6PKfn+/GhnaaQCAtuld0TajGwDJlRO3hW3UfgI6Ur380fcPWOhLrvgdfHIQZ8PP8hxR6QJfB+K3W5JmYl0tXWwftF0jp+2vLuiVIyrpyy5forVNawDA4/eP8dO1n/gNqBTHnx3HoSeHAEgWItvgtgkCCNBtSjOM3uhKyQlROzUNa+J399+5+1NOTkF8ZjyPEZUspyAHk05M4tbb+bHHj2hWsxnPUZFPQQkKUUnaQm3s8tjFTaq0xn8N/KL9eI5KsdiMWMw4PYO7v6nfJjg1kawQW8PBlJp1iNqa2Goi+jn2AyB5n087NU1lR/V8d+U7PEuQTIzYoVYHfNXtK54jIp+KEhSistratsXKnisBSJp6xv03DsnZyTxHJUvMxJhwbALeZ74HAAxuNBhjW4ytsuNX1ZIEpHoSCATwGuIFKwMrAMCJsBPcytyq5FzEOZmmHa8hXjRjrAagBIWotK+6fsWtERKTFoMZp2eo1C+4XwN+xcXIiwAAWyNb7PTYWaWTQVXlkgSkerIxssEuj13c/YXnF+Jp/FMeI5L1Nv0txh8bz91f67aWmnY0BCUoRKVpCbWwb+g+mOtJhgn++/RfbAjcwG9Q/+961HWsuCoZBi2AAPuH7UdNw5o8R0VIxfNo7IHpbacDALLyszD08FCk5aXyHBWQX5iPsUfHcusGDWo0CAs7L+Q3KFJhKEEhKq+OaR2ZX3BLLi7B5cjLPEYEvEx+ieFHhqNALJmQbbnzcvSq34vXmAipTOv7rUdL65YAgOeJzzHHfybEEPMa04JzC3A9+joAoLZxbXgN8aLp7DUIJShELQx1Gopvnb8FIOn3McpnFMITw3mJJSMvA0MODUFidiIAoG+DvtywaEI0lYGOAY6NPsZdzTz32hfHrfYgPjKVl0Uw/7rzF7bc2wJA0u/kyMgjXF8ZohkoQSFq4yfXn7jVSJOyk+C+3x3v0t9VaQy5BbkYdngYHr9/DABoZNkIh0YcgpZQq0rjIIQPDuYOWN/8LwiY5CqFr+W/WHl0LQ7Pv4aXd2KrLI4Tz05gwbkF3P0dg3ega52uVXZ8UjUoQSFqQ0uohX+G/YMWNVsAAKJSotDvn35IyUmpkuMXigvxxX9fcJ1izfTMcPLzkzDTM6uS4xPCt5d3YpH/jxk+fz+TKztUcyuu5Z/H5Q3BlZKkiMUM8ZGS/i7xkam4EHERo3xGoZAVApB0pKfZYjUTJShErZjpmeHcuHOoZ1YPAPAo7hF67elV6RNI5RfmY+LxiTgaKlml2EDHAGfGnkFjq8aVelxCVIVYzBC4NxQA0CtlMAYkjgYAMAHDTttfEWh8FYH7Qiu0ueflnVgcnn8NAbtCAAC7DxyEx34PbmbpcS3HYW3vtRV2PKJaKEEhaqeWcS2cH3ceNQxqAACCY4PRw7sH3qS9qZTjZeVn4bPDn+Gfx/8AAHSEOvhv1H90SZlUK7HPkpCZlMPd/yxhApxT+gIAxAIxdtv+Bt+CY4h9llQhx3t5JxaXNwRzxwwy8scGuxXIFUjuu1v3g9cQL5rKXoPRK0vUUiPLRrjueR21jGsBAEITQtFxZ0fcirlVocd5nfYavfb04tYhEWmJ4DPKB30d+1bocQhRddkpuTL3BRBgXNw8uCYPBCC5krLPZjO+vf01N7qtvIperWFguGh+DNtqrUGBUPK4LTI64IuQhRCC+n5pMkpQiNpyquEE/0n+qG9WH4BkwqYe3j3w152/uPU4PsX5iPNou60tbr+RrKZsrGuM8+POw6Oxxyc/NiHqRl/BbMVCCDH2/Wy4Jw3jyrxf7YL7Pne8Tntd7mNJr9ZkCtOxrdYaHKm5A0wgaTrqktobs998h7xEcYVdrSGqiRIUotbqm9fHrSm34GLvAgDIF+djru9cuO1149blUFZ8ZjymnJiCfv/0Q3yWpG+Lvak9/Cb5oUe9HhUWOyHqxKaJBQwt5GcsFkCAkfFTMT52HrSYZHr5q1FX0ezvZth2b1u5rqZkJefgrrEfvq8/E0HG/lz5gMTRmBS7CNqQHOfjqzpEs1CCQtSetZE1Lo2/hIWdFnJl16KuodnfzTD5xGQ8ef9EbiSAoo58b9LeYMWVFXDY5IDdD3Zz5X0b9EXQ9CBudWVCqiOhUIDOE5yK3e6S2h8HOvtwza5puWmYeWYmWm5piX0P9yGnIKfYfaUKxAU4GXYSI4MGY3uttUjTlqy9ZVBohDmvv8fQhIkQ4MNEbIqu6hDNQaspEY2go6WD9f3WY0DDAZh+ejqiUqIgZmJ4PfCC1wMvOOQ3RpO01nAwbII3+6JhfsIUzYbWhbhuFoJjg3Ex8iKuvLwi0zRkrGuM39x/w7S202h2SkIA1O9oA7eFbRC4N1Smw6yhpR46j3dC/Y426NPDBYvOL8Keh3sASPqHTTg+AQvPL8SAhgPQq14vNLFqAmsjawgFQrzPfI/nic/hF+2HU89PITZDdqhyq/TOGPt+NiwKZCdhM7TUg00Ti8o/acIbSlCIRunToA+ezHqCTbc34X83/8fNkRKpE4ZIyzDZyn6KH0NbqI1pbafhO5fvYGtsW7kBE6Jm6ne0gX17a4RdjUHArhB0m9IMjXvWgVAoSeLN9c3h/Zk3prWdhqWXluJmzE0AkskV9z/aj/2P9pfpOE7GzeAWOgItMzvKXDWR6jzeiTsm0UzUxEM0jqGuIZY5L8OLeZHwTJ+PujkNyrRfXdO6+N7le7yY/wJ/D/ybkhNCiiEUClDDwRQAUMPBVGGi0K1uN/hP8seNSTfwRYsvYKhjWOrj6gh1MMxpGE6POY0nix7hy2kzYWShL1PH0FIPbgvboH5Hm4o5GaKy6AoK0Vg5UWJ0e9sP3dAPKVqJCDN4hFjd10jUeY8CQQEEEMA83wpu7l3h0XkAGlk2oqYcQiqQQCBA97rd0b1ud+QV5uFmzE0EvwtGeFI4UnJSUCAugJWBFeqa1kX7Wu3Rxa4LDHU/JDKlXa0hmo0SFKKxivbwNyu0RKf0ngrr9bRohQZWtaoqLEIqlYGZCG2GOcJAxTqQ6mrpwrWeK1zruSq1X1mu1hDNRAkK0Vhl7eFPIwGIJjEw10O7EQ35DoOQT0Z9UIjGKm7ehqJoJAAhhKgmSlCIxipt3gaARgIQQoiqogSFaDTpvA0fX0mhkQCEEKLaqA8K0Xg0EoAQQtQPXUEh1QKNBCCEEPVCCQohhBBCVA4lKIQQQghROZSgEEIIIUTlUIJCCCGEEJVDCQohhBBCVA4lKIQQQghROZSgEEIIIVDdhRarK5qojRBCCAEttKhq6AoKIYQQQlQOJSiEEEIIUTlKN/Hk5eVh165duHDhAtLT09GgQQNMnToVHTp0KNP+ly9fho+PD168eAFtbW3Y29tj6tSpaNeundLBE0IIIUQzKZ2grFmzBteuXcPIkSNhZ2cHX19fLF26FBs3bkTLli1L3Hf37t3Ys2cPXF1d0a9fPxQUFODly5dISEgo9wkQQgghRPMolaA8ffoUly9fxqxZszBmzBgAQN++feHp6YktW7Zgy5Ytxe4bEhKCPXv2YM6cORg1atSnRU0IIYQQjaZUH5Tr169DS0sLHh4eXJlIJMLAgQMREhKCuLi4Yvf9999/YWFhgREjRoAxhqysrPJHTQghhBCNplSCEh4eDjs7OxgaGsqUOzk5AQAiIiKK3TcoKAhNmjSBj48PPDw80K9fP3z22Wc4evRoOcImmoTmHiCEEPIxpZp4EhMTYWlpKVcuLSuuL0l6ejpSU1Px5MkT3L9/H56enrC2toavry82btwIbW1tDBkypNjjJiQkIDExkbsfHR2tTNhExdHcA4QQQj6mVIKSm5sLHR0duXJdXV1uuyLS5pzU1FT88MMPcHNzAwC4urrC09MTe/fuLTFBOXnyJLy9vZUJlRBCCCFqTKkERSQSIT8/X648Ly+P217cfgCgra0NV1dXrlwoFKJXr17YvXs34uLiYG1trXB/Dw8PdOvWjbsfHR2NVatWKRM6IYQQQtSIUgmKpaUl4uPj5cqlzS9WVlYK9zMxMYGuri6MjIygpaUls83c3ByApBmouATFysqq2McmhBBCiOZRqpOso6MjXr9+jczMTJnyp0+fctsVHkQoRMOGDZGamip3BUbab8XMzEyZUAghhBCiwZRKUFxdXVFYWIiTJ09yZXl5eTh79iyaNm3KXQGJi4uT68jas2dPFBYW4ty5c1xZbm4uLl68iHr16tEVEkIIIYRwlGriadq0KXr27Int27cjJSUFtWvXxrlz5xAbG4uvv/6aq7d69Wo8ePAAfn5+XNmQIUNw5swZrF+/HjExMbC2tsb58+cRFxeHNWvWVNwZEUIIIUTtKT3V/fLly7nkIiMjAw4ODli3bh1at25d4n4ikQgbNmzAli1bcPbsWeTk5MDR0RHr1q1Dx44dyxs/ISqJ5nYhhJBPo3SCIhKJMHv2bMyePbvYOps2bVJYbm5ujuXLlyt7SELUDs3tQgghn0apPiiEEEIIIVWBEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQotIMzERoM8wRBmYivkMhVUib7wAIIYSQkhiY66HdiIZ8h0GqGF1BIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhCiNFvAjlY0WCySEEKI0WsCPVDa6gkIIIYQQlUMJCiGEEEJUDiUohBBCCFE5lKAQQgghROVQgkIIIYQQlUMJCiGEEEJUDiUohBBCCFE5lKCQaoMmliKEEPVBE7WRaoMmliKEEPVBV1AIIYQQonIoQSGEEEKIyqEEhRBCCCEqhxIUQgghhKgcSlAIIYQQonIoQSGEEEKIyqEEhRBCCCEqhxIUQgghhKgcpROUvLw8bNmyBUOHDkXv3r0xY8YM3L17V+kDf/nll3BxccH69euV3pcQQgghmk3pBGXNmjU4cuQI+vTpg/nz50MoFGLp0qV49OhRmR/j+vXrCAkJUfbQhBBCCKkmlEpQnj59isuXL2P69OmYPXs2PDw8sGHDBtjY2GDLli1leozc3Fz89ddfGDt2bLkCJoQQQojmUypBuX79OrS0tODh4cGViUQiDBw4ECEhIYiLiyv1MQ4ePAjGGD7//HPloyWEEEJItaBUghIeHg47OzsYGhrKlDs5OQEAIiIiStw/Li4O//zzD2bOnAmRiFaUJYQQQohiSq1mnJiYCEtLS7lyaVlCQkKJ+//1119o2LAh3NzclDksEhISkJiYyN2Pjo5Wan9CCCGEqBelEpTc3Fzo6OjIlevq6nLbi3P//n1cv34dW7duVTJE4OTJk/D29pYrp0SFEEIIUT/29vbQ09MrsY5SCYpIJEJ+fr5ceV5eHrddkYKCAmzcuBHu7u5cc5AyPDw80K1bN+5+YGAgdu3ahVWrVin9WIQQQgjh144dO9C4ceMS6yiVoFhaWiI+Pl6uXNr8YmVlpXC/8+fPIyYmBkuWLMG7d+9ktmVlZeHdu3cwNzcvNpuysrKSeWxra2vY2trC1taWu3qjyaKjo7Fq1SqsWLEC9vb2fIdTpejcq9+5V9fzBqrvuVfX8waq77mX5VyVSlAcHR0RHByMzMxMmY6yT58+5bYrEhcXh4KCAsyZM0du2/nz53H+/HmsXr0azs7OZYrDzMwM7u7uyoSuEezt7UvNODUVnXv1O/fqet5A9T336nreQPU+9+IolaC4urri0KFDOHnyJMaMGQNA0rxz9uxZNG3aFNbW1gAkCUlOTg6XIbm5uaFhw4Zyj/ftt9+ic+fOGDx4cLmafgghhBCimZRKUJo2bYqePXti+/btSElJQe3atXHu3DnExsbi66+/5uqtXr0aDx48gJ+fHwBJZljc5RxbW9syXzkhhBBCSPWgVIICAMuXL4e1tTXOnz+PjIwMODg4YN26dWjdunUlhEcASd8fT09PhUO8NR2de/U79+p63kD1Pffqet5A9T730ggYY4zvIAghhBBCilJ6sUBCCCGEkMpGCQohhBBCVA4lKIQQQghROZSgEEIIIUTlKD2Kh1SOhIQE+Pj4IDQ0FM+ePUN2djY2btyINm3ayNWdP38+Hjx4IFfesWNH/PbbbzJleXl52LVrFy5cuID09HQ0aNAAU6dORYcOHSrrVJSmzLkDwOPHj7F161Y8f/4choaG6NmzJ6ZNmwYDAwOZeupw7or4+vpizZo1CrcdO3ZMrre/v78/vLy8EB0dDTMzMwwYMAATJkyAtrZ6/Xmr6+uljODgYCxYsEDhti1btqBZs2bc/bK+z1VRVlYWDh06hKdPnyI0NBTp6elYtmwZ+vfvL1c3KioKf/75Jx4/fgxtbW106dIFc+fOhZmZmUw9sViMQ4cO4fjx40hKSoKdnR3GjRuH3r17V9FZla6s5/3LL7/g3LlzcvvXrVsX+/fvlylTh/OuLOr1CabBYmJicODAAdjZ2cHBwQEhISEl1q9RowZmzJghU6ZomNqaNWtw7do1jBw5EnZ2dvD19cXSpUuxceNGtGzZskLPobyUOffw8HAsWrQI9vb2mDt3Lt6/f4/Dhw/j9evX+PXXX2XqqsO5l2TKlCmwtbWVKTMyMpK5HxgYiG+//RatW7fGggULEBkZib179yI5ORmLFy+uynA/mbq/XsoYPny43OSUtWvX5m4r8z5XRampqfD29oa1tTU3A7ki79+/x7x582BkZIRp06YhOzsbhw4dQmRkJLZt2yazOO2OHTvwzz//YPDgwWjSpAn8/f3x888/QyAQwM3NrapOrURlPW9Assju0qVLZcqKztAupQ7nXWkYUQmZmZksNTWVMcbY1atXmbOzM7t//77CuvPmzWMTJkwo9TFDQkKYs7MzO3DgAFeWk5PDPv/8czZz5syKCbwCKHPuS5YsYZ999hnLyMjgyk6dOsWcnZ3Z7du3uTJ1OXdFzp49y5ydnVloaGipdcePH88mTZrE8vPzubLt27czFxcXFhUVVZlhVih1fr2Ucf/+febs7MyuXr1aYr2yvs9VVW5uLktISGCMMRYaGsqcnZ3Z2bNn5er9/vvvrHfv3iw2NpYru3v3LnN2dmYnTpzgyt6/f8969uzJ/vjjD65MLBazOXPmsGHDhrGCgoJKPJuyK+t5r169mrm7u5f6eOpy3pWF+qCoCAMDA5iYmCi1T0FBAbKysordfv36dWhpacHDw4MrE4lEGDhwIEJCQhAXF1fueCtSWc89MzMT9+7dg7u7u8wvjb59+0JfXx9Xr17lytTl3EuTlZWFwsJChduioqIQFRWFwYMHyzTnDB06FIwxXLt2rYqi/HSa8nopIysrCwUFBXLlyrzPVZWurm6ZJh67fv06unbtyi2TAgDt27dHnTp1ZM7T398fBQUFGDp0KFcmEAjw2WefIT4+vtQrzlWlrOctVVhYiMzMzGK3q8t5VxZq4lFTMTEx6Nu3L/Lz82FhYYFBgwbB09NT5osqPDwcdnZ2cpcNpZeWIyIiZD4YVF1kZCQKCwvlFtTS0dFBw4YNER4ezpVpwrkvWLAA2dnZ0NHRQYcOHTBnzhzUqVOH2/78+XMAkHs+rKysUKNGDZnnQ9VpwuuljDVr1iA7OxtaWlpo2bIlZs2ahSZNmgBQ7n2uzuLj45GcnKxwgTwnJycEBgZy98PDw6Gvry+3ZIr0/REeHq52zYA5OTno378/cnJyYGxsDDc3N8ycOVOmj5EmnrcyKEFRQ7Vq1UKbNm3g4OCAnJwcXLt2DXv37kVMTAx++uknrl5iYqLCbF5alpCQUGUxV4TExEQAivvaWFpa4uHDhzJ11fXcRSIR+vfvjzZt2sDQ0BBhYWE4cuQIZs+ejZ07d3Jf1KU9H9Lt6kCdXy9laGtro0ePHujcuTNMTU0RFRWFw4cPY+7cufj777/RqFEjpd7n6qy080xLS0NeXh50dXWRmJgIc3NzCAQCuXqA+r0/LC0tMWbMGDRq1AiMMdy+fRvHjx/HixcvsHHjRu6Hpqadt7IoQakEYrEY+fn5Zaqrq6sr9+YrzTfffCNzv2/fvvj1119x6tQpjBo1ihsJkJubK9PJrOgxpdsrWmWeuzTe4s4pLy9Ppm5Vn7si5Xk+evXqhV69enHlzs7O6NixI+bNm4d9+/ZhyZIlAMCdr/ScPn6skpr/VI2qvF6VrUWLFmjRogV3v3v37nB1dcWkSZOwfft2/Pbbb0q9z9VZaecpraOrq6tx74+PBzi4ubmhTp062LFjB65fv851ftW081YWJSiV4OHDh8UOJfzYvn37il3pWRmjR4/GqVOncO/ePS5BEYlECr8cpR9wIpHok4/7sco8d2m8xZ1T0S9qPs5dkYp6Plq2bImmTZsiKCiIK5Oer6IvrLy8vCo7x4qgKq8XH+zs7NC9e3f4+fmhsLBQqfe5OivtPIvWqQ7vj1GjRmHXrl24d+8el6BUh/MuCSUolaBu3bpYtmxZmepW1AqWNWvWBACkp6fLPHZ8fLxcXemlVSsrqwo5dlGVee7S+oqaLhITE2XOh49zV6Qin4+aNWvi1atXcvUTExPl+mckJibKDWNVZaryevGlZs2ayM/PR05OjlLvc3VW2nmamJhwyZilpSWCg4PBGJO56qpJ7w+RSAQTExOkpaVxZdXhvEtCCUolsLS0VDghUWV6+/YtAMhMbiQdh5+ZmSnT+fDp06fc9opWmedev359aGlpISwsTKYJJD8/H+Hh4ejZsydXxse5K1KRz8fbt29lXt+GDRsCAMLCwtC0aVOuPCEhAfHx8TIjYlSdqrxefHn79i10dXWhr6+v1PtcndWoUQNmZmYICwuT2xYaGirzmjs6OuL06dOIjo5GvXr1uHJNen9kZWUhNTVV7jNc08+7JDTMWM1kZmbKXdJnjGHv3r0AIDPrpqurKwoLC3Hy5EmuLC8vD2fPnkXTpk3VblSEkZER2rdvjwsXLsj0rzh//jyys7NlPrjV+dxTUlLkym7duoWwsDB07NiRK6tfvz7q1q2LU6dOyQxFPn78OAQCAXr06FEV4VYIdX69lKHotY2IiEBAQAA6dOgAoVCo1Ptc3fXo0QM3b96UGUYeFBSEmJgYmfPs3r07tLW1cezYMa6MMYYTJ06gRo0aaN68eZXG/Slyc3MV9g/bs2cPGGPo1KkTV6ZJ510edAVFhezZsweAZH4LQPKB9OjRIwDAxIkTAUiGlv7000/o3bs3ateujdzcXNy4cQOPHz/G4MGDZYbsNW3aFD179sT27duRkpKC2rVr49y5c4iNjcXXX39dtSdXirKcOwBMnToVc+bMwbx58+Dh4cHNsNmhQweZP2x1OvePzZo1C40aNULjxo1haGiI58+f4+zZs6hZsybGjx8vU3f27NlYtmwZFi9eDDc3N0RGRuLYsWMYNGiQzC8uVafOr5cyfvjhB4hEIjRv3hzm5uaIiorCqVOnoKenJ9Nxsqzvc1V29OhRZGRkcM0RAQEBeP/+PQDJTLpGRkYYN24crl27hoULF2LEiBHIzs7GwYMH4eDgIHPlsWbNmhg5ciQOHjyIgoICODk54caNG3j06BG+++47aGlp8XKOipR23unp6ZgyZQp69+6NunXrAgDu3LmDwMBAdOrUCd27d+ceS53OuzIIGGOM7yCIhIuLS7Hb/Pz8AEguBW/btg2hoaFISkqCUCiEvb09Bg0aBA8PD7lRMbm5udz6JhkZGXBwcMDUqVNlfomrgrKcu9SjR4+4NUoMDAzQs2dPzJgxQ26NEnU594/t2LEDgYGBePfuHdcnoUuXLvD09ISFhYVc/Rs3bsDb2xvR0dEwNTVF//795ebEUQfq+nopw8fHBxcvXsSbN2+QmZkJMzMztGvXDp6enrCzs5OpW9b3uaoaNWoUYmNjFW47fPgwt4zDy5cv5dbimTNnjtx7XSwW48CBAzh58iQSExNhZ2eHL774Au7u7pV+Lsoo7byNjIywceNGhISEIDExEWKxGLVr10afPn3w+eefy/3dqst5VwZKUAghhBCicqgPCiGEEEJUDiUohBBCCFE5lKAQQgghROVQgkIIIYQQlUMJCiGEEEJUDiUohBBCCFE5lKAQQgghROVQgkIIIYQQlUMJCimRr68vXFxc4Ovry3coZRIcHAwXFxfs3r270o7h4uKC+fPnV9rjVxejRo3CqFGj+A5D5e3evRsuLi4IDg6u1OMcOXIEvXr1wrt378pUvyr+1tTZypUrMXLkSOTm5vIditqiBEXDrF27Fi4uLhg0aJDcooKaQt2+2FJTU7F161ZMmDABffr0QZ8+fTBy5EgsXLgQXl5eSEpKqpI4Sks258+fX+KSA9VJdnY2+vXrBxcXF/zxxx98h1Pp0tPTsXfvXgwYMICbgp58Gk9PTyQkJODff//lOxS1pV6LdZASZWVl4erVqxAIBEhLS8ONGzfg5ub2SY/p7OyMpk2bwtLSsoKirF7ev3+P2bNn4/3792jYsCH69+8PY2NjJCYm4smTJ/Dy8kKLFi0UrrGj6davX893CMW6evUqsrKyIBAIcOnSJcyZMwcikYjvsCrNkSNHkJaWhjFjxvAdisaoU6cOunXrhgMHDmD48OHQ19fnOyS1QwmKBrly5Qqys7MxatQo+Pj44MyZM5+coBgZGcHIyKiCIqx+du/ejffv32PKlCkyqzJLvXjxoto+v7Vr1+Y7hGKdOXMGWlpaGDZsGP7991/4+fmhT58+fIdVKQoKCnD69Gm0aNFCpV8TdeTu7g4/Pz9cvnwZgwYN4jsctUMJigaRfqiOHTsWL168wP379xEbGwsbGxuZert374a3t3exj2NjY4MjR44AkDQLrFmzBsuWLZNZ/tzFxQWtW7fGd999hy1btuDu3bvIy8tDq1atsHDhQtSqVQtRUVHYvn07Hj58iIKCAnTs2BGLFi2SuVoQHByMBQsWwNPTE5MnT5aJ4927dxg9ejT69euH5cuXc/eLxiClaP9nz55h+/btCAkJgVAoRNu2bTF37ly5S9h+fn64evUqnj17hoSEBGhra6NBgwYYMWIEXF1dS37SSxESEgIAGDZsmMLtDRo0UFj+9u1b/PPPP7h79y4SExNhaGiIevXqoX///tzrkJ+fj5MnT+LmzZuIiopCSkoKDA0N0aJFC0ycOBGNGjXiHu+XX37BuXPnAABr1qzBmjVrZM6/6HNZ9Lb0uZd68eIF9u3bhwcPHiAtLQ2Wlpbo1q0bJk2aBFNTU65e0ddu7Nix2LFjBx4+fIi0tDRuJVtpM530vQZ8eG9u3LgRCQkJOHjwIF69egUjIyP07NkTM2fOlLuSUVBQgEOHDuH06dNISEhAjRo1MHDgQPTq1Quff/653DmU5tWrV3j8+DG6du0qk+wrSlCKvn+7du1apvcbAFy/fh379+/Hy5cvYWhoiG7dumHWrFmYMmWK3HNSkrK+HiW5c+cOEhMTMXbsWIXbc3Nz4eXlhYsXLyI1NRW1a9fGiBEj5FZfLurt27fYt28f7t69i+TkZBgbG6Njx46YPHmy3OcRoNzzIX0vHzp0CH5+fjhz5gzevn0LNzc37nVOTk7G/v37cfPmTbx//x4GBgZo1aoVJk+eDAcHB7njK1M/JiYG+/fvR3BwMBITE6Gnp4eaNWuiTZs2mDdvnsyK8l26dIGenh7OnTtHCUo5UIKiIaKiohASEoLOnTvDwsICffv2RVBQEM6ePSv3xd2mTRuFjxEdHY2rV6+W+VJ2eno65syZA0tLS/Tt2xevX7/GzZs38eWXX+KXX37B3Llz0bhxYwwYMADPnz/H9evXkZaWho0bN5brHI2MjODp6QkfHx8AwIgRI4o9p2fPnuHgwYNo06YNPDw8EB4ejhs3biAyMhLe3t4y57h9+3Zoa2ujRYsWsLS0REpKCgICAvD9999jwYIFGD58eLniBcB9ScTExKBp06Zl2ufRo0f4+uuvkZWVhY4dO8LNzQ3p6ekIDw+Hj48Pl6CkpaVh8+bNaNmyJTp37gxjY2O8e/cOAQEBuH37NjZv3gwnJycAkqa6jIwM+Pv7o3v37nB0dJQ5pqenJ86dO4fY2Fh4enpy5Q0bNuRu+/v748cff4RAIED37t1Rs2ZNREVF4b///sOdO3ewbds2GBsbyzzumzdvMGvWLDg4OKBfv35IS0uDjo5Oqc+B9DG7deuGtm3b4vbt2zh69ChSU1Px/fffy9Rdt24dzp8/j1q1auGzzz5Dfn4+jhw5gidPnpTp+f7YmTNnAAB9+/aFtbU1WrdujeDgYLx9+xa1atVSuI8y77czZ85g3bp1MDQ0RN++fWFkZITAwEB8+eWXKCgogLZ22T6Wy/N6KBIUFAQAaNasmdw2sViMZcuW4d69e3BwcEDv3r2RlpaGP//8s9jPkadPn2LJkiXIzs5G165dYWdnh9jYWFy8eBG3b9/Gli1bZJ7H8j4fGzZswNOnT9GlSxd07doV5ubmACTvufnz5yM+Ph4dOnRA9+7dkZKSguvXr+Pu3btYv369zN+iMvUTEhIwY8YM5OTkoEuXLujVqxdycnLw+vVrHD9+HLNnz5aJV0dHB40aNUJISAiys7OpmUdZjGiEzZs3M2dnZ3bp0iXGGGOZmZnM3d2djRgxghUWFpa6f1JSEhs5ciRzc3Njjx494srPnj3LnJ2d2dmzZ2XqOzs7M2dnZ7Z582aZ8t9//505Ozuz/v37syNHjnDlYrGYffXVV8zZ2Zk9e/aMK79//z5zdnZmu3btkovp7du3zNnZma1evVqmfOTIkWzkyJEKz0P6eEWfC6lVq1YpLH/z5o3c42RmZrKJEyey/v37s+zsbLlznzdvnsLjf8zHx4c5OzszDw8PtmvXLnb//n2WkZFRbP3c3Fw2bNgw1qNHDxYYGCi3PS4uTqbu+/fv5epERkYyd3d3tmjRIpny4l5LqXnz5jFnZ2eF21JSUli/fv3YsGHD2Lt372S2Xbp0iTk7O7P169dzZdLXrrjXljHFr+OuXbu49090dDRXnpOTw8aOHct69OjB4uPjufJ79+4xZ2dnNnnyZJnXKT4+ng0ZMkTh+6ck+fn5bMiQIax///4sJyeHMcbYmTNnmLOzM9uxY4dcfWXfb2lpaczd3Z25u7uzV69eyRx3wYIFzNnZudjn5P79+1yZsq9HSaZNm8Z69OjBcnNz5bZJ3zNLlixhBQUFXHlERATr1auX3Oubn5/PRo4cyfr27cvCwsJkHuvhw4fM1dWVff3115/0fKxevZo5OzuzYcOGsdjYWLmYZ82axVxdXdnt27dlyl+9esX69u3LJk6cWO760r/nop9tUqmpqXJljH34bA4KClK4nRSPRvFogIKCAly4cAGGhobo3r07AMDAwADOzs6Ii4vDvXv3Stw/NzcXy5cvR2xsLL755hu0aNGiTMfV19fH1KlTZcqkfV5MTU1lrnAIBAJu24sXL8p8buXVqlUruf43AwYMAACEhobKlCv6VWxgYID+/fsjIyMDz549K3ccw4YNw5gxY5CRkQFvb28sWLAAAwYMwIQJE7B161YkJCTI1Pf390d8fDz69OmDTp06yT1ezZo1udu6urqoUaOGXJ369eujTZs2XNNaRTh//jwyMzMxffp0uUv0bm5uaNSoES5fviy3n4WFBcaPH6/08UaMGIG6dety90UiEdzc3CAWixEWFsaVX7hwAQAwceJE6OnpceVWVlYy77+yunXrFpKSktCzZ0/uqoerqyv09PTg6+sLsViscL+yvt/8/f2RnZ2NAQMGoE6dOly5tra23N9SScr7eigSHx8PIyMj6Orqym2TNgtOnToVWlpaXHmDBg3g7u4uV//mzZuIjY3FmDFjZJoYAaBly5bo1q0bAgMDkZmZCeDTno8xY8bA2tpapuz58+d48uQJ+vbti44dO8psq1OnDgYNGoTIyEhERkaWq76UoqvMJiYmCuOUXtmJj48v8XyIPGri0QD+/v5ISUnBwIEDZf5w+vbtiwsXLuDMmTNyf3xSjDH88ssvCAkJwaRJk9C7d+8yH9fOzk7mSwEAN9rHwcFBpi226LaPv5QrQ+PGjeXKpF/mGRkZMuXJycn4559/EBgYiLi4OLl5Cz4lXoFAgFmzZmHMmDEIDAzE06dP8ezZMzx//hxRUVE4efIkfvvtN+4SsvTLrEOHDmV6/PDwcBw8eBCPHj1CUlKSXEKSkpICKyurcscvJe1L8/TpU7x580Zue15eHlJTU5GSkgIzMzOu3NHRsUxNOh/7+MsN+JCcFX39IiIiAEi+/D7WvHlzpY97+vRpAJK/HSkDAwN0794dly5dwp07d9C5c2e5/cr6fpMm54ribdq0qUwSUJLyvh6KpKWlKUx0pfHq6+srPL+WLVtyzWEfx/Xq1SuF86MkJSVBLBYjJiYGTZo0+aTnQ9p8WdTTp08BSP6mFR3/1atX3P8ODg5K15f2M1q/fj2CgoLQqVMntG7dutimP+BD4pKamlpsHaIYJSgaoGibeVHt2rVDjRo1EBAQgLS0NIUZ/s6dO3H16lX07t0bkyZNUuq4hoaGcmXSD5SStlXUr/qSGBgYFHv8or+C09LSMH36dMTFxaFFixZo3749jIyMIBQKERERAX9/f+Tn539yPGZmZujXrx/69esHAEhMTMSGDRtw/fp1/Prrr/Dy8gIA7pdlcV8YRT1+/BiLFi0CALRv3x52dnbcefv7+yMiIqJCYgck/Y0A4NixYyXWy8nJkbkv/fWorJLeP0Vfv6ysLAiFQoUdQpUdup2QkIA7d+6gVq1acl+Y/fr1w6VLl3D27FmFCUpZ32/S11fR81LceShS3tdDEZFIVOycSZmZmcW+FxU9v9K4Ll68WKa4PuX5ULRPWloaAMmVsFu3bhW7b3Z2drnq29raYsuWLfDy8kJgYCCuXr0KAKhbty6mTJmCnj17yu0r/cGjycPUKwslKGouLi4Od+/eBYASZze9cOGC3CVvX19f7Nu3Dy1atMA333xTqXEWR3qVpbCwUG6b9MOrMp05cwZxcXEKhwHv378f/v7+lXJcS0tLrFixArdu3cKLFy+QmpoKU1NTbshxWS4H79u3D3l5efjzzz/lvlClvwwrivQL2NvbW+EoiOJ8fBWtohkYGEAsFiM1NVXuSoGyE+D5+vqisLAQb9++LXbCuoCAgDJdlSiONPFKTk6W2yY9j7Ikp+V9PRQxNTUt9v1maGhY7C9/Rc+vNK61a9eia9eupR77U54PRe8t6eOVtXO7svUBydXhlStXoqCgAGFhYbh9+zZ8fHzw448/wsrKSq6JXJoElfc9U51RHxQ1d+7cOYjFYrRs2RIDBw6U+yf9xf7xpdgHDx7gt99+Q61atbB69WqF7c9VQTrKQFEzSnh4uMJ9hEKhwoSmPKSXx6V9d4p69OhRhRyjODo6OnKXsKWXraVJZ0nevn0LExMTueQkJycHz58/l6svFEr+3It77kraLm2Ckl7CVxXS0UiPHz+W26bMKB7GGM6ePQsA6N+/v8K/pebNmyM/P5/r91Ie0mHliuINDQ0t8/u6Il8PBwcH5OXlIS4uTm5bgwYNkJ2dLdPvR0rR34eycVXU8yEl/fsp6/GVrV+UtrY2mjVrhsmTJ2PBggVgjOHmzZty9WJiYgDgkxPJ6ogSFDUm/VAVCARYvnw5vv76a7l/y5cvR7NmzfDixQuus2dMTAxWrFgBkUiEtWvX8prZ161bFwYGBlwzlFRSUhL27t2rcB8TExOkpqZWyBoX0g6GH39AXrx4EYGBgZ/8+IcOHUJ0dLTCbf/99x+ys7NRt25d7lJ2t27dUKNGjf9r795Cmm7jOIB/W7qlNTN0zkNYlEXaaLqckq7CIVFSKchuvNGyIGrYiUlFGQoFnS6Ssotchi5lYF2IK2tqWrTcmjZs2QGloGQ2k7LZwbbVexEb2v71au11k/f3udyeuef//P+O33P6PdBqtTAYDB6fGdvT5fP5sNlsePHihfs1p9OJiooKvH//3uOzrik+q9XKWJ/fvZ+VlYXg4GBcvHhx3Pe5fPnyxSfBiys3yeXLl8c9D0NDQ+7t6BNhMpnQ398PoVCIgwcPMv4vuUYZfw72J0MikSAoKAgajWbc2hGHwwGlUjnhv+PN+5GYmAiAedTNNW1cWVk5Lljo6+tjDNQkEgn4fD7UajVMJpPH+w6HY1xg4632cElISEBCQgJaWloYFwl/+/ZtXL0mW/7Zs2eMI7uu0SSmjl5PTw/CwsLGLQImE0NTPNNYV1cXLBbLvy7SysrKwuPHj6HRaLBs2TKUl5fjw4cPSE5ORmtrq0f5OXPmTNlZN4GBgcjNzUVNTQ22bduG9PR0fP78Gffu3UNiYiLjAsCkpCQ8ffoUxcXFWLFiBQICAiAUCt0/tJOxbt061NbW4uzZs3j48CH4fD56e3vR1dWFNWvW4M6dO391fbdu3UJFRQUWLVqEhIQEzJs3DzabDT09PXj+/Dk4HA7279/vLs9ms1FaWgqFQgGFQoGUlBTExcXh48eP6O3txejoqPuHOzc3Fw8ePMCuXbuQkZEBNpsNk8mEt2/fIikpyeNwueXLl4PD4aC+vh42m80dmLqmtkQiEdra2nDkyBGkpqaCzWYjLi4O6enpCA0NxdGjR1FSUoKtW7ciJSUFsbGxsNvtGBgYgMlkgkAgwOnTp/+qvSYrOTkZmZmZaG5uRkFBASQSCex2O27fvo34+HjodDr3yNDvuIIO184bJrGxsRAIBDCbzejp6ZlwXpuxuFwu5HI5Tp06he3bt0MqlWL27Nno6OgAm81GeHj4hKbFvHk/JBIJzp8/D6PR6LGGwrX2Rq/Xo7CwEKmpqbDZbGhpaYFYLPYYMWCz2SgrK0NxcTGKioogEoncC+YHBgbQ3d2NuXPnQqVSebU9xiopKcGePXtQWlqK+vp6LFmyBBwOB1arFWazGcPDw2hubv6j8jdv3kRDQwOEQiFiYmIQHByMly9fQq/XIyQkxOP56e/vh8ViQU5OzqSugfxAAco05vpRHZvhlYlUKkV5eTlaWlogl8vdPU2j0ci4BTkyMnJKD+MrLCxEQEAANBoNGhoaEBkZifz8fKSlpaG9vd2jfH5+PkZGRqDT6dDd3Q2n04mCgoI/ClAiIiJQXl6OCxcuwGg0wul0YunSpThz5gysVutfBygHDhyATqdDV1cXDAYD3r17BxaLBT6fj5ycHMhkMo+elUAgQGVlJVQqFQwGAzo7O8HlcrFw4UJkZ2e7y6WlpaGsrAwqlQparRYcDgcikQjHjh1jzBQcEhKCsrIyVFVVobGx0f0cuAKUjRs3wmKxoLW1FbW1tXA6nVi/fj3S09MB/MiKqVQqUVdXh87OThiNRsyaNQs8Hg8bNmxg3HY6FQ4dOoQFCxbg+vXruHbtGng8HmQyGUQiEXQ6HeMC1rFGRkbQ3t6OoKAgrF279rdls7KyYDabodFo/ihAAYBNmzaBy+WipqYGTU1N7sypO3bsgEwmm3C6eW/dj6ioKIjFYrS1tWH37t3jRgFYLBaOHz+OqqoqNDc34+rVq4iOjoZcLsf8+fMZpzTi4+Nx6dIl1NXVoaOjA2azGYGBgQgPD8fq1as9tmN7qz1coqOjoVQqoVarcffuXdy4cQMsFgthYWEQCoUe2aEnUz4zMxNfv37Fo0eP8OTJE9jtdvB4PGRnZzNue3aNMm3evHlS10B+mPH9+/fvvq4EIYR4W2NjI06ePIl9+/ZNix7s69evkZeXh4yMDJSWlk7pd3d2dmLv3r04fPiwzwLNn/myPbzB4XAgLy8PUVFRf5w9+/+O1qAQQqa1oaEh/NzPGhwcRHV1NWbOnIlVq1b5qGbMbDabx7be0dFRnDt3DsCPYwmm2sqVK5Gamorq6upfJqP7r/hje3hDU1MT3rx5g507d/q6KtMWTfEQQqa1K1eu4P79+xAKhQgNDYXVaoVOp8OnT5+wZcsWj2F3XzOZTDhx4gTEYjEiIiIwPDzsPthTJBJBKpX6pF5FRUXQarUYHByc0jbz1/b4WzNmzIBCoWBMckcmhqZ4CCHTml6vh1qtRl9fH2w2G9hsNhYvXoycnBzGE4h97dWrV1AqlTCbze7dVjExMe7Tl/9vCb2oPcivUIBCCCGEEL9Da1AIIYQQ4ncoQCGEEEKI36EAhRBCCCF+hwIUQgghhPgdClAIIYQQ4ncoQCGEEEKI36EAhRBCCCF+hwIUQgghhPgdClAIIYQQ4nf+Ab0Osc5ZAisHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 105.0 deg to 120.0 deg\n", + "Modulation: 0.312 +/- 0.003\n", + "Best fit polarization fraction: 1.0 +/- 0.016\n", + "Best fit polarization angle: 85.277 +/- 0.312\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRXUlEQVR4nOzddXQU59fA8e/GlYQEJ7g7FJdAcC1t0UKLFGmLUy/86qVuUKOFUii0xaVQHIq7a3AIGiAJcc8+7x/7ZsiSjZJkNsn9nMNhd2Tnzu5k986jBqWUQgghhBDCitjoHYAQQgghxKMkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRHCSly7dg2DwcDw4cP1DkUAfn5+GAyGXD/OBx98gMFgYPv27bl+rMyoWLEiFStW1DsMISRBERk7d+4cEyZMoG7dunh4eODg4ECZMmXo2bMnc+bMIS4uTu8Qc83w4cMxGAxcu3ZN71AsmjNnDi+99BLNmzfHxcUFg8HAO++8k+F+//77L35+fnh4eODm5kbz5s35448/0t3njz/+oFmzZri5ueHh4YGfnx///vuvxW0vXrxIz5498fLyoly5cowfP56IiAiL2z7//PNUqlSJyMjIjE84heSELuU/Ozs7SpYsSc+ePVm/fn2WXk88vr/++kv7LDZt2pTutqGhobz33ns0bNgQNzc3HB0dKVu2LC1atOC1117j2LFj6e4/evRoDAYDLi4uhIaGprldcgKY/M/GxoYiRYpQoUIFevTowRdffMGtW7eyc7oil9npHYCwbh999BEffvghRqORli1bMmzYMNzc3Lh79y7bt29n1KhRzJw5k8OHD+sdaqH02muvERYWRtGiRSlTpgyXL1/OcJ8ff/yRCRMm4O3tzfPPP4+DgwPLli1j+PDhnDp1iq+//jrVPq+//jrffPMNPj4+jB49mvj4eBYtWsSTTz7JDz/8wPjx47Vto6Ki6NixI1FRUQwdOpSbN2/y008/cffuXZYuXWr2umvXruWvv/5i8+bNuLm5Zes98PDwYPLkyQDExsZy4sQJ1q1bx7p165gxYwYTJ07M1uvmlfHjx/Pss89Svnx5vUN5bLNmzcJgMKCUYtasWXTp0sXidrdv36Z169Zcu3aNypUr89xzz1GsWDEePHjAkSNHmD59Os7OzjRq1Mji/hERESxatAiDwUBMTAx//vmn2TVoSbt27fDz8wNM1+idO3fYs2cP69ev5/333+eDDz7g7bfffqzzFzlMCZGGTz75RAGqXLlyav/+/Ra3WbNmjfLz88vjyPLOsGHDFKCuXr2a68e6evWqAtSwYcMyvc/69evVtWvXlFJKzZ07VwHqf//7X7rHcHR0VF5eXmbnFBISoqpUqaIAtXfvXrN99uzZowBVpUoVFRISYvZaXl5eytHR0ey1Fi1apAC1Y8cObdnw4cMVoO7evastCw0NVWXLllUjR47M9Pk+ei6AqlChQqp1v//+uwKUq6urioqKytbrt2vXThXGr8gKFSpYfE8zcu7cOQWoTp06qcaNGyt7e3sVGBhocduRI0cqQI0YMUIZjcZU62/fvq2OHDmS5rF++eUXBahXX31VOTg4qPr166e57fvvv68A9f7776daZzQa1bJly5SXl5cC1GeffZbxiYo8I1U8wqJr167xwQcfYG9vz7p162jevLnF7Xr16sWGDRtSLV+yZAlt27bFw8MDZ2dn6tWrx2effWaxOii5zjs8PJxXX32VihUrYm9vzwcffJCp9WCqhho+fDjlypXDwcGBkiVLMnjwYM6fP28x7ujoaL744guaNGmCu7s7bm5u1KpVi4kTJ3L37l0ADAaDVu1RqVIlrYj40fr5kJAQpkyZQq1atXB2dsbDw4OOHTumWcQdERHBq6++io+PD05OTtSsWZNvv/0Wo9Focfv0dOvWjQoVKmR6+99//524uDjGjx9vdh5FixZl6tSpAPzyyy9m+yQ//9///kfRokW15RUrVmTcuHHExcUxd+5cbXlAQAAAzZo105YlP05eB6bSH4Bvvvkm0/Fn1vDhw3F1dSUqKoozZ85oy7du3Uq3bt3w8vLC0dGR6tWr8/bbbxMWFpap142Pj+fHH3+kR48eVKhQAUdHR7y8vOjUqVOaVUoZXb+W2qAkt39J619ySUCyxMREfv75Z1q0aEGRIkVwcXGhUaNG/PjjjxavK6UUP/74I3Xq1MHJyYmyZcsyfvz4TL8PlsyePRuAF154geHDh5OQkMC8efMsbrt3714AJkyYYLGdT+nSpXniiSfSPZaNjQ2TJ0/mySef5OTJkxw4cCDLMRsMBvr27cuyZcsAU4nxnTt3svw6IndIFY+waO7cuSQkJPDss89St27ddLd1dHQ0ez516lQ+++wzihUrxuDBg3Fzc2P9+vVMnTqVjRs3smnTJhwcHMz2iY+Pp0OHDoSEhNClSxeKFClCpUqVMrV+w4YN9OnTh4SEBJ588kmqVq3KzZs3WbFiBWvXrmXbtm1mX3YPHjygffv2nDhxgho1ajBixAgcHBy4fPkyc+fOpU+fPpQsWZL333+fVatWceLECSZNmoSnpyeA9j+YfnD9/Py4du0avr6+dOvWjaioKP7991+6devGr7/+yujRo7Xt4+Li6NixI4cOHaJBgwY899xzhIaG8vHHH7Njx44sfUbZ8d9//wGmxOZR3bt3N9sms/t8/PHH/Pfff3z44YcAWlXFkSNHaN26NYBWBZicTG3ZsoU5c+awZs0aPDw8Hvu8LFFKAWg/gL/++itjxozB1dWV/v37U6JECbZv384XX3zBmjVr2LNnj9lna0lISAiTJk2iVatWdO7cmeLFi3Pnzh3WrFlDjx49mD17NqNGjUq1X0bX96OGDx+eKgkB2LVrF//99x8uLi7asuTrfuPGjdSoUYPBgwfj5OTEtm3bmDBhAgcOHGDBggVmrzN58mS+//57SpcuzYsvvoi9vT3//PMPBw4cID4+PtXfZ0bi4+P5448/8PDw4JlnniEmJobXXnuN3377jTfffDNVEuLt7Q3AhQsXaNiwYZaOdezYMY4cOULnzp0pV64cw4cPZ/ny5cyaNSvNG6mMtG/fnjZt2rB7925WrFjBuHHjsvU6IofpXYQjrFOHDh0UoGbPnp2l/fbu3atVC925c0dbnpCQoHr16qUA9cknn5jtU6FCBQWojh07qsjIyFSvmd76kJAQ5enpqby9vdWZM2fM1p06dUq5urqqRo0amS0fNGiQAtTLL7+skpKSzNZFRESo0NBQ7XlGVTzt2rVTBoNBLVy40Gz5gwcPVIMGDZSTk5NZMXdytVmfPn3Mjn3lyhVVtGjRLFfxpJSZKp5ixYopQAUFBVlc7+rqqgCtWiQyMlIBys3NzeL29+/fV4AqUaKEtiwiIkL5+PioYsWKqcmTJ6t+/fpp55y8vmLFiuq5557L1nkmS6+KZ86cOVoVT3R0tLp27ZpycHBQ7u7uyt/f32zbMWPGKECNHj3abLmlKp7Y2Fh148aNVMcLDQ1VderUUUWLFlXR0dFm6zK6vpOrILZt25bu+Z44cUK5u7urYsWKqUuXLqXaf/z48SoxMVFbnpiYqEaMGKEAtWrVKm15yiq74OBgbXlMTIxq0aJFmu9pehYuXKgA9eKLL2rL+vbtqwC1ZcuWVNv/8MMPClDu7u7qjTfeUJs3b07zmnzUSy+9pAD1999/K6VM3y2lSpVSrq6uKiwsLNX26VXxpPTOO+8oQA0dOjRTcYjcJwmKsKhWrVoKUOvXr8/SfqNGjVKA+vXXX1OtO3/+vLKxsVGVKlUyW578BX78+HGLr5ne+unTpytA/fjjjxb3nTx5sgK05OXu3bvKxsZGlS5d2uKPxaPSS1COHz+uANWvXz+L+65atUoB6qefftKWVa1aVdnY2Jj9wCRL/iLNzQTF3t5eASohIcHi+jJlyihA3b59Wyml1K1btxSgypYta3H7+Ph4BSgHBwez5efOnVPdunVTnp6eqkyZMurll1/WfjzGjRunSpYsqYKCglRAQIDq1auXcnJyUm5ubmrIkCEWf2QsSU5QPDw81Pvvv6/ef/999dZbb6nu3bsrQAFqxowZSimlpk2bpgA1ZcqUVK8TEhKi3N3dlZOTk4qNjdWWZ7UNyjfffJOq7Y1SGV/fmUlQbt26pXx8fJSTk5Pas2ePtjwpKUl5eXmpUqVKWfxMHzx4oAwGg+rfv7+2LPlv9Pfff0+1/bZt27KVoCTf0KRsv7RmzRoFqAEDBqTa3mg0qilTpignJyftswJUxYoV1ahRo9J8ryIjI5W7u7vy8PBQMTEx2vLXXntNAernn39OtU9mE5SZM2cqQHXv3j2TZy1ym1TxiBx19OhRADp06JBqXfXq1fHx8eHq1auEhYWZFe07OTlRv379NF83rfX79u0D4MSJE2ZtUpJduHABAH9/f2rXrs2hQ4cwGo20bdsWV1fXLJ1bWscOCwuzeOz79+9rxwZT25NLly5Rrlw5qlSpkmp7Pz8/rZokv6tRo4bFNhm7du3i559/ZsmSJXh5edG5c2fu3bvH33//TWRkJBMmTCAmJiZVb5/0hIWFae+bra0tXl5edO/enfHjx9OjRw8g/euyaNGiNGrUiJ07d3Lu3DkaNGiQ7vHOnDnDV199xc6dO7lz5w6xsbFm6y11Wc3o+k5PZGQkvXr14tatWyxcuJBWrVpp6y5cuEBISAjVqlVj2rRpFvd3dnbWrkF4+F60a9cu1bZt2rTB1tY2S/FdunSJbdu2UaNGDVq2bKkt79atG6VKlWLVqlUEBQVRrFgxbZ3BYODTTz/lzTffZOPGjezfv5+jR49y4MABfvvtN+bOncvMmTPNqkcBFi1aREREBC+99BJOTk7a8uHDh/PNN98we/ZsxowZk6X4k6lHqgSF/iRBERaVLl0af3//LI8PkNzIrnTp0mm+7vXr1wkNDTVLUEqUKJHuF0Na64ODg4GHDfTSkjzGRvJ4CWXLlk13+8xIPvbmzZvZvHlzhsdOfm9KlixpcbtSpUo9dkwZ8fDwICgoiLCwMK0dQErJMSZ/Nsn/p9V4Mnl5Rm03AGJiYhg5ciR9+vShX79+bN68mWPHjrFgwQKeeeYZwNQ4+7333uPy5csWkzhLKlSokOE4NZm5LoF0x9MA2L9/Px06dCAxMZGOHTvSu3dvihQpgo2NDcePH+eff/6x2BA8o+s7LUlJSQwcOJBjx47x2WefMXDgQLP1ydfgxYsX001uU44xk951aGdnZ5ZIZMbs2bNRSqUaYNDOzo7nnnuOb775hnnz5vH666+n2tfT05OBAwdq5xUVFcXnn3/OtGnTmDBhAr179zaLc9asWQCpjlW3bl0aN27MkSNHOHz4ME2aNMnSOYCp6zNA8eLFs7yvyB3Si0dY1KZNG8DU6yErkn/QAgMDLa5PbiH/aMPIjL6801qf/DonTpxAmaosLf4bNmwY8PCHNCcGZko+9owZM9I9dnIPl+Ttk3sJPSqt9ywn1ahRA3hYspTSnTt3iIqKwsfHR2uE6erqStmyZYmMjLTYu+HixYuAqXQsI++++y7BwcH89NNPwMOSpZQNmBs3bgzA2bNns3JaGcrudfmoadOmERMTw6ZNm1i/fj3Tp0/no48+4oMPPki3gWZ278onTJjAunXrGD16tMUxOpLjfeaZZ9K9Bq9evZpqH0vXYWJiIkFBQZmOL2VPnSlTpqTqbZTcQyujG4hkrq6ufPzxx7Rp04a4uDj27NmjrTt58iQHDx4EoGXLlqmOdeTIEeBhEpNV27ZtA8h2Q1uR8yRBERa98MIL2Nvbs3z58gx/LFLeMSYPrGRp2O5Lly5x8+ZNKlWqlKk77sxo0aIFYKo6yIxmzZphY2PDzp07iYqKynD75OLupKSkxz62u7s7VatW5datWxYHVMuLoc6TqzgsdQ1PrpJ5tBokO/s86uDBg0yfPp0ZM2akunNPef08Wl2SU9K7LkNDQzl+/DhOTk7UqlUr3de5dOkSXl5eFnvY5HQvrG+++YaZM2fSpUsXfv75Z4vb1KxZE09PT/bv309CQkKmXjc5IbQU7+7duy1e62n5559/uHfvHjVq1GDkyJEW/1WuXJkLFy5k6f1xd3cHHla7wMPEw8/PL81jOTs7s3DhwiyPSvzff/+xZ88enJ2dtdI8YQXyrrmLyG+Se5xUrFhRHTp0yOI269evV+3bt9eeJ/cQqFixorp37562PDExUT311FMKUNOmTTN7jYwGhkpvfVBQkPL09FTFixdXBw4cSLU+KSkpVePDwYMHZ7oXzxtvvKEA9d9//1k8vq+vr7KxsVFz5syxuP7kyZNmg5Mlv6d9+/bVpRfPlStXcn2gtkfFxcWp2rVrq549e5ot37x5swLUhx9+qC1LHtDNUiPiR6XXi8fStvb29srDw0NdvHjRbN348eMVoEaNGmW23FIj2a5duypAnThxwmz5b7/9pjX0nDt3rtm6jK5vS41kly9frmxsbFS9evUybDT87rvvatfzoz2IlDINepayh9vu3btzrBdP586dFaAWL16c5jbJ783gwYO1ZV9++aU6ffq0xe137dqlnJyclJ2dnbp165ZSSqno6Gjl6empbG1ttWWWPP/88wpQs2bN0pZlNFDb8uXLtYHavvzyy4xOWeQhSVBEuj788ENlY2OjANWqVSs1ceJENXXqVDVy5EhVrVo1BagmTZqY7fPmm29qXU/Hjh2r3njjDVW3bl0FqDZt2qi4uDiz7R8nQVFKqS1btih3d3dlMBhUp06d1KRJk9TkyZNV3759VZkyZZSjo6PZ9iEhIap+/foKUDVr1lSTJk1Sb7zxhurXr59yd3c3+6HYsGGD9mX+5ptvqo8//lj98MMP2vobN25o70ODBg3Uiy++qN588001ePBg7Zz37dunbR8bG6uaNm2qbf/mm2+qF198UXl6eqrevXtnOUGZPXu2GjZsmBo2bJhq3bq1AlT9+vW1ZZZGxvz+++8VoLy9vdXYsWPV5MmTlY+PjwLUa6+9ZvE4r776qgKUj4+Pmjx5sho7dqzy9vZWgNn7Ycn//vc/5eHhoW7evGm23Gg0qsaNGytbW1s1YsQINWDAAAWY9ThJT1YSFKWU+umnn7SurSNHjlRvv/22atmypXYdpPyxVspygrJ+/Xqz13j11VdV27ZtlY2NjdadOicSFGdnZ8X/j7Sa3EMp5b+Ux4iPj9eunbJly6ohQ4aot99+W40YMUJLoB+9DiZMmKAAVbp0aTVhwgT16quvqipVqqgmTZqo0qVLZ+o9vXLlijIYDKpYsWKp/qZTioiIUG5ubsrR0VF7jxs0aKC978OHD1dTpkxREydOVB07dlQGg0EB6ptvvtFeIzn5fvLJJ9ONafv27am+k5Lf33bt2mnv35tvvqmef/55ValSJQUoR0dH9cUXX2R4ziJvSYIiMnT27Fk1fvx4VadOHeXu7q7s7e1VqVKlVLdu3dRvv/1m1jUz2cKFC1Xr1q21L6batWuradOmmXUNTPa4CYpSph+rcePGqapVqypHR0fl7u6uatSooZ5//nm1cuXKVNtHRkaqadOmqXr16ilnZ2fl5uamatWqpSZNmmRW4qGUqftozZo1lYODg8UfxPDwcPXJJ5+oJ554Qrm6uionJydVsWJF1aNHD/Xrr7+m6s4cFhamXnnlFS15qlGjhvr666/V5cuXs5ygJHeDTutfu3btLO63evVq1bZtW+Xm5qZcXFxUkyZN1Lx589I91ty5c1WTJk2Ui4uLcnNzU23btlVr1qxJd59jx44pOzu7NMfTuXHjhnrqqaeUq6ur8vDwUMOGDctyN+OsdInduHGj6ty5s/L09FQODg6qSpUq6o033lAPHjxItW1a3YzXrFmjmjdvrtzc3JSHh4fq3Lmz2rFjh/YjmhMJSnqfqaXP1Wg0qvnz56sOHTqookWLKnt7e1WmTBnVunVr9cknn6jr16+n2v6HH37QruvSpUursWPHqtDQ0EwPdT916lQFqFdeeSXDbUePHq0A9e233yqllDp69Kj6+OOPVfv27VXFihWVk5OTcnR0VJUrV1aDBw9Wu3btMtu/VatWClD//PNPhseqXr26AtSxY8eUUg/f3+R/BoNBubm5qfLly6vu3burzz//PFXyLKyDQakUlXxCCCGEEFZAGskKIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIq5MvE5TY2FjOnz+fa8NiCyGEEEJf+TJBCQgIYPTo0QQEBOgdihBCCCFyQb5MUIQQQghRsEmCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoOSA6AexHFl2kegHsXqHIoQQQhQIkqDkgOjQOI6tuER0aJzeoQghskBuLoSwXpKgCCEKLbm5EMJ6SYIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCUo+I90ihRBCFAaSoOQz0i1SCCFEYSAJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgiRy2R4ACGyThIUIYTIZTI8gBBZJwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoSwKtEPYjmy7CLRD2L1DkUIoSNJUIQQViU6NI5jKy4RHRqndyhCCB1JgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsTpYTlOjoaH7//Xdef/11evbsSdu2bVm/fn22Dv7ll1/Stm1b3nrrrWztL4QQQoiCKcsJSlhYGPPmzSMgIICqVatm+8Dnzp1j/fr1ODg4ZPs1hBBCCFEwZTlB8fb2ZuXKlSxdupQxY8Zk66BKKWbMmEHXrl3x8vLK1msIIYQQouDKcoLi4OCAt7f3Yx1048aNXL16ldGjRz/W6wghhBCiYMrzRrLR0dH88ssvPP/884+d6AghhBCiYLLL6wPOmzcPR0dHBgwYkOl9goKCCA4O1p4HBATkRmhCCCGEsBJ5mqDcuHGDZcuW8d5772Wpcezq1auZN29e7gUmhBBCCKuSpwnK999/T926dfHz88vSfr1796Z169ba84CAAKZNm5bD0QkhhBDCWuRZgnLkyBEOHDjAtGnTuHPnjrY8KSmJuLg47ty5Q5EiRXB1dU21b7FixShWrFhehSqEEEIIneVZgnLv3j0A3nnnnVTr7t+/z8CBAxk/fnyW2qYIIYQQomDKtQQlKCiIqKgoypYti52dHU888QSffPJJqu2++uorSpUqxZAhQ6hcuXJuhSOEEEKIfCRbCcry5cuJjIzUetbs2bNHKyHp27cvbm5uzJo1iw0bNrB48WJKly5NyZIlKVmyZKrX+uGHHyhatCi+vr6PcRoip0U/iMV/6w1qdSyHS1EnvcMRQghRyGQrQVm8eDGBgYHa8507d7Jz504AunTpgpubW85EJ3QTHRrHsRWXqNC4hCQoQggh8ly2EpQlS5ZkuM3UqVOZOnVqjryWEEIIIQqXPB9JVgghhBAiI5KgCCGEEAVU9INYjiy7SPSDWL1DyTJJUIQQQogCKrk9YXRonN6hZJkkKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOnZ6B1BYRcZHEhgZSHhcOM52zhR3LY63szcGg0Hv0IQoFBISEznjf4GbjlfZddJAA48a+HiUxcHWQe/QhBBIgpJnEo2J7Li2gyVnlrDz+k7OB51Hocy2KeVWihY+LXim5jM8U/MZ3B3ddYpWiILpZvhNFp1exIqj/3Ds/hFibWKgInDc9M/B4ED90vXpUrkLA+oMoEGpBrrGK0RhJglKLotLjGPu8bl8uedLroZeTXfbwMhAVp1bxapzqxhjP4aXG7/M661ep7R76TyKVoiC6UTgCT7e+TEr/Fc8vDGwUMEdr+I5fPswh28f5tPdn9K6XGum+k6le9XuUropRB6TBOUxGY2K+1fCALh/JQyvCkWwsTF9kW2+vJmx68ZyKeSS2T4Otg7UL1mfal7V8HD0IDoxmlvhtzh8+zBhcabXik6I5tv93/LLkV/40O9DJreYjJ2NfFxCZEVITAhvbn6TOcfmpFpXNKEY5eIqUyTREwM2RNlGcNshgLsOt1AGUxKz58Yeev7dk06VO/FTj5+o7l09r09BiEJLfvEew9WDgeyf709USCwAe+ac4fjKyzR8riLTgz5n1tFZZtt3qdKFUY1G0aNaD1wdXFO9nlEZ2XdjHwtOLuCPE38QmxhLdEI0b2x+g4WnF7Kk3xI8KJYn5yZEfrfp8iaGrBzCvah72rISTiVofrMTzcPbUzKhrMX9wmxDiOt/iz9vzMM/yB+ALVe2UH9mfb7t+i1jmoyR0hQh8oD04smmqwcD2Tr9mJacJAsID6Dzmg5myUmb8m04NPoQG5/fSP86/S0mJwA2Bhtal2/NL71+4eqkq4xtMhYDpi/Co3eO8sSsJ9hwY13unZQQBYBSig+3f0i3P7tpyYm7gzvfdvmW/1rtpXfw82kmJwAeSV4MLPY8p8eeZmn/pZT3KA9AXFIc49aNY+CygUQnROfJuQhRmEmCkg1Go2L/fP9Uy687XubzCq9yy/EaAM52zszqNYsdw3fQpEyTLB2jlFspfur5E/tH7deKlcPjwhm67Tm2ea7h/pUwjEaVwasIUbgkGhMZsXoEH+z4QGtr0qNaD/zH+fNKy1co6u2Zqddx9nTExmBDv9r9ODv2LBObTdTWLT27lA5/dOB+1P3cOAUhxP+TBCUbAs+FpCo5Oe98iq/KvUmY3QMASsX5sK7jFkY3Ho2NIftvc7OyzTg8+jA9S/UGQKH4u+RM3l71PxZP3M7Vg4HZPxEhCpCYhBieWfwM847PA8CAgU87fMqaQWsoW8RUYlKqpheuXk7pvo6rtxOlano9fO7gyozuM1g1cBXuDqaedQduHaDN3DbcibiTOycjhJAEJTtiQuPMnl92OscPPu8TaxsDQJWYWrx1/WvKGSvmyPGCTkTx1I6X6B48QFu2utifLGMBW6cfkyRFFHoJSQn0X9qffy/8C5gaoi/tv5QpvlPMbhBsbAy0GFor3ddqMaSW1tA9padqPsXuEbsp625Kdi4EX6Dj/I5mbVyEEDlHEpRscPZ01B7fcLzC9z7vEWdjKlGpF9mUV258gpuxiNl22ZVcnWTAQJ+g4Qy4N1pbt6L4XLZ6rmb/An+p7hGFllEZGf7PcNZeXAuAm4MbG57bQN/afS1uX6lZKTpObpSqJMXV24mOkxtRqVmpNI9Vv2R99o7cS0XPigD4B/nTaX4nQmNDc+RchBAPSYKSDcnFxCF2QczweZdo20gAakY1YMzt/+GonFIVE2fXo9VJnR88Q5/7w7Xni0v8yp7Y7QSeC3nsYwmRH7228TX+PvU3AI62jqwZtIb2ldqnu0+lZqUY+L0frUfWAaD1yDoMnOGXbnKSrLxHef4b+h/lipQD4NS9UwxYOoCEpITHOxEhhBlJULLBxsZAg+cq8HPZj7Q2J5VjajLu1nvYK9Mw2WkVE2fVo9VJAN1DBtAjeCAAyqD4rcyXHLtx7LGPJUR+M/fYXKYfmA6ArcGWpf2X4lfRL1P72tgYKF7ZA4DilT2y9PdaqWgl/hv2H8VcTN3+N1/ZzMT1E1FKSjKFyCmSoGSDUoqPb/+PACfTAGze8SUZf+t9nJRzpoqJsyKtaqKng4bSNLwdAHE2sbx08gXpVSAKlf039/Py2pe15z/3/JknazyZZ8ev6lWVVQNXaXP3/HLkF345/EueHV+Igk4SlGz4+dDPLDq9CDDVd89pPh/3JI8sFRNnVlq9DgwYGB44mYoxpi7It6JvMvyf4RiVMceOLYS1CooOou+SvsQnxQMwtslYXmz8Yp7H0bp8a37v/bv2fPLGyRy7I6WZQuQESVCy6ETgCV7b9Jr2fMEzC2hdrzmQ9WLizEiv14GDcmTcrXfxdvAGYN3FdXy377scPb4Q1kYpxYh/RnA74jYA7Sq0Y3q36brF81z955jUfBIA8UnxDFg2gPC4cN3iEaKgkAQlC6Lio3h2+bPEJZnahUxqPomnaz6d68dNr9dB3wmd+Kv/X9qyt7e+zaFbh3I9JiH08vOhn1lzYQ0AxVyKsbDvQuxt7XWN6cvOX9K0TFMALoVcYuzasdq6R+frkh53QmSOJChZ8PaWtzkXdA6AhqUa8kWnL/Ls2On1OuhatStvt34bMI2kOXTVUGITY9N5NSHyp3NB58xKMOc9Nc8qZvt2sHVgcb/FeDiaGt3+deovVviv4OrBQBZP3M6eOWcA03xdMsCiEJkjCUom7b6+mx8P/QiYhrBf1HcRjnaPP85JVqTX6+Cj9h9pw+mfCzrH+9vez9PYhMhtRmVk5OqRWgnmxGYT6Vm9p85RPVSpaCV+7PGj9vzFVS+y6oftqUadjgqJlQEWhcgESVAyISYhhpGrR2rPP+nwCTWK1dAxotTsbe2Z99Q8rUfB1/u+5sDNAzpHJUTO+fnQz+y9sReAal7V+LzT5zpHlNpz9Z7Tqn2D44P5u8TPaW4rAywKkT5JUDLhwx0fciH4AgAtfFowsfnEDPbQR50Sdfig3QeA6W5z1JpRMniUKBACQgN4e8vb2vPZT87G2d5Zx4gsMxgM/NLzF4o6mAZpPFxkF6dcLbcJiwqOlQEWhUiHJCgZOBF4gq/2fgWY6pnn9J6DrY2tzlGl7Y3Wb9C4dGMATt87zQ8Hf9A5IiEej1KKMWvHEJUQBcBLjV+iXcV2OkeVtpJuJflf9Q+05wtLzCTekHrARbA8EKMQwkQSlHQopZiwfoI2tsi7bd+ldvHaOkeVPjsbO2b2nIkBU/uU97e/z63wWzpHJUT2rbmwhvWX1gNQ1r1snjZOz65naw6iRnR9AO47BLLea6nF7XJivi4hCipJUNKx6PQidl3fBZhGjXyj1Rs6R5Q5Tcs21QatioyP5PXNr+sckRDZE5sYyysbX9GeT+82HQ8nDx0jypzStbwZGTsZW2Uqbd3gtYS79uY3Cjk1X5cQBZUkKGmIjI/kjc0PE5LpXafnea+dx/Fpx0/xdjYN4Lbo9CL+u/qfzhEJkXXf7vuWKw+uANC+Ynv61rI8Q7G1sbEx0O+57nQO6QNAok0ii0vMMtsmp+brelT0g1iOLLtI9AMZakDkb5KgpOHTXZ9yK8J0x9OzWk+r6s6YGV7OXmZF4a9vel2GwRf5yu2oW3yy6xMAbAw2zOg2A4Mh53/Qc0ulZqX4+tnP8U4qAcApt0OcdTmW4/N1PSo6NI5jKy4RLe1bRD4nCYoFN8Ju8O2+bwFTw1g9h9F+HC80eoEnSj8BwLHAY/x18q8M9hDCenxy7GOiE6IB01w79UrW0zmirKvTqjLf9vlae76u5l/0+84315ITIQoSSVAseH/7+2aDQVX1qqpzRNljY7Dhq85fac//99//iEmI0TEikZ/lZdXBLYdrLL2yGDCVBn7Y/sNcP2Zueb7Bc9T3agDA+aiz/H1abhSEyAxJUB5x+t5p/jjxBwCeTp5M8Z2ic0SPp0OlDvSo1gOAG+E3+P7A9zpHJPKrvKw6WFlsPgrTIGZT20zFyzn/Nia1MdjwYZOPtefvbHtHKxkSQqRNEpRHTN06VWurMaXNlHz9xZjsy05fYmMwfdSf7v6U4OhgnSMSIm0H7x3ghPt+AHyK+DC26dgM9rB+bUq1pUGkadbzm+E3+eGAjE8krJdRGbXZwvUkCUoKu6/v1mZJLetelgnNJugcUc6oU6IOIxqOACA8Lpxv9n2jc0RCWKaU4uOjH2jPP2j3gVWOGJsdfe+/oN0ofLX3KyLiInSOSAjLlp1dRuUZlZm0fhKBkfrNGZXlBCU6Oprff/+d119/nZ49e9K2bVvWr1+fqX2PHDnC559/zuDBg+ncuTMDBw7kiy++ICgoKMuB5zSlFG9teUt7/lH7jwrMFyPAe+3e0+bp+f7A9wRF6/+eC/GoDZc2sP/ePgCqFqnGsIbDdI4o55SOL0/fSv0ACI4JllGehVVKMibxwfYPiEuK4/uD33Mi8IRusWQ5QQkLC2PevHkEBARQtWrWGo/+8ssvHDt2DF9fXyZNmkTHjh3Ztm0bo0aNIjhY32qHJJXEk9WfxMPRg1rFajG0wVBd48lp5TzKMarRKACiEqL4as9XGewhRN5SSvG///6nPZ/a6B3sbOx0jCjnvVb/LWwNpsHbvt77NWGxYTpHJIS5RacX4R/kD0Drcq3pUqWLbrFkOUHx9vZm5cqVLF26lDFjxmRp33HjxrFw4ULGjBlDr169ePHFF/n8888JCQlhxYoVWQ0lR9nZ2PF2m7e5PPEyi/otKnBfjABTfKfgaGsabO7HQz9yL+qezhEJ8dDai2s5FngMgAqxVWme2K7AzfZbpUgVhjQYAsCD2AdM3z9d34CESCHJmMS0XdO05x+3/1jXsYeynKA4ODjg7e2drYM1bNgQGxubVMuKFClCQEBAtl4zp3m7eFO/ZH29w8gVPkV8tCHwoxOipRRFWA2lFO+ue1973it4EHt/P8viidu5elC/OvDc8G7bd7VSlG/3f8uDmAc6RySEyQr/FZwLOgeAb3lf2ldqr2s8ujeSjY6OJiYmBg8P659foyB4u83bONk5AfDToZ+4G3lX54iEgAXrl3A87CgAPrGVaBDZAoCokFi2Tj9WoJKUykUr80LDFwBTo/Xv9n+nc0RCmG4SUpaevNP2HR2jMdE9QVm6dCkJCQl06NAhzW2CgoI4f/689s9aSlvyozLuZXip8UsAxCTGyJej0J3RqPhszyfa857Bz2qzcSfbv8C/QFX3vNP2YfuaHw/+KD16hO7+vfAvJ++eBKBpmaZ0rtxZ54h0TlCOHz/OvHnzaN++PY0bN05zu9WrVzN69Gjt37Rp09LcVmTszdZvaj16Zh6eKQ31hK5W7lrDOYdTAJSKK8cTka1SbRMVHEvguZC8Di3XVPCswPP1nwdMbVFmHZmVwR5C5B5LpSfWMO+VbglKQEAA77zzDpUrV+att95Kd9vevXsze/Zs7d877+hf9JSflXEvw9D6pl5K4XHh/HL4F50jEoXZdycfzlXTM2QgNtha3C6mgE1+92arN7XH3+7/lrjEgnV+Iv/YcmULB28dBKB+yfr0qt5L54hMdElQ7t69y2uvvYarqytffPEFLi4u6W5frFgxatSoof2rUKFCHkVacL3R+g2tGH36genEJsrU7CLvHb1zlD0huwAoHl+KpuHt0tzW2dMxr8LKE7WK1+Lpmk8DcDviNn+e/FPfgESh9enuT7XH//P9nzagoN7yPIqwsDBee+01EhIS+PrrrylWrFhehyCA6t7V6Vu7LwCBkYHMPzFf54hEYZRyVOMuIX2xTaP0xNXbiVI18/+0E496u/Xb2uMv9nxBkjFJx2hEYXTk9hG2X9sOQDWvavSt1VffgFLItQQlKCiIgIAAEhMTtWUxMTG8+eabBAUF8eWXX1KuXLncOrzIhLdaP6xa+2rvV/LlKPLU9bDrLD79/zMW23vRMrxjmtu2GFILGxv968RzWnOf5rSvaOrKeTHkIivPrdQ5IlHYfLv/W+3xqy1fxdbG8k2CHrI1Gtny5cuJjIzURn/ds2cP9+6ZBv3q27cvbm5uzJo1iw0bNrB48WJKly4NwMcff4y/vz89evQgICDArDeOs7Mzvr6+j3s+IgualGlCx0od2Xp1K5dCLrHCfwX96/TXOyxRSHx/4HuSlCkpHt9yPD06tWT/fH+iQh5WN7p6O9FiSC0qNSulV5i57u02b7Pt2jYAvtzzJX1r9bWKBoqi4LsRdkO7SSjmUszqRlDPVoKyePFiAgMfjkuwc+dOdu7cCUCXLl1wc3OzuN+lS5cAWLduHevWrTNbV6pUKUlQdPBW67fYenUrAN/t/04SFJEnwmLDtJ4rjraOjGs2jhKuJajQpCTnt91gz5wztB5ZhxrtyxXIkpOUOlfuTMNSDTkeeJxDtw+x/+Z+WpZrqXdYohBIeZMwtslYXOzTbw+a17KVoCxZsiTDbaZOncrUqVOzvJ/IW50qd6JeiXqcuneKfTf3cfDWQZqVbaZ3WKKA++3ob0TEm8b+GNZgGCVcSwBgY2OgeGXToI3FK3sU+OQEwGAwMLn5ZIb/MxwwNVqXBEXktvC4cGYdNb9JsDbW0VRX6MZgMDCp+STt+YwDM3SMRhQGCUkJTD8wXXv+SstX9AvGSjxb91ktSVt+djnXw67rHJEo6OYcnUN4XDgAQ+oP0a4/ayIJimBwvcEUczH1plpyZgm3wm/pHJEoyJaeXcrN8JsAPFn9SWoWq6lzRPpztHNkbJOxgGlm9Z8O/qRzRKIgSzQmmt2MvtryVR2jSZskKAJne2dt+PtEYyI/H/qZ+1dMo8vevxJWoIYYF/pL+cX4WsvXdIzEurzc5GVthOdZR2cRFR+lc0SioFrpv5KAMFMnlR7VelCreC2dI7JMEhQBwNimY7W5Qb7f+SPbfjdN3LZnzpkCOaOs0MehW4e0ESsblGxA2wptdY7IepR0K8ngeoMBCI0NlbGJRK758dCP2uNXW1hn6QlIgiL+Xxn3MvQo+SQAkTbhHCiyXVtXEGeUFfr46dDDqovxzcZLd9pHPNoezKiMOkYjCqJTd0+xM8DU67ZWsVp0qJT2RL16kwRFAKYZZZuc7aQ931p0FQrzqp2CNqOsyFtB0UEsOr0IAE8nT620QDzUsFRD/Cr6AXA++DybLm/SNyBR4Px86Gft8dimY636JkESFAFA4LkQSt+rRJUYU13kLccALjifNtumoM0oK/LWnKNziEsyTYg3ouEIqxtzwVqkLEVJ+WMixOMKiw1jwckFALg5uFndwGyPkgRFAA9nim3/4Elt2Q7PtWluJ0RWJBmTmHl4JgAGDIxpOkbniKxXr+q98CniA8Dai2uly7HIMX+c+IOoBFPj66H1h1LEsYjOEaVPEhQBPJwp9onI1rgnmgbKOuq+l3DbBxa3EyIr1l5cq/Ua6Fa1G1W9quockfWys7HjxSdeBMCojNqIu0I8DqVUquodaycJigCgVE0vXL2csFf2tA7rAkCSIZFdHg/rwAvqjLIi9/148GGvgfHNxusYSf4w6olRWq+6347+RnxSvM4RifzIaFTakBGrj63jfPB5APwq+lGnRB09Q8sUSVAEYBpivMVQU/uTtmHdMShTw6ldnusxYpqroaDOKCty1/mg82y+shmAykUr061qN50jsn6l3UvzdM2nAbgbdZdV51bpGo/If64eDGTxxO3smXMGgB/3/aCtG980f9wkSIIiNJWalaLj5EZUdK9InajGAATb3+NSqVN0nNyoQM8oK3KPWbFyk7HYGORrJzPGNHnYTie5/Y4QmXH1YCBbpx/TZgYPtrvHCTfT+EOeCd7UD2+uZ3iZJt8UwkylZqUY+L2fWSPGM032SHIisiUmIYb5J00DjjnZOfFCoxd0jij/aF+xPTW8awCw/dp2/O/76xyRyA+MRsX++ebXyk7P9SiDaUyddmHdOfzXxXwxZIQkKCIVGxsDfRs/jVdCcQDWX1zHtdBr+gYl8qXl/ssJjQ0FoH/t/ng5SxumzDIYDLzc5GXtuZSiiMwIPBeilZwAJJHE3iJbALBRNrQJ7ZZvhoyQBEVYZGtji2+oqa2AQjH7yGydIxL50eyjD6+bFxu/qGMk+dOwBsNwtnMG/r+LqMzPIzLw6FAQp1wPEWofDED9yOZ4JnlZ3M4aSYIi0tQmrCt2hv/vSXBMehKIrDkXdM5sSO3W5VrrHFH+U9S5KIPqDgIgPC5cG4lXiLQ8OhTELs8N2uO2Yd3S3M4aSYIi0uSZ5EX38j0BuBd1j9XnV+sckchPfjv6m/Z41BOjrHpIbWuWsprnt2O/pbOlEA+HjAAIsQvilOthALwSilMn6gkg/wwZIQmKSNfQasO1x3OOzcmVY0Q/iOXIsotEP4jNeGORL8QlxvHHiT8AcLB1sPohta1ZkzJNqF+yPgD7b+7nzL0zOkckrFnKISP2emzSGse2DuuMDbZA/hkyQhIUka62pdtRwaMCABsvbeRG2I0cP0Z0aBzHVlwiOh/UiYrM+ef8PwRFBwHQp1YfirkU0zmi/MtgMDCy0UjteW7dKIiCo1KzUrSf1IA9RU3jDxmUgdZhXXD1dspXQ0ZIgiLSZWOwYUSjEYCpsezc43N1jkjkBymHZx/9xGgdIykYnq//PI62pjYDC04uIC5RknmRvkvepwiyvQtAnajG9B7WnoEz/PJNcgKSoIhMGN5wOAZMxYFzj8/FqIw6RySs2eWQy2y9uhWAql5V8avop29ABYCXsxfP1HoGgKDoIGkPJjKUsgedb1g3ilf2yBfVOilJgiIyVN6jPF2qmObnuRZ6jf+u/qdzRMKapayCGNVolIwcm0NGNRqlPZZqHpGeu5F3+ef8PwAUdypB/chmOkeUPfLNITJl1BPy5SgylpCUoFUD2tnYMbzhcH0DKkDaV2pPJc9KAGy6vImA0ACdIxKPIzc7B8w7Po9EYyIAg6o+hx12OX6MvCAJisiU3jV6aw0dV/ivIDg6WOeIhDXacGkDgZGBgOmaKelWUueICo5H24PNOz5P34DEY8mtzgFKKbObyOer5d8edJKgiExxsHVgSP0hAMQnxfPXqb90jkhYo+R5dwBGNByhYyQF0/CGw7Uqs9+P/06SMUnniIS12XdzHxdDLgKm+ZwquVfSOaLskwRFZNqjXR2Vsv7JpkTeeRDzQGu8WcK1BF2rdtU5ooLHp4gP3aqaRgO9HnZda4wsRLL5Jx7eJOT3KlZJUESm1SlRhxY+LQA4efckR+4c0TkiYU0Wn1msTYfwXL3nsLPJn/Xe1i7ljULK0XqFiE2MZfGZxQC42LvQp1YfnSN6PJKgiCyRL0eRlpR3bjJybO7pVb0XJVxLALDq3CppDyY0/174V5s9vG+tvrg5uOkb0GOSBEVkycA6A3GxdwFMd8yxiTI8vYCLwRfZd3MfAPVK1KNByQY6R1RwOdg68Hy95wFIMCbIBIJCkzy9BBSMmwRJUESWuDu60692PwBCY0NlwCgBmJeeDGswTCYGzGXDGg7THqf8URKF172oe6y/uB4wtVVqX7G9zhE9PklQRJYNa/Dwy1G6OgqjMrLg5ALA1BV2cL3BOkdU8NUvWZ9GpRoBcOj2Ic7eP6tzREJvC08tJEmZenU9X+95bG1sdY7o8UmCIrLMr6If5T3KA7Dx8kbuRNzROSKhp10BuwgIMw0a1qVKF0q7l9Y5osIh5Y3CH8elFKWwS9nFf0iDITpGknMkQRFZZmOw0cZEMSqjjIlSyJk1jq2f/+u984vB9QZrPaX+PPWnjIlSiJ2+d5qjd44C0KRME2oXr61zRDlDEhSRLWZ3byf+kDFRCqnohGiWnl0KQBHHIjxd82l9AypEirsWp2e1ngDcjrjNlitbdI5I6OXRNmAFhSQoIluqeVejVblWgCl7PxZ4TOeIhB5WnVtFRHwEAP1r98fZ3lnniAoXs/ZgJ+bl6bFzcy4ZkXlJxiT+PPknYJr/6tm6z+ocUc6RBEVkm9SBCxn7RF89q/fE29kbMCWLYbFheXbs3JpLRmTN1qtbuRNpagfYs1pPbc60gkASFJFtA+oMwNHWEYC/T/+tjSIqCofbEbfZfGUzAJU8K9GmfBudIyp8HGwdGFR3EGAaRXTJmSU6RyTyWkEb+yQlSVBEtnk6eWptDoKig1h3cZ2+AYk89dfJvzAqIwBD6g/RJrETeSvlfCt5Xc0j9BUeF85K/5UAFHUqqrVJKijkG0U8lpRfjjJgVOGhlDL7vPNrt0YXT0ca9amKi6ej3qFk2xOln6BO8ToA7L2xl8vhl3WOSOSV5WeXE5MYA8CguoNwtMu/17ElkqCIx9K5cmdKu5nGvVh7YS1B0UE6RyTywvHA45y5fwaAVuVaUdWrqs4RZY9LUSca96uGS1EnvUPJNoPBYNYebMnlhTpGI/JSyrFPClr1DkiCIh6TrY0tz9d/OC/IwlPy5VgYpCw9KUjdGvOr5+s/r1WxLbywECNG7l8Jw2iU7v8FVUBoANuvbQegund1mpVtpm9AuUASFPHYHh0TRRRsCcYE/j71NwCOto70r91f54hEaffS+BbzA+BO3C3Ou5xkz5wzLJ64nasHA/UNTuSK5OklwDRAYkGc/0oSFPHY6pSoQ5MyTQA4cucIZ+6d0TkikZu23d7K/ej7APSu0ZuizkV1jkhcPRhIjRNNtef7imwFICoklq3Tj0mSUsAopcy6+OfXNmAZkQRF5AiZQLDwWJSijYNU7+jPaFTsn+9Pw8iWOCe5AnDUfQ+xhhhtm/0L/KW6pwA5cOsAF0MuAtC+YnttbrSCRhKUfMZaex0MqjsIext7AP469ZfMC1JARdlEsPGGaUr3Eq4l6FKli84RicBzIUSFxGKvHGga0RaAOJtYjrrv1baJCo4l8FyIXiGKHFZYBkiUBCWfsdZeB94u3vSsbuqDfyfyjswLUkAddt9FvNE0IN/guoOxt7XXOSIRk2Ik15ZhHbXH+/+/msfSdiL/ikuMY9HpRQC42LvQt1ZfnSPKPZKg5ABrLdXIaymL+1N2fxP5n9GouH8ljH0eD3/0CvKdW37inOJ7p0psLYrHm7r9n3M5QYjdfYvbifzr3wv/8iD2AQB9avXB3dFd54hyjyQoOcBaSzXyWo9qPfBy9gJgpf9KwuPCdY5I5ISrBwNZPHE7K+Zv4rKzPwDlEivjcb2UzpEJgFI1vXD1Mn33GDDQMtxUiqIMiv1F/gPA1duJUjW9dItR5ByzsU/qF+ybBElQRI5JOS9ITGIMy88u1zki8biuHgxk6/RjRIXEaj92AM1D2vPfjOPSO8QK2NgYaDG0lva8RXgH7fG+Iv+hULQYUgsbm4LXDbWwuR91X5tSpIx7GTpU6pDBHvmbJCgiR6Us9pcxUfK35N4hAEaM7Pv/BMWgbGge7gdI7xBrUalZKTpOboSrlxPFE0pRPbouAIGONyg+3IZKzaS0qyBYeHohicZEAJ6v9zy2NrY6R5S7spygREdH8/vvv/P666/Ts2dP2rZty/r16zO9f0REBF999RVPPvkkXbp0YdKkSZw/fz6rYQgr1bRMU2oWqwnAjoAdXAu9pm9AItuSe4cAXHQ+Q7DDXQBqRzfCM8kbkN4h1qRSs1IM/N6P1iPr0CL8YWPZrYlrdYxK5KTC0nsnWZYTlLCwMObNm0dAQABVq2Zt/g2j0chbb73Fli1b6NOnDy+//DIPHjxg0qRJ3LhxI6uhCCtkMBjM6kX/PPmnjtGIx5Gy18e+FD1CUvYUeXQ7oS8bGwPFK3vQOKINTramdikLTy8kPile58jE4zpz7wxH7hwBoHHpxtQpUUfniHJflhMUb29vVq5cydKlSxkzZkyW9t2+fTunT59mypQpvPDCC/Tp04fvv/8eGxsb5s6dm9VQhJV6rv5zGDDVd88/MR+lpAogP0ru9RFniOWI+y4AnJKcaRjZwuJ2wnq4GF3pUa4XAMExwVq7BZF/mQ1tXwhKTyAbCYqDgwPe3t7ZOtiOHTvw8vKibdu22jJPT0/at2/P7t27iY+XLL8gKO9RnvaV2gNwMeQi+2/u1zkikR3JvUOOu+0n1tY0KmnjCF8c1cPeatI7xHoNqPKs9jhl1YDIf5KMSVpptJ2NHc/WfTaDPQqGPG0ke+HCBapVq4aNjflha9WqRWxsrFTzFCBmY6LIl2O+lNw7JOXYJ63Czat3pHeI9WpX2o9SbqbGsf9e+Jfg6GCdIxLZ9d/V/7gVcQuA7lW7U8K1hM4R5Y08TVBCQkIslr4kLwsOtvwHFBQUxPnz57V/AQEBuRqneHx9avXBxd4FgEVnFhGXKO0U8iPHWkb8XY8B4B1fkqoxpnpvV28nOk5uJL1DMkmPwRztbOx4vt7zgGkG6uTRR0X+k3Lsk8I0/5VdXh4sLi4OBweHVMuTl8XFWf4RW716NfPmzcvN0EQOc3Nwo2+tviw4uYDQ2FDWXFhDv9r99A6rwIl+EIv/1hvU6lguVwYK/PvU3xgxAjCgykBsrtrQemQdarQvJyUnWZA8mGNeG9pgKF/v+xow/ciNazYuz2MQjyciLoIV/isA8HTypFf1XjpHlHfytATF0dHRYjuT5GWOjpbvLnr37s3s2bO1f++8806uxilyRsqGXFLNkzuiQ+M4tuIS0bnQk0YpZTaWzbDGpju34pU9JDnJJ+qVrEfDUg0BOHjrIOeCzukbkMiyFf4riE6IBuDZOs/iaFd4GqXnaYLi5eVlsRoneVlajW+LFStGjRo1tH8VKlTI1ThFzmhfsT0+RXwAWH9pPfei7ukckciK44HHOX3vNACtyrWiSpEqOkckskPag+VvKW8SCkvvnWR5mqBUq1aNixcvYjQazZb7+/vj5OREuXLl8jIckctsbWy1OvBEY6LUgeczZoNCFfA5PwqyQXUHYWswjTi64OQCjMqYwR7CWgSEBrDt2jYAqnlVo4VPiwz2KFhyLUEJCgoiICCAxMREbVm7du0ICQlh586d2rLQ0FC2bdtGq1atLLZPEfnbkAZDtMcy9H3+kZCUwN+n/wbA0daRAXUG6ByRyK6SbiXpVrUbADfDb7L92nZ9AxKZ9tepv7THQxsMxWAoXFWr2Woku3z5ciIjI7WqmT179nDvnqn4vm/fvri5uTFr1iw2bNjA4sWLKV3aNP23n58fy5Yt47PPPuPatWt4eHiwatUqjEYjI0aMyKFTEtakdvHaNCnThMO3D3P0zlFO3ztN3RJ19Q5LZGDj5Y1alVzvGr0p6lyUIMJ0jkpk17AGw1h70TTk/R8n/ijwk8wVBEops1LM5+s/r2M0+shWCcrixYuZM2cOq1atAmDnzp3MmTOHOXPmEBERkeZ+tra2fPnll3To0IHly5czc+ZMPDw8mD59OuXLl8/WCQjrl7IOfMGJBelsKaxFYZvzo6B7ssaTeDh6ALD87HIi4yN1jkhk5OCtg5wPNs1T165COyp6VtQ3IB1kqwRlyZIlGW4zdepUpk6dmmq5u7s7b731Fm+99VZ2Di3yoWfrPssrG18h0ZjIn6f+5NOOnxb4WTjzswcxD1h9fjUAxV2K07VKV50jEo/Lyc6JgXUGMuvoLKISoljpv9Ks+lVYn5Q3CYVp7JOU8rSRrCicirkUo2e1ngDcjrjN1qtbM9hD6GnJmSXEJZm6LQ+uNxh7W3udIxI5YVjDhz9y0h7MusUlxrHojKlTgbOdM31r99U5In1IgiLyhIyJkn8U1lErC7qWPi2pUtTUVfy/q/9xI0ymFrFW6y6uIyQmBIBnaj1DEcciOkekD0lQRJ7oWa0nXs6mSeVW+K8gIi7ttkpCP5dCLrH3xl4A6paoqw3yJfI/g8Gg3SgolFkPEWFdUt4kFOYu/pKgiDzhaOfIs3VMM3DGJMaw3H+5zhEJS1I2Yh5av/B1ayzohtQ37/avlNIxGmFJUHQQay+YelyVditNp8qddI5IP5KgiDyTsppH6sCtj1EZtTs3G4MNz9V/TueIRE6rVLQSbSu0BeBc0DkO3z6sc0TiUYtOLyLBmACYuhYX5g4FkqCIPNOsbDOqe1cHYPu17QSE5u2s1NEPYjmy7CLRD2Lz9Lj5xe7ru7kWeg2AzpU7U8a9jL4BiVyRsspA2oNZH+ni/5AkKCLPGAwGs0aXf578M0+Pn5sT6xUE8sVYOPSr3Q8nO9PM1wtPLyQ+KfUErkIf/vf9OXT7EACNSjUq9INaSoIi8lTK0RClDtx6RCdEs+SMaXwjNwc3nq75tL4BiVzj4eTBMzWfASA4Jph1F9fpHJFIVpgnBrREEhSRp8p7lKd9xfYAXAy5yIFbB3SOSACs9F9JRLypZ9WA2gNwsXfRLRYXT0ca9amKi2fhmVY+r0m3f+uTZExiwUlTI3U7GzueqydtwCRBEXlOpn+3Pinv3FIO6KUHl6JONO5XDZeiTrrGUZB1qtyJUm6lAPj3wr8ERwfrHJHYcmULtyNuA9CjWg+KuxbXOSL9SYIi8lyfWn20O/RFpxdpo5YKfdwIu8GWK1sAqFy0Mm3Kt9E5IpHb7GzseL6eqbo1wZjAotOLdI5ImN0kyACJgCQoQgfuju70qdUHgAexD9h0c4POERVuf578E4WpLdDQ+kOxMcjXQmFgVs1zUkoy9RQWG8bKcysB8HL20qYGKezkm0joImVXxwWnTL157l8Jw2iURrN5SSklDfMKqXol62kjBR+8dZBzQef0DagQW3p2KbGJpuEPBtcdjKOdtL8CSVCETjpU6kApx9IA7Az+jwjbMPbMOcPiidu5ejBQ5+gKjwO3DphN6V6paCWdIxJ5KWVVQspRhEXesqY2YNZEEhShi+uH79PwtqmtQ5IhiYPuOwCIColl6/RjkqTkkT+OS713YTao7iBsDaaRShecXIBRGXWOqPC5En6F3dd3A1C7eG0al26sc0TWQxIUkeeMRsX++f60CO+gLdvnscVsm/0L/KW6J5fFJsZqU7q72LvQr3Y/nSMSea2kW0m6Ve0GwI3wG2y/tl3fgAqhJVcWao+HNRgm81+lIAmKyHOB50KIComlbHwFKsRWBSDA6RK3HB4OfR8VHEvguRC9QiwUVp9fTWhsKAB9a/XF3dFd34CELmRMlLxnNCpTmzuMLDxvSlBsDDZmA1kKSVBEGnJzsKyYFEPNtwx7OFPn/iL/pbmdyHnSrVEA9K7RGw9HDwCWnV1GZHykzhEVbFcPBrJ44nb2zDnDRefT3I67CYCvdzuZ/+oRkqAIi3JzsCznFElPs4h22CpTHfj+Iv9hJMnidiJn3Ym4w4ZLpu7d5YqUo32l9jpHJPTiZOfEwDoDAYhKiGKl/0qdIyq4rh4MZOv0Y0SFmHrs7E1RtV39ZDNpe/cISVBEnitV0wtXL1Pi457kQd3IpgCE2gdzzuUEAK7eTpSq6aVbjAXdX6f+0hpEDm0gY58UdjImSu5LbnuXLNYQwxF3U+NY5yRXGka2kLZ3j5BvJZHnbGwMtBhaS3veMmVj2SJbAWgxpBY2NtJYLDfI2CfiUa3KtaJK0SoAbL2ylRthN3SOqOBJbnuX7Kj7XuJsTM+bRPjioByl7d0jJEERuqjUrBQdJzfC1cuJ+lHNcUlyA+BYkX00H1+NSs1K6RxhwXX0zlFO3zsNQEufllT3rq5zREJvBoNBS1QVir9O/aVzRAXPo23q9hV5WL3TKkVbPGl795AkKEI3lZqVYuD3fviNaEiz8HYAxBliOeKyW+fICrZ5x+dpj4c3HK5bHMK6DKk/RHs8/8R8lJKqhpyUsk3dfftAzrmaqrNLxJehSmwti9sVdpKgCF3Z2BgoXtmDFuEdtWXS1TH3xCbGanfHTnZODKgzQOeIhLWoVLQSbSu0BcA/yJ8jd47oHFHBkrLt3d4im7XlrcM6Y8BUnS1t78xJgiKsQuXYGlR2N9WBb7u2jYDQgAz2ENmx0n8lD2IfANCvdj88nTz1DUhYlZRzZKUcZVg8vuS2d0aS2ONhSlAMysasekfa3pmTBEVYBQMGBlYZpD3/8+SfOkZTcP127Dft8ahGo3SMRFijfrX74WRnustfeHoh8UnxOkeUt6IfxHJk2UWiH8RmvHE2VGpWCvvnwnhgHwRA/aimeCZ54+rtRMfJjaTt3SMkQRFWo3/lh9UN807Mk3lBctiVB1f476ppMLyqXlW14nwhknk4efBMzWcACI4JZu2FtTpHlLeiQ+M4tuIS0bnYUHVt1MNxZtqEdaH1yDoMnOEnyYkFkqAIq1HOrTwdK5naolwKuSTzguSw34/9rj0e2WikzPkhLErZ7TxliZt4fPei7vHP+X8AKO5UgrqRTSle2SNXq3Vyc1Tw3CYJirAqLzZ+UXs8++hsHSMpWBKNicw9PhcAW4OtDG0v0tS5cmfKe5QHYMOlDVwPu65zRAXHghMLSDQmAvBslcHYYZfrx8zNUcFzmyQowqo8VeMpirkUA2CF/wqCooN0jqhg2HhpI7cjbgPQs3pPSruX1jkiYa1sbWwZ2WgkAEZlNCt5E9mnlGLOsTna8+eqycSAGZEERVgVRztH7e4+PimeBScW6BxRwSCNY0VWjGg0Qpv+YM6xOSQZkzLYQ2Rk3819+AeZhrpvW6EtVYpU1Tki6ycJirA6o554+AM66+gsGTDqMQVGBvLvhX8BKO1Wmu7VuusckbB2PkV86FGtBwA3w29qE0uK7Jtz9GHpSXIJlUifJCjC6tQsVhPf8r4AnAs6x54be3SOKH+bf2K+Vu89vOFw7Gxyv95b5H+jnxitPZb2YI8nIi6CxWcWA1DEsQj9avfTOaL8QRIUYZXkyzFnPFrvPaLRCB2jEflJj2o9KONeBoB/L/yrtWESWbfo9CKiEqIAGFx3MC72LjpHlD9IgiKsUspRTpeeWUpobKiu8eRXOwJ2cCH4AgDtK7anqpfUe4vMsbOxY0RDU0KbpJKYe2yubrHk9gBquUkpxS9HftGep6zCFumTBEVYJWd7Z23yspjEGP46KbOrZsfMwzO1xylLpYTIjJFPjNTmifnt2G+6DZ6YFwOo5ZZDtw9x9M5RAJqUaULjMo11jij/kARFWK2UP6jSWDbrAiMDWeG/AoASriXoU6uPzhGJ/KaiZ0W6VOkCwLXQa2y5skXniPKflDcJY5qM0TGS/EcSFGG16pWsR/OyzQE4efckB24d0DmizLOGIunfjv6mNY4d2Wgkjnb5byRJoT+zG4Ujs3SMJP95EPOARacXAeDh6MGzdZ/VOaL8RRIUYdVSjiz786GfdYwka/Qukk4yJmk/JgYMZu+jEFnRu0ZvSrqWBOCf8/9IY9ks+OPEH8Qmmm5ShjUYJo1js0gSFGHVnq37LEWdigKw+Mxi7kfd1zmi/GHtxbXcCL8BmEaOrehZUd+ARL5lb2uvNexMNCZKKUomKaX45fDDxrEvN3lZx2jyJ0lQhFVzsXfRBjWKT4rnt6MyeVlmSL23yEkvNX4JW4MtAL8e+ZX4pHidI7J+265t43zweQD8KvpRq3gtnSPKfyRBEVZvTNMxWk+CX478IsNuZ+ByyGU2XtoImBo5dq3SVeeIRH5XzqMcT9d8GjBvfC3SJjcJj08SFGH1KhetrA3Pfj3sujZsu7Ds1yO/ojD1eHqp8UvY2tjqHJEoCMY3G689/vHgjzpGYv3uRNxh1blVAJR0LakldyJrJEER+cL4pim+HA/Jl2NaYhNjtdlnHWwdZORYkWPaVWhHneJ1ANhzYw87T+4F4P6VMIxGGQIgpdlHZ2s96EY9MQoHWwedI8qfJEER+ULXql2pUrQKAFuubOF80HmdI7JOi04vIjgmGDCNxlvCtYTOEYmCwmAwmJWiTN8+A4A9c86weOJ2rh4M1Cs0qxKXGKdV79gYbGSAxMcgCYrIF2wMNoxtOlZ7np+6HOcVpRTT90/XnqcsdRIiJ7SJ74xzkqmr7IEi24myiQAgKiSWrdOPSZICLDmzhMBI0/vQp1YfKnhW0Dmi/EsSFJFvvNDwBZztnAGYd2IekfGROkdkXXYE7ODE3RMANC/bnJblWuockShIjEbFqb+v0yqsMwDxNnHs8dhsts3+Bf6FurpHKcX0A9O155OaT9IvmAJAEhSRbxR1Lspz9Z4DIDwunHnH5+kbkJX5bv932uPJLSbrF4gokALPhRAVEotfaE9t2XbPfzHysFddVHAsgedC9AjPKuy5sUebd6dx6ca0Ltda54jyN0lQRL4yofkE7fF3+7+TLsf/70r4FdacXwOATxEf+tbqq3NEQi8uno406lMVF8+cndog5v9HRS6V4EOdKNOEd/cdAjnutt/idoVRyirWyS0mYzAY9AumAJAEReQr9UvWp3NlUxHzlQdX+Of8PzpHpB+jUXH/ShgAPxz4QetaPL7peOxt7fUMTejIpagTjftVw6WoU46+rnOKhKdzyDPa401eK9LcrjC5FnqNledWAlDKrRQD6gzQOaL8zy6rO8THxzNnzhw2bdpEREQEVapUYdSoUTRt2jTDfQ8fPsyCBQu4cuUKSUlJ+Pj40LdvX7p2lYGkROa91vI1Nl8x1X1/vffrQjlL79WDgeyf709USCzRNlEsvbUIbMDZ1pnRjaXXgMh5pWp64erlRFRILLWjG1E2riK3HK9x2dmfS05nqRpbG1dvJ0rV9NI7VF38ePBHjMoIwNgmY6VrcQ7IcgnKZ599xpIlS+jcuTMTJ07ExsaGN998k5MnT6a73+7du3nttddISEhg+PDhjBo1CkdHRz755BOWLFmS7RMQhU+XKl2oW6IuAPtu7mPvjb06R5S3rh4MZOv0Y0SFmCYh2+2xkTibGACaB3Ug7JQMQy5yno2NgRZDTcO1GzDQJeThjcHm/y9FaTGkFjY2ha9aIyIuQpuGw9HWkZeavKRzRAVDlhKUs2fPsnXrVl588UXGjh1L7969mT59OqVKlWLmzJnp7rtixQq8vb2ZPn06ffv2pU+fPnz33XeULVuW9evXP9ZJiMLFYDDwWsvXtOff7PtGx2jyltGo2D/fX3ueSCJbiz6s5uoQ2rvQ96QQuadSs1J0nNwIVy8nmoW3wzPBG4BjbvuoMtqTSs1K6RyhPmYfnU1YnKm69bl6z8n4QzkkSwnKjh07sLW1pXfv3toyR0dHevbsyZkzZ7h7926a+0ZHR+Pu7o6Dw8NiLzs7Ozw8PHB0LJx1liL7BtUdRCk305fhSv+VXA65rHNEeSO5J0Wyg0V2EGJvmuG5XmRTSseXK/Q9KUTuqtSsFAO/96PdyIZ0CDX9FiiDYln0nzpHpo+4xDizm6TXW72uYzQFS5YSlIsXL+Lj44Orq6vZ8lq1TMV+ly5dSnPfhg0bcvXqVX777Tdu3rzJrVu3+OOPPzh//jyDBg1K97hBQUGcP39e+xcQEJCVsEUB5GjnyMRmEwFQmA9QVpCl7CFhxMgGr6Xa8+4hAyxuJ0ROs7ExULyyB21Du+FiZ/o9mHt8LkHRQTpHlvf+OvUXtyNuA/BUjadk1uIclKVGssHBwXh7e6danrwsKCjti3PYsGHcuXOHBQsWMH/+fACcnJz46KOP8PX1Tfe4q1evZt68eVkJVRQCLzV5iWm7phGdEM2cY3N4t927Bb5oNWUPiZNuB7jjeB2AqtF1qBZTx+J2QuQWV6M7z1cbwiz/X4hJjOGngz/xvt/7eoeVZ5KMSXy550vt+dtt3tYxmoInSyUocXFx2Nun7r6YXG0TF5f2XZu9vT3lypXDz8+P999/n3feeYcaNWowbdo0zpw5k+5xe/fuzezZs7V/77zzTlbCFgWUl7OXNs9FTGIM3+37LoM98r/knhQKxTqvh43Lu4f01x7nVk+K3BpfQ+RvL9Uag63BNGP29we/JyIuQueI8s4/5//hfLBpXrB2FdrRwqeFzhEVLFlKUBwdHUlISEi1PD4+XluflunTp7N3717ef/99OnbsSJcuXfjuu+/w9vbm+++/T/e4xYoVo0aNGtq/ChVkbgNh8karN7TufD8e+pGQmILd9iK5J8UF51NcdTZ9MZaNq0i9qIfd/HOrJ0Vuja8h8rfybhV4rr5phOeQmJBCM0+WUorPd3+uPZfSk5yXpQTF29ub4ODgVMuTlxUrVszifgkJCaxdu5aWLVtiY/PwkHZ2djRv3pzz589bTHyEyEjZImUZ0XAEAJHxkXx/IP1ktyCo1KwUB5542POte3B/DBhw9Xai4+RGhbYnhdDP1DZTMWBKir/Z9w1R8VE6R5T7tl7dyqHbhwBoULIBXavIeF45LUsJStWqVbl58yZRUeYX39mzZ7X1loSFhZGUlERSUuphyZOSkjAajRiNxqyEIoTmrTZvaUXMMw7MIDwuXOeIcte+G/vYFbQDAB/HcjSJaEvrkXUYOMNPkhOhixrFajCw7kAA7kffZ9aRWTpHlLuUUry//WFbm7fbvC3D2ueCLCUofn5+JCUlsXr1am1ZfHw869ato3bt2pQsWRKAu3fvmvW0KVq0KG5ubuzatcuspCQ6Opo9e/ZQvnx56Wossq2iZ0WGNBgCQGhsKD8d/EnniHJXyi/GVxu9ji22FK/sUSgHyBLW43++/9Mef7X3K2ITY9PZOn/bdHmTNkBk7eK16V+7fwZ7iOzIUoJSu3Zt2rdvz6xZs5g5cyarV69m8uTJBAYG8vLLL2vbffLJJwwZMkR7bmtry7PPPsuNGzd4+eWXWbJkCYsWLeKll17i/v37DB06NOfOSBRKU9pMwcZgupy/3f9tgW2otytglzbMfyXPSjxbdbDOEQlhUrdEXW3aiTuRd5hzdI7OEeWOR0tP3m/3PrY2tjpGVHBleaj7qVOn0r9/fzZu3Mj3339PYmIiX3zxBQ0bNkx3v6FDh/Luu+9iZ2fHvHnzmDNnDq6urnz00Ud06dIlu/ELAUB17+oMrGMqYg6KDiqw46K8t/29h4/bvYe9jUwKKKzHu23f1R5/susTohOidYwmd6y/tJ4Dtw4ApqSsX+1+OkdUcGV5skBHR0fGjh3L2LFj09wmrV45nTt3pnPnzlk9pBCZ8oHfByw5s4QklcTX+75mTNMxFHOx3HA7P/rv6n9sv7YdgGpe1Xi+/vOEBhT8xogi/2hYqiHP1HyGledWcifyDj8c+IG32ryld1g55tHSkw/9PtRKbkXOk3dWFBjVvaszopGpR094XLhZF8D8TinFe9selp683+597GyyfH8hRK6b1mGa9qP9+Z7PeRDzQOeIcs6aC2s4fPswYErGnq75tL4BFXCSoIgC5b127+FkZxqn48eDP3Iz/KbOEeWMfy/8y54bewCoVawWz9Z9VueIhLCsdvHaDGswDDA1Wv9izxc6R5QzEo2JvLXlYWnQB+0+kNKTXCbvrihQfIr4ML7peADikuL4cPuHOkf0+BKSEnhj8xva84/afySN8oRV+8DvAxxtTT0zZxyYwa3wWzpH9PjmHJ3DuaBzALQq14reNXpnsId4XJKgiALn7TZvU8SxCGCawMz/vr/OET2e347+pg2n3apcK/rW6qtzREKkr7xHecY1HQdAbGIsH+7I3zcKEXERZg3Uv+78tYx7kgckQREFjreLN2+2ehOAJJXE5I2TUUrpHFX2hMeFmzXK+6bLN/LFKPKFKb5TtBuFOcfmcCLwhM4RZd9Xe7/iXtQ9APrV7kfLci11jqhwkARFFEivtHyF8h7lAdOgSmsurNE5ouz5bNdn3I++D8DAOgNlMjKRbxRzKcbUNlMBMCojEzdMzJc3CjfCbvD13q8BsLex57OOn+kcUeEhCYookFzsXfi689fa81c3vkpcUtqzbVujC8EX+Hb/twA42DrIF6PIdya3mExVL9MUKDsDdrLkzJIM9rA+r2x8hZjEGADGNBmjnY/IfZKgiAKrX+1+tKvQDoDLDy7zy9n8M8uqUoqxa8cSn2SaKfzVFq9SqWglnaMSImsc7RyZ3nW69vz1za/nq4kEN17ayHL/5QCUcC3BB34f6BtQISMJiiiwDAYD33f//uEQ+Ke+4r59oM5RZc7iM4vZenUrABU8KvBuu3cz2EMI69Szek96VOsBwM3wm3y882OdI8qc2MRYxq8frz3/qvNXFHUuqmNEhY8kKKJAq1+yPmOajAEgOjGaP0v+YPX14GGxYbyy8RXt+Q/df8DF3kXHiIR4PN91/U6bluHrvV9z9M5RnSPK2Jd7vuRSyCUAfMv7MqT+kAz2EDlNEhRR4H3a8VN8ivgAcNb1GL/t/x2j0XqTlLe2vEVgpKmkp3eN3jxZ40mdIxLi8VT3rs47bd8BTD3rRq4eSUJSQgZ76cf/wVk+2fUJALYGW37u+bP0ntOBJCiiwAs+Ec2gGw/njpp27n1mTVrB1YPWV92z6fImfj3yK2Bq6Pt9N8vzWgmR37zd5m3qlagHwPHA41rPGGuTSCIT9j5s//V6q9epW6KuzlEVTpKgiALt6sFAtk4/RvXAhjQLNzWYjbaN5FfHr9ky/ahVJSmhsaGMXD1Se/5V56+o4FlBx4iEyDkOtg7M6T1HaxP2wY4POHPvjM5RpbbRaxkngo8DpmH7pWGsfiRBEQWW0ajYP//hKLLP3nsZt0TTwFHH3fez02M9+xf4W011z8T1E7W5gzpV7sTLTV7WOSIhclbTsk15reVrAMQnxTNo+SBiEmJ0jsrEaFT8d2Ina4r9DZiqduY9NU+b20vkPUlQRIEVeC6EqJBY7bl7kgfDAx82Pl1SYjYXIy4QeC5Ej/DMzDs+jwUnFwBQxLGI2Z2mEAXJh34falU9p+6dMptnSi9XDwYyd9K/jDv0IkmGRAB6RT5LsVvldI6scJNvQFFgxYSmHpitQVRz2j/oBUC8TRyzynxGUJC+Ccrpe6cZu/ZhG5mZPWdqo+AKUdA42zuzqN8inO2cAfjp0E8sP7tct3iuHgxky/SjzHT8kiAHU5Vv5ZiadLs5kK3Tj1lVNXBhIwmK0J2LpyON+lTFxdMxR1/XOY3X63d/JGXiTG07bjkGMOXCa7p1PQ6NDaX/0v7aSJUvPvEig+sN1iUWIfJK7eK1md5tuvZ82KphnLp7Ks/jSK4G3lx0JUfcdwPgkuTGi7ffwg47AKuqBi5sJEERunMp6kTjftVwKZqzdb2lanrh6pX6NR2UI2Nu/Q/nJNPYIutureHTXZ/m6LEzIyEpgQFLB2hTuDco2cDsS1uIgmz0E6O1ZDwqIYqnFj1FUHRQnsYQeC6EvXE7WFZ8jrZseOBkvBNLas+jgmOtohq4MJIERRRYNjYGWgytZXFdqQQfRt15EwOmsQ3e2fYOf578M89iU0oxYf0ENl/ZDIC3szfLByzH2d45z2IQQk8Gg4HfnvyNxqUbA3A19CpPL3qa6IToPIvhyI0jzC7zBcpgKiF5MmgwjSJbpdrOUnWxyH2SoIgCrVKzUnSc3ChVSYqrtxOvjH6JTzp8oi0bvmo4/174N9djUkrxzn/vaOOdONg6sOrZVVTxqpLrxxbCmjjbO7Pq2VWUdDWVWOy5sYe+S/pqY5DkJv/7/rxw7DnibEwN6ZuGt+XJ4Ocsx5nD1c8icyRBEQVepWalGPi9H61H1gGg9cg6DJzhR6VmpXi7zduMazoOMI1w2X9pfzZc2pCr8Xyw/QM+3f2wSun33r/TpnybXD2mENbKp4gP655bRxFH0xAAGy5tYNDyQcQlmkotjEbF/SthANy/EpYj7UEuBl+k4/yOBMeZqpSqxNRieOArWolqSq7eTpSq6fXYxxRZJwmKKBRsbAwUr+wBQPHKHtjYmL6IkicUHFR3EGCaIOzJhU+y8NTCbB8rrS9UozLyxqY3+GjnR9q2P/X4iefqW75rE6KweKL0E/w76F+tZ88K/xX0WtiLU3svsXjidvbMMQ3otmfOGRZP3P5YPWuO3jlK23ltuRN5B4C6Reox8eaHOCjLpSQthtTSvi9yUm51DihIJEERhZ6NwYY/nv6DfrX7AZBoTOS5Fc/x+e7Ps9y75+rBQItfqGf2XuHZZc/y9b6Hw3vP6DaDsU3HpvVSQhQqvhV8WTlwpZakbLmyhV5runM9/LrZdlEhsdnu/rvm/BrazWunzXVVr0Q9tr+0jScn+lqsBu44uRGVmpXK5hmlL7c6BxQkkqAIAdjb2rOo7yJeavwSAArFlK1TeGbxM9yPup+p10geVj/l4HAA56P86fSvH0vPLgVMCdHMnjOZ2Hxizp6EEPlc16pd2Tp0K0WdigJw3ekSH1ecwAnXA6m2zUr337jEON7Y9Aa9F/UmMj4SgFblWrFt2Da8XbzTrQYW+pEERYj/Z2tjy8yeM/nI7yOtLvqf8/9Q66dazD02lyRjUpr7PjqsPkCsIYblxeYyrcIkAh1vAODm4MaaQWtkGHsh0tCyXEtWtltLsXhTchBlG8GPPh8yq/TnPLB72A05s91//7v6Hw1+aWBWetm/dn+2DNmCt4u3tiytamChH0lQhEjBYDDwbrt3WffcOrycTQ3jgmOCGbF6BHVn1mXO0TmEx4Wn2i/lsPohdvdZ7f0XUyq/wAbvpdrQ2eVjq7CuwxZ6VOuRdyckRD7kY6zAuwHf0zCipbbsUJGdTK00gr9K/MRNx6soVJrdf+OT4llzfg1+8/zoOL8j54PPA2BvY8+MbjNY3G+xdOnPB+z0DkAIa9StajfOjj3LpA2TWHxmMQDngs4xas0oxq8fT5vybWhWphk+RXxwsXfhyrkb7CpxkKtO57nmfMHsteyMdnQN6UfPkEGUSZK5PYTIiLOnIy5GN8befod9RbaytPhvRNqFk2iTyPaia9ledC2l4nz472I7mhqewMvZi/ikeO5G3uVo4FF2XNvBg9gHZq/ZwqcFv/T8hQalGuh0ViKrJEERIg0l3UqyqN8iXmz8Ih9s/4Bd13cBpp4+W65sYcuVLeY7FDV/aqNsaBrRjieDBlMyoSwg4ykIkRnJo0BHhcTSKrwT9SObsdFrOduK/kucjWlaiEDHmyy69heLrv2V7mtV967O1DZTGdJgiEzAmc9IgiJEBjpU6kD7iu05dPsQ80/MZ9W5VdyKuJXm9mXjKvBERBtahXWiWIohs2U8BSEyJ3kU6K3TjwHgZixC36AX6BbSj4NFtnPQfSdXXc+RpCy3CyviWIRe1XsxqO4gulftjq2NbV6GL3KIJChCZILBYKBZ2WY0K9uMH7r/wI3wG5y+d5q7kXeJSYzB3cEdm9vOBP1lxNXobvE1cms8BSEKouRRoPfP99fad7ka3ell259pfd+jZKMiHA88zo2wG4TEhOBg64CXsxe1iteiund1KS0pACRBESKLDAYD5T3KU96jvPmKBnDVO9DsCxVMJScthtSSLotCZFGlZqWo0KQk57fdYM+cM7QeWYca7ctpiX6rcq1AmnUVWJKgCJGDMvpCFUJkjXT/LbykDEyIHCZfqEII8fgkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXXssrpDfHw8c+bMYdOmTURERFClShVGjRpF06ZNM7X/1q1bWbZsGZcvX8bOzo4KFSowatQoGjdunOXghRBCCFEwZTlB+eyzz9i+fTv9+/fHx8eH9evX8+abbzJjxgzq16+f7r6///47f/zxB35+fnTr1o3ExESuXr1KUFBQtk9ACCGEEAVPlhKUs2fPsnXrVsaMGcOgQYMA6Nq1K8OHD2fmzJnMnDkzzX3PnDnDH3/8wbhx4xgwYMDjRS2EEEKIAi1LbVB27NiBra0tvXv31pY5OjrSs2dPzpw5w927d9Pcd+nSpXh5edGvXz+UUkRHR2c/aiEEAC6ejjTqUxUXT0e9QxFCiByVpQTl4sWL+Pj44Orqara8Vq1aAFy6dCnNfY8cOULNmjVZtmwZvXv3plu3bjz99NMsX748G2ELIQBcijrRuF81XIo66R2KEELkqCxV8QQHB+Pt7Z1qefKytNqSREREEBYWxunTpzl69CjDhw+nZMmSrF+/nhkzZmBnZ8dTTz2V5nGDgoIIDg7WngcEBGQlbCGEEELkM1lKUOLi4rC3t0+13MHBQVtvSXJ1TlhYGO+//z4dO3YEwM/Pj+HDhzN//vx0E5TVq1czb968rIQqhBBCiHwsSwmKo6MjCQkJqZbHx8dr69PaD8DOzg4/Pz9tuY2NDR06dOD333/n7t27lCxZ0uL+vXv3pnXr1trzgIAApk2blpXQhRBCCJGPZClB8fb25v79+6mWJ1e/FCtWzOJ+RYoUwcHBATc3N2xtbc3WFS1aFDBVA6WVoBQrVizN1xZCCCFEwZOlRrJVq1bl5s2bREVFmS0/e/astt7iQWxsqFatGmFhYalKYJLbrXh6emYlFCGEEEIUYFlKUPz8/EhKSmL16tXasvj4eNatW0ft2rW1EpC7d++masjavn17kpKS2LBhg7YsLi6OzZs3U7FiRSkhEUIIIYQmS1U8tWvXpn379syaNYvQ0FDKli3Lhg0bCAwM5K233tK2++STTzh+/Dg7d+7Ulj311FOsXbuW7777jhs3blCyZEk2btzI3bt3+eyzz3LujIQQQgiR72V5qPupU6dqyUVkZCSVK1fmiy++oGHDhunu5+joyPTp05k5cybr1q0jNjaWqlWr8sUXX9CsWbPsxi+EEEKIAijLCYqjoyNjx45l7NixaW7z/fffW1xetGhRpk6dmtVDCiGEsDIyirHIbVlOUIQQQojkUYyFyC1ZaiQrhBBCCJEXJEERQgghhNWRBEUIIYQQVkcSFCGEEEJYHUlQhBBCCGF1JEERQgghhNWRBEUIIYQQVkcSFCGEEEJYHUlQhBBCCGF1JEERQgghhNWRBEUIIYQQVkcSFCGEEEJYHUlQhBBCCGSGZmsjsxkLIYQQyAzN1kZKUIQQQghhdSRBEUIIIYTVkQRFiFwgddlC5Bz5eyqcpA2KELlA6rKFyDny91Q4SQmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKKDRkNEohhMg/ZCRZUWjIaJRCCJF/SAmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDp2egeQHXFxcQAEBAToHIkQQgghsqpChQo4OTmlu02+TFACAwMBmDZtms6RCCGEECKrZs+eTY0aNdLdxqCUUnkUT44JDQ3l4MGDlC5dGgcHB73DyXUBAQFMmzaNd955hwoVKugdTp6Scy98515YzxsK77kX1vOGwnvuBbYExdPTky5duugdRp6rUKFChhlnQSXnXvjOvbCeNxTecy+s5w2F+9zTIo1khRBCCGF1JEERQgghhNWRBCUf8Pb2Zvjw4Xh7e+sdSp6Tcy98515YzxsK77kX1vOGwn3uGcmXjWSFEEIIUbBJCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKuTLwdqK4iCgoJYtmwZ/v7+nDt3jpiYGGbMmEGjRo1SbTtx4kSOHz+eanmzZs34+uuvzZbFx8czZ84cNm3aREREBFWqVGHUqFE0bdo0t04ly7Jy7gCnTp3il19+4cKFC7i6utK+fXtGjx6Ni4uL2Xb54dwtWb9+PZ999pnFdStXrkzV2n/37t3MnTuXgIAAPD096dGjB0OHDsXOLn/9eefXzysrjh07xqRJkyyumzlzJnXq1NGeZ/Y6t0bR0dEsWrSIs2fP4u/vT0REBFOmTKF79+6ptr127Ro//vgjp06dws7OjpYtWzJ+/Hg8PT3NtjMajSxatIhVq1YREhKCj48Pzz//PJ06dcqjs8pYZs/7008/ZcOGDan2L1++PH/++afZsvxw3rklf32DFWA3btzg77//xsfHh8qVK3PmzJl0ty9evDgvvfSS2TJL3dQ+++wztm/fTv/+/fHx8WH9+vW8+eabzJgxg/r16+foOWRXVs794sWLvPLKK1SoUIHx48dz7949Fi9ezM2bN/nqq6/Mts0P556ekSNHUrp0abNlbm5uZs/379/P//73Pxo2bMikSZO4cuUK8+fP58GDB7z22mt5Ge5jy++fV1b07duXWrVqmS0rW7as9jgr17k1CgsLY968eZQsWZKqVaty7Ngxi9vdu3ePCRMm4ObmxujRo4mJiWHRokVcuXKFX3/9FXt7e23b2bNn89dff/Hkk09Ss2ZNdu/ezUcffYTBYKBjx455dWrpyux5Azg4OPDmm2+aLXN1dU21XX4471yjhFWIiopSYWFhSimltm3bpnx9fdXRo0ctbjthwgQ1dOjQDF/zzJkzytfXV/3999/astjYWPXss8+ql19+OWcCzwFZOffXX39dPf300yoyMlJbtmbNGuXr66sOHDigLcsv527JunXrlK+vr/L3989w2yFDhqgXXnhBJSQkaMtmzZql2rZtq65du5abYeao/Px5ZcXRo0eVr6+v2rZtW7rbZfY6t1ZxcXEqKChIKaWUv7+/8vX1VevWrUu13TfffKM6deqkAgMDtWWHDh1Svr6+6p9//tGW3bt3T7Vv3159++232jKj0ajGjRun+vTpoxITE3PxbDIvs+f9ySefqC5dumT4evnlvHOLtEGxEi4uLhQpUiRL+yQmJhIdHZ3m+h07dmBra0vv3r21ZY6OjvTs2ZMzZ85w9+7dbMebkzJ77lFRURw+fJguXbqY3Wl07doVZ2dntm3bpi3LL+eekejoaJKSkiyuu3btGteuXePJJ580q8555plnUEqxffv2PIry8RWUzysroqOjSUxMTLU8K9e5tXJwcMjUwGM7duygVatWlCxZUlvWpEkTypUrZ3aeu3fvJjExkWeeeUZbZjAYePrpp7l//36GJc55JbPnnSwpKYmoqKg01+eX884tUsWTT924cYOuXbuSkJCAl5cXvXr1Yvjw4WY/VBcvXsTHxydVsWFy0fKlS5fMvhis3ZUrV0hKSko1oZa9vT3VqlXj4sWL2rKCcO6TJk0iJiYGe3t7mjZtyrhx4yhXrpy2/sKFCwCp3o9ixYpRvHhxs/fD2hWEzysrPvvsM2JiYrC1taV+/fqMGTOGmjVrAlm7zvOz+/fv8+DBA4sT5NWqVYv9+/drzy9evIizs3Oq2X6Tr4+LFy/mu2rA2NhYunfvTmxsLO7u7nTs2JGXX37ZrI1RQTzvrJAEJR8qU6YMjRo1onLlysTGxrJ9+3bmz5/PjRs3+PDDD7XtgoODLWbzycuCgoLyLOacEBwcDFhua+Pt7c2JEyfMts2v5+7o6Ej37t1p1KgRrq6unD9/niVLljB27Fh+++037Yc6o/cjeX1+kJ8/r6yws7OjXbt2tGjRAg8PD65du8bixYsZP348P//8M9WrV8/SdZ6fZXSe4eHhxMfH4+DgQHBwMEWLFsVgMKTaDvLf9eHt7c2gQYOoXr06SikOHDjAqlWruHz5MjNmzNBuNAvaeWeVJCi5wGg0kpCQkKltHRwcUl18GXn77bfNnnft2pWvvvqKNWvWMGDAAK0nQFxcnFkjs5THTF6f03Lz3JPjTeuc4uPjzbbN63O3JDvvR4cOHejQoYO23NfXl2bNmjFhwgQWLFjA66+/DqCdb/I5Pfpa6VX/WRtr+bxyW7169ahXr572vE2bNvj5+fHCCy8wa9Ysvv766yxd5/lZRueZvI2Dg0OBuz4e7eDQsWNHypUrx+zZs9mxY4fW+LWgnXdWSYKSC06cOJFmV8JHLViwIFXxXXYMHDiQNWvWcPjwYS1BcXR0tPjjmPwF5+jo+NjHfVRunntyvGmdU8ofaj3O3ZKcej/q169P7dq1OXLkiLYs+Xwt/WDFx8fn2TnmBGv5vPTg4+NDmzZt2LlzJ0lJSVm6zvOzjM4z5TaF4foYMGAAc+bM4fDhw1qCUhjOOz2SoOSC8uXLM2XKlExtm1MzWJYoUQKAiIgIs9e+f/9+qm2Ti1aLFSuWI8dOKTfPPXl7S1UXwcHBZuejx7lbkpPvR4kSJbh+/Xqq7YODg1O1zwgODk7VjdWaWcvnpZcSJUqQkJBAbGxslq7z/Cyj8yxSpIiWjHl7e3Ps2DGUUmalrgXp+nB0dKRIkSKEh4drywrDeadHEpRc4O3tbXFAotx0+/ZtALPBjZL74UdFRZk1Pjx79qy2Pqfl5rlXqlQJW1tbzp8/b1YFkpCQwMWLF2nfvr22TI9ztyQn34/bt2+bfb7VqlUD4Pz589SuXVtbHhQUxP379816xFg7a/m89HL79m0cHBxwdnbO0nWenxUvXhxPT0/Onz+fap2/v7/ZZ161alX+/fdfAgICqFixora8IF0f0dHRhIWFpfoOL+jnnR7pZpzPREVFpSrSV0oxf/58ALNRN/38/EhKSmL16tXasvj4eNatW0ft2rXzXa8INzc3mjRpwqZNm8zaV2zcuJGYmBizL+78fO6hoaGplu3bt4/z58/TrFkzbVmlSpUoX748a9asMeuKvGrVKgwGA+3atcuLcHNEfv68ssLSZ3vp0iX27NlD06ZNsbGxydJ1nt+1a9eOvXv3mnUjP3LkCDdu3DA7zzZt2mBnZ8fKlSu1ZUop/vnnH4oXL07dunXzNO7HERcXZ7F92B9//IFSiubNm2vLCtJ5Z4eUoFiRP/74AzCNbwGmL6STJ08CMGzYMMDUtfTDDz+kU6dOlC1blri4OHbt2sWpU6d48sknzbrs1a5dm/bt2zNr1ixCQ0MpW7YsGzZsIDAwkLfeeitvTy4DmTl3gFGjRjFu3DgmTJhA7969tRE2mzZtavaHnZ/O/VFjxoyhevXq1KhRA1dXVy5cuMC6desoUaIEQ4YMMdt27NixTJkyhddee42OHTty5coVVq5cSa9evczuuKxdfv68suL999/H0dGRunXrUrRoUa5du8aaNWtwcnIyaziZ2evcmi1fvpzIyEitOmLPnj3cu3cPMI2k6+bmxvPPP8/27duZPHky/fr1IyYmhoULF1K5cmWzkscSJUrQv39/Fi5cSGJiIrVq1WLXrl2cPHmSd999F1tbW13O0ZKMzjsiIoKRI0fSqVMnypcvD8DBgwfZv38/zZs3p02bNtpr5afzzg0GpZTSOwhh0rZt2zTX7dy5EzAVBf/666/4+/sTEhKCjY0NFSpUoFevXvTu3TtVr5i4uDhtfpPIyEgqV67MqFGjzO7ErUFmzj3ZyZMntTlKXFxcaN++PS+99FKqOUryy7k/avbs2ezfv587d+5obRJatmzJ8OHD8fLySrX9rl27mDdvHgEBAXh4eNC9e/dUY+LkB/n188qKZcuWsXnzZm7dukVUVBSenp40btyY4cOH4+PjY7ZtZq9zazVgwAACAwMtrlu8eLE2jcPVq1dTzcUzbty4VNe60Wjk77//ZvXq1QQHB+Pj48Nzzz1Hly5dcv1csiKj83Zzc2PGjBmcOXOG4OBgjEYjZcuWpXPnzjz77LOp/m7zy3nnBklQhBBCCGF1pA2KEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKSNf69etp27Yt69ev1zuUTDl27Bht27bl999/z7VjtG3blokTJ+ba6xcWAwYMYMCAAXqHYfV+//132rZty7Fjx3L1OEuWLKFDhw7cuXMnU9vnxd9afvbxxx/Tv39/4uLi9A4l35IEpYD5/PPPadu2Lb169Uo1qWBBkd9+2MLCwvjll18YOnQonTt3pnPnzvTv35/Jkyczd+5cQkJC8iSOjJLNiRMnpjvlQGESExNDt27daNu2Ld9++63e4eS6iIgI5s+fT48ePbQh6MXjGT58OEFBQSxdulTvUPKt/DVZh0hXdHQ027Ztw2AwEB4ezq5du+jYseNjvaavry+1a9fG29s7h6IsXO7du8fYsWO5d+8e1apVo3v37ri7uxMcHMzp06eZO3cu9erVszjHTkH33Xff6R1CmrZt20Z0dDQGg4EtW7Ywbtw4HB0d9Q4r1yxZsoTw8HAGDRqkdygFRrly5WjdujV///03ffv2xdnZWe+Q8h1JUAqQ//77j5iYGAYMGMCyZctYu3btYycobm5uuLm55VCEhc/vv//OvXv3GDlypNmszMkuX75caN/fsmXL6h1CmtauXYutrS19+vRh6dKl7Ny5k86dO+sdVq5ITEzk33//pV69elb9meRHXbp0YefOnWzdupVevXrpHU6+IwlKAZL8pTp48GAuX77M0aNHCQwMpFSpUmbb/f7778ybNy/N1ylVqhRLliwBTNUCn332GVOmTDGb/rxt27Y0bNiQd999l5kzZ3Lo0CHi4+Np0KABkydPpkyZMly7do1Zs2Zx4sQJEhMTadasGa+88opZacGxY8eYNGkSw4cPZ8SIEWZx3Llzh4EDB9KtWzemTp2qPU8ZQzJL+587d45Zs2Zx5swZbGxseOKJJxg/fnyqIuydO3eybds2zp07R1BQEHZ2dlSpUoV+/frh5+eX/puegTNnzgDQp08fi+urVKlicfnt27f566+/OHToEMHBwbi6ulKxYkW6d++ufQ4JCQmsXr2avXv3cu3aNUJDQ3F1daVevXoMGzaM6tWra6/36aefsmHDBgA+++wzPvvsM7PzT/lepnyc/N4nu3z5MgsWLOD48eOEh4fj7e1N69ateeGFF/Dw8NC2S/nZDR48mNmzZ3PixAnCw8O1mWyTq+mSrzV4eG3OmDGDoKAgFi5cyPXr13Fzc6N9+/a8/PLLqUoyEhMTWbRoEf/++y9BQUEUL16cnj170qFDB5599tlU55CR69evc+rUKVq1amWW7FtKUFJev61atcrU9QawY8cO/vzzT65evYqrqyutW7dmzJgxjBw5MtV7kp7Mfh7pOXjwIMHBwQwePNji+ri4OObOncvmzZsJCwujbNmy9OvXL9Xsyyndvn2bBQsWcOjQIR48eIC7uzvNmjVjxIgRqb6PIGvvR/K1vGjRInbu3MnatWu5ffs2HTt21D7nBw8e8Oeff7J3717u3buHi4sLDRo0YMSIEVSuXDnV8bOy/Y0bN/jzzz85duwYwcHBODk5UaJECRo1asSECRPMZpRv2bIlTk5ObNiwQRKUbJAEpYC4du0aZ86coUWLFnh5edG1a1eOHDnCunXrUv1wN2rUyOJrBAQEsG3btkwXZUdERDBu3Di8vb3p2rUrN2/eZO/evbz66qt8+umnjB8/nho1atCjRw8uXLjAjh07CA8PZ8aMGdk6Rzc3N4YPH86yZcsA6NevX5rndO7cORYuXEijRo3o3bs3Fy9eZNeuXVy5coV58+aZneOsWbOws7OjXr16eHt7Exoayp49e3jvvfeYNGkSffv2zVa8gPYjcePGDWrXrp2pfU6ePMlbb71FdHQ0zZo1o2PHjkRERHDx4kWWLVumJSjh4eH88MMP1K9fnxYtWuDu7s6dO3fYs2cPBw4c4IcffqBWrVqAqaouMjKS3bt306ZNG6pWrWp2zOHDh7NhwwYCAwMZPny4trxatWra4927d/PBBx9gMBho06YNJUqU4Nq1a6xYsYKDBw/y66+/4u7ubva6t27dYsyYMVSuXJlu3boRHh6Ovb19hu9B8mu2bt2aJ554ggMHDrB8+XLCwsJ47733zLb94osv2LhxI2XKlOHpp58mISGBJUuWcPr06Uy9349au3YtAF27dqVkyZI0bNiQY8eOcfv2bcqUKWNxn6xcb2vXruWLL77A1dWVrl274ubmxv79+3n11VdJTEzEzi5zX8vZ+TwsOXLkCAB16tRJtc5oNDJlyhQOHz5M5cqV6dSpE+Hh4fz4449pfo+cPXuW119/nZiYGFq1aoWPjw+BgYFs3ryZAwcOMHPmTLP3Mbvvx/Tp0zl79iwtW7akVatWFC1aFDBdcxMnTuT+/fs0bdqUNm3aEBoayo4dOzh06BDfffed2d9iVrYPCgripZdeIjY2lpYtW9KhQwdiY2O5efMmq1atYuzYsWbx2tvbU716dc6cOUNMTIxU82SVEgXCDz/8oHx9fdWWLVuUUkpFRUWpLl26qH79+qmkpKQM9w8JCVH9+/dXHTt2VCdPntSWr1u3Tvn6+qp169aZbe/r66t8fX3VDz/8YLb8m2++Ub6+vqp79+5qyZIl2nKj0ajeeOMN5evrq86dO6ctP3r0qPL19VVz5sxJFdPt27eVr6+v+uSTT8yW9+/fX/Xv39/ieSS/Xsr3Itm0adMsLr9161aq14mKilLDhg1T3bt3VzExManOfcKECRaP/6hly5YpX19f1bt3bzVnzhx19OhRFRkZmeb2cXFxqk+fPqpdu3Zq//79qdbfvXvXbNt79+6l2ubKlSuqS5cu6pVXXjFbntZnmWzChAnK19fX4rrQ0FDVrVs31adPH3Xnzh2zdVu2bFG+vr7qu+++05Ylf3ZpfbZKWf4c58yZo10/AQEB2vLY2Fg1ePBg1a5dO3X//n1t+eHDh5Wvr68aMWKE2ed0//599dRTT1m8ftKTkJCgnnrqKdW9e3cVGxurlFJq7dq1ytfXV82ePTvV9lm93sLDw1WXLl1Uly5d1PXr182OO2nSJOXr65vme3L06FFtWVY/j/SMHj1atWvXTsXFxaVal3zNvP766yoxMVFbfunSJdWhQ4dUn29CQoLq37+/6tq1qzp//rzZa504cUL5+fmpt95667Hej08++UT5+vqqPn36qMDAwFQxjxkzRvn5+akDBw6YLb9+/brq2rWrGjZsWLa3T/57TvndliwsLCzVMqUefjcfOXLE4nqRNunFUwAkJiayadMmXF1dadOmDQAuLi74+vpy9+5dDh8+nO7+cXFxTJ06lcDAQN5++23q1auXqeM6OzszatQos2XJbV48PDzMSjgMBoO27vLly5k+t+xq0KBBqvY3PXr0AMDf399suaW7YhcXF7p3705kZCTnzp3Ldhx9+vRh0KBBREZGMm/ePCZNmkSPHj0YOnQov/zyC0FBQWbb7969m/v379O5c2eaN2+e6vVKlCihPXZwcKB48eKptqlUqRKNGjXSqtZywsaNG4mKiuLFF19MVUTfsWNHqlevztatW1Pt5+XlxZAhQ7J8vH79+lG+fHntuaOjIx07dsRoNHL+/Hlt+aZNmwAYNmwYTk5O2vJixYqZXX+ZtW/fPkJCQmjfvr1W6uHn54eTkxPr16/HaDRa3C+z19vu3buJiYmhR48elCtXTltuZ2eX6m8pPdn9PCy5f/8+bm5uODg4pFqXXC04atQobG1tteVVqlShS5cuqbbfu3cvgYGBDBo0yKyKEaB+/fq0bt2a/fv3ExUVBTze+zFo0CBKlixptuzChQucPn2arl270qxZM7N15cqVo1evXly5coUrV65ka/tklkqZixQpYjHO5JKd+/fvp3s+IjWp4ikAdu/eTWhoKD179jT7w+natSubNm1i7dq1qf74kiml+PTTTzlz5gwvvPACnTp1yvRxfXx8zH4UAK23T+XKlc3qYlOue/RHOTfUqFEj1bLkH/PIyEiz5Q8ePOCvv/5i//793L17N9W4BY8Tr8FgYMyYMQwaNIj9+/dz9uxZzp07x4ULF7h27RqrV6/m66+/1oqQk3/MmjZtmqnXv3jxIgsXLuTkyZOEhISkSkhCQ0MpVqxYtuNPltyW5uzZs9y6dSvV+vj4eMLCwggNDcXT01NbXrVq1UxV6Tzq0R83eJicpfz8Ll26BJh+/B5Vt27dLB/333//BUx/O8lcXFxo06YNW7Zs4eDBg7Ro0SLVfpm93pKTc0vx1q5d2ywJSE92Pw9LwsPDLSa6yfE6OztbPL/69etr1WGPxnX9+nWL46OEhIRgNBq5ceMGNWvWfKz3I7n6MqWzZ88Cpr9pS8e/fv269n/lypWzvH1yO6PvvvuOI0eO0Lx5cxo2bJhm1R88TFzCwsLS3EZYJglKAZCyzjylxo0bU7x4cfbs2UN4eLjFDP+3335j27ZtdOrUiRdeeCFLx3V1dU21LPkLJb11OXVXnx4XF5c0j5/yLjg8PJwXX3yRu3fvUq9ePZo0aYKbmxs2NjZcunSJ3bt3k5CQ8NjxeHp60q1bN7p16wZAcHAw06dPZ8eOHXz11VfMnTsXQLuzTOsHI6VTp07xyiuvANCkSRN8fHy08969ezeXLl3KkdjB1N4IYOXKleluFxsba/Y8+e4xq9K7flJ+ftHR0djY2FhsEJrVrttBQUEcPHiQMmXKpPrB7NatG1u2bGHdunUWE5TMXm/Jn6+l9yWt87Aku5+HJY6OjmmOmRQVFZXmtWjp/U2Oa/PmzZmK63HeD0v7hIeHA6aSsH379qW5b0xMTLa2L126NDNnzmTu3Lns37+fbdu2AVC+fHlGjhxJ+/btU+2bfMNTkLup5xZJUPK5u3fvcujQIYB0RzfdtGlTqiLv9evXs2DBAurVq8fbb7+dq3GmJbmUJSkpKdW65C+v3LR27Vru3r1rsRvwn3/+ye7du3PluN7e3rzzzjvs27ePy5cvExYWhoeHh9blODPFwQsWLCA+Pp4ff/wx1Q9q8p1hTkn+AZ43b57FXhBpebQULae5uLhgNBoJCwtLVVKQ1QHw1q9fT1JSErdv305zwLo9e/ZkqlQiLcmJ14MHD1KtSz6PzCSn2f08LPHw8EjzenN1dU3zzt/S+5sc1+eff06rVq0yPPbjvB+Wrq3k18ts4/asbg+m0uGPP/6YxMREzp8/z4EDB1i2bBkffPABxYoVS1VFnpwEZfeaKcykDUo+t2HDBoxGI/Xr16dnz56p/iXfsT9aFHv8+HG+/vprypQpwyeffGKx/jkvJPcysFSNcvHiRYv72NjYWExosiO5eDy57U5KJ0+ezJFjpMXe3j5VEXZysXVy0pme27dvU6RIkVTJSWxsLBcuXEi1vY2N6c89rfcuvfXJVVDJRfjWIrk30qlTp1Kty0ovHqUU69atA6B79+4W/5bq1q1LQkKC1u4lO5K7lVuK19/fP9PXdU5+HpUrVyY+Pp67d++mWlelShViYmLM2v0ks/T3kdW4cur9SJb895PZ42d1+5Ts7OyoU6cOI0aMYNKkSSil2Lt3b6rtbty4AfDYiWRhJAlKPpb8pWowGJg6dSpvvfVWqn9Tp06lTp06XL58WWvseePGDd555x0cHR35/PPPdc3sy5cvj4uLi1YNlSwkJIT58+db3KdIkSKEhYXlyBwXyQ0MH/2C3Lx5M/v373/s11+0aBEBAQEW161YsYKYmBjKly+vFWW3bt2a4sWLs3nzZg4ePJhqn5R3uiVLliQiIoKrV69qy5KSkvj5558JDQ1NtW9yFd+9e/csxpPe+h49euDi4sLs2bPNjpcsNjZWl+QleWySefPmmV0PwcHBWnf0zDh+/Di3bt2iQYMGTJkyxeLfUnIp46PJfla0adMGZ2dn1q5da9Z2JDExkTlz5mT6dXLy82jYsCFgudQtudr4t99+M0sWLl++bDFRa9OmDSVLlmTx4sUcP3481frExESzxCan3o9ktWvXpnbt2mzdutViI2Gj0WgWV1a3P3/+vMWS3eTSJEs3emfPnsXb29usEbDIHKniyceOHj3KnTt3Mmyk1aNHD86cOcPatWupWbMm33//PeHh4TRp0oT//vsv1fZubm55NteNvb09ffv2ZcGCBYwaNYrWrVsTExPDnj17aNiwocUGgI0aNeLcuXO8+eab1K9fHzs7Oxo0aKB90WZFly5d+Pvvv5kxYwbHjh2jZMmSXLp0iaNHj9K2bVt27tz5WOe3adMmfv75ZypXrkzt2rUpWrQoERERnD17lgsXLuDo6Mhrr72mbe/g4MCHH37IG2+8wRtvvEGzZs2oWrUqUVFRXLp0ibi4OO2Lu2/fvhw6dIhx48bRvn17HBwcOH78OEFBQTRq1CjV5HJ16tTB0dGRZcuWERERoSWmyVVbTzzxBNu3b+fdd9+lefPmODg4ULVqVVr/X3v3F9LUGwZw/OuqacVM0Jl/woIoEAaD5ZLUiIYXFZW72Y03miJIDNOgkBDDQUH/bqTopiXYSoTqQrQMZyXByckWoge7CgINdRIhk6DWsAvZ8NdWqO3nJj2f6xf2nuccxvP+e97SUjIyMrh8+TKtra3U1NRw8OBBCgoKCAaDzMzMMDo6isFg4ObNm38Vr9UqKiqivLwct9tNdXU1ZWVlBINBXr16RWFhIYqiRGaG/iScdIRP3sRSUFCAwWBAVVUmJiZWXNdmOZ1Oh91u58aNG9TV1WGxWNi+fTvDw8NotVqysrJWtCwWz/dRVlbGnTt38Hq9UXsowntvPB4PtbW1FBcXEwgEGBwcxGw2R80YaLVaHA4HFy9epKGhAZPJFNkwPzMzw9jYGDt27MDlcsU1Hsu1trbS2NhIW1sbjx8/Zt++faSmpuL3+1FVlfn5edxu95rav3jxgp6eHoxGI/n5+Wzbto2PHz/i8XhIT0+P+n4+ffrE9PQ0Vqt1Vc8glkiCsoGF/1SXV3iNxWKx0N7ezuDgIHa7PTLS9Hq9MY8g5+TkrOtlfLW1tWzevJm+vj56enrIycmhqqqKkpIShoaGotpXVVWxsLCAoiiMjY0RCoWorq5eU4KSnZ1Ne3s7d+/exev1EgqF2L9/P7du3cLv9/91gtLc3IyiKLx7946RkRG+fPmCRqNh586dWK1WbDZb1MjKYDBw7949XC4XIyMj+Hw+dDode/bsoaKiItKupKQEh8OBy+ViYGCA1NRUTCYTV65ciVkpOD09HYfDQUdHB729vZHvIJygnDx5kunpaV6+fMmjR48IhUIcO3aM0tJSYKkqptPppKurC5/Ph9frJS0tDb1ez/Hjx2MeO10Ply5dYvfu3Tx79oynT5+i1+ux2WyYTCYURYm5gXW5hYUFhoaG2Lp1K0eOHPlj2xMnTqCqKn19fWtKUABOnTqFTqfjwYMH9Pf3Ryqn1tfXY7PZVlxuPl7vIzc3F7PZzOvXrzl37tx/ZgE0Gg1Xr16lo6MDt9vNkydPyMvLw263s2vXrphLGoWFhdy/f5+uri6Gh4dRVZUtW7aQlZXF4cOHo45jxyseYXl5eTidTrq7u3nz5g3Pnz9Ho9GQmZmJ0WiMqg69mvbl5eV8//6d8fFx3r9/TzAYRK/XU1FREfPYc3iW6fTp06t6BrEkZXFxcTHRnRBCiHjr7e3l+vXrnD9/fkOMYKempqisrOTo0aO0tbWt62/7fD6amppoaWlJWKL5q0TGIx5+/PhBZWUlubm5a66e/a+TPShCiA3t8+fP/DrOmpubo7Ozk02bNnHo0KEE9Sy2QCAQdaz327dv3L59G1i6lmC9HThwgOLiYjo7O39bjO7/kozxiIf+/n5mZ2c5e/ZsoruyYckSjxBiQ3v48CFv377FaDSSkZGB3+9HURS+fv3KmTNnoqbdE210dJRr165hNpvJzs5mfn4+crGnyWTCYrEkpF8NDQ0MDAwwNze3rjFL1nj8rZSUFC5cuBCzyJ1YGVniEUJsaB6Ph+7ubj58+EAgEECr1bJ3716sVmvMG4gTbXJyEqfTiaqqkdNW+fn5kduX/7WCXhIP8TuSoAghhBAi6cgeFCGEEEIkHUlQhBBCCJF0JEERQgghRNKRBEUIIYQQSUcSFCGEEEIkHUlQhBBCCJF0JEERQgghRNKRBEUIIYQQSUcSFCGEEEIknZ+/opBeTbqdQgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 120.0 deg to 135.0 deg\n", + "Modulation: 0.306 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.021\n", + "Best fit polarization angle: 100.21 +/- 0.429\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTIElEQVR4nOzdd1hT59vA8W/YMgQBFRX33nuLorit2qrVal11tNVqtUtbf3Zr7a7WtrZat22dddW9Z3HiqHviBAVkb3LeP/JyJBIQEDgJ3J/r8jI55zk590lCcueZOkVRFIQQQgghzIiV1gEIIYQQQjxJEhQhhBBCmB1JUIQQQghhdiRBEUIIIYTZkQRFCCGEEGZHEhQhhBBCmB1JUIQQQghhdiRBEUIIIYTZkQRFCCGEEGZHEhQhzMTNmzfR6XQMHz5c61AE4Ovri06ny/PzfPLJJ+h0Ovbu3Zvn58qKChUqUKFCBa3DEEISFPF0Fy9eZPz48dSpUwdXV1fs7OwoXbo0PXr0YP78+SQkJGgdYp4ZPnw4Op2Omzdvah2KSfPnz+e1116jefPmODo6otPpmDp16lOP++eff/D19cXV1RVnZ2eaN2/O4sWLMz1m8eLFNGvWDGdnZ1xdXfH19eWff/4xWfbKlSv06NEDd3d3ypYty7hx44iKijJZdvDgwVSsWJHo6OinX3AaqQld2n82NjaULFmSHj16sGXLlmw9nnh2f/zxh/pabN++PdOy4eHhfPTRRzRo0ABnZ2fs7e0pU6YMLVq04J133iEgICDT40ePHo1Op8PR0ZHw8PAMy6UmgKn/rKysKFq0KOXLl6d79+589dVX3L17NyeXK/KYjdYBCPP22Wef8emnn6LX62nZsiXDhg3D2dmZ4OBg9u7dy6hRo5gzZw7Hjx/XOtRC6Z133iEiIoJixYpRunRprl279tRjfvrpJ8aPH4+HhweDBw/Gzs6O1atXM3z4cM6ePcu3336b7ph3332X7777Dm9vb0aPHk1iYiLLly+nZ8+ezJ49m3HjxqllY2Ji8PPzIyYmhqFDh3Lnzh1+/vlngoODWbVqldHjbtq0iT/++IMdO3bg7Oyco+fA1dWViRMnAhAfH8/p06fZvHkzmzdvZtasWbz55ps5etz8Mm7cOF566SXKlSundSjPbO7cueh0OhRFYe7cuXTu3NlkuXv37tG6dWtu3rxJpUqVePnll/H09OTRo0ecOHGCmTNnUqRIERo2bGjy+KioKJYvX45OpyMuLo5ly5YZvQdNadeuHb6+voDhPXr//n0OHTrEli1b+Pjjj/nkk094//33n+n6RS5ThMjA9OnTFUApW7as4u/vb7LMxo0bFV9f33yOLP8MGzZMAZQbN27k+blu3LihAMqwYcOyfMyWLVuUmzdvKoqiKAsXLlQA5X//+1+m57C3t1fc3d2NriksLEypXLmyAiiHDx82OubQoUMKoFSuXFkJCwszeix3d3fF3t7e6LGWL1+uAMq+ffvUbcOHD1cAJTg4WN0WHh6ulClTRhk5cmSWr/fJawGU8uXLp9u3YMECBVCcnJyUmJiYHD1+u3btlML4EVm+fHmTz+nTXLx4UQGUjh07Ko0bN1ZsbW2VoKAgk2VHjhypAMqIESMUvV6fbv+9e/eUEydOZHiuX3/9VQGUt99+W7Gzs1Pq1auXYdmPP/5YAZSPP/443T69Xq+sXr1acXd3VwBlxowZT79QkW+kiUeYdPPmTT755BNsbW3ZvHkzzZs3N1nuueeeY+vWrem2r1y5krZt2+Lq6kqRIkWoW7cuM2bMMNkclNrmHRkZydtvv02FChWwtbXlk08+ydJ+MDRDDR8+nLJly2JnZ0fJkiUZNGgQly5dMhl3bGwsX331FU2aNMHFxQVnZ2dq1qzJm2++SXBwMAA6nU5t9qhYsaJaRfxk+3xYWBgffPABNWvWpEiRIri6uuLn55dhFXdUVBRvv/023t7eODg4UKNGDb7//nv0er3J8pnp2rUr5cuXz3L5BQsWkJCQwLhx44yuo1ixYkyZMgWAX3/91eiY1Pv/+9//KFasmLq9QoUKvPHGGyQkJLBw4UJ1e2BgIADNmjVTt6XeTt0HhtofgO+++y7L8WfV8OHDcXJyIiYmhnPnzqnbd+3aRdeuXXF3d8fe3p5q1arx/vvvExERkaXHTUxM5KeffqJ79+6UL18ee3t73N3d6dixY4ZNSk97/5rqg5La/yWjf6k1AamSk5P55ZdfaNGiBUWLFsXR0ZGGDRvy008/mXxfKYrCTz/9RO3atXFwcKBMmTKMGzcuy8+DKfPmzQPglVdeYfjw4SQlJbFo0SKTZQ8fPgzA+PHjTfbzKVWqFI0aNcr0XFZWVkycOJGePXty5swZjhw5ku2YdTodffv2ZfXq1YChxvj+/fvZfhyRN6SJR5i0cOFCkpKSeOmll6hTp06mZe3t7Y3uT5kyhRkzZuDp6cmgQYNwdnZmy5YtTJkyhW3btrF9+3bs7OyMjklMTKRDhw6EhYXRuXNnihYtSsWKFbO0f+vWrfTp04ekpCR69uxJlSpVuHPnDn///TebNm1iz549Rh92jx49on379pw+fZrq1aszYsQI7OzsuHbtGgsXLqRPnz6ULFmSjz/+mHXr1nH69GkmTJiAm5sbgPo/GL5wfX19uXnzJj4+PnTt2pWYmBj++ecfunbtym+//cbo0aPV8gkJCfj5+XHs2DHq16/Pyy+/THh4OJ9//jn79u3L1muUE7t37wYMic2TunXrZlQmq8d8/vnn7N69m08//RRAbao4ceIErVu3BlCbAFOTqZ07dzJ//nw2btyIq6vrM1+XKYqiAKhfgL/99htjxozBycmJF198kRIlSrB3716++uorNm7cyKFDh4xeW1PCwsKYMGECrVq1olOnThQvXpz79++zceNGunfvzrx58xg1alS64572/n7S8OHD0yUhAAcOHGD37t04Ojqq21Lf99u2baN69eoMGjQIBwcH9uzZw/jx4zly5AhLly41epyJEyfy448/UqpUKV599VVsbW1Zv349R44cITExMd3f59MkJiayePFiXF1deeGFF4iLi+Odd97h999/Z9KkSemSEA8PDwAuX75MgwYNsnWugIAATpw4QadOnShbtizDhw9nzZo1zJ07N8MfUk/Tvn172rRpw8GDB/n777954403cvQ4IpdpXYUjzFOHDh0UQJk3b162jjt8+LDaLHT//n11e1JSkvLcc88pgDJ9+nSjY8qXL68Aip+fnxIdHZ3uMTPbHxYWpri5uSkeHh7KuXPnjPadPXtWcXJyUho2bGi0feDAgQqgvP7660pKSorRvqioKCU8PFy9/7Qmnnbt2ik6nU7566+/jLY/evRIqV+/vuLg4GBUzZ3abNanTx+jc1+/fl0pVqxYtpt40spKE4+np6cCKCEhISb3Ozk5KYDaLBIdHa0AirOzs8nyDx8+VAClRIkS6raoqCjF29tb8fT0VCZOnKj069dPvebU/RUqVFBefvnlHF1nqsyaeObPn6828cTGxio3b95U7OzsFBcXF+XChQtGZceMGaMAyujRo422m2riiY+PV27fvp3ufOHh4Urt2rWVYsWKKbGxsUb7nvb+Tm2C2LNnT6bXe/r0acXFxUXx9PRUrl69mu74cePGKcnJyer25ORkZcSIEQqgrFu3Tt2etskuNDRU3R4XF6e0aNEiw+c0M3/99ZcCKK+++qq6rW/fvgqg7Ny5M1352bNnK4Di4uKivPfee8qOHTsyfE8+6bXXXlMA5c8//1QUxfDZ4uXlpTg5OSkRERHpymfWxJPW1KlTFUAZOnRoluIQeU8SFGFSzZo1FUDZsmVLto4bNWqUAii//fZbun2XLl1SrKyslIoVKxptT/0AP3XqlMnHzGz/zJkzFUD56aefTB47ceJEBVCTl+DgYMXKykopVaqUyS+LJ2WWoJw6dUoBlH79+pk8dt26dQqg/Pzzz+q2KlWqKFZWVkZfMKlSP0jzMkGxtbVVACUpKcnk/tKlSyuAcu/ePUVRFOXu3bsKoJQpU8Zk+cTERAVQ7OzsjLZfvHhR6dq1q+Lm5qaULl1aef3119UvjzfeeEMpWbKkEhISogQGBirPPfec4uDgoDg7OytDhgwx+SVjSmqC4urqqnz88cfKxx9/rEyePFnp1q2bAiiAMmvWLEVRFGXatGkKoHzwwQfpHicsLExxcXFRHBwclPj4eHV7dvugfPfdd+n63ijK09/fWUlQ7t69q3h7eysODg7KoUOH1O0pKSmKu7u74uXlZfI1ffTokaLT6ZQXX3xR3Zb6N7pgwYJ05ffs2ZOjBCX1B03a/ksbN25UAKV///7pyuv1euWDDz5QHBwc1NcKUCpUqKCMGjUqw+cqOjpacXFxUVxdXZW4uDh1+zvvvKMAyi+//JLumKwmKHPmzFEApVu3blm8apHXpIlH5KqTJ08C0KFDh3T7qlWrhre3Nzdu3CAiIsKoat/BwYF69epl+LgZ7f/3338BOH36tFGflFSXL18G4MKFC9SqVYtjx46h1+tp27YtTk5O2bq2jM4dERFh8twPHz5Uzw2GvidXr16lbNmyVK5cOV15X19ftZnE0lWvXt1kn4wDBw7wyy+/sHLlStzd3enUqRMPHjzgzz//JDo6mvHjxxMXF5dutE9mIiIi1OfN2toad3d3unXrxrhx4+jevTuQ+fuyWLFiNGzYkP3793Px4kXq16+f6fnOnTvHN998w/79+7l//z7x8fFG+00NWX3a+zsz0dHRPPfcc9y9e5e//vqLVq1aqfsuX75MWFgYVatWZdq0aSaPL1KkiPoehMfPRbt27dKVbdOmDdbW1tmK7+rVq+zZs4fq1avTsmVLdXvXrl3x8vJi3bp1hISE4Onpqe7T6XR88cUXTJo0iW3btuHv78/Jkyc5cuQIv//+OwsXLmTOnDlGzaMAy5cvJyoqitdeew0HBwd1+/Dhw/nuu++YN28eY8aMyVb8qZQnmgSF9iRBESaVKlWKCxcuZHt+gNROdqVKlcrwcW/dukV4eLhRglKiRIlMPxgy2h8aGgo87qCXkdQ5NlLnSyhTpkym5bMi9dw7duxgx44dTz136nNTsmRJk+W8vLyeOaancXV1JSQkhIiICLUfQFqpMaa+Nqn/Z9R5MnX70/puAMTFxTFy5Ej69OlDv3792LFjBwEBASxdupQXXngBMHTO/uijj7h27ZrJJM6U8uXLP3Wemqy8L4FM59MA8Pf3p0OHDiQnJ+Pn50evXr0oWrQoVlZWnDp1ivXr15vsCP6093dGUlJSGDBgAAEBAcyYMYMBAwYY7U99D165ciXT5DbtHDOZvQ9tbGyMEomsmDdvHoqipJtg0MbGhpdffpnvvvuORYsW8e6776Y71s3NjQEDBqjXFRMTw5dffsm0adMYP348vXr1Mopz7ty5AOnOVadOHRo3bsyJEyc4fvw4TZo0ydY1gGHoM0Dx4sWzfazIGzKKR5jUpk0bwDDqITtSv9CCgoJM7k/tIf9kx8infXhntD/1cU6fPo1iaLI0+W/YsGHA4y/S3JiYKfXcs2bNyvTcqSNcUsunjhJ6UkbPWW6qXr068LhmKa379+8TExODt7e32gnTycmJMmXKEB0dbXJ0w5UrVwBD7djTfPjhh4SGhvLzzz8Dj2uW0nZgbty4MQDnz5/PzmU9VU7fl0+aNm0acXFxbN++nS1btjBz5kw+++wzPvnkk0w7aOb0V/n48ePZvHkzo0ePNjlHR2q8L7zwQqbvwRs3bqQ7xtT7MDk5mZCQkCzHl3akzgcffJButFHqCK2n/YBI5eTkxOeff06bNm1ISEjg0KFD6r4zZ85w9OhRAFq2bJnuXCdOnAAeJzHZtWfPHoAcd7QVuU8SFGHSK6+8gq2tLWvWrHnql0XaX4ypEyuZmrb76tWr3Llzh4oVK2bpF3dWtGjRAjA0HWRFs2bNsLKyYv/+/cTExDy1fGp1d0pKyjOf28XFhSpVqnD37l2TE6rlx1TnqU0cpoaGpzbJPNkMkpNjnnT06FFmzpzJrFmz0v1yT/v+ebK5JLdk9r4MDw/n1KlTODg4ULNmzUwf5+rVq7i7u5scYZPbo7C+++475syZQ+fOnfnll19MlqlRowZubm74+/uTlJSUpcdNTQhNxXvw4EGT7/WMrF+/ngcPHlC9enVGjhxp8l+lSpW4fPlytp4fFxcX4HGzCzxOPHx9fTM8V5EiRfjrr7+yPSvx7t27OXToEEWKFFFr84QZyL/uLsLSpI44qVChgnLs2DGTZbZs2aK0b99evZ86QqBChQrKgwcP1O3JyclK7969FUCZNm2a0WM8bWKozPaHhIQobm5uSvHixZUjR46k25+SkpKu8+GgQYOyPIrnvffeUwBl9+7dJs/v4+OjWFlZKfPnzze5/8yZM0aTk6U+p3379tVkFM/169fzfKK2JyUkJCi1atVSevToYbR9x44dCqB8+umn6rbUCd1MdSJ+UmajeEyVtbW1VVxdXZUrV64Y7Rs3bpwCKKNGjTLabqqTbJcuXRRAOX36tNH233//Xe3ouXDhQqN9T3t/m+oku2bNGsXKykqpW7fuUzsNf/jhh+r7+ckRRIpimPQs7Qi3gwcP5toonk6dOimAsmLFigzLpD43gwYNUrd9/fXXyn///Wey/IEDBxQHBwfFxsZGuXv3rqIoihIbG6u4ubkp1tbW6jZTBg8erADK3Llz1W1Pm6htzZo16kRtX3/99dMuWeQjSVBEpj799FPFyspKAZRWrVopb775pjJlyhRl5MiRStWqVRVAadKkidExkyZNUoeejh07VnnvvfeUOnXqKIDSpk0bJSEhwaj8syQoiqIoO3fuVFxcXBSdTqd07NhRmTBhgjJx4kSlb9++SunSpRV7e3uj8mFhYUq9evUUQKlRo4YyYcIE5b333lP69eunuLi4GH1RbN26Vf0wnzRpkvL5558rs2fPVvffvn1bfR7q16+vvPrqq8qkSZOUQYMGqdf877//quXj4+OVpk2bquUnTZqkvPrqq4qbm5vSq1evbCco8+bNU4YNG6YMGzZMad26tQIo9erVU7eZmhnzxx9/VADFw8NDGTt2rDJx4kTF29tbAZR33nnH5HnefvttBVC8vb2ViRMnKmPHjlU8PDwUwOj5MOV///uf4urqqty5c8dou16vVxo3bqxYW1srI0aMUPr3768ARiNOMpOdBEVRFOXnn39Wh7aOHDlSef/995WWLVuq74O0X9aKYjpB2bJli9FjvP3220rbtm0VKysrdTh1biQoRYoUUfj/mVZTRyil/Zf2HImJiep7p0yZMsqQIUOU999/XxkxYoSaQD/5Phg/frwCKKVKlVLGjx+vvP3220rlypWVJk2aKKVKlcrSc3r9+nVFp9Mpnp6e6f6m04qKilKcnZ0Ve3t79TmuX7+++rwPHz5c+eCDD5Q333xT8fPzU3Q6nQIo3333nfoYqcl3z549M41p79696T6TUp/fdu3aqc/fpEmTlMGDBysVK1ZUAMXe3l756quvnnrNIn9JgiKe6vz588q4ceOU2rVrKy4uLoqtra3i5eWldO3aVfn999+Nhmam+uuvv5TWrVurH0y1atVSpk2bZjQ0MNWzJiiKYviyeuONN5QqVaoo9vb2iouLi1K9enVl8ODBytq1a9OVj46OVqZNm6bUrVtXKVKkiOLs7KzUrFlTmTBhglGNh6IYho/WqFFDsbOzM/mFGBkZqUyfPl1p1KiR4uTkpDg4OCgVKlRQunfvrvz222/phjNHREQob731lpo8Va9eXfn222+Va9euZTtBSR0GndG/du3amTxuw4YNStu2bRVnZ2fF0dFRadKkibJo0aJMz7Vw4UKlSZMmiqOjo+Ls7Ky0bdtW2bhxY6bHBAQEKDY2NhnOp3P79m2ld+/eipOTk+Lq6qoMGzYs28OMszMkdtu2bUqnTp0UNzc3xc7OTqlcubLy3nvvKY8ePUpXNqNhxhs3blSaN2+uODs7K66urkqnTp2Uffv2qV+iuZGgZPaamnpd9Xq9smTJEqVDhw5KsWLFFFtbW6V06dJK69atlenTpyu3bt1KV3727Nnq+7pUqVLK2LFjlfDw8CxPdT9lyhQFUN56662nlh09erQCKN9//72iKIpy8uRJ5fPPP1fat2+vVKhQQXFwcFDs7e2VSpUqKYMGDVIOHDhgdHyrVq0UQFm/fv1Tz1WtWjUFUAICAhRFefz8pv7T6XSKs7OzUq5cOaVbt27Kl19+mS55FuZBpyhpGvmEEEIIIcyAdJIVQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZsciE5T4+HguXbqUZ9NiCyGEEEJbFpmgBAYGMnr0aAIDA7UORQghhBB5wCITFCGEEEIUbDbZPSA2Npbly5dz/vx5Lly4QFRUFB988AHdunXL8mMcP36cpUuXcvnyZfR6PWXLlmXgwIH4+fllNxwhhBBCFEDZTlAiIiJYtGgRJUuWpEqVKgQEBGTr+M2bN/PVV1/RpEkTRo8ejbW1Nbdu3eLBgwfZDUUIIYQQBVS2ExQPDw/Wrl2Lh4cHFy9e5NVXX83ysffv3+eHH36gT58+TJgwIbunFkIIIUQhke0+KHZ2dnh4eOToZOvXr0ev1zNy5EjA0FwkaxUKIYQQ4knZrkF5FidOnKBcuXL4+/szZ84cHj58iIuLCy+88AIjRozAysp0vhQSEkJoaKh6X0bvCCGEEAVbviYod+7cwcrKii+//JKBAwdSuXJl9u/fz5IlS0hJSeG1114zedyGDRtYtGhRfoYqhBBCCA3la4ISFxeHXq/ntdde4+WXXwbA19eXqKgoVq9ezZAhQ3B0dEx3XK9evWjdurV6PzAwkGnTpuVb3EIIIYTIX/maoNjb2xMXF0fHjh2Ntvv5+XHkyBEuX75MgwYN0h3n6emJp6dnPkUphBBCCK3l60RtqZ1rixUrZrQ99X5UVFR+hiOEEEIIM5WvCUr16tUBQ6fXtFLvu7m55Wc4QgghhDBTeZaghISEEBgYSHJysrqtQ4cOAGzatEndptfr2bJlC0WLFlUTGCGEEEIUbjnqg7JmzRqio6PVob+HDh1SZ4Lt27cvzs7OzJ07l61bt7JixQpKlSoFQJs2bWjcuDHLli0jPDycKlWqcODAAc6cOcO7776LnZ1dLl2WEEIIISxZjhKUFStWEBQUpN7fv38/+/fvB6Bz5844OzubPE6n0zF9+nR+//13du/ezdatWylbtixTp06lc+fOOQlFCCGEEAWQTrHAqVwvXbrE6NGjmTdvnjQLCSGEEAVQvnaSFUIIIYTICklQhBAij8U+iufE6ivEPorXOhQhLIYkKEIIkcdiwxMI+PsqseEJWocihMWQBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBMXCyIyUQgghCgNJUCyMzEgphBCiMJAERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUYZJMqS+EEEJLkqAIk2RKfSGEEFqSBEUIIYQQZkcSFCFEoSVNmUKYL0lQhBCFljRlCmG+JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSlFwQ+yieE6uvEPsoXutQhBBCiAJBEpRcEBueQMDfV4kNT9A6FCGEEKJAkARFCCGEEGYn2wlKbGwsCxYs4N1336VHjx60bduWLVu25OjkX3/9NW3btmXy5Mk5Ol4IIYQQBVO2E5SIiAgWLVpEYGAgVapUyfGJL168yJYtW7Czs8vxYwghhBCiYMp2guLh4cHatWtZtWoVY8aMydFJFUVh1qxZdOnSBXd39xw9hhBCCCEKrmwnKHZ2dnh4eDzTSbdt28aNGzcYPXr0Mz2OEEIIIQqmfO8kGxsby6+//srgwYOfOdERQgghRMFkk98nXLRoEfb29vTv3z/Lx4SEhBAaGqreDwwMzIvQhBDC4sU+iufCrtvU9CuLYzEHrcMRIsfyNUG5ffs2q1ev5qOPPspW59gNGzawaNGivAtMCCEKiNR5mco3LiEJirBo+Zqg/Pjjj9SpUwdfX99sHderVy9at26t3g8MDGTatGm5HJ0QQgghzEW+JSgnTpzgyJEjTJs2jfv376vbU1JSSEhI4P79+xQtWhQnJ6d0x3p6euLp6ZlfoQohhBBCY/mWoDx48ACAqVOnptv38OFDBgwYwLhx47LVN0UIIYQQBVOeJSghISHExMRQpkwZbGxsaNSoEdOnT09X7ptvvsHLy4shQ4ZQqVKlvApHCCGEEBYkRwnKmjVriI6OVkfWHDp0SK0h6du3L87OzsydO5etW7eyYsUKSpUqRcmSJSlZsmS6x5o9ezbFihXDx8fnGS5DCCGEEAVJjhKUFStWEBQUpN7fv38/+/fvB6Bz5844OzvnTnRCCCGEKJRylKCsXLnyqWWmTJnClClTcuWxhBBCCFG45PtMskIIIYQQTyMJihBCCCHMjiQoQgghhDA7kqAIIYQQwuxIgiKEEEIIsyMJihBCCCHMjiQoQgghhDA7kqAIIYQQwuxIgiKEEEIIsyMJihBCCCHMjiQoQgghhDA7kqAIIYQQwuxIgiKEEEIIsyMJihBCCCHMjiQoQgiRh/R6hYfXIwB4eD0CvV7ROCIhLION1gEIIURBdeNoEP5LLhATFg/AofnnOLX2Gi2G1qRiMy+NoxPCvEkNihBC5IEbR4PYNTNATU5SxYTFs2tmADeOBmkUmRCWQRIUIYTIZXq9gv+SC5mW8V96QZp7hMiEJChCCJHLgi6Gpas5eVJMaDxBF8PyKSIhLI8kKEIIkcviwhNytZwQhZEkKBZERgMIYRmKuNnnajkhCiMZxWMhnhwNcHD+f2zasIektg8JcwnmbtRdUpQUitgUobxreWqXqI1vBV9KOJXQOHIhsif2UTwXdt2mpl9ZHIs5aB1OpiITItl3cx9nH5zlWtg1YpNjURSFkk4lCS+jp1xIVcomVMIK63THOnk44FXDXYOohbAMkqBYgNTRAACPbEI44LqVw647CbV9AP9lfmwL7xaMbjSal+q8hKOtYz5EK8SziQ1PIODvq5RvXMIsE5QUfQobL2/k1+O/svvGbpL0SaYLOhv+OScXpXlke9pGdKN0Yjl1d4shNbGy0uVP0EJYIElQzFzqaIAo6wj+8fiLfW6bSdElZ/l4/zv++N/x53+7/8eHbT9kdKPR2Frb5mHEQhRMiqKw9uJa3t/5PlfCrmT5uGibSHa5r2d3sQ00ifLhpeRRvPByJ5kHRYinkATFzN2/EMqO5E2sqPgbsdbR6nadYkWN2HrUjmlMuYTKvDDaj7LVSxKVGMX1R9c5fPsw/1z+h3MPzwEQFB3EG5vfYO6JuSzovYBGpRppdUnpWFKVviicbkXcYsT6Eey6sctoeznXcvSs1hOfcj5U96yOq70rekXP3ai7nAk+w+4bu9l8ZTMJKQkoOoVjRfdzxvoIcfEfMillkvxYECITkqCYsaiEKEbuH8a2UpvVbXZ6e/we9cI3/Dnck4ur20uleFPerTQAdUrUoVf1Xszwm8Gxe8f4+tDXrLmwBoDTwadpNq8ZX3b8kndavoNOp30Vs7lX6YvCbeW5lYzeOJrIhEh1W9vybXm/9ft0qdIFK136sQaV3SvTtnxbxjUbx6O4R8ze9TPfHvmWKJsIElISmLpnKv9c+YeV/VZS1rVsfl6OEBZDRvGYqWth12g5vyXbHjxOTppHtmf69fn0CXnFKDkB06MBdDodzco0Y3X/1fiP9KdeyXoApCgpvLfjPQasHkBsUmzeXogQFkqv6Ploz0cMWD1ATU68i3qzbsA69g7bS7eq3UwmJ08qVqQYY2uP54vrCxhX+031GP87/jSa24gDgQfy9DqEsFSSoJih4/eO0+z3ZmrzjKPemTF3pzLq/nu4paTv9Z+V0QDNvZtzbPQxprSZom5bdX4VXZd1JSI+IncvQAgLl5SSxKA1g/h8/+fqtkF1B3F2zFl61+ido5pHB6UIHzf+DP+R/lRwqwBASGwInZd1ZuOljbkVuhAFhiQoZsb/jj9+S/wIizPMMFnDswYbfbfRKLpVhsdkdTSAnbUd0/2ms/6l9bjYuQBw4NYB2i9uz8OYh7lzAUJYuMSURAasHsCKcysA0KHj207fsuyFZbg5uD3z4zct05QTr56gU6VOAMQnx/PCihdYdmbZMz+2EAWJJChm5MidI3Re2lmtTm5bvi3+I/3p0L4VfhMb4uRu3D/DycMBv4kNsz0aoFf1XuwethuPIh4ABAQF0GVZF6M2diEKo6SUJPqv6s/ai2sBcLBxYP1L63mnVe7213Iv4s4/g/5hYJ2BgKHZddi6Yfx94e9cO4cQlk4SFDNxOfQyPf7sQVRiFAB+Ff3YPGgzrg6uAFRs5sWAH31pPbI2AK1H1mbALN8cD1VsUroJB145QBmXMoAhSem9vDfxyZmvHyJEQaUoCq/98xrrL60HDMnJxoEb6Vm9Z56cz87ajmV9ljG2yVjA0Odl4JqB7Ly+M0/OJ4SlkQTFDARHB9N1WVdC40IBaF+hPRsHbsTJzsmonJWVjuKVDAlL8UquzzzJU83iNdkxZIdak7L35l4G/z0YvaJ/pscVwhJN2z+NhacWAmBvbc8/A/+hY6WOeXpOK50Vs7vPZlj9YYCheen55c9zNvhsnp5XCEsgCYrGElMSeX7F89wIvwFA3RJ1WTtgLUVsi+TL+WsWr8nmlzfjZGtIhtZcWMO0fdNkzR9RqKy5voqP9n6k3l/6wlL8Kvnly7mtdFb83ut3nq/xPAAxSTH0Xt6bkNiQfDm/EOZKEhSNvb3tbfzv+AOGIYybX37crJNfmpVpxsoXV6LDUCPz8b6P+Xn5fAAOzT/Hijf3cuNoUL7GJEReS118867dTSYeHq9u/6bTN7xY+8V8jcXGyoY/+vxB41KNAbgRfoP+q/qTlJLBNPpCFAKSoGho6eml/HzsZ8BQpbxuwDq8i3prEkv3qt15p9r76v35pb7hge19AGLC4tk1M0CSFFFg3DgaxIo397Jz4THmlJlOvN7Q9+pF74G80/IdTWJytHVk3UvrKOlUEoA9N/fw8d6PNYlFCHMgCYpGLode5vVNr6v3f+nxC41LN9YsHr1eoeGhjjSJ9AEg3jqO30t9RTKP1/3xX3pBmnuExUtdfDM6LI6lJX8k2O4uAGXjK+G7uz83jwVrFpt3UW/WDliLjZVhku8vD37Jruu7nnKUEAWTJCgaSNYnM2TtEHUW15ENRzKi4QhNYwq6GEZsWALDgiZQItEwZf6NIpfZ4Pl4boaY0HiCLoZpFaIQzyx18U2Aoy57OVZ0PwCOKc6Mufc/7BR7zRPxlmVb8kWHLwBQUBi8djAPYh5oFo8QWpEERQNfHPiCo3ePAlDNoxqzus7SOCKIC08AwEFxZNT9SVgr1gBsdV/F5SJn05UTwhIFXQwjJiyeMJsQ/iw5R90+OHgcxZNKAeaRiL/T6h26VO4CGBb6fO2f11AUqb0UhYskKPns2N1jfLbvMwCsddYsfWFpuuHEWki7lk/F+Go8HzIUAEWnsNhrFom6hHTlhLA0ceEJKCgs9vpBXR28WaQvTaPapiunJSudFYufX0xxR8OaW+surmPV+VWaxiREfpMEJR8lpiQyfP1wUpQUAKa2nUqzMs00jsrAq4a70Uy1ncP6UDmuJgAP7O6xwXNZltb8EcKcFXGzZ7/rFs47BQDgluTBoOAxJstpraRzSX7u/rN6f9zmcWa1JEXso3hOrL5C7COZ3FHkDUlQ8tG3h7/l/MPzADQu1Zj/+fxP44ges7LS0WJozcf3sWZY0ARs9IbOetuLrcWxV8IzTw4nhKa8E/m7xEL17vCgt3DSuxgVMadEvF+tfvSp2QeAh7EPmbB1gsYRPRYbnkDA31eJlWZfkUckQckn18KuqSujWumsmNdzHrbWthpHZaxiMy+jNX9KJZbjudCXAVB0ej68OknmZRAW7b2d7xJrFQNAq4iO1I5tlK5MVhffzA86nY6fu/9MMYdiAPz1319svrJZ46iEyB+SoOQDRVEYu3msus7NxOYTaViqocZRmfbkmj+f9v6Q+iXrA3D2wVl+OfaLluEJkWM7r+/kz7N/AuBmW4yhSWON9ud08c285uXsxcyuM9X7E7ZOICFZai1EwScJSj5YdX4V269tB6Bs0bJ82v5TjSPKXNo1f0pX8WRuz7nqvo/3fixDHoXFiU+OZ+ymxwnJt12/YfSs53Nt8c28NqTeEHzKGeYouhp2le///V7jiITIe5Kg5LG4pDje2/Geen92t9k42zlrGFH2NSvTjFcavAJAREIEU3ZN0TgiIbLnxyM/ciXsCgCty7bmlYav5Prim3lJp9PxU/efsNIZPrKnHZjG7YjbGkclRN6SBCWP/eD/A7cibgHQpXIXetforXFEOTPDbwZF7YsCsCBgAcfuHtM4IiGy5kHMA6YfmA4Y+n/90uMX9YvektQrWY83mr4BQGxSLO9s12ZKfiHyi+X9lVqQ+1H3mXFwBmCY8+S7zt9pHFHOlXQuyae+hqYpBYU3t74pE0cJi/Dxno+JTIgEDLM21ytZT+OIcu5T30/xdPQEDE3Hh28f1jgiIfKOJCh5aOruqUQnGiaDeq3xa9QuUVvjiJ7NG03foKanYSiy/x1/1l1cp21AQjzFuQfnmHvS0IfK2c6Zz9p/pnFEz6ZYkWJM7zBdvT9pxyT5oSAKLElQ8sjZ4LMsPGWYb8HV3tXsO8Zmha21LV92/FK9/8GuD0jWJ2dyhBDaenfHu+gVPQBT2kzBy9k8O8Fmx4iGI6jhWQOAQ7cPsf7Seo0jEiJvZDtBiY2NZcGCBbz77rv06NGDtm3bsmXLliwde+LECb788ksGDRpEp06dGDBgAF999RUhISHZDtzcTd0zFQXDL5upbaeq1bKWrme1nrQp1waAS6GXWBCwQOOIhDBtf+B+tl7dCkA513JMbDFR24ByiY2VDV/6Pf6h8P7O9+WHgiiQsp2gREREsGjRIgIDA6lSpUq2jv31118JCAjAx8eHCRMm4Ofnx549exg1ahShoaHZDcVsHblzhA2XNgBQxqUM45qN0zii3KPT6fiq41fq/U/2fkJMYoyGEQmRnqIo/G/345maP/P9jCK2RTSMKHf1qt6L1mVbA4YfCvNPztc4IiFyX7YTFA8PD9auXcuqVasYMyb9GhaZeeONN/jrr78YM2YMzz33HK+++ipffvklYWFh/P3339kNxWyl/WD8sO2HONg4ZFLa8rQq24oXarwAwP3o+/x45EeNIxLC2PZr2zl46yAANTxrMLjeYI0jyl06nY5vOn2j3v98/+fqRJBCFBTZTlDs7Ozw8PDI0ckaNGiAlZVVum1FixYlMDAwR49pbvbc2MOuG7sAqFSsEiMajtA4orzxhd8X6lDN7/79jqiEKI0jEsJAURSm7pmq3v/U91Osraw1jChvtCzbkl7VewFwN+ouv5/8XeOIhMhdmneSjY2NJS4uDldXV61DeWZPVit/6vup2a23k1tqeNZgUN1BAITGhfLzsZ+fcoQQ+WPdxXUcv3ccgPol69OvVj+NI8o7n7T7RL094+AMqUURBYrmCcqqVatISkqiQ4cOGZYJCQnh0qVL6j9zrW3ZeXcH/975F4DaxWszsM5AjSPKW1N9pqq1KN8e/lZqUYTm9Iqej/Z+pN6f1mGaRU7KllUNSzXk+RrPA3Av6p7UoogCxUbLk586dYpFixbRvn17GjdunGG5DRs2sGjRovwLLAcUFH44+616/7P2nxXIauW0qntWZ1DdQSw7s0ytRXm/zftahyUKsbUX1vLfg/8AaOHdgh5Ve2gcUd77uN3H6pxEMw7O4PleL2obkBC5RLOfFoGBgUydOpVKlSoxefLkTMv26tWLefPmqf+mTp2aafn8pNcrPLweweUiZzn28ChgqD1J/VVT0EktijAXiqLwxcEv1Psft/sYnc5819fJLQ28Gqid1u9F3WPOv78C8PB6BHq9TOJW2MU+iufE6ivEPrK85j9NEpTg4GDeeecdnJyc+Oqrr3B0dMy0vKenJ9WrV1f/lS9fPp8izdyNo0GseHMvh+afY5PHcnX7qNJjC3S1clqptSggfVGEtrZf287J+ycBaFSqEV0qd9E4ovzzcbuP1du/XJpNki6JQ/PPseLNvdw4GqRhZEJrseEJBPx9ldjwBK1DybZ8/xaNiIjgnXfeISkpiW+//RZPT8ucwOzG0SB2zQwgJiyeGw6XuOB0CoDiiV4UWVmuUH0opK1Fmek/UzrqCU2krT2Z0mZKoag9SVX0VkkaRrUCINw2FP+iuwGICYtn18yAQvV5JAqOPEtQQkJCCAwMJDn58QyHcXFxTJo0iZCQEL7++mvKli2bV6fPU3q9gv+SC+r9ze4r1Ntdw/pjjTX+Sy8UmurV6p7V1ZESwTHBLD61WOOIRGFz8NZB9gfuBwwjzF6o+YLGEeWf1M+jbmGP+55sc1+NnhT1fmH6PBIFR446ya5Zs4bo6Gh19tdDhw7x4MEDAPr27YuzszNz585l69atrFixglKlSgHw+eefc+HCBbp3705gYKDRaJwiRYrg4+PzrNeTL4IuhhETZqgluGN3g1Mu/gC4JXnQMtIPgJjQeIIuhlG6Vs7mjLE0k1pNYuW5lQB8+++3jGo0qsB3EhbmI3XVcID3W79faJpY4fHnUUWqUz2mHpeczhBsd5dTzv40ijbMNlvYPo9EwZCjBGXFihUEBT2uMty/fz/79xt+vXTu3BlnZ2eTx129ehWAzZs3s3nzZqN9Xl5eFpOgxKVpy9visVK93eVRX2wVW5PlCrrGpRvjV9GPXTd2cTXsKmsvri3Q808I8xFwP4DNVwyfJ+Vcy6l9ogqLtJ8zXcNe5JLTGQC2uK+iYXQrdOjSlRPCEuQoQVm5cuVTy0yZMoUpU6Zk+zhLUMTNHoAQm2COuRwAwDm5KD7hXU2WKywmt56szqL71aGv6Fuzb6HqByC08eWhxwvnTWo1qcBOjpiRtJ8ztWMbUTa+ErcdrnOzyGUuOp6mZmyDdOWEsASFpx40F3nVcMfJ3YHdxTag6AxLubcP74m98njNHScPB7xquGsVoiY6VupIQ6+GABy/d5y9N/dqG5Ao8ALDA1l9fjUAJZxKFNilJTKT+nkEoENn1Bdlq/sqoHB+HgnLJwlKDlhZ6ag1sAwHXA1LudvobWkf/pxRmRZDamJlVbhqD3Q6HZNaT1Lvf3Xoq0xKC/HsZh+djV4x/Eh4o+kbBWrF4qyystLRYmhN9X6jqDYUT/QC4LxTALftrxfKzyNh+SRByaFdVv8Qbx0HQMtIP1xSDGsJOXk44DexIRWbeWkZnmb61epHRbeKAGy7to3TQac1jkgUVFEJUcw7OQ8Ae2t7Xm/yusYRaadiMy/8JjbEyd0Ba6zp9OjxKKbzrQ8W2s8jYdkkQcmBZH0ys47MUu9P6vAuAK1H1mbALN9C/WFgY2XDOy3fUe+nfZ6EyE0LAhYQmRAJwJB6QyjhVELjiLRVsZkXA370pfXI2rSM6EhR66IAbAj6mwcxDzSOTojskwQlB/6+8De3Im4B0L1qd1rUaQJA8UquUo0KDGswDFd7Q43Sn2f/5GHMQ40jEgVNij6FmUdmqvcntpioWSzmxMpKR/FKrjgoRRhaYzgAiSmJzDk2R9vAhMgBSVCySVEUvvv3O/X+2y3e1jAa8+Rs58yoRqMASEhJ4LcTv2kckSho1l1cx83wmwB0qdyF2iVqaxuQGRpZfTTWOsNcRL8c/4WEZBlmLCyLJCjZ9O+dfzl617AoYL2S9ehQsYPGEZmncc3GqZNl/XLsFxJTEjWOSBQkP/j/oN5+u6X8SDDF27ksfWv1BeBBzAOW/7f8KUcIYV4kQcmmtH0q3m7xtszzkYEKbhXoXb03APej76tDQYV4VsfuHuPQ7UOAYeXwTpU6aRyR+ZrYfKJ6+wf/H1AUme5eWA5JULLhXtQ9/r7wN2CYc+GlOi9pHJF5m9B8gnpbOsuK3DL76Gz19sQWE+VHQiZaeLegWZlmAJwOPs2+wH0aRyRE1kmCkg1zT8wlWW9Y/HB0o9HY28jMjJlpW74t9UvWB+Do3aP43/HXOCJh6R7GPGTFOcPinMUcihW6ae2zS6fT8VaLt9T78kNBWBJJULIoMSVR7exprbPmtcavaRyR+dPpdFKLInLV/ID5an+mEQ1H4GjrqHFE5q9vzb6UdikNwIZLG7gdcVvjiITIGklQsmjthbUERRsWSOxdozdlXctqHJFlGFh3IJ6OngCsPr+a4OhgjSMSlipFn8Kvx38FDFO6j2kyRuOILIOttS2vNnoVAL2iVye3E8LcSYKSRT8d+0m9/UbTNzSMxLI42DgwqqFhyHGyPpn5AfM1jkhYqk1XNhEYEQhA1ypdqexeWeOILMfoxo+HHM87OU9G1QmLIAlKFpwJPsPBWwcBqOlZk/YV2msckWV5rclr6pLvv534jRR9isYRCUv087Gf1dvyIyF7SruU5oWahunvg6KDWHdxnbYBCZEFkqBkwc9HjT8YZdRA9lRwq0C3qt0AuBVxiy1Xt2gckbA0l0Mvs/3adgAqulWka5WuGkdkecY2Gave/uXYLxpGIkTWSILyFOHx4Sw7uwwwzJA6pP4QjSOyTGn7C8w5LtNui+xJO1X72KZjsbay1jAay+RbwZcanjUA2Be4j3MPzmkckRCZkwTlKRadWkRsUiwAw+oPo6h9UY0jskzdqnSjnGs5ALZc2aJOUy7E08QkxrDw1ELA0KdpRMMRGkdkmXQ6nVEtivxQEOZOEpRMKIpitI7M2KZjMyktMmNtZa2OJFBQmHtirsYRCUux/L/lRCREADCwzkDci7hrHJHlGlp/qDo0e8npJUQlRGkckRAZkwQlEwdvHeRiyEXAMOlYreK1NI7Iso1sNBIbKxvAeD4LITIz9+TjZFaGFj8bVwdXBtcdDEBUYhR/nP1D44iEyJgkKJlI+8GY+utf5JyXsxd9avYBDIuXpS4bIERGTgedVhfnbOjVkCalm2gckeUb09S4P5iszyPMlSQoGQiLC2PVuVWAYUrt1FVBxbORzrIiO9JOKja60WgZQZcLGng1oHmZ5oBhCoXj945rHJEQpkmCkoFlZ5aRkJIAGNptHWwcNI6oYGhXvp06kmB/4H4ZSSAyFJscy7IzhhF0jraOsu5OLhrdaLR6W2aWFeZKEhQTFMW4E2faP2bxbHQ6Ha83fl29//vJ3zWMRpizDYHr1M6xA2oPwNXBVeOICo4BdQbgbOcMwF///UV0YrTGEQmRniQoJvjf8efcQ8Mv+1ZlW1G7RG2NIypYhtYfir21YSXoJWeWqDVVQqS15PJi9farjaUPWG5ytnNmUB1DjVR0YjTL/1uucURCpCcJignSOTZvFSvyuE9PWFwYK46vBuDh9Qj0eumwJ+CuXSDHHh4BoE6JOmqfCZF7Rjd+XDMsNZnCHEmC8oTw+HBW/LcCAFd7V16s/aLGERVMqQsIAsz//w/HQ/PPseLNvdw4GqRVWMJMHHDdqt6WzrF5o3GpxjTwagDAkbtHOBt8VtuAhHiCJChP+OPMH8QlxwEwpN4QdVIjkbvKPahO8cRSAJx3CiDEJhiAmLB4ds0MkCSlEItPiedf112AYebYwfUGaxxRwaTT6Yx+KEhnWWFuJEFJQ1EUo+adtFWgIvfo9QpHl16idURnddsh1x1GZfyXXpDmnkJIr1f489hyYq0NnTb71uwnM8fmoZfrvUwRmyIALD2zlLikOI0jEuIxSVDSOHbvGGeCzwDQvExz6pWsp3FEBVPQxTBiwuJpHdERnWJ4Cx5y3Y6eFLVMTGg8QRfDtApRaODG0SBWvLmX+afmq9sqH2gitWl5yM3BTW3GDo8PZ82FNRpHJMzB+ovr8V3ky+JTi4lJjNEsDklQ0kg7tFhGDeSduHDDqB23FA/qxTQF4JFtCOecTposl1tiH8VzYvUVYh/F5+rjimd342gQu2YGcC3qKpcdDX0hvBLK4h1cVZr88pjMiSKeND9gPvsC9zF8/XAO3DqgWRySoPw/RVG49ugaAC52LgyoPUDjiAquIm726u02aZp5Drpuy7BcbogNTyDg76vE5nLiI56NXq/gv+QCAAddt6vbfSK6oMPQOVaa/PJO67KtqelZEzBMnng59LLGEQktBUUHsfnKZgDKuJShU6VOmsUiCcr/0+l07Bm2hxOvnuC3537Dyc5J65AKLK8a7ji5G2bmrRPdFNfkYgCcdj5CpHU4AE4eDnjVkL4HhUFqk18KKfj/f+dYa8WalpF+ahlp8ss7Op2OUY0ed5aVIceF2x9n/iBFMTS3D60/FGsra81ikQTlCY1KNWJg3YFah1GgWVnpaDHU8IvNBhtaRXQEIEWXwr9FDV9QLYbUxMpKhpYWBqlNeeecThBh8wiAutHNcElxNVlO5L6h9Ydia2ULwJLTS0hKSdI4IqEFRVFYeGqhen94g+HaBYMkKEIjFZt54TexIU7uDsajedy302FCAyo289IwOpGfUpvy0o7kStv092Q5kfs8HT3pVb0XAMExwWy9uvUpR4iC6Pi94+os6q3LtqaaRzVN45EERWimYjMvBvzoS5+hnakWWxeA+za3uV/qusaRifzkVcOdFI8ETjsbZo4tmlyMOjFNjMpIk1/ee6XBK+rttL+iReGR9nVP+37QiiQoQlNWVjqKV3LFJ6KLuk1GEhQuVlY67vn8R4ouGYAWkR2wxrjdW5r88l6XKl0o5WyYPHHj5Y08jHmocUQiP8Unx/PXf38BhtXD+9fur3FEkqAIM9EoqjVFbYsCsOr8KqISojSOSOSnDY8ez7/ROuLxqAEnDwf8JjaUJr98YGNlw5B6QwBI1ifzx9k/NI5I5Kd1F9cRHh8OQL9a/XCxd9E2ICRBEWbCTrGnT8V+AMQmxbL6/GqNIxL5JeB+AKeCTgHQrHQzXhzSDYDWI2szYJZvgUhOHN3sadinCo5m3o/mlYbGzTyKIkO7CwujzrH1h2sXSBqSoAiz8VLlQertRacXaReIyFdG7d4NX6F4JcPoneKVXAtMs45jMQca96uKYzEHrUPJVA3PGrTwbgHAmeAzBAQFaByRyA93Iu+w45qhk3oFtwq0q9BO44gMJEGxMJbySywnGnk2Npow6lrYNY0jEnktITlBbUpwsHHgpTovaRyRMOosGyCdZQuDJaeXoGCoLRtefzhWOvNIDcwjCpFllvJLLCd0Op3RuPvFpxdrF4xIJy+WCth4eSNhcYYJ2PrU7IObg1uuPbbImQG1B6gLCP75358kJMv8MwXZk3OfDGswTMNojEmCIszK4HqD1ex98enF6BW9xhGJVHmxVIC5DWsU4OrgSp+afQAIiwtjw6UNGkck8tKh24e4GnYVgA4VO1DBrYK2AaUhCYowK6VdStO1SlcAbkXcYs+NPRpHJPLKvah76oRg5VzL0aFiB40jEqlkTpTCI20znrn9SJAERZidtD3IpbNswbX09FK1hmxY/WFm0+4toH3F9pR3LQ/AtmvbuBt5V+OIRF6ISYxh5fmVgGGR3NSaM3MhnwjC7PSq3otiDoYFBNecX0NkQqTGEYncZm5rfghjVjorhtU39EXQK3qWnF6icUQiL6w+v5roxGjA0PfI0dZR44iMSYIizI69jT2D6hqGHMclx7Hy3EqNIxK5zf+OP5dCLwHQrnw7KhWrpHFE4klpk0aZE6VgSltDnXYOHHMhCYowS2k/HBedWqRZHCJvLAhYoN42t3ZvYVCxWEV8K/gCcCXsCodvH9Y2IJGrrj+6zt6bewGo7lGdlt4ttQ3IBElQhFlqXKoxdUrUAQy9zK+EXtE4IpFbYhJjWHFuBQDOds70q9VP44hERkY0GKHels6yBcviU4+ncRjeYDg6nflNiigJijBLOp3OuLOs1KIUGH9f+JuoRMNaSwNqD8DJzknjiERG+tbqi4udYU2WFedWEJMYo3FEIjfoFb06z5SVzoqh9YdqHJFp2U5QYmNjWbBgAe+++y49evSgbdu2bNmyJcvHR0VF8c0339CzZ086d+7MhAkTuHTpUnbDEIXAy/VexlpnWNV2yZklpOhTNI5I5AaZ+8RyONo6MqD2AACiE6NZc2HNU44QlmDPjT0ERgQC0KVyF0q7lNY4ItOynaBERESwaNEiAgMDqVKlSraO1ev1TJ48mZ07d9KnTx9ef/11Hj16xIQJE7h9+3Z2QxEFnJezF92rdgcMa0XsvrFb44jEs7rx6AZ7bhrmtqnmUY1WZVtpGk9BXjoit6TtPCk1mQWDpfxIyHaC4uHhwdq1a1m1ahVjxozJ1rF79+7lv//+44MPPuCVV16hT58+/Pjjj1hZWbFwobRvmhNz+eB+ciSBsGxply8YXl/7du+CvHREbmnp3ZJqHtUA2HNzDzce3dA4IvEsIuIj1JqwYg7F6Fm9p8YRZSzbCYqdnR0eHh45Otm+fftwd3enbdu26jY3Nzfat2/PwYMHSUxMzNHjitxnLh/cz1V7Do8ihvfb2otrCY8P1zQekXOW0u4tjD3ZH0zWyLJsK8+tJD7ZsJ7WoLqDcLAx3+Q8XzvJXr58mapVq2JlZXzamjVrEh8fL808Ih07aztervsyAPHJ8az4b4XGEYmc2h+4n5vhNwHoXLkzZYqW0TYgkWVD6w9VZ/pddGqRrJFlwSyleQfyOUEJCwszWfuSui00NNTkcSEhIVy6dEn9FxgYmKdxCvNiNCeKTH1vsYxmjk3zi1yYvzJFy9C5cmcAAiMC1fkzhGW5GHKRf+/8C0DdEnVpVKqRxhFlziY/T5aQkICdnV267anbEhJMr5K6YcMGFi1alJehCTPWwKsB9UrW40zwGfzv+HMx5CI1PGtoHZbIhqiEKFafXw2Am4MbvWv01jgikV2vNHhFXdxxQcBC/udqGCTx8HoE7uWLYmVlfvNoCGNpOzm/0uAVzfuAPU2+1qDY29ub7GeSus3e3nSHzF69ejFv3jz139SpU/M0TmFedDqdUVWkjCSwPKvPryY2KRaAgXUGmnW7tzAt7RpZq86sYsfCowAcmn+OFW/u5cbRIC3DE0+RrE9W11SysbJhcL3BGkf0dPmaoLi7u5tsxkndllHnW09PT6pXr67+K1++fJ7GKczPoLqDsLEyVPgtPbNU5kSxMLIwoOVzsHHguRLPA5CoS+C4ywF1X0xYPLtmBkiSYsb23NvN/ej7gGHwQXGn4hpH9HT5mqBUrVqVK1euoNcbd7C6cOECDg4OlC1bNj/DERakhFMJelTtAcC9qHtsv7Zd44hEVl0Nu8qBW4Yvs5qeNWlauqnGEYmc0OsVqp9upt4/7LojXRn/pRfQ62VRQXOh1ys8vB4BGPffs5Q+YHmWoISEhBAYGEhycrK6rV27doSFhbF//351W3h4OHv27KFVq1Ym+6cIkSptM4/MiWI5UquVwXzX/BBPF3QxjBIPylEmwVCDfa3IBYJs7xiViQmNJ+himBbhiSfcOBrEijf3cmj+OaKtItn90PCjzsPOU50A09zlqJPsmjVriI6OVptmDh06xIMHDwDo27cvzs7OzJ07l61bt7JixQpKlSoFgK+vL6tXr2bGjBncvHkTV1dX1q1bh16vZ8SIERmeTwiA7lW7U8KpBA9iHrD+0nrC4sJwL+KudVgiE0/OfTKk3hCNIxI5FReegA4drSI6sarE74ChFqVPyCvpyglt3TgaxK6ZAer9o0X3kWxlqCxoFOTDnROhVGzmpVV4WZajGpQVK1Ywf/581q1bB8D+/fuZP38+8+fPJyoqKsPjrK2t+frrr+nQoQNr1qxhzpw5uLq6MnPmTMqVK5ejCxCFh621LYPrGjp2JaYk8ufZPzWOSDzNnht7uBVxC4CuVbpSyqWUxhGJnCry/7NKt4jsgLViWCPr36K70ZNispzQhl6v4L/kgtG2Q2ma41pHdLKYprgc1aCsXLnyqWWmTJnClClT0m13cXFh8uTJTJ48OSenFoXcKw1f4Xv/7wFDM8+4ZuM0jkhkxhLbvYVpXjXccXJ3gDA36kY35ZSLP+G2oZxzOkndGEO/IicPB7xqSK2mloIuhhETFq/ev2N/g1sOVwEoH1eVMokV1Ka40rVyNit8fsnXTrJCPKs6JerQpHQTAE7eP8mZ4DMaRyQyEhEfwZrzj9f86FW9l8YRiWdhZaWjxdCaALSO7KRuP1T08a/zFkNqynwoGnuyiS3t69M6smOG5cyRJCjC4hh1lg2QzrLmatX5VcQlxwGGYeL2NlL1b+kqNvPCb2JDmtv54JLsCsBpZ38Uz0T8Jja0iH4NBV3aJrZkkvAvalgF3kZvQ7NIX5PlzJUkKMLiDKwzEHtrwx/XsrPLSEyRRSbNUdoJ9WTuk4KjYjMvXv6xI33K9QMg2SqZhJdvS3JiJtSmOOCs8zGibSIBaBDdEie9C2A5TXGSoAiLU6xIMV6o+QIAIbEh/HP5H40jEk+6EnqFQ7cPAYZmucalGmsckchNVlY6RjR+PPJS1sgyH2mb4g4V3alubx3xuFnOUpriJEERFknmRDFvRrUn9WXuk4KoVrHalI83rMdz4v4Jzgaf1TgiyxL7KJ4Tq68Q+yj+6YWzqWIzL+qN8eass2E5ArckD2rFNsTJw8GimuIkQREWya+iH95FvQHYcmULQdEyxba5SNGnsOSMYXI2a501L9d7WeOIRF5J+6tcfihkT2x4AgF/XyU2jzqrHrDejl5nmLW9ZWQHfEbWY8AsX4tJTkASFGGhrK2sGVZ/GAApSgpLTy/VOCKRaveN3dyJNMww2r1qd7ycLecDsSBwdLOnYZ8qOOZDJ8hmkb7YWRlmAF92ZhlJKUl5cp68rG0oiBRFMWp2axXRieKVXC2iWSctSVCExUrb8XLhqYUoivlPPFQYyMKA2nIs5kDjflVxLJb3K0Y76V3oVtawRtbD2IdsurIpT86T17UNBc2J+yf478F/ADQt3hyvJG+NI8oZSVCExariXgWfcj4AXAi5wJG7RzSOSITHh7P24loAPIp48Fy15zSOSOS1l6oMUm9LM495SDv9wsAqltvEKgmKsGgjGj4eSSBzomhv5bmVxCcbquFfrvsydtayAGhB175UB0q7lAZg0+VNBEcHaxxR4RafHM+f/xmWASliU4Tnyz+vbUDPQBIUYdH61eqHk60TAMvPLSc2KVbjiAo3ad4pfKytrBlabyhg6A/2x9k/NI6ocFt/cT3h8eEA9K3VFxe7otoG9AwkQREWzdnOmf61+wMQmRDJ2gtrNY6o8Lrw8AL+d/wBqFeyHg28GmgbkMg3rzQ0HvYv/cG0k7ZzbNrpGCyRJCi5ID97zYv0ZE4U8zA/YL56+5UGr8jcJ4VINY9qtCrbCoD/HvzHifsnNI6ocLobeZft17YDUMGtAr4VfLUN6BlJgpIL8rPXvEivTbk2VHE3TBi168Yubobf1DagQigxJZHFpxcDYGdtx5B6QzSOSOQ3WSNLe0tOL0GvGOY+GVZ/GFY6y/6Kt+zohQB0Oh3D6w9X7y8+tVi7YAqpjZc2EhIbAsALNV7Aw9G8l3EXua9/7f4UsSkCwJ///al2lhb5Q1EUoxrk1HmiLJkkKKJAGNZgGDoMTQqLTi9Sf0WI/PF7wO/q7ZENR2oYidBKUfui9K3VFzAMN19/cb3GERUu+wP3cyXsCgAdKnagYrGKGkf07CRBEQWCd1FvOlfuDMDN8Jvsu7lP44gKj9sRt9l2dRsA5V3L41fJT+OIhFakP5h25p2cp94e3Wi0hpHkHklQRIEhH47aWHhqIQqGURsjG460+HZvkXO+FXyp4FYBgB3Xd3A38q62ARUSj+Iesfr8agDci7jzfI3ntQ0ol8gniSgwetfojZuDGwCrz69W5wIQeUev6FkQsAAAHTqZ+6SQs9JZqX0f9Ipe7Tgt8tYfZ/8gIcWwDMCQekNwsCkYAzYkQREFhoONA4PrDgYgLjmOP8/+qXFEBd+u67sIjAgEoGuVrpR1LatxREJraTtnzg+YL/3B8piiKEbNO6MajdIwmtwlCYooUF5t/Kp6+7cTv8mEUXlMOseKJ1UsVpFOlToBcP3RdXbf2K1xRAXb8XvHORN8BoAW3i2oU6KOxhHlHklQRIFSt2RdWni3AOBM8BmO3TumSRyFYXn4kNgQdebe4o7F6Vm9p8YRCXOR9ofC3BNzNYyk4Pv95OMfCaMaFpzaE5AERRRArzbS/sMxv5aH1zIRWnZmGUn6JACG1h8qCwMKVa/qvSjhVAKAtRfXygKCeSQ6MVpdGNDZzpkBdQZoHFHukgRFFDj9a/enqL1hgay//vuLyIRIjSPKO/mVCD1JURSjX27SvCPSsrO2U0fVJeuTpbNsHll5biXRidEADKwzEGc7Z40jyl2SoIgCx8nOiZfrvgxAbFKsdJbNA0fvHuXcw3MAtCrbiprFa2ockTA3aTtrzjs5TzrL5gGj5p0C1Dk2lSQookCSNvC89duJ39TbBa3dW+SOKu5V8KtomLTvathV9t7cq21ABcy5B+f4986/gGH18Kalm2ocUe6TBEUUSA28Gqh/sAFBAZy4J6ur5pbwhHCW/7ccMExv3r92f40jEuZKfijkHaOhxQ1HFcjVwyVBEQWWfDjmjRXX/yIuOQ6AofWG4mTnpHFEwlw9X+N5ijsWB+DvC3/zMOahxhEVDLFJsWq/Hntre16u97LGEeUNSVBEgfVSnZfUTmN//vcn0UlRGkdk+RQUFl9+vIzA601e1zAaYe7SdpZN0idJZ9lcsuK/FepM2QPqDMC9iLu2AeURSVBEgeVs56x2lo1OjGbtjb81jsjyXS5ylisRlwFoW74ttUvU1jgiYe7Sdt6ce2KuTJ6YC+Ycn6PeHtNkjIaR5C1JUESBlraZZ/EVWUDwWe1126Tefr2x1J6Ip6vqUZUOFTsAcCXsinSWfUYn7p1QJ6Bs4NWA5mWaaxxR3pEERRRojUo1onGpxgCcDj3FDYdLGkdkuYLjgglwOQwYZo7tU7OPxhEJS5F28sRfT/yqYSSWL23tydgmYwtk59hUkqCIAm9s07Hq7T1u/2gYiWX78+oyUnQpgGFiNnsbe40jEpbiyc6y96LuaRyRZQqPD1fndSpqX5RBdQdpHFHekgRFFHgv1XmJYg7FADjmso+Q+BCNI7I8KfoUlvx/51gdOqOmMyGext7GXn3PJOuTZVRdDi0+tbhQjaCTBEVoztHNnoZ9quDolje/yB1tHRnRcAQAyVbJ/HFlaZ6cpyDbfGULd2LuANCmWDvKu1bQNiBhcV5r/BrWOmvAMNFfYkqixhFZFkVRjJrHCsMIOklQhOYciznQuF9VHIs55Nk5xjQZgw5DW+2iy/NJ0afk2bkKmhtHg/h48XT1fv2z7Vjx5l5uHA3SMCphacq6luX5Gs8DEBQdxN8XZFRdduy9uZeLIReBwjOCThIUUShUdq+MX5lOANyJucM/l6UvSlbcOBrE8p83c8ruCADuScWpG9OEmLB4ds0MkCRFZMu4ZuPU2z8d/UnDSCzPL8d/UW+PbTI2k5IFhyQootAYWWO0evunY/Lh+DR6vYL/kgvsdtuIojPMXdE2vDtWWKtl/JdeQK+XeS1E1rQr347axQ2//A/dPsSpoFPaBmQhbkfcZu2FtQCUdCrJCzVf0Dii/CEJiig0OpT2o3hiKQB2Xt+pVpcK04IuhhH6KIxDrtsBsNXb0Taiq1GZmNB4gi6GaRGesEA6nc6oFuXnoz9rGI3l+PnYz6Qohmbp15u8jp21ncYR5Q9JUEShYaWzwje8h3r/l2O/ZFJaxIUncNh1F3HWsQA0j/TFJcXVZDkhsmpwvcEUtS8KwB9n/yAsznwS3NhH8ZxYfYXYR/Fah6KKTYpVRz3ZWtkWis6xqSRBEYWCXq/w8HoErSM64WBl6Iy76NQiIhMiNY7MfNm72rKr2Hr1vt+j3ibLFcmj0VeiYHK2c2Z4/eEAxCXHsSBggbYBpREbnkDA31eJNaOke9mZZTyKfwTAwLoD8XL20jii/CMJiijwbhwNYsWbezk0/xxOeheahvkCEJUYxfyT87UNzoydsjnKAzvDhFrVY+rhnVgxXRknDwe8ahTMhcpE3kk7eeJPR38iWZ+sYTTmS1EUZh2Zpd6f0HyChtHkP0lQRIF242gQu2YGEBP2uMq246Pn1dvfHfhePhwz8NOx2ertjuGma09aDKmJlVXuTrWd1/PiCO1V96xO96rdAQiMCGTN+TUaR2Sedl7fyfmH5wFoU64NjUo10jii/CUJiiiwUkehPKl0YjnqRDcB4G7cHVafkw/HJ10Muci2a9sAKFukHC3t2hrtd/JwwG9iQyo2y/3q5vyYF0do752W76i3v/v3O1nl2IS0tScTm0/ULhCNSIIiCqygi2FGNSdpdXr0eJje13u/lg/HJ8z0n6nefstnIgN/9KP1SMPw0NYjazNglm+eJCei8GhfoT31S9YH4Ni9Yxy8dVDjiMzLldArbLpiWD28nGs5etcwXYtZkEmCIgqszEaX1IxtgHe8oU9FQNhJDt8+nF9hmb3g6GAWnVoEGDo0jmg4AisrHcUrGUbwFK/kmuvNOqLw0el0RrUo3/t/r2E05ue7f79Tb49rOg4bKxsNo9GGJCiiwMpsdIkOnVEtinw4Pjb76GwSUgzJ3WuNX8PVIf3QYiFyw4A6AyjtUhqA9RfXcyX0isYRmYe0PxJc7FwY3Xh05gcUUJKgiALLq4Y7Tu4Z92NoGtUON71hBMraC2u5FnYtv0IzW9GJ0fx8zDB5lq2VLRNbTNQ2IFGg2Vnb8WazNwFQUIyaFguzH4/8aPQjwc3BTduANCIJiiiwrKx0tBhaM8P9tootI2sYloBXUPjB/4f8Cs1szTsxj/D4cABervcy3kW9tQ1IFHivNn4VJ1snABaeWkhobKjGEWkrKiFKXXensP9IyHaCkpiYyJw5c3jhhRfo2LEjr732GseOHcvSscePH2fChAn07NmT7t278+qrr7Jt27ZsBy1EVlVs5oXfxIbpalJSR6F80PtdHG0dAZgfMJ/g6GAtwjQLSSlJRk1d77Z8V8NoRGFRrEgxRjYcCRgmbpt9dPZTjijY5p6Yq/5IGFJvCGWKltE2IA1lO0GZMWMGK1eupFOnTrz55ptYWVkxadIkzpw5k+lxBw8e5J133iEpKYnhw4czatQo7O3tmT59OitXrszxBQjxNBWbeTHgR1+To1A8HD14vbFh6uj45Hi+/7fw9kX567+/uBN5B4Dnqj1XKJZzF+bh7ZZvq51AfzzyI1EJURpHpI3ElESjmtx3WxXuHwnZSlDOnz/Prl27ePXVVxk7diy9evVi5syZeHl5MWfOnEyP/fvvv/Hw8GDmzJn07duXPn368MMPP1CmTBm2bNnyTBchxNNkNgrlnVbvqItv/XL8F7NaGyS/KIrC14e+Vu9Pbj1Zw2hEYVPerTyD6w0G4FH8I+Ycz/z7pKD648wf3I26C0Dv6r2pWTzjJurCIFsJyr59+7C2tqZXr17qNnt7e3r06MG5c+cIDs64ejw2NhYXFxfs7B6vwmhjY4Orqyv29jJjpNBOaZfSjGgwAjB0Ep19pPBVMW+8vJFzD88B0NK7Ja3LttY4IlHYvN/6fXQYfjh8/+/3xCXFaRxR/krRp/D1YfmRkFa2EpQrV67g7e2Nk5OT0faaNQ1Z3tWrVzM8tkGDBty4cYPff/+dO3fucPfuXRYvXsylS5cYOHBgDkIXIvdMaj0Ja501YJi9sTBVMSuKwid7P1Hvv9/mfXQ6medE5K/qntXpV6sfAMExwcwPKFzrZK0+v5qLIRcB8CnnQ8uyLTWOSHvZSlBCQ0Px8PBItz11W0hISIbHDhs2jPbt27N06VIGDRrEwIED+eOPP/jss89o165dpucNCQnh0qVL6r/AwMDshC3EU1UsVpGX670MGKqYfz3+q8YR5Z9/Lv9DQFAAAA29GtKzWk+NIxKF1RSfKertrw99TWJKoobR5J8UfQqf7vtUvf9Ru480jMZ8ZGtquoSEBGxtbdNtT222SUjIeOZOW1tbypYti6+vL23btiUlJYWNGzcybdo0vv/+e2rXzrhD3oYNG1i0aFF2QhUi295v/T5LTy9FQeG7f79jXLNxFLEtonVYeUpRFD7Z94l6/+N2H0vtidBMA68G9Kjag01XNnE78jZLTi9hVKNRWoeV51adX8WFEMO6Ya3Ltsavop/GEZmHbNWg2Nvbk5SUlG57YmKiuj8jM2fO5PDhw3z88cf4+fnRuXNnfvjhBzw8PPjxxx8zPW+vXr2YN2+e+m/q1KnZCVuILKlZvCZ9avYBDFXMhaEWZdOVTZy8fxIwfDn0qt7rKUcIkbemtn38+f75/s9JSM74h29BkKJP4bN9n6n3P/H9RH4k/L9sJSgeHh6EhqafRCd1m6enp8njkpKS2LRpEy1btsTK6vEpbWxsaN68OZcuXTKZ+KTy9PSkevXq6r/y5ctnJ2whsuyjdh+pHfW+OPhFge6L8mTfE6k9EeaghXcLulftDsCtiFvMPTFX44hyn16v8PB6BABLj/2h1p60KddGak/SyFaCUqVKFe7cuUNMTIzR9vPnz6v7TYmIiCAlJYWUlJR0+1JSUtDr9ej1+uyEIkSeqFeyHi/VeQmAkNiQAj319j+X/+HE/ROAofakd/XCt1qqME/T2k9Tb08/MJ3AK/cBeHg9Ar3eslcev3E0iBVv7uXQ/HPoSeG7M9+o+z5pJ7UnaWUrQfH19SUlJYUNGzao2xITE9m8eTO1atWiZMmSAAQHBxt1ZC1WrBjOzs4cOHDAqKYkNjaWQ4cOUa5cORlqLMzGp76fqiN6vv332wI5L0qKPoUPdn2g3v+o7UfywSjMRsNSDY1G9HyxwTD89tD8c6x4cy83jgZpGV6O3TgaxK6ZAcSExQPwb9HdBNnfBqBqbG0qPqylZXhmJ1sJSq1atWjfvj1z585lzpw5bNiwgYkTJxIUFMTrr7+ulps+fTpDhgxR71tbW/PSSy9x+/ZtXn/9dVauXMny5ct57bXXePjwIUOHDs29KxLiGVX1qMqIhoZ5USITIo0mMCsolp5Zqs570rxMc56v8by2AQnxhFc9xqNTDF9RW91XEWtlqLmPCYtn18wAi0tS9HoF/yUX1PuJugTWey5V7/cOGcqRZRctvoYoN2V7qvspU6bw4osvsm3bNn788UeSk5P56quvaNCgQabHDR06lA8//BAbGxsWLVrE/PnzcXJy4rPPPqNz5845jV+IPPFh2w+xtzbU6v145EfuR93XOKLcE5cUx4d7PlTvf9XxK6k9EWZFr1cI+TuFFpHtAYi1jmZ7sTVGZfyXXrCoL/Ogi2FqzQnA7mIbeGRrmJqjbnRTqsfVJSY0nqCLBa/GNqeyNcwYDCN1xo4dy9ixYzMsk9GonE6dOtGpU6fsnlKIfFfWtSxjm47lB/8fiEs2fKH/3ut3rcPKFT8f+1ldc6d71e60q5D5PERC5LfUL/OetoM4WnQfKbpkdrivpW1EN9yTiwOoX+ala6Wfm8scxYU/Ho0UYxXFFvdVAOgUK/o+fMVkucIu2zUoQhQWU3ym4GpvWL9nQcACAu4HaBzRswuNDeWLA18AoEPHDL8ZGkckRHqpX9LFk0rR/tFzACRaJbDWc5HJcpagiNvjfpabPVYQax0NQKtIP8okVjBZrrCTBEWIDHg6eqozOioovLXtLRTFcqqUTfloz0c8in8EwJD6Q6hXsp7GEQmRXtov6edCB+KU4gKAv+sebjhcMlnO3HnVcMfJ3YEg2zvsKmYYaGKrt6NXyGC1jJOHA1413LUK0exIgiJEJsY1G0cVd8Pw+X2B+1h7ca3GEeXc6aDT/HrCMPmck60TX3T4QuOIhDAt9cscwEnvQs+Ql9V9K4vPQ0GxuC9zKysdzYfUYEWJ30jRJQPQ6dELapMVQIshNY1WWi/sJEERIhN21nZ82+lb9f6729+1yFVWFUXhza1volcM8w1NbTuVMkXLaByVEKZZWeloMbSmer9deHe8EsoCcNXxPEdc9lrkl/l/bsf4z9kw95B7UnG6hw4ADDUnfhMbUrGZl5bhmR1JUIR4il7Ve9GhYgcAboTfYPqB6RpHlH0rz61kf+B+AKq4V+GtFm9pHJEQmavYzAu/iQ1xcnfABhv6P3y8Js+6Cgtxq2s5zTsA8cnxvLXt8d/d/+p8gr3iQOuRtRkwy1eSExMkQRHiKXQ6HbO7zcbWyrBQ5teHvub8w/MaR5V14fHhRh+MM7vMxN7Gsj7cReFUsZkXA370pfXI2tSNaUpHjy4AhCaGGE00aAm+PPgl1x9dB6B9hfYMaTYIgOKVXC2uJii/SIIiRBbUKl6Lya0nA5CkT+K1f15Tm0vM3Xvb3+N+tGEel+eqPUePaj00jkiIrLOy0lG8kmE03Xe+3+Ns5wzAbyd+49/b/2oZWpb99+A/dfSctc6a2d1my9xDWSAJihBZNMVnitph9uCtgywIWKBxRE+36/oufg8wzN/iYufCL91/0TgiIXKutFMZPm//uXr/1X9eNfvVjpP1yYxYP4IkvWGZl8mtJ1O7RO18O7+jmz0N+1TB0YJGPKWSBEWILCpiW4Q5Peao99/e9jY3w2+mK5d2pVItFzeLSYzh1X9eVe9/1fEryrqW1SQWIXLLuGbjaOjVEDDUTKRdkdsczfSfybF7xwCo4VmDD9t9+JQjcpdjMQca96uKYzGHfD1vbpAERYhs6FipI8MbDAcgKjGKoWuHkqJ/vEp32pVKQdvFzSbvnKy2efuU8+G1Jq/lewxC5DYbKxsW9l74uE/Y4a85dOuQxlGZdjHkorqshA4dC3otwMHG8hIFrUiCIkQ2zewyk/Ku5QE4cOsA3x42DEN+cqXSVFosbrbx0kZ+PvYzAA42DszrOQ8rnfy5i4Khvld9Pmv/GQB6Rc/QdUOJSojSOCpj8cnxvLT6JeKTDZ8HbzZ/k5ZlW2oclWWRTywhssnVwZWlLyxFh6GT24d7PuT43RNGK5Wakl+Lm92Luscr6x+v7fF95++p7lk9z88rRH56r9V7tC7bGoDrj67z5tY3zWqm5/d3vs/p4NMA1PSsyRd+MjFidkmCIkQO+JT3YVLrSYBhVE/fv/ryIPxhpsfk9kqlpvq6JKUk8fLfLxMaFwoY5nB5vcnruXZOIcyFtZU1S15YgpOtEwCLTi3i95PmsaDnhksbmHVkFgD21vYs77ccR1tHjaOyPJKgCJFDn/p+StPSTQG4FRPI76W+Rk9Kpsfk1uJmGfV1eXXpWPbe3AtAKedSzO81X4YzigKrUrFKzO05V70/bss4jt87rmFEcOHhBQb//Xh9ne86fydrXuWQJChC5JC9jT1r+q/B09ETgP+cT7DOc2mmx+TG4mYZ9XXZmbyJRYGGX5C2Vras7r9ajU2IgmpQ3UGMazoOgMSURPqs6MO9qHuaxPIo7hG9l/cmKtHQH6Z/7f6MbTpWk1gKAklQhHgGZV3LsqLfCrUD6haPlex13WSybG4sbqbXKyb7ulxwPMWSkrPU+7O7/USrsq2e6VxCWIrvunxHS29DB9Tbkbfp8WePfO80G58cT79V/bgSdgWABl4NWNBrgdRgPgNJUIR4Rh0qdmBml5nq/T9LzuGUc/oZLnNjcbOgi2Hpak4C7a/wc5nPSbYyrJDaLrw7PR37PtN5hLAkdtZ2/D3gbyq4VQDgVNAp+q3ql2+TuCXrkxm4ZiC7b+wGwNPRk3UD1uFk55Qv5y+oJEERIheMbz6eSa0MnWYVnZ7fSs3gtNMRIHdXKn2yD8sd+xvM8v6IBCvDCsv1o1owMHhMrvV1EcJSeDl7seXlLRRzKAbA9mvb6buyrzrMN6+k6FMYtWEU6y6uA8DJ1omNAzdS3q18np63MJAERYhcMqPjDAbXM3SOS7ZKZk6ZacT0DszVlUrT9mG55nCRb8pOJsrGMJKnamxtXr0/GWusc6WvixCZMccp1Gt41mDDwA0UsSkCwKYrm3hhxQvEJcXlyfkSkhMYsHoAi08vBgx9v9YOWEsL7xZ5cr7CRhIUIXKJlc6Khb0XMqiuYZXSFF0Kb196g5lHfsi1+Rm8arjj5O7Aaacj/FB2CrHW0QBUiqvBuLsfY6fY50pfFyGexlynUG9Trg1bXt6iDj/eenUrbRe15W7k3Vw9z6O4R/T4swdrLqwBDMnJ8n7L6VS5U66epzCTBEWIXGRjZcOS55fwUmVDkqJX9Lyz/R2GrhtKTGLMMz++gh7/lpv4yftTEqwMVdc1Yxrw1u3pOOoNq7zmRl8XISxZuwrt2Dp4q7ry8fF7x2k6r2muTYkfcD+AxnMbs+vGLgAcbR3ZOHAjfWr2yZXHFwaSoAiRy6ytrJnV6ieeCxmoblt2Zhn1fq2nzlGSE+cfnqf1gtb8ePU7dVvjyDaMv/sJDkqRXO3rIoSla1OuDYdHHFY7zt6Pvk/bRW2ZvGMysUmxOXrMxJREPt37Kc1/b86N8BsAeBTxYOeQnXSp0iW3Qhf/TxIUIfKAlc6K3qFDWNBusVrVfP3Rddovbs8LK17gbPDZLD/WrYhbvP7P69SbU48jd4+oj/+l35cs6bYMW8WO1iNr52pfFyEKgrol63J01FHalW8HGGo0vz78NVVnV+X3k79nuQNtsj6ZZWeWUevnWnyy7xOS9EkANC3dlJOvnZQ1dvKIjdYBCFGQ9SzfmzZ1W/LK+lc4dNtQvbzu4jrWXVxH67Kt6V+7P34V/ajmUQ1ba8PqrCn6FAIjAtlzYw/rLq1j85XN6BW9+pjVPKqxsPdCWpVtRcgNQwfZ4pVcpVlHCBOKOxVn19BdfHv4Wz7a+xGJKYnci7rH6I2jeX/n+7xc92W6V+1O0zJNAWv1uMiESI7ePcq2q9tYdnYZQdGPF/u01lkzufVkPmr3EfY25tNJuKCRBEWIPFbVoyr7hu9jfsB8Ptn7Cfej7wNw6PYhNWmx0llR3LE4Op2OsLgwElMS0z2Oi50L77Z6l/davUcR2yL5eg1CWDJrK2smt5lM7xq9mbxzMhsubQAgNC6UH4/+yI9HfwSgqG1RdJWteXe5nojECJOP5VfRj286fUPDUg3zLf7CShIUIfKBtZU1rzZ+lcH1BjP/5Hx+O/Eb5x6eU/frFT3BMcEmj/Uu6s3oRqMZ02QMxZ2K51fIQhQ4NTxrsP6l9fx7+19mH53N6vOr1eYagMikSMO34hO/D2ysbOhZrSfjm42nfcX2+Rt0ISYJihD5yNHWkfHNxzOu2TjOBJ9h5/WdHLl7hOuPrvMw1rAaclH7olQuVpmGXg3pVLkTzcs0x9rK+imPLITIqpZlW9KybEt+6fELO6/vZPeN3VwKucSVoGvERMXi5FKESiUrUt2jOr4VfPGr5EcJpxJah13oSIIihAZ0Oh31vepT36u+1qEIUWi5ObjRr1Y/Gke3wX/LBaNlJJzcHWgxtCYV60rHc63IKB4hhBCFVkarg8eExbNrZgA3jgZlcKTIa5KgCCGEKJQyWh08Lf+lF9Drc2cmaJE9kqAIIYQolEytDv6kmNB4gi6G5VNEIi1JUIQQQhRKWV31W1YH14YkKEIIIQqlrK76LauDa0MSFCGEEIVS6urgmZHVwbUjCYoQQohCycpKR4uhNTMtI6uDa0cSFCGEEIVWxWZe+E1smK4mRVYH155M1CaEEKJQq9jMi/JNSnJpz20OzT9H65G1qd6+rNScaExqUIQQQhR6VlY6ildyBWR1cHMhCYoQIksc3exp2KcKjjKiQQiRD6SJRwiRJY7FHGjcr6rWYQghCgmpQRFCCCGE2ZEERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2cn2TLKJiYnMnz+f7du3ExUVReXKlRk1ahRNmzbN0vG7du1i9erVXLt2DRsbG8qXL8+oUaNo3LhxtoMXQgghRMGU7QRlxowZ7N27lxdffBFvb2+2bNnCpEmTmDVrFvXq1cv02AULFrB48WJ8fX3p2rUrycnJ3Lhxg5CQkBxfgBBCCCEKnmwlKOfPn2fXrl2MGTOGgQMHAtClSxeGDx/OnDlzmDNnTobHnjt3jsWLF/PGG2/Qv3//Z4taCCGEEAVatvqg7Nu3D2tra3r16qVus7e3p0ePHpw7d47g4OAMj121ahXu7u7069cPRVGIjY3NedRCCCGEKNCylaBcuXIFb29vnJycjLbXrFkTgKtXr2Z47IkTJ6hRowarV6+mV69edO3aleeff541a9bkIGwhhBBCFGTZauIJDQ3Fw8Mj3fbUbRn1JYmKiiIiIoL//vuPkydPMnz4cEqWLMmWLVuYNWsWNjY29O7dO8PzhoSEEBoaqt4PDAzMTthCCCGEsDDZSlASEhKwtbVNt93Ozk7db0pqc05ERAQff/wxfn5+APj6+jJ8+HCWLFmSaYKyYcMGFi1alJ1QhRBCCGHBspWg2Nvbk5SUlG57YmKiuj+j4wBsbGzw9fVVt1tZWdGhQwcWLFhAcHAwJUuWNHl8r169aN26tXo/MDCQadOmZSd0IYQQwmw4utnTsE8VHN1Mf2+KbCYoHh4ePHz4MN321OYXT09Pk8cVLVoUOzs7nJ2dsba2NtpXrFgxwNAMlFGC4unpmeFjCyGEEJbGsZgDjftV1ToMs5atTrJVqlThzp07xMTEGG0/f/68ut/kSaysqFq1KhEREelqYFL7rbi5uWUnFCGEEIWE1DYUTtlKUHx9fUlJSWHDhg3qtsTERDZv3kytWrXUGpDg4OB0HVnbt29PSkoKW7duVbclJCSwY8cOKlSoIDUkQgghTEqtbXAs5qB1KCIfZauJp1atWrRv3565c+cSHh5OmTJl2Lp1K0FBQUyePFktN336dE6dOsX+/fvVbb1792bTpk388MMP3L59m5IlS7Jt2zaCg4OZMWNG7l2REEIIISxetqe6nzJlippcREdHU6lSJb766isaNGiQ6XH29vbMnDmTOXPmsHnzZuLj46lSpQpfffUVzZo1y2n8QmSZVBMLIYTlyHaCYm9vz9ixYxk7dmyGZX788UeT24sVK8aUKVOye0ohcoV0ShNCCMuRrT4oQgghhBD5QRIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERYg8ICOGhBDi2WR7FI8Q4ulkxJAQQjwbqUERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCEsmMy3IoQoqGQeFCEsmMy3IoQoqKQGRQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUIYQQAlk6wtzIVPdCCCEEsnSEuZEaFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2bLQOICcSEhIACAwM1DgSIYQQQmRX+fLlcXBwyLSMRSYoQUFBAEybNk3jSIQQQgiRXfPmzaN69eqZltEpiqLkUzy5Jjw8nKNHj1KqVCns7Oy0DifPBQYGMm3aNKZOnUr58uW1DidfybUXvmsvrNcNhffaC+t1Q+G99gJbg+Lm5kbnzp21DiPflS9f/qkZZ0El1174rr2wXjcU3msvrNcNhfvaMyKdZIUQQghhdiRBEUIIIYTZkQTFAnh4eDB8+HA8PDy0DiXfybUXvmsvrNcNhffaC+t1Q+G+9qexyE6yQgghhCjYpAZFCCGEEGZHEhQhhBBCmB1JUIQQQghhdiRBEUIIIYTZsciJ2gqikJAQVq9ezYULF7h48SJxcXHMmjWLhg0bpiv75ptvcurUqXTbmzVrxrfffmu0LTExkfnz57N9+3aioqKoXLkyo0aNomnTpnl1KdmWnWsHOHv2LL/++iuXL1/GycmJ9u3bM3r0aBwdHY3KWcK1m7JlyxZmzJhhct/atWvT9fY/ePAgCxcuJDAwEDc3N7p3787QoUOxsbGsP29Lfb2yIyAggAkTJpjcN2fOHGrXrq3ez+r73BzFxsayfPlyzp8/z4ULF4iKiuKDDz6gW7du6crevHmTn376ibNnz2JjY0PLli0ZN24cbm5uRuX0ej3Lly9n3bp1hIWF4e3tzeDBg+nYsWM+XdXTZfW6v/jiC7Zu3Zru+HLlyrFs2TKjbZZw3XnFsj7BCrDbt2/z559/4u3tTaVKlTh37lym5YsXL85rr71mtM3UMLUZM2awd+9eXnzxRby9vdmyZQuTJk1i1qxZ1KtXL1evIaeyc+1Xrlzhrbfeonz58owbN44HDx6wYsUK7ty5wzfffGNU1hKuPTMjR46kVKlSRtucnZ2N7vv7+/O///2PBg0aMGHCBK5fv86SJUt49OgR77zzTn6G+8ws/fXKjr59+1KzZk2jbWXKlFFvZ+d9bo4iIiJYtGgRJUuWpEqVKgQEBJgs9+DBA8aPH4+zszOjR48mLi6O5cuXc/36dX777TdsbW3VsvPmzeOPP/6gZ8+e1KhRg4MHD/LZZ5+h0+nw8/PLr0vLVFavG8DOzo5JkyYZbXNyckpXzhKuO88owizExMQoERERiqIoyp49exQfHx/l5MmTJsuOHz9eGTp06FMf89y5c4qPj4/y559/qtvi4+OVl156SXn99ddzJ/BckJ1rf/fdd5Xnn39eiY6OVrdt3LhR8fHxUY4cOaJus5RrN2Xz5s2Kj4+PcuHChaeWHTJkiPLKK68oSUlJ6ra5c+cqbdu2VW7evJmXYeYqS369suPkyZOKj4+PsmfPnkzLZfV9bq4SEhKUkJAQRVEU5cKFC4qPj4+yefPmdOW+++47pWPHjkpQUJC67dixY4qPj4+yfv16dduDBw+U9u3bK99//726Ta/XK2+88YbSp08fJTk5OQ+vJuuyet3Tp09XOnfu/NTHs5TrzivSB8VMODo6UrRo0Wwdk5ycTGxsbIb79+3bh7W1Nb169VK32dvb06NHD86dO0dwcHCO481NWb32mJgYjh8/TufOnY1+aXTp0oUiRYqwZ88edZulXPvTxMbGkpKSYnLfzZs3uXnzJj179jRqznnhhRdQFIW9e/fmU5TPrqC8XtkRGxtLcnJyuu3ZeZ+bKzs7uyxNPLZv3z5atWpFyZIl1W1NmjShbNmyRtd58OBBkpOTeeGFF9RtOp2O559/nocPHz61xjm/ZPW6U6WkpBATE5Phfku57rwiTTwW6vbt23Tp0oWkpCTc3d157rnnGD58uNEX1ZUrV/D29k5XbZhatXz16lWjDwZzd/36dVJSUtItqGVra0vVqlW5cuWKuq0gXPuECROIi4vD1taWpk2b8sYbb1C2bFl1/+XLlwHSPR+enp4UL17c6PkwdwXh9cqOGTNmEBcXh7W1NfXq1WPMmDHUqFEDyN773JI9fPiQR48emVwgr2bNmvj7+6v3r1y5QpEiRdKt9pv6/rhy5YrFNQPGx8fTrVs34uPjcXFxwc/Pj9dff92oj1FBvO7skATFApUuXZqGDRtSqVIl4uPj2bt3L0uWLOH27dt8+umnarnQ0FCT2XzqtpCQkHyLOTeEhoYCpvvaeHh4cPr0aaOylnrt9vb2dOvWjYYNG+Lk5MSlS5dYuXIlY8eO5ffff1e/qJ/2fKTutwSW/Hplh42NDe3ataNFixa4urpy8+ZNVqxYwbhx4/jll1+oVq1att7nluxp1xkZGUliYiJ2dnaEhoZSrFgxdDpdunJgee8PDw8PBg4cSLVq1VAUhSNHjrBu3TquXbvGrFmz1B+aBe26s0sSlDyg1+tJSkrKUlk7O7t0b76nef/9943ud+nShW+++YaNGzfSv39/dSRAQkKCUSeztOdM3Z/b8vLaU+PN6JoSExONyub3tZuSk+ejQ4cOdOjQQd3u4+NDs2bNGD9+PEuXLuXdd98FUK839ZqefKzMmv/Mjbm8Xnmtbt261K1bV73fpk0bfH19eeWVV5g7dy7ffvtttt7nluxp15laxs7OrsC9P54c4ODn50fZsmWZN28e+/btUzu/FrTrzi5JUPLA6dOnMxxK+KSlS5emq77LiQEDBrBx40aOHz+uJij29vYmvxxTP+Ds7e2f+bxPystrT403o2tK+0WtxbWbklvPR7169ahVqxYnTpxQt6Ver6kvrMTExHy7xtxgLq+XFry9vWnTpg379+8nJSUlW+9zS/a060xbpjC8P/r378/8+fM5fvy4mqAUhuvOjCQoeaBcuXJ88MEHWSqbWytYlihRAoCoqCijx3748GG6sqlVq56enrly7rTy8tpTy5tquggNDTW6Hi2u3ZTcfD5KlCjBrVu30pUPDQ1N1z8jNDQ03TBWc2Yur5dWSpQoQVJSEvHx8dl6n1uyp11n0aJF1WTMw8ODgIAAFEUxqnUtSO8Pe3t7ihYtSmRkpLqtMFx3ZiRByQMeHh4mJyTKS/fu3QMwmtwodRx+TEyMUefD8+fPq/tzW15ee8WKFbG2tubSpUtGTSBJSUlcuXKF9u3bq9u0uHZTcvP5uHfvntHrW7VqVQAuXbpErVq11O0hISE8fPjQaESMuTOX10sr9+7dw87OjiJFimTrfW7JihcvjpubG5cuXUq378KFC0aveZUqVfjnn38IDAykQoUK6vaC9P6IjY0lIiIi3Wd4Qb/uzMgwYwsTExOTrkpfURSWLFkCYDTrpq+vLykpKWzYsEHdlpiYyObNm6lVq5bFjYpwdnamSZMmbN++3ah/xbZt24iLizP64Lbkaw8PD0+37d9//+XSpUs0a9ZM3VaxYkXKlSvHxo0bjYYir1u3Dp1OR7t27fIj3Fxhya9Xdph6ba9evcqhQ4do2rQpVlZW2XqfW7p27dpx+PBho2HkJ06c4Pbt20bX2aZNG2xsbFi7dq26TVEU1q9fT/HixalTp06+xv0sEhISTPYPW7x4MYqi0Lx5c3VbQbrunJAaFDOyePFiwDC/BRg+kM6cOQPAsGHDAMPQ0k8//ZSOHTtSpkwZEhISOHDgAGfPnqVnz55GQ/Zq1apF+/btmTt3LuHh4ZQpU4atW7cSFBTE5MmT8/finiIr1w4watQo3njjDcaPH0+vXr3UGTabNm1q9IdtSdf+pDFjxlCtWjWqV6+Ok5MTly9fZvPmzZQoUYIhQ4YYlR07diwffPAB77zzDn5+fly/fp21a9fy3HPPGf3iMneW/Hplx8cff4y9vT116tShWLFi3Lx5k40bN+Lg4GDUcTKr73NztmbNGqKjo9XmiEOHDvHgwQPAMJOus7MzgwcPZu/evUycOJF+/foRFxfHX3/9RaVKlYxqHkuUKMGLL77IX3/9RXJyMjVr1uTAgQOcOXOGDz/8EGtra02u0ZSnXXdUVBQjR46kY8eOlCtXDoCjR4/i7+9P8+bNadOmjfpYlnTdeUGnKIqidRDCoG3bthnu279/P2CoCv7tt9+4cOECYWFhWFlZUb58eZ577jl69eqVblRMQkKCur5JdHQ0lSpVYtSoUUa/xM1BVq491ZkzZ9Q1ShwdHWnfvj2vvfZaujVKLOXanzRv3jz8/f25f/++2iehZcuWDB8+HHd393TlDxw4wKJFiwgMDMTV1ZVu3bqlmxPHEljq65Udq1evZseOHdy9e5eYmBjc3Nxo3Lgxw4cPx9vb26hsVt/n5qp///4EBQWZ3LdixQp1GYcbN26kW4vnjTfeSPde1+v1/Pnnn2zYsIHQ0FC8vb15+eWX6dy5c55fS3Y87bqdnZ2ZNWsW586dIzQ0FL1eT5kyZejUqRMvvfRSur9bS7nuvCAJihBCCCHMjvRBEUIIIYTZkQRFCCGEEGZHEhQhhBBCmB1JUIQQQghhdiRBEUIIIYTZkQRFCCGEEGZHEhQhhBBCmB1JUIQQQghhdiRBEZnasmULbdu2ZcuWLVqHkiUBAQG0bduWBQsW5Nk52rZty5tvvplnj19Y9O/fn/79+2sdhtlbsGABbdu2JSAgIE/Ps3LlSjp06MD9+/ezVD4//tYs2eeff86LL75IQkKC1qFYLElQCpgvv/yStm3b8txzz6VbVLCgsLQvtoiICH799VeGDh1Kp06d6NSpEy+++CITJ05k4cKFhIWF5UscT0s233zzzUyXHChM4uLi6Nq1K23btuX777/XOpw8FxUVxZIlS+jevbs6Bb14NsOHDyckJIRVq1ZpHYrFsqzFOkSmYmNj2bNnDzqdjsjISA4cOICfn98zPaaPjw+1atXCw8Mjl6IsXB48eMDYsWN58OABVatWpVu3bri4uBAaGsp///3HwoULqVu3rsk1dgq6H374QesQMrRnzx5iY2PR6XTs3LmTN954A3t7e63DyjMrV64kMjKSgQMHah1KgVG2bFlat27Nn3/+Sd++fSlSpIjWIVkcSVAKkN27dxMXF0f//v1ZvXo1mzZteuYExdnZGWdn51yKsPBZsGABDx48YOTIkUarMqe6du1aoX1+y5Qpo3UIGdq0aRPW1tb06dOHVatWsX//fjp16qR1WHkiOTmZf/75h7p165r1a2KJOnfuzP79+9m1axfPPfec1uFYHElQCpDUD9VBgwZx7do1Tp48SVBQEF5eXkblFixYwKJFizJ8HC8vL1auXAkYmgVmzJjBBx98YLT8edu2bWnQoAEffvghc+bM4dixYyQmJlK/fn0mTpxI6dKluXnzJnPnzuX06dMkJyfTrFkz3nrrLaPagoCAACZMmMDw4cMZMWKEURz3799nwIABdO3alSlTpqj308aQytTxFy9eZO7cuZw7dw4rKysaNWrEuHHj0lVh79+/nz179nDx4kVCQkKwsbGhcuXK9OvXD19f38yf9Kc4d+4cAH369DG5v3Llyia337t3jz/++INjx44RGhqKk5MTFSpUoFu3burrkJSUxIYNGzh8+DA3b94kPDwcJycn6taty7Bhw6hWrZr6eF988QVbt24FYMaMGcyYMcPo+tM+l2lvpz73qa5du8bSpUs5deoUkZGReHh40Lp1a1555RVcXV3Vcmlfu0GDBjFv3jxOnz5NZGSkupJtajNd6nsNHr83Z82aRUhICH/99Re3bt3C2dmZ9u3b8/rrr6eryUhOTmb58uX8888/hISEULx4cXr06EGHDh146aWX0l3D09y6dYuzZ8/SqlUro2TfVIKS9v3bqlWrLL3fAPbt28eyZcu4ceMGTk5OtG7dmjFjxjBy5Mh0z0lmsvp6ZObo0aOEhoYyaNAgk/sTEhJYuHAhO3bsICIigjJlytCvX790qy+nde/ePZYuXcqxY8d49OgRLi4uNGvWjBEjRqT7PILsPR+p7+Xly5ezf/9+Nm3axL179/Dz81Nf50ePHrFs2TIOHz7MgwcPcHR0pH79+owYMYJKlSqlO392yt++fZtly5YREBBAaGgoDg4OlChRgoYNGzJ+/HijFeVbtmyJg4MDW7dulQQlByRBKSBu3rzJuXPnaNGiBe7u7nTp0oUTJ06wefPmdF/cDRs2NPkYgYGB7NmzJ8tV2VFRUbzxxht4eHjQpUsX7ty5w+HDh3n77bf54osvGDduHNWrV6d79+5cvnyZffv2ERkZyaxZs3J0jc7OzgwfPpzVq1cD0K9fvwyv6eLFi/z11180bNiQXr16ceXKFQ4cOMD169dZtGiR0TXOnTsXGxsb6tati4eHB+Hh4Rw6dIiPPvqICRMm0Ldv3xzFC6hfErdv36ZWrVpZOubMmTNMnjyZ2NhYmjVrhp+fH1FRUVy5coXVq1erCUpkZCSzZ8+mXr16tGjRAhcXF+7fv8+hQ4c4cuQIs2fPpmbNmoChqS46OpqDBw/Spk0bqlSpYnTO4cOHs3XrVoKCghg+fLi6vWrVqurtgwcP8sknn6DT6WjTpg0lSpTg5s2b/P333xw9epTffvsNFxcXo8e9e/cuY8aMoVKlSnTt2pXIyEhsbW2f+hykPmbr1q1p1KgRR44cYc2aNURERPDRRx8Zlf3qq6/Ytm0bpUuX5vnnnycpKYmVK1fy33//Zen5ftKmTZsA6NKlCyVLlqRBgwYEBARw7949SpcubfKY7LzfNm3axFdffYWTkxNdunTB2dkZf39/3n77bZKTk7GxydrHck5eD1NOnDgBQO3atdPt0+v1fPDBBxw/fpxKlSrRsWNHIiMj+emnnzL8HDl//jzvvvsucXFxtGrVCm9vb4KCgtixYwdHjhxhzpw5Rs9jTp+PmTNncv78eVq2bEmrVq0oVqwYYHjPvfnmmzx8+JCmTZvSpk0bwsPD2bdvH8eOHeOHH34w+lvMTvmQkBBee+014uPjadmyJR06dCA+Pp47d+6wbt06xo4daxSvra0t1apV49y5c8TFxUkzT3YpokCYPXu24uPjo+zcuVNRFEWJiYlROnfurPTr109JSUl56vFhYWHKiy++qPj5+SlnzpxRt2/evFnx8fFRNm/ebFTex8dH8fHxUWbPnm20/bvvvlN8fHyUbt26KStXrlS36/V65b333lN8fHyUixcvqttPnjyp+Pj4KPPnz08X07179xQfHx9l+vTpRttffPFF5cUXXzR5HamPl/a5SDVt2jST2+/evZvucWJiYpRhw4Yp3bp1U+Li4tJd+/jx402e/0mrV69WfHx8lF69einz589XTp48qURHR2dYPiEhQenTp4/Srl07xd/fP93+4OBgo7IPHjxIV+b69etK586dlbfeestoe0avZarx48crPj4+JveFh4crXbt2Vfr06aPcv3/faN/OnTsVHx8f5YcfflC3pb52Gb22imL6dZw/f776/gkMDFS3x8fHK4MGDVLatWunPHz4UN1+/PhxxcfHRxkxYoTR6/Tw4UOld+/eJt8/mUlKSlJ69+6tdOvWTYmPj1cURVE2bdqk+Pj4KPPmzUtXPrvvt8jISKVz585K586dlVu3bhmdd8KECYqPj0+Gz8nJkyfVbdl9PTIzevRopV27dkpCQkK6fanvmXfffVdJTk5Wt1+9elXp0KFDutc3KSlJefHFF5UuXbooly5dMnqs06dPK76+vsrkyZOf6fmYPn264uPjo/Tp00cJCgpKF/OYMWMUX19f5ciRI0bbb926pXTp0kUZNmxYjsun/j2n/WxLFRERkW6bojz+bD5x4oTJ/SJjMoqnAEhOTmb79u04OTnRpk0bABwdHfHx8SE4OJjjx49nenxCQgJTpkwhKCiI999/n7p162bpvEWKFGHUqFFG21L7vLi6uhrVcOh0OnXftWvXsnxtOVW/fv10/W+6d+8OwIULF4y2m/pV7OjoSLdu3YiOjubixYs5jqNPnz4MHDiQ6OhoFi1axIQJE+jevTtDhw7l119/JSQkxKj8wYMHefjwIZ06daJ58+bpHq9EiRLqbTs7O4oXL56uTMWKFWnYsKHatJYbtm3bRkxMDK+++mq6Kno/Pz+qVavGrl270h3n7u7OkCFDsn2+fv36Ua5cOfW+vb09fn5+6PV6Ll26pG7fvn07AMOGDcPBwUHd7unpafT+y6p///2XsLAw2rdvr9Z6+Pr64uDgwJYtW9Dr9SaPy+r77eDBg8TFxdG9e3fKli2rbrexsUn3t5SZnL4epjx8+BBnZ2fs7OzS7UttFhw1ahTW1tbq9sqVK9O5c+d05Q8fPkxQUBADBw40amIEqFevHq1bt8bf35+YmBjg2Z6PgQMHUrJkSaNtly9f5r///qNLly40a9bMaF/ZsmV57rnnuH79OtevX89R+VSmapmLFi1qMs7Ump2HDx9mej0iPWniKQAOHjxIeHg4PXr0MPrD6dKlC9u3b2fTpk3p/vhSKYrCF198wblz53jllVfo2LFjls/r7e1t9KUAqKN9KlWqZNQWm3bfk1/KeaF69erptqV+mUdHRxttf/ToEX/88Qf+/v4EBwenm7fgWeLV6XSMGTOGgQMH4u/vz/nz57l48SKXL1/m5s2bbNiwgW+//VatQk79MmvatGmWHv/KlSv89ddfnDlzhrCwsHQJSXh4OJ6enjmOP1VqX5rz589z9+7ddPsTExOJiIggPDwcNzc3dXuVKlWy1KTzpCe/3OBxcpb29bt69Spg+PJ7Up06dbJ93n/++Qcw/O2kcnR0pE2bNuzcuZOjR4/SokWLdMdl9f2WmpybirdWrVpGSUBmcvp6mBIZGWky0U2Nt0iRIiavr169empz2JNx3bp1y+T8KGFhYej1em7fvk2NGjWe6flIbb5M6/z584Dhb9rU+W/duqX+X6lSpWyXT+1n9MMPP3DixAmaN29OgwYNMmz6g8eJS0RERIZlhGmSoBQAadvM02rcuDHFixfn0KFDREZGmszwf//9d/bs2UPHjh155ZVXsnVeJyendNtSP1Ay25dbv+oz4+jomOH50/4KjoyM5NVXXyU4OJi6devSpEkTnJ2dsbKy4urVqxw8eJCkpKRnjsfNzY2uXbvStWtXAEJDQ5k5cyb79u3jm2++YeHChQDqL8uMvjDSOnv2LG+99RYATZo0wdvbW73ugwcPcvXq1VyJHQz9jQDWrl2babn4+Hij+6m/HrMrs/dP2tcvNjYWKysrkx1Cszt0OyQkhKNHj1K6dOl0X5hdu3Zl586dbN682WSCktX3W+rra+p5yeg6TMnp62GKvb19hnMmxcTEZPheNPX8psa1Y8eOLMX1LM+HqWMiIyMBQ03Yv//+m+GxcXFxOSpfqlQp5syZw8KFC/H392fPnj0AlCtXjpEjR9K+fft0x6b+4CnIw9TziiQoFi44OJhjx44BZDq76fbt29NVeW/ZsoWlS5dSt25d3n///TyNMyOptSwpKSnp9qV+eOWlTZs2ERwcbHIY8LJlyzh48GCenNfDw4OpU6fy77//cu3aNSIiInB1dVWHHGelOnjp0qUkJiby008/pftCTf1lmFtSv4AXLVpkchRERp6sRcttjo6O6PV6IiIi0tUUZHcCvC1btpCSksK9e/cynLDu0KFDWaqVyEhq4vXo0aN0+1KvIyvJaU5fD1NcXV0zfL85OTll+Mvf1PObGteXX35Jq1atnnruZ3k+TL23Uh8vq53bs1seDLXDn3/+OcnJyVy6dIkjR46wevVqPvnkEzw9PdM1kacmQTl9zxRm0gfFwm3duhW9Xk+9evXo0aNHun+pv9ifrIo9deoU3377LaVLl2b69Okm25/zQ+ooA1PNKFeuXDF5jJWVlcmEJidSq8dT++6kdebMmVw5R0ZsbW3TVWGnVlunJp2ZuXfvHkWLFk2XnMTHx3P58uV05a2sDH/uGT13me1PbYJKrcI3F6mjkc6ePZtuX3ZG8SiKwubNmwHo1q2byb+lOnXqkJSUpPZ7yYnUYeWm4r1w4UKW39e5+XpUqlSJxMREgoOD0+2rXLkycXFxRv1+Upn6+8huXLn1fKRK/fvJ6vmzWz4tGxsbateuzYgRI5gwYQKKonD48OF05W7fvg3wzIlkYSQJigVL/VDV6XRMmTKFyZMnp/s3ZcoUateuzbVr19TOnrdv32bq1KnY29vz5ZdfaprZlytXDkdHR7UZKlVYWBhLliwxeUzRokWJiIjIlTUuUjsYPvkBuWPHDvz9/Z/58ZcvX05gYKDJfX///TdxcXGUK1dOrcpu3bo1xYv/X3v3FtLkG8cB/NvSd2lphs55CIuySBtNl1PSVSgSJZUD2Y03WhZEiZ1QKsrYoKDTRVJ2kcvQpQysC3FlOU2Lltq2hi07oBSUaDMpe+1gc/W/iA1tb/219tfJ//e53J65533e1/F7Tr9HgIaGBrS3t7t9ZnRPVygUgmVZvHjxwvWaw+FAaWkp3r9/7/ZZ5xSfzWbjrM/v3s/IyIC/vz8uXrw45vucvnz5MiXBizM3yeXLl8c8DwMDA67t6ONhsVjQ09MDsViMgwcPcv4vOUcZfw72J0Imk8HPzw86nW7M2pGRkRGo1epx/x1P3o+4uDgA3KNuzmnjsrKyMcFCd3c3Z6Amk8kgFAqh1WphsVjc3h8ZGRkT2HiqPZxiY2MRGxuLxsZGzkXC3759G1OviZZ/9uwZ58iuczSJq6PX2dmJ4ODgMYuAyfjQFM80Zjab0dvb+6+LtDIyMvD48WPodDosW7YMJSUl+PDhAxISEtDU1ORWfs6cOZN21o2vry+ysrJQWVmJbdu2ISUlBZ8/f8a9e/cQFxfHuQAwPj4eT58+RVFREVasWAEfHx+IxWLXD+1ErFu3DlVVVTh79iwePnwIoVCIrq4umM1mrFmzBnfu3Pmr67t16xZKS0uxaNEixMbGYt68eWBZFp2dnXj+/Dn4fD7279/vKs8wDJRKJQoLC1FYWIjExERER0fj48eP6OrqwvDwsOuHOysrCw8ePMCuXbuQmpoKhmFgsVjw9u1bxMfHux0ut3z5cvD5fNTU1IBlWVdg6pzakkgkaG5uxpEjR5CUlASGYRAdHY2UlBQEBQXh6NGjKC4uxtatW5GYmIioqCjY7Xb09fXBYrFAJBLh9OnTf9VeE5WQkID09HTo9Xrk5uZCJpPBbrfj9u3biImJgcFgcI0M/Y4z6HDuvOESFRUFkUgEq9WKzs7Ocee1GS0gIAD5+fk4deoUtm/fjrS0NMyePRutra1gGAYhISHjmhbz5P2QyWQ4f/48jEaj2xoK59qbtrY25OXlISkpCSzLorGxEVKp1G3EgGEYqFQqFBUVoaCgABKJxLVgvq+vDx0dHZg7dy40Go1H22O04uJi7NmzB0qlEjU1NViyZAn4fD5sNhusVisGBweh1+v/qPzNmzdRW1sLsViMyMhI+Pv74+XLl2hra0NgYKDb89PT04Pe3l7I5fIJXQP5gQKUacz5ozo6wyuXtLQ0lJSUoLGxEfn5+a6eptFo5NyCHBYWNqmH8eXl5cHHxwc6nQ61tbUICwtDTk4OkpOT0dLS4lY+JycHQ0NDMBgM6OjogMPhQG5u7h8FKKGhoSgpKcGFCxdgNBrhcDiwdOlSnDlzBjab7a8DlAMHDsBgMMBsNqO9vR3v3r0Dj8eDUCiEXC6HQqFw61mJRCKUlZVBo9Ggvb0dJpMJAQEBWLhwITIzM13lkpOToVKpoNFo0NDQAD6fD4lEgmPHjnFmCg4MDIRKpUJ5eTnq6upcz4EzQNm4cSN6e3vR1NSEqqoqOBwOrF+/HikpKQB+ZMVUq9Worq6GyWSC0WjErFmzIBAIsGHDBs5tp5Ph0KFDWLBgAa5fv45r165BIBBAoVBAIpHAYDBwLmAdbWhoCC0tLfDz88PatWt/WzYjIwNWqxU6ne6PAhQA2LRpEwICAlBZWYn6+npX5tQdO3ZAoVCMO928p+5HeHg4pFIpmpubsXv37jGjADweD8ePH0d5eTn0ej2uXr2KiIgI5OfnY/78+ZxTGjExMbh06RKqq6vR2toKq9UKX19fhISEYPXq1W7bsT3VHk4RERFQq9XQarW4e/cubty4AR6Ph+DgYIjFYrfs0BMpn56ejq9fv+LRo0d48uQJ7HY7BAIBMjMzObc9O0eZNm/ePKFrID/M+P79+/eprgQhhHhaXV0dTp48iX379k2LHuzr16+RnZ2N1NRUKJXKSf1uk8mEvXv34vDhw1MWaP5sKtvDE0ZGRpCdnY3w8PA/zp79f0drUAgh09rAwAB+7mf19/ejoqICM2fOxKpVq6aoZtxYlnXb1js8PIxz584B+HEswWRbuXIlkpKSUFFR8ctkdP8Vb2wPT6ivr8ebN2+wc+fOqa7KtEVTPISQae3KlSu4f/8+xGIxgoKCYLPZYDAY8OnTJ2zZssVt2H2qWSwWnDhxAlKpFKGhoRgcHHQd7CmRSJCWljYl9SooKEBDQwP6+/sntc28tT3+1owZM1BYWMiZ5I6MD03xEEKmtba2Nmi1WnR3d4NlWTAMg8WLF0Mul3OeQDzVXr16BbVaDavV6tptFRkZ6Tp9+f+W0Ivag/wKBSiEEEII8Tq0BoUQQgghXocCFEIIIYR4HQpQCCGEEOJ1KEAhhBBCiNehAIUQQgghXocCFEIIIYR4HQpQCCGEEOJ1KEAhhBBCiNehAIUQQgghXucfxWsopbhbPnAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 135.0 deg to 150.0 deg\n", + "Modulation: 0.309 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.018\n", + "Best fit polarization angle: 115.465 +/- 0.373\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTaUlEQVR4nOzdd3hT5dvA8W/SvehiU1bZGwQrq1D2FJUhspGlbBRFwa3wQ5zgQkG2yh6CTEU2ssveq8wCbWnpXjnvH3l7aGg6aXuS9v5cFxfJc56Tc58kTe486+gURVEQQgghhLAgeq0DEEIIIYR4kiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQliI69evo9PpGDx4sNahCCAgIACdTpfnx/n444/R6XTs3Lkzz4+VFRUqVKBChQpahyGEJCgic+fPn2fs2LHUrl0bd3d37O3tKV26NF26dGHevHnEx8drHWKeGTx4MDqdjuvXr2sdilnz5s3jtdde47nnnsPZ2RmdTsf777+f6X5//fUXAQEBuLu74+rqynPPPceiRYsy3GfRokX4+fnh6uqKu7s7AQEB/PXXX2brXrp0iS5duuDl5UXZsmUZM2YMkZGRZuv279+fihUrEhUVlfkJp5KS0KX+Z2trS4kSJejSpQubN2/O1uOJp/f777+rr8W2bdsyrBseHs6HH35I/fr1cXV1xcHBgTJlytC4cWMmTpxIYGBghvsPHz4cnU6Hs7Mz4eHh6dZLSQBT/un1eooUKUL58uXp3LkzM2bM4Pbt2zk5XZHHbLUOQFi2Tz/9lE8++QSDwUCTJk0YNGgQrq6u3Lt3j507dzJs2DBmz57NkSNHtA61UJo4cSIRERF4enpSunRprly5kuk+P/zwA2PHjsXb25v+/ftjb2/PqlWrGDx4MKdOneKrr75Ks89bb73F119/jY+PD8OHDychIYFly5bx/PPP8/333zNmzBi1bnR0NG3atCE6OpqBAwdy69YtfvzxR+7du8fKlStNHnfjxo38/vvv/P3337i6uuboOXB3d2fChAkAxMXFceLECTZt2sSmTZuYNWsW48aNy9Hj5pcxY8bwyiuvUK5cOa1DeWpz5sxBp9OhKApz5syhffv2ZuvduXOHZs2acf36dXx9fenXrx9Fixbl4cOHHD16lJkzZ+Lk5ESDBg3M7h8ZGcmyZcvQ6XTExsby22+/mbwHzWnZsiUBAQGA8T169+5d9u3bx+bNm/noo4/4+OOPeffdd5/q/EUuU4RIx7Rp0xRAKVu2rHLgwAGzdTZs2KAEBATkc2T5Z9CgQQqgXLt2Lc+Pde3aNQVQBg0alOV9Nm/erFy/fl1RFEVZsGCBAijvvfdehsdwcHBQvLy8TM4pLCxMqVSpkgIo+/fvN9ln3759CqBUqlRJCQsLM3ksLy8vxcHBweSxli1bpgDKrl271LLBgwcrgHLv3j21LDw8XClTpowydOjQLJ/vk+cCKOXLl0+zbf78+QqguLi4KNHR0Tl6/JYtWyqF8SOyfPnyZp/TzJw/f14BlLZt2yoNGzZU7OzslODgYLN1hw4dqgDKkCFDFIPBkGb7nTt3lKNHj6Z7rJ9//lkBlDfffFOxt7dX6tatm27djz76SAGUjz76KM02g8GgrFq1SvHy8lIAZfr06ZmfqMg30sUjzLp+/Toff/wxdnZ2bNq0ieeee85sva5du7Jly5Y05StWrKBFixa4u7vj5OREnTp1mD59utnuoJQ+70ePHvHmm29SoUIF7Ozs+Pjjj7O0HYzdUIMHD6Zs2bLY29tTokQJ+vbty4ULF8zGHRMTw4wZM2jUqBFubm64urpSo0YNxo0bx7179wDQ6XRqt0fFihXVJuIn++fDwsKYPHkyNWrUwMnJCXd3d9q0aZNuE3dkZCRvvvkmPj4+ODo6Ur16db755hsMBoPZ+hnp2LEj5cuXz3L9+fPnEx8fz5gxY0zOw9PTkylTpgDw888/m+yTcv+9997D09NTLa9QoQKjR48mPj6eBQsWqOVBQUEA+Pn5qWUpt1O2gbH1B+Drr7/OcvxZNXjwYFxcXIiOjubMmTNq+fbt2+nYsSNeXl44ODhQtWpV3n33XSIiIrL0uAkJCfzwww907tyZ8uXL4+DggJeXF23btk23Symz96+5MSgp41/S+5fSEpAiKSmJn376icaNG1OkSBGcnZ1p0KABP/zwg9n3laIo/PDDD9SqVQtHR0fKlCnDmDFjsvw8mDN37lwAXn31VQYPHkxiYiILFy40W3f//v0AjB071uw4n1KlSvHMM89keCy9Xs+ECRN4/vnnOXnyJAcPHsx2zDqdjh49erBq1SrA2GJ89+7dbD+OyBvSxSPMWrBgAYmJibzyyivUrl07w7oODg4m96dMmcL06dMpWrQoffv2xdXVlc2bNzNlyhS2bt3Ktm3bsLe3N9knISGB1q1bExYWRvv27SlSpAgVK1bM0vYtW7bQvXt3EhMTef7556lcuTK3bt1izZo1bNy4kR07dph82D18+JBWrVpx4sQJqlWrxpAhQ7C3t+fKlSssWLCA7t27U6JECT766CPWrVvHiRMnGD9+PB4eHgDq/2D8wg0ICOD69ev4+/vTsWNHoqOj+euvv+jYsSO//PILw4cPV+vHx8fTpk0bDh8+TL169ejXrx/h4eF89tln7Nq1K1uvUU78+++/gDGxeVKnTp1M6mR1n88++4x///2XTz75BEDtqjh69CjNmjUDULsAU5Kpf/75h3nz5rFhwwbc3d2f+rzMURQFQP0C/OWXXxg5ciQuLi706tWL4sWLs3PnTmbMmMGGDRvYt2+fyWtrTlhYGOPHj6dp06a0a9eOYsWKcffuXTZs2EDnzp2ZO3cuw4YNS7NfZu/vJw0ePDhNEgKwZ88e/v33X5ydndWylPf91q1bqVatGn379sXR0ZEdO3YwduxYDh48yJIlS0weZ8KECXz33XeUKlWKESNGYGdnx59//snBgwdJSEhI8/eZmYSEBBYtWoS7uzsvvfQSsbGxTJw4kV9//ZVJkyalSUK8vb0BuHjxIvXr18/WsQIDAzl69Cjt2rWjbNmyDB48mNWrVzNnzpx0f0hlplWrVjRv3py9e/eyZs0aRo8enaPHEblM6yYcYZlat26tAMrcuXOztd/+/fvVbqG7d++q5YmJiUrXrl0VQJk2bZrJPuXLl1cApU2bNkpUVFSax8xoe1hYmOLh4aF4e3srZ86cMdl26tQpxcXFRWnQoIFJeZ8+fRRAef3115Xk5GSTbZGRkUp4eLh6P7MunpYtWyo6nU5ZunSpSfnDhw+VevXqKY6OjibN3CndZt27dzc59tWrVxVPT89sd/GklpUunqJFiyqAEhISYna7i4uLAqjdIlFRUQqguLq6mq3/4MEDBVCKFy+ulkVGRio+Pj5K0aJFlQkTJig9e/ZUzzlle4UKFZR+/frl6DxTZNTFM2/ePLWLJyYmRrl+/bpib2+vuLm5KefOnTOpO3LkSAVQhg8fblJurosnLi5OuXnzZprjhYeHK7Vq1VI8PT2VmJgYk22Zvb9TuiB27NiR4fmeOHFCcXNzU4oWLapcvnw5zf5jxoxRkpKS1PKkpCRlyJAhCqCsW7dOLU/dZRcaGqqWx8bGKo0bN073Oc3I0qVLFUAZMWKEWtajRw8FUP7555809b///nsFUNzc3JS3335b+fvvv9N9Tz7ptddeUwDljz/+UBTF+NlSsmRJxcXFRYmIiEhTP6MuntTef/99BVAGDhyYpThE3pMERZhVo0YNBVA2b96crf2GDRumAMovv/ySZtuFCxcUvV6vVKxY0aQ85QP8+PHjZh8zo+0zZ85UAOWHH34wu++ECRMUQE1e7t27p+j1eqVUqVJmvyyelFGCcvz4cQVQevbsaXbfdevWKYDy448/qmWVK1dW9Hq9yRdMipQP0rxMUOzs7BRASUxMNLu9dOnSCqDcuXNHURRFuX37tgIoZcqUMVs/ISFBARR7e3uT8vPnzysdO3ZUPDw8lNKlSyuvv/66+uUxevRopUSJEkpISIgSFBSkdO3aVXF0dFRcXV2VAQMGmP2SMSclQXF3d1c++ugj5aOPPlLeeecdpVOnTgqgAMqsWbMURVGUqVOnKoAyefLkNI8TFhamuLm5KY6OjkpcXJxant0xKF9//XWasTeKkvn7OysJyu3btxUfHx/F0dFR2bdvn1qenJyseHl5KSVLljT7mj58+FDR6XRKr1691LKUv9H58+enqb9jx44cJSgpP2hSj1/asGGDAigvv/xymvoGg0GZPHmy4ujoqL5WgFKhQgVl2LBh6T5XUVFRipubm+Lu7q7Exsaq5RMnTlQA5aeffkqzT1YTlNmzZyuA0qlTpyyetchr0sUjctWxY8cAaN26dZptVatWxcfHh2vXrhEREWHStO/o6EjdunXTfdz0tv/3338AnDhxwmRMSoqLFy8CcO7cOWrWrMnhw4cxGAy0aNECFxeXbJ1beseOiIgwe+wHDx6oxwbj2JPLly9TtmxZKlWqlKZ+QECA2k1i7apVq2Z2TMaePXv46aefWLFiBV5eXrRr14779+/zxx9/EBUVxdixY4mNjU0z2ycjERER6vNmY2ODl5cXnTp1YsyYMXTu3BnI+H3p6elJgwYN2L17N+fPn6devXoZHu/MmTN8+eWX7N69m7t37xIXF2ey3dyU1cze3xmJioqia9eu3L59m6VLl9K0aVN128WLFwkLC6NKlSpMnTrV7P5OTk7qexAePxctW7ZMU7d58+bY2NhkK77Lly+zY8cOqlWrRpMmTdTyjh07UrJkSdatW0dISAhFixZVt+l0Ov73v/8xadIktm7dyoEDBzh27BgHDx7k119/ZcGCBcyePdukexRg2bJlREZG8tprr+Ho6KiWDx48mK+//pq5c+cycuTIbMWfQnmiS1BoTxIUYVapUqU4d+5cttcHSBlkV6pUqXQf98aNG4SHh5skKMWLF8/wgyG97aGhocDjAXrpSVljI2W9hDJlymRYPytSjv3333/z999/Z3rslOemRIkSZuuVLFnyqWPKjLu7OyEhIURERKjjAFJLiTHltUn5P73BkynlmY3dAIiNjWXo0KF0796dnj178vfffxMYGMiSJUt46aWXAOPg7A8//JArV66YTeLMKV++fKbr1GTlfQlkuJ4GwIEDB2jdujVJSUm0adOGbt26UaRIEfR6PcePH+fPP/80OxA8s/d3epKTk+nduzeBgYFMnz6d3r17m2xPeQ9eunQpw+Q29RozGb0PbW1tTRKJrJg7dy6KoqRZYNDW1pZ+/frx9ddfs3DhQt566600+3p4eNC7d2/1vKKjo/n888+ZOnUqY8eOpVu3biZxzpkzByDNsWrXrk3Dhg05evQoR44coVGjRtk6BzBOfQYoVqxYtvcVeUNm8QizmjdvDhhnPWRHyhdacHCw2e0pI+SfHBiZ2Yd3ettTHufEiRMoxi5Ls/8GDRoEPP4izY2FmVKOPWvWrAyPnTLDJaV+yiyhJ6X3nOWmatWqAY9bllK7e/cu0dHR+Pj4qIMwXVxcKFOmDFFRUWZnN1y6dAkwto5l5oMPPiA0NJQff/wReNyylHoAc8OGDQE4e/Zsdk4rUzl9Xz5p6tSpxMbGsm3bNjZv3szMmTP59NNP+fjjjzMcoJnTX+Vjx45l06ZNDB8+3OwaHSnxvvTSSxm+B69du5ZmH3Pvw6SkJEJCQrIcX+qZOpMnT04z2yhlhlZmPyBSuLi48Nlnn9G8eXPi4+PZt2+fuu3kyZMcOnQIgCZNmqQ51tGjR4HHSUx27dixAyDHA21F7pMERZj16quvYmdnx+rVqzP9skj9izFlYSVzy3ZfvnyZW7duUbFixSz94s6Kxo0bA8aug6zw8/NDr9eze/duoqOjM62f0tydnJz81Md2c3OjcuXK3L592+yCavmx1HlKF4e5qeEpXTJPdoPkZJ8nHTp0iJkzZzJr1qw0v9xTv3+e7C7JLRm9L8PDwzl+/DiOjo7UqFEjw8e5fPkyXl5eZmfY5PYsrK+//prZs2fTvn17fvrpJ7N1qlevjoeHBwcOHCAxMTFLj5uSEJqLd+/evWbf6+n5888/uX//PtWqVWPo0KFm//n6+nLx4sVsPT9ubm7A424XeJx4BAQEpHssJycnli5dmu1Vif/991/27duHk5OT2ponLED+DXcR1iZlxkmFChWUw4cPm62zefNmpVWrVur9lBkCFSpUUO7fv6+WJyUlKS+88IICKFOnTjV5jMwWhspoe0hIiOLh4aEUK1ZMOXjwYJrtycnJaQYf9u3bN8uzeN5++20FUP7991+zx/f391f0er0yb948s9tPnjxpsjhZynPao0cPTWbxXL16Nc8XantSfHy8UrNmTaVLly4m5X///bcCKJ988olalrKgm7lBxE/KaBaPubp2dnaKu7u7cunSJZNtY8aMUQBl2LBhJuXmBsl26NBBAZQTJ06YlP/666/qQM8FCxaYbMvs/W1ukOzq1asVvV6v1KlTJ9NBwx988IH6fn5yBpGiGBc9Sz3Dbe/evbk2i6ddu3YKoCxfvjzdOinPTd++fdWyL774Qjl9+rTZ+nv27FEcHR0VW1tb5fbt24qiKEpMTIzi4eGh2NjYqGXm9O/fXwGUOXPmqGWZLdS2evVqdaG2L774IrNTFvlIEhSRoU8++UTR6/UKoDRt2lQZN26cMmXKFGXo0KFKlSpVFEBp1KiRyT6TJk1Sp56OGjVKefvtt5XatWsrgNK8eXMlPj7epP7TJCiKoij//POP4ubmpuh0OqVt27bK+PHjlQkTJig9evRQSpcurTg4OJjUDwsLU+rWrasASvXq1ZXx48crb7/9ttKzZ0/Fzc3N5Itiy5Yt6of5pEmTlM8++0z5/vvv1e03b95Un4d69eopI0aMUCZNmqT07dtXPef//vtPrR8XF6c8++yzav1JkyYpI0aMUDw8PJRu3bplO0GZO3euMmjQIGXQoEFKs2bNFECpW7euWmZuZczvvvtOARRvb29l1KhRyoQJExQfHx8FUCZOnGj2OG+++aYCKD4+PsqECROUUaNGKd7e3gpg8nyY89577ynu7u7KrVu3TMoNBoPSsGFDxcbGRhkyZIjy8ssvK4DJjJOMZCdBURRF+fHHH9WprUOHDlXeffddpUmTJur7IPWXtaKYT1A2b95s8hhvvvmm0qJFC0Wv16vTqXMjQXFyclL4/5VWU2Yopf6X+hgJCQnqe6dMmTLKgAEDlHfffVcZMmSImkA/+T4YO3asAiilSpVSxo4dq7z55ptKpUqVlEaNGimlSpXK0nN69epVRafTKUWLFk3zN51aZGSk4urqqjg4OKjPcb169dTnffDgwcrkyZOVcePGKW3atFF0Op0CKF9//bX6GCnJ9/PPP59hTDt37kzzmZTy/LZs2VJ9/iZNmqT0799fqVixogIoDg4OyowZMzI9Z5G/JEERmTp79qwyZswYpVatWoqbm5tiZ2enlCxZUunYsaPy66+/mkzNTLF06VKlWbNm6gdTzZo1lalTp5pMDUzxtAmKohi/rEaPHq1UrlxZcXBwUNzc3JRq1aop/fv3V9auXZumflRUlDJ16lSlTp06ipOTk+Lq6qrUqFFDGT9+vEmLh6IYp49Wr15dsbe3N/uF+OjRI2XatGnKM888o7i4uCiOjo5KhQoVlM6dOyu//PJLmunMERERyhtvvKEmT9WqVVO++uor5cqVK9lOUFKmQaf3r2XLlmb3W79+vdKiRQvF1dVVcXZ2Vho1aqQsXLgww2MtWLBAadSokeLs7Ky4uroqLVq0UDZs2JDhPoGBgYqtrW266+ncvHlTeeGFFxQXFxfF3d1dGTRoULanGWdnSuzWrVuVdu3aKR4eHoq9vb1SqVIl5e2331YePnyYpm5604w3bNigPPfcc4qrq6vi7u6utGvXTtm1a5f6JZobCUpGr6m519VgMCiLFy9WWrdurXh6eip2dnZK6dKllWbNminTpk1Tbty4kab+999/r76vS5UqpYwaNUoJDw/P8lL3U6ZMUQDljTfeyLTu8OHDFUD55ptvFEVRlGPHjimfffaZ0qpVK6VChQqKo6Oj4uDgoPj6+ip9+/ZV9uzZY7J/06ZNFUD5888/Mz1W1apVFUAJDAxUFOXx85vyT6fTKa6urkq5cuWUTp06KZ9//nma5FlYBp2ipOrkE0IIIYSwADJIVgghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcq0xQ4uLiuHDhQp4tiy2EEEIIbVllghIUFMTw4cMJCgrSOhQhhBBC5AHb7O4QExPDsmXLOHv2LOfOnSMyMpLJkyfTqVOnLD/GkSNHWLJkCRcvXsRgMFC2bFn69OlDmzZtshuOEEIIIQqgbCcoERERLFy4kBIlSlC5cmUCAwOztf+mTZuYMWMGjRo1Yvjw4djY2HDjxg3u37+f3VCEEEIIUUBlO0Hx9vZm7dq1eHt7c/78eUaMGJHlfe/evcu3335L9+7dGT9+fHYPLYQQQohCIttjUOzt7fH29s7Rwf78808MBgNDhw4FjN1FcikgIYQQQjwp2y0oT+Po0aOUK1eOAwcOMHv2bB48eICbmxsvvfQSQ4YMQa83ny+FhIQQGhqq3pfBsUIIIUTBlq8Jyq1bt9Dr9Xz++ef06dOHSpUqsXv3bhYvXkxycjKvvfaa2f3Wr1/PwoUL8zNUIYQQQmgoXxOU2NhYDAYDr732Gv369QMgICCAyMhIVq1axYABA3B2dk6zX7du3WjWrJl6PygoiKlTp+Zb3EIIIYTIX/maoDg4OBAbG0vbtm1Nytu0acPBgwe5ePEi9evXT7Nf0aJFKVq0aD5FKYQQQgit5etCbSmDaz09PU3KU+5HRkbmZzhCCCGEsFD5mqBUq1YNMA56TS3lvoeHR36GI4QQQggLlWcJSkhICEFBQSQlJallrVu3BmDjxo1qmcFgYPPmzRQpUkRNYIQQQghRuOVoDMrq1auJiopSp/7u27dPXQm2R48euLq6MmfOHLZs2cLy5cspVaoUAM2bN6dhw4b89ttvhIeHU7lyZfbs2cPJkyd56623sLe3z6XTEkIIIYQ1y1GCsnz5coKDg9X7u3fvZvfu3QC0b98eV1dXs/vpdDqmTZvGr7/+yr///suWLVsoW7Ys77//Pu3bt89JKEIIIYQogHSKFS7leuHCBYYPH87cuXOlW0gIIYQogPJ1kKwQQgghRFZIgiKEEEIIiyMJihBC5LGYh3EcXXWJmIdxWocihNWQBEUIIfJYTHg8gWsuExMer3UoQlgNSVCEEEIIYXEkQRFCCCGExZEERZglfeZCCCG0JAmKMEv6zIUQQmhJEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCEKEFlkURQUkqAIIUQBIossioJCEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBsTIxD+M4uuoSMQ/jtA5FCCGEyDOSoFiZmPB4AtdcJiY8XutQhBBCiDwjCYoQQgghLI4kKEIIIYSwOJKgCCGEyDYZDyfymiQoQgghsk3Gw4m8JgmKEEIIISyOJChCc9JULIQQ4kmSoAjNSVOxEEKIJ0mCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLk+0EJSYmhvnz5/PWW2/RpUsXWrRowebNm3N08C+++IIWLVrwzjvv5Gh/IYQQQhRM2U5QIiIiWLhwIUFBQVSuXDnHBz5//jybN2/G3t4+x48hhBBCiIIp2wmKt7c3a9euZeXKlYwcOTJHB1UUhVmzZtGhQwe8vLxy9BhCCCGEKLiynaDY29vj7e39VAfdunUr165dY/jw4U/1OEIIIYQomPJ9kGxMTAw///wz/fv3f+pERwghhBAFk21+H3DhwoU4ODjw8ssvZ3mfkJAQQkND1ftBQUF5EZoQQgghLES+Jig3b95k1apVfPjhh9kaHLt+/XoWLlyYd4EJIYQQwqLka4Ly3XffUbt2bQICArK1X7du3WjWrJl6PygoiKlTp+ZydEIIIYSwFPmWoBw9epSDBw8ydepU7t69q5YnJycTHx/P3bt3KVKkCC4uLmn2LVq0KEWLFs2vUIUQQgihsXxLUO7fvw/A+++/n2bbgwcP6N27N2PGjMnW2BQhhBBCFEx5lqCEhIQQHR1NmTJlsLW15ZlnnmHatGlp6n355ZeULFmSAQMG4Ovrm1fhCCGEEMKK5ChBWb16NVFRUerMmn379qktJD169MDV1ZU5c+awZcsWli9fTqlSpShRogQlSpRI81jff/89np6e+Pv7P8VpCCGEEKIgyVGCsnz5coKDg9X7u3fvZvfu3QC0b98eV1fX3IlOCCGEEIVSjhKUFStWZFpnypQpTJkyJVceSwghhBCFS76vJCuEEEIIkRlJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQhVbMwziOrrpEzMM4rUMRQjxBEhQhRKEVEx5P4JrLxITHax2KEOIJkqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEHnIYFB4cDUCgAdXIzAYFI0jEsI62GodgBBCFFTXDgVzYPE5osOM1/rZN+8Mx9deofHAGlT0K6lxdEJYNmlBEWnILz4hnt61Q8FsnxmoJicposPi2D4zkGuHgjWKTAjrIC0oQhUaE8r23XvZ8/cRoqNjsXOz5crv5/BdV5m2A/zkF58QWWQwKBxYfC7DOgeWnKN8oxLo9Tq1LMmQxKXQS1wMvUhUQhTJSjIlXErg6+lLZa/K6HS6DB5RiIJFEpRC7nLYZRYELmDDxQ2cun/KWFjk///9P52io+zaSrx06UUmdh1HWfeymsQqhLUIPh+WpuXkSdGhcQSfD8O7qisrz65k1dlVbLuyjdikWLP1izkXo61vWwbWG0g733bY6G3yInQhLIYkKIXU6funee/f99hwYQMKGXfhKDqFG46XmXX5K76f9Q29avbis1afUcW7Sj5FK4R1iQ2Pz7ROoi6BmYHfsHjTPO5F38u0/oOYByw9vZSlp5fi6+nLxy0/pm+dvpKoiAJLEpRCJjI+knf/eZefj/6MQTGo5Tp0lI+tQoW4KhRLLIWdYk+CLo4Qu3tcdjrHLcerABgUA8vPLGf1udVMbDKRjwM+xtHWUavTEcIiOXk4ZLj9pMshlhb/mZDLpuNQSriUoGWFltQqVgsvJy8A7kbe5cS9E+y9sZeIeOPYsKsPrzJw3UBmHpzJvG7zqF+yPpB2/JhX+SImXUhCWBNJUAqRg7cO0m9NP648vKKW+RTxYcyzYwhI7MipuXfS3TfM9gF73bexr9QWwhJDSTIkMWPfDDZc3MDynsupXbx2fpyCEFahZHUvXLwc03TzJOjiWVnsV3Z6blTL9Do93Wt0Z5zfOJqVa4ZeZ37uQkJyApsvbeb7Q9+z/dp2AI7dPUajOY34tNWn9LYfzKElF2TGkCgwZBZPIbHkxBL8F/iryYmLnQvT20zn0thLvNP8HcqW8Mlwf6+kYnQL7cd/XY7wQYsPsNPbAXD2wVka/9qYVWdX5fk5CGEt9HodjQfWMCkLtwnji3JvmyQnrSu25sTrJ1jZayX+5f3TTU4A7G3seaH6C/wz8B92DNqh/ihIVpJ579/36LmyByHhYSb7yIwhYc0kQSngFEXhox0fMXDdQBINiQA08WnCiddP8G7zd9XumZRffBlx8Xakcp3yfNrqU469dkxtVo5OjKbXyl58d/C7PD0XIaxJRb+StJnQABcvR27bBzG9/BsEOV4GwFHvyC9df+GfAf/kqPUxoEIAR0cc5X3/99Fh7MI57naAr8q+yyOb8DT1Dyw5J8sFCKsjCUoBpigKb259k093f6qWjWw0kt2v7qaSVyWTuuZ+8T2p8YAaan927eK12T9kP/3r9le3j98ynmm7p6Eo8kEoBBiTlGpTPPimyruE2T0AoJx7OQ6NOMSIhiOeatqwvY09n7X+jCX+y3BOdgXghuNlZpR7izDbEJO6KTOGhLAmkqAUUIqiMOnvScw8OBMwDoL9tsO3/Nj5R2z15ocepf7Fl5qLtyNtJjRI04/tZOfE4hcX82GLD9Wy93e8z9TdU3P3ZISwUmfun6HD7+15lGQcuFrXqx4Hhh6gTok6uXaMxo7NeffGV3gmFgXgvv0dvvV5j0ibCJN6WZlZJIQlkQSlgJq2Zxpf/feVen9et3lMaDwh019sFf1K0vu7AJoNrQVAs6G16D0rIN1Bdjqdjk9afcKX7b5Uyz7c+SFzj859+pMQwopdfXiVNovbEBJjbM2oFFuDPzv8RSm3Url6HCcPB0ollOOdG19RLMH4dxrscJOZPu8To482qSeENZEEpQBaemopH+z4QL0/p+scXm3wapb31+t1FPN1B6CYr3uWpim+1fQtkyTl9Y2vs/7C+mxEnfdiHsZxdNUlYh5mvICWEE8rIi6Crn90Vdc3qe/dgHG3PsXVzi3Xj5Uyfsw7qThv3PofHoneANxwvMIvpaeTTDIu3o6UrO6V68cWIi9JglLA7L+5n1f/fJyMzGg7g+ENh+fLsd9q+hZvNn4TMK6X0m9NP84+OJsvx86KmPB4AtdcJkaaukUeSjIk0XtVb86FGJe6r160OivarsHZ4JInx0s9fqxYYknevDUN1yTjUtBnXY6xqtg8k/FjQlgLSVAKkHtR9+ixogfxycYv4GENhvF207fzNYYv239J71q9AYhKiOKl5S8REReRyV5CFByT/5nM1itbAfB28uavPn/h6eCZp8dMPX6sVEI5Rt55DxvFuMLsP17r2Gm3OU+PL0RekASlgEg2JNNvTT+Co4zrHbSq0IqfuvyU7xcX0+v0zH9hPvVK1APgYuhFBv85WGb2iEJh48WN6tgvO70da3qvSTNjLq+kHj9WNbYOH1R5PFh91KZRnLl/Jl/iECK3SIJSQEzdPVVdXbKUaymW9VyGnY2dJrE42zmzpvcaPB2NvxrXnV/Hz0d+1iQWIfLLrUe3GLRukHr/q/Zf0aJ8i3yNIfX4sdFNR/J6w9cBiEuKo/eq3sQmmr8QoRCWSBKUXKD14Mv/bv6nrnWi1+lZ2mMpxV2KaxJLCl9PX5a8tES9P3HbRM49yPjy80JYK4NioP+a/oTGhgLwQrUXGOs3VuOo4JsO31CnuHFK85kHZ3hz65saRyRE1kmCkgu0HHwZmxjL4D8Hqxf++7jlx7Ss0DLf4zCnS9UujH52NACxSbH0W9OPhOQEjaMSIvf9eOhHdgXtAowLsc1/YX6+d6+a42TnxLKey3CydQLg56M/s/XyVo2jEiJrJEGxch/s+ICLoRcB8Cvjx2T/yRpHZOrLdl9So6hxhkFgcCCf7/1c44iEyF1Xwq7w7vZ31fsLX1ioXonYEtQsVpNvO3yr3h/x1wgi4yM1jEiIrJEExYrtv7mfb/77BgAHGwcWvLAg3VViteJk58Tv3X/HRmecUTBtzzTOh5zXOCohcodBMTB0/VBiEmMAGNVoFK0qttI4qrRGNBxB64qtAbgRcYPJ2y3rh4wQ5kiCYqUSkhMYun4oCsbZMZ+2+pSaxWpqHJV5DUo14K2mbwHGuEdsGKF2SQlhzX458ovatVPBowIz2s3QOCLzdDodc5+fi7OdMwA/Hv6RPUF7NI5KiIxJgmKlfjk3W22J8Cvjx8QmEzWOKGMftvwQX09fAPbc2MO8Y/M0jkiIp/Mg+gFT/p2i3p/XbR6u9q4aRpQxX09fprWept4f8dcIGRMmLJokKFYozPYBX538AjDO2pndZTY2ehuNo8qYs50zv3T9Rb0/6Z9JPIh+oGFEQjydydsnEx4XDsCgeoPULhRLNtZvLM+VeQ6A8yHn+f7g9xpHJET6JEGxQiuKzSUmyXgRsJGNRvJMqWc0jihr2vq2ZUDdAQCEx4Xz4Y4PM9lDCMt08NZB5gUaWwGLOBRhRlvL7Np5ko3ehh87/4gO4wyjT3Z9oi7uKISlkQTFyuy6s5OjRfYCUMy5GJ+1+kzjiLLni3ZfqM3gc47N4eS9kxpHJET2JBuSGb1ptHr/04BPKeFaQsOIsqdh6YYMe2YYAJEJkbz7z7uZ7CGENiRBsSKJSUm8t//x6PvP287A0ylvr/GR20q6luQ9//cA4wyIN7a+IcvgC6uy5OQSjt49CkDt4rUZ7Tc6kz0sz7TW0/Bw9ABg0YlFHLh1QNuAhDBDEhQrce1QMOPeeZ8LMcbVWMvHVcZhXjmuHbK+5tkJjSdQ0aMiAP9e+5fNNzdqHJEQWRObGMsHOz5Q73/X8TuLm9qfFcVcivFpwKfq/be2vSU/FITFkQTFClw7FMzmWQdY7vR45kvP+0OJDUtg+8xAq0tSHG0d+ar9V+r9T499TDLJGkYkRNZ8d/A7bj26BUDXql0tcs2TrBr57EiqF60OwL6b+/jr4l8aRySEKUlQLJzBoHBg8Tm2e/7JQ7sQAOpEPUv12HpqnQNLzmEwWNevn5eqv6ReSO3Ko8vsd/9b44iEyFhoTCjT904HjLPnPm9j3asi2+pt+V/r/6n3J2+fTLJBfigIyyEJioULPh9GcMQ9NnutAECn6OnxYIhJnejQOILPh2kRXo7pdDqmt5mu3t/g/Qe3Lt+zukRLFB7T9kwjIj4CgMH1BlOreC2NI3p6L1Z/kcY+jQHjxQSXnFySyR5C5B9JUCxcbHg82zzXEGtjXEq7eUQ7yiSUN1vP2pS660uDeOOH40O7EP637kuWj9tpdV1WouC79egWPx7+EQAnWyc+afWJxhHlDp1OZ9IS9MGOD4hL0uaq7EI8SRIUCxfjFMkOzw0A2Bps6Rraz2w9Jw+H/AzrqV07FMz2mYF0uzsAnWJck2Gz1wpCwsOsclyNKNim75murro67rlx+BTx0Tii3NOyQku6VOkCGBOxuUfnahyREEbZTlBiYmKYP38+b731Fl26dKFFixZs3rw5S/sePXqUzz//nL59+9KuXTt69+7NjBkzCAkJyXbghcXiB78Srzf+ovGP6IhXUtE0dVy8HSlZ3XKunpqZlHE1AD7xFXk2siUAUbaP2O7xJ2Cd42pEwXQz4ia/Bv4KgIudi3pdqYJkauup6u3P930urSjCImQ7QYmIiGDhwoUEBQVRuXLlbO37888/ExgYiL+/P+PHj6dNmzbs2LGDYcOGERoamt1QCrz70ff56chPANga7OgU9rLZeo0H1ECv1+VnaE8l+HwY0WGPPwBfCOmPXjG+Ff/xWkecLsYqx9WIgunzvZ+rrSdj/cZS1DntjwRrV79kfV6o9gIAdyLvyLWyhEXIdoLi7e3N2rVrWblyJSNHjszWvqNHj2bp0qWMHDmSrl27MmLECD7//HPCwsJYs2ZNdkMp8L7Y94V6Gfd+FQemaVZ28XakzYQGVPQrqUV4OfbkeJniiaXxexQAQLRNJDs9N5qtJ0R+S9164mrvysSmln1RzqfxYcvHl574fN/nxCfJ35/QVrYTFHt7e7y9vXN0sPr166PX69OUFSlShKCgoBw9ZkF1L+oePx02tp442jryvx6f0vu7AJoNNc4caDa0Fr1nBVhdcgLmx8t0DuutjkXZ5rmWeF2c1Y2rEQXP9L3TC3zrSYpnSj3D81WfB4xjUeYHztc4IlHYaT5INiYmhtjYWNzd3bUOxaJ8e+BbYpNiAXit4WuUdiuNXq+jmK/xeSrm625V3TqplazuhYuXo0lZqYSyNIr0ByDSNpyDpbdb1bgaUfDcenSLX489bj15s8mbGkeU9z5q+ZF6O3VyJoQWNE9QVq5cSWJiIq1bp3+p8pCQEC5cuKD+K+itLRFxEcw+MhsAext7JjWbpHFEuUuv19F4YI005Z1De6u3t3mvJsEgTcxCO7MOzCLRkAjAmGfHFOjWkxQNSzdUZ/TcfHSTxScWaxyRKMw0TVCOHz/OwoULadWqFQ0bNky33vr16xk+fLj6b+rUqenWLQh+PvIzj+IfATCw7kBKu5XWOKLcV9GvJG0mNDBpSfFJqEij+GYA3IsPZkHgAq3CE4VceFw4vxz9BQAHGwcmNJ6gbUD5KPVYlK/2f4VBMWgYjSjMNEtQgoKCeP/99/H19eWdd97JsG63bt2YO3eu+u/999/PpyjzX1xSHDMPzgRAh463m72tbUB5qKJfyTTjan4aPVPd/vV/X8vS20ITPx/5mciESAAG1x9MCdcSGkeUf/zK+NGyvHHq/4XQC2y4sEHjiERhpUmCcu/ePSZOnIiLiwszZszA2dk5w/pFixalWrVq6r/y5dOupFpQLDmxhOAo4yJl3Wt0p6p3VY0jyltPjqt5tkwj2vq2BeDKwyv8eeFPLcMThVBcUhyzDs4CjD8SJjYpuDN30pO6W/mL/V9oGIkozPI9QYmIiGDixIkkJiby1VdfUbRowe/XzapkQ7LJh8E7zTJuWSqo3mryeCGsr/Z/lUFNIXLfbyd/M/mRUMW7isYR5b9OlTtRu3htAPbf3M++G/s0jkgURnmWoISEhBAUFERSUpJaFhsby6RJkwgJCeGLL76gbNmyeXV4q7T2/Fouh10GoFWFVjxb5lmNI9JG+0rt1Q/H/279x/6b+zWOSBQWBsXAl/u/VO8X1h8JOp3O5IeCtKIILdjmZKfVq1cTFRWlrv66b98+7t+/D0CPHj1wdXVlzpw5bNmyheXLl1OqVCkAPvvsM86dO0fnzp0JCgoymY3j5OSEv7//056PVfv2wLfq7cL6wQiPPxwH/zkYMLairOktC/mJvLf+wnouhl4EIKBCQKH9kQDQp04f3vv3PW5H3mb9hfWcDzlP9aLVtQ5LFCI5SlCWL19OcPDji7nt3r2b3bt3A9C+fXtcXV3N7nf5srF1YNOmTWzatMlkW8mSJQt1gnL49mG1paB28dq0r9Re44i01adOH6b8O4U7kXdYd34dl0IvFcqmdpG/UncpTmpasKb3Z5e9jT1vNH6Dt/42tqR88983zHl+jsZRicIkRwnKihUrMq0zZcoUpkyZku39CquUQXkA4/zGodNZ5yJsucXexp5xfuN4d/u7KCh8e+Bbfuryk9ZhiQLs6J2j7LtpHGtRq1gtOlbuqHFE2hvecDif7PqEyIRIfjv5G9PbTMfbOWcriQuRXZov1CaMF+dafmY5AN5O3vSv21/jiCzDa41ew9Xe2Bq36MQiHsY+1DgiUZB9f+h79fb458YX+h8JAEUcivBq/VcBiE2KZV6g8SKCBoPCg6sRADy4GiFXHhd5QhIUCzD78GySDMbBxCMajsDJzknjiCyDh6MHg+oNAiAmMYYFx2XhNpE3HsQ+YOnppQB4OnrSr24/jSOyHGP8xqDDmKz9ePhHLh24xfJxO9k37wwA++adYfm4nVw7FJzRwwiRbZKgaCwuKY6fj/4MgK3ellHPjtI4Issyxm+MevvHwz/Kwm0iTyy+tFC97szwZ4bjbJfx2kyFSRXvKnSu0hmAGxE3+Hb+z0SHxZnUiQ6LY/vMQElSRK6SBEVjf5z6g5CYEAB61uyJTxEfjSOyLNWLVqedbzsArj68yubLmzWOSBQ0SSSx4IKx60Kv08uPBDPGPTdOvb3dc3269Q4sOSfdPSLXSIKiIUVRTAbHTnhugnbBWLCxfmPV2z8c+kHDSERBdNRtL/dijb/8X6z+IuU9Cu5K1TnVzrcdld2Ms+guOp/ipsNVs/WiQ+MIPh+Wn6GJAkwSFA3tubGHk/dOAvBcmed4zuc5jSOyTJ2rdKaiR0UAtl7ZyoWQCxpHJAqSf1O1CIzzG5dBzcJLp9PRv8xg9f6/Hum3osSGy1XIRe6QBEVDs4/MVm+nbiUQpmz0Nox+drR6/8fDP2oYjShIAkOOcdXpPAB1S9SlRfkWGkdkufrW6IdTsnFszsEiO4m0iTBbz8nDIT/DEgWYJCgauR99n9VnVwNQ1LkoPWv21DgiyzakwRB14OLC4wuJjI/UOCJREKSMPQHjjwSZWpy+SrXLERBvHCybqE/gvyLb09Rx8XakZHWv/A5NFFCSoGhkfuB8Eg2JAAypPwQHW/nVkRFPJ0/61zGuDxOZEMniE4s1jkhYu7CYh6y9ZvyR4GZThFdq9dE4Isum1+uY2GG8en+XxyYUTAfENh5QA71ekjyROyRB0YBBMfDL0V/U+yMajtAwGusx2u9xN88vR39BUWS2gMiZa4eCefPDD4kzGKfLPhsSwIaJh2SabCbatG5OE+/mANy3v8N55xOAseWkzYQGVPQrqWV4ooCRBEUDWy9v5Xr4dQA6VOpAJa9K2gZkJeqWqEtjn8YAnLp/ioO3D2ockbBG1w4F88/MY2yzfzzQs0V4J1nLI4smtHo8Xm6X+yaaDa1F71kBkpyIXCcJigZSFmYDeL3R6xpGYn1ea/iaejt1K5QQWWEwKBxYfI5LTme463ADgMoxtSiT8HhqsazlkbEXq79IcZfiABx3+w9DqTjp1hF5QhKUfHYj4gZ/XfwLAJ8iPnSt2lXjiKzLy7Vext3BHYDlp5cTHheubUDCqgSfDyM6LI5dHo+vpt4yvLNJHVnLI2P2NvYMbTAUgGRdMksv/65xRKKgkgQln809OheDYgCMS2rb6nN0QelCy9nOmQF1BwDGi5f9dvI3jSMSuS3mYRxHV10i5mFc5pWzKTY8nkibCI657gXANakIDaOama0n0jf8meHq9XmWXFool6AQeUISlHyUmJzIr4G/AmCjs1F/hYjsea2RaTePDJYtWGLC4wlcc5mYPEgSnDwc2F/kH5L0xotzNn3UFjvF3mw9kb6KnhVpVboNADeibrDtyjaNIxIFkSQo+eivi38RHGUcgPdC9RcoU6SMxhFZp9rFa9O0bFMATt8/zX+3/tM4ImEtilfzYI/XFvW+f3jHNHVkLY+sGVz1VfV26nF1QuQWSVDyUUrrCcCIZ2Rq8dOQwbIiJ3YF7eSe7W0AakTXp2Ri2otzyloeWdPOpwMeid6A8cfXzYibGkckChpJUPLJ7Ue32XLZ+MutbJGytPVtq3FE1q1XzV54OHoAsOLMCh7GPtQ2IGEVUv9IaJfUzWSbrOWRPbZ6W/wjOgDGtZ0WnVikcUSioJEEJZ8sPL5QHRz7av1XsdHbaByRdXOyc2Jg3YEAxCXFyWBZkamw2DDWnlsLGC8vMWPGFJoNrQUga3nkULOIdupg2QXHF6ifcULkBklQ8oFBMTD/+HwAdOh4tcGrmewhsiL1Crwpz68Q6fnj1B/EJxsH3vav0x9HOweK+RqnrBfzdZdunRzwTipBy1IBAFx9eJVd13dpG5AoUCRByQe7ru/i6sOrALT1bUsFjwraBlRA1Cpei+fKPAfA8eDjBN4N1DgiYcnmBT6+MODQZ2QGXW7pW7m/elt+KIjcJAlKPjD5YJSpxblqSIMh6u35gfLhKMwLvBvI8eDjADxb+llqF6+tbUAFSKdyXfB09ARg1dlVebJ4Yl6ujSMslyQoeexh7ENWnzNeMdXLyYsXq7+obUAFTO9avXGydQLg91O/E5ckH2AirdTJq/xIyF2ONo70q9MPMI4HW3Z6Wa4fIy/XxhGWSxKUPPbHqT/UL83+dfrjYCsLQOUmd0d3etTsAcDDuIesv7A+kz1EYROXFMfvp4zLsTvaOvJK7Vc0jqjgSd1llrrFWIinIQlKHpN+77w3pL5084j0rTu/jodxxmnoPWv2xN3RXeOICp76JevToGQDAI7cOcLJeyc1jkgUBJKg5KHAu4EEBhsHbjYq3Yi6JepqHFHB1LJCSyp6VARg25VtsmCUMCFjwPJH6ud2QeACDSMRBYUkKHlIPhjzh16nZ3D9wQAoKLJglFBdD7/O9qvbAfD19KVF+RYaR1Rw9anTBwcbYxf2kpNLiE+S8SLi6UiCkkdS93s72TrRp3YfjSMq2AbVGyQLRok0Fh1fhILxYpJD6g9Br5OPvLzi5eTFSzVeAiA0NpQNFzdoHJGwdvLXmkf+PP+nOt1O+r3zXnmP8urlA64+vMruoN0aRyS0ZlAMLDhu7GrQoWNQ/UEaR1TwpW4plsGy4mlJgpJHFp9crN5+tb6sHJsfUq+JkvLFJAqvf6/9S1BEEAAdKnfAp0jaCwOK3NW6YmvKu5cHYOvlrdx6dEvjiIQ1kwQlDwRHBbP18lbAeGHAlhVaahxR4fBi9RfVCwiuPLOSR/GPtA1IaCr1WKTUM71E3nlyPJhcI0s8DUlQ8sDSU0tJVpIBGFB3gPR75xNHW0f61u4LQGxSLMtPL9c4IqGVyPhI1pxbA4CHowfdqnXLZA+RWwbWG6jeXnRiEYqiaBiNsGbyzZkHUnfvDKg3QMNICp/UF2JM/TqIwmXNuTXEJMYA8EqtV2SBxHzk6+mLfzl/AM6HnOfInSMaRySslSQouezkvZPqNT/8yvhRvWh1bQMqZBqWakjNYjUB2HtjL1fCrmgckdBC6uQ09S96kT8G1Xs8IFmm/YuckgQlly05sUS9PbCufDDmN51OZ/K8Sx944XMj4gY7ru0AoLJXZRr7NNY4osKnZ82eONo6ArD09FISkhM0jkhYI0lQclGyIVld+8ROb0fv2r01jqhw6le3n7omyuKTi6UPvJD5/eTv6tonA+sORKfTaRxR4ePu6M5L1Y1rooTFhrHx4kaNIxLWSBKUXLQ7eBd3o+4C0KVqF4o6F9U4osLJp4iPyZoo+27u0zgikV8URWHJycetmP3r9tcwmsLtycGyQmSXJCi5aMWVx5cZl+4dbaX+cFx8QgbLFhZH7x7lXMg5APzL+VPRs6LGERVebX3bUsq1FAAbL20kJCZE44iEtZEEJZfE6WLYeMO4tLOXkxedq3TWOKLC7aXqL+Fi5wLAijMriE2M1TgikR9SJ6OWNDjW2cOBBt0r4+xReGYT2ept6VenHwBJhiSWnlqqcUTC2kiC8pQMBoUHVyM46raP2GTjl2BBmNZo7R+oLvYu9KzZE4CI+Ai5LkghkJCcwNLTxi9BBxsHetXspXFEjzl7OtKwZxWcPR3z/lgW9Leb+vICMu1fZJckKE/h2qFglo/byb55Z/ivyHa1vK1dFw2jyh35+YGaV1JPdZRunoJvy+UtajfCi9VfLLTXv7Kkv93axWvzTKlnADhy5whnH5zVOCJhTSRByaFrh4LZPjOQ6LA4Qm3vccHlJAAlEsoQstC4XWirZYWWlC1SFjB+ed2Pva9xRCIvWWr3TmGXejzeouMyWFZknSQoOWAwKBxYfE69f6DITvV2k4g26NBxYMk5DAaZ3qolvU7PgLrGlXyTlWTWXFupcUQir4TFhqndeMVditO+UnuNIxIp+tTpg63eFoDfTv1GsiFZ44iEtZAEJQeCz4cRHRYHGC+IdSBV907jR60AiA6NI/h8mCbxicdSX2pgeapZVqJgWXFmhboYWL86/dQvRKG94i7F6VS5EwB3Iu+w/dr2TPYQwkgSlByIDY9Xb193vEiwg/GS4tVi6uKdVMJsPaGN6kWr41fGD4DTD09xy+GaxhGJvCDdO5ZNxoOJnJAEJQecUo2OTz04tklE63TrCe2k/nD8r8i/GkYi8sKl0Ev8d+s/AOoUr0O9EvU0jkg8qWvVrng6egLGCzk+in+kcUTCGkiCkgMlq3vh4uVIEokcKrILAHuDA89ENVfruHg7UrK6l1YhilR61+qNnd4OgINF/iXJkKRxRCI3pV45dmA9WdreEjnYOvBK7VcAiE2KZdXZVRpHJKyBJCg5oNfraDywBqdcDxNtEwlA/agmOBmc1TqNB9RAr5cPSkvg7exN16pdAYiwfcjuu7s0jkjkFoNiUBMUvU5P3zp9NY5IpCd1S2bqpFLkrZiHcRxddYmYh3Fah5JtkqDkUEW/klx+5qh6v0lEG8DYctJmQgMq+pXUKjRhRupxCcuvyIqWBcW+G/u4Hn4dgHa+7SjtVlrbgES6/Mr4UdW7KgA7r+8kKDxI44gKh5jweALXXCbGCsdESoKSQ6Exoex48A8AxeyLUyOmPs2G1qL3rABJTixQx0qd8LA19oFvvLGB8NgIjSMSuUEGx1oPnU5nsibKbyd/0zAaYQ2ynaDExMQwf/583nrrLbp06UKLFi3YvHlzlvePjIzkyy+/5Pnnn6d9+/aMHz+eCxcuZDcMzS0/s5xEQyIAvSq/jA02FPN1l24dC3TtUDBr39hPgwfGMULxhnje+WCaLKZn5WITY1lxdgUArvauvFj9RW0DEplKfXXpxScXoyiyVpRIX7YTlIiICBYuXEhQUBCVK1fO1r4Gg4F33nmHf/75h+7du/P666/z8OFDxo8fz82bN7MbiqZS/3J7udIrGkYiMpJ6xd8mj9qo5TtttrB9ZqAkKVZs/YX16myQXjV74WznnMkeQmvlPcoTUCEAgIuhFzl0+5C2AQmLlu0Exdvbm7Vr17Jy5UpGjhyZrX137tzJ6dOnmTx5Mq+++irdu3fnu+++Q6/Xs2DBguyGopkLIRc4ePsgAPVK1KOWZ22NIxLmPLnib4W4KpSMNy59f9H5FCG292TFXyuW+uJz0r1jPVJ388iaKCIj2U5Q7O3t8fb2ztHBdu3ahZeXFy1atFDLPDw8aNWqFXv37iUhISFHj5vfnpzWKCxT6hV/AXToaPLo8Vo1B4r8Kyv+WqngqGC2Xt4KQDn3crQo3yKTPYSl6FGzB062TgAsO7OM+CTrG7wp8ke+DpK9ePEiVapUQa83PWyNGjWIi4uzim4emdZoPcyt5Pvc/1+KAOCA+78oKHmy4q81T+2zBktPLSVZMV7TZUDdAeh1Mt7fWhRxKMJLNV4CjNdQ2nRpk8YRCUuVr3/VYWFhZltfUspCQ0PN7hcSEsKFCxfUf0FB2k1P2x20mxsRNwDoUKkDJV1lxo6lMreSr3dScapF1wXgnv1trjleyJMVf615ap81SN29k3JBSGE9TLp5Tko3jzAvX6+oFR8fj729fZrylLL4ePMf5uvXr2fhwoV5GVqWybRG65Gy4m/qbh6AJo/acMHlJABHiu+iZPUJGkQncurkvZMcDz4OwHNlnqNa0WraBiSyrY1vG0q5luJu1F02XtxISEwIRZ2Lah2WsDD52oLi4OBgdpxJSpmDg/lfst26dWPu3Lnqv/fffz9P40xPTGIMK8+uBIzNlC9Ue0GTOETWpKz4+6SGkc2wNxjfa4eL7CbRYB1jn4TRkhMyBsza2ept6VenHwCJhkSWn16ucUTCEuVrguLl5WW2GyelLL3Bt0WLFqVatWrqv/Lly+dpnOlZd34dUQlRgHFao5OdkyZxiKyr6FeSNhMa4OLlqJY5Ks48m+APQHjiQ+kDtyJJhiR+P/U7AHZ6O3rX6q1xRCKnUieX0s0jzMnXBKVKlSpcunQJg8FgUn7u3DkcHR0pW7ZsfoaTbZYwe8fZw4EG3SvjLFdKzrKKfiXp/V0AzYbWAqDZ0Fq8P+Qtdbt8OFqP7Ve3czfqLmC8Qq63c85mFArt1SlRh/ol6wNw6PYhzoec1zYgYXHyLEEJCQkhKCiIpKTHV45t2bIlYWFh7N69Wy0LDw9nx44dNG3a1Oz4FEtxN/Iu265sA6CCRwWal2ueyR55w9nTkYY9q+Ds6Zh5ZaHS63UU83UHoJivO+0qtaWUaykAtQ9cWL7UPxJkcKz1Sz1YNnXXnRCQwwRl9erVLFq0iE2bjE3j+/btY9GiRSxatIioKGMXyJw5cxgwYAAPHjxQ9wsICKBWrVpMnz6dhQsXsnbtWsaPH4/BYGDIkCG5cDp5549Tf2BQjC0/Mq3R+tnobdRlt6UP3DpExkey5twaALycvOhcpbPGEYmn1adOH2x0NoAx+Uz5jBUCcpigLF++nHnz5rFu3ToAdu/ezbx585g3bx6RkZHp7mdjY8MXX3xB69atWb16NbNnz8bd3Z2ZM2dSrly5HJ1AflAUhUUnFqn35Zdb7tKq20r6wK3L6nOriU2KBeCVWq/gYCvdnNaupGtJOlTuAMDNRzfZdX2XxhEJS5KjacYrVqzItM6UKVOYMmVKmnI3Nzfeeecd3nnnnZwcWhMn7p3g1P1TADTxaUIV7yoaR1SwpHRb5bfaxWvToGQDAoMD1T7w6kWr53scImtkin/BNLDuQHWg+uKTi2lVsVUme4jCQvopsiD1B+OgeoM0jETkttRfdNIHbrmCwoPYcX0HAFW9q+JXxk/jiERu6VatG0UcigCw6uwqohOiNY5IWApJUDKRmJyoTmu0t7Hn5VovaxyRyE19aksfuDVI+RsE4y9unU6nYTQiNznZOfFyTePnalRCFOvOr9M2IGExJEHJxLYr27gffR8wZvqeTp4aRyRyUwnXEnSs3BGQPnBLpSiKSStmyuBmUXDIeDBhjiQomUg9OFa6dwomk26ek9LNY2kO3znMhdALAARUCKC8hzYLNYq807xccyp6VATgn6v/cPvRbY0jEpZAEpQMPIx9yPoL6wEo5lyMDpU6aByRyAvPV30edwfjGikrz64kJjFG44hEaiaDY+vK4NiCSKfTqT8UDIqBP079oXFEwhJIgpKBlWdXEp9svIBhvzr9sLOx0zgikRec7JzoVbMXIH3gliYhOYGlp5cC4GjrSI+aPTSOSOSV1Ms3LDqxCEVRNIxGWAJJUDKQuntHpjUWbCZ94CekD9xSbLq0ibDYMABeqv6SOttDFDyVvCrRrGwzAM48OKNesVoUXpKgpONy2GX239wPGNfLSLlmhCiYmpVrpvaB/331b+5E3tE4IgGWcf0rkX/kh4JITRKUdDy59olMayzY9Dq92sQsfeCW4WH8QzZc2AAYVxxt69tW44hEXutVsxcONsYVgv84/QeJyYkaRyS0JAmKGQbFoP5y0+v09KvTT+OIRH4YUE/6wC3JuutrSDQYv6D61emHrT5HC18LK+Lp5Em3at0AuB99X71AqyicJEExY++NvVwPvw5A+0rtKeVWStuARL6o7FWZpmWbAnD6/mlO3DuhcUSF24ory9Tb0r1TeMiaKCKFJChmLDqeanCsTGssVFK/3tIHrp1gu1scCTkMQL0S9ahboq7GEYn80qFSB4o5FwPgz/N/Eh4Xrm1AQjOSoDwhJjGGlWdXAuBm78YL1V/QOCKRn16u9TL2NvaAcXn1JEOSxhEVTgeK/KveltaTwsXOxo6+dfoCEJ8cz8ozKzWOSGhFEpQnrDu/jsiESMD4ZeVs56xxRCI/SR+4tgwGhXtXHnLA3Zig6HV6+tTuo3FUIr9JN48ASVDSkEu6C+nm0ca1Q8EsH7eT+cuWEmpnvP5VnfhGxJ2TGXSFTYOSDahVrBZgHBN4LfKaxhEJLUiCksqdyDv8ffVvACp4VKB5ueYaRyS00LFyR4o6FwWMLWoRcREaR1TwXTsUzPaZgUSHxbG/yN9q+XMhrdk+M5Brh4I1jE7kt9RL3wOsurpcw2gKn0uhl/j95O+aX/ZDEpRUfj/5OwbFABh/Ret18vQURnY2dvSt/bgPfNXZVRpHVLAZDAoHFp8DIEYfzVG3fQA4J7tSP6oxAAeWnMNgkGnfhUm/Ov3QYWw9W3rhDxQUHlyNkPdBPvjl6C/0X9ufUl+X4t9r/2a+Qx6Rb+D/pyiKydL2qdfEEIVP6l9vqd8XIvcFnw8jOiwOgCNuu0nUJwDw3KNW2CnGAcvRoXEEnw/TLEaR/8oUKUMzb38Absbd4IrTWfbNO8PycTulRS0PJSYnquuAxSXFUa9EPc1ikQQllfkvzGdUo1E8X/V5KntV1jocoaFnSj1DzWI1AdhzYw+Xwy5rHFHBFRser97e5/64e6dZRLt064mC79qhYKqd9lPv//f/M7uiw+Kk2y8Pbbq0ifvRxjFg3ap1w9vZW7NYJEH5fzqdDr8yfvzY5UfW91mvdThCYzqdjlfrv6renx84X8NoLEPMwziOrrpEzMO4XH1cJw/j0uZ37W9w1ek8AD5xFSkXX8lsPVHwpXT7NYhsioPBEYDDbrtJ0D1OUqXbL2/MP/74s25I/SEaRiIJihDpGlB3gLq8+sLjCwv9migx4fEErrlMTC63ZJSs7oWLl2Oa1pOU8QcALt6OlKzulavHFZYrpdvPQXHkmUjjZIVYm2gCXferdaTbL/cFRwWz8eJGAEq7laZ9pfaaxiMJihDpKOFagq5VuwJwN+ouWy9v1Tiigkmv19Gwf2W1Cd9GseW5yFYmdRoPqIFen/vTjZ09HGjQvTLO0jpjUVJ35zWPePwlucd9a7r1xNP77eRvJCvJgPEiuTZ6G03jkQRFiAwMbTBUvT0vcJ6GkRRsFzyP88j2IQD1ovxwS3YHjC0nbSY0oKJfyTw5rrOnIw17VsHZ0zFPHl/kTOruvCqxtSiRUAaACy4nuW9312y93JBX3ZjWQFEUFhxfoN4fXH+wdsH8P0lQhMhAx8odKeVqvFjkhosbuBd1T+OICqbUH4zDnxsGQLOhteg9KyDPkhNhuVK6/QB06ExaUfa5G1d3zotuv7zqxrQGh+8c5uyDswA0L9ecqt5VNY5IEhQhMmSrt2VQvUEAJBmS1Ol3Ivfcj77PhosbACjlWooXnzFeaqCYr3uedOsIy6fX62g8sIZ6v0lEG/SK8etqf5F/SCY5z7r9CqvUEwFSTxDQkiQoQmRiSIPHI9nnB85HUWTmQG76/eTjizKmHpgsCreKfiVpM6EBLl6OuCd7UTfKOOU43C4Um74PpWUtF0UnRLP09FIAnO2c6VWzl8YRGUmCIkQmqnhXwb+cccGocyHnOHDrgMYRFRyKophMa3y1gWX8chOWoaJfSXp/F0CzobVoHtFBLd8YvUbDqAqeFWdW8Cj+EQCv1HoFNwc3jSMykgRFiCyQwbJ549DtQ5y+fxqAJj5NqF60usYRCUuj1+so5utO7ehGlHAytppsuLCB4ChZqC23zD02V709ouEIDSMxJQmKEFnQs2ZP3OyNvyqWn1lOVEKUxhEVDHOOzlFvD39muIaRCEtngw2vVDJeIytZSZYrjeeS0/dP89+t/wCoU7wOfmX8Mtkj/0iCIkQWuNi70Kd2HwCiEqJYeWalxhFZv4i4CJadWQZAEYcivFzrZY0jEpaub+X+6u15gfNkPFgumHvUtPVEp7OcgceSoAiRRakHy/4a+KuGkRQMf5z6Q72ce/86/XGxd9E4ImHpfIv4ElAhAICLoRfZe2OvtgE9BUtYcyU2MZbFJ40tUY62jvSr00+zWMyRBEWILPIr40ft4rUB2H9zvzp2QkuW8CGXE4qi8MvRX9T7ltTvLSzbsAbD1NvWPB7MEtZcWX1uNeFx4QC8XOtlPJ08NYvFHElQhMginU7Haw1fU+//cuSXDGrnD0v4kMuJI3eOcOLeCcCY+NUrqd0l3YV16V6jO+4OxpWGV5xZoX7Biuyz9DFgkqAIkQ0D6g7A2c4ZgMUnFxOdEK1xRNYp9QfjiGek9URknZOdEwPqDgAgNilWBsvm0PmQ8+y5sQeAGkVr0KxsM40jSksSFCGywd3RXR0s+yj+kbq4kci61M+bm70bvWv31jgiYW1eb/S6evvnIz/LYNkc+PXY43F0w58ZblGDY1NIgiJENj354SiyZ+mppUQnGlue+tXph6u9q8YRiZzQ8krQtYrXMlk8cVfQrnyPwZrFJ8Wz8PhCAOxt7BlYb6C2AaVDEhQhsqlR6UY0LNUQgKN3j3LkzhGNI7IeiqIw51iq7h0ZHGu1tL4S9KhnR6m3Zx+ZrUkM1mrNuTWExoYC0KNGD7ydvTWOyDxJUITIgZGNRqq3pRUl6w7dPsSxu8cAY6LXoFQDjSMS1qp7je4UdykOGL9w70be1Tgi6/Hj4R/V25b8I0ESFCFy4JXar1DEoQgAS08vlZkEWfTD4R/U26MajcqgphAZs7exVy9BkWRIsuopx/npePBx9t3cB0CtYrVoWb6lxhGlTxIUIXLAxd6FgXWN/bYxiTH8dvI3jSOyfPej77PizAoAvJy8eKX2KxpHJKzdiIYj0GEc3Dnn6BySDckaR2T5fjz0uPVk9LOjLXJwbApJUITIodcaPV4TZfaR2TKTIBO/HvuVhOQEwLjYlpOdk8YRCWtXwaMCnat0BuDmo5tsvLRR44gs28PYh/x+6nfAOIOuf93+meyhLUlQhMih2sVrqzMJzj44y7/X/tU4IsuVZEhSBzLq0JnMhBLiaaQeDyaDZTO24PgCYpNiARhcfzBuDm4aR5QxSVCEeApj/caqt7879J2GkVi29RfWc+vRLQC6Vu1KRc+KGkckCoqOlTtSwaMCAFsub+FS6CVtA7JQBsXAT4d/Uu+nngVlqSRBEeIpvFTjJXyK+ACw4cIGroRd0Tgiy/TDoceDY8f4jdEwElHQ2OhtTFpRvj/0vYbRWBaDQeHB1QgA1h5dz5WHxs+ntr5tqV60upahZYkkKEI8BVu9LaOfHQ2AgsIPh34w+VB4cDUCg6Fwj005c/8MO67vAKCqd1Xa+rbVOCJR0Ax7Zph6CYr5gfNlVh1w7VAwy8ftZN+8M0DawbHWQBIUIZ7S8GeG42RrHPD569F5LBy/Sf1Q2DfvDMvH7eTaoWAtQ9RU6taT0c+ORq+Tjx2Ru7ycvBhUbxAA0YnRzA+cr3FE2rp2KJjtMwOJDjNe5TzY7hanXYwLSnolFqNWeCMtw8sy+aQQ4il5O3uro+GjkiL5J9l0JkF0WBzbZwYWyiQlJCaEhScWAuBq76p+iQiR28Y9N069/d3B70gyJGkYjXYMBoUDi8+ZlG33/BNFZ2zJbRXelSO/X7KKll1JUITIBaMbPR5Xsd3zTwwY0tQ5sOScVXwo5KbZh2cTl2T8FTe0wVDcHd01jkgUVNWLVqdT5U4ABEUEsf7Ceo0j0kbw+TC15QQgSv+I/e7/AOBgcKRFeCeiQ+MIPh+mVYhZJgmKELmg2MMyVI+uB8B9+zuccTmapo61fCjklrikOHXlWL1Oz4TGE7QNSBR4qd9jMw/M1CwOLcWGx5vc3+mxkQS9sax5RHucDa5m61kiSVCEyAWx4fG0efiCen+b55p06xUWv5/8nfvR9wHoWbOnOhVUiLzSzrcdNYrWAGDPjT0cvZP2h0JB55Tq6tKJukR2eP4FgE7R0+bhi2brWapsJygJCQnMnj2bl156ibZt2/Laa69x+PDhLO175MgRxo8fz/PPP0/nzp0ZMWIEW7duzXbQQlgaJw8H6kY/S4mEMgCcdznBdYeLZusVBoqi8M2Bb9T7E5tM1DAaUVjodDqTVpRvD3yrXTAaKVndCxcv4xWmD7nt4JHtQwCeiWpKscSSALh4O1KyupdmMWZVthOU6dOns2LFCtq1a8e4cePQ6/VMmjSJkydPZrjf3r17mThxIomJiQwePJhhw4bh4ODAtGnTWLFiRY5PQAhLULK6F25eLrQP66GWbfFeZVLHWj4UcsOWy1s4++AsAM3LNcevjJ/GEYnCon/d/ng7eQOw7PQyrodf1zagfKbX62g8sAYKCn97rVXL24W9pN5uPKAGer3lXoMnRbYSlLNnz7J9+3ZGjBjBqFGj6NatGzNnzqRkyZLMnp3xEsNr1qzB29ubmTNn0qNHD7p37863335LmTJl2Lx581OdhBBaS/lQaPKoNe5JngAcc93HPbvbah1r+VDIDV/995V6W1pPRH5ytnNWZ/QkK8l8tf+rTPYoeCr6lcSh3yNuOwQBUCm2BpXiauDi7UibCQ2o6FdS4wizJlsJyq5du7CxsaFbt25qmYODA126dOHMmTPcu3cv3X1jYmJwc3PD3t5eLbO1tcXd3R0HB+tu9nb2cKBB98o4F5Lme2FeRb+SdBz/HJ3iegKg6BS2eq22ug+Fp3Xs7jH1ukSVvSrzfNXnNY5IFDZj/MbgYucCwLzAeepYqMJkYcgc9Xa7sJdoNrQWvWcFWNXnULYSlEuXLuHj44OLi4tJeY0axkFJly9fTnff+vXrc+3aNX799Vdu3brF7du3WbRoERcuXKBPnz45CN1yOHs60rBnFZw9HbUORWisol9JfvrkC1xtjBfhOuD5Ly2mVrOqD4Wn9b89/1Nvv9n4TWz0NhpGIwojLycvXmtovNp4XFIc3x0sXNfJ2n9zv7p6c0U3XxpENaGYr7vVteBmK0EJDQ3F29s7TXlKWUhISLr7Dho0iFatWrFkyRL69u1Lnz59+P333/n0009p2bJlhscNCQnhwoUL6r+goKDshC1EvvJ09uDV6kMASFQS+P5w4flwPHP/DKvPrQagpGtJXm3wqsYRicLqjSZvYKe3A4yrGT+Kf6RxRPln2p5p6u0Jdd5Ej3X+SMhWghIfH4+dnV2a8pRum/j49KdQ2tnZUbZsWQICAvjoo494//33qVatGlOnTuXMmTMZHnf9+vUMHz5c/Td16tTshC1EvhtRYyS2BlvAeAn4iLgIjSPKH//b+7j15O2mb+NoK62KQhs+RXwYUHcAABHxEfxy5BeNI8ofgXcD2XRpEwDl3MvRy7e3xhHlXLYSFAcHBxITE9OUJyQkqNvTM3PmTPbv389HH31EmzZtaN++Pd9++y3e3t58913GvzC7devG3Llz1X/vv/9+dsIWIt+VdC5Jk0dtAHgU/6hQLBp1KfQSy04vA6Coc1G1iV0IrUxqNgkdxm6Nr//7mpjEGI0jynupW0/eafaO2opkjbKVoHh7exMaGpqmPKWsaNGiZvdLTExk48aNNGnSBL3+8SFtbW157rnnuHDhgtnEJ0XRokWpVq2a+q98+fLZCVsITXQKexkbnbFp9dsD3xb4K6x+vvdzDIpxif83G7+Ji71LJnsIkbeqFa1Gz5rGQev3ou8x+3DGs02t3dkHZ026WIc0GKJxRE8nWwlK5cqVuXXrFtHR0SblZ8+eVbebExERQXJyMsnJyWm2JScnYzAYMBjSXrtECGtWLLEUr1TqCxibmL/9r+AuGhUUHsTik4sB8HD0YLSfdVzOXRR8H7b8UG1FmbFvBlEJURpHlHdSt54UhC7WbCUoAQEBJCcns37944swJSQksGnTJmrWrEmJEiUAuHfvnslAVk9PT1xdXdmzZ49JS0lMTAz79u2jXLlyVj/VWAhz3qz7FrZ641iUbw98S1hswbwWz2e7P1OvHjvObxxFHIpoHJEQRrWL16Z3beM4jAcxD/jx0I8aR5Q3Tt8/zdJTSwHwdvIuEF2s2UpQatasSatWrZgzZw6zZ89m/fr1TJgwgeDgYF5//XW13rRp0xgwYIB638bGhldeeYWbN2/y+uuvs2LFCpYtW8Zrr73GgwcPGDhwYO6dkRAWpJxreYbUNzazRiZE8s1/32Syh/W5EHKBBccXAODu4M74xuM1jkgIUx+1/Ai9zvh198X+LwrkjJ4PdnyAgvFq6ZObTy4QXazZXup+ypQp9OrVi61bt/Ldd9+RlJTEjBkzqF+/fob7DRw4kA8++ABbW1sWLlzIvHnzcHFx4dNPP6V9+/Y5jV8Ii/dei/fUgWqzDs4iJCb96fjW6MOdH6pjT95u+jZeToVjOX9hPaoXrU6/Ov0ACIsN4/uD32scUe46fPsw686vA6C0W2lGPTtK24ByiW12d3BwcGDUqFGMGpX+E5DerJx27drRrl277B5SCKtWzr0cw54Zxuwjs4lKiGLa7ml827FgjEc5dvcYK84Yr6VV3KW4tJ4Ii/VBiw/449QfxuXv//uKkc+OLDDJ9Hv/vqfe/qDFBzjZOWkYTe7JdguKECL73vN/Dydb44fGj4d/5ErYFY0jyh3v//t4yv97/u/hau+qYTRCpK+KdxUG1RsEQHhcOFN3F4z1tHZc28HfV/8GwNfT1+pn7qQmCYoQ+aBMkTK82eRNABINiUz5d4rGET297Ve3s/my8UKf5dzLFYhBeaJg+6TVJ+oPhR8O/WD1PxSSDclM3Pb4Ypwft/wYexv7DPawLpKgCJFPJjWbRDHnYgCsOLOCg7cOahxRziUZkpiwdYJ6/9OAT3GwlZl4wrL5FPFRr66daEhk8vbJGkf0dBafWExgcCAA9UvWp2+dvhpHlLskQREinxRxKMJHLT9S77/191soiqJhRDk379g8Tt8/DUCj0o0YUG9AJnsIYRkmNZtEcZfiAKw8u5L/bv6ncUQ5ExkfadIS+22HbwvchTklQREiH41oOIKq3lUB2HtjL0tPL9U4ouyLSAjn/R2Px57M7DBTncIphKVzc3Dj04BP1fvjt4wn2ZB2EVFLN2PfDIKjggF4qfpLBFQI0DagPCCfKkLkIzsbO75p/3gtlInbJlrdmgxfn/xSnSr9Su1XaFaumcYRCZE9Q58ZSq1itQA4fOcwvx77VeOIsufqw6t8/d/XANjp7fii3RcaR5Q3JEERIp91qdqFbtW6ARAcFcxHOz7KZA/LccPhCnPO/QyAo60jM9rO0DgiIbLPVm/LT11+Uu9P3j6Z+9H3NYwo6xRFYdTGUcQlxQEw/rnxVPYyf5kZaycJihAamNVxlnqdjO8Pfc/Jeyc1jihzyYZkFpf4jmTF2Bw+pfkUyrmX0zgqIXKmRfkWDKxnXMX8YdxD3vnnHY0jyprlZ5az9cpWwDjo98OWH2ocUd6RBEUIDVTwqMB7/sbFlZKVZEZsGGHx/eDzLswlyOkSADWL1eSd5tbxgS5Eer5o+wUejh4ALDy+kH3Be7UNKBMPYx8yfsvjxRB/7Pwjbg5uGkaUtyRBEUIjbzd9Wx0we/D2Qb7a/5XGEaUv6OENph37TL3/c5dfCtR6C6JwKuFagv+1/p96f/z+0cTpYjWMKGPv/POO2hX1UvWX1K7igkoSFCE04mDrwIIXFqiXgv9w54ecuX9G46jSunLwDl2/6k5McjQALcM7c+vLRK4dCtY4MiGe3oiGI/Av5w9AUFQQK4tb5oDZTZc2MffYXADc7N34rpP5S8oUJJKgCKGhpmWbqgtHJSQnMGjdIBKTEzWO6rFrh4J5b/EnnLY/CoBHojfdHwwmOiyO7TMDJUkRVs9Gb8OCFxbgYme8+u9uj82sPboeg8Fy1igKiQlhyJ+Pl7D/st2X+BTx0TCi/CEJihAa+6z1Z1QvWh2Ao3eP8vHOj7UN6P8ZDAorft/I6qIL1LIhwRNxNjy+3s6BJecs6oNciJzQX3ahd9hw9f6k428wd/yfFpGAK4rCiA0juBd9D4DOVTozouEIjaPKH5KgCKExR1tHFr24CBudcRXI/+39H1sub9E4Krhy+gazXD4lSW9s0WkX9hI1Yuqb1IkOjSP4fJgG0QmRO64dCmb7zEAa32lHzegGAITbhfK901T+nnlU8yTl+0Pfs/b8WgCKOhdlXrd56HQ6TWPKL5KgCGEB/Mr4Mb3NdPV+/zX9uRlxU7N4FEVh/P4x3HW4AUCZ+Aq8FDLIbN3Y8Pj8DE2IXGMwKBxYfA4AHTpevfsmbkkeAJxxOcom72WathLuu7HP5GKAvz7/KyVdS2oSixYkQRGFhrOHAw26V8bZwzIvajex6US6Vu0KQGhsKN1XdCc6IVqTWL757xs23/sLAKdkZ0befg87xfysHScLfT6FyEzw+TCiw+LU+x7J3gy/OwmdYvxqXO/9O//F7daklfBu5F1eXvUySYYkACY1ncQL1V/I9zi0JAmKKDScPR1p2LMKzp6OWodill6nZ9GLiyjvXh6AI3eOMGDtgHxfH2Xd+XVM+meSen/I3bcokVjGbF0Xb0dKVvfKr9CEyFXmWv9qxNTnhZD+ACg6hTmlP+fIjaP5GldkfCRd/ujCncg7AARUCGBam2n5GoMlkARFCAvi5eTFX33/ws3euPjS2vNreWtb/l31eO+NvfRZ3QeDYgBgTKUJ1I9unG79xgNqoNcXjv5wUfCk1/rXKexlGj5qDkC8Po4RJwZyI+JGrh3XYFB4cDUCgAdXI0y6kBKTE+m1sheBwYEAlHMvx7Iey7DV2+ba8a2FJChCWJjaxWuzstdKddDszIMzmbJ9Sp4nKcfuHqPb0m7qNT761+3PrH5f02ZCA1y8TFudXLwdaTOhARX9Ck9/uCh4Slb3SvPeBtCjZ0jwRCrF1gDgXtw9Wi9qnSvjwq4dCmb5uJ3sm2dc82jfvDMsH7eTa4eCSUxOpP/a/upS9h6OHmzpt4USriWe+rjWSBIUISxQh8od+Lnrz+r9z/d9znv/vpdnScr+m/tptagVD+MeAtC+UnvmdZuHXqenol9Jen8XQLOhxqu/Nhtai96zAiQ5EVZPr9fReGANs9vsFQdG3/6QCs6+AFx5eIWWC1sSFB6U4+OlzBhKPe4FIDosjq0zD9F17gusOLMCAAcbB9a/sp4axczHVxhIgiKEhRr2zDB+6vz4iqvT905nyPohJCQnABk3E2fH5kubab+kPY/iHwHQvFxzVvVaZbKUvV6vo5ivOwDFfN2lW0cUGBX9SqbbSvji2AD2vrabKl5VALgWfo2m85ty5M6RbB8n9YyhJ8Xoo/je5xO23dsMGJOTNb3X4F/eP9vHKUgKX6eWEFZk5LMjMSgGxmweAxgvaHb14VW+rPQ9V5aHqr/E9s07w/G1V2g8sEaWWzYMioEv9n1h7D7CmNy09W3Lut7rcLF3yZsTEiIH8noGXkW/kpRvVIILO26yb94Zmg2tRbVWZdVEfMegHbRa1IpLYZe4E3mHFgtaMP+F+bxS+5UsH+PJGUMp7trf4KfSUwl2uAWAo40T6/v8SbtK7XLn5KyYtKAIYeFG+41mRc8VONoaf+HtDtpNm23+7EnYriYWQLaWn78efp22i9syeftk9TF61OjBhj4bJDkRFic/ZuBl1EpYpkgZ9g7ZS7OyzQCITYqlz+o+DFg7gIexD7P0+E/OGDKQzD8e6/is/Dg1OXFNKsKCBr9LcvL/JEERwgr0qtWLXYN3qYs0Rdk+YnaZaXzr8x5BDpdM6ma0sNTD2IdM2T6Fmj/WZMf1HWr5pwGfsqLX4yRIS5a+Xo0onIq7FGf7wO0Mrj9YLfvt5G9U+b4Ksw7MUgeXpydlxpCCwmnnI3xWfhzLS8whUW/ssi0TX54pN2bSomKLPDsHayNdPEJYCb8yfmxrvZNBvw8h0G0/AOdcjjPVZTyVYmvw3KNW1IpuSLHQkgSfD6N0TW8AHsU/Ytf1Xaw5v4blp5cTm/T4cvJli5Rl/gvzaevbVpNzMifl17IQlsbB1oH53eYTUD6A8VvGExEfQWhsKBO2TuDT3Z8ysO5Anq/2PE3LNjVJ9pMNyTzwvM2/Zdax024zdx1MZwO1CXuB7iGD8fRyl3WFUpEERQgr4hzrxsg773HUdS+riy0gxN7YnXPF6RxXnIwD8BwMjny+sQyOOx0IjQlVLzKWmr2NPaOfHc3HAR9TxKFIvp6DENZMp9MxqP4g2vi24Z1/3uGPU38AEBYbxsyDM5l5cCY6dPgU8cHNwY2E5ARuRNwwDm53NX2s8nGVefn+cKrG1gFkXaEnSYIihBVx8nBAh45GUf7Ui27M/iJ/86/nBu44PJ76GK+P42rMFYhJu7+7gzsD6g5gYtOJVPCokH+BC1HA+BTx4ffuv/NWk7f45sA3rDyzkvhk4zgTBYWbj9JfM6V6Qh0CHjxPg6im6NHj4u1I4wFZH+BeWEiCIoQVSVlYKjosDjvFjpYRnWkR0YkbDlc47XKEK07nuO90h1jnSJINyRRxKEIFjwo0LNWQtr5taevbVgbBCpGLGpRqwJKXljCzw0y2XtnK31f/5sz9M1wLv0ZcUhw2Oht8ivhQ1bsqARUC6FS5E5U8K6c7Y0g8JgmKEFYkZWGp7TMD1TIdOsrHV6Z8fGUAWeFVCA14O3vTt05f+tbpm6X6sq5Q5mQWjxBWJqOFpSQ5EUIUFNKCIoQVymxhKSGEsHbSgiKElZLl54UQBZkkKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKELkAWcPBxp0r4yzh4PWoQghhFWy1ToAIQoiZ09HGvasonUYQghhtaQFRQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCEKKGsesJ/tQbIJCQnMmzePbdu2ERkZSaVKlRg2bBjPPvtslvbfvn07q1at4sqVK9ja2lK+fHmGDRtGw4YNsx28EEIIIdJnzQP2s52gTJ8+nZ07d9KrVy98fHzYvHkzkyZNYtasWdStWzfDfefPn8+iRYsICAigY8eOJCUlce3aNUJCQnJ8AkIIIYQoeLKVoJw9e5bt27czcuRI+vTpA0CHDh0YPHgws2fPZvbs2enue+bMGRYtWsTo0aN5+eWXny5qIYQQQhRo2RqDsmvXLmxsbOjWrZta5uDgQJcuXThz5gz37t1Ld9+VK1fi5eVFz549URSFmJiYnEcthBBCiAItWwnKpUuX8PHxwcXFxaS8Ro0aAFy+fDndfY8ePUr16tVZtWoV3bp1o2PHjrz44ousXr06B2ELIYQQoiDLVhdPaGgo3t7eacpTytIbSxIZGUlERASnT5/m2LFjDB48mBIlSrB582ZmzZqFra0tL7zwQrrHDQkJITQ0VL0fFBSUnbCFEEIIYWWylaDEx8djZ2eXptze3l7dbk5Kd05ERAQfffQRbdq0ASAgIIDBgwezePHiDBOU9evXs3DhwuyEKoQQQggrlq0ExcHBgcTExDTlCQkJ6vb09gOwtbUlICBALdfr9bRu3Zr58+dz7949SpQoYXb/bt260axZM/V+UFAQU6dOzU7oQgghhLAi2UpQvL29efDgQZrylO6XokWLmt2vSJEi2Nvb4+rqio2Njck2T09PwNgNlF6CUrRo0XQfWwghhBAFT7YGyVauXJlbt24RHR1tUn727Fl1u9mD6PVUqVKFiIiINC0wKeNWPDw8shOKEEIIIQqwbCUoAQEBJCcns379erUsISGBTZs2UbNmTbUF5N69e2kGsrZq1Yrk5GS2bNmilsXHx/P3339ToUIFaSERQgghhCpbXTw1a9akVatWzJkzh/DwcMqUKcOWLVsIDg7mnXfeUetNmzaN48ePs3v3brXshRdeYOPGjXz77bfcvHmTEiVKsHXrVu7du8f06dNz74yEEEIIYfWyvdT9lClT1OQiKioKX19fZsyYQf369TPcz8HBgZkzZzJ79mw2bdpEXFwclStXZsaMGfj5+eU0fiGEEEIUQNlOUBwcHBg1ahSjRo1Kt853331nttzT05MpU6Zk95BCCCGEKGSyNQZFCCGEECI/SIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGyxNnDgQbdK+Ps4aB1KEKIQiDbK8kKIQonZ09HGvasonUYQohCQlpQhBBCCGFxJEERQgghkG5MSyNdPEIIIQTSjWlppAVFCCGEEBZHEhQhhBAin0l3Uuaki0cIIYTIZ9KdlDlpQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEsGIy0E4IUVDJIFkhrJgMtBNCFFTSgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjq3WAeREfHw8AEFBQRpHIoQQQojsKl++PI6OjhnWscoEJTg4GICpU6dqHIkQQgghsmvu3LlUq1Ytwzo6RVGUfIon14SHh3Po0CFKlSqFvb291uHkuaCgIKZOncr7779P+fLltQ4nX8m5F75zL6znDYX33AvreUPhPfcC24Li4eFB+/bttQ4j35UvXz7TjLOgknMvfOdeWM8bCu+5F9bzhsJ97umRQbJCCCGEsDiSoAghhBDC4kiCYgW8vb0ZPHgw3t7eWoeS7+TcC9+5F9bzhsJ77oX1vKFwn3tmrHKQrBBCCCEKNmlBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcaxyobaCKCQkhFWrVnHu3DnOnz9PbGwss2bNokGDBmnqjhs3juPHj6cp9/Pz46uvvjIpS0hIYN68eWzbto3IyEgqVarEsGHDePbZZ/PqVLItO+cOcOrUKX7++WcuXryIi4sLrVq1Yvjw4Tg7O5vUs4ZzN2fz5s1Mnz7d7La1a9emGe2/d+9eFixYQFBQEB4eHnTu3JmBAwdia2tdf97W+nplR2BgIOPHjze7bfbs2dSqVUu9n9X3uSWKiYlh2bJlnD17lnPnzhEZGcnkyZPp1KlTmrrXr1/nhx9+4NSpU9ja2tKkSRPGjBmDh4eHST2DwcCyZctYt24dYWFh+Pj40L9/f9q2bZtPZ5W5rJ73//73P7Zs2ZJm/3LlyvHbb7+ZlFnDeecV6/oEK8Bu3rzJH3/8gY+PD76+vpw5cybD+sWKFeO1114zKTM3TW369Ons3LmTXr164ePjw+bNm5k0aRKzZs2ibt26uXoOOZWdc7906RJvvPEG5cuXZ8yYMdy/f5/ly5dz69YtvvzyS5O61nDuGRk6dCilSpUyKXN1dTW5f+DAAd577z3q16/P+PHjuXr1KosXL+bhw4dMnDgxP8N9atb+emVHjx49qFGjhklZmTJl1NvZeZ9booiICBYuXEiJEiWoXLkygYGBZuvdv3+fsWPH4urqyvDhw4mNjWXZsmVcvXqVX375BTs7O7Xu3Llz+f3333n++eepXr06e/fu5dNPP0Wn09GmTZv8OrUMZfW8Aezt7Zk0aZJJmYuLS5p61nDeeUYRFiE6OlqJiIhQFEVRduzYofj7+yvHjh0zW3fs2LHKwIEDM33MM2fOKP7+/soff/yhlsXFxSmvvPKK8vrrr+dO4LkgO+f+1ltvKS+++KISFRWllm3YsEHx9/dXDh48qJZZy7mbs2nTJsXf3185d+5cpnUHDBigvPrqq0piYqJaNmfOHKVFixbK9evX8zLMXGXNr1d2HDt2TPH391d27NiRYb2svs8tVXx8vBISEqIoiqKcO3dO8ff3VzZt2pSm3tdff620bdtWCQ4OVssOHz6s+Pv7K3/++adadv/+faVVq1bKN998o5YZDAZl9OjRSvfu3ZWkpKQ8PJusy+p5T5s2TWnfvn2mj2ct551XZAyKhXB2dqZIkSLZ2icpKYmYmJh0t+/atQsbGxu6deumljk4ONClSxfOnDnDvXv3chxvbsrquUdHR3PkyBHat29v8kujQ4cOODk5sWPHDrXMWs49MzExMSQnJ5vddv36da5fv87zzz9v0p3z0ksvoSgKO3fuzKcon15Beb2yIyYmhqSkpDTl2XmfWyp7e/ssLTy2a9cumjZtSokSJdSyRo0aUbZsWZPz3Lt3L0lJSbz00ktqmU6n48UXX+TBgweZtjjnl6yed4rk5GSio6PT3W4t551XpIvHSt28eZMOHTqQmJiIl5cXXbt2ZfDgwSZfVJcuXcLHxydNs2FK0/Lly5dNPhgs3dWrV0lOTk5zQS07OzuqVKnCpUuX1LKCcO7jx48nNjYWOzs7nn32WUaPHk3ZsmXV7RcvXgRI83wULVqUYsWKmTwflq4gvF7ZMX36dGJjY7GxsaFu3bqMHDmS6tWrA9l7n1uzBw8e8PDhQ7MXyKtRowYHDhxQ71+6dAknJ6c0V/tNeX9cunTJ6roB4+Li6NSpE3Fxcbi5udGmTRtef/11kzFGBfG8s0MSFCtUunRpGjRogK+vL3FxcezcuZPFixdz8+ZNPvnkE7VeaGio2Ww+pSwkJCTfYs4NoaGhgPmxNt7e3pw4ccKkrrWeu4ODA506daJBgwa4uLhw4cIFVqxYwahRo/j111/VL+rMno+U7dbAml+v7LC1taVly5Y0btwYd3d3rl+/zvLlyxkzZgw//fQTVatWzdb73Jpldp6PHj0iISEBe3t7QkND8fT0RKfTpakH1vf+8Pb2pk+fPlStWhVFUTh48CDr1q3jypUrzJo1S/2hWdDOO7skQckDBoOBxMTELNW1t7dP8+bLzLvvvmtyv0OHDnz55Zds2LCBl19+WZ0JEB8fbzLILPUxU7bntrw895R40zunhIQEk7r5fe7m5OT5aN26Na1bt1bL/f398fPzY+zYsSxZsoS33noLQD3flHN68rEy6v6zNJbyeuW1OnXqUKdOHfV+8+bNCQgI4NVXX2XOnDl89dVX2XqfW7PMzjOljr29fYF7fzw5waFNmzaULVuWuXPnsmvXLnXwa0E77+ySBCUPnDhxIt2phE9asmRJmua7nOjduzcbNmzgyJEjaoLi4OBg9ssx5QPOwcHhqY/7pLw895R40zun1F/UWpy7Obn1fNStW5eaNWty9OhRtSzlfM19YSUkJOTbOeYGS3m9tODj40Pz5s3ZvXs3ycnJ2XqfW7PMzjN1ncLw/nj55ZeZN28eR44cUROUwnDeGZEEJQ+UK1eOyZMnZ6lubl3Bsnjx4gBERkaaPPaDBw/S1E1pWi1atGiuHDu1vDz3lPrmui5CQ0NNzkeLczcnN5+P4sWLc+PGjTT1Q0ND04zPCA0NTTON1ZJZyuulleLFi5OYmEhcXFy23ufWLLPzLFKkiJqMeXt7ExgYiKIoJq2uBen94eDgQJEiRXj06JFaVhjOOyOSoOQBb29vswsS5aU7d+4AmCxulDIPPzo62mTw4dmzZ9XtuS0vz71ixYrY2Nhw4cIFky6QxMRELl26RKtWrdQyLc7dnNx8Pu7cuWPy+lapUgWACxcuULNmTbU8JCSEBw8emMyIsXSW8npp5c6dO9jb2+Pk5JSt97k1K1asGB4eHly4cCHNtnPnzpm85pUrV+avv/4iKCiIChUqqOUF6f0RExNDREREms/wgn7eGZFpxlYmOjo6TZO+oigsXrwYwGTVzYCAAJKTk1m/fr1alpCQwKZNm6hZs6bVzYpwdXWlUaNGbNu2zWR8xdatW4mNjTX54Lbmcw8PD09T9t9//3HhwgX8/PzUsooVK1KuXDk2bNhgMhV53bp16HQ6WrZsmR/h5gprfr2yw9xre/nyZfbt28ezzz6LXq/P1vvc2rVs2ZL9+/ebTCM/evQoN2/eNDnP5s2bY2try9q1a9UyRVH4888/KVasGLVr187XuJ9GfHy82fFhixYtQlEUnnvuObWsIJ13TkgLigVZtGgRYFzfAowfSCdPngRg0KBBgHFq6SeffELbtm0pU6YM8fHx7Nmzh1OnTvH888+bTNmrWbMmrVq1Ys6cOYSHh1OmTBm2bNlCcHAw77zzTv6eXCaycu4Aw4YNY/To0YwdO5Zu3bqpK2w+++yzJn/Y1nTuTxo5ciRVq1alWrVquLi4cPHiRTZt2kTx4sUZMGCASd1Ro0YxefJkJk6cSJs2bbh69Spr166la9euJr+4LJ01v17Z8dFHH+Hg4EDt2rXx9PTk+vXrbNiwAUdHR5OBk1l9n1uy1atXExUVpXZH7Nu3j/v37wPGlXRdXV3p378/O3fuZMKECfTs2ZPY2FiWLl2Kr6+vSctj8eLF6dWrF0uXLiUpKYkaNWqwZ88eTp48yQcffICNjY0m52hOZucdGRnJ0KFDadu2LeXKlQPg0KFDHDhwgOeee47mzZurj2VN550XdIqiKFoHIYxatGiR7rbdu3cDxqbgX375hXPnzhEWFoZer6d8+fJ07dqVbt26pZkVEx8fr17fJCoqCl9fX4YNG2byS9wSZOXcU5w8eVK9RomzszOtWrXitddeS3ONEms59yfNnTuXAwcOcPfuXXVMQpMmTRg8eDBeXl5p6u/Zs4eFCxcSFBSEu7s7nTp1SrMmjjWw1tcrO1atWsXff//N7du3iY6OxsPDg4YNGzJ48GB8fHxM6mb1fW6pXn75ZYKDg81uW758uXoZh2vXrqW5Fs/o0aPTvNcNBgN//PEH69evJzQ0FB8fH/r160f79u3z/FyyI7PzdnV1ZdasWZw5c4bQ0FAMBgNlypShXbt2vPLKK2n+bq3lvPOCJChCCCGEsDgyBkUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEVkaPPmzbRo0YLNmzdrHUqWBAYG0qJFC+bPn59nx2jRogXjxo3Ls8cvLF5++WVefvllrcOwePPnz6dFixYEBgbm6XFWrFhB69atuXv3bpbq58ffmjX77LPP6NWrF/Hx8VqHYrUkQSlgPv/8c1q0aEHXrl3TXFSwoLC2L7aIiAh+/vlnBg4cSLt27WjXrh29evViwoQJLFiwgLCwsHyJI7Nkc9y4cRlecqAwiY2NpWPHjrRo0YJvvvlG63DyXGRkJIsXL6Zz587qEvTi6QwePJiQkBBWrlypdShWy7ou1iEyFBMTw44dO9DpdDx69Ig9e/bQpk2bp3pMf39/atasibe3dy5FWbjcv3+fUaNGcf/+fapUqUKnTp1wc3MjNDSU06dPs2DBAurUqWP2GjsF3bfffqt1COnasWMHMTEx6HQ6/vnnH0aPHo2Dg4PWYeWZFStW8OjRI/r06aN1KAVG2bJladasGX/88Qc9evTAyclJ65CsjiQoBci///5LbGwsL7/8MqtWrWLjxo1PnaC4urri6uqaSxEWPvPnz+f+/fsMHTrU5KrMKa5cuVJon98yZcpoHUK6Nm7ciI2NDd27d2flypXs3r2bdu3aaR1WnkhKSuKvv/6iTp06Fv2aWKP27duze/dutm/fTteuXbUOx+pIglKApHyo9u3blytXrnDs2DGCg4MpWbKkSb358+ezcOHCdB+nZMmSrFixAjB2C0yfPp3JkyebXP68RYsW1K9fnw8++IDZs2dz+PBhEhISqFevHhMmTKB06dJcv36dOXPmcOLECZKSkvDz8+ONN94waS0IDAxk/PjxDB48mCFDhpjEcffuXXr37k3Hjh2ZMmWKej91DCnM7X/+/HnmzJnDmTNn0Ov1PPPMM4wZMyZNE/bu3bvZsWMH58+fJyQkBFtbWypVqkTPnj0JCAjI+EnPxJkzZwDo3r272e2VKlUyW37nzh1+//13Dh8+TGhoKC4uLlSoUIFOnTqpr0NiYiLr169n//79XL9+nfDwcFxcXKhTpw6DBg2iatWq6uP973//Y8uWLQBMnz6d6dOnm5x/6ucy9e2U5z7FlStXWLJkCcePH+fRo0d4e3vTrFkzXn31Vdzd3dV6qV+7vn37MnfuXE6cOMGjR4/UK9mmdNOlvNfg8Xtz1qxZhISEsHTpUm7cuIGrqyutWrXi9ddfT9OSkZSUxLJly/jrr78ICQmhWLFidOnShdatW/PKK6+kOYfM3Lhxg1OnTtG0aVOTZN9cgpL6/du0adMsvd8Adu3axW+//ca1a9dwcXGhWbNmjBw5kqFDh6Z5TjKS1dcjI4cOHSI0NJS+ffua3R4fH8+CBQv4+++/iYiIoEyZMvTs2TPN1ZdTu3PnDkuWLOHw4cM8fPgQNzc3/Pz8GDJkSJrPI8je85HyXl62bBm7d+9m48aN3LlzhzZt2qiv88OHD/ntt9/Yv38/9+/fx9nZmXr16jFkyBB8fX3THD879W/evMlvv/1GYGAgoaGhODo6Urx4cRo0aMDYsWNNrijfpEkTHB0d2bJliyQoOSAJSgFx/fp1zpw5Q+PGjfHy8qJDhw4cPXqUTZs2pfnibtCggdnHCAoKYseOHVluyo6MjGT06NF4e3vToUMHbt26xf79+3nzzTf53//+x5gxY6hWrRqdO3fm4sWL7Nq1i0ePHjFr1qwcnaOrqyuDBw9m1apVAPTs2TPdczp//jxLly6lQYMGdOvWjUuXLrFnzx6uXr3KwoULTc5xzpw52NraUqdOHby9vQkPD2ffvn18+OGHjB8/nh49euQoXkD9krh58yY1a9bM0j4nT57knXfeISYmBj8/P9q0aUNkZCSXLl1i1apVaoLy6NEjvv/+e+rWrUvjxo1xc3Pj7t277Nu3j4MHD/L9999To0YNwNhVFxUVxd69e2nevDmVK1c2OebgwYPZsmULwcHBDB48WC2vUqWKenvv3r18/PHH6HQ6mjdvTvHixbl+/Tpr1qzh0KFD/PLLL7i5uZk87u3btxk5ciS+vr507NiRR48eYWdnl+lzkPKYzZo145lnnuHgwYOsXr2aiIgIPvzwQ5O6M2bMYOvWrZQuXZoXX3yRxMREVqxYwenTp7P0fD9p48aNAHTo0IESJUpQv359AgMDuXPnDqVLlza7T3bebxs3bmTGjBm4uLjQoUMHXF1dOXDgAG+++SZJSUnY2mbtYzknr4c5R48eBaBWrVppthkMBiZPnsyRI0fw9fWlbdu2PHr0iB9++CHdz5GzZ8/y1ltvERsbS9OmTfHx8SE4OJi///6bgwcPMnv2bJPnMafPx8yZMzl79ixNmjShadOmeHp6Asb33Lhx43jw4AHPPvsszZs3Jzw8nF27dnH48GG+/fZbk7/F7NQPCQnhtddeIy4ujiZNmtC6dWvi4uK4desW69atY9SoUSbx2tnZUbVqVc6cOUNsbKx082SXIgqE77//XvH391f++ecfRVEUJTo6Wmnfvr3Ss2dPJTk5OdP9w8LClF69eilt2rRRTp48qZZv2rRJ8ff3VzZt2mRS39/fX/H391e+//57k/Kvv/5a8ff3Vzp16qSsWLFCLTcYDMrbb7+t+Pv7K+fPn1fLjx07pvj7+yvz5s1LE9OdO3cUf39/Zdq0aSblvXr1Unr16mX2PFIeL/VzkWLq1Klmy2/fvp3mcaKjo5VBgwYpnTp1UmJjY9Oc+9ixY80e/0mrVq1S/P39lW7duinz5s1Tjh07pkRFRaVbPz4+XunevbvSsmVL5cCBA2m237t3z6Tu/fv309S5evWq0r59e+WNN94wKU/vtUwxduxYxd/f3+y28PBwpWPHjkr37t2Vu3fvmmz7559/FH9/f+Xbb79Vy1Jeu/ReW0Ux/zrOmzdPff8EBQWp5XFxcUrfvn2Vli1bKg8ePFDLjxw5ovj7+ytDhgwxeZ0ePHigvPDCC2bfPxlJTExUXnjhBaVTp05KXFycoiiKsnHjRsXf31+ZO3dumvrZfb89evRIad++vdK+fXvlxo0bJscdP3684u/vn+5zcuzYMbUsu69HRoYPH660bNlSiY+PT7Mt5T3z1ltvKUlJSWr55cuXldatW6d5fRMTE5VevXopHTp0UC5cuGDyWCdOnFACAgKUd95556mej2nTpin+/v5K9+7dleDg4DQxjxw5UgkICFAOHjxoUn7jxg2lQ4cOyqBBg3JcP+XvOfVnW4qIiIg0ZYry+LP56NGjZreL9MksngIgKSmJbdu24eLiQvPmzQFwdnbG39+fe/fuceTIkQz3j4+PZ8qUKQQHB/Puu+9Sp06dLB3XycmJYcOGmZSljHlxd3c3aeHQ6XTqtitXrmT53HKqXr16acbfdO7cGYBz586ZlJv7Vezs7EynTp2Iiori/PnzOY6je/fu9OnTh6ioKBYuXMj48ePp3LkzAwcO5OeffyYkJMSk/t69e3nw4AHt2rXjueeeS/N4xYsXV2/b29tTrFixNHUqVqxIgwYN1K613LB161aio6MZMWJEmib6Nm3aULVqVbZv355mPy8vLwYMGJDt4/Xs2ZNy5cqp9x0cHGjTpg0Gg4ELFy6o5du2bQNg0KBBODo6quVFixY1ef9l1X///UdYWBitWrVSWz0CAgJwdHRk8+bNGAwGs/tl9f22d+9eYmNj6dy5M2XLllXLbW1t0/wtZSSnr4c5Dx48wNXVFXt7+zTbUroFhw0bho2NjVpeqVIl2rdvn6b+/v37CQ4Opk+fPiZdjAB169alWbNmHDhwgOjoaODpno8+ffpQokQJk7KLFy9y+vRpOnTogJ+fn8m2smXL0rVrV65evcrVq1dzVD+FuVbmIkWKmI0zpWXnwYMHGZ6PSEu6eAqAvXv3Eh4eTpcuXUz+cDp06MC2bdvYuHFjmj++FIqi8L///Y8zZ87w6quv0rZt2ywf18fHx+RLAVBn+/j6+pr0xabe9uSXcl6oVq1amrKUL/OoqCiT8ocPH/L7779z4MAB7t27l2bdgqeJV6fTMXLkSPr06cOBAwc4e/Ys58+f5+LFi1y/fp3169fz1VdfqU3IKV9mzz77bJYe/9KlSyxdupSTJ08SFhaWJiEJDw+naNGiOY4/RcpYmrNnz3L79u002xMSEoiIiCA8PBwPDw+1vHLlylnq0nnSk19u8Dg5S/36Xb58GTB++T2pdu3a2T7uX3/9BRj/dlI4OzvTvHlz/vnnHw4dOkTjxo3T7JfV91tKcm4u3po1a5okARnJ6ethzqNHj8wmuinxOjk5mT2/unXrqt1hT8Z148YNs+ujhIWFYTAYuHnzJtWrV3+q5yOl+zK1s2fPAsa/aXPHv3Hjhvq/r69vtuunjDP69ttvOXr0KM899xz169dPt+sPHicuERER6dYR5kmCUgCk7jNPrWHDhhQrVox9+/bx6NEjsxn+r7/+yo4dO2jbti2vvvpqto7r4uKSpizlAyWjbbn1qz4jzs7O6R4/9a/gR48eMWLECO7du0edOnVo1KgRrq6u6PV6Ll++zN69e0lMTHzqeDw8POjYsSMdO3YEIDQ0lJkzZ7Jr1y6+/PJLFixYAKD+skzvCyO1U6dO8cYbbwDQqFEjfHx81PPeu3cvly9fzpXYwTjeCGDt2rUZ1ouLizO5n/LrMbsyev+kfv1iYmLQ6/VmB4Rmd+p2SEgIhw4donTp0mm+MDt27Mg///zDpk2bzCYoWX2/pby+5p6X9M7DnJy+HuY4ODiku2ZSdHR0uu9Fc89vSlx///13luJ6mufD3D6PHj0CjC1h//33X7r7xsbG5qh+qVKlmD17NgsWLODAgQPs2LEDgHLlyjF06FBatWqVZt+UHzwFeZp6XpEExcrdu3ePw4cPA2S4uum2bdvSNHlv3ryZJUuWUKdOHd599908jTM9Ka0sycnJabalfHjlpY0bN3Lv3j2z04B/++039u7dmyfH9fb25v333+e///7jypUrRERE4O7urk45zkpz8JIlS0hISOCHH35I84Wa8sswt6R8AS9cuNDsLIj0PNmKltucnZ0xGAxERESkaSnI7gJ4mzdvJjk5mTt37qS7YN2+ffuy1CqRnpTE6+HDh2m2pZxHVpLTnL4e5ri7u6f7fnNxcUn3l7+55zclrs8//5ymTZtmeuyneT7MvbdSHi+rg9uzWx+MrcOfffYZSUlJXLhwgYMHD7Jq1So+/vhjihYtmqaLPCUJyul7pjCTMShWbsuWLRgMBurWrUuXLl3S/Ev5xf5kU+zx48f56quvKF26NNOmTTPb/5wfUmYZmOtGuXTpktl99Hq92YQmJ1Kax1PG7qR28uTJXDlGeuzs7NI0Yac0W6cknRm5c+cORYoUSZOcxMXFcfHixTT19Xrjn3t6z11G21O6oFKa8C1FymykU6dOpdmWnVk8iqKwadMmADp16mT2b6l27dokJiaq415yImVaubl4z507l+X3dW6+Hr6+viQkJHDv3r002ypVqkRsbKzJuJ8U5v4+shtXbj0fKVL+frJ6/OzWT83W1pZatWoxZMgQxo8fj6Io7N+/P029mzdvAjx1IlkYSYJixVI+VHU6HVOmTOGdd95J82/KlCnUqlXr/9q735Cmvj8O4O9Mt7Rchs75J1aURZo0Xf4htwqHRI1KQfbEJ1oWRIn9Q6kwQ6Ho74Ok7EEuYy5NMB+IK2tqWrTUpg1b6w+OChNtZmWzzObq+yA2tN1vP8393OT7eT105273nnu9fM45n3MOjEajPdmzu7sbeXl5YLPZOHnypEsjez6fDx8fH/swlM2HDx+gUCgYj+FwOBgcHHTKHhe2BMPfX5BqtRotLS1T/v7r16/jzZs3jJ9VV1djeHgYfD7f3pUtEonA5XKhVqvR1tbmcMzYli6Px4PZbMarV6/sf7NarSguLsanT58cjrUN8ZlMJsbz+dPnUqkUPj4+uHz58rjfs/n27ZtLghfb2iRXr14d9zwMDAzYp6NPhE6nQ09PDwQCAQ4fPsz4v2TrZfw92J8MsVgMb29vqFSqcbkjo6OjkMvlE/4eZ96PqKgoAMy9brZh45KSknHBgtFoZAzUxGIxeDweKisrodPpHD4fHR0dF9g4qz5sIiIiEBERgYaGBsYk4R8/fow7r8mWf/HiBWPPrq03iamhZzAY4O/vPy4JmEwMDfHMYB0dHejt7f2fSVpSqRRPnz6FSqXCihUrUFRUhM+fPyMmJgaNjY0O5efNmzdte914eXkhNTUVZWVl2LFjB0QiEYaHh/HgwQNERUUxJgBGR0fj+fPnyM3NxapVq+Dp6QmBQGB/0U7Ghg0bUF5ejvPnz+Px48fg8Xjo6upCR0cH1q1bh3v37k3p+u7cuYPi4mIsWbIEERERWLBgAcxmMwwGA16+fAk2m42DBw/ay7NYLBQUFCAnJwc5OTmIi4tDWFgYvnz5gq6uLoyMjNhf3KmpqXj06BH27NmDxMREsFgs6HQ6vH//HtHR0Q6by61cuRJsNhtVVVUwm832wNQ2tCUUCtHU1ISjR48iPj4eLBYLYWFhEIlE8PPzw7Fjx5Cfn4/t27cjLi4OfD4fFosFfX190Ol0iIyMxNmzZ6dUX5MVExODpKQk1NfXIyMjA2KxGBaLBXfv3kV4eDg0Go29Z+hPbEGHbeYNEz6fj8jISOj1ehgMhgmvazOWr68vsrKycObMGezcuRMSiQRz585FS0sLWCwWAgICJjQs5sz7IRaLcfHiRWi1WoccClvuTWtrKzIzMxEfHw+z2YyGhgbExsY69BiwWCwUFhYiNzcX2dnZEAqF9oT5vr4+dHZ2Yv78+VAqlU6tj7Hy8/Oxb98+FBQUoKqqCsuWLQObzYbJZIJer8fg4CDq6+v/qvzt27dRU1MDgUCA0NBQ+Pj44PXr12htbQWHw3F4fnp6etDb24uUlJRJXQP5hQKUGcz2Uh27wisTiUSCoqIiNDQ0ICsry97S1Gq1jFOQg4KCpnUzvszMTHh6ekKlUqGmpgZBQUFIT09HQkICmpubHcqnp6djaGgIGo0GnZ2dsFqtyMjI+KsAJTAwEEVFRbh06RK0Wi2sViuWL1+Oc+fOwWQyTTlAOXToEDQaDTo6OtDW1oaPHz/Cw8MDPB4PKSkpkMlkDi2ryMhIlJSUQKlUoq2tDe3t7fD19cXixYuRnJxsL5eQkIDCwkIolUqo1Wqw2WwIhUIcP36ccaVgDoeDwsJClJaWora21v4c2AKUzZs3o7e3F42NjSgvL4fVasXGjRshEokA/FoVUy6Xo6KiAu3t7dBqtZgzZw64XC42bdrEOO10Ohw5cgSLFi3CzZs3UV1dDS6XC5lMBqFQCI1Gw5jAOtbQ0BCam5vh7e2N9evX/7GsVCqFXq+HSqX6qwAFALZs2QJfX1+UlZWhrq7OvnLqrl27IJPJJrzcvLPuR3BwMGJjY9HU1IS9e/eO6wXw8PDAiRMnUFpaivr6ety4cQMhISHIysrCwoULGYc0wsPDceXKFVRUVKClpQV6vR5eXl4ICAjA2rVrHaZjO6s+bEJCQiCXy1FZWYn79+/j1q1b8PDwgL+/PwQCgcPq0JMpn5SUhO/fv+PJkyd49uwZLBYLuFwukpOTGac923qZtm7dOqlrIL/M+vnz509XnwQhhDhbbW0tTp8+jQMHDsyIFuzbt2+RlpaGxMREFBQUTOtvt7e3Y//+/cjLy3NZoPk7V9aHM4yOjiItLQ3BwcF/vXr2fx3loBBCZrSBgQH83s7q7++HQqHA7NmzsWbNGhedGTOz2ewwrXdkZAQXLlwA8Gtbgum2evVqxMfHQ6FQ/OtidP8v7lgfzlBXV4d3795h9+7drj6VGYuGeAghM9q1a9fw8OFDCAQC+Pn5wWQyQaPR4OvXr9i2bZtDt7ur6XQ6nDp1CrGxsQgMDMTg4KB9Y0+hUAiJROKS88rOzoZarUZ/f/+01pm71sdUzZo1Czk5OYyL3JGJoSEeQsiM1traisrKShiNRpjNZrBYLCxduhQpKSmMOxC7Wnd3N+RyOfR6vX22VWhoqH335f/agl5UH+TfUIBCCCGEELdDOSiEEEIIcTsUoBBCCCHE7VCAQgghhBC3QwEKIYQQQtwOBSiEEEIIcTsUoBBCCCHE7VCAQgghhBC3QwEKIYQQQtwOBSiEEEIIcTv/AOUkPW5h771nAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 150.0 deg to 165.0 deg\n", + "Modulation: 0.308 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.017\n", + "Best fit polarization angle: 130.659 +/- 0.332\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRsUlEQVR4nOzdd3hT5dvA8W+6J51A2Vv2kj0KhcpGVBAVBEGGyMaFggMHiltAf6IgG2UIoiBbZCN7711moYOW0t3mef/I20NDQ2lL25O09+e6uEiePCfnPkma3Oc8y6CUUgghhBBCWBE7vQMQQgghhLifJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCWIlLly5hMBjo37+/3qEIICgoCIPBkOf7+fDDDzEYDGzevDnP95UV5cuXp3z58nqHIYQkKOLhTp06xciRI6lVqxZeXl44OTlRsmRJunTpwsyZM0lMTNQ7xDzTv39/DAYDly5d0jsUi2bOnMmQIUNo0qQJbm5uGAwG3nvvvYdu9/fffxMUFISXlxceHh40adKEuXPnZrrN3Llzady4MR4eHnh5eREUFMTff/9tse7Zs2fp0qULvr6+lClThhEjRhATE2Oxbp8+fahQoQJ37959+AGnk5bQpf/n4OBA8eLF6dKlC2vWrMnW84lH9+uvv2rvxfr16zOtGxUVxQcffEC9evXw8PDA2dmZUqVK0bRpU9544w0OHjyY6faDBw/GYDDg5uZGVFTUA+ulJYBp/+zs7ChSpAjlypWjc+fOfPHFF1y7di0nhyvymIPeAQjr9vHHH/PRRx9hNBpp1qwZ/fr1w8PDg5s3b7J582YGDRrEtGnT2Ldvn96hFkpvvPEG0dHR+Pj4ULJkSc6fP//QbX744QdGjhyJn58fffr0wcnJiaVLl9K/f3+OHj3K119/nWGbN998k2+++YbSpUszePBgkpKSWLRoEU8++STff/89I0aM0OrGxsYSHBxMbGwsL730ElevXuV///sfN2/e5Pfffzd73lWrVvHrr7+yYcMGPDw8cvQaeHl5MWbMGAASEhI4fPgwq1evZvXq1UyZMoVRo0bl6Hnzy4gRI3jhhRcoW7as3qE8sunTp2MwGFBKMX36dNq3b2+x3vXr12nRogWXLl2iYsWKvPjii/j7+3P79m3279/P5MmTcXV1pX79+ha3j4mJYdGiRRgMBuLj41mwYIHZZ9CS1q1bExQUBJg+ozdu3GDHjh2sWbOGCRMm8OGHH/LOO+880vGLXKaEeIBPP/1UAapMmTJq165dFuusXLlSBQUF5XNk+adfv34KUBcvXszzfV28eFEBql+/flneZs2aNerSpUtKKaVmz56tAPXuu+9mug9nZ2fl6+trdkyRkZGqUqVKClA7d+4022bHjh0KUJUqVVKRkZFmz+Xr66ucnZ3NnmvRokUKUFu2bNHK+vfvrwB18+ZNrSwqKkqVKlVKDRw4MMvHe/+xAKpcuXIZHps1a5YClLu7u4qNjc3R87du3VoVxq/IcuXKWXxNH+bUqVMKUE888YRq0KCBcnR0VKGhoRbrDhw4UAFqwIABymg0Znj8+vXrav/+/Q/c108//aQA9frrrysnJydVp06dB9adMGGCAtSECRMyPGY0GtXSpUuVr6+vAtSkSZMefqAi30gTj7Do0qVLfPjhhzg6OrJ69WqaNGlisV7Xrl1Zu3ZthvIlS5bQqlUrvLy8cHV1pXbt2kyaNMlic1Bam/edO3d4/fXXKV++PI6Ojnz44YdZehxMzVD9+/enTJkyODk5Ubx4cXr37s3p06ctxh0XF8cXX3xBw4YN8fT0xMPDg+rVqzNq1Chu3rwJgMFg0Jo9KlSooF0ivr99PjIyknHjxlG9enVcXV3x8vIiODj4gZe4Y2JieP311yldujQuLi5Uq1aNb7/9FqPRaLF+Zjp27Ei5cuWyXH/WrFkkJiYyYsQIs+Pw8fFh/PjxAPz0009m26Tdf/fdd/Hx8dHKy5cvz/Dhw0lMTGT27NlaeUhICACNGzfWytJupz0Gpqs/AN98802W48+q/v374+7uTmxsLMePH9fKN27cSMeOHfH19cXZ2ZnHHnuMd955h+jo6Cw9b1JSEj/88AOdO3emXLlyODs74+vryxNPPPHAJqWHfX4t9UFJ6//yoH9pVwLSpKSk8OOPP9K0aVOKFCmCm5sb9evX54cffrD4uVJK8cMPP1CzZk1cXFwoVaoUI0aMyPLrYMmMGTMAePnll+nfvz/JycnMmTPHYt2dO3cCMHLkSIv9fEqUKMHjjz+e6b7s7OwYM2YMTz75JEeOHGH37t3ZjtlgMNCjRw+WLl0KmK4Y37hxI9vPI/KGNPEIi2bPnk1ycjIvvPACtWrVyrSus7Oz2f3x48czadIk/P396d27Nx4eHqxZs4bx48ezbt061q9fj5OTk9k2SUlJtG3blsjISNq3b0+RIkWoUKFClh5fu3Yt3bt3Jzk5mSeffJLKlStz9epV/vjjD1atWsWmTZvMvuxu375NmzZtOHz4MFWrVmXAgAE4OTlx/vx5Zs+eTffu3SlevDgTJkzgzz//5PDhw4wePRpvb28A7X8w/eAGBQVx6dIlAgMD6dixI7Gxsfz999907NiRn3/+mcGDB2v1ExMTCQ4OZu/evdStW5cXX3yRqKgoPvnkE7Zs2ZKt9ygn/v33X8CU2NyvU6dOZnWyus0nn3zCv//+y0cffQSgNVXs37+fFi1aAGhNgGnJ1D///MPMmTNZuXIlXl5ej3xcliilALQfwJ9//pmhQ4fi7u5Oz549KVasGJs3b+aLL75g5cqV7Nixw+y9tSQyMpLRo0fTvHlz2rVrR9GiRblx4wYrV66kc+fOzJgxg0GDBmXY7mGf7/v1798/QxICsG3bNv7991/c3Ny0srTP/bp166hatSq9e/fGxcWFTZs2MXLkSHbv3s38+fPNnmfMmDFMnTqVEiVK8Morr+Do6Mhff/3F7t27SUpKyvD3+TBJSUnMnTsXLy8vnnnmGeLj43njjTf45ZdfGDt2bIYkxM/PD4AzZ85Qr169bO3r4MGD7N+/n3bt2lGmTBn69+/PsmXLmD59+gNPpB6mTZs2tGzZku3bt/PHH38wfPjwHD2PyGV6X8IR1qlt27YKUDNmzMjWdjt37tSahW7cuKGVJycnq65duypAffrpp2bblCtXTgEqODhY3b17N8NzZvZ4ZGSk8vb2Vn5+fur48eNmjx09elS5u7ur+vXrm5X36tVLAerVV19VqampZo/FxMSoqKgo7f7Dmnhat26tDAaDWrhwoVn57du3Vd26dZWLi4vZZe60ZrPu3bub7fvChQvKx8cn20086WWlicff318BKjw83OLj7u7uCtCaRe7evasA5eHhYbF+WFiYAlSxYsW0spiYGFW6dGnl7++vxowZo5599lntmNMeL1++vHrxxRdzdJxpMmvimTlzptbEExcXpy5duqScnJyUp6enOnnypFndoUOHKkANHjzYrNxSE09CQoK6cuVKhv1FRUWpmjVrKh8fHxUXF2f22MM+32lNEJs2bcr0eA8fPqw8PT2Vv7+/OnfuXIbtR4wYoVJSUrTylJQUNWDAAAWoP//8UytP32QXERGhlcfHx6umTZs+8DXNzMKFCxWgXnnlFa2sR48eClD//PNPhvrff/+9ApSnp6d666231IYNGx74mbzfkCFDFKB+++03pZTpuyUgIEC5u7ur6OjoDPUza+JJ77333lOAeumll7IUh8h7kqAIi6pXr64AtWbNmmxtN2jQIAWon3/+OcNjp0+fVnZ2dqpChQpm5Wlf4IcOHbL4nJk9PnnyZAWoH374weK2Y8aMUYCWvNy8eVPZ2dmpEiVKWPyxuF9mCcqhQ4cUoJ599lmL2/75558KUP/73/+0ssqVKys7OzuzH5g0aV+keZmgODo6KkAlJydbfLxkyZIKUNevX1dKKXXt2jUFqFKlSlmsn5SUpADl5ORkVn7q1CnVsWNH5e3trUqWLKleffVV7cdj+PDhqnjx4io8PFyFhISorl27KhcXF+Xh4aH69u1r8UfGkrQExcvLS02YMEFNmDBBvf3226pTp04KUICaMmWKUkqpiRMnKkCNGzcuw/NERkYqT09P5eLiohISErTy7PZB+eabbzL0vVHq4Z/vrCQo165dU6VLl1YuLi5qx44dWnlqaqry9fVVAQEBFt/T27dvK4PBoHr27KmVpf2Nzpo1K0P9TZs25ShBSTuhSd9/aeXKlQpQzz33XIb6RqNRjRs3Trm4uGjvFaDKly+vBg0a9MDX6u7du8rT01N5eXmp+Ph4rfyNN95QgPrxxx8zbJPVBGXatGkKUJ06dcriUYu8Jk08IlcdOHAAgLZt22Z47LHHHqN06dJcvHiR6Ohos0v7Li4u1KlT54HP+6DH//vvPwAOHz5s1iclzZkzZwA4efIkNWrUYO/evRiNRlq1aoW7u3u2ju1B+46Ojra477CwMG3fYOp7cu7cOcqUKUOlSpUy1A8KCtKaSWxd1apVLfbJ2LZtGz/++CNLlizB19eXdu3acevWLX777Tfu3r3LyJEjiY+PzzDaJzPR0dHa62Zvb4+vry+dOnVixIgRdO7cGcj8c+nj40P9+vXZunUrp06dom7dupnu7/jx43z11Vds3bqVGzdukJCQYPa4pSGrD/t8Z+bu3bt07dqVa9eusXDhQpo3b649dubMGSIjI6lSpQoTJ060uL2rq6v2GYR7r0Xr1q0z1G3ZsiX29vbZiu/cuXNs2rSJqlWr0qxZM628Y8eOBAQE8OeffxIeHo6/v7/2mMFg4LPPPmPs2LGsW7eOXbt2ceDAAXbv3s0vv/zC7NmzmTZtmlnzKMCiRYuIiYlhyJAhuLi4aOX9+/fnm2++YcaMGQwdOjRb8adR9zUJCv1JgiIsKlGiBCdPnsz2/ABpnexKlCjxwOe9fPkyUVFRZglKsWLFMv1ieNDjERERwL0Oeg+SNsdG2nwJpUqVyrR+VqTte8OGDWzYsOGh+057bYoXL26xXkBAwCPH9DBeXl6Eh4cTHR2t9QNILy3GtPcm7f8HdZ5MK39Y3w2A+Ph4Bg4cSPfu3Xn22WfZsGEDBw8eZP78+TzzzDOAqXP2Bx98wPnz5y0mcZaUK1fuofPUZOVzCWQ6nwbArl27aNu2LSkpKQQHB9OtWzeKFCmCnZ0dhw4d4q+//rLYEfxhn+8HSU1N5fnnn+fgwYNMmjSJ559/3uzxtM/g2bNnM01u088xk9nn0MHBwSyRyIoZM2aglMowwaCDgwMvvvgi33zzDXPmzOHNN9/MsK23tzfPP/+8dlyxsbF8/vnnTJw4kZEjR9KtWzezOKdPnw6QYV+1atWiQYMG7N+/n3379tGwYcNsHQOYhj4DFC1aNNvbirwho3iERS1btgRMox6yI+0HLTQ01OLjaT3k7+8Y+bAv7wc9nvY8hw8fRpmaLC3+69evH3DvhzQ3JmZK2/eUKVMy3XfaCJe0+mmjhO73oNcsN1WtWhW4d2UpvRs3bhAbG0vp0qW1Tpju7u6UKlWKu3fvWhzdcPbsWcB0dexh3n//fSIiIvjf//4H3LuylL4Dc4MGDQA4ceJEdg7roXL6ubzfxIkTiY+PZ/369axZs4bJkyfz8ccf8+GHH2baQTOnZ+UjR45k9erVDB482OIcHWnxPvPMM5l+Bi9evJhhG0ufw5SUFMLDw7McX/qROuPGjcsw2ihthNbDTiDSuLu788knn9CyZUsSExPZsWOH9tiRI0fYs2cPAM2aNcuwr/379wP3kpjs2rRpE0COO9qK3CcJirDo5ZdfxtHRkWXLlj30xyL9GWPaxEqWpu0+d+4cV69epUKFClk6486Kpk2bAqamg6xo3LgxdnZ2bN26ldjY2IfWT7vcnZqa+sj79vT0pHLlyly7ds3ihGr5MdV5WhOHpaHhaU0y9zeD5GSb++3Zs4fJkyczZcqUDGfu6T8/9zeX5JbMPpdRUVEcOnQIFxcXqlevnunznDt3Dl9fX4sjbHJ7FNY333zDtGnTaN++PT/++KPFOtWqVcPb25tdu3aRnJycpedNSwgtxbt9+3aLn/UH+euvv7h16xZVq1Zl4MCBFv9VrFiRM2fOZOv18fT0BO41u8C9xCMoKOiB+3J1dWXhwoXZnpX433//ZceOHbi6umpX84QVyL/uLsLWpI04KV++vNq7d6/FOmvWrFFt2rTR7qeNEChfvry6deuWVp6SkqKeeuopBaiJEyeaPcfDJobK7PHw8HDl7e2tihYtqnbv3p3h8dTU1AydD3v37p3lUTxvvfWWAtS///5rcf+BgYHKzs5OzZw50+LjR44cMZucLO017dGjhy6jeC5cuJDnE7XdLzExUdWoUUN16dLFrHzDhg0KUB999JFWljahm6VOxPfLbBSPpbqOjo7Ky8tLnT171uyxESNGKEANGjTIrNxSJ9kOHTooQB0+fNis/JdfftE6es6ePdvssYd9vi11kl22bJmys7NTtWvXfmin4ffff1/7PN8/gkgp06Rn6Ue4bd++PddG8bRr104BavHixQ+sk/ba9O7dWyv78ssv1bFjxyzW37Ztm3JxcVEODg7q2rVrSiml4uLilLe3t7K3t9fKLOnTp48C1PTp07Wyh03UtmzZMm2iti+//PJhhyzykSQoIlMfffSRsrOzU4Bq3ry5GjVqlBo/frwaOHCgqlKligJUw4YNzbYZO3asNvR02LBh6q233lK1atVSgGrZsqVKTEw0q/8oCYpSSv3zzz/K09NTGQwG9cQTT6jRo0erMWPGqB49eqiSJUsqZ2dns/qRkZGqTp06ClDVqlVTo0ePVm+99ZZ69tlnlaenp9kPxdq1a7Uv87Fjx6pPPvlEff/999rjV65c0V6HunXrqldeeUWNHTtW9e7dWzvm//77T6ufkJCgGjVqpNUfO3aseuWVV5S3t7fq1q1bthOUGTNmqH79+ql+/fqpFi1aKEDVqVNHK7M0M+bUqVMVoPz8/NSwYcPUmDFjVOnSpRWg3njjDYv7ef311xWgSpcurcaMGaOGDRum/Pz8FGD2eljy7rvvKi8vL3X16lWzcqPRqBo0aKDs7e3VgAED1HPPPacAsxEnmclOgqKUUv/73/+0oa0DBw5U77zzjmrWrJn2OUj/Y62U5QRlzZo1Zs/x+uuvq1atWik7OzttOHVuJCiurq6K/59pNW2EUvp/6feRlJSkfXZKlSql+vbtq9555x01YMAALYG+/3MwcuRIBagSJUqokSNHqtdff11VqlRJNWzYUJUoUSJLr+mFCxeUwWBQ/v7+Gf6m04uJiVEeHh7K2dlZe43r1q2rve79+/dX48aNU6NGjVLBwcHKYDAoQH3zzTfac6Ql308++WSmMW3evDnDd1La69u6dWvt9Rs7dqzq06ePqlChggKUs7Oz+uKLLx56zCJ/SYIiHurEiRNqxIgRqmbNmsrT01M5OjqqgIAA1bFjR/XLL7+YDc1Ms3DhQtWiRQvti6lGjRpq4sSJZkMD0zxqgqKU6cdq+PDhqnLlysrZ2Vl5enqqqlWrqj59+qjly5dnqH/37l01ceJEVbt2beXq6qo8PDxU9erV1ejRo82ueChlGj5arVo15eTkZPEH8c6dO+rTTz9Vjz/+uHJ3d1cuLi6qfPnyqnPnzurnn3/OMJw5Ojpavfbaa1ryVLVqVfX111+r8+fPZztBSRsG/aB/rVu3trjdihUrVKtWrZSHh4dyc3NTDRs2VHPmzMl0X7Nnz1YNGzZUbm5uysPDQ7Vq1UqtXLky020OHjyoHBwcHjifzpUrV9RTTz2l3N3dlZeXl+rXr1+2hxlnZ0jsunXrVLt27ZS3t7dycnJSlSpVUm+99Za6fft2hroPGma8cuVK1aRJE+Xh4aG8vLxUu3bt1JYtW7Qf0dxIUDJ7Ty29r0ajUc2bN0+1bdtW+fj4KEdHR1WyZEnVokUL9emnn6rLly9nqP/9999rn+sSJUqoYcOGqaioqCxPdT9+/HgFqNdee+2hdQcPHqwA9e233yqllDpw4ID65JNPVJs2bVT58uWVi4uLcnZ2VhUrVlS9e/dW27ZtM9u+efPmClB//fXXQ/f12GOPKUAdPHhQKXXv9U37ZzAYlIeHhypbtqzq1KmT+vzzzzMkz8I6GJRK18gnhBBCCGEFpJOsEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDo2maAkJCRw+vTpPJsWWwghhBD6sskEJSQkhMGDBxMSEqJ3KEIIIYTIAzaZoAghhBCiYJMERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUcsrtBXFwcixYt4sSJE5w8eZKYmBjGjRtHp06dsvwc+/btY/78+Zw5cwaj0UiZMmXo1asXwcHB2Q1HCCGEEAVQthOU6Oho5syZQ/HixalcuTIHDx7M1varV6/miy++oGHDhgwePBh7e3suX77MrVu3shuKEEIIIQqobCcofn5+LF++HD8/P06dOsUrr7yS5W1v3LjBd999R/fu3Rk9enR2dy2EEEKIQiLbfVCcnJzw8/PL0c7++usvjEYjAwcOBEzNRUqpHD2XEEIIIQqufO0ku3//fsqWLcuuXbvo0aMHHTt2pGvXrvzyyy8Yjcb8DEUIIcQjiLudwP6lZ4m7naB3KKKAynYTz6O4evUqdnZ2fP755/Tq1YtKlSqxdetW5s2bR2pqKkOGDLG4XXh4OBEREdr9kJCQ/ApZCCGEBXFRiRz84xzlGhTDzcdF73BEAZSvCUp8fDxGo5EhQ4bw4osvAhAUFERMTAxLly6lb9++uLm5ZdhuxYoVzJkzJz9DFUIIIYSO8jVBcXZ2Jj4+nieeeMKsPDg4mN27d3PmzBnq1auXYbtu3brRokUL7X5ISAgTJ07M63CFEEIIoZN8TVD8/Py4evUqPj4+ZuVp92NiYixu5+/vj7+/f57HJ4QQQgjrkK+dZKtWrQqY+pSkl3bf29s7P8MRQgghhJXKswQlPDyckJAQUlJStLK2bdsCsGrVKq3MaDSyZs0aihQpoiUwQgghhCjcctTEs2zZMu7evauNrNmxY4c2E2yPHj3w8PBg+vTprF27lsWLF1OiRAkAWrZsSYMGDViwYAFRUVFUrlyZbdu2ceTIEd58802cnJxy6bCEEEIIYctylKAsXryY0NBQ7f7WrVvZunUrAO3bt8fDw8PidgaDgU8//ZRffvmFf//9l7Vr11KmTBnee+892rdvn5NQhBBCCFEAGZQNTuV6+vRpBg8ezIwZM6RZSAghdBB+MZo/393J0582x7+Cl97hiAIoXzvJCiGEEEJkhSQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQghRgMTdTmD/0rPE3U7QOxQhHokkKEIIUYDERSVy8I9zxEUl6h2KEI9EEhQhhBBCWB1JUIQQQghhdSRBEUIIIYTVkQRFCCGEEFZHEhQhhBBCWB1JUIQQQghhdSRBEUIIIYTVkQRF6E4mlhJCCHE/SVCE7mRiKSGEEPeTBEUIIYQQVkcSFGGRNLsIIYTQkyQowiJpdhFCCKEnSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVBEoSErNAshhO2QBEUUGrJCsxBC2A5JUIQQQghhdSRBEUIIIYTVkQRFCCGEEFZHEhQhhBBCWB1JUIQQQghhdSRBEUIIIYTVkQRFCCHymMzBI0T2SYIihBB5TObgESL7JEERQgghhNWRBEUIIYQQVkcSFCGEEEJYHUlQhBBCCGF1JEERQgghhNWRBEUIIYQQVkcSFCGEEEJYnWwnKHFxccyaNYs333yTLl260KpVK9asWZOjnX/55Ze0atWKt99+O0fbCyGEEKJgynaCEh0dzZw5cwgJCaFy5co53vGpU6dYs2YNTk5OOX4OIYQQQhRM2U5Q/Pz8WL58Ob///jtDhw7N0U6VUkyZMoUOHTrg6+ubo+cQQgghRMGV7QTFyckJPz+/R9rpunXruHjxIoMHD36k5xFCCCFEweSQ3zuMi4vjp59+ok+fPllOdMLDw4mIiNDuh4SE5FV4QgghhLAC+Z6gzJkzB2dnZ5577rksb7NixQrmzJmTd0EJIYQQwqrka4Jy5coVli5dygcffJCtzrHdunWjRYsW2v2QkBAmTpyYFyEKIYQQwgrka4IydepUatWqRVBQULa28/f3x9/fP2+CEkIIIYTVybeJ2vbv38/u3bt59tlnuXHjhvYvNTWVxMREbty4QWxsbH6FI4QQQggrlm9XUG7dugXAe++9l+GxsLAwnn/+eUaMGJGtvilCCCGEKJjyLEEJDw8nNjaWUqVK4eDgwOOPP86nn36aod5XX31FQEAAffv2pWLFinkVjhBCCCFsSI4SlGXLlnH37l1t6O+OHTu0KyQ9evTAw8OD6dOns3btWhYvXkyJEiUoXrw4xYsXz/Bc33//PT4+PgQGBj7CYQghhBCiIMlRgrJ48WJCQ0O1+1u3bmXr1q0AtG/fHg8Pj9yJTgghhBCFUo4SlCVLljy0zvjx4xk/fnyuPJcQQgghCpd8G8UjhBBCCJFVkqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCFBBGoyLsQjQAYReiMRqVzhEJkXM5WixQCCGEdbm4J5Rd804SG5kAwI6Zxzm0/DxNX6pOhcYBOkcnRPbJFRQhhLBxF/eEsnHyQS05SRMbmcDGyQe5uCdUp8iEyDlJUIQQwoYZjYpd805mWmfX/JPS3CNsjiQoQghhw0JPRWa4cnK/2IgEQk9F5lNEQuQO6YMicl1kfCTbQrZxKvwUV+5cIcWYgqOdI2W8ylDVryqB5QLxdfXVO0whCoT4qMQMZUZSCXE5xxXnC9xyvEG8fSwbd/pSKbQ85b3L06RUE2oWq4mdQc5RhfWSBEXkipjEGBYdW8TsQ7PZdXUXigdfTjZgoGnppgyoP4BetXrlY5RCFDyu3s4AKBSXXM6wxWsNBz13Emd/17zitf//9/+KuRfjhZovMOjxQdQuXjv/AhYiiyRBEY8kLjmO73d/z5c7vyQyPmuXkBWK/67+x39X/+Ptf95mVI3XKGaQL0ghciKgmi/Xi13gV+efOeN2NMvb3Yq9xdQ9U5m6ZyrdqnZjYpuJWU5U7h/O7FuuCHZ2hhzFL8SDSIJiY+JuJ3By4xWqB5fBzcdF11g2XtjI4JWDuRh10ay8ZtGadKjUgUalGlHOqxxujm7Ep8Rz8fZF9l3fx9rzazkRdgIwNQd9uP99/MsHUDJ0Bk9V6KrHoQhhk6ISonh93evM9pltVu6S6kqNuMd5LK42JZJK0/b5xpSuXZQbMTc4GX6STZc28c+Ff0hIMfVdWXF6BX+f+ZvXm77OR20+ws3R7YH7lOHMIr9IgmJj4qISOfjHOco1KKZbgpKcmszYDWOZvHuyVmbAwIt1XmRMkzE8XuJxDIaMZ1NNSzelV+1efMM37Lu+j8m7JvPb0d9QKMKdQnl6/ZOMiR7Dl+2+xNHeMR+PSAjbs+PyDp5f+jzXYu612wSklKZD2LM0immFs3LB3c+Fpq/cSxzqBdSjU5VOvN7sdaISoph/eD5f7PiCazHXMCojX//3NSvOrGDZc8uoVaxWhn2mDWe+X9pw5uAx9SVJEblGekiJbLl59ybt5rczS05alWvF0aFHmf/MfBqUbGAxOblfw5IN+aT010yKnE6VuJpa+eTdk2n5v1bcir2VF+ELUSBM3z+dNnPbaMmJp5Mn/+v8Py59cJ63e76Gs3KhxcCaPD8l6IEJg7eLNyObjOTsyLNMbDMRZ3tTX5YzEWdo8ksTFh9bbFZfhjOL/CYJisiyC7cv0GxmM7aEbAHA0c6RqR2nsqnfJmoWq/mQrc2lnYn5hZXizStf8PzNV7BXpgt6e27vovGPTQmJCsn1YxDClimleGPdGwz5ewjJxmQAgsoHcXzYcYY1GoazoxNFK3oBULSiV5b6hbg6uvJuq3c59Ooh6gfUB0x9y15Y9gJTdk3R6slwZpHfJEERWXIy7CSBswO1/iYlPUuypf8WRjYZme2hivefidlhxxNRT/PW5S/xTvYDICTuIi1mteBkWOZnbEIUFkZlZNiqYXy761utbEyTMWzou4EyXmUe+fmr+Vdjx4Ad9K/X/97zrxvD+/++j1LK4nBmS7JaT4iHkQRFPNTp8NO0ntOa6zHXAajuX509g/bQrEyzHD3fg87EKiVUY9zlbwlILA3AtZhrBM0N4lzkuRzHLkRBoJTilZWv8NP+nwBTn6/pXafzXcfvcLDLva6Ero6uzOo2iw9afaCVTdw2kU+2fqINZ37oc2SxnhAPIwmKyCD9EMJjJ0/TfkF7wuLCAHi8xONsfXkrpYqUyvHzZ3aG5ZtSlLFXvqJsQmXANBSy/fz23Ii5keP9CWHr3v33XWYenAmAvcGeBd0XMLjB4DzZl8Fg4KM2HzG141StbMLmCSy98yvuvpl3zHf3cyGgmkzCKHKHJCjCzMU9oSwetZkdM48TZ3eXPtuf43L0ZQDqFq/Lxpc24u/m/0j7eNgZlmeqF69f+ZSqRaqZYoq6SIcFHbiTeOeR9iuELfp+9/dM2j4JMF05+a3Hb/Su3TvP9zuyyUi+af+Ndn/0utFEtDub6TZN+1bPk/lQ4m4nsH/pWeJuZ94HRhQskqAITfoVUY2kMqPEl1xzNnVU9U8K4Ocac/F28X7k/QRU833omVgxn6JseHkD5b3LA3D01lH6/NEHozI+8v6FsBVrzq5h9NrR2v3vO33PczWfy7f9v97sdd4LfE+7P/bYGAJedsjw9+vu55KnQ4zTpleIk/4thYokKALI2HH1L/8FHPPYB4BHShFeuzqRC79H5soQQjs7A01fqp5pnaZ9q1PGuzTr+6zXkqKVZ1by4eYPH3n/QtiC85Hn6f1Hb23ZiHEtxzG88fB8j+PjNh/Tr24/AOJT4hl2bCBBn1WnxUDTyL2HDWcWIqckQRGAecfVAx47WO1nmgPBTtnxyo13KJZcMleHEFZoHEDwmPoPPROr4leFxc8u1kYKfbL1E/469VeuxCCEtYpNiuWZxc8QlRAFwFNVn2Ji24m6xGIwGPip6080Ld0UgCt3rtB7eS98y3sAWR/OLER2SYIigHsdVyMcbjE34N7cBz3DBlE9rl6GermhQuMAnp8a9NAzsfaV2vPlE19q9wesGMDVO1dzLQ4hrM1r617j6C3TujpV/aoy75l5uq487OLgwh/P/UEpT1Pn+M2XNjP52LcP2UqIRyMJigBMHVeNpDKrxDfaKqiN7rQi+PZTGerlJjs7Q5Ymlnq92et0r94dMK3f0+ePPqQaU3M1FiGswV+n/mLGgRkAuDu6s/z55RRxLqJzVFDCswQLeyzUEqWvDn/OWdfjOkclCjJJUARg6rj6b6m/tNVQfZOL0ufmCAzcSxj0HEJoMBiY8eQMyhQxTUi1JWQLn2//XJdYhMgroXdDGbRykHZ/csfJVC+aeX+t/BRYLlCbIyVVpfJLiS+JSZLRdSJvSIIiADh08yDLPOcAYFB2DLzxFm5GD7M6eTWEMKt8XX35tfuv2hncR1s+4titY7rFI0RuUkrx8l8vEx4XDpj6nQysP1DnqDJ6r9V7tCrXCoBIxzA+PvChvgGJAksSFEFyajIDVwwkRaUA8FRcLx6Lv7eSaV4PIcyOwHKBjG0+FoBkoyluaeoRBcHcw3NZe24tAAEeAfzS7ZcsLbyZ3+zt7Jnz1BzcHNwBmHNmFpsubtI5KlEQSYIi+G7XdxwKPQRA7WK1WfTpLKseQjghaAJV/aoCsOfaHibvmqxvQEI8orDYMN5Y/4Z2/5cnf3nkCRHzUgWfCrz/+ATt/qCVg4hNitUxIlEQSYJSyJ2PPM+EzaYvGgOmfh45WRE1P7k4uDCz20ytf8x7m96T9XqETXt9/etExpuG8L9Q6wW6PNZF54gebkDVQVSJM53IXLh9gfc3va9zRKKgkQSlEFNK8eqqV0lIMc1/MqrJKJqUbqJzVFnTomwLRjYeCUBCSgKj1oxCqUefRE6I/Lb+/HoWHFkAgLeLN5M7TNY3oCyyM9jRL3QMLvamuYym7p7K0ZtHdY5KFCSSoBRiS08s5Z8L/wBQ1qusbhNB5dSnwZ9Suohp5eM159bw95m/dY5IiOxJTElk2Kph2v2v231NcY/iOkaUPcWTSzGmtqlpKlWlMmLNCDlRELlGEpRCKj45njc3vKnd/77T93g4eWSyhfXxcPIwW8xszLox2tUgIWzBlN1TOH/7PACBZQMZUH+AzhFl3/CaI6nkUwmArSFbWXhsoc4RiYJCEpRC6qudX2mrFLev1J4nH3tS54hypmeNnrQp3wYwtYN/vfNrnSMSImtC74YycavpqqWdwY6pnaZa5aidh3Gxd2FKx3uzT7+5/k1ZeVzkCklQCqEr0Ve0Sc7sDfZ81+E7m/xiBNMEbt93+h57gz0An237TKbBFzbh3Y3vEpMUA8Cg+oOoF1BP34AeQZfHumgnOTfu3uCL7V/oHJEoCCRBKYTe2fgO8SnxAIxoPIIaRWvoHNGjqVmsJiMajwBMq61O2DThIVsIoa8DNw4w+9BsAIo4F+GTtp/oHNGjm9xxMo52jgB8u+tbOVEQj0wSlELm4I2D/Hb0NwD8XP2Y0Lpg/Jh/0PoDvJxNQ6PnHJ7D8VuyRoiwXm9teAuFqTPphNYTKOZeTOeIHl1Fn4raiUJCSoKcKIhHJglKITP+3/Ha7fdbvY+Pq4+O0eQeX1dfxrUcB4BRGRm3cZzOEQlh2T8X/uHfi/8C5j/qBcG7ge9qJwqzD82WYcfikUiCUohsvrRZm0q7rFdZXm34qs4R5a5RTUZpy8GvPLOSbSHbdI5ICHNKKbPk+ZM2n+Bk76RjRLnLz82PdwPfBUChGPvPWJ0jErZMEpRC4v4vxo+DPsbZwVnHiHKfq6MrH7f5WLs/9p+xMieDsCp/X17Bvuv7AKhTvA4v1HpB54hy38gmIynrVRaAtefWyomCyLFsJyhxcXHMmjWLN998ky5dutCqVSvWrFmTpW3379/P559/Tu/evWnXrh3PP/88X3zxBeHh4dkOXGTPitMr2HV1FwA1i9akT50+OkeUN/rV7UfNoqbpt3dd3cWK0yt0jkgUdkajIuxCNKmkMnHPvQT6s7afaStzFyQuDi58HHTvONOW0hAiu7L91xEdHc2cOXMICQmhcuXK2dr2p59+4uDBgwQGBjJ69GiCg4PZtGkTgwYNIiIiIruhiCwyKiPv/vuudv+z4M+wt7PXMaK8Y29nz2fBn2n3P9rykVxFEbq5uCeUxaM2s2PmcXYV2ciFeNOkbA18GtG5Smedo8s7L9Z5kSq+VQDYdGmTrHYsciTbCYqfnx/Lly/n999/Z+jQodnadvjw4SxcuJChQ4fStWtXXnnlFT7//HMiIyP5448/shuKyKJlJ5ZxPMw0qqVp6aY2OylbVj352JM0KNEAgIOhB1l5ZqXOEYnC6OKeUDZOPkhsZAIppLDS794Mq8GHn+PS3ps6Rpe3HOwczEYITtg8QU4URLZlO0FxcnLCz88vRzurV68ednZ2GcqKFClCSEhIjp5TZM6ojEzcdm+NnY+CPrLZSdmyymAwmH05frj5Q/lyFPnKaFTsmndSu7+7yCYinEwJSc3YBlSJr8mu+ScxGgvu5/KFWi9Qzb8aANsub2PjxY06RyRsje4NoHFxccTHx+Pl5fXAOuHh4Zw+fVr7J8lM1q08vZIjN48A0LhUY9pVbKdzRPmj62NdebzE44BcRRH5L/RUJLGRpnWhjKSy2m+x9ljXCFPH2NiIBEJPReoSX36wt7OXqyjikeieoPz+++8kJyfTtm3bB9ZZsWIFgwcP1v5NnGhbq+7qRSnFJ1vvzVD5fqv3C/zVkzQGg4EPW3+o3ZerKMKSuNsJ7F96lrjbubvIZHxUonZ7r+dWbjldB6BqbB0qx9e0WK8g6lmjp9ZpfeeVndrq6UJkha4JyqFDh5gzZw5t2rShQYMGD6zXrVs3ZsyYof1777338jFK27X23Fr239gPQP2A+nSp0kXniPLX/VdR1l9dq3NEwtrERSVy8I9zxOVyouDqbRrCb8TIKrOrJ70s1iuo7O3s+aD1B9r9z3d8rmM0wtbolqCEhITw3nvvUbFiRd5+++1M6/r7+1O1alXtX7ly5fIpStt1/9WT91q9V2iunqS5vy/KlGOT9QtGFCoB1Xxx93XhoMdObjibVg2vHFeDqvF1tDrufi4EVPPVK8R806N6D21Ez78X/2XPtT06RyRshS4Jys2bN3njjTdwd3fniy++wM3NTY8wCrR/L/7Lf1f/A6BWsVo8Xe1pfQPSyZOPPUmtYrUA2Bu2m7OuskaPyHt2dgaa9K3GKr9FWlmXiF4YuHeS0LRvdezsCv5Jg72dPWNb3JtR9osdstKxyJp8T1Cio6N54403SE5O5uuvv8bf3z+/QygU0l9KfTfw3QI5IVRWGAwG3mr+lnZ/ne9Swi5EF+jRE8I6nPM/yhWXCwCUj3+MmnGm5kZ3PxeCx9SnQuMAPcPLV33r9KWERwkAlp9czqnwUzpHJGxBnv1qhYeHExISQkpKilYWHx/P2LFjCQ8P58svv6RMmTJ5tftC7VDoIa0zWmXfyvSs0VPniPTVNL4Nfqmm1WIPe+xmyfzVLB61mYt7QnWOTBRkX+/8Wrs9pv5rGDDQYmBNnp8SVKiSEwBnB2deb/Y6YFqj58sdX+ockbAFOUpQli1bxty5c1m9ejUAO3bsYO7cucydO5e7d+8CMH36dPr27UtYWJi23SeffMLJkycJCgoiJCSE9evXa/+2bZP1GnJL+i/G15u+XmBnjc2Ki3tC2Tr1GMERT2ll63yXERuZwMbJByVJEXniUOghNlzYAEAln0q80PA5AIpW9CoUzTqWDGkwBG8XbwAWHFnAlegr+gYkrJ5DTjZavHgxoaH3vti3bt3K1q1bAWjfvj0eHh4Wtzt37hwAq1ev1pKbNAEBAQQGBuYkHJHOlegrLDpmavf2c/WjX71+Okekn/STZQVGdeRvv4XE2d9lT5FNPB3+Er4p/uyaf5JyDYsX2h8NkTfMThKaFe6ThDSezp6MaDSCidsmkmxM5tv/vuW7jt/pHZawYjlKUJYsWfLQOuPHj2f8+PHZ3k48mim7p5CqUgEY3mg4bo6FtwNy+smyXJQrbW53ZZX/IlINqfzjs5znwgZrk2WVrJGz2ZGFuN/l6MvaSYK/mz/96/Un7mqyzlFZh1FNRvHNf98QnxLPjAMzmBA0QbuqIsT9CmfPyQIqOiGa6funA+Bs78zwxsN1jkhf90+C1TaqG45GJwC2eq8lzu6uxXq5Ia8mABPWb8ouOUl4kKLuRelfrz8AscmxzDwwU9+AhFWTBKUAmb5/OjFJMQD0q9uPYu7FdI5IX/dPglUk1Zvmd54AINEunu1e6y3Wyw15NQGYsG5RCVFMP2A6SXBxcGF4o8J9kmDJ6CajtdtT90wlxZiSSW1RmEmCUkAkpSYxZfcUAAwYtB7zhVnaZFnpBd++11n2X++VuPo5ForJskT+mL5/OneTTFfm+tftT1H3ojpHZH2q+lelc5XOgKk57M9Tf+obkLBakqAUEMtOLONazDUAulXtRlX/qjpHpD87OwNNX6puVlYiqQw1Y03LKkQ43eRu+yvSQVbkihRjCv/b+z9AThIe5rWmr2m3v9slHWWFZZKgFBBT90zVbo9pOka/QKxMhcYBBI+pb3YlJfh2N+32osh5eoQlCqCVp1dyOdo0rX3nKp2p4ldF54isV3CFYG2G551Xdsr098IiSVAKgH3X97Hr6i4AaherTetyrXWOyLpUaBzA81ODaDHQtKrqK8+/xGO+jwGw+dJmjtw8omd4ooBIf5IwsvFIHSOxfgaDgTFNxmj3J++arFsswnpJglIAfL/ne+32yMYjC92igFlhZ2egaEUvAIpX8mFUk1HaY1N2TdErLFFAHL15lM2XNgNQ1a8q7Sq10zcgG9C7dm/83UxLnfx+4neu3rmqc0TC2kiCYuNuxd7S5lzwcfHhxTov6hyRbehXrx9ezqaE5dejvxIWG/aQLYR4sPQnCSMajyi0a19lh6ujK0MbDgVM/Xd+3PujzhEJayN/RTZu+v7pJKUmATCw/kCZcyGLPJw8GFh/IACJqYna/DFCZFdkfCQLjiwAwNPJk351C+/szdk1tOFQHOxM84XOPDiTxBQZli/ukQTFhiWnJjNt3zTANGpgWKNhOkdkW9Kf6f6470ct0RMiO2YemEl8SjwAL9d7GU9nT50jsh0lPEvQo3oPwHQ1eNnJZTpHJKyJJCg2bPmp5VyPuQ6YhhZX8Kmgc0S2pYJPBbpVNY3ouR5znb9O/aVzRMLWpBpTtaHFQKGfvTkn0p9YSTOPSE8SFBt2f+dYkX0jGo3QbqddjRIiq1aeWUlIdAgAnSp34jG/x3SOyPYElg2kZlHTCLsdV3ZwOPSwzhEJayEJio06GnmE7Ze3A1CjaA3aVmirc0S2qW2FttqPyqZLmzgVfkrniIQtSX/GLycJOWMwmDdPy4mCSCMJio2ae2a2dnt4o+EytDiHDAYDrzZ4Vbv/076fdIxG2JJzkefYcGEDABV9KtKhcgedI7Jdfev0xcPJA4AFRxYQnRCtc0TCGkiCYoMSDHEsvfA7AO6O7vSp00fniGxbv3r9cHEwzTQ79/Bc4pLjdI5I2IL0I7+GNBgiQ4sfgaezJy/VeQkwrXI877DM8CwkQbFJu4tsJjbFtCDZi7VfpIhzEZ0jsm2+rr48X/N5wLQabdq8MkI8SGJKIrMPma5iOto50r9ef30DKgCGNhqq3f5x348opXSMRlgDSVBsjFKKrd5rtPtDGg7RMZqCI23CKJBmHvFwf5z8g/C4cAB61OhBMfdiOkdk+2oVq0Wrcq0AOBV+SpuZVxRekqDYmEMRB7nsch6AhiUb8niJx3WOqGBoXKox9QPqA7D3+l72X9+vc0TCmv20/14Sm74Pk3g0wxvdG6adfvi2KJwkQbExc87M0m7LF2PuMRgMZldRZCSBeJCTYSfZGrIVgGr+1bSzfvHonq72NAEeAQD8eepPbsTc0DkioSdJUGxIVEIUf176AwBPxyK8UOsFnSMqWHrX7q315/nt6G9EJUTpG5CwSj/v/1m7PaTBEBlBl4uc7J20JShSVSpzDs3RNyChK0lQbMiCIwuISzGNMOlZ8Xncndx1jqhgcXdy10YSxKfEy0gCkUF8cjxzD88FwMXBhZfqvqRzRAVPWoIC8MvBXzAqo47RCD1JgmIjlFL8vO/emVs3t2cxGqWXe257teG9ZrPp+6fLSAJhZsnxJdqVtedqPoevq6++ARVAFXwq0K5iOwAu3L7ApoubdI5I6EUSFBuxdP1KjoUdA6BSfHXCFqWyeNRmLu4J1TmygqVmsZq0KNMCgONhx9l9bbfOEQlrIp1j88fgxwdrt2ccmKFjJEJPkqDYgIt7Qvl23RTtfquozgDERiawcfJBSVJy2aDHB2m3fznwi46RCGtyOPQwu67uAqBO8To0Ld1U54gKrqeqPUVRt6LA/w/pTgjXOSKhB0lQrJzRqPhn/m72eW4DwC3Vg4YxLc3q7Jp/Upp7clHPGj21zrKLji0iJjFG54iENbh/5ljpHJt3nOyd6Fe3HwDJxmSWnF+oc0RCD5Kg5IK42wnsX3qWuNsJuf7coaci+Td1LSl2yQA0iw7GSTmb1YmNSCD0VGSu77uwcndyp3et3oBp2m2ZWVbEJ8fz27HfAHB1cOXF2i/qHFHBl/5K5vyz81DISVhhIwlKLoiLSuTgH+eIi0rM9eeOj0pkh9d67X5gtOUFyeLzYN+FmVkzz0Fp5ins/jz1p9Y5tmfNnni5eOkbUCFQ1b+qNsfMuTtnOet6XOeIRH6TBMXKnVenueJyAYAK8Y9RKqm8xXqu3s4Wy0XOPF7iceoF1ANgz7U9HLl5RN+AhK5mHpyp3R5Qb4COkRQu6TvLbvNaS9iFaGnOLkQkQbFyK6KXabdbRLe3WMfdz4WAajLcMTcZDAYG1b93FWXmgZmZ1BYF2aWoS2y8uBGASj6VZObYfNQgtgVuRg8A9ntuZ/3sXTJ6sRCRBMWKJaQk8NtRU7u3k9GZRjGtLdZr2rc6dnbSYS+39a7dGxcHFwDmH5lPQkru9zES1i/9bKYD6g+w+s6xbt7O1O9eGTcbv6p6cU8oO74/RbPotgAk2yWZVnKX0YuFhiQoVuzPU39yO+E2AF1KP0lRbz+zx939XAgeU58KjQP0CK/A83H1oWeNngDcTrjNHyf/0Dkikd+MysjsQ7MBsDPY2cTMsW4+LjR4tgpuPi56h5JjRqNi17yTAARGddTKt3mt1TrLyujFgk8SFCs26+C9hQFHtRvO81ODaDGwJgAtBtbk+SlBkpzkMZkTpXD79+K/XI6+DECHSh0oXaS0zhEVDqGnIomNNF2xLJVUnorx1QC46nKRSy5nABm9WBhIgmKlQqJC+OfCPwBU9KlIq3KtsLMzULSiafRA0Ype0qyTDwLLBlLFtwoAmy5t4lzkOZ0jEvnJrHNsfekcm1/uH5WY/irK9nSjGmX0YsEmCYqVmnt4rnYp8+V6L2NnkLdKDwaDwewqinSWLTwi4yNZfnI5AH6ufjz52JM6R1R43D8qsWFMIM5GU5PVXs8tJBoSLNYTBYv86lmh9O3eBgzajIpCH/3q9sPBzgGAOYfnkJyarHNEIj8sPLqQxFTTGXrfOn1xdpAfw/wSUM0Xd997fWhclCsN75hGT8Xbx3HQc6eMXiwEJEGxQpsvbeZS1CUA2ldqTxmvMvoGVMgV9yhOt6rdAAi9G8qac2t0jkjkh1mH7vUBk+ad/GVnZ6DpS9XNylrcaafd3l5kvYxeLAQkQbFC6TvHyhejdRhYf6B2O32/BFEwHQo9xIEbBwBoWLIhtYvX1jmiwqdC4wCCx9TXrqRUjq9BsaSSAJx2PwJV4vUMT+QDSVCsTFRCFMtOmiZn83X15amqT+kcUd6zhXkbOlTqQCnPUgCsOrOKGzE3dI5I5CWzkwSZOVY3FRoHaKMXDRh4sUpf7bH089PklrxcV01knyQoVmbh0YXahGB9avcpFO3etjBvg72dPf3r9QcgVaUy7/A8fQMSeSYhJYEFRxYA4OLgQq/avXSOqHBLP3pxQKP+2oCBOYfnYFTGXN1XXq6rJrJPEhQrI+3e1uvlei9rt2cdmoVSMklUQbTi9AptgsQe1Xvg7eKtb0BCE+BWgo6VTUOOL0df5t+L/+ockchLkqBYkSM3j7Dv+j7AtFhd3YC6Okck0qvkW4mg8kEAnIk4w/bL2/UNSOQJ6QNm3dI3uaV/r0TBIwmKFZl9cLZ2W9q9rZN0li3YrkRfYf1500Rg5b3LawmpsB5PVn0SP1fTsh9/nPyD2/G3dY5I5BVJUKxEUmoS84/MB8DZ3lnava1Uj+o98HI2tYf/fuJ37iTe0TkikZvmHJojEyRaOSd7J/rU6QNAYmoii44t0jkikVfkr89KrDy9koj4CACeqf4Mvq4yAZE1cnV0pXft3gDEJcfJl2MBcv8EiWmdooX1ub8/mCiYJEGxEmZrflhB844tDP3VizTzFExbLm3hYtRFANpVakdZr7I6RyQepG5AXR4v8TgA+67v4+jNozpHJPKCJChW4Oqdq6w7vw6Asl5lCa4YrHNEtjH0Vy+Pl3icusVNHZj3XNvDsVvHdI5I5AazEXRWcJIgMpf+PUq78iUKFklQrMC8w/O08fzS7m39DAaD2VUUGUlg++4kRbP0xFIAfFx8eKpawZ8g0db1qt0LZ3vTFd75R+aTlJqkc0Qit2X7lzAuLo5Zs2bx5ptv0qVLF1q1asWaNVlfmyQmJoavvvqKJ598kvbt2zN69GhOnz6d3TAKDKWU2Q+ctHvbhhfrvChfjgXIHxeXaRMkvlj7RVwc5MqhtfN19eWZ6s8AEB4Xzt9n/tY5IpHbsp2gREdHM2fOHEJCQqhcuXK2tjUajbz99tv8888/dO/enVdffZXbt28zevRorly5kt1QCoRtl7dx/vZ5AIIrBFPeu7y+AYksuf/LccXpFTpHJB7Fb+cWaLcHPj4wk5rCmqTvLCvNPAVPthMUPz8/li9fzu+//87QoUOzte3mzZs5duwY48aN4+WXX6Z79+5MnToVOzs7Zs8unB8umRTKdkln2YLhqtNFDkaYFgasH1CfegH19A1IZFlwhWDKFDGt9r767Gqux1zXOSKRm7KdoDg5OeHn55ejnW3ZsgVfX19atWqllXl7e9OmTRu2b99OUlLhukx+J/EOv5/4HQAvZy+eqfaMzhGJ7Ghboa12xWvduXVciS6cVwFtldGoCLsQzQ6vDVqZnCTYlvRrZBmVkfmH5+sbkMhV+dob88yZM1SpUgU7O/PdVq9enYSEhELXzLPk+BLikuMA6F27N66OrjpHJLLDzmCnXWJWqDxZXVXkjYt7Qlk8ajNbZh5iVxHTei4OypEWSfqPoBPZk77fnqyRVbDka4ISGRlp8epLWllERITF7cLDwzl9+rT2LyQkJE/jzC/pmwXSNxcI29G/Xn8MGADTl2Nur64qct/FPaFsnHyQ2MgEDnvs5q6DaTbg+jHN2P/jJS7uCdU5QpEdFX0qmq2R9d/V//QNSOQah/zcWWJiIk5OThnK08oSEy0vcb1ixQrmzJmTl6HluxNhJ9h1dRcAdYrX0SYdEralrFdZ2ldqz7rz67gUdYlNFzdZxTw2wjKjUbFr3kntfvrmnZbR7QHYNf8k5RoWx87OkO/xiZwZUG8Amy9tBkz9+pqXaa5vQCJX5OsVFGdnZ4v9TNLKnJ0tz1rarVs3ZsyYof1777338jTO/HD/woAGg3wZ2irpLGs7Qk9FEhtpGk582yGcY+77AfBNLkq1ONPke7ERCYSeitQtRpF9PWr0wNPJE4DFxxdzN+muzhGJ3JCvCYqvr6/FZpy0sgd1vvX396dq1arav3LlyuVpnHktOTWZeUfmAeBo58iLdV7UOSLxKLpV7Sarq+aiuNsJ7F96lrjbCbn+3PFR967S/ldkI8pgapJrHt0OO+wt1hPWz83RjRdqvQDA3aS7/H78d50jErkhXxOUKlWqcPbsWYxG83b6kydP4uLiQpkyZfIzHN2sPruaW7G3AHiq2lP4u/nrHJF4FM4Ozmarqy44soCwC9EAhF2IxmiUTnvZEReVyME/zhGXB0mC6/+vLaVQZs07ze88YbGesB1mszvLAoIFQp4lKOHh4YSEhJCSkqKVtW7dmsjISLZu3aqVRUVFsWnTJpo3b26xf0pBJGt+FDzpvxy/WTmVHTOPA7Bj5nEWj9osHS+tREA1X9x9XTjreoxbTqY5M6rF1qVocoBWx93PhYBqspr4w1jbgqKNSzWmRtEaAGy/vJ3T4YV3hvKCIkcJyrJly5g7dy6rV68GYMeOHcydO5e5c+dy966p7W/69On07duXsLAwbbugoCBq1qzJpEmTmDNnDsuXL2f06NEYjUYGDCgcP9Q3Ym6w6swqAEp5lqJ9pfY6RyRyQ+3itanjVQ+AEMdzhDif0x6LjUxg4+SDkqRYATs7A01fqs72dFdPWkSb/w027VtdOshmgbUtKHr/Glkys6zty1GCsnjxYmbOnMmff/4JwNatW5k5cyYzZ84kJibmgdvZ29vz5Zdf0rZtW5YtW8a0adPw8vJi8uTJlC1bOJY2n3d4HqkqFTANUbW3s3/IFsIWGI2KRlfbaPd3eK3PUGfX/JPS3GMF/Oq6cch3BwCuqe48ftc04sPdz4XgMfWp0Dggs82FFetTpw8OdqbBqXMPzyXFmPKQLYQ1y9Ew4yVLljy0zvjx4xk/fnyGck9PT95++23efvvtnOzapimlzJp30q8jIWxb6KlI6oQ2x8n9R5LsEtldZDPPhg3ESd27/J02OqRkjZzNxCxyx+Jji4lPjQfg6dLdcTrnTIuBNanapoxcObFxxdyL0a1qN/44+Qehd0NZfXY13ap20zsskUP52km2sNtxZQdnIs4AEFQ+iEq+lXSOSOSW+KhE3IzuNIhpCUCc/V0Oeuy0WE/oy2yCxP9fGLBoRS9JTgqI9P360q91JmyPJCj5SGaOLbjSRn20TNefYbuFZh4ZHaKv47eOs/vabgDqFq9LHd+6OkckcluHyh0o6VkSgL/P/E3oXen7ZaskQcknMYkxLDluahor4lyE7tW76xyRyE1po0OqxNeiWJLpy/GU+2HCHG9odWR0iP7uXz1cJkgseBzsHOhftz8AqSpVFhC0YZKg5JPFxxffWxiwVm/cHN10jkjkprTRIQYMZldRdhS5N1pERofoKyk1SZsg0cneiRdrywSJBdXL9e/175t5cKYsIGijJEHJJ+nP3NLavUXBUqFxAMFj6hNs1wU7ZfrT2un1D65+jjI6xAr8feZvwuPCAXi62tP4ueVfZ2VrmzOkoKvsW5nW5VoDcDritCwgaKMkQckHJ8NOan8gtYvVpkGJBjpHJPJKhcYBvDq5B6392gJw2zEc75FJeZac5OW08AWNnn3ArG3OkMJgQP17nWVnHpA1smyRJCj54P4vRmn3Ltjs7Ay8XOfeJebZeTjtdl5OC1+QXLtzjbXn1gJQpkgZgivIitMF3bM1njVbQDAm8cFzdAnrJAlKHktOTWbe4Xvt3mlrtoiC7YnS7SmS4gPAitMrCIsNe8gWIi/NPTwXozKtAfZyvZdlgsRCwM3RjV61egEQmxzL7ydkAUFbIwlKHvv7zN+ExZl+nPK73Vvox9HOkWbRprP0ZGMy84/ISAK9KKXM+oCl70ApCrb0/f3SX8kWtkESlDyW/o9CFgYsXNKP5pGRBPrZGrKV87fPAxBcIZjy3uX1DUjkm0YlG1GrWC0Adl7ZyanwUzpHJLJDEpQ8dD3mOmvOrQFM7d5PVHziIVuIgiQguTSNizYF4ETYCfZc26NzRIVT+uUlZILEwsVgMMjMsjZMEpQ8NPeQtHsXdi9WudfnSC4x57/ohGh+P27qe+Dt4s3T1Z7WNyCR7/rU6YOjnSNg6ouUnJqsc0QiqyRBySP3LwzYv15//YIRuulW7mk8nDwAWHRsEbFJsTpHVLgsPr6Y+BTTwoAv1n4RV0dXnSMS+a2oe1FtwcBbsbdYfXa1zhGJrJIEJY9su7yNc5HnAFO7dwWfCjpHJPTg4ejBCzVfACAmKUZGEuQzsz5g9aUPWGGVvmlPrmTaDklQ8sgvB37Rbku7d+EmIwn0cTj0sNbvp27xujxe4nGdIxJ6aV+pPaU8SwGw+uxqbsTceMgWwhpIgpIHIuMjtYUBfVx8pN27kGtSqgk1itYAYPvl7ZwOP61zRIXD9P3TtduvNHhFx0iE3uzt7LVm9lSVytzDc/UNSGSJJCh5YP7h+SSmmmb27Fe3n7R7F3IGg8HsKpqMJMh7sUmxLDi6ADBN2CULA4r0TXwzDszQBjAI6yUJSi5TSvHz/p+1+3LmJgD61ukrIwny0eLji7mTeAeAF2q+gJeLl84RCb1V9KmoTfVw4fYFNl7YqHNE4mEkQcll2y9v52T4SQACywZSvWh1nSMS1iD9SIKbsTdlJEEeS3+SMKThEB0jEdbk1QavarfTf0YKMlteUFQSlFxm9sXYQL4YxT0ykiB/HAo9ZNY5tlHJRjpHJKxFt6rdCPAwrSz+56k/C0VnWVteUFQSlFwUmRDJ0hNLAfBz9aNHjR46RySsSftK7SldpDQgIwnyUvrOsUMaDJHVw4XG0d5Rm1k2VaVKfzArJwlKLlpyYaFZ51gXBxedIxLWxN7Onv51+wMykiCvxCbFsuDIvc6xvWv31jkiYW0GNxiMAVPSOuPADFKNqTpHJB5EEpRcolDMPTNHuz+4wWD9ghFWK/1KurMOzpIFBHPZomOLiEmKAaBXrV7SOVZkUN67PB0rdwQgJDqE9efX6xyReBBJUHLJGddjnLtzFoDW5VpTzb+azhEJa1TRpyJtK7QF4GzkWbZf3q5zRAWLjKATWZG+f+BP+3/SMRKRGUlQHpHRqAi7EM1W73ujMqRzrMiMdJbNGwdvHGTv9b0A1AuoJ51jxQN1eayLNrPs32f+5uqdqzpHJCyRBOURXNwTyuJRm1k7ZycHPHYA4Gn0ov7d5jpHJqzZM9WewdvFG4Alx5dwO/62vgEVENI5VmSVg52DdqJgVEZmHsj/EwVbHv6bXyRByaGLe0LZOPkgsZEJ/FdkIyl2KQA0i3qC7d+f4OKeUJ0jFNbK1dGVl+q8BEB8SjyzD83WOSLbF5MYw69HfwXA3dFdOseKhxr0+CDsDKafwF8O/kKKMSVf92/Lw3/ziyQoOWA0KnbNM03GZsTIZu+/tccCozoAsGv+SYxG6QApLBvWaJh2+8e9P8q0249o3uF5WufY3rV7U8S5iM4RCWtXxqsMXap0AeDqnasyeaIVkgQlB0JPRRIbabosd9x9P2FOpqslNWIfJyDZNM9FbEQCoacidYtRWLeq/lVpV7EdAOdvn2fduXU6R2S7lFL8sPcH7f6IxiN0jEbYkvT9BX/c+6OOkQhLJEHJgfh0l+T+9V6h3W57+8kH1hPiful/SNP/wIrs+ffiv5wKPwVAq3KtqFO8js4RCVvRsXJHKnhXAGDd+XWciz6rc0QiPUlQcsDV2xmAm47XOOaxHwC/pOLUjm1osZ4QlnSp0oVyXuUAWHN2Decjz+sckW0yu3rSSK6eiKyzt7NneKPh2v2Zp2foGI24nyQoORBQzRd3Xxc2e6/SytpEdcEOe+2+u58LAdV89QhP2Ah7O3uGNhwKmCb6m7Zvms4R2Z7L0ZdZcdp0FbOkZ0merva0vgEJmzOg/gDcHN0AWHj2NxIMcYRdiJY+hFZAEpQcsLMzULt3WXZ4mWYgdDQ60SK6vVmdpn2rY2cnwxytiZu3M/W7V8bNiq5sDXx8IM72pnhmHpxJXHKczhHZlp/2/aR1MH61was42jvqHJGwNT6uPjwV0B2A2NS77PTayI6Zx1k8arOMxtSZJCg5tN1pA/H2ph+TJneC8DCaRg24+7kQPKY+FRoH5Ml+rfFH1la4+bjQ4NkquPlYzxpJ/m7+vFDrBQCiEqL47ehvOkdkOxJSEphxwHRJ3tHOUZaXEDlycU8oj21tpt3/12cFRozERiawcfJBSVJ0JAlKDiil+GHPvXbvMUGjAWgxsCbPTwnKs+QErPNHVjwas86ye36w2vV5rG1iqSXHlxAeFw5Az5o9CfDIu787UTClTRlROqkCVeNMnatvOl3jhNtBrY5MGaEfSVByYEvIFo6HHQegRZkWtK7TAoCiFb2kWUdkW8OSDWlSqgkAh28eZseVHTpHZJk1TSyllOL7Pd9r96VzrMiJ9FNGpB+F+a/PvdGZMmWEfiRByYGpu6dqt2XOBZEb0o8kmLxrsn6B2IidV3ay7/o+AOoH1Kdp6aY6RyRsUfqpIOrebYpvclEAjrnv45bjDYv1RP6RBCWbzkWe489TfwJQwqME3at31zcgUSA8V/M5rYli+anlXLh9QeeIrNs3/32j3X6t6Wuy7k4Bl1d979JPBWGPPUFRpplllUGxyXulxXoi/0iCkk2Td01GYWqPHNVkFE72TjpHJAoCZwdnrZnCqIxM2TVF54is1/nI89pJQknPkjxf63l9AxJ5Lq/63qVNGZGmZXQHHI2m7/Rt3uuIs7srU0boSBKUbIiMj9QWdnN3dDebJlmIR/Vqw1dxdXAFTEOOoxKi9A3ISqU/SRjZeKScJIgcs7Mz0PSl6tp9z1Qvmt95AoBEu3i2eq+RKSN0JAlKNvy07ydtnooB9Qfg4+qjc0SiIPFz86N/vf4AxCbHMn3/dH0DskK3428z69AsANwc3XilwSs6RyRsXYXGAQSPqa9dSXki8mkMypSQbC+9hlIN5OqJXiRByaLElERt1ICdwY4xTcfoG5AokF5r+hoGTF+OU3dPJSk1SeeIrMvP+3++d5JQbwC+rvLjIR5dhcYBPD81iBYDaxKQXJq2fqaJN28mhrLo2CKdoyu8JEHJooXHFhJ61zRhzzPVnqGiT0WdIxIFURW/KnSr2g2AazHX+P347zpHZD2SUpO0kwQDBkY3Ha1zRKIgsbMzULSiFwCvNX5NK/9659dWOzdRQScJShYopfj2v2+1+280e0PHaERB93qz17Xb3/z3jXw5/r/FxxZzPeY6AE9Xe5rKvpV1jkgUVI2LNtGGrh+9dZQNFzboHFHhJAlKFqw7v46jt44C0Kx0M5qVafaQLYTIucCygTQsaVoZ+2DoQflyxDSy6YsdX2j30ydxQuQ2g8HAm83e1O5/vfNrHaMpvCRByYJPt32q3X6z+ZuZ1BTi0RkMBsY2H6vdT//5K6xWnl6pzd7cvExzWpRpoXNEoqB7utrTWlP+hgsbOHDjgM4RFT6SoDzE1pCtbL+8HYDq/tVlOXeRL7pX705Vv6qA+WewMFJK8dn2z7T741uOl4nZRJ6zt7M3a86XE4X8l+0EJSkpiWnTpvHMM8/wxBNPMGTIEPbu3Zulbfft28fo0aN58skn6dy5M6+88grr1q3LdtD56bNt974Yx7Uch51BcjqR9+zt7BnXcpx2vzB/OW68uJE91/YAULd4XTpX6axzRKKweLney9oMz3+c/INjt47pHFHhku1f20mTJrFkyRLatWvHqFGjsLOzY+zYsRw5ciTT7bZv384bb7xBcnIy/fv3Z9CgQTg7O/Ppp5+yZMmSHB9AXtp3fR/rzpsSqPLe5elVu5fOEYnCpHft3pT3Lg/A2nNr2X99v74B6ST9ScL4QLl6IvKPq6MrbzV/S7tfmE8U9JCtBOXEiRNs3LiRV155hWHDhtGtWzcmT55MQEAA06ZNy3TbP/74Az8/PyZPnkyPHj3o3r073333HaVKlWLNmjWPdBB5Jf0X49st3sbBzkHHaERh42jvaNYXJX0zR2Hx35X/2HRpEwBVfKvQo3oPnSMShc2QBkPwd/MHTCPJToef1jmiwiNbCcqWLVuwt7enW7duWpmzszNdunTh+PHj3Lx584HbxsXF4enpiZPTvWmpHRwc8PLywtnZ+hZiOn7rOMtPLQdMiwKmzfApRH56uf7LlPAoAZguMZ8IO6FzRHnLaFSEXYgGIOxCNBPTnbG+0/Id7O3s9QpNFFLuTu5aXxSFYtL2STpHVHhkK0E5e/YspUuXxt3d3ay8enXTWgbnzp174Lb16tXj4sWL/PLLL1y9epVr164xd+5cTp8+Ta9e1td08tGWj7TbbzZ/ExeH3F2kSoiscHFwKTQd9S7uCWXxqM3smGkarTPv12WsPrsKgDJFytCnTh89wxOF2PBGw/FxMS1tsuDIAlltPJ9kK0GJiIjAz88vQ3laWXh4+AO37devH23atGH+/Pn07t2bXr168euvv/Lxxx/TunXrTPcbHh7O6dOntX8hISHZCTvbDoUe4vcTphk8i7sXl0UBha6GNByCn6vpb2zh0YUFsqPexT2hbJx8kNjIBK3sL/952u2hZWXlcKEfT2dPbXmTVJXKpG1yFSU/ZCtBSUxMxNHRMUN5WrNNYmLiA7d1dHSkTJkyBAUFMWHCBN577z2qVq3KxIkTOX78eKb7XbFiBYMHD9b+TZw4MTthZ9v7m97Xbo8PHI+7k3smtYXIWx5OHrzT8h3AdIn5g00f6BxR7jIaFbvmnTQrO+16lJPuhwAomhRA6c11MRplRl2hn1FNRlHEuQgAsw/N5mzEWZ0jKviylaA4OzuTnJycoTwpKUl7/EEmT57Mzp07mTBhAsHBwbRv357vvvsOPz8/pk6dmul+u3XrxowZM7R/7733XnbCzpZdV3fx95m/AShdpLSsliqswvBGw7W+KMtPLWfvtawN7bcFoaciza6cKJTZ1ZOuES+SGJFC6KlIPcITAgBvF2+tuTVVpfLB5oJ1omCNspWg+Pn5ERERkaE8rczf39/idsnJyaxatYpmzZphZ3dvlw4ODjRp0oTTp09bTHzS+Pv7U7VqVe1fuXLlshN2trz3773k5/1W70vfE2EVXB1deb/VvSt7723KuyQ9v8VHmV95PeF2kLNupquqAYllaHonyGI9IfLba01fo6hbUQAWHVvEodBD+gaUR5RSXIq6pHcY2UtQKleuzNWrV4mNjTUrP3HihPa4JdHR0aSmppKamprhsdTUVIxGI0ajMTuh5IlNFzex8eJGACr6VOTlei/rHJEQ9wx8fKA2L8r68+vZGrJV34Byiav3vSuvRoz8me7qSbeIF7HDPkM9IfTg6ezJu4HvavfHbxyvYzR554+Tf1Dl+yqMWjOK8LgH9y3Na9lKUIKCgkhNTWXFihVaWVJSEqtXr6ZGjRoUL14cgJs3b5p1ZPXx8cHDw4Nt27aZXSmJi4tjx44dlC1bVvehxkops74nH7b+EEf7jP1thNCLk70TH7b+ULs/buO4ArHScUA1X9x9TVcq93lu45LrGQBKJ1SgQUxLANz9XAio5qtbjEKkebXhq5T1KgvAmnNrCsyJQpqk1CTe/udtUowpfL/ne/678p9usWQrQalRowZt2rRh+vTpTJs2jRUrVjBmzBhCQ0N59dVXtXqffvopffv21e7b29vzwgsvcOXKFV599VWWLFnCokWLGDJkCGFhYbz00ku5d0Q5lKpS6VKlC94u3lT3r07v2r31DkmIDPrU6UN1f9Ow/p1XdrIi5C+dI3p0dnYGmr5UnWRDEn8Una2V9wh7Gbv//4pq2rc6dnYyg6zQn7ODMx8F3ZuG4p1/3ikQJwpppu2dxvnb5wFoU74NXR/rqlss2Z7qfvz48fTs2ZN169YxdepUUlJS+OKLL6hXr16m27300ku8//77ODg4MGfOHGbOnIm7uzsff/wx7du3z2n8ucbBzoFxgeO4OPoiS3oukQmhhFWyt7Pnq3Zfafcn7H6PZEMSYReibXqUS4XGAYQ8uY8Ix1sA1Ih9nFpxDXH3cyF4TH0qNA7Ik/26eTtTv3tl3KT5SGRD3zp9tROF/67+x+Lji3WOKHdEJUTx8daPtftftftK16Ulsj13u7OzM8OGDWPYsGEPrPOgUTnt2rWjXbt22d1lvvJ28cbbxVvvMIR4oM5VOtPCrxU7IrZyLfEq//j8heNMJw4tP0/Tl6rn2Y95XgqLDWPaJdP3hh129Lw1kBYDa1K1TZk8vXLi5uNCg2er5Nnzi4LJ3s6er9t/TZffugDw1oa36Fa1G26ObjpH9mg+3vIxkfGm0XJ96vShQckGusYjS/MKYWMu7b3JE/uex6BMf76rfRdxx/42sZEJbJx8kIt7QnWOMPsmbJ7AncQ7APSq/CKlkypQtKKXNOsIq9W5Smc6Ve4EwNU7V/lyx5c6R/Rojt86ztTdppMEFwcXPm2r/6zVkqAIkQfyqukgbVKz0kkVCIzuAECCfTx/FJ2j1dk1/6RNNffsu76Pn/b9BIC7ozvv1Hv3IVsIYR2+7fCttojsFzu+4HL0ZZ0jyhmlFCPXjCRVmUbajm85XusIrCdJUITIA2lNB24+uTuPTvpJzZ4K74trqmmW4x1eGzjjehSA2IgEm5nULNWYytBVQ1GYEqoPgz4kwM32mqhE4VTNvxojGo0AICElgdfXva5zRDnz+4nftVXDK/pU5K0Wb+kckYkkKELYkPSTlRVJ9eaZ8H7a/QXFfyCF5Az1rNmMAzPYd30fADWL1mR0k9E6RyRE9kwImqBN3rbs5DJWnF7xkC2sS0xiDG+sv7cg6eQOk61mglJJUISwIfdPVtY6qhPl4x8D4IbzFdb7/mGxnjW6efcm4zaO0+7/2OVHmXtI2BxvF2++6/Cddn/YqmFafypbMG7jOK7euQpAlypdeLLqkzpHdI8kKELYkPSTmgHYYU/fmyO1DrN/+y0kpmiE1U9qppRi6KqhRCVEAfBS3ZdoVa6VvkEJkUO9a/emQyVTn7BrMdfMlkyxZltDtvK/vf8DwM3RjamdMl8XL79JgiKEDUmb1Cy9somVCL7dDYBkuyQWVJyCQv+lIzKz8NhClp9aDoC/m7/Z3C5C2BqDwcC0LtO0YcY/7PmBHZd36BxV5uKS4xi4YqB2f1LwJCr6VNQxoowkQRHCxlRoHEDwmPpmV1KeCu9L8dSSAByI2sdXO633B/96zHVGrB6h3Z/WZRrF3IvpGJEQj66CTwU+DjJNcqZQ9F3e16qbet7/933ORZ4DoEWZFoxoPOIhW+Q/SVCEsEEVGgfw/NQgWgysCUDwgIb8PnAxdgbTn/QHmz7gcOhhPUO0SCnFKytf4XbCbQBeqPUCz9Z4VueohMgdY5qOoUWZFgBcjLrIyDUjdY7Isg3nN/Dtrm8BcLZ3Zma3mdp3hzWxvoiEEFliZ2egaEUvAIpW9CKwXEvGNh8LQLIxmRf/eJHYpNjMniLfTd41mVVnVwEQ4BHAD51+0DkiIXKPvZ0985+Zj6eTJwDzDs9j8THrmgb/Vuwt+i6/t1beZ8GfUdW/qo4RPZgkKEIUIB8GfUid4nUAOB523DTHiJUsZLb76m7G/jNWuz+z20z83Px0jEiI3FfBpwL/6/w/7f6Qv4doTSn5zWhUhF2IBiDsQjQpqan0+7MfN2NvAtCxckfGNB2jS2xZIQmKEAWIs4Mzi3oswt3RNIHb/CPzmb5/us5RQXhcOM8vfZ4UYwoAb7d4m85VOusclRB5o0+dPrxQ6wUAohOjeWbxM9xNupuvMVzcE8riUZvZMfM4ADtmHqfnuP6sPbcWgOLuxZnz1ByrbNpJY72RCSFypHrR6szsNlO7P2rtKLaFbNMtnsSURLov7k5IdAhg6pD3SZtPdItHiLxmMBj4uevPVPOvBsCxW8cYuGJgvl3NvLgnlI2TD2qzTgPs89jGn+4LANOCnAu6L6C4R/F8iSenJEERogB6vtbzjGo8CoCk1CSeXvw0ZyLO5HscSimG/D2EbZdNCVKARwCLnl0kE7KJAq+IcxH+fP5PrT/KkuNL+GDTB0DGppfcXDsrbb2u9EKczzK7xLfa/V53h9C2fHCu7TOvSIIiRAH1dfuvaVexHQCR8ZF0/rUzt2Jv5WsMEzZPYO7huYBphdQVL6ygdJHS+RqDEHqp6l+VBd0XYMC0KvfEbRP56PfPMjS9LB61OddWIU+/XhfADacrTC79Pkl2puUvmka3pfW1rjaxXpckKEIUUI72jvze83dqF6sNwPnb5wmeF5xvScqkbZP4ZOu9ppx5T8+jUalG+bJvIaxFt6rdmNJxinb/o+PvsTF5jVmd2MgENk4+mCtJSvp1uCIcbjG59HvcdTDNx1I5rqZp5mkMNrFelyQoQhRgXi5erOq9SrtqcezWMdrObZunSYpSii+2f8H4f8drZVM6TqFnzZ55tk8hrNnIJiN5p8U7ACiDYlaJr9nmtTZDvV3zTz5yc0/aOlyhjlf5suxbRDqGAVAmoSIjr03ASTmb1bNmkqAIUcCV8SrD5n6btSTleNhxms1sxqnwU7m+r1RjKqPWjOKdje9oZV888QWjmozK9X0JYUtGlHiDoNtdAFOSMi9gKmt9f0dxLyGJjUh45KaXgGq+3Cp22Sw5KZZUkjFXP8HN6AGAu5+L1a/XBZKgCFEoVPKtZJakXLh9gaa/NGX9+fW5to/b8bd5ZvEz/LD33uRrn7X9jLEtxmaylRCFQ0J0Er1vDaNd5DNa2bKis/mlxJckGu71GXnUppeFx37jE78xxDiYOuGWTqjI25e/okiqj1anad/q2NkZHmk/+UESFCEKiUq+ldg5YCd1i9cFTPMzdFjQgTfXv0lCSsJDts7clktbqPdzPVaeWQmAg50Dc56aw7jAcY8ctxAFgau3MwYM9AwbxFPhfbTyPUW2MKnca4Q4n9Xq5URUQhQD/xpIn+V9SDCa/p6rJtfmrSufa8mJu58LwWPqU6FxwCMeTf6QBEWIQqSMVxm2D9hOt6rdtLJv/vuGWj/W4s9Tf2Z7noard67S/8/+BM0N4nL0ZQB8XX1Z3Xs1/er1y83QhbBpAdV8cfd1wYCBrhG9GXrtXZyNrgBccw7hs3KvsazsL9iXSc3W86YaU5lzaA41f6zJrEOztPJB9Qdx4IPdtHu5CQAtBtbk+SlBNpOcgCQoQhQ6Hk4eLH9+Od+0/wYneyfANMLnmcXPUO/nevxy4Bci4iIeuL1RGdkWso2Bfw2k4pSK2jBigJZlW3JoyCHaVWqX58chhC2xszPQ9KXq2v3H77ZgfMh3lE6oCIDRYGSt6x9U/qESI1aP4OCNg5meMNyKvcXkXZOp8WMNXv7rZa7HXAfA08mTmd1mMqPbDNycXM3W67KFZp30HPQOQAiR/+wMdrze7HXaV2rPyDUj2XxpMwBHbh5h8MrBvPr3qzQo2YA6xeoQ4BGAk70T586EcKjUUcYuPMftFPOOfN4u3kwKnsTgxwdjb2evwxEJYf0qNA4geEx9ds07SWxkAiWTyvJuyGT+Lb2clZ4LSTAmcDfpLv/b+z/+t/d/BHgE0LxMcyp6V8TT2ZPk1GQu37nM4dDDHL6ZcbXyro915cfOP1LGq4wOR5f7JEERohCrVawW/770LytOr+DzHZ+z6+ouAFJVKnuu7WHPtT3mG3gAKffuFnEuwohGI3it2Wv4u/nnX+BC2KgKjQMo17A4pzddYcfM47QeWJdX2nQlNHYin279lNmHZhOfEg9A6N1Q/jj5x0Ofs3W51nwU9BGty7fO6/DzlSQoQhRyBoOBp6o9xVPVnmLPtT38fvx3Vp5ZyemI0xbru6V6UCW+Jg3vtGJMvyHUal4pnyMWwrbZ2RkyNL2U9CzJ/7r8j8+CP2PhsYWsPLOSLZe2EJscm2F7Awbql6hP+4rteanuS1QvWj1DnYJAEhQhhKZxqcY0LtWYr9p/RXT8Hb4f9yuRdyNJNiTjZvTAO8UX/+QAberuowsvU6NpRZtr2xbCWnm5ePFqw1d5teGrpBhTuBJ9hYtRF0lMScRgMFDKsxQVfCrg4eShd6h5ThIUIYRFsReTCbhVngDKP7jO/08sVbKGX/4FJkQh4WDnQAWfClTwqaB3KLqQUTxCCIuyOmGULazpIYSwPZKgCCEsyuqEUbawpocQwvZIgiKEsChtYqnM2MqaHkII2yMJihDCovsnlrLEVtb0EELYHklQhBAPlDax1P1XUmxtTQ8hhO2RUTy5wM3bmfrdK+MmbfGiALp/YqkWA2tStU0ZuXIihMhTkqDkAjcfFxo8W0XvMITIM5YmlhJCiLwkTTxCCCGEsDqSoAghhBDC6kiCIoQQQiD9Ca2N9EERQgghkP6E1kauoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6mR7JtmkpCRmzpzJ+vXriYmJoVKlSgwaNIhGjRplafuNGzeydOlSzp8/j4ODA+XKlWPQoEE0aNAg28ELIYQQomDKdoIyadIkNm/eTM+ePSldujRr1qxh7NixTJkyhTp16mS67axZs5g7dy5BQUF07NiRlJQULl68SHh4eI4PQAghhBAFT7YSlBMnTrBx40aGDh1Kr169AOjQoQP9+/dn2rRpTJs27YHbHj9+nLlz5zJ8+HCee+65R4taCCGEEAVatvqgbNmyBXt7e7p166aVOTs706VLF44fP87NmzcfuO3vv/+Or68vzz77LEop4uLich61EEIIIQq0bCUoZ8+epXTp0ri7u5uVV69eHYBz5849cNv9+/dTrVo1li5dSrdu3ejYsSNPP/00y5Yty0HYQgghhCjIstXEExERgZ+fX4bytLIH9SWJiYkhOjqaY8eOceDAAfr370/x4sVZs2YNU6ZMwcHBgaeeeuqB+w0PDyciIkK7HxISkp2whRBCCGFjspWgJCYm4ujomKHcyclJe9yStOac6OhoJkyYQHBwMABBQUH079+fefPmZZqgrFixgjlz5mQnVCGEEELYsGwlKM7OziQnJ2coT0pK0h5/0HYADg4OBAUFaeV2dna0bduWWbNmcfPmTYoXL25x+27dutGiRQvtfkhICBMnTsxO6EIIIYSwIdlKUPz8/AgLC8tQntb84u/vb3G7IkWK4OTkhIeHB/b29maP+fj4AKZmoAclKP7+/g98biFEweLm7Uz97pVx87Z8wiOEKByy1Um2cuXKXL16ldjYWLPyEydOaI9b3ImdHVWqVCE6OjrDFZi0five3t7ZCUUIUUC5+bjQ4NkquPm46B2KEEJH2UpQgoKCSE1NZcWKFVpZUlISq1evpkaNGtoVkJs3b2boyNqmTRtSU1NZu3atVpaYmMiGDRsoX768XCERQgghhCZbTTw1atSgTZs2TJ8+naioKEqVKsXatWsJDQ3l7bff1up9+umnHDp0iK1bt2plTz31FKtWreK7777jypUrFC9enHXr1nHz5k0mTZqUe0ckhBBCCJuX7anux48fryUXd+/epWLFinzxxRfUq1cv0+2cnZ2ZPHky06ZNY/Xq1SQkJFC5cmW++OILGjdunNP4hRBCCFEAZTtBcXZ2ZtiwYQwbNuyBdaZOnWqx3MfHh/Hjx2d3l0IIIYQoZLLVB0UIYV1kxIsQoqDK9hUUIYT1SBvxIoQQBY1cQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhMhnskzFw8lU90IIIUQ+y69lKmw5EZIERQghhCigbHm9LmniEUIIIYTVkQRFCCGEEFZHEhQhhBBCWB1JUIQQQghhdSRBEUIIIYTVkQRFCCGEEFZHEhQhRJbY8nwKQgjbI/OgCCGyxJbnUxBC2B65giKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjoPeAeREYmIiACEhITpHIoQQQojsKleuHC4uLpnWsckEJTQ0FICJEyfqHIkQQgghsmvGjBlUrVo10zoGpZTKp3hyTVRUFHv27KFEiRI4OTnpHU6eCwkJYeLEibz33nuUK1dO73DylRx74Tv2wnrcUHiPvbAeNxTeYy+wV1C8vb1p37693mHku3Llyj004yyo5NgL37EX1uOGwnvshfW4oXAf+4NIJ1khhBBCWB1JUIQQQghhdSRBsQF+fn70798fPz8/vUPJd3Lshe/YC+txQ+E99sJ63FC4j/1hbLKTrBBCCCEKNrmCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6tjkRG0FUXh4OEuXLuXkyZOcOnWK+Ph4pkyZQv369TPUHTVqFIcOHcpQ3rhxY77++muzsqSkJGbOnMn69euJiYmhUqVKDBo0iEaNGuXVoWRbdo4d4OjRo/z000+cOXMGd3d32rRpw+DBg3FzczOrZwvHbsmaNWuYNGmSxceWL1+eobf/9u3bmT17NiEhIXh7e9O5c2deeuklHBxs68/bVt+v7Dh48CCjR4+2+Ni0adOoWbOmdj+rn3NrFBcXx6JFizhx4gQnT54kJiaGcePG0alTpwx1L126xA8//MDRo0dxcHCgWbNmjBgxAm9vb7N6RqORRYsW8eeffxIZGUnp0qXp06cPTzzxRD4d1cNl9bg/++wz1q5dm2H7smXLsmDBArMyWzjuvGJb32AF2JUrV/jtt98oXbo0FStW5Pjx45nWL1q0KEOGDDErszRMbdKkSWzevJmePXtSunRp1qxZw9ixY5kyZQp16tTJ1WPIqewc+9mzZ3nttdcoV64cI0aM4NatWyxevJirV6/y1VdfmdW1hWPPzMCBAylRooRZmYeHh9n9Xbt28e6771KvXj1Gjx7NhQsXmDdvHrdv3+aNN97Iz3Afma2/X9nRo0cPqlevblZWqlQp7XZ2PufWKDo6mjlz5lC8eHEqV67MwYMHLda7desWI0eOxMPDg8GDBxMfH8+iRYu4cOECP//8M46OjlrdGTNm8Ouvv/Lkk09SrVo1tm/fzscff4zBYCA4ODi/Di1TWT1uACcnJ8aOHWtW5u7unqGeLRx3nlHCKsTGxqro6GillFKbNm1SgYGB6sCBAxbrjhw5Ur300ksPfc7jx4+rwMBA9dtvv2llCQkJ6oUXXlCvvvpq7gSeC7Jz7G+++aZ6+umn1d27d7WylStXqsDAQLV7926tzFaO3ZLVq1erwMBAdfLkyYfW7du3r3r55ZdVcnKyVjZ9+nTVqlUrdenSpbwMM1fZ8vuVHQcOHFCBgYFq06ZNmdbL6ufcWiUmJqrw8HCllFInT55UgYGBavXq1RnqffPNN+qJJ55QoaGhWtnevXtVYGCg+uuvv7SyW7duqTZt2qhvv/1WKzMajWr48OGqe/fuKiUlJQ+PJuuyetyffvqpat++/UOfz1aOO69IHxQr4ebmRpEiRbK1TUpKCnFxcQ98fMuWLdjb29OtWzetzNnZmS5dunD8+HFu3ryZ43hzU1aPPTY2ln379tG+fXuzM40OHTrg6urKpk2btDJbOfaHiYuLIzU11eJjly5d4tKlSzz55JNmzTnPPPMMSik2b96cT1E+uoLyfmVHXFwcKSkpGcqz8zm3Vk5OTlmaeGzLli00b96c4sWLa2UNGzakTJkyZse5fft2UlJSeOaZZ7Qyg8HA008/TVhY2EOvOOeXrB53mtTUVGJjYx/4uK0cd16RJh4bdeXKFTp06EBycjK+vr507dqV/v37m/1QnT17ltKlS2e4bJh2afncuXNmXwzW7sKFC6SmpmZYUMvR0ZEqVapw9uxZrawgHPvo0aOJj4/H0dGRRo0aMXz4cMqUKaM9fubMGYAMr4e/vz9FixY1ez2sXUF4v7Jj0qRJxMfHY29vT506dRg6dCjVqlUDsvc5t2VhYWHcvn3b4gJ51atXZ9euXdr9s2fP4urqmmG137TPx9mzZ22uGTAhIYFOnTqRkJCAp6cnwcHBvPrqq2Z9jAricWeHJCg2qGTJktSvX5+KFSuSkJDA5s2bmTdvHleuXOGjjz7S6kVERFjM5tPKwsPD8y3m3BAREQFY7mvj5+fH4cOHzera6rE7OzvTqVMn6tevj7u7O6dPn2bJkiUMGzaMX375Rfuhftjrkfa4LbDl9ys7HBwcaN26NU2bNsXLy4tLly6xePFiRowYwY8//shjjz2Wrc+5LXvYcd65c4ekpCScnJyIiIjAx8cHg8GQoR7Y3ufDz8+PXr168dhjj6GUYvfu3fz555+cP3+eKVOmaCeaBe24s0sSlDxgNBpJTk7OUl0nJ6cMH76Heeedd8zud+jQga+++oqVK1fy3HPPaSMBEhMTzTqZpd9n2uO5LS+PPS3eBx1TUlKSWd38PnZLcvJ6tG3blrZt22rlgYGBNG7cmJEjRzJ//nzefPNNAO14047p/ufKrPnP2ljL+5XXateuTe3atbX7LVu2JCgoiJdffpnp06fz9ddfZ+tzbssedpxpdZycnArc5+P+AQ7BwcGUKVOGGTNmsGXLFq3za0E77uySBCUPHD58+IFDCe83f/78DJfvcuL5559n5cqV7Nu3T0tQnJ2dLf44pn3BOTs7P/J+75eXx54W74OOKf0PtR7HbkluvR516tShRo0a7N+/XytLO15LP1hJSUn5doy5wVreLz2ULl2ali1bsnXrVlJTU7P1ObdlDzvO9HUKw+fjueeeY+bMmezbt09LUArDcWdGEpQ8ULZsWcaNG5elurm1gmWxYsUAiImJMXvusLCwDHXTLq36+/vnyr7Ty8tjT6tvqekiIiLC7Hj0OHZLcvP1KFasGJcvX85QPyIiIkP/jIiIiAzDWK2ZtbxfeilWrBjJyckkJCRk63Nuyx52nEWKFNGSMT8/Pw4ePIhSyuyqa0H6fDg7O1OkSBHu3LmjlRWG486MJCh5wM/Pz+KERHnp+vXrAGaTG6WNw4+NjTXrfHjixAnt8dyWl8deoUIF7O3tOX36tFkTSHJyMmfPnqVNmzZamR7Hbkluvh7Xr183e3+rVKkCwOnTp6lRo4ZWHh4eTlhYmNmIGGtnLe+XXq5fv46TkxOurq7Z+pzbsqJFi+Lt7c3p06czPHby5Emz97xy5cr8/fffhISEUL58ea28IH0+4uLiiI6OzvAdXtCPOzMyzNjGxMbGZrikr5Ri3rx5AGazbgYFBZGamsqKFSu0sqSkJFavXk2NGjVsblSEh4cHDRs2ZP369Wb9K9atW0d8fLzZF7ctH3tUVFSGsv/++4/Tp0/TuHFjraxChQqULVuWlStXmg1F/vPPPzEYDLRu3To/ws0Vtvx+ZYel9/bcuXPs2LGDRo0aYWdnl63Pua1r3bo1O3fuNBtGvn//fq5cuWJ2nC1btsTBwYHly5drZUop/vrrL4oWLUqtWrXyNe5HkZiYaLF/2Ny5c1FK0aRJE62sIB13TsgVFCsyd+5cwDS/BZi+kI4cOQJAv379ANPQ0o8++ognnniCUqVKkZiYyLZt2zh69ChPPvmk2ZC9GjVq0KZNG6ZPn05UVBSlSpVi7dq1hIaG8vbbb+fvwT1EVo4dYNCgQQwfPpyRI0fSrVs3bYbNRo0amf1h29Kx32/o0KE89thjVK1aFXd3d86cOcPq1aspVqwYffv2Nas7bNgwxo0bxxtvvEFwcDAXLlxg+fLldO3a1eyMy9rZ8vuVHRMmTMDZ2ZlatWrh4+PDpUuXWLlyJS4uLmYdJ7P6Obdmy5Yt4+7du1pzxI4dO7h16xZgmknXw8ODPn36sHnzZsaMGcOzzz5LfHw8CxcupGLFimZXHosVK0bPnj1ZuHAhKSkpVK9enW3btnHkyBHef/997O3tdTlGSx523DExMQwcOJAnnniCsmXLArBnzx527dpFkyZNaNmypfZctnTcecGglFJ6ByFMWrVq9cDHtm7dCpguBf/888+cPHmSyMhI7OzsKFeuHF27dqVbt24ZRsUkJiZq65vcvXuXihUrMmjQILMzcWuQlWNPc+TIEW2NEjc3N9q0acOQIUMyrFFiK8d+vxkzZrBr1y5u3Lih9Ulo1qwZ/fv3x9fXN0P9bdu2MWfOHEJCQvDy8qJTp04Z5sSxBbb6fmXH0qVL2bBhA9euXSM2NhZvb28aNGhA//79KV26tFndrH7OrdVzzz1HaGioxccWL16sLeNw8eLFDGvxDB8+PMNn3Wg08ttvv7FixQoiIiIoXbo0L774Iu3bt8/zY8mOhx23h4cHU6ZM4fjx40RERGA0GilVqhTt2rXjhRdeyPB3ayvHnRckQRFCCCGE1ZE+KEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKCJTa9asoVWrVqxZs0bvULLk4MGDtGrVilmzZuXZPlq1asWoUaPy7PkLi+eee47nnntO7zCs3qxZs2jVqhUHDx7M0/0sWbKEtm3bcuPGjSzVz4+/NVv2ySef0LNnTxITE/UOxWZJglLAfP7557Rq1YquXbtmWFSwoLC1H7bo6Gh++uknXnrpJdq1a0e7du3o2bMnY8aMYfbs2URGRuZLHA9LNkeNGpXpkgOFSXx8PB07dqRVq1Z8++23eoeT52JiYpg3bx6dO3fWpqAXj6Z///6Eh4fz+++/6x2KzbKtxTpEpuLi4ti0aRMGg4E7d+6wbds2goODH+k5AwMDqVGjBn5+frkUZeFy69Ythg0bxq1bt6hSpQqdOnXC09OTiIgIjh07xuzZs6ldu7bFNXYKuu+++07vEB5o06ZNxMXFYTAY+Oeffxg+fDjOzs56h5VnlixZwp07d+jVq5feoRQYZcqUoUWLFvz222/06NEDV1dXvUOyOZKgFCD//vsv8fHxPPfccyxdupRVq1Y9coLi4eGBh4dHLkVY+MyaNYtbt24xcOBAs1WZ05w/f77Qvr6lSpXSO4QHWrVqFfb29nTv3p3ff/+drVu30q5dO73DyhMpKSn8/fff1K5d26rfE1vUvn17tm7dysaNG+natave4dgcSVAKkLQv1d69e3P+/HkOHDhAaGgoAQEBZvVmzZrFnDlzHvg8AQEBLFmyBDA1C0yaNIlx48aZLX/eqlUr6tWrx/vvv8+0adPYu3cvSUlJ1K1blzFjxlCyZEkuXbrE9OnTOXz4MCkpKTRu3JjXXnvN7GrBwYMHGT16NP3792fAgAFmcdy4cYPnn3+ejh07Mn78eO1++hjSWNr+1KlTTJ8+nePHj2NnZ8fjjz/OiBEjMlzC3rp1K5s2beLUqVOEh4fj4OBApUqVePbZZwkKCsr8RX+I48ePA9C9e3eLj1eqVMli+fXr1/n111/Zu3cvERERuLu7U758eTp16qS9D8nJyaxYsYKdO3dy6dIloqKicHd3p3bt2vTr14/HHntMe77PPvuMtWvXAjBp0iQmTZpkdvzpX8v0t9Ne+zTnz59n/vz5HDp0iDt37uDn50eLFi14+eWX8fLy0uqlf+969+7NjBkzOHz4MHfu3NFWsk1rpkv7rMG9z+aUKVMIDw9n4cKFXL58GQ8PD9q0acOrr76a4UpGSkoKixYt4u+//yY8PJyiRYvSpUsX2rZtywsvvJDhGB7m8uXLHD16lObNm5sl+5YSlPSf3+bNm2fp8wawZcsWFixYwMWLF3F3d6dFixYMHTqUgQMHZnhNMpPV9yMze/bsISIigt69e1t8PDExkdmzZ7Nhwwaio6MpVaoUzz77bIbVl9O7fv068+fPZ+/evdy+fRtPT08aN27MgAEDMnwfQfZej7TP8qJFi9i6dSurVq3i+vXrBAcHa+/z7du3WbBgATt37uTWrVu4ublRt25dBgwYQMWKFTPsPzv1r1y5woIFCzh48CARERG4uLhQrFgx6tevz8iRI81WlG/WrBkuLi6sXbtWEpQckASlgLh06RLHjx+nadOm+Pr60qFDB/bv38/q1asz/HDXr1/f4nOEhISwadOmLF/KjomJYfjw4fj5+dGhQweuXr3Kzp07ef311/nss88YMWIEVatWpXPnzpw5c4YtW7Zw584dpkyZkqNj9PDwoH///ixduhSAZ5999oHHdOrUKRYuXEj9+vXp1q0bZ8+eZdu2bVy4cIE5c+aYHeP06dNxcHCgdu3a+Pn5ERUVxY4dO/jggw8YPXo0PXr0yFG8gPYjceXKFWrUqJGlbY4cOcLbb79NXFwcjRs3Jjg4mJiYGM6ePcvSpUu1BOXOnTt8//331KlTh6ZNm+Lp6cmNGzfYsWMHu3fv5vvvv6d69eqAqanu7t27bN++nZYtW1K5cmWzffbv35+1a9cSGhpK//79tfIqVapot7dv386HH36IwWCgZcuWFCtWjEuXLvHHH3+wZ88efv75Zzw9Pc2e99q1awwdOpSKFSvSsWNH7ty5g6Oj40Nfg7TnbNGiBY8//ji7d+9m2bJlREdH88EHH5jV/eKLL1i3bh0lS5bk6aefJjk5mSVLlnDs2LEsvd73W7VqFQAdOnSgePHi1KtXj4MHD3L9+nVKlixpcZvsfN5WrVrFF198gbu7Ox06dMDDw4Ndu3bx+uuvk5KSgoND1r6Wc/J+WLJ//34AatasmeExo9HIuHHj2LdvHxUrVuSJJ57gzp07/PDDDw/8Hjlx4gRvvvkm8fHxNG/enNKlSxMaGsqGDRvYvXs306ZNM3sdc/p6TJ48mRMnTtCsWTOaN2+Oj48PYPrMjRo1irCwMBo1akTLli2Jiopiy5Yt7N27l++++87sbzE79cPDwxkyZAgJCQk0a9aMtm3bkpCQwNWrV/nzzz8ZNmyYWbyOjo489thjHD9+nPj4eGnmyS4lCoTvv/9eBQYGqn/++UcppVRsbKxq3769evbZZ1VqaupDt4+MjFQ9e/ZUwcHB6siRI1r56tWrVWBgoFq9erVZ/cDAQBUYGKi+//57s/JvvvlGBQYGqk6dOqklS5Zo5UajUb311lsqMDBQnTp1Sis/cOCACgwMVDNnzswQ0/Xr11VgYKD69NNPzcp79uypevbsafE40p4v/WuRZuLEiRbLr127luF5YmNjVb9+/VSnTp1UfHx8hmMfOXKkxf3fb+nSpSowMFB169ZNzZw5Ux04cEDdvXv3gfUTExNV9+7dVevWrdWuXbsyPH7z5k2zurdu3cpQ58KFC6p9+/bqtddeMyt/0HuZZuTIkSowMNDiY1FRUapjx46qe/fu6saNG2aP/fPPPyowMFB99913Wlnae/eg91Ypy+/jzJkztc9PSEiIVp6QkKB69+6tWrdurcLCwrTyffv2qcDAQDVgwACz9yksLEw99dRTFj8/mUlOTlZPPfWU6tSpk0pISFBKKbVq1SoVGBioZsyYkaF+dj9vd+7cUe3bt1ft27dXly9fNtvv6NGjVWBg4ANfkwMHDmhl2X0/MjN48GDVunVrlZiYmOGxtM/Mm2++qVJSUrTyc+fOqbZt22Z4f5OTk1XPnj1Vhw4d1OnTp82e6/DhwyooKEi9/fbbj/R6fPrppyowMFB1795dhYaGZoh56NChKigoSO3evdus/PLly6pDhw6qX79+Oa6f9vec/rstTXR0dIYype59N+/fv9/i4+LBZBRPAZCSksL69etxd3enZcuWALi5uREYGMjNmzfZt29fptsnJiYyfvx4QkNDeeedd6hdu3aW9uvq6sqgQYPMytL6vHh5eZld4TAYDNpj58+fz/Kx5VTdunUz9L/p3LkzACdPnjQrt3RW7ObmRqdOnbh79y6nTp3KcRzdu3enV69e3L17lzlz5jB69Gg6d+7MSy+9xE8//UR4eLhZ/e3btxMWFka7du1o0qRJhucrVqyYdtvJyYmiRYtmqFOhQgXq16+vNa3lhnXr1hEbG8srr7yS4RJ9cHAwjz32GBs3bsywna+vL3379s32/p599lnKli2r3Xd2diY4OBij0cjp06e18vXr1wPQr18/XFxctHJ/f3+zz19W/ffff0RGRtKmTRvtqkdQUBAuLi6sWbMGo9Focbusft62b99OfHw8nTt3pkyZMlq5g4NDhr+lzOT0/bAkLCwMDw8PnJycMjyW1iw4aNAg7O3ttfJKlSrRvn37DPV37txJaGgovXr1MmtiBKhTpw4tWrRg165dxMbGAo/2evTq1YvixYublZ05c4Zjx47RoUMHGjdubPZYmTJl6Nq1KxcuXODChQs5qp/G0lXmIkWKWIwz7cpOWFhYpscjMpImngJg+/btREVF0aVLF7M/nA4dOrB+/XpWrVqV4Y8vjVKKzz77jOPHj/Pyyy/zxBNPZHm/pUuXNvtRALTRPhUrVjRri03/2P0/ynmhatWqGcrSfszv3r1rVn779m1+/fVXdu3axc2bNzPMW/Ao8RoMBoYOHUqvXr3YtWsXJ06c4NSpU5w5c4ZLly6xYsUKvv76a+0SctqPWaNGjbL0/GfPnmXhwoUcOXKEyMjIDAlJVFQU/v7+OY4/TVpfmhMnTnDt2rUMjyclJREdHU1UVBTe3t5aeeXKlbPUpHO/+3/c4F5ylv79O3fuHGD68btfrVq1sr3fv//+GzD97aRxc3OjZcuW/PPPP+zZs4emTZtm2C6rn7e05NxSvDVq1DBLAjKT0/fDkjt37lhMdNPidXV1tXh8derU0ZrD7o/r8uXLFudHiYyMxGg0cuXKFapVq/ZIr0da82V6J06cAEx/05b2f/nyZe3/ihUrZrt+Wj+j7777jv3799OkSRPq1av3wKY/uJe4REdHP7COsEwSlAIgfZt5eg0aNKBo0aLs2LGDO3fuWMzwf/nlFzZt2sQTTzzByy+/nK39uru7ZyhL+0LJ7LHcOqvPjJub2wP3n/4s+M6dO7zyyivcvHmT2rVr07BhQzw8PLCzs+PcuXNs376d5OTkR47H29ubjh070rFjRwAiIiKYPHkyW7Zs4auvvmL27NkA2pnlg34w0jt69CivvfYaAA0bNqR06dLacW/fvp1z587lSuxg6m8EsHz58kzrJSQkmN1PO3vMrsw+P+nfv7i4OOzs7Cx2CM3u0O3w8HD27NlDyZIlM/xgduzYkX/++YfVq1dbTFCy+nlLe38tvS4POg5Lcvp+WOLs7PzAOZNiY2Mf+Fm09PqmxbVhw4YsxfUor4elbe7cuQOYroT9999/D9w2Pj4+R/VLlCjBtGnTmD17Nrt27WLTpk0AlC1bloEDB9KmTZsM26ad8BTkYep5RRIUG3fz5k327t0LkOnspuvXr89wyXvNmjXMnz+f2rVr88477+RpnA+SdpUlNTU1w2NpX155adWqVdy8edPiMOAFCxawffv2PNmvn58f7733Hv/99x/nz58nOjoaLy8vbchxVi4Hz58/n6SkJH744YcMP6hpZ4a5Je0HeM6cORZHQTzI/VfRcpubmxtGo5Ho6OgMVwqyOwHemjVrSE1N5fr16w+csG7Hjh1ZuirxIGmJ1+3btzM8lnYcWUlOc/p+WOLl5fXAz5u7u/sDz/wtvb5pcX3++ec0b978oft+lNfD0mcr7fmy2rk9u/XBdHX4k08+ISUlhdOnT7N7926WLl3Khx9+iL+/f4Ym8rQkKKefmcJM+qDYuLVr12I0GqlTpw5dunTJ8C/tjP3+S7GHDh3i66+/pmTJknz66acW25/zQ9ooA0vNKGfPnrW4jZ2dncWEJifSLo+n9d1J78iRI7myjwdxdHTMcAk77bJ1WtKZmevXr1OkSJEMyUlCQgJnzpzJUN/OzvTn/qDXLrPH05qg0i7hW4u00UhHjx7N8Fh2RvEopVi9ejUAnTp1svi3VKtWLZKTk7V+LzmRNqzcUrwnT57M8uc6N9+PihUrkpSUxM2bNzM8VqlSJeLj4836/aSx9PeR3bhy6/VIk/b3k9X9Z7d+eg4ODtSsWZMBAwYwevRolFLs3LkzQ70rV64APHIiWRhJgmLD0r5UDQYD48eP5+23387wb/z48dSsWZPz589rnT2vXLnCe++9h7OzM59//rmumX3ZsmVxc3PTmqHSREZGMm/ePIvbFClShOjo6FxZ4yKtg+H9X5AbNmxg165dj/z8ixYtIiQkxOJjf/zxB/Hx8ZQtW1a7lN2iRQuKFi3Khg0b2LNnT4Zt0p/pFi9enJiYGC5evKiVpaam8uOPPxIVFZVh27Qmvlu3blmMJ7PHO3fujJubGzNmzDDbX5qEhARdkpe0uUnmzJlj9nmIiIjQhqNnxaFDh7h27Rp169Zl3LhxFv+W0q4y3p/sZ0fLli1xdXVl1apVZn1HUlJSmDlzZpafJzffj3r16gGWr7qlNRv/8ssvZsnC+fPnLSZqLVu2pHjx4ixevJhDhw5leDwlJcUsscmt1yNNjRo1qFGjBhs3brTYSdhoNJrFld36p0+ftnhlN+1qkqUTvRMnTuDn52fWCVhkjTTx2LADBw5w48aNh3bS6ty5M8ePH2fVqlVUq1aNqVOncufOHRo2bMi///6bob6Hh0e+rXXj6OhIjx49mD9/PoMGDaJFixbEx8ezY8cO6tWrZ7EDYP369Tl16hRjx46lTp06ODg4ULduXe2LNjvat2/Pb7/9xpQpUzh48CDFixfn3LlzHDhwgFatWrF169ZHOr7169fz448/UrFiRWrUqIGPjw8xMTGcOHGCM2fO4OzszBtvvKHVd3Jy4qOPPuKtt97irbfeonHjxlSuXJnY2FjOnTtHYmKi9sXdo0cP9u7dy/Dhw2nTpg1OTk4cOnSI8PBw6tevn2FxuZo1a+Ls7MzSpUuJiYnREtO0pq3HH3+czZs38/7779OkSROcnJyoXLkyLVq0wNvbm/9r795CmvzDAI5/XTU7MAty5iEsiARhMFgt0QxpeFFRuZvdeKMpQsSwAxQhYThIsMONFN00BVuJUF2IluGsJHhzsonoi14FQYU2kZCJoGvYhWz4byvU9neTns/1D/Z7n/dlPL/T87t58yb19fVUVVVx5MgRcnNzCQaDTE5OMjw8jMFg4O7du38Vr9U6fPgwpaWluN1uKisrKS4uJhgM8vbtW/Lz81EUJTIz9CfhpCN88iaW3NxcDAYDqqoyNja24ro2y+l0Oux2O3fu3KGmpgaLxcKOHTsYGBhAq9WSnp6+omWxeL6P4uJiHjx4gNfrjdpDEd574/F4qK6upqCggEAgQF9fH2azOWrGQKvV4nA4uHbtGrW1tZhMpsiG+cnJSUZGRti5cyculyuu8Viuvr6eS5cu0dDQwLNnzzh48CCpqan4/X5UVWVmZga3272m9q9fv6azsxOj0UhOTg7bt2/n06dPeDwe0tLSor6fr1+/MjExgdVqXdUziCWSoGxg4T/V5RVeY7FYLDQ3N9PX14fdbo+MNL1eb8wjyJmZmet6GV91dTWbN2+mu7ubzs5OMjMzqaiooKioiP7+/qj2FRUVzM7OoigKIyMjhEIhKisr15SgZGRk0NzczMOHD/F6vYRCIfLy8rh37x5+v/+vE5Tr16+jKApDQ0MMDg7y/ft3NBoNe/bswWq1YrPZokZWBoOBR48e4XK5GBwcxOfzodPp2L9/P2VlZZF2RUVFOBwOXC4Xvb29pKamYjKZuHXrVsxKwWlpaTgcDlpbW+nq6op8B+EE5fTp00xMTPDmzRuePn1KKBTixIkTHD16FFiqiul0Omlvb8fn8+H1etm6dSt6vZ6TJ0/GPHa6Hurq6ti3bx8vX77kxYsX6PV6bDYbJpMJRVFibmBdbnZ2lv7+frZt20ZJSckf2546dQpVVenu7l5TggJw5swZdDodjx8/pqenJ1I59fz589hsthWXm4/X+8jKysJsNvPu3TsuXrz4n1kAjUZDY2Mjra2tuN1unj9/TnZ2Nna7nb1798Zc0sjPz6elpYX29nYGBgZQVZUtW7aQnp7OsWPHoo5jxyseYdnZ2TidTjo6Onj//j2vXr1Co9Gwe/dujEZjVHXo1bQvLS1lYWGB0dFRxsfHCQaD6PV6ysrKYh57Ds8ynT17dlXPIJakLC4uLia6E0IIEW9dXV3cvn2bK1eubIgR7JcvXygvL+f48eM0NDSs62/7fD4uX77MjRs3EpZo/iqR8YiHHz9+UF5eTlZW1pqrZ//rZA+KEGJDm56e5tdx1tTUFG1tbWzatInCwsIE9Sy2QCAQdax3fn6e+/fvA0vXEqy3Q4cOUVBQQFtb22+L0f1fkjEe8dDT08O3b9+4cOFCoruyYckSjxBiQ3vy5AkfPnzAaDSya9cu/H4/iqIwNzfHuXPnoqbdE214eJimpibMZjMZGRnMzMxELvY0mUxYLJaE9Ku2tpbe3l6mpqbWNWbJGo+/lZKSwtWrV2MWuRMrI0s8QogNzePx0NHRwcePHwkEAmi1Wg4cOIDVao15A3Giff78GafTiaqqkdNWOTk5kduX/7WCXhIP8TuSoAghhBAi6cgeFCGEEEIkHUlQhBBCCJF0JEERQgghRNKRBEUIIYQQSUcSFCGEEEIkHUlQhBBCCJF0JEERQgghRNKRBEUIIYQQSUcSFCGEEEIknZ/7xLuJqC27sQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle bin: 165.0 deg to 180.0 deg\n", + "Modulation: 0.309 +/- 0.004\n", + "Best fit polarization fraction: 1.0 +/- 0.019\n", + "Best fit polarization angle: 145.507 +/- 0.353\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRKUlEQVR4nOzdd3gU1dfA8e+mV1KB0Lv03gmB0KuodFEgUgVpioCgPyuIWAELSi8qRUQF6SAd6aFIr6EGSEJCett5/9h3hyzZVJLMJjmf5/Exe+fOzpndYffsnVt0iqIoCCGEEEJYECutAxBCCCGEeJokKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEJYiBs3bqDT6QgICNA6FAH4+/uj0+ly/TgffvghOp2O3bt35/qxMqN8+fKUL19e6zCEkARFZOzChQuMHTuWWrVq4ebmhp2dHSVLlqRbt24sWrSI+Ph4rUPMNQEBAeh0Om7cuKF1KGYtWrSIkSNH0rRpU5ycnNDpdLz33nsZ7vf333/j7++Pm5sbLi4uNG3alGXLlqW7z7Jly2jSpAkuLi64ubnh7+/P33//bbbu5cuX6datG56enpQpU4YxY8YQGRlptu6rr75KhQoViIqKyviEUzAmdCn/s7GxoXjx4nTr1o3Nmzdn6fnEs/vll1/U92Lbtm3p1g0PD+f999+nXr16uLi4YG9vT6lSpWjWrBkTJ04kMDAw3f2HDx+OTqfDycmJ8PDwNOsZE0Djf1ZWVhQpUoRy5crRtWtXZs2axZ07d7JzuiKX2WgdgLBsH3/8MR999BF6vZ7mzZszePBgXFxcuH//Prt372bYsGHMmzePY8eOaR1qoTRx4kQiIiLw8PCgZMmSXL16NcN9vvvuO8aOHYuXlxevvvoqdnZ2rF27loCAAM6cOcOXX36Zap+3336br776itKlSzN8+HASEhJYtWoVzz//PN9++y1jxoxR60ZHR9OuXTuio6MZNGgQt2/f5vvvv+f+/fv89ttvJs+7ceNGfvnlF7Zv346Li0u2XgM3NzcmTJgAQFxcHKdOnWLTpk1s2rSJOXPmMG7cuGw9b14ZM2YM/fv3p2zZslqH8szmz5+PTqdDURTmz59Px44dzda7e/cuvr6+3Lhxg4oVK/LKK6/g7e3No0ePOH78OLNnz8bR0ZH69eub3T8yMpJVq1ah0+mIjY3l559/NrkGzWndujX+/v6A4Rq9d+8eBw4cYPPmzXzwwQd8+OGHvPPOO890/iKHKUKkYcaMGQqglClTRjl06JDZOhs2bFD8/f3zOLK8M3jwYAVQrl+/nuvHun79ugIogwcPzvQ+mzdvVm7cuKEoiqIsWbJEAZR333033WPY29srnp6eJucUFhamVKpUSQGUgwcPmuxz4MABBVAqVaqkhIWFmTyXp6enYm9vb/Jcq1atUgBlz549allAQIACKPfv31fLwsPDlVKlSilDhw7N9Pk+fS6AUq5cuVTbFi9erACKs7OzEh0dna3nb926tVIYPyLLlStn9jXNyIULFxRAad++vdKwYUPF1tZWCQ4ONlt36NChCqAMGTJE0ev1qbbfvXtXOX78eJrH+vHHHxVAeeuttxQ7OzulTp06adb94IMPFED54IMPUm3T6/XK2rVrFU9PTwVQZs6cmfGJijwjt3iEWTdu3ODDDz/E1taWTZs20bRpU7P1unfvzpYtW1KVr1mzhlatWuHm5oajoyO1a9dm5syZZm8HGe95P378mLfeeovy5ctja2vLhx9+mKntYLgNFRAQQJkyZbCzs6N48eIMGDCAixcvmo07JiaGWbNm0ahRI1xdXXFxcaF69eqMGzeO+/fvA6DT6dTbHhUqVFCbiJ++Px8WFsbUqVOpXr06jo6OuLm50a5duzSbuCMjI3nrrbcoXbo0Dg4OVKtWja+//hq9Xm+2fno6d+5MuXLlMl1/8eLFxMfHM2bMGJPz8PDwYNq0aQD8+OOPJvsYH7/77rt4eHio5eXLl+eNN94gPj6eJUuWqOVBQUEANGnSRC0z/m3cBobWH4Cvvvoq0/FnVkBAAM7OzkRHR3P27Fm1fOfOnXTu3BlPT0/s7e157rnneOedd4iIiMjU8yYkJPDdd9/RtWtXypUrh729PZ6enrRv3z7NW0oZXb/m+qAY+7+k9Z+xJcAoKSmJH374gWbNmlGkSBGcnJyoX78+3333ndnrSlEUvvvuO2rWrImDgwOlSpVizJgxmX4dzFmwYAEAr732GgEBASQmJrJ06VKzdQ8ePAjA2LFjzfbzKVGiBA0aNEj3WFZWVkyYMIHnn3+e06dPc/jw4SzHrNPp6NWrF2vXrgUMLcb37t3L8vOI3CG3eIRZS5YsITExkf79+1OrVq1069rb25s8njZtGjNnzsTb25sBAwbg4uLC5s2bmTZtGlu3bmXbtm3Y2dmZ7JOQkEDbtm0JCwujY8eOFClShAoVKmRq+5YtW+jZsyeJiYk8//zzVK5cmdu3b7Nu3To2btzIrl27TD7sHj16RJs2bTh16hRVq1ZlyJAh2NnZcfXqVZYsWULPnj0pXrw4H3zwAX/++SenTp1i/PjxuLu7A6j/B8MXrr+/Pzdu3MDPz4/OnTsTHR3N33//TefOnfnpp58YPny4Wj8+Pp527dpx9OhR6tatyyuvvEJ4eDiffPIJe/bsydJ7lB3//PMPYEhsntalSxeTOpnd55NPPuGff/7ho48+AlBvVRw/fhxfX18A9RagMZnasWMHixYtYsOGDbi5uT3zeZmjKAqA+gX4008/MWrUKJydnenTpw/FihVj9+7dzJo1iw0bNnDgwAGT99acsLAwxo8fT4sWLejQoQNFixbl3r17bNiwga5du7JgwQKGDRuWar+Mru+nBQQEpEpCAPbt28c///yDk5OTWma87rdu3UrVqlUZMGAADg4O7Nq1i7Fjx3L48GFWrFhh8jwTJkxg7ty5lChRghEjRmBra8tff/3F4cOHSUhISPXvMyMJCQksW7YMNzc3XnrpJWJjY5k4cSILFy5k8uTJqZIQLy8vAC5dukS9evWydKzAwECOHz9Ohw4dKFOmDAEBAfz+++/Mnz8/zR9SGWnTpg0tW7Zk//79rFu3jjfeeCNbzyNymNZNOMIytW3bVgGUBQsWZGm/gwcPqreF7t27p5YnJiYq3bt3VwBlxowZJvuUK1dOAZR27dopUVFRqZ4zve1hYWGKu7u74uXlpZw9e9Zk25kzZxRnZ2elfv36JuUvv/yyAiivv/66kpycbLItMjJSCQ8PVx9ndIundevWik6nU1auXGlS/ujRI6Vu3bqKg4ODSTO38bZZz549TY597do1xcPDI8u3eFLKzC0eb29vBVBCQkLMbnd2dlYA9bZIVFSUAiguLi5m6z98+FABlGLFiqllkZGRSunSpRVvb29lwoQJSu/evdVzNm4vX7688sorr2TrPI3Su8WzaNEi9RZPTEyMcuPGDcXOzk5xdXVVzp8/b1J31KhRCqAMHz7cpNzcLZ64uDjl1q1bqY4XHh6u1KxZU/Hw8FBiYmJMtmV0fRtvQezatSvd8z116pTi6uqqeHt7K1euXEm1/5gxY5SkpCS1PCkpSRkyZIgCKH/++adanvKWXWhoqFoeGxurNGvWLM3XND0rV65UAGXEiBFqWa9evRRA2bFjR6r63377rQIorq6uyqRJk5Tt27eneU0+beTIkQqg/Prrr4qiGD5bfHx8FGdnZyUiIiJV/fRu8aT03nvvKYAyaNCgTMUhcp8kKMKs6tWrK4CyefPmLO03bNgwBVB++umnVNsuXryoWFlZKRUqVDApN36Anzx50uxzprd99uzZCqB89913ZvedMGGCAqjJy/379xUrKyulRIkSZr8snpZegnLy5EkFUHr37m123z///FMBlO+//14tq1y5smJlZWXyBWNk/CDNzQTF1tZWAZTExESz20uWLKkAyt27dxVFUZQ7d+4ogFKqVCmz9RMSEhRAsbOzMym/cOGC0rlzZ8Xd3V0pWbKk8vrrr6tfHm+88YZSvHhxJSQkRAkKClK6d++uODg4KC4uLsrAgQPNfsmYY0xQ3NzclA8++ED54IMPlClTpihdunRRAAVQ5syZoyiKokyfPl0BlKlTp6Z6nrCwMMXV1VVxcHBQ4uLi1PKs9kH56quvUvW9UZSMr+/MJCh37txRSpcurTg4OCgHDhxQy5OTkxVPT0/Fx8fH7Hv66NEjRafTKX369FHLjP9GFy9enKr+rl27spWgGH/QpOy/tGHDBgVQ+vbtm6q+Xq9Xpk6dqjg4OKjvFaCUL19eGTZsWJqvVVRUlOLq6qq4ubkpsbGxavnEiRMVQPnhhx9S7ZPZBGXevHkKoHTp0iWTZy1ym9ziETnqxIkTALRt2zbVtueee47SpUtz/fp1IiIiTJr2HRwcqFOnTprPm9b2f//9F4BTp06Z9EkxunTpEgDnz5+nRo0aHD16FL1eT6tWrXB2ds7SuaV17IiICLPHfvjwoXpsMPQ9uXLlCmXKlKFSpUqp6vv7+6u3SfK7qlWrmu2TsW/fPn744QfWrFmDp6cnHTp04MGDB/z6669ERUUxduxYYmNjU432SU9ERIT6ullbW+Pp6UmXLl0YM2YMXbt2BdK/Lj08PKhfvz579+7lwoUL1K1bN93jnT17li+++IK9e/dy79494uLiTLabG7Ka0fWdnqioKLp3786dO3dYuXIlLVq0ULddunSJsLAwqlSpwvTp083u7+joqF6D8OS1aN26daq6LVu2xNraOkvxXblyhV27dlG1alWaN2+ulnfu3BkfHx/+/PNPQkJC8Pb2VrfpdDo+/fRTJk+ezNatWzl06BAnTpzg8OHDLFy4kCVLljBv3jyT26MAq1atIjIykpEjR+Lg4KCWBwQE8NVXX7FgwQJGjRqVpfiNlKduCQrtSYIizCpRogTnz5/P8vwAxk52JUqUSPN5b968SXh4uEmCUqxYsXQ/GNLaHhoaCjzpoJcW4xwbxvkSSpUqlW79zDAee/v27Wzfvj3DYxtfm+LFi5ut5+Pj88wxZcTNzY2QkBAiIiLUfgApGWM0vjfG/6fVedJYnlHfDYDY2FiGDh1Kz5496d27N9u3bycwMJAVK1bw0ksvAYbO2e+//z5Xr141m8SZU65cuQznqcnMdQmkO58GwKFDh2jbti1JSUm0a9eOHj16UKRIEaysrDh58iR//fWX2Y7gGV3faUlOTqZfv34EBgYyc+ZM+vXrZ7LdeA1evnw53eQ25Rwz6V2HNjY2JolEZixYsABFUVJNMGhjY8Mrr7zCV199xdKlS3n77bdT7evu7k6/fv3U84qOjuazzz5j+vTpjB07lh49epjEOX/+fIBUx6pVqxYNGzbk+PHjHDt2jEaNGmXpHMAw9BmgaNGiWd5X5A4ZxSPMatmyJWAY9ZAVxi+04OBgs9uNPeSf7hiZ0Yd3WtuNz3Pq1CkUwy1Ls/8NHjwYePJFmhMTMxmPPWfOnHSPbRzhYqxvHCX0tLRes5xUtWpV4EnLUkr37t0jOjqa0qVLq50wnZ2dKVWqFFFRUWZHN1y+fBkwtI5l5H//+x+hoaF8//33wJOWpZQdmBs2bAjAuXPnsnJaGcrudfm06dOnExsby7Zt29i8eTOzZ8/m448/5sMPP0y3g2Z2f5WPHTuWTZs2MXz4cLNzdBjjfemll9K9Bq9fv55qH3PXYVJSEiEhIZmOL+VInalTp6YabWQcoZXRDwgjZ2dnPvnkE1q2bEl8fDwHDhxQt50+fZojR44A0Lx581THOn78OPAkicmqXbt2AWS7o63IeZKgCLNee+01bG1t+f333zP8skj5i9E4sZK5abuvXLnC7du3qVChQqZ+cWdGs2bNAMOtg8xo0qQJVlZW7N27l+jo6AzrG5u7k5OTn/nYrq6uVK5cmTt37pidUC0vpjo33uIwNzTceEvm6dsg2dnnaUeOHGH27NnMmTMn1S/3lNfP07dLckp612V4eDgnT57EwcGB6tWrp/s8V65cwdPT0+wIm5wehfXVV18xb948OnbsyA8//GC2TrVq1XB3d+fQoUMkJiZm6nmNCaG5ePfv32/2Wk/LX3/9xYMHD6hatSpDhw41+1/FihW5dOlSll4fV1dX4MltF3iSePj7+6d5LEdHR1auXJnlWYn/+ecfDhw4gKOjo9qaJyxA3nV3EfmNccRJ+fLllaNHj5qts3nzZqVNmzbqY+MIgfLlyysPHjxQy5OSkpQXXnhBAZTp06ebPEdGE0Oltz0kJERxd3dXihYtqhw+fDjV9uTk5FSdDwcMGJDpUTyTJk1SAOWff/4xe3w/Pz/FyspKWbRokdntp0+fNpmczPia9urVS5NRPNeuXcv1idqeFh8fr9SoUUPp1q2bSfn27dsVQPnoo4/UMuOEbuY6ET8tvVE85ura2toqbm5uyuXLl022jRkzRgGUYcOGmZSb6yTbqVMnBVBOnTplUr5w4UK1o+eSJUtMtmV0fZvrJPv7778rVlZWSu3atTPsNPy///1PvZ6fHkGkKIZJz1KOcNu/f3+OjeLp0KGDAiirV69Os47xtRkwYIBa9vnnnyv//fef2fr79u1THBwcFBsbG+XOnTuKoihKTEyM4u7urlhbW6tl5rz66qsKoMyfP18ty2iitt9//12dqO3zzz/P6JRFHpIERaTro48+UqysrBRAadGihTJu3Dhl2rRpytChQ5UqVaoogNKoUSOTfSZPnqwOPR09erQyadIkpVatWgqgtGzZUomPjzep/ywJiqIoyo4dOxRXV1dFp9Mp7du3V8aPH69MmDBB6dWrl1KyZEnF3t7epH5YWJhSp04dBVCqVaumjB8/Xpk0aZLSu3dvxdXV1eSLYsuWLeqH+eTJk5VPPvlE+fbbb9Xtt27dUl+HunXrKiNGjFAmT56sDBgwQD3nf//9V60fFxenNG7cWK0/efJkZcSIEYq7u7vSo0ePLCcoCxYsUAYPHqwMHjxY8fX1VQClTp06apm5mTHnzp2rAIqXl5cyevRoZcKECUrp0qUVQJk4caLZ47z11lsKoJQuXVqZMGGCMnr0aMXLy0sBTF4Pc959913Fzc1NuX37tkm5Xq9XGjZsqFhbWytDhgxR+vbtqwAmI07Sk5UERVEU5fvvv1eHtg4dOlR55513lObNm6vXQcova0Uxn6Bs3rzZ5DneeustpVWrVoqVlZU6nDonEhRHR0eF/59p1ThCKeV/KY+RkJCgXjulSpVSBg4cqLzzzjvKkCFD1AT66etg7NixCqCUKFFCGTt2rPLWW28plSpVUho1aqSUKFEiU6/ptWvXFJ1Op3h7e6f6N51SZGSk4uLiotjb26uvcd26ddXXPSAgQJk6daoybtw4pV27dopOp1MA5auvvlKfw5h8P//88+nGtHv37lSfScbXt3Xr1urrN3nyZOXVV19VKlSooACKvb29MmvWrAzPWeQtSVBEhs6dO6eMGTNGqVmzpuLq6qrY2toqPj4+SufOnZWFCxeaDM00WrlypeLr66t+MNWoUUOZPn26ydBAo2dNUBTF8GX1xhtvKJUrV1bs7e0VV1dXpWrVqsqrr76q/PHHH6nqR0VFKdOnT1dq166tODo6Ki4uLkr16tWV8ePHm7R4KIph+Gi1atUUOzs7s1+Ijx8/VmbMmKE0aNBAcXZ2VhwcHJTy5csrXbt2VX766adUw5kjIiKUN998U02eqlatqnz55ZfK1atXs5ygGIdBp/Vf69atze63fv16pVWrVoqLi4vi5OSkNGrUSFm6dGm6x1qyZInSqFEjxcnJSXFxcVFatWqlbNiwId19AgMDFRsbmzTn07l165bywgsvKM7Ozoqbm5syePDgLA8zzsqQ2K1btyodOnRQ3N3dFTs7O6VSpUrKpEmTlEePHqWqm9Yw4w0bNihNmzZVXFxcFDc3N6VDhw7Knj171C/RnEhQ0ntPzb2ver1eWb58udK2bVvFw8NDsbW1VUqWLKn4+voqM2bMUG7evJmq/rfffqte1yVKlFBGjx6thIeHZ3qq+2nTpimA8uabb2ZYd/jw4QqgfP3114qiKMqJEyeUTz75RGnTpo1Svnx5xcHBQbG3t1cqVqyoDBgwQNm3b5/J/i1atFAA5a+//srwWM8995wCKIGBgYqiPHl9jf/pdDrFxcVFKVu2rNKlSxfls88+S5U8C8ugU5QUN/mEEEIIISyAdJIVQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFidfJihxcXFcvHgx16bFFkIIIYS28mWCEhQUxPDhwwkKCtI6FCGEEELkgnyZoAghhBCiYJMERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCJFlMY/iOL72MjGP4rQORRRQkqAIIYTIspjweALXXSEmPF7rUEQBJQmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDg2Wd0hJiaGVatWce7cOc6fP09kZCRTp06lS5cumX6OY8eOsWLFCi5duoRer6dMmTK8/PLLtGvXLqvhCCGEEKIAynKCEhERwdKlSylevDiVK1cmMDAwS/tv2rSJWbNm0ahRI4YPH461tTU3b97kwYMHWQ1FCCGEEAVUlhMULy8v/vjjD7y8vLhw4QIjRozI9L737t3jm2++oWfPnowfPz6rhxZCCCFEIZHlPih2dnZ4eXll62B//fUXer2eoUOHAobbRYqiZOu5hBBCCFFw5Wkn2ePHj1O2bFkOHTpEr1696Ny5M927d2fhwoXo9fq8DEUUQjGP4ji+9jIxj+K0DkUIIUQGsnyL51ncvn0bKysrPvvsM15++WUqVarE3r17Wb58OcnJyYwcOdLsfiEhIYSGhqqPg4KC8ipkUYDEhMcTuO4K5RoWw8nDQetwhBBCpCNPE5TY2Fj0ej0jR47klVdeAcDf35/IyEjWrl3LwIEDcXJySrXf+vXrWbp0aV6GKoQQQggN5WmCYm9vT2xsLO3btzcpb9euHYcPH+bSpUvUq1cv1X49evTA19dXfRwUFMT06dNzO1whhBBCaCRPExQvLy9u376Nh4eHSbnxcWRkpNn9vL298fb2zvX4hBBCCGEZ8rSTbNWqVQFDn5KUjI/d3d3zMhwhhBBCWKhcS1BCQkIICgoiKSlJLWvbti0AGzduVMv0ej2bN2+mSJEiagIjhBBCiMItW7d4fv/9d6KiotSRNQcOHFBngu3VqxcuLi7Mnz+fLVu2sHr1akqUKAFAy5YtadiwIT///DPh4eFUrlyZffv2cfr0ad5++23s7Oxy6LSEEEIIkZ9lK0FZvXo1wcHB6uO9e/eyd+9eADp27IiLi4vZ/XQ6HTNmzGDhwoX8888/bNmyhTJlyvDee+/RsWPH7IQihBBCiAIoWwnKmjVrMqwzbdo0pk2blqrcycmJcePGMW7cuOwcWgghhBCFQJ52khVCCCGEyAxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhShuZhHcRxfe5mYR3FahyKEEMJCSIIiNBcTHk/guivEhMdrHYoQQggLIQmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIUIDIzsygoJEERQogCRGZmFgWFJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIiyYLIBZOkqAIIYSwaLIAYuEkCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiZDlBiYmJYfHixbz99tt069aNVq1asXnz5mwd/PPPP6dVq1ZMmTIlW/sLIYQQomDKcoISERHB0qVLCQoKonLlytk+8IULF9i8eTN2dnbZfg4hhBBCFExZTlC8vLz4448/+O233xg1alS2DqooCnPmzKFTp054enpm6zmEEEIIUXBlOUGxs7PDy8vrmQ66detWrl+/zvDhw5/peYQQQghRMOV5J9mYmBh+/PFHXn311WdOdIQQQghRMNnk9QGXLl2Kvb09ffv2zfQ+ISEhhIaGqo+DgoJyIzQhhBBCWIg8TVBu3brF2rVref/997PUOXb9+vUsXbo09wITQgghhEXJ0wRl7ty51KpVC39//yzt16NHD3x9fdXHQUFBTJ8+PYejE0IIIYSlyLME5fjx4xw+fJjp06dz7949tTw5OZn4+Hju3btHkSJFcHZ2TrWvt7c33t7eeRWqAGIexXF+5y2qtyuDk4eD1uEIIYQoZPIsQXnw4AEA7733XqptDx8+pF+/fowZMyZLfVNE7okJjydw3RXKNSwmCYoQQog8l2sJSkhICNHR0ZQqVQobGxsaNGjAjBkzUtX74osv8PHxYeDAgVSsWDG3whFCCCFEPpKtBOX3338nKipKHVlz4MABtYWkV69euLi4MH/+fLZs2cLq1aspUaIExYsXp3jx4qme69tvv8XDwwM/P79nOA0hhBBCFCTZSlBWr15NcHCw+njv3r3s3bsXgI4dO+Li4pIz0QkhhBCiUMpWgrJmzZoM60ybNo1p06blyHMJIYQQonDJ85lkhRBCCCEyIgmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQIkv0eoWH1yIAeHgtAr1e0TgiURDl+WrGQggh8q/rR4I5tPw80WFxABxYdJaTf1yl2aDqVGjio3F0oiCRFhQhhBCZcv1IMDtnB6rJiVF0WBw7Zwdy/UhwGnsKkXWSoAghhMiQXq9waPn5dOscWnFebveIHCMJihBCiAwFXwhL1XLytOjQOIIvhOVRRKKgkwRFCCFEhmLD43O0nhAZkQRFiFwQ8yiO42svE/Mo/V+cQuQXju72OVpPiIxIgiJELogJjydw3RVi5NekKCB8qnni7OmQbh1nLwd8qnnmUUSioJMERQghRIasrHQ0G1Q93TrNBlbHykqXRxGJgk4SFCGEEJlSoYkP7SbUT9WS4uzlQLsJ9WUeFJGjZKI2IYQQmVahiQ/lGhXn4q5bHFh0Ft+hNanapoy0nIgcJwmKsFgRcRHsu7mPI3eOcCP8BiExIQC42rtSwb0CdYvXpU2FNvi4yK82IXKDXtFz+v5p9gXt41LoJW49vkVCcgI2VjZ4UZQYD2vKFrGnCiWxkq8TkcPkihIWJUmfxF8X/mLxycVsvbKVZCU5w32alW7GkHpDeKXOKzjZOuVBlEIUbFfCrrDg+AKWn15OcFQ6s8MWgzWbFuC925uXa73MiIYjqFWsVt4FKgo06YMiLIKCwrrra6n5Q016/9abTZc3ZSo5ATh0+xAj/h5BxTkVmX1oNvFJMnJGiOy4EX6DgD8DqPpdVT4/+Hn6yUkKITEhfHvkW2rPq02vNb04/zD9GWeFyAxpQRGau/r4Cl+VnsrFfadNyssUKcOL1V6kdbnWVC9aneLOxdHpdITFhnEp9BIHbh5gw6UNnHlwBoD70fd5c+ubzD8+n/nPz6dl2ZZanI4Q+U6SPolv/v2G93e/T1zSk7l7bK1s6VS5Ex0qdqBhiYaUdy+Pk60TcUlxnLlwnuWL1xHR5Bbb72wlPtnww2Dd+XVsuLiByb6Tea/VezjYpD80WYi0SIIiNLXs5HJe3zCSOOcnH4qtyrViWstpdKjUAStd6kY+T0dPKntWpmuVrkxvO53j947zxcEvWHN2DQDnQ87Takkr3vV7lw/9P8TayjrPzkeI/ObO4zv0XduXg7cOqmUeDh5MbD6R4Q2HU8y5mNn9bL2duBkRz4v+LbAtAYsDF6utLon6RGbsm8Hfl/5mde/VVPWumlenIwoQucUjNJGQnMCAxYMI+GswcXpDcuKVUJxJEZ+ypPoqOlXuZDY5eZpOp6NRyUas7r2aEyNO0LhkY8Bwy2j6vul0/Lkjj2If5eq5CJFf7bmxhwbzG6jJiQ4d45uO59r4a7zb6t00k5OnuTm48WbzN7k67irv+b2HrZUtAKfun6Lh/Iasv7g+185BFFySoIg8F5UQRfsfO7Ly1gq1zC+8Ex/dmMdzwfX4Z87JbC3bXr9Eff4d+i+ftfsMa52h1eSf6//QcklLgh7d5OG1CAAeXouQFVdFobfyzErar2jPg+gHAJR1K8uBIQeY3Xk27g7u2XpOJ1snPmn7CcdHHKe6t2FSt+jEaF5a/RLfH/k+p0IXhYQkKCJPhcaE0m5ZO/aF7AHAVm/Ha/feYtD98dgrT+5VZ3fZdmsra6a0nMLugN3qr79zD8/R4JuGrF2xBYADi86yetzubCVBQhQE847O45V1r5CkTwKgY6WOHB9xnOZlmufI89cuXpujw4/Sv1Z/wDBceczmMXyw64MceX5ROEiCIvJMRFwEHVZ04MjdIwA4Jbvw1u0ZtHjcPlXdZ122vWXZlhwccpByThUACLMO4evS03hge8/w/GFx7JwdKEmKKHS+P/I9ozeNRsHwA2BEgxFsGrAJbyfvHD2Os50zv/T8hSm+U9Syj/d+zPS903P0OKLgkgRF5ImYxBi6r+xOYHAgAG5JHky6OYvKsTXT3OdZl22v4F6RqTe/omxcJQDCbUP5qsw7hNo8UOtkt6VGiPzo1zO/MmbzGPXxFN8p/Nj9x1zrSG6ls+Kz9p8xu9Nstex/u/7Hlwe/zJXjiYJFEhSR65L0SfT5rQ/7b+4HwNPOi4m3PqN0QoV093vWZduDL4RhHerAhNvTKRlfDoAw24fMKf0+MVbRwLO31AiRGTGP4ji+9jIxj+IyrpxLNl/ezOA/B6uPp7acymftP0Ony/0p6sc3G8+XHZ4kJZO2T2L1f6tz/bgif5MEReS6ydsns+nyJgCK2Bdh66CtVHapku4+ObFsu7EFxjXZjbduzaBYQkkA7tnfZH7Jz0gm2aSeELklJjyewHVXiNHoWjv38Bz91vZT+5y83vB1ZrSdkacxTGwxkU/afKI+HvznYJOhzUI8TRIUkasWnVjEN4e+AcDGyoa/+v9Fo1IN82TZ9pQtMG7Jnoy//THOya4AnHU+zupi81PVE6KgCYsN44VVLxCZEAlAr+q9+K7rd3nScvK0d/3eZWj9oQDEJ8fzwqoXuBlxM8/jEPmDJCgi1xy7e4xRG0epj3/o+gP+5f2BvFm23aeap8nzF0ssyeg772GtGOYn3OWxgZMlDzxzS40QlkKvV0yG0yclJ/Py7y9zJewKAPV86rHsxWWaTV6o0+mY120ebSu0BQxT5Pf9rS8JyQmaxCMsmyQoIldExEXQb20/EvWJAIxtMpbhDYeb1KnQxId+c/3xHWroKOs7tCb95vjnSHICYGWlS9VS81xsbV65/4b6eIn7N1wKu5gjxxNCS9ePBLN63G4OLDoLGIbTD3zndbZd3QZAUaei/NX/L5ztnLUME1trW9b2WUt59/IAHL5zmEnbJmkak7BMkqCIHKcoCiP/Hsm1R9cAw2rDX3X8ymxdKysdRSu6AVC0otsz39Z5mrmWGr+ITrSK6wRATHIMfX7rQ0xiTI4eV4i8dP1IMDtnBxId9qQT7lWHC6xxXgwYZohd3Xs1Zd3KahWiCQ9HD9b2WYudtR0Ac4/MZd35dRpHJSyNJCgixy0KXMTqs4Ye+m72bqzstRJba1vN4jHXUrPxw9+pWdTw+L8H//Huznc1i0+IZ6HXKxxabrp6cIxVNAtKzEKv0wPwQswrtC7nr0F0aWtYsiFzO89VH4/YMCLTqyeLwkESFJGjrj+6zoQtE9THi3osUptytfR0S42LvTNr+qxRV1qdfXg2u2/s1jBCIbIn+EKYScsJwMpi8wi1uw9ApdjqdL7VzyKH049oOIKe1XsCEBobyogNI1AUmZdIGEiCInKMoigM2zCM6ETDHCMjGoygV41eGkeVthpFa/Bp20/VxwF/BhAZH6lhREJk3dPD5M84H+WQ2z8AOCY7M/zuZKyxtsjh9Dqdjh+7/aguS7Hh0gaWnFyicVTCUkiCInLM/OPz+ee64YOxrFtZvuxo+bNFjm82nlblWgEQFBHEW1vf0jgiIbIm5TD5GKtoVhT/Vn3c78FwvJKKp6pnSYo6F2XB8wvUx+O3jJehxwKQBEXkkJsRN5m0/UlP/AXPL8DV3lXDiDLHSmfFkheW4GxrGNmwMHAhe4P2ahyVEJmXcjj970UX88g2BIAa0Q1o8bgDkDMTH+amHlV7MKTeEMCw2vm4zeM0jkhYAklQRI4Yu3msOhHU0PpD6Vipo8YRZV5Fj4rMaj9LfTxq4yiZl0HkG8bh9BcdT7PXfTMA9npHBgWPRYdhVFxOTHyY277q9BXFnQ2tPX9d/Iu/LvylcURCa5KgiGf296W/WX9xPQAlXEqkOaTYkr3e6HUal2wMGKYF//rfrzWOSIjMK93Qi79qLFYf93r4Gl5JxXN04sPc5u7gzuzOs9XHYzePJSohSruAhOYkQRHPJDYx1qQ59utOX+Pm4KZhRNljbWXNj91/xEpn+Cfx8Z6Puf7ousZRCZE53x35jstRlwCo7VKX1uFdc3ziw7zQr2Y/tfX11uNbfLDrA40jElqSBEU8k88PfM71cMMXeZvybehXs5/GEWVfgxINGNfEkGzFJsXy5tY3NY5IiIzdi7zHB7sNX+Q6dHzV6hussMqViQ9zm06n44euP6jD/+ccnsP5h+cz2EsUVJKgiGy7/ug6M/fPBAwLAWq1AFlO+rjNx5RwKQEY7oPvur5L44iESN/kHZPV/l/DGgyjvncDjSN6NpU8KzG15VQAkpVkJm5722R9Ib1e5kkpLCRBEdk2dedU4pMNcytMaDqBGkVraBzRs3O1d+XTdk/mRnlr21sk65M1jEiItB2+fZifT/8MgKejp8m1m5+93eJtyhQpA8DmK5v4aeUywLC+0Opxu7l+RGacLQwkQRHZcuTOEXU6+6JORflf6/9pHFHOGVR3EA1KGH6Fngw+yfJTyzWOSIjUFEVh8o7J6uOP/T/G28lbw4hyjpOtExMrTFUfrym2gGQMPxSiw+LYOTtQkpRCQBIUkWWKovD2trfVxx+0/oAi9kU0jChnWemsTEYivfvPuzKaQFicDZc2qHP2POf1HCMajtA4opyj1ysU3VGVirHVALhnf4u97ptM6hxacT7Hb/fEPIrj+NrLxDyKy7iyyHWSoIgsW39xPftu7gMK3gejkX95f16s9iIA96Lu8fmBz7UNSIgUkvRJTNkxRX38WbvPNF2QM6cFXwgjJiye/g9GqmUbvFYSp4tVH0eHxuX4+kIx4fEErrtCjAUuC1AYZTlBiYmJYfHixbz99tt069aNVq1asXnz5kzte/z4cT777DMGDBhAhw4d6NevH7NmzSIkJCTLgQttJCYnFugPxpQ+b/85tlaGc/v636+5H3Vf44iEMFgcuJgLIRcAaFGmhZpMFxTGdYMqxFWl4eOWAETahLPT4y+z9UTBlOUEJSIigqVLlxIUFETlypWztO+PP/5IYGAgfn5+jB8/nnbt2rFr1y6GDRtGaGhoVkMRGlgcuJiLoRcB8C3jW+A+GFOq4lWF1xu9DkB0YrQ6YkkILUUlRKnDigG+6PBFvh8997SU6wa9GDIIK8XwVbXVcy1RVo/N1hMFT5YTFC8vL/744w9+++03Ro0alaV933jjDVauXMmoUaPo3r07I0aM4LPPPiMsLIx169ZlNRSRx+KT4pm+b7r6+MuOXxa4D8anTfObhqONIwDzjs3jVsQtjSMShd33R74nOMrQQbRn9Z60KNNC44hyXsr1hXwSS+MbYVhTKNY6hi1evwGWv76QeHZZTlDs7Ozw8vLK1sHq1auHlZVVqrIiRYoQFBSUrecUeWfhiYXcfnwbgO7PdadZ6WYaR5T7fFx8GNfUMHlbQnICn+z9ROOIRGEWGR/JFwe/AAyduWe0naFxRLnDuL6QUffQV7DRG263/uO+gUc2IflifSHxbDTvJBsTE0NsbCxubvlvevTCJDYxlk/3P5lj4SP/jzSMJm9N9p2sjlJaHLiYK2FXNI5IFFbfHfmO0FjD7fCXa71MNe9qGkeUeyo08aHdhPo4ezrgmeRNm/DuACRaJRDovz1fTeEvskfzBOW3334jMTGRtm3bplknJCSEixcvqv9Ja0vem398Pncj7wLwYrUX1XlCCgNPR08mNp8IGGa2/HD3h9oGJAqlx/GP+fLfLwFD68n7rd/XOKLcV6GJD/3m+uM7tCZdwvribO0CwNo7q+R2ayGgaYJy8uRJli5dSps2bWjYsGGa9davX8/w4cPV/6ZPn55mXZHzYhJjTDqIftj6Q+2C0ciEZhPwcjTc2vz1zK9cDLmocUSisPn28LeExRqG1b5S+xWe83pO44jyhpWVjqIV3XBNdmN4DcOw40R9ogz9LwQ0S1CCgoJ47733qFixIlOmTEm3bo8ePViwYIH633vvvZdHUQqAeUfncT/aMMS2d43e1PWpq3FEea+IfREmtZgEgILCZwc+0zgiUZhExEXw1b+GyQOtddb8r1XBmbk5K16vPhpnW2cAFpxYwL3IexpHJHKTJgnK/fv3mThxIs7OzsyaNQsnJ6d063t7e1O1alX1v3LlyuVRpCImKYZZB2YBhpVSP2hdeJc/H9V4FO4O7gCsOLWCG+E3NI1HFB5zD8/lUdwjAAbWHUgVryoaR6QNLwcvRjceDUB8crzaYVgUTHmeoERERDBx4kQSExP58ssv8fYuGGtHFFQ/X17Ow5iHAPSt2ZdaxWppHJF2itgXYXzT8YChL4o0MYu8EBkfyTeHvgEMrSfv+RXuFuSJzSeqQ/9/PPYjD6IfaByRyC25lqCEhIQQFBREUlKSWhYbG8vkyZMJCQnh888/p0yZMrl1eJEDkkjih7PfqY+n+U3TMBrLMK7pOFzsDB31FgcuVjsOC5FbFpxYoLaevFrnVSp5VtI4Im0VdymuLq8RmxTL1/9+rXFEIrdkK0H5/fffWbZsGZs2GRZvOnDgAMuWLWPZsmVERRkWVZs/fz4DBw7k4cOH6n6ffPIJ58+fx9/fn6CgILZt26b+t2/fvhw4HZGTjhTZzZ0Yw7wn3ap0o07xOhpHpD1PR09GN3rSxPzVwa8y2EOI7ItPilf7ngBM8U2/v15hManFJOys7QD4/uj3hMbITOQFkU12dlq9ejXBwU+Wut67dy979xpW1ezYsSMuLi5m97tyxTB/xKZNm9TkxsjHxwc/P7/shCNygV7Rs8XzN/XxOy3f0TAay/JW87eYe2QucUlx/Hj8R6b6TS0wy9wLy/LLmV9MhvdXL1o9gz0Kh1JFSjGs/jB+OPYDUQlRfH/0+0Ix7LqwyVaCsmbNmgzrTJs2jWnTTG8JZGY/oT29XmH1sbXcszfMM9CyTEtalm2pcVSWo7hLcYY3GM63R74lJjGGOYfm8ElbmWFW5KxkvWk/J2k9MTXZdzI/Hf+JZCWZb498y6QWk3C0ddQ6LJGDNJ+oTViW60eCWTVuF9+c+FIta/5fV64fCU5nr8JnUotJ2FgZ8vsfjv1AdEK0xhGJguavi3+pC3P6l/cvFEtLZEU593L0rdkXgJCYEJaeXKptQCLHSYIiVNePBLNzdiAnYo9w3fESAKXiy1MluC47ZwdKkpJCGbcyvFzrZQDCYsNYdmqZxhGJgkRRFD7b/2SunXd85RarOca5iQC++vcrkvXJGkYjcpokKAIw3NY5tPw8YFjS3KhLaB90GBbkOrTiPHq9okl8lsg4/T3A1/9+LR+OIsfsurGLo3ePAlDPpx4dK3XUOCLLVL9EfdpXbA/A1UdX+fPCn9oGJHKUJCgCgOALYUSHxXHX7ib/uRwHwCuhOI0iW6l1okPjCL4QplWIFqeuT12TD8f1F9drHJEoKL48+OQW6xTfKeh0smpvWlK2onx+8HMURX5EFRSSoAgAYsPjAdjh8ada1j78BayxNltPGLzd/G31b+NCbkI8i/MPz7P5ymYAyrmVo3eN3hpHZNk6VOxA3eKG5TeO3DnCvpsyZUVBIQmKAMDR3Z5I6wgOFfkHAIdkR3wjUjcrO7rb53VoFq1jpY7q7LoHbx3k31v/ahyRyO/mHJ6j/j22yVi1M7YwT6fT8XaLJz8UZPr7gkMSFAGATzVPDpbYRqJVAgAtIzrhqDddI8nZywGfap5ahGexdDqdSV+UlJNqCZFVoTGhLD+1HAAXOxeGNRimcUT5Q7+a/ShTxDAz+d+X/uZS6CWNIxI5QRIUAUCiPoHdHn8DoFOsaPfohVR1mg2sjpWV3At/2su1XsbHxQeAPy78wdWwqxpHJPKr+cfnE5sUC8CQekNwc3DTOKL8wdbalrFNxqqPvz38rYbRiJwiCUo+E/MojuNrLxPzKC5Hn3fVf6sISTAsS9A4oSXeScXVbc5eDrSbUJ8KTXxy9JgFhb2NPeOajAMMM/CmbKIXIrMSkhP47qhh7SsdOsY1HadxRPnLsAbDcLI1tPouPbWUiLgIjSMSz0oSlHwmJjyewHVXiMnBzqqKovD1oScLbn39+kx8h9YEwHdoTfrN8ZfkJAMjG41UPxyXnFzC9UuGNYweXouQodkiU347+5s6rf0L1V4o9IsCZpWHoweD6gwCICohiiUnl2gckXhWkqAIdt3Yxen7pwFoWqopvmVbULSioWm5aEU3ua2TCZ6OngysMxAwfDh+/Zfhl/CBRWdZPW63THIn0qUoCt8c+kZ9/GazNzWMJv8a2zTFbZ4j38rcRPmcJChCPhhzyIuO/dW/d3lsQI8egOiwOJmJV6Rr/839HL9nmH+oQYkG+JWVhVOzo0bRGnSo2AGAa4+usenypgz2EJZMEpRC7vqj62y8tBGAMkXK0KtGL40jyp/0eoVHfyhUja4DwH27O5xzOmFSR2biFWmZe2Su+vebzd6UidmeQcq+O9IfLH+TBKWQm3dsHgqGL83XG70ucy5kk3Em3rbhPdSyfzw2mNSRmXiFOXce3+GP838AUNy5uLoAnsierlW6UtmzMgA7r+/kvwf/aRyRyC5JUAqx2MRYFgUuAsDO2k7mXHgGxhl260Y1xTOxKAD/OR/jge1ds/WEMPrp+E8kK4a+EiMajsDO2k7jiPI3K52VDDkuICRBKcRW/beKsFjDL/q+NftSzLmYxhHlX8YZdq2xxj+8OwCKTmGX+99m6wkBhqHF84/PB8BaZ83IhiM1jqhgCKgXgKudKwArTq9QP+dE/iIJSiGlKIo65wLAG43f0DCa/M+nmifOng4A+IV3wlZv+BV8wG0bcTrDxFsyE6942rrz67gffR+Al6q/RKkipTSOqGAoYl+E1+q9BkBsUiwLTyzUOCKRHZKgFFKH7xzmxD1DJ86GJRrStFRTjSPK36ysdDQbVB0AF30Rmj72ByDWOoZ/3XYCMhOvSO37o9+rf8uPhJw1pskY9e+fjv+EXtFrGI3IDklQCqmnPxhl1MCzq9DEh3YT6uPs6WDSWXaP10bajq8nk90JE6eCT7H/5n4AahatSetyrTWOqGCp4lXFZMjxtqvbNI5IZJUkKIXQg+gHrDm7BjBMMNa/Vv8M9hCZVaGJD/3m+tP/1eepEmOYjfeOTRA3ip3XODJhaVL+SBjdeLT8SMgFoxuPVv/+4egPGkYiskMSlEJo4YmFJCQbVi0eWn8ojraOGkdUsFhZ6Sha0Y02/99ZFuDHYz/myrFya20mkbvC48L55cwvALjauaqzEIuc1f257pQuUhqAjZc3cjPipsYRiayQBKWQSdInqV+WOnSMajRK44gKrvqRLSjqYBhy/MeFPwiOyvmZZHNjbSaR+5aeXEpMYgwAg+oOwtXeVeOICiYbKxuGNxgOGBbyNI6YEvmDJCiFzIaLG7j1+BZgmNCogkcFjSMquGywZUBlwy/jJH0Si04s0jgiYQn0it7kdoN0js1dwxoMw1pnDZi2HgvLJwlKIfPDsScfjCl7uYvcMbDKIHQY+hbMPzFfFi8T7Li2g8thlwFoW6Et1YtW1ziigq2ka0lerPYiAPej7/PnhT81jUdkniQohcjVsKvsuLYDgIoeFelYqaPGERV85VzL07lyZwBuRtxky5UtGkcktJayP5K0nuSNlLey5x2bp2EkIiskQSlEUk5WNKLBCKx08vbnhZQfjj8ez53OsiJ/CI4JZv3F9QCUcCnB8889r3FEhUPbCm2p6lUVgN03dnP+oYyqyw/kG6qQSEhOYPHJxYCh41hAvQBtAypEulbpSpkiZQDYeGkjQeFBGkcktLLy6i/qujtD6w/F1tpW44gKB51Ox+uNXlcf59aoOpGzJEEpJDZc3MCD6AcAvFjtRYq7FNc4osLD2spaHUmgoLDgxAKNIxJa0KPn58vLAMMIuqENhmocUeEyuO5gHG0MUyosO7WM6IRojSMSGZEEpZCYf+LJ8LoRDUZoGEnhNLTBUJORBInJiRpHJPKKXq/w8FoE551OcjPKMA9Hp8qdKO9eXtvAChkPRw91UsqI+AhW/bdK44hERiRBKQSuP7quTvNcwb0C7Sq20ziiwufpkQR/XfxL24BEnrh+JJjV43ZzYNFZ9rpvVstfcO2jYVSFl3SWzV8kQSkEUnaOHd5guHSO1UjKe+Dy4VjwXT8SzM7ZgUSHxRFhHcYpl0MAuCV5wKqiXD+S8xP3ifQ1LtWYhiUaAnD83nGO3z2ucUQiPfJNVcAlJieadI59rf5rGkdUeLWt0JbKnpUB+Of6P1wMuahxRCK36PUKh5Y/GSly0G0HyTpD51jfiI7YYMOhFefR6xWtQiy0RjYcqf4t/cEsmyQoBdzfl/5Wp1jvUbUHPi6yoq5WrHRWJh+OMu12wRV8IYzoMMP6SHr07HN7Mv9Ny4hOAESHxhF8IUyT+Aqz/rX642zrDMCvZ34lKiFK44hEWiRBKeCkc6xlCagXgJ21HQBLTy0lLkkW+SuIYlOsjXTB6RQP7Qw/EmpEN6Booo/ZeiJvuNq7MqD2AAAiEyJZ/d9qjSMSaZEEpQC7EX6DrVe2AlDOrRwdKnXQOCLh7eRN7xq9AQiLDeP3c79rHJHIDY7u9urfe92edI5tFd45zXoi74xo+OTHmtzmsVySoBRgi04sQsFwj9uSO8c6udtTv2dlnArJh3XK2zw/Hf9Jw0hEbvGp5omzpwOPrR9x0vVfAIokeVA3qplax9nLAZ9qnlqFWKg1LNGQej71ADh85zCngk9pG5AwyzK/scQzS9InsSjQsHqutc7aojvHOnk40LB3FZw8HLQOJU/4lfWjurdhgbh9N/dx7uE5jSMSOc3KSkezQdWf6hzbHhts1DrNBlbHykqnVYiFmk6nM7nlLa0olkkSlAJq46WN3Iu6B8DzVZ+npGtJjSMSRjqdzqSJWTrLFkzlGhfjWLnd6uOWEYbbO85eDrSbUJ8KTaTDupYG1B6Ak60TAD+f/pmYxBiNIxJPkwSlgJLOsZZtUN1B2FsbbmktO7WM2MRYjSMSOW33jd0ExVwHoLl7S4ollsB3aE36zfGX5MQCuDm40a9mP8Aws+xvZ3/TOCLxNElQCqCbETfZfNnQMa+sW1k6VuqocUTiaZ6OnvSt2ReA8LhwfjsnH44FTcqWsaF1hgFQtKKb3NaxIMY1skBu81giSVAKoJSdY4fVH4a1lbXGEQlzpLNswfUw+iHrzq8DoKhTUbqU6apxRMKcZqWbUatYLQAO3DrAhfDzGewh8pIkKAVMkj5JnTnWSmfFkPpDNI5IpKVFmRbULFoTgIO3DvLfg/80jkjklGWnlpGoNywI+Vq919S5b4Rlebqz7M+Xl2sYjXiaJCgFzJYrW7j9+DYA3Z/rTqkipTSOSKRFp9OZtqIck1aUgkBRFJPbO8MaDMvT4xe2YfvP6tU6r+JgYxhBuPrqShJ1CRpHJIwkQSlgUn4wSudYyzew7kD1w3HF6RUykqAA2H1jN5fDLgOG9ZeqeFXJ0+Pn1bD9gpIIeTh60KeGYXXp8IRwjrsc4OG1CFknyQJIglKA3H58m42XNwJQukhpOlfunMEeQmvuDu4mIwnWnF2jcUTiWRWWEXQFaf6ibo491b/3uW/hwKKzrB63W1ac1liWE5SYmBgWL17M22+/Tbdu3WjVqhWbN2/OeMf/FxkZyRdffMHzzz9Px44dGT9+PBcvyqquOWFx4GL0ih6QzrH5iXSW1U7MoziOr71MzKOcWRMpZedYbydvXqz2Yo48r8g9148E83i5HT7xZQC45HSGYNvbRIfFsXN2oCQpGspyghIREcHSpUsJCgqicuXKWdpXr9czZcoUduzYQc+ePXn99dd59OgR48eP59atW1kNRaSQrE9m4YmFgHSOzW+alW5G7WK1ATh0+xCn75/WOKLCIyY8nsB1V4jJoUX7lp9aTkKyoQ9DQN0A7G3y9+2Pgk6vVzi0/Dw6dPj9/yrTAPvct6p/H1pxXm73aCTLCYqXlxd//PEHv/32G6NGjcrSvrt37+a///5j6tSpvPbaa/Ts2ZO5c+diZWXFkiVLshqKSGHr1a3cemxI8rpW6UoZtzIaRyQySzrLFgyKopjc3hnecHg6tYUlCL4QRnSYofWs+eN22OgNSxEcLLKdRJ1hFFZ0aBzBF8I0i7Ewy3KCYmdnh5eXV7YOtmfPHjw9PWnVqpVa5u7uTps2bdi/fz8JCdJ7Orukc2z+9mqdV59Mu33mZ6ITojWOSGTV3qC9XAq9BECb8m14zus5jSMSGYlN0XLmmuxGgyhfAKJsHnPS5V+z9UTeydNOspcuXaJKlSpYWZketnr16sTFxaV5myckJISLFy+q/wUFBeVFuPnGncd3+PvS3wCUci1FlypdNI5IZJWbgxv9a/YH4HH8Y1b9t0rjiERWmXSObSg/EvIDx6dGIPmFPxlYsM9tS5r1RN6wybhKzgkLC6Nu3bqpyo0tMqGhoVSqVCnV9vXr17N06dLcDi/fWnJyCcmKYcXUofWHYmOVp2+ryCEjG41UJ9n76fhPDG0wVOOIRGaFxoSy9txaALwcvXip2ksaRyQyw6eaJ86eDuptnqqxdSiWUJIHdnc573ySB7b3qFCkAj7VPDWOtHDK0xaU+Ph47OxSz6hoLIuPN9+M1qNHDxYsWKD+99577+VqnPlJys6xOnTypZaPNS7ZmHo+9QA4evcogfcCtQ1IZJpJ59h60jk2v7Cy0tFsUHX1carOsm5baDawuqyfpJE8TVDs7e3N9jMxltnbm/9H7e3tTdWqVdX/ypUrl6tx5ifbr20nKMJwy6tLlS6UdSurcUQiu1J1lpUhx/nC051j83rmWPFsKjTxod2E+jh7GuZzaRHRAWvF0Ap9tMQuSjWU1hOt5GmC4unpSWhoaKpyY1l2O98WZtI5tmAZUHsAzrbOAPxy5hci4yM1jkhkZP/N/VwIuQBA63KtqeZdTeOIRFZVaOJDv7n++A6tSZFkd9oXNbSihCaEsP7ieo2jK7zyNEGpUqUKly9fRq/Xm5SfP38eBwcHypSRobFZcTfyrvqPp4RLCbo9103jiMSzKmJfhAG1BwAQlRAlnWXzAekcWzBYWekoWtENgBH1n7yP0pKpnVxLUEJCQggKCiIpKUkta926NWFhYezdu1ctCw8PZ9euXbRo0cJs/xSRtiWB0jm2IJLbPPlHWGwYv539DQBPR096Vu+ZwR4iO/J63Z+WPn5U8jAM2NhxbQdXw67m+DFyehbjgihbCcrvv//OsmXL2LRpEwAHDhxg2bJlLFu2jKioKADmz5/PwIEDefjwobqfv78/NWvWZObMmSxdupQ//viD8ePHo9frGTJEZj7NimR9MgtOLAAMHbvkvnfB0bBkQxqWaAjA8XvHOX73uMYRibSsOLWC+GRD5/7BdQerCz+KnJXX6/5Y6axMWsOMAxFyUk7PYlwQZStBWb16NYsWLeLPP/8EYO/evSxatIhFixYRGZn2PXNra2s+//xz2rZty++//868efNwc3Nj9uzZlC0rnTuzYve9XWrn2M6VO1POXToOFyTSimL5Us0c20Bmji1IAuoFYGtlC8Dik4vVUVoi72TrnsCaNRmvuDpt2jSmTZuWqtzV1ZUpU6YwZcqU7Bxa/L8Vl5eqf6f8MhMFw8u1X2bitolEJkTy65lf+bLjlxSxL6J1WCKFg7cOcu7hOQD8yvpRvWj1DPYQ+Ukx52K8WO1Ffjv3Gw+iH7D+4np61+itdViFSp52khU5I9w6lC23DCtIS+fYgsnFzoVXar8CQHRiNL+e+VXjiMTTpHNswSctmdqSBCUfOuC2XTrHZkNed7R7ViMbmX44KoqsqGopHsU+Ys1ZQ0uyh4MHvar30jgikRvaVGiT651lRdokQclnkvXJ7HM3rBEhnWOzJq872j2rej71aFKqCQAng09y9O5RjSMSRj+f/pm4JMPoi0F1B+Fo66hxRCI3WOmsTPoW5UZnWZE2SVDymd33dhFq+wCQzrGFQcrJ9346Jk3MlkA6xxYur9V/TTrLakQSlHxEr1dYELhAfTysvnwwFnT9a/VXO8euOruKiLgIjSMSh24f4r8H/wHgW8aXmsVqahyRyE3GzrKA2llW5A1JUPKJ60eC+XHCWnaFbgfALcmTmB9cuX4kWOPIRG5ytnPm1dqvAhCTGMPPp3/WOCIhnWMLn5Tvs3SWzTuSoOSA3J4R8PqRYHbODmSbfgN6nWGZgJbhHYkLS2Tn7EBJUgo46SxrOcLjwln932oA3B3c6VOjj8YRibzQtkJb6SyrAUlQckBuzgio1yscWn4ePcnsd98KgE4xXRL80Irz6PXypVVQ1Sleh2almwFw5sEZDt85rHFEhdcvp38hNikWgIF1Bkrn2EJCOstqQxIUCxd8IYzosDjOOQWqnWNrRjfEK6m4Wic6NI7gC2FahSjygMzHoD1FUUxee+kcW7hIZ9m8JwmKhYv9/1aZPe6b1bJWEZ3TrCcKpr41++Jmb1hpdfV/qwmPC9c2oELoyJ0jnHlwBoDmpZtTu3htjSMSeUk6y+Y9SVAsnKO7PeHWoZx2MTTruyV5Ujuqidl6ouBysnViUN1BAMQmxbLi1AqNIyp8fjz+o/q3dI4tnKSzbN6SBMXC+VTz5EiJf0w6x9o8tYSSs5cDPtU8tQhP5KGnb/NIZ9m8ExYbxqr/VgHgZu8mnWMLKeksm7ckQbFwepLZ7/Wkc2zLFJ1jjZoNrI6VlS6vQxN5rGaxmviW8QXg7MOzHLx1UOOICo+lJ5eqM8e+Vu81nO2cNY5IaEE6y+YtSVAs3MZLG7kXdxeAeglN8U7ROdbZy4F2E+pToYlPjh83v61bU1hIZ9m8p1f0zDs2T338eqPXNYxGaC2gXoC6/pl0ls1dkqBYuO+Pfq/+/UnA//Adapi10ndoTfrN8c+V5ATy37o1hUXvGr3xcPAAYM3ZNTyKf6RxRAXfjms7uBJ2BYB2FdpR1buqxhEJLRV3Kc5L1V4CDJ1l151fp3FEBZckKBbsUugltl8zzBxbwb0CXap0pmhFw0iOohXd5LZOIeRo68jguoMBiE+OZ/XVlRpHlPNye+LDrPrh6A/q36Mbj9YwEmEpUl4H3x35TsNICjZJUCzYj8eejBoY1WgUVjp5u4TpSIIlZxehoPDwWkSBmawvNyc+zKqbETfZcGkDACVdS9Kjag+NIxKWoHW51tQsamjNPnDrAKeCT2kcUcEk33gWKiYxhiUnlwBgb23PkPpDNI5IWIrqRavTxMMws+y12KtcdjzLgUVnWT1utyx7kMPmH5+PXjGMoBvZcKTa90AUbjqdzqQVJeWteJFzJEGxUCvPrFQn4+pfqz9eTl7aBiQsxvUjwdQ566c+3vv/k/hFh8XJ2kw5KCE5QR2lYWNlw7AGwzSOSFiSgXUG4mrnCsDPp3/mUaz0B8tpkqBYIEVRTDLyNxq/oWE0IjtyaxSUcW2mBlEtcUkqAsBxl/1EWT1W68jaTDnjj/N/cD/6PgAvVnuRkq4lNY5IWBJXe1e1P1hsUixLTy7VNqACSBIUC3T4zmECgwMBaFSyEY1LNdY4IpFVuTUKyrg2k61iS4vH7QFIskrkoNsOtY6szZQzfjiWonNsI+kcK1JLeZvnh2M/qLcDRc6QBMUCpRw1IK0nIqWUay75hT9Zk2mf2xYUFLP1coqlja7JTf89+I+9QXsBqOZdDf/y/toGJCxS9aLVaVehHQBXwq6w/ep2jSMqWCRBsTAPox+y+uxqADwdPelXs5/GEQlLknLNJZ/E0lSNqQNAsP1tLjmeMVsvp1jS6Jrc9v2RJ7dYRzcajU4nQ/qFeSl/RH53VIYc5yRJUCzMosBF6syEQ+oNwdHWUeOIhCXxqeaJs+eT20atwruofxtXvJa1mZ7No9hHLD+9HAAXOxd1kUYhzHm+6vOUKVIGMMz8ff3RdY0jKjgkQbEgicmJaudYHTqZUlukYmWlo9mg6urj+lEtcE0yTN53wvUA4dahsjbTM1p4YiExiTEABNQNwM3BTeOIhCWzsbJRP6sVFJP5qyxBfr41KwmKBfnjwh/cfnwbgO7PdaeSZyWNIxKWqEITH9pNqI+zpwO2ii1+EYa+KMm6JG50OpZryx8UBkn6JJNm+rFNx2oYjcgvhjUYhp21HQALA58kuJYgP9+alQTFgsw+NFv9e0KzCZrFISxfhSY+9Jvrj+/QmrR51B0bnWECsVV3fyY2MVbj6PKvvy78xc2ImwB0rdKV57ye0zgikR8Ucy5G35p9AQiLDePn0z9rHFHBIAmKhTh8+zD/3v4XgNrFatOmfBuNIxKWzspKR9GKbrgne/Fi+Z4AhMaGyofjM5hzeI769/im4zWMROQ3E5pOUP+efWg2iiJzET0rSVAsRMoPxgnNJsioAZElr9d4Mh/D7MPy4ZgdgfcC2XdzHwDVvavToWIHjSMS+UnDkg3xK2uY4fl8yHm2Xt2qcUT5nyQoFuD249v8du43ALydvBlQe4DGEYn8pq5XPVqWbQnAuYfn1FWwReal/JEwruk4+ZEgsuzNZm+qf39z6BsNIykYJEGxAN8f+Z4kfRJgWLXYwSZnZx8VhYN8OGbfg9gHrPxvJQDuDu4MrDNQ44hEftSjag8qelQEYNvVbfz34D+NI8rfJEHRWExiDD8d/wkAWytbRjUapXFEIr96oeoLlHcvD8CWK1s4//C8tgHlI8suLVbnHxreYDjOds4aRyTyI2sra8Y1Gac+TjnwQWSdJCgaW3FqBY/iDKtg9q/VnxKuJTSOSORX1lbWjG3yZFhsylsWIm3xujgWXVgAgLXOWpaXEM9kSP0hFLE3LOT58+mfeRD9QOOI8i9JUDSUrE/m60Nfq49l1IB4VkPrD8XFzgWA5aeWExoTqnFElu9ft52Exhtep741+1LOvZzGEYn8zNXeleENhgMQnxxvcRO35SeSoGho/cX1XAq9BEDrcq1pWLKhxhGJ/M7NwY0h9YYAhiXg5x2bp3FEli1Zn8w2j3Xq40ktJmkYjSgoxjYZi5XO8PX6/dHviUvKf7O4WgJJUDSiKAqzDsxSH0/xnaJhNKIgGd9svPrhOPfwXIua1dLSbLz1Nw/t7gHQvmJ76peor3FEoiAo516OXtV7AfAg+gHLTy3XOKL8SRIUjey7uY/Ddw4DhonZOlfurHFEoqCo6FFRndXyYcxDlgQu0Tgiy6QoCt/996SfzuQWkzWMRhQ0k32fXE+fH/icZH2yhtHkT5KgaCRl68lk38ky54LIUSlb5L7890t1GLt4YveNPQSGngCgmnMN2pZvp3FEoiBpVLIR7Su2B+Dqo6usPbdW44jyH0lQNHDm/hk2Xd4EQFm3svSr2U/jiERBU8+nntoqdyP8BmvOrtE4Isty/UgwExdMVR+3vNyNNeP3cP1IsIZRiYLmHd931L8/O/CZzPCcRZKgaOCLg1+of09sPhFba1sNoxEFlcmH4375cDS6fiSY5T/8QaD9IQA8E4vSMNKP6LA4ds4OlCRF5Ji2FdrSuGRjAE4Gn2Tb1W0aR5S/SIKSx25G3FRnrPR09GRo/aEaRyQKqlblWtGsdDMAzjw4w+YrmzWOSHt6vcKh5efZ6LVKLesQ9hI22KiPD604j14vyZx4djqdjndaPvmhMHP/TA2jyX8kQcljn+3/TO0PMKbxGJmxUuQanU5n0ooiH44QfCGMK1GXOOZqWBTQNckdvwjTDurRoXEEXwjL0eM6udtTv2dlnNztc/R5heV7sdqLVPWqCsCeoD38e+tfjSPKPyRByUO3H99mUeAiAFzsXBjXdFwGewjxbJ6v+jzVvasDsP/mfnbf2K1tQBqLDY9nk+dqFJ2hhaRTWE/sldRrX8WGx+focZ08HGjYuwpOHrLOVmFjpbMy6bT+6f5PNYwmf5EEJQ/N2j9LXe9jTOMxeDl5aRyRKOisdFa86/eu+viD3R8U6r4o96xvc7jIHgBckorQOryb2XqO0tIhctArdV6hTJEyAPx96W+O3jmqcUT5Q5YTlISEBObNm8dLL71E+/btGTlyJEePZu7FPnbsGOPHj+f555+na9eujBgxgq1bt2Y56PzobuRdFpwwrPfhbOvMxBYTNY5IFBb9a/VXm5j3Bu1l141dGkeknUX35qHo9AC0f/QSDopjqjrOXg74VPPM69BEAWZnbcc0v2nq4w/3fKhdMPlIlhOUmTNnsmbNGjp06MC4ceOwsrJi8uTJnD59Ot399u/fz8SJE0lMTCQgIIBhw4Zhb2/PjBkzWLOm4A+BnLV/FvHJhmbj0Y1H4+3krXFEorCwtrLm/dbvq48LayvK9UfXWXF6BQBOyS60DX/ebL1mA6tjZSXzEomcNaT+EMq6lQVg0+VNHHsorSgZyVKCcu7cOXbu3MmIESMYPXo0PXr0YPbs2fj4+DBvXvprfqxbtw4vLy9mz55Nr1696NmzJ9988w2lSpVi8+aCPbrgXuQ95p+YD4CTrRNvt3hb44hEYdOvZj+Tvij/XP9H44jy3sz9M0lWDLN5Dq/6Ot7upq0kzl4OtJtQnwpNfLQITxRwdtZ2vOf3nvp4xr/TAXh4LUJGjaUhSwnKnj17sLa2pkePHmqZvb093bp14+zZs9y/fz/NfWNiYnB1dcXOzk4ts7Gxwc3NDXv7gn2/d+b+mepiUaMajaKYczGNIxKFTWFvRbkcepnFgYsBKGJfhA96TqPfXH98h9YEwHdoTfrN8ZfkROSqgHoBlHY09EXZH76HKw7nOLDoLKvH7Zb5d8zIUoJy+fJlSpcujbOz6dDY6tUNv8yuXLmS5r716tXj+vXrLFy4kNu3b3Pnzh2WLVvGxYsXefnll7MRev5w/dF1dbltaT0RWupTo4/ainLg1gF2XNuhcUR55/3d76utJxObT8TD0QMrKx1FK7oBULSim9zWEbnu9vFQ2l7vqT5e7/0zgEwSmAabjKs8ERoaipdX6pEnxrKQkJA09x08eDD37t1jxYoVLF9uWNnRwcGBjz/+GD8/v3SPGxISQmhoqPo4KCgoK2Fr6oPdH5CoTwTgzWZv4uMiv9CENqytrPmg9Qf0/70/ANP+mUa7iu3UlY8LqpPBJ1n1n2FitqJORXmz2ZsaRyQKI+Mkgc0j2rHZczUP7YI573ySi46nqRpbBzBMEliuUXFJlv9flj6Z4uPjsbVNPS278bZNfHzacwfY2tpSpkwZ/P39+eCDD3jvvfeoWrUq06dP5+zZs+ked/369QwfPlz9b/r06VkJWzOn75/m59OGDNnT0ZNJLSZpHJEo7PrU7EOd4oYPw2N3j/Hb2d80jij3Tdv5ZPTEu37v4mrvqmE0orAKvhBGdFgcNtjQPXSAWr626GL0GEaW5cYkgflZllpQ7O3tSUxMTFWekJCgbk/L7NmzOXfuHAsXLsTKypAXtW3blkGDBjF37lx++umnNPft0aMHvr6+6uOgoKB8kaS8+8+7KBju809rOQ03BzeNIxKFnZXOis/bf07nXwyzp07dOZUXq72IvU3B7Ae258YedYr/sm5leb3R6xpHJAqrlJP/NXvchm2ev3PHPogbjpc47rqPxpGtU9Ur7LLUguLl5WVyq8XIWObtbX7obGJiIhs3bqR58+ZqcgKGTrJNmzbl4sWLZhMfI29vb6pWrar+V65cuayErYn9N/fz96W/AShdpDSjG4/WOCIhDDpW6ki7Cu0AuB7+pI9UQaMoClN3Plmx+CP/jwpsIiZyRm4uSZBy8j8rrOn1cIj6eJ33MhJ1ianqFXZZSlAqV67M7du3iY6ONik/d+6cut2ciIgIkpOTSU5OTrUtOTkZvV6PXq/PSigWTa/oeXvbk86wH7b+EEfb1BNCCaEFnU7H5x0+Vx9/svcTwuPCtQsol6w5u4Z/bxvWPanuXZ2BdQZqHJGwdLm5JIFPNU+cPZ88b63oRlSPrgdAiF0we9w3yiSBT8lSguLv709ycjLr169XyxISEti0aRM1atSgePHiANy/f9+kI6uHhwcuLi7s27fPpKUkJiaGAwcOULZs2QI11PiX079w+M5hAGoUrcHgeoM1jkgIUw1KNOCV2q8AEBobymf7P9M4opwVmxjL5B2T1cdfdPgCaytrDSMShZ2VlY5mg6qrj3XoTFpR/vZaSY3+JaWDbApZSlBq1KhBmzZtmD9/PvPmzWP9+vVMmDCB4OBgXn/9yb3dGTNmMHDgk18r1tbW9O/fn1u3bvH666+zZs0aVq1axciRI3n48CGDBg3KuTPSWFRCFFN2PFkYanan2dhYZamrjxB5Ynrb6dhZGzq4f3PoG66EpT1NQH7z5cEvuRlxE4BOlTrRtUpXjSMSAio08aHdhPpqS0q5+Mo0i2gDQLR1JEsjC+bt1uzK8vjCadOm0adPH7Zu3crcuXNJSkpi1qxZ1KtXL939Bg0axP/+9z9sbGxYunQpixYtwtnZmY8//piOHTtmN36LM3PfTO5F3QOgR9UedKjUQeOIhDCvvHt53mr2FgAJyQlM2DJB24ByyJ3Hd/jsgKFFyFpnzdedvkank1+lwjJUaOJjMkng9HYzcLAxJCzfHvmWM/fPaBmeRcnyT3t7e3tGjx7N6NFpd/qcO3eu2fIOHTrQoUPB/cK+EXmDr/79CgBbK1u+6viVxhEJkb53W73LitMruBN5h42XN/L3pb/p/lx3rcN6JpO2TyImMQYwzNxco2gNjSMSwlTKSQLr1qjBNJdp6mSCYzaPYffg3ZJUk40WFGFKr1d4eC0CBYU3d41XFwR8s9mbVPY032lYCEvhYudikkiP3zJeXZYhP9p2dRsr/1sJGOYe+tD/Q20DEiITJvlOopJHJcCw4rjxGi7sJEF5BtePBLN63G4OLDrLEdc97A/fA0AJh5K81+q9DPYWwjL0rdkX//L+AFx7dI1P932qbUDZFJsYy6iNo9THX3T4Ai+n1DNfC2FpHGwcmNvlyZ2Ht7e9TURchIYRWQZJULLp+pFgds4OJDosjmirSFYXm69u63l1KCGnotPZWwjLodPp+LbLt2pn7pn7Z3L6/mmNo8q66Xunc+3RNQBalWvFa/Ve0zgiITKva5WuvFD1BQDuRd1j0naZeVwSlGwwrqlg9HvRxUTahANQP7IF9aKac2jFeVlCW+QbtYrV4h3fdwBI0icx5K8hJOmTNI4q8/578B9fHPwCMPT/+rHbj3IPX+Q7c7vMxcXOBYAFJxYUqgU9zZEEJRuMayoA/Od0jH3uWwFwSHbk5QeG4daypoLIb95r9Z7aofT4veN88+83GkeUOQnJCby67lV1Uc53Wr5D9aLVM9hLCMtT1q0sX3T4Qn08bP0wohKiNIxIW5KgZINxrYQoq8csLfHkQ7zXwyF4JHmnqidEfmBvY8+iHovQYWh5eH/3+5x7eE7jqDL24e4POXX/FAA1i9Zkmt+0DPYQwnKNaDhC7RMWFBHElO1T0t+hAJMEJRsc3e1RUFjh8y0RNo8AqBXVkNYRXVPVEyI/aVa6GROaTQAgLimO/mv7W/SonoO3DjLrwCzAcGtnxUsr1DklhMiPrHRWLHx+IU62TgD8cOwH1l9cn8FeBZMkKNngU82TEyX2csL1AAAuSUUYHPym+ssTkDUVRL41o+0MahY1TCJ15sEZJm2zzM56EXERDPxjIHrFsI7Xh/4fUr9EfY2jEuLZVfKsZHKr57W/XuP249saRqQNSVCy4VzIWZZ5PBkSNvD+WNyTTZORZgOry5oKIl9ytHVkVe9VakvEd0e/y7NfcMZ5hQAeXotIs6O5oigMWT9EHbXTvHRzJvtONltXiPxoVKNRvFTtJQDCYsN4Zd0rJOtTL7hbkEmCkkURcRH0XN2T2ORYAPxju9Agylfd7uzlQLsJ9anQxEerEIV4ZrWK1eKbTk/6VwX8GcC1x9dy9Zgp5xUCOLDoLKvH7eb6keBUdb859A3rzq8DwN3BnV96/iJrXokCRafTsajHIsq6lQUME7i9v+t9jaPKW5KgZIFe0RPwVwCXwy4DUN+nPn9/tFZdU8F3aE36zfGX5EQUCCMbjqRn9Z4APIp7xMBdLxNrFZMrx0o5r1BK0WFx7JwdaJKk7Lq+i8nbn7SWrHhpBRU8KuRKXEJoycPRg197/oq1zrAS96f7P2XlmcIzy6wkKFkweftk/rzwJ2D41ba271qc7Z3UNRWKVnTL9ds6Tu721O9ZGSfpgCtymU6nY8kLS9Shx5ciLrKwxOcEXw3L0Tl+np5XyBzjvELnH57npdUvkawYmrqntpya79cOEiI9vmV9TZajGLJ+CEfvHNUworwjCUomfX/ke3UhQGudNSt7raSiR8U8j8PJw4GGvavg5CEjFUTuK2JfhO+rL8JZ7wrAaZcjjN44mlXjdpm99ZIdKecVSkt0aBxnTl6g669diYg39FHpVqUbH7f5OEdiEMKSjWs6jqH1hwKG0XXdV3bnUugljaPKfZKgZMIvp39h3JZx6uMfuv1A58qdNYxIiLxx/UgwVxY8YsSdd7BWDH089rlv4Wern1LdesmuzMwXFGkdQb9dvbgRfgMw3F5d1XuV9DsRhYJOp+P7rt/TsmxLAB5EP6DDig7cirilcWS5SxKUDPx65lcG/TlIHcr4ju87jGg4QuOohMh9KW+91Iipz5B7E9EphluYm73W8JfXCv5dce6Zb/dkNF9QtFUk35R+l4tRhlhKFynNhpc3qFOCC1EY2NvYs77/emoXqw3AzYibtF/RvkAnKZKgpGPB8QUm8yyMajSKT9vlz5Vehciqp2+9NIlszcsPnqwW/Lf3ShZbz+Hu+ZBnOo5PNU+cPc3fsgyzecgXZadwy8Ewgqika0n+GfQPpYqUeqZjCpEfeTh6sG3gNip5VALgUuglfBf7cjHkosaR5Q5JUMzQK3omb5/MiL9HmCQn33f9XhYgE4WGuVsvbcK70//+SPXxTo/1jNg35JnWC7Gy0tFsUOq1c27aX2Vm2be4Y38DAB8XH/4Z9A9VvKpk+1hC5Hc+Lj7sHLSTyp6VAbj1+BYtl7Rk943dqepmdl4hSyUJylMeRD+g+6/d1ZVRAd5q9hbfdf1OkhNRqKR166Vd+Au8du8tdIrh42Pz/b9purDpM/2Kq9DEh3YT6uPs6YCCwj63rcwq+zbhtqEAVPKoxN6AvVT1rprtYwhRUJRzL8f+1/ZTt3hdAEJiQmi/vD1fHPgCRTEkIVmZV8ic0JhQgqNypiN8dkmCksKWK1uoM68Om69sBgyjdX7o+gNfdfoKK528VKJwSe/WS4vH7Xnjzv9w1DsDcO7hOer9VI8vD35Jkj4pW8er0MSHFp9UYk2LuSz3mUOClaEFp1npZvw79F9pOREiheIuxdkdsJsOFTsAkKwkM3nHZNqvaM+uXf9mel6hp+kVPYtOLKLqd1V5Y9MbuXoOGZFv3f8XlxTH8A3DuR99H4DizsXZ/MpmRjUelcGeQhRMad16Maob3ZS//bep6/bEJcUxafsk6syrw9pza7M0LXdoTCjv73qfmvNqsCN0q1o+suFI/hn0D0Wdi2b/RIQooNwd3Nn8ymb+1+p/atk/1/+h057WrCr6ExHWYWb3M84rlJKiKGy+vJlmC5sxbMMwQmNDWXd+HZsub8rVc0iPjNH7fw42Dix7cRntl7enS5UuLHlhCcWci2kdlhCaMt56ObT8vMmvMWcvB5oNrE6FJj4c9j3Mu/+8y9zDc1FQOB9ynj6/9aGcWzkG1x1M1ypdaViyYaohwWGxYey/uZ/fzv3GuvPriEl8Mkuta5I7s9vNYYj/oDw7VyHyI2sraz5u8zF+Zf0YvmE4QRFBJOoS2en5F7s9NlI3qimNIv2oFlMX12TDpKLRoXEEXwijeDV3Tt8/zeYrm1l+ajkXQ01v0/av1Z/6PtotwCkJSgptK7Rl/5D9NC/dXPqbCPH/KjTxoVyj4lzcdYsDi87iO7QmVduUUWdNdrZzZnbn2fSv1Z+3t73NgVuGVb6DIoL4eO/HfLz3Y2ytbKngUYEi9kVQFIV7Ufe4G3k31bFsrWwZWCWAun93oEe5jnl6nkLkZx0qdeDs6LNMXPkOS64tIMEqnmRdEidcD3DC1fBv0jXJHY8kb6wVKz7bpOfuH3eITYpN9Vx1itfhq45f0b5i+7w+DROSoDylRZkWWocghMWxstJluKRDs9LN2PfaPrZc2cK3R75ly5UtKBiakRP1ienOfOnh4MGrdV7l7RZv4xTmxp/rD+bOiQhRgDnbOfN+4w+psqMZOzz+4qDbDh7bPFK3R9qEE2kTbngQnXp///L+jG0ylhervWgR/S4lQRFC5BidTkeXKl3oUqULtx/fZsuVLey4toNzD89x9dFVYhMNv9aKORejvHt5WpRpgX95fzpV6oS9jWHUUEhYhJanIES+5lPNk5JuJekV8hovhAzkotNpzjsHctXhAiG2wUTYPELR6XG0caScezlqFq2Jf3l/ulXpZnGLbkqCIkQ+ZsmLR5YuUpphDYYxrMEwk3JFUeQWqhC5xNi5fefsQGywoWZMA2rGNDCp025CfSo08dEowszTvg1HCJFt+XHxSElOhMhdKecVSsnZyyHfJCcgLShCCCFEgZNR5/b8QFpQhBBCiAIoM53bLZkkKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEKIQsvJ3Z76PSvj5G6vdShCiKfYaB2AEEJoxcnDgYa9q2gdhhDCDGlBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWJws90FJSEhg0aJFbNu2jcjISCpVqsSwYcNo3LhxpvbfuXMna9eu5erVq9jY2FCuXDmGDRtGw4YNsxy8EEIIIQqmLCcoM2fOZPfu3fTp04fSpUuzefNmJk+ezJw5c6hTp066+y5evJhly5bh7+9P586dSUpK4vr164SEhGT7BIQQQghR8GQpQTl37hw7d+5k1KhRvPzyywB06tSJgIAA5s2bx7x589Lc9+zZsyxbtow33niDvn37PlvUQgghRD4mQ9wzlqU+KHv27MHa2poePXqoZfb29nTr1o2zZ89y//79NPf97bff8PT0pHfv3iiKQkxMTPajFkIIIfIx4xB3Jw8HrUOxWFlqQbl8+TKlS5fG2dnZpLx69eoAXLlyheLFi5vd9/jx49SqVYu1a9eyYsUKIiIi8PT0ZODAgfTq1Svd44aEhBAaGqo+DgoKykrYQgghhMhnspSghIaG4uXllarcWJZWX5LIyEgiIiL477//OHHiBAEBARQvXpzNmzczZ84cbGxseOGFF9I87vr161m6dGlWQhVCCCFEPpalBCU+Ph5bW9tU5XZ2dup2c4y3cyIiIvjggw9o164dAP7+/gQEBLB8+fJ0E5QePXrg6+urPg4KCmL69OlZCV0IIYQQ+UiWEhR7e3sSExNTlSckJKjb09oPwMbGBn9/f7XcysqKtm3bsnjxYu7fv5/m7SFvb2+8vb2zEqoQQggh8rEsdZL18vIy6QtiZCxLK4koUqQIdnZ2FClSBGtra5NtHh4egOE2kBBCCCEEZDFBqVy5Mrdv3yY6Otqk/Ny5c+p2swexsqJKlSpERESkaoEx9ltxd3fPSihCCCGEKMCylKD4+/uTnJzM+vXr1bKEhAQ2bdpEjRo11Fs09+/fTzXSpk2bNiQnJ7Nlyxa1LD4+nu3bt1O+fHm5hSOEEEIIVZb6oNSoUYM2bdowf/58wsPDKVWqFFu2bCE4OJgpU6ao9WbMmMHJkyfZu3evWvbCCy+wceNGvvnmG27dukXx4sXZunUr9+/fZ+bMmTl3RkIIIYTI97I81f20adPU5CIqKoqKFSsya9Ys6tWrl+5+9vb2zJ49m3nz5rFp0ybi4uKoXLkys2bNokmTJtmNXwghhBAFUJYTFHt7e0aPHs3o0aPTrDN37lyz5R4eHkybNi2rhxRCCCFEIZOlPihCCCGEEHlBEhQhhBBCWBxJUIQQQghhcSRByQGybLYQQgiRs7LcSVakZlw2WwghhBA5Q1pQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBAWRUbFCSFARvEIITIprxIHGRUnhABJUIQQmSSJgxAiL8ktHiGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCiAIqP88rJMOMhRBCiAIqP08PIC0oQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuLYaB1AdsTHxwMQFBSkcSRCCCGEyKpy5crh4OCQbp18maAEBwcDMH36dI0jEUIIIURWLViwgKpVq6ZbR6coipJH8eSY8PBwjhw5QokSJbCzs9M6nFwXFBTE9OnTee+99yhXrpzW4eQpOffCd+6F9byh8J57YT1vKLznXmBbUNzd3enYsaPWYeS5cuXKZZhxFlRy7oXv3AvreUPhPffCet5QuM89LdJJVgghhBAWRxIUIYQQQlgcSVDyAS8vLwICAvDy8tI6lDwn5174zr2wnjcU3nMvrOcNhfvcM5IvO8kKIYQQomCTFhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBYnX07UVhCFhISwdu1azp8/z4ULF4iNjWXOnDnUr18/Vd1x48Zx8uTJVOVNmjThyy+/NClLSEhg0aJFbNu2jcjISCpVqsSwYcNo3Lhxbp1KlmXl3AHOnDnDjz/+yKVLl3B2dqZNmzYMHz4cJycnk3r54dzN2bx5MzNnzjS77Y8//kjV23///v0sWbKEoKAg3N3d6dq1K4MGDcLGJn/9886v71dWBAYGMn78eLPb5s2bR82aNdXHmb3OLVFMTAyrVq3i3LlznD9/nsjISKZOnUqXLl1S1b1x4wbfffcdZ86cwcbGhubNmzNmzBjc3d1N6un1elatWsWff/5JWFgYpUuX5tVXX6V9+/Z5dFYZy+x5f/rpp2zZsiXV/mXLluXnn382KcsP551b8tcnWAF269Ytfv31V0qXLk3FihU5e/ZsuvWLFi3KyJEjTcrMDVObOXMmu3fvpk+fPpQuXZrNmzczefJk5syZQ506dXL0HLIrK+d++fJl3nzzTcqVK8eYMWN48OABq1ev5vbt23zxxRcmdfPDuadn6NChlChRwqTMxcXF5PGhQ4d49913qVevHuPHj+fatWssX76cR48eMXHixLwM95nl9/crK3r16kX16tVNykqVKqX+nZXr3BJFRESwdOlSihcvTuXKlQkMDDRb78GDB4wdOxYXFxeGDx9ObGwsq1at4tq1a/z000/Y2tqqdRcsWMAvv/zC888/T7Vq1di/fz8ff/wxOp2Odu3a5dWppSuz5w1gZ2fH5MmTTcqcnZ1T1csP551rFGERoqOjlYiICEVRFGXXrl2Kn5+fcuLECbN1x44dqwwaNCjD5zx79qzi5+en/Prrr2pZXFyc0r9/f+X111/PmcBzQFbO/e2331ZefPFFJSoqSi3bsGGD4ufnpxw+fFgtyy/nbs6mTZsUPz8/5fz58xnWHThwoPLaa68piYmJatn8+fOVVq1aKTdu3MjNMHNUfn6/suLEiROKn5+fsmvXrnTrZfY6t1Tx8fFKSEiIoiiKcv78ecXPz0/ZtGlTqnpfffWV0r59eyU4OFgtO3r0qOLn56f89ddfatmDBw+UNm3aKF9//bVaptfrlTfeeEPp2bOnkpSUlItnk3mZPe8ZM2YoHTt2zPD58st55xbpg2IhnJycKFKkSJb2SUpKIiYmJs3te/bswdramh49eqhl9vb2dOvWjbNnz3L//v1sx5uTMnvu0dHRHDt2jI4dO5r80ujUqROOjo7s2rVLLcsv556RmJgYkpOTzW67ceMGN27c4Pnnnze5nfPSSy+hKAq7d+/OoyifXUF5v7IiJiaGpKSkVOVZuc4tlZ2dXaYmHtuzZw8tWrSgePHialmjRo0oU6aMyXnu37+fpKQkXnrpJbVMp9Px4osv8vDhwwxbnPNKZs/bKDk5mejo6DS355fzzi1yiyefunXrFp06dSIxMRFPT0+6d+9OQECAyRfV5cuXKV26dKpmQ2PT8pUrV0w+GCzdtWvXSE5OTrWglq2tLVWqVOHy5ctqWUE49/HjxxMbG4utrS2NGzfmjTfeoEyZMur2S5cuAaR6Pby9vSlatKjJ62HpCsL7lRUzZ84kNjYWa2tr6tSpw6hRo6hWrRqQtes8P3v48CGPHj0yu0Be9erVOXTokPr48uXLODo6plrt13h9XL58Od/dBoyLi6NLly7ExcXh6upKu3bteP311036GBXE884KSVDyoZIlS1K/fn0qVqxIXFwcu3fvZvny5dy6dYuPPvpIrRcaGmo2mzeWhYSE5FnMOSE0NBQw39fGy8uLU6dOmdTNr+dub29Ply5dqF+/Ps7Ozly8eJE1a9YwevRoFi5cqH5RZ/R6GLfnB/n5/coKGxsbWrduTbNmzXBzc+PGjRusXr2aMWPG8MMPP/Dcc89l6TrPzzI6z8ePH5OQkICdnR2hoaF4eHig0+lS1YP8d314eXnx8ssv89xzz6EoCocPH+bPP//k6tWrzJkzR/2hWdDOO6skQckFer2exMTETNW1s7NLdfFl5J133jF53KlTJ7744gs2bNhA37591ZEA8fHxJp3MUh7TuD2n5ea5G+NN65wSEhJM6ub1uZuTndejbdu2tG3bVi338/OjSZMmjB07lhUrVvD2228DqOdrPKennyu923+WxlLer9xWu3ZtateurT5u2bIl/v7+vPbaa8yfP58vv/wyS9d5fpbReRrr2NnZFbjr4+kBDu3ataNMmTIsWLCAPXv2qJ1fC9p5Z5UkKLng1KlTaQ4lfNqKFStSNd9lR79+/diwYQPHjh1TExR7e3uzX47GDzh7e/tnPu7TcvPcjfGmdU4pv6i1OHdzcur1qFOnDjVq1OD48eNqmfF8zX1hJSQk5Nk55gRLeb+0ULp0aVq2bMnevXtJTk7O0nWen2V0ninrFIbro2/fvixatIhjx46pCUphOO/0SIKSC8qWLcvUqVMzVTenVrAsVqwYAJGRkSbP/fDhw1R1jU2r3t7eOXLslHLz3I31zd26CA0NNTkfLc7dnJx8PYoVK8bNmzdT1Q8NDU3VPyM0NDTVMFZLZinvl1aKFStGYmIicXFxWbrO87OMzrNIkSJqMubl5UVgYCCKopi0uhak68Pe3p4iRYrw+PFjtawwnHd6JEHJBV5eXmYnJMpNd+/eBTCZ3Mg4Dj86Otqk8+G5c+fU7TktN8+9QoUKWFtbc/HiRZNbIImJiVy+fJk2bdqoZVqcuzk5+XrcvXvX5P2tUqUKABcvXqRGjRpqeUhICA8fPjQZEWPpLOX90srdu3exs7PD0dExS9d5fla0aFHc3d25ePFiqm3nz583ec8rV67M33//TVBQEOXLl1fLC9L1ERMTQ0RERKrP8IJ+3umRYcb5THR0dKomfUVRWL58OYDJrJv+/v4kJyezfv16tSwhIYFNmzZRo0aNfDcqwsXFhUaNGrFt2zaT/hVbt24lNjbW5IM7P597eHh4qrJ///2Xixcv0qRJE7WsQoUKlC1blg0bNpgMRf7zzz/R6XS0bt06L8LNEfn5/coKc+/tlStXOHDgAI0bN8bKyipL13l+17p1aw4ePGgyjPz48ePcunXL5DxbtmyJjY0Nf/zxh1qmKAp//fUXRYsWpVatWnka97OIj4832z9s2bJlKIpC06ZN1bKCdN7ZIS0oFmTZsmWAYX4LMHwgnT59GoDBgwcDhqGlH330Ee3bt6dUqVLEx8ezb98+zpw5w/PPP28yZK9GjRq0adOG+fPnEx4eTqlSpdiyZQvBwcFMmTIlb08uA5k5d4Bhw4bxxhtvMHbsWHr06KHOsNm4cWOTf9j56dyfNmrUKJ577jmqVq2Ks7Mzly5dYtOmTRQrVoyBAwea1B09ejRTp05l4sSJtGvXjmvXrvHHH3/QvXt3k19cli4/v19Z8cEHH2Bvb0+tWrXw8PDgxo0bbNiwAQcHB5OOk5m9zi3Z77//TlRUlHo74sCBAzx48AAwzKTr4uLCq6++yu7du5kwYQK9e/cmNjaWlStXUrFiRZOWx2LFitGnTx9WrlxJUlIS1atXZ9++fZw+fZr//e9/WFtba3KO5mR03pGRkQwdOpT27dtTtmxZAI4cOcKhQ4do2rQpLVu2VJ8rP513btApiqJoHYQwaNWqVZrb9u7dCxiagn/66SfOnz9PWFgYVlZWlCtXju7du9OjR49Uo2Li4+PV9U2ioqKoWLEiw4YNM/klbgkyc+5Gp0+fVtcocXJyok2bNowcOTLVGiX55dyftmDBAg4dOsS9e/fUPgnNmzcnICAAT0/PVPX37dvH0qVLCQoKws3NjS5duqSaEyc/yK/vV1asXbuW7du3c+fOHaKjo3F3d6dhw4YEBARQunRpk7qZvc4tVd++fQkODja7bfXq1eoyDtevX0+1Fs8bb7yR6lrX6/X8+uuvrF+/ntDQUEqXLs0rr7xCx44dc/1csiKj83ZxcWHOnDmcPXuW0NBQ9Ho9pUqVokOHDvTv3z/Vv9v8ct65QRIUIYQQQlgc6YMihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIi0rV582ZatWrF5s2btQ4lUwIDA2nVqhWLFy/OtWO0atWKcePG5drzFxZ9+/alb9++Wodh8RYvXkyrVq0IDAzM1eOsWbOGtm3bcu/evUzVz4t/a/nZJ598Qp8+fYiPj9c6lHxLEpQC5rPPPqNVq1Z079491aKCBUV++2KLiIjgxx9/ZNCgQXTo0IEOHTrQp08fJkyYwJIlSwgLC8uTODJKNseNG5fukgOFSWxsLJ07d6ZVq1Z8/fXXWoeT6yIjI1m+fDldu3ZVp6AXzyYgIICQkBB+++03rUPJt/LXYh0iXTExMezatQudTsfjx4/Zt28f7dq1e6bn9PPzo0aNGnh5eeVQlIXLgwcPGD16NA8ePKBKlSp06dIFV1dXQkND+e+//1iyZAm1a9c2u8ZOQffNN99oHUKadu3aRUxMDDqdjh07dvDGG29gb2+vdVi5Zs2aNTx+/JiXX35Z61AKjDJlyuDr68uvv/5Kr169cHR01DqkfEcSlALkn3/+ITY2lr59+7J27Vo2btz4zAmKi4sLLi4uORRh4bN48WIePHjA0KFDTVZlNrp69WqhfX1LlSqldQhp2rhxI9bW1vTs2ZPffvuNvXv30qFDB63DyhVJSUn8/fff1K5d26Lfk/yoY8eO7N27l507d9K9e3etw8l3JEEpQIwfqgMGDODq1aucOHGC4OBgfHx8TOotXryYpUuXpvk8Pj4+rFmzBjDcFpg5cyZTp041Wf68VatW1KtXj//973/MmzePo0ePkpCQQN26dZkwYQIlS5bkxo0bzJ8/n1OnTpGUlESTJk148803TVoLAgMDGT9+PAEBAQwZMsQkjnv37tGvXz86d+7MtGnT1McpYzAyt/+FCxeYP38+Z8+excrKigYNGjBmzJhUTdh79+5l165dXLhwgZCQEGxsbKhUqRK9e/fG398//Rc9A2fPngWgZ8+eZrdXqlTJbPndu3f55ZdfOHr0KKGhoTg7O1O+fHm6dOmivg+JiYmsX7+egwcPcuPGDcLDw3F2dqZ27doMHjyY5557Tn2+Tz/9lC1btgAwc+ZMZs6caXL+KV/LlH8bX3ujq1evsmLFCk6ePMnjx4/x8vLC19eX1157DTc3N7VeyvduwIABLFiwgFOnTvH48WN1JVvjbTrjtQZPrs05c+YQEhLCypUruXnzJi4uLrRp04bXX389VUtGUlISq1at4u+//yYkJISiRYvSrVs32rZtS//+/VOdQ0Zu3rzJmTNnaNGihUmyby5BSXn9tmjRIlPXG8CePXv4+eefuX79Os7Ozvj6+jJq1CiGDh2a6jVJT2bfj/QcOXKE0NBQBgwYYHZ7fHw8S5YsYfv27URERFCqVCl69+6davXllO7evcuKFSs4evQojx49wtXVlSZNmjBkyJBUn0eQtdfDeC2vWrWKvXv3snHjRu7evUu7du3U9/nRo0f8/PPPHDx4kAcPHuDk5ETdunUZMmQIFStWTHX8rNS/desWP//8M4GBgYSGhuLg4ECxYsWoX78+Y8eONVlRvnnz5jg4OLBlyxZJULJBEpQC4saNG5w9e5ZmzZrh6elJp06dOH78OJs2bUr1xV2/fn2zzxEUFMSuXbsy3ZQdGRnJG2+8gZeXF506deL27dscPHiQt956i08//ZQxY8ZQtWpVunbtyqVLl9izZw+PHz9mzpw52TpHFxcXAgICWLt2LQC9e/dO85wuXLjAypUrqV+/Pj169ODy5cvs27ePa9eusXTpUpNznD9/PjY2NtSuXRsvLy/Cw8M5cOAA77//PuPHj6dXr17ZihdQvyRu3bpFjRo1MrXP6dOnmTJlCjExMTRp0oR27doRGRnJ5cuXWbt2rZqgPH78mG+//ZY6derQrFkzXF1duXfvHgcOHODw4cN8++23VK9eHTDcqouKimL//v20bNmSypUrmxwzICCALVu2EBwcTEBAgFpepUoV9e/9+/fz4YcfotPpaNmyJcWKFePGjRusW7eOI0eO8NNPP+Hq6mryvHfu3GHUqFFUrFiRzp078/jxY2xtbTN8DYzP6evrS4MGDTh8+DC///47ERERvP/++yZ1Z82axdatWylZsiQvvvgiiYmJrFmzhv/++y9Tr/fTNm7cCECnTp0oXrw49erVIzAwkLt371KyZEmz+2Tletu4cSOzZs3C2dmZTp064eLiwqFDh3jrrbdISkrCxiZzH8vZeT/MOX78OAA1a9ZMtU2v1zN16lSOHTtGxYoVad++PY8fP+a7775L83Pk3LlzvP3228TGxtKiRQtKly5NcHAw27dv5/Dhw8ybN8/kdczu6zF79mzOnTtH8+bNadGiBR4eHoDhmhs3bhwPHz6kcePGtGzZkvDwcPbs2cPRo0f55ptvTP4tZqV+SEgII0eOJC4ujubNm9O2bVvi4uK4ffs2f/75J6NHjzaJ19bWlueee46zZ88SGxsrt3myShEFwrfffqv4+fkpO3bsUBRFUaKjo5WOHTsqvXv3VpKTkzPcPywsTOnTp4/Srl075fTp02r5pk2bFD8/P2XTpk0m9f38/BQ/Pz/l22+/NSn/6quvFD8/P6VLly7KmjVr1HK9Xq9MmjRJ8fPzUy5cuKCWnzhxQvHz81MWLVqUKqa7d+8qfn5+yowZM0zK+/Tpo/Tp08fseRifL+VrYTR9+nSz5Xfu3En1PNHR0crgwYOVLl26KLGxsanOfezYsWaP/7S1a9cqfn5+So8ePZRFixYpJ06cUKKiotKsHx8fr/Ts2VNp3bq1cujQoVTb79+/b1L3wYMHqepcu3ZN6dixo/Lmm2+alKf1XhqNHTtW8fPzM7stPDxc6dy5s9KzZ0/l3r17Jtt27Nih+Pn5Kd98841aZnzv0npvFcX8+7ho0SL1+gkKClLL4+LilAEDBiitW7dWHj58qJYfO3ZM8fPzU4YMGWLyPj18+FB54YUXzF4/6UlMTFReeOEFpUuXLkpcXJyiKIqyceNGxc/PT1mwYEGq+lm93h4/fqx07NhR6dixo3Lz5k2T444fP17x8/NL8zU5ceKEWpbV9yM9w4cPV1q3bq3Ex8en2ma8Zt5++20lKSlJLb9y5YrStm3bVO9vYmKi0qdPH6VTp07KxYsXTZ7r1KlTir+/vzJlypRnej1mzJih+Pn5KT179lSCg4NTxTxq1CjF399fOXz4sEn5zZs3lU6dOimDBw/Odn3jv+eUn21GERERqcoU5cln8/Hjx81uF2mTUTwFQFJSEtu2bcPZ2ZmWLVsC4OTkhJ+fH/fv3+fYsWPp7h8fH8+0adMIDg7mnXfeoXbt2pk6rqOjI8OGDTMpM/Z5cXNzM2nh0Ol06rarV69m+tyyq27duqn633Tt2hWA8+fPm5Sb+1Xs5OREly5diIqK4sKFC9mOo2fPnrz88stERUWxdOlSxo8fT9euXRk0aBA//vgjISEhJvX379/Pw4cP6dChA02bNk31fMWKFVP/trOzo2jRoqnqVKhQgfr166u31nLC1q1biY6OZsSIEama6Nu1a8dzzz3Hzp07U+3n6enJwIEDs3y83r17U7ZsWfWxvb097dq1Q6/Xc/HiRbV827ZtAAwePBgHBwe13Nvb2+T6y6x///2XsLAw2rRpo7Z6+Pv74+DgwObNm9Hr9Wb3y+z1tn//fmJjY+natStlypRRy21sbFL9W0pPdt8Pcx4+fIiLiwt2dnapthlvCw4bNgxra2u1vFKlSnTs2DFV/YMHDxIcHMzLL79scosRoE6dOvj6+nLo0CGio6OBZ3s9Xn75ZYoXL25SdunSJf777z86depEkyZNTLaVKVOG7t27c+3aNa5du5at+kbmWpmLFCliNk5jy87Dhw/TPR+RmtziKQD2799PeHg43bp1M/mH06lTJ7Zt28bGjRtT/eMzUhSFTz/9lLNnz/Laa6/Rvn37TB+3dOnSJl8KgDrap2LFiib3YlNue/pLOTdUrVo1VZnxyzwqKsqk/NGjR/zyyy8cOnSI+/fvp5q34Fni1el0jBo1ipdffplDhw5x7tw5Lly4wKVLl7hx4wbr16/nyy+/VJuQjV9mjRs3ztTzX758mZUrV3L69GnCwsJSJSTh4eF4e3tnO34jY1+ac+fOcefOnVTbExISiIiIIDw8HHd3d7W8cuXKmbql87Snv9zgSXKW8v27cuUKYPjye1qtWrWyfNy///4bMPzbMXJycqJly5bs2LGDI0eO0KxZs1T7ZfZ6Mybn5uKtUaOGSRKQnuy+H+Y8fvzYbKJrjNfR0dHs+dWpU0e9HfZ0XDdv3jQ7P0pYWBh6vZ5bt25RrVq1Z3o9jLcvUzp37hxg+Ddt7vg3b95U/1+xYsUs1zf2M/rmm284fvw4TZs2pV69emne+oMniUtERESadYR5kqAUACnvmafUsGFDihYtyoEDB3j8+LHZDH/hwoXs2rWL9u3b89prr2XpuM7OzqnKjB8o6W3LqV/16XFyckrz+Cl/BT9+/JgRI0Zw//59ateuTaNGjXBxccHKyoorV66wf/9+EhMTnzked3d3OnfuTOfOnQEIDQ1l9uzZ7Nmzhy+++IIlS5YAqL8s0/rCSOnMmTO8+eabADRq1IjSpUur571//36uXLmSI7GDob8RwB9//JFuvbi4OJPHxl+PWZXe9ZPy/YuJicHKyspsh9CsDt0OCQnhyJEjlCxZMtUXZufOndmxYwebNm0ym6Bk9nozvr/mXpe0zsOc7L4f5tjb26c5Z1J0dHSa16K519cY1/bt2zMV17O8Hub2efz4MWBoCfv333/T3Dc2NjZb9UuUKMG8efNYsmQJhw4dYteuXQCULVuWoUOH0qZNm1T7Gn/wFORh6rlFEpR87v79+xw9ehQg3dlNt23blqrJe/PmzaxYsYLatWvzzjvv5GqcaTG2siQnJ6faZvzwyk0bN27k/v37ZocB//zzz+zfvz9Xjuvl5cV7773Hv//+y9WrV4mIiMDNzU0dcpyZ5uAVK1aQkJDAd999l+oL1fjLMKcYv4CXLl1qdhREWp5uRctpTk5O6PV6IiIiUrUUZHUCvM2bN5OcnMzdu3fTnLDuwIEDmWqVSIsx8Xr06FGqbcbzyExymt33wxw3N7c0rzdnZ+c0f/mbe32NcX322We0aNEiw2M/y+th7toyPl9mO7dntT4YWoc/+eQTkpKSuHjxIocPH2bt2rV8+OGHeHt7p7pFbkyCsnvNFGbSByWf27JlC3q9njp16tCtW7dU/xl/sT/dFHvy5Em+/PJLSpYsyYwZM8zef84LxlEG5m6jXL582ew+VlZWZhOa7DA2jxv77qR0+vTpHDlGWmxtbVM1YRubrY1JZ3ru3r1LkSJFUiUncXFxXLp0KVV9KyvDP/e0Xrv0thtvQRmb8C2FcTTSmTNnUm3LyigeRVHYtGkTAF26dDH7b6lWrVokJiaq/V6ywzis3Fy858+fz/R1nZPvR8WKFUlISOD+/fuptlWqVInY2FiTfj9G5v59ZDWunHo9jIz/fjJ7/KzWT8nGxoaaNWsyZMgQxo8fj6IoHDx4MFW9W7duATxzIlkYSYKSjxk/VHU6HdOmTWPKlCmp/ps2bRo1a9bk6tWramfPW7du8d5772Fvb89nn32maWZftmxZnJyc1NtQRmFhYSxfvtzsPkWKFCEiIiJH1rgwdjB8+gNy+/btHDp06Jmff9WqVQQFBZndtm7dOmJjYylbtqzalO3r60vRokXZvn07R44cSbVPyl+6xYsXJzIykuvXr6tlycnJ/PDDD4SHh6fa13iL78GDB2bjSW97165dcXJyYsGCBSbHM4qLi9MkeTHOTbJ06VKT6yE0NFQdjp4ZJ0+e5M6dO9StW5epU6ea/bdkbGV8OtnPipYtW+Lo6MjGjRtN+o4kJSWxaNGiTD9PTr4f9erVA8y3uhlvGy9cuNAkWbh69arZRK1ly5YUL16c1atXc/LkyVTbk5KSTBKbnHo9jGrUqEGNGjXYuXOn2U7Cer3eJK6s1r948aLZll1ja5K5H3rnzp3Dy8vLpBOwyBy5xZOPnThxgnv37mXYSatr166cPXuWjRs3Uq1aNebOncvjx49p1KgR//zzT6r6Li4uebbWja2tLb169WLFihUMGzYMX19fYmNjOXDgAPXq1TPbAbB+/fpcuHCByZMnU6dOHWxsbKhbt676QZsVHTt25Ndff2XOnDkEBgZSvHhxrly5wokTJ2jVqhV79+59pvPbtm0bP/zwAxUrVqRGjRp4eHgQGRnJuXPnuHTpEvb29kycOFGtb2dnx0cffcSkSZOYNGkSTZo0oXLlykRHR3PlyhXi4+PVD+5evXpx9OhR3njjDdq0aYOdnR0nT54kJCSE+vXrp1pcrmbNmtjb27N27VoiIyPVxNR4a6tBgwbs3r2b//3vfzRt2hQ7OzsqV66Mr68v7u7ufPDBB7z//vsMGTLk/9q7v5Cm3jCA419nzVJmQc6/YYEUCIPBbEpmRMOLisrd7MYbFQkihv2BQiQCBwWV3kjSTUuwlQjWhWgZzkqEo5MtxA51FQQp2kRCJkHNYRey4a+tUNvPTXo+1y/sPc85jOf997yUlpZSWFhIMBhkdnaWiYkJDAYDLS0tfxWv9Tp06BCVlZW43W5qa2upqKggGAzy+vVriouLURQlMjP0J+GkI3zyJpbCwkIMBgOqqvL+/fs117VZTafTYbfbuXv3LufOncNisZCRkcHY2BharZasrKw1LYvF831UVFTQ3t6O1+uN2kMR3nvj8Xior6+nrKyMQCDA0NAQZrM5asZAq9XicDi4du0aDQ0NmEymyIb52dlZJicn2bVrFy6XK67xWO3GjRtcunSJ5uZmenp6OHDgAGlpafj9flRVZWFhAbfbvaH2L1++pLe3F6PRSEFBAenp6Xz69AmPx0NmZmbU9zM9Pc3MzAxWq3VdzyBWSIKyhYX/VFdXeI3FYrHQ1tbG0NAQdrs9MtL0er0xjyDn5uZu6mV89fX1bNu2jf7+fnp7e8nNzaWmpoby8nKGh4ej2tfU1LC4uIiiKExOThIKhaitrd1QgpKdnU1bWxv379/H6/USCoU4ePAgra2t+P3+v05QGhsbURSFt2/fMj4+ztevX9FoNOTk5GC1WrHZbFEjK4PBwIMHD3C5XIyPj+Pz+dDpdOzfv5+qqqpIu/LychwOBy6Xi8HBQdLS0jCZTNy8eTNmpeDMzEwcDgcdHR309fVFvoNwgnL69GlmZmZ49eoVT548IRQKceLECY4cOQKsVMV0Op10dXXh8/nwer3s2LEDvV7PyZMnYx473QxNTU3s27eP58+f8+zZM/R6PTabDZPJhKIoMTewrra4uMjw8DA7d+7k2LFjf2x76tQpVFWlv79/QwkKwJkzZ9DpdDx69IiBgYFI5dTz589js9nWXG4+Xu8jLy8Ps9nMmzdvuHjx4n9mATQaDbdu3aKjowO3283Tp0/Jz8/Hbrezd+/emEsaxcXFPHz4kK6uLsbGxlBVle3bt5OVlcXRo0ejjmPHKx5h+fn5OJ1Ouru7GRkZ4cWLF2g0Gvbs2YPRaIyqDr2e9pWVlfz48YN3797x4cMHgsEger2eqqqqmMeew7NMZ8+eXdcziBUpy8vLy4nuhBBCxFtfXx937tzhypUrW2IEOzU1RXV1NcePH6e5uXlTf9vn83H58mWuX7+esETzV4mMRzwsLS1RXV1NXl7ehqtn/+tkD4oQYkubn5/n13HW3NwcnZ2dpKamcvjw4QT1LLZAIBB1rPf79+/cu3cPWLmWYLOVlJRQVlZGZ2fnb4vR/V+SMR7xMDAwwJcvX7hw4UKiu7JlyRKPEGJLe/z4MaOjoxiNRnbv3o3f70dRFL59+0ZdXV3UtHuiTUxMcPv2bcxmM9nZ2SwsLEQu9jSZTFgsloT0q6GhgcHBQebm5jY1Zskaj7+VkpLC1atXYxa5E2sjSzxCiC3N4/HQ3d3Nx48fCQQCaLVaioqKsFqtMW8gTrTPnz/jdDpRVTVy2qqgoCBy+/K/VtBL4iF+RxIUIYQQQiQd2YMihBBCiKQjCYoQQgghko4kKEIIIYRIOpKgCCGEECLpSIIihBBCiKQjCYoQQgghko4kKEIIIYRIOpKgCCGEECLpSIIihBBCiKTzE0F2pEH8VxknAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG5CAYAAACnaMHWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhBElEQVR4nO3de1xUdf4/8BeDMlyVq3jBVMAM1EQR17QxEZMShEqyLEUkXQINc/XrtW276JpbbeHuyq5GkbpZaqWYiCIppIZXUBMvEIoiFwFBYQZmYGZ+f/ibWcfhNnCAAV/Px6NHzOd8zufzPmfG4c3nfM7nmKjVajWIiIiIqFVEHR0AERERUVfApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApKod1dTU4MqVK6ipqenoUIiIiEhgTKraUV5eHubPn4+8vLyODoWIiIgExqSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiKgTkZXX4MyubMjKazo6FCJ6CJMqIqJORFYhR8YPOZBVyDs6FCJ6CJMqIiIiIgEwqSIiIiISAJMqIiIiIgEwqSIiIiISAJMqIiIiIgEwqSIiIiISQLeODqA+CoUCcXFxOHjwICorK+Hm5oZ58+bBx8en0f3S0tKwZ88e5Obm4t69e7C1tYWnpyfmzp0LV1dXnbopKSk4fvw4srKycOvWLXh5eWHDhg0Ntn3lyhV89dVXuHDhAhQKBfr27Ytp06YhJCREkGMmIiKizs0ok6p169bhyJEjePnll+Hi4oL9+/dj2bJliImJwZNPPtngfrm5ubCxsUFISAh69uyJO3fuIDExEREREYiNjYW7u7u27p49e3DlyhU88cQTuHfvXqPxnDx5EitXrsTgwYMxZ84cWFhY4NatWygpKRHsmImIiKhzM7qkKisrCykpKYiMjMTMmTMBAP7+/ggLC0NsbCxiY2Mb3DcsLEyvLDAwENOnT8fu3buxdOlSbfnq1avh5OQEkUiEOXPmNNimVCrFX//6V4wdOxYffvghRCJeMSUiIiJ9RpchpKamwtTUFEFBQdoysViMgIAAXLx4EcXFxQa1Z2dnB3Nzc1RVVemUOzs7NytBOnToEO7cuYP58+dDJBKhuroaKpXKoBiIiIio6zO6kars7Gy4uLjAyspKp9zDwwMAkJOTA2dn50bbqKyshFKpRFlZGXbu3AmpVApvb+8WxXP69GlYWVmhtLQUq1evxs2bN2FhYYEpU6Zg4cKFEIvFDe5bWlqKsrIy7eu8vLwWxUBERETGz+iSqrKyMjg4OOiVa8pKS0ubbCMyMhI3btwAAFhYWCA0NBQBAQEtiic/Px9KpRKrVq1CQEAA/vjHPyIzMxPff/89qqqq8Je//KXBfRMSEhAfH9+ifomIiKhzMbqkSi6Xo3v37nrlZmZm2u1NWbFiBWQyGQoKCpCYmAi5XA6VStWi+VDV1dWoqalBcHAwFi1aBAB45plnUFtbi4SEBISHh6N///717hsUFITx48drX+fl5WHNmjUGx0BERETGz+iSKrFYjNraWr1yhUKh3d6UYcOGaX/28/PD7NmzAQALFixoUTyadh40efJkJCQk4OLFiw0mVY6OjnB0dDS4TyIiIup8jG6iuoODg848JA1NmaFJio2NDUaNGoXk5OQWxwMA9vb2OuV2dnYA7s/fIiIiIjK6pMrd3R35+fmQSqU65VlZWdrthpLL5XrtNdeQIUMAQG9NKs3cLltb2xa1S0RERF2L0SVVEydOhFKpREJCgrZMoVAgMTERnp6e2jv/iouL9e6mKy8v12uvsLAQZ86c0SZHhvL19QUA7Nu3T6d83759MDU1xciRI1vULhEREXUtRjenytPTE76+vti0aRMqKirQr18/JCUloaioCMuXL9fWW7t2LTIzM5GWlqYtCwsLg7e3N9zd3WFjY4P8/Hzs27cPdXV1iIiI0OknMzMT586dAwBUVFSguroaX3/9NQBgxIgR8PLyAgA8/vjjmDp1KhITE6FUKuHl5YXMzEwcPnwYs2bN4pwpIiIiAmCESRUArFq1Cs7Ozjhw4ACqqqrg6uqK9evXaxOdhgQHByM9PR0nTpyATCaDnZ0dfHx8MGvWLLi5uenUPXv2rN5yB3FxcQDuJ2cP9rV06VI4Oztj//79+OWXX+Ds7IyFCxdixowZQhwuERERdQEmarVa3dFBPCquXLmC+fPnY/PmzS2+HElEbU9WXoNLKTfh4dcflnbmHR2OjtJrd7F79XG8sHYcHAf17OhwiOgBRjenioioo8kq5Mj4IQeyiqbXxSMi0mBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVERNRqsvIanNmVDVl5TUeHQtRhmFQREVGr8dE+REyqiIiIiATBpIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAN06OoD6KBQKxMXF4eDBg6isrISbmxvmzZsHHx+fRvdLS0vDnj17kJubi3v37sHW1haenp6YO3cuXF1ddeqmpKTg+PHjyMrKwq1bt+Dl5YUNGzY0GduWLVvwxRdfYNCgQfj6669bdZxERETUdRjlSNW6deuwY8cOPPvss4iOjoZIJMKyZctw/vz5RvfLzc2FjY0NQkJCsHjxYgQHByM7OxsRERHIycnRqbtnzx4cPXoUvXr1go2NTbPiun37NrZt2wYLC4sWHxsRERF1TUY3UpWVlYWUlBRERkZi5syZAAB/f3+EhYUhNjYWsbGxDe4bFhamVxYYGIjp06dj9+7dWLp0qbZ89erVcHJygkgkwpw5c5oV28aNG+Hp6QmVSoW7d+8admBERETUpRndSFVqaipMTU0RFBSkLROLxQgICMDFixdRXFxsUHt2dnYwNzdHVVWVTrmzszNEouYffmZmJlJTU/HWW28Z1D8RERE9GoxupCo7OxsuLi6wsrLSKffw8AAA5OTkwNnZudE2KisroVQqUVZWhp07d0IqlcLb27vFMSmVSsTExCAgIABubm7N3q+0tBRlZWXa13l5eS2OgYiIiIyb0SVVZWVlcHBw0CvXlJWWljbZRmRkJG7cuAEAsLCwQGhoKAICAloc0549e1BcXIzPPvvMoP0SEhIQHx/f4n6JiIio8zC6pEoul6N79+565WZmZtrtTVmxYgVkMhkKCgqQmJgIuVwOlUpl0OU+jbt37+LLL79EaGgobG1tDdo3KCgI48eP177Oy8vDmjVrDI6BiIiIjJ/RJVVisRi1tbV65QqFQru9KcOGDdP+7Ofnh9mzZwMAFixYYHA8X3zxBWxsbDB9+nSD93V0dISjo6PB+xEREVHnY3QT1R0cHHTmIWloygxNUmxsbDBq1CgkJycbHMvNmzexd+9ehISEoLS0FIWFhSgsLIRCoUBdXR0KCwtx7949g9slIiKirsfoRqrc3d2RkZEBqVSqM1k9KytLu91QcrkcUqnU4P1KS0uhUqkQExODmJgYve2vvPIKQkJCEB0dbXDbRERE1LUYXVI1ceJEfPvtt0hISNCuU6VQKJCYmAhPT0/tnX/FxcWoqanBgAEDtPuWl5fDzs5Op73CwkKcOXMGQ4YMMTiWQYMGYe3atXrlX3zxBWQyGaKjo9G3b1+D2yUiIqKux+iSKk9PT/j6+mLTpk2oqKhAv379kJSUhKKiIixfvlxbb+3atcjMzERaWpq2LCwsDN7e3nB3d4eNjQ3y8/Oxb98+1NXVISIiQqefzMxMnDt3DgBQUVGB6upq7WNnRowYAS8vL9ja2kIikejFuHPnTgCodxsRERE9mowuqQKAVatWwdnZGQcOHEBVVRVcXV2xfv16eHl5NbpfcHAw0tPTceLECchkMtjZ2cHHxwezZs3SW1/q7NmzessdxMXFAbifnDXVFxEREdGDjDKpEovFiIqKQlRUVIN16nv4cXh4OMLDw5vVhyF1m9M3EVFbU6nUKMm9/4iskty7sB/QAyKRSQdHRUQaRplUERGRrmsni5C+5RKkd2oAAMfiLiLzx98xNtQDg8b07uDoiAgwwiUViIhI17WTRUj5PEObUGlI79Qg5fMMXDtZ1EGREdGDmFQRERkxlUqN9C2XGq2TvvUSVCp1O0VERA1hUkWdhqy8Bmd2ZUNWXtN0ZaIuoujyHb0RqodJy2pQdPlOO0VERA1hUkWdhqxCjowfciCraPr5j0RdRXUzP+/NrUdEbYdJFRGREbOwbfp5p4bUI6K2w6SKiMiI9X7CHlb25o3WsXIwR+8n7NspIiJqCJMqIiIjJhKZYGyoR6N1xs724HpVREaASRURkZEbNKY3/N4eqTdiZeVgDr+3R3KdKiIjwcU/iYg6gUFjemPAaGdcOXwTx+IuYvwbQzHEtz9HqIiMCEeqiIg6CZHIBE6uPQEATq49mVARGRkmVURERNRpGPOahUyqiLo4Y/4CIiIylDGvWcikiqiLM+YvICKiroRJFREREZEAmFSRHl4uIiIiMhyTKtLDy0VERESGY1JFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVURERB2ES9h0LUyqiIiIOgiXsOlamFQRERERCYBJFREREZEAmFQRERERCYBJFREREZEAmFQRERERCYBJFREREZEAunV0APVRKBSIi4vDwYMHUVlZCTc3N8ybNw8+Pj6N7peWloY9e/YgNzcX9+7dg62tLTw9PTF37ly4urrq1E1JScHx48eRlZWFW7duwcvLCxs2bNBr89KlS0hKSkJGRgaKiorQo0cPDB06FPPmzUP//v0FPW4iIiLqvIxypGrdunXYsWMHnn32WURHR0MkEmHZsmU4f/58o/vl5ubCxsYGISEhWLx4MYKDg5GdnY2IiAjk5OTo1N2zZw+OHj2KXr16wcbGpsE2v/nmG6SmpsLb2xvR0dGYNm0azp07h3nz5iE3N1eQ4yUiIqLOz+hGqrKyspCSkoLIyEjMnDkTAODv74+wsDDExsYiNja2wX3DwsL0ygIDAzF9+nTs3r0bS5cu1ZavXr0aTk5OEIlEmDNnToNtzpgxA++++y66d++uLZs0aRLmzp2L//73v/jzn//cgqMkIiKirsboRqpSU1NhamqKoKAgbZlYLEZAQAAuXryI4uJig9qzs7ODubk5qqqqdMqdnZ0hEjV9+MOHD9dJqACgf//+GDhwIPLy8gyKhYiIiLouoxupys7OhouLC6ysrHTKPTw8AAA5OTlwdnZutI3KykoolUqUlZVh586dkEql8Pb2FixGtVqN8vJyDBw4sNF6paWlKCsr075mEkZERNR1GV1SVVZWBgcHB71yTVlpaWmTbURGRuLGjRsAAAsLC4SGhiIgIECwGJOTk1FSUoLw8PBG6yUkJCA+Pl6wfomo7alUapTk3gUAlOTehf2AHhCJTDo4KiLqDIwuqZLL5XqX2wDAzMxMu70pK1asgEwmQ0FBARITEyGXy6FSqZp1ua8peXl5+OyzzzB06FA899xzjdYNCgrC+PHjdfZds2ZNq2MgorZx7WQR0rdcgvRODQDgWNxFZP74O8aGemDQmN4dHB0RGTujS6rEYjFqa2v1yhUKhXZ7U4YNG6b92c/PD7NnzwYALFiwoFWxlZWVYfny5bCyssKHH34IU1PTRus7OjrC0dGxVX0SUfu4drIIKZ9n6JVL79Qg5fMM+L09kolVAzi6R3Sf0U1Ud3Bw0JmHpKEpMzRJsbGxwahRo5CcnNyquKqqqrBs2TJUVVXhk08+YbJE1IWoVGqkb7nUaJ30rZegUqnbKaLO49rJInwXfQTH4i4CuD+69130EVw7WdTBkRG1P6NLqtzd3ZGfnw+pVKpTnpWVpd1uKLlcrteeofuvWLECN2/exEcffdTkBHUi6lyKLt/RXvJriLSsBkWX77RTRJ2DZnTv4XOnGd1jYtV5ycprcGZXNmTljf+7IF1Gl1RNnDgRSqUSCQkJ2jKFQoHExER4enpq7/wrLi7Wu5uuvLxcr73CwkKcOXMGQ4YMaVE8SqUS7733Hi5evIj3339f59IiEXUN1RVNz9U0pN6jgKN7XZusQo6MH3Ig42feIEY3p8rT0xO+vr7YtGkTKioq0K9fPyQlJaGoqAjLly/X1lu7di0yMzORlpamLQsLC4O3tzfc3d1hY2OD/Px87Nu3D3V1dYiIiNDpJzMzE+fOnQMAVFRUoLq6Gl9//TUAYMSIEfDy8gIA/Otf/8KxY8cwbtw4VFZW4uDBgzrtTJkypS1OAxG1IwvbpudqGlLvUWDI6F5fT/07uom6IqNLqgBg1apVcHZ2xoEDB1BVVQVXV1esX79em+g0JDg4GOnp6Thx4gRkMhns7Ozg4+ODWbNmwc3NTafu2bNn9ZY7iIuLA3A/OdP0pXm8zfHjx3H8+HG9PplUEXV+vZ+wh5W9eaNJgpWDOXo/Yd+OURk3ju4R6TPKpEosFiMqKgpRUVEN1qnv4cfh4eFNrh1laN36+iGirkUkMsHYUI967/7TGDvbg3e0PYCje0T6jG5OFRFRRxg0pjf83h4JK3tznXIrB3Mup1APzeheYzi6R48aoxypIiLqCIPG9MaA0c64cvgmjsVdxPg3hmKIb3+OUNWDo3tE+jhSRUT0AJHIBE6uPQEATq49mRQ0gqN7RLo4UkVERC3G0T2i/+FIFRERtQpH94juY1JFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUTUIWTlNTizKxuy8pqODoWISBBMqoioQ8gq5Mj4IQeyCnlHh0JEJAgmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFJAA+coWIiLq1dMfbt28jMzMT+fn5kEqlAAArKyu4uLhgxIgRcHZ2FixIImOneeTKAO9esLQz7+hwiIioAxicVN26dQuff/45Tp06BQBQq9U6201MTAAAPj4+WLRoEVxcXAQIk4iIiMi4GZRUFRQU4M0338S9e/fg5eWFMWPGwMXFBVZWVgAAqVSK/Px8nDx5EidPnkRUVBT+/e9/o2/fvm0SPBEREZGxMCip+uKLL1BdXY2//e1v+MMf/tBgvddffx3p6el455138MUXX+Ddd99tdaBERERExsygieqnT5+Gr69vowmVxtixY+Hr64vTp0+3ODgiIqLW4o0k1F4MSqqqq6vh6OjY7PoODg6orq42OCgiIiKhaG4kkVXIOzoU6uIMuvzXr18//Prrr3jjjTfQrVvju9bV1eHXX39Fv379DA5KoVAgLi4OBw8eRGVlJdzc3DBv3jz4+Pg0ul9aWhr27NmD3Nxc3Lt3D7a2tvD09MTcuXPh6uqqUzclJQXHjx9HVlYWbt26BS8vL2zYsEHQeIiIiOjRYdBI1bRp03Dt2jUsWbIEFy5c0LvzD7h/N+D58+exZMkS5OXlYdq0aQYHtW7dOuzYsQPPPvssoqOjIRKJsGzZMpw/f77R/XJzc2FjY4OQkBAsXrwYwcHByM7ORkREBHJycnTq7tmzB0ePHkWvXr1gY2PTJvEQEQnN0laMkS+5w9JW3NGhENFDDBqpeumll/D7779j3759eOutt2Bubo4+ffro3P1XWFiImpoaqNVqBAYGYvr06QYFlJWVhZSUFERGRmLmzJkAAH9/f4SFhSE2NhaxsbEN7hsWFqZXpolh9+7dWLp0qbZ89erVcHJygkgkwpw5c9okHiIioVnamcM7ZHBHh0FE9TAoqTIxMcGyZcswefJk/PTTT8jMzERubq5OHQcHB4wbNw7Tpk3DyJEjDQ4oNTUVpqamCAoK0paJxWIEBARg06ZNKC4uNmhhUTs7O5ibm6OqqkqnvLltCB0PERERdU0tWlF91KhRGDVqFACgpqZGm7BYW1vD3Lx1q0lnZ2frrH2l4eHhAQDIyclpMomprKyEUqlEWVkZdu7cCalUCm9v7w6Lh4iIiLq+Fj+mRsPc3LzVidSDysrK4ODgoFeuKSstLW2yjcjISNy4cQMAYGFhgdDQUAQEBLR7PKWlpSgrK9O+zsvLa1EMREREZPxalVSVlJQgPz9fZ6TKxcUFTk5OLW5TLpeje/fueuVmZmba7U1ZsWIFZDIZCgoKkJiYCLlcDpVKBZHI8OdHtyaehIQExMfHG9wnERERdT4GJ1W1tbXYsWMHfvrpJxQWFtZbp0+fPpg2bRpCQkK0yUdzicVi1NbW6pUrFArt9qYMGzZM+7Ofnx9mz54NAFiwYIFBsbQ2nqCgIIwfP177Oi8vD2vWrDE4BiIiIjJ+BiVV1dXVWLx4MS5dugQLCwv4+PjAxcUFlpaWAACZTIb8/HxcuHABmzZtwi+//IK///3vsLCwaHYfDg4OKCkp0SvXXEYzZPFRALCxscGoUaOQnJzcoqSqNfE4OjoaHC/VT6VSoyT3LgCgJPcu7Af0gEhk0sFRERER/Y9BSVV8fDwuXbqE1157DXPmzGlwLlVNTQ3i4+Oxfft2xMfHIzIystl9uLu7IyMjA1KpVGdyeFZWlna7oeRyOaRSqcH7tVU8ZJhrJ4uQvuUSpHfuP2LiWNxFZP74O8aGemDQmN4dHB0REdF9Bk0yOnz4MMaMGYOIiIhGJ6ebm5vjzTffxOjRo3H48GGDApo4cSKUSiUSEhK0ZQqFAomJifD09NTeaVdcXKw38bu8vFyvvcLCQpw5cwZDhgwxKA5D46G2ce1kEVI+z9AmVBrSOzVI+TwD104WdVBkREREugwaqbpz5w4mT57c7PpDhgzBuXPnDArI09MTvr6+2LRpEyoqKtCvXz8kJSWhqKgIy5cv19Zbu3YtMjMzkZaWpi0LCwuDt7c33N3dYWNjg/z8fOzbtw91dXWIiIjQ6SczM1MbW0VFBaqrq/H1118DAEaMGAEvLy+D4iHhqVRqpG+51Gid9K2XMGC0My8FEhFRhzMoqbK3t0d2dnaz61+9ehX29vYGB7Vq1So4OzvjwIEDqKqqgqurK9avX69NdBoSHByM9PR0nDhxAjKZDHZ2dvDx8cGsWbPg5uamU/fs2bN6d+bFxcUBuJ+cPdhXS+Oh1im6fEdvhOph0rIaFF2+g76e+steEBERtSeDkqoJEyZg165d2Lx5M0JDQxu8800ul+Prr7/G6dOnERISYnBQYrEYUVFRiIqKarBOfQ8/Dg8PR3h4eLP6MKRuc+LpKoxpQnh1M58o39x6REREbcmgpCo8PBwZGRnYtm0bfvjhBwwbNgwuLi6wtrYGAFRVVSE/Px+//fYbZDIZ3N3dm524UMcztgnhFs18YGxz6xEREbUlE7VarTZkh5qaGnzzzTfYt29fg6uJOzo6IiAgAK+99pqgq613dleuXMH8+fOxefPmFk+cr8/MS39HaW1lq9pQKpSoqdJfj0vD3Lo7TM1MW9VHS1RXyKFSNfwRFYlMjCKpUtWpUH1PAYseZhB1M3yR2bZUJ1dCLq2F2Ko7uonb/z1siDGfM2OOzVgZ8zljbIYz1riApmNz7G6D7R5/6oDIWrD4p7m5ufbS2c2bN5Gfn69drsDKygouLi7o37+/4IFSw0prK3G79m7rGjEBYNPwZinkQMM5V9uxarpKZW3j867ajQ0gVXfQeWqMCPdj66j3sDHGes4A447NWBnzOWNshjPWuACjja1Vj6np378/Eygj4Ni9kWyoGZS1KtRUKpqsZ25jBtPu7f8Xi1KhhEJWpzNiJRKZwMyyW4eMntXH2P6qM9aRxwcZ2zl7kDHHZqyM+ZwxNsMZa1xA80aqOkqrH6hMHa+1w5y/Hy/A4U1NL33hu3AE3Lz7tqqvllKp1Lhy+CaOxV3E+DeGYsiE/ka1jELptbvY/clxvLB2HBwH9ezQWFQqNb6LPtLonZNWDuZ4JWZih55DYzpnDzPm2IyVMZ8zxmY4Y40LMO7Y2jT9/Omnn/DRRx+1ZRckgM4wIVwkMoGT6/1/PE6uPY0qoTI2hixFQUREwmnTpOrChQtISkpqyy5IAL2fsIeVfeM3FFg5mKP3E4avOUbtj0tREBF1DOO6UEodQiQywdhQj0brjJ3twdGhTqIzjDwSEXVFBs2pMnTU6datWwbVp44zaExv+L09UmedKuD+CNXY2XxwcWeiGXlsak4VRx6JqLMxpgWq62NQUrVu3TqYmDQ/eLVabVB96liDxvTGgNHOuhPCfY1rQjg1TTPymPJ5RoN1OPJIRJ2NsS1QXR+Dkqru3bvDwcEBQUFBzap/5MgRg54VSB2PE8K7Bo48ElFXcu1kUb1/KErv1CDl8wz4vT3SKL7XDEqqXF1dUVxcjNdff71Z9W/cuMGkiqiDcOSRiLoClUqN9C2XGq2TvvUSBox27vDvN4Mmqj/++OO4e/cuiouL2yoeIhIQRx6JqLPrTMvEGDRS9eSTT+LkyZPIz8+Hs7Nzk/WHDx/e4sCIiIiIOtMyMQYlVVOmTMGUKVOaXT8wMBCBgYEGB0VEREQEdK5lYtp9nSqpVMrLh0RERNQsnWmB6nZPqnbs2IFXXnmlvbslIiKiTqgzLVDNFdWJiIg6wMMLWapU6g6OyHhplol5eMTKysHcaJZTAAycU0VERESt1xkWsjQ2nWGZGI5UERERtSPNQpYPLxOgWcjy2smiDorM+Bn7MjFMqoiIiNpJcxey5KXAzolJFRERUTvpTAtZkuGYVBEREbWTzrSQJRmOSRUREVE76UwLWZLhmFQRERG1k860kCUZrt2TKrVaDbWaE/CIiOjR05kWsiTDtXtSFR4ejtTU1PbuloiIyCh0loUsyXAtXvwzKSmp2XWfe+65lnZDRETU5XSGhSzJcC1OqtatWwcTk8bffLVaDRMTEyZVREREDzHWhSwffnyO/YAeRhObsWtxUrVixYp6y6VSKa5evYpDhw5h/PjxGDduXIuDIyIiovbDx+e0TouTqueff77R7UFBQXj77bfxwgsvtLQLIiLqJCxtxRj5kjssuRRAp6V5fM7DNI/P4XyvprXZA5WHDRuG8ePHIy4uDt7e3gbtq1AoEBcXh4MHD6KyshJubm6YN28efHx8Gt0vLS0Ne/bsQW5uLu7duwdbW1t4enpi7ty5cHV11at/9OhRfPXVV8jLy4OtrS2mTp2K0NBQdOume1quXLmCL7/8EleuXEF1dTX69OmDwMBAvPjiizA1NTXo2IiIuiJLO3N4hwzu6DCohZr7+JwBo515KbARbXr3X+/evfH7778bvN+6deuwY8cOPPvss4iOjoZIJMKyZctw/vz5RvfLzc2FjY0NQkJCsHjxYgQHByM7OxsRERHIycnRqZueno7Vq1fD2toaixYtgkQiwZYtWxATE6NT78qVK4iKikJRURFee+01REVFoW/fvtiwYQP++c9/GnxsRERExoaPzxFGm41UqdVqnDt3DmZmZgbtl5WVhZSUFERGRmLmzJkAAH9/f4SFhSE2NhaxsbEN7hsWFqZXFhgYiOnTp2P37t1YunSptnzjxo1wc3PDp59+qh2ZsrS0xLZt2xASEoIBAwYAABISEgAA//jHP9CjRw8AQHBwMN566y0kJSVh0aJFBh0fERGRseHjc4TR4qQqMzOz3nKlUonS0lIcOHAAly9fhr+/v0HtpqamwtTUFEFBQdoysViMgIAAbNq0CcXFxXB2dm52e3Z2djA3N0dVVZW27Pr167h+/ToWL16sc6nvxRdfxNatW3HkyBHMmTMHwP2J92ZmZrC2ttZp18HBATdv3jTo2IiIiIwRH58jjBYnVYsWLWp0SQW1Wo3hw4dj4cKFBrWbnZ0NFxcXWFlZ6ZR7eNxfgTYnJ6fJpKqyshJKpRJlZWXYuXMnpFKpzryuq1evAgCGDBmis5+joyOcnJyQnZ2tLRs5ciR+/vlnfPLJJ5gxYwbMzc1x4sQJpKWlITIystE4SktLUVZWpn2dl5fXaH0iIqKOoHl8TmOXAPn4nKa1OKmaM2dOvUmVSCSCtbU1PDw84OnpaXC7ZWVlcHBw0CvXlJWWljbZRmRkJG7cuAEAsLCwQGhoKAICAnT6eLDNh/t5MBEKDAzEtWvXkJCQgJ9++gkAYGpqirfffhvBwcGNxpGQkID4+Pgm4yUiIupImsfn1Hf3nwYfn9O0FidV4eHhQsahJZfL0b17d71yzdwsubzp67krVqyATCZDQUEBEhMTIZfLoVKpIBLdn5evUCh02ny4H5lMpn1tamqKvn37YsyYMZg4cSLMzMyQkpKCzz//HPb29pBIJA3GERQUhPHjx2tf5+XlYc2aNU3GT0Qdi8sD0KNI8/icB9epAu6PUI2dzXWqmqPVE9WVSiVKSkpQWlqKurq6eut4eXk1uz2xWIza2lq9ck0iJBY3/SU3bNgw7c9+fn6YPXs2AGDBggUA/pdMadp8uJ8H+9i2bRt27dqFb775BpaWlgCASZMmYdGiRfjss8/w1FNP6S3BoOHo6AhHR8cm4yUi48LlAehRxcfntE6LkyqVSoWtW7di165dqKysbLTukSNHmt2ug4MDSkpK9Mo1l+QMTVJsbGwwatQoJCcna5MqzWW/srIyvflZZWVl2vlbALB7926MGjVKm1BpjB8/Hv/85z9RVFQEFxcXg2IiIiIyVsb6+JzOoMVJ1X/+8x98++23sLOzw/PPPw8HBwdBFsJ0d3dHRkYGpFKpzmT1rKws7XZDyeVySKVS7evBg+//BXrlyhWdeV+lpaUoKSnRufOwvLwcKpVKr03NqJxSqTQ4HiIiIup6WpxUHThwAP3798emTZv0RnFaY+LEifj222+RkJCgXadKoVAgMTERnp6e2pGl4uJi1NTUaNeTAu4nQHZ2djrtFRYW4syZMzp3+g0aNAiPPfYY9u7di6CgIG0yuHv3bpiYmOCZZ57R1nVxccHp06dx9+5d9Ox5P3NXKpU4fPgwLC0t0a9fP8GOnYiIiDqvFidV1dXVePbZZwVNqADA09MTvr6+2LRpEyoqKtCvXz8kJSWhqKgIy5cv19Zbu3YtMjMzkZaWpi0LCwuDt7c33N3dYWNjg/z8fOzbtw91dXWIiIjQ6ScqKgorV67EkiVL4Ofnh9zcXPz4448IDAzEwIEDtfVef/11rFmzBm+++SamTZsGsViMQ4cO4cqVK5g3b16D86mIiIjo0dLijMDV1VVn6QEhrVq1Cs7Ozjhw4ACqqqrg6uqK9evXNznhPTg4GOnp6Thx4gRkMhns7Ozg4+ODWbNmwc3NTafuuHHjsGbNGsTHxyMmJgY9e/bErFmz9FZlnzJlCmxtbbFt2zZs374dMpkM/fv3x5IlS5pcUoGIiIgeHS1OqkJDQ/Huu+/iypUreototpZYLEZUVBSioqIarLNhwwa9svDwcIOWepBIJI0uiaAxZswYjBkzptntEhER0aOnxUnVU089hZUrV2LZsmUYP3483Nzc9FZB13juuedaHCARERFRZ9DipEqhUOD48eO4e/cu9u3bBwB6K6yr1WqYmJgwqSIiIqIur8VJ1T//+U8kJyfDzc0NzzzzjGBLKhARERF1Ri1Oqo4cOYIhQ4Zg48aNvAOOiIiIHnmilu6oUCgwcuRIJlREREREaEVSNWTIEOTn5wsZCxEREVGn1eKkav78+Th58iSOHz8uZDxE9AhQqdQoyb0LACjJvQuVSt3BERERtV6Lr92dPn0aXl5eWLVqFUaNGtXgkgomJiaYM2dOq4Ikoq7j2skipG+5BOmdGgDAsbiLyPzxd4wN9cCgMb07ODoiopZrcVL11VdfaX8+c+YMzpw5U289JlVEpHHtZBFSPs/QK5feqUHK5xnwe3skEysi6rRanFTFxMQIGQcRdXEqlRrpWy41Wid96yUMGO0Mkcik0XpERMaoxUlVU8/hIyJ6UNHlO9pLfg2RltWg6PId9PV0aKeoiIiE0+KJ6kREhqiukAtaj4jI2DCpIqJ2YWErFrQeEZGxYVJFRO2i9xP2sLI3b7SOlYM5ej9h304REREJi0kVUStxzaXmEYlMMDbUo9E6Y2d7cJI6EXVaTKqIWuHaySJ8F30Ex+IuAri/5tJ30Udw7WRRB0dmnAaN6Q2/t0fqjVhZOZhzOQUi6vT44D6iFuKaSy0zaExvDBjtjCuHb+JY3EWMf2Mohvj25wgVEXV6HKkiaoHmrrnES4H1E4lM4OTaEwDg5NqTCRURdQlMqohawJA1l4iI6NHApIqoBbjmEhERPYxJFVELcM0lIiJ6GJMqohbgmktERPQwJlVELcA1l4iI6GFMqohaiGsuERHRg7hOFVErcM0lIiLS4EgVUStxzSUiIgKYVBEREREJgkkVERERkQCYVBEREREJgEkVERERkQCM8u4/hUKBuLg4HDx4EJWVlXBzc8O8efPg4+PT6H5paWnYs2cPcnNzce/ePdja2sLT0xNz586Fq6urXv2jR4/iq6++Ql5eHmxtbTF16lSEhoaiWzf903L69Gls3boVV69ehUqlQv/+/TFz5kz4+fkJdtxERETUeRnlSNW6deuwY8cOPPvss4iOjoZIJMKyZctw/vz5RvfLzc2FjY0NQkJCsHjxYgQHByM7OxsRERHIycnRqZueno7Vq1fD2toaixYtgkQiwZYtWxATE6PXbmJiIpYsWYJu3bph/vz5iIqKwogRI3D79m1Bj5uIiIg6L6MbqcrKykJKSgoiIyMxc+ZMAIC/vz/CwsIQGxuL2NjYBvcNCwvTKwsMDMT06dOxe/duLF26VFu+ceNGuLm54dNPP9WOTFlaWmLbtm0ICQnBgAEDAACFhYX47LPP8NJLL2HRokUCHikRERF1JUY3UpWamgpTU1MEBQVpy8RiMQICAnDx4kUUFxcb1J6dnR3Mzc1RVVWlLbt+/TquX7+OadOm6Vzqe/HFF6FWq3HkyBFt2Z49e6BSqfDGG28AAGQyGdRqdQuPjoiI2pNKpUZJ7l0AQEnuXahU/P6mtmN0I1XZ2dlwcXGBlZWVTrmHx/3nrOXk5MDZ2bnRNiorK6FUKlFWVoadO3dCKpXC29tbu/3q1asAgCFDhujs5+joCCcnJ2RnZ2vLzpw5g8ceewzp6emIjY1FSUkJbGxs8OKLLyI8PBwiUcN5aWlpKcrKyrSv8/Lymjh6IiISyrWTRUjfcgnSOzUAgGNxF5H54+8YG+rBx0hRmzC6pKqsrAwODg565Zqy0tLSJtuIjIzEjRs3AAAWFhYIDQ1FQECATh8PtvlwPw8mQvn5+RCJRPjoo48wc+ZMuLm5IS0tDVu2bIFSqURERESDcSQkJCA+Pr7JeImISFjXThYh5fMMvXLpnRqkfJ7B53NSmzC6pEoul6N79+565WZmZtrtTVmxYgVkMhkKCgqQmJgIuVwOlUqlHVVSKBQ6bT7cj0wm076urq6GSqVCREQEXn/9dQDAxIkTUVlZiV27dmH27NmwtLSsN46goCCMHz9e+zovLw9r1qxpMv6OZmkrxsiX3GFpK+7oUIiIDKZSqZG+5VKjddK3XsKA0c58rBQJyuiSKrFYjNraWr1yTSIkFjf9i37YsGHan/38/DB79mwAwIIFCwD8L5nStPlwPw/2IRaLUV1djcmTJ+vU8/Pzw4kTJ3D16lV4eXnVG4ejoyMcHR2bjNfYWNqZwztkcEeHQUTUIkWX72gv+TVEWlaDost30NdT/4oFUUsZ3UT1hy+/aWjKDE1SbGxsMGrUKCQnJ+v08WCbD/fz4GVBzc92dnY69TSvKysrDYqHiIjaVnVF01c0DKlH1FxGl1S5u7sjPz8fUqlUpzwrK0u73VByuVynvcGD74/CXLlyRadeaWkpSkpKtNuB/01mf3gul+a1ra2twfFQy/CyJBE1h0UzvyOaW4+ouYwuqZo4cSKUSiUSEhK0ZQqFAomJifD09NTe+VdcXKx3N115eblee4WFhThz5ozOnX6DBg3CY489hr1790KpVGrLd+/eDRMTEzzzzDPaskmTJgEA9u3bpy1TqVTYv38/evTooXcHIbUdzWVJSzvzjg6FiIxY7yfsYWXf+PeElYM5ej9h304R0aPC6OZUeXp6wtfXF5s2bUJFRQX69euHpKQkFBUVYfny5dp6a9euRWZmJtLS0rRlYWFh8Pb2hru7O2xsbJCfn499+/ahrq5O7y69qKgorFy5EkuWLIGfnx9yc3Px448/IjAwEAMHDtTWe/rpp+Ht7Y1t27ahoqIC7u7u+OWXX3D+/HksXbq03snuRETUcUQiE4wN9aj37j+NsbM9OEmdBGd0SRUArFq1Cs7Ozjhw4ACqqqrg6uqK9evXNzghXCM4OBjp6ek4ceIEZDIZ7Ozs4OPjg1mzZsHNzU2n7rhx47BmzRrEx8cjJiYGPXv2xKxZs/RWZTcxMcHatWvxxRdf4Oeff0ZSUhL69++Pd955B1OmTBH4yImEx8um9CgaNKY3/N4eqbNOFXB/hGrsbK5TRW3DKJMqsViMqKgoREVFNVhnw4YNemXh4eEIDw9vdj8SiQQSiaTJepaWloiOjkZ0dHSz2yYyFrybkx5Vg8b0xoDRzrhy+CaOxV3E+DeGYohvf45QUZsxujlVREREQhGJTODk2hMA4OTakwkVtSkmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVURERNRpWNqKMfIld1jaijs6FD3dOjoAIiIiouaytDOHd8jgjg6jXhypIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIqIOYsyTrslwnKhORETUQYx50jUZjiNVRERERAJgUkVEREQkACZVRERERAJgUkVEREQ6OIG+ZThRnYiIiHRwAn3LcKSKiIiISABMqoiIiIgEwKSKiIiISABGOadKoVAgLi4OBw8eRGVlJdzc3DBv3jz4+Pg0ul9aWhr27NmD3Nxc3Lt3D7a2tvD09MTcuXPh6uqqV//o0aP46quvkJeXB1tbW0ydOhWhoaHo1q3h0/K3v/0NP/30E5566imsX7++1cdKREREXYNRjlStW7cOO3bswLPPPovo6GiIRCIsW7YM58+fb3S/3Nxc2NjYICQkBIsXL0ZwcDCys7MRERGBnJwcnbrp6elYvXo1rK2tsWjRIkgkEmzZsgUxMTENtn/58mXs378fZmZmghwnERERdR1GN1KVlZWFlJQUREZGYubMmQAAf39/hIWFITY2FrGxsQ3uGxYWplcWGBiI6dOnY/fu3Vi6dKm2fOPGjXBzc8Onn36qHZmytLTEtm3bEBISggEDBui0o1arERMTA39/f5w9e1aAIyUiIqKuxOhGqlJTU2FqaoqgoCBtmVgsRkBAAC5evIji4mKD2rOzs4O5uTmqqqq0ZdevX8f169cxbdo0nUt9L774ItRqNY4cOaLXzoEDB3Dt2jXMnz/f8IMiIiKiLs/oRqqys7Ph4uICKysrnXIPDw8AQE5ODpydnRtto7KyEkqlEmVlZdi5cyekUim8vb21269evQoAGDJkiM5+jo6OcHJyQnZ2tk65TCbDv//9b8yaNQsODg7NPpbS0lKUlZVpX+fl5TV7XyIiIupcjC6pKisrqzdx0ZSVlpY22UZkZCRu3LgBALCwsEBoaCgCAgJ0+niwzYf7eTARAoD4+HiIxWLMmDGj+QcCICEhAfHx8QbtQ0RERJ2T0SVVcrkc3bt31yvXTA6Xy+VNtrFixQrIZDIUFBQgMTERcrkcKpUKItH9q50KhUKnzYf7kclk2tc3b97Erl278O677xo8QT0oKAjjx4/Xvs7Ly8OaNWsMaoOIiIg6B6NLqsRiMWpra/XKNYmQWNz0c4iGDRum/dnPzw+zZ88GACxYsADA/5IpTZsP9/NgHxs2bMCwYcMwceLE5h/E/+fo6AhHR0eD9yMiIqLOx+gmqtd3+Q343yU7Q5MUGxsbjBo1CsnJyTp9PNjmw/1otp85cwYnTpxASEgICgsLtf8plUrI5XIUFhZCKpUaFA8RERF1TUY3UuXu7o6MjAxIpVKdyepZWVna7YaSy+U6yc/gwfcfEnnlyhV4enpqy0tLS1FSUqK98/D27dsAgHfeeUevzZKSErzyyitYuHChwXOtiIiIqOsxuqRq4sSJ+Pbbb5GQkKBdp0qhUCAxMRGenp7aO/+Ki4tRU1Ojs55UeXk57OzsdNorLCzEmTNndO70GzRoEB577DHs3bsXQUFBMDU1BQDs3r0bJiYmeOaZZwAAo0aNwtq1a/Vi/Pjjj9G7d2/Mnj273pXaiYiI6NFjdEmVp6cnfH19sWnTJlRUVKBfv35ISkpCUVERli9frq23du1aZGZmIi0tTVsWFhYGb29vuLu7w8bGBvn5+di3bx/q6uoQERGh009UVBRWrlyJJUuWwM/PD7m5ufjxxx8RGBiIgQMHAgCcnZ3rXb7hH//4B+zs7CCRSNrmJBAREVGnY3RJFQCsWrUKzs7OOHDgAKqqquDq6or169fDy8ur0f2Cg4ORnp6OEydOQCaTwc7ODj4+Ppg1axbc3Nx06o4bNw5r1qxBfHw8YmJi0LNnT8yaNaveVdmJiIiImmKUSZVYLEZUVBSioqIarLNhwwa9svDwcISHhze7H4lE0qLRph07dhi8DxEREXVtRnf3HxEREVFnxKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoioQ1jaijHyJXdY2oo7OhQiIkEY5bP/iKjrs7Qzh3fI4I4Og4hIMBypIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiAXB5ACIi4pIKRALg8gBERMSRKiIiIiIBMKkiIiIiEgCTKiIiIiIBMKkiIiIiEgCTKiIiIiIBMKkiIiIiEgCTKiIiIiIBMKkiIiIiEgCTKiIiIiIBMKkiIiIiEgCTKiIiIiIBGOWz/xQKBeLi4nDw4EFUVlbCzc0N8+bNg4+PT6P7paWlYc+ePcjNzcW9e/dga2sLT09PzJ07F66urnr1jx49iq+++gp5eXmwtbXF1KlTERoaim7d/ndazpw5g+TkZJw/fx4lJSWwt7fHqFGj8MYbb8DR0VHwYyciIqLOyShHqtatW4cdO3bg2WefRXR0NEQiEZYtW4bz5883ul9ubi5sbGwQEhKCxYsXIzg4GNnZ2YiIiEBOTo5O3fT0dKxevRrW1tZYtGgRJBIJtmzZgpiYGJ16//73v5GRkQGJRIJFixbBz88Phw8fxrx581BWVib4sRMREVHnZHQjVVlZWUhJSUFkZCRmzpwJAPD390dYWBhiY2MRGxvb4L5hYWF6ZYGBgZg+fTp2796NpUuXass3btwINzc3fPrpp9qRKUtLS2zbtg0hISEYMGAAAGDBggV48sknIRL9L/8cM2YMoqOj8cMPP2D+/PlCHDYRERF1ckY3UpWamgpTU1MEBQVpy8RiMQICAnDx4kUUFxcb1J6dnR3Mzc1RVVWlLbt+/TquX7+OadOm6Vzqe/HFF6FWq3HkyBFtmZeXl05CpSnr0aMH8vLyDDw6IiIi6qqMbqQqOzsbLi4usLKy0in38PAAAOTk5MDZ2bnRNiorK6FUKlFWVoadO3dCKpXC29tbu/3q1asAgCFDhujs5+joCCcnJ2RnZzfavkwmQ3V1NXr27NlovdLSUp1LhEzCiIiIui6jS6rKysrg4OCgV64pKy0tbbKNyMhI3LhxAwBgYWGB0NBQBAQE6PTxYJsP99PUXKmdO3eitrYWkyZNarReQkIC4uPjm4yXiIiIOj+jS6rkcjm6d++uV25mZqbd3pQVK1ZAJpOhoKAAiYmJkMvlUKlU2st4CoVCp82H+5HJZA22nZmZifj4ePj6+uqMftUnKCgI48eP177Oy8vDmjVrmoyfiIiIOh+jS6rEYjFqa2v1yjWJkFgsbrKNYcOGaX/28/PD7NmzAdyfdA78L5nStPlwPw31kZeXh3feeQeurq5Yvnx5k3E4Ojpy2QUiIqJHhNFNVG/o8pumzNAkxcbGBqNGjUJycrJOHw+2+XA/9V0WLC4uxpIlS2BlZYX169fD0tLSoDiIiIioazO6pMrd3R35+fmQSqU65VlZWdrthpLL5TrtDR48GABw5coVnXqlpaUoKSnRbte4e/culixZgtraWnzyySccfSIiIiI9RpdUTZw4EUqlEgkJCdoyhUKBxMREeHp6au/8Ky4u1rubrry8XK+9wsJCnDlzRudOv0GDBuGxxx7D3r17oVQqteW7d++GiYkJnnnmGW1ZdXU1li1bhtLSUvztb39D//79BTtWIiIi6jqMbk6Vp6cnfH19sWnTJlRUVKBfv35ISkpCUVGRzjymtWvXIjMzE2lpadqysLAweHt7w93dHTY2NsjPz8e+fftQV1eHiIgInX6ioqKwcuVKLFmyBH5+fsjNzcWPP/6IwMBADBw4UFvvww8/xKVLlzB16lTk5eXpJHIWFhaQSCRtdzKIiIio0zC6pAoAVq1aBWdnZxw4cABVVVVwdXXF+vXr4eXl1eh+wcHBSE9Px4kTJyCTyWBnZwcfHx/MmjULbm5uOnXHjRuHNWvWID4+HjExMejZsydmzZqltyq75vE2iYmJSExM1NnWu3dvJlVEREQEADBRq9Xqjg7iUXHlyhXMnz8fmzdv1lt4lIiI2kbptbvYvfo4Xlg7Do6DGl+0mag1jG5OFREREVFnxKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIi6NEtbMUa+5A5L26afHUvUGka5ThUREZFQLO3M4R0yuOmKRK3EkSoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhJAt44O4FEil8sBAHl5eR0cCRERERlqwIABMDc3b3A7k6p2VFRUBABYs2ZNB0dCREREhtq8eTOGDBnS4HYTtVqtbsd4HmkVFRU4efIk+vTpAzMzM8HazcvLw5o1a/DOO+9gwIABgrXbmTzq5+BRP36A5+BRP36A54DH3/bHz5EqI2Jra4spU6a0WfsDBgxoNIN+FDzq5+BRP36A5+BRP36A54DH33HHz4nqRERERAJgUkVEREQkACZVXYCDgwPCwsLg4ODQ0aF0mEf9HDzqxw/wHDzqxw/wHPD4O/74OVGdiIiISAAcqSIiIiISAJMqIiIiIgEwqSIiIiISAJMqIiIiIgFw8c9OTKFQIC4uDgcPHkRlZSXc3Nwwb948+Pj4dHRogrt06RKSkpKQkZGBoqIi9OjRA0OHDsW8efPQv39/bb2//vWvSEpK0tv/sccew7Zt29ozZEFlZGRg0aJF9W6LjY3F0KFDta8vXLiAf//737h69SqsrKzg6+uL+fPnw9LSsr3CbRMNvbca33//PZycnBAdHY3MzEy97WPGjMEnn3zShhEKRyaT4dtvv0VWVhYuXbqEyspKrFy5Es8//7xe3evXr+Of//wnLly4gG7duuGpp57CwoULYWtrq1NPpVLh22+/xe7du3Hnzh24uLhg1qxZmDx5cjsdlWGacw5UKhUOHDiA1NRUZGdno7KyEn369MGkSZPw6quvQiwW67Q5YcKEevv64x//iFmzZrXp8RiquZ8BQ77zOtNnoLnH39B7CgCjR4/G3//+dwBAYWEhXnnllXrr/eUvf4Gfn58gcTOp6sTWrVuHI0eO4OWXX4aLiwv279+PZcuWISYmBk8++WRHhyeob775BhcuXICvry/c3NxQVlaGH3/8EfPmzUNsbCxcXV21dc3MzLBs2TKd/a2srNo75DYxffp0eHh46JT169dP+3N2djYWL16MAQMGYOHChbh9+za+++475Ofn4+OPP27vcAUVFBSE0aNH65Sp1Wp8+umn6N27N5ycnLTlTk5OiIiI0KnbmW4zv3v3LuLj4+Hs7Ax3d3dkZGTUW+/27dt46623YG1tjfnz56O6uhrffvstcnNz8Z///Afdu3fX1t28eTP++9//Ytq0aXjiiSdw9OhRfPDBBzAxMRHsF4qQmnMOampqsG7dOgwdOhTBwcGws7PDxYsX8dVXX+Hs2bP4/PPPYWJiorPP6NGj8dxzz+mUDR48uE2PpSWa+xkAmv+d15k+A809/nfeeUev7PLly9i1a1e9AwyTJ0/G2LFjdcoe/KO01dTUKV28eFEtkUjU33zzjbaspqZG/eqrr6rffPPNDoysbZw/f16tUCh0ym7cuKH28/NTf/DBB9qytWvXqqdMmdLe4bW5s2fPqiUSifrw4cON1lu6dKn6hRdeUFdVVWnL9u7dq5ZIJOoTJ060cZTt79y5c2qJRKLesmWLtuytt95Sh4aGdmBUrSeXy9WlpaVqtVqtvnTpkloikagTExP16n366afqyZMnq4uKirRlp06dUkskEvWePXu0Zbdv31b7+vqq//73v2vLVCqVesGCBeqXXnpJXVdX14ZH0zLNOQcKhUJ9/vx5vX2/+uortUQiUZ86dUqnXCKR6JwDY9bcz0Bzv/M622egucdfn48++kg9YcIEdXFxsbasoKBA73dmW+Ccqk4qNTUVpqamCAoK0paJxWIEBATg4sWLKC4u7sDohDd8+HCdv7oBoH///hg4cCDy8vL06iuVSkil0vYKr13JZDLU1dXplUulUpw+fRpTpkzR+SvV398fFhYWOHz4cHuG2S4OHToEExOTei9f1NXVQSaTdUBUrWdmZtaskbXU1FSMGzcOzs7O2rLRo0ejf//+Ou/30aNHUVdXhxdffFFbZmJighdeeAElJSW4ePGisAcggOacg+7du2P48OF65RKJBADq/W4AALlcDrlc3vog21BzPwMaTX3ndbbPgKHHr6FQKJCamgovLy/06tWr3jrV1dWora1tbYj14uW/Tio7OxsuLi56Q7yaS0M5OTk6X7RdkVqtRnl5OQYOHKhTXlNTg+effx41NTWwsbGBn58f3nzzzU4/pwi4f8m3uroapqamePLJJxEZGYknnngCAJCbmwulUqn3INHu3btj8ODByM7O7oiQ20xdXR0OHz6MYcOGoU+fPjrbbt68CX9/f9TW1sLe3h6BgYEICwtDt25d5yuvpKQE5eXl9T441sPDA+np6drX2dnZsLCwwIABA/TqabZ3pSkDd+7cAQD07NlTb1tSUhJ2794NtVqNAQMGIDQ0FM8++2x7hyio5nznPSqfgfT0dFRVVTX4nsbHxyM2NhYmJiYYMmQI5s2bhzFjxgjWf9f5hnnElJWV1ZvFa8pKS0vbO6R2l5ycjJKSEoSHh2vLHBwcMHPmTDz++ONQq9U4ceIEdu/ejd9//x0xMTGd9pdqt27d8Mwzz2Ds2LHo2bMnrl+/ju+++w4LFy7Exo0b8fjjj6OsrAxA/XOHHBwccO7cufYOu02dPHkSd+/e1fvy7Nu3L0aOHAlXV1fU1NTgyJEj2LJlC27evIn333+/g6IVXlPv971796BQKGBmZoaysjLY2dnpzS/qqt8X27dvh5WVFf7whz/olA8bNgy+vr7o06cPysrK8MMPP+DDDz+EVCrFCy+80DHBtlJzv/Melc9AcnIyzMzM8Mwzz+iUi0Qi+Pj4YMKECXB0dERBQQF27NiBZcuWYd26dXjqqacE6b9z/oYhyOVyvcthwP0hU832riwvLw+fffYZhg4dqjPp9OHJyX5+fujfvz82b96M1NRUo5uM2VzDhw/Xuczx9NNPY+LEiZg7dy42bdqETz75RPueN/S5UCgU7RZvezh06BC6desGX19fnfIVK1bovPb398fHH3+MvXv3YsaMGcJOSu1ATb3fmjpmZmaP1PfF1q1bcfr0afzpT3+CjY2NzraNGzfqvJ46dSrmzZuHTZs24fnnn9e7W7AzaO533qPwGZBKpfj111/xhz/8Qe+9d3Z2xqeffqpT5u/vj9DQUPzrX/8SLKninKpOSiwW13tNWPOLszN+OTRXWVkZli9fDisrK3z44YcwNTVttP6MGTMgEolw+vTpdoqwfbi4uODpp59GRkYGlEql9j1v6HOh+fLsCmQyGY4ePYoxY8bUe4nnYZpbqbvSZ6Cp9/vBOo/K90VKSgq++OILBAQENGvkqXv37njppZdQVVWFK1eutH2A7aS+77xH4TOQmpoKhULR7Mu5PXr0wPPPP48bN27g9u3bgsTApKqTcnBw0A7/P0hT5ujo2N4htYuqqiosW7YMVVVV+OSTT5p1nGKxGD169MC9e/faIcL21atXL9TW1qKmpkY7jN/Q56IrfSaOHj2KmpqaZn95aiasVlZWtmVY7aqp97tHjx7aRNrBwQF37tyBWq3Wqwd0je+LU6dO4a9//SueeuopLFmypNn7aT4bXen7ob7vvEfhM5CcnAxra2uMGzeu2fsI/d3ApKqTcnd3R35+vt7dHllZWdrtXY1cLseKFStw8+ZNfPTRR3oT1Bsik8lw9+5dvcUQu4KCggKYmZnBwsICgwYNgqmpqd5f3LW1tcjOzu5Sn4nk5GRYWFhg/PjxzapfUFAAAF3qM+Dk5ARbW9t6R1guXbqk8367u7ujpqZG7264rvJ9kZWVhXfeeQdDhgzB+++/b9Dcya742ajvO6+rfwZKS0uRkZGBCRMmGDQqr3n/mzPi3RxMqjqpiRMnQqlUIiEhQVumUCiQmJgIT0/PLnfnn1KpxHvvvYeLFy/i/fffx7Bhw/TqyOXyem+h//rrr6FWq/UmrXYmFRUVemU5OTk4duwYfHx8IBKJYG1tjdGjR+PgwYM65+HAgQOorq7Wm3vUWVVUVOD06dOYMGECzM3NdbZJpVK9uWNqtRpbtmwBgC73tIFnnnkGx48f11lC5cyZM7h586bO+/3000+jW7du+PHHH7VlarUae/bsgZOTU73/njqL69evY/ny5ejduzfWr1/f4GWs+v4NyWQy7Nq1Cz179qz3LkpjZ8h3Xlf+DADAzz//DJVK1eDodX3vf0lJCRITE+Hm5ibYSB0nqndSnp6e8PX1xaZNm1BRUYF+/fohKSkJRUVFWL58eUeHJ7h//etfOHbsGMaNG4fKykocPHhQZ/uUKVNw584dvPHGG5g8eTIee+wxAPfvEEtPT8cf/vAHPP300x0RuiD+8pe/QCwWY9iwYbCzs8P169exd+9emJub60xUnTdvHhYsWIC33noLQUFB2hXVfXx8OnVS+aCUlBQolcp6vzyvXr2K999/H5MnT0a/fv0gl8vxyy+/4MKFC5g2bVqn+sX5/fffo6qqSnt55tixY9p5H9OnT4e1tTVmzZqFI0eO4O2330ZISAiqq6uxfft2uLq66jzOo1evXnj55Zexfft21NXVwcPDA7/88gvOnz+PP//5z03OS+woTZ0DkUiEpUuXorKyEq+++ip+/fVXnf379u2rTRZ++OEHHD16VLuuV1lZGRITE1FcXIzVq1fXO4m7ozV1/JWVlc3+zuuMn4Hm/BvQSE5OhqOjI0aOHFlvW7Gxsbh16xa8vb3h6OiIoqIiJCQkoKamBtHR0YLFbKJ++AIrdRpyuVz77L+qqiq4uroKvuaGsWjoeW4aaWlpqKysRExMDC5evIiysjKoVCr069cPzz77LF599dVOu5wCAOzatQvJycm4desWpFIpbG1t4e3tjbCwMLi4uOjUPX/+vPbZf5aWlvD19UVERESXWKcLACIjI1FQUIAffvhB7xdBQUEB/vOf/+DSpUu4c+cORCIRBgwYgMDAQAQFBendTm7MZsyYgaKionq3fffdd9q1ua5du6b37L8FCxbA3t5eZx+VSoVvvvkGCQkJKCsrg4uLC15//XVMmTKlzY+lpZo6BwAafJ4bADz33HNYtWoVgPtzrrZv347c3Fzcu3cP5ubm8PDwwGuvvQZvb2/hgxdAU8dvbW1t0HdeZ/sMNPffwI0bNzBr1izMmDEDCxcurLf+oUOHsGfPHuTl5aGyshLW1tZ48sknERoaKugfW0yqiIiIiATAOVVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRWQENE9X//LLL9u0n+joaEyYMKFN+2iu/fv3Y8KECdi/f39Hh2LU2us8/fLLL5gwYQIuXLjQrPqFhYWYMGEC/vrXv7ZpXJ3V5s2b4e/vjzt37nR0KNSOmFQRNZPml8iD/02aNAnTp0/HBx98gN9//72jQzQqnfmXrlqtxsyZMzFhwgQsW7aso8Npc3V1dYiNjcWYMWMwfPjwjg6nS3j11VchEona/A8lMi6d9wmzRB1E88BSAKiurkZWVhYOHTqEtLQ0fPbZZ0b9S2n16tWoqanp6DAAABKJBJ6ennBwcOjoUPRkZGTg1q1bMDExwalTp1BaWgpHR8eODqvNHDhwAPn5+ViyZElHh9Jl2NjYICAgAN9//z1mzZqF3r17d3RI1A44UkVkoH79+iE8PBzh4eFYsGAB/vWvf2H27NlQKBTYvHlzR4fXKGdnZwwYMKCjwwAAWFtbY8CAAbC2tu7oUPTs27cPAPDKK69AqVR2+UuUe/bsQa9evTBq1KiODqVLmTJlCpRKJX766aeODoXaCUeqiAQwffp0bN26FZcvX9aW1dXV4fvvv0dSUhJu3ryJ7t274/HHH8eMGTMwfvz4ZrV79uxZHDx4EBcuXEBpaSkA4LHHHsO0adMQFBSkV3/ChAnw8vLCn//8Z2zatAmnTp1CeXk5Pv/8c4wcORLR0dHIzMxEWlqazj6NWblyJZ5//nkAQFpaGg4fPozLly+jtLQU3bp1g5ubG0JCQjBx4kTtPvv378e6desAAElJSUhKStJui4mJwciRI7V1Hmxf48KFC9i6dSsuXrwIuVyO3r17Y9KkSXjttddgbm5e7zG/9957iI2NRXp6Oqqrq+Hu7o6IiAiMHDmyGWf6fyorK5GamopBgwbhjTfeQEJCAhITEzFr1iyYmJjo1C0sLMQrr7yC5557DqGhoYiNjUVGRgbq6uowdOhQLFiwAO7u7np9ZGZm4osvvsDVq1dhZmYGb29vREVFYe3atXrvT2MKCgqwdetW7ftsY2ODMWPGIDw8vNkjI7m5ubh8+TJefvllveMDAKVSiW+//RY//fQTSkpK4OTkhICAAEyaNKnBNsvLy7Ft2zYcP34ct2/fhqWlJUaMGIHw8HC4urq26nx8+eWXiI+PR0xMDIqKirBr1y7cuHEDHh4e2LBhAwBAJpPh22+/xZEjR1BQUAAzMzN4eHhgzpw5ePLJJ/X6N6R+aWkp/vvf/yI9PR0lJSUwMzODvb09vLy88Oabb+r8kfD444+jX79+2L9/P+bNm9f0m0GdHpMqIgFpfimp1Wq8++67OHr0KPr3748XX3wRNTU1+Pnnn7Fy5UosXLgQM2bMaLK9b775Brdu3YKnpyecnJxQVVWFkydP4pNPPsGNGzewcOFCvX3u3r2LyMhI9OjRA5MmTYJCoYClpWWDfYSFhdVbvmfPHpSXl0MsFmvLNm3ahG7dumH48OFwcHBARUUFjh07hnfffReLFi3C9OnTAQDu7u4ICQnBrl274O7ujqefflrbRlO/7A8fPowPPvgA3bt3x6RJk2Bra4tTp04hPj4eJ0+eRExMjE5MAFBVVYUFCxbA2toaU6ZMQXl5OQ4fPoylS5di8+bN9f4ib8ihQ4egUCjw3HPPQSwWY+LEiUhMTERmZmaDCVpRUREiIyMxcOBATJ06FQUFBTh69CgWLVqErVu3wt7eXlv35MmTWL58OUxNTeHr6wtHR0dkZGRg4cKFsLGxaXacWVlZWLp0KaqrqzFu3Di4uLigqKgIycnJOHHiBGJjY9G3b98m2zlz5gwAwNPTs97tH3/8MRITE9GnTx+88MILUCgU+O677/Dbb7/VW//WrVuIjo5GSUkJfHx88PTTT6OiogKpqak4deoUPvvsM52+Wno+tm/fjoyMDDz99NPw8fGBqakpAODevXt46623cO3aNQwfPhzBwcGQSqU4duwYFi1ahA8++AASiUTbjiH1a2pqsGDBAhQVFcHHxwcTJkxAbW0tCgsLcfDgQbz66qt6I6/Dhg3DgQMHcPPmTfTv37/J94M6OTURNUtBQYFaIpGolyxZorctLi5OLZFI1NHR0Wq1Wq3ev3+/WiKRqN966y21QqHQ1isqKlIHBgaqJ06cqL5165a2/OzZs2qJRKKOi4vTaffBOhq1tbXqxYsXqydOnKguKirS2SaRSNQSiUS9bt06dV1dnd6+b731lloikTR5rNu2bVNLJBL1ypUr1UqlstF4pFKpes6cOernn39eXV1drS3XnK+1a9fW20diYqJaIpGoExMTtWVVVVXq559/Xu3n56fOycnRliuVSvVf/vIXtUQiUcfHx9d7zJ9++qlOrHv37lVLJBL1xx9/3OTxPuiNN95QP/PMM+qSkhK1Wq1WnzlzRi2RSNQffvihXl3NMUokEvW2bdt0tm3evFktkUjUW7du1ZbV1dWpX375ZfWECRPU586d06m/Zs0abVsPqu881dbWql9++WW1v7+/+sqVKzr1z507p544caJ6+fLlzTred999Vy2RSNQ3b97U26b5XM6dO1ctk8m05bdv31YHBgbW+/5GRkaqJ06cqD5x4oRO+Y0bN9T+/v7qOXPmtOp8aP6tTZkyReczovH++++rJRKJeu/evTrld+7cUU+fPl09bdo0dU1NTYvqHz16VC2RSNQbNmzQ61cqlarlcrle+c6dO9USiUS9b98+vW3U9XBOFZGBbt26hS+//BJffvklNm7ciIULFyI+Ph5mZmaYP38+AGgvd7355pvo3r27dl9nZ2fMmDEDSqUSycnJTfZV30hDt27dEBwcDKVSibNnz+pt7969O958803tX+6GSk1NxaZNm/D444/jz3/+M0Si/31N1BePpaUlnn/+eVRVVelc/myJo0ePoqqqClOnToWbm5u2XCQSITIyEqampvXOb7KwsMCbb76pE+tzzz0HU1NTg2LKzs7G1atXMWrUKO3E9JEjR8LZ2Rmpqamoqqqqd78+ffpg5syZOmUBAQEAoNP/hQsXUFRUhHHjxuldVpo3b16z37Pjx4+jqKgIM2fOxOOPP66z7cknn8T48eORnp4OqVTaZFu3b98GAJ3RNI0DBw4AAObMmQMLCwttuZOTE0JCQvTqX716Fb/99hv8/f0xZswYnW39+/dHYGAgcnNzkZubC6B152PatGk6nxEAqKiowOHDhzFq1CgEBgbqbLOzs8PMmTNRUVGhHZ0ztL7GwyOlwP1/B2ZmZnrldnZ2AICSkpIGj4W6Dl7+IzLQrVu3EB8fD+B+gmNnZ4fJkyfj9ddf137JZ2dnw9zcvN5LKppLSNnZ2U32pZnr8csvv6CgoADV1dU628vKyvT26dOnD2xtbQ08qvsuX76MtWvXwtHRER999JHOL1Lg/lwZzXyS4uJiyOVyne2aeV8tpTknXl5eetucnZ3Rt29f3Lx5EzKZTOeSpouLi94lzm7dusHe3r7BRKg+mgnFzz33nLbMxMQEU6ZMwdatW3Ho0CG88MILevu5u7vrJHTA/cQDgE7/OTk5AFDvvB5nZ2f06tULhYWFTcZ58eJFAMCNGzfqvWX/zp07UKlUuHnzJp544olG27p37x5MTU3rvUSsiXfEiBF62+ory8rKAnD/c1JfXDdu3ND+39XVtVXnw8PDQ6/s8uXLUCqVqK2trbf//Px8AEBeXh7GjRtncP0RI0bAwcEB//3vf5GTk4Nx48bBy8sLAwYMqHc+GgD06NEDwP0Ejro+JlVEBhozZgw++eSTRuvIZDLtL9WHaZYQkMlkjbZRW1uL6OhoXL16FYMHD8aUKVPQo0cPmJqaoqioCElJSVAoFHr7af4yNlRxcTFWrFgBExMTrFu3Tm8JgXv37uGPf/wjiouLMXz4cIwePRrW1tYQiUTIycnB0aNHUVtb26K+NTQjK/WNmgD3z93NmzchlUp1kgArK6t665uamkKlUjWrb7lcjuTkZFhYWOhN3vf398fWrVuRmJhYb1JVX//dut3/en2wf83xNZT02tvbNyupqqysBIAmRzubs3yGWCyGUqlEXV2dNuYH4xWJROjZs6fefvV9zu7duwcA+PXXX/Hrr7822Kfmj4PWnI/G+r9w4UKji5hqzouh9a2trfHvf/8bcXFxOH78ONLT0wEAvXr1wuuvv44XX3xRb1/NHx4P32BBXROTKqI2YGlp2eBfppoVlhubPA7cvxR29epVBAQEYPny5TrbUlJSdO6oe1BDfzE3RiaTYcWKFaioqMCaNWv0LikB95cZKC4uxhtvvIE5c+bobNu2bRuOHj1qcL8P0yQnDa1CrSlvKIlqjbS0NO2o0pQpU+qtc/nyZfz+++96l52aSxN3U5+Npmg+Ox999BHGjRvXolg0NAnNvXv39JJZKysrqFQq3L17Vy/xKS8v12tLc3wP3rTQmNacj/o+55r2XnnlFSxYsKDZ/Te3PnB/BG3VqlVQqVT4/fffcerUKXz//ff47LPPYGNjg8mTJ+vU1yTALR09ps6Fc6qI2sDgwYNRU1OjvRzyoIyMDG2dxty6dQsAdO6c0zh37pwAUd6nVCrx3nvv4ffff0dkZGS9/TUVz/nz5/XKNJfDmjtSBPzvnGRmZuptKy4uxq1bt9C3b98mE9KW0KxN5evri4CAAL3/NHOEWrPmkGZ5hfpGRW7fvq2d39QUzWVlzWXA1tDcGam5NPcgTbz1fd7qK9NckmtuXEKdD40nnngCJiYmze7f0PoPEolEGDx4MF577TW8++67AIBjx47p1dOcV0PuQKXOi0kVURvQzMnZtGkT6urqtOXFxcXYsWMHTE1NtauyN0Sz9MDDCUtmZqagiwn+4x//QHp6OqZNm4ZXXnmlyXge/gWYnJysvQzyIBsbG5iYmBj0i/Hpp5+GtbU1EhMTce3aNW25Wq3Gf/7zHyiVSr01rYRQUFCAjIwM9O7dG++99x6WL1+u9997770HsViM5OTkei+7Nsfw4cPh7OyM48eP6y1JEBcXB6VS2ax2nn76aTg7O+O7776rNwGtq6urN9Gtj2Zu1KVLl/S2aUbsvv76a535fCUlJdi1a5defU9PT3h6eiIlJQUpKSl621UqlU68Qp0PDQcHB/j6+uK3337D9u3boVar9epkZWVpL+cZWv/atWv1jp5pRu3qm6ielZUFU1NTDBs2zKBjoc6Jl/+I2oC/vz/S0tJw9OhRhIWFYdy4cdp1qu7du4cFCxY0uYbQuHHj0Lt3b2zfvh3Xrl3DoEGDcPPmTfz666+QSCQ4cuRIq+PMysrCDz/8ALFYDFtb23on60okEu2crm+++QYxMTHIyMiAs7MzcnJycPbsWUyYMEFvwUpLS0s88cQTOHfuHNasWQMXFxeYmJjA39+/wbWqrKys8H//93/44IMP8Oabb8LX1xe2trY4c+YMrly5Ag8PD7z66qutPu6HJSYmQq1W47nnnmvw8qm1tTUkEgkOHTqEX375BX5+fgb3Y2pqiiVLlmDlypV4++23MWnSJDg4OCAzMxOlpaVwd3dv1jMkzczM8MEHH2DZsmWIjo7GqFGj4OrqChMTExQVFeH8+fPo2bMntm3b1mRb3t7esLS0xKlTp/TuYBw1ahSmTp2KxMREhIWFQSKRoLa2Fj///DOGDh2K48eP67X37rvv4u2338b777+PXbt2YfDgwRCLxbh9+zZ+++033L17F4cOHRL0fDzoT3/6E27evInY2FgcOHAAQ4cOhbW1NUpKSnD58mXk5+fjxx9/1M5xMqT+qVOnEBsbi+HDh6N///7o0aMHCgoKcOzYMZiZmenNqZLJZMjKysLo0aP1bvqgrolJFVEbMDExwQcffIBdu3YhKSkJP/zwA7p166ZdUb2hS2wPsrS0xOeff47Y2FicO3cOmZmZGDhwIN555x3Y29sLklRpJtHK5XJs3bq13jp9+vTB4MGD0atXL2zYsAGxsbE4ffo0lEolHn/8cXz66ae4fft2vauAv/POO/jHP/6B48ePQyqVQq1W48knn2x0AVBfX1/Y29tj27ZtSEtL066oPmfOHLz22mv13s7eGiqVCvv374eJiYnOXX/1mTp1Kg4dOoR9+/a1KKkCgLFjx+LTTz/Fl19+icOHD0MsFsPb2xvvvfceli1b1uz5Yh4eHvjyyy+xfft2pKen47fffkP37t3h6OgIiUTS7PgsLS0xZcoU7N27t95nHP7f//0fXFxc8NNPP+HHH3+Ek5MTXnnlFfj6+tabVPXt2xdxcXH47rvv8Msvv2D//v0QiURwcHDAiBEjdFbeF/J8aPTo0QMbN27EDz/8gJ9//hmHDh2CSqWCvb093N3dMWfOHJ2J94bUHzNmDIqKinDu3DmkpaWhuroajo6O2tX+Bw4cqBNLamoq5HJ5vU8/oK7JRF3feCcREbUrmUyG4OBguLq64j//+U+79n3jxg3MmTMHc+fORWhoaLv23ZCOPB9CWbhwIe7cuYOtW7e2eN046lw4p4qIqB1VV1frLaehVCqxceNGyOVynUeotJfHHnsMgYGB2LlzZ5NLfQjNGM+HEM6cOYPz58+3aiFe6nx4+Y+IqB3l5+dj4cKF8PHxQd++fSGTyXD+/Hlcv34dgwYNatZSBG0hPDwcdnZ2KCwsbPGSES1hrOejtaqqqhAVFdXkA8upa+HlPyKidlRRUYHY2FhkZmaivLwcSqUSvXr1gkQiwezZsw16qHJXwPNBXQmTKiIiIiIBcE4VERERkQCYVBEREREJgEkVERERkQCYVBEREREJgEkVERERkQCYVBEREREJgEkVERERkQCYVBEREREJ4P8B/glIBNNi7PwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu_100: 0.31\n" + ] + } + ], + "source": [ + "asads['unpolarized'] = grb_polarization.create_unpolarized_asad()\n", + "\n", + "asads['polarized'] = grb_polarization.create_polarized_asads()\n", + "\n", + "mu_100 = grb_polarization.calculate_mu100(asads['polarized'], asads['unpolarized'])" + ] + }, + { + "cell_type": "markdown", + "id": "7fb2ffdb", + "metadata": {}, + "source": [ + "Plot the ASADs" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8fc63ee4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeUklEQVR4nO3deVxU1f8/8BfDvooMmyuBEuKOIi6IigtuRaZYaaaU0gZuffpU9m3P6pNm5ZKZSpJaLlmm5i7hhiKhuCEgiiCmCAyr7DD39we/mRxnQECG4Q6v5+Phozj33Hvf98wMvOecc881EARBABEREVELJ9F1AERERET1waSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJC1ErcfXqVbzxxhvo168f7OzsYGxsDDs7OwwcOBBvvvkmzp49q7bPRx99BAMDA5V/ZmZm6Nq1K15++WWkpaVpPFdwcLDafoaGhpBKpRg5ciR+/vnnRl9HSUkJbG1tYWBggOnTpz+0/q+//opx48bB0dERxsbGkEql6N69O2bMmIGffvqpzn2jo6OV8a9du7bWemlpaWrXa25uDkdHRwwaNAhhYWE4ceJEg6+ViFQZ8NlDRPpNEAR88skn+OSTTyCXy9GvXz/4+PjAzs4ORUVFuHjxIk6fPo2KigqsWrUKoaGhyn0/+ugjfPzxxxg+fDhGjBgBAJDJZPjrr79w5coVtG3bFmfOnIG7u7vKOYODg/HTTz/hqaeeQt++fQEAFRUVSE1Nxe7du1FaWop3330Xn332WYOvZ8OGDXjppZdgYGAAExMT/PPPP5BKpRrrvvzyy1i3bh3Mzc0xceJEuLq6QhAEJCUl4fjx47C2tsatW7dqPdesWbOwceNGGBgYoF+/foiLi9NYLy0tDa6urmjTpg0WLFgAAKiqqkJubi4uXLiAmJgYyOVyBAQEYOPGjXBycmrwdRMRAIGI9NpHH30kABA6deoknDx5UmOdu3fvCosWLRI+++wzlfIPP/xQACB8+OGHKuXV1dXChAkTBABCcHCw2vFmzZolABA2bNigti0uLk4AIJiZmQmlpaUNvp5BgwYJEolEeOuttwQAwrJlyzTWO3HihABA6Nixo5CRkaG2vaKiQjh06FCt58nLyxPMzc0Fd3d3YcqUKQIA4dy5cxrr3rhxQwAguLi4aNx+/fp1YcSIEQIAoW/fvo26biISBA4PEemx1NRULF68GCYmJti/fz98fX011nN0dMTnn3+Ot956q17HlUgkCA4OBgD8/fffDYqpf//+sLOzQ1lZGYqKihq07+XLlxETE4NRo0bh7bffhomJCdavX6+x7qlTpwAAU6ZMQceOHdW2GxsbY8yYMbWea/PmzSgtLUVwcLDyWusaIqqLm5sb9u7di27duuH8+fNYs2ZNo45D1NoxaSHSYxs2bEBVVRWCgoLQo0ePh9Y3MjJq8DmMjY0bVP/cuXPIzc2Fi4sLHBwcGrSvImkIDg6GnZ0dnnzySSQmJmqcL6IYMkpJSWnQORTWrVsHiUSCmTNnYty4cXB2dsYvv/yC4uLiRh3PwsICb775JgA80pweotaMSQuRHouOjgYAjBw5skmPW11djfDwcADA0KFDa633xx9/4KOPPsJHH32Ed999F9OnT8ewYcPQsWNHbNq0qUHnLCsrw+bNm9GmTRs8/fTTAFBnD8i4cePQpk0b7Nu3D4GBgfjll1+QkpICoR7T+GJiYnDx4kWMHj0aHTt2hJGREZ5//nkUFhZi69atDYr7fop5QfHx8aiqqmr0cYhaq4Z/rSIi0cjMzAQAdOjQQW1bWloaIiIiVMpsbW2VE0nvd/ToUXz00UcAgNzcXBw+fBhJSUno3r073n///VrPv2vXLuzatUulzNzcHNOnT0evXr0adC2//vor8vLy8PLLL8Pc3BwAlD0gO3bswIoVK9C2bVtl/Q4dOmDnzp0ICQnBnj17sGfPHgCAtbU1hgwZghkzZmDatGkwNDRUO9e6desA/JsUKf5/2bJlWLt2LWbPnt2g2O+PCahJ+nJzc+Ho6Nio4xC1WrqeVENE2uPp6SkAEPbv36+2LSoqSgCg8u/BiaSKibia/vXt21fIz8/XeF5NE3GrqqqEtLQ04eOPPxYMDAwEDw8PoaioqN7XMnToUAGAcPr0aZXy//znPwIAYfny5Rr3q66uFo4fPy58+umnwuTJkwUnJyflNYwePVooKytTqV9QUCBYWloKtra2ahNm+/fvLwAQLly4oFL+sIm4CiUlJcpzZ2Vl1fPKiUiBw0NEeszZ2RkAcPv2bbVtI0aMgCAIEAQBlZWVdR7nww8/hCAIqK6uxs2bNzFv3jycP38ezzzzDORyeb1iMTQ0hIuLCz744ANMnz4dycnJWLlyZb32TUxMxMmTJ9GtWzcMGjRIZZuiN0TRO/IgiUQCPz8/vPfee/jtt99w584dHDx4EM7Ozjhy5Ai+//57lfo///wziouL8eyzz8LMzEzjuRo7IVfxOhgaGqr0ChFR/TBpIdJjiruFIiMjm+R4EokEnTp1wvLlyxEUFIRDhw5h1apVDT7OwIEDAQCxsbH1qq9IEpKSktQWcVMMM12+fFl5x1BdDAwMEBAQgMWLFwMA/vrrL5XtiuTnhx9+UDvX3LlzAdQkNqWlpfWK/X5RUVEAau6gasykZ6LWjp8aIj0WHByM//3vf9ixYwfee+89eHp6Ntmxly1bhj179uCTTz5BcHAwbGxs6r1vXl4eANSrl6a8vBybNm1S3mZtYGCgVufWrVs4ePAg1q1bhyFDhtQrBmtrawBQmZgbFxeH+Ph4tG/fHuPHj9e4399//42LFy9i+/btmDVrVr3OBdSs5Lts2TIAwPPPP1/v/YjoProdnSIibVMsLufi4iJER0drrJOdnV3nnJYHF5dTCAsLEwAIH3zwgUp5XYvL5ebmCo899pgAQPj6668fGv/PP/8sABDGjx9fax3FPBQLCwvlPJv9+/cLv/32m1BRUaFWv6ioSBg8eLAAQFiyZImyPCQkRAAgfPnll7We68iRIwIAYciQIcqyh81pSU1NVS4u5+XlpTaPhojqhz0tRHrugw8+gCAI+PTTT+Hr64v+/fsrl/HPz89HWloajhw5AgAYNmxYg4797rvvIjw8HN988w3mzp0Le3t7le1//PGH8vlE1dXVuHXrFvbs2QOZTIYBAwbg1Vdffeg5FENDc+bMqbWOjY0Npk6dioiICGzevBmhoaFISkrCwoUL0bZtW/j5+cHd3R1GRka4desW9u7di/z8fAwcOBBhYWEAgHv37mHLli0wNjauswdl5MiRcHNzw6lTp5CQkKCy/k1+fr7yLquqqirk5eXhwoULOH36NORyOcaNG4effvoJpqamD71uItJA11kTETWPpKQkYcGCBUKfPn2ENm3aCEZGRkLbtm0Fb29vYcGCBcLZs2fV9nlYT4sgCMIbb7whABDeeOMNZZmip+XBf9bW1sKAAQOEJUuW1Gsp++TkZAGA4OTkpLHH5H7R0dECAKFPnz6CINT0HoWHhwvPPfec4OnpKdja2gpGRkaCvb29MGLECOG7774TysvLlfuvXbtWACA8/fTTD43rs88+EwAI8+bNEwTh356W+/+ZmpoKDg4OwsCBA4WwsDDhxIkTDz0uEdWND0wkIiIiUeDdQ0RERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiERBb5KWsrIyJCcno6ysTNehEBERkRboTdKSnp6OkJAQpKen6zoUIiIi0gK9SVqIiIhIvzFpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApGDd2hpKQEW7duxZUrV5CYmIiioiIsWrQI48ePV6l35coVHDhwAFeuXMH169dRXV2N48eP13rcP//8E1u3bkVmZiYcHBwQFBSEKVOmNPyKiIiISC81uKeloKAAERERSE9PR9euXWutFxMTgz///BMGBgZo3759ncfctWsXlixZAldXV8yfPx89e/bE8uXL8fPPPzc0PL1QkleGsztSUJJXputQiIiIWowG97RIpVLs3LkTUqkUSUlJePnllzXWmzRpEp5//nmYmprim2++QUZGhsZ65eXlWL9+PQYPHoxPP/0UAPDkk09CLpdj48aNCAwMhLW1dUPDFLWS/HLE/34NLv0dYdHWTNfhEBERtQgN7mkxMTGBVCp9aD07OzuYmpo+tN65c+dQUFCASZMmqZQ//fTTKC0txenTpxsaIhEREemhBve0NLWUlBQAQLdu3VTKPTw8IJFIcPXqVQQEBKjtl5OTA5lMpvw5PT1du4ESERGRTuk8aZHJZDA0NETbtm1Vyo2NjWFjY6OSmNxv9+7diIiIaIYIiYiIqCXQedJSXl4OIyPNYZiYmKC8vFzjtsDAQPj6+ip/Tk9Px+LFi7USIxEREemezpMWU1NTVFVVadxWUVFR67wYe3t72NvbazM0IiIiakF0vricVCpFdXU18vLyVMorKytRWFhYr0m/REREpP90nrS4u7sDAJKSklTKk5KSIJfLlduJiIioddN50tKvXz/Y2Nhg165dKuW7du2CmZkZBg8erKPIiIiIqCVp1JyW3377Dffu3VPe2RMdHY2srCwAwJQpU2BlZYXMzEwcPHgQAJCcnAwA+OmnnwAAzs7OGDt2LICaOS2zZ8/GN998gw8++AA+Pj64cOECDh06hJCQENjY2DzaFRIREZFeaFTSsm3bNmRmZip/Pn78uPK5QgEBAbCyssKdO3cQHh6usp/i5759+yqTFqBmITkjIyNs27YN0dHRcHR0RFhYGKZOndqY8IiIiEgPNSpp2b59+0PreHl51fmAxAc9+eSTePLJJxsTDhEREbUCOp/TQkRERFQfTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFpaGLlcQHZqAQAgO7UAcrmg44iIiIhaBiNdB0D/uhGbiZiNiSjOLQMARIcn4PzO6xg00xOuPs46jo6IiEi32NNSDyV5ZTi7IwUleWVaO8eN2ExEfhuvTFgUinPLEPltPG7EZmrt3ERERGLQ4J6WkpISbN26FVeuXEFiYiKKioqwaNEijB8/Xq1uWloaVq1ahUuXLsHIyAiDBw9GWFgYbG1tVerJ5XJs3boVf/zxB3Jzc9GxY0fMmDEDo0ePbvSFNaWS/HLE/34NLv0dYdHWrMmPL5cLiNmYWGedmE2JcPF2gkRi0OTnJyIiEoMG97QUFBQgIiIC6enp6Nq1a631srKyMHfuXPzzzz8ICQnBc889h9OnT+ONN95AZWWlSt1169ZhzZo1GDBgAObPnw8nJyd88skniIyMbPgViVBmUq5aD8uDimVlyEzKbaaIiIiIWp4G97RIpVLs3LkTUqkUSUlJePnllzXW27x5M8rKyrB+/Xo4OTkBADw9PfHGG29g//79CAwMBABkZ2dj27ZtePrpp7Fw4UIAwBNPPIG5c+di9erVGDFiBAwNDRt7faJQml/epPWIiIj0UYN7WkxMTCCVSh9a79ixYxgyZIgyYQEAb29vdOrUCVFRUcqykydPoqqqCk8//bSyzMDAAJMmTUJ2djYSEhIaGqLomNuaNmk9IiIifaSVibjZ2dnIy8uDh4eH2jZPT0+kpKQof05JSYG5uTlcXFzU6im26zvnbnawtKt7royl1AzO3eyaKSIiIqKWRyu3PMtkMgDQ2CMjlUpRWFiIiooKmJiYQCaToW3btjAwMFCrBwA5OTkaz5GTk6M8DwCkp6c3VfjNTiIxwKCZnoj8Nr7WOoNe8OQkXCIiatW0krSUl9fMvTA2NlbbZmJioqxjYmKC8vLyh9bTZPfu3YiIiGiiiHXP1ccZoxZ4qazTAtT0sAx6geu0EBERaSVpMTWtmXvx4F1CAFBRUaFSx9TUtF71HhQYGAhfX1/lz+np6Vi8ePGjBa5jrj7OcPF2QnJUBqLDE+A7uwc8/Duxh4WIiAhaSloUQzv3D98oyGQy2NjYKHtSpFIp4uPjIQiCyhCRYl97e3uN57C3t691m5hJJAZwcGsDAHBwa8OEhYiI6P/TykRcBwcH2NraIjk5WW1bYmKiyvouXbt2RVlZmdqclCtXrii3ExEREWltGf/hw4fj1KlTuHv3rrLs7NmzyMjIgL+/v7Js6NChMDIyws6dO5VlgiBg165dcHBwQM+ePbUVIhEREYlIo4aHfvvtN9y7d085hBMdHY2srCwAwJQpU2BlZYUZM2bg6NGjWLBgAYKCglBaWootW7bAzc1NZcl/R0dHTJ06FVu2bEFVVRU8PT1x4sQJXLx4Ee+//77eLyxHRERE9dOopGXbtm3IzPz3AX7Hjx/H8ePHAQABAQGwsrKCk5MTVqxYgVWrVuGHH35QPnsoNDRUOZ9F4ZVXXoG1tTV2796NAwcOoGPHjnjvvfcwZsyYR7g0IiIi0ieNSlq2b99er3qurq5YtmzZQ+tJJBLMmDEDM2bMaEw4RERE1ApobU4LERERUVNi0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtDyGXC8hOLQAAZKcWQC4XdBwRERFR62Sk6wBashuxmYjZmIji3DIAQHR4As7vvI5BMz3h6uOs4+iIiIhaF/a01OJGbCYiv41XJiwKxblliPw2HjdiM3UUGRERUevEpEUDuVxAzMbEOuvEbErkUBEREVEzYtKiQWZSrloPy4OKZWXITMptpoiIiIiISYsGpfnlTVqPiIiIHh2TFg3MbU2btB4RERE9Oq3ePZScnIx169bh8uXLEAQBPXr0wGuvvQZ3d3e1upcuXcKaNWtw9epVWFpawt/fHyEhIbCwsNBmiBo5d7ODpZ1ZnUNEllIzOHeza8aoiIiIWjet9bQkJycjNDQUt2/fRnBwMIKDg3Hr1i3MmzcPN2/eVKmbkpKChQsXoqysDGFhYZg4cSL27NmDDz/8UFvh1UkiMcCgmZ511hn0gickEoNmioiIiIi01tMSHh4OU1NTfP/992jTpg0AYMyYMXj++eexdu1aLF68WFl37dq1sLa2xooVK2BpaQkAaNeuHZYsWYLY2Fj4+PhoK8xaufo4Y9QCL5V1WoCaHpZBL2h3nRYLW1N4Te4KCw4/ERERKWmtp+XixYvw9vZWJiwAYG9vj759++L06dMoKSkBABQXFyMuLg4BAQHKhAUAxo4dC3Nzc0RFRWkrxIdy9XHGsytGwHd2DwCA7+weeHb5CK0vLGfR1gz9g9xh0dZMq+chIiISE60lLZWVlTAxMVErNzMzQ2VlJW7cuAEASE1NRXV1NTw8PFTqGRsbw93dHSkpKdoKsV4kEgM4uNUkXg5ubTgkREREpCNaGx7q1KkTrly5gurqahgaGgKoSWSuXLkCAMjOzgYAyGQyAIBUKlU7hlQqxYULFzQePycnR7kvAKSnpzdp/ERERNSyaC1pefrpp7Fs2TJ8+eWXmD59OuRyOTZu3KhMNCoqKgAA5eU1a50YGxurHcPExERZ70G7d+9GRESEdoInIiJq4UryypAYmQHPUZ1azXQCrSUtTz31FLKysrBlyxYcOHAAANCtWzdMmzYNmzZtgrm5OQDA1LRmsmllZaXaMSoqKjQOMQFAYGAgfH19lT+np6erTO4lIiLSZyX55Yj//Rpc+jsyaWkKISEheO6553Djxg1YWlqiS5cuWLt2LYCa4SPg32Gh+4d6FGQyGezt7TUe297evtZtREREpH+0viKutbU1evfujS5dugAA4uLi4ODggM6dOwMAXF1dYWhoiOTkZJX9KisrkZKSgq5du2o7RCIiIhKBZl3GPzIyEklJSZg6dSokkppTW1lZwdvbG4cOHVLeBg0ABw8eRGlpKfz9/ZszRCIiImqhtDY8dP78efz0008YMGAAbGxscOXKFezfvx8DBw5EUFCQSt05c+YgNDQUc+fORWBgILKysrBt2zYMGDAAAwcO1FaIREREJCJaS1ocHBwgkUiwZcsWlJaWwtnZGbNnz8azzz4LIyPV03p4eODrr7/GmjVrsHLlSlhYWGDixIl45ZVXtBUeERERiYzWkpYOHTpg2bJl9a7fu3dvrF69WlvhEBERkcg165wWIiIiosZi0kIoySvD2R0pKMkre3hlIiIiHWHSQsoFikryy3UdChERUa2YtBAREZEoMGkhIiIiUWDSQkRERKLApIWIiIhEgUkLERERiQKTFiIiIhIFJi1EREQkCkxaiKjBuCAhEekCkxYiajAuSEhEusCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFrqwcLWFF6Tu8LC1lTXoRAREbVaTFrqwaKtGfoHucOirZmuQyEiIoJcLiA7tQAAkJ1aALlc0HFEzcNI1wEQERFR/d2IzUTMxkQU55YBAKLDE3B+53UMmukJVx9nHUenXexpISIiEokbsZmI/DZembAoFOeWIfLbeNyIzdRRZM2DSQsREZEIyOUCYjYm1lknZlOiXg8VaXV4KCMjA+Hh4bh06RIKCwvh5OSE0aNH47nnnoOZ2b/zQy5duoQ1a9bg6tWrsLS0hL+/P0JCQmBhYaHN8IiIiEQjMylXrYflQcWyMmQm5aJ9d2kzRdW8tJa03L17F6+88gqsrKzw9NNPw8bGBgkJCfjxxx+RnJyML774AgCQkpKChQsXwsXFBWFhYcjKysK2bdtw69YtLF26VFvhERERiUppfnmT1hMjrSUthw4dwr179/Ddd9/B1dUVABAYGAi5XI6DBw+iqKgI1tbWWLt2LaytrbFixQpYWloCANq1a4clS5YgNjYWPj4+2gqRiIhINMzruexGfeuJkdbmtBQXFwMA2rZtq1IulUohkUhgZGSE4uJixMXFISAgQJmwAMDYsWNhbm6OqKgobYVHREQkKs7d7GBpV/fSG5ZSMzh3s2umiJqf1pIWLy8vAMCXX36JlJQU3L17F5GRkdi1axemTJkCc3NzpKamorq6Gh4eHir7Ghsbw93dHSkpKdoKj4ioTiV5ZTi7IwUleXXPISBqLhKJAQbN9KyzzqAXPCGRGDRTRM1Pa8NDAwcOxOzZs7F582ZER0cry1944QWEhIQAAGQyGYCa3pcHSaVSXLhwodbj5+TkKPcHgPT09KYKvVV5cIEiOxcbvX7DE9VXSX454n+/Bpf+jlxYkloMVx9njFrgpbJOC1DTwzLoBf1fp0Wrdw+1a9cOffr0wfDhw2FjY4PTp09j8+bNsLOzw5QpU1BeXjNZyNjYWG1fExMTVFRU1Hrs3bt3IyIiQluhtwqteYEiIiKxcvVxhou3E5KjMhAdngDf2T3g4d+pVXzh1FrSEhkZiaVLl+Lnn3+Go6MjAGD48OEQBAE//PADRo8eDVPTmslClZWVavtXVFTAxMSk1uMHBgbC19dX+XN6ejoWL17cxFehvxQLFD1IsUDRqAVeTFyIiFooicQADm5tAAAObm1aRcICaHFOy86dO+Hu7q5MWBR8fX1RVlaGlJQU5bDQ/cM8CjKZDPb29rUe397eHh4eHsp/Li4uTXsBeowLFBER5+yQGGktacnLy4NcLlcrr6qqAgBUV1fD1dUVhoaGSE5OVqlTWVmJlJQUdO3aVVvhtWoNWaCIiPSTYs5OiR6v6UH6R2tJS6dOnZCSkoKMjAyV8sjISEgkEnTp0gVWVlbw9vbGoUOHUFJSoqxz8OBBlJaWwt/fX1vhtWpcoIiIiMRIa3NannvuOZw5cwZhYWGYPHkybGxscOrUKZw5cwZPPPGEcuhnzpw5CA0Nxdy5cxEYGKhcEXfAgAEYOHCgtsJr1bhAERERiZHWkpa+ffviu+++w4YNG7Bz504UFhaiXbt2CAkJwbRp05T1PDw88PXXX2PNmjVYuXIlLCwsMHHiRLzyyivaCq3VUyxQVNcQkb4vUEREROKj1Vueu3fvXq/nB/Xu3RurV6/WZih0H8UCRZruHlLQ9wWKqPF0sbZPSV4ZEiMz4DmqE9dMIWrFtDanhVo2xQJFDy4JbSk14+3OVKsbsZnYNu8oosMTANSs7bNt3lHciM3U6nk5aZSIAC33tFDL1poXKKKG49o+RKRr7Glp5VrrAkXUMFzbh4haAiYtRPRQXNuHiFoCJi1E9FBc24eIWgImLUT0UFzbh4haAiYtRPRQirV96sK1fYhI25i0ENFDKdb2qQvX9iEibWPSQkT1wrV9iEjXuE4LEdUb1/YhIl1iTwsRNQjX9iEiXWHSQkRERKLApIWIiIhEgUkLERERiQKTFiIiIhIFJi1EREQkCkxaiIiISBSYtBARtQAleWU4uyMFJXl1P02bqDVj0kJE1AKU5Jcj/vdrKOGTsolqxaSFiIiIRIFJCxEREYkCkxYiogfI5QKyUwsAANmpBZDLBR1HREQAH5hIRKTiRmwmYjYmoji3ZkJsdHgCzu+8jkEzPfkkayIdY08LEdH/dyM2E5HfxisTFoXi3DJEfhuPG7GZOoqMiAAmLUREAGqGhGI2JtZZJ2ZTIoeKiHSISQsREYDMpFy1HpYHFcvKkJmU20wRaQ/n7JBYcU4LERGA0nquj1Lfei0V5+zoDwtbU3hN7goLW1Ndh9Js2NNCRATAvJ6/+OtbryXinB39YtHWDP2D3GHR1kzXoTQbrfW0fP755zhw4ECt23/77Tc4ODgAAC5duoQ1a9bg6tWrsLS0hL+/P0JCQmBhYaGt8IiIVDh3s4OlnVmdQ0SWUjM4d7NrxqiaTn3n7Lh4O0EiMWimqIgaRmtJS2BgILy9vVXKBEHAsmXL4OzsrExYUlJSsHDhQri4uCAsLAxZWVnYtm0bbt26haVLl2orPCISiQfnX9i52Gjlj6pEYoBBMz0R+W18rXUGveAp2j/oDZmz0767tJmiImoYrSUtPXv2RM+ePVXKLl68iLKyMowZM0ZZtnbtWlhbW2PFihWwtLQEALRr1w5LlixBbGwsfHx8tBUiEbVwzT3/wtXHGaMWeKmcE6jpYRn0grjnfLSWOTuk35p1TsuRI0dgYGCA0aNHAwCKi4sRFxeHgIAAZcICAGPHjoW5uTmioqKaMzwiakF0Nf/C1ccZz64YAd/ZPQAAvrN74NnlI0SdsACtY84O6b9mS1qqqqoQFRWFnj17ol27dgCA1NRUVFdXw8PDQ6WusbEx3N3dkZKS0lzhEVELous1UyQSAzi4tQEAOLi1Ee2Q0P0Uc3bqIuY5O9Q6NFvSEhsbi4KCApWhIZlMBgCQStXHT6VSKXJycmo9Xk5ODpKTk5X/0tPTmz5oItKJ1rRmSnNRzNmpi5jn7FDr0GzrtBw5cgRGRkbw9/dXlpWX14ydGhsbq9U3MTFBRUVFrcfbvXs3IiIimjzO1qg13utPLRvnX2iHPs/ZodahWZKWkpISnDx5Ej4+PmjTpo2y3NS05o9kZWWl2j4VFRUwMTGp9ZiBgYHw9fVV/pyeno7Fixc3YdSth+Jef6KWgvMvtMfVxxku3k5IjspAdHgCfGf3gId/J/awkCg0S9Jy8uRJtbuGgH+HhRTDRPeTyWSwt7ev9Zj29vZ1bici8dL3NVN0TR/n7FDr0CxzWg4fPgxzc3OVnhEAcHV1haGhIZKTk1XKKysrkZKSgq5duzZHeETUwnD+BRFpovWkJT8/H3FxcRg2bBjMzFRnrltZWcHb2xuHDh1CSUmJsvzgwYMoLS1Vmf9CRK2LYv7Fg3e8WErNMGqBF+dfELVCWh8eioyMRHV1tdrQkMKcOXMQGhqKuXPnIjAwULki7oABAzBw4EBth0dELRjnXxDR/bTe03LkyBG0bdsW/fv317jdw8MDX3/9NUxNTbFy5Urs2bMHEydOxKeffqrt0IhIBDj/gogUtN7T8v333z+0Tu/evbF69Wpth0JEREQi1qzL+BORfuDaPkSkC822uBwR6Q+u7UNEusCeFtKJkrwynN2RgpK8updqJyIiUmDSQjpRkl+O+N+voYTLsBMRUT0xaSEi0jG5XEB2agEAIDu1QGtPryYSO85pISLSoRuxmSoPMIwOT8D5ndcxaCYfYEj0IPa0EBHpyI3YTER+G6/2jKXi3DJEfhuPG7GZOoqMSF1LmIvIpIWISAfkcgExGxPrrBOzKZFDRdRitIS5iExaiIh0IDMpt86nWANAsawMmUm5zRQRUcvHpIWISAdK6/lttb71iFoDJi1ERDpgXs/VhOtbj6g1YNJCpAUtYcIatWzO3exgaWdWZx1LqRmcu9k1U0RELR+TFiItaAkT1qhlk0gMMGimZ511Br3gyadaE92HSQsRkY64+jhj1AIvtR4XS6kZRi3w4jotRA/g4nJERDrk6uMMF28nJEdlIDo8Ab6ze8DDvxN7WIg0YE8LEZGOSSQGcHBrAwBwcGvDhIWoFkxaiIiISBSYtBAREZEoMGkhIiIiUWDSQkRERKLApIWISAMLW1N4Te4KC65IS9Ri8JZnIiINLNqaoX+Qu67DIKL7sKeFiIiIRIFJCxEREYkCkxYiolaIc3ZIjDinhYioFeKcHRIj9rQQERGRKDBpISIiIlFg0kJELR7nXxAR0AxzWpKTk7FhwwZcunQJFRUVaN++PZ588kkEBQUp61y6dAlr1qzB1atXYWlpCX9/f4SEhMDCwkLb4ZEOyOUCslMLAADZqQWwc7HhU22pTpx/QUSAlpOW2NhYLFq0CO7u7pg1axbMzc3xzz//IDs7W1knJSUFCxcuhIuLC8LCwpCVlYVt27bh1q1bWLp0qTbDIx24EZuJmI2JKM4tAwBEhyfg/M7rGDTTE64+zjqOjoiIWjKtJS3FxcX4/PPPMWjQIHz66aeQSDSPRK1duxbW1tZYsWIFLC0tAQDt2rXDkiVLEBsbCx8fH22FSM3sRmwmIr+NVysvzi1D5LfxGLXAi4kLERHVSmtzWo4cOYLc3FyEhIRAIpGgtLQUcrlcpU5xcTHi4uIQEBCgTFgAYOzYsTA3N0dUVJS2wqNmJpcLiNmYWGedmE2JkMuFZoqIiIjERms9LXFxcbC0tEROTg7+7//+DxkZGTA3N0dAQADCwsJgamqK1NRUVFdXw8PDQ2VfY2NjuLu7IyUlpdbj5+TkQCaTKX9OT0/X1qVQE8hMylUOCdWmWFaGzKRctO8ubaaoiIiaTkleGRIjM+A5qhMs2prpOhy9pLWk5datW6iursa7776LiRMn4uWXX8b58+fx22+/4d69e/jwww+VSYdUqv5HSiqV4sKFC7Uef/fu3YiIiNBW+NTESvPLm7QeEVFLU5Jfjvjfr8Glv6PeJS0t5QYKrSUtpaWlKCsrw1NPPYX58+cDAIYPH47Kykrs3r0bL730EsrLa/5AGRsbq+1vYmKCioqKWo8fGBgIX19f5c/p6elYvHhxE18FNRXzet6qWt96RETUPFrSDRRam9Nialrzx2fUqFEq5aNHjwYAJCQkKOtUVlaq7V9RUQETE5Naj29vbw8PDw/lPxcXl6YKnbTAuZsdLO3q/uZhKTWDcze7ZoqIiIgeRnEDxYPD+4obKG7EZjZrPFpLWhRDPnZ2qn+E2rZtCwAoKipS1rl/boqCTCaDvb29tsKjZiaRGGDQTM866wx6wZPrtRARtRAt8QYKrSUtism196/JAtRMoAUAW1tbuLq6wtDQEMnJySp1KisrkZKSgq5du2orPNIBVx9njFrgpdbjYik106vbnR8c+22OD3RJXhnO7khBSV7dk52JiOqrITdQNBetJS3+/v4AgL1796qU7927F4aGhvDy8oKVlRW8vb1x6NAhlJSUKOscPHgQpaWlymOQ/nD1ccazK0bAd3YPAIDv7B54dvkIvUlYbsRmYtu8o4gOTwBQM/a7bd5RrXehKiYAlnAiMxE1kZZ4A4XWJuI+/vjjmDBhAvbt24fq6mr07dsX58+fR1RUFGbMmKEc+pkzZw5CQ0Mxd+5cBAYGKlfEHTBgAAYOHKit8EiHJBIDOLi1AQA4uLXRmyEhLp5HRPqkJd5AodVl/N988004OTlh//79OHHiBJycnBAWFoZnnnlGWcfDwwNff/011qxZg5UrV8LCwgITJ07EK6+8os3QiJpUfcd+Xbyd9CZJIyL9priBoq4houa+gUKrSYuRkRFefPFFvPjii3XW6927N1avXq3NUIi0iovnEZG+UdxAoakHWaG5b6DQ2pwWotakJY79krhY2JrCa3JXWHCtImpBWtoNFFrtaSFqLVri2C+Ji0VbM/QPctd1GERqXH2c4eLthOSoDESHJ8B3dg94+HfSyVA3e1qImgAXzyMifdZSbqBg0kLUBLh4HhGR9jFpIWoiLW3sl4hI33BOC1ETakljv0RE+oY9LURNrKWM/RIR6RsmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIgekVwuIDu1AACQnVoAuVzQcUT6ic8eIiIiegQ3YjMRszERxbllAIDo8ASc33kdg2Z68kGpTYw9LURERI10IzYTkd/GKxMWheLcMkR+G48bsZk6ikw/MWkhIiJqBLlcQMzGxDrrxGxK5FBRE2LSQiRyHEsn0o3MpFy1HpYHFcvKkJmU20wR6T/OaSESMY6lE+lOaX55k9ajh2NPC5FIcSydSLfMbU2btB49HJMWIhHiWDqR7jl3s4OlnVmddSylZnDuZtdMEek/Ji2kExa2pvCa3BUW/AbSKBxLJ9I9icQAg2Z61lln0AuekEgMmiki/cekhXTCoq0Z+ge5w6Jt3d9SSDOOpRO1DK4+zhi1wEutx8VSaoZRC7w4t6yJcSIukQhxLJ2o5XD1cYaLtxOSozIQHZ4A39k94OHfiT0sWsCeFiIR4lg6UcsikRjAwa0NAMDBrQ0TFi3RWk9LfHw85s+fr3Hb999/jx49eih/vnTpEtasWYOrV6/C0tIS/v7+CAkJgYWFhbbCIxI1xVh65LfxtdbhWDoRNaWWMBdR68NDU6ZMgaen6kSlDh06KP8/JSUFCxcuhIuLC8LCwpCVlYVt27bh1q1bWLp0qbbDIxItxVj6/eu0ADU9LINe4DotRNS0FHMRdUnrSUufPn0wYsSIWrevXbsW1tbWWLFiBSwtLQEA7dq1w5IlSxAbGwsfHx9th0gkWhxLJ6LWpFnmtJSUlKCqqkqtvLi4GHFxcQgICFAmLAAwduxYmJubIyoqqjnCIxI1jqUTUWuh9Z6WL774AqWlpTA0NETv3r3x2muvoVu3bgCA1NRUVFdXw8PDQ2UfY2NjuLu7IyUlRdvhEWlFSxj7JSLSN1pLWoyMjDB8+HAMGjQIbdq0QVpaGrZt24awsDCsXr0ajz/+OGQyGQBAKpWq7S+VSnHhwoVaj5+Tk6PcHwDS09Ob/iKIGqkljP0SEekbrSUtvXr1Qq9evZQ/Dx06FCNGjMCLL76ItWvX4quvvkJ5ec3CV8bGxmr7m5iYoKKiotbj7969GxEREU0eNxEREbVMzbq4XMeOHTF06FAcP34c1dXVMDWt6TqvrKxUq1tRUQETE5NajxUYGAhfX1/lz+np6Vi8eHHTB01EREQtQrOviOvo6IjKykqUlZUph4XuH+ZRkMlksLe3r/U49vb2dW4nIqKWoySvDImRGfAc1YmP76BGa/YVcW/fvg0TExOYm5vD1dUVhoaGSE5OVqlTWVmJlJQUdO3atbnDIyIiLSjJL0f879dQwudh0SPQWtKSn5+vVnbt2jVER0djwIABkEgksLKygre3Nw4dOoSSkhJlvYMHD6K0tBT+/v7aCo+IiIhERmvDQx9++CFMTU3Rs2dPtG3bFmlpadizZw/MzMzwyiuvKOvNmTMHoaGhmDt3LgIDA5Ur4g4YMAADBw7UVnhEREQkMlpLWvz8/HD48GFs374dxcXFsLW1xbBhwxAcHIyOHTsq63l4eODrr7/GmjVrsHLlSlhYWGDixIkqiQ0RERGR1pKWoKAgBAUF1atu7969sXr1am2FQkRERHqg2SfiEhERETUGkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtRERETcDC1hRek7vCwtZU16HoLa09e4iIiKg1sWhrhv5B7roOQ6+xp4VahZK8MpzdkYKSvDJdh0JERI3EpIVahZL8csT/fg0l+eW6DoWIiBqJSQuRHuBYOhG1BpzTQqQHOJZORK0Be1qIiIhIFJi0EBGRVsnlArJTCwAA2akFkMsFrZ+Tk+/1E4eHiIhIa27EZiJmYyKKc2uSh+jwBJzfeR2DZnrC1cdZa+dVTL536e8Ii7ZmWjsPNS/2tBARkVbciM1E5LfxyoRFoTi3DJHfxuNGbKaOIiOxYtJCRERNTi4XELMxsc46MZsSm2WoiPQHkxYiImpymUm5aj0sDyqWlSEzKbeZIiJ9wKSFiIiaXGk9F3Ksbz0igEkLERFpgXk9Fzqsbz0igEkLERFpgXM3O1ja1X3XjqXUDM7d7JopItIHTFqIiKjJSSQGGDTTs846g17whERi0EwRkT5g0kJERFrh6uOMUQu81HpcLKVmGLXAS6vrtJB+4uJyRESkNa4+znDxdkJyVAaiwxPgO7sHPPw7sYeFGoU9LUREpFUSiQEc3NoAABzc2jBhoUZr1qRl48aNGDZsGGbNmqW27dKlSwgNDcWYMWMwadIkLF++HCUlJc0ZHhEREbVgzTY8lJWVhc2bN8Pc3FxtW0pKChYuXAgXFxeEhYUhKysL27Ztw61bt7B06dLmCpGIiIhasGZLWlavXo3u3btDLpejoKBAZdvatWthbW2NFStWwNLSEgDQrl07LFmyBLGxsfDx8WmuMImIiKiFapbhofPnz+PYsWOYO3eu2rbi4mLExcUhICBAmbAAwNixY2Fubo6oqKjmCJGIiIhaOK33tFRXV2P58uWYOHEiunTporY9NTUV1dXV8PDwUCk3NjaGu7s7UlJSNB43JycHMplM+XN6enrTBk5EREQtitaTll27duHu3bv45ptvNG5XJB5SqVRtm1QqxYULFzTut3v3bkRERDRZnKS/5HIB2ak1Q5LZqQWwc7Hh3QtERCKk1aSloKAAP/74I2bOnAlbW1uNdcrLax6WZWxsrLbNxMQEFRUVGvcLDAyEr6+v8uf09HQsXrz40YMmvXIjNhMxGxOVT5uNDk/A+Z3XMWimJxe2IiISGa0mLevXr4e1tTWmTJlSax1T05qHZVVWVqptq6iogImJicb97O3tYW9v3zSBkl66EZuJyG/j1cqLc8sQ+W08V+QkIhIZrU3EzcjIwJ49exAUFIScnBzcuXMHd+7cQUVFBaqqqnDnzh0UFhYqh4Xun5+iIJPJmJhQo8jlAmI2JtZZJ2ZTIuRyoZkiIiKiR6W1npacnBzI5XIsX74cy5cvV9v+7LPPIigoCC+99BIMDQ2RnJyMkSNHKrdXVlYiJSUF/v7+2gqR9FhmUq5ySKg2xbIyZCblon139flURCRenMemv7SWtLi6uuKzzz5TK1+/fj1KSkowb948tG/fHlZWVvD29sahQ4cwa9YsWFhYAAAOHjyI0tJSJi3UKKX55U1aj4jEgfPY9JvWkhZbW1v4+fmplf/6668AoLJtzpw5CA0Nxdy5cxEYGKhcEXfAgAEYOHCgtkIkPWZua9qk9Yio5eM8Nv3XIh6Y6OHhga+//hqmpqZYuXIl9uzZg4kTJ+LTTz/VdWgkUs7d7GBpZ1ZnHUupGZy72TVTRESkTZzH1jo02zL+CitWrNBY3rt3b6xevbqZoyF9JZEYYNBMT43fuhQGveDJcW4iPcF5bK1Di+hpIdIGVx9njFrgpdbjYik1YzcxkZ7hPLbWodl7Woiak6uPM1y8nZAclYHo8AT4zu4BD/9O7GEh0jOcx9Y6sKeF9J5EYgAHtzYAAAe3NkxYiPQQ57G1DkxaiIhI9BTz2OrCeWzix6SFiIj0Auex6T/OaSEiIr3BeWz6jT0tRESkdRa2pvCa3BUWzTARlvPY9Bd7WoiISOss2pqhf5C7rsMgkWNPCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kKtgoWtKbwmd4WFramuQyEiokYy0nUARM3Boq0Z+ge56zoMIiJ6BOxpISIiIlFg0kJERESiwKSFiIj0Duex6SfOaSEiIr3DeWz6SWtJy40bN7BhwwYkJycjNzcXZmZmcHFxwbRp0+Dr66tSNy0tDatWrcKlS5dgZGSEwYMHIywsDLa2ttoKj4iIiERGa0lLZmYmSkpKMG7cONjb26OsrAzHjh3DokWL8OabbyIwMBAAkJWVhblz58LKygohISEoLS3F1q1bkZqaih9++AHGxsbaCpGIiIhERGtJy+DBgzF48GCVssmTJyMkJATbt29XJi2bN29GWVkZ1q9fDycnJwCAp6cn3njjDezfv19Zj4iIiFq3Zp2Ia2hoCEdHR9y7d09ZduzYMQwZMkSZsACAt7c3OnXqhKioqOYMj4iIiFowrU/ELS0tRXl5OYqLixEdHY0zZ87A398fAJCdnY28vDx4eHio7efp6YmYmBhth0dEREQiofWk5bvvvsPu3bsBABKJBMOGDcPChQsBADKZDAAglUrV9pNKpSgsLERFRQVMTEzUtufk5Cj3B4D09HRthE9EREQthNaTlqlTp2LEiBHIyclBVFQUqqurUVlZCQAoLy8HAI2TbRWJSnl5ucakZffu3YiIiNBe4ERERNSiaD1pcXFxgYuLCwBg3LhxeOONN/DOO+/ghx9+gKlpzaI/iiTmfhUVFQCgrPOgwMBAlVun09PTsXjx4qYOn4iIiFqIZl9cbsSIEfjqq6+QkZGhHBa6f5hHQSaTwcbGRmMvCwDY29vD3t5eq7ESERFRy9Hsy/grhoTu3bsHBwcH2NraIjk5Wa1eYmIiunbt2tzhERERUQultaQlLy9PrayqqgoHDx6EqakpHnvsMQDA8OHDcerUKdy9e1dZ7+zZs8jIyFDeZURERESkteGhr776CsXFxejTpw8cHBwgk8lw+PBh3Lx5E6GhobCwsAAAzJgxA0ePHsWCBQsQFBSE0tJSbNmyBW5ubhg/fry2wiMiIiKR0VrSMnLkSOzduxe7du1CQUEBLCws4OHhgVdffRVDhw5V1nNycsKKFSuwatUq/PDDD8pnD4WGhtY6n4WIiIhaHwNBEARdB9EUkpOTERISgnXr1mlcrI6IiIjErdnvHtIWxQRfLjJHREQkPi4uLjAzM6uzjt4kLZmZmQDAtVqIiIhEqD4jJXozPJSfn4/Y2Fi0a9dOtHNhFAvkvffee8oF+VojtsO/2BY12A7/Ylv8i21RQ1/aoVX1tNja2iIgIEDXYTQJFxcXzssB2+F+bIsabId/sS3+xbao0RraodkXlyMiIiJqDCYtREREJApMWloQqVSK4OBg5TOZWiu2w7/YFjXYDv9iW/yLbVGjNbWD3kzEJSIiIv3GnhYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKOjN4nJikZOTgx07diAxMRFJSUkoLS3F8uXL4eXlpVZ33rx5OH/+vFq5j48PvvrqK5WyiooKhIeH49ChQygqKkKXLl0wZ84cDBgwQFuX8kga0g4AcOnSJaxZswZXr16FpaUl/P39ERISAgsLC5V6YmuH2uzfvx9ffPGFxm07d+5Uu0vg5MmT2LBhA9LT02Fra4sJEyZg5syZMDIS90dcX17PhoiPj8f8+fM1bvv+++/Ro0cP5c/1/VyIQUlJCbZu3YorV64gMTERRUVFWLRoEcaPH69WNy0tDatWrcKlS5dgZGSEwYMHIywsDLa2tir15HI5tm7dij/++AO5ubno2LEjZsyYgdGjRzfTVTVcfdvh888/x4EDB9T279y5MzZv3qxSJsZ2qI24f6OJUEZGBn755Rd07NgRbm5uSEhIqLO+g4MDXnnlFZUyTbe1ffHFFzh69CimTp2Kjh07Yv/+/XjrrbewfPly9O7du0mvoSk0pB1SUlKwcOFCuLi4ICwsDFlZWdi2bRtu3bqFpUuXqtQVWzs8zOzZs9GuXTuVMisrK5WfY2Ji8H//93/o27cv5s+fj9TUVGzcuBF5eXn4z3/+05zhNjl9ez0bYsqUKfD09FQp69Chg/L/G/K5EIOCggJERETAyckJXbt2RXx8vMZ6WVlZmDt3LqysrBASEoLS0lJs3boVqamp+OGHH2BsbKysu27dOvz888948skn0a1bN5w8eRKffPIJDAwMMGrUqOa6tAapbzsAgImJCd566y2VMktLS7V6YmyHWgnUrIqLi4WCggJBEAQhKipK8PPzE86dO6ex7ty5c4WZM2c+9JgJCQmCn5+f8MsvvyjLysrKhOeee0549dVXmybwJtaQdnjzzTeFSZMmCffu3VOW7dmzR/Dz8xPOnDmjLBNjO9Rm3759gp+fn5CYmPjQui+88ILw4osvCpWVlcqytWvXCsOGDRPS0tK0GaZW6dPr2RDnzp0T/Pz8hKioqDrr1fdzIRbl5eVCTk6OIAiCkJiYKPj5+Qn79u1Tq7ds2TJh9OjRQmZmprLs77//Fvz8/IRdu3Ypy7KysgR/f3/h66+/VpbJ5XIhNDRUmDx5slBVVaXFq2m8+rbDZ599JgQEBDz0eGJth9pwTkszs7CwgI2NTYP2qaqqQklJSa3bjx07BkNDQwQGBirLTE1NMXHiRCQkJODu3buNjldb6tsOxcXFiIuLQ0BAgMo3iLFjx8Lc3BxRUVHKMjG2Q32UlJSgurpa47a0tDSkpaXhySefVBkKevrppyEIAo4ePdpMUTY9fX09G6KkpARVVVVq5Q35XIiFiYlJvRZHO3bsGIYMGQInJydlmbe3Nzp16qRy3SdPnkRVVRWefvppZZmBgQEmTZqE7Ozsh/Zy60p920GhuroaxcXFtW4XazvUhsNDLVxGRgbGjh2LyspK2NnZ4YknnkBwcLDKH6iUlBR07NhRrVtQ0bV87do1lQ+4mKSmpqK6ulrtIWDGxsZwd3dHSkqKskwf22H+/PkoLS2FsbExBgwYgNDQUHTq1Em5/erVqwCg1j729vZwcHBQaR+x0cfXsyG++OILlJaWwtDQEL1798Zrr72Gbt26AWjY50KfZGdnIy8vT+NDAT09PRETE6P8OSUlBebm5mpPPVa8f1JSUkQ/xFhWVobx48ejrKwM1tbWGDVqFF599VWVOU361g5MWlqw9u3bw8vLC25ubigrK8PRo0exceNGZGRk4OOPP1bWk8lkGjNzRVlOTk6zxdzUZDIZAM3zeKRSKS5cuKBSV1/awdTUFOPHj4eXlxcsLS2RnJyM7du34/XXX8f69euVf6wf1j6K7WKkT69nQxgZGWH48OEYNGgQ2rRpg7S0NGzbtg1hYWFYvXo1Hn/88QZ9LvTJw667sLAQFRUVMDExgUwmQ9u2bWFgYKBWDxD/+0cqlWLatGl4/PHHIQgCzpw5gz/++APXr1/H8uXLlV9s9a0dmLQ8ArlcjsrKynrVNTExUXvTPMw777yj8vPYsWOxdOlS7NmzB88884zyLoLy8nKVyWf3n1OxXZu02Q6K2Gu7voqKCpW6umyH2jSmfUaOHImRI0cqy/38/ODj44O5c+di06ZNePPNNwFAef2Ka3zwWHUNK7Z0LfX11LZevXqhV69eyp+HDh2KESNG4MUXX8TatWvx1VdfNehzoU8edt2KOiYmJnr//nnwBo1Ro0ahU6dOWLduHY4dO6acYKtv7cCk5RFcuHCh1lsTH7Rp0ya17rnGePbZZ7Fnzx7ExcUpkxZTU1ONfxQVv7hMTU0f+bx10WY7KGKv7fru/2Ot63aoTVO1T+/evdG9e3ecPXtWWaa4fk1/pCoqKnR2zU2hpb6eutCxY0cMHToUx48fR3V1dYM+F/rkYdd9f53W+P555plnEB4ejri4OGXSom/twKTlEXTu3BmLFi2qV92mevqmo6MjAKCoqEjl2NnZ2Wp1FV2p9vb2TXLu2mizHRT1NQ1zyGQylWvTdTvUpinbx9HRETdv3lSrL5PJ1OZ3yGQytVtmxaSlvp664ujoiMrKSpSVlTXoc6FPHnbdNjY2yoRNKpUiPj4egiCo9O7q8/vH1NQUNjY2KCwsVJbpWzswaXkEUqlU48JH2nT79m0AUFlESXEvf3FxscqkxStXrii3a5M228HV1RWGhoZITk5WGS6prKxESkoK/P39lWW6bofaNGX73L59W+W1d3d3BwAkJyeje/fuyvKcnBxkZ2er3HkjNi319dSV27dvw8TEBObm5g36XOgTBwcH2NraIjk5WW1bYmKiynuia9eu+PPPP5Geno7HHntMWa7P75+SkhIUFBSo/X3Qp3bgLc8tVHFxsVqXvyAI2LhxIwCorAg6YsQIVFdXY/fu3cqyiooK7Nu3D927dxf1HRZWVlbw9vbGoUOHVOZnHDx4EKWlpSq/nPWpHfLz89XKTp8+jeTkZPj4+CjLXF1d0blzZ+zZs0fltug//vgDBgYGGD58eHOEqxX69Ho2hKbX/tq1a4iOjsaAAQMgkUga9LnQN8OHD8epU6dUbnk/e/YsMjIyVK576NChMDIyws6dO5VlgiBg165dcHBwQM+ePZs17qZUXl6ucb7aTz/9BEEQMHDgQGWZvrUDe1p04KeffgJQs8YGUPOL5uLFiwCAWbNmAai5lfXjjz/G6NGj0aFDB5SXl+PEiRO4dOkSnnzySZVb/rp37w5/f3+sXbsW+fn56NChAw4cOIDMzEy8/fbbzXtxDVCfdgCAOXPmIDQ0FHPnzkVgYKBy5c8BAwaofDjF2g6avPbaa3j88cfh4eEBS0tLXL16Ffv27YOjoyNeeOEFlbqvv/46Fi1ahP/85z8YNWoUUlNTsXPnTjzxxBMq36zERp9ez4b48MMPYWpqip49e6Jt27ZIS0vDnj17YGZmpjL5sr6fCzH57bffcO/ePeXQRXR0NLKysgDUrBBsZWWFGTNm4OjRo1iwYAGCgoJQWlqKLVu2wM3NTaVH09HREVOnTsWWLVtQVVUFT09PnDhxAhcvXsT7778PQ0NDnVxjfTysHYqKijB79myMHj0anTt3BgDExsYiJiYGAwcOxNChQ5XHEnM7aGIgCIKg6yBam2HDhtW67fjx4wBquoJ/+OEHJCYmIjc3FxKJBC4uLnjiiScQGBiodgdOeXm58hkt9+7dg5ubG+bMmaPyrbylqU87KFy8eFH5jBULCwv4+/vjlVdeUXvGihjbQZN169YhJiYGd+7cUc5hGDx4MIKDg2FnZ6dW/8SJE4iIiEB6ejratGmD8ePHq63nI0b68no2xI4dO3D48GH8888/KC4uhq2tLfr374/g4GB07NhRpW59Pxdi8cwzzyAzM1Pjtm3btikfaXHjxg21Zw+FhoaqfTbkcjl++eUX7N69GzKZDB07dsTzzz+PgIAArV/Lo3hYO1hZWWH58uVISEiATCaDXC5Hhw4dMGbMGDz33HNqn3uxtoMmTFqIiIhIFDinhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhRps//79GDZsGPbv36/rUOolPj4ew4YNw48//qi1cwwbNgzz5s3T2vFbi2eeeQbPPPOMrsNo8X788UcMGzYM8fHxWj3P9u3bMXLkSNy5c6de9ZvjsyZmn376KaZOnYry8nJdhyJaTFpagf/9738YNmwYnnjiCbWHMOoLsf2xKygowJo1azBz5kyMGTMGY8aMwdSpU7FgwQJs2LABubm5zRLHwxLQefPm1fm4hdaktLQU48aNw7Bhw/D111/rOhytKyoqwsaNGzFhwgTl8vn0aIKDg5GTk4Nff/1V16GIlrgfTEIPVVJSgqioKBgYGKCwsBAnTpzAqFGjHumYfn5+6N69O6RSaRNF2bpkZWXh9ddfR1ZWFtzd3TF+/HhYW1tDJpPh8uXL2LBhA3r16qXxGUP67ptvvtF1CLWKiopCSUkJDAwMcOTIEYSGhsLU1FTXYWnN9u3bUVhYiGnTpuk6FL3RqVMn+Pr64pdffsGUKVNgbm6u65BEh0mLnvvrr79QWlqKZ555Bjt27MDevXsfOWmxsrKClZVVE0XY+vz444/IysrC7NmzVZ5mrXD9+vVW274dOnTQdQi12rt3LwwNDTF58mT8+uuvOH78OMaMGaPrsLSiqqoKf/75J3r16tWiXxMxCggIwPHjxxEZGYknnnhC1+GIDpMWPaf4RTt9+nRcv34d586dQ2ZmJpydnVXq/fjjj4iIiKj1OM7Ozti+fTuAmiGFL774AosWLVJ5FPywYcPQt29fvP/++/j+++/x999/o6KiAn369MGCBQvQvn17pKWlYe3atbhw4QKqqqrg4+ODhQsXqvQqxMfHY/78+QgODsZLL72kEsedO3fw7LPPYty4cXj33XeVP98fg4Km/ZOSkrB27VokJCRAIpGgX79+CAsLU+v+Pn78OKKiopCUlIScnBwYGRmhS5cuCAoKwogRI+pu9IdISEgAAEyePFnj9i5dumgsv337Nn7++Wf8/fffkMlksLS0xGOPPYbx48crX4fKykrs3r0bp06dQlpaGvLz82FpaYlevXph1qxZePzxx5XH+/zzz3HgwAEAwBdffIEvvvhC5frvb8v7/1/R9grXr1/Hpk2bcP78eRQWFkIqlcLX1xcvvvgi2rRpo6x3/2s3ffp0rFu3DhcuXEBhYaHyCb6KIT7Few349725fPly5OTkYMuWLbh58yasrKzg7++PV199Va3Ho6qqClu3bsWff/6JnJwcODg4YOLEiRg5ciSee+45tWt4mJs3b+LSpUsYMmSIyhcATUnL/e/fIUOG1Ov9BgDHjh3D5s2bcePGDVhaWsLX1xevvfYaZs+erdYmdanv61GX2NhYyGQyTJ8+XeP28vJybNiwAYcPH0ZBQQE6dOiAoKAgtadQ3+/27dvYtGkT/v77b+Tl5cHa2ho+Pj546aWX1H4fAQ1rD8V7eevWrTh+/Dj27t2L27dvY9SoUcrXOS8vD5s3b8apU6eQlZUFCwsL9OnTBy+99BLc3NzUzt+Q+hkZGdi8eTPi4+Mhk8lgZmYGR0dHeHl5Ye7cuTAwMFDWHTx4MMzMzHDgwAEmLY3ApEWPpaWlISEhAYMGDYKdnR3Gjh2Ls2fPYt++fWp/zL28vDQeIz09HVFRUfXuBi8qKkJoaCikUinGjh2LW7du4dSpU3jjjTfw+eefIywsDB4eHpgwYQKuXr2KY8eOobCwEMuXL2/UNVpZWSE4OBg7duwAAAQFBdV6TUlJSdiyZQu8vLwQGBiIlJQUnDhxAqmpqYiIiFC5xrVr18LIyAi9evWCVCpFfn4+oqOj8cEHH2D+/PmYMmVKo+IFoPzDkZGRge7du9drn4sXL+Ltt99GSUkJfHx8MGrUKBQVFSElJQU7duxQJi2FhYVYuXIlevfujUGDBsHa2hp37txBdHQ0zpw5g5UrV8LT0xNAzTDfvXv3cPLkSQwdOhRdu3ZVOWdwcDAOHDiAzMxMBAcHK8vd3d2V/3/y5El89NFHMDAwwNChQ+Ho6Ii0tDT8/vvviI2NxQ8//ABra2uV4/7zzz947bXX4ObmhnHjxqGwsBDGxsYPbQPFMX19fdGvXz+cOXMGv/32GwoKCvDBBx+o1P3yyy9x8OBBtG/fHpMmTUJlZSW2b9+Oy5cv16u9H7R3714AwNixY+Hk5IS+ffsiPj4et2/fRvv27TXu05D32969e/Hll1/C0tISY8eOhZWVFWJiYvDGG2+gqqoKRkb1+1XdmNdDk7NnzwIAevToobZNLpdj0aJFiIuLg5ubG0aPHo3CwkKsWrWq1t8jV65cwZtvvonS0lIMGTIEHTt2RGZmJg4fPowzZ87g+++/V2nHxrbHt99+iytXrmDw4MEYMmQI2rZtC6DmPTdv3jxkZ2djwIABGDp0KPLz83Hs2DH8/fff+Oabb1Q+iw2pn5OTg1deeQVlZWUYPHgwRo4cibKyMty6dQt//PEHXn/9dZV4jY2N8fjjjyMhIQGlpaUcImoogfTWypUrBT8/P+HIkSOCIAhCcXGxEBAQIAQFBQnV1dUP3T83N1eYOnWqMGrUKOHixYvK8n379gl+fn7Cvn37VOr7+fkJfn5+wsqVK1XKly1bJvj5+Qnjx48Xtm/friyXy+XCf//7X8HPz09ISkpSlp87d07w8/MTwsPD1WK6ffu24OfnJ3z22Wcq5VOnThWmTp2q8ToUx7u/LRQWL16ssfyff/5RO05xcbEwa9YsYfz48UJpaanatc+dO1fj+R+0Y8cOwc/PTwgMDBTCw8OFc+fOCffu3au1fnl5uTB58mRh+PDhQkxMjNr2u3fvqtTNyspSq5OamioEBAQICxcuVCmv7bVUmDt3ruDn56dxW35+vjBu3Dhh8uTJwp07d1S2HTlyRPDz8xO++eYbZZnitavttRUEza9jeHi48v2Tnp6uLC8rKxOmT58uDB8+XMjOzlaWx8XFCX5+fsJLL72k8jplZ2cLTz31lMb3T10qKyuFp556Shg/frxQVlYmCIIg7N27V/Dz8xPWrVunVr+h77fCwkIhICBACAgIEG7evKly3vnz5wt+fn61tsm5c+eUZQ19PeoSEhIiDB8+XCgvL1fbpnjPvPnmm0JVVZWy/Nq1a8LIkSPVXt/Kykph6tSpwtixY4Xk5GSVY124cEEYMWKE8Pbbbz9Se3z22WeCn5+fMHnyZCEzM1Mt5tdee00YMWKEcObMGZXymzdvCmPHjhVmzZrV6PqKz/P9v9sUCgoK1MoE4d/fzWfPntW4nWrHu4f0VFVVFQ4dOgRLS0sMHToUAGBhYQE/Pz/cvXsXcXFxde5fXl6Od999F5mZmXjnnXfQq1evep3X3Nwcc+bMUSlTzKFp06aNSk+IgYGBctv169frfW2N1adPH7X5PBMmTAAAJCYmqpRr+vZsYWGB8ePH4969e0hKSmp0HJMnT8a0adNw7949REREYP78+ZgwYQJmzpyJNWvWICcnR6X+yZMnkZ2djTFjxmDgwIFqx3N0dFT+v4mJCRwcHNTquLq6wsvLSzks1xQOHjyI4uJivPzyy2rd+6NGjcLjjz+OyMhItf3s7OzwwgsvNPh8QUFB6Ny5s/JnU1NTjBo1CnK5HMnJycryQ4cOAQBmzZoFMzMzZbm9vb3K+6++Tp8+jdzcXPj7+yt7R0aMGAEzMzPs378fcrlc4371fb+dPHkSpaWlmDBhAjp16qQsNzIyUvss1aWxr4cm2dnZsLKygomJido2xZDinDlzYGhoqCzv0qULAgIC1OqfOnUKmZmZmDZtmsrwJAD07t0bvr6+iImJQXFxMYBHa49p06bByclJpezq1au4fPkyxo4dCx8fH5VtnTp1whNPPIHU1FSkpqY2qr6Cpt5oGxsbjXEqeoCys7PrvB5Sx+EhPXXy5Enk5+dj4sSJKh+msWPH4tChQ9i7d6/aB1JBEAR8/vnnSEhIwIsvvojRo0fX+7wdO3ZU+UMBQHmXkZubm8rY7v3bHvxDrQ0eHh5qZYo/8Pfu3VMpz8vLw88//4yYmBjcvXtXbV2FR4nXwMAAr732GqZNm4aYmBhcuXIFSUlJuHr1KtLS0rB792589dVXyu5nxR+4AQMG1Ov4KSkp2LJlCy5evIjc3Fy1JCU/Px/29vaNjl9BMTfnypUr+Oeff9S2V1RUoKCgAPn5+bC1tVWWd+3atV7DQQ968A8e8G/Cdv/rd+3aNQA1fxAf1LNnzwaf988//wRQ89lRsLCwwNChQ3HkyBHExsZi0KBBavvV9/2mSNg1xdu9e3eVxKAujX09NCksLNSY/CriNTc313h9vXv3Vg6lPRjXzZs3Na7fkpubC7lcjoyMDHTr1u2R2kMx9Hm/K1euAKj5TGs6/82bN5X/dXNza3B9xbylb775BmfPnsXAgQPRt2/fWocNgX+TmYKCglrrkGZMWvTU/WPw9+vfvz8cHBwQHR2NwsJCjd8E1q9fj6ioKIwePRovvvhig85raWmpVqb4JVPXtqb69l8XCwuLWs9//7flwsJCvPzyy7h79y569eoFb29vWFlZQSKR4Nq1azh58iQqKysfOR5bW1uMGzcO48aNAwDIZDJ8++23OHbsGJYuXYoNGzYAgPIbaG1/RO536dIlLFy4EADg7e2Njh07Kq/75MmTuHbtWpPEDtTMXwKAnTt31lmvrKxM5WfFt8yGquv9c//rV1JSAolEonHSaUNvI8/JyUFsbCzat2+v9kd03LhxOHLkCPbt26cxaanv+03x+mpql9quQ5PGvh6amJqa1rqmU3Fxca3vRU3tq4jr8OHD9YrrUdpD0z6FhYUAanrMTp8+Xeu+paWljarfrl07fP/999iwYQNiYmIQFRUFAOjcuTNmz54Nf39/tX0VX4L0+ZZ5bWHSoofu3r2Lv//+GwDqXKX10KFDat3l+/fvx6ZNm9CrVy+88847Wo2zNoremOrqarVtil9o2rR3717cvXtX4y3JmzdvxsmTJ7VyXqlUivfeew+nT5/G9evXUVBQgDZt2ihvf65PV/KmTZtQUVGBVatWqf2RVXyDbCqKP8oREREa776ozYO9bU3NwsICcrkcBQUFaj0KDV20b//+/aiursbt27drXWQvOjq6Xr0XtVEkY3l5eWrbFNdRn4S1sa+HJm3atKn1/WZpaVlrD4Gm9lXE9b///Q9Dhgx56LkfpT00vbcUx6vvBPqG1gdqepE//fRTVFVVITk5GWfOnMGOHTvw0Ucfwd7eXm14XZEYNfY905pxToseOnDgAORyOXr37o2JEyeq/VN8s3+wG/f8+fP46quv0L59e3z22Wcax7Obg+LuBk1DMCkpKRr3kUgkGpOcxlB0rSvmAt3v4sWLTXKO2hgbG6t1fyu6vBWJaF1u374NGxsbtYSlrKwMV69eVasvkdT8Cqit7erarhi+UnT/txSKu6AuXbqktq0hdw8JgoB9+/YBAMaPH6/xs9SzZ09UVlYq59E0huIWd03xJiYm1vt93ZSvh5ubGyoqKnD37l21bV26dEFpaanKPCIFTZ+PhsbVVO2hoPj81Pf8Da1/PyMjI/To0QMvvfQS5s+fD0EQcOrUKbV6GRkZAPDIyWVrxKRFzyh+0RoYGODdd9/F22+/rfbv3XffRY8ePXD9+nXlhNKMjAy89957MDU1xf/+9z+dfgPo3LkzLCwslENYCrm5udi4caPGfWxsbFBQUNAkz/RQTGJ88Jfm4cOHERMT88jH37p1K9LT0zVu+/3331FaWorOnTsru8F9fX3h4OCAw4cPIzY2Vm2f+78ROzk5oaioCDdu3FCWVVdXY/Xq1cjPz1fbVzE8mJWVpTGeurZPmDABFhYWWLduncr5FMrKynSS0CjWTomIiFB5P8hkMuWt8fVx/vx5/PPPP+jTpw8WLVqk8bOk6I188AtAQwwdOhTm5ubYu3evylyUqqoqhIeH1/s4Tfl69O3bF4Dm3jnFkPP69etVEojr169rTN6GDh0KJycnbNu2DefPn1fbXlVVpZLsNFV7KHTv3h3du3dHZGSkxonIcrlcJa6G1k9OTtbYA6zoddL05e/KlSuQSqUqE42pfjg8pGfOnTuHO3fuPHQi2IQJE5CQkIC9e/eiW7duWLFiBQoLC+Ht7Y2//vpLrb6VlVWzPdvH2NgYU6ZMwaZNmzBnzhz4+vqitLQU0dHR6Nu3r8ZJhl5eXkhKSsJbb72F3r17w8jICH369FH+8m2IgIAA/PLLL1i+fDni4+Ph5OSEa9eu4dy5cxg2bBiOHz/+SNd36NAhrF69Gm5ubujevTvatm2LoqIiXLlyBVevXoWpqSn+85//KOubmJjg448/xn//+1/897//hY+PD7p27Yri4mJcu3YN5eXlyl/mU6ZMwd9//43Q0FD4+/vDxMQE58+fR05ODry8vNQesNejRw+Ymppix44dKCoqUiarimGxfv364ejRo3j//fcxcOBAmJiYoGvXrvD19YWtrS0+/PBDfPDBB3jppZfg4+ODzp07o7KyEpmZmTh//jx69uyJr7766pHaq6G8vb0xevRoHDlyBMHBwRg6dCgqKysRFRUFT09PnDp1StmDVBdFIqK440eTzp07o2fPnrh8+TKuXLlS73V37mdtbY2wsDAsXboUISEhGDlyJCwtLRETEwMTExPY29vXa0itKV+PoUOH4rvvvkNcXJzanAzFXJ4zZ85g9uzZGDhwIIqKihAZGYkBAwao9SyYmJjgk08+wVtvvYV58+ahX79+ykn5mZmZuHjxItq0aYPNmzc3aXvc74MPPsCCBQvw8ccfY8eOHXB3d4epqSmysrJw+fJlFBQU4MiRI42qf/DgQezevRt9+vRBhw4dYGFhgbS0NJw5cwY2NjZq759//vkHd+7cwaRJkxp0DVSDSYueUfyivX+lWk1GjhyJFStWIDIyEmFhYcpvpHFxcRpvh3Z2dm7WBxLOnj0bRkZG2Lt3L3bv3g1nZ2fMmjULQ4YMwbFjx9Tqz5o1C/fu3cOpU6dw8eJFVFdXIzg4uFFJi6OjI1asWIHvv/8ecXFxqK6uxuOPP45ly5YhKyvrkZOWd955B6dOncK5c+cQGxuLvLw8SCQSODk5YdKkSZg6daraN7CePXti/fr12Lx5M2JjY3H27FlYW1vjsccew1NPPaWsN2TIEHzyySfYvHkzDh8+DFNTU/Tr1w+fffaZxhWPbWxs8Mknn2DDhg34888/le8DRdLyxBNP4M6dO/jrr7/wyy+/oLq6GuPGjYOvry+AmtU9w8PDsWXLFpw9exZxcXEwMzODg4MDxo8fr/EW2Obw7rvvwsXFBfv27cPvv/8OBwcHTJ06Ff369cOpU6c0TpK9371793Ds2DGYm5tj+PDhddadMGECLl++jL179zYqaQGAJ598EtbW1ti0aRMOHDigXAH21VdfxdSpU+u9lH5TvR7t2rXDgAEDcPToUcyfP1+lt0AikeDzzz/Hhg0bcOTIEfz2229o3749wsLC0LFjR43DIZ6envjxxx+xZcsWxMTE4PLlyzA2Noa9vT38/PzUbg1vqvZQaN++PcLDw7Ft2zacOHEC+/fvh0QigVQqRZ8+fdRWuW5I/dGjR6OiogKXLl1CYmIiKisr4eDggKeeekrjLdiK3qjAwMAGXQPVMBAEQdB1EEREzeHPP//EkiVL8MYbb4jim+6tW7cwffp0+Pv74+OPP27Wc589exYLFy7Ee++9p7Pk80G6bI+mUFVVhenTp6Ndu3aNXgW8teOcFiLSOzKZDA9+H8vOzsbGjRthaGiIwYMH6ygyzYqKitRuMS4vL8eqVasA1Dxyobn1798fAwcOxMaNG2tdQE9bWmJ7NIUDBw7g7t27eP3113UdimhxeIiI9M7PP/+M06dPo0+fPrC1tUVWVhZOnTqFkpISvPjii2pd9rp2/vx5fPnllxgwYAAcHR1RUFCgfLhpv379MHLkSJ3ENW/ePBw+fBjZ2dnN2mYttT0elYGBAf773/9qXJiP6ofDQ0Skd86cOYNt27bh+vXrKCoqgomJCbp06YJJkyZpfDKzrmVkZCA8PByXL19W3uXVoUMH5VOpW9siZGwPqg2TFiIiIhIFzmkhIiIiUWDSQkRERKLApIWIiIhEgUkLERERiQKTFiIiIhIFJi1EREQkCkxaiIiISBSYtBAREZEoMGkhIiIiUfh/nSQ5XgfWvxIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc3klEQVR4nO3dd1gU18IG8JeVXgQpipWIKGLHgiiiIjY0llhSvIndNEHRVHNzU4xRE1MsiUmsxBJLMLZYYgk2FFHEhoAoJViQXqTDnu8Pv9247oKALDDL+3sen4QzZ2bPzLZ3z8ycoyeEECAiIiKq42S13QAiIiKiimBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghkrATJ05AT08Pn332WW03BQAQHx8PPT09TJ06tbabIinPPfccnnvuudpuBlGdx9BCOuvmzZuYP38+unfvDmtraxgYGMDa2hq9e/fGu+++i7CwMLV1PvvsM+jp6an8MzY2hpOTE15//XXEx8drfKypU6eqrdegQQPY2Nhg0KBB2Lp1q5b3luqrrVu3Kl9zR44cKbduZmYmPvnkE3Tr1g3m5uYwMjJC8+bN4e7ujnfeeQfh4eHlrj9r1izo6enB1NQUmZmZZdZ78n0kk8nQsGFDODg4YMSIEfjqq69w9+7dquwu1XP6td0AouomhMDChQuxcOFCyOVydO/eHS+99BKsra2Rk5ODq1evYtWqVfj222/xww8/YPbs2WrbGDBgAAYOHAgASEtLw99//421a9ciMDAQ58+fR9u2bTU+9pgxY9CtWzcAQFFREWJjY7Fv3z4EBQXhxo0b+PLLL7W121RPrVmzBnp6ehBCYM2aNRg6dKjGevfu3YOHhwfi4+Ph6OiI//znP7C1tUVGRgbCwsKwfPlymJiYwNXVVeP6OTk52L59O/T09JCfn48tW7bA19e33LY9/j7Kzc3F/fv3ERwcjEOHDuHTTz/FZ599hg8//PCZ9p/qGUGkYz777DMBQLRs2VKcOXNGY50HDx6IBQsWiC+//FKl/NNPPxUAxKeffqpSXlpaKkaMGCEAiKlTp6ptb8qUKQKA2Lhxo9qyixcvCgDC2NhY5OfnP7X9QUFBZW6rrLpPtre2xMXFCQBiypQptd0USXFwcBAODg6VXi8qKkoAEIMHDxY9evQQBgYGIikpSWPdGTNmCABi+vTpQi6Xqy2/d++eCAsLK/Oxfv75ZwFAzJ8/XxgaGoouXbqUWbes95EQQsjlchEYGCisra0FALFkyZKn7yjR/+PpIdIpsbGxWLRoEQwNDXHo0CF4eHhorNe4cWMsXrwY77//foW2K5PJlNdpXLhwoVJt6tGjB6ytrVFQUICcnJxKrVsZ586dw+DBg2FpaQkLCwsMGzYMFy9eVKt37949LFy4EB4eHrC3t4ehoSGaNWuGSZMm4caNG2VuPzQ0FC+99BKaN28OIyMjNG3aFEOHDsXOnTuf2ja5XI65c+dCT08P48aNQ35+vnLZ/fv3MW3aNDRu3BgmJibo1q0bfv311zKv1xk4cCD09PRQVFSEhQsXwtnZGUZGRirX0YSFhWH8+PFo3LgxjIyM4ODggLfffhv3799Xa5tie5oEBARAT08PAQEBKuWKa1Byc3Px3nvvoVWrVjAyMoKTkxO++uorCCHUtiWEwA8//ICOHTvC2NgYzZs3h6+vL7Kysp56/Mqydu1aAMC0adMwdepUFBcXq7VV4ezZswAAPz8/jfvbtGlTdO/evdzHkslk8Pf3x6hRo3D16lWcP3++0m3W09PD+PHjERgYCABYuHChxueFSBOGFtIpGzduRElJCSZMmICOHTs+tb6+fuXPkBoYGFSq/qVLl5Ceng4HBwfY2dlV+vEq4vz58xg4cCCMjIwwe/Zs+Pj44Pjx4/D09MTp06dV6p46dQpLly6FlZUVxo8fj3nz5sHd3R2BgYFwc3PDlStX1La/du1a9O3bF3v27EHfvn3xzjvvYOTIkUhOTsbq1avLbVtBQQEmTpyIlStXYvbs2QgMDISJiQkAIDk5GX369EFAQABcXFzg7+8PV1dXvP3221ixYkW52x0/fjxWr16Nvn37wt/fH507dwYA/Pnnn+jbty/279+PwYMHY/78+XB2dsZPP/2Enj17Ii4urjKHtkzFxcUYNmwYdu3aBR8fH8ycORP5+fn48MMPsXDhQrX6/v7+8PPzQ0ZGBl5//XW8/PLLOHz4MAYPHoyioqJKP35RURF+/fVXWFpa4oUXXsCkSZNgaGiIdevWaQxNNjY2AB5d61VZ4eHhCAsLg7e3N1q2bKkMiGvWrKn0thS8vLzQr18/5Ofn448//qjydqieqeWeHqJq5eXlJQCIdevWVWn9srq1S0pKxLBhwwQA4evrq7ae4vTQmDFjxKeffio+/fRTsWDBAvHKK68IMzMz0aJFC3Hq1KkKtaEqp4cAiFWrVqks27NnjwAgnJycRGlpqbL8wYMHIjs7W21bly9fFmZmZmL48OEq5REREUJfX180atRIXL9+XW29xMRE5f8/eXooLS1NeHh4CD09PbF06VK1dadPny4AiPfff1+tLYaGhhqfiwEDBggAonPnziIlJUVlWU5OjrC2thYymUzteC9dulQAEEOGDNG4PU02btyo8blwcHAQAISPj4/Iy8tTlj948EBYWloKS0tLUVRUpCwPDg4WAESbNm1EWlqasjw/P1+4u7sLAJU+PbRt2zYBQLz++uvKsvHjxwsA4tixY2r1V61aJQAICwsL8d5774mjR4+K1NTUCj3WG2+8IQCI3377TQghRHFxsbC3txdmZmYiKytLrX55p4ce9/HHHwsAYvLkyRVqBxFDC+kUFxcXAUAcOnRIbVlcXJwyUCj+ff/99yp1FB+2AwYMUNbx8/MT7du3FwBEhw4dxIMHD9S2rQgtmv6ZmJiI999/X2RkZFRoH6oSWp4MJgqKL+QTJ05U6LFHjRoljIyMVL5wfX19BQDx3XffPXX9x0NLfHy8aN++vTAwMBBbtmxRq1tYWChMTEyEpaWlxhA1c+bMckPLnj171NbZsmWLACBeeeUVtWXFxcXiueeeEwBEQkKC2vY0eVpoiYmJUVtn8uTJAoC4du2a2r5s2LBBrb7iOaxsaBk0aJAAIM6ePass279/vwAgXnzxRbX6crlcLFiwQBgbG6u8Pp977jkxc+ZMcfnyZY2P8/DhQ2FhYSEsLS1Vrsl65513BACxevVqtXUqGlp++uknZfgjqgieHqJ6Iz4+Hp9//rnKv+XLl2use/LkSWWdVatWISoqCt26dcPZs2fRuHHjMh9j48aNEI9+DKCkpATx8fH48MMPsWzZMri7u+Phw4cq9RXXUzz+z8vLC8Cj6xSeXKa4E+NJnp6ekMnU386K+k/eynrgwAGMGjUKTZs2hYGBgXL7+/fvR2FhIVJTU5V1Q0JCAAA+Pj5l7veToqOj0adPH9y7dw+HDh3Cf/7zH4118vPz0aVLF1hYWKgt79evX7mP4ebmplZ26dIlAMCgQYPUlunr66N///4A1I9HVVhaWsLJyUmtvGXLlgCAjIwMtXYNGDBArX6/fv3QoEGDSj32rVu3EBQUBGdnZ/Tp00dZPnz4cNjb22PPnj0qzyHw6FqSxYsX4/79+9i+fTv8/f3Rv39/3L9/H+vWrUOPHj2U18g8bvv27cjJycHLL78MY2NjZbniFJGmdSpK/P9prLKuKSJ6Em95Jp1ib2+PyMhI3Lt3T23ZwIEDlR+SJSUl5V6borgdUy6X4+7du/jmm2+wcuVKvPjiizh06JDGgPCkBg0awMHBAZ988glu3ryJrVu3YtWqVViwYIGyztSpU9WCSHx8PH799VeV26cVyhqArEmTJhrL7e3tAUDlYs8VK1bA398fjRo1wpAhQ9CqVSuYmppCT08Pe/bswZUrV1BYWKisrxiPo3nz5k/dZ4WbN28iPT0d3bp1K/PiTkWbymp7WeVP7pumbTZt2lTjOory8sYYqSgrKyuN5YrrpEpLS9XapWmf9PX1YWtrW6nHXrt2LYQQaoP46evr4z//+Q++/fZbBAQE4N1339XY7pdeegkvvfQSgEe3Ii9duhSLFi2Cn58fRo8erdJOxXUrTz5Wp06d0KNHD4SFheHixYvo2bNnpfYBgPJ9qq1rvUj3MLSQTvHw8EBQUBCOHz+O6dOnP/P2ZDIZWrZsiRUrVuDevXsIDAzEDz/8gDlz5lRqO71798bWrVsRGhqqUq5p5NgTJ07g119/xdixYys8suyDBw80liclJQF41CsAPAprn332Gezt7XHp0iW1L/dz586pbUPx5Xz37l20b9++Qu0ZNWoUnJ2d8dFHH8Hb2xtHjx5VXgiq0LBhw3LbXla5gqZf54r9VOz3kxR3qSjqAVAG0JKSErULs6sj3Dz+eA8ePICjo6PKspKSEqSmpqJFixYV2tbjdwgtWLBAJQQ/bu3atRpDy5PMzMzwxRdf4MSJEzhz5gyCg4Mxbtw4AMDVq1eVr9nHe3SetGbNmiqFlqCgIACP3h9EFcHQQjpl6tSpWLp0KQIDA/Hxxx/DxcWl2rb97bffYv/+/Vi4cCGmTp2q/NKtCMWpArlcXm3tedyZM2cgl8vVeoBOnDgBAMoBw1JTU5GZmYlx48apBZaHDx8qT2M8zt3dHRcvXsShQ4cqHFqAR1+oJiYmmDdvHgYOHIhjx46p/IJv3749TExMcPXqVeTk5KidIjpz5kyFH0tBsZ8nTpzAjBkzVJaVlJQo76R6vPenUaNGAIDExES0bt1aZR1Nt4xXRffu3XHp0iWcPHlSLbScOXNGpVfmafbu3Yvk5GQ4OzuXeQotKCgIN2/exMmTJzWektJEcfzFY3ceKXpZBg4ciDZt2mhc77fffsO2bdvw3XffwdzcvML78ffffyM4OBgmJiZ44YUXKrwe1XO1eUENkTYoBpdzcHAQwcHBGuukpKRovPjxaRcQKi5K/eSTT1TKyxtcLj09XXkBaEUuZtXm3UOlpaXC1NRUODg4iJycHGXdoqIi5Z08AERcXJxy2eN3D0VERKi1oby7h4R4dLGlnp6ecHZ2Fnfv3lVZd+rUqVW+e0gTxd1DDRo0EOfOnVNZtmzZMuVAbI9T3FW0YMEClfJjx44JmUxW5oW4ZV04q3gNBQUFKcvOnDlTbXcPDRkyRAAQO3bsKLPOunXrBAAxadIkZdnXX3+t8e4vIYQ4ffq0MDY2Fvr6+srnKC8vT1hZWYkGDRqoPW+Pe/XVVwUAsWbNGmXZ0waX27Vrl3Jwua+//vppu0ykxJ4W0jmffPIJhBD44osv4OHhgR49esDNzQ3W1tbIzMxEfHw8jh07BgDKCzMr6qOPPsL69evx/fffw8/PT+1ahD179ijnJyotLcWdO3ewf/9+pKWloVevXnjzzTerZR+fNHz4cLzzzjs4dOgQunbtilu3buGPP/6AsbExNmzYoOyBkclkmDNnDpYuXYrOnTtjzJgxKCoqQlBQENLT0+Hl5aXsslfo0KEDVq9ejTfffBOurq4YM2YM2rZti7S0NFy4cAENGzZUW+dxb775JoyNjTFjxgz0798ff//9N1q1agUAWLp0Kf7++298/fXXOH/+PPr27Yv79+9j586dGDFiBPbs2VOh64cUzM3NsWHDBkycOBEDBgzAxIkT0apVK4SFheHIkSOwt7fHL7/8orLOtGnTsGzZMixZsgRXrlxBhw4dcPPmTRw6dAgvvPACdu3aVeHHL4uHhwf8/PywatUqdOrUCRMmTICBgQH27t2LRo0alXkNzpPi4uJw7Ngx2NraYuzYsWXWe+mll+Dv749du3Zh1apVsLa2xtatW/H++++jffv2cHd3R9OmTZGbm4uIiAj8/fffEELg22+/RbNmzQAAO3bsQGZmJkaNGqUs02TmzJnYsmUL1qxZg1mzZqksO3HihHJwwPz8fNy7dw/BwcGIi4uDkZERvvrqK7z33nsV2nciAOxpId0VFRUl/P39RdeuXYWlpaWyt6Bnz57C399f45DlFblVc/78+crhzBXKuuXZwsJC9OrVS3z99dcVGsJfiKoP43/27Fnh7e0tLCwshLm5uRgyZIgIDQ1VW6e4uFh8++23wsXFRRgbG4smTZqIV199VcTHxyv34/GeFoWzZ8+KcePGCTs7O2FgYCCaNm0qhg0bJn7//XdlnfKG8f/tt9+Evr6+cHBwELdv31aW37lzR0yePFnY2toKY2Nj0bVrVxEQECB+//13AUDttvTyeloUQkNDxdixY4Wtra0wMDAQLVu2FG+++WaZPQbXr18XPj4+wtzcXJiZmYkBAwaIEydOlHvLc2V6WoR41MOwatUq0b59e2FoaCiaNm0q3n77bZGZmVnhYfw/+ugjAUDMmzfvqXVnzZql0rt36dIl8cUXXwgvLy/x3HPPCWNjY2FkZCQcHR3FpEmTxOnTp1XW79u3rwAg9u7d+9THateunQAgwsPDVY6B4p+enp4wNzcXrVq1Ej4+PmLp0qXizp07T90u0ZP0hNAwdCIRUS3773//i8WLF+Pw4cMYNmxYbTeHiOoAhhYiqlX37t1TO/1w7do19O3bF4aGhrh7967K+CBEVH/xmhYiqlU9e/aEk5MTOnXqBDMzM8TExODAgQOQy+X45ZdfGFiISIk9LURUqz7//HPlBcw5OTmwsrKCu7s73n333TJHACai+omhhYiIiCSBcw8RERGRJDC0EBERkSToTGgpKChAdHQ0CgoKarspREREpAU6E1oSEhIwa9YsJCQk1HZTiIiISAt0JrQQERGRbmNoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoqYPyMgoQFhiDvIyC2m4KERFRncHQUgflZRYi/I9byMssrO2mEBER1RkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJ+pVdIS8vD9u3b8eNGzcQGRmJnJwcLFiwAD4+Pso6crkcf/31F06ePImYmBjk5OSgadOmGDRoEF5++WUYGRmpbffPP//E9u3bkZSUBDs7O0yYMAHjx49/tr0jIiIinVHpnpasrCwEBAQgISEBTk5OGusUFBRgyZIlyMrKwpgxY+Dn5wcXFxds3LgR77//PoQQKvX37t2Lr7/+Gq1bt8bcuXPRqVMnrFixAlu3bq3aXhEREZHOqXRPi42NDXbv3g0bGxtERUXh9ddfV6tjYGCAH3/8EZ07d1aWjRo1Cvb29tiwYQPCwsLQs2dPAEBhYSHWrVuHPn364IsvvlDWlcvl2LRpE0aPHg0LC4uq7h8RERHpiEr3tBgaGsLGxqbcOgYGBiqBRcHT0xMAkJCQoCy7dOkSsrKyMHbsWJW6L7zwAvLz83Hu3LnKNpGIiIh0UKV7Wp5Feno6AMDS0lJZFhMTAwBo3769Sl1nZ2fIZDLcvHkTQ4cOVdtWamoq0tLSlH8/HoSIiIhI99RoaNm2bRvMzMzQu3dvZVlaWhoaNGiARo0aqdQ1MDBAw4YNVYLJ4/bt24eAgABtNpeIiIjqkBoLLZs3b8bFixcxf/58lWtUCgsLoa+vuRmGhoYoLNQ80/Ho0aPh4eGh/DshIQGLFi2q3kYTERFRnVEjoeX48eNYt24dRo4cqXbtipGREUpKSjSuV1RUpPH2aACwtbWFra1tdTeViIiI6iitDy534cIFLF68GH369ME777yjttzGxgalpaXIyMhQKS8uLkZ2dvZTL/olIiKi+kGroeXGjRv4+OOP4ezsjM8//1zjaaC2bdsCAKKiolTKo6KiIJfLlcuJiIioftNaaImPj8cHH3wAe3t7fPXVV2We5unevTsaNmyIvXv3qpTv3bsXxsbG6NOnj7aaSERERBJSpWtadu3ahYcPHyrv7AkODkZycjIAYPz48ZDJZHj33XeRk5ODl19+WW2slWbNmqFTp04AHl3TMmPGDHz//ff45JNP4ObmhitXruDIkSOYNWsWGjZs+Cz7R0RERDqiSqFlx44dSEpKUv596tQpnDp1CgCUY6ooQswvv/yitv7w4cOVoQV4NJCcvr4+duzYgeDgYDRu3Bi+vr6YOHFiVZpHREREOqhKoWXnzp1PraMIMRU1atQojBo1qirNISIionpA63cPEREREVUHhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIaWOkYuF0iJzQIApMRmQS4XtdwiIiKiukG/thtA/4oLTULIpkjkphcAAILXR+Dy7ttwn+yC1m72tdw6IiKi2sWeljoiLjQJx5eHKwOLQm56AY4vD0dcaFIttYyIiKhuYGipA+RygZBNkeXWCdkcyVNFRERUrzG01AFJUelqPSxPyk0rQFJUeg21iIiIqO5haKmAvIwChAXGIC+j/GBRVfmZhdVaj4iISBcxtFRAXmYhwv+4hTwthQYTK6NqrUdERKSLGFrqAPv21jCzNi63jpmNMezbW9dQi4iIiOoehpY6QCbTg/tkl3LruL/mAplMr4ZaREREVPcwtNQRrd3s4e3vqtbjYmZjDG9/V47TQkRE9R4Hl6tDWrvZw6FnE0QHJSJ4fQQ8ZnSEs1dL9rAQERGBPS11jkymBztHSwCAnaMlAwsREdH/Y2ghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoeQq5XCAlNgsAkBKbBblc1HKLiIiI6if92m5AXRYXmoSQTZHITS8AAASvj8Dl3bfhPtkFrd3sa7l1RERE9Qt7WsoQF5qE48vDlYFFITe9AMeXhyMuNKmWWkZERFQ/MbRoIJcLhGyKLLdOyOZInioiIiKqQQwtGiRFpav1sDwpN60ASVHpNdQiIiIiYmjRID+zsFrrERER0bNjaNHAxMqoWusRERFVt7yMAoQFxiAvo/wzA7qEoUUD+/bWMLM2LreOmY0x7Ntb11CLiIiIVOVlFiL8j1vIq0e9/gwtGshkenCf7FJuHffXXCCT6Wnl8U2tjOA6zgmm7MkhIiJSYmgpQ2s3e3j7u6r1uJjZGMPb31Wr47SYNjJGjwltYdqo/N4eIiKi+oSDy5WjtZs9HHo2QXRQIoLXR8BjRkc4e7XUWg8LERERla3SoSUvLw/bt2/HjRs3EBkZiZycHCxYsAA+Pj5qdePj4/HDDz/g2rVr0NfXR58+feDr6wsrKyuVenK5HNu3b8eePXuQnp6OFi1a4NVXX8XgwYOrvGPVRSbTg52jJQDAztGSgYWIiKiWVDq0ZGVlISAgAE2aNIGTkxPCw8M11ktOToafnx/Mzc0xa9Ys5OfnY/v27YiNjcUvv/wCAwMDZd21a9di69atGDVqFNq3b48zZ85g4cKF0NPTg7e3d9X3joiIiHRGpUOLjY0Ndu/eDRsbG0RFReH111/XWG/Lli0oKCjAunXr0KRJEwCAi4sL5s+fj0OHDmH06NEAgJSUFOzYsQMvvPAC5s2bBwB4/vnn4efnh9WrV2PgwIFo0KBBVfePiIiIdESlL8Q1NDSEjY3NU+udPHkSffv2VQYWAOjZsydatmyJoKAgZdmZM2dQUlKCF154QVmmp6eHsWPHIiUlBREREZVtIhEREekgrdw9lJKSgoyMDDg7O6stc3FxQUxMjPLvmJgYmJiYwMHBQa2eYjlpV30coIiIiKRHK3cPpaWlAYDGHhkbGxtkZ2ejqKgIhoaGSEtLQ6NGjaCnp6dWDwBSU1M1PkZqaqrycQAgISGhuppf7ygGKHLo0Zi3WRMRUZ2lldBSWPhodL7HL7ZVMDQ0VNYxNDREYWHhU+tpsm/fPgQEBFRTi4mIiKiu00poMTJ6NJJrcXGx2rKioiKVOkZGRhWq96TRo0fDw8ND+XdCQgIWLVr0bA0nIiKiOksroUVxaufx0zcKaWlpaNiwobInxcbGBuHh4RBCqJwiUqxra2ur8TFsbW3LXEZERES6RysX4trZ2cHKygrR0dFqyyIjI+Hk5KT828nJCQUFBWrXpNy4cUO5nIiIiEhrcw8NGDAAZ8+exYMHD5RlYWFhSExMhJeXl7KsX79+0NfXx+7du5VlQgjs3bsXdnZ26NSpk7aaSERERBJSpdNDu3btwsOHD5WncIKDg5GcnAwAGD9+PMzNzfHqq6/ixIkT8Pf3x4QJE5Cfn49t27bB0dFRZcj/xo0bY+LEidi2bRtKSkrg4uKC06dP4+rVq/jf//7HgeWIiIgIQBVDy44dO5CUlKT8+9SpUzh16hQAYOjQoTA3N0eTJk2wcuVK/PDDD/jll1+Ucw/Nnj1beT2LwhtvvAELCwvs27cPhw8fRosWLfDxxx9jyJAhz7BrREREpEuqFFp27txZoXqtW7fGt99++9R6MpkMr776Kl599dWqNIeIiIjqAa1d00JERERUnRhaiIiISBIYWoio0jhfFRHVBoYWIqo0xXxVeZmap9kgItIGhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIomRywVSYrMAACmxWZDLRS23qGbo13YDiIiIqOLiQpMQsikSuemPZlkPXh+By7tvw32yC1q72ddy67SLPS1EREQSEReahOPLw5WBRSE3vQDHl4cjLjSpllpWMxhaiIiIJEAuFwjZFFlunZDNkTp9qoihhYhIg7yMAoQFxiAvo+DplSVI1/dPFyVFpav1sDwpN60ASVHpNdSimsfQUgGmVkZwHecEUyuj2m4KEdWQvMxChP9xC3mZhbXdFK3Q9f3TRfkVfK4qWk+KeCFuBZg2MkaPCW1ruxlERFSPmVTwh3NF60kRe1qIiIgkwL69NcysjcutY2ZjDPv21jXUoprH0FLP1dd7/YmIpEYm04P7ZJdy67i/5gKZTK+GWlTzGFrqsbjQJOyYcwLB6yMAPLrXf8ecEzp/yxwRkVS1drOHt7+rWo+LmY0xvP1ddX6cFl7TUk8p7vV/kuJe//rw4icikqLWbvZw6NkE0UGJCF4fAY8ZHeHs1VKne1gU2NNSD/FefyIiaZPJ9GDnaAkAsHO0rBeBBWBoqZd4rz8REUkRQ0s9xHv9iYhIihha6iHe609ERFLE0FIP8V5/IiKSIoaWeoj3+hMRkRQxtNRT9f1efyIikh6O01KP1ed7/YmISHrY01LP1dd7/YmISHoYWoioUjhfFRHVFp4eIqIKiwtNQsimSOXghMHrI3B59224T3bR6nVQeRkFiDyeCBfvljBtVP6db0Sku9jTQkQVopiv6snRlBXzVWlzos28zEKE/3ELeRzwkKheY2ghoqfifFVEVBcwtBDRU3G+KiKqCxhaiOipOF8VEdUFDC1E9FScr4qI6gKGFiJ6Ks5XRUR1AUMLET0V56siorqAoYWIKoTzVWlXXkYBwgJjkJdR/gXPRPUZB5cjogrjfFXaoxiLxqFHYw6gR1QG9rQQUaVwvioiqi0MLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1ERE+QywVSYrMAACmxWTo3EaSu7x/pLt7yTET0mLjQJIRsilROEBm8PgKXd9+G+2QXnRiLRtf3j3Qbe1qIiP5fXGgSji8PV5vROje9AMeXhyMuNKmWWlY9dH3/SPcxtBAR4dEpk5BNkeXWCdkcKdlTKbq+f1Q/MLQQEQFIikpX64F4Um5aAZKi0muoRdVL1/eP6geGFiIiAPmZhdVar67R9f2j+oGhhYgIgImVUbXWq2t0ff+ofmBoISICYN/eWm0G6yeZ2RjDvr11DbWoeun6/tVHplZGcB3nBNN6FDQZWoiI8GgiSPfJLuXWcX/NRbITROr6/tVHpo2M0WNC23o1KzhDCxHR/2vtZg9vf1e1HgkzG2N4+7tKfhwTXd8/0n0cXI6I6DGt3ezh0LMJooMSEbw+Ah4zOsLZq6XO9EDo+v6RbmNPCxHRE2QyPdg5WgIA7Bwtde4LXdf3j3QXQwsRERFJAkMLERERSQJDCxEREUmCVi/ETUxMxPr163Ht2jVkZ2ejSZMmGDx4MF5++WUYG/979fq1a9fw888/4+bNmzAzM4OXlxdmzZoFU1NTbTaP/l99vNefiIikR2uh5cGDB3jjjTdgbm6OF154AQ0bNkRERAQ2bNiA6OhoLFmyBAAQExODefPmwcHBAb6+vkhOTsaOHTtw584dLFu2TFvNo8co7vUnqovkcoGU2CwAQEpsFqwdGvLCUaJ6Smuh5ciRI3j48CF+/PFHtG7dGgAwevRoyOVy/PXXX8jJyYGFhQXWrFkDCwsLrFy5EmZmZgCApk2b4uuvv0ZoaCjc3Ny01UQiquPiQpMQsilSOdFf8PoIXN59G+6TXTimCFE9pLVrWnJzcwEAjRo1Uim3sbGBTCaDvr4+cnNzcfHiRQwdOlQZWABg2LBhMDExQVBQkLaaR0R1XFxoEo4vD1ebmTg3vQDHl4cjLjSpllpGRLVFa6HF1dUVAPDVV18hJiYGDx48wPHjx7F3716MHz8eJiYmiI2NRWlpKZydnVXWNTAwQNu2bRETE6Ot5lEty8soQFhgDPIyCp5emeoduVwgZFNkuXVCNkdCLhc11CIiqgu0dnqod+/emDFjBrZs2YLg4GBl+WuvvYZZs2YBANLS0gA86n15ko2NDa5cuVLm9lNTU5XrA0BCQkJ1NZ1qQF5mIcL/uAWHHo3r1bwZVDFJUelqPSxPyk0rQFJUOpp1UP/8ICLdpNW7h5o2bYquXbtiwIABaNiwIc6dO4ctW7bA2toa48ePR2FhIYBHPStPMjQ0RFFRUZnb3rdvHwICArTVdCKqRfmZhdVaj4h0g9ZCy/Hjx7Fs2TJs3boVjRs3BgAMGDAAQgj88ssvGDx4MIyMHt1iW1xcrLZ+UVERDA0Ny9z+6NGj4eHhofw7ISEBixYtqua9IKLaYFLB2+8rWo+IdIPWQsvu3bvRtm1bZWBR8PDwwKFDhxATE6M8LfT4aR6FtLQ02Nralrl9W1vbcpcTkXTZt7eGmbVxuaeIzGyMYd/eugZbRUS1TWsX4mZkZEAul6uVl5SUAABKS0vRunVrNGjQANHR0Sp1iouLERMTAycnJ201j4jqMJlMD+6TXcqt4/6ai86M1/LkWDS8wJhIM62FlpYtWyImJgaJiYkq5cePH4dMJkObNm1gbm6Onj174siRI8jLy1PW+euvv5Cfnw8vLy9tNY+I6rjWbvbw9neFmbXqhdpmNsbw9nfVmXFa4kKTsGPOCQSvjwDwaCyaHXNO8JZuIg20dnro5Zdfxvnz5+Hr64tx48ahYcOGOHv2LM6fP4/nn39eeWpn5syZmD17Nvz8/DB69GjliLi9evVC7969tdU8InoGNTX1Q2s3ezj0bILooEQEr4+Ax4yOcPZqqTM9LIqxaJ6kGItGl8IZUXXQWk9Lt27d8OOPP6Jdu3bYvXs3Vq1ahXv37mHWrFmYP3++sp6zszO+++47GBkZYdWqVdi/fz9GjhyJL774QltNI9I6XR+HRjH1Q03cri6T6cHO0RIAYOdoqTOBhWPRkNTUhc81rd7y3KFDhwrNH9SlSxesXr1am00hqlEch4aehmPRkNTUhc81rfW0EBFR2TgWDVHlMbQQEdUCjkVDVHkMLUREtUAxFk15OBYNkSqGFiKiWlDfxqIhqg4MLUREtaS+jEVDVF20evcQERGVT9fHoiGqTuxpISKqZbo6Fg1RdWNoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIqoGdWFCQV3H0EJEpIGplRFcxznBVEeH0df1/asNigkF8zhflNZwnBYiIg1MGxmjx4S2td0MrdH1/SPdxJ4WIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFqpxcrlASmwWACAlNgtyuajlFhERkRTw7iGqUXGhSQjZFInc9EfjGASvj8Dl3bfhPtkFrd3sa7l1RERUl7GnhWpMXGgSji8PVwYWhdz0AhxfHo640KRaahkREUkBQwvVCLlcIGRTZLl1QjZH8lQRERGViaGFakRSVLpaD8uTctMKkBSVXkMtIiIiqWFooRqRX8FhrStaj4iI6h+GFqoRJhWc36Si9YiIqP5haKEaYd/eGmbWxuXWMbMxhn176xpqERERSQ1DC9UImUwP7pNdyq3j/poLZDK9GmqR9nAcGiLSNXXlc43jtFCNae1mD29/V5VxWoBHPSzur+nGOC0ch0Y7TK2M4DrOCaY8fUhU4+rS5xp7WqhGtXazx0srB8JjRkcAgMeMjnhpxUCd+EKvzXFo8jIKEBYYg7yM8u/QkirTRsboMaEtTBuVf4qRiKpXXRtfi6GFapxMpgc7R0sAgJ2jpc6cEqrNcWjyMgsR/sct5PHuKyKqJrX9uaYJQwtRNeA4NESka+ri5xpDC1E14Dg0RKRr6uLnGkMLUTXgODREpGvq4ucaQwtRNeA4NESka+ri5xpDC1E1qE/j0BBR/VAXP9cYWoiqiWIcmid/mZjZGMPb31Unbusm7eFYNFQX1bXPNQ4uR1SNWrvZw6FnE0QHJSJ4fQQ8ZnSEs1dL9rDQUynGoiGqa+rS5xp7WoiqmS6OQ0NE9Vtd+VxjaCEiInpGdWVuHl3H00NERETPoC7NzaPr2NNCRERURXVtbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERURXVtbh5dx8HliIiInkFdmptH17GnhYiI6BnVlbl5dB1DCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwuRxMnlAimxWQCAlNgsTs5GRDqLtzwTSVhcaBJCNkUqJ20LXh+By7tvw32yC8eHICKdw54WIomKC03C8eXharPM5qYX4PjycMSFJtVSy4iItIOhhWqFqZURXMc5wZQTiVWJXC4Qsimy3DohmyN5qoiIdApDC9UK00bG6DGhLUwblT/ZGGmWFJWu1sPypNy0AiRFpddQi4iItI+hhUiC8jMLq7UeEZEUMLQQSZBJBU+rVbQeEZEUMLQQSZB9e2u1WWWfZGZjDPv21jXUIiIi7WNoIZIgmUwP7pNdyq3j/poLJ20jIp3C0EIkUa3d7OHt76rW42JmYwxvf1eO00JEOoeDyxFJWGs3ezj0bILooEQEr4+Ax4yOcPZqyR4WItJJWg8t0dHR2LhxI65du4aioiI0a9YMo0aNwoQJE5R1rl27hp9//hk3b96EmZkZvLy8MGvWLJiammq7eURaUZPj0MhkerBztAQA2DlaMrAQkVbUhfG1tBpaQkNDsWDBArRt2xZTpkyBiYkJ7t69i5SUFGWdmJgYzJs3Dw4ODvD19UVycjJ27NiBO3fuYNmyZdpsHpHWKMahISLSFXXhc01roSU3NxeLFy+Gu7s7vvjiC8hkmi+fWbNmDSwsLLBy5UqYmZkBAJo2bYqvv/4aoaGhcHNz01YTiYiISEK0diHusWPHkJ6ejlmzZkEmkyE/Px9yuVylTm5uLi5evIihQ4cqAwsADBs2DCYmJggKCtJW84iIiEhitNbTcvHiRZiZmSE1NRX//e9/kZiYCBMTEwwdOhS+vr4wMjJCbGwsSktL4ezsrLKugYEB2rZti5iYGG01j4iIiCRGa6Hlzp07KC0txUcffYSRI0fi9ddfx+XLl7Fr1y48fPgQn376KdLS0gAANjY2auvb2NjgypUrZW4/NTVVuT4AJCQkVP9OEBFRtcjLKEDk8US4eLfknGNUZVoLLfn5+SgoKMCYMWMwd+5cAMCAAQNQXFyMffv2Yfr06SgsfDQvioGBgdr6hoaGKCoqKnP7+/btQ0BAgFbaTkRE1SsvsxDhf9yCQ4/GDC1UZVoLLUZGj26J8vb2VikfPHgw9u3bh4iICBgbP3rhFhcXq61fVFQEQ0PDMrc/evRoeHh4KP9OSEjAokWLqqPpREREVAdpLbTY2NggLi4O1taqc580atQIAJCTk4PmzZsDgMppHoW0tDTY2tqWuX1bW9tylxMREZFu0drdQ4qLax8fkwV4dC0KAFhZWaF169Zo0KABoqOjVeoUFxcjJiYGTk5O2moeERERSYzWQouXlxcA4MCBAyrlBw4cQIMGDeDq6gpzc3P07NkTR44cQV5enrLOX3/9hfz8fOU2iIiIiLR2eqhdu3YYMWIEDh48iNLSUnTr1g2XL19GUFAQXn31VeWpnZkzZ2L27Nnw8/PD6NGjlSPi9urVC71799ZW84iIiKpVXRjmXtdpdRj/d999F02aNMGhQ4dw+vRpNGnSBL6+vnjxxReVdZydnfHdd9/h559/xqpVq2BqaoqRI0fijTfe0GbTiIiIqlVdGOZe12k1tOjr62PatGmYNm1aufW6dOmC1atXa7MpREREJHFau6aFiIiIqDoxtBAREZEkMLQQERGRJDC0EBERkSQwtBARkc7JyyhAWGAM8jIKarspVI0YWoiISOcoJmjMyyys7aZQNWJoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoIdIBplZGcB3nBFMro9puChGR1mh1lmciqhmmjYzRY0Lb2m4GEZFWsaeFiIiIJIGhhYiItEouF0iJzQIApMRmQS4XtdwikiqeHiIiIq2JC01CyKZI5KY/mgMoeH0ELu++DffJLmjtZl/LrSOpYU8LERFpRVxoEo4vD1cGFoXc9AIcXx6OuNCkWmoZSRVDCxERVTu5XCBkU2S5dUI2R/JUEVUKQwsREVW7pKh0tR6WJ+WmFSApKr2GWkS6gKGFiIiqXX5mYbXWIwIYWqieyMsoQFhgDPIyyv/lR0TVw6SCAx1WtB4RwNBC9UReZiHC/7iFPP6qI6oR9u2tYWZtXG4dMxtj2Le3rqEWkS5gaCEiomonk+nBfbJLuXXcX3OBTKZXQy0iXcDQQkREWtHazR7e/q5qPS5mNsbw9nflOC1UaRxcjoiItKa1mz0cejZBdFAigtdHwGNGRzh7tWQPC1UJe1qIiEirZDI92DlaAgDsHC0ZWKjKGFqIiEincK4j3cXTQ0REpDM415FuY08LERHpBM51pPsYWoiISPI411H9wNBCRESSx7mO6geGFiIikjzOdVQ/MLQQEZHkca6j+oGhhYiIJI9zHdUPDC1ERCR5nOuofmBoISIincC5jnQfB5cjIiKdwbmOdBt7WoiISKdwriPdxdBCREREksDQQkRERJLA0EJERESSwNBCREREksDQQjpPLhdIic0CAKTEZnHCNCIiieItz6TT4kKTELIpUjmRWvD6CFzefRvuk104ZgMRkcSwp4V0VlxoEo4vD1eb+TU3vQDHl4cjLjSpllpGRERVwdBCOkkuFwjZFFlunZDNkTxVREQkIQwtpJOSotLVelielJtWgKSo9BpqERERPSuGFtJJ+ZmF1VqPiIhqH0ML6SQTK6NqrUdEz8bUygiu45xgyvccPQOGFtJJ9u2t1WZ6fZKZjTHs21vXUIuI6jfTRsboMaEtTBuV/74kKg9DC+kkmUwP7pNdyq3j/poLJ1IjIpIQhhbSWa3d7OHt76rW42JmYwxvf1eO00JEJDEcXI50Wms3ezj0bILooEQEr4+Ax4yOcPZqyR4WIiIJYk8L6TyZTA92jpYAADtHSwYWIiKJYmghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIp3DaQN0E8dpISIinaOYNoB0C3taiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBJqNLRs2rQJ/fv3x5QpU9SWXbt2DbNnz8aQIUMwduxYrFixAnl5eTXZPCIiIqrDauzuoeTkZGzZsgUmJiZqy2JiYjBv3jw4ODjA19cXycnJ2LFjB+7cuYNly5bVVBOJiIioDqux0LJ69Wp06NABcrkcWVlZKsvWrFkDCwsLrFy5EmZmZgCApk2b4uuvv0ZoaCjc3NxqqplERERUR9XI6aHLly/j5MmT8PPzU1uWm5uLixcvYujQocrAAgDDhg2DiYkJgoKCaqKJREREVMdpPbSUlpZixYoVGDlyJNq0aaO2PDY2FqWlpXB2dlYpNzAwQNu2bRETE6PtJhIREZEEaP300N69e/HgwQN8//33GpenpaUBAGxsbNSW2djY4MqVKxrXS01NVa4LAAkJCdXQWiIiIqqrtBpasrKysGHDBkyePBlWVlYa6xQWFgJ41LPyJENDQxQVFWlcb9++fQgICKiuphIREVEdp9XQsm7dOlhYWGD8+PFl1jEyejSZVXFxsdqyoqIiGBoaalxv9OjR8PDwUP6dkJCARYsWPWOLiYiIqK7SWmhJTEzE/v374efnh9TUVGV5UVERSkpKcP/+fZiZmSlPCz1+qkchLS0Ntra2Grdva2tb5jIiIiLSPVoLLampqZDL5VixYgVWrFihtvyll17ChAkTMH36dDRo0ADR0dEYNGiQcnlxcTFiYmLg5eWlrSZSPcJp6omIpE9roaV169b48ssv1crXrVuHvLw8zJkzB82aNYO5uTl69uyJI0eOYMqUKTA1NQUA/PXXX8jPz2dooWrBaeqJiKRPa6HFysoKnp6eauW///47AKgsmzlzJmbPng0/Pz+MHj1aOSJur1690Lt3b201kYiIiCSkTkyY6OzsjO+++w5GRkZYtWoV9u/fj5EjR+KLL76o7aYRERFRHVFjw/grrFy5UmN5ly5dsHr16hpuDREREUlFnehpISIiInoahhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKShBqfe0hbCgsLAQAJCQm13BIiIiKqLAcHBxgbG5dbR2dCS1JSEgBg0aJFtdwSIiIiqqy1a9fC2dm53Dp6QghRQ+3RqszMTISGhqJp06YwNDSs7eZUSUJCAhYtWoSPP/4YDg4Otd2cWsPj8C8ei0d4HP7FY/EvHotHdOU41KueFisrKwwdOrS2m1EtHBwcnpo26wMeh3/xWDzC4/AvHot/8Vg8Uh+OAy/EJSIiIklgaCEiIiJJYGipQ2xsbDB16lTY2NjUdlNqFY/Dv3gsHuFx+BePxb94LB6pT8dBZy7EJSIiIt3GnhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBJ0ZXE4qUlNTERgYiMjISERFRSE/Px8rVqyAq6urWt05c+bg8uXLauVubm745ptvVMqKioqwfv16HDlyBDk5OWjTpg1mzpyJXr16aWtXnklljgMAXLt2DT///DNu3rwJMzMzeHl5YdasWTA1NVWpJ7XjUJZDhw5hyZIlGpft3r1b7S6BM2fOYOPGjUhISICVlRVGjBiByZMnQ19f2m9xXXk+KyM8PBxz587VuOynn35Cx44dlX9X9H0hBXl5edi+fTtu3LiByMhI5OTkYMGCBfDx8VGrGx8fjx9++AHXrl2Dvr4++vTpA19fX1hZWanUk8vl2L59O/bs2YP09HS0aNECr776KgYPHlxDe1V5FT0OixcvxuHDh9XWb9WqFbZs2aJSJsXjUBZpf6JJUGJiIn777Te0aNECjo6OiIiIKLe+nZ0d3njjDZUyTbe1LVmyBCdOnMDEiRPRokULHDp0CO+//z5WrFiBLl26VOs+VIfKHIeYmBjMmzcPDg4O8PX1RXJyMnbs2IE7d+5g2bJlKnWldhyeZsaMGWjatKlKmbm5ucrfISEh+O9//4tu3bph7ty5iI2NxaZNm5CRkYF33nmnJptb7XTt+ayM8ePHw8XFRaWsefPmyv+vzPtCCrKyshAQEIAmTZrAyckJ4eHhGuslJyfDz88P5ubmmDVrFvLz87F9+3bExsbil19+gYGBgbLu2rVrsXXrVowaNQrt27fHmTNnsHDhQujp6cHb27umdq1SKnocAMDQ0BDvv/++SpmZmZlaPSkehzIJqlG5ubkiKytLCCFEUFCQ8PT0FJcuXdJY18/PT0yePPmp24yIiBCenp7it99+U5YVFBSIl19+Wbz55pvV0/BqVpnj8O6774qxY8eKhw8fKsv2798vPD09xfnz55VlUjwOZTl48KDw9PQUkZGRT6372muviWnTponi4mJl2Zo1a0T//v1FfHy8NpupVbr0fFbGpUuXhKenpwgKCiq3XkXfF1JRWFgoUlNThRBCREZGCk9PT3Hw4EG1et9++60YPHiwSEpKUpZduHBBeHp6ir179yrLkpOThZeXl/juu++UZXK5XMyePVuMGzdOlJSUaHFvqq6ix+HLL78UQ4cOfer2pHocysJrWmqYqakpGjZsWKl1SkpKkJeXV+bykydPokGDBhg9erSyzMjICCNHjkRERAQePHhQ5fZqS0WPQ25uLi5evIihQ4eq/IIYNmwYTExMEBQUpCyT4nGoiLy8PJSWlmpcFh8fj/j4eIwaNUrlVNALL7wAIQROnDhRQ62sfrr6fFZGXl4eSkpK1Mor876QCkNDwwoNjnby5En07dsXTZo0UZb17NkTLVu2VNnvM2fOoKSkBC+88IKyTE9PD2PHjkVKSspTe7lrS0WPg0JpaSlyc3PLXC7V41AWnh6q4xITEzFs2DAUFxfD2toazz//PKZOnaryBRUTE4MWLVqodQsqupZv3bql8gaXktjYWJSWlqpNAmZgYIC2bdsiJiZGWaaLx2Hu3LnIz8+HgYEBevXqhdmzZ6Nly5bK5Tdv3gQAteNja2sLOzs7leMjNbr4fFbGkiVLkJ+fjwYNGqBLly5466230L59ewCVe1/okpSUFGRkZGicFNDFxQUhISHKv2NiYmBiYqI267Hi9RMTEyP5U4wFBQXw8fFBQUEBLCws4O3tjTfffFPlmiZdOw4MLXVYs2bN4OrqCkdHRxQUFODEiRPYtGkTEhMT8fnnnyvrpaWlaUzmirLU1NQaa3N1S0tLA6D5Oh4bGxtcuXJFpa6uHAcjIyP4+PjA1dUVZmZmiI6Oxs6dO/H2229j3bp1yi/rpx0fxXIp0qXnszL09fUxYMAAuLu7w9LSEvHx8dixYwd8fX2xevVqtGvXrlLvC13ytP3Ozs5GUVERDA0NkZaWhkaNGkFPT0+tHiD914+NjQ1eeeUVtGvXDkIInD9/Hnv27MHt27exYsUK5Q9bXTsODC3PQC6Xo7i4uEJ1DQ0N1V40T/Phhx+q/D1s2DAsW7YM+/fvx4svvqi8i6CwsFDl4rPHH1OxXJu0eRwUbS9r/4qKilTq1uZxKEtVjs+gQYMwaNAgZbmnpyfc3Nzg5+eHzZs349133wUA5f4r9vHJbZV3WrGuq6vPp7Z17twZnTt3Vv7dr18/DBw4ENOmTcOaNWvwzTffVOp9oUuett+KOoaGhjr/+nnyBg1vb2+0bNkSa9euxcmTJ5UX2OracWBoeQZXrlwp89bEJ23evFmte64qXnrpJezfvx8XL15UhhYjIyONX4qKDy4jI6NnftzyaPM4KNpe1v49/mVd28ehLNV1fLp06YIOHTogLCxMWabYf01fUkVFRbW2z9Whrj6ftaFFixbo168fTp06hdLS0kq9L3TJ0/b78Tr18fXz4osvYv369bh48aIytOjacWBoeQatWrXCggULKlS3umbfbNy4MQAgJydHZdspKSlqdRVdqba2ttXy2GXR5nFQ1Nd0miMtLU1l32r7OJSlOo9P48aN8c8//6jVT0tLU7u+Iy0tTe2WWSmpq89nbWncuDGKi4tRUFBQqfeFLnnafjds2FAZ2GxsbBAeHg4hhErvri6/foyMjNCwYUNkZ2cry3TtODC0PAMbGxuNAx9p07179wBAZRAlxb38ubm5Khct3rhxQ7lcm7R5HFq3bo0GDRogOjpa5XRJcXExYmJi4OXlpSyr7eNQluo8Pvfu3VN57tu2bQsAiI6ORocOHZTlqampSElJUbnzRmrq6vNZW+7duwdDQ0OYmJhU6n2hS+zs7GBlZYXo6Gi1ZZGRkSqvCScnJ/z5559ISEjAc889pyzX5ddPXl4esrKy1L4fdOk48JbnOio3N1ety18IgU2bNgGAyoigAwcORGlpKfbt26csKyoqwsGDB9GhQwdJ32Fhbm6Onj174siRIyrXZ/z111/Iz89X+XDWpeOQmZmpVnbu3DlER0fDzc1NWda6dWu0atUK+/fvV7ktes+ePdDT08OAAQNqorlaoUvPZ2Voeu5v3bqF4OBg9OrVCzKZrFLvC10zYMAAnD17VuWW97CwMCQmJqrsd79+/aCvr4/du3cry4QQ2Lt3L+zs7NCpU6cabXd1Kiws1Hi92q+//gohBHr37q0s07XjwJ6WWvDrr78CeDTGBvDog+bq1asAgClTpgB4dCvr559/jsGDB6N58+YoLCzE6dOnce3aNYwaNUrllr8OHTrAy8sLa9asQWZmJpo3b47Dhw8jKSkJH3zwQc3uXCVU5DgAwMyZMzF79mz4+flh9OjRypE/e/XqpfLmlOpx0OStt95Cu3bt4OzsDDMzM9y8eRMHDx5E48aN8dprr6nUffvtt7FgwQK888478Pb2RmxsLHbv3o3nn39e5ZeV1OjS81kZn376KYyMjNCpUyc0atQI8fHx2L9/P4yNjVUuvqzo+0JKdu3ahYcPHypPXQQHByM5ORnAoxGCzc3N8eqrr+LEiRPw9/fHhAkTkJ+fj23btsHR0VGlR7Nx48aYOHEitm3bhpKSEri4uOD06dO4evUq/ve//6FBgwa1so8V8bTjkJOTgxkzZmDw4MFo1aoVACA0NBQhISHo3bs3+vXrp9yWlI+DJnpCCFHbjahv+vfvX+ayU6dOAXjUFfzLL78gMjIS6enpkMlkcHBwwPPPP4/Ro0er3YFTWFionKPl4cOHcHR0xMyZM1V+ldc1FTkOClevXlXOsWJqagovLy+88cYbanOsSPE4aLJ27VqEhITg/v37ymsY+vTpg6lTp8La2lqt/unTpxEQEICEhARYWlrCx8dHbTwfKdKV57MyAgMDcfToUdy9exe5ubmwsrJCjx49MHXqVLRo0UKlbkXfF1Lx4osvIikpSeOyHTt2KKe0iIuLU5t7aPbs2WrvDblcjt9++w379u1DWloaWrRogf/85z8YOnSo1vflWTztOJibm2PFihWIiIhAWloa5HI5mjdvjiFDhuDll19We99L9ThowtBCREREksBrWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaqNIOHTqE/v3749ChQ7XdlAoJDw9H//79sWHDBq09Rv/+/TFnzhytbb++ePHFF/Hiiy/WdjPqvA0bNqB///4IDw/X6uPs3LkTgwYNwv379ytUvybea1L2xRdfYOLEiSgsLKztpkgWQ0s9sHTpUvTv3x/PP/+82iSMukJqX3ZZWVn4+eefMXnyZAwZMgRDhgzBxIkT4e/vj40bNyI9Pb1G2vG0ADpnzpxyp1uoT/Lz8zF8+HD0798f3333XW03R+tycnKwadMmjBgxQjl8Pj2bqVOnIjU1Fb///nttN0WypD0xCT1VXl4egoKCoKenh+zsbJw+fRre3t7PtE1PT0906NABNjY21dTK+iU5ORlvv/02kpOT0bZtW/j4+MDCwgJpaWm4fv06Nm7ciM6dO2ucY0jXff/997XdhDIFBQUhLy8Penp6OHbsGGbPng0jI6PabpbW7Ny5E9nZ2XjllVdquyk6o2XLlvDw8MBvv/2G8ePHw8TEpLabJDkMLTru77//Rn5+Pl588UUEBgbiwIEDzxxazM3NYW5uXk0trH82bNiA5ORkzJgxQ2U2a4Xbt2/X2+PbvHnz2m5CmQ4cOIAGDRpg3Lhx+P3333Hq1CkMGTKktpulFSUlJfjzzz/RuXPnOv2cSNHQoUNx6tQpHD9+HM8//3xtN0dyGFp0nOKDdtKkSbh9+zYuXbqEpKQk2Nvbq9TbsGEDAgICytyOvb09du7cCeDRKYUlS5ZgwYIFKlPB9+/fH926dcP//vc//PTTT7hw4QKKiorQtWtX+Pv7o1mzZoiPj8eaNWtw5coVlJSUwM3NDfPmzVPpVQgPD8fcuXMxdepUTJ8+XaUd9+/fx0svvYThw4fjo48+Uv79eBsUNK0fFRWFNWvWICIiAjKZDN27d4evr69a9/epU6cQFBSEqKgopKamQl9fH23atMGECRMwcODA8g/6U0RERAAAxo0bp3F5mzZtNJbfu3cPW7duxYULF5CWlgYzMzM899xz8PHxUT4PxcXF2LdvH86ePYv4+HhkZmbCzMwMnTt3xpQpU9CuXTvl9hYvXozDhw8DAJYsWYIlS5ao7P/jx/Lx/1cce4Xbt29j8+bNuHz5MrKzs2FjYwMPDw9MmzYNlpaWynqPP3eTJk3C2rVrceXKFWRnZytn8FWc4lO81oB/X5srVqxAamoqtm3bhn/++Qfm5ubw8vLCm2++qdbjUVJSgu3bt+PPP/9Eamoq7OzsMHLkSAwaNAgvv/yy2j48zT///INr166hb9++Kj8ANIWWx1+/ffv2rdDrDQBOnjyJLVu2IC4uDmZmZvDw8MBbb72FGTNmqB2T8lT0+ShPaGgo0tLSMGnSJI3LCwsLsXHjRhw9ehRZWVlo3rw5JkyYoDYL9ePu3buHzZs348KFC8jIyICFhQXc3Nwwffp0tc8joHLHQ/Fa3r59O06dOoUDBw7g3r178Pb2Vj7PGRkZ2LJlC86ePYvk5GSYmpqia9eumD59OhwdHdUevzL1ExMTsWXLFoSHhyMtLQ3GxsZo3LgxXF1d4efnBz09PWXdPn36wNjYGIcPH2ZoqQKGFh0WHx+PiIgIuLu7w9raGsOGDUNYWBgOHjyo9mXu6uqqcRsJCQkICgqqcDd4Tk4OZs+eDRsbGwwbNgx37tzB2bNnMX/+fCxevBi+vr5wdnbGiBEjcPPmTZw8eRLZ2dlYsWJFlfbR3NwcU6dORWBgIABgwoQJZe5TVFQUtm3bBldXV4wePRoxMTE4ffo0YmNjERAQoLKPa9asgb6+Pjp37gwbGxtkZmYiODgYn3zyCebOnYvx48dXqb0AlF8ciYmJ6NChQ4XWuXr1Kj744APk5eXBzc0N3t7eyMnJQUxMDAIDA5WhJTs7G6tWrUKXLl3g7u4OCwsL3L9/H8HBwTh//jxWrVoFFxcXAI9O8z18+BBnzpxBv3794OTkpPKYU6dOxeHDh5GUlISpU6cqy9u2bav8/zNnzuCzzz6Dnp4e+vXrh8aNGyM+Ph5//PEHQkND8csvv8DCwkJlu3fv3sVbb70FR0dHDB8+HNnZ2TAwMHjqMVBs08PDA927d8f58+exa9cuZGVl4ZNPPlGp+9VXX+Gvv/5Cs2bNMHbsWBQXF2Pnzp24fv16hY73kw4cOAAAGDZsGJo0aYJu3bohPDwc9+7dQ7NmzTSuU5nX24EDB/DVV1/BzMwMw4YNg7m5OUJCQjB//nyUlJRAX79iH9VVeT40CQsLAwB07NhRbZlcLseCBQtw8eJFODo6YvDgwcjOzsYPP/xQ5ufIjRs38O677yI/Px99+/ZFixYtkJSUhKNHj+L8+fP46aefVI5jVY/H8uXLcePGDfTp0wd9+/ZFo0aNADx6zc2ZMwcpKSno1asX+vXrh8zMTJw8eRIXLlzA999/r/JerEz91NRUvPHGGygoKECfPn0waNAgFBQU4M6dO9izZw/efvttlfYaGBigXbt2iIiIQH5+Pk8RVZYgnbVq1Srh6ekpjh07JoQQIjc3VwwdOlRMmDBBlJaWPnX99PR0MXHiROHt7S2uXr2qLD948KDw9PQUBw8eVKnv6ekpPD09xapVq1TKv/32W+Hp6Sl8fHzEzp07leVyuVy89957wtPTU0RFRSnLL126JDw9PcX69evV2nTv3j3h6ekpvvzyS5XyiRMniokTJ2rcD8X2Hj8WCosWLdJYfvfuXbXt5ObmiilTpggfHx+Rn5+vtu9+fn4aH/9JgYGBwtPTU4wePVqsX79eXLp0STx8+LDM+oWFhWLcuHFiwIABIiQkRG35gwcPVOomJyer1YmNjRVDhw4V8+bNUykv67lU8PPzE56enhqXZWZmiuHDh4tx48aJ+/fvqyw7duyY8PT0FN9//72yTPHclfXcCqH5eVy/fr3y9ZOQkKAsLygoEJMmTRIDBgwQKSkpyvKLFy8KT09PMX36dJXnKSUlRYwZM0bj66c8xcXFYsyYMcLHx0cUFBQIIYQ4cOCA8PT0FGvXrlWrX9nXW3Z2thg6dKgYOnSo+Oeff1Qed+7cucLT07PMY3Lp0iVlWWWfj/LMmjVLDBgwQBQWFqotU7xm3n33XVFSUqIsv3Xrlhg0aJDa81tcXCwmTpwohg0bJqKjo1W2deXKFTFw4EDxwQcfPNPx+PLLL4Wnp6cYN26cSEpKUmvzW2+9JQYOHCjOnz+vUv7PP/+IYcOGiSlTplS5vuL9/Phnm0JWVpZamRD/fjaHhYVpXE5l491DOqqkpARHjhyBmZkZ+vXrBwAwNTWFp6cnHjx4gIsXL5a7fmFhIT766CMkJSXhww8/ROfOnSv0uCYmJpg5c6ZKmeIaGktLS5WeED09PeWy27dvV3jfqqpr165q1/OMGDECABAZGalSrunXs6mpKXx8fPDw4UNERUVVuR3jxo3DK6+8gocPHyIgIABz587FiBEjMHnyZPz8889ITU1VqX/mzBmkpKRgyJAh6N27t9r2GjdurPx/Q0ND2NnZqdVp3bo1XF1dlaflqsNff/2F3NxcvP7662rd+97e3mjXrh2OHz+utp61tTVee+21Sj/ehAkT0KpVK+XfRkZG8Pb2hlwuR3R0tLL8yJEjAIApU6bA2NhYWW5ra6vy+quoc+fOIT09HV5eXsrekYEDB8LY2BiHDh2CXC7XuF5FX29nzpxBfn4+RowYgZYtWyrL9fX11d5L5anq86FJSkoKzM3NYWhoqLZMcUpx5syZaNCggbK8TZs2GDp0qFr9s2fPIikpCa+88orK6UkA6NKlCzw8PBASEoLc3FwAz3Y8XnnlFTRp0kSl7ObNm7h+/TqGDRsGNzc3lWUtW7bE888/j9jYWMTGxlapvoKm3uiGDRtqbKeiByglJaXc/SF1PD2ko86cOYPMzEyMHDlS5c00bNgwHDlyBAcOHFB7QyoIIbB48WJERERg2rRpGDx4cIUft0WLFipfFACUdxk5OjqqnNt9fNmTX9Ta4OzsrFam+IJ/+PChSnlGRga2bt2KkJAQPHjwQG1chWdpr56eHt566y288sorCAkJwY0bNxAVFYWbN28iPj4e+/btwzfffKPsflZ8wfXq1atC24+JicG2bdtw9epVpKenq4WUzMxM2NraVrn9Coprc27cuIG7d++qLS8qKkJWVhYyMzNhZWWlLHdycqrQ6aAnPfmFB/wb2B5//m7dugXg0Rfikzp16lTpx/3zzz8BPHrvKJiamqJfv344duwYQkND4e7urrZeRV9visCuqb0dOnRQCQblqerzoUl2drbG8Ktor4mJicb969Kli/JU2pPt+ueffzSO35Keng65XI7ExES0b9/+mY6H4tTn427cuAHg0Xta0+P/888/yv86OjpWur7iuqXvv/8eYWFh6N27N7p161bmaUPg3zCTlZVVZh3SjKFFRz1+Dv5xPXr0gJ2dHYKDg5Gdna3xl8C6desQFBSEwYMHY9q0aZV6XDMzM7UyxYdMecuq69d/eUxNTct8/Md/LWdnZ+P111/HgwcP0LlzZ/Ts2RPm5uaQyWS4desWzpw5g+Li4mduj5WVFYYPH47hw4cDANLS0rB8+XKcPHkSy5Ytw8aNGwFA+Qu0rC+Rx127dg3z5s0DAPTs2RMtWrRQ7veZM2dw69atamk78Oj6JQDYvXt3ufUKCgpU/lb8yqys8l4/jz9/eXl5kMlkGi86rext5KmpqQgNDUWzZs3UvkSHDx+OY8eO4eDBgxpDS0Vfb4rnV9NxKWs/NKnq86GJkZFRmWM65ebmlvla1HR8Fe06evRohdr1LMdD0zrZ2dkAHvWYnTt3rsx18/Pzq1S/adOm+Omnn7Bx40aEhIQgKCgIANCqVSvMmDEDXl5eausqfgTp8i3z2sLQooMePHiACxcuAEC5o7QeOXJErbv80KFD2Lx5Mzp37owPP/xQq+0si6I3prS0VG2Z4gNNmw4cOIAHDx5ovCV5y5YtOHPmjFYe18bGBh9//DHOnTuH27dvIysrC5aWlsrbnyvSlbx582YUFRXhhx9+UPuSVfyCrC6KL+WAgACNd1+U5cnetupmamoKuVyOrKwstR6Fyg7ad+jQIZSWluLevXtlDrIXHBxcod6LsijCWEZGhtoyxX5UJLBW9fnQxNLSsszXm5mZWZk9BJqOr6JdS5cuRd++fZ/62M9yPDS9thTbq+gF9JWtDzzqRf7iiy9QUlKC6OhonD9/HoGBgfjss89ga2urdnpdEYyq+pqpz3hNiw46fPgw5HI5unTpgpEjR6r9U/yyf7Ib9/Lly/jmm2/QrFkzfPnllxrPZ9cExd0Nmk7BxMTEaFxHJpNpDDlVoehaV1wL9LirV69Wy2OUxcDAQK37W9HlrQii5bl37x4aNmyoFlgKCgpw8+ZNtfoy2aOPgLKOXXnLFaevFN3/dYXiLqhr166pLavM3UNCCBw8eBAA4OPjo/G91KlTJxQXFyuvo6kKxS3umtobGRlZ4dd1dT4fjo6OKCoqwoMHD9SWtWnTBvn5+SrXESloen9Utl3VdTwUFO+fij5+Zes/Tl9fHx07dsT06dMxd+5cCCFw9uxZtXqJiYkA8Mzhsj5iaNExig9aPT09fPTRR/jggw/U/n300Ufo2LEjbt++rbygNDExER9//DGMjIywdOnSWv0F0KpVK5iamipPYSmkp6dj06ZNGtdp2LAhsrKyqmVOD8VFjE9+aB49ehQhISHPvP3t27cjISFB47I//vgD+fn5aNWqlbIb3MPDA3Z2djh69ChCQ0PV1nn8F3GTJk2Qk5ODuLg4ZVlpaSlWr16NzMxMtXUVpweTk5M1tqe85SNGjICpqSnWrl2r8ngKBQUFtRJoFGOnBAQEqLwe0tLSlLfGV8Tly5dx9+5ddO3aFQsWLND4XlL0Rj75A6Ay+vXrBxMTExw4cEDlWpSSkhKsX7++wtupzuejW7duADT3zilOOa9bt04lQNy+fVtjeOvXrx+aNGmCHTt24PLly2rLS0pKVMJOdR0PhQ4dOqBDhw44fvy4xguR5XK5SrsqWz86OlpjD7Ci10nTj78bN27AxsZG5UJjqhieHtIxly5dwv379596IdiIESMQERGBAwcOoH379li5ciWys7PRs2dP/P3332r1zc3Na2xuHwMDA4wfPx6bN2/GzJkz4eHhgfz8fAQHB6Nbt24aLzJ0dXVFVFQU3n//fXTp0gX6+vro2rWr8sO3MoYOHYrffvsNK1asQHh4OJo0aYJbt27h0qVL6N+/P06dOvVM+3fkyBGsXr0ajo6O6NChAxo1aoScnBzcuHEDN2/ehJGREd555x1lfUNDQ3z++ed477338N5778HNzQ1OTk7Izc3FrVu3UFhYqPwwHz9+PC5cuIDZs2fDy8sLhoaGuHz5MlJTU+Hq6qo2wV7Hjh1hZGSEwMBA5OTkKMOq4rRY9+7dceLECfzvf/9D7969YWhoCCcnJ3h4eMDKygqffvopPvnkE0yfPh1ubm5o1aoViouLkZSUhMuXL6NTp0745ptvnul4VVbPnj0xePBgHDt2DFOnTkW/fv1QXFyMoKAguLi44OzZs8oepPIogojijh9NWrVqhU6dOuH69eu4ceNGhcfdeZyFhQV8fX2xbNkyzJo1C4MGDYKZmRlCQkJgaGgIW1vbCp1Sq87no1+/fvjxxx9x8eJFtWsyFNfynD9/HjNmzEDv3r2Rk5OD48ePo1evXmo9C4aGhli4cCHef/99zJkzB927d1delJ+UlISrV6/C0tISW7Zsqdbj8bhPPvkE/v7++PzzzxEYGIi2bdvCyMgIycnJuH79OrKysnDs2LEq1f/rr7+wb98+dO3aFc2bN4epqSni4+Nx/vx5NGzYUO31c/fuXdy/fx9jx46t1D7QIwwtOkbxQfv4SLWaDBo0CCtXrsTx48fh6+ur/EV68eJFjbdD29vb1+iEhDNmzIC+vj4OHDiAffv2wd7eHlOmTEHfvn1x8uRJtfpTpkzBw4cPcfbsWVy9ehWlpaWYOnVqlUJL48aNsXLlSvz000+4ePEiSktL0a5dO3z77bdITk5+5tDy4Ycf4uzZs7h06RJCQ0ORkZEBmUyGJk2aYOzYsZg4caLaL7BOnTph3bp12LJlC0JDQxEWFgYLCws899xzGDNmjLJe3759sXDhQmzZsgVHjx6FkZERunfvji+//FLjiMcNGzbEwoULsXHjRvz555/K14EitDz//PO4f/8+/v77b/z2228oLS3F8OHD4eHhAeDR6J7r16/Htm3bEBYWhosXL8LY2Bh2dnbw8fHReAtsTfjoo4/g4OCAgwcP4o8//oCdnR0mTpyI7t274+zZsxovkn3cw4cPcfLkSZiYmGDAgAHl1h0xYgSuX7+OAwcOVCm0AMCoUaNgYWGBzZs34/Dhw8oRYN98801MnDixwkPpV9fz0bRpU/Tq1QsnTpzA3LlzVXoLZDIZFi9ejI0bN+LYsWPYtWsXmjVrBl9fX7Ro0ULj6RAXFxds2LAB27ZtQ0hICK5fvw4DAwPY2trC09NT7dbw6joeCs2aNcP69euxY8cOnD59GocOHYJMJoONjQ26du2qNsp1ZeoPHjwYRUVFuHbtGiIjI1FcXAw7OzuMGTNG4y3Yit6o0aNHV2of6BE9IYSo7UYQEdWEP//8E19//TXmz58viV+6d+7cwaRJk+Dl5YXPP/+8Rh87LCwM8+bNw8cff1xr4fNJtXk8qkNJSQkmTZqEpk2bVnkU8PqO17QQkc5JS0vDk7/HUlJSsGnTJjRo0AB9+vSppZZplpOTo3aLcWFhIX744QcAj6ZcqGk9evRA7969sWnTpjIH0NOWung8qsPhw4fx4MEDvP3227XdFMni6SEi0jlbt27FuXPn0LVrV1hZWSE5ORlnz55FXl4epk2bptZlX9suX76Mr776Cr169ULjxo2RlZWlnNy0e/fuGDRoUK20a86cOTh69ChSUlJq9JjV1ePxrPT09PDee+9pHJiPKoanh4hI55w/fx47duzA7du3kZOTA0NDQ7Rp0wZjx47VODNzbUtMTMT69etx/fp15V1ezZs3V85KXd8GIePxoLIwtBAREZEk8JoWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKShP8DDecNoaPRn0cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHRCAYAAACW3ZisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfwElEQVR4nO3dd1gU1+I+8JdeRRAQVNSIKIIVCxZExd6C3URjlKjEGLEl9+qNNzHNcjWaxJhvNBiisWs0KvYWbCgiio0miiIWpEnv7Pz+8LcT110QkGXZ4f08j0/CmbOzZ87uwrvnnJnREQRBABEREZFE6Gq6AURERERVieGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIoKOjgz59+mi6GVqlT58+0NHR0XQziEgFhhuiaqajo6P0z8jICG+99RamTJmCqKgoTTeR1Cw4OFh87f39/cusm5+fj1WrVqFr166oW7cuDA0N0aBBA3Tq1Al+fn44e/ZsmY9funSp+FwxMTGl1tu0aZPS+9Lc3BwODg7o378/Fi9ejNjY2EodL1F109d0A4hqqy+//FL8/4yMDISGhmLz5s3Yu3cvLly4gA4dOmiucaRW8kAjDzcffvihynrZ2dno3bs3rl27Bnt7e4wZMwb29vbIzs7GjRs34O/vj/T0dPTu3Vvl4wVBwG+//QYdHR0IgoANGzZg1apVZbatffv2GDlyJAAgLy8PSUlJuHz5Mr799lssXboUs2fPxqpVq6Cvzz8fVIMJRFStAAilffT8/PwEAMKUKVOqvU29e/eu1ufUdr179y71dSzL8+fPBRMTE6FFixbCmDFjBADCtWvXVNb99ttvBQDCwIEDhYKCAqXtaWlpQnBwcKnPdezYMQGA4OPjI9jb2ws2NjYq9yMIgrBx48Yy33t///230KRJEwGAMGPGjNcfKJEGcVqKqAYZOHAgACA5OVmhPCMjA9999x369u0LBwcHGBoawtbWFt7e3rh06VKp+4uOjsbUqVPx1ltvwcjICPXr14enpyfWrVtXrvZ899130NXVhYeHB9LS0hTaM2/ePDg4OMDY2BitWrXC999/j7i4OOjo6MDHx0dhPz4+PtDR0UFcXBzWrl2Ldu3awcTERGGdT2xsLCZPnoxGjRrB0NAQDRs2xOTJk1VOhcj39+DBA6VtZ86cgY6ODr766iuFcvkameLiYixbtgwtWrSAkZERGjdujIULF6KwsFBlH+zcuROdOnWCiYkJ6tevj/fffx9PnjwpV/+psnXrVuTl5cHHx0fsp9Kmpi5evAgAmDlzJgwNDZW2W1lZoUePHqU+14YNGwAAvr6+eO+995CSkoJ9+/ZVqt1eXl44fvw4DA0N4e/vj/Dw8Erth6g6cFyRqAY5deoUAKBz584K5VFRUfjvf/+LXr16YdiwYbCyssLDhw8RGBiIo0eP4uDBgxg8eLDCYw4fPoxx48ahoKAAgwcPxoQJE5Ceno4bN25g5cqVmDlzZqntkMlkmDdvHtauXYvRo0dj27ZtMDY2BvBiDUjfvn1x7do1uLm54b333kNGRgaWLl2K8+fPl3l8c+fOxfnz5zFs2DAMHToUenp6AIArV66gf//+yMrKgre3N1xdXREdHY2tW7fiwIEDOHXqFLp06VLh/lRl4sSJOH/+PIYMGQILCwscOXIEK1euRFJSEjZu3KhQ94cffsAnn3wCS0tLTJ48GZaWljh+/Dh69OiBunXrVur5N2zYAF1dXUyePBn29vawt7fH9u3bsWrVKpiZmSnUtba2BgDcuXOnws/z7NkzBAYGomXLlujRowcsLCywevVq+Pv745133qlU21u1aoXx48dj69at2L59O9zc3Cq1HyK10/TQEVFtg/8/LfXll1+K/+bPny/07NlT0NHREYYPHy5kZmYqPCY9PV1ITk5W2ldCQoLQoEEDoVWrVgrlycnJgoWFhWBgYCCcOXNG5eNebZN8WiovL08YPXq0AEDw8/MTSkpKFOp+8803AgDh3XffFWQymVj+8OFDwcbGRuXUxpQpUwQAQsOGDYW4uDiFbTKZTGjVqpUAQNi6davCtp07dwoABGdnZ4V2yPd3//59pWMLCgoS+/dl8mmkjh07CqmpqWJ5dna20Lx5c0FXV1d4+vSpWH7//n3BwMBAsLKyUniekpISsX8q+iv00qVL4jST3KeffioAEH777Tel+gcPHhQACIaGhsLMmTOFQ4cOCU+ePCnXcy1fvlwAICxbtkws69Spk6CjoyPExsYq1X/dtJTcb7/9JgAQevXqVa52EGkCww1RNZP/UVT1z9XVVdi2bVuF9jd79mwBgBAfHy+WrVq1SgAgzJkzp9xt6t27t5Camip4eHgIOjo6wooVK1TWlQcBVcFiyZIlZYabH3/8UekxFy5cEAAI3bt3V/l8PXv2FAAIZ8+eVdpfZcLNyZMnlR6zePFiAYBw8OBBpWNZvHixUv179+4Jurq6FQ43U6dOFQAI27dvF8tu3bolABDc3d1VPmbNmjVC3bp1Fd4n9vb2wsSJExX65GUymUx8nR49eiSWr127VgAgLFiwQOkx5Q03R48eFQAILi4u5ThiIs3gmhsiDRFefLmAIAjIzs7G5cuXYWdnh/feew///e9/leoHBwdj/PjxaNy4MYyMjMTTddeuXQsAePz4sVg3JCQEADBkyJByt+fZs2fw8PDAlStXsHXrVixYsECpTmZmJu7du4dGjRrhrbfeUtres2fPMp/D3d1dqezatWsAgL59+6p8jLy8qtZ4vDrlBwCNGzcGADx//lypXarORHJ0dBQfU16ZmZnYtWsXLC0tMWrUKLG8TZs26NSpE0JDQ3Hz5k2lx82ZMwdPnjzB/v37sWDBAgwYMABZWVnYvn07evfujcWLFys95u+//8a9e/cwYMAANGrUSCyfOHEiDA0NsWnTJhQVFVWo/XKCIAAAr/FDNRrDDVENYGZmBnd3d/z1118wMzPDypUrkZCQIG7ft28fevXqhcOHD4vXN/niiy/w5Zdfin98CwoKxPrp6ekAoPCH7XUSExNx584d2NvblxpSMjMzAQB2dnYqt5dWLmdvb69UlpGRAQBo0KCBysfIy+XH9KYsLS2VyuSnNZeUlCi1q7RjUnUsZdm2bRtycnLwzjvviOuX5F63sNjU1BQjRozAihUrcOLECaSlpeHnn3+Gnp4evv32W1y/fl2hvnw/ry7srlevHt5++20kJSXhwIEDFWq/nHwxta2tbaUeT1QdGG6IahBLS0s4OzujuLhYHDkAgC+++AKGhoYICwvD/v37sXr1anzzzTf46quv4OzsrHI/gOJozuu0b98ef/zxBx4/foxevXohLi5OqY6FhQWAF6M8qpRWLqfq2758YW5iYqLKxzx9+lShHgDo6r741VVcXKxUv6pCkPz5Sjum0tpbGvmZS7/++qvSxfJmz54N4EUAysvLe+2+DA0NMWvWLEyYMAHAi5EaueTkZOzfvx8AMGHCBKXn2rt3L4DSg9TrBAUFAQC6du1aqccTVQeeLUVUw8inRmQymVh29+5dtG7dGi4uLgp1ZTIZLly4oLSPbt26Yc+ePTh69KjSWVRlmTRpEoyNjTFx4kT06tULf//9N1q2bClut7CwgKOjIx48eIAHDx4oTU2pasvryM+4OXPmjMrt8j+mHTt2FMusrKwAAAkJCXByclKoHxYWVuE2qNKxY0f89ddfOHv2rNKUWVxcnMLI2uuEhYUhPDwcDRs2LHWq8MqVK7h58yZ2796NKVOmlGu/derUAfDPVBEA/PHHHygsLESnTp1KvRBkYGAgTp06hfv376NZs2blPo7o6Gj8+eef0NHRwcSJE8v9OKJqp9EVP0S1EMo4y2bfvn0CAMHAwEBITEwUy52dnYU6deoIjx8/FstkMpnwxRdfiPsLCgoSt718tpSqRadlnS0lCIJw4MABwcjISLC3txdu376tUPerr76q9NlSqhYAy2QywdnZWQAg/Pnnnwrb/vzzTwGA0LJlS4WzpeRnUU2YMEGh/s2bNwVzc/MyFxSrIl9Mu3HjRrGsKs+W8vX1FQCUukhbEATh1KlTAgChR48eYtm6deuES5cuqawfFRUl9ndoaKhY3rJlSwGAcPny5VKf6/PPPxcACIsWLRLLXreg+MyZM0LTpk0FAMLHH39c6r6JagKO3BBpyMsXmcvJyUFkZCSOHj0KAFi2bJnCWo/58+fjo48+gpubG8aMGQMDAwMEBwcjMjISb7/9Ng4ePKiwbxsbG2zfvh1jx46Fl5cXhgwZgnbt2iEzMxM3b95EQkIC7t+/X2rbvL29ceDAAYwaNQp9+vTBqVOn0L59ewDAggULsH//fuzcuRMxMTEYOHAgMjIysHv3bvTq1Qv79+8Xp43KQ0dHB3/88QcGDBiAd955ByNGjECrVq0QExOD/fv3o06dOti8ebPCPkeMGIEWLVpgx44dePToEbp27YqHDx/iwIEDGDFiBHbv3l3u5y/NW2+9hf/973/49NNP4ebmhnfeeQd169bF8ePHkZ6ejnbt2qlcAPyq7Oxs7NixAwYGBmWOyPTt2xeOjo64ePEiIiIi0Lp1axw7dgwzZ87EW2+9BQ8PDzRu3BgFBQWIjY3F8ePHUVRUhDlz5ojXADpz5gzu3LmDtm3bqly8LTdt2jQsXboUGzduxNdff61wK4Xr16+L782CggI8e/YMly9fRmRkJHR1dfHJJ59g5cqV5exFIg3RdLoiqm2g4hRwPT09wd7eXvD29hZOnDih8nEbN24U2rdvL5iamgrW1tbCyJEjhZs3bwpffvml0siN3O3bt4X3339faNiwoWBgYCDUr19f6NWrl/Drr78qtUnV7ReCgoIEc3NzwcrKSmF04Pnz58Ls2bOFBg0aCIaGhoKzs7OwatUq4fLlywIAYe7cuQr7KWvkRi46OlqYNGmSYG9vL+jr6wv29vbCe++9J0RHR6us//DhQ2H8+PGClZWVYGxsLHTu3FnYu3fva08FV0XVyI3c9u3bBTc3N8HIyEiwsbER3nvvPeHx48flvv2Cv7+/AEAYNWrUa+suXbpU4RT+mJgYYdWqVcLgwYOF5s2bC6ampoKhoaHQuHFjYdSoUQqnrguCIEycOFEAIKxZs+a1zzVgwAABgPDXX38p9MHL/0xNTYVGjRoJ/fr1ExYvXqzy+jhENZGOILw0WUtE9AY2bNiADz/8EOvXr8eMGTM03RwiqqUYboiowp48eYKGDRsqlD18+BA9e/bE06dPER8fr7SdiKi6cM0NEVXYmDFjUFRUhE6dOsHS0hIPHjzAoUOHkJubi+XLlzPYEJFGceSGiCrsl19+wZYtWxAbG4uMjAyYm5vDzc0Nfn5+GD16tKabR0S1HMMNERERSQqvUExERESSwnBDREREklIrw01+fj5iYmKQn5+v6aYQERFRFauV4SY+Ph6+vr6Ij4/XdFOIiIioitXKcENERETSxXBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDRERUjXKf5+PqnljkPs/XdFMki+GGiIioGuWmFyD8r7vITS/QdFMki+GGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJEW/og/Izc3Fzp07ERkZiaioKGRlZeGzzz7DkCFDFOpFRkbi2LFjiIyMxL1791BSUoJz586Vut9Dhw5h586dSExMhK2tLcaOHYsxY8Yo1UtOTsbPP/+MK1euQCaTwc3NDbNnz0bDhg0reihEREQkQRUeucnIyMCmTZsQHx8PJyenUuuFhITg0KFD0NHReW3wOHDgAFauXIlmzZph7ty5aNOmDdasWYNt27Yp1MvNzcXcuXNx/fp1TJo0CVOnTkVsbCxmz56NjIyMih4KERERSVCFR26sra2xb98+WFtbIzo6Gh9++KHKeiNHjsR7770HIyMj/PDDD0hISFBZr6CgAL/99hu6d++Ob7/9FgDw9ttvQyaTYfPmzfD29kadOnUAAPv378ejR4/w66+/wsXFBQDQtWtX+Pj4YNeuXaW2hYiIiGqPCo/cGBoawtra+rX16tWrByMjo9fWu3btGjIyMjBy5EiF8lGjRiEvLw+XLl0Sy86cOYNWrVqJwQYAmjZtio4dOyIoKKj8B0FERESSpfEFxbGxsQCAVq1aKZQ7OztDV1cXd+7cAQDIZDLExcUp1QMAFxcXPH78GLm5uepvMBEREdVoFZ6WqmqpqanQ09ODlZWVQrmBgQEsLCyQmpoKAMjMzERhYaHKUSN5WUpKCpo0aaK0PSUlRdwPAMTHx1flIRAREVENovFwU1BQAH191c0wNDREQUGBWA94EXpU1Xu5zqsCAwOxadOmKmgtERER1XQaDzdGRkYoLi5Wua2wsFBctyP/b1FRkcp6L9d5lbe3Nzw8PMSf4+PjsWTJkjdqNxEREdVMGg831tbWKCkpwfPnzxWmpoqKipCZmSlOOVlYWMDQ0FBheklOXmZjY6PyOWxsbErdRkREVF1kMgHJcS8uXZIcl4F6TS2gq6uj4VZJj8YXFLdo0QIAEB0drVAeHR0NmUwmbtfV1YWjo6NSPeDFBQMbNmwIU1NT9TeYiIioEu6HJmLXnDMIDogAAAQHRGDXnDO4H5qo4ZZJj8bDTceOHWFhYYEDBw4olB84cADGxsbo3r27WNa7d29ER0crBJyHDx8iPDwcffr0qa4mExERVcj90ESc/jEcOWn5CuU5afk4/WM4A04Vq9S01N69e5GdnS1OBwUHByMpKQkAMGbMGJibmyMxMRHHjx8HAMTExAAA/vjjDwCAvb09Bg0aBODFOplp06bhhx9+wOLFi+Hu7o4bN27gxIkT8PX1hYWFhfi8o0aNwqFDh7Bw4UK8++670NPTw+7du2FlZYV33323kl1ARESkPjKZgJDNUWXWCdkShaad7ThFVUUqFW527dqFxMR/Uua5c+fE+0YNHDgQ5ubmePr0KQICAhQeJ/+5Q4cOYrgBXoQWfX197Nq1C8HBwahfvz78/Pwwbtw4hcebmppizZo1+Pnnn7F582bx3lJ+fn6wtLSszKEQERGpVWJ0mtKIzatyUvORGJ2Ghq6vv0guvZ6OIAiCphtR3WJiYuDr64sNGzbA2dlZ080hIiIJu3fxCYJ+vvHael5+7dG8B28CXRU0vuaGiIhqttzn+bi6Jxa5z8sefSDVTCxffyuiitSj12O4ISKiMuWmFyD8r7vITVd9oVQqm32rejCrZ1xmHTNrY9i3qldNLZI+hhsiIiI10tXVQbfJLmXW6fa+CxcTVyGGGyIiIjVr5m6PfvPclEZwzKyN0W+eG5q522uoZdKk8SsUExER1QbN3O3RtLMdYoISEBwQAY9preHs1ZgjNmrAkRsiIqJqoqurA1vHugAAW8e6DDZqwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERKWSyQQkx2UAAJLjMiCTCRpuEdHr8fYLRESk0v3QRIRsjkJOWj4AIDggAtf33UO3yS68FxLVaBy5ISIiJfdDE3H6x3Ax2MjlpOXj9I/huB+aqKGWEb0eww0RESmQyQSEbI4qs07IlihOUVGNxXBDREQKEqPTlEZsXpWTmo/E6LRqahFRxTDcEBGRgrz0giqtR4pMLY3gNtoJppZGmm6KZHFBMRERKTAp5x/d8tYjRaZWxug0toWmmyFpHLkhIiIF9q3qwayecZl1zKyNYd+qXjW1iKhiGG6IiEiBrq4Ouk12KbNOt/ddoKurU00tIqoYhhsiIlLSzN0e/ea5KY3gmFkbo988N17nhmo0rrkhIiKVmrnbo2lnO8QEJSA4IAIe01rD2asxR2yoxuPIDRERlUpXVwe2jnUBALaOdRlsSCsw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERSVju83xc3ROL3Of5mm5KtWG4ISIikrDc9AKE/3UXuekFmm5KtWG4ISJ6A7XxWzFRTcdwQ0T0Bmrjt2Kimo7hhoiIymRqaQS30U4wtTTSdFPUgqNv0sNwQ0REZTK1MkansS1gamWs6aaoBUffpIfhhoiIiCSF4YaIiIgkheGGiIiIJIXhhohIi3DxK9HrMdwQEWkRLn4lej39ij4gNzcXO3fuRGRkJKKiopCVlYXPPvsMQ4YMUar74MED/Pzzz7h16xb09fXRvXt3+Pn5wdLSUqGeTCbDzp07sX//fqSlpcHBwQGTJk1C//79K71PIiIiqp0qHG4yMjKwadMm2NnZwcnJCeHh4SrrJSUlYfbs2TA3N4evry/y8vKwc+dOxMXF4ddff4WBgYFYd8OGDdi2bRvefvtttGrVChcuXMA333wDHR0d9OvXr1L7JCIiotqpwuHG2toa+/btg7W1NaKjo/Hhhx+qrLd161bk5+fjt99+g52dHQDAxcUFn3zyCY4ePQpvb28AQHJyMnbt2oVRo0Zh/vz5AIDhw4dj9uzZ+OWXX9CnTx/o6elVaJ9E2iL3eT6iTifApV9jyV5DhIg0RyYTkByXAQBIjstAvaYW0NXV0XCr1K/Ca24MDQ1hbW392npnz55Fjx49xBACAJ07d0bjxo0RFBQkll24cAHFxcUYNWqUWKajo4ORI0ciOTkZERERFd4nkbbg+gkiUpf7oYnYNecMggNe/B0NDojArjlncD80UcMtUz+1LChOTk7G8+fP4ezsrLTNxcUFsbGx4s+xsbEwMTFB06ZNlerJt1d0n0RERLXZ/dBEnP4xHDlpimfV5aTl4/SP4ZIPOBWeliqP1NRUAFA5wmNtbY3MzEwUFhbC0NAQqampsLKygo6OjlI9AEhJSanwPl+VkpIiPh4A4uPjK3lkRET/qK1D/lSzyWQCQjZHlVknZEsUmna2k+z7VS3hpqDgxRC7qgW+8vBRUFAAQ0NDFBQUvLZeRff5qsDAQGzatKkSR0JEpNr90ESEbI4SvxkHB0Tg+r576DbZBc3c7TXcOqrNEqPTlEZsXpWTmo/E6DQ0dH39MhNtpJZwY2T04s6xRUVFStsKCwsV6hgZGZW7Xnn3+Spvb294eHiIP8fHx2PJkiXlOxgiolfIh/xfJR/y7zfPjQFHS0hx9C2vnGv4yltPG6kl3Minjl6eCpJLTU2FhYWFOMJibW2N8PBwCIKgMDUlf6yNjU2F9/kqGxsbcT9ERG+CQ/7SIdXRNxNL1V/0K1tPG6llQbGtrS0sLS0RExOjtC0qKgpOTk7iz05OTsjPz1daBxMZGSlur+g+iYjUpSJD/lRzSXnBrX2rejCrV/alJcysjWHfql41taj6qe32C71798bFixfx7Nkzsezq1atISEiAl5eXWNazZ0/o6+tj3759YpkgCDhw4ABsbW3Rpk2bCu+TiEhdOOSv/co7+iaTCdXUoqqlq6uDbpNdyqzT7X0XSY8sVmpaau/evcjOzhaniIKDg5GUlAQAGDNmDMzNzTFp0iScOXMG8+bNw9ixY5GXl4cdO3bA0dFR4VYN9evXx7hx47Bjxw4UFxfDxcUF58+fx82bN/HFF1+IF/ADUO59EhGpiyaH/KW4PkQTasOC22bu9ug3z01h2g14MWLT7X3tnnYrj0qFm127diEx8Z8hu3PnzuHcuXMAgIEDB8Lc3Bx2dnb46aef8PPPP+PXX38V7wM1a9YspbUxM2bMQJ06dRAYGIhjx47BwcEBn3/+OQYMGKBQryL7JCJSB/mQf1l/HNUx5C/V9SGaUFtG35q526NpZzvEBCUgOCACHtNaw9mrca0IxJUKN7t37y5XvWbNmmH16tWvraerq4tJkyZh0qRJVbZPIiJ1kA/5qzpbSq6qh/x5dlbVqk0LbnV1dWDrWBcAYOtYt1YEG0CNa26IiKRKPuT/6qJNM2vjKg8aUl8foglccCt9DDdEGvLq+gn+cdIuzdzt8c5PfeAxrTUAwGNaa7yzpk+Vj6Dw7KyqxwW30sdwQ6QBtfmGdlJSHUP+tWV9SHWrztE3qn5quYgfEZWO6yeoImrT+pDqVpsX3EodR26IqhHXT1BFcX2IetXWBbdSx3BDNVru83xc3ROL3OdlrznQFlw/QRXF9SFEFcdwQzVabnoBwv+6i1yJrCfg+gmqDK4PIaoYrrkhqkZcP0GVxfUhROXHkRuqEKlNE1U3rp+gN8H1IUTlw3BDFSK1aaLqxvUTRETqx3BDVM24foKISL245oZIA7h+gohIfThyQ6QhXD9BRNXB1NIIbqOdYFqLTlTgyA0REZGEmVoZo9PYFppuRrXiyA0R0Ruojd+KiWo6jtwQEb2B2vitmKim48gNERERSQrDjZbjRfWIiN4Mpxalh+FGy0n5onoymYDkuAwAQHJcBu+UTURqIZ9aNLUq++rhpD245oZqpPuhiQjZHCXeQTs4IALX991Dt8kuvMgdERGViSM3VOPcD03E6R/DxWAjl5OWj9M/huN+aKKGWkZERNqA4YbKrTqmiWQyASGbo8qsE7IlilNUVGtxfQjVdDVhLSjDDZXL/dBE7JpzBsEBEQBeTBPtmnOmykdREqPTlEZsXpWTmo/E6LQqfV4ibcH1IVTT1YS1oAw39FrVOU2UV84PQ3nrERFR7cNwQ2Wq7mkik3IOtZe3HhER1T4MN1Sm6p4msm9VD2b1yh5uN7M2hn2relXyfJqmifUTNWE+nIhInRhuqEzVPU2kq6uDbpNdyqzT7X0XydxBWxPrJ2rCfDgRkTox3FCZNDFN1MzdHv3muSmN4JhZG6PfPDde54aIiMrEi/hRmeTTRGVNTaljmqiZuz2adrZDTFACggMi4DGtNZy9GktmxIaIiNSHIzdVrDrXM1THdWc0OU2kq6sDW8e6AABbx7oMNkREVC4MN1WsutYzVNd1ZwBOE9Gb4QJmIqpuDDdaSBO3J2jmbo93fuoDj2mtAQAe01rjnTV9GGzotbiAmYiqG8ONltHk7Qk4TURERNqA4UbL8PYEREREZWO40TK8PQEREdVU1XGiS3nwVHAtw9sTEBFRTXQ/NBEhm6PE2YXggAhc33cP3Sa7VPv6TI7caJnadnsCIiKq+TRxoktZGG60TG27PQEREdVsmjzRpTQMN1qI152hyqop8+FEJB018UQXrrnRUrw9AVVUTZoPJyLpqIknunDkRovxujNUXjVtPpyIpKMmnujCcFOFOORf9UwtjeA22gmmPPur0mrifDgRSUdNPNGF4aaKVOe9nmoTUytjdBrbAqZWZX9wqHQ1cT6ciKSjJp7ownBTBTjkTzWZJufDOZpJVDvUtBNduKD4DZV3yL9pZztJrInhNJH20dR8OBcwE9UuNelEF7WGm5iYGGzYsAG3b9+GIAho3bo1Zs6ciRYtWijVvXXrFtavX487d+7AzMwMXl5e8PX1hampqUK9wsJCBAQE4MSJE8jKykLz5s0xffp0dOnSRZ2HUqqKDPk3dLWuplapj3yaiLSHfD68rPdpVc+Hy0czXyUfzeQlC4ikqaac6KK2aamYmBjMmjULT548gY+PD3x8fPDo0SPMmTMHDx8+VKgbGxuL+fPnIz8/H35+fhg2bBgOHjyIL7/8Umm/y5cvx+7duzFgwADMmTMHurq6WLBgAW7evKmuQylTTTwFjuhl1T0fzgXMRKRpahu5CQgIgJGREdatW4e6dV+kuAEDBuC9996Dv78/lixZItb19/dHnTp18NNPP8HMzAwA0KBBA6xcuRKhoaFwd3cHAERGRuL06dOYOXMmJkyYAAAYNGgQfHx8sG7dOqxbt05dh1OqmngKHNGr5PPhL08TAS9GbLq9X7XTRLVtNJOIah61jdzcvHkTnTt3FoMNANjY2KBDhw64dOkScnNzAQA5OTkICwvDwIEDxWADvAgtJiYmCAoKEsvOnj0LPT09eHt7i2VGRkYYNmwYIiIi8OzZM3UdTqlq4ilwRKo0c7fHOz/1gce01gAAj2mt8c6aPlU+PcTRTCLSNLWFm6KiIhgaGiqVGxsbo6ioCPfv3wcAxMXFoaSkBM7Ozgr1DAwM0KJFC8TGxoplsbGxcHBwUAhBAODi8mLI/e7duyrbkpKSgpiYGPFffHz8Gx3by2riKXBEpamO+XCOZhKRpqltWqpx48aIjIxESUkJ9PT0ALwIPJGRkQCA5ORkAEBqaioAwNpaeXja2toaN27cEH9OTU0ttR7wIsSoEhgYiE2bNlX+YF6jOof8iWo6TSxgJiJ6mdrCzahRo7B69WqsWLECEydOhEwmw+bNm8UwU1hYCAAoKHgxNG1gYKC0D0NDQ7GevG5p9V7e16u8vb3h4eEh/hwfH6+w5qcq1KRT4Ig0ST6aqepsKTmOZhKROqkt3IwYMQJJSUnYsWMHjh07BgBo1aoVJkyYgC1btsDExATAizUzwItRnVcVFhYqTG0ZGRmVWu/lfb3KxsYGNjY2b3ZA5aCJU+B43RmqiTiaSUSapNbr3Pj6+uLdd9/F/fv3YWZmhubNm8Pf3x/Ai2kr4J8pJfmIzstSU1MVQom1tbU4nfVqPQDVEmBqGl53hmoqjmYSkaao/fYLderUQbt27dC8eXMAQFhYGGxtbdGkSRMAQLNmzaCnp4eYmBiFxxUVFSE2NhZOTk5imZOTEx49eoScnByFuvJ1PC/XJSLNqykX9CKi2qVa7y11+vRpREdHY9y4cdDVffHU5ubm6Ny5M06cOCGeHg4Ax48fR15eHry8vMSyPn36oKSkBIGBgWJZYWEhjhw5AldXV9jZ2VXfwRAREVGNpLZpqevXr+OPP/5Aly5dYGFhgcjISBw9ehRdu3bF2LFjFepOnz4ds2bNwuzZs+Ht7Y2kpCTs2rULXbp0QdeuXcV6rq6u8PLygr+/P9LT09GoUSMcO3YMiYmJWLhwoboOhYiIiMqpJqwFVVu4sbW1ha6uLnbs2IG8vDzY29tj2rRpeOedd6Cvr/i0zs7O+P7777F+/XqsXbsWpqamGDZsGGbMmKG030WLFsHOzg7Hjx9HdnY2HB0dsWLFCnTo0EFdh0JERETlVBPWgqot3DRq1AirV68ud/127drhl19+eW09IyMjfPzxx/j444/fpHlEREQkUdW65oaIiIhI3RhuiIiISFIYbohqmZqw2I+ISJ3UehE/Iqp5asJiPyIideLIDREREUkKw00V45A/ERGRZnFaqopxyJ+IiEizOHJDRGpV3aOZuc/zcXVPLHKf57++MhFJEsMNEamVfDTT1Mq4Wp4vN70A4X/dRW56QbU8HxHVPAw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0QkGTKZgOS4DABAclwGZDJBwy0iIk3gXcGJSBLuhyYiZHMUctJe3DAzOCAC1/fdQ7fJLmjmbq/h1hFRdeLIDRFpvfuhiTj9Y7gYbORy0vJx+sdw3A9N1FDLiEgTGG6ISKvJZAJCNkeVWSdkSxSnqIhqEYYbItJqidFpSiM2r8pJzUdidFo1tYiINI3hhoi0Wl56QZXWIyLtx3BDRFrNxNKoSusRkfZjuCEirWbfqh7M6hmXWcfM2hj2repVU4uISNMYbohIq+nq6qDbZJcy63R73wW6ujrV1CIi0jSGGyLSes3c7dFvnpvSCI6ZtTH6zXPjdW6IahlexI+IJKGZuz2adrZDTFACggMi4DGtNZy9GnPEhqgW4sgNEUmGrq4ObB3rAgBsHesy2BDVUgw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0QkKaaWRnAb7QRTSyNNN4WINIQ3ziQiSTG1MkansS003Qwi0iCO3BAREZGkqHXkJiEhAQEBAbh16xYyMzNhZ2eH/v37491334WxsbFY79atW1i/fj3u3LkDMzMzeHl5wdfXF6ampgr7KywsREBAAE6cOIGsrCw0b94c06dPR5cuXdR5GERERKRF1DZy8+zZM8yYMQORkZEYNWoUZs+ejdatW+P333/H119/LdaLjY3F/PnzkZ+fDz8/PwwbNgwHDx7El19+qbTP5cuXY/fu3RgwYADmzJkDXV1dLFiwADdv3lTXYRAREZGWUdvIzYkTJ5CdnY3/+7//Q7NmzQAA3t7ekMlkOH78OLKyslCnTh34+/ujTp06+Omnn2BmZgYAaNCgAVauXInQ0FC4u7sDACIjI3H69GnMnDkTEyZMAAAMGjQIPj4+WLduHdatW6euQyEiIiItoraRm5ycHACAlZWVQrm1tTV0dXWhr6+PnJwchIWFYeDAgWKwAV6EFhMTEwQFBYllZ8+ehZ6eHry9vcUyIyMjDBs2DBEREXj27Jm6DoWIiIi0iNrCjZubGwBgxYoViI2NxbNnz3D69GkcOHAAY8aMgYmJCeLi4lBSUgJnZ2eFxxoYGKBFixaIjY0Vy2JjY+Hg4KAQggDAxcUFAHD37l11HQoRERFpEbVNS3Xt2hXTpk3D1q1bERwcLJa///778PX1BQCkpqYCeDGa8ypra2vcuHFD/Dk1NbXUegCQkpJSaltSUlLE5wKA+Pj4Ch4NERERaQu1ni3VoEEDtG/fHr1794aFhQUuXbqErVu3ol69ehgzZgwKCgoAvBipeZWhoSEKCwvFnwsKCkqtJ99emsDAQGzatOkNj4aIiIi0gdrCzenTp/Hdd99h27ZtqF+/PgCgd+/eEAQBv/76K/r37w8joxdXEC0qKlJ6fGFhoRhcgBfra0qrJ99eGm9vb3h4eIg/x8fHY8mSJZU7MCIiIqrR1BZu9u3bhxYtWojBRs7DwwNHjx5FbGysOKX08pSRXGpqKmxsbMSfra2tkZycrLIeAIW6r7KxsSlzOxER1Ry5z/MRdToBLv0aw9TK+PUPIHqF2hYUP3/+HDKZTKm8uLgYAFBSUoJmzZpBT08PMTExCnWKiooQGxsLJycnsczJyQmPHj0Sz8KSi4yMFLcTEZH2y00vQPhfd5GbXvpyA6KyqC3cNG7cGLGxsUhISFAoP336NHR1ddG8eXOYm5ujc+fOOHHiBHJzc8U6x48fR15eHry8vMSyPn36oKSkBIGBgWJZYWEhjhw5AldXV9jZ2anrUIiIiEiLqG1a6t1338Xly5fh5+eH0aNHw8LCAhcvXsTly5cxfPhwcZpo+vTpmDVrFmbPng1vb28kJSVh165d6NKlC7p27Sruz9XVFV5eXvD390d6ejoaNWqEY8eOITExEQsXLlTXYRAREZGWUVu46dChA/7v//4PGzduxL59+5CZmYkGDRrA19dXvMIwADg7O+P777/H+vXrsXbtWpiammLYsGGYMWOG0j4XLVoEOzs7HD9+HNnZ2XB0dMSKFSvQoUMHdR0GERERaRkdQRAETTeiusXExMDX1xcbNmxQuoAgERFpVsr9DOz/70WMXNoDNs3qaro5pIXUtuaGiIiISBMYboiIiEhSGG6IiIhIUhhuiIiISFIYboiIiEhSGG6IiKjGkMkEJMdlAACS4zIgk9W6E3qpCqj1ruBERETldT80ESGbo5CTlg8ACA6IwPV999BtsguaudtruHWkTThyQ0REGnc/NBGnfwwXg41cTlo+Tv8YjvuhiRpqGWkjhhsiItIomUxAyOaoMuuEbIniFBWVG8MNERFpVGJ0mtKIzatyUvORGJ1WTS0ibcdwQ0REGpWXXlCl9YgYboiISKNMLI2qtB4Rww0REWmUfat6MKtnXGYdM2tj2LeqV00tIm3HcENERBqlq6uDbpNdyqzT7X0X6OrqVFOLSNsx3BARkcY1c7dHv3luSiM4ZtbG6DfPjde5oQrhRfyIiKhGaOZuj6ad7RATlIDggAh4TGsNZ6/GHLGhCuPIDRER1Ri6ujqwdawLALB1rMtgQ5XCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERDWKqaUR3EY7wdTSSNNNIS3Fe0sREVGNYmpljE5jW2i6GaTFOHJDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJKir64dL1u2DMeOHSt1+969e2FrawsAuHXrFtavX487d+7AzMwMXl5e8PX1hampqcJjCgsLERAQgBMnTiArKwvNmzfH9OnT0aVLF3UdBhEREWkZtYUbb29vdO7cWaFMEASsXr0a9vb2YrCJjY3F/Pnz0bRpU/j5+SEpKQm7du3Co0eP8N133yk8fvny5Thz5gzGjRsHBwcHHD16FAsWLMCaNWvQrl07dR0KERERaRG1hZs2bdqgTZs2CmU3b95Efn4+BgwYIJb5+/ujTp06+Omnn2BmZgYAaNCgAVauXInQ0FC4u7sDACIjI3H69GnMnDkTEyZMAAAMGjQIPj4+WLduHdatW6euQyEiIiItUq1rbk6dOgUdHR30798fAJCTk4OwsDAMHDhQDDbAi9BiYmKCoKAgsezs2bPQ09ODt7e3WGZkZIRhw4YhIiICz549q74DISIiohqr2sJNcXExgoKC0KZNGzRo0AAAEBcXh5KSEjg7OyvUNTAwQIsWLRAbGyuWxcbGwsHBQSEEAYCLiwsA4O7du2o+AiIiItIGapuWelVoaCgyMjIUpqRSU1MBANbW1kr1ra2tcePGDYW6pdUDgJSUlFKfOyUlRXwuAIiPj6/4ARAREZFWqLZwc+rUKejr68PLy0ssKygoAPBipOZVhoaGKCwsVKhbWr2X96VKYGAgNm3aVNmmExERkRaplnCTm5uLCxcuwN3dHXXr1hXLjYyMAABFRUVKjyksLBSDi7xuafVe3pcq3t7e8PDwEH+Oj4/HkiVLKn4gREREVONVS7i5cOGC0llSwD9TSi9PGcmlpqbCxsZGoW5ycrLKegAU6r7KxsamzO1EREQkHdWyoPjkyZMwMTFRGD0BgGbNmkFPTw8xMTEK5UVFRYiNjYWTk5NY5uTkhEePHiEnJ0ehbmRkpLidiIiISO3hJj09HWFhYejVqxeMjY0Vtpmbm6Nz5844ceIEcnNzxfLjx48jLy9PYX1Onz59UFJSgsDAQLGssLAQR44cgaurK+zs7NR9KERERKQF1D4tdfr0aZSUlChNSclNnz4ds2bNwuzZs+Ht7S1eobhLly7o2rWrWM/V1RVeXl7w9/dHeno6GjVqhGPHjiExMRELFy5U92EQERGRllB7uDl16hSsrKzQqVMnldudnZ3x/fffY/369Vi7di1MTU0xbNgwzJgxQ6nuokWLYGdnh+PHjyM7OxuOjo5YsWIFOnTooOajICIiIm2hIwiCoOlGVLeYmBj4+vpiw4YNShcQJCIiIu1WrbdfICIiIlI3hhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhR9dT9BTEwMNm7ciFu3bqGwsBANGzbE22+/jbFjx4p1bt26hfXr1+POnTswMzODl5cXfH19YWpqqrCvwsJCBAQE4MSJE8jKykLz5s0xffp0dOnSRd2HQURERFpCreEmNDQUn332GVq0aIEpU6bAxMQEjx8/RnJyslgnNjYW8+fPR9OmTeHn54ekpCTs2rULjx49wnfffaewv+XLl+PMmTMYN24cHBwccPToUSxYsABr1qxBu3bt1HkoREREpCXUFm5ycnKwbNkydOvWDd9++y10dVXPgPn7+6NOnTr46aefYGZmBgBo0KABVq5cidDQULi7uwMAIiMjcfr0acycORMTJkwAAAwaNAg+Pj5Yt24d1q1bp65DISIiIi2itjU3p06dQlpaGnx9faGrq4u8vDzIZDKFOjk5OQgLC8PAgQPFYAO8CC0mJiYICgoSy86ePQs9PT14e3uLZUZGRhg2bBgiIiLw7NkzdR0KERERaRG1hZuwsDCYmZkhJSUF7733HgYNGoQhQ4Zg9erVKCgoAADExcWhpKQEzs7OCo81MDBAixYtEBsbK5bFxsbCwcFBIQQBgIuLCwDg7t276joUIiIi0iJqm5Z69OgRSkpKsGjRIgwbNgwffvghrl+/jr179yI7OxtffvklUlNTAQDW1tZKj7e2tsaNGzfEn1NTU0utBwApKSmltiUlJUV8LgCIj4+v9HERERFRzaa2cJOXl4f8/HyMGDECc+fOBQD07t0bRUVFCAwMxNSpU8URHAMDA6XHGxoaorCwUPy5oKCg1Hry7aUJDAzEpk2b3uRwiIiISEuoLdwYGRkBAPr166dQ3r9/fwQGBiIiIgLGxsYAgKKiIqXHFxYWisFFvr/S6r38fKp4e3vDw8ND/Dk+Ph5LliypwNEQERGRtlBbuLG2tsb9+/dRr149hXIrKysAQFZWFho1agQAClNGcqmpqbCxsVHY38unkL9cD4BC3VfZ2NiUuZ1ILvd5PqJOJ8ClX2OYWhlrujlERFQJaltQLF8k/Gogka+NsbS0RLNmzaCnp4eYmBiFOkVFRYiNjYWTk5NY5uTkhEePHiEnJ0ehbmRkpLid6E3lphcg/K+7yE0vfZqTiIhqNrWFGy8vLwDA4cOHFcoPHz4MPT09uLm5wdzcHJ07d8aJEyeQm5sr1jl+/Djy8vLEfQBAnz59UFJSgsDAQLGssLAQR44cgaurK+zs7NR1KERERKRF1DYt1bJlSwwdOhRHjhxBSUkJOnTogOvXryMoKAiTJk0Sp4mmT5+OWbNmYfbs2fD29havUNylSxd07dpV3J+rqyu8vLzg7++P9PR0NGrUCMeOHUNiYiIWLlyorsMgIiIiLaPW2y/861//gp2dHY4ePYrz58/Dzs4Ofn5+GD9+vFjH2dkZ33//PdavX4+1a9fC1NQUw4YNw4wZM5T2t2jRItjZ2eH48ePIzs6Go6MjVqxYgQ4dOqjzMIiIiEiL6AiCIGi6EdUtJiYGvr6+2LBhg9IFBKl2S7mfgf3/vYiRS3vAplldTTeHiIgqQW1rboiIiIg0geGGiIiIJIXhhoiIiCSF4Ybo/5PJBCTHZQAAkuMyIJPVuuVoRESSoNazpYi0xf3QRIRsjkJOWj4AIDggAtf33UO3yS5o5m6v4dYREVFFcOSGar37oYk4/WO4GGzkctLycfrHcNwPTdRQy4iIqDIYbqhWk8kEhGyOKrNOyJYoTlEREWkRhhuq1RKj05RGbF6Vk5qPxOi0amoRERG9KYYbqtXyynmDzPLWIyIizWO4oVrNxNKoSusREZHmMdxQrWbfqh7M6hmXWcfM2hj2repVU4uIiOhNMdxQraarq4Nuk13KrNPtfRfo6upUU4uIiOhNMdxQrdfM3R795rkpjeCYWRuj3zw3XueGiEjL8CJ+RHgRcJp2tkNMUAKCAyLgMa01nL0ac8SGiEgLceSG6P/T1dWBrWNdAICtY10GGyIiLcVwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcEP0ElNLI7iNdoIpb5RJRKS1eIViopeYWhmj09gWmm4GERG9AY7cEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGk6Gu6AZpQUFAAAIiPj9dwS4iIiKiimjZtCmNj41K318pwk5iYCABYsmSJhltCREREFbVhwwY4OzuXul1HEAShGttTI6SnpyM0NBQNGjSAoaGhpptTYfHx8ViyZAk+//xzNG3aVNPN0Sj2xQvsh3+wL/7BvniB/fAPqfQFR25UsLS0xMCBAzXdjDfWtGnTMpNrbcK+eIH98A/2xT/YFy+wH/4h9b7ggmIiIiKSFIYbIiIikhSGGy1kbW0NHx8fWFtba7opGse+eIH98A/2xT/YFy+wH/5RW/qiVi4oJiIiIuniyA0RERFJCsMNERERSQrDDREREUkKww0RERFJSq28iJ82SElJwZ49exAVFYXo6Gjk5eVhzZo1cHNzU6o7Z84cXL9+Xanc3d0dq1atUigrLCxEQEAATpw4gaysLDRv3hzTp09Hly5d1HUob6wifQEAt27dwvr163Hnzh2YmZnBy8sLvr6+MDU1VainjX2hytGjR7F8+XKV2/bt26d0VsSFCxewceNGxMfHw9LSEkOHDsXkyZOhr6/dvw6k8nqWV3h4OObOnaty27p169C6dWvx5/J+JrRBbm4udu7cicjISERFRSErKwufffYZhgwZolT3wYMH+Pnnn3Hr1i3o6+uje/fu8PPzg6WlpUI9mUyGnTt3Yv/+/UhLS4ODgwMmTZqE/v37V9NRVU55+2LZsmU4duyY0uObNGmCrVu3KpRpa1+8Srt/m0lYQkICtm/fDgcHBzg6OiIiIqLM+ra2tpgxY4ZCmapT/ZYvX44zZ85g3LhxcHBwwNGjR7FgwQKsWbMG7dq1q9JjqCoV6YvY2FjMnz8fTZs2hZ+fH5KSkrBr1y48evQI3333nUJdbeyLskybNg0NGjRQKDM3N1f4OSQkBP/973/RoUMHzJ07F3Fxcdi8eTOeP3+OTz/9tDqbW+Wk9nqW15gxY+Di4qJQ1qhRI/H/K/KZ0AYZGRnYtGkT7Ozs4OTkhPDwcJX1kpKSMHv2bJibm8PX1xd5eXnYuXMn4uLi8Ouvv8LAwECsu2HDBmzbtg1vv/02WrVqhQsXLuCbb76Bjo4O+vXrV12HVmHl7QsAMDQ0xIIFCxTKzMzMlOppa18oEahGysnJETIyMgRBEISgoCDB09NTuHbtmsq6s2fPFiZPnvzafUZERAienp7C9u3bxbL8/Hzh3XffFT766KOqabgaVKQv/vWvfwkjR44UsrOzxbKDBw8Knp6ewuXLl8Uybe0LVY4cOSJ4enoKUVFRr637/vvvCx988IFQVFQklvn7+wu9evUSHjx4oM5mqpWUXs/yunbtmuDp6SkEBQWVWa+8nwltUVBQIKSkpAiCIAhRUVGCp6encOTIEaV6q1evFvr37y8kJiaKZVeuXBE8PT2FAwcOiGVJSUmCl5eX8P3334tlMplMmDVrljB69GihuLhYjUfzZsrbF0uXLhUGDhz42v1pc1+8imtuaihTU1NYWFhU6DHFxcXIzc0tdfvZs2ehp6cHb29vsczIyAjDhg1DREQEnj17Vun2qlN5+yInJwdhYWEYOHCgwjeSQYMGwcTEBEFBQWKZtvbF6+Tm5qKkpETltgcPHuDBgwd4++23FaagRo0aBUEQcObMmWpqZdWT6utZXrm5uSguLlYqr8hnQlsYGhqW6wJ0Z8+eRY8ePWBnZyeWde7cGY0bN1Y47gsXLqC4uBijRo0Sy3R0dDBy5EgkJye/dtRck8rbF3IlJSXIyckpdbs298WrOC0lEQkJCRg0aBCKiopQr149DB8+HD4+Pgp/xGJjY+Hg4KA0FCkf0r57967CLwJtExcXh5KSEqWbwRkYGKBFixaIjY0Vy6TYF3PnzkVeXh4MDAzQpUsXzJo1C40bNxa337lzBwCU+sfGxga2trYK/aNtpPh6ltfy5cuRl5cHPT09tGvXDjNnzkSrVq0AVOwzISXJycl4/vy5yhtDuri4ICQkRPw5NjYWJiYmSnfIlr93YmNjJTGtmZ+fjyFDhiA/Px916tRBv3798NFHHymsu5JSXzDcSEDDhg3h5uYGR0dH5Ofn48yZM9i8eTMSEhLw9ddfi/VSU1NVpnx5WUpKSrW1WR1SU1MBqF5rZG1tjRs3bijUlUpfGBkZYciQIXBzc4OZmRliYmKwe/dufPzxx/jtt9/EP+qv6x/5dm0kpdezvPT19dG7d29069YNdevWxYMHD7Br1y74+fnhl19+QcuWLSv0mZCS1x13ZmYmCgsLYWhoiNTUVFhZWUFHR0epHiCN9461tTUmTJiAli1bQhAEXL58Gfv378e9e/ewZs0a8UuwlPqC4aYayGQyFBUVlauuoaGh0hvrdf7zn/8o/Dxo0CB89913OHjwIMaPHy+eNVFQUKCwiO7l55RvVzd19oW8/aUdY2FhoUJdTfeFKpXpn759+6Jv375iuaenJ9zd3TF79mxs2bIF//rXvwBAPH75Mb66r7KmNGu6mvp6qlPbtm3Rtm1b8eeePXuiT58++OCDD+Dv749Vq1ZV6DMhJa87bnkdQ0PDWvHeefVkk379+qFx48bYsGEDzp49Ky4UllJfMNxUgxs3bpR6yuartmzZojQkWBnvvPMODh48iLCwMDHcGBkZqfzDKf8FZ2Rk9MbP+zrq7At5+0s7xpf/qNeEvlClqvqnXbt2cHV1xdWrV8Uy+fGr+oNWWFiosWOuCjX19axuDg4O6NmzJ86dO4eSkpIKfSak5HXH/XKd2vreGT9+PAICAhAWFiaGGyn1BcNNNWjSpAk+++yzctWtqju11q9fHwCQlZWlsO/k5GSluvIhXBsbmyp57rKosy/k9VVNr6SmpiocX03oC1Wqsn/q16+Phw8fKtVPTU1VWn+SmpqqdDqxNqmpr6cm1K9fH0VFRcjPz6/QZ0JKXnfcFhYWYrCztrZGeHg4BEFQGCmW+nvHyMgIFhYWyMzMFMuk1BcMN9XA2tpa5QWm1OnJkycAoHCxKvl1EHJychQWXkZGRorb1U2dfdGsWTPo6ekhJiZGYZqmqKgIsbGx8PLyEstqQl+oUpX98+TJE4XXv0WLFgCAmJgYuLq6iuUpKSlITk5WONNI29TU11MTnjx5AkNDQ5iYmFToMyEltra2sLS0RExMjNK2qKgohfeDk5MTDh06hPj4eLz11ltiudTfO7m5ucjIyFD6GyGVvuCp4FouJydHaZpBEARs3rwZABSuztqnTx+UlJQgMDBQLCssLMSRI0fg6uqq9WeTmJubo3Pnzjhx4oTC+pHjx48jLy9P4Re5lPoiPT1dqezSpUuIiYmBu7u7WNasWTM0adIEBw8eVDhdfP/+/dDR0UHv3r2ro7lqIaXXs7xUve53795FcHAwunTpAl1d3Qp9JqSmd+/euHjxosJlAK5evYqEhASF4+7Zsyf09fWxb98+sUwQBBw4cAC2trZo06ZNtba7qhUUFKhcT/fHH39AEAR07dpVLJNSX3Dkpgb7448/ALy4Pgnw4hfSzZs3AQBTpkwB8OL03q+//hr9+/dHo0aNUFBQgPPnz+PWrVt4++23FU6FdHV1hZeXF/z9/ZGeno5GjRrh2LFjSExMxMKFC6v34CqoPH0BANOnT8esWbMwe/ZseHt7i1dj7dKli8KHWJv74lUzZ85Ey5Yt4ezsDDMzM9y5cwdHjhxB/fr18f777yvU/fjjj/HZZ5/h008/Rb9+/RAXF4d9+/Zh+PDhCt/UtI2UXs/y+vLLL2FkZIQ2bdrAysoKDx48wMGDB2FsbKywgLS8nwltsnfvXmRnZ4vTJcHBwUhKSgLw4orN5ubmmDRpEs6cOYN58+Zh7NixyMvLw44dO+Do6KgwOlq/fn2MGzcOO3bsQHFxMVxcXHD+/HncvHkTX3zxBfT09DRyjOX1ur7IysrCtGnT0L9/fzRp0gQAEBoaipCQEHTt2hU9e/YU96XtffEyHUEQBE03glTr1atXqdvOnTsH4MUQ9K+//oqoqCikpaVBV1cXTZs2xfDhw+Ht7a10tlFBQYF4/53s7Gw4Ojpi+vTpCt/wa6Ly9IXczZs3xfvomJqawsvLCzNmzFC6j4629sWrNmzYgJCQEDx9+lRcZ9G9e3f4+PigXr16SvXPnz+PTZs2IT4+HnXr1sWQIUOUromkjaTyepbXnj17cPLkSTx+/Bg5OTmwtLREp06d4OPjAwcHB4W65f1MaIvx48cjMTFR5bZdu3aJtyG5f/++0r2lZs2apfS5kMlk2L59OwIDA5GamgoHBwe89957GDhwoNqP5U29ri/Mzc2xZs0aREREIDU1FTKZDI0aNcKAAQPw7rvvKn3utbkvXsZwQ0RERJLCNTdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN6RWR48eRa9evXD06FFNN6VcwsPD0atXL/z+++9qe45evXphzpw5att/bTF+/HiMHz9e082o8X7//Xf06tUL4eHhan2e3bt3o2/fvnj69Gm56lfHZ02bffvttxg3bhwKCgo03RStxHBDCv73v/+hV69eGD58uNINOaVC2/4oZmRkYP369Zg8eTIGDBiAAQMGYNy4cZg3bx42btyItLS0amnH64LqnDlzyrxNRm2Sl5eHwYMHo1evXvj+++813Ry1y8rKwubNmzF06FDx1gf0Znx8fJCSkoI///xT003RStp9MxmqUrm5uQgKCoKOjg4yMzNx/vx59OvX74326enpCVdXV1hbW1dRK2uXpKQkfPzxx0hKSkKLFi0wZMgQ1KlTB6mpqbh9+zY2btyItm3bqryHlNT98MMPmm5CqYKCgpCbmwsdHR2cOnUKs2bNgpGRkaabpTa7d+9GZmYmJkyYoOmmSEbjxo3h4eGB7du3Y8yYMTAxMdF0k7QKww2J/v77b+Tl5WH8+PHYs2cPDh8+/MbhxtzcHObm5lXUwtrn999/R1JSEqZNm6Zw93O5e/fu1dr+bdSokaabUKrDhw9DT08Po0ePxp9//olz585hwIABmm6WWhQXF+PQoUNo27ZtjX5NtNHAgQNx7tw5nD59GsOHD9d0c7QKww2J5L+QJ06ciHv37uHatWtITEyEvb29Qr3ff/8dmzZtKnU/9vb22L17N4AXUxnLly/HZ599hiFDhoh1evXqhQ4dOuCLL77AunXrcOXKFRQWFqJ9+/aYN28eGjZsiAcPHsDf3x83btxAcXEx3N3dMX/+fIVRivDwcMydOxc+Pj6YOnWqQjuePn2Kd955B4MHD8aiRYvEn19ug5yqx0dHR8Pf3x8RERHQ1dVFx44d4efnpzTsfu7cOQQFBSE6OhopKSnQ19dH8+bNMXbsWPTp06fsTn+NiIgIAMDo0aNVbm/evLnK8idPnmDbtm24cuUKUlNTYWZmhrfeegtDhgwRX4eioiIEBgbi4sWLePDgAdLT02FmZoa2bdtiypQpaNmypbi/ZcuW4dixYwCA5cuXY/ny5QrH/3Jfvvz/8r6Xu3fvHrZs2YLr168jMzMT1tbW8PDwwAcffIC6deuK9V5+7SZOnIgNGzbgxo0byMzMFO/6LJ9alL/XgH/em2vWrEFKSgp27NiBhw8fwtzcHF5eXvjoo4+URlCKi4uxc+dOHDp0CCkpKbC1tcWwYcPQt29fvPvuu0rH8DoPHz7ErVu30KNHD4UvCqrCzcvv3x49epTr/QYAZ8+exdatW3H//n2YmZnBw8MDM2fOxLRp05T6pCzlfT3KEhoaitTUVEycOFHl9oKCAmzcuBEnT55ERkYGGjVqhLFjxyrdufxlT548wZYtW3DlyhU8f/4cderUgbu7O6ZOnar0+wioWH/I38s7d+7EuXPncPjwYTx58gT9+vUTX+fnz59j69atuHjxIpKSkmBqaor27dtj6tSpcHR0VHr+itRPSEjA1q1bER4ejtTUVBgbG6N+/fpwc3PD7NmzoaOjI9bt3r07jI2NcezYMYabCmK4IQDAgwcPEBERgW7duqFevXoYNGgQrl69iiNHjij90Xdzc1O5j/j4eAQFBZV7+D0rKwuzZs2CtbU1Bg0ahEePHuHixYv45JNPsGzZMvj5+cHZ2RlDhw7FnTt3cPbsWWRmZmLNmjWVOkZzc3P4+Phgz549AICxY8eWekzR0dHYsWMH3Nzc4O3tjdjYWJw/fx5xcXHYtGmTwjH6+/tDX18fbdu2hbW1NdLT0xEcHIzFixdj7ty5GDNmTKXaC0D8A5OQkABXV9dyPebmzZtYuHAhcnNz4e7ujn79+iErKwuxsbHYs2ePGG4yMzOxdu1atGvXDt26dUOdOnXw9OlTBAcH4/Lly1i7di1cXFwAvJhezM7OxoULF9CzZ084OTkpPKePjw+OHTuGxMRE+Pj4iOUtWrQQ///ChQv46quvoKOjg549e6J+/fp48OAB/vrrL4SGhuLXX39FnTp1FPb7+PFjzJw5E46Ojhg8eDAyMzNhYGDw2j6Q79PDwwMdO3bE5cuXsXfvXmRkZGDx4sUKdVesWIHjx4+jYcOGGDlyJIqKirB7927cvn27XP39qsOHDwMABg0aBDs7O3To0AHh4eF48uQJGjZsqPIxFXm/HT58GCtWrICZmRkGDRoEc3NzhISE4JNPPkFxcTH09cv3a70yr4cqV69eBQC0bt1aaZtMJsNnn32GsLAwODo6on///sjMzMTPP/9c6u+RyMhI/Otf/0JeXh569OgBBwcHJCYm4uTJk7h8+TLWrVun0I+V7Y8ff/wRkZGR6N69O3r06AErKysAL95zc+bMQXJyMrp06YKePXsiPT0dZ8+exZUrV/DDDz8ofBYrUj8lJQUzZsxAfn4+unfvjr59+yI/Px+PHj3C/v378fHHHyu018DAAC1btkRERATy8vI4NVURApEgCGvXrhU8PT2FU6dOCYIgCDk5OcLAgQOFsWPHCiUlJa99fFpamjBu3DihX79+ws2bN8XyI0eOCJ6ensKRI0cU6nt6egqenp7C2rVrFcpXr14teHp6CkOGDBF2794tlstkMuHf//634OnpKURHR4vl165dEzw9PYWAgAClNj158kTw9PQUli5dqlA+btw4Ydy4cSqPQ76/l/tCbsmSJSrLHz9+rLSfnJwcYcqUKcKQIUOEvLw8pWOfPXu2yud/1Z49ewRPT0/B29tbCAgIEK5duyZkZ2eXWr+goEAYPXq00Lt3byEkJERp+7NnzxTqJiUlKdWJi4sTBg4cKMyfP1+hvLTXUm727NmCp6enym3p6enC4MGDhdGjRwtPnz5V2Hbq1CnB09NT+OGHH8Qy+WtX2msrCKpfx4CAAPH9Ex8fL5bn5+cLEydOFHr37i0kJyeL5WFhYYKnp6cwdepUhdcpOTlZGDFihMr3T1mKioqEESNGCEOGDBHy8/MFQRCEw4cPC56ensKGDRuU6lf0/ZaZmSkMHDhQGDhwoPDw4UOF5507d67g6elZap9cu3ZNLKvo61EWX19foXfv3kJBQYHSNvl75l//+pdQXFwslt+9e1fo27ev0utbVFQkjBs3Thg0aJAQExOjsK8bN24Iffr0ERYuXPhG/bF06VLB09NTGD16tJCYmKjU5pkzZwp9+vQRLl++rFD+8OFDYdCgQcKUKVMqXV/+eX75d5tcRkaGUpkg/PO7+erVqyq3k2o8W4pQXFyMEydOwMzMDD179gQAmJqawtPTE8+ePUNYWFiZjy8oKMCiRYuQmJiI//znP2jbtm25ntfExATTp09XKJOv8albt67CyIqOjo647d69e+U+tspq37690nqjoUOHAgCioqIUylV9Gzc1NcWQIUOQnZ2N6OjoSrdj9OjRmDBhArKzs7Fp0ybMnTsXQ4cOxeTJk7F+/XqkpKQo1L9w4QKSk5MxYMAAdO3aVWl/9evXF//f0NAQtra2SnWaNWsGNzc3cTqwKhw/fhw5OTn48MMPlaYV+vXrh5YtW+L06dNKj6tXrx7ef//9Cj/f2LFj0aRJE/FnIyMj9OvXDzKZDDExMWL5iRMnAABTpkyBsbGxWG5jY6Pw/iuvS5cuIS0tDV5eXuJoS58+fWBsbIyjR49CJpOpfFx5328XLlxAXl4ehg4disaNG4vl+vr6Sp+lslT29VAlOTkZ5ubmMDQ0VNomn8qcPn069PT0xPLmzZtj4MCBSvUvXryIxMRETJgwQWFaFADatWsHDw8PhISEICcnB8Cb9ceECRNgZ2enUHbnzh3cvn0bgwYNgru7u8K2xo0bY/jw4YiLi0NcXFyl6supGt22sLBQ2U75iFJycnKZx0OKOC1FuHDhAtLT0zFs2DCFD92gQYNw4sQJHD58WOmDKycIApYtW4aIiAh88MEH6N+/f7mf18HBQeEPCgDxrCpHR0eFueeXt736B10dnJ2dlcrkQSA7O1uh/Pnz59i2bRtCQkLw7NkzpetSvEl7dXR0MHPmTEyYMAEhISGIjIxEdHQ07ty5gwcPHiAwMBCrVq0Sh73lfwi7dOlSrv3HxsZix44duHnzJtLS0pTCTHp6OmxsbCrdfjn52qHIyEg8fvxYaXthYSEyMjKQnp4OS0tLsdzJyalc01CvevUPI/BPsHv59bt79y6AF384X9WmTZsKP++hQ4cAvPjsyJmamqJnz544deoUQkND0a1bN6XHlff9Jg/2qtrr6uqqECDKUtnXQ5XMzEyVIVneXhMTE5XH165dO3EK79V2PXz4UOX1b9LS0iCTyZCQkIBWrVq9UX/Ip1xfFhkZCeDFZ1rV8z98+FD8r6OjY4Xry9dV/fDDD7h69Sq6du2KDh06lDpdCfwTejIyMkqtQ8oYbkhhjcDLOnXqBFtbWwQHByMzM1PlN4vffvsNQUFB6N+/Pz744IMKPa+ZmZlSmfyXUVnbqmo0oSympqalPv/L374zMzPx4Ycf4tmzZ2jbti06d+4Mc3Nz6Orq4u7du7hw4QKKioreuD2WlpYYPHgwBg8eDABITU3Fjz/+iLNnz+K7777Dxo0bAUD8RlvaH5uX3bp1C/PnzwcAdO7cGQ4ODuJxX7hwAXfv3q2StgMv1lcBwL59+8qsl5+fr/Cz/FtrRZX1/nn59cvNzYWurq7KxbMVPb0+JSUFoaGhaNiwodIf28GDB+PUqVM4cuSIynBT3veb/PVV1S+lHYcqlX09VDEyMir1mlg5OTmlvhdV9a+8XSdPnixXu96kP1Q9JjMzE8CLEbhLly6V+ti8vLxK1W/QoAHWrVuHjRs3IiQkBEFBQQCAJk2aYNq0afDy8lJ6rPzLkpQvJaAODDe13LNnz3DlyhUAKPOquSdOnFAapj969Ci2bNmCtm3b4j//+Y9a21ka+ehOSUmJ0jb5Lz51Onz4MJ49e6byVO2tW7fiwoULanlea2trfP7557h06RLu3buHjIwM1K1bVzwtvDxD2Fu2bEFhYSF+/vlnpT/G8m+kVUX+x3vTpk0qzzYpzaujd1XN1NQUMpkMGRkZSiMUFb044tGjR1FSUoInT56UejHD4ODgco2GlEYe2p4/f660TX4c5Qm2lX09VKlbt26p7zczM7NSRxxU9a+8Xf/73//Qo0eP1z73m/SHqveWfH/lPRGgovWBF6PS3377LYqLixETE4PLly9jz549+Oqrr2BjY6M0rS8PUJV9z9RWXHNTyx07dgwymQzt2rXDsGHDlP7JRwpeHT6+fv06Vq1ahYYNG2Lp0qUq59urg/xsDlVTP7GxsSofo6urqzIMVYZ8SF++VullN2/erJLnKI2BgYHSsLt8qF0eWMvy5MkTWFhYKAWb/Px83LlzR6m+ru6LXxel9V1Z2+XTZvJph5pCftbXrVu3lLZV5GwpQRBw5MgRAMCQIUNUfpbatGmDoqIicZ1PZchP/VfV3qioqHK/r6vy9XB0dERhYSGePXumtK158+bIy8tTWOckp+rzUdF2VVV/yMk/P+V9/orWf5m+vj5at26NqVOnYu7cuRAEARcvXlSql5CQAABvHEJrG4abWkz+C1lHRweLFi3CwoULlf4tWrQIrVu3xr1798SFsQkJCfj8889hZGSE//3vfxr9RtGkSROYmpqKU2dyaWlp2Lx5s8rHWFhYICMjo0ru2SJfjPnqL9eTJ08iJCTkjfe/c+dOxMfHq9z2119/IS8vD02aNBGH3z08PGBra4uTJ08iNDRU6TEvf8O2s7NDVlYW7t+/L5aVlJTgl19+QXp6utJj5dOSSUlJKttT1vahQ4fC1NQUGzZsUHg+ufz8fI0EH/m1ZzZt2qTwfkhNTRUvGVAe169fx+PHj9G+fXt89tlnKj9L8tHNV78oVETPnj1hYmKCw4cPK6yVKS4uRkBAQLn3U5WvR4cOHQCoHu2TT3X/9ttvCkHj3r17KkNez549YWdnh127duH69etK24uLixVCUVX1h5yrqytcXV1x+vRplQuqZTKZQrsqWj8mJkbliLJ8FEvVl8TIyEhYW1srLJim1+O0VC127do1PH369LUL2oYOHYqIiAgcPnwYrVq1wk8//YTMzEx07twZf//9t1J9c3Pzart3k4GBAcaMGYMtW7Zg+vTp8PDwQF5eHoKDg9GhQweViyXd3NwQHR2NBQsWoF27dtDX10f79u3FX9IVMXDgQGzfvh1r1qxBeHg47OzscPfuXVy7dg29evXCuXPn3uj4Tpw4gV9++QWOjo5wdXWFlZUVsrKyEBkZiTt37sDIyAiffvqpWN/Q0BBff/01/v3vf+Pf//433N3d4eTkhJycHNy9excFBQXiL/0xY8bgypUrmDVrFry8vGBoaIjr168jJSUFbm5uSjdabN26NYyMjLBnzx5kZWWJoVY+HdexY0ecOXMGX3zxBbp27QpDQ0M4OTnBw8MDlpaW+PLLL7F48WJMnToV7u7uaNKkCYqKipCYmIjr16+jTZs2WLVq1Rv1V0V17twZ/fv3x6lTp+Dj44OePXuiqKgIQUFBcHFxwcWLF8URqbLIA4v8DCdVmjRpgjZt2uD27duIjIws93WLXlanTh34+fnhu+++g6+vL/r27QszMzOEhITA0NAQNjY25ZrKq8rXo2fPnvi///s/hIWFKa0Zka81unz5MqZNm4auXbsiKysLp0+fRpcuXZRGKgwNDfHNN99gwYIFmDNnDjp27CieXJCYmIibN2+ibt262Lp1a5X2x8sWL16MefPm4euvv8aePXvQokULGBkZISkpCbdv30ZGRgZOnTpVqfrHjx9HYGAg2rdvj0aNGsHU1BQPHjzA5cuXYWFhofT+efz4MZ4+fYqRI0dW6BiI4aZWk/9CfvnKwar07dsXP/30E06fPg0/Pz/xG25YWJjK08Tt7e2r9caU06ZNg76+Pg4fPozAwEDY29tjypQp6NGjB86ePatUf8qUKcjOzsbFixdx8+ZNlJSUwMfHp1Lhpn79+vjpp5+wbt06hIWFoaSkBC1btsTq1auRlJT0xuHmP//5Dy5evIhr164hNDQUz58/h66uLuzs7DBy5EiMGzdO6RtdmzZt8Ntvv2Hr1q0IDQ3F1atXUadOHbz11lsYMWKEWK9Hjx745ptvsHXrVpw8eRJGRkbo2LEjli5dqvIK1BYWFvjmm2+wceNGHDp0SHwfyMPN8OHD8fTpU/z999/Yvn07SkpKMHjwYHh4eAB4cbXVgIAA7NixA1evXkVYWBiMjY1ha2uLIUOGqDw1uDosWrQITZs2xZEjR/DXX3/B1tYW48aNQ8eOHXHx4kWVi31flp2djbNnz8LExAS9e/cus+7QoUNx+/ZtHD58uFLhBgDefvtt1KlTB1u2bMGxY8fEK/J+9NFHGDduXLlvgVBVr0eDBg3QpUsXnDlzBnPnzlUYfdDV1cWyZcuwceNGnDp1Cnv37kXDhg3h5+cHBwcHldMwLi4u+P3337Fjxw6EhITg9u3bMDAwgI2NDTw9PZVOma+q/pBr2LAhAgICsGvXLpw/fx5Hjx6Frq4urK2t0b59e6Wrjlekfv/+/VFYWIhbt24hKioKRUVFsLW1xYgRI1Semi4f3fL29q7QMRCgIwiCoOlGEBHVNIcOHcLKlSvxySefaMU350ePHmHixInw8vLC119/Xa3PffXqVcyfPx+ff/65xkLqqzTZH1WhuLgYEydORIMGDSp9VfbajGtuiKhWS01Nxavf8ZKTk7F582bo6emhe/fuGmqZallZWUqnXhcUFODnn38G8OJWGdWtU6dO6Nq1KzZv3lzqhQrVpSb2R1U4duwYnj17ho8//ljTTdFKnJYiolpt27ZtuHTpEtq3bw9LS0skJSXh4sWLyM3NxQcffKA0VaBp169fx4oVK9ClSxfUr18fGRkZ4k1uO3bsiL59+2qkXXPmzMHJkyeRnJxcrX1WU/vjTeno6ODf//63ygsg0utxWoqIarXLly9j165duHfvHrKysmBoaIjmzZtj5MiRKu/krWkJCQkICAjA7du3xbPaGjVqJN7FvLZd7I39Qaow3BAREZGkcM0NERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJyv8DuM+wezw6at4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiW0lEQVR4nO3dd1gU1+I+8Hfp0pVmQxQLIpbYlaJSRDFK1KjRXGPsKWqiKZZcTTQxmtzERBPLVTQSu36NhcQegyggVoyKiNiQKyKw9N7m94e/nbjugix9lvfzPD7Jnjkze2a28O6ZM2dkgiAIICIiIqrndOq6AUREREQVwdBCREREksDQQkRERJLA0EJERESSwNBCREREksDQQkRERJLA0EJERESSwNBCREREksDQQkRERJLA0EJEag0aNAgymazGn2fp0qWQyWQ4c+ZMjT9XRbRu3RqtW7eu62YQkRoMLUTV4MyZM5DJZBg0aFCZdR4+fAiZTMY/iFps586dkMlkkMlkOHnyZLl109PT8fnnn+OVV16BqakpDA0N0aJFC/Tr1w8ff/wxIiMjy11/xowZkMlkMDY2Rnp6epn1FKFQ8U9HRwfm5uZwcHDAsGHD8O233+Lx48eV2V2iWqdX1w0gooZt9uzZGD9+PFq1alXXTamyTZs2QSaTQRAEbNq0Cb6+vmrrJSQkwM3NDQ8fPoSjoyP+9a9/wdraGmlpabhy5QpWr16NRo0aoXv37mrXz8rKwp49eyCTyZCXl4cdO3Zg9uzZ5bZt4MCBYqjOycnBkydPEBYWhmPHjuGLL77A0qVLsXDhwirtP1FNY2ghojplbW0Na2vrum5GlcXExODs2bPw8fFBWloagoKC8PTpU9jZ2anU/fzzz/Hw4UNMnToVmzdvVjkN9+TJEzx58qTM59q1axeys7Px0UcfYe3atQgICHhpaBk0aBCWLl2qVCYIAg4cOICZM2di0aJFAMDgQvUaTw8R1bHnx3Ts378fffr0gbGxMZo0aYLx48er7bpXjDcpKCjA4sWL0aZNGxgaGqJt27ZYtmwZCgsL1T7X6dOnMXToUDRp0gSGhobo0KEDFi5ciIyMjAq1tbCwEGvXrsWwYcPg4OAAQ0NDNGnSBD4+Pjh27JjadRRjRDIzM/HRRx+hdevW0NfXF/+AqhvToti/sv69eBquuLgY69evR79+/WBubg5jY2N0794da9euRWlpqUqbBEHA2rVr4eLiAiMjI7Ro0QKzZ8+u8HFQJyAgAAAwZcoUTJ48GUVFRQgMDFRbNzw8HAAwZ84cteOGmjVrhh49epT7XDo6Opg7dy5GjBiB69ev48KFCxq3WSaT4fXXX8f+/fsBAF9++WW5YYmorrGnhaieWL9+PYKCguDv74+BAwfiwoUL2Lt3L/7++29cu3YNhoaGKuuMGzcOly5dwpgxY6Cvr4/Dhw9j6dKluHz5MoKCgpT+IG7cuBHvvfceTExMMHbsWNja2uLMmTP49ttv8fvvvyMsLAyWlpbltjE1NRUffvghXF1dMXjwYNjY2ODJkyf4/fffMWzYMAQEBGD69Okq6xUWFsLLywupqanw9fWFubk52rRpU+bzTJ48We34oHPnzuGvv/6CsbGxWFZUVIQRI0bgxIkTcHJywptvvgkjIyMEBwdjzpw5uHDhArZv3660nblz5+Knn35Cs2bNMHPmTPHYXbhwAYWFhTAwMCj3OKjbv19//RUWFhYYNWoU8vLy8PHHH2Pz5s2YP3++SjCxsrICANy5cwevvPKKRs8VGRmJK1euYPDgwbC3t8fkyZPx22+/YdOmTejbt69G21Lw9PSEu7s7QkNDceDAAcyaNatS2yGqcQIRVVlwcLAAQBg4cGCZdR48eCAAEBwcHJTKv/jiCwGAYGZmJly/fl1p2YQJEwQAwt69e5XKBw4cKAAQ2rdvL6SmporleXl5Qr9+/QQAwrZt28Tyhw8fCgYGBoKZmZkQHR2ttK333ntPACDMmDFD7XM8Lz8/X4iPj1fZt/T0dMHFxUVo3LixkJubq7TMwcFBACB4e3sL2dnZKusq9j84OFhl2fP+/vtvwczMTLC2thbu3r2rsv7s2bOF4uJisby4uFiYOnWqAEA4dOiQWB4WFiYAENq2bSvI5XKx/Plj9+Jr9DK7d+8WAAgzZ84Uy15//XUBgPDnn3+q1P/555/F1/zTTz8VTp06JaSkpFToud555x0BgLBr1y5BEAShqKhIaNq0qWBiYiJkZGSo1Fccny+++KLc7S5evFgAIEyaNKlC7SCqCzw9RFRPfPDBB+jSpYtS2YwZMwAAFy9eVLvOkiVL0LhxY/GxkZERVq5cCQD45ZdfxPIdO3agsLAQs2fPRseOHZW28fXXX8PMzAzbt29HQUFBuW00NDREy5YtVcotLCwwdepUpKWl4dKlS2rXXbVqFUxMTMrdflkSEhLw6quvoqioCIcPH0bbtm0BAKWlpfj555/RtGlT/Pjjj9DV1RXX0dXVxapVqyCTybBz506xfOvWrQCAf//732jSpIlY/vyx05Ti1NDkyZPFMsX/b9q0SaX+rFmzsGjRIhQVFeG7777D4MGDYW1tjTZt2mDGjBn4+++/1T5PTk4Odu3aJfboAICenh7+9a9/IScnR2k/NdWiRQsAQHJycqW3QVTTeHqIqJ7o1auXSpm9vT0AIC0tTe06AwcOVClzd3eHrq6u0iWzV69eBQB4eXmp1G/cuDG6d++Os2fP4vbt2+jWrVu57YyKisJ3332Hs2fP4smTJ8jPz1darm4MjpGREbp27VrudsuSnZ2N4cOH4/Hjx9i9ezdcXV3FZXfu3EFqairat2+P5cuXq12/UaNGiI6OFh8rjkV5x04Td+/eRXBwMJycnNC/f3+xfOjQoWjatCkOHTqElJQUpcHGMpkMK1aswPz583HixAlERETg6tWruHDhAjZv3oytW7diw4YNYmhV2LNnD7KysvDOO+/AyMhILJ88eTJWrVqFgIAAvPfeexq1X0EQBLFtRPUVQwtRNdDRedZpqW7Qp4JimaLui9SNJ9HTe/YRLSkpUbuOuitT9PT0YG1tjaSkJLFMMcC0WbNmarejKC9vvg8AiIiIgJeXF4qLi+Ht7Q1/f3+Ym5tDR0cH165dw+HDh9X21tja2lbqj2FJSQneeOMNREZGYuXKlXjjjTeUlsvlcgBAbGwsli1bVuZ2srOzxf9XHIvyjp0mAgICIAiCUi+LYlv/+te/sGrVKgQGBuKTTz5RWdfS0hJvvPGGuF85OTn45ptvsHz5csyZMwf+/v5K7VT02rz4XJ07d0bPnj1x5coVXL58WW0AfpmEhAQAgI2NjcbrEtUWnh4iqgYWFhYA/vkjqk5KSgoA9eGksp4+fapSVlxcjJSUFJibm6u0LzExUe12FFeMKOqVZfny5cjLy8PJkydx7NgxrF69Gl9++SWWLl1a7iDQyv56nzNnDo4ePYoZM2aovRRX0d5Ro0ZBEIQy/z148EBlnfKOXUU9f4XQokWLVK5yWrVqFYB/Th+9jImJCb766iu4u7ujoKAAYWFh4rLr16+Lpwn79++v8lxXrlwBoP50VEUEBwcDQKUH8xLVBva0EFUDJycnGBoa4s6dO5DL5eLVIc87f/48ALz09IsmQkJC8NZbbymVhYaGoqSkRGlisu7du+PAgQM4c+YMvL29leqnp6fj2rVrMDIygrOzc7nPd/fuXTRp0kTtlT0hISGV3xE1Vq1ahQ0bNsDX1xfr169XW6djx46wtLREREQEioqKoK+v/9Lt9ujRA1evXkVISAgcHR2VlimOXUUdPnwYSUlJcHJygru7u9o6wcHBuHPnDkJCQtSeklLHzMwMwD+nbIB/wsigQYPEMT0v2rVrF3bv3o0ffvgBpqamFd6Pv/76C2FhYWjUqJE4VoaoXqqrEcBE2ubtt98WAAhTpkwRSktLlZbFx8cLLVq0EAAIZ86cUVpW3tUziiuO3n77baXyilw99OuvvyptR19fX7CwsBBiY2OVtjV79mwBgDB9+nS1z/G8IUOGCACEv//+W6l88+bNAgABgLB161alZQ4ODuVejaNu/3/77TdBR0dH6NKli9orYp63ZMkSAYDw7rvvqly5JAiCkJCQIERFRYmPQ0NDq+3qocGDB6u9uut5imPz5ptvimX/+c9/hJs3b6qtf+7cOcHIyEjQ09MTHj9+LAiCIOTm5gqWlpaCrq6uWKbOxIkTBQDCpk2bxLLyrh4qLS0VfvvtN6FJkyYCAOE///nPy3aZqE6xp4WomqxatQqXLl3C1q1bcf78eQwePBjm5uaIi4vD4cOHkZWVhQULFlT413ZFODs7w8XFRWmelnv37uHVV19V6oFp3bo1Vq9ejVmzZqFHjx4YN24cbGxsEBISgvPnz6Njx4749ttvX/p8c+fOxYkTJ+Du7o5x48bBwsICly9fRmhoKMaMGSNOUlZVEydORGlpKXr37o0ffvhBZXnr1q3FcR1LlizB33//jf/+97/4/fff4eXlhRYtWiApKQmxsbEICwvD119/jU6dOgEA3NzcMGfOHPz888/o3Lmz0rFr3LhxmeN+XvTgwQP8+eefsLa2xsiRI8us98Ybb2Du3Ln47bff8PPPP6NJkybYuXMn5s+fj44dO6Jfv35o1qwZcnJyEBUVhb/++guCIGDVqlVo3rw5AGDv3r1IT0/HiBEjxDJ1pk+fjh07dmDTpk0qg3jPnDkjTuiXl5eHhIQEhIWF4cGDBzA0NMS3336LTz/9tEL7TlRn6jo1EWmTrKws4euvvxZ69eolmJmZCXp6eoKdnZ0wfPhw4ciRI2rXqUpPS35+vvDvf/9baN26tWBgYCC0adNGWLp0qZCfn6/2uU6cOCEMHjxYsLS0FAwMDIS2bdsKn376qZCWlqZSV11PiyAIwu+//y707dtXMDU1FSwsLITBgwcLISEhwtatW6utpwX/v9emrH8vzodTWloqbNu2TfDy8hIaN24s6OvrC82bNxfc3NyEr7/+Wnj06JFK/Z9//lno2LGjYGBgIDRr1kx4//33hfT09Je2V+Gzzz4TAAjz5s17ad0ZM2YIAIQffvhBEARBuHr1qvDVV18Jnp6eQuvWrQUjIyPB0NBQcHR0FN58803h3LlzSuu7uroKAITDhw+/9Lk6dOggABAiIyMFQfjn+Cr+yWQywdTUVGjVqpXg5+cnfPPNN8L//ve/l26XqD6QCcJzJ02JSBIGDRqEkJAQ8ONLRA0Jrx4iIiIiSWBoISIiIklgaCEiIiJJ4JgWIiIikgT2tBAREZEkMLQQERGRJGhNaMnPz0dMTIzKHWeJiIhIO2hNaImLi8OMGTMQFxdX100hIiKiGqA1oYWIiIi0G0MLERERSQJDCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwsRERFJAkMLUQ3ITcvHlf2xyE3Lr+umEBFpDYYWohqQm16AyAN3kZteUNdNISLSGnqaVH7w4AG2bt2KmJgYpKamwsjICA4ODpgwYQLc3NwAAKWlpThx4gRCQkIQGxuLrKwsNGvWDF5eXhg/fjwMDQ2VtjlgwAC1zzVz5kxMnDixkrtFRERE2kaj0JKYmIjc3FwMHToU1tbWyM/PR0hICBYtWoRPPvkE/v7+yM/Px8qVK+Hi4oLXXnsNjRs3RlRUFLZu3YqrV69i9erVkMlkStvt1asXhg4dqlTWvn37qu8dERERaQ2NQkv//v3Rv39/pbLRo0djxowZ2LdvH/z9/aGvr49169ahS5cuYp0RI0agadOm+OWXX3DlyhX06tVLaRv29vbw9fWtwm4QERGRtqvymBZdXV3Y2toiOzsbAKCvr68UWBQ8PDwAAHFxcWq3U1BQgIICnv8nIiIi9TTqaVHIy8tDQUEBcnJyEBYWhgsXLsDT07PcdVJTUwEAFhYWKsuOHz+OQ4cOQRAEODg4YNKkSRg8eHBlmkZERERaqlKhZd26dQgKCgIA6OjoYMCAAZg3b1656+zevRsmJibo27evUnnnzp3h6emJZs2aQS6X48CBA/jqq6+Qk5ODkSNHlrm9lJQUyOVy8XFZPThERESkHSoVWsaOHYtBgwYhJSUFwcHBKCkpQVFRUZn1t2/fjsuXL+Ojjz6CmZmZ0rL169crPR42bBimT5+OTZs2wc/PT+VqI4WgoCAEBgZWpvlEREQkQZUa0+Lg4CBe8fPtt98iLy8PCxcuhCAIKnVPnz6NzZs349VXXy2350RBX18fo0ePRnZ2NmJiYsqs5+/vj4CAAPHf4sWLK7MrREQNEidAJCmqlsnlBg0ahNu3byM+Pl6p/NKlS1ixYgX69++Pjz/+uMLbs7W1BQBkZmaWWcfa2hpOTk7iPwcHh8o1noioAeIEiCRF1RJaFFf9KK4gAoBbt25h8eLFcHJywrJly6CnV/EzUQkJCQAAS0vL6mgeERERaQGNQktaWppKWXFxMU6cOAFDQ0O0bt0aAPDw4UMsWLAATZs2xbffflvmuJT09HSVstzcXOzfvx8WFhZwcnLSpHlERESkxTQaiPv9998jJycH3bp1g42NDeRyOU6dOoVHjx5h1qxZMDY2Rm5uLj755BNkZWVh/PjxOH/+vNI2mjdvjs6dOwMADhw4gNDQULi6usLOzg5yuRxHjx7F06dP8e9//xv6+vrVt6dEREQkaRqFFi8vLxw5cgSHDx9GRkYGjI2N4eTkhHfffRfu7u4AgIyMDCQlJQEANm7cqLKNoUOHiqGlS5cuuHnzJv744w9kZmbCyMgIzs7OWLBgAXr27FnVfSMiIiItolFo8fb2hre3d7l1mjVrhrNnz1Zoe71790bv3r01aQIRERE1UNUyEJeIiIiopjG0EBERkSQwtBAREZEkMLQQERGRJDC0UJ3gFOJERKQphhaqE5xCnIiINMXQQkRERJLA0EJERESSwNBCREREksDQQkRERJLA0EJERESSwNBCREREksDQQkRERJLA0EJUzUpLBSTfzwAAJN/PQGmpUMctIiLSDnp13QAibfLgYiIitkUjJ/XZTL9hW6Jw7eA99JvkjDZ9mtZx64iIpI09LUTV5MHFRJxeHSkGFoWc1HycXh2JBxcT66hlRETagaGFqBqUlgqI2BZdbp2I7dE8VURE1aYh3sONoYWoGiTeTlXpYXlRjjwfibdTa6lFRA1bQ/iD3hDv4cbQQlQN8ir4pVHRekRUNQ3xD3pDwNBCVA0aWRpWaz0iIlLF0EJUDZp2bAKTJkbl1jGxMkLTjk1qqUVERNqHoYWoGujoyNBvknO5dfq95QwdHVkttYiISPswtBBVkzZ9msJ7bneVHhcTKyN4z+3OeVqo3uAEiCRVnFyOqBq16dMUDr3sEBMcj7AtUXCb5gInT3v2sEhQblo+ok/Hw9nbHsaNyz/1JyWcAJGkjD0tRNVMR0cGG0cLAICNowUDi0Rp49UnnACRpI6hhYioAeAEiKQNGFrqoYYwKRIR1S5OgEjagKGlHtLGbmkiqlucAJG0AUMLEVEDwAkQSRswtBARNQCcAJG0AUMLEVEDwAkQSRswtBARNRCcAJGkjpPLERE1IJwAkaSMPS1U6ziFOFHd4gSIJFXsaaFaxSnEiYiosjQKLQ8ePMDWrVsRExOD1NRUGBkZwcHBARMmTICbm5tS3YcPH2Lt2rW4ceMG9PT00L9/f8yePRuWlpZK9UpLS7Fnzx4cOnQIqampaNmyJSZOnAgfH58q7xzVL4opxF+kmEKc59SJiKg8GoWWxMRE5ObmYujQobC2tkZ+fj5CQkKwaNEifPLJJ/D39wcAJCUlYc6cOTA1NcWMGTOQl5eHPXv24P79+9i4cSP09fXFbQYEBGDnzp0YMWIEOnbsiNDQUHz55ZeQyWTw9vau3r2lOlPRKcQdetmxq5qIiNTSKLT0798f/fv3VyobPXo0ZsyYgX379omhZceOHcjPz8fmzZthZ2cHAHB2dsZHH32EY8eOifWSk5Oxd+9ejBo1CvPmzQMADB8+HHPmzMH69esxaNAg6OrqVnknqe5pMoV4805WtdQqIiKSkioPxNXV1YWtrS2ys7PFspCQELi6uoqBBQB69eoFe3t7BAcHi2WhoaEoLi7GqFGjxDKZTIaRI0ciOTkZUVFRVW0e1ROcQpyIiKqqUqElLy8P6enpePz4Mfbt24cLFy6gR48eAJ71nqSlpcHJyUllPWdnZ8TGxoqPY2Nj0ahRIzg4OKjUUywn7cApxImIqKoqdfXQunXrEBQUBADQ0dHBgAEDxNM7crkcAGBlpdrFb2VlhczMTBQWFsLAwAByuRyNGzeGTCZTqQcAKSkpZbYhJSVFfC4AiIuLq8yuUC1RTCFe3ikiTiFORETlqVRoGTt2LAYNGoSUlBQEBwejpKQERUVFAICCgmfd+88PtlUwMDAQ6xgYGKCgoOCl9coSFBSEwMDAyjSf6oBiCnF1Vw8pcApxIiIqT6VCi4ODg3hKZ+jQofjoo4+wcOFCbNy4EYaGz7r3FSHmeYWFhQAg1jE0NKxQPXX8/f2VLrOOi4vD8uXLK7M7VEsUU4g/P08L8KyHpd9bnKeFiIjKVy2Tyw0aNAjff/894uPjxVM7z5+6UZDL5TA3Nxd7UqysrBAZGQlBEJROESnWtba2LvM5ra2ty11O9ROnECciosqqlmn8FadxsrOzYWNjA0tLS8TExKjUi46ORrt27cTH7dq1Q35+vsp4lFu3bonLSftwCnEioqppqLdD0Si0pKWlqZQVFxfjxIkTMDQ0ROvWrQEAAwcORHh4OJ4+fSrWu3LlCuLj4+Hp6SmWubu7Q09PDwcPHhTLBEHA4cOHYWNjg86dO2u6P0RERFrtwcVE7P3gDMK2PJsWJGxLFPZ+cAYPLibWcctqnkanh77//nvk5OSgW7dusLGxgVwux6lTp/Do0SPMmjULxsbGAICJEyfizJkzmDt3LsaMGYO8vDzs3r0bjo6O8PPzE7dna2uLsWPHYvfu3SguLoazszPOnTuH69evY8mSJZxYjoiINPZiL0QTB3Ot6dFt6LdD0Si0eHl54ciRIzh8+DAyMjJgbGwMJycnvPvuu3B3dxfr2dnZ4aeffsLatWuxceNG8d5Ds2bNEsezKLzzzjswMzNDUFAQjh8/jpYtW2Lx4sUYPHhw9ewhERE1GNp8U1beDkXD0OLt7V3h+wG1adMGq1atemk9HR0dTJw4ERMnTtSkKUREREq0vReCt0OppoG4JG25afm4sj8WuWnlfxiIiOqrivZCSHnAKm+HwtBCAHLTCxB54C5ytfiNTkTaTZNeCKni7VAYWoioErS9d66hXk4qZfWhF6KmPxeK26GUR9tvh8LQQlQDjC0N0X10Oxhr6S8ebe6da8iXk0pZfeiFqOnPheJ2KOXR9tuhMLQQ1QDjxkboOaY9jBuX/6uI6hfFQM4XTzMoBnIyuNRfDaUXQnE7lBf31cTKSPIDjSuCoaWeYbc0Ud1oCAM5tVlD6oVo06cp3vhpENymuQAA3Ka54I01g7Q+sAAMLfUKu6WJ6k5DGMip7RpSL0RDvR1KtdwwkapO2+cXIKrv6sNATqo63pRVu7GnpR5gtzRR3asPAzmpejTUXoiGgKGlHmC3NFHdaygDOYmkjKGlHmC3NFHda0gDOYmkiqGlHmC3NFH90JAGcmr7XEKknTgQtx5QdEuXd4qI3dJEtaOhDORUzCVEJCXsaakH2C1NVL9wICdR/cTQUk80pG5pIiKiyuDpoXqkoXRLExERVQZ7WuoZdksTERGpx9BCREREksDQQkRERJLA0EKkBXLT8nFlfyxy08qfWZmISMoYWoi0QG56ASIP3EUuZ00mIi3G0EJERESSwNBCREREksDQQnWC9z0hUsZxSUQvx9BCdUJx3xPjxkYvr0zUAHBcEtHLMbQQERGRJDC0EBERkSQwtBAREZEkMLQ0cKWlApLvZwAAku9noLRUqOMWERERqce7PDdgDy4mImJbNHJSn12tELYlCtcO3kO/Sc5o06dpHbeO6qsXg24TB3Pe2JMaPH4uagdDSwP14GIiTq+OVCnPSc3H6dWR8J7bncGFVDDoEqni56L28PRQA1RaKiBiW3S5dSK2R/NUESlRBF3FF7OCIug+uJhYRy0jqjv8XNQuhpYGKPF2qsoH7EU58nwk3k6tpRZRfcegS6SKn4vax9DSAOVVcPKqitYj7cegS6SKn4vap9GYlujoaBw/fhyRkZFITEyEubk5XFxcMH36dNjb24v1BgwYUOY2evXqhR9++AEA8OTJE7zxxhtq633xxRfw9vbWpHlUQY0qOHV+ReuR9mPQJVJV15+Lhng7FI1Cy65du3Djxg14enqibdu2kMvlOHjwIKZPn44NGzbA0dERALB48WKVdW/fvo39+/ejd+/eKst8fHzQr18/pTIXFxdNmkYaaNqxCUyaGJX7C8HEyghNOzapxVZRfcagS1JTG3/Q6/pzobgdSkOiUWgZN24cPv/8c+jr64tlXl5emDJlCnbu3IklS5YAAHx9fVXWjYyMhEwmU9t70r59e7XrUM3Q0ZGh3yRntVcPKfR7y5mX65GIQZekpjb+oPNzUfs0GtPSpUsXpcACAPb29mjdujXi4uLKXK+wsBAhISF45ZVXYGtrq7ZOXl4eioqKNGkOVUGbPk3hPbc7TJoo37DQxMqIlzuTCkXQLQ+DLjU0/FzUvioPxBUEAWlpabCwsCizTkREBLKzszF48GC1ywMDAzFkyBD4+Phg5syZuHjxYlWbRRXQpk9TvPHTILhNe3Yqzm2aC95YM4iBhdRi0CVSxc9F7ary5HKnTp1CcnIypk6dWm4dAwMDDBw4UKlcR0cHvXv3xoABA2BtbY2EhATs27cP8+fPx8qVK9G/f/8yt5mSkgK5XC4+Lq+nh8qmoyODjeOzwGnjaMFfBFSuNn2awqGXHWKC4xG2JQpu01zg5GnP9w01aPxc1J4qhZa4uDj8+OOPcHFxwdChQ9XWycnJwfnz59G3b1+YmZkpLbOzs8OqVauUyoYMGYJJkyZh3bp15YaWoKAgBAYGVqX5RFQJDSXoNsQrM6jyGsrnoq5VOrTI5XIsWLAAJiYm+Oqrr6Crq6u2XkhICAoLC8s8NfQic3Nz+Pn5YefOnUhKSipzDIy/vz/c3NzEx3FxcVi+fLnmO0JEpEZDvDKDqL6rVGjJzs7G/PnzkZ2djbVr18La2rrMuqdOnYKpqSlcXV0rvH1FUMnKyioztFhbW5f7vERERKRdNB6IW1BQgIULFyI+Ph7ffPMNWrduXWbdlJQUREZGYsCAATAwMKjwcyQkJABAuYN7tRm7pYmIiFRp1NNSUlKCpUuXIioqCitWrEDnzp3Lrf/XX3+htLS0zFND6enpsLS0VCpLTk7G0aNH0bZt2wbbk8JuaSIiIlUahZZ169YhLCwMrq6uyMrKwsmTJ5WWvzhB3KlTp2BtbY3u3bur3d6GDRvw+PFj9OzZE9bW1khMTERQUBDy8/PxwQcfaLgrRA1TaamA5PsZAIDk+xlo4mCudYMAc9PyEX06Hs7e9jBubPTyFYhIK2kUWu7evQsACA8PR3h4uMry50PLo0ePEBMTg3HjxkFHR/1ZqN69eyMhIQEHDx5EVlYWTE1N0bVrV0yaNAlOTk6aNK1G8QuT6qsHFxMRsS1anJEzbEsUrh28h36TnLVqfojc9AJEHrgLh562/AwSNWAahZaffvqpwnVbtWqFs2fPllvHx8cHPj4+mjShTvALk+qjBxcT1d6KISc1H6dXR3JiKyLSOlWeEZeIal9pqYCIbdHl1onYHo3SUqGWWkREVPMYWogkKPF2ark3aQOAHHk+Em+n1lKLqCpeHJfEsEn1UW5aPq7sj0VuWvnfPTWpytP4E1Hty0svqNZ6VHcayrgkkr76MFSCPS1EEtSognP4VLQe1Q3FuKQXe80U45IeXEyso5YR1U8MLUQS1LRjE5W7yr7IxMoITTs2qaUWkaY4LolIcwwtRBKkoyNDv0nO5dbp95az1s3Xok04LolIcwwtRBLVpk9TeM/trtLjYmJlxMudJYDjkog0x4G4RBLWpk9TOPSyQ0xwPMK2RMFtmgucPO3ZwyIBHJdEpDn2tBBJnI6ODDaOz24uauNowcAiERyXRKQ5hhYiojrAcUlEmmNoISKqIxyXRKQZjmkhIqpDHJdEVHHsaSEiqmMcl0RUMQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLQRjS0N0H90Oxpx5k4iI6jFe8kwwbmyEnmPa13UzSEIYdIlU8XNR8xhaiEhjDLpEqvi5qHk8PURERESSwNBCREREksDQQkRERJLA0EJE9VppqYDk+xkAgOT7GSgtFeq4RURUVzgQ9yVe/MJs4mDO+4IQ1ZIHFxMRsS0aOan5AICwLVG4dvAe+k1y5h2QiRog9rSU48HFROz94AzCtkQBePaFufeDM3hwMbGOW0ak/R5cTMTp1ZFiYFHISc3H6dWR/BwSNUAMLWXgFyZR3SktFRCxLbrcOhHbo3mqiKiBYWhRg1+YRHUr8Xaqyg+GF+XI85F4O7WWWkTUsNWXsWUc06KGJl+YzTtZ1VKriBqOvPSCaq1HRJVXn8aWsadFDX5hEtWtRhWcBr2i9YiocurbUAmGFjX4hUlUt5p2bAKTJkbl1jGxMkLTjk1qqUVEDU99HCrB0KIGvzCJ6paOjgz9JjmXW6ffW86cfoCoBtXHsWUMLWrwC5Oo7rXp0xTec7ur/IAwsTKC99zunKeFqIbVx6ESHIhbBsUX5vODj4BnX5j93uLEVkS1oU2fpnDoZYeY4HiEbYmC2zQXOHna8wcDUS2oj0MlGFrKwS9MkgpjS0N0H90Oxlo4zkpHRwYbRwsAgI2jBT9/RLVEMVSivFNEtT1UQqPQEh0djePHjyMyMhKJiYkwNzeHi4sLpk+fDnt7e7HeihUrcPz4cZX1W7VqhR07diiVlZaWYs+ePTh06BBSU1PRsmVLTJw4ET4+PpXcperFL0ySAuPGRug5pn1dN4OItIhiqMTp1ZFl1qntoRIahZZdu3bhxo0b8PT0RNu2bSGXy3Hw4EFMnz4dGzZsgKOjo1jXwMAA8+fPV1rfxMREZZsBAQHYuXMnRowYgY4dOyI0NBRffvklZDIZvL29K7lbREREVFX1baiERqFl3Lhx+Pzzz6Gvry+WeXl5YcqUKdi5cyeWLFkiluvq6sLX17fc7SUnJ2Pv3r0YNWoU5s2bBwAYPnw45syZg/Xr12PQoEHQ1dXVpIlERERUjerTUAmNrh7q0qWLUmABAHt7e7Ru3RpxcXEq9UtKSpCTk1Pm9kJDQ1FcXIxRo0aJZTKZDCNHjkRycjKioqI0aR4RkWRp87gkkr76MlSiygNxBUFAWloaWrdurVSen58PPz8/5Ofnw8zMDN7e3nj33XdhbGws1omNjUWjRo3g4OCgtK6zs7O4vGvXrmqfNyUlBXK5XHysLjQREUkFxyURvVyVQ8upU6eQnJyMqVOnimVWVlaYMGECOnToAEEQcOHCBRw6dAj37t3DmjVroKf37GnlcjkaN24MmUw5sVlZPbufT0pKSpnPGxQUhMDAwKo2n4iIiCSiSqElLi4OP/74I1xcXDB06FCx/J133lGq5+3tDXt7ewQEBCAkJEQcYFtQUKByugl4NohXsbws/v7+cHNzU2rL8uXLq7I7REREVI9VekZcuVyOBQsWwMTEBF999dVLB8yOGzcOOjo6uHz5slhmaGiIoqIilbqFhYXi8rJYW1vDyclJ/PfiKSYiIiLSLpUKLdnZ2Zg/fz6ys7Px/fffw9ra+qXrGBoawtzcHJmZmWKZlZUVUlNTIQjKN1tSjFWpyHaJiIioYdA4tBQUFGDhwoWIj4/HN998ozIAtyy5ubnIyMiApaWlWNauXTvk5+erDKK9deuWuJyIiIgI0DC0lJSUYOnSpYiKisKyZcvQuXNnlToFBQXIzc1VKf/1118hCAL69u0rlrm7u0NPTw8HDx4UywRBwOHDh2FjY6N2+0RERNQwaTQQd926dQgLC4OrqyuysrJw8uRJpeW+vr5ITU3FtGnT4OPjg1atWgEALl68iIiICPTt2xfu7u5ifVtbW4wdOxa7d+9GcXExnJ2dce7cOVy/fh1LlizhxHJEREQk0ii03L17FwAQHh6O8PBwleW+vr4wNTWFq6srLl26hOPHj6O0tBQtWrTAzJkzMX78eOjoKHfuvPPOOzAzM0NQUBCOHz+Oli1bYvHixRg8eHAVdouIiIi0jUah5aeffnppHTMzMyxevLjC29TR0cHEiRMxceJETZpCREREDUylL3kmIiIiqk0MLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURU7xlbGqL76HYwtjSs66YQUR3S6N5DDRW/MInqlnFjI/Qc076um0FEdYyhpQL4hUlERFT3eHqIiIiIJIGhhYiIiF6qPgyV4OkhIiIieqn6MFSCPS1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJeppUjo6OxvHjxxEZGYnExESYm5vDxcUF06dPh729PQCgtLQUJ06cQEhICGJjY5GVlYVmzZrBy8sL48ePh6GhodI2BwwYoPa5Zs6ciYkTJ1Zyt4iIiEjbaBRadu3ahRs3bsDT0xNt27aFXC7HwYMHMX36dGzYsAGOjo7Iz8/HypUr4eLigtdeew2NGzdGVFQUtm7diqtXr2L16tWQyWRK2+3VqxeGDh2qVNa+ffuq7x0RERFpDY1Cy7hx4/D5559DX19fLPPy8sKUKVOwc+dOLFmyBPr6+li3bh26dOki1hkxYgSaNm2KX375BVeuXEGvXr2Utmtvbw9fX98q7goRERFpM43GtHTp0kUpsADPAkfr1q0RFxcHANDX11cKLAoeHh4AINZ7UUFBAQoKCjRpDhERETUgGvW0qCMIAtLS0tC6dety66WmpgIALCwsVJYdP34chw4dgiAIcHBwwKRJkzB48OCqNo2IiIi0SJVDy6lTp5CcnIypU6eWW2/37t0wMTFB3759lco7d+4MT09PNGvWDHK5HAcOHMBXX32FnJwcjBw5ssztpaSkQC6Xi4/L6sEhIiIi7VCl0BIXF4cff/wRLi4uKgNpn7d9+3ZcvnwZH330EczMzJSWrV+/XunxsGHDMH36dGzatAl+fn4qVxspBAUFITAwsCrNJyIiIgmpdGiRy+VYsGABTExM8NVXX0FXV1dtvdOnT2Pz5s149dVXy+05UdDX18fo0aOxatUqxMTEoGvXrmrr+fv7w83NTXwcFxeH5cuXV2pfiIiIqP6rVGjJzs7G/PnzkZ2djbVr18La2lptvUuXLmHFihXo378/Pv744wpv39bWFgCQmZlZZh1ra+syn5eIiIi0j8ahpaCgAAsXLkR8fDx++OGHMgfg3rp1C4sXL4aTkxOWLVsGPb2KP1VCQgIAwNLSUtPmERERkZbS6JLnkpISLF26FFFRUVi2bBk6d+6stt7Dhw+xYMECNG3aFN9++22Z41LS09NVynJzc7F//35YWFjAyclJk+YRERGRFtOop2XdunUICwuDq6srsrKycPLkSaXlvr6+yM3NxSeffIKsrCyMHz8e58+fV6rTvHlzMewcOHAAoaGhcHV1hZ2dHeRyOY4ePYqnT5/i3//+t8qcMERERNRwaRRa7t69CwAIDw9HeHi4ynJfX19kZGQgKSkJALBx40aVOkOHDhVDS5cuXXDz5k388ccfyMzMhJGREZydnbFgwQL07NlT450hIiIi7SUTBEGo60ZUh5iYGMyYMQMBAQE8rURERKSFNBrTQkRERFRXGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgS9DSpHB0djePHjyMyMhKJiYkwNzeHi4sLpk+fDnt7e6W6Dx8+xNq1a3Hjxg3o6emhf//+mD17NiwtLZXqlZaWYs+ePTh06BBSU1PRsmVLTJw4ET4+PlXeOSIiItIeGoWWXbt24caNG/D09ETbtm0hl8tx8OBBTJ8+HRs2bICjoyMAICkpCXPmzIGpqSlmzJiBvLw87NmzB/fv38fGjRuhr68vbjMgIAA7d+7EiBEj0LFjR4SGhuLLL7+ETCaDt7d39e4tERERSZZGoWXcuHH4/PPPlUKHl5cXpkyZgp07d2LJkiUAgB07diA/Px+bN2+GnZ0dAMDZ2RkfffQRjh07Bn9/fwBAcnIy9u7di1GjRmHevHkAgOHDh2POnDlYv349Bg0aBF1d3WrZUSIiIpI2jca0dOnSRSmwAIC9vT1at26NuLg4sSwkJASurq5iYAGAXr16wd7eHsHBwWJZaGgoiouLMWrUKLFMJpNh5MiRSE5ORlRUlMY7RERERNqpygNxBUFAWloaLCwsADzrPUlLS4OTk5NKXWdnZ8TGxoqPY2Nj0ahRIzg4OKjUUywnIiIiAjQ8PaTOqVOnkJycjKlTpwIA5HI5AMDKykqlrpWVFTIzM1FYWAgDAwPI5XI0btwYMplMpR4ApKSklPm8KSkp4nMBUOrpISIiIu1TpdASFxeHH3/8ES4uLhg6dCgAoKCgAABUTiMBgIGBgVjHwMAABQUFL61XlqCgIAQGBlal+URERCQhlQ4tcrkcCxYsgImJCb766itxwKyhoSEAoKioSGWdwsJCpTqGhoYVqqeOv78/3NzcxMdxcXFYvnx5JfeGiIiI6rtKhZbs7GzMnz8f2dnZWLt2LaytrcVlilM7z5+6UZDL5TA3Nxd7UqysrBAZGQlBEJROESnWfX67L7K2ti53OREREWkXjQfiFhQUYOHChYiPj8c333yD1q1bKy23sbGBpaUlYmJiVNaNjo5Gu3btxMft2rVDfn6+yniUW7duicuJiIiIAA1DS0lJCZYuXYqoqCgsW7YMnTt3Vltv4MCBCA8Px9OnT8WyK1euID4+Hp6enmKZu7s79PT0cPDgQbFMEAQcPnwYNjY2ZW6fiIiIGh6NTg+tW7cOYWFhcHV1RVZWFk6ePKm03NfXFwAwceJEnDlzBnPnzsWYMWOQl5eH3bt3w9HREX5+fmJ9W1tbjB07Frt370ZxcTGcnZ1x7tw5XL9+HUuWLOHEckRERCTSKLTcvXsXABAeHo7w8HCV5YrQYmdnh59++glr167Fxo0bxXsPzZo1SxzPovDOO+/AzMwMQUFBOH78OFq2bInFixdj8ODBld0nIiIi0kIyQRCEum5EdYiJicGMGTMQEBCgdmI7IiIikrYqz4hLREREVBsYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIioxuWm5ePK/ljkpuXXdVNIwhhaiIioxuWmFyDywF3kphfUdVNIwhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqoQchNy8eV/bHITcuv66YQEVElMbRQg5CbXoDIA3eRm15Q100hanBKSwUk388AACTfz0BpqVDHLSKp0qvrBhARkfZ6cDEREduikZP6rJczbEsUrh28h36TnNGmT9M6bh1JDXtaiIioRjy4mIjTqyPFwKKQk5qP06sj8eBiYh21jKSKoYWIiKpdaamAiG3R5daJ2B7NU0WkEYYWIiKqdom3U1V6WF6UI89H4u3UWmoRaQOGFiIiqnZ5FRz0XtF6REAlBuLm5uZiz549uHXrFqKjo5GVlYVFixbBz89Pqd6AAQPK3EavXr3www8/AACePHmCN954Q229L774At7e3po2kYiI6lgjS8NqrUcEVCK0ZGRkIDAwEHZ2dmjXrh0iIyPV1lu8eLFK2e3bt7F//3707t1bZZmPjw/69eunVObi4qJp84iIqB5o2rEJTJoYlXuKyMTKCE07NqnFVpHUaRxarKyscPDgQVhZWeH27duYOXOm2nq+vr4qZZGRkZDJZGp7T9q3b692HSIikh4dHRn6TXLG6dXqf9gCQL+3nKGjI6vFVpHUaTymxcDAAFZWVho/UWFhIUJCQvDKK6/A1tZWbZ28vDwUFRVpvG0iIqp/2vRpCu+53WHSxEip3MTKCN5zu3OeFtJYrU0uFxERgezsbAwePFjt8sDAQGzYsAEymQxOTk6YPn06+vTpU1vNIyKiGtCmT1M49LJDTHA8wrZEwW2aC5w87dnDQpVSa6Hl1KlTMDAwwMCBA5XKdXR00Lt3bwwYMADW1tZISEjAvn37MH/+fKxcuRL9+/dXu72UlBTI5XLxcVxcXI22n4iIKkdHRwYbRwsAgI2jBQMLVVqthJacnBycP38effv2hZmZmdIyOzs7rFq1SqlsyJAhmDRpEtatW1dmaAkKCkJgYGBNNZmIiIjqmVoJLSEhISgsLCzz1NCLzM3N4efnh507dyIpKUntGBh/f3+4ubmJj+Pi4rB8+fJqazMRERHVL7USWk6dOgVTU1O4urpWeB1FUMnKylIbWqytrWFtbV1tbSQiIqL6rcZnxE1JSUFkZCQGDBgAAwODCq+XkJAAALCwsKipphEREZGE1Hho+euvv1BaWlrmqaH09HSVsuTkZBw9ehRt27ZlbwoREREBqOTpod9++w3Z2dni1TthYWFISkoCALz++uswNTUV6546dQrW1tbo3r272m1t2LABjx8/Rs+ePWFtbY3ExEQEBQUhPz8fH3zwQWWaR0RERFqoUqFl7969SExMFB+fPXsWZ8+eBfBsJlxFaHn06BFiYmIwbtw46Oio79Tp3bs3EhIScPDgQWRlZcHU1BRdu3bFpEmT4OTkVJnmERERkRaqVGjZt29fheq1atVKDDNl8fHxgY+PT2WaQVQhpaUCku9nAACS72egiYM554kgIpKgWptcjqguPLiYiIht0eJN28K2ROHawXvoN8mZU4gTEUlMjQ/EJaorDy4m4vTqSJW7zOak5uP06kg8uJhYxppERFQfMbSQViotFRCxLbrcOhHbo1FaKtRSi4iIqKoYWkgrJd5OVelheVGOPB+Jt1NrqUVERFRVDC2klfLSC6q1HhER1T2GFtJKjSwNq7UeERHVPYYW0kpNOzaBSROjcuuYWBmhaccmtdQiIiKqKoYW0ko6OjL0m+Rcbp1+bzlzvhYiIglhaCGt1aZPU3jP7a7S42JiZQTvud05TwsRkcRwcjnSam36NIVDLzvEBMcjbEsU3Ka5wMnTnj0sREQSxJ4W0no6OjLYOFoAAGwcLRhYiIgkiqGFiIhqnLGlIbqPbgdjXrFHVcDTQ0REVOOMGxuh55j2dd0Mkjj2tBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLRQg2BsaYjuo9vB2NKwrptCRESVpFfXDSCqDcaNjdBzTPu6bgYREVUBe1qIiIhIEhhaiIiISBIYWoiIiEgSNB7Tkpubiz179uDWrVuIjo5GVlYWFi1aBD8/P6V6K1aswPHjx1XWb9WqFXbs2KFUVlpaij179uDQoUNITU1Fy5YtMXHiRPj4+GjaPCIiItJSGoeWjIwMBAYGws7ODu3atUNkZGSZdQ0MDDB//nylMhMTE5V6AQEB2LlzJ0aMGIGOHTsiNDQUX375JWQyGby9vTVtIhEREWkhjUOLlZUVDh48CCsrK9y+fRszZ84ss66uri58fX3L3V5ycjL27t2LUaNGYd68eQCA4cOHY86cOVi/fj0GDRoEXV1dTZtJREREWkbjMS0GBgawsrKqcP2SkhLk5OSUuTw0NBTFxcUYNWqUWCaTyTBy5EgkJycjKipK0yYSERGRFqrReVry8/Ph5+eH/Px8mJmZwdvbG++++y6MjY3FOrGxsWjUqBEcHByU1nV2dhaXd+3atSabSURERBJQY6HFysoKEyZMQIcOHSAIAi5cuIBDhw7h3r17WLNmDfT0nj21XC5H48aNIZPJVNYHgJSUFLXbT0lJgVwuFx/HxcXV0J4QERFRfVBjoeWdd95Reuzt7Q17e3sEBAQgJCREHGBbUFAAfX19lfUNDAzE5eoEBQUhMDCwehtNRERE9VatTuM/btw4bNmyBZcvXxZDi6GhIYqKilTqFhYWisvV8ff3h5ubm/g4Li4Oy5cvr4FWExERUX1Qq6HF0NAQ5ubmyMzMFMusrKwQGRkJQRCUThEpTv1YW1ur3Za1tXWZy4iIiEj71OqMuLm5ucjIyIClpaVY1q5dO+Tn56uMSbl165a4nIiIiKhGQktBQQFyc3NVyn/99VcIgoC+ffuKZe7u7tDT08PBgwfFMkEQcPjwYdjY2KBz58410UQiIiKSmEqdHvrtt9+QnZ0tnsIJCwtDUlISAOD1119HVlYWpk2bBh8fH7Rq1QoAcPHiRURERKBv375wd3cXt2Vra4uxY8di9+7dKC4uhrOzM86dO4fr169jyZIlFZ5YTjFgl1cRERERSY+DgwOMjIzKrSMTBEHQdMPjxo1DYmKi2mV79+6Fqakp1qxZg6ioKMjlcpSWlqJFixYYPHgwxo8fL17urFBaWopdu3YhKCgIcrkcLVu2xL/+9a+Xzqb7vJMnT3IgLhERkUQFBATAycmp3DqVCi31UXp6Oi5evIhmzZqJl0tLjeIKqMWLF6tMtteQ8Dj8g8fiGR6Hf/BY/IPH4hltOQ4V6Wmp1auHapKlpaVGPTP1mYODw0vTZkPA4/APHotneBz+wWPxDx6LZxrCcajVq4eIiIiIKouhhYiIiCSBoaUesbKywuTJkzW6i7Y24nH4B4/FMzwO/+Cx+AePxTMN6ThozUBcIiIi0m7saSEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJ0JrJ5aQiJSUF+/fvR3R0NG7fvo28vDysWbMG3bt3V6n7wQcf4Nq1ayrlffr0wffff69UVlhYiC1btuDkyZPIyspC27ZtMX36dPTu3bumdqVKNDkOAHDjxg3897//xZ07d2BiYgJPT0/MmDEDxsbGSvWkdhzKcuzYMaxcuVLtsoMHD6pcJRAaGoqtW7ciLi4OlpaWGDZsGCZNmqRyywyp0ZbXUxORkZH48MMP1S7bsGEDXFxcxMcV/VxIQW5uLvbs2YNbt24hOjoaWVlZWLRoEfz8/FTqPnz4EGvXrsWNGzegp6eH/v37Y/bs2bC0tFSqV1paij179uDQoUNITU1Fy5YtMXHiRPj4+NTSXmmuosdhxYoVOH78uMr6rVq1wo4dO5TKpHgcyiLtbzQJio+Px65du9CyZUs4OjoiKiqq3Po2NjZ45513lMrUXda2cuVKnDlzBmPHjkXLli1x7NgxzJ8/H2vWrEHXrl2rdR+qgybHITY2FvPmzYODgwNmz56NpKQk7N27F//73//w3XffKdWV2nF4mWnTpqFZs2ZKZaampkqPIyIi8O9//xuvvPIKPvzwQ9y/fx/btm1DWloaPv7449psbrXTttdTE6+//jqcnZ2Vylq0aCH+vyafCynIyMhAYGAg7Ozs0K5dO0RGRqqtl5SUhDlz5sDU1BQzZsxAXl4e9uzZg/v372Pjxo3Q19cX6wYEBGDnzp0YMWIEOnbsiNDQUHz55ZeQyWTw9vaurV3TSEWPAwAYGBhg/vz5SmUmJiYq9aR4HMokUK3KyckRMjIyBEEQhODgYMHDw0O4evWq2rpz5swRJk2a9NJtRkVFCR4eHsKuXbvEsvz8fGH8+PHCu+++Wz0Nr2aaHIdPPvlEGDlypJCdnS2W/f7774KHh4dw4cIFsUyKx6EsR48eFTw8PITo6OiX1n3rrbeEKVOmCEVFRWLZpk2bhAEDBggPHz6syWbWKG16PTVx9epVwcPDQwgODi63XkU/F1JRUFAgpKSkCIIgCNHR0YKHh4dw9OhRlXqrVq0SfHx8hMTERLHs0qVLgoeHh3D48GGxLCkpSfD09BR++OEHsay0tFSYNWuWMHr0aKG4uLgG96byKnocvv76a8HX1/el25PqcSgLx7TUMmNjY5ibm2u0TnFxMXJzc8tcHhISAl1dXfj7+4tlhoaGePXVVxEVFYWnT59Wur01paLHIScnB5cvX4avr6/SL4ghQ4agUaNGCA4OFsukeBwqIjc3FyUlJWqXPXz4EA8fPsSIESOUTgWNGjUKgiDgzJkztdTK6qetr6cmcnNzUVxcrFKuyedCKgwMDCo0OVpISAhcXV1hZ2cnlvXq1Qv29vZK+x0aGori4mKMGjVKLJPJZBg5ciSSk5Nf2stdVyp6HBRKSkqQk5NT5nKpHoey8PRQPRcfH48hQ4agqKgITZo0wfDhwzF58mSlP1CxsbFo2bKlSregomv57t27Sh9wKbl//z5KSkpUbgKmr6+P9u3bIzY2VizTxuPw4YcfIi8vD/r6+ujduzdmzZoFe3t7cfmdO3cAQOX4WFtbw8bGRun4SI02vp6aWLlyJfLy8qCrq4uuXbvivffeQ8eOHQFo9rnQJsnJyUhLS1N7U0BnZ2dERESIj2NjY9GoUSOVux4r3j+xsbGSP8WYn58PPz8/5Ofnw8zMDN7e3nj33XeVxjRp23FgaKnHmjdvju7du8PR0RH5+fk4c+YMtm3bhvj4eCxbtkysJ5fL1SZzRVlKSkqttbm6yeVyAOrH8VhZWeHvv/9Wqqstx8HQ0BB+fn7o3r07TExMEBMTg3379uH999/H5s2bxT/WLzs+iuVSpE2vpyb09PQwcOBA9OvXDxYWFnj48CH27t2L2bNnY/369ejQoYNGnwtt8rL9zszMRGFhIQwMDCCXy9G4cWPIZDKVeoD03z9WVlaYMGECOnToAEEQcOHCBRw6dAj37t3DmjVrxB+22nYcGFqqoLS0FEVFRRWqa2BgoPKmeZmFCxcqPR4yZAi+++47/P777xg3bpx4FUFBQYHS4LPnn1OxvCbV5HFQtL2s/SssLFSqW5fHoSyVOT5eXl7w8vISyz08PNCnTx/MmTMH27dvxyeffAIA4v4r9vHFbZV3WrG+q6+vZ03r0qULunTpIj52d3fHoEGDMGXKFGzatAnff/+9Rp8LbfKy/VbUMTAw0Pr3z4sXaHh7e8Pe3h4BAQEICQkRB9hq23FgaKmCv//+u8xLE1+0fft2le65ynjjjTfw+++/4/Lly2JoMTQ0VPtHUfHFZWhoWOXnLU9NHgdF28vav+f/WNf1cShLdR2frl27olOnTrhy5YpYpth/dX+kCgsL62yfq0N9fT3rQsuWLeHu7o6zZ8+ipKREo8+FNnnZfj9fpyG+f8aNG4ctW7bg8uXLYmjRtuPA0FIFrVq1wqJFiypUt7ruvmlrawsAyMrKUtp2cnKySl1FV6q1tXW1PHdZavI4KOqrO80hl8uV9q2uj0NZqvP42Nra4tGjRyr15XK5yvgOuVyucsmslNTX17Ou2NraoqioCPn5+Rp9LrTJy/bb3NxcDGxWVlaIjIyEIAhKvbva/P4xNDSEubk5MjMzxTJtOw4MLVVgZWWlduKjmpSQkAAASpMoKa7lz8nJURq0eOvWLXF5TarJ49CmTRvo6uoiJiZG6XRJUVERYmNj4enpKZbV9XEoS3Uen4SEBKXXvn379gCAmJgYdOrUSSxPSUlBcnKy0pU3UlNfX8+6kpCQAAMDAzRq1Eijz4U2sbGxgaWlJWJiYlSWRUdHK70n2rVrhz/++ANxcXFo3bq1WK7N75/c3FxkZGSo/H3QpuPAS57rqZycHJUuf0EQsG3bNgBQmhF00KBBKCkpQVBQkFhWWFiIo0ePolOnTpK+wsLU1BS9evXCyZMnlcZnnDhxAnl5eUpfztp0HNLT01XKzp8/j5iYGPTp00csa9OmDVq1aoXff/9d6bLoQ4cOQSaTYeDAgbXR3BqhTa+nJtS99nfv3kVYWBh69+4NHR0djT4X2mbgwIEIDw9XuuT9ypUriI+PV9pvd3d36Onp4eDBg2KZIAg4fPgwbGxs0Llz51ptd3UqKChQO17t119/hSAI6Nu3r1imbceBPS114NdffwXwbI4N4NkXzfXr1wEAb7/9NoBnl7IuW7YMPj4+aNGiBQoKCnDu3DncuHEDI0aMULrkr1OnTvD09MSmTZuQnp6OFi1a4Pjx40hMTMSCBQtqd+c0UJHjAADTp0/HrFmzMGfOHPj7+4szf/bu3VvpwynV46DOe++9hw4dOsDJyQkmJia4c+cOjh49CltbW7z11ltKdd9//30sWrQIH3/8Mby9vXH//n0cPHgQw4cPV/plJTXa9Hpq4osvvoChoSE6d+6Mxo0b4+HDh/j9999hZGSkNPiyop8LKfntt9+QnZ0tnroICwtDUlISgGczBJuammLixIk4c+YM5s6dizFjxiAvLw+7d++Go6OjUo+mra0txo4di927d6O4uBjOzs44d+4crl+/jiVLlkBXV7dO9rEiXnYcsrKyMG3aNPj4+KBVq1YAgIsXLyIiIgJ9+/aFu7u7uC0pHwd1ZIIgCHXdiIZmwIABZS47e/YsgGddwRs3bkR0dDRSU1Oho6MDBwcHDB8+HP7+/ipX4BQUFIj3aMnOzoajoyOmT5+u9Ku8vqnIcVC4fv26eI8VY2NjeHp64p133lG5x4oUj4M6AQEBiIiIwJMnT8QxDP3798fkyZPRpEkTlfrnzp1DYGAg4uLiYGFhAT8/P5X5fKRIW15PTezfvx+nTp3C48ePkZOTA0tLS/Ts2ROTJ09Gy5YtlepW9HMhFePGjUNiYqLaZXv37hVvafHgwQOVew/NmjVL5bNRWlqKXbt2ISgoCHK5HC1btsS//vUv+Pr61vi+VMXLjoOpqSnWrFmDqKgoyOVylJaWokWLFhg8eDDGjx+v8rmX6nFQh6GFiIiIJIFjWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaSGPHjh3DgAEDcOzYsbpuSoVERkZiwIAB+OWXX2rsOQYMGIAPPvigxrbfUIwbNw7jxo2r62bUe7/88gsGDBiAyMjIGn2effv2wcvLC0+ePKlQ/dr4rEnZV199hbFjx6KgoKCumyJZDC0NwDfffIMBAwZg+PDhKjdh1BZS+2OXkZGB//73v5g0aRIGDx6MwYMHY+zYsZg7dy62bt2K1NTUWmnHywLoBx98UO7tFhqSvLw8DB06FAMGDMAPP/xQ182pcVlZWdi2bRuGDRsmTp9PVTN58mSkpKTg//7v/+q6KZIl7RuT0Evl5uYiODgYMpkMmZmZOHfuHLy9vau0TQ8PD3Tq1AlWVlbV1MqGJSkpCe+//z6SkpLQvn17+Pn5wczMDHK5HDdv3sTWrVvRpUsXtfcY0nY//vhjXTehTMHBwcjNzYVMJsOff/6JWbNmwdDQsK6bVWP27duHzMxMTJgwoa6bojXs7e3h5uaGXbt24fXXX0ejRo3qukmSw9Ci5f766y/k5eVh3Lhx2L9/P44cOVLl0GJqagpTU9NqamHD88svvyApKQnTpk1Tupu1wr179xrs8W3RokVdN6FMR44cga6uLkaPHo3/+7//w9mzZzF48OC6blaNKC4uxh9//IEuXbrU69dEinx9fXH27FmcPn0aw4cPr+vmSA5Di5ZTfNG++eabuHfvHq5evYrExEQ0bdpUqd4vv/yCwMDAMrfTtGlT7Nu3D8CzUworV67EokWLlG4FP2DAALzyyitYsmQJNmzYgEuXLqGwsBDdunXD3Llz0bx5czx8+BCbNm3C33//jeLiYvTp0wfz5s1T6lWIjIzEhx9+iMmTJ2Pq1KlK7Xjy5AneeOMNDB06FJ999pn4+Pk2KKhb//bt29i0aROioqKgo6ODHj16YPbs2Srd32fPnkVwcDBu376NlJQU6OnpoW3bthgzZgwGDRpU/kF/iaioKADA6NGj1S5v27at2vKEhATs3LkTly5dglwuh4mJCVq3bg0/Pz/xdSgqKkJQUBDCw8Px8OFDpKenw8TEBF26dMHbb7+NDh06iNtbsWIFjh8/DgBYuXIlVq5cqbT/zx/L5/9fcewV7t27h+3bt+PatWvIzMyElZUV3NzcMGXKFFhYWIj1nn/t3nzzTQQEBODvv/9GZmameAdfxSk+xXsN+Oe9uWbNGqSkpGD37t149OgRTE1N4enpiXfffVelx6O4uBh79uzBH3/8gZSUFNjY2ODVV1+Fl5cXxo8fr7IPL/Po0SPcuHEDrq6uSj8A1IWW59+/rq6uFXq/AUBISAh27NiBBw8ewMTEBG5ubnjvvfcwbdo0lWNSnoq+HuW5ePEi5HI53nzzTbXLCwoKsHXrVpw6dQoZGRlo0aIFxowZo3IX6uclJCRg+/btuHTpEtLS0mBmZoY+ffpg6tSpKt9HgGbHQ/Fe3rNnD86ePYsjR44gISEB3t7e4uuclpaGHTt2IDw8HElJSTA2Nka3bt0wdepUODo6qjy/JvXj4+OxY8cOREZGQi6Xw8jICLa2tujevTvmzJkDmUwm1u3fvz+MjIxw/PhxhpZKYGjRYg8fPkRUVBT69euHJk2aYMiQIbhy5QqOHj2q8se8e/fuarcRFxeH4ODgCneDZ2VlYdasWbCyssKQIUPwv//9D+Hh4fjoo4+wYsUKzJ49G05OThg2bBju3LmDkJAQZGZmYs2aNZXaR1NTU0yePBn79+8HAIwZM6bMfbp9+zZ2796N7t27w9/fH7GxsTh37hzu37+PwMBApX3ctGkT9PT00KVLF1hZWSE9PR1hYWH4/PPP8eGHH+L111+vVHsBiH844uPj0alTpwqtc/36dSxYsAC5ubno06cPvL29kZWVhdjYWOzfv18MLZmZmfj555/RtWtX9OvXD2ZmZnjy5AnCwsJw4cIF/Pzzz3B2dgbw7DRfdnY2QkND4e7ujnbt2ik95+TJk3H8+HEkJiZi8uTJYnn79u3F/w8NDcXSpUshk8ng7u4OW1tbPHz4EAcOHMDFixexceNGmJmZKW338ePHeO+99+Do6IihQ4ciMzMT+vr6Lz0Gim26ubmhR48euHDhAn777TdkZGTg888/V6r77bff4sSJE2jevDlGjhyJoqIi7Nu3Dzdv3qzQ8X7RkSNHAABDhgyBnZ0dXnnlFURGRiIhIQHNmzdXu44m77cjR47g22+/hYmJCYYMGQJTU1NERETgo48+QnFxMfT0KvZVXZnXQ50rV64AAFxcXFSWlZaWYtGiRbh8+TIcHR3h4+ODzMxMrF27tszvkVu3buGTTz5BXl4eXF1d0bJlSyQmJuLUqVO4cOECNmzYoHQcK3s8Vq9ejVu3bqF///5wdXVF48aNATx7z33wwQdITk5G79694e7ujvT0dISEhODSpUv48ccflT6LmtRPSUnBO++8g/z8fPTv3x9eXl7Iz8/H//73Pxw6dAjvv/++Unv19fXRoUMHREVFIS8vj6eINCWQ1vr5558FDw8P4c8//xQEQRBycnIEX19fYcyYMUJJSclL109NTRXGjh0reHt7C9evXxfLjx49Knh4eAhHjx5Vqu/h4SF4eHgIP//8s1L5qlWrBA8PD8HPz0/Yt2+fWF5aWip8+umngoeHh3D79m2x/OrVq4KHh4ewZcsWlTYlJCQIHh4ewtdff61UPnbsWGHs2LFq90OxveePhcLy5cvVlj9+/FhlOzk5OcLbb78t+Pn5CXl5eSr7PmfOHLXP/6L9+/cLHh4egr+/v7Blyxbh6tWrQnZ2dpn1CwoKhNGjRwsDBw4UIiIiVJY/ffpUqW5SUpJKnfv37wu+vr7CvHnzlMrLei0V5syZI3h4eKhdlp6eLgwdOlQYPXq08OTJE6Vlf/75p+Dh4SH8+OOPYpnitSvrtRUE9a/jli1bxPdPXFycWJ6fny+8+eabwsCBA4Xk5GSx/PLly4KHh4cwdepUpdcpOTlZeO2119S+f8pTVFQkvPbaa4Kfn5+Qn58vCIIgHDlyRPDw8BACAgJU6mv6fsvMzBR8fX0FX19f4dGjR0rP++GHHwoeHh5lHpOrV6+KZZq+HuWZMWOGMHDgQKGgoEBlmeI988knnwjFxcVi+d27dwUvLy+V17eoqEgYO3asMGTIECEmJkZpW3///bcwaNAgYcGCBVU6Hl9//bXg4eEhjB49WkhMTFRp83vvvScMGjRIuHDhglL5o0ePhCFDhghvv/12pesrPs/Pf7cpZGRkqJQJwj/fzVeuXFG7nMrGq4e0VHFxMU6ePAkTExO4u7sDAIyNjeHh4YGnT5/i8uXL5a5fUFCAzz77DImJiVi4cCG6dOlSoedt1KgRpk+frlSmGENjYWGh1BMik8nEZffu3avwvlVWt27dVMbzDBs2DAAQHR2tVK7u17OxsTH8/PyQnZ2N27dvV7odo0ePxoQJE5CdnY3AwEB8+OGHGDZsGCZNmoT//ve/SElJUaofGhqK5ORkDB48GH379lXZnq2trfj/BgYGsLGxUanTpk0bdO/eXTwtVx1OnDiBnJwczJw5U6V739vbGx06dMDp06dV1mvSpAneeustjZ9vzJgxaNWqlfjY0NAQ3t7eKC0tRUxMjFh+8uRJAMDbb78NIyMjsdza2lrp/VdR58+fR2pqKjw9PcXekUGDBsHIyAjHjh1DaWmp2vUq+n4LDQ1FXl4ehg0bBnt7e7FcT09P5bNUnsq+HuokJyfD1NQUBgYGKssUpxSnT58OXV1dsbxt27bw9fVVqR8eHo7ExERMmDBB6fQkAHTt2hVubm6IiIhATk4OgKodjwkTJsDOzk6p7M6dO7h58yaGDBmCPn36KC2zt7fH8OHDcf/+fdy/f79S9RXU9Uabm5urbaeiByg5Obnc/SFVPD2kpUJDQ5Geno5XX31V6cM0ZMgQnDx5EkeOHFH5QCoIgoAVK1YgKioKU6ZMgY+PT4Wft2XLlkp/KACIVxk5Ojoqndt9ftmLf6hrgpOTk0qZ4g98dna2UnlaWhp27tyJiIgIPH36VGVehaq0VyaT4b333sOECRMQERGBW7du4fbt27hz5w4ePnyIoKAgfP/992L3s+IPXO/evSu0/djYWOzevRvXr19HamqqSkhJT0+HtbV1pduvoBibc+vWLTx+/FhleWFhITIyMpCeng5LS0uxvF27dhU6HfSiF//gAf8Etudfv7t37wJ49gfxRZ07d9b4ef/44w8Azz47CsbGxnB3d8eff/6Jixcvol+/firrVfT9pgjs6trbqVMnpWBQnsq+HupkZmaqDb+K9jZq1Ejt/nXt2lU8lfZiux49eqR2/pbU1FSUlpYiPj4eHTt2rNLxUJz6fN6tW7cAPPtMq3v+R48eif91dHTUuL5i3NKPP/6IK1euoG/fvnjllVfKPG0I/BNmMjIyyqxD6jG0aKnnz8E/r2fPnrCxsUFYWBgyMzPV/hLYvHkzgoOD4ePjgylTpmj0vCYmJiplii+Z8pZV16//8hgbG5f5/M//Ws7MzMTMmTPx9OlTdOnSBb169YKpqSl0dHRw9+5dhIaGoqioqMrtsbS0xNChQzF06FAAgFwux+rVqxESEoLvvvsOW7duBQDxF2hZf0Sed+PGDcybNw8A0KtXL7Rs2VLc79DQUNy9e7da2g48G78EAAcPHiy3Xn5+vtJjxa9MTZX3/nn+9cvNzYWOjo7aQaeaXkaekpKCixcvonnz5ip/RIcOHYo///wTR48eVRtaKvp+U7y+6o5LWfuhTmVfD3UMDQ3LnNMpJyenzPeiuuOraNepU6cq1K6qHA9162RmZgJ41mN2/vz5MtfNy8urVP1mzZphw4YN2Lp1KyIiIhAcHAwAaNWqFaZNmwZPT0+VdRU/grT5kvmawtCihZ4+fYpLly4BQLmztJ48eVKlu/zYsWPYvn07unTpgoULF9ZoO8ui6I0pKSlRWab4QqtJR44cwdOnT9Vekrxjxw6EhobWyPNaWVlh8eLFOH/+PO7du4eMjAxYWFiIlz9XpCt5+/btKCwsxNq1a1X+yCp+QVYXxR/lwMBAtVdflOXF3rbqZmxsjNLSUmRkZKj0KGg6ad+xY8dQUlKChISEMifZCwsLq1DvRVkUYSwtLU1lmWI/KhJYK/t6qGNhYVHm+83ExKTMHgJ1x1fRrm+++Qaurq4vfe6qHA917y3F9io6gF7T+sCzXuSvvvoKxcXFiImJwYULF7B//34sXboU1tbWKqfXFcGosu+ZhoxjWrTQ8ePHUVpaiq5du+LVV19V+af4Zf9iN+61a9fw/fffo3nz5vj666/Vns+uDYqrG9SdgomNjVW7jo6OjtqQUxmKrnXFWKDnXb9+vVqeoyz6+voq3d+KLm9FEC1PQkICzM3NVQJLfn4+7ty5o1JfR+fZV0BZx6685YrTV4ru//pCcRXUjRs3VJZpcvWQIAg4evQoAMDPz0/tZ6lz584oKioSx9FUhuISd3XtjY6OrvD7ujpfD0dHRxQWFuLp06cqy9q2bYu8vDylcUQK6j4fmraruo6HguLzU9Hn17T+8/T09ODi4oKpU6fiww8/hCAICA8PV6kXHx8PAFUOlw0RQ4uWUXzRymQyfPbZZ1iwYIHKv88++wwuLi64d++eOKA0Pj4eixcvhqGhIb755ps6/QXQqlUrGBsbi6ewFFJTU7Ft2za165ibmyMjI6Na7umhGMT44pfmqVOnEBERUeXt79mzB3FxcWqXHThwAHl5eWjVqpXYDe7m5gYbGxucOnUKFy9eVFnn+V/EdnZ2yMrKwoMHD8SykpISrF+/Hunp6SrrKk4PJiUlqW1PecuHDRsGY2NjBAQEKD2fQn5+fp0EGsXcKYGBgUrvB7lcLl4aXxHXrl3D48eP0a1bNyxatEjtZ0nRG/niDwBNuLu7o1GjRjhy5IjSWJTi4mJs2bKlwtupztfjlVdeAaC+d05xynnz5s1KAeLevXtqw5u7uzvs7Oywd+9eXLt2TWV5cXGxUtipruOh0KlTJ3Tq1AmnT59WOxC5tLRUqV2a1o+JiVHbA6zodVL34+/WrVuwsrJSGmhMFcPTQ1rm6tWrePLkyUsHgg0bNgxRUVE4cuQIOnbsiJ9++gmZmZno1asX/vrrL5X6pqamtXZvH319fbz++uvYvn07pk+fDjc3N+Tl5SEsLAyvvPKK2kGG3bt3x+3btzF//nx07doVenp66Natm/jlqwlfX1/s2rULa9asQWRkJOzs7HD37l1cvXoVAwYMwNmzZ6u0fydPnsT69evh6OiITp06oXHjxsjKysKtW7dw584dGBoa4uOPPxbrGxgYYNmyZfj000/x6aefok+fPmjXrh1ycnJw9+5dFBQUiF/mr7/+Oi5duoRZs2bB09MTBgYGuHbtGlJSUtC9e3eVG+y5uLjA0NAQ+/fvR1ZWlhhWFafFevTogTNnzmDJkiXo27cvDAwM0K5dO7i5ucHS0hJffPEFPv/8c0ydOhV9+vRBq1atUFRUhMTERFy7dg2dO3fG999/X6XjpalevXrBx8cHf/75JyZPngx3d3cUFRUhODgYzs7OCA8PF3uQyqMIIoorftRp1aoVOnfujJs3b+LWrVsVnnfneWZmZpg9eza+++47zJgxA15eXjAxMUFERAQMDAxgbW1doVNq1fl6uLu7Y926dbh8+bLKmAzFWJ4LFy5g2rRp6Nu3L7KysnD69Gn07t1bpWfBwMAAX375JebPn48PPvgAPXr0EAflJyYm4vr167CwsMCOHTuq9Xg87/PPP8fcuXOxbNky7N+/H+3bt4ehoSGSkpJw8+ZNZGRk4M8//6xU/RMnTiAoKAjdunVDixYtYGxsjIcPH+LChQswNzdXef88fvwYT548wciRIzXaB3qGoUXLKL5on5+pVh0vLy/89NNPOH36NGbPni3+Ir18+bLay6GbNm1aqzcknDZtGvT09HDkyBEEBQWhadOmePvtt+Hq6oqQkBCV+m+//Tays7MRHh6O69evo6SkBJMnT65UaLG1tcVPP/2EDRs24PLlyygpKUGHDh2watUqJCUlVTm0LFy4EOHh4bh69SouXryItLQ06OjowM7ODiNHjsTYsWNVfoF17twZmzdvxo4dO3Dx4kVcuXIFZmZmaN26NV577TWxnqurK7788kvs2LEDp06dgqGhIXr06IGvv/5a7YzH5ubm+PLLL7F161b88ccf4vtAEVqGDx+OJ0+e4K+//sKuXbtQUlKCoUOHws3NDcCz2T23bNmC3bt348qVK7h8+TKMjIxgY2MDPz8/tZfA1obPPvsMDg4OOHr0KA4cOAAbGxuMHTsWPXr0QHh4uNpBss/Lzs5GSEgIGjVqhIEDB5Zbd9iwYbh58yaOHDlSqdACACNGjICZmRm2b9+O48ePizPAvvvuuxg7dmyFp9KvrtejWbNm6N27N86cOYMPP/xQqbdAR0cHK1aswNatW/Hnn3/it99+Q/PmzTF79my0bNlS7ekQZ2dn/PLLL9i9ezciIiJw8+ZN6Ovrw9raGh4eHiqXhlfX8VBo3rw5tmzZgr179+LcuXM4duwYdHR0YGVlhW7duqnMcq1JfR8fHxQWFuLGjRuIjo5GUVERbGxs8Nprr6m9BFvRG+Xv76/RPtAzMkEQhLpuBBFRbfjjjz/wn//8Bx999JEkfun+73//w5tvvglPT08sW7asVp/7ypUrmDdvHhYvXlxn4fNFdXk8qkNxcTHefPNNNGvWrNKzgDd0HNNCRFpHLpfjxd9jycnJ2LZtG3R1ddG/f/86apl6WVlZKpcYFxQUYO3atQCe3XKhtvXs2RN9+/bFtm3bypxAr6bUx+NRHY4fP46nT5/i/fffr+umSBZPDxGR1tm5cyfOnz+Pbt26wdLSEklJSQgPD0dubi6mTJmi0mVf165du4Zvv/0WvXv3hq2tLTIyMsSbm/bo0QNeXl510q4PPvgAp06dQnJycq0es/p6PKpKJpPh008/VTsxH1UMTw8Rkda5cOEC9u7di3v37iErKwsGBgZo27YtRo4cqfbOzHUtPj4eW7Zswc2bN8WrvFq0aCHelbqhTULG40FlYWghIiIiSeCYFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikoT/B+I6goouf7ANAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "titles = {'grb': 'GRB ASAD', 'grb & background': 'GRB+background ASAD', 'background': 'Background ASAD', 'unpolarized': 'Unpolarized ASAD'}\n", + "for key in titles.keys():\n", + " grb_polarization.plot_asad(asads[key]['counts'], asads[key]['uncertainties'], titles[key])" + ] + }, + { + "cell_type": "markdown", + "id": "539abbb2", + "metadata": {}, + "source": [ + "Divide the GRB ASAD by the unpolarized ASAD to correct for instrumental effects" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "50e01dd4", + "metadata": {}, + "outputs": [], + "source": [ + "asad_corrected = grb_polarization.correct_asad(asads['grb'], asads['unpolarized'])" + ] + }, + { + "cell_type": "markdown", + "id": "3275a6a6", + "metadata": {}, + "source": [ + "Calculate the minimum detectable polarization (MDP) of the GRB " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "d79420fd", + "metadata": {}, + "outputs": [], + "source": [ + "source_counts = np.sum(asads['grb']['counts'])\n", + "background_counts = np.sum(background_asad_grb_duration)\n", + "\n", + "mdp = 4.29 / mu_100['mu'] * np.sqrt(source_counts + background_counts) / source_counts" + ] + }, + { + "cell_type": "markdown", + "id": "2ffedf1b", + "metadata": {}, + "source": [ + "Fit the polarization fraction and angle of the GRB" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "2f180dd5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best fit polarization fraction: 0.88 +/- 0.183\n", + "Best fit polarization angle: 80.116 +/- 5.942\n", + "MDP: 0.451\n" + ] + } + ], + "source": [ + "polarization = grb_polarization.fit(mu_100, asad_corrected['counts'], bounds=([0, 0, 0], [np.inf,np.inf,np.pi]), sigma=asad_corrected['uncertainties'])\n", + "\n", + "if mdp > polarization['fraction']:\n", + " print('Polarization fraction is below MDP!', 'MDP:', round(mdp, 3))\n", + "else:\n", + " print('MDP:', round(mdp, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "f7f553e1", + "metadata": {}, + "source": [ + "Plot the corrected ASAD for the GRB with the best fit sinusoidal function" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "c1f14711", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHOklEQVR4nO3dd1wT9/8H8FfCHioKCG5FXLgXWhVlKO49Wm3dq27bWq22dX2drW0dba0b96irKG7rxI2oFfdCVEBA2Rvu90d+OY0JSBi5BF7Px8NHe3efu3tfcgnvfO4zZIIgCCAiIiLSI3KpAyAiIiL6EBMUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPQOExQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFCLSiWfPnkEmk2HIkCFSh0JEBoAJChV59+7dw4QJE1CnTh2UKFECpqamKFu2LDp37ox169YhJSVF6hALzJAhQyCTyfDs2TOpQ8lWQEAAvvzyS/E9MjExgb29Pdzc3PDjjz/i/v37avsor+39f5aWlnBxccE333yDiIgIjedyd3dX28/Y2BgODg7o3LkzDh8+nOvrCAkJgZGREWQyGWbMmJFt2YyMDKxZswZt2rRBqVKlYGJigtKlS6NevXoYMWIEfH19s91/69atYvzHjh3Lstzp06c1vk5lypRB69at8e233yIwMDBX10uUF8ZSB0Akpblz52LOnDnIzMzEJ598gsGDB8Pa2hrh4eE4ffo0RowYgZUrV+LatWtSh1okpaamYuLEiVi1ahVkMhlatGgBDw8PFC9eHNHR0QgICMDChQuxYMEC7N+/H127dlU7Rvfu3dGgQQMAQHh4OA4dOoRff/0Ve/bsQUBAAGxtbTWee/DgwahcuTIAICkpCffv34efnx8OHTqEVatWYdSoUVpfz9q1a5GZmQmZTIYNGzZg7ty5MDZW/xrOyMhAly5dcOTIEdjY2KBz584oX748UlNTERQUhG3btuHevXvo1q1bludavXo1ZDIZBEHA6tWr4e3tnW1slSpVEmu3UlNTERERgevXr2PJkiVYsmQJBgwYgFWrVsHa2lrr6ybKFYGoiJo/f74AQKhQoYJw6dIljWUOHDgguLu76zgy3Rk8eLAAQHj69GmBn+vp06cCAGHw4ME53mfIkCECAKFu3brC7du3NZZ59uyZMGrUKGHjxo0q65XXtmHDBpX1SUlJQv369QUAwuzZs9WO16ZNGwGAcOrUKbVtu3fvFgAIlSpVyvE1KKWnpwvly5cXihcvLowdO1YAIOzZs0dj2c2bNwsAhPr16wvR0dFq2xMSEoR///03y3Pdu3dPACC0bdtWaNy4sWBiYiKEhYVpLHvq1CkBgNCmTRuN2wMDA4W6desKAIQOHTp8/EKJ8gkf8VCR9OzZM8yePRsmJiY4dOgQmjVrprGc8lfsh3bt2oXWrVujRIkSsLCwQN26dbFw4UKNj4MqV66MypUrIzY2Fl9//TUqV64MExMTzJ49O0fbAcVjqCFDhqBChQowNTWFg4MDBgwYoPHRBgAkJiZi8eLFaNKkCYoVKwZra2vUqlULEydORHh4OABAJpNh48aNAIAqVaqI1fvKWgOlN2/eYPr06ahVqxYsLCxQokQJeHl5ZfnYIC4uDl9//TXKly8Pc3Nz1KxZE7/++isyMzM1ls/K2bNn4ePjA1tbWxw7dgy1a9fWWK5SpUpYtWoVBgwYkKPjmpub4/PPPwcAXL16VauYlLUQWT0eys7hw4fx4sULfPrppxgzZgwAYM2aNRrLXrhwAYDiMVWJEiXUtltaWsLDwyPLcymPO3ToUAwZMgRpaWnw8fHROmYAaNCgAU6cOAF7e3scOXIE+/fvz9VxiLTFRzxUJG3YsAFpaWn47LPPUKdOnWzLmpmZqSzPmDEDCxcuhJ2dHQYMGABra2scPnwYM2bMwNGjR3Hs2DGYmpqq7JOamgpPT0+8efMG3t7eKF68OKpUqZKj7UeOHEGvXr2QlpaGrl27wtnZGS9evMDevXvh5+eHU6dOoVGjRuKx3r59Cw8PD9y8eRM1atTAsGHDYGpqisePH2PDhg3o1asXHBwcMGvWLOzfvx83b97EpEmTYGNjAwDifwEgODgY7u7uePbsGdzc3NChQwckJCTg4MGD6NChA1atWoWRI0eK5VNSUuDl5YWrV6+ifv36+PzzzxEdHY3//e9/OHPmjFbvkfKP7OjRo+Ho6PjR8poelXyMiYmJVuVPnDgBAGjSpInW51q9ejUARdJRp04dNG7cGMeOHUNwcDAqVaqkUlb52OnBgwdanyc1NRUbN25EiRIl0LNnTyQlJeGbb77B2rVrMXXqVMhkMq2PWbp0aYwePRrz5s3D1q1b0aNHD62PQaQ1qatwiKTg6ekpABDWrFmj1X4XLlwQHwuFhoaK69PS0oQuXboIAIT58+er7FOpUiUBgODl5SXEx8erHTO77W/evBFsbGwEW1tbISgoSGXbf//9J1hZWQkNGzZUWd+/f38BgPDll18KGRkZKtvi4uJUHhl87BFPmzZtBJlMJmzfvl1l/du3b4X69esL5ubmKo8OlI/NevXqpXLuJ0+eCCVLltTqEU+VKlUEAMKJEydyVP5DWT3iSUxMFB9ZLFmyRG0/5SOewYMHC7NmzRJmzZolTJs2TejZs6dgYmIiuLi4qL0XH/PixQvByMhIqF69urhuxYoVAgDhhx9+UCt//fp1wcTERJDJZMIXX3wh7NmzR3j27FmOzrV9+3YBgDBq1ChxXe/evbN8LT/2iEfpxIkTAgChYsWKOYqDKK+YoFCRVKtWLQGAcPjwYa32GzFihABAWLVqldq2+/fvC3K5XKhSpYrKemUCcuPGDY3HzG770qVLBQDC77//rnHfyZMnCwDEP5jh4eGCXC4XypQpozEZ+lB2CcqNGzcEAEKfPn007rt//34BgPDHH3+I65ydnQW5XC48evRIrfysWbO0SlAsLCwEAMLdu3fVtgUGBorJg/Lfh4mI8tq6d+8ulhkzZoxQoUIFAYDQunVrISEhQe3YygRF079SpUoJ8+fPF5KTk3N0DUpz584VAAgLFiwQ10VFRQmmpqZC2bJlhfT0dLV9du7cKTg6Oqqdv0ePHoKvr2+W51Im3xcuXBDXHThwQAAg9OvXT618ThOUu3fvCgAECwuLHFwxUd7xEQ+RFq5fvw4A8PT0VNtWvXp1lC9fHk+fPkVMTIxK2wFzc3PUq1cvy+Nmtf3ixYsAgJs3b6q0SVFSPgK4e/cuXFxccPXqVWRmZqJ169awsrLS6tqyOndMTIzGcyvbYdy9exeAou3Jo0ePUKFCBVStWlWtvLu7O+bMmZOnmJRu3Lihdqw2bdpoHGPln3/+wT///KOyrl27dvDz88v2Ec+pU6fg7u4OAEhLS8OzZ8+wdOlSfP/99zhy5AhOnz4NufzjzfgyMzOxbt06yOVyDBo0SFxfqlQpdO3aFXv27IGfn59aj5x+/fqhZ8+eOHXqFM6fP4/AwECcP38e+/fvx/79+zFo0CD4+PioPLJ59OgRTp06hRo1auCTTz4R13fo0AGOjo7Yv38/IiMjYWdn99G4PyQIAgDk6hERUW4wQaEiqUyZMrh79y5evnyp1X4xMTHi/lkd9/nz54iOjlZJUEqXLp3tF3tW26OiogBk3ZhSKT4+HgAQHR0NAChXrly25XNCee7jx4/j+PHjHz238rVxcHDQWC4n7Ug+LP/06VO8evUKNWvWVNk2ZMgQMRl59OgRqlWrluVxNmzYgCFDhiAjIwNPnjzBjz/+iJ07d2LMmDFYu3ZtjmIxMTFBtWrV8Mcff+DmzZs4d+4cdu7cif79+39036NHjyI4OBjt27dXe1+GDBmCPXv2YPXq1Rq7DJuYmMDb21tsnJuRkYE9e/Zg2LBh2LRpE3r27KnSHmTNmjUQBEEtUTM2Nsbnn3+OX375BT4+PpgyZUqOrvt9r169AgDY29trvS9RbrAXDxVJrVq1AgCcPHlSq/2USUdYWJjG7aGhoSrllD72qzOr7crj3Lx5E4LikazGf4MHDwbwroGrtolXdudetmxZtufesGGDSnllL6EPZfWaZaVly5YAtH+PsmJkZIRq1aph27ZtaNasGdatW/fRwc40Ufb4unLlSo7KKxvHHj16VG1ANOW4LUeOHEFISEiOrqFfv3746quvAAD//vuvuO39njrTp09XO9cvv/wC4OPJblZOnToFAFn2eCPKb0xQqEgaOnQoTExMsGfPHty5cyfbsu93HW7YsCEAxeibH3r06BFevHiBKlWqqPSEyYvmzZsDAM6dO5ej8q6urpDL5Th79iwSEhI+Wt7IyAiA4pd5Xs9drFgxODs74+XLl3j8+LHadk2vWXZGjBgBQPEHPqukJzfkcjmWLVsGAJg2bZrGa8/O27dvASBH3abDwsJw8OBBFC9eHMOHD9f4r2XLlsjIyMD69etzHEOxYsUAvHvsAigeZb1+/Ro1atTI8lxOTk548OCB1j2qXr9+jVWrVgGA2EWbqMDpvNULkZ5Q9jipXLmycPXqVY1lDh8+LHh4eIjL/v7+4j6vX78W16enpwvdu3cXAAjz5s1TOUalSpWyHdgru+2RkZGCjY2NYG9vL1y+fFlte0ZGhtqAYgMGDMhxL55vv/1WAJDloF9ubm6CXC4X1q1bp3H7rVu3hPDwcHFZ+Zr27t07z714BOHdQG3169cX7ty5o7HM1atXNTbyzKoXj5Ky19X69etV1mc3UNvTp0+FEiVKCACEvXv3fjR+5esxZsyYLMs8fPhQkMlkQoUKFcTXbNu2bcKxY8fU3j9BEITQ0FDB2dlZACDs2rVLXN+uXTsBgLBz584sz7V27VoBgDBgwABx3ccayd64cUOoV6+eAEDo1KnTxy6ZKN/IBOG9FJyoiHl/qPsWLVqgSZMm4lD3Z8+excOHD9GkSROVAb2mTZuGn376CaVLl0afPn1gZWWFw4cP4/bt22jVqhVOnjypMg6KcuCzrOa7+dj2kydPomfPnoiPj4eXlxdq164NmUyGkJAQXLx4EVFRUUhOThbLv337Fu7u7rh16xZq1qyJ9u3bw9TUFE+fPsXRo0fh6+srNv48evQoOnTogKpVq6J3794oVqwYbGxsMH78eADAixcv4OnpiYcPH6J+/fpo1qwZbGxs8OLFC9y6dQu3b9/GxYsXxdqWlJQUuLm5ieOgtG/fHtHR0eLAdr6+vhg8eHCOBw1LTU3FhAkTsHr1asjlcrRo0QINGzZE8eLFERUVhYcPH+L06dMQBAHTp0/HvHnzxH2HDBmCjRs3im1QPhQYGIjGjRujYsWKePDggfieubu748yZMypD3aelpSE4OBj79+9HQkICunbtin/++SfbR3eCIKBq1ap4+vQpAgICVMaq+ZCHhwdOnz6NgwcPonPnzpg8eTKWLVsGR0dHtGrVShwT5+nTp/Dz80NSUhK6d++Offv2QSaT4enTp6hatSpsbW3x8uVLtXF4lOLj41GmTBmkpaXh1atXKFWqFE6fPg0PDw+Voe7T0tIQGRmJgIAABAQEAAC++OIL/PXXX3lufE2UY9LmR0TSu3PnjjB+/Hihdu3aQrFixQQTExPB0dFR6NChg7B27VqNXUq3b98utGzZUrC2thbMzMwEFxcXYd68eUJSUpJa2bzUoCg9ffpUGDdunODs7CyYmZkJxYoVE2rUqCF88cUXwr59+9TKx8fHC/PmzRPq1q0rWFhYCNbW1kKtWrWESZMmqdR4CIIg/PLLL0LNmjUFU1NTjcO4x8bGCvPnzxcaNWokWFlZCebm5kLlypWFTp06CatWrVLrzhwTEyN89dVXQtmyZQUzMzOhRo0awpIlS4THjx9rXYOidPXqVWHUqFFCrVq1hGLFignGxsaCra2t0KJFC2HGjBnCvXv31Pb5WA2KIAhCr169BADC8uXLxXWauhnLZDLBxsZGaNWqlbBq1SqN3YI/dOzYMQGA2jg1mmzdulUAIHTr1k0QBEF4/vy58Pvvvws9evQQqlevrnJfduzYUdi8ebNK7cqMGTMEAMJXX3310XONHDlSACD8+uuvgiC8q0F5/5+5ubng6OgouLm5CVOmTBECAwM/elyi/MYaFCIiItI7bCRLREREeocJChEREekdJihERESkd5igEBERkd5hgkJERER6hwkKERER6R2DTFCSk5Nx//59lcGpiIiIqPAwyAQlODgYI0eORHBwsNShEBERUQEwyASFiIiICjcmKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYoREREpHeYoBAREZHeYYJCREREeocJChEREekdJihERESkd5igEBERkd5hgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCUo+SHybjIDdD5H4NlnqUIiIiAoFJij5IDE6BYF7HyExOkXqUIiIiAoFJihERESkd5igEBERkd5hgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYoREREpHeMtd0hMTERO3bswJ07d3D37l3ExcVh+vTp6NixY46Pce3aNWzevBkPHjxAZmYmKlSogP79+8PLy0vbcIiIiKgQ0jpBiYmJgY+PDxwcHODs7IzAwECt9j906BAWL16MJk2aYOTIkTAyMsLz58/x+vVrbUMhIiKiQkrrBMXW1hb79u2Dra0t7t27h1GjRuV439DQUPz222/o1asXJk2apO2piYiIqIjQug2KqakpbG1tc3Wyf/75B5mZmRg+fDgAxeMiQRBydSwiIiIqvLSuQcmLgIAAVKxYEZcuXcLKlSsRERGBYsWKoWfPnhg2bBjkcrbZJSIiIh0nKC9evIBcLseiRYvQv39/VK1aFWfPnsWmTZuQkZGB0aNHa9wvMjISUVFR4nJwcLCuQiYiIiIJ6DRBSUpKQmZmJkaPHo3PP/8cAODu7o64uDjs3r0bAwcOhKWlpdp+vr6+8PHx0WWoeivxbTLungxBLa8KsCxpLnU4REREBUKnCYqZmRmSkpLQtm1blfVeXl64fPkyHjx4gAYNGqjt161bN7Rs2VJcDg4Oxrx58wo6XL2UGJ2CwL2PUKlxaSYoRERUaOk0QbG1tcWLFy9QsmRJlfXK5bi4OI372dnZwc7OrsDjIyIiIv2g01apNWrUAKBoU/I+5bKNjY0uwyEiIiI9VWAJSmRkJIKDg5Geni6u8/T0BAD4+fmJ6zIzM3H48GEUL15cTGCIiIioaMvVI549e/YgPj5e7Fnj7+8vjgTbu3dvWFtbY/Xq1Thy5Ah27tyJMmXKAABatWqFxo0bY8uWLYiOjoazszPOnTuHW7duYcqUKTA1Nc2nyyIiIiJDlqsEZefOnQgLCxOXz549i7NnzwIAvL29YW1trXE/mUyG+fPnY+3atfj3339x5MgRVKhQAT/88AO8vb1zEwoREREVQrlKUHbt2vXRMjNmzMCMGTPU1ltaWmLixImYOHFibk5NRERERQCHbiUiIiK9wwSFiIiI9A4TFCIiItI7TFCIiIhI7zBBISIiIr3DBIWIiIj0DhMUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPQOExQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFCIiItI7TFCIiIhI7zBBISIiIr3DBIWIiIj0DhMUIiIi0jtMUPIoM1NAxJMYAEDEkxhkZgoSR0RERGT4jKUOwJA9vRKGS5vuIuFNMgDAf10Qbux7jOaDaqGKq6PE0RERERku1qDk0tMrYTi5NFBMTpQS3iTj5NJAPL0SJlFkREREho8JSi5kZgq4tOlutmUubb7Lxz1ERES5xAQlF8LuvVGrOflQQlQywu690VFEREREhQsTlFxIik7J13JERESkiglKLljYmOVrOSIiIlLFBCUXHGuWglUp82zLWNmaw7FmKR1FREREVLgwQckFuVyG5oNqZVum+cBakMtlOoqIiIiocGGCkktVXB3hNbmhWk2Kla05vCY35DgoREREecCB2vKgiqsjKjVxwP1TIfBfF4SWw2ujhkcF1pwQERHlEWtQ8kgul8HeqQQAwN6pBJMTIiKifMAEhYiIiPQOExQDwokJiYioqGAbFAPBiQmJiKgoYQ2KAeDEhEREVNQwQdFznJiQiIiKIiYoeo4TExIRUVHEBEXPcWJCIiIqipig6DlOTEhEREURExQ9x4kJiYioKGKCouc4MSERERVFWicoiYmJWL9+PaZMmYLOnTujdevWOHz4cK5O/tNPP6F169aYNm1arvYvKjgxIRERFTVaD9QWExMDHx8fODg4wNnZGYGBgbk68b1793D48GGYmprmav+ihhMTEhFRUaJ1DYqtrS327duHv//+G2PGjMnVSQVBwLJly9C+fXuUKsW2EznFiQmJiKio0DpBMTU1ha2tbZ5OevToUTx9+hQjR47M03GIiIiocNJ5I9nExET89ddf+OKLL/Kc6BAREVHhpPPJAn18fGBmZoZ+/frleJ/IyEhERUWJy8HBwQURGhEREekJnSYoISEh2L17N2bOnKlV41hfX1/4+PgUXGBERESkV3SaoCxfvhx16tSBu7u7Vvt169YNLVu2FJeDg4Mxb968fI6OiIiI9IXOEpSAgABcvnwZ8+bNQ2hoqLg+IyMDKSkpCA0NRfHixWFlZaW2r52dHezs7HQVKhEREUlMZwnK69evAQA//PCD2raIiAh8+umnGD9+vFZtU4iIiKhwKrAEJTIyEgkJCShXrhyMjY3RqFEjzJ8/X63czz//DEdHRwwcOBBOTk4FFQ4REREZkFwlKHv27EF8fLzYs8bf31+sIenduzesra2xevVqHDlyBDt37kSZMmXg4OAABwcHtWOtWLECJUuWhJubWx4ug4iIiAqTXCUoO3fuRFhYmLh89uxZnD17FgDg7e0Na2vr/ImOiIiIiqRcJSi7du36aJkZM2ZgxowZ+XIsIiIiKlp0PpIsERER0ccwQSEiIiK9wwSFiIiI9A4TFCIiItI7TFCIiIhI7zBBISIiIr3DBIWIiIj0DhMUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPQOExQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFNIo8W0yAnY/ROLbZKlDISKiIogJCmmUGJ2CwL2PkBidInUoRERUBDFBISIiIr3DBIWIiIj0DhOUfGBpY4aGvZxhaWMmdShERESFgrHUARQGliXN0bhPNanDICIiKjRYg0JERER6hwkKERER6R0mKESUIxwbh4h0iQkKEeUIx8YhIl1igkJERER6hwkKEekVPkoiIoAJChHpGT5KoqKAifjHMUExMBwUjojI8DER/zgO1GZgOCgcEREVBaxBISIiIr3DBIWIiIj0DhMUIiIi0jtMUIiIiEjvMEEhIiIivcNePDqQlpEGmUwGI5kRZDKZ1OEQFTmZQiYyhUzIIIOR3EjqcIgoB5ig5LOg10E4+vgorr26hsCwQLyKe4XYlFgAgJHMCOWLl4dTSSe4lnNFm0pt4OXkBVMjU4mjJio8YlNicfTRUVx8cRGXX17G07dPEZ4QjkwhEwBQ0rwkKpSogAaODdC8XHN0qd4FFUpUkDhqIvoQE5R8EJUYhVUBq7Dl1hbcjbybZbkMIQPBMcEIjgnGqWensNh/MUqYlUCPmj0w3nU8mpRtosOoiQoPQRBw+NFhrL2+FoceHkJKRtaDX71Nfou3yW9xK/wWNt3chLGHxqJp2aYY0WgEBtYbCAsTCx1GTkRZYYKSB68TXmPe2XlYe30tktKT1LabGZmhkk0l2FnaQQYZ4lPj8SL2BaKSosQyMSkx2HhzIzbe3Aj3yu6Y4z4HrSu11uVlEBksQRCwK2gX5p+bj/9e/6exTBnrMihbrCwsTCyQnpmO1wmv8TzmOdIz08UyV19dxdVXVzHj5AxMbj4ZX3/yNSxNLHV1GUSkAROUXEjLSMOKKysw58wc8fENAMggQ6uKrdC7Vm+4V3aHi70LTIxM1PYPjQvFhZAL2H9/P3zv+4rHOP3sNNr4tEG/2v3wU9ufUMmmks6uicjQ3Ai7gQmHJ+D88/Mq6x2sHNDHpQ86OndEs/LNYGdpp7ZvcnoybobdxNHHR7H37l7cDL8JAIhKisKPp37EqoBVWNx2MfrX6c92Y0QSYYKipbsRdzFw30AEhAaI6yxNLDGi4QhMbj4ZVUpW+egxyhQrg94uvdHbpTeS0pKw5dYWLLm4BA+iHgAAdgXtwqGHh7C8w3IMaTCEX5BE70nPTMe8s/Pwv7P/E9uVAECzcs0wreU0dKvR7aMNYc2NzdGsfDM0K98MM9vMRMCrAPx26TfsuL0DGUIGXsS+wOd7P8fOoJ1Y3WU1HKwdCvqyiOgDWicoiYmJ2LFjB+7cuYO7d+8iLi4O06dPR8eOHT+6b0BAAI4fP45bt24hIiICpUqVQqNGjTB8+HDY2an/ytE3qwNWY9KRSUhOV8w+KYMMwxsOxzzPebn+ArMwscDIxiMxrOEwbLixATNOzkBEYgTiU+MxzHcYDj48iPXd1qOEeYn8vBQig/Qs+hn67+mPSy8uieucSzljaful6FStU66T+cZlG2NLry343u17TDk+BYceHgIA+N73xYWQC9jaayu8q3rnyzUQUc5oPQ5KTEwMfHx8EBwcDGdnZ632/euvvxAYGAg3NzdMmjQJXl5eOHXqFEaMGIGoqKiPH0AiqRmp+PLglxh9cLSYnNSwrYFLIy5hTbc1+fLrykhuhBGNRuDBhAcY1mCYuH7v3b1ovq65WLtCVFSdDT6LpmuaismJkcwIs9vMxu0xt9G5eud8qWmsZV8LfgP8sO/TfbC3tAcARCZGouPWjlhyYQkEQcjzOYgoZ7SuQbG1tcW+fftga2uLe/fuYdSoUTned9y4cahXrx7k8nd5kaurKyZOnIi9e/di5MiR2oZT4GKSY9B9R3ecCT4jrhvXdBx+avdTgTSiszG3wbru69CleheMODACb5Le4F7kPTRb2wx7++2FRxWPfD8nkb7bELgBow6OEhu2Vi1ZFVt7bUWz8s0K5Hw9avZAiwotMOyfYfB76IdMIRPfHv8Wt1/fxpquazS2LSOi/KV1DYqpqSlsbW1zdbIGDRqoJCfKdcWLF0dwcHCujlmQIhIi4LHRQ0xOzIzMsLHHRvze6fcCb+Hfs1ZPXB15FbXtawMAopOj0XFrR/je9y3Q8xLpm98u/oZhvsPE5MS7qjeujbpWYMmJUmmr0vDt74uZrWeK6zbe3IjeuxRtx4ioYEk+1H1iYiKSkpJQooR+tbF4EfsCrX1aIzAsEABgZ2mHM0POYFD9QTqLwamkEy4Ov4jO1ToDAFIyUtBrZy9s+2+bzmIgkoogCJh3dh6+Pva1uG6C6wT4DfCDjbmNTmKQy+SY4zEHf/f9WxxQ8cCDA+i4tSMSUhN0EgNRUSV5gvL3338jLS0Nnp6eWZaJjIzE/fv3xX8FXdsSFh8Gj40euBd5DwBQrlg5nBt6rsB/sWlSzKwY9n26DwPqDgCgGOxt4L6B2Ht3r85jIdKlJbcW48dTP4rLc9znYFmHZTCW677zYR+XPjj8+WFYm1oDAM4En0HPnT3FNmlElP8k7WZ848YN+Pj4wMPDA40bN86ynK+vL3x8fHQS09ukt2i/pT0evXkEQPGs+8SgE6hsU1kn59fExMgEm3tuRjHTYlgVsAqZQiY+2/0ZfPv7ooNzB8niIiooJ218sePmX+LyknZL8E2LbySMCPCs4ol/B/2LtpvbIjYlFsefHEe/v/thT789bJNChY4gCJIPcSFZDUpwcDB++OEHODk5Ydq0admW7datG9asWSP+++GHHwokpoTUBHTZ3gW3wm8BACqWqIhTg09JmpwoyWVy/Nn5TwyuPxgAkJaZhp47e8L/ub/EkRHlr91PdmGHw7vk5Lf2v0menCg1LdcUhz8/DCsTKwCKxz1D/xnK3j1UqEQmRqLF+haS/32RJEEJDw/HN998AysrKyxevBiWltk3OLWzs0ONGjXEf5Uq5f8Iq6kZqei9qzcuhFwAANhb2uP4wON6NYmYXCbH2m5r0btWbwCK0TB77OyBJ2+fSBwZUf44+eQkJviPFZd/bP0jJjefLF1AGrSo0AK+/X1hbmwOANj631bMOTNH4qiI8kdKegp67OiBSy8uwWuTF/we+EkWi84TlJiYGHzzzTdIS0vDkiVL9GaANhlksLdSjHtQ3Kw4jn5xFNVtq0sclTpjuTG29d6Gtk5tASgy3S7buiA6OVrawIjy6GHUQ/T9uy/SBUVvnSHVh2GOu37+4fes4okdvXdABkUV+Jwzc7D11laJoyLKG0EQ8KXfl/APUdSclLIohboOdSWLp8ASlMjISAQHByM9/d2EXElJSZg6dSoiIyPx008/oUIF/amdMDEywcYeGzHlkyk42P8gGpZpKHVIWTI1MsXfff9GTbuaAIC7kXfR7+9+KpOf5UVmpoCIJzEAgIgnMcjMZPU1FayY5Bh029ENb5PfAgDqxbtikevPkj8Dz073mt2xxHuJuDzMd5hYA0tkiJZdXgafGz4AAAtjCxzofwAVS1SULJ5cNZLds2cP4uPjxdFf/f398fr1awBA7969YW1tjdWrV+PIkSPYuXMnypQpAwD43//+h7t376JTp04IDg5W6Y1jYWEBNze3vF5Pnshlcvzs/bOkMeSUjbkNDvY/iGZrmyEqKQrHnxzHj//+iIVtF+bpuE+vhOHSprtIeKPoneC/Lgg39j1G80G1UMXVMT9CJ1KRKWRiwN4BYq+5mja1MOLh1I/Op6MPvmr+FR5EPcCqgFVIzUhF37/74vqo65y7hwzOscfH8M2xd229NnTfgMZls+68ogu5SlB27tyJsLAwcfns2bM4e/YsAMDb2xvW1tYa93v0SNEz5tChQzh06JDKNkdHR8kTFENTtVRV7Pt0Hzw3eSI9Mx2L/BfhkwqfoFuNbrk63tMrYTi5NFBtfcKbZJxcGgivyQ2ZpFC+W3R+kTj3TSmLUtjssR03Lr+SOKqckclkWNFxBe5H3cfpZ6fxKu4V+u/pj2MDj0nSHZooN17EvkD/Pf3FyTe/d/sen9b5VOKocpmg7Nq166NlZsyYgRkzZmi9H2nHrZIbfm73M746+hUAYPD+wQgYFQCnkk5aHSczU8ClTXezLXNp811UauIAuVx/q93JsJwLPieOdSKDDDv77ERlWWXcgGEkKIDi8fD23tvRaFUjhMaH4tSzU/lSm0mkC+mZ6RiwZwDeJL0BAHSp3gVzPeZKHJWC5AO1Ud5NajYJfVz6AFAMid/3775IzUjV6hhh996Ij3WykhCVjLB7b3IdJ9H7IhIi8Nmez8RfbTPbzBQbfxsaR2tH7Oq7C0YyxWOpRf6LcPTRUYmjIvq4Oafn4NzzcwCACsUrYGOPjZDL9CM10I8oKE9kMhnWdVuHaqWqAQCuh17H7NOztTpGUnRKvpYjyk6mkIlB+wfhVZyipsSjsgd+bP3jR/bSb60qtsJP7X4Sl4f8MwSRiZESRkSUvRNPTmD+ufkAFLOD7+izA6UsSkkc1TtMUAqJ4mbFsbPPTpjIFSNaLjq/COeCz+V4fwsbs3wtR5SdP6/+iSOPjgBQTMq3tddWg2gU+zFfNf8K7au2B6CYMmPkgZGFdhC3xLfJCNj9EIlvOdy/IYpKjMLAfQMhQHF/zvecjxYVWkgclSomKIVIwzIN8T+P/wEABAgYuG8gYpJjcrSvY81SsCplnm0ZK1tzONbUn+yadCc/u54/jHqIqcenisube25GmWJl8hyjPpDJZNjQfQPsLBXjO+2/tx/rAtdJHFXBSIxOQeDeR0hkrapBGn94PMLiFZ1dvKt649uW30ockTomKIXMlBZT0LpSawBAcEwwJhyekKP95HIZmg+qlW2Z5gNrsYFsEfT0Shh2TjwN/3VBABRdz3dOPI2nV8I+sqe6jMwMDN4/GEnpSQCAcU3Hwbuqd77GK7Uyxcpgbde14vKkI5Pw39Mg1jaQ3vg76G/suL0DAFDSvCQ2dN+gN+1O3qd/EVGeGMmNsKnHJhQ3Kw4A2HxrMw7cP5Cjfau4OsJrckO1mhQrW3N2MS6ilF3PP2xArex6rm2SsuTCElx8cRGAYiLOxW0X51usuVFQjym61+yOkY1GKs6RlogxR79EwN4HrG0gyYXHh2OM3xhx+fdOv6NssbISRpQ1JiiFUCWbSvi94+/i8hi/MTl+1FPF1RGfLndHy+G1AQAth9fGp8vcmZwUQTntep7Txz1Br4Mw8/RMAIouxRt7bISVqVWe48yLgnxM8Wv7X8WJRv3Dz+N8CfbqIQWpRutWDmUflaQYZLVXrV7oX6e/Ts6dG0xQCqkv6n2Bjs4dAQAv415i2onsZ4x+n1wug71TCQCAvVMJPtYpovKz63mmkIlRB0eJ3d+/bfEtWlZsqV6uEE2zYG1qjdVdVovLf9uvxauElxJGRPogPx+ZamvP3T3Yf28/AMWEuCs7r9Tr6SSYoBRSMpkMf3X5C9amilF9VwWswplnZySOigxJfnY9Xx2wWpynplqpapjjoT4JoJRf3AWlXdV2GNZgGAAg2SgJUy59XWh79dDH5fcjU23EJMdg4uGJ4vIfnf5AaavSBXa+/MAEpRCrWKIiFnktEpdHHBiBpLQkCSMiQ5JfXc9D40Lx3YnvxOVVXVbB3Fi1nZOUX9wFbYn3EpS2UMzNc/zlUewM2ilxRCSF/H5kqq3v//0eofGhABSjxSoH99RnTFAKuTFNx6BlBUVV+qM3j7Do/KKP7EGkkF9dzycdmYSYFMVjmyENhsCjiofKdqm/uAtaSYuS+LnZL+Ly10e/RmxKrIQRkRSkHK378ovL+PPqnwAASxNL/N7xd71+tKPEBKWQk8vkWNN1jTiA22L/xXj05pHEUZEhyI+u534P/PD3nb8BAHaWdljSbolamaIwzUKnil3QIK45ACA0PhSzTs2SOCLSNalG607LSMOog6PEAdnmus9FJZtK+XqOgsIEpQioZV8LX3/yNQAgJSMFEw9P5HNwypG8dD1PTEvEuEPjxOVfvH+BraWtWrmiMs3Cp69Hw8LIAgCw4soK3Aq/JXFEpEtSjda97PIy8V6r71Afk5pPytfjFyQmKEXED61/QPni5QEAhx8dhu99X4kj0j0OzZ07ue16/rP/zwiOCQYAeFbxxMB6AzWWKyrTLNilO2By3W8AABlCBsb6jeUPhSJEitG6Q+NCMeeMokG6DDKs7roaxnLjfDt+QWOCUkRYm1rjV+9fxeVJRyYhMS1Rwoh0j0Nz5562Xc+fxzzHYn/FIGzGcuNsn3kXpWkWxtWeIE7q6R/ij003N0kcEemKFKN1Tz85HfGp8QCA0Y1Hw7Wca74dWxeYoBQhfVz6iNPZB8cEY8G5BRJHRIXVt8e/FYezH990PGrZZ/3FXJSmWTAzMsPvnd4Novjt8W8RnRwtXUCkU7ocrfvyi8vYeHMjAMDG3Ab/8/xfvh1bV5igFCEymQwrOq4QG8wuubAEz6KfSRsUFTpnnp3BrqBdABSDQc1y/3iD0KI0zYJ3VW+xi2dEYgR/KBQxuhitO1PIxKQj79qazHWfK05gaUiYoBQxNe1qYnLzyQAUDWann5wubUBUqGRkZqh8Mc73nA8bc5sc7VuUpllY0m4JzIwUbWqWXV6GJ2+fSBwR6VJBj9a95dYWXH55GQDgYu+CL5t8ma/H1xUmKEXQ927fi9n0jts7cDHkosQRUWGx5voa3Ay/CQBo6NgQwxoO02r/ojLNQiWbSmLPutSMVEw9PlXiiKiwiEuJUxkYcVmHZTAxMpEwotxjglIElTAvgbnuc8Xlr45+xd4ElGfRydH44d8fxOXlHZfDSG4kYUT6bXqr6XCwUowwu+fuHpwLPidxRFQYLDi3QBwxtnuN7mK7Q0PEBKWIGtl4JFzsXQAAl19e5vDblGeLzi8SZ0n9rM5naFWxlcQR6bdiZsUwz3OeuPzV0a+QKWRKGBEZuucxz/Hbpd8AAKZGpvjF+5eP7KHfmKAUUcZyY5Wbd9qJaZynh3ItJCYESy8tBaD4YlzotVDagAzE0AZDUc+hHgAgIDQAW25tkTgiMmQzT81ESoZiGIVJzSahaqmqBj3+ExOUIqyDcwe0r9oegCLzXnZ5mcQRkaGaefrdF+ME1wmobFNZ2oAMhJHcSGV8ouknpxe58Ykof9wKvyWOq1PSvCSmt1J0gDDk8Z+YoBRxS7yXQC5T3AYLzi1AREKExBGRobkVfgsbb7wbb2GG2wyJIzIsXk5e6Fq9KwDgVdwrLLvEHwqkvWknponz7Xzv9j1KWpSUOKK8Y4JSxNUpXQcjGo4AAMSlxmHheVbNk3Y+/GIsZWH4I77q2k/tfhJ/KCz2X4w3SYY7MSLp3r9P/8WRR0cAABVLVMQ413Ef2cMwMEEhzHKfBQtjxSRmf1z9A89jnkscERmKk09OqnwxjncdL3FEhqmmXU0MbTAUABCTEoNF5xfl+liG3OaAtJcpZKp0U5/nMQ/mxtlPHWEomKAQyhYri0nNFINrpWakYvbp2dIGRAYhU8jE1BPvvhjne84vNF+MUpjVZpY4eNuKKyvwIvZFro5jyG0OSHu7gnYhIDQAgGK24s/rfS5xRPmHCQoBAKa2nCqO+Lnx5kbcj74nbUCk93bc3oHrodcBAA0cG2BA3QESR2TYKpSogAmuEwAAyenJmHN6jsQRkb5LSU/BjJPv2ny9/6iwMCg8V0J5UtKiJL5rqRh9MFPIxIJAw5tYinQnPTNdpaZtcdvFheqLUSrftfoOxc2KAwDW31iPe5H8oUBZWxe4Dk+jnwIA2jq1hXdVb4kjyl/8RiHRhGYTULZYWQDAoRA/PDbnlyNptv2/7Xj45iEAwL2ye6H7YpSKraUtprZQPDbLFDJVRuYlel9yerLKRJOLvHLfbklfMUEhkaWJJWa1eTfz7F77DRwCn9SkZ6Zj7tl3UyXMbjNbumAKocnNJ6sMgX/15VWJIyJ9tPb6WryMewlAMaR947KNJY4o/zFBIRVDGwxFtVLVAAAPLP/Dv69OShwR6ZvdT3fh0ZtHAACPyh5oU7mNxBEVLlamVpjZZqa4PONfjitDqpLTk1WGhHj/h2VhwgSFVJgYmajMD7L4xgLWopAoAxn45dbP4vIcdzbkLAgjG42EU0knAMCJJydwNvisxBGRPlkTsAav4l4BAHrU7IGGZRpKHFHBYIJCavq49EHtknUAAIFR13HwwUGJIyJ9can4v3gWp2iU51XFC26V3CSOqHAyMTLBzNbvalFmnprJHwoEoOjUngBMUEgDuUyOafWni8szT/PLkRRtT/xsd4jLs91nSxdMEfB5vc9R3bY6AOBM8BmcenZK4ohIH6wOWI3Q+FAAQM+aPdHAsYG0ARUgJiikUYcKnVAx2RkAcCPsBvbf2y9tQCS5XU92IMJU8cXY1qktWlVsJXFEhZux3Fjl1zFrUSgpLUlllOHCXHsCMEGhLMhkMnSP/EJcnnV6FjKFTAkjIimlZaTh1/fanrDnjm58WvtTuNi7AAD8Q/xx7PExiSMiKb1fe9KrVi/Ud6wvcUQFiwkKZaluQlM0slN0Xfvv9X/Yc2ePxBGRVDbf2ozg+GAAgHsZD7Ss2FLiiPIuM1NAxJMYAEDEkxhkZhZM7URezmMkN1JJBvm4tehKSkvCIv+iU3sCMEGhbMggw7T677o4zj4zGxmZGRJGRFJIy0jDvLPvenZ9W/87CaPJH0+vhGHnxNPwXxcEAPBfF4SdE0/j6ZUwvTtPb5feqOdQDwBw5eUVHHp4KF9jJMOwKmAVwuIV903vWu/uicKMCQply6OsJ1pUaAEAuBNxB7uCdkkcEenappubxOG0XRIawbV0M4kjypunV8JwcmkgEt6ozvab8CYZJ5cG5luSkl/nkcvkKt25WYtS9CSmJRaptidKTFAoWzKZDP/zeDcvz+wzs5GemS5hRKRLqRmpmHfuXe1Jt0jDnik1M1PApU13sy1zafPdPD/uye/zdK/RHQ0dFWNdXA+9jn/u/5On+MiwrLq2CuEJ4QAUw0DUdagrcUS6oXWCkpiYiPXr12PKlCno3LkzWrdujcOHD+d4/7i4OPz888/o2rUrvL29MWnSJNy/f1/bMEiHPCp7oE0lxWihD6IeYPt/2yWOiHRl442NeBb9DADgUdYLVZNrSRtQHoXde6NWo/GhhKhkhN17o1fnkclkmOvxbnoBNlovOhLTErHYfzEAxWP3olJ7AuQiQYmJiYGPjw+Cg4Ph7Oys1b6ZmZmYNm0aTpw4gV69euHLL7/E27dvMWnSJISEhGgbChUgSxszNOzlDEsbM8hkMpUq5jln5iAtI03C6EgXUjNSMf/cfHH5/bFxDFVSdEq+ltPleTpX6wzXcq4AgFvht9hovYj469pfYu1J39p9Uad0HYkj0h2tExRbW1vs27cPf//9N8aMGaPVvqdPn8bt27cxffp0DB06FL169cLy5cshl8uxYcMGbUOhAmRZ0hyN+1SDZUlzAECbym3gVcULAPD47WNsvrVZyvBIB3xu+CA4RtFzp6NzRzS2byJxRHlnYWOWr+V0eR6ZTIa57u9qUeacmSNZLYquekAVdQmpCSq1J++PLlwUaJ2gmJqawtbWNlcnO3PmDEqVKoXWrVuL62xsbODh4YHz588jNTU1V8cl3Xi/inne2XmsRSnEPqw9KSyjxjrWLAWrUubZlrGyNYdjzVJ6eR7vqt5io/WgiCD8HfR3rmPMLV31gCJF7cnrhNcAgH61+6F26doSR6RbOm0k++DBA1SrVg1yueppa9WqheTkZD7m0XMtKrRAO6d2AICn0U+x6eYmiSOigrIhcAOexzwHAHSq1kl8tGDo5HIZmg/Kvh1N84G1IJfL9PI8MplMZVyUuWfn6rTrv656QJGG2pM2Rav2BNBxgvLmzRuNtS/KdVFRURr3i4yMxP3798V/wcHBBRonZe39tijzzrEWpTBKSU9RrT0pZKPGVnF1hNfkhmo1HFa25vCa3BBVXB31+jxtndqiZQXFQHl3Iu7g7zu6qUXRVQ8oUvjz6p+ISIwAAHxa592IwkWJsS5PlpKSAlNTU7X1ynUpKZobjPn6+sLHx6cgQ6Mc+qTCJ2hftT2OPj6KZ9HPsPHmRoxoNELqsCgfbbixASGxitrMztU6o2m5phJHlP+quDqiUhMH3D8VAv91QWg5vDZqeFTIc82JLs4jk8kw23022m1W1GbOOTMHfV36wkhulF9ha6RNz6SyLrlrBkAKCakJ+OnCTwAUtSc/tv5R4oikodMaFDMzM43tTJTrzMw0Nxjr1q0b1qxZI/774YcfCjROyt777RHmn5uP1Ay2HSos1GpP3nuv3+/ZVRjI5TLYO5UAANg7lcj35KQgz+NVxUucrPFe5D2dDKCoqx5QBPxx9Q9EJkYCAD6r81mRrD0BdJyglCpVSuNjHOW6rBrf2tnZoUaNGuK/SpUqFWiclL3m5Zujg3MHAFDUotzYKHFElF/WBa7Di9gXAIAu1bugSdl3PXc+7NlF0vmw678u2qLoqgdUURefGo+fLygm5izKtSeAjhOUatWq4eHDh8jMVO0ad/fuXZibm6NChQq6DIfy4P12CfPOzWMtSiGQkp6CBecWiMuFre1JYeNR2QNuFd0AKGpRdtzeUaDn01UPqKIiqxrJP668qz3pX7c/atkb9uCIeVFgCUpkZCSCg4ORnv5uWPQ2bdrgzZs3OHv2rLguOjoap06dQosWLTS2TyH91Kx8M3R07ggAeB7zHD43fKQNiPJs7fW1eBn3EgDQrUY3NC7bWOKIKDu6rkXRVQ+ookJTjeT7tSdymbxI154AuUxQ9uzZg40bN+LQIcWsmv7+/ti4cSM2btyI+Ph4AMDq1asxcOBAREREiPu5u7ujdu3aWLhwIXx8fLBv3z5MmjQJmZmZGDZsWD5cDukS26IUHsnpyVh4fqG4XJSG0zZkHlU+mIbidsFOQ6GrHlBF1e9XfkdUkqLJQ/86/VHTrqbEEUkrV714du7cibCwd/3dz549K9aKeHt7w9raWuN+RkZG+Omnn/Dnn39iz549SElJQc2aNTF9+nRUrFgxN6GQhFzLuaJTtU449PAQnsc8x4bADRjdZLTUYVEuvF970r1GdzQq00jiiCinZrvPhsdGDwDA3DNz0bZTxwI9n656QBU1cSlxWHJhCQDWnijlKkHZtevjLcZnzJiBGTNmqK0vVqwYpk2bhmnTpuXm1KRnZreZjUMPFTVp88/Nx5AGQ2BmzEZyhkTfak8KW2+hguZe2R3uld1x+tlpPHzzEHuf7oYpCvYHn656QBUl79eeDKg7ADXsauT5mB9OSVCqUnGDeq902kiWCp+m5Zqic7XOAICQ2BCsD1wvcUSace6QrK0JWINXca8AAD1q9kDDMg0ljYe9hbT3foPmxQGLkIEM3ucGJDYlFksu5m/tSWGYkoAJCuXZ+21RFpxfgJR0/RoHoTB8UAtKUlqSXtWeUO60qdwGn5RSjC77PPkZLhc/xfvcgPx+5Xe8SXoDAPi87ueobls9T8crLFMSMEGhPGtStgm6VO8CAHgR+wLrAtdJHNE7heWDWlDWXF+D0PhQAEDPmj3RwLGBtAFRrjy9EoZWN7qLywdttyMDGbzPDUBsSmy+tj0pTFMSMEGhfPF+FfOCc/pRi1KYPqgF4cPak8IyY3FRo7zPqyfVQa2EBgCACNNQXCr+r1imKN/n+m7F5RV4m/wWAPBFvS9QzbZano6nzZQE+o4JCuWLxmUbo1uNbgCAl3Evsfb6WokjKlwf1IKwKmAVwuIVv6x71+qNeg71JI6IcuP9+7xr1Ofiej/b7UiHYhyqonyf67OY5Bj8cvEXAICRzChf2p4UpikJmKBQvnm//cKC8wuQnJ59clDQCtMHNb8lpSWJU7kDKJJTuRcW79+/1ZJqv1eLEobL79WiFMX7XN+tuPKu9mRg/YFwLuWc52MWpikJmKBQvmlUphG611A8B38V90ryWpTC9EHNb39d+0usPenj0oe1Jwbsw/u323u1KAdtd4i1KEXxPtdnH9ae/OCWP5PgFqYpCZigUL56vxZl4fmFktaiFKYPan5KTEtUqT1hzx3D9uF97pxUGy4Jiq7ikaZhuFjiZJG8z/Xd8svLEZ0cDQAYVH8Qqpaqmi/HLUxTEjBBoXzVsExD9KjZA4CiFmVNwBrJYilMH9T89Ne1vxCeEA4A6OvSF3VK15E4IsoLTfd5t8gvxP/3K7UDjT93LnL3uT6LTo7Gr5d+BaCoPfne7ft8PX5hmZKACQrluw9rUZLSkrItn/g2GQG7HyLxbf7XthSWD2p+SUhNEGtPZJCx7Ukh8eF9XjW5FmonKCZ7jDINx1nTo1KGRx9YdmmZWHsyuP7gfKs9eV8VV0d8utwdLYfXBgC0HF4bny5zN6jvPCYolO8aODZAz5o9AQCh8aFYHbA62/KJ0SkI3PsIiQXUiK8wfFDzy1/X/sLrhNcAgL61WXtSmHx4n//wybs2DfPOzuNknnoiOjkav136DQBgLDfG963zt/bkfYY+JQETFCoQ79eiLPJf9NFalIJm6B/U/JCQmoCfLvwEQFF7wrYnhc/793nbBh7o4NwBABAcE4yNNzZKGRr9v98u/oaYFMW0G4PrD4ZTSSeJI9JfTFCoQNR3rI9etXoBAMLiw7AqYJXEEdHvV34Xa0/61e4HF3sXiSOigvb+AIrzzrEWRWpvkt6o1p7kc9uTwoYJChWY93+hL/ZfLHktSlEWmxIr1p7IZXKOGltENCvfDB2dOwIAnsc8x4bADRJHVLT9cuEXxKXGAQCGNRiGKiWrSByRfmOCQgWmnkM99HHpA0BRi/LXtb8kjqjoWn55uTgZ2YC6A1DTrqbEEZGuvJ+Mzj83n7UoEolMjMSyy8sAAKZGpgXa9qSwYIJCBWpm63e9RBb7L0ZiWqKE0RQ+OekBFZ0crTIg1PvvCRV+ruVc0blaZwBASGwI1geulziioukn/5+QkJYAABjZaCQqlqgocUT6jwkKFai6DnXR16UvACA8IZy1KPksJz2gfrv4m8qAUHmdjIwMz/uPW+efm68Xk3kWJeHx4fj9yu8AADMjM0xvNV3iiAwDExQqcDPbzIQMil4zi/0XIyE1QeKIio4PG+Xlx2RkZHialmuKLtW7AABexL5gLYqOLfZfjKR0RRu8L5t8iXLFy0kckWFggkIFrk7pOuhbW1GL8jrhNWtRdGjJhSVslEcAVHv0LDi/gLUoGhTEoJGv4l5h5bWVAAALYwt81+q7fDt2YccEhXRiZmvWouhaREIEll9eDoCN8ghoXLYxulbvCkBRiyL1ZJ76qCAGjVx47t2cZOOajoOjddEbIDK3mKCQTtQuXRv9avcDAEQkRuDPq39KHFHhx0Z59KH3e/RIPZlnURASE4LV1xUjaVuZWGFqy6kSR2RYmKCQzrzfFuWnCz+xFqUAhcWH4Y+rfwBgozx6p1GZRuheozsA4GXcS9aiFLD3u3VPcJ0Aeyt7iSMyLExQSGdc7F3waZ1PASjGBFD+AaX8t+j8IrFR3pgmY9goj0QfTubJWpSC8fTtU6wLXAcAKGZaDFNaTJE4IsPDBIV06v22KD9f+BnxqfESR1T4BEcHqzTKm9ZqmsQRkT5pWKYhetTsAUDRgHNNwBppAyqkZp6eifTMdADA5OaTYWtpK3FEhocJCulULfta6F+3P4D/r0W5wlqU/Db7zGyxWnlis4lslJcNSxszNOzlDEsbM6lD0akPa1E4DUX+uhV+C1tvbQUA2FrY4ptPvpE4IsPEBIV07sfWP0IuU9x6P1/4GfFpcRJHVHgEvQ7CppubAAA25jaY1pK1J9mxLGmOxn2qwbKkudSh6FQDxwboWbMnACA0PhSrA1ZLHFHhMuPkDAgQFP/vNgMlzEtIHJFhYoJCOlfTrib611HUokQlRWHlncJXi1IQ4ynkxIx/ZyBTyAQAfNfyO5S0KKnT85Nm+lhT82GPHjZazx/ngs/B76EfAKB88fIY23SsxBEZLiYoJIlZbWbBWG4MAPg9aAVijd5KHFH+KojxFD7mQsgF+N73BQCULVYWE5pN0Nm5KXv6WFPz/mSe4Qnh+PXirxJHZPgEQcD0k+96zM1xnwNzY/15zw0NExSSRDXbahjVaBQAIDE9AQdst0kckWETBAHfnXg3QuXsNrNhaWIpYURkCOZ5zIORzAiAout/eHy4xBEZtoMPDsI/xB8AUMuuFgbVHyRxRIaNCQpJZmabmbA2tQYAnLU5jEcxDyWOyHAdf3kM556fAwBUt62OoQ2HShwRGYIadjUwqrHih0J8ajzmnpkrcUSGKyMzAzP+nSEuz/ecL9YSU+4wQSHJOFg74NsW3wIAMmWZmBfIL8fcyEQm5l+fIy7zi5G0MavNLFiZWAEAVgWswv3I+xJHZJi2/rcVt1/fBgA0K9dM7MpNuccEhST19Sdfo7SFAwDA7/kBXAy5KHFEhudS8VO4E30HANC0bFP0rtVb4ojIkDhYO4hDsGcIqrUAlDOJaYn4/t93c10tarsIMplMwogKByYoJClrU2tMrf+u7cS3x7+FIAgSRmRYEtISsM/OR1zmFyPlxteffC2Ol7P37l5cCLkgcUSG5deLv+JF7AsAQKdqneBe2V3agAoJJigkuc+dB8IxpTwAwD/EH//c/0fiiAzHH0HLEW0SBQDoWr0rPKt4ShwRGSJrU2vMcX/3mJA/FHIuNC4Ui84vAgAYyYywpN0SiSMqPJigkOSM5cboHfmuUefU41PFkVApay9iX+D3oOUAAGOZMZZ484uRcm9Yw2GoaVcTgKLL+t67eyWOyDD8eOpHcdbwL5t8iVr2tSSOqPBggkJ6oX58czQv/QkA4OGbh1hxeYXEEem/GSdnIClDMUT5sJojUN22usQRkSEzlhtjcdvF4vK3x7/lRIIfcSPsBtYHrgcAlDAroTKFAOUdExSSVGamgIgnMZBBhillvxcnEpx7di7HZMjG1ZdXsfnWZgCAZYY1ptTjkPaUd+8/Jnwa/RS/XPhF4oj0lyAI+ObYN+KQ9j+0/gH2VvYSR1W4MEEhyTy9EoadE0/Df10QAODtTjnckzoCAGJTYjHjJHsTaCIIAr46+pW43C3yc5Q045D2lHcymQzLOiwTB29bcH6B2PiTVB14cAD/Pv0XAOBU0gkTXDlyc35jgkKSeHolDCeXBiLhjWoVcpeXX8AiQzEmw4YbG3Dt1TUpwtNru4J2iaNVVi3ujDbRnSWOiAqTOqXriPPHJKYlYurxqRJHpH+S05Px9dGvxeWf2v4EM2P9mWepsGCCQjqXmSng0qa7GrcVz7BB16gBAAABAiYdmcTeBO+JS4nD18fefTHOafw/GIODstE7+TEx4Rz3ObC1sAUAbL+9HeeCz+VXeIXCz/4/4/HbxwCA1pVao1etXhJHVDgxQSGdC7v3Rq3m5H0eb7uI3Y4vhFzAtv84T4/SnDNz8CruFQDFeAve5TtIHBHpm/yYmLCkRUnM95wvLk88MhEZmRmq59HDGZp14enbp1hwfgEARbfiPzr9wbGHCojWCUpqaipWrlyJnj17om3bthg9ejSuXr2ao32vXbuGSZMmoWvXrujUqRNGjRqFo0ePah00Gbakj8zwawwTfPp6lLj87fFvEZMcU9Bh6b3br29j6aWlAAAzIzMs77CcX4xUYEY0GoEGjg0AKHqrrLm+RmW7Ps7QrAuTjkwSezdNajYJdUrXkTiiwkvrBGXhwoXYtWsX2rVrh4kTJ0Iul2Pq1Km4detWtvudP38e33zzDdLS0jBkyBCMGDECZmZmmD9/Pnbt2pXrCyDDY5GDX1x1EpugXZn2AIDQ+FCVYaSLIkEQMO7QOGQIil+x01tNR9VSVSWOigozI7kRlndYLi5/d+I7hMaFShiR9A7cP4ADDw4AAMoWK4vZ7rOlDSgHDLmmS6sE5c6dOzh58iRGjRqFsWPHolu3bli6dCkcHR2xcuXKbPfdu3cvbG1tsXTpUvTu3Ru9evXCb7/9hnLlyuHw4cN5uggyLI41S8GqVPa/uqxszbGqz1+wNLEEAPx59U9cenFJF+HppS23tuBs8FkAQNWSVTGt1TSxizYARDyJQWYm2+pQ/nKr5IbB9QcDAGJSYjD56GRpA5JQUloSJh6ZKC7/4v0LipkVkzCinDHkmi6tEpQzZ87AyMgI3bp1E9eZmZmhc+fOCAoKQnh41uNWJCYmolixYjA1NRXXGRsbo0SJEjAzM7zMjnJPLpeh+aDsR1tsPrAWqpSqjLnuihmOBQgYfXA00jLSdBGiXnmT9AZTjk8Rl1d0XIHQ69EqXbT91wVh58TTeHolTKowqZBa4r1EbDC7K2gXDj08JHFE0ph7Zi6eRT8DAHhU9sCntT+VNqAiQKsE5eHDhyhfvjysrKxU1teqpfhj8+jRoyz3bdCgAZ4+fYq1a9fixYsXePnyJTZu3Ij79++jf//+uQidDFkVV0d4TW6oVpNiZWsOr8kNUcVVMXHZpOaTxOfgt8JviW0wipKvjn6F1wmvAQA9a/ZEzbcNNXbRTniTjJNLA5mkUL6ys7TDr+1/FZfH+o1FfGq8hBHp3vXQ6/j5ws8AAFMjUzaM1RGt+idGRUXB1tZWbb1yXWRkZJb7Dh48GKGhodi8eTM2bdoEADA3N8fcuXPh5uaW7XkjIyMRFRUlLgcHB2sTNumpKq6OqNTEAfdPhcB/XRBaDq+NGh4VIJe/++Aby42xustqNFvbDAIEzDo9C31c+qBKySoSRq47hx8exqabis9LCbMSWN5hBc59r7mLttKlzXdRqYmDyutIlBcD6w3EppubcPLpSQTHBGPWqVn4pX3hGmX2w0empSoVh1wuQ1pGGob7Dhfbf/3Y+kfOt6MjWiUoKSkpMDExUVuvfGyTkpJ17wwTExNUqFAB7u7uaN26NTIyMnDgwAHMmzcPv/76K2rXrp3lvr6+vvDx8dEmVDIQcrkM9k4lAAD2TiU0/lFtWq4pxruOx4orK5CUnoThvsNxYtAJyGWFu5d8bEosRh8cLS7/4v0L5C/Ns+2iDQAJUckIu/cGZV3Uf0wQ5YZMJsPKzitRd2VdpGSkYOnlpehXux+alW8mdWj54umVMFzadFf8bPmvC8KNfY/RfFAt7EjZgBthNwAAdUvXxdSWHLhOV7T6hjczM0NamnobgNTUVHF7VpYuXYoLFy5g1qxZ8PLygre3N3777TfY2tpi+fLlWe4HAN26dcOaNWvEfz/88IM2YVMhMM9zHiqWqAgAOPXsFP648ofEERW87058h5DYEABAW6e2GNZw2Ee7aCvltBxRTlWzrYaZbWYCADKFTAzePxhJaUkSR5V3WY1qnfAmGVv+9MXs03MAAHKZHOu6rYOpkammw1AB0CpBsbW1VXnUoqRcZ2dnp3G/tLQ0+Pn54ZNPPoFc/u6UxsbGaNasGe7fv68x8VGys7NDjRo1xH+VKlXSJmwqBIqbFcf6buvF5WknpuFB1AMJIypYJ56cwMprip5xliaWWN1lNWQyWY66aAM568pNpK2pLaeiadmmAID7Ufcx/eR0iSPKm+xGtU5HOtY5LkFqpiLZ/7r512harqkuwyvytEpQnJ2d8eLFCyQkJKisv3Pnjrhdk5iYGGRkZCAjI0NtW0ZGBjIzM5GZmalNKFQEeTl5YXzT8QCApPQkDNk/RG10y8IgKjEKg/cPFpcXei0U29zktIu2Y81SBRojFU3GcmNs6rkJ5saKe3DZ5WU49fSUxFHlXnajWh+03YZgi4cAACfrqpjjMUeXoRG0TFDc3d2RkZEBX19fcV1qaioOHToEFxcXODg4AADCw8NVGrKWLFkS1tbWOHfunEpNSWJiIvz9/VGxYkV2NaYcWdR2EZxLKRLhiy8uYrH/4hzvq6sBi/IyPokgKLpTK4ezb+fUDuNdx4vbc9pFmw1kqaDUtKuJhV4LxeWh/wxFbEqshBHlXlaPQh9ZBOGQrWIAUSPBCL+4rBDHZCLd0SpBcXFxgYeHB1avXo2VK1fC19cXkydPRlhYGL788kux3Pz58zFw4EBx2cjICJ999hlCQkLw5ZdfYteuXdixYwdGjx6NiIgIDBo0KP+uiAo1K1Mr+HT3gQyKP8AzT82E/3P/HO2riwGLnl4Jy9P4JBtubMCeu3sAALYWtvDp4aPWGDinXbSJCsrEZhPRplIbAEBwTDBGHRhlkJN6anoUmiRPxFrHJRBkilr9rpFfwLWSq65DI+RiqPsZM2agb9++OHr0KJYvX4709HQsXrwYDRo0yHa/QYMG4ccff4SxsTF8fHywbt06WFlZYe7cufD29s5t/FQEtazYEj+0VjSUzhAy8NmezxCVqN42Steya2yXk/FJHkY9xMTD70aqXNN1DcoWK6uxbBVXR3y63B0thyt6v7UcXhufLnNnckI6IZfJ4dPDByXMFD3wdgbtxKqAVRJHpb0PH5kKELDF4XdEmSoGHXVOdEEf2Rd8ZCoRredpNzMzw9ixYzF27Ngsy2TVK6ddu3Zo166dtqckUjOzzUycCT6Ds8Fn8SL2BYb8MwS+n/lKNnhSdo3tlLIbnyQhNQG9dvVCQpqifdeIhiPQs1bPbI+Xky7aRAWlsk1lbOi+Ab129QIATD4yGc3KNUPDMg0ljiznlI9MTy4NBACctvHDleKnAQDmGRYYFjYFLcbV4WdLIoV7IAkqtIzlxtjWaxvsLBU9xw4+OIhfL/76kb0KTnaN7ZSU45N8SNnu5Pbr2wAAF3sX/NbhtwKJkyg/9azVE5OaTQIApGSkoN/ufgbXHkX5yDS09FPsLL1aXD86YSo+G9eRtZISYoJCBqtc8XLY3HOzuDz1xFQce3xMkljyMj7Jn1f/xNb/tgIArE2tsaffHlibWudrfEQF5ad2P6FJ2SYAgEdvHuGLvV8YXO+6YnWMsbbyYmTI0gEAg8sOx68/z2JyIjEmKGTQOjh3wPdu3wNQDB716e5PJRkfJbfjk5x8clJlhtgN3Tegpl3N/AyNqECZGpliV59dsDG3AQAceHAA3//7vbRBaSElPQU9d/bE85jnABTtThZ6LuJjHT3ABIUM3lyPuehavSsAIDo5Gt22d0N0crROY8jN+CR3I+6i967eSM9U/Gqb8skU9HHpU6BxEhWEKiWr4O++f8NIZgQAWOy/WJxDSp8JgoARB0bg/PPzAAAHC0eMfjUdJnL1KV1I95igkMGTy+TY0msLatsrerTcj7qP7ju6Izk9+zYh+RqDluOTvE54jU7bOiEmRTFeStfqXbGo7aICj5OooLR1aotlHZaJyyMPjMS/T/+VMKKP+9/Z/2HLrS0AFCM2b/XcAZsMzmGlL5igUKFQ3Kw4fPv7wtZC8eVyNvgsPtv9mVg7oQs5HZ8kJjkGnbZ2wrPoZwCAho4Nsa33NhjJjXQWK1FBGNt0LL5srBgTKzUjFd13dMfVl1cljkqzP6/+iVmnZwEAZJBhS88tqG/bQNqgSAUTFCo0nEo64dDnh2BlYgUA+Of+Pxh1YBQyBd1No/Cx8UniU+PRaVsnBIQGAADKFiuLA/0PsFEsFQoymQwrOq1AtxrdACju945bO+JuRPZd8HVt081NGHdonLi8uO3ij3brJ91jgkKFims5V+z/bL/4DHnDjQ0Y4TtCp70KshqfJDEtEV23d8WFkAsAADtLOxwfeBzlipfTWWxEBc1YbowdvXegdaXWAICopCh4bvIUu9FL7e+gvzH0n6Hi8vRW0/Fty28ljIiywgSFCp22Tm2xtddWcYj4DTc24It9XyAtI+sZswva26S38N7sjdPPTgMAbMxtcHzgcbjYu0gWE1FBsTCxgO9nvmjoqBi0LSw+DG182uDaq2uSxrXu+jp8tuczsVZ1gusEzPecL2lMlDUmKFQo9a3dFzv77ISxXDFY8o7bO9BzZ0/EpcTpPJZXca/QxqcN/EMUcwYVMy2Go18cRQPHBjqPhUhXSpiXwPGBx9G0bFMAwJukN/Dc6ImTT07qPBZBELD4/GKMODBCTE5GNByBpR2WSjb6NH0cExQqtPq49MG+T/fBzEgx9ojfQz+0WN9CbJyqC1cjrqDJ6ib47/V/AAB7S3ucHnIaruU4+RgVfraWtjgx6IT4uCcuNQ7tt7THH1f+0NnkgklpSRi8fzC+O/mduO6bT77B6q6r1SbiJP3Cd4cKtS7Vu+DQ54fEQaRuv76NJqubwPe+b4GeVxAEnLbxQ/ejnREaHwpAMXeJ/zB/NCrTqEDPTaRPipsVx+HPD6NL9S4AFBN8jj88HkP/GVrgNZqP3jxCa5/W2Hzr3YjTCzwX4Od2P7PmxAAwQaFCz7OKJy4Nv4RqpaoBUDTa676jO8b6jS2QL8iXsS/x2cm+2OrwB9IyFe1e2lRqg8sjLqOabbV8Px+RvrM0scT+T/djaoup4rqNNzeiwaoG8H/un+/nEwQBqwNWo/5f9cV2L5Ymlvi779+Y7jadyYmBYIJCRUINuxq4NOISutfoLq5beW0lavxeA9v+25Yv1c3J6cn42f9nuPzpgn9fnRDXT3SdiOMDj6O0Vek8n4PIUBnJjbC43WJs6blF7Fb/5O0TtNrQCkP/GYqw+LB8Oc/Vl1fRakMrjD44GolpiQCAqiWr4uLwixyp2cAwQaEio5RFKez7dB/+6vwXLIwtAACh8aH4fO/naLCqAbb/tz1XA7vFpcRhxeUVqPVHLUw9MVWczbVEeils89yFZR2XwcSIQ2cTAcDn9T7HjdE38En5T8R1Pjd84LzcGZOPTEZwdHCujnsh5AJ67+oN17WuYld+ABjdeDRufHkD9Rzq5Tl20i1jqQMg0iWZTIbRTUajXdV2+OroV2JblFvhtzBg7wB8dfQr9HXpix41e8C1nCuKmRXTeJy3SW9x+tlp7L+/H/vv7VeZYl4GGQY4f4Gmh7ugXXlvnVwXkSGpWqoqzg49K47mGp0cjYS0BCy7vAwrrqyAZxVP9HPpB88qnnAq6aTxkUxGZgZuv76NAw8OYPed3bgZflNle027mljafinaO7fX1WVRPmOCQkWSU0kn/PPZPzj88DBmn5mNKy+vAADCE8Lx+9Xf8fvV3yGXyVGtVDVULFERxc2KA1C0XwmODsbT6Kcaj9u+anssbrsY5ZIqY7/fBY1liEgxoNvEZhPRv05/zD0zF2sD1yI5PRmZQiZOPDmBE08Uj0lLWZRCDdsacLB2gJHMCMnpyXgV9woPoh4gIS1B7biO1o6Y3mo6xjQZw5pLA8cEhYq0jtU6ooNzB5x6dgp/XP0Dfg/8kJKRAgDIFDJxP+o+7kfdz/YY1qbW+LT2p5jcfDLqlK4DAIh8GlPgsRMVBvZW9ljRaQVmtpmJP67+gU03N6n8AHiT9AYXX1z86HFcy7libJOx+KzOZzAzNivIkElHmKCQ5CxtzNCwlzMsbaT5UpHJZPCs4gnPKp6ISY7BwQcH4R/ij4svLuJ+5H0kpSeplC9mWgx1StdBk7JN0NG5IzyrePILkSiP7K3sMdt9Nma1mYWA0AD4PfDD1VdXce3VNYQnhKuUNZIZoWKJimhStglaVmiJnrV6omKJihJFTgWFCQpJzrKkORr30Y/utyXMS+Dzep/j83qfA1B0V1Q+HxcEASUtSnJiP6ICJJPJ0KRsEzQp20Rcl5qRisjESGQKmTCRm8DO0o6zfxcBTFCIsiGTyVDSoiRKWpSUOhSiIsvUyBRli5WVOgzSMXYzJiIiIr3DBIWIiIj0DhMUIiIi0jtMUIiIiEjvMEEhIiIivcMEhciAST2GDBFRQWE3YyIDpk9jyBAR5SfWoBAREYE1kvqGNShERERgjaS+YQ0KERER6R0mKEQFgFXFRER5w0c8RAWAVcVERHnDGhQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFCIiItI7TFCIiIhI7zBBISIiIr3DBIWIiIj0jtYDtaWmpmLdunU4duwY4uLiULVqVYwYMQJNmzbN0f4nT57E7t278fjxYxgbG6NSpUoYMWIEGjdurHXwRERU+CW+TcbdkyGo5VUBliXNpQ6HdETrGpSFCxdi165daNeuHSZOnAi5XI6pU6fi1q1bH913/fr1mDt3LkqXLo1x48Zh+PDhqFq1KiIjI3MVPBERFX6J0SkI3PsIidEpUodCOqRVDcqdO3dw8uRJjBkzBv379wcAtG/fHkOGDMHKlSuxcuXKLPcNCgrCxo0bMW7cOPTr1y9vURMREVGhplUNypkzZ2BkZIRu3bqJ68zMzNC5c2cEBQUhPDw8y33//vtvlCpVCn369IEgCEhMTMx91ERERFSoaZWgPHz4EOXLl4eVlZXK+lq1agEAHj16lOW+AQEBqFmzJnbv3o1u3bqhQ4cO6NGjB/bs2ZOLsImIiKgw0+oRT1RUFGxtbdXWK9dl1ZYkLi4OMTExuH37Nq5fv44hQ4bAwcEBhw8fxrJly2BsbIzu3btned7IyEhERUWJy8HBwdqETURERAZGqwQlJSUFJiYmautNTU3F7ZooH+fExMRg1qxZ8PLyAgC4u7tjyJAh2LRpU7YJiq+vL3x8fLQJlYiIiAyYVgmKmZkZ0tLS1NanpqaK27PaDwCMjY3h7u4urpfL5fD09MT69esRHh4OBwcHjft369YNLVu2FJeDg4Mxb948bUInIiIiA6JVgmJra4uIiAi19crHL3Z2dhr3K168OExNTWFtbQ0jIyOVbSVLlgSgeAyUVYJiZ2eX5bGJiIio8NGqkayzszNevHiBhIQElfV37twRt2s8iVyOatWqISYmRq0GRtluxcbGRptQiIiIqBDTKkFxd3dHRkYGfH19xXWpqak4dOgQXFxcxBqQ8PBwtYasHh4eyMjIwJEjR8R1KSkpOH78OCpXrswaEiIiIhJp9YjHxcUFHh4eWL16NaKjo1GuXDkcOXIEYWFhmDZtmlhu/vz5uHHjBs6ePSuu6969O/z8/PDbb78hJCQEDg4OOHr0KMLDw7Fw4cL8uyIiIiIyeFrPxTNjxgwxuYiPj4eTkxMWL16MBg0aZLufmZkZli5dipUrV+LQoUNITk6Gs7MzFi9eDFdX19zGT0RERIWQ1gmKmZkZxo4di7Fjx2ZZZvny5RrXlyxZEjNmzND2lERERFTEaD1ZIBEREVFBY4JCREREeocJChEREekdJihERESkd5igEBERkd5hgkJERER6hwkKERHprcxMARFPYgAAEU9ikJkpSBwR6YrW46AQERHpwtMrYbi06S4S3iQDAPzXBeHGvsdoPqgWqrg6ShwdFTTWoBARkd55eiUMJ5cGismJUsKbZJxcGoinV8Ikiox0hQkKERHplcxMAZc23c22zKXNd/m4p5BjgkJERHol7N4btZqTDyVEJSPs3hsdRURSYIJCRER6JSk6JV/LkWFigkJERHrFwsYsX8uRYWKCQkREesWxZilYlTLPtoyVrTkca5bSUUQkBSYoRESkV+RyGZoPqpVtmeYDa0Eul+koIpICExQiItI7VVwd4TW5oVpNipWtObwmN+Q4KEUAB2ojIiK9VMXVEZWaOOD+qRD4rwtCy+G1UcOjAmtOigjWoBARkd6Sy2WwdyoBALB3KsHkpAhhgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYoREREpHeYoBAREZHeYYJCREREeocJChEREekdJihERESkd5igEBERkd5hgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYoRESk1yxtzNCwlzMsbcykDoV0yFjqAIiIiLJjWdIcjftUkzoM0jHWoBAREZHeYYJCREREeocJChEREekdrROU1NRUrFy5Ej179kTbtm0xevRoXL16VesTf/3112jdujV+++03rfclIiKiwk3rBGXhwoXYtWsX2rVrh4kTJ0Iul2Pq1Km4detWjo9x5swZBAUFaXtqIiIiKiK0SlDu3LmDkydPYtSoURg7diy6deuGpUuXwtHREStXrszRMVJSUvDHH39gwIABuQqYiIiICj+tEpQzZ87AyMgI3bp1E9eZmZmhc+fOCAoKQnh4+EePsX37dgiCgM8++0z7aImIiKhI0CpBefjwIcqXLw8rKyuV9bVq1QIAPHr0KNv9w8PDsXXrVnz55ZcwM+OAO0RERKSZVgO1RUVFwdbWVm29cl1kZGS2+//xxx+oVq0avLy8tDktIiMjERUVJS4HBwdrtT8REREZFq0SlJSUFJiYmKitNzU1Fbdn5fr16zhz5gz++usvLUMEfH194ePjo/V+REREZJi0SlDMzMyQlpamtj41NVXcrkl6ejqWLVsGb29v8XGQNrp164aWLVuKy8HBwZg3b57WxyEiIiLDoFWCYmtri4iICLX1yscvdnZ2Gvc7evQoQkJCMGXKFISGhqpsS0xMRGhoKEqWLAlzc3ON+9vZ2WV5bCIiIip8tEpQnJ2dERgYiISEBJWGsnfu3BG3axIeHo709HSMGzdObdvRo0dx9OhRzJ8/H25ubtqEQ0RERIWUVgmKu7s7duzYAV9fX/Tv3x+A4vHOoUOH4OLiAgcHBwCKhCQ5ORmVKlUCAHh5eaFaNfWZKL///ns0b94cXbt2zdWjHyIiIiqctEpQXFxc4OHhgdWrVyM6OhrlypXDkSNHEBYWhmnTponl5s+fjxs3buDs2bMAgEqVKonJyofKlCmjdc2JsjEue/MQEREZnkqVKmXZrENJqwQFAGbMmAEHBwccPXoU8fHxcHJywuLFi9GgQYPcxqm1sLAwAGBDWSIiIgO0Zs0a1KhRI9syMkEQBB3Fk2+io6Nx5coVlClTRuziXJgpey398MMPWdZEFVa89qJ37UX1uoGie+1F9bqBonvtBVKDog9sbGzg7e0tdRg6V6lSpY9mnIUVr73oXXtRvW6g6F57Ub1uoGhfe1a0ns2YiIiIqKAxQSEiIiK9wwTFANja2mLIkCEa50Eq7HjtRe/ai+p1A0X32ovqdQNF+9o/xiAbyRIREVHhxhoUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPSOQQ7UVhhFRkZi9+7duHv3Lu7du4ekpCQsW7YMDRs2VCs7ceJE3LhxQ229q6srlixZorIuNTUV69atw7FjxxAXF4eqVatixIgRaNq0aUFdita0uXYA+O+///DXX3/hwYMHsLKygoeHB0aOHAlLS0uVcoZw7ZocPnwYCxcu1Lht3759aq39z58/jw0bNiA4OBg2Njbo1KkTBg0aBGNjw/p4G+r7pY3AwEBMmjRJ47aVK1eidu3a4nJO73N9lJiYiB07duDOnTu4e/cu4uLiMH36dHTs2FGt7LNnz/D777/jv//+g7GxMT755BOMHz8eNjY2KuUyMzOxY8cO7N+/H2/evEH58uXxxRdfoG3btjq6qo/L6XUvWLAAR44cUdu/YsWK2LJli8o6Q7jugmJY32CFWEhICLZt24by5cvDyckJQUFB2Za3t7fH6NGjVdZp6qa2cOFCnD59Gn379kX58uVx+PBhTJ06FcuWLUO9evXy9RpyS5trf/jwIb766itUqlQJ48ePx+vXr7Fz5068ePECP//8s0pZQ7j27AwfPhxlypRRWWdtba2yfOnSJXz//fdo0KABJk2ahCdPnmDTpk14+/YtvvnmG12Gm2eG/n5po3fv3mozuJcrV078f23uc30UExMDHx8fODg4wNnZGYGBgRrLvX79GhMmTIC1tTVGjhyJpKQk7NixA0+ePMGqVatgYmIill2zZg22bt2Krl27ombNmjh//jzmzp0LmUwGLy8vXV1atnJ63QBgamqKqVOnqqyzsrJSK2cI111gBNILCQkJQkxMjCAIgnDq1CnBzc1NuH79usayEyZMEAYNGvTRYwYFBQlubm7Ctm3bxHXJycnCZ599Jnz55Zf5E3g+0Obap0yZIvTo0UOIj48X1x04cEBwc3MTLl++LK4zlGvX5NChQ4Kbm5tw9+7dj5YdOHCgMHToUCEtLU1ct3r1aqF169bCs2fPCjLMfGXI75c2rl+/Lri5uQmnTp3KtlxO73N9lZKSIkRGRgqCIAh3794V3NzchEOHDqmV++WXX4S2bdsKYWFh4rqrV68Kbm5uwj///COue/36teDh4SH8+uuv4rrMzExh3LhxQq9evYT09PQCvJqcy+l1z58/X/D29v7o8QzlugsK26DoCUtLSxQvXlyrfdLT05GYmJjl9jNnzsDIyAjdunUT15mZmaFz584ICgpCeHh4ruPNTzm99oSEBFy7dg3e3t4qvzTat28PCwsLnDp1SlxnKNf+MYmJicjIyNC47dmzZ3j27Bm6du2q8jinZ8+eEAQBp0+f1lGUeVdY3i9tJCYmIj09XW29Nve5vjI1Nc3RwGNnzpxBixYt4ODgIK5r0qQJKlSooHKd58+fR3p6Onr27Cmuk8lk6NGjByIiIj5a46wrOb1upYyMDCQkJGS53VCuu6DwEY+BCgkJQfv27ZGWloZSpUqhS5cuGDJkiMofqocPH6J8+fJq1YbKquVHjx6pfDHouydPniAjI0NtQi0TExNUq1YNDx8+FNcVhmufNGkSkpKSYGJigqZNm2LcuHGoUKGCuP3BgwcAoPZ62NnZwd7eXuX10HeF4f3SxsKFC5GUlAQjIyPUq1cPY8aMQc2aNQFod58bsoiICLx9+1bjBHm1atXCpUuXxOWHDx/CwsJCbbZf5f3x8OFDg3sMmJycjI4dOyI5ORnFihWDl5cXvvzyS5U2RoXxurXBBMUAlS1bFg0bNoSTkxOSk5Nx+vRpbNq0CSEhIZgzZ45YLioqSmM2r1wXGRmps5jzQ1RUFADNbW1sbW1x8+ZNlbKGeu1mZmbo2LEjGjZsCCsrK9y/fx+7du3C2LFjsXbtWvEP9cdeD+V2Q2DI75c2jI2N0aZNGzRv3hwlSpTAs2fPsHPnTowfPx5//vknqlevrtV9bsg+dp2xsbFITU2FqakpoqKiULJkSchkMrVygOHdH7a2tujfvz+qV68OQRBw+fJl7N+/H48fP8ayZcvEH5qF7bq1xQSlAGRmZiItLS1HZU1NTdVuvo/57rvvVJbbt2+Pn3/+GQcOHEC/fv3EngApKSkqjczeP6dye34ryGtXxpvVNaWmpqqU1fW1a5Kb18PT0xOenp7iejc3N7i6umLChAnYvHkzpkyZAgDi9Sqv6cNjZff4T9/oy/tV0OrWrYu6deuKy61atYK7uzuGDh2K1atXY8mSJVrd54bsY9epLGNqalro7o8POzh4eXmhQoUKWLNmDc6cOSM2fi1s160tJigF4ObNm1l2JfzQ5s2b1arvcuPTTz/FgQMHcO3aNTFBMTMz0/jHUfkFZ2Zmlufzfqggr10Zb1bX9P4faimuXZP8ej3q1asHFxcXBAQEiOuU16vpD1ZqaqrOrjE/6Mv7JYXy5cujVatWOHv2LDIyMrS6zw3Zx67z/TJF4f7o168f1q1bh2vXrokJSlG47uwwQSkAFStWxPTp03NUNr9msCxdujQAIC4uTuXYERERamWVVat2dnb5cu73FeS1K8trenQRFRWlcj1SXLsm+fl6lC5dGs+fP1crHxUVpdY+IyoqSq0bqz7Tl/dLKqVLl0ZaWhqSk5O1us8N2ceus3jx4mIyZmtri8DAQAiCoFLrWpjuDzMzMxQvXhyxsbHiuqJw3dlhglIAbG1tNQ5IVJBevXoFACqDGyn74SckJKg0Prxz5464Pb8V5LVXqVIFRkZGuH//vsojkLS0NDx8+BAeHh7iOimuXZP8fD1evXql8v5Wq1YNAHD//n24uLiI6yMjIxEREaHSI0bf6cv7JZVXr17B1NQUFhYWWt3nhsze3h42Nja4f/++2ra7d++qvOfOzs44ePAggoODUblyZXF9Ybo/EhMTERMTo/YdXtivOzvsZmxgEhIS1Kr0BUHApk2bAEBl1E13d3dkZGTA19dXXJeamopDhw7BxcXF4HpFWFtbo0mTJjh27JhK+4qjR48iKSlJ5YvbkK89Ojpabd3Fixdx//59uLq6iuuqVKmCihUr4sCBAypdkffv3w+ZTIY2bdroItx8YcjvlzY0vbePHj2Cv78/mjZtCrlcrtV9bujatGmDCxcuqHQjDwgIQEhIiMp1tmrVCsbGxti3b5+4ThAE/PPPP7C3t0edOnV0GndepKSkaGwftnHjRgiCgGbNmonrCtN15wZrUPTIxo0bASjGtwAUX0i3bt0CAAwePBiAomvpnDlz0LZtW5QrVw4pKSk4d+4c/vvvP3Tt2lWly56Liws8PDywevVqREdHo1y5cjhy5AjCwsIwbdo03V7cR+Tk2gFgxIgRGDduHCZMmIBu3bqJI2w2bdpU5YNtSNf+oTFjxqB69eqoUaMGrKys8ODBAxw6dAilS5fGwIEDVcqOHTsW06dPxzfffAMvLy88efIE+/btQ5cuXVR+cek7Q36/tDFr1iyYmZmhTp06KFmyJJ49e4YDBw7A3NxcpeFkTu9zfbZnzx7Ex8eLjyP8/f3x+vVrAIqRdK2trfHFF1/g9OnTmDx5Mvr06YOkpCRs374dTk5OKjWPpUuXRt++fbF9+3akp6ejVq1aOHfuHG7duoUff/wRRkZGklyjJh+77ri4OAwfPhxt27ZFxYoVAQBXrlzBpUuX0KxZM7Rq1Uo8liFdd0GQCYIgSB0EKbRu3TrLbWfPngWgqApetWoV7t69izdv3kAul6NSpUro0qULunXrptYrJiUlRZzfJD4+Hk5OThgxYoTKL3F9kJNrV7p165Y4R4mlpSU8PDwwevRotTlKDOXaP7RmzRpcunQJoaGhYpuETz75BEOGDEGpUqXUyp87dw4+Pj4IDg5GiRIl0LFjR7UxcQyBob5f2ti9ezeOHz+Oly9fIiEhATY2NmjcuDGGDBmC8uXLq5TN6X2ur/r164ewsDCN23bu3ClO4/D06VO1uXjGjRundq9nZmZi27Zt8PX1RVRUFMqXL4/PP/8c3t7eBX4t2vjYdVtbW2PZsmUICgpCVFQUMjMzUa5cObRr1w6fffaZ2ufWUK67IDBBISIiIr3DNihERESkd5igEBERkd5hgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYolK3Dhw+jdevWOHz4sNSh5EhgYCBat26N9evXF9g5WrdujYkTJxbY8YuKfv36oV+/flKHoffWr1+P1q1bIzAwsEDPs2vXLnh6eiI0NDRH5XXxWTNk//vf/9C3b1+kpKRIHYrBYoJSyCxatAitW7dGly5d1CYVLCwM7Q9bTEwM/vrrLwwaNAjt2rVDu3bt0LdvX0yePBkbNmzAmzdvdBLHx5LNiRMnZjvlQFGSlJSEDh06oHXr1vj111+lDqfAxcXFYdOmTejUqZM4BD3lzZAhQxAZGYm///5b6lAMlmFN1kHZSkxMxKlTpyCTyRAbG4tz587By8srT8d0c3ODi4sLbG1t8ynKouX169cYO3YsXr9+jWrVqqFjx44oVqwYoqKicPv2bWzYsAF169bVOMdOYffbb79JHUKWTp06hcTERMhkMpw4cQLjxo2DmZmZ1GEVmF27diE2Nhb9+/eXOpRCo0KFCmjZsiW2bduG3r17w8LCQuqQDA4TlELk33//RVJSEvr164fdu3fDz88vzwmKtbU1rK2t8ynComf9+vV4/fo1hg8frjIrs9Ljx4+L7Otbrlw5qUPIkp+fH4yMjNCrVy/8/fffOHv2LNq1ayd1WAUiPT0dBw8eRN26dfX6PTFE3t7eOHv2LE6ePIkuXbpIHY7BYYJSiCi/VAcMGIDHjx/j+vXrCAsLg6Ojo0q59evXw8fHJ8vjODo6YteuXQAUjwUWLlyI6dOnq0x/3rp1azRo0AA//vgjVq5ciatXryI1NRX169fH5MmTUbZsWTx79gyrV6/GzZs3kZ6eDldXV3z11VcqtQWBgYGYNGkShgwZgmHDhqnEERoaik8//RQdOnTAjBkzxOX3Y1DStP+9e/ewevVqBAUFQS6Xo1GjRhg/frxaFfbZs2dx6tQp3Lt3D5GRkTA2NkbVqlXRp08fuLu7Z/+if0RQUBAAoFevXhq3V61aVeP6V69eYevWrbh69SqioqJgZWWFypUro2PHjuL7kJaWBl9fX1y4cAHPnj1DdHQ0rKysULduXQwePBjVq1cXj7dgwQIcOXIEALBw4UIsXLhQ5frffy3f/3/la6/0+PFjbN68GTdu3EBsbCxsbW3RsmVLDB06FCVKlBDLvf/eDRgwAGvWrMHNmzcRGxsrzmSrfEynvNeAd/fmsmXLEBkZie3bt+P58+ewtraGh4cHvvzyS7WajPT0dOzYsQMHDx5EZGQk7O3t0blzZ3h6euKzzz5Tu4aPef78Of777z+0aNFCJdnXlKC8f/+2aNEiR/cbAJw5cwZbtmzB06dPYWVlhZYtW2LMmDEYPny42muSnZy+H9m5cuUKoqKiMGDAAI3bU1JSsGHDBhw/fhwxMTEoV64c+vTpozb78vtevXqFzZs34+rVq3j79i2KFSsGV1dXDBs2TO37CNDu9VDeyzt27MDZs2fh5+eHV69ewcvLS3yf3759iy1btuDChQt4/fo1LC0tUb9+fQwbNgxOTk5q59emfEhICLZs2YLAwEBERUXB3NwcpUuXRsOGDTFhwgSVGeU/+eQTmJub48iRI0xQcoEJSiHx7NkzBAUFoXnz5ihVqhTat2+PgIAAHDp0SO0Pd8OGDTUeIzg4GKdOncpxVXZcXBzGjRsHW1tbtG/fHi9evMCFCxfw9ddfY8GCBRg/fjxq1KiBTp064cGDBzhz5gxiY2OxbNmyXF2jtbU1hgwZgt27dwMA+vTpk+U13bt3D9u3b0fDhg3RrVs3PHz4EOfOncOTJ0/g4+Ojco2rV6+GsbEx6tatC1tbW0RHR8Pf3x8zZ87EpEmT0Lt371zFC0D8IxESEgIXF5cc7XPr1i1MmzYNiYmJcHV1hZeXF+Li4vDw4UPs3r1bTFBiY2OxYsUK1KtXD82bN0exYsUQGhoKf39/XL58GStWrECtWrUAKB7VxcfH4/z582jVqhWcnZ1VzjlkyBAcOXIEYWFhGDJkiLi+WrVq4v+fP38es2fPhkwmQ6tWrVC6dGk8e/YMe/fuxZUrV7Bq1SoUK1ZM5bgvX77EmDFj4OTkhA4dOiA2NhYmJiYffQ2Ux2zZsiUaNWqEy5cvY8+ePYiJicHMmTNVyi5evBhHjx5F2bJl0aNHD6SlpWHXrl24fft2jl7vD/n5+QEA2rdvDwcHBzRo0ACBgYF49eoVypYtq3Efbe43Pz8/LF68GFZWVmjfvj2sra1x6dIlfP3110hPT4excc6+lnPzfmgSEBAAAKhdu7batszMTEyfPh3Xrl2Dk5MT2rZti9jYWPz+++9Zfo/cuXMHU6ZMQVJSElq0aIHy5csjLCwMx48fx+XLl7Fy5UqV1zG3r8fSpUtx584dfPLJJ2jRogVKliwJQHHPTZw4EREREWjatClatWqF6OhonDlzBlevXsVvv/2m8lnUpnxkZCRGjx6N5ORkfPLJJ/D09ERycjJevHiB/fv3Y+zYsSrxmpiYoHr16ggKCkJSUhIf82hLoEJhxYoVgpubm3DixAlBEAQhISFB8Pb2Fvr06SNkZGR8dP83b94Iffv2Fby8vIRbt26J6w8dOiS4ubkJhw4dUinv5uYmuLm5CStWrFBZ/8svvwhubm5Cx44dhV27donrMzMzhW+//VZwc3MT7t27J66/fv264ObmJqxbt04tplevXglubm7C/PnzVdb37dtX6Nu3r8brUB7v/ddCad68eRrXv3z5Uu04CQkJwuDBg4WOHTsKSUlJatc+YcIEjef/0O7duwU3NzehW7duwrp164Tr168L8fHxWZZPSUkRevXqJbRp00a4dOmS2vbw8HCVsq9fv1Yr8+TJE8Hb21v46quvVNZn9V4qTZgwQXBzc9O4LTo6WujQoYPQq1cvITQ0VGXbiRMnBDc3N+G3334T1ynfu6zeW0HQ/D6uW7dOvH+Cg4PF9cnJycKAAQOENm3aCBEREeL6a9euCW5ubsKwYcNU3qeIiAihe/fuGu+f7KSlpQndu3cXOnbsKCQnJwuCIAh+fn6Cm5ubsGbNGrXy2t5vsbGxgre3t+Dt7S08f/5c5byTJk0S3NzcsnxNrl+/Lq7T9v3IzsiRI4U2bdoIKSkpatuU98yUKVOE9PR0cf2jR48ET09Ptfc3LS1N6Nu3r9C+fXvh/v37Kse6efOm4O7uLkybNi1Pr8f8+fMFNzc3oVevXkJYWJhazGPGjBHc3d2Fy5cvq6x//vy50L59e2Hw4MG5Lq/8PL//3aYUExOjtk4Q3n03BwQEaNxOWWMvnkIgPT0dx44dg5WVFVq1agUAsLS0hJubG8LDw3Ht2rVs909JScGMGTMQFhaG7777DnXr1s3ReS0sLDBixAiVdco2LyVKlFCp4ZDJZOK2x48f5/jacqt+/fpq7W86deoEALh7967Kek2/ii0tLdGxY0fEx8fj3r17uY6jV69e6N+/P+Lj4+Hj44NJkyahU6dOGDRoEP766y9ERkaqlD9//jwiIiLQrl07NGvWTO14pUuXFv/f1NQU9vb2amWqVKmChg0bio/W8sPRo0eRkJCAUaNGqVXRe3l5oXr16jh58qTafqVKlcLAgQO1Pl+fPn1QsWJFcdnMzAxeXl7IzMzE/fv3xfXHjh0DAAwePBjm5ubiejs7O5X7L6cuXryIN2/ewMPDQ6z1cHd3h7m5OQ4fPozMzEyN++X0fjt//jySkpLQqVMnVKhQQVxvbGys9lnKTm7fD00iIiJgbW0NU1NTtW3Kx4IjRoyAkZGRuL5q1arw9vZWK3/hwgWEhYWhf//+Ko8YAaBevXpo2bIlLl26hISEBAB5ez369+8PBwcHlXUPHjzA7du30b59e7i6uqpsq1ChArp06YInT57gyZMnuSqvpKmWuXjx4hrjVNbsREREZHs9pI6PeAqB8+fPIzo6Gp07d1b54LRv3x7Hjh2Dn5+f2odPSRAELFiwAEFBQRg6dCjatm2b4/OWL19e5Y8CALG3j5OTk8qz2Pe3ffhHuSDUqFFDbZ3yj3l8fLzK+rdv32Lr1q24dOkSwsPD1cYtyEu8MpkMY8aMQf/+/XHp0iXcuXMH9+7dw4MHD/Ds2TP4+vpiyZIlYhWy8o9Z06ZNc3T8hw8fYvv27bh16xbevHmjlpBER0fDzs4u1/ErKdvS3LlzBy9fvlTbnpqaipiYGERHR8PGxkZc7+zsnKNHOh/68I8b8C45e//9e/ToEQDFH78P1alTR+vzHjx4EIDis6NkaWmJVq1a4cSJE7hy5QqaN2+utl9O7zdlcq4pXhcXF5UkIDu5fT80iY2N1ZjoKuO1sLDQeH316tUTH4d9GNfz5881jo/y5s0bZGZmIiQkBDVr1szT66F8fPm+O3fuAFB8pjWd//nz5+J/nZyctC6vbGf022+/ISAgAM2aNUODBg2yfPQHvEtcYmJisixDmjFBKQTef2b+vsaNG8Pe3h7+/v6IjY3VmOGvXbsWp06dQtu2bTF06FCtzmtlZaW2TvmFkt22/PpVnx1LS8ssz//+r+DY2FiMGjUK4eHhqFu3Lpo0aQJra2vI5XI8evQI58+fR1paWp7jsbGxQYcOHdChQwcAQFRUFJYuXYozZ87g559/xoYNGwBA/GWZ1R+M9/3333/46quvAABNmjRB+fLlxes+f/48Hj16lC+xA4r2RgCwb9++bMslJyerLCt/PWoru/vn/fcvMTERcrlcY4NQbbtuR0ZG4sqVKyhbtqzaH8wOHTrgxIkTOHTokMYEJaf3m/L91fS6ZHUdmuT2/dDEzMwsyzGTEhISsrwXNb2+yriOHz+eo7jy8npo2ic2NhaAoibs4sWLWe6blJSUq/JlypTBypUrsWHDBly6dAmnTp0CAFSsWBHDhw+Hh4eH2r7KHzyFuZt6QWGCYuDCw8Nx9epVAMh2dNNjx46pVXkfPnwYmzdvRt26dfHdd98VaJxZUdayZGRkqG1TfnkVJD8/P4SHh2vsBrxlyxacP3++QM5ra2uLH374ARcvXsTjx48RExODEiVKiF2Oc1IdvHnzZqSmpuL3339X+4Oq/GWYX5R/gH18fDT2gsjKh7Vo+c3S0hKZmZmIiYlRqynQdgC8w4cPIyMjA69evcpywDp/f/8c1UpkRZl4vX37Vm2b8jpykpzm9v3QpESJElneb1ZWVln+8tf0+irjWrRoEVq0aPHRc+fl9dB0bymPl9PG7dqWBxS1w//73/+Qnp6O+/fv4/Lly9i9ezdmz54NOzs7tUfkyiQot/dMUcY2KAbuyJEjyMzMRL169dC5c2e1f8pf7B9Wxd64cQNLlixB2bJlMX/+fI3Pn3VB2ctA02OUhw8fatxHLpdrTGhyQ1k9rmy7875bt27lyzmyYmJiolaFray2Viad2Xn16hWKFy+ulpwkJyfjwYMHauXlcsXHPavXLrvtykdQyip8faHsjfTff/+pbdOmF48gCDh06BAAoGPHjho/S3Xq1EFaWprY7iU3lN3KNcV79+7dHN/X+fl+ODk5ITU1FeHh4WrbqlatiqSkJJV2P0qaPh/axpVfr4eS8vOT0/NrW/59xsbGqF27NoYNG4ZJkyZBEARcuHBBrVxISAgA5DmRLIqYoBgw5ZeqTCbDjBkzMG3aNLV/M2bMQO3atfH48WOxsWdISAh++OEHmJmZYdGiRZJm9hUrVoSlpaX4GErpzZs32LRpk8Z9ihcvjpiYmHyZ40LZwPDDL8jjx4/j0qVLeT7+jh07EBwcrHHb3r17kZSUhIoVK4pV2S1btoS9vT2OHz+OK1euqO3z/i9dBwcHxMXF4enTp+K6jIwM/Pnnn4iOjlbbV/mI7/Xr1xrjyW57p06dYGlpiTVr1qicTyk5OVmS5EU5NomPj4/K/RAVFSV2R8+JGzdu4OXLl6hfvz6mT5+u8bOkrGX8MNnXRqtWrWBhYQE/Pz+VtiPp6elYt25djo+Tn+9HgwYNAGiudVM+Nl67dq1KsvD48WONiVqrVq3g4OCAnTt34saNG2rb09PTVRKb/Ho9lFxcXODi4oKTJ09qbCScmZmpEpe25e/fv6+xZldZm6Tph96dO3dga2ur0giYcoaPeAzY9evXERoa+tFGWp06dUJQUBD8/PxQs2ZNLF++HLGxsWjSpAn+/fdftfLW1tY6m+vGxMQEvXv3xubNmzFixAi0bNkSSUlJ8Pf3R4MGDTQ2AGzYsCHu3buHqVOnol69ejA2Nkb9+vXFL1pteHt7Y9u2bVi2bBkCAwPh4OCAR48e4fr162jdujXOnj2bp+s7duwY/vzzTzg5OcHFxQUlS5ZEXFwc7ty5gwcPHsDMzAzffPONWN7U1BRz5szBt99+i2+//Raurq5wdnZGQkICHj16hJSUFPGLu3fv3rh69SrGjRsHDw8PmJqa4saNG4iMjETDhg3VJperXbs2zMzMsHv3bsTFxYmJqfLRVqNGjXD69Gn8+OOPaNasGUxNTeHs7IyWLVvCxsYGs2bNwsyZMzFs2DC4urqiYsWKSEtLQ1hYGG7cuIE6depgyZIleXq9tNWkSRO0bdsWJ06cwJAhQ9CqVSukpaXh1KlTqFWrFi5cuCDWDGVHmXQoe95oUrFiRdSpUwe3b9/GnTt3cjyuzfuKFSuG8ePH4+eff8bIkSPh6ekJKysrXLp0CaamprCzs8vRY7H8fD9atWqFP/74A9euXVNrQ6Fse3P58mUMHz4czZo1Q1xcHE6ePImmTZuq1RiYmppi7ty5mDp1KiZOnIhGjRqJDebDwsJw69YtlChRAlu2bMnX1+N9M2fOxOTJkzFnzhzs3r0b1apVg5mZGV6/fo3bt28jJiYGJ06cyFX5o0ePwtfXF/Xr10e5cuVgaWmJZ8+e4fLlyyhevLja/fPy5UuEhoaiR48eWl0DKTBBMWDKL9X3R3jVxNPTE8uXL8fJkycxfvx48ZfmtWvXNHZBdnR01OlkfMOHD4exsTH8/Pzg6+sLR0dHDB48GC1atMCZM2fUyg8ePBjx8fG4cOECbt26hYyMDAwZMiRXCUrp0qWxfPlyrFy5EteuXUNGRgaqV6+OX375Ba9fv85zgvLdd9/hwoULuH79Oq5cuYK3b99CLpfDwcEBPXr0QN++fdV+WdWpUwdr167Fli1bcOXKFQQEBKBYsWKoXLkyunfvLpZr0aIF5s6diy1btuD48eMwMzNDo0aNMH/+fI0jBRcvXhxz587Fhg0bcPDgQfE+UCYoXbp0QWhoKP79919s27YNGRkZ6NChA1q2bAlAMSrmunXrsH37dgQEBODatWswNzeHvb09OnbsqLHbqS7MmDEDlSpVwqFDh7B3717Y29ujb9++aNSoES5cuKCxAev74uPjcebMGVhYWKBNmzbZlu3UqRNu374NPz+/XCUoANC1a1cUK1YMmzdvxpEjR8SRU7/88kv07ds3x8PN59f7UaZMGTRt2hSnT5/GpEmTVGoB5HI5FixYgA0bNuDEiRPYs2cPypYti/Hjx6N8+fIaH2nUqlUL69evx/bt23Hp0iXcvn0bJiYmsLOzg5ubm1p37Px6PZTKli2LdevWYefOnTh37hwOHz4MuVwOW1tb1K9fX210aG3Kt23bFqmpqfjvv/9w9+5dpKWlwd7eHt27d9fY7VlZy9StWzetroEUZIIgCFIHQUSU3w4ePIiffvoJX3/9tUH8gn3x4gUGDBgADw8PzJkzR6fnDggIwFdffYUffvhBskTzQ1K+HvkhPT0dAwYMQJkyZXI9enZRxzYoRGTQoqKi8OHvrIiICGzatAlGRkb45JNPJIpMs7i4OLVuvSkpKfj9998BKKYl0LXGjRujWbNm2LRpU5aD0RUUfXw98sORI0cQHh6OsWPHSh2KweIjHiIyaFu3bsXFixdRv3592NjY4PXr17hw4QISExMxdOhQtWp3qd24cQOLFy9G06ZNUbp0acTExIgTezZq1Aienp6SxDVx4kQcP34cEREROn3N9PX1yCuZTIZvv/1W4yB3lDN8xENEBu3y5cvYuXMnHj9+jLi4OJiamqJq1aro0aOHxhmIpRYSEoJ169bh9u3bYm+rcuXKibMvF7UBvfh6UFaYoBAREZHeYRsUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPQOExQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFCIiItI7/wcfj0U3iyfB/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "grb_polarization.plot_asad(asad_corrected['counts'], asad_corrected['uncertainties'], 'Corrected ' + titles['grb'], coefficients=polarization['best fit parameter values'])" + ] + }, + { + "cell_type": "markdown", + "id": "57a5362a", + "metadata": {}, + "source": [ + "Transform polarization angle to different conventions" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "7e456b61", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RelativeX: 107.101 degrees\n", + "RelativeY: 17.101 degrees\n", + "RelativeZ: 107.101 degrees\n", + "IAU: 80.116 degrees\n" + ] + } + ], + "source": [ + "print('RelativeX:', round(polarization['angle'].transform_to(MEGAlibRelativeX(attitude=attitude)).angle.degree, 3), 'degrees')\n", + "print('RelativeY:', round(polarization['angle'].transform_to(MEGAlibRelativeY(attitude=attitude)).angle.degree, 3), 'degrees')\n", + "print('RelativeZ:', round(polarization['angle'].transform_to(MEGAlibRelativeZ(attitude=attitude)).angle.degree, 3), 'degrees')\n", + "print('IAU:', round(polarization['angle'].transform_to(IAUPolarizationConvention()).angle.degree, 3), 'degrees')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee9644fb", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 417e1f7bac145fd58cc373e32b1428ea6ceb3219 Mon Sep 17 00:00:00 2001 From: nmik Date: Fri, 18 Oct 2024 18:18:30 -0500 Subject: [PATCH 04/31] more progress --- cosipy/polarization/polarization_stokes.py | 183 ++++++++++----------- 1 file changed, 89 insertions(+), 94 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 123d0d07..6d640d4b 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -18,7 +18,6 @@ def R(x, A, B, C): """ return A + B*(np.cos(x + C)**2) - def constant(x, a): """ Constant function to fit to mu_100 values. @@ -98,19 +97,21 @@ def get_modulation(_x, _y, title='Modulation', show=False): mu = (Rmax-Rmin)/(Rmax+Rmin) print('Modulation mu = ', mu) - perr = [popt[0]+np.sqrt(pcov[0][0]), popt[1]+np.sqrt(pcov[1][1]), popt[2]] - merr = [popt[0]-np.sqrt(pcov[0][0]), popt[1]-np.sqrt(pcov[1][1]), popt[2]] + mu_err = 2/(popt[1]+2*popt[0])**2 * np.sqrt(popt[1]**2 * pcov[0][0]**2 + popt[0]**2 * pcov[1][1]**2) if show: plt.figure() plt.title(title) plt.bar(_x, _y, align='center', width=0.07, alpha=0.5) + perr = [popt[0]+np.sqrt(pcov[0][0]), popt[1]+np.sqrt(pcov[1][1]), popt[2]] + merr = [popt[0]-np.sqrt(pcov[0][0]), popt[1]-np.sqrt(pcov[1][1]), popt[2]] plt.fill_between(_x, R(_x, *perr), R(_x, *merr), color='red', alpha=0.3) plt.plot(_x, R(_x, *popt), 'r-', label='$\mu=$%.2f'%mu) plt.legend(fontsize=12) plt.ylim(Rmin-500, Rmax+500) plt.xlabel('Azimuthal angle [rad]') - return mu, popt, pcov + + return mu, mu_err class PolarizationStokes(): """ @@ -202,6 +203,7 @@ def calculate_azimuthal_scattering_angles(self, unbinned_data): azimuthal_angles : list Azimuthal scattering angles. Each angle must be an astropy.coordinates.Angle object """ + print('This tasks takes around 30 seconds... \n') azimuthal_angles = [] @@ -291,7 +293,8 @@ def create_polarized100_asad(self, bins=None): def calculate_mu(self, bins=20, show=False): """ - Calculate the modulation (mu) of an 100% polarized source. This sohuld not depend on the specific events but only on our instrument responses. + Calculate the modulation (mu) of an 100% polarized source. + This sohuld not depend on the specific events but only on our instrument responses. In this sence we can pre-compute a cube of modulation factors to pull from. MN note: I don't think this should depend on a source spectrum: this can be @@ -299,34 +302,54 @@ def calculate_mu(self, bins=20, show=False): Parameters ---------- polarized_asads : list - Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for each polarization angle bin for 100% polarized source + Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for + each polarization angle bin for 100% polarized source unpolarized_asad : list or np.array - Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for unpolarized source + Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for + unpolarized source Returns ------- mu : dict Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins """ + print('This task takes a couple of minutes to run... hold on...\n') be, polarized100_asad = self.create_polarized100_asad(bins=bins) - print(polarized100_asad.shape) be, unpolarized_asad = self.create_unpolarized_asad(bins=bins) - print(unpolarized_asad.shape) - mu_list = [] + mu_, mu_err_ = [], [] for pol100asad_pa in polarized100_asad: asad_corrected = pol100asad_pa / np.sum(pol100asad_pa) / unpolarized_asad * np.sum(unpolarized_asad) - print('be, asad_corrected:', be, asad_corrected) + # print('be, asad_corrected:', be, asad_corrected) + + mu, mu_err = get_modulation(be.value, asad_corrected, title='Modulation', show=False) + mu_.append(mu) + mu_err_.append(mu_err) - mu, popt, pcov = get_modulation(be, asad_corrected, title='Modulation', show=show) - mu_list.append(mu) + mu_ = np.array(mu_) + mu_err_ = np.array(mu_err_) - mu_final, popt, pcov = curve_fit(constant, self._expectation.axes['Pol'].centers, mu_list) + popt, pcov = curve_fit(constant, self._expectation.axes['Pol'].centers, mu_) - print('mu:', mu_final) + average_mu = popt[0] + average_mu_err = np.sqrt(pcov[0][0]) - return mu_final + print('mu:', average_mu, '+/-', average_mu_err) + + if show: + plt.figure() + plt.errorbar(np.arange(len(mu_)), mu_, yerr=mu_err_) + plt.hlines(average_mu, 0, len(mu_), color='red', linewidth=4, + label=r'$\mu$ = %s +/- %s'%(average_mu, average_mu_err)) + plt.hlines(average_mu+average_mu_err, 0, len(mu_), color='red', linestyle='--', linewidth=2) + plt.hlines(average_mu-average_mu_err, 0, len(mu_), color='red', linestyle='--', linewidth=2) + plt.xlabel('Energy bin') + plt.ylabel(r'$\mu$') + plt.legend() + plt.show() + + return average_mu, average_mu_err def compute_pseudo_stokes(self, azimuthal_angles, show=False): """ @@ -347,9 +370,16 @@ def compute_pseudo_stokes(self, azimuthal_angles, show=False): qs, us = [], [] - for a in azimuthal_angles: - qs.append(np.cos(a.radian * 2) * 2) - us.append(np.sin(a.radian * 2) * 2) + #this is stupid... need to fix! + try: + for a in azimuthal_angles.value: + qs.append(np.cos(a * 2) * 2) + us.append(np.sin(a * 2) * 2) + except: + + for a in azimuthal_angles: + qs.append(np.cos(a.value * 2) * 2) + us.append(np.sin(a.value * 2) * 2) if show: plt.figure() @@ -368,6 +398,8 @@ def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False Parameters ---------- + total_num_events: int + total number of events that matches your polarized data bins : int or np.array, optional Number of azimuthal scattering angle bins if int or edges of azimuthal scattering angle bins if np.array (radians) @@ -378,17 +410,18 @@ def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False us : list list of pseudo-u parameters for each photon (ordered as input array) """ + print('this task takes around 25 seconds...\n') be, unpolarized_asad = self.create_unpolarized_asad(bins=bins) - + be = be.value # I would like to radomly extract an azimutal angle for each photon based on the unpolarized response. # There might be an energy dependence here, so we should thing carfully - # Create teh spline from teh unpol azimutal angle distrib + # Create teh spline from the unpol azimutal angle distrib spline_unpol = interpolate.interp1d(be[:-1], unpolarized_asad) - # Create fine bins and normalize to the area to get a probability density function (PDF) - fine_bins = np.linspace(be[0]-0.1*be[0], be[-1]+0.1*be[-1], 1000) + # also, avoiding edges that wouls break the spline + fine_bins = np.linspace(be[0]-0.01*be[0], be[-2]-0.01*be[-2], 1000) fine_probabilities = spline_unpol(fine_bins) total_area = np.trapz(fine_probabilities, fine_bins) # Numerical integration using trapezoidal rule fine_probabilities /= total_area @@ -401,9 +434,10 @@ def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False inv_cdf = interpolate.interp1d(cdf, fine_bins) #Generate random samples from a uniform distribution and map them to azimuthal angles - random_values = np.random.rand(total_num_events) - unpol_azimuthal_angles = inv_cdf(random_values) - + random_values = np.random.uniform(low=np.min(cdf), high=np.max(cdf), size=total_num_events) + print('random_values', random_values) + unpol_azimuthal_angles = inv_cdf(random_values) * u.rad + print('unpol_azimuthal_angles', unpol_azimuthal_angles) qs_unpol, us_unpol = self.compute_pseudo_stokes(unpol_azimuthal_angles) if show: @@ -417,7 +451,7 @@ def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False return qs_unpol, us_unpol - def calculate_polarization(I, qs, us, unpol_qs, unpol_us , mu, W2=None): + def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu): # # # @@ -431,75 +465,36 @@ def calculate_polarization(I, qs, us, unpol_qs, unpol_us , mu, W2=None): """Calculate the polarization degree and angle, with the associated uncertainties, for a given q and u. - This implements equations (21), (36), (22) and (37) in the paper, + This implements equations (21), (36), (22) and (37) in the paper Kislat et al 2015, respectively. - Note that the Stokes parameters passed as the input arguments are assumed - to be normalized to the modulation factor (for Q and U) on an - event-by-event basis and summed over the proper energy range. + # Note that the Stokes parameters passed as the input arguments are assumed + # to be normalized to the modulation factor (for Q and U) on an + # event-by-event basis and summed over the proper energy range. Great part of the logic is meant to avoid runtime zero-division errors. """ - if xStokesAnalysis._check_polarization_input(I, Q, U): - abort('Invalid input to xStokesAnalysis.calculate_polarization()') - # If W2 is not, i.e, we are not passing the sum of weights, we assume - # that the analysis is un-weighted, and the acceptance correction is - # not applied, in which case W2 = I and the scale for the errors is 1. - if W2 is None: - W2 = I - # Initialize the output arrays. - err_scale = np.full(I.shape, 1.) - pd = np.full(I.shape, 0.) - pd_err = np.full(I.shape, 0.) - pa = np.full(I.shape, 0.) - pa_err = np.full(I.shape, 0.) - # Define the basic mask---we are only overriding the values for the array - # elements that pass the underlying selection. - # Note we need I > 1., and not simply I > 0., to avoid any possible - # zero-division runtime error in the calculations, including the error - # propagation. - mask = I > 1. - # First pass at the polarization degree, which is needed to compute the - # modulation, which is in turn one of the ingredients of the error - # propagation (remember that Q and U are the reconstructed quantities, - # i.e., already divided by the modulation factor). - pd[mask] = np.sqrt(Q[mask]**2. + U[mask]**2.) / I[mask] - # Convert the polarization to modulation---this is needed later for the - # error propagation. - m = pd * mu - # We want the bins to satify the relation (m^2 < 2), since (2 - m^2) - # is one of the factors of the errors on the polarization. - mask = np.logical_and(mask, m**2. < 2.) - # We also want to make sure that the modulation factor is nonzero--see - # formula for the polarization error. - # It's not entirely clear to me why that would happen, but I assume that - # if you have a bin with a couple of very-low energy events it is maybe - # possible? - mask = np.logical_and(mask, mu > 0.) - # Create a masked version of the necessary arrays. - _I = I[mask] - _Q = Q[mask] - _U = U[mask] - _W2 = W2[mask] - _mu = mu[mask] - _m = m[mask] - # Second pass on the polarization with the final mask. - pd[mask] = np.sqrt(_Q**2. + _U**2.) / _I - # See equations (A.4a) and (A.4b), and compare with equations (17a) and - # (17b) for the origin of the factor sqrt(W2 / I). Also note that a - # square root is missing in (A.4a) and (A.4b). - err_scale[mask] = np.sqrt(_W2 / _I) - # Calculate the errors on the polarization degree - pd_err[mask] = err_scale[mask] * np.sqrt((2. - _m**2.) / ((_I - 1.) * _mu**2.)) - assert np.isfinite(pd).all() - assert np.isfinite(pd_err).all() - # And, finally, the polarization angle and fellow uncertainty. - pa[mask] = 0.5 * np.arctan2(_U, _Q) - pa_err[mask] = err_scale[mask] / (_m * np.sqrt(2. * (_I - 1.))) - assert np.isfinite(pa).all() - assert np.isfinite(pa_err).all() - # Convert to degrees, if needed. - if degrees: - pa = np.degrees(pa) - pa_err = np.degrees(pa_err) - return pd, pd_err, pa, pa_err + + pol_I = len(qs) + pol_Q = np.sum(qs) / mu + pol_U = np.sum(us) / mu + unpol_Q = np.sum(qs) / mu + unpol_U = np.sum(us) / mu + + Q = pol_Q - unpol_Q + U = pol_U - unpol_U + + pol_PD = np.sqrt(Q**2. + U**2.) / pol_I + pol_PA = Angle(0.5 * np.degree(np.arctan2(U, Q)), unit=u.deg) + + pol_modulation = mu * pol_PD + + pol_1sigmaPD = pol_1sigmaQ = pol_1sigmaU = np.sqrt((2. - pol_modulation**2.) / ((pol_I - 1.) * mu**2.)) + pol_1sigmaPA = np.degrees(1 / (pol_modulation * np.sqrt(2. * (pol_I - 1.)))) + + + return pol_PD, pol_1sigmaPD, pol_PA, pol_1sigmaPA + + +if __name__ == "__main__": + pass \ No newline at end of file From 27cc6c163d02cf34e6082b00c4f8f427dd4c5e90 Mon Sep 17 00:00:00 2001 From: nmik Date: Fri, 18 Oct 2024 18:18:39 -0500 Subject: [PATCH 05/31] more progress --- .../polarization/Stokes_method.ipynb | 545 +++++------------- 1 file changed, 157 insertions(+), 388 deletions(-) diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 84a022bc..c18b34c6 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -31,12 +31,12 @@ { "data": { "text/html": [ - "
18:45:45 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "
17:48:49 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m18:45:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=274616;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=435315;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m17:48:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=724899;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923100;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -51,7 +51,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=757501;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=854574;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=54272;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=975797;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -66,7 +66,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=136397;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=570250;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=459658;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=180518;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -80,7 +80,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=50576;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=296885;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276602;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53908;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -93,7 +93,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559184;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=936347;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=193268;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=668207;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -106,7 +106,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=144196;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23680;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=361311;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=625873;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -119,7 +119,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=412819;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=655680;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=904539;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117634;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -128,11 +128,11 @@ { "data": { "text/html": [ - "
18:45:45 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
17:48:50 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m18:45:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=912655;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356240;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m17:48:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=558471;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=152915;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -145,7 +145,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=509101;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=596182;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=703382;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431419;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -158,7 +158,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=831172;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=347031;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=645219;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=172104;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -167,12 +167,12 @@ { "data": { "text/html": [ - "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "
17:48:50 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
        "                  require the C/C++ interface (currently HAWC)                                                     \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=291824;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=729259;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m17:48:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=292551;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=942329;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -187,7 +187,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=235721;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451117;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=745702;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=783980;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -202,7 +202,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=981147;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=852351;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=650182;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=178745;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -216,7 +216,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=119236;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951119;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=741150;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=186955;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -230,7 +230,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=224630;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=604510;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=742568;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=962888;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -245,7 +245,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=590223;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845577;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882353;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=667840;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -260,7 +260,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=746520;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=515883;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=759704;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=463318;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -378,10 +378,20 @@ "execution_count": 5, "id": "41cbf55e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This tasks takes around 30 seconds... \n", + "\n" + ] + } + ], "source": [ "source_direction = SkyCoord(0, 70, representation_type='spherical', frame=SpacecraftFrame(attitude=attitude), unit=u.deg)\n", - "source_photons = PolarizationStokes(source_direction, spectrum, response_file, sc_orientation)" + "source_photons = PolarizationStokes(source_direction, spectrum, response_file, sc_orientation)\n", + "az_ang = source_photons.calculate_azimuthal_scattering_angles(grb_data)" ] }, { @@ -407,40 +417,48 @@ }, "metadata": {}, "output_type": "display_data" - }, + } + ], + "source": [ + "qs, us = source_photons.compute_pseudo_stokes(az_ang, show=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c69dae6c", + "metadata": {}, + "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Creating the unpolarized ASAD...\n" + "this task takes around 25 seconds...\n", + "\n", + "Creating the unpolarized ASAD...\n", + "random_values [0.73691292 0.69931264 0.77894102 ... 0.2754562 0.8476367 0.31028896]\n", + "unpol_azimuthal_angles [ 1.18008168 0.9720552 1.49226106 ... -1.44619515 1.93446454\n", + " -1.25026843] rad\n" ] }, { - "ename": "ValueError", - "evalue": "A value (2.8142254911886946) in x_new is above the interpolation range's maximum value (2.8108986900540254).", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[6], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m az_ang \u001b[38;5;241m=\u001b[39m source_photons\u001b[38;5;241m.\u001b[39mcalculate_azimuthal_scattering_angles(grb_data)\n\u001b[1;32m 3\u001b[0m qs, us \u001b[38;5;241m=\u001b[39m source_photons\u001b[38;5;241m.\u001b[39mcompute_pseudo_stokes(az_ang, show\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m----> 4\u001b[0m unpol_qs, unpol_us \u001b[38;5;241m=\u001b[39m \u001b[43msource_photons\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_unpolarized_pseudo_stokes\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43maz_ang\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/MyDocuments/_COSI/COSIpy/eliza_pull_request/cosipy/cosipy/polarization/polarization_stokes.py:392\u001b[0m, in \u001b[0;36mPolarizationStokes.create_unpolarized_pseudo_stokes\u001b[0;34m(self, total_num_events, bins, show)\u001b[0m\n\u001b[1;32m 390\u001b[0m \u001b[38;5;66;03m# Create fine bins and normalize to the area to get a probability density function (PDF)\u001b[39;00m\n\u001b[1;32m 391\u001b[0m fine_bins \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mlinspace(be[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m0.1\u001b[39m\u001b[38;5;241m*\u001b[39mbe[\u001b[38;5;241m0\u001b[39m], be[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;241m+\u001b[39m\u001b[38;5;241m0.1\u001b[39m\u001b[38;5;241m*\u001b[39mbe[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m], \u001b[38;5;241m1000\u001b[39m)\n\u001b[0;32m--> 392\u001b[0m fine_probabilities \u001b[38;5;241m=\u001b[39m \u001b[43mspline_unpol\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfine_bins\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 393\u001b[0m total_area \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mtrapz(fine_probabilities, fine_bins) \u001b[38;5;66;03m# Numerical integration using trapezoidal rule\u001b[39;00m\n\u001b[1;32m 394\u001b[0m fine_probabilities \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m total_area\n", - "File \u001b[0;32m~/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/scipy/interpolate/_polyint.py:81\u001b[0m, in \u001b[0;36m_Interpolator1D.__call__\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 61\u001b[0m \u001b[38;5;124;03mEvaluate the interpolant\u001b[39;00m\n\u001b[1;32m 62\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 78\u001b[0m \n\u001b[1;32m 79\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 80\u001b[0m x, x_shape \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_x(x)\n\u001b[0;32m---> 81\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_evaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_finish_y(y, x_shape)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/scipy/interpolate/_interpolate.py:766\u001b[0m, in \u001b[0;36minterp1d._evaluate\u001b[0;34m(self, x_new)\u001b[0m\n\u001b[1;32m 764\u001b[0m y_new \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;28mself\u001b[39m, x_new)\n\u001b[1;32m 765\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_extrapolate:\n\u001b[0;32m--> 766\u001b[0m below_bounds, above_bounds \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_bounds\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_new\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 767\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(y_new) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 768\u001b[0m \u001b[38;5;66;03m# Note fill_value must be broadcast up to the proper size\u001b[39;00m\n\u001b[1;32m 769\u001b[0m \u001b[38;5;66;03m# and flattened to work here\u001b[39;00m\n\u001b[1;32m 770\u001b[0m y_new[below_bounds] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fill_value_below\n", - "File \u001b[0;32m~/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/scipy/interpolate/_interpolate.py:799\u001b[0m, in \u001b[0;36minterp1d._check_bounds\u001b[0;34m(self, x_new)\u001b[0m\n\u001b[1;32m 797\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbounds_error \u001b[38;5;129;01mand\u001b[39;00m above_bounds\u001b[38;5;241m.\u001b[39many():\n\u001b[1;32m 798\u001b[0m above_bounds_value \u001b[38;5;241m=\u001b[39m x_new[np\u001b[38;5;241m.\u001b[39margmax(above_bounds)]\n\u001b[0;32m--> 799\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mA value (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mabove_bounds_value\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m) in x_new is above \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 800\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mthe interpolation range\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms maximum value (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mx[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m).\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 802\u001b[0m \u001b[38;5;66;03m# !! Should we emit a warning if some values are out of bounds?\u001b[39;00m\n\u001b[1;32m 803\u001b[0m \u001b[38;5;66;03m# !! matlab does not.\u001b[39;00m\n\u001b[1;32m 804\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m below_bounds, above_bounds\n", - "\u001b[0;31mValueError\u001b[0m: A value (2.8142254911886946) in x_new is above the interpolation range's maximum value (2.8108986900540254)." - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNn0lEQVR4nO3dd3xUVf7/8Xc6kEJJINSlhhBQEJaiQCihCKJRvhTRH4gK6CJErCCuuiIgi666FKmCUUCNgggoReEbQUB6lQSIsoQOSQiQkJ7c3x98Z5ZxhhBCJskNr+fjsY91zj33zufMnSRvzj1zx8UwDEMAAAClnGtJFwAAAFAQhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYApUqXLl3k4uLi9Od5++235eLiop9//tnpz1UQ9erVU7169Uq6DKBUI7QAJvfzzz/LxcVFXbp0uWGf48ePy8XFhT+KAEyN0ALgjjR69GjFxsaqbdu2JV0KgAJyL+kCAKAkBAQEKCAgoKTLAHALmGkB7lDXr+lYunSp2rZtqwoVKqhKlSoaNGiQTp8+bbePZb1JZmam3njjDdWvX19eXl5q2LChJkyYoKysLIfPtWHDBvXq1UtVqlSRl5eXGjdurNdee02XL18uUK1ZWVmaOXOmHnjgAdWtW1deXl6qUqWKunfvrjVr1jjcx7JG5MqVK3rppZdUr149eXh46O2337Yb/5/Hd6P//fkSXE5OjmbNmqV7771Xfn5+qlChglq2bKmZM2cqLy/PribDMDRz5kw1a9ZM5cqVU61atTR69OgCvw7AnY6ZFuAON2vWLK1cuVLh4eHq3Lmztm/frqioKO3fv1/79u2Tl5eX3T4DBw7Uzp071b9/f3l4eGjFihV6++23tWvXLq1cudJmIe3cuXM1cuRIeXt7a8CAAapWrZp+/vlnTZ06VatWrdKWLVtUqVKlfGu8ePGixowZo/bt26tHjx6qWrWqzp49q1WrVumBBx7Q/PnzNXz4cLv9srKyFBYWposXL6pnz57y8/NT/fr1b/g8Tz75pMO1Qb/88ov+93//VxUqVLC2ZWdn66GHHtK6desUHBysxx9/XOXKlVN0dLQiIiK0fft2LVq0yOY4L7zwgqZPn64aNWromWeesb5227dvV1ZWljw9PfN9HYA7ngHA1KKjow1JRufOnW/Y5z//+Y8hyahbt6617R//+IchyfD19TUOHDhg0/+xxx4zJBlRUVE27Z07dzYkGUFBQcbFixet7enp6ca9995rSDI+//xza/vx48cNT09Pw9fX14iNjbU51siRIw1JxogRIxw+x/UyMjKMkydP2o3r0qVLRrNmzYzKlSsbaWlpNtvq1q1rSDK6detmpKam2u1rGX90dLTdtuvt37/f8PX1NQICAozff//dbv/Ro0cbOTk51vacnBzj6aefNiQZ3333nbV9y5YthiSjYcOGRlJSkrX9+tfu+vMDwB6Xh4A73PPPP6+7777bpm3EiBGSpB07djjc580331TlypWtj8uVK6cpU6ZIkhYuXGhtX7x4sbKysjR69Gg1adLE5hiTJ0+Wr6+vFi1apMzMzHxr9PLyUu3ate3aK1asqKefflrJycnauXOnw30/+OADeXt753v8Gzlz5oz69Omj7OxsrVixQg0bNpQk5eXlacaMGapevbo++ugjubm5Wfdxc3PTBx98IBcXFy1ZssTa/umnn0qS/v73v6tKlSrW9utfOwD54/IQcIdr3bq1XVudOnUkScnJyQ736dy5s11bx44d5ebmpr1791rb9uzZI0kKCwuz61+5cmW1bNlSmzZt0uHDh9WiRYt86zx06JDef/99bdq0SWfPnlVGRobNdkdrcMqVK6fmzZvne9wbSU1N1YMPPqjTp0/ryy+/VPv27a3bjh49qosXLyooKEiTJk1yuH/58uUVGxtrfWx5LfJ77QDkj9ACmJyr67UJU0cLPy0s2yx9r+doPYm7+7VfDbm5uQ6PFxgY6HCfgIAAXbhwwdpmWWBao0YNh8extF+6dOmGtUvStm3bFBYWppycHHXr1k3h4eHy8/OTq6ur9u3bpxUrVjicralWrVqhblSXm5urRx99VHv37tWUKVP06KOP2mxPSkqSJMXFxWnChAk3PE5qaqr1vy2vRX6vHYD8EVoAk6tYsaKk//4hdSQxMVGS44BSGOfPn9df/vIXm7acnBwlJibKz8/PrrZz586pWbNmdsc5e/asTb8bmTRpktLT0xUdHW23UHbKlClasWKFw/0Ke2fdiIgIrV69WiNGjNBrr71mt91Sb9++ffXtt98W6JiWfc6fP68GDRrYbLO8do4ugQH4L9a0ACYXHBwsLy8vHT169IbB5ddff5Wkm16CKaiNGzfatW3evFm5ublq2bKltc3y345ulX/p0iXt27dP5cqVU0hISL7P9/vvv6tKlSoOP9njqJbb8cEHH2j27Nnq2bOnZs2a5bBPkyZNVKlSJW3btk3Z2dkFOm6rVq0k5f/aAcgfoQUwuXLlymnQoEHKycnRq6++KsMwbLafOnVK77//vqRrH+ktChMnTrRZ75KRkaHx48dLkp566ilr++DBg+Xh4aEZM2bo999/tznGm2++qStXrmjw4MEOP1Z9vXr16unixYs6cOCATfuCBQu0bt262x2O1bfffquxY8fq7rvv1jfffGO9TPZn7u7uioiI0NmzZ/X8888rPT3drs/Zs2cVExNjfWx57SdPnqyLFy9a269/7QDkj8tDQBnwwQcfaOfOnfr000/166+/qkePHvLz81N8fLxWrFihlJQUjRs3zuEi0MIICQlRs2bNbO7T8scff6hPnz4aMmSItV+9evX073//W6NGjVKrVq00cOBAVa1aVRs3btSvv/6qJk2aaOrUqTd9vhdeeEHr1q1Tx44dNXDgQFWsWFG7du3S5s2b1b9/fy1durRIxjV48GDl5eWpTZs2+vDDD+2216tXzxo+3nzzTe3fv19z5szRqlWrFBYWplq1aunChQuKi4vTli1bNHnyZDVt2lSS1KFDB0VERGjGjBm66667bF67ypUr33DdD4DrlPRnrgEUjZSUFGPy5MlG69atDV9fX8Pd3d0IDAw0HnzwQeOHH36w65/ffUos93UZOnSoTbvlHioZGRnG3//+d6NevXqGp6enUb9+fePtt982MjIyHNa2bt06o0ePHkalSpUMT09Po2HDhsarr75qJCcn2/V1dJ8WwzCMVatWGe3atTN8fHyMihUrGj169DA2btxofPrpp4Yk49NPP7XpX7du3Xzve+Jo/JLy/d+f74WTl5dnfP7550ZYWJhRuXJlw8PDw6hZs6bRoUMHY/LkycaJEyfs+s+YMcNo0qSJ4enpadSoUcN47rnnjEuXLt20XgCG4WIYf5pLBoAb6NKlizZu3Gh3CQoAigNrWgAAgCkQWgAAgCkQWgAAgCmwpgUAAJgCMy0AAMAUCC0AAMAUykxoycjI0JEjR+y++RUAAJQNZSa0xMfHa8SIEYqPjy/pUgAAgBOUmdACAADKNkILAAAwBUILAAAwBUILAAAwBfeSLgAAANxYbm6usrOzS7qMIuHh4SE3N7dC709oAQCglEpNTdWpU6fKzDeru7i4qHbt2vLx8SnU/oQWAABKodzcXJ06dUoVKlRQ1apV5eLiUtIl3RbDMJSQkKBTp04pKCioUDMuhBYAAEqh7OxsGYahqlWrqnz58iVdTpGoWrWqjh8/ruzs7EKFFhbiAgBQipl9huV6tzsWZloAADCJ3UvjnHbsv/YPctqxiwozLQAAwBQILQAAoMBWrlypkJAQNW/eXGPHjlVAQICOHz9eLM9NaAEAAAVy4cIFPfXUU1q2bJkOHDigRo0aKSkpqdie/5ZDS1pamhYuXKhXXnlFffr0UadOnbRmzZp898nJydGQIUPUqVMnffnll3bb8/Ly9MUXX2jgwIHq3r27nnzySa1fv/5WSwMAAE60bds2NW/eXE2bNpUkDRs2TJ6enpKk9PR0PfzwwwoNDdWQIUOc8vy3vBD38uXLioyMVGBgoBo1aqS9e/fedJ9ly5bpwoULN9w+f/58LVmyRA899JCaNGmizZs365133pGLi4u6det2qyUCAIBicP2ngbZs2aIOHTpo7NixTrsZ3i3PtPj7+2v58uX65ptvNHLkyJv2T05O1meffabHH3/c4faEhARFRUWpb9++evXVV/XQQw/pn//8p5o3b65Zs2YpNzf3VksEAABOcN999+nAgQM6fPiwJGnhwoXKysqSJLVv316nTp3SkCFD9Mcffzjl+W85tHh6esrf37/A/efOnas6deqoR48eDrdv3rxZOTk56tu3r7XNxcVFjzzyiBISEnTo0KFbLREAADhB1apVtXDhQvXt21ctWrRQXFycNRO4uLho+vTpeuKJJxQVFeWU53fqfVpiYmK0du1azZw584Y3lImLi1P58uVVt25dm/aQkBDr9ubNmzuzzAKZfWbtTfuMrNmrGCoBANypSsO9VB5++GE9/PDD1scLFiyQJA0dOlRnzpyRu7u7Pv/8c6c8t9NCi2EYmjZtmsLCwnTXXXfp7NmzDvslJSWpcuXKdqHGktwSExMd7peYmGizYjk+Pr6IKgcAALfq66+/dvpzOC20rFmzRseOHdM777yTb7/MzEx5eHjYtVtWI2dmZjrcb+XKlYqMjLztOgEAQOHdaHLBGZwSWq5evap58+bpscceU2BgYL59vby8lJ2dbdduWdjj5eXlcL/w8HB16NDB+jg+Pl6TJk26jaoBAEBp5pTQ8tVXXyk7O1thYWHWy0IJCQmSpNTUVJ09e1YBAQHy8PCQv7+/9u7dK8MwbC4RWS79BAQEOHyOgICAG24DAABlj1NCy/nz55WSkqInnnjCbtuiRYu0aNEiLViwQEFBQWrUqJG+//57xcfHq169etZ+MTExkqRGjRo5o0QAAGAyTgkt/fr1U2hoqE1bcnKy/vWvf6l3797q2LGjatSoIUnq2LGjZs6cqeXLl+vFF1+UdG0R74oVK1S1alXdddddzigRAACYTKFCy7Jly5Sammq9hLNlyxbrHW/79eun4OBgBQcH2+xjuUxUr149m0BTrVo1DRgwQF9++aVycnIUEhKiX375RQcOHNCbb74pNze3Qg0MAACULYUKLVFRUTp37pz18aZNm7Rp0yZJUs+ePeXj43NLx3v22Wfl6+urlStXau3atapdu7beeOONG96QDgAA3HkKFVoK81nsGjVqWIPNn7m6umrw4MEaPHhwYcoBAAB3AKfeERcAABSdgtydvbDMcFf3W/7uIQAAgJJAaAEAAAXm4uKiS5cuWR8HBATo+PHjxfLchBYAAGAKrGkBAAC3LT09XYMGDdLFixdVr149LVq0qMifg9ACAAAKzM3NTbm5udbHGRkZkq7ds61Dhw4aO3asDMNwynNzeQgAABRYo0aNtH37dknSt99+q6tXr0qS2rdvr1OnTmnIkCH6448/nPLchBYAAFBgH330kcaMGaNWrVpp79698vf3l3Rtge706dP1xBNPKCoqyinPzeUhAABMojTcS6V3796Ki4uzPp44caIkaeDAgTpz5ozc3d31+eefO+W5CS0AAOC2FeZu+beKy0MAAMAUCC0AAMAUCC0AAMAUCC0AAMAUCC0AAJRizrpRW0m43bHw6SEAAEohDw8Pubi4KCEhQVWrVpWLi0tJl3RbDMNQQkKCXFxc5OHhUahjEFoAACiF3NzcVLt2bZ06darYvkXZ2VxcXFS7dm25ubkVan9CCwAApZSPj4+CgoKUnZ1d0qUUCQ8Pj0IHFonQAgBAqebm5nZbf+jLEhbiAgAAU2CmBQAAaPaZtTftU9LffcRMCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAX3W90hLS1NX331lWJiYhQbG6uUlBSNHz9evXv3tvbJy8vTunXrtHHjRsXFxSklJUU1atRQWFiYBg0aJC8vL7vjfv/99/rqq6907tw5Va1aVf3791e/fv1ub3QAAKDMuOWZlsuXLysyMlLx8fFq1KiRwz4ZGRmaMmWKLl++rIcfflgREREKCQnRp59+qrFjx8owDJv+K1as0Hvvvaf69etrzJgxuuuuuzRt2jQtWbKkcKMCAABlzi3PtPj7+2v58uXy9/fX4cOH9cwzz9j18fDw0Mcff6y7777b2vbQQw+pevXqWrhwoXbv3q3WrVtLkjIzM/XJJ5/ovvvu08SJE6198/Ly9Pnnnys8PFy+vr6FHR8AACgjbnmmxdPTU/7+/vn28fDwsAksFqGhoZKk+Ph4a9uePXt0+fJlPfLIIzZ9+/btq/T0dP3666+3WiIAACiDinUh7sWLFyVJFStWtLbFxcVJkpo0aWLTNzg4WK6urjp69GjxFQgAAEqtW748dDu+/PJLeXt7q127dta2pKQkubm5qXLlyjZ9PTw85Ofnp6SkJIfHSkxMtNl2/ewNAAAoe4ottCxatEi7du3SSy+9ZLNGJTMzU+7ujsvw9PRUZmamw20rV65UZGSkM0oFAAClULGElg0bNuiTTz5Rnz597NaueHl5KScnx+F+WVlZDj8eLUnh4eHq0KGD9XF8fLwmTZpUZDUDAIDSxemhZefOnXr33Xd133336eWXX7bb7u/vr9zcXCUnJ9tcIsrOztaVK1duuOg3ICBAAQEBTqsbAACULk5diBsTE6M33nhDwcHBmjBhgsPLQEFBQZKkw4cP27QfPnxYeXl51u0AAODO5rTQcvz4cY0bN07Vq1fX1KlTb3iZp1WrVvLz89OKFSts2lesWKFy5crpvvvuc1aJAADARAp1eWjZsmVKTU21fnpny5YtunDhgiSpX79+cnV11SuvvKKUlBQNGjTI7l4rNWvW1F133SXp2pqWYcOG6aOPPtJbb72ltm3bav/+/frxxx81YsQI+fn53c74AABAGVGo0BIVFaVz585ZH2/atEmbNm2SJPXs2VOSrCFm7ty5dvv36tXLGlqkazeSc3d3V1RUlLZs2aJq1app9OjRGjBgQGHKAwAAZVChQsvXX3990z6WEFNQDz30kB566KHClAMAAO4AxXpHXAAAgMIitAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFNwv9Ud0tLS9NVXXykmJkaxsbFKSUnR+PHj1bt3b7u+x48f18yZM3Xw4EG5u7vrvvvu0+jRo1WpUiWbfnl5efrqq6/03Xff6eLFi6pdu7YGDx6s7t27F3pgAACgbLnl0HL58mVFRkYqMDBQjRo10t69ex32u3DhgiIiIuTj46MRI0YoPT1dX331lY4dO6a5c+fKw8PD2nf+/PlasmSJHnroITVp0kSbN2/WO++8IxcXF3Xr1q3wowMAAGXGLYcWf39/LV++XP7+/jp8+LCeeeYZh/0WL16sjIwMffLJJwoMDJQkhYSE6KWXXtKaNWsUHh4uSUpISFBUVJT69u2rF198UZL04IMPKiIiQrNmzVKXLl3k5uZW2PEBAIAy4pbXtHh6esrf3/+m/TZu3Kj27dtbA4sktW7dWnXq1FF0dLS1bfPmzcrJyVHfvn2tbS4uLnrkkUeUkJCgQ4cO3WqJAACgDLrlmZaCSEhIUHJysoKDg+22hYSEaNu2bdbHcXFxKl++vOrWrWvXz7K9efPmzijzlpyJuXjzTjWdXwcAAHcqp4SWpKQkSXI4I+Pv768rV64oKytLnp6eSkpKUuXKleXi4mLXT5ISExMdPkdiYqL1eSQpPj6+qMoHAAClkFNCS2ZmpiTZLLa18PT0tPbx9PRUZmbmTfs5snLlSkVGRhZRxQAAoLRzSmjx8vKSJGVnZ9tty8rKsunj5eVVoH5/Fh4erg4dOlgfx8fHa9KkSbdXOAAAKLWcElosl3auv3xjkZSUJD8/P+tMir+/v/bu3SvDMGwuEVn2DQgIcPgcAQEBN9wGAADKHqfcEbdq1aqqVKmSjhw5YrctNjZWjRo1sj5u1KiRMjIy7NakxMTEWLcDAAA47Tb+nTt31tatW3X+/Hlr2+7du3Xy5El17drV2taxY0e5u7tr+fLl1jbDMLRixQpVrVpVd911l7NKBAAAJlKoy0PLli1Tamqq9RLOli1bdOHCBUlSv3795OPjo8GDB+vnn3/WCy+8oP79+ys9PV1ffvmlGjRoYHPL/2rVqmnAgAH68ssvlZOTo5CQEP3yyy86cOCA3nzzTW4sBwBAMTDDrT0KFVqioqJ07tw56+NNmzZp06ZNkqSePXvKx8dHgYGBmj59umbOnKm5c+dav3to1KhR1vUsFs8++6x8fX21cuVKrV27VrVr19Ybb7yhHj163MbQAABAWVKo0PL1118XqF/9+vX1wQcf3LSfq6urBg8erMGDBxemHAAAcAdw2poWAACAokRoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApuDuzIOfPHlSCxYs0MGDB3XlyhUFBgaqe/fuGjRokMqVK2ftd/DgQc2ZM0dHjx6Vt7e3unbtqhEjRqhChQrOLA8AAJiI00LL+fPn9eyzz8rHx0d9+/aVn5+fDh06pIULF+rIkSOaMmWKJCkuLk4vvvii6tatq9GjR+vChQuKiorSqVOn9P777zurPAAAYDJOCy0//vijUlNT9fHHH6t+/fqSpPDwcOXl5WndunVKSUmRr6+v5s2bJ19fX02fPl3e3t6SpBo1aui9997Tjh071LZtW2eVCAAATMRpa1quXr0qSapcubJNu7+/v1xdXeXu7q6rV69q165d6tmzpzWwSNL999+v8uXLKzo62lnlAQAAk3FaaGnZsqUkaerUqYqLi9P58+e1YcMGrVixQv369VP58uV17Ngx5ebmKjg42GZfDw8PBQUFKS4uzlnlAQAAk3Ha5aF27dpp2LBhWrx4sbZs2WJtHzJkiEaMGCFJSkpKknRt9uXP/P39tX///hsePzEx0bq/JMXHxxdV6QAAoBRy6qeHatSooRYtWqhz587y8/PTr7/+qsWLF6tKlSrq16+fMjMzJV2bWfkzT09PZWVl3fDYK1euVGRkpLNKBwAApYzTQsuGDRv0/vvva8mSJapWrZokqXPnzjIMQ3PnzlX37t3l5eUlScrOzrbbPysrS56enjc8fnh4uDp06GB9HB8fr0mTJhXxKAAAQGnhtNCyfPlyBQUFWQOLRYcOHbRmzRrFxcVZLwtdf5nHIikpSQEBATc8fkBAQL7bAQBA2eK0hbjJycnKy8uza8/JyZEk5ebmqn79+nJzc9ORI0ds+mRnZysuLk6NGjVyVnkAAMBknBZa6tSpo7i4OJ08edKmfcOGDXJ1dVXDhg3l4+Oj1q1b68cff1RaWpq1z7p165Senq6uXbs6qzwAAGAyTrs8NGjQIG3fvl2jR4/W//zP/8jPz09bt27V9u3b9eCDD1ov7QwfPlyjRo1SRESEwsPDrXfEbdOmjdq1a+es8gAAgMk4LbTcc889+vjjj/Xpp59q+fLlunLlimrUqKERI0boscces/YLDg7Whx9+qDlz5mjGjBmqUKGC+vTpo2effdZZpQEAABNy6keemzZtWqDvD2revLlmzZrlzFIAAIDJOW1NCwAAQFEitAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFNwd/YTHDlyRJ9++qkOHjyorKws1axZUw899JD69+9v7XPw4EHNmTNHR48elbe3t7p27aoRI0aoQoUKzi4PAACYhFNDy44dOzR+/HgFBQVp6NChKl++vE6fPq2EhARrn7i4OL344ouqW7euRo8erQsXLigqKkqnTp3S+++/78zyAACAiTgttFy9elXvvvuu7r33Xk2cOFGuro6vRM2bN0++vr6aPn26vL29JUk1atTQe++9px07dqht27bOKhEAAJiI09a0rF+/XhcvXtSIESPk6uqq9PR05eXl2fS5evWqdu3apZ49e1oDiyTdf//9Kl++vKKjo51VHgAAMBmnzbTs2rVL3t7eSkxM1N///nedPHlS5cuXV8+ePTV69Gh5eXnp2LFjys3NVXBwsM2+Hh4eCgoKUlxcnLPKAwAAJuO00HLq1Cnl5ubq9ddfV58+ffTMM89o3759WrZsmVJTU/WPf/xDSUlJkiR/f3+7/f39/bV///4bHj8xMdG6vyTFx8cX/SAAAECp4bTQkp6eroyMDD388MMaM2aMJKlz587Kzs7WypUr9fTTTyszM1PStZmVP/P09FRWVtYNj79y5UpFRkY6pXYAAFD6OC20eHl5SZK6detm0969e3etXLlShw4dUrly5SRJ2dnZdvtnZWXJ09PzhscPDw9Xhw4drI/j4+M1adKkoigdAACUQk4LLf7+/vrPf/6jKlWq2LRXrlxZkpSSkqJatWpJks1lHoukpCQFBATc8PgBAQH5bgcAAGWL0z49ZFlce/09WaRra1EkqVKlSqpfv77c3Nx05MgRmz7Z2dmKi4tTo0aNnFUeAAAwGaeFlq5du0qSfvjhB5v2H374QW5ubmrZsqV8fHzUunVr/fjjj0pLS7P2WbdundLT063HAAAAcNrlocaNG+uBBx7Q6tWrlZubq3vuuUf79u1TdHS0Bg8ebL20M3z4cI0aNUoREREKDw+33hG3TZs2ateunbPKAwAAJuPU2/i/8sorCgwM1Jo1a/TLL78oMDBQo0eP1sCBA619goOD9eGHH2rOnDmaMWOGKlSooD59+ujZZ591ZmkAAMBknBpa3N3d9dRTT+mpp57Kt1/z5s01a9YsZ5YCAABMzmlrWgAAAIoSoQUAAJgCoQUAAJgCoQUAAJiCUxfi3ml2L735t1L/tX9QMVQCAEDZw0wLAAAwBUILAAAwBUILAAAwBUILAAAwBUILAAAwBUILAAAwBUILAAAwBe7TUsy4lwsAAIXDTAsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAF95IuAAAAONfsM2tLuoQiwUwLAAAwBWZaitB3lXbetM8jl9oUQyUAAJQ9zLQAAABTKNbQ8vnnn6tTp04aOnSo3baDBw9q1KhR6tGjhx555BFNmzZNaWlpxVkeAAAoxYrt8tCFCxe0ePFilS9f3m5bXFycXnzxRdWtW1ejR4/WhQsXFBUVpVOnTun9998vrhJLjYIsmBpZs1cxVAIAKEllZQFtUSm20DJr1iw1bdpUeXl5unz5ss22efPmydfXV9OnT5e3t7ckqUaNGnrvvfe0Y8cOtW3btrjKBAAApVSxXB7at2+fNm7cqIiICLttV69e1a5du9SzZ09rYJGk+++/X+XLl1d0dHRxlAgAAEo5p4eW3NxcTZs2TX369FHDhg3tth87dky5ubkKDg62affw8FBQUJDi4uKcXSIAADABp18eWrFihc6fP6+PPvrI4fakpCRJkr+/v902f39/7d+/3+F+iYmJ1n0lKT4+vgiqBQAApZVTQ8vly5e1cOFCPfHEE6pUqZLDPpmZmZKuzaz8maenp7Kyshzut3LlSkVGRhZVqQAAoJRzamj55JNP5Ovrq379+t2wj5eXlyQpOzvbbltWVpY8PT0d7hceHq4OHTpYH8fHx2vSpEm3WTEAACitnBZaTp48qVWrVikiIkKJiYnW9qysLOXk5Ojs2bPy9va2Xha6/lKPRVJSkgICAhwePyAg4IbbAAAoC87EXLxpn5pNqxTJcczAaaElMTFReXl5mjZtmqZNm2a3/dFHH1X//v319NNPy83NTUeOHFFYWJh1e3Z2tuLi4tS1a1dnlQgAAEzEaaGlfv36mjx5sl37J598orS0ND3//POqWbOmfHx81Lp1a/34448aOnSoKlSoIElat26d0tPTCS0AAECSE0NLpUqVFBoaatf+zTffSJLNtuHDh2vUqFGKiIhQeHi49Y64bdq0Ubt27ZxVIgAAMJFS8YWJwcHB+vDDD+Xl5aUZM2Zo1apV6tOnjyZOnFjSpQEAgFKi2G7jbzF9+nSH7c2bN9esWbOKuZri912lnTftU1M3X1QFAMCdplTMtAAAANwMoQUAAJgCoQUAAJgCoQUAAJhCsS/ERdGYfWbtTfuMrNmrGCoBAKB4MNMCAABMgdACAABMgdACAABMgdACAABMgdACAABMgdACAABMgdACAABMgdACAABMgdACAABMgTviAgBKzO6lcTft89f+QcVQScEVVc0FubM5bDHTAgAATIHQAgAATIHQAgAATIHQAgAATIGFuGVYQRZ5jazZqxgqAQA4y5mYiyVdQrFhpgUAAJgCoQUAAJgCl4dKoYJM9dVsWqVInotLSACcpSD3MylOZrwnDGwx0wIAAEyBmRaYDrNDAJylIL9f2qphMVQCR5hpAQAApkBoAQAApsDlIZMqzsW6QGnAIkoUh4Ld84TLQyWFmRYAAGAKzLTgplj4CgC3piC/N3HrmGkBAACmQGgBAACmwOUh3FSBFqbVdH4dKLtK251TAZROzLQAAABTYKalDONj0YA5FNXHucvqx8JL27i+q7Tzpn1qit+tzsBMCwAAMAWnzbTExsZq7dq12rt3r86dOyc/Pz81a9ZMw4cPV506dWz6Hj9+XDNnztTBgwfl7u6u++67T6NHj1alSpWcVR4AADAZp4WWL774QgcPHlTXrl3VsGFDJSUlafny5Ro+fLhmz56tBg0aSJIuXLigiIgI+fj4aMSIEUpPT9dXX32lY8eOae7cufLw8HBWiSjDStt0shnxGt65iureTAW5jPLIpTYFqslsCnZnXdwqp4WWgQMH6q233rIJHWFhYXrqqae0ZMkSvfnmm5KkxYsXKyMjQ5988okCAwMlSSEhIXrppZe0Zs0ahYeHO6tEAABgIk4LLXfffbddW506dVSvXj3Fx8db2zZu3Kj27dtbA4sktW7dWnXq1FF0dDSh5Q5ToI++tnd+HUBBFOdHtQsy+9G2GL8T5831XxTbcxWVgsz8oHQr1oW4hmEoOTlZFStWlCQlJCQoOTlZwcHBdn1DQkIUF8e9GwAAwDXF+pHnn376SQkJCXr66aclSUlJSZIkf39/u77+/v66cuWKsrKy5Onpabc9MTHRur8km9kbAABQ9hRbaImPj9dHH32kZs2aqVevawu4MjMzJcnhYltLUMnMzHQYWlauXKnIyEjnFYxbUqCp661FM3VdnF8dz5dFAuZQoEt1lZxeBpysWEJLUlKSxo0bJ29vb02cOFFubm6SJC8vL0lSdna23T5ZWVk2ff4sPDxcHTp0sD6Oj4/XpEmTirp0AABQSjg9tKSmpmrs2LFKTU3VzJkzFRAQYN1muSx0/WUei6SkJPn5+TmcZZGkgIAAm2MBt4pFv3euO3kGrSDv+zOV+LguSienhpbMzEy99tprOnnypD788EPVq1fPZnvVqlVVqVIlHTlyxG7f2NhYNWrUyJnlAQAAE3Hap4dyc3P19ttv69ChQ5owYYLuuusuh/06d+6srVu36vz589a23bt36+TJk+ratauzygMAACbjtJmWjz/+WFu2bFH79u2VkpKiH3/80WZ7z549JUmDBw/Wzz//rBdeeEH9+/dXenq6vvzySzVo0EC9e/d2Vnn4P0V118biXBxbVhXnJYvivL9IQRTVnVMLPK4CXPYryH1IHlHZvJsrUFo5LbT8/vvvkqStW7dq69atdtstoSUwMFDTp0/XzJkzNXfuXOt3D40aNeqG61kAAMCdx2mhZfr06QXuW79+fX3wwQfOKgWlRGn7HpIC3R0zpgAHqnnzLgWZRSkqpW0W5U7/KGppe9+XNrw+uBXFekdcAACAwiK0AAAAUyjW2/gDxaU4vxjtTr7fS2m7FFXcivN9VlSL3fnSQJgZMy0AAMAUmGkBUGYUeBahIAusUWowOwQLZloAAIApEFoAAIApcHkIuE0FmbquqSpF8lwFWfhanPe9YNq+dOF8oKxjpgUAAJgCMy0oVfiXYv54fcomzitQMMy0AAAAUyC0AAAAUyC0AAAAUyC0AAAAU2AhLlBKFOy7ZYoGCz8BmBEzLQAAwBQILQAAwBS4PAQUg+K89AMAZRUzLQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBS4Iy4AU+BLHgEw0wIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyhVNxcLisrSwsWLNCPP/6olJQUNWzYUMOHD1ebNm1KujQAAFBKlIqZlilTpujrr79Wjx499Pzzz8vV1VVjx47VgQMHSro0AABQSpR4aImJidGGDRv0zDPP6LnnnlN4eLj+/e9/q3r16po9e3ZJlwcAAEqJEg8tGzdulJubm8LDw61tXl5e6tOnjw4dOqTz58+XYHUAAKC0KPHQEhcXp9q1a8vb29umPSQkRJL0+++/l0RZAACglCnxhbhJSUny9/e3a7e0JSYmOtwvMTFRSUlJ1seWcBMfH++EKqWUswlOOS4AAGZx5MgRpx27bt26KleuXL59Sjy0ZGZmysPDw67d09PTut2RlStXKjIy0q590qRJRVofAAC4ZsT8ZU479vz58xUcHJxvnxIPLV5eXsrOzrZrz8rKsm53JDw8XB06dLA+TklJUXx8vBo3bmwNPEUlPj5ekyZN0htvvKG6desW6bFLg7I+Pqnsj5HxmV9ZH2NZH59U9sfo7PEV5JglHlr8/f2VkGB/6cVy6ScgIMDhfgEBAXbbWrduXfQFXqdu3bo3TYFmVtbHJ5X9MTI+8yvrYyzr45PK/hhLcnwlvhC3UaNGOnXqlK5evWrTHhMTY90OAABQ4qGlS5cuys3N1cqVK61tWVlZWr16tZo2barAwMASrA4AAJQWJX55qGnTpuratavmzZunS5cuqVatWlq7dq3OnTuncePGlXR5kq5dwnryyScdfsqpLCjr45PK/hgZn/mV9TGW9fFJZX+MpWF8LoZhGCX27P8nMzPT+t1DqampatCggYYPH662bduWdGkAAKCUKBWhBQAA4GZKfE0LAABAQRBaAACAKRBaAACAKZT4p4dKo927d+unn37SgQMHlJCQoCpVqqhVq1YaNmzYDW9292cJCQmaOXOmdu7cqby8PLVs2VIRERGqWbOmk6u/ucTERC1dulSxsbE6fPiw0tPTNW3aNLVs2bJA+y9cuNDhVyh4enpq/fr1RVztrbvd8Uml+/xZpKSkaM6cOdq0aZMyMzMVEhKi5557rkA3fXr33Xe1du1au/a//OUvWrx4sTPKdSgrK8u6CD8lJUUNGzbU8OHD1aZNm5vua4ZzJBV+jKX958wiLS1NX331lWJiYhQbG6uUlBSNHz9evXv3LtD+t/M+Lg63M741a9ZoypQpDrctX768VHzKKDY2VmvXrtXevXt17tw5+fn5qVmzZho+fLjq1Klz0/2L+/wRWhyYM2eOrly5oi5duqhOnTo6c+aMvv32W/36669asGDBTd9oaWlpGjNmjK5evarBgwfL3d1dX3/9tSIiIrRw4UJVrFixmEbi2MmTJ/XFF1+odu3aatCggQ4dOlSo47z88ssqX7689bGra+mYuLvd8ZX28ydJeXl5GjdunP744w8NGjRIFStW1HfffacxY8Zo/vz5Bfpl4+npqbFjx9q0/fnb1p1typQp+vnnnzVgwADVrl1ba9as0dixYzVt2jQ1b978hvuZ4RxZFHaMFqX158zi8uXLioyMVGBgoBo1aqS9e/cWeN+ieB872+2Mz2LYsGGqUaOGTZuPj09RlXhbvvjiCx08eFBdu3ZVw4YNlZSUpOXLl2v48OGaPXu2GjRocMN9S+T8GbCzd+9eIzc3164tNDTUmDdv3k33X7JkiREaGmrExMRY244fP2506dLFmDt3bpHXe6uuXr1qXL582TAMw4iOjjZCQ0ONPXv2FHj/BQsWGKGhoUZycrKTKrw9tzu+0n7+DMMwNmzYYISGhhrR0dHWtuTkZKN3797GhAkTbrr/5MmTjZ49ezqxwps7dOiQERoaanzxxRfWtoyMDGPQoEHG3/72t3z3NcM5MozbG2Np/zmzyMzMNBITEw3DMIzY2FgjNDTUWL16dYH2vd33cXG4nfGtXr3aCA0NNWJjY51Z4m05cOCAkZWVZdN24sQJo1u3bsY777yT774lcf5KV2QvJe655x67f83cc8898vPzU3x8/E33//nnn9WkSROFhIRY2+rWratWrVopOjq6yOu9VRUqVJCfn1+RHOvq1asyStmn5m93fKX9/EnSxo0bVaVKFXXq1MnaVqlSJXXt2lWbN2+2fuHozeTm5tp9hUZx2bhxo9zc3BQeHm5t8/LyUp8+fXTo0CGdP3/+hvua4RxJtzfG65XGnzMLT0/PQl/mKKr3sTPdzviul5aWptzc3CKoqGjdfffd8vDwsGmrU6eO6tWrd9O/dyVx/ggtBZSWlqb09PSbTjvn5eXp2LFjatKkid22kJAQnT59Wmlpac4qs1g9+uij6t27t3r16qWJEyfq4sWLJV3SbTPL+Tt69KiCgoLswnVISIgyMjJ08uTJmx4jIyNDvXv3Vu/evdWnTx99+OGHxTq2uLg41a5d2+6SlCWI/P777w73M8s5kgo/xuuVxZ8zi6J4H5vBmDFj1KtXL/Xs2VOvvfZaqR+XYRhKTk6+6d+7kjh/rGkpoG+++UbZ2dkKCwvLt9+VK1eUlZXlMJlb2hITE/WXv/zFKXUWB19fX/3P//yPmjVrJg8PDx04cEDLly9XbGys5s+fX+zrIoqSWc7fxYsX1aJFC7t2S41JSUlq2LDhDff39/fXY489psaNG8swDG3fvl3fffed/vjjD02bNk3u7s7/1ZCUlHTT19kRs5wjqfBjlMr2z5nF7b6PSzsvLy/17t1bLVu2lLe3t44cOaKvv/5azz33nD755JNS+916P/30kxISEvT000/n268kzl+ZDy15eXnKzs4uUF9PT0+5uLjYte/bt0+RkZHq2rWr/vrXv+Z7jMzMTEmym26zHP/6PkWhKMZ3qwYMGGDzuEuXLgoJCdHEiRO1fPlyDR48+Lafw6K4x1fc508q3BgzMzOt9RSmxmeffdbmcbdu3VSnTh3Nnz9fGzduVLdu3QpYfeFlZmYW6nUuiXNUWIUdo1S8P2cl5Xbfx6VdWFiYzT90Q0ND1bZtW0VERGjRokV65ZVXSrA6x+Lj4/XRRx+pWbNm6tWrV759S+L8lfnQsn//fo0ZM6ZAfRctWqS6devatMXHx+uNN95QgwYNCvQFjl5eXpLk8I+Q5fqepU9RuN3xFZUePXro448/1u7du4v0l2lxj6+4z59UuDF6eXk5vF58OzUOHDhQCxYs0K5du4oltHh5eRXqdS6Jc1RYhR3jjTjr56ykOON9XNo1b95cTZs21e7du0u6FDtJSUkaN26cvL29NXHiRLm5ueXbvyTOX5kPLX/5y180fvz4AvX98zTu+fPn9fLLL8vb21tTp05VhQoVbnoMPz8/eXp6KikpyW6bpa2g93opiNsZX1GrVq2arly5UqTHLO7xFff5kwo3xipVquRbY2FeCy8vL/n5+RX5ObwRf39/JSQk2LXf7HUuiXNUWIUdY36c8XNWUpzxPjaDatWq6cSJEyVdho3U1FSNHTtWqampmjlzZoHemyVx/sp8aPH39y/wTY6ud/nyZb388svKzs7WRx99VOBfLq6urmrQoIEOHz5sty0mJkY1a9YsUPgpqMKOr6gZhqFz584pKCioSI9b3OMr7vMnFW6MQUFBOnDggPLy8mwWwcXGxqpcuXKFuj9CWlqaLl++rEqVKt3yvoVhuefF1atXbdZnxMTEWLc7UhLnqLAKO8YbcdbPWUlxxvvYDM6cOVNsP2cFkZmZaV0g/OGHH6pevXoF2q8kzh+fHnIgPT1dY8eOVWJiot577718X/jz58/bfSysc+fOOnz4sM0v1RMnTmjv3r3q0qWLs8p2Ckfju3Tpkl2/7777TpcuXVK7du2KqbKiYdbz17lzZ128eFGbNm2ytl26dEnR0dFq3769zXXm06dP6/Tp09bHmZmZDj9d89lnn8kwjGI7h126dFFubq5WrlxpbcvKytLq1avVtGlT6yJFs54j6fbGWJZ+zqRri47j4+OVk5NjbbuV93Fp52h8js7hr7/+qiNHjqht27bFWN2N5ebm6u2339ahQ4c0YcIE3XXXXQ77lZbzV+ZnWgpj4sSJio2N1QMPPKD4+HibXybly5dXaGio9fHkyZO1b98+m5PWt29fff/99xo3bpwGDRokNzc3ff3116pcubIGDRpUrGO5kc8++0ySdPz4cUnSunXrdODAAUnS0KFDrf0cjW/AgAEKCwtTgwYN5OnpqYMHD2rDhg0KCgqyuR9FSbqd8Znh/HXp0kVLly7VlClTdPz4ceudKPPy8uxW/L/44ouSpK+//lrStRX/w4YNU/fu3a2fsNmxY4e2bdumdu3aqWPHjsUyhqZNm6pr166aN2+eLl26pFq1amnt2rU6d+6czfoxs54j6fbGaIafM4tly5YpNTXVellgy5YtunDhgiSpX79+8vHx0bx587R27VpFRUVZ7w57K+/jklTY8Y0cOVKNGzdWcHCwvL29dfToUa1evVrVqlXTkCFDSmw81/v444+1ZcsWtW/fXikpKfrxxx9ttvfs2VOSSs35I7Q4YLl3wurVq7V69WqbbdWrV7cJLY5UqFBB06ZN08yZM/X5559bvxdl9OjRpWZKcMGCBTaPrx/n9X/UHenRo4d+++03bdy4UVlZWQoMDNRjjz2mJ554QuXKlXNKvbfqdsZnhvPn5uam9957T7NmzdKyZcuUmZmpJk2aaPz48Tf9qK+Pj4/at2+vnTt3au3atcrLy1OtWrX0zDPPaNCgQcV6m/jXX39dgYGBWrdunVJTU9WgQQNNnTpV99xzT777meEcWRR2jGb4ObOIiorSuXPnrI83bdpkDWA9e/a84S3rb+d9XJwKO76wsDBt27ZNO3fuVEZGhvz9/fXQQw/pySefVJUqVYql9pux/L3bunWrtm7darfdElocKYnz52KU1tssAgAAXIc1LQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILUApsnDhQnXq1El79+4t6VKcolOnTnr++edLugwAJsVt/GFaZ8+e1aOPPmrT5u7ursqVK6tFixb6f//v/6lhw4YlVF3pZBiGfvrpJ/3www/6448/lJaWJl9fXwUEBKhZs2YKCwuzub38u+++a/d9I0CnTp10zz33aPr06SVdCu4whBaYXq1atdSjRw9J176hOyYmRuvXr9emTZv00Ucf6e677y7hCkuPf/7zn1qzZo18fX3Vvn17BQQEKDMzU3/88Yd++OEHXb169abfiQMAJYXQAtOrVauW3TeKzp8/X4sWLdL8+fP51+D/2b9/v9asWaOgoCBNnz5d3t7eNttTUlKs34oNAKURoQVlUr9+/bRo0SIdPnzY2nbkyBEtXrxYsbGxSk5OVoUKFVSjRg117NhRTzzxhM3+ycnJWrx4sbZu3aoLFy6oQoUKatGihZ5++mk1aNDApm9+U+UDBw6UJH399dc27efPn9ecOXO0Y8cO5eTkqHHjxho2bFi+Y1q9erVWrFhhDRb16tXTI488ot69exfoNTl06JAk6f7777cLLJLk6+trMys1cOBA6zfbXn8Z7s9jPXjwoBYtWqRDhw4pMzNT1atXV1hYmB5//PECfRuxYRiaOXOmvvnmG3Xv3l2vv/663N3dZRiGVq9erR9++EHHjh1Tbm6udcx9+vSxOUZmZqaWL1+udevW6dy5c8rNzVWlSpUUEhKiIUOGqFGjRvnWYLnU2KtXLz322GOaPXu2fvvtN+Xm5qpZs2Z69tlnFRwcbLPPkSNHtHr1au3bt08XLlxQdna2ddZv0KBBcne3/fVqeS8sWLBAn3zyiTZv3qyLFy9q7Nix6t27d6GPt3DhQs2dO1e//PKL0tLS1LhxY0VERCg4OFiJiYmaPXu2du7cqbS0NDVv3lwvvvii6tSpY/canDlzRosWLdLOnTuVnJwsX19ftW3bVk8//bSqV68uSdq7d6/GjBkjSdq3b586depk3X/8+PE278VffvlFy5Yt09GjR5WVlaVatWqpV69eGjhwoNzc3Kz91qxZoylTpmj8+PHy8/PTkiVL9Mcff6hixYp2PzcAoQVlmouLiyQpLi5Oo0aNkqurqzp27KjAwEClpqbq+PHjWrVqlU1oOX36tJ5//nklJCSoTZs26tixoy5duqSNGzdq586d+uijj9S0adNC15SYmKjnnntOCQkJatu2rRo3bqz4+Hi9/PLLatmypcN9pk2bpmXLlqlq1ap64IEHJEmbNm3SlClTdPToUesfkvz4+flJkk6dOlWgOvv376+1a9fq999/V//+/eXj4yNJNmtboqOj9c4778jDw0NhYWGqVKmSdu7cqcjISO3YsUPTpk2Tl5fXDZ8jJydH7777rtavX68BAwZo9OjRcnFxkWEYmjhxotavX6/atWure/fu8vDw0M6dOzV16lQdP35co0aNsh7n3XffVXR0tBo2bKjevXvLw8NDCQkJ2rNnj9q0aXPT0GJx5swZjRo1SkFBQXr44Yd1/vx5RUdHKyIiQv/+979tzvuqVau0detWtWjRQvfee68yMjK0b98+zZs3T4cPH9akSZPsjp+VlaUXXnhB6enp6tChg9zc3FS5cuVCHy87O1svvfSSsrKyFBYWpuTkZEVHR+ull17SrFmz9Morr8jf3189e/bUqVOntHXrVo0bN06LFi2yCQ4xMTF65ZVXlJ6ervbt26t27do6d+6cfvrpJ23fvl2zZ89WzZo1Vb16dT355JOKjIxU9erV1atXL+sxrn+N586dqyVLlqhq1arq1KmTfHx8dODAAc2ePVuxsbF655137MYSHR2tnTt3qn379nrkkUeUlpZWoHOGO4wBmNSZM2eM0NBQ4+WXX7bbtmDBAiM0NNR4/vnnDcMwjBkzZhihoaHGpk2b7PpeunTJ5vHIkSONLl26GNu3b7dpP3HihHH//fcbQ4cOtWkPDQ01IiIiHNY4YMAAY8CAATZtkydPNkJDQ43PPvvMpn3FihVGaGioERoaauzZs8favnfvXiM0NNQYPHiwkZKSYm2/cuWK8fjjjxuhoaHGvn37HD7/9c6fP2/06tXL6NSpkzFhwgQjOjraOHv2bL77WGo9c+aM3bbU1FSjd+/eRrdu3Yzff//d2p6bm2v84x//MEJDQ43IyEibfa5/ra5evWq89NJLRmhoqLFo0SKbfitXrjRCQ0ONKVOmGNnZ2db2rKwsY9y4cUZoaKhx+PBhwzAMIyUlxejUqZMxfPhwIycnx+Y4OTk5xpUrV2762ljeS6GhocacOXNstm3fvt0IDQ21O+/nzp2ze768vDxjypQpRmhoqHHgwAGbbQMGDLC+XzMyMuxqKOzx3nrrLZvXaMmSJUZoaKjRu3dvY8aMGUZeXp512wcffGCEhoYaP//8s7UtOzvbGDBggHH//fcbR44csXmO/fv3G126dDHGjRtn057fe37Hjh3WcaalpdmM5V//+pcRGhpqREdHW9tXr15thIaGGp07dzZ27tzp8JiABR95humdPn1aCxcu1MKFCzVr1iyNHj1akZGR8vT01IgRI2z6OvpXf8WKFa3/ffToUf3222+6//771bZtW5t+derU0YMPPqhjx47p2LFjhao1Oztb//u//6vKlSvbffLpwQcfVO3ate32Wbt2rSTpqaeess52SNcu5zz55JOSrk2x30y1atU0ceJEVatWTevXr9dbb72lgQMHKjw8XP/4xz+0e/fuWxrL5s2blZqaqgceeMDmU1qurq4aOXKk3NzcbljXpUuX9MILL2jPnj167bXXNHjwYJvt3377rcqXL68XX3zR5rKIh4eH9ZyuX79ekqwzM56ennJ1tf2V5ubmJl9f3wKPycfHR0OGDLFpa9u2rf7617/q2LFjOnLkiLU9MDDQZrbCUkvfvn0lSbt27XL4HCNHjnT4Pizs8Z577jmb16hbt26SpNzcXA0fPtw623j9tj/++MPatnXrVp07d06PPfaYGjdubHPs5s2bq0OHDtq2bZuuXr3q8Pn/7Ntvv5UkvfrqqypfvrzNWJ599lm5uLhow4YNdvt16NBBrVu3LtBz4M7F5SGY3unTpxUZGSnpvx957t69u81HnsPCwrR06VK98cYbCgsLU+vWrdWiRQtVrVrV5lgxMTGSrq1pWbhwod1znThxwvr/f17bUhAnTpxQVlaWWrVqZfeHy9XVVXfffbfd5Zu4uDhJcnjpyNL2+++/F+j5W7durS+//FL79u3T/v37deTIER08eFDR0dGKjo7W4MGD9cwzzxToWJa6HH3aKDAwUDVr1tTJkyeVlpamChUqWLddvHhRo0aN0oULFzRp0iR16NDBZt+MjAwdO3ZMAQEBWrJkid2xc3NzJf33XHh7e+vee+/Vtm3bNHz4cHXp0kX33HOPQkJC7NaB3ExQUJBNrRbNmzfX7t27FRcXZ13bkp2drW+//VYbNmzQiRMnlJ6eLsMwrPskJibaHcfT0/OG75vCHM/X11eBgYE2bf7+/pKk2rVr260psmy7/liWtU4nTpxw+J6/ePGi8vLydPLkSTVp0sRh7deLiYlR+fLl9cMPPzjc7uXlZT131wsJCbnpsQFCC0yvbdu2+te//pVvn6ZNm2ratGlavHix1q9fr9WrV0uSmjRpor/97W9q1aqVJOnKlSuSpF9//VW//vrrDY+Xnp5eqFot/1q1rGP4M0ftaWlpcnV1VaVKley2ValSRS4uLgX+V7B0Ldi1bt3a+q/anJwcrV27Vh988IEWL16szp072y06zW8sVapUcbjd399fJ0+e1NWrV+1Cy9WrV1WrVi2Ha4NSUlJkGIYSEhKsYdSRjIwM63+/8847WrRokdavX6/58+dLuhZmevfurWeeeaZAC4LzG4ulPTU11dr25ptvauvWrapTp47CwsJUuXJlubm5KTU1VUuXLlV2drbdcSpXrmwz83G9whzP0YJqS1BztM0yk5OTk2NtS0lJkST99NNPDuuyuP71zs+VK1eUm5ub77lz9PNzo9ceuB6hBXeMFi1aqEWLFsrMzFRMTIy2bNmi7777TuPGjdNnn32mmjVrWn/RjxkzRv369SvQcV1cXKz/+v+z1NRUm0s6luMnJyc77O+ovUKFCsrLy9OlS5fsQk1ycrIMw3D4B6qg3N3d9eCDD2r//v1at26d9u7dW6DQYnnOixcvOtxuaf9zbY0aNVKvXr303nvvacyYMfr3v/9t8wfL0j84ONgaQG6mXLlyGjFihEaMGKEzZ85o7969WrFihZYuXarMzEy9+uqrBTrOzcZiOZexsbHaunWr2rZtq6lTp9pc1jl06JCWLl3q8Dg3CiyFPV5RsATKf/7zn2rfvv1tH8/b21suLi5atWrVLe13o9cGuB5rWnDH8fLyUsuWLTV69GgNGTJEmZmZ2rlzp6T/TlFbpswLwtfXVwkJCXbtZ8+etfmXuXRtXYynp6eOHDmizMxMm215eXn67bff7I4TFBQkSQ5v7b9v3z5JKvCnY/Jz/foDC8sakby8vBvWZanheufPn9fp06dVs2ZNh5dbHnjgAb322ms6ceKExowZYxMWKlSooLp16yo+Pt46C3AratasqT59+mjGjBkqX768tmzZUuB94+LiHH5q5cCBA5L+O+YzZ85Iku677z67dSiWvreiqI93KyyzXbfynnd1dXX4npCu/QxdvnxZJ0+eLJL6gOsRWnBH+O233+xCgvTff0F7enpKuvYLvGnTptqwYYPDxYJ5eXl2f6SbNGmic+fO2bRnZ2dr5syZdvt7enqqa9euSk5OVlRUlM2277//3uEvesvHSiMjI20uA6WmpurTTz+16ZOf7du365dffrG5NGBx6tQp/fzzz5Kurd+wsHxM+sKFC3b7dOzYUT4+Plq9erX+85//WNsNw9DcuXOVm5ub7z1kevXqpfHjx+vkyZN6/vnnlZSUZN3Wv39/ZWRk6P3333d4KeHMmTM6e/aspGuLeh0tjE5JSVF2drb13BZEamqqFi1aZNO2Y8cO7d69W/Xr17fOQFnWkfw5UPznP//R4sWLC/x8FkV9vFthuQVAVFSUwwCak5NjV5evr6/D94R07dxJ0tSpU3X58mW77UlJSdzEEIXG5SHcEb744gvt3btXLVq0UI0aNeTp6amjR49q9+7dqlmzps1Nst566y298MILmjBhgpYuXaqgoCB5eXnpwoUL+u2333T58mXrJ1ekazf52rlzp8aOHatu3bqpXLly2rlzp3x9fa0LH6/37LPPas+ePfrkk0908OBBBQUFKT4+Xtu2bVObNm2ssz4W99xzj/r166dly5Zp6NCh6ty5swzD0MaNG5WQkKB+/foV6Nb78fHxmjlzpipWrKgWLVqoVq1aMgxDp0+f1rZt25Sdna1HHnnEZp1Jq1at9NVXX+n9999X586dVa5cOVWvXt16g7pXX31V77zzjv72t7+pa9euqlSpknbv3q0jR44oJCREgwYNyrem+++/Xy4uLpoyZYr1UlFAQIDCw8N16NAhrV27VgcPHlTr1q3l7++v5ORknThxQjExMXrrrbdUo0YNJSQkaNiwYWrUqJEaNmyogIAAXblyRZs3b1ZOTs5Na7he8+bNtWLFCsXExKhZs2Y6d+6coqOj5eXlpXHjxln7hYSEKCQkRNHR0UpKSlKzZs10/vx5bdmyRffdd581ABZUUR/vVnh6euqdd97R2LFj9fzzz6tVq1Zq0KCBXFxcdO7cOR04cEAVK1a0CU+tWrVSdHS0Xn/9dQUFBVnvf9SwYUO1a9dOQ4cO1WeffabHHntM7dq1U2BgoK5cuaLTp0/rwIEDGjZsmOrVq+e0MaHsIrTgjvDII4/I29tbsbGx2rdvnwzDUGBgoIYMGaIBAwbYrLuoWbOmFixYoKioKP3yyy9as2aNXF1d5e/vrxYtWqhLly42x27btq0mTJigyMhI/fjjj/L19VXXrl01YsQI60eSrxcQEKBZs2Zp9uzZ2rFjh/bv36/GjRvrgw8+0J49e+xCi3RtjU1QUJC+++4761qBevXqadiwYdabzd1Mz549VaFCBe3YsUPHjh3Trl27lJWVpYoVK6pNmzbq1auX3djuvfdejRw5UqtWrVJUVJRycnJ0zz336P7775ckde3aVVWqVNHixYu1adMm6x1xhw4dqscffzzfG8tdX5erq6smT56sF154wRpcXn/9dd177736/vvvtXXrVqWnp6ty5cqqXbu2nnvuOf31r3+VJFWvXl1PPfWU9uzZo127dunKlSuqWLGiGjdurP79+6tdu3YFen2ka+f+5Zdf1uzZs7V8+XLl5eWpZcuWdnfEdXNz09SpU613NT58+LC1rnbt2t1yyCjq492qkJAQLVy4UF9++aW2bdum3377TR4eHgoICFBoaKj1o9IWlm/q3rNnj7Zu3aq8vDxVq1bN+mm9YcOGqUWLFlq6dKl2796t1NRU+fn5qUaNGnryySet3xUG3CoX4/rP1AHAHej62/i//vrrJV0OgBtgTQsAADAFQgsAADAFQgsAADAF1rQAAABTYKYFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYwv8HC5MSOI4TPNgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "az_ang = source_photons.calculate_azimuthal_scattering_angles(grb_data)\n", - "\n", - "qs, us = source_photons.compute_pseudo_stokes(az_ang, show=True)\n", - "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(len(az_ang))\n" + "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(len(az_ang), show=True)" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "da3b6513", "metadata": {}, "outputs": [ @@ -448,12 +466,63 @@ "name": "stdout", "output_type": "stream", "text": [ - "Creating the 100% polarized ASAD...\n" + "This task takes a couple of minutes to run... hold on...\n", + "\n", + "Creating the 100% polarized ASAD...\n", + "Creating the unpolarized ASAD...\n", + "A = 0.69, B = 0.64, C = 1.45\n", + "Rmax, Rmin: 1.3255857147752785 0.6913840315477051\n", + "Modulation mu = 0.3144329181851877\n", + "A = 0.69, B = 0.63, C = 1.19\n", + "Rmax, Rmin: 1.3213195967353855 0.6937372845666253\n", + "Modulation mu = 0.31144644996981596\n", + "A = 0.70, B = 0.61, C = 0.93\n", + "Rmax, Rmin: 1.3076701330552678 0.6963055633549808\n", + "Modulation mu = 0.30507584038840063\n", + "A = 0.69, B = 0.62, C = 0.65\n", + "Rmax, Rmin: 1.3069797694176002 0.6945917997702361\n", + "Modulation mu = 0.3059535712209624\n", + "A = 0.69, B = 0.62, C = 0.38\n", + "Rmax, Rmin: 1.3007442567023138 0.6875203963372963\n", + "Modulation mu = 0.30842164770546815\n", + "A = 0.68, B = 0.63, C = 3.27\n", + "Rmax, Rmin: 1.305323631848115 0.6799280138066874\n", + "Modulation mu = 0.3150208284225606\n", + "A = 1.31, B = -0.63, C = 1.44\n", + "Rmax, Rmin: 1.3072674636919108 0.6759601874055354\n", + "Modulation mu = 0.3183231516245918\n", + "A = 1.31, B = -0.63, C = 1.19\n", + "Rmax, Rmin: 1.3044063659899097 0.6815158154428891\n", + "Modulation mu = 0.31365305064351456\n", + "A = 1.30, B = -0.61, C = 0.92\n", + "Rmax, Rmin: 1.3022971538050376 0.6937024832386739\n", + "Modulation mu = 0.30490720502723007\n", + "A = 1.31, B = -0.62, C = 0.65\n", + "Rmax, Rmin: 1.3057403579080105 0.6927407978097677\n", + "Modulation mu = 0.30673271966784027\n", + "A = 1.32, B = -0.62, C = 0.38\n", + "Rmax, Rmin: 1.316294677150884 0.6952281357916913\n", + "Modulation mu = 0.3087544110179192\n", + "A = 0.69, B = 0.63, C = 1.70\n", + "Rmax, Rmin: 1.3229800864200185 0.6920318836053398\n", + "Modulation mu = 0.31312379886593844\n", + "hhhhhhhh (12,) (12,)\n", + "mu: 0.31048713272678163 +/- 0.0012843969646897993\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG5CAYAAACnaMHWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzCklEQVR4nO3deXwU9f0/8NfuJtnc90HIBTlJuBMCCAYIpwqCVmw9EAGhiFpp1Yraw9qqfNVqi79WLIjg3apVQAkIopACcoUrJBACuSEJua9NdpPd+f2xZJJNNskmbDK7m9fz8cjjkfnsfGbeM7uZvPczn/l8ZIIgCCAiIiKimyKXOgAiIiIiW8CkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRkwqRpATU1NyMrKQlNTk9ShEBERkZkxqRpA+fn5WLVqFfLz86UOhYiIiMyMSRURERGRGTCpIiIiIjIDJlVEREREZsCkioiIiMgM7KQOgGgwEAQBLS0t0Gq1UodCRERdsLe3h0Kh6HN9JlVE/Uyj0aC4uBgqlUrqUIiIqBsymQzBwcFwdXXtU30mVUT9SKfTITc3FwqFAkOHDoWDgwNkMpnUYRERUQeCIKCsrAxFRUWIiorqU4sVkyqifqTRaKDT6RASEgJnZ2epwyEiom74+fkhLy8Pzc3NfUqq2FGdaADI5fxTIyKydDd7J4FXeiIiIiIzYFJFREREZAZMqoiIiIjMgEkVkRRuuaV/fixEdnY2pkyZgujoaCQmJiIjI6PLdefOnYsxY8Zg3LhxSEpKwunTp8XXnnzySQwbNgwymQxnzpzp9T62bt0KmUyG7du3i2UpKSmIj4/HuHHjMGrUKHzwwQcAgIqKCowbN078iY6Ohp2dHSorK3uMpatjaGpqwl133YXo6GiMHTsWc+bMweXLl03aX3d1AUCtVuOJJ55AVFQURo8ejSVLlpi03a6Ov6dj7Gp/Pb2HffXll19izZo1Pa7Xm89ad+t291pX56Wn96i7c93K2Ge0u/O5Z88eTJgwAWPGjMHkyZNx9uxZ8bXu3qObrdtVrN3V6+74u4qlp89vd8fQ3Wv98Rk1SqABc/HiRSEpKUm4ePGi1KHQAGlsbBQyMzOFxsZGwxeA/vmxEMnJycLWrVsFQRCEL774QpgwYUKX61ZVVYm/f/XVV8KYMWPE5YMHDwqFhYVCWFiYcPr06V7tIzc3V7jllluEyZMnC19//bUgCIKg0+kELy8v4ezZs+I6SqVSqK2t7RTXG2+8ISxYsMCkWLo6hsbGRmHXrl2CTqcTBEEQ/t//+3/C9OnTjZ6Hjvvrqe6vf/1r4YknnhBfLy4u7nG7PR1/d8fY3f66ew+7M336dCE3N9foaw888ICwZ8+eHrfRm89ad+t291pX56W798iUz5qxz6ggdH0+KysrBW9vb+H8+fOCIAhCamqqMHLkSHHd7t6jm6nbXaxd1evu+HuKpb32n9/u6vW0TVM/o11es01kOVfhQYBJ1eBjyUnV8uXLhU2bNonLzz//vPDKK6/c9DGXlpYKbm5uQnNzsyAI+otrQECAkJ2d3WPdrVu3CmPHju1U3vGfWU/70Gq1wqxZs4STJ08K06dPN0iqvL29hYMHDwqCIAhnz54Vhg4dKqjV6k77HDFihME/j65iMfUYBEEQTpw4IYSFhRl9rav9GatbX18vuLm5CTU1NV2ub2y7ph5/x2Pszf66O/6OukqqNBqNEBYWJmg0mm7r9+az1t26pm6np/e+/XvU07nu6jPaUfvzeeLECSEqKsrgdTc3NyEtLa3H9+hm6nYVa3f1ujv+7mLpqP3nt7t6vdlmd5/Rm02qePuPaJA6efIkEhMTDZYnTJjQab1f/OIXBs3x7X8KCws7rV9YWIjAwEDY2emHwZPJZAgNDUVBQUGXsSxduhQhISH4wx/+gI8++qjH2Hvax1tvvYWpU6ciISHBoJ5MJsN//vMf/OxnP0NYWBhuvfVWfPDBB3BwcDBY78iRI6iqqsKCBQt6jKU3x7BhwwYsWrSoU7kp+2tf98qVK/D29sarr76KCRMmICkpCfv37+9xu6Yef0em7K+372F3fvzxR0yZMgX29vbdrtebz1p36/blM2tM+/eop3Pd1We0lbHzGRUVhYqKChw5cgQAsHPnTtTV1SEvL6/H9+hm6nYVa3f1ujv+7mJpr+Pnt7t6pmzTnJ/RLvUpFaM+YUvV4GOpLVUqlUpwdXUVv5kLgiB4e3sL5eXlN33MJ0+eFKKjow3KEhMThf379/dYd9u2bcLtt9/eqbxjC0F3+0hPTxcmT54stnK0/2bd3NwsTJ8+Xfz2fPz4cWHIkCFCWVmZwbZWrFgh/Pa3vzUaY1etFQ1VTUJ9RaPwr3c2Gz2GV155RZg8ebLQ0NDQ6bXu9mesblpamgBA+OCDDwRBEIRTp04JPj4+QklJSbfbNfX4Ox6jqfsThK7fw1YPPfSQMHbsWGHs2LGCi4uLEBsbKy63tlqtWbNG+Pzzz7vcRqvefNa6W9fU7XTXUtXxPeruXHf3Ge2o4/n84YcfhGnTpgnx8fHC448/LsTFxQk7duww6T3qS93uYu2uXk+fta5iac/Y30V39UzZprFz2h5v/1kRJlWDT5d/oJMn98+PiQ4fPixMmjRJXL548WKXt6V+/vOfi//0Ov4UFBR0Wv9mbv8JgiA4Ojp2Su56c/vvnXfeEYYMGSKEhYUJYWFhglKpFPz8/IR33nnH6C2CCRMmCHv37hWX6+rqBFdXV+HChQtG4+vqH2t5fo1w/Uq1UJ5f0+kY3njjDSEhIcGgX4ep+zNWt6ysTJDL5UJLS4vBcezbt6/b7Zpy/MaO0ZT9tWfsPTTG2O0/nU4nhIeHC3V1dYIgCMIHH3wgft7ef/99g3Ut5fafsfeou3Pd3WfUmK7OZ1NTk+Dp6SlkZ2f3+j0ytW53sXZXz9TPWsdYWvX0d9FVPVNeE4SuzymTKivCpGrwudk/0P6yYcMGYdy4cYJWqxU0Go2wZMkSYdGiRWbb/vTp0w06/SYkJBhdr6qqSrh69aq4/PXXXwtBQUFip9dWxv6ZmbqP9t+sS0pKBFdXVyEzM1MQBEHIzs4WvLy8hPz8fHH99957T5g6dWqXx9YxltZjaE2qPtz0icExvPnmm0J8fLxQWVlpdHvd7a+7unPmzBF27dolCIIg5OTkCD4+PkJRUVG32zXl+I0dY3f7M/U9NMZYUnX06FFh/vz5PdZtvw1TPgc9rWvKdoydl67eI1PPdeu+Wz+jPZ3Pa9euia/97ne/E372s5+Jyz19Jm6mrrFYu6vX0/F3F4sgdP130V29rl7rzWeUSZUVYVI1+FhqUvXQQw8Jd999tzB69Ghh0qRJwvPPPy8EBgYKZ86cMcv2L168KEyePFmIiooSEhIShHPnzomvPfLII2KTfF5enpCYmCiMGjVKGDNmjDBr1iyDf1q//OUvhaCgIEGhUAj+/v5CRESESftor+M/gU8//VTc36hRo4RPPvnEYP1bbrmlU4tId7G0HkNsTJwQN2KkMG3qdPEYCgsLBQBCeHi42NoyceJEk/bXU90rV64IM2bMEI/lyy+/NGm73R1/d+e7q/319B52x1hStW7dOmHz5s0m1RcE0z9rPa3b3WtdnZee3qOePmvtz0PrZ7Sn87ly5UohJiZGiIiIEJYsWWLQOtbTZ+Jm6hqLtad63R1/d7EIQtef3+7qdfVabz6jN3vNlgmCIPRPby3qKCsrC6tWrcLmzZsRExMjdTg0AJqampCbm4vhw4fD0dFR6nBEcXFx+PzzzzFq1CipQ7EZFQW10LUIkNvJ4BPqLnU4VmvkyJH48ccf4e/vL3UoNAjd7DXbrh9iIiILVl9fj6tXryIuLk7qUIg66W7wTiJLx6SKaJBxdXVFTU2N1GEQEdkcjlNFREREZAZMqoiIiIjMgEkV0QDg8yBERJbvZq/VTKqI+lHrNBsqlUriSIiIqCcajQYAoFAo+lSfHdWJ+pFCoYCnpyeuX78OAHB2doZMJpM4KuoPmhYNBK0AGWRoamqSOhwi6iWdToeysjI4OzuL80D2FpMqon42ZMgQABATK7JNDZVN0OkEyOUyVKstZ0wyIjKdXC5HaGhon7/8Mqki6mcymQyBgYHw9/dHc3Oz1OFQP/n246NorNHAycMBC/4QK3U4RNQHDg4OkMv73jOKSRXRAFEoFH2+T0+WT1Ojg7pSCwV0FjV6PhENHHZUJyIiIjIDJlVEREREZsCkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiIiIzIBJFREREZEZMKkiIiIiMgMmVURERERmwKSKiIiIyAyYVBERERGZAZMqIiIiIjNgUkVERERkBkyqiIiIiMyASRURERGRGTCpIiIiIjIDJlVEREREZmAndQDGaDQabNmyBXv37kVdXR0iIiKwcuVKJCYmdlsvNTUVO3bsQE5ODmpra+Hp6Ym4uDgsX74c4eHh4no1NTVISUnB4cOHkZ+fD61Wi9DQUNx7772YNWuW2eIhIiKiwcMiW6rWr1+Pzz//HHPmzMGTTz4JuVyOZ599FufOneu2Xk5ODtzc3LB48WL85je/waJFi5CdnY3Vq1fj8uXL4noZGRnYvHkz3N3dsXTpUqxcuRJKpRIvvfQS3n//fbPFQ0RERIOHTBAEQeog2svMzMSjjz6KNWvW4P777wcAqNVqLFu2DJ6enti4cWOvtldZWYl77rkH8+fPxzPPPAMAuHbtGuRyOYYMGSKuJwgCfvOb3+D8+fP45ptv4OTkZPZ4srKysGrVKmzevBkxMTG9Og4ismyfPvEDVJVqOHsr8cA/ZkodDhFJwOJaqg4ePAiFQoGFCxeKZUqlEvPnz0dGRgZKS0t7tT0vLy84Ojqivr5eLBs6dKhBQgUAMpkMSUlJ0Gg0uHbtWr/FQ0RERLbJ4vpUZWdnIzg4GC4uLgblsbGxAIDLly8jICCg223U1dVBq9WioqICX3zxBRoaGpCQkNDjvisrKwEAHh4eZomnvLwcFRUV4nJ+fn6PMRAREZF1srikqqKiAj4+Pp3KW8vKy8t73MaaNWtQUFAAAHBycsLSpUsxf/78buvU1tbi22+/xZgxY+Dr62uWeHbu3Ilt27b1GC8RERFZP4tLqtRqNezt7TuVOzg4iK/35LnnnoNKpcK1a9eQkpICtVoNnU4Hudz43U6dToe//OUvqK+vx69//WuzxbNw4UJMnTpVXM7Pz8fLL7/cY/xERERkfSwuqVIqlWhubu5UrtFoxNd7MmrUKPH3WbNm4aGHHgIAPP7440bX//vf/45jx47hd7/7HSIjI80Wj6+vr0GrFxEREdkui+uo7uPjY9APqVVrWW+TFDc3N8THx2Pfvn1GX9+6dSu2b9+O1atXY968ef0eDxEREdkmi0uqIiMjUVRUhIaGBoPyzMxM8fXeUqvVnbYHAF999RW2bt2Ke++9Fw8++OCAxUNERES2x+KSqhkzZkCr1WLnzp1imUajQUpKCuLi4sQn7UpLSzs9TVdVVdVpe8XFxUhLS+s0LtT+/fvx9ttvY86cOXjiiSduOh4iIiIa3CyuT1VcXBySk5OxadMmVFdXIygoCHv27EFJSQnWrVsnrvfKK6/gzJkzSE1NFcuWLVuGhIQEREZGws3NDUVFRdi1axdaWlqwevVqcb3MzEy8+uqrcHd3R0JCQqdbg6NGjcLQoUN7FQ8RERENbhaXVAHACy+8gICAAHz33Xeor69HeHg4XnvtNYwbN67beosWLcLRo0dx7NgxqFQqeHl5ITExEUuWLEFERIS4Xn5+Ppqbm1FdXY3/+7//67Sd559/XkyqbiYeIiIiGjwsbpoaW8ZpaohsF6epISKL61NFREREZI2YVBERERGZAZMqIiIiIjOwyI7qRER089J35ULT2AIHJzuMnj9c6nCIbB6TKiIiG5W+O1fsPM+kiqj/8fYfERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiIiIzIBJFRHRTaorU0Fd3wwAEARB4miISCpMqoiIboJG1Yw9/3cSWo0OAKBt1kkcERFJhUkVEVEf6XQCfvznWdQUN4hlzSottC1MrIgGIyZVRER9lPZFNgpPlxmUCToBmd/lSxQREUmJSRURUR9c+akYZ3dcAQDI5DLYOynE105/fRmNtWqpQiMiiTCpIiLqpYq8WqT+65y4POnBEbB3shOXNaoWpH2RLUVoRCQhJlVERL3QWKvGvrdOiR3To6YFYeRtYZ3Wy/qhEBUFtQMdHhFJiEkVEZGJdC067N9wBvXljQAAvwgPTF0xEjKZTFyn9TagIABHP7zAIRaIBhEmVUREJjr68UWUXKgEADh7KjH7qXjYOSgM1rFzVMDN3wkAUJxZifyT1wc8TiKSBpMqIrIq6btykfZlNtJ35Q7ofi/+WIjMvfqn+uR2Msz+zXi4eDl2Wk8mk2HSgyPE5eOfXoS2WTtgcRKRdJhUEZFVSd+di9NfXUb67oFLqkovVeHI+xni8q0rRsE/yqvL9cMmBCAwzhsAUFuqwvk9HGKBaDBgUkVE1I2GikZ8/7dT0Gn1faNGzgtD9IzgbuvIZDJMfigWrV2tzmy/DFUNh1ggsnVMqoiIutCi0eL7v51GY40GABAY521wa687PmHuiEkOAQA0N2px8j+X+i1OIrIMTKqIiIwQBAGH3juPspwaAICrnxNmPTkecjvTL5sJ90aJ41ddOliE8ryafomViCwDkyobIFXHXSJbdn53Hi4fugYAsFMqMOfpeDi6O/RqG04eSoz/WaR+gUMsENk8JlU2QIqOu0S2rCi9HMc/uSguT1s9Gj6h7n3a1sh5YXAPcAYAlFysQt7xErPESESWh0kVEVE7taUN+PHtM2htUBp3VwTCJwf2eXsKOzkmLWnrh3Xs0yy0aDjEApEtYlJFRHSDprEF+948BXVDMwAgNN4fCYujbnq7ofH+GDrKBwBQX9aI8yl5N71NIrI8TKqIiAAIOgEHN55DVVE9AMAzyAUzHhsDmVzWQ82edRpiYccVNFQ13fR2iciyMKkiIgJw+uvLyD9ZCgBwcLbDnKcS4OBsb7bte4e4YcTsUABAi5pDLBDZIiZVRDTo5Z0owan/XgYAyGRA8q/GwSPQxez7SbgnCg7O+iEWslOvisM1EJFtYFJFRINaZWEdDm48Jy4n3heDkLF+/bIvR3cHxN8TKS5ziAUi28KkiogGraZ6Dfa9mYbmJv3TeBFTAjF6wfB+3WfcnDCxFaz0UhVyfiru1/0R0cBhUkVEg5JOq8MPb59B3fVGAIDPMHckrRoNmezmO6Z3R24nx+R2Qywc/ywLLWoOsUBkC5hUEdGgdPyzLFw7XwFAf1tuzlPxsFMqBmTfIeP9ETzWFwDQUNHE2RCIbASTKiIadLJTr4pjRckUMsz+9Xi4+joNaAyTlsSKwzWc/SYHDZUcYoHI2jGpIqJBpexKNQ5tOS8uT1kWhyEjvAc8Dq8gV8TOaRti4cS/swY8BiIyLyZVRDRoqKqasO+tU9A26wAAI2aFIHZWqGTxxN8TCaWrfiysy4eu4Xp2lWSxENHNY1JFRIOCtlmL7/9+GqoqNQAgIMYLtzwcJ2lMjq4OiL+nbRqcnz66AEHHIRaIrBWTKiKyeYIg4PDWTFzPrgYAuPg4Ytavx0NhJ/0lMHZ2CDyDXAEAZZdrcOXINYkjIqK+kv6KQkTUzy7sK8ClA0UAAIW9HHN+Ew9nD6XEUenJFXJMfqjdEAv/zkJzU4uEERFRXzGpIiKbdi2zAj99dEFcTvrlaPiGe0gYUWfBY/wQMl4/iruqUo1z33KIBSJrxKSKiGxWXZkKP2w4DUGr76c05s7hiJw6VOKojJv04AjIFPohFs59k4P68kaJIyKi3mJSRUQ2qbmpBfveOoWmumYAQPBYX0z4RYzEUXXNc6grRs4NAwBom3U4/hmHWCCyNkyqiMjmCIKA1E3pqMyvAwC4D3FG8uPjIJf37xQ0N2v8zyLh6KYfYiHnp2KUZHGIBbJM6btykfZlNmcD6IBJFRHZnLM7c5B7tAQAYO+kwJynE8TxoCyZ0sUeCfdGi8tHOcQCWaj03bk4/dVlpO9mUtUekyoisikFp6/j5OeX9AsyYMZjY+F1Y8gCaxCTHAyvEH285Tk1yD50VeKIiMhUTKqIyGZUX63Hj/84C9xo3Em4NwphCQHSBtVL+iEWYsXlk/++xCEWiKwEkyoisgnqhmbse+sUmhv1CcjwiUMwblGExFH1TdAoX4Ql+AMAVNVqnNmRI3FERGQKJlVEZPV0OgEH/nkWNcUNAADvUDdMe3Q0ZDLL7pjenYkPjoD8xhAL51NyUXddJXFERNQTJlVEZPXSPr+EwjNlAAClqz3mPBUPe0c7iaO6OR5DXDDy9mEAOMQCkbVgUkVEVu3KkWs4u1N/e0wml2HW2vFw83eWOCrzGH9XBBzdHQAAucdKUHyhUuKIiKg7TKqIyGqV59UgdVO6uDz5oREYOtJHwojMy8HZHhN+bjjEgo5DLBBZLItsH9doNNiyZQv27t2Luro6REREYOXKlUhMTOy2XmpqKnbs2IGcnBzU1tbC09MTcXFxWL58OcLDww3W3b9/P44cOYLMzExcvXoV48aNw9tvv91pm6dPn8batWuN7m/jxo0YOXJk3w+UiPpM0An4/q1T0Gp0AIDo6UGIuzEiuS2JnhGMzH35qMyvQ0VeLbIPFiEmOUTqsIjICItMqtavX48DBw7g3nvvRXBwMHbv3o1nn30WGzZswJgxY7qsl5OTAzc3NyxevBgeHh6orKxESkoKVq9ejY0bNyIyMlJcd8eOHcjKysKIESNQW1vbY0z33HMPYmNjDcqCgoL6fpBEdFPU9c3QtehbbfwjPTF1xUir7pjeFblchskPxSLl5eMAgBP/uYThk4bAwdnyBzMlGmwsLqnKzMzE/v37sWbNGtx///0AgHnz5mHZsmXYuHEjNm7c2GXdZcuWdSpbsGAB7rnnHmzfvh3PPPOMWP673/0Ofn5+kMvlePjhh3uMa+zYsZgxY0avj4eI+kdrQuXspcTs34yHwl4hcUT9Z2icD4YlBiDvRCmaajU4syMHE++33HkMiQYri+tTdfDgQSgUCixcuFAsUyqVmD9/PjIyMlBaWtqr7Xl5ecHR0RH19fUG5QEBAZDLe3f4KpUKLS0chI9ISi1NWvF3uZ0Ms38TD2cvRwkjGhgTHxgBud2NIRZ256K2tEHiiIioI4trqcrOzkZwcDBcXFwMyltvvV2+fBkBAd2PkFxXVwetVouKigp88cUXaGhoQEJCwk3FtX79ejQ2NkKhUGDMmDFYs2YNRowY0W2d8vJyVFRUiMv5+fk3FQPRYFdf3giNqu2Lza0rR8E/0lO6gAaQe4AzRt8xHGd35kDXIuDYp1mY85t4qcMionYsLqmqqKiAj0/np3day8rLy3vcxpo1a1BQUAAAcHJywtKlSzF//vw+xWNnZ4fp06dj8uTJ8PDwQF5eHv7zn//giSeewDvvvIPo6Ogu6+7cuRPbtm3r036JqLOLPxSKv9sp5YieFixhNANv7KIIXEq9isZqNfJPlOJaRoVNPe1IZO0sLqlSq9Wwt+/cAdPBwUF8vSfPPfccVCoVrl27hpSUFKjVauh0ul7f7gOA0aNHY/To0eLyrbfeihkzZmD58uXYtGkT/vrXv3ZZd+HChZg6daq4nJ+fj5dffrnXMRARoGvRIevHtqTK3sniLl/9zsHJDok/jxaHkTj60QXc9epUyOW210GfyBpZ3FVJqVSiubm5U7lGoxFf78moUaPE32fNmoWHHnoIAPD444+bJcbg4GDceuutSE1NhVarhUJhvIOsr68vfH19zbJPosEuP60UjTUacVk2SBOJqGlByNibj4q8WlQW1CHrx0LEzgqVOiwiggV2VPfx8THoh9Sqtay3SYqbmxvi4+Oxb98+s8TXyt/fH83NzWhqajLrdonIuAv7C3teaRCQyWW4ZWnb8C5pn1+CRtX5iygRDTyLS6oiIyNRVFSEhgbDJ1syMzPF13tLrVZ32t7NunbtGhwcHODk5GTW7dqS9F25SPsyG+m7cqUOhaxcTXEDrp3Xf7EarC1U7Q0Z4Y3hk4cAAJrqmnH66ysSR0REgAUmVTNmzIBWq8XOnTvFMo1Gg5SUFMTFxYlP/pWWlnZ6mq6qqqrT9oqLi5GWloaYmL6N6VJdXd2p7PLlyzh8+DASExP71E9rsEjfnYvTX11G+m4mVXRzOnZQJ2Di/SOgsNefi4w9eagp5hALRFKzuD5VcXFxSE5OxqZNm1BdXY2goCDs2bMHJSUlWLdunbjeK6+8gjNnziA1NVUsW7ZsGRISEhAZGQk3NzcUFRVh165daGlpwerVqw32c+bMGZw9exaAPnFqbGzEBx98AEA/0Oe4ceMAAC+++CKUSiVGjRoFLy8v5OXl4ZtvvoGjo2OnbUpFuDEXmCBwTjCyPS0aLS4dLAKgH5fKTqlAc6O2h1q2z83PCaPnD8eZ7Veg0wo49slFzH3m5oaOIaKbY3FJFQC88MILCAgIwHfffYf6+nqEh4fjtddeExOdrixatAhHjx7FsWPHoFKp4OXlhcTERCxZsgQREREG6546darTcAdbtmwBoE/OWveVlJSEffv24fPPP0dDQwM8PT0xbdo0LFu2DMHB0j/OXVfWiKZafX8K/qMhW5R3vATqev1nfPjEISi+WClxRJZj7MJwXDpQBFW1GgWnrqMovRzBo/lwDJFULDKpUiqVeOyxx/DYY491uY6xyY9XrFiBFStWmLQPU9ddvHgxFi9ebNI2pVBVVCe2VLU0aZGekovRdwyXOCoi82nfQT12diiTqnbsHe2QeF8MDr57DgBw7KMLGLp+KuQK3iIlkgL/8qxc6Hh/ODi35cbHPr6IK0euSRgRkflUFtahNEvfV9IzyBUBMV4SR2R5Im8dCr8IDwBAVVG9Qf8zIhpYTKpsgJ2j4ThZBzeew9XzPY88T2TpLhq0UoVAJuOTfx3J5DJMfqjdEAtfZIu3S4loYDGpsiGKG09F6bQCvv/bKVTk1UocEVHfNTe1IPt/VwEACgc5Im8NkjgiyxUQ7YWIKYEAAHV9M059lS1xRESDE5MqG+LgbIfQBH8A+k7re14/ibrrKomjIuqbnKPFaG7UT54cMWUolC6dp6+iNon3x0DhoL+kZ+4rQPXVeokjIhp8mFTZEJlMhplPjIN/lCcAoLFajT2vnURTrab7ikQW6OL37W79zQqRMBLr4OrjhDELwgEAwo0hFohoYDGpsjF2SgXmPpMAj6EuAPQjUX/315NobmqRODIi05Xn1KAspwYA4DPMHb7hHhJHZB3G3hkOF29HAEDhmTJoNTqJIyIaXJhU2SBHNwfcti4Rzl76yafLLtfgh/93BjotL7BkHQyGUZjFDuqmslMqkHh/2+wRGhW/TBENJCZVNsrNzwnz1k2AvZN+uIXC02U4tCWDo66TxdOomsVhQeydFAifMlTiiKxLxJRA+Ed6AmibbYGIBgaTKhvmE+qOOU/HQ26n/5Z/6UAR0r7gU0Fk2S4fvoYWtX52gMipQXBwssgxii2WTCbD5KWxBmVMrogGBpMqGzc0zgczHhsL3Lh7cmb7FWTuy+++EpFEBEHAhXYd1Eewg3qf+Ed6IvLWthY+TmFFNDCYVA0C4ZMDDQYHPLItE7nHSySMiMi469nVqCqsAwD4R3nCJ8xd4oisV+J9bX2rWjRatlYRDQAmVYPEqNuGYcyd+setIQAH/nkWJZxDjSzMhe8LxN9jZ4VKGIn1c/F2hML+xiVegPg0JRH1HyZVg0jifdGIStKPSq1t1mHvX9NQVVQncVREek31GuQe07egKl3sMXzyEIkjsn6tg4ECQH7adQkjIRocmFQNIjKZDEmrRiF4jC8A/ePWe/7vJOorGiWOjAjITr0KbbN+2I+oaUGwc1D0UIN6IrZUASg4VSphJESDA5OqQUZuJ8esX48XB1NsqGzCd6+d5ASsJClBEAwmTx4x0/o6qI++fTjG/ywSo28fLnUoIpm8bXyvqsJ61JZy2iqi/sSkahCyd7TDvN8mwD3AGQBQVVSPfW+loUXDJ4RIGsWZlagpbgAABMZ5wzPIVeKIem/0/OFIWByF0fMtJ6nqiK1V1id9Vy7SvsxG+q5cqUMxoNPywQdjmFQNUk4eStz23AQ4ujsAAEouVuHAP89CxyeESAIX9rd1UB/BDur9hv2qrE/67lyc/uoy0ndbTlKVf7IUTTX6OWU5oLQhJlWDmHuAC+Y9OwF2Sn3flbwTpfjpg0z+kdCAUtWokXdC34Li6O6AYYkBEkdke1pvA5ZcrEJTPSdYp75rbmrBTx9misut/SBJj0nVIOcX7oHZvx4PmUJ/0b2wrwBndlyROCoaTC4dKIJw41ZCzIxgKOx4WTK31qcABZ2AojNlEkdD1uz015dRX94kLrd/GIKYVBGA4LF+mPbL0eJy2ufZuHSgSMKIaLDQ6QRc/OFGB3UZEJNsfR3UrUH7f3y8BUh9VVlYh/SUPIMyTnZuiEkVAQCikoIMZrf/33vnUXCaF1/qX1fPlaO+TD+kR/AYX/HhCTIvuZ0MSld7AEDRuTJom/lQCvWOIAg4sjVDbFW2c+SQJ8YwqSLRmAXDMfK2MAD62wQ/vH0G1y9XSxsU2bT2HdQ5gnr/kclkCB3vD0A/D2BxJmdToN7JTr2KkotVAAD3AGfYOzGpMoZJFYlkMhkmL4kVR7JuUWvx3esnxUfdicypoaIRhaf0raHO3kqEjPeTOCLbFprgL/6ef4qt0GS6pjoNjn96UVyesjyOt/26wKSKDMjkMsxYMwaBcd4AAHV9M3b/3wmoqpp6qEnUOxd/LELrg6YxM0IgV/By1J+CRvtCbqf/R1iQdp1P+ZLJTvz7Eprq9ANED588BMFj+AWoK7yKUScKewXmPBUP71A3AEB9WSO+e/0kNCqOuk7modPqkPWjvoO6TAaMSA6WOCLb5+Bkh6Ej9VNUNVQ2oSKvVuKIyBqUXqoS/1btnRSY/FCsxBFZNiZVZJSDsz3mrZsAV19HAEBFfh2+/9tpaFs4JgndvIJTZVBVqQEAofH+cPFxkjiiwSGs/S1APgVIPdBpdTi8NUNcTlgcDRcvRwkjsnxMqqhLLl6OuG1dovjU0LWMCqS+ew4CR12nm3Sx/Qjqs9lBfaCExrclVQVpnLKGupe5Nx+V+XUAAJ8wN8TN5d9qT5hUUbc8g1wx95kEcfDAK0eKcaxdh0Wi3qotVaHoXDkAwNXPCcGjfSWOaPBw8XYUJ1OvyK9DfXmjxBGRpWqobELaF9n6BRkwdcVI9ns0Ac8Q9Sgg2gszfzUOrQ97nE/JwzkLm9yTrIc42CeA2Fkh4hQqNDDC2rdW8SlA6sLRjy6guUk/ntmI5BD4R3lJHJF1YFJFJglLCMDUlaPE5eOfXMTlw9ckjIiskbZZi0sH9aP1yxUyRE1nB/WBFjqhfb8q3gKkzorOliH3WAkA/XycE+6Lljgi62EndQBkPUYkh0BV1YRTX14GAKS+ew5O7g4I4u0bMlHeiVI01eon9B2WOATOHspeb2P07cOhaWyBgxMvX33hHeIGV18n1Jc3ojizEhpVMxyc7aUOiyxEi0aLI9vaJkye+EAMHF0dJIzIurClinpl/N2RGDFTPz+bTivg+7+dQnlejcRRkbVof+tvxOy+zfM3ev5wJCyOwuj5w80V1qAik8nEpwB1WgGFZ8sljogsydmdOagtVQEAhozwQlRSkMQRWRcmVdQrMpkMU5bHiRfl5iYtvnvtpPhHSNSV6qv14vQoHoEuCIz1ljiiwav96Op8CpBa1RQ34OzOKwAAmUKGqStGcuT0XmJSRb0mV8iR/Ktx8I/2BAA01miw57UTaKxVSxsYWTSDVqpZIbxYSyhwhDccnPW3TwvPlEHH8ecGPUEQcHhrBnQt+iFzRt8xHF7BbhJHZX2YVFGf2DkoMPeZBHgGuQAAaktU2Pt6GpqbWiSOjCxRi6atg7rCXo6oabylICW5nRwh4/RTjWhULSjJqpI4IpJazk/FuHa+AgDg6uuE8XdHSByRdWJSRX3m6OqA29YlwtlL39m4LKcG+zec4bde6iTnaDE0Kn3CHT45kB1fLUD7gUD5FODgplE14+jHbeMP3vJwLOwd+SBIX/Cs2YhRF7/CmEvbge09PE0VHw/s3GlYtnAhcOpUzzt56in9T6u6OriOi8VtzkH4dtyz0Ng5o+hsGf4394+Ydmkb7qpWQ9AJ+nGIlu8BEhLa6n77LfDooz3v09UVuNhhsNHf/hb47LOe686fD/zrX4ZlEyYAJSU91339deCBB9qWs7KAWbN6rgcAJ04AgYFty5s2AX/+c8/1oqOBH34wLHvwQeDgwZ7rrloFvPiiYVmwicMVfPwxMGNG2/KBA8CSJabVLSoyXH7pJWDz5k6rXRz3HOCu/+Y74u0ngEMhwCefGK40cyZw6VLP+/zjH4Ff/rJtubgYSEw0Ld79+4GYmLblTz8Fnn2253pDhgAnTxqWrV4N7NrVc9377wfeeMOwbMQIoL6+57rvvgssWNC2nJYGLFrUcz0AuHDBcPmtt/Q/NwQrnCC75S0Icjvkb0/D5BfmQgaY/RqBWBPnituxg9cIIwyuo5mj++UakRbxCzQGzQYAhJafQdiiVYbrGblG3LXtF21xdfd/x8RrRCfTp/ftGtHxMzjAmFTZCIdmFZwbyoGGHlYMMfLEVVkZcPVqzzup7TABqyAAV6/CG1cxp/pP2J38CnQKe2QPmQrnikIkXv2wbV2NxrBuY6Np+3Qzck+/qsq0upWVnctKSkyrq+rQ8b6lxbR6AKDVGi7X15tW18Ojc1l5uWl1a4w8gWlqvGp152VT6xqLo0PdCs9wXL+RUHlX5cD/4v+A0Lmd65aWmrbfjsmIVmt6vC0dbk+rVH0/1spK0+pWGbm1du2aPuHoSWOHEc81GtPjFTpMJ1Vba1BXCSAwIh3XhoxHvaMvqurt4V2T1y/XCJPwGmF0Vef2C6VGWhRv8hpR7hWBzMBkAICipQm3HPk70NBhUFgj1wjnhnZPjfb0f6djHKbEW27kqVRTrhEdP4MDjEmVjdDYO0Pl4gtnzx5aqvz8jJcFmdDHxd3dcFkmE+sFogrJWe9hf+xqQCbH2ZH3wV6rRlTO95DJZXB26HC7x8nJtH26unYu8/Iyra63kafLhgzpuR4AODsbLtvZmbZPAFAoDJddXU2rGxDQuczX17S6xhIyU+NVKjsvm1rXWBwd6l6IXCz+PqL8CGRBQfrj6iggwPiFv6OOnwmFwvR47Tpc8pydTatr7HPj7W1aXS8jI1EPHWpaS5VTh4mmHRxMP9aODwK4u3eqG1Z/EdcwHgCQHzsH3oUp/XaN6JEFXCPSd+UiXOkFBx8t7B0VXVS6YYCuEap2LVXOZr5G6IKCcXjcbyDI9fHEF+6Cm6c94Nlhe0auESoX37a4evq/0zEOU+Lt6zWi42dwgMkEoePXma59/vnniI6ORmRkJFyNfZABtLS0wK7jhYsAAFlZWVi1ahU2b96MmPa3IG7Sp0/8AFWlGs7eSjzwj5lm225fZHyXh58+MLztYAlxkTQ0jS347PEf0NykhZ1SgQf+mcyBJgdQT9eGurJG/GftAQCAX7gHFr08ZYAjtCyWdC1t1Z8xXfi+AIffzwCgn+f17vVTobAzrau1JZ4rS9Cr7Oef//yn+Bj0kCFDEBUVZfDj6+uLt956CxqNBr///e/7JWCybCPnDYOqSo2zO3PEMp3W5LydbEzOkWvi/GGRU4cyobIwbn5O8A5zQ2V+HcpyatBQ1QQXL0epw6IBoKpR48S/s8TlqSviTE6oqGu9SqrWr1+PS5cuiT+pqalITU0VEy03NzfU19dD2bGpkAaVCb+IhqpKjez/6e99tzRpe6hBtkgQBFzYf/MjqFP/Cov3R2W+vn9XwanriJ0VKnFENBCOf3JRfCI3KikIgbE+EkdkG3qVVE2ZMgVTprQ1D1dXV+PSpUs4f/48Dh48iLy8PMjlckydOtXsgVLXLG0uNJlMhkkPjWhLqjRaNDe18BHdQabsSg0q8vSdRv3CPeA7zEi/L5JcWEIATn+tH0W7II1J1WBwLbMClw9dAwAoXewx8QHzdUcZ7G7qv5ynpycmTpyIiRMnYvny5diyZQv279+PR015DJbMxhLnQHN0dYBCKYdWrQME4PKha4idzYv1YHJxf4H4O1upLJfPcHc4eyuhqlTjWkYFvwDZOG2LDke2ZojLE+6LhlMfJjYn48x2A1Umk2HlypVwdnbGP/7xD3NtlqyYvbLtCZfMffnoxTMRZOXU9c248lMxAMDB2Q7hkwN7qEFSkclkCIvXP1Wmbdah6BwnWLZl6btyUX1VPwaCX6QHRiTzC485mb1X2siRI3HixAlzb5askLxdp8eqwnqUXDQyJgzZpOxDV6HV6EfWj0wKYsuHhTOYYPnU9W7WJGtWd12F019fBqAf7WLqipH6wTvJbHqVVJ04cQI1PYwRoek4gBvRDZnfFfS8Elk9QRAMbv3FzuI3YUs3NM5bHJep4NR16LScasrWCIKAIx9kil924uaFsZ9jP+jV18dnnnkGMpkMfn5+iI6ORnR0NKKiohAdHQ1fX1+kp6fj4MGDmDNnTn/FS9ZIBkAA8k6WoqGyCS7efGTblpVcrBJvLwwZ4cWZ7q2Awl6B4DF+yD1eAnV9M65nV2PICCOD55LVKki7jsLTZQAAZ08lEhZHSRyRbepVUrVixQpkZ2cjOzsbhw4dwqFDh8ThFGQyGQRBgKenJ0aOHInCwkKEGJvugAYdO6UCLU1aCDp9C0bCvdFSh0T9yKCDOp8ksxqhCf7IPa6f8y4/7TqTKhvS3NSCnz7MFJcnPRTLMeP6Sa+Sqocfflj8va6uDpcvXxaTrEuXLqGgoABVVVVYv349AECpVCI8PBxRUVF4SsIJDklado4KaDU6fVL1QyHG3R3JQeasRPquXHG4DlOeMm2sVSP3mP4fs6ObPYZPNDKtBlmkkPF+kMllEHQC8tNKMfGBGPFLM1m3019fRn15EwAgaLQPwiebOF0X9Vqfe4+6ublh/PjxGD9+vFimVquRk5MjJlrZ2dm4cuUKLly4wKRqEJPLZRiWGIDcYyVorNEg73gJIqYMlTosMkH67lxxKgpTkqrsg1fFEfSjpgdDYd/D/GlkMRxdHRAQ44WSC5WoLVGh5loDPIOMT0dG1qOysA7pKXkAAIW9HFOWjWSy3I/M+kiOUqlEbGwsYmNjxTKdToeCAnZQHuzi5oaKLRgZe/OZVNmg1pbIViNm8va/tQmL90fJBf1TuvlppUyqrJwgCDiyNQPCjS86Y+4Mh0egi8RR2bZ+f85ZLpdj2LBh/b0buuUWqSPoZG5uDbQtAhR2MvikecAraDWqHAJw/VI1yqffDV9NidQhUg/av4dI6/5JoauO4agNXAIAGNqYA4+7/zwQIVI3evP+AUCYnReOhfwKAJC/bT/Grl/S3yFalN6er4FwMzFlu45Fid8iAIB7cwXGvvUK8KZ5pg2zxHMFAPjpJ0l3z8FjbMXRo1JH0Ilv+4VSIC7SG4cTnwAAZDaFYdrx7VKERb3Q8T3szsVbZ4m/x578DCiyvM/kYNOb9w8A3AF43rEQ1R5huK4MQuPpC3BSdz+Mji3p7fkaCH2NqcnBDcfnrxWXpxx6C3YlpyWPy9axtzANmMi8H2Cv0T9qfyVsBpoceGvBVjQ4eSM/aDIAwKmxEmFXmVBZq7DWZFgmR0HQRGmDoT47MXYZmhz1LUjD81MRbMaEirrGpIoGjH1LE6Jz9wEAtHZKXArneGa24lL4PAhyfaf0mCvfQS6Y5xYDDbz2CXHBjUSZrEupzwhkRd4OALBvVmHy6U0SRzR4WOTtP41Ggy1btmDv3r2oq6tDREQEVq5cicTExG7rpaamYseOHcjJyUFtbS08PT0RFxeH5cuXIzw83GDd/fv348iRI8jMzMTVq1cxbtw4vP3222aNhzqLy96FjJi7AAAXIhdg9MXtkIFzAloznUyOixG3AQBkOi1GXNkjcUR0M/wqLsGpsRKNTt4oGjIeLQol7LRqqcMiE+lkchxOfFxcTjj3EVwaOUXYQLHIpGr9+vU4cOAA7r33XgQHB2P37t149tlnsWHDBowZM6bLejk5OXBzc8PixYvh4eGByspKpKSkYPXq1di4cSMiIyPFdXfs2IGsrCyMGDECtbW1/RLPgJpsed8oy9t1ZPQdrm+G9gAQpLqCq84RqHMLRFHygwhpvCxtoNQlY+9hR4VO0Whw8QMABDddgeuYCAARAxgldcWU968jGYDQljxkwRtaO0dcnfYLhDVekjyugWCJcfU2pgz3Saj00v/9+aiLEed9vV/+P1jiubIEMkEQLKqZIDMzE48++ijWrFmD+++/H4B+/Ktly5bB09MTGzdu7NX2Kisrcc8992D+/Pl45plnxPLS0lL4+flBLpfj4YcfhoeHh9GWKnPGk5WVhVWrVmHz5s2IiYnp1XFYo0+f+EEc4+iBf8wUy/PTSrHvzVMAgOCxfrht3QSpQqQedPUetvfd6ydReEY//cXc3yYgdLy/0fVo4Jny/hnT/m80JjkYSatGW0Rc/c0S4+pNTA2VTfjymVQ0N2kBGbDwpVvgH+nZL3H1dmDgwcLi+lQdPHgQCoUCCxcuFMuUSiXmz5+PjIwMlJb27jEDLy8vODo6or6+3qA8ICAAcnnPh2/ueAgIGe8PV18nAEDR2TLUlDRIHBH1VV1ZIwrP6hMqV19HBI/1kzgiMoeg0b5QOOivjwWnrkPQWdR3b+rC0Y8u6BMqACOSQ/otoQKA0fOHI2FxFBOqDiwuqcrOzkZwcDBcXAwHKGsdUPTy5Z5vFdXV1aG6uhpXrlzBa6+9hoaGBiQkJAx4POXl5cjKyhJ/8vPz+xSDrZHLZYid0zYn3IXvOTistcr6sRCtXeJikkMgl3OkZltg56BA8Gj9Q/ONNRqUXamWNiDqUdHZsrYpotwdMOE+zrEqBYvrU1VRUQEfH59O5a1l5eXlPW5jzZo14ijuTk5OWLp0KebPnz/g8ezcuRPbtm3r035tXcz0YJz6MhvaZh0uHShCwuIo2Dta3MeRuqFr0emTKgAyuQwxM4IljojMKTTBH/lp1wHoJ1j2j/KSOCLqSotGiyPb2iZMnvhADBxdHSSMaPCyuP9iarUa9vadZ892cHAQX+/Jc889B5VKhWvXriElJQVqtRo6nc6k233mjGfhwoWYOnWquJyfn4+XX3651zHYIkd3B4TfEojs1KvQqFpw5UgxpzWxMvlppWis0QAAwib4w9nLUeKIyJxCx/vre60L+qQq8T7b7wdqrc7uzEFtqQoAMGSEF6KSgiSOaPCyuKRKqVSiubm5U7lGoxFf78moUaPE32fNmoWHHnoIAPD44493VaVf4vH19YWvr2+Xrw92I+eGITv1KgAgc18+YpKDOdGnFbnwfds8f7GzQrtZk6yRk4cS/lGeuH6pGtVX61FT0gCPIZw3ztLUFDfg7M4rAACZQoapKzhhspQsrk+Vj48PKioqOpW3lvU2SXFzc0N8fDz27dtnEfFQG99wD/hF6h/FrcyvQ2lWlcQRkalqihtwLUP/N+Ae4IyhIzvfIifrF5YQIP5ecONWIFkOQRBweGsGdC36jo2j7xgOr2A3iaMa3CwuqYqMjERRUREaGgyfCMvMzBRf7y21Wt1pe1LGQ23i5oaJv2fuY4d1a3Hxh7ZWqhGzQiBjB3WbFBbfNjxG/ikmVZYm56diXDuv/3Lj6uuE8XdzfDipWVxSNWPGDGi1WuzcuVMs02g0SElJQVxcHAIC9N+cSktLOz1NV1XVuaWjuLgYaWlpfR4XytR4qG/CJw2Bo7u+f1ru8RKoqpokjoh60qLR4tLBIgCA3E6G6GnsoG6rPIa6wH2IMwCg9GIlmuo0EkdErTSqZhz9+KK4fMvDsXzYxwJY3DsQFxeH5ORkbNq0CdXV1QgKCsKePXtQUlKCdevWieu98sorOHPmDFJTU8WyZcuWISEhAZGRkXBzc0NRURF27dqFlpYWrF692mA/Z86cwdmzZwEA1dXVaGxsxAcffAAAGDt2LMaNG9ereKhvFPYKxCSH4OyOKxC0Ai7+UIj4e6KkDou6kXu8BOp6fT/D4ZMCxaSYbI9MJkNYQgDSd+VCEIDCM2XsBG0hTn6RjcZq/YNSoQn+BrdqSToWl1QBwAsvvICAgAB89913qK+vR3h4OF577TUx0enKokWLcPToURw7dgwqlQpeXl5ITEzEkiVLEBFh2Cx66tSpTsMdbNmyBYA+OWu/r77GQ6aJnR2CczuvQBCAi/sLMW5RBOR2FteISjdc3N++gzqf2LR1YQn+SN+VC0D/xCeTKumV59bgwl79nRo7pQK3LI2TOCJqZZFJlVKpxGOPPYbHHnusy3WMTSmzYsUKrFixwqR99GZdU+KhvnP1cULohADknyiFqlqNvJOlCJ8cKHVYZERlYdsDBZ5BrgiI4dhFts4/2gtKV3uo65tRdLYcLRot7BwUUoc1aOl0Ag5vyUDrBHPj746Am5+TtEGRiM0BZBFGtu+wvpcjz1sqg1aq2SF8dHsQkMtlCL3RYb1FrUXxhUqJIxrcsn4oRFlODQD9F5tRd3CaGEvCpIosQmCcNzyD9GPglFysQkVBrcQRUUfNTS3I/p9+XDGFgxyRt/I20GAR2v4pwJOc71Qqqho1Tvw7S1yeuiIOCnaVsCgWefuP+uCtt/Q/PYmPB9o9yQgAWLgQOHWq57pPPaX/aVVXB9yYA9GYu6rVEHSC/nH75XuA9vMvfvst8Oij4qIMQFzgDByJehAAcOHhV3Fr9seAqytw8aLhhn/7W+Czz3qOd/584F//MiybMAEoKem57uuvAw880LaclQXMmtVzPQA4cQIIbHf7ctMm4M9/7rledDTwww+GZQ8+CBw82HPdVauAF180LAs28am8jz8GZsxoWz5wAFiyBIDhe5hzdBaaox8GAEQUpEIZ8whQVGS4rZdeAjZv7nmf06cDn3xiWDZzJnDpUs91//hH4Je/bFsuLgYSE3uuBwD79wPtnwT+9FPg2Wd7rjdkCHDypGHZ6tXArl09173/fuCNNwzLRowAOkzybtS77wILFrQtp6UBixb1XA8ALlwwXL6Ja0Twy49B4bwMWrk9ClLOQXjxNhhtozTxGmFwbdh+YwDlHTu6vUZ0yczXiEXfPQkXdXVbXF0ZoGtE+3N1/Oo6aJxGAgCikoIQGOsj+TWiRwN9jej4GRxgTKpsRW0tcPVqz+uFGOlYXFZmWt3aDq1HgtBtPef2C5oOj2I3NnaqG1n6FU4MuxvN9s647DcJiYf/AWXHfQJAVZVp8VYauU1RUmJaXZXKcLmlxbR6AKDVGi7X15tW18Ojc1l5uWl1a2o6l5kab8epltRqsW779/CCzy3i77FnvwAqjWy/psa0/RqbM7O01LS6HZMRrdb0Y21pMVxWqUyv21FlpWl1jQz1gmvX9AlHTxobDZc1GtPjbe100+omrhH2ZcUY6nAahUEToVJ6obzRGX6V2Z3rmniNMLg2tA4BaMI1wig3I4Nd3sQ1wrmxCs6NFW1xdWWArhGt5+qa/2hcvpFQKV3sMfGBG18OJL5G9Fp/XyOM/c8YQEyqbIW7OxBkwu0YPz/jZabUdXc3XJbJuq2navcNy9mhw2P3Tk6d6joAiLp+FJlBM9Fi54js8fdgVM2xzhv28jItXm/vzmVDhvRcDwCcnQ2X7exM2ycAKDp04nV1Na2usTHPfH1Nq2ssITM13o5TLSmVYt3W97DSKxzlPvpZ733q8uHrpDK+fQ8P0/ZrbCaCgADjF/6OXF0NlxUK04/VrsMlz9nZtLrGPjfe3qbV9TLSmX/oUNNaqpw6dEB2cDD9WDv2d7vJa0TYtYsoxEQAQMGI2fDLV3Vez8RrhMG1wfPG58+Ea4RRHT8PwE1dI1ROXoZxdWWArhGqajVaBDkOTXxSLJtwXzScPG7EJ/E1otf6+xrR8TM4wGSC0PHrDPWXrKwsrFq1Cps3b+7zYKTW5NMnfoCqUg1nbyUe+MdMk+pUXa3Hf3/7PwD66U/ufXMaR+uWUOt7qFDKoVXrAAC3rhzFya+tRF/+BrvSUNWEzx7/EQDgHeaGn62/1SLiMidLjKs1plZ+kR5Y+KdbeF20UOzhRhbFK8hVnEeutlSFq+lGmoBpwLUmVPZOCkRM4XAXg5GLlyP8wtvm6qwrM9JSRWan07a1e8hk0E+YzITKYjGpIosTNzdU/D2DwytYlMhbgzgVxiAWOqHtKcACzgXY7wRBgEbV1g8wbl4YfIcZuY1HFoNJFVmc0Hh/uPg4AtBPi1F33fa/EafvykXal9niyNWWomPvgBEcQX1QC4tv6/eXf5JJVX/SqJrx4/87C12zvpVYJgMSFnMKL0vHpIosjlwhR+zsG61VApD5fYG0AQ2A9N25OP3VZaTvtqykStfSllT5R3nCJ1TaTqAkLa8QV3H07uKLlVA3NEsckW2qyK/F9t8fQc7RYrHM3sUODs72EkZFpmBSRRYpJjkYcjt9v4FLB4rQotH2UIP6Q4u67bzHzgrtZk0aDGQyGUIT9LcABa2AorNlEkdkWwRBP6n8zj/+hNqSGy30N7pPcWog68CkiiySk7tSnP9PXd+MnCPFPdQgc2uq00Cr0d96gAwYPtnE4SjIpoUltLsFmMZbgObS3NSCA++cw6H3zkN745af73B3OLo79FCTLAmTKrJYce3mA8zYm9+pfw/1r6wf2+b5s3NQ8JsyAQCGxHjBwVn/sELR2TJoW3QSR2T9KgvrsP33R3Dl8DWxLG5uGO7802TIFXzSz5owqSKL5RfhAd8bj3BX5NXiena1tAENIpcOFOHkf9qmg7Bz5KWC9OR2coSM0w8QqlG1oIQTLN+USweLsOMPR1BzTT+Eu72TAjOfHIcpy+KgsOcXGWvDKyVZLJlMZjC8QuY+2++wbgnOfZOD1E3pBrOcyBW8VFCbsAntbgFyaIU+aVFrcfDdc0j9V7p4m90nzA13vTxV7PpA1odXSrJo4ZMDoXTVP/GSe7QYqhp1DzWorwRBwPHPLuL4Z1limZ2S35Sps+AxvuJtqYK067w130tVV+ux4w9HkJ3aNo/diFkhuPOlW+AR6CJhZHSzmFSRRbNzUCAmWT82kk4rGPTz6QtLHQ9KajqtDv/bfB7nvmk7Lwk/j4K9M5Mq6szB2R6Bcfp58+rLG1FZYMLk0AQAyD50FTt+fwRVRfq5H+2UCsx4fCxufWQU+y3aAA6NTP1m9O3DoWlsgYPTzX3MYmeHIP3bHAgCcOH7Aoy9M7zPt6PSd+eKc3uNnj/8puKyFS0aLX7851nknyjVF8iAqctHInZ2KC4MgjHCbJm5/gaNCUsIwNX0CgD61iqfMI5h1p0WjRY/fXDB4IuhV4grZj05Hp5BRiaFJqvEpIr6jbmSFjc/Z4TE+6Mg7TpUlWrkp13H8Il8vN8cNKpm7HvrFIoz9Z2N5QoZZjw+ln06bER/fnEIjffHkW2ZAID8tFKM/1lkv+3L2tUUN2D/26dRmd/Wohc9IxhTHo7jLXYbw9t/ZBXaD6+QyfkAzaKxVo2UV46LCZWdUoG5z05gQkUmcfV1gs8wfetUeW4tGioaJY7IMuUcLcb23x8WEyqFgxzTHh2Nab8czYTKBjGpIqsQNNJH7MBZnFmJqiL24bgZ9eWN+PalYyjPrQUAKF3tccfvJiJ4tK/EkZE1CY1vN8HyaY6u3l6LRovDWzPww9tn0Nyon5nAM8gFd708BdHTgiWOjvoLkyqyCjK5DLFzOLyCOVRdrcc3fzqKmmL9uDjO3kos+OMk+Ed6ShsYWZ2whLakKj+tVMJILEttaQO++dNRXGh3nYq8dSgW/WUKvILdJIyM+huTKrIa0dOCxOby7NSr0Kg4mWtvXb9cjW9fOoqGyiYAgEegC+588RZe6KlPfIa5w8XbEQBwLaMCmsYWiSOSXu7xEnz9whFU5OlbgRX2cty6ahSmrxkDe0d2Y7Z1TKrIajg42yPy1qEA9APnZf/vag81qL2r6eVIeeU41PX6ZNRnmDsW/HES3PycJI6MrFX7CZZ1LQKunhu8twC1LTr89GEm9v/9NJpvJJfuQ5yx8C+3YERyCGQyTjczGDCpIqti2GG9gIMOmij3WDG+e/0kWtT6vh2Bcd6Y//uJcPJQShwZWTvDW4CDc3T1ujIVvn3pKDL2tD1EE35LIO56ZSp8QjnUxGDCtkiyKt4hbgiM80ZxZiVqihtw7XwFgti5ulsX9xfg0PsZwI38M2xCAJKfGMuBBsksAmO9Ye+kQHOjFoVnyqDT6gbVtEb5aaU4uPEcNCp965TcTobJD8UidnYoW6cGocHzySebEde+wzqHV+iSIAg4s+MKDm1pS6iipwdh1tpxTKjIbBT2CgSP0U+wrK5vRumlKokjGhi6Fh2OfXIR+948JSZUbv5OWPjSLYibE8aEapBiUkVWJywhAM7e+ttWBaeuo66M4+N0JOgEHPv4Ik7+55JYNnrBcCT9cvSgakWggTHYbgHWVzTi278cM5juatjEANz96lT4DveQMDKSGq+uZHXkdnLEztS3VgmC/vYWtdFpdUjdlI7zu/PEssT7YzDpgRH89kz9InicH2TywTHBcuGZMnz9/GFcz64GoJ+F4JaHYzFr7Xg4ONtLGxxJjkkVWaWYmSGQK/QX8awfC9Gi0UockWVo0Wjx/d9PIztV/2SkTAYkrRqFsXeGSxwZ2TJHVwcMGeEFAKgtVaH6ar3EEZmfTqvDiX9n4bvXT4pP0Lr6OmHBi5Mxct4wfmEhAEyqyEo5eyoxfJJ+/r+mumbkHi2ROCLpaVTN2PN/J1Bw4/aL3E6GmWvHIyY5ROLIaDBofwuw4JRt3QJsqGpCyivHcXZnjlgWmuCPu1+dykFzyQCTKrJanA+wjapGjV1/OYaSi/pOwvaOCty2LpETT9OACY0PEH/PP2k7SVVRejm+fv6w+LclU8gw8cERmPNUPJSuvN1HhjikAlkt/yhP+AxzR0VeLcpyanD9cvWg/NZYd12F3etPoLZUBQBwdLPHvHWJ8Atnh1kaOO4BzvAKcUVVYT2uX6mGqloNZ0/rHQdNpxNw+r/ZOL39ivj0rIu3I2Y+OQ4B0V7SBkcWiy1VZLVkMhni5rYNr3BhEM4HWFlYh2/+dFRMqFx8HLHgxclMqEgSYmuVABSctt7WKkEnYPerx3H667aEKnisH+5+dSoTKuoWkyqyahG3DIXSRd8Ef+Wna2isVUsc0cApvVSFXX8+BlW1/pg9hrrgzj9NhudQV4kjo8HKoF+VFQ+t0FijQXFmJQD9ZO6J90Vj3m8T4OjuIHFkZOmYVJFVs1MqED0jGIB+7rFLB4okjmhgFJ4tw+71J6Bu0D+F5BfugTv/OBmuPpzHj6TjF+4Bpxu3/K6ml4vTIlkDQSeIc/a1tk45eypxx+8mYuzCCHHICKLuMKkiqxc7OxS4cb278H0BdDrbHSMHAK4cuYa9f00T/2ENHeWD2383kd+iSXIyuQyh4/WtVdpmHa6ml0sckWnqyhqR8upxNDe2JYFBo31w9/qpCIz1ljAysjZMqsjquQc4I2ScfpqM+vImFNrY49ztZe7Lx4//PAtBq08ch08cgnm/TYCDE585IcsQNqHd6OoW/rcoCAKyDhTiq+f+J97uAwB7J/3Ts5xwnHqLSRXZhPbDK2TY4PAKgiDg1FfZOLI1U7w1MWJmCJKfHAeFPefxI8sxdKQP7JT6z2TBqesW23KsqmrC3r+m4X+bzostVLIb/xHtnex4u4/6hEkV2YTg0b5wD3AGAFw7X2FTIzoLOgE/fXgBp768LJaNXRSBqY+MhJwXfrIwdg4KBI3xBQA01WpQdrla2oCMyDlajP+uO4TC02ViWfT0IN5Cp5vGpIpsgkwuQ+yctuEVMr+3jeEVdC06HHjnLDK/a2t9m/TgCCT+IprTYpDFCou3zAmWm+o0+OHtM/jh7TPiVDNOHg6Y83Q8pq0ew9YpumlMqshmRE8LhsJB/5HOTi2CpvVJHivVotZi75uncOVIMQB94jj90TEYPX+4xJERdS9kvB9ac/78tFJpg7mh4PR1/HfdIeQcLRbLhk8agnteS0JYQkA3NYlMx6SKbIbS1R6RU4MAAM2NWlw+dFXiiPpOXd+M3etPoOis/vaEwl6O2b8Zj6hpQRJHRtQzJ3cl/G8MkllzrQE1xQ2SxaJRNSN1Uzr2vpGGxhtjuild7JH8xFjMfHIcb/mRWTGpIpvSfoT1zL0FEATL7CTbHVVVE779yzGUXroxj5+THW57bgK/TZNVMbwFKE1r1bWMCnz13GGD8euCx/rhZ6/fiogpQ3kLncyOSRXZFJ8wdwTE6L8hV1+tN3hM2hrotAK++dNRVBXWAQAc3R0w/w8TERjrI3FkRL0TNqHtS0DBAA+t0KLW4qcPMpHyynHUlzcC0E8yfuuqUZj3bAJcvBwHNB4aPDi4DdmcuLlhKM3St/Jk7svH0JHWk5A01WrQdKNxzdXPCbc/lwiPQBdpgyLqA49AF3gEuqCmuAGlWVVoqtUMyK2269lVOPhuusEtx8A4b0xbPRpufs79vn8a3NhSRTZnWGIAnG9MlZF/8jrqKxoljqhn2mad/pcbCZVXsCvu/NNkJlRk1UJvzAUoCEDBmf5trdI2a3HiP5fwzZ+OigmVwl6OyQ/F4o4XJjKhogHBpIpsjsJOjpiZIQD0Yzxd3F8ocUTG1Zc3Ij0lFzv/9BPUdc1iuX+kJ+b/cRJvUZDVa98PsD8nWK7Ir8WOP/yEszuuoLUbpV+EB+5+dSpG3T6MQyXQgOHtP7JJI2aF4MyOKxC0Ai7+UIjxd0dYxMjjtaUq5B0vQe7xEpRdqen0utxehttfSIS9o2X8aY6+fTg0jS2cBof6xD/KE45u9miqa0bRuXK0aLSwczDf36FOq8O5b3Jx6r/Z0N2YukmukCH+niiMuXM45Aq2G9DA4pWSbJKLlyOGJQYg92gJmmo1yD1WgshbpRmOoKa4AbnH9IlURV6t0XVkChkErQClq73FJFQAOCYW3RS5XIaQ8f7ITr2KFrUWxRkVCBnv33NFE1Rfq8fBd8+h7HLblxOvEDfMeGwMfMLczbIPot6ynKs3kZmNnBuG3KMlAIDMfQUDmlRVFdUh93gJco+Vik/ydeQT5oZhk4ZgeOIQpKw/DlWlmo94k80JSwhAdqp+zLj8U9dvOqkSdAIy9ubjxL+zoNXo+yLKZMCYO8MRf0+kRbRI0+DFpIpsVkCMF7xD3VBZUIfr2dUoz+l8u81cBEFAZWEd8m60SFVfNT7YoV+4B4ZNDMCwiUPgMYSd0Mn2BY32gcJeDm2zDgVp1yEs7/vYcXVlKqT+K91gqBSPQBdMf3Q0/KO8zBEu0U1hUkU2SyaTIW5OKA5tyQCgH17BnARBQEVu7Y0WqRLUlqqMrucf5YnhE4dg2MQAPoFEg469ox2GjvJB4ekyqKrVKM/t/ZcbQRBw6UARjn58Ac2NWrF85LwwJN4XAzslW6fIMjCpIpsWMXUojn+WBY2qBVeOFMPB5eY+8oIgoOxKjdhHqr7MyHANMmBIjBeGTRyC4YkBcPFxuql9Elm7sIQAFJ7WT7nU2wmWVVVN+N9758X6AODq64hpq8dY1Rh0NDgwqSKbZu9oh+jpwTi/Ow/aZh1a1NqeK3Ug6ASUXqpC3olS5B4vQUNFU6d1ZDJgSKw3hk8agmETAuDM4RCIRKHj/cTfe5NUXTlyDUe2ZkLd0DbkSPSMYExeMgIOzvZmjZHIHJhUkc2LnR2K87vzAMDkpEqnE1BysRJ5x0qQd6IUqhsTsbYnk8swdKQPhk8agrAEfzh5KM0ZNpHNcPZyhF+kB8ou16CqsA6OHt2PrN5Uq8HhbRnigyYA4OSpRNLKUQiNN8/Tg0T9wSKTKo1Ggy1btmDv3r2oq6tDREQEVq5cicTExG7rpaamYseOHcjJyUFtbS08PT0RFxeH5cuXIzw8vNP6hw4dwtatW5Gfnw9PT0/ccccdWLp0Kezs2k7L7t27sX79eqP7+/rrr+Hjw+ZnS+cR6ILgsb4oOlsOQdf1eroWHYovVCL3uD6RaqrVdFpHrpAhaLQvhk8cgtAEfzi6cYZ7IlOExQeIwx9om7v+clNw6jr+tzkdjTVtf3/hkwMxZXkc/97I4llkUrV+/XocOHAA9957L4KDg7F79248++yz2LBhA8aMGdNlvZycHLi5uWHx4sXw8PBAZWUlUlJSsHr1amzcuBGRkZHiukePHsXvfvc7jBs3DmvXrkVOTg4+/PBDVFVV4emnn+607UceeQSBgYEGZa6uruY7aOpXcXPCUHS2vFO5tkWHa+crkHu8BPknS6Gub+60jsJejqAxNxKpeH8oXXjbgai3wib44+TnlwBAHAqhPY2qGUc/vohLB4rEMqWrPaYsH4mIWwI7rU9kiSwuqcrMzMT+/fuxZs0a3H///QCAefPmYdmyZdi4cSM2btzYZd1ly5Z1KluwYAHuuecebN++Hc8884xY/s477yAiIgJvvvmm2DLl7OyMjz/+GIsXL0ZYWJjBdiZNmoQRI0aY4QhJCsHj/ODm54S6Gx3LW5q0OLjxHPLTSqFRtXRaX+EgR8g4PwyfOAQh4/05ojjRTfIMcoWbvxPqrjdC12I4rMK1jAqk/usc6svb+iuGjPdD0spR7J9IVsXixvA/ePAgFAoFFi5cKJYplUrMnz8fGRkZKC0t7dX2vLy84OjoiPr6erEsLy8PeXl5uPPOOw1u9d19990QBAEHDhwwui2VSgWttvcdnUl6crkMsXNCxWWNqgXZ/7tqkFDZKRUInxyIWWvHYcm7szD71/GImDKUCRWRGchkMoO5AAH907RHPshEyivHxYTK3kmBpF+OwtxnEphQkdWxuP8W2dnZCA4OhouL4cCIsbGxAIDLly8jICDAWFVRXV0dtFotKioq8MUXX6ChoQEJCQni65cu6ZugY2JiDOr5+vrCz88P2dnZnba5du1aNDY2wt7eHomJiXj88ccREhLSp2MkaUTPCMbxT7MMyuydFAiND8DwiUMQPNbXrPOSEZGh0AR/8aERAGiqaUbmd23jxwXGeWPa6jFw8+MwJGSdLC6pqqioMNr5u7WsvLxzv5iO1qxZg4KCAgCAk5MTli5divnz5xvso/02O+6n9XVA30p2++23Y/z48XBxcUFWVhY+//xzPPbYY3jvvfe6TfDKy8sNtpWfb97BJ6l3HF0d4OBiB01DCxQOcsx6cvyN0Z6ZSBENhCExXlC62ItDJAg6/W1AhYMcE++PQdycMMjknKqJrJfFJVVqtRr29p07Ajs4OIiv9+S5556DSqXCtWvXkJKSArVaDZ1OB7lcf7dTo9EYbLPjflSqtpGxZ86ciZkzZ4rLSUlJmDhxIn71q1/ho48+Muin1dHOnTuxbdu2HuOlgWOnVEDT0AKlqz0fzSYaYHKFHCHj/XD50DWxzC/SAzPWjIVHIKdtIutncUmVUqlEc3PnJ7BaEyGlsuexgEaNGiX+PmvWLDz00EMAgMcffxxAWzLVus2O++lpH2PGjEFcXBzS0tK6XW/hwoWYOnWquJyfn4+XX365x/iJiGzViJkhYlJl76TAnS9Ohlxhcd17ifrE4j7JHW+/tWot8/X17dX23NzcEB8fj3379hnso/02O+7HlLGn/P39UVtb2+06vr6+iImJEX86PlFIRDTYDBnhLQ7+ae9kx4SKbIrFfZojIyNRVFSEhoYGg/LMzEzx9d5Sq9UG24uKigIAZGUZdlouLy9HWVmZ+Hp3rl27Bk9Pz17HQkQ02MkV7DdFtsnikqoZM2ZAq9Vi586dYplGo0FKSgri4uLEjuGlpaWdOn5XVVV12l5xcTHS0tIMnvQbPnw4QkND8c033xgMkbB9+3bIZDJMnz5dLKuuru60zZ9++glZWVmYOHFin4+TiIiIbIvF9amKi4tDcnIyNm3ahOrqagQFBWHPnj0oKSnBunXrxPVeeeUVnDlzBqmpqWLZsmXLkJCQgMjISLi5uaGoqAi7du1CS0sLVq9ebbCfxx57DM8//zyefvppzJo1Czk5Ofj666+xYMECDBs2TFxvzZo1iI6ORkxMDFxcXHDp0iWkpKTA399f7KtFREREZHFJFQC88MILCAgIwHfffYf6+nqEh4fjtddew7hx47qtt2jRIhw9ehTHjh2DSqWCl5cXEhMTsWTJEkRERBisO2XKFLz88svYtm0bNmzYAA8PDyxZsqTTqOwzZ87E0aNHceLECTQ1NcHHxwd33nknli1bBm9vbzMfOREREVkri0yqlEolHnvsMTz22GNdrvP22293KluxYgVWrFhh8n6SkpKQlJTU7TqrVq3CqlWrTN4mERERDU4W16eKiIiIyBoxqSIiIiIyAyZVRERERGZgkX2qiIiICBh9+3BoGlvg4MR/19aA7xIREZGFGj1/uNQhUC/w9h8RERGRGTCpIiIiIjIDJlVEREREZsCkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZmBndQBEBEw+vbh0DS2wMGJf5JERNaKV3AiCzB6/nCpQyAiopvE239EREREZsCkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiIiIzIBJFREREZEZ2EkdANFAGn37cGgaW+DgxI8+ERGZF/+z0KAyev5wqUMgIiIbxaSKiIgIbMmmm8dPDhEREdiSTTePHdWJiIiIzIBJFREREZEZMKkiIiIiMgMmVURERERmwKSKiIiIyAyYVBERERGZAZMqIiIiIjNgUkVERERkBkyqiIiIiMyASRURERGRGTCpIiIiIjIDJlVEREREZsCkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRnYSR2AMRqNBlu2bMHevXtRV1eHiIgIrFy5EomJid3WS01NxY4dO5CTk4Pa2lp4enoiLi4Oy5cvR3h4eKf1Dx06hK1btyI/Px+enp644447sHTpUtjZGZ6Wuro6vPvuu0hNTYVarUZsbCwee+wxxMTEmPW4iYiIyHpZZEvV+vXr8fnnn2POnDl48sknIZfL8eyzz+LcuXPd1svJyYGbmxsWL16M3/zmN1i0aBGys7OxevVqXL582WDdo0eP4ne/+x1cXV2xdu1aJCUl4cMPP8SGDRsM1tPpdFi3bh2+//57/OxnP8Ojjz6KqqoqrF27FoWFhWY/diIiIrJOFtdSlZmZif3792PNmjW4//77AQDz5s3DsmXLsHHjRmzcuLHLusuWLetUtmDBAtxzzz3Yvn07nnnmGbH8nXfeQUREBN58802xZcrZ2Rkff/wxFi9ejLCwMADAgQMHcP78efz5z3/GjBkzAAAzZ87EAw88gK1bt+KPf/yjmY6ciIiIrJnFtVQdPHgQCoUCCxcuFMuUSiXmz5+PjIwMlJaW9mp7Xl5ecHR0RH19vViWl5eHvLw83HnnnQa3+u6++24IgoADBw4YxOPt7Y1p06aJZZ6enkhOTsahQ4eg0Wj6cJRERERkayyupSo7OxvBwcFwcXExKI+NjQUAXL58GQEBAd1uo66uDlqtFhUVFfjiiy/Q0NCAhIQE8fVLly4BQKc+Ub6+vvDz80N2drbBulFRUZDLDfPP2NhYfPPNNygsLERERITROMrLy1FRUSEu5+fndxs3ERERWS+LS6oqKirg4+PTqby1rLy8vMdtrFmzBgUFBQAAJycnLF26FPPnzzfYR/ttdtxP+0SosrISY8eO7TKeioqKLpOqnTt3Ytu2bT3GS0RERNbP4pIqtVoNe3v7TuUODg7i6z157rnnoFKpcO3aNaSkpECtVkOn04mtTa237Fq32XE/KpXKIJ6u1uspnoULF2Lq1Knicn5+Pl5++eUe4yciIiLrY3FJlVKpRHNzc6fy1kRIqVT2uI1Ro0aJv8+aNQsPPfQQAODxxx8H0JYQGesPpdFoDPahVCq7XK+neHx9feHr69tjvERERGT9LK6jesfbb61ay3qbpLi5uSE+Ph779u0z2Ef7bXbcT/vbgt7e3t3GY+wWIhEREQ0+FpdURUZGoqioCA0NDQblmZmZ4uu9pVarDbYXFRUFAMjKyjJYr7y8HGVlZeLrretmZ2dDp9MZrHvhwgU4OjoiJCSk1/EQERGR7bG4pGrGjBnQarXYuXOnWKbRaJCSkoK4uDjxyb/S0tJOT9NVVVV12l5xcTHS0tIMnvQbPnw4QkND8c0330Cr1Yrl27dvh0wmw/Tp08Wy6dOno7KyEqmpqWJZdXU1fvzxR0yZMsVofysiIiIafCyuT1VcXBySk5OxadMmVFdXIygoCHv27EFJSQnWrVsnrvfKK6/gzJkzBsnOsmXLkJCQgMjISLi5uaGoqAi7du1CS0sLVq9ebbCfxx57DM8//zyefvppzJo1Czk5Ofj666+xYMECDBs2TFxvxowZ+PLLL7F+/Xrk5eXBw8MD27dvh06nw4oVK/r9fBAREZF1sLikCgBeeOEFBAQE4LvvvkN9fT3Cw8Px2muvYdy4cd3WW7RoEY4ePYpjx45BpVLBy8sLiYmJWLJkSadhD6ZMmYKXX34Z27Ztw4YNG+Dh4YElS5Z0GpVdoVDg9ddfxzvvvIP//ve/UKvVGDFiBJ5//nmEhoaa+ciJiIjIWskEQRCkDmKwyMrKwqpVq7B582ZOxkxEg9anT/wAVaUazt5KPPCPmVKHQ2Q2FtlSRUREtmv07cOhaWyBgxP/BZFt4SeaiIgG1Oj5w6UOgahfWNzTf0RERETWiEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiIiIzIBJFREREZEZMKkiIiIiMgMmVURERERmwKSKiIiIyAyYVBERERGZgZ3UAQwmarUaAJCfny9xJERERNRbYWFhcHR07PJ1JlUDqKSkBADw8ssvSxwJERER9dbmzZsRExPT5esyQRCEAYxnUKuursbx48cRGBgIBwcHs203Pz8fL7/8Mn7/+98jLCzMbNu1RTxXvcPzZTqeK9PxXJmO58p0A3Gu2FJlQTw9PTF37tx+235YWFi3GTS14bnqHZ4v0/FcmY7nynQ8V6aT8lyxozoRERGRGTCpIiIiIjIDJlU2wMfHB8uWLYOPj4/UoVg8nqve4fkyHc+V6XiuTMdzZTpLOFfsqE5ERERkBmypIiIiIjIDJlVEREREZsCkioiIiMgMmFQRERERmQEH/7RiGo0GW7Zswd69e1FXV4eIiAisXLkSiYmJUodmUS5cuIA9e/bg9OnTKCkpgbu7O0aOHImVK1ciJCRE6vAs3ocffoj33nsPw4cPxwcffCB1OBYpKysLW7duRXp6OjQaDYYOHYo777wTixcvljo0i1JYWIgtW7YgPT0dtbW1CAgIwOzZs3Hfffd1O0q1LVOpVPj3v/+NzMxMXLhwAXV1dXj++edx++23d1o3Ly8P//jHP5Ceng47OzvccssteOKJJ+Dp6TnwgUvAlHOl0+nw3Xff4eDBg8jOzkZdXR0CAwMxc+ZM3HfffVAqlf0aI5MqK7Z+/XocOHAA9957L4KDg7F79248++yz2LBhA8aMGSN1eBbj008/RXp6OpKTkxEREYGKigp8/fXXWLlyJTZu3Ijw8HCpQ7RY169fx8cffwwnJyepQ7FYx48fx/PPP4+oqCg8/PDDcHJywtWrV1FWViZ1aBaltLQUq1evhqurK+6++264u7sjIyMD77//PrKysrB+/XqpQ5RETU0Ntm3bhoCAAERGRuL06dNG17t+/Tp+9atfwdXVFatWrUJjYyP+/e9/IycnB//6179gb28/wJEPPFPOVVNTE9avX4+RI0di0aJF8PLyQkZGBrZu3YpTp07h73//O2QyWf8FKZBVysjIEJKSkoRPP/1ULGtqahLuu+8+4dFHH5UwMstz7tw5QaPRGJQVFBQIs2bNEv785z9LFJV1ePHFF4W1a9cKv/rVr4SlS5dKHY7Fqa+vFxYtWiS88MILglarlToci/bhhx8KSUlJQk5OjkH5yy+/LCQlJQm1tbUSRSYttVotlJeXC4IgCBcuXBCSkpKElJSUTuu9+eabwuzZs4WSkhKx7MSJE0JSUpKwY8eOAYtXSqacK41GI5w7d65T3a1btwpJSUnCiRMn+jVG9qmyUgcPHoRCocDChQvFMqVSifnz5yMjIwOlpaUSRmdZRo8e3elbXEhICIYNG4b8/HyJorJ8Z86cwcGDB/GrX/1K6lAs1vfff4/KykqsWrUKcrkcjY2N0Ol0UodlkRoaGgAAXl5eBuU+Pj6Qy+WwsxucN04cHBxMGqzy4MGDmDJlCgICAsSyCRMmICQkBD/++GN/hmgxTDlX9vb2GD16dKfypKQkAOj3az6TKiuVnZ2N4OBguLi4GJTHxsYCAC5fvixFWFZDEARUVVXBw8ND6lAsklarxYYNGzB//nxERERIHY7FOnnyJFxcXFBeXo4HH3wQ8+bNw+23344333wTarVa6vAsyvjx4wEAr732GrKzs1FaWor9+/djx44duOeee3iLuRtlZWWoqqoyOklwbGwssrOzJYjKulRWVgJAv1/zB+dXAxtQUVFhNGNvLSsvLx/okKzKvn37UFZWhhUrVkgdikXasWMHSktL8be//U3qUCxaUVERtFotXnjhBcyfPx+//OUvcebMGfz3v/9FfX09XnzxRalDtBiTJk3CI488go8//hiHDx8Wyx966CGsWrVKwsgsX0VFBQB0ec2vra2FRqOBg4PDQIdmNT777DO4uLhg0qRJ/bofJlVWSq1WG+2Y2PpHxW/JXcvPz8ff/vY3jBw5ErfddpvU4VicmpoavP/++1i6dOmgeaqorxobG9HU1IRFixZh7dq1AIDp06ejubkZO3fuxIoVK/iEaTuBgYEYO3Yspk+fDnd3d/z000/4+OOP4e3tjXvuuUfq8CxW6/W8p2s+kyrjPvroI5w8eRJPPfUU3Nzc+nVfTKqslFKpRHNzc6dyjUYjvk6dVVRUYN26dXBxccFf/vIXKBQKqUOyOO+99x7c3Nz4T84ErX9ns2bNMiifPXs2du7ciYyMDCZVN+zfvx9vvPEGPvnkE/j7+wPQJ6CCIOBf//oXZs+ezdvxXWj9nPGa33v79+/He++9h/nz5+Ouu+7q9/2xT5WV8vHxEZuE22st8/X1HeiQLF59fT2effZZ1NfX469//SvPkRGFhYX45ptvsHjxYpSXl6O4uBjFxcXQaDRoaWlBcXExamtrpQ7TYrTejvH29jYob+2MXVdXN+AxWaqvv/4aUVFRYkLVaurUqWhqamK/oG60fs66uua7u7uzlcqIEydO4NVXX8Utt9yCp59+ekD2yZYqK9U6RkdDQ4NBZ/XMzEzxdWqjVqvx3HPPobCwEG+99RaGDRsmdUgWqby8HDqdDhs2bMCGDRs6vf6LX/wCixcvxpNPPilBdJYnJiYGJ0+eRFlZGUJDQ8Xy1j6NvH3apqqqyuitl5aWFgD6hyPIOD8/P3h6eiIrK6vTaxcuXOD13ojMzEz8/ve/R0xMDF566aUBe7qUSZWVmjFjBv79739j586duP/++wHom4FTUlIQFxdn8NjtYKfVavGnP/0JGRkZePXVVzFq1CipQ7JYw4cPxyuvvNKp/L333oNKpcKTTz6JoUOHShCZZUpOTsYnn3yCXbt2ISEhQSzftWsXFAqF+MQb6YcxOXHiBAoLCw1uie7fvx9yuZxPmfZg+vTp2LNnD0pLS8Xre1paGgoLC/Hzn/9c4ugsS15eHtatW4chQ4bgtddeG9Bbo0yqrFRcXBySk5OxadMmVFdXIygoCHv27EFJSQnWrVsndXgW5Z///CcOHz6MKVOmoK6uDnv37jV4fe7cuRJFZnk8PT3F8Vza++KLLwDA6GuDWXR0NO644w6kpKRAq9Vi3LhxOHPmDH788UcsWbKEt5jbue+++3Ds2DE88cQT+NnPfgZ3d3ccOXIEx44dw4IFCwb1uWp9WrT19t7hw4dx/fp1AMA999wDV1dXLFmyBAcOHMCvf/1rLF68GI2Njfjss88QHh5udEobW9XTuZLL5XjmmWdQV1eH++67Dz/99JNB/aFDh/brF2uZIAhCv22d+pVarRbn/quvr0d4eDhWrlyJiRMnSh2aRXnyySdx5syZLl9PTU0duGCs1JNPPomamhrO/WdES0sLPvroI+zevRvl5eUICAjA3XffzdYDIzIzM7F161ZkZ2ejtrYWgYGBuO2223D//fcP2sE/AeDnP/85SkpKjL72n//8B4GBgQCA3NzcTnP/Pf7445369Nmyns4VoO+m0JXbbrsNL7zwQr/EBjCpIiIiIjILPv1HREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiKzEz3/+815Nf7N7925MmzYNu3fv7seoiKjV4J1siYgsQnFxcbdzdQHAkCFD8Pnnnw9QREREfcOkiogsQlBQEObMmWP0NVdX1wGOxjYkJSUhLi4OPj4+UodCNCgwqSIiixAUFIQVK1ZIHYZNcXV1ZUJKNIDYp4qIrM60adPw5JNPorKyEq+88gruvPNOzJ49G48++ihOnz5ttI5KpcL777+PpUuXYvbs2bjjjjvw9NNP49y5c53WffLJJzFt2jSo1Wps3rwZ9913H5KTk/H++++L6xw8eBCrVq3C7NmzsWjRIrz++uuoq6vr1O/pL3/5C6ZNm4bMzEyjcW3ZsgXTpk3D999/b/Lx19XV4Y033sBdd92F2bNn45FHHjFav6s+VX05f0TUMyZVRGSV6uvr8fjjjyMvLw9z587FtGnTkJWVhWeeeQY5OTkG69bW1mLNmjXYtm0b3NzcsGjRIkybNg2XLl3C2rVr8b///c/oPv7whz9gz549GD9+PBYvXozAwEAAwK5du/CHP/wBRUVFmDdvHm677TZkZGTgqaeeQktLi8E2Fi5cKNbpSKvVIiUlBR4eHpg2bZpJx93c3IynnnoKZ8+exdy5c3HHHXfg+vXr+POf/4z//ve/Jm0D6N35IyLT8PYfEVmEq1evGrQEtTdy5EhMmjTJoOzy5cu466678Otf/xpyuf77YXx8PF5//XV89dVXeOaZZ8R1//73vyM3NxfPPvssFixYIJZXVVVh1apVeOONNzBx4kQolUqDfVRUVGDr1q1wd3cXy+rq6vD222/DyckJmzZtQkhICABg1apVeOaZZ5CVlYUhQ4aI648dOxbDhg3D/v378cQTT8DJyUl87fjx4ygrK8O9994LBwcHk85TRUUFgoOD8c4778De3h4AsGTJEjzyyCPYuHEjpk2bBj8/vx6305vzR0SmYUsVEVmEq1evYtu2bUZ/jh071ml9JycnPProo2JCAAC33XYbFAoFLl68KJZVV1fjxx9/RHx8vEFCBQBeXl64//77UV1djbS0tE77WL58uUFCBQCHDh1CY2Mj7rjjDjGhAgA7OzusXLnS6LEtXLgQKpUK+/fvNyj/9ttvAQB33nlnV6fFqF/+8pdiQgUA/v7+WLx4MTQaTad9dMXU80dEpmNLFRFZhIkTJ+Kvf/2ryesHBwfD2dnZoMzOzg7e3t6or68Xyy5evAitVovm5majLWFFRUUAgPz8fEyZMsXgtdjY2E7rX7lyBQAwZsyYTq/FxcVBoVB0Kp83bx7+9a9/4dtvvxUTu8rKShw5cgSjRo3CsGHDejjaNgqFAiNHjuxUPnbsWABAdna2Sdsx9fwRkemYVBGRVXJxcTFarlAooNPpxOXa2loAQHp6OtLT07vcXlNTU6cyb2/vTmUNDQ0A9K1cHcnlcnh4eHQqd3NzQ3JyMvbs2YOcnByEh4dj9+7d0Gq1vW6l8vDwMGhdatUaT2t8PTH1/BGR6ZhUEZFNa00efvGLX+Dxxx/vVV2ZTNbl9qqqqjq9ptPpUFNTY7RP06JFi7Bnzx588803WLt2LXbt2gUXFxckJyf3KqaamhrodLpOiVVrPF0lS0TU/9iniohs2ogRIyCTyZCRkWGW7UVERACA0VavCxcuQKvVGq03cuRIREREYN++fTh+/DiKioowZ84cODo69mr/Wq3W6LGcPXsWABAVFdWr7RGR+TCpIiKb5uPjg+TkZJw/fx6fffYZBEHotE5mZqbR23/G3HrrrXBycsKuXbtw9epVsbylpQVbtmzptu7ChQtRW1uL//u//wOATh3nTbVp0yY0NzeLy9evX8eXX34JBwcHzJo1q0/bJKKbx9t/RGQRuhtSAQAefPDBTkMemOqpp55CYWEhNm7ciO+++w4jR46Eq6srysrKcPHiRRQVFeHrr782qdXIzc0NTzzxBN544w2sWrUKM2fOhIuLC44ePQoHBwf4+voavW0IAHPnzsW7776L8vJyxMTEIDo6utfH4uPjg6amJixfvhxTpkxBU1MTfvzxR9TU1GDt2rUmDadARP2DSRURWYTWIRW6cu+99/Y5qXJ3d8c777yDr776Cj/88AO+//576HQ6eHt7IzIyEg8//LDRDuZdufPOO+Hm5oaPPvoIe/bsgYuLC6ZOnYpHH30U9957L4KCgozWc3FxQVJSEvbu3dvnVip7e3u89dZbePfdd7F3717U19cjNDQUa9euxezZs/u0TSIyD5lgrC2ciIh6raioCA888ACSk5Px0ksvGV3n4YcfRklJCb766it2KieyMexTRUTUS3V1ddBoNAZlarUa//jHPwAASUlJRusdPXoUubm5mD17NhMqIhvE239ERL105swZvPbaa0hMTIS/vz9qampw6tQplJSUID4+HjNnzjRYf/v27bh+/Tq+/fZbODg44MEHH5QociLqT0yqiIh6adiwYZgwYQLS09NRXV0NAAgKCsIjjzyC++67r9MYUp9++inKysoQEhKC5557DkOHDpUgaiLqb+xTRURERGQG7FNFREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM/j/rIRIv1BPaPUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "mu = source_photons.calculate_mu(bins=20, show=True)" + "mu, mu_err = source_photons.calculate_mu(bins=20, show=True)" ] }, { @@ -466,13 +535,44 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "641b46c1", + "execution_count": null, + "id": "f19a7f75", "metadata": {}, "outputs": [], + "source": [ + "PD, PD_err, PA, PA_err = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "641b46c1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-3.14159 rad -2.77199 rad -2.40239 rad -2.0328 rad -1.6632 rad\n", + " -1.2936 rad -0.923998 rad -0.554399 rad -0.1848 rad 0.1848 rad\n", + " 0.554399 rad 0.923998 rad 1.2936 rad 1.6632 rad 2.0328 rad 2.40239 rad\n", + " 2.77199 rad 3.14159 rad]\n" + ] + }, + { + "ename": "NameError", + "evalue": "name 'azimuthal_angles' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[8], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(bin_edges)\n\u001b[1;32m 4\u001b[0m asads \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m \u001b[43mazimuthal_angles\u001b[49m\u001b[38;5;241m.\u001b[39mkeys():\n\u001b[1;32m 6\u001b[0m asads[key] \u001b[38;5;241m=\u001b[39m grb_polarization\u001b[38;5;241m.\u001b[39mcreate_asad(azimuthal_angles[key], bin_edges)\n", + "\u001b[0;31mNameError\u001b[0m: name 'azimuthal_angles' is not defined" + ] + } + ], "source": [ "bin_edges = Angle(np.linspace(-np.pi, np.pi, 18), unit=u.rad) # Define ASAD bins\n", - "\n", "asads = {}\n", "for key in azimuthal_angles.keys():\n", " asads[key] = grb_polarization.create_asad(azimuthal_angles[key], bin_edges)" @@ -512,268 +612,10 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "4cddef85", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 0.0 deg to 15.0 deg\n", - "Modulation: 0.309 +/- 0.003\n", - "Best fit polarization fraction: 1.0 +/- 0.016\n", - "Best fit polarization angle: 160.234 +/- 0.3\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRaElEQVR4nOzdd3hT5dvA8W+6J11A2XtvBNmFQtkgyhJB2XvjQuXnFkRUlKGizCKKbBVki2xklyF7llmgk+6V8/6RN4eGppO2J23vz3VxkTznOTn3SdLkznOeoVMURUEIIYQQwoJYaR2AEEIIIcTTJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERwkLcvHkTnU7HkCFDtA5FAL6+vuh0ulw/zscff4xOp2PPnj25fqzMqFChAhUqVNA6DCEkQREZu3jxIhMnTqROnTq4ublhZ2dHqVKl6NatG0uWLCE+Pl7rEHPNkCFD0Ol03Lx5U+tQzFqyZAmjR4+madOmODk5odPpeP/99zPc76+//sLX1xc3NzdcXFxo2rQpy5cvT3ef5cuX06RJE1xcXHBzc8PX15e//vrLbN0rV67QrVs3PD09KVu2LBMmTCAyMtJs3ddee42KFSsSFRWV8QmnYEzoUv6zsbHB29ubbt26sXXr1iw9nnh2v/76q/pa7NixI9264eHhfPjhhzRo0AAXFxfs7e0pXbo0zZo148033yQgICDd/UeOHIlOp8PJyYnw8PA06xkTQOM/KysrihQpQvny5enatSuzZs3i7t272TldkctstA5AWLZPP/2UTz75BL1eT/PmzRk8eDAuLi48ePCAPXv2MGLECBYsWMDx48e1DrVQevPNN4mIiMDDw4NSpUpx7dq1DPf57rvvmDhxIl5eXrz22mvY2dmxbt06hgwZwtmzZ/n6669T7fPWW28xe/ZsypQpw8iRI0lISGDVqlW88MILzJ8/nwkTJqh1o6Oj8fPzIzo6mkGDBnHnzh2+//57Hjx4wNq1a00ed/Pmzfz666/s3LkTFxeXbD0Hbm5uTJkyBYC4uDhOnz7Nli1b2LJlC3PnzmXSpEnZety8MmHCBF555RXKlSundSjPbOHCheh0OhRFYeHChXTs2NFsvXv37tGyZUtu3rxJpUqVePXVVylatChhYWGcOHGCOXPm4OjoSMOGDc3uHxkZyapVq9DpdMTGxvLLL7+YvAfNadOmDb6+voDhPXr//n0OHjzI1q1b+eijj/j444959913n+n8RQ5ThEjDjBkzFEApW7ascvjwYbN1Nm3apPj6+uZxZHln8ODBCqDcuHEj149148YNBVAGDx6c6X22bt2q3Lx5U1EURVm2bJkCKP/73//SPYa9vb3i6elpck6hoaFK5cqVFUA5dOiQyT4HDx5UAKVy5cpKaGioyWN5enoq9vb2Jo+1atUqBVD27t2rlg0ZMkQBlAcPHqhl4eHhSunSpZXhw4dn+nyfPhdAKV++fKptS5cuVQDF2dlZiY6Oztbjt2nTRimMH5Hly5c3+5xm5OLFiwqgtG/fXmnUqJFia2urBAUFma07fPhwBVCGDRum6PX6VNvv3bunnDhxIs1j/fjjjwqgvPHGG4qdnZ1Sr169NOt+9NFHCqB89NFHqbbp9Xpl3bp1iqenpwIoM2fOzPhERZ6RSzzCrJs3b/Lxxx9ja2vLli1baNq0qdl63bt3Z9u2banK16xZQ+vWrXFzc8PR0ZG6desyc+ZMs5eDjNe8Hz9+zBtvvEGFChWwtbXl448/ztR2MFyGGjJkCGXLlsXOzg5vb28GDBjApUuXzMYdExPDrFmzaNy4Ma6urri4uFCzZk0mTZrEgwcPANDpdOplj4oVK6pNxE9fnw8NDeW9996jZs2aODo64ubmhp+fX5pN3JGRkbzxxhuUKVMGBwcHatSowTfffINerzdbPz2dO3emfPnyma6/dOlS4uPjmTBhgsl5eHh4MG3aNAB+/PFHk32M9//3v//h4eGhlleoUIHx48cTHx/PsmXL1PLAwEAAmjRpopYZbxu3gaH1B2D27NmZjj+zhgwZgrOzM9HR0Zw7d04t37VrF507d8bT0xN7e3uqVavGu+++S0RERKYeNyEhge+++46uXbtSvnx57O3t8fT0pH379mleUsro/WuuD4qx/0ta/4wtAUZJSUn88MMPNGvWjCJFiuDk5ETDhg357rvvzL6vFEXhu+++o3bt2jg4OFC6dGkmTJiQ6efBnEWLFgEwdOhQhgwZQmJiIv7+/mbrHjp0CICJEyea7edTsmRJnnvuuXSPZWVlxZQpU3jhhRc4c+YMR44cyXLMOp2O3r17s27dOsDQYnz//v0sP47IHXKJR5i1bNkyEhMTeeWVV6hTp066de3t7U3uT5s2jZkzZ1K0aFEGDBiAi4sLW7duZdq0aWzfvp0dO3ZgZ2dnsk9CQgLt2rUjNDSUjh07UqRIESpWrJip7du2baNXr14kJibywgsvUKVKFe7cucOGDRvYvHkzu3fvNvmwCwsLo23btpw+fZrq1aszbNgw7OzsuHbtGsuWLaNXr154e3vz0Ucf8ccff3D69GkmT56Mu7s7gPo/GL5wfX19uXnzJj4+PnTu3Jno6Gj++usvOnfuzE8//cTIkSPV+vHx8fj5+XHs2DHq16/Pq6++Snh4OJ999hl79+7N0muUHf/88w9gSGye1qVLF5M6md3ns88+459//uGTTz4BUC9VnDhxgpYtWwKolwCNydTff//NkiVL2LRpE25ubs98XuYoigKgfgH+9NNPjB07FmdnZ/r27Uvx4sXZs2cPs2bNYtOmTRw8eNDktTUnNDSUyZMn06JFCzp06ECxYsW4f/8+mzZtomvXrixatIgRI0ak2i+j9/fThgwZkioJAdi/fz///PMPTk5Oapnxfb99+3aqV6/OgAEDcHBwYPfu3UycOJEjR46wYsUKk8eZMmUK8+bNo2TJkowaNQpbW1v+/PNPjhw5QkJCQqq/z4wkJCSwfPly3Nzc6NmzJ7Gxsbz55pssXryYqVOnpkpCvLy8ALh8+TINGjTI0rECAgI4ceIEHTp0oGzZsgwZMoT169ezcOHCNH9IZaRt27a0atWKAwcOsGHDBsaPH5+txxE5TOsmHGGZ2rVrpwDKokWLsrTfoUOH1MtC9+/fV8sTExOV7t27K4AyY8YMk33Kly+vAIqfn58SFRWV6jHT2x4aGqq4u7srXl5eyrlz50y2nT17VnF2dlYaNmxoUt6/f38FUMaMGaMkJyebbIuMjFTCw8PV+xld4mnTpo2i0+mU3377zaQ8LCxMqV+/vuLg4GDSzG28bNarVy+TY1+/fl3x8PDI8iWelDJziado0aIKoAQHB5vd7uzsrADqZZGoqCgFUFxcXMzWf/TokQIoxYsXV8siIyOVMmXKKEWLFlWmTJmi9OnTRz1n4/YKFSoor776arbO0yi9SzxLlixRL/HExMQoN2/eVOzs7BRXV1flwoULJnXHjh2rAMrIkSNNys1d4omLi1Nu376d6njh4eFK7dq1FQ8PDyUmJsZkW0bvb+MliN27d6d7vqdPn1ZcXV2VokWLKlevXk21/4QJE5SkpCS1PCkpSRk2bJgCKH/88YdanvKSXUhIiFoeGxurNGvWLM3nND2//fabAiijRo1Sy3r37q0Ayt9//52q/vz58xVAcXV1Vd5++21l586dab4nnzZ69GgFUFauXKkoiuGzpUSJEoqzs7MSERGRqn56l3hSev/99xVAGTRoUKbiELlPEhRhVs2aNRVA2bp1a5b2GzFihAIoP/30U6ptly5dUqysrJSKFSualBs/wE+dOmX2MdPbPmfOHAVQvvvuO7P7TpkyRQHU5OXBgweKlZWVUrJkSbNfFk9LL0E5deqUAih9+vQxu+8ff/yhAMr333+vllWpUkWxsrIy+YIxMn6Q5maCYmtrqwBKYmKi2e2lSpVSAOXevXuKoijK3bt3FUApXbq02foJCQkKoNjZ2ZmUX7x4UencubPi7u6ulCpVShkzZoz65TF+/HjF29tbCQ4OVgIDA5Xu3bsrDg4OiouLizJw4ECzXzLmGBMUNzc35aOPPlI++ugj5Z133lG6dOmiAAqgzJ07V1EURZk+fboCKO+9916qxwkNDVVcXV0VBwcHJS4uTi3Pah+U2bNnp+p7oygZv78zk6DcvXtXKVOmjOLg4KAcPHhQLU9OTlY8PT2VEiVKmH1Nw8LCFJ1Op/Tt21ctM/6NLl26NFX93bt3ZytBMf6gSdl/adOmTQqgvPzyy6nq6/V65b333lMcHBzU1wpQKlSooIwYMSLN5yoqKkpxdXVV3NzclNjYWLX8zTffVADlhx9+SLVPZhOUBQsWKIDSpUuXTJ61yG1yiUfkqJMnTwLQrl27VNuqVatGmTJluHHjBhERESZN+w4ODtSrVy/Nx01r+7///gvA6dOnTfqkGF2+fBmACxcuUKtWLY4dO4Zer6d169Y4Oztn6dzSOnZERITZYz969Eg9Nhj6nly9epWyZctSuXLlVPV9fX3VyyT5XfXq1c32ydi/fz8//PADa9aswdPTkw4dOvDw4UNWrlxJVFQUEydOJDY2NtVon/RERESoz5u1tTWenp506dKFCRMm0LVrVyD996WHhwcNGzZk3759XLx4kfr166d7vHPnzvHVV1+xb98+7t+/T1xcnMl2c0NWM3p/pycqKoru3btz9+5dfvvtN1q0aKFuu3z5MqGhoVStWpXp06eb3d/R0VF9D8KT56JNmzap6rZq1Qpra+ssxXf16lV2795N9erVad68uVreuXNnSpQowR9//EFwcDBFixZVt+l0Oj7//HOmTp3K9u3bOXz4MCdPnuTIkSMsXryYZcuWsWDBApPLowCrVq0iMjKS0aNH4+DgoJYPGTKE2bNns2jRIsaOHZul+I2Upy4JCu1JgiLMKlmyJBcuXMjy/ADGTnYlS5ZM83Fv3bpFeHi4SYJSvHjxdD8Y0toeEhICPOmglxbjHBvG+RJKly6dbv3MMB57586d7Ny5M8NjG58bb29vs/VKlCjxzDFlxM3NjeDgYCIiItR+ACkZYzS+Nsb/0+o8aSzPqO8GQGxsLMOHD6dXr1706dOHnTt3EhAQwIoVK+jZsydg6Jz94Ycfcu3aNbNJnDnly5fPcJ6azLwvgXTn0wA4fPgw7dq1IykpCT8/P3r06EGRIkWwsrLi1KlT/Pnnn2Y7gmf0/k5LcnIy/fr1IyAggJkzZ9KvXz+T7cb34JUrV9JNblPOMZPe+9DGxsYkkciMRYsWoShKqgkGbWxsePXVV5k9ezb+/v689dZbqfZ1d3enX79+6nlFR0fzxRdfMH36dCZOnEiPHj1M4ly4cCFAqmPVqVOHRo0aceLECY4fP07jxo2zdA5gGPoMUKxYsSzvK3KHjOIRZrVq1QowjHrICuMXWlBQkNntxh7yT3eMzOjDO63txsc5ffo0iuGSpdl/gwcPBp58kebExEzGY8+dOzfdYxtHuBjrG0cJPS2t5ywnVa9eHXjSspTS/fv3iY6OpkyZMmonTGdnZ0qXLk1UVJTZ0Q1XrlwBDK1jGfnggw8ICQnh+++/B560LKXswNyoUSMAzp8/n5XTylB235dPmz59OrGxsezYsYOtW7cyZ84cPv30Uz7++ON0O2hm91f5xIkT2bJlCyNHjjQ7R4cx3p49e6b7Hrxx40aqfcy9D5OSkggODs50fClH6rz33nupRhsZR2hl9APCyNnZmc8++4xWrVoRHx/PwYMH1W1nzpzh6NGjADRv3jzVsU6cOAE8SWKyavfu3QDZ7mgrcp4kKMKsoUOHYmtry/r16zP8skj5i9E4sZK5abuvXr3KnTt3qFixYqZ+cWdGs2bNAMOlg8xo0qQJVlZW7Nu3j+jo6AzrG5u7k5OTn/nYrq6uVKlShbt375qdUC0vpjo3XuIwNzTceEnm6csg2dnnaUePHmXOnDnMnTs31S/3lO+fpy+X5JT03pfh4eGcOnUKBwcHatasme7jXL16FU9PT7MjbHJ6FNbs2bNZsGABHTt25IcffjBbp0aNGri7u3P48GESExMz9bjGhNBcvAcOHDD7Xk/Ln3/+ycOHD6levTrDhw83+69SpUpcvnw5S8+Pq6sr8OSyCzxJPHx9fdM8lqOjI7/99luWZyX+559/OHjwII6OjmprnrAAedfdReQ3xhEnFSpUUI4dO2a2ztatW5W2bduq940jBCpUqKA8fPhQLU9KSlJefPFFBVCmT59u8hgZTQyV3vbg4GDF3d1dKVasmHLkyJFU25OTk1N1PhwwYECmR/G8/fbbCqD8888/Zo/v4+OjWFlZKUuWLDG7/cyZMyaTkxmf0969e2syiuf69eu5PlHb0+Lj45VatWop3bp1MynfuXOnAiiffPKJWmac0M1cJ+KnpTeKx1xdW1tbxc3NTbly5YrJtgkTJiiAMmLECJNyc51kO3XqpADK6dOnTcoXL16sdvRctmyZybaM3t/mOsmuX79esbKyUurWrZthp+EPPvhAfT8/PYJIUQyTnqUc4XbgwIEcG8XToUMHBVBWr16dZh3jczNgwAC17Msvv1T+++8/s/X379+vODg4KDY2Nsrdu3cVRVGUmJgYxd3dXbG2tlbLzHnttdcUQFm4cKFaltFEbevXr1cnavvyyy8zOmWRhyRBEen65JNPFCsrKwVQWrRooUyaNEmZNm2aMnz4cKVq1aoKoDRu3Nhkn6lTp6pDT8eNG6e8/fbbSp06dRRAadWqlRIfH29S/1kSFEVRlL///ltxdXVVdDqd0r59e2Xy5MnKlClTlN69eyulSpVS7O3tTeqHhoYq9erVUwClRo0ayuTJk5W3335b6dOnj+Lq6mryRbFt2zb1w3zq1KnKZ599psyfP1/dfvv2bfV5qF+/vjJq1Chl6tSpyoABA9Rz/vfff9X6cXFxyvPPP6/Wnzp1qjJq1CjF3d1d6dGjR5YTlEWLFimDBw9WBg8erLRs2VIBlHr16qll5mbGnDdvngIoXl5eyrhx45QpU6YoZcqUUQDlzTffNHucN954QwGUMmXKKFOmTFHGjRuneHl5KYDJ82HO//73P8XNzU25c+eOSbler1caNWqkWFtbK8OGDVNefvllBTAZcZKerCQoiqIo33//vTq0dfjw4cq7776rNG/eXH0fpPyyVhTzCcrWrVtNHuONN95QWrdurVhZWanDqXMiQXF0dFT4/5lWjSOUUv5LeYyEhAT1vVO6dGll4MCByrvvvqsMGzZMTaCffh9MnDhRAZSSJUsqEydOVN544w2lcuXKSuPGjZWSJUtm6jm9fv26otPplKJFi6b6m04pMjJScXFxUezt7dXnuH79+urzPmTIEOW9995TJk2apPj5+Sk6nU4BlNmzZ6uPYUy+X3jhhXRj2rNnT6rPJOPz26ZNG/X5mzp1qvLaa68pFStWVADF3t5emTVrVobnLPKWJCgiQ+fPn1cmTJig1K5dW3F1dVVsbW2VEiVKKJ07d1YWL15sMjTT6LffflNatmypfjDVqlVLmT59usnQQKNnTVAUxfBlNX78eKVKlSqKvb294urqqlSvXl157bXXlN9//z1V/aioKGX69OlK3bp1FUdHR8XFxUWpWbOmMnnyZJMWD0UxDB+tUaOGYmdnZ/YL8fHjx8qMGTOU5557TnF2dlYcHByUChUqKF27dlV++umnVMOZIyIilNdff11NnqpXr658/fXXyrVr17KcoBiHQaf1r02bNmb327hxo9K6dWvFxcVFcXJyUho3bqz4+/une6xly5YpjRs3VpycnBQXFxeldevWyqZNm9LdJyAgQLGxsUlzPp3bt28rL774ouLs7Ky4ubkpgwcPzvIw46wMid2+fbvSoUMHxd3dXbGzs1MqV66svP3220pYWFiqumkNM960aZPStGlTxcXFRXFzc1M6dOig7N27V/0SzYkEJb3X1NzrqtfrlZ9//llp166d4uHhodja2iqlSpVSWrZsqcyYMUO5detWqvrz589X39clS5ZUxo0bp4SHh2d6qvtp06YpgPL6669nWHfkyJEKoHzzzTeKoijKyZMnlc8++0xp27atUqFCBcXBwUGxt7dXKlWqpAwYMEDZv3+/yf4tWrRQAOXPP//M8FjVqlVTACUgIEBRlCfPr/GfTqdTXFxclHLlyildunRRvvjii1TJs7AMOkVJcZFPCCGEEMICSCdZIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXHyZYISFxfHpUuXcm1abCGEEEJoK18mKIGBgYwcOZLAwECtQxFCCCFELsiXCYoQQgghCjZJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhRRaMSExXFi3RViwuK0DkUIIUQGJEERhUZMeDwBG64SEx6vdShCCCEyIAmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDg2Wd0hJiaGVatWcf78eS5cuEBkZCTvvfceXbp0yfRjHD9+nBUrVnD58mX0ej1ly5alf//++Pn5ZTUcIYQQQhRAWU5QIiIi8Pf3x9vbmypVqhAQEJCl/bds2cKsWbNo3LgxI0eOxNramlu3bvHw4cOshiKEEEKIAirLCYqXlxe///47Xl5eXLx4kVGjRmV63/v37/Ptt9/Sq1cvJk+enNVDCyGEEKKQyHIfFDs7O7y8vLJ1sD///BO9Xs/w4cMBw+UiRVGy9VhCCCGEKLiy3ILyLE6cOEG5cuU4fPgwCxYs4NGjR7i6utKzZ0+GDRuGlZX02RVCCCFEHicod+7cwcrKii+++IL+/ftTuXJl9u3bx88//0xycjKjR482u19wcDAhISHq/cDAwLwKWQghhBAayNMEJTY2Fr1ez+jRo3n11VcB8PX1JTIyknXr1jFw4ECcnJxS7bdx40b8/f3zMlQhhBDpiAmL48Ku29T0K4uTh4PW4YgCKE8TFHt7e2JjY2nfvr1JuZ+fH0eOHOHy5cs0aNAg1X49evSgZcuW6v3AwECmT5+e2+EKIYRIg3F18PKNikuCInJFniYoXl5e3LlzBw8PD5Ny4/3IyEiz+xUtWpSiRYvmenxCCCGEsAx52iu1evXqgKFPSUrG++7u7nkZjhBCCCEsVK4lKMHBwQQGBpKUlKSWtWvXDoDNmzerZXq9nq1bt1KkSBE1gRFCCCFE4ZatSzzr168nKipKHVlz8OBBdSbY3r174+LiwsKFC9m2bRurV6+mZMmSALRq1YpGjRrxyy+/EB4eTpUqVdi/fz9nzpzhrbfews7OLodOSwghhBD5WbYSlNWrVxMUFKTe37dvH/v27QOgY8eOuLi4mN1Pp9MxY8YMFi9ezD///MO2bdsoW7Ys77//Ph07dsxOKEIIIYQogLKVoKxZsybDOtOmTWPatGmpyp2cnJg0aRKTJk3KzqGFEEIIUQjI1K1CCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIixYTFseJdVeICYvTOhSRhyRBEUIIYdFiwuMJ2HCVmPB4rUMReUgSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERIhfEhMVxYt0VYsLitA5FCCHyJUlQhMgFMeHxBGy4Skx4vNahCCFEviQJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiI0J5OaCSGEeJokKEJzMqmZEEKIp0mCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDhZTlBiYmJYunQpb731Ft26daN169Zs3bo1Wwf/8ssvad26Ne+880629hdCCCFEwZTlBCUiIgJ/f38CAwOpUqVKtg988eJFtm7dip2dXbYfQwghhBAFU5YTFC8vL37//XfWrl3L2LFjs3VQRVGYO3cunTp1wtPTM1uPIYQQQoiCK8sJip2dHV5eXs900O3bt3Pjxg1Gjhz5TI8jhBBCiIIpzzvJxsTE8OOPP/Laa689c6IjhBBCiILJJq8P6O/vj729PS+//HKm9wkODiYkJES9HxgYmBuhCSGEKMRiwuK4sOs2Nf3K4uThoHU4hV6eJii3b99m3bp1fPjhh1nqHLtx40b8/f1zLzAhhBCFnnFl9fKNikuCYgHyNEGZN28ederUwdfXN0v79ejRg5YtW6r3AwMDmT59eg5HJ4QQQghLkWcJyokTJzhy5AjTp0/n/v37anlycjLx8fHcv3+fIkWK4OzsnGrfokWLUrRo0bwKVQghhBAay7ME5eHDhwC8//77qbY9evSIfv36MWHChCz1TRFCCCFEwZRrCUpwcDDR0dGULl0aGxsbnnvuOWbMmJGq3ldffUWJEiUYOHAglSpVyq1whBBCCJGPZCtBWb9+PVFRUerImoMHD6otJL1798bFxYWFCxeybds2Vq9eTcmSJfH29sbb2zvVY82fPx8PDw98fHye4TSEEEIIUZBkK0FZvXo1QUFB6v19+/axb98+ADp27IiLi0vORCeEEEKIQilbCcqaNWsyrDNt2jSmTZuWI48lhBBCiMIlz2eSFUIIIYTIiCQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCFCAxYXGcWHeFmLA4rUMR4plIgiKEEAWIccG7mPB4rUMR4plIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqCIQkGvV3h0PQKAR9cj0OsVjSMSQgiRnlxbzVgIS3HjaBCHf75AdKhhVMPBJec49fs1mg2qScUmJTSOTgghhDnSgiIKtBtHg9g1J0BNToyiQ+PYNSeAG0eD0thTCCGEliRBEQWWXq9w+OcL6dY5vOKCXO4RQggLJAmKKLCCLoamajl5WnRIHEEXQ/MoIiGEEJklfVBEgRX71ERVSSQRavuIMJtHJOuSsFKscU/yIiK0JqXw0ihKIQoPRVEIjQ3leth1IuIj0Ct6vBy9KO9enqJORc3u83QHd8/yRbCy0uVl2EIjkqCIAsvR3Z4wm2COFNnNf04nuO54kUSrhFT1PvnHhqaXm9KpcicG1h9IBfcKeR+sEAVUkj6JrVe2suHiBv6+/jd3Ht8xW6+8W3l8K/jycu2X6Vi5IzZWNtLBvZCTBEUUSGcenOHjs5/wR6U/UHT6dOsmKUkcvH2Qg7cP8tGej+hcpTMf+35Mk9JN8ihaIQqemMQYvj/6PXOOzOFe5L0M6wdGBLL89HKWn15OKddSDC09ilIb62On2JvUM3Zw95vSUJKUAk4SFFGgBMcE8+aON/n59M+GghQtwV4J3lSIr4pXYnHs9PYkWiVgUyuRywkXuBJ6BQAFha1Xt7L16lZ61ezFvM7zKF2ktAZnIkT+pCgKq/5bxRs73iAoynSUnKONI03LNKWaZzWKORdDh44H0Q+4FHKJo3ePEpdkaCm5F3mPGRc/xq2SJ/0ejqJxpA86TC/rHF5xgfKNveVyTwEmCYooMH6/8DsjN40kJDZELSvpUpI+JfpT8UhDXIOf9DNx9nKg2atPmokDwwP59eyvLDyxkMCIQAA2XDA0Sc/pNIehDYfm7ckIkQ89jH7IsD+HsfnKZrVMh44e1Xsw4rkRtK/UHgcbB7P7xifFs/3adpYELGHjpY0ARNiEsrDUFxyJ2s3goCm4Jrup9Y0d3EvVkv5jBZWM4hH5XmJyIm/teItea3qpyYm7gzvfdvqWa5OuMe/V2Uye8yoth9cGoOXw2vSb62vSPFzevTzTfKZxZeIVfur+E97O3gA8jn/MsI3DGPrnUGISY/L83ITIL47cOUKjhY1MkpMe1XtwZuwZ/njlD7pX655mcgJgb2NPj+o9+POVP9nc7G/qRT25xHra5Qiflp/AVYfzJvs83RFeFCySoIh87XH8Yzr/2pnZ/85Wy3rX7M2F8ReY0mwKjraOAFhZ6ShWyfDrq1gltzSbhW2tbRnVaBTnx59nSIMharn/KX/aLW9HSEyI2f2EKEyeHlmz/NTPtPZvrXaA9Xb2ZsPLG/jzlT+pU7xOlh+/QdkGTLj7EWPv/g/XJMPfbbhtCLPLvstxl/1qPUd3+7QeQhQAkqCIfOth9EPaLm/LPzf+AcDWypb5Xeaztu9aSrg8W+c5T0dPlr24jF97/YqTrRMAR+4eodWyVtyKuPXMsQuRX904GsTqSXs4uOQcAJ+u/5whfw4mIdkwQs6nnA8BowPoWbNnto9RooYnLp6OPBfVkg9vfke1mLoAJFklsbDUF/zt/gfOXg6UqOH57CckLJYkKCJfehD1gNbLWnPy/knAkFDsGbKHCU0moNPlXKe5AXUHcGjYITXhuRh8kVZLWxEYHphjxxAiv3h66YjNnqtY5f2Tuv3VcoPZNWgXJV1LPtNxrKx0NBtUEwD3ZC9evz2DlhEdAFB0Cqu9F/Jfq73SQbaAkwRF5DthsWF0/KUjl0IuAVDatTT7h+6nRdkWuXK8+iXqc2jYIap6VgXg9uPbtF/RnvuR93PleEJYoqeXjtjl/id/FPtZvd89uD9dTw7CWpczYy8qNimB35SGOHs6YIMNg4Om0D24v7r984uf8MOxH3LkWMIySYIi8pXohGi6/9adMw/OAFC2SFkODDtArWK1cvW4FT0qsn/ofqp5VQPgauhVOqzoQHhceK4eVwhLkXLpiMOuu01aTvo8HMaLIQOJCYnP0aUjKjYpQb95vrQcXhsdOr586Qs+afOJun38lvH8dva3HDuesCySoIh8Q6/oGfzHYA7dPgRAcefi/D3o7zyb+dXbxZu/B/5NebfyAJx7dI5+6/qRpE/Kk+MLoSXjiJlLjmfwL/mNWt4t+BU6hfVJVS+nPN3B/YM2H/Beq/fU7UP/HMq/t//N0WMKyyAJisg3Pt37KesvrAegiH0Rdry2Q23RyCtl3cqya9Audd2QHdd28Mb2N/I0BiG04OhuT7DNA34s9TnJumQA2oR35cWQganq5SadTseMdjMY0XAEAPHJ8by0+iVuht/M1eOKvCcJisgX1p9fzyd7DU27OnT81vs36peor0kslT0rs+HlDdha2QIw/+h8Fp9crEksQuQVl0p2LCj/GVE2jwGoHd2IAQ/Gmszwmlcja3Q6HT90+4F2FdsBhhF9vVb3UmeiFQWDJCjC4t0Iu8GwjcPU+192+JKuVbtqGBH4lPdh4QsL1fsTt05U+8XkpZiwOE6su0JMmHwwi9w1efskbtlcB6B4QilG3puKFdYmdZoNrJlnI2tsrW1Z13ed2nk9ICiA17e9nifHFnlDEhRh0RKTE3ll/Ss8jjf8autfpz9vNn9T46gMhjQYwrjG4wCIS4rj5bUvE5UQlacxxITHE7DhKjEyo6bIRSvPrsT/lD8AztbOvB31Oc56V3W7s5eDJov3eTh6sP7l9TjaGCZk/PHEj6w8uzJPYxC5RxIUYdHe/+d9jt49CkBlj8r82P3HHJ3n5FnN7jSbBiUaAHAp5BITtkzQNiAhctj1sOuM+WuMev/HHj/yxreD0l06Ii/V9a7L912/V++P/mu09EcpICRBERbrnxv/8OWhLwHDLLGr+qyiiH0RjaMy5WDjwNq+a3G1M/yaXH56OX9c+NNkGnC9XtEyRCGyLUmfxID1A4hMiARgYL2BvFbvtUwvHZFXhjYcyqD6gwCISohi6J9D0St6TWMSz04SFGGRohKiGLFxhHp/pt9MGpdqrGFEaaviWYV5Xeap94esGsr2ZYZhjweXnGP1pD3cOBqU1u5CWKzZh2Zz5O4RwNCCmbKlwtLM7zKfcm7lANhzcw/fHf1O44jEs5IERVik/+36HzfCbwDQpnwbXm9u2Z3fBtcfTLtihqm4I6zC+M17gbotOjSOXXMCJEkR+cql4Et8tOcjAKx0VvzS6xdc7V0z2Es7ReyLsOzFZer9d/5+h0vBlzSMSDwrSVCExTlw6wDzj84HwNHGkcU9FmOls+y3qqJA74sjcUp2AeBokb0EuBwyqXN4xQW53CPyBb2iZ8SmEcQnGzpfT2k6hWZlmmkcVcbaVWzHxCYTAUPH9RGbRsilnnzMsj/1RaETnxTP8I3DUTB8kc9oN4MqnlU0jipjQRdDsQt2of+DsWrZb8V/JE4Xq96PDonL0WnAhcgtC44t4MCtAwBU8qjEZ+0+0ziizPui/RdU9qgMGH7sLD+1XOOIRHZJgiIsyteHvuZyyGUAmpVpxqSmkzSOKHOM03s3jfSldnQjAMJsg/mr6Eqz9YSwVEFRQby368lU8otfWIyTrZOGEWWNk60TP3R7sojg2zvfJiQmRMOIRHZJgiIsxu2oW8zYPwMAa501C7svxNrKOoO9LINxem8dOgY8GIuN3jDL7N8ef3DX7maqekJYqnf/flcdtTOswTDaVmyrcURZ17FyR16p8woAIbEhvPP3OxpHJLJDEhRhMT44/j9ikwyXRCY2mUhd77oaR5R5JWp44uzpAEDxxFJ0CX0ZgGRdMr94f4+CkmfTgAuRXYduH2L5acMlEXcHd75o/4XGEWXfNx2/UaclWBKwhIO3DmockcgqSVCERTjndJLNtzYB4O3szce+H2sbUBZZWeloNqimer9LaF+KJ5QC4KrTOY657svTacCFyKpkfbLJRIPT206nmHMxDSN6NiVdS/J5u8/V+1O2T5EOs/mMJChCc0n6JFYV/0m9/2WHL3FzcNMwouyp2KQEflMa4uzpgK1ixysPR6vbtlT+lZLPuWsXnBAZWHxyMQFBAQDU967P6MajM9jD8o1pPIa6xQ0tscfvHZdp8PMZSVCEWXm1CJ1er/DT4UUE2d8GoHmZ5gysNzCDvSxXxSYl6DfPl5bDa1MnujEt3H0AuBt7h3lH5mWwtxDaiEqIUuc8Afiu63fYWNloGFHOsLayZnbH2er993a9R0xijIYRiayQBEWYlReL0N04GsTySVv55uKXalmnswO4eexBrh0zLxinAdehY6bPF+ocLjP2z+BR9CONoxMitdmHZvMg2vB316dWH1qVa6VxRDmnQ+UOdKvaDYA7j+/w9aGvNY5IZJYkKEITN44GsWtOAL/rVvLYJgyA5yJbUvph5QI162otj9oMazAMgMfxj/lk7ycaRySEqQdRD/jq0FcA2FjZmPTbKCi+7vi12iI06+As7kfe1zgikRmSoIg8p9crHP75AhHWoezwXA+AtWJNr0dD1DoFadbVz9p9hrOtMwA/Hv9Rpt8WFuWTvZ8QnRgNwOhGo6nqVVXjiHJejaI1GNPIsCJzTGIMn+8veElYQZTlBCUmJoalS5fy1ltv0a1bN1q3bs3WrVszte+JEyf44osvGDBgAB06dKBfv37MmjWL4ODgLAcu8q+gi6FEh8axseivxFsZ+ri0Du+Kd2JptU5BmnW1hEsJ3mlpmIchWUk2udYvhJYuBV9i4YmFALjYufBhmw81jij3vN/6ffWHwk8nfuJm+E1tAxIZynKCEhERgb+/P4GBgVSpkrUpyH/88UcCAgLw8fFh8uTJ+Pn5sXv3bkaMGEFIiMz0V1jEhsfz0PY+B9y2A+CQ7Ej3kP5m6xUUrzd/nWJOhiGbq8+t5syDMxpHJAR8sPsDkpVkAN5u8TbFnYtrHFHu8XbxZnLTyQAk6hP5dO+nGkckMpLlBMXLy4vff/+dtWvXMnbs2Ix3SGH8+PH89ttvjB07lu7duzNq1Ci++OILQkND2bBhQ1ZDEfmUo7s9m71+Q68zzEnQIawXRZLdzdYrKFzsXHiv1ZPpw6UVRWjt7IOzrD2/FjDMPfRG8zc0jij3vdXiLdwd3AFYfno5F4MvahuQSFeWExQ7Ozu8vLyydbAGDRpgZWWVqqxIkSIEBgZm6zFF/hNZLIR/i/wDgFOyC+3DXkpVpyDOujqm8RhKuRomb/vj4h8cv3dc44hEYZayw/a7rd7Fxc5Fw2jyhoejB1NbTAUMKzZ/uLvgXtIqCDTvJBsTE0NsbCxubvlvYi6RPTMOTEf5/9aTjqG9cNI7p6pTEGdddbR15H8+/1Pvf7D7Aw2jEYXZmQdnWH/B0EG9hEsJRjfK/5OyZdakppPUS1lrz6/lVNApbQMSadI8QVm7di2JiYm0a9cuzTrBwcFcunRJ/SetLfnXpeBL/Hr2VwDcbT14QfeyyXZnLwf8pjSkYpMSWoSX64Y3HE55t/IAbLu6TdYHEZpI2f/inZbv4GjrqGE0ecvZztnkh4JxgVJheTSdKvDUqVP4+/vTtm1bGjVqlGa9jRs34u/vn3eBiVzz6b5P1fUw3mk9lSEtunJp920OLjlHy+G1qd62bIFrOUnJ3saeD1p/wIhNIwD4bN9nbHttm8ZRicKkMLeeGI18biSf7/+cB9EPWH9+PecfnadWsVpahyWeolkLSmBgIO+//z6VKlXinXfSXwq7R48eLFq0SP33/vvv51GUIiddDrnMb2d/A6CoU1EmNJmgzroKUKySW4FOTowG1R9EBfcKAGy/tp0T905oG5AoVFK2nrzb8t1C1Xpi5GjryNst3gZAQWHmgZkaRyTM0SRBefDgAW+++SbOzs7MmjULJyendOsXLVqU6tWrq//Kly+fR5GKnDTrwCwUDJOvvd3i7ULRKc8cW2tbtaMeIB+OIs883XoyqtEojSPSzujGo/FyNAz4WHl2JddCr2kckXhanicoERERvPnmmyQmJvL1119TtGjRvA5BaODO4zusOLMCAHcHd8Y0HqNxRNoa2nAoJVwM/Ww2XNjAhUcXNI5IFAazDs5Sbxe2vidPc7Fz4fVmrwOGET1fHPhC44jE03ItQQkODiYwMJCkpCS1LDY2lqlTpxIcHMyXX35J2bJlc+vwwsLMPjSbRH0iAOOfH08R+yIaR6QtBxsH3mz+JmBoYv7ioHw4itx1I+wGq/9bDRgusRbm1hOjCU0m4GZvuMS8/PRyTp8/D8Cj6xEFZqmN/CxbCcr69etZvnw5W7ZsAeDgwYMsX76c5cuXExUVBcDChQsZOHAgjx49Wb31s88+48KFC/j6+hIYGMiOHTvUf/v378+B0xGWKDgmmIUnDdNpO9o4qrM5FnZjGo/Bw8EDgF/P/CpTb4tcNfvf2eqssZOaTMLJNv1L64WBm4MbE5tMBAyzy87YaVij5+CSc6yetKfALFqaX2VrFM/q1asJCnrywu3bt499+/YB0LFjR1xczPctuHr1KgBbtmxRkxujEiVK4OPjk51whIWbf2Q+MYkxAIx4bgTFnItpHJFlcLFzYXLTyXy892OSlWS+PPglP3T7QeuwRAH0KPoRSwOWAuBs68z4JuM1jshy9LTrz1f6r4m3iuOA2w5eCHkV12Q3okPj2DUnoEBPe2DpspWgrFmzJsM606ZNY9q0aVneTxQskfGRzD86HzAs5W68rCEMJjadyNf/fk1UQhRLA5byUZuP8Hbx1josUcDMPzqf2KRYwDDE1tOxYM3SnF16vcKlVQ9obd2FnZ6/k2iVwG73v+gR8qpa5/CKC5Rv7F0oRhhaGs0nahMF26KTiwiLCwNgQN0BlHeXEVgpeTp6qsvAxyfH88MxaUEROSsqIYrvjn4HGH4kFIY1dzLLuLK6X9iLWCmGr8Pd7ptI0D1ZqLQgraye30iCInJNYnIi3x7+Vr3/Tsv057sprCY3m4yNlaEx84fjPxCbGKtxRKIgWXxysfoj4dW6r1LWTQYnGBlXTPdKKk7jyNYARNk85t8iu8zWE3lLEhSRa9ZfWM+dx3cA6F6tu8zUmIYyRcrwcm3DlP/BMcHqcGwhnlViciLf/PuNen9qy6np1C58Uq6Y3jG0l3p7h+cG9OjN1hN5RxIUkSsURTFpPXmjmTQrpyfl8/PNv9+oywEI8Sw2XNjA7ce3AfmRYE6JGp44ezoAUD6+CjWi6wPw0O4ep10OAwVzZfX8QhIUkSv+vfMvR+8eBaC+d318K/hqG5CFa1SqEW3KtwHgUsgltl7ZqnFEoiCYc2SOelt+JKRmZaWj2aCa6v2OYSlaUTw2AAVzZfX8QhIUkStSNiu/3ux1dDr5A89Iys6Ls/+drWEkIr/S6xUeXY8A4O9Tuzl8x9AKUM+7nvxISEPFJiXwm9IQZ08H6kQ3pmR8OQCuOp3HY3CyDDHWkCQoIsfdCLvB7xd/BwzrfbxS5xWNI8ofulfrTlXPqgDsvrmbgPsBGkck8pMbR4NYPWkPB5ecA+CbA08usU5pOkV+JKSjYpMS9JvnS6vhdeiUoi/K2shfNIxKSIIictz8o/PVPhTjnx+PvY10MMsMK52VujYIwDeHv0mnthBP3DgaxK45AUSHxgEQavOIE64HAHBNcqd5XFstw8sXjCurN4lsSzEHw2SS686v4+7juxpHVnhJgiJy1OP4xyw+uRgwrDdT2BcFzKrBDQark2it+m+VfDiKDOn1Cod/Nl1scrf7X+h1hh8JvuFdCVh5Q9aWySRbxZaBVQcDkKwk8+PxHzWOqPCSBEXkqCUnlxCZEAnAoHqDKOokq1VnhZOtE2MbjwUgSZ/EwhMLNY5IWDrjZGNG8bo49rkbOlnb6G1oE95VJhvLoiHVh6lzE/104ifikuIy2EPkBklQRI5J1ier09oDTGk2Rbtg8rExjcdgrbMGDB+OCckJGkckLNnTk4j967aLGGvDoq3PR/riluxptp5IW0mnUvSp1QeARzGP1FWgRd6SBEXkmG1Xt3Ej/AYAHSt3pGaxmhnsIcwpU6QMPWv2BOBB9APWn1+vcUTCkqWcREyPnl3uf6r324e9aLaeyJhxlWMw9KtTlJy9RBYTFseJdVeICZPWmbRIgiJyzPfHvldvj39eVkt9FhOen6De/u7YdxpGIixdysnGLjqdIsjeMHtztZg6lIuvDMhkY9nRvExzGpVsBMCJ+yf4986/Ofr4MeHxBGy4Soy0bKVJEhSRI66FXmPb1W0AlHcrT7eq3TSOKH9rXb41dYrXAeDQ7UOcvH9S44iEpUo52dhu981qebuwHuptmWws63Q6XapWFJG3JEEROWLB8QUoGJpAxzQeg7WVtcYR5W9PfzgaV6MVwpyKTUpQc3RxTrscAcA90Yv6Uc1w9nLAb0pDmWwsm/rV6UcxJxlyrBVJUMQzi0mMYWnAUgDsre0Z3nC4xhEVDK/WfRU3ezcAVp5dSUhMiMYRCUu2Nfl3lP8fWuwT0Zk2w+vTb66vJCfPwMHGgdGNRgOGUXUy5DhvSYIintmq/1apy7n3q9OPYs7FNI6oYHC2c2ZYw2EAxCfHsyRgicYRCUuVkJzAopOLALDR2dA6vDPFKrnJZZ0cMKbxGJMhx/FJ0mckr0iCIp6Joigmlx+kc2zOGvf8OPX2D8d+IFmfrGE0wlJtuLCBh9EPAeharjvuyV4aR1RwlC5Sml41DdPfP4p5pC7jIXKfJCjimRy+c5iAIMOaMY1LNaZJ6SYaR1SwVPGsQpcqXQAIjAhk85XNGewhCqOUI+iGVZdLrDltXOMnPxTkMk/ekQRFPBMZWpz7JjRJMeRYOsuKp5x5cIYDtwzr7tQqVosW3q00jqjgaV2+NTWK1gBgb+Bezj86r3FEhYMkKCLbHkY/ZO35tQB4OnrSr3Y/jSMqmDpX6Uwlj0oA7Ly+k2uh1zSOSFiSH479oN4e13icrFqcC3Q6HWMaPVlX7KfjP2kYTeEhCYrItsUnF6vTsA9vOBxHW0eNIyqYrHRWjHpulHrf2BlSiIi4CH458wsALnYuDKw/UOOICq5B9QfhaGP4jFt+ejkxiTEaR1TwSYIiskWv6NWF7HTo1AXuRO4Y2nAotla2ACwNWCrr8+QzuTWt+YozK4hOjAZgYL2BFLEvkqOPL57wcPTglTqvABARH8Gq/1ZpHFHBJwmKyJad13YSGBEIQKcqnajoUVHjiAq24s7F1fV5HsU84vcLMpIgP8mNac0VRTG9vJNixJfIHWMaP7nMI51lc58kKCJbFp5cqN5OeflB5B6Ta+An5Bp4YXfg1gEuBF8AwKecj7o0gsg9z5d6noYlGgJw7N4xTtw7oXFEBZskKCLLHkQ9YOOljQB4O3vTvVp3jSMqHHwr+FLNqxoAu2/u5lLwJY0jElpK2RfJONupyF06nenlbPmhkLskQRFZ5n/KnyR9EgBDGwzF1tpW44gKB51OZ9JaZewDJAqfsNgwdQSdh4MHvWv11jiiwqN/3f642rkC8OvZX4mIi9A4ooJLEhSRJXpFz+KAxer9Ec+N0DCawmdwg8HYW9sD4H/an7jknO10KfKHX878QlyS4bUfVH8QDjYOGkdUeLjYuTCwnmG0VExijDqKSuQ8SVBEluy5uYeroVcB8KvoR2XPyhpHVLgUdSpKn1p9AAiNDWVT4J8aRyTymqIoJpd3Rj43UsNoCieTzrInfkRRFA2jKbgkQRFZIh+M2kv54bj8sr92gQhNHL17lLMPzwLQvExzahevrXFEhU9d77q0LNsSgP8e/sfB2wc1jqhgkgRFZFpwTDAbLmwAwMvRi5dqvKRtQIVUy7ItqVWsFgBHHv7LXbtAHl2PQK+XX3GFQcq+R/IjQTspfyjI5Im5QxIUkWkrTq9QJwgb0mAI9jb2GkdUOOl0OvoU7a/e3+e+lYNLzrF60h5uHA3SMDKR2x7HP2bVOcMEYUXsi/By7Zc1jqjw6lOrDx4OHgCsPbeW8LhwbQMqgCRBEZmiKIrJ3CfSOVY7N44G4bmxGnZ6Q4L4b5FdxOviiA6NY9ecAElSCrDfzv6mTrH+at1XcbZz1jiivOHkbk/DXlVwcrecH0UONg68Vu81AGKTYvn1zK8aR1TwSIIiMuXg7YNcDL4IGCaFMq7sKfKWXq9w+OcLOOtdaRzpA0CsdTQnXA+odQ6vuCCXewqowtoHzMnDgUZ9quLkYVmjlVK+BotOLpLOsjlMEhSRKYX1g9HSBF0MJTrUMLy0dXhXtXyf+1b1dnRIHEEXQ/M8NpG7Tt4/yYn7hplLG5VsRMOSDTWOSNT1rkvT0k0BOP3gtPr6iJwhCYrIUHhcOGvPGSaFcndwV4e5irwXm2Itl0px1SkdXwGAa44XuGt302w9UTAsOiE/EiyRSSvKCeksm5MkQREZ+vXMr8QmxQKGFVMdbR01jqjwckxxDV6HjtbhXdT7+9y3ma0n8r/ohGh+PWvo4+Bs60z/uv0z2EPklX51+uFi5wLAyv9WEpUQpXFEBYckKCJdT3eOlV9u2ipRwxNnzyfX4Zs9bout3g6Aw0X+IV4Xh7OXAyVqeGoVosgFa86tITIhEoBX6rxCEfsiGkckjFzsXOhfx5AwRiVEsfq/1RpHVHBIgiLSFRBykjMPzgDQtHRT6nrX1Tiiws3KSkezQTXV+056FxpHtgYgxjqKE64HaTawJlZWOq1CFLlAfiRYtpSvScqlQMSzkQRFpGvF5eXq7VGNRqVTU+SVik1K4DelodqS0jq8s7rtTK19VGxSQqvQRC747+F/HL5zGIC6xevSpHQTjSMST2tcqjH1vesDcPjOYf57+J/GERUMkqCINMXpYthwcz0Arnau9KvdT+OIhFHFJiXoN8+XlsNrUzmuJlWcqgFwIuwY5x6e0zg6kZNSdrwc1WgUOp20jlkanU5nMjeUdJbNGZKgiFT0eoVH1yM4WmQvMUnRAAyoO6DQTAqVX1hZ6ShWyQ0dOobVHq6Wy7TbBUdsYiwrzqwADBODvVr3VY0jEml5te6r6qrSK86sUFebFtknCYowceNoEKsn7eHgknPsc3syKqSrfU8NoxIZ6Vupn/rh+PPpn4lNjNU4IpET1l9YT1hcGAB9a/XFw9FD44hEWjwcPehbqy8AYXFh6rplIvskQRGqG0eD2DUngOjQOG7ZXyPQ8QoA5eKq8HCZXqZQt2Du9u7quixhcWGsO78ux48RExbHiXVXiAmTX4Z5RSZIzF9MLvNIS+YzkwRFAE+mUDfan6L1xCe8EyBTqFu6Uc896cScctRHTokJjydgw1ViZBK4PHEp+BL7AvcBUKNoDVqVa6VxRCIjPuV8qO5VHYA9N/dwJeSKxhHlb1lOUGJiYli6dClvvfUW3bp1o3Xr1mzdujXjHf9fZGQkX331FS+88AIdO3Zk8uTJXLp0KathiByWcgr1eF0cR4rsBsBOb0/TyLaATKGeFVosbtaibAtqFasFwIFbBzj/6HyeHVvkvMUnnwxXHfncSOkcmw883Vl2ScASDaPJ/7KcoERERODv709gYCBVqlTJ0r56vZ533nmHv//+m169ejFmzBjCwsKYPHkyt2/fzmooIgelnBr9uOt+Yq0NK6Y+H9kaR72T2XoibVosbqbT6UxaUWQkQf4VnxSP/2l/AOys7RhUf5C2AYlMG1R/ELZWtgD4n/InMTlR44jyrywnKF5eXvz++++sXbuWsWPHZmnfPXv28N9///Hee+8xdOhQevXqxbx587CysmLZsmVZDUXkoJRTo+93T3l5p0ua9YTlGVh/IPbWhtdo+enlMpIgn/rz0p8ExwQD0LNGT4o6FdU4IpFZxZ2L82KNFwF4EP2ATZc3aRxR/pXlBMXOzg4vL69sHWzv3r14enrSunVrtczd3Z22bdty4MABEhISsvW44tkZp1C/axfINUdDX5TS8eWpFFddrSNTqFs+T0dP+tZ+MpJg/fn1GkcksiNlB0uZIDH/MVlAUDrLZluedpK9fPkyVatWxcrK9LA1a9YkLi5OLvNoyDiFumnn2M7oeHLdW6ZQzx9GNxqt3s6NzrIid10Pu87f1/8GoLJHZXwr+GobkMiy9pXaU8G9AgDbr27nVsQtbQPKp/I0QQkNDTXb+mIsCwkJMbtfcHAwly5dUv8FBgbmapyFVcnn3DnhbRg1YKO3pdnjdoCh5cRvSkOZQj2faFm2JTWLGtbr2Re4j4vBFzWOSGRFys6xI54bgZVOBlvmN1Y6K4Y3NEyeqKCwNGCpxhHlT3n6zo+Pj8fOzi5VubEsPt58B8yNGzcycuRI9d/06dNzNc7CasOFDYQnGiaF6uLdHWe9Ky2H16bfXN8CkZxoMbJGCzqdzuSywMIT0oqSXyQmJ7LslKE/no2VDUMaDNE2IJFtQxoMUZPLJQFLSNYnaxxR/pOnCYq9vb3ZfibGMnt7818cPXr0YNGiReq/999/P1fjLKxSXis1DpUrVsmtwFzW0WJkjVYG1pPOsvnR5iubCYoyTIj4QrUXKOGS/38YFFZlipSha9WuANx5fIft17ZrHFH+k6cJiqenp9nLOMaytDrfFi1alOrVq6v/ypcvn6txFkaXQy6z5+YeAKp7Vad58RbaBiSeiZeTF31q9QEgNDZUpt3OJ6RzbMFiMnmitGRmWZ4mKFWrVuXKlSvo9XqT8gsXLuDg4EDZsmXzMhyRwtPXvWVSqPxPLvPkL7cjbrPtqqGTejm3cnSo1EHjiMSz6lK1C6VcSwHw1+W/uBd5T+OI8pdcS1CCg4MJDAwkKSlJLWvTpg2hoaHs27dPLQsPD2f37t20aNHCbP8UYSo31kNJSE7A/5Q/ALZWtgyuPzjHHjszCkvfkLzmU86HGkVrALA3cC+XgmXGZku2NGApesXw4214w+FYW1lrHJF4VjZWNmpn2WQlmWUBMt9XVmQrQVm/fj3Lly9ny5YtABw8eJDly5ezfPlyoqKiAFi4cCEDBw7k0aNH6n6+vr7Url2bmTNn4u/vz++//87kyZPR6/UMGzYsB06n4MuN9VA2XtrIoxjD69SzZk+KORfLscfOjMLUNyQvpZpZVuZjsFjJ+mR1WnQrnRXDGsrnYUExvOFwdbqGxQGL1SRUZCxbCcrq1atZsmQJf/zxBwD79u1jyZIlLFmyhMjIyDT3s7a25ssvv6Rdu3asX7+eBQsW4Obmxpw5cyhXrly2TkA8u5TN/7JiasEyqP4g7KwNLZP+p/yJT5KlCizR9mvbuf3YMA9UlypdKFOkjMYRZUxaPjOnvHt5OlUxLLh6M/ymOseNyJhNdnZas2ZNhnWmTZvGtGnTUpW7urryzjvv8M4772Tn0CKHXQ+7zs7rOwGo5FGJdhXbaRyRyEnGzrIrz64kJDaE3y/+zit1XtE6LPGU/Ng51tjyKTI26rlRav+ihScW0rFyR40jyh9kBqBC7ukVU2VSqIIn5WWen078pGEkwpz7kffZdMmwXksp11Lq0FRRcHSv1h1vZ2/AsM7Sg6gHGkeUP8i3USEmk0IVDq3Lt6aaVzUA9tzcw+WQyxpHJFLyP+VPsmKYxGtog6HYWGWrYVtYMFtrW7VfUZI+SR2UINInCUoh9tflv9RJoV6s/qJMClVApeose0I6y1oKvaI3ubxjHPEhCp6Ur+2ik4uks2wmSIJSiKVcSC6/XPcW2TO4weAnnWVPS2dZS/HPjX+4EX4DgA6VOlDRo6LGEYncUtmzMu0rtQfgWtg1Dgbt1zgiyycJSiF1M/wm268apl6u4F5B/cMRBVNRp6L0qtkLgOCYYP64+Ie2AQnAtHOsjKAr+FK+xj9fWa5hJPmDJCiF1JKTS1BQAOkcW1iMbjRavZ2y9Uxo41H0I36/8DsAxZyK8WKNFzWOSOS2l2q8RDEnwzxTW279RaR1hMYRWTb5ViqEkvRJ6qRQ1jprhjYYqnFEIi+0Kd+Gqp6GYaH/3PiHKyFXNI6ocPv59M8k6hMBw8q3xktwouCys7ZTByMk6BP4t8guHl2PQK9XtA3MQkmCUghtvryZ+1H3AXih+guUdC2pcUQiL+h0OpO+RimHmIu8pSiK2dXDRcHXyeZJS9l+t20cWPIfqyft4cbRIA2jskySoBRCJpNCPSedYwuTwfUHY2tlC8CyU8tISE7QOKLCaf+t/VwKMayN1KZ8G3UYuCjYbhwN4saix1SPqQdAkP0drjj+R3RoHLvmBORKkpIb67flFUlQCplbEbfYenUrYFgxVWY0LFyKORdTO8s+inkknWU1Ip1jCx+9XuHwzxcA8AnvpJbvc9+m3j684kKOX+7JjfXb8ookKIVMyhVTRzQcISumFkIpL/OkXIdJ5I3Q2FDWnV8HgIeDB71r9dY4IpEXgi6GEh1qaMV4LqolzsmuAJxwOUC0lWENu+iQOIIuhmoWo6WRBKUQSdk5VlZMLbx8K/hSxbMKALtu7OJq6FWNIypclp9aTlyS4YtqUP1BONjIKt6FQWyKFgxbxY7mEX4AJFkl8m+RXWbrFXaSoBQi265u487jO4BhbYjSRUprHJHQgpXOyqTvkXSWzTuKovDjiR/V+2Maj9EwGvG03Fyh2fGpx/SJ6Kze3ue+TZ324el6hZkkKIVIyoXi5Lp34Ta4gXSW1cL+oH3qWkhtK7SlRtEaGkckUjKu0OzkkfOtWiVqeOLs+eRxSyWUo0pMbQDu29/imsMFnL0cKFHDM8ePnV9JglJI3Ay/yebLmwEoW6Qsnat0zmAPUZAVdy5Oz5o9AXgY/ZCNlzZqHFHhsOzSEvX22MZjNYxE5DUrKx3NBtU0KUvZirLXfQvNBtbEykqX16FZLElQComfjv+kNiGOaTxGVkwVJpd5LKmzbH4eFpmecOsQtt42/Ego4VKCl2q8pG1AIs9VbFICvykN1ZaUxpGtcEp2AeCkx0Fc68jnckqSoBQC8UnxLA4w9DOwtbKVFVMFAG0rtqWyR2UAdl7fybXQaxpHZJCfh0WmZ7/7dpKVZMAwgs7W2jZXjpOb/SjEs6vYpAT95vnScnht7BR7+pZ9BYAEfTxLA5ZqHJ1lkQSlEFh3fh3BMcEA9KnVB28Xb40jEpbASmdl0hdJOsvmniR9EvvcDPMPWemsGNko9/qA5WY/CpEzrKx0FKvkBsC4JuPU8gXHF5CsT9YqLIsjCUoh8MPxH9Tb454fl05NUdgMaTBEvdy39NTSQtdZNq8uJ+24s41w2xAAulXtRjm3crl6PJF/VCpSiU6VDRO33Qy/ybar2zLYo/CQBKWAOxV0ikO3DwFQt3hdWpZtqXFEwpJ4u3irfSEeRj9k06VN2gaUx/LicpJer7Dw1JM+PqMbydBiYWr88+PV298f+17DSCyLJCgF3IJjC9TbYxuPRaeTHuLC1OhGo9XbC09aTmfZguDG0SDmTvmVg+H7ACiaUILwefayMJww0bVqV8q7lQcM81VZSn8wrUmCUoBFxEXwy9lfAHCxc+G1eq9pHJGwRO0qtqOSRyUAdlzbwY2wGxpHVDDcOBrErjkBbNP9oZa1juhCbGhCri0MJ/InaytrddI+BYUfj/+YwR6FgyQoBdjPp38mJjEGgEH1BuFq76pxRMISSWfZnGdcGC5BF8+hIjsBsNHb0CriyeKcubEwnMi/hjccjp21HWDoDxabGKtxRNqTBKWAUhTFpHPs2OdlUiiRtqc7yyYmJ2ocUf5mXBjuqOteomweA/BcVCtck93UOrIwnEipmHMxXq79MmBYUHL1udUaR6Q9SVAKqD0393Ax+CIArcu3pk7xOhpHJCxZCZcSvFj9RQCCooJkZtlnFBsej4LCLo8nz6NfWA+z9YQwStlZ9odjP6RTs3CQBKWAmn90vnp7XGMZWiwylrKz7Lyj8zSMJP9zdLfniuN/3HG4DkDF2OpUiku97o4sDCdSalq6KQ1LNATg2L1jHLt7TOOItCUJSgF0I+wGf1z8A4CSLiXVNVeESE/7Su2pWdSwVsi+wH2cvH9S44jyrxI1PNnrvVm9b671RBaGE0/T6XQmrSgpf2gWRpKg5ABLWzvku6PfqevujH9+vNrxSoj06HQ6JjedrN6fe2SuhtHkb3cib3Pc/gAAbkkeNIpslaqOLAwnzOlftz+ejobEddV/q7gfeV/jiLQjCUoOsKS1QyLjI9V1d+yt7RnVaFQGewjxxMD6A/Fw8AAMH45BUTIUNjt+OPYDevQAdIh/ERuerLvj7OWA35SGVGxSQqvwhAVzsnVSF/JM1Cey4PiCDPYouCRBKWD8T/nzON4wauC1eq9RzLmYxhGJ/MTJ1klNahOSE2Q+hmyISYxh0clFgGFxznnvz6Tl8NoAtBxem35zfSU5Eeka32S8OqpuwfEFhXbIsSQoBYhe0Zt0bkzZXC9EZo1/fjzWOmvA8OEYn6R9y2B+svLsSkJjDcOHX6nzCiWLlFAXhitWyU0u64gMlSlShr61+gIQHBPMyrMrNY5IG5KgFCBbrmzhauhVAPwq+lHXu67GEYn8qKxbWXrX6g0Y1udZ9d8qjSPKPxRFYd6RJz8SJjaZqGE0Ij+b0myKenvOkTkoSuGb1E8SlAJkzuE56m1pPRHPYkrTKertwvrhmB27buzi7MOzADQr04znSz+vcUQiv2pSugktyrYA4L+H/7Hrxi6NI8p7kqAUEGcfnFXfwJU9KtOtWjeNIxL5WbMyzXi+lOHL9VTQKfYF7tM4ovzh60Nfq7ffaPaGhpGIgsDkh0KKH6CFhSQoBcTTrSdWOnlpRfbpdLpUTcwifWcenGH7te0AVHSvSK+avTSOSOR3PWv2pJxbOQA2X9nMpeBLGkeUt+RbrAC4F3lPXbW4iH0RhjQYom1AokDoU6sPpVxLAfDnxT+59viqxhFZttn/zlZvv9H8DaytrDWMRhQENlY2Jv2YClsriiQoBcCcw3NISE4ADNPay6rFIifYWdsxqckkwLAE/PfnCveslum58/iOOtLC09GToQ2GahyRKChGPDcCFzsXAJadWsaDqAcaR5R3JEHJ5yLiItS5Kuys7ZjUdJLGEYmCZEzjMRSxLwLAqqu/EW4dyqPrEej10mk2pXlH5pGkTwIMPxKc7Zw1jkgUFO4O7uo6WfHJ8SajxAo6SVDyuR+P/0hkQiQAg+sPpqRrSY0jEgWJm4Mbr5QaCECiksDfHn9wcMk5Vk/aw42jMssswOP4x/x04ifA8CNhQpMJGkckCprXm72OrZVhNuLvj32vTsZZ0EmCko/FJcWpnRd16HirxVvaBiQKnBtHg6i6szk2esOslvvctxBjFU10aBy75gRIkgIsOrFI/cIYVG8Q3i7eGkckCprSRUozsJ7hh0JEfAQLTyzUOKK8IQlKPvbLmV/UtVJ61uxJNa9qGkckChK9XuHwzxdwT/ak+eP2AMRax7DXfYta5/CKC4X6ck9cUpxJ59g3W7ypYTSiIHu75dvoMMxC/O3hbwvFDM+SoORTyfpkvjr0lXp/aoupGkYjCqKgi6FEhxpW6O4Y2gudYvhw3OXxB4k6Q6fs6JA4gi6Gahaj1pYFLON+lGG12Z41elKjaA2NIxIFVY2iNXipxkvA/4/cPPOLtgHlAUlQ8qnNt//icshlANqUb0PTMk01jkgUNLEpVucukViGhlGGWS0jbML4t8gus/UKk8TkRL44+IV6//3W72sYjSgM3mn5jnr7q0NfkaxP1jCa3CcJSj6kR8/s07PU+++2elfDaISWnNztadirCk7u9jn+2I5PPWbn0L7q7S2ea0gi0Wy9wmLFmRXcirgFQNeqXXmu5HMaRyQKuqZlmuJbwReASyGXWH9hvbYB5TJJUPKhUy7/cj78PGBYr6FT5U4aRyS04uThQKM+VXHycMjxxy5RwxNnzyePWzGuGnWiGgEQYveAf9124ezlQIkanjl+bEuXpE9i5oGZ6v33faT1ROSNaa2mqbc/2ftJgW5FyXKCkpCQwIIFC+jZsyft27dn9OjRHDt2LFP7Hj9+nMmTJ/PCCy/QtWtXRo0axfbt27McdGGmKAqbvH5T73/Y+kN0Olm+XeQ8KysdzQbVNCnrHvKqenuz52qee7UyVlaF7/235twak5XDm5dtrnFEorBoX6m9uojg+UfnWXd+ncYR5Z4sJygzZ85kzZo1dOjQgUmTJmFlZcXUqVM5c+ZMuvsdOHCAN998k8TERIYMGcKIESOwt7dnxowZrFmzJtsnUNhsu72FOw7XAWhcqjFdq3bVOCJRkFVsUgK/KQ3VlpTKcTVMWlH22+3QMjxN6BU9M/bPUO9L3xORl3Q6HR+3+Vi9X5BbUbKUoJw/f55du3YxatQoxo0bR48ePZgzZw4lSpRgwYIF6e67YcMGvLy8mDNnDr1796ZXr158++23lC5dmq1btz7TSRQWycl6Zh77XL3/vs8H0noicl3FJiXoN8+XlsNrA/C/Fk++kGfsn6Eus1BYrDu/jvOPDJdYW5VrRZvybTSOSBQ27Su1p2XZlgBcCL7A2vNrNY4od2QpQdm7dy/W1tb06NFDLbO3t6dbt26cO3eOBw/SXiMgJiYGV1dX7Ozs1DIbGxvc3Nywty+cneyy4sbRIN55eyYXos8BUC6uMtHfuchEWSJPWFnpKFbJDYD2Ddqq/Z5uht/k59M/axlankrSJ/HB7g/U+x+0lh8JIu/pdDo+8f1EvV9QW1GylKBcuXKFMmXK4Oxsus5EzZqG69RXr6a92mmDBg24ceMGixcv5s6dO9y9e5fly5dz6dIl+vfvn43QC48bR4PYOec4qxwWqWXdQ/oTExovs3kKTXzU5iP1dmFqRVl+arnJ8P4OlTpoHJEorNpVbEercq0AuBh8kTXnCl5XiSwlKCEhIXh5eaUqN5YFBwenue/gwYNp27YtK1asYMCAAfTv359ff/2VTz/9lDZt0m8iDQ4O5tKlS+q/wMDArISdrxln8zxSZA937Q3nXTG2Gg2innTKK+yzeYq817xsc5NWlMIw9XZcUhyf7H3yq/Vzv8+l9URo5ulWlI/2fERicqKGEeU8m6xUjo+Px9bWNlW58bJNfHzaEzbZ2tpStmxZfH19ad26NcnJyWzatInp06fzzTffULt27TT33bhxI/7+/lkJtcAIuhhKeFgkf1ZcoZb1ejRUnfIYnszmWapW6uRRiNwyvd10tl8zjML7dO+nDKo/SF35uCD68fiP3H58G4Du1bqrIymE0ErbCm1pU74NewP3ciX0CotPLmbs82O1DivHZKkFxd7ensTE1BlaQkKCuj0tc+bM4dChQ3z00Uf4+fnRsWNHvv32W7y8vJg3L/3lo3v06MGiRYvUf++/X3h6zceGx7PPbQshtg8BqBX9HDVi65utl5NycwIwUTA0LtWYfrX7AfAo5hFfH/pa44hyT2R8JJ/vf9JBfXrb6RpGI4SBTqdjVvsnk3Z+vPdjIuMjNYwoZ2UpQfHy8iIkJCRVubGsaNGiZvdLTExk8+bNNG/eHCurJ4e0sbGhadOmXLp0yWziY1S0aFGqV6+u/itfvnxWws7Xkp0T2Oy1Sr3f+9FQs/VyejbP3JwATBQc09tNx8bK0BA7+9/Z3I+8r3FEuWP2v7N5FPMIgFfqvEL9Eql/JAihhaZlmtK3lmGW54fRDwvUD4UsJShVqlThzp07REdHm5SfP39e3W5OREQEycnJJCen7mWcnJyMXq9Hr9dnJZRC45eQpUTaRADw/OM2lIuvnKpOYZ3NU2ivimcVxjQaA0BMYoxJH42C4s7jO3x58EsAbKxs+NT3U40jEsLU536fF8gfCllKUHx9fUlOTmbjxo1qWUJCAlu2bKFWrVp4e3sD8ODBA5OOrB4eHri4uLB//36TlpKYmBgOHjxIuXLlZKixGYHhgXz1r2HFYmvFmpeCB5qt12xgzUI5m6ewDB+0+QAXOxcAFp9czIVHFzSOKGe9t+s9YpNiARj//HiqelXVOCIhTFXxrMLYxoa+J9GJ0Xy852NtA8ohWUpQatWqRdu2bVm4cCELFixg48aNTJkyhaCgIMaMGaPWmzFjBgMHPvkytba25pVXXuH27duMGTOGNWvWsGrVKkaPHs2jR48YNGhQzp1RATL176nEJRmWux9ScQQVXSuZbHf2csBvSkMqNimhRXhCAFDcuThTW0wFIFlJZvK2yShKwRhVdvTuUXVZew8HDz5s86HGEQlh3getP8DVzhWAxQGLOR10WuOInl2Wp7qfNm0affv2Zfv27cybN4+kpCRmzZpFgwYN0t1v0KBBfPDBB9jY2ODv78+SJUtwdnbm008/pWPHjtmNv8DaF7hPHddezKkYs/vNMpnNs+Xw2vSb6yvJibAIb7Z4k3Ju5QDYeX0nf1z8Q9uAcoCiKLyx/Q31/se+H+PpKJdShWUq5lyMaT6GhQT1ip4JWyfk+x8KWRpmDIaROuPGjWPcuHFp1klrVE6HDh3o0EEmNspIsj6ZSVsnqfc/9/scNwfDLJ7G2TyLVXKTyzrCYjjZOvFNx2/os7YPAG/seIPOVTrjaOuocWTZt+LMCg7ePghAda/qahO6EJbq9WavszRgKVdCr3Dg1gF+PfsrnV1f0DqsbMtyC4rIfQuOL+D0A0PzXMMSDRnawPzIHSEsSa+avfCr6AcYJm8zdizNj0JjQ3lzx5vq/Tmd52BrnXoOKCEsib2NPfO7zFfvv73zbSITHmsY0bORBMXC3I64zXu73lPvz+syD2sraw0jEiJzdDod87rMU0cTzDwwU50WPr95Z+c7BMcYZsbuW6svnat01jgiITKnU5VOvFTjJQCCooL4eJ9hZN2j6xH5bsZxSVAsiKIoTNg6gaiEKABGPTdKXWtBiPygVrFaTG46GYD45HhGbhqJXslfUwgcvHWQxQGLAXC1c2VO5znaBiREFn3b6VvsrQxzWK24u5RrDhc5uOQcqyftyVdrt0mCYkE2XNjAxkuGIdwlXEowq8OsDPYQwvJ84vsJFd0rAobO3vlpnZ64pDhG/TVKvT+j3QxKuZbSMCIhsk657MALQQMMt3UKy0t8S6IukejQuHy1wKwkKBYiOCaYCVsnqPfndZ6Hu4O7dgEJkU3Ods4seuHJyttTd07lzuM7GkaUeR/88wHnHxkmnmxUshHjnk97MIAQlsi4wGz7sJ6UjzXM2XPf/jZ/ea1U6+SXBWYlQbEAiqIw+q/RBEUZstru1brTp1YfjaMSIvv8KvkxvOFwACITIhm+cbjFX+rZH7if2f/OBsDO2g7/l/yl/5fId4IuhhIdGoc11gwJmoK1YugTts1zLYH2V4AnC8xaOklQLID/KX82XNgAgJejFwu7L5Rl3EW+93XHrynpUhKAHdd2MOfwHG0DSkdUYhRD/hyCguFX5WdtP6NO8ToaRyVE1qVcOLZMQkW6hrwMgF6nZ2GpWcTpYlLVs1SSoGjsWug1Jm17MufJohcWUdK1pIYRCZEz3B3c+bnnz+r9d/9+l5P3T6a7j16v8Oi6Ye2p3B51kPJYr+96neth1wFoWbYlbzZ/M71dhbBYTy8c2zWkn3qp56HdPVZ6LzBbzxJJgqKhuKQ4Xln/ijpqZ3jD4fSs2VPjqITIOe0rteftFm8DkKhPpP/6/ur7/Wk3jgaxetIeDi45B5Crow5SHutAkR388XAtAE7WTnJpR+RrJWp44uz5ZBV6G2wZdf8d7PWGSRP/ddtFQKn9+WKBWUlQNDRhywSO3zsOQGWPynzb6VuNIxIi501vN53GpRoDcDnkMsP+HJZqCu4bR4PYNSeA6NA4k/LcGHWQ8lh37G+w0vsHdduA2+OxvuqSY8cSIq9ZWeloNqimSVnxxFK8FvRkEMZy93mcDz6X16FlmSQoGll0YhFLApYA4GjjyIZ+G3C1d9U4KiFynp21HSt7raSIfREA1p5fy8wDM9XtxlEH6cmpUQcpjxVpHcEPpT4j0SoBgNbhXWga2TbfjHAQIi0Vm5TAb0pDk5aUZpFtaR3XCYDo5GheXPUiITEhWoWYKZKgaODv638zbsuT4YuLXlhEPe96GkYkRO6q6lWVX3v9ig5D5+/3/3mfPy/+CTwZdZCenBp1YDxWoi6BH0p9xiM7Q8tMubgqvPJwdI4eSwgtVWxSItUCs5s/Xs9zJZ8D4HrYdfqu7UticqKWYaZLEpQ8djroNL1W9yJJnwTApCaTeLXeqxpHJUTu616tO5+1/QwABYVX1r/CgVsHMj2aICdGHcSGx6NHj3+JOVx1Msx34pbkyfi7H2Kr2OXosYRIj5O7PQ17VcEpFzurWlnpTBaYdbF35o9+f1DcuTgAu2/uZuifQy12CgBJUPLQlZArdF3ZlciESABerP4i33T6RuOohMg703ym0b9Of8DQSbz7yu7c4Gqm9s2JUQcObnb86v09R4vsAcBOb8/EOx/hmVQ0x48lRHqcPBxo1KcqTh4OGVfOQWXdyvJ7v9+xtza8x389+yuTt05O1S/MEkiCkkcuBV/Cd7kv9yLvAdC0dFNW9l4powVEoaLT6fB/yZ+OlTsCEBEfQf+DvXlU/Ha6+zl7OTzzqANFUZh161P2uW8FwEqxYuS9dygfXzXHjyWEJWtRtgWr+6zGWmf4/vnu2He8vfNti0tSJEHJA2cenDFJTuoWr8um/ptwsnXSNjAhNGBnbcf6l9fTtHRTwLDMw8xib3PVMe1RBc0G1sTKKvuTFyYmJzJs4zDmHzUsRa9TrBh+/20aRDfL8WMJkR+8WONFlr64VL0/+9/ZjNg4Qu1+YAkkQcllGy9tpMWSFuo09vW96/PP4H8o5lxM48iE0I6LnQvbXttGi7ItAIhMeszcCh8QUPKAST1nLwf8pjSkYpMS2T5WRFwE3VZ2w/+UPwA6dHxV/1va2nbK8WMJkZ8Mqj+IRS8sUjuvLz21lJdWvURYbJjGkRlIgvKU0Nic6b2fmJzIR7s/4qVVLxGdGA1Ak9JN2DVoF0WdimawtxAFn7uDOzte20GHSh0AiNPH8UORz9nru5ZEXSIth9em31zfZ0oYjt87znMLn2Pn9Z0A2Fvbs7bvWt7sOSnVCIdnPZYQ+dGI50awus9qbK1sAdh8ZTONFzXmVNApbQNDEhQTAfcDKPNNGd79+10exz/O1D7mpuY+FXSKVsta8em+T9W1PfrV7seewXvwcvLKtfiFyG+c7ZzZ1H8TIxqOUMt+ub+Mz8pPJND1crYvtcQmxvLBPx/QYkkLdQp7T0dPdg3aRe9avYHUIxzkso4orPrW7svWV7fi6Wjoe3U97DpNFzdl5v6Zml7ykQTl/ymKwuvbXyc2KZZZB2dRbX415h+ZT3RCdJr7PD019/qft+M3rRvP/fQcR+8eBcBaZ830ttP5rfdvONo65sm5CJGf2NvYs6jHIn7q/pP6K+6+/S26bO3Ay2tf5tzDzM94mZCcwMITC6n5fU2m759Oot4wx0PT0k05MeoELcu1zJVzECK/86vkx8lRJ9VZnxOSE5j2zzR+PfOrZjHZaHZkC5OkT6JF2RYcvnOY+OR4HkQ/YNK2SXy05yN61+zNizVepGnppmrfkRtHg9g55zgP7O5x2e0sJ10Pct45wOQxq3lVY0XPFTQp3USLUxIiXxnVaBTNyjRj4JpBnAk9DRhmnV17fi0+5XzoW6svfpX8qOpZFVtrW3W/iLgIDt0+xJYrW1h1bhXBMcHqNlsrW95p+Q4ftPkAO2u7VMcUQjxR3r08B4Ye4MPdH/L1v1/TrEwzXqv3mmbxSILy/2ytbfnc73NGPjeSt3e+zfoL6wEIiwtjccBiFgcsBgzXzT0cPIgIieRx1QiSrFLPwueY7ETPuIEsfm8OjnZ5O8ZdiPysnnc9tnfdxeuz32dX+fU8insEwP5b+9l/az8ANlY2lHApga2VLWFxYYTHhZt9rM5VOvNNx2+oWaym2e1CiNTsbeyZ1WEWPWv2xMvRS9OpMCRBeUpFj4qse3kdp4NO883hb1h7bi2xSbHq9vC4cMMHopnXrGhCCXzDu+ET0QknvQthV6NxrCUJihBZYWNlg194D2ZOeZ8/Q9fx04mfuBD8ZK2eJH0Sdx7fMbuvvbU9L9V4idebvU7TMk3zKmQhCpxmZVIPwc9rkqCkoX6J+ix/aTkLui1g+9Xt7L+1n4CgAO48vkNIZChKjA4nvQslEkpTLq4KdaOfp2x8JXW4Fsh02UI8CxdbFyY3m8ykppM4+/As269u5+i9o1wJucLD6Ick6hNxtXOlrFtZ6hWvh095HzpW7oi7g7vWoQshcoAkKBlwsnWiZ82e9KzZUy27dz6ELdOPZrivTJctxLPT6XTU864nC2oKUcjIKJ5sKFHD02QZa3NkumwhhBAi+yRByQYrKx3NBqXf8U6myxZCGOXFyrVCFDSSoGRTxSYl8JvSMFVLikyXLYR4mlYr1wqRn0kflGdQsUkJyjf25tLu2xxcco6Ww2tTvW1ZaTkRQgghnpG0oDwjmS5bCCGEyHmSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCiExxcrenYa8qOLnbax2KEKIQkNWMhRCZ4uThQKM+VbUOQwhRSEgLihBCCCEsjiQoQgghhLA4Wb7Ek5CQwJIlS9ixYweRkZFUrlyZESNG8Pzzz2dq/127drFu3TquXbuGjY0N5cuXZ8SIETRq1CjLwQshhBCiYMpygjJz5kz27NlD3759KVOmDFu3bmXq1KnMnTuXevXqpbvv0qVLWb58Ob6+vnTu3JmkpCRu3LhBcHBwtk9ACCGEEAVPlhKU8+fPs2vXLsaOHUv//v0B6NSpE0OGDGHBggUsWLAgzX3PnTvH8uXLGT9+PC+//PKzRS2EEEKIAi1LfVD27t2LtbU1PXr0UMvs7e3p1q0b586d48GDB2nuu3btWjw9PenTpw+KohATE5P9qAsxGeophBCiMMhSC8qVK1coU6YMzs7OJuU1a9YE4OrVq3h7e5vd98SJE9SpU4d169axYsUKIiIi8PT0ZODAgfTu3Tvd4wYHBxMSEqLeDwwMzErYBYoM9RRCCFEYZClBCQkJwcvLK1W5sSytviSRkZFERETw33//cfLkSYYMGYK3tzdbt25l7ty52NjY8OKLL6Z53I0bN+Lv75+VUIUQQgiRj2UpQYmPj8fW1jZVuZ2dnbrdHOPlnIiICD766CP8/PwA8PX1ZciQIfz888/pJig9evSgZcuW6v3AwECmT5+eldCFEEIIkY9kKUGxt7cnMTExVXlCQoK6Pa39AGxsbPD19VXLraysaNeuHUuXLuXBgwdpXh4qWrQoRYsWzUqoQgghhMjHstRJ1svLy6QviJGxLK0kokiRItjZ2VGkSBGsra1Ntnl4eACGy0BCCCGEEJDFBKVKlSrcuXOH6Ohok/Lz58+r280exMqKqlWrEhERkaoFxthvxd3dPSuhCCGEEKIAy1KC4uvrS3JyMhs3blTLEhIS2LJlC7Vq1VIv0Tx48CDVSJu2bduSnJzMtm3b1LL4+Hh27txJhQoV5BKOEEIIIVRZ6oNSq1Yt2rZty8KFCwkPD6d06dJs27aNoKAg3nnnHbXejBkzOHXqFPv27VPLXnzxRTZv3sy3337L7du38fb2Zvv27Tx48ICZM2fm3BkJIYQQIt/L8lT306ZNU5OLqKgoKlWqxKxZs2jQoEG6+9nb2zNnzhwWLFjAli1biIuLo0qVKsyaNYsmTZpkN34hhBBCFEBZTlDs7e0ZN24c48aNS7POvHnzzJZ7eHgwbdq0rB5SCCGEEIVMlvqgCCGEEELkBUlQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEKKAcnK3p2GvKji5m1+KxpJleRSPEEIIIfIHJw8HGvWpqnUY2SItKEKIQis//7oUoqCTFhQhRKGVn39dClHQSQuKEEIIISyOJChCCCGEsDiSoAghLIr0CxFCgPRBEUJYGOkXIoQAaUERQgghhAWSBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQcoBMLCWEEELkLJmoLQfIxFJCCCFEzpIWFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxbLQOIDvi4+MBCAwM1DgSIYQQQmRV+fLlcXBwSLdOvkxQgoKCAJg+fbrGkQghhBAiqxYtWkT16tXTraNTFEXJo3hyTHh4OEePHqVkyZLY2dlpHU6uCwwMZPr06bz//vuUL19e63DylJx74Tv3wnreUHjPvbCeNxTecy+wLSju7u507NhR6zDyXPny5TPMOAsqOffCd+6F9byh8J57YT1vKNznnhbpJCuEEEIIiyMJihBCCCEsjiQo+YCXlxdDhgzBy8tL61DynJx74Tv3wnreUHjPvbCeNxTuc89IvuwkK4QQQoiCTVpQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYnHw5UVtBFBwczLp167hw4QIXL14kNjaWuXPn0rBhw1R1J02axKlTp1KVN2nShK+//tqkLCEhgSVLlrBjxw4iIyOpXLkyI0aM4Pnnn8+tU8myrJw7wNmzZ/nxxx+5fPkyzs7OtG3blpEjR+Lk5GRSLz+cuzlbt25l5syZZrf9/vvvqXr7HzhwgGXLlhEYGIi7uztdu3Zl0KBB2Njkrz/v/Pp6ZUVAQACTJ082u23BggXUrl1bvZ/Z97kliomJYdWqVZw/f54LFy4QGRnJe++9R5cuXVLVvXnzJt999x1nz57FxsaG5s2bM2HCBNzd3U3q6fV6Vq1axR9//EFoaChlypThtddeo3379nl0VhnL7Hl//vnnbNu2LdX+5cqV45dffjEpyw/nnVvy1ydYAXb79m1WrlxJmTJlqFSpEufOnUu3frFixRg9erRJmblhajNnzmTPnj307duXMmXKsHXrVqZOncrcuXOpV69ejp5DdmXl3K9cucLrr79O+fLlmTBhAg8fPmT16tXcuXOHr776yqRufjj39AwfPpySJUualLm4uJjcP3z4MP/73/9o0KABkydP5vr16/z888+EhYXx5ptv5mW4zyy/v15Z0bt3b2rWrGlSVrp0afV2Vt7nligiIgJ/f3+8vb2pUqUKAQEBZus9fPiQiRMn4uLiwsiRI4mNjWXVqlVcv36dn376CVtbW7XuokWL+PXXX3nhhReoUaMGBw4c4NNPP0Wn0+Hn55dXp5auzJ43gJ2dHVOnTjUpc3Z2TlUvP5x3rlGERYiOjlYiIiIURVGU3bt3Kz4+PsrJkyfN1p04caIyaNCgDB/z3Llzio+Pj7Jy5Uq1LC4uTnnllVeUMWPG5EzgOSAr5/7WW28pL730khIVFaWWbdq0SfHx8VGOHDmiluWXczdny5Ytio+Pj3LhwoUM6w4cOFAZOnSokpiYqJYtXLhQad26tXLz5s3cDDNH5efXKytOnjyp+Pj4KLt37063Xmbf55YqPj5eCQ4OVhRFUS5cuKD4+PgoW7ZsSVVv9uzZSvv27ZWgoCC17NixY4qPj4/y559/qmUPHz5U2rZtq3zzzTdqmV6vV8aPH6/06tVLSUpKysWzybzMnveMGTOUjh07Zvh4+eW8c4v0QbEQTk5OFClSJEv7JCUlERMTk+b2vXv3Ym1tTY8ePdQye3t7unXrxrlz53jw4EG2481JmT336Ohojh8/TseOHU1+aXTq1AlHR0d2796tluWXc89ITEwMycnJZrfdvHmTmzdv8sILL5hczunZsyeKorBnz548ivLZFZTXKytiYmJISkpKVZ6V97mlsrOzy9TEY3v37qVFixZ4e3urZY0bN6Zs2bIm53ngwAGSkpLo2bOnWqbT6XjppZd49OhRhi3OeSWz522UnJxMdHR0mtvzy3nnFrnEk0/dvn2bTp06kZiYiKenJ927d2fIkCEmX1RXrlyhTJkyqZoNjU3LV69eNflgsHTXr18nOTk51YJatra2VK1alStXrqhlBeHcJ0+eTGxsLLa2tjz//POMHz+esmXLqtsvX74MkOr5KFq0KMWKFTN5PixdQXi9smLmzJnExsZibW1NvXr1GDt2LDVq1ACy9j7Pzx49ekRYWJjZBfJq1qzJ4cOH1ftXrlzB0dEx1Wq/xvfHlStX8t1lwLi4OLp06UJcXByurq74+fkxZswYkz5GBfG8s0ISlHyoVKlSNGzYkEqVKhEXF8eePXv4+eefuX37Np988olaLyQkxGw2bywLDg7Os5hzQkhICGC+r42XlxenT582qZtfz93e3p4uXbrQsGFDnJ2duXTpEmvWrGHcuHEsXrxY/aLO6Pkwbs8P8vPrlRU2Nja0adOGZs2a4ebmxs2bN1m9ejUTJkzghx9+oFq1all6n+dnGZ3n48ePSUhIwM7OjpCQEDw8PNDpdKnqQf57f3h5edG/f3+qVauGoigcOXKEP/74g2vXrjF37lz1h2ZBO++skgQlF+j1ehITEzNV187OLtWbLyPvvvuuyf1OnTrx1VdfsWnTJl5++WV1JEB8fLxJJ7OUxzRuz2m5ee7GeNM6p4SEBJO6eX3u5mTn+WjXrh3t2rVTy318fGjSpAkTJ05kxYoVvPXWWwDq+RrP6enHSu/yn6WxlNcrt9WtW5e6deuq91u1aoWvry9Dhw5l4cKFfP3111l6n+dnGZ2nsY6dnV2Be388PcDBz8+PsmXLsmjRIvbu3at2fi1o551VkqDkgtOnT6c5lPBpK1asSNV8lx39+vVj06ZNHD9+XE1Q7O3tzX45Gj/g7O3tn/m4T8vNczfGm9Y5pfyi1uLczcmp56NevXrUqlWLEydOqGXG8zX3hZWQkJBn55gTLOX10kKZMmVo1aoV+/btIzk5OUvv8/wso/NMWacwvD9efvlllixZwvHjx9UEpTCcd3okQckF5cqV47333stU3ZxawbJ48eIAREZGmjz2o0ePUtU1Nq0WLVo0R46dUm6eu7G+uUsXISEhJuejxbmbk5PPR/Hixbl161aq+iEhIan6Z4SEhKQaxmrJLOX10krx4sVJTEwkLi4uS+/z/Cyj8yxSpIiajHl5eREQEICiKCatrgXp/WFvb0+RIkV4/PixWlYYzjs9kqDkAi8vL7MTEuWme/fuAZhMbmQchx8dHW3S+fD8+fPq9pyWm+desWJFrK2tuXTpksklkMTERK5cuULbtm3VMi3O3ZycfD7u3btn8vpWrVoVgEuXLlGrVi21PDg4mEePHpmMiLF0lvJ6aeXevXvY2dnh6OiYpfd5flasWDHc3d25dOlSqm0XLlwwec2rVKnCX3/9RWBgIBUqVFDLC9L7IyYmhoiIiFSf4QX9vNMjw4zzmejo6FRN+oqi8PPPPwOYzLrp6+tLcnIyGzduVMsSEhLYsmULtWrVynejIlxcXGjcuDE7duww6V+xfft2YmNjTT648/O5h4eHpyr7999/uXTpEk2aNFHLKlasSLly5di0aZPJUOQ//vgDnU5HmzZt8iLcHJGfX6+sMPfaXr16lYMHD/L8889jZWWVpfd5ftemTRsOHTpkMoz8xIkT3L592+Q8W7VqhY2NDb///rtapigKf/75J8WKFaNOnTp5GveziI+PN9s/bPny5SiKQtOmTdWygnTe2SEtKBZk+fLlgGF+CzB8IJ05cwaAwYMHA4ahpZ988gnt27endOnSxMfHs3//fs6ePcsLL7xgMmSvVq1atG3bloULFxIeHk7p0qXZtm0bQUFBvPPOO3l7chnIzLkDjBgxgvHjxzNx4kR69OihzrD5/PPPm/xh56dzf9rYsWOpVq0a1atXx9nZmcuXL7NlyxaKFy/OwIEDTeqOGzeO9957jzfffBM/Pz+uX7/O77//Tvfu3U1+cVm6/Px6ZcVHH32Evb09derUwcPDg5s3b7Jp0yYcHBxMOk5m9n1uydavX09UVJR6OeLgwYM8fPgQMMyk6+LiwmuvvcaePXuYMmUKffr0ITY2lt9++41KlSqZtDwWL16cvn378ttvv5GUlETNmjXZv38/Z86c4YMPPsDa2lqTczQno/OOjIxk+PDhtG/fnnLlygFw9OhRDh8+TNOmTWnVqpX6WPnpvHODTlEUResghEHr1q3T3LZv3z7A0BT8008/ceHCBUJDQ7GysqJ8+fJ0796dHj16pBoVEx8fr65vEhUVRaVKlRgxYoTJL3FLkJlzNzpz5oy6RomTkxNt27Zl9OjRqdYoyS/n/rRFixZx+PBh7t+/r/ZJaN68OUOGDMHT0zNV/f379+Pv709gYCBubm506dIl1Zw4+UF+fb2yYt26dezcuZO7d+8SHR2Nu7s7jRo1YsiQIZQpU8akbmbf55bq5ZdfJigoyOy21atXq8s43LhxI9VaPOPHj0/1Xtfr9axcuZKNGzcSEhJCmTJlePXVV+nYsWOun0tWZHTeLi4uzJ07l3PnzhESEoJer6d06dJ06NCBV155JdXfbX4579wgCYoQQgghLI70QRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRHp2rp1K61bt2br1q1ah5IpAQEBtG7dmqVLl+baMVq3bs2kSZNy7fELi5dffpmXX35Z6zAs3tKlS2ndujUBAQG5epw1a9bQrl077t+/n6n6efG3lp999tln9O3bl/j4eK1DybckQSlgvvjiC1q3bk337t1TLSpYUOS3L7aIiAh+/PFHBg0aRIcOHejQoQN9+/ZlypQpLFu2jNDQ0DyJI6Nkc9KkSekuOVCYxMbG0rlzZ1q3bs0333yjdTi5LjIykp9//pmuXbuqU9CLZzNkyBCCg4NZu3at1qHkW/lrsQ6RrpiYGHbv3o1Op+Px48fs378fPz+/Z3pMHx8fatWqhZeXVw5FWbg8fPiQcePG8fDhQ6pWrUqXLl1wdXUlJCSE//77j2XLllG3bl2za+wUdN9++63WIaRp9+7dxMTEoNPp+Pvvvxk/fjz29vZah5Vr1qxZw+PHj+nfv7/WoRQYZcuWpWXLlqxcuZLevXvj6OiodUj5jiQoBcg///xDbGwsL7/8MuvWrWPz5s3PnKC4uLjg4uKSQxEWPkuXLuXhw4cMHz7cZFVmo2vXrhXa57d06dJah5CmzZs3Y21tTa9evVi7di379u2jQ4cOWoeVK5KSkvjrr7+oW7euRb8m+VHHjh3Zt28fu3btonv37lqHk+9IglKAGD9UBwwYwLVr1zh58iRBQUGUKFHCpN7SpUvx9/dP83FKlCjBmjVrAMNlgZkzZ/Lee++ZLH/eunVrGjRowAcffMCCBQs4duwYCQkJ1K9fnylTplCqVClu3rzJwoULOX36NElJSTRp0oTXX3/dpLUgICCAyZMnM2TIEIYNG2YSx/379+nXrx+dO3dm2rRp6v2UMRiZ2//ixYssXLiQc+fOYWVlxXPPPceECRNSNWHv27eP3bt3c/HiRYKDg7GxsaFy5cr06dMHX1/f9J/0DJw7dw6AXr16md1euXJls+X37t3j119/5dixY4SEhODs7EyFChXo0qWL+jokJiayceNGDh06xM2bNwkPD8fZ2Zm6desyePBgqlWrpj7e559/zrZt2wCYOXMmM2fONDn/lM9lytvG597o2rVrrFixglOnTvH48WO8vLxo2bIlQ4cOxc3NTa2X8rUbMGAAixYt4vTp0zx+/FhdydZ4mc74XoMn7825c+cSHBzMb7/9xq1bt3BxcaFt27aMGTMmVUtGUlISq1at4q+//iI4OJhixYrRrVs32rVrxyuvvJLqHDJy69Ytzp49S4sWLUySfXMJSsr3b4sWLTL1fgPYu3cvv/zyCzdu3MDZ2ZmWLVsyduxYhg8fnuo5SU9mX4/0HD16lJCQEAYMGGB2e3x8PMuWLWPnzp1ERERQunRp+vTpk2r15ZTu3bvHihUrOHbsGGFhYbi6utKkSROGDRuW6vMIsvZ8GN/Lq1atYt++fWzevJl79+7h5+envs5hYWH88ssvHDp0iIcPH+Lk5ET9+vUZNmwYlSpVSnX8rNS/ffs2v/zyCwEBAYSEhODg4EDx4sVp2LAhEydONFlRvnnz5jg4OLBt2zZJULJBEpQC4ubNm5w7d45mzZrh6elJp06dOHHiBFu2bEn1xd2wYUOzjxEYGMju3bsz3ZQdGRnJ+PHj8fLyolOnTty5c4dDhw7xxhtv8PnnnzNhwgSqV69O165duXz5Mnv37uXx48fMnTs3W+fo4uLCkCFDWLduHQB9+vRJ85wuXrzIb7/9RsOGDenRowdXrlxh//79XL9+HX9/f5NzXLhwITY2NtStWxcvLy/Cw8M5ePAgH374IZMnT6Z3797ZihdQvyRu375NrVq1MrXPmTNneOedd4iJiaFJkyb4+fkRGRnJlStXWLdunZqgPH78mPnz51OvXj2aNWuGq6sr9+/f5+DBgxw5coT58+dTs2ZNwHCpLioqigMHDtCqVSuqVKlicswhQ4awbds2goKCGDJkiFpetWpV9faBAwf4+OOP0el0tGrViuLFi3Pz5k02bNjA0aNH+emnn3B1dTV53Lt37zJ27FgqVapE586defz4Mba2thk+B8bHbNmyJc899xxHjhxh/fr1RERE8OGHH5rUnTVrFtu3b6dUqVK89NJLJCYmsmbNGv77779MPd9P27x5MwCdOnXC29ubBg0aEBAQwL179yhVqpTZfbLyftu8eTOzZs3C2dmZTp064eLiwuHDh3njjTdISkrCxiZzH8vZeT3MOXHiBAC1a9dOtU2v1/Pee+9x/PhxKlWqRPv27Xn8+DHfffddmp8j58+f56233iI2NpYWLVpQpkwZgoKC2LlzJ0eOHGHBggUmz2N2n485c+Zw/vx5mjdvTosWLfDw8AAM77lJkybx6NEjnn/+eVq1akV4eDh79+7l2LFjfPvttyZ/i1mpHxwczOjRo4mLi6N58+a0a9eOuLg47ty5wx9//MG4ceNM4rW1taVatWqcO3eO2NhYucyTVYooEObPn6/4+Pgof//9t6IoihIdHa107NhR6dOnj5KcnJzh/qGhoUrfvn0VPz8/5cyZM2r5li1bFB8fH2XLli0m9X18fBQfHx9l/vz5JuWzZ89WfHx8lC5duihr1qxRy/V6vfL2228rPj4+ysWLF9XykydPKj4+PsqSJUtSxXTv3j3Fx8dHmTFjhkl53759lb59+5o9D+PjpXwujKZPn262/O7du6keJzo6Whk8eLDSpUsXJTY2NtW5T5w40ezxn7Zu3TrFx8dH6dGjh7JkyRLl5MmTSlRUVJr14+PjlV69eilt2rRRDh8+nGr7gwcPTOo+fPgwVZ3r168rHTt2VF5//XWT8rReS6OJEycqPj4+ZreFh4crnTt3Vnr16qXcv3/fZNvff/+t+Pj4KN9++61aZnzt0nptFcX867hkyRL1/RMYGKiWx8XFKQMGDFDatGmjPHr0SC0/fvy44uPjowwbNszkdXr06JHy4osvmn3/pCcxMVF58cUXlS5duihxcXGKoijK5s2bFR8fH2XRokWp6mf1/fb48WOlY8eOSseOHZVbt26ZHHfy5MmKj49Pms/JyZMn1bKsvh7pGTlypNKmTRslPj4+1Tbje+att95SkpKS1PKrV68q7dq1S/X6JiYmKn379lU6deqkXLp0yeSxTp8+rfj6+irvvPPOMz0fM2bMUHx8fJRevXopQUFBqWIeO3as4uvrqxw5csSk/NatW0qnTp2UwYMHZ7u+8e855WebUURERKoyRXny2XzixAmz20XaZBRPAZCUlMSOHTtwdnamVatWADg5OeHj48ODBw84fvx4uvvHx8czbdo0goKCePfdd6lbt26mjuvo6MiIESNMyox9Xtzc3ExaOHQ6nbrt2rVrmT637Kpfv36q/jddu3YF4MKFCybl5n4VOzk50aVLF6Kiorh48WK24+jVqxf9+/cnKioKf39/Jk+eTNeuXRk0aBA//vgjwcHBJvUPHDjAo0eP6NChA02bNk31eMWLF1dv29nZUaxYsVR1KlasSMOGDdVLazlh+/btREdHM2rUqFRN9H5+flSrVo1du3al2s/T05OBAwdm+Xh9+vShXLly6n17e3v8/PzQ6/VcunRJLd+xYwcAgwcPxsHBQS0vWrSoyfsvs/79919CQ0Np27at2urh6+uLg4MDW7duRa/Xm90vs++3AwcOEBsbS9euXSlbtqxabmNjk+pvKT3ZfT3MefToES4uLtjZ2aXaZrwsOGLECKytrdXyypUr07Fjx1T1Dx06RFBQEP379ze5xAhQr149WrZsyeHDh4mOjgae7fno378/3t7eJmWXL1/mv//+o1OnTjRp0sRkW9myZenevTvXr1/n+vXr2apvZK6VuUiRImbjNLbsPHr0KN3zEanJJZ4C4MCBA4SHh9OtWzeTP5xOnTqxY8cONm/enOqPz0hRFD7//HPOnTvH0KFDad++faaPW6ZMGZMvBUAd7VOpUiWTa7Eptz39pZwbqlevnqrM+GUeFRVlUh4WFsavv/7K4cOHefDgQap5C54lXp1Ox9ixY+nfvz+HDx/m/PnzXLx4kcuXL3Pz5k02btzI119/rTYhG7/Mnn/++Uw9/pUrV/jtt984c+YMoaGhqRKS8PBwihYtmu34jYx9ac6fP8/du3dTbU9ISCAiIoLw8HDc3d3V8ipVqmTqks7Tnv5ygyfJWcrX7+rVq4Dhy+9pderUyfJx//rrL8Dwt2Pk5OREq1at+Pvvvzl69CjNmjVLtV9m32/G5NxcvLVq1TJJAtKT3dfDnMePH5tNdI3xOjo6mj2/evXqqZfDno7r1q1bZudHCQ0NRa/Xc/v2bWrUqPFMz4fx8mVK58+fBwx/0+aOf+vWLfX/SpUqZbm+sZ/Rt99+y4kTJ2jatCkNGjRI89IfPElcIiIi0qwjzJMEpQBIec08pUaNGlGsWDEOHjzI48ePzWb4ixcvZvfu3bRv356hQ4dm6bjOzs6pyowfKOlty6lf9elxcnJK8/gpfwU/fvyYUaNG8eDBA+rWrUvjxo1xcXHBysqKq1evcuDAARITE585Hnd3dzp37kznzp0BCAkJYc6cOezdu5evvvqKZcuWAai/LNP6wkjp7NmzvP766wA0btyYMmXKqOd94MABrl69miOxg6G/EcDvv/+ebr24uDiT+8Zfj1mV3vsn5esXExODlZWV2Q6hWR26HRwczNGjRylVqlSqL8zOnTvz999/s2XLFrMJSmbfb8bX19zzktZ5mJPd18Mce3v7NOdMio6OTvO9aO75Nca1c+fOTMX1LM+HuX0eP34MGFrC/v333zT3jY2NzVb9kiVLsmDBApYtW8bhw4fZvXs3AOXKlWP48OG0bds21b7GHzwFeZh6bpEEJZ978OABx44dA0h3dtMdO3akavLeunUrK1asoG7durz77ru5GmdajK0sycnJqbYZP7xy0+bNm3nw4IHZYcC//PILBw4cyJXjenl58f777/Pvv/9y7do1IiIicHNzU4ccZ6Y5eMWKFSQkJPDdd9+l+kI1/jLMKcYvYH9/f7OjINLydCtaTnNyckKv1xMREZGqpSCrE+Bt3bqV5ORk7t27l+aEdQcPHsxUq0RajIlXWFhYqm3G88hMcprd18McNze3NN9vzs7Oaf7yN/f8GuP64osvaNGiRYbHfpbnw9x7y/h4me3cntX6YGgd/uyzz0hKSuLSpUscOXKEdevW8fHHH1O0aNFUl8iNSVB23zOFmfRByee2bduGXq+nXr16dOvWLdU/4y/2p5tiT506xddff02pUqWYMWOG2evPecE4ysDcZZQrV66Y3cfKyspsQpMdxuZxY9+dlM6cOZMjx0iLra1tqiZsY7O1MelMz7179yhSpEiq5CQuLo7Lly+nqm9lZfhzT+u5S2+78RKUsQnfUhhHI509ezbVtqyM4lEUhS1btgDQpUsXs39LderUITExUe33kh3GYeXm4r1w4UKm39c5+XpUqlSJhIQEHjx4kGpb5cqViY2NNen3Y2Tu7yOrceXU82Fk/PvJ7PGzWj8lGxsbateuzbBhw5g8eTKKonDo0KFU9W7fvg3wzIlkYSQJSj5m/FDV6XRMmzaNd955J9W/adOmUbt2ba5du6Z29rx9+zbvv/8+9vb2fPHFF5pm9uXKlcPJyUm9DGUUGhrKzz//bHafIkWKEBERkSNrXBg7GD79Ablz504OHz78zI+/atUqAgMDzW7bsGEDsbGxlCtXTm3KbtmyJcWKFWPnzp0cPXo01T4pf+l6e3sTGRnJjRs31LLk5GR++OEHwsPDU+1rvMT38OFDs/Gkt71r1644OTmxaNEik+MZxcXFaZK8GOcm8ff3N3k/hISEqMPRM+PUqVPcvXuX+vXr895775n9WzK2Mj6d7GdFq1atcHR0ZPPmzSZ9R5KSkliyZEmmHycnX48GDRoA5lvdjJeNFy9ebJIsXLt2zWyi1qpVK7y9vVm9ejWnTp1KtT0pKckkscmp58OoVq1a1KpVi127dpntJKzX603iymr9S5cumW3ZNbYmmfuhd/78eby8vEw6AYvMkUs8+djJkye5f/9+hp20unbtyrlz59i8eTM1atRg3rx5PH78mMaNG/PPP/+kqu/i4pJna93Y2trSu3dvVqxYwYgRI2jZsiWxsbEcPHiQBg0amO0A2LBhQy5evMjUqVOpV68eNjY21K9fX/2gzYqOHTuycuVK5s6dS0BAAN7e3ly9epWTJ0/SunVr9u3b90znt2PHDn744QcqVapErVq18PDwIDIykvPnz3P58mXs7e1588031fp2dnZ88sknvP3227z99ts0adKEKlWqEB0dzdWrV4mPj1c/uHv3/r/27i6kqT+O4/jbVVsPzISc+RAW9ADSYHRqjdQIhxcVlYM/u/FGS4KoYQ9QRJThoKCnGym6aQm2EsG6EC3DWYpwcrbFsFFXQVChzSJkEtQa/i9kw39boebfTfq+rn+wc37nMD7n9/D9/cPz5885cuQIZWVlaLVaAoEAnz59YtOmTQmHy23cuBGdTkdrayvhcDgeTGNTW4qi0NPTw7lz57BYLGi1WtatW0dJSQlZWVmcP3+euro6Dhw4wNatWyksLCQSiTA8PEwgEMBoNHL16tU/6q/p2rJlC+Xl5Xg8HqqrqyktLSUSifD06VOKiopQVTU+MvQ7sdAR23mTTGFhIUajkWAwyKtXr6Zc12YyvV6Pw+HgypUrHDx4EKvVyrJly+jv70er1ZKdnT2labHZfB6lpaXcuHEDn8+XsIYitvbG6/VSU1ODxWIhHA7T3d2N2WxOGDHQarU4nU5OnTpFbW0tiqLEF8wPDw8zODjI8uXLcbvds9ofk9XV1XHs2DHq6+tpbW1l/fr16HQ6QqEQwWCQ0dFRPB7PjNo/fvyYtrY2TCYTBQUFLF26lLdv3+L1esnMzEx4fz58+MDQ0BA2m21a9yAmSECZx2J/qpMrvCZjtVppaGigu7sbh8MR/9L0+XxJtyDn5ubO6WF8NTU1LFy4kI6ODtra2sjNzaWqqori4mJ6e3sT2ldVVTE2NoaqqgwODhKNRqmurp5RQMnJyaGhoYGbN2/i8/mIRqNs2LCBa9euEQqF/jignD59GlVVefHiBQMDA3z58gWNRsPKlSux2WzY7faELyuj0citW7dwu90MDAzg9/vR6/WsWbOGioqKeLvi4mKcTidut5uuri50Oh2KonDhwoWklYIzMzNxOp00NjbS3t4efw9iAWXPnj0MDQ3x5MkT7t27RzQaZefOnZSUlAATVTFdLhfNzc34/X58Ph+LFy/GYDCwa9eupNtO58KZM2dYvXo1Dx8+5MGDBxgMBux2O4qioKpq0gWsk42NjdHb28uSJUvYsWPHb9vu3r2bYDBIR0fHjAIKwN69e9Hr9dy5c4fOzs545dRDhw5ht9unXG5+tp5HXl4eZrOZnp4ejh49+p9RAI1Gw8WLF2lsbMTj8XD//n3y8/NxOBysWrUq6ZRGUVERt2/fprm5mf7+foLBIIsWLSI7O5vt27cnbMeerf6Iyc/Px+Vy0dLSQl9fH48ePUKj0bBixQpMJlNCdejptC8vL+f79++8fPmS169fE4lEMBgMVFRUJN32HBtl2rdv37TuQUzIGB8fH0/1RQghxGxrb2/n8uXLnDhxYl58wb5//57KykrKysqor6+f09/2+/0cP36cs2fPpixo/iyV/TEbfvz4QWVlJXl5eTOunv23kzUoQoh57fPnz/z8nTUyMkJTUxMLFixg27ZtKbqy5MLhcMK23m/fvnH9+nVg4liCubZ582YsFgtNTU2/LEb3f0nH/pgNnZ2dfPz4kcOHD6f6UuYtmeIRQsxrd+/e5dmzZ5hMJrKysgiFQqiqytevX9m/f3/CsHuqBQIBLl26hNlsJicnh9HR0fjBnoqiYLVaU3JdtbW1dHV1MTIyMqd9lq798acyMjI4efJk0iJ3YmpkikcIMa95vV5aWlp48+YN4XAYrVbL2rVrsdlsSU8gTrV3797hcrkIBoPx3VYFBQXx05f/toJe0h/iVySgCCGEECLtyBoUIYQQQqQdCShCCCGESDsSUIQQQgiRdiSgCCGEECLtSEARQgghRNqRgCKEEEKItCMBRQghhBBpRwKKEEIIIdKOBBQhhBBCpJ1/AZSUt9WYsomeAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 15.0 deg to 30.0 deg\n", - "Modulation: 0.31 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.018\n", - "Best fit polarization angle: 175.396 +/- 0.344\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTKElEQVR4nOzdd3hT5dvA8W/SPaCTXfbeIHsUyt6oLAUFKks2qLhwK4g4QfmJsofKFgXZIBvZZe9VZoG2dO/mvH/k7aGhaWlL25O09+e6uEie85yc+yRpcuc8S6coioIQQgghhAXRax2AEEIIIcSTJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERwkLcuHEDnU6Hv7+/1qEIwM/PD51Ol+vH+fTTT9HpdOzatSvXj5UZ5cqVo1y5clqHIYQkKOLpLly4wLhx46hVqxZubm7Y29tTsmRJunXrxvz584mPj9c6xFzj7++PTqfjxo0bWodi1vz583n99ddp0qQJzs7O6HQ6Pvzww6fu988//+Dn54ebmxuurq40adKExYsXZ7jP4sWLady4Ma6urri5ueHn58c///xjtu7ly5fp1q0bnp6elC5dmrFjxxIZGWm27quvvkr58uWJiop6+gmnkpLQpf5na2tLsWLF6NatG5s2bcrS44ln9/vvv6uvxdatWzOsGxYWxscff0y9evVwdXXFwcGBUqVK0bRpU9566y0CAgIy3H/48OHodDqcnZ0JCwtLt15KApjyT6/XU7hwYcqWLUvXrl2ZPn06d+7cyc7pilxmq3UAwrJ9/vnnfPbZZxgMBpo1a8bgwYNxdXXl/v377Nq1i2HDhjF79myOHj2qdagF0ltvvUV4eDgeHh6ULFmSq1evPnWfWbNmMW7cOLy8vHj11Vext7dn9erV+Pv7c/r0ab799ts0+0yaNInvvvsOHx8fhg8fTkJCAsuXL6dHjx789NNPjB07Vq0bHR1Nu3btiI6OZtCgQdy+fZv//e9/3L9/n1WrVpk87oYNG/j999/Ztm0brq6u2XoO3NzcmDhxIgBxcXGcPHmSjRs3snHjRmbOnMn48eOz9bh5ZezYsbz88suUKVNG61Ce2Zw5c9DpdCiKwpw5c+jYsaPZenfv3qVFixbcuHGDChUq8Morr+Dt7c2jR484duwYM2bMwMnJifr165vdPzIykuXLl6PT6YiNjeW3334zeQ+a07p1a/z8/ADje/TevXvs37+fTZs28cknn/Dpp5/y3nvvPdP5ixymCJGOqVOnKoBSunRp5eDBg2brrF+/XvHz88vjyPLO4MGDFUC5fv16rh/r+vXrCqAMHjw40/ts2rRJuXHjhqIoirJw4UIFUD744IMMj+Hg4KB4enqanFNoaKhSsWJFBVAOHDhgss/+/fsVQKlYsaISGhpq8lienp6Kg4ODyWMtX75cAZTdu3erZf7+/gqg3L9/Xy0LCwtTSpUqpQwdOjTT5/vkuQBK2bJl02xbsGCBAiguLi5KdHR0th6/devWSkH8iCxbtqzZ5/RpLly4oABK+/btlQYNGih2dnZKUFCQ2bpDhw5VAGXIkCGKwWBIs/3u3bvKsWPH0j3WL7/8ogDKm2++qdjb2yt16tRJt+4nn3yiAMonn3ySZpvBYFBWr16teHp6KoAybdq0p5+oyDPSxCPMunHjBp9++il2dnZs3LiRJk2amK3XvXt3Nm/enKZ85cqVtGrVCjc3N5ycnKhduzbTpk0z2xyU0uYdERHBm2++Sbly5bCzs+PTTz/N1HYwNkP5+/tTunRp7O3tKVasGAMGDODixYtm446JiWH69Ok0bNiQQoUK4erqSvXq1Rk/fjz3798HQKfTqc0e5cuXVy8RP9k+Hxoayvvvv0/16tVxcnLCzc2Ndu3apXuJOzIykjfffBMfHx8cHR2pVq0a33//PQaDwWz9jHTu3JmyZctmuv6CBQuIj49n7NixJufh4eHB5MmTAfjll19M9km5/8EHH+Dh4aGWlytXjjFjxhAfH8/ChQvV8sDAQAAaN26slqXcTtkGxqs/AN99912m488sf39/XFxciI6O5uzZs2r5jh076Ny5M56enjg4OFClShXee+89wsPDM/W4CQkJzJo1i65du1K2bFkcHBzw9PSkffv26TYpPe39a64PSkr/l/T+pVwJSJGUlMTPP/9M06ZNKVy4MM7OztSvX59Zs2aZfV8pisKsWbOoWbMmjo6OlCpVirFjx2b6eTBn7ty5ALz22mv4+/uTmJjIokWLzNY9cOAAAOPGjTPbz6dEiRI899xzGR5Lr9czceJEevTowalTpzh06FCWY9bpdPTu3ZvVq1cDxivG9+7dy/LjiNwhTTzCrIULF5KYmMjLL79MrVq1Mqzr4OBgcn/y5MlMmzYNb29vBgwYgKurK5s2bWLy5Mls2bKFrVu3Ym9vb7JPQkICbdu2JTQ0lI4dO1K4cGHKly+fqe2bN2+mV69eJCYm0qNHDypVqsTt27f5888/2bBhAzt37jT5sHv06BFt2rTh5MmTVK1alSFDhmBvb8/Vq1dZuHAhvXr1olixYnzyySf89ddfnDx5kgkTJuDu7g6g/g/GL1w/Pz9u3LiBr68vnTt3Jjo6mn/++YfOnTvz66+/Mnz4cLV+fHw87dq148iRI9StW5dXXnmFsLAwvvjiC3bv3p2l1yg7/v33X8CY2DypS5cuJnUyu88XX3zBv//+y2effQagNlUcO3aMFi1aAKhNgCnJ1Pbt25k/fz7r16/Hzc3tmc/LHEVRANQvwF9//ZVRo0bh4uJC3759KVq0KLt27WL69OmsX7+e/fv3m7y25oSGhjJhwgSaN29Ohw4dKFKkCPfu3WP9+vV07dqVuXPnMmzYsDT7Pe39/SR/f/80SQjA3r17+ffff3F2dlbLUt73W7ZsoWrVqgwYMABHR0d27tzJuHHjOHToEEuXLjV5nIkTJ/Ljjz9SokQJRowYgZ2dHX///TeHDh0iISEhzd/n0yQkJLB48WLc3Nx48cUXiY2N5a233mLevHm88847aZIQLy8vAC5dukS9evWydKyAgACOHTtGhw4dKF26NP7+/qxZs4Y5c+ak+0Pqadq0aUPLli3Zt28ff/75J2PGjMnW44gcpvUlHGGZ2rZtqwDK3Llzs7TfgQMH1Gahe/fuqeWJiYlK9+7dFUCZOnWqyT5ly5ZVAKVdu3ZKVFRUmsfMaHtoaKji7u6ueHl5KWfPnjXZdvr0acXFxUWpX7++SXn//v0VQBk5cqSSnJxssi0yMlIJCwtT7z+tiad169aKTqdTli1bZlL+6NEjpW7duoqjo6PJZe6UZrNevXqZHPvatWuKh4dHlpt4UstME4+3t7cCKMHBwWa3u7i4KIDaLBIVFaUAiqurq9n6Dx8+VAClaNGiallkZKTi4+OjeHt7KxMnTlT69OmjnnPK9nLlyimvvPJKts4zRUZNPPPnz1ebeGJiYpQbN24o9vb2SqFChZTz58+b1B01apQCKMOHDzcpN9fEExcXp9y6dSvN8cLCwpSaNWsqHh4eSkxMjMm2p72/U5ogdu7cmeH5njx5UilUqJDi7e2tXLlyJc3+Y8eOVZKSktTypKQkZciQIQqg/PXXX2p56ia7kJAQtTw2NlZp2rRpus9pRpYtW6YAyogRI9Sy3r17K4Cyffv2NPV/+uknBVAKFSqkvP3228q2bdvSfU8+6fXXX1cA5Y8//lAUxfjZUrx4ccXFxUUJDw9PUz+jJp7UPvzwQwVQBg0alKk4RO6TBEWYVb16dQVQNm3alKX9hg0bpgDKr7/+mmbbxYsXFb1er5QvX96kPOUD/MSJE2YfM6PtM2bMUABl1qxZZvedOHGiAqjJy/379xW9Xq+UKFHC7JfFkzJKUE6cOKEASp8+fczu+9dffymA8r///U8tq1SpkqLX602+YFKkfJDmZoJiZ2enAEpiYqLZ7SVLllQA5e7du4qiKMqdO3cUQClVqpTZ+gkJCQqg2Nvbm5RfuHBB6dy5s+Lu7q6ULFlSGTlypPrlMWbMGKVYsWJKcHCwEhgYqHTv3l1xdHRUXF1dlYEDB5r9kjEnJUFxc3NTPvnkE+WTTz5R3n33XaVLly4KoADKzJkzFUVRlClTpiiA8v7776d5nNDQUKVQoUKKo6OjEhcXp5ZntQ/Kd999l6bvjaI8/f2dmQTlzp07io+Pj+Lo6Kjs379fLU9OTlY8PT2V4sWLm31NHz16pOh0OqVv375qWcrf6IIFC9LU37lzZ7YSlJQfNKn7L61fv14BlH79+qWpbzAYlPfff19xdHRUXytAKVeunDJs2LB0n6uoqCilUKFCipubmxIbG6uWv/XWWwqg/Pzzz2n2yWyCMnv2bAVQunTpksmzFrlNmnhEjjp+/DgAbdu2TbOtSpUq+Pj4cP36dcLDw00u7Ts6OlKnTp10Hze97f/99x8AJ0+eNOmTkuLSpUsAnD9/nho1anDkyBEMBgOtWrXCxcUlS+eW3rHDw8PNHvvhw4fqscHY9+TKlSuULl2aihUrpqnv5+enNpNYu6pVq5rtk7F3715+/vlnVq5ciaenJx06dODBgwf88ccfREVFMW7cOGJjY9OM9slIeHi4+rzZ2Njg6elJly5dGDt2LF27dgUyfl96eHhQv3599uzZw4ULF6hbt26Gxzt79izffPMNe/bs4d69e8TFxZlsNzdk9Wnv74xERUXRvXt37ty5w7Jly2jevLm67dKlS4SGhlK5cmWmTJlidn8nJyf1PQiPn4vWrVunqduyZUtsbGyyFN+VK1fYuXMnVatWpVmzZmp5586dKV68OH/99RfBwcF4e3ur23Q6HV9++SXvvPMOW7Zs4eDBgxw/fpxDhw4xb948Fi5cyOzZs02aRwGWL19OZGQkr7/+Oo6Ojmq5v78/3333HXPnzmXUqFFZij+F8kSToNCeJCjCrBIlSnD+/Pkszw+Q0smuRIkS6T7uzZs3CQsLM0lQihYtmuEHQ3rbQ0JCgMcd9NKTMsdGynwJpUqVyrB+ZqQce9u2bWzbtu2px055booVK2a2XvHixZ85pqdxc3MjODiY8PBwtR9Aaikxprw2Kf+n13kypfxpfTcAYmNjGTp0KL169aJPnz5s27aNgIAAli5dyosvvggYO2d//PHHXL161WwSZ07ZsmWfOk9NZt6XQIbzaQAcPHiQtm3bkpSURLt27ejZsyeFCxdGr9dz4sQJ/v77b7MdwZ/2/k5PcnIyL730EgEBAUybNo2XXnrJZHvKe/Dy5csZJrep55jJ6H1oa2trkkhkxty5c1EUJc0Eg7a2trzyyit89913LFq0iEmTJqXZ193dnZdeekk9r+joaL766iumTJnCuHHj6Nmzp0mcc+bMAUhzrFq1atGgQQOOHTvG0aNHadiwYZbOAYxDnwGKFCmS5X1F7pBRPMKsli1bAsZRD1mR8oUWFBRkdntKD/knO0Y+7cM7ve0pj3Py5EkUY5Ol2X+DBw8GHn+R5sTETCnHnjlzZobHThnhklI/ZZTQk9J7znJS1apVgcdXllK7d+8e0dHR+Pj4qJ0wXVxcKFWqFFFRUWZHN1y+fBkwXh17mo8++oiQkBD+97//AY+vLKXuwNygQQMAzp07l5XTeqrsvi+fNGXKFGJjY9m6dSubNm1ixowZfP7553z66acZdtDM7q/ycePGsXHjRoYPH252jo6UeF988cUM34PXr19Ps4+592FSUhLBwcGZji/1SJ33338/zWijlBFaT/sBkcLFxYUvvviCli1bEh8fz/79+9Vtp06d4vDhwwA0a9YszbGOHTsGPE5ismrnzp0A2e5oK3KeJCjCrNdeew07OzvWrFnz1C+L1L8YUyZWMjdt95UrV7h9+zbly5fP1C/uzGjatClgbDrIjMaNG6PX69mzZw/R0dFPrZ9yuTs5OfmZj12oUCEqVarEnTt3zE6olhdTnac0cZgbGp7SJPNkM0h29nnS4cOHmTFjBjNnzkzzyz31++fJ5pKcktH7MiwsjBMnTuDo6Ej16tUzfJwrV67g6elpdoRNTo/C+u6775g9ezYdO3bk559/NlunWrVquLu7c/DgQRITEzP1uCkJobl49+3bZ/a9np6///6bBw8eULVqVYYOHWr2X4UKFbh06VKWnp9ChQoBj5td4HHi4efnl+6xnJycWLZsWZZnJf7333/Zv38/Tk5O6tU8YQHyrruLsDYpI07KlSunHDlyxGydTZs2KW3atFHvp4wQKFeunPLgwQO1PCkpSXn++ecVQJkyZYrJYzxtYqiMtgcHByvu7u5KkSJFlEOHDqXZnpycnKbz4YABAzI9iuftt99WAOXff/81e3xfX19Fr9cr8+fPN7v91KlTJpOTpTynvXv31mQUz7Vr13J9orYnxcfHKzVq1FC6detmUr5t2zYFUD777DO1LGVCN3OdiJ+U0Sgec3Xt7OwUNzc35fLlyybbxo4dqwDKsGHDTMrNdZLt1KmTAignT540KZ83b57a0XPhwoUm2572/jbXSXbNmjWKXq9Xateu/dROwx999JH6fn5yBJGiGCc9Sz3Cbd++fTk2iqdDhw4KoKxYsSLdOinPzYABA9Syr7/+Wjlz5ozZ+nv37lUcHR0VW1tb5c6dO4qiKEpMTIzi7u6u2NjYqGXmvPrqqwqgzJkzRy172kRta9asUSdq+/rrr592yiIPSYIiMvTZZ58per1eAZTmzZsr48ePVyZPnqwMHTpUqVy5sgIoDRs2NNnnnXfeUYeejh49Wnn77beVWrVqKYDSsmVLJT4+3qT+syQoiqIo27dvVwoVKqTodDqlffv2yoQJE5SJEycqvXv3VkqWLKk4ODiY1A8NDVXq1KmjAEq1atWUCRMmKG+//bbSp08fpVChQiZfFJs3b1Y/zN955x3liy++UH766Sd1+61bt9TnoW7dusqIESOUd955RxkwYIB6zv/9959aPy4uTmnUqJFa/5133lFGjBihuLu7Kz179sxygjJ37lxl8ODByuDBg5UWLVoogFKnTh21zNzMmD/++KMCKF5eXsro0aOViRMnKj4+PgqgvPXWW2aP8+abbyqA4uPjo0ycOFEZPXq04uXlpQAmz4c5H3zwgeLm5qbcvn3bpNxgMCgNGjRQbGxslCFDhij9+vVTAJMRJxnJSoKiKIryv//9Tx3aOnToUOW9995TmjVrpr4PUn9ZK4r5BGXTpk0mj/Hmm28qrVq1UvR6vTqcOicSFCcnJ4X/n2k1ZYRS6n+pj5GQkKC+d0qVKqUMHDhQee+995QhQ4aoCfST74Nx48YpgFKiRAll3LhxyptvvqlUrFhRadiwoVKiRIlMPafXrl1TdDqd4u3tneZvOrXIyEjF1dVVcXBwUJ/junXrqs+7v7+/8v777yvjx49X2rVrp+h0OgVQvvvuO/UxUpLvHj16ZBjTrl270nwmpTy/rVu3Vp+/d955R3n11VeV8uXLK4Di4OCgTJ8+/annLPKWJCjiqc6dO6eMHTtWqVmzplKoUCHFzs5OKV68uNK5c2dl3rx5JkMzUyxbtkxp0aKF+sFUo0YNZcqUKSZDA1M8a4KiKMYvqzFjxiiVKlVSHBwclEKFCilVq1ZVXn31VWXt2rVp6kdFRSlTpkxRateurTg5OSmurq5K9erVlQkTJphc8VAU4/DRatWqKfb29ma/ECMiIpSpU6cqzz33nOLi4qI4Ojoq5cqVU7p27ar8+uuvaYYzh4eHK2+88YaaPFWtWlX59ttvlatXr2Y5QUkZBp3ev9atW5vdb926dUqrVq0UV1dXxdnZWWnYsKGyaNGiDI+1cOFCpWHDhoqzs7Pi6uqqtGrVSlm/fn2G+wQEBCi2trbpzqdz69Yt5fnnn1dcXFwUNzc3ZfDgwVkeZpyVIbFbtmxROnTooLi7uyv29vZKxYoVlbffflt59OhRmrrpDTNev3690qRJE8XV1VVxc3NTOnTooOzevVv9Es2JBCWj19Tc62owGJQlS5Yobdu2VTw8PBQ7OzulZMmSSosWLZSpU6cqN2/eTFP/p59+Ut/XJUqUUEaPHq2EhYVleqr7yZMnK4DyxhtvPLXu8OHDFUD5/vvvFUVRlOPHjytffPGF0qZNG6VcuXKKo6Oj4uDgoFSoUEEZMGCAsnfvXpP9mzdvrgDK33///dRjValSRQGUgIAARVEeP78p/3Q6neLq6qqUKVNG6dKli/LVV1+lSZ6FZdApSqpGPiGEEEIICyCdZIUQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFscoEJS4ujosXL+batNhCCCGE0JZVJiiBgYEMHz6cwMBArUMRQgghRC6wygRFCCGEEPmbJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLY5vVHWJiYli+fDnnzp3j/PnzREZG8v7779OlS5dMP8bRo0dZunQply5dwmAwULp0afr370+7du2yGo4QQggh8qEsJyjh4eEsWrSIYsWKUalSJQICArK0/8aNG5k+fToNGzZk+PDh2NjYcPPmTR48eJDVUIQQQgiRT2U5QfHy8mLt2rV4eXlx4cIFRowYkel97927xw8//ECvXr2YMGFCVg8thBBCiAIiy31Q7O3t8fLyytbB/v77bwwGA0OHDgWMzUWKomTrsYQQQgiRf2X5CsqzOHbsGGXKlOHgwYPMnj2bhw8fUqhQIV588UWGDBmCXi99doUQQgiRxwnK7du30ev1fPXVV/Tv35+KFSuyZ88elixZQnJyMq+//rrZ/YKDgwkJCVHvyyrGQgghRP6WpwlKbGwsBoOB119/nVdeeQUAPz8/IiMjWb16NQMHDsTZ2TnNfuvWrWPRokV5GaoQQgghNJSnCYqDgwOxsbG0b9/epLxdu3YcOnSIS5cuUa9evTT79ezZkxYtWqj3AwMDmTJlSm6HK4QQQgiN5GmC4uXlxe3bt/Hw8DApT7kfGRlpdj9vb2+8vb1zPT6Rv8U8iuP8jltUb1caZw9HrcMRQgiRgTztlVq1alXA2KcktZT77u7ueRmOKGBiwuIJ+PMKMWHxWocihBDiKXItQQkODiYwMJCkpCS1rG3btgBs2LBBLTMYDGzatInChQurCYwQQgghCrZsNfGsWbOGqKgodWTN/v371Zlge/fujaurK3PmzGHz5s2sWLGCEiVKANCyZUsaNGjAb7/9RlhYGJUqVWLv3r2cOnWKSZMmYW9vn0OnJYQQQghrlq0EZcWKFQQFBan39+zZw549ewDo2LEjrq6uZvfT6XRMnTqVefPm8e+//7J582ZKly7Nhx9+SMeOHbMTihBCCCHyIZ1ihVO5Xrx4keHDhzN37lxpFhKZFnw9nL8+OMALU5vjXd5N63CEEEJkQKZuFUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGERYt5FMex1ZeJeRSndSgiD0mCIoQQwqLJMhUFkyQoQgghhLA4kqAIkQvkkrQQQjwbSVCEyAVySVoIIZ6NJChCCCGEsDiSoAghhBDC4kiCIoQQQiB9xyyNJChCCCEE0nfM0kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEKILIt5FMex1ZeJeRSndSgin5IERQghRJbFhMUT8OcVYsLitQ5F5FOSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQVk6GeQoj8ShIUIayYDPUUQuRXkqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4WU5QYmJiWLBgAZMmTaJbt260atWKTZs2ZevgX3/9Na1ateLdd9/N1v5CCCGEyJ+ynKCEh4ezaNEiAgMDqVSpUrYPfOHCBTZt2oS9vX22H0MIIYQQ+VOWExQvLy/Wrl3LqlWrGDVqVLYOqigKM2fOpFOnTnh6embrMYQQQgiRf2U5QbG3t8fLy+uZDrplyxauX7/O8OHDn+lxhBBCCJE/5Xkn2ZiYGH755RdeffXVZ050hBBCCJE/2eb1ARctWoSDgwP9+vXL9D7BwcGEhISo9wMDA3MjNCGEEEJYiDxNUG7dusXq1av5+OOPs9Q5dt26dSxatCj3AhNCCCGERcnTBOXHH3+kVq1a+Pn5ZWm/nj170qJFC/V+YGAgU6ZMyeHohBBCCGEp8ixBOXbsGIcOHWLKlCncu3dPLU9OTiY+Pp579+5RuHBhXFxc0uzr7e2Nt7d3XoUqhBBCCI3lWYLy4MEDAD788MM02x4+fMhLL73E2LFjs9Q3RQghhBD5U64lKMHBwURHR1OqVClsbW157rnnmDp1app633zzDcWLF2fgwIFUqFAht8IRQgghhBXJVoKyZs0aoqKi1JE1+/fvV6+Q9O7dG1dXV+bMmcPmzZtZsWIFJUqUoFixYhQrVizNY/300094eHjg6+v7DKchhBBCiPwkWwnKihUrCAoKUu/v2bOHPXv2ANCxY0dcXV1zJjohhBBCFEjZSlBWrlz51DqTJ09m8uTJOfJYQgghhChY8nwmWSGEEEKIp5EERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQFstgUHh4LRyAh9fCMRgUjSMSecVW6wCEyG+e/ED1LFsYvV6ncVRCWJ/rh4M4uOQ80aFxAOyff5YTa6/SdFB1yjcurnF0IrfJFRQhctD1w0GsGL+L/fPPAsYP1BXjd3H9cJDGkQlhXa4fDmLHjAA1OUkRHRrHjhkB8jdVAMgVFCGywKAYOH3/NDtv7OT8w/PcjLhJQnICdno7PBK8ST7mRNWY2pSmIvr/z/9TPlDbTawvv/qEyASDQeHgkvPpbo/WRzJjxWwcw+O48ugK4XHhGBQD3s7elHcvT1OfprQu1xpPJ888jFrkNElQhMiEe5H3mHNsDvMD5nMr4lb6FYsa/3NL8qBFeEdah3XFM6kIAAeXnqdsw2LS3CPEUwRdCE1z5cRAMqddjrLT4x/OOQeg6AxwIP3H0Ov0dK3cldcbvE7Xyl3R66TBwNpIgiJEBsLiwvhq31fMPDSTuKS4p+/w/8JtH7HRawVbPNfQ5lF3uoW8DCHGD96SNbxyMWIhrF9sWLzJ/bPOx1lVdB53HG5k+jEMioF/Lv3DP5f+oUGJBnzV/ivaV2ifw5GK3CQJihDp2Hh5I8PXD+du5F21TK/T07FiR7pU6kJTn6aUdy+Ps50z5w9c56/FO7jhdJkzLkc543KUZF0yyboktnv+xcHC/zLw/jjahNXV8IyEsA5O7g4AROkj+L3Y/zhaeK/Jdq+EYjwX1ZxXe/al5XNNKOJcBJ1OR1BUEOcfnmfnjZ2sOreK2xG3ATh27xgdlnZgUN1BzOg0Aw8njzw/J5F1kqAI8YTE5EQmbZ3Ej4d/VMvsbewZ22gsE5tOpLRb6TT7lCxagnLxVSgXXwW/sG6E2YTwr8d6dnj8TYI+nijbCGaXmkro5essajwfR1vHvDwlIaxK8Wqe3Cp6mZmFPiPcNlQtLxdbhe4h/akd3ZBCXi681MbPpMm0kmclKnlWokfVHnzT4Rv+ufQPn+7+lBNBJwBYcnIJ/17/lz/7/UmjUo3y+KxEVkmjnBCphMSE0Pn3zibJSedKnbk09hLfdfrObHICxg9UF8/HSYd7she9gv2Zcn0u9SObq+UrbvxB60WtTa7KCCFMLTm1mGmek9TkxCW5EEPvTeL9m99TN7oJemxoOrB6hv25bPQ2PF/teY6NOMa8HvNwc3AD4HbEbVoubMmSk0tM6uf1fCsxj+I4tvoyMY8y33Rc0EiCIsT/uxNxhxYLWvDv9X8BsNPbMbvbbDYO2EhZ97IZ7qvX62g6qHqaco8kb0bd/YDX7r2Fo96YwBy+cxjfhb7cCLuR4+cghDVTFIXPdn3Ga3+/RqKSCEDNhPp8ev1nmka0RY8eFy/HLI2I0+v0DH1uKGdGn6FlmZYAJCQnMPivwcw4OAPQZnqAmLB4Av68QswT/W3EY5KgCAHcCr9F60WtuRhyEYCiLkXZOXgnIxuORKfL3Kib8o2L025ifZMrKQCuXk58NGQS/w3/j7JuxkTn2qNr+C705VLIpZw9ESGslKIofLzzYz7d/alaNqbRGI59epBu/q0AaDG0Ji/N9MvWcH2fwj7sGLSDUQ1HqWVvbHmDCb9PkvlWLJQkKEJzWl/qvBd5j9aLWnP10VUAyruX59CwQ7Qo0yLLj1W+cXFe+tGPFkNrAqYfqPWK12P/kP1U864GGC81t1nchpvhN3PsXISwVp/s+oQpe6eo97/v+D2zus7Cwc6eIhWMzTNFKrg90zB9ext7/tf1f3zm95la9uOV79jisSbdfQ4uPS/T62tEEhShuby41Jle+3JkfCRd/+jK9bDrAFT2rMye1/ZQzr1cto+l1+vS/UAtVbgUu/13U7eYcTTP3ci7dP6tM6GxoWYfS4iC4Jejv/DFni/U+z91+Yk3mr2RK8fS6XR83Ppjfuj0g1q2uuh8DhTeYbZ+dEgcQRfk71MLkqCIfC+99uVLB2/Rd1VftYd/Wbey7PLfhU9hn1yNp6hLUbYN3EYlz0oAnA8+T49lPbI0z4oQ+cXGyxsZs3GMen9m55mMbTw21487selE3qj4tnp/cfEfOOd83GzdJ+dlEXlDEhSRr2W0nsfoZePYcnULAB6OHmx6ZRMlC5XMk7iKuBRhy6tbKOZSDIADtw4wbuO4PDm2EJbi7IOz9FvVD4NiAODt5m8zvsn4PDv+W/Xfoc2jHgAYdAbmlJzOQ7u0fU5S5mUReUsSFJFvZbSex+FCu9nh+TdgbJf+++W/qV4k7Sic3FTBowIbX9mozokyL2Aec4/NzdMYhNBKZHwkvVf2JjoxGoC+NfryVfuv8jSGEtW9GJo0gTpRjQGItonk55JfEK97/IPGxcuR4tVkTR8tSIIi8i1z63kA3LW/yZLiM9X7n9f9Et+yvnkZmuq5Es8xt8fjpGTsprEcuXNEk1iEyCuKojBs/TB11FzdYnVZ/MLiPF8vR6/X0XxQTYbee5tiCaUAuO14nd+L/U+t87T5VkTukQRF5Fvm2o0TdYnMKfkV8Xpj4tIsvD29PV/O69BMvFrnVcY3Nl7WTkhO4JU/XyEqIUrTmITITXOOzWHl2ZUAFHYozOp+q3Gyc9IklvKNi9NjfEsmRU3BwWCM4T+3HZwscUBWINeYJCgi3zLXbvy311J1wbFS8WV55f5onD20n3b+247f0riU8TLz5dDLvLnlTY0jEiJ3XA29yltb31LvL3x+odphXCvlGxfnzR8G81m1L9WypUV+QldFOq5rSRIUkW89Of38JaczbPU0zndga7Bl2L138PR0t4j2ZTsbO3578Tdc7FwAmHt8Ln9f+FvjqITIWcmGZAb/NVjtd/J6g9fpVb2XxlEZ6fU6hjZ9jcYRfgCEx4czcO1AtQOvyHuSoIh8K/X083G6GBYW/x5FZ5z/5PmQgfjEl7eo9uXKXpWZ0XmGen/khpE8in2kXUBC5LDv//ue/bf2A8ZO4t92/FbjiNJ65f4YyriWAWDfzX38cvQXjSMquCRBEflayvTz//j8QbC9cfhg5ZiavKgbYJHty0PrD6V7le4ABEUF8e72dzWOSIiccTH4Ih/u/BAAHToWPb8IV3tXjaNKy9ngwszms9T7721/j1vhtzSMqOCSBEXke6E+d9jm8hcA9gYHZrX6hf4z21lccgLGWS5/7vqz+sE99/hcdt/YrXFUQjwbRVEYvXE0CckJALzZ7E3NRs5lRsvirRhWfxgAkQmRjN44GkWR6e7zmiQoIl9LNiQzcsNItR25R8gAnqtR22Kadcwp7Vaaae2mqfdH/DNCZpkVVm35meXqKuHl3MvxeZvPNY7o6b7u8DXFXY0/Yv659A+rzq3SOKKCRxIUka/NPjqbo3ePAlDNvTrtQ1/UOKLMGdVwFE19mgJwKeQS3+z/RuOIhMie8Lhw3tz6eFTaT11+wtnOWcOIMsfDyYNZXR439by55U2iE6I1jKjgkQRF5Fv3o+7zwb8fqPe/afI9tthqGFHm2ehtmNtjLjY6GwC+2v8VtyNuaxyVEFn30c6PCIoy9v96odoLah8ra9C7Rm+6Ve4GwJ3IO0zbN+0pe4icJAmKyLc+3vkxEfERAAypN4SmxZppHFHW1Cpai9GNRgMQkxjDe9vf0zgiIbLm3MNz/O+IcVZWZztnZnae+ZQ9LM8PnX7ATm8HwLcHvuXao2saR1RwSIIi8qUzD84wL2AeAIXsCzGtvXX+8vnU71M8nYzztPx++ncO3DqgcURCZN7b295W+3994PsBZdzKaBxR1lX2qszEphMBiE+OZ9LWSdoGVIBIgiLypUlbJ5l8MBZ1KapxRNnj6eTJF22+UO9P2DxBJo4SVmH7te1svLwRgNKFS/NG0zc0jij7Pmz1obry+NoLa9l5fafGERUMkqCIfGfzlc1suboFgLJuZZnQdILGET2bEQ1GUKtoLQCO3j3KqrMymkBYtmRDssl09l+2+1KztXZyQmGHwiYj697d/q4MO84DkqCIfCXZkMzb295W709vPx1HW+3X2nkWtnpbvu3weMbND3d+SGJyooYRCZGxJSeXcOr+KQAalmzIgNoDNI7o2Q2qO0j9oXDk7hH+PP+nxhHlf5KgiHxlxdkVnHlwBoAmpZrQr2Y/jSPKGR0rdsSvnB8AV0KvsCBggbYBCZGO+KR4Ptn1iXr/2w7fotdZ/1eNjd7G5CrKB/9+QJIhScOI8j/rf9cI8f+SDEkmH4xftvsSnc5yJ2TLCp1OZ/Lh+Pmez4lJjNEwIiHMm3d8HrcijFPDd63cldblWmscUc7pVrkbLcu0BOBiyEUWnVikbUD5nCQoIt9YcnIJV0KvANCmXBvalm+rcUQ5q6lPU16o9gIAdyPv8tOhn7QNSIgnxCbGMnXvVPX+536WP2NsVuh0Or5q95V6/9Ndn8osz7lIEhSRL8QnxfPZ7s/U+6lHvuQnU9pMUS+Xf33ga6ISIzWOSIjHZh+dzb2oe4BxUrYGJRtoHFHOa1GmBT2q9ACMk7fNPz5f44jyrywnKDExMSxYsIBJkybRrVs3WrVqxaZNmzK177Fjx/jqq68YMGAAHTp04KWXXmL69OkEBwdnOXAhUpsfMJ+b4TcB6FKpCy3KtNA4otxRs2hNXqn9CgChsaEsvCh9UYRliEqI4qt9xqsLOnT57upJap/5Pf4x9NX+r4hPitcwmvwrywlKeHg4ixYtIjAwkEqVKmVp319++YWAgAB8fX2ZMGEC7dq1Y+fOnQwbNoyQkJCshiIEAHFJcSaXlfPr1ZMUk30no8PYt+bncz8Rr5NLzEJ7sw7P4mHMQwD61exH7WK1NY4o99QvUZ+eVXsCcDviNgtPLNQ4ovwpywmKl5cXa9euZdWqVYwaNSpL+44ZM4Zly5YxatQounfvzogRI/jqq68IDQ3lzz9lyJbInsUnFnM38i6Qfy8rp1bNuxov1XoJgOC4YPa4b+LhtXAMBpmXQWgjOiGabw8Yh8LrdXo+9ftU24DywEetPlJvT9s3jYTkBA2jyZ+ynKDY29vj5eWVrYPVq1cPvV6fpqxw4cIEBgZm6zFFwZZkSGL6/unq/Q98P8igdv7h7z5Svb3FczU7FxxnxfhdXD8cpGFUoqCaHzCfkFjjVfCXar5ENe9qGkeU+xqWbEjXyl0BuBl+kyUnl2gcUf6jeSfZmJgYYmNjcXNz0zoUYYVWnl3J9bDrAHSo0IGGJRtqHFHuu344iFvzY3gu0tjPJtz2EXvdthAdGseOGQG5lqTEPIrj2OrLxDySJiXxWEJygnr1BOC9lgVnUcuPW32s3p66d6pMoJjDNE9QVq1aRWJiIm3bpj8kNDg4mIsXL6r/5GqLADAoBpPlzyf7TtYwmrxhMCgcXHIegG4hL6vlmz1XkYTxw/Hg0vO50twTExZPwJ9XiAmTDoHisTXXV6nznnSr3I06xepoHFHeaeLThE4VOwFwI+wGK86u0Dii/MVWy4OfOHGCRYsW0aZNGxo0SL/fwLp161i0aFHeBSaswoZLG9RZY5v6NKV12fwzIVR6gi6EEh1qvIJRJr4idSObcrLQQcLsQjhceDfNI9oTHRJH0IVQStbIXlOsEJllwMBPZ2eq999v+b6G0WjjA98P1LW/vjnwDa/UfiXfTBCpNc0SlMDAQD788EMqVKjAu+++m2Hdnj170qLF42GjgYGBTJkyJbdDFBZMURS+3Pelen9yy8kF4kMh9omrF50f9eZkoYMAbPVcQ7OIdujQpaknRG444XqQy+GXAGhZpmW+Hd6fkZZlWtKkVBMO3TnEqfun2Hp1K50qddI6rHxBkyae+/fv89Zbb+Hi4sL06dNxdnbOsL63tzdVq1ZV/5UtWzaPIhWWanfgbg7eNn4x1ypai25VumkcUd5wcncwuV8ptiYVY6sDcMchkLPOx8zWEyKnKYrCJs+V6v2CePUEjLPLvt388QKl3xz4RsNo8pc8T1DCw8N56623SExM5Ntvv8Xb2zuvQxD5wNf7v1Zvv9/y/XyxGFlmFK/miYun6erMHUN7qbe3ev6Ji5cjxat55nVoooDZF7SHG07Gqyd1i9WlS6UuGkeknReqvUAlT+O8YDuu7+D4veMaR5Q/5NqnenBwMIGBgSQlPV7tMTY2lnfeeYfg4GC+/vprSpcunVuHF/nY+Yfn2XTFOHtxWbey+WbF4szQ63U0HVTdpKxeVFOKJpQE4LzLCQr1TEKvz//NXUJbs8/9rN5+t8W7BaKJNT02ehvebPqmej/1qCaRfdlKUNasWcPixYvZuHEjAPv372fx4sUsXryYqKgoAObMmcPAgQN5+PChut8XX3zB+fPn8fPzIzAwkK1bt6r/9u7dmwOnIwqCmYced8ob13gctnpN+3rnufKNi9NuYn31SooeGzqEvqhuXxa5SKPIREFx4eFFtt0xdgwt7lCS3tX7aByR9vzr+ePtbGwRWHl2JYFhMtr0WWXrk33FihUEBT2ea2HPnj3s2bMHgI4dO+Lq6mp2vytXjCvNbty4UU1uUhQvXhxfX9/shCMKkJCYEHVCJFd7V4Y9N0zjiLRRvnFxyjYsxsWdt9g//yxvvTieLSdXEBwTzIozK5jWbhpl3MpoHabIh64fDmL8n++Ck/F+y1udWTNxH00HVad84+LaBqchJzsnxjYay6e7PyVZSeaHgz8wo/MMrcOyatlKUFauXPnUOpMnT2byZNN5KTKznxAZmXNsDrFJsQAMqTcEN8eCO8GfXq+jSAXj+ZeuXIyx9o8/HGcenMl3nb7TOEKR31w/HMS6H/ewu+JmAOwNDrQM70S0wThJYLuJ9Qt0kjKm8Rim759ObFIs8wPm83mbzynsUFjrsKxWwehZKPKFhOQEZh2ZBRhXSx3fZLzGEVmW0Y1G42hrbPaZHzCfqIQojSMS+UnKJIH73LaQoDcOY28R3gEXQyG1Tm5NEmgtvJ29GVR3EGBc3XnRiUXaBmTlJEERVmPV2VXqooDPV3ueip4VNY7IshRxKcKAWgMACI8P57dTv2kckdBCbi1JEHQhlIjQaP71WK+WtX3U06ROyiSBBdnYxmPV2z8d/gmDYtAwGusmCYqwCoqi8MPBH9T7bzR9Q8NoLNe4JuPU27MOz0JRCu6v2YIqt5YkiA2LJ8D1AKF2xoEPdaIaUzzRx2y9gqxW0Vq0LW9cuuVK6BW2XNmicUTWSxIUYRUO3DrAsXvGScieK/EcvmWkQ7U59YrXo2WZlgCcfXiWnTd2ahyRyC+c3B3Y7vmXer/9oxfSrVfQjW/8uPn5x8M/ahiJdZMERViFn48+nnNhQpMJBXrOhacZ1/jxVZQfD8mHo8gZd91ucNXJuFBlqfiyVIupm6aOTBJo1L1Kd8q5lwNg85XNXAq5pG1AVkoSFGHxHkQ/YNXZVQB4OXkVqInZsuPFai9SqlApANZfWs+NsBvaBiTyhV+P/aLebvuoJzrS/khoOrC6TBKIceK2MY3GqPdnHZ6lYTTWSxIUYfHmH59PoiERgKH1h6ojVYR5djZ2jGw4EgCDYuDnIz8/ZQ8hMhYWF8bvp38HwNW2EG1sOptsd/FyLPBDjJ80pP4QnGyNk8UsOrGIiPgIjSOyPpKgCIuWbEjml///5aZDx+sNX9c4IuswosEI7G3sAZh3fB4xiTEaRySs2eITi9X5h/zrD2bwj11oMbQmAC2G1uSlmX6SnDzB08mTgXUGAhCZEKlOMCkyTxIUYdE2Xt7IzfCbAHSp3IUKHhU0jsg6FHUpysu1XgbgUdwjVpxZoXFEwlopisLso7PV+6MajTKZJLBIBTdp1klH6iHHvxz9RUbVZZEkKMKipe4cO7rhaA0jsT6pn69fj/2qYSTCmu28sZOLIRcB8CvnR40iNTSOyHrULlabFqVbAMZRdQduHdA4IusiCYqwWFdDr7L5inFK7XLu5ehcqfNT9hCpNS7VmLrFjCMtDt05xMmgkxpHJKxR6j5MoxqO0jAS65TSHwxQm6tF5kiCIixW6svKIxuMxEZvo2E01ken0/F6g8d9duQqisiqOxF3+OvCXwAUdy3OC9Ve0DQea9SnRh88nYxDr1edXUVITIjGEVkPSVCERYpNjGVBwAIA7G3sGVJ/iMYRWadX6ryCi50LAL+d+k3W5xFZMvf4XJKVZACGPzdc7XgtMs/R1hH/uv4AxCfHs/jkYm0DsiKSoAiLtOrcKh7FPQKgX81+FHEponFE1qmwQ2H61+oPGEcSLDu9TOOIhLVITE5kzrE5AOh1eoY/N1zjiKzXiAYj1Nu/HvtVOstmkiQowiLNOz5PvT2ywcgMaoqnST00W5p5RGZtvLyRe1H3AOhRpQel3UprHJH1qupdlTbl2gBwKeQSu27s0jYgKyEJirA4F4IvsPfmXgCqe1eneenmGkdk3RqWbMhzJZ4D4Ni9Yxy7e0zjiIQ1mBfw+EdC6r5MInuks2zWSYIiLM784/PV28OeGybr7uQA6SwrsuJOxB02Xt4IgE9hHzpW7KhxRNbvhWovUNSlKABrz6/lQewDjSOyfJKgCIuSkJygdiKz09sxqO4gjSPKH/rX6o+rvSsAf5z+Q6bdFhladGIRBsUAwJB6Q2QEXQ6wt7FnSD1jZ/9EQyLLrvyucUSWTxIUYVHWXVzHw5iHALxY/UW8nb01jih/KORQiFdqvwJAdGI0f5z+Q+OIhKUyKAbmBxivYurQyQi6HDS8weOOxn9c+Q0F6SybEUlQhEVJ3TlWRg3krNTNPCmjM4R40r/X/+V62HUAOlbsSFn3shpHlH9U8KhA2/JtAbgWeZXLTmc0jsiySYIiLMbNqEC2Xt0KQHn38uofssgZ9UvUp2HJhgAEBAVwIuiEtgEJi5T6R8Kw54ZpGEn+NLT+UPX2PretGkZi+SRBERZj2ZXf1UueQ+sPRa+Tt2dOS2kDB1gYsFDDSIQlCo4JZu2FtQAUcS5Cz6o9NY4o/3mx2ou4O7oDcKzQPiISwrUNyILJN4CwCAaS+eP/O43pdXr86/lrG1A+1b92fxxtHQH47fRvxCfFaxyRsCS/nfqNhOQEAAbXHSwzx+YCJzsnBtQaAECCPp6/bqzVOCLLJQmKsAhnXY5zN+YOAN0qd6NU4VIaR5Q/uTu607t6bwBCY0NZd3GdxhEJS6EoiknzztDnhmZQWzyL11JdyVx0ZhEGg3SWNUcSFKEpg0Hh4bVw9rhtVsuk3Tt3pR6VkTJaQ4iDtw9y9uFZAFqWaUk172oaR5Q/XT8cxOVpEZSOqwDA6agTfPvGQq4fDtI4MssjCYrQzPXDQawYv4uNi/ZyyvUQAO7JXlR/9JzGkeVvfuX8KOdeDoCtV7dyK/yWtgEJi2DSOba+/EjIDdcPB7FjRgDRoXG0DO+klm9jPTtmBEiS8gRJUIQmUv+hHiy8E4POOClU87D27P7xtPyh5iK9Ts9r9V4DQEGR1VUFUQlRrDi7AjAuMNm3Zl+NI8p/DAaFg0vOq/ebRPhha7AD4GDhf0nUJXJw6fkcb+6JeRTHsdWXiXkUl6OPmxckQRF5LvUfqoLCf27b1W3Nw9sD5MofqnjMv54/OoxLCCw8sVCdNVQUTKvPrSY6MRowzjrsbOescUT5T9CFUKJDHycJLoZCPBdlXGcsyjaCky4HiQ6JI+hCaI4eNyYsnoA/rxATZn0d4iVBEXku9R/qTYcr3HEIBKBSTA2KJRo7x+bGH6p4rIxbGTpU7ADAtUfX2BO4R+OIhJYWnVik3k65uiZyVqyZBKFF+OM1jva5b023XkElCYrIc6n/AA+47VBvN4ton249kfNSz4myIGCBhpEILV1/dJ3dgbsBqOpVlcalGmscUf7k5O6QpqxaTF28EooBcM75OCG2D8zWK6gkQRF5LuUPMIlEDhfaBYCdwZ6Gkb5m64nc8Xy15/Fw9ACMl/jD42TCqIJo6aml6u3BdQfL6uG5pHg1T1w8HU3K9OhpEWG8kqnoFI4W303xap5ahGeRJEEReS7lD/WU6xGibI2r6taPaoazwUWt4+LlaNV/qM7uDtTvVQlnC06yHG0d1QUEY5Ni1U6SouBQlMedpHXoGFh3oMYR5V96vY6mg6qnKW8e3h6dYkwKjxTZieSHj0mCIvJcyh/qgcKPO8c2Czdt3mk6sDp6vfX+pTp7ONKgT2WcPRyfXllDqedEkWaegmffzX1ce3QNgPYV2uNT2EfjiPK38o2L025ifZMrKV5JRamRWB+AwJgb7L+1X6vwLI4kKEITrjVtOFv4KADuiV7UiKkHGK+ctJtYn/KNi2sYXcFRv0R96hWvB8ChO4c4++CstgGJPJW6c+zguoO1C+QprOGKZGaVb1ycl370o8XQmgC0GFqTt/tOULcvPiHD/lNIgiI08cfpP0hSkgDoU74femxoMbQmL830k+Qkj6XuLLvk5BINIxF5KSYxhlXnVgFQyL4QL1Z/UeOI0mctVyQzS6/XUaSCGwBFKrjRp0ZvXO1dAVh5biUxiTFahmcxJEERmlh0cpF6+7Xn/AHjH6o1N+tYq5drvYyt3hYwLiCYbEjWOCKRF9aeX0tkQiQA/Wr2k7lPNORi70LfGsbJ8SLiI/jrwl/aBmQhJEERee5k0ElOBJ0AoHGpxlRxr6ptQAVcEZcidKvcDYC7kXfZfm37U/YQ+UHqHwmyerj2UjexyezORpKgiDyX+o/Pktu9CxL5cCxYboXfYsc14xxEFT0q0qJ0C40jEr5lfdU1srZd3cbtiNvaBmQBJEEReSoxOZHfT/8OgL2NPS/XelnjiARAtyrd8HLyAmDthbUyJ0o+t/TUUhSMS0kMqjtI5j6xAHqdXv2hoKDw26nfNI5Ie5KgCLNya4GpzVc28yD6AQA9q/bE08l65zrJT+xt7Olfqz8AcUlxaudJkf+knvsEjAmKsAypX4vFJxejKAV7PTJJUIRZubXAVOoPRv+6/jn62OLZDK4nzTwFwcHbB7kUcgkAv3J+arOC0F4Fjwq0KtsKgAvBFzh857DGEWlLEhSRZ0JiQlh/aT0AxVyK0alSJ40jEqk1KNGAGkVqAMYJvK6GXtU4IpEbpA+YZZP+YI9JgiLyzPIzy0lITgDg1TqvqkNbhWXQ6XQmH44yJ0r+E5cUx/IzywFwsXOhT40+GkdkWSxhQrg+NfrgZOsEGD8z45JytpndmkiCIvKM/HKzfK/WeRW9zvixsOTUEgyKQeOIRE76+8LfhMcbO0D3TjU5mDCyhAnhCjsUpneN3gA8invE+ovrNYtFa5KgiDxx7uE5jtw9AsBzJZ6jdrHaGkckzClZqCQdKhhXV70RdoO9gXs1jkjkJOkDZh2kmcdIEhSRJ1KvLyFXTyybfDjmT3cj77Ll6hYAyrqVpXW51hpHJNLTplwbdeHGzVc2ExQVpHFE2pAEReS6ZEMyv502jum31duqw1mFZXqh2gsUdigMwKpzq4hOiNY4IpETfj/1u9pkN7DOQLUpT1geG70Ng+oYhxwnK8n8fup3jSPShrxDRa7bdm0bdyPvAtC9SneKuBTROCKRESc7J/rV6AdAVEIUay+s1Tgi8ayenPsk9ZByYZlSz4my6OSiAjkniiQoItdJ51jrk/oLTEbzWL9j945x9uFZAFqUbkElz0oaRySepqp3VZr6NAXgzIMzBAQFaBxR3styghITE8OCBQuYNGkS3bp1o1WrVmzatCnT+0dGRvLNN9/Qo0cPOnbsyIQJE7h48WJWwxBWIiwujLXnjb/AvZ296Vq5q8YRicxoUboFFT0qArD92nZZF8TKSR8w65S6I/OiE4s0i0MrWU5QwsPDWbRoEYGBgVSqlLUs3GAw8O6777J9+3Z69erFyJEjefToERMmTODWrVtZDUVYgZVnVxKfbJyNdkCtAdjb2GsckcgMnU6nXmKWdUGsW3xSPH+c+QMAR1tH+tXsp3FEIrNeqvUSDjbGOVn+OP2HOo9UQZHlBMXLy4u1a9eyatUqRo0alaV9d+3axZkzZ3j//fd57bXX6NWrFz/++CN6vZ6FCxdmNRRhBVJn/bKku3UZWGegelvWBbFeGy5vIDQ2FIAXq72Im6ObxhGJzHJ3dOeFai8AEBIbwsbLG7UNKI9lOUGxt7fHy8srWwfbvXs3np6etGrVSi1zd3enTZs27Nu3j4SEgpUd5neXQi7x3+3/AKhdtDb1itfTNiCRJeU9ypusC/LvqT0APLwWjsEgyYq1SP0jQZp3rE9BHvafp51kL126ROXKldHrTQ9bvXp14uLi0m3mCQ4O5uLFi+q/wMDAvAhXPKPUnSsH1x0sS7pbodQfjr/smgPA/vlnWTF+F9cPF8y5GazJg+gHbLpi7CNYslBJ2ldor3FEIqs6VOxAcdfiAPxz6R8eRj/UOKK8k6cJSmhoqNmrLyllISEhZvdbt24dw4cPV/9NmTIlV+MUz86gGNQExUZnwyt1XtE4IpEdDWN8sTcY28APF95Noi4RgOjQOHbMCMiVJCXmURzHVl8m5lHBXYMkp/xx+g+SDEmAscnORm+jcUQiq2z1tmpza5IhiWVnlmkcUd7J0wQlPj4ee/u0nSRTyuLj483u17NnT+bOnav++/DDD3M1TvHsdl7fya0I4xWxzpU6q78AhPUwGBTOLrtN/ajmAMTYRHHK5ZBJnYNLz+d4c09MWDwBf14hJsz854HIPGneyR8KajNPniYoDg4OZvuZpJQ5OJhfQdLb25uqVauq/8qWLZurcYpnt+jkIvW2dI61TkEXQokOjaN5eDu17D+3HSZ1okPiCLoQmtehiUw4HXqKk/dPAtC4VGOqF6mucUQiu2oWrUnDkg0BOH7vOKfvn9Y4oryRpwmKp6en2WaclLLsdr4VliUiPoI159YA4OHoQY8qPTSOSGRH7P9fwagWUxePRG8ATrscIcLmkdl6wrKsuPq4KUCunli/gngVJU8TlMqVK3P58mUMBtMl3M+fP4+joyOlS5fOy3BELll9bjWxSbEA9K/VHwdb81fGhGVzcje+bnpsaBrRFgCDzsChwrvM1hOWI4kk1lxfBYC9jT0v13pZ44jEs+pfqz92ejsAfjv1m9q3KD/LtQQlODiYwMBAkpIeP4mtW7cmNDSUPXv2qGVhYWHs3LmT5s2bm+2fIqyPrPmRPxSv5omLpyMAzcMfj/7Y77YNBWO/ExcvR4pX89QkPpG+My5HCY4LBqBn1Z54OslrZO28nL3oUdV4Nfp+9H22XNmicUS5zzY7O61Zs4aoqCi1aWb//v08ePAAgN69e+Pq6sqcOXPYvHkzK1asoESJEgD4+fmxevVqpk2bxo0bN3Bzc+Ovv/7CYDAwZMiQHDoloaWroVfZE2hMQKt7V6dRyUYaRySyS6/X0XRQdXbMCKB4og8VY6tz1ek8dxxucMvhGmXiK9J0YHX0ehk+bikMBoWH18L5z227WpZ6unRh3QbXHcyf5/8EjD8Eu1XppnFEuStbCcqKFSsICno8vHDPnj3qVZGOHTvi6upqdj8bGxu+/vprfv75Z9asWUN8fDzVqlXj/fffp0yZMtkJRViY1HOf+Nfzl7lPrFz5xsVpN7E+B5ecp1l4O646nQfgcLGdvNarD+Uby+gsS3H9cBAHl5wnKPw+JyseBsDN4EGV0LoaRyZySpdKXSjiXISHMQ/5++LfhMaG5uurY9lKUFauXPnUOpMnT2by5MlpygsVKsS7777Lu+++m51DCwtmUAwsOWVMUPQ6Pa/WeVXjiEROKN+4OGUbFqPCNm+WH/iVJH0ix7z2UKpB/v1gtDbXDwexY4ZxtdvD7rtJ1hmb1puEtWH3j6ex1dtKMpkP2NnY8UrtV5hxaAYJyQmsOLOCUY2ytuSMNcnTTrIif9sTuIcbYTcA6FixIyULldQ2IJFj9HodFauUUedECY4JLnDrglgqg0Hh4JLz6v3UzTvN/n+IeG7MVyO0kXrahvw+mkcSFJFjTBYGlHbvfCl1Z9mCuPy7JUqZrwbgjv0NAh2vAFA2rhI+CeUBma8mP6lbvC51ixmb7Q7dOcSF4AsaR5R7JEEROSIqIYrV51YD4ObgxvPVntc4IpEbasTUo7iTsdP7hssbCtS6IJYq9Tw0B1JNpNcsvH269YR1M5kT5UT+vYoiCYrIEWvOrSE6MRqAl2u9jKOto8YRidygx4a+FV4CjOuC/HH6D40jEinz0CSTzMHC/wJgo9jSOLK12XrC+r1S5xVs9cYupEtPLSXZkKxxRLlDEhSRI6xhantndwfq96qEs3xQP5OXK/ZXb6d+3YU2UuarOetyjAhb4yy/daMaUyjZTa0j89XkL0VditKlUhcA7kTeYcf1HU/ZwzpJgiKe2fVH19l1YxcAVb2q0qRUE20DSoezhyMN+lTG2UOu7jyLKu6PX+MTQSc4EXRC24AKuJT5ag4UTt051rR5R+aryX8KQmdZSVDEM1t6aql6e3DdwTL3SR7S6qpQQWkDtxZute057Wac+6RQkhu1oo0Ly7l4OdJuYn0ZYpwPdavcTZ0DZe35tYTHhWscUc6TBEU8E4NiUEdz6NAxsO5AbQMqYLS6KvRyrZextzEuTfH76d9JTE7M0+MLU8vPLCdBMa4K/2KZPthiS4uhNXlppp8kJ/mUg60DA2oNACA2KZZV51ZpHFHOkwRFPJN9N/dxPew6AB0qdsCnsI/GEYm84OHkwQvVXgDgYcxDNl3ZpG1ABVzqS/yvPecPQJEKbtKsk8+lXussPzbzSIIinonMfVJwpX69ZU6UjMU8iuPY6svEPIrL8cc+//A8h+8Ym3fqFa9HLc/aOX4MYZkalGhAjSI1AOOPxSuhVzSOKGdJgiKyLTohWr2sWNihsPqLWhQMHSp2oLirsfngn0v/EBwTrHFElismLJ6AP68QkwtzkZisHl5XVg8vSHQ6nckPhdRroeUHkqCIbPvz/J9EJUQB8FLNl3Cyc9I4IpGXbPW2DKxj7HOUaEhk2ellGkdU8CQbktVO6rZ6WwbUHqBxRCKvvVrnVfQ641f5kpNLMCgGjSPKOZKgiGyzhrlPRO5K/Ytd5kTJe9uubeNu5F3AOKqjqEtRjSMSea1EoRJ0qtgJgMDwQHbf2K1xRDlHEhSRLYFhgey8vhOAyp6VaebTTOOIhBZqFq1Jo5KNADh+7zin7p/SOKKCZeGJheptad4puEyG/eejzrKSoIhsWXhiIQrG1VFl7pOCTeZE0UZwTDBrz68FoIhzEbpV6aZxREIrz1d7HjcH48zBq8+tJjI+UuOIcoYkKCLLkg3J6i83vU4vzTsFXOo5UZaeWkpCcoLGERUMv536jUSDcf6ZQXUHqa+BKHgcbR15udbLAEQnRrPy7EqNI8oZkqCILNt+bTs3w28C0KVSF0oVLqVxREJLXs5eJnOi/HPpH20DKgAURWF+wHz1/tD6QzWMRliCYc8NU2/PC5inYSQ5RxIUkWXywSieNKx+qg/H4/njw9GSHb5zmDMPzgDQvHRzqheprnFEQmsNSjSgbrG6ABy8fVB9f1gzSVBEljyMfshfF/4CjCtqdq/SXduAhEVoV6EdZd3KArD5ymZuhd/SOKL8TX4kiCfpdDqTqyjzj8/PoLZ1kARFZEnqdm//uv7Y2dhpHJGwBHqdXv2iVFBYELBA44jyr6iEKJadMc4542rvSr+a/TSOSFiKV2q/goONceHQpaeWEp+U8xMD5iVJUESmKYpi0rY5pP4QDaMRlsa/nr86YdSCEwtINiRrHFH+tOrsKnWCxJdrvoyrvavGEQlL4eHkQe8avQEIiQ3h74t/axzRs5EERWTawdsHOffwHAC+ZXyp6l1V44iEJSntVprOlToDcDP8Jtuvbdc4ovzJpHnnOWneEabyU38wSVBEpkm7t3gakw/HfDKSwJJcCL7A/lv7AahZpCZNSjXROCJhaVqXa01Fj4qAcabhwMgb2gb0DCRBEZkSGR/J8jPLAePCgH1q9NE4ImGJulfpTjGXYgD8feFvHkQ/0Dii/CV1x8eh9YfKBIkijdT9wQCWXf1dw2iejSQoViY3l23PyMqzK4lOjAagf63+uNi75OnxhXWws7FTJ+5LNCSy9ORSbQPKRxKTE1lyyrharZ3ejoF1B2ockbBUg+sNxkZnA8BvF5ZiIJmH18IxGBSNI8saSVByQF4mDbm5bHtGUl+uTz2UTYgnpf71Ni9gHopiXR+KluqfS/+oV6ReqPYC3s7eGkckLFXJQiVpU6Q9APcTgjjrcpz988+yYvwurh8O0ji6zJMEJQdolTTklTMPznDw9kEA6harS4MSDTSOSFiyyl6VaV22NWDaZ0I8m1+P/arelj5gIiPXDwdR7XhT9f5ety0ARIfGsWNGgNUkKZKgiKf65egv6u1hzw2Tdm/xVKmvss09PlfDSPKHq6FX2XLV+CVTzr0cHSp20DgiYakMBoWDS85TK7ohbkmeAJxyPUSYTaha5+DS81bR3CMJishQVGIUS04a272d7ZwZWEfavcXT9a7eG3dHd8DYfyk0NjTjHUSG5hybo95+vcHr6nwzQjwp6EIo0aFx2GBDi3BjIpusS2af+2a1TnRIHEEXLP9vUt7lIkN/Xl9NZIJx6e4BtQbg5uimcUTCGjjZOTGoziAA4pLiWHxiscYRWa/4pHgWnDDOzGunt5MJEkWGYlN1NWgV1hmdYrzivcdtM8kkm61nqSRBEelSUFh06fGU5SMbjtQwGmFtRjUapd6efXQ2BsWgYTTWa835NQTHBAPQu0ZviroU1TgiYcmc3B3U215JxagT3RiAR3bBnHY9bLaepZIERaTruuNFToeeAqBRyUY0KCmdY0XmVfOuRptybQC4HHqZf6//q3FEaWk1bD8rUvcBG9VwVAY185azuwP1e1XC2Qq+6AqS4tU8cfF0VO+3Duuq3t7pvgEAFy9HilfzzPPYskoSFJGuXe4b1duW9MEorMfoRqPV2z8f+VnDSMyz9BF4Zx6cYe/NvQDUKFID3zK+Gkf0mLOHIw36VMbZw/HplUWe0et1NB1UXb1fM7oB3gnFATjncpwHdndpOrA6er3lD3aQBEWkYTAoXL4YyNFCewBwd3TnpVovaRyVsEbPV32eEq4lAFh3cR23I25rHJF1+fXo46HFIxuMlBF0+UhuXoEq37g47SbWx8XTET16Wod3UbfdaHeM8o2L5/gxc4MkKMLE9cNBrBi/ixnrZ5GoTwCgaWhb7gdE5Nox5VJx/mVnY8fw54YDkKwkM/eYDDnOrKiEKHXmWGc7Z5k5Np/J7StQ5RsX56Uf/WgxtCYtwjtip7MHYE3QCmITY3PlmDlNEhShun44iB0zAogKjWV3quad5vc75erkPnKpOH8b3mC4Ou323ONzSUxO1Dgi67Ds9DIi4o0/DPrX6q8O2xYis/R6HUUquFEo2Y3ny70AQGhsKKvOrdI2sEySBEUAjyf3ATjvHMB9+zsAVI2pQ4mE0oD1TO4jLItPYR96Vu0JwL2oe/x98W+NI7J8iqIw68gs9b6MoBPPyr/q4+Hps4/O1jCSzJMERQCPJ/cB2O7x+AvE71E39ba1TO4jLE/qTtaW2FnW0uwO3M2p+8YRdE19mtKwZEONIxLWrnGRJtQpVgeAg7cPcuzuMY0jejpJUATweNKe+3Z3OO16BADPxCLUj2putp4QWdGuQjsqe1YGYOeNnZy+f1rjiCzbzEMz1dvjG4/XMBKRX+h0OsY0GqPeT/0es1SSoAjg8aQ9/3qsV8v8wrpjg43ZekJkhV6nZ3yTx1+0Mw7O0C4YC3f90XXWXVwHGFel7VOjj8YRifzi1Tqv4ulknP9k+Znl3Iu8p3FEGZMERQDGyX10Xknsd9sGgL3BgVZhnU3qWMvkPsIy+dfzx83BuFTC76d/50H0A40jskz/O/I/ddbdUQ1HYWdjp3FEIr9wtnPm9QavA5BoSLT4viiSoAjA2Nv7RssA4vXG4WdNI9riYihkUsdaJvcRlsnV3lVd5Tg+Od5kjg9hFJUQxbzj8wBwsHFQv0yEyCmjG41WR9X9cvQX4pIsdxZlSVAEAMmGZP64/3hBt7aPeqq3XbwcaTexvtVM7iMs19jGY9WVeH8++jPxSdKnKbWlJ5cSHh8OQP/a/SniUkTjiER+41PYh741+wLwMOYhy04v0zii9EmCIgDYcHkD1x5dA6Bd+fb0G2hcv6HF0Jq8NNNPkhORI8q5l+PFai8CEBQVxMqzKzWOyHIYFAM/Hv5RvS+dY0Vumdhkonp7xqEZKIplTh8hCYoATHt0T2w6gSIVjH0FilRwk2YdkaMmNp2o3v7h4A8W++GY17Zc2cKF4AsA+JbxpX6J+hpHJPKrJj5NaFKqCQCn7p9i141d2gaUDklQBMfuHlNXmq3kWYmulbs+ZQ8hsq9F6RbqvB4BQQHqYngF3dcHvlZvv9H0DQ0jEQXBkz8ULJEkKMLkg3FSs0lqHwEhcoNOpzO5xPzNgW+0C8ZCHL5zWP0VW8WrijrzrhC5pXf13vgU9gFg/aX1nH1wVuOI0pJvogLuauhVVp9bDUBRl6IMqjtI44hEQdC3Zl9KFzYuofDPpX8K/MRtqZO0Sc0mYaO3yaC2EM/OzsaOt5q9pd5P/UPVUmQ5QUlISGD27Nm8+OKLtG/fntdff50jR45kat+jR48yYcIEevToQdeuXRkxYgRbtmzJctAi53z333fqnAsTmkzAyc5J44hEQWBvY8+k5pPU+9P3T9cwGm1dCb3Cn+f/BKCYSzFZtVjkmWHPDVMnbvvj9B8EhgVqHJGpLCco06ZNY+XKlXTo0IHx48ej1+t55513OHXqVIb77du3j7feeovExET8/f0ZNmwYDg4OTJ06lZUrpSe/Fh5EP2DhiYUAuNi5mKyXIkRuG1p/KF5OXoBxVsvrj65jMCg8vGYcZvvwWniBWJzy+/++N/mR4Ggrq3qLvOFq78rYRmMBSDIk8f1/32sckaksJSjnzp1jx44djBgxgtGjR9OzZ09mzJhB8eLFmT074xnp/vzzT7y8vJgxYwa9e/emV69e/PDDD5QqVYpNmzY900mI7Jl1eJY6Sc+IBiPwcPLQOCJRkLjYuzChyQQAkpVkPvrrM1aM38X++ca28P3zz7Ji/C6uHw7SMsxclfpHgqu9q6xaLPLcuCbjcLI1Xjmfe3wuwTHBGkf0WJYSlN27d2NjY0PPno87cDk4ONCtWzfOnj3L/fv30903JiaGQoUKYW9vr5bZ2tri5uaGg4Os75LXIuIjmHXYuJy7rd5WRg0ITYxpPAZXe1cAVtz4g3vhpmuDRIfGsWNGQL5NUr7/7/vHPxKekx8JIu95O3sz/LnhAMQmxfLToZ80juixLCUoly9fxsfHBxcXF5Py6tWrA3DlypV0961Xrx7Xr19n3rx53L59mzt37rB48WIuXrxI//79sxG6eBazDs/iUdwjAF6p/Qql3UprHJEoiDydPBnx3AgAkvSJbPf4y2y9g0vP57vmnuCYYPVHgr2NPW80kx8JQhtvNnsTW70tAD8d/omohCiNIzLKUoISEhKCl5dXmvKUsuDg9C8NDR48mDZt2rB06VIGDBhA//79+f333/n8889p3bp1hscNDg7m4sWL6r/AQMvqyGNtIuMj+e6/7wDjKrMf+H6gcUSiIBvg/Ro2ivHDcZf7BmL0aT8co0PiCLoQmteh5aof/vuB6MRoAIbVH6YO+RQir5V1L8uA2gMAeBT3iJ+P/KxxREa2WakcHx+PnV3alTVTmm3i49NfV8POzo7SpUvj5+dHq1atSE5OZv369UyZMoXvv/+emjVrprvvunXrWLRoUVZCFRn435H/ERpr/LAfUHsAlb0qaxyRKMjc4z1pHt6Ove5biLWJYZvHWp4PSTuSJTYs/6zbExobyk+HjZfS7fR2vNfyPY0jEgXdey3eY+nJpSgofHPgG0Y3Gq02v2olS1dQHBwcSExMTFOekJCgbk/PjBkzOHDgAJ988gnt2rWjY8eO/PDDD3h5efHjjz+mux9Az549mTt3rvrvww8/zErYIpWohCi+PfAtYLx68qGvPJdCW07uDnQJfQkbxTj3x3aPv4jSR5itl1/MODiDyIRIAIbUHyJNrEJz1YtU5+VaLwOmzY9aylKC4uXlRUhISJrylDJvb2+z+yUmJrJhwwaaNWuGXv/4kLa2tjRp0oSLFy+aTXxSeHt7U7VqVfVf2bJlsxK2SOV/h/9HSKzx9epfqz9VvatqHJEo6IpX86RcoXK0CO8IQJxNLFs815jUcfFypHg1Ty3Cy3GPYh+pa1/Z6e14v+X7GkckhNHHrT9WZxL/5sA3RMSn/aGQl7KUoFSqVInbt28THR1tUn7u3Dl1uznh4eEkJyeTnJycZltycjIGgwGDwZCVUHJFfFI83x34ji/3fql1KLkiKiGKb/8zXj3RoePDVnL1RGhPr9fRdFB1uoW8jK3B2Or8r8c6ImweqXWaDqyebxat/OHgD+oHv389f8q6yw8uYRmqeVdT+6KExoZqPqInSwmKn58fycnJrFu3Ti1LSEhg48aN1KhRg2LFigFw//59k46sHh4euLq6snfvXpMrJTExMezfv58yZcpoPtQ4MTmRer/WY9K2SXy++3Nuht/UNJ7c8P1/36tj3F+u9TLVvKtpHJEQRuUbF6fv2I60i+sBQII+ns2eq3HxcqTdxPqUb1xc4whzxoPYB+pkWHL1RFiij1p9pF5F+e6/7wiPC9csliwlKDVq1KBNmzbMmTOH2bNns27dOiZOnEhQUBAjRz6eYGjq1KkMHPi4k5uNjQ0vv/wyt27dYuTIkaxcuZLly5fz+uuv8/DhQwYN0n79FzsbO7pX7g5AfHI8H+38SOOIctaD6Afqeh82Ohs+8/tM44iEMFW+cXHmT56Fg974Y2WP90ZaflE53yQnAN+d+kYduTOy4UjKe5TXOCIhTFXxqsKrdV4FIDw+nJ03dmoWS5anup88eTJ9+/Zly5Yt/PjjjyQlJTF9+nTq1auX4X6DBg3io48+wtbWlkWLFjF//nxcXFz4/PPP6dixY3bjz1GTfSfj4WicKGnpyaWcCDqhbUA5aMqeKerY9hENRsjIHWGRSrmVZEi1YQDEG+L5dPcnGkeUcx7Y3WXJpcezxkoTq7BUH7X6iIF1BnJ+zHleqPaCZnFkaZgxGEfqjB49mtGjR6dbJ71ROR06dKBDhw5ZPWSe8XDy4MNWH/LW1rdQUHhn2ztsHbhV67Ce2dXQq/xy9BcAnO2c+bj1xxpHJET6JtR6k0WnFxFrE83CEwsZ32Q8dYvX1TqsZ/aX91KSlCQA3mr2FkVdimockRDmVfKsxJIXl2gdRtavoOR3YxqNoZx7OQC2XdvG1qvWn6B8uPNDEg3Gvj9vNXuL4q7555K5yDvO7g7U71UJ51we7uvl6EW3EONwRwWFSdsmoSjWPYtsQPBxjhTeDUAR5yImy9wLIcyTBOUJDrYOfNn28Siet7e9TbIh7egja7Hv5j6Wn1kOGNdcSL3EvRBZ4ezhSIM+lXH2yP3VdtuG9aCMaxkAtl/bzuYrm3P9mLklKTmZt/c+Tkg+9P2QQg6FNIxICOsgCYoZL9V6iYYlGwJw6v4p5gfM1zii7Ek2JDNu0zj1/hdtvqCwQ2ENIxIic+wUez6s/7j/yaRtk0hMTn+uJEt1/XAQ49/5kJORAQCUiC+Dx2/V8+3ih0LkJElQzNDr9HzX8Tv1/vs73reoJagza86xOWpH33rF66krVgphDV4o14smpZoAcO7hOXVyM2tx/XAQG2bu5w/nX9Wylx+MID40KVdXaM6rpjghcpskKOloVbYVr9R+BTBOWPPedutaKyMkJoQPdz4eJfBTl5+w0dtoGJEQWaPT6ZjVdRY6jBO0fbrrU26F39I4qswxGBQOLjnPBq8VhNsaJ5yrF9mUGjHPqXVya4XmvGyKEyI3SYKSgW87fqs2icwPmM9/t/7TOKLMe2/7e+qCgK/UfoWWZVpqHJEQWdewZENGNRwFQHRiNBO3TNQ2oEwKuhDKxejzbPP8EwBbgx39HppewcyPKzQLkZMkQclAcdfifNHmC/X+qA2jrKIdfMe1HcwLmAcY51uY3n66xhEJkX1T201Vh+T+ef5PNl7eqHFETxcZGs2iYjNI1hk72HcO7UORxBJp6uWnFZqFyGmSoDzF6EajqVe8HgAn759k2r5p2gb0FNEJ0Qxf//iX2vT20ylVuJSGEQnxbNwd3U36hL3+z+uaTr+dGb8/XESg02UASsSXpmvoy2br5acVmoXIaZKgPIWt3pa5PeZiozP23/hizxcE3AvQOKr0fbTzI66HXQeM/WhGNhz5lD2EsHyv1H6F9hXaA3A74rZFN/VcDb3Kt+e+AkCn6BgcNBE7xS5Nvfy0QrMQuUESlExoWLKhuqhXkiGJwX8NJiE5QeOo0tp3cx8zDs4AwNHWkXk95qmLPglhzXQ6HfN7zqeQvXH+kEUnFrHu4rqn7JX3Uj4fYpNiAWgT1oOKcdXN1s1PKzQLkRvk2yuTPmr9EXWK1QHg9IPTfLLTstYIeRT7iAFrBqBgHBXwud/nst6OyFfKuJVhZufHQ41HrB/Bw+iHGkaU1pd7v2T/rf0AlHMvx8x+3+PiaTqaJr+t0CxEbpEEJZPsbexZ/MJibPXG5Yu+2v+VxcxuqSgKw9cP51aEcQhm67KtebPZmxpHJUTO86/nT/cqxlXH70ffZ+DagRgUg8ZRGe2/uZ/PdhtXCbfR2fBHrz+o1bwiL/3oR4uhNQFoMbQmL830k+REiEyQBCUL6hWvZzIN/qt/vsrtiNt5dnyDQeHhNWPnwIfXwtU5FH4+8jNrzq8BwNPJk996/SZznoh8SafTMbfHXHVUz5arW/hy75dP2Sv3PYh+QP81/dVk6ePWH9OsdDMA9HodRSq4AVCkgps06wiRSZKgZNFbzd9Sf8GFxIbQb1U/4pLjcv241w8HsWL8LvbPPwvA/vlnWTF+F8s3/WnSYXB+z/n4FPbJ9XiE0Epx1+Is671M7V/18c6P2XZ1m2bxJCYn0ndVX/UKZssyLZnsO1mzeITILyRBySK9Ts/iFxZTxs24kNl/t/9j4oFxat+P3HD9cBA7ZgQQHWqaCAVGBDL8wGskGR4v4f5CtRdyLQ4hLEXb8m35zM/YnKKg0HdVX849PKdJLG9ueZM9gXsAKOFagpV9VqpNwUKI7JMEJRs8nTxZ+9JanO2cAVhzfRXrvX7PlWOlTJn9pCh9BD/6fEKUbQQAHSp0lAnZRIEy2XcyPar0ACA8Ppxuf3TjftT9PI3hm/3fMOvILMDYT+3Pl/6kRKG0E7IJIbJOEpRseq7Ec/ze63d1nZD13n/ww74ZOb62RtCF0DRXTuJ0Mcz0+Zh7DjcBKJpQkhm1f5Z+J6JA0ev0/NH7D+oXrw/AjbAbdPm9i7rEQ25bGLCQd7a/o97/pdsvNPVpmifHFqIgkATlGdSNaMqAqMcToX157VOGv/Nmjq5S+uRU2HG6GGb5fM4Np0sAuCV5MvH2FzjEOOXYMYWwFq72rvwz4B9KFy4NQEBQAB2WduBR7KNcPe7vp35n2Pph6v0pbabwWv3XcvWYQhQ0kqBkU0q/EL87Pege3F8tX1BoBu8s/oBrh+7lyHFST4UdaRPOt6Xf56LzKQCck11549YUiiSWkCmzRYFVslBJtg7cSjGXYgAcv3ecdkvacS8yZ/4GnzTr8CxeXfuqOmJnfOPx0ilWiFwgCUo2PNkvpGfIq3QJ6aveX110AcPXjiA+8dlnmy1ezRMXT0eC7G7zdem31fU9nJNdmXD7c0ollJMps0WBV827GjsH71STlICgABrPa8yJoBPp7pPesP30JBmSeG/7e4zbNE4tG9lgJD90/gGdToYOC5HTJEHJhif7hejQ8WKwPz2DX1XL/nX6h5a/+nL90fVnOpZeryO4wyWmlJtAkINxzhX3RC/eufk1FeKqATJlthAA1YtUZ+fgneoIu9sRt2mxoAXzjs9DUUyTj/SG7afXPHs38i5dfu/C9P2PO6JPbjmZn7v9LMtJCJFL5C8rG8wtka5DR4+QAQy9+za2BuMQw6Mhh6n7S11mHpxJYnJilo9zO+I2vVb0YvyJkcTrjWt7lIwvy7s3v1WvnMiU2UI8Vr1IdQ4PO6x2Vo1JjGH4+uF0X9adyyHGq4/pDduPDo1jx4wAkyQl2ZDM3GNzqfG/Gmy/th0wLiD6Y+cfmdpuqlw5ESIXSYKSDRn192ga2YZJt77GO8GYNEQmRDJxy0Rqza7F3GNziU2MferjXw65zLiN46j4Y0XWXlirlr9S+1XW+W3GO6mYTJktRDqKuRZj5+CdDKv/uBPrxssbqflzTV5f/zqrf9+U4f4Hl54nOj6GpSeXUnt2bUb8M4LweGNTUHHX4vw76F/GNRmX4WMIIZ6dzCaUDSn9Qp78BZaiYlw1voqcy4F2a1lwYgEAl0IuMeKfEbyx5Q06V+pMi9ItqFGkBoUdCpOsJHM38i4B9wL498a/HL5z2OTxiroU5cfOP9KvZj9CbkQQwHWZMluIDDjaOjK351x6VO3ByH9Gci/qHomGROYcnwOecyjtXIFa0Q0oFV8ez6Qi2Cg2RNtE8tAuiMv2Zxj53UkiEiNMHnNQ3UH80OkHPJ2kv5cQeUESlGzQ63U0HVSdHTMC0q3T9tWGDG3cnZENR/L2trfZHbgbgOjEaNacX6OunZMRZztnxjUexzst3pEPRSGyoWfVnrQt35av93/N9/99T3RiNAC3HK9xy/Fa+jumapFtUboFU9tOpXW51rkcrRAiNWniyabyjYvTbmL9py6l3qhUI3b57+LI8CMMqTcELyevpz527aK1+abDN9yYcIOv2n8lyYkQz8DV3pXP23zOnTfv8GndKZSNq/TUfQrZFmJw3cHs8d/D3tf2SnIihAbkCsozKN+4OGUbFuPizlvsn3+WFkNrUrVNabNNLw1LNmT+8/OZY5hDQFAAp++f5kroFWISYwBj23ZFz4q0KN1CpsoWIhe4ObrxUc/JVNnenLu373Ld6SL37G8RaRNOsi4ZR4MTnolFqOpYg3e+GYa9rZ3WIQtRoEmC8oyyupS6jd6GhiUb0rBkw7wITwiRyuPm2TjqRTWjHs3S1Gn3Wn1JToSwANLEI4QoUDLbPCuE0JZcQRFCFDhZaZ4VQmhDrqAIIQqkrDbPCiHyliQoQgghhLA4kqAIIYQQwuJIgiKEEELkU87uDtTvVQnnDJZosVTSSVYIIYTIp5w9HGnQp7LWYWSLXEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhFnW3LFKCCGE9ZNOssIsa+5YJYQQwvrJFRQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWJwszySbkJDA/Pnz2bp1K5GRkVSsWJFhw4bRqFGjTO2/Y8cOVq9ezdWrV7G1taVs2bIMGzaMBg0aZDl4IYQQQuRPWU5Qpk2bxq5du+jbty8+Pj5s2rSJd955h5kzZ1KnTp0M912wYAGLFy/Gz8+Pzp07k5SUxPXr1wkODs72CQghhBAi/8lSgnLu3Dl27NjBqFGj6N+/PwCdOnXC39+f2bNnM3v27HT3PXv2LIsXL2bMmDH069fv2aIWQgghRL6WpT4ou3fvxsbGhp49e6plDg4OdOvWjbNnz3L//v109121ahWenp706dMHRVGIiYnJftRCCCGEyNeydAXl8uXL+Pj44OLiYlJevXp1AK5cuUKxYsXM7nvs2DFq1arF6tWrWbp0KeHh4Xh6ejJw4EB69+6d4XGDg4MJCQlR7wcGBmYlbCGEEEJYmSwlKCEhIXh5eaUpTylLry9JZGQk4eHhnDlzhuPHj+Pv70+xYsXYtGkTM2fOxNbWlueffz7d465bt45FixZlJVQhhJVydnegfq9KOLs7aB2KEEJDWUpQ4uPjsbOzS1Nub2+vbjcnpTknPDycTz75hHbt2gHg5+eHv78/S5YsyTBB6dmzJy1atFDvBwYGMmXKlKyELoSwEs4ejjToU1nrMIQQGstSguLg4EBiYmKa8oSEBHV7evsB2Nra4ufnp5br9Xratm3LggULuH//frrNQ97e3nh7e2clVCGEEEJYsSx1kvXy8jLpC5IipSy9JKJw4cLY29tTuHBhbGxsTLZ5eHgAxmYgIYQQQgjIYoJSqVIlbt++TXR0tEn5uXPn1O1mD6LXU7lyZcLDw9NcgUnpt+Lu7p6VUIQQQgiRj2UpQfHz8yM5OZl169apZQkJCWzcuJEaNWqoTTT3799PM9KmTZs2JCcns3nzZrUsPj6ebdu2Ua5cOWnCEUIIIYQqS31QatSoQZs2bZgzZw5hYWGUKlWKzZs3ExQUxLvvvqvWmzp1KidOnGDPnj1q2fPPP8+GDRv44YcfuHXrFsWKFWPLli3cv3+fadOm5dwZCSGEEMLqZXmq+8mTJ6vJRVRUFBUqVGD69OnUq1cvw/0cHByYMWMGs2fPZuPGjcTFxVGpUiWmT59O48aNsxu/EEIIIfKhLCcoDg4OjB49mtGjR6db58cffzRb7uHhweTJk7N6SCGEEEIUMFnqgyKEEEIIkRckQRFCCCGExZEERQghhBAWRxIUIYTIZbK+kBBZl+VOskIIIbJG1hcSIuvkCooQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKFZGhisKIYQoCGSYsZWR4YpCCCEKArmCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghCizpdC6E5ZJOskKIAks6nQthueQKSg6QX2FCCCFEzpIrKDlAfoUJIYQQOUuuoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLY6t1ANkRHx8PQGBgoMaRCCGEECKrypYti6OjY4Z1rDJBCQoKAmDKlCkaRyKEEEKIrJo7dy5Vq1bNsI5OURQlj+LJMWFhYRw+fJgSJUpgb2+vdTi5LjAwkClTpvDhhx9StmxZrcPJU3LuBe/cC+p5Q8E994J63lBwzz3fXkFxd3enY8eOWoeR58qWLfvUjDO/knMveOdeUM8bCu65F9TzhoJ97umRTrJCCCGEsDiSoAghhBDC4kiCYgW8vLzw9/fHy8tL61DynJx7wTv3gnreUHDPvaCeNxTsc38aq+wkK4QQQoj8Ta6gCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOFY5UVt+FBwczOrVqzl//jwXLlwgNjaWmTNnUr9+/TR1x48fz4kTJ9KUN27cmG+//dakLCEhgfnz57N161YiIyOpWLEiw4YNo1GjRrl1KlmWlXMHOH36NL/88guXLl3CxcWFNm3aMHz4cJydnU3qWcO5m7Np0yamTZtmdtvatWvT9Pbft28fCxcuJDAwEHd3d7p27cqgQYOwtbWuP29rfb2yIiAggAkTJpjdNnv2bGrWrKnez+z73BLFxMSwfPlyzp07x/nz54mMjOT999+nS5cuaereuHGDWbNmcfr0aWxtbWnWrBljx47F3d3dpJ7BYGD58uX89ddfhIaG4uPjw6uvvkr79u3z6KyeLrPn/eWXX7J58+Y0+5cpU4bffvvNpMwazju3WNcnWD5269Yt/vjjD3x8fKhQoQJnz57NsH6RIkV4/fXXTcrMDVObNm0au3btom/fvvj4+LBp0ybeeecdZs6cSZ06dXL0HLIrK+d++fJl3njjDcqWLcvYsWN58OABK1as4Pbt23zzzTcmda3h3DMydOhQSpQoYVLm6upqcv/gwYN88MEH1KtXjwkTJnDt2jWWLFnCo0ePeOutt/Iy3Gdm7a9XVvTu3Zvq1aublJUqVUq9nZX3uSUKDw9n0aJFFCtWjEqVKhEQEGC23oMHDxg3bhyurq4MHz6c2NhYli9fzrVr1/j111+xs7NT686dO5fff/+dHj16UK1aNfbt28fnn3+OTqejXbt2eXVqGcrseQPY29vzzjvvmJS5uLikqWcN551rFGERoqOjlfDwcEVRFGXnzp2Kr6+vcvz4cbN1x40bpwwaNOipj3n27FnF19dX+eOPP9SyuLg45eWXX1ZGjhyZM4HngKyc+6RJk5QXXnhBiYqKUsvWr1+v+Pr6KocOHVLLrOXczdm4caPi6+urnD9//ql1Bw4cqLz22mtKYmKiWjZnzhylVatWyo0bN3IzzBxlza9XVhw/flzx9fVVdu7cmWG9zL7PLVV8fLwSHBysKIqinD9/XvH19VU2btyYpt53332ntG/fXgkKClLLjhw5ovj6+ip///23WvbgwQOlTZs2yvfff6+WGQwGZcyYMUqvXr2UpKSkXDybzMvseU+dOlXp2LHjUx/PWs47t0gfFAvh7OxM4cKFs7RPUlISMTEx6W7fvXs3NjY29OzZUy1zcHCgW7dunD17lvv372c73pyU2XOPjo7m6NGjdOzY0eSXRqdOnXBycmLnzp1qmbWc+9PExMSQnJxsdtuNGze4ceMGPXr0MGnOefHFF1EUhV27duVRlM8uv7xeWRETE0NSUlKa8qy8zy2Vvb19piYe2717N82bN6dYsWJqWcOGDSldurTJee7bt4+kpCRefPFFtUyn0/HCCy/w8OHDp15xziuZPe8UycnJREdHp7vdWs47t0gTj5W6desWnTp1IjExEU9PT7p3746/v7/JF9Xly5fx8fFJc9kw5dLylStXTD4YLN21a9dITk5Os6CWnZ0dlStX5vLly2pZfjj3CRMmEBsbi52dHY0aNWLMmDGULl1a3X7p0iWANM+Ht7c3RYoUMXk+LF1+eL2yYtq0acTGxmJjY0OdOnUYNWoU1apVA7L2PrdmDx8+5NGjR2YXyKtevToHDx5U71++fBknJ6c0q/2mvD8uX75sdc2AcXFxdOnShbi4OAoVKkS7du0YOXKkSR+j/HjeWSEJihUqWbIk9evXp0KFCsTFxbFr1y6WLFnCrVu3+Oyzz9R6ISEhZrP5lLLg4OA8izknhISEAOb72nh5eXHy5EmTutZ67g4ODnTp0oX69evj4uLCxYsXWblyJaNHj2bevHnqF/XTno+U7dbAml+vrLC1taV169Y0bdoUNzc3bty4wYoVKxg7diw///wzVapUydL73Jo97TwjIiJISEjA3t6ekJAQPDw80Ol0aeqB9b0/vLy86N+/P1WqVEFRFA4dOsRff/3F1atXmTlzpvpDM7+dd1ZJgpILDAYDiYmJmaprb2+f5s33NO+9957J/U6dOvHNN9+wfv16+vXrp44EiI+PN+lklvqYKdtzWm6ee0q86Z1TQkKCSd28PndzsvN8tG3blrZt26rlvr6+NG7cmHHjxrF06VImTZoEoJ5vyjk9+VgZNf9ZGkt5vXJb7dq1qV27tnq/ZcuW+Pn58dprrzFnzhy+/fbbLL3PrdnTzjOljr29fb57fzw5wKFdu3aULl2auXPnsnv3brXza34776ySBCUXnDx5Mt2hhE9aunRpmst32fHSSy+xfv16jh49qiYoDg4OZr8cUz7gHBwcnvm4T8rNc0+JN71zSv1FrcW5m5NTz0edOnWoUaMGx44dU8tSztfcF1ZCQkKenWNOsJTXSws+Pj60bNmSPXv2kJycnKX3uTV72nmmrlMQ3h/9+vVj/vz5HD16VE1QCsJ5Z0QSlFxQpkwZ3n///UzVzakVLIsWLQpAZGSkyWM/fPgwTd2US6ve3t45cuzUcvPcU+qba7oICQkxOR8tzt2cnHw+ihYtys2bN9PUDwkJSdM/IyQkJM0wVktmKa+XVooWLUpiYiJxcXFZep9bs6edZ+HChdVkzMvLi4CAABRFMbnqmp/eHw4ODhQuXJiIiAi1rCCcd0YkQckFXl5eZickyk13794FMJncKGUcfnR0tEnnw3Pnzqnbc1punnv58uWxsbHh4sWLJk0giYmJXL58mTZt2qhlWpy7OTn5fNy9e9fk9a1cuTIAFy9epEaNGmp5cHAwDx8+NBkRY+ks5fXSyt27d7G3t8fJySlL73NrVqRIEdzd3bl48WKabefPnzd5zStVqsQ///xDYGAg5cqVU8vz0/sjJiaG8PDwNJ/h+f28MyLDjK1MdHR0mkv6iqKwZMkSAJNZN/38/EhOTmbdunVqWUJCAhs3bqRGjRpWNyrC1dWVhg0bsnXrVpP+FVu2bCE2Ntbkg9uazz0sLCxN2X///cfFixdp3LixWla+fHnKlCnD+vXrTYYi//XXX+h0Olq3bp0X4eYIa369ssLca3vlyhX2799Po0aN0Ov1WXqfW7vWrVtz4MABk2Hkx44d49atWybn2bJlS2xtbVm7dq1apigKf//9N0WKFKFWrVp5GveziI+PN9s/bPHixSiKQpMmTdSy/HTe2SFXUCzI4sWLAeP8FmD8QDp16hQAgwcPBoxDSz/77DPat29PqVKliI+PZ+/evZw+fZoePXqYDNmrUaMGbdq0Yc6cOYSFhVGqVCk2b95MUFAQ7777bt6e3FNk5twBhg0bxpgxYxg3bhw9e/ZUZ9hs1KiRyR+2NZ37k0aNGkWVKlWoWrUqLi4uXLp0iY0bN1K0aFEGDhxoUnf06NG8//77vPXWW7Rr145r166xdu1aunfvbvKLy9JZ8+uVFZ988gkODg7UqlULDw8Pbty4wfr163F0dDTpOJnZ97klW7NmDVFRUWpzxP79+3nw4AFgnEnX1dWVV199lV27djFx4kT69OlDbGwsy5Yto0KFCiZXHosWLUrfvn1ZtmwZSUlJVK9enb1793Lq1Ck++ugjbGxsNDlHc5523pGRkQwdOpT27dtTpkwZAA4fPszBgwdp0qQJLVu2VB/Lms47N+gURVG0DkIYtWrVKt1te/bsAYyXgn/99VfOnz9PaGgoer2esmXL0r17d3r27JlmVEx8fLy6vklUVBQVKlRg2LBhJr/ELUFmzj3FqVOn1DVKnJ2dadOmDa+//nqaNUqs5dyfNHfuXA4ePMi9e/fUPgnNmjXD398fT0/PNPX37t3LokWLCAwMxM3NjS5duqSZE8caWOvrlRWrV69m27Zt3Llzh+joaNzd3WnQoAH+/v74+PiY1M3s+9xS9evXj6CgILPbVqxYoS7jcP369TRr8YwZMybNe91gMPDHH3+wbt06QkJC8PHx4ZVXXqFjx465fi5Z8bTzdnV1ZebMmZw9e5aQkBAMBgOlSpWiQ4cOvPzyy2n+bq3lvHODJChCCCGEsDjSB0UIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEVkaNOmTbRq1YpNmzZpHUqmBAQE0KpVKxYsWJBrx2jVqhXjx4/PtccvKPr160e/fv20DsPiLViwgFatWhEQEJCrx1m5ciVt27bl3r17maqfF39r1uyLL76gb9++xMfHax2K1ZIEJZ/56quvaNWqFd27d0+zqGB+YW1fbOHh4fzyyy8MGjSIDh060KFDB/r27cvEiRNZuHAhoaGheRLH05LN8ePHZ7jkQEESGxtL586dadWqFd9//73W4eS6yMhIlixZQteuXdUp6MWz8ff3Jzg4mFWrVmkditWyrsU6RIZiYmLYuXMnOp2OiIgI9u7dS7t27Z7pMX19falRowZeXl45FGXB8uDBA0aPHs2DBw+oXLkyXbp0oVChQoSEhHDmzBkWLlxI7dq1za6xk9/98MMPWoeQrp07dxITE4NOp2P79u2MGTMGBwcHrcPKNStXriQiIoL+/ftrHUq+Ubp0aVq0aMEff/xB7969cXJy0jokqyMJSj7y77//EhsbS79+/Vi9ejUbNmx45gTF1dUVV1fXHIqw4FmwYAEPHjxg6NChJqsyp7h69WqBfX5LlSqldQjp2rBhAzY2NvTq1YtVq1axZ88eOnTooHVYuSIpKYl//vmH2rVrW/RrYo06duzInj172LFjB927d9c6HKsjCUo+kvKhOmDAAK5evcrx48cJCgqiePHiJvUWLFjAokWL0n2c4sWLs3LlSsDYLDBt2jTef/99k+XPW7VqRb169fjoo4+YPXs2R44cISEhgbp16zJx4kRKlizJjRs3mDNnDidPniQpKYnGjRvzxhtvmFwtCAgIYMKECfj7+zNkyBCTOO7du8dLL71E586dmTx5sno/dQwpzO1/4cIF5syZw9mzZ9Hr9Tz33HOMHTs2zSXsPXv2sHPnTi5cuEBwcDC2trZUrFiRPn364Ofnl/GT/hRnz54FoFevXma3V6xY0Wz53bt3+f333zly5AghISG4uLhQrlw5unTpor4OiYmJrFu3jgMHDnDjxg3CwsJwcXGhdu3aDB48mCpVqqiP9+WXX7J582YApk2bxrRp00zOP/Vzmfp2ynOf4urVqyxdupQTJ04QERGBl5cXLVq04LXXXsPNzU2tl/q1GzBgAHPnzuXkyZNERESoK9mmNNOlvNfg8Xtz5syZBAcHs2zZMm7evImrqytt2rRh5MiRaa5kJCUlsXz5cv755x+Cg4MpUqQI3bp1o23btrz88stpzuFpbt68yenTp2nevLlJsm8uQUn9/m3evHmm3m8Au3fv5rfffuP69eu4uLjQokULRo0axdChQ9M8JxnJ7OuRkcOHDxMSEsKAAQPMbo+Pj2fhwoVs27aN8PBwSpUqRZ8+fdKsvpza3bt3Wbp0KUeOHOHRo0cUKlSIxo0bM2TIkDSfR5C15yPlvbx8+XL27NnDhg0buHv3Lu3atVNf50ePHvHbb79x4MABHjx4gLOzM3Xr1mXIkCFUqFAhzfGzUv/WrVv89ttvBAQEEBISgqOjI0WLFqV+/fqMGzfOZEX5Zs2a4ejoyObNmyVByQZJUPKJGzducPbsWZo2bYqnpyedOnXi2LFjbNy4Mc0Xd/369c0+RmBgIDt37sz0pezIyEjGjBmDl5cXnTp14vbt2xw4cIA333yTL7/8krFjx1K1alW6du3KpUuX2L17NxEREcycOTNb5+jq6oq/vz+rV68GoE+fPume04ULF1i2bBn169enZ8+eXL58mb1793Lt2jUWLVpkco5z5szB1taW2rVr4+XlRVhYGPv37+fjjz9mwoQJ9O7dO1vxAuqXxK1bt6hRo0am9jl16hTvvvsuMTExNG7cmHbt2hEZGcnly5dZvXq1mqBERETw008/UadOHZo2bUqhQoW4d+8e+/fv59ChQ/z0009Ur14dMDbVRUVFsW/fPlq2bEmlSpVMjunv78/mzZsJCgrC399fLa9cubJ6e9++fXz66afodDpatmxJ0aJFuXHjBn/++SeHDx/m119/pVChQiaPe+fOHUaNGkWFChXo3LkzERER2NnZPfU5SHnMFi1a8Nxzz3Ho0CHWrFlDeHg4H3/8sUnd6dOns2XLFkqWLMkLL7xAYmIiK1eu5MyZM5l6vp+0YcMGADp16kSxYsWoV68eAQEB3L17l5IlS5rdJyvvtw0bNjB9+nRcXFzo1KkTrq6uHDx4kDfffJOkpCRsbTP3sZyd18OcY8eOAVCzZs002wwGA++//z5Hjx6lQoUKtG/fnoiICGbNmpXu58i5c+eYNGkSsbGxNG/eHB8fH4KCgti2bRuHDh1i9uzZJs9jdp+PGTNmcO7cOZo1a0bz5s3x8PAAjO+58ePH8/DhQxo1akTLli0JCwtj9+7dHDlyhB9++MHkbzEr9YODg3n99deJi4ujWbNmtG3blri4OG7fvs1ff/3F6NGjTeK1s7OjSpUqnD17ltjYWGnmySpF5As//fST4uvrq2zfvl1RFEWJjo5WOnbsqPTp00dJTk5+6v6hoaFK3759lXbt2imnTp1Syzdu3Kj4+voqGzduNKnv6+ur+Pr6Kj/99JNJ+Xfffaf4+voqXbp0UVauXKmWGwwG5e2331Z8fX2VCxcuqOXHjx9XfH19lfnz56eJ6e7du4qvr68ydepUk/K+ffsqffv2NXseKY+X+rlIMWXKFLPld+7cSfM40dHRyuDBg5UuXboosbGxac593LhxZo//pNWrVyu+vr5Kz549lfnz5yvHjx9XoqKi0q0fHx+v9OrVS2ndurVy8ODBNNvv379vUvfBgwdp6ly7dk3p2LGj8sYbb5iUp/daphg3bpzi6+trdltYWJjSuXNnpVevXsq9e/dMtm3fvl3x9fVVfvjhB7Us5bVL77VVFPOv4/z589X3T2BgoFoeFxenDBgwQGndurXy8OFDtfzo0aOKr6+vMmTIEJPX6eHDh8rzzz9v9v2TkcTEROX5559XunTposTFxSmKoigbNmxQfH19lblz56apn9X3W0REhNKxY0elY8eOys2bN02OO2HCBMXX1zfd5+T48eNqWVZfj4wMHz5cad26tRIfH59mW8p7ZtKkSUpSUpJafuXKFaVt27ZpXt/ExESlb9++SqdOnZSLFy+aPNbJkycVPz8/5d13332m52Pq1KmKr6+v0qtXLyUoKChNzKNGjVL8/PyUQ4cOmZTfvHlT6dSpkzJ48OBs10/5e0792ZYiPDw8TZmiPP5sPnbsmNntIn0yiicfSEpKYuvWrbi4uNCyZUsAnJ2d8fX15f79+xw9ejTD/ePj45k8eTJBQUG899571K5dO1PHdXJyYtiwYSZlKX1e3NzcTK5w6HQ6ddvVq1czfW7ZVbdu3TT9b7p27QrA+fPnTcrN/Sp2dnamS5cuREVFceHChWzH0atXL/r3709UVBSLFi1iwoQJdO3alUGDBvHLL78QHBxsUn/fvn08fPiQDh060KRJkzSPV7RoUfW2vb09RYoUSVOnfPny1K9fX21aywlbtmwhOjqaESNGpLlE365dO6pUqcKOHTvS7Ofp6cnAgQOzfLw+ffpQpkwZ9b6DgwPt2rXDYDBw8eJFtXzr1q0ADB48GEdHR7Xc29vb5P2XWf/99x+hoaG0adNGverh5+eHo6MjmzZtwmAwmN0vs++3ffv2ERsbS9euXSldurRabmtrm+ZvKSPZfT3MefjwIa6urtjb26fZltIsOGzYMGxsbNTyihUr0rFjxzT1Dxw4QFBQEP379zdpYgSoU6cOLVq04ODBg0RHRwPP9nz079+fYsWKmZRdunSJM2fO0KlTJxo3bmyyrXTp0nTv3p1r165x7dq1bNVPYe4qc+HChc3GmXJl5+HDhxmej0hLmnjygX379hEWFka3bt1M/nA6derE1q1b2bBhQ5o/vhSKovDll19y9uxZXnvtNdq3b5/p4/r4+Jh8KQDqaJ8KFSqYtMWm3vbkl3JuqFq1apqylC/zqKgok/JHjx7x+++/c/DgQe7fv59m3oJniVen0zFq1Cj69+/PwYMHOXfuHBcuXODSpUvcuHGDdevW8e2336qXkFO+zBo1apSpx798+TLLli3j1KlThIaGpklIwsLC8Pb2znb8KVL60pw7d447d+6k2Z6QkEB4eDhhYWG4u7ur5ZUqVcpUk86Tnvxyg8fJWerX78qVK4Dxy+9JtWrVyvJx//nnH8D4t5PC2dmZli1bsn37dg4fPkzTpk3T7JfZ91tKcm4u3ho1apgkARnJ7uthTkREhNlENyVeJycns+dXp04dtTnsybhu3rxpdn6U0NBQDAYDt27dolq1as/0fKQ0X6Z27tw5wPg3be74N2/eVP+vUKFCluun9DP64YcfOHbsGE2aNKFevXrpNv3B48QlPDw83TrCPElQ8oHUbeapNWjQgCJFirB//34iIiLMZvjz5s1j586dtG/fntdeey1Lx3VxcUlTlvKBktG2nPpVnxFnZ+d0j5/6V3BERAQjRozg/v371K5dm4YNG+Lq6oper+fKlSvs27ePxMTEZ47H3d2dzp0707lzZwBCQkKYMWMGu3fv5ptvvmHhwoUA6i/L9L4wUjt9+jRvvPEGAA0bNsTHx0c973379nHlypUciR2M/Y0A1q5dm2G9uLg4k/spvx6zKqP3T+rXLyYmBr1eb7ZDaFaHbgcHB3P48GFKliyZ5guzc+fObN++nY0bN5pNUDL7fkt5fc09L+mdhznZfT3McXBwSHfOpOjo6HTfi+ae35S4tm3blqm4nuX5MLdPREQEYLwS9t9//6W7b2xsbLbqlyhRgtmzZ7Nw4UIOHjzIzp07AShTpgxDhw6lTZs2afZN+cGTn4ep5xZJUKzc/fv3OXLkCECGs5tu3bo1zSXvTZs2sXTpUmrXrs17772Xq3GmJ+UqS3JycpptKR9euWnDhg3cv3/f7DDg3377jX379uXKcb28vPjwww/577//uHr1KuHh4bi5ualDjjNzOXjp0qUkJCQwa9asNF+oKb8Mc0rKF/CiRYvMjoJIz5NX0XKas7MzBoOB8PDwNFcKsjoB3qZNm0hOTubu3bvpTli3f//+TF2VSE9K4vXo0aM021LOIzPJaXZfD3Pc3NzSfb+5uLik+8vf3PObEtdXX31F8+bNn3rsZ3k+zL23Uh4vs53bs1ofjFeHv/jiC5KSkrh48SKHDh1i9erVfPrpp3h7e6dpIk9JgrL7ninIpA+Kldu8eTMGg4E6derQrVu3NP9SfrE/eSn2xIkTfPvtt5QsWZKpU6eabX/OCymjDMw1o1y+fNnsPnq93mxCkx0pl8dT+u6kdurUqRw5Rnrs7OzSXMJOuWydknRm5O7duxQuXDhNchIXF8elS5fS1NfrjX/u6T13GW1PaYJKuYRvKVJGI50+fTrNtqyM4lEUhY0bNwLQpUsXs39LtWrVIjExUe33kh0pw8rNxXv+/PlMv69z8vWoUKECCQkJ3L9/P822ihUrEhsba9LvJ4W5v4+sxpVTz0eKlL+fzB4/q/VTs7W1pWbNmgwZMoQJEyagKAoHDhxIU+/WrVsAz5xIFkSSoFixlA9VnU7H5MmTeffdd9P8mzx5MjVr1uTq1atqZ89bt27x4Ycf4uDgwFdffaVpZl+mTBmcnZ3VZqgUoaGhLFmyxOw+hQsXJjw8PEfWuEjpYPjkB+S2bds4ePDgMz/+8uXLCfy/9u4upKk+jgP4N9OztDRD53yJFWWRazRdvpBbhUOiRuVAduONlgVRYm8oFWUoFPR2kZRd5DJ0KQPzQlxZc6ZFy9m2hi17QamHEm0mZbPMdPVcxIa28/Ro+ejk+X0ud/5z5/zP8fD7v/3+f/3FeqympgaDg4Pg8/nurmyJRAIulwudTofW1laP74xu6fJ4PDgcDrx8+dL9mdPpRElJCT58+ODxXdcQn91uZz2fXx2Xy+UICAjA5cuXx/yey5cvX6YleHHlJrl69eqY56Gvr8+9HH08rFYrurq6IBKJcPjwYdb/JVcv48/B/kRIpVL4+/tDq9WOmTsyMjIClUo17r8zmfcjNjYWAHuvm2vYuLS0dEyw0NnZyRqoSaVS8Hg8aDQaWK1Wj+MjIyNjApvJqg8XgUAAgUAAvV7POkn427dvY85rouWfP3/O2rPr6k1ia+i1t7cjJCRkzCRgMj40xDODWSwWdHd3/+skLblcjidPnkCr1WLFihUoLi7Gx48fER8fj8bGRo/y8+bNm7K9bvz8/JCeno6Kigrs2LEDEokEg4ODuH//PmJjY1knAMbFxeHZs2fIz8/HqlWr4OvrC5FI5H7RTsSGDRtQWVmJ8+fP49GjR+DxeOjo6IDFYsG6detw9+7dP7q+27dvo6SkBEuWLIFAIMCCBQvgcDjQ3t6OFy9egMPh4ODBg+7yDMOgsLAQeXl5yMvLQ2JiIqKjo/Hp0yd0dHRgaGjI/eJOT0/Hw4cPsWfPHqSkpIBhGFitVrx79w5xcXEem8utXLkSHA4H1dXVcDgc7sDUNbQlFovR1NSEY8eOISkpCQzDIDo6GhKJBMHBwTh+/DgKCgqwfft2JCYmgs/nY3h4GD09PbBarRAKhTh79uwf1ddExcfHIzU1FQ0NDcjKyoJUKsXw8DDu3LmDmJgYGAwGd8/Qr7iCDtfKGzZ8Ph9CoRA2mw3t7e3jzmszWmBgIHJycnDmzBns3LkTMpkMc+fORUtLCxiGQWho6LiGxSbzfkilUly8eBEmk8ljDoVr7o3RaER2djaSkpLgcDig1+uRkJDg0WPAMAyKioqQn5+P3NxciMVi94T5np4etLW1Yf78+VCr1ZNaH6MVFBRg3759KCwsRHV1NZYtWwYOhwO73Q6bzYb+/n40NDT8Vvlbt26htrYWIpEIUVFRCAgIwKtXr2A0GhEUFOTx/HR1daG7uxsKhWJC10B+oABlBnO9VEdneGUjk8lQXFwMvV6PnJwcd0vTZDKxLkEODw+f0s34srOz4evrC61Wi9raWoSHhyMzMxPJyclobm72KJ+ZmYmBgQEYDAa0tbXB6XQiKyvrtwKUsLAwFBcX49KlSzCZTHA6nVi+fDnOnTsHu93+xwHKoUOHYDAYYLFY0Nraivfv38PHxwc8Hg8KhQJKpdKjZSUUClFaWgq1Wo3W1laYzWYEBgZi8eLFSEtLc5dLTk5GUVER1Go1dDodOBwOxGIxTpw4wZopOCgoCEVFRSgrK0NdXZ37OXAFKJs3b0Z3dzcaGxtRWVkJp9OJjRs3QiKRAPiRFVOlUqGqqgpmsxkmkwlz5swBl8vFpk2bWJedToUjR45g0aJFuHHjBmpqasDlcqFUKiEWi2EwGFgnsI42MDCA5uZm+Pv7Y/369b8sK5fLYbPZoNVqfytAAYAtW7YgMDAQFRUVqK+vd2dO3bVrF5RK5bjTzU/W/YiIiEBCQgKampqwd+/eMb0APj4+OHnyJMrKytDQ0IDr168jMjISOTk5WLhwIeuQRkxMDK5cuYKqqiq0tLTAZrPBz88PoaGhWLt2rcdy7MmqD5fIyEioVCpoNBrcu3cPN2/ehI+PD0JCQiASiTyyQ0+kfGpqKr5+/YrHjx/j6dOnGB4eBpfLRVpaGuuyZ1cv09atWyd0DeSHWd+/f/8+3SdBCCGTra6uDqdPn8aBAwdmRAv2zZs3yMjIQEpKCgoLC6f0t81mM/bv34+jR49OW6D5s+msj8kwMjKCjIwMRERE/Hb27P87moNCCJnR+vr68HM7q7e3F+Xl5Zg9ezbWrFkzTWfGzuFweCzrHRoawoULFwD82JZgqq1evRpJSUkoLy//x2R0/xVvrI/JUF9fj7dv32L37t3TfSozFg3xEEJmtGvXruHBgwcQiUQIDg6G3W6HwWDA58+fsW3bNo9u9+lmtVpx6tQpJCQkICwsDP39/e6NPcViMWQy2bScV25uLnQ6HXp7e6e0zry1Pv7UrFmzkJeXx5rkjowPDfEQQmY0o9EIjUaDzs5OOBwOMAyDpUuXQqFQsO5APN1ev34NlUoFm83mXm0VFRXl3n35/5bQi+qD/BMKUAghhBDidWgOCiGEEEK8DgUohBBCCPE6FKAQQgghxOtQgEIIIYQQr0MBCiGEEEK8DgUohBBCCPE6FKAQQgghxOtQgEIIIYQQr0MBCiGEEEK8zt/AjA6TUlQfbgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 30.0 deg to 45.0 deg\n", - "Modulation: 0.307 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.018\n", - "Best fit polarization angle: 10.124 +/- 0.367\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSTklEQVR4nOzdd3wT9f/A8VfSveiGsrcs2XsUyl6KyhRlVIYIshRFwa0obkH9ioJslD0E2SJ7b5A9yyx00L2b+/2RX4+GpqUtbS9p38/HgwfJ5+5y70uul3fus3SKoigIIYQQQlgQvdYBCCGEEEI8ShIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUISzE9evX0el0BAYGah2KAAICAtDpdPm+n48//hidTseOHTvyfV/ZUaFCBSpUqKB1GEJIgiIe7/z584wZM4ann34ad3d37O3tKVWqFN27d2f27NkkJiZqHWK+CQwMRKfTcf36da1DMWv27NmMGDGCpk2b4uzsjE6n4/3333/sdn///TcBAQG4u7vj6upK06ZNmT9/fpbbzJ8/nyZNmuDq6oq7uzsBAQH8/fffZte9dOkS3bt3x8vLi7JlyzJ69Giio6PNrjtgwAAqVqxITEzM4w84nbSELv0/W1tbSpQoQffu3dm4cWOOXk88uT/++EP9LLZs2ZLluhEREXz44YfUq1cPV1dXHBwcKF26NM2aNWPChAkcP348y+2HDx+OTqfD2dmZiIiITNdLSwDT/un1eooVK0b58uXp1q0bX331Fbdv387N4Yp8Zqt1AMKyffrpp3zyyScYDAaaN2/O4MGDcXV15d69e+zYsYNhw4YxY8YMjhw5onWoRdKECROIjIzE09OTUqVKceXKlcdu8/PPPzNmzBi8vb0ZMGAA9vb2rFixgsDAQE6fPs23336bYZu33nqL7777jjJlyjB8+HCSkpJYsmQJzz77LD/99BOjR49W142NjaV9+/bExsYyaNAgbt26xf/+9z/u3bvH8uXLTV53/fr1/PHHH2zduhVXV9dcvQfu7u6MHz8egISEBE6ePMmGDRvYsGED06dPZ+zYsbl63YIyevRoXnzxRcqVK6d1KE9s5syZ6HQ6FEVh5syZdOrUyex6d+7coWXLlly/fp1KlSrx8ssv4+Pjw4MHDzh69CjTpk3DycmJ+vXrm90+OjqaJUuWoNPpiI+PZ9GiRSbnoDlt2rQhICAAMJ6jd+/eZe/evWzcuJGPPvqIjz/+mHffffeJjl/kMUWITHz++ecKoJQtW1Y5cOCA2XXWrVunBAQEFHBkBWfw4MEKoFy7di3f93Xt2jUFUAYPHpztbTZu3Khcv35dURRFmTt3rgIo7733Xpb7cHBwULy8vEyOKTw8XKlcubICKPv27TPZZu/evQqgVK5cWQkPDzd5LS8vL8XBwcHktZYsWaIAys6dO9WywMBABVDu3bunlkVERCilS5dWhg4dmu3jffRYAKV8+fIZls2ZM0cBFBcXFyU2NjZXr9+mTRulKF4iy5cvb/Y9fZzz588rgNKhQwelYcOGip2dnRIcHGx23aFDhyqAMmTIEMVgMGRYfufOHeXo0aOZ7uvXX39VAOXNN99U7O3tlTp16mS67kcffaQAykcffZRhmcFgUFasWKF4eXkpgDJ16tTHH6goMFLFI8y6fv06H3/8MXZ2dmzYsIGmTZuaXe+ZZ55h06ZNGcqXLVtG69atcXd3x8nJidq1azN16lSz1UFpdd5RUVG8+eabVKhQATs7Oz7++ONsLQdjNVRgYCBly5bF3t6eEiVK8NJLL3HhwgWzccfFxfHVV1/RqFEj3NzccHV1pUaNGowdO5Z79+4BoNPp1GqPihUrqreIH62fDw8PZ9KkSdSoUQMnJyfc3d1p3759pre4o6OjefPNNylTpgyOjo5Ur16d77//HoPBYHb9rHTp0oXy5ctne/05c+aQmJjI6NGjTY7D09OTyZMnA/Drr7+abJP2/L333sPT01Mtr1ChAq+//jqJiYnMnTtXLQ8KCgKgSZMmalna47RlYLz7A/Ddd99lO/7sCgwMxMXFhdjYWM6cOaOWb9u2jS5duuDl5YWDgwNPPfUU7777LpGRkdl63aSkJH7++We6detG+fLlcXBwwMvLiw4dOmRapfS489dcG5S09i+Z/Uu7E5AmJSWFX375hWbNmlGsWDGcnZ2pX78+P//8s9nzSlEUfv75Z2rVqoWjoyOlS5dm9OjR2X4fzJk1axYAr7zyCoGBgSQnJzNv3jyz6+7btw+AMWPGmG3nU7JkSRo0aJDlvvR6PePHj+fZZ5/l1KlTHDx4MMcx63Q6evXqxYoVKwDjHeO7d+/m+HVE/pAqHmHW3LlzSU5O5sUXX+Tpp5/Ocl0HBweT55MnT2bq1Kn4+Pjw0ksv4erqysaNG5k8eTKbN29my5Yt2Nvbm2yTlJREu3btCA8Pp1OnThQrVoyKFStma/mmTZvo2bMnycnJPPvss1SpUoVbt26xatUq1q9fz/bt200udg8ePKBt27acPHmSatWqMWTIEOzt7bly5Qpz586lZ8+elChRgo8++og1a9Zw8uRJxo0bh4eHB4D6Pxi/cAMCArh+/Tr+/v506dKF2NhY/v77b7p06cJvv/3G8OHD1fUTExNp3749hw8fpm7durz88stERETw2WefsXPnzhx9Rrnx77//AsbE5lFdu3Y1WSe723z22Wf8+++/fPLJJwBqVcXRo0dp2bIlgFoFmJZM/fPPP8yePZt169bh7u7+xMdljqIoAOoX4G+//cbIkSNxcXGhT58+FC9enB07dvDVV1+xbt069u7da/LZmhMeHs64ceNo0aIFHTt2xNfXl7t377Ju3Tq6devGrFmzGDZsWIbtHnd+PyowMDBDEgKwe/du/v33X5ydndWytPN+8+bNVKtWjZdeeglHR0e2b9/OmDFjOHjwIAsXLjR5nfHjx/Pjjz9SsmRJXn31Vezs7Pjrr784ePAgSUlJGf4+HycpKYn58+fj7u7OCy+8QHx8PBMmTOD3339n4sSJGZIQb29vAC5evEi9evVytK/jx49z9OhROnbsSNmyZQkMDGTlypXMnDkz0x9Sj9O2bVtatWrFnj17WLVqFa+//nquXkfkMa1v4QjL1K5dOwVQZs2alaPt9u3bp1YL3b17Vy1PTk5WnnnmGQVQPv/8c5NtypcvrwBK+/btlZiYmAyvmdXy8PBwxcPDQ/H29lbOnDljsuz06dOKi4uLUr9+fZPy/v37K4Dy2muvKampqSbLoqOjlYiICPX546p42rRpo+h0OmXx4sUm5Q8ePFDq1q2rODo6mtzmTqs269mzp8m+r169qnh6eua4iie97FTx+Pj4KIASGhpqdrmLi4sCqNUiMTExCqC4urqaXT8kJEQBlOLFi6tl0dHRSpkyZRQfHx9l/PjxSu/evdVjTlteoUIF5eWXX87VcabJqopn9uzZahVPXFyccv36dcXe3l5xc3NTzp07Z7LuyJEjFUAZPny4Sbm5Kp6EhATl5s2bGfYXERGh1KpVS/H09FTi4uJMlj3u/E6rgti+fXuWx3vy5EnFzc1N8fHxUS5fvpxh+9GjRyspKSlqeUpKijJkyBAFUNasWaOWp6+yCwsLU8vj4+OVZs2aZfqeZmXx4sUKoLz66qtqWa9evRRA+eeffzKs/9NPPymA4ubmprz99tvK1q1bMz0nHzVixAgFUP78809FUYzXFj8/P8XFxUWJjIzMsH5WVTzpvf/++wqgDBo0KFtxiPwnCYowq0aNGgqgbNy4MUfbDRs2TAGU3377LcOyCxcuKHq9XqlYsaJJedoF/MSJE2ZfM6vl06ZNUwDl559/Nrvt+PHjFUBNXu7du6fo9XqlZMmSZr8sHpVVgnLixAkFUHr37m122zVr1iiA8r///U8tq1KliqLX602+YNKkXUjzM0Gxs7NTACU5Odns8lKlSimAcufOHUVRFOX27dsKoJQuXdrs+klJSQqg2Nvbm5SfP39e6dKli+Lh4aGUKlVKee2119Qvj9dff10pUaKEEhoaqgQFBSnPPPOM4ujoqLi6uioDBw40+yVjTlqC4u7urnz00UfKRx99pLzzzjtK165dFUABlOnTpyuKoihTpkxRAGXSpEkZXic8PFxxc3NTHB0dlYSEBLU8p21QvvvuuwxtbxTl8ed3dhKU27dvK2XKlFEcHR2VvXv3quWpqamKl5eX4ufnZ/YzffDggaLT6ZQ+ffqoZWl/o3PmzMmw/vbt23OVoKT9oEnffmndunUKoPTt2zfD+gaDQZk0aZLi6OioflaAUqFCBWXYsGGZvlcxMTGKm5ub4u7ursTHx6vlEyZMUADll19+ybBNdhOUGTNmKIDStWvXbB61yG9SxSPy1LFjxwBo165dhmVPPfUUZcqU4dq1a0RGRprc2nd0dKROnTqZvm5my/fv3w/AyZMnTdqkpLl48SIA586do2bNmhw+fBiDwUDr1q1xcXHJ0bFltu/IyEiz+w4JCVH3Dca2J5cvX6Zs2bJUrlw5w/oBAQFqNYm1q1atmtk2Gbt37+aXX35h2bJleHl50bFjR+7fv8+ff/5JTEwMY8aMIT4+PkNvn6xERkaq75uNjQ1eXl507dqV0aNH061bNyDr89LT05P69euza9cuzp8/T926dbPc35kzZ/jmm2/YtWsXd+/eJSEhwWS5uS6rjzu/sxITE8MzzzzD7du3Wbx4MS1atFCXXbx4kfDwcKpWrcqUKVPMbu/k5KSeg/DwvWjTpk2GdVu1aoWNjU2O4rt8+TLbt2+nWrVqNG/eXC3v0qULfn5+rFmzhtDQUHx8fNRlOp2OL774gokTJ7J582YOHDjAsWPHOHjwIL///jtz585lxowZJtWjAEuWLCE6OpoRI0bg6OiolgcGBvLdd98xa9YsRo4cmaP40yiPVAkK7UmCIswqWbIk586dy/H4AGmN7EqWLJnp6964cYOIiAiTBKV48eJZXhgyWx4WFgY8bKCXmbQxNtLGSyhdunSW62dH2r63bt3K1q1bH7vvtPemRIkSZtfz8/N74pgex93dndDQUCIjI9V2AOmlxZj22aT9n1njybTyx7XdAIiPj2fo0KH07NmT3r17s3XrVo4fP87ChQt54YUXAGPj7A8//JArV66YTeLMKV++/GPHqcnOeQlkOZ4GwIEDB2jXrh0pKSm0b9+eHj16UKxYMfR6PSdOnOCvv/4y2xD8ced3ZlJTU+nXrx/Hjx9n6tSp9OvXz2R52jl46dKlLJPb9GPMZHUe2tramiQS2TFr1iwURckwwKCtrS0vv/wy3333HfPmzeOtt97KsK2Hhwf9+vVTjys2NpYvv/ySKVOmMGbMGHr06GES58yZMwEy7Ovpp5+mYcOGHD16lCNHjtCoUaMcHQMYuz4D+Pr65nhbkT+kF48wq1WrVoCx10NOpH2hBQcHm12e1kL+0YaRj7t4Z7Y87XVOnjyJYqyyNPtv8ODBwMMv0rwYmClt39OnT89y32k9XNLWT+sl9KjM3rO8VK1aNeDhnaX07t69S2xsLGXKlFEbYbq4uFC6dGliYmLM9m64dOkSYLw79jgffPABYWFh/O9//wMe3llK34C5YcOGAJw9ezYnh/VYuT0vHzVlyhTi4+PZsmULGzduZNq0aXz66ad8/PHHWTbQzO2v8jFjxrBhwwaGDx9udoyOtHhfeOGFLM/Ba9euZdjG3HmYkpJCaGhotuNL31Nn0qRJGXobpfXQetwPiDQuLi589tlntGrVisTERPbu3asuO3XqFIcOHQKgefPmGfZ19OhR4GESk1Pbt28HyHVDW5H3JEERZr3yyivY2dmxcuXKx35ZpP/FmDawkrlhuy9fvsytW7eoWLFitn5xZ0ezZs0AY9VBdjRp0gS9Xs+uXbuIjY197Pppt7tTU1OfeN9ubm5UqVKF27dvmx1QrSCGOk+r4jDXNTytSubRapDcbPOoQ4cOMW3aNKZPn57hl3v68+fR6pK8ktV5GRERwYkTJ3B0dKRGjRpZvs7ly5fx8vIy28Mmr3thfffdd8yYMYNOnTrxyy+/mF2nevXqeHh4cODAAZKTk7P1umkJobl49+zZY/Zcz8xff/3F/fv3qVatGkOHDjX7r1KlSly8eDFH74+bmxvwsNoFHiYeAQEBme7LycmJxYsX53hU4n///Ze9e/fi5OSk3s0TFqDgmrsIa5PW46RChQrK4cOHza6zceNGpW3bturztB4CFSpUUO7fv6+Wp6SkKM8995wCKFOmTDF5jccNDJXV8tDQUMXDw0Px9fVVDh48mGF5ampqhsaHL730UrZ78bz99tsKoPz7779m9+/v76/o9Xpl9uzZZpefOnXKZHCytPe0V69emvTiuXr1ar4P1PaoxMREpWbNmkr37t1Nyrdu3aoAyieffKKWpQ3oZq4R8aOy6sVjbl07OzvF3d1duXTpksmy0aNHK4AybNgwk3JzjWQ7d+6sAMrJkydNyn///Xe1oefcuXNNlj3u/DbXSHblypWKXq9Xateu/dhGwx988IF6Pj/ag0hRjIOepe/htmfPnjzrxdOxY0cFUJYuXZrpOmnvzUsvvaSWff3118p///1ndv3du3crjo6Oiq2trXL79m1FURQlLi5O8fDwUGxsbNQycwYMGKAAysyZM9Wyxw3UtnLlSnWgtq+//vpxhywKkCQoIkuffPKJotfrFUBp0aKFMnbsWGXy5MnK0KFDlapVqyqA0qhRI5NtJk6cqHY9HTVqlPL2228rTz/9tAIorVq1UhITE03Wf5IERVEU5Z9//lHc3NwUnU6ndOjQQRk3bpwyfvx4pVevXkqpUqUUBwcHk/XDw8OVOnXqKIBSvXp1Zdy4ccrbb7+t9O7dW3FzczP5oti0aZN6MZ84caLy2WefKT/99JO6/ObNm+r7ULduXeXVV19VJk6cqLz00kvqMe/fv19dPyEhQWncuLG6/sSJE5VXX31V8fDwUHr06JHjBGXWrFnK4MGDlcGDBystW7ZUAKVOnTpqmbmRMX/88UcFULy9vZVRo0Yp48ePV8qUKaMAyoQJE8zu580331QApUyZMsr48eOVUaNGKd7e3gpg8n6Y89577ynu7u7KrVu3TMoNBoPSsGFDxcbGRhkyZIjSt29fBTDpcZKVnCQoiqIo//vf/9SurUOHDlXeffddpXnz5up5kP7LWlHMJygbN240eY0333xTad26taLX69Xu1HmRoDg5OSn8/0iraT2U0v9Lv4+kpCT13CldurQycOBA5d1331WGDBmiJtCPngdjxoxRAKVkyZLKmDFjlDfffFOpXLmy0qhRI6VkyZLZek+vXr2q6HQ6xcfHJ8PfdHrR0dGKq6ur4uDgoL7HdevWVd/3wMBAZdKkScrYsWOV9u3bKzqdTgGU7777Tn2NtOT72WefzTKmHTt2ZLgmpb2/bdq0Ud+/iRMnKgMGDFAqVqyoAIqDg4Py1VdfPfaYRcGSBEU81tmzZ5XRo0crtWrVUtzc3BQ7OzvFz89P6dKli/L777+bdM1Ms3jxYqVly5bqhalmzZrKlClTTLoGpnnSBEVRjF9Wr7/+ulKlShXFwcFBcXNzU6pVq6YMGDBAWb16dYb1Y2JilClTpii1a9dWnJycFFdXV6VGjRrKuHHjTO54KIqx+2j16tUVe3t7s1+IUVFRyueff640aNBAcXFxURwdHZUKFSoo3bp1U3777bcM3ZkjIyOVN954Q02eqlWrpnz77bfKlStXcpygpHWDzuxfmzZtzG63du1apXXr1oqrq6vi7OysNGrUSJk3b16W+5o7d67SqFEjxdnZWXF1dVVat26trFu3Lsttjh8/rtja2mY6ns7NmzeV5557TnFxcVHc3d2VwYMH57ibcU66xG7evFnp2LGj4uHhodjb2yuVK1dW3n77beXBgwcZ1s2sm/G6deuUpk2bKq6uroq7u7vSsWNHZefOneqXaF4kKFl9puY+V4PBoCxYsEBp166d4unpqdjZ2SmlSpVSWrZsqXz++efKjRs3Mqz/008/qed1yZIllVGjRikRERHZHup+8uTJCqC88cYbj113+PDhCqB8//33iqIoyrFjx5TPPvtMadu2rVKhQgXF0dFRcXBwUCpVqqS89NJLyu7du022b9GihQIof/3112P39dRTTymAcvz4cUVRHr6/af90Op3i6uqqlCtXTunatavy5ZdfZkiehWXQKUq6Sj4hhBBCCAsgjWSFEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExbHKBCUhIYELFy7k27DYQgghhNCWVSYoQUFBDB8+nKCgIK1DEUIIIUQ+sM3pBnFxcSxZsoSzZ89y7tw5oqOjmTRpEl27ds32axw5coSFCxdy8eJFDAYDZcuWpX///rRv3z6n4QghhBCiEMpxghIZGcm8efMoUaIEVapU4fjx4znafsOGDXz11Vc0atSI4cOHY2Njw40bN7h//35OQxFCCCFEIZXjBMXb25vVq1fj7e3N+fPnefXVV7O97d27d/nhhx/o2bMn48aNy+muhRBCCFFE5LgNir29Pd7e3rna2V9//YXBYGDo0KGAsbpIpgISQgghxKNyfAflSRw9epRy5cpx4MABZsyYQUhICG5ubrzwwgsMGTIEvd4q2+wKIYQQIo8VaIJy69Yt9Ho9X375Jf3796dy5crs2rWLBQsWkJqayogRI8xuFxoaSlhYmPpceu8IIYQQhVuBJijx8fEYDAZGjBjByy+/DEBAQADR0dGsWLGCgQMH4uzsnGG7tWvXMm/evIIMVQghhBAaKtAExcHBgfj4eDp06GBS3r59ew4ePMjFixepV69ehu169OhBy5Yt1edBQUFMmTIlv8MVQgghhEYKNEHx9vbm1q1beHp6mpSnPY+Ojja7nY+PDz4+PvkenxBCCCEsQ4G2Sq1WrRpgbFOSXtpzDw+PggxHCCGEEBYq3xKU0NBQgoKCSElJUcvatWsHwPr169Uyg8HAxo0bKVasmJrACCGEEKJoy1UVz8qVK4mJiVF71uzdu1cdCbZXr164uroyc+ZMNm3axNKlSylZsiQArVq1omHDhixatIiIiAiqVKnC7t27OXXqFG+99Rb29vZ5dFhCCCGEsGa5SlCWLl1KcHCw+nzXrl3s2rULgE6dOuHq6mp2O51Ox+eff87vv//Ov//+y6ZNmyhbtizvv/8+nTp1yk0oQgghhCiEdIoVDuV64cIFhg8fzqxZs6RaSAghhCiEZOhWIYQQQlgcSVCEEEIIYXEkQRFCCCGAuAcJHF1xibgHCVqHIpAERQghhAAgLiKR46suExeRqHUoAklQhBBCCGGBJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERwopJt0ghRGElCYoQVky6RQohCitJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUITIBzLLsBBCPBlJUITIBzLLsBBCPBlJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUWGDD8vhHWSv92iSRIUUWTI8PNCWCf52y2aJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCiAImDX8fTxIUIYQQooBJw9/HkwRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBYnxwlKXFwcc+bM4a233qJ79+60bt2ajRs35mrnX3/9Na1bt+add97J1fZCCCGEKJxynKBERkYyb948goKCqFKlSq53fP78eTZu3Ii9vX2uX0MIIYQQhVOOExRvb29Wr17N8uXLGTlyZK52qigK06dPp3Pnznh5eeXqNYQQQghReOU4QbG3t8fb2/uJdrp582auXbvG8OHDn+h1hBBCCFE42Rb0DuPi4vj1118ZMGBAthOd0NBQwsLC1OdBQUH5FZ4QQgghLECBJyjz5s3DwcGBvn37ZnubtWvXMm/evPwLSgghhBAWpUATlJs3b7JixQo+/PDDHDWO7dGjBy1btlSfBwUFMWXKlPwIUQghhBAWoEATlB9//JGnn36agICAHG3n4+ODj49P/gQlhBBCCItTYAO1HT16lIMHD9K7d2/u3r2r/ktNTSUxMZG7d+8SGxtbUOEIIYQQwoIV2B2U+/fvA/D+++9nWBYSEkK/fv0YPXp0jtqmCCGEEKJwyrcEJTQ0lNjYWEqXLo2trS0NGjTg888/z7DeN998g5+fHwMHDqRSpUr5FY4QQgghrEiuEpSVK1cSExOjdv3du3eveoekV69euLq6MnPmTDZt2sTSpUspWbIkJUqUoESJEhle66effsLT0xN/f/8nOAwhhBBCFCa5SlCWLl1KcHCw+nzXrl3s2rULgE6dOuHq6po30QkhhBCiSMpVgrJs2bLHrjN58mQmT56cJ68lhBBCiKKlwHrxCCGEEEJklyQoQohsiXuQwNEVl4h7kKB1KEKIIkASFCFEtsRFJHJ81WXiIhK1DkUIUQRIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCiCLPYFAIuRoJQMjVSAwGReOIRK5mMxZCCCEKi2uHgjmw4Byx4cZ5pvbOPsOJ1VdoNqgGFZv4aRxd0SV3UIQQQhRZ1w4Fs23acTU5SRMbnsC2ace5dihYo8iEJChCCCGKJINB4cCCc1muc2DhOanu0YgkKEIIIYqk4PPhGe6cPCo2LIHg8+EFFJFITxIUIYQQRVJ8RGKerifyljSSFUJDqYZUrkdc52LYRaKTokkxpFDcpTjl3ctT2asyep38hhAivzh5OAAQq48m2P42D2xDMOgM2Cq2eCX74pdUBkfFWV1PFCxJUIQoYEmpSaw+t5pV51ex+fJmIhMjza7n4+xD2wptGVBnAF2rdMXOxq6AIxWi8LoYdpHZt2ezpPIKbtheNbuOTtFTOaUad0P6MyRqCKWLlS7gKIs2SVCEKCCJKYn8fOhnvtv/HXdj7j52/dC4UJafXc7ys8sp7Vaa9/zfY2iDodjb2AMZx23wKl8MvV6Xr8cghLU7cucI7//7PpuvbDYWZPEtqOgMXLY7x4c7PuTjnR/Tr1Y/Pm37KVW8qhRMsEWcJChCFIANlzYwesNorkVcMyn3dPSkTYU21PSpiY+zDzqdjnsx9zgTcobdN3YTkRABwO3o24zaMIrvD3zP78/+Trn71WTcBiFyIDw+nPGbxrPw1EKTch06arvXxTe4LB4xPtga7EjUJxLpFsJtnytcjLkAgEExsPi/xSw/u5zxTcfzadtPcbJz0uJQigxJUITIR7HJsbz/9zv8dvQ3tUyHjuerP8/rjV+nTYU22OrN/xmmGFLYcmULvx75lXUX1wFwOfwyAfMDaPegB33Ch2LLw2qftHEb2o+vL0mKEOlsvryZwL8CCY55OKZJBY8KjG48mkF1B+Hr4ovBoHBh+032zj5Dy6G1qNa2LHq9jqCIIOYcn8OMIzMIiQshxZDCt/u/Ze3FtSzutZgGJRtoeGSFm7TAEyKfPLAN5dnNXU2Sk7YV2nJ8xHFW9VtF+0rtM01OAGz1tnSr2o21/ddyaNghWpRtoS7713Mt35R7hwe2oRm2k3EbhDBSFIVv9n5D1z+6qsmJp6MnP3b5kQujLzChxQR8XXwB0Ot1+FZyB8C3krtaXVreozyftP2EK2Ov8FGbj3CwMTaYvRh2kZZzWrLw5EIzexZ5QRIUIfLBybATfFHuDU6HnwLA2c6Z3575jW2DtlHXr26OX69x6cbsfmU3n9b7AluD8a7JVafzfFluAsF2t0zWlXEbhIDk1GRe+esVJv4zEQVjwt61Slf+G/UfY5qOUdtyZZebgxsfB3zMsRHHaFSqEQAJKQkMWjOIz3Z+hqLIj4K8JgmKEHns4K2DvLClBxF2YQBU9KjIoWGHeLXhq+h0uW/Eqtfpecl3MO/c+AavZOOvvnC7EL4u9zZBDpdN1pVxG0RRlpSaxIsrX2T+yflq2cdtPubvl/6mlFupJ3rtmr412fPKHl5t8Kpa9uGOD3l769uSpOQxSVCEyEOHbh+i06JORCdHAdDYtykHhx2kVvFaefL6Th4OVEh8islBP1AmoSIA0baRfF92Mrfsr5msJ0RRlJSaRL8V/Vh1bhUADjYOLOu9jI8CPsqzcYUcbB347dnf+Lbjt2rZd/u/Y/ym8ZKk5CFJUITII2dDztJpYSeiEo3JSbXYOvxaZT7eTj55tg+/6l64eDninurF2ze/okqcMfGJs4lhWtkPCLG7i4u3I37VvfJsn0KYE/cggaMrLhH3IOuh4guSoigMXTuUNefXAOBo68ja/mvpU6tPvuxvQosJzHp2FjqMd0Z/PPQjX+z+Il/2VRRJgiJEHgiOCabbH93UQdeqxdZhzO2POTbvKkvH7sizGVH1eh3NBtUAwNngyrhbn1Ix/ikAIm3D+aHM+1Tt6yvjoYh8FxeRyPFVl4mzoOrED7d/yKJTiwBjcrKu/zo6Ve6Ur/sc1mAYc56boz5/f/v7zDo6K1/3WVRIgiLEE4pLjqPH4h4ERQYBUC6hCqNvf4SD4gjk/bTtFZv40X58fVy8HHFUnBh761NKJpYFIMT+Lm9fHUNyanKe7EsIazH3+Fym7J4CGLvy/9nzTzpU6lAg+w6sF8jXHb5Wn4/aMIpdQbsKZN+FmSQoQjwBRVEYuX4kh+8cBsAr2Zcxtz7GUck4gFNedv+t2MSPfj8G0HJoLVwNxfij1XL8XI1jn+y4voMJWybkyX6EsAZH7hzhtfWvqc+ndZnGCzVeKNAY3m75Nm80ewMwjmHUe1lvbkbeLNAYChtJUIR4ArOPz2bByQUAOBicGHPrYzxSzbf/yOvuv+nHbahdozor+67ETm/sgvzToZ9kfAZRJITHh9N7WW+SUpMAeL3x64xtOlaTWL7p+A0dK3UEICQuhJ7LepKYYjlVYNZGEhQhcun43eOM3jBafT44eCxlkipmuU1+dv9tUbYFv3T/RX0+asMoLodfzmILIayboigMWj1IrV5tVqYZ33f+XrN4bPQ2LO61mAoeFQDjnZ33/n1Ps3isnSQoQuRCfHI8L696mcRUY8LxSpVhNI5u89jt8rv777AGwwisFwhATFIM/Vf2V39ZClHY/Hb0N9ZfWg8YZ/9e3md5jgdgy2vezt6s6rtKjeO7/d+x9cpWTWOyVpKgCJEL7//7PudCzwHQoGQD/tfnJ1y8HLPcpqC6//7U9SeqelUFjL/gPt7xcb7vU4iCdjn8sklbqwXPL6BMsTIaRvRQ/ZL1+bL9l+rzwWsGExqXcVoKkTVJUITIoV1Bu/jhwA+AcRCoBc8vwMneUe3+m5lmA2sUSPdfV3tXFvdarLZH+Xrv1xy9czTf9ytEQUk1pDJ4zWDikuMAeK3ha3St2lXjqEyNazZO7eJ8N+Yu4zaN0zgi6yMJihA5EJMUQ+CaQHVujyntpqijxKbv/puei7djgc8w3LBUQz5s8yEAqUoqQ9YOka7HotD4bv937Lu5D4DKnpX5ptM3GkeUkV6nZ/7z8/FyMt41/fP0n6y/uF7jqKyLJChC5MBH2z/iWoRxSPlW5Vqp3QrTpO/+C9ByaC36TQ8o0OQkzTst36FOiToAnLp3iq/3fv2YLYSwfNceXFOrLXXomP/8fFztXbUNKhN+rn583+lho92R60cSnRhdoDFY4oi/2SUJihDZdOreKaYfnA4YR6mc+9xcbPQ2GdbLbNr2gmZnY8ecHnPU+Uc+3fUp50LOaRKLEHlBURTGbBxDfEo8AGObjqVluZYaR5W1QXUHqV2Pb0bdZPK2yQW6f0sc8Te7JEERIhsMioGR60eSqqQC8J7/e1TxqqJxVI/XsFRD3mr+FmCcRG3MxjEymZmwKgaDQshV4xQSSw4vU3vtlHIrxadtP9UytGzR6XT89sxvONs5A/C/w//jyJ0jGkdlHSRBESIb5p2Yp9Z5V/Wqytst3tY4ouz7OOBjdVyGbde2sfr8am0DEiKbrh0KZunYHeydfYYEXRwfnX44psj0LtMp5lBMw+iyr6JnRT5r+xkACgpjN46VHwrZIAmKEI/xIP4BE7dOVJ//0v0XHGzzdzyTvORk52RSD/7m5jeJT47XMCIhHu/aoWC2TTtObLix7cQG72U8sDN21X06piENoi27audRY5qMoYaPsaff/lv7WXFtmcYRWT5JUIR4jM93f05YfBgA/Wr1K7AJyPLS89WfV+MOigzim32W1+tBiDQGg8KBBQ/bS4XZ3mOrp/HOn63Blv73R3Fw0fk8m9uqINjZ2DGtyzT1+adHPyZBJz8UsiIJihBZuPrgKj8d+gkwNoz9uqN19oTR6XRM7zIdW70tAFP3TJWJzITFCj4frt45AVjlO58UvbGbfPuI5yieXDLP57YqCJ0qd6JHtR4ABMffZYP3Uo0jsmySoAiRhUnbJqlDxb/R7A3KuZfTOKLcq+lbk9GNjXMHJaQkyAizwmKln7PqquN5DhXbAYBrSjG6hfUzu561+L7T9+ow+Fs9V3PqXN7Ncl7YSIIiRCb239zPsjPGeuLiLsV5t9W7Gkf05D5o8wHuDsYu0PNOzuPM/TMaRyRERmlzVikoLPf9XS3vEfYyzgbXDOtZE/1lFzpGPw9Aij6ZD7d+xNKxO7h2KFjbwCyQJChCmKEoCm9vfdhT55OAT6ymx0BWvJy8mNRqEmDsOj3534Idk0GI7PCr7oWLlyOnXA5x2fmssSyxLP4RD4ezL6i5rfJSWsPfjrd74ZTqAsA+93+4FHORbdOOS5LyCElQhDBj85XN7L25F4DqPtUZ1mCYxhHlnbFNx1LarTQAay+sZe+NvRpHJIQpvV5Hk4HVWOOzUC3rGToYW2zV5wU1t1VeSd/w18XgRpfw3gAoOgOrfeYDcGChVPekJwmKEI9QFIUPtn+gPv804FO1cWlh4GTnxCcBn6jP3/nnHRmTQVicY657ueV4FYDy8VWpF9Mc0GZuq7zwaMPf9g+ewz3FeAfohNt+rjies8qGv/kpxwlKXFwcc+bM4a233qJ79+60bt2ajRs3Zmvbo0eP8uWXX/LSSy/RsWNH+vXrx1dffUVoqExDLSzHuovr1JEe65SoQ6+avTSOKO8NrjdYHZNh7829bLu2TeOIhHgo1ZDKhzs+VJ+/1+gDdOg0ndvqST3aoNdBceTZ0JfU53/9/90ia2z4m19ynKBERkYyb948goKCqFIlZ0N9//rrrxw/fhx/f3/GjRtH+/bt2b59O8OGDSMsLCynoQiR5wyKgQ+3P7wwfhrwqTqXTWFiq7flozYfqc8/2fmJ3EURFuPP039yPvQ8YJyU8/kGzwLazm31pMw16G0Z2QnfJGOydc7lBJcdz1plw9/8kuMrr7e3N6tXr2b58uWMHDkyR9u+/vrrLF68mJEjR/LMM8/w6quv8uWXXxIeHs6qVatyGooQeW7VuVWcvHcSgEalGqljFhRGvWv2Vu+i7Lmxh+3Xt2sckRCQnJrMxzs/Vp9PaTsFnc46k5L00hr+pmeLLd3CXlSfbyy51Ooa/uanHCco9vb2eHt752pn9erVQ6/XZygrVqwYQUFBuXpNIfKKQTGYjA3yacCnheLCmBkbvQ0ftH7Y1ubjHR/LXRShuUWnFnH1gbHtSfuK7WlToY3GEeUNvV5Hs0E1MpQ3i2qHd1IJAE7ZH+bwnUMFHZrF0vzedVxcHPHx8bi7u2e6TmhoKBcuXFD/STIj8sPaC2s5E2IcF6R5meZ0qdJF44jyX99afanuUx2A3Td2s+P6Dm0DEkVaqiGVr/Z+pT5P35i7MKjYxI/24+ub3EmxxZYXEl9Wn3+6y/JnaC4omndNWL58OcnJybRr1y7TddauXcu8efMKLihR5CiKwtQ9U9Xn77d+v1DfPUmTdhfl5VXGC+THOz+mbcW2GkcliqrV51dzIewCAK3Lt6ZlOeuaEDA7Kjbxo3yjElzYfpO9s8/QcmgtBrRux5b/reBG5A02XNrA4duHaVy6sdahak7TOygnTpxg3rx5tG3bloYNG2a6Xo8ePZg1a5b67/333y/AKEVRsOP6Dg7dNt5arVOiDl2rdH3MFoVHv1r9qOZdDYBdQbtkXBShiUd/JExuVXgHEdTrdfhWMtYa+FZyx9HOQR1AEWDK7ilahWZRNEtQgoKCeP/996lUqRLvvPNOluv6+PhQrVo19V/58uULKEpRVKS/ML7b8t0icfckjY3exuTi+PU+65wQUVi3rVe3cuzuMQDq+9WnU+VOGkdUsF6p94rJAIppvZiKMk0SlHv37jFhwgRcXFz46quvcHZ21iIMIQA4eucoW69uBaCSZyX61OqjcUQFr3/t/pQpVgYwXhzPhZx7zBZC5K0vdn+hPp7sP7lI/UgAcLB14I1mb6jPv9v3nYbRWIYCT1AiIyOZMGECycnJfPvtt/j4+BR0CEKYSH/3ZGKLiYVq1NjssrexN7k4frPvGw2jEUXNvpv72Bm0E4CnvJ/iheovaByRNoY3HK7O+bXg1ALuRt/VOCJt5VuCEhoaSlBQECkpKWpZfHw8EydOJDQ0lK+//pqyZcvm1+6FyJYLoRdYdc44Bo+fqx+D6w3WOCLtDG8wHA9HD8DY1fN21G1tAxJFxpd7vlQfv9vyXWz0NhpGo51iDsV4reFrACSlJvHToZ80jkhbuUpQVq5cyfz589mwYQMAe/fuZf78+cyfP5+YmBgAZs6cycCBAwkJCVG3++yzzzh37hwBAQEEBQWxZcsW9d/u3bvz4HCEMM9gUAi5GglAyNVIdUKub/d9i4Lx8RvN3sDR1jHT1yjs3BzcGNVoFADJhmSmHZimbUCiSLgQeoF1F9cBUKZYGV6u8/JjtijcxjUbh53eDoAZR2YQnRitcUTaydW97KVLlxIc/HBa6F27drFr1y4AOnXqhKurq9ntLl++DMCGDRvU5CaNn58f/v7+uQlHiCxdOxTMgQXn1Im69s4+w4nVV6jaz5eFp4zzX7jZu/Fao9e0DNMijGk6hu/2f0diaiK/Hf2N91q/p95VESI/TD84XX08ruk47G3sNYxGe6XcSjGgzgDmnphLREIEs4/PZnyz8VqHpYlcJSjLli177DqTJ09m8mTTbmLZ2U6IvHTtUDDbph3PUB4bnsCUpV+T6GucmGtYg2Fq3W9R5ufqx+C6g5l5bCbRSdHMOT6HN5u/qXVYopAKjw9n/sn5ALjYuTCswTCNI7IMb7V4i7kn5gLw/f7veb3x69jZ2GkcVcHTfCRZIfKLwaBwYIH53igpJLPD828A9Do9Y5qMKcjQLNobzR82lv3p0E+kGlI1jEYUZjOPziQuOQ6AIfWHyN26/1fTtybdq3YH4GbUTVacXaFxRNqQBEUUWsHnw9VqnUcdLraLSNsHAHQp1Y2KnhULMjSLVt2nOp0rdwbgesR1tX2AEHkpOTWZnw/9DIAOHWObjtU4IsvyVou31Mc/HvpRw0i0IwmKKLTiIxLNliso/OO5Rn0+qOTQAorIeoxrOk59nL6NgBB5ZfnZ5dyONvYUe7bas1TxqqJxRJalTfk21ClRB4ADtw5w+PZhjSMqeJKgiELLycPBbPklpzPccLwCQPmEKrSq0Kogw7IKnat05invpwDjNACn7p3SOCJRmCiKwg8HflCfpx+DRxjpdDrGNnl4V6kodjmWBEUUWn7VvUxmDU2T/u5J9+S+lKzhXYBRWQe9Tm9ycZx+QO6iiLyz7+Y+jtw5AkA9v3q0Kd9G44gs00u1X8LLyQuAJf8tITgm+DFbFC6SoIhCS6/X0WxQDZOyELtgTrjuB8A9xYuxvUeg1xetIbWza3C9wbg7GCc0++P0H4QmhGockSgs0t8NeKPZG0VuWPvscrJzYniD4YBxbKKZR2dqHFHBkgRFFGoVm/jRfnx99U7KLveNKDrjwGzDagynWrNyWoZn0VztXRla39g+JzE1kRkHfwVMB7oTIqeCY4JZeW4lAL7OvvSr1U/jiCzbqMaj0OuMX9UzjswgKTVJ44gKjiQootCr2MSPfj8G0OiVyuxx3wyAnd6Ot3tIvffjjG4yGv3/XyYWXJ5LKqnsnX2GpWN3cO1Q/txujnuQwNEVl4h7YL4HlrBuvx/7nRSDcQqUYQ2G4WBrvq2YMCrnXk6dmyg4JrhIdTmWBEUUCXq9jv36HcTYRgHQu2ZvSriW0DgqK3DJiTrRTQCIsAvjpOtBwDjQ3bZpx/MlSYmLSOT4qsvEZdILS1ivFEMKvx39DTC2cxrRcITGEVmH9F2wfzxYdLocS4Iiioy5F+aoj0c1HqVhJNYhbaC7NhHd1LKdHutN1jmw8JxU94hsW3dhHbeibgHwzFPPUN6jvMYRWQf/cv7ULVEXgIO3D3Ls7jGNIyoYkqCIIuFE8AkOhxh//df0qEnLsi01jsjypQ10VzOuAb5JfgCcdTnOPbuHsxzHhiUQfD5cqxCFlfnlyC/q47SJKcXj6XQ6RjYaqT7/7chvGkZTcCRBEUXCjMMz1MeB1YZKr4FsSBvoTo+e1pFd1fJdHpvMridEVi6EXuCfq/8AUNmzMh0rd9Q4IuvyUu2XcLU3TsT7x+k/iEqM0jii/CcJiij0IhMiWXR6EQAOBif6VOqrcUTWIf1Ady0jO2FrMM4tuq/YVpJ1SWbXEyIzvx75VX08stFItWeKyB43BzcG1B4AQGxyLH+c+kPjiPKfnCGi0FtwcoE6IVnzyHa42rlpHJF1SD/QnVuqOw1j/AGIsY3iiNtuAFy8HfGr7qVZjMI6xCbFqrPzOto6ElgvUNuArNRrjV5TH884MgNFKdztvyRBEYWaoigm9d4BEd01jMa6PDrQXYBJY9kNADQbWEMGuhOPteS/JUQmRgLw4tMv4u0sozfnRl2/ujQr0wyA0/dPc+DWAY0jyl+SoIhCbWfQTs6HngegeYkWlE6qoG1AVib9QHeV42tSOtHY6+KK0zlKDbGnYhM/jSMU1iCtazFI49gn9VrDh3dRfj36axZrWj9JUESh9vux39XHgU8N0TAS65U20F2roU/TJt0dqLUJyzWMSliLk8EnOXzHOBNvfb/6NC7dWOOIrFvfWn3xcPQAYOl/SwmPL7y96CRBEZrLr5FDH8Q/UEdd9HLyolu5Z/L09YsSvV6HbyV3mkW1w9nWBTD2JIhJitE4MmHp0v9IGNZgmIaRFA5Odk4E1g0EjFNQzD8xX9uA8pEkKEJz+TVy6KJTi0hMNb7mwDoDcbTJOLOxyBkngzO9KvYGICYphmVnlmkckbBk8cnxag86J1snXq79ssYRFQ4jGj0cgffXo78W2saykqCIQklRFGYdm6U+l19ueWdA1UHq4/S/joV41MpzK4lIiACMVRPuju7aBlRIVPepTkCFAAAuhl1k943d2gaUTyRBEYXS4TuHOX3/NADNyjTj6eJPaxxR4VHfuwG1i9cGYP+t/ZwNOatxRMJSyY+E/DOs/sP3c/bx2RpGkn8kQRGFkkm9d325MOYlnU7H0PpD1eezjxXOi6N4MhfDLrIraBcANXxqyPQSeaxnjZ5qY9nlZ5YTmRCpbUD5QBIUUejEJMWw+L/FALjau9Lv6X4aR1T4DKgzAHsbewAWnFpAYooMdy9MPdo4VqaXyFtOdg/b9MSnxLPkvyUaR5T3JEERhc7S/5aqvUv6P91fnb9C5B1vZ2961ugJQGhcKGsvrNU4ImFJklKTmHdiHgB2ejsG1hmobUCFlMmdzEJYzSMJiih0fj/+8Jfb8AbDNYykcEtfdZb+PRdi3YV1hMSFAPBCjRfwdfHVOKLCqX7J+tT3qw8Y292dundK44jyliQoolD57/5/6vDPdUrUoVGpRhpHVHi1rdiWih4VAdh6ZStBEUEaRyQsRfrGsfIjIX8V5vZgkqCIQiV9vffwBsOl3jsf6XV69eKooKiTwYmi7XrEdbZc2QJARY+KtKvYTuOICreXar+Eg41xRvFFpxcVqvZgkqCIQiMhJYGFpxYC4GDjIINCFYDAeoHodcbLyJzjc0g1pGockdDa3ONzUTAOHDa0/lD1/BD5w9PJk141ewEQHh/OmvNrtA0oD8mZIwqNtRfWqvNS9K7ZG08nT40jKvxKFytN1ypdAbgZdZOtV7dqHJHQkkExMP+kceh1vU5PYL1AbQMqIgrrmCiSoIhCI30VQ/p6WZG/0g/AJSPLFm27gnYRFGlsi9SpcidKFyutcURFQ5sKbajkWQmAf67+w/WI69oGlEckQRGFwu2o22q9d3n38rSp0EbjiIqO7lW7U8KlBGC8ixUaF6pxREIraV2LAXVCO5H/9Do9Q+oZZ2tXUJh7vHC0B5MERRQKi04twqAYABhcd7DUexcgO5uH41wkG5JZfHqxxhEJLcQkxaizh7s7uPNc9ec0jqhoSd8ebO6Juer10JrJVVxYPUVRmHdynvp8UN1Bma8s8sXgeoPVx+k/C1F0rDi7gtjkWABefPpFHG1l9vCCVLpYabpU6QIY24Ntv7Zd44ienCQowuodun2I86HnAWhdvjWVvSprHFHR83Txp9UxZ47dPVboBowSj2dSvSONYzWRvlqtMPxQkARFWD2p97YM6d/7+SfmaxeIKHDXHlxjZ9BOAKp5V6Np6aYaR5Q7zh4O1O9ZBWcPB61DyZVnqz2Lp6Ox9+LKsyuJSozSOKInIwmKsGoJKQnqxIDOds70rtlb44iKrhefflGdQHDR6UUkpyZrHJEoKAtOLlAfB9YLtNoBEp09HWnYuyrOntZZPeVo60j/p/sDxgkE09oEWStJUIRV++v8X0QmGqcZ712zN24ObhpHVHR5O3vTo1oPAO7H3mfT5U0aRyQKwqNjn8jEgNoyaQ+W7u6yNZIERVi19PWsUr2jvcJWBy4eb/+9fVyLuAZAx0odZewTjTUu1ZgaPjUA2H1jN9eir2kcUe5JgiKsVvqxTyp4VJCxTyxA5yqd1TFR1l1YJ2OiFAFLrvypPh5cd3AWa4qCoNPpTBopL7tivd3+JUERVkvGPrE8tnpbGROlCEnQxbM26C8AijkU4/nqz2sbkABgQJ0B6vVw6ZXFGLDOMVHkii6skox9YrlkTJSi45jbPuJS/n/sk1ov4mTnpHFEAqCUWyk6Ve4EwM3Ym1x0Oq1xRLkjCYqwSunHPmlT/uE8FEWNJXaLlDFRio59xR5ODiljn1iW9O3B9rlv0y6QJyAJirBK6ScGtMQLY0ElDpbaLVLGRCn8bsQEccHFmHw+5f0Uzco00zgikd5z1Z/D3cEdgGNue7h+6Q4Gg6JxVDkjCYqwOvHJ8Sz5bwkALnYuFjn2iaUmDgVFxkQp/JZdWaI+Hlx3sNWOfVJY3T0WQaOI1gAk6hP436pZLB27g2uHgjWOLPskQRFW568LpmOfuNq7ahyReJSMiVK4KYrC0v/vHaJDJ2OfWJhrh4LZNu04je+3Vcv2u28jNjyBbdOOW02SIgmKsDoy54d1kDFRCq9dQbu5HnMdgOYerSjtVkbbgITKYFA4sOAcAJUSquGXaPxsLjifIsTOmJgcWHjOKqp7JEERVuV21G22XjU2zKvgUYHW5VtrHJHIjIyJUjhdOxTMx79+qT6vebaZ1VUdFGbB58OJDU8AjHe3mke1V5ftL2ZsLBsblkDw+XBN4ssJSVCEVVl4aqGMfWIlHh0T5c/Tfz5mC2Hprh0KZsP0/ex32AGAU6oz9WKaW13VQWEWH5Fo8rxZVHt0irF90P5i29QxUR5dzxLJ1V1YDUVRTKp3ZOwTy5e+Ci5tvhZhndKqDo657SVRHw9Ao2h/HJSHDcGtpeqgMHN6pOegV4oPNeLqAxBqH8xlpzNm17NEOU5Q4uLimDNnDm+99Rbdu3endevWbNy4MdvbR0dH88033/Dss8/SqVMnxo0bx4ULF3IahiiCDt4+yIUw47lSlMc+sSa1itcyGRPl9D3rHDBKPKw62FfsH7WsRVQHk3WspeqgMPOr7oWLl2nvwRaRD6t59rn/g4u3I37VvQo6tBzLcYISGRnJvHnzCAoKokqVKjna1mAw8M477/DPP//Qs2dPXnvtNR48eMC4ceO4efNmTkOxGHEPEji64hJxDxK0DqVQk8ax1in9/CxyF8V6xUckEmZ7jwvOxrFPiieVonJ8TbPrCe3o9TqaDaphUlYvpjlOqc4AHHHbQ53+5dHrLb9beI4TFG9vb1avXs3y5csZOXJkjrbdsWMH//33H5MmTeKVV16hZ8+e/Pjjj+j1eubOnfv4F7BQcRGJHF91mTj5w8w3CSkJLD2zFLDcsU+Eef2f7o+d3g4wzp8kY6JYJycPB/YX+xdFZ6zCaRHZAR0Zv+SsoeqgsKvYxI/24+urd1IcFEcaRaeNiRLPMZe9WoaXbTlOUOzt7fH29s7Vznbu3ImXlxetWz/seeHh4UHbtm3Zs2cPSUlJuXpdUfitvbCWiIQIAHrV7CVjn1iR9GOi3Iu9x+YrmzWOSORGiWqeHPAy9gLRKTqaRbXLsI61VB0UBRWb+NHvxwBaDq0FwIjWw9Rl1tLtv0AbyV68eJGqVaui15vutkaNGiQkJFh1NY/IX+mrd2RKd+uTvkou/WcprMf+2/u4Z3MHgOpxdfFOKZ5hnWYDa1hF1UFRodfr8K1kHO6+U932VPEyNsv499q/BEUEaRlathRoghIeHm727ktaWVhYmNntQkNDuXDhgvovKMjy31iRd+5G31V/dZdzL0dAhQBtAxI51rlyujFRLq4jLM7837p4cvnVJi59Ytk2tavJMhdvR9qPr0/FJn55uk+Rd3Q6ncngiQtPLdQumGwq0AQlMTERe3v7DOVpZYmJ5ttwrF27luHDh6v/pkyZkq9xCsvyx+k/1LFPBtUZJGOfWCE7GzsG1BkAQFJqkjqXksh7+dEmLi45jmVnlgHgZu/Gl59PVqsOWg6tRb/pAfmanFjirN3WaGDdgWq7oXkn5qEolt0lvECv9A4ODmbbmaSVOTiYP/l69OjBrFmz1H/vv/9+vsYpLIeiKCY9P2TsE+uVvmrOWurAhdHqc6uJTooGoG+tvrg5uqpVB76V3PO9WqeoT76ZV8q5l6NdRWPboSsPrrD3pmU3li3QBMXLy8tsNU5aWWaNb318fKhWrZr6r3z58vkap7Acx+4e47/7/wHQomwLqnpX1TgikVu1S9SmQckGABy5c0T9XIXlS59QShsw62ZN7cEKNEGpWrUqly5dwmAwmJSfO3cOR0dHypYtW5DhCCuQ/u5J+vpTYZ3Sf4bzT8iYKNbgZuRNtl019t6p7FmZVuVaaRyReBIvVH8BN3s3AJadWUZccpzGEWUu3xKU0NBQgoKCSElJUcvatGlDeHg4u3btUssiIiLYvn07LVq0MNs+RRRdSalJ6vwtjraO9K3VV+OIxJPqXzvdmCinF5FiSHnMFkJrC08tRMHYVmFw3cHodNJLJy9o1a7Gxd5FvZZGJ0Wz+tzqAt1/TuQqQVm5ciXz589nw4YNAOzdu5f58+czf/58YmJiAJg5cyYDBw4kJCRE3S4gIIBatWoxdepU5s2bx+rVqxk3bhwGg4EhQ4bkweGIwmT9xfWExRur/56v/jzuju4aRySelI+zD89WexaA4JhgtlzZonFEIisy/1X+0bJdjbW0B7PNzUZLly4lOPjhrJW7du1S74p06tQJV1fzg2jZ2Njw9ddf88svv7By5UoSExOpXr06kyZNoly5crkJRRRi6at3pN678BhcdzCrzq0CjHXg3ap20zgikZn9t/ZzKfwSAG0rtKW8h7T/KwxalWtFJc9KXH1wlW1Xt3Ez8iZl3S2viUWuEpRly5Y9dp3JkyczefLkDOVubm688847vPPOO7nZtSgiQmJDWH9pPQCl3ErRsVJHjSMSeaVrla74OvsSEhfCXxf+Ijw+HC8nGX3UEsn8V4VT2pgoH+74EAWFhacWMtk/4/e11mRACWGR/jz9p9o+YUDtAdjobTSOSOQVGRPFOsQnx6vzX7nau9KrRi+NIxJ5KX11naWOiSIJirBIJtU79aR6p7Cxpq6ORdWa82uISowCoHfN3rjYu2gckchL5T3K07ZCWwAuhV9i/639GkeUkSQowuKcvnea48HHAWhcqjE1fTNO6S6sW50SdajvVx+Aw3cOczbkrMYRiUelbzwpXfwLJ0v/oSAJirA40ji2aEj/2cqYKJbldtRt/rn6DwAVPSriX95f44hEfuhV4+HM8EvPLCU+OV7jiExJgiIsSoohhUWnFgFgp7fjxadf1DgikV9eqv0StnpjO/2FpxbKmCgWZOGpher8V4PrDpb5rwopF3sX+tTsA0BUYhRrzq/RNqBHyFknLMrmy5u5F3sPgGerPYu3s/npD4T183Xx5ZmnngHgbsxdtl7ZqnFEAmTsk6LGksdEkQRFWBQZ2r5oSf8ZW9rFsag6ePsgF8IuANCmfBsqelbUOCKRn/zL+1PRw/gZb72ylVtRtzSO6CFJUITFeJD4gL8u/AWAr7MvXap00Tgikd+6Ve2Gr7MvAH+d/4sH8Q80jkikbw8kY58UfnqdXr2LoqCoVeyWQBIUYTHWXF9FUmoSAC/Xfhk7GzuNIxL5zc7GjpdrvwxAYmoii/9bQsjVSABCrkZiMFje2AyFWUJKAov/WwyAs52zjH1SRFjqmCiSoAiLsfTKYvWx/HIrOtKPc/PDXz+xd/YZAPbOPsPSsTu4dig4s01FHvvr/F9EJhoTxN41e+Pm4KZxRKIgVPSsSJvybQC4EHaBg7cPahyRkSQowiLcsb/B0dAjANQtUZe6fnU1jkgUlHp+9ajhVguAy3bnuGt/Q10WG57AtmnHJUkpIDL2SdFliWOiSIIiNGUwKIRcjWSP+2a1bEh9mdm6KDEYFBrdbaM+31dsW4Z1Diw8J9U9+exO9B11duny7uVpU6HNY7YQhUnvmr1xsTOOFrzkvyUkpCRoHJEkKEJD1w4Fs3TsDnbOPsGBYv8CYKvY0Sq5g8aRiYIUfD6cesGtsFGM8y0dKPYvBlJN1okNSyD4fLgW4RUZi04tUsc+GVR3kIx9UsS42rvSu2ZvACITI/nr/F8aRyQJitDItUPBbJt2nNjwBE65HiLa1ljvXS+6Gcd+CZJb+kVIfEQixVI9qB3TGIAIuzDOOp8wu57IH4qiMPv4bPW5jH1SNFnamCiSoIgCZzAoHFhwTn2+x32L+rhVZGdAbukXJU4eDgA0j3p452yf+z+Zrify3t6be7kYdhEwjn1SxauKxhEJLbSp0Iby7uUB2HJlC3ei72gajyQoj7gfe5+d13dqHYbm4h4kcHTFJeIe5H09ZPD5cGLDja/7wDaU/1yOAuCV7EuNOGPjWLmlX3T4VffCxcuROjGNcU0pBsBx133E6WPUdVy8HfGr7qVViIXe78d+Vx8PazBMw0iEltKPiWJQDCw8uVDbeDTduwVRFIUBqwZQ5vsy9FneRx2Po6iKi0jk+KrLxOXDbfX0t+r3F9uGojPWe7eI7IgeG7PricJLr9fRbFANbLGjaXQAACn6ZA677VLXaTawBnq9Ls/3nZ+JuLWISoxi+dnlALg7uMvYJ0Vc+uq9uSfmajomiiQo/0+n05GUmkSyIZmQuBDWXlirdUiFVtqtegWFve4P519pEdXB7Hqi8KvYxI/24+vTnu5q2V73rbh4O9J+fH0qNvHLl/3mZyJuLZb8t4S45DjAOIGjk52TxhEJLVX2qmwyJsq+m/s0i0USlHSGNxiuPk5/y1PkrbRb+pec/uO+vbGOs0ZsPXyTH34JyS39oqdiEz8mfjeMai41AbjmdIFa7/nkW3IijNI3jh1af6iGkQhLMbT+UMq5l+OjNh9pOheTJCjptK/UXp00acuVLVyPuK5tQIVU2i399I1jW0Z2NFknv27pC8tmY6MnsFag+nz2cfmhkJ9O3zvNoduHAOOAeQ1KNtA4ImEJ+tfuz9WxV/k44GNKuZXSLA5JUNLR6/TqLwgFhTnH52gcUeHlXdeZ4557AXBOdaV+TAuAfL+lLyxf74p9sTPYA7Dw1EKLGDCqsHr07olOJz8KBNjqbbHR2zx+xXwmCcojAusFqgMUzTk+h1RD6mO2ELmx5L8lJBiMXzzPlXkBe8WBlkNr0W96gCQnFsrZw4H6PavgnM9tgzwcPGgY3QqABwkPWHl2Zb7ur6hKTElk4SljLw0HGwd10kYhLIUkKI8oXaw03asaG+rdjr7NpsubNI6ocDL55dbAeNfKt5K7VOtYMGdPRxr2roqzp2O+78s/sov6eNaxWfm+v6Lorwt/ER5v7Mrfq2YvPJ08NY5ICFOSoJiRvrGsXBzz3n/3/1PrveuWqEsdL5kYUJiqGl+LKsWqArAzaKc6iJjIO+k7AkjjWGGJJEExo2vVrmrDoL8v/s3d6LsaR1S4zDr6MOkbUn+I1HuLDHToGFD14XgM0qsubwVFBPHPVeNovRU9KhJQIUDbgIQwQxIUM2z1tgypZ5xRN1VJtZippwuDuOQ45p+cD4CjrSMD6wzUOCJhqfpV7o+d3g4wTv9e1AdPzEtzjs9BwTgA15D6Q2RiQGGR5KzMxJD6Q9THvx//XZ3lUzyZZWeWEZlonBiwX61+Uu8tMuXj6MPz1Z8HkMET81CKIYXf/7/7tl6nJ7BeoLYBCZEJSVAyUdGzIh0rGcfmuPrgKtuvbdc4osLh1yO/qo9fa/SahpEIayDtwfLe3xf/VieBe/apZylTrIzGEQlhniQoWbDEi6M1zx1yIvgEB28fBIyNY5uWbqpxRMLSpR88ceuVrTJ4Yh6QHwnCWkiCkoXnqj+Hr7MvAKvPryYkNkTjiKx77pDfjvymPh7RcIQ0jhWP9ejgibOPzX7MFiIrV8KvsPnKZsDYOLZT5U4aRyRE5iRByYK9jb1aP5uUmiQjyz6B6MRoFp1eBICLnQsv15FBoUT2vFL/FWx0xlEtZx+fTXJqssYRWa+ZR2eqj0c0HCGNY4VFk7PzMUY0HIEO4y/9X4/+KiPL5tLi/xYTkxQDGGdMLeZQTOOIhLUo5VaKHtV6AHA35i5rzq/RNiArlZiSyJwTxh9Zdno7Xqn/isYRCZE1SVAeo7JXZbpUMY5qeT3iOhsvb9Q4IuujKIpJvfeIhiM0jEZYo9cbv64+/t/h/2kYifVadW4VoXGhgHHk2OIuxTWOSIisSYKSDaMaj1If/3L4Fw0jsU5H7hzhePBxABqVakTDUg01jkhYm3YV21HNuxpgHFn2zP0zGkdkfX49mq5xbENpHCssnyQo2dC1SlcqeFQAYNPlTVwJv6JtQFbGpNeAhhfGgprsTuQ9nU5n1T8UtO59dzbkLLuCdgFQw6cGrcu31iQOIXJCEpRssNHbqF+sCqbVFSJrYXFhLP5vMQDFHIrx4tMvahZLQU52J/Le4LqDcbFzAWDBqQVEJUZpHFH2ad37bsbhGerj1xq9Jj3ohFWQBCWbhtQfgr2NPQBzTswhPjle44isw+zjs4lPMb5XgXUDcbF30TgiYa3cHd0ZUGcAADFJMSw6tUjjiKxDVGIU807OA8DJ1kmmlxBWQxKUbPJ18aVfrX4AhMeHs+zMMo0jsnwphhSTBo2jm4zWMBpRGKSv5vnf4f+hKIqG0ViHeSfmqT3oBtUdJNNLCKshCUoOPHpxFFlbd2EdNyJvANCtajeqelfVOCJh7eqUqEOrcq0AY7uKnUE7NY7IshkUAz8d+kl9PqbJGA2jESJnJEHJgaalm1Lfrz4Ah+8c5uCtgxpHZNl+PPSj+nhsk7EaRiIKE+lynH2bLm/icvhlANpXbE+t4rU0jkiI7JMEJQd0Op3JL5AfDvygYTSW7fS90+y4vgOAp7yfomPljtoGJAqNnjV6UsKlBGAc2yMoIkjjiCzXjwfT/UhoKj8ShHWRBCWH+tfurw5wtOLsCrUKQ5h69LayDKkt8oq9jb1a3fpoFYZ46FLkRZN5d7pX7a5xRELkjHxr5JCjrSMjG40EIFVJ5edDP2sckeUJjw9Xe1i42bsxuO5gjSMShc3IRiNxsDGOZzPr2CyiE6M1jsjy/H7+4Qzso5uMxkZvo2E0QuScJCi5kP7iOPPoTGKSYzSOyLLMOjpL7Vr8Sr1XcHNw0zgiUdj4uviq3WWjEqNkIs9HxOljWXLlTwCc7ZwZUn+IxhEJkXOSoORCCdcSvFzbOBtvZGKkeiEQxgnJph+cDoAOnXQtFvlmfLPx6uNpB6fJRJ6AwaAQcjWSXR4biEuJBWBQnUF4OHpoG5gQuSAJSi6lvzjOOPULBlIJuRqJwVC0x2X48/Sf3I25C8Dz1Z+XrsUi39QqXovOlTsDxok8i/osx9cOBbN07A52zDnBNo+1AOgUHb1dBmgcmRC5IwlKLtUuUZuW3sb5LG4kXOeU6yH2zj7D0rE7uHYoWOPotGFQDHy7/1v1+dst3tYwGlEUvNn8TfVxUe5Vd+1QMNumHSc2PIFDbtuJsAsDoF5Mc67Niiqy1yRh3SRByaVrh4JpeLK9+nyL5yoAYsMT2DbteJG8IGy8tJGzIWcBaFm2Jc3LNtc4IlHYdazUkVq+xrE99t7cWyTHJjIYFA4sOGd8jIHNXqvUZZ3DewNwYOG5In93V1gfSVByIe2CUCu2ISUTywJwyfkMl5weTgFfFC8I3+z7Rn0sd09EQdDpdLzR7A31+df7vtYwGm0Enw8nNtw4S/Jpl8PcdTAOfVAlrhaVE6oDEBuWQPD5cM1iFCI3cpygJCUlMWPGDF544QU6dOjAiBEjOHz4cLa2PXLkCOPGjePZZ5+lW7duvPrqq2zevDnHQWst7YKgR0+X8D5q+Uavh/PzFLULwuHbh9Vhx6t5V+PZas9qHJEoKl6u8zIlXUsCxoHbzoWc0ziighWfbobkLV4r1cdd/v/uibn1hLAGOU5Qpk6dyrJly+jYsSNjx45Fr9czceJETp06leV2e/bsYcKECSQnJxMYGMiwYcNwcHDg888/Z9ky65p4L/0fepOoALySfQE47XqYGw5XzK5X2KW/e/JWi7dkYDZRYBxtHZnQfIL6/Ku9X2kYTcFz8jAOeXDV8TwXnf8DoGRiWWrHNja7nhDWIkffImfPnmXbtm28+uqrjBo1ih49ejBt2jT8/PyYMWNGltuuWrUKb29vpk2bRq9evejZsyc//PADpUuXZuPGjU90EAUt/R+6LbYmv1Q2eS03u15hdjHsIivPGX+5lXApwYA60mtAFKxXG76Kp6Nxlt5FpxZxPeK6tgEVIL/qXrh4ObLZa4Va1im8F/p0l3cXb0f8qntpEZ4QuZajBGXnzp3Y2NjQo0cPtczBwYHu3btz5swZ7t27l+m2cXFxuLm5YW9vr5bZ2tri7u6Og4N1fZGnXRDStIzshFuKBwBH3HYTbHerSF0Qvtj9BQbFABi7XzvaOj5mCyHylpuDmzrXTKqSyrf7vn3MFoWHXq/D4wU45rYPAPcUL5pGtzVZp9nAGuj1Oi3CEyLXcpSgXLp0iTJlyuDi4mJSXqNGDQAuX76c6bb16tXj2rVr/P7779y6dYvbt28zf/58Lly4QP/+/XMRunb0eh3NBtVQn9srDnR88DwAik5hs9eKInNBuBJ+RR3W3svJy2SmWSEK0pgmY3CxM16bfj/2O8ExRacn3dzwh3ewu4T3xk6xA4x3TtqPr0/FJn5ahSZErtnmZOWwsDC8vb0zlKeVhYaGZrrt4MGDuXv3LgsXLmTBggUAODo68umnn+Lv75/lfkNDQwkLC1OfBwVpP3tpxSZ+tB9fnwMLzhEbnkCbiO5s9FpOvE0sBz23Y1stWesQC8QXu78gVTGO4PlGszdkWHuhGW9nb15r9Brf7f+OxNREvt//PV93LPy9es7cP8OKs8bqnRIuJZj43Jscm3eVlkNrUa1t2SLxQ0kUTjm6g5KYmIidnV2G8rRqm8TEzBuF2tnZUbZsWQICAvjoo494//33qVatGlOmTOHMmTOZbgewdu1ahg8frv6bMmVKTsLONxWb+NHvxwBaDq2Fs8GFQRVeASBZSWbqnqkaR5f/rj24xoJTxmTTw9GDMU3GaByRKOrebP6mOk/W/w7/j3sxmVc7FxZTdk9BwTikwdst3qZcVePdEt9K7pKcCKuWowTFwcGB5OSMdwaSkpLU5ZmZNm0a+/bt46OPPqJ9+/Z06tSJH374AW9vb3788ccs99ujRw9mzZql/nv//fdzEna+0ut1+FZyB+CN5m/gau8KGG8xX3twTcvQ8t2Xe74kxZACwPim43F3dNc4IlHUlXIrxYiGIwCIS47jyz1fahxR/joXco6l/y0FwNfZl9cavaZxRMLSOHs4UL9nFZytsNNGjhIUb29vk6qWNGllPj4+ZrdLTk5m/fr1NG/eHL3+4S5tbW1p2rQpFy5cMJv4pPHx8aFatWrqv/Lly+ck7ALj7eitDhqVbEjms12faRxR/gmKCGLuibkAFHMopjZQFEJrk/wn4WTrBMCMIzO4FXVL44jyz6N3T1zsXR6zhShqnD0dadi7Ks6e1td5IUcJSpUqVbh16xaxsbEm5WfPnlWXmxMZGUlqaiqpqRlnG01NTcVgMGAwGHISisV6s/mb6syh80/O50LoBW0Dyicf7fiIZIMxqRzbZCyeTp4aRySEkZ+rnzqLdmJqIl/s/kLjiPLH6XunWXx6MQA+zj6MajxK44iEyFs5SlACAgJITU1l7dq1allSUhIbNmygZs2alChRAoB79+6ZNGT19PTE1dWV3bt3m9wpiYuLY+/evZQrV87quhpnxsPRQx3m3aAY+Hjnx9oGlA/+u/8fC04a2554OnoyocWEx2whRMGa2HKiSXVrYRwXZdK2Serdk3daviN3T0Shk6MEpWbNmrRt25aZM2cyY8YM1q5dy/jx4wkODua11x7WfX7++ecMHDhQfW5jY8OLL77IzZs3ee2111i2bBlLlixhxIgRhISEMGjQoLw7IgswtulYfJ2No8su+W8Jp+5lPcqutXnv3/fUC+OkVpPUO0ZCWAofZx/GNx0PGKtbP9n5ibYB5bFdQbtYf2k9AGWKlVHvGAlRmOR4PPLJkyfTp08fNm/ezI8//khKSgpfffUV9erVy3K7QYMG8cEHH2Bra8u8efOYPXs2Li4ufPrpp3Tq1Cm38VskV3tXJrWapD5/9593NYwmb+29sZe1F4x30Eq7lZYLo7BYE1pMeFjdemI+J4NPahtQHlEUhXf+eUd9/mnApzI4oiiUcjQOChh76owaNYpRozKv78ysV07Hjh3p2LFjTndplV5r9Bo/HPiBm1E32Xh5I5svb6Zzlc5ah/VEFEXh3W0Pk62PAz7Gyc5Jw4iEyJyHowfv+b/H21vfRkFhwpYJbB24FZ3Ourve/nXhLw7cOgBATd+aDKpbuO5AC5FGZnTLJ052TnzZ4WEXxwlbJqhdcq3V8rPL2XNjDwBPeT9FYL1AbQMS4jHGNBlDRY+KAGy7to0NlzZoHNGTSUxJZOLWierzL9p9gY3eRsOIhMg/kqDkoxeffpEmpZsAcCbkDLOPzdY4otyLS47jrS1vqc+/6/Qdtvoc34ATokA52DqY/FB4a+tbJKda7yjP0w9O51L4JQBalWtFj2o9HrOFENZLEpR8pNfp+aHzD+rzD7Z/QGRCpIYR5d43e7/hZtRNADpX7kz3qt01jkiI7OlTsw/NyzQH4HzoeX498qvGEeXO3ei76thKep2en7r+ZPXVVUJkRRKUfNaibAv61uoLQEhcCO//azmj4GbXjcgbfLX3KwBs9bZM6zJNLozCauh0Or7v/L36/P3t73M3+q6GEeXOu9veJSYpBoBXG7xKPb962gYkRD6TBKUAfN3ha5ztnAHj/CBH7hzROKKcGb9pPPEp8YCxTr+6T3WNIxIiZ5qVacaQekMAiEqMYsIW6xq7Z9/NfSZjD33WrvCOUi1EGklQCkB5j/J83OZjABQURvw9glRDxlF1LYXBoBBy1VgV9eehJaw+vxqA4i7F+bDNh1qGJkSufdXxK7ycvABY/N9iNl/eop7nIVcjMRgULcPLVGJKIsPWDlOff9r2U3yczU8rIkRhIglKARnfbDy1i9cG4NjdY/zv8P80jsi8a4eCWTp2B3tnnyFOH8OH/01Wl/3Y5UcZlE1YLR9nH77u8LX6PHD+ULbPOQbA3tlnWDp2B9cOBWsVXqa+2P0F50LPAdCoVCOZEFAUGZKgFBA7Gzt+feZh47zJ2yZz9cFVDSPK6NqhYLZNO05seAIAK33nEmkbDkCdmCY0jm2tZXhCPLFX6r9CQ4/GAATb3mKNzwJ1WWx4AtumHbeoJOX0vdNM3TMVMLb/mt1jtvSeE0WGJCgFqEXZFupU8LHJsQxaPchiqnoMBoUDC86pz885n2CXx0YAHAxOvHzvdQ4uOm+xt8GFyBZFR7+rI7E12AHwj+caLjidNlnlwMJzFnGepxhSGLZumDop5zst36FOiToaRyVEwZEEpYB90/EbdeCovTf38u2+bzWOyCj4fLh65yRGH8Ucv+/UZT1DAvFK8SU2LIHg8+FahSjEEws+H45niB/PhxpHX1V0CnP9vidBF6euYynn+ZRdUzh0+xAA1byr8X5r6+sBKMSTkASlgLk5uLHghQXoMHbT/WD7BxYxR0h8RCJgbMS70O8nIuzCAKgRW4+AiO4Z1hPCGqWdvx0fPE/VuFoAhNnfY2nxmWbX08qeG3vUMU9sdDbMe36exc234+zhQP2eVXD2KBwz0QvLIwmKBlqVa8XElsbhqpMNyfRd0ZeoxChNY3L6/4vMbvdNHHPbC4BLqhuvBL+JPt1p4iQXI2HF0s5fPTa8EvwmDgbjl/4ejy3sL7Ytw3paeBD/gJdXvYxBMQDGOa+alWmmWTyZcfZ0pGHvqjh7WlbiJAoPSVA08knAJ+pASxfDLvLKX6+gKNrVe/tV9+Ju8WssLj5DLRsUPA7PlIfdGV28HfGr7qVFeELkCb/qXrh4Gb9QfZNL0v/eSHXZohI/c9v+uqbneaohlZdWvcSNyBsA+JfzN5kZXYiiRBIUjTjYOrCy70q12+6qc6v4Zt83msUTEnefX/ymkKI3TmjY9sGzNIhpYbJOs4E10OtlBFlhvfR6Hc0G1VCft4zqSKuITgAk6ROZUfpzarxYUrPz/IPtH7Dp8ibA2C16Uc9FMhmgKLIkQdFQJc9KLHxhofr83X/eZeXZlQUeR1xyHD2X9SQ40Tj8d/Wk2vS9P1xd7uLtSPvx9anYxK/AYxMir1Vs4kf78fXVOyn974+kbEIlAO7Z3+aNyyNJTCn4NiiLTy9WuxTb6GxY1nsZ5dzLFXgcQlgKSVA09sxTz/BRm48AYwPVl1e9zN4be82um36E17wa+TLFkMKLK15k3819AJRyK8W2dzbTZmhdAFoOrUW/6QGSnIhCpWITP/r9GEDLobWwVxyY3Wo+vs6+AOy4voNh64YVaJXrlitbGLxmsPr8+87f07Zi2wLbvxCWSBIUC/BRm48YVNfY7TExNZFnFz/LsbvHTNZJP8Ir5M3IlwbFwIh1I1h3cR0AbvZurOu/jlLFSuJbyR0A30ru+X67W3oDCC3o9Tr1PK9fszbr+q9Te8osOrWIsRvHFkiScvDWQV5Y+oI63smrDV5lTJMx+b5fISydJCgWQKfTMevZWXSo1AGABwkPaL+gPYdvHwYyjvCa5klGvkwxpPDKX68w58QcAOz0dqx5cQ0NSjZ4wqPJOekNICxB0zJN+bPnn+oQAD8f/pnRG0bna5KyK2gXHRd2JC7ZOA5Lzxo9+aX7LzJbuBBIgmIx7G3sWdl3JS3LtgQgIiGCDgs7sPXKPyYjvJqT05EvE1IS6Leinzo7qo3OhkU9F9GuYrvcH4AQeUTLO2ov1HiBec/PU5OUX478wqA1g/KlTcr6i+vpvKgz0UnRALSr2I4/ev4hjWKF+H+SoFiQYg7F2DRgE63LG+e8iUqMousfXVhrWIZC5glITka+vBl5E/+5/qw6twowJkbL+yynb62+T34AQuQBre+oDao7iAUvLECvM14eF51aRLsF7bgXcy9PXl9RFL7Z+w09lvQgIcV4V7Rrla4mVUxCCElQLI6rvSsbXtpA96rG0VtTlVSWlPiVmSW/JNomMtPtsjPy5YqzK2gwswFH7hwBwNnOmXX91/FCjRfyJnghCokBdQawvM9ynGydANh3cx/1fqvH+ovrn+h1g+OCeX7p80z8Z6I6EFu/Wv1Y8+IanO2cnzhuIQoTSVAskIu9C3+9+BfvtHxHLTtSbDcfVXiNne4bSCXjBINZjXx5IfQCPZf2pM/yPoTGhQJQ0aMi+4fup1PlTnl/AEIUAj1r9GTPkD2UdisNQHBMMM8sfoYXV7zItQfXcvRaiamJ/OuxjlZrm7L2wlq1/MPWH/JHzz+wt7HP09iFKAwkQbFQNnobvuzwJUt6LcXVUAyAaNtIFvn9zAcVh7PZcyWRNsZqHXMjX6YYUvj32r+8uOJFav1Si9XnV6vLXqj+AoeHH5aZUYV4jAYlG3Dk1SN0q9pNLVt6ZinVfq7GgFUD2B20O8sZyW9F3WLq7qk0W9OQxSVmEJlkvAvq6+zLuv7r+KTtJ9LmRIhM2GodgMhav6f7UvFBdUb99TpH3fYAEGIfzIris1lRfDalEyvQuGJDTm/fiq3eloiECC6FX2LfzX0Z5vfxc/Xju07f0f/p/tJLQIhs8nP14+/+fzPn+BwmbZtESFwIyYZk/jj9B3+c/gMvJy+alm7KU95P4WbvRoohhZtRNzl29xjnQjM2cH+59gCmdfkBH2cfM3sTQqSRBMUKNPGvw3KH5Sz4cwVL7WdzzuWEuuy2w3Vu37nOmjuZb+/r7MvYpmN5o9kbuNi75H/AQhQyOp2OoQ2G0rtmb77d9y0zjswgLN4443d4fDgbL29k4+WNWb5G7ZjGPBc6gJohtYkuk4JPk4KIXAjrJQmKlajYxI8PGr1O3+09WLlgM7fanOJY6kGO3DlitoePt5M3HSt35Llqz/FC9RdwsJVB0IR4Uu6O7nzW7jMm+09mxdkVrL24ln+u/kNEQkSGdW10NpSPq0qt2AY0j+qAb7JxNObYROP4RTJ9hBBZkwTFiqSNfOmXXIbX2vbFp6I7cclxXHtwjbsxd1EUBWc7Zyp5VsLP1U+qcYTIJ052TgysO5CBdQeiKAp3Y+5yJfwKianG3nQlXUpx+LMgUrLo/X9g4TnKNyohE3AKkQlJUKycs50ztYrXolbxWlqHIkSRpNPpKOVWilJupdSyO2fDSAkPynK7tPGLStX0zu8QhbBK0otHCCHyWHbGJcrJekIURZKgCCFEHstqXKLcrCdEUSQJihBC5DG/6l64eGU9bL258YuEEA9JgiKEEHlMr9fRbFCNLNdpNrCGNJAVIguSoAghRD6o2MSP9uPrZ7iT4uLtKF2MhcgG6cUjhBD5pGITP8o3KsGF7TfZO/sMLYfWolrbsnLnRIhskDsoQgiRj9LGLwLwreQuyYkQ2SQJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIUQh4uzhQP2eVXD2cNA6FCGeiEwWKIQQhYizpyMNe1fVOgwhnpjcQRFCCCGExZEERQghhBAWJ8dVPElJScyePZstW7YQHR1N5cqVGTZsGI0bN87W9tu2bWPFihVcuXIFW1tbypcvz7Bhw2jYsGGOgxdCCCFE4ZTjBGXq1Kns2LGDPn36UKZMGTZu3MjEiROZPn06derUyXLbOXPmMH/+fAICAujSpQspKSlcu3aN0NDQXB+AEEIIIQqfHCUoZ8+eZdu2bYwcOZL+/fsD0LlzZwIDA5kxYwYzZszIdNszZ84wf/58Xn/9dfr27ftkUVsYaTUvhBBC5K0ctUHZuXMnNjY29OjRQy1zcHCge/funDlzhnv37mW67fLly/Hy8qJ3794oikJcXFzuo7Ywaa3mnT0dtQ5FCCGEKBRylKBcunSJMmXK4OLiYlJeo0YNAC5fvpzptkePHqV69eqsWLGCHj160KVLF55//nlWrlyZi7CFEEIIUZjlqIonLCwMb2/vDOVpZZm1JYmOjiYyMpL//vuPY8eOERgYSIkSJdi4cSPTp0/H1taW5557LtP9hoaGEhYWpj4PCgrKSdhCCCGEsDI5SlASExOxs7PLUG5vb68uNyetOicyMpKPPvqI9u3bAxAQEEBgYCALFizIMkFZu3Yt8+bNy0moQgghhLBiOUpQHBwcSE5OzlCelJSkLs9sOwBbW1sCAgLUcr1eT7t27ZgzZw737t2jRIkSZrfv0aMHLVu2VJ8HBQUxZcqUnIQuhBBCCCuSowTF29ubkJCQDOVp1S8+Pj5mtytWrBj29va4urpiY2NjsszT0xMwVgNllqD4+Phk+tpCCCGEKHxy1Ei2SpUq3Lp1i9jYWJPys2fPqsvN7kSvp2rVqkRGRma4A5PWbsXDwyMnoQghhBCiEMtRghIQEEBqaipr165Vy5KSktiwYQM1a9ZU74Dcu3cvQ0PWtm3bkpqayqZNm9SyxMREtm7dSoUKFeQOiRBCCCFUOariqVmzJm3btmXmzJlERERQunRpNm3aRHBwMO+884663ueff86JEyfYtWuXWvbcc8+xfv16fvjhB27evEmJEiXYvHkz9+7dY+rUqXl3REIIIYSwejke6n7y5MlqchETE0OlSpX46quvqFevXpbbOTg4MG3aNGbMmMGGDRtISEigSpUqfPXVVzRp0iS38QshhBCiEMpxguLg4MCoUaMYNWpUpuv8+OOPZss9PT2ZPHlyTncphBBCiCImR21QhBBCCCEKgiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihCiyHL2cKB+zyo4e5ifpkMIoZ0c9+IRRYNcuEVR4OzpSMPeVbUOQwhhhiQowiy5cAshhNCSVPEIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJipWR8UmEEEIUBTIOipWR8UmEEEIUBXIHRQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCiHwmAywKkXMyUJsQQuQzGWBRiJyTOyhCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4thqHUBuJCYmAhAUFKRxJEIIIYTIqfLly+Po6JjlOlaZoAQHBwMwZcoUjSMRQgghRE7NmjWLatWqZbmOTlEUpYDiyTMREREcOnSIkiVLYm9vr3U4+S4oKIgpU6bw/vvvU758ea3DKVBy7EXv2IvqcUPRPfaietxQdI+90N5B8fDwoFOnTlqHUeDKly//2IyzsJJjL3rHXlSPG4rusRfV44aifeyZkUayQgghhLA4kqAIIYQQwuJIgmIFvL29CQwMxNvbW+tQCpwce9E79qJ63FB0j72oHjcU7WN/HKtsJCuEEEKIwk3uoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDhWOVBbYRQaGsqKFSs4d+4c58+fJz4+nunTp1O/fv0M644dO5YTJ05kKG/SpAnffvutSVlSUhKzZ89my5YtREdHU7lyZYYNG0bjxo3z61ByLCfHDnD69Gl+/fVXLl68iIuLC23btmX48OE4OzubrGcNx27Oxo0bmTp1qtllq1evztDaf8+ePcydO5egoCA8PDzo1q0bgwYNwtbWuv68rfXzyonjx48zbtw4s8tmzJhBrVq11OfZPc8tUVxcHEuWLOHs2bOcO3eO6OhoJk2aRNeuXTOse/36dX7++WdOnz6Nra0tzZs3Z/To0Xh4eJisZzAYWLJkCWvWrCE8PJwyZcowYMAAOnToUEBH9XjZPe4vvviCTZs2Zdi+XLlyLFq0yKTMGo47v1jXFawQu3nzJn/++SdlypShUqVKnDlzJsv1fX19GTFihEmZuW5qU6dOZceOHfTp04cyZcqwceNGJk6cyPTp06lTp06eHkNu5eTYL126xBtvvEH58uUZPXo09+/fZ+nSpdy6dYtvvvnGZF1rOPasDB06lJIlS5qUubq6mjw/cOAA7733HvXq1WPcuHFcvXqVBQsW8ODBAyZMmFCQ4T4xa/+8cqJXr17UqFHDpKx06dLq45yc55YoMjKSefPmUaJECapUqcLx48fNrnf//n3GjBmDq6srw4cPJz4+niVLlnD16lV+++037Ozs1HVnzZrFH3/8wbPPPkv16tXZs2cPn376KTqdjvbt2xfUoWUpu8cNYG9vz8SJE03KXFxcMqxnDcedbxRhEWJjY5XIyEhFURRl+/btir+/v3Ls2DGz644ZM0YZNGjQY1/zzJkzir+/v/Lnn3+qZQkJCcqLL76ovPbaa3kTeB7IybG/9dZbyvPPP6/ExMSoZevWrVP8/f2VgwcPqmXWcuzmbNiwQfH391fOnTv32HUHDhyovPLKK0pycrJaNnPmTKV169bK9evX8zPMPGXNn1dOHDt2TPH391e2b9+e5XrZPc8tVWJiohIaGqooiqKcO3dO8ff3VzZs2JBhve+++07p0KGDEhwcrJYdPnxY8ff3V/766y+17P79+0rbtm2V77//Xi0zGAzK66+/rvTs2VNJSUnJx6PJvuwe9+eff6506tTpsa9nLcedX6QNioVwdnamWLFiOdomJSWFuLi4TJfv3LkTGxsbevTooZY5ODjQvXt3zpw5w71793Idb17K7rHHxsZy5MgROnXqZPJLo3Pnzjg5ObF9+3a1zFqO/XHi4uJITU01u+z69etcv36dZ5991qQ654UXXkBRFHbs2FFAUT65wvJ55URcXBwpKSkZynNynlsqe3v7bA08tnPnTlq0aEGJEiXUskaNGlG2bFmT49yzZw8pKSm88MILaplOp+P5558nJCTksXecC0p2jztNamoqsbGxmS63luPOL1LFY6Vu3rxJ586dSU5OxsvLi2eeeYbAwECTL6pLly5RpkyZDLcN024tX7582eTCYOmuXr1Kampqhgm17OzsqFq1KpcuXVLLCsOxjxs3jvj4eOzs7GjcuDGvv/46ZcuWVZdfvHgRIMP74ePjg6+vr8n7YekKw+eVE1OnTiU+Ph4bGxvq1KnDyJEjqV69OpCz89yahYSE8ODBA7MT5NWoUYMDBw6ozy9duoSTk1OG2X7Tzo9Lly5ZXTVgQkICXbt2JSEhATc3N9q3b89rr71m0saoMB53TkiCYoVKlSpF/fr1qVSpEgkJCezYsYMFCxZw8+ZNPvnkE3W9sLAws9l8WlloaGiBxZwXwsLCAPNtbby9vTl58qTJutZ67A4ODnTt2pX69evj4uLChQsXWLZsGaNGjeL3339Xv6gf936kLbcG1vx55YStrS1t2rShWbNmuLu7c/36dZYuXcro0aP55ZdfeOqpp3J0nluzxx1nVFQUSUlJ2NvbExYWhqenJzqdLsN6YH3nh7e3N/379+epp55CURQOHjzImjVruHLlCtOnT1d/aBa2484pSVDygcFgIDk5OVvr2tvbZzj5Hufdd981ed65c2e++eYb1q1bR9++fdWeAImJiSaNzNLvM215XsvPY0+LN7NjSkpKMlm3oI/dnNy8H+3ataNdu3Zqub+/P02aNGHMmDEsXLiQt956C0A93rRjevS1sqr+szSW8nnlt9q1a1O7dm31eatWrQgICOCVV15h5syZfPvttzk6z63Z444zbR17e/tCd3482sGhffv2lC1bllmzZrFz50618WthO+6ckgQlH5w8eTLTroSPWrhwYYbbd7nRr18/1q1bx5EjR9QExcHBweyXY9oFzsHB4Yn3+6j8PPa0eDM7pvRf1Focuzl59X7UqVOHmjVrcvToUbUs7XjNfWElJSUV2DHmBUv5vLRQpkwZWrVqxa5du0hNTc3ReW7NHnec6dcpCudH3759mT17NkeOHFETlKJw3FmRBCUflCtXjkmTJmVr3byawbJ48eIAREdHm7x2SEhIhnXTbq36+Pjkyb7Ty89jT1vfXNVFWFiYyfFocezm5OX7Ubx4cW7cuJFh/bCwsAztM8LCwjJ0Y7VklvJ5aaV48eIkJyeTkJCQo/Pcmj3uOIsVK6YmY97e3hw/fhxFUUzuuham88PBwYFixYoRFRWllhWF486KJCj5wNvb2+yARPnpzp07ACaDG6X1w4+NjTVpfHj27Fl1eV7Lz2OvWLEiNjY2XLhwwaQKJDk5mUuXLtG2bVu1TItjNycv3487d+6YfL5Vq1YF4MKFC9SsWVMtDw0NJSQkxKRHjKWzlM9LK3fu3MHe3h4nJ6ccnefWzNfXFw8PDy5cuJBh2blz50w+8ypVqvD3338TFBREhQoV1PLCdH7ExcURGRmZ4Rpe2I87K9LN2MrExsZmuKWvKAoLFiwAMBl1MyAggNTUVNauXauWJSUlsWHDBmrWrGl1vSJcXV1p1KgRW7ZsMWlfsXnzZuLj400u3NZ87BERERnK9u/fz4ULF2jSpIlaVrFiRcqVK8e6detMuiKvWbMGnU5HmzZtCiLcPGHNn1dOmPtsL1++zN69e2ncuDF6vT5H57m1a9OmDfv27TPpRn706FFu3rxpcpytWrXC1taW1atXq2WKovDXX3/h6+vL008/XaBxP4nExESz7cPmz5+Poig0bdpULStMx50bcgfFgsyfPx8wjm8BxgvSqVOnABg8eDBg7Fr6ySef0KFDB0qXLk1iYiK7d+/m9OnTPPvssyZd9mrWrEnbtm2ZOXMmERERlC5dmk2bNhEcHMw777xTsAf3GNk5doBhw4bx+uuvM2bMGHr06KGOsNm4cWOTP2xrOvZHjRw5kqeeeopq1arh4uLCxYsX2bBhA8WLF2fgwIEm644aNYpJkyYxYcIE2rdvz9WrV1m9ejXPPPOMyS8uS2fNn1dOfPTRRzg4OPD000/j6enJ9evXWbduHY6OjiYNJ7N7nluylStXEhMTo1ZH7N27l/v37wPGkXRdXV0ZMGAAO3bsYPz48fTu3Zv4+HgWL15MpUqVTO48Fi9enD59+rB48WJSUlKoUaMGu3fv5tSpU3zwwQfY2NhocozmPO64o6OjGTp0KB06dKBcuXIAHDp0iAMHDtC0aVNatWqlvpY1HXd+0CmKomgdhDBq3bp1pst27doFGG8F//bbb5w7d47w8HD0ej3ly5fnmWeeoUePHhl6xSQmJqrzm8TExFCpUiWGDRtm8kvcEmTn2NOcOnVKnaPE2dmZtm3bMmLEiAxzlFjLsT9q1qxZHDhwgLt376ptEpo3b05gYCBeXl4Z1t+9ezfz5s0jKCgId3d3unbtmmFMHGtgrZ9XTqxYsYKtW7dy+/ZtYmNj8fDwoGHDhgQGBlKmTBmTdbN7nluqvn37EhwcbHbZ0qVL1Wkcrl27lmEuntdffz3DuW4wGPjzzz9Zu3YtYWFhlClThpdffplOnTrl+7HkxOOO29XVlenTp3PmzBnCwsIwGAyULl2ajh078uKLL2b4u7WW484PkqAIIYQQwuJIGxQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhSRpY0bN9K6dWs2btyodSjZcvz4cVq3bs2cOXPybR+tW7dm7Nix+fb6RUXfvn3p27ev1mFYvDlz5tC6dWuOHz+er/tZtmwZ7dq14+7du9lavyD+1qzZZ599Rp8+fUhMTNQ6FKslCUoh8+WXX9K6dWueeeaZDJMKFhbW9sUWGRnJr7/+yqBBg+jYsSMdO3akT58+jB8/nrlz5xIeHl4gcTwu2Rw7dmyWUw4UJfHx8XTp0oXWrVvz/fffax1OvouOjmbBggV069ZNHYJePJnAwEBCQ0NZvny51qFYLeuarENkKS4uju3bt6PT6YiKimL37t20b9/+iV7T39+fmjVr4u3tnUdRFi33799n1KhR3L9/n6pVq9K1a1fc3NwICwvjv//+Y+7cudSuXdvsHDuF3Q8//KB1CJnavn07cXFx6HQ6/vnnH15//XUcHBy0DivfLFu2jKioKPr37691KIVG2bJladmyJX/++Se9evXCyclJ65CsjiQohci///5LfHw8ffv2ZcWKFaxfv/6JExRXV1dcXV3zKMKiZ86cOdy/f5+hQ4eazMqc5sqVK0X2/S1durTWIWRq/fr12NjY0LNnT5YvX86uXbvo2LGj1mHli5SUFP7++29q165t0Z+JNerUqRO7du1i27ZtPPPMM1qHY3UkQSlE0i6qL730EleuXOHYsWMEBwfj5+dnst6cOXOYN29epq/j5+fHsmXLAGO1wNSpU5k0aZLJ9OetW7emXr16fPDBB8yYMYPDhw+TlJRE3bp1GT9+PKVKleL69evMnDmTkydPkpKSQpMmTXjjjTdM7hYcP36ccePGERgYyJAhQ0ziuHv3Lv369aNLly5MnjxZfZ4+hjTmtj9//jwzZ87kzJkz6PV6GjRowOjRozPcwt61axfbt2/n/PnzhIaGYmtrS+XKlenduzcBAQFZv+mPcebMGQB69uxpdnnlypXNlt+5c4c//viDw4cPExYWhouLCxUqVKBr167q55CcnMzatWvZt28f169fJyIiAhcXF2rXrs3gwYN56qmn1Nf74osv2LRpEwBTp05l6tSpJsef/r1M/zjtvU9z5coVFi5cyIkTJ4iKisLb25uWLVvyyiuv4O7urq6X/rN76aWXmDVrFidPniQqKkqdyTatmi7tXIOH5+b06dMJDQ1l8eLF3LhxA1dXV9q2bctrr72W4U5GSkoKS5Ys4e+//yY0NBRfX1+6d+9Ou3btePHFFzMcw+PcuHGD06dP06JFC5Nk31yCkv78bdGiRbbON4CdO3eyaNEirl27houLCy1btmTkyJEMHTo0w3uSlex+Hlk5dOgQYWFhvPTSS2aXJyYmMnfuXLZu3UpkZCSlS5emd+/eGWZfTu/OnTssXLiQw4cP8+DBA9zc3GjSpAlDhgzJcD2CnL0faefykiVL2LVrF+vXr+fOnTu0b99e/ZwfPHjAokWL2LdvH/fv38fZ2Zm6desyZMgQKlWqlGH/OVn/5s2bLFq0iOPHjxMWFoajoyPFixenfv36jBkzxmRG+ebNm+Po6MimTZskQckFSVAKievXr3PmzBmaNWuGl5cXnTt35ujRo2zYsCHDF3f9+vXNvkZQUBDbt2/P9q3s6OhoXn/9dby9vencuTO3bt1i3759vPnmm3zxxReMHj2aatWq0a1bNy5evMjOnTuJiopi+vTpuTpGV1dXAgMDWbFiBQC9e/fO9JjOnz/P4sWLqV+/Pj169ODSpUvs3r2bq1evMm/ePJNjnDlzJra2ttSuXRtvb28iIiLYu3cvH374IePGjaNXr165ihdQvyRu3rxJzZo1s7XNqVOneOedd4iLi6NJkya0b9+e6OhoLl26xIoVK9QEJSoqip9++ok6derQrFkz3NzcuHv3Lnv37uXgwYP89NNP1KhRAzBW1cXExLBnzx5atWpFlSpVTPYZGBjIpk2bCA4OJjAwUC2vWrWq+njPnj18/PHH6HQ6WrVqRfHixbl+/TqrVq3i0KFD/Pbbb7i5uZm87u3btxk5ciSVKlWiS5cuREVFYWdn99j3IO01W7ZsSYMGDTh48CArV64kMjKSDz/80GTdr776is2bN1OqVCmef/55kpOTWbZsGf/991+23u9HrV+/HoDOnTtTokQJ6tWrx/Hjx7lz5w6lSpUyu01Ozrf169fz1Vdf4eLiQufOnXF1deXAgQO8+eabpKSkYGubvctybj4Pc44ePQpArVq1MiwzGAxMmjSJI0eOUKlSJTp06EBUVBQ///xzpteRs2fP8tZbbxEfH0+LFi0oU6YMwcHBbN26lYMHDzJjxgyT9zG378e0adM4e/YszZs3p0WLFnh6egLGc27s2LGEhITQuHFjWrVqRUREBDt37uTw4cP88MMPJn+LOVk/NDSUESNGkJCQQPPmzWnXrh0JCQncunWLNWvWMGrUKJN47ezseOqppzhz5gzx8fFSzZNTiigUfvrpJ8Xf31/5559/FEVRlNjYWKVTp05K7969ldTU1MduHx4ervTp00dp3769curUKbV8w4YNir+/v7JhwwaT9f39/RV/f3/lp59+Min/7rvvFH9/f6Vr167KsmXL1HKDwaC8/fbbir+/v3L+/Hm1/NixY4q/v78ye/bsDDHduXNH8ff3Vz7//HOT8j59+ih9+vQxexxpr5f+vUgzZcoUs+W3b9/O8DqxsbHK4MGDla5duyrx8fEZjn3MmDFm9/+oFStWKP7+/kqPHj2U2bNnK8eOHVNiYmIyXT8xMVHp2bOn0qZNG+XAgQMZlt+7d89k3fv372dY5+rVq0qnTp2UN954w6Q8s88yzZgxYxR/f3+zyyIiIpQuXbooPXv2VO7evWuy7J9//lH8/f2VH374QS1L++wy+2wVxfznOHv2bPX8CQoKUssTEhKUl156SWnTpo0SEhKilh85ckTx9/dXhgwZYvI5hYSEKM8995zZ8ycrycnJynPPPad07dpVSUhIUBRFUdavX6/4+/srs2bNyrB+Ts+3qKgopVOnTkqnTp2UGzdumOx33Lhxir+/f6bvybFjx9SynH4eWRk+fLjSpk0bJTExMcOytHPmrbfeUlJSUtTyy5cvK+3atcvw+SYnJyt9+vRROnfurFy4cMHktU6ePKkEBAQo77zzzhO9H59//rni7++v9OzZUwkODs4Q88iRI5WAgADl4MGDJuU3btxQOnfurAwePDjX66f9Pae/tqWJjIzMUKYoD6/NR48eNbtcZE568RQCKSkpbNmyBRcXF1q1agWAs7Mz/v7+3Lt3jyNHjmS5fWJiIpMnTyY4OJh3332X2rVrZ2u/Tk5ODBs2zKQsrc2Lu7u7yR0OnU6nLrty5Uq2jy236tatm6H9Tbdu3QA4d+6cSbm5X8XOzs507dqVmJgYzp8/n+s4evbsSf/+/YmJiWHevHmMGzeObt26MWjQIH799VdCQ0NN1t+zZw8hISF07NiRpk2bZni94sWLq4/t7e3x9fXNsE7FihWpX7++WrWWFzZv3kxsbCyvvvpqhlv07du356mnnmLbtm0ZtvPy8mLgwIE53l/v3r0pV66c+tzBwYH27dtjMBi4cOGCWr5lyxYABg8ejKOjo1ru4+Njcv5l1/79+wkPD6dt27bqXY+AgAAcHR3ZuHEjBoPB7HbZPd/27NlDfHw83bp1o2zZsmq5ra1thr+lrOT28zAnJCQEV1dX7O3tMyxLqxYcNmwYNjY2annlypXp1KlThvX37dtHcHAw/fv3N6liBKhTpw4tW7bkwIEDxMbGAk/2fvTv358SJUqYlF28eJH//vuPzp0706RJE5NlZcuW5ZlnnuHq1atcvXo1V+unMXeXuVixYmbjTLuzExISkuXxiIykiqcQ2LNnDxEREXTv3t3kD6dz585s2bKF9evXZ/jjS6MoCl988QVnzpzhlVdeoUOHDtneb5kyZUy+FAC1t0+lSpVM6mLTL3v0Szk/VKtWLUNZ2pd5TEyMSfmDBw/4448/OHDgAPfu3cswbsGTxKvT6Rg5ciT9+/fnwIEDnD17lvPnz3Px4kWuX7/O2rVr+fbbb9VbyGlfZo0bN87W61+6dInFixdz6tQpwsPDMyQkERER+Pj45Dr+NGltac6ePcvt27czLE9KSiIyMpKIiAg8PDzU8ipVqmSrSudRj365wcPkLP3nd/nyZcD45feop59+Osf7/fvvvwHj304aZ2dnWrVqxT///MOhQ4do1qxZhu2ye76lJefm4q1Zs6ZJEpCV3H4e5kRFRZlNdNPidXJyMnt8derUUavDHo3rxo0bZsdHCQ8Px2AwcPPmTapXr/5E70da9WV6Z8+eBYx/0+b2f+PGDfX/SpUq5Xj9tHZGP/zwA0ePHqVp06bUq1cv06o/eJi4REZGZrqOME8SlEIgfZ15eg0bNsTX15e9e/cSFRVlNsP//fff2b59Ox06dOCVV17J0X5dXFwylKVdULJalle/6rPi7Oyc6f7T/wqOiori1Vdf5d69e9SuXZtGjRrh6uqKXq/n8uXL7Nmzh+Tk5CeOx8PDgy5dutClSxcAwsLCmDZtGjt37uSbb75h7ty5AOovy8y+MNI7ffo0b7zxBgCNGjWiTJky6nHv2bOHy5cv50nsYGxvBLB69eos10tISDB5nvbrMaeyOn/Sf35xcXHo9XqzDUJz2nU7NDSUQ4cOUapUqQxfmF26dOGff/5hw4YNZhOU7J5vaZ+vufcls+MwJ7efhzkODg6ZjpkUGxub6blo7v1Ni2vr1q3ZiutJ3g9z20RFRQHGO2H79+/PdNv4+PhcrV+yZElmzJjB3LlzOXDgANu3bwegXLlyDB06lLZt22bYNu0HT2Hupp5fJEGxcvfu3ePw4cMAWY5uumXLlgy3vDdu3MjChQupXbs27777br7GmZm0uyypqakZlqVdvPLT+vXruXfvntluwIsWLWLPnj35sl9vb2/ef/999u/fz5UrV4iMjMTd3V3tcpyd28ELFy4kKSmJn3/+OcMXatovw7yS9gU8b948s70gMvPoXbS85uzsjMFgIDIyMsOdgpwOgLdx40ZSU1O5c+dOpgPW7d27N1t3JTKTlng9ePAgw7K048hOcprbz8Mcd3f3TM83FxeXTH/5m3t/0+L68ssvadGixWP3/STvh7lzK+31stu4Pafrg/Hu8GeffUZKSgoXLlzg4MGDrFixgo8//hgfH58MVeRpSVBuz5miTNqgWLlNmzZhMBioU6cO3bt3z/Av7Rf7o7diT5w4wbfffkupUqX4/PPPzdY/F4S0XgbmqlEuXbpkdhu9Xm82ocmNtNvjaW130jt16lSe7CMzdnZ2GW5hp922Tks6s3Lnzh2KFSuWITlJSEjg4sWLGdbX641/7pm9d1ktT6uCSruFbynSeiOdPn06w7Kc9OJRFIUNGzYA0LVrV7N/S08//TTJyclqu5fcSOtWbi7ec+fOZfu8zsvPo1KlSiQlJXHv3r0MyypXrkx8fLxJu5805v4+chpXXr0fadL+frK7/5yun56trS21atViyJAhjBs3DkVR2LdvX4b1bt68CfDEiWRRJAmKFUu7qOp0OiZPnsw777yT4d/kyZOpVasWV65cURt73rx5k/fffx8HBwe+/PJLTTP7cuXK4ezsrFZDpQkPD2fBggVmtylWrBiRkZF5MsdFWgPDRy+QW7du5cCBA0/8+kuWLCEoKMjsslWrVhEfH0+5cuXUW9ktW7bE19eXrVu3cujQoQzbpP+lW6JECaKjo7l27Zpalpqayi+//EJERESGbdOq+O7fv282nqyWd+vWDWdnZ2bNmmWyvzQJCQmaJC9pY5PMmzfP5HwICwtTu6Nnx4kTJ7h9+zZ169Zl0qRJZv+W0u4yPprs50SrVq1wcnJi/fr1Jm1HUlJSmD17drZfJy8/j3r16gHm77qlVRv//vvvJsnClStXzCZqrVq1okSJEixdupQTJ05kWJ6SkmKS2OTV+5GmZs2a1KxZk23btpltJGwwGEziyun6Fy5cMHtnN+1ukrkfemfPnsXb29ukEbDIHqnisWLHjh3j7t27j22k1a1bN86cOcP69eupXr06P/74I1FRUTRq1Ih///03w/qurq4FNteNnZ0dvXr1YuHChQwbNoyWLVsSHx/P3r17qVevntkGgPXr1+f8+fNMnDiROnXqYGtrS926ddULbU506tSJP//8k+nTp3P8+HFKlCjB5cuXOXbsGK1bt2bXrl1PdHxbtmzhl19+oVKlStSsWRNPT0+io6M5e/YsFy9exMHBgQkTJqjr29vb88knn/D222/z9ttv06RJE6pUqUJsbCyXL18mMTFRvXD36tWLw4cP8/rrr9O2bVvs7e3/r727C2nqj+M4/nbV1gMzIWc+hAU9gDQYnVojNaLhRUXlbnbjjZYEEcMeoIgow0FBTzdSdNMSbCWCdSFahrOU4ORki2GHugqCCm0WIZOg1rAL2fDfVqj5d5O+r+sf7JzfOYzP+T18f4RCIT59+sSmTZuSDpfbuHEjBoOBtrY2IpFIIpjGp7YURaG3t5dz585hs9nQ6/WsW7eOsrIycnJyOH/+PPX19Rw8eJCtW7dSXFxMNBpleHiYUCiE2Wzm6tWrf9Vf07VlyxYqKirw+XzU1NRQXl5ONBrl6dOnlJSUoKpqYmToT+KhI77zJpXi4mLMZjOapvHq1asp17WZzGg04nK5uHLlCocOHcJut7Ns2TL6+/vR6/Xk5uZOaVpsNp9HeXk5N27cIBAIJK2hiK+98fv91NbWYrPZiEQi9PT0YLVak0YM9Ho9brebU6dOUVdXh6IoiQXzw8PDDA4Osnz5crxe76z2x2T19fUcO3aMhoYG2traWL9+PQaDgXA4jKZpjI6O4vP5ZtT+8ePHtLe3Y7FYKCoqYunSpbx9+xa/3092dnbS+/PhwweGhoZwOBzTugcxQQLKPBb/U51c4TUVu91OY2MjPT09uFyuxJdmIBBIuQU5Pz9/Tg/jq62tZeHChXR2dtLe3k5+fj7V1dWUlpbS19eX1L66upqxsTFUVWVwcJBYLEZNTc2MAkpeXh6NjY3cvHmTQCBALBZjw4YNXLt2jXA4/NcB5fTp06iqyosXLxgYGODLly/odDpWrlyJw+HA6XQmfVmZzWZu3bqF1+tlYGCAYDCI0WhkzZo1VFZWJtqVlpbidrvxer10d3djMBhQFIULFy6krBScnZ2N2+2mqamJjo6OxHsQDyh79+5laGiIJ0+ecO/ePWKxGLt27aKsrAyYqIrp8XhoaWkhGAwSCARYvHgxJpOJ3bt3p9x2OhfOnDnD6tWrefjwIQ8ePMBkMuF0OlEUBVVVUy5gnWxsbIy+vj6WLFnCjh07/th2z549aJpGZ2fnjAIKwL59+zAajdy5c4eurq5E5dTDhw/jdDqnXG5+tp5HQUEBVquV3t5ejh49+p9RAJ1Ox8WLF2lqasLn83H//n0KCwtxuVysWrUq5ZRGSUkJt2/fpqWlhf7+fjRNY9GiReTm5rJ9+/ak7diz1R9xhYWFeDweWltbefbsGY8ePUKn07FixQosFktSdejptK+oqOD79++8fPmS169fE41GMZlMVFZWptz2HB9l2r9//7TuQUzIGh8fH0/3RQghxGzr6Ojg8uXLnDhxYl58wb5//56qqip27txJQ0PDnP52MBjk+PHjnD17Nm1B81fp7I/Z8OPHD6qqqigoKJhx9ex/naxBEULMa58/f+bX76yRkRGam5tZsGAB27ZtS9OVpRaJRJK29X779o3r168DE8cSzLXNmzdjs9lobm7+bTG6/0sm9sds6Orq4uPHjxw5ciTdlzJvyRSPEGJeu3v3Ls+fP8disZCTk0M4HEZVVb5+/cqBAweSht3TLRQKcenSJaxWK3l5eYyOjiYO9lQUBbvdnpbrqquro7u7m5GRkTnts0ztj7+VlZXFyZMnUxa5E1MjUzxCiHnN7/fT2trKmzdviEQi6PV61q5di8PhSHkCcbq9e/cOj8eDpmmJ3VZFRUWJ05f/tYJe0h/idySgCCGEECLjyBoUIYQQQmQcCShCCCGEyDgSUIQQQgiRcSSgCCGEECLjSEARQgghRMaRgCKEEEKIjCMBRQghhBAZRwKKEEIIITKOBBQhhBBCZJyfgJok5WbOtSoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 45.0 deg to 60.0 deg\n", - "Modulation: 0.309 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.017\n", - "Best fit polarization angle: 25.51 +/- 0.349\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRcklEQVR4nOzdd3gU1dfA8e9ueiMhCb13QkcQEAgEQgdBqYI0KSqdnwUFu6KIFURFQbqKNFGQDlKD9N57qIEU0nt23j/2zZAlm0qS2U3O53l42L1zZ+fM7mT27NwyOkVRFIQQQgghLIhe6wCEEEIIIR4nCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQFuLGjRvodDqGDx+udSgC8PPzQ6fT5ft2PvzwQ3Q6Hbt27cr3bWVH5cqVqVy5stZhCCEJisjahQsXmDBhAvXq1cPd3R17e3vKli1L9+7dWbBgAQkJCVqHmG+GDx+OTqfjxo0bWodi1oIFC3jllVdo3rw5zs7O6HQ63n333SzX++eff/Dz88Pd3R1XV1eaN2/OkiVLMl1nyZIlNGvWDFdXV9zd3fHz8+Off/4xW/fy5ct0794dT09PKlSowPjx44mKijJbd/DgwVSpUoXo6OisdziN1IQu7T9bW1tKlSpF9+7d2bRpU45eTzy53377Tf0stm7dmmnd8PBw3n//fRo1aoSrqysODg6UK1eOFi1a8Prrr3P8+PFM1x89ejQ6nQ5nZ2fCw8MzrJeaAKb+0+v1FCtWjEqVKtGtWzdmzpzJnTt3crO7Ip/Zah2AsGwff/wxH330EQaDgWeeeYZhw4bh6urK/fv32bVrF6NGjWLu3LkcOXJE61CLpNdff52IiAiKFy9O2bJluXr1apbrfP/990yYMAEvLy8GDx6Mvb09q1evZvjw4Zw+fZqvvvoq3TpvvPEGX3/9NeXLl2f06NEkJibyxx9/8OyzzzJnzhzGjx+v1o2JicHf35+YmBiGDh3K7du3+eGHH7h//z6rVq0yed0NGzbw22+/sW3bNlxdXXP1Hri7uzN58mQA4uPjOXnyJBs3bmTjxo3Mnj2biRMn5up1C8r48eN54YUXqFixotahPLF58+ah0+lQFIV58+bRqVMns/Xu3r1Lq1atuHHjBlWrVuXFF1/E29ubhw8fcvToUWbNmoWTkxONGzc2u35UVBR//PEHOp2OuLg4fv31V5Nj0Jy2bdvi5+cHGI/Re/fuERAQwKZNm/jggw/48MMPefvtt59o/0UeU4TIwKeffqoASoUKFZQDBw6YrbN+/XrFz8+vgCMrOMOGDVMA5fr16/m+revXryuAMmzYsGyvs2nTJuXGjRuKoijKokWLFEB55513Mt2Gg4OD4unpabJPYWFhSrVq1RRA2b9/v8k6AQEBCqBUq1ZNCQsLM3ktT09PxcHBweS1/vjjDwVQdu/erZYNHz5cAZT79++rZeHh4Uq5cuWUkSNHZnt/H98XQKlUqVK6ZQsXLlQAxcXFRYmJicnV67dt21YpiqfISpUqmX1Ps3LhwgUFUDp06KA0adJEsbOzU4KCgszWHTlypAIoI0aMUAwGQ7rld+/eVY4ePZrhtn766ScFUF577TXF3t5eadCgQYZ1P/jgAwVQPvjgg3TLDAaDsnr1asXT01MBlBkzZmS9o6LASBOPMOvGjRt8+OGH2NnZsXHjRpo3b262Xo8ePdi8eXO68pUrV9KmTRvc3d1xcnKifv36zJgxw2xzUGqbd2RkJK+99hqVK1fGzs6ODz/8MFvLwdgMNXz4cCpUqIC9vT2lSpVi0KBBXLx40WzcsbGxzJw5k6ZNm+Lm5oarqys+Pj5MnDiR+/fvA6DT6dRmjypVqqiXiB9vnw8LC2Pq1Kn4+Pjg5OSEu7s7/v7+GV7ijoqK4rXXXqN8+fI4OjpSu3ZtvvnmGwwGg9n6menSpQuVKlXKdv2FCxeSkJDA+PHjTfajePHiTJs2DYCffvrJZJ3U5++88w7FixdXyytXrsy4ceNISEhg0aJFanlgYCAAzZo1U8tSH6cuA+PVH4Cvv/462/Fn1/Dhw3FxcSEmJoazZ8+q5Tt27KBLly54enri4OBAzZo1efvtt4mIiMjW6yYmJvL999/TrVs3KlWqhIODA56ennTo0CHDJqWsjl9zfVBS+79k9C/1SkCq5ORkfvzxR1q0aEGxYsVwdnamcePGfP/992aPK0VR+P7776lbty6Ojo6UK1eO8ePHZ/t9MGf+/PkAvPTSSwwfPpykpCQWL15stu7+/fsBmDBhgtl+PmXKlOGpp57KdFt6vZ7Jkyfz7LPPcurUKQ4ePJjjmHU6HX369GH16tWA8YrxvXv3cvw6In9IE48wa9GiRSQlJfHCCy9Qr169TOs6ODiYPJ82bRozZszA29ubQYMG4erqyqZNm5g2bRpbtmxh69at2Nvbm6yTmJhI+/btCQsLo1OnThQrVowqVapka/nmzZvp3bs3SUlJPPvss1SvXp3bt2/z559/smHDBnbu3Glysnv48CHt2rXj5MmT1KpVixEjRmBvb8/Vq1dZtGgRvXv3plSpUnzwwQf89ddfnDx5kkmTJuHh4QGg/g/GL1w/Pz9u3LiBr68vXbp0ISYmhn/++YcuXbrw888/M3r0aLV+QkIC/v7+HD58mIYNG/Liiy8SHh7OJ598wu7du3P0GeXGv//+CxgTm8d17drVpE521/nkk0/4999/+eijjwDUpoqjR4/SqlUrALUJMDWZ2r59OwsWLGD9+vW4u7s/8X6ZoygKgPoF+PPPPzNmzBhcXFzo168fJUuWZNeuXcycOZP169cTEBBg8tmaExYWxqRJk2jZsiUdO3akRIkS3Lt3j/Xr19OtWzfmz5/PqFGj0q2X1fH9uOHDh6dLQgD27t3Lv//+i7Ozs1qWetxv2bKFWrVqMWjQIBwdHdm5cycTJkzg4MGDLFu2zOR1Jk+ezHfffUeZMmV4+eWXsbOz4++//+bgwYMkJiam+/vMSmJiIkuWLMHd3Z3nn3+euLg4Xn/9dX755RemTJmSLgnx8vIC4NKlSzRq1ChH2zp+/DhHjx6lY8eOVKhQgeHDh7NmzRrmzZuX4Q+prLRr147WrVuzb98+/vzzT8aNG5er1xF5TOtLOMIytW/fXgGU+fPn52i9/fv3q81C9+7dU8uTkpKUHj16KIDy6aefmqxTqVIlBVD8/f2V6OjodK+Z2fKwsDDFw8ND8fLyUs6ePWuy7PTp04qLi4vSuHFjk/KBAwcqgPLqq68qKSkpJsuioqKU8PBw9XlWTTxt27ZVdDqdsnz5cpPyhw8fKg0bNlQcHR1NLnOnNpv17t3bZNvXrl1TihcvnuMmnrSy08Tj7e2tAEpISIjZ5S4uLgqgNotER0crgOLq6mq2fnBwsAIoJUuWVMuioqKU8uXLK97e3srkyZOVvn37qvucurxy5crKiy++mKv9TJVZE8+CBQvUJp7Y2Fjlxo0bir29veLm5qacP3/epO6YMWMUQBk9erRJubkmnvj4eOXWrVvpthceHq7UrVtXKV68uBIbG2uyLKvjO7UJYufOnZnu78mTJxU3NzfF29tbuXLlSrr1x48fryQnJ6vlycnJyogRIxRA+euvv9TytE12oaGhanlcXJzSokWLDN/TzCxfvlwBlJdfflkt69OnjwIo27dvT1d/zpw5CqC4ubkpb775prJt27YMj8nHvfLKKwqg/P7774qiGM8tpUuXVlxcXJSIiIh09TNr4knr3XffVQBl6NCh2YpD5D9JUIRZPj4+CqBs2rQpR+uNGjVKAZSff/453bKLFy8qer1eqVKlikl56gn8xIkTZl8zs+WzZs1SAOX77783u+7kyZMVQE1e7t+/r+j1eqVMmTJmvywel1mCcuLECQVQ+vbta3bdv/76SwGUH374QS2rXr26otfrTb5gUqWeSPMzQbGzs1MAJSkpyezysmXLKoBy9+5dRVEU5c6dOwqglCtXzmz9xMREBVDs7e1Nyi9cuKB06dJF8fDwUMqWLau8+uqr6pfHuHHjlFKlSikhISFKYGCg0qNHD8XR0VFxdXVVhgwZYvZLxpzUBMXd3V354IMPlA8++EB56623lK5duyqAAiizZ89WFEVRpk+frgDK1KlT071OWFiY4ubmpjg6Oirx8fFqeU77oHz99dfp+t4oStbHd3YSlDt37ijly5dXHB0dlYCAALU8JSVF8fT0VEqXLm32M3348KGi0+mUfv36qWWpf6MLFy5MV3/nzp25SlBSf9Ck7b+0fv16BVD69++frr7BYFCmTp2qODo6qp8VoFSuXFkZNWpUhu9VdHS04ubmpri7uytxcXFq+euvv64Ayo8//phunewmKHPnzlUApWvXrtnca5HfpIlH5Kljx44B0L59+3TLatasSfny5bl+/ToREREml/YdHR1p0KBBhq+b0fL//vsPgJMnT5r0SUl16dIlAM6fP0+dOnU4fPgwBoOBNm3a4OLikqN9y2jbERERZrcdHBysbhuMfU+uXLlChQoVqFatWrr6fn5+ajOJtatVq5bZPhl79+7lxx9/ZOXKlXh6etKxY0cePHjA77//TnR0NBMmTCAuLi7daJ/MREREqO+bjY0Nnp6edO3alfHjx9OtWzcg8+OyePHiNG7cmD179nDhwgUaNmyY6fbOnj3Ll19+yZ49e7h37x7x8fEmy80NWc3q+M5MdHQ0PXr04M6dOyxfvpyWLVuqyy5dukRYWBg1atRg+vTpZtd3cnJSj0F49F60bds2Xd3WrVtjY2OTo/iuXLnCzp07qVWrFs8884xa3qVLF0qXLs1ff/1FSEgI3t7e6jKdTsdnn33GlClT2LJlCwcOHODYsWMcPHiQX375hUWLFjF37lyT5lGAP/74g6ioKF555RUcHR3V8uHDh/P1118zf/58xowZk6P4UymPNQkK7UmCIswqU6YM58+fz/H8AKmd7MqUKZPh6968eZPw8HCTBKVkyZKZnhgyWh4aGgo86qCXkdQ5NlLnSyhXrlym9bMjddvbtm1j27ZtWW479b0pVaqU2XqlS5d+4piy4u7uTkhICBEREWo/gLRSY0z9bFL/z6jzZGp5Vn03AOLi4hg5ciS9e/emb9++bNu2jePHj7Ns2TKef/55wNg5+/333+fq1atmkzhzKlWqlOU8Ndk5LoFM59MAOHDgAO3btyc5ORl/f3969uxJsWLF0Ov1nDhxgr///ttsR/Csju+MpKSkMGDAAI4fP86MGTMYMGCAyfLUY/Dy5cuZJrdp55jJ7Di0tbU1SSSyY/78+SiKkm6CQVtbW1588UW+/vprFi9ezBtvvJFuXQ8PDwYMGKDuV0xMDJ9//jnTp09nwoQJ9OzZ0yTOefPmAaTbVr169WjSpAlHjx7lyJEjNG3aNEf7AMahzwAlSpTI8boif8goHmFW69atAeOoh5xI/UILCgoyuzy1h/zjHSOzOnlntDz1dU6ePIlibLI0+2/YsGHAoy/SvJiYKXXbs2fPznTbqSNcUuunjhJ6XEbvWV6qVasW8OjKUlr37t0jJiaG8uXLq50wXVxcKFeuHNHR0WZHN1y+fBkwXh3LynvvvUdoaCg//PAD8OjKUtoOzE2aNAHg3LlzOdmtLOX2uHzc9OnTiYuLY+vWrWzatIlZs2bx8ccf8+GHH2baQTO3v8onTJjAxo0bGT16tNk5OlLjff755zM9Bq9fv55uHXPHYXJyMiEhIdmOL+1InalTp6YbbZQ6QiurHxCpXFxc+OSTT2jdujUJCQkEBASoy06dOsWhQ4cAeOaZZ9Jt6+jRo8CjJCandu7cCZDrjrYi70mCIsx66aWXsLOzY82aNVl+WaT9xZg6sZK5abuvXLnC7du3qVKlSrZ+cWdHixYtAGPTQXY0a9YMvV7Pnj17iImJybJ+6uXulJSUJ962m5sb1atX586dO2YnVCuIqc5TmzjMDQ1PbZJ5vBkkN+s87tChQ8yaNYvZs2en++We9vh5vLkkr2R2XIaHh3PixAkcHR3x8fHJ9HWuXLmCp6en2RE2eT0K6+uvv2bu3Ll06tSJH3/80Wyd2rVr4+HhwYEDB0hKSsrW66YmhObi3bdvn9ljPSN///03Dx48oFatWowcOdLsv6pVq3Lp0qUcvT9ubm7Ao2YXeJR4+Pn5ZbgtJycnli9fnuNZif/9918CAgJwcnJSr+YJC1Bw3V2EtUkdcVK5cmXl8OHDZuts2rRJadeunfo8dYRA5cqVlQcPHqjlycnJSq9evRRAmT59uslrZDUxVGbLQ0JCFA8PD6VEiRLKwYMH0y1PSUlJ1/lw0KBB2R7F8+abbyqA8u+//5rdvq+vr6LX65UFCxaYXX7q1CmTyclS39M+ffpoMorn2rVr+T5R2+MSEhKUOnXqKN27dzcp37ZtmwIoH330kVqWOqGbuU7Ej8tsFI+5unZ2doq7u7ty+fJlk2Xjx49XAGXUqFEm5eY6yXbu3FkBlJMnT5qU//LLL2pHz0WLFpksy+r4NtdJds2aNYper1fq16+fZafh9957Tz2eHx9BpCjGSc/SjnDbt29fno3i6dixowIoK1asyLBO6nszaNAgteyLL75Qzpw5Y7b+3r17FUdHR8XW1la5c+eOoiiKEhsbq3h4eCg2NjZqmTmDBw9WAGXevHlqWVYTta1Zs0adqO2LL77IapdFAZIERWTqo48+UvR6vQIoLVu2VCZOnKhMmzZNGTlypFKjRg0FUJo2bWqyzpQpU9Shp2PHjlXefPNNpV69egqgtG7dWklISDCp/yQJiqIoyvbt2xU3NzdFp9MpHTp0UCZNmqRMnjxZ6dOnj1K2bFnFwcHBpH5YWJjSoEEDBVBq166tTJo0SXnzzTeVvn37Km5ubiZfFJs3b1ZP5lOmTFE++eQTZc6cOeryW7duqe9Dw4YNlZdfflmZMmWKMmjQIHWf//vvP7V+fHy88vTTT6v1p0yZorz88suKh4eH0rNnzxwnKPPnz1eGDRumDBs2TGnVqpUCKA0aNFDLzM2M+d133ymA4uXlpYwdO1aZPHmyUr58eQVQXn/9dbPbee211xRAKV++vDJ58mRl7NixipeXlwKYvB/mvPPOO4q7u7ty+/Ztk3KDwaA0adJEsbGxUUaMGKH0799fAUxGnGQmJwmKoijKDz/8oA5tHTlypPL2228rzzzzjHocpP2yVhTzCcqmTZtMXuO1115T2rRpo+j1enU4dV4kKE5OTgr/P9Nq6giltP/SbiMxMVE9dsqVK6cMGTJEefvtt5URI0aoCfTjx8GECRMUQClTpowyYcIE5bXXXlOqVaumNG3aVClTpky23tNr164pOp1O8fb2Tvc3nVZUVJTi6uqqODg4qO9xw4YN1fd9+PDhytSpU5WJEycq/v7+ik6nUwDl66+/Vl8jNfl+9tlnM41p165d6c5Jqe9v27Zt1fdvypQpyuDBg5UqVaoogOLg4KDMnDkzy30WBUsSFJGlc+fOKePHj1fq1q2ruLm5KXZ2dkrp0qWVLl26KL/88ovJ0MxUy5cvV1q1aqWemOrUqaNMnz7dZGhgqidNUBTF+GU1btw4pXr16oqDg4Pi5uam1KpVSxk8eLCydu3adPWjo6OV6dOnK/Xr11ecnJwUV1dXxcfHR5k0aZLJFQ9FMQ4frV27tmJvb2/2CzEyMlL59NNPlaeeekpxcXFRHB0dlcqVKyvdunVTfv7553TDmSMiIpT//e9/avJUq1Yt5auvvlKuXr2a4wQldRh0Rv/atm1rdr1169Ypbdq0UVxdXRVnZ2eladOmyuLFizPd1qJFi5SmTZsqzs7Oiqurq9KmTRtl/fr1ma5z/PhxxdbWNsP5dG7duqX06tVLcXFxUdzd3ZVhw4bleJhxTobEbtmyRenYsaPi4eGh2NvbK9WqVVPefPNN5eHDh+nqZjTMeP369Urz5s0VV1dXxd3dXenYsaOye/du9Us0LxKUzD5Tc5+rwWBQli5dqrRv314pXry4Ymdnp5QtW1Zp1aqV8umnnyo3b95MV3/OnDnqcV2mTBll7NixSnh4eLanup82bZoCKP/73/+yrDt69GgFUL755htFURTl2LFjyieffKK0a9dOqVy5suLo6Kg4ODgoVatWVQYNGqTs3bvXZP2WLVsqgPL3339nua2aNWsqgHL8+HFFUR69v6n/dDqd4urqqlSsWFHp2rWr8vnnn6dLnoVl0ClKmkY+IYQQQggLIJ1khRBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWxygQlPj6eixcv5tu02EIIIYTQllUmKIGBgYwePZrAwECtQxFCCCFEPrDKBEUIIYQQhZskKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQViz2YTxHV18m9mG81qEIIUSekgRFCCsWG57A8T+vEBueoHUoQgiRpyRBEUIIIYTFkQRFCCGEKGDSPJs1SVCEEEKIAibNs1mTBEUIIYQQFkcSFCGEEEJYHElQhBBCCKRfiKWRBEUIIYRA+oVYGklQhBBCCGFxJEERQmSLXP4WQhQkSVCEENkil7+FEAVJEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQohCKvZhPEdXXyb2YbzWoeRYjhOU2NhYFi5cyBtvvEH37t1p06YNmzZtytXGv/jiC9q0acNbb72Vq/WFEEIIkbHY8ASO/3mF2PAErUPJsRwnKBERESxevJjAwECqV6+e6w1fuHCBTZs2YW9vn+vXEEIIIUThlOMExcvLi7Vr17Jq1SrGjBmTq40qisLs2bPp3Lkznp6euXoNIYQQQhReOU5Q7O3t8fLyeqKNbtmyhevXrzN69Ogneh0hhBBCFE4F3kk2NjaWn376icGDBz9xoiOEEEKIwsm2oDe4ePFiHBwc6N+/f7bXCQkJITQ0VH0eGBiYH6EJIYQQwkIUaIJy69YtVq9ezfvvv5+jzrHr1q1j8eLF+ReYEHks9mE853fcwse/As7FHbUORwghrE6BJijfffcd9erVw8/PL0fr9ezZk1atWqnPAwMDmT59eh5HJ0TeSR3aV6lJSUlQhBAiFwosQTl69CgHDx5k+vTp3Lt3Ty1PSUkhISGBe/fuUaxYMVxcXNKt6+3tjbe3d0GFKoQQQgiNFViC8uDBAwDefffddMuCg4MZMGAA48ePz1HfFCGEEEIUTvmWoISEhBATE0O5cuWwtbXlqaee4tNPP01X78svv6R06dIMGTKEqlWr5lc4QgghhLAiuUpQ1qxZQ3R0tDqyJiAgQL1C0qdPH1xdXZk3bx6bN29mxYoVlClThlKlSlGqVKl0rzVnzhyKFy+Or6/vE+yGEEIIIQqTXCUoK1asICgoSH2+Z88e9uzZA0CnTp1wdXXNm+iEEEIIUSTlKkFZuXJllnWmTZvGtGnT8uS1hBBCCFG0FPhMskIIIYQQWZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXFstQ5ACJF34pLiuBx2mfvR90k2JOPm4EZlj8qUcyuHTqfTOjwhCj2DYuBu1F2uPbxGXFIcOp2Ocm7lqOZZDUdbR2Mdg0LwtQgAgq9F4FmpGHq9/H0+ThIUIaxU6kku2C6Ij3Z9zMHtezly9wgKSrq6JV1K4l/Fn/51+9OjZg9s9Zb7px/7MJ7zO27h418B5+KOWocjRJYSUxJZe34tay+sZdu1bYTFhaWro9fpaV6uOS2d2lD5wFM4hrgBELDgLCfWXqXFUB+qNCtd0KFbNMs9SwkhMnT9UBArf9vAH3YLOFnlAMrN9ElJWg9iHrD8zHKWn1lOObdyvNXqLV5p+gr2NvYFFHH2xYYncPzPK1RqUlISFGHR4pPj+e7gd3x74FuCooMyrWtQDPx3+z/+4z/0nnqesmtFr5AhlE4qT0xYPDtmHcd/cmNJUtKQBEUIK3Mq4DKTVv2P3cU3oegMJsvKJVSmWZWm+FStiZ2NHWFxYVwOu0zAzQCiEqMAuBN1h4mbJzL74GzmPTuP9lXaa7EbQli1fy79w/iN4wmMCDQpd3dwp3XF1tTwrIG7oztJKUkERgRy7N4xzoecB8CgM3Ck2F6Ou+2n3cNneS5kKA6KIweWnadS01LS3PP/JEERwooE3NzP81v6Elz8nlrmkeSFX3gPnolsj2dyCVyiHBkw0s/kJJeUksT2a9v56ehPrLu4DoCrD6/iv9SfCc0m8GXHL3GwdSjw/REiOyyp2S82KZbJmycz/9h8tUyv0/N87ecZ03QMbSu3NduEevdcKEs/X0+A+zZ2e2wkyjacFF0K2z3/4ozLEUbde5NKoTUIuhBG2TpeBblLFktG8QhhJRYdX4Tf4rYE2xiTEweDE72Dh/PZ9QV0DxuAZ3IJAGJC4wm6YNoGbmdjR9caXfn7hb85PPowvhV91WVzDs2h/dL23I++X3A7I0QOpDb7xYYnaBrH7cjb+C7yNUlOOlbtyIlXTrC6/2r8q/pn2L8rLjwB7+RS9AodzIxrC3k2ZBB2BmMTa5DDbT6v+AYH3XYRp/E+WhJJUISwcIqi8O6/7zJi3QiSlWQAqsX58MGNH+ga1h87JX0/ksxOck3LNmXX8F3M7jJbHVWw/9Z+mv3SjCthV/JnJ4SwcI+PrDEYTPt1nb5/mqfnP82xe8cAcLFzYV6PeWwZvIX6pepn+fpOHo+uUDoojvQMHcx7gXOoFF8dgGR9Er+U/YKf736fV7tk9SRBEcKCKYrChE0T+HTvp2pZ+4c9efPmF5RIyrgzXdqToTl6nZ6JzSey76V9lC9WHoCbETdps6gN54PP503wQliJ64eCWDFxFwELzgLGkTUrJu7i+iFjx9cTQSdot6Sd2hG2ikcVDo46yOgmo7M9fL90bU9cPE2bp8okVuDtwK9pHd5JLfvy7Aze3/k+ipJ5x/eiQBIUISyUoii8sfUNfjj8AwA6dHzb6VtGJU/GBpsM13PxcqR0bc9sbaNJ2SYcHn2Y+iWNvwDvRd+j7eK2XAi58OQ7IIQVuH4oiB2zjhMTFm9SnjqyZsP27bRf0p7QuFAAmpVrxqHRh6hbsm6OtqPX62gx1CdduS12DL0/iT7BL6lln+z5hHf/fTcXe1O4SIIihIX6ePfHfHPgG8CYnCx+bjGTn5ls9iSXVoshPjkaBVDatTQ7h+3kqTJPARAcG0zX37qaDJvM6vK3ENbIYFA4sDTjK4ahtvcZvHcAD+MfAtCyQku2DdmGt7N3rrZXpVlp/Cc3TnclxdXLiS+HfsbsLrPVss/2fcacg3NytZ3CQhIUISzQ76d/58PdH6rP5z07j6ENhwIZn+RcvBxzPY+Cl7MXO4buoFHpRgDcCL9B99+7E50YneXlbyGsVdCFsHRXTlLF6KOYXf59wvXGDufPlH+GzS9upphDsSfaZpVmpRnwnR+tRhqvwLQaWZcBs/2o0qw0E5tPZE7XR0nJpM2T+PvC30+0PWsmCYoQFubg7YOM+HuE+vzLjl8y6qlRJnUyO8nlloejBxsGbaCie0UAjt07Rp+F/dg+61iGl78lSRHWLKPO5AZS+LnsDO453AKgsnMV1g9cj5uDW55sV6/XUaKqOwAlqrqbXPEc32w8U1tPBUBBYeCagZwIOpEn27U2kqAIYUEexDzg+RXPk5BiPHGOajyK15953WzdzE5yuVXWrSybXtyEh6MHAFvvb2Zr8TUZ1j+w7Lw09wirlVFn8r+9f+W8ywkA3JLd+a3tSrycC25ukuntpzOw3kAA4pLj6LuyLxHxEQW2fUshCYooMmIfxnN09WViH5q/pKs1g2JgyNoh3Is2znPiV9mPH7r/UOA3+atTog6/9f5Nfb6mxGIuOp0yW9fcnCtCWAtzI2tOuRxio9cKAPSKnsnRH9KiaZMCjUuv07Ow10Kalm0KGCdVfOnvl4rcyB5JUESRYSmTPWXki4Av2Hp1K2DsuLqi7wrN7pXTrUY3xleZDICiMzC/7EyibMz/gpOJpYS1enxkzUPbEBaW+Vp93jt4OC8NfEGTqecdbR1Z1W8VxR2LA7D2wlq+O/hdgcehJUlQhLAAh+8cVocV6tDx6/O/UtKlpKYxTWkylToxjQGIsH3Ib6V+MHun5KzmXBHCkqV2Onf2dGBJ6dnE2BjvWdUkoRUzh07X9OZ9lT0qs/T5perzt3e8XaSmAJAERQiNJSQn8NLfL5GipADwju87+Ff11zgqKOdTgnHx03BJMXYMPOq2j4Nuu0zq5GTOFSEsVZVmpQkfdpGzLkcBKGFfks3v/E3V5mU0jgx61OzBpOaTAOPdk4esHUJSSpLGURUMSVCE0Nj0PdM5G2wcwtu4dGPeb/u+xhEZ6fU6ug5uzeCg8WrZ76V+JNwmVH2e0zlXhLBE1x5e481tb6jP5/j+iLeL5dywb4b/DGp51QLgyN0jzNg3Q+OICoYkKEJo6Ni9Y+rJxlZvy6Jei7CzsdM4qkeqNCvNW6Mm0iq+AwBxNjH8UfLnJ5pzRQhLoigKYzaMITYpFoC24d3wL9dB46hMOdk5sfT5pdjojDNIT98znYshFzWOKv9JgiKERpINyYxcN1Jt2nnX910alm6ocVTpVWlWmrXvLKe4rbEp52ixfRSbECfJiSgUVp5dqXZOL+dcnr4PRmockXnNyjXjjZbGqzxJhiTGbhxb6Ef1SIIihEZ+OvKTOgFTg1INmOo7VduAMlHC1ZtPmj+6YeH4TePUX5xCWKuI+Agmb5msPp/RbCaOipN2AWXh/bbvU9mjMgD/Xv+X30//rm1A+UwSFCE0EBwTzHs731Of/9T9J82GFGdX/6ovUCumAWCcCv/j3R9rHJEQT+adf99R7znVs1ZPulbsrnFEmXO2c+b7rt+rz1/b+hoP4x5qGFH+kgRFCA1M2zGN8PhwAIY1HMYzFZ7RNqBs0Ol0DL4/Hnu9MZH65r9vuBp2VeOohMidk0En+fHwj4Dxi/+7LtYxx0j3mt3p7dMbMM48/cGuDzSOKP9IgiJEATty9wgLji8AwM3ejc87fK5xRNlXOqk8Y+tOAIzt4G9tf0vjiITIOUVReGPbG+q8Pu+3eZ9KHpU0jir7ZneZjbOdMwBzj8zlUugljSPKH5KgCFGAFEVh8ubJ6onxI7+PKO1qXZ1NJ9WbTCmXUgCsOb+GvYF7NY5IiJzZdGUT269tB4yToU1qMUnjiHKmfLHyTGk5BTB2tp+ybYrGEeUPSVCEKEDrL60n4FYAALW8ajG+2fgs1rA8rnZuTG8/XX3+2tbXMCgGDSMSIvuSDcm8sfXRnCczO8zE0dYxkzUs0xst36CsW1kA/r74N7tv7NY4orwnCYoQBSTZkMzUHY9G6nze4XOLmvMkJ15q9BL1S9YHjE1WhX00gSg85h+dz/mQ8wA8U/4Z+tXpp3FEueNi78L0doX7h4IkKEIUkKUnl3Iu+BxgPDH2qtVL44hyz0Zvwzedv1Gfv7/zfRJTEjWMSIisxSbF8tHuj9TnX3f6usDvFp6XhjYcSsNSxrmTjt07xoozKzSOKG9JgiJEAYhNiuX9nY+msJ/ZYaZVnxgBOlTtQMeqHQG4Hn6dRccXaRyREJn78fCP3I+5D0Afnz5WMXouMzZ6G77q9JX6/MPdH5JsSNYworwlCYoQBWDu4bnciboDwLM1n8W3kq/GEeWNtH1RPtnzCfHJ8RpGI0TGohKimBkwEzDeMfwjv4+yWMM6+Ffxp22ltgBcCr3Eb6d+0ziivCMJihD5LDYpli/2fwEYT4yf+X+mcUR5p1m5ZvSs1ROAO1F3+OnITxpHJIR5cw7NISQ2BIAX6r1A3ZJ1NY4ob+h0Oj5p94n6/KPdHxWaux3nOEGJjY1l4cKFvPHGG3Tv3p02bdqwadOmbK179OhRPv/8cwYNGkTHjh0ZMGAAM2fOJCQkJMeBC2Etfj7yMw9iHgDQt05f6pWsp3FEeetjv0czyn629zOiE6M1jEaI9CLiI/hqv7EpRK/T80HbwjW5mW8lXzpV6wT8f3PricLR3JrjBCUiIoLFixcTGBhI9erVc7TuTz/9xPHjx/H19WXSpEn4+/uzc+dORo0aRWhoaNYvIISViUuOU6+eALzX5r1MalunhqUb0r9ufwCCY4P5+cjPGkckhKlvD3zLw3jjlPBDGgyhlnctjSPKe2mvonyy55NC0Wk9xwmKl5cXa9euZdWqVYwZMyZH644bN47ly5czZswYevTowcsvv8znn39OWFgYf/75Z05DEcLiLbu8RL3XRx+fPtQvVV/jiPLHh20/RIex0+/X/30tfVGExYiIj+DbA98CYKu35f2272exhnVqVq4ZPWr2AOB25G1+PfWrxhE9uRwnKPb29nh5eeVqY40aNUKv16crK1asGIGBgbl6TSEsVZIukTlnZqvPC+PVk1Q+JXx43ud5AO5F32PJiSUaRySE0dwjc4lMiASM972qWryqxhHln3d831Eff77vc1IMKRpG8+Q07yQbGxtLXFwc7u7uWociRJ7a576FoLh7ADxX+zkalm6ocUT5a2rrR5PQzQyYWaiGOwrrFJcUx6wDswBjB/W3WhXue0e1KN+CdpXbAXA57DJrzq/ROKIno3mCsmrVKpKSkmjfvn2GdUJCQrh48aL6T662CEuXbEhmS/FHzZbvtymcl5XTalq2qUlHvcI2aZSwPktOLlHnPelbpy81vGpoHFH+m+Y7TX08Y98MFEXRMJonY6vlxk+cOMHixYtp164dTZo0ybDeunXrWLx4ccEFJsQTWh+4jlB744mxc7XONC7TWOOICsa01tPYenUrAJ/t+4yB9Qei12n+O0gUQcmGZL4IeNRB/e3Wb2sYTcHxr+JP07JNOXL3CCeCTrDj7nbAReuwckWzM0dgYCDvvvsuVatW5a23Mr/s1rNnT+bPn6/+e/fddwsoSiFyTlEUfjj3nfr8zZZvahhNwWpTqQ2tKrQC4FzwOdZdXKdxRKKoWnV2FdfDrwPQqVonnirzlMYRFQydTse01o+uosw6/U0mtS2bJgnK/fv3ef3113FxcWHmzJk4OztnWt/b25tatWqp/ypVqlRAkQqRcztv7ORk6AkA6ns2oH2VjJsvCxudTmdyifmb/6z35Cisl6IofB7wufr87VZF4+pJql61e+Hj7QPAwQf/cdXxvMYR5U6BJygRERG8/vrrJCUl8dVXX+Ht7V3QIQiRr74I+FJ9PKzEaKy4CThXulbvSp0SdQDYe3Mvh+8c1jgiUdRsv7adU/dPAdC8XHP8KvtpG1AB0+v0TGk1RX2+rfhagq9FYDBY18ko3xKUkJAQAgMDSU5+1JM/Li6OKVOmEBISwhdffEGFChXya/NCaGLj9n/ZcnUzAF6JpXBdV5kVE3dx/VCQxpEVHJ1Ox/9a/E99njoHhRAFZdbBWerjN1q+YfU35syNFnHtKGYoDsAxt/2sW/Kv1Z2LcpWgrFmzhiVLlrBx40YAAgICWLJkCUuWLCE62jjN9bx58xgyZAjBwcHqep988gnnz5/Hz8+PwMBAtm7dqv7bu3dvHuyONmIfxnN09WViH8rkVEXZ9UNBTN/46D47HR8+hw02xITFs2PWcas6MTypF+u/iLez8eroyrMruRVxS+OIRFFxMeQiGy8bv5squVfiudrPaRuQBq4fCmLfnHO0DesGgKIz8G/xf6zuXJSrUTwrVqwgKOjRDu7Zs4c9e/YA0KlTJ1xdXc2ud+XKFQA2btyoJjepSpcuja+vdd7hNTY8geN/XqFSk5I4F3fUOhyhAYNBYcuy/Rz23A2Ac4orrSI6mdQ5sOw8lZqWQq8v/L/mnOycGNt0LB/v+ZgUJYU5h+bwRccvsl5RiCf03cFHHdQnNJuArV7TwaoFzmBQOLDU2OfEL7w7mzxXkqxPYq/7Zp4NGYSj4mQ156JcfXIrV67Mss60adOYNm2aSVl21hPCGgVdCGOz8hfJemOTpm9EZxwVJ5M6MaHxBF0Io2yd3M3EbG3GPj2WzwM+JzElkXlH5/F+2/dxtTf/40WIvPAw7iGLTy4GwMXOhZFPjdQ2IA0EXQgjJsx4Nb9YigfNI9sR4LGVOJsYAty34R/e02rORTJBgRB5IDIsmt0exquCOkWP38MeZuvFhScUZFiaKuVaisH1BwMQkRDBouOF4w6rwnL9cuwXYpNiAXip0Ut4OHpoG5AGHj/HdHjYS328o/jfGEgxW88SSYIiRB7YGbONcDvjHbkbRjfHO7mU2XpOHg4FGZbm/vfMo86y3x/+HoNi0DAaUZglG5KZc2iO+nxC8wkaRqOdx88x5ROr4BPTCIBg+3uccj1ktp4lkgRFiDzw253F6uP24c+arePi5Ujp2p4FFJFlqFeynjrE81LoJXZc26FtQKLQ+uvCX9yKNHbG7l6jOzW9amockTZK1/bExdO0L2SHh8+pj7d7/G015yJJUIR4QsfuHSPgVgAAZRMqUTvW/E0BWwzxsfhOaflh3NPj1Mc/HP5Bw0hEYTb74KM7h09uMVm7QDSm1+toMdTHpKxeTFNKJpYF4KLLKbyft7GKc5EkKEI8obSXlcc+NRZXT9POsS5ejvhPbkyVZqULOjSL0KtWL8q6GU+O6y+t52bETY0jEoXNmQdn2HdzHwA+3j74V/HXOCJtVWlWGv/JjdUrKXr0+IV3V5f/k2AddzmWBEWIJxAcE8zy08sB8HD0YHLPcQz4zo9WI+sC0GpkXQbM9iuyyQmAnY0drzR5BQCDYuDnIz9rHJEobH468pP6eEzTMUVyYrbHVWlW2uRcNPnZ8TjaGhOWxScXE5MYo2V42SIJihBPYOHxhSSkGHvDj2w8Ehd7F/R6HSWqugNQoqq7VVxKzW+jnxqtzkcx/9h8EpItfwSBsA7RidEsPbkUAGc7Z4Y2HKpxRJYj7bmoRq1KDKw3EIDIhEiWn1muZWjZIgmKELlkUAzMOzZPff5q01c1jMaylXErQx+fPgAExwaz+txqjSMShcXy08uJSowCYGC9gbg7umsckeUa+/RY9fGPh39EsfAbhUmCIkQu/Xv9X649vAZAh6odqO5ZXeOILJt0lhV5TVEU5h6Zqz4f03SMhtFYvqZlm9K0bFMAjgcd59CdQxpHlDlJUITIpZ+PPupLkdrHQmSsdcXW1CtZD4D/bv/HiaAT2gYkrN6hO4c4HnQcgKfLPk2Tsk00jsjyjW2a5irKkR81jCRrkqAIkQtB0UH8deEvAEq5lKJXrV6ZryDQ6XQmV1HmH52vYTSiMPjp6KPOsdLEmj0D6g2guKPxLscrzqwgNDZU44gyJgmKELmw6Pgikg3G++6MaDwCOxs7jSOyDoPqD8LZzhmA307/pk5LLkROhcWF8ceZPwDjCLoX6r2gcUTWwdnOmeGNhgOQkJLAkpNLtA0oE5KgCJFDBsXA/GPGX/86dIx+arTGEVmPYg7FGFB3AGC8P8+qs6s0jkhYq6UnlxKfbLwp3rCGw9TEV2QtbZP0guMLLLazrCQoQuTQtqvbuB5+HYBO1TpRpXgVjSOyLmkTutRET4icUBRF+oA9gVretfCt6AvAueBzHLh9QOOIzJMERYgckhPjk2lRvgV1Sxgnjwq4FcC54HMaRySszX+3/+NCyAUA2lRqg08JnyzWEI8b2Xik+viXY79oGEnGJEERIgfuRt1l3cV1AJRxLUOPmj00jsj66HQ6Rj01Sn1uqSdHYbkWHFugPk77RSuyr2+dvhRzKAbAirMriEqI0jii9CRBESIHlpxYQoqSAhhPjNI5NneGNBiCvY09YOxLIDPLiuyKSohixdkVgLFPU986fTWOyDq52LswqN4gAGKSYtT31JJIgiJENimKwqITi9TnI5+SX2655eXspc4sGxoXqg7ZFiIrq86tIibJeB+ZgfUGSufYJ5D2HGaJVzIlQREimwJuBXA57DIA7au0p7JHZW0DsnLSWVbkxoLjj5p3RjQeoWEk1q9JmSY0LNUQgIN3DnL6/mmNIzIlCYoQ2bTo+KOrJy81eknDSAoHv8p+6u0BdlzfwdWwqxpHJCzdpfCL7L+1H4B6JevxdNmnNY7Iuj3eHyxt8mcJJEERIhuiE6NZeW4lYGz37u3TW+OIrJ9OpzPp4GjJE0YJy/D7lV/VxyMbj0SnkzuFP6kX67+Ig40DAMtOLbOo/mCSoAiRDavPrSY6MRqAF+q+IO3eeWRow6HodcbT0JKTSzAoBo0jEpYqmWRWXjPOHGunt2Nwg8EaR1Q4FHcqTp86xv5gYXFhFtUfTBIUIbIhbefYlxpL805eKetWls7VOgNwM+Imu27s0jYgYbFOux4iOD4YgF61e+Ht7K1xRIXHqMaPmnksqT+YJChCZOFK2BX2BO4BoLZ3bZqXa65xRIVL6n1BABafWKxZHMKy7XPfqj6WuU/yVtvKbalWvBoA/17/l8DwQI0jMpIERYgspP3SHNFohLR757GetXri4egBGJvSohIjtQ1IWJyg2HucdjkCQIViFehYtaPGERUuep2eYQ2HAaCgsOzUMo0jMpIERYhMpBhS1M6bNjobhjQconFEhY+jrSMD6w0EIC45jnWBf2sckciO2IfxHF19mdiH8fm6HYNBYfGRpSg6Y/+koQ2GYqO3yddtFkVDGw5VHy85ucQibiAoCYoQmdh+bTu3I28D0LVGV0q7ltY4osIp7bDtP67+rmEkIrtiwxM4/ucVYsPzb9TH9UNBrJi4ixUX/lDLvP6uzfVDQfm2zaKqkkcl2ldpDxibtVOHc2tJEhQhMmHSOVbmPsk3Tcs2pU6JOgAcePAfD+zuEnwtAoNB+19xQhvXDwWxY9ZxLsac57aj8e7hVeNq4xbixY5ZxyVJyQfDGw5XH1tCfzBJUITIQNohd97O3nJjwHyk0+no6dlHff5fsR0ELDjLiom75IuoCDIYFA4sPQ/Af8X+VctbRLZXHx9Ydl4S2DzW26c3rvaugPEGgrFJsZrGIwmKGYkpiVqHICzAijMrSEgxXr4eXH+wenM7kfeuHwrCa0MtdIrxlLTffTsGDMSExcuv5SIo6EIYMWHxGEjhkNsuAGwUG56ObKPWiQmNJ+hCmEYRFk4u9i70q9MPgKjEKM3nRJEE5f8pisKyk8votKwTT89/2iI6CAlt/Xr60ayVwxoN0zCSwi3117JHiif1YpoAEGYXzEXnU2od+bVctMT9f7+WC86nCLcLBaBe9NO4GoqZrSfyjiUN+5cE5f/pdDp+OvoT265t49T9U5y8f1LrkISGrj28ZnLPj9Qbaom8l/prGaBlRAe1fH+x7epj+bVctDh5GKdeP1Bsp1r2TJrmncfribzTumJrqhavChgHCdyKuKVZLJKgpDGkwaMhpMtOWsY4cKGNX089unoyuP5gmfskH6X9FdwwpjnOKcY28GNuAcTpY83WE4Vb6dqe2HoajwEApxQXGsQ0M6nj4uVI6dqeWoRXqKWdE8WnhA93ou5oF4tmW7ZA/ev2x05vB8DvZ34n2ZCscURCC4qiqAmKDh2D6g/SOKLCLe2vYDvFnmaRbQFI1CdwzHWf2XqicNPrdUR0uEGCPg6AplGtsVNM+4C1GOKDXi8/HPLD6KdGc3j0Yc6MOUOL8i00i0MSlDQ8nTzpXrM7AEHRQey4tkPjiIQWDt89zOWwywD4VfajgnsFjSMq3ErX9sTF01F9/kykv/o49RK//FouerbErFcfN0/TvOPi5Yj/5MZUaSZzEuWXMm5laFq2qeZXjiVBeYxJM4+FTPcrClba5j25Y2r+0+t1tBjqoz6vEl+LkollAbjofIow2xD5tVzE3I++z9arxnvvVHSvyPCB/QFoNbIuA2b7SXJSREiC8pjuNbpT3LE4AGsvrCU6MVrjiERBSkpJ4o+zxlkrHW0d6ePTJ4s1RF6o0qw0/pMb4+LpiA6dOt+FolMI63ZJvpCKmD/O/EGKkgLAi/VfpFQ14zm5RFV3SVSLEElQHuNg60D/usZsPTYplrXn12ockShIW69uJSQ2BDDexM7d0V3jiIqOKs1KM+A7P1qNrEvzyHZq+caHcm+eoibt1eu0V7VF0SIJihnSzFN0pf28B9eX5p2CptfrKFHVnZJJZXi6RHMATj84zckgGfZfVJwPPs/Re0cBaFKmCT4lfLJYQxRWkqCY0bJCS6p4VAFgx/Ud3I26q3FEoiBEJkTy90Xjr3UvJy86V++scURFW7+q/dXHaYd956WCuiOvyD6TIf6FuA+Ys4cDjXtXx1lGp2VIEhQzdDqd+odhUAz8flrurloU/Hn+T+KTjV9UL9R7Qaa211ivSs+bDPtPMaTk+TYK4o68IvsMioHfTv8GgI3OhoH1BmocUf5xLu5Ik741cC7umHXlIkoSlAxIM0/RY9K8U4h/uVkLT0dPutXoBsDdqLvsvLEzizWEtdt3cx+BEYEAdKzWkVKupTSOSGhJEpQM1PCqQfNyxjbwU/dPcer+qSzWENbsduRtdl43fgFW96yufvZCW2kTRfmhUPilbd6RzrFCEpRMyNT3Rcfy08tRMN6Mzpqmti/s7dg9avbA3cE4kurP838SkxijcUQiv8Qnx7Py7EoAXOxc6FWrl8YRCa1JgpKJAfUGYKu3BfKvDVxYhrR3Ln6xwYsaRpIzhb0d29HWUb39e3RitNqJWRQ+/1z6h4iECAD61OmDi72LxhEJrUmCkglvZ29pAy8C0jbhtSjfguqe1TWOSKQ1pOGjK5n5NZpHaE+ad8TjJEHJQtq5MKQNvHCSE6Nla12xNRXdKwLGifTuR9/XOCKR10JjQ9l4eSMAZd3K0q5yuyzWEEWBJChZeLbWs2ob+Jpza6QNvJBJMaSow8ht9bbqLMLCcuh1evWHQoqSwh9n/tA4IpHXVp5dSZIhCYBB9QZho7fRJI7C3qfL2kiCkoW0beAxSTH8deEvbQMSeWrXjV3ciboDQNfqXfF29tY4ImFO2n5BafsLicLBUob4F/Y+XdZGEpRsMGkDl5NjoZL285Tmncxp+euyTok6PFXmKQCO3D3ChZALBR6DyB9Xw67y3+3/AKhfsj4NSzfUOCJhKSRByYbWFVtTyb0SIG3ghUlsUixrzq0BoJhDMXrU7KFxRJZN61+XaRNI6SxbeBSVqe1FzuU4QYmNjWXhwoW88cYbdO/enTZt2rBp06Zsrx8VFcWXX37Js88+S6dOnZg0aRIXL17MaRgFSq/T82J94yVmg2Jg+ZnlGkck8sK6i+uISowCoK9PX5zsnDSOSGTmhXovoNcZT1m/nvoVg2LQOCLxpBRFUa9i6tAxqP4gjSMSliTHCUpERASLFy8mMDCQ6tVzNhzTYDDw1ltvsX37dnr37s2rr77Kw4cPmTRpErdu3cppKAUqbWYvv94KB5PROw2lecfSlXYtTadqnQAIjAgk4GaAxhGJJ3XwzkGuhF0BoH2V9pQvVl7jiIQlyXGC4uXlxdq1a1m1ahVjxozJ0bq7du3izJkzTJ06lZdeeonevXvz3XffodfrWbRoUU5DKVA+JXxoUqYJAEfvHeV88HmNIxI5YTAoBF8zTgIVfC2C+1EP2HxlMwDli5WnTaU2WoYnsintsH/5oWD90s7QLc074nE5TlDs7e3x8vLK1cZ2796Np6cnbdo8+jLw8PCgXbt27Nu3j8TExFy9bkGRqyjW6fqhIFZM3EXAgrMABCw4y1sffUKKYpwZ+MX6L6pNB8KyPVf7OVzsjDOMrjy3Ur37tLA+iSmJrDi7AgAnWyd6+/TWOCJhaQr0rHzp0iVq1KiBXm+6WR8fH+Lj4y2+mSdtG/hvp3+TNnArcP1QEDtmHScmzPSLbI/tVvWx/HKzHi72LuoXWXh8uDq5l7A+m69sJjQuFIBetXtRzKGYxhEJS1OgCUpYWJjZqy+pZaGhoWbXCwkJ4eLFi+q/wMDAfI0zI9IGbl0MBoUDS9M3xQXZ3ea60yUAKiVXp4533YIOTTwBuZJZOMgMziIrtgW5sYSEBOzt7dOVp5YlJCSYXW/dunUsXrw4P0PLtsH1B6t9F5adWoZvJV+NIxIZCboQlu7KCcDBYo/uqdQszI+gC2GUrZO7ZktR8NpXaU9p19IERQex4fIGwuLC8HTy1DoskQPh8eGsu7gOgBLOJehYtaPGEQlLVKBXUBwcHMz2M0ktc3AwPwFUz549mT9/vvrv3Xffzdc4M2PSBn5W2sAtWVx4+oRXQeHA/ycoOkVPs8i2ZusJy2Wrt2VgvYGAsR/DqrOrNI5I5NSac2tISDH+3Q2sNxA7GzuNIxKWqEATFE9PT7PNOKllGXW+9fb2platWuq/SpUq5WucmUnbBh6RECFt4BbMycyMp1cdzxNiHwSAT2xDPFK8zNYTls1k0jaZ3dnqpJ3aXob4i4wUaIJSo0YNLl++jMFg2rn0/PnzODo6UqFChYIMJ9fStoHLHY4tV+nanrh4ms56esD9X/Vx88j2uHg5Urq2NA9Ym0alG1GnRB0A9t3cx/WH1zWOSGRXYHgguwN3A1DLq5Y6fYMQj8u3BCUkJITAwECSk5PVsrZt2xIWFsaePXvUsvDwcHbu3EnLli3N9k+xRKlt4AAbLm3gYcJDjSMS5uj1OloM9VGfJ5PEYTfjsWdvcOCpqGdoMcQHvV6nVYgil3Q6ncmcKKl3pBaWL+1nNaTBEHQ6+fsT5uUqQVmzZg1Llixh40Zj80ZAQABLlixhyZIlREdHAzBv3jyGDBlCcHCwup6fnx9169ZlxowZLF68mLVr1zJp0iQMBgMjRozIg90pGLZ6WwbVM07JnGRIYl3gX9oGJDJUpVlp/Cc3xsXTkTOuR4i1MR6fTRNb031SK6o0K61xhCK30t7heNmpZSiKomE0IjsURTG56pz2MxTicblKUFasWMGCBQv466+/ANizZw8LFixgwYIFREVFZbiejY0NX3zxBe3bt2fNmjXMnTsXd3d3Zs2aRcWKFXO1A1pJ28yz8uoKDSMRWanSrDQDvvPjcoMjatm0l16T5MTKVXSvSNtKbQG4GHqRo/eOahyRyMrxoOOcDzEO/fet6Etlj8raBiQsWq6GGa9cuTLLOtOmTWPatGnpyt3c3Hjrrbd46623crNpi5HaBn4u+ByHgg/wnN09gq9F4FmpmDQZWKDIxAh2PzT2PynhWILO1TtpHJHIC4MbDFb7M/x66lealm2qcUQiMzK1vcgJmd87l3Q6Hd2LP6c+P+hmnEp9xcRdXD8UpF1gwqxVZ1eRYDAOa3yucm9s9QU6BZDIJ33r9MXBxjgKa/mZ5SQbkrNYQ2gl2ZCs3gne3saefnX6aRyRsHSSoOTS9UNBeG2qqT4/4P4vCgoxYfHsmHVckhQLk7bdu3/VFzSMROQlD0cPnq31LAAPYh6w7eo2jSMSGdl+bTv3Y+4D0KNmD4o7Fdc4ImHpJEHJhdQp1L2SS1Iztj4A9+3vcMPxslrnwLLzGAzSac8S3Ai/wd6bewEonVCBhl6NtA1I5CmTOxzLnCgWS6a2FzklCUoupJ1CvUVke7X8YLFHc2zEhMYTdCGswGOzRrEP4zm6+jKxD/NnVt7fTv2mPm4R2V6GNRYyXWt0Vae6X3t+LVEJGXfUF9qIToxm7YW1AHg6edKtRjeNIxLWQBKUXEg7NXqTqFbYGozTNB9y200yyWbriYzFhidw/M8rxObD+/X4sMbmkX55vg2hLXsbe/rX6Q9AXHKc+kUoLMef5/8kNikWgP51+mNvYx1zXgltSYKSC2mnRnc2uNIwpjkAUbYRnHc5brae0MbRe0e5GHoRgGdKtcQ7uZTGEYn8kHa6dLnDseVJ+yNBRu+I7JIEJRcen0K9RcSjZp4D/9/Mk19TqOd3c0hhk3ZYYz/pHFtoPVP+Gap4VAFgx/Ud3I26q3FEItWdyDvsuLYDgKrFq9KyQkuNIxLWQhKUXHh8CvV6MU1wSXED4ITrAeJ1sfk2hXp+NocUNkkpSeqwRgcbB3pW6llg23b2cKBx7+o4y1W0AqHT6dRf5gbFwB9n/tA4IpHqt9O/oWAcMCBT24uckAQll9JOoW6LHU9HtgEgUZ9AfJ87MkupBdh2bRvBscZbLTxb61nc7T0KbNvOxR1p0rcGzsUds64s8oTcxNPyPN4HTEbviJyQBOUJpE6h3mpkXZpHtlPLt8Ss1zAqkUpOjEVLTa+aNCvXDIATQSc48+CMxhGJk/dPqp9DywotqeZZTeOIhDWRBOUJ6fU6SlR1p1q8D5VdKwOw49oO7kTe0TawIi4yIZK/LvwFgJeTF12qd9E2IFEg0s6JknZ4udDG0pNL1cdDGwzVMBJhjSRBySM6dPStahzqqKCofR+ENv48/yfxycaOxAPqDpBhjUXEgHoDsNHZAMa+DwbFoHFERVeyIZnfT/8O/P9Q8Lr9NY5IWBtJUPJQ36oD1Mcy1FFbJs07DaV5p6go6VKSztU7A3Ar8hZ7AvdoHFHRte3qNnVq+2drPitT24sckwQlD1UrVo3m5Yxzopy8f5LT909rHFHRdDvyNjuv7wSgumd19TMRRUPa/kbyQ0E70gdMPClJUPJY2pEEcnLUxu+nf1eHNQ6uP1iGNRYxPWv1xNXeFYBV51apTX2i4EQmRKoz+no5edG1RleNIxLWSBKUPDag7gBs9baAtIFr4fFhjTJrZdHjbOdMH58+gPGLcv1FGVVX0NacW6Mmhi/Ue0H6gIlckQQlj5VwKaGOGLkTdYddN3ZpG1ARI8MaBTzWzCN3OC5w0rxjOax50khJUPKBye3fpZmnQKV9v9N+DqJo8avsR1m3sgBsvLyRkNgQjSMqOm5G3GTnDWMfsLRz0whtWPOkkZKg5IOetXriZm+c+n71udXEJcVpHFHRkGxIVhMUO72dDGsswmz0NgyqNwgwHherzq7SOKKiI+38MzK1vXgSkqDkAyc7J/rW6QtAVGIU6y6u0ziiomHzlc2PhjXWehYvZy+NIxJaStv/aOmppZnUFHlFURST91r6gIknIQlKPjEZzSNt4AVi8YnF6uOXGr2kXSDCIjQs3ZAGpRoAcOD2Ac4Hn9c4osLv6L2jXAi5AECbSm2o7FFZ24CEVZMEJZ+0rdSWcm7lgP//ZR99X+OICreQ2BD1SlUpl1Iytb0AYHjD4erjtAmsyB9p32PpHCuelCQo+cRGb6P+gabtGyHyx/LTy0kyJAHGE2PqUG9RtA1uMFg9FpaeWkqyIVnjiAqv+OR4dWp7J1sn6QMmnpgkKPnopcaPmhkWnliIoigaRlO4LTqxSH08vNFw7QIRFqWESwl61OwBQFB0EFuubNE4osJr3cV1PIx/CECfOn0o5lBM44iEtZMEJR/V9KpJqwqtADgXfI7Ddw9rHFHhdDLoJMeDjgPwdNmnqVuyrsYRCUuStj9S2kRW5K2Fxxeqj0c0GqFhJKKwkAQln41o/OgPNe0fsMg7adu95eqJeFzX6l0p6VISMP7KlzlR8t6tiFtsvboVgMoelWlbua3GEYnCQBKUfNavTj9c7FwAWH5mObFJsRpHVLgkpiSqo6TsbewZWG+gxhEJS2NnY6f2B0syJKn9JETeWXpyqXr/q+ENh6PXyVeLeHJyFOUzNwc3tbNYZEIka8+v1TiiwiXtLKHP1X5ObukuzJJmnvyjKIr6nurQyVVMkWckQSkAaU+OC09IM09ekrlPRHbULVmXp8s+DcCJoBOcCDqhbUCFyH8P9nP14VUA2ldpTyWPShpHJAoLSVAKQOuKranuWR2Af6//y/WH1zWOqHB4EPOADZc3AFDWrSwdq3bUOCJhyUyuohyXqyh5ZfmVR1Pby48EkZckQSkAOp3OpFf7kpNLNIym8Pjt1G/qvBZDGwzFRm+jcUTCkr1Q7wUcbIx3dP3t9G8kpiRqHJH1i9fFsi7wbwDcHdzp7dNb44hEYSIJSgEZ2nCo2nFs0YlFGBSDxhFZN0VRWHB8gfpc2r1FVoo7Fed5n+cBCI0LZf3F9QW27diH8RxdfZnYh/EFts2CcMRtH7HJMYAxAXSyc9I4IlGYSIJSQMoVK0fnap0B4+3I/73+r8YRWbf/bv/H2eCzALSq0Ipa3rU0jkhYg7RNEAuOLyT4WgQAwdciMBjybyLF2PAEjv95hdjwhHzbhhYC3Lepj6V5R+Q1SVAKkMyJknfmH5uvPn65ycsaRiKsiX8VfyoUqwDA5subWbdkJwABC86yYuIurh8K0jK8PFFQV2suhV/kirPxR0KdEnVoVq5Zvm5PFD2SoBSgZ2s+i5eTFwB/nv+T0NhQjSPKmCVfkg6PD2fFmRWAsd27b52+GkckrIWN3oY+JV8AQNEZ2Oe+VV0WExbPjlnHrT5JKairNUsvL1Yfj35qNDqdLl+3J4oeSVAKkIOtgzphVEJKAktPLtU4ooxZ8iXp3079RlxyHGC8MaCznbPGEQlrYTAoVD/YFJ1iPPXtc99CCikmdQ4sO5+vzT2FQXxyPCuuLgfAQe/A0IZDNY5IFEaSoBSwV5q+oj7++ejPcgPBHFIUhXnH5qnPpXlH5ETQhTAcQtxoEG1sjgi3C+WMyxGTOjGh8QRdCNMiPKux8swqwhPDAejk1Q0Ph/ydINHZw4HGvavj7OGQr9sRlkUSlAJW27s2bSsZ71NxMfQiuwN3axyRdTl89zCn7p8CoHm55tQvVV/jiIQ1ifv/K4JtI7qqZbs9NmZYT6R3/VAQM1Z9qT73Odoy3/vvOBd3pEnfGjgXd8y3bQjLIwmKBl5pYnoVRWTf/KPSOVbkntP//wKvG/MUnkklADjjcpRQ2wdm6wlT1w8FsezHv7lgfxqAMgkVqB5Xp9D03xGWRRIUDfT26Y23szcAa86t4UHMgyzWEGC8l9HyM8Z2bzd7NwbUHaBxRMLalK7tiYunI3psaB1hHPav6AwEpOks6+LlSOnanlqFaLEMBoUDS8+zx32TWtYmvCs6HnWOlf47Ii9JgqIBB1sHdc6AJEOSyf1kRMaWn15OTJJxUqgX67+Ii72LxhEJa6PX62gx1AeA1hGd1M6ye9N0lm0xxAe9XkakPC7oQhgPH0bwn/sOAGwNdjwT6W9SR/rviLwkCYpG0jZPzDs6T2aWzYKiKCbNYdK8I3KrSrPS+E9uTPli5U06y14ucxL/yY2p0qy0xhFaprjwBI667SPWJhqAplG+uBjczNYTIi9IgqKR6p7V8a9i/PVx9eFVmVk2CwduH+B40HEAmpZtSuMyjTWOSFizKs1KM+A7P15t/qg/2Lmn9ktykgknDwf2uG9Wn6ftaPx4PSHygiQoGnq16avq45+O/KRhJJbv+8Pfq4/HPz1ew0hEYaHX63j+qZ5qZ9nNVzZxNeyqxlFZrgfFb6szx5ZJqEi1uDrp6kj/HZGXJEHRUK9avSjlUgqAvy/+zZ3IOxpHZJmCooNYdXYVAF5OXgyoJ51jC7OCnPPCRm+DX3h3ABQUfjz8Y75v01r9kOZHQrvw7iadY1NJ/x2RlyRB0ZCdjR2jnxoNQLIhWa6iZGD+0fkkGZIA45TajrYyF0JhVtBzXrSO6IyD3pgMLTyxkJjEmALZrjUJiwvjt9O/AeBq44q/TXeT5S5ejtJ/R+Q5SVA09mrTV7HV2wLGOVHiky3v3jdaSkpJ4qejxsRNr9ObNIsJkRfcUtzpXcV4P6fw+HB+PfWrxhFZngXHFqi3lxjRZATDZ3ej1ci6ALQaWZcBs/0kORF5ThIUjZUrVk692V1wbDB/nPlD44gsy18X/uJu1F0AetbqSSWPShpHJAqjUbUfjQqbc2iO3IIijRRDCj8c/kF9Pq7ZOPR6HSWqugNQoqq7NOuIfCEJigWY2Gyi+vi7g9/JyTEN6RwrCkIDr4a0qtAKgLPBZ9l1Y5e2AVmQ9ZfWExgRCEDX6l2p6VVT44hEUSEJigVoUb4FTcs2BeB40HECbgVoHJFlOHX/FHsC9wDGexi1r9Je44hEYTah2QT1cdrEuKibc2iO+jjteyREfpMExQLodLp0V1EEzDowS3087ulx6HRyGVnkn94+vSnjWgYwNi3ejLipcUTaO/vgrDpHUw3PGnSu3lnjiERRIgmKhehft7865PjP839yK+KWxhFpKyg6SB014OHowbCGwzSOSBR2djZ2aidsg2JgzsE5WaxR+KW9ejLu6XHodfKVIQpOjo+2xMRE5s6dy/PPP0+HDh145ZVXOHz4cLbWPXLkCJMmTeLZZ5+lW7duvPzyy2zZsiXHQRdGDrYO6skxRUnh+0NF+xLz94e+JzElETDe/dnNIf2U2kLktVebvoqDjXHI8c9HfyYiPkLjiLTzIOaBep8wV3tXhjcarmk8oujJcYIyY8YMVq5cSceOHZk4cSJ6vZ4pU6Zw6tSpTNfbt28fr7/+OklJSQwfPpxRo0bh4ODAp59+ysqVK3O9A4XJq01fxU5vBxhPjpEJkRpHpI2YxBjmHpkLgK3eVtq9RYEp6VJSvVoXlRhlcv+noub7Q9+TkGK8r87LT72Mu6O7xhGJoiZHCcq5c+fYsWMHL7/8MmPHjqVnz57MmjWL0qVLM3fu3EzX/fPPP/Hy8mLWrFn06dOH3r178+2331KuXDk2bdqU6bpFRWnX0gxpMASAiIQI5h+dr3FE2lh8YjFhccY7og6sN5ByxcppHJEoSl5v+bo6S+rsg7PVK3lFSUxijDq02FZvy+QWk7UNSBRJOUpQdu/ejY2NDT179lTLHBwc6N69O2fPnuX+/fsZrhsbG4ubmxv29vZqma2tLe7u7jg4yM2lUr3R8g318bcHvi1yJ8cUQwrfHvhWff76M69rGI0oimp61aRX7V4A3I26y++nf9c4ooK36MQi9UfCC/VeoIJ7BY0jEkVRjhKUy5cvU758eVxcXEzKfXx8ALhy5UqG6zZq1Ijr16/zyy+/cPv2be7cucOSJUu4ePEiAwcOzHS7ISEhXLx4Uf0XGBiYk7Ctik8JH3rVMp4c70TdYfnp5RpHVLDWXVzH1YfGG7b5V/GnYemGGkckiqI3W76pPv5q/1dFam6iZEMy3/z3jfr8jWfeyKS2EPnHNieVQ0ND8fLySleeWhYSEpLhusOGDePevXssW7aMpUuXAuDo6MjHH3+Mr69vpttdt24dixcvzkmoVm1Kqyn8ffFvAL7Y/wVDGg4ptL3nDQaF4GvGjogProYz4/oMdZlcPRFaaVmhJS0rtGT/rf2cDT7Lpiub6Fajm9ZhFYg/z//J9fDrAHSq1kl+JAjN5ChBSUhIwM7OLl15arNNQkJChuva2dlRoUIF/Pz8aNOmDSkpKaxfv57p06fzzTffULdu3QzX7dmzJ61atVKfBwYGMn369JyEblVaVmhJqwqtCLgVwLngc2y8vJEeNXtoHVaeu34oiANLzxMTZrz/0Pw/fuVwBeOIsIalGtKlehctwxNF3Jst3+T5Fc8D8OX+L4tEgqIoCjMDZqrP5eqJ0FKOfpY7ODiQlJSUrjwxMVFdnpFZs2axf/9+PvjgA/z9/enUqRPffvstXl5efPdd5hOTeXt7U6tWLfVfpUqF/34sU1pNUR/P2Dej0F1ivn4oiB2zjqvJCcAGr0fNWaPLyMRsQls9a/VUp3XfdWMXATcL/wzPGy9v5Ni9YwA0Lt2YDlU7aByRKMpylKB4eXkRGhqarjy1zNvb2+x6SUlJbNiwgWeeeQa9/tEmbW1tad68ORcvXjSb+BRlPWr2oE6JOgDsv7WfHdd3aBxR3jEYFA4sPW9SdsnpNJedzwJQOqECHturYDAUrqRMWBe9Ts/brd5Wn3+0+yMNo8l/iqLw8Z6P1efvtXlPfiQITeUoQalevTq3b98mJibGpPzcuXPqcnMiIiJISUkhJSUl3bKUlBQMBgMGgyEnoRR6ep2e99u8rz7/cNeHpKQY1P4awdcirPYLPOhCmMmVE4ANXo/u4twtrD9xoUkEXQgr6NCEMDG4wWCqeFQBYNu1bfx36z+NI8o/W65u4dCdQwA0KNVAHckkhFZylKD4+fmRkpLCunXr1LLExEQ2btxInTp1KFXKOFX7/fv3TUbaFC9eHFdXV/bu3WtypSQ2NpaAgAAqVqwoQ43N6Funr3oVJeBWAO+98Q0BC4xXGQIWnGXFxF1cPxSkZYi5Ehdu2lfpmuMFzrkcB8A7sTTNIv3M1hOioNnZ2PGO7zvq88J6FUVRFJN9e6/Ne4W2Y76wHjk6AuvUqUO7du2YN28ec+fOZd26dUyePJmgoCBeffVVtd6nn37KkCFD1Oc2Nja88MIL3Lp1i1dffZWVK1fyxx9/8MorrxAcHMzQoUPzbo8KERu9jclVlFX2i1B4dNUkJiyeHbOOW12S4uRhmoz+k6bvSdew/thgY7aeEFoY2nAolT0qA8arDAduH9A2oHyw4/oOdb/qlKhDb5/eGkckRC6mup82bRr9+vVjy5YtfPfddyQnJzNz5kwaNWqU6XpDhw7lvffew9bWlsWLF7NgwQJcXFz4+OOP6dSpU27jL/R61+5DuWRjp+Arzuc473wiXZ0Dy85bVXNP6dqeuHg6AnDF6SynXY0jdzyTStAywh8AFy9HStf21CxGIVIV9qsocvVEWKocDTMG40idsWPHMnbs2AzrZDQqp2PHjnTs2DGnmyzSgi9F0P3BC8wraxz6t877V3xuNlKn4gaICY0n6EIYZeukn6PGEun1OloM9WH7rGP86b1YLe8ROghbjMPYWwzxQa+XDnrCMgxtOJTpe6YTGBHI5iubCbgZQKuKrbJe0QpsvLyRfTf3AVDbuzb96vTTOCIhjCRNtnBx4Qk0iWpNmYSKAFx1Os9J1/SXmK2tv0aVZqWxfzFCHblTKrEcLSM64OLliP/kxlRpVlrjCIV4xN7GnnfbvKs+f2v7W4Vi6H+KIYWpO6aqzz9p9wk2ehsNIxLiEUlQLJyThwN6bHg+5FE/nTXei0khJV09a2JQDHx35yv1ea+QIbQZ2YABs/0kOREWaXij4dT2rg0YO62vu7guizUs3++nf+f0g9MAPF32afr49NE4IiEekQTFwqX212gU/QzV4oz3PApyuEWA+1a1jjX211h1dpU6IVR9zwY0iWpNiaru0qwjLJat3pYZ/o9uxfD2jrdJNiRrGNGTSUhO4L2d76nPZ3aYKfOeCIsiCYqFS+2voUNH3wcj1fJ13r+SoDPOJWJt/TXikuKYsv3RTLnTGr+HXg5FYQV61epFywotAbgQcoHFJxZrG9AT+PHwjwRGGKeD6FytM+2qtNM4IiFMybeCFajSrDT+kxvT0PkpnooynhwjbB/yb/m/rLK/xtf/fc3NiJuA8WZk/mVlOm1hHXQ6HV90+EJ9/t7O94hMiNQwotx5EPPAZORO2itDQlgKSVCsRJVmpRnwnR/T/T5Frxg/to3FVkKNOI0jy5k7kXeYsc94MrTR2fBt52/lsrKwKq0qtuL52sabCAZFB/Hx7o+zWMPyTNsxjYgE46zULzV6icZlGmsckRDpSYJiRfR6HU/XbUz7hz0BiE+O539b/qdxVDkzdcdUYpNiARjTdIw6U64Q1uTrTl/jaGucy2f2wdmcCz6ncUTZd/jOYRYeXwhAMYdicvVEWCxJUKxQz9DBlHQy3lbg74t/s/HyRo0jyp69gXtZdmoZAMUdi/Oh34faBiRELlUpXkW9kWCyIZmJmyZaxbBjg2JgwqYJ6ozUH7b9kFKupTSOSgjzJEGxQk4GZz5q8on6fOKmicQnx2eyhvYSkhMYvX60+vyTdp/g5WwdE8sJYc6UVlPUKfB3XN/BqnOrtA0oGxYcW8DBOwcB8PH2YXyz8RpHJETGJEGxUn2q9KNNpTYAXH141eLbwT/b+xkXQy8C0Lxcc15t+moWawhh2ZzsnJjVeZb6fMKmCYTEhmgXUBbuRN7hjW1vqM+/6/oddjZ2GkYkROYkQckDzh4ONO5dHecCnCxNp9PxQ7cfsNMbTzAzA2Zy+M7hAtt+Tpx9cFbtGGurt2X+s/NltkpRKPSs1ZNetXoBxpExEzdN1Dgi8xRFYdzGceqIo2ENh9GhqoyeE5ZNEpQ84FzckSZ9a+Bc3LFAt1uvZD3eb2u827FBMTD87+EW19STlJLEyHUjSTIkATCl5RTql6qvcVRC5A2dTsfc7nMp7lgcgOVnlvPXhb+0DcqMlWdX8vfFvwEo6VKSbzp/o3FEQmRNEhQr91art2hSpgkA54LP8eGuD7UN6DHT90xX27xreNbgvbbvZbGGENaljFsZZneZrT5/9Z9XLaqp51bELV7d8KhJ9YduP+DpZF0zT4uiSRIUK2dnY8fi5xZjb2MPwJf7v+Tf6/9qHJVRwM0Apu+dDhjnPFn2/DJ1aKYQhcngBoPpUbMHAPdj7jP8r+EYFIPGURlvBjh47WDC48MBGFB3gNxvR1gNSVAKgXol6/Gxn7GTrEExMGjNIIKigzSNKSwujBf/fFE9SX/o9yHNyzfXNCYh8otOp2Nej3mUcC4BwIbLG/jmP+2bUT7b+xl7AvcAUNG9Ij/1+EkmRhRWQxKUQuLNVm/SuVpnwPgLbuCagZrdyCzFkMILq19Q7/PRumJrpraemsVaQli3Mm5lWPb8MvX51B1TCbgZoFk8225v5YNdHwCg1+n5rfdveDh6aBaPEDklCUohodfpWfb8Msq6lQVg141dvLblNU1ieeffd9h2bRsAJZxL8Hvv32XUjigSOlfvrCbjyYZkeq/szY3wGwUeR5DdbV7dO0qdkO0jv49oXbF1gcchxJOQBKUQKeFSghV9V2CrtwVgzqE5zDk4p0BjWHxiMTMDZgLGIcWr+6+mgnuFAo0hI1oMBxdFz8ftPqZdZeOdgR/EPODZ5c8SlVhwNxQMiw/jh3IfE5lk3GZvn95M851WYNsXIq9IglLItK7Ymnk95qnPJ2+ZzNrzawtk2+surmPUulHq8687fa1OJmcJtBoOLoqW1MS8hmcNAM48OMPwXUNI0iXm+7Yj4iLpu/F5ghxuA1CvRD2WPLcEvU5O9cL6yFFbCL3U+CWmtTb+YjIoBvqv7s/fF/7O123uvL6TAasHkKKkADCx2UQmNJuQr9sUwlJ5Onnyz6B/1PlR9gTt5seyn3DnygMMhvy5Z8/5/67Tano7TkefBMA92ZORF94m+ER0vmxPiPwmCUoh9Un7TxjacChgbAvvt6pfvk0gteHSBrr93k2dJG5Q/UF82+VbGS0girSaXjWZ12gJjgYnAM64HmXI1hdZOnEz1w/l7Si7UwGXee6vXpy1PwaAc4or/7s1HdcQT3bMOp7n2xOiIEiCUkjpdXoW9lzI4AaDAUgyJNF7RW++O/hdlusaDArB1yIACL4WkekvvnlH5/HciufU5KRHzR4s6rVILimLIu/6oSDCl9gy4faH2BuM/Z5Oux7mY9fJrJ2zM8+ShhsPA+m1qRuXnE8D4GBwYuLtjyiXWFmtc2DZ+Xy7ciNEfpFvkULMRm/D4l6LGdJgCAAKCpM2T2LYX8OISogyu871Q0GsmLiLgAVnAQhYcJYVE3elO5nGJsXyyvpXeOWfV9ThzC/Ue4E/+/+pThonRFFlMCgcWHoegJpx9Zl4+yMcU4xXUq47XeKTShNYvHzFEycN269tp8lPTbhhdwUA1+RivH5rBtXifUzqxYTGE3Qh7Im2JURBkwSlkLPR27D4ucW84/uOWrb05FIa/9yYrVe3mtS9fiiIHbOOExNmej+fmLB4k8vEewL30OinRsw7lqYzbvPJ/Pr8r3J3VCGAoAthJn9HteIa8Natr/BI8gIg3C6UT9xfY+yK8Rn+WMhMRHwEY/4ZQ8dlHQlLDAXAO7E0b976girxNc2uExeekIs9EUI7kqAUAXqdnuntp/Nb799wtXcF4OrDq3T+tTM9fu/B3sC9pKQY1F985igo/Lr8T3ou70XbxW25HHYZAEdbRxb3Wsy3Xb6VuU6E+H/mkoHyCVV4J3A2tWIaAKDoDPx86UdqfV+Lb/77JluJSlhcGF8EfEHV76ry09Gf1PK6MU14N3A2ZRMrZriukwyvF1bGVusARMEZVH8Qzcs1Z+hfQ9l/az9gnJJ7w+UNVHerQTV9Q6q61qJkUlnsDQ4k6hMIsb3PVafznHY9xB2HQLj06PWal2vOkueWUMu7lkZ7JIRlyigZ8Ejx5LXbn7LZczX/eC0nSZ/Iveh7vL71dd7b+R5dq3elQ9UO1CtZD29nb/Q6PUHRQZwMOsnOGzvZcHkDiSmPhiu72Lkww38GnsvqEGfIeBizi5cjpWvLDQKFdZEEpYip5lmNvS/t5bdTvzHt32ncjjTOl3Al6jJXvC5n6zXKuZXjQ78PGd5ouDopnBDikdK1PXHxdEzXXAqgx4ZuYQNoa9OJ3S3XsPbCn4CxX9ea82tYc35Nlq+vQ8fgBoP5uN3HVPaozHWdsXk2Iy2G+KDXy6g6YV2kiacI0uv0DGk4hKsTr/Lr87/iW9EXfTYOhWpxPnzz9BwuT7jMqKdGSXIiRAb0eh0thvpkWqfni+35c8Aazo09xytNXsHb2TvL1/V29mZy88mcG3eOpc8vpbJHZQCqNCuN/+TGuHiaTkLo4uWI/+TGVGlWOtf7IoRW5BumCLO3sefFBi/yYoMXuR/1gBkf/Mj1pKuE2j4gRZeEDbZ4JpWgTGJFasU2oIxHaQZ08ZNfYkJkQ2rScGDpeZMrKS5ejrQY4qMmDT4lfPipx0983+17Dt05xPF7x7kQcoGoxCiSDEmUcilFZY/KtK7YmoalGmbY16tKs9JUalqKiztvEbDgLK1G1qVWuwry9yqsliQoAoBSbiWZ9MKrcplYiDyUk6TBVm9LywotaVmhZa63p9frKFHVHYASVd3l71VYNWniESq5TCxE3pOkQYjckSsowoRcJhZCCGEJ5AqKSEd+8QkhhNCaJChCCCGEsDiSoAghhBDC4kiCIoQospw9HGjcuzrOMg28EBZHOskKIYos5+KONOlbQ+swhBBmyBUUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXFsc7pCYmIiCxYsYOvWrURFRVGtWjVGjRrF008/na31d+zYwerVq7l69Sq2trZUqlSJUaNG0aRJkxwHL4QQQojCKccJyowZM9i1axf9+vWjfPnybNq0iSlTpjB79mwaNGiQ6boLFy5kyZIl+Pn50aVLF5KTk7l+/TohISG53gEhhBBCFD45SlDOnTvHjh07GDNmDAMHDgSgc+fODB8+nLlz5zJ37twM1z179ixLlixh3Lhx9O/f/8miFkIIIUShlqM+KLt378bGxoaePXuqZQ4ODnTv3p2zZ89y//79DNddtWoVnp6e9O3bF0VRiI2NzX3UQgghhCjUcnQF5fLly5QvXx4XFxeTch8fHwCuXLlCqVKlzK579OhR6tWrx+rVq1m2bBkRERF4enoyZMgQ+vTpk+l2Q0JCCA0NVZ8HBgbmJGwhhBB5zNnDgca9q+Ps4aB1KKKQylGCEhoaipeXV7ry1LKM+pJERUURERHBmTNnOHbsGMOHD6dUqVJs2rSJ2bNnY2trS69evTLc7rp161i8eHFOQhVWRE50Qlgf5+KONOlbQ+swRCGWowQlISEBOzu7dOX29vbqcnNSm3MiIiL44IMP8Pf3B8DPz4/hw4ezdOnSTBOUnj170qpVK/V5YGAg06dPz0nowoLJiU4IIcTjcpSgODg4kJSUlK48MTFRXZ7RegC2trb4+fmp5Xq9nvbt27Nw4ULu37+fYfOQt7c33t7eOQlVCCGEEFYsR51kvby8TPqCpEotyyiJKFasGPb29hQrVgwbGxuTZcWLFweMzUBCCCGEEJDDBKV69ercvn2bmJgYk/Jz586py81uRK+nRo0aREREpLsCk9pvxcPDIyehFFnSX0MIIURRkKMExc/Pj5SUFNatW6eWJSYmsnHjRurUqaM20dy/fz/dSJt27dqRkpLC5s2b1bKEhAS2bdtG5cqVpQknm1L7azgXd9Q6FCGEECLf5KgPSp06dWjXrh3z5s0jPDyccuXKsXnzZoKCgnjrrbfUep9++iknTpxgz549almvXr3YsGED3377Lbdu3aJUqVJs2bKF+/fvM2PGjLzbIyGEEEJYvRxPdT9t2jQ1uYiOjqZq1arMnDmTRo0aZbqeg4MDs2bNYu7cuWzcuJH4+HiqV6/OzJkzadasWW7jF0IIIUQhlOMExcHBgbFjxzJ27NgM63z33Xdmy4sXL860adNyukkhhBBCFDE56oMihBBCCFEQJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQohCxNnDgca9q+Ps4aB1KEI8EVutAxBCCJF3nIs70qRvDa3DEOKJyRUUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUYZaMBBAi78jfkxA5J6N4hFkyEkCIvCN/T0LknFxBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBbHVusAciMhIQGAwMBAjSMRQgghRE5VqlQJR0fHTOtYZYISFBQEwPTp0zWORAghhBA5NX/+fGrVqpVpHZ2iKEoBxZNnwsPDOXToEGXKlMHe3l7rcPJdYGAg06dP591336VSpUpah1OgZN+L3r4X1f2GorvvRXW/oejue6G9guLh4UGnTp20DqPAVapUKcuMs7CSfS96+15U9xuK7r4X1f2Gor3vGZFOskIIIYSwOJKgCCGEEMLiSIJiBby8vBg+fDheXl5ah1LgZN+L3r4X1f2GorvvRXW/oWjve1asspOsEEIIIQo3uYIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiWOVEbYVRSEgIq1ev5vz581y4cIG4uDhmz55N48aN09WdOHEiJ06cSFferFkzvvrqK5OyxMREFixYwNatW4mKiqJatWqMGjWKp59+Or92Jcdysu8Ap0+f5qeffuLSpUu4uLjQrl07Ro8ejbOzs0k9a9h3czZt2sSMGTPMLlu7dm263v779u1j0aJFBAYG4uHhQbdu3Rg6dCi2ttb1522tn1dOHD9+nEmTJpldNnfuXOrWras+z+5xboliY2P5448/OHfuHOfPnycqKoqpU6fStWvXdHVv3LjB999/z+nTp7G1teWZZ55h/PjxeHh4mNQzGAz88ccf/PXXX4SFhVG+fHkGDx5Mhw4dCmivspbd/f7ss8/YvHlzuvUrVqzIr7/+alJmDfudX6zrDFaI3bp1i99//53y5ctTtWpVzp49m2n9EiVK8Morr5iUmRumNmPGDHbt2kW/fv0oX748mzZtYsqUKcyePZsGDRrk6T7kVk72/fLly/zvf/+jUqVKjB8/ngcPHrBixQpu377Nl19+aVLXGvY9MyNHjqRMmTImZa6uribPDxw4wDvvvEOjRo2YNGkS165dY+nSpTx8+JDXX3+9IMN9Ytb+eeVEnz598PHxMSkrV66c+jgnx7klioiIYPHixZQqVYrq1atz/Phxs/UePHjAhAkTcHV1ZfTo0cTFxfHHH39w7do1fv75Z+zs7NS68+fP57fffuPZZ5+ldu3a7Nu3j48//hidToe/v39B7VqmsrvfAPb29kyZMsWkzMXFJV09a9jvfKMIixATE6NEREQoiqIoO3fuVHx9fZVjx46ZrTthwgRl6NChWb7m2bNnFV9fX+X3339Xy+Lj45UXXnhBefXVV/Mm8DyQk31/4403lOeee06Jjo5Wy9avX6/4+voqBw8eVMusZd/N2bhxo+Lr66ucP38+y7pDhgxRXnrpJSUpKUktmzdvntKmTRvlxo0b+RlmnrLmzysnjh07pvj6+io7d+7MtF52j3NLlZCQoISEhCiKoijnz59XfH19lY0bN6ar9/XXXysdOnRQgoKC1LLDhw8rvr6+yt9//62WPXjwQGnXrp3yzTffqGUGg0EZN26c0rt3byU5OTkf9yb7srvfn376qdKpU6csX89a9ju/SB8UC+Hs7EyxYsVytE5ycjKxsbEZLt+9ezc2Njb07NlTLXNwcKB79+6cPXuW+/fv5zrevJTdfY+JieHIkSN06tTJ5JdG586dcXJyYufOnWqZtex7VmJjY0lJSTG77MaNG9y4cYNnn33WpDnn+eefR1EUdu3aVUBRPrnC8nnlRGxsLMnJyenKc3KcWyp7e/tsTTy2e/duWrZsSalSpdSypk2bUqFCBZP93LdvH8nJyTz//PNqmU6n47nnniM4ODjLK84FJbv7nSolJYWYmJgMl1vLfucXaeKxUrdu3aJz584kJSXh6elJjx49GD58uMkX1eXLlylfvny6y4apl5avXLlicmKwdNeuXSMlJSXdDbXs7OyoUaMGly9fVssKw75PmjSJuLg47OzsePrppxk3bhwVKlRQl1+6dAkg3fvh7e1NiRIlTN4PS1cYPq+cmDFjBnFxcdjY2NCgQQPGjBlD7dq1gZwd59YsODiYhw8fmr1Bno+PDwcOHFCfX758GScnp3R3+009Pi5fvmx1zYDx8fF07dqV+Ph43Nzc8Pf359VXXzXpY1QY9zsnJEGxQmXLlqVx48ZUrVqV+Ph4du3axdKlS7l16xYfffSRWi80NNRsNp9aFhISUmAx54XQ0FDAfF8bLy8vTp48aVLXWvfdwcGBrl270rhxY1xcXLh48SIrV65k7Nix/PLLL+oXdVbvR+pya2DNn1dO2Nra0rZtW1q0aIG7uzs3btxgxYoVjB8/nh9//JGaNWvm6Di3ZlntZ2RkJImJidjb2xMaGkrx4sXR6XTp6oH1HR9eXl4MHDiQmjVroigKBw8e5K+//uLq1avMnj1b/aFZ2PY7pyRByQcGg4GkpKRs1bW3t0938GXl7bffNnneuXNnvvzyS9avX0///v3VkQAJCQkmnczSbjN1eV7Lz31PjTejfUpMTDSpW9D7bk5u3o/27dvTvn17tdzX15dmzZoxYcIEli1bxhtvvAGg7m/qPj3+Wpk1/1kaS/m88lv9+vWpX7+++rx169b4+fnx0ksvMW/ePL766qscHefWLKv9TK1jb29f6I6Pxwc4+Pv7U6FCBebPn8/u3bvVzq+Fbb9zShKUfHDy5MkMhxI+btmyZeku3+XGgAEDWL9+PUeOHFETFAcHB7NfjqknOAcHhyfe7uPyc99T481on9J+UWux7+bk1fvRoEED6tSpw9GjR9Wy1P0194WVmJhYYPuYFyzl89JC+fLlad26NXv27CElJSVHx7k1y2o/09YpCsdH//79WbBgAUeOHFETlKKw35mRBCUfVKxYkalTp2arbl7dwbJkyZIAREVFmbx2cHBwurqpl1a9vb3zZNtp5ee+p9Y313QRGhpqsj9a7Ls5efl+lCxZkps3b6arHxoamq5/RmhoaLphrJbMUj4vrZQsWZKkpCTi4+NzdJxbs6z2s1ixYmoy5uXlxfHjx1EUxeSqa2E6PhwcHChWrBiRkZFqWVHY78xIgpIPvLy8zE5IlJ/u3r0LYDK5Ueo4/JiYGJPOh+fOnVOX57X83PcqVapgY2PDxYsXTZpAkpKSuHz5Mu3atVPLtNh3c/Ly/bh7967J51ujRg0ALl68SJ06ddTykJAQgoODTUbEWDpL+by0cvfuXezt7XFycsrRcW7NSpQogYeHBxcvXky37Pz58yafefXq1fnnn38IDAykcuXKanlhOj5iY2OJiIhIdw4v7PudGRlmbGViYmLSXdJXFIWlS5cCmMy66efnR0pKCuvWrVPLEhMT2bhxI3Xq1LG6URGurq40bdqUrVu3mvSv2LJlC3FxcSYnbmve9/Dw8HRl//33HxcvXqRZs2ZqWZUqVahYsSLr1683GYr8119/odPpaNu2bUGEmyes+fPKCXOf7ZUrVwgICODpp59Gr9fn6Di3dm3btmX//v0mw8iPHj3KrVu3TPazdevW2NrasnbtWrVMURT+/vtvSpQoQb169Qo07ieRkJBgtn/YkiVLUBSF5s2bq2WFab9zQ66gWJAlS5YAxvktwHhCOnXqFADDhg0DjENLP/roIzp06EC5cuVISEhg7969nD59mmeffdZkyF6dOnVo164d8+bNIzw8nHLlyrF582aCgoJ46623CnbnspCdfQcYNWoU48aNY8KECfTs2VOdYfPpp582+cO2pn1/3JgxY6hZsya1atXCxcWFS5cusXHjRkqWLMmQIUNM6o4dO5apU6fy+uuv4+/vz7Vr11i7di09evQw+cVl6az588qJDz74AAcHB+rVq0fx4sW5ceMG69evx9HR0aTjZHaPc0u2Zs0aoqOj1eaIgIAAHjx4ABhn0nV1dWXw4MHs2rWLyZMn07dvX+Li4li+fDlVq1Y1ufJYsmRJ+vXrx/Lly0lOTsbHx4e9e/dy6tQp3nvvPWxsbDTZR3Oy2u+oqChGjhxJhw4dqFixIgCHDh3iwIEDNG/enNatW6uvZU37nR90iqIoWgchjNq0aZPhsj179gDGS8E///wz58+fJywsDL1eT6VKlejRowc9e/ZMNyomISFBvb9JdHQ0VatWZdSoUSa/xC1BdvY91alTp9R7lDg7O9OuXTteeeWVdPcosZZ9f9z8+fM5cOAA9+7dU/skPPPMMwwfPhxPT8909ffu3cvixYsJDAzE3d2drl27ppsTxxpY6+eVE6tXr2bbtm3cuXOHmJgYPDw8aNKkCcOHD6d8+fImdbN7nFuq/v37ExQUZHbZihUr1Ns4XL9+Pd29eMaNG5fuWDcYDPz++++sW7eO0NBQypcvz4svvkinTp3yfV9yIqv9dnV1Zfbs2Zw9e5bQ0FAMBgPlypWjY8eOvPDCC+n+bq1lv/ODJChCCCGEsDjSB0UIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEVkatOmTbRp04ZNmzZpHUq2HD9+nDZt2rBw4cJ820abNm2YOHFivr1+UdG/f3/69++vdRgWb+HChbRp04bjx4/n63ZWrlxJ+/btuXfvXrbqF8TfmjX75JNP6NevHwkJCVqHYrUkQSlkPv/8c9q0aUOPHj3S3VSwsLC2L7aIiAh++uknhg4dSseOHenYsSP9+vVj8uTJLFq0iLCwsAKJI6tkc+LEiZnecqAoiYuLo0uXLrRp04ZvvvlG63DyXVRUFEuXLqVbt27qFPTiyQwfPpyQkBBWrVqldShWy7pu1iEyFRsby86dO9HpdERGRrJ37178/f2f6DV9fX2pU6cOXl5eeRRl0fLgwQPGjh3LgwcPqFGjBl27dsXNzY3Q0FDOnDnDokWLqF+/vtl77BR23377rdYhZGjnzp3Exsai0+nYvn0748aNw8HBQeuw8s3KlSuJjIxk4MCBWodSaFSoUIFWrVrx+++/06dPH5ycnLQOyepIglKI/Pvvv8TFxdG/f39Wr17Nhg0bnjhBcXV1xdXVNY8iLHoWLlzIgwcPGDlypMldmVNdvXq1yL6/5cqV0zqEDG3YsAEbGxt69+7NqlWr2LNnDx07dtQ6rHyRnJzMP//8Q/369S36M7FGnTp1Ys+ePezYsYMePXpoHY7VkQSlEEk9qQ4aNIirV69y7NgxgoKCKF26tEm9hQsXsnjx4gxfp3Tp0qxcuRIwNgvMmDGDqVOnmtz+vE2bNjRq1Ij33nuPuXPncvjwYRITE2nYsCGTJ0+mbNmy3Lhxg3nz5nHy5EmSk5Np1qwZ//vf/0yuFhw/fpxJkyYxfPhwRowYYRLHvXv3GDBgAF26dGHatGnq87QxpDK3/oULF5g3bx5nz55Fr9fz1FNPMX78+HSXsPfs2cPOnTu5cOECISEh2NraUq1aNfr27Yufn1/mb3oWzp49C0Dv3r3NLq9WrZrZ8rt37/Lbb79x+PBhQkNDcXFxoXLlynTt2lX9HJKSkli3bh379+/nxo0bhIeH4+LiQv369Rk2bBg1a9ZUX++zzz5j8+bNAMyYMYMZM2aY7H/a9zLt49T3PtXVq1dZtmwZJ06cIDIyEi8vL1q1asVLL72Eu7u7Wi/tZzdo0CDmz5/PyZMniYyMVO9km9pMl3qswaNjc/bs2YSEhLB8+XJu3ryJq6sr7dq149VXX013JSM5OZk//viDf/75h5CQEEqUKEH37t1p3749L7zwQrp9yMrNmzc5ffo0LVu2NEn2zSUoaY/fli1bZut4A9i9eze//vor169fx8XFhVatWjFmzBhGjhyZ7j3JTHY/j8wcOnSI0NBQBg0aZHZ5QkICixYtYtu2bURERFCuXDn69u2b7u7Lad29e5dly5Zx+PBhHj58iJubG82aNWPEiBHpzkeQs/cj9Vj+448/2LNnDxs2bODu3bv4+/urn/PDhw/59ddf2b9/Pw8ePMDZ2ZmGDRsyYsQIqlatmm77Oal/69Ytfv31V44fP05oaCiOjo6ULFmSxo0bM2HCBJM7yj/zzDM4OjqyefNmSVByQRKUQuLGjRucPXuWFi1a4OnpSefOnTl69CgbN25M98XduHFjs68RGBjIzp07s30pOyoqinHjxuHl5UXnzp25ffs2+/fv57XXXuOzzz5j/Pjx1KpVi27dunHp0iV2795NZGQks2fPztU+urq6Mnz4cFavXg1A3759M9ynCxcusHz5cho3bkzPnj25fPkye/fu5dq1ayxevNhkH+fNm4etrS3169fHy8uL8PBwAgICeP/995k0aRJ9+vTJVbyA+iVx69Yt6tSpk611Tp06xVtvvUVsbCzNmjXD39+fqKgoLl++zOrVq9UEJTIykjlz5tCgQQNatGiBm5sb9+7dIyAggIMHDzJnzhx8fHwAY1NddHQ0+/bto3Xr1lSvXt1km8OHD2fz5s0EBQUxfPhwtbxGjRrq43379vHhhx+i0+lo3bo1JUuW5MaNG/z5558cOnSIn3/+GTc3N5PXvXPnDmPGjKFq1ap06dKFyMhI7OzssnwPUl+zVatWPPXUUxw8eJA1a9YQERHB+++/b1J35syZbNmyhbJly/Lcc8+RlJTEypUrOXPmTLbe78dt2LABgM6dO1OqVCkaNWrE8ePHuXv3LmXLljW7Tk6Otw0bNjBz5kxcXFzo3Lkzrq6uHDhwgNdee43k5GRsbbN3Ws7N52HO0aNHAahbt266ZQaDgalTp3LkyBGqVq1Khw4diIyM5Pvvv8/wPHLu3DneeOMN4uLiaNmyJeXLlycoKIht27Zx8OBB5s6da/I+5vb9mDVrFufOneOZZ56hZcuWFC9eHDAecxMnTiQ4OJinn36a1q1bEx4ezu7duzl8+DDffvutyd9iTuqHhITwyiuvEB8fzzPPPEP79u2Jj4/n9u3b/PXXX4wdO9YkXjs7O2rWrMnZs2eJi4uTZp6cUkShMGfOHMXX11fZvn27oiiKEhMTo3Tq1Enp27evkpKSkuX6YWFhSr9+/RR/f3/l1KlTavnGjRsVX19fZePGjSb1fX19FV9fX2XOnDkm5V9//bXi6+urdO3aVVm5cqVabjAYlDfffFPx9fVVLly4oJYfO3ZM8fX1VRYsWJAuprt37yq+vr7Kp59+alLer18/pV+/fmb3I/X10r4XqaZPn262/M6dO+leJyYmRhk2bJjStWtXJS4uLt2+T5gwwez2H7d69WrF19dX6dmzp7JgwQLl2LFjSnR0dIb1ExISlN69eytt27ZVDhw4kG75/fv3Teo+ePAgXZ1r164pnTp1Uv73v/+ZlGf0WaaaMGGC4uvra3ZZeHi40qVLF6V3797KvXv3TJZt375d8fX1Vb799lu1LPWzy+izVRTzn+OCBQvU4ycwMFAtj4+PVwYNGqS0bdtWCQ4OVsuPHDmi+Pr6KiNGjDD5nIKDg5VevXqZPX4yk5SUpPTq1Uvp2rWrEh8fryiKomzYsEHx9fVV5s+fn65+To+3yMhIpVOnTkqnTp2Umzdvmmx30qRJiq+vb4bvybFjx9SynH4emRk9erTStm1bJSEhId2y1GPmjTfeUJKTk9XyK1euKO3bt0/3+SYlJSn9+vVTOnfurFy8eNHktU6ePKn4+fkpb7311hO9H59++qni6+ur9O7dWwkKCkoX85gxYxQ/Pz/l4MGDJuU3b95UOnfurAwbNizX9VP/ntOe21JFRESkK1OUR+fmo0ePml0uMiajeAqB5ORktm7diouLC61btwbA2dkZX19f7t+/z5EjRzJdPyEhgWnTphEUFMTbb79N/fr1s7VdJycnRo0aZVKW2ufF3d3d5AqHTqdTl129ejXb+5ZbDRs2TNf/plu3bgCcP3/epNzcr2JnZ2e6du1KdHQ0Fy5cyHUcvXv3ZuDAgURHR7N48WImTZpEt27dGDp0KD/99BMhISEm9fft20dwcDAdO3akefPm6V6vZMmS6mN7e3tKlCiRrk6VKlVo3Lix2rSWF7Zs2UJMTAwvv/xyukv0/v7+1KxZkx07dqRbz9PTkyFDhuR4e3379qVixYrqcwcHB/z9/TEYDFy8eFEt37p1KwDDhg3D0dFRLff29jY5/rLrv//+IywsjHbt2qlXPfz8/HB0dGTTpk0YDAaz62X3eNu3bx9xcXF069aNChUqqOW2trbp/pYyk9vPw5zg4GBcXV2xt7dPtyy1WXDUqFHY2Nio5dWqVaNTp07p6u/fv5+goCAGDhxo0sQI0KBBA1q1asWBAweIiYkBnuz9GDhwIKVKlTIpu3TpEmfOnKFz5840a9bMZFmFChXo0aMH165d49q1a7mqn8rcVeZixYqZjTP1yk5wcHCm+yPSkyaeQmDfvn2Eh4fTvXt3kz+czp07s3XrVjZs2JDujy+Voih89tlnnD17lpdeeokOHTpke7vly5c3+VIA1NE+VatWNWmLTbvs8S/l/FCrVq10Zalf5tHR0SblDx8+5LfffuPAgQPcv38/3bwFTxKvTqdjzJgxDBw4kAMHDnDu3DkuXLjApUuXuHHjBuvWreOrr75SLyGnfpk9/fTT2Xr9y5cvs3z5ck6dOkVYWFi6hCQ8PBxvb+9cx58qtS/NuXPnuHPnTrrliYmJREREEB4ejoeHh1pevXr1bDXpPO7xLzd4lJyl/fyuXLkCGL/8HlevXr0cb/eff/4BjH87qZydnWndujXbt2/n0KFDtGjRIt162T3eUpNzc/HWqVPHJAnITG4/D3MiIyPNJrqp8To5OZndvwYNGqjNYY/HdfPmTbPzo4SFhWEwGLh16xa1a9d+ovcjtfkyrXPnzgHGv2lz279586b6f9WqVXNcP7Wf0bfffsvRo0dp3rw5jRo1yrDpDx4lLhERERnWEeZJglIIpG0zT6tJkyaUKFGCgIAAIiMjzWb4v/zyCzt37qRDhw689NJLOdqui4tLurLUE0pmy/LqV31mnJ2dM9x+2l/BkZGRvPzyy9y/f5/69evTtGlTXF1d0ev1XLlyhX379pGUlPTE8Xh4eNClSxe6dOkCQGhoKLNmzWL37t18+eWXLFq0CED9ZZnRF0Zap0+f5n//+x8ATZs2pXz58up+79u3jytXruRJ7GDsbwSwdu3aTOvFx8ebPE/99ZhTmR0/aT+/2NhY9Hq92Q6hOR26HRISwqFDhyhbtmy6L8wuXbqwfft2Nm7caDZBye7xlvr5mntfMtoPc3L7eZjj4OCQ4ZxJMTExGR6L5t7f1Li2bduWrbie5P0wt05kZCRgvBL233//ZbhuXFxcruqXKVOGuXPnsmjRIg4cOMDOnTsBqFixIiNHjqRdu3bp1k39wVOYh6nnF0lQrNz9+/c5fPgwQKazm27dujXdJe9NmzaxbNky6tevz9tvv52vcWYk9SpLSkpKumWpJ6/8tGHDBu7fv292GPCvv/7Kvn378mW7Xl5evPvuu/z3339cvXqViIgI3N3d1SHH2bkcvGzZMhITE/n+++/TfaGm/jLMK6lfwIsXLzY7CiIjj19Fy2vOzs4YDAYiIiLSXSnI6QR4mzZtIiUlhbt372Y4YV1AQEC2rkpkJDXxevjwYbplqfuRneQ0t5+HOe7u7hkeby4uLhn+8jf3/qbG9fnnn9OyZcsst/0k74e5Yyv19bLbuT2n9cF4dfiTTz4hOTmZixcvcvDgQVavXs2HH36It7d3uiby1CQot8dMUSZ9UKzc5s2bMRgMNGjQgO7du6f7l/qL/fFLsSdOnOCrr76ibNmyfPrpp2bbnwtC6igDc80oly9fNruOXq83m9DkRurl8dS+O2mdOnUqT7aRETs7u3SXsFMvW6cmnZm5e/cuxYoVS5ecxMfHc+nSpXT19Xrjn3tG711my1OboFIv4VuK1NFIp0+fTrcsJ6N4FEVh48aNAHTt2tXs31K9evVISkpS+73kRuqwcnPxnj9/PtvHdV5+HlWrViUxMZH79++nW1atWjXi4uJM+v2kMvf3kdO48ur9SJX695Pd7ee0flq2trbUrVuXESNGMGnSJBRFYf/+/enq3bp1C+CJE8miSBIUK5Z6UtXpdEybNo233nor3b9p06ZRt25drl69qnb2vHXrFu+++y4ODg58/vnnmmb2FStWxNnZWW2GShUWFsbSpUvNrlOsWDEiIiLy5B4XqR0MHz9Bbtu2jQMHDjzx6//xxx8EBgaaXfbnn38SFxdHxYoV1UvZrVq1okSJEmzbto1Dhw6lWyftL91SpUoRFRXF9evX1bKUlBR+/PFHwsPD062b2sT34MEDs/Fktrxbt244Ozszf/58k+2lio+P1yR5SZ2bZPHixSbHQ2hoqDocPTtOnDjBnTt3aNiwIVOnTjX7t5R6lfHxZD8nWrdujZOTExs2bDDpO5KcnMyCBQuy/Tp5+Xk0atQIMH/VLbXZ+JdffjFJFq5evWo2UWvdujWlSpVixYoVnDhxIt3y5ORkk8Qmr96PVHXq1KFOnTrs2LHDbCdhg8FgEldO61+8eNHsld3Uq0nmfuidO3cOLy8vk07AInukiceKHTt2jHv37mXZSatbt26cPXuWDRs2ULt2bb777jsiIyNp2rQp//77b7r6rq6uBXavGzs7O/r06cOyZcsYNWoUrVq1Ii4ujoCAABo1amS2A2Djxo25cOECU6ZMoUGDBtja2tKwYUP1RJsTnTp14vfff2f27NkcP36cUqVKceXKFY4dO0abNm3Ys2fPE+3f1q1b+fHHH6latSp16tShePHiREVFce7cOS5duoSDgwOvv/66Wt/e3p6PPvqIN998kzfffJNmzZpRvXp1YmJiuHLlCgkJCeqJu0+fPhw+fJhx48bRrl077O3tOXHiBCEhITRu3DjdzeXq1q2Lg4MDq1evJioqSk1MU5u2nnrqKXbt2sV7771H8+bNsbe3p3r16rRq1QoPDw8++OAD3n//fUaMGEGzZs2oWLEiSUlJBAUFceLECerVq8dXX331RO9XTjVt+n/t3V9Ik18cx/G3q2Z/mAU5809UEAWCMFi/IZkRDS8qKnezG280JIgY9geKiAgcFFR0I0U3LcFWIlQXomU4KwmenGwh9lBXQVBhTSJkEpQNfxey4a+tMPPnJn1e1wd2nvM8jM9znnO+5x9qamoIhUI0NDRQXV3NxMQEjx8/pry8HMMwUjNDv5IMHcmdN5msW7eOiooKTNPk5cuXM65rM53NZsPn83Hp0iUOHjyI2+1mxYoVDAwMYLVaKSwsnNFnsbm8H9XV1Vy9epVIJJK2hiK59iYcDtPY2EhlZSXxeJy+vj5cLlfajIHVasXv93Py5EmamppwOp2pBfMfPnxgeHiYlStXEgwG53Q8pjt79ixHjx6lubmZO3fusGnTJvLz84nFYpimydjYGKFQaFbtHz58SGdnJw6Hg7KyMpYvX86bN28Ih8MUFBSkPT/v379nZGQEj8fzW9cgUxRQFrDkn+r0Cq+ZuN1uWlpa6Ovrw+fzpd40I5FIxi3IxcXF83oYX2NjI4sXL6a7u5vOzk6Ki4upr6+nqqqK/v7+tPb19fWMj49jGAbDw8MkEgkaGhpmFVCKiopoaWnh2rVrRCIREokEmzdv5vLly8RisT8OKKdOncIwDJ4/f87g4CCfP3/GYrGwZs0aPB4PXq837c2qoqKC69evEwwGGRwcJBqNYrPZ2LBhA7W1tal2VVVV+P1+gsEgvb295Ofn43Q6OXfuXMZKwQUFBfj9flpbW+nq6ko9B8mAsnfvXkZGRnj06BG3b98mkUiwa9cutm3bBkxVxQwEArS3txONRolEIixduhS73c7u3bszbjudD6dPn2b9+vXcv3+fe/fuYbfb8Xq9OJ1ODMPIuIB1uvHxcfr7+1m2bBk7duz4Zds9e/Zgmibd3d2zCigA+/btw2azcfPmTXp6elKVUw8dOoTX651xufm5uh8lJSW4XC6ePHnCkSNH/jMLYLFYOH/+PK2trYRCIe7evUtpaSk+n4+1a9dm/KRRXl7OjRs3aG9vZ2BgANM0WbJkCYWFhWzfvj1tO/ZcjUdSaWkpgUCAjo4Onj59yoMHD7BYLKxevRqHw5FWHfp32tfU1PDt2zdevHjBq1evmJiYwG63U1tbm3Hbc3KWaf/+/b91DTIlb3JycjLbnRARmWtdXV1cvHiR48ePL4g32Hfv3lFXV8fOnTtpbm6e19+ORqMcO3aMM2fOZC1o/iib4zEXvn//Tl1dHSUlJbOunv230xoUEVnQPn36xI/vWaOjo7S1tbFo0SK2bt2apZ5lFo/H07b1fv36lStXrgBTxxLMty1btlBZWUlbW9tPi9H9X3JxPOZCT08PHz9+5PDhw9nuyoKlTzwisqDdunWLZ8+e4XA4WLVqFbFYDMMw+PLlCwcOHEibds+2oaEhLly4gMvloqioiLGxsdTBnk6nE7fbnZV+NTU10dvby+jo6LyOWa6Ox5/Ky8vjxIkTGYvcyczoE4+ILGjhcJiOjg5ev35NPB7HarWyceNGPB5PxhOIs+3t27cEAgFM00zttiorK0udvvy3FfTSeMjPKKCIiIhIztEaFBEREck5CigiIiKScxRQREREJOcooIiIiEjOUUARERGRnKOAIiIiIjlHAUVERERyjgKKiIiI5BwFFBEREck5/wIoGllyGcrEowAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 60.0 deg to 75.0 deg\n", - "Modulation: 0.307 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.018\n", - "Best fit polarization angle: 40.702 +/- 0.364\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACS4klEQVR4nOzddXhT59vA8W9SN6pAcXcfLsWKw9iGjMGwIWPYYGMGEybwgznM2GA4DB8Mho/hDHf3ooUKdW/O+0feHhqalra0PUl7f66Li+TJc3Luk5wmd85jOkVRFIQQQgghLIhe6wCEEEIIIZ4kCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQFuLmzZvodDoGDx6sdSgCaN26NTqdLtf38+mnn6LT6di1a1eu7yszypYtS9myZbUOQwhJUMTTXbx4kbFjx1KzZk3c3d2xt7enePHidO3alblz5xIfH691iLlm8ODB6HQ6bt68qXUoZs2dO5cRI0bQuHFjnJ2d0el0fPTRR0/d7u+//6Z169a4u7vj6upK48aNWbhwYYbbLFy4kEaNGuHq6oq7uzutW7fm77//Nlv3ypUrdO3aFS8vL0qVKsWYMWOIjIw0W7d///6UK1eOqKiopx9wKikJXep/tra2FC1alK5du7J58+YsPZ94dkuXLlXfi23btmVYNywsjE8++YS6devi6uqKg4MDJUqUoEmTJkyYMIETJ05kuP3w4cPR6XQ4OzsTFhaWbr2UBDDln16vp1ChQpQpU4YuXbrw5Zdfcvfu3ewcrshltloHICzb559/zmeffYbBYKBp06YMGjQIV1dXHjx4wK5duxg2bBizZs3i6NGjWodaIE2YMIHw8HA8PT0pXrw4165de+o2P/30E2PHjsXb25v+/ftjb2/P6tWrGTx4MGfOnOGbb75Js80777zDt99+S8mSJRk+fDgJCQksX76c559/nh9//JExY8aodaOjo/H39yc6OpqBAwdy584dfv75Zx48eMCqVatMnnfjxo0sXbqU7du34+rqmq3XwN3dnfHjxwMQFxfHqVOn2LRpE5s2bWLmzJm8+eab2XrevDJmzBheeeUVSpcurXUoz2z27NnodDoURWH27Nl06NDBbL179+7RvHlzbt68Sfny5Xn11Vfx8fHh0aNHHDt2jBkzZuDk5ES9evXMbh8ZGcny5cvR6XTExsayZMkSk3PQnFatWtG6dWvAeI7ev3+f/fv3s3nzZiZPnsynn37KBx988EzHL3KYIkQ6pk6dqgBKqVKllIMHD5qts2HDBqV169Z5HFneGTRokAIoN27cyPV93bhxQwGUQYMGZXqbzZs3Kzdv3lQURVHmz5+vAMqHH36Y4T4cHBwULy8vk2MKDQ1VKlSooADKgQMHTLbZv3+/AigVKlRQQkNDTZ7Ly8tLcXBwMHmu5cuXK4Cye/dutWzw4MEKoDx48EAtCwsLU0qUKKEMHTo008f75LEASpkyZdI8Nm/ePAVQXFxclOjo6Gw9f6tWrZSC+BFZpkwZs6/p01y8eFEBlHbt2in169dX7OzslMDAQLN1hw4dqgDKkCFDFIPBkObxe/fuKceOHUt3X7/++qsCKG+//bZib2+v1K5dO926kydPVgBl8uTJaR4zGAzK6tWrFS8vLwVQpk2b9vQDFXlGmniEWTdv3uTTTz/Fzs6OTZs20bhxY7P1unXrxpYtW9KUr1y5kpYtW+Lu7o6TkxO1atVi2rRpZpuDUtq8IyIiePvttylbtix2dnZ8+umnmXocjM1QgwcPplSpUtjb21O0aFH69evHpUuXzMYdExPDl19+SYMGDXBzc8PV1ZVq1arx5ptv8uDBAwB0Op3a7FGuXDn1EvGT7fOhoaFMnDiRatWq4eTkhLu7O/7+/ule4o6MjOTtt9+mZMmSODo6UrVqVb777jsMBoPZ+hnp1KkTZcqUyXT9efPmER8fz5gxY0yOw9PTk0mTJgHw66+/mmyTcv/DDz/E09NTLS9btiyjR48mPj6e+fPnq+UBAQEANGrUSC1LuZ3yGBiv/gB8++23mY4/swYPHoyLiwvR0dGcO3dOLd+xYwedOnXCy8sLBwcHKleuzAcffEB4eHimnjchIYGffvqJLl26UKZMGRwcHPDy8qJdu3bpNik97fw11wclpf9Lev9SrgSkSEpK4pdffqFJkyYUKlQIZ2dn6tWrx08//WT2vFIUhZ9++okaNWrg6OhIiRIlGDNmTKZfB3PmzJkDwGuvvcbgwYNJTExkwYIFZuseOHAAgLFjx5rt51OsWDGee+65DPel1+sZP348zz//PKdPn+bQoUNZjlmn09GzZ09Wr14NGK8Y379/P8vPI3KHNPEIs+bPn09iYiKvvPIKNWvWzLCug4ODyf1JkyYxbdo0fHx86NevH66urmzevJlJkyaxdetWtm3bhr29vck2CQkJtG3bltDQUDp06EChQoUoV65cph7fsmULPXr0IDExkeeff56KFSty584d/vzzTzZu3MjOnTtNPuwePXpEmzZtOHXqFFWqVGHIkCHY29tz7do15s+fT48ePShatCiTJ09m3bp1nDp1inHjxuHh4QGg/g/GL9zWrVtz8+ZN/Pz86NSpE9HR0fz999906tSJ3377jeHDh6v14+Pj8ff358iRI9SpU4dXX32VsLAwvvjiC3bv3p2l9yg7/v33X8CY2Dypc+fOJnUyu80XX3zBv//+y2effQagNlUcO3aM5s2bA6hNgCnJ1D///MPcuXPZsGED7u7uz3xc5iiKAqB+Af7222+MHDkSFxcXevfuTZEiRdi1axdffvklGzZsYP/+/SbvrTmhoaGMGzeOZs2a0b59ewoXLsz9+/fZsGEDXbp0Yc6cOQwbNizNdk87v580ePDgNEkIwN69e/n3339xdnZWy1LO+61bt1KlShX69euHo6MjO3fuZOzYsRw6dIjFixebPM/48eP54YcfKFasGK+//jp2dnb89ddfHDp0iISEhDR/n0+TkJDAwoULcXd356WXXiI2NpYJEybw+++/895776VJQry9vQG4fPkydevWzdK+Tpw4wbFjx2jfvj2lSpVi8ODBrFmzhtmzZ6f7Q+pp2rRpQ4sWLdi3bx9//vkno0ePztbziBym9SUcYZnatm2rAMqcOXOytN2BAwfUZqH79++r5YmJiUq3bt0UQJk6darJNmXKlFEAxd/fX4mKikrznBk9Hhoaqnh4eCje3t7KuXPnTB47c+aM4uLiotSrV8+kvG/fvgqgvPHGG0pycrLJY5GRkUpYWJh6/2lNPK1atVJ0Op2ybNkyk/JHjx4pderUURwdHU0uc6c0m/Xo0cNk39evX1c8PT2z3MSTWmaaeHx8fBRACQ4ONvu4i4uLAqjNIlFRUQqguLq6mq0fFBSkAEqRIkXUssjISKVkyZKKj4+PMn78eKVXr17qMac8XrZsWeXVV1/N1nGmyKiJZ+7cuWoTT0xMjHLz5k3F3t5ecXNzUy5cuGBSd+TIkQqgDB8+3KTcXBNPXFyccvv27TT7CwsLU2rUqKF4enoqMTExJo897fxOaYLYuXNnhsd76tQpxc3NTfHx8VGuXr2aZvsxY8YoSUlJanlSUpIyZMgQBVDWrVunlqdusgsJCVHLY2NjlSZNmqT7mmZk2bJlCqC8/vrralnPnj0VQPnnn3/S1P/xxx8VQHFzc1PeffddZfv27emek08aMWKEAih//PGHoijGzxZfX1/FxcVFCQ8PT1M/oyae1D766CMFUAYOHJipOETukwRFmFWtWjUFUDZv3pyl7YYNG6YAym+//ZbmsUuXLil6vV4pV66cSXnKB/jJkyfNPmdGj8+YMUMBlJ9++snstuPHj1cANXl58OCBotfrlWLFipn9snhSRgnKyZMnFUDp1auX2W3XrVunAMrPP/+sllWsWFHR6/UmXzApUj5IczNBsbOzUwAlMTHR7OPFixdXAOXevXuKoijK3bt3FUApUaKE2foJCQkKoNjb25uUX7x4UenUqZPi4eGhFC9eXHnjjTfUL4/Ro0crRYsWVYKDg5WAgAClW7duiqOjo+Lq6qoMGDDA7JeMOSkJiru7uzJ58mRl8uTJyvvvv6907txZARRAmTlzpqIoijJlyhQFUCZOnJjmeUJDQxU3NzfF0dFRiYuLU8uz2gfl22+/TdP3RlGefn5nJkG5e/euUrJkScXR0VHZv3+/Wp6cnKx4eXkpvr6+Zt/TR48eKTqdTundu7dalvI3Om/evDT1d+7cma0EJeUHTer+Sxs2bFAA5eWXX05T32AwKBMnTlQcHR3V9wpQypYtqwwbNizd1yoqKkpxc3NT3N3dldjYWLV8woQJCqD88ssvabbJbIIya9YsBVA6d+6cyaMWuU2aeESOOn78OABt27ZN81jlypUpWbIkN27cIDw83OTSvqOjI7Vr1073edN7/L///gPg1KlTJn1SUly+fBmACxcuUL16dY4cOYLBYKBly5a4uLhk6djS23d4eLjZfQcFBan7BmPfk6tXr1KqVCkqVKiQpn7r1q3VZhJrV6VKFbN9Mvbu3csvv/zCypUr8fLyon379jx8+JA//viDqKgoxo4dS2xsbJrRPhkJDw9XXzcbGxu8vLzo3LkzY8aMoUuXLkDG56Wnpyf16tVjz549XLx4kTp16mS4v3PnzvH111+zZ88e7t+/T1xcnMnj5oasPu38zkhUVBTdunXj7t27LFu2jGbNmqmPXb58mdDQUCpVqsSUKVPMbu/k5KSeg/D4tWjVqlWaui1atMDGxiZL8V29epWdO3dSpUoVmjZtqpZ36tQJX19f1q1bR3BwMD4+PupjOp2O//3vf7z33nts3bqVgwcPcvz4cQ4dOsTvv//O/PnzmTVrlknzKMDy5cuJjIxkxIgRODo6quWDBw/m22+/Zc6cOYwcOTJL8adQnmgSFNqTBEWYVaxYMS5cuJDl+QFSOtkVK1Ys3ee9desWYWFhJglKkSJFMvxgSO/xkJAQ4HEHvfSkzLGRMl9CiRIlMqyfGSn73r59O9u3b3/qvlNem6JFi5qt5+vr+8wxPY27uzvBwcGEh4er/QBSS4kx5b1J+T+9zpMp5U/ruwEQGxvL0KFD6dGjB7169WL79u2cOHGCxYsX89JLLwHGztmffPIJ165dM5vEmVOmTJmnzlOTmfMSyHA+DYCDBw/Stm1bkpKS8Pf3p3v37hQqVAi9Xs/Jkyf566+/zHYEf9r5nZ7k5GT69OnDiRMnmDZtGn369DF5POUcvHLlSobJbeo5ZjI6D21tbU0SicyYM2cOiqKkmWDQ1taWV199lW+//ZYFCxbwzjvvpNnWw8ODPn36qMcVHR3N9OnTmTJlCmPHjqV79+4mcc6ePRsgzb5q1qxJ/fr1OXbsGEePHqVBgwZZOgYwDn0GKFy4cJa3FblDRvEIs1q0aAEYRz1kRcoXWmBgoNnHU3rIP9kx8mkf3uk9nvI8p06dQjE2WZr9N2jQIODxF2lOTMyUsu+ZM2dmuO+UES4p9VNGCT0pvdcsJ1WpUgV4fGUptfv37xMdHU3JkiXVTpguLi6UKFGCqKgos6Mbrly5Ahivjj3Nxx9/TEhICD///DPw+MpS6g7M9evXB+D8+fNZOaynyu55+aQpU6YQGxvLtm3b2Lx5MzNmzODzzz/n008/zbCDZnZ/lY8dO5ZNmzYxfPhws3N0pMT70ksvZXgO3rhxI8025s7DpKQkgoODMx1f6pE6EydOTDPaKGWE1tN+QKRwcXHhiy++oEWLFsTHx7N//371sdOnT3P48GEAmjZtmmZfx44dAx4nMVm1c+dOgGx3tBU5TxIUYdZrr72GnZ0da9aseeqXRepfjCkTK5mbtvvq1avcuXOHcuXKZeoXd2Y0adIEMDYdZEajRo3Q6/Xs2bOH6Ojop9ZPudydnJz8zPt2c3OjYsWK3L171+yEankx1XlKE4e5oeEpTTJPNoNkZ5snHT58mBkzZjBz5sw0v9xTnz9PNpfklIzOy7CwME6ePImjoyPVqlXL8HmuXr2Kl5eX2RE2OT0K69tvv2XWrFl06NCBX375xWydqlWr4uHhwcGDB0lMTMzU86YkhObi3bdvn9lzPT1//fUXDx8+pEqVKgwdOtTsv/Lly3P58uUsvT5ubm7A42YXeJx4tG7dOt19OTk5sWzZsizPSvzvv/+yf/9+nJyc1Kt5wgLkXXcXYW1SRpyULVtWOXLkiNk6mzdvVtq0aaPeTxkhULZsWeXhw4dqeVJSkvLCCy8ogDJlyhST53jaxFAZPR4cHKx4eHgohQsXVg4dOpTm8eTk5DSdD/v165fpUTzvvvuuAij//vuv2f37+fkper1emTt3rtnHT58+bTI5Wcpr2rNnT01G8Vy/fj3XJ2p7Unx8vFK9enWla9euJuXbt29XAOWzzz5Ty1ImdDPXifhJGY3iMVfXzs5OcXd3V65cuWLy2JgxYxRAGTZsmEm5uU6yHTt2VADl1KlTJuW///672tFz/vz5Jo897fw210l2zZo1il6vV2rVqvXUTsMff/yxej4/OYJIUYyTnqUe4bZv374cG8XTvn17BVBWrFiRbp2U16Zfv35q2VdffaWcPXvWbP29e/cqjo6Oiq2trXL37l1FURQlJiZG8fDwUGxsbNQyc/r3768AyuzZs9Wyp03UtmbNGnWitq+++upphyzykCQoIkOfffaZotfrFUBp1qyZ8uabbyqTJk1Shg4dqlSqVEkBlAYNGphs895776lDT0eNGqW8++67Ss2aNRVAadGihRIfH29S/1kSFEVRlH/++Udxc3NTdDqd0q5dO2XcuHHK+PHjlZ49eyrFixdXHBwcTOqHhoYqtWvXVgClatWqyrhx45R3331X6dWrl+Lm5mbyRbFlyxb1w/y9995TvvjiC+XHH39UH799+7b6OtSpU0d5/fXXlffee0/p16+fesz//fefWj8uLk5p2LChWv+9995TXn/9dcXDw0Pp3r17lhOUOXPmKIMGDVIGDRqkNG/eXAGU2rVrq2XmZsb84YcfFEDx9vZWRo0apYwfP14pWbKkAigTJkwwu5+3335bAZSSJUsq48ePV0aNGqV4e3srgMnrYc6HH36ouLu7K3fu3DEpNxgMSv369RUbGxtlyJAhyssvv6wAJiNOMpKVBEVRFOXnn39Wh7YOHTpU+eCDD5SmTZuq50HqL2tFMZ+gbN682eQ53n77baVly5aKXq9Xh1PnRILi5OSk8P8zraaMUEr9L/U+EhIS1HOnRIkSyoABA5QPPvhAGTJkiJpAP3kejB07VgGUYsWKKWPHjlXefvttpUKFCkqDBg2UYsWKZeo1vX79uqLT6RQfH580f9OpRUZGKq6uroqDg4P6GtepU0d93QcPHqxMnDhRefPNNxV/f39Fp9MpgPLtt9+qz5GSfD///PMZxrRr1640n0kpr2+rVq3U1++9995T+vfvr5QrV04BFAcHB+XLL7986jGLvCUJiniq8+fPK2PGjFFq1KihuLm5KXZ2doqvr6/SqVMn5ffffzcZmpli2bJlSvPmzdUPpurVqytTpkwxGRqY4lkTFEUxflmNHj1aqVixouLg4KC4ubkpVapUUfr376+sXbs2Tf2oqChlypQpSq1atRQnJyfF1dVVqVatmjJu3DiTKx6KYhw+WrVqVcXe3t7sF2JERIQydepU5bnnnlNcXFwUR0dHpWzZskqXLl2U3377Lc1w5vDwcOWtt95Sk6cqVaoo33zzjXLt2rUsJygpw6DT+9eqVSuz261fv15p2bKl4urqqjg7OysNGjRQFixYkOG+5s+frzRo0EBxdnZWXF1dlZYtWyobNmzIcJsTJ04otra26c6nc/v2beWFF15QXFxcFHd3d2XQoEFZHmaclSGxW7duVdq3b694eHgo9vb2SoUKFZR3331XefToUZq66Q0z3rBhg9K4cWPF1dVVcXd3V9q3b6/s3r1b/RLNiQQlo/fU3PtqMBiURYsWKW3btlU8PT0VOzs7pXjx4krz5s2VqVOnKrdu3UpT/8cff1TP62LFiimjRo1SwsLCMj3V/aRJkxRAeeutt55ad/jw4QqgfPfdd4qiKMrx48eVL774QmnTpo1StmxZxdHRUXFwcFDKly+v9OvXT9m7d6/J9s2aNVMA5a+//nrqvipXrqwAyokTJxRFefz6pvzT6XSKq6urUrp0aaVz587K9OnT0yTPwjLoFCVVI58QQgghhAWQTrJCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDhZXosnJiaG5cuXc/78eS5cuEBkZCQTJ06kc+fOmX6Oo0ePsnjxYi5fvozBYKBUqVL07dsXf3//rIYjhBBCiHwoywlKeHg4CxYsoGjRolSsWJETJ05kaftNmzbx5Zdf0qBBA4YPH46NjQ23bt3i4cOHmX6OuLg4AgICKFOmjMmKlkIIIYTIH7KcoHh7e7N27Vq8vb25ePEir7/+eqa3vX//Pt9//z09evRg3LhxWd21KiAggOHDhzNnzhx18TMhhBBC5B9Z7oNib29vdpn2zPjrr78wGAwMHToUMDYXyTxxQgghhHhSlq+gPItjx45RunRpDh48yKxZswgKCsLNzY2XXnqJIUOGoNdLn10hhBBC5HGCcufOHfR6PdOnT6dv375UqFCBPXv2sGjRIpKTkxkxYoTZ7YKDgwkJCVHvBwQE5FXIQgghhNBAniYosbGxGAwGRowYwauvvgpA69atiYyMZPXq1QwYMABnZ+c0261fv54FCxbkZahCCCGE0FCeJigODg7ExsbSrl07k3J/f38OHTrE5cuXqVu3bprtunfvTvPmzdX7AQEBTJkyJbfDFUIIIYRG8jRB8fb25s6dO3h6epqUp9yPjIw0u52Pjw8+Pj65Hp8QQgghLEOe9kpNGRIcHBxsUp5y38PDIy/DEUIIIYSFyrUEJTg4mICAAJKSktSytm3bArBx40a1zGAwsHnzZgoVKiRzmgghhBACyGYTz5o1a4iKilJH1uzfv1+dCbZnz564uroye/ZstmzZwooVKyhWrBgALVq0oH79+ixZsoSwsDAqVqzI3r17OX36NO+88w729vY5dFhCCCGEsGbZSlBWrFhBYGCgen/Pnj3s2bMHgA4dOuDq6mp2O51Ox9SpU/n999/5999/2bJlC6VKleKjjz6iQ4cO2QlFCCGEEPmQTrHCqVwvXbokU90LIYQQ+ZhM3SqEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihAiU2IexXFs9RViHsVpHYoQogCQBEUIkSkxYfGc+PMqMWHxWocihCgAJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQggh8lhezcxszTNAS4IihBBC5LG8mpnZmmeAlgRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUISwYjGP4ji2+goxj+K0DkUIIXKUJChCWLGYsHhO/HmVmLB4rUMRQogcJQmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCIsi0/cLIUASFCGEhZHp+4UQIAmKEEIIISyQJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISxOlhOUmJgY5s2bxzvvvEPXrl1p2bIlmzdvztbOv/rqK1q2bMn777+fre2FEEIIkT9lOUEJDw9nwYIFBAQEULFixWzv+OLFi2zevBl7e/tsP4cQQggh8qcsJyje3t6sXbuWVatWMXLkyGztVFEUZs6cSceOHfHy8srWcwghhBAi/8pygmJvb4+3t/cz7XTr1q3cuHGD4cOHP9PzCCGEECJ/yvNOsjExMfz666/079//mRMdIYQQQuRPtnm9wwULFuDg4MDLL7+c6W2Cg4MJCQlR7wcEBORGaEIIIYSwEHmaoNy+fZvVq1fzySefZKlz7Pr161mwYEHuBSaEEEIIi5KnCcoPP/xAzZo1ad26dZa26969O82bN1fvBwQEMGXKlByOTgghhBCWIs8SlGPHjnHo0CGmTJnC/fv31fLk5GTi4+O5f/8+hQoVwsXFJc22Pj4++Pj45FWoQgghhNBYniUoDx8+BOCjjz5K81hQUBB9+vRhzJgxWeqbIoQQQoj8KdcSlODgYKKjoylRogS2trY899xzTJ06NU29r7/+Gl9fXwYMGED58uVzKxwhhBAiQzGP4riw4zbV/Evh7OmodTgFXrYSlDVr1hAVFaWOrNm/f796haRnz564uroye/ZstmzZwooVKyhWrBhFixalaNGiaZ7rxx9/xNPTEz8/v2c4DCGEEOLZxITFc+LPq5SpX0QSFAuQrQRlxYoVBAYGqvf37NnDnj17AOjQoQOurq45E50QQgghCqRsJSgrV658ap1JkyYxadKkHHkuIYQQQhQseT6TrBBCCCHE00iCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoOSAmEdxHFt9hZhHcVqHIoQQQuQLkqDkgJSx8zFh8VqHIoQQQuQLkqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihDiqQwGhaDr4QAEXQ/HYFA0jkgIkd/Zah2AEMKy3TgcyMFFF4gONS6GuX/uOU6uvUaTgdUo18hX4+iEEPmVXEERQqTrxuFAdsw4oSYnKaJD49gx4wQ3DgdqFJkQIr+TBEUIYZbBoHBw0YUM6xxcfEGae4QQuUISFCGEWYEXQ9NcOXlSdEgcgRdD8ygiIURBIn1QhBBpGBQDF+9d4rTLYSJtwkjWJeNgcMI7qTDF48vibHBR68aGxWsYqRD5V0R8BOcenuNG2A1iEmPQ6/T4uvpS2bsyFTwroNPptA4xV0mCIoQAQFEUdtzYwZLTS9h8dTMPox9CybT1dIqe0nEVqB/VnKbh/jh5OOR9sELkU/ci77Hg5ALWXVzHkXtH0q1XxKUInSp2YmDtgbQp1wa9Lv81iEiCIkQBpygKK8+t5LPdn3EhOOM+JwCKzkCA0xUCnK6wzmcRZy8PZHKxTyjnWS4PohXC+j05bN+rTCFuRQQweddklp1ZRqIh8anP8TD6IYtOLWLRqUVU86nGJ60+4eUaL+erREUSFCEKsDMPzjB8w3AO3T1kUu5i50Lrsq0pnVyeiP8M2Ci2xOijCLYL5IrzOe463ATAoDOw8NQC/jizlEl+k5jkNwl7G3sNjkQI6/DksP1d807y4daP2Oi2kgSDaXNprSK1aFaqGZW9K1PIoRBJhiTuRtzleOBx9gbsJTIhEoALwRfou6YvPxz6gdnPz6ZmkZp5fly5QRIUIQogRVH49r9v+fDfD0lITlDLW5RuwdhGY3mhygs42Bqbbm5UMf1ABYgqHMrVhkdYenchYXFhJBoS+Wz3Z6y5sIZVvVdR1adqnh+TEJYuZdh+inv2t/i92FfcdrwOBmOZl5MXI+qPYPhzwzO8KhmXFMffl/9mxsEZ7L+9H4D/7vxHvd/qMd1/Om83fdvq+6hIgiJEAROTGMNrf73GynMr1bJqPtX4ruN3dKzQMc2HWrlGvpRpUJRLO2+zf+45mg+tQZU2pdDrX2VK3KdM3zedbw58Q7KSzNmHZ2k4pyELXlhAz+o98/rQhLBYTw7bP+VyiDnFvyJeHwuAjWJL59ieLHr3VzydPZ76fI62jvSq3oue1Xqy/fp2xm4ey+WQyyQZknhn+zvsv72fRS8tyq3DyRP5p7FKCPFUgVGBtFrQSk1OdOh4p+k7HB9xnE4VO6X7i0uv11G4vDsAhcu7o9cb63k4ejC93XSOvn5UvawclRBFr1W9+OnwT3lwREJYh9TD9v/xWMfPJb5Qk5Ni8aWZFPA9L9weROzN5Cw9r06no0OFDpx64xTvNXtPLV97cS3+i/wJiQvJuYPIY5KgCFFA3I+8T5uFbTh67ygArvaurHtlHV93+BpHW8dneu66vnU5OPQg/Wr1U8vGbh7Lp7s+RVFkIjchUobjb/D+gxVFZ6PojG06DSL8+DBgBqXjK5jUyypHW0e+bP8lG/puwN3B+GPi8N3DdN7QgVDbIKtcQ0sSFCEKgHuR92i9sDUXgy8CUKpQKQ4MOUD3Kt1zbB8u9i4seWkJH/p9qJZ9tvszvtjzRY7tQwhr5eThwN9ey1jvs0Qt6xLSh+H338dBcTSp9yy6Ve7G3tf2UsShKAA3Yq/xbamJbF6wjxVv7rKq5SkkQREinwuLC6PD4g5cDrkMQBn3Mux5bQ+1itbK8X3pdDqmtJ3Cdx2+U8sm75oszT2iwFsRvoi/Ci9W7/d+OIyXggehT/U17OLtiG9Vr2fel2tAYd46P50iCcUBeGh/j+9LfsTDsCCrWkNLEhQh8rGE5AR6ruzJuaBzAJT1KMvuwbsp61E2V/f7VtO3+LbDt+r9sZvHmnTKFaIgWXdxHRO2TVDv9344jA6PeqSp12RANbV/V3aldMb1SSrK27f/h1diYQDuON7g5xKfk0Si1ayhJQmKEPmUoiiM+HsE/974FwAfZx+2D9hOGY8yebL/t5u+zaQWk9T7g9cN5sT9ExlsIUT+c/TeUfqt6YeCMSEYW+EtXtL1M6nj4u2I//h6lGvk+8z7S90Z1zupCG/dnopbkrFPyhXnc/xR9BeiQmKtYg0tSVCEyKdmHZ3FgpMLAGMHuvWvrKeiV8U8jWFK2ykMrjsYgNikWF5c8aJxCn0hCoCg6CBeXP4isUnG0Tr9avVj5qvf0ueH1jQfWgOA5kNr0Gdm6xxJTiBtJ1vfxJKMvfsZtgY7APZ6bGWnx99WsYaWJChC5EOH7x5m/Jbx6v2FLy6kaammeR6HTqfj166/0rhEYwBuhd+iz+o+JBuyNpRSCGuTbEim/9r+3I28C0DzUs2Z130eOp0u3WH7OcFcJ9tycZUZFDhevb+iyG+cSz6dY/vMLZKgCJHPhMaG0mtlL3U9j7ebvM3LNV7WLB4HWwf+7PMnxVyLAbDr5i6m75uuWTxC5IWpe6ey7do2AIq6FGVV71Xq7My5ybeqFy5eaacNaBLZho4hvQDjEhVvHnuDsLiwXI/nWUiCIkQ+M3rTaG5H3AaMU9dPb6d9MlDcrTjLey1XFzKbvGsy/93+T+OohMgdB24f4LPdnwGg1+lZ1nMZxdyK5cm+9XodTQZWM/vYS8GDqBhTHYCA8ABe3/C6Rc9TJAmKEPnI8rPLWX52OQCejp4s77kcOxs7jaMyalmmJR/5fQRAspJMvz/7ERkfqXFUQuSs6IRoBq0bhEExTsT2aatPaVOuTZ7GUK6RL/7j66W5klLI24X5XRbi6egJwKrzq1h0ynKnw5cERYh84l7kPUZtHKXen9V1FiUKldAworQ+bvUxzUs1B+Bm2E0m7piocURC5KyJOyZyNfQqAE1KNmGinzbneLlGvmY747Zo1YC53eeq9cZvHc/9yPuaxPg0kqAIkQ8oisKw9cN4FPcIgD41+tCnZh+No0rLVm/L4pcW42znDMDPR35mb8BejaMSImf8e+Nffjz8IwBOtk4sfHEhtnrt1uRNrzPuS9Veon/t/oBxIseRG0daZFOPJChCWCmDQSHoejgAiw8vZfPVzQAUcy3Gz11+1jK0DJXzLMfUtlPV+0PXDyU2MVbDiIR4drGJsQzfMFy9P73ddCp7V9YwoozN6DiDIi5FAPjr0l+sOLdC44jSkgRFCCt043AgK97cxf6554jRR/P5uY/Vx2Z1nYW3s7eG0T3d2EZjaVrSOOz5SugVtUOhENZq2r5pXH90HTD2txrTaIzGEWXM29mbX7r8ot4fu3ksobGWNXmbJChCWJkbhwPZMeOEOlvkOp9FhNsam3bqRjahdkRjLcPLFBu9DXO7z8Xexh6Ab//7lgtBFzSOSojsuRxymS/3fwmAnd6OX7v+qo5Ys2Q9q/ekV3Xj0OPgmGA+/vfjp2yRtyz/FRRCqFLW2Uhx0+Eyuzz+BsDe4MArD9+wmnU2qhWuxgfNPwAgyZDEuC3jLLIdXIiMKIrC6E2jSUhOAOCdZu9QrbD5Yb6WaEbHGbjYuQDw67FfLWo5CklQhMgFMY/iOLb6CjGP4nL0eVOvs2HAwB9Ff0HRGb/Uuwe/indSEaJD4qxinQ2A91u8T2n30gBsv76ddRfXaRuQEFm06vwq/rn+D2BcKfyjlh9pHFHWlChUgk9afQKAQTEwZvMYi/mhIAmKELkgJiyeE39eJSaH17tIvX7GEbc93HC6DECx+NL4P3rRbD1L5mznzHcdvlPvv73tbXXdkryQW4mkKBjikuJ4b/t76v0fOv+gjlCzJuObjFc79B64fYDFpxdrHJGRJChCWJGUdTYSdPH8WXi+Wv7yw+HYYpumnjXoUa0H/uX8AePcKL+c/ynP9p1biaQoGH449AMB4QEAdKjQge5VumscUfbY29jzY+cf1fsTd0wkOiFaw4iMJEERwoqkrLPxj+c6Qu2CAKgZVZ+aMfXVOi7ejvhW9dIqxCzT6XTM7DQTG50NAD+d+4FIm3CNoxIiY0HRQUzdaxwur9fp+ab9NxpH9GxSJ1j3Iu8x4+AMbQNCEhSzEpMTtQ5BCLP0eh0V+viwyXul8b6ip1fQMJM6TQZUy9HVUfNCjSI1GPac8TiiEiPZ6L1M44iEyNhnuz8jIj4CgNfqvkatorU0jujZfdnuS/WHwpf7v+Rh9ENN48lyghITE8O8efN455136Nq1Ky1btmTz5s2Z2vbYsWNMnz6dfv360b59e/r06cOXX35JcHBwlgPPDacfnKbHih68vFq7lV+FeJrFkbOJ1xv7abQM60yJhDKA8cqJ//h6lGvkq2V42Ta51WS1/X6XxyZuRt7UNiAh0nEl5Aq/Hv0VABc7F75o84XGEeWMqj5V1R8KkQmRfL77c03jyXKCEh4ezoIFCwgICKBixYpZ2vbXX3/lxIkT+Pn5MW7cOPz9/dm5cyfDhg0jJCQkq6HkqCRDEt3+6Mbai2tZd3EdR+8d1TQeIcwJCAvgt2O/Af//wdjR+AGSss6GtSYnAMXcivF2k7cBSNYlMe3EFI0jEsK8T3d/SrKSDMC7zd7Ns5WK88KnrT9Vhx3/duw3Lodc1iyWLCco3t7erF27llWrVjFy5MgsbTt69GiWLVvGyJEj6datG6+//jrTp08nNDSUP//8M6uh5ChbvS0TWzxe1GnyrskaRiOEeVP2TCHRYGyCHNd4HFWrVgBM19mwZu82fxdvB+MsuH/eXG1RczIIAXDu4TmWnTE2QXo7efN207c1jihn+br68m6zdwHjsOmg6CDNYslygmJvb4+3d/am0a5bty56vT5NWaFChQgICMjWc+akIfWGqHMybLqyiYN3DmockRCPXQ29yvyTxpE77g7uvNPsHY0jynmudm68XvzxFOGfaXyJWYgnfbr7UxSM84S83/x93BzcNI4o501oNoFfuvzC+dHnaV66uWZxaN5JNiYmhtjYWNzd3bUOBQdbBz7yezzJjlxFEZbks92fqZeVJzSdgKeTp8YR5ayU9YVKba2HR6LxR9Bfl9bx9/btGkcmhNHJwJOsPr8agKIuRRndaLTGEeUOV3tXRjYcqS5FoRXNE5RVq1aRmJhI27Zt060THBzMpUuX1H+5ebVlcN3BlPMoB8C2a9vYd2tfru1LiMw6H3SepaeXAsbLyuOajNM4opyVen0hO8WezqGPO6p/vHUyNw4HahidEEaf7PxEvT3Jb5JVTspmTWyfXiX3nDx5kgULFtCmTRvq16+fbr3169ezYMGCPInJzsaOj1t+zJD1QwDjCfnvoH/zZN9CpOfz3Z+bXFYu5FBI44hyzpPrCwH4hXdks9dKwuxCOOn2H8v/WM/7DYbni342wjoduXuEDZc3AFCyUEler/+6xhHlf5pdQQkICOCjjz6ifPnyvP/++xnW7d69O3PmzFH/ffRR7q51MKDOACp6GUco7by5k903d+fq/oTIyJWQK6w6vwqAws6F891l5dTrC6V48irKStsFVrO+kMif/rfvf+rtD/0+xNHWUcNoCgZNEpQHDx4wYcIEXFxc+PLLL3F2zvgymY+PD1WqVFH/lSlTJlfjs9Xb8knLx5fypu2blqv7EyIjX+3/CoNiAODtpm/nu8vK6a0b5BfeUe2LctLtP47dPpaXYQmhOh90Xl3IsrhbcV6r+5q2ARUQeZ6ghIeHM2HCBBITE/nmm2/w8fHJ6xAypW+tvpT1KAvA1mtbZbij0MSdiDssPLUQMI7cGdkga0P7rUF66wbZKfZ0Cu2t3v/97qy8CkkIE1/u/1K9PaHpBBxsrWetK2uWawlKcHAwAQEBJCUlqWWxsbG89957BAcH89VXX1GqVKnc2v0zs9XbqmPBAabvn65hNKKg+vbAt+q8J6MbjsbdUfvRbjktZX0hc/zCO+KW5AHA33fWc/3R9TyMTAjjApYpHdS9nLyk70keylaCsmbNGhYuXMimTZsA2L9/PwsXLmThwoVERUUBMHv2bAYMGEBQ0ONJXr744gsuXLhA69atCQgIYNu2beq/vXv35sDh5KzX6r5GEZciAKw+v5orIVc0jkgUJMExwcw+PhsAJ1unfDdyJ4Ver6PJwGpmH7NXHPB/ZFzAzKAY+O6/7/IyNCH45sA36vD+sY3G4mrvqnFEBUe2RvGsWLGCwMDHw/727NnDnj17AOjQoQOurubfwKtXrwKwadMmNblJ4evri5+fX3bCyTVOdk6MbzyeSf9OwqAY+PrA18x+frbWYYkC4odDPxCTGAPA8OeGq8lyflSukS/+4+txcNEFkw6zLt6OfNLnA7bvWUN0YjTzTsxjcqvJFHYprGG0oqB4EPWAuSfmAsalJcY2GqtxRAVLthKUlStXPrXOpEmTmDRpUpa3szSjGo5i+v7pRMRHsPDUQj5t/SnF3YprHZbI5yLjI/nx8I+AsbkxP84a+6RyjXwp06Aol3beZv/cczQfWoMqbUqh1+sYHjWcGYdmEJsUy0+Hf+KzNp9pHa4oAGYemklckjFhHlF/BN7O2ZtFXWSP5hO1WTp3R3dGNRgFQEJyAjMPztQ4IlEQzDsxj7C4MAAG1B5AKXfL7a+Vk/R6HYXLG/vZpF5f6K2mb2GrN/6e+unIT0QnRGsWoygYIuMj+eXILwDY6e3y3Zo71kASlEwY12ScOuXv7OOz5cNR5KpkQzIzDz1OhAvC1ZOnKe1emr41+wIQGhuqXnYXIrfMPzmf8PhwwPgjoUShEhpHVPBIgpIJvq6+6odjWFyYOuxTiNzw16W/uBF2A4COFTpSvXB1jSOyDKlH1X3737ckGZIyqC1E1hgMCkHXjQlJ4LVQkx8JbzV9S6uwCjRJUDLprSaPT9AZB2eoE2cJkdO+P/i9ejv1eVfQ1Spaiy6VugBwK/yWOnGWEM8qZaHK/XPPATBr5Tx1SHv78u2pWaSmluEVWJKgZFId3zq0KdsGgCuhV9h0ZdNTthAi647cPaIuUFm9cHU6VOigcUSWZXzj8ert1L9whciu1AtVpvjHc516u6/XIA2iEiAJSpak/jWb+leuEDnlyasnOp0sjpdau/Lt1Cavfbf2cfz+cY0jEtbM3EKVAQ5Xuex8FgDf+JLYb/HFYFC0CK/AkwQlC7pW7kolr0oA/HvjX04FntI4IpGf3Im4oy4K6OPsw6u1XtU4Isuj0+l4s9Gb6n25iiKehbmFKlNfPfF/9AKxIQmyUKVGJEHJAr1Oz7jGj2fznHFohnbBiHznp8M/qR0/RzYYiZOdk8YRWaYBdQbg6egJwPKzy3kQ9UDjiIS1enKhyjCbUI4UMk466pLsRtMIf7P1RN6QBCWLBtUdhIejBwB/nPmDh9EPtQ1I5AuxibHMOT4HAHsbe0Y1HKVxRJbL2c6Z4c8NB4xzE/169FeNIxLW6smFKnd5/E2yzvgjoWVYZxwUR7P1RN6QBCWLXO1dTT4c552Yp3FEIj9YfnY5obHGy8h9avTB19VX44gs26iGo9DrjB9fs47OIiE5QeOIhDVKvVBlEons9dgKgI1iQ5uwboBxuQXfql6axViQSYKSDW80eAMdxs6Lvx79lWRDssYRCWv3y9Ff1NujG47WMBLrUMajDC9VfQmAB9EPWHnO+pbRENpLvVDlcbcDRNg+AqBuZFM8k3wAaDKgmjqjschbkqBkQ3nP8nSu1BmAgPAA1hxbB0DQ9XDp7S2y7PDdwxy9dxSA54o9R6MSjTSOyDqk7g/20+GfNIxEWLOUhSr3+jyeOqJNWDdcvB3xH1+Pco3kaqZWJEHJptS/clN+/e6fe44Vb+7ixuHA9DYTIo2U9T7AeF7J0OLMaVG6BbWL1gbg0N1DnLh/QuOIhLWKKhPERfszABSLL8VrfV+hz8zWkpxoTBKUbKocWgefBOPJe87lGA/t7gEQHRrHjhknJEkRmRIcE8zys8sB8HT05JWar2gckfXQ6XSMbDBSvT/r6CwNoxHWLPW50zqsG0UqeEizjgWQBCUbDAaFI4sv0zqsi1q228N0ZtmDiy9Ic494qnkn5hGfbBzC+Frd13C2c9Y4Iuvyaq1XcbV3BYyj6sLjwjWOSFibiPgIFp9eDICzrYs6tFhoTxKUbEiZ3KdZRHtsDXYA7HPfRrzu8YQ/0SFxMrmPyFCyIdlkiOzIhiMzqC3McXNwY0DtAQBEJ0az5PQSjSMSuSHmURzHVl8h5lHc0ytn0eJTi4lKiALg5fJ9cDLIjwRLIQlKNqRM2uOW7E7DyJYAxNhEcdRtj9l6Qpiz5eoWk1WLK3pV1Dgi6/RGgzfU27OOzkJR5MplfhMTFs+JP68Sk8OfqYqimIygG1xlSI4+v3g2kqBkQ+pJe1LGygPs9PwbBcVsPSGeJEOLc0btorVpVqoZAOeCzqmLLQrxNHsC9nA+6Dxg7HRdw1NWLbYkkqBkQ+rJfcrGVaZMnPGXb4DjVQIcrgAyuY/IWEBYAJuvbAagtHtpulTq8pQtREZSd5b99ZjMLCsyJ3XnWPmRYHkkQcmG1JP76NDRKlVn2ZSZCGVyH5GReSfmqVfbhj83HBu9jcYRWbde1Xvh7eQNwOrzqwmKDtI4ImHpgqKD+PPCnwAUdi5Mj2o9NI5IPEkSlGxKmdzHxcuRhhGtcDAYF3Y7XGgXTcZUzrXx87nZWUzkjWRDMvNOGpdI0Ov0vFb3NY0jsn6Oto4MqWfsPyBLUIjMWHRqEYmGRAAG1x2MvY29xhGJJ0mC8gzKNfKlzw+t8R/SgEYRrQCI08dyyHFXru0ztzqLibyz5eoW7kTcAaBrpa6UKFRC44jyhxH1R6i35xyfI51lRboUReH3E7+r94c9N0zDaER6JEF5Rnq9jsLl3fEL76SWpaxKK4Q5qc+PlIUnxbOr4FWBduXbAXDt0TV2B+zWOCJhqfbf3s/F4IsAtCzTksrelTWOSJgjCUoOKRtXSe0BfujuIc48OKNxRMIS3Yu8x9+X/waguFtxdU0nkTOG1Xv8S/j3479nUFMUZPIjwTpIgpJDdOgYUGmQel+uoghz5p+YT7JiXP16SN0h2OptNY4of3mx6ot4ORlHz60+v5pHsY80jkhYmrC4MFadWwWAh6MHPav11DgikR5JUHJQr/K9cbI1dpZdfHoxsYmxGkckLIlBMTD3xFzAmNAOfW6oxhHlPw62DgysPRCA+OR4lp5ZqnFEwtIsPb2U2CTjZ/OA2gNwsnPSOCKRHklQcpC7vQe9a/QGjFn6mgtrNI5IWJId13eoM8d2qNCBsh5ltQ0on0qd+ElnWZGaoijSvGNFJEHJYalPeGnmEanJB2PeqFmkJk1KNgHg9IPTHLt/TOOIhKU4eu8opx6cAqBxicbUKlpL44hERiRByWHNSzWnmo9xErc9AXu4FHxJ44hECi3nkAmKDmLdxXUAFHEpwvNVns/zGAoS6SwrzJEfCdZFEpQcptPpTMbUy4ej5dByDpmFpxY+nhSqjkwKldv61OyDq70rAH+c+YPohGiNIxJai0qIYtnZZQC42rvSp2YfjSMSTyMJSi4YWGeg+gW08NRCEpITNI5IaElRFJNEVSaFyn2u9q70qWH8AopMiGTV+VUaRyS0tvzscqISogDoV7OfmsAKyyUJSi7wcfbhpaovARAUE6TOeyEKpoN3DnIpxNjU16pMKyp5V9I4ooJBrmSK1FIvfyA/EqyDJCi5JGVdEIAFJxdoF4jQ3PyT89Xbsu5O3mlcojE1CtcATGcOFQXPpeBL/HfnPwBqFalFg+INNI5IZIYkKLnEv5w/JQuVBGDTlU0ERgVqHJHQQkxSDCvOrQCMzQ69qvfSOKKCQ/qDiRQLTy1Ubw+uOxidTlaatwaSoOQSG72NOmFUspLMktNLNI5IaGHTrb+JiI8A4OXqL+Ni76JxRAVL/9r91f5gS04vITE5UeOIRF5LNiSz6NQiAGz1tvSv3V/jiERmSYKSiwbXHazenn9yvkwYVQAtu/p4JtPU54PIGz7OPnSv0h2AB9EP2HJ1i8YRibz2z/V/uBt5F4AulbpQxKWIxhGJzJIEJRdV8q5Ei9ItADgfdJ4j945oHJHISyG2D9gbuAeAil4V1XPBWjl7OFCvR0WcPRy0DiVLBtcZrN5ecGqBZnEIbaR+z1OfC8LySYKSy1J3ipx/Yn4GNUV+85/7DhSMV80G17H+dm9nT0fq96qEs6ej1qFkSceKHfF19QVgw6UNBMcEaxyRyCuPYh+x9sJawHg1rWvlrhpHJLJCEpRc1rt6b5ztnAFYdnaZLCBYQBgUAwcK/QMYFwYcWGegxhEVXLZ6WwbUHgBAoiGRP878oXFEIq+sOLeC+GTjxIyv1npVJki0MpKg5DI3Bzd6VzcuIBgeH65Ody7yt/8eHCDI3jhyq135dpRyL6VxRAXboDqD1Nsy7L/gSP1eSx8w6yMJSh4waeY5Kc08BcHya49/pcvcJ9qrUaQGDYs3BOBE4AlOBZ7SOCKR2y4EXeDQ3UMA1PWtS13futoGJLJMEpQ80LJMS8p7lgeMPcpvhd/SOCKRmyLiIvnrxjoA3GwK0b3yC9oGJADTRFGuouR/JldPLLBzrLV2Os9LkqDkAZ1Op/6BKCjqmHyR/9w4HMi7H35BrCEGgHohzVk/4RA3DstEfVp7peYrj+dEObNE1sjKx5IMSSw+vRgw9kHqV6ufxhGlZa2dzvOSJCh5ZFDdQegwjuJYcHKBzImSD904HMiOGSfYZbtZLWse3p7o0Dh2zDghSYrGPJ08ebHqiwAExwSz+crmjDcQVmvbtW3cj7oPwPOVn6ewS2GNIxLZIQlKHintXhr/8v4AXHt0jb239mockchJBoPCwUUXeGh3n8vOZwHwjS9Fubgqap2Diy9gMEhiqqXUzTzzTswn6Ho4AEHXw+W9yUekc2z+IAlKHpLOsvlX4MVQokPjOFBou1rWPKKdetUMIDokjsCLoVqEJ/5f+/LtKe5WHICNl/5m84L9AOyfe44Vb+6Sq1z5QGhsKH9d+guAIi5F6Fyxs8YRieySBCUPvVT1Jdwd3AFYdW4VUQlRGkckckpsWDwGDPznvgMAnaKnSbi/2XpCOzZ6G54v3AOAZF0yhwvtUh+Tprj8YdmZZWr/ov61+mNnY6dxRCK7JEHJQ052TrxS8xUAohOjWXVulcYRiZzi5OHARedThNoFAVAzuj4eyV5m6wntGAwKFY82UO/vL7Rdne03hTTFWbfUU9sPqjso/YrC4kmCksdMhjrKuiD5hm9VLw4V/le93zy8fZo6Lt6O+FZNm7SIvBN4MRSPoCKUj60KwB3HG9x2uG5SR5rirNfZh2c5eu8oAM8Ve47aRWtrHJF4FllOUGJiYpg3bx7vvPMOXbt2pWXLlmzenPne8JGRkXz99dc8//zzdOjQgXHjxnHp0qWshmG1GpVoRDWfagDsCdjDtdBrGkckckJEQjjHnI39GVyS3agd3ThNnSYDqqHXW/d6PNYupYmtWXg7teyA+/Z06wnrsvDkQvW2TJBo/bKcoISHh7NgwQICAgKoWLFilrY1GAy8//77/PPPP/To0YM33niDR48eMW7cOG7fvp3VUKySTqcz6VW+8NTC9CsLq7Hy3EriDXEANE/wx0553O7t4u2I//h6lGvkq1V44v+lNLE1jGyJncE4J8oht10kkWi2nrAeicmJ6twndno7+tbsq3FE4lllOUHx9vZm7dq1rFq1ipEjR2Zp2127dnH27FkmTpzIa6+9Ro8ePfjhhx/Q6/XMn19wRrX0r90fvc740i88tRCDYtA4IvGsUo/Kmjr2I5oPrQFA86E16DOztSQnFsK3qhcuXo44G1ypF9UUgCjbCE67HlbrSFOcddp6bSsPoh8A0L1Kd7ydvTWOyDJY84y1WU5Q7O3t8fbO3hu/e/duvLy8aNmypVrm4eFBmzZt2LdvHwkJBWNmx+JuxelUsRMAt8JvsfPGTo0jEs/iYvBFDt45CECtIrWoX/w5Cpc3jtYqXN5dmnUsiF6vo8lAYxNrs1T9hPanauaRpjjrlHruE2neecyaZ6zN006yly9fplKlSuj1prutVq0acXFxBaaZB0zXhpDOstbtyXZvnU6+3CxZuUa++I+vRwPHxngm+gBw1uUoiT4x0hRnpYJjgll/aT0ARV2K0rFiR40jEjkhTxOU0NBQs1dfUspCQkLMbhccHMylS5fUfwEBAbkaZ17oXqU7no6eAKw5v4bwuHCNIxLZkWxIZtFp49pKtnpbXq39qsYRicwo18iXvj/407tcHwAMOgPRfW5IcmKllp1ZRqLB2I9oQO0B2OptNY5I5IQ8TVDi4+Oxt7dPU55SFh9vvuf8+vXrGT58uPpvypQpuRpnXnCwdVAXsIpNimXVeZkTxRrtuLGDe5H3AOhSqQtFXIpoHJHILL1ex5AGj5sCFp5eKGtkWanUV6Flavv8I08TFAcHB7P9TFLKHBzMd+Lp3r07c+bMUf999NFHuRpnXkn9hyTLv1snS1/SXWSsQqGKVIypDhjn0Dh2/5jGEYmsOv3gNMfvHwegYfGG1ChSQ+OIRE7J0wTFy8vLbDNOSll6nW99fHyoUqWK+q9MmTK5GmdeqV+sPjWL1ARg/+39XA65rHFEIivC4sJYe3EtAN5O3nSt3FXjiER2NIt4PCeK/FCwPtI5Nv/K0wSlUqVKXLlyBYPBdFjthQsXcHR0pFSpUnkZjuZ0Op3Jr+7UnS2F5Vt5biVxSca5T/rV6oe9TdrmS2H5GkS2xMnGCYA/zvyhvqfC8iUmJ7Lk9BIA7G3s1aVERP6QawlKcHAwAQEBJCUlqWWtWrUiNDSUPXv2qGVhYWHs3LmTZs2ame2fkt/1r90fG50NAItOLyLZkKxxRCKzLGFJd2ue48BSOBmc6VbmeQAexT1iw6UNGkckMmvTlU0ExRjXv3qx6ot4OnlqHJHISdnq6rxmzRqioqLUppn9+/fz8OFDAHr27ImrqyuzZ89my5YtrFixgmLFigHQunVrVq9ezbRp07h58ybu7u6sW7cOg8HAkCFDcuiQrEtR16J0qdSFDZc3cCfiDjtu7KBDhQ5ahyWe4lLwJf678x9gnPuknm89TeJImeNAPJtXKrzKqusrAWOHy941emsckciM1J1jpXkn/8lWgrJixQoCAx8vSb5nzx71qkiHDh1wdXU1u52NjQ1fffUVv/zyC2vWrCE+Pp6qVasyceJESpcunZ1Q8oXBdQez4bLxV9uCkwskQbECqZcoGFx3sMx9YuVa+PpR2r00t8JvseXqFu5F3qO4W/Ece/6YR3Fc2HGbav6lrHLCLEsUFB3E35f/BoyTX7Yvn3aBTmHdspWgrFy58ql1Jk2axKRJk9KUu7m58f777/P+++9nZ9f5UrfK3fB28iYkNoS1F9cSFheGh6OH1mGJdCQbkll0yjj3iY3Ohldrydwn1k6v0zOoziC+2PMFBsXAktNLeK/5ezn2/DFh8Zz48ypl6heRBCWHLD2zlCSDsQvBgNoDsNHbaByRyGl52klWmGdvY69+ycUlxbHi7AqNIxIZ+ffGv9yNvAsY5z4p6lpU44hEThhUZ5B6e8HJBTInioWzhD5gIndJgmIhTOZEkanvLZpMCpU/VfCqQMsyxnXCLgRf4PDdw0/ZQmjlZOBJTj04BUCTkk2o6lNV44hEbpAExULUK1aPOkXrAHDwzkEuBF3QOCJhTnhcOH9e+BMALycvulaSuU/yE5M1smROFIslEyQWDJKgWJDUv8ZTd8IUlsNk7pOa/XCwleG9+UnvGr1xsXMBYNnZZcQmxmockXhSQnICS88sBcDBxoE+NftoHJHILZKgWJBXa72qLnK16NQitQOYsBzSvJO/udq70qt6LwDC48P569JfGkcknrTx8kaCY4IBeKnaSzKgIB+TBMWCFHYpTLfK3QC4H3Wf7de2axyRSO1yyGUO3D4AQM0iNXmu2HMaRyRyQ+r5NKSZx/LI3CcFhyQoFsakDVw6y1qU1EsRDK4jc5/kV35l/CjnUQ6Abde2cSfijsYRiRQPYx+y8fJGAEq4lcC/nL/GEYncJAmKhelSqQuFnQsDsO7iOkJjQzWOSMD/z31yOtXcJ7Vl7pP8KmVOFAAFhcWnFmsckUix5sZKkhXjciAD6wyUuU/yOUlQLIydjR39a/cHjJ3Blp9drnFEAmDnzZ3qL+nOlTrj6+qrcUQiNw2q+3hOlPkn58ucKBZAQWHZ1T/U+9IHLP+TBMUCpf7Dm39yvnaBCFXqvgipJ/QSOc8SFkAs61GWNmXbAHAl9Iq67pJ4LOZRHMdWXyHmUd6s/nzL4SoXws4D0KxUMyp7V86T/QrtSIJigWoXra12wDx67yhnH57VOKKCLfXcJ56Onjxf+XmNI8rfUhZA1HpKeOksm7GU6ftjwuLzZH/73f9Rb8vcJwWDJCgWKvUfYOrOmSLvrTq/itgk43wY/WrJ3CcFRY9qPXC1Ny58uvzscmISYzSOqGAyGBTuXn3I4UK7AHCydeLlGi9rG5TIE5KgWKh+tfphp7cDYPHpxSQmJ2ocUcE198Rc9bY07xQcLvYuvFzd+EUYmRDJ2gtrNY6o4LlxOJAVb+7i11ULiLaJBOC5qOaEnpYJ9AoCSVAslLezN92rdAfgQfQDtl7bqnFEBdP5oPMcvHMQgFpFatGgeAONIxJ56bV6j5t5pD9Y3rpxOJAdM04QHRrHfvfHc0I1CmrDjhknuHE4UMPoRF6QBMWCpW4Dlw9Hbcw9/vjqydB6Q2XukwKmeanmVPSqCBhXsQ4IC9A4ooLBYFA4uMi4HlmYTSjnXI4B4JVYmKoxtQE4uPgCBoOMrsrPJEGxYB0rdqSoS1EANlzawMOoIIKuhwMQdD1c/jhzWUJygjr3ib2NvTr8WxQcOp1O7Q+moLD4tMyJkhcCL4YSHWocHfSf+w4MOgMATSLaosc490l0SByBF2WeqPxMEhQLZqu3ZUDtAQAkGhJ579PP2T/3HAD7555jxZu75DJnLtpwacPjNT+qvoS3s7fGEQktDKgzAB3GK2cLTi6QOVHyQOz/jwxSUNjn/rh5u0V4B7P1RP4kCYqFSz0nyk67zSaPRYfG5VpbbF7PcWCJUneOHVpvqIaRCC2Vdi+Nf3njlOrXHl1j3619GkeU/zn9/xw4l53O8tD+HgBVo+tQOLGY2Xo5xRLm4BGPSYJi4ar5VKd8YhUAbjle47bD9TR1cqMtNq/nOLA0t8Nvs+XqFgDKuJdRv6BEwST9wfKWb1UvXLwc2ee+RS1rEd7RpI6LtyO+Vb1ydL+WMgePMJIExcIFXgylSejjL8cDhf5JU0faYnPegpMLUDAmfa/VfQ29Tv5UCrIXq75IIYdCAKw4t4KI+AiNI8rf9Hod1fsW55jbfgCck115LqqZSZ0mA6qh10un9fxMPnUtXGxYPI0iWmFrsAXgYKF/SdSlnRNF2mJzjkExMO/kPAB06EyGmoqCydnOmf61jJ2kYxJj+OPMH0/ZQjyr/fY7SNQnANA0oi12ij1gvHLiP74e5RrJelj5nSQoFs7JwwEXgxv1/v/XQ5RtBCdd064LktNtsQXZzhs7uRl2E4D2FdpT2r20tgEJizC8/nD19pzjczSMpGD4/fjv6u0xbUcB0HxoDfrMbC3JSQEhCYqFS2mL9QvvpJbtTdUuC7nTFluQpe4cO6zeMA0jEZakrm9ddaK+4/ePc/z+cY0jyr+O3z/OicATADQq0YgWtZoAULi8uzTrFCCSoFg4vV5Hk4HVqBJTmyIJxQG44HKSh3b31DrSFptzHsU+UhcG9HZ6PJuvEADDn0t1FeWYXEXJLamvnsgIuoJLEhQrUK6RL+3H18c/oZtattd9q7TF5oKlZ5YSn2zszzOg9gBZGFCY6FuzLy52LoDxXIlKiNI4ovwnJjGGpWeWAsa+P6/UfEXjiIRWJEGxEuUa+fLdJ59jqzMuIHjEdycvfddMkpMcpCiK6dwnz8kvN2HKzcFN/cKMTIhk5bmVGkeU/6w5v0YdJdWnRh919JQoeCRBsSK+bkXpUrorACGJwWy88rfGEeUvR+4d4WTgScDY7l2zSE1tAxIW6fX6r6u3pbNszvv9xOPmnWHPSR+wgkwSFCszsNJg9fbs47O1CyQf+vXor+rtN+q/oWEkwpI1LN6Q2kX/f8G6Owc58+CMxhHlH5eCL7EnYA8A1Xyq0bRkU40jElqSBMXK+BVrSeEEY7POtmvbuPHohsYR5Q+PYh+x/OxyANwd3OlTs4/GEQlLpdPpTDvLylWUHPPbsd/U28OeGyarhxdwkqDkgLxcv0Gv05sMOU7d211k3+LTi4lNigVgUJ1BONs5axyRsGSv1noVR1vjdOiLTy8mNjFW44isX2xiLAtOLgDAwcaBQXUGaRuQ0JwkKDkgr9dvaBbeDludcWbZeSfnkZicdmZZa6L1woSKopg074xoMEKTOIT18HTypHf13gCExYWx5sIajSOyfivOreBR3CMA+tTsI6uHC0lQrJF7shedSnUBIDAqkL8vW3dnWa0XJtx7ay8Xgi8A0LJMS6oXrq5JHMK6pO4smzrBFdmT+jUc2WCkhpEISyEJipUaWHmwejt1u63IullHZ6m3pXOsyKzmpZqryez+2/s5/eC0xhFZrxP3T3Do7iEA6hStQ+MSjTWOSFgCSVCsVKtirSnrURYwdpa9GnpV24Cs1MPoh6w5b7w87+PsQ49qPTSOSFgLnU7HqAaj1Ps/H/5Zw2isW+ofCSMbjJTOsQKQBMVq6XV69de+gsKsI7OesoUwZ/6J+SQajH14htQdIjPHiiwZUGcArvauACw5s4SwuDBtA7JC4XHh6syxrvau9KvVT+OIhKWQBMWKDX1uKA42xi/UeSfnEZ0QrXFE1sWgGEyax1L3KRAiMwo5FGJg7YGAcYr2RacWaRyR9VlyegkxiTGAcXkJNwc3jSMSlkISFCvm4+xD31p9AeNIgj/O/KFxRNZl+7Xt3AgzziPToUIHKnhV0DgiYY1GNXzczPPLkV9QFEXDaKyLoiimfcAaSB8w8ZgkKFZuTMMx6u2fjvwkH45Z8NORn9Tb0jlWZFeNIjVoVaYVAJdCLrHjxg5N49F62H5W7L21l3NB5wBoVqqZOkOvECAJitWrX7w+TUo2AeD0g9Psu7VP44isw9XQq2y8vBGA0u6leb7K8xpHJKzZ6Iaj1ds/H9G2s6zWw/az4odDP6i3ZWixeJIkKPlA6qsoWn84WiqDQSHoejgAQdfD+fHQjygYrzaNbjgaW72tluEJK/di1Rcp7lYcgPWX1nMr/JbGEVm+gLAA1l5cC4Cvqy8v13hZ44iEpZEEJR/oVb0XhZ0LA7DmwhruRd7TOCLLcuNwICve3MX+ucZLyTvmHWHOQeMSAU62TrJiqnhmdjZ2vP6csZO1QTHw21GZm+hpfjnyCwbFABivntjb2GsckbA0kqDkAw62DuoIlCRDErOPySrHKW4cDmTHjBNEhz5ujz/gvoNYvXHUwAvFeuDl5KVVeCIfeb3+6+qVuNnHZ8v6PBmITohWF1m0t7FnRH1ZXkKkJQlKPjGi/ghsdDaAccro+CTLb3/ObQaDwsFFF0zLMPCv53r1ft3TbTAYpGOxeHbF3Iqp6/MExwSz5PQSjSOyXEtOL1HX3Xml5isUdS2qcUTCEkmCkk+Uci/Fi1VfBOBB9AOWnV2mbUAWIPBiqMmVE4Dzzsd5YH8XgCrRtfF+WJzAi6FahCfyobebvq3e/v7g9zKqzgxFUfjh8OPOseMaj9MwGmHJJEHJR1J/OH7333cF/sMx1swohh2ef6m3/cO6p1tPiOxoULwBfqX9ALgQfIGt17ZqHJHl2XFjB+eDzgPQonQLniv2nMYRCUslCUo+0qxUM3XI8ZmHZ/jn+j8aR6QtJw/Taevv29/irOsxALwTi1AnqrHZekI8i7eavKXe/v7g9xpGYplmHpqp3n6z0ZsaRiIsnSQo+cyEphPU29/+962GkWjPt6oXLl6O6v2tnn+qt9s+6o4eG1y8HfGtKp1kRc7pXqU75T3LA8aFPM8+PKtxRJbjQtAF/r78NwClCpXipWovaRyRsGSSoOQzL1V9iXIe5QDYem1rgf5w1Ot1NBlYDYAwmxAOuv8LgFOyCy3DOgHQZEA19HpZOVXkHBu9jUm/ihkHZ2gXjIX55sA36u3xTcbL/EMiQ5Kg5DM2ehvGNxmv3v/uv++0C8YClGvki//4euwpvpFkXRIArcO64u3lhf/4epRr5Jsr+3X2cKBej4o4S/NRgfRa3ddwd3AHjCNWHsY+1Dgi7d2LvMfi04sB8HD0YPhzwzWOSFi6LCcoCQkJzJo1i5deeol27doxYsQIjhw5kqltjx49yrhx43j++efp0qULr7/+Olu3SieynDak3hA8HD0AWHpmKYFRgdoGpDHvOs7s9twEgK3Blg86v0Ofma1zLTkBcPZ0pH6vSjh7Oj69ssh33Bzc1C/g+OR4fr8ocxPNPDiTREMiAKMajJJVi8VTZTlBmTZtGitXrqR9+/a8+eab6PV63nvvPU6fPp3hdvv27WPChAkkJiYyePBghg0bhoODA1OnTmXlypXZPgCRlqu9qzrxUUJyAj8e+lHjiLQ159gcIuIjAGga4U/1qpWlWUfkunFNxmGntwNg7sXZxOijNY5IO+Fx4fx67FcAHGwcGNt4rMYRCWuQpQTl/Pnz7Nixg9dff51Ro0bRvXt3ZsyYga+vL7Nmzcpw2z///BNvb29mzJhBz5496dGjB99//z0lSpRg8+bNz3QQIq2xjcaqH44/HfmJsLgwbQPSSEJygjqSQoeODqE9NY5IFBQlC5VkYJ2BAEQkRrDbY6PGEWnnt2O/qT8SBtUZhK9r7l29FPlHlhKU3bt3Y2NjQ/fu3dUyBwcHunbtyrlz53jw4EG628bExODm5oa9/eP1FmxtbXF3d8fBQdrpc1qJQiUYVGcQABHxEfx8uGAuIrjszDLuRhonZutUqjO+iSU1jkgUJO83fx+9zvgxu91zLTFJMRpHlPfik+LVjsI6dExoNiHjDYT4f1lKUK5cuULJkiVxcXExKa9WzThS4urVq+luW7duXW7cuMHvv//OnTt3uHv3LgsXLuTSpUv07ds3G6GLp/mgxQfqh+P3B78nOqFgXWJONiQzff909f6YGjJjpTCV252ZK3lXUqe/j7QN54+rBW/6+8WnF3M/6j4AL1V7icrelTWOSFiLLCUoISEheHt7pylPKQsODk5320GDBtGmTRsWL15Mv3796Nu3L0uXLuXzzz+nVatWGe43ODiYS5cuqf8CAgKyEnaBVcGrAn1rGpO/kNiQAreI4Krzq7gYfBEAv9J+NCrSWOOIhKXJi87M7zf7QL0989QM4hILzszFicmJ/G/v/9T77zV7T8NohLXJ0iD0+Ph47Ozs0pSnNNvEx6f/h2dnZ0epUqVo3bo1LVu2JDk5mQ0bNjBlyhS+++47atSoke6269evZ8GCBVkJVfy/iS0msvTMUgC+PvA1IxuOxNE2/48sMSgGvtjzhXp/cqvJGkYjCqobhwO5uOgRtZwacsb1CIHx9xj/wSe83+etXB1FZikWn17MjbAbAHSo0IHGJeVHgsi8LF1BcXBwIDExMU15QkKC+nh6ZsyYwYEDB5g8eTL+/v506NCB77//Hm9vb3744Yd0twPo3r07c+bMUf999NFHWQm7QKtRpAYvVTXO1ng/6j4LTi7QNqA8svr8anW9j+almtO2XFuNIxIFzY3DgeyYcYLo0Di6hPRRy9c5LmXbjKPcOJy/h/8nJicyde9U9b78SBBZlaUExdvbm5CQkDTlKWU+Pj5mt0tMTGTjxo00bdoUvf7xLm1tbWncuDGXLl0ym/ik8PHxoUqVKuq/MmXKZCXsAu9Dvw/V2//b+z/ik/L3JWaDYuDz3Z+r9ye3moxOJ8OKRd4xGBQOLrqg3q8YV53KMbUAeGB/l0OFdnJw8QUMhvy7oOeS00u4/ug6AO3Lt6dZqWYaRySsTZYSlIoVK3Lnzh2io007W54/f1593Jzw8HCSk5NJTk5O81hycjIGgwGDwZCVUEQW1C9en66VugJwO+I2vx37TeOIctfaC2s5F3QOgCYlm9CufDuNIxIFTeDFUKJD40zKXgjur97e4P0H4SGRBF4MzevQ8kSSIUmunohnlqUEpXXr1iQnJ7N+/Xq1LCEhgU2bNlG9enWKFi0KwIMHD0w6snp6euLq6srevXtNrpTExMSwf/9+SpcuLUONc9mUtlPU21P3Ts23I3qSDcl8tvsz9b5cPRFaiA1Le5Wycmwtqkc/B0CwfSD73LeZrZcfLDm9hGuPrgHQrnw7mpdurnFEwhplKUGpXr06bdq0Yfbs2cyaNYv169czfvx4AgMDeeONN9R6U6dOZcCAAep9GxsbXnnlFW7fvs0bb7zBypUrWb58OSNGjCAoKIiBAwfm3BEJs+r61lWHOz6MfsgPhzLu92Ot/jjzB2cengGgcYnGdKzQUeOIREHklM6w5ReDH38ubvReDm7578pxXFIck3c9vmIiV09EdmV5qvtJkybRu3dvtm7dyg8//EBSUhJffvkldevWzXC7gQMH8vHHH2Nra8uCBQuYO3cuLi4ufP7553To0CG78Yss+LzN5+q8KF8d+CrfzS4bnxTPxzs/Vu9P858mV0+EJnyreuHilXa0XLm4KtSNbAJAmF0If0Xmv2U+Zh2Zxa3wWwB0qtiJFqVbaByRsFZZXuvawcGBUaNGMWrUqHTrpDcqp3379rRv3z6ruxQ5pKpPVQbWGciCkwsIiwvjmwPfmDT9WLtZR2cREG5sWuxYoSNtyrXROCJRUOn1OpoMrMaOGSfSPPZCyABOuR5C0SlM3z+d4fWH55uF88Liwpiy1/iZokPHdP/pT9lCiPRl+QqKsG6TW01W1+j5/uD33I24q3FEOSMiPsKkU940/2kaRiMElGvki//4emmupFRxrUbX4i8AEBQTxPR9+edL/Kv9XxEaa+z42792f+r41tE4ImHNJEEpYMp6lGVkg5EAxCTGMOnfSRpHlDO+2v8VwTHGmYz71uxLvWL1NI5ICGOS0ueH1jQfapyIsvnQGvSZ2ZoZvb7B3sY4weW3/31LQJj1z459N+KuuuaOvY09n7f5POMNhHgKSVAKoE9afYKnoycAi04t4ui9oxpH9GyuP7rONwe+AcBOb8cXbb54yhZC5B29Xkfh8u4AFC7vjl6vo4JXBd5s9CYA8cnxTNwxUcsQc8QHOz4gNikWgNENR1PWo6y2AQmrJwlKAeTt7G3Ss378lvEoivVOGPXOtneITzYO13yryVtU8KqgcURCPN2HLT/Ex9k4ueWys8s4eOegxhFl3/5b+1ly2rgQopeTl8nkkEJklyQoBdSohqOo4l0FgP2397Pq/CqNI8qeHdd3sPbiWgB8XX35qKUsgyCsg4ejB5+1fjxnz7gt40g2pJ3M0tIlG5IZu3msen9Kmyl4O6ddVFaIrJIEpYCys7Hjmw7fqPff2voWEfERGkaUdUmGJMZtGafen+4/Pd+MhhAFw+v1X6d64eoAHL57mDnH52gcUdYtvbqYE4HG0Up1itbh9fqvaxyRyC8kQSnAulbqSpdKXQC4F3mPj/41Xn0wGBSCrocDEHQ93GLXC/nuv+/UKe0bl2jMgDoDnrKFEJbFVm/Lz11+Vu9/8M8HBEZZzyKCkTbhTD3xuDPsD51/wEZvo2FEIj+RBKUA0+l0/NzlZ5xsnQD46fBPrNu2hRVv7mL/XOMX//6551jx5i6LW3n1SsgVdbZKvU7Pj51/VCehE8KatC7bmkF1BgEQHh/O21vf1jiizFte5DdC443DivvW7EvLMi01jkjkJ/KJXsCV9SirtoMrKIzbOYaIUNN1eqJD49gx44TFJCmKovD6368Tl2RcjG1c43E0LNFQ46iEyL6v23+Nl5MXYOwwu+3aNo0jerptd7ZwuNAuADwdPfm+4/faBiTyHUlQBOObjKdWEeNS8Lccr7HFy3yHWUtZHn7uibnsurkLMCZYMqxYWLvCLoX5qt1X6v2h64da9FIUEfERvHPw8ZWeGZ1mUNS1qIYRifxIEhSBnY0d/6v5DTrFeDps8FnKTYfLaepFh8Rpvjz8zbCbTNg2Qb3/W7ffcLF30TAiIXLGa/Vew7+cPwB3Iu6YjIyxNO9se4f7MfcAaFPcnwG1pf+XyHmSoAgAqtnUpHOocbXjZF0yc4t9S7wuLk09LZeHTzIk0f/P/upoo0F1BtGhgiw0KfIHvU7P/Bfm4+5gnNRtyeklrD6/WuOo0vrzwp/qaCMHgyPfNvleFuUUuUISFAEYl4d/PvhVysRVBCDQ4TZrCs8zW08r/9v7P/bf3g8Ym3ZmdpqpWSxC5IZS7qX4sfOP6v03/n7DotbLuh1+m2Hrh6n3+zwcQSnX0hpGJPIzSVAEYFwe3t3LlaH338XeYExCdnr+zRG3PWodF29HfKt6aRLf7pu7+Xy3cTijXqdnaY+luDu6axKLELmpf+3+9KzWE4CQ2BB6r+pNQnKCxlFBYnIi/df251HcIwA6+nSlRXgHi56KQFg3SVAE8Hh5+GIJpej98PEvpIW+M7hrb1zIrMmAauj1eX8p93b4bXqv6k2yYpxl8+OWH9OsVLM8j0OIvKDT6fit22+Udjdemfjvzn+8u+1djaOCCdsmsCfA+IPFJ7kInf8biA6dxU5FIKyfJChClbI8fBebHjQJbwtAvD6O30pNpeHo8pRr5JvnMcUlxdFjZQ+CYoIA6FChAx+3/DjP4xAiL3k7e7O692p1xeMfDv/AolOLNItn/on5/HjY2PRka7Bl2J33cTE8nrXZ0qYiEPmDJCjCRLlGvrzyQxt+7vQLJePKA3Df9g7jroxQ5x3JSRnNWptsSKb/n/3V1ZbLeZRjWc9lMlOlKBAalmho0h9l2Pph/Hvj3zyPY/fN3byx8Q31fr+Ho6gQV81s3dyaisDZw4F6PSrirGEfOJH3JEERaej1OkpX8mXUvQ/xcTSutro7YDcD1w7EoBhybD83DgemO2utoiiM2TSGNRfWAOBs58zaPmvVyayEKAiGPzecUQ1GAZBoSOSlFS9x5sGZPNv/ifsneH7Z82ofmNaPuuIX3ind+rk1FYGzpyP1e1XC2dMxx59bWC5JUES6CicWY2nbFTjbOQOw6vwqhq8fniMrrt44HMiOGSeIDjW9KhMdGsc/M44zZul4fj32K2Bcr2TNy2uo41vnmfcrhDXR6XTM7DyT5ys/DxgnSGu3uB1nH57N9X1fDL5Ip6WdiEyIBKCNjz99Ho546nZaTkUg8hdJUESGnvOpz8peK7HRGZtV5p2cx6B1g0gyJGX7OQ0GhYOLLph9TEFhReHZ/HLtB7Vs/gvz6VQx/V9tQuRntnpblvVcRqMSjQB4GP2QNgvbcCrwVK7t8/j94/jN9+Nh9EMAmpVqxhy/+dhi+9RttZyKQOQvkqBYGS3aYrtW7sqynsuw1Rs/nJaeWcqLy18kPC48W88XeDE0zZUTgERdIvN9v2eH119q2Y+df6R/7f7ZC1yIfMLF3oWt/beqSUpwTDCtFrRi69WtOb6vnTd20mZhG4JjggGo61uXv/v+TbmaJXHxyriJRcupCET+IwmKldGqLbZ3jd4mowo2XtlIk7lNuBySdkr8pzF3CfiRbTDflHqf/9z/AUCn6Jle/TvGNBrzbIELkU94OHqwrf82mpRsAhhXPu7yRxe+++87FOXZO6YqisJ3/31H+8Xt1dmaW5Ruwc5BO/F08lSnIsiIVlMRiPxJEhSRaS9UfYFN/Tbh6egJGNuon/vtOX4+/HOWOs+mvgSsoHDQbSeflh3FdaeLANgZ7Blx7wMG1BiYswcghJVzd3Rn+4DtvFj1RQAMioEJ2ybQaWkn7kTcyXBUXEZuhd+i89LOTNg2QZ1vqGulrmztvxUPRw+1XspUBE9eSXHxdsR/fD1NpiIQ+ZckKCJL/Mv7c2T4EWoWqQlAdGI0YzaPofHvjfnn+j+Z+iXnW9ULFy9Hrjte5JtSHzC3+NfE2EQB4JVYmPdvfUNLh3ZyqVgIM1ztXVnz8ho+8vtILdt2bRtVfqhC7w8G88/8IwCZmkAtIj6CyTsnU+OXGmy99ri56EO/D/nrlb/UDvKplWvkS58fWtN8aA0Amg+tQZ+ZrSU5ETnu6T2ehHhCBa8K/DfUOLtlykibo/eO0n5xe+oUrcOQekPoVLETlbwqpVlE7Fb4LbZc3cKvlWZzIuyYyWONIlrR98FIXA2FaDJSLhULkR69Ts8Xbb+geenmDF0/lHuR94hJjuFPl0VsrLCKxhGtqR/ZnEqParJjxgmTqxuxibHsv72fVedWsezsMnWUDkBxt+LMeX4OXSp1yXj/eh2FyxuXmihc3l3+VkWukARFZIurvSuzus2id43evL31bU49MI4oOPXgFOO2jAPA09GT8p7lcbJzIj4pnhthN9SOd6kVSShOr6Ah1Itqhou3I00GVJNfY0JkQqeKnTg94gyvfj6Mf5zWk6xLJl4fyx6Pzezx2IyNYoN3YlG+Xu9JkbOeBEYHEhAWQKIh0eR5bPW2jKg/giltp5g06QihJUlQxDNpW64tx0ccZ8XZFfxw+AcO3jmoPvYo7hHH7h9Ld9taRWoxuuEYmj7y5/D8yzQfWoMqbUrJrzEhsiA+QKHX7eG0tOvKNq8/OVjoX+L1xlFyybpkHtrf4yH3uHw77bYudi70q9WPD1p8QHnP8nkcuRAZkwRFPDO9Tk/fWn3pW6svZx+eZePljfx7818uBl80dtz7/w60JQuVpLJ3ZVqXaU3nSp2pX6w+Op2O4BvhwGW5VCxENqSMiiuSWJz+D8bQM2gIZ12Ocs75OAGOV3lof5cEvbGOq70rZT3K0qREE9qWa0u3yt1wc3DL6OmF0IwkKCJH1SxSk5pFavJ+i/cB43o6BsWAXqeXNXSEyAVPTozmZHCmYWRLGka2BIwj5RQMdJhUnzI1fNP0CxPCUskoHpGrbPQ22NnYSXIiRC5JGRWXHh063LxdKF1dkhNhXSRBEUIIKyYTqIn8ShIUIYSwcjKBmsiPpA+KEELkA+Ua+VKmQVEu7bzN/rnnZFScsHpyBUUIIfIJmUBN5CeSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyObVY3SEhIYO7cuWzbto3IyEgqVKjAsGHDaNiwYaa237FjB6tXr+batWvY2tpSpkwZhg0bRv369bMcvBBCCCHypywnKNOmTWPXrl307t2bkiVLsnnzZt577z1mzpxJ7dq1M9x23rx5LFy4kNatW9OpUyeSkpK4ceMGwcHB2T4AIYQQQuQ/WUpQzp8/z44dOxg5ciR9+/YFoGPHjgwePJhZs2Yxa9asdLc9d+4cCxcuZPTo0bz88svPFrUQQggh8rUs9UHZvXs3NjY2dO/eXS1zcHCga9eunDt3jgcPHqS77apVq/Dy8qJXr14oikJMTEz2oxZCCCFEvpalBOXKlSuULFkSFxcXk/Jq1aoBcPXq1XS3PXbsGFWrVmX16tV0796dTp068eKLL7JmzZpshC2EEEKI/CxLTTwhISF4e3unKU8pS68vSWRkJOHh4Zw9e5bjx48zePBgihYtyubNm5k5cya2tra88MIL6e43ODiYkJAQ9X5AQEBWwhZCCCGElclSghIfH4+dnV2acnt7e/Vxc1Kac8LDw5k8eTL+/v4AtG7dmsGDB7No0aIME5T169ezYMGCrIQqhBBCCCuWpQTFwcGBxMTENOUJCQnq4+ltB2Bra0vr1q3Vcr1eT9u2bZk3bx4PHjygaNGiZrfv3r07zZs3V+8HBAQwZcqUrIQuhBBCCCuSpQTF29uboKCgNOUpzS8+Pj5mtytUqBD29va4urpiY2Nj8pinpydgbAZKL0Hx8fFJ97mFEMLSOXs4UK9HRZw9zP+IE0KklaVOshUrVuTOnTtER0eblJ8/f1593OxO9HoqVapEeHh4miswKf1WPDw8shKKEEJYDWdPR+r3qoSzp6PWoQhhNbKUoLRu3Zrk5GTWr1+vliUkJLBp0yaqV6+uXgF58OBBmo6sbdq0ITk5mS1btqhl8fHxbN++nbJly8oVEiGEEEKostTEU716ddq0acPs2bMJCwujRIkSbNmyhcDAQN5//3213tSpUzl58iR79uxRy1544QU2btzI999/z+3btylatChbt27lwYMHTJs2LeeOSAghhBBWL8tT3U+aNElNLqKioihfvjxffvkldevWzXA7BwcHZsyYwaxZs9i0aRNxcXFUrFiRL7/8kkaNGmU3fiEyTfoBCCGE9chyguLg4MCoUaMYNWpUunV++OEHs+Wenp5MmjQpq7sUIkek9AMQQghh+bLUB0UIIYQQIi9IgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJijBL5gwRQgihpSzPgyIKBpkzRAghhJbkCooQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEJzMqRZCCHEk2SYsdCcDGkWQgjxJLmCIoQQQgiLIwmKEEIIISyOJChCCJGPSJ8ukV9IHxQhhMhHpE+XyC/kCooQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBAiy2RCOJHbZKI2IYQQWSYTwoncJldQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWx1TqA7IiPjwcgICBA40iEEEIIkVVlypTB0dExwzpWmaAEBgYCMGXKFI0jEUIIIURWzZkzhypVqmRYR6coipJH8eSYsLAwDh8+TLFixbC3t9c6nFwXEBDAlClT+OijjyhTpozW4eQpOfaCd+wF9bih4B57QT1uKLjHnm+voHh4eNChQwetw8hzZcqUeWrGmV/JsRe8Yy+oxw0F99gL6nFDwT729EgnWSGEEEJYHElQhBBCCGFxJEGxAt7e3gwePBhvb2+tQ8lzcuwF79gL6nFDwT32gnrcULCP/WmsspOsEEIIIfI3uYIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiWOVEbflRcHAwq1ev5sKFC1y8eJHY2FhmzpxJvXr10tR98803OXnyZJryRo0a8c0335iUJSQkMHfuXLZt20ZkZCQVKlRg2LBhNGzYMLcOJcuycuwAZ86c4ddff+Xy5cu4uLjQpk0bhg8fjrOzs0k9azh2czZv3sy0adPMPrZ27do0vf337dvH/PnzCQgIwMPDgy5dujBw4EBsba3rz9ta36+sOHHiBOPGjTP72KxZs6hRo4Z6P7PnuSWKiYlh+fLlnD9/ngsXLhAZGcnEiRPp3Llzmro3b97kp59+4syZM9ja2tK0aVPGjBmDh4eHST2DwcDy5ctZt24doaGhlCxZkv79+9OuXbs8Oqqny+xx/+9//2PLli1pti9dujRLliwxKbOG484t1vUJlo/dvn2bP/74g5IlS1K+fHnOnTuXYf3ChQszYsQIkzJzw9SmTZvGrl276N27NyVLlmTz5s289957zJw5k9q1a+foMWRXVo79ypUrvPXWW5QpU4YxY8bw8OFDVqxYwZ07d/j6669N6lrDsWdk6NChFCtWzKTM1dXV5P7Bgwf58MMPqVu3LuPGjeP69essWrSIR48eMWHChLwM95lZ+/uVFT179qRatWomZSVKlFBvZ+U8t0Th4eEsWLCAokWLUrFiRU6cOGG23sOHDxk7diyurq4MHz6c2NhYli9fzvXr1/ntt9+ws7NT686ZM4elS5fy/PPPU7VqVfbt28fnn3+OTqfD398/rw4tQ5k9bgB7e3vee+89kzIXF5c09azhuHONIixCdHS0Eh4eriiKouzcuVPx8/NTjh8/brbu2LFjlYEDBz71Oc+dO6f4+fkpf/zxh1oWFxenvPLKK8obb7yRM4HngKwc+zvvvKO8+OKLSlRUlFq2YcMGxc/PTzl06JBaZi3Hbs6mTZsUPz8/5cKFC0+tO2DAAOW1115TEhMT1bLZs2crLVu2VG7evJmbYeYoa36/suL48eOKn5+fsnPnzgzrZfY8t1Tx8fFKcHCwoiiKcuHCBcXPz0/ZtGlTmnrffvut0q5dOyUwMFAtO3LkiOLn56f89ddfatnDhw+VNm3aKN99951aZjAYlNGjRys9evRQkpKScvFoMi+zxz116lSlQ4cOT30+aznu3CJ9UCyEs7MzhQoVytI2SUlJxMTEpPv47t27sbGxoXv37mqZg4MDXbt25dy5czx48CDb8eakzB57dHQ0R48epUOHDia/NDp27IiTkxM7d+5Uy6zl2J8mJiaG5ORks4/dvHmTmzdv8vzzz5s057z00ksoisKuXbvyKMpnl1/er6yIiYkhKSkpTXlWznNLZW9vn6mJx3bv3k2zZs0oWrSoWtagQQNKlSplcpz79u0jKSmJl156SS3T6XS8+OKLBAUFPfWKc17J7HGnSE5OJjo6Ot3HreW4c4s08Vip27dv07FjRxITE/Hy8qJbt24MHjzY5IvqypUrlCxZMs1lw5RLy1evXjX5YLB0169fJzk5Oc2CWnZ2dlSqVIkrV66oZfnh2MeNG0dsbCx2dnY0bNiQ0aNHU6pUKfXxy5cvA6R5PXx8fChcuLDJ62Hp8sP7lRXTpk0jNjYWGxsbateuzciRI6latSqQtfPcmgUFBfHo0SOzC+RVq1aNgwcPqvevXLmCk5NTmtV+U86PK1euWF0zYFxcHJ07dyYuLg43Nzf8/f154403TPoY5cfjzgpJUKxQ8eLFqVevHuXLlycuLo5du3axaNEibt++zWeffabWCwkJMZvNp5QFBwfnWcw5ISQkBDDf18bb25tTp06Z1LXWY3dwcKBz587Uq1cPFxcXLl26xMqVKxk1ahS///67+kX9tNcj5XFrYM3vV1bY2trSqlUrmjRpgru7Ozdv3mTFihWMGTOGX375hcqVK2fpPLdmTzvOiIgIEhISsLe3JyQkBE9PT3Q6XZp6YH3nh7e3N3379qVy5cooisKhQ4dYt24d165dY+bMmeoPzfx23FklCUouMBgMJCYmZqquvb19mpPvaT744AOT+x07duTrr79mw4YNvPzyy+pIgPj4eJNOZqn3mfJ4TsvNY0+JN71jSkhIMKmb18duTnZej7Zt29K2bVu13M/Pj0aNGjF27FgWL17MO++8A6Aeb8oxPflcGTX/WRpLeb9yW61atahVq5Z6v0WLFrRu3ZrXXnuN2bNn880332TpPLdmTzvOlDr29vb57vx4coCDv78/pUqVYs6cOezevVvt/JrfjjurJEHJBadOnUp3KOGTFi9enObyXXb06dOHDRs2cPToUTVBcXBwMPvlmPIB5+Dg8Mz7fVJuHntKvOkdU+ovai2O3Zycej1q165N9erVOXbsmFqWcrzmvrASEhLy7BhzgqW8X1ooWbIkLVq0YM+ePSQnJ2fpPLdmTzvO1HUKwvnx8ssvM3fuXI4ePaomKAXhuDMiCUouKF26NBMnTsxU3ZxawbJIkSIAREZGmjx3UFBQmropl1Z9fHxyZN+p5eaxp9Q313QREhJicjxaHLs5Ofl6FClShFu3bqWpHxISkqZ/RkhISJphrJbMUt4vrRQpUoTExETi4uKydJ5bs6cdZ6FChdRkzNvbmxMnTqAoislV1/x0fjg4OFCoUCEiIiLUsoJw3BmRBCUXeHt7m52QKDfdu3cPwGRyo5Rx+NHR0SadD8+fP68+ntNy89jLlSuHjY0Nly5dMmkCSUxM5MqVK7Rp00Yt0+LYzcnJ1+PevXsm72+lSpUAuHTpEtWrV1fLg4ODCQoKMhkRY+ks5f3Syr1797C3t8fJySlL57k1K1y4MB4eHly6dCnNYxcuXDB5zytWrMjff/9NQEAAZcuWVcvz0/kRExNDeHh4ms/w/H7cGZFhxlYmOjo6zSV9RVFYtGgRgMmsm61btyY5OZn169erZQkJCWzatInq1atb3agIV1dXGjRowLZt20z6V2zdupXY2FiTD25rPvawsLA0Zf/99x+XLl2iUaNGalm5cuUoXbo0GzZsMBmKvG7dOnQ6Ha1atcqLcHOENb9fWWHuvb169Sr79++nYcOG6PX6LJ3n1q5Vq1YcOHDAZBj5sWPHuH37tslxtmjRAltbW9auXauWKYrCX3/9ReHChalZs2aexv0s4uPjzfYPW7hwIYqi0LhxY7UsPx13dsgVFAuycOFCwDi/BRg/kE6fPg3AoEGDAOPQ0s8++4x27dpRokQJ4uPj2bt3L2fOnOH55583GbJXvXp12rRpw+zZswkLC6NEiRJs2bKFwMBA3n///bw9uKfIzLEDDBs2jNGjRzN27Fi6d++uzrDZsGFDkz9sazr2J40cOZLKlStTpUoVXFxcuHz5Mps2baJIkSIMGDDApO6oUaOYOHEiEyZMwN/fn+vXr7N27Vq6detm8ovL0lnz+5UVkydPxsHBgZo1a+Lp6cnNmzfZsGEDjo6OJh0nM3ueW7I1a9YQFRWlNkfs37+fhw8fAsaZdF1dXenfvz+7du1i/Pjx9OrVi9jYWJYtW0b58uVNrjwWKVKE3r17s2zZMpKSkqhWrRp79+7l9OnTfPzxx9jY2GhyjOY87bgjIyMZOnQo7dq1o3Tp0gAcPnyYgwcP0rhxY1q0aKE+lzUdd27QKYqiaB2EMGrZsmW6j+3ZswcwXgr+7bffuHDhAqGhoej1esqUKUO3bt3o3r17mlEx8fHx6vomUVFRlC9fnmHDhpn8ErcEmTn2FKdPn1bXKHF2dqZNmzaMGDEizRol1nLsT5ozZw4HDx7k/v37ap+Epk2bMnjwYLy8vNLU37t3LwsWLCAgIAB3d3c6d+6cZk4ca2Ct71dWrF69mu3bt3P37l2io6Px8PCgfv36DB48mJIlS5rUzex5bqlefvllAgMDzT62YsUKdRmHGzdupFmLZ/To0WnOdYPBwB9//MH69esJCQmhZMmSvPrqq3To0CHXjyUrnnbcrq6uzJw5k3PnzhESEoLBYKBEiRK0b9+eV155Jc3frbUcd26QBEUIIYQQFkf6oAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoIgMbd68mZYtW7J582atQ8mUEydO0LJlS+bNm5dr+2jZsiVvvvlmrj1/QfHyyy/z8ssvax2GxZs3bx4tW7bkxIkTubqflStX0rZtW+7fv5+p+nnxt2bNvvjiC3r37k18fLzWoVgtSVDymenTp9OyZUu6deuWZlHB/MLavtjCw8P59ddfGThwIO3bt6d9+/b07t2b8ePHM3/+fEJDQ/Mkjqclm2+++WaGSw4UJLGxsXTq1ImWLVvy3XffaR1OrouMjGTRokV06dJFnYJePJvBgwcTHBzMqlWrtA7FalnXYh0iQzExMezcuROdTkdERAR79+7F39//mZ7Tz8+P6tWr4+3tnUNRFiwPHz5k1KhRPHz4kEqVKtG5c2fc3NwICQnh7NmzzJ8/n1q1apldYye/+/7777UOIV07d+4kJiYGnU7HP//8w+jRo3FwcNA6rFyzcuVKIiIi6Nu3r9ah5BulSpWiefPm/PHHH/Ts2RMnJyetQ7I6kqDkI//++y+xsbG8/PLLrF69mo0bNz5zguLq6oqrq2sORVjwzJs3j4cPHzJ06FCTVZlTXLt2rcC+viVKlNA6hHRt3LgRGxsbevTowapVq9izZw/t27fXOqxckZSUxN9//02tWrUs+j2xRh06dGDPnj3s2LGDbt26aR2O1ZEEJR9J+VDt168f165d4/jx4wQGBuLr62tSb968eSxYsCDd5/H19WXlypWAsVlg2rRpTJw40WT585YtW1K3bl0+/vhjZs2axZEjR0hISKBOnTqMHz+e4sWLc/PmTWbPns2pU6dISkqiUaNGvPXWWyZXC06cOMG4ceMYPHgwQ4YMMYnj/v379OnTh06dOjFp0iT1fuoYUpjb/uLFi8yePZtz586h1+t57rnnGDNmTJpL2Hv27GHnzp1cvHiR4OBgbG1tqVChAr169aJ169YZv+hPce7cOQB69Ohh9vEKFSqYLb937x5Lly7lyJEjhISE4OLiQtmyZencubP6PiQmJrJ+/XoOHDjAzZs3CQsLw8XFhVq1ajFo0CAqV66sPt///vc/tmzZAsC0adOYNm2ayfGnfi1T30557VNcu3aNxYsXc/LkSSIiIvD29qZ58+a89tpruLu7q/VSv3f9+vVjzpw5nDp1ioiICHUl25RmupRzDR6fmzNnziQ4OJhly5Zx69YtXF1dadOmDW+88UaaKxlJSUksX76cv//+m+DgYAoXLkzXrl1p27Ytr7zySppjeJpbt25x5swZmjVrZpLsm0tQUp+/zZo1y9T5BrB7926WLFnCjRs3cHFxoXnz5owcOZKhQ4emeU0yktn3IyOHDx8mJCSEfv36mX08Pj6e+fPns337dsLDwylRogS9evVKs/pyavfu3WPx4sUcOXKER48e4ebmRqNGjRgyZEiazyPI2uuRci4vX76cPXv2sHHjRu7du4e/v7/6Pj969IglS5Zw4MABHj58iLOzM3Xq1GHIkCGUL18+zf6zUv/27dssWbKEEydOEBISgqOjI0WKFKFevXqMHTvWZEX5pk2b4ujoyJYtWyRByQZJUPKJmzdvcu7cOZo0aYKXlxcdO3bk2LFjbNq0Kc0Xd7169cw+R0BAADt37sz0pezIyEhGjx6Nt7c3HTt25M6dOxw4cIC3336b//3vf4wZM4YqVarQpUsXLl++zO7du4mIiGDmzJnZOkZXV1cGDx7M6tWrAejVq1e6x3Tx4kWWLVtGvXr16N69O1euXGHv3r1cv36dBQsWmBzj7NmzsbW1pVatWnh7exMWFsb+/fv55JNPGDduHD179sxWvID6JXH79m2qV6+eqW1Onz7N+++/T0xMDI0aNcLf35/IyEiuXLnC6tWr1QQlIiKCH3/8kdq1a9OkSRPc3Ny4f/8++/fv59ChQ/z4449Uq1YNMDbVRUVFsW/fPlq0aEHFihVN9jl48GC2bNlCYGAggwcPVssrVaqk3t63bx+ffvopOp2OFi1aUKRIEW7evMmff/7J4cOH+e2333BzczN53rt37zJy5EjKly9Pp06diIiIwM7O7qmvQcpzNm/enOeee45Dhw6xZs0awsPD+eSTT0zqfvnll2zdupXixYvz4osvkpiYyMqVKzl79mymXu8nbdy4EYCOHTtStGhR6taty4kTJ7h37x7Fixc3u01WzreNGzfy5Zdf4uLiQseOHXF1deXgwYO8/fbbJCUlYWubuY/l7Lwf5hw7dgyAGjVqpHnMYDAwceJEjh49Svny5WnXrh0RERH89NNP6X6OnD9/nnfeeYfY2FiaNWtGyZIlCQwMZPv27Rw6dIhZs2aZvI7ZfT1mzJjB+fPnadq0Kc2aNcPT0xMwnnNvvvkmQUFBNGzYkBYtWhAWFsbu3bs5cuQI33//vcnfYlbqBwcHM2LECOLi4mjatClt27YlLi6OO3fusG7dOkaNGmUSr52dHZUrV+bcuXPExsZKM09WKSJf+PHHHxU/Pz/ln3/+URRFUaKjo5UOHToovXr1UpKTk5+6fWhoqNK7d2/F399fOX36tFq+adMmxc/PT9m0aZNJfT8/P8XPz0/58ccfTcq//fZbxc/PT+ncubOycuVKtdxgMCjvvvuu4ufnp1y8eFEtP378uOLn56fMnTs3TUz37t1T/Pz8lKlTp5qU9+7dW+ndu7fZ40h5vtSvRYopU6aYLb97926a54mOjlYGDRqkdO7cWYmNjU1z7GPHjjW7/yetXr1a8fPzU7p3767MnTtXOX78uBIVFZVu/fj4eKVHjx5Kq1atlIMHD6Z5/MGDByZ1Hz58mKbO9evXlQ4dOihvvfWWSXl672WKsWPHKn5+fmYfCwsLUzp16qT06NFDuX//vslj//zzj+Ln56d8//33alnKe5fee6so5t/HuXPnqudPQECAWh4XF6f069dPadWqlRIUFKSWHz16VPHz81OGDBli8j4FBQUpL7zwgtnzJyOJiYnKCy+8oHTu3FmJi4tTFEVRNm7cqPj5+Slz5sxJUz+r51tERITSoUMHpUOHDsqtW7dM9jtu3DjFz88v3dfk+PHjallW34+MDB8+XGnVqpUSHx+f5rGUc+add95RkpKS1PKrV68qbdu2TfP+JiYmKr1791Y6duyoXLp0yeS5Tp06pbRu3Vp5//33n+n1mDp1quLn56f06NFDCQwMTBPzyJEjldatWyuHDh0yKb9165bSsWNHZdCgQdmun/L3nPqzLUV4eHiaMkV5/Nl87Ngxs4+L9MkonnwgKSmJbdu24eLiQosWLQBwdnbGz8+PBw8ecPTo0Qy3j4+PZ9KkSQQGBvLBBx9Qq1atTO3XycmJYcOGmZSl9Hlxd3c3ucKh0+nUx65du5bpY8uuOnXqpOl/06VLFwAuXLhgUm7uV7GzszOdO3cmKiqKixcvZjuOHj160LdvX6KioliwYAHjxo2jS5cuDBw4kF9//ZXg4GCT+vv27SMoKIj27dvTuHHjNM9XpEgR9ba9vT2FCxdOU6dcuXLUq1dPbVrLCVu3biU6OprXX389zSV6f39/KleuzI4dO9Js5+XlxYABA7K8v169elG6dGn1voODA/7+/hgMBi5duqSWb9u2DYBBgwbh6Oiolvv4+Jicf5n133//ERoaSps2bdSrHq1bt8bR0ZHNmzdjMBjMbpfZ823fvn3ExsbSpUsXSpUqpZbb2tqm+VvKSHbfD3OCgoJwdXXF3t4+zWMpzYLDhg3DxsZGLa9QoQIdOnRIU//AgQMEBgbSt29fkyZGgNq1a9O8eXMOHjxIdHQ08GyvR9++fSlatKhJ2eXLlzl79iwdO3akUaNGJo+VKlWKbt26cf36da5fv56t+inMXWUuVKiQ2ThTruwEBQVleDwiLWniyQf27dtHWFgYXbt2NfnD6dixI9u2bWPjxo1p/vhSKIrC//73P86dO8drr71Gu3btMr3fkiVLmnwpAOpon/Lly5u0xaZ+7Mkv5dxQpUqVNGUpX+ZRUVEm5Y8ePWLp0qUcPHiQBw8epJm34Fni1el0jBw5kr59+3Lw4EHOnz/PxYsXuXz5Mjdv3mT9+vV888036iXklC+zhg0bZur5r1y5wrJlyzh9+jShoaFpEpKwsDB8fHyyHX+KlL4058+f5+7du2keT0hIIDw8nLCwMDw8PNTyihUrZqpJ50lPfrnB4+Qs9ft39epVwPjl96SaNWtmeb9///03YPzbSeHs7EyLFi34559/OHz4ME2aNEmzXWbPt5Tk3Fy81atXN0kCMpLd98OciIgIs4luSrxOTk5mj6927dpqc9iTcd26dcvs/CihoaEYDAZu375N1apVn+n1SGm+TO38+fOA8W/a3P5v3bql/l++fPks10/pZ/T9999z7NgxGjduTN26ddNt+oPHiUt4eHi6dYR5kqDkA6nbzFOrX78+hQsXZv/+/URERJjN8H///Xd27txJu3bteO2117K0XxcXlzRlKR8oGT2WU7/qM+Ls7Jzu/lP/Co6IiOD111/nwYMH1KpViwYNGuDq6oper+fq1avs27ePxMTEZ47Hw8ODTp060alTJwBCQkKYMWMGu3fv5uuvv2b+/PkA6i/L9L4wUjtz5gxvvfUWAA0aNKBkyZLqce/bt4+rV6/mSOxg7G8EsHbt2gzrxcXFmdxP+fWYVRmdP6nfv5iYGPR6vdkOoVkduh0cHMzhw4cpXrx4mi/MTp068c8//7Bp0yazCUpmz7eU99fc65LecZiT3ffDHAcHh3TnTIqOjk73XDT3+qbEtX379kzF9Syvh7ltIiIiAOOVsP/++y/dbWNjY7NVv1ixYsyaNYv58+dz8OBBdu7cCUDp0qUZOnQobdq0SbNtyg+e/DxMPbdIgmLlHjx4wJEjRwAynN1027ZtaS55b968mcWLF1OrVi0++OCDXI0zPSlXWZKTk9M8lvLhlZs2btzIgwcPzA4DXrJkCfv27cuV/Xp7e/PRRx/x33//ce3aNcLDw3F3d1eHHGfmcvDixYtJSEjgp59+SvOFmvLLMKekfAEvWLDA7CiI9Dx5FS2nOTs7YzAYCA8PT3OlIKsT4G3evJnk5GTu3buX7oR1+/fvz9RVifSkJF6PHj1K81jKcWQmOc3u+2GOu7t7uuebi4tLur/8zb2+KXFNnz6dZs2aPXXfz/J6mDu3Up4vs53bs1ofjFeHv/jiC5KSkrh06RKHDh1i9erVfPrpp/j4+KRpIk9JgrJ7zhRk0gfFym3ZsgWDwUDt2rXp2rVrmn8pv9ifvBR78uRJvvnmG4oXL87UqVPNtj/nhZRRBuaaUa5cuWJ2G71ebzahyY6Uy+MpfXdSO336dI7sIz12dnZpLmGnXLZOSTozcu/ePQoVKpQmOYmLi+Py5ctp6uv1xj/39F67jB5PaYJKuYRvKVJGI505cybNY1kZxaMoCps2bQKgc+fOZv+WatasSWJiotrvJTtShpWbi/fChQuZPq9z8v0oX748CQkJPHjwIM1jFSpUIDY21qTfTwpzfx9ZjSunXo8UKX8/md1/VuunZmtrS40aNRgyZAjjxo1DURQOHDiQpt7t27cBnjmRLIgkQbFiKR+qOp2OSZMm8f7776f5N2nSJGrUqMG1a9fUzp63b9/mo48+wsHBgenTp2ua2ZcuXRpnZ2e1GSpFaGgoixYtMrtNoUKFCA8Pz5E1LlI6GD75Abl9+3YOHjz4zM+/fPlyAgICzD72559/EhsbS+nSpdVL2c2bN6dw4cJs376dw4cPp9km9S/dokWLEhkZyf+1d3chTb5vHMC/Ld3S0gzfNSzKItdoupwjtwpFoqRyIDvxRMuCKLE3JhVlOCjo7aBRdpDL0KUMrANxZelMi5azzYat9YJSUDKbSdnsxdzqdxAb2Z5ff6393eR3fQ7drbuf+3l8uO63637x4oXnZy6XC5WVlXj//r3X77qn+Ox2O2N9fvd5bm4uQkNDcfHixXHf5/blyxe/BC/u3CSXL18e9zwMDQ15tqNPhNlsRn9/P/h8Pg4ePMj4v+QeZfw12J8MiUSCkJAQaLXacWtHnE4nVCrVhP+OL+9HamoqAOZRN/e0cVVV1bhgoa+vjzFQk0gkiI2NhUajgdls9vrc6XSOC2x81R5uXC4XXC4XOp2OcZHwt2/fxtVrsuWfPXvGOLLrHk1i6uhZrVZERkaOWwRMJoameKax7u5u2Gy2/7lIKzc3F48fP4ZWq8WyZcugVCrx4cMHpKeno62tzav8nDlzpuysm+DgYOTn56O2thbbtm2DWCzG58+fce/ePaSmpjIuAExLS8PTp09RVlaGFStWICgoCHw+3/OinYx169ahrq4OZ8+excOHDxEbG4ve3l50d3djzZo1uHPnzl9d361bt1BZWYlFixaBy+Vi3rx5cDgcsFqteP78OTgcDvbv3+8pz2azUVFRAblcDrlcjoyMDCQnJ+Pjx4/o7e3F6Oio58Wdn5+PBw8eYNeuXcjKygKbzYbZbMbbt2+Rlpbmdbjc8uXLweFw0NDQAIfD4QlM3VNbAoEA7e3tOHLkCEQiEdhsNpKTkyEWixEREYGjR4+ivLwcW7duRUZGBpKSkjA2NoaBgQGYzWbweDycPn36r9prstLT05GTk4PW1lYUFRVBIpFgbGwMt2/fRkpKCvR6vWdk6HfcQYd75w2TpKQk8Hg8WCwWWK3WCee1+VlYWBhKSkpw6tQpbN++HdnZ2Zg9ezY6OzvBZrMRFRU1oWkxX94PiUSC8+fPw2g0eq2hcK+9MRgMKC4uhkgkgsPhgE6ng1Ao9BoxYLPZUCgUKCsrQ2lpKQQCgWfB/MDAAHp6ejB37lyo1WqftsfPysvLsWfPHlRUVKChoQFLliwBh8OB3W6HxWLB8PAwWltb/6j8zZs30djYCD6fj8TERISGhuLly5cwGAwIDw/3en76+/ths9kglUondQ3kBwpQpjH3S/XnDK9MsrOzoVQqodPpUFJS4ulpGo1Gxi3IcXFxU3oYX3FxMYKCgqDVatHY2Ii4uDgUFhYiMzMTHR0dXuULCwsxMjICvV6Pnp4euFwuFBUV/VGAEhMTA6VSiQsXLsBoNMLlcmHp0qU4c+YM7Hb7XwcoBw4cgF6vR3d3N7q6uvDu3TuwWCzExsZCKpVCJpN59ax4PB6qqqqgVqvR1dUFk8mEsLAwLFy4EHl5eZ5ymZmZUCgUUKvVaGlpAYfDgUAgwLFjxxgzBYeHh0OhUKC6uhpNTU2e58AdoGzcuBE2mw1tbW2oq6uDy+XC+vXrIRaLAfzIiqlSqVBfXw+TyQSj0YhZs2YhOjoaGzZsYNx2OhUOHTqEBQsW4Pr167h27Rqio6Mhk8kgEAig1+sZF7D+bGRkBB0dHQgJCcHatWt/WzY3NxcWiwVarfaPAhQA2LRpE8LCwlBbW4vm5mZP5tQdO3ZAJpNNON28r+5HfHw8hEIh2tvbsXv37nGjACwWC8ePH0d1dTVaW1tx9epVJCQkoKSkBPPnz2ec0khJScGlS5dQX1+Pzs5OWCwWBAcHIyoqCqtXr/baju2r9nBLSEiASqWCRqPB3bt3cePGDbBYLERGRoLP53tlh55M+ZycHHz9+hWPHj3CkydPMDY2hujoaOTl5TFue3aPMm3evHlS10B+mPH9+/fv/q4EIYT4WlNTE06ePIl9+/ZNix7s69evUVBQgKysLFRUVEzpd5tMJuzduxeHDx/2W6D5K3+2hy84nU4UFBQgPj7+j7Nn/9fRGhRCyLQ2NDSEX/tZg4ODqKmpwcyZM7Fq1So/1YyZw+Hw2tY7OjqKc+fOAfhxLMFUW7lyJUQiEWpqav41Gd3/SyC2hy80NzfjzZs32Llzp7+rMm3RFA8hZFq7cuUK7t+/Dz6fj4iICNjtduj1enz69AlbtmzxGnb3N7PZjBMnTkAoFCImJgbDw8Oegz0FAgGys7P9Uq/S0lK0tLRgcHBwStssUNvjb82YMQNyuZwxyR2ZGJriIYRMawaDARqNBn19fXA4HGCz2Vi8eDGkUinjCcT+9urVK6hUKlgsFs9uq8TERM/py/+1hF7UHuTfUIBCCCGEkIBDa1AIIYQQEnAoQCGEEEJIwKEAhRBCCCEBhwIUQgghhAQcClAIIYQQEnAoQCGEEEJIwKEAhRBCCCEBhwIUQgghhAQcClAIIYQQEnD+AayuE7rvZKNCAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 75.0 deg to 90.0 deg\n", - "Modulation: 0.312 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.017\n", - "Best fit polarization angle: 55.409 +/- 0.329\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUhklEQVR4nOzddXgU19fA8e9u3EhIAgR3L+4SCAS3Fm9pcStOW2r86oVSqkCF4tYWKZQWikPxFg9Q3IMGIsQ9mfePfTNkyUY2JJlNcj7Pw8PunTs7Z3Ynu2dmrugURVEQQgghhLAgeq0DEEIIIYR4miQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQliIW7duodPpGDZsmNahCMDHxwedTpfr2/noo4/Q6XTs27cv17eVFRUqVKBChQpahyGEJCgic5cuXWLSpEk899xzuLq6YmtrS6lSpejevTtLliwhLi5O6xBzzbBhw9DpdNy6dUvrUExasmQJY8eOpVmzZjg6OqLT6XjvvfcyXe+vv/7Cx8cHV1dXnJ2dadasGStWrMhwnRUrVtC0aVOcnZ1xdXXFx8eHv/76y2Tdq1ev0r17d9zd3SlbtiwTJ04kIiLCZN1XXnmFihUrEhkZmfkOp5KS0KX+Z21tTYkSJejevTvbtm0z6/XEs/vll1/Uz2Lnzp0Z1g0NDeWDDz6gfv36ODs7Y2dnR+nSpWnevDlvvPEGfn5+Ga4/evRodDodjo6OhIaGplsvJQFM+afX6ylSpAjly5enW7duzJ49m3v37mVnd0Uus9Y6AGHZPvnkEz7++GOSk5Np0aIFQ4cOxdnZmYcPH7Jv3z5GjRrF/PnzOXHihNahFkpvvPEGYWFhFC1alFKlSnH9+vVM1/n++++ZNGkSHh4evPLKK9ja2rJ+/XqGDRvGf//9x1dffZVmnWnTpvH1119TpkwZRo8eTXx8PGvWrKFnz5589913TJw4Ua0bFRWFr68vUVFRDBkyhLt37/LDDz/w8OFDfvvtN6PX3bJlC7/88gu7du3C2dk5W++Bq6srU6dOBSA2NpYzZ86wdetWtm7dyty5c5k8eXK2XjevTJw4kRdffJFy5cppHcozW7hwITqdDkVRWLhwIZ06dTJZ7/79+7Rq1Ypbt25RqVIlXn75ZTw9PXn8+DEnT55kzpw5ODg40KBBA5PrR0REsGbNGnQ6HTExMfz8889Gx6Apbdu2xcfHBzAcow8ePODw4cNs27aNDz/8kI8++oh33nnnmfZf5DBFiHTMnDlTAZSyZcsqR44cMVln8+bNio+PTx5HlneGDh2qAMrNmzdzfVs3b95UAGXo0KFZXmfbtm3KrVu3FEVRlGXLlimA8r///S/DbdjZ2Snu7u5G+xQSEqJUrlxZAZR//vnHaJ3Dhw8rgFK5cmUlJCTE6LXc3d0VOzs7o9das2aNAij79+9Xy4YNG6YAysOHD9Wy0NBQpXTp0srIkSOzvL9P7wuglC9fPs2ypUuXKoDi5OSkREVFZev127ZtqxTGr8jy5cubfE8zc+nSJQVQOnTooDRq1EixsbFRAgICTNYdOXKkAigjRoxQkpOT0yy/f/++cvLkyXS39dNPPymA8vrrryu2trZK3bp106374YcfKoDy4YcfplmWnJysrF+/XnF3d1cAZdasWZnvqMgzcotHmHTr1i0++ugjbGxs2Lp1K82aNTNZr0ePHmzfvj1N+bp162jTpg2urq44ODhQp04dZs2aZfJ2UMo97/DwcF5//XUqVKiAjY0NH330UZaWg+E21LBhwyhbtiy2traUKFGCQYMGcfnyZZNxR0dHM3v2bBo3boyLiwvOzs7UrFmTyZMn8/DhQwB0Op1626NixYrqJeKn78+HhITw7rvvUrNmTRwcHHB1dcXX1zfdS9wRERG8/vrrlClTBnt7e2rUqME333xDcnKyyfoZ6dKlC+XLl89y/aVLlxIXF8fEiRON9qNo0aJMnz4dgJ9++slonZTn//vf/yhatKhaXqFCBSZMmEBcXBzLli1Ty/39/QFo2rSpWpbyOGUZGK7+AHz99ddZjj+rhg0bhpOTE1FRUZw/f14t37NnD126dMHd3R07OzuqVavGO++8Q1hYWJZeNz4+nu+//55u3bpRvnx57OzscHd3p0OHDuneUsrs+DXVBiWl/Ut6/1KuBKRITEzkxx9/pHnz5hQpUgRHR0caNGjA999/b/K4UhSF77//ntq1a2Nvb0/p0qWZOHFilt8HUxYtWgTA8OHDGTZsGAkJCSxfvtxk3X/++QeASZMmmWznU7JkSRo2bJjhtvR6PVOnTqVnz56cPXuWo0ePmh2zTqejb9++rF+/HjBcMX7w4IHZryNyh9ziESYtW7aMhIQEXnzxRZ577rkM69rZ2Rk9nz59OrNmzcLT05NBgwbh7OzMtm3bmD59Ojt27GDnzp3Y2toarRMfH0/79u0JCQmhU6dOFClShIoVK2Zp+fbt2+nTpw8JCQn07NmTKlWqcPfuXX7//Xe2bNnC3r17jb7sHj9+TLt27Thz5gzVq1dnxIgR2Nracv36dZYtW0afPn0oUaIEH374IX/88QdnzpxhypQpuLm5Aaj/g+EH18fHh1u3buHt7U2XLl2Iiorir7/+okuXLixYsIDRo0er9ePi4vD19eX48ePUq1ePl19+mdDQUD799FP2799v1meUHX///TdgSGye1rVrV6M6WV3n008/5e+//+bjjz8GUG9VnDx5klatWgGotwBTkqndu3ezZMkSNm/ejKur6zPvlymKogCoP4ALFixg3LhxODk50b9/f4oXL86+ffuYPXs2mzdv5vDhw0afrSkhISFMmTKFli1b0rFjR4oVK8aDBw/YvHkz3bp1Y9GiRYwaNSrNepkd308bNmxYmiQE4ODBg/z99984OjqqZSnH/Y4dO6hevTqDBg3C3t6evXv3MmnSJI4ePcqqVauMXmfq1KnMmzePkiVLMmbMGGxsbPjzzz85evQo8fHxaf4+MxMfH8+KFStwdXWld+/exMTE8MYbb7B48WLeeuutNEmIh4cHAFeuXKF+/fpmbcvPz4+TJ0/SsWNHypYty7Bhw9iwYQMLFy5M90QqM+3ataN169YcOnSI33//nQkTJmTrdUQO0/oSjrBM7du3VwBl0aJFZq33zz//qLeFHjx4oJYnJCQoPXr0UABl5syZRuuUL19eARRfX18lMjIyzWtmtDwkJERxc3NTPDw8lPPnzxst+++//xQnJyelQYMGRuUvvfSSAiivvvqqkpSUZLQsIiJCCQ0NVZ9ndounbdu2ik6nU1avXm1U/vjxY6VevXqKvb290WXulNtmffr0Mdr2jRs3lKJFi5p9iye1rNzi8fT0VAAlKCjI5HInJycFUG+LREZGKoDi7Oxssn5gYKACKMWLF1fLIiIilDJlyiienp7K1KlTlX79+qn7nLK8QoUKyssvv5yt/UyR0S2eJUuWqLd4oqOjlVu3bim2traKi4uLcvHiRaO648aNUwBl9OjRRuWmbvHExsYqd+7cSbO90NBQpXbt2krRokWV6Ohoo2WZHd8ptyD27t2b4f6eOXNGcXFxUTw9PZVr166lWX/ixIlKYmKiWp6YmKiMGDFCAZQ//vhDLU99yy44OFgtj4mJUZo3b57ue5qR1atXK4AyZswYtaxv374KoOzevTtN/e+++04BFBcXF+XNN99Udu3ale4x+bSxY8cqgPLrr78qimL4bvHy8lKcnJyUsLCwNPUzusWT2nvvvacAypAhQ7IUh8h9kqAIk2rWrKkAyrZt28xab9SoUQqgLFiwIM2yy5cvK3q9XqlYsaJRecoX+OnTp02+ZkbL58yZowDK999/b3LdqVOnKoCavDx8+FDR6/VKyZIlTf5YPC2jBOX06dMKoPTr18/kun/88YcCKD/88INaVqVKFUWv1xv9wKRI+SLNzQTFxsZGAZSEhASTy0uVKqUAyv379xVFUZR79+4pgFK6dGmT9ePj4xVAsbW1NSq/dOmS0qVLF8XNzU0pVaqU8uqrr6o/HhMmTFBKlCihBAUFKf7+/kqPHj0Ue3t7xdnZWRk8eLDJHxlTUhIUV1dX5cMPP1Q+/PBD5e2331a6du2qAAqgzJ07V1EURZkxY4YCKO+++26a1wkJCVFcXFwUe3t7JTY2Vi03tw3K119/nabtjaJkfnxnJUG5d++eUqZMGcXe3l45fPiwWp6UlKS4u7srXl5eJj/Tx48fKzqdTunfv79alvI3unTp0jT19+7dm60EJeWEJnX7pc2bNyuAMmDAgDT1k5OTlXfffVext7dXPytAqVChgjJq1Kh036vIyEjFxcVFcXV1VWJiYtTyN954QwGUH3/8Mc06WU1Q5s+frwBK165ds7jXIrfJLR6Ro06dOgVA+/bt0yyrVq0aZcqU4ebNm4SFhRld2re3t6du3brpvm56y//9918Azpw5Y9QmJcWVK1cAuHjxIrVq1eL48eMkJyfTpk0bnJyczNq39LYdFhZmctuBgYHqtsHQ9uTatWuULVuWypUrp6nv4+Oj3ibJ76pXr26yTcbBgwf58ccfWbduHe7u7nTs2JFHjx7x66+/EhkZyaRJk4iJiUnT2ycjYWFh6vtmZWWFu7s7Xbt2ZeLEiXTr1g3I+LgsWrQoDRo04MCBA1y6dIl69epluL3z58/z5ZdfcuDAAR48eEBsbKzRclNdVjM7vjMSGRlJjx49uHfvHqtXr6Zly5bqsitXrhASEkLVqlWZMWOGyfUdHBzUYxCevBdt27ZNU7d169ZYWVmZFd+1a9fYu3cv1atXp0WLFmp5ly5d8PLy4o8//iAoKAhPT091mU6n47PPPuOtt95ix44dHDlyhFOnTnH06FEWL17MsmXLmD9/vtHtUYA1a9YQERHB2LFjsbe3V8uHDRvG119/zaJFixg3bpxZ8adQnrolKLQnCYowqWTJkly8eNHs8QFSGtmVLFky3de9ffs2oaGhRglK8eLFM/xiSG95cHAw8KSBXnpSxthIGS+hdOnSGdbPipRt79q1i127dmW67ZT3pkSJEibreXl5PXNMmXF1dSUoKIiwsDC1HUBqKTGmfDYp/6fXeDKlPLO2GwAxMTGMHDmSPn360K9fP3bt2oWfnx+rVq2id+/egKFx9gcffMD169dNJnGmlC9fPtNxarJyXAIZjqcBcOTIEdq3b09iYiK+vr706tWLIkWKoNfrOX36NH/++afJhuCZHd/pSUpKYuDAgfj5+TFr1iwGDhxotDzlGLx69WqGyW3qMWYyOg6tra2NEomsWLRoEYqipBlg0Nrampdffpmvv/6a5cuXM23atDTrurm5MXDgQHW/oqKi+Pzzz5kxYwaTJk2iV69eRnEuXLgQIM22nnvuORo1asTJkyc5ceIEjRs3NmsfwND1GaBYsWJmrytyh/TiESa1bt0aMPR6MEfKD1pAQIDJ5Skt5J9uGJnZl3d6y1Ne58yZMyiGW5Ym/w0dOhR48kOaEwMzpWx77ty5GW47pYdLSv2UXkJPS+89y0nVq1cHnlxZSu3BgwdERUVRpkwZtRGmk5MTpUuXJjIy0mTvhqtXrwKGq2OZef/99wkODuaHH34AnlxZSt2AuVGjRgBcuHDBnN3KVHaPy6fNmDGDmJgYdu7cybZt25gzZw6ffPIJH330UYYNNLN7Vj5p0iS2bt3K6NGjTY7RkRJv7969MzwGb968mWYdU8dhYmIiQUFBWY4vdU+dd999N01vo5QeWpmdQKRwcnLi008/pXXr1sTFxXH48GF12dmzZzl27BgALVq0SLOtkydPAk+SGHPt3bsXINsNbUXOkwRFmDR8+HBsbGzYsGFDpj8Wqc8YUwZWMjVs97Vr17h79y4VK1bM0hl3VjRv3hww3DrIiqZNm6LX6zlw4ABRUVGZ1k+53J2UlPTM23ZxcaFKlSrcu3fP5IBqeTHUecotDlNdw1NuyTx9GyQ76zzt2LFjzJkzh7lz56Y5c099/Dx9uySnZHRchoaGcvr0aezt7alZs2aGr3Pt2jXc3d1N9rDJ6V5YX3/9NfPnz6dTp078+OOPJuvUqFEDNzc3jhw5QkJCQpZeNyUhNBXvoUOHTB7r6fnzzz959OgR1atXZ+TIkSb/VapUiStXrpj1/ri4uABPbrvAk8TDx8cn3W05ODiwevVqs0cl/vvvvzl8+DAODg7q1TxhAfKuuYvIb1J6nFSoUEE5fvy4yTrbtm1T2rVrpz5P6SFQoUIF5dGjR2p5YmKi8vzzzyuAMmPGDKPXyGxgqIyWBwUFKW5ubkqxYsWUo0ePplmelJSUpvHhoEGDstyL580331QA5e+//za5fW9vb0Wv1ytLliwxufzs2bNGg5OlvKd9+/bVpBfPjRs3cn2gtqfFxcUptWrVUrp3725UvmvXLgVQPv74Y7UsZUA3U42In5ZRLx5TdW1sbBRXV1fl6tWrRssmTpyoAMqoUaOMyk01ku3cubMCKGfOnDEqX7x4sdrQc9myZUbLMju+TTWS3bBhg6LX65U6depk2mj4/fffV4/np3sQKYph0LPUPdwOHTqUY714OnbsqADK2rVr062T8t4MGjRILfviiy+Uc+fOmax/8OBBxd7eXrG2tlbu3bunKIqiREdHK25uboqVlZVaZsorr7yiAMrChQvVsswGatuwYYM6UNsXX3yR2S6LPCQJisjQxx9/rOj1egVQWrZsqUyePFmZPn26MnLkSKVq1aoKoDRu3Nhonbfeekvtejp+/HjlzTffVJ577jkFUFq3bq3ExcUZ1X+WBEVRFGX37t2Ki4uLotPplA4dOihTpkxRpk6dqvTt21cpVaqUYmdnZ1Q/JCREqVu3rgIoNWrUUKZMmaK8+eabSr9+/RQXFxejH4rt27erX+ZvvfWW8umnnyrfffeduvzOnTvq+1CvXj1lzJgxyltvvaUMGjRI3ed///1XrR8bG6s0adJErf/WW28pY8aMUdzc3JRevXqZnaAsWrRIGTp0qDJ06FClVatWCqDUrVtXLTM1Mua8efMUQPHw8FDGjx+vTJ06VSlTpowCKG+88YbJ7bz++usKoJQpU0aZOnWqMn78eMXDw0MBjN4PU/73v/8prq6uyt27d43Kk5OTlUaNGilWVlbKiBEjlAEDBiiAUY+TjJiToCiKovzwww9q19aRI0cq77zzjtKiRQv1OEj9Y60ophOUbdu2Gb3G66+/rrRp00bR6/Vqd+qcSFAcHBwU/n+k1ZQeSqn/pd5GfHy8euyULl1aGTx4sPLOO+8oI0aMUBPop4+DSZMmKYBSsmRJZdKkScrrr7+uVK5cWWncuLFSsmTJLL2nN27cUHQ6neLp6Znmbzq1iIgIxdnZWbGzs1Pf43r16qnv+7Bhw5R3331XmTx5suLr66vodDoFUL7++mv1NVKS7549e2YY0759+9J8J6W8v23btlXfv7feekt55ZVXlIoVKyqAYmdnp8yePTvTfRZ5SxIUkakLFy4oEydOVGrXrq24uLgoNjY2ipeXl9KlSxdl8eLFRl0zU6xevVpp1aqV+sVUq1YtZcaMGUZdA1M8a4KiKIYfqwkTJihVqlRR7OzsFBcXF6V69erKK6+8omzcuDFN/cjISGXGjBlKnTp1FAcHB8XZ2VmpWbOmMmXKFKMrHopi6D5ao0YNxdbW1uQPYnh4uDJz5kylYcOGipOTk2Jvb69UqFBB6datm7JgwYI03ZnDwsKU1157TU2eqlevrnz11VfK9evXzU5QUrpBp/evbdu2JtfbtGmT0qZNG8XZ2VlxdHRUGjdurCxfvjzDbS1btkxp3Lix4ujoqDg7Oytt2rRRNm/enOE6fn5+irW1dbrj6dy5c0d5/vnnFScnJ8XV1VUZOnSo2d2MzekSu2PHDqVjx46Km5ubYmtrq1SuXFl58803lcePH6epm143482bNyvNmjVTnJ2dFVdXV6Vjx47K/v371R/RnEhQMvpMTX2uycnJysqVK5X27dsrRYsWVWxsbJRSpUoprVq1UmbOnKncvn07Tf3vvvtOPa5LliypjB8/XgkNDc3yUPfTp09XAOW1117LtO7o0aMVQPnmm28URVGUU6dOKZ9++qnSrl07pUKFCoq9vb1iZ2enVKpUSRk0aJBy8OBBo/VbtmypAMqff/6Z6baqVaumAIqfn5+iKE/e35R/Op1OcXZ2VsqVK6d07dpV+fzzz9Mkz8Iy6BQl1U0+IYQQQggLII1khRBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHLOHuo+OjmbNmjVcuHCBixcvEhERwbvvvqtO1Z4VJ06cYNWqVVy5coXk5GTKli3LSy+9hK+vr7nhCCGEEKIAMjtBCQsLY/ny5ZQoUYIqVarg5+dn1vpbt25l9uzZNG7cmNGjR2NlZcXt27d59OiRuaEIIYQQooAyO0Hx8PBg48aNeHh4cOnSJcaMGZPldR88eMC3335Lnz59mDJlirmbVsXGxuLv70/58uWNZrQUQgghRMFgdhsUW1tbk7OgZsWff/5JcnIyI0eOBAy3i7IzDIu/vz+jR4/G398/W3EIIYQQwrKZfQXlWZw8eZJy5cpx5MgR5s+fT2BgIC4uLvTu3ZsRI0ag10ubXSGEEELkcYJy9+5d9Ho9n3/+OS+99BKVK1fmwIEDrFy5kqSkJMaOHWtyvaCgIIKDg9XncuVECCGEKNjyNEGJiYkhOTmZsWPH8vLLLwOGqbMjIiJYv349gwcPxtHRMc16mzZtYvny5XkZqhBCCCE0lKcJip2dHTExMXTo0MGo3NfXl6NHj3LlyhXq16+fZr1evXrRqlUr9bm/vz8zZszI7XCFEEIIoZE8TVA8PDy4e/cuRYsWNSpPeR4REWFyPU9PTzw9PXM9PiGEEEJYhjxtlVq9enXA0KYktZTnbm5ueRmOEEIIISxUriUoQUFB+Pv7k5iYqJa1b98egC1btqhlycnJbNu2jSJFiqgJjBBCCCEKt2zd4tmwYQORkZFqz5rDhw+rI8H27dsXZ2dnFi5cyPbt21m7di0lS5YEoHXr1jRq1Iiff/6Z0NBQqlSpwsGDBzl79izTpk3D1tY2h3ZLCCGEEPlZthKUtWvXEhAQoD4/cOAABw4cAKBTp044OzubXE+n0zFz5kwWL17M33//zfbt2ylbtizvvfcenTp1yk4oQgghhCiAdEp2hnLV2OXLlxk9ejSLFi2S20JCCCFEASRDtwohhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIUUBFP47l5PqrRD+O1ToUs0mCIoQQQhRQ0aFx+P1+jejQOK1DMZskKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEKILMnPvQGEEPmPJChCiCzJz70BhBD5jyQoQgiLIldqhBAgCYoQwsLIlRohBEiCIoQQQggLJAmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoOQAGVhKCCGEyFmSoOQAGVhKCCGEyFmSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBB5LPpxLCfXXyX6cazWoVgsSVCEEEKIPBYdGoff79eIDo3TOhSLJQmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLY3aCEh0dzdKlS5k2bRrdu3enTZs2bNu2LVsb/+KLL2jTpg1vv/12ttYXQgghRMFkdoISFhbG8uXL8ff3p0qVKtne8KVLl9i2bRu2trbZfg0hhBBCFExmJygeHh5s3LiR3377jXHjxmVro4qiMHfuXDp37oy7u3u2XkMIIYQQBZfZCYqtrS0eHh7PtNEdO3Zw8+ZNRo8e/UyvI4QQQoiCKc8byUZHR/PTTz/xyiuvPHOiI4QQQoiCyTqvN7h8+XLs7OwYMGBAltcJCgoiODhYfe7v758boQkhhBDCQuRpgnLnzh3Wr1/PBx98YFbj2E2bNrF8+fLcC0wIIYQQFiVPE5R58+bx3HPP4ePjY9Z6vXr1olWrVupzf39/ZsyYkcPRCSGEEMJS5FmCcvLkSY4ePcqMGTN48OCBWp6UlERcXBwPHjygSJEiODk5pVnX09MTT0/PvApVCFFIRD+O5eKeO9T0LYtjUXutwxFCpJJnCcqjR48AeO+999IsCwwMZODAgUycONGstilCCPEsUmaULd+ouCQoQliYXEtQgoKCiIqKonTp0lhbW9OwYUNmzpyZpt6XX36Jl5cXgwcPplKlSrkVjhBCCCHykWwlKBs2bCAyMlLtWXP48GH1Cknfvn1xdnZm4cKFbN++nbVr11KyZElKlChBiRIl0rzWd999R9GiRfH29n6G3RBCCCFEQZKtBGXt2rUEBASozw8cOMCBAwcA6NSpE87OzjkTnRBCCCEKpWwlKOvWrcu0zvTp05k+fXqOvJYQQgghCpc8H0lWCCGEECIzkqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQuRj0Y9jObn+KtGPY7UORQghcpQkKELkY9Ghcfj9fo3o0DitQxFCiBwlCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI611gEIIQquiLgIjtw9wtmHZ7kTfofI+EhsrWwp7lSc6h7VaV6mORXcKqDT6bQOVYgCJzlZ4dH1UB7Y3uanf84RcyOUwOhAAJxtnalUtBJ1S9SleZnm2FrZahxtWpKgCCFyVGJyIhsvbmTp6aX8ffNv4pPiM6xf3aM6g+oMYnTD0ZR0KZlHUQpRsO35+xBzdnzPIZvdhFYMhmsY/pngaONI96rdGdNoDO0rtkevs4ybK5YRhRDCoiUnKwTeCAMg8EYYyclK2jpKMstPL6fKvCoMWD+A7de2Z5qcAFwOvsyH+z6k4tyKjN8ynkcxj3I8fiEKiyvBV+i58AU6HPTmL8e1hNoEZ7pOdEI0v134jY6rOtJwQUO2XNmCoqT9G89rcgUllfikeEZtGsVbrd7iueLPaR2OEBbh5rEAjqy8SFSIYbTaw0vOc3rjdZoPqUnFpl4AnHt0juF/DufE/RNG65YtUpYe1XrQtHRTqrpXxcXOhfikeB5EPODUg1PsubmHg7cPAhCXFMf8E/P55cwv9HB7hV5K87zdUSHysbjEOD47+BmfHfqMxOREtdxKsaZmVD1qRNejVHx5XBPdcXK1p8nkylx/fI2Dtw+y/dp29dbPmYdn6LG6B92qdmN+9/mUcy2n1S5JgpLaO7vfYdXZVay/sJ4fuv3A8AbDtQ5JCE3dPBbAnjl+acqjQmLZM8eP9lPqs0lZy9u73za6WtKlShfeaPEGvhV9021f0rN6Tz70+ZA7YXf4/tj3/HjiRyLjIwlPCOfXEj/y8O+rrC7xC8WciuXa/glREFwPuU7fdX058/CMWuaS6ErnkL60DO+IS5Kr8QqPoEZsXdo3asfoRqOJT4pn0+VNfH7oc04+OAnA1qtbqf1jbdb2W0u3qt3ycndUcovn/8UkxLD31l7D48QYRmwawehNo0lIStA4MiG0kZyscGTlxXSXJ+jiGfrHEF7b8ZqanNQuVps9Q/aw7eVtdKjUIUuNX8u6lmV2x9ncmHyD4fWfnBTsubeLBgsacCbgTAZrC1G4bbu6jcaLGqvJibXOmm7BA/nsxlI6P+6XNjn5fzGppsewtbKlX61+HB99nLX91lLS2dAWTK/TU9+rfq7vQ3okQfl/DjYO/DvyX8Y2GquWLfZbzPNrnicyPlLDyITQRsClEPW2ztMi9eF8XfZdDtnvVsveaPEGJ8acoH3F9tnaXjGnYix9finrOvyOS6IbAPci7uG9zJtd13dl6zWFKMgWn1pM91+7ExobChganG/tsJveQUOxVxwyXNfBzS5NmU6nY0DtAVyYcIGxjcbyZccvKeVSKjdCzxJJUFKxt7bnpx4/8XPvn9UuV9uubaP9ivbqASBEYRGTzgSEEVZhfF32Xa47GK6uOOgd2DBgA191+gp7a/tn2mZyssJzsY348Nb31HVpYNhefATdfu3G7xd/f6bXFqIg+fbfbxm9eTQKhsasL9R4gWOjj+HbvA1O7hn/HTp52ONVwz3d5W72bvzU4yfGNBqTozGbSxIUE16u+zI7X9mJq53h0tjx+8fp9ks3uZIiChVTZ1gpycld+5sAuCa6s7H9X/Sp2eeZt3fzWABrJ+/j8JLzuCa5M+bk+zSOawUYui6/uP5F/rry1zNvR4j87qt/vuL1na+rz99o8QYbBmygiF0R9HodzYfUzHD95oNrotdb/thDkqCko22FthwcfpBijoYGev/e/Zdeq3sRkxCjcWRC5A2vGu5GZ2Jxuljmlnmfe3a3AHBL8OCD8Dl0bNHumbeV0hg39S0lO8We0bfeoUVYBwASkhPou64vu2/sTu9lhCjwVpxewZu73lSff+zzMV92/NJo7JKKTb3wndogzZUUJw97fKc2UHvfWTpJUDJQp0Qddg3ehZu9GwB7b+1lxKYRmvYPj34cy8n1V4l+bLptgBA5JfWZWBJJLCz1Of72hpGe3BI8mHbnc3q/3PGZz8Qyaoyrx4phAVNoEWdIguKT4um7ri8XAi880zaFyI+2XNnCyE0j1eeftvuUD9p+YLIxesWmXgyc50OrkbUBaDWyNgPn+uSb5AQkQclUPa967HhlB042TgCsObeGTw98qlk80aFx+P1+jeh02gcIkZNSzsQ2lFvMWedjADgkOTE98gsGTeiRI192GTXGBUOSMuTWa3Qq1QWA8Lhwevzag8CowGfethD5xYXAC7y44UWSlCQAJjWdxP+8/5fhOnq9jmKVDE0VilVyzRe3dVKTBCULmpZuyq99f0WH4cP9cN+HrL+wXuOohMgb+223s8vhT8Aw6NMP9RbxxjfDc+xMLL3GuKlZY81XNb6jgZeh4ezN0Jv0WddHhgEQhUJobCgvrHlBbQfZv1Z/5nSZU+DnsJIEJYt6Ve/F7A6z1ecj/hzBtZB0JjYQooA4E3CGcVvGqc8HB0ykZ8NuOXomZqoxrikeHkXZ/NJmtdvjoduHeO/v93IsDiEsUbKSzCu/v8LVkKsA1Peqz/IXllvMfDm5qeDvYQ6a1nIaL9d5GTB0fRzw2wBiE6UtiCiYwmLD6Luur3qMD602nFbhnXJ8O083xjUlpVtk6SKl+X3A79jobQD44p8vpGePKNDmHpnLlqtbAPBw8GDjwI042jhqHFXekATFDDqdjp96/ER1j+oA+AX48caONzKdRE2I/GjK9ilcf3wdgMalGjOzyee5sh1zu0U2K9OMLzp+oS4bsnEI98Lv5UpsQmjpTMAZ3tnzjvp8dd/VVHCroF1AeUwSFDM52zqzrv86dUCqH0/8yKLVqwDDJGprJ+/j5rEALUMU4pltvLiRFWdWAOBi68Jv/X/Dziprt2Kyw9xukVOaTaF3jd4API59zKjNoyxi9lUhckpMQgyDfh+kTiMxrcU0OlbuqHFUeUsSlGyoW6Iu71b7UH2+wmsuMfpo4MkkapKkiPwqIDKAMX89GUFyXtd5eXLWZk63SJ1Ox+Jei9U5Q7Zf284SvyW5HqMQeeXt3W+r3ekbeDVgRvsZGkeU9yRByYbkZIXK+5tQI6oeACE2gfxWbJFRnSOrLsrtHpHvKIrCmM1jCIoOAqB3jd4MrTc0z7ZvTrdIdwd3FvV88nf3+o7X8Q/1z/UYhchth28f5rtj3wHgYO3Ar31/xc46965gWipJULIh4FIIMSHxDA2Yil2yYUKmg247OOd4Uq0TFRxLwKUQrUIUIls2XNzA5iubASjhVIIFPRZYdFfG7tW6qzMgR8RHMHLTSLnVI/K1uMQ4Rm8erT7/zPczanjW0DAi7UiCkg0p4zZ4JpZgwKNRavkvJX4gXheXpp4Q+UFYbBiTt01Wn//Q7QeKORXTMKKs+bbzt5QtUhaAPTf3sPrcao0jEiL7Zh2axcUgw8jKTUs3ZVLTSRpHpB1JULIh9bgN3mFdqB5VF4Ag2wC2ua8zWU8IS/fe3+/xIPIBAD2q9ciRCQDzgqu9Kz90+0F9/vqO1wmLDdMwIiGy50LgBT47+BkA1nprFvVchJXeSuOotCMJSjakHrdBh46XH43HSrEGYLv7bzy0uZfpdNZCWJLj947zw3HDj7yjjSPfd/3eom/tPK1n9Z48X/15AB5GPeT9ve9rHJEQ5lEUhYlbJ5KQbBgd+c2Wb1K3RF2No9KWJCjZ8PS4DSXjy9ExxNDlMVGfyK8l5tPslRr5bt4DUTglK8lM2DoBBUPbjY/afkR5t/IaR2W+uV3mqgNY/XD8B049OKVxREJk3cZLG9l7ay8AFd0q8n4bSbIlQcmmp8dt6BH8Eu4Jhvv1F5xOcabIES3DEyLLfv3vV47fPw5A7WK1mdp8qrYBZVN5t/J80OYDwJB0Td42WRrMinwhJiGGN3a+oT7/utPXONg4aBiRZZAE5RmkHrfBTrHnwzpPZjl+a/db6gA7QliqqPgo3tn9ZKTKbzt/i42VjYYRPZvXWrymjvR8+M5hfr/4u8YRCZG5r//9mluhtwDwrejLCzVe0DQeSyEJyjNKPW7DS00G0rZ8WwCuhVxjwYkFWoYmRKa++ucr7kUYhonvUa1Hvh+p0tbK1mgY/Ld3vy0nCsKiPYi+z6xDswCw0lkxt8vcfNX+KzdJgpKDdDodX3X6Sn3+8f6PCY0N1S4gITJwN/wusw8bZui21lvzVcevMlkjf+hZrSftKrQD4Prj6/xw7IdM1hAibyUnK+ocbp8e/JToBMNI5OMaj6N28dpahmZRzE5QoqOjWbp0KdOmTaN79+60adOGbdu2ZWndkydP8vnnnzNo0CA6duzIwIEDmT17NkFBQWYHbqkal2qszngcHBOsdhkTwtJ8sv8TYhJjAJjYZCLVPatrHFHO0Ol0fN3pa3QYzkI/PfApITEyaKKwDDePBbB28j4OLzlPgM1dNgSsBcDZ2oUPfT7MZO3CxewEJSwsjOXLl+Pv70+VKlXMWvenn37Cz88Pb29vpkyZgq+vL3v37mXUqFEEBwebG4rFmtl+pjqx2tyjc7kTdkfjiIQwdjX4Kkv9lgJQxK4I77ctWD0GGpRswJB6QwDDZIJfHv5S44iEMCQne+b4ERUSC8AfxVaSrEsGwPfBC0ScS9QyPItjdoLi4eHBxo0b+e233xg3bpxZ606YMIHVq1czbtw4evTowZgxY/j8888JCQnh998LTmO28m7l1Z4Q8UnxzDhQ+CZ5Epbtw30fkqQkAYbxFtwdCt6YPZ+2+1Q9UZh3bB4PIx9qHJEozJKTFY6svKg+v2l/hZMuhwBwSXSjw+MXZA63p5idoNja2uLh4ZGtjdWvXx+9Xp+mrEiRIvj7F6xJvt5s+SYuti4ALD29lBuPb2gckRAGZwLOqMPBF3MsxpRmUzSOKHeUdS3Lq41fBSA6IZrPD32ucUTC0kU/juXk+qtEP47N8dcOuBSiXjkB2Oi5XH3cI/gl7BUHmcPtKZo3ko2OjiYmJgZXV9d06wQFBXH58mX1X35IZjwcPXi9xesAJCYn8umBTzNZQ4i8kXqU1ene03Gxc9Ewmtz1Tut31MHb5p+Yz93wuxpHJCxZdGgcfr9fIzoX5lFLPTfbRcfTXHQ6DYBnvBdtQruYrFfYaZ6g/PbbbyQkJNC+fft062zatInRo0er/2bMyB+3TF5r/hpF7YsCsPLMSi4HXdY4IlHYHbl7RJ2tuEyRMuoVhoLKy9lLnWwtLilObrcKzaSem22zxy/q4+eDX8EaG5P1CjtNE5TTp0+zfPly2rVrR6NGjdKt16tXLxYtWqT+e++99/IwyuxztXdlWstpgGFky4/3f6xxRKKwS30Mftj2Q+yt7TWMJm+kvt26xG+J3G4VmkiZw+2yw39cdTxvKIsrQ9PwtmodmcPNmGYJir+/P++99x6VKlXi7bffzrCup6cn1atXV/+VL59/5gmZ3Gwyno6eAKw5t4bzj85rHJEorE7cP8H2a9sBw1wfQ+sN1TiivPH07dZZB2dpHJEojFLmcPvL41e1rHvIi+h5Mltx88E1ZQ63VDRJUB4+fMgbb7yBk5MTs2fPxtHRUYsw8oSzrTPvtDIMJa6g8PlhaagntDHz4Ez18dut3s7XQ9qb67Xmr+FqZ2jntuLMCun6LzRx3+s6l5zOAFAsviRN/v/qiZOHPb5TG1CxqZeW4VmcPE9QwsLCeOONN0hISOCrr77C09Mzr0PIc2Mbj8XDwdDzafV/q+USs8hz5x6d449LfwBQyqUUw+oP0zSevOZq78rEphMBSEhO4Kt/CsaouSJ/Sd1ZYkrt17HCilYjazNwro8kJybkWoISFBSEv78/iYlPBp6JiYnhrbfeIigoiC+++IKyZcvm1uYtirOts9qVM0lJkkGjRJ5LPaLxmy3fxM668DXEm9JsitqjZ9GpRTyKeqRxRKIwOXbvGDuu7wCgglsFRjQbBkCxSq5yWycd2UpQNmzYwIoVK9i6dSsAhw8fZsWKFaxYsYLIyEgAFi5cyODBgwkMDFTX+/TTT7l48SI+Pj74+/uzc+dO9d/BgwdzYHcs18SmE3G2dQYM46I8iHigcUSisLgafJW15w3DaRdzLMbohqM1jkgbxZyKMabhGABiEmP49t9v1flQAm+EyQBZIlel7kH2but3sdEXnlus2WWdnZXWrl1LQECA+vzAgQMcOHAAgE6dOuHs7GxyvWvXrgGwdetWNblJ4eXlhbe3d3bCyReKOhRlfOPxfPHPF8QnxfPNv9/wZSe5kiJy3+eHPidZMQyn/Vrz13CyddI4Iu1MazmNH47/QEJyAnMPfkfJ6w1xxJnDS85zeuN1mg+pKZfaRY479+icUff+ofWGEnEn5weDK2iylaCsW7cu0zrTp09n+vTpZq9XkL3W4jXmHp1LXFIc80/M553W7+DhmL1ReYXIijthd1h5diUAbvZuTGg6QeOItFW6SGn6lh7Amju/EKOPYq/bX3QPeRGAqJBY9szxk8aKIsd9/e/X6uNpLaZhZ21HBJKgZEbzgdoKEy9nL0Y2GAlAVEIUPx7/UeOIREE37+g8EpMN7cAmNplIEbsiGkekreRkhWanu6BTDF99fxfdTIIu3qiOzIcictK98Hv8ctYwMFtR+6KMbDhS44jyD0lQ8tibrd5ErzO87d8f/57YRMmiRe4Ijwtn4amFANhZ2TGp2SSNI9JewKUQnIM8aBjREoBw68ccddlnVEfmQxE5ad7ReSQkJwAwrvE4tS2iyJwkKHmsglsF+tbsC8CjqEf8+t+vmawhRPYsPrWY8LhwAAbXHUxxp+IaR6S9lHlOOj3uo5btct+IgmKynhDPIjwunJ9O/gSArZWt2tVdZI0kKBp4o8Ub6uNv/v0GRZHLySJnJSYnMvfoXPV5ykiqhV3KPCeVYmtQJboWAPft/DnveNJkPSGexdMnCSVdSmocUf4iCYoGmpVpRsuyhkvM5wPPs/P6To0jEgXN+gvruR12G4DuVbtTs1hNjSOyDCnzoQB0THUVZaf77+pjmQ9F5ISEpATmHJmjPk99YiqyRhIUjaQ+WFO38BbiWSmKYnRMyRfjEynzoQDUj2xGsXjDGe1Fp9PctrsOyHwoImesO7+OO+GGKRV6VOshJwnZIAmKRp6v/jyVilYCYNeNXfz38D+NIxIFxcHbBzlx/wQADbwa4FPBR9uALEzFpl74Tm2Ai7sTHR+/oJbv9dqUa12Mox/HcnL9VaIfS6P4wkBRFL498q36/M2Wb2oYTf4lCYpGrPRWTG02VX3+zZFvtAtGFCjf/PvkWJrWcho6nVwNeFrFpl4MnOfD6y9MxjHJ0KviiONebGsk5cr2okPj8Pv9GtHS+LZQOHL3CCcfGNo1NSzZEO9yBXcQ0twkCYqGhjcYjpu9GwC/nP2Fh5EPtQ1I5Hu3Qm+x6fImwDBiZf9a/TWOyHLp9TrKVy2JT2h3wNCweMHJBRpHJQqC7459pz6e3HSynCRkkyQoGnK2dVbnBklITmDxqcUaRyTyu/nH56tdZsc1HoeNlcz3kRmf0O5Y6awAWHByAXGJcpVDZN/9iPv8duE3ADwdPRn43ECNI8q/JEHR2Lgm49SB2+afmK+O+imEuWISYljsZ0hyba1sGdVwlMYR5Q9FEz3pXq4nYBibaP2F9RpHJPKzBScWqN/jYxuNxd7aXuOI8i9JUDRWwa0CPasZvhzvRdzjz0t/ahyRyK9Wn1tNSIxhBNSBtQfKwGxmGFnjyQzP3x//XsNIRH4WlxinDsxmpbPi1cavahxR/iYJigVIPbqgfDmK7FAUxei+t4xYaZ4WxVtSt0RdwNDAMaUXlBDmWHd+HY+iHgHQt1ZfyhQpo3FE+ZskKBbAt6Iv1T2qA7Dv1j7OPTqncUQivzkeeIzTAacBaFq6KU1LN9U2oHxGp9MxsUmqE4VjcqIgzKMoCvOOzVOfT2oqc189K0lQLIBOpzO+iiJfjsJMSy4tUh+n/qEVWfdy3ZfVXnVrzq0hMCpQ24BEvnL03lGj8YdalW2lcUT5nyQoFmJIvSHqLJerzq4iNDZU24BEvhFqFcIm/z8AKOZYjP61pWtxdjjaODKywUgA4pLipFedMEvqE8tJTSdJ1+IcIAmKhShiV4Sh9YYCEJ0QzfLTy7UNSFi85GSFwBthHHDbRqJi6DUwuuFo6TXwDMY3GY8Oww+L9KoTWRUUHaR2LfZw8ODF517UOKKCQRIUCzKhyQT18Q/HfyBZSdYwGmHJbh4LYO3kfexfcpoDblsB0Cl6uln3yWRNkZFKRSvRvZph4LY74XfYfHmzxhGJ/GD56eXEJ8UDMKz+MBxsHDSOqGCQBMWC1CxWE9+KvgBcC7nGnht7NI5IWKKbxwLYM8ePqJBYzjgfJcz6MQANIptzccEjbh4L0DjC/C31iYKMLCsyk6wkGx0nYxqN0TCagkUSFAszrvE49fHCUws1jERYouRkhSMrL6rPD7rtUB+3/f8h24+sukhyspLnsRUUnSp3ooJbBQB2Xt/Jzcc3tQ1IWLS/b/7NtZBrgKFHZjWPahpHVHBIgmJhelXvRQmnEgD8cekPAiLlbFg8EXAphKgQw4y4wdaPuOB4CgDPeC9qRNcDICo4loBLIZrFmN/pdXpGNzQM3KagsOjUokzWEIXZTyd+Uh/LwGw5SxIUC2NjZcOIBiMAw+Rly/yWaRyRsCQxqWbDPey6C0VnuFLSKqwj+lR/zjEya+4zGdFgBNZ6awCW+i0lISlB44iEJXoQ8YA/LxtG//Zy9uL56s9rHFHBIgmKBRrdcLTak2DRqUXSWFaoHNzsAEgmicOuOwFD49iW4R1N1hPZk/rH5mHUQ/VHSIjUlvotVXt6jWwwUibnzGGSoFigikUr0qlyJwBuht5k1/VdGkckLIVXDXec3O256HiGEBvDQGK1oxrinuip1nHysMerhrtWIRYYYxuNVR9LY1nxtKTkJLWdoA6deltQ5BxJUCxU6i9HaSwrUuj1OpoPqckh1yeNY73DOhvVaT64Jnq9DBL1rHwr+VKpaCUAdt/YrTaEFAJg+7Xt3A67DUDXql0p71Ze44gKHklQLFSPaj0o6VwSgD8v/cmDiAcaRyQshctz1px1PWp4nOhK3UjDvDtOHvb4Tm1AxaZeWoZXYOh1esY0fNJldNFJaSwrnkiZtRjg1UbSODY3SIJioVI3lk1Skljqt1TjiISl+Pnsz8QrhkGh+pUfiDU2tBpZm4FzfSQ5yWHDGwzHRm9oV7Ds9DJ1MC5RuN0Ou83Wq4YBEssWKUu3qt00jqhgkgTFgj3dWDYpOUnjiITWFEVhid8S9fnoxqMAKFbJVW7r5ILiTsXpXbM3AIHRgWy8uFHjiIQlWHxqsdp5YXTD0VjprTSOqGCSBMWClXcrT5cqXQDwD/Nn5/WdGkcktHbs3jHOPToHQMuyLanqKoNC5TZpLCtSS0pOYtlpw/APVjorRjYcqXFEBZckKBbO+MtxIYE3wgAIvBEmo4UWQqmvnoxqMErDSAqPdhXaUdW9KgB7b+3lSvAVjSMSWtp5fSd3w+8C0K1qN0q5lNI4ooJLEhQL171ad/UPYPOlTWxZfgCAw0vOs3byPpl3pRCJjI9k9bnVADjbOtO/dn+NIyocdDqd0fwqS04tyaC2KOgW+y1WH49sIFdPcpMkKBbOWm9Nn+IDAEjWJfOv65MJBKNCYtkzx0+SlELit/O/ERkfCcBLz72Es62zxhEVHkPqDVFHll1xZoWMLFtIPYp6xKbLmwAo4VRCGsfmMklQLFxyskLlY43V54dcd6JgfGtHJocrHFLf3pEzt7xV3Kk4var3Agwjy6b04BCFy6ozq9SRY4fWGyojx+YySVAsXMClEJyD3KkRZZgI7pHtfa46nDOqI5PDWZ7ox7GcXH+V6MexOfJ6FwMvcvjOYQBqF6tN09JNc+R1RdalTgpTJ4uicHi6B13KMBAi90iCYuFSJn1rHdZJLTvkmrY3j0wOZ1miQ+Pw+/0a0Tn0uaQeB2dUw1HodNKlOK91rtyZ0i6lAdh6dasMnljIHLl7hItBFwFoXa411T2raxxRwScJioVLmfStQWRLHJMMbQ5OuhwiWh9lsp4oeOKT4ll5diUANnobXqn7isYRFU5WeiuG1R8GGAZPXHFmhbYBiTwlt1jzniQoFi5lcjhbxY5m4T4AxOvjOO6yX60jk8MVbH9d+YtHUY8A6F2zN56OnpmsIXJL6sv6S/2WoijS9qswiIyPZO35tQC42LrQv5b0oMsLkqBYuJTJ4QBap5oULvVtHpkcrmCTMzfLUaloJdpVaAfA1ZCrHLx9UOOIRF5Yd36d2oPuxedexMnWSeOICgdJUPKBik298J3agJpOtSkXWxmAWw5XCC5+XyaHK+Duht9l+7XtAJRzLUeHSh00jkhIY9nCR04StCEJSj5RsakXA+f5MLjWELXsfuezkpwUcMtPL1fn/BhRfwR6nfzJaq1PzT642rkChrFpwmLDNI5I5KaLgRf5584/gPSgy2vybZeP6PU6hjUZinWyoe/9z//9TFyi9N4pqJKVZPXMTYeO4Q2GaxqPo5sdDfpUwbGQN8h2sHHg5TovAxCTGMOac2s0jkjkptQ96EY2GCk96PKQJCj5jJudGw0jWwIQEhPCn5f/1DgikVv23tzLrdBbAHSq3IlyruU0jcexqD2N+lXFsai9pnFYgtQTxMltnoIrISnBqAfd4HqDNY7IfPn5xEISlHwodWNZ+XIsuOS+t+VqWLIh9b3qA3D8/nH+e/iftgGJXJG6B93zNZ7Plz3o8vOJhSQo+VD16LqUdy4PwK7ru7gddjvHt5HTI6EK84TEhPD7xd8B8HT0VIdZF5Yj9WzScqJQMMlJgrYkQcmH9Oh5qYrhHriCwvLTy3N8Gzk9Eqowzy9nfyEuyfDeD647GDvr/Hd5tqAbVGcQdlaGz2XV2VXSHqyAuRd+j23XtgFQtkhZOlbqqHFEhY8kKPnUi5UHocPQWGvZ6WVqTw+R/ymKIlO65wNFHYrSt1ZfQNqDFUQrzqxQv1eH1x+Old5K44gKH7MTlOjoaJYuXcq0adPo3r07bdq0Ydu2bVlePyIigi+//JKePXvSqVMnpkyZwuXLl80No9Ar7VSGzlUMbVFuhd7i75t/axyRyCknH5zk7MOzADQv05zaxWtrHJFIj4yJUjAlK8lq7x1L6EFXWJmdoISFhbF8+XL8/f2pUqWKWesmJyfz9ttvs3v3bvr06cOrr77K48ePmTJlCnfu3DE3lEJvRP0nw27Ll2PBseSU3PfOL3wq+FDRrSKQe+3BRN779+Fhrj++DoBvJV8quFXQNqBCyuwExcPDg40bN/Lbb78xbtw4s9bdt28f586d491332X48OH06dOHefPmodfrWbZsmbmhFHq9qvdSW5VvvLiRkJgQjSMSzyo6IZpfz/0KgJONEwNrD9Q4oryXn7pF6nV6dX6e3GoPJvLeL9dWqY/lJEE7Zicotra2eHh4ZGtj+/fvx93dnTZt2qhlbm5utGvXjkOHDhEfH5+t1y2s7KzteKWOYWbbuKQ4fv3vV40jEs9q/YX1hMeFAzCw9kBc7Fw0jijv5bdukUPrDZX2YAVItD6Szf6bAChqX5QXarygbUCFWJ42kr1y5QpVq1ZFrzfebM2aNYmNjZXbPNkgA0YVLItPpWoc21DO3PKDsq5ljdqD7b25V+OIRHYkJysE3gjjmMt+YpMMwyu8UvcV7K3zR6JcEOVpghISEmLy6ktKWXBwsMn1goKCuHz5svrP398/V+PMT54r/hxNSjUB4HTAaU49OKVxRCK7rgRfUWfHrelZkxZlWmgckcgqaSybv908FsDayfs4vOQ8h113qeVdbJ7XMCphnZcbi4uLw9bWNk15SllcnOlxBDZt2sTy5ctzM7R8bWSDkRy/fxwwzBvRsGRDjSMS2SFzfuRfPav1xMPBg+CYYH6/+DuPYx5T1KGo1mGJLLh5LIA9c/wAuGt7k1sOVwAoF1uF+0vjuVkkQCZl1UieXkGxs7Mz2c4kpczOznSjuF69erFo0SL133vvvZerceY3Lz73Ig7WDgD88t8vxCTEaByRMFdCUoLawDK/zvlRmNlZ2zG4ruEzk/Zg+UdyssKRlRfV56mvnrQOMwzMdmTVRZKTlTyPTeRxguLu7m7yNk5KWXqNbz09Palevbr6r3z58rkaZ37jau9Kv1r9AAiNDeWPS39oG5Aw29arW3kY9RAw9M4q7lRc44iEuaQ9WP4TcCmEqBBDe5NEEjhSxDCelHWyDU3DfQCICo4l4JL0kNRCniYoVatW5erVqyQnG7dyv3jxIvb29pQtWzYvw8kxltAtUu6B528ycmz+l7o9mF+AH34P/DSOSGQmJtVUHmecjxJpbehB1yCyJU7JLibribyTawlKUFAQ/v7+JCYmqmVt27YlJCSEAwcOqGWhoaHs3buXli1bmmyfkh9YQrfINuXbUMXdMHDenpt7uPn4pmaxCPPcj7jP1qtbAShTpAydKnfSOCKRXamTy9RtioRlckh1Umnq9o6peiLvZCtB2bBhAytWrGDrVsOX6uHDh1mxYgUrVqwgMjISgIULFzJ48GACAwPV9Xx8fKhduzazZs1i+fLlbNy4kSlTppCcnMyIESNMbktkjU6nY3j9J8Mxy4BR+ceK0zLnR0HxdHuw2ESZDdySedVwx8ndnsfWQZxzOgmAe0IxakTXV+s4edjjVcNdowgLt2wlKGvXrmXJkiX88ccfABw4cIAlS5awZMkSIiIi0l3PysqKL774gvbt27Nhwwbmz5+Pq6src+bMoVy5ctnaAfHE0HpD0esMH+my08tISk7SOCKRmWQlWb0lp0Onjkoq8qfU7cEexz5m48WNGkckMqLX62g+pCb/FNmDojOcJLQK64g+1U9j88E10eulR50WstXNeN26dZnWmT59OtOnT09T7uLiwttvv83bb7+dnU2LDJQuUpquVbqy5eoW7oTfYfeN3eoAUsIyHfA/IHN+FDAjG4xk1VnDUOlL/JbwUp2XNI5IZKRCkxL47d8P0YbnLf//9o6Thz3NB9eULsYaytNGsiL3pT4DX3pa7oFbOqORY6VxbIHwdHuwW6G3tA1IZOjg7YP4R98CoLlrKzwTS9BqZG0GzvXJ1eTEEjpXWDpJUAqYHtV6UMyxGAB/XPqD4GjTo/MK7YXGhrLh4gYA3B3cZc6PAuLp9mDL/GQiVEuWujHzsDrDAChWyTXXb+tYQucKSycJSgFja2XLkHpDAIhPiueX/37ROCKRnl//+1VtRPlKHZnzoyCR9mA5K/pxLCfXXyX6cc42Og6PC+e3C78B4GrnSrdyPXL09cWzkQSlAEp9m2eJ3xIURUZBtEQyMWDBldIeDOBO+B0OBOzXOKL8LTo0Dr/frxGdw+ORrDu/jugEQ+OTQXUGqT2whGWQBKUAqlWsFs3LNAfg7MOznHxwUuOIxNNOPTiFX4BhIK8mpZpQt0RdjSMSOS31icIvV1dpGIlIT+rbO9KDzvJIglJAyYBRlm3JqSej/Urj2IIpdXuwbXe2EKkP1zgikdrFwIv8e/dfAOqWqEujko00jkg8TRKUAmpA7QE42jgChrYOMoGg5YhJiFHbBjnaOEo31ALKqD1YcjxHi+wl8EaYTDxnIYyuntQfIbOHWyBJUAqoInZFGFB7AABhcWH8fvF3jSMSKX6/+DthcWEA9K/VnyJ2RTSOSOSWTlY91ceHXHdyaMk51k7ex81jARpGJRKSElh5diVgmD385bovaxyRMEUSlAJMJhA0lls9AcyVemLAUQ1HaRiJyE03jwVwe0k0lWJqAHDX/ib+dleJCollzxw/SVI0tPXqVh5FPQLg+RrP4+noqXFEwhRJUAqwVmVbUc2jGgB7b+3lesh1jSPSVm71BDDHtZBr7Lu1D4DqHtVpVbaVZrGI3JOcrHBk5UUAWoc9mfwx9YR0R1ZdlNs9Gkk9iOWI+tI41lJJglKA6XQ6oz8+mUBQe6kbx45oIPe9C6qASyFEhRiu1DWOaINtsmG00KNF9hGvMyTIUcGxBFwK0SzGwiogMoAtV7YAUNqltMwebsEkQSnghtQbgpXOMDvu8jPLZcAoDSUkJbDstGFUUWu9NUPrDdU4IpFbYlJdpXNIdqRxhLeh3CqKUy6HTdYTeWPVmVUkKYbvwaH1hsrs4RZMEpQCrqRLSbpV7QbA3fC77Ly+U+OICq+/rvzFw6iHADxf/XlKOJfQOCKRW/OhODz1eq3DnkzaeajIznTridylKIpRe7zhDYZnUFtoTRKUQsBoTBSZQFAzi04tUh+Pbjhaw0hEityaD8WrhjtO7k9es0pMLUrElwbgstNZHtk8wMnDHq8a7jm6XZGxg7cPcjn4MgBty7dVJ3UUlkkSlEKgW9VulHAynK3/eelPAqMCNY6o8LkTdoft17YDUN61PB0rd9Q4IpGb9HodzYfUVJ/r0NHKqLHsTpoPrpnrE9IJYwtPLlQfj2k0RsNIRFZIglII2FjZqANGJSQnyASCGljqtxQFQ4+NEQ1GqBPJiYKrYlMvfKc2UK+ktAjzRa8YPvdTpQ5QrnExLcMrdEJiQlh/YT1gmD28T80+GkckMiPfkoWETCConaTkJPW+t16nlzk/CpGKTb0YOM+HViNr45bkTluP9gAExD2Q9mB5bNWZVcQlGRolD6k7RGYPzwckQSkkanjWoGXZlgCce3SO4/ePaxxR4bHz+k7uhN8BoGuVrpQpUkbjiERe0ut1FKvkCsDwuk8aZebW4ImWMiChJVEUhYWnntzeGd1I2oDlB5KgFCIygaA2ZORYkaJDmU5qe7BNlzflSnswSxiQ0NL8e/dfLgReAAwDWNYqVkvjiERWSIJSiAyoPQAnGyfAMIFgVHyUxhEVfI9iHrHp8iYAvJy96F61u8YRCS3Z6I3bg/189meNIyocpHFs/iQJSiHibOvMi8+9CEBEfARrzq3ROKKCb831X0lMTgRgeP3h2FjZaByR0FrqK5mLTi2S9mC5LDQ2lHXn1wHgaudKv1r9NI5IZJUkKIXMq41fVR//dPInDSMp+BQUfr66Un2e+odJFF7VPavTpnwbAC4GXeSA/wGNIyrYfjn7CzGJMQAMrjsYRxtHjSMSWSUJSiHTuFRjGpVsBMCJ+yc4cf+ExhEVXFcc/uNmxA0A2ldsT2X3yhpHJCzFq43kRCEvPN04Vm7v5C+SoBRCqa+iLDixQMNICrb9btvUxzJyrEitT80+FHM0jIOy4cIGHkU90jiigun4/eOcfXgWgGalm1GnRB2NIxLmkASlEHrxuRcpYlcEgF/P/UpYbJjGERU8j2IeqZPCeTp60rtGb40jEpbEztpOHQ8nITmBZX7LNI6oYFp08sn0EnL1JP+RBKUQcrZ15pU6rwAQnRAtPQlyWHKywqJji0nSGRrHjqg/AjtrmRROGEv9g7ng5AKSlWQNoyl4IuIiWH1uNQAuti4MrD1Q44iEuSRBKaTGNh6rPv7p5E/SkyCH3DwWwOrJe1h5zXBGrFN0lNpcj5vHAjSOTFiaSkUr0bmyYZbjm6E3ZWTZHLbq7CqiEgxDKQyqMwgnWyeNIxLmkgSlkKpboq7RyLL/3PlHs1gKysiXN48FsGeOH0fiDhFiYxiAq3ZUI5yCirJnjp8kKSINo151J6SxbE5RFIUfjv+gPh/XeJyG0YjskgSlELOUngQFYeTL5GSFIysvArDfbata7hP6ZGC2I6sukpwsV6rEEz2q9aC0S2kANl/ZzN3wuxpHlHWWfGJxwP+A0cix9bzqaRyRyA5JUAqxfrX64e7gDsBv538jKDpI44jyr4BLIUSFxBJoE8A5J0PXbY+E4tSJaqzWiQqOJeBSiFYhCgtkrbdWe3glK8ksPrU4kzUshyWfWKS+ejKhyQQNIxHPQhKUQszBxoFh9YYBEJcUx4rTK7QNKB+L+f8v6QOu21B0hqsk3qFd0WNlsp4QKUY1HIWVznCcLDq1iISkBI0jyt/uR9xn46WNABR3Kk6fmn00jkhklyQohVzqngQ/nfxJehJkk4ObHQm6BA657gDASrHGO6yTyXo5ydHNjgZ9quCYw68r8k7pIqXpWb0nYPhx/evKXxpHlL8tOrlInV5idMPR0oMuH5MEpZCr7lmd9hXbA3At5Jr0JMgmrxrunPM6SqR1OAANI1pRJKmoUR0nD3u8arjn6HYdi9rTqF9VHIva5+jriryVuj1Y6tsTwjwJSQksOGkYfFKv0zO20dhM1hCWTBIUwcQmE9XH847O0zCS/Euv13G0/C71uU9otzR1mg+uiV6vy8uwRD7RsXJHqrhXAWDPzT1qA09hnj8u/cGDyAcAPF/9ecq6ltU4IvEsJEER9Kzek/Ku5QHYdm0bV4KvaBxR/nM64DQnHx8HoExiBarGPKcuc/Kwx3dqAyo29dIqPGHh9Dq90YnCd0e/0zCa/OvHEz+qj8c3Ga9hJCInSIIisNZbG7V0//7Y9xpGkz/NPTpXffxOzzdpPdKQoLQaWZuBc30kORGZGlZ/GM62zgCsPLuSxzGPNY4ofzn/6Dz7bu0DoLpHdXwr+mobkHhmkqAIAEY2HImDtQMAy08vJyI+XOOI8o+HkQ/59b9fAXCzd2NY/aEUq+QKQLFKrnJbR2SJq70rw+sPBwxTUCzxW6JxRPnLj8eNr57odPJ3l99JgiIAcHdw55W6hvl5IuIjWHN9tcYR5R8LTi4gPikeMPQakCG1RXZNbPrkNs/3x74nKTlJw2jyj8cxj1l+ZjkAjjaODKk3RNuARI6QBEWoJjWdpD5e8N9PJJNM4I0wGf00A3GJceqZm5XOyugHRghzVfOoRtcqXQHwD/Nn85XNGkeUPyw6tYjohGgAhtcfjpu9m7YBiRwhCYpQ1SlRhxburQDwj73JeaeTHF5ynrWT98k8MulYd34dD6MeAtC7Zm/KuZbTOCKR301uNll9LL3qMpeQlMB3xwyNinXomNJsisYRiZwiCUo+k5sDc908FkCD/9qpz/922wRAVEisTHZngqIozDk6R30+tdlUzWIRBUenyp2o5lENgL239vLfw/80jsiybbi4QZ3DqEe1HlT1qKpxRCKnSIKSz+TWwFwpk93Vi2yGR0JxAM45n+S+7W21jkx2Z+zwncOcenAKgEYlG6mzQwvxLPQ6vdHt1tQ9xIQxRVH49si36vPXmr+mYTQip0mCIoAnk93psaL9415q+c6iv6uPZbI7Y6l/OKY0myK9BkSOGVpvKEXsigCw6uwqAiLl6qUp/979l2P3jgFQr0Q9fCr4aBuQyFGSoAjAeBK7NqFdcEgy9EQ5WuRvQq1CTNYrzG6F3uL3i4bkzcvZiwG1B2gckShIXOxc1GHa45PiZeC2dDx99UROEgoWSVAEYDyJnb3iSJtQQ0+CRH0ifxfdZLJeYfb1P1+rEyuObzxeJiQTOW5KsynY6G0AwwipkfGRGkdkWVKfJJRwKsGLz72ocUQip0mCIgDDZHdO7k/atXR4/DxWijUA+922EquLzpXJ7vKjwKhAdRAtRxtHGVJb5IrSRUrzct2XAQiNDWXxqcUaR2RZvvn3G/UkYUKTCXKSUABJgiIAw2R3zYfUVJ+7JXnQLNwHgGirSA657ZTJ7v7fd8e+IyYxBjAMzObh6KFxRKKgmtZimvr42yPfkpCUoGE0liMwKlBN2OQkoeAyO0GJj49n/vz59O7dmw4dOjB27FiOHz+epXVPnDjBlClT6NmzJ926dWPMmDHs2LHD7KBF7qjY1AvfqQ3UKymdQvqqyw6W20KZRvJDHBkfqc5VZK235vUWr2sckSjIahevTbeqhpmxb4fd5rcLv2kckWWYe3SuepIwpuEYOUkooMxOUGbNmsW6devo2LEjkydPRq/X89Zbb3H27NkM1zt06BBvvPEGCQkJDBs2jFGjRmFnZ8fMmTNZt25dtndA5KyKTb0YOM+HViNrUzq+PG2KGsZFuR97T74cgcWnFvM41jCJ26A6g2RgNpHr3mr5lvr4y3++RFEKd1f/8Lhw9STBRm/DGy3f0DgikVvMSlAuXLjAnj17GDNmDOPHj6dXr17MmTMHLy8v5s+fn+G6v//+Ox4eHsyZM4e+ffvSp08fvv32W0qXLs22bdueaSdEztLrdepkd683eXKF4PNDn6v3fAujhKQEvvn3G/V56h8OIXJLm/JtaFKqCQCnA06z8/pOjSPS1oITCwiLCwNgcN3BlClSRuOIRG4xK0HZv38/VlZW9Or1ZJwMOzs7unfvzvnz53n48GG660ZHR+Pi4oKtra1aZm1tjaurK3Z20rjJUrUs0ZrmZZoD8N+j//jz0p8aR6Sd1edWcyf8DmAYsbJ28doaRyQKA51Ox1utniTDnx74tNBeRYlNiuWbI4aTBB3G74soeMxKUK5evUqZMmVwcjKerbVmTUPjymvXrqW7bv369bl58yaLFy/m7t273Lt3jxUrVnD58mVeeumlbIQu8oJOp+ODNh+ozz858Emh/HJMSk5i1qFZ6vO3W72tYTSisOlTsw+1itUCDCMY77u1T9uANLL2+mp10Lo+NftQ3bO6xhGJ3GRtTuXg4GA8PNI2RkopCwoKSnfdoUOH8uDBA1atWsXKlSsBsLe355NPPsHb2zvD7QYFBREcHKw+9/f3Nyds8Yy6VOlC41KNOXH/BKcDTvPXlb/oWb2n1mHlqXXn13Ep6BIArcu1pnW51hpHJAoTvU7P/7z/x8u/G7odf3LgE9pVbJfJWgVLIol8f+7J6M3vtH5Hw2hEXjArQYmLi8PGxiZNecptm7i49EcZtbGxoWzZsvj4+NCmTRuSkpLYvHkzM2bM4JtvvqF27fQvl2/atInly5ebE6rIQTqdjvfbvM/za54HDF+OPar1KDSjNiYlJ/HJgU/U5x/7fKxhNKKwGlh7IB/v/5grwVfYd2sfB/wP0KZ8G63DynXJyQqBN8L413UPtyJvAdChUgcal2qsbWAi15mVoNjZ2ZGQkLYffnx8vLo8PXPmzOHChQssXrwYvd5wZ6l9+/YMGTKEefPmsWDBgnTX7dWrF61atVKf+/v7M2PGDHNCF8+oZ7We1CtRjzMPz3Di/gl2XN9BlypdtA4rT6w9v1a9euJdzpt2FQrXmauwDFZ6K/7n/T+G/jEUMLRF2TV4l8ZR5a6bxwI4svIiYSERbKm0Wi0fU3xSBmuJgsKsNigeHh5Gt1pSpJR5enqaXC8hIYEtW7bQokULNTkBQyPZZs2acfnyZZOJTwpPT0+qV6+u/itfvrw5YYsckHIVJcXH+z8uFG1RkpKT+GT/k6snH/l8VGiuHAnLM6jOICoVrQTA7hu7+efOPxpHlHtuHgtgzxw/okJiOey6i2CbRwDUjmpE2Aobbh6TCRQLOrMSlCpVqnD37l2ioqKMyi9cuKAuNyUsLIykpCSSkpLSLEtKSiI5OZnk5MLbfTW/6F2zN7WLGW7FHbl7hB3XC/4ge2vPr+Vy8GVArp4I7VnrrZneerr6/H9//69AnigkJyscWXkRgARdAls81qjLng96BYAjqy6SnFzw9l08YVaC4uPjQ1JSEps2PZk8Lj4+nq1bt1KrVi1KlCgBwMOHD40ashYtWhRnZ2cOHjxodKUkOjqaw4cPU65cOelqnA/odXo+aPukR8+7e94t0OOiJCYn8vH+J+1N5OqJsARD6g2hctHKAOy7tY9dNwrebZ6ASyFEhcQCcNB1O49tDB0w6kY2pWKsoedOVHAsAZdC0n0Nkf+ZlaDUqlWLdu3asXDhQubPn8+mTZuYOnUqAQEBvPrqq2q9mTNnMnjwYPW5lZUVL774Infu3OHVV19l3bp1rFmzhrFjxxIYGMiQIUNybo9ErupXqx8NSzYEDINGrT23VuOIcs+SU0u4EnwFkKsnwnLYWNkwo/2TNngF8UQhJtTQ4SJOF8tWjyffMb3+/+rJ0/VEwWT2UPfTp0+nf//+7Nixg3nz5pGYmMjs2bOpX79+husNGTKE999/H2tra5YvX86SJUtwcnLik08+oVOnTtmNX+QxvU7P576fq8/f2/se8UnxGkaUO6Lio/ho/0fq89kdZsvVE2ExBtQeQH2v+gCcenCK9RfWaxtQDnNwM1xR3130T8KsDVdJ6ke0oHxcFZP1RMFkVi8eMPTUGT9+POPHpz975Lx580yWd+zYkY4dO5q7SWFhOlTqQPuK7fn75t/ceHyDRScXMaHpBK3DylHf/PuN0YBQLcq20DgiIZ7Q6/TM8p1F11+6AvDe3+/Ru0ZvbKzSDgORH3nVcCfRI4btRQ3ztOkUPb2DhhrVcfKwx6uGe45u19HNjgZ9quAoiY9FMPsKihA6nc7oKsonBz4hMj5Sw4hy1qOoR3zxzxcAWOms+Kz9ZxpHJERanSt3pm35tgBcDbnKUr+lGkeUc/R6Hf822kKslWHGYu+wzpSKN56Ys/ngmuj1OXtV07GoPY36VcWxqH2Ovq7IHklQRLY0Kd2EfrX6Af//g374C40jyjmf7v9UTbhGNxwtw2kLi6TT6Zjl+2T6hff3vk9YbJiGEeWcK8FX+PWOYcRxO8WenkEvq8ucPOzxndqAik29tApP5BFJUES2zWw/E2u94S7hl/98ya3QW9oGlAMuBl7kp5M/AeBk48SHPh9qHJEQ6WtRtgX9a/UHIDA6kE8PfKpxRDnjnd3vkJicCMDbbd+i+zDDdCitRtZm4FwfSU4KCUlQRLZV86jGlGZTAIhNjGXazmkaR/RsFEVh8vbJ6hfjmy3fxMtZvgiFZfui4xfYWxtuScw9OpdrYVc1jujZ7Li2g42XNgLg5ezFm63epFglVwCKVXLN8ds6wnJJgiKeyftt3qe4U3EANlzcwN83/9Y4ouzbcHEDu2/sBqCCWwWZyl3kCxXcKvBmyzcBw9g97xwwzLQdeCMs3w1kFpcYx6RtT4axn91hNs62zhpGJLQkCYp4Jq72rkYNZidvm0xCUvrTFliqqPgoXt/xuvr8287f4mDjoGFEQmTd263exsuuJAD7H//NGaejHF5ynrWT9+WrIeG/+fcbroYYrgC1KtuKwXUHZ7KGKMgkQRHPbGj9oTQp1QSA84Hn+frfrzWOyHyfHfyMO+F3AOhSpQvPV39e44iEyLpHpyPocfPJj/mvJX4kVhdNVEgse+b45Ysk5XbYbbUNjV6n54duP8jYQ4WcJCjimel1en7s/iN6neFw+mjfR1wNzj/3wU8HnFa7FdvobZjbZa58MYp8I2XemqYRbakV1QCAEJtA/ii2Uq1j6fPWKIrC+C3jiUk0dCue0GQC9bzqaRyV0JokKCJHNC7VmKnNpgIQlxTH6M2j88Xw2wlJCYz4c4TaMPbd1u9SzaOaxlEJkXUp89bo0PHKw4nYJhsGGfvbbTM37C8Blj9vzaqzq9hydQtgaBj7SbtPMllDFAaSoIgc80m7T6jgVgGA/f77WXJqibYBZcFX/3yFX4AfAM8Vf47/tfmfxhEJYZ7U89EUSyhJr/8fM0TRKaz0mkuCLiFNPUvyIOIBU7ZPUZ//1P0n3OzdtAtIWAxJUESOcbJ1YkGPBerz13e+zvWQ6xpGlLELgRfU+Xb0Oj1Ley3F1spW26CEMNPT89F0eNybsrGVALhn588fnitN1rMEiqIwbss4QmNDAXjpuZd4voa0/xIGkqCIHNWpcieG1x8OQGR8JC///rJF9uqJTYzlpQ0vqRMdTmsxjSalm2gclRDm86rhjpP7k6HZrbBieMDrWCcbBlHc6b6Bm14Xcnzempyw7PQy/rz8JwDFnYozr6vpedxE4SQJishxc7vMpXLRygAcvXeUj/d/rHFEhoaEgTcMw4AH3gjjzZ1vcvbhWQBqF6vNRz4faRidENmn1+toPqSmUVnZuEr0DhqmPl9a/Gsex1pWG5QLgReYuHWi+vzHbj/i6eipYUTC0kiCInKci50Lv/b9VR0G/7ODn7Hv1j6TdZ9OHHKjp8HNYwGsnbyPw0vOA/DDmiV8f/x7AOyt7VnTb42MeSLytYpNvfCd2sDoSkqHxy/wXHwjAALiHjBi0wiLabgekxDDwPUD1V47YxqOoW+tvhpHJSyNJCgiVzQt3ZRPfAwt8RUUBvw2gNtht43qPJ045MbAUjePBbBnjh9RIbEABNjcZWnJr9Tl06t9xHPFn8ux7QlhiqObHQ36VMExF9uBVGzqxcB5PrQaWRsA75F12PrmH7g7GG7tbLq8iZkHZuba9rNKURTG/jWWc4/OAYYrmN92+VbjqIQlkgRF5Jq3Wr1Fp8qdAMNEZi+seYHohGggbeKQIicHlkoZHyJFtD6S78t8TIyVIYZGEa2pfKCJRY8PIQoGx6L2NOpXFcei9plXfgZ6vc5o3pqybmX4pc8v6DCM6/Phvg/568pfuRpDZr7+92tWnV0FgIO1A2v7rcXRxlHTmIRlkgRF5BorvRWr+66mUlFDjwK/AD+G/TGMhMREo8TBlJwYWCplfAiARBJZVHI2D23vAVA6rgLDHrxGdHCcRY8PIcSz6lKlCzPbG66cKCgM2jCI0wGnNYlly5UtvLXryRxXK15YQe3itTWJRVg+SVBErnJ3cOfPF//EycYJgN8u/MboNWOJDInJcL2cGFgqZdyHZJJZXvJbzjmfBMApyYUJ9z7AXnEwqidEQfVO63foW9PQxiMiPoKuv3Tl5uObeRrD4duH6f9bfxQMJx4ftPmA/rX752kMIn+RBEXkuueKP8fafmux0lkBsOL6UjZ5/JLpes+aODi42aGgsLb4Qo4W2QuAdbIN4+69R7EEL6N6QhRkOp2Olb1X0qJMCwACIgPo9HMn7oXfy5Ptnw44Tfdfu6uNYvvX6s+HPh/mybZF/iUJisgT3at1Z9nzy9Tnf3n+ygbPZerZlCnPmjgUr+7GunIL+LvoJgD0ip6xD96hekwdtY6Th71Fjg8hRE5ztHHkr0F/UdPT0CX5Wsg12ixvw63QW7m63WP3jtFhZQfC4gy99TpV7sSq3qvUubuESI8cISLPDK43mDmd56jPt3v8xi8lfiCJpDR1nzVxiE+KZ8gfg9ntsEktGxIwhfqRLYzqNR9cE71eJgYUhYO7gzs7Xtmhtgu78fgG3su8Of/ofK5sb9f1XbRf0Z7gmGAAWpZtye8DfsfOWq5aisxJgiLy1JTmU/ix249qr4L9bluZU+Y9IqzCjOo9S+LwIOIB7Ve0Z/W51QBY6awYHz6dVuEd1TpOHvb4Tm1AxaZe6b2MEAVSWdeyHBh2gBqeNQC4G36XZoubseHChhzbhqIofHf0O7r92o2ohCgAfCr4sHXQVpxsnXJsO6JgkwRF5LlxTcaxqvcqrHWGgdwuOZ3h0/KTuOh4+pkTh82XN9NwYUMO3zkMgJ2VHRsHbuS7L2eo40O0GlmbgXN9JDkRhVbpIqXZP2w/DUs2BCAqIYp+v/Vj6vap6lAA2fUo6hED1g9g8vbJ6izhvWv0ZtvL23C1d33m2EXhIQmK0MTLdV9m77C9eDkbkoTHNkF8U3Y6O3xXYlMj0ezXu/H4Bi+uf5Fea3oREGkYQ6VskbIcHH6QntV7phkfQm7riMKuuFNxDg4/yMt1XlbL5h6dS935dfnj0h8oinnd/BOSElh0chG1fqjF+gvr1fI3W77Juv7rsLfO3TFgRMEjCYrQTOtyrTk15hQtS7RSy1acWU6VeVUYv2U8px6cyvBLUlEUjt07xog/R1Dj+xqsPb9WXda1SldOjDkhEwAKkQFHG0dW9V7F3C5z1QTi+uPr9F7bm6aLm7Li9IpMr6g8jnvMvKPzqPVjLcb8NUZtb+Lu4M7vA37ni45fqNNeCGEOOWqEpkq6lGRjp828/uX7bCq7ioiEcOKS4ph/Yj7zT8ynvGt52lZoSzX3apRwLkGyksyjqEdcCrrE3lt7uR9x3+j1PBw8+KrTVwytNxSdTq6SCJEZnU7H5GaT6VKlC6M3j+aA/wEATtw/wbA/hzH2r7F4l/emgVcDKrhVwNbKluiEaC76X2ZXub28uu4KSYpxQ/cBtQcwr8s8SjiX0GKXRAEhCYrQnF6nxyesO+9Pfp2ldxfw/fHv1bM2/zB/Vp5ZmelrFLErwqSmk3iz5Ztyn1uIbKjmUY19Q/fx15W/eH/v+5x5eAaAuKQ4dt/Yze4bu9Ou5ACpRwpoX7E9M9rNoEXZFmnrCmEmSVCExfCw92B2x9lM957O2vNrWXNuDf/c+Ye4JNMDtjlYO9C2Qlv61+rPwNoDLap3QF5MDidETtPpdPSs3pMe1Xpw5O4Rlp1exvZr27kTfifddaq5VqdHze6MaDBChq0XOUoSFGFxXO1dGdNoDGMajSE2MZbzj85zK/QWwTHBWOmscLV3pap7Vap7VrfYhncpk8MJkR/pdDpalG1Bi7ItUBQF/zB/rgZf5W74XZKUJKx1NuhvOhC4MYFuw7yp3q6sNDwXOU4SFGHR7K3taVSqEY1KNdI6FCEKJZ1ORwW3ClRwqwAYZiI/svIiUSGxuAKHl5zn9MbrNB9SU7ruixwlvXiEEEJkyc1jAeyZ46fOEp4iKiSWPXP8uHksQKPIREEkCYoQQohMJScrHFl5McM6R1ZdJDnZvPFThEiPJChCCCEyFXApJM2Vk6dFBccScCkkjyISBZ0kKEIIITIVE2q6N1126wmRGUlQhBBCZMohi13ms1pPiMxIgiKEECJTXjXccXLPuFu/k4c9XjXc8ygiUdBJgiKEECJTer2O5kNqZlin+eCaMh6KyDGSoAghhMiSik298J3aIM2VFCcPe3ynNpBxUESOkoHahBBCZFnFpl6Ub1yCy3vvcHjJeVqNrC0jyYpcIVdQhBBCmEWv11GskmFSzmKVXCU5EblCEhQhhBBCWBxJUIRJMhuvEEIILUkbFGGSzMYrhBBCS3IFRQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExTG7kWx8fDxLlixh586dREREULlyZUaNGkWTJk2ytP6ePXtYv349169fx9ramvLlyzNq1CgaNWpkdvBCCCGEKJjMTlBmzZrFvn376N+/P2XKlGHbtm289dZbzJ07l7p162a47tKlS1mxYgU+Pj506dKFxMREbt68SVBQULZ3QAghhBAFj1kJyoULF9izZw/jxo3jpZdeAqBz584MGzaM+fPnM3/+/HTXPX/+PCtWrGDChAkMGDDg2aIWQgghRIFmVhuU/fv3Y2VlRa9evdQyOzs7unfvzvnz53n48GG66/7222+4u7vTr18/FEUhOjo6+1ELIYQQokAzK0G5evUqZcqUwcnJyai8Zk3DFNzXrl1Ld92TJ09So0YN1q9fT69evejSpQsvvPACGzZsyEbYQgghhCjIzLrFExwcjIeHR5rylLL02pJEREQQFhbGuXPnOHXqFMOGDaNEiRJs27aNuXPnYm1tzfPPP5/udoOCgggODlaf+/v7mxO2EEIIIfIZsxKUuLg4bGxs0pTb2tqqy01JuZ0TFhbGhx9+iK+vLwA+Pj4MGzaMlStXZpigbNq0ieXLl5sTqhBCiAJC5gYrnMxKUOzs7EhISEhTHh8fry5Pbz0Aa2trfHx81HK9Xk/79u1ZunQpDx8+pESJEibX79WrF61atVKf+/v7M2PGDHNCF0IIkU/J3GCFk1kJioeHB4GBgWnKU26/eHp6mlyvSJEi2Nra4uzsjJWVldGyokWLAobbQOklKJ6enum+thBCCCEKHrMayVapUoW7d+8SFRVlVH7hwgV1ucmN6PVUrVqVsLCwNFdgUtqtuLm5mROKEEIIIQowsxIUHx8fkpKS2LRpk1oWHx/P1q1bqVWrlnoF5OHDh2kasrZr146kpCS2b9+ulsXFxbFr1y4qVKggV0iEEEIIoTLrFk+tWrVo164dCxcuJDQ0lNKlS7N9+3YCAgJ4++231XozZ87k9OnTHDhwQC17/vnn2bJlC99++y137tyhRIkS7Nixg4cPHzJr1qyc2yMhhBBC5HtmD3U/ffp0NbmIjIykUqVKzJ49m/r162e4np2dHXPmzGH+/Pls3bqV2NhYqlSpwuzZs2natGl24xdCCCFEAWR2gmJnZ8f48eMZP358unXmzZtnsrxo0aJMnz7d3E0KIYQQopAxqw2KEEIIIURekARFCCEKEBnUTBQUZt/iEUIIYblkUDNRUMgVFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEVoTgaWEkII8TQZqE1oTgaWEkII8TS5giKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqCIQsPRzY4Gfarg6GandShCCCEyYa11AELkFcei9jTqV1XrMIQQQmSBXEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYTZZOoIkdtkqHshhBBmk6kjRG6TKyhCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLY3aCEh8fz/z58+nduzcdOnRg7NixHD9+3OwNv/7667Rp04Zvv/3W7HWFEEIIUbCZnaDMmjWLdevW0bFjRyZPnoxer+ett97i7NmzWX6N/fv3c/78eXM3LYQQQohCwqwE5cKFC+zZs4cxY8Ywfvx4evXqxZw5c/Dy8mL+/PlZeo24uDh++OEHBg0alK2AhRBCCFHwmZWg7N+/HysrK3r16qWW2dnZ0b17d86fP8/Dhw8zfY3Vq1ejKAovvvii+dEKIYQQolAway6eq1evUqZMGZycnIzKa9asCcC1a9coUaJEuus/fPiQX375hXfeeQc7u6xPMBUUFERwcLD63N/f35ywhRBCCJHPmJWgBAcH4+HhkaY8pSwoKCjD9X/44QeqVq2Kr6+vOZtl06ZNLF++3Kx1hBBCCJF/mZWgxMXFYWNjk6bc1tZWXZ6eU6dOsX//fn766SczQ4RevXrRqlUr9bm/vz8zZsww+3WEEEIIkT+YlaDY2dmRkJCQpjw+Pl5dbkpiYiJz586lU6dO6u0gc3h6euLp6ak+T0mE5FaPEEIIkf+UL18ee3v7DOuYlaB4eHgQGBiYpjylfUjqJCK1HTt2cOfOHaZNm8aDBw+MlkVHR/PgwQOKFi2aabApAgICAOQqihBCCJEPLVq0iOrVq2dYx6wEpUqVKvj5+REVFWXUUPbChQvqclMePnxIYmIiEyZMSLNsx44d7Nixg5kzZ+Lt7Z2lOJo2bcp7771HyZIl1dtLBVnKLa333nuP8uXLax1OnpJ9L3z7Xlj3GwrvvhfW/YbCu+9Z2VezEhQfHx/WrFnDpk2beOmllwDD7Z2tW7dSq1YttQfPw4cPiY2NVQPw9fWlatWqaV7vf//7H82bN6dnz55m3fpxc3OjU6dO5oReIJQvXz7TjLOgkn0vfPteWPcbCu++F9b9hsK97+kxK0GpVasW7dq1Y+HChYSGhlK6dGm2b99OQEAAb7/9tlpv5syZnD59mgMHDgCGNz69bKlkyZJZvnIihBBCiMLBrAQFYPr06ZQoUYIdO3YQGRlJpUqVmD17NvXr18+F8IQQQghRGJmdoNjZ2TF+/HjGjx+fbp158+Zl6bVSrrCIjHl4eDBs2DCTY9AUdLLvhW/fC+t+Q+Hd98K631C49z0zOkVRFK2DEEIIIYRIzezZjIUQQgghcpskKEIIIYSwOJKgCCGEEMLiSIIihBBCCItjdi8ekTuCgoJYv349Fy9e5NKlS8TExDB37lwaNGiQpu7kyZM5ffp0mvKmTZvy1VdfGZXFx8ezZMkSdu7cSUREBJUrV2bUqFE0adIkt3bFbObsO8B///3HTz/9xJUrV3BycqJdu3aMHj0aR0dHo3r5Yd9N2bZtG7NmzTK5bOPGjWla+x86dIhly5bh7++Pm5sb3bp1Y8iQIVhb568/7/z6eZnDz8+PKVOmmFw2f/58ateurT7P6nFuiaKjo1mzZg0XLlzg4sWLRERE8O6779K1a9c0dW/dusX333/Pf//9h7W1NS1atGDixIm4ubkZ1UtOTmbNmjX88ccfhISEUKZMGV555RU6dOiQR3uVuazu92effcb27dvTrF+uXDl+/vlno7L8sN+5JX99gxVgd+7c4ddff6VMmTJUqlSJ8+fPZ1i/WLFijB071qjMVDe1WbNmsW/fPvr370+ZMmXYtm0bb731FnPnzqVu3bo5ug/ZZc6+X716lddee43y5cszceJEHj16xNq1a7l79y5ffvmlUd38sO8ZGTlyJCVLljQqc3Z2Nnp+5MgR/ve//1G/fn2mTJnCjRs3WLlyJY8fP+aNN97Iy3CfWX7/vMzRt2/fNKNnly5dWn1sznFuicLCwli+fDklSpRQp0gx5dGjR0yaNAlnZ2dGjx5NTEwMa9as4caNGyxYsAAbGxu17qJFi/jll1/o2bMnNWrU4NChQ3zyySfodDp8fX3zatcylNX9BrC1teWtt94yKks9hUyK/LDfuUYRFiEqKkoJCwtTFEVR9u7dq3h7eyunTp0yWXfSpEnKkCFDMn3N8+fPK97e3sqvv/6qlsXGxiovvvii8uqrr+ZM4DnAnH2fNm2a8sILLyiRkZFq2ebNmxVvb2/l6NGjall+2XdTtm7dqnh7eysXL17MtO7gwYOV4cOHKwkJCWrZwoULlTZt2ii3bt3KzTBzVH7+vMxx6tQpxdvbW9m7d2+G9bJ6nFuquLg4JSgoSFEURbl48aLi7e2tbN26NU29r7/+WunQoYMSEBCglh0/flzx9vZW/vzzT7Xs0aNHSrt27ZRvvvlGLUtOTlYmTJig9OnTR0lMTMzFvcm6rO73zJkzlU6dOmX6evllv3OLtEGxEI6OjhQpUsSsdRITE4mOjk53+f79+7GysqJXr15qmZ2dHd27d+f8+fM8fPgw2/HmpKzue1RUFCdOnKBTp05GZxqdO3fGwcGBvXv3qmX5Zd8zEx0dTVJSksllt27d4tatW/Ts2dPodk7v3r1RFIV9+/blUZTPrqB8XuaIjo4mMTExTbk5x7mlsrW1zdLAY/v376dly5bqPG4AjRs3pmzZskb7eejQIRITE+ndu7daptPpeOGFFwgMDMz0inNeyep+p0hKSiIqKird5fllv3OL3OLJp+7cuUPnzp1JSEjA3d2dHj16MGzYMKMfqqtXr1KmTJk0lw1TLi1fu3bN6IvB0t24cYOkpKQ0E2rZ2NhQtWpVrl69qpYVhH2fMmUKMTEx2NjY0KRJEyZMmEDZsmXV5VeuXAFI8354enpSrFgxo/fD0hWEz8scs2bNIiYmBisrK+rWrcu4ceOoUaMGYN5xnp8FBgby+PFjkxPk1axZkyNHjqjPr169ioODQ5o53VKOj6tXr+a724CxsbF07dqV2NhYXFxc8PX15dVXXzVqY1QQ99sckqDkQ6VKlaJBgwZUqlSJ2NhY9u3bx8qVK7lz5w4ff/yxWi84ONhkNp9SFhQUlGcx54Tg4GDAdFsbDw8Pzpw5Y1Q3v+67nZ0dXbt2pUGDBjg5OXH58mXWrVvH+PHjWbx4sfpDndn7kbI8P8jPn5c5rK2tadu2Lc2bN8fV1ZVbt26xdu1aJk6cyI8//ki1atXMOs7zs8z2Mzw8nPj4eGxtbQkODqZo0aLodLo09SD/HR8eHh689NJLVKtWDUVROHr0KH/88QfXr19n7ty56olmQdtvc0mCkguSk5NJSEjIUl1bW9s0B19m3nnnHaPnnTt35ssvv2Tz5s0MGDBA7QkQFxdn1Mgs9TZTlue03Nz3lHjT26f4+Hijunm976Zk5/1o37497du3V8u9vb1p2rQpkyZNYtWqVUybNg1A3d+UfXr6tTK6/WdpLOXzym116tShTp066vPWrVvj4+PD8OHDWbhwIV999ZVZx3l+ltl+ptSxtbUtcMfH0x0cfH19KVu2LIsWLWL//v1q49eCtt/mkgQlF5w5cybdroRPW7VqVZrLd9kxcOBANm/ezIkTJ9QExc7OzuSPY8oXnJ2d3TNv92m5ue8p8aa3T6l/qLXYd1Ny6v2oW7cutWrV4uTJk2pZyv6a+sGKj4/Ps33MCZbyeWmhTJkytG7dmgMHDpCUlGTWcZ6fZbafqesUhuNjwIABLFmyhBMnTqgJSmHY74xIgpILypUrx7vvvpulujk1g2Xx4sUBiIiIMHrtwMDANHVTLq16enrmyLZTy819T6lv6tZFcHCw0f5ose+m5OT7Ubx4cW7fvp2mfnBwcJr2GcHBwWm6sVoyS/m8tFK8eHESEhKIjY016zjPzzLbzyJFiqjJmIeHB35+fiiKYnTVtSAdH3Z2dhQpUoTw8HC1rDDsd0YkQckFHh4eJgckyk33798HMBrcKKUfflRUlFHjwwsXLqjLc1pu7nvFihWxsrLi8uXLRrdAEhISuHr1Ku3atVPLtNh3U3Ly/bh//77R51u1alUALl++TK1atdTyoKAgAgMDjXrEWDpL+by0cv/+fWxtbXFwcDDrOM/PihUrhpubG5cvX06z7OLFi0afeZUqVfjrr7/w9/enQoUKanlBOj6io6MJCwtL8x1e0Pc7I9LNOJ+JiopKc0lfURRWrlwJYDTqpo+PD0lJSWzatEkti4+PZ+vWrdSqVSvf9YpwdnamcePG7Ny506h9xY4dO4iJiTH64s7P+x4aGpqm7N9//+Xy5cs0bdpULatYsSLlypVj8+bNRl2R//jjD3Q6HW3bts2LcHNEfv68zGHqs7127RqHDx+mSZMm6PV6s47z/K5t27b8888/Rt3IT548yZ07d4z2s3Xr1lhbW7Nx40a1TFEU/vzzT4oVK8Zzzz2Xp3E/i7i4OJPtw1asWIGiKDRr1kwtK0j7nR1yBcWCrFixAjCMbwGGL6SzZ88CMHToUMDQtfTjjz+mQ4cOlC5dmri4OA4ePMh///1Hz549jbrs1apVi3bt2rFw4UJCQ0MpXbo027dvJyAggLfffjtvdy4TWdl3gFGjRjFhwgQmTZpEr1691BE2mzRpYvSHnZ/2/Wnjxo2jWrVqVK9eHScnJ65cucLWrVspXrw4gwcPNqo7fvx43n33Xd544w18fX25ceMGGzdupEePHkZnXJYuP39e5vjwww+xs7Pjueeeo2jRoty6dYvNmzdjb29v1HAyq8e5JduwYQORkZHq7YjDhw/z6NEjwDCSrrOzM6+88gr79u1j6tSp9OvXj5iYGFavXk2lSpWMrjwWL16c/v37s3r1ahITE6lZsyYHDx7k7NmzvP/++1hZWWmyj6Zktt8RERGMHDmSDh06UK5cOQCOHTvGkSNHaNasGa1bt1ZfKz/td27QKYqiaB2EMGjTpk26yw4cOAAYLgUvWLCAixcvEhISgl6vp3z58vTo0YNevXql6RUTFxenzm8SGRlJpUqVGDVqlNGZuCXIyr6nOHv2rDpHiaOjI+3atWPs2LFp5ijJL/v+tEWLFnHkyBEePHigtklo0aIFw4YNw93dPU39gwcPsnz5cvz9/XF1daVr165pxsTJD/Lr52WO9evXs2vXLu7du0dUVBRubm40atSIYcOGUaZMGaO6WT3OLdWAAQMICAgwuWzt2rXqNA43b95MMxfPhAkT0hzrycnJ/Prrr2zatIng4GDKlCnDyy+/TKdOnXJ9X8yR2X47Ozszd+5czp8/T3BwMMnJyZQuXZqOHTvy4osvpvm7zS/7nRskQRFCCCGExZE2KEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKCJD27Zto02bNmzbtk3rULLEz8+PNm3asHTp0lzbRps2bZg8eXKuvX5hMWDAAAYMGKB1GBZv6dKltGnTBj8/v1zdzrp162jfvj0PHjzIUv28+FvLzz799FP69+9PXFyc1qHkW5KgFDCff/45bdq0oUePHmkmFSwo8tsPW1hYGD/99BNDhgyhY8eOdOzYkf79+zN16lSWLVtGSEhInsSRWbI5efLkDKccKExiYmLo0qULbdq04ZtvvtE6nFwXERHBypUr6datmzoEvXg2w4YNIygoiN9++03rUPKt/DVZh8hQdHQ0e/fuRafTER4ezsGDB/H19X2m1/T29qZWrVp4eHjkUJSFy6NHjxg/fjyPHj2iatWqdO3aFRcXF4KDgzl37hzLli2jTp06JufYKei+/fZbrUNI1969e4mOjkan07F7924mTJiAnZ2d1mHlmnXr1hEeHs5LL72kdSgFRtmyZWnVqhW//vorffv2xcHBQeuQ8h1JUAqQv//+m5iYGAYMGMD69evZsmXLMycozs7OODs751CEhc/SpUt59OgRI0eONJqVOcX169cL7ftbunRprUNI15YtW7CysqJPnz789ttvHDhwgI4dO2odVq5ITEzkr7/+ok6dOhb9meRHnTp14sCBA+zZs4cePXpoHU6+IwlKAZLypTpo0CCuX7/OqVOnCAgIwMvLy6je0qVLWb58ebqv4+Xlxbp16wDDbYFZs2bx7rvvGk1/3qZNG+rXr8/777/P/PnzOX78OPHx8dSrV4+pU6dSqlQpbt26xcKFCzlz5gyJiYk0bdqU1157zehqgZ+fH1OmTGHYsGGMGDHCKI4HDx4wcOBAunTpwvTp09XnqWNIYWr9S5cusXDhQs6fP49er6dhw4ZMnDgxzSXsAwcOsHfvXi5dukRQUBDW1tZUrlyZfv364ePjk/Gbnonz588D0KdPH5PLK1eubLL8/v37/PLLLxw/fpzg4GCcnJyoUKECXbt2VT+HhIQENm3axD///MOtW7cIDQ3FycmJOnXqMHToUKpVq6a+3meffcb27dsBmDVrFrNmzTLa/9TvZerHKe99iuvXr7Nq1SpOnz5NeHg4Hh4etGrViuHDh+Pq6qrWS/3ZDRo0iEWLFnHmzBnCw8PVmWxTbtOlHGvw5NicO3cuQUFBrF69mtu3b+Ps7Ey7du149dVX01zJSExMZM2aNfz1118EBQVRrFgxunfvTvv27XnxxRfT7ENmbt++zX///UfLli2Nkn1TCUrq47dly5ZZOt4A9u/fz88//8zNmzdxcnKiVatWjBs3jpEjR6Z5TzKS1c8jI8eOHSM4OJhBgwaZXB4XF8eyZcvYtWsXYWFhlC5dmn79+qWZfTm1+/fvs2rVKo4fP87jx49xcXGhadOmjBgxIs33EZj3fqQcy2vWrOHAgQNs2bKF+/fv4+vrq37Ojx8/5ueff+aff/7h0aNHODo6Uq9ePUaMGEGlSpXSbN+c+nfu3OHnn3/Gz8+P4OBg7O3tKV68OA0aNGDSpElGM8q3aNECe3t7tm/fLglKNkiCUkDcunWL8+fP07x5c9zd3encuTMnT55k69ataX64GzRoYPI1/P392bt3b5YvZUdERDBhwgQ8PDzo3Lkzd+/e5Z9//uH111/ns88+Y+LEiVSvXp1u3bpx5coV9u/fT3h4OHPnzs3WPjo7OzNs2DDWr18PQL9+/dLdp0uXLrF69WoaNGhAr169uHr1KgcPHuTGjRssX77caB8XLlyItbU1derUwcPDg9DQUA4fPswHH3zAlClT6Nu3b7biBdQfiTt37lCrVq0srXP27FnefvttoqOjadq0Kb6+vkRERHD16lXWr1+vJijh4eF899131K1bl+bNm+Pi4sKDBw84fPgwR48e5bvvvqNmzZqA4VZdZGQkhw4donXr1lSpUsVom8OGDWP79u0EBAQwbNgwtbxq1arq40OHDvHRRx+h0+lo3bo1xYsX59atW/z+++8cO3aMBQsW4OLiYvS69+7dY9y4cVSqVIkuXboQHh6OjY1Npu9Bymu2atWKhg0bcvToUTZs2EBYWBgffPCBUd3Zs2ezY8cOSpUqxQsvvEBCQgLr1q3j3LlzWXq/n7ZlyxYAOnfuTIkSJahfvz5+fn7cv3+fUqVKmVzHnONty5YtzJ49GycnJzp37oyzszNHjhzh9ddfJzExEWvrrH0tZ+fzMOXkyZMA1K5dO82y5ORk3n33XU6cOEGlSpXo0KED4eHhfP/99+l+j1y4cIFp06YRExNDy5YtKVOmDAEBAezatYujR48yf/58o/cxu+/HnDlzuHDhAi1atKBly5YULVoUMBxzkydPJjAwkCZNmtC6dWtCQ0PZv38/x48f59tvvzX6WzSnflBQEGPHjiU2NpYWLVrQvn17YmNjuXv3Ln/88Qfjx483itfGxoZq1apx/vx5YmJi5DaPuRRRIHz33XeKt7e3snv3bkVRFCUqKkrp1KmT0q9fPyUpKSnT9UNCQpT+/fsrvr6+ytmzZ9XyrVu3Kt7e3srWrVuN6nt7eyve3t7Kd999Z1T+9ddfK97e3krXrl2VdevWqeXJycnKm2++qXh7eyuXLl1Sy0+dOqV4e3srS5YsSRPT/fv3FW9vb2XmzJlG5f3791f69+9vcj9SXi/1e5FixowZJsvv3buX5nWioqKUoUOHKl27dlViYmLS7PukSZNMbv9p69evV7y9vZVevXopS5YsUU6dOqVERkamWz8uLk7p06eP0rZtW+XIkSNplj98+NCo7qNHj9LUuXHjhtKpUyfltddeMypP77NMMWnSJMXb29vkstDQUKVLly5Knz59lAcPHhgt2717t+Lt7a18++23alnKZ5feZ6sopj/HJUuWqMePv7+/Wh4bG6sMGjRIadu2rRIYGKiWnzhxQvH29lZGjBhh9DkFBgYqzz//vMnjJyMJCQnK888/r3Tt2lWJjY1VFEVRtmzZonh7eyuLFi1KU9/c4y08PFzp1KmT0qlTJ+X27dtG250yZYri7e2d7nty6tQptczczyMjo0ePVtq2bavExcWlWZZyzEybNk1JTExUy69du6a0b98+zeebkJCg9O/fX+ncubNy+fJlo9c6c+aM4uPjo7z99tvP9H7MnDlT8fb2Vvr06aMEBASkiXncuHGKj4+PcvToUaPy27dvK507d1aGDh2a7fopf8+pv9tShIWFpSlTlCffzSdPnjS5XKRPevEUAImJiezcuRMnJydat24NgKOjI97e3jx8+JATJ05kuH5cXBzTp08nICCAd955hzp16mRpuw4ODowaNcqoLKXNi6urq9EVDp1Opy67fv16lvctu+rVq5em/U23bt0AuHjxolG5qbNiR0dHunbtSmRkJJcuXcp2HH369OGll14iMjKS5cuXM2XKFLp168aQIUP46aefCAoKMqp/6NAhAgMD6dixI82aNUvzesWLF1cf29raUqxYsTR1KlasSIMGDdRbazlhx44dREVFMWbMmDSX6H19falWrRp79uxJs567uzuDBw82e3v9+vWjXLly6nM7Ozt8fX1JTk7m8uXLavnOnTsBGDp0KPb29mq5p6en0fGXVf/++y8hISG0a9dOverh4+ODvb0927ZtIzk52eR6WT3eDh06RExMDN26daNs2bJqubW1dZq/pYxk9/MwJTAwEGdnZ2xtbdMsS7ktOGrUKKysrNTyypUr06lTpzT1//nnHwICAnjppZeMbjEC1K1bl1atWnHkyBGioqKAZ3s/XnrpJUqUKGFUduXKFc6dO0fnzp1p2rSp0bKyZcvSo0cPbty4wY0bN7JVP4Wpq8xFihQxGWfKlZ3AwMAM90ekJbd4CoBDhw4RGhpK9+7djf5wOnfuzM6dO9myZUuaP74UiqLw2Wefcf78eYYPH06HDh2yvN0yZcoY/SgAam+fSpUqGd2LTb3s6R/l3FC9evU0ZSk/5pGRkUbljx8/5pdffuHIkSM8fPgwzbgFzxKvTqdj3LhxvPTSSxw5coQLFy5w6dIlrly5wq1bt9i0aRNfffWVegk55cesSZMmWXr9q1evsnr1as6ePUtISEiahCQ0NBRPT89sx58ipS3NhQsXuHfvXprl8fHxhIWFERoaipubm1pepUqVLN3SedrTP27wJDlL/fldu3YNMPz4Pe25554ze7t//fUXYPjbSeHo6Ejr1q3ZvXs3x44do3nz5mnWy+rxlpKcm4q3Vq1aRklARrL7eZgSHh5uMtFNidfBwcHk/tWtW1e9HfZ0XLdv3zY5PkpISAjJycncuXOHGjVqPNP7kXL7MrULFy4Ahr9pU9u/ffu2+n+lSpXMrp/Szujbb7/l5MmTNGvWjPr166d76w+eJC5hYWHp1hGmSYJSAKS+Z55ao0aNKFasGIcPHyY8PNxkhr948WL27t1Lhw4dGD58uFnbdXJySlOW8oWS0bKcOqvPiKOjY7rbT30WHB4ezpgxY3j48CF16tShcePGODs7o9fruXbtGocOHSIhIeGZ43Fzc6NLly506dIFgODgYObMmcP+/fv58ssvWbZsGYB6ZpneD0Zq//33H6+99hoAjRs3pkyZMup+Hzp0iGvXruVI7GBobwSwcePGDOvFxsYaPU85ezRXRsdP6s8vOjoavV5vskGouV23g4KCOHbsGKVKlUrzg9mlSxd2797N1q1bTSYoWT3eUj5fU+9LevthSnY/D1Ps7OzSHTMpKioq3WPR1PubEteuXbuyFNezvB+m1gkPDwcMV8L+/fffdNeNiYnJVv2SJUsyf/58li1bxpEjR9i7dy8A5cqVY+TIkbRr1y7NuiknPAW5m3pukQQln3v48CHHjx8HyHB00507d6a55L1t2zZWrVpFnTp1eOedd3I1zvSkXGVJSkpKsyzlyys3bdmyhYcPH5rsBvzzzz9z6NChXNmuh4cH7733Hv/++y/Xr18nLCwMV1dXtctxVi4Hr1q1ivj4eL7//vs0P6gpZ4Y5JeUHePny5SZ7QaTn6atoOc3R0ZHk5GTCwsLSXCkwdwC8bdu2kZSUxP3799MdsO7w4cNZuiqRnpTE6/Hjx2mWpexHVpLT7H4epri6uqZ7vDk5OaV75m/q/U2J6/PPP6dly5aZbvtZ3g9Tx1bK62W1cbu59cFwdfjTTz8lMTGRy5cvc/ToUdavX89HH32Ep6dnmlvkKUlQdo+ZwkzaoORz27dvJzk5mbp169K9e/c0/1LO2J++FHv69Gm++uorSpUqxcyZM03ef84LKb0MTN1GuXr1qsl19Hq9yYQmO1Iuj6e03Unt7NmzObKN9NjY2KS5hJ1y2Tol6czI/fv3KVKkSJrkJDY2litXrqSpr9cb/tzTe+8yWp5yCyrlEr6l+L/27i+kyS6OA/hX0y0tzdA5/8QKtUgdTZd/yK1CkUipFMQbbzQtiBLtD1qJGQpFfy+SsotchpommBfizJqaFi21aUOXVigVJurMymaZzuV7ERvanrdXc69O+n3AG5+z7ew8zx5+zzm/c45+NlJHR4fRsbnM4pmamkJ1dTUAICIigvG3xOfzodVqDXkvf0I/rZypvl1dXbO+rk15Pjw8PDAxMYHBwUGjY56enhgbG5uR96PH9PuYa71M1R56+t/PbD9/ruWns7Kygq+vLxITE5GamoqpqSnI5XKjcr29vQAw70Dyb0QByhKmv6laWFggIyMDx48fN/rLyMiAr68venp6DMmevb29yMzMBJvNxrlz5xY1sufxeLC1tTUMQ+l9/PgRhYWFjK+xt7fHyMiISfa40CcY/nqDlMlkaGpqmvf737lzB+/evWM8VlFRgbGxMfB4PENXtkgkAofDgUwmQ0tLi9Frpj/pcrlcaDQavHnzxvA/nU6HvLw8fP782ei1+iE+tVrNWJ/fHY+MjIStrS1u3Lgx4/P0vn//vijBi35tklu3bs24HoaHhw3T0WdDqVSir68PAoEAJ0+eZPwt6XsZfw3250IsFsPGxgZSqXRG7sjk5CQkEsms38eU58PPzw8Ac6+bftg4Pz9/RrDQ09PDGKiJxWJwuVyUlZVBqVQaHZ+cnJwR2JiqPfR8fHzg4+ODuro6xiThHz9+zKjXXMu/evWKsWdX35vE9KDX2dkJR0fHGUnAZHZoiGcJa2trQ39//38maUVGRuLFixeQSqXYuHEjcnNz8eXLFwQEBKC+vt6o/MqVKxdsrxtra2vExMSgqKgI+/btg0gkwtjYGJ48eQI/Pz/GBEB/f3+8fPkS6enp2LRpE6ysrCAQCAw32rnYsWMHSkpKcOXKFTx//hxcLhfd3d1oa2vDtm3b8OjRo3l9vwcPHiAvLw8eHh7w8fHB6tWrodFo0NnZidevX4PNZuPYsWOG8iwWC9nZ2UhLS0NaWhqCgoLg5eWFr1+/oru7G+Pj44Ybd0xMDJ49e4ZDhw4hNDQULBYLSqUSHz58gL+/v9Hmcr6+vmCz2SgvL4dGozEEpvqhLaFQiIaGBpw6dQrBwcFgsVjw8vKCSCSCg4MDTp8+jaysLCQmJiIoKAg8Hg9arRYDAwNQKpXg8/m4dOnSvNprrgICAhAeHo7a2lokJCRALBZDq9Xi4cOH8Pb2hlwuN/QM/Y4+6NDPvGHC4/HA5/OhUqnQ2dk563VtprOzs0NycjIuXryI/fv3IywsDCtWrEBTUxNYLBacnJxmNSxmyvMhFotx7do1KBQKoxwKfe5Nc3MzkpKSEBwcDI1Gg7q6OgQGBhr1GLBYLOTk5CA9PR0pKSkQCoWGhPmBgQG0t7dj1apVKC4uNml7TJeVlYXDhw8jOzsb5eXlWL9+PdhsNtRqNVQqFUZGRlBbW/tH5e/fv4/KykoIBAK4u7vD1tYWb9++RXNzM+zt7Y2un76+PvT39yM6OnpO34H8RAHKEqa/qU5f4ZVJWFgYcnNzUVdXh+TkZMOTpkKhYJyC7OLisqCb8SUlJcHKygpSqRSVlZVwcXFBfHw8QkJC0NjYaFQ+Pj4eo6OjkMvlaG9vh06nQ0JCwh8FKM7OzsjNzcX169ehUCig0+mwYcMGXL58GWq1et4ByokTJyCXy9HW1oaWlhZ8+vQJlpaW4HK5iI6ORmxsrNGTFZ/PR35+PoqLi9HS0oLW1lbY2dlh3bp1iIqKMpQLCQlBTk4OiouLIZPJwGazIRQKcebMGcaVgu3t7ZGTk4OCggJUVVUZrgN9gLJr1y709/ejvr4eJSUl0Ol02LlzJ0QiEYCfq2JKJBKUlpaitbUVCoUCy5cvB4fDQUREBOO004WQkZGBtWvXorq6GhUVFeBwOIiNjYVQKIRcLmdMYJ1udHQUjY2NsLGxwfbt239bNjIyEiqVClKp9I8CFADYvXs37OzsUFRUhJqaGsPKqQcOHEBsbOysl5s31flwdXVFYGAgGhoakJqaOqMXwNLSEmfPnkVBQQFqa2tx9+5duLm5ITk5GWvWrGEc0vD29sbNmzdRWlqKpqYmqFQqWFtbw8nJCVu3bjWajm2q9tBzc3ODRCJBWVkZHj9+jHv37sHS0hKOjo4QCARGq0PPpXx4eDgmJibQ0dGBrq4uaLVacDgcREVFMU571vcy7dmzZ07fgfxkMTU1NbXYlSCEEFOrqqrChQsXcPTo0SXxBPv+/XvExcUhNDQU2dnZC/rZra2tOHLkCDIzMxct0PzVYraHKUxOTiIuLg6urq5/vHr2345yUAghS9rw8DB+fc4aGhpCYWEhli1bhi1btixSzZhpNBqjab3j4+O4evUqgJ/bEiy0zZs3Izg4GIWFhf+6GN3/xRzbwxRqamowODiIgwcPLnZVliwa4iGELGm3b9/G06dPIRAI4ODgALVaDblcjm/fvmHv3r1G3e6LTalU4vz58wgMDISzszNGRkYMG3sKhUKEhYUtSr1SUlIgk8kwNDS0oG1mru0xXxYWFkhLS2Nc5I7MDg3xEEKWtObmZpSVlaGnpwcajQYsFguenp6Ijo5m3IF4sfX29kIikUClUhlmW7m7uxt2X/7bFvSi9iD/hgIUQgghhJgdykEhhBBCiNmhAIUQQgghZocCFEIIIYSYHQpQCCGEEGJ2KEAhhBBCiNmhAIUQQgghZocCFEIIIYSYHQpQCCGEEGJ2KEAhhBBCiNn5B3Dj2CoTmWC/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 90.0 deg to 105.0 deg\n", - "Modulation: 0.313 +/- 0.003\n", - "Best fit polarization fraction: 1.0 +/- 0.014\n", - "Best fit polarization angle: 70.287 +/- 0.271\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACT20lEQVR4nOzdd1hT59sH8G/CCHsroCiKOHDvDaIobqy7Wgfuvaq11dqpVv11uNq6BUddxbrFPRAUB+JCRBBBHCB77zzvH3lzJCaMIHCScH+uy8vkOc/JuU8SkjvnWQLGGAMhhBBCiAoR8h0AIYQQQsjHKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhREVERUVBIBDA09OT71AIAFdXVwgEgko/zo8//giBQIBr165V+rHKol69eqhXrx7fYRBCCQop3bNnzzBv3jw0b94cpqam0NXVRa1atTBw4EDs2rULubm5fIdYaTw9PSEQCBAVFcV3KArt2rULM2bMQKdOnWBgYACBQIAVK1aUut/p06fh6uoKU1NTGBkZoVOnTtizZ0+J++zZswcdO3aEkZERTE1N4erqitOnTyusGx4ejoEDB8LCwgJ16tTB3LlzkZ6errDuuHHjUL9+fWRkZJR+wkVIE7qi/7S1tWFtbY2BAwfC19dXqccjn+6ff/7hXosLFy6UWDclJQXff/89WrduDSMjI4hEItSuXRudO3fG4sWLERwcXOL+06ZNg0AggIGBAVJSUoqtJ00Apf+EQiFMTExgb2+PAQMGYN26dXjz5k15TpdUMm2+AyCq7eeff8ZPP/0EsViMLl26YOLEiTAyMkJcXByuXbuGqVOnYsuWLbh37x7foVZLixcvRmpqKszNzVGrVi28ePGi1H3+/PNPzJs3D5aWlhg3bhx0dXXh4+MDT09PPH78GL/99pvcPkuWLMHvv/8OOzs7TJs2DXl5eTh06BAGDx6MzZs3Y+7cuVzdzMxMuLm5ITMzExMmTMDr16/x119/IS4uDv/++6/M4545cwb//PMPLl68CCMjo3I9B6ampli4cCEAICcnBw8fPsTZs2dx9uxZbNy4EfPnzy/X41aVuXPn4vPPP0fdunX5DuWTbd++HQKBAIwxbN++He7u7grrvX37Ft26dUNUVBQcHBzwxRdfwMrKCsnJyQgKCsKGDRugr6+PNm3aKNw/PT0dhw4dgkAgQHZ2Nvbv3y/zHlSkR48ecHV1BSB5j7579w4BAQHw9fXFDz/8gB9//BHffPPNJ50/qWCMkGKsXr2aAWB16tRhgYGBCuucOnWKubq6VnFkVWfixIkMAHv58mWlH+vly5cMAJs4cWKZ9/H19WVRUVGMMca8vLwYAPbtt9+WeAyRSMQsLCxkzikpKYk1aNCAAWA3b96U2ScgIIABYA0aNGBJSUkyj2VhYcFEIpHMYx06dIgBYNevX+fKPD09GQAWFxfHlaWkpLDatWuzKVOmlPl8Pz4XAMze3l5u2+7duxkAZmhoyDIzM8v1+D169GDV8SPS3t5e4XNammfPnjEArHfv3qxdu3ZMR0eHxcbGKqw7ZcoUBoBNnjyZicViue1v375lQUFBxR5r69atDAD78ssvma6uLmvZsmWxdX/44QcGgP3www9y28RiMfPx8WEWFhYMAFuzZk3pJ0qqDDXxEIWioqLw448/QkdHB2fPnkWnTp0U1hs0aBDOnTsnV37kyBG4uLjA1NQU+vr6aNGiBdasWaOwOUja5p2WloYvv/wS9erVg46ODn788ccybQckzVCenp6oU6cOdHV1YW1tjbFjxyIsLExh3FlZWVi3bh3at28PY2NjGBkZwcnJCfPnz0dcXBwAQCAQcM0e9evX5y4Rf9w+n5SUhGXLlsHJyQn6+vowNTWFm5tbsZe409PT8eWXX8LOzg56enpo0qQJ/vjjD4jFYoX1S9KvXz/Y29uXuf7u3buRm5uLuXPnypyHubk5li9fDgDYunWrzD7S+99++y3Mzc258nr16mHOnDnIzc2Fl5cXVx4dHQ0A6NixI1cmvS3dBkiu/gDA77//Xub4y8rT0xOGhobIzMxESEgIV3758mX069cPFhYWEIlEaNSoEb755hukpqaW6XHz8vLw559/YsCAAbC3t4dIJIKFhQV69+5dbJNSae9fRX1QpP1fivsnvRIgVVBQgL///hudO3eGiYkJDAwM0KZNG/z5558K31eMMfz5559o1qwZ9PT0ULt2bcydO7fMz4MiO3bsAABMmjQJnp6eyM/Ph7e3t8K6N2/eBADMmzdPYT8fW1tbtG3btsRjCYVCLFy4EIMHD8ajR49w+/ZtpWMWCAQYPnw4fHx8AEiuGL97907pxyGVg5p4iEJeXl7Iz8/H559/jubNm5dYVyQSydxfvnw51qxZAysrK4wdOxZGRkbw9fXF8uXLcf78eVy4cAG6uroy++Tl5aFXr15ISkqCu7s7TExMUL9+/TJtP3fuHIYNG4b8/HwMHjwYjo6OeP36Nf777z+cOXMGV69elfmwS05ORs+ePfHw4UM0btwYkydPhq6uLl68eAEvLy8MGzYM1tbW+OGHH3D8+HE8fPgQCxYsgJmZGQBw/wOSL1xXV1dERUXB2dkZ/fr1Q2ZmJk6fPo1+/fph27ZtmDZtGlc/NzcXbm5uuHv3Llq1aoUvvvgCKSkpWLlyJa5fv67Ua1QeV65cASBJbD7Wv39/mTpl3WflypW4cuUKfvrpJwDgmiqCgoLQrVs3AOCaAKXJ1KVLl7Br1y6cOnUKpqamn3xeijDGAID7Aty2bRtmzZoFQ0NDjBw5EjVr1sS1a9ewbt06nDp1CgEBATKvrSJJSUlYsGABunbtij59+qBGjRp49+4dTp06hQEDBmDHjh2YOnWq3H6lvb8/5unpKZeEAMCNGzdw5coVGBgYcGXS9/358+fRuHFjjB07Fnp6erh69SrmzZuH27dvY9++fTKPs3DhQmzatAm2traYPn06dHR0cOLECdy+fRt5eXlyf5+lycvLw549e2BqaoqhQ4ciOzsbixcvxs6dO7F06VK5JMTS0hIA8Pz5c7Ru3VqpYwUHByMoKAh9+vRBnTp14OnpiaNHj2L79u3F/pAqTc+ePdG9e3f4+/vjv//+w5w5c8r1OKSC8X0Jh6imXr16MQBsx44dSu138+ZNrlno3bt3XHl+fj4bNGgQA8BWr14ts4+9vT0DwNzc3FhGRobcY5a0PSkpiZmZmTFLS0sWEhIis+3x48fM0NCQtWnTRqZ8zJgxDACbOXMmKywslNmWnp7OUlJSuPulNfH06NGDCQQCdvDgQZny5ORk1qpVK6anpydzmVvabDZs2DCZY0dGRjJzc3Olm3iKKksTj5WVFQPAEhISFG43NDRkALhmkYyMDAaAGRkZKawfHx/PALCaNWtyZenp6czOzo5ZWVmxhQsXshEjRnDnLN1er1499sUXX5TrPKVKauLZtWsX18STlZXFoqKimK6uLjM2NmahoaEydWfNmsUAsGnTpsmUK2riycnJYTExMXLHS0lJYc2aNWPm5uYsKytLZltp729pE8TVq1dLPN+HDx8yY2NjZmVlxSIiIuT2nzt3LisoKODKCwoK2OTJkxkAdvz4ca68aJNdYmIiV56dnc06d+5c7HNakoMHDzIAbPr06VzZ8OHDGQB26dIlufqbN29mAJixsTH76quv2MWLF4t9T35sxowZDAA7cOAAY0zy2WJjY8MMDQ1ZamqqXP2SmniKWrFiBQPAJkyYUKY4SOWjBIUo5OTkxAAwX19fpfabOnUqA8C2bdsmty0sLIwJhUJWv359mXLpB/iDBw8UPmZJ2zds2MAAsD///FPhvgsXLmQAuOQlLi6OCYVCZmtrq/DL4mMlJSgPHjxgANiIESMU7nv8+HEGgP31119cmaOjIxMKhTJfMFLSD9LKTFB0dHQYAJafn69we61atRgA9vbtW8YYY2/evGEAWO3atRXWz8vLYwCYrq6uTPmzZ89Yv379mJmZGatVqxabOXMm9+UxZ84cZm1tzRISElh0dDQbNGgQ09PTY0ZGRmz8+PEKv2QUkSYopqam7IcffmA//PAD+/rrr1n//v0ZAAaAbdy4kTHG2KpVqxgAtmzZMrnHSUpKYsbGxkxPT4/l5ORw5cr2Qfn999/l+t4wVvr7uywJyps3b5idnR3T09NjAQEBXHlhYSGzsLBgNjY2Cl/T5ORkJhAI2MiRI7ky6d/o7t275epfvXq1XAmK9AdN0f5Lp06dYgDYqFGj5OqLxWK2bNkypqenx71WAFi9evXY1KlTi32uMjIymLGxMTM1NWXZ2dlc+eLFixkA9vfff8vtU9YEZcuWLQwA69+/fxnPmlQ2auIhFer+/fsAgF69eslta9SoEezs7PDy5UukpqbKXNrX09NDy5Yti33c4rbfunULAPDw4UOZPilSz58/BwCEhoaiadOmuHv3LsRiMVxcXGBoaKjUuRV37NTUVIXHjo+P544NSPqeREREoE6dOmjQoIFcfVdXV66ZRN01btxYYZ+MGzdu4O+//8aRI0dgYWGBPn364P379zhw4AAyMjIwb948ZGdny432KUlqair3vGlpacHCwgL9+/fH3LlzMWDAAAAlvy/Nzc3Rpk0b+Pn54dmzZ2jVqlWJxwsJCcGvv/4KPz8/vHv3Djk5OTLbFQ1ZLe39XZKMjAwMGjQIb968wcGDB9G1a1du2/Pnz5GUlISGDRti1apVCvfX19fn3oPAh+eiR48ecnW7d+8OLS0tpeKLiIjA1atX0bhxY3Tp0oUr79evH2xsbHD8+HEkJCTAysqK2yYQCPDLL79g6dKlOH/+PAIDA3H//n3cvn0bO3fuhJeXF7Zs2SLTPAoAhw4dQnp6OmbMmAE9PT2u3NPTE7///jt27NiBWbNmKRW/FPuoSZDwjxIUopCtrS1CQ0OVnh9A2snO1ta22Md99eoVUlJSZBKUmjVrlvjBUNz2xMREAB866BVHOseGdL6E2rVrl1i/LKTHvnjxIi5evFjqsaXPjbW1tcJ6NjY2nxxTaUxNTZGQkIDU1FSuH0BR0hilr430/+I6T0rLS+u7AQDZ2dmYMmUKhg0bhhEjRuDixYsIDg7Gvn37MHToUACSztnff/89Xrx4oTCJU8Te3r7UeWrK8r4EUOJ8GgAQGBiIXr16oaCgAG5ubvDw8ICJiQmEQiEePHiAEydOKOwIXtr7uziFhYUYPXo0goODsWbNGowePVpmu/Q9GB4eXmJyW3SOmZLeh9ra2jKJRFns2LEDjDG5CQa1tbXxxRdf4Pfff4e3tzeWLFkit6+ZmRlGjx7NnVdmZibWrl2LVatWYd68efDw8JCJc/v27QAgd6zmzZujXbt2CAoKwr1799C+fXulzgGQDH0GgBo1aii9L6kcNIqHKNS9e3cAklEPypB+ocXGxircLu0h/3HHyNI+vIvbLn2chw8fgkmaLBX+mzhxIoAPX6QVMTGT9NgbN24s8djSES7S+tJRQh8r7jmrSI0bNwbw4cpSUe/evUNmZibs7Oy4TpiGhoaoXbs2MjIyFI5uCA8PByC5Olaa7777DomJifjrr78AfLiyVLQDc7t27QAAT58+Vea0SlXe9+XHVq1ahezsbFy4cAG+vr7YsGEDfv75Z/z4448ldtAs76/yefPm4ezZs5g2bZrCOTqk8Q4dOrTE9+DLly/l9lH0PiwoKEBCQkKZ4ys6UmfZsmVyo42kI7RK+wEhZWhoiJUrV6J79+7Izc1FQEAAt+3Ro0e4c+cOAKBLly5yxwoKCgLwIYlR1tWrVwGg3B1tScWjBIUoNGnSJOjo6ODo0aOlflkU/cUonVhJ0bTdEREReP36NerXr1+mX9xl0blzZwCSpoOy6NixI4RCIfz8/JCZmVlqfenl7sLCwk8+trGxMRwdHfHmzRuFE6pVxVTn0iYORUPDpU0yHzeDlGefj925cwcbNmzAxo0b5X65F33/fNxcUlFKel+mpKTgwYMH0NPTg5OTU4mPExERAQsLC4UjbCp6FNbvv/+OLVu2wN3dHX///bfCOk2aNIGZmRkCAwORn59fpseVJoSK4vX391f4Xi/OiRMn8P79ezRu3BhTpkxR+M/BwQHPnz9X6vkxNjYG8KHZBfiQeLi6uhZ7LH19fRw8eFDpWYmvXLmCgIAA6Ovrc1fziAqouu4uRN1IR5zUq1eP3b17V2EdX19f1rNnT+6+dIRAvXr12Pv377nygoICNmTIEAaArVq1SuYxSpsYqqTtCQkJzMzMjNWoUYPdvn1bbnthYaFc58OxY8eWeRTPV199xQCwK1euKDy+s7MzEwqFbNeuXQq3P3r0SGZyMulzOnz4cF5G8URGRlb6RG0fy83NZU2bNmUDBw6UKb948SIDwH766SeuTDqhm6JOxB8raRSPoro6OjrM1NSUhYeHy2ybO3cuA8CmTp0qU66ok2zfvn0ZAPbw4UOZ8p07d3IdPb28vGS2lfb+VtRJ9ujRo0woFLIWLVqU2mn4u+++497PH48gYkwy6VnREW7+/v4VNoqnT58+DAA7fPhwsXWkz83YsWO5sv/973/syZMnCuvfuHGD6enpMW1tbfbmzRvGGGNZWVnMzMyMaWlpcWWKjBs3jgFg27dv58pKm6jt6NGj3ERt//vf/0o7ZVKFKEEhJfrpp5+YUChkAFjXrl3Z/Pnz2fLly9mUKVNYw4YNGQDWvn17mX2WLl3KDT2dPXs2++qrr1jz5s0ZANa9e3eWm5srU/9TEhTGGLt06RIzNjZmAoGA9e7dmy1YsIAtXLiQDR8+nNWqVYuJRCKZ+klJSaxly5YMAGvSpAlbsGAB++qrr9iIESOYsbGxzBfFuXPnuA/zpUuXspUrV7LNmzdz22NiYrjnoVWrVmz69Ols6dKlbOzYsdw537p1i6ufk5PDOnTowNVfunQpmz59OjMzM2MeHh5KJyg7duxgEydOZBMnTmTdunVjAFjLli25MkUzY27atIkBYJaWlmz27Nls4cKFzM7OjgFgixcvVnicL7/8kgFgdnZ2bOHChWz27NnM0tKSAZB5PhT59ttvmampKXv9+rVMuVgsZu3atWNaWlps8uTJbNSoUQyAzIiTkiiToDDG2F9//cUNbZ0yZQr75ptvWJcuXbj3QdEva8YUJyi+vr4yj/Hll18yFxcXJhQKueHUFZGg6OvrM/z/TKvSEUpF/xU9Rl5eHvfeqV27Nhs/fjz75ptv2OTJk7kE+uP3wbx58xgAZmtry+bNm8e+/PJL1qBBA9a+fXtma2tbpuc0MjKSCQQCZmVlJfc3XVR6ejozMjJiIpGIe45btWrFPe+enp5s2bJlbP78+czNzY0JBAIGgP3+++/cY0iT78GDB5cY07Vr1+Q+k6TPb48ePbjnb+nSpWzcuHGsfv36DAATiURs3bp1pZ4zqVqUoJBSPX36lM2dO5c1a9aMGRsbMx0dHWZjY8P69evHdu7cKTM0U+rgwYOsW7du3AdT06ZN2apVq2SGBkp9aoLCmOTLas6cOczR0ZGJRCJmbGzMGjduzMaNG8eOHTsmVz8jI4OtWrWKtWjRgunr6zMjIyPm5OTEFixYIHPFgzHJ8NEmTZowXV1dhV+IaWlpbPXq1axt27bM0NCQ6enpsXr16rEBAwawbdu2yQ1nTk1NZYsWLeKSp8aNG7PffvuNvXjxQukERToMurh/PXr0ULjfyZMnmYuLCzMyMmIGBgasffv2zNvbu8RjeXl5sfbt2zMDAwNmZGTEXFxc2KlTp0rcJzg4mGlraxc7n05MTAwbMmQIMzQ0ZKampmzixIlKDzNWZkjs+fPnWZ8+fZiZmRnT1dVlDRo0YF999RVLTk6Wq1vcMONTp06xTp06MSMjI2Zqasr69OnDrl+/zn2JVkSCUtJrquh1FYvFbO/evaxXr17M3Nyc6ejosFq1arFu3bqx1atXs1evXsnV37x5M/e+trW1ZbNnz2YpKSllnup++fLlDABbtGhRqXWnTZvGALA//viDMcbY/fv32cqVK1nPnj1ZvXr1mJ6eHhOJRMzBwYGNHTuW3bhxQ2b/rl27MgDsxIkTpR6rUaNGDAALDg5mjH14fqX/BAIBMzIyYnXr1mX9+/dna9eulUueiWoQMFakkY8QQgghRAVQJ1lCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCictQyQcnJyUFYWFilTYtNCCGEEH6pZYISHR2NadOmITo6mu9QCCGEEFIJtJXdISsrC4cOHcLTp08RGhqK9PR0LFu2DP379y/zY9y7dw/79u3D8+fPIRaLUadOHYwZMwZubm7KhkMIIYQQDaR0gpKamgpvb29YW1vD0dERwcHBSu1/9uxZrFu3Du3bt8e0adOgpaWFV69e4f3798qGQgghhBANpXSCYmlpiWPHjsHS0hLPnj3D9OnTy7zvu3fvsH79egwbNgwLFixQ9tCEEEIIqSaU7oOiq6sLS0vLch3sxIkTEIvFmDJlCgBJcxEtBUQIIYSQjyl9BeVTBAUFoW7duggMDMSWLVsQHx8PY2NjDB06FJMnT4ZQqDhfSkhIQGJiInefOscSQgghmq1KE5TXr19DKBRi7dq1GDNmDBo0aAA/Pz/s3bsXhYWFmDFjhsL9Tp48CW9v76oMlRBCCCE8qtIEJTs7G2KxGDNmzMAXX3wBAHB1dUV6ejp8fHwwfvx4GBgYyO3n4eGBbt26cfejo6OxatWqKoubEEIIIVWrShMUkUiE7Oxs9O7dW6bczc0Nt2/fxvPnz9G6dWu5/aysrGBlZVVFURJCCCGEb1U6UZu0c625ublMufR+enp6VYZDCCGEEBVVpQlK48aNAUg6vRYlvW9mZlaV4RBCCCFERVVagpKQkIDo6GgUFBRwZb169QIAnDlzhisTi8Xw9fWFiYkJl8AQQgghpHorVx+Uo0ePIiMjgxv6GxAQwM0EO3z4cBgZGWH79u04d+4cDh8+DFtbWwBA9+7d0a5dO+zfvx8pKSlwdHTEjRs38OjRIyxZsgS6uroVdFqEEEIIUWflSlAOHz6M2NhY7r6fnx/8/PwAAO7u7jAyMlK4n0AgwOrVq7Fz505cuXIF586dQ506dbBixQq4u7uXJxRCCCGEaCABU8OpXMPCwjBt2jTs2LGDmoUIIYQQDVSlnWQJIYQQQsqCEhRCCCGEqBxKUCpAVnIOgnzCkZWcw3cohBBCiEagBKUCZKXkIvi/CGSl5PIdCiGEEKIRKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhKgUmpmZEAJQgkIIUTE0MzMhBKAEhRBCCCEqiBIUQgghhKgcSlAIIYQQonIoQSGEVFvUIZcQ1UUJCiGk2qIOuYSoLkpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEA2lziPVKEEhhBBCNJQ6j1SjBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBEXNZCXnIMgnHFnJOXyHQgghhFQaSlDUTFZKLoL/i0BWSi7foRBCCCGVhhIUQgghhKgcSlAIIYQQonIoQSGEEEKIylE6QcnKysLu3buxZMkSDBw4EC4uLvD19S3Xwf/3v//BxcUFX3/9dbn2J4QQQohmUjpBSU1Nhbe3N6Kjo+Ho6FjuAz979gy+vr7Q1dUt92MQQgghRDMpnaBYWlri2LFj+PfffzFr1qxyHZQxho0bN6Jv376wsLAo12MQQgghRHMpnaDo6urC0tLykw56/vx5vHz5EtOmTfukxyGEEEKIZqryTrJZWVnYunUrxo0b98mJDiGk6tAkgYSQqqRd1Qf09vaGSCTCqFGjyrxPQkICEhMTufvR0dGVERohpATSSQLt29WEgbke3+EQQjRclSYoMTEx8PHxwffff69U59iTJ0/C29u78gIjhBBCiEqp0gRl06ZNaN68OVxdXZXaz8PDA926dePuR0dHY9WqVRUcHSGEEEJURZUlKEFBQbh9+zZWrVqFd+/eceWFhYXIzc3Fu3fvYGJiAkNDQ7l9raysYGVlVVWhEkIIIYRnVZagvH//HgCwYsUKuW3x8fEYPXo05s6dq1TfFEIIIYRopkpLUBISEpCZmYnatWtDW1sbbdu2xerVq+Xq/frrr7CxscH48ePh4OBQWeEQQgghRI2UK0E5evQoMjIyuJE1AQEB3BWS4cOHw8jICNu3b8e5c+dw+PBh2NrawtraGtbW1nKPtXnzZpibm8PZ2fkTToMQQgghmqRcCcrhw4cRGxvL3ffz84Ofnx8AwN3dHUZGRhUTHSGEEEKqpXIlKEeOHCm1zvLly7F8+fIKeSxCCCGEVC9VPpMsIYQQQkhpKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQgghKocSFEIIIYSoHEpQCCGEEKJyKEEhhBBCiMqhBIUQQipZVnIOgnzCkZWcw3cohKgNSlAIIaSSZaXkIvi/CGSl5PIdCiFqgxIUQgghhKgcSlAIIYQQonIoQSGEEEKIyqEE5ROJxQzxkakAgPjIVIjFjOeICCGEEPWnzXcA6uzlnVgE7g1FZpKkZ37ArhA8OPYCnSc4oX5HG56jI4QQQtQXXUEpp5d3YnF5QzCXnEhlJuXg8oZgvLwTy1NkhBBCiPqjBEVJWflZiEl5jfP7ApAvyC+2XuC+UGruIaQSFIgLEJ8Zjzdpb5CSkwLG6O+MEE1ETTylCE8Mh89TH1yLvoZ7b+8hKTtJssFK8s8yvybq5jiieWZ7tMnoAuNCUwBAZmIOYp8loVZTS/6CJ0QDZOZl4kz4GfhG+CLwdSAikiJQIC7gthvpGqFFzRZwsXfBZ00+Q6fanSAQCHiMmBBSEShBUYAxhjPhZ/C/gP/hxqsbJdZN1HmPRJ33CDa+iX/Yn2if7oK+ScNRN7cBsmlSJkLK7V3WW6w+9yO8HnghNTe12HoZeRm49foWbr2+hXUB69DYsjEWd1mMia0nQldLtwojJoRUJEpQPnL/3X3MPTsXt17fkttWw6AGnGo4wbDAGG/C4pGulYq3omjkCiX9UMQCMe6YXMMdk2vokuqGdqKNAGpV8RkQot6yCrJwzGoP5h87iezCbJltIi0RGls1Rh2TOhBpi5Cak4qXKS8RmRzJ1QlLDMP009Pxi/8v2NB3A4Y0GVLVp0CI2jv9/DTqm9VHs5rNeIuBEpT/l1eYhwW+C7AtaBsYPrRpO1k5YXKbyRjaZCgczB0gEAggFjMcnn8NmUk5EKMQ0XoRCDIKQIDpBWRopwEAbpleRs+L3bBVtBWfN/+cr9MiRK3cjLmJ8acmINLyBVAoKdPT1sPnzT/HmOZj4GLvAj1tPbn94jLi4BvhC+8H3rgefR0AEJUShc8Of4bhTsOxbdA2WBpQcyshpcnMy8Si84uw4/4OtLZpjdtTb/N2JZI6yf4/HaEOXqa85JKTJlZNcHz0cTyZ/QRLui5BA4sGXLu2UChA5wlOktvQQv2cxhiRMBlrI70x+v10GBQaAQBSc1Mx5ugYTDkxBbkF1NxDSHEYY9gYuBEuXi6ITH8BANAV6mJR50WIWRQDryFecG/grjA5AQBrI2t4tvbENc9rCJwSCLf6bty2o6FH0XZ7W9x+fbtKzoUQdRWZHIkuu7pgx/0dAIAHsQ9w4PEB3uKhBOX/CQQCbOy3ERb6Fvi1z694OPMhhjQZAqFA8VNUv6MN3Ba2gaHFhw9MEdPDEOHn8HMPxJjmY7jy3Q92o8++PkjMSqz08yBE3eQW5GLKySlYeH4hCpnkskn97Ma4Ntgff/T9A1YGVko9Xie7Trg4/iIODDvA7fsq9RV6ePfA0adHuXo0ySIhH1yOvIz229vj8fvHAABDHUNsH7QdE1tN5C0mauIporFVY8QsioGBjkGZ6tfvaAP79tYIuxqDgF0h6DalGRr3rAOhUIADOIABDQdg+qnpyC7Ixo1XN9B5V2dcmXAFdUzrVPKZEKIesvOzMfzIcPhG+HJl0+zmoP3lfjBLtIZYzCAUKj8iRyAQYEwLSZPQaJ/RCIgJQG5hLkb+OxKb+2/GAAynSRYJ+X8nnp3AKJ9RyCvMAwA0tmyM458fRxOrJrzGRVdQPlLW5ERKKBSghoNkaHENB1OZD9NxLcfhuud12BhJPvAikiLguscVr9NeV1i8hKirrPwseBzy4JITkVAPc9O+RcfLAyGEFgJ2heDw/GufNOlhbZPauDrxKvcrkIFhru9cfLPne5pkkRAAh54cwvAjw7nkZFCjQbg99TbvyQlACUql61C7A25PvY2GFg0BSNr4XL1d8Tb9Lc+REcKfvMI8fHboM1yKvAQAMNQyxPyon9DqXTeZehWRNOho6cBriBeWdV/GlR2puQN+pucU1qdJFklVyErOQZBPOLKSc0qvXElOhZ3CF/99wTWtjms5DsdGH4OpnilvMRVFCUoVqGtaF1cnXoWjhSMA4EXyCww8MBDpuek8R0ZI1RMzMSafmIyLkRcBAKYiUyxNWIdG2S2K3edTkwaBQIBf3H7BkmZfc2X7rTfjrrGfXF3pJIuEVKaslFwE/xeBLJ7my7oZcxOjfEZBzMQAgOltp2PPZ3ugLVSdnh+UoFQR6aXmemb1AEh6R39+9HOZGTEJqQ6WX16Ofx7/A0AyhHhP14Oo9d6hxH0qKmmYYTsP7knDAQBMwOBl8wde6oXJ1aNJFokme574HIMODEJOgeTqzZjmY7Bl0JZiB4XwRbWi0XB2JnY4O/YszPTMAABnw89i8fnF/AZFSBU68PgA1gWsAwAIBUIcGn4IzbVblWnfikgaDMz1MCJ+Mrql9gEA5Avz8FftlUjSTpCpp28m+uRjEaKK0nLTMOTQECTnJAMA+jj0gfdn3iqXnACUoFQ5pxpOODb6GHSEOgCATXc24dCTQzxHRUjlexT3CFNPTuXub+q3CUOaDClzMlARSYNNEwsYWehjXOxcNMySzJCZqp2Ev2ut5Bb/NLTUg00Ti08+FiGqRszEmHh8Ip4lPAMANK/ZHEdHHVXZJSEoQeGBaz1X/DngT+7+1JNTERofymNEhFSu1JxUDDs8DNkFkqnrJ7eejNkdZgOQJA1F5xNSpKKSBukki9rQway3K2CVJxlhF60fjv+svAAAncc7lWtoMyGq7rebv+H4s+MAADM9MxwbfQzGImN+gyoBJSg8mdZ2Gia0mgAAyMzPxIh/RyA7P7uUvQhRT3POzsGLZMkMse1rtcdfA/9SODNzcSoyaZBOsmhjao1Zb7+FtljSKfCSxXGIx8TRPChEIz1MfIBvr3wLABBAgAPDDnADN1QVJSg8EQgE2DJwC1rUlIxceBr/FCuurOA5KkIq3qEnh7hOsaYiU/iM9JGbsl7RzMyA5MqJ28I2FZ401O9og9GbXDFmnAdGxU/jyr95+iXepL2p0GMRwrdcQQ5m3JjKDcpY1n0Z+jfsz3NUpaMEhUcGOgY4NOIQRFqStvX1getxLeoav0ERUoFiUmMw68ws7v7fA/+GvZm9wrrSpKHbFEnfkG5TmmH0RtdKu6IhnWTRNWUQBttLVjxOzknG9NPTwRjNg0LUn3Q5hyM1d+BFWgQAyRXMH11/5DewMqIEhWdNazTFGrc1ACSzXE48PhFpuWk8R0XIp2OMYdKJSUjJSQEgGco4tsXYEvcpaWbmyiKAAL933sDN+Hw2/Cz2PNxT6cclpDK9vBOLw/OvYeshb/iZ/f9szUwPax03QEdLh+foyoYSFBWwoPMC9LDvAUCyqBkNPSaawOuBFy6/vAxAMsT+rwF/8RxR8cxF5tg+aDt3f+G5hdTUQ9TWyzuxuLwhGInJydhv/WFAxqi46Xi5I01tlnOgBEUFCAVCeH/mDWNdSW/qncE74f/Kn+eoCCm/95nvseTCEu7+zsE7Ya5vzmNEpRvceDDGtxwPAEjNTcWM0zOoqYeoHbGYIXCvZFToCat9SNKJBwA4ZbaGc2pfAOqznAMlKCqinlk9rO61mrs/8/RMbvEmQtTNovOLuImgvmjxBfo69uU5orLZ2G8jbI1sAQBnws/gRNgJniMiRDmxz5KQmZSDl3rPcdn8JABAR6yLcXFzIYCkyVRdlnOgBEWFzO4wG+1s2wEAQuJDsP7Wep4jIkR5F15cwIHHBwAAFvoW+KPvHzxHVHbm+ubY2G8jd3/BuQXIzMvkMSJClJOdkotCFGKf9SYwgWSdncGJX6Bmfi25eqqOEhQVoiXUwrZB27gph3+6/hOiUqL4DYoQJeQV5mHu2bnc/V/7/IqahjV5jEh5I5qOQB8HyVT4r1Jf4Zcbv/AcESFlp28mwg2zc4jRiwQA2OU4oE/SUIX1VB0lKCqmXa12mNtB8gGfXZCNry5+xXNEhJTd5tubEZ4UDgDoXrc7JrWexHNEyhMIBNjcfzO3HMWvN39FWIL8goKEqCJde+BEjX3c/S/iZkMbsisUq8tyDpSgqKCVvVZyvzp9nvpQh1miFt5nvsfPfj8DkAzd3dRvEzdbrLppbNUYX3WV/DjIF+dj8QUaWUfUw89+PyFDKJmqolNaTzjmNJWroy7LOVCCooJMRCZY2XMld3/R+UUQMzGPERFSuhVXVnBz+ExuMxltbNvwHNGn+dblW9iZ2AGQdJi9HHmZ54gIKdmT90/w992/AQD6WvoYlz9TZntlzcxcWShBUVFT2kzhpsG/9/Ye/nn0D88REVK8h7EPsfP+TgCAsa6xzIg0dWWgYyBzHksuLqEfCkSlLbmwBIWsEACw3GU5Zm8YWWUzM1cGpROUrKws7N69G0uWLMHAgQPh4uICX1/fMu0bFBSEtWvXYuzYsejTpw9Gjx6NdevWISEhQenANZ2WUEtm9MOyy8uQkZuJ+MhUAEB8ZKpajGMn1cOyy8vAIHk/fufyHayNrHmOqGKMazkOrW1aAwAexD7A/kf7+Q2IkGJcfXkV51+cBwDYm9pjcZfFvMzMXJGUTlBSU1Ph7e2N6OhoODoqtxLi1q1bERwcDGdnZyxYsABubm64evUqpk6disTERGVD0Xi9HXpjUKNBAIA36W8wfcWXCNgVAgAI2BWCw/Ovqc2MgERz+UX7wTdC8iOlrmldzO80n+eIKo5QIMTv7r9z95dfXo6s/CweIyJEHmMMyy4v4+6v7LkS+jr6PEZUMZROUCwtLXHs2DH8+++/mDVrVuk7FDFnzhwcPHgQs2bNwqBBgzB9+nSsXbsWSUlJ+O+//5QNpVpY67aWm1znpP5BZAk/zMmQmZSDyxuCKUkhvPn4g/En158g0lb94YvK6FW/FwY2HAhA8kNhy90tPEdEiKwTYSdw+81tAEDzms1LXfNKXSidoOjq6sLS0rJcB2vdujWEQqFcmYmJCaKjo8v1mJrOyaopuuW4AQAytdJxyfyYXB11mbaYaJ4z4WdwM+YmAMDJyombKl7TrO394YfC2oC1SM9N5zkiQiQKxYVYfnk5d/+XXr9AS6jFY0QVh/dOsllZWcjOzoapqSnfoaik2GdJ6P92DLSY5A13weIY0rVSZeqoy7TFRLOImVjmg3FVr1Ua88H4seY1m2N089EAgISsBGy+s5nniAiR2PdoH0ITJGvvdK3TlesWoAl4T1D+/fdf5Ofno1evXsXWSUhIQFhYGPevOl1tyU7JRc18W3T//0WecoXZOGfho7AeIVXp0JNDePz+MQCgQ60OGNpEfrZKTfJjjx+5WZ5/u/kbUnNSS9mDkMqVV5iHH6/9yN1f67ZWbeceUkS79CqV58GDB/D29kbPnj3Rrl27YuudPHkS3t7eVReYCpFORzww8XPcNLmEfGEerpqdQp+kz2BWaClXj5CqUCguxM/Xf+bur3Fbo1EfjIo0tmqM8S3HY8/DPUjOScb6wPX40fVHvsMi1di+h/sQnSr5wd7PsR+c7Z15jqhi8XYFJTo6GitWrICDgwO+/vrrEut6eHhgx44d3L8VK1ZUUZT8s2liAUMLPZgXWKFniuTSXb4wD+ctjnJ1KmPa4qzkHAT5hCMrOadCH5dohqOhRxGWKJn+3cXeBW4ObjxHVDW+7/E9tIWS33XrA9cjMYtGHxJ+FIgL8Iv/h3WifujxA4/RVA5eEpS4uDgsXrwYhoaGWLduHQwMDEqsb2VlhcaNG3P/7O3tqyhS/gmFAnSe4AQA6Js0ArpiyZUSPzNfri9KZUxbnJWSi+D/IpBFTUfkI2Imxiq/Vdz9Fc7V5weDg7kDt75QWm4aNgRu4DcgUm0dfHwQkcmSBQH7OPRBZ7vOPEdU8ao8QUlNTcXixYuRn5+P3377DVZWVlUdgtqp39EGbgvbwNbUBs4p/QAAecJcXKt1Sq2mLSaa4XyML9f3pFPtTujt0JvniKrWCpcV3FWUP+/+yU3vT0hVKRQXYtWNDz8SvnP5jsdoKk+lJSgJCQmIjo5GQUEBV5adnY2lS5ciISEB//vf/1CnTp3KOrzGqd/RBqM3ueLbvsugLZZ8OF41OwWzFtT3hFQ+sZghPjIVDAzr7q3lyle4rND4vicfq2talxtOnZKTgq33tvIcEalu/n36L54nPgcA9LDvoXF9T6TK1Un26NGjyMjI4GZ/DQgIwPv37wEAw4cPh5GREbZv345z587h8OHDsLW1BQCsXLkSoaGhGDBgAKKjo2VG4+jr68PZWTOf5IoiFArQwqkJul7sI2niyUvHn3f+xHc9NDN7Jqrh5Z1YBO4NRWZSDkIMghCSIbl60sykOTeBWXXzdbev4f3AGwwMf9z6A/M7zYeeth7fYZFq4OMmVk29egKUM0E5fPgwYmM/zF7q5+cHPz8/AIC7uzuMjIwU7hcREQEAOHv2LM6ePSuzzcbGhhKUMuqXNAIB5hdQyAqx4fYGLOy8EMYiY77DIhro5Z1YXN4QDABgYDhtdZDb5hI6BFF346plE2Njq8YY5jQMR0OPIi4zDl7BXpjVQbmZtQkpj+PPjiMkXrLkSRe7LuhVv/gpOtRduRKUI0eOlFpn+fLlWL58uUxZWfYjpauRb4vh9UfiSOQhJGUnYXvQdizuupjvsIiGEYsZAveGcvfD9Z/ghb7kfq1ce7TO6ILAfaGwb2+tdouQVYRl3ZfhaKhkNN3/bv4P09pN4/qmEFIZGGNYF7COu/+dy3ca3cTK+0RtpHwWtviSu73h9gbkF+bzGA3RRLHPkpCZ9GGY+QWLD+tl9U8cBSGE1XoW43a12sG9gTsAIColCoeeHOI5IqLp/F/5486bOwCAVtat0M+xH88RVS5KUNRUQ9NGGNxoMADgddprHAmhq1OkYhWdnfidbgweGkkWI7PIr4H26c4K61U3y7t/uEq81n8txEzMYzRE0/126zfu9pKuSzT66glACYpaW9J1CXf7t1u/gTFaMJBUnKKzE18sskilW/IQaBdpHa7Osxi72Lugi10XAEBIfAjOR5znOSKiqZ4lPMPJsJMAADsTO4xuNprniCofJShqzLmuMzrU6gAAeBD7AFdeXuE5IqJJpLMYp2kl45bJZQCAfqEBnFM/XFaujFmM1YlAIMBXXb/i7q8PXM9jNEST/X7zd+72wk4LoaOlw2M0VYMSFDUmEAhkrqL8fuv3EmoTohzpLMZXzU6jQCjp4+SS2h/64g8zP1fGLMbqxqOxBxzMHQAAFyMv4nHcY54jIpomNiMWex/tBQCYiEwwrd00niOqGpSgqLlhTsNQz6weAMA3whdP3j/hNyBSpSp7zSTrNibwtz0HANBiWuiVPASA5MoJzWIsoSXUwoJOC7j7NP09qWh/3vkTeYV5AIAZ7WbARGTCc0RVgxIUNact1Maizou4+3/c+oPHaEhVq+w1k7wfeCMlPxkAMLDmEFgUWKHblGYYvdGVkpMiJrWeBFORKQBg/+P9iMuI4zkioiky8zLx992/AUg+7+d3ms9zRFWHEhQNMLnNZJjpmQEA9j/aj9iM2JJ3IKQMxEws06diUSdJIlzDwbTaN+t8zFhkjOntpgMA8grzsOXeFp4jIppi/6P9SM6R/EgY03wM7EzseI6o6lCCogGMdI0wo90MAEC+OB/bg7bzHBHRBOciziEiSTL7c6/6vdDcogXPEam2eR3nQUugBQD4++7fyCmonGY3Un0wxrD5zmbu/sLOC/kLhgeUoGiI2R1mQyiQvJxb723l2isJKa+iH4zzO1afy8rlVce0DkY2GwkAiM+Kx/5H+3mOiKi7q1FXuWntu9Xphra2bXmOqGpRgqIh6prWxWdNPgMAvMt4h/9C/yt5B0JK8DzxOc5FSDrH1jOrh0GNBvEckXoo2h9s853NNDcR+SRFfyTM6ziPx0j4QQmKBin6Bt50exOPkRB199edv7jbs9vPhpZQi8do1EfH2h3R2a4zAOBR3CP4v/LnOSKirqJSoriJ2WoZ18Iwp2E8R1T1KEHRID3se6B5zeYAgFuvbyHobRDPERF1lJ6bDq8HXgAAfW19TGk7heeI1MvcDnO523/d/auEmoQU7++7f3NLJ8xqP6taTMz2MUpQNIhAIJC5ilL08iAhZbXn4R6k56UDAMa1HAcL/eo7U2x5jGg6AjUMagAAjoYexdv0tzxHRNRNVn4Wdt7fCQDQ1dLlRohVN5SgaJgvWnzBDTk+9OQQ4jPj+Q2IqBUxE+PPO39y96tju/enEmmLuC+UAnEBjaojSvvn0T/c0OLPm3+OmoY1eY6IH5SgaBhDXUNMaSO5JJ9bmIsd93fwHBFRJ5ciLyEsMQyApMmwhTUNLS6PGe1mcKPqtgVtw5sIyQ+F+MhUiMXUcZYU7+OhxdV5BB0lKBpodofZEEAykdaWe1tQIC7gOSKiLqr7qIGKUse0DjeqLjYjFn/7SC7XB+wKweH51/DyDk2mSBTzf+WPx+8l6zl1seuCdrXa8RwRfyhB0UAO5g7csNDXaa9x+vlpniMi6iA6JRpnnp8BIFnOfUiTITxHpN6GGY/hbl81+/A3mJmUg8sbgilJIQptDdrK3Z7TYQ6PkfCPEhQNNbvDbO721ntbS6hJiMTO+zvBIGl+mNFuBrSF2jxHpL7EYgbBGQvY5tYBAIQbhOC16KVMncB9odTcQ2TEZ8bD56kPAMDKwAojmo7gOSJ+UYKiodwbuHOrHF94cQGRyZH8BkRUWn5hPnYGS5ohtARamNxmMs8RqbfYZ0nISspFz5QPE9wVvYoCAJmJOYh9llTVoREV5v3Am5sFfFLrSRBpi3iOiF+UoGgooUCI6W0lIwkYGHYEUWdZUryTYSe5RSaHNBmCWsa1eI5IvWX//+rSXVLdIBLrAwBum1xFjiBLYT1CxEyMbUHbuPvVdWhxUZSgaLDJbSZzl+l3P9hN6/OQYhX9YJQuPEnKT99M8stXjxmgU5orACBXmIPbJtcU1iPkcuRlvEh+AQDo49AHjhaOPEfEP0pQNJi1kTWGNhkKAHif+R7Hnx3nNyCikiKSInAx8iIASQfr3g69eY5I/dk0sYChhR4AoEfKAK7cz+wcd9vQUg82TWgSPCJRtHPszPYzeYxEdVCCouGKvtGL/komRKpo81/R+TtI+QmFAnSe4AQAqJvbAPbZDQEAr/QiECV6DgDoPN4JQqGAtxiJ6nib/hYnnp0AANgY2WBwo8E8R6Qa6JNIw/Ws1xMNLSQfjldeXsHzxOc8R0RUSW5BLnY/2A0A0BHqwLO1J78BaZD6HW3gtrANDC304JLanyu/aXMRbgvboH5HGx6jI6pkd/BuFLJCAMDUNlOr5bo7ilCCouEEAoFMnwKadpsUdezZMSRkJQAAhjcdXm2n1K4s9TvaYPQmV8wfOpPrLHvH+BqsWhnyHBlRFYXiQu5zWSgQYlq7aTxHpDooQakGJraeCF0tXQCA1wMv5BTk8BwRURVF58ihzrGVQygUoF7DWlxn2cz8TBx4fIDfoIjKuPz2ImLSYgAAAxoOQF3TujxHpDooQakGrAysMLLpSABAUnYSjj49ynNERBU8S3iG69HXAQCNLRujh30PniPSbEU7y26/T1cyqzOxmCE+MhUAsD34w3thZjvqHFsUJSjVRNFfx0V7i5Pqa9s92aHFAgF12KxMdXMboLVlGwDA/Xf3ce/tPZ4jInx4eScWh+dfQ8CuECRqv4df0lUAQC292ujn2I/n6FQLJSjVRPe63dG0RlMAksWonsY/5TkiwqecghzsfbQXACDSEmFi64k8R1Q9TGg0ibtN/cGqn5d3YnF5QzAykyTN7AGmF8EEkuUOOrzuiVf34vkMT+VQglJNCAQCbmZZQNJrnFRfx58dR1K2ZJr1EU1HwEKf5uOoCkPrDYOxrjEA4MDjA0jLTeM5IlJVxGKGwL2hH+5DjJumkvmHBEyArqnutD7TRyhBqUbGtRzHdZbd83APzSxbje0K3sXdntJmCo+RVC9GOkb4osUXACSdZQ8+PshzRKSqxD5L4q6cAMAzg4dI1HkPAGiW2RYWBVa0PtNHKEGpRiwNLLmZZROyEnAq7BTPERE+RKVE4VLkJQCSmWN71KPOsVWp6BorO+7TGlnVxcfrLvmbXuBud0/tW2y96owSlGqm6K9l6eq1pHrxCvbibk9uPZlmjq1ibWzboJ1tOwBA0LsgPIx9yHNEpCoUXXcpU5iOYKObAACjAhO0yuiksF51R59M1YybgxvsTe0BAOcjziMmNYbniEhVKhQXwuuBJEERCoQ0cyxPJreZzN2m/mDVQ9H1mQJNrqJAmA8A6JzWC9qQzBxL6zPJogSlmhEKhNyHIwOD9wNvfgMiVepS5CVuUqh+jv1Q26Q2zxFVT2NbjIWetuTLav/j/cgtoMv6mq7o+kwBMs077txtWp9JFiUo1dCk1pMggOSPYPeD3RAzMc8RkapCnWNVg5meGYY7DQcgmTyxIlcaz0rOQZBPOLKSacZoVVO/ow2sJ2khRi9Scj+7EWrn1YOhpR6tz6QAJSjVUB3TOujrKOmUFZUShSsvr/AcEakKCVkJ3BdhTcOaGNRoEL8BVXNFE0Tpgo0VISslF8H/RSCLOluqpHN5J7jb3VP7otuUZhi90ZWSEwUoQammin44Fv1VTTTX/kf7kS+WtHtPaDmBG3JO+NGjXg/UN6sPALj44iKiU6J5johUtuz8bPzz+B8AgIG2ATqk90ANB1Nq1ikGJSgVwMBMhDbDHGGgRr2vPRp7wMrACgDwX+h/SMxK5DkiUpkYY7LNO22peYdv1B+s+vkv9D+k5krW4BlsPwT6YgOeI1JtlKBUAANzPbQb0RAG5np8h1Jmulq6mNByAgAgrzCPy+qJZrr79i6evH8CAOhapyuaWDXhOSICAJ6tPbn+YF4PvKg/mIYr2pT3heN4HiNRD5SgVGNFf0XvvL8TjNEUy5pq133qHKuK7EzsuP5g0anR1B9Mg0UmR3Kvb0OLhuhcswvPEak+SlCqsaY1mqKLneSP5PH7x7S6qobKzMvEwSeSKdWNdI0wqtkoniNSHarQPEv9waoHmQkS20ym1cPLgBKUao4+HDXfv0//RXpeOgBgdLPRMNI14jki1aEKzbNF+4MdCz3GLeJINEehuBDeD70BAFoCLUxsRauHlwUlKNXc6OYfvrAOPD6AzLxMniMiFY3mPlFtulq6GN9S0h8htzAXBx4f4DkiUtEuvLiA12mvAQADGg6ArbEtzxGpB0pQqjkjXSOMbjYaAJCelw6fpz48R0QqUlhCGPxf+QMAnKyc0NmuM88REUWKTn1PVzI1T9HOsfQjoewoQSHUzKPBiq7zMqXNFGr3VlHNazZHx9odAQAPYh/g/rv7PEdUPVXGLLzxmfE48UwyOZu1oTUGNBxQYY+t6ZROULKysrB7924sWbIEAwcOhIuLC3x9fcu8f3p6On799VcMHjwY7u7uWLBgAcLCwpQNg1Sgznad4WQlWSPixqsbeJ74nOeISEXIL8zHnod7AADaQm2Mb6UewxpVoeMqH2RmlqUFBHlRGbPwykyQ2GoCdLR0KuyxNZ3SCUpqaiq8vb0RHR0NR0dHpfYVi8X4+uuvcenSJQwbNgwzZ85EcnIyFixYgJgYWlWXLwKBgD4cNdDZ8LOIy4wDIOmIWdOwJs8RlY0qdFzlw+fNP4e+tj4A4J/H/yA7P5vniMin+niCxKJNeaR0SicolpaWOHbsGP7991/MmjVLqX2vXbuGJ0+eYNmyZZg0aRKGDRuGTZs2QSgUwsvLq/QHIJVmfKvx0BZqAwD2PNyDAnEBzxGRT0WdY9WLicgEI5uNBACk5KTg2LNjPEdEPtWdN3cQEh8CAOhWpxtNkKgkpRMUXV1dWFpalutg169fh4WFBVxcXLgyMzMz9OzZE/7+/sjLyyvX45JPV9OwJjwaewAAYjNicfnNRZ4jIp/iXfo7nA0/CwCobVwbfRv05TkiUhbUH0yzfNwHjCinSjvJPn/+HA0bNoRQKHtYJycn5OTkFNvMk5CQgLCwMO5fdDQtqlUZJrf+cPnxn4h9PEZCPtXeh3tRyAoBABNbTYSWUIvniEhZONd1RkOLhgCAKy+v4GXyS54jIuX18QSJ0qtjpOyqNEFJSkpSePVFWpaYqHjBupMnT2LatGncv1WrVlVqnNVVX8e+qGVcCwBwIeY8UrWSEB+ZCrGYpsBXJ4wxmWGN1O6tPgQCASa1nsTd93pATd/qyuepD02Q+ImqNEHJzc2Frq78Eu/SstxcxT2nPTw8sGPHDu7fihUrKjXO6kpbqI3Pao4AABSiEIEmVxCwKwSH51/DyzuxPEdHyupmzE1uJJZrPVc0sGjAc0REGRNbT4RQIPlo9nrghUJxIc8RkfKgPmCfrkoTFJFIpLCfibRMJFI8rNDKygqNGzfm/tnb21dqnNXVyzuxqH2xJXff3/QCGBgyk3JweUMwJSlqomi7d9FmO6IeahnX4ubKeJ32GhcjqT+Yunme+Bw3Xt0AQBMkfooqTVAsLCwUNuNIy8rb+ZZ8OrGYIXBvKGrm10KjrBYAgFjRa7zQf8rVCdwXSs09Ki49Nx2HQw4DAIx1jTG86XCeIyLlQcP+1VvRhQFpgsTyq9IEpWHDhggPD4dYLJYpDw0NhZ6eHurUqVOV4ZAiYp8lITNJMnti91R3rtzf9AJ3OzMxB7HPaCEzVfbv03+RmS9ZT2lM8zEw0DHgOSJSHgMbDuTmrTn+7DgSshJ4joiUVYG4QKUmSFTniQ8rLUFJSEhAdHQ0Cgo+zKfRo0cPJCUlwc/PjytLSUnB1atX0bVrV4X9U0jVyC4yc2Lb9G7QL5R8sd0zvoEcQZbCekT1yAxrbEvt3upKR0sHE1pOAADki/Ox/9F+niMiZeUb7ot3Ge8AAIMbDeZ9gkR1nviwXAnK0aNHsWfPHpw9K5lnISAgAHv27MGePXuQkZEBANi+fTvGjx+P+Ph4bj9XV1c0a9YMa9asgbe3N44dO4YFCxZALBZj8mRqK+eTfpHsWsT00DHdFQCQK8zBXZMbCusR1RKWEIaAmAAAQLMazdChVgeeIyKfomiCuSt4Fxij5lV1QAsDVhzt8ux0+PBhxMZ+6DDp5+fHXRVxd3eHkZHi4VRaWlr43//+h7///htHjx5Fbm4umjRpgmXLlqFu3brlCYVUEJsmFjC00OOaebqluuO62f8noKYX4JzaF4aWerBpYsFnmKQERYekTm4zmdq91VwTqyboWqcrbsbcxJP3T3Dv7T10qE1JpyqLy4jD6eenAUg6O/d1pAkSP0W5EpQjR46UWmf58uVYvny5XLmxsTG+/vprfP311+U5NKkkQqEAnSc44fKGYABAvZyGqJ1bD29EUXihH4p3uq8wbvwQCIX0paeKPm73HtdyHM8RkYowpc0U3Iy5CUByFYUSFNW29+FebpmQia0mcsuHkPKp0k6yRLXV72gDt4VtYGihBwEE6J7yobPsq14PUL+jTaUctzKWOK9uLr+5iNgMyVVNdVoYkJRsZNORMNQxBAAcfHIQWflZpexB+EILA1Y8SlDUTGX3yK7f0QajN7mi25Rm6JzWCzoCScflE3FHkV+YXynHrIwlzqubAxEfOlHS3Ceaw1hkjNHNRgMA0nLT4PPUh+eISHFuvb6FsMQwAEAP+x5wtHDkOSL1RwmKmqmKHtlCoQA1HExhJDZB/7qSCaPis+K5tlWiWtK0knHh9XkAgK2RLbV7a5iPO8sS1bTrPl09qWiUoJASfeH4YQw/fTiqFrGYIT4yFbdMrqCAUbu3pupi1wVNrJoAAPyi/RCeGM5zRORjRSdINBGZYETTETxHpBkoQSEl6mHrijomkgn0fCN88SbtDc8REUCyLMHh+dfgv+sJAopMptdHazCPUZHKIBAIZJrtaAFB1UMTJFYOSlBIibSEWtzqqmImxt6He3mOiLy8E4vLG4KRmZSDSL0wvBPFAAAaZjVD5I5UWjNJA01oNYG7Mub9wJsbKUJUA3WOrRyUoJBSebb25G7vfrCbJozikXTNJKmiV0+6/f8SBbRmkuaxNrLGoEaDAADvMt7hXMQ5niMiUqHxodxQ8OY1m9MEiRWIEhRSqvrm9eFW3w0AEJEUAb9ov1L2IJWl6JpJuYIc3DW+DgAQifXRLr07AFozSVPRAoKqSWZ5CVoYsEJRgkLKpOiHI3WW5U/RtZCCjP2Ro5UNAOiY5gI9pq+wHtEM/Rz7wdbIFgBw6vkpxGXE8RwRyS/Mx95HkmZvHaEOTZBYwShBIWUy1GkozPXMAQA+T32QmpPKc0TVU9G1kBQ17yiqRzSDtlAbE1tNBCCZOXjfo308R0TOhJ/B+8z3AIAhTYbAysCK54g0CyUopEz0tPXwRYsvAADZBdk49OQQzxFVT9I1k+J03uC5wRNJWW4dOOQ04erQmkmaq2gHTFpAkH9FrybTwoAVjxIUUmYffziSqiddMynA9CJX1j21DwT40O7debxTpayZVNmzGJPSNbRsCBd7FwDAs4RnuPX6Fs8RVV9v09/ibLhkQVU7Ezv0cejDc0SahxIUUmZtbNugjU0bAMDdt3fxOO4xzxGprspcX8iunSXu2l4FAGgxLXRO6wVAcuXEbWGbSlszqSpmMSalo86yqmHvw70QMzEAwLOVJ7SEWjxHpHkoQSFKoc6yZVOZ6wudfn4aCXnxAAA3K3eYFlqg25RmGL3RtdKSE6I6hjsNh7GuMQDgcMhhZORl8BJHdV7kkzEmkxxOajOJx2g0FyUoRCljW4yFSEtyiX//o/3ILaDRIlVt+/3t3O0pracCAGo4mFZKsw5RPYa6hhjTfAwAICMvA0dCjvASR3Ve5PPGqxsIT5IsOdCrfi84mDvwHJFmogSFKMVc3xzDnIYBABKzE3Ey7CTPEVUvUSlROB8hWRjQ3tQerrV68hwR4QMtIMivbUHbuNvUObbyUIJClEbNPPzZHbwbDJKRG1PbToVQQH/C1VGHWh3QvGZzAMDNmJt4lvCM54iqj8SsRPg89QEAWOpbcj/YSMWjTzeitJ71e6K+WX0AwIUXF/Aq9RXPEVUPBeICLiHUEnxYI4lUPx8vIEidZavO3od7kVeYB0CyerieNnUaryyUoBClCQVC7suRgWHPgz08R1Q9nA0/i7fpbwEAgxoNQm2T2jxHRPg0vtV46Ah1AEgWEKT+YJWPMSbTvDOt3TQeo9F8lKCQcpnYeiI398buB7u54Xak8uy4v4O7Pa0tfTBWd1YGVlzzQnxWPI49O8ZzRJrvxqsbCEsMAwD0sO+BJlZNStmDfApKUEi51DWti76OfQFIOm5eeHGhlD3Ip3id9lpmUqh+jv14joiogpntZ3K3t97bymMk1cP2oA8j6Ka3m85jJNUDJSik3Ga0m8Hd3nJvC4+RlI06z9uwO/jDVaqpbabSpFAEgORXfGPLxgCA69HXqbNsJaLOsVWPEhRSboMaDUJtY0k/iNPPTyMmNYbniEqmrvM2FIoLsfP+TgCS/j9Flxwg1ZtAIJD5obDt3rYSapNPsffhXuQWSj47qHNs1aAEhZSbtlCb6wshZmKZPhKk4px/cR4xaZLkr79jf9QxrcNzRESVTGw9kZs80fuhN7ILsnmOSPMwxmQmSKTOsVWDEhTySaa2nQotgaS5Yef9ncgvzOc5Is1DnWNJSSz0LTC6+WgAQEpOCk5GH+c3IA3k/8qfaz5zsXehzrFVhBIU8klqm9SGR2MPAMC7jHc0s2wFe532GqfCTgEAbI1sMbDRQJ4jIqqoaDPPnudePEaimYoOLS76XJPKRQkK+WSz2s/ibm8NopEEFWl70HYUskIAkqsn2kJtniMiqqiLXRe0qNkCAHA3/g5ei17yHJHmKNo51kLfgjrHViFKUMgnc3NwQwPzBgCAS5GXEJ4YznNEmiGvMI8b1qgl0KJhjaRYAoFAZsjxddOziI9MhVjMeIxKM+wO3k2dY3lCCQr5ZEKBUHYkQRCNJKgI/4X+h7jMOADAUKehNHMsKVG3vN4QMcmXZ6DJFVzefQ+H51/DyzuxPEemvgrFhTJTKBS9WkwqHyUopEJMajMJulq6AACvB17IKVC/uUZUzd93/+Zuz24/m8dIyKcyMBOhzTBHGJiJKuXxX96Jxd2/XqBjag8AQI5WNu6YXEdmUg4ubwimJKWcfCN88TJF0lzWt0FfNLRsyHNE1QslKKRCWBlYYWTTkQCApOwk/BvyL88RqbfHcY9x49UNAEDTGk3hWs+V34DIJzEw10O7EQ1hYF7xzQNiMUPg3lAAQI+UAVz5NbPT3MrXgftCqbmnHP66+xd3e06HOTxGUj1RgkIqTNHLn+ows6wqK/rBOLv9bAgEAh6jIaos9lkSMpMkVyztcxuiXnYjAECMXiQi9J8CADITcxD7LIm3GD8VH7NARyRF4FzEOQBAPbN6GNBwQCl7kIpGCQqpMF3rdEXzms0BALde30LQ2yCeI1JPqTmp2P9oPwDASNcI41uN5zkiosqyP5oZ2S3Fg7t92exEsfXUCR+zQBdtYp3VfhYtL8EDSlBIhREIBJjXcR53f9OdTTxGo772PtyLzPxMAMD4luNhIjLhOSKiyvQ/6tfSLt0ZxgVmAIBg45tI0k5QWI8UL6sgC14PJPPJiLREtLwETyhBIRVqXMtxMNczBwAcenIIcRlxPEekXhhj+Pveh19u1O5NSmPTxAKGFh/6tugwHfRI6Q8AEAvEuG52BoaWerBpYsFXiGrn6EsfpOSkAADGtBgDKwMrfgOqpihBIRXKQMeAm449rzCPhhwr6crLK9yU2j3se6BZzWY8R0RUnVAoQOcJTjJlPVIGQItJmiT8TH3RZmx9CIXUj6ksGBh2Pfuw7g79SOAPJSikws3uMBtCgeStteXeFuQV5vEckfrYeHsjd3t2BxpaTMqmfkcbuC1sw11JMSu0RNv07gCADO003Na/zmd4aiVcPwQhyU8AAJ1qd0L7Wu15jqj6ogSFVDh7M3sMbTIUABCbEctNE01KFp4YjtPPTwMA7EzsuOeQkLKo39EGoze5otsUyVW3Rd0XcNs239kMxmiYcVlcMj/O3Z7bcW6lHaey58bRBJSgkEoxv9N87nbRqwKkeBtvb+TmrZjXcR50tHR4joioG6FQgBoOpgCA3q16op1tOwBA0Lsg3Hp9i8/QVJ5YzBAU8ggPjCTPk62RLUY1G1Vpx6vMuXE0BSUopFI413VGa5vWAIA7b+7g9uvb/Aak4pKzk7lRA0X78RBSXnKj6m7TqLrivLwTi8Pzr+HXS7+BCSQ/EpzjBuBNkPrOHaMJKEEhlUIgEGB+xw9XUWjIccl23N+BrPwsAMCk1pNgrm/Oc0REE4xuPho1DGoAAHye+iAqJYrfgFTQyzuxuLwhGPEpifA3vQgA0BWL0OVtH1omgGeUoJBKU3R43pGQI4hJjeE5ItWUX5iPzXc2AwAEEGBBpwWl7EFI2ehp63H9KApZITYGUnNrUUWXCfA3PY9cYTYAoEuaG4zEkvmHaJkA/lCCQiqNnrYeN/19gbiA+qIU42joUbxOew0AGNRoEC1IRirU7A6zoact6eew4/4OJGcn8xyR6pAuE1CIQlw2/zDrbu+kz7jb6r5MgDqjBIVUqrkd53IfjtuCtnGTHxEJxhjWB67n7i/qvIjHaIgmsjKwwqTWkwAAmfmZNDdREdLp/+8bByBJJx4A0CKjA2zy7RTWI1WLEhRSqWoa1oRnK08AQEZeBrbe28pvQCrGL9oPd97cAQC0sm5FqxaTSrGo8yIIIJmobdPtTcgtoC9cQDL9PwPDRfP/uLI+yfLD+2mZAH5QgkIq3eKui7kPx423N9KHYxFrA9Zyt5d0XUKrFpNK0dCyIYY6Sb5432W8w8EnB3mOSDXYNLFAtHUoXuo/BwDY5dRHk6xWMnVomQD+KJ2g5OXlYcuWLRg6dCh69+6NGTNm4O7du2Xa9969e1iwYAEGDx6MAQMGYPr06Th//rzSQRP14mjhiOFNhwOQTNwmXam3ugt+FyyznPvnzT/nOSKiyZZ0WcLd/u3mbzRxGyTzxlxrcJK73y9pJPdjSqrzeCdaJoAnSicoa9aswZEjR9CnTx/Mnz8fQqEQS5cuxaNHj0rcz9/fH4sXL0Z+fj48PT0xdepUiEQirF69GkeOHCn3CRD18FXXr7jbv978FWIm5jEa1VD06slXXb+CtlCbx2iIputSpwu61ukKAAiJD4FvhC/PEfHv3tt7CEj0AwDULLRF+3RnbpuhpR7cFrZB/Y42fIVX7SmVoDx9+hSXL1/G9OnTMXv2bHh4eGDDhg2wsbHBli1bStz3v//+g6WlJTZs2IDhw4dj2LBhWL9+PWrXrg1fX/pD0XQda3dED/seAICwxDCcCjvFc0T8Ck8M55YAqGlYk+vESEhlKnoVZZXfqmp/FWWN/xru9o+Dv4fLlJYAgG5TmmH0RldKTnimVIJy/fp1aGlpwcPDgysTiUQYOHAgQkJCEBcXV+y+WVlZMDY2hq6uLlemra0NU1NTiETUAak6KHoV5Rf/X6r1h2PRq0gLOy2Evo4+zxGR6mBIkyFoVkOyVs+t17dw5eUVniPiT2h8KI6FHgMgmdZ+UhtPbpmAGg6m1KyjApRKUMLDw2FnZwdDQ0OZcicnyVLfERERxe7bunVrvHz5Ejt37sTr16/x5s0b7NmzB2FhYRgzZkw5QifqZkDDAWhlLemAdufNHZx/cR5iMUN8ZCoAID4ytVpMiPQ2/S32PNwDADARmdCqxaTKCAVCfOv8LXd/pd9KHqPh17qAddzaV192+ZKbDoGoDqUavRMTE2FpaSlXLi1LSEgodt+JEyfi3bt32LdvH/bu3QsA0NPTw88//wxnZ+di95M+bmJiInc/OjpambCJihAIBPjO5TuM+HcEAGD5mRVICtdFVpJkVE/ArhA8OPYCnSc4afSl1T9u/YG8wjwAwKz2s2CqZ8pzRKQ6GdVsFH68/iOeJz7H9ejruBF9A872JX8Ga5pXqa/wz+N/AADmeuaY0W4GzxERRZRKUHJzc6GjI7/CqrTZJje3+OGjOjo6qFOnDlxdXeHi4oLCwkKcOnUKq1atwh9//IFmzZoVu+/Jkyfh7e2tTKhERQ11GopmNZohJD4EwSlBuJcTiKZow23PTMrB5Q3BGts5LTYjFn/f/RsAINISYWHnhfwGRKodLaEWlndfDs8TngAkV1EujL/Ab1BVbM2NNSgQFwCQrBxuLDLmOSKiiFJNPCKRCPn5+XLleXl53PbibNiwATdv3sQPP/wANzc3uLu7Y/369bC0tMSmTSUvJOfh4YEdO3Zw/1asWKFM2ESFSC4xf3j9Tlke4C6zFqWp61+s81+H7ALJeh8z28+EjZHmJWFE9Y1tMRb1zeoDAC5GXqxWq41HpURhV/AuAICRrhHmd5pfyh6EL0olKJaWljJNLVLSMisrK4X75efn48yZM+jSpQuEwg+H1NbWRqdOnRAWFqYw8ZGysrJC48aNuX/29vbKhE1UTHdhL9jk1gEARBiE4Ln+Y7k6mrj+xdv0t9hyTzLaTV9bH990/4bniEh1paOlg2Xdl3H3q1NflJXXVyJfLPm+WdhpISwN5LstENWgVILi6OiI169fIzMzU6b86dOn3HZFUlNTUVhYiMLCQrlthYWFEIvFEItpXozqIi+1AAMTP0xKdsJqn8KrKJq2/sWaG2uQWyg5pzkd5tDVE8Kria0noo6J5IfCmfAzCHwdyHNElS8iKYLroG4qMsWXXb7kOSJSEqUSFFdXVxQWFuLkyQ8z7+Xl5eHs2bNo2rQprK2tAQBxcXEyHVnNzc1hZGSEGzduyFwpycrKQkBAAOrWrUtDjasRfTMROqS7wCZXsiBXuEEInhjeU1hPU8SkxmD7/e0AAEMdQyzttpTniEh1p6ulixUuH5pbv7n0jcYP/f/5+s8oZJIfyou7LIa5vjnPEZGSKJWgNG3aFD179sT27duxZcsWnDx5EgsXLkRsbCxmzpzJ1Vu9ejXGjx/P3dfS0sLnn3+OmJgYzJw5E0eOHMGhQ4cwY8YMxMfHY8KECRV3RkTl2TSxgImFIT5L+PC6/2flDTE+XEXTtPUvVt9YzY3cmddxHmoY1uA5IkKASa0nwdFCcuX7evR1XHihuZ1lnyU840buWOhbYEHnBTxHREqj9Nzay5cvh7W1Nc6fP4+MjAw4ODhg3bp1aN26dYn7TZgwAba2tvDx8YG3tzfy8/PRoEED/Pzzz3B1dS1n+EQdCYUCdJ7ghIwN2bDPboho/XC81nuJO8bX0Tm9JwDNWv8iLCEMO+/vBCDplLek65JS9iCkauho6WBVz1X4/KikyXX5leXo06APhALNW0d2xZUV3OSIX3X9CiYiE54jIqVROkERiUSYPXs2Zs8ufnKp4kbl9OnTB3369FH2kEQD1e9og94L2yLq4Az8oi/5wj5htQ89dHuj+/iWGjXEeNnlZdxl5a+6fkWd8ohKGdlsJNYFrENwbDDuv7sPn6c+GNVsFN9hVaibMTdxNPQoAMDa0BpzO87lOSJSFpqXJhO1Ub+jDVb+/iW6mHUHACToxiJlXJjaJydFZ8c9F3wJx55JptO2MbLB4i6L+QyNEDlCgRBr3D6sSbPiygrkFxY/qlLdMMaw5MKHq5Y/uf4EI10jHiMiZUUJClHIwEyENsMcYVDJHVWFQgFWdlvF3V/ptxIpOSmVeszK9PJOLA7Pv4aAXSFgYPjhzodOiD+7/gxDXcMS9iaEH+4N3LnFPMOTwrnJBDXB0dCjuPX6FgDAycoJU9pO4TkiUlaUoBCFDMz10G5EQxiYV/76FK0sW6NDmgsAID4rHj9f/7nSj1kZXt6JxeUNwchMygEABBn5I1L/GQDANrcuXPP78xkeIcUSCAT4tc+v3P0fr/+IhKzily5RF3mFefjm0of5hn7t8yu0hUr3bCA8oQSFqITh8ZOgpyVJhjbf2YzQ+FCeI1KOWMwQuPdDzLmCHPxbcyd3f3j8JNz7J1wjZ8clmqFD7Q7wbO0JAEjJScH3V7/nN6AKsDFwI14kvwAA9KzXEwMaDuA5IqIMSlCISrAssMa8ZpJhfwXiAiw6v0it5mSIfZbEXTkBgLOWh5GkEw8AaJrZFi0zO2rk7LhEs/zS6xeuf8a2oG14FPeI54jK73Xaa/x0/ScAgAAC/Ob+GwQCzRgZWF1QgkJUxtzmC7iZLc+/OI9Tz0/xHFHZFZ31Nk7nDS6YS0YMaDFtjImbCQEEcvUIUTW2xrZY8f9rZYmZGPN856nVD4Wivjz/JTLzJbOez2o/C21t2/IcEVEWJShEZRhoG+A399+4+/N85yEjL4PHiMpOOustA8OhmltRIJSslOqeNBQ2+XZy9QhRVQs7L0QD8wYAAL9oP3g98OI5IuVdfHER/z79FwBQw6AGVvVaVcoeRBVRgkJUysimI+FW3w0A8Cr1FVZcUY+Vq22aWMDQQg/3jG/giVEQAMA83woDE8dwdTRtdlyimUTaIvw14C/u/pILSxCXEcdjRMrJKcjBXN8P85z8r8//aEp7NUUJClEpAoEAWwdthZ62pMPsptub1GIpeKFQgIaja+BAzQ/DM0e/nw4R+zAKSpNmxyWara9jX3zR4gsAQHJOMhadX8RzRGX3w9Uf8DzxOQCga52umNCKllJRV5SgEJXjaOGIn1wlndsYGKadmsatY6PKfn+/GhnaaQCAtuld0TajGwDJlRO3hW3UfgI6Ur380fcPWOhLrvgdfHIQZ8PP8hxR6QJfB+K3W5JmYl0tXWwftF0jp+2vLuiVIyrpyy5forVNawDA4/eP8dO1n/gNqBTHnx3HoSeHAEgWItvgtgkCCNBtSjOM3uhKyQlROzUNa+J399+5+1NOTkF8ZjyPEZUspyAHk05M4tbb+bHHj2hWsxnPUZFPQQkKUUnaQm3s8tjFTaq0xn8N/KL9eI5KsdiMWMw4PYO7v6nfJjg1kawQW8PBlJp1iNqa2Goi+jn2AyB5n087NU1lR/V8d+U7PEuQTIzYoVYHfNXtK54jIp+KEhSistratsXKnisBSJp6xv03DsnZyTxHJUvMxJhwbALeZ74HAAxuNBhjW4ytsuNX1ZIEpHoSCATwGuIFKwMrAMCJsBPcytyq5FzEOZmmHa8hXjRjrAagBIWotK+6fsWtERKTFoMZp2eo1C+4XwN+xcXIiwAAWyNb7PTYWaWTQVXlkgSkerIxssEuj13c/YXnF+Jp/FMeI5L1Nv0txh8bz91f67aWmnY0BCUoRKVpCbWwb+g+mOtJhgn++/RfbAjcwG9Q/+961HWsuCoZBi2AAPuH7UdNw5o8R0VIxfNo7IHpbacDALLyszD08FCk5aXyHBWQX5iPsUfHcusGDWo0CAs7L+Q3KFJhKEEhKq+OaR2ZX3BLLi7B5cjLPEYEvEx+ieFHhqNALJmQbbnzcvSq34vXmAipTOv7rUdL65YAgOeJzzHHfybEEPMa04JzC3A9+joAoLZxbXgN8aLp7DUIJShELQx1Gopvnb8FIOn3McpnFMITw3mJJSMvA0MODUFidiIAoG+DvtywaEI0lYGOAY6NPsZdzTz32hfHrfYgPjKVl0Uw/7rzF7bc2wJA0u/kyMgjXF8ZohkoQSFq4yfXn7jVSJOyk+C+3x3v0t9VaQy5BbkYdngYHr9/DABoZNkIh0YcgpZQq0rjIIQPDuYOWN/8LwiY5CqFr+W/WHl0LQ7Pv4aXd2KrLI4Tz05gwbkF3P0dg3ega52uVXZ8UjUoQSFqQ0uohX+G/YMWNVsAAKJSotDvn35IyUmpkuMXigvxxX9fcJ1izfTMcPLzkzDTM6uS4xPCt5d3YpH/jxk+fz+TKztUcyuu5Z/H5Q3BlZKkiMUM8ZGS/i7xkam4EHERo3xGoZAVApB0pKfZYjUTJShErZjpmeHcuHOoZ1YPAPAo7hF67elV6RNI5RfmY+LxiTgaKlml2EDHAGfGnkFjq8aVelxCVIVYzBC4NxQA0CtlMAYkjgYAMAHDTttfEWh8FYH7Qiu0ueflnVgcnn8NAbtCAAC7DxyEx34PbmbpcS3HYW3vtRV2PKJaKEEhaqeWcS2cH3ceNQxqAACCY4PRw7sH3qS9qZTjZeVn4bPDn+Gfx/8AAHSEOvhv1H90SZlUK7HPkpCZlMPd/yxhApxT+gIAxAIxdtv+Bt+CY4h9llQhx3t5JxaXNwRzxwwy8scGuxXIFUjuu1v3g9cQL5rKXoPRK0vUUiPLRrjueR21jGsBAEITQtFxZ0fcirlVocd5nfYavfb04tYhEWmJ4DPKB30d+1bocQhRddkpuTL3BRBgXNw8uCYPBCC5krLPZjO+vf01N7qtvIperWFguGh+DNtqrUGBUPK4LTI64IuQhRCC+n5pMkpQiNpyquEE/0n+qG9WH4BkwqYe3j3w152/uPU4PsX5iPNou60tbr+RrKZsrGuM8+POw6Oxxyc/NiHqRl/BbMVCCDH2/Wy4Jw3jyrxf7YL7Pne8Tntd7mNJr9ZkCtOxrdYaHKm5A0wgaTrqktobs998h7xEcYVdrSGqiRIUotbqm9fHrSm34GLvAgDIF+djru9cuO1149blUFZ8ZjymnJiCfv/0Q3yWpG+Lvak9/Cb5oUe9HhUWOyHqxKaJBQwt5GcsFkCAkfFTMT52HrSYZHr5q1FX0ezvZth2b1u5rqZkJefgrrEfvq8/E0HG/lz5gMTRmBS7CNqQHOfjqzpEs1CCQtSetZE1Lo2/hIWdFnJl16KuodnfzTD5xGQ8ef9EbiSAoo58b9LeYMWVFXDY5IDdD3Zz5X0b9EXQ9CBudWVCqiOhUIDOE5yK3e6S2h8HOvtwza5puWmYeWYmWm5piX0P9yGnIKfYfaUKxAU4GXYSI4MGY3uttUjTlqy9ZVBohDmvv8fQhIkQ4MNEbIqu6hDNQaspEY2go6WD9f3WY0DDAZh+ejqiUqIgZmJ4PfCC1wMvOOQ3RpO01nAwbII3+6JhfsIUzYbWhbhuFoJjg3Ex8iKuvLwi0zRkrGuM39x/w7S202h2SkIA1O9oA7eFbRC4N1Smw6yhpR46j3dC/Y426NPDBYvOL8Keh3sASPqHTTg+AQvPL8SAhgPQq14vNLFqAmsjawgFQrzPfI/nic/hF+2HU89PITZDdqhyq/TOGPt+NiwKZCdhM7TUg00Ti8o/acIbSlCIRunToA+ezHqCTbc34X83/8fNkRKpE4ZIyzDZyn6KH0NbqI1pbafhO5fvYGtsW7kBE6Jm6ne0gX17a4RdjUHArhB0m9IMjXvWgVAoSeLN9c3h/Zk3prWdhqWXluJmzE0AkskV9z/aj/2P9pfpOE7GzeAWOgItMzvKXDWR6jzeiTsm0UzUxEM0jqGuIZY5L8OLeZHwTJ+PujkNyrRfXdO6+N7le7yY/wJ/D/ybkhNCiiEUClDDwRQAUMPBVGGi0K1uN/hP8seNSTfwRYsvYKhjWOrj6gh1MMxpGE6POY0nix7hy2kzYWShL1PH0FIPbgvboH5Hm4o5GaKy6AoK0Vg5UWJ0e9sP3dAPKVqJCDN4hFjd10jUeY8CQQEEEMA83wpu7l3h0XkAGlk2oqYcQiqQQCBA97rd0b1ud+QV5uFmzE0EvwtGeFI4UnJSUCAugJWBFeqa1kX7Wu3Rxa4LDHU/JDKlXa0hmo0SFKKxivbwNyu0RKf0ngrr9bRohQZWtaoqLEIqlYGZCG2GOcJAxTqQ6mrpwrWeK1zruSq1X1mu1hDNRAkK0Vhl7eFPIwGIJjEw10O7EQ35DoOQT0Z9UIjGKm7ehqJoJAAhhKgmSlCIxipt3gaARgIQQoiqogSFaDTpvA0fX0mhkQCEEKLaqA8K0Xg0EoAQQtQPXUEh1QKNBCCEEPVCCQohhBBCVA4lKIQQQghROZSgEEIIIUTlUIJCCCGEEJVDCQohhBBCVA4lKIQQQghROZSgEEIIIVDdhRarK5qojRBCCAEttKhq6AoKIYQQQlQOJSiEEEIIUTlKN/Hk5eVh165duHDhAtLT09GgQQNMnToVHTp0KNP+ly9fho+PD168eAFtbW3Y29tj6tSpaNeundLBE0IIIUQzKZ2grFmzBteuXcPIkSNhZ2cHX19fLF26FBs3bkTLli1L3Hf37t3Ys2cPXF1d0a9fPxQUFODly5dISEgo9wkQQgghRPMolaA8ffoUly9fxqxZszBmzBgAQN++feHp6YktW7Zgy5Ytxe4bEhKCPXv2YM6cORg1atSnRU0IIYQQjaZUH5Tr169DS0sLHh4eXJlIJMLAgQMREhKCuLi4Yvf9999/YWFhgREjRoAxhqysrPJHTQghhBCNplSCEh4eDjs7OxgaGsqUOzk5AQAiIiKK3TcoKAhNmjSBj48PPDw80K9fP3z22Wc4evRoOcImmoTmHiCEEPIxpZp4EhMTYWlpKVcuLSuuL0l6ejpSU1Px5MkT3L9/H56enrC2toavry82btwIbW1tDBkypNjjJiQkIDExkbsfHR2tTNhExdHcA4QQQj6mVIKSm5sLHR0duXJdXV1uuyLS5pzU1FT88MMPcHNzAwC4urrC09MTe/fuLTFBOXnyJLy9vZUJlRBCCCFqTKkERSQSIT8/X648Ly+P217cfgCgra0NV1dXrlwoFKJXr17YvXs34uLiYG1trXB/Dw8PdOvWjbsfHR2NVatWKRM6IYQQQtSIUgmKpaUl4uPj5cqlzS9WVlYK9zMxMYGuri6MjIygpaUls83c3ByApBmouATFysqq2McmhBBCiOZRqpOso6MjXr9+jczMTJnyp0+fctsVHkQoRMOGDZGamip3BUbab8XMzEyZUAghhBCiwZRKUFxdXVFYWIiTJ09yZXl5eTh79iyaNm3KXQGJi4uT68jas2dPFBYW4ty5c1xZbm4uLl68iHr16tEVEkIIIYRwlGriadq0KXr27Int27cjJSUFtWvXxrlz5xAbG4uvv/6aq7d69Wo8ePAAfn5+XNmQIUNw5swZrF+/HjExMbC2tsb58+cRFxeHNWvWVNwZEUIIIUTtKT3V/fLly7nkIiMjAw4ODli3bh1at25d4n4ikQgbNmzAli1bcPbsWeTk5MDR0RHr1q1Dx44dyxs/ISqJ5nYhhJBPo3SCIhKJMHv2bMyePbvYOps2bVJYbm5ujuXLlyt7SELUDs3tQgghn0apPiiEEEIIIVWBEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQotIMzERoM8wRBmYivkMhVUib7wAIIYSQkhiY66HdiIZ8h0GqGF1BIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhBCicihBIYQQQojKoQSFEEIIISqHEhRCCCGEqBxKUAghhCiNFvAjlY0WCySEEKI0WsCPVDa6gkIIIYQQlUMJCiGEEEJUDiUohBBCCFE5lKAQQgghROVQgkIIIYQQlUMJCiGEEEJUDiUohBBCCFE5lKCQaoMmliKEEPVBE7WRaoMmliKEEPVBV1AIIYQQonIoQSGEEEKIyqEEhRBCCCEqhxIUQgghhKgcSlAIIYQQonIoQSGEEEKIyqEEhRBCCCEqhxIUQgghhKgcpROUvLw8bNmyBUOHDkXv3r0xY8YM3L17V+kDf/nll3BxccH69euV3pcQQgghmk3pBGXNmjU4cuQI+vTpg/nz50MoFGLp0qV49OhRmR/j+vXrCAkJUfbQhBBCCKkmlEpQnj59isuXL2P69OmYPXs2PDw8sGHDBtjY2GDLli1leozc3Fz89ddfGDt2bLkCJoQQQojmUypBuX79OrS0tODh4cGViUQiDBw4ECEhIYiLiyv1MQ4ePAjGGD7//HPloyWEEEJItaBUghIeHg47OzsYGhrKlDs5OQEAIiIiStw/Li4O//zzD2bOnAmRiFaUJYQQQohiSq1mnJiYCEtLS7lyaVlCQkKJ+//1119o2LAh3NzclDksEhISkJiYyN2Pjo5Wan9CCCGEqBelEpTc3Fzo6OjIlevq6nLbi3P//n1cv34dW7duVTJE4OTJk/D29pYrp0SFEEIIUT/29vbQ09MrsY5SCYpIJEJ+fr5ceV5eHrddkYKCAmzcuBHu7u5cc5AyPDw80K1bN+5+YGAgdu3ahVWrVin9WIQQQgjh144dO9C4ceMS6yiVoFhaWiI+Pl6uXNr8YmVlpXC/8+fPIyYmBkuWLMG7d+9ktmVlZeHdu3cwNzcvNpuysrKSeWxra2vY2trC1taWu3qjyaKjo7Fq1SqsWLEC9vb2fIdTpejcq9+5V9fzBqrvuVfX8waq77mX5VyVSlAcHR0RHByMzMxMmY6yT58+5bYrEhcXh4KCAsyZM0du2/nz53H+/HmsXr0azs7OZYrDzMwM7u7uyoSuEezt7UvNODUVnXv1O/fqet5A9T336nreQPU+9+IolaC4urri0KFDOHnyJMaMGQNA0rxz9uxZNG3aFNbW1gAkCUlOTg6XIbm5uaFhw4Zyj/ftt9+ic+fOGDx4cLmafgghhBCimZRKUJo2bYqePXti+/btSElJQe3atXHu3DnExsbi66+/5uqtXr0aDx48gJ+fHwBJZljc5RxbW9syXzkhhBBCSPWgVIICAMuXL4e1tTXOnz+PjIwMODg4YN26dWjdunUlhEcASd8fT09PhUO8NR2de/U79+p63kD1Pffqet5A9T730ggYY4zvIAghhBBCilJ6sUBCCCGEkMpGCQohhBBCVA4lKIQQQghROZSgEEIIIUTlKD2Kh1SOhIQE+Pj4IDQ0FM+ePUN2djY2btyINm3ayNWdP38+Hjx4IFfesWNH/PbbbzJleXl52LVrFy5cuID09HQ0aNAAU6dORYcOHSrrVJSmzLkDwOPHj7F161Y8f/4choaG6NmzJ6ZNmwYDAwOZeupw7or4+vpizZo1CrcdO3ZMrre/v78/vLy8EB0dDTMzMwwYMAATJkyAtrZ6/Xmr6+uljODgYCxYsEDhti1btqBZs2bc/bK+z1VRVlYWDh06hKdPnyI0NBTp6elYtmwZ+vfvL1c3KioKf/75Jx4/fgxtbW106dIFc+fOhZmZmUw9sViMQ4cO4fjx40hKSoKdnR3GjRuH3r17V9FZla6s5/3LL7/g3LlzcvvXrVsX+/fvlylTh/OuLOr1CabBYmJicODAAdjZ2cHBwQEhISEl1q9RowZmzJghU6ZomNqaNWtw7do1jBw5EnZ2dvD19cXSpUuxceNGtGzZskLPobyUOffw8HAsWrQI9vb2mDt3Lt6/f4/Dhw/j9evX+PXXX2XqqsO5l2TKlCmwtbWVKTMyMpK5HxgYiG+//RatW7fGggULEBkZib179yI5ORmLFy+uynA/mbq/XsoYPny43OSUtWvX5m4r8z5XRampqfD29oa1tTU3A7ki79+/x7x582BkZIRp06YhOzsbhw4dQmRkJLZt2yazOO2OHTvwzz//YPDgwWjSpAn8/f3x888/QyAQwM3NrapOrURlPW9Assju0qVLZcqKztAupQ7nXWkYUQmZmZksNTWVMcbY1atXmbOzM7t//77CuvPmzWMTJkwo9TFDQkKYs7MzO3DgAFeWk5PDPv/8czZz5syKCbwCKHPuS5YsYZ999hnLyMjgyk6dOsWcnZ3Z7du3uTJ1OXdFzp49y5ydnVloaGipdcePH88mTZrE8vPzubLt27czFxcXFhUVVZlhVih1fr2Ucf/+febs7MyuXr1aYr2yvs9VVW5uLktISGCMMRYaGsqcnZ3Z2bNn5er9/vvvrHfv3iw2NpYru3v3LnN2dmYnTpzgyt6/f8969uzJ/vjjD65MLBazOXPmsGHDhrGCgoJKPJuyK+t5r169mrm7u5f6eOpy3pWF+qCoCAMDA5iYmCi1T0FBAbKysordfv36dWhpacHDw4MrE4lEGDhwIEJCQhAXF1fueCtSWc89MzMT9+7dg7u7u8wvjb59+0JfXx9Xr17lytTl3EuTlZWFwsJChduioqIQFRWFwYMHyzTnDB06FIwxXLt2rYqi/HSa8nopIysrCwUFBXLlyrzPVZWurm6ZJh67fv06unbtyi2TAgDt27dHnTp1ZM7T398fBQUFGDp0KFcmEAjw2WefIT4+vtQrzlWlrOctVVhYiMzMzGK3q8t5VxZq4lFTMTEx6Nu3L/Lz82FhYYFBgwbB09NT5osqPDwcdnZ2cpcNpZeWIyIiZD4YVF1kZCQKCwvlFtTS0dFBw4YNER4ezpVpwrkvWLAA2dnZ0NHRQYcOHTBnzhzUqVOH2/78+XMAkHs+rKysUKNGDZnnQ9VpwuuljDVr1iA7OxtaWlpo2bIlZs2ahSZNmgBQ7n2uzuLj45GcnKxwgTwnJycEBgZy98PDw6Gvry+3ZIr0/REeHq52zYA5OTno378/cnJyYGxsDDc3N8ycOVOmj5EmnrcyKEFRQ7Vq1UKbNm3g4OCAnJwcXLt2DXv37kVMTAx++uknrl5iYqLCbF5alpCQUGUxV4TExEQAivvaWFpa4uHDhzJ11fXcRSIR+vfvjzZt2sDQ0BBhYWE4cuQIZs+ejZ07d3Jf1KU9H9Lt6kCdXy9laGtro0ePHujcuTNMTU0RFRWFw4cPY+7cufj777/RqFEjpd7n6qy080xLS0NeXh50dXWRmJgIc3NzCAQCuXqA+r0/LC0tMWbMGDRq1AiMMdy+fRvHjx/HixcvsHHjRu6Hpqadt7IoQakEYrEY+fn5Zaqrq6sr9+YrzTfffCNzv2/fvvj1119x6tQpjBo1ihsJkJubK9PJrOgxpdsrWmWeuzTe4s4pLy9Ppm5Vn7si5Xk+evXqhV69enHlzs7O6NixI+bNm4d9+/ZhyZIlAMCdr/ScPn6skpr/VI2qvF6VrUWLFmjRogV3v3v37nB1dcWkSZOwfft2/Pbbb0q9z9VZaecpraOrq6tx74+PBzi4ubmhTp062LFjB65fv851ftW081YWJSiV4OHDh8UOJfzYvn37il3pWRmjR4/GqVOncO/ePS5BEYlECr8cpR9wIpHok4/7sco8d2m8xZ1T0S9qPs5dkYp6Plq2bImmTZsiKCiIK5Oer6IvrLy8vCo7x4qgKq8XH+zs7NC9e3f4+fmhsLBQqfe5OivtPIvWqQ7vj1GjRmHXrl24d+8el6BUh/MuCSUolaBu3bpYtmxZmepW1AqWNWvWBACkp6fLPHZ8fLxcXemlVSsrqwo5dlGVee7S+oqaLhITE2XOh49zV6Qin4+aNWvi1atXcvUTExPl+mckJibKDWNVZaryevGlZs2ayM/PR05OjlLvc3VW2nmamJhwyZilpSWCg4PBGJO56qpJ7w+RSAQTExOkpaVxZdXhvEtCCUolsLS0VDghUWV6+/YtAMhMbiQdh5+ZmSnT+fDp06fc9opWmedev359aGlpISwsTKYJJD8/H+Hh4ejZsydXxse5K1KRz8fbt29lXt+GDRsCAMLCwtC0aVOuPCEhAfHx8TIjYlSdqrxefHn79i10dXWhr6+v1PtcndWoUQNmZmYICwuT2xYaGirzmjs6OuL06dOIjo5GvXr1uHJNen9kZWUhNTVV7jNc08+7JDTMWM1kZmbKXdJnjGHv3r0AIDPrpqurKwoLC3Hy5EmuLC8vD2fPnkXTpk3VblSEkZER2rdvjwsXLsj0rzh//jyys7NlPrjV+dxTUlLkym7duoWwsDB07NiRK6tfvz7q1q2LU6dOyQxFPn78OAQCAXr06FEV4VYIdX69lKHotY2IiEBAQAA6dOgAoVCo1Ptc3fXo0QM3b96UGUYeFBSEmJgYmfPs3r07tLW1cezYMa6MMYYTJ06gRo0aaN68eZXG/Slyc3MV9g/bs2cPGGPo1KkTV6ZJ510edAVFhezZsweAZH4LQPKB9OjRIwDAxIkTAUiGlv7000/o3bs3ateujdzcXNy4cQOPHz/G4MGDZYbsNW3aFD179sT27duRkpKC2rVr49y5c4iNjcXXX39dtSdXirKcOwBMnToVc+bMwbx58+Dh4cHNsNmhQweZP2x1OvePzZo1C40aNULjxo1haGiI58+f4+zZs6hZsybGjx8vU3f27NlYtmwZFi9eDDc3N0RGRuLYsWMYNGiQzC8uVafOr5cyfvjhB4hEIjRv3hzm5uaIiorCqVOnoKenJ9Nxsqzvc1V29OhRZGRkcM0RAQEBeP/+PQDJTLpGRkYYN24crl27hoULF2LEiBHIzs7GwYMH4eDgIHPlsWbNmhg5ciQOHjyIgoICODk54caNG3j06BG+++47aGlp8XKOipR23unp6ZgyZQp69+6NunXrAgDu3LmDwMBAdOrUCd27d+ceS53OuzIIGGOM7yCIhIuLS7Hb/Pz8AEguBW/btg2hoaFISkqCUCiEvb09Bg0aBA8PD7lRMbm5udz6JhkZGXBwcMDUqVNlfomrgrKcu9SjR4+4NUoMDAzQs2dPzJgxQ26NEnU594/t2LEDgYGBePfuHdcnoUuXLvD09ISFhYVc/Rs3bsDb2xvR0dEwNTVF//795ebEUQfq+nopw8fHBxcvXsSbN2+QmZkJMzMztGvXDp6enrCzs5OpW9b3uaoaNWoUYmNjFW47fPgwt4zDy5cv5dbimTNnjtx7XSwW48CBAzh58iQSExNhZ2eHL774Au7u7pV+Lsoo7byNjIywceNGhISEIDExEWKxGLVr10afPn3w+eefy/3dqst5VwZKUAghhBCicqgPCiGEEEJUDiUohBBCCFE5lKAQQgghROVQgkIIIYQQlUMJCiGEEEJUDiUohBBCCFE5lKAQQgghROVQgkIIIYQQlUMJCimRr68vXFxc4Ovry3coZRIcHAwXFxfs3r270o7h4uKC+fPnV9rjVxejRo3CqFGj+A5D5e3evRsuLi4IDg6u1OMcOXIEvXr1wrt378pUvyr+1tTZypUrMXLkSOTm5vIditqiBEXDrF27Fi4uLhg0aJDcooKaQt2+2FJTU7F161ZMmDABffr0QZ8+fTBy5EgsXLgQXl5eSEpKqpI4Sks258+fX+KSA9VJdnY2+vXrBxcXF/zxxx98h1Pp0tPTsXfvXgwYMICbgp58Gk9PTyQkJODff//lOxS1pV6LdZASZWVl4erVqxAIBEhLS8ONGzfg5ub2SY/p7OyMpk2bwtLSsoKirF7ev3+P2bNn4/3792jYsCH69+8PY2NjJCYm4smTJ/Dy8kKLFi0UrrGj6davX893CMW6evUqsrKyIBAIcOnSJcyZMwcikYjvsCrNkSNHkJaWhjFjxvAdisaoU6cOunXrhgMHDmD48OHQ19fnOyS1QwmKBrly5Qqys7MxatQo+Pj44MyZM5+coBgZGcHIyKiCIqx+du/ejffv32PKlCkyqzJLvXjxoto+v7Vr1+Y7hGKdOXMGWlpaGDZsGP7991/4+fmhT58+fIdVKQoKCnD69Gm0aNFCpV8TdeTu7g4/Pz9cvnwZgwYN4jsctUMJigaRfqiOHTsWL168wP379xEbGwsbGxuZert374a3t3exj2NjY4MjR44AkDQLrFmzBsuWLZNZ/tzFxQWtW7fGd999hy1btuDu3bvIy8tDq1atsHDhQtSqVQtRUVHYvn07Hj58iIKCAnTs2BGLFi2SuVoQHByMBQsWwNPTE5MnT5aJ4927dxg9ejT69euH5cuXc/eLxiClaP9nz55h+/btCAkJgVAoRNu2bTF37ly5S9h+fn64evUqnj17hoSEBGhra6NBgwYYMWIEXF1dS37SSxESEgIAGDZsmMLtDRo0UFj+9u1b/PPPP7h79y4SExNhaGiIevXqoX///tzrkJ+fj5MnT+LmzZuIiopCSkoKDA0N0aJFC0ycOBGNGjXiHu+XX37BuXPnAABr1qzBmjVrZM6/6HNZ9Lb0uZd68eIF9u3bhwcPHiAtLQ2Wlpbo1q0bJk2aBFNTU65e0ddu7Nix2LFjBx4+fIi0tDRuJVtpM530vQZ8eG9u3LgRCQkJOHjwIF69egUjIyP07NkTM2fOlLuSUVBQgEOHDuH06dNISEhAjRo1MHDgQPTq1Quff/653DmU5tWrV3j8+DG6du0qk+wrSlCKvn+7du1apvcbAFy/fh379+/Hy5cvYWhoiG7dumHWrFmYMmWK3HNSkrK+HiW5c+cOEhMTMXbsWIXbc3Nz4eXlhYsXLyI1NRW1a9fGiBEj5FZfLurt27fYt28f7t69i+TkZBgbG6Njx46YPHmy3OcRoNzzIX0vHzp0CH5+fjhz5gzevn0LNzc37nVOTk7G/v37cfPmTbx//x4GBgZo1aoVJk+eDAcHB7njK1M/JiYG+/fvR3BwMBITE6Gnp4eaNWuiTZs2mDdvnsyK8l26dIGenh7OnTtHCUo5UIKiIaKiohASEoLOnTvDwsICffv2RVBQEM6ePSv3xd2mTRuFjxEdHY2rV6+W+VJ2eno65syZA0tLS/Tt2xevX7/GzZs38eWXX+KXX37B3Llz0bhxYwwYMADPnz/H9evXkZaWho0bN5brHI2MjODp6QkfHx8AwIgRI4o9p2fPnuHgwYNo06YNPDw8EB4ejhs3biAyMhLe3t4y57h9+3Zoa2ujRYsWsLS0REpKCgICAvD9999jwYIFGD58eLniBcB9ScTExKBp06Zl2ufRo0f4+uuvkZWVhY4dO8LNzQ3p6ekIDw+Hj48Pl6CkpaVh8+bNaNmyJTp37gxjY2O8e/cOAQEBuH37NjZv3gwnJycAkqa6jIwM+Pv7o3v37nB0dJQ5pqenJ86dO4fY2Fh4enpy5Q0bNuRu+/v748cff4RAIED37t1Rs2ZNREVF4b///sOdO3ewbds2GBsbyzzumzdvMGvWLDg4OKBfv35IS0uDjo5Oqc+B9DG7deuGtm3b4vbt2zh69ChSU1Px/fffy9Rdt24dzp8/j1q1auGzzz5Dfn4+jhw5gidPnpTp+f7YmTNnAAB9+/aFtbU1WrdujeDgYLx9+xa1atVSuI8y77czZ85g3bp1MDQ0RN++fWFkZITAwEB8+eWXKCgogLZ22T6Wy/N6KBIUFAQAaNasmdw2sViMZcuW4d69e3BwcEDv3r2RlpaGP//8s9jPkadPn2LJkiXIzs5G165dYWdnh9jYWFy8eBG3b9/Gli1bZJ7H8j4fGzZswNOnT9GlSxd07doV5ubmACTvufnz5yM+Ph4dOnRA9+7dkZKSguvXr+Pu3btYv369zN+iMvUTEhIwY8YM5OTkoEuXLujVqxdycnLw+vVrHD9+HLNnz5aJV0dHB40aNUJISAiys7OpmUdZjGiEzZs3M2dnZ3bp0iXGGGOZmZnM3d2djRgxghUWFpa6f1JSEhs5ciRzc3Njjx494srPnj3LnJ2d2dmzZ2XqOzs7M2dnZ7Z582aZ8t9//505Ozuz/v37syNHjnDlYrGYffXVV8zZ2Zk9e/aMK79//z5zdnZmu3btkovp7du3zNnZma1evVqmfOTIkWzkyJEKz0P6eEWfC6lVq1YpLH/z5o3c42RmZrKJEyey/v37s+zsbLlznzdvnsLjf8zHx4c5OzszDw8PtmvXLnb//n2WkZFRbP3c3Fw2bNgw1qNHDxYYGCi3PS4uTqbu+/fv5epERkYyd3d3tmjRIpny4l5LqXnz5jFnZ2eF21JSUli/fv3YsGHD2Lt372S2Xbp0iTk7O7P169dzZdLXrrjXljHFr+OuXbu49090dDRXnpOTw8aOHct69OjB4uPjufJ79+4xZ2dnNnnyZJnXKT4+ng0ZMkTh+6ck+fn5bMiQIax///4sJyeHMcbYmTNnmLOzM9uxY4dcfWXfb2lpaczd3Z25u7uzV69eyRx3wYIFzNnZudjn5P79+1yZsq9HSaZNm8Z69OjBcnNz5bZJ3zNLlixhBQUFXHlERATr1auX3Oubn5/PRo4cyfr27cvCwsJkHuvhw4fM1dWVff3115/0fKxevZo5OzuzYcOGsdjYWLmYZ82axVxdXdnt27dlyl+9esX69u3LJk6cWO760r/nop9tUqmpqXJljH34bA4KClK4nRSPRvFogIKCAly4cAGGhobo3r07AMDAwADOzs6Ii4vDvXv3Stw/NzcXy5cvR2xsLL755hu0aNGiTMfV19fH1KlTZcqkfV5MTU1lrnAIBAJu24sXL8p8buXVqlUruf43AwYMAACEhobKlCv6VWxgYID+/fsjIyMDz549K3ccw4YNw5gxY5CRkQFvb28sWLAAAwYMwIQJE7B161YkJCTI1Pf390d8fDz69OmDTp06yT1ezZo1udu6urqoUaOGXJ369eujTZs2XNNaRTh//jwyMzMxffp0uUv0bm5uaNSoES5fviy3n4WFBcaPH6/08UaMGIG6dety90UiEdzc3CAWixEWFsaVX7hwAQAwceJE6OnpceVWVlYy77+yunXrFpKSktCzZ0/uqoerqyv09PTg6+sLsViscL+yvt/8/f2RnZ2NAQMGoE6dOly5tra23N9SScr7eigSHx8PIyMj6Orqym2TNgtOnToVWlpaXHmDBg3g7u4uV//mzZuIjY3FmDFjZJoYAaBly5bo1q0bAgMDkZmZCeDTno8xY8bA2tpapuz58+d48uQJ+vbti44dO8psq1OnDgYNGoTIyEhERkaWq76UoqvMJiYmCuOUXtmJj48v8XyIPGri0QD+/v5ISUnBwIEDZf5w+vbtiwsXLuDMmTNyf3xSjDH88ssvCAkJwaRJk9C7d+8yH9fOzk7mSwEAN9rHwcFBpi226LaPv5QrQ+PGjeXKpF/mGRkZMuXJycn4559/EBgYiLi4OLl5Cz4lXoFAgFmzZmHMmDEIDAzE06dP8ezZMzx//hxRUVE4efIkfvvtN+4SsvTLrEOHDmV6/PDwcBw8eBCPHj1CUlKSXEKSkpICKyurcscvJe1L8/TpU7x580Zue15eHlJTU5GSkgIzMzOu3NHRsUxNOh/7+MsN+JCcFX39IiIiAEi+/D7WvHlzpY97+vRpAJK/HSkDAwN0794dly5dwp07d9C5c2e5/cr6fpMm54ribdq0qUwSUJLyvh6KpKWlKUx0pfHq6+srPL+WLVtyzWEfx/Xq1SuF86MkJSVBLBYjJiYGTZo0+aTnQ9p8WdTTp08BSP6mFR3/1atX3P8ODg5K15f2M1q/fj2CgoLQqVMntG7dutimP+BD4pKamlpsHaIYJSgaoGibeVHt2rVDjRo1EBAQgLS0NIUZ/s6dO3H16lX07t0bkyZNUuq4hoaGcmXSD5SStlXUr/qSGBgYFHv8or+C09LSMH36dMTFxaFFixZo3749jIyMIBQKERERAX9/f+Tn539yPGZmZujXrx/69esHAEhMTMSGDRtw/fp1/Prrr/Dy8gIA7pdlcV8YRT1+/BiLFi0CALRv3x52dnbcefv7+yMiIqJCYgck/Y0A4NixYyXWy8nJkbkv/fWorJLeP0Vfv6ysLAiFQoUdQpUdup2QkIA7d+6gVq1acl+Y/fr1w6VLl3D27FmFCUpZ32/S11fR81LceShS3tdDEZFIVOycSZmZmcW+FxU9v9K4Ll68WKa4PuX5ULRPWloaAMmVsFu3bhW7b3Z2drnq29raYsuWLfDy8kJgYCCuXr0KAKhbty6mTJmCnj17yu0r/cGjycPUKwslKGouLi4Od+/eBYASZze9cOGC3CVvX19f7Nu3Dy1atMA333xTqXEWR3qVpbCwUG6b9MOrMp05cwZxcXEKhwHv378f/v7+lXJcS0tLrFixArdu3cKLFy+QmpoKU1NTbshxWS4H79u3D3l5efjzzz/lvlClvwwrivQL2NvbW+EoiOJ8fBWtohkYGEAsFiM1NVXuSoGyE+D5+vqisLAQb9++LXbCuoCAgDJdlSiONPFKTk6W2yY9j7Ikp+V9PRQxNTUt9v1maGhY7C9/Rc+vNK61a9eia9eupR77U54PRe8t6eOVtXO7svUBydXhlStXoqCgAGFhYbh9+zZ8fHzw448/wsrKSq6JXJoElfc9U51RHxQ1d+7cOYjFYrRs2RIDBw6U+yf9xf7xpdgHDx7gt99+Q61atbB69WqF7c9VQTrKQFEzSnh4uMJ9hEKhwoSmPKSXx6V9d4p69OhRhRyjODo6OnKXsKWXraVJZ0nevn0LExMTueQkJycHz58/l6svFEr+3It77kraLm2Ckl7CVxXS0UiPHz+W26bMKB7GGM6ePQsA6N+/v8K/pebNmyM/P5/r91Ie0mHliuINDQ0t8/u6Il8PBwcH5OXlIS4uTm5bgwYNkJ2dLdPvR0rR34eycVXU8yEl/fsp6/GVrV+UtrY2mjVrhsmTJ2PBggVgjOHmzZty9WJiYgDgkxPJ6ogSFDUm/VAVCARYvnw5vv76a7l/y5cvR7NmzfDixQuus2dMTAxWrFgBkUiEtWvX8prZ161bFwYGBlwzlFRSUhL27t2rcB8TExOkpqZWyBoX0g6GH39AXrx4EYGBgZ/8+IcOHUJ0dLTCbf/99x+ys7NRt25d7lJ2t27dUKNGjf9r795Cmm7jOIB/W7qlNTN0zkNYlEXaaLqckq7CIVFSKchuvNGyIGrYiUlFGQoFnS6Ssotchi5lYF2IK2tqWrTcmjZs2QGloGQ2k7LZwbbVexEb2v71au11k/f3udyeuef//P+O33P6PdBqtTAYDB6fGdvT5fP5sNlsePHihfs1p9OJiooKvH//3uOzrik+q9XKWJ/fvZ+VlYXg4GBcvHhx3Pe5fPnyxSfBiys3yeXLl8c9D0NDQ+7t6BNhMpnQ398PoVCIgwcPMv4vuUYZfw72J0MikSAoKAgajWbc2hGHwwGlUjnhv+PN+5GYmAiAedTNNW1cWVk5Lljo6+tjDNQkEgn4fD7UajVMJpPH+w6HY1xg4632cElISEBCQgJaWloYFwl/+/ZtXL0mW/7Zs2eMI7uu0SSmjl5PTw/CwsLGLQImE0NTPNNYV1cXLBbLvy7SysrKwuPHj6HRaLBs2TKUl5fjw4cPSE5ORmtrq0f5OXPmTNlZN4GBgcjNzUVNTQ22bduG9PR0fP78Gffu3UNiYiLjAsCkpCQ8ffoUxcXFWLFiBQICAiAUCt0/tJOxbt061NbW4uzZs3j48CH4fD56e3vR1dWFNWvW4M6dO391fbdu3UJFRQUWLVqEhIQEzJs3DzabDT09PXj+/Dk4HA7279/vLs9ms1FaWgqFQgGFQoGUlBTExcXh48eP6O3txejoqPuHOzc3Fw8ePMCuXbuQkZEBNpsNk8mEt2/fIikpyeNwueXLl4PD4aC+vh42m80dmLqmtkQiEdra2nDkyBGkpqaCzWYjLi4O6enpCA0NxdGjR1FSUoKtW7ciJSUFsbGxsNvtGBgYgMlkgkAgwOnTp/+qvSYrOTkZmZmZaG5uRkFBASQSCex2O27fvo34+HjodDr3yNDvuIIO184bJrGxsRAIBDCbzejp6ZlwXpuxuFwu5HI5Tp06he3bt0MqlWL27Nno6OgAm81GeHj4hKbFvHk/JBIJzp8/D6PR6LGGwrX2Rq/Xo7CwEKmpqbDZbGhpaYFYLPYYMWCz2SgrK0NxcTGKioogEoncC+YHBgbQ3d2NuXPnQqVSebU9xiopKcGePXtQWlqK+vp6LFmyBBwOB1arFWazGcPDw2hubv6j8jdv3kRDQwOEQiFiYmIQHByMly9fQq/XIyQkxOP56e/vh8ViQU5OzqSugfxAAco05vpRHZvhlYlUKkV5eTlaWlogl8vdPU2j0ci4BTkyMnJKD+MrLCxEQEAANBoNGhoaEBkZifz8fKSlpaG9vd2jfH5+PkZGRqDT6dDd3Q2n04mCgoI/ClAiIiJQXl6OCxcuwGg0wul0YunSpThz5gysVutfBygHDhyATqdDV1cXDAYD3r17BxaLBT6fj5ycHMhkMo+elUAgQGVlJVQqFQwGAzo7O8HlcrFw4UJkZ2e7y6WlpaGsrAwqlQparRYcDgcikQjHjh1jzBQcEhKCsrIyVFVVobGx0f0cuAKUjRs3wmKxoLW1FbW1tXA6nVi/fj3S09MB/MiKqVQqUVdXh87OThiNRsyaNQs8Hg8bNmxg3HY6FQ4dOoQFCxbg+vXruHbtGng8HmQyGUQiEXQ6HeMC1rFGRkbQ3t6OoKAgrF279rdls7KyYDabodFo/ihAAYBNmzaBy+WipqYGTU1N7sypO3bsgEwmm3C6eW/dj6ioKIjFYrS1tWH37t3jRgFYLBaOHz+OqqoqNDc34+rVq4iOjoZcLsf8+fMZpzTi4+Nx6dIl1NXVoaOjA2azGYGBgQgPD8fq1as9tmN7qz1coqOjoVQqoVarcffuXdy4cQMsFgthYWEQCoUe2aEnUz4zMxNfv37Fo0eP8OTJE9jtdvB4PGRnZzNue3aNMm3evHlS10B+mPH9+/fvvq4EIYR4W2NjI06ePIl9+/ZNix7s69evkZeXh4yMDJSWlk7pd3d2dmLv3r04fPiwzwLNn/myPbzB4XAgLy8PUVFRf5w9+/+O1qAQQqa1oaEh/NzPGhwcRHV1NWbOnIlVq1b5qGbMbDabx7be0dFRnDt3DsCPYwmm2sqVK5Gamorq6upfJqP7r/hje3hDU1MT3rx5g507d/q6KtMWTfEQQqa1K1eu4P79+xAKhQgNDYXVaoVOp8OnT5+wZcsWj2F3XzOZTDhx4gTEYjEiIiIwPDzsPthTJBJBKpX6pF5FRUXQarUYHByc0jbz1/b4WzNmzIBCoWBMckcmhqZ4CCHTml6vh1qtRl9fH2w2G9hsNhYvXoycnBzGE4h97dWrV1AqlTCbze7dVjExMe7Tl/9vCb2oPcivUIBCCCGEEL9Da1AIIYQQ4ncoQCGEEEKI36EAhRBCCCF+hwIUQgghhPgdClAIIYQQ4ncoQCGEEEKI36EAhRBCCCF+hwIUQgghhPgdClAIIYQQ4nf+Ab0Osc5ZAisHAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 105.0 deg to 120.0 deg\n", - "Modulation: 0.312 +/- 0.003\n", - "Best fit polarization fraction: 1.0 +/- 0.016\n", - "Best fit polarization angle: 85.277 +/- 0.312\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRXUlEQVR4nOzddXQU59fA8e/GlYQEJ7g7FJdAcC1t0UKLFGmLUy/86qVuUKOFUii0xaVQHIq7a3AIGiAJcc8+7x/7ZsiSjZJkNsn9nMNhd2Tnzu5k986jBqWUQgghhBDCitjoHYAQQgghxKMkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRHCSly7dg2DwcDw4cP1DkUAfn5+GAyGXD/OBx98gMFgYPv27bl+rMyoWLEiFStW1DsMISRBERk7d+4cEyZMoG7dunh4eODg4ECZMmXo2bMnc+bMIS4uTu8Qc83w4cMxGAxcu3ZN71AsmjNnDi+99BLNmzfHxcUFg8HAO++8k+F+//77L35+fnh4eODm5kbz5s35448/0t3njz/+oFmzZri5ueHh4YGfnx///vuvxW0vXrxIz5498fLyoly5cowfP56IiAiL2z7//PNUqlSJyMjIjE84heSELuU/Ozs7SpYsSc+ePVm/fn2WXk88vr/++kv7LDZt2pTutqGhobz33ns0bNgQNzc3HB0dKVu2LC1atOC1117j2LFj6e4/evRoDAYDLi4uhIaGprldcgKY/M/GxoYiRYpQoUIFevTowRdffMGtW7eyc7oil9npHYCwbh999BEffvghRqORli1bMmzYMNzc3Lh79y7bt29n1KhRzJw5k8OHD+sdaqH02muvERYWRtGiRSlTpgyXL1/OcJ8ff/yRCRMm4O3tzfPPP4+DgwPLli1j+PDhnDp1iq+//jrVPq+//jrffPMNPj4+jB49mvj4eBYtWsSTTz7JDz/8wPjx47Vto6Ki6NixI1FRUQwdOpSbN2/y008/cffuXZYuXWr2umvXruWvv/5i8+bNuLm5Zes98PDwYPLkyQDExsZy4sQJ1q1bx7p165gxYwYTJ07M1uvmlfHjx/Pss89Svnx5vUN5bLNmzcJgMKCUYtasWXTp0sXidrdv36Z169Zcu3aNypUr89xzz1GsWDEePHjAkSNHmD59Os7OzjRq1Mji/hERESxatAiDwUBMTAx//vmn2TVoSbt27fDz8wNM1+idO3fYs2cP69ev5/333+eDDz7g7bfffqzzFzlMCZGGTz75RAGqXLlyav/+/Ra3WbNmjfLz88vjyPLOsGHDFKCuXr2a68e6evWqAtSwYcMyvc/69evVtWvXlFJKzZ07VwHqf//7X7rHcHR0VF5eXmbnFBISoqpUqaIAtXfvXrN99uzZowBVpUoVFRISYvZaXl5eytHR0ey1Fi1apAC1Y8cObdnw4cMVoO7evastCw0NVWXLllUjR47M9Pk+ei6AqlChQqp1v//+uwKUq6urioqKytbrt2vXThXGr8gKFSpYfE8zcu7cOQWoTp06qcaNGyt7e3sVGBhocduRI0cqQI0YMUIZjcZU62/fvq2OHDmS5rF++eUXBahXX31VOTg4qPr166e57fvvv68A9f7776daZzQa1bJly5SXl5cC1GeffZbxiYo8I1U8wqJr167xwQcfYG9vz7p162jevLnF7Xr16sWGDRtSLV+yZAlt27bFw8MDZ2dn6tWrx2effWaxOii5zjs8PJxXX32VihUrYm9vzwcffJCp9WCqhho+fDjlypXDwcGBkiVLMnjwYM6fP28x7ujoaL744guaNGmCu7s7bm5u1KpVi4kTJ3L37l0ADAaDVu1RqVIlrYj40fr5kJAQpkyZQq1atXB2dsbDw4OOHTumWcQdERHBq6++io+PD05OTtSsWZNvv/0Wo9Focfv0dOvWjQoVKmR6+99//524uDjGjx9vdh5FixZl6tSpAPzyyy9m+yQ//9///kfRokW15RUrVmTcuHHExcUxd+5cbXlAQAAAzZo105YlP05eB6bSH4Bvvvkm0/Fn1vDhw3F1dSUqKoozZ85oy7du3Uq3bt3w8vLC0dGR6tWr8/bbbxMWFpap142Pj+fHH3+kR48eVKhQAUdHR7y8vOjUqVOaVUoZXb+W2qAkt39J619ySUCyxMREfv75Z1q0aEGRIkVwcXGhUaNG/PjjjxavK6UUP/74I3Xq1MHJyYmyZcsyfvz4TL8PlsyePRuAF154geHDh5OQkMC8efMsbrt3714AJkyYYLGdT+nSpXniiSfSPZaNjQ2TJ0/mySef5OTJkxw4cCDLMRsMBvr27cuyZcsAU4nxnTt3svw6IndIFY+waO7cuSQkJPDss89St27ddLd1dHQ0ez516lQ+++wzihUrxuDBg3Fzc2P9+vVMnTqVjRs3smnTJhwcHMz2iY+Pp0OHDoSEhNClSxeKFClCpUqVMrV+w4YN9OnTh4SEBJ588kmqVq3KzZs3WbFiBWvXrmXbtm1mX3YPHjygffv2nDhxgho1ajBixAgcHBy4fPkyc+fOpU+fPpQsWZL333+fVatWceLECSZNmoSnpyeA9j+YfnD9/Py4du0avr6+dOvWjaioKP7991+6devGr7/+yujRo7Xt4+Li6NixI4cOHaJBgwY899xzhIaG8vHHH7Njx44sfUbZ8d9//wGmxOZR3bt3N9sms/t8/PHH/Pfff3z44YcAWlXFkSNHaN26NYBWBZicTG3ZsoU5c+awZs0aPDw8Hvu8LFFKAWg/gL/++itjxozB1dWV/v37U6JECbZv384XX3zBmjVr2LNnj9lna0lISAiTJk2iVatWdO7cmeLFi3Pnzh3WrFlDjx49mD17NqNGjUq1X0bX96OGDx+eKgkB2LVrF//99x8uLi7asuTrfuPGjdSoUYPBgwfj5OTEtm3bmDBhAgcOHGDBggVmrzN58mS+//57SpcuzYsvvoi9vT3//PMPBw4cID4+PtXfZ0bi4+P5448/8PDw4JlnniEmJobXXnuN3377jTfffDNVEuLt7Q3AhQsXaNiwYZaOdezYMY4cOULnzp0pV64cw4cPZ/ny5cyaNSvNG6mMtG/fnjZt2rB7925WrFjBuHHjsvU6IofpXYQjrFOHDh0UoGbPnp2l/fbu3atVC925c0dbnpCQoHr16qUA9cknn5jtU6FCBQWojh07qsjIyFSvmd76kJAQ5enpqby9vdWZM2fM1p06dUq5urqqRo0amS0fNGiQAtTLL7+skpKSzNZFRESo0NBQ7XlGVTzt2rVTBoNBLVy40Gz5gwcPVIMGDZSTk5NZMXdytVmfPn3Mjn3lyhVVtGjRLFfxpJSZKp5ixYopQAUFBVlc7+rqqgCtWiQyMlIBys3NzeL29+/fV4AqUaKEtiwiIkL5+PioYsWKqcmTJ6t+/fpp55y8vmLFiuq5557L1nkmS6+KZ86cOVoVT3R0tLp27ZpycHBQ7u7uyt/f32zbMWPGKECNHj3abLmlKp7Y2Fh148aNVMcLDQ1VderUUUWLFlXR0dFm6zK6vpOrILZt25bu+Z44cUK5u7urYsWKqUuXLqXaf/z48SoxMVFbnpiYqEaMGKEAtWrVKm15yiq74OBgbXlMTIxq0aJFmu9pehYuXKgA9eKLL2rL+vbtqwC1ZcuWVNv/8MMPClDu7u7qjTfeUJs3b07zmnzUSy+9pAD1999/K6VM3y2lSpVSrq6uKiwsLNX26VXxpPTOO+8oQA0dOjRTcYjcJwmKsKhWrVoKUOvXr8/SfqNGjVKA+vXXX1OtO3/+vLKxsVGVKlUyW578BX78+HGLr5ne+unTpytA/fjjjxb3nTx5sgK05OXu3bvKxsZGlS5d2uKPxaPSS1COHz+uANWvXz+L+65atUoB6qefftKWVa1aVdnY2Jj9wCRL/iLNzQTF3t5eASohIcHi+jJlyihA3b59Wyml1K1btxSgypYta3H7+Ph4BSgHBwez5efOnVPdunVTnp6eqkyZMurll1/WfjzGjRunSpYsqYKCglRAQIDq1auXcnJyUm5ubmrIkCEWf2QsSU5QPDw81Pvvv6/ef/999dZbb6nu3bsrQAFqxowZSimlpk2bpgA1ZcqUVK8TEhKi3N3dlZOTk4qNjdWWZ7UNyjfffJOq7Y1SGV/fmUlQbt26pXx8fJSTk5Pas2ePtjwpKUl5eXmpUqVKWfxMHzx4oAwGg+rfv7+2LPlv9Pfff0+1/bZt27KVoCTf0KRsv7RmzRoFqAEDBqTa3mg0qilTpignJyftswJUxYoV1ahRo9J8ryIjI5W7u7vy8PBQMTEx2vLXXntNAernn39OtU9mE5SZM2cqQHXv3j2TZy1ym1TxiBx19OhRADp06JBqXfXq1fHx8eHq1auEhYWZFe07OTlRv379NF83rfX79u0D4MSJE2ZtUpJduHABAH9/f2rXrs2hQ4cwGo20bdsWV1fXLJ1bWscOCwuzeOz79+9rxwZT25NLly5Rrlw5qlSpkmp7Pz8/rZokv6tRo4bFNhm7du3i559/ZsmSJXh5edG5c2fu3bvH33//TWRkJBMmTCAmJiZVb5/0hIWFae+bra0tXl5edO/enfHjx9OjRw8g/euyaNGiNGrUiJ07d3Lu3DkaNGiQ7vHOnDnDV199xc6dO7lz5w6xsbFm6y11Wc3o+k5PZGQkvXr14tatWyxcuJBWrVpp6y5cuEBISAjVqlVj2rRpFvd3dnbWrkF4+F60a9cu1bZt2rTB1tY2S/FdunSJbdu2UaNGDVq2bKkt79atG6VKlWLVqlUEBQVRrFgxbZ3BYODTTz/lzTffZOPGjezfv5+jR49y4MABfvvtN+bOncvMmTPNqkcBFi1aREREBC+99BJOTk7a8uHDh/PNN98we/ZsxowZk6X4k6lHqgSF/iRBERaVLl0af3//LI8PkNzIrnTp0mm+7vXr1wkNDTVLUEqUKJHuF0Na64ODg4GHDfTSkjzGRvJ4CWXLlk13+8xIPvbmzZvZvHlzhsdOfm9KlixpcbtSpUo9dkwZ8fDwICgoiLCwMK0dQErJMSZ/Nsn/p9V4Mnl5Rm03AGJiYhg5ciR9+vShX79+bN68mWPHjrFgwQKeeeYZwNQ4+7333uPy5csWkzhLKlSokOE4NZm5LoF0x9MA2L9/Px06dCAxMZGOHTvSu3dvihQpgo2NDcePH+eff/6x2BA8o+s7LUlJSQwcOJBjx47x2WefMXDgQLP1ydfgxYsX001uU44xk951aGdnZ5ZIZMbs2bNRSqUaYNDOzo7nnnuOb775hnnz5vH666+n2tfT05OBAwdq5xUVFcXnn3/OtGnTmDBhAr179zaLc9asWQCpjlW3bl0aN27MkSNHOHz4ME2aNMnSOYCp6zNA8eLFs7yvyB3Si0dY1KZNG8DU6yErkn/QAgMDLa5PbiH/aMPIjL6801qf/DonTpxAmaosLf4bNmwY8PCHNCcGZko+9owZM9I9dnIPl+Ttk3sJPSqt9ywn1ahRA3hYspTSnTt3iIqKwsfHR2uE6erqStmyZYmMjLTYu+HixYuAqXQsI++++y7BwcH89NNPwMOSpZQNmBs3bgzA2bNns3JaGcrudfmoadOmERMTw6ZNm1i/fj3Tp0/no48+4oMPPki3gWZ278onTJjAunXrGD16tMUxOpLjfeaZZ9K9Bq9evZpqH0vXYWJiIkFBQZmOL2VPnSlTpqTqbZTcQyujG4hkrq6ufPzxx7Rp04a4uDj27NmjrTt58iQHDx4EoGXLlqmOdeTIEeBhEpNV27ZtA8h2Q1uR8yRBERa98MIL2Nvbs3z58gx/LFLeMSYPrGRp2O5Lly5x8+ZNKlWqlKk77sxo0aIFYKo6yIxmzZphY2PDzp07iYqKynD75OLupKSkxz62u7s7VatW5datWxYHVMuLoc6TqzgsdQ1PrpJ5tBokO/s86uDBg0yfPp0ZM2akunNPef08Wl2SU9K7LkNDQzl+/DhOTk7UqlUr3de5dOkSXl5eFnvY5HQvrG+++YaZM2fSpUsXfv75Z4vb1KxZE09PT/bv309CQkKmXjc5IbQU7+7duy1e62n5559/uHfvHjVq1GDkyJEW/1WuXJkLFy5k6f1xd3cHHla7wMPEw8/PL81jOTs7s3DhwiyPSvzff/+xZ88enJ2dtdI8YQXyrrmLyG+Se5xUrFhRHTp0yOI269evV+3bt9eeJ/cQqFixorp37562PDExUT311FMKUNOmTTN7jYwGhkpvfVBQkPL09FTFixdXBw4cSLU+KSkpVePDwYMHZ7oXzxtvvKEA9d9//1k8vq+vr7KxsVFz5syxuP7kyZNmg5Mlv6d9+/bVpRfPlStXcn2gtkfFxcWp2rVrq549e5ot37x5swLUhx9+qC1LHtDNUiPiR6XXi8fStvb29srDw0NdvHjRbN348eMVoEaNGmW23FIj2a5duypAnThxwmz5b7/9pjX0nDt3rtm6jK5vS41kly9frmxsbFS9evUybDT87rvvatfzoz2IlDINepayh9vu3btzrBdP586dFaAWL16c5jbJ783gwYO1ZV9++aU6ffq0xe137dqlnJyclJ2dnbp165ZSSqno6Gjl6empbG1ttWWWPP/88wpQs2bN0pZlNFDb8uXLtYHavvzyy4xOWeQhSVBEuj788ENlY2OjANWqVSs1ceJENXXqVDVy5EhVrVo1BagmTZqY7fPmm29qXU/Hjh2r3njjDVW3bl0FqDZt2qi4uDiz7R8nQVFKqS1btih3d3dlMBhUp06d1KRJk9TkyZNV3759VZkyZZSjo6PZ9iEhIap+/foKUDVr1lSTJk1Sb7zxhurXr59yd3c3+6HYsGGD9mX+5ptvqo8//lj98MMP2vobN25o70ODBg3Uiy++qN588001ePBg7Zz37dunbR8bG6uaNm2qbf/mm2+qF198UXl6eqrevXtnOUGZPXu2GjZsmBo2bJhq3bq1AlT9+vW1ZZZGxvz+++8VoLy9vdXYsWPV5MmTlY+PjwLUa6+9ZvE4r776qgKUj4+Pmjx5sho7dqzy9vZWgNn7Ycn//vc/5eHhoW7evGm23Gg0qsaNGytbW1s1YsQINWDAAAWY9ThJT1YSFKWU+umnn7SurSNHjlRvv/22atmypXYdpPyxVspygrJ+/Xqz13j11VdV27ZtlY2NjdadOicSFGdnZ8X/j7Sa3EMp5b+Ux4iPj9eunbJly6ohQ4aot99+W40YMUJLoB+9DiZMmKAAVbp0aTVhwgT16quvqipVqqgmTZqo0qVLZ+o9vXLlijIYDKpYsWKp/qZTioiIUG5ubsrR0VF7jxs0aKC978OHD1dTpkxREydOVB07dlQGg0EB6ptvvtFeIzn5fvLJJ9ONafv27am+k5Lf33bt2mnv35tvvqmef/55ValSJQUoR0dH9cUXX2R4ziJvSYIiMnT27Fk1fvx4VadOHeXu7q7s7e1VqVKlVLdu3dRvv/1m1jUz2cKFC1Xr1q21L6batWuradOmmXUNTPa4CYpSph+rcePGqapVqypHR0fl7u6uatSooZ5//nm1cuXKVNtHRkaqadOmqXr16ilnZ2fl5uamatWqpSZNmmRW4qGUqftozZo1lYODg8UfxPDwcPXJJ5+oJ554Qrm6uionJydVsWJF1aNHD/Xrr7+m6s4cFhamXnnlFS15qlGjhvr666/V5cuXs5ygJHeDTutfu3btLO63evVq1bZtW+Xm5qZcXFxUkyZN1Lx589I91ty5c1WTJk2Ui4uLcnNzU23btlVr1qxJd59jx44pOzu7NMfTuXHjhnrqqaeUq6ur8vDwUMOGDctyN+OsdInduHGj6ty5s/L09FQODg6qSpUq6o033lAPHjxItW1a3YzXrFmjmjdvrtzc3JSHh4fq3Lmz2rFjh/YjmhMJSnqfqaXP1Wg0qvnz56sOHTqookWLKnt7e1WmTBnVunVr9cknn6jr16+n2v6HH37QruvSpUursWPHqtDQ0EwPdT916lQFqFdeeSXDbUePHq0A9e233yqllDp69Kj6+OOPVfv27VXFihWVk5OTcnR0VJUrV1aDBw9Wu3btMtu/VatWClD//PNPhseqXr26AtSxY8eUUg/f3+R/BoNBubm5qfLly6vu3burzz//PFXyLKyDQakUlXxCCCGEEFZAGskKIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIq5MvE5TY2FjOnz+fa8NiCyGEEEJf+TJBCQgIYPTo0QQEBOgdihBCCCFyQb5MUIQQQghRsEmCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoOSA6AexHFl2kegHsXqHIoQQQhQIkqDkgOjQOI6tuER0aJzeoQghskBuLoSwXpKgCCEKLbm5EMJ6SYIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCUo+I90ihRBCFAaSoOQz0i1SCCFEYSAJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgiRy2R4ACGyThIUIYTIZTI8gBBZJwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoSwKtEPYjmy7CLRD2L1DkUIoSNJUIQQViU6NI5jKy4RHRqndyhCCB1JgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsTpYTlOjoaH7//Xdef/11evbsSdu2bVm/fn22Dv7ll1/Stm1b3nrrrWztL4QQQoiCKcsJSlhYGPPmzSMgIICqVatm+8Dnzp1j/fr1ODg4ZPs1hBBCCFEwZTlB8fb2ZuXKlSxdupQxY8Zk66BKKWbMmEHXrl3x8vLK1msIIYQQouDKcoLi4OCAt7f3Yx1048aNXL16ldGjRz/W6wghhBCiYMrzRrLR0dH88ssvPP/884+d6AghhBCiYLLL6wPOmzcPR0dHBgwYkOl9goKCCA4O1p4HBATkRmhCCCGEsBJ5mqDcuHGDZcuW8d5772Wpcezq1auZN29e7gUmhBBCCKuSpwnK999/T926dfHz88vSfr1796Z169ba84CAAKZNm5bD0QkhhBDCWuRZgnLkyBEOHDjAtGnTuHPnjrY8KSmJuLg47ty5Q5EiRXB1dU21b7FixShWrFhehSqEEEIIneVZgnLv3j0A3nnnnVTr7t+/z8CBAxk/fnyW2qYIIYQQomDKtQQlKCiIqKgoypYti52dHU888QSffPJJqu2++uorSpUqxZAhQ6hcuXJuhSOEEEKIfCRbCcry5cuJjIzUetbs2bNHKyHp27cvbm5uzJo1iw0bNrB48WJKly5NyZIlKVmyZKrX+uGHHyhatCi+vr6PcRoip0U/iMV/6w1qdSyHS1EnvcMRQghRyGQrQVm8eDGBgYHa8507d7Jz504AunTpgpubW85EJ3QTHRrHsRWXqNC4hCQoQggh8ly2EpQlS5ZkuM3UqVOZOnVqjryWEEIIIQqXPB9JVgghhBAiI5KgCCGEEAVU9INYjiy7SPSDWL1DyTJJUIQQQogCKrk9YXRonN6hZJkkKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOnZ6B1BYRcZHEhgZSHhcOM52zhR3LY63szcGg0Hv0IQoFBISEznjf4GbjlfZddJAA48a+HiUxcHWQe/QhBBIgpJnEo2J7Li2gyVnlrDz+k7OB51Hocy2KeVWihY+LXim5jM8U/MZ3B3ddYpWiILpZvhNFp1exIqj/3Ds/hFibWKgInDc9M/B4ED90vXpUrkLA+oMoEGpBrrGK0RhJglKLotLjGPu8bl8uedLroZeTXfbwMhAVp1bxapzqxhjP4aXG7/M661ep7R76TyKVoiC6UTgCT7e+TEr/Fc8vDGwUMEdr+I5fPswh28f5tPdn9K6XGum+k6le9XuUropRB6TBOUxGY2K+1fCALh/JQyvCkWwsTF9kW2+vJmx68ZyKeSS2T4Otg7UL1mfal7V8HD0IDoxmlvhtzh8+zBhcabXik6I5tv93/LLkV/40O9DJreYjJ2NfFxCZEVITAhvbn6TOcfmpFpXNKEY5eIqUyTREwM2RNlGcNshgLsOt1AGUxKz58Yeev7dk06VO/FTj5+o7l09r09BiEJLfvEew9WDgeyf709USCwAe+ac4fjKyzR8riLTgz5n1tFZZtt3qdKFUY1G0aNaD1wdXFO9nlEZ2XdjHwtOLuCPE38QmxhLdEI0b2x+g4WnF7Kk3xI8KJYn5yZEfrfp8iaGrBzCvah72rISTiVofrMTzcPbUzKhrMX9wmxDiOt/iz9vzMM/yB+ALVe2UH9mfb7t+i1jmoyR0hQh8oD04smmqwcD2Tr9mJacJAsID6Dzmg5myUmb8m04NPoQG5/fSP86/S0mJwA2Bhtal2/NL71+4eqkq4xtMhYDpi/Co3eO8sSsJ9hwY13unZQQBYBSig+3f0i3P7tpyYm7gzvfdvmW/1rtpXfw82kmJwAeSV4MLPY8p8eeZmn/pZT3KA9AXFIc49aNY+CygUQnROfJuQhRmEmCkg1Go2L/fP9Uy687XubzCq9yy/EaAM52zszqNYsdw3fQpEyTLB2jlFspfur5E/tH7deKlcPjwhm67Tm2ea7h/pUwjEaVwasIUbgkGhMZsXoEH+z4QGtr0qNaD/zH+fNKy1co6u2Zqddx9nTExmBDv9r9ODv2LBObTdTWLT27lA5/dOB+1P3cOAUhxP+TBCUbAs+FpCo5Oe98iq/KvUmY3QMASsX5sK7jFkY3Ho2NIftvc7OyzTg8+jA9S/UGQKH4u+RM3l71PxZP3M7Vg4HZPxEhCpCYhBieWfwM847PA8CAgU87fMqaQWsoW8RUYlKqpheuXk7pvo6rtxOlano9fO7gyozuM1g1cBXuDqaedQduHaDN3DbcibiTOycjhJAEJTtiQuPMnl92OscPPu8TaxsDQJWYWrx1/WvKGSvmyPGCTkTx1I6X6B48QFu2utifLGMBW6cfkyRFFHoJSQn0X9qffy/8C5gaoi/tv5QpvlPMbhBsbAy0GFor3ddqMaSW1tA9padqPsXuEbsp625Kdi4EX6Dj/I5mbVyEEDlHEpRscPZ01B7fcLzC9z7vEWdjKlGpF9mUV258gpuxiNl22ZVcnWTAQJ+g4Qy4N1pbt6L4XLZ6rmb/An+p7hGFllEZGf7PcNZeXAuAm4MbG57bQN/afS1uX6lZKTpObpSqJMXV24mOkxtRqVmpNI9Vv2R99o7cS0XPigD4B/nTaX4nQmNDc+RchBAPSYKSDcnFxCF2QczweZdo20gAakY1YMzt/+GonFIVE2fXo9VJnR88Q5/7w7Xni0v8yp7Y7QSeC3nsYwmRH7228TX+PvU3AI62jqwZtIb2ldqnu0+lZqUY+L0frUfWAaD1yDoMnOGXbnKSrLxHef4b+h/lipQD4NS9UwxYOoCEpITHOxEhhBlJULLBxsZAg+cq8HPZj7Q2J5VjajLu1nvYK9Mw2WkVE2fVo9VJAN1DBtAjeCAAyqD4rcyXHLtx7LGPJUR+M/fYXKYfmA6ArcGWpf2X4lfRL1P72tgYKF7ZA4DilT2y9PdaqWgl/hv2H8VcTN3+N1/ZzMT1E1FKSjKFyCmSoGSDUoqPb/+PACfTAGze8SUZf+t9nJRzpoqJsyKtaqKng4bSNLwdAHE2sbx08gXpVSAKlf039/Py2pe15z/3/JknazyZZ8ev6lWVVQNXaXP3/HLkF345/EueHV+Igk4SlGz4+dDPLDq9CDDVd89pPh/3JI8sFRNnVlq9DgwYGB44mYoxpi7It6JvMvyf4RiVMceOLYS1CooOou+SvsQnxQMwtslYXmz8Yp7H0bp8a37v/bv2fPLGyRy7I6WZQuQESVCy6ETgCV7b9Jr2fMEzC2hdrzmQ9WLizEiv14GDcmTcrXfxdvAGYN3FdXy377scPb4Q1kYpxYh/RnA74jYA7Sq0Y3q36brF81z955jUfBIA8UnxDFg2gPC4cN3iEaKgkAQlC6Lio3h2+bPEJZnahUxqPomnaz6d68dNr9dB3wmd+Kv/X9qyt7e+zaFbh3I9JiH08vOhn1lzYQ0AxVyKsbDvQuxt7XWN6cvOX9K0TFMALoVcYuzasdq6R+frkh53QmSOJChZ8PaWtzkXdA6AhqUa8kWnL/Ls2On1OuhatStvt34bMI2kOXTVUGITY9N5NSHyp3NB58xKMOc9Nc8qZvt2sHVgcb/FeDiaGt3+deovVviv4OrBQBZP3M6eOWcA03xdMsCiEJkjCUom7b6+mx8P/QiYhrBf1HcRjnaPP85JVqTX6+Cj9h9pw+mfCzrH+9vez9PYhMhtRmVk5OqRWgnmxGYT6Vm9p85RPVSpaCV+7PGj9vzFVS+y6oftqUadjgqJlQEWhcgESVAyISYhhpGrR2rPP+nwCTWK1dAxotTsbe2Z99Q8rUfB1/u+5sDNAzpHJUTO+fnQz+y9sReAal7V+LzT5zpHlNpz9Z7Tqn2D44P5u8TPaW4rAywKkT5JUDLhwx0fciH4AgAtfFowsfnEDPbQR50Sdfig3QeA6W5z1JpRMniUKBACQgN4e8vb2vPZT87G2d5Zx4gsMxgM/NLzF4o6mAZpPFxkF6dcLbcJiwqOlQEWhUiHJCgZOBF4gq/2fgWY6pnn9J6DrY2tzlGl7Y3Wb9C4dGMATt87zQ8Hf9A5IiEej1KKMWvHEJUQBcBLjV+iXcV2OkeVtpJuJflf9Q+05wtLzCTekHrARbA8EKMQwkQSlHQopZiwfoI2tsi7bd+ldvHaOkeVPjsbO2b2nIkBU/uU97e/z63wWzpHJUT2rbmwhvWX1gNQ1r1snjZOz65naw6iRnR9AO47BLLea6nF7XJivi4hCipJUNKx6PQidl3fBZhGjXyj1Rs6R5Q5Tcs21QatioyP5PXNr+sckRDZE5sYyysbX9GeT+82HQ8nDx0jypzStbwZGTsZW2Uqbd3gtYS79uY3Cjk1X5cQBZUkKGmIjI/kjc0PE5LpXafnea+dx/Fpx0/xdjYN4Lbo9CL+u/qfzhEJkXXf7vuWKw+uANC+Ynv61rI8Q7G1sbEx0O+57nQO6QNAok0ii0vMMtsmp+brelT0g1iOLLtI9AMZakDkb5KgpOHTXZ9yK8J0x9OzWk+r6s6YGV7OXmZF4a9vel2GwRf5yu2oW3yy6xMAbAw2zOg2A4Mh53/Qc0ulZqX4+tnP8U4qAcApt0OcdTmW4/N1PSo6NI5jKy4RLe1bRD4nCYoFN8Ju8O2+bwFTw1g9h9F+HC80eoEnSj8BwLHAY/x18q8M9hDCenxy7GOiE6IB01w79UrW0zmirKvTqjLf9vlae76u5l/0+84315ITIQoSSVAseH/7+2aDQVX1qqpzRNljY7Dhq85fac//99//iEmI0TEikZ/lZdXBLYdrLL2yGDCVBn7Y/sNcP2Zueb7Bc9T3agDA+aiz/H1abhSEyAxJUB5x+t5p/jjxBwCeTp5M8Z2ic0SPp0OlDvSo1gOAG+E3+P7A9zpHJPKrvKw6WFlsPgrTIGZT20zFyzn/Nia1MdjwYZOPtefvbHtHKxkSQqRNEpRHTN06VWurMaXNlHz9xZjsy05fYmMwfdSf7v6U4OhgnSMSIm0H7x3ghPt+AHyK+DC26dgM9rB+bUq1pUGkadbzm+E3+eGAjE8krJdRGbXZwvUkCUoKu6/v1mZJLetelgnNJugcUc6oU6IOIxqOACA8Lpxv9n2jc0RCWKaU4uOjH2jPP2j3gVWOGJsdfe+/oN0ofLX3KyLiInSOSAjLlp1dRuUZlZm0fhKBkfrNGZXlBCU6Oprff/+d119/nZ49e9K2bVvWr1+fqX2PHDnC559/zuDBg+ncuTMDBw7kiy++ICgoKMuB5zSlFG9teUt7/lH7jwrMFyPAe+3e0+bp+f7A9wRF6/+eC/GoDZc2sP/ePgCqFqnGsIbDdI4o55SOL0/fSv0ACI4JllGehVVKMibxwfYPiEuK4/uD33Mi8IRusWQ5QQkLC2PevHkEBARQtWrWGo/+8ssvHDt2DF9fXyZNmkTHjh3Ztm0bo0aNIjhY32qHJJXEk9WfxMPRg1rFajG0wVBd48lp5TzKMarRKACiEqL4as9XGewhRN5SSvG///6nPZ/a6B3sbOx0jCjnvVb/LWwNpsHbvt77NWGxYTpHJIS5RacX4R/kD0Drcq3pUqWLbrFkOUHx9vZm5cqVLF26lDFjxmRp33HjxrFw4ULGjBlDr169ePHFF/n8888JCQlhxYoVWQ0lR9nZ2PF2m7e5PPEyi/otKnBfjABTfKfgaGsabO7HQz9yL+qezhEJ8dDai2s5FngMgAqxVWme2K7AzfZbpUgVhjQYAsCD2AdM3z9d34CESCHJmMS0XdO05x+3/1jXsYeynKA4ODjg7e2drYM1bNgQGxubVMuKFClCQEBAtl4zp3m7eFO/ZH29w8gVPkV8tCHwoxOipRRFWA2lFO+ue1973it4EHt/P8viidu5elC/OvDc8G7bd7VSlG/3f8uDmAc6RySEyQr/FZwLOgeAb3lf2ldqr2s8ujeSjY6OJiYmBg8P659foyB4u83bONk5AfDToZ+4G3lX54iEgAXrl3A87CgAPrGVaBDZAoCokFi2Tj9WoJKUykUr80LDFwBTo/Xv9n+nc0RCmG4SUpaevNP2HR2jMdE9QVm6dCkJCQl06NAhzW2CgoI4f/689s9aSlvyozLuZXip8UsAxCTGyJej0J3RqPhszyfa857Bz2qzcSfbv8C/QFX3vNP2YfuaHw/+KD16hO7+vfAvJ++eBKBpmaZ0rtxZ54h0TlCOHz/OvHnzaN++PY0bN05zu9WrVzN69Gjt37Rp09LcVmTszdZvaj16Zh6eKQ31hK5W7lrDOYdTAJSKK8cTka1SbRMVHEvguZC8Di3XVPCswPP1nwdMbVFmHZmVwR5C5B5LpSfWMO+VbglKQEAA77zzDpUrV+att95Kd9vevXsze/Zs7d877+hf9JSflXEvw9D6pl5K4XHh/HL4F50jEoXZdycfzlXTM2QgNtha3C6mgE1+92arN7XH3+7/lrjEgnV+Iv/YcmULB28dBKB+yfr0qt5L54hMdElQ7t69y2uvvYarqytffPEFLi4u6W5frFgxatSoof2rUKFCHkVacL3R+g2tGH36genEJsrU7CLvHb1zlD0huwAoHl+KpuHt0tzW2dMxr8LKE7WK1+Lpmk8DcDviNn+e/FPfgESh9enuT7XH//P9nzagoN7yPIqwsDBee+01EhIS+PrrrylWrFhehyCA6t7V6Vu7LwCBkYHMPzFf54hEYZRyVOMuIX2xTaP0xNXbiVI18/+0E496u/Xb2uMv9nxBkjFJx2hEYXTk9hG2X9sOQDWvavSt1VffgFLItQQlKCiIgIAAEhMTtWUxMTG8+eabBAUF8eWXX1KuXLncOrzIhLdaP6xa+2rvV/LlKPLU9bDrLD79/zMW23vRMrxjmtu2GFILGxv968RzWnOf5rSvaOrKeTHkIivPrdQ5IlHYfLv/W+3xqy1fxdbG8k2CHrI1Gtny5cuJjIzURn/ds2cP9+6ZBv3q27cvbm5uzJo1iw0bNrB48WJKly4NwMcff4y/vz89evQgICDArDeOs7Mzvr6+j3s+IgualGlCx0od2Xp1K5dCLrHCfwX96/TXOyxRSHx/4HuSlCkpHt9yPD06tWT/fH+iQh5WN7p6O9FiSC0qNSulV5i57u02b7Pt2jYAvtzzJX1r9bWKBoqi4LsRdkO7SSjmUszqRlDPVoKyePFiAgMfjkuwc+dOdu7cCUCXLl1wc3OzuN+lS5cAWLduHevWrTNbV6pUKUlQdPBW67fYenUrAN/t/04SFJEnwmLDtJ4rjraOjGs2jhKuJajQpCTnt91gz5wztB5ZhxrtyxXIkpOUOlfuTMNSDTkeeJxDtw+x/+Z+WpZrqXdYohBIeZMwtslYXOzTbw+a17KVoCxZsiTDbaZOncrUqVOzvJ/IW50qd6JeiXqcuneKfTf3cfDWQZqVbaZ3WKKA++3ob0TEm8b+GNZgGCVcSwBgY2OgeGXToI3FK3sU+OQEwGAwMLn5ZIb/MxwwNVqXBEXktvC4cGYdNb9JsDbW0VRX6MZgMDCp+STt+YwDM3SMRhQGCUkJTD8wXXv+SstX9AvGSjxb91ktSVt+djnXw67rHJEo6OYcnUN4XDgAQ+oP0a4/ayIJimBwvcEUczH1plpyZgm3wm/pHJEoyJaeXcrN8JsAPFn9SWoWq6lzRPpztHNkbJOxgGlm9Z8O/qRzRKIgSzQmmt2MvtryVR2jSZskKAJne2dt+PtEYyI/H/qZ+1dMo8vevxJWoIYYF/pL+cX4WsvXdIzEurzc5GVthOdZR2cRFR+lc0SioFrpv5KAMFMnlR7VelCreC2dI7JMEhQBwNimY7W5Qb7f+SPbfjdN3LZnzpkCOaOs0MehW4e0ESsblGxA2wptdY7IepR0K8ngeoMBCI0NlbGJRK758dCP2uNXW1hn6QlIgiL+Xxn3MvQo+SQAkTbhHCiyXVtXEGeUFfr46dDDqovxzcZLd9pHPNoezKiMOkYjCqJTd0+xM8DU67ZWsVp0qJT2RL16kwRFAKYZZZuc7aQ931p0FQrzqp2CNqOsyFtB0UEsOr0IAE8nT620QDzUsFRD/Cr6AXA++DybLm/SNyBR4Px86Gft8dimY636JkESFAFA4LkQSt+rRJUYU13kLccALjifNtumoM0oK/LWnKNziEsyTYg3ouEIqxtzwVqkLEVJ+WMixOMKiw1jwckFALg5uFndwGyPkgRFAA9nim3/4Elt2Q7PtWluJ0RWJBmTmHl4JgAGDIxpOkbniKxXr+q98CniA8Dai2uly7HIMX+c+IOoBFPj66H1h1LEsYjOEaVPEhQBPJwp9onI1rgnmgbKOuq+l3DbBxa3EyIr1l5cq/Ua6Fa1G1W9quockfWys7HjxSdeBMCojNqIu0I8DqVUquodaycJigCgVE0vXL2csFf2tA7rAkCSIZFdHg/rwAvqjLIi9/148GGvgfHNxusYSf4w6olRWq+6347+RnxSvM4RifzIaFTakBGrj63jfPB5APwq+lGnRB09Q8sUSVAEYBpivMVQU/uTtmHdMShTw6ldnusxYpqroaDOKCty1/mg82y+shmAykUr061qN50jsn6l3UvzdM2nAbgbdZdV51bpGo/If64eDGTxxO3smXMGgB/3/aCtG980f9wkSIIiNJWalaLj5EZUdK9InajGAATb3+NSqVN0nNyoQM8oK3KPWbFyk7HYGORrJzPGNHnYTie5/Y4QmXH1YCBbpx/TZgYPtrvHCTfT+EOeCd7UD2+uZ3iZJt8UwkylZqUY+L2fWSPGM032SHIisiUmIYb5J00DjjnZOfFCoxd0jij/aF+xPTW8awCw/dp2/O/76xyRyA+MRsX++ebXyk7P9SiDaUyddmHdOfzXxXwxZIQkKCIVGxsDfRs/jVdCcQDWX1zHtdBr+gYl8qXl/ssJjQ0FoH/t/ng5SxumzDIYDLzc5GXtuZSiiMwIPBeilZwAJJHE3iJbALBRNrQJ7ZZvhoyQBEVYZGtji2+oqa2AQjH7yGydIxL50eyjD6+bFxu/qGMk+dOwBsNwtnMG/r+LqMzPIzLw6FAQp1wPEWofDED9yOZ4JnlZ3M4aSYIi0tQmrCt2hv/vSXBMehKIrDkXdM5sSO3W5VrrHFH+U9S5KIPqDgIgPC5cG4lXiLQ8OhTELs8N2uO2Yd3S3M4aSYIi0uSZ5EX38j0BuBd1j9XnV+sckchPfjv6m/Z41BOjrHpIbWuWsprnt2O/pbOlEA+HjAAIsQvilOthALwSilMn6gkg/wwZIQmKSNfQasO1x3OOzcmVY0Q/iOXIsotEP4jNeGORL8QlxvHHiT8AcLB1sPohta1ZkzJNqF+yPgD7b+7nzL0zOkckrFnKISP2emzSGse2DuuMDbZA/hkyQhIUka62pdtRwaMCABsvbeRG2I0cP0Z0aBzHVlwiOh/UiYrM+ef8PwRFBwHQp1YfirkU0zmi/MtgMDCy0UjteW7dKIiCo1KzUrSf1IA9RU3jDxmUgdZhXXD1dspXQ0ZIgiLSZWOwYUSjEYCpsezc43N1jkjkBymHZx/9xGgdIykYnq//PI62pjYDC04uIC5RknmRvkvepwiyvQtAnajG9B7WnoEz/PJNcgKSoIhMGN5wOAZMxYFzj8/FqIw6RySs2eWQy2y9uhWAql5V8avop29ABYCXsxfP1HoGgKDoIGkPJjKUsgedb1g3ilf2yBfVOilJgiIyVN6jPF2qmObnuRZ6jf+u/qdzRMKapayCGNVolIwcm0NGNRqlPZZqHpGeu5F3+ef8PwAUdypB/chmOkeUPfLNITJl1BPy5SgylpCUoFUD2tnYMbzhcH0DKkDaV2pPJc9KAGy6vImA0ACdIxKPIzc7B8w7Po9EYyIAg6o+hx12OX6MvCAJisiU3jV6aw0dV/ivIDg6WOeIhDXacGkDgZGBgOmaKelWUueICo5H24PNOz5P34DEY8mtzgFKKbObyOer5d8edJKgiExxsHVgSP0hAMQnxfPXqb90jkhYo+R5dwBGNByhYyQF0/CGw7Uqs9+P/06SMUnniIS12XdzHxdDLgKm+ZwquVfSOaLskwRFZNqjXR2Vsv7JpkTeeRDzQGu8WcK1BF2rdtU5ooLHp4gP3aqaRgO9HnZda4wsRLL5Jx7eJOT3KlZJUESm1SlRhxY+LQA4efckR+4c0TkiYU0Wn1msTYfwXL3nsLPJn/Xe1i7ljULK0XqFiE2MZfGZxQC42LvQp1YfnSN6PJKgiCyRL0eRlpR3bjJybO7pVb0XJVxLALDq3CppDyY0/174V5s9vG+tvrg5uOkb0GOSBEVkycA6A3GxdwFMd8yxiTI8vYCLwRfZd3MfAPVK1KNByQY6R1RwOdg68Hy95wFIMCbIBIJCkzy9BBSMmwRJUESWuDu60692PwBCY0NlwCgBmJeeDGswTCYGzGXDGg7THqf8URKF172oe6y/uB4wtVVqX7G9zhE9PklQRJYNa/Dwy1G6OgqjMrLg5ALA1BV2cL3BOkdU8NUvWZ9GpRoBcOj2Ic7eP6tzREJvC08tJEmZenU9X+95bG1sdY7o8UmCIrLMr6If5T3KA7Dx8kbuRNzROSKhp10BuwgIMw0a1qVKF0q7l9Y5osIh5Y3CH8elFKWwS9nFf0iDITpGknMkQRFZZmOw0cZEMSqjjIlSyJk1jq2f/+u984vB9QZrPaX+PPWnjIlSiJ2+d5qjd44C0KRME2oXr61zRDlDEhSRLWZ3byf+kDFRCqnohGiWnl0KQBHHIjxd82l9AypEirsWp2e1ngDcjrjNlitbdI5I6OXRNmAFhSQoIluqeVejVblWgCl7PxZ4TOeIhB5WnVtFRHwEAP1r98fZ3lnniAoXs/ZgJ+bl6bFzcy4ZkXlJxiT+PPknYJr/6tm6z+ocUc6RBEVkm9SBCxn7RF89q/fE29kbMCWLYbFheXbs3JpLRmTN1qtbuRNpagfYs1pPbc60gkASFJFtA+oMwNHWEYC/T/+tjSIqCofbEbfZfGUzAJU8K9GmfBudIyp8HGwdGFR3EGAaRXTJmSU6RyTyWkEb+yQlSVBEtnk6eWptDoKig1h3cZ2+AYk89dfJvzAqIwBD6g/RJrETeSvlfCt5Xc0j9BUeF85K/5UAFHUqqrVJKijkG0U8lpRfjjJgVOGhlDL7vPNrt0YXT0ca9amKi6ej3qFk2xOln6BO8ToA7L2xl8vhl3WOSOSV5WeXE5MYA8CguoNwtMu/17ElkqCIx9K5cmdKu5nGvVh7YS1B0UE6RyTywvHA45y5fwaAVuVaUdWrqs4RZY9LUSca96uGS1EnvUPJNoPBYNYebMnlhTpGI/JSyrFPClr1DkiCIh6TrY0tz9d/OC/IwlPy5VgYpCw9KUjdGvOr5+s/r1WxLbywECNG7l8Jw2iU7v8FVUBoANuvbQegund1mpVtpm9AuUASFPHYHh0TRRRsCcYE/j71NwCOto70r91f54hEaffS+BbzA+BO3C3Ou5xkz5wzLJ64nasHA/UNTuSK5OklwDRAYkGc/0oSFPHY6pSoQ5MyTQA4cucIZ+6d0TkikZu23d7K/ej7APSu0ZuizkV1jkhcPRhIjRNNtef7imwFICoklq3Tj0mSUsAopcy6+OfXNmAZkQRF5AiZQLDwWJSijYNU7+jPaFTsn+9Pw8iWOCe5AnDUfQ+xhhhtm/0L/KW6pwA5cOsAF0MuAtC+YnttbrSCRhKUfMZaex0MqjsIext7AP469ZfMC1JARdlEsPGGaUr3Eq4l6FKli84RicBzIUSFxGKvHGga0RaAOJtYjrrv1baJCo4l8FyIXiGKHFZYBkiUBCWfsdZeB94u3vSsbuqDfyfyjswLUkAddt9FvNE0IN/guoOxt7XXOSIRk2Ik15ZhHbXH+/+/msfSdiL/ikuMY9HpRQC42LvQt1ZfnSPKPZKg5ABrLdXIaymL+1N2fxP5n9GouH8ljH0eD3/0CvKdW37inOJ7p0psLYrHm7r9n3M5QYjdfYvbifzr3wv/8iD2AQB9avXB3dFd54hyjyQoOcBaSzXyWo9qPfBy9gJgpf9KwuPCdY5I5ISrBwNZPHE7K+Zv4rKzPwDlEivjcb2UzpEJgFI1vXD1Mn33GDDQMtxUiqIMiv1F/gPA1duJUjW9dItR5ByzsU/qF+ybBElQRI5JOS9ITGIMy88u1zki8biuHgxk6/RjRIXEaj92AM1D2vPfjOPSO8QK2NgYaDG0lva8RXgH7fG+Iv+hULQYUgsbm4LXDbWwuR91X5tSpIx7GTpU6pDBHvmbJCgiR6Us9pcxUfK35N4hAEaM7Pv/BMWgbGge7gdI7xBrUalZKTpOboSrlxPFE0pRPbouAIGONyg+3IZKzaS0qyBYeHohicZEAJ6v9zy2NrY6R5S7spygREdH8/vvv/P666/Ts2dP2rZty/r16zO9f0REBF999RVPPvkkXbp0YdKkSZw/fz6rYQgr1bRMU2oWqwnAjoAdXAu9pm9AItuSe4cAXHQ+Q7DDXQBqRzfCM8kbkN4h1qRSs1IM/N6P1iPr0CL8YWPZrYlrdYxK5KTC0nsnWZYTlLCwMObNm0dAQABVq2Zt/g2j0chbb73Fli1b6NOnDy+//DIPHjxg0qRJ3LhxI6uhCCtkMBjM6kX/PPmnjtGIx5Gy18e+FD1CUvYUeXQ7oS8bGwPFK3vQOKINTramdikLTy8kPile58jE4zpz7wxH7hwBoHHpxtQpUUfniHJflhMUb29vVq5cydKlSxkzZkyW9t2+fTunT59mypQpvPDCC/Tp04fvv/8eGxsb5s6dm9VQhJV6rv5zGDDVd88/MR+lpAogP0ru9RFniOWI+y4AnJKcaRjZwuJ2wnq4GF3pUa4XAMExwVq7BZF/mQ1tXwhKTyAbCYqDgwPe3t7ZOtiOHTvw8vKibdu22jJPT0/at2/P7t27iY+XLL8gKO9RnvaV2gNwMeQi+2/u1zkikR3JvUOOu+0n1tY0KmnjCF8c1cPeatI7xHoNqPKs9jhl1YDIf5KMSVpptJ2NHc/WfTaDPQqGPG0ke+HCBapVq4aNjflha9WqRWxsrFTzFCBmY6LIl2O+lNw7JOXYJ63Czat3pHeI9WpX2o9SbqbGsf9e+Jfg6GCdIxLZ9d/V/7gVcQuA7lW7U8K1hM4R5Y08TVBCQkIslr4kLwsOtvwHFBQUxPnz57V/AQEBuRqneHx9avXBxd4FgEVnFhGXKO0U8iPHWkb8XY8B4B1fkqoxpnpvV28nOk5uJL1DMkmPwRztbOx4vt7zgGkG6uTRR0X+k3Lsk8I0/5VdXh4sLi4OBweHVMuTl8XFWf4RW716NfPmzcvN0EQOc3Nwo2+tviw4uYDQ2FDWXFhDv9r99A6rwIl+EIv/1hvU6lguVwYK/PvU3xgxAjCgykBsrtrQemQdarQvJyUnWZA8mGNeG9pgKF/v+xow/ciNazYuz2MQjyciLoIV/isA8HTypFf1XjpHlHfytATF0dHRYjuT5GWOjpbvLnr37s3s2bO1f++8806uxilyRsqGXFLNkzuiQ+M4tuIS0bnQk0YpZTaWzbDGpju34pU9JDnJJ+qVrEfDUg0BOHjrIOeCzukbkMiyFf4riE6IBuDZOs/iaFd4GqXnaYLi5eVlsRoneVlajW+LFStGjRo1tH8VKlTI1ThFzmhfsT0+RXwAWH9pPfei7ukckciK44HHOX3vNACtyrWiSpEqOkckskPag+VvKW8SCkvvnWR5mqBUq1aNixcvYjQazZb7+/vj5OREuXLl8jIckctsbWy1OvBEY6LUgeczZoNCFfA5PwqyQXUHYWswjTi64OQCjMqYwR7CWgSEBrDt2jYAqnlVo4VPiwz2KFhyLUEJCgoiICCAxMREbVm7du0ICQlh586d2rLQ0FC2bdtGq1atLLZPEfnbkAZDtMcy9H3+kZCUwN+n/wbA0daRAXUG6ByRyK6SbiXpVrUbADfDb7L92nZ9AxKZ9tepv7THQxsMxWAoXFWr2Woku3z5ciIjI7WqmT179nDvnqn4vm/fvri5uTFr1iw2bNjA4sWLKV3aNP23n58fy5Yt47PPPuPatWt4eHiwatUqjEYjI0aMyKFTEtakdvHaNCnThMO3D3P0zlFO3ztN3RJ19Q5LZGDj5Y1alVzvGr0p6lyUIMJ0jkpk17AGw1h70TTk/R8n/ijwk8wVBEops1LM5+s/r2M0+shWCcrixYuZM2cOq1atAmDnzp3MmTOHOXPmEBERkeZ+tra2fPnll3To0IHly5czc+ZMPDw8mD59OuXLl8/WCQjrl7IOfMGJBelsKaxFYZvzo6B7ssaTeDh6ALD87HIi4yN1jkhk5OCtg5wPNs1T165COyp6VtQ3IB1kqwRlyZIlGW4zdepUpk6dmmq5u7s7b731Fm+99VZ2Di3yoWfrPssrG18h0ZjIn6f+5NOOnxb4WTjzswcxD1h9fjUAxV2K07VKV50jEo/Lyc6JgXUGMuvoLKISoljpv9Ks+lVYn5Q3CYVp7JOU8rSRrCicirkUo2e1ngDcjrjN1qtbM9hD6GnJmSXEJZm6LQ+uNxh7W3udIxI5YVjDhz9y0h7MusUlxrHojKlTgbOdM31r99U5In1IgiLyhIyJkn8U1lErC7qWPi2pUtTUVfy/q/9xI0ymFrFW6y6uIyQmBIBnaj1DEcciOkekD0lQRJ7oWa0nXs6mSeVW+K8gIi7ttkpCP5dCLrH3xl4A6paoqw3yJfI/g8Gg3SgolFkPEWFdUt4kFOYu/pKgiDzhaOfIs3VMM3DGJMaw3H+5zhEJS1I2Yh5av/B1ayzohtQ37/avlNIxGmFJUHQQay+YelyVditNp8qddI5IP5KgiDyTsppH6sCtj1EZtTs3G4MNz9V/TueIRE6rVLQSbSu0BeBc0DkO3z6sc0TiUYtOLyLBmACYuhYX5g4FkqCIPNOsbDOqe1cHYPu17QSE5u2s1NEPYjmy7CLRD2Lz9Lj5xe7ru7kWeg2AzpU7U8a9jL4BiVyRsspA2oNZH+ni/5AkKCLPGAwGs0aXf578M0+Pn5sT6xUE8sVYOPSr3Q8nO9PM1wtPLyQ+KfUErkIf/vf9OXT7EACNSjUq9INaSoIi8lTK0RClDtx6RCdEs+SMaXwjNwc3nq75tL4BiVzj4eTBMzWfASA4Jph1F9fpHJFIVpgnBrREEhSRp8p7lKd9xfYAXAy5yIFbB3SOSACs9F9JRLypZ9WA2gNwsXfRLRYXT0ca9amKi2fhmVY+r0m3f+uTZExiwUlTI3U7GzueqydtwCRBEXlOpn+3Pinv3FIO6KUHl6JONO5XDZeiTrrGUZB1qtyJUm6lAPj3wr8ERwfrHJHYcmULtyNuA9CjWg+KuxbXOSL9SYIi8lyfWn20O/RFpxdpo5YKfdwIu8GWK1sAqFy0Mm3Kt9E5IpHb7GzseL6eqbo1wZjAotOLdI5ImN0kyACJgCQoQgfuju70qdUHgAexD9h0c4POERVuf578E4WpLdDQ+kOxMcjXQmFgVs1zUkoy9RQWG8bKcysB8HL20qYGKezkm0joImVXxwWnTL157l8Jw2iURrN5SSklDfMKqXol62kjBR+8dZBzQef0DagQW3p2KbGJpuEPBtcdjKOdtL8CSVCETjpU6kApx9IA7Az+jwjbMPbMOcPiidu5ejBQ5+gKjwO3DphN6V6paCWdIxJ5KWVVQspRhEXesqY2YNZEEhShi+uH79PwtqmtQ5IhiYPuOwCIColl6/RjkqTkkT+OS713YTao7iBsDaaRShecXIBRGXWOqPC5En6F3dd3A1C7eG0al26sc0TWQxIUkeeMRsX++f60CO+gLdvnscVsm/0L/KW6J5fFJsZqU7q72LvQr3Y/nSMSea2kW0m6Ve0GwI3wG2y/tl3fgAqhJVcWao+HNRgm81+lIAmKyHOB50KIComlbHwFKsRWBSDA6RK3HB4OfR8VHEvguRC9QiwUVp9fTWhsKAB9a/XF3dFd34CELmRMlLxnNCpTmzuMLDxvSlBsDDZmA1kKSVBEGnJzsKyYFEPNtwx7OFPn/iL/pbmdyHnSrVEA9K7RGw9HDwCWnV1GZHykzhEVbFcPBrJ44nb2zDnDRefT3I67CYCvdzuZ/+oRkqAIi3JzsCznFElPs4h22CpTHfj+Iv9hJMnidiJn3Ym4w4ZLpu7d5YqUo32l9jpHJPTiZOfEwDoDAYhKiGKl/0qdIyq4rh4MZOv0Y0SFmHrs7E1RtV39ZDNpe/cISVBEnitV0wtXL1Pi457kQd3IpgCE2gdzzuUEAK7eTpSq6aVbjAXdX6f+0hpEDm0gY58UdjImSu5LbnuXLNYQwxF3U+NY5yRXGka2kLZ3j5BvJZHnbGwMtBhaS3veMmVj2SJbAWgxpBY2NtJYLDfI2CfiUa3KtaJK0SoAbL2ylRthN3SOqOBJbnuX7Kj7XuJsTM+bRPjioByl7d0jJEERuqjUrBQdJzfC1cuJ+lHNcUlyA+BYkX00H1+NSs1K6RxhwXX0zlFO3zsNQEufllT3rq5zREJvBoNBS1QVir9O/aVzRAXPo23q9hV5WL3TKkVbPGl795AkKEI3lZqVYuD3fviNaEiz8HYAxBliOeKyW+fICrZ5x+dpj4c3HK5bHMK6DKk/RHs8/8R8lJKqhpyUsk3dfftAzrmaqrNLxJehSmwti9sVdpKgCF3Z2BgoXtmDFuEdtWXS1TH3xCbGanfHTnZODKgzQOeIhLWoVLQSbSu0BcA/yJ8jd47oHFHBkrLt3d4im7XlrcM6Y8BUnS1t78xJgiKsQuXYGlR2N9WBb7u2jYDQgAz2ENmx0n8lD2IfANCvdj88nTz1DUhYlZRzZKUcZVg8vuS2d0aS2ONhSlAMysasekfa3pmTBEVYBQMGBlYZpD3/8+SfOkZTcP127Dft8ahGo3SMRFijfrX74WRnustfeHoh8UnxOkeUt6IfxHJk2UWiH8RmvHE2VGpWCvvnwnhgHwRA/aimeCZ54+rtRMfJjaTt3SMkQRFWo3/lh9UN807Mk3lBctiVB1f476ppMLyqXlW14nwhknk4efBMzWcACI4JZu2FtTpHlLeiQ+M4tuIS0bnYUHVt1MNxZtqEdaH1yDoMnOEnyYkFkqAIq1HOrTwdK5naolwKuSTzguSw34/9rj0e2WikzPkhLErZ7TxliZt4fPei7vHP+X8AKO5UgrqRTSle2SNXq3Vyc1Tw3CYJirAqLzZ+UXs8++hsHSMpWBKNicw9PhcAW4OtDG0v0tS5cmfKe5QHYMOlDVwPu65zRAXHghMLSDQmAvBslcHYYZfrx8zNUcFzmyQowqo8VeMpirkUA2CF/wqCooN0jqhg2HhpI7cjbgPQs3pPSruX1jkiYa1sbWwZ2WgkAEZlNCt5E9mnlGLOsTna8+eqycSAGZEERVgVRztH7e4+PimeBScW6BxRwSCNY0VWjGg0Qpv+YM6xOSQZkzLYQ2Rk3819+AeZhrpvW6EtVYpU1Tki6ycJirA6o554+AM66+gsGTDqMQVGBvLvhX8BKO1Wmu7VuusckbB2PkV86FGtBwA3w29qE0uK7Jtz9GHpSXIJlUifJCjC6tQsVhPf8r4AnAs6x54be3SOKH+bf2K+Vu89vOFw7Gxyv95b5H+jnxitPZb2YI8nIi6CxWcWA1DEsQj9avfTOaL8QRIUYZXkyzFnPFrvPaLRCB2jEflJj2o9KONeBoB/L/yrtWESWbfo9CKiEqIAGFx3MC72LjpHlD9IgiKsUspRTpeeWUpobKiu8eRXOwJ2cCH4AgDtK7anqpfUe4vMsbOxY0RDU0KbpJKYe2yubrHk9gBquUkpxS9HftGep6zCFumTBEVYJWd7Z23yspjEGP46KbOrZsfMwzO1xylLpYTIjJFPjNTmifnt2G+6DZ6YFwOo5ZZDtw9x9M5RAJqUaULjMo11jij/kARFWK2UP6jSWDbrAiMDWeG/AoASriXoU6uPzhGJ/KaiZ0W6VOkCwLXQa2y5skXniPKflDcJY5qM0TGS/EcSFGG16pWsR/OyzQE4efckB24d0DmizLOGIunfjv6mNY4d2Wgkjnb5byRJoT+zG4Ujs3SMJP95EPOARacXAeDh6MGzdZ/VOaL8RRIUYdVSjiz786GfdYwka/Qukk4yJmk/JgYMZu+jEFnRu0ZvSrqWBOCf8/9IY9ks+OPEH8Qmmm5ShjUYJo1js0gSFGHVnq37LEWdigKw+Mxi7kfd1zmi/GHtxbXcCL8BmEaOrehZUd+ARL5lb2uvNexMNCZKKUomKaX45fDDxrEvN3lZx2jyJ0lQhFVzsXfRBjWKT4rnt6MyeVlmSL23yEkvNX4JW4MtAL8e+ZX4pHidI7J+265t43zweQD8KvpRq3gtnSPKfyRBEVZvTNMxWk+CX478IsNuZ+ByyGU2XtoImBo5dq3SVeeIRH5XzqMcT9d8GjBvfC3SJjcJj08SFGH1KhetrA3Pfj3sujZsu7Ds1yO/ojD1eHqp8UvY2tjqHJEoCMY3G689/vHgjzpGYv3uRNxh1blVAJR0LakldyJrJEER+cL4pim+HA/Jl2NaYhNjtdlnHWwdZORYkWPaVWhHneJ1ANhzYw87T+4F4P6VMIxGGQIgpdlHZ2s96EY9MQoHWwedI8qfJEER+ULXql2pUrQKAFuubOF80HmdI7JOi04vIjgmGDCNxlvCtYTOEYmCwmAwmJWiTN8+A4A9c86weOJ2rh4M1Cs0qxKXGKdV79gYbGSAxMcgCYrIF2wMNoxtOlZ7np+6HOcVpRTT90/XnqcsdRIiJ7SJ74xzkqmr7IEi24myiQAgKiSWrdOPSZICLDmzhMBI0/vQp1YfKnhW0Dmi/EsSFJFvvNDwBZztnAGYd2IekfGROkdkXXYE7ODE3RMANC/bnJblWuockShIjEbFqb+v0yqsMwDxNnHs8dhsts3+Bf6FurpHKcX0A9O155OaT9IvmAJAEhSRbxR1Lspz9Z4DIDwunHnH5+kbkJX5bv932uPJLSbrF4gokALPhRAVEotfaE9t2XbPfzHysFddVHAsgedC9AjPKuy5sUebd6dx6ca0Ltda54jyN0lQRL4yofkE7fF3+7+TLsf/70r4FdacXwOATxEf+tbqq3NEQi8uno406lMVF8+cndog5v9HRS6V4EOdKNOEd/cdAjnutt/idoVRyirWyS0mYzAY9AumAJAEReQr9UvWp3NlUxHzlQdX+Of8PzpHpB+jUXH/ShgAPxz4QetaPL7peOxt7fUMTejIpagTjftVw6WoU46+rnOKhKdzyDPa401eK9LcrjC5FnqNledWAlDKrRQD6gzQOaL8zy6rO8THxzNnzhw2bdpEREQEVapUYdSoUTRt2jTDfQ8fPsyCBQu4cuUKSUlJ+Pj40LdvX7p2lYGkROa91vI1Nl8x1X1/vffrQjlL79WDgeyf709USCzRNlEsvbUIbMDZ1pnRjaXXgMh5pWp64erlRFRILLWjG1E2riK3HK9x2dmfS05nqRpbG1dvJ0rV9NI7VF38ePBHjMoIwNgmY6VrcQ7IcgnKZ599xpIlS+jcuTMTJ07ExsaGN998k5MnT6a73+7du3nttddISEhg+PDhjBo1CkdHRz755BOWLFmS7RMQhU+XKl2oW6IuAPtu7mPvjb06R5S3rh4MZOv0Y0SFmCYh2+2xkTibGACaB3Ug7JQMQy5yno2NgRZDTcO1GzDQJeThjcHm/y9FaTGkFjY2ha9aIyIuQpuGw9HWkZeavKRzRAVDlhKUs2fPsnXrVl588UXGjh1L7969mT59OqVKlWLmzJnp7rtixQq8vb2ZPn06ffv2pU+fPnz33XeULVuW9evXP9ZJiMLFYDDwWsvXtOff7PtGx2jyltGo2D/fX3ueSCJbiz6s5uoQ2rvQ96QQuadSs1J0nNwIVy8nmoW3wzPBG4BjbvuoMtqTSs1K6RyhPmYfnU1YnKm69bl6z8n4QzkkSwnKjh07sLW1pXfv3toyR0dHevbsyZkzZ7h7926a+0ZHR+Pu7o6Dw8NiLzs7Ozw8PHB0LJx1liL7BtUdRCk305fhSv+VXA65rHNEeSO5J0Wyg0V2EGJvmuG5XmRTSseXK/Q9KUTuqtSsFAO/96PdyIZ0CDX9FiiDYln0nzpHpo+4xDizm6TXW72uYzQFS5YSlIsXL+Lj44Orq6vZ8lq1TMV+ly5dSnPfhg0bcvXqVX777Tdu3rzJrVu3+OOPPzh//jyDBg1K97hBQUGcP39e+xcQEJCVsEUB5GjnyMRmEwFQmA9QVpCl7CFhxMgGr6Xa8+4hAyxuJ0ROs7ExULyyB21Du+FiZ/o9mHt8LkHRQTpHlvf+OvUXtyNuA/BUjadk1uIclKVGssHBwXh7e6danrwsKCjti3PYsGHcuXOHBQsWMH/+fACcnJz46KOP8PX1Tfe4q1evZt68eVkJVRQCLzV5iWm7phGdEM2cY3N4t927Bb5oNWUPiZNuB7jjeB2AqtF1qBZTx+J2QuQWV6M7z1cbwiz/X4hJjOGngz/xvt/7eoeVZ5KMSXy550vt+dtt3tYxmoInSyUocXFx2Nun7r6YXG0TF5f2XZu9vT3lypXDz8+P999/n3feeYcaNWowbdo0zpw5k+5xe/fuzezZs7V/77zzTlbCFgWUl7OXNs9FTGIM3+37LoM98r/knhQKxTqvh43Lu4f01x7nVk+K3BpfQ+RvL9Uag63BNGP29we/JyIuQueI8s4/5//hfLBpXrB2FdrRwqeFzhEVLFlKUBwdHUlISEi1PD4+XluflunTp7N3717ef/99OnbsSJcuXfjuu+/w9vbm+++/T/e4xYoVo0aNGtq/ChVkbgNh8karN7TufD8e+pGQmILd9iK5J8UF51NcdTZ9MZaNq0i9qIfd/HOrJ0Vuja8h8rfybhV4rr5phOeQmJBCM0+WUorPd3+uPZfSk5yXpQTF29ub4ODgVMuTlxUrVszifgkJCaxdu5aWLVtiY/PwkHZ2djRv3pzz589bTHyEyEjZImUZ0XAEAJHxkXx/IP1ktyCo1KwUB5542POte3B/DBhw9Xai4+RGhbYnhdDP1DZTMWBKir/Z9w1R8VE6R5T7tl7dyqHbhwBoULIBXavIeF45LUsJStWqVbl58yZRUeYX39mzZ7X1loSFhZGUlERSUuphyZOSkjAajRiNxqyEIoTmrTZvaUXMMw7MIDwuXOeIcte+G/vYFbQDAB/HcjSJaEvrkXUYOMNPkhOhixrFajCw7kAA7kffZ9aRWTpHlLuUUry//WFbm7fbvC3D2ueCLCUofn5+JCUlsXr1am1ZfHw869ato3bt2pQsWRKAu3fvmvW0KVq0KG5ubuzatcuspCQ6Opo9e/ZQvnx56Wossq2iZ0WGNBgCQGhsKD8d/EnniHJXyi/GVxu9ji22FK/sUSgHyBLW43++/9Mef7X3K2ITY9PZOn/bdHmTNkBk7eK16V+7fwZ7iOzIUoJSu3Zt2rdvz6xZs5g5cyarV69m8uTJBAYG8vLLL2vbffLJJwwZMkR7bmtry7PPPsuNGzd4+eWXWbJkCYsWLeKll17i/v37DB06NOfOSBRKU9pMwcZgupy/3f9tgW2otytglzbMfyXPSjxbdbDOEQlhUrdEXW3aiTuRd5hzdI7OEeWOR0tP3m/3PrY2tjpGVHBleaj7qVOn0r9/fzZu3Mj3339PYmIiX3zxBQ0bNkx3v6FDh/Luu+9iZ2fHvHnzmDNnDq6urnz00Ud06dIlu/ELAUB17+oMrGMqYg6KDiqw46K8t/29h4/bvYe9jUwKKKzHu23f1R5/susTohOidYwmd6y/tJ4Dtw4ApqSsX+1+OkdUcGV5skBHR0fGjh3L2LFj09wmrV45nTt3pnPnzlk9pBCZ8oHfByw5s4QklcTX+75mTNMxFHOx3HA7P/rv6n9sv7YdgGpe1Xi+/vOEBhT8xogi/2hYqiHP1HyGledWcifyDj8c+IG32ryld1g55tHSkw/9PtRKbkXOk3dWFBjVvaszopGpR094XLhZF8D8TinFe9selp683+597GyyfH8hRK6b1mGa9qP9+Z7PeRDzQOeIcs6aC2s4fPswYErGnq75tL4BFXCSoIgC5b127+FkZxqn48eDP3Iz/KbOEeWMfy/8y54bewCoVawWz9Z9VueIhLCsdvHaDGswDDA1Wv9izxc6R5QzEo2JvLXlYWnQB+0+kNKTXCbvrihQfIr4ML7peADikuL4cPuHOkf0+BKSEnhj8xva84/afySN8oRV+8DvAxxtTT0zZxyYwa3wWzpH9PjmHJ3DuaBzALQq14reNXpnsId4XJKgiALn7TZvU8SxCGCawMz/vr/OET2e347+pg2n3apcK/rW6qtzREKkr7xHecY1HQdAbGIsH+7I3zcKEXERZg3Uv+78tYx7kgckQREFjreLN2+2ehOAJJXE5I2TUUrpHFX2hMeFmzXK+6bLN/LFKPKFKb5TtBuFOcfmcCLwhM4RZd9Xe7/iXtQ9APrV7kfLci11jqhwkARFFEivtHyF8h7lAdOgSmsurNE5ouz5bNdn3I++D8DAOgNlMjKRbxRzKcbUNlMBMCojEzdMzJc3CjfCbvD13q8BsLex57OOn+kcUeEhCYookFzsXfi689fa81c3vkpcUtqzbVujC8EX+Hb/twA42DrIF6PIdya3mExVL9MUKDsDdrLkzJIM9rA+r2x8hZjEGADGNBmjnY/IfZKgiAKrX+1+tKvQDoDLDy7zy9n8M8uqUoqxa8cSn2SaKfzVFq9SqWglnaMSImsc7RyZ3nW69vz1za/nq4kEN17ayHL/5QCUcC3BB34f6BtQISMJiiiwDAYD33f//uEQ+Ke+4r59oM5RZc7iM4vZenUrABU8KvBuu3cz2EMI69Szek96VOsBwM3wm3y882OdI8qc2MRYxq8frz3/qvNXFHUuqmNEhY8kKKJAq1+yPmOajAEgOjGaP0v+YPX14GGxYbyy8RXt+Q/df8DF3kXHiIR4PN91/U6bluHrvV9z9M5RnSPK2Jd7vuRSyCUAfMv7MqT+kAz2EDlNEhRR4H3a8VN8ivgAcNb1GL/t/x2j0XqTlLe2vEVgpKmkp3eN3jxZ40mdIxLi8VT3rs47bd8BTD3rRq4eSUJSQgZ76cf/wVk+2fUJALYGW37u+bP0ntOBJCiiwAs+Ec2gGw/njpp27n1mTVrB1YPWV92z6fImfj3yK2Bq6Pt9N8vzWgmR37zd5m3qlagHwPHA41rPGGuTSCIT9j5s//V6q9epW6KuzlEVTpKgiALt6sFAtk4/RvXAhjQLNzWYjbaN5FfHr9ky/ahVJSmhsaGMXD1Se/5V56+o4FlBx4iEyDkOtg7M6T1HaxP2wY4POHPvjM5RpbbRaxkngo8DpmH7pWGsfiRBEQWW0ajYP//hKLLP3nsZt0TTwFHH3fez02M9+xf4W011z8T1E7W5gzpV7sTLTV7WOSIhclbTsk15reVrAMQnxTNo+SBiEmJ0jsrEaFT8d2Ina4r9DZiqduY9NU+b20vkPUlQRIEVeC6EqJBY7bl7kgfDAx82Pl1SYjYXIy4QeC5Ej/DMzDs+jwUnFwBQxLGI2Z2mEAXJh34falU9p+6dMptnSi9XDwYyd9K/jDv0IkmGRAB6RT5LsVvldI6scJNvQFFgxYSmHpitQVRz2j/oBUC8TRyzynxGUJC+Ccrpe6cZu/ZhG5mZPWdqo+AKUdA42zuzqN8inO2cAfjp0E8sP7tct3iuHgxky/SjzHT8kiAHU5Vv5ZiadLs5kK3Tj1lVNXBhIwmK0J2LpyON+lTFxdMxR1/XOY3X63d/JGXiTG07bjkGMOXCa7p1PQ6NDaX/0v7aSJUvPvEig+sN1iUWIfJK7eK1md5tuvZ82KphnLp7Ks/jSK4G3lx0JUfcdwPgkuTGi7ffwg47AKuqBi5sJEERunMp6kTjftVwKZqzdb2lanrh6pX6NR2UI2Nu/Q/nJNPYIutureHTXZ/m6LEzIyEpgQFLB2hTuDco2cDsS1uIgmz0E6O1ZDwqIYqnFj1FUHRQnsYQeC6EvXE7WFZ8jrZseOBkvBNLas+jgmOtohq4MJIERRRYNjYGWgytZXFdqQQfRt15EwOmsQ3e2fYOf578M89iU0oxYf0ENl/ZDIC3szfLByzH2d45z2IQQk8Gg4HfnvyNxqUbA3A19CpPL3qa6IToPIvhyI0jzC7zBcpgKiF5MmgwjSJbpdrOUnWxyH2SoIgCrVKzUnSc3ChVSYqrtxOvjH6JTzp8oi0bvmo4/174N9djUkrxzn/vaOOdONg6sOrZVVTxqpLrxxbCmjjbO7Pq2VWUdDWVWOy5sYe+S/pqY5DkJv/7/rxw7DnibEwN6ZuGt+XJ4Ocsx5nD1c8icyRBEQVepWalGPi9H61H1gGg9cg6DJzhR6VmpXi7zduMazoOMI1w2X9pfzZc2pCr8Xyw/QM+3f2wSun33r/TpnybXD2mENbKp4gP655bRxFH0xAAGy5tYNDyQcQlmkotjEbF/SthANy/EpYj7UEuBl+k4/yOBMeZqpSqxNRieOArWolqSq7eTpSq6fXYxxRZJwmKKBRsbAwUr+wBQPHKHtjYmL6IkicUHFR3EGCaIOzJhU+y8NTCbB8rrS9UozLyxqY3+GjnR9q2P/X4iefqW75rE6KweKL0E/w76F+tZ88K/xX0WtiLU3svsXjidvbMMQ3otmfOGRZP3P5YPWuO3jlK23ltuRN5B4C6Reox8eaHOCjLpSQthtTSvi9yUm51DihIJEERhZ6NwYY/nv6DfrX7AZBoTOS5Fc/x+e7Ps9y75+rBQItfqGf2XuHZZc/y9b6Hw3vP6DaDsU3HpvVSQhQqvhV8WTlwpZakbLmyhV5runM9/LrZdlEhsdnu/rvm/BrazWunzXVVr0Q9tr+0jScn+lqsBu44uRGVmpXK5hmlL7c6BxQkkqAIAdjb2rOo7yJeavwSAArFlK1TeGbxM9yPup+p10geVj/l4HAA56P86fSvH0vPLgVMCdHMnjOZ2Hxizp6EEPlc16pd2Tp0K0WdigJw3ekSH1ecwAnXA6m2zUr337jEON7Y9Aa9F/UmMj4SgFblWrFt2Da8XbzTrQYW+pEERYj/Z2tjy8yeM/nI7yOtLvqf8/9Q66dazD02lyRjUpr7PjqsPkCsIYblxeYyrcIkAh1vAODm4MaaQWtkGHsh0tCyXEtWtltLsXhTchBlG8GPPh8yq/TnPLB72A05s91//7v6Hw1+aWBWetm/dn+2DNmCt4u3tiytamChH0lQhEjBYDDwbrt3WffcOrycTQ3jgmOCGbF6BHVn1mXO0TmEx4Wn2i/lsPohdvdZ7f0XUyq/wAbvpdrQ2eVjq7CuwxZ6VOuRdyckRD7kY6zAuwHf0zCipbbsUJGdTK00gr9K/MRNx6soVJrdf+OT4llzfg1+8/zoOL8j54PPA2BvY8+MbjNY3G+xdOnPB+z0DkAIa9StajfOjj3LpA2TWHxmMQDngs4xas0oxq8fT5vybWhWphk+RXxwsXfhyrkb7CpxkKtO57nmfMHsteyMdnQN6UfPkEGUSZK5PYTIiLOnIy5GN8befod9RbaytPhvRNqFk2iTyPaia9ledC2l4nz472I7mhqewMvZi/ikeO5G3uVo4FF2XNvBg9gHZq/ZwqcFv/T8hQalGuh0ViKrJEERIg0l3UqyqN8iXmz8Ih9s/4Bd13cBpp4+W65sYcuVLeY7FDV/aqNsaBrRjieDBlMyoSwg4ykIkRnJo0BHhcTSKrwT9SObsdFrOduK/kucjWlaiEDHmyy69heLrv2V7mtV967O1DZTGdJgiEzAmc9IgiJEBjpU6kD7iu05dPsQ80/MZ9W5VdyKuJXm9mXjKvBERBtahXWiWIohs2U8BSEyJ3kU6K3TjwHgZixC36AX6BbSj4NFtnPQfSdXXc+RpCy3CyviWIRe1XsxqO4gulftjq2NbV6GL3KIJChCZILBYKBZ2WY0K9uMH7r/wI3wG5y+d5q7kXeJSYzB3cEdm9vOBP1lxNXobvE1cms8BSEKouRRoPfP99fad7ka3ell259pfd+jZKMiHA88zo2wG4TEhOBg64CXsxe1iteiund1KS0pACRBESKLDAYD5T3KU96jvPmKBnDVO9DsCxVMJScthtSSLotCZFGlZqWo0KQk57fdYM+cM7QeWYca7ctpiX6rcq1AmnUVWJKgCJGDMvpCFUJkjXT/LbykDEyIHCZfqEII8fgkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXXssrpDfHw8c+bMYdOmTURERFClShVGjRpF06ZNM7X/1q1bWbZsGZcvX8bOzo4KFSowatQoGjdunOXghRBCCFEwZTlB+eyzz9i+fTv9+/fHx8eH9evX8+abbzJjxgzq16+f7r6///47f/zxB35+fnTr1o3ExESuXr1KUFBQtk9ACCGEEAVPlhKUs2fPsnXrVsaMGcOgQYMA6Nq1K8OHD2fmzJnMnDkzzX3PnDnDH3/8wbhx4xgwYMDjRS2EEEKIAi1LbVB27NiBra0tvXv31pY5OjrSs2dPzpw5w927d9Pcd+nSpXh5edGvXz+UUkRHR2c/aiEEAC6ejjTqUxUXT0e9QxFCiByVpQTl4sWL+Pj44Orqara8Vq1aAFy6dCnNfY8cOULNmjVZtmwZvXv3plu3bjz99NMsX748G2ELIQBcijrRuF81XIo66R2KEELkqCxV8QQHB+Pt7Z1qefKytNqSREREEBYWxunTpzl69CjDhw+nZMmSrF+/nhkzZmBnZ8dTTz2V5nGDgoIIDg7WngcEBGQlbCGEEELkM1lKUOLi4rC3t0+13MHBQVtvSXJ1TlhYGO+//z4dO3YEwM/Pj+HDhzN//vx0E5TVq1czb968rIQqhBBCiHwsSwmKo6MjCQkJqZbHx8dr69PaD8DOzg4/Pz9tuY2NDR06dOD333/n7t27lCxZ0uL+vXv3pnXr1trzgIAApk2blpXQhRBCCJGPZClB8fb25v79+6mWJ1e/FCtWzOJ+RYoUwcHBATc3N2xtbc3WFS1aFDBVA6WVoBQrVizN1xZCCCFEwZOlRrJVq1bl5s2bREVFmS0/e/astt7iQWxsqFatGmFhYalKYJLbrXh6emYlFCGEEEIUYFlKUPz8/EhKSmL16tXasvj4eNatW0ft2rW1EpC7d++masjavn17kpKS2LBhg7YsLi6OzZs3U7FiRSkhEUIIIYQmS1U8tWvXpn379syaNYvQ0FDKli3Lhg0bCAwM5K233tK2++STTzh+/Dg7d+7Ulj311FOsXbuW7777jhs3blCyZEk2btzI3bt3+eyzz3LujIQQQgiR72V5qPupU6dqyUVkZCSVK1fmiy++oGHDhunu5+joyPTp05k5cybr1q0jNjaWqlWr8sUXX9CsWbPsxi+EEEKIAijLCYqjoyNjx45l7NixaW7z/fffW1xetGhRpk6dmtVDCiGEsDIyirHIbVlOUIQQQojkUYyFyC1ZaiQrhBBCCJEXJEERQgghhNWRBEUIIYQQVkcSFCGEEEJYHUlQhBBCCGF1JEERQgghhNWRBEUIIYQQVkcSFCGEEEJYHUlQhBBCCGF1JEERQgghhNWRBEUIIYQQVkcSFCGEEEJYHUlQhBBCCGSGZmsjsxkLIYQQyAzN1kZKUIQQQghhdSRBEUIIIYTVkQRFiFwgddlC5Bz5eyqcpA2KELlA6rKFyDny91Q4SQmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKKDRkNEohhMg/ZCRZUWjIaJRCCJF/SAmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDp2egeQHXFxcQAEBAToHIkQQgghsqpChQo4OTmlu02+TFACAwMBmDZtms6RCCGEECKrZs+eTY0aNdLdxqCUUnkUT44JDQ3l4MGDlC5dGgcHB73DyXUBAQFMmzaNd955hwoVKugdTp6Scy98515YzxsK77kX1vOGwnvuBbYExdPTky5duugdRp6rUKFChhlnQSXnXvjOvbCeNxTecy+s5w2F+9zTIo1khRBCCGF1JEERQgghhNWRBCUf8Pb2Zvjw4Xh7e+sdSp6Tcy98515YzxsK77kX1vOGwn3uGcmXjWSFEEIIUbBJCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKuTLwdqK4iCgoJYtmwZ/v7+nDt3jpiYGGbMmEGjRo1SbTtx4kSOHz+eanmzZs34+uuvzZbFx8czZ84cNm3aREREBFWqVGHUqFE0bdo0t04ly7Jy7gCnTp3il19+4cKFC7i6utK+fXtGjx6Ni4uL2Xb54dwtWb9+PZ999pnFdStXrkzV2n/37t3MnTuXgIAAPD096dGjB0OHDsXOLn/9eefXzysrjh07xqRJkyyumzlzJnXq1NGeZ/Y6t0bR0dEsWrSIs2fP4u/vT0REBFOmTKF79+6ptr127Ro//vgjp06dws7OjpYtWzJ+/Hg8PT3NtjMajSxatIhVq1YREhKCj48Pzz//PJ06dcqjs8pYZs/7008/ZcOGDan2L1++PH/++afZsvxw3rklf32DFWA3btzg77//xsfHh8qVK3PmzJl0ty9evDgvvfSS2TJL3dQ+++wztm/fTv/+/fHx8WH9+vW8+eabzJgxg/r16+foOWRXVs794sWLvPLKK1SoUIHx48dz7949Fi9ezM2bN/nqq6/Mts0P556ekSNHUrp0abNlbm5uZs/379/P//73Pxo2bMikSZO4cuUK8+fP58GDB7z22mt5Ge5jy++fV1b07duXWrVqmS0rW7as9jgr17k1CgsLY968eZQsWZKqVaty7Ngxi9vdu3ePCRMm4ObmxujRo4mJiWHRokVcuXKFX3/9FXt7e23b2bNn89dff/Hkk09Ss2ZNdu/ezUcffYTBYKBjx455dWrpyux5Azg4OPDmm2+aLXN1dU21XX4471yjhFWIiopSYWFhSimltm3bpnx9fdXRo0ctbjthwgQ1dOjQDF/zzJkzytfXV/3999/astjYWPXss8+ql19+OWcCzwFZOffXX39dPf300yoyMlJbtmbNGuXr66sOHDigLcsv527JunXrlK+vr/L3989w2yFDhqgXXnhBJSQkaMtmzZql2rZtq65du5abYeao/Px5ZcXRo0eVr6+v2rZtW7rbZfY6t1ZxcXEqKChIKaWUv7+/8vX1VevWrUu13TfffKM6deqkAgMDtWWHDh1Svr6+6p9//tGW3bt3T7Vv3159++232jKj0ajGjRun+vTpoxITE3PxbDIvs+f9ySefqC5dumT4evnlvHOLtEGxEi4uLhQpUiRL+yQmJhIdHZ3m+h07dmBra0vv3r21ZY6OjvTs2ZMzZ85w9+7dbMebkzJ77lFRURw+fJguXbqY3Wl07doVZ2dntm3bpi3LL+eekejoaJKSkiyuu3btGteuXePJJ580q8555plnUEqxffv2PIry8RWUzysroqOjSUxMTLU8K9e5tXJwcMjUwGM7duygVatWlCxZUlvWpEkTypUrZ3aeu3fvJjExkWeeeUZbZjAYePrpp7l//36GJc55JbPnnSwpKYmoqKg01+eX884tUsWTT924cYOuXbuSkJCAl5cXvXr1Yvjw4WY/VBcvXsTHxydVsWFy0fKlS5fMvhis3ZUrV0hKSko1oZa9vT3VqlXj4sWL2rKCcO6TJk0iJiYGe3t7mjZtyrhx4yhXrpy2/sKFCwCp3o9ixYpRvHhxs/fD2hWEzysrPvvsM2JiYrC1taV+/fqMGTOGmjVrAlm7zvOz+/fv8+DBA4sT5NWqVYv9+/drzy9evIizs3Oq2X6Tr4+LFy/mu2rA2NhYunfvTmxsLO7u7nTs2JGXX37ZrI1RQTzvrJAEJR8qU6YMjRo1onLlysTGxrJ9+3bmz5/PjRs3+PDDD7XtgoODLWbzycuCgoLyLOacEBwcDFhua+Pt7c2JEyfMts2v5+7o6Ej37t1p1KgRrq6unD9/niVLljB27Fh+++037Yc6o/cjeX1+kJ8/r6yws7OjXbt2tGjRAg8PD65du8bixYsZP348P//8M9WrV8/SdZ6fZXSe4eHhxMfH4+DgQHBwMEWLFsVgMKTaDvLf9eHt7c2gQYOoXr06SikOHDjAqlWruHz5MjNmzNBuNAvaeWeVJCi5wGg0kpCQkKltHRwcUl18GXn77bfNnnft2pWvvvqKNWvWMGDAAK0nQFxcnFkjs5THTF6f03Lz3JPjTeuc4uPjzbbN63O3JDvvR4cOHejQoYO23NfXl2bNmjFhwgQWLFjA66+/DqCdb/I5Pfpa6VX/WRtr+bxyW7169ahXr572vE2bNvj5+fHCCy8wa9Ysvv766yxd5/lZRueZvI2Dg0OBuz4e7eDQsWNHypUrx+zZs9mxY4fW+LWgnXdWSYKSC06cOJFmV8JHLViwIFXxXXYMHDiQNWvWcPjwYS1BcXR0tPjjmPwF5+jo+NjHfVRunntyvGmdU8ofaj3O3ZKcej/q169P7dq1OXLkiLYs+Xwt/WDFx8fn2TnmBGv5vPTg4+NDmzZt2LlzJ0lJSVm6zvOzjM4z5TaF4foYMGAAc+bM4fDhw1qCUhjOOz2SoOSC8uXLM2XKlExtm1MzWJYoUQKAiIgIs9e+f/9+qm2Ti1aLFSuWI8dOKTfPPXl7S1UXwcHBZuejx7lbkpPvR4kSJbh+/Xqq7YODg1O1zwgODk7VjdWaWcvnpZcSJUqQkJBAbGxslq7z/Cyj8yxSpIiWjHl7e3Ps2DGUUmalrgXp+nB0dKRIkSKEh4drywrDeadHEpRc4O3tbXFAotx0+/ZtALPBjZL74UdFRZk1Pjx79qy2Pqfl5rlXqlQJW1tbzp8/b1YFkpCQwMWLF2nfvr22TI9ztyQn34/bt2+bfb7VqlUD4Pz589SuXVtbHhQUxP379816xFg7a/m89HL79m0cHBxwdnbO0nWenxUvXhxPT0/Onz+fap2/v7/ZZ161alX+/fdfAgICqFixora8IF0f0dHRhIWFpfoOL+jnnR7pZpzPREVFpSrSV0oxf/58ALNRN/38/EhKSmL16tXasvj4eNatW0ft2rXzXa8INzc3mjRpwqZNm8zaV2zcuJGYmBizL+78fO6hoaGplu3bt4/z58/TrFkzbVmlSpUoX748a9asMeuKvGrVKgwGA+3atcuLcHNEfv68ssLSZ3vp0iX27NlD06ZNsbGxydJ1nt+1a9eOvXv3mnUjP3LkCDdu3DA7zzZt2mBnZ8fKlSu1ZUop/vnnH4oXL07dunXzNO7HERcXZ7F92B9//IFSiubNm2vLCtJ5Z4eUoFiRP/74AzCNbwGmL6STJ08CMGzYMMDUtfTDDz+kU6dOlC1blri4OHbt2sWpU6d48sknzbrs1a5dm/bt2zNr1ixCQ0MpW7YsGzZsIDAwkLfeeitvTy4DmTl3gFGjRjFu3DgmTJhA7969tRE2mzZtavaHnZ/O/VFjxoyhevXq1KhRA1dXVy5cuMC6desoUaIEQ4YMMdt27NixTJkyhddee42OHTty5coVVq5cSa9evczuuKxdfv68suL999/H0dGRunXrUrRoUa5du8aaNWtwcnIyaziZ2evcmi1fvpzIyEitOmLPnj3cu3cPMI2k6+bmxvPPP8/27duZPHky/fr1IyYmhoULF1K5cmWzkscSJUrQv39/Fi5cSGJiIrVq1WLXrl2cPHmSd999F1tbW13O0ZKMzjsiIoKRI0fSqVMnypcvD8DBgwfZv38/zZs3p02bNtpr5afzzg0GpZTSOwhh0rZt2zTX7dy5EzAVBf/666/4+/sTEhKCjY0NFSpUoFevXvTu3TtVr5i4uDhtfpPIyEgqV67MqFGjzO7ErUFmzj3ZyZMntTlKXFxcaN++PS+99FKqOUryy7k/avbs2ezfv587d+5obRJatmzJ8OHD8fLySrX9rl27mDdvHgEBAXh4eNC9e/dUY+LkB/n188qKZcuWsXnzZm7dukVUVBSenp40btyY4cOH4+PjY7ZtZq9zazVgwAACAwMtrlu8eLE2jcPVq1dTzcUzbty4VNe60Wjk77//ZvXq1QQHB+Pj48Nzzz1Hly5dcv1csiKj83Zzc2PGjBmcOXOG4OBgjEYjZcuWpXPnzjz77LOp/m7zy3nnBklQhBBCCGF1pA2KEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKSNf69etp27Yt69ev1zuUTDl27Bht27bl999/z7VjtG3blokTJ+ba6xcWAwYMYMCAAXqHYfV+//132rZty7Fjx3L1OEuWLKFDhw7cuXMnU9vnxd9afvbxxx/Tv39/4uLi9A4l35IEpYD5/PPPadu2Lb169Uo1qWBBkd9+2MLCwvjll18YOnQonTt3pnPnzvTv35/Jkyczd+5cQkJC8iSOjJLNiRMnpjvlQGESExNDt27daNu2Ld9++63e4eS6iIgI5s+fT48ePbQh6MXjGT58OEFBQSxdulTvUPKt/DVZh0hXdHQ027Ztw2AwEB4ezq5du+jYseNjvaavry+1a9fG29s7h6IsXO7du8fYsWO5d+8e1apVo3v37ri7uxMcHMzp06eZO3cu9erVszjHTkH33Xff6R1CmrZt20Z0dDQGg4EtW7Ywbtw4HB0d9Q4r1yxZsoTw8HAGDRqkdygFRrly5WjdujV///03ffv2xdnZWe+Q8h1JUAqQ//77j5iYGAYMGMCyZctYu3btYycobm5uuLm55VCEhc/vv//OvXv3GDlypNmszMkuX75caN/fsmXL6h1CmtauXYutrS19+vRh6dKl7Ny5k86dO+sdVq5ITEzk33//pV69elb9meRHXbp0YefOnWzdupVevXrpHU6+IwlKAZL8pTp48GAuX77M0aNHCQwMpFSpUmbb/f7778ybNy/N1ylVqhRLliwBTNUCn332GVOmTDGb/rxt27Y0bNiQd999l5kzZ3Lo0CHi4+Np0KABkydPpkyZMly7do1Zs2Zx4sQJEhMTadasGa+88opZacGxY8eYNGkSw4cPZ8SIEWZx3Llzh4EDB9KtWzemTp2qPU8ZQzJL+587d45Zs2Zx5swZbGxseOKJJxg/fnyqIuydO3eybds2zp07R1BQEHZ2dlSpUoV+/frh5+eX/puegTNnzgDQp08fi+urVKlicfnt27f566+/OHToEMHBwbi6ulKxYkW6d++ufQ4JCQmsXr2avXv3cu3aNUJDQ3F1daVevXoMGzaM6tWra6/36aefsmHDBgA+++wzPvvsM7PzT/lepnyc/N4nu3z5MgsWLOD48eOEh4fj7e1N69ateeGFF/Dw8NC2S/nZDR48mNmzZ3PixAnCw8O1mWyTq+mSrzV4eG3OmDGDoKAgFi5cyPXr13Fzc6N9+/a8/PLLqUoyEhMTWbRoEf/++y9BQUEUL16cnj170qFDB5599tlU55CR69evc+rUKVq1amWW7FtKUFJev61atcrU9QawY8cO/vzzT65evYqrqyutW7dmzJgxjBw5MtV7kp7Mfh7pOXjwIMHBwQwePNji+ri4OObOncvmzZsJCwujbNmy9OvXL9Xsyyndvn2bBQsWcOjQIR48eIC7uzvNmjVjxIgRqb6PIGvvR/K1vGjRInbu3MnatWu5ffs2HTt21D7nBw8e8Oeff7J3717u3buHi4sLDRo0YMSIEVSuXDnV8bOy/Y0bN/jzzz85duwYwcHBODk5UaJECRo1asSECRPMZpRv2bIlTk5ObNiwQRKUbJAEpYC4du0aZ86coUWLFnh5edG1a1eOHDnCunXrUv1wN2rUyOJrBAQEsG3btkwXZUdERDBu3Di8vb3p2rUrN2/eZO/evbz66qt8+umnjB8/nho1atCjRw8uXLjAjh07CA8PZ8aMGdk6Rzc3N4YPH86yZcsA6NevX5rndO7cORYuXEijRo3o3bs3Fy9eZNeuXVy5coV58+aZneOsWbOws7OjXr16eHt7Exoayp49e3jvvfeYNGkSffv2zVa8gPYjcePGDWrXrp2pfU6ePMlbb71FdHQ0zZo1o2PHjkRERHDx4kWWLVumJSjh4eH88MMP1K9fnxYtWuDu7s6dO3fYs2cPBw4c4IcffqBWrVqAqaouMjKS3bt306ZNG6pWrWp2zOHDh7NhwwYCAwMZPny4trxatWra4927d/PBBx9gMBho06YNJUqU4Nq1a6xYsYKDBw/y66+/4u7ubva6t27dYsyYMVSuXJlu3boRHh6Ovb19hu9B8mu2bt2aJ554ggMHDrB8+XLCwsJ47733zLb94osv2LhxI2XKlOHpp58mISGBJUuWcPr06Uy9349au3YtAF27dqVkyZI0bNiQY8eOcfv2bcqUKWNxn6xcb2vXruWLL77A1dWVrl274ubmxv79+3n11VdJTEzEzi5zX8vZ+TwsOXLkCAB16tRJtc5oNDJlyhQOHz5M5cqV6dSpE+Hh4fz4449pfo+cPXuW119/nZiYGFq1aoWPjw+BgYFs3ryZAwcOMHPmTLP3Mbvvx/Tp0zl79iwtW7akVatWFC1aFDBdcxMnTuT+/fs0bdqUNm3aEBoayo4dOzh06BDfffed2d9iVrYPCgripZdeIjY2lpYtW9KhQwdiY2O5efMmq1atYuzYsWbx2tvbU716dc6cOUNMTIxU82SVEgXCDz/8oHx9fdWWLVuUUkpFRUWpLl26qH79+qmkpKQM9w8JCVH9+/dXHTt2VCdPntSWr1u3Tvn6+qp169aZbe/r66t8fX3VDz/8YLb8m2++Ub6+vqp79+5qyZIl2nKj0ajeeOMN5evrq86dO6ctP3r0qPL19VVz5sxJFdPt27eVr6+v+uSTT8yW9+/fX/Xv39/ieSS/Xsr3Itm0adMsLr9161aq14mKilLDhg1T3bt3VzExManOfcKECRaP/6hly5YpX19f1bt3bzVnzhx19OhRFRkZmeb2cXFxqk+fPqpdu3Zq//79qdbfvXvXbNt79+6l2ubKlSuqS5cu6pVXXjFbntZnmWzChAnK19fX4rrQ0FDVrVs31adPH3Xnzh2zdVu2bFG+vr7qu+++05Ylf3ZpfbZKWf4c58yZo10/AQEB2vLY2Fg1ePBg1a5dO3X//n1t+eHDh5Wvr68aMWKE2ed0//599dRTT1m8ftKTkJCgnnrqKdW9e3cVGxurlFJq7dq1ytfXV82ePTvV9lm93sLDw1WXLl1Uly5d1PXr182OO2nSJOXr65vme3L06FFtWVY/j/SMHj1atWvXTsXFxaVal3zNvP766yoxMVFbfunSJdWhQ4dUn29CQoLq37+/6tq1qzp//rzZa504cUL5+fmpt95667Hej08++UT5+vqqPn36qMDAwFQxjxkzRvn5+akDBw6YLb9+/brq2rWrGjZsWLa3T/57TvndliwsLCzVMqUefjcfOXLE4nqRNunFUwAkJiayadMmXF1dadOmDQAuLi74+vpy9+5dDh8+nO7+cXFxTJ06lcDAQN5++23q1auXqeM6OzszatQos2XJbV48PDzMSjgMBoO27vLly5k+t+xq0KBBqvY3PXr0AMDf399suaW7YhcXF7p3705kZCTnzp3Ldhx9+vRh0KBBREZGMm/ePCZNmkSPHj0YOnQov/zyC0FBQWbb7969m/v379O5c2eaN2+e6vVKlCihPXZwcKB48eKptqlUqRKNGjXSqtZywsaNG4mKiuLFF19MVUTfsWNHqlevztatW1Pt5+XlxZAhQ7J8vH79+lG+fHntuaOjIx07dsRoNHL+/Hlt+aZNmwAYNmwYTk5O2vJixYqZXX+ZtW/fPkJCQmjfvr1W6uHn54eTkxPr16/HaDRa3C+z19vu3buJiYmhR48elCtXTltuZ2eX6m8pPdn9PCy5f/8+bm5uODg4pFqXXC04atQobG1tteVVqlShS5cuqbbfu3cvgYGBDBo0yKyKEaB+/fq0bt2a/fv3ExUVBTze+zFo0CBKlixptuzChQucPn2arl270qxZM7N15cqVo1evXly5coUrV65ka/tklkqZixQpYjHO5JKd+/fvp3s+IjWp4ikAdu/eTWhoKD179jT7w+natSubNm1i7dq1qf74kiml+PTTTzlz5gwvvPACnTp1yvRxfXx8zH4UAK23T+XKlc3qYlOue/RHOTfUqFEj1bLkH/PIyEiz5Q8ePOCvv/5i//793L17N9W4BY8Tr8FgYMyYMQwaNIj9+/dz9uxZzp07x4ULF7h27RqrV6/m66+/1oqQk3/MmjZtmqnXv3jxIgsXLuTkyZOEhISkSkhCQ0MpVqxYtuNPltyW5uzZs9y6dSvV+vj4eMLCwggNDcXT01NbXrVq1UxV6Tzq0R83eJicpfz8Ll26BJh+/B5Vt27dLB/333//BUx/O8lcXFxo06YNW7Zs4eDBg7Ro0SLVfpm93pKTc0vx1q5d2ywJSE92Pw9LwsPDLSa6yfE6OztbPL/69etr1WGPxnX9+nWL46OEhIRgNBq5ceMGNWvWfKz3I7n6MqWzZ88Cpr9pS8e/fv269n/lypWzvH1yO6PvvvuOI0eO0Lx5cxo2bJhm1R88TFzCwsLS3EZYJglKAZCyzjylxo0bU7x4cfbs2UN4eLjFDP+3335j27ZtdOrUiRdeeCFLx3V1dU21LPkLJb11OXVXnx4XF5c0j5/yLjg8PJwXX3yRu3fvUq9ePZo0aYKbmxs2NjZcunSJ3bt3k5CQ8NjxeHp60q1bN7p16wZAcHAw06dPZ8eOHXz11VfMnTsXQLuzTOsHI6VTp07xyiuvANCkSRN8fHy08969ezeXLl3KkdjB1N4IYOXKleluFxsba/Y8+e4xq9K7flJ+ftHR0djY2FhsEJrVrttBQUEcPHiQMmXKpPrB7NatG1u2bGHdunUWE5TMXm/Jn6+l9yWt87Aku5+HJY6OjmmOmRQVFZXmtWjp/U2Oa/PmzZmK63HeD0v7hIeHA6aSsH379qW5b0xMTLa2L126NDNnzmTu3Lns37+fbdu2AVC+fHlGjhxJ+/btU+2bfMNTkLup5xZJUPK5u3fvcujQIYB0RzfdtGlTqiLv9evXs2DBAurVq8fbb7+dq3GmJbmUJSkpKdW65C+v3LR27Vru3r1rsRvwn3/+ye7du3PluN7e3rzzzjvs27ePy5cvExYWhoeHh9blODPFwQsWLCA+Pp4ff/wx1Q9q8p1hTkn+AZ43b57FXhBpebQULae5uLhgNBoJCwtLVVKQ1QHw1q9fT1JSErdv305zwLo9e/ZkqlQiLcmJ14MHD1KtSz6PzCSn2f08LPHw8EjzenN1dU3zzt/S+5sc1+eff06rVq0yPPbjvB+Wrq3k18ts4/asbg+m0uGPP/6YxMREzp8/z4EDB1i2bBkffPABxYoVS1VFnpwEZfeaKcykDUo+t2HDBoxGI/Xr16dnz56p/iXfsT9aFHv8+HG+/vprypQpwyeffGKx/jkvJPcysFSNcvHiRYv72NjYWExosiO5eDy57U5KJ0+ezJFjpMXe3j5VEXZysXVy0pme27dvU6RIkVTJSWxsLBcuXEi1vY2N6c89rfcuvfXJVVDJRfjWIrk30qlTp1Kty0ovHqUU69atA6B79+4W/5bq1q1LQkKC1u4lO5K7lVuK19/fP9PXdU5+HpUrVyY+Pp67d++mWlelShViYmLM2v0ks/T3kdW4cur9SJb895PZ42d1+5Ts7OyoU6cOI0aMYNKkSSil2Lt3b6rtbty4AfDYiWRhJAlKPpb8pWowGJg6dSpvvfVWqn9Tp06lTp06XL58WWvseePGDd555x0cHR35/PPPdc3sy5cvj4uLi1YNlSwkJIT58+db3KdIkSKEhYXlyBwXyQ0MH/2C3Lx5M/v373/s11+0aBEBAQEW161YsYKYmBjKly+vFWW3bt2a4sWLs3nzZg4ePJhqn5R3uiVLliQiIoKrV69qy5KSkvj5558JDQ1NtW9yFd+9e/csxpPe+h49euDi4sLs2bPNjpcsNjZWl+QleWySefPmmV0PwcHBWnf0zDh+/Di3bt2iQYMGTJkyxeLfUnIp46PJfla0adMGZ2dn1q5da9Z2JDExkTlz5mT6dXLy82jYsCFgudQtudr4t99+M0sWLl++bDFRa9OmDSVLlmTx4sUcP3481frExESzxCan3o9ktWvXpnbt2mzdutViI2Gj0WgWV1a3P3/+vMWS3eTSJEs3emfPnsXb29usEbDIHKniyceOHj3KnTt3Mmyk1aNHD86cOcPatWupWbMm33//PeHh4TRp0oT//vsv1fZubm55NteNvb09ffv2ZcGCBYwaNYrWrVsTExPDnj17aNiwocUGgI0aNeLcuXO8+eab1K9fHzs7Oxo0aKB90WZFly5d+Pvvv5kxYwbHjh2jZMmSXLp0iaNHj9K2bVt27tz5WOe3adMmfv75ZypXrkzt2rUpWrQoERERnD17lgsXLuDo6Mhrr72mbe/g4MCHH37IG2+8wRtvvEGzZs2oWrUqUVFRXLp0ibi4OO2Lu2/fvhw6dIhx48bRvn17HBwcOH78OEFBQTRq1CjV5HJ16tTB0dGRZcuWERERoSWmyVVbTzzxBNu3b+fdd9+lefPmODg4ULVqVVr/X3v3F9LUGwZw/OuqacVM0Jl/woIoEAaD5ZLUiIYXFZW72Y03miJIDNOgkBDDQUH/bqTopiXYSoTqQrQMZyXByckWoge7CgINdRIhk6DWsAvZ8NdWqO3nJj2f6xf2nuccxvP+e97SUjIyMrh8+TKtra3U1NRw8OBBCgoKCAaDzMzMMDo6isFg4ObNm38Vr9UqKiqivLwct9tNdXU1ZWVlBINBXr16RWFhIYqiRGaG/iScdIRP3sRSUFCAwWBAVVUmJiZWXNdmOZ1Oh91u58aNG9TV1WGxWNi+fTvDw8NotVqysrJWtCwWz/dRVlbGnTt38Hq9UXsowntvPB4PtbW1FBcXEwgEGBwcxGw2R80YaLVaHA4HFy9epKGhAZPJFNkwPzMzw9jYGDt27MDlcsU1Hsu1trbS2NhIW1sbjx8/Zt++faSmpuL3+1FVlfn5edxu95rav3jxgp6eHoxGI/n5+Wzbto2PHz/i8XhIT0+P+n4+ffrE9PQ0Vqt1Vc8glkiCsoGF/1SXV3iNxWKx0N7ezuDgIHa7PTLS9Hq9MY8g5+TkrOtlfLW1tWzevJm+vj56enrIycmhqqqKkpIShoaGotpXVVWxsLCAoiiMjY0RCoWorq5eU4KSnZ1Ne3s7d+/exev1EgqF2L9/P7du3cLv9/91gtLc3IyiKLx7946RkRG+fPmCRqNh586dWK1WbDZb1MjKYDBw7949XC4XIyMj+Hw+dDode/bsoaKiItKupKQEh8OBy+ViYGCA1NRUTCYTV65ciVkpOD09HYfDQUdHB729vZHvIJygnDx5kunpaV6+fMmjR48IhUIcO3aM0tJSYKkqptPppKurC5/Ph9frJS0tDb1ez/Hjx2MeO10Ply5dYvfu3Tx79oynT5+i1+ux2WyYTCYURYm5gXW5hYUFhoaG2Lp1K0eOHPlj2xMnTqCqKn19fWtKUABOnTqFTqfjwYMH9Pf3Ryqn1tfXY7PZVlxuPl7vIzc3F7PZzOvXrzl37tx/ZgE0Gg1Xr16lo6MDt9vNkydPyMvLw263s2vXrphLGoWFhdy/f5+uri6Gh4dRVZUtW7aQlZXF4cOHo45jxyseYXl5eTidTrq7u3nz5g3Pnz9Ho9GQmZmJ0WiMqg69mvbl5eV8//6d8fFx3r9/TzAYRK/XU1FREfPYc3iW6fTp06t6BrEkZXFxcTHRnRBCiHjr7e3l+vXrnD9/fkOMYKempqisrOTo0aO0tbWt62/7fD6amppoaWlJWKL5q0TGIx5+/PhBZWUlubm5a66e/a+TPShCiA3t8+fP/DrOmpubo7Ozk02bNnHo0KEE9Sy2QCAQdaz327dv3L59G1i6lmC9HThwgOLiYjo7O39bjO7/kozxiIf+/n5mZ2c5e/ZsoruyYckSjxBiQ3v48CFv377FaDSSkZGB3+9HURS+fv3KmTNnoqbdE210dJRr165hNpvJzs5mfn4+crGnyWTCYrEkpF8NDQ0MDAwwNze3rjFL1nj8rZSUFC5cuBCzyJ1YGVniEUJsaB6Ph+7ubj58+EAgEECr1bJ3716sVmvMG4gTbXJyEqfTiaqqkdNW+fn5kduX/7WCXhIP8TuSoAghhBAi6cgeFCGEEEIkHUlQhBBCCJF0JEERQgghRNKRBEUIIYQQSUcSFCGEEEIkHUlQhBBCCJF0JEERQgghRNKRBEUIIYQQSUcSFCGEEEIknZ+/opBeTbqdQgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 120.0 deg to 135.0 deg\n", - "Modulation: 0.306 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.021\n", - "Best fit polarization angle: 100.21 +/- 0.429\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTIElEQVR4nOzdd1hT59vA8W/YMgQBFRX33nuLorit2qrVal11tNVqtUtbf3Zr7a7WtrZat22dddW9Z3HiqHviBAVkb3LeP/JyJBIQEDgJ3J/r8jI55zk590lCcueZOkVRFIQQQgghzIiV1gEIIYQQQjxJEhQhhBBCmB1JUIQQQghhdiRBEUIIIYTZkQRFCCGEEGZHEhQhhBBCmB1JUIQQQghhdiRBEUIIIYTZkQRFCCGEEGZHEhQhzMTNmzfR6XQMHz5c61AE4Ovri06ny/PzfPLJJ+h0Ovbu3Zvn58qKChUqUKFCBa3DEEISFPF0Fy9eZPz48dSpUwdXV1fs7OwoXbo0PXr0YP78+SQkJGgdYp4ZPnw4Op2Omzdvah2KSfPnz+e1116jefPmODo6otPpmDp16lOP++eff/D19cXV1RVnZ2eaN2/O4sWLMz1m8eLFNGvWDGdnZ1xdXfH19eWff/4xWfbKlSv06NEDd3d3ypYty7hx44iKijJZdvDgwVSsWJHo6OinX3AaqQld2n82NjaULFmSHj16sGXLlmw9nnh2f/zxh/pabN++PdOy4eHhfPTRRzRo0ABnZ2fs7e0pU6YMLVq04J133iEgICDT40ePHo1Op8PR0ZHw8PAMy6UmgKn/rKysKFq0KOXLl6d79+589dVX3L17NyeXK/KYjdYBCPP22Wef8emnn6LX62nZsiXDhg3D2dmZ4OBg9u7dy6hRo5gzZw7Hjx/XOtRC6Z133iEiIoJixYpRunRprl279tRjfvrpJ8aPH4+HhweDBw/Gzs6O1atXM3z4cM6ePcu3336b7ph3332X7777Dm9vb0aPHk1iYiLLly+nZ8+ezJ49m3HjxqllY2Ji8PPzIyYmhqFDh3Lnzh1+/vlngoODWbVqldHjbtq0iT/++IMdO3bg7Oyco+fA1dWViRMnAhAfH8/p06fZvHkzmzdvZtasWbz55ps5etz8Mm7cOF566SXKlSundSjPbO7cueh0OhRFYe7cuXTu3NlkuXv37tG6dWtu3rxJpUqVePnll/H09OTRo0ecOHGCmTNnUqRIERo2bGjy+KioKJYvX45OpyMuLo5ly5YZvQdNadeuHb6+voDhPXr//n0OHTrEli1b+Pjjj/nkk094//33n+n6RS5ThMjA9OnTFUApW7as4u/vb7LMxo0bFV9f33yOLP8MGzZMAZQbN27k+blu3LihAMqwYcOyfMyWLVuUmzdvKoqiKAsXLlQA5X//+1+m57C3t1fc3d2NriksLEypXLmyAiiHDx82OubQoUMKoFSuXFkJCwszeix3d3fF3t7e6LGWL1+uAMq+ffvUbcOHD1cAJTg4WN0WHh6ulClTRhk5cmSWr/fJawGU8uXLp9u3YMECBVCcnJyUmJiYHD1+u3btlML4EVm+fHmTz+nTXLx4UQGUjh07Ko0bN1ZsbW2VoKAgk2VHjhypAMqIESMUvV6fbv+9e/eUEydOZHiuX3/9VQGUt99+W7Gzs1Pq1auXYdmPP/5YAZSPP/443T69Xq+sXr1acXd3VwBlxowZT79QkW+kiUeYdPPmTT755BNsbW3ZvHkzzZs3N1nuueeeY+vWrem2r1y5krZt2+Lq6kqRIkWoW7cuM2bMMNkclNrmHRkZydtvv02FChWwtbXlk08+ydJ+MDRDDR8+nLJly2JnZ0fJkiUZNGgQly5dMhl3bGwsX331FU2aNMHFxQVnZ2dq1qzJm2++SXBwMAA6nU5t9qhYsaJaRfxk+3xYWBgffPABNWvWpEiRIri6uuLn55dhFXdUVBRvv/023t7eODg4UKNGDb7//nv0er3J8pnp2rUr5cuXz3L5BQsWkJCQwLhx44yuo1ixYkyZMgWAX3/91eiY1Pv/+9//KFasmLq9QoUKvPHGGyQkJLBw4UJ1e2BgIADNmjVTt6XeTt0HhtofgO+++y7L8WfV8OHDcXJyIiYmhnPnzqnbd+3aRdeuXXF3d8fe3p5q1arx/vvvExERkaXHTUxM5KeffqJ79+6UL18ee3t73N3d6dixY4ZNSk97/5rqg5La/yWjf6k1AamSk5P55ZdfaNGiBUWLFsXR0ZGGDRvy008/mXxfKYrCTz/9RO3atXFwcKBMmTKMGzcuy8+DKfPmzQPglVdeYfjw4SQlJbFo0SKTZQ8fPgzA+PHjTfbzKVWqFI0aNcr0XFZWVkycOJGePXty5swZjhw5ku2YdTodffv2ZfXq1YChxvj+/fvZfhyRN6SJR5i0cOFCkpKSeOmll6hTp06mZe3t7Y3uT5kyhRkzZuDp6cmgQYNwdnZmy5YtTJkyhW3btrF9+3bs7OyMjklMTKRDhw6EhYXRuXNnihYtSsWKFbO0f+vWrfTp04ekpCR69uxJlSpVuHPnDn///TebNm1iz549Rh92jx49on379pw+fZrq1aszYsQI7OzsuHbtGgsXLqRPnz6ULFmSjz/+mHXr1nH69GkmTJiAm5sbgPo/GL5wfX19uXnzJj4+PnTt2pWYmBj++ecfunbtym+//cbo0aPV8gkJCfj5+XHs2DHq16/Pyy+/THh4OJ9//jn79u3L1muUE7t37wYMic2TunXrZlQmq8d8/vnn7N69m08//RRAbao4ceIErVu3BlCbAFOTqZ07dzJ//nw2btyIq6vrM1+XKYqiAKhfgL/99htjxozBycmJF198kRIlSrB3716++uorNm7cyKFDh4xeW1PCwsKYMGECrVq1olOnThQvXpz79++zceNGunfvzrx58xg1alS64572/n7S8OHD0yUhAAcOHGD37t04Ojqq21Lf99u2baN69eoMGjQIBwcH9uzZw/jx4zly5AhLly41epyJEyfy448/UqpUKV599VVsbW1Zv349R44cITExMd3f59MkJiayePFiXF1deeGFF4iLi+Odd97h999/Z9KkSemSEA8PDwAuX75MgwYNsnWugIAATpw4QadOnShbtizDhw9nzZo1zJ07N8MfUk/Tvn172rRpw8GDB/n777954403cvQ4IpdpXYUjzFOHDh0UQJk3b162jjt8+LDaLHT//n11e1JSkvLcc88pgDJ9+nSjY8qXL68Aip+fnxIdHZ3uMTPbHxYWpri5uSkeHh7KuXPnjPadPXtWcXJyUho2bGi0feDAgQqgvP7660pKSorRvqioKCU8PFy9/7Qmnnbt2ik6nU7566+/jLY/evRIqV+/vuLg4GBUzZ3abNanTx+jc1+/fl0pVqxYtpt40spKE4+np6cCKCEhISb3Ozk5KYDaLBIdHa0AirOzs8nyDx8+VAClRIkS6raoqCjF29tb8fT0VCZOnKj069dPvebU/RUqVFBefvnlHF1nqsyaeObPn6828cTGxio3b95U7OzsFBcXF+XChQtGZceMGaMAyujRo422m2riiY+PV27fvp3ufOHh4Urt2rWVYsWKKbGxsUb7nvb+Tm2C2LNnT6bXe/r0acXFxUXx9PRUrl69mu74cePGKcnJyer25ORkZcSIEQqgrFu3Tt2etskuNDRU3R4XF6e0aNEiw+c0M3/99ZcCKK+++qq6rW/fvgqg7Ny5M1352bNnK4Di4uKivPfee8qOHTsyfE8+6bXXXlMA5c8//1QUxfDZ4uXlpTg5OSkRERHpymfWxJPW1KlTFUAZOnRoluIQeU8SFGFSzZo1FUDZsmVLto4bNWqUAii//fZbun2XLl1SrKyslIoVKxptT/0AP3XqlMnHzGz/zJkzFUD56aefTB47ceJEBVCTl+DgYMXKykopVaqUyS+LJ2WWoJw6dUoBlH79+pk8dt26dQqg/Pzzz+q2KlWqKFZWVkZfMKlSP0jzMkGxtbVVACUpKcnk/tKlSyuAcu/ePUVRFOXu3bsKoJQpU8Zk+cTERAVQ7OzsjLZfvHhR6dq1q+Lm5qaULl1aef3119UvjzfeeEMpWbKkEhISogQGBirPPfec4uDgoDg7OytDhgwx+SVjSmqC4urqqnz88cfKxx9/rEyePFnp1q2bAiiAMmvWLEVRFGXatGkKoHzwwQfpHicsLExxcXFRHBwclPj4eHV7dvugfPfdd+n63ijK09/fWUlQ7t69q3h7eysODg7KoUOH1O0pKSmKu7u74uXlZfI1ffTokaLT6ZQXX3xR3Zb6N7pgwYJ05ffs2ZOjBCX1B03a/ksbN25UAKV///7pyuv1euWDDz5QHBwc1NcKUCpUqKCMGjUqw+cqOjpacXFxUVxdXZW4uDh1+zvvvKMAyi+//JLumKwmKHPmzFEApVu3blm8apHXpIlH5KqTJ08C0KFDh3T7qlWrhre3Nzdu3CAiIsKoat/BwYF69epl+LgZ7f/3338BOH36tFGflFSXL18G4MKFC9SqVYtjx46h1+tp27YtTk5O2bq2jM4dERFh8twPHz5Uzw2GvidXr16lbNmyVK5cOV15X19ftZnE0lWvXt1kn4wDBw7wyy+/sHLlStzd3enUqRMPHjzgzz//JDo6mvHjxxMXF5dutE9mIiIi1OfN2toad3d3unXrxrhx4+jevTuQ+fuyWLFiNGzYkP3793Px4kXq16+f6fnOnTvHN998w/79+7l//z7x8fFG+00NWX3a+zsz0dHRPPfcc9y9e5e//vqLVq1aqfsuX75MWFgYVatWZdq0aSaPL1KkiPoehMfPRbt27dKVbdOmDdbW1tmK7+rVq+zZs4fq1avTsmVLdXvXrl3x8vJi3bp1hISE4Onpqe7T6XR88cUXTJo0iW3btuHv78/Jkyc5cuQIv//+OwsXLmTOnDlGzaMAy5cvJyoqitdeew0HBwd1+/Dhw/nuu++YN28eY8aMyVb8qZQnmgSF9iRBESaVKlWKCxcuZHt+gNROdqVKlcrwcW/dukV4eLhRglKiRIlMPxgy2h8aGgo87qCXkdQ5NlLnSyhTpkym5bMi9dw7duxgx44dTz136nNTsmRJk+W8vLyeOaancXV1JSQkhIiICLUfQFqpMaa+Nqn/Z9R5MnX70/puAMTFxTFy5Ej69OlDv3792LFjBwEBASxdupQXXngBMHTO/uijj7h27ZrJJM6U8uXLP3Wemqy8L4FM59MA8Pf3p0OHDiQnJ+Pn50evXr0oWrQoVlZWnDp1ivXr15vsCP6093dGUlJSGDBgAAEBAcyYMYMBAwYY7U99D165ciXT5DbtHDOZvQ9tbGyMEomsmDdvHoqipJtg0MbGhpdffpnvvvuORYsW8e6776Y71s3NjQEDBqjXFRMTw5dffsm0adMYP348vXr1Mopz7ty5AOnOVadOHRo3bsyJEyc4fvw4TZo0ydY1gGHoM0Dx4sWzfazIGzKKR5jUpk0bwDDqITtSv9CCgoJM7k/tIf9kx8infXhntD/1cU6fPo1iaLI0+W/YsGHA4y/S3JiYKfXcs2bNyvTcqSNcUsunjhJ6UkbPWW6qXr068LhmKa379+8TExODt7e32gnTycmJMmXKEB0dbXJ0w5UrVwBD7djTfPjhh4SGhvLzzz8Dj2uW0nZgbty4MQDnz5/PzmU9VU7fl0+aNm0acXFxbN++nS1btjBz5kw+++wzPvnkk0w7aOb0V/n48ePZvHkzo0ePNjlHR2q8L7zwQqbvwRs3bqQ7xtT7MDk5mZCQkCzHl3akzgcffJButFHqCK2n/YBI5eTkxOeff06bNm1ISEjg0KFD6r4zZ85w9OhRAFq2bJnuXCdOnAAeJzHZtWfPHoAcd7QVuU8SFGHSK6+8gq2tLWvWrHnql0XaX4ypEyuZmrb76tWr3Llzh4oVK2bpF3dWtGjRAjA0HWRFs2bNsLKyYv/+/cTExDy1fGp1d0pKyjOf28XFhSpVqnD37l2TE6rlx1TnqU0cpoaGpzbJPNkMkpNjnnT06FFmzpzJrFmz0v1yT/v+ebK5JLdk9r4MDw/n1KlTODg4ULNmzUwf5+rVq7i7u5scYZPbo7C+++475syZQ+fOnfnll19MlqlRowZubm74+/uTlJSUpcdNTQhNxXvw4EGT7/WMrF+/ngcPHlC9enVGjhxp8l+lSpW4fPlytp4fFxcX4HGzCzxOPHx9fTM8V5EiRfjrr7+yPSvx7t27OXToEEWKFFFr84QZyL/uLsLSpI44qVChgnLs2DGTZbZs2aK0b99evZ86QqBChQrKgwcP1O3JyclK7969FUCZNm2a0WM8bWKozPaHhIQobm5uSvHixZUjR46k25+SkpKu8+GgQYOyPIrnvffeUwBl9+7dJs/v4+OjWFlZKfPnzze5/8yZM0aTk6U+p3379tVkFM/169fzfKK2JyUkJCi1atVSevToYbR9x44dCqB8+umn6rbUCd1MdSJ+UmajeEyVtbW1VVxdXZUrV64Y7Rs3bpwCKKNGjTLabqqTbJcuXRRAOX36tNH233//Xe3ouXDhQqN9T3t/m+oku2bNGsXKykqpW7fuUzsNf/jhh+r7+ckRRIpimPQs7Qi3gwcP5toonk6dOimAsmLFigzLpD43gwYNUrd9/fXXyn///Wey/IEDBxQHBwfFxsZGuXv3rqIoihIbG6u4ubkp1tbW6jZTBg8erADK3Llz1W1Pm6htzZo16kRtX3/99dMuWeQjSVBEpj799FPFyspKAZRWrVopb775pjJlyhRl5MiRStWqVRVAadKkidExkyZNUoeejh07VnnvvfeUOnXqKIDSpk0bJSEhwaj8syQoiqIoO3fuVFxcXBSdTqd07NhRmTBhgjJx4kSlb9++SunSpRV7e3uj8mFhYUq9evUUQKlRo4YyYcIE5b333lP69eunuLi4GH1RbN26Vf0wnzRpkvL5558rs2fPVvffvn1bfR7q16+vvPrqq8qkSZOUQYMGqdf877//quXj4+OVpk2bquUnTZqkvPrqq4qbm5vSq1evbCco8+bNU4YNG6YMGzZMad26tQIo9erVU7eZmhnzxx9/VADFw8NDGTt2rDJx4kTF29tbAZR33nnH5HnefvttBVC8vb2ViRMnKmPHjlU8PDwUwOj5MOV///uf4urqqty5c8dou16vVxo3bqxYW1srI0aMUPr3768ARiNOMpOdBEVRFOXnn39Wh7aOHDlSef/995WWLVuq74O0X9aKYjpB2bJli9FjvP3220rbtm0VKysrdTh1biQoRYoUUfj/mVZTRyil/Zf2HImJiep7p0yZMsqQIUOU999/XxkxYoSaQD/5Phg/frwCKKVKlVLGjx+vvP3220rlypWVJk2aKKVKlcrSc3r9+nVFp9Mpnp6e6f6m04qKilKcnZ0Ve3t79TmuX7+++rwPHz5c+eCDD5Q333xT8fPzU3Q6nQIo3333nfoYqcl3z549M41p79696T6TUp/fdu3aqc/fpEmTlMGDBysVK1ZUAMXe3l756quvnnrNIn9JgiKe6vz588q4ceOU2rVrKy4uLoqtra3i5eWldO3aVfn999+Nhmam+uuvv5TWrVurH0y1atVSpk2bZjQ0MNWzJiiKYviyeuONN5QqVaoo9vb2iouLi1K9enVl8ODBytq1a9OVj46OVqZNm6bUrVtXKVKkiOLs7KzUrFlTmTBhglGNh6IYho/WqFFDsbOzM/mFGBkZqUyfPl1p1KiR4uTkpDg4OCgVKlRQunfvrvz222/phjNHREQob731lpo8Va9eXfn222+Va9euZTtBSR0GndG/du3amTxuw4YNStu2bRVnZ2fF0dFRadKkibJo0aJMz7Vw4UKlSZMmiqOjo+Ls7Ky0bdtW2bhxY6bHBAQEKDY2NhnOp3P79m2ld+/eipOTk+Lq6qoMGzYs28OMszMkdtu2bUqnTp0UNzc3xc7OTqlcubLy3nvvKY8ePUpXNqNhxhs3blSaN2+uODs7K66urkqnTp2Uffv2qV+iuZGgZPaamnpd9Xq9smTJEqVDhw5KsWLFFFtbW6V06dJK69atlenTpyu3bt1KV3727Nnq+7pUqVLK2LFjlfDw8CxPdT9lyhQFUN56662nlh09erQCKN9//72iKIpy8uRJ5fPPP1fat2+vVKhQQXFwcFDs7e2VSpUqKYMGDVIOHDhgdHyrVq0UQFm/fv1Tz1WtWjUFUAICAhRFefz8pv7T6XSKs7OzUq5cOaVbt27Kl19+mS55FuZBpyhpGvmEEEIIIcyAdJIVQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZsciE5T4+HguXbqUZ9NiCyGEEEJbFpmgBAYGMnr0aAIDA7UORQghhBB5wCITFCGEEEIUbDbZPSA2Npbly5dz/vx5Lly4QFRUFB988AHdunXL8mMcP36cpUuXcvnyZfR6PWXLlmXgwIH4+fllNxwhhBBCFEDZTlAiIiJYtGgRJUuWpEqVKgQEBGTr+M2bN/PVV1/RpEkTRo8ejbW1Nbdu3eLBgwfZDUUIIYQQBVS2ExQPDw/Wrl2Lh4cHFy9e5NVXX83ysffv3+eHH36gT58+TJgwIbunFkIIIUQhke0+KHZ2dnh4eOToZOvXr0ev1zNy5EjA0FwkaxUKIYQQ4knZrkF5FidOnKBcuXL4+/szZ84cHj58iIuLCy+88AIjRozAysp0vhQSEkJoaKh6X0bvCCGEEAVbviYod+7cwcrKii+//JKBAwdSuXJl9u/fz5IlS0hJSeG1114zedyGDRtYtGhRfoYqhBBCCA3la4ISFxeHXq/ntdde4+WXXwbA19eXqKgoVq9ezZAhQ3B0dEx3XK9evWjdurV6PzAwkGnTpuVb3EIIIYTIX/maoNjb2xMXF0fHjh2Ntvv5+XHkyBEuX75MgwYN0h3n6emJp6dnPkUphBBCCK3l60RtqZ1rixUrZrQ99X5UVFR+hiOEEEIIM5WvCUr16tUBQ6fXtFLvu7m55Wc4QgghhDBTeZaghISEEBgYSHJysrqtQ4cOAGzatEndptfr2bJlC0WLFlUTGCGEEEIUbjnqg7JmzRqio6PVob+HDh1SZ4Lt27cvzs7OzJ07l61bt7JixQpKlSoFQJs2bWjcuDHLli0jPDycKlWqcODAAc6cOcO7776LnZ1dLl2WEEIIISxZjhKUFStWEBQUpN7fv38/+/fvB6Bz5844OzubPE6n0zF9+nR+//13du/ezdatWylbtixTp06lc+fOOQlFCCGEEAWQTrHAqVwvXbrE6NGjmTdvnjQLCSGEEAVQvnaSFUIIIYTICklQhBAij8U+iufE6ivEPorXOhQhLIYkKEIIkcdiwxMI+PsqseEJWocihMWQBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBMXCyIyUQgghCgNJUCyMzEgphBCiMJAERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUYZJMqS+EEEJLkqAIk2RKfSGEEFqSBEUIIYQQZkcSFCFEoSVNmUKYL0lQhBCFljRlCmG+JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSlFwQ+yieE6uvEPsoXutQhBBCiAJBEpRcEBueQMDfV4kNT9A6FCGEEKJAkARFCCGEEGYn2wlKbGwsCxYs4N1336VHjx60bduWLVu25OjkX3/9NW3btmXy5Mk5Ol4IIYQQBVO2E5SIiAgWLVpEYGAgVapUyfGJL168yJYtW7Czs8vxYwghhBCiYMp2guLh4cHatWtZtWoVY8aMydFJFUVh1qxZdOnSBXd39xw9hhBCCCEKrmwnKHZ2dnh4eDzTSbdt28aNGzcYPXr0Mz2OEEIIIQqmfO8kGxsby6+//srgwYOfOdERQgghRMFkk98nXLRoEfb29vTv3z/Lx4SEhBAaGqreDwwMzIvQhBDC4sU+iufCrtvU9CuLYzEHrcMRIsfyNUG5ffs2q1ev5qOPPspW59gNGzawaNGivAtMCCEKiNR5mco3LiEJirBo+Zqg/Pjjj9SpUwdfX99sHderVy9at26t3g8MDGTatGm5HJ0QQgghzEW+JSgnTpzgyJEjTJs2jfv376vbU1JSSEhI4P79+xQtWhQnJ6d0x3p6euLp6ZlfoQohhBBCY/mWoDx48ACAqVOnptv38OFDBgwYwLhx47LVN0UIIYQQBVOeJSghISHExMRQpkwZbGxsaNSoEdOnT09X7ptvvsHLy4shQ4ZQqVKlvApHCCGEEBYkRwnKmjVriI6OVkfWHDp0SK0h6du3L87OzsydO5etW7eyYsUKSpUqRcmSJSlZsmS6x5o9ezbFihXDx8fnGS5DCCGEEAVJjhKUFStWEBQUpN7fv38/+/fvB6Bz5844OzvnTnRCCCGEKJRylKCsXLnyqWWmTJnClClTcuWxhBBCCFG45PtMskIIIYQQTyMJihBCCCHMjiQoQgghhDA7kqAIIYQQwuxIgiKEEEIIsyMJihBCCCHMjiQoQgghhDA7kqAIIYQQwuxIgiKEEEIIsyMJihBCCCHMjiQoQgghhDA7kqAIIYQQwuxIgiKEEEIIsyMJihBCCCHMjiQoQgiRh/R6hYfXIwB4eD0CvV7ROCIhLION1gEIIURBdeNoEP5LLhATFg/AofnnOLX2Gi2G1qRiMy+NoxPCvEkNihBC5IEbR4PYNTNATU5SxYTFs2tmADeOBmkUmRCWQRIUIYTIZXq9gv+SC5mW8V96QZp7hMiEJChCCJHLgi6Gpas5eVJMaDxBF8PyKSIhLI8kKEIIkcviwhNytZwQhZEkKBZERgMIYRmKuNnnajkhCiMZxWMhnhwNcHD+f2zasIektg8JcwnmbtRdUpQUitgUobxreWqXqI1vBV9KOJXQOHIhsif2UTwXdt2mpl9ZHIs5aB1OpiITItl3cx9nH5zlWtg1YpNjURSFkk4lCS+jp1xIVcomVMIK63THOnk44FXDXYOohbAMkqBYgNTRAACPbEI44LqVw647CbV9AP9lfmwL7xaMbjSal+q8hKOtYz5EK8SziQ1PIODvq5RvXMIsE5QUfQobL2/k1+O/svvGbpL0SaYLOhv+OScXpXlke9pGdKN0Yjl1d4shNbGy0uVP0EJYIElQzFzqaIAo6wj+8fiLfW6bSdElZ/l4/zv++N/x53+7/8eHbT9kdKPR2Frb5mHEQhRMiqKw9uJa3t/5PlfCrmT5uGibSHa5r2d3sQ00ifLhpeRRvPByJ5kHRYinkATFzN2/EMqO5E2sqPgbsdbR6nadYkWN2HrUjmlMuYTKvDDaj7LVSxKVGMX1R9c5fPsw/1z+h3MPzwEQFB3EG5vfYO6JuSzovYBGpRppdUnpWFKVviicbkXcYsT6Eey6sctoeznXcvSs1hOfcj5U96yOq70rekXP3ai7nAk+w+4bu9l8ZTMJKQkoOoVjRfdzxvoIcfEfMillkvxYECITkqCYsaiEKEbuH8a2UpvVbXZ6e/we9cI3/Dnck4ur20uleFPerTQAdUrUoVf1Xszwm8Gxe8f4+tDXrLmwBoDTwadpNq8ZX3b8kndavoNOp30Vs7lX6YvCbeW5lYzeOJrIhEh1W9vybXm/9ft0qdIFK136sQaV3SvTtnxbxjUbx6O4R8ze9TPfHvmWKJsIElISmLpnKv9c+YeV/VZS1rVsfl6OEBZDRvGYqWth12g5vyXbHjxOTppHtmf69fn0CXnFKDkB06MBdDodzco0Y3X/1fiP9KdeyXoApCgpvLfjPQasHkBsUmzeXogQFkqv6Ploz0cMWD1ATU68i3qzbsA69g7bS7eq3UwmJ08qVqQYY2uP54vrCxhX+031GP87/jSa24gDgQfy9DqEsFSSoJih4/eO0+z3ZmrzjKPemTF3pzLq/nu4paTv9Z+V0QDNvZtzbPQxprSZom5bdX4VXZd1JSI+IncvQAgLl5SSxKA1g/h8/+fqtkF1B3F2zFl61+ido5pHB6UIHzf+DP+R/lRwqwBASGwInZd1ZuOljbkVuhAFhiQoZsb/jj9+S/wIizPMMFnDswYbfbfRKLpVhsdkdTSAnbUd0/2ms/6l9bjYuQBw4NYB2i9uz8OYh7lzAUJYuMSURAasHsCKcysA0KHj207fsuyFZbg5uD3z4zct05QTr56gU6VOAMQnx/PCihdYdmbZMz+2EAWJJChm5MidI3Re2lmtTm5bvi3+I/3p0L4VfhMb4uRu3D/DycMBv4kNsz0aoFf1XuwethuPIh4ABAQF0GVZF6M2diEKo6SUJPqv6s/ai2sBcLBxYP1L63mnVe7213Iv4s4/g/5hYJ2BgKHZddi6Yfx94e9cO4cQlk4SFDNxOfQyPf7sQVRiFAB+Ff3YPGgzrg6uAFRs5sWAH31pPbI2AK1H1mbALN8cD1VsUroJB145QBmXMoAhSem9vDfxyZmvHyJEQaUoCq/98xrrL60HDMnJxoEb6Vm9Z56cz87ajmV9ljG2yVjA0Odl4JqB7Ly+M0/OJ4SlkQTFDARHB9N1WVdC40IBaF+hPRsHbsTJzsmonJWVjuKVDAlL8UquzzzJU83iNdkxZIdak7L35l4G/z0YvaJ/pscVwhJN2z+NhacWAmBvbc8/A/+hY6WOeXpOK50Vs7vPZlj9YYCheen55c9zNvhsnp5XCEsgCYrGElMSeX7F89wIvwFA3RJ1WTtgLUVsi+TL+WsWr8nmlzfjZGtIhtZcWMO0fdNkzR9RqKy5voqP9n6k3l/6wlL8Kvnly7mtdFb83ut3nq/xPAAxSTH0Xt6bkNiQfDm/EOZKEhSNvb3tbfzv+AOGIYybX37crJNfmpVpxsoXV6LDUCPz8b6P+Xn5fAAOzT/Hijf3cuNoUL7GJEReS118867dTSYeHq9u/6bTN7xY+8V8jcXGyoY/+vxB41KNAbgRfoP+q/qTlJLBNPpCFAKSoGho6eml/HzsZ8BQpbxuwDq8i3prEkv3qt15p9r76v35pb7hge19AGLC4tk1M0CSFFFg3DgaxIo397Jz4THmlJlOvN7Q9+pF74G80/IdTWJytHVk3UvrKOlUEoA9N/fw8d6PNYlFCHMgCYpGLode5vVNr6v3f+nxC41LN9YsHr1eoeGhjjSJ9AEg3jqO30t9RTKP1/3xX3pBmnuExUtdfDM6LI6lJX8k2O4uAGXjK+G7uz83jwVrFpt3UW/WDliLjZVhku8vD37Jruu7nnKUEAWTJCgaSNYnM2TtEHUW15ENRzKi4QhNYwq6GEZsWALDgiZQItEwZf6NIpfZ4Pl4boaY0HiCLoZpFaIQzyx18U2Aoy57OVZ0PwCOKc6Mufc/7BR7zRPxlmVb8kWHLwBQUBi8djAPYh5oFo8QWpEERQNfHPiCo3ePAlDNoxqzus7SOCKIC08AwEFxZNT9SVgr1gBsdV/F5SJn05UTwhIFXQwjJiyeMJsQ/iw5R90+OHgcxZNKAeaRiL/T6h26VO4CGBb6fO2f11AUqb0UhYskKPns2N1jfLbvMwCsddYsfWFpuuHEWki7lk/F+Go8HzIUAEWnsNhrFom6hHTlhLA0ceEJKCgs9vpBXR28WaQvTaPapiunJSudFYufX0xxR8OaW+surmPV+VWaxiREfpMEJR8lpiQyfP1wUpQUAKa2nUqzMs00jsrAq4a70Uy1ncP6UDmuJgAP7O6xwXNZltb8EcKcFXGzZ7/rFs47BQDgluTBoOAxJstpraRzSX7u/rN6f9zmcWa1JEXso3hOrL5C7COZ3FHkDUlQ8tG3h7/l/MPzADQu1Zj/+fxP44ges7LS0WJozcf3sWZY0ARs9IbOetuLrcWxV8IzTw4nhKa8E/m7xEL17vCgt3DSuxgVMadEvF+tfvSp2QeAh7EPmbB1gsYRPRYbnkDA31eJlWZfkUckQckn18KuqSujWumsmNdzHrbWthpHZaxiMy+jNX9KJZbjudCXAVB0ej68OknmZRAW7b2d7xJrFQNAq4iO1I5tlK5MVhffzA86nY6fu/9MMYdiAPz1319svrJZ46iEyB+SoOQDRVEYu3msus7NxOYTaViqocZRmfbkmj+f9v6Q+iXrA3D2wVl+OfaLluEJkWM7r+/kz7N/AuBmW4yhSWON9ud08c285uXsxcyuM9X7E7ZOICFZai1EwScJSj5YdX4V269tB6Bs0bJ82v5TjSPKXNo1f0pX8WRuz7nqvo/3fixDHoXFiU+OZ+ymxwnJt12/YfSs53Nt8c28NqTeEHzKGeYouhp2le///V7jiITIe5Kg5LG4pDje2/Geen92t9k42zlrGFH2NSvTjFcavAJAREIEU3ZN0TgiIbLnxyM/ciXsCgCty7bmlYav5Prim3lJp9PxU/efsNIZPrKnHZjG7YjbGkclRN6SBCWP/eD/A7cibgHQpXIXetforXFEOTPDbwZF7YsCsCBgAcfuHtM4IiGy5kHMA6YfmA4Y+n/90uMX9YvektQrWY83mr4BQGxSLO9s12ZKfiHyi+X9lVqQ+1H3mXFwBmCY8+S7zt9pHFHOlXQuyae+hqYpBYU3t74pE0cJi/Dxno+JTIgEDLM21ytZT+OIcu5T30/xdPQEDE3Hh28f1jgiIfKOJCh5aOruqUQnGiaDeq3xa9QuUVvjiJ7NG03foKanYSiy/x1/1l1cp21AQjzFuQfnmHvS0IfK2c6Zz9p/pnFEz6ZYkWJM7zBdvT9pxyT5oSAKLElQ8sjZ4LMsPGWYb8HV3tXsO8Zmha21LV92/FK9/8GuD0jWJ2dyhBDaenfHu+gVPQBT2kzBy9k8O8Fmx4iGI6jhWQOAQ7cPsf7Seo0jEiJvZDtBiY2NZcGCBbz77rv06NGDtm3bsmXLliwde+LECb788ksGDRpEp06dGDBgAF999RUhISHZDtzcTd0zFQXDL5upbaeq1bKWrme1nrQp1waAS6GXWBCwQOOIhDBtf+B+tl7dCkA513JMbDFR24ByiY2VDV/6Pf6h8P7O9+WHgiiQsp2gREREsGjRIgIDA6lSpUq2jv31118JCAjAx8eHCRMm4Ofnx549exg1ahShoaHZDcVsHblzhA2XNgBQxqUM45qN0zii3KPT6fiq41fq/U/2fkJMYoyGEQmRnqIo/G/345maP/P9jCK2RTSMKHf1qt6L1mVbA4YfCvNPztc4IiFyX7YTFA8PD9auXcuqVasYMyb9GhaZeeONN/jrr78YM2YMzz33HK+++ipffvklYWFh/P3339kNxWyl/WD8sO2HONg4ZFLa8rQq24oXarwAwP3o+/x45EeNIxLC2PZr2zl46yAANTxrMLjeYI0jyl06nY5vOn2j3v98/+fqRJBCFBTZTlDs7Ozw8PDI0ckaNGiAlZVVum1FixYlMDAwR49pbvbc2MOuG7sAqFSsEiMajtA4orzxhd8X6lDN7/79jqiEKI0jEsJAURSm7pmq3v/U91Osraw1jChvtCzbkl7VewFwN+ouv5/8XeOIhMhdmneSjY2NJS4uDldXV61DeWZPVit/6vup2a23k1tqeNZgUN1BAITGhfLzsZ+fcoQQ+WPdxXUcv3ccgPol69OvVj+NI8o7n7T7RL094+AMqUURBYrmCcqqVatISkqiQ4cOGZYJCQnh0qVL6j9zrW3ZeXcH/975F4DaxWszsM5AjSPKW1N9pqq1KN8e/lZqUYTm9Iqej/Z+pN6f1mGaRU7KllUNSzXk+RrPA3Av6p7UoogCxUbLk586dYpFixbRvn17GjdunGG5DRs2sGjRovwLLAcUFH44+616/7P2nxXIauW0qntWZ1DdQSw7s0ytRXm/zftahyUKsbUX1vLfg/8AaOHdgh5Ve2gcUd77uN3H6pxEMw7O4PleL2obkBC5RLOfFoGBgUydOpVKlSoxefLkTMv26tWLefPmqf+mTp2aafn8pNcrPLweweUiZzn28ChgqD1J/VVT0EktijAXiqLwxcEv1Psft/sYnc5819fJLQ28Gqid1u9F3WPOv78C8PB6BHq9TOJW2MU+iufE6ivEPrK85j9NEpTg4GDeeecdnJyc+Oqrr3B0dMy0vKenJ9WrV1f/lS9fPp8izdyNo0GseHMvh+afY5PHcnX7qNJjC3S1clqptSggfVGEtrZf287J+ycBaFSqEV0qd9E4ovzzcbuP1du/XJpNki6JQ/PPseLNvdw4GqRhZEJrseEJBPx9ldjwBK1DybZ8/xaNiIjgnXfeISkpiW+//RZPT8ucwOzG0SB2zQwgJiyeGw6XuOB0CoDiiV4UWVmuUH0opK1Fmek/UzrqCU2krT2Z0mZKoag9SVX0VkkaRrUCINw2FP+iuwGICYtn18yAQvV5JAqOPEtQQkJCCAwMJDn58QyHcXFxTJo0iZCQEL7++mvKli2bV6fPU3q9gv+SC+r9ze4r1Ntdw/pjjTX+Sy8UmurV6p7V1ZESwTHBLD61WOOIRGFz8NZB9gfuBwwjzF6o+YLGEeWf1M+jbmGP+55sc1+NnhT1fmH6PBIFR446ya5Zs4bo6Gh19tdDhw7x4MEDAPr27YuzszNz585l69atrFixglKlSgHw+eefc+HCBbp3705gYKDRaJwiRYrg4+PzrNeTL4IuhhETZqgluGN3g1Mu/gC4JXnQMtIPgJjQeIIuhlG6Vs7mjLE0k1pNYuW5lQB8+++3jGo0qsB3EhbmI3XVcID3W79faJpY4fHnUUWqUz2mHpeczhBsd5dTzv40ijbMNlvYPo9EwZCjBGXFihUEBT2uMty/fz/79xt+vXTu3BlnZ2eTx129ehWAzZs3s3nzZqN9Xl5eFpOgxKVpy9visVK93eVRX2wVW5PlCrrGpRvjV9GPXTd2cTXsKmsvri3Q808I8xFwP4DNVwyfJ+Vcy6l9ogqLtJ8zXcNe5JLTGQC2uK+iYXQrdOjSlRPCEuQoQVm5cuVTy0yZMoUpU6Zk+zhLUMTNHoAQm2COuRwAwDm5KD7hXU2WKywmt56szqL71aGv6Fuzb6HqByC08eWhxwvnTWo1qcBOjpiRtJ8ztWMbUTa+ErcdrnOzyGUuOp6mZmyDdOWEsASFpx40F3nVcMfJ3YHdxTag6AxLubcP74m98njNHScPB7xquGsVoiY6VupIQ6+GABy/d5y9N/dqG5Ao8ALDA1l9fjUAJZxKFNilJTKT+nkEoENn1Bdlq/sqoHB+HgnLJwlKDlhZ6ag1sAwHXA1LudvobWkf/pxRmRZDamJlVbhqD3Q6HZNaT1Lvf3Xoq0xKC/HsZh+djV4x/Eh4o+kbBWrF4qyystLRYmhN9X6jqDYUT/QC4LxTALftrxfKzyNh+SRByaFdVv8Qbx0HQMtIP1xSDGsJOXk44DexIRWbeWkZnmb61epHRbeKAGy7to3TQac1jkgUVFEJUcw7OQ8Ae2t7Xm/yusYRaadiMy/8JjbEyd0Ba6zp9OjxKKbzrQ8W2s8jYdkkQcmBZH0ys47MUu9P6vAuAK1H1mbALN9C/WFgY2XDOy3fUe+nfZ6EyE0LAhYQmRAJwJB6QyjhVELjiLRVsZkXA370pfXI2rSM6EhR66IAbAj6mwcxDzSOTojskwQlB/6+8De3Im4B0L1qd1rUaQJA8UquUo0KDGswDFd7Q43Sn2f/5GHMQ40jEgVNij6FmUdmqvcntpioWSzmxMpKR/FKrjgoRRhaYzgAiSmJzDk2R9vAhMgBSVCySVEUvvv3O/X+2y3e1jAa8+Rs58yoRqMASEhJ4LcTv2kckSho1l1cx83wmwB0qdyF2iVqaxuQGRpZfTTWOsNcRL8c/4WEZBlmLCyLJCjZ9O+dfzl617AoYL2S9ehQsYPGEZmncc3GqZNl/XLsFxJTEjWOSBQkP/j/oN5+u6X8SDDF27ksfWv1BeBBzAOW/7f8KUcIYV4kQcmmtH0q3m7xtszzkYEKbhXoXb03APej76tDQYV4VsfuHuPQ7UOAYeXwTpU6aRyR+ZrYfKJ6+wf/H1AUme5eWA5JULLhXtQ9/r7wN2CYc+GlOi9pHJF5m9B8gnpbOsuK3DL76Gz19sQWE+VHQiZaeLegWZlmAJwOPs2+wH0aRyRE1kmCkg1zT8wlWW9Y/HB0o9HY28jMjJlpW74t9UvWB+Do3aP43/HXOCJh6R7GPGTFOcPinMUcihW6ae2zS6fT8VaLt9T78kNBWBJJULIoMSVR7exprbPmtcavaRyR+dPpdFKLInLV/ID5an+mEQ1H4GjrqHFE5q9vzb6UdikNwIZLG7gdcVvjiITIGklQsmjthbUERRsWSOxdozdlXctqHJFlGFh3IJ6OngCsPr+a4OhgjSMSlipFn8Kvx38FDFO6j2kyRuOILIOttS2vNnoVAL2iVye3E8LcSYKSRT8d+0m9/UbTNzSMxLI42DgwqqFhyHGyPpn5AfM1jkhYqk1XNhEYEQhA1ypdqexeWeOILMfoxo+HHM87OU9G1QmLIAlKFpwJPsPBWwcBqOlZk/YV2msckWV5rclr6pLvv534jRR9isYRCUv087Gf1dvyIyF7SruU5oWahunvg6KDWHdxnbYBCZEFkqBkwc9HjT8YZdRA9lRwq0C3qt0AuBVxiy1Xt2gckbA0l0Mvs/3adgAqulWka5WuGkdkecY2Gave/uXYLxpGIkTWSILyFOHx4Sw7uwwwzJA6pP4QjSOyTGn7C8w5LtNui+xJO1X72KZjsbay1jAay+RbwZcanjUA2Be4j3MPzmkckRCZkwTlKRadWkRsUiwAw+oPo6h9UY0jskzdqnSjnGs5ALZc2aJOUy7E08QkxrDw1ELA0KdpRMMRGkdkmXQ6nVEtivxQEOZOEpRMKIpitI7M2KZjMyktMmNtZa2OJFBQmHtirsYRCUux/L/lRCREADCwzkDci7hrHJHlGlp/qDo0e8npJUQlRGkckRAZkwQlEwdvHeRiyEXAMOlYreK1NI7Iso1sNBIbKxvAeD4LITIz9+TjZFaGFj8bVwdXBtcdDEBUYhR/nP1D44iEyJgkKJlI+8GY+utf5JyXsxd9avYBDIuXpS4bIERGTgedVhfnbOjVkCalm2gckeUb09S4P5iszyPMlSQoGQiLC2PVuVWAYUrt1FVBxbORzrIiO9JOKja60WgZQZcLGng1oHmZ5oBhCoXj945rHJEQpkmCkoFlZ5aRkJIAGNptHWwcNI6oYGhXvp06kmB/4H4ZSSAyFJscy7IzhhF0jraOsu5OLhrdaLR6W2aWFeZKEhQTFMW4E2faP2bxbHQ6Ha83fl29//vJ3zWMRpizDYHr1M6xA2oPwNXBVeOICo4BdQbgbOcMwF///UV0YrTGEQmRniQoJvjf8efcQ8Mv+1ZlW1G7RG2NIypYhtYfir21YSXoJWeWqDVVQqS15PJi9farjaUPWG5ytnNmUB1DjVR0YjTL/1uucURCpCcJignSOTZvFSvyuE9PWFwYK46vBuDh9Qj0eumwJ+CuXSDHHh4BoE6JOmqfCZF7Rjd+XDMsNZnCHEmC8oTw+HBW/LcCAFd7V16s/aLGERVMqQsIAsz//w/HQ/PPseLNvdw4GqRVWMJMHHDdqt6WzrF5o3GpxjTwagDAkbtHOBt8VtuAhHiCJChP+OPMH8QlxwEwpN4QdVIjkbvKPahO8cRSAJx3CiDEJhiAmLB4ds0MkCSlEItPiedf112AYebYwfUGaxxRwaTT6Yx+KEhnWWFuJEFJQ1EUo+adtFWgIvfo9QpHl16idURnddsh1x1GZfyXXpDmnkJIr1f489hyYq0NnTb71uwnM8fmoZfrvUwRmyIALD2zlLikOI0jEuIxSVDSOHbvGGeCzwDQvExz6pWsp3FEBVPQxTBiwuJpHdERnWJ4Cx5y3Y6eFLVMTGg8QRfDtApRaODG0SBWvLmX+afmq9sqH2gitWl5yM3BTW3GDo8PZ82FNRpHJMzB+ovr8V3ky+JTi4lJjNEsDklQ0kg7tFhGDeSduHDDqB23FA/qxTQF4JFtCOecTposl1tiH8VzYvUVYh/F5+rjimd342gQu2YGcC3qKpcdDX0hvBLK4h1cVZr88pjMiSKeND9gPvsC9zF8/XAO3DqgWRySoPw/RVG49ugaAC52LgyoPUDjiAquIm726u02aZp5Drpuy7BcbogNTyDg76vE5nLiI56NXq/gv+QCAAddt6vbfSK6oMPQOVaa/PJO67KtqelZEzBMnng59LLGEQktBUUHsfnKZgDKuJShU6VOmsUiCcr/0+l07Bm2hxOvnuC3537Dyc5J65AKLK8a7ji5G2bmrRPdFNfkYgCcdj5CpHU4AE4eDnjVkL4HhUFqk18KKfj/f+dYa8WalpF+ahlp8ss7Op2OUY0ed5aVIceF2x9n/iBFMTS3D60/FGsra81ikQTlCY1KNWJg3YFah1GgWVnpaDHU8IvNBhtaRXQEIEWXwr9FDV9QLYbUxMpKhpYWBqlNeeecThBh8wiAutHNcElxNVlO5L6h9Ydia2ULwJLTS0hKSdI4IqEFRVFYeGqhen94g+HaBYMkKEIjFZt54TexIU7uDsajedy302FCAyo289IwOpGfUpvy0o7kStv092Q5kfs8HT3pVb0XAMExwWy9uvUpR4iC6Pi94+os6q3LtqaaRzVN45EERWimYjMvBvzoS5+hnakWWxeA+za3uV/qusaRifzkVcOdFI8ETjsbZo4tmlyMOjFNjMpIk1/ee6XBK+rttL+iReGR9nVP+37QiiQoQlNWVjqKV3LFJ6KLuk1GEhQuVlY67vn8R4ouGYAWkR2wxrjdW5r88l6XKl0o5WyYPHHj5Y08jHmocUQiP8Unx/PXf38BhtXD+9fur3FEkqAIM9EoqjVFbYsCsOr8KqISojSOSOSnDY8ez7/ROuLxqAEnDwf8JjaUJr98YGNlw5B6QwBI1ifzx9k/NI5I5Kd1F9cRHh8OQL9a/XCxd9E2ICRBEWbCTrGnT8V+AMQmxbL6/GqNIxL5JeB+AKeCTgHQrHQzXhzSDYDWI2szYJZvgUhOHN3sadinCo5m3o/mlYbGzTyKIkO7CwujzrH1h2sXSBqSoAiz8VLlQertRacXaReIyFdG7d4NX6F4JcPoneKVXAtMs45jMQca96uKYzEHrUPJVA3PGrTwbgHAmeAzBAQFaByRyA93Iu+w45qhk3oFtwq0q9BO44gMJEGxMJbySywnGnk2Npow6lrYNY0jEnktITlBbUpwsHHgpTovaRyRMOosGyCdZQuDJaeXoGCoLRtefzhWOvNIDcwjCpFllvJLLCd0Op3RuPvFpxdrF4xIJy+WCth4eSNhcYYJ2PrU7IObg1uuPbbImQG1B6gLCP75358kJMv8MwXZk3OfDGswTMNojEmCIszK4HqD1ex98enF6BW9xhGJVHmxVIC5DWsU4OrgSp+afQAIiwtjw6UNGkck8tKh24e4GnYVgA4VO1DBrYK2AaUhCYowK6VdStO1SlcAbkXcYs+NPRpHJPLKvah76oRg5VzL0aFiB40jEqlkTpTCI20znrn9SJAERZidtD3IpbNswbX09FK1hmxY/WFm0+4toH3F9pR3LQ/AtmvbuBt5V+OIRF6ISYxh5fmVgGGR3NSaM3MhnwjC7PSq3otiDoYFBNecX0NkQqTGEYncZm5rfghjVjorhtU39EXQK3qWnF6icUQiL6w+v5roxGjA0PfI0dZR44iMSYIizI69jT2D6hqGHMclx7Hy3EqNIxK5zf+OP5dCLwHQrnw7KhWrpHFE4klpk0aZE6VgSltDnXYOHHMhCYowS2k/HBedWqRZHCJvLAhYoN42t3ZvYVCxWEV8K/gCcCXsCodvH9Y2IJGrrj+6zt6bewGo7lGdlt4ttQ3IBElQhFlqXKoxdUrUAQy9zK+EXtE4IpFbYhJjWHFuBQDOds70q9VP44hERkY0GKHels6yBcviU4+ncRjeYDg6nflNiigJijBLOp3OuLOs1KIUGH9f+JuoRMNaSwNqD8DJzknjiERG+tbqi4udYU2WFedWEJMYo3FEIjfoFb06z5SVzoqh9YdqHJFp2U5QYmNjWbBgAe+++y49evSgbdu2bNmyJcvHR0VF8c0339CzZ086d+7MhAkTuHTpUnbDEIXAy/VexlpnWNV2yZklpOhTNI5I5AaZ+8RyONo6MqD2AACiE6NZc2HNU44QlmDPjT0ERgQC0KVyF0q7lNY4ItOynaBERESwaNEiAgMDqVKlSraO1ev1TJ48mZ07d9KnTx9ef/11Hj16xIQJE7h9+3Z2QxEFnJezF92rdgcMa0XsvrFb44jEs7rx6AZ7bhrmtqnmUY1WZVtpGk9BXjoit6TtPCk1mQWDpfxIyHaC4uHhwdq1a1m1ahVjxozJ1rF79+7lv//+44MPPuCVV16hT58+/Pjjj1hZWbFwobRvmhNz+eB+ciSBsGxply8YXl/7du+CvHREbmnp3ZJqHtUA2HNzDzce3dA4IvEsIuIj1JqwYg7F6Fm9p8YRZSzbCYqdnR0eHh45Otm+fftwd3enbdu26jY3Nzfat2/PwYMHSUxMzNHjitxnLh/cz1V7Do8ihvfb2otrCY8P1zQekXOW0u4tjD3ZH0zWyLJsK8+tJD7ZsJ7WoLqDcLAx3+Q8XzvJXr58mapVq2JlZXzamjVrEh8fL808Ih07aztervsyAPHJ8az4b4XGEYmc2h+4n5vhNwHoXLkzZYqW0TYgkWVD6w9VZ/pddGqRrJFlwSyleQfyOUEJCwszWfuSui00NNTkcSEhIVy6dEn9FxgYmKdxCvNiNCeKTH1vsYxmjk3zi1yYvzJFy9C5cmcAAiMC1fkzhGW5GHKRf+/8C0DdEnVpVKqRxhFlziY/T5aQkICdnV267anbEhJMr5K6YcMGFi1alJehCTPWwKsB9UrW40zwGfzv+HMx5CI1PGtoHZbIhqiEKFafXw2Am4MbvWv01jgikV2vNHhFXdxxQcBC/udqGCTx8HoE7uWLYmVlfvNoCGNpOzm/0uAVzfuAPU2+1qDY29ub7GeSus3e3nSHzF69ejFv3jz139SpU/M0TmFedDqdUVWkjCSwPKvPryY2KRaAgXUGmnW7tzAt7RpZq86sYsfCowAcmn+OFW/u5cbRIC3DE0+RrE9W11SysbJhcL3BGkf0dPmaoLi7u5tsxkndllHnW09PT6pXr67+K1++fJ7GKczPoLqDsLEyVPgtPbNU5kSxMLIwoOVzsHHguRLPA5CoS+C4ywF1X0xYPLtmBkiSYsb23NvN/ej7gGHwQXGn4hpH9HT5mqBUrVqVK1euoNcbd7C6cOECDg4OlC1bNj/DERakhFMJelTtAcC9qHtsv7Zd44hEVl0Nu8qBW4Yvs5qeNWlauqnGEYmc0OsVqp9upt4/7LojXRn/pRfQ62VRQXOh1ys8vB4BGPffs5Q+YHmWoISEhBAYGEhycrK6rV27doSFhbF//351W3h4OHv27KFVq1Ym+6cIkSptM4/MiWI5UquVwXzX/BBPF3QxjBIPylEmwVCDfa3IBYJs7xiViQmNJ+himBbhiSfcOBrEijf3cmj+OaKtItn90PCjzsPOU50A09zlqJPsmjVriI6OVptmDh06xIMHDwDo27cvzs7OzJ07l61bt7JixQpKlSoFgK+vL6tXr2bGjBncvHkTV1dX1q1bh16vZ8SIERmeTwiA7lW7U8KpBA9iHrD+0nrC4sJwL+KudVgiE0/OfTKk3hCNIxI5FReegA4drSI6sarE74ChFqVPyCvpyglt3TgaxK6ZAer9o0X3kWxlqCxoFOTDnROhVGzmpVV4WZajGpQVK1Ywf/581q1bB8D+/fuZP38+8+fPJyoqKsPjrK2t+frrr+nQoQNr1qxhzpw5uLq6MnPmTMqVK5ejCxCFh621LYPrGjp2JaYk8ufZPzWOSDzNnht7uBVxC4CuVbpSyqWUxhGJnCry/7NKt4jsgLViWCPr36K70ZNispzQhl6v4L/kgtG2Q2ma41pHdLKYprgc1aCsXLnyqWWmTJnClClT0m13cXFh8uTJTJ48OSenFoXcKw1f4Xv/7wFDM8+4ZuM0jkhkxhLbvYVpXjXccXJ3gDA36kY35ZSLP+G2oZxzOkndGEO/IicPB7xqSK2mloIuhhETFq/ev2N/g1sOVwEoH1eVMokV1Ka40rVyNit8fsnXTrJCPKs6JerQpHQTAE7eP8mZ4DMaRyQyEhEfwZrzj9f86FW9l8YRiWdhZaWjxdCaALSO7KRuP1T08a/zFkNqynwoGnuyiS3t69M6smOG5cyRJCjC4hh1lg2QzrLmatX5VcQlxwGGYeL2NlL1b+kqNvPCb2JDmtv54JLsCsBpZ38Uz0T8Jja0iH4NBV3aJrZkkvAvalgF3kZvQ7NIX5PlzJUkKMLiDKwzEHtrwx/XsrPLSEyRRSbNUdoJ9WTuk4KjYjMvXv6xI33K9QMg2SqZhJdvS3JiJtSmOOCs8zGibSIBaBDdEie9C2A5TXGSoAiLU6xIMV6o+QIAIbEh/HP5H40jEk+6EnqFQ7cPAYZmucalGmsckchNVlY6RjR+PPJS1sgyH2mb4g4V3alubx3xuFnOUpriJEERFknmRDFvRrUn9WXuk4KoVrHalI83rMdz4v4Jzgaf1TgiyxL7KJ4Tq68Q+yj+6YWzqWIzL+qN8eass2E5ArckD2rFNsTJw8GimuIkQREWya+iH95FvQHYcmULQdEyxba5SNGnsOSMYXI2a501L9d7WeOIRF5J+6tcfihkT2x4AgF/XyU2jzqrHrDejl5nmLW9ZWQHfEbWY8AsX4tJTkASFGGhrK2sGVZ/GAApSgpLTy/VOCKRaveN3dyJNMww2r1qd7ycLecDsSBwdLOnYZ8qOOZDJ8hmkb7YWRlmAF92ZhlJKUl5cp68rG0oiBRFMWp2axXRieKVXC2iWSctSVCExUrb8XLhqYUoivlPPFQYyMKA2nIs5kDjflVxLJb3K0Y76V3oVtawRtbD2IdsurIpT86T17UNBc2J+yf478F/ADQt3hyvJG+NI8oZSVCExariXgWfcj4AXAi5wJG7RzSOSITHh7P24loAPIp48Fy15zSOSOS1l6oMUm9LM495SDv9wsAqltvEKgmKsGgjGj4eSSBzomhv5bmVxCcbquFfrvsydtayAGhB175UB0q7lAZg0+VNBEcHaxxR4RafHM+f/xmWASliU4Tnyz+vbUDPQBIUYdH61eqHk60TAMvPLSc2KVbjiAo3ad4pfKytrBlabyhg6A/2x9k/NI6ocFt/cT3h8eEA9K3VFxe7otoG9AwkQREWzdnOmf61+wMQmRDJ2gtrNY6o8Lrw8AL+d/wBqFeyHg28GmgbkMg3rzQ0HvYv/cG0k7ZzbNrpGCyRJCi5ID97zYv0ZE4U8zA/YL56+5UGr8jcJ4VINY9qtCrbCoD/HvzHifsnNI6ocLobeZft17YDUMGtAr4VfLUN6BlJgpIL8rPXvEivTbk2VHE3TBi168Yubobf1DagQigxJZHFpxcDYGdtx5B6QzSOSOQ3WSNLe0tOL0GvGOY+GVZ/GFY6y/6Kt+zohQB0Oh3D6w9X7y8+tVi7YAqpjZc2EhIbAsALNV7Aw9G8l3EXua9/7f4UsSkCwJ///al2lhb5Q1EUoxrk1HmiLJkkKKJAGNZgGDoMTQqLTi9Sf0WI/PF7wO/q7ZENR2oYidBKUfui9K3VFzAMN19/cb3GERUu+wP3cyXsCgAdKnagYrGKGkf07CRBEQWCd1FvOlfuDMDN8Jvsu7lP44gKj9sRt9l2dRsA5V3L41fJT+OIhFakP5h25p2cp94e3Wi0hpHkHklQRIEhH47aWHhqIQqGURsjG460+HZvkXO+FXyp4FYBgB3Xd3A38q62ARUSj+Iesfr8agDci7jzfI3ntQ0ol8gniSgwetfojZuDGwCrz69W5wIQeUev6FkQsAAAHTqZ+6SQs9JZqX0f9Ipe7Tgt8tYfZ/8gIcWwDMCQekNwsCkYAzYkQREFhoONA4PrDgYgLjmOP8/+qXFEBd+u67sIjAgEoGuVrpR1LatxREJraTtnzg+YL/3B8piiKEbNO6MajdIwmtwlCYooUF5t/Kp6+7cTv8mEUXlMOseKJ1UsVpFOlToBcP3RdXbf2K1xRAXb8XvHORN8BoAW3i2oU6KOxhHlHklQRIFSt2RdWni3AOBM8BmO3TumSRyFYXn4kNgQdebe4o7F6Vm9p8YRCXOR9ofC3BNzNYyk4Pv95OMfCaMaFpzaE5AERRRArzbS/sMxv5aH1zIRWnZmGUn6JACG1h8qCwMKVa/qvSjhVAKAtRfXygKCeSQ6MVpdGNDZzpkBdQZoHFHukgRFFDj9a/enqL1hgay//vuLyIRIjSPKO/mVCD1JURSjX27SvCPSsrO2U0fVJeuTpbNsHll5biXRidEADKwzEGc7Z40jyl2SoIgCx8nOiZfrvgxAbFKsdJbNA0fvHuXcw3MAtCrbiprFa2ockTA3aTtrzjs5TzrL5gGj5p0C1Dk2lSQookCSNvC89duJ39TbBa3dW+SOKu5V8KtomLTvathV9t7cq21ABcy5B+f4986/gGH18Kalm2ocUe6TBEUUSA28Gqh/sAFBAZy4J6ur5pbwhHCW/7ccMExv3r92f40jEuZKfijkHaOhxQ1HFcjVwyVBEQWWfDjmjRXX/yIuOQ6AofWG4mTnpHFEwlw9X+N5ijsWB+DvC3/zMOahxhEVDLFJsWq/Hntre16u97LGEeUNSVBEgfVSnZfUTmN//vcn0UlRGkdk+RQUFl9+vIzA601e1zAaYe7SdpZN0idJZ9lcsuK/FepM2QPqDMC9iLu2AeURSVBEgeVs56x2lo1OjGbtjb81jsjyXS5ylisRlwFoW74ttUvU1jgiYe7Sdt6ce2KuTJ6YC+Ycn6PeHtNkjIaR5C1JUESBlraZZ/EVWUDwWe1126Tefr2x1J6Ip6vqUZUOFTsAcCXsinSWfUYn7p1QJ6Bs4NWA5mWaaxxR3pEERRRojUo1onGpxgCcDj3FDYdLGkdkuYLjgglwOQwYZo7tU7OPxhEJS5F28sRfT/yqYSSWL23tydgmYwtk59hUkqCIAm9s07Hq7T1u/2gYiWX78+oyUnQpgGFiNnsbe40jEpbiyc6y96LuaRyRZQqPD1fndSpqX5RBdQdpHFHekgRFFHgv1XmJYg7FADjmso+Q+BCNI7I8KfoUlvx/51gdOqOmMyGext7GXn3PJOuTZVRdDi0+tbhQjaCTBEVoztHNnoZ9quDolje/yB1tHRnRcAQAyVbJ/HFlaZ6cpyDbfGULd2LuANCmWDvKu1bQNiBhcV5r/BrWOmvAMNFfYkqixhFZFkVRjJrHCsMIOklQhOYciznQuF9VHIs55Nk5xjQZgw5DW+2iy/NJ0afk2bkKmhtHg/h48XT1fv2z7Vjx5l5uHA3SMCphacq6luX5Gs8DEBQdxN8XZFRdduy9uZeLIReBwjOCThIUUShUdq+MX5lOANyJucM/l6UvSlbcOBrE8p83c8ruCADuScWpG9OEmLB4ds0MkCRFZMu4ZuPU2z8d/UnDSCzPL8d/UW+PbTI2k5IFhyQootAYWWO0evunY/Lh+DR6vYL/kgvsdtuIojPMXdE2vDtWWKtl/JdeQK+XeS1E1rQr347axQ2//A/dPsSpoFPaBmQhbkfcZu2FtQCUdCrJCzVf0Dii/CEJiig0OpT2o3hiKQB2Xt+pVpcK04IuhhH6KIxDrtsBsNXb0Taiq1GZmNB4gi6GaRGesEA6nc6oFuXnoz9rGI3l+PnYz6Qohmbp15u8jp21ncYR5Q9JUEShYaWzwje8h3r/l2O/ZFJaxIUncNh1F3HWsQA0j/TFJcXVZDkhsmpwvcEUtS8KwB9n/yAsznwS3NhH8ZxYfYXYR/Fah6KKTYpVRz3ZWtkWis6xqSRBEYWCXq/w8HoErSM64WBl6Iy76NQiIhMiNY7MfNm72rKr2Hr1vt+j3ibLFcmj0VeiYHK2c2Z4/eEAxCXHsSBggbYBpREbnkDA31eJNaOke9mZZTyKfwTAwLoD8XL20jii/CMJiijwbhwNYsWbezk0/xxOeheahvkCEJUYxfyT87UNzoydsjnKAzvDhFrVY+rhnVgxXRknDwe8ahTMhcpE3kk7eeJPR38iWZ+sYTTmS1EUZh2Zpd6f0HyChtHkP0lQRIF242gQu2YGEBP2uMq246Pn1dvfHfhePhwz8NOx2ertjuGma09aDKmJlVXuTrWd1/PiCO1V96xO96rdAQiMCGTN+TUaR2Sedl7fyfmH5wFoU64NjUo10jii/CUJiiiwUkehPKl0YjnqRDcB4G7cHVafkw/HJ10Muci2a9sAKFukHC3t2hrtd/JwwG9iQyo2y/3q5vyYF0do752W76i3v/v3O1nl2IS0tScTm0/ULhCNSIIiCqygi2FGNSdpdXr0eJje13u/lg/HJ8z0n6nefstnIgN/9KP1SMPw0NYjazNglm+eJCei8GhfoT31S9YH4Ni9Yxy8dVDjiMzLldArbLpiWD28nGs5etcwXYtZkEmCIgqszEaX1IxtgHe8oU9FQNhJDt8+nF9hmb3g6GAWnVoEGDo0jmg4AisrHcUrGUbwFK/kmuvNOqLw0el0RrUo3/t/r2E05ue7f79Tb49rOg4bKxsNo9GGJCiiwMpsdIkOnVEtinw4Pjb76GwSUgzJ3WuNX8PVIf3QYiFyw4A6AyjtUhqA9RfXcyX0isYRmYe0PxJc7FwY3Xh05gcUUJKgiALLq4Y7Tu4Z92NoGtUON71hBMraC2u5FnYtv0IzW9GJ0fx8zDB5lq2VLRNbTNQ2IFGg2Vnb8WazNwFQUIyaFguzH4/8aPQjwc3BTduANCIJiiiwrKx0tBhaM8P9tootI2sYloBXUPjB/4f8Cs1szTsxj/D4cABervcy3kW9tQ1IFHivNn4VJ1snABaeWkhobKjGEWkrKiFKXXensP9IyHaCkpiYyJw5c3jhhRfo2LEjr732GseOHcvSscePH2fChAn07NmT7t278+qrr7Jt27ZsBy1EVlVs5oXfxIbpalJSR6F80PtdHG0dAZgfMJ/g6GAtwjQLSSlJRk1d77Z8V8NoRGFRrEgxRjYcCRgmbpt9dPZTjijY5p6Yq/5IGFJvCGWKltE2IA1lO0GZMWMGK1eupFOnTrz55ptYWVkxadIkzpw5k+lxBw8e5J133iEpKYnhw4czatQo7O3tmT59OitXrszxBQjxNBWbeTHgR1+To1A8HD14vbFh6uj45Hi+/7fw9kX567+/uBN5B4Dnqj1XKJZzF+bh7ZZvq51AfzzyI1EJURpHpI3ElESjmtx3WxXuHwnZSlDOnz/Prl27ePXVVxk7diy9evVi5syZeHl5MWfOnEyP/fvvv/Hw8GDmzJn07duXPn368MMPP1CmTBm2bNnyTBchxNNkNgrlnVbvqItv/XL8F7NaGyS/KIrC14e+Vu9Pbj1Zw2hEYVPerTyD6w0G4FH8I+Ycz/z7pKD648wf3I26C0Dv6r2pWTzjJurCIFsJyr59+7C2tqZXr17qNnt7e3r06MG5c+cIDs64ejw2NhYXFxfs7B6vwmhjY4Orqyv29jJjpNBOaZfSjGgwAjB0Ep19pPBVMW+8vJFzD88B0NK7Ja3LttY4IlHYvN/6fXQYfjh8/+/3xCXFaRxR/krRp/D1YfmRkFa2EpQrV67g7e2Nk5OT0faaNQ1Z3tWrVzM8tkGDBty4cYPff/+dO3fucPfuXRYvXsylS5cYOHBgDkIXIvdMaj0Ja501YJi9sTBVMSuKwid7P1Hvv9/mfXQ6medE5K/qntXpV6sfAMExwcwPKFzrZK0+v5qLIRcB8CnnQ8uyLTWOSHvZSlBCQ0Px8PBItz11W0hISIbHDhs2jPbt27N06VIGDRrEwIED+eOPP/jss89o165dpucNCQnh0qVL6r/AwMDshC3EU1UsVpGX670MGKqYfz3+q8YR5Z9/Lv9DQFAAAA29GtKzWk+NIxKF1RSfKertrw99TWJKoobR5J8UfQqf7vtUvf9Ru480jMZ8ZGtquoSEBGxtbdNtT222SUjIeOZOW1tbypYti6+vL23btiUlJYWNGzcybdo0vv/+e2rXzrhD3oYNG1i0aFF2QhUi295v/T5LTy9FQeG7f79jXLNxFLEtonVYeUpRFD7Z94l6/+N2H0vtidBMA68G9Kjag01XNnE78jZLTi9hVKNRWoeV51adX8WFEMO6Ya3Ltsavop/GEZmHbNWg2Nvbk5SUlG57YmKiuj8jM2fO5PDhw3z88cf4+fnRuXNnfvjhBzw8PPjxxx8zPW+vXr2YN2+e+m/q1KnZCVuILKlZvCZ9avYBDFXMhaEWZdOVTZy8fxIwfDn0qt7rKUcIkbemtn38+f75/s9JSM74h29BkKJP4bN9n6n3P/H9RH4k/L9sJSgeHh6EhqafRCd1m6enp8njkpKS2LRpEy1btsTK6vEpbWxsaN68OZcuXTKZ+KTy9PSkevXq6r/y5ctnJ2whsuyjdh+pHfW+OPhFge6L8mTfE6k9EeaghXcLulftDsCtiFvMPTFX44hyn16v8PB6BABLj/2h1p60KddGak/SyFaCUqVKFe7cuUNMTIzR9vPnz6v7TYmIiCAlJYWUlJR0+1JSUtDr9ej1+uyEIkSeqFeyHi/VeQmAkNiQAj319j+X/+HE/ROAofakd/XCt1qqME/T2k9Tb08/MJ3AK/cBeHg9Ar3eslcev3E0iBVv7uXQ/HPoSeG7M9+o+z5pJ7UnaWUrQfH19SUlJYUNGzao2xITE9m8eTO1atWiZMmSAAQHBxt1ZC1WrBjOzs4cOHDAqKYkNjaWQ4cOUa5cORlqLMzGp76fqiN6vv332wI5L0qKPoUPdn2g3v+o7UfywSjMRsNSDY1G9HyxwTD89tD8c6x4cy83jgZpGV6O3TgaxK6ZAcSExQPwb9HdBNnfBqBqbG0qPqylZXhmJ1sJSq1atWjfvj1z585lzpw5bNiwgYkTJxIUFMTrr7+ulps+fTpDhgxR71tbW/PSSy9x+/ZtXn/9dVauXMny5ct57bXXePjwIUOHDs29KxLiGVX1qMqIhoZ5USITIo0mMCsolp5Zqs570rxMc56v8by2AQnxhFc9xqNTDF9RW91XEWtlqLmPCYtn18wAi0tS9HoF/yUX1PuJugTWey5V7/cOGcqRZRctvoYoN2V7qvspU6bw4osvsm3bNn788UeSk5P56quvaNCgQabHDR06lA8//BAbGxsWLVrE/PnzcXJy4rPPPqNz5845jV+IPPFh2w+xtzbU6v145EfuR93XOKLcE5cUx4d7PlTvf9XxK6k9EWZFr1cI+TuFFpHtAYi1jmZ7sTVGZfyXXrCoL/Ogi2FqzQnA7mIbeGRrmJqjbnRTqsfVJSY0nqCLBa/GNqeyNcwYDCN1xo4dy9ixYzMsk9GonE6dOtGpU6fsnlKIfFfWtSxjm47lB/8fiEs2fKH/3ut3rcPKFT8f+1ldc6d71e60q5D5PERC5LfUL/OetoM4WnQfKbpkdrivpW1EN9yTiwOoX+ala6Wfm8scxYU/Ho0UYxXFFvdVAOgUK/o+fMVkucIu2zUoQhQWU3ym4GpvWL9nQcACAu4HaBzRswuNDeWLA18AoEPHDL8ZGkckRHqpX9LFk0rR/tFzACRaJbDWc5HJcpagiNvjfpabPVYQax0NQKtIP8okVjBZrrCTBEWIDHg6eqozOioovLXtLRTFcqqUTfloz0c8in8EwJD6Q6hXsp7GEQmRXtov6edCB+KU4gKAv+sebjhcMlnO3HnVcMfJ3YEg2zvsKmYYaGKrt6NXyGC1jJOHA1413LUK0exIgiJEJsY1G0cVd8Pw+X2B+1h7ca3GEeXc6aDT/HrCMPmck60TX3T4QuOIhDAt9cscwEnvQs+Ql9V9K4vPQ0GxuC9zKysdzYfUYEWJ30jRJQPQ6dELapMVQIshNY1WWi/sJEERIhN21nZ82+lb9f6729+1yFVWFUXhza1volcM8w1NbTuVMkXLaByVEKZZWeloMbSmer9deHe8EsoCcNXxPEdc9lrkl/l/bsf4z9kw95B7UnG6hw4ADDUnfhMbUrGZl5bhmR1JUIR4il7Ve9GhYgcAboTfYPqB6RpHlH0rz61kf+B+AKq4V+GtFm9pHJEQmavYzAu/iQ1xcnfABhv6P3y8Js+6Cgtxq2s5zTsA8cnxvLXt8d/d/+p8gr3iQOuRtRkwy1eSExMkQRHiKXQ6HbO7zcbWyrBQ5teHvub8w/MaR5V14fHhRh+MM7vMxN7Gsj7cReFUsZkXA370pfXI2tSNaUpHjy4AhCaGGE00aAm+PPgl1x9dB6B9hfYMaTYIgOKVXC2uJii/SIIiRBbUKl6Lya0nA5CkT+K1f15Tm0vM3Xvb3+N+tGEel+eqPUePaj00jkiIrLOy0lG8kmE03Xe+3+Ns5wzAbyd+49/b/2oZWpb99+A/dfSctc6a2d1my9xDWSAJihBZNMVnitph9uCtgywIWKBxRE+36/oufg8wzN/iYufCL91/0TgiIXKutFMZPm//uXr/1X9eNfvVjpP1yYxYP4IkvWGZl8mtJ1O7RO18O7+jmz0N+1TB0YJGPKWSBEWILCpiW4Q5Peao99/e9jY3w2+mK5d2pVItFzeLSYzh1X9eVe9/1fEryrqW1SQWIXLLuGbjaOjVEDDUTKRdkdsczfSfybF7xwCo4VmDD9t9+JQjcpdjMQca96uKYzGHfD1vbpAERYhs6FipI8MbDAcgKjGKoWuHkqJ/vEp32pVKQdvFzSbvnKy2efuU8+G1Jq/lewxC5DYbKxsW9l74uE/Y4a85dOuQxlGZdjHkorqshA4dC3otwMHG8hIFrUiCIkQ2zewyk/Ku5QE4cOsA3x42DEN+cqXSVFosbrbx0kZ+PvYzAA42DszrOQ8rnfy5i4Khvld9Pmv/GQB6Rc/QdUOJSojSOCpj8cnxvLT6JeKTDZ8HbzZ/k5ZlW2oclWWRTywhssnVwZWlLyxFh6GT24d7PuT43RNGK5Wakl+Lm92Luscr6x+v7fF95++p7lk9z88rRH56r9V7tC7bGoDrj67z5tY3zWqm5/d3vs/p4NMA1PSsyRd+MjFidkmCIkQO+JT3YVLrSYBhVE/fv/ryIPxhpsfk9kqlpvq6JKUk8fLfLxMaFwoY5nB5vcnruXZOIcyFtZU1S15YgpOtEwCLTi3i95PmsaDnhksbmHVkFgD21vYs77ccR1tHjaOyPJKgCJFDn/p+StPSTQG4FRPI76W+Rk9Kpsfk1uJmGfV1eXXpWPbe3AtAKedSzO81X4YzigKrUrFKzO05V70/bss4jt87rmFEcOHhBQb//Xh9ne86fydrXuWQJChC5JC9jT1r+q/B09ETgP+cT7DOc2mmx+TG4mYZ9XXZmbyJRYGGX5C2Vras7r9ajU2IgmpQ3UGMazoOgMSURPqs6MO9qHuaxPIo7hG9l/cmKtHQH6Z/7f6MbTpWk1gKAklQhHgGZV3LsqLfCrUD6haPlex13WSybG4sbqbXKyb7ulxwPMWSkrPU+7O7/USrsq2e6VxCWIrvunxHS29DB9Tbkbfp8WePfO80G58cT79V/bgSdgWABl4NWNBrgdRgPgNJUIR4Rh0qdmBml5nq/T9LzuGUc/oZLnNjcbOgi2Hpak4C7a/wc5nPSbYyrJDaLrw7PR37PtN5hLAkdtZ2/D3gbyq4VQDgVNAp+q3ql2+TuCXrkxm4ZiC7b+wGwNPRk3UD1uFk55Qv5y+oJEERIheMbz6eSa0MnWYVnZ7fSs3gtNMRIHdXKn2yD8sd+xvM8v6IBCvDCsv1o1owMHhMrvV1EcJSeDl7seXlLRRzKAbA9mvb6buyrzrMN6+k6FMYtWEU6y6uA8DJ1omNAzdS3q18np63MJAERYhcMqPjDAbXM3SOS7ZKZk6ZacT0DszVlUrT9mG55nCRb8pOJsrGMJKnamxtXr0/GWusc6WvixCZMccp1Gt41mDDwA0UsSkCwKYrm3hhxQvEJcXlyfkSkhMYsHoAi08vBgx9v9YOWEsL7xZ5cr7CRhIUIXKJlc6Khb0XMqiuYZXSFF0Kb196g5lHfsi1+Rm8arjj5O7Aaacj/FB2CrHW0QBUiqvBuLsfY6fY50pfFyGexlynUG9Trg1bXt6iDj/eenUrbRe15W7k3Vw9z6O4R/T4swdrLqwBDMnJ8n7L6VS5U66epzCTBEWIXGRjZcOS55fwUmVDkqJX9Lyz/R2GrhtKTGLMMz++gh7/lpv4yftTEqwMVdc1Yxrw1u3pOOoNq7zmRl8XISxZuwrt2Dp4q7ry8fF7x2k6r2muTYkfcD+AxnMbs+vGLgAcbR3ZOHAjfWr2yZXHFwaSoAiRy6ytrJnV6ieeCxmoblt2Zhn1fq2nzlGSE+cfnqf1gtb8ePU7dVvjyDaMv/sJDkqRXO3rIoSla1OuDYdHHFY7zt6Pvk/bRW2ZvGMysUmxOXrMxJREPt37Kc1/b86N8BsAeBTxYOeQnXSp0iW3Qhf/TxIUIfKAlc6K3qFDWNBusVrVfP3Rddovbs8LK17gbPDZLD/WrYhbvP7P69SbU48jd4+oj/+l35cs6bYMW8WO1iNr52pfFyEKgrol63J01FHalW8HGGo0vz78NVVnV+X3k79nuQNtsj6ZZWeWUevnWnyy7xOS9EkANC3dlJOvnZQ1dvKIjdYBCFGQ9SzfmzZ1W/LK+lc4dNtQvbzu4jrWXVxH67Kt6V+7P34V/ajmUQ1ba8PqrCn6FAIjAtlzYw/rLq1j85XN6BW9+pjVPKqxsPdCWpVtRcgNQwfZ4pVcpVlHCBOKOxVn19BdfHv4Wz7a+xGJKYnci7rH6I2jeX/n+7xc92W6V+1O0zJNAWv1uMiESI7ePcq2q9tYdnYZQdGPF/u01lkzufVkPmr3EfY25tNJuKCRBEWIPFbVoyr7hu9jfsB8Ptn7Cfej7wNw6PYhNWmx0llR3LE4Op2OsLgwElMS0z2Oi50L77Z6l/davUcR2yL5eg1CWDJrK2smt5lM7xq9mbxzMhsubQAgNC6UH4/+yI9HfwSgqG1RdJWteXe5nojECJOP5VfRj286fUPDUg3zLf7CShIUIfKBtZU1rzZ+lcH1BjP/5Hx+O/Eb5x6eU/frFT3BMcEmj/Uu6s3oRqMZ02QMxZ2K51fIQhQ4NTxrsP6l9fx7+19mH53N6vOr1eYagMikSMO34hO/D2ysbOhZrSfjm42nfcX2+Rt0ISYJihD5yNHWkfHNxzOu2TjOBJ9h5/WdHLl7hOuPrvMw1rAaclH7olQuVpmGXg3pVLkTzcs0x9rK+imPLITIqpZlW9KybEt+6fELO6/vZPeN3VwKucSVoGvERMXi5FKESiUrUt2jOr4VfPGr5EcJpxJah13oSIIihAZ0Oh31vepT36u+1qEIUWi5ObjRr1Y/Gke3wX/LBaNlJJzcHWgxtCYV60rHc63IKB4hhBCFVkarg8eExbNrZgA3jgZlcKTIa5KgCCGEKJQyWh08Lf+lF9Drc2cmaJE9kqAIIYQolEytDv6kmNB4gi6G5VNEIi1JUIQQQhRKWV31W1YH14YkKEIIIQqlrK76LauDa0MSFCGEEIVS6urgmZHVwbUjCYoQQohCycpKR4uhNTMtI6uDa0cSFCGEEIVWxWZe+E1smK4mRVYH155M1CaEEKJQq9jMi/JNSnJpz20OzT9H65G1qd6+rNScaExqUIQQQhR6VlY6ildyBWR1cHMhCYoQIksc3exp2KcKjjKiQQiRD6SJRwiRJY7FHGjcr6rWYQghCgmpQRFCCCGE2ZEERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2cn2TLKJiYnMnz+f7du3ExUVReXKlRk1ahRNmzbN0vG7du1i9erVXLt2DRsbG8qXL8+oUaNo3LhxtoMXQgghRMGU7QRlxowZ7N27lxdffBFvb2+2bNnCpEmTmDVrFvXq1cv02AULFrB48WJ8fX3p2rUrycnJ3Lhxg5CQkBxfgBBCCCEKnmwlKOfPn2fXrl2MGTOGgQMHAtClSxeGDx/OnDlzmDNnTobHnjt3jsWLF/PGG2/Qv3//Z4taCCGEEAVatvqg7Nu3D2tra3r16qVus7e3p0ePHpw7d47g4OAMj121ahXu7u7069cPRVGIjY3NedRCCCGEKNCylaBcuXIFb29vnJycjLbXrFkTgKtXr2Z47IkTJ6hRowarV6+mV69edO3aleeff541a9bkIGwhhBBCFGTZauIJDQ3Fw8Mj3fbUbRn1JYmKiiIiIoL//vuPkydPMnz4cEqWLMmWLVuYNWsWNjY29O7dO8PzhoSEEBoaqt4PDAzMTthCCCGEsDDZSlASEhKwtbVNt93Ozk7db0pqc05ERAQff/wxfn5+APj6+jJ8+HCWLFmSaYKyYcMGFi1alJ1QhRBCCGHBspWg2Nvbk5SUlG57YmKiuj+j4wBsbGzw9fVVt1tZWdGhQwcWLFhAcHAwJUuWNHl8r169aN26tXo/MDCQadOmZSd0IYQQwmw4utnTsE8VHN1Mf2+KbCYoHh4ePHz4MN321OYXT09Pk8cVLVoUOzs7nJ2dsba2NtpXrFgxwNAMlFGC4unpmeFjCyGEEJbGsZgDjftV1ToMs5atTrJVqlThzp07xMTEGG0/f/68ut/kSaysqFq1KhEREelqYFL7rbi5uWUnFCGEEIWE1DYUTtlKUHx9fUlJSWHDhg3qtsTERDZv3kytWrXUGpDg4OB0HVnbt29PSkoKW7duVbclJCSwY8cOKlSoIDUkQgghTEqtbXAs5qB1KCIfZauJp1atWrRv3565c+cSHh5OmTJl2Lp1K0FBQUyePFktN336dE6dOsX+/fvVbb1792bTpk388MMP3L59m5IlS7Jt2zaCg4OZMWNG7l2REEIIISxetqe6nzJlippcREdHU6lSJb766isaNGiQ6XH29vbMnDmTOXPmsHnzZuLj46lSpQpfffUVzZo1y2n8QmSZVBMLIYTlyHaCYm9vz9ixYxk7dmyGZX788UeT24sVK8aUKVOye0ohcoV0ShNCCMuRrT4oQgghhBD5QRIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERYg8ICOGhBDi2WR7FI8Q4ulkxJAQQjwbqUERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCEsmMy3IoQoqGQeFCEsmMy3IoQoqKQGRQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUIYQQQpgdSVCEEEIIYXYkQRFCCCGE2ZEERQghhBBmRxIUIYQQAlk6wtzIVPdCCCEEsnSEuZEaFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2JEERQgghhNmRBEUIIYQQZkcSFCGEEEKYHUlQhBBCCGF2bLQOICcSEhIACAwM1DgSIYQQQmRX+fLlcXBwyLSMRSYoQUFBAEybNk3jSIQQQgiRXfPmzaN69eqZltEpiqLkUzy5Jjw8nKNHj1KqVCns7Oy0DifPBQYGMm3aNKZOnUr58uW1DidfybUXvmsvrNcNhffaC+t1Q+G99gJbg+Lm5kbnzp21DiPflS9f/qkZZ0El1174rr2wXjcU3msvrNcNhfvaMyKdZIUQQghhdiRBEUIIIYTZkQTFAnh4eDB8+HA8PDy0DiXfybUXvmsvrNcNhffaC+t1Q+G+9qexyE6yQgghhCjYpAZFCCGEEGZHEhQhhBBCmB1JUIQQQghhdiRBEUIIIYTZsciJ2gqikJAQVq9ezYULF7h48SJxcXHMmjWLhg0bpiv75ptvcurUqXTbmzVrxrfffmu0LTExkfnz57N9+3aioqKoXLkyo0aNomnTpnl1KdmWnWsHOHv2LL/++iuXL1/GycmJ9u3bM3r0aBwdHY3KWcK1m7JlyxZmzJhhct/atWvT9fY/ePAgCxcuJDAwEDc3N7p3787QoUOxsbGsP29Lfb2yIyAggAkTJpjcN2fOHGrXrq3ez+r73BzFxsayfPlyzp8/z4ULF4iKiuKDDz6gW7du6crevHmTn376ibNnz2JjY0PLli0ZN24cbm5uRuX0ej3Lly9n3bp1hIWF4e3tzeDBg+nYsWM+XdXTZfW6v/jiC7Zu3Zru+HLlyrFs2TKjbZZw3XnFsj7BCrDbt2/z559/4u3tTaVKlTh37lym5YsXL85rr71mtM3UMLUZM2awd+9eXnzxRby9vdmyZQuTJk1i1qxZ1KtXL1evIaeyc+1Xrlzhrbfeonz58owbN44HDx6wYsUK7ty5wzfffGNU1hKuPTMjR46kVKlSRtucnZ2N7vv7+/O///2PBg0aMGHCBK5fv86SJUt49OgR77zzTn6G+8ws/fXKjr59+1KzZk2jbWXKlFFvZ+d9bo4iIiJYtGgRJUuWpEqVKgQEBJgs9+DBA8aPH4+zszOjR48mLi6O5cuXc/36dX777TdsbW3VsvPmzeOPP/6gZ8+e1KhRg4MHD/LZZ5+h0+nw8/PLr0vLVFavG8DOzo5JkyYZbXNyckpXzhKuO88owizExMQoERERiqIoyp49exQfHx/l5MmTJsuOHz9eGTp06FMf89y5c4qPj4/y559/qtvi4+OVl156SXn99ddzJ/BckJ1rf/fdd5Xnn39eiY6OVrdt3LhR8fHxUY4cOaJus5RrN2Xz5s2Kj4+PcuHChaeWHTJkiPLKK68oSUlJ6ra5c+cqbdu2VW7evJmXYeYqS369suPkyZOKj4+PsmfPnkzLZfV9bq4SEhKUkJAQRVEU5cKFC4qPj4+yefPmdOW+++47pWPHjkpQUJC67dixY4qPj4+yfv16dduDBw+U9u3bK99//726Ta/XK2+88YbSp08fJTk5OQ+vJuuyet3Tp09XOnfu/NTHs5TrzivSB8VMODo6UrRo0Wwdk5ycTGxsbIb79+3bh7W1Nb169VK32dvb06NHD86dO0dwcHCO481NWb32mJgYjh8/TufOnY1+aXTp0oUiRYqwZ88edZulXPvTxMbGkpKSYnLfzZs3uXnzJj179jRqznnhhRdQFIW9e/fmU5TPrqC8XtkRGxtLcnJyuu3ZeZ+bKzs7uyxNPLZv3z5atWpFyZIl1W1NmjShbNmyRtd58OBBkpOTeeGFF9RtOp2O559/nocPHz61xjm/ZPW6U6WkpBATE5Phfku57rwiTTwW6vbt23Tp0oWkpCTc3d157rnnGD58uNEX1ZUrV/D29k5XbZhatXz16lWjDwZzd/36dVJSUtItqGVra0vVqlW5cuWKuq0gXPuECROIi4vD1taWpk2b8sYbb1C2bFl1/+XLlwHSPR+enp4UL17c6PkwdwXh9cqOGTNmEBcXh7W1NfXq1WPMmDHUqFEDyN773JI9fPiQR48emVwgr2bNmvj7+6v3r1y5QpEiRdKt9pv6/rhy5YrFNQPGx8fTrVs34uPjcXFxwc/Pj9dff92oj1FBvO7skATFApUuXZqGDRtSqVIl4uPj2bt3L0uWLOH27dt8+umnarnQ0FCT2XzqtpCQkHyLOTeEhoYCpvvaeHh4cPr0aaOylnrt9vb2dOvWjYYNG+Lk5MSlS5dYuXIlY8eO5ffff1e/qJ/2fKTutwSW/Hplh42NDe3ataNFixa4urpy8+ZNVqxYwbhx4/jll1+oVq1att7nluxp1xkZGUliYiJ2dnaEhoZSrFgxdDpdunJgee8PDw8PBg4cSLVq1VAUhSNHjrBu3TquXbvGrFmz1B+aBe26s0sSlDyg1+tJSkrKUlk7O7t0b76nef/9943ud+nShW+++YaNGzfSv39/dSRAQkKCUSeztOdM3Z/b8vLaU+PN6JoSExONyub3tZuSk+ejQ4cOdOjQQd3u4+NDs2bNGD9+PEuXLuXdd98FUK839ZqefKzMmv/Mjbm8Xnmtbt261K1bV73fpk0bfH19eeWVV5g7dy7ffvtttt7nluxp15laxs7OrsC9P54c4ODn50fZsmWZN28e+/btUzu/FrTrzi5JUPLA6dOnMxxK+KSlS5emq77LiQEDBrBx40aOHz+uJij29vYmvxxTP+Ds7e2f+bxPystrT403o2tK+0WtxbWbklvPR7169ahVqxYnTpxQt6Ver6kvrMTExHy7xtxgLq+XFry9vWnTpg379+8nJSUlW+9zS/a060xbpjC8P/r378/8+fM5fvy4mqAUhuvOjCQoeaBcuXJ88MEHWSqbWytYlihRAoCoqCijx3748GG6sqlVq56enrly7rTy8tpTy5tquggNDTW6Hi2u3ZTcfD5KlCjBrVu30pUPDQ1N1z8jNDQ03TBWc2Yur5dWSpQoQVJSEvHx8dl6n1uyp11n0aJF1WTMw8ODgIAAFEUxqnUtSO8Pe3t7ihYtSmRkpLqtMFx3ZiRByQMeHh4mJyTKS/fu3QMwmtwodRx+TEyMUefD8+fPq/tzW15ee8WKFbG2tubSpUtGTSBJSUlcuXKF9u3bq9u0uHZTcvP5uHfvntHrW7VqVQAuXbpErVq11O0hISE8fPjQaESMuTOX10sr9+7dw87OjiJFimTrfW7JihcvjpubG5cuXUq378KFC0aveZUqVfjnn38IDAykQoUK6vaC9P6IjY0lIiIi3Wd4Qb/uzMgwYwsTExOTrkpfURSWLFkCYDTrpq+vLykpKWzYsEHdlpiYyObNm6lVq5bFjYpwdnamSZMmbN++3ah/xbZt24iLizP64Lbkaw8PD0+37d9//+XSpUs0a9ZM3VaxYkXKlSvHxo0bjYYir1u3Dp1OR7t27fIj3Fxhya9Xdph6ba9evcqhQ4do2rQpVlZW2XqfW7p27dpx+PBho2HkJ06c4Pbt20bX2aZNG2xsbFi7dq26TVEU1q9fT/HixalTp06+xv0sEhISTPYPW7x4MYqi0Lx5c3VbQbrunJAaFDOyePFiwDC/BRg+kM6cOQPAsGHDAMPQ0k8//ZSOHTtSpkwZEhISOHDgAGfPnqVnz55GQ/Zq1apF+/btmTt3LuHh4ZQpU4atW7cSFBTE5MmT8/finiIr1w4watQo3njjDcaPH0+vXr3UGTabNm1q9IdtSdf+pDFjxlCtWjWqV6+Ok5MTly9fZvPmzZQoUYIhQ4YYlR07diwffPAB77zzDn5+fly/fp21a9fy3HPPGf3iMneW/Hplx8cff4y9vT116tShWLFi3Lx5k40bN+Lg4GDUcTKr73NztmbNGqKjo9XmiEOHDvHgwQPAMJOus7MzgwcPZu/evUycOJF+/foRFxfHX3/9RaVKlYxqHkuUKMGLL77IX3/9RXJyMjVr1uTAgQOcOXOGDz/8EGtra02u0ZSnXXdUVBQjR46kY8eOlCtXDoCjR4/i7+9P8+bNadOmjfpYlnTdeUGnKIqidRDCoG3bthnu279/P2CoCv7tt9+4cOECYWFhWFlZUb58eZ577jl69eqVblRMQkKCur5JdHQ0lSpVYtSoUUa/xM1BVq491ZkzZ9Q1ShwdHWnfvj2vvfZaujVKLOXanzRv3jz8/f25f/++2iehZcuWDB8+HHd393TlDxw4wKJFiwgMDMTV1ZVu3bqlmxPHEljq65Udq1evZseOHdy9e5eYmBjc3Nxo3Lgxw4cPx9vb26hsVt/n5qp///4EBQWZ3LdixQp1GYcbN26kW4vnjTfeSPde1+v1/Pnnn2zYsIHQ0FC8vb15+eWX6dy5c55fS3Y87bqdnZ2ZNWsW586dIzQ0FL1eT5kyZejUqRMvvfRSur9bS7nuvCAJihBCCCHMjvRBEUIIIYTZkQRFCCGEEGZHEhQhhBBCmB1JUIQQQghhdiRBEUIIIYTZkQRFCCGEEGZHEhQhhBBCmB1JUIQQQghhdiRBEZnasmULbdu2ZcuWLVqHkiUBAQG0bduWBQsW5Nk52rZty5tvvplnj19Y9O/fn/79+2sdhtlbsGABbdu2JSAgIE/Ps3LlSjp06MD9+/ezVD4//tYs2eeff86LL75IQkKC1qFYLElQCpgvv/yStm3b8txzz6VbVLCgsLQvtoiICH799VeGDh1Kp06d6NSpEy+++CITJ05k4cKFhIWF5UscT0s233zzzUyXHChM4uLi6Nq1K23btuX777/XOpw8FxUVxZIlS+jevbs6Bb14NsOHDyckJIRVq1ZpHYrFsqzFOkSmYmNj2bNnDzqdjsjISA4cOICfn98zPaaPjw+1atXCw8Mjl6IsXB48eMDYsWN58OABVatWpVu3bri4uBAaGsp///3HwoULqVu3rsk1dgq6H374QesQMrRnzx5iY2PR6XTs3LmTN954A3t7e63DyjMrV64kMjKSgQMHah1KgVG2bFlat27Nn3/+Sd++fSlSpIjWIVkcSVAKkN27dxMXF0f//v1ZvXo1mzZteuYExdnZGWdn51yKsPBZsGABDx48YOTIkUarMqe6du1aoX1+y5Qpo3UIGdq0aRPW1tb06dOHVatWsX//fjp16qR1WHkiOTmZf/75h7p165r1a2KJOnfuzP79+9m1axfPPfec1uFYHElQCpDUD9VBgwZx7do1Tp48SVBQEF5eXkblFixYwKJFizJ8HC8vL1auXAkYmgVmzJjBBx98YLT8edu2bWnQoAEffvghc+bM4dixYyQmJlK/fn0mTpxI6dKluXnzJnPnzuX06dMkJyfTrFkz3nrrLaPagoCAACZMmMDw4cMZMWKEURz3799nwIABdO3alSlTpqj308aQytTxFy9eZO7cuZw7dw4rKysaNWrEuHHj0lVh79+/nz179nDx4kVCQkKwsbGhcuXK9OvXD19f38yf9Kc4d+4cAH369DG5v3Llyia337t3jz/++INjx44RGhqKk5MTFSpUoFu3burrkJSUxIYNGzh8+DA3b94kPDwcJycn6taty7Bhw6hWrZr6eF988QVbt24FYMaMGcyYMcPo+tM+l2lvpz73qa5du8bSpUs5deoUkZGReHh40Lp1a1555RVcXV3Vcmlfu0GDBjFv3jxOnz5NZGSkupJtajNd6nsNHr83Z82aRUhICH/99Re3bt3C2dmZ9u3b8/rrr6eryUhOTmb58uX8888/hISEULx4cXr06EGHDh146aWX0l3D09y6dYuzZ8/SqlUro2TfVIKS9v3bqlWrLL3fAPbt28eyZcu4ceMGTk5OtG7dmjFjxjBy5Mh0z0lmsvp6ZObo0aOEhoYyaNAgk/sTEhJYuHAhO3bsICIigjJlytCvX790qy+nde/ePZYuXcqxY8d49OgRLi4uNGvWjBEjRqT7PILsPR+p7+Xly5ezf/9+Nm3axL179/Dz81Nf50ePHrFs2TIOHz7MgwcPcHR0pH79+owYMYJKlSqlO392yt++fZtly5YREBBAaGgoDg4OlChRgoYNGzJ+/HijFeVbtmyJg4MDW7dulQQlByRBKSBu3rzJuXPnaNGiBe7u7nTp0oUTJ06wefPmdF/cDRs2NPkYgYGB7NmzJ8tV2VFRUbzxxht4eHjQpUsX7ty5w+HDh3n77bf54osvGDduHNWrV6d79+5cvnyZffv2ERkZyaxZs3J0jc7OzgwfPpzVq1cD0K9fvwyv6eLFi/z11180bNiQXr16ceXKFQ4cOMD169dZtGiR0TXOnTsXGxsb6tati4eHB+Hh4Rw6dIiPPvqICRMm0Ldv3xzFC6hfErdv36ZWrVpZOubMmTNMnjyZ2NhYmjVrhp+fH1FRUVy5coXVq1erCUpkZCSzZ8+mXr16tGjRAhcXF+7fv8+hQ4c4cuQIs2fPpmbNmoChqS46OpqDBw/Spk0bqlSpYnTO4cOHs3XrVoKCghg+fLi6vWrVqurtgwcP8sknn6DT6WjTpg0lSpTg5s2b/P333xw9epTffvsNFxcXo8e9e/cuY8aMoVKlSnTt2pXIyEhsbW2f+hykPmbr1q1p1KgRR44cYc2aNURERPDRRx8Zlf3qq6/Ytm0bpUuX5vnnnycpKYmVK1fy33//Zen5ftKmTZsA6NKlCyVLlqRBgwYEBARw7949SpcubfKY7LzfNm3axFdffYWTkxNdunTB2dkZf39/3n77bZKTk7GxydrHck5eD1NOnDgBQO3atdPt0+v1fPDBBxw/fpxKlSrRsWNHIiMj+emnnzL8HDl//jzvvvsucXFxtGrVCm9vb4KCgtixYwdHjhxhzpw5Rs9jTp+PmTNncv78eVq2bEmrVq0oVqwYYHjPvfnmmzx8+JCmTZvSpk0bwsPD2bdvH8eOHeOHH34w+lvMTvmQkBBee+014uPjadmyJR06dCA+Pp47d+6wbt06xo4daxSvra0t1apV49y5c8TFxUkzT3YpokCYPXu24uPjo+zcuVNRFEWJiYlROnfurPTr109JSUl56vFhYWHKiy++qPj5+SlnzpxRt2/evFnx8fFRNm/ebFTex8dH8fHxUWbPnm20/bvvvlN8fHyUbt26KStXrlS36/V65b333lN8fHyUixcvqttPnjyp+Pj4KPPnz08X07179xQfHx9l+vTpRttffPFF5cUXXzR5HamPl/a5SDVt2jST2+/evZvucWJiYpRhw4Yp3bp1U+Li4tJd+/jx402e/0mrV69WfHx8lF69einz589XTp48qURHR2dYPiEhQenTp4/Srl07xd/fP93+4OBgo7IPHjxIV+b69etK586dlbfeestoe0avZarx48crPj4+JveFh4crXbt2Vfr06aPcv3/faN/OnTsVHx8f5YcfflC3pb52Gb22imL6dZw/f776/gkMDFS3x8fHK4MGDVLatWunPHz4UN1+/PhxxcfHRxkxYoTR6/Tw4UOld+/eJt8/mUlKSlJ69+6tdOvWTYmPj1cURVE2bdqk+Pj4KPPmzUtXPrvvt8jISKVz585K586dlVu3bhmdd8KECYqPj0+Gz8nJkyfVbdl9PTIzevRopV27dkpCQkK6fanvmXfffVdJTk5Wt1+9elXp0KFDutc3KSlJefHFF5UuXbooly5dMnqs06dPK76+vsrkyZOf6fmYPn264uPjo/Tp00cJCgpKF/OYMWMUX19f5ciRI0bbb926pXTp0kUZNmxYjsun/j2n/WxLFRERkW6bojz+bD5x4oTJ/SJjMoqnAEhOTmb79u04OTnRpk0bABwdHfHx8SE4OJjjx49nenxCQgJTpkwhKCiI999/n7p162bpvEWKFGHUqFFG21L7vLi6uhrVcOh0OnXftWvXsnxtOVW/fv10/W+6d+8OwIULF4y2m/pV7OjoSLdu3YiOjubixYs5jqNPnz4MHDiQ6OhoFi1axIQJE+jevTtDhw7l119/JSQkxKj8wYMHefjwIZ06daJ58+bpHq9EiRLqbTs7O4oXL56uTMWKFWnYsKHatJYbtm3bRkxMDK+++mq6Kno/Pz+qVavGrl270h3n7u7OkCFDsn2+fv36Ua5cOfW+vb09fn5+6PV6Ll26pG7fvn07AMOGDcPBwUHd7unpafT+y6p///2XsLAw2rdvr9Z6+Pr64uDgwJYtW9Dr9SaPy+r77eDBg8TFxdG9e3fKli2rbrexsUn3t5SZnL4epjx8+BBnZ2fs7OzS7UttFhw1ahTW1tbq9sqVK9O5c+d05Q8fPkxQUBADBw40amIEqFevHq1bt8bf35+YmBjg2Z6PgQMHUrJkSaNtly9f5r///qNLly40a9bMaF/ZsmV57rnnuH79OtevX89R+VSmapmLFi1qMs7Ump2HDx9mej0iPWniKQAOHjxIeHg4PXr0MPrD6dKlC9u3b2fTpk3p/vhSKYrCF198wblz53jllVfo2LFjls/r7e1t9KUAqKN9KlWqZNQWm3bfk1/KeaF69erptqV+mUdHRxttf/ToEX/88Qf+/v4EBwenm7fgWeLV6XSMGTOGgQMH4u/vz/nz57l48SKXL1/m5s2bbNiwgW+//VatQk79MmvatGmWHv/KlSv89ddfnDlzhrCwsHQJSXh4OJ6enjmOP1VqX5rz589z9+7ddPsTExOJiIggPDwcNzc3dXuVKlWy1KTzpCe/3OBxcpb29bt69Spg+PJ7Up06dbJ93n/++Qcw/O2kcnR0pE2bNuzcuZOjR4/SokWLdMdl9f2WmpybirdWrVpGSUBmcvp6mBIZGWky0U2Nt0iRIiavr169empz2JNx3bp1y+T8KGFhYej1em7fvk2NGjWe6flIbb5M6/z584Dhb9rU+W/duqX+X6lSpWyXT+1n9MMPP3DixAmaN29OgwYNMmz6g8eJS0RERIZlhGmSoBQAadvM02rcuDHFixfn0KFDREZGmszwf//9d/bs2UPHjh155ZVXsnVeJyendNtSP1Ay25dbv+oz4+jomOH50/4KjoyM5NVXXyU4OJi6devSpEkTnJ2dsbKy4urVqxw8eJCkpKRnjsfNzY2uXbvStWtXAEJDQ5k5cyb79u3jm2++YeHChQDqL8uMvjDSOnv2LG+99RYATZo0wdvbW73ugwcPcvXq1VyJHQz9jQDWrl2babn4+Hij+6m/HrMrs/dP2tcvNjYWKysrkx1Cszt0OyQkhKNHj1K6dOl0X5hdu3Zl586dbN682WSCktX3W+rra+p5yeg6TMnp62GKvb19hnMmxcTEZPheNPX8psa1Y8eOLMX1LM+HqWMiIyMBQ03Yv//+m+GxcXFxOSpfqlQp5syZw8KFC/H392fPnj0AlCtXjpEjR9K+fft0x6b+4CnIw9TziiQoFi44OJhjx44BZDq76fbt29NVeW/ZsoWlS5dSt25d3n///TyNMyOptSwpKSnp9qV+eOWlTZs2ERwcbHIY8LJlyzh48GCenNfDw4OpU6fy77//cu3aNSIiInB1dVWHHGelOnjp0qUkJiby008/pftCTf1lmFtSv4AXLVpkchRERp6sRcttjo6O6PV6IiIi0tUUZHcCvC1btpCSksK9e/cynLDu0KFDWaqVyEhq4vXo0aN0+1KvIyvJaU5fD1NcXV0zfL85OTll+Mvf1PObGteXX35Jq1atnnruZ3k+TL23Uh8vq53bs1seDLXDn3/+OcnJyVy6dIkjR46wevVqPvnkEzw9PdM1kacmQTl9zxRm0gfFwm3duhW9Xk+9evXo0aNHun+pv9ifrIo9deoU3377LaVLl2b69Okm25/zQ+ooA1PNKFeuXDF5jJWVlcmEJidSq8dT++6kdebMmVw5R0ZsbW3TVWGnVlunJp2ZuXfvHkWLFk2XnMTHx3P58uV05a2sDH/uGT13me1PbYJKrcI3F6mjkc6ePZtuX3ZG8SiKwubNmwHo1q2byb+lOnXqkJSUpPZ7yYnUYeWm4r1w4UKW39e5+XpUqlSJxMREgoOD0+2rXLkycXFxRv1+Upn6+8huXLn1fKRK/fvJ6vmzWz4tGxsbateuzYgRI5gwYQKKonD48OF05W7fvg3wzIlkYSQJigVL/VDV6XRMmTKFyZMnp/s3ZcoUateuzbVr19TOnrdv32bq1KnY29vz5ZdfaprZlytXDkdHR7UZKlVYWBhLliwxeUzRokWJiIjIlTUuUjsYPvkBuWPHDvz9/Z/58ZcvX05gYKDJfX///TdxcXGUK1dOrcpu3bo1xYv/X3v3FtLkG8cB/NvSd2lphs55CIuySBtNl1PSVSgSJZUD2Y03WhZEiZ1QKsrYoKDTRVJ2kcvQpQysC3FlOU2Lltq2hi07oBSUaDMpe+1gc/W/iA1tb/219tfJ//e53J65533e1/F7Tr9HgIaGBrS3t7t9ZnRPVygUgmVZvHjxwvWaw+FAaWkp3r9/7/ZZ5xSfzWbjrM/v3s/IyIC/vz8uXrw45vucvnz5MiXBizM3yeXLl8c8DwMDA67t6ONhsVjQ09MDsViMgwcPcv4vOUcZfw72J0Imk8HPzw86nW7M2pGRkRGo1epx/x1P3o+4uDgA3KNuzmnjsrKyMcFCd3c3Z6Amk8kgFAqh1WphsVjc3h8ZGRkT2HiqPZxiY2MRGxuLxsZGzkXC3759G1OviZZ/9uwZ58iuczSJq6PX2dmJ4ODgMYuAyfjQFM80Zjab0dvb+6+LtDIyMvD48WPodDosW7YMJSUl+PDhAxISEtDU1ORWfs6cOZN21o2vry+ysrJQWVmJbdu2ISUlBZ8/f8a9e/cQFxfHuQAwPj4eT58+RVFREVasWAEfHx+IxWLXD+1ErFu3DlVVVTh79iwePnwIoVCIrq4umM1mrFmzBnfu3Pmr67t16xZKS0uxaNEixMbGYt68eWBZFp2dnXj+/Dn4fD7279/vKs8wDJRKJQoLC1FYWIjExERER0fj48eP6OrqwvDwsOuHOysrCw8ePMCuXbuQmpoKhmFgsVjw9u1bxMfHux0ut3z5cvD5fNTU1IBlWVdg6pzakkgkaG5uxpEjR5CUlASGYRAdHY2UlBQEBQXh6NGjKC4uxtatW5GYmIioqCjY7Xb09fXBYrFAJBLh9OnTf9VeE5WQkID09HTo9Xrk5uZCJpPBbrfj9u3biImJgcFgcI0M/Y4z6HDuvOESFRUFkUgEq9WKzs7Ocee1GS0gIAD5+fk4deoUtm/fjrS0NMyePRutra1gGAYhISHjmhbz5P2QyWQ4f/48jEaj2xoK59qbtrY25OXlISkpCSzLorGxEVKp1G3EgGEYqFQqFBUVoaCgABKJxLVgvq+vDx0dHZg7dy40Go1H22O04uJi7NmzB0qlEjU1NViyZAn4fD5sNhusVisGBweh1+v/qPzNmzdRW1sLsViMyMhI+Pv74+XLl2hra0NgYKDb89PT04Pe3l7I5fIJXQP5gQKUacz5ozo6wyuXtLQ0lJSUoLGxEfn5+a6eptFo5NyCHBYWNqmH8eXl5cHHxwc6nQ61tbUICwtDTk4OkpOT0dLS4lY+JycHQ0NDMBgM6OjogMPhQG5u7h8FKKGhoSgpKcGFCxdgNBrhcDiwdOlSnDlzBjab7a8DlAMHDsBgMMBsNqO9vR3v3r0Dj8eDUCiEXC6HQqFw61mJRCKUlZVBo9Ggvb0dJpMJAQEBWLhwITIzM13lkpOToVKpoNFo0NDQAD6fD4lEgmPHjnFmCg4MDIRKpUJ5eTnq6upcz4EzQNm4cSN6e3vR1NSEqqoqOBwOrF+/HikpKQB+ZMVUq9Worq6GyWSC0WjErFmzIBAIsGHDBs5tp5Ph0KFDWLBgAa5fv45r165BIBBAoVBAIpHAYDBwLmAdbWhoCC0tLfDz88PatWt/WzYjIwNWqxU6ne6PAhQA2LRpEwICAlBZWYn6+npX5tQdO3ZAoVCMO928p+5HeHg4pFIpmpubsXv37jGjADweD8ePH0d5eTn0ej2uXr2KiIgI5OfnY/78+ZxTGjExMbh06RKqq6vR2toKq9UKX19fhISEYPXq1W7bsT3VHk4RERFQq9XQarW4e/cubty4AR6Ph+DgYIjFYrfs0BMpn56ejq9fv+LRo0d48uQJ7HY7BAIBMjMzObc9O0eZNm/ePKFrID/M+P79+/eprgQhhHhaXV0dTp48iX379k2LHuzr16+RnZ2N1NRUKJXKSf1uk8mEvXv34vDhw1MWaP5sKtvDE0ZGRpCdnY3w8PA/zp79f0drUAgh09rAwAB+7mf19/ejoqICM2fOxKpVq6aoZtxYlnXb1js8PIxz584B+HEswWRbuXIlkpKSUFFR8ctkdP8Vb2wPT6ivr8ebN2+wc+fOqa7KtEVTPISQae3KlSu4f/8+xGIxgoKCYLPZYDAY8OnTJ2zZssVt2H2qWSwWnDhxAlKpFKGhoRgcHHQd7CmRSJCWljYl9SooKEBDQwP6+/sntc28tT3+1owZM1BYWMiZ5I6MD03xEEKmtba2Nmi1WnR3d4NlWTAMg8WLF0Mul3OeQDzVXr16BbVaDavV6tptFRkZ6Tp9+f+W0Ivag/wKBSiEEEII8Tq0BoUQQgghXocCFEIIIYR4HQpQCCGEEOJ1KEAhhBBCiNehAIUQQgghXocCFEIIIYR4HQpQCCGEEOJ1KEAhhBBCiNehAIUQQgghXucfxWsopbhbPnAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 135.0 deg to 150.0 deg\n", - "Modulation: 0.309 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.018\n", - "Best fit polarization angle: 115.465 +/- 0.373\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTaUlEQVR4nOzdd3hT5dvA8W/SvehiU1bZGwQrq1D2FJUhspGlbBRFwa3wQ5zgQkG2yh6CTEU2ssveq8wCbWnpXjnvH3l7aGg6aXuS9v5cFxfJc56Tc58kTe486+gURVEQQgghhLAgeq0DEEIIIYR4kiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQliI69evo9PpGDx4sNahCCAgIACdTpfnx/n444/R6XTs3Lkzz4+VFRUqVKBChQpahyGEJCgic+fPn2fs2LHUrl0bd3d37O3tKV26NF26dGHevHnEx8drHWKeGTx4MDqdjuvXr2sdilnz5s3jtdde47nnnsPZ2RmdTsf777+f6X5//fUXAQEBuLu74+rqynPPPceiRYsy3GfRokX4+fnh6uqKu7s7AQEB/PXXX2brXrp0iS5duuDl5UXZsmUZM2YMkZGRZuv279+fihUrEhUVlfkJp5KS0KX+Z2trS4kSJejSpQubN2/O1uOJp/f777+rr8W2bdsyrBseHs6HH35I/fr1cXV1xcHBgTJlytC4cWMmTpxIYGBghvsPHz4cnU6Hs7Mz4eHh6dZLSQBT/un1eooUKUL58uXp3LkzM2bM4Pbt2zk5XZHHbLUOQFi2Tz/9lE8++QSDwUCTJk0YNGgQrq6u3Lt3j507dzJs2DBmz57NkSNHtA61UJo4cSIRERF4enpSunRprly5kuk+P/zwA2PHjsXb25v+/ftjb2/PqlWrGDx4MKdOneKrr75Ks89bb73F119/jY+PD8OHDychIYFly5bx/PPP8/333zNmzBi1bnR0NG3atCE6OpqBAwdy69YtfvzxR+7du8fKlStNHnfjxo38/vvv/P3337i6uuboOXB3d2fChAkAxMXFceLECTZt2sSmTZuYNWsW48aNy9Hj5pcxY8bwyiuvUK5cOa1DeWpz5sxBp9OhKApz5syhffv2ZuvduXOHZs2acf36dXx9fenXrx9Fixbl4cOHHD16lJkzZ+Lk5ESDBg3M7h8ZGcmyZcvQ6XTExsby22+/mbwHzWnZsiUBAQGA8T169+5d9u3bx+bNm/noo4/4+OOPeffdd5/q/EUuU4RIx7Rp0xRAKVu2rHLgwAGzdTZs2KAEBATkc2T5Z9CgQQqgXLt2Lc+Pde3aNQVQBg0alOV9Nm/erFy/fl1RFEVZsGCBAijvvfdehsdwcHBQvLy8TM4pLCxMqVSpkgIo+/fvN9ln3759CqBUqlRJCQsLM3ksLy8vxcHBweSxli1bpgDKrl271LLBgwcrgHLv3j21LDw8XClTpowydOjQLJ/vk+cCKOXLl0+zbf78+QqguLi4KNHR0Tl6/JYtWyqF8SOyfPnyZp/TzJw/f14BlLZt2yoNGzZU7OzslODgYLN1hw4dqgDKkCFDFIPBkGb7nTt3lKNHj6Z7rJ9//lkBlDfffFOxt7dX6tatm27djz76SAGUjz76KM02g8GgrFq1SvHy8lIAZfr06ZmfqMg30sUjzLp+/Toff/wxdnZ2bNq0ieeee85sva5du7Jly5Y05StWrKBFixa4u7vj5OREnTp1mD59utnuoJQ+70ePHvHmm29SoUIF7Ozs+Pjjj7O0HYzdUIMHD6Zs2bLY29tTokQJ+vbty4ULF8zGHRMTw4wZM2jUqBFubm64urpSo0YNxo0bx7179wDQ6XRqt0fFihXVJuIn++fDwsKYPHkyNWrUwMnJCXd3d9q0aZNuE3dkZCRvvvkmPj4+ODo6Ur16db755hsMBoPZ+hnp2LEj5cuXz3L9+fPnEx8fz5gxY0zOw9PTkylTpgDw888/m+yTcv+9997D09NTLa9QoQKjR48mPj6eBQsWqOVBQUEA+Pn5qWUpt1O2gbH1B+Drr7/OcvxZNXjwYFxcXIiOjubMmTNq+fbt2+nYsSNeXl44ODhQtWpV3n33XSIiIrL0uAkJCfzwww907tyZ8uXL4+DggJeXF23btk23Symz96+5MSgp41/S+5fSEpAiKSmJn376icaNG1OkSBGcnZ1p0KABP/zwg9n3laIo/PDDD9SqVQtHR0fKlCnDmDFjsvw8mDN37lwAXn31VQYPHkxiYiILFy40W3f//v0AjB071uw4n1KlSvHMM89keCy9Xs+ECRN4/vnnOXnyJAcPHsx2zDqdjh49erBq1SrA2GJ89+7dbD+OyBvSxSPMWrBgAYmJibzyyivUrl07w7oODg4m96dMmcL06dMpWrQoffv2xdXVlc2bNzNlyhS2bt3Ktm3bsLe3N9knISGB1q1bExYWRvv27SlSpAgVK1bM0vYtW7bQvXt3EhMTef7556lcuTK3bt1izZo1bNy4kR07dph82D18+JBWrVpx4sQJqlWrxpAhQ7C3t+fKlSssWLCA7t27U6JECT766CPWrVvHiRMnGD9+PB4eHgDq/2D8wg0ICOD69ev4+/vTsWNHoqOj+euvv+jYsSO//PILw4cPV+vHx8fTpk0bDh8+TL169ejXrx/h4eF89tln7Nq1K1uvUU78+++/gDGxeVKnTp1M6mR1n88++4x///2XTz75BEDtqjh69CjNmjUDULsAU5Kpf/75h3nz5rFhwwbc3d2f+rzMURQFQP0C/OWXXxg5ciQuLi706tWL4sWLs3PnTmbMmMGGDRvYt2+fyWtrTlhYGOPHj6dp06a0a9eOYsWKcffuXTZs2EDnzp2ZO3cuw4YNS7NfZu/vJw0ePDhNEgKwZ88e/v33X5ydndWylPf91q1bqVatGn379sXR0ZEdO3YwduxYDh48yJIlS0weZ8KECXz33XeUKlWKESNGYGdnx59//snBgwdJSEhI8/eZmYSEBBYtWoS7uzsvvfQSsbGxTJw4kV9//ZVJkyalSUK8vb0BuHjxIvXr18/WsQIDAzl69Cjt2rWjbNmyDB48mNWrVzNnzpx0f0hlplWrVjRv3py9e/eyZs0aRo8enaPHEblM6yYcYZlat26tAMrcuXOztd/+/fvVbqG7d++q5YmJiUrXrl0VQJk2bZrJPuXLl1cApU2bNkpUVFSax8xoe1hYmOLh4aF4e3srZ86cMdl26tQpxcXFRWnQoIFJeZ8+fRRAef3115Xk5GSTbZGRkUp4eLh6P7MunpYtWyo6nU5ZunSpSfnDhw+VevXqKY6OjibN3CndZt27dzc59tWrVxVPT89sd/GklpUunqJFiyqAEhISYna7i4uLAqjdIlFRUQqguLq6mq3/4MEDBVCKFy+ulkVGRio+Pj5K0aJFlQkTJig9e/ZUzzlle4UKFZR+/frl6DxTZNTFM2/ePLWLJyYmRrl+/bpib2+vuLm5KefOnTOpO3LkSAVQhg8fblJurosnLi5OuXnzZprjhYeHK7Vq1VI8PT2VmJgYk22Zvb9TuiB27NiR4fmeOHFCcXNzU4oWLapcvnw5zf5jxoxRkpKS1PKkpCRlyJAhCqCsW7dOLU/dZRcaGqqWx8bGKo0bN073Oc3I0qVLFUAZMWKEWtajRw8FUP7555809b///nsFUNzc3JS3335b+fvvv9N9Tz7ptddeUwDljz/+UBTF+NlSsmRJxcXFRYmIiEhTP6MuntTef/99BVAGDhyYpThE3pMERZhVo0YNBVA2b96crf2GDRumAMovv/ySZtuFCxcUvV6vVKxY0aQ85QP8+PHjZh8zo+0zZ85UAOWHH34wu++ECRMUQE1e7t27p+j1eqVUqVJmvyyelFGCcvz4cQVQevbsaXbfdevWKYDy448/qmWVK1dW9Hq9yRdMipQP0rxMUOzs7BRASUxMNLu9dOnSCqDcuXNHURRFuX37tgIoZcqUMVs/ISFBARR7e3uT8vPnzysdO3ZUPDw8lNKlSyuvv/66+uUxevRopUSJEkpISIgSFBSkdO3aVXF0dFRcXV2VAQMGmP2SMSclQXF3d1c++ugj5aOPPlLeeecdpVOnTgqgAMqsWbMURVGUqVOnKoAyefLkNI8TFhamuLm5KY6OjkpcXJxant0xKF9//XWasTeKkvn7OysJyu3btxUfHx/F0dFR2bdvn1qenJyseHl5KSVLljT7mj58+FDR6XRKr1691LKUv9H58+enqb9jx44cJSgpP2hSj1/asGGDAigvv/xymvoGg0GZPHmy4ujoqL5WgFKhQgVl2LBh6T5XUVFRipubm+Lu7q7Exsaq5RMnTlQA5aeffkqzT1YTlNmzZyuA0qlTpyyetchr0sUjctWxY8cAaN26dZptVatWxcfHh2vXrhEREWHStO/o6EjdunXTfdz0tv/3338AnDhxwmRMSoqLFy8CcO7cOWrWrMnhw4cxGAy0aNECFxeXbJ1beseOiIgwe+wHDx6oxwbj2JPLly9TtmxZKlWqlKZ+QECA2k1i7apVq2Z2TMaePXv46aefWLFiBV5eXrRr14779+/zxx9/EBUVxdixY4mNjU0z2ycjERER6vNmY2ODl5cXnTp1YsyYMXTu3BnI+H3p6elJgwYN2L17N+fPn6devXoZHu/MmTN8+eWX7N69m7t37xIXF2ey3dyU1cze3xmJioqia9eu3L59m6VLl9K0aVN128WLFwkLC6NKlSpMnTrV7P5OTk7qexAePxctW7ZMU7d58+bY2NhkK77Lly+zY8cOqlWrRpMmTdTyjh07UrJkSdatW0dISAhFixZVt+l0Ov73v/8xadIktm7dyoEDBzh27BgHDx7k119/ZcGCBcyePdukexRg2bJlREZG8tprr+Ho6KiWDx48mK+//pq5c+cycuTIbMWfQnmiS1BoTxIUYVapUqU4d+5cttcHSBlkV6pUqXQf98aNG4SHh5skKMWLF8/wgyG97aGhocDjAXrpSVljI2W9hDJlymRYPytSjv3333/z999/Z3rslOemRIkSZuuVLFnyqWPKjLu7OyEhIURERKjjAFJLiTHltUn5P73BkynlmY3dAIiNjWXo0KF0796dnj178vfffxMYGMiSJUt46aWXAOPg7A8//JArV66YTeLMKV++fKbr1GTlfQlkuJ4GwIEDB2jdujVJSUm0adOGbt26UaRIEfR6PcePH+fPP/80OxA8s/d3epKTk+nduzeBgYFMnz6d3r17m2xPeQ9eunQpw+Q29RozGb0PbW1tTRKJrJg7dy6KoqRZYNDW1pZ+/frx9ddfs3DhQt566600+3p4eNC7d2/1vKKjo/n888+ZOnUqY8eOpVu3biZxzpkzByDNsWrXrk3Dhg05evQoR44coVGjRtk6BzBOfQYoVqxYtvcVeUNm8QizmjdvDhhnPWRHyhdacHCw2e0pI+SfHBiZ2Yd3ettTHufEiRMoxi5Ls/8GDRoEPP4izY2FmVKOPWvWrAyPnTLDJaV+yiyhJ6X3nOWmatWqAY9bllK7e/cu0dHR+Pj4qIMwXVxcKFOmDFFRUWZnN1y6dAkwto5l5oMPPiA0NJQff/wReNyylHoAc8OGDQE4e/Zsdk4rUzl9Xz5p6tSpxMbGsm3bNjZv3szMmTP59NNP+fjjjzMcoJnTX+Vjx45l06ZNDB8+3OwaHSnxvvTSSxm+B69du5ZmH3Pvw6SkJEJCQrIcX+qZOpMnT04z2yhlhlZmPyBSuLi48Nlnn9G8eXPi4+PZt2+fuu3kyZMcOnQIgCZNmqQ51tGjR4HHSUx27dixAyDHA21F7pMERZj16quvYmdnx+rVqzP9skj9izFlYSVzy3ZfvnyZW7duUbFixSz94s6Kxo0bA8aug6zw8/NDr9eze/duoqOjM62f0tydnJz81Md2c3OjcuXK3L592+yCavmx1HlKF4e5qeEpXTJPdoPkZJ8nHTp0iJkzZzJr1qw0v9xTv3+e7C7JLRm9L8PDwzl+/DiOjo7UqFEjw8e5fPkyXl5eZmfY5PYsrK+//prZs2fTvn17fvrpJ7N1qlevjoeHBwcOHCAxMTFLj5uSEJqLd+/evWbf6+n5888/uX//PtWqVWPo0KFm//n6+nLx4sVsPT9ubm7A424XeJx4BAQEpHssJycnli5dmu1Vif/991/27duHk5OT2ponLED+DXcR1iZlxkmFChWUw4cPm62zefNmpVWrVur9lBkCFSpUUO7fv6+WJyUlKS+88IICKFOnTjV5jMwWhspoe0hIiOLh4aEUK1ZMOXjwYJrtycnJaQYf9u3bN8uzeN5++20FUP7991+zx/f391f0er0yb948s9tPnjxpsjhZynPao0cPTWbxXL16Nc8XantSfHy8UrNmTaVLly4m5X///bcCKJ988olalrKgm7lBxE/KaBaPubp2dnaKu7u7cunSJZNtY8aMUQBl2LBhJuXmBsl26NBBAZQTJ06YlP/666/qQM8FCxaYbMvs/W1ukOzq1asVvV6v1KlTJ9NBwx988IH6fn5yBpGiGBc9Sz3Dbe/evbk2i6ddu3YKoCxfvjzdOinPTd++fdWyL774Qjl9+rTZ+nv27FEcHR0VW1tb5fbt24qiKEpMTIzi4eGh2NjYqGXm9O/fXwGUOXPmqGWZLdS2evVqdaG2L774IrNTFvlIEhSRoU8++UTR6/UKoDRt2lQZN26cMmXKFGXo0KFKlSpVFEBp1KiRyT6TJk1Sp56OGjVKefvtt5XatWsrgNK8eXMlPj7epP7TJCiKoij//POP4ubmpuh0OqVt27bK+PHjlQkTJig9evRQSpcurTg4OJjUDwsLU+rWrasASvXq1ZXx48crb7/9ttKzZ0/Fzc3N5Itiy5Yt6of5pEmTlM8++0z5/vvv1e03b95Un4d69eopI0aMUCZNmqT07dtXPef//vtPrR8XF6c8++yzav1JkyYpI0aMUDw8PJRu3bplO0GZO3euMmjQIGXQoEFKs2bNFECpW7euWmZuZczvvvtOARRvb29l1KhRyoQJExQfHx8FUCZOnGj2OG+++aYCKD4+PsqECROUUaNGKd7e3gpg8nyY89577ynu7u7KrVu3TMoNBoPSsGFDxcbGRhkyZIjy8ssvK4DJjJOMZCdBURRF+fHHH9WprUOHDlXeffddpUmTJur7IPWXtaKYT1A2b95s8hhvvvmm0qJFC0Wv16vTqXMjQXFyclL4/5VWU2Yopf6X+hgJCQnqe6dMmTLKgAEDlHfffVcZMmSImkA/+T4YO3asAiilSpVSxo4dq7z55ptKpUqVlEaNGimlSpXK0nN69epVRafTKUWLFk3zN51aZGSk4urqqjg4OKjPcb169dTnffDgwcrkyZOVcePGKW3atFF0Op0CKF9//bX6GCnJ9/PPP59hTDt37kzzmZTy/LZs2VJ9/iZNmqT0799fqVixogIoDg4OyowZMzI9Z5G/JEERmTp79qwyZswYpVatWoqbm5tiZ2enlCxZUunYsaPy66+/mkzNTLF06VKlWbNm6gdTzZo1lalTp5pMDUzxtAmKohi/rEaPHq1UrlxZcXBwUNzc3JRq1aop/fv3V9auXZumflRUlDJ16lSlTp06ipOTk+Lq6qrUqFFDGT9+vEmLh6IYp49Wr15dsbe3N/uF+OjRI2XatGnKM888o7i4uCiOjo5KhQoVlM6dOyu//PJLmunMERERyhtvvKEmT9WqVVO++uor5cqVK9lOUFKmQaf3r2XLlmb3W79+vdKiRQvF1dVVcXZ2Vho1aqQsXLgww2MtWLBAadSokeLs7Ky4uroqLVq0UDZs2JDhPoGBgYqtrW266+ncvHlTeeGFFxQXFxfF3d1dGTRoULanGWdnSuzWrVuVdu3aKR4eHoq9vb1SqVIl5e2331YePnyYpm5604w3bNigPPfcc4qrq6vi7u6utGvXTtm1a5f6JZobCUpGr6m519VgMCiLFy9WWrdurXh6eip2dnZK6dKllWbNminTpk1Tbty4kab+999/r76vS5UqpYwaNUoJDw/P8lL3U6ZMUQDljTfeyLTu8OHDFUD55ptvFEVRlGPHjimfffaZ0qpVK6VChQqKo6Oj4uDgoPj6+ip9+/ZV9uzZY7J/06ZNFUD5888/Mz1W1apVFUAJDAxUFOXx85vyT6fTKa6urkq5cuWUTp06KZ9//nma5FlYBp2ipOrkE0IIIYSwADJIVgghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcq0xQ4uLiuHDhQp4tiy2EEEIIbVllghIUFMTw4cMJCgrSOhQhhBBC5AHb7O4QExPDsmXLOHv2LOfOnSMyMpLJkyfTqVOnLD/GkSNHWLJkCRcvXsRgMFC2bFn69OlDmzZtshuOEEIIIQqgbCcoERERLFy4kBIlSlC5cmUCAwOztf+mTZuYMWMGjRo1Yvjw4djY2HDjxg3u37+f3VCEEEIIUUBlO0Hx9vZm7dq1eHt7c/78eUaMGJHlfe/evcu3335L9+7dGT9+fHYPLYQQQohCIttjUOzt7fH29s7Rwf78808MBgNDhw4FjN1FcikgIYQQQjwp2y0oT+Po0aOUK1eOAwcOMHv2bB48eICbmxsvvfQSQ4YMQa83ny+FhIQQGhqq3pfBsUIIIUTBlq8Jyq1bt9Dr9Xz++ef06dOHSpUqsXv3bhYvXkxycjKvvfaa2f3Wr1/PwoUL8zNUIYQQQmgoXxOU2NhYDAYDr732Gv369QMgICCAyMhIVq1axYABA3B2dk6zX7du3WjWrJl6PygoiKlTp+Zb3EIIIYTIX/maoDg4OBAbG0vbtm1Nytu0acPBgwe5ePEi9evXT7Nf0aJFKVq0aD5FKYQQQgit5etCbSmDaz09PU3KU+5HRkbmZzhCCCGEsFD5mqBUq1YNMA56TS3lvoeHR36GI4QQQggLlWcJSkhICEFBQSQlJallrVu3BmDjxo1qmcFgYPPmzRQpUkRNYIQQQghRuOVoDMrq1auJiopSp/7u27dPXQm2R48euLq6MmfOHLZs2cLy5cspVaoUAM2bN6dhw4b89ttvhIeHU7lyZfbs2cPJkyd56623sLe3z6XTEkIIIYQ1y1GCsnz5coKDg9X7u3fvZvfu3QC0b98eV1dXs/vpdDqmTZvGr7/+yr///suWLVsoW7Ys77//Pu3bt89JKEIIIYQogHSKFS7leuHCBYYPH87cuXOlW0gIIYQogPJ1kKwQQgghRFZIgiKEEEIIiyMJihBC5LGYh3EcXXWJmIdxWocihNWQBEUIIfJYTHg8gWsuExMer3UoQlgNSVCEEEIIYXEkQRFCCCGExZEERZglfeZCCCG0JAmKMEv6zIUQQmhJEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCEKEFlkURQUkqAIIUQBIossioJCEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBsTIxD+M4uuoSMQ/jtA5FCCGEyDOSoFiZmPB4AtdcJiY8XutQhBBCiDwjCYoQQgghLI4kKEIIIYSwOJKgCCGEyDYZDyfymiQoQgghsk3Gw4m8JgmKEEIIISyOJChCc9JULIQQ4kmSoAjNSVOxEEKIJ0mCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLk+0EJSYmhvnz5/PWW2/RpUsXWrRowebNm3N08C+++IIWLVrwzjvv5Gh/IYQQQhRM2U5QIiIiWLhwIUFBQVSuXDnHBz5//jybN2/G3t4+x48hhBBCiIIp2wmKt7c3a9euZeXKlYwcOTJHB1UUhVmzZtGhQwe8vLxy9BhCCCGEKLiynaDY29vj7e39VAfdunUr165dY/jw4U/1OEIIIYQomPJ9kGxMTAw///wz/fv3f+pERwghhBAFk21+H3DhwoU4ODjw8ssvZ3mfkJAQQkND1ftBQUF5EZoQQgghLES+Jig3b95k1apVfPjhh9kaHLt+/XoWLlyYd4EJIYQQwqLka4Ly3XffUbt2bQICArK1X7du3WjWrJl6PygoiKlTp+ZydEIIIYSwFPmWoBw9epSDBw8ydepU7t69q5YnJycTHx/P3bt3KVKkCC4uLmn2LVq0KEWLFs2vUIUQQgihsXxLUO7fvw/A+++/n2bbgwcP6N27N2PGjMnW2BQhhBBCFEx5lqCEhIQQHR1NmTJlsLW15ZlnnmHatGlp6n355ZeULFmSAQMG4Ovrm1fhCCGEEMKK5ChBWb16NVFRUerMmn379qktJD169MDV1ZU5c+awZcsWli9fTqlSpShRogQlSpRI81jff/89np6e+Pv7P8VpCCGEEKIgyVGCsnz5coKDg9X7u3fvZvfu3QC0b98eV1fX3IlOCCGEEIVSjhKUFStWZFpnypQpTJkyJVceSwghhBCFS76vJCuEEEIIkRlJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQhVbMwziOrrpEzMM4rUMRQjxBEhQhRKEVEx5P4JrLxITHax2KEOIJkqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEHnIYFB4cDUCgAdXIzAYFI0jEsI62GodgBBCFFTXDgVzYPE5osOM1/rZN+8Mx9deofHAGlT0K6lxdEJYNmlBEWnILz4hnt61Q8FsnxmoJicposPi2D4zkGuHgjWKTAjrIC0oQhUaE8r23XvZ8/cRoqNjsXOz5crv5/BdV5m2A/zkF58QWWQwKBxYfC7DOgeWnKN8oxLo9Tq1LMmQxKXQS1wMvUhUQhTJSjIlXErg6+lLZa/K6HS6DB5RiIJFEpRC7nLYZRYELmDDxQ2cun/KWFjk///9P52io+zaSrx06UUmdh1HWfeymsQqhLUIPh+WpuXkSdGhcQSfD8O7qisrz65k1dlVbLuyjdikWLP1izkXo61vWwbWG0g733bY6G3yInQhLIYkKIXU6funee/f99hwYQMKGXfhKDqFG46XmXX5K76f9Q29avbis1afUcW7Sj5FK4R1iQ2Pz7ROoi6BmYHfsHjTPO5F38u0/oOYByw9vZSlp5fi6+nLxy0/pm+dvpKoiAJLEpRCJjI+knf/eZefj/6MQTGo5Tp0lI+tQoW4KhRLLIWdYk+CLo4Qu3tcdjrHLcerABgUA8vPLGf1udVMbDKRjwM+xtHWUavTEcIiOXk4ZLj9pMshlhb/mZDLpuNQSriUoGWFltQqVgsvJy8A7kbe5cS9E+y9sZeIeOPYsKsPrzJw3UBmHpzJvG7zqF+yPpB2/JhX+SImXUhCWBNJUAqRg7cO0m9NP648vKKW+RTxYcyzYwhI7MipuXfS3TfM9gF73bexr9QWwhJDSTIkMWPfDDZc3MDynsupXbx2fpyCEFahZHUvXLwc03TzJOjiWVnsV3Z6blTL9Do93Wt0Z5zfOJqVa4ZeZ37uQkJyApsvbeb7Q9+z/dp2AI7dPUajOY34tNWn9LYfzKElF2TGkCgwZBZPIbHkxBL8F/iryYmLnQvT20zn0thLvNP8HcqW8Mlwf6+kYnQL7cd/XY7wQYsPsNPbAXD2wVka/9qYVWdX5fk5CGEt9HodjQfWMCkLtwnji3JvmyQnrSu25sTrJ1jZayX+5f3TTU4A7G3seaH6C/wz8B92DNqh/ihIVpJ579/36LmyByHhYSb7yIwhYc0kQSngFEXhox0fMXDdQBINiQA08WnCiddP8G7zd9XumZRffBlx8Xakcp3yfNrqU469dkxtVo5OjKbXyl58d/C7PD0XIaxJRb+StJnQABcvR27bBzG9/BsEOV4GwFHvyC9df+GfAf/kqPUxoEIAR0cc5X3/99Fh7MI57naAr8q+yyOb8DT1Dyw5J8sFCKsjCUoBpigKb259k093f6qWjWw0kt2v7qaSVyWTuuZ+8T2p8YAaan927eK12T9kP/3r9le3j98ynmm7p6Eo8kEoBBiTlGpTPPimyruE2T0AoJx7OQ6NOMSIhiOeatqwvY09n7X+jCX+y3BOdgXghuNlZpR7izDbEJO6KTOGhLAmkqAUUIqiMOnvScw8OBMwDoL9tsO3/Nj5R2z15ocepf7Fl5qLtyNtJjRI04/tZOfE4hcX82GLD9Wy93e8z9TdU3P3ZISwUmfun6HD7+15lGQcuFrXqx4Hhh6gTok6uXaMxo7NeffGV3gmFgXgvv0dvvV5j0ibCJN6WZlZJIQlkQSlgJq2Zxpf/feVen9et3lMaDwh019sFf1K0vu7AJoNrQVAs6G16D0rIN1Bdjqdjk9afcKX7b5Uyz7c+SFzj859+pMQwopdfXiVNovbEBJjbM2oFFuDPzv8RSm3Url6HCcPB0ollOOdG19RLMH4dxrscJOZPu8To482qSeENZEEpQBaemopH+z4QL0/p+scXm3wapb31+t1FPN1B6CYr3uWpim+1fQtkyTl9Y2vs/7C+mxEnfdiHsZxdNUlYh5mvICWEE8rIi6Crn90Vdc3qe/dgHG3PsXVzi3Xj5Uyfsw7qThv3PofHoneANxwvMIvpaeTTDIu3o6UrO6V68cWIi9JglLA7L+5n1f/fJyMzGg7g+ENh+fLsd9q+hZvNn4TMK6X0m9NP84+OJsvx86KmPB4AtdcJkaaukUeSjIk0XtVb86FGJe6r160OivarsHZ4JInx0s9fqxYYknevDUN1yTjUtBnXY6xqtg8k/FjQlgLSVAKkHtR9+ixogfxycYv4GENhvF207fzNYYv239J71q9AYhKiOKl5S8REReRyV5CFByT/5nM1itbAfB28uavPn/h6eCZp8dMPX6sVEI5Rt55DxvFuMLsP17r2Gm3OU+PL0RekASlgEg2JNNvTT+Co4zrHbSq0IqfuvyU7xcX0+v0zH9hPvVK1APgYuhFBv85WGb2iEJh48WN6tgvO70da3qvSTNjLq+kHj9WNbYOH1R5PFh91KZRnLl/Jl/iECK3SIJSQEzdPVVdXbKUaymW9VyGnY2dJrE42zmzpvcaPB2NvxrXnV/Hz0d+1iQWIfLLrUe3GLRukHr/q/Zf0aJ8i3yNIfX4sdFNR/J6w9cBiEuKo/eq3sQmmr8QoRCWSBKUXKD14Mv/bv6nrnWi1+lZ2mMpxV2KaxJLCl9PX5a8tES9P3HbRM49yPjy80JYK4NioP+a/oTGhgLwQrUXGOs3VuOo4JsO31CnuHFK85kHZ3hz65saRyRE1kmCkgu0HHwZmxjL4D8Hqxf++7jlx7Ss0DLf4zCnS9UujH52NACxSbH0W9OPhOQEjaMSIvf9eOhHdgXtAowLsc1/YX6+d6+a42TnxLKey3CydQLg56M/s/XyVo2jEiJrJEGxch/s+ICLoRcB8Cvjx2T/yRpHZOrLdl9So6hxhkFgcCCf7/1c44iEyF1Xwq7w7vZ31fsLX1ioXonYEtQsVpNvO3yr3h/x1wgi4yM1jEiIrJEExYrtv7mfb/77BgAHGwcWvLAg3VViteJk58Tv3X/HRmecUTBtzzTOh5zXOCohcodBMTB0/VBiEmMAGNVoFK0qttI4qrRGNBxB64qtAbgRcYPJ2y3rh4wQ5kiCYqUSkhMYun4oCsbZMZ+2+pSaxWpqHJV5DUo14K2mbwHGuEdsGKF2SQlhzX458ovatVPBowIz2s3QOCLzdDodc5+fi7OdMwA/Hv6RPUF7NI5KiIxJgmKlfjk3W22J8Cvjx8QmEzWOKGMftvwQX09fAPbc2MO8Y/M0jkiIp/Mg+gFT/p2i3p/XbR6u9q4aRpQxX09fprWept4f8dcIGRMmLJokKFYozPYBX538AjDO2pndZTY2ehuNo8qYs50zv3T9Rb0/6Z9JPIh+oGFEQjydydsnEx4XDsCgeoPULhRLNtZvLM+VeQ6A8yHn+f7g9xpHJET6JEGxQiuKzSUmyXgRsJGNRvJMqWc0jihr2vq2ZUDdAQCEx4Xz4Y4PM9lDCMt08NZB5gUaWwGLOBRhRlvL7Np5ko3ehh87/4gO4wyjT3Z9oi7uKISlkQTFyuy6s5OjRfYCUMy5GJ+1+kzjiLLni3ZfqM3gc47N4eS9kxpHJET2JBuSGb1ptHr/04BPKeFaQsOIsqdh6YYMe2YYAJEJkbz7z7uZ7CGENiRBsSKJSUm8t//x6PvP287A0ylvr/GR20q6luQ9//cA4wyIN7a+IcvgC6uy5OQSjt49CkDt4rUZ7Tc6kz0sz7TW0/Bw9ABg0YlFHLh1QNuAhDBDEhQrce1QMOPeeZ8LMcbVWMvHVcZhXjmuHbK+5tkJjSdQ0aMiAP9e+5fNNzdqHJEQWRObGMsHOz5Q73/X8TuLm9qfFcVcivFpwKfq/be2vSU/FITFkQTFClw7FMzmWQdY7vR45kvP+0OJDUtg+8xAq0tSHG0d+ar9V+r9T499TDLJGkYkRNZ8d/A7bj26BUDXql0tcs2TrBr57EiqF60OwL6b+/jr4l8aRySEKUlQLJzBoHBg8Tm2e/7JQ7sQAOpEPUv12HpqnQNLzmEwWNevn5eqv6ReSO3Ko8vsd/9b44iEyFhoTCjT904HjLPnPm9j3asi2+pt+V/r/6n3J2+fTLJBfigIyyEJioULPh9GcMQ9NnutAECn6OnxYIhJnejQOILPh2kRXo7pdDqmt5mu3t/g/Qe3Lt+zukRLFB7T9kwjIj4CgMH1BlOreC2NI3p6L1Z/kcY+jQHjxQSXnFySyR5C5B9JUCxcbHg82zzXEGtjXEq7eUQ7yiSUN1vP2pS660uDeOOH40O7EP637kuWj9tpdV1WouC79egWPx7+EQAnWyc+afWJxhHlDp1OZ9IS9MGOD4hL0uaq7EI8SRIUCxfjFMkOzw0A2Bps6Rraz2w9Jw+H/AzrqV07FMz2mYF0uzsAnWJck2Gz1wpCwsOsclyNKNim75murro67rlx+BTx0Tii3NOyQku6VOkCGBOxuUfnahyREEbZTlBiYmKYP38+b731Fl26dKFFixZs3rw5S/sePXqUzz//nL59+9KuXTt69+7NjBkzCAkJyXbghcXiB78Srzf+ovGP6IhXUtE0dVy8HSlZ3XKunpqZlHE1AD7xFXk2siUAUbaP2O7xJ2Cd42pEwXQz4ia/Bv4KgIudi3pdqYJkauup6u3P930urSjCImQ7QYmIiGDhwoUEBQVRuXLlbO37888/ExgYiL+/P+PHj6dNmzbs2LGDYcOGERoamt1QCrz70ff56chPANga7OgU9rLZeo0H1ECv1+VnaE8l+HwY0WGPPwBfCOmPXjG+Ff/xWkecLsYqx9WIgunzvZ+rrSdj/cZS1DntjwRrV79kfV6o9gIAdyLvyLWyhEXIdoLi7e3N2rVrWblyJSNHjszWvqNHj2bp0qWMHDmSrl27MmLECD7//HPCwsJYs2ZNdkMp8L7Y94V6Gfd+FQemaVZ28XakzYQGVPQrqUV4OfbkeJniiaXxexQAQLRNJDs9N5qtJ0R+S9164mrvysSmln1RzqfxYcvHl574fN/nxCfJ35/QVrYTFHt7e7y9vXN0sPr166PX69OUFSlShKCgoBw9ZkF1L+oePx02tp442jryvx6f0vu7AJoNNc4caDa0Fr1nBVhdcgLmx8t0DuutjkXZ5rmWeF2c1Y2rEQXP9L3TC3zrSYpnSj3D81WfB4xjUeYHztc4IlHYaT5INiYmhtjYWNzd3bUOxaJ8e+BbYpNiAXit4WuUdiuNXq+jmK/xeSrm625V3TqplazuhYuXo0lZqYSyNIr0ByDSNpyDpbdb1bgaUfDcenSLX489bj15s8mbGkeU9z5q+ZF6O3VyJoQWNE9QVq5cSWJiIq1bp3+p8pCQEC5cuKD+K+itLRFxEcw+MhsAext7JjWbpHFEuUuv19F4YI005Z1De6u3t3mvJsEgTcxCO7MOzCLRkAjAmGfHFOjWkxQNSzdUZ/TcfHSTxScWaxyRKMw0TVCOHz/OwoULadWqFQ0bNky33vr16xk+fLj6b+rUqenWLQh+PvIzj+IfATCw7kBKu5XWOKLcV9GvJG0mNDBpSfFJqEij+GYA3IsPZkHgAq3CE4VceFw4vxz9BQAHGwcmNJ6gbUD5KPVYlK/2f4VBMWgYjSjMNEtQgoKCeP/99/H19eWdd97JsG63bt2YO3eu+u/999/PpyjzX1xSHDMPzgRAh463m72tbUB5qKJfyTTjan4aPVPd/vV/X8vS20ITPx/5mciESAAG1x9MCdcSGkeUf/zK+NGyvHHq/4XQC2y4sEHjiERhpUmCcu/ePSZOnIiLiwszZszA2dk5w/pFixalWrVq6r/y5dOupFpQLDmxhOAo4yJl3Wt0p6p3VY0jyltPjqt5tkwj2vq2BeDKwyv8eeFPLcMThVBcUhyzDs4CjD8SJjYpuDN30pO6W/mL/V9oGIkozPI9QYmIiGDixIkkJiby1VdfUbRowe/XzapkQ7LJh8E7zTJuWSqo3mryeCGsr/Z/lUFNIXLfbyd/M/mRUMW7isYR5b9OlTtRu3htAPbf3M++G/s0jkgURnmWoISEhBAUFERSUpJaFhsby6RJkwgJCeGLL76gbNmyeXV4q7T2/Fouh10GoFWFVjxb5lmNI9JG+0rt1Q/H/279x/6b+zWOSBQWBsXAl/u/VO8X1h8JOp3O5IeCtKIILdjmZKfVq1cTFRWlrv66b98+7t+/D0CPHj1wdXVlzpw5bNmyheXLl1OqVCkAPvvsM86dO0fnzp0JCgoymY3j5OSEv7//056PVfv2wLfq7cL6wQiPPxwH/zkYMLairOktC/mJvLf+wnouhl4EIKBCQKH9kQDQp04f3vv3PW5H3mb9hfWcDzlP9aLVtQ5LFCI5SlCWL19OcPDji7nt3r2b3bt3A9C+fXtcXV3N7nf5srF1YNOmTWzatMlkW8mSJQt1gnL49mG1paB28dq0r9Re44i01adOH6b8O4U7kXdYd34dl0IvFcqmdpG/UncpTmpasKb3Z5e9jT1vNH6Dt/42tqR88983zHl+jsZRicIkRwnKihUrMq0zZcoUpkyZku39CquUQXkA4/zGodNZ5yJsucXexp5xfuN4d/u7KCh8e+Bbfuryk9ZhiQLs6J2j7LtpHGtRq1gtOlbuqHFE2hvecDif7PqEyIRIfjv5G9PbTMfbOWcriQuRXZov1CaMF+dafmY5AN5O3vSv21/jiCzDa41ew9Xe2Bq36MQiHsY+1DgiUZB9f+h79fb458YX+h8JAEUcivBq/VcBiE2KZV6g8SKCBoPCg6sRADy4GiFXHhd5QhIUCzD78GySDMbBxCMajsDJzknjiCyDh6MHg+oNAiAmMYYFx2XhNpE3HsQ+YOnppQB4OnrSr24/jSOyHGP8xqDDmKz9ePhHLh24xfJxO9k37wwA++adYfm4nVw7FJzRwwiRbZKgaCwuKY6fj/4MgK3ellHPjtI4Issyxm+MevvHwz/Kwm0iTyy+tFC97szwZ4bjbJfx2kyFSRXvKnSu0hmAGxE3+Hb+z0SHxZnUiQ6LY/vMQElSRK6SBEVjf5z6g5CYEAB61uyJTxEfjSOyLNWLVqedbzsArj68yubLmzWOSBQ0SSSx4IKx60Kv08uPBDPGPTdOvb3dc3269Q4sOSfdPSLXSIKiIUVRTAbHTnhugnbBWLCxfmPV2z8c+kHDSERBdNRtL/dijb/8X6z+IuU9Cu5K1TnVzrcdld2Ms+guOp/ipsNVs/WiQ+MIPh+Wn6GJAkwSFA3tubGHk/dOAvBcmed4zuc5jSOyTJ2rdKaiR0UAtl7ZyoWQCxpHJAqSf1O1CIzzG5dBzcJLp9PRv8xg9f6/Hum3osSGy1XIRe6QBEVDs4/MVm+nbiUQpmz0Nox+drR6/8fDP2oYjShIAkOOcdXpPAB1S9SlRfkWGkdkufrW6IdTsnFszsEiO4m0iTBbz8nDIT/DEgWYJCgauR99n9VnVwNQ1LkoPWv21DgiyzakwRB14OLC4wuJjI/UOCJREKSMPQHjjwSZWpy+SrXLERBvHCybqE/gvyLb09Rx8XakZHWv/A5NFFCSoGhkfuB8Eg2JAAypPwQHW/nVkRFPJ0/61zGuDxOZEMniE4s1jkhYu7CYh6y9ZvyR4GZThFdq9dE4Isum1+uY2GG8en+XxyYUTAfENh5QA71ekjyROyRB0YBBMfDL0V/U+yMajtAwGusx2u9xN88vR39BUWS2gMiZa4eCefPDD4kzGKfLPhsSwIaJh2SabCbatG5OE+/mANy3v8N55xOAseWkzYQGVPQrqWV4ooCRBEUDWy9v5Xr4dQA6VOpAJa9K2gZkJeqWqEtjn8YAnLp/ioO3D2ockbBG1w4F88/MY2yzfzzQs0V4J1nLI4smtHo8Xm6X+yaaDa1F71kBkpyIXCcJigZSFmYDeL3R6xpGYn1ea/iaejt1K5QQWWEwKBxYfI5LTme463ADgMoxtSiT8HhqsazlkbEXq79IcZfiABx3+w9DqTjp1hF5QhKUfHYj4gZ/XfwLAJ8iPnSt2lXjiKzLy7Vext3BHYDlp5cTHheubUDCqgSfDyM6LI5dHo+vpt4yvLNJHVnLI2P2NvYMbTAUgGRdMksv/65xRKKgkgQln809OheDYgCMS2rb6nN0QelCy9nOmQF1BwDGi5f9dvI3jSMSuS3mYRxHV10i5mFc5pWzKTY8nkibCI657gXANakIDaOama0n0jf8meHq9XmWXFool6AQeUISlHyUmJzIr4G/AmCjs1F/hYjsea2RaTePDJYtWGLC4wlcc5mYPEgSnDwc2F/kH5L0xotzNn3UFjvF3mw9kb6KnhVpVboNADeibrDtyjaNIxIFkSQo+eivi38RHGUcgPdC9RcoU6SMxhFZp9rFa9O0bFMATt8/zX+3/tM4ImEtilfzYI/XFvW+f3jHNHVkLY+sGVz1VfV26nF1QuQWSVDyUUrrCcCIZ2Rq8dOQwbIiJ3YF7eSe7W0AakTXp2Ri2otzyloeWdPOpwMeid6A8cfXzYibGkckChpJUPLJ7Ue32XLZ+MutbJGytPVtq3FE1q1XzV54OHoAsOLMCh7GPtQ2IGEVUv9IaJfUzWSbrOWRPbZ6W/wjOgDGtZ0WnVikcUSioJEEJZ8sPL5QHRz7av1XsdHbaByRdXOyc2Jg3YEAxCXFyWBZkamw2DDWnlsLGC8vMWPGFJoNrQUga3nkULOIdupg2QXHF6ifcULkBklQ8oFBMTD/+HwAdOh4tcGrmewhsiL1Crwpz68Q6fnj1B/EJxsH3vav0x9HOweK+RqnrBfzdZdunRzwTipBy1IBAFx9eJVd13dpG5AoUCRByQe7ru/i6sOrALT1bUsFjwraBlRA1Cpei+fKPAfA8eDjBN4N1DgiYcnmBT6+MODQZ2QGXW7pW7m/elt+KIjcJAlKPjD5YJSpxblqSIMh6u35gfLhKMwLvBvI8eDjADxb+llqF6+tbUAFSKdyXfB09ARg1dlVebJ4Yl6ujSMslyQoeexh7ENWnzNeMdXLyYsXq7+obUAFTO9avXGydQLg91O/E5ckH2AirdTJq/xIyF2ONo70q9MPMI4HW3Z6Wa4fIy/XxhGWSxKUPPbHqT/UL83+dfrjYCsLQOUmd0d3etTsAcDDuIesv7A+kz1EYROXFMfvp4zLsTvaOvJK7Vc0jqjgSd1llrrFWIinIQlKHpN+77w3pL5084j0rTu/jodxxmnoPWv2xN3RXeOICp76JevToGQDAI7cOcLJeyc1jkgUBJKg5KHAu4EEBhsHbjYq3Yi6JepqHFHB1LJCSyp6VARg25VtsmCUMCFjwPJH6ud2QeACDSMRBYUkKHlIPhjzh16nZ3D9wQAoKLJglFBdD7/O9qvbAfD19KVF+RYaR1Rw9anTBwcbYxf2kpNLiE+S8SLi6UiCkkdS93s72TrRp3YfjSMq2AbVGyQLRok0Fh1fhILxYpJD6g9Br5OPvLzi5eTFSzVeAiA0NpQNFzdoHJGwdvLXmkf+PP+nOt1O+r3zXnmP8urlA64+vMruoN0aRyS0ZlAMLDhu7GrQoWNQ/UEaR1TwpW4plsGy4mlJgpJHFp9crN5+tb6sHJsfUq+JkvLFJAqvf6/9S1BEEAAdKnfAp0jaCwOK3NW6YmvKu5cHYOvlrdx6dEvjiIQ1kwQlDwRHBbP18lbAeGHAlhVaahxR4fBi9RfVCwiuPLOSR/GPtA1IaCr1WKTUM71E3nlyPJhcI0s8DUlQ8sDSU0tJVpIBGFB3gPR75xNHW0f61u4LQGxSLMtPL9c4IqGVyPhI1pxbA4CHowfdqnXLZA+RWwbWG6jeXnRiEYqiaBiNsGbyzZkHUnfvDKg3QMNICp/UF2JM/TqIwmXNuTXEJMYA8EqtV2SBxHzk6+mLfzl/AM6HnOfInSMaRySslSQouezkvZPqNT/8yvhRvWh1bQMqZBqWakjNYjUB2HtjL1fCrmgckdBC6uQ09S96kT8G1Xs8IFmm/YuckgQlly05sUS9PbCufDDmN51OZ/K8Sx944XMj4gY7ru0AoLJXZRr7NNY4osKnZ82eONo6ArD09FISkhM0jkhYI0lQclGyIVld+8ROb0fv2r01jqhw6le3n7omyuKTi6UPvJD5/eTv6tonA+sORKfTaRxR4ePu6M5L1Y1rooTFhrHx4kaNIxLWSBKUXLQ7eBd3o+4C0KVqF4o6F9U4osLJp4iPyZoo+27u0zgikV8URWHJycetmP3r9tcwmsLtycGyQmSXJCi5aMWVx5cZl+4dbaX+cFx8QgbLFhZH7x7lXMg5APzL+VPRs6LGERVebX3bUsq1FAAbL20kJCZE44iEtZEEJZfE6WLYeMO4tLOXkxedq3TWOKLC7aXqL+Fi5wLAijMriE2M1TgikR9SJ6OWNDjW2cOBBt0r4+xReGYT2ept6VenHwBJhiSWnlqqcUTC2kiC8pQMBoUHVyM46raP2GTjl2BBmNZo7R+oLvYu9KzZE4CI+Ai5LkghkJCcwNLTxi9BBxsHetXspXFEjzl7OtKwZxWcPR3z/lgW9Leb+vICMu1fZJckKE/h2qFglo/byb55Z/ivyHa1vK1dFw2jyh35+YGaV1JPdZRunoJvy+UtajfCi9VfLLTXv7Kkv93axWvzTKlnADhy5whnH5zVOCJhTSRByaFrh4LZPjOQ6LA4Qm3vccHlJAAlEsoQstC4XWirZYWWlC1SFjB+ed2Pva9xRCIvWWr3TmGXejzeouMyWFZknSQoOWAwKBxYfE69f6DITvV2k4g26NBxYMk5DAaZ3qolvU7PgLrGlXyTlWTWXFupcUQir4TFhqndeMVditO+UnuNIxIp+tTpg63eFoDfTv1GsiFZ44iEtZAEJQeCz4cRHRYHGC+IdSBV907jR60AiA6NI/h8mCbxicdSX2pgeapZVqJgWXFmhboYWL86/dQvRKG94i7F6VS5EwB3Iu+w/dr2TPYQwkgSlByIDY9Xb193vEiwg/GS4tVi6uKdVMJsPaGN6kWr41fGD4DTD09xy+GaxhGJvCDdO5ZNxoOJnJAEJQecUo2OTz04tklE63TrCe2k/nD8r8i/GkYi8sKl0Ev8d+s/AOoUr0O9EvU0jkg8qWvVrng6egLGCzk+in+kcUTCGkiCkgMlq3vh4uVIEokcKrILAHuDA89ENVfruHg7UrK6l1YhilR61+qNnd4OgINF/iXJkKRxRCI3pV45dmA9WdreEjnYOvBK7VcAiE2KZdXZVRpHJKyBJCg5oNfraDywBqdcDxNtEwlA/agmOBmc1TqNB9RAr5cPSkvg7exN16pdAYiwfcjuu7s0jkjkFoNiUBMUvU5P3zp9NY5IpCd1S2bqpFLkrZiHcRxddYmYh3Fah5JtkqDkUEW/klx+5qh6v0lEG8DYctJmQgMq+pXUKjRhRupxCcuvyIqWBcW+G/u4Hn4dgHa+7SjtVlrbgES6/Mr4UdW7KgA7r+8kKDxI44gKh5jweALXXCbGCsdESoKSQ6Exoex48A8AxeyLUyOmPs2G1qL3rABJTixQx0qd8LA19oFvvLGB8NgIjSMSuUEGx1oPnU5nsibKbyd/0zAaYQ2ynaDExMQwf/583nrrLbp06UKLFi3YvHlzlvePjIzkyy+/5Pnnn6d9+/aMHz+eCxcuZDcMzS0/s5xEQyIAvSq/jA02FPN1l24dC3TtUDBr39hPgwfGMULxhnje+WCaLKZn5WITY1lxdgUArvauvFj9RW0DEplKfXXpxScXoyiyVpRIX7YTlIiICBYuXEhQUBCVK1fO1r4Gg4F33nmHf/75h+7du/P666/z8OFDxo8fz82bN7MbiqZS/3J7udIrGkYiMpJ6xd8mj9qo5TtttrB9ZqAkKVZs/YX16myQXjV74WznnMkeQmvlPcoTUCEAgIuhFzl0+5C2AQmLlu0Exdvbm7Vr17Jy5UpGjhyZrX137tzJ6dOnmTx5Mq+++irdu3fnu+++Q6/Xs2DBguyGopkLIRc4ePsgAPVK1KOWZ22NIxLmPLnib4W4KpSMNy59f9H5FCG292TFXyuW+uJz0r1jPVJ388iaKCIj2U5Q7O3t8fb2ztHBdu3ahZeXFy1atFDLPDw8aNWqFXv37iUhISFHj5vfnpzWKCxT6hV/AXToaPLo8Vo1B4r8Kyv+WqngqGC2Xt4KQDn3crQo3yKTPYSl6FGzB062TgAsO7OM+CTrG7wp8ke+DpK9ePEiVapUQa83PWyNGjWIi4uzim4emdZoPcyt5Pvc/1+KAOCA+78oKHmy4q81T+2zBktPLSVZMV7TZUDdAeh1Mt7fWhRxKMJLNV4CjNdQ2nRpk8YRCUuVr3/VYWFhZltfUspCQ0PN7hcSEsKFCxfUf0FB2k1P2x20mxsRNwDoUKkDJV1lxo6lMreSr3dScapF1wXgnv1trjleyJMVf615ap81SN29k3JBSGE9TLp5Tko3jzAvX6+oFR8fj729fZrylLL4ePMf5uvXr2fhwoV5GVqWybRG65Gy4m/qbh6AJo/acMHlJABHiu+iZPUJGkQncurkvZMcDz4OwHNlnqNa0WraBiSyrY1vG0q5luJu1F02XtxISEwIRZ2Lah2WsDD52oLi4OBgdpxJSpmDg/lfst26dWPu3Lnqv/fffz9P40xPTGIMK8+uBIzNlC9Ue0GTOETWpKz4+6SGkc2wNxjfa4eL7CbRYB1jn4TRkhMyBsza2ept6VenHwCJhkSWn16ucUTCEuVrguLl5WW2GyelLL3Bt0WLFqVatWrqv/Lly+dpnOlZd34dUQlRgHFao5OdkyZxiKyr6FeSNhMa4OLlqJY5Ks48m+APQHjiQ+kDtyJJhiR+P/U7AHZ6O3rX6q1xRCKnUieX0s0jzMnXBKVKlSpcunQJg8FgUn7u3DkcHR0pW7ZsfoaTbZYwe8fZw4EG3SvjLFdKzrKKfiXp/V0AzYbWAqDZ0Fq8P+Qtdbt8OFqP7Ve3czfqLmC8Qq63c85mFArt1SlRh/ol6wNw6PYhzoec1zYgYXHyLEEJCQkhKCiIpKTHV45t2bIlYWFh7N69Wy0LDw9nx44dNG3a1Oz4FEtxN/Iu265sA6CCRwWal2ueyR55w9nTkYY9q+Ds6Zh5ZaHS63UU83UHoJivO+0qtaWUaykAtQ9cWL7UPxJkcKz1Sz1YNnXXnRCQwwRl9erVLFq0iE2bjE3j+/btY9GiRSxatIioKGMXyJw5cxgwYAAPHjxQ9wsICKBWrVpMnz6dhQsXsnbtWsaPH4/BYGDIkCG5cDp5549Tf2BQjC0/Mq3R+tnobdRlt6UP3DpExkey5twaALycvOhcpbPGEYmn1adOH2x0NoAx+Uz5jBUCcpigLF++nHnz5rFu3ToAdu/ezbx585g3bx6RkZHp7mdjY8MXX3xB69atWb16NbNnz8bd3Z2ZM2dSrly5HJ1AflAUhUUnFqn35Zdb7tKq20r6wK3L6nOriU2KBeCVWq/gYCvdnNaupGtJOlTuAMDNRzfZdX2XxhEJS5KjacYrVqzItM6UKVOYMmVKmnI3Nzfeeecd3nnnnZwcWhMn7p3g1P1TADTxaUIV7yoaR1SwpHRb5bfaxWvToGQDAoMD1T7w6kWr53scImtkin/BNLDuQHWg+uKTi2lVsVUme4jCQvopsiD1B+OgeoM0jETkttRfdNIHbrmCwoPYcX0HAFW9q+JXxk/jiERu6VatG0UcigCw6uwqohOiNY5IWApJUDKRmJyoTmu0t7Hn5VovaxyRyE19aksfuDVI+RsE4y9unU6nYTQiNznZOfFyTePnalRCFOvOr9M2IGExJEHJxLYr27gffR8wZvqeTp4aRyRyUwnXEnSs3BGQPnBLpSiKSStmyuBmUXDIeDBhjiQomUg9OFa6dwomk26ek9LNY2kO3znMhdALAARUCKC8hzYLNYq807xccyp6VATgn6v/cPvRbY0jEpZAEpQMPIx9yPoL6wEo5lyMDpU6aByRyAvPV30edwfjGikrz64kJjFG44hEaiaDY+vK4NiCSKfTqT8UDIqBP079oXFEwhJIgpKBlWdXEp9svIBhvzr9sLOx0zgikRec7JzoVbMXIH3gliYhOYGlp5cC4GjrSI+aPTSOSOSV1Ms3LDqxCEVRNIxGWAJJUDKQuntHpjUWbCZ94CekD9xSbLq0ibDYMABeqv6SOttDFDyVvCrRrGwzAM48OKNesVoUXpKgpONy2GX239wPGNfLSLlmhCiYmpVrpvaB/331b+5E3tE4IgGWcf0rkX/kh4JITRKUdDy59olMayzY9Dq92sQsfeCW4WH8QzZc2AAYVxxt69tW44hEXutVsxcONsYVgv84/QeJyYkaRyS0JAmKGQbFoP5y0+v09KvTT+OIRH4YUE/6wC3JuutrSDQYv6D61emHrT5HC18LK+Lp5Em3at0AuB99X71AqyicJEExY++NvVwPvw5A+0rtKeVWStuARL6o7FWZpmWbAnD6/mlO3DuhcUSF24ory9Tb0r1TeMiaKCKFJChmLDqeanCsTGssVFK/3tIHrp1gu1scCTkMQL0S9ahboq7GEYn80qFSB4o5FwPgz/N/Eh4Xrm1AQjOSoDwhJjGGlWdXAuBm78YL1V/QOCKRn16u9TL2NvaAcXn1JEOSxhEVTgeK/KveltaTwsXOxo6+dfoCEJ8cz8ozKzWOSGhFEpQnrDu/jsiESMD4ZeVs56xxRCI/SR+4tgwGhXtXHnLA3Zig6HV6+tTuo3FUIr9JN48ASVDSkEu6C+nm0ca1Q8EsH7eT+cuWEmpnvP5VnfhGxJ2TGXSFTYOSDahVrBZgHBN4LfKaxhEJLUiCksqdyDv8ffVvACp4VKB5ueYaRyS00LFyR4o6FwWMLWoRcREaR1TwXTsUzPaZgUSHxbG/yN9q+XMhrdk+M5Brh4I1jE7kt9RL3wOsurpcw2gKn0uhl/j95O+aX/ZDEpRUfj/5OwbFABh/Ret18vQURnY2dvSt/bgPfNXZVRpHVLAZDAoHFp8DIEYfzVG3fQA4J7tSP6oxAAeWnMNgkGnfhUm/Ov3QYWw9W3rhDxQUHlyNkPdBPvjl6C/0X9ufUl+X4t9r/2a+Qx6Rb+D/pyiKydL2qdfEEIVP6l9vqd8XIvcFnw8jOiwOgCNuu0nUJwDw3KNW2CnGAcvRoXEEnw/TLEaR/8oUKUMzb38Absbd4IrTWfbNO8PycTulRS0PJSYnquuAxSXFUa9EPc1ikQQllfkvzGdUo1E8X/V5KntV1jocoaFnSj1DzWI1AdhzYw+Xwy5rHFHBFRser97e5/64e6dZRLt064mC79qhYKqd9lPv//f/M7uiw+Kk2y8Pbbq0ifvRxjFg3ap1w9vZW7NYJEH5fzqdDr8yfvzY5UfW91mvdThCYzqdjlfrv6renx84X8NoLEPMwziOrrpEzMO4XH1cJw/j0uZ37W9w1ek8AD5xFSkXX8lsPVHwpXT7NYhsioPBEYDDbrtJ0D1OUqXbL2/MP/74s25I/SEaRiIJihDpGlB3gLq8+sLjCwv9migx4fEErrlMTC63ZJSs7oWLl2Oa1pOU8QcALt6OlKzulavHFZYrpdvPQXHkmUjjZIVYm2gCXferdaTbL/cFRwWz8eJGAEq7laZ9pfaaxiMJihDpKOFagq5VuwJwN+ouWy9v1Tiigkmv19Gwf2W1Cd9GseW5yFYmdRoPqIFen/vTjZ09HGjQvTLO0jpjUVJ35zWPePwlucd9a7r1xNP77eRvJCvJgPEiuTZ6G03jkQRFiAwMbTBUvT0vcJ6GkRRsFzyP88j2IQD1ovxwS3YHjC0nbSY0oKJfyTw5rrOnIw17VsHZ0zFPHl/kTOruvCqxtSiRUAaACy4nuW9312y93JBX3ZjWQFEUFhxfoN4fXH+wdsH8P0lQhMhAx8odKeVqvFjkhosbuBd1T+OICqbUH4zDnxsGQLOhteg9KyDPkhNhuVK6/QB06ExaUfa5G1d3zotuv7zqxrQGh+8c5uyDswA0L9ecqt5VNY5IEhQhMmSrt2VQvUEAJBmS1Ol3Ivfcj77PhosbACjlWooXnzFeaqCYr3uedOsIy6fX62g8sIZ6v0lEG/SK8etqf5F/SCY5z7r9CqvUEwFSTxDQkiQoQmRiSIPHI9nnB85HUWTmQG76/eTjizKmHpgsCreKfiVpM6EBLl6OuCd7UTfKOOU43C4Um74PpWUtF0UnRLP09FIAnO2c6VWzl8YRGUmCIkQmqnhXwb+cccGocyHnOHDrgMYRFRyKophMa3y1gWX8chOWoaJfSXp/F0CzobVoHtFBLd8YvUbDqAqeFWdW8Cj+EQCv1HoFNwc3jSMykgRFiCyQwbJ549DtQ5y+fxqAJj5NqF60usYRCUuj1+so5utO7ehGlHAytppsuLCB4ChZqC23zD02V709ouEIDSMxJQmKEFnQs2ZP3OyNvyqWn1lOVEKUxhEVDHOOzlFvD39muIaRCEtngw2vVDJeIytZSZYrjeeS0/dP89+t/wCoU7wOfmX8Mtkj/0iCIkQWuNi70Kd2HwCiEqJYeWalxhFZv4i4CJadWQZAEYcivFzrZY0jEpaub+X+6u15gfNkPFgumHvUtPVEp7OcgceSoAiRRakHy/4a+KuGkRQMf5z6Q72ce/86/XGxd9E4ImHpfIv4ElAhAICLoRfZe2OvtgE9BUtYcyU2MZbFJ40tUY62jvSr00+zWMyRBEWILPIr40ft4rUB2H9zvzp2QkuW8CGXE4qi8MvRX9T7ltTvLSzbsAbD1NvWPB7MEtZcWX1uNeFx4QC8XOtlPJ08NYvFHElQhMginU7Haw1fU+//cuSXDGrnD0v4kMuJI3eOcOLeCcCY+NUrqd0l3YV16V6jO+4OxpWGV5xZoX7Biuyz9DFgkqAIkQ0D6g7A2c4ZgMUnFxOdEK1xRNYp9QfjiGek9URknZOdEwPqDgAgNilWBsvm0PmQ8+y5sQeAGkVr0KxsM40jSksSFCGywd3RXR0s+yj+kbq4kci61M+bm70bvWv31jgiYW1eb/S6evvnIz/LYNkc+PXY43F0w58ZblGDY1NIgiJENj354SiyZ+mppUQnGlue+tXph6u9q8YRiZzQ8krQtYrXMlk8cVfQrnyPwZrFJ8Wz8PhCAOxt7BlYb6C2AaVDEhQhsqlR6UY0LNUQgKN3j3LkzhGNI7IeiqIw51iq7h0ZHGu1tL4S9KhnR6m3Zx+ZrUkM1mrNuTWExoYC0KNGD7ydvTWOyDxJUITIgZGNRqq3pRUl6w7dPsSxu8cAY6LXoFQDjSMS1qp7je4UdykOGL9w70be1Tgi6/Hj4R/V25b8I0ESFCFy4JXar1DEoQgAS08vlZkEWfTD4R/U26MajcqgphAZs7exVy9BkWRIsuopx/npePBx9t3cB0CtYrVoWb6lxhGlTxIUIXLAxd6FgXWN/bYxiTH8dvI3jSOyfPej77PizAoAvJy8eKX2KxpHJKzdiIYj0GEc3Dnn6BySDckaR2T5fjz0uPVk9LOjLXJwbApJUITIodcaPV4TZfaR2TKTIBO/HvuVhOQEwLjYlpOdk8YRCWtXwaMCnat0BuDmo5tsvLRR44gs28PYh/x+6nfAOIOuf93+meyhLUlQhMih2sVrqzMJzj44y7/X/tU4IsuVZEhSBzLq0JnMhBLiaaQeDyaDZTO24PgCYpNiARhcfzBuDm4aR5QxSVCEeApj/caqt7879J2GkVi29RfWc+vRLQC6Vu1KRc+KGkckCoqOlTtSwaMCAFsub+FS6CVtA7JQBsXAT4d/Uu+nngVlqSRBEeIpvFTjJXyK+ACw4cIGroRd0Tgiy/TDoceDY8f4jdEwElHQ2OhtTFpRvj/0vYbRWBaDQeHB1QgA1h5dz5WHxs+ntr5tqV60upahZYkkKEI8BVu9LaOfHQ2AgsIPh34w+VB4cDUCg6Fwj005c/8MO67vAKCqd1Xa+rbVOCJR0Ax7Zph6CYr5gfNlVh1w7VAwy8ftZN+8M0DawbHWQBIUIZ7S8GeG42RrHPD569F5LBy/Sf1Q2DfvDMvH7eTaoWAtQ9RU6taT0c+ORq+Tjx2Ru7ycvBhUbxAA0YnRzA+cr3FE2rp2KJjtMwOJDjNe5TzY7hanXYwLSnolFqNWeCMtw8sy+aQQ4il5O3uro+GjkiL5J9l0JkF0WBzbZwYWyiQlJCaEhScWAuBq76p+iQiR28Y9N069/d3B70gyJGkYjXYMBoUDi8+ZlG33/BNFZ2zJbRXelSO/X7KKll1JUITIBaMbPR5Xsd3zTwwY0tQ5sOScVXwo5KbZh2cTl2T8FTe0wVDcHd01jkgUVNWLVqdT5U4ABEUEsf7Ceo0j0kbw+TC15QQgSv+I/e7/AOBgcKRFeCeiQ+MIPh+mVYhZJgmKELmg2MMyVI+uB8B9+zuccTmapo61fCjklrikOHXlWL1Oz4TGE7QNSBR4qd9jMw/M1CwOLcWGx5vc3+mxkQS9sax5RHucDa5m61kiSVCEyAWx4fG0efiCen+b55p06xUWv5/8nfvR9wHoWbOnOhVUiLzSzrcdNYrWAGDPjT0cvZP2h0JB55Tq6tKJukR2eP4FgE7R0+bhi2brWapsJygJCQnMnj2bl156ibZt2/Laa69x+PDhLO175MgRxo8fz/PPP0/nzp0ZMWIEW7duzXbQQlgaJw8H6kY/S4mEMgCcdznBdYeLZusVBoqi8M2Bb9T7E5tM1DAaUVjodDqTVpRvD3yrXTAaKVndCxcv4xWmD7nt4JHtQwCeiWpKscSSALh4O1KyupdmMWZVthOU6dOns2LFCtq1a8e4cePQ6/VMmjSJkydPZrjf3r17mThxIomJiQwePJhhw4bh4ODAtGnTWLFiRY5PQAhLULK6F25eLrQP66GWbfFeZVLHWj4UcsOWy1s4++AsAM3LNcevjJ/GEYnCon/d/ng7eQOw7PQyrodf1zagfKbX62g8sAYKCn97rVXL24W9pN5uPKAGer3lXoMnRbYSlLNnz7J9+3ZGjBjBqFGj6NatGzNnzqRkyZLMnp3xEsNr1qzB29ubmTNn0qNHD7p37863335LmTJl2Lx581OdhBBaS/lQaPKoNe5JngAcc93HPbvbah1r+VDIDV/995V6W1pPRH5ytnNWZ/QkK8l8tf+rTPYoeCr6lcSh3yNuOwQBUCm2BpXiauDi7UibCQ2o6FdS4wizJlsJyq5du7CxsaFbt25qmYODA126dOHMmTPcu3cv3X1jYmJwc3PD3t5eLbO1tcXd3R0HB+tu9nb2cKBB98o4F5Lme2FeRb+SdBz/HJ3iegKg6BS2eq22ug+Fp3Xs7jH1ukSVvSrzfNXnNY5IFDZj/MbgYucCwLzAeepYqMJkYcgc9Xa7sJdoNrQWvWcFWNXnULYSlEuXLuHj44OLi4tJeY0axkFJly9fTnff+vXrc+3aNX799Vdu3brF7du3WbRoERcuXKBPnz45CN1yOHs60rBnFZw9HbUORWisol9JfvrkC1xtjBfhOuD5Ly2mVrOqD4Wn9b89/1Nvv9n4TWz0NhpGIwojLycvXmtovNp4XFIc3x0sXNfJ2n9zv7p6c0U3XxpENaGYr7vVteBmK0EJDQ3F29s7TXlKWUhISLr7Dho0iFatWrFkyRL69u1Lnz59+P333/n0009p2bJlhscNCQnhwoUL6r+goKDshC1EvvJ09uDV6kMASFQS+P5w4flwPHP/DKvPrQagpGtJXm3wqsYRicLqjSZvYKe3A4yrGT+Kf6RxRPln2p5p6u0Jdd5Ej3X+SMhWghIfH4+dnV2a8pRum/j49KdQ2tnZUbZsWQICAvjoo494//33qVatGlOnTuXMmTMZHnf9+vUMHz5c/Td16tTshC1EvhtRYyS2BlvAeAn4iLgIjSPKH//b+7j15O2mb+NoK62KQhs+RXwYUHcAABHxEfxy5BeNI8ofgXcD2XRpEwDl3MvRy7e3xhHlXLYSFAcHBxITE9OUJyQkqNvTM3PmTPbv389HH31EmzZtaN++Pd9++y3e3t58913GvzC7devG3Llz1X/vv/9+dsIWIt+VdC5Jk0dtAHgU/6hQLBp1KfQSy04vA6Coc1G1iV0IrUxqNgkdxm6Nr//7mpjEGI0jynupW0/eafaO2opkjbKVoHh7exMaGpqmPKWsaNGiZvdLTExk48aNNGnSBL3+8SFtbW157rnnuHDhgtnEJ0XRokWpVq2a+q98+fLZCVsITXQKexkbnbFp9dsD3xb4K6x+vvdzDIpxif83G7+Ji71LJnsIkbeqFa1Gz5rGQev3ou8x+3DGs02t3dkHZ026WIc0GKJxRE8nWwlK5cqVuXXrFtHR0SblZ8+eVbebExERQXJyMsnJyWm2JScnYzAYMBjSXrtECGtWLLEUr1TqCxibmL/9r+AuGhUUHsTik4sB8HD0YLSfdVzOXRR8H7b8UG1FmbFvBlEJURpHlHdSt54UhC7WbCUoAQEBJCcns37944swJSQksGnTJmrWrEmJEiUAuHfvnslAVk9PT1xdXdmzZ49JS0lMTAz79u2jXLlyVj/VWAhz3qz7FrZ641iUbw98S1hswbwWz2e7P1OvHjvObxxFHIpoHJEQRrWL16Z3beM4jAcxD/jx0I8aR5Q3Tt8/zdJTSwHwdvIuEF2s2UpQatasSatWrZgzZw6zZ89m/fr1TJgwgeDgYF5//XW13rRp0xgwYIB638bGhldeeYWbN2/y+uuvs2LFCpYtW8Zrr73GgwcPGDhwYO6dkRAWpJxreYbUNzazRiZE8s1/32Syh/W5EHKBBccXAODu4M74xuM1jkgIUx+1/Ai9zvh198X+LwrkjJ4PdnyAgvFq6ZObTy4QXazZXup+ypQp9OrVi61bt/Ldd9+RlJTEjBkzqF+/fob7DRw4kA8++ABbW1sWLlzIvHnzcHFx4dNPP6V9+/Y5jV8Ii/dei/fUgWqzDs4iJCb96fjW6MOdH6pjT95u+jZeToVjOX9hPaoXrU6/Ov0ACIsN4/uD32scUe46fPsw686vA6C0W2lGPTtK24ByiW12d3BwcGDUqFGMGpX+E5DerJx27drRrl277B5SCKtWzr0cw54Zxuwjs4lKiGLa7ml827FgjEc5dvcYK84Yr6VV3KW4tJ4Ii/VBiw/449QfxuXv//uKkc+OLDDJ9Hv/vqfe/qDFBzjZOWkYTe7JdguKECL73vN/Dydb44fGj4d/5ErYFY0jyh3v//t4yv97/u/hau+qYTRCpK+KdxUG1RsEQHhcOFN3F4z1tHZc28HfV/8GwNfT1+pn7qQmCYoQ+aBMkTK82eRNABINiUz5d4rGET297Ve3s/my8UKf5dzLFYhBeaJg+6TVJ+oPhR8O/WD1PxSSDclM3Pb4Ypwft/wYexv7DPawLpKgCJFPJjWbRDHnYgCsOLOCg7cOahxRziUZkpiwdYJ6/9OAT3GwlZl4wrL5FPFRr66daEhk8vbJGkf0dBafWExgcCAA9UvWp2+dvhpHlLskQREinxRxKMJHLT9S77/191soiqJhRDk379g8Tt8/DUCj0o0YUG9AJnsIYRkmNZtEcZfiAKw8u5L/bv6ncUQ5ExkfadIS+22HbwvchTklQREiH41oOIKq3lUB2HtjL0tPL9U4ouyLSAjn/R2Px57M7DBTncIphKVzc3Dj04BP1fvjt4wn2ZB2EVFLN2PfDIKjggF4qfpLBFQI0DagPCCfKkLkIzsbO75p/3gtlInbJlrdmgxfn/xSnSr9Su1XaFaumcYRCZE9Q58ZSq1itQA4fOcwvx77VeOIsufqw6t8/d/XANjp7fii3RcaR5Q3JEERIp91qdqFbtW6ARAcFcxHOz7KZA/LccPhCnPO/QyAo60jM9rO0DgiIbLPVm/LT11+Uu9P3j6Z+9H3NYwo6xRFYdTGUcQlxQEw/rnxVPYyf5kZaycJihAamNVxlnqdjO8Pfc/Jeyc1jihzyYZkFpf4jmTF2Bw+pfkUyrmX0zgqIXKmRfkWDKxnXMX8YdxD3vnnHY0jyprlZ5az9cpWwDjo98OWH2ocUd6RBEUIDVTwqMB7/sbFlZKVZEZsGGHx/eDzLswlyOkSADWL1eSd5tbxgS5Eer5o+wUejh4ALDy+kH3Be7UNKBMPYx8yfsvjxRB/7Pwjbg5uGkaUtyRBEUIjbzd9Wx0we/D2Qb7a/5XGEaUv6OENph37TL3/c5dfCtR6C6JwKuFagv+1/p96f/z+0cTpYjWMKGPv/POO2hX1UvWX1K7igkoSFCE04mDrwIIXFqiXgv9w54ecuX9G46jSunLwDl2/6k5McjQALcM7c+vLRK4dCtY4MiGe3oiGI/Av5w9AUFQQK4tb5oDZTZc2MffYXADc7N34rpP5S8oUJJKgCKGhpmWbqgtHJSQnMGjdIBKTEzWO6rFrh4J5b/EnnLY/CoBHojfdHwwmOiyO7TMDJUkRVs9Gb8OCFxbgYme8+u9uj82sPboeg8Fy1igKiQlhyJ+Pl7D/st2X+BTx0TCi/CEJihAa+6z1Z1QvWh2Ao3eP8vHOj7UN6P8ZDAorft/I6qIL1LIhwRNxNjy+3s6BJecs6oNciJzQX3ahd9hw9f6k428wd/yfFpGAK4rCiA0juBd9D4DOVTozouEIjaPKH5KgCKExR1tHFr24CBudcRXI/+39H1sub9E4Krhy+gazXD4lSW9s0WkX9hI1Yuqb1IkOjSP4fJgG0QmRO64dCmb7zEAa32lHzegGAITbhfK901T+nnlU8yTl+0Pfs/b8WgCKOhdlXrd56HQ6TWPKL5KgCGEB/Mr4Mb3NdPV+/zX9uRlxU7N4FEVh/P4x3HW4AUCZ+Aq8FDLIbN3Y8Pj8DE2IXGMwKBxYfA4AHTpevfsmbkkeAJxxOcom72WathLuu7HP5GKAvz7/KyVdS2oSixYkQRGFhrOHAw26V8bZwzIvajex6US6Vu0KQGhsKN1XdCc6IVqTWL757xs23/sLAKdkZ0befg87xfysHScLfT6FyEzw+TCiw+LU+x7J3gy/OwmdYvxqXO/9O//F7daklfBu5F1eXvUySYYkACY1ncQL1V/I9zi0JAmKKDScPR1p2LMKzp6OWodill6nZ9GLiyjvXh6AI3eOMGDtgHxfH2Xd+XVM+meSen/I3bcokVjGbF0Xb0dKVvfKr9CEyFXmWv9qxNTnhZD+ACg6hTmlP+fIjaP5GldkfCRd/ujCncg7AARUCGBam2n5GoMlkARFCAvi5eTFX33/ws3euPjS2vNreWtb/l31eO+NvfRZ3QeDYgBgTKUJ1I9unG79xgNqoNcXjv5wUfCk1/rXKexlGj5qDkC8Po4RJwZyI+JGrh3XYFB4cDUCgAdXI0y6kBKTE+m1sheBwYEAlHMvx7Iey7DV2+ba8a2FJChCWJjaxWuzstdKddDszIMzmbJ9Sp4nKcfuHqPb0m7qNT761+3PrH5f02ZCA1y8TFudXLwdaTOhARX9Ck9/uCh4Slb3SvPeBtCjZ0jwRCrF1gDgXtw9Wi9qnSvjwq4dCmb5uJ3sm2dc82jfvDMsH7eTa4eCSUxOpP/a/upS9h6OHmzpt4USriWe+rjWSBIUISxQh8od+Lnrz+r9z/d9znv/vpdnScr+m/tptagVD+MeAtC+UnvmdZuHXqenol9Jen8XQLOhxqu/Nhtai96zAiQ5EVZPr9fReGANs9vsFQdG3/6QCs6+AFx5eIWWC1sSFB6U4+OlzBhKPe4FIDosjq0zD9F17gusOLMCAAcbB9a/sp4axczHVxhIgiKEhRr2zDB+6vz4iqvT905nyPohJCQnABk3E2fH5kubab+kPY/iHwHQvFxzVvVaZbKUvV6vo5ivOwDFfN2lW0cUGBX9SqbbSvji2AD2vrabKl5VALgWfo2m85ty5M6RbB8n9YyhJ8Xoo/je5xO23dsMGJOTNb3X4F/eP9vHKUgKX6eWEFZk5LMjMSgGxmweAxgvaHb14VW+rPQ9V5aHqr/E9s07w/G1V2g8sEaWWzYMioEv9n1h7D7CmNy09W3Lut7rcLF3yZsTEiIH8noGXkW/kpRvVIILO26yb94Zmg2tRbVWZdVEfMegHbRa1IpLYZe4E3mHFgtaMP+F+bxS+5UsH+PJGUMp7trf4KfSUwl2uAWAo40T6/v8SbtK7XLn5KyYtKAIYeFG+41mRc8VONoaf+HtDtpNm23+7EnYriYWQLaWn78efp22i9syeftk9TF61OjBhj4bJDkRFic/ZuBl1EpYpkgZ9g7ZS7OyzQCITYqlz+o+DFg7gIexD7P0+E/OGDKQzD8e6/is/Dg1OXFNKsKCBr9LcvL/JEERwgr0qtWLXYN3qYs0Rdk+YnaZaXzr8x5BDpdM6ma0sNTD2IdM2T6Fmj/WZMf1HWr5pwGfsqLX4yRIS5a+Xo0onIq7FGf7wO0Mrj9YLfvt5G9U+b4Ksw7MUgeXpydlxpCCwmnnI3xWfhzLS8whUW/ssi0TX54pN2bSomKLPDsHayNdPEJYCb8yfmxrvZNBvw8h0G0/AOdcjjPVZTyVYmvw3KNW1IpuSLHQkgSfD6N0TW8AHsU/Ytf1Xaw5v4blp5cTm/T4cvJli5Rl/gvzaevbVpNzMifl17IQlsbB1oH53eYTUD6A8VvGExEfQWhsKBO2TuDT3Z8ysO5Anq/2PE3LNjVJ9pMNyTzwvM2/Zdax024zdx1MZwO1CXuB7iGD8fRyl3WFUpEERQgr4hzrxsg773HUdS+riy0gxN7YnXPF6RxXnIwD8BwMjny+sQyOOx0IjQlVLzKWmr2NPaOfHc3HAR9TxKFIvp6DENZMp9MxqP4g2vi24Z1/3uGPU38AEBYbxsyDM5l5cCY6dPgU8cHNwY2E5ARuRNwwDm53NX2s8nGVefn+cKrG1gFkXaEnSYIihBVx8nBAh45GUf7Ui27M/iJ/86/nBu44PJ76GK+P42rMFYhJu7+7gzsD6g5gYtOJVPCokH+BC1HA+BTx4ffuv/NWk7f45sA3rDyzkvhk4zgTBYWbj9JfM6V6Qh0CHjxPg6im6NHj4u1I4wFZH+BeWEiCIoQVSVlYKjosDjvFjpYRnWkR0YkbDlc47XKEK07nuO90h1jnSJINyRRxKEIFjwo0LNWQtr5taevbVgbBCpGLGpRqwJKXljCzw0y2XtnK31f/5sz9M1wLv0ZcUhw2Oht8ivhQ1bsqARUC6FS5E5U8K6c7Y0g8JgmKEFYkZWGp7TMD1TIdOsrHV6Z8fGUAWeFVCA14O3vTt05f+tbpm6X6sq5Q5mQWjxBWJqOFpSQ5EUIUFNKCIoQVymxhKSGEsHbSgiKElZLl54UQBZkkKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKELkAWcPBxp0r4yzh4PWoQghhFWy1ToAIQoiZ09HGvasonUYQghhtaQFRQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCEKKGsesJ/tQbIJCQnMmzePbdu2ERkZSaVKlRg2bBjPPvtslvbfvn07q1at4sqVK9ja2lK+fHmGDRtGw4YNsx28EEIIIdJnzQP2s52gTJ8+nZ07d9KrVy98fHzYvHkzkyZNYtasWdStWzfDfefPn8+iRYsICAigY8eOJCUlce3aNUJCQnJ8AkIIIYQoeLKVoJw9e5bt27czcuRI+vTpA0CHDh0YPHgws2fPZvbs2enue+bMGRYtWsTo0aN5+eWXny5qIYQQQhRo2RqDsmvXLmxsbOjWrZta5uDgQJcuXThz5gz37t1Ld9+VK1fi5eVFz549URSFmJiYnEcthBBCiAItWwnKpUuX8PHxwcXFxaS8Ro0aAFy+fDndfY8ePUr16tVZtWoV3bp1o2PHjrz44ousXr06B2ELIYQQoiDLVhdPaGgo3t7eacpTytIbSxIZGUlERASnT5/m2LFjDB48mBIlSrB582ZmzZqFra0tL7zwQrrHDQkJITQ0VL0fFBSUnbCFEEIIYWWylaDEx8djZ2eXptze3l7dbk5Kd05ERAQfffQRbdq0ASAgIIDBgwezePHiDBOU9evXs3DhwuyEKoQQQggrlq0ExcHBgcTExDTlCQkJ6vb09gOwtbUlICBALdfr9bRu3Zr58+dz7949SpQoYXb/bt260axZM/V+UFAQU6dOzU7oQgghhLAi2UpQvL29efDgQZrylO6XokWLmt2vSJEi2Nvb4+rqio2Njck2T09PwNgNlF6CUrRo0XQfWwghhBAFT7YGyVauXJlbt24RHR1tUn727Fl1u9mD6PVUqVKFiIiINC0wKeNWPDw8shOKEEIIIQqwbCUoAQEBJCcns379erUsISGBTZs2UbNmTbUF5N69e2kGsrZq1Yrk5GS2bNmilsXHx/P3339ToUIFaSERQgghhCpbXTw1a9akVatWzJkzh/DwcMqUKcOWLVsIDg7mnXfeUetNmzaN48ePs3v3brXshRdeYOPGjXz77bfcvHmTEiVKsHXrVu7du8f06dNz74yEEEIIYfWyvdT9lClT1OQiKioKX19fZsyYQf369TPcz8HBgZkzZzJ79mw2bdpEXFwclStXZsaMGfj5+eU0fiGEEEIUQNlOUBwcHBg1ahSjRo1Kt853331nttzT05MpU6Zk95BCCCGEKGSyNQZFCCGEECI/SIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGyxNnDgQbdK+Ps4aB1KEKIQiDbK8kKIQonZ09HGvasonUYQohCQlpQhBBCCGFxJEERQgghkG5MSyNdPEIIIQTSjWlppAVFCCGEEBZHEhQhhBAin0l3Uuaki0cIIYTIZ9KdlDlpQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEsGIy0E4IUVDJIFkhrJgMtBNCFFTSgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjq3WAeREfHw8AEFBQRpHIoQQQojsKl++PI6OjhnWscoEJTg4GICpU6dqHIkQQgghsmvu3LlUq1Ytwzo6RVGUfIon14SHh3Po0CFKlSqFvb291uHkuaCgIKZOncr7779P+fLltQ4nX8m5F75zL6znDYX33AvreUPhPfcC24Li4eFB+/bttQ4j35UvXz7TjLOgknMvfOdeWM8bCu+5F9bzhsJ97umRQbJCCCGEsDiSoAghhBDC4kiCYgW8vb0ZPHgw3t7eWoeS7+TcC9+5F9bzhsJ77oX1vKFwn3tmrHKQrBBCCCEKNmlBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcaxyobaCKCQkhFWrVnHu3DnOnz9PbGwss2bNokGDBmnqjhs3juPHj6cp9/Pz46uvvjIpS0hIYN68eWzbto3IyEgqVarEsGHDePbZZ/PqVLItO+cOcOrUKX7++WcuXryIi4sLrVq1Yvjw4Tg7O5vUs4ZzN2fz5s1Mnz7d7La1a9emGe2/d+9eFixYQFBQEB4eHnTu3JmBAwdia2tdf97W+nplR2BgIOPHjze7bfbs2dSqVUu9n9X3uSWKiYlh2bJlnD17lnPnzhEZGcnkyZPp1KlTmrrXr1/nhx9+4NSpU9ja2tKkSRPGjBmDh4eHST2DwcCyZctYt24dYWFh+Pj40L9/f9q2bZtPZ5W5rJ73//73P7Zs2ZJm/3LlyvHbb7+ZlFnDeecV6/oEK8Bu3rzJH3/8gY+PD76+vpw5cybD+sWKFeO1114zKTM3TW369Ons3LmTXr164ePjw+bNm5k0aRKzZs2ibt26uXoOOZWdc7906RJvvPEG5cuXZ8yYMdy/f5/ly5dz69YtvvzyS5O61nDuGRk6dCilSpUyKXN1dTW5f+DAAd577z3q16/P+PHjuXr1KosXL+bhw4dMnDgxP8N9atb+emVHjx49qFGjhklZmTJl1NvZeZ9booiICBYuXEiJEiWoXLkygYGBZuvdv3+fsWPH4urqyvDhw4mNjWXZsmVcvXqVX375BTs7O7Xu3Llz+f3333n++eepXr06e/fu5dNPP0Wn09GmTZv8OrUMZfW8Aezt7Zk0aZJJmYuLS5p61nDeeUYRFiE6OlqJiIhQFEVRduzYofj7+yvHjh0zW3fs2LHKwIEDM33MM2fOKP7+/soff/yhlsXFxSmvvPKK8vrrr+dO4LkgO+f+1ltvKS+++KISFRWllm3YsEHx9/dXDh48qJZZy7mbs2nTJsXf3185d+5cpnUHDBigvPrqq0piYqJaNmfOHKVFixbK9evX8zLMXGXNr1d2HDt2TPH391d27NiRYb2svs8tVXx8vBISEqIoiqKcO3dO8ff3VzZt2pSm3tdff620bdtWCQ4OVssOHz6s+Pv7K3/++adadv/+faVVq1bKN998o5YZDAZl9OjRSvfu3ZWkpKQ8PJusy+p5T5s2TWnfvn2mj2ct551XZAyKhXB2dqZIkSLZ2icpKYmYmJh0t+/atQsbGxu6deumljk4ONClSxfOnDnDvXv3chxvbsrquUdHR3PkyBHat29v8kujQ4cOODk5sWPHDrXMWs49MzExMSQnJ5vddv36da5fv87zzz9v0p3z0ksvoSgKO3fuzKcon15Beb2yIyYmhqSkpDTl2XmfWyp7e/ssLTy2a9cumjZtSokSJdSyRo0aUbZsWZPz3Lt3L0lJSbz00ktqmU6n48UXX+TBgweZtjjnl6yed4rk5GSio6PT3W4t551XpIvHSt28eZMOHTqQmJiIl5cXXbt2ZfDgwSZfVJcuXcLHxydNs2FK0/Lly5dNPhgs3dWrV0lOTk5zQS07OzuqVKnCpUuX1LKCcO7jx48nNjYWOzs7nn32WUaPHk3ZsmXV7RcvXgRI83wULVqUYsWKmTwflq4gvF7ZMX36dGJjY7GxsaFu3bqMHDmS6tWrA9l7n1uzBw8e8PDhQ7MXyKtRowYHDhxQ71+6dAknJ6c0V/tNeX9cunTJ6roB4+Li6NSpE3Fxcbi5udGmTRtef/11kzFGBfG8s0MSFCtUunRpGjRogK+vL3FxcezcuZPFixdz8+ZNPvnkE7VeaGio2Ww+pSwkJCTfYs4NoaGhgPmxNt7e3pw4ccKkrrWeu4ODA506daJBgwa4uLhw4cIFVqxYwahRo/j111/VL+rMno+U7dbAml+v7LC1taVly5Y0btwYd3d3rl+/zvLlyxkzZgw//fQTVatWzdb73Jpldp6PHj0iISEBe3t7QkND8fT0RKfTpakH1vf+8Pb2pk+fPlStWhVFUTh48CDr1q3jypUrzJo1S/2hWdDOO7skQckDBoOBxMTELNW1t7dP8+bLzLvvvmtyv0OHDnz55Zds2LCBl19+WZ0JEB8fbzLILPUxU7bntrw895R40zunhIQEk7r5fe7m5OT5aN26Na1bt1bL/f398fPzY+zYsSxZsoS33noLQD3flHN68rEy6v6zNJbyeuW1OnXqUKdOHfV+8+bNCQgI4NVXX2XOnDl89dVX2XqfW7PMzjOljr29fYF7fzw5waFNmzaULVuWuXPnsmvXLnXwa0E77+ySBCUPnDhxIt2phE9asmRJmua7nOjduzcbNmzgyJEjaoLi4OBg9ssx5QPOwcHhqY/7pLw895R40zun1F/UWpy7Obn1fNStW5eaNWty9OhRtSzlfM19YSUkJOTbOeYGS3m9tODj40Pz5s3ZvXs3ycnJ2XqfW7PMzjN1ncLw/nj55ZeZN28eR44cUROUwnDeGZEEJQ+UK1eOyZMnZ6lubl3Bsnjx4gBERkaaPPaDBw/S1E1pWi1atGiuHDu1vDz3lPrmui5CQ0NNzkeLczcnN5+P4sWLc+PGjTT1Q0ND04zPCA0NTTON1ZJZyuulleLFi5OYmEhcXFy23ufWLLPzLFKkiJqMeXt7ExgYiKIoJq2uBen94eDgQJEiRXj06JFaVhjOOyOSoOQBb29vswsS5aU7d+4AmCxulDIPPzo62mTw4dmzZ9XtuS0vz71ixYrY2Nhw4cIFky6QxMRELl26RKtWrdQyLc7dnNx8Pu7cuWPy+lapUgWACxcuULNmTbU8JCSEBw8emMyIsXSW8npp5c6dO9jb2+Pk5JSt97k1K1asGB4eHly4cCHNtnPnzpm85pUrV+avv/4iKCiIChUqqOUF6f0RExNDREREms/wgn7eGZFpxlYmOjo6TZO+oigsXrwYwGTVzYCAAJKTk1m/fr1alpCQwKZNm6hZs6bVzYpwdXWlUaNGbNu2zWR8xdatW4mNjTX54Lbmcw8PD09T9t9//3HhwgX8/PzUsooVK1KuXDk2bNhgMhV53bp16HQ6WrZsmR/h5gprfr2yw9xre/nyZfbt28ezzz6LXq/P1vvc2rVs2ZL9+/ebTCM/evQoN2/eNDnP5s2bY2try9q1a9UyRVH4888/KVasGLVr187XuJ9GfHy82fFhixYtQlEUnnvuObWsIJ13TkgLigVZtGgRYFzfAowfSCdPngRg0KBBgHFq6SeffELbtm0pU6YM8fHx7Nmzh1OnTvH888+bTNmrWbMmrVq1Ys6cOYSHh1OmTBm2bNlCcHAw77zzTv6eXCaycu4Aw4YNY/To0YwdO5Zu3bqpK2w+++yzJn/Y1nTuTxo5ciRVq1alWrVquLi4cPHiRTZt2kTx4sUZMGCASd1Ro0YxefJkJk6cSJs2bbh69Spr166la9euJr+4LJ01v17Z8dFHH+Hg4EDt2rXx9PTk+vXrbNiwAUdHR5OBk1l9n1uy1atXExUVpXZH7Nu3j/v37wPGlXRdXV3p378/O3fuZMKECfTs2ZPY2FiWLl2Kr6+vSctj8eLF6dWrF0uXLiUpKYkaNWqwZ88eTp48yQcffICNjY0m52hOZucdGRnJ0KFDadu2LeXKlQPg0KFDHDhwgOeee47mzZurj2VN550XdIqiKFoHIYxatGiR7rbdu3cDxqbgX375hXPnzhEWFoZer6d8+fJ07dqVbt26pZkVEx8fr17fJCoqCl9fX4YNG2byS9wSZOXcU5w8eVK9RomzszOtWrXitddeS3ONEms59yfNnTuXAwcOcPfuXXVMQpMmTRg8eDBeXl5p6u/Zs4eFCxcSFBSEu7s7nTp1SrMmjjWw1tcrO1atWsXff//N7du3iY6OxsPDg4YNGzJ48GB8fHxM6mb1fW6pXn75ZYKDg81uW758uXoZh2vXrqW5Fs/o0aPTvNcNBgN//PEH69evJzQ0FB8fH/r160f79u3z/FyyI7PzdnV1ZdasWZw5c4bQ0FAMBgNlypShXbt2vPLKK2n+bq3lvPOCJChCCCGEsDgyBkUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEVkaPPmzbRo0YLNmzdrHUqWBAYG0qJFC+bPn59nx2jRogXjxo3Ls8cvLF5++WVefvllrcOwePPnz6dFixYEBgbm6XFWrFhB69atuXv3bpbq58ffmjX77LPP6NWrF/Hx8VqHYrUkQSlgPv/8c1q0aEHXrl3TXFSwoLC2L7aIiAh+/vlnBg4cSLt27WjXrh29evViwoQJLFiwgLCwsHyJI7Nkc9y4cRlecqAwiY2NpWPHjrRo0YJvvvlG63DyXGRkJIsXL6Zz587qEvTi6QwePJiQkBBWrlypdShWy7ou1iEyFBMTw44dO9DpdDx69Ig9e/bQpk2bp3pMf39/atasibe3dy5FWbjcv3+fUaNGcf/+fapUqUKnTp1wc3MjNDSU06dPs2DBAurUqWP2GjsF3bfffqt1COnasWMHMTEx6HQ6/vnnH0aPHo2Dg4PWYeWZFStW8OjRI/r06aN1KAVG2bJladasGX/88Qc9evTAyclJ65CsjiQoBci///5LbGwsL7/8MqtWrWLjxo1PnaC4urri6uqaSxEWPvPnz+f+/fsMHTrU5KrMKa5cuVJon98yZcpoHUK6Nm7ciI2NDd27d2flypXs3r2bdu3aaR1WnkhKSuKvv/6iTp06Fv2aWKP27duze/dutm/fTteuXbUOx+pIglKApHyo9u3blytXrnDs2DGCg4MpWbKkSb358+ezcOHCdB+nZMmSrFixAjB2C0yfPp3JkyebXP68RYsW1K9fnw8++IDZs2dz+PBhEhISqFevHhMmTKB06dJcv36dOXPmcOLECZKSkvDz8+ONN94waS0IDAxk/PjxDB48mCFDhpjEcffuXXr37k3Hjh2ZMmWKej91DCnM7X/+/HnmzJnDmTNn0Ov1PPPMM4wZMyZNE/bu3bvZsWMH58+fJyQkBFtbWypVqkTPnj0JCAjI+EnPxJkzZwDo3r272e2VKlUyW37nzh1+//13Dh8+TGhoKC4uLlSoUIFOnTqpr0NiYiLr169n//79XL9+nfDwcFxcXKhTpw6DBg2iatWq6uP973//Y8uWLQBMnz6d6dOnm5x/6ucy9e2U5z7FlStXWLJkCcePH+fRo0d4e3vTrFkzXn31Vdzd3dV6qV+7vn37MnfuXE6cOMGjR4/UK9mmdNOlvNfg8Xtz1qxZhISEsHTpUm7cuIGrqyutWrXi9ddfT9OSkZSUxLJly/jrr78ICQmhWLFidOnShdatW/PKK6+kOYfM3Lhxg1OnTtG0aVOTZN9cgpL6/du0adMsvd8Adu3axW+//ca1a9dwcXGhWbNmjBw5kqFDh6Z5TjKS1dcjI4cOHSI0NJS+ffua3R4fH8+CBQv4+++/iYiIoEyZMvTs2TPN1ZdTu3PnDkuWLOHw4cM8fPgQNzc3/Pz8GDJkSJrPI8je85HyXl62bBm7d+9m48aN3LlzhzZt2qiv88OHD/ntt9/Yv38/9+/fx9nZmXr16jFkyBB8fX3THD879W/evMlvv/1GYGAgoaGhODo6Urx4cRo0aMDYsWNNrijfpEkTHB0d2bJliyQoOSAJSgFx/fp1zpw5Q+PGjfHy8qJDhw4cPXqUTZs2pfnibtCggdnHCAoKYseOHVluyo6MjGT06NF4e3vToUMHbt26xf79+3nzzTf53//+x5gxY6hWrRqdO3fm4sWL7Nq1i0ePHjFr1qwcnaOrqyuDBw9m1apVAPTs2TPdczp//jxLly6lQYMGdOvWjUuXLrFnzx6uXr3KwoULTc5xzpw52NraUqdOHby9vQkPD2ffvn18+OGHjB8/nh49euQoXkD9krh58yY1a9bM0j4nT57knXfeISYmBj8/P9q0aUNkZCSXLl1i1apVaoLy6NEjvv/+e+rWrUvjxo1xc3Pj7t277Nu3j4MHD/L9999To0YNwNhVFxUVxd69e2nevDmVK1c2OebgwYPZsmULwcHBDB48WC2vUqWKenvv3r18/PHH6HQ6mjdvTvHixbl+/Tpr1qzh0KFD/PLLL7i5uZk87u3btxk5ciS+vr507NiRR48eYWdnl+lzkPKYzZo145lnnuHgwYOsXr2aiIgIPvzwQ5O6M2bMYOvWrZQuXZoXX3yRxMREVqxYwenTp7P0fD9p48aNAHTo0IESJUpQv359AgMDuXPnDqVLlza7T3bebxs3bmTGjBm4uLjQoUMHXF1dOXDgAG+++SZJSUnY2mbtYzknr4c5R48eBaBWrVppthkMBiZPnsyRI0fw9fWlbdu2PHr0iB9++CHdz5GzZ8/y1ltvERsbS9OmTfHx8SE4OJi///6bgwcPMnv2bJPnMafPx8yZMzl79ixNmjShadOmeHp6Asb33Lhx43jw4AHPPvsszZs3Jzw8nF27dnH48GG+/fZbk7/F7NQPCQnhtddeIy4ujiZNmtC6dWvi4uK4desW69atY9SoUSbx2tnZUbVqVc6cOUNsbKx082SXIgqE77//XvH391f++ecfRVEUJTo6Wmnfvr3Ss2dPJTk5OdP9w8LClF69eilt2rRRTp48qZZv2rRJ8ff3VzZt2mRS39/fX/H391e+//57k/Kvv/5a8ff3Vzp16qSsWLFCLTcYDMrbb7+t+Pv7K+fPn1fLjx07pvj7+yvz5s1LE9OdO3cUf39/Zdq0aSblvXr1Unr16mX2PFIeL/VzkWLq1Klmy2/fvp3mcaKjo5VBgwYpnTp1UmJjY9Oc+9ixY80e/0mrVq1S/P39lW7duinz5s1Tjh07pkRFRaVbPz4+XunevbvSsmVL5cCBA2m237t3z6Tu/fv309S5evWq0r59e+WNN94wKU/vtUwxduxYxd/f3+y28PBwpWPHjkr37t2Vu3fvmmz7559/FH9/f+Xbb79Vy1Jeu/ReW0Ux/zrOmzdPff8EBQWp5XFxcUrfvn2Vli1bKg8ePFDLjxw5ovj7+ytDhgwxeZ0ePHigvPDCC2bfPxlJTExUXnjhBaVTp05KXFycoiiKsnHjRsXf31+ZO3dumvrZfb89evRIad++vdK+fXvlxo0bJscdP3684u/vn+5zcuzYMbUsu69HRoYPH660bNlSiY+PT7Mt5T3z1ltvKUlJSWr55cuXldatW6d5fRMTE5VevXopHTp0UC5cuGDyWCdOnFACAgKUd95556mej2nTpin+/v5K9+7dleDg4DQxjxw5UgkICFAOHjxoUn7jxg2lQ4cOyqBBg3JcP+XvOfVnW4qIiIg0ZYry+LP56NGjZreL9MksngIgKSmJbdu24eLiQvPmzQFwdnbG39+fe/fuceTIkQz3j4+PZ8qUKQQHB/Puu+9Sp06dLB3XycmJYcOGmZSljHlxd3c3aeHQ6XTqtitXrmT53HKqXr16acbfdO7cGYBz586ZlJv7Vezs7EynTp2Iiori/PnzOY6je/fu9OnTh6ioKBYuXMj48ePp3LkzAwcO5OeffyYkJMSk/t69e3nw4AHt2rXjueeeS/N4xYsXV2/b29tTrFixNHUqVqxIgwYN1K613LB161aio6MZMWJEmib6Nm3aULVqVbZv355mPy8vLwYMGJDt4/Xs2ZNy5cqp9x0cHGjTpg0Gg4ELFy6o5du2bQNg0KBBODo6quVFixY1ef9l1X///UdYWBitWrVSWz0CAgJwdHRk8+bNGAwGs/tl9f22d+9eYmNj6dy5M2XLllXLbW1t0/wtZSSnr4c5Dx48wNXVFXt7+zTbUroFhw0bho2NjVpeqVIl2rdvn6b+/v37CQ4Opk+fPiZdjAB169alWbNmHDhwgOjoaODpno8+ffpQokQJk7KLFy9y+vRpOnTogJ+fn8m2smXL0rVrV65evcrVq1dzVD+FuVbmIkWKmI0zpWXnwYMHGZ6PSEu6eAqAvXv3Eh4eTpcuXUz+cDp06MC2bdvYuHFjmj++FIqi8L///Y8zZ87w6quv0rZt2ywf18fHx+RLAVBn+/j6+pr0xabe9uSXcl6oVq1amrKUL/OoqCiT8ocPH/L7779z4MAB7t27l2bdgqeJV6fTMXLkSPr06cOBAwc4e/Ys58+f5+LFi1y/fp3169fz1VdfqU3IKV9mzz77bJYe/9KlSyxdupSTJ08SFhaWJiEJDw+naNGiOY4/RcpYmrNnz3L79u002xMSEoiIiCA8PBwPDw+1vHLlylnq0nnSk19u8Dg5S/36Xb58GTB++T2pdu3a2T7uX3/9BRj/dlI4OzvTvHlz/vnnHw4dOkTjxo3T7JfV91tKcm4u3po1a5okARnJ6ethzqNHj8wmuinxOjk5mT2/unXrqt1hT8Z148YNs+ujhIWFYTAYuHnzJtWrV3+q5yOl+zK1s2fPAsa/aXPHv3Hjhvq/r69vtuunjDP69ttvOXr0KM899xz169dPt+sPHicuERER6dYR5kmCUgCk7jNPrWHDhhQrVox9+/bx6NEjsxn+r7/+yo4dO2jbti2vvvpqto7r4uKSpizlAyWjbbn1qz4jzs7O6R4/9a/gR48eMWLECO7du0edOnVo1KgRrq6u6PV6Ll++zN69e0lMTHzqeDw8POjYsSMdO3YEIDQ0lJkzZ7Jr1y6+/PJLFixYAKD+skzvCyO1U6dO8cYbbwDQqFEjfHx81PPeu3cvly9fzpXYwTjeCGDt2rUZ1ouLizO5n/LrMbsyev+kfv1iYmLQ6/VmB4Rmd+p2SEgIhw4donTp0mm+MDt27Mg///zDpk2bzCYoWX2/pby+5p6X9M7DnJy+HuY4ODiku2ZSdHR0uu9Fc89vSlx///13luJ6mufD3D6PHj0CjC1h//33X7r7xsbG5qh+qVKlmD17NgsWLODAgQPs2LEDgHLlyjF06FBatWqVZt+UHzwFeZp6XpEExcrdu3ePw4cPA2S4uum2bdvSNHlv3ryZJUuWUKdOHd599908jTM9Ka0sycnJabalfHjlpY0bN3Lv3j2z04B/++039u7dmyfH9fb25v333+e///7jypUrRERE4O7urk45zkpz8JIlS0hISOCHH35I84Wa8sswt6R8AS9cuNDsLIj0PNmKltucnZ0xGAxERESkaSnI7gJ4mzdvJjk5mTt37qS7YN2+ffuy1CqRnpTE6+HDh2m2pZxHVpLTnL4e5ri7u6f7fnNxcUn3l7+55zclrs8//5ymTZtmeuyneT7MvbdSHi+rg9uzWx+MrcOfffYZSUlJXLhwgYMHD7Jq1So+/vhjihYtmqaLPCUJyul7pjCTMShWbsuWLRgMBurWrUuXLl3S/Ev5xf5kU+zx48f56quvKF26NNOmTTPb/5wfUmYZmOtGuXTpktl99Hq92YQmJ1Kax1PG7qR28uTJXDlGeuzs7NI0Yac0W6cknRm5c+cORYoUSZOcxMXFcfHixTT19Xrjn3t6z11G21O6oFKa8C1FymykU6dOpdmWnVk8iqKwadMmADp16mT2b6l27dokJiaq415yImVaubl4z507l+X3dW6+Hr6+viQkJHDv3r002ypVqkRsbKzJuJ8U5v4+shtXbj0fKVL+frJ6/OzWT83W1pZatWoxZMgQxo8fj6Io7N+/P029mzdvAjx1IlkYSYJixVI+VHU6HVOmTOGdd95J82/KlCnUqlXr/9q735Cmvj8O4O9Mt7Rchs75J1aURZo0Xf4htwqHRI1KQfbEJ1oWRIn9Q6kwQ6Ho74Ok7EEuYy5NMB+IK2tqWrTUpg1b6w+OChNtZmWzzObq+yA2tN1vP8393OT7eT105273nnu9fM45n3MOjEajPdmzu7sbeXl5YLPZOHnypEsjez6fDx8fH/swlM2HDx+gUCgYj+FwOBgcHHTKHhe2BMPfX5BqtRotLS1T/v7r16/jzZs3jJ9VV1djeHgYfD7f3pUtEonA5XKhVqvR1tbmcMzYli6Px4PZbMarV6/sf7NarSguLsanT58cjrUN8ZlMJsbz+dPnUqkUPj4+uHz58rjfs/n27ZtLghfb2iRXr14d9zwMDAzYp6NPhE6nQ09PDwQCAQ4fPsz4v2TrZfw92J8MsVgMb29vqFSqcbkjo6OjkMvlE/4eZ96PqKgoAMy9brZh45KSknHBgtFoZAzUxGIxeDweKisrodPpHD4fHR0dF9g4qz5sIiIiEBERgYaGBsYk4R8/fow7r8mWf/HiBWPPrq03iamhZzAY4O/vPy4JmEwMDfHMYB0dHejt7f2fSVpSqRRPnz6FSqXCihUrUFRUhM+fPyMmJgaNjY0O5efNmzdte914eXkhNTUVZWVl2LFjB0QiEYaHh/HgwQNERUUxJgBGR0fj+fPnyM3NxapVq+Dp6QmBQGB/0U7Ghg0bUF5ejvPnz+Px48fg8Xjo6upCR0cH1q1bh3v37k3p+u7cuYPi4mIsWbIEERERWLBgAcxmMwwGA16+fAk2m42DBw/ay7NYLBQUFCAnJwc5OTmIi4tDWFgYvnz5gq6uLoyMjNhf3KmpqXj06BH27NmDxMREsFgs6HQ6vH//HtHR0Q6by61cuRJsNhtVVVUwm832wNQ2tCUUCtHU1ISjR48iPj4eLBYLYWFhEIlE8PPzw7Fjx5Cfn4/t27cjLi4OfD4fFosFfX190Ol0iIyMxNmzZ6dUX5MVExODpKQk1NfXIyMjA2KxGBaLBXfv3kV4eDg0Go29Z+hPbEGHbeYNEz6fj8jISOj1ehgMhgmvazOWr68vsrKycObMGezcuRMSiQRz585FS0sLWCwWAgICJjQs5sz7IRaLcfHiRWi1WoccClvuTWtrKzIzMxEfHw+z2YyGhgbExsY69BiwWCwUFhYiNzcX2dnZEAqF9oT5vr4+dHZ2Yv78+VAqlU6tj7Hy8/Oxb98+FBQUoKqqCsuWLQObzYbJZIJer8fg4CDq6+v/qvzt27dRU1MDgUCA0NBQ+Pj44PXr12htbQWHw3F4fnp6etDb24uUlJRJXQP5hQKUGcz2Uh27wisTiUSCoqIiNDQ0ICsry97S1Gq1jFOQg4KCpnUzvszMTHh6ekKlUqGmpgZBQUFIT09HQkICmpubHcqnp6djaGgIGo0GnZ2dsFqtyMjI+KsAJTAwEEVFRbh06RK0Wi2sViuWL1+Oc+fOwWQyTTlAOXToEDQaDTo6OtDW1oaPHz/Cw8MDPB4PKSkpkMlkDi2ryMhIlJSUQKlUoq2tDe3t7fD19cXixYuRnJxsL5eQkIDCwkIolUqo1Wqw2WwIhUIcP36ccaVgDoeDwsJClJaWora21v4c2AKUzZs3o7e3F42NjSgvL4fVasXGjRshEokA/FoVUy6Xo6KiAu3t7dBqtZgzZw64XC42bdrEOO10Ohw5cgSLFi3CzZs3UV1dDS6XC5lMBqFQCI1Gw5jAOtbQ0BCam5vh7e2N9evX/7GsVCqFXq+HSqX6qwAFALZs2QJfX1+UlZWhrq7OvnLqrl27IJPJJrzcvLPuR3BwMGJjY9HU1IS9e/eO6wXw8PDAiRMnUFpaivr6ety4cQMhISHIysrCwoULGYc0wsPDceXKFVRUVKClpQV6vR5eXl4ICAjA2rVrHaZjO6s+bEJCQiCXy1FZWYn79+/j1q1b8PDwgL+/PwQCgcPq0JMpn5SUhO/fv+PJkyd49uwZLBYLuFwukpOTGac923qZtm7dOqlrIL/M+vnz509XnwQhhDhbbW0tTp8+jQMHDsyIFuzbt2+RlpaGxMREFBQUTOtvt7e3Y//+/cjLy3NZoPk7V9aHM4yOjiItLQ3BwcF/vXr2fx3loBBCZrSBgQH83s7q7++HQqHA7NmzsWbNGhedGTOz2ewwrXdkZAQXLlwA8Gtbgum2evVqxMfHQ6FQ/OtidP8v7lgfzlBXV4d3795h9+7drj6VGYuGeAghM9q1a9fw8OFDCAQC+Pn5wWQyQaPR4OvXr9i2bZtDt7ur6XQ6nDp1CrGxsQgMDMTg4KB9Y0+hUAiJROKS88rOzoZarUZ/f/+01pm71sdUzZo1Czk5OYyL3JGJoSEeQsiM1traisrKShiNRpjNZrBYLCxduhQpKSmMOxC7Wnd3N+RyOfR6vX22VWhoqH335f/agl5UH+TfUIBCCCGEELdDOSiEEEIIcTsUoBBCCCHE7VCAQgghhBC3QwEKIYQQQtwOBSiEEEIIcTsUoBBCCCHE7VCAQgghhBC3QwEKIYQQQtwOBSiEEEIIcTv/AOUkPW5h771nAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 150.0 deg to 165.0 deg\n", - "Modulation: 0.308 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.017\n", - "Best fit polarization angle: 130.659 +/- 0.332\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRsUlEQVR4nOzdd3hT5dvA8W+6J51A2Vv2kj0KhcpGVBAVBEGGyMaFggMHiltAf6IgG2UIoiBbZCN7711moYOW0t3mef/I20NDQ2lL25O09+e6uEiePCfnPkma3Oc8y6CUUgghhBBCWBE7vQMQQgghhLifJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCWIlLly5hMBjo37+/3qEIICgoCIPBkOf7+fDDDzEYDGzevDnP95UV5cuXp3z58nqHIYQkKOLhTp06xciRI6lVqxZeXl44OTlRsmRJunTpwsyZM0lMTNQ7xDzTv39/DAYDly5d0jsUi2bOnMmQIUNo0qQJbm5uGAwG3nvvvYdu9/fffxMUFISXlxceHh40adKEuXPnZrrN3Llzady4MR4eHnh5eREUFMTff/9tse7Zs2fp0qULvr6+lClThhEjRhATE2Oxbp8+fahQoQJ37959+AGnk5bQpf/n4OBA8eLF6dKlC2vWrMnW84lH9+uvv2rvxfr16zOtGxUVxQcffEC9evXw8PDA2dmZUqVK0bRpU9544w0OHjyY6faDBw/GYDDg5uZGVFTUA+ulJYBp/+zs7ChSpAjlypWjc+fOfPHFF1y7di0nhyvymIPeAQjr9vHHH/PRRx9hNBpp1qwZ/fr1w8PDg5s3b7J582YGDRrEtGnT2Ldvn96hFkpvvPEG0dHR+Pj4ULJkSc6fP//QbX744QdGjhyJn58fffr0wcnJiaVLl9K/f3+OHj3K119/nWGbN998k2+++YbSpUszePBgkpKSWLRoEU8++STff/89I0aM0OrGxsYSHBxMbGwsL730ElevXuV///sfN2/e5Pfffzd73lWrVvHrr7+yYcMGPDw8cvQaeHl5MWbMGAASEhI4fPgwq1evZvXq1UyZMoVRo0bl6Hnzy4gRI3jhhRcoW7as3qE8sunTp2MwGFBKMX36dNq3b2+x3vXr12nRogWXLl2iYsWKvPjii/j7+3P79m3279/P5MmTcXV1pX79+ha3j4mJYdGiRRgMBuLj41mwYIHZZ9CS1q1bExQUBJg+ozdu3GDHjh2sWbOGCRMm8OGHH/LOO+880vGLXKaEeIBPP/1UAapMmTJq165dFuusXLlSBQUF5XNk+adfv34KUBcvXszzfV28eFEBql+/flneZs2aNerSpUtKKaVmz56tAPXuu+9mug9nZ2fl6+trdkyRkZGqUqVKClA7d+4022bHjh0KUJUqVVKRkZFmz+Xr66ucnZ3NnmvRokUKUFu2bNHK+vfvrwB18+ZNrSwqKkqVKlVKDRw4MMvHe/+xAKpcuXIZHps1a5YClLu7u4qNjc3R87du3VoVxq/IcuXKWXxNH+bUqVMKUE888YRq0KCBcnR0VKGhoRbrDhw4UAFqwIABymg0Znj8+vXrav/+/Q/c108//aQA9frrrysnJydVp06dB9adMGGCAtSECRMyPGY0GtXSpUuVr6+vAtSkSZMefqAi30gTj7Do0qVLfPjhhzg6OrJ69WqaNGlisV7Xrl1Zu3ZthvIlS5bQqlUrvLy8cHV1pXbt2kyaNMlic1Bam/edO3d4/fXXKV++PI6Ojnz44YdZehxMzVD9+/enTJkyODk5Ubx4cXr37s3p06ctxh0XF8cXX3xBw4YN8fT0xMPDg+rVqzNq1Chu3rwJgMFg0Jo9KlSooF0ivr99PjIyknHjxlG9enVcXV3x8vIiODj4gZe4Y2JieP311yldujQuLi5Uq1aNb7/9FqPRaLF+Zjp27Ei5cuWyXH/WrFkkJiYyYsQIs+Pw8fFh/PjxAPz0009m26Tdf/fdd/Hx8dHKy5cvz/Dhw0lMTGT27NlaeUhICACNGzfWytJupz0Gpqs/AN98802W48+q/v374+7uTmxsLMePH9fKN27cSMeOHfH19cXZ2ZnHHnuMd955h+jo6Cw9b1JSEj/88AOdO3emXLlyODs74+vryxNPPPHAJqWHfX4t9UFJ6//yoH9pVwLSpKSk8OOPP9K0aVOKFCmCm5sb9evX54cffrD4uVJK8cMPP1CzZk1cXFwoVaoUI0aMyPLrYMmMGTMAePnll+nfvz/JycnMmTPHYt2dO3cCMHLkSIv9fEqUKMHjjz+e6b7s7OwYM2YMTz75JEeOHGH37t3ZjtlgMNCjRw+WLl0KmK4Y37hxI9vPI/KGNPEIi2bPnk1ycjIvvPACtWrVyrSus7Oz2f3x48czadIk/P396d27Nx4eHqxZs4bx48ezbt061q9fj5OTk9k2SUlJtG3blsjISNq3b0+RIkWoUKFClh5fu3Yt3bt3Jzk5mSeffJLKlStz9epV/vjjD1atWsWmTZvMvuxu375NmzZtOHz4MFWrVmXAgAE4OTlx/vx5Zs+eTffu3SlevDgTJkzgzz//5PDhw4wePRpvb28A7X8w/eAGBQVx6dIlAgMD6dixI7Gxsfz999907NiRn3/+mcGDB2v1ExMTCQ4OZu/evdStW5cXX3yRqKgoPvnkE7Zs2ZKt9ygn/v33X8CU2NyvU6dOZnWyus0nn3zCv//+y0cffQSgNVXs37+fFi1aAGhNgGnJ1D///MPMmTNZuXIlXl5ej3xcliilALQfwJ9//pmhQ4fi7u5Oz549KVasGJs3b+aLL75g5cqV7Nixw+y9tSQyMpLRo0fTvHlz2rVrR9GiRblx4wYrV66kc+fOzJgxg0GDBmXY7mGf7/v1798/QxICsG3bNv7991/c3Ny0srTP/bp166hatSq9e/fGxcWFTZs2MXLkSHbv3s38+fPNnmfMmDFMnTqVEiVK8Morr+Do6Mhff/3F7t27SUpKyvD3+TBJSUnMnTsXLy8vnnnmGeLj43njjTf45ZdfGDt2bIYkxM/PD4AzZ85Qr169bO3r4MGD7N+/n3bt2lGmTBn69+/PsmXLmD59+gNPpB6mTZs2tGzZku3bt/PHH38wfPjwHD2PyGV6X8IR1qlt27YKUDNmzMjWdjt37tSahW7cuKGVJycnq65duypAffrpp2bblCtXTgEqODhY3b17N8NzZvZ4ZGSk8vb2Vn5+fur48eNmjx09elS5u7ur+vXrm5X36tVLAerVV19VqampZo/FxMSoqKgo7f7Dmnhat26tDAaDWrhwoVn57du3Vd26dZWLi4vZZe60ZrPu3bub7fvChQvKx8cn20086WWlicff318BKjw83OLj7u7uCtCaRe7evasA5eHhYbF+WFiYAlSxYsW0spiYGFW6dGnl7++vxowZo5599lntmNMeL1++vHrxxRdzdJxpMmvimTlzptbEExcXpy5duqScnJyUp6enOnnypFndoUOHKkANHjzYrNxSE09CQoK6cuVKhv1FRUWpmjVrKh8fHxUXF2f22MM+32lNEJs2bcr0eA8fPqw8PT2Vv7+/OnfuXIbtR4wYoVJSUrTylJQUNWDAAAWoP//8UytP32QXERGhlcfHx6umTZs+8DXNzMKFCxWgXnnlFa2sR48eClD//PNPhvrff/+9ApSnp6d666231IYNGx74mbzfkCFDFKB+++03pZTpuyUgIEC5u7ur6OjoDPUza+JJ77333lOAeumll7IUh8h7kqAIi6pXr64AtWbNmmxtN2jQIAWon3/+OcNjp0+fVnZ2dqpChQpm5Wlf4IcOHbL4nJk9PnnyZAWoH374weK2Y8aMUYCWvNy8eVPZ2dmpEiVKWPyxuF9mCcqhQ4cUoJ599lmL2/75558KUP/73/+0ssqVKys7OzuzH5g0aV+keZmgODo6KkAlJydbfLxkyZIKUNevX1dKKXXt2jUFqFKlSlmsn5SUpADl5ORkVn7q1CnVsWNH5e3trUqWLKleffVV7cdj+PDhqnjx4io8PFyFhISorl27KhcXF+Xh4aH69u1r8UfGkrQExcvLS02YMEFNmDBBvf3226pTp04KUICaMmWKUkqpiRMnKkCNGzcuw/NERkYqT09P5eLiohISErTy7PZB+eabbzL0vVHq4Z/vrCQo165dU6VLl1YuLi5qx44dWnlqaqry9fVVAQEBFt/T27dvK4PBoHr27KmVpf2Nzpo1K0P9TZs25ShBSTuhSd9/aeXKlQpQzz33XIb6RqNRjRs3Trm4uGjvFaDKly+vBg0a9MDX6u7du8rT01N5eXmp+Ph4rfyNN95QgPrxxx8zbJPVBGXatGkKUJ06dcriUYu8Jk08IlcdOHAAgLZt22Z47LHHHqN06dJcvHiR6Ohos0v7Li4u1KlT54HP+6DH//vvPwAOHz5s1iclzZkzZwA4efIkNWrUYO/evRiNRlq1aoW7u3u2ju1B+46Ojra477CwMG3fYOp7cu7cOcqUKUOlSpUy1A8KCtKaSWxd1apVLfbJ2LZtGz/++CNLlizB19eXdu3acevWLX777Tfu3r3LyJEjiY+PzzDaJzPR0dHa62Zvb4+vry+dOnVixIgRdO7cGcj8c+nj40P9+vXZunUrp06dom7dupnu7/jx43z11Vds3bqVGzdukJCQYPa4pSGrD/t8Z+bu3bt07dqVa9eusXDhQpo3b649dubMGSIjI6lSpQoTJ060uL2rq6v2GYR7r0Xr1q0z1G3ZsiX29vbZiu/cuXNs2rSJqlWr0qxZM628Y8eOBAQE8OeffxIeHo6/v7/2mMFg4LPPPmPs2LGsW7eOXbt2ceDAAXbv3s0vv/zC7NmzmTZtmlnzKMCiRYuIiYlhyJAhuLi4aOX9+/fnm2++YcaMGQwdOjRb8adR9zUJCv1JgiIsKlGiBCdPnsz2/ABpnexKlCjxwOe9fPkyUVFRZglKsWLFMv1ieNDjERERwL0Oeg+SNsdG2nwJpUqVyrR+VqTte8OGDWzYsOGh+057bYoXL26xXkBAwCPH9DBeXl6Eh4cTHR2t9QNILy3GtPcm7f8HdZ5MK39Y3w2A+Ph4Bg4cSPfu3Xn22WfZsGEDBw8eZP78+TzzzDOAqXP2Bx98wPnz5y0mcZaUK1fuofPUZOVzCWQ6nwbArl27aNu2LSkpKQQHB9OtWzeKFCmCnZ0dhw4d4q+//rLYEfxhn+8HSU1N5fnnn+fgwYNMmjSJ559/3uzxtM/g2bNnM01u088xk9nn0MHBwSyRyIoZM2aglMowwaCDgwMvvvgi33zzDXPmzOHNN9/MsK23tzfPP/+8dlyxsbF8/vnnTJw4kZEjR9KtWzezOKdPnw6QYV+1atWiQYMG7N+/n3379tGwYcNsHQOYhj4DFC1aNNvbirwho3iERS1btgRMox6yI+0HLTQ01OLjaT3k7+8Y+bAv7wc9nvY8hw8fRpmaLC3+69evH3DvhzQ3JmZK2/eUKVMy3XfaCJe0+mmjhO73oNcsN1WtWhW4d2UpvRs3bhAbG0vp0qW1Tpju7u6UKlWKu3fvWhzdcPbsWcB0dexh3n//fSIiIvjf//4H3LuylL4Dc4MGDQA4ceJEdg7roXL6ubzfxIkTiY+PZ/369axZs4bJkyfz8ccf8+GHH2baQTOnZ+UjR45k9erVDB482OIcHWnxPvPMM5l+Bi9evJhhG0ufw5SUFMLDw7McX/qROuPGjcsw2ihthNbDTiDSuLu788knn9CyZUsSExPZsWOH9tiRI0fYs2cPAM2aNcuwr/379wP3kpjs2rRpE0COO9qK3CcJirDo5ZdfxtHRkWXLlj30xyL9GWPaxEqWpu0+d+4cV69epUKFClk6486Kpk2bAqamg6xo3LgxdnZ2bN26ldjY2IfWT7vcnZqa+sj79vT0pHLlyly7ds3ihGr5MdV5WhOHpaHhaU0y9zeD5GSb++3Zs4fJkyczZcqUDGfu6T8/9zeX5JbMPpdRUVEcOnQIFxcXqlevnunznDt3Dl9fX4sjbHJ7FNY333zDtGnTaN++PT/++KPFOtWqVcPb25tdu3aRnJycpedNSwgtxbt9+3aLn/UH+euvv7h16xZVq1Zl4MCBFv9VrFiRM2fOZOv18fT0BO41u8C9xCMoKOiB+3J1dWXhwoXZnpX433//ZceOHbi6umpX84QVyL/uLsLWpI04KV++vNq7d6/FOmvWrFFt2rTR7qeNEChfvry6deuWVp6SkqKeeuopBaiJEyeaPcfDJobK7PHw8HDl7e2tihYtqnbv3p3h8dTU1AydD3v37p3lUTxvvfWWAtS///5rcf+BgYHKzs5OzZw50+LjR44cMZucLO017dGjhy6jeC5cuJDnE7XdLzExUdWoUUN16dLFrHzDhg0KUB999JFWljahm6VOxPfLbBSPpbqOjo7Ky8tLnT171uyxESNGKEANGjTIrNxSJ9kOHTooQB0+fNis/JdfftE6es6ePdvssYd9vi11kl22bJmys7NTtWvXfmin4ffff1/7PN8/gkgp06Rn6Ue4bd++PddG8bRr104BavHixQ+sk/ba9O7dWyv78ssv1bFjxyzW37Ztm3JxcVEODg7q2rVrSiml4uLilLe3t7K3t9fKLOnTp48C1PTp07Wyh03UtmzZMm2iti+//PJhhyzykSQoIlMfffSRsrOzU4Bq3ry5GjVqlBo/frwaOHCgqlKligJUw4YNzbYZO3asNvR02LBh6q233lK1atVSgGrZsqVKTEw0q/8oCYpSSv3zzz/K09NTGQwG9cQTT6jRo0erMWPGqB49eqiSJUsqZ2dns/qRkZGqTp06ClDVqlVTo0ePVm+99ZZ69tlnlaenp9kPxdq1a7Uv87Fjx6pPPvlEff/999rjV65c0V6HunXrqldeeUWNHTtW9e7dWzvm//77T6ufkJCgGjVqpNUfO3aseuWVV5S3t7fq1q1bthOUGTNmqH79+ql+/fqpFi1aKEDVqVNHK7M0M+bUqVMVoPz8/NSwYcPUmDFjVOnSpRWg3njjDYv7ef311xWgSpcurcaMGaOGDRum/Pz8FGD2eljy7rvvKi8vL3X16lWzcqPRqBo0aKDs7e3VgAED1HPPPacAsxEnmclOgqKUUv/73/+0oa0DBw5U77zzjmrWrJn2OUj/Y62U5QRlzZo1Zs/x+uuvq1atWik7OzttOHVuJCiurq6K/59pNW2EUvp/6feRlJSkfXZKlSql+vbtq9555x01YMAALYG+/3MwcuRIBagSJUqokSNHqtdff11VqlRJNWzYUJUoUSJLr+mFCxeUwWBQ/v7+Gf6m04uJiVEeHh7K2dlZe43r1q2rve79+/dX48aNU6NGjVLBwcHKYDAoQH3zzTfac6Ql308++WSmMW3evDnDd1La69u6dWvt9Rs7dqzq06ePqlChggKUs7Oz+uKLLx56zCJ/SYIiHurEiRNqxIgRqmbNmsrT01M5OjqqgIAA1bFjR/XLL7+YDc1Ms3DhQtWiRQvti6lGjRpq4sSJZkMD0zxqgqKU6cdq+PDhqnLlysrZ2Vl5enqqqlWrqj59+qjly5dnqH/37l01ceJEVbt2beXq6qo8PDxU9erV1ejRo82ueChlGj5arVo15eTkZPEH8c6dO+rTTz9Vjz/+uHJ3d1cuLi6qfPnyqnPnzurnn3/OMJw5Ojpavfbaa1ryVLVqVfX111+r8+fPZztBSRsG/aB/rVu3trjdihUrVKtWrZSHh4dyc3NTDRs2VHPmzMl0X7Nnz1YNGzZUbm5uysPDQ7Vq1UqtXLky020OHjyoHBwcHjifzpUrV9RTTz2l3N3dlZeXl+rXr1+2hxlnZ0jsunXrVLt27ZS3t7dycnJSlSpVUm+99Za6fft2hroPGma8cuVK1aRJE+Xh4aG8vLxUu3bt1JYtW7Qf0dxIUDJ7Ty29r0ajUc2bN0+1bdtW+fj4KEdHR1WyZEnVokUL9emnn6rLly9nqP/9999rn+sSJUqoYcOGqaioqCxPdT9+/HgFqNdee+2hdQcPHqwA9e233yqllDpw4ID65JNPVJs2bVT58uWVi4uLcnZ2VhUrVlS9e/dW27ZtM9u+efPmClB//fXXQ/f12GOPKUAdPHhQKXXv9U37ZzAYlIeHhypbtqzq1KmT+vzzzzMkz8I6GJRK18gnhBBCCGEFpJOsEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDo2maAkJCRw+vTpPJsWWwghhBD6sskEJSQkhMGDBxMSEqJ3KEIIIYTIAzaZoAghhBCiYJMERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUcsrtBXFwcixYt4sSJE5w8eZKYmBjGjRtHp06dsvwc+/btY/78+Zw5cwaj0UiZMmXo1asXwcHB2Q1HCCGEEAVQthOU6Oho5syZQ/HixalcuTIHDx7M1varV6/miy++oGHDhgwePBh7e3suX77MrVu3shuKEEIIIQqobCcofn5+LF++HD8/P06dOsUrr7yS5W1v3LjBd999R/fu3Rk9enR2dy2EEEKIQiLbfVCcnJzw8/PL0c7++usvjEYjAwcOBEzNRUqpHD2XEEIIIQqufO0ku3//fsqWLcuuXbvo0aMHHTt2pGvXrvzyyy8Yjcb8DEUIIcQjiLudwP6lZ4m7naB3KKKAynYTz6O4evUqdnZ2fP755/Tq1YtKlSqxdetW5s2bR2pqKkOGDLG4XXh4OBEREdr9kJCQ/ApZCCGEBXFRiRz84xzlGhTDzcdF73BEAZSvCUp8fDxGo5EhQ4bw4osvAhAUFERMTAxLly6lb9++uLm5ZdhuxYoVzJkzJz9DFUIIIYSO8jVBcXZ2Jj4+nieeeMKsPDg4mN27d3PmzBnq1auXYbtu3brRokUL7X5ISAgTJ07M63CFEEIIoZN8TVD8/Py4evUqPj4+ZuVp92NiYixu5+/vj7+/f57HJ4QQQgjrkK+dZKtWrQqY+pSkl3bf29s7P8MRQgghhJXKswQlPDyckJAQUlJStLK2bdsCsGrVKq3MaDSyZs0aihQpoiUwQgghhCjcctTEs2zZMu7evauNrNmxY4c2E2yPHj3w8PBg+vTprF27lsWLF1OiRAkAWrZsSYMGDViwYAFRUVFUrlyZbdu2ceTIEd58802cnJxy6bCEEEIIYctylKAsXryY0NBQ7f7WrVvZunUrAO3bt8fDw8PidgaDgU8//ZRffvmFf//9l7Vr11KmTBnee+892rdvn5NQhBBCCFEAGZQNTuV6+vRpBg8ezIwZM6RZSAghdBB+MZo/393J0582x7+Cl97hiAIoXzvJCiGEEEJkhSQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQghRgMTdTmD/0rPE3U7QOxQhHokkKEIIUYDERSVy8I9zxEUl6h2KEI9EEhQhhBBCWB1JUIQQQghhdSRBEUIIIYTVkQRFCCGEEFZHEhQhhBBCWB1JUIQQQghhdSRBEUIIIYTVkQRF6E4mlhJCCHE/SVCE7mRiKSGEEPeTBEUIIYQQVkcSFGGRNLsIIYTQkyQowiJpdhFCCKEnSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVBEoSErNAshhO2QBEUUGrJCsxBC2A5JUIQQQghhdSRBEUIIIYTVkQRFCCGEEFZHEhQhhBBCWB1JUIQQQghhdSRBEUIIIYTVkQRFCCHymMzBI0T2SYIihBB5TObgESL7JEERQgghhNWRBEUIIYQQVkcSFCGEEEJYHUlQhBBCCGF1JEERQgghhNWRBEUIIYQQVkcSFCGEEEJYnWwnKHFxccyaNYs333yTLl260KpVK9asWZOjnX/55Ze0atWKt99+O0fbCyGEEKJgynaCEh0dzZw5cwgJCaFy5co53vGpU6dYs2YNTk5OOX4OIYQQQhRM2U5Q/Pz8WL58Ob///jtDhw7N0U6VUkyZMoUOHTrg6+ubo+cQQgghRMGV7QTFyckJPz+/R9rpunXruHjxIoMHD36k5xFCCCFEweSQ3zuMi4vjp59+ok+fPllOdMLDw4mIiNDuh4SE5FV4QgghhLAC+Z6gzJkzB2dnZ5577rksb7NixQrmzJmTd0EJIYQQwqrka4Jy5coVli5dygcffJCtzrHdunWjRYsW2v2QkBAmTpyYFyEKIYQQwgrka4IydepUatWqRVBQULa28/f3x9/fP2+CEkIIIYTVybeJ2vbv38/u3bt59tlnuXHjhvYvNTWVxMREbty4QWxsbH6FI4QQQggrlm9XUG7dugXAe++9l+GxsLAwnn/+eUaMGJGtvilCCCGEKJjyLEEJDw8nNjaWUqVK4eDgwOOPP86nn36aod5XX31FQEAAffv2pWLFinkVjhBCCCFsSI4SlGXLlnH37l1t6O+OHTu0KyQ9evTAw8OD6dOns3btWhYvXkyJEiUoXrw4xYsXz/Bc33//PT4+PgQGBj7CYQghhBCiIMlRgrJ48WJCQ0O1+1u3bmXr1q0AtG/fHg8Pj9yJTgghhBCFUo4SlCVLljy0zvjx4xk/fnyuPJcQQgghCpd8G8UjhBBCCJFVkqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCFBBGoyLsQjQAYReiMRqVzhEJkXM5WixQCCGEdbm4J5Rd804SG5kAwI6Zxzm0/DxNX6pOhcYBOkcnRPbJFRQhhLBxF/eEsnHyQS05SRMbmcDGyQe5uCdUp8iEyDlJUIQQwoYZjYpd805mWmfX/JPS3CNsjiQoQghhw0JPRWa4cnK/2IgEQk9F5lNEQuQO6YMicl1kfCTbQrZxKvwUV+5cIcWYgqOdI2W8ylDVryqB5QLxdfXVO0whCoT4qMQMZUZSCXE5xxXnC9xyvEG8fSwbd/pSKbQ85b3L06RUE2oWq4mdQc5RhfWSBEXkipjEGBYdW8TsQ7PZdXUXigdfTjZgoGnppgyoP4BetXrlY5RCFDyu3s4AKBSXXM6wxWsNBz13Emd/17zitf//9/+KuRfjhZovMOjxQdQuXjv/AhYiiyRBEY8kLjmO73d/z5c7vyQyPmuXkBWK/67+x39X/+Ptf95mVI3XKGaQL0ghciKgmi/Xi13gV+efOeN2NMvb3Yq9xdQ9U5m6ZyrdqnZjYpuJWU5U7h/O7FuuCHZ2hhzFL8SDSIJiY+JuJ3By4xWqB5fBzcdF11g2XtjI4JWDuRh10ay8ZtGadKjUgUalGlHOqxxujm7Ep8Rz8fZF9l3fx9rzazkRdgIwNQd9uP99/MsHUDJ0Bk9V6KrHoQhhk6ISonh93evM9pltVu6S6kqNuMd5LK42JZJK0/b5xpSuXZQbMTc4GX6STZc28c+Ff0hIMfVdWXF6BX+f+ZvXm77OR20+ws3R7YH7lOHMIr9IgmJj4qISOfjHOco1KKZbgpKcmszYDWOZvHuyVmbAwIt1XmRMkzE8XuJxDIaMZ1NNSzelV+1efMM37Lu+j8m7JvPb0d9QKMKdQnl6/ZOMiR7Dl+2+xNHeMR+PSAjbs+PyDp5f+jzXYu612wSklKZD2LM0immFs3LB3c+Fpq/cSxzqBdSjU5VOvN7sdaISoph/eD5f7PiCazHXMCojX//3NSvOrGDZc8uoVaxWhn2mDWe+X9pw5uAx9SVJEblGekiJbLl59ybt5rczS05alWvF0aFHmf/MfBqUbGAxOblfw5IN+aT010yKnE6VuJpa+eTdk2n5v1bcir2VF+ELUSBM3z+dNnPbaMmJp5Mn/+v8Py59cJ63e76Gs3KhxcCaPD8l6IEJg7eLNyObjOTsyLNMbDMRZ3tTX5YzEWdo8ksTFh9bbFZfhjOL/CYJisiyC7cv0GxmM7aEbAHA0c6RqR2nsqnfJmoWq/mQrc2lnYn5hZXizStf8PzNV7BXpgt6e27vovGPTQmJCsn1YxDClimleGPdGwz5ewjJxmQAgsoHcXzYcYY1GoazoxNFK3oBULSiV5b6hbg6uvJuq3c59Ooh6gfUB0x9y15Y9gJTdk3R6slwZpHfJEERWXIy7CSBswO1/iYlPUuypf8WRjYZme2hivefidlhxxNRT/PW5S/xTvYDICTuIi1mteBkWOZnbEIUFkZlZNiqYXy761utbEyTMWzou4EyXmUe+fmr+Vdjx4Ad9K/X/97zrxvD+/++j1LK4nBmS7JaT4iHkQRFPNTp8NO0ntOa6zHXAajuX509g/bQrEyzHD3fg87EKiVUY9zlbwlILA3AtZhrBM0N4lzkuRzHLkRBoJTilZWv8NP+nwBTn6/pXafzXcfvcLDLva6Ero6uzOo2iw9afaCVTdw2kU+2fqINZ37oc2SxnhAPIwmKyCD9EMJjJ0/TfkF7wuLCAHi8xONsfXkrpYqUyvHzZ3aG5ZtSlLFXvqJsQmXANBSy/fz23Ii5keP9CWHr3v33XWYenAmAvcGeBd0XMLjB4DzZl8Fg4KM2HzG141StbMLmCSy98yvuvpl3zHf3cyGgmkzCKHKHJCjCzMU9oSwetZkdM48TZ3eXPtuf43L0ZQDqFq/Lxpc24u/m/0j7eNgZlmeqF69f+ZSqRaqZYoq6SIcFHbiTeOeR9iuELfp+9/dM2j4JMF05+a3Hb/Su3TvP9zuyyUi+af+Ndn/0utFEtDub6TZN+1bPk/lQ4m4nsH/pWeJuZ94HRhQskqAITfoVUY2kMqPEl1xzNnVU9U8K4Ocac/F28X7k/QRU833omVgxn6JseHkD5b3LA3D01lH6/NEHozI+8v6FsBVrzq5h9NrR2v3vO33PczWfy7f9v97sdd4LfE+7P/bYGAJedsjw9+vu55KnQ4zTpleIk/4thYokKALI2HH1L/8FHPPYB4BHShFeuzqRC79H5soQQjs7A01fqp5pnaZ9q1PGuzTr+6zXkqKVZ1by4eYPH3n/QtiC85Hn6f1Hb23ZiHEtxzG88fB8j+PjNh/Tr24/AOJT4hl2bCBBn1WnxUDTyL2HDWcWIqckQRGAecfVAx47WO1nmgPBTtnxyo13KJZcMleHEFZoHEDwmPoPPROr4leFxc8u1kYKfbL1E/469VeuxCCEtYpNiuWZxc8QlRAFwFNVn2Ji24m6xGIwGPip6080Ld0UgCt3rtB7eS98y3sAWR/OLER2SYIigHsdVyMcbjE34N7cBz3DBlE9rl6GermhQuMAnp8a9NAzsfaV2vPlE19q9wesGMDVO1dzLQ4hrM1r617j6C3TujpV/aoy75l5uq487OLgwh/P/UEpT1Pn+M2XNjP52LcP2UqIRyMJigBMHVeNpDKrxDfaKqiN7rQi+PZTGerlJjs7Q5Ymlnq92et0r94dMK3f0+ePPqQaU3M1FiGswV+n/mLGgRkAuDu6s/z55RRxLqJzVFDCswQLeyzUEqWvDn/OWdfjOkclCjJJUARg6rj6b6m/tNVQfZOL0ufmCAzcSxj0HEJoMBiY8eQMyhQxTUi1JWQLn2//XJdYhMgroXdDGbRykHZ/csfJVC+aeX+t/BRYLlCbIyVVpfJLiS+JSZLRdSJvSIIiADh08yDLPOcAYFB2DLzxFm5GD7M6eTWEMKt8XX35tfuv2hncR1s+4titY7rFI0RuUkrx8l8vEx4XDpj6nQysP1DnqDJ6r9V7tCrXCoBIxzA+PvChvgGJAksSFEFyajIDVwwkRaUA8FRcLx6Lv7eSaV4PIcyOwHKBjG0+FoBkoyluaeoRBcHcw3NZe24tAAEeAfzS7ZcsLbyZ3+zt7Jnz1BzcHNwBmHNmFpsubtI5KlEQSYIi+G7XdxwKPQRA7WK1WfTpLKseQjghaAJV/aoCsOfaHibvmqxvQEI8orDYMN5Y/4Z2/5cnf3nkCRHzUgWfCrz/+ATt/qCVg4hNitUxIlEQSYJSyJ2PPM+EzaYvGgOmfh45WRE1P7k4uDCz20ytf8x7m96T9XqETXt9/etExpuG8L9Q6wW6PNZF54gebkDVQVSJM53IXLh9gfc3va9zRKKgkQSlEFNK8eqqV0lIMc1/MqrJKJqUbqJzVFnTomwLRjYeCUBCSgKj1oxCqUefRE6I/Lb+/HoWHFkAgLeLN5M7TNY3oCyyM9jRL3QMLvamuYym7p7K0ZtHdY5KFCSSoBRiS08s5Z8L/wBQ1qusbhNB5dSnwZ9Suohp5eM159bw95m/dY5IiOxJTElk2Kph2v2v231NcY/iOkaUPcWTSzGmtqlpKlWlMmLNCDlRELlGEpRCKj45njc3vKnd/77T93g4eWSyhfXxcPIwW8xszLox2tUgIWzBlN1TOH/7PACBZQMZUH+AzhFl3/CaI6nkUwmArSFbWXhsoc4RiYJCEpRC6qudX2mrFLev1J4nH3tS54hypmeNnrQp3wYwtYN/vfNrnSMSImtC74YycavpqqWdwY6pnaZa5aidh3Gxd2FKx3uzT7+5/k1ZeVzkCklQCqEr0Ve0Sc7sDfZ81+E7m/xiBNMEbt93+h57gz0An237TKbBFzbh3Y3vEpMUA8Cg+oOoF1BP34AeQZfHumgnOTfu3uCL7V/oHJEoCCRBKYTe2fgO8SnxAIxoPIIaRWvoHNGjqVmsJiMajwBMq61O2DThIVsIoa8DNw4w+9BsAIo4F+GTtp/oHNGjm9xxMo52jgB8u+tbOVEQj0wSlELm4I2D/Hb0NwD8XP2Y0Lpg/Jh/0PoDvJxNQ6PnHJ7D8VuyRoiwXm9teAuFqTPphNYTKOZeTOeIHl1Fn4raiUJCSoKcKIhHJglKITP+3/Ha7fdbvY+Pq4+O0eQeX1dfxrUcB4BRGRm3cZzOEQlh2T8X/uHfi/8C5j/qBcG7ge9qJwqzD82WYcfikUiCUohsvrRZm0q7rFdZXm34qs4R5a5RTUZpy8GvPLOSbSHbdI5ICHNKKbPk+ZM2n+Bk76RjRLnLz82PdwPfBUChGPvPWJ0jErZMEpRC4v4vxo+DPsbZwVnHiHKfq6MrH7f5WLs/9p+xMieDsCp/X17Bvuv7AKhTvA4v1HpB54hy38gmIynrVRaAtefWyomCyLFsJyhxcXHMmjWLN998ky5dutCqVSvWrFmTpW3379/P559/Tu/evWnXrh3PP/88X3zxBeHh4dkOXGTPitMr2HV1FwA1i9akT50+OkeUN/rV7UfNoqbpt3dd3cWK0yt0jkgUdkajIuxCNKmkMnHPvQT6s7afaStzFyQuDi58HHTvONOW0hAiu7L91xEdHc2cOXMICQmhcuXK2dr2p59+4uDBgwQGBjJ69GiCg4PZtGkTgwYNIiIiIruhiCwyKiPv/vuudv+z4M+wt7PXMaK8Y29nz2fBn2n3P9rykVxFEbq5uCeUxaM2s2PmcXYV2ciFeNOkbA18GtG5Smedo8s7L9Z5kSq+VQDYdGmTrHYsciTbCYqfnx/Lly/n999/Z+jQodnadvjw4SxcuJChQ4fStWtXXnnlFT7//HMiIyP5448/shuKyKJlJ5ZxPMw0qqVp6aY2OylbVj352JM0KNEAgIOhB1l5ZqXOEYnC6OKeUDZOPkhsZAIppLDS794Mq8GHn+PS3ps6Rpe3HOwczEYITtg8QU4URLZlO0FxcnLCz88vRzurV68ednZ2GcqKFClCSEhIjp5TZM6ojEzcdm+NnY+CPrLZSdmyymAwmH05frj5Q/lyFPnKaFTsmndSu7+7yCYinEwJSc3YBlSJr8mu+ScxGgvu5/KFWi9Qzb8aANsub2PjxY06RyRsje4NoHFxccTHx+Pl5fXAOuHh4Zw+fVr7J8lM1q08vZIjN48A0LhUY9pVbKdzRPmj62NdebzE44BcRRH5L/RUJLGRpnWhjKSy2m+x9ljXCFPH2NiIBEJPReoSX36wt7OXqyjikeieoPz+++8kJyfTtm3bB9ZZsWIFgwcP1v5NnGhbq+7qRSnFJ1vvzVD5fqv3C/zVkzQGg4EPW3+o3ZerKMKSuNsJ7F96lrjbubvIZHxUonZ7r+dWbjldB6BqbB0qx9e0WK8g6lmjp9ZpfeeVndrq6UJkha4JyqFDh5gzZw5t2rShQYMGD6zXrVs3ZsyYof1777338jFK27X23Fr239gPQP2A+nSp0kXniPLX/VdR1l9dq3NEwtrERSVy8I9zxOVyouDqbRrCb8TIKrOrJ70s1iuo7O3s+aD1B9r9z3d8rmM0wtbolqCEhITw3nvvUbFiRd5+++1M6/r7+1O1alXtX7ly5fIpStt1/9WT91q9V2iunqS5vy/KlGOT9QtGFCoB1Xxx93XhoMdObjibVg2vHFeDqvF1tDrufi4EVPPVK8R806N6D21Ez78X/2XPtT06RyRshS4Jys2bN3njjTdwd3fniy++wM3NTY8wCrR/L/7Lf1f/A6BWsVo8Xe1pfQPSyZOPPUmtYrUA2Bu2m7OuskaPyHt2dgaa9K3GKr9FWlmXiF4YuHeS0LRvdezsCv5Jg72dPWNb3JtR9osdstKxyJp8T1Cio6N54403SE5O5uuvv8bf3z+/QygU0l9KfTfw3QI5IVRWGAwG3mr+lnZ/ne9Swi5EF+jRE8I6nPM/yhWXCwCUj3+MmnGm5kZ3PxeCx9SnQuMAPcPLV33r9KWERwkAlp9czqnwUzpHJGxBnv1qhYeHExISQkpKilYWHx/P2LFjCQ8P58svv6RMmTJ5tftC7VDoIa0zWmXfyvSs0VPniPTVNL4Nfqmm1WIPe+xmyfzVLB61mYt7QnWOTBRkX+/8Wrs9pv5rGDDQYmBNnp8SVKiSEwBnB2deb/Y6YFqj58sdX+ockbAFOUpQli1bxty5c1m9ejUAO3bsYO7cucydO5e7d+8CMH36dPr27UtYWJi23SeffMLJkycJCgoiJCSE9evXa/+2bZP1GnJL+i/G15u+XmBnjc2Ki3tC2Tr1GMERT2ll63yXERuZwMbJByVJEXniUOghNlzYAEAln0q80PA5AIpW9CoUzTqWDGkwBG8XbwAWHFnAlegr+gYkrJ5DTjZavHgxoaH3vti3bt3K1q1bAWjfvj0eHh4Wtzt37hwAq1ev1pKbNAEBAQQGBuYkHJHOlegrLDpmavf2c/WjX71+Okekn/STZQVGdeRvv4XE2d9lT5FNPB3+Er4p/uyaf5JyDYsX2h8NkTfMThKaFe6ThDSezp6MaDSCidsmkmxM5tv/vuW7jt/pHZawYjlKUJYsWfLQOuPHj2f8+PHZ3k48mim7p5CqUgEY3mg4bo6FtwNy+smyXJQrbW53ZZX/IlINqfzjs5znwgZrk2WVrJGz2ZGFuN/l6MvaSYK/mz/96/Un7mqyzlFZh1FNRvHNf98QnxLPjAMzmBA0QbuqIsT9CmfPyQIqOiGa6funA+Bs78zwxsN1jkhf90+C1TaqG45GJwC2eq8lzu6uxXq5Ia8mABPWb8ouOUl4kKLuRelfrz8AscmxzDwwU9+AhFWTBKUAmb5/OjFJMQD0q9uPYu7FdI5IX/dPglUk1Zvmd54AINEunu1e6y3Wyw15NQGYsG5RCVFMP2A6SXBxcGF4o8J9kmDJ6CajtdtT90wlxZiSSW1RmEmCUkAkpSYxZfcUAAwYtB7zhVnaZFnpBd++11n2X++VuPo5ForJskT+mL5/OneTTFfm+tftT1H3ojpHZH2q+lelc5XOgKk57M9Tf+obkLBakqAUEMtOLONazDUAulXtRlX/qjpHpD87OwNNX6puVlYiqQw1Y03LKkQ43eRu+yvSQVbkihRjCv/b+z9AThIe5rWmr2m3v9slHWWFZZKgFBBT90zVbo9pOka/QKxMhcYBBI+pb3YlJfh2N+32osh5eoQlCqCVp1dyOdo0rX3nKp2p4ldF54isV3CFYG2G551Xdsr098IiSVAKgH3X97Hr6i4AaherTetyrXWOyLpUaBzA81ODaDHQtKrqK8+/xGO+jwGw+dJmjtw8omd4ooBIf5IwsvFIHSOxfgaDgTFNxmj3J++arFsswnpJglIAfL/ne+32yMYjC92igFlhZ2egaEUvAIpX8mFUk1HaY1N2TdErLFFAHL15lM2XNgNQ1a8q7Sq10zcgG9C7dm/83UxLnfx+4neu3rmqc0TC2kiCYuNuxd7S5lzwcfHhxTov6hyRbehXrx9ezqaE5dejvxIWG/aQLYR4sPQnCSMajyi0a19lh6ujK0MbDgVM/Xd+3PujzhEJayN/RTZu+v7pJKUmATCw/kCZcyGLPJw8GFh/IACJqYna/DFCZFdkfCQLjiwAwNPJk351C+/szdk1tOFQHOxM84XOPDiTxBQZli/ukQTFhiWnJjNt3zTANGpgWKNhOkdkW9Kf6f6470ct0RMiO2YemEl8SjwAL9d7GU9nT50jsh0lPEvQo3oPwHQ1eNnJZTpHJKyJJCg2bPmp5VyPuQ6YhhZX8Kmgc0S2pYJPBbpVNY3ouR5znb9O/aVzRMLWpBpTtaHFQKGfvTkn0p9YSTOPSE8SFBt2f+dYkX0jGo3QbqddjRIiq1aeWUlIdAgAnSp34jG/x3SOyPYElg2kZlHTCLsdV3ZwOPSwzhEJayEJio06GnmE7Ze3A1CjaA3aVmirc0S2qW2FttqPyqZLmzgVfkrniIQtSX/GLycJOWMwmDdPy4mCSCMJio2ae2a2dnt4o+EytDiHDAYDrzZ4Vbv/076fdIxG2JJzkefYcGEDABV9KtKhcgedI7Jdfev0xcPJA4AFRxYQnRCtc0TCGkiCYoMSDHEsvfA7AO6O7vSp00fniGxbv3r9cHEwzTQ79/Bc4pLjdI5I2IL0I7+GNBgiQ4sfgaezJy/VeQkwrXI877DM8CwkQbFJu4tsJjbFtCDZi7VfpIhzEZ0jsm2+rr48X/N5wLQabdq8MkI8SGJKIrMPma5iOto50r9ef30DKgCGNhqq3f5x348opXSMRlgDSVBsjFKKrd5rtPtDGg7RMZqCI23CKJBmHvFwf5z8g/C4cAB61OhBMfdiOkdk+2oVq0Wrcq0AOBV+SpuZVxRekqDYmEMRB7nsch6AhiUb8niJx3WOqGBoXKox9QPqA7D3+l72X9+vc0TCmv20/14Sm74Pk3g0wxvdG6adfvi2KJwkQbExc87M0m7LF2PuMRgMZldRZCSBeJCTYSfZGrIVgGr+1bSzfvHonq72NAEeAQD8eepPbsTc0DkioSdJUGxIVEIUf176AwBPxyK8UOsFnSMqWHrX7q315/nt6G9EJUTpG5CwSj/v/1m7PaTBEBlBl4uc7J20JShSVSpzDs3RNyChK0lQbMiCIwuISzGNMOlZ8Xncndx1jqhgcXdy10YSxKfEy0gCkUF8cjxzD88FwMXBhZfqvqRzRAVPWoIC8MvBXzAqo47RCD1JgmIjlFL8vO/emVs3t2cxGqWXe257teG9ZrPp+6fLSAJhZsnxJdqVtedqPoevq6++ARVAFXwq0K5iOwAu3L7ApoubdI5I6EUSFBuxdP1KjoUdA6BSfHXCFqWyeNRmLu4J1TmygqVmsZq0KNMCgONhx9l9bbfOEQlrIp1j88fgxwdrt2ccmKFjJEJPkqDYgIt7Qvl23RTtfquozgDERiawcfJBSVJy2aDHB2m3fznwi46RCGtyOPQwu67uAqBO8To0Ld1U54gKrqeqPUVRt6LA/w/pTgjXOSKhB0lQrJzRqPhn/m72eW4DwC3Vg4YxLc3q7Jp/Upp7clHPGj21zrKLji0iJjFG54iENbh/5ljpHJt3nOyd6Fe3HwDJxmSWnF+oc0RCD5Kg5IK42wnsX3qWuNsJuf7coaci+Td1LSl2yQA0iw7GSTmb1YmNSCD0VGSu77uwcndyp3et3oBp2m2ZWVbEJ8fz27HfAHB1cOXF2i/qHFHBl/5K5vyz81DISVhhIwlKLoiLSuTgH+eIi0rM9eeOj0pkh9d67X5gtOUFyeLzYN+FmVkzz0Fp5ins/jz1p9Y5tmfNnni5eOkbUCFQ1b+qNsfMuTtnOet6XOeIRH6TBMXKnVenueJyAYAK8Y9RKqm8xXqu3s4Wy0XOPF7iceoF1ANgz7U9HLl5RN+AhK5mHpyp3R5Qb4COkRQu6TvLbvNaS9iFaGnOLkQkQbFyK6KXabdbRLe3WMfdz4WAajLcMTcZDAYG1b93FWXmgZmZ1BYF2aWoS2y8uBGASj6VZObYfNQgtgVuRg8A9ntuZ/3sXTJ6sRCRBMWKJaQk8NtRU7u3k9GZRjGtLdZr2rc6dnbSYS+39a7dGxcHFwDmH5lPQkru9zES1i/9bKYD6g+w+s6xbt7O1O9eGTcbv6p6cU8oO74/RbPotgAk2yWZVnKX0YuFhiQoVuzPU39yO+E2AF1KP0lRbz+zx939XAgeU58KjQP0CK/A83H1oWeNngDcTrjNHyf/0Dkikd+MysjsQ7MBsDPY2cTMsW4+LjR4tgpuPi56h5JjRqNi17yTAARGddTKt3mt1TrLyujFgk8SFCs26+C9hQFHtRvO81ODaDGwJgAtBtbk+SlBkpzkMZkTpXD79+K/XI6+DECHSh0oXaS0zhEVDqGnIomNNF2xLJVUnorx1QC46nKRSy5nABm9WBhIgmKlQqJC+OfCPwBU9KlIq3KtsLMzULSiafRA0Ype0qyTDwLLBlLFtwoAmy5t4lzkOZ0jEvnJrHNsfekcm1/uH5WY/irK9nSjGmX0YsEmCYqVmnt4rnYp8+V6L2NnkLdKDwaDwewqinSWLTwi4yNZfnI5AH6ufjz52JM6R1R43D8qsWFMIM5GU5PVXs8tJBoSLNYTBYv86lmh9O3eBgzajIpCH/3q9sPBzgGAOYfnkJyarHNEIj8sPLqQxFTTGXrfOn1xdpAfw/wSUM0Xd997fWhclCsN75hGT8Xbx3HQc6eMXiwEJEGxQpsvbeZS1CUA2ldqTxmvMvoGVMgV9yhOt6rdAAi9G8qac2t0jkjkh1mH7vUBk+ad/GVnZ6DpS9XNylrcaafd3l5kvYxeLAQkQbFC6TvHyhejdRhYf6B2O32/BFEwHQo9xIEbBwBoWLIhtYvX1jmiwqdC4wCCx9TXrqRUjq9BsaSSAJx2PwJV4vUMT+QDSVCsTFRCFMtOmiZn83X15amqT+kcUd6zhXkbOlTqQCnPUgCsOrOKGzE3dI5I5CWzkwSZOVY3FRoHaKMXDRh4sUpf7bH089PklrxcV01knyQoVmbh0YXahGB9avcpFO3etjBvg72dPf3r9QcgVaUy7/A8fQMSeSYhJYEFRxYA4OLgQq/avXSOqHBLP3pxQKP+2oCBOYfnYFTGXN1XXq6rJrJPEhQrI+3e1uvlei9rt2cdmoVSMklUQbTi9AptgsQe1Xvg7eKtb0BCE+BWgo6VTUOOL0df5t+L/+ockchLkqBYkSM3j7Dv+j7AtFhd3YC6Okck0qvkW4mg8kEAnIk4w/bL2/UNSOQJ6QNm3dI3uaV/r0TBIwmKFZl9cLZ2W9q9rZN0li3YrkRfYf1500Rg5b3LawmpsB5PVn0SP1fTsh9/nPyD2/G3dY5I5BVJUKxEUmoS84/MB8DZ3lnava1Uj+o98HI2tYf/fuJ37iTe0TkikZvmHJojEyRaOSd7J/rU6QNAYmoii44t0jkikVfkr89KrDy9koj4CACeqf4Mvq4yAZE1cnV0pXft3gDEJcfJl2MBcv8EiWmdooX1ub8/mCiYJEGxEmZrflhB844tDP3VizTzFExbLm3hYtRFANpVakdZr7I6RyQepG5AXR4v8TgA+67v4+jNozpHJPKCJChW4Oqdq6w7vw6Asl5lCa4YrHNEtjH0Vy+Pl3icusVNHZj3XNvDsVvHdI5I5AazEXRWcJIgMpf+PUq78iUKFklQrMC8w/O08fzS7m39DAaD2VUUGUlg++4kRbP0xFIAfFx8eKpawZ8g0db1qt0LZ3vTFd75R+aTlJqkc0Qit2X7lzAuLo5Zs2bx5ptv0qVLF1q1asWaNVlfmyQmJoavvvqKJ598kvbt2zN69GhOnz6d3TAKDKWU2Q+ctHvbhhfrvChfjgXIHxeXaRMkvlj7RVwc5MqhtfN19eWZ6s8AEB4Xzt9n/tY5IpHbsp2gREdHM2fOHEJCQqhcuXK2tjUajbz99tv8888/dO/enVdffZXbt28zevRorly5kt1QCoRtl7dx/vZ5AIIrBFPeu7y+AYksuf/LccXpFTpHJB7Fb+cWaLcHPj4wk5rCmqTvLCvNPAVPthMUPz8/li9fzu+//87QoUOzte3mzZs5duwY48aN4+WXX6Z79+5MnToVOzs7Zs8unB8umRTKdkln2YLhqtNFDkaYFgasH1CfegH19A1IZFlwhWDKFDGt9r767Gqux1zXOSKRm7KdoDg5OeHn55ejnW3ZsgVfX19atWqllXl7e9OmTRu2b99OUlLhukx+J/EOv5/4HQAvZy+eqfaMzhGJ7Ghboa12xWvduXVciS6cVwFtldGoCLsQzQ6vDVqZnCTYlvRrZBmVkfmH5+sbkMhV+dob88yZM1SpUgU7O/PdVq9enYSEhELXzLPk+BLikuMA6F27N66OrjpHJLLDzmCnXWJWqDxZXVXkjYt7Qlk8ajNbZh5iVxHTei4OypEWSfqPoBPZk77fnqyRVbDka4ISGRlp8epLWllERITF7cLDwzl9+rT2LyQkJE/jzC/pmwXSNxcI29G/Xn8MGADTl2Nur64qct/FPaFsnHyQ2MgEDnvs5q6DaTbg+jHN2P/jJS7uCdU5QpEdFX0qmq2R9d/V//QNSOQah/zcWWJiIk5OThnK08oSEy0vcb1ixQrmzJmTl6HluxNhJ9h1dRcAdYrX0SYdEralrFdZ2ldqz7rz67gUdYlNFzdZxTw2wjKjUbFr3kntfvrmnZbR7QHYNf8k5RoWx87OkO/xiZwZUG8Amy9tBkz9+pqXaa5vQCJX5OsVFGdnZ4v9TNLKnJ0tz1rarVs3ZsyYof1777338jTO/HD/woAGg3wZ2irpLGs7Qk9FEhtpGk582yGcY+77AfBNLkq1ONPke7ERCYSeitQtRpF9PWr0wNPJE4DFxxdzN+muzhGJ3JCvCYqvr6/FZpy0sgd1vvX396dq1arav3LlyuVpnHktOTWZeUfmAeBo58iLdV7UOSLxKLpV7Sarq+aiuNsJ7F96lrjbCbn+3PFR967S/ldkI8pgapJrHt0OO+wt1hPWz83RjRdqvQDA3aS7/H78d50jErkhXxOUKlWqcPbsWYxG83b6kydP4uLiQpkyZfIzHN2sPruaW7G3AHiq2lP4u/nrHJF4FM4Ozmarqy44soCwC9EAhF2IxmiUTnvZEReVyME/zhGXB0mC6/+vLaVQZs07ze88YbGesB1mszvLAoIFQp4lKOHh4YSEhJCSkqKVtW7dmsjISLZu3aqVRUVFsWnTJpo3b26xf0pBJGt+FDzpvxy/WTmVHTOPA7Bj5nEWj9osHS+tREA1X9x9XTjreoxbTqY5M6rF1qVocoBWx93PhYBqspr4w1jbgqKNSzWmRtEaAGy/vJ3T4YV3hvKCIkcJyrJly5g7dy6rV68GYMeOHcydO5e5c+dy966p7W/69On07duXsLAwbbugoCBq1qzJpEmTmDNnDsuXL2f06NEYjUYGDCgcP9Q3Ym6w6swqAEp5lqJ9pfY6RyRyQ+3itanjVQ+AEMdzhDif0x6LjUxg4+SDkqRYATs7A01fqs72dFdPWkSb/w027VtdOshmgbUtKHr/Glkys6zty1GCsnjxYmbOnMmff/4JwNatW5k5cyYzZ84kJibmgdvZ29vz5Zdf0rZtW5YtW8a0adPw8vJi8uTJlC1bOJY2n3d4HqkqFTANUbW3s3/IFsIWGI2KRlfbaPd3eK3PUGfX/JPS3GMF/Oq6cch3BwCuqe48ftc04sPdz4XgMfWp0Dggs82FFetTpw8OdqbBqXMPzyXFmPKQLYQ1y9Ew4yVLljy0zvjx4xk/fnyGck9PT95++23efvvtnOzapimlzJp30q8jIWxb6KlI6oQ2x8n9R5LsEtldZDPPhg3ESd27/J02OqRkjZzNxCxyx+Jji4lPjQfg6dLdcTrnTIuBNanapoxcObFxxdyL0a1qN/44+Qehd0NZfXY13ap20zsskUP52km2sNtxZQdnIs4AEFQ+iEq+lXSOSOSW+KhE3IzuNIhpCUCc/V0Oeuy0WE/oy2yCxP9fGLBoRS9JTgqI9P360q91JmyPJCj5SGaOLbjSRn20TNefYbuFZh4ZHaKv47eOs/vabgDqFq9LHd+6OkckcluHyh0o6VkSgL/P/E3oXen7ZaskQcknMYkxLDluahor4lyE7tW76xyRyE1po0OqxNeiWJLpy/GU+2HCHG9odWR0iP7uXz1cJkgseBzsHOhftz8AqSpVFhC0YZKg5JPFxxffWxiwVm/cHN10jkjkprTRIQYMZldRdhS5N1pERofoKyk1SZsg0cneiRdrywSJBdXL9e/175t5cKYsIGijJEHJJ+nP3NLavUXBUqFxAMFj6hNs1wU7ZfrT2un1D65+jjI6xAr8feZvwuPCAXi62tP4ueVfZ2VrmzOkoKvsW5nW5VoDcDritCwgaKMkQckHJ8NOan8gtYvVpkGJBjpHJPJKhcYBvDq5B6392gJw2zEc75FJeZac5OW08AWNnn3ArG3OkMJgQP17nWVnHpA1smyRJCj54P4vRmn3Ltjs7Ay8XOfeJebZeTjtdl5OC1+QXLtzjbXn1gJQpkgZgivIitMF3bM1njVbQDAm8cFzdAnrJAlKHktOTWbe4Xvt3mlrtoiC7YnS7SmS4gPAitMrCIsNe8gWIi/NPTwXozKtAfZyvZdlgsRCwM3RjV61egEQmxzL7ydkAUFbIwlKHvv7zN+ExZl+nPK73Vvox9HOkWbRprP0ZGMy84/ISAK9KKXM+oCl70ApCrb0/f3SX8kWtkESlDyW/o9CFgYsXNKP5pGRBPrZGrKV87fPAxBcIZjy3uX1DUjkm0YlG1GrWC0Adl7ZyanwUzpHJLJDEpQ8dD3mOmvOrQFM7d5PVHziIVuIgiQguTSNizYF4ETYCfZc26NzRIVT+uUlZILEwsVgMMjMsjZMEpQ8NPeQtHsXdi9WudfnSC4x57/ohGh+P27qe+Dt4s3T1Z7WNyCR7/rU6YOjnSNg6ouUnJqsc0QiqyRBySP3LwzYv15//YIRuulW7mk8nDwAWHRsEbFJsTpHVLgsPr6Y+BTTwoAv1n4RV0dXnSMS+a2oe1FtwcBbsbdYfXa1zhGJrJIEJY9su7yNc5HnAFO7dwWfCjpHJPTg4ejBCzVfACAmKUZGEuQzsz5g9aUPWGGVvmlPrmTaDklQ8sgvB37Rbku7d+EmIwn0cTj0sNbvp27xujxe4nGdIxJ6aV+pPaU8SwGw+uxqbsTceMgWwhpIgpIHIuMjtYUBfVx8pN27kGtSqgk1itYAYPvl7ZwOP61zRIXD9P3TtduvNHhFx0iE3uzt7LVm9lSVytzDc/UNSGSJJCh5YP7h+SSmmmb27Fe3n7R7F3IGg8HsKpqMJMh7sUmxLDi6ADBN2CULA4r0TXwzDszQBjAI6yUJSi5TSvHz/p+1+3LmJgD61ukrIwny0eLji7mTeAeAF2q+gJeLl84RCb1V9KmoTfVw4fYFNl7YqHNE4mEkQcll2y9v52T4SQACywZSvWh1nSMS1iD9SIKbsTdlJEEeS3+SMKThEB0jEdbk1QavarfTf0YKMlteUFQSlFxm9sXYQL4YxT0ykiB/HAo9ZNY5tlHJRjpHJKxFt6rdCPAwrSz+56k/C0VnWVteUFQSlFwUmRDJ0hNLAfBz9aNHjR46RySsSftK7SldpDQgIwnyUvrOsUMaDJHVw4XG0d5Rm1k2VaVKfzArJwlKLlpyYaFZ51gXBxedIxLWxN7Onv51+wMykiCvxCbFsuDIvc6xvWv31jkiYW0GNxiMAVPSOuPADFKNqTpHJB5EEpRcolDMPTNHuz+4wWD9ghFWK/1KurMOzpIFBHPZomOLiEmKAaBXrV7SOVZkUN67PB0rdwQgJDqE9efX6xyReBBJUHLJGddjnLtzFoDW5VpTzb+azhEJa1TRpyJtK7QF4GzkWbZf3q5zRAWLjKATWZG+f+BP+3/SMRKRGUlQHpHRqAi7EM1W73ujMqRzrMiMdJbNGwdvHGTv9b0A1AuoJ51jxQN1eayLNrPs32f+5uqdqzpHJCyRBOURXNwTyuJRm1k7ZycHPHYA4Gn0ov7d5jpHJqzZM9WewdvFG4Alx5dwO/62vgEVENI5VmSVg52DdqJgVEZmHsj/EwVbHv6bXyRByaGLe0LZOPkgsZEJ/FdkIyl2KQA0i3qC7d+f4OKeUJ0jFNbK1dGVl+q8BEB8SjyzD83WOSLbF5MYw69HfwXA3dFdOseKhxr0+CDsDKafwF8O/kKKMSVf92/Lw3/ziyQoOWA0KnbNM03GZsTIZu+/tccCozoAsGv+SYxG6QApLBvWaJh2+8e9P8q0249o3uF5WufY3rV7U8S5iM4RCWtXxqsMXap0AeDqnasyeaIVkgQlB0JPRRIbabosd9x9P2FOpqslNWIfJyDZNM9FbEQCoacidYtRWLeq/lVpV7EdAOdvn2fduXU6R2S7lFL8sPcH7f6IxiN0jEbYkvT9BX/c+6OOkQhLJEHJgfh0l+T+9V6h3W57+8kH1hPiful/SNP/wIrs+ffiv5wKPwVAq3KtqFO8js4RCVvRsXJHKnhXAGDd+XWciz6rc0QiPUlQcsDV2xmAm47XOOaxHwC/pOLUjm1osZ4QlnSp0oVyXuUAWHN2Decjz+sckW0yu3rSSK6eiKyzt7NneKPh2v2Zp2foGI24nyQoORBQzRd3Xxc2e6/SytpEdcEOe+2+u58LAdV89QhP2Ah7O3uGNhwKmCb6m7Zvms4R2Z7L0ZdZcdp0FbOkZ0merva0vgEJmzOg/gDcHN0AWHj2NxIMcYRdiJY+hFZAEpQcsLMzULt3WXZ4mWYgdDQ60SK6vVmdpn2rY2cnwxytiZu3M/W7V8bNiq5sDXx8IM72pnhmHpxJXHKczhHZlp/2/aR1MH61was42jvqHJGwNT6uPjwV0B2A2NS77PTayI6Zx1k8arOMxtSZJCg5tN1pA/H2ph+TJneC8DCaRg24+7kQPKY+FRoH5Ml+rfFH1la4+bjQ4NkquPlYzxpJ/m7+vFDrBQCiEqL47ehvOkdkOxJSEphxwHRJ3tHOUZaXEDlycU8oj21tpt3/12cFRozERiawcfJBSVJ0JAlKDiil+GHPvXbvMUGjAWgxsCbPTwnKs+QErPNHVjwas86ye36w2vV5rG1iqSXHlxAeFw5Az5o9CfDIu787UTClTRlROqkCVeNMnatvOl3jhNtBrY5MGaEfSVByYEvIFo6HHQegRZkWtK7TAoCiFb2kWUdkW8OSDWlSqgkAh28eZseVHTpHZJk1TSyllOL7Pd9r96VzrMiJ9FNGpB+F+a/PvdGZMmWEfiRByYGpu6dqt2XOBZEb0o8kmLxrsn6B2IidV3ay7/o+AOoH1Kdp6aY6RyRsUfqpIOrebYpvclEAjrnv45bjDYv1RP6RBCWbzkWe489TfwJQwqME3at31zcgUSA8V/M5rYli+anlXLh9QeeIrNs3/32j3X6t6Wuy7k4Bl1d979JPBWGPPUFRpplllUGxyXulxXoi/0iCkk2Td01GYWqPHNVkFE72TjpHJAoCZwdnrZnCqIxM2TVF54is1/nI89pJQknPkjxf63l9AxJ5Lq/63qVNGZGmZXQHHI2m7/Rt3uuIs7srU0boSBKUbIiMj9QWdnN3dDebJlmIR/Vqw1dxdXAFTEOOoxKi9A3ISqU/SRjZeKScJIgcs7Mz0PSl6tp9z1Qvmt95AoBEu3i2eq+RKSN0JAlKNvy07ydtnooB9Qfg4+qjc0SiIPFz86N/vf4AxCbHMn3/dH0DskK3428z69AsANwc3XilwSs6RyRsXYXGAQSPqa9dSXki8mkMypSQbC+9hlIN5OqJXiRByaLElERt1ICdwY4xTcfoG5AokF5r+hoGTF+OU3dPJSk1SeeIrMvP+3++d5JQbwC+rvLjIR5dhcYBPD81iBYDaxKQXJq2fqaJN28mhrLo2CKdoyu8JEHJooXHFhJ61zRhzzPVnqGiT0WdIxIFURW/KnSr2g2AazHX+P347zpHZD2SUpO0kwQDBkY3Ha1zRKIgsbMzULSiFwCvNX5NK/9659dWOzdRQScJShYopfj2v2+1+280e0PHaERB93qz17Xb3/z3jXw5/r/FxxZzPeY6AE9Xe5rKvpV1jkgUVI2LNtGGrh+9dZQNFzboHFHhJAlKFqw7v46jt44C0Kx0M5qVafaQLYTIucCygTQsaVoZ+2DoQflyxDSy6YsdX2j30ydxQuQ2g8HAm83e1O5/vfNrHaMpvCRByYJPt32q3X6z+ZuZ1BTi0RkMBsY2H6vdT//5K6xWnl6pzd7cvExzWpRpoXNEoqB7utrTWlP+hgsbOHDjgM4RFT6SoDzE1pCtbL+8HYDq/tVlOXeRL7pX705Vv6qA+WewMFJK8dn2z7T741uOl4nZRJ6zt7M3a86XE4X8l+0EJSkpiWnTpvHMM8/wxBNPMGTIEPbu3Zulbfft28fo0aN58skn6dy5M6+88grr1q3LdtD56bNt974Yx7Uch51BcjqR9+zt7BnXcpx2vzB/OW68uJE91/YAULd4XTpX6axzRKKweLney9oMz3+c/INjt47pHFHhku1f20mTJrFkyRLatWvHqFGjsLOzY+zYsRw5ciTT7bZv384bb7xBcnIy/fv3Z9CgQTg7O/Ppp5+yZMmSHB9AXtp3fR/rzpsSqPLe5elVu5fOEYnCpHft3pT3Lg/A2nNr2X99v74B6ST9ScL4QLl6IvKPq6MrbzV/S7tfmE8U9JCtBOXEiRNs3LiRV155hWHDhtGtWzcmT55MQEAA06ZNy3TbP/74Az8/PyZPnkyPHj3o3r073333HaVKlWLNmjWPdBB5Jf0X49st3sbBzkHHaERh42jvaNYXJX0zR2Hx35X/2HRpEwBVfKvQo3oPnSMShc2QBkPwd/MHTCPJToef1jmiwiNbCcqWLVuwt7enW7duWpmzszNdunTh+PHj3Lx584HbxsXF4enpiZPTvWmpHRwc8PLywtnZ+hZiOn7rOMtPLQdMiwKmzfApRH56uf7LlPAoAZguMZ8IO6FzRHnLaFSEXYgGIOxCNBPTnbG+0/Id7O3s9QpNFFLuTu5aXxSFYtL2STpHVHhkK0E5e/YspUuXxt3d3ay8enXTWgbnzp174Lb16tXj4sWL/PLLL1y9epVr164xd+5cTp8+Ta9e1td08tGWj7TbbzZ/ExeH3F2kSoiscHFwKTQd9S7uCWXxqM3smGkarTPv12WsPrsKgDJFytCnTh89wxOF2PBGw/FxMS1tsuDIAlltPJ9kK0GJiIjAz88vQ3laWXh4+AO37devH23atGH+/Pn07t2bXr168euvv/Lxxx/TunXrTPcbHh7O6dOntX8hISHZCTvbDoUe4vcTphk8i7sXl0UBha6GNByCn6vpb2zh0YUFsqPexT2hbJx8kNjIBK3sL/952u2hZWXlcKEfT2dPbXmTVJXKpG1yFSU/ZCtBSUxMxNHRMUN5WrNNYmLiA7d1dHSkTJkyBAUFMWHCBN577z2qVq3KxIkTOX78eKb7XbFiBYMHD9b+TZw4MTthZ9v7m97Xbo8PHI+7k3smtYXIWx5OHrzT8h3AdIn5g00f6BxR7jIaFbvmnTQrO+16lJPuhwAomhRA6c11MRplRl2hn1FNRlHEuQgAsw/N5mzEWZ0jKviylaA4OzuTnJycoTwpKUl7/EEmT57Mzp07mTBhAsHBwbRv357vvvsOPz8/pk6dmul+u3XrxowZM7R/7733XnbCzpZdV3fx95m/AShdpLSsliqswvBGw7W+KMtPLWfvtawN7bcFoaciza6cKJTZ1ZOuES+SGJFC6KlIPcITAgBvF2+tuTVVpfLB5oJ1omCNspWg+Pn5ERERkaE8rczf39/idsnJyaxatYpmzZphZ3dvlw4ODjRp0oTTp09bTHzS+Pv7U7VqVe1fuXLlshN2trz3773k5/1W70vfE2EVXB1deb/VvSt7723KuyQ9v8VHmV95PeF2kLNupquqAYllaHonyGI9IfLba01fo6hbUQAWHVvEodBD+gaUR5RSXIq6pHcY2UtQKleuzNWrV4mNjTUrP3HihPa4JdHR0aSmppKamprhsdTUVIxGI0ajMTuh5IlNFzex8eJGACr6VOTlei/rHJEQ9wx8fKA2L8r68+vZGrJV34Byiav3vSuvRoz8me7qSbeIF7HDPkM9IfTg6ezJu4HvavfHbxyvYzR554+Tf1Dl+yqMWjOK8LgH9y3Na9lKUIKCgkhNTWXFihVaWVJSEqtXr6ZGjRoUL14cgJs3b5p1ZPXx8cHDw4Nt27aZXSmJi4tjx44dlC1bVvehxkops74nH7b+EEf7jP1thNCLk70TH7b+ULs/buO4ArHScUA1X9x9TVcq93lu45LrGQBKJ1SgQUxLANz9XAio5qtbjEKkebXhq5T1KgvAmnNrCsyJQpqk1CTe/udtUowpfL/ne/678p9usWQrQalRowZt2rRh+vTpTJs2jRUrVjBmzBhCQ0N59dVXtXqffvopffv21e7b29vzwgsvcOXKFV599VWWLFnCokWLGDJkCGFhYbz00ku5d0Q5lKpS6VKlC94u3lT3r07v2r31DkmIDPrU6UN1f9Ow/p1XdrIi5C+dI3p0dnYGmr5UnWRDEn8Una2V9wh7Gbv//4pq2rc6dnYyg6zQn7ODMx8F3ZuG4p1/3ikQJwpppu2dxvnb5wFoU74NXR/rqlss2Z7qfvz48fTs2ZN169YxdepUUlJS+OKLL6hXr16m27300ku8//77ODg4MGfOHGbOnIm7uzsff/wx7du3z2n8ucbBzoFxgeO4OPoiS3oukQmhhFWyt7Pnq3Zfafcn7H6PZEMSYReibXqUS4XGAYQ8uY8Ix1sA1Ih9nFpxDXH3cyF4TH0qNA7Ik/26eTtTv3tl3KT5SGRD3zp9tROF/67+x+Lji3WOKHdEJUTx8daPtftftftK16Ulsj13u7OzM8OGDWPYsGEPrPOgUTnt2rWjXbt22d1lvvJ28cbbxVvvMIR4oM5VOtPCrxU7IrZyLfEq//j8heNMJw4tP0/Tl6rn2Y95XgqLDWPaJdP3hh129Lw1kBYDa1K1TZk8vXLi5uNCg2er5Nnzi4LJ3s6er9t/TZffugDw1oa36Fa1G26ObjpH9mg+3vIxkfGm0XJ96vShQckGusYjS/MKYWMu7b3JE/uex6BMf76rfRdxx/42sZEJbJx8kIt7QnWOMPsmbJ7AncQ7APSq/CKlkypQtKKXNOsIq9W5Smc6Ve4EwNU7V/lyx5c6R/Rojt86ztTdppMEFwcXPm2r/6zVkqAIkQfyqukgbVKz0kkVCIzuAECCfTx/FJ2j1dk1/6RNNffsu76Pn/b9BIC7ozvv1Hv3IVsIYR2+7fCttojsFzu+4HL0ZZ0jyhmlFCPXjCRVmUbajm85XusIrCdJUITIA2lNB24+uTuPTvpJzZ4K74trqmmW4x1eGzjjehSA2IgEm5nULNWYytBVQ1GYEqoPgz4kwM32mqhE4VTNvxojGo0AICElgdfXva5zRDnz+4nftVXDK/pU5K0Wb+kckYkkKELYkPSTlRVJ9eaZ8H7a/QXFfyCF5Az1rNmMAzPYd30fADWL1mR0k9E6RyRE9kwImqBN3rbs5DJWnF7xkC2sS0xiDG+sv7cg6eQOk61mglJJUISwIfdPVtY6qhPl4x8D4IbzFdb7/mGxnjW6efcm4zaO0+7/2OVHmXtI2BxvF2++6/Cddn/YqmFafypbMG7jOK7euQpAlypdeLLqkzpHdI8kKELYkPSTmgHYYU/fmyO1DrN/+y0kpmiE1U9qppRi6KqhRCVEAfBS3ZdoVa6VvkEJkUO9a/emQyVTn7BrMdfMlkyxZltDtvK/vf8DwM3RjamdMl8XL79JgiKEDUmb1Cy9somVCL7dDYBkuyQWVJyCQv+lIzKz8NhClp9aDoC/m7/Z3C5C2BqDwcC0LtO0YcY/7PmBHZd36BxV5uKS4xi4YqB2f1LwJCr6VNQxoowkQRHCxlRoHEDwmPpmV1KeCu9L8dSSAByI2sdXO633B/96zHVGrB6h3Z/WZRrF3IvpGJEQj66CTwU+DjJNcqZQ9F3e16qbet7/933ORZ4DoEWZFoxoPOIhW+Q/SVCEsEEVGgfw/NQgWgysCUDwgIb8PnAxdgbTn/QHmz7gcOhhPUO0SCnFKytf4XbCbQBeqPUCz9Z4VueohMgdY5qOoUWZFgBcjLrIyDUjdY7Isg3nN/Dtrm8BcLZ3Zma3mdp3hzWxvoiEEFliZ2egaEUvAIpW9CKwXEvGNh8LQLIxmRf/eJHYpNjMniLfTd41mVVnVwEQ4BHAD51+0DkiIXKPvZ0985+Zj6eTJwDzDs9j8THrmgb/Vuwt+i6/t1beZ8GfUdW/qo4RPZgkKEIUIB8GfUid4nUAOB523DTHiJUsZLb76m7G/jNWuz+z20z83Px0jEiI3FfBpwL/6/w/7f6Qv4doTSn5zWhUhF2IBiDsQjQpqan0+7MfN2NvAtCxckfGNB2jS2xZIQmKEAWIs4Mzi3oswt3RNIHb/CPzmb5/us5RQXhcOM8vfZ4UYwoAb7d4m85VOusclRB5o0+dPrxQ6wUAohOjeWbxM9xNupuvMVzcE8riUZvZMfM4ADtmHqfnuP6sPbcWgOLuxZnz1ByrbNpJY72RCSFypHrR6szsNlO7P2rtKLaFbNMtnsSURLov7k5IdAhg6pD3SZtPdItHiLxmMBj4uevPVPOvBsCxW8cYuGJgvl3NvLgnlI2TD2qzTgPs89jGn+4LANOCnAu6L6C4R/F8iSenJEERogB6vtbzjGo8CoCk1CSeXvw0ZyLO5HscSimG/D2EbZdNCVKARwCLnl0kE7KJAq+IcxH+fP5PrT/KkuNL+GDTB0DGppfcXDsrbb2u9EKczzK7xLfa/V53h9C2fHCu7TOvSIIiRAH1dfuvaVexHQCR8ZF0/rUzt2Jv5WsMEzZPYO7huYBphdQVL6ygdJHS+RqDEHqp6l+VBd0XYMC0KvfEbRP56PfPMjS9LB61OddWIU+/XhfADacrTC79Pkl2puUvmka3pfW1rjaxXpckKEIUUI72jvze83dqF6sNwPnb5wmeF5xvScqkbZP4ZOu9ppx5T8+jUalG+bJvIaxFt6rdmNJxinb/o+PvsTF5jVmd2MgENk4+mCtJSvp1uCIcbjG59HvcdTDNx1I5rqZp5mkMNrFelyQoQhRgXi5erOq9SrtqcezWMdrObZunSYpSii+2f8H4f8drZVM6TqFnzZ55tk8hrNnIJiN5p8U7ACiDYlaJr9nmtTZDvV3zTz5yc0/aOlyhjlf5suxbRDqGAVAmoSIjr03ASTmb1bNmkqAIUcCV8SrD5n6btSTleNhxms1sxqnwU7m+r1RjKqPWjOKdje9oZV888QWjmozK9X0JYUtGlHiDoNtdAFOSMi9gKmt9f0dxLyGJjUh45KaXgGq+3Cp22Sw5KZZUkjFXP8HN6AGAu5+L1a/XBZKgCFEoVPKtZJakXLh9gaa/NGX9+fW5to/b8bd5ZvEz/LD33uRrn7X9jLEtxmaylRCFQ0J0Er1vDaNd5DNa2bKis/mlxJckGu71GXnUppeFx37jE78xxDiYOuGWTqjI25e/okiqj1anad/q2NkZHmk/+UESFCEKiUq+ldg5YCd1i9cFTPMzdFjQgTfXv0lCSsJDts7clktbqPdzPVaeWQmAg50Dc56aw7jAcY8ctxAFgau3MwYM9AwbxFPhfbTyPUW2MKnca4Q4n9Xq5URUQhQD/xpIn+V9SDCa/p6rJtfmrSufa8mJu58LwWPqU6FxwCMeTf6QBEWIQqSMVxm2D9hOt6rdtLJv/vuGWj/W4s9Tf2Z7noard67S/8/+BM0N4nL0ZQB8XX1Z3Xs1/er1y83QhbBpAdV8cfd1wYCBrhG9GXrtXZyNrgBccw7hs3KvsazsL9iXSc3W86YaU5lzaA41f6zJrEOztPJB9Qdx4IPdtHu5CQAtBtbk+SlBNpOcgCQoQhQ6Hk4eLH9+Od+0/wYneyfANMLnmcXPUO/nevxy4Bci4iIeuL1RGdkWso2Bfw2k4pSK2jBigJZlW3JoyCHaVWqX58chhC2xszPQ9KXq2v3H77ZgfMh3lE6oCIDRYGSt6x9U/qESI1aP4OCNg5meMNyKvcXkXZOp8WMNXv7rZa7HXAfA08mTmd1mMqPbDNycXM3W67KFZp30HPQOQAiR/+wMdrze7HXaV2rPyDUj2XxpMwBHbh5h8MrBvPr3qzQo2YA6xeoQ4BGAk70T586EcKjUUcYuPMftFPOOfN4u3kwKnsTgxwdjb2evwxEJYf0qNA4geEx9ds07SWxkAiWTyvJuyGT+Lb2clZ4LSTAmcDfpLv/b+z/+t/d/BHgE0LxMcyp6V8TT2ZPk1GQu37nM4dDDHL6ZcbXyro915cfOP1LGq4wOR5f7JEERohCrVawW/770LytOr+DzHZ+z6+ouAFJVKnuu7WHPtT3mG3gAKffuFnEuwohGI3it2Wv4u/nnX+BC2KgKjQMo17A4pzddYcfM47QeWJdX2nQlNHYin279lNmHZhOfEg9A6N1Q/jj5x0Ofs3W51nwU9BGty7fO6/DzlSQoQhRyBoOBp6o9xVPVnmLPtT38fvx3Vp5ZyemI0xbru6V6UCW+Jg3vtGJMvyHUal4pnyMWwrbZ2RkyNL2U9CzJ/7r8j8+CP2PhsYWsPLOSLZe2EJscm2F7Awbql6hP+4rteanuS1QvWj1DnYJAEhQhhKZxqcY0LtWYr9p/RXT8Hb4f9yuRdyNJNiTjZvTAO8UX/+QAberuowsvU6NpRZtr2xbCWnm5ePFqw1d5teGrpBhTuBJ9hYtRF0lMScRgMFDKsxQVfCrg4eShd6h5ThIUIYRFsReTCbhVngDKP7jO/08sVbKGX/4FJkQh4WDnQAWfClTwqaB3KLqQUTxCCIuyOmGULazpIYSwPZKgCCEsyuqEUbawpocQwvZIgiKEsChtYqnM2MqaHkII2yMJihDCovsnlrLEVtb0EELYHklQhBAPlDax1P1XUmxtTQ8hhO2RUTy5wM3bmfrdK+MmbfGiALp/YqkWA2tStU0ZuXIihMhTkqDkAjcfFxo8W0XvMITIM5YmlhJCiLwkTTxCCCGEsDqSoAghhBDC6kiCIoQQQiD9Ca2N9EERQgghkP6E1kauoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6kiCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6mR7JtmkpCRmzpzJ+vXriYmJoVKlSgwaNIhGjRplafuNGzeydOlSzp8/j4ODA+XKlWPQoEE0aNAg28ELIYQQomDKdoIyadIkNm/eTM+ePSldujRr1qxh7NixTJkyhTp16mS67axZs5g7dy5BQUF07NiRlJQULl68SHh4eI4PQAghhBAFT7YSlBMnTrBx40aGDh1Kr169AOjQoQP9+/dn2rRpTJs27YHbHj9+nLlz5zJ8+HCee+65R4taCCGEEAVatvqgbNmyBXt7e7p166aVOTs706VLF44fP87NmzcfuO3vv/+Or68vzz77LEop4uLich61EEIIIQq0bCUoZ8+epXTp0ri7u5uVV69eHYBz5849cNv9+/dTrVo1li5dSrdu3ejYsSNPP/00y5Yty0HYQgghhCjIstXEExERgZ+fX4bytLIH9SWJiYkhOjqaY8eOceDAAfr370/x4sVZs2YNU6ZMwcHBgaeeeuqB+w0PDyciIkK7HxISkp2whRBCCGFjspWgJCYm4ujomKHcyclJe9yStOac6OhoJkyYQHBwMABBQUH079+fefPmZZqgrFixgjlz5mQnVCGEEELYsGwlKM7OziQnJ2coT0pK0h5/0HYADg4OBAUFaeV2dna0bduWWbNmcfPmTYoXL25x+27dutGiRQvtfkhICBMnTsxO6EIIIYSwIdlKUPz8/AgLC8tQntb84u/vb3G7IkWK4OTkhIeHB/b29maP+fj4AKZmoAclKP7+/g98biFEweLm7Uz97pVx87Z8wiOEKByy1Um2cuXKXL16ldjYWLPyEydOaI9b3ImdHVWqVCE6OjrDFZi0five3t7ZCUUIUUC5+bjQ4NkquPm46B2KEEJH2UpQgoKCSE1NZcWKFVpZUlISq1evpkaNGtoVkJs3b2boyNqmTRtSU1NZu3atVpaYmMiGDRsoX768XCERQgghhCZbTTw1atSgTZs2TJ8+naioKEqVKsXatWsJDQ3l7bff1up9+umnHDp0iK1bt2plTz31FKtWreK7777jypUrFC9enHXr1nHz5k0mTZqUe0ckhBBCCJuX7anux48fryUXd+/epWLFinzxxRfUq1cv0+2cnZ2ZPHky06ZNY/Xq1SQkJFC5cmW++OILGjdunNP4hRBCCFEAZTtBcXZ2ZtiwYQwbNuyBdaZOnWqx3MfHh/Hjx2d3l0IIIYQoZLLVB0UIYV1kxIsQoqDK9hUUIYT1SBvxIoQQBY1cQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhBBWRxIUIYQQQlgdSVCEEEIIYXUkQRFCCCGE1ZEERQghhMhnskzFw8lU90IIIUQ+y69lKmw5EZIERQghhCigbHm9LmniEUIIIYTVkQRFCCGEEFZHEhQhhBBCWB1JUIQQQghhdSRBEUIIIYTVkQRFCCGEEFZHEhQhRJbY8nwKQgjbI/OgCCGyxJbnUxBC2B65giKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjiQoQgghhLA6kqAIIYQQwupIgiKEEEIIqyMJihBCCCGsjoPeAeREYmIiACEhITpHIoQQQojsKleuHC4uLpnWsckEJTQ0FICJEyfqHIkQQgghsmvGjBlUrVo10zoGpZTKp3hyTVRUFHv27KFEiRI4OTnpHU6eCwkJYeLEibz33nuUK1dO73DylRx74Tv2wnrcUHiPvbAeNxTeYy+wV1C8vb1p37693mHku3Llyj004yyo5NgL37EX1uOGwnvshfW4oXAf+4NIJ1khhBBCWB1JUIQQQghhdSRBsQF+fn70798fPz8/vUPJd3Lshe/YC+txQ+E99sJ63FC4j/1hbLKTrBBCCCEKNrmCIoQQQgirIwmKEEIIIayOJChCCCGEsDqSoAghhBDC6tjkRG0FUXh4OEuXLuXkyZOcOnWK+Ph4pkyZQv369TPUHTVqFIcOHcpQ3rhxY77++muzsqSkJGbOnMn69euJiYmhUqVKDBo0iEaNGuXVoWRbdo4d4OjRo/z000+cOXMGd3d32rRpw+DBg3FzczOrZwvHbsmaNWuYNGmSxceWL1+eobf/9u3bmT17NiEhIXh7e9O5c2deeuklHBxs68/bVt+v7Dh48CCjR4+2+Ni0adOoWbOmdj+rn3NrFBcXx6JFizhx4gQnT54kJiaGcePG0alTpwx1L126xA8//MDRo0dxcHCgWbNmjBgxAm9vb7N6RqORRYsW8eeffxIZGUnp0qXp06cPTzzxRD4d1cNl9bg/++wz1q5dm2H7smXLsmDBArMyWzjuvGJb32AF2JUrV/jtt98oXbo0FStW5Pjx45nWL1q0KEOGDDErszRMbdKkSWzevJmePXtSunRp1qxZw9ixY5kyZQp16tTJ1WPIqewc+9mzZ3nttdcoV64cI0aM4NatWyxevJirV6/y1VdfmdW1hWPPzMCBAylRooRZmYeHh9n9Xbt28e6771KvXj1Gjx7NhQsXmDdvHrdv3+aNN97Iz3Afma2/X9nRo0cPqlevblZWqlQp7XZ2PufWKDo6mjlz5lC8eHEqV67MwYMHLda7desWI0eOxMPDg8GDBxMfH8+iRYu4cOECP//8M46OjlrdGTNm8Ouvv/Lkk09SrVo1tm/fzscff4zBYCA4ODi/Di1TWT1uACcnJ8aOHWtW5u7unqGeLRx3nlHCKsTGxqro6GillFKbNm1SgYGB6sCBAxbrjhw5Ur300ksPfc7jx4+rwMBA9dtvv2llCQkJ6oUXXlCvvvpq7gSeC7Jz7G+++aZ6+umn1d27d7WylStXqsDAQLV7926tzFaO3ZLVq1erwMBAdfLkyYfW7du3r3r55ZdVcnKyVjZ9+nTVqlUrdenSpbwMM1fZ8vuVHQcOHFCBgYFq06ZNmdbL6ufcWiUmJqrw8HCllFInT55UgYGBavXq1RnqffPNN+qJJ55QoaGhWtnevXtVYGCg+uuvv7SyW7duqTZt2qhvv/1WKzMajWr48OGqe/fuKiUlJQ+PJuuyetyffvqpat++/UOfz1aOO69IHxQr4ebmRpEiRbK1TUpKCnFxcQ98fMuWLdjb29OtWzetzNnZmS5dunD8+HFu3ryZ43hzU1aPPTY2ln379tG+fXuzM40OHTrg6urKpk2btDJbOfaHiYuLIzU11eJjly5d4tKlSzz55JNmzTnPPPMMSik2b96cT1E+uoLyfmVHXFwcKSkpGcqz8zm3Vk5OTlmaeGzLli00b96c4sWLa2UNGzakTJkyZse5fft2UlJSeOaZZ7Qyg8HA008/TVhY2EOvOOeXrB53mtTUVGJjYx/4uK0cd16RJh4bdeXKFTp06EBycjK+vr507dqV/v37m/1QnT17ltKlS2e4bJh2afncuXNmXwzW7sKFC6SmpmZYUMvR0ZEqVapw9uxZrawgHPvo0aOJj4/H0dGRRo0aMXz4cMqUKaM9fubMGYAMr4e/vz9FixY1ez2sXUF4v7Jj0qRJxMfHY29vT506dRg6dCjVqlUDsvc5t2VhYWHcvn3b4gJ51atXZ9euXdr9s2fP4urqmmG137TPx9mzZ22uGTAhIYFOnTqRkJCAp6cnwcHBvPrqq2Z9jAricWeHJCg2qGTJktSvX5+KFSuSkJDA5s2bmTdvHleuXOGjjz7S6kVERFjM5tPKwsPD8y3m3BAREQFY7mvj5+fH4cOHzera6rE7OzvTqVMn6tevj7u7O6dPn2bJkiUMGzaMX375Rfuhftjrkfa4LbDl9ys7HBwcaN26NU2bNsXLy4tLly6xePFiRowYwY8//shjjz2Wrc+5LXvYcd65c4ekpCScnJyIiIjAx8cHg8GQoR7Y3ufDz8+PXr168dhjj6GUYvfu3fz555+cP3+eKVOmaCeaBe24s0sSlDxgNBpJTk7OUl0nJ6cMH76Heeedd8zud+jQga+++oqVK1fy3HPPaSMBEhMTzTqZpd9n2uO5LS+PPS3eBx1TUlKSWd38PnZLcvJ6tG3blrZt22rlgYGBNG7cmJEjRzJ//nzefPNNAO14047p/ufKrPnP2ljL+5XXateuTe3atbX7LVu2JCgoiJdffpnp06fz9ddfZ+tzbssedpxpdZycnArc5+P+AQ7BwcGUKVOGGTNmsGXLFq3za0E77uySBCUPHD58+IFDCe83f/78DJfvcuL5559n5cqV7Nu3T0tQnJ2dLf44pn3BOTs7P/J+75eXx54W74OOKf0PtR7HbkluvR516tShRo0a7N+/XytLO15LP1hJSUn5doy5wVreLz2ULl2ali1bsnXrVlJTU7P1ObdlDzvO9HUKw+fjueeeY+bMmezbt09LUArDcWdGEpQ8ULZsWcaNG5elurm1gmWxYsUAiImJMXvusLCwDHXTLq36+/vnyr7Ty8tjT6tvqekiIiLC7Hj0OHZLcvP1KFasGJcvX85QPyIiIkP/jIiIiAzDWK2ZtbxfeilWrBjJyckkJCRk63Nuyx52nEWKFNGSMT8/Pw4ePIhSyuyqa0H6fDg7O1OkSBHu3LmjlRWG486MJCh5wM/Pz+KERHnp+vXrAGaTG6WNw4+NjTXrfHjixAnt8dyWl8deoUIF7O3tOX36tFkTSHJyMmfPnqVNmzZamR7Hbkluvh7Xr183e3+rVKkCwOnTp6lRo4ZWHh4eTlhYmNmIGGtnLe+XXq5fv46TkxOurq7Z+pzbsqJFi+Lt7c3p06czPHby5Emz97xy5cr8/fffhISEUL58ea28IH0+4uLiiI6OzvAdXtCPOzMyzNjGxMbGZrikr5Ri3rx5AGazbgYFBZGamsqKFSu0sqSkJFavXk2NGjVsblSEh4cHDRs2ZP369Wb9K9atW0d8fLzZF7ctH3tUVFSGsv/++4/Tp0/TuHFjraxChQqULVuWlStXmg1F/vPPPzEYDLRu3To/ws0Vtvx+ZYel9/bcuXPs2LGDRo0aYWdnl63Pua1r3bo1O3fuNBtGvn//fq5cuWJ2nC1btsTBwYHly5drZUop/vrrL4oWLUqtWrXyNe5HkZiYaLF/2Ny5c1FK0aRJE62sIB13TsgVFCsyd+5cwDS/BZi+kI4cOQJAv379ANPQ0o8++ognnniCUqVKkZiYyLZt2zh69ChPPvmk2ZC9GjVq0KZNG6ZPn05UVBSlSpVi7dq1hIaG8vbbb+fvwT1EVo4dYNCgQQwfPpyRI0fSrVs3bYbNRo0amf1h29Kx32/o0KE89thjVK1aFXd3d86cOcPq1aspVqwYffv2Nas7bNgwxo0bxxtvvEFwcDAXLlxg+fLldO3a1eyMy9rZ8vuVHRMmTMDZ2ZlatWrh4+PDpUuXWLlyJS4uLmYdJ7P6Obdmy5Yt4+7du1pzxI4dO7h16xZgmknXw8ODPn36sHnzZsaMGcOzzz5LfHw8CxcupGLFimZXHosVK0bPnj1ZuHAhKSkpVK9enW3btnHkyBHef/997O3tdTlGSx523DExMQwcOJAnnniCsmXLArBnzx527dpFkyZNaNmypfZctnTcecGglFJ6ByFMWrVq9cDHtm7dCpguBf/888+cPHmSyMhI7OzsKFeuHF27dqVbt24ZRsUkJiZq65vcvXuXihUrMmjQILMzcWuQlWNPc+TIEW2NEjc3N9q0acOQIUMyrFFiK8d+vxkzZrBr1y5u3Lih9Ulo1qwZ/fv3x9fXN0P9bdu2MWfOHEJCQvDy8qJTp04Z5sSxBbb6fmXH0qVL2bBhA9euXSM2NhZvb28aNGhA//79KV26tFndrH7OrdVzzz1HaGioxccWL16sLeNw8eLFDGvxDB8+PMNn3Wg08ttvv7FixQoiIiIoXbo0L774Iu3bt8/zY8mOhx23h4cHU6ZM4fjx40RERGA0GilVqhTt2rXjhRdeyPB3ayvHnRckQRFCCCGE1ZE+KEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKEIIIYSwOpKgCCGEEMLqSIIihBBCCKsjCYoQQgghrI4kKCJTa9asoVWrVqxZs0bvULLk4MGDtGrVilmzZuXZPlq1asWoUaPy7PkLi+eee47nnntO7zCs3qxZs2jVqhUHDx7M0/0sWbKEtm3bcuPGjSzVz4+/NVv2ySef0LNnTxITE/UOxWZJglLAfP7557Rq1YquXbtmWFSwoLC1H7bo6Gh++uknXnrpJdq1a0e7du3o2bMnY8aMYfbs2URGRuZLHA9LNkeNGpXpkgOFSXx8PB07dqRVq1Z8++23eoeT52JiYpg3bx6dO3fWpqAXj6Z///6Eh4fz+++/6x2KzbKtxTpEpuLi4ti0aRMGg4E7d+6wbds2goODH+k5AwMDqVGjBn5+frkUZeFy69Ythg0bxq1bt6hSpQqdOnXC09OTiIgIjh07xuzZs6ldu7bFNXYKuu+++07vEB5o06ZNxMXFYTAY+Oeffxg+fDjOzs56h5VnlixZwp07d+jVq5feoRQYZcqUoUWLFvz222/06NEDV1dXvUOyOZKgFCD//vsv8fHxPPfccyxdupRVq1Y9coLi4eGBh4dHLkVY+MyaNYtbt24xcOBAs1WZ05w/f77Qvr6lSpXSO4QHWrVqFfb29nTv3p3ff/+drVu30q5dO73DyhMpKSn8/fff1K5d26rfE1vUvn17tm7dysaNG+natave4dgcSVAKkLQv1d69e3P+/HkOHDhAaGgoAQEBZvVmzZrFnDlzHvg8AQEBLFmyBDA1C0yaNIlx48aZLX/eqlUr6tWrx/vvv8+0adPYu3cvSUlJ1K1blzFjxlCyZEkuXbrE9OnTOXz4MCkpKTRu3JjXXnvN7GrBwYMHGT16NP3792fAgAFmcdy4cYPnn3+ejh07Mn78eO1++hjSWNr+1KlTTJ8+nePHj2NnZ8fjjz/OiBEjMlzC3rp1K5s2beLUqVOEh4fj4OBApUqVePbZZwkKCsr8RX+I48ePA9C9e3eLj1eqVMli+fXr1/n111/Zu3cvERERuLu7U758eTp16qS9D8nJyaxYsYKdO3dy6dIloqKicHd3p3bt2vTr14/HHntMe77PPvuMtWvXAjBp0iQmTZpkdvzpX8v0t9Ne+zTnz59n/vz5HDp0iDt37uDn50eLFi14+eWX8fLy0uqlf+969+7NjBkzOHz4MHfu3NFWsk1rpkv7rMG9z+aUKVMIDw9n4cKFXL58GQ8PD9q0acOrr76a4UpGSkoKixYt4u+//yY8PJyiRYvSpUsX2rZtywsvvJDhGB7m8uXLHD16lObNm5sl+5YSlPSf3+bNm2fp8wawZcsWFixYwMWLF3F3d6dFixYMHTqUgQMHZnhNMpPV9yMze/bsISIigt69e1t8PDExkdmzZ7Nhwwaio6MpVaoUzz77bIbVl9O7fv068+fPZ+/evdy+fRtPT08aN27MgAEDMnwfQfZej7TP8qJFi9i6dSurVq3i+vXrBAcHa+/z7du3WbBgATt37uTWrVu4ublRt25dBgwYQMWKFTPsPzv1r1y5woIFCzh48CARERG4uLhQrFgx6tevz8iRI81WlG/WrBkuLi6sXbtWEpQckASlgLh06RLHjx+nadOm+Pr60qFDB/bv38/q1asz/HDXr1/f4nOEhISwadOmLF/KjomJYfjw4fj5+dGhQweuXr3Kzp07ef311/nss88YMWIEVatWpXPnzpw5c4YtW7Zw584dpkyZkqNj9PDwoH///ixduhSAZ5999oHHdOrUKRYuXEj9+vXp1q0bZ8+eZdu2bVy4cIE5c+aYHeP06dNxcHCgdu3a+Pn5ERUVxY4dO/jggw8YPXo0PXr0yFG8gPYjceXKFWrUqJGlbY4cOcLbb79NXFwcjRs3Jjg4mJiYGM6ePcvSpUu1BOXOnTt8//331KlTh6ZNm+Lp6cmNGzfYsWMHu3fv5vvvv6d69eqAqanu7t27bN++nZYtW1K5cmWzffbv35+1a9cSGhpK//79tfIqVapot7dv386HH36IwWCgZcuWFCtWjEuXLvHHH3+wZ88efv75Zzw9Pc2e99q1awwdOpSKFSvSsWNH7ty5g6Oj40Nfg7TnbNGiBY8//ji7d+9m2bJlREdH88EHH5jV/eKLL1i3bh0lS5bk6aefJjk5mSVLlnDs2LEsvd73W7VqFQAdOnSgePHi1KtXj4MHD3L9+nVKlixpcZvsfN5WrVrFF198gbu7Ox06dMDDw4Ndu3bx+uuvk5KSgoND1r6Wc/J+WLJ//34AatasmeExo9HIuHHj2LdvHxUrVuSJJ57gzp07/PDDDw/8Hjlx4gRvvvkm8fHxNG/enNKlSxMaGsqGDRvYvXs306ZNM3sdc/p6TJ48mRMnTtCsWTOaN2+Oj48PYPrMjRo1irCwMBo1akTLli2Jiopiy5Yt7N27l++++87sbzE79cPDwxkyZAgJCQk0a9aMtm3bkpCQwNWrV/nzzz8ZNmyYWbyOjo489thjHD9+nPj4eGnmyS4lCoTvv/9eBQYGqn/++UcppVRsbKxq3769evbZZ1VqaupDt4+MjFQ9e/ZUwcHB6siRI1r56tWrVWBgoFq9erVZ/cDAQBUYGKi+//57s/JvvvlGBQYGqk6dOqklS5Zo5UajUb311lsqMDBQnTp1Sis/cOCACgwMVDNnzswQ0/Xr11VgYKD69NNPzcp79uypevbsafE40p4v/WuRZuLEiRbLr127luF5YmNjVb9+/VSnTp1UfHx8hmMfOXKkxf3fb+nSpSowMFB169ZNzZw5Ux04cEDdvXv3gfUTExNV9+7dVevWrdWuXbsyPH7z5k2zurdu3cpQ58KFC6p9+/bqtddeMyt/0HuZZuTIkSowMNDiY1FRUapjx46qe/fu6saNG2aP/fPPPyowMFB99913Wlnae/eg91Ypy+/jzJkztc9PSEiIVp6QkKB69+6tWrdurcLCwrTyffv2qcDAQDVgwACz9yksLEw99dRTFj8/mUlOTlZPPfWU6tSpk0pISFBKKbVq1SoVGBioZsyYkaF+dj9vd+7cUe3bt1ft27dXly9fNtvv6NGjVWBg4ANfkwMHDmhl2X0/MjN48GDVunVrlZiYmOGxtM/Mm2++qVJSUrTyc+fOqbZt22Z4f5OTk1XPnj1Vhw4d1OnTp82e6/DhwyooKEi9/fbbj/R6fPrppyowMFB1795dhYaGZoh56NChKigoSO3evdus/PLly6pDhw6qX79+Oa6f9vec/rstTXR0dIYype59N+/fv9/i4+LBZBRPAZCSksL69etxd3enZcuWALi5uREYGMjNmzfZt29fptsnJiYyfvx4QkNDeeedd6hdu3aW9uvq6sqgQYPMytL6vHh5eZld4TAYDNpj58+fz/Kx5VTdunUz9L/p3LkzACdPnjQrt3RW7ObmRqdOnbh79y6nTp3KcRzdu3enV69e3L17lzlz5jB69Gg6d+7MSy+9xE8//UR4eLhZ/e3btxMWFka7du1o0qRJhucrVqyYdtvJyYmiRYtmqFOhQgXq16+vNa3lhnXr1hEbG8srr7yS4RJ9cHAwjz32GBs3bsywna+vL3379s32/p599lnKli2r3Xd2diY4OBij0cjp06e18vXr1wPQr18/XFxctHJ/f3+zz19W/ffff0RGRtKmTRvtqkdQUBAuLi6sWbMGo9Focbusft62b99OfHw8nTt3pkyZMlq5g4NDhr+lzOT0/bAkLCwMDw8PnJycMjyW1iw4aNAg7O3ttfJKlSrRvn37DPV37txJaGgovXr1MmtiBKhTpw4tWrRg165dxMbGAo/2evTq1YvixYublZ05c4Zjx47RoUMHGjdubPZYmTJl6Nq1KxcuXODChQs5qp/G0lXmIkWKWIwz7cpOWFhYpscjMpImngJg+/btREVF0aVLF7M/nA4dOrB+/XpWrVqV4Y8vjVKKzz77jOPHj/Pyyy/zxBNPZHm/pUuXNvtRALTRPhUrVjRri03/2P0/ynmhatWqGcrSfszv3r1rVn779m1+/fVXdu3axc2bNzPMW/Ao8RoMBoYOHUqvXr3YtWsXJ06c4NSpU5w5c4ZLly6xYsUKvv76a+0SctqPWaNGjbL0/GfPnmXhwoUcOXKEyMjIDAlJVFQU/v7+OY4/TVpfmhMnTnDt2rUMjyclJREdHU1UVBTe3t5aeeXKlbPUpHO/+3/c4F5ylv79O3fuHGD68btfrVq1sr3fv//+GzD97aRxc3OjZcuW/PPPP+zZs4emTZtm2C6rn7e05NxSvDVq1DBLAjKT0/fDkjt37lhMdNPidXV1tXh8derU0ZrD7o/r8uXLFudHiYyMxGg0cuXKFapVq/ZIr0da82V6J06cAEx/05b2f/nyZe3/ihUrZrt+Wj+j7777jv3799OkSRPq1av3wKY/uJe4REdHP7COsEwSlAIgfZt5eg0aNKBo0aLs2LGDO3fuWMzwf/nlFzZt2sQTTzzByy+/nK39uru7ZyhL+0LJ7LHcOqvPjJub2wP3n/4s+M6dO7zyyivcvHmT2rVr07BhQzw8PLCzs+PcuXNs376d5OTkR47H29ubjh070rFjRwAiIiKYPHkyW7Zs4auvvmL27NkA2pnlg34w0jt69CivvfYaAA0bNqR06dLacW/fvp1z587lSuxg6m8EsHz58kzrJSQkmN1PO3vMrsw+P+nfv7i4OOzs7Cx2CM3u0O3w8HD27NlDyZIlM/xgduzYkX/++YfVq1dbTFCy+nlLe38tvS4POg5Lcvp+WOLs7PzAOZNiY2Mf+Fm09PqmxbVhw4YsxfUor4elbe7cuQOYroT9999/D9w2Pj4+R/VLlCjBtGnTmD17Nrt27WLTpk0AlC1bloEDB9KmTZsM26ad8BTkYep5RRIUG3fz5k327t0LkOnspuvXr89wyXvNmjXMnz+f2rVr88477+RpnA+SdpUlNTU1w2NpX155adWqVdy8edPiMOAFCxawffv2PNmvn58f7733Hv/99x/nz58nOjoaLy8vbchxVi4Hz58/n6SkJH744YcMP6hpZ4a5Je0HeM6cORZHQTzI/VfRcpubmxtGo5Ho6OgMVwqyOwHemjVrSE1N5fr16w+csG7Hjh1ZuirxIGmJ1+3btzM8lnYcWUlOc/p+WOLl5fXAz5u7u/sDz/wtvb5pcX3++ec0b978oft+lNfD0mcr7fmy2rk9u/XBdHX4k08+ISUlhdOnT7N7926WLl3Khx9+iL+/f4Ym8rQkKKefmcJM+qDYuLVr12I0GqlTpw5dunTJ8C/tjP3+S7GHDh3i66+/pmTJknz66acW25/zQ9ooA0vNKGfPnrW4jZ2dncWEJifSLo+n9d1J78iRI7myjwdxdHTMcAk77bJ1WtKZmevXr1OkSJEMyUlCQgJnzpzJUN/OzvTn/qDXLrPH05qg0i7hW4u00UhHjx7N8Fh2RvEopVi9ejUAnTp1svi3VKtWLZKTk7V+LzmRNqzcUrwnT57M8uc6N9+PihUrkpSUxM2bNzM8VqlSJeLj4836/aSx9PeR3bhy6/VIk/b3k9X9Z7d+eg4ODtSsWZMBAwYwevRolFLs3LkzQ70rV64APHIiWRhJgmLD0r5UDQYD48eP5+23387wb/z48dSsWZPz589rnT2vXLnCe++9h7OzM59//rmumX3ZsmVxc3PTmqHSREZGMm/ePIvbFClShOjo6FxZ4yKtg+H9X5AbNmxg165dj/z8ixYtIiQkxOJjf/zxB/Hx8ZQtW1a7lN2iRQuKFi3Khg0b2LNnT4Zt0p/pFi9enJiYGC5evKiVpaam8uOPPxIVFZVh27Qmvlu3blmMJ7PHO3fujJubGzNmzDDbX5qEhARdkpe0uUnmzJlj9nmIiIjQhqNnxaFDh7h27Rp169Zl3LhxFv+W0q4y3p/sZ0fLli1xdXVl1apVZn1HUlJSmDlzZpafJzffj3r16gGWr7qlNRv/8ssvZsnC+fPnLSZqLVu2pHjx4ixevJhDhw5leDwlJcUsscmt1yNNjRo1qFGjBhs3brTYSdhoNJrFld36p0+ftnhlN+1qkqUTvRMnTuDn52fWCVhkjTTx2LADBw5w48aNh3bS6ty5M8ePH2fVqlVUq1aNqVOncufOHRo2bMi///6bob6Hh0e+rXXj6OhIjx49mD9/PoMGDaJFixbEx8ezY8cO6tWrZ7EDYP369Tl16hRjx46lTp06ODg4ULduXe2LNjvat2/Pb7/9xpQpUzh48CDFixfn3LlzHDhwgFatWrF169ZHOr7169fz448/UrFiRWrUqIGPjw8xMTGcOHGCM2fO4OzszBtvvKHVd3Jy4qOPPuKtt97irbfeonHjxlSuXJnY2FjOnTtHYmKi9sXdo0cP9u7dy/Dhw2nTpg1OTk4cOnSI8PBw6tevn2FxuZo1a+Ls7MzSpUuJiYnREtO0pq3HH3+czZs38/7779OkSROcnJyoXLkyLVq0wNvbm/9r795CmvzDAI5/XTU7MAty5iEsiARhMFgt0QxpeFFRuZvdeKMpQsSwAxQhYThIsMONFN00BVuJUF2IluGsJHhzsonoi14FQYU2kZCJoGvYhWz4byvU9neTns/1D/Z7n/dlPL/T87t58yb19fVUVVVx5MgRcnNzCQaDTE5OMjw8jMFg4O7du38Vr9U6fPgwpaWluN1uKisrKS4uJhgM8vbtW/Lz81EUJTIz9CfhpCN88iaW3NxcDAYDqqoyNja24ro2y+l0Oux2O3fu3KGmpgaLxcKOHTsYGBhAq9WSnp6+omWxeL6P4uJiHjx4gNfrjdpDEd574/F4qK6upqCggEAgQF9fH2azOWrGQKvV4nA4uHbtGrW1tZhMpsiG+cnJSUZGRti5cyculyuu8Viuvr6eS5cu0dDQwLNnzzh48CCpqan4/X5UVWVmZga3272m9q9fv6azsxOj0UhOTg7bt2/n06dPeDwe0tLSor6fr1+/MjExgdVqXdUziCWSoGxg4T/V5RVeY7FYLDQ3N9PX14fdbo+MNL1eb8wjyJmZmet6GV91dTWbN2+mu7ubzs5OMjMzqaiooKioiP7+/qj2FRUVzM7OoigKIyMjhEIhKisr15SgZGRk0NzczMOHD/F6vYRCIfLy8rh37x5+v/+vE5Tr16+jKApDQ0MMDg7y/ft3NBoNe/bswWq1YrPZokZWBoOBR48e4XK5GBwcxOfzodPp2L9/P2VlZZF2RUVFOBwOXC4Xvb29pKamYjKZuHXrVsxKwWlpaTgcDlpbW+nq6op8B+EE5fTp00xMTPDmzRuePn1KKBTixIkTHD16FFiqiul0Omlvb8fn8+H1etm6dSt6vZ6TJ0/GPHa6Hurq6ti3bx8vX77kxYsX6PV6bDYbJpMJRVFibmBdbnZ2lv7+frZt20ZJSckf2546dQpVVenu7l5TggJw5swZdDodjx8/pqenJ1I59fz589hsthWXm4/X+8jKysJsNvPu3TsuXrz4n1kAjUZDY2Mjra2tuN1unj9/TnZ2Nna7nb1798Zc0sjPz6elpYX29nYGBgZQVZUtW7aQnp7OsWPHoo5jxyseYdnZ2TidTjo6Onj//j2vXr1Co9Gwe/dujEZjVHXo1bQvLS1lYWGB0dFRxsfHCQaD6PV6ysrKYh57Ds8ynT17dlXPIJakLC4uLia6E0IIEW9dXV3cvn2bK1eubIgR7JcvXygvL+f48eM0NDSs62/7fD4uX77MjRs3EpZo/iqR8YiHHz9+UF5eTlZW1pqrZ//rZA+KEGJDm56e5tdx1tTUFG1tbWzatInCwsIE9Sy2QCAQdax3fn6e+/fvA0vXEqy3Q4cOUVBQQFtb22+L0f1fkjEe8dDT08O3b9+4cOFCoruyYckSjxBiQ3vy5AkfPnzAaDSya9cu/H4/iqIwNzfHuXPnoqbdE214eJimpibMZjMZGRnMzMxELvY0mUxYLJaE9Ku2tpbe3l6mpqbWNWbJGo+/lZKSwtWrV2MWuRMrI0s8QogNzePx0NHRwcePHwkEAmi1Wg4cOIDVao15A3Giff78GafTiaqqkdNWOTk5kduX/7WCXhIP8TuSoAghhBAi6cgeFCGEEEIkHUlQhBBCCJF0JEERQgghRNKRBEUIIYQQSUcSFCGEEEIkHUlQhBBCCJF0JEERQgghRNKRBEUIIYQQSUcSFCGEEEIknZ/7xLuJqC27sQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polarization angle bin: 165.0 deg to 180.0 deg\n", - "Modulation: 0.309 +/- 0.004\n", - "Best fit polarization fraction: 1.0 +/- 0.019\n", - "Best fit polarization angle: 145.507 +/- 0.353\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRKUlEQVR4nOzdd3gU1dfA8e+mV1KB0Lv03gmB0KuodFEgUgVpioCgPyuIWAELSi8qRUQF6SAd6aFIr6EGSEJCett5/9h3hyzZVJLMJjmf5/Exe+fOzpndYffsnVt0iqIoCCGEEEJYECutAxBCCCGEeJokKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEJYiBs3bqDT6QgICNA6FAH4+/uj0+ly/TgffvghOp2O3bt35/qxMqN8+fKUL19e6zCEkARFZOzChQuMHTuWWrVq4ebmhp2dHSVLlqRbt24sWrSI+Ph4rUPMNQEBAeh0Om7cuKF1KGYtWrSIkSNH0rRpU5ycnNDpdLz33nsZ7vf333/j7++Pm5sbLi4uNG3alGXLlqW7z7Jly2jSpAkuLi64ubnh7+/P33//bbbu5cuX6datG56enpQpU4YxY8YQGRlptu6rr75KhQoViIqKyviEUzAmdCn/s7GxoXjx4nTr1o3Nmzdn6fnEs/vll1/U92Lbtm3p1g0PD+f999+nXr16uLi4YG9vT6lSpWjWrBkTJ04kMDAw3f2HDx+OTqfDycmJ8PDwNOsZE0Djf1ZWVhQpUoRy5crRtWtXZs2axZ07d7JzuiKX2WgdgLBsH3/8MR999BF6vZ7mzZszePBgXFxcuH//Prt372bYsGHMmzePY8eOaR1qoTRx4kQiIiLw8PCgZMmSXL16NcN9vvvuO8aOHYuXlxevvvoqdnZ2rF27loCAAM6cOcOXX36Zap+3336br776itKlSzN8+HASEhJYtWoVzz//PN9++y1jxoxR60ZHR9OuXTuio6MZNGgQt2/f5vvvv+f+/fv89ttvJs+7ceNGfvnlF7Zv346Li0u2XgM3NzcmTJgAQFxcHKdOnWLTpk1s2rSJOXPmMG7cuGw9b14ZM2YM/fv3p2zZslqH8szmz5+PTqdDURTmz59Px44dzda7e/cuvr6+3Lhxg4oVK/LKK6/g7e3No0ePOH78OLNnz8bR0ZH69eub3T8yMpJVq1ah0+mIjY3l559/NrkGzWndujX+/v6A4Rq9d+8eBw4cYPPmzXzwwQd8+OGHvPPOO890/iKHKUKkYcaMGQqglClTRjl06JDZOhs2bFD8/f3zOLK8M3jwYAVQrl+/nuvHun79ugIogwcPzvQ+mzdvVm7cuKEoiqIsWbJEAZR333033WPY29srnp6eJucUFhamVKpUSQGUgwcPmuxz4MABBVAqVaqkhIWFmTyXp6enYm9vb/Jcq1atUgBlz549allAQIACKPfv31fLwsPDlVKlSilDhw7N9Pk+fS6AUq5cuVTbFi9erACKs7OzEh0dna3nb926tVIYPyLLlStn9jXNyIULFxRAad++vdKwYUPF1tZWCQ4ONlt36NChCqAMGTJE0ev1qbbfvXtXOX78eJrH+vHHHxVAeeuttxQ7OzulTp06adb94IMPFED54IMPUm3T6/XK2rVrFU9PTwVQZs6cmfGJijwjt3iEWTdu3ODDDz/E1taWTZs20bRpU7P1unfvzpYtW1KVr1mzhlatWuHm5oajoyO1a9dm5syZZm8HGe95P378mLfeeovy5ctja2vLhx9+mKntYLgNFRAQQJkyZbCzs6N48eIMGDCAixcvmo07JiaGWbNm0ahRI1xdXXFxcaF69eqMGzeO+/fvA6DT6dTbHhUqVFCbiJ++Px8WFsbUqVOpXr06jo6OuLm50a5duzSbuCMjI3nrrbcoXbo0Dg4OVKtWja+//hq9Xm+2fno6d+5MuXLlMl1/8eLFxMfHM2bMGJPz8PDwYNq0aQD8+OOPJvsYH7/77rt4eHio5eXLl+eNN94gPj6eJUuWqOVBQUEANGnSRC0z/m3cBobWH4Cvvvoq0/FnVkBAAM7OzkRHR3P27Fm1fOfOnXTu3BlPT0/s7e157rnneOedd4iIiMjU8yYkJPDdd9/RtWtXypUrh729PZ6enrRv3z7NW0oZXb/m+qAY+7+k9Z+xJcAoKSmJH374gWbNmlGkSBGcnJyoX78+3333ndnrSlEUvvvuO2rWrImDgwOlSpVizJgxmX4dzFmwYAEAr732GgEBASQmJrJ06VKzdQ8ePAjA2LFjzfbzKVGiBA0aNEj3WFZWVkyYMIHnn3+e06dPc/jw4SzHrNPp6NWrF2vXrgUMLcb37t3L8vOI3CG3eIRZS5YsITExkf79+1OrVq1069rb25s8njZtGjNnzsTb25sBAwbg4uLC5s2bmTZtGlu3bmXbtm3Y2dmZ7JOQkEDbtm0JCwujY8eOFClShAoVKmRq+5YtW+jZsyeJiYk8//zzVK5cmdu3b7Nu3To2btzIrl27TD7sHj16RJs2bTh16hRVq1ZlyJAh2NnZcfXqVZYsWULPnj0pXrw4H3zwAX/++SenTp1i/PjxuLu7A6j/B8MXrr+/Pzdu3MDPz4/OnTsTHR3N33//TefOnfnpp58YPny4Wj8+Pp527dpx9OhR6tatyyuvvEJ4eDiffPIJe/bsydJ7lB3//PMPYEhsntalSxeTOpnd55NPPuGff/7ho48+AlBvVRw/fhxfX18A9RagMZnasWMHixYtYsOGDbi5uT3zeZmjKAqA+gX4008/MWrUKJydnenTpw/FihVj9+7dzJo1iw0bNnDgwAGT99acsLAwxo8fT4sWLejQoQNFixbl3r17bNiwga5du7JgwQKGDRuWar+Mru+nBQQEpEpCAPbt28c///yDk5OTWma87rdu3UrVqlUZMGAADg4O7Nq1i7Fjx3L48GFWrFhh8jwTJkxg7ty5lChRghEjRmBra8tff/3F4cOHSUhISPXvMyMJCQksW7YMNzc3XnrpJWJjY5k4cSILFy5k8uTJqZIQLy8vAC5dukS9evWydKzAwECOHz9Ohw4dKFOmDAEBAfz+++/Mnz8/zR9SGWnTpg0tW7Zk//79rFu3jjfeeCNbzyNymNZNOMIytW3bVgGUBQsWZGm/gwcPqreF7t27p5YnJiYq3bt3VwBlxowZJvuUK1dOAZR27dopUVFRqZ4zve1hYWGKu7u74uXlpZw9e9Zk25kzZxRnZ2elfv36JuUvv/yyAiivv/66kpycbLItMjJSCQ8PVx9ndIundevWik6nU1auXGlS/ujRI6Vu3bqKg4ODSTO38bZZz549TY597do1xcPDI8u3eFLKzC0eb29vBVBCQkLMbnd2dlYA9bZIVFSUAiguLi5m6z98+FABlGLFiqllkZGRSunSpRVvb29lwoQJSu/evdVzNm4vX7688sorr2TrPI3Su8WzaNEi9RZPTEyMcuPGDcXOzk5xdXVVzp8/b1J31KhRCqAMHz7cpNzcLZ64uDjl1q1bqY4XHh6u1KxZU/Hw8FBiYmJMtmV0fRtvQezatSvd8z116pTi6uqqeHt7K1euXEm1/5gxY5SkpCS1PCkpSRkyZIgCKH/++adanvKWXWhoqFoeGxurNGvWLM3XND0rV65UAGXEiBFqWa9evRRA2bFjR6r63377rQIorq6uyqRJk5Tt27eneU0+beTIkQqg/Prrr4qiGD5bfHx8FGdnZyUiIiJV/fRu8aT03nvvKYAyaNCgTMUhcp8kKMKs6tWrK4CyefPmLO03bNgwBVB++umnVNsuXryoWFlZKRUqVDApN36Anzx50uxzprd99uzZCqB89913ZvedMGGCAqjJy/379xUrKyulRIkSZr8snpZegnLy5EkFUHr37m123z///FMBlO+//14tq1y5smJlZWXyBWNk/CDNzQTF1tZWAZTExESz20uWLKkAyt27dxVFUZQ7d+4ogFKqVCmz9RMSEhRAsbOzMym/cOGC0rlzZ8Xd3V0pWbKk8vrrr6tfHm+88YZSvHhxJSQkRAkKClK6d++uODg4KC4uLsrAgQPNfsmYY0xQ3NzclA8++ED54IMPlClTpihdunRRAAVQ5syZoyiKokyfPl0BlKlTp6Z6nrCwMMXV1VVxcHBQ4uLi1PKs9kH56quvUvW9UZSMr+/MJCh37txRSpcurTg4OCgHDhxQy5OTkxVPT0/Fx8fH7Hv66NEjRafTKX369FHLjP9GFy9enKr+rl27spWgGH/QpOy/tGHDBgVQ+vbtm6q+Xq9Xpk6dqjg4OKjvFaCUL19eGTZsWJqvVVRUlOLq6qq4ubkpsbGxavnEiRMVQPnhhx9S7ZPZBGXevHkKoHTp0iWTZy1ym9ziETnqxIkTALRt2zbVtueee47SpUtz/fp1IiIiTJr2HRwcqFOnTprPm9b2f//9F4BTp06Z9EkxunTpEgDnz5+nRo0aHD16FL1eT6tWrXB2ds7SuaV17IiICLPHfvjwoXpsMPQ9uXLlCmXKlKFSpUqp6vv7+6u3SfK7qlWrmu2TsW/fPn744QfWrFmDp6cnHTp04MGDB/z6669ERUUxduxYYmNjU432SU9ERIT6ullbW+Pp6UmXLl0YM2YMXbt2BdK/Lj08PKhfvz579+7lwoUL1K1bN93jnT17li+++IK9e/dy79494uLiTLabG7Ka0fWdnqioKLp3786dO3dYuXIlLVq0ULddunSJsLAwqlSpwvTp083u7+joqF6D8OS1aN26daq6LVu2xNraOkvxXblyhV27dlG1alWaN2+ulnfu3BkfHx/+/PNPQkJC8Pb2VrfpdDo+/fRTJk+ezNatWzl06BAnTpzg8OHDLFy4kCVLljBv3jyT26MAq1atIjIykpEjR+Lg4KCWBwQE8NVXX7FgwQJGjRqVpfiNlKduCQrtSYIizCpRogTnz5/P8vwAxk52JUqUSPN5b968SXh4uEmCUqxYsXQ/GNLaHhoaCjzpoJcW4xwbxvkSSpUqlW79zDAee/v27Wzfvj3DYxtfm+LFi5ut5+Pj88wxZcTNzY2QkBAiIiLUfgApGWM0vjfG/6fVedJYnlHfDYDY2FiGDh1Kz5496d27N9u3bycwMJAVK1bw0ksvAYbO2e+//z5Xr141m8SZU65cuQznqcnMdQmkO58GwKFDh2jbti1JSUm0a9eOHj16UKRIEaysrDh58iR//fWX2Y7gGV3faUlOTqZfv34EBgYyc+ZM+vXrZ7LdeA1evnw53eQ25Rwz6V2HNjY2JolEZixYsABFUVJNMGhjY8Mrr7zCV199xdKlS3n77bdT7evu7k6/fv3U84qOjuazzz5j+vTpjB07lh49epjEOX/+fIBUx6pVqxYNGzbk+PHjHDt2jEaNGmXpHMAw9BmgaNGiWd5X5A4ZxSPMatmyJWAY9ZAVxi+04OBgs9uNPeSf7hiZ0Yd3WtuNz3Pq1CkUwy1Ls/8NHjwYePJFmhMTMxmPPWfOnHSPbRzhYqxvHCX0tLRes5xUtWpV4EnLUkr37t0jOjqa0qVLq50wnZ2dKVWqFFFRUWZHN1y+fBkwtI5l5H//+x+hoaF8//33wJOWpZQdmBs2bAjAuXPnsnJaGcrudfm06dOnExsby7Zt29i8eTOzZ8/m448/5sMPP0y3g2Z2f5WPHTuWTZs2MXz4cLNzdBjjfemll9K9Bq9fv55qH3PXYVJSEiEhIZmOL+VInalTp6YabWQcoZXRDwgjZ2dnPvnkE1q2bEl8fDwHDhxQt50+fZojR44A0Lx581THOn78OPAkicmqXbt2AWS7o63IeZKgCLNee+01bG1t+f333zP8skj5i9E4sZK5abuvXLnC7du3qVChQqZ+cWdGs2bNAMOtg8xo0qQJVlZW7N27l+jo6AzrG5u7k5OTn/nYrq6uVK5cmTt37pidUC0vpjo33uIwNzTceEvm6dsg2dnnaUeOHGH27NnMmTMn1S/3lNfP07dLckp612V4eDgnT57EwcGB6tWrp/s8V65cwdPT0+wIm5wehfXVV18xb948OnbsyA8//GC2TrVq1XB3d+fQoUMkJiZm6nmNCaG5ePfv32/2Wk/LX3/9xYMHD6hatSpDhw41+1/FihW5dOlSll4fV1dX4MltF3iSePj7+6d5LEdHR1auXJnlWYn/+ecfDhw4gKOjo9qaJyxA3nV3EfmNccRJ+fLllaNHj5qts3nzZqVNmzbqY+MIgfLlyysPHjxQy5OSkpQXXnhBAZTp06ebPEdGE0Oltz0kJERxd3dXihYtqhw+fDjV9uTk5FSdDwcMGJDpUTyTJk1SAOWff/4xe3w/Pz/FyspKWbRokdntp0+fNpmczPia9urVS5NRPNeuXcv1idqeFh8fr9SoUUPp1q2bSfn27dsVQPnoo4/UMuOEbuY6ET8tvVE85ura2toqbm5uyuXLl022jRkzRgGUYcOGmZSb6yTbqVMnBVBOnTplUr5w4UK1o+eSJUtMtmV0fZvrJPv7778rVlZWSu3atTPsNPy///1PvZ6fHkGkKIZJz1KOcNu/f3+OjeLp0KGDAiirV69Os47xtRkwYIBa9vnnnyv//fef2fr79u1THBwcFBsbG+XOnTuKoihKTEyM4u7urlhbW6tl5rz66qsKoMyfP18ty2iitt9//12dqO3zzz/P6JRFHpIERaTro48+UqysrBRAadGihTJu3Dhl2rRpytChQ5UqVaoogNKoUSOTfSZPnqwOPR09erQyadIkpVatWgqgtGzZUomPjzep/ywJiqIoyo4dOxRXV1dFp9Mp7du3V8aPH69MmDBB6dWrl1KyZEnF3t7epH5YWJhSp04dBVCqVaumjB8/Xpk0aZLSu3dvxdXV1eSLYsuWLeqH+eTJk5VPPvlE+fbbb9Xtt27dUl+HunXrKiNGjFAmT56sDBgwQD3nf//9V60fFxenNG7cWK0/efJkZcSIEYq7u7vSo0ePLCcoCxYsUAYPHqwMHjxY8fX1VQClTp06apm5mTHnzp2rAIqXl5cyevRoZcKECUrp0qUVQJk4caLZ47z11lsKoJQuXVqZMGGCMnr0aMXLy0sBTF4Pc959913Fzc1NuX37tkm5Xq9XGjZsqFhbWytDhgxR+vbtqwAmI07Sk5UERVEU5fvvv1eHtg4dOlR55513lObNm6vXQcova0Uxn6Bs3rzZ5DneeustpVWrVoqVlZU6nDonEhRHR0eF/59p1ThCKeV/KY+RkJCgXjulSpVSBg4cqLzzzjvKkCFD1AT66etg7NixCqCUKFFCGTt2rPLWW28plSpVUho1aqSUKFEiU6/ptWvXFJ1Op3h7e6f6N51SZGSk4uLiotjb26uvcd26ddXXPSAgQJk6daoybtw4pV27dopOp1MA5auvvlKfw5h8P//88+nGtHv37lSfScbXt3Xr1urrN3nyZOXVV19VKlSooACKvb29MmvWrAzPWeQtSVBEhs6dO6eMGTNGqVmzpuLq6qrY2toqPj4+SufOnZWFCxeaDM00WrlypeLr66t+MNWoUUOZPn26ydBAo2dNUBTF8GX1xhtvKJUrV1bs7e0VV1dXpWrVqsqrr76q/PHHH6nqR0VFKdOnT1dq166tODo6Ki4uLkr16tWV8ePHm7R4KIph+Gi1atUUOzs7s1+Ijx8/VmbMmKE0aNBAcXZ2VhwcHJTy5csrXbt2VX766adUw5kjIiKUN998U02eqlatqnz55ZfK1atXs5ygGIdBp/Vf69atze63fv16pVWrVoqLi4vi5OSkNGrUSFm6dGm6x1qyZInSqFEjxcnJSXFxcVFatWqlbNiwId19AgMDFRsbmzTn07l165bywgsvKM7Ozoqbm5syePDgLA8zzsqQ2K1btyodOnRQ3N3dFTs7O6VSpUrKpEmTlEePHqWqm9Yw4w0bNihNmzZVXFxcFDc3N6VDhw7Knj171C/RnEhQ0ntPzb2ver1eWb58udK2bVvFw8NDsbW1VUqWLKn4+voqM2bMUG7evJmq/rfffqte1yVKlFBGjx6thIeHZ3qq+2nTpimA8uabb2ZYd/jw4QqgfP3114qiKMqJEyeUTz75RGnTpo1Svnx5xcHBQbG3t1cqVqyoDBgwQNm3b5/J/i1atFAA5a+//srwWM8995wCKIGBgYqiPHl9jf/pdDrFxcVFKVu2rNKlSxfls88+S5U8C8ugU5QUN/mEEEIIISyAdJIVQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFidfJihxcXFcvHgx16bFFkIIIYS28mWCEhQUxPDhwwkKCtI6FCGEEELkgnyZoAghhBCiYJMERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCCGExZEERQghhBAWRxIUIYQQQlgcSVCEEEIIYXEkQRFCCJFlMY/iOL72MjGP4rQORRRQkqAIIYTIspjweALXXSEmPF7rUEQBJQmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDg2Wd0hJiaGVatWce7cOc6fP09kZCRTp06lS5cumX6OY8eOsWLFCi5duoRer6dMmTK8/PLLtGvXLqvhCCGEEKIAynKCEhERwdKlSylevDiVK1cmMDAwS/tv2rSJWbNm0ahRI4YPH461tTU3b97kwYMHWQ1FCCGEEAVUlhMULy8v/vjjD7y8vLhw4QIjRozI9L737t3jm2++oWfPnowfPz6rhxZCCCFEIZHlPih2dnZ4eXll62B//fUXer2eoUOHAobbRYqiZOu5hBBCCFFw5Wkn2ePHj1O2bFkOHTpEr1696Ny5M927d2fhwoXo9fq8DEUUQjGP4ji+9jIxj+K0DkUIIUQGsnyL51ncvn0bKysrPvvsM15++WUqVarE3r17Wb58OcnJyYwcOdLsfiEhIYSGhqqPg4KC8ipkUYDEhMcTuO4K5RoWw8nDQetwhBBCpCNPE5TY2Fj0ej0jR47klVdeAcDf35/IyEjWrl3LwIEDcXJySrXf+vXrWbp0aV6GKoQQQggN5WmCYm9vT2xsLO3btzcpb9euHYcPH+bSpUvUq1cv1X49evTA19dXfRwUFMT06dNzO1whhBBCaCRPExQvLy9u376Nh4eHSbnxcWRkpNn9vL298fb2zvX4hBBCCGEZ8rSTbNWqVQFDn5KUjI/d3d3zMhwhhBBCWKhcS1BCQkIICgoiKSlJLWvbti0AGzduVMv0ej2bN2+mSJEiagIjhBBCiMItW7d4fv/9d6KiotSRNQcOHFBngu3VqxcuLi7Mnz+fLVu2sHr1akqUKAFAy5YtadiwIT///DPh4eFUrlyZffv2cfr0ad5++23s7Oxy6LSEEEIIkZ9lK0FZvXo1wcHB6uO9e/eyd+9eADp27IiLi4vZ/XQ6HTNmzGDhwoX8888/bNmyhTJlyvDee+/RsWPH7IQihBBCiAIoWwnKmjVrMqwzbdo0pk2blqrcycmJcePGMW7cuOwcWgghhBCFQJ52khVCCCGEyAxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBZHEhShuZhHcRxfe5mYR3FahyKEEMJCSIIiNBcTHk/guivEhMdrHYoQQggLIQmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIUIDIzsygoJEERQogCRGZmFgWFJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQQgiLIwmKEEIIiyYLIBZOkqAIIYSwaLIAYuEkCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiZDlBiYmJYfHixbz99tt069aNVq1asXnz5mwd/PPPP6dVq1ZMmTIlW/sLIYQQomDKcoISERHB0qVLCQoKonLlytk+8IULF9i8eTN2dnbZfg4hhBBCFExZTlC8vLz4448/+O233xg1alS2DqooCnPmzKFTp054enpm6zmEEEIIUXBlOUGxs7PDy8vrmQ66detWrl+/zvDhw5/peYQQQghRMOV5J9mYmBh+/PFHXn311WdOdIQQQghRMNnk9QGXLl2Kvb09ffv2zfQ+ISEhhIaGqo+DgoJyIzQhhBBCWIg8TVBu3brF2rVref/997PUOXb9+vUsXbo09wITQgghhEXJ0wRl7ty51KpVC39//yzt16NHD3x9fdXHQUFBTJ8+PYejE0IIIYSlyLME5fjx4xw+fJjp06dz7949tTw5OZn4+Hju3btHkSJFcHZ2TrWvt7c33t7eeRWqAGIexXF+5y2qtyuDk4eD1uEIIYQoZPIsQXnw4AEA7733XqptDx8+pF+/fowZMyZLfVNE7okJjydw3RXKNSwmCYoQQog8l2sJSkhICNHR0ZQqVQobGxsaNGjAjBkzUtX74osv8PHxYeDAgVSsWDG3whFCCCFEPpKtBOX3338nKipKHVlz4MABtYWkV69euLi4MH/+fLZs2cLq1aspUaIExYsXp3jx4qme69tvv8XDwwM/P79nOA0hhBBCFCTZSlBWr15NcHCw+njv3r3s3bsXgI4dO+Li4pIz0QkhhBCiUMpWgrJmzZoM60ybNo1p06blyHMJIYQQonDJ85lkhRBCCCEyIgmKEEIIISyOJChCCCGEsDiSoAghhBDC4kiCIoQQIkv0eoWH1yIAeHgtAr1e0TgiURDl+WrGQggh8q/rR4I5tPw80WFxABxYdJaTf1yl2aDqVGjio3F0oiCRFhQhhBCZcv1IMDtnB6rJiVF0WBw7Zwdy/UhwGnsKkXWSoAghhMiQXq9waPn5dOscWnFebveIHCMJihBCiAwFXwhL1XLytOjQOIIvhOVRRKKgkwRFCCFEhmLD43O0nhAZkQRFiFwQ8yiO42svE/Mo/V+cQuQXju72OVpPiIxIgiJELogJjydw3RVi5NekKCB8qnni7OmQbh1nLwd8qnnmUUSioJMERQghRIasrHQ0G1Q93TrNBlbHykqXRxGJgk4SFCGEEJlSoYkP7SbUT9WS4uzlQLsJ9WUeFJGjZKI2IYQQmVahiQ/lGhXn4q5bHFh0Ft+hNanapoy0nIgcJwmKsFgRcRHsu7mPI3eOcCP8BiExIQC42rtSwb0CdYvXpU2FNvi4yK82IXKDXtFz+v5p9gXt41LoJW49vkVCcgI2VjZ4UZQYD2vKFrGnCiWxkq8TkcPkihIWJUmfxF8X/mLxycVsvbKVZCU5w32alW7GkHpDeKXOKzjZOuVBlEIUbFfCrrDg+AKWn15OcFQ6s8MWgzWbFuC925uXa73MiIYjqFWsVt4FKgo06YMiLIKCwrrra6n5Q016/9abTZc3ZSo5ATh0+xAj/h5BxTkVmX1oNvFJMnJGiOy4EX6DgD8DqPpdVT4/+Hn6yUkKITEhfHvkW2rPq02vNb04/zD9GWeFyAxpQRGau/r4Cl+VnsrFfadNyssUKcOL1V6kdbnWVC9aneLOxdHpdITFhnEp9BIHbh5gw6UNnHlwBoD70fd5c+ubzD8+n/nPz6dl2ZZanI4Q+U6SPolv/v2G93e/T1zSk7l7bK1s6VS5Ex0qdqBhiYaUdy+Pk60TcUlxnLlwnuWL1xHR5Bbb72wlPtnww2Dd+XVsuLiByb6Tea/VezjYpD80WYi0SIIiNLXs5HJe3zCSOOcnH4qtyrViWstpdKjUAStd6kY+T0dPKntWpmuVrkxvO53j947zxcEvWHN2DQDnQ87Takkr3vV7lw/9P8TayjrPzkeI/ObO4zv0XduXg7cOqmUeDh5MbD6R4Q2HU8y5mNn9bL2duBkRz4v+LbAtAYsDF6utLon6RGbsm8Hfl/5mde/VVPWumlenIwoQucUjNJGQnMCAxYMI+GswcXpDcuKVUJxJEZ+ypPoqOlXuZDY5eZpOp6NRyUas7r2aEyNO0LhkY8Bwy2j6vul0/Lkjj2If5eq5CJFf7bmxhwbzG6jJiQ4d45uO59r4a7zb6t00k5OnuTm48WbzN7k67irv+b2HrZUtAKfun6Lh/Iasv7g+185BFFySoIg8F5UQRfsfO7Ly1gq1zC+8Ex/dmMdzwfX4Z87JbC3bXr9Eff4d+i+ftfsMa52h1eSf6//QcklLgh7d5OG1CAAeXouQFVdFobfyzErar2jPg+gHAJR1K8uBIQeY3Xk27g7u2XpOJ1snPmn7CcdHHKe6t2FSt+jEaF5a/RLfH/k+p0IXhYQkKCJPhcaE0m5ZO/aF7AHAVm/Ha/feYtD98dgrT+5VZ3fZdmsra6a0nMLugN3qr79zD8/R4JuGrF2xBYADi86yetzubCVBQhQE847O45V1r5CkTwKgY6WOHB9xnOZlmufI89cuXpujw4/Sv1Z/wDBceczmMXyw64MceX5ROEiCIvJMRFwEHVZ04MjdIwA4Jbvw1u0ZtHjcPlXdZ122vWXZlhwccpByThUACLMO4evS03hge8/w/GFx7JwdKEmKKHS+P/I9ozeNRsHwA2BEgxFsGrAJbyfvHD2Os50zv/T8hSm+U9Syj/d+zPS903P0OKLgkgRF5ImYxBi6r+xOYHAgAG5JHky6OYvKsTXT3OdZl22v4F6RqTe/omxcJQDCbUP5qsw7hNo8UOtkt6VGiPzo1zO/MmbzGPXxFN8p/Nj9x1zrSG6ls+Kz9p8xu9Nstex/u/7Hlwe/zJXjiYJFEhSR65L0SfT5rQ/7b+4HwNPOi4m3PqN0QoV093vWZduDL4RhHerAhNvTKRlfDoAw24fMKf0+MVbRwLO31AiRGTGP4ji+9jIxj+IyrpxLNl/ezOA/B6uPp7acymftP0Ony/0p6sc3G8+XHZ4kJZO2T2L1f6tz/bgif5MEReS6ydsns+nyJgCK2Bdh66CtVHapku4+ObFsu7EFxjXZjbduzaBYQkkA7tnfZH7Jz0gm2aSeELklJjyewHVXiNHoWjv38Bz91vZT+5y83vB1ZrSdkacxTGwxkU/afKI+HvznYJOhzUI8TRIUkasWnVjEN4e+AcDGyoa/+v9Fo1IN82TZ9pQtMG7Jnoy//THOya4AnHU+zupi81PVE6KgCYsN44VVLxCZEAlAr+q9+K7rd3nScvK0d/3eZWj9oQDEJ8fzwqoXuBlxM8/jEPmDJCgi1xy7e4xRG0epj3/o+gP+5f2BvFm23aeap8nzF0ssyeg772GtGOYn3OWxgZMlDzxzS40QlkKvV0yG0yclJ/Py7y9zJewKAPV86rHsxWWaTV6o0+mY120ebSu0BQxT5Pf9rS8JyQmaxCMsmyQoIldExEXQb20/EvWJAIxtMpbhDYeb1KnQxId+c/3xHWroKOs7tCb95vjnSHICYGWlS9VS81xsbV65/4b6eIn7N1wKu5gjxxNCS9ePBLN63G4OLDoLGIbTD3zndbZd3QZAUaei/NX/L5ztnLUME1trW9b2WUt59/IAHL5zmEnbJmkak7BMkqCIHKcoCiP/Hsm1R9cAw2rDX3X8ymxdKysdRSu6AVC0otsz39Z5mrmWGr+ITrSK6wRATHIMfX7rQ0xiTI4eV4i8dP1IMDtnBxId9qQT7lWHC6xxXgwYZohd3Xs1Zd3KahWiCQ9HD9b2WYudtR0Ac4/MZd35dRpHJSyNJCgixy0KXMTqs4Ye+m72bqzstRJba1vN4jHXUrPxw9+pWdTw+L8H//Huznc1i0+IZ6HXKxxabrp6cIxVNAtKzEKv0wPwQswrtC7nr0F0aWtYsiFzO89VH4/YMCLTqyeLwkESFJGjrj+6zoQtE9THi3osUptytfR0S42LvTNr+qxRV1qdfXg2u2/s1jBCIbIn+EKYScsJwMpi8wi1uw9ApdjqdL7VzyKH049oOIKe1XsCEBobyogNI1AUmZdIGEiCInKMoigM2zCM6ETDHCMjGoygV41eGkeVthpFa/Bp20/VxwF/BhAZH6lhREJk3dPD5M84H+WQ2z8AOCY7M/zuZKyxtsjh9Dqdjh+7/aguS7Hh0gaWnFyicVTCUkiCInLM/OPz+ee64YOxrFtZvuxo+bNFjm82nlblWgEQFBHEW1vf0jgiIbIm5TD5GKtoVhT/Vn3c78FwvJKKp6pnSYo6F2XB8wvUx+O3jJehxwKQBEXkkJsRN5m0/UlP/AXPL8DV3lXDiDLHSmfFkheW4GxrGNmwMHAhe4P2ahyVEJmXcjj970UX88g2BIAa0Q1o8bgDkDMTH+amHlV7MKTeEMCw2vm4zeM0jkhYAklQRI4Yu3msOhHU0PpD6Vipo8YRZV5Fj4rMaj9LfTxq4yiZl0HkG8bh9BcdT7PXfTMA9npHBgWPRYdhVFxOTHyY277q9BXFnQ2tPX9d/Iu/LvylcURCa5KgiGf296W/WX9xPQAlXEqkOaTYkr3e6HUal2wMGKYF//rfrzWOSIjMK93Qi79qLFYf93r4Gl5JxXN04sPc5u7gzuzOs9XHYzePJSohSruAhOYkQRHPJDYx1qQ59utOX+Pm4KZhRNljbWXNj91/xEpn+Cfx8Z6Puf7ousZRCZE53x35jstRlwCo7VKX1uFdc3ziw7zQr2Y/tfX11uNbfLDrA40jElqSBEU8k88PfM71cMMXeZvybehXs5/GEWVfgxINGNfEkGzFJsXy5tY3NY5IiIzdi7zHB7sNX+Q6dHzV6hussMqViQ9zm06n44euP6jD/+ccnsP5h+cz2EsUVJKgiGy7/ug6M/fPBAwLAWq1AFlO+rjNx5RwKQEY7oPvur5L44iESN/kHZPV/l/DGgyjvncDjSN6NpU8KzG15VQAkpVkJm5722R9Ib1e5kkpLCRBEdk2dedU4pMNcytMaDqBGkVraBzRs3O1d+XTdk/mRnlr21sk65M1jEiItB2+fZifT/8MgKejp8m1m5+93eJtyhQpA8DmK5v4aeUywLC+0Opxu7l+RGacLQwkQRHZcuTOEXU6+6JORflf6/9pHFHOGVR3EA1KGH6Fngw+yfJTyzWOSIjUFEVh8o7J6uOP/T/G28lbw4hyjpOtExMrTFUfrym2gGQMPxSiw+LYOTtQkpRCQBIUkWWKovD2trfVxx+0/oAi9kU0jChnWemsTEYivfvPuzKaQFicDZc2qHP2POf1HCMajtA4opyj1ysU3VGVirHVALhnf4u97ptM6hxacT7Hb/fEPIrj+NrLxDyKy7iyyHWSoIgsW39xPftu7gMK3gejkX95f16s9iIA96Lu8fmBz7UNSIgUkvRJTNkxRX38WbvPNF2QM6cFXwgjJiye/g9GqmUbvFYSp4tVH0eHxuX4+kIx4fEErrtCjAUuC1AYZTlBiYmJYfHixbz99tt069aNVq1asXnz5kzte/z4cT777DMGDBhAhw4d6NevH7NmzSIkJCTLgQttJCYnFugPxpQ+b/85tlaGc/v636+5H3Vf44iEMFgcuJgLIRcAaFGmhZpMFxTGdYMqxFWl4eOWAETahLPT4y+z9UTBlOUEJSIigqVLlxIUFETlypWztO+PP/5IYGAgfn5+jB8/nnbt2rFr1y6GDRtGaGhoVkMRGlgcuJiLoRcB8C3jW+A+GFOq4lWF1xu9DkB0YrQ6YkkILUUlRKnDigG+6PBFvh8997SU6wa9GDIIK8XwVbXVcy1RVo/N1hMFT5YTFC8vL/744w9+++03Ro0alaV933jjDVauXMmoUaPo3r07I0aM4LPPPiMsLIx169ZlNRSRx+KT4pm+b7r6+MuOXxa4D8anTfObhqONIwDzjs3jVsQtjSMShd33R74nOMrQQbRn9Z60KNNC44hyXsr1hXwSS+MbYVhTKNY6hi1evwGWv76QeHZZTlDs7Ozw8vLK1sHq1auHlZVVqrIiRYoQFBSUrecUeWfhiYXcfnwbgO7PdadZ6WYaR5T7fFx8GNfUMHlbQnICn+z9ROOIRGEWGR/JFwe/AAyduWe0naFxRLnDuL6QUffQV7DRG263/uO+gUc2IflifSHxbDTvJBsTE0NsbCxubvlvevTCJDYxlk/3P5lj4SP/jzSMJm9N9p2sjlJaHLiYK2FXNI5IFFbfHfmO0FjD7fCXa71MNe9qGkeUeyo08aHdhPo4ezrgmeRNm/DuACRaJRDovz1fTeEvskfzBOW3334jMTGRtm3bplknJCSEixcvqv9Ja0vem398Pncj7wLwYrUX1XlCCgNPR08mNp8IGGa2/HD3h9oGJAqlx/GP+fLfLwFD68n7rd/XOKLcV6GJD/3m+uM7tCZdwvribO0CwNo7q+R2ayGgaYJy8uRJli5dSps2bWjYsGGa9davX8/w4cPV/6ZPn55mXZHzYhJjTDqIftj6Q+2C0ciEZhPwcjTc2vz1zK9cDLmocUSisPn28LeExRqG1b5S+xWe83pO44jyhpWVjqIV3XBNdmN4DcOw40R9ogz9LwQ0S1CCgoJ47733qFixIlOmTEm3bo8ePViwYIH633vvvZdHUQqAeUfncT/aMMS2d43e1PWpq3FEea+IfREmtZgEgILCZwc+0zgiUZhExEXw1b+GyQOtddb8r1XBmbk5K16vPhpnW2cAFpxYwL3IexpHJHKTJgnK/fv3mThxIs7OzsyaNQsnJ6d063t7e1O1alX1v3LlyuVRpCImKYZZB2YBhpVSP2hdeJc/H9V4FO4O7gCsOLWCG+E3NI1HFB5zD8/lUdwjAAbWHUgVryoaR6QNLwcvRjceDUB8crzaYVgUTHmeoERERDBx4kQSExP58ssv8fYuGGtHFFQ/X17Ow5iHAPSt2ZdaxWppHJF2itgXYXzT8YChL4o0MYu8EBkfyTeHvgEMrSfv+RXuFuSJzSeqQ/9/PPYjD6IfaByRyC25lqCEhIQQFBREUlKSWhYbG8vkyZMJCQnh888/p0yZMrl1eJEDkkjih7PfqY+n+U3TMBrLMK7pOFzsDB31FgcuVjsOC5FbFpxYoLaevFrnVSp5VtI4Im0VdymuLq8RmxTL1/9+rXFEIrdkK0H5/fffWbZsGZs2GRZvOnDgAMuWLWPZsmVERRkWVZs/fz4DBw7k4cOH6n6ffPIJ58+fx9/fn6CgILZt26b+t2/fvhw4HZGTjhTZzZ0Yw7wn3ap0o07xOhpHpD1PR09GN3rSxPzVwa8y2EOI7ItPilf7ngBM8U2/v15hManFJOys7QD4/uj3hMbITOQFkU12dlq9ejXBwU+Wut67dy979xpW1ezYsSMuLi5m97tyxTB/xKZNm9TkxsjHxwc/P7/shCNygV7Rs8XzN/XxOy3f0TAay/JW87eYe2QucUlx/Hj8R6b6TS0wy9wLy/LLmV9MhvdXL1o9gz0Kh1JFSjGs/jB+OPYDUQlRfH/0+0Ix7LqwyVaCsmbNmgzrTJs2jWnTTG8JZGY/oT29XmH1sbXcszfMM9CyTEtalm2pcVSWo7hLcYY3GM63R74lJjGGOYfm8ElbmWFW5KxkvWk/J2k9MTXZdzI/Hf+JZCWZb498y6QWk3C0ddQ6LJGDNJ+oTViW60eCWTVuF9+c+FIta/5fV64fCU5nr8JnUotJ2FgZ8vsfjv1AdEK0xhGJguavi3+pC3P6l/cvFEtLZEU593L0rdkXgJCYEJaeXKptQCLHSYIiVNePBLNzdiAnYo9w3fESAKXiy1MluC47ZwdKkpJCGbcyvFzrZQDCYsNYdmqZxhGJgkRRFD7b/2SunXd85RarOca5iQC++vcrkvXJGkYjcpokKAIw3NY5tPw8YFjS3KhLaB90GBbkOrTiPHq9okl8lsg4/T3A1/9+LR+OIsfsurGLo3ePAlDPpx4dK3XUOCLLVL9EfdpXbA/A1UdX+fPCn9oGJHKUJCgCgOALYUSHxXHX7ib/uRwHwCuhOI0iW6l1okPjCL4QplWIFqeuT12TD8f1F9drHJEoKL48+OQW6xTfKeh0smpvWlK2onx+8HMURX5EFRSSoAgAYsPjAdjh8ada1j78BayxNltPGLzd/G31b+NCbkI8i/MPz7P5ymYAyrmVo3eN3hpHZNk6VOxA3eKG5TeO3DnCvpsyZUVBIQmKAMDR3Z5I6wgOFfkHAIdkR3wjUjcrO7rb53VoFq1jpY7q7LoHbx3k31v/ahyRyO/mHJ6j/j22yVi1M7YwT6fT8XaLJz8UZPr7gkMSFAGATzVPDpbYRqJVAgAtIzrhqDddI8nZywGfap5ahGexdDqdSV+UlJNqCZFVoTGhLD+1HAAXOxeGNRimcUT5Q7+a/ShTxDAz+d+X/uZS6CWNIxI5QRIUAUCiPoHdHn8DoFOsaPfohVR1mg2sjpWV3At/2su1XsbHxQeAPy78wdWwqxpHJPKr+cfnE5sUC8CQekNwc3DTOKL8wdbalrFNxqqPvz38rYbRiJwiCUo+E/MojuNrLxPzKC5Hn3fVf6sISTAsS9A4oSXeScXVbc5eDrSbUJ8KTXxy9JgFhb2NPeOajAMMM/CmbKIXIrMSkhP47qhh7SsdOsY1HadxRPnLsAbDcLI1tPouPbWUiLgIjSMSz0oSlHwmJjyewHVXiMnBzqqKovD1oScLbn39+kx8h9YEwHdoTfrN8ZfkJAMjG41UPxyXnFzC9UuGNYweXouQodkiU347+5s6rf0L1V4o9IsCZpWHoweD6gwCICohiiUnl2gckXhWkqAIdt3Yxen7pwFoWqopvmVbULSioWm5aEU3ua2TCZ6OngysMxAwfDh+/Zfhl/CBRWdZPW63THIn0qUoCt8c+kZ9/GazNzWMJv8a2zTFbZ4j38rcRPmcJChCPhhzyIuO/dW/d3lsQI8egOiwOJmJV6Rr/839HL9nmH+oQYkG+JWVhVOzo0bRGnSo2AGAa4+usenypgz2EJZMEpRC7vqj62y8tBGAMkXK0KtGL40jyp/0eoVHfyhUja4DwH27O5xzOmFSR2biFWmZe2Su+vebzd6UidmeQcq+O9IfLH+TBKWQm3dsHgqGL83XG70ucy5kk3Em3rbhPdSyfzw2mNSRmXiFOXce3+GP838AUNy5uLoAnsierlW6UtmzMgA7r+/kvwf/aRyRyC5JUAqx2MRYFgUuAsDO2k7mXHgGxhl260Y1xTOxKAD/OR/jge1ds/WEMPrp+E8kK4a+EiMajsDO2k7jiPI3K52VDDkuICRBKcRW/beKsFjDL/q+NftSzLmYxhHlX8YZdq2xxj+8OwCKTmGX+99m6wkBhqHF84/PB8BaZ83IhiM1jqhgCKgXgKudKwArTq9QP+dE/iIJSiGlKIo65wLAG43f0DCa/M+nmifOng4A+IV3wlZv+BV8wG0bcTrDxFsyE6942rrz67gffR+Al6q/RKkipTSOqGAoYl+E1+q9BkBsUiwLTyzUOCKRHZKgFFKH7xzmxD1DJ86GJRrStFRTjSPK36ysdDQbVB0AF30Rmj72ByDWOoZ/3XYCMhOvSO37o9+rf8uPhJw1pskY9e+fjv+EXtFrGI3IDklQCqmnPxhl1MCzq9DEh3YT6uPs6WDSWXaP10bajq8nk90JE6eCT7H/5n4AahatSetyrTWOqGCp4lXFZMjxtqvbNI5IZJUkKIXQg+gHrDm7BjBMMNa/Vv8M9hCZVaGJD/3m+tP/1eepEmOYjfeOTRA3ip3XODJhaVL+SBjdeLT8SMgFoxuPVv/+4egPGkYiskMSlEJo4YmFJCQbVi0eWn8ojraOGkdUsFhZ6Sha0Y02/99ZFuDHYz/myrFya20mkbvC48L55cwvALjauaqzEIuc1f257pQuUhqAjZc3cjPipsYRiayQBKWQSdInqV+WOnSMajRK44gKrvqRLSjqYBhy/MeFPwiOyvmZZHNjbSaR+5aeXEpMYgwAg+oOwtXeVeOICiYbKxuGNxgOGBbyNI6YEvmDJCiFzIaLG7j1+BZgmNCogkcFjSMquGywZUBlwy/jJH0Si04s0jgiYQn0it7kdoN0js1dwxoMw1pnDZi2HgvLJwlKIfPDsScfjCl7uYvcMbDKIHQY+hbMPzFfFi8T7Li2g8thlwFoW6Et1YtW1ziigq2ka0lerPYiAPej7/PnhT81jUdkniQohcjVsKvsuLYDgIoeFelYqaPGERV85VzL07lyZwBuRtxky5UtGkcktJayP5K0nuSNlLey5x2bp2EkIiskQSlEUk5WNKLBCKx08vbnhZQfjj8ez53OsiJ/CI4JZv3F9QCUcCnB8889r3FEhUPbCm2p6lUVgN03dnP+oYyqyw/kG6qQSEhOYPHJxYCh41hAvQBtAypEulbpSpkiZQDYeGkjQeFBGkcktLLy6i/qujtD6w/F1tpW44gKB51Ox+uNXlcf59aoOpGzJEEpJDZc3MCD6AcAvFjtRYq7FNc4osLD2spaHUmgoLDgxAKNIxJa0KPn58vLAMMIuqENhmocUeEyuO5gHG0MUyosO7WM6IRojSMSGZEEpZCYf+LJ8LoRDUZoGEnhNLTBUJORBInJiRpHJPKKXq/w8FoE551OcjPKMA9Hp8qdKO9eXtvAChkPRw91UsqI+AhW/bdK44hERiRBKQSuP7quTvNcwb0C7Sq20ziiwufpkQR/XfxL24BEnrh+JJjV43ZzYNFZ9rpvVstfcO2jYVSFl3SWzV8kQSkEUnaOHd5guHSO1UjKe+Dy4VjwXT8SzM7ZgUSHxRFhHcYpl0MAuCV5wKqiXD+S8xP3ifQ1LtWYhiUaAnD83nGO3z2ucUQiPfJNVcAlJieadI59rf5rGkdUeLWt0JbKnpUB+Of6P1wMuahxRCK36PUKh5Y/GSly0G0HyTpD51jfiI7YYMOhFefR6xWtQiy0RjYcqf4t/cEsmyQoBdzfl/5Wp1jvUbUHPi6yoq5WrHRWJh+OMu12wRV8IYzoMMP6SHr07HN7Mv9Ny4hOAESHxhF8IUyT+Aqz/rX642zrDMCvZ34lKiFK44hEWiRBKeCkc6xlCagXgJ21HQBLTy0lLkkW+SuIYlOsjXTB6RQP7Qw/EmpEN6Booo/ZeiJvuNq7MqD2AAAiEyJZ/d9qjSMSaZEEpQC7EX6DrVe2AlDOrRwdKnXQOCLh7eRN7xq9AQiLDeP3c79rHJHIDY7u9urfe92edI5tFd45zXoi74xo+OTHmtzmsVySoBRgi04sQsFwj9uSO8c6udtTv2dlnArJh3XK2zw/Hf9Jw0hEbvGp5omzpwOPrR9x0vVfAIokeVA3qplax9nLAZ9qnlqFWKg1LNGQej71ADh85zCngk9pG5AwyzK/scQzS9InsSjQsHqutc7aojvHOnk40LB3FZw8HLQOJU/4lfWjurdhgbh9N/dx7uE5jSMSOc3KSkezQdWf6hzbHhts1DrNBlbHykqnVYiFmk6nM7nlLa0olkkSlAJq46WN3Iu6B8DzVZ+npGtJjSMSRjqdzqSJWTrLFkzlGhfjWLnd6uOWEYbbO85eDrSbUJ8KTaTDupYG1B6Ak60TAD+f/pmYxBiNIxJPkwSlgJLOsZZtUN1B2FsbbmktO7WM2MRYjSMSOW33jd0ExVwHoLl7S4ollsB3aE36zfGX5MQCuDm40a9mP8Aws+xvZ3/TOCLxNElQCqCbETfZfNnQMa+sW1k6VuqocUTiaZ6OnvSt2ReA8LhwfjsnH44FTcqWsaF1hgFQtKKb3NaxIMY1skBu81giSVAKoJSdY4fVH4a1lbXGEQlzpLNswfUw+iHrzq8DoKhTUbqU6apxRMKcZqWbUatYLQAO3DrAhfDzGewh8pIkKAVMkj5JnTnWSmfFkPpDNI5IpKVFmRbULFoTgIO3DvLfg/80jkjklGWnlpGoNywI+Vq919S5b4Rlebqz7M+Xl2sYjXiaJCgFzJYrW7j9+DYA3Z/rTqkipTSOSKRFp9OZtqIck1aUgkBRFJPbO8MaDMvT4xe2YfvP6tU6r+JgYxhBuPrqShJ1CRpHJIwkQSlgUn4wSudYyzew7kD1w3HF6RUykqAA2H1jN5fDLgOG9ZeqeFXJ0+Pn1bD9gpIIeTh60KeGYXXp8IRwjrsc4OG1CFknyQJIglKA3H58m42XNwJQukhpOlfunMEeQmvuDu4mIwnWnF2jcUTiWRWWEXQFaf6ibo491b/3uW/hwKKzrB63W1ac1liWE5SYmBgWL17M22+/Tbdu3WjVqhWbN2/OeMf/FxkZyRdffMHzzz9Px44dGT9+PBcvyqquOWFx4GL0ih6QzrH5iXSW1U7MoziOr71MzKOcWRMpZedYbydvXqz2Yo48r8g9148E83i5HT7xZQC45HSGYNvbRIfFsXN2oCQpGspyghIREcHSpUsJCgqicuXKWdpXr9czZcoUduzYQc+ePXn99dd59OgR48eP59atW1kNRaSQrE9m4YmFgHSOzW+alW5G7WK1ATh0+xCn75/WOKLCIyY8nsB1V4jJoUX7lp9aTkKyoQ9DQN0A7G3y9+2Pgk6vVzi0/Dw6dPj9/yrTAPvct6p/H1pxXm73aCTLCYqXlxd//PEHv/32G6NGjcrSvrt37+a///5j6tSpvPbaa/Ts2ZO5c+diZWXFkiVLshqKSGHr1a3cemxI8rpW6UoZtzIaRyQySzrLFgyKopjc3hnecHg6tYUlCL4QRnSYofWs+eN22OgNSxEcLLKdRJ1hFFZ0aBzBF8I0i7Ewy3KCYmdnh5eXV7YOtmfPHjw9PWnVqpVa5u7uTps2bdi/fz8JCdJ7Orukc2z+9mqdV59Mu33mZ6ITojWOSGTV3qC9XAq9BECb8m14zus5jSMSGYlN0XLmmuxGgyhfAKJsHnPS5V+z9UTeydNOspcuXaJKlSpYWZketnr16sTFxaV5myckJISLFy+q/wUFBeVFuPnGncd3+PvS3wCUci1FlypdNI5IZJWbgxv9a/YH4HH8Y1b9t0rjiERWmXSObSg/EvIDx6dGIPmFPxlYsM9tS5r1RN6wybhKzgkLC6Nu3bqpyo0tMqGhoVSqVCnV9vXr17N06dLcDi/fWnJyCcmKYcXUofWHYmOVp2+ryCEjG41UJ9n76fhPDG0wVOOIRGaFxoSy9txaALwcvXip2ksaRyQyw6eaJ86eDuptnqqxdSiWUJIHdnc573ySB7b3qFCkAj7VPDWOtHDK0xaU+Ph47OxSz6hoLIuPN9+M1qNHDxYsWKD+99577+VqnPlJys6xOnTypZaPNS7ZmHo+9QA4evcogfcCtQ1IZJpJ59h60jk2v7Cy0tFsUHX1carOsm5baDawuqyfpJE8TVDs7e3N9jMxltnbm/9H7e3tTdWqVdX/ypUrl6tx5ifbr20nKMJwy6tLlS6UdSurcUQiu1J1lpUhx/nC051j83rmWPFsKjTxod2E+jh7GuZzaRHRAWvF0Ap9tMQuSjWU1hOt5GmC4unpSWhoaKpyY1l2O98WZtI5tmAZUHsAzrbOAPxy5hci4yM1jkhkZP/N/VwIuQBA63KtqeZdTeOIRFZVaOJDv7n++A6tSZFkd9oXNbSihCaEsP7ieo2jK7zyNEGpUqUKly9fRq/Xm5SfP38eBwcHypSRobFZcTfyrvqPp4RLCbo9103jiMSzKmJfhAG1BwAQlRAlnWXzAekcWzBYWekoWtENgBH1n7yP0pKpnVxLUEJCQggKCiIpKUkta926NWFhYezdu1ctCw8PZ9euXbRo0cJs/xSRtiWB0jm2IJLbPPlHWGwYv539DQBPR096Vu+ZwR4iO/J63Z+WPn5U8jAM2NhxbQdXw67m+DFyehbjgihbCcrvv//OsmXL2LRpEwAHDhxg2bJlLFu2jKioKADmz5/PwIEDefjwobqfv78/NWvWZObMmSxdupQ//viD8ePHo9frGTJEZj7NimR9MgtOLAAMHbvkvnfB0bBkQxqWaAjA8XvHOX73uMYRibSsOLWC+GRD5/7BdQerCz+KnJXX6/5Y6axMWsOMAxFyUk7PYlwQZStBWb16NYsWLeLPP/8EYO/evSxatIhFixYRGZn2PXNra2s+//xz2rZty++//868efNwc3Nj9uzZlC0rnTuzYve9XWrn2M6VO1POXToOFyTSimL5Us0c20Bmji1IAuoFYGtlC8Dik4vVUVoi72TrnsCaNRmvuDpt2jSmTZuWqtzV1ZUpU6YwZcqU7Bxa/L8Vl5eqf6f8MhMFw8u1X2bitolEJkTy65lf+bLjlxSxL6J1WCKFg7cOcu7hOQD8yvpRvWj1DPYQ+Ukx52K8WO1Ffjv3Gw+iH7D+4np61+itdViFSp52khU5I9w6lC23DCtIS+fYgsnFzoVXar8CQHRiNL+e+VXjiMTTpHNswSctmdqSBCUfOuC2XTrHZkNed7R7ViMbmX44KoqsqGopHsU+Ys1ZQ0uyh4MHvar30jgikRvaVGiT651lRdokQclnkvXJ7HM3rBEhnWOzJq872j2rej71aFKqCQAng09y9O5RjSMSRj+f/pm4JMPoi0F1B+Fo66hxRCI3WOmsTPoW5UZnWZE2SVDymd33dhFq+wCQzrGFQcrJ9346Jk3MlkA6xxYur9V/TTrLakQSlHxEr1dYELhAfTysvnwwFnT9a/VXO8euOruKiLgIjSMSh24f4r8H/wHgW8aXmsVqahyRyE3GzrKA2llW5A1JUPKJ60eC+XHCWnaFbgfALcmTmB9cuX4kWOPIRG5ytnPm1dqvAhCTGMPPp3/WOCIhnWMLn5Tvs3SWzTuSoOSA3J4R8PqRYHbODmSbfgN6nWGZgJbhHYkLS2Tn7EBJUgo46SxrOcLjwln932oA3B3c6VOjj8YRibzQtkJb6SyrAUlQckBuzgio1yscWn4ePcnsd98KgE4xXRL80Irz6PXypVVQ1Sleh2almwFw5sEZDt85rHFEhdcvp38hNikWgIF1Bkrn2EJCOstqQxIUCxd8IYzosDjOOQWqnWNrRjfEK6m4Wic6NI7gC2FahSjygMzHoD1FUUxee+kcW7hIZ9m8JwmKhYv9/1aZPe6b1bJWEZ3TrCcKpr41++Jmb1hpdfV/qwmPC9c2oELoyJ0jnHlwBoDmpZtTu3htjSMSeUk6y+Y9SVAsnKO7PeHWoZx2MTTruyV5Ujuqidl6ouBysnViUN1BAMQmxbLi1AqNIyp8fjz+o/q3dI4tnKSzbN6SBMXC+VTz5EiJf0w6x9o8tYSSs5cDPtU8tQhP5KGnb/NIZ9m8ExYbxqr/VgHgZu8mnWMLKeksm7ckQbFwepLZ7/Wkc2zLFJ1jjZoNrI6VlS6vQxN5rGaxmviW8QXg7MOzHLx1UOOICo+lJ5eqM8e+Vu81nO2cNY5IaEE6y+YtSVAs3MZLG7kXdxeAeglN8U7ROdbZy4F2E+pToYlPjh83v61bU1hIZ9m8p1f0zDs2T338eqPXNYxGaC2gXoC6/pl0ls1dkqBYuO+Pfq/+/UnA//Adapi10ndoTfrN8c+V5ATy37o1hUXvGr3xcPAAYM3ZNTyKf6RxRAXfjms7uBJ2BYB2FdpR1buqxhEJLRV3Kc5L1V4CDJ1l151fp3FEBZckKBbsUugltl8zzBxbwb0CXap0pmhFw0iOohXd5LZOIeRo68jguoMBiE+OZ/XVlRpHlPNye+LDrPrh6A/q36Mbj9YwEmEpUl4H3x35TsNICjZJUCzYj8eejBoY1WgUVjp5u4TpSIIlZxehoPDwWkSBmawvNyc+zKqbETfZcGkDACVdS9Kjag+NIxKWoHW51tQsamjNPnDrAKeCT2kcUcEk33gWKiYxhiUnlwBgb23PkPpDNI5IWIrqRavTxMMws+y12KtcdjzLgUVnWT1utyx7kMPmH5+PXjGMoBvZcKTa90AUbjqdzqQVJeWteJFzJEGxUCvPrFQn4+pfqz9eTl7aBiQsxvUjwdQ566c+3vv/k/hFh8XJ2kw5KCE5QR2lYWNlw7AGwzSOSFiSgXUG4mrnCsDPp3/mUaz0B8tpkqBYIEVRTDLyNxq/oWE0IjtyaxSUcW2mBlEtcUkqAsBxl/1EWT1W68jaTDnjj/N/cD/6PgAvVnuRkq4lNY5IWBJXe1e1P1hsUixLTy7VNqACSBIUC3T4zmECgwMBaFSyEY1LNdY4IpFVuTUKyrg2k61iS4vH7QFIskrkoNsOtY6szZQzfjiWonNsI+kcK1JLeZvnh2M/qLcDRc6QBMUCpRw1IK0nIqWUay75hT9Zk2mf2xYUFLP1coqlja7JTf89+I+9QXsBqOZdDf/y/toGJCxS9aLVaVehHQBXwq6w/ep2jSMqWCRBsTAPox+y+uxqADwdPelXs5/GEQlLknLNJZ/E0lSNqQNAsP1tLjmeMVsvp1jS6Jrc9v2RJ7dYRzcajU4nQ/qFeSl/RH53VIYc5yRJUCzMosBF6syEQ+oNwdHWUeOIhCXxqeaJs+eT20atwruofxtXvJa1mZ7No9hHLD+9HAAXOxd1kUYhzHm+6vOUKVIGMMz8ff3RdY0jKjgkQbEgicmJaudYHTqZUlukYmWlo9mg6urj+lEtcE0yTN53wvUA4dahsjbTM1p4YiExiTEABNQNwM3BTeOIhCWzsbJRP6sVFJP5qyxBfr41KwmKBfnjwh/cfnwbgO7PdaeSZyWNIxKWqEITH9pNqI+zpwO2ii1+EYa+KMm6JG50OpZryx8UBkn6JJNm+rFNx2oYjcgvhjUYhp21HQALA58kuJYgP9+alQTFgsw+NFv9e0KzCZrFISxfhSY+9Jvrj+/QmrR51B0bnWECsVV3fyY2MVbj6PKvvy78xc2ImwB0rdKV57ye0zgikR8Ucy5G35p9AQiLDePn0z9rHFHBIAmKhTh8+zD/3v4XgNrFatOmfBuNIxKWzspKR9GKbrgne/Fi+Z4AhMaGyofjM5hzeI769/im4zWMROQ3E5pOUP+efWg2iiJzET0rSVAsRMoPxgnNJsioAZElr9d4Mh/D7MPy4ZgdgfcC2XdzHwDVvavToWIHjSMS+UnDkg3xK2uY4fl8yHm2Xt2qcUT5nyQoFuD249v8du43ALydvBlQe4DGEYn8pq5XPVqWbQnAuYfn1FWwReal/JEwruk4+ZEgsuzNZm+qf39z6BsNIykYJEGxAN8f+Z4kfRJgWLXYwSZnZx8VhYN8OGbfg9gHrPxvJQDuDu4MrDNQ44hEftSjag8qelQEYNvVbfz34D+NI8rfJEHRWExiDD8d/wkAWytbRjUapXFEIr96oeoLlHcvD8CWK1s4//C8tgHlI8suLVbnHxreYDjOds4aRyTyI2sra8Y1Gac+TjnwQWSdJCgaW3FqBY/iDKtg9q/VnxKuJTSOSORX1lbWjG3yZFhsylsWIm3xujgWXVgAgLXOWpaXEM9kSP0hFLE3LOT58+mfeRD9QOOI8i9JUDSUrE/m60Nfq49l1IB4VkPrD8XFzgWA5aeWExoTqnFElu9ft52Exhtep741+1LOvZzGEYn8zNXeleENhgMQnxxvcRO35SeSoGho/cX1XAq9BEDrcq1pWLKhxhGJ/M7NwY0h9YYAhiXg5x2bp3FEli1Zn8w2j3Xq40ktJmkYjSgoxjYZi5XO8PX6/dHviUvKf7O4WgJJUDSiKAqzDsxSH0/xnaJhNKIgGd9svPrhOPfwXIua1dLSbLz1Nw/t7gHQvmJ76peor3FEoiAo516OXtV7AfAg+gHLTy3XOKL8SRIUjey7uY/Ddw4DhonZOlfurHFEoqCo6FFRndXyYcxDlgQu0Tgiy6QoCt/996SfzuQWkzWMRhQ0k32fXE+fH/icZH2yhtHkT5KgaCRl68lk38ky54LIUSlb5L7890t1GLt4YveNPQSGngCgmnMN2pZvp3FEoiBpVLIR7Su2B+Dqo6usPbdW44jyH0lQNHDm/hk2Xd4EQFm3svSr2U/jiERBU8+nntoqdyP8BmvOrtE4Isty/UgwExdMVR+3vNyNNeP3cP1IsIZRiYLmHd931L8/O/CZzPCcRZKgaOCLg1+of09sPhFba1sNoxEFlcmH4375cDS6fiSY5T/8QaD9IQA8E4vSMNKP6LA4ds4OlCRF5Ji2FdrSuGRjAE4Gn2Tb1W0aR5S/SIKSx25G3FRnrPR09GRo/aEaRyQKqlblWtGsdDMAzjw4w+YrmzWOSHt6vcKh5efZ6LVKLesQ9hI22KiPD604j14vyZx4djqdjndaPvmhMHP/TA2jyX8kQcljn+3/TO0PMKbxGJmxUuQanU5n0ooiH44QfCGMK1GXOOZqWBTQNckdvwjTDurRoXEEXwjL0eM6udtTv2dlnNztc/R5heV7sdqLVPWqCsCeoD38e+tfjSPKPyRByUO3H99mUeAiAFzsXBjXdFwGewjxbJ6v+jzVvasDsP/mfnbf2K1tQBqLDY9nk+dqFJ2hhaRTWE/sldRrX8WGx+focZ08HGjYuwpOHrLOVmFjpbMy6bT+6f5PNYwmf5EEJQ/N2j9LXe9jTOMxeDl5aRyRKOisdFa86/eu+viD3R8U6r4o96xvc7jIHgBckorQOryb2XqO0tIhctArdV6hTJEyAPx96W+O3jmqcUT5Q5YTlISEBObNm8dLL71E+/btGTlyJEePZu7FPnbsGOPHj+f555+na9eujBgxgq1bt2Y56PzobuRdFpwwrPfhbOvMxBYTNY5IFBb9a/VXm5j3Bu1l141dGkeknUX35qHo9AC0f/QSDopjqjrOXg74VPPM69BEAWZnbcc0v2nq4w/3fKhdMPlIlhOUmTNnsmbNGjp06MC4ceOwsrJi8uTJnD59Ot399u/fz8SJE0lMTCQgIIBhw4Zhb2/PjBkzWLOm4A+BnLV/FvHJhmbj0Y1H4+3krXFEorCwtrLm/dbvq48LayvK9UfXWXF6BQBOyS60DX/ebL1mA6tjZSXzEomcNaT+EMq6lQVg0+VNHHsorSgZyVKCcu7cOXbu3MmIESMYPXo0PXr0YPbs2fj4+DBvXvprfqxbtw4vLy9mz55Nr1696NmzJ9988w2lSpVi8+aCPbrgXuQ95p+YD4CTrRNvt3hb44hEYdOvZj+Tvij/XP9H44jy3sz9M0lWDLN5Dq/6Ot7upq0kzl4OtJtQnwpNfLQITxRwdtZ2vOf3nvp4xr/TAXh4LUJGjaUhSwnKnj17sLa2pkePHmqZvb093bp14+zZs9y/fz/NfWNiYnB1dcXOzk4ts7Gxwc3NDXv7gn2/d+b+mepiUaMajaKYczGNIxKFTWFvRbkcepnFgYsBKGJfhA96TqPfXH98h9YEwHdoTfrN8ZfkROSqgHoBlHY09EXZH76HKw7nOLDoLKvH7Zb5d8zIUoJy+fJlSpcujbOz6dDY6tUNv8yuXLmS5r716tXj+vXrLFy4kNu3b3Pnzh2WLVvGxYsXefnll7MRev5w/dF1dbltaT0RWupTo4/ainLg1gF2XNuhcUR55/3d76utJxObT8TD0QMrKx1FK7oBULSim9zWEbnu9vFQ2l7vqT5e7/0zgEwSmAabjKs8ERoaipdX6pEnxrKQkJA09x08eDD37t1jxYoVLF9uWNnRwcGBjz/+GD8/v3SPGxISQmhoqPo4KCgoK2Fr6oPdH5CoTwTgzWZv4uMiv9CENqytrPmg9Qf0/70/ANP+mUa7iu3UlY8LqpPBJ1n1n2FitqJORXmz2ZsaRyQKI+Mkgc0j2rHZczUP7YI573ySi46nqRpbBzBMEliuUXFJlv9flj6Z4uPjsbVNPS278bZNfHzacwfY2tpSpkwZ/P39+eCDD3jvvfeoWrUq06dP5+zZs+ked/369QwfPlz9b/r06VkJWzOn75/m59OGDNnT0ZNJLSZpHJEo7PrU7EOd4oYPw2N3j/Hb2d80jij3Tdv5ZPTEu37v4mrvqmE0orAKvhBGdFgcNtjQPXSAWr626GL0GEaW5cYkgflZllpQ7O3tSUxMTFWekJCgbk/L7NmzOXfuHAsXLsTKypAXtW3blkGDBjF37lx++umnNPft0aMHvr6+6uOgoKB8kaS8+8+7KBju809rOQ03BzeNIxKFnZXOis/bf07nXwyzp07dOZUXq72IvU3B7Ae258YedYr/sm5leb3R6xpHJAqrlJP/NXvchm2ev3PHPogbjpc47rqPxpGtU9Ur7LLUguLl5WVyq8XIWObtbX7obGJiIhs3bqR58+ZqcgKGTrJNmzbl4sWLZhMfI29vb6pWrar+V65cuayErYn9N/fz96W/AShdpDSjG4/WOCIhDDpW6ki7Cu0AuB7+pI9UQaMoClN3Plmx+CP/jwpsIiZyRm4uSZBy8j8rrOn1cIj6eJ33MhJ1ianqFXZZSlAqV67M7du3iY6ONik/d+6cut2ciIgIkpOTSU5OTrUtOTkZvV6PXq/PSigWTa/oeXvbk86wH7b+EEfb1BNCCaEFnU7H5x0+Vx9/svcTwuPCtQsol6w5u4Z/bxvWPanuXZ2BdQZqHJGwdLm5JIFPNU+cPZ88b63oRlSPrgdAiF0we9w3yiSBT8lSguLv709ycjLr169XyxISEti0aRM1atSgePHiANy/f9+kI6uHhwcuLi7s27fPpKUkJiaGAwcOULZs2QI11PiX079w+M5hAGoUrcHgeoM1jkgIUw1KNOCV2q8AEBobymf7P9M4opwVmxjL5B2T1cdfdPgCaytrDSMShZ2VlY5mg6qrj3XoTFpR/vZaSY3+JaWDbApZSlBq1KhBmzZtmD9/PvPmzWP9+vVMmDCB4OBgXn/9yb3dGTNmMHDgk18r1tbW9O/fn1u3bvH666+zZs0aVq1axciRI3n48CGDBg3KuTPSWFRCFFN2PFkYanan2dhYZamrjxB5Ynrb6dhZGzq4f3PoG66EpT1NQH7z5cEvuRlxE4BOlTrRtUpXjSMSAio08aHdhPpqS0q5+Mo0i2gDQLR1JEsjC+bt1uzK8vjCadOm0adPH7Zu3crcuXNJSkpi1qxZ1KtXL939Bg0axP/+9z9sbGxYunQpixYtwtnZmY8//piOHTtmN36LM3PfTO5F3QOgR9UedKjUQeOIhDCvvHt53mr2FgAJyQlM2DJB24ByyJ3Hd/jsgKFFyFpnzdedvkank1+lwjJUaOJjMkng9HYzcLAxJCzfHvmWM/fPaBmeRcnyT3t7e3tGjx7N6NFpd/qcO3eu2fIOHTrQoUPB/cK+EXmDr/79CgBbK1u+6viVxhEJkb53W73LitMruBN5h42XN/L3pb/p/lx3rcN6JpO2TyImMQYwzNxco2gNjSMSwlTKSQLr1qjBNJdp6mSCYzaPYffg3ZJUk40WFGFKr1d4eC0CBYU3d41XFwR8s9mbVPY032lYCEvhYudikkiP3zJeXZYhP9p2dRsr/1sJGOYe+tD/Q20DEiITJvlOopJHJcCw4rjxGi7sJEF5BtePBLN63G4OLDrLEdc97A/fA0AJh5K81+q9DPYWwjL0rdkX//L+AFx7dI1P932qbUDZFJsYy6iNo9THX3T4Ai+n1DNfC2FpHGwcmNvlyZ2Ht7e9TURchIYRWQZJULLp+pFgds4OJDosjmirSFYXm69u63l1KCGnotPZWwjLodPp+LbLt2pn7pn7Z3L6/mmNo8q66Xunc+3RNQBalWvFa/Ve0zgiITKva5WuvFD1BQDuRd1j0naZeVwSlGwwrqlg9HvRxUTahANQP7IF9aKac2jFeVlCW+QbtYrV4h3fdwBI0icx5K8hJOmTNI4q8/578B9fHPwCMPT/+rHbj3IPX+Q7c7vMxcXOBYAFJxYUqgU9zZEEJRuMayoA/Od0jH3uWwFwSHbk5QeG4daypoLIb95r9Z7aofT4veN88+83GkeUOQnJCby67lV1Uc53Wr5D9aLVM9hLCMtT1q0sX3T4Qn08bP0wohKiNIxIW5KgZINxrYQoq8csLfHkQ7zXwyF4JHmnqidEfmBvY8+iHovQYWh5eH/3+5x7eE7jqDL24e4POXX/FAA1i9Zkmt+0DPYQwnKNaDhC7RMWFBHElO1T0t+hAJMEJRsc3e1RUFjh8y0RNo8AqBXVkNYRXVPVEyI/aVa6GROaTQAgLimO/mv7W/SonoO3DjLrwCzAcGtnxUsr1DklhMiPrHRWLHx+IU62TgD8cOwH1l9cn8FeBZMkKNngU82TEyX2csL1AAAuSUUYHPym+ssTkDUVRL41o+0MahY1TCJ15sEZJm2zzM56EXERDPxjIHrFsI7Xh/4fUr9EfY2jEuLZVfKsZHKr57W/XuP249saRqQNSVCy4VzIWZZ5PBkSNvD+WNyTTZORZgOry5oKIl9ytHVkVe9VakvEd0e/y7NfcMZ5hQAeXotIs6O5oigMWT9EHbXTvHRzJvtONltXiPxoVKNRvFTtJQDCYsN4Zd0rJOtTL7hbkEmCkkURcRH0XN2T2ORYAPxju9Agylfd7uzlQLsJ9anQxEerEIV4ZrWK1eKbTk/6VwX8GcC1x9dy9Zgp5xUCOLDoLKvH7eb6keBUdb859A3rzq8DwN3BnV96/iJrXokCRafTsajHIsq6lQUME7i9v+t9jaPKW5KgZIFe0RPwVwCXwy4DUN+nPn9/tFZdU8F3aE36zfGX5EQUCCMbjqRn9Z4APIp7xMBdLxNrFZMrx0o5r1BK0WFx7JwdaJKk7Lq+i8nbn7SWrHhpBRU8KuRKXEJoycPRg197/oq1zrAS96f7P2XlmcIzy6wkKFkweftk/rzwJ2D41ba271qc7Z3UNRWKVnTL9ds6Tu721O9ZGSfpgCtymU6nY8kLS9Shx5ciLrKwxOcEXw3L0Tl+np5XyBzjvELnH57npdUvkawYmrqntpya79cOEiI9vmV9TZajGLJ+CEfvHNUworwjCUomfX/ke3UhQGudNSt7raSiR8U8j8PJw4GGvavg5CEjFUTuK2JfhO+rL8JZ7wrAaZcjjN44mlXjdpm99ZIdKecVSkt0aBxnTl6g669diYg39FHpVqUbH7f5OEdiEMKSjWs6jqH1hwKG0XXdV3bnUugljaPKfZKgZMIvp39h3JZx6uMfuv1A58qdNYxIiLxx/UgwVxY8YsSdd7BWDH089rlv4Wern1LdesmuzMwXFGkdQb9dvbgRfgMw3F5d1XuV9DsRhYJOp+P7rt/TsmxLAB5EP6DDig7cirilcWS5SxKUDPx65lcG/TlIHcr4ju87jGg4QuOohMh9KW+91Iipz5B7E9EphluYm73W8JfXCv5dce6Zb/dkNF9QtFUk35R+l4tRhlhKFynNhpc3qFOCC1EY2NvYs77/emoXqw3AzYibtF/RvkAnKZKgpGPB8QUm8yyMajSKT9vlz5Vehciqp2+9NIlszcsPnqwW/Lf3ShZbz+Hu+ZBnOo5PNU+cPc3fsgyzecgXZadwy8Ewgqika0n+GfQPpYqUeqZjCpEfeTh6sG3gNip5VALgUuglfBf7cjHkosaR5Q5JUMzQK3omb5/MiL9HmCQn33f9XhYgE4WGuVsvbcK70//+SPXxTo/1jNg35JnWC7Gy0tFsUOq1c27aX2Vm2be4Y38DAB8XH/4Z9A9VvKpk+1hC5Hc+Lj7sHLSTyp6VAbj1+BYtl7Rk943dqepmdl4hSyUJylMeRD+g+6/d1ZVRAd5q9hbfdf1OkhNRqKR166Vd+Au8du8tdIrh42Pz/b9purDpM/2Kq9DEh3YT6uPs6YCCwj63rcwq+zbhtqEAVPKoxN6AvVT1rprtYwhRUJRzL8f+1/ZTt3hdAEJiQmi/vD1fHPgCRTEkIVmZV8ic0JhQgqNypiN8dkmCksKWK1uoM68Om69sBgyjdX7o+gNfdfoKK528VKJwSe/WS4vH7Xnjzv9w1DsDcO7hOer9VI8vD35Jkj4pW8er0MSHFp9UYk2LuSz3mUOClaEFp1npZvw79F9pOREiheIuxdkdsJsOFTsAkKwkM3nHZNqvaM+uXf9mel6hp+kVPYtOLKLqd1V5Y9MbuXoOGZFv3f8XlxTH8A3DuR99H4DizsXZ/MpmRjUelcGeQhRMad16Maob3ZS//bep6/bEJcUxafsk6syrw9pza7M0LXdoTCjv73qfmvNqsCN0q1o+suFI/hn0D0Wdi2b/RIQooNwd3Nn8ymb+1+p/atk/1/+h057WrCr6ExHWYWb3M84rlJKiKGy+vJlmC5sxbMMwQmNDWXd+HZsub8rVc0iPjNH7fw42Dix7cRntl7enS5UuLHlhCcWci2kdlhCaMt56ObT8vMmvMWcvB5oNrE6FJj4c9j3Mu/+8y9zDc1FQOB9ynj6/9aGcWzkG1x1M1ypdaViyYaohwWGxYey/uZ/fzv3GuvPriEl8Mkuta5I7s9vNYYj/oDw7VyHyI2sraz5u8zF+Zf0YvmE4QRFBJOoS2en5F7s9NlI3qimNIv2oFlMX12TDpKLRoXEEXwijeDV3Tt8/zeYrm1l+ajkXQ01v0/av1Z/6PtotwCkJSgptK7Rl/5D9NC/dXPqbCPH/KjTxoVyj4lzcdYsDi87iO7QmVduUUWdNdrZzZnbn2fSv1Z+3t73NgVuGVb6DIoL4eO/HfLz3Y2ytbKngUYEi9kVQFIV7Ufe4G3k31bFsrWwZWCWAun93oEe5jnl6nkLkZx0qdeDs6LNMXPkOS64tIMEqnmRdEidcD3DC1fBv0jXJHY8kb6wVKz7bpOfuH3eITYpN9Vx1itfhq45f0b5i+7w+DROSoDylRZkWWocghMWxstJluKRDs9LN2PfaPrZc2cK3R75ly5UtKBiakRP1ienOfOnh4MGrdV7l7RZv4xTmxp/rD+bOiQhRgDnbOfN+4w+psqMZOzz+4qDbDh7bPFK3R9qEE2kTbngQnXp///L+jG0ylhervWgR/S4lQRFC5BidTkeXKl3oUqULtx/fZsuVLey4toNzD89x9dFVYhMNv9aKORejvHt5WpRpgX95fzpV6oS9jWHUUEhYhJanIES+5lPNk5JuJekV8hovhAzkotNpzjsHctXhAiG2wUTYPELR6XG0caScezlqFq2Jf3l/ulXpZnGLbkqCIkQ+ZsmLR5YuUpphDYYxrMEwk3JFUeQWqhC5xNi5fefsQGywoWZMA2rGNDCp025CfSo08dEowszTvg1HCJFt+XHxSElOhMhdKecVSsnZyyHfJCcgLShCCCFEgZNR5/b8QFpQhBBCiAIoM53bLZkkKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEKIQsvJ3Z76PSvj5G6vdShCiKfYaB2AEEJoxcnDgYa9q2gdhhDCDGlBEUIIIYTFkQRFCCGEEBZHEhQhhBBCWJws90FJSEhg0aJFbNu2jcjISCpVqsSwYcNo3LhxpvbfuXMna9eu5erVq9jY2FCuXDmGDRtGw4YNsxy8EEIIIQqmLCcoM2fOZPfu3fTp04fSpUuzefNmJk+ezJw5c6hTp066+y5evJhly5bh7+9P586dSUpK4vr164SEhGT7BIQQQghR8GQpQTl37hw7d+5k1KhRvPzyywB06tSJgIAA5s2bx7x589Lc9+zZsyxbtow33niDvn37PlvUQgghRD4mQ9wzlqU+KHv27MHa2poePXqoZfb29nTr1o2zZ89y//79NPf97bff8PT0pHfv3iiKQkxMTPajFkIIIfIx4xB3Jw8HrUOxWFlqQbl8+TKlS5fG2dnZpLx69eoAXLlyheLFi5vd9/jx49SqVYu1a9eyYsUKIiIi8PT0ZODAgfTq1Svd44aEhBAaGqo+DgoKykrYQgghhMhnspSghIaG4uXllarcWJZWX5LIyEgiIiL477//OHHiBAEBARQvXpzNmzczZ84cbGxseOGFF9I87vr161m6dGlWQhVCCCFEPpalBCU+Ph5bW9tU5XZ2dup2c4y3cyIiIvjggw9o164dAP7+/gQEBLB8+fJ0E5QePXrg6+urPg4KCmL69OlZCV0IIYQQ+UiWEhR7e3sSExNTlSckJKjb09oPwMbGBn9/f7XcysqKtm3bsnjxYu7fv5/m7SFvb2+8vb2zEqoQQggh8rEsdZL18vIy6QtiZCxLK4koUqQIdnZ2FClSBGtra5NtHh4egOE2kBBCCCEEZDFBqVy5Mrdv3yY6Otqk/Ny5c+p2swexsqJKlSpERESkaoEx9ltxd3fPSihCCCGEKMCylKD4+/uTnJzM+vXr1bKEhAQ2bdpEjRo11Fs09+/fTzXSpk2bNiQnJ7Nlyxa1LD4+nu3bt1O+fHm5hSOEEEIIVZb6oNSoUYM2bdowf/58wsPDKVWqFFu2bCE4OJgpU6ao9WbMmMHJkyfZu3evWvbCCy+wceNGvvnmG27dukXx4sXZunUr9+/fZ+bMmTl3RkIIIYTI97I81f20adPU5CIqKoqKFSsya9Ys6tWrl+5+9vb2zJ49m3nz5rFp0ybi4uKoXLkys2bNokmTJtmNXwghhBAFUJYTFHt7e0aPHs3o0aPTrDN37lyz5R4eHkybNi2rhxRCCCFEIZOlPihCCCGEEHlBEhQhhBBCWBxJUIQQQghhcSRByQGybLYQQgiRs7LcSVakZlw2WwghhBA5Q1pQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBAWRUbFCSFARvEIITIprxIHGRUnhABJUIQQmSSJgxAiL8ktHiGEEEJYHElQhBBCCGFxJEERQgghhMWRBEUIIYQQFkcSFCGEEEJYHElQhBBCiAIqP88rJMOMhRBCiAIqP08PIC0oQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuJIgiKEEEIIiyMJihBCCCEsjiQoQgghhLA4kqAIIYQQwuLYaB1AdsTHxwMQFBSkcSRCCCGEyKpy5crh4OCQbp18maAEBwcDMH36dI0jEUIIIURWLViwgKpVq6ZbR6coipJH8eSY8PBwjhw5QokSJbCzs9M6nFwXFBTE9OnTee+99yhXrpzW4eQpOffCd+6F9byh8J57YT1vKLznXmBbUNzd3enYsaPWYeS5cuXKZZhxFlRy7oXv3AvreUPhPffCet5QuM89LdJJVgghhBAWRxIUIYQQQlgcSVDyAS8vLwICAvDy8tI6lDwn5174zr2wnjcU3nMvrOcNhfvcM5IvO8kKIYQQomCTFhQhhBBCWBxJUIQQQghhcSRBEUIIIYTFkQRFCCGEEBYnX07UVhCFhISwdu1azp8/z4ULF4iNjWXOnDnUr18/Vd1x48Zx8uTJVOVNmjThyy+/NClLSEhg0aJFbNu2jcjISCpVqsSwYcNo3Lhxbp1KlmXl3AHOnDnDjz/+yKVLl3B2dqZNmzYMHz4cJycnk3r54dzN2bx5MzNnzjS77Y8//kjV23///v0sWbKEoKAg3N3d6dq1K4MGDcLGJn/9886v71dWBAYGMn78eLPb5s2bR82aNdXHmb3OLVFMTAyrVq3i3LlznD9/nsjISKZOnUqXLl1S1b1x4wbfffcdZ86cwcbGhubNmzNmzBjc3d1N6un1elatWsWff/5JWFgYpUuX5tVXX6V9+/Z5dFYZy+x5f/rpp2zZsiXV/mXLluXnn382KcsP551b8tcnWAF269Ytfv31V0qXLk3FihU5e/ZsuvWLFi3KyJEjTcrMDVObOXMmu3fvpk+fPpQuXZrNmzczefJk5syZQ506dXL0HLIrK+d++fJl3nzzTcqVK8eYMWN48OABq1ev5vbt23zxxRcmdfPDuadn6NChlChRwqTMxcXF5PGhQ4d49913qVevHuPHj+fatWssX76cR48eMXHixLwM95nl9/crK3r16kX16tVNykqVKqX+nZXr3BJFRESwdOlSihcvTuXKlQkMDDRb78GDB4wdOxYXFxeGDx9ObGwsq1at4tq1a/z000/Y2tqqdRcsWMAvv/zC888/T7Vq1di/fz8ff/wxOp2Odu3a5dWppSuz5w1gZ2fH5MmTTcqcnZ1T1csP551rFGERoqOjlYiICEVRFGXXrl2Kn5+fcuLECbN1x44dqwwaNCjD5zx79qzi5+en/Prrr2pZXFyc0r9/f+X111/PmcBzQFbO/e2331ZefPFFJSoqSi3bsGGD4ufnpxw+fFgtyy/nbs6mTZsUPz8/5fz58xnWHThwoPLaa68piYmJatn8+fOVVq1aKTdu3MjNMHNUfn6/suLEiROKn5+fsmvXrnTrZfY6t1Tx8fFKSEiIoiiKcv78ecXPz0/ZtGlTqnpfffWV0r59eyU4OFgtO3r0qOLn56f89ddfatmDBw+UNm3aKF9//bVaptfrlTfeeEPp2bOnkpSUlItnk3mZPe8ZM2YoHTt2zPD58st55xbpg2IhnJycKFKkSJb2SUpKIiYmJs3te/bswdramh49eqhl9vb2dOvWjbNnz3L//v1sx5uTMnvu0dHRHDt2jI4dO5r80ujUqROOjo7s2rVLLcsv556RmJgYkpOTzW67ceMGN27c4Pnnnze5nfPSSy+hKAq7d+/OoyifXUF5v7IiJiaGpKSkVOVZuc4tlZ2dXaYmHtuzZw8tWrSgePHialmjRo0oU6aMyXnu37+fpKQkXnrpJbVMp9Px4osv8vDhwwxbnPNKZs/bKDk5mejo6DS355fzzi1yiyefunXrFp06dSIxMRFPT0+6d+9OQECAyRfV5cuXKV26dKpmQ2PT8pUrV0w+GCzdtWvXSE5OTrWglq2tLVWqVOHy5ctqWUE49/HjxxMbG4utrS2NGzfmjTfeoEyZMur2S5cuAaR6Pby9vSlatKjJ62HpCsL7lRUzZ84kNjYWa2tr6tSpw6hRo6hWrRqQtes8P3v48CGPHj0yu0Be9erVOXTokPr48uXLODo6plrt13h9XL58Od/dBoyLi6NLly7ExcXh6upKu3bteP311036GBXE884KSVDyoZIlS1K/fn0qVqxIXFwcu3fvZvny5dy6dYuPPvpIrRcaGmo2mzeWhYSE5FnMOSE0NBQw39fGy8uLU6dOmdTNr+dub29Ply5dqF+/Ps7Ozly8eJE1a9YwevRoFi5cqH5RZ/R6GLfnB/n5/coKGxsbWrduTbNmzXBzc+PGjRusXr2aMWPG8MMPP/Dcc89l6TrPzzI6z8ePH5OQkICdnR2hoaF4eHig0+lS1YP8d314eXnx8ssv89xzz6EoCocPH+bPP//k6tWrzJkzR/2hWdDOO6skQckFer2exMTETNW1s7NLdfFl5J133jF53KlTJ7744gs2bNhA37591ZEA8fHxJp3MUh7TuD2n5ea5G+NN65wSEhJM6ub1uZuTndejbdu2tG3bVi338/OjSZMmjB07lhUrVvD2228DqOdrPKennyu923+WxlLer9xWu3ZtateurT5u2bIl/v7+vPbaa8yfP58vv/wyS9d5fpbReRrr2NnZFbjr4+kBDu3ataNMmTIsWLCAPXv2qJ1fC9p5Z5UkKLng1KlTaQ4lfNqKFStSNd9lR79+/diwYQPHjh1TExR7e3uzX47GDzh7e/tnPu7TcvPcjfGmdU4pv6i1OHdzcur1qFOnDjVq1OD48eNqmfF8zX1hJSQk5Nk55gRLeb+0ULp0aVq2bMnevXtJTk7O0nWen2V0ninrFIbro2/fvixatIhjx46pCUphOO/0SIKSC8qWLcvUqVMzVTenVrAsVqwYAJGRkSbP/fDhw1R1jU2r3t7eOXLslHLz3I31zd26CA0NNTkfLc7dnJx8PYoVK8bNmzdT1Q8NDU3VPyM0NDTVMFZLZinvl1aKFStGYmIicXFxWbrO87OMzrNIkSJqMubl5UVgYCCKopi0uhak68Pe3p4iRYrw+PFjtawwnHd6JEHJBV5eXmYnJMpNd+/eBTCZ3Mg4Dj86Otqk8+G5c+fU7TktN8+9QoUKWFtbc/HiRZNbIImJiVy+fJk2bdqoZVqcuzk5+XrcvXvX5P2tUqUKABcvXqRGjRpqeUhICA8fPjQZEWPpLOX90srdu3exs7PD0dExS9d5fla0aFHc3d25ePFiqm3nz583ec8rV67M33//TVBQEOXLl1fLC9L1ERMTQ0RERKrP8IJ+3umRYcb5THR0dKomfUVRWL58OYDJrJv+/v4kJyezfv16tSwhIYFNmzZRo0aNfDcqwsXFhUaNGrFt2zaT/hVbt24lNjbW5IM7P597eHh4qrJ///2Xixcv0qRJE7WsQoUKlC1blg0bNpgMRf7zzz/R6XS0bt06L8LNEfn5/coKc+/tlStXOHDgAI0bN8bKyipL13l+17p1aw4ePGgyjPz48ePcunXL5DxbtmyJjY0Nf/zxh1qmKAp//fUXRYsWpVatWnka97OIj4832z9s2bJlKIpC06ZN1bKCdN7ZIS0oFmTZsmWAYX4LMHwgnT59GoDBgwcDhqGlH330Ee3bt6dUqVLEx8ezb98+zpw5w/PPP28yZK9GjRq0adOG+fPnEx4eTqlSpdiyZQvBwcFMmTIlb08uA5k5d4Bhw4bxxhtvMHbsWHr06KHOsNm4cWOTf9j56dyfNmrUKJ577jmqVq2Ks7Mzly5dYtOmTRQrVoyBAwea1B09ejRTp05l4sSJtGvXjmvXrvHHH3/QvXt3k19cli4/v19Z8cEHH2Bvb0+tWrXw8PDgxo0bbNiwAQcHB5OOk5m9zi3Z77//TlRUlHo74sCBAzx48AAwzKTr4uLCq6++yu7du5kwYQK9e/cmNjaWlStXUrFiRZOWx2LFitGnTx9WrlxJUlIS1atXZ9++fZw+fZr//e9/WFtba3KO5mR03pGRkQwdOpT27dtTtmxZAI4cOcKhQ4do2rQpLVu2VJ8rP513btApiqJoHYQwaNWqVZrb9u7dCxiagn/66SfOnz9PWFgYVlZWlCtXju7du9OjR49Uo2Li4+PV9U2ioqKoWLEiw4YNM/klbgkyc+5Gp0+fVtcocXJyok2bNowcOTLVGiX55dyftmDBAg4dOsS9e/fUPgnNmzcnICAAT0/PVPX37dvH0qVLCQoKws3NjS5duqSaEyc/yK/vV1asXbuW7du3c+fOHaKjo3F3d6dhw4YEBARQunRpk7qZvc4tVd++fQkODja7bfXq1eoyDtevX0+1Fs8bb7yR6lrX6/X8+uuvrF+/ntDQUEqXLs0rr7xCx44dc/1csiKj83ZxcWHOnDmcPXuW0NBQ9Ho9pUqVokOHDvTv3z/Vv9v8ct65QRIUIYQQQlgc6YMihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIihBBCCIsjCYoQQgghLI4kKEIIIYSwOJKgCCGEEMLiSIIi0rV582ZatWrF5s2btQ4lUwIDA2nVqhWLFy/OtWO0atWKcePG5drzFxZ9+/alb9++Wodh8RYvXkyrVq0IDAzM1eOsWbOGtm3bcu/evUzVz4t/a/nZJ598Qp8+fYiPj9c6lHxLEpQC5rPPPqNVq1Z079491aKCBUV++2KLiIjgxx9/ZNCgQXTo0IEOHTrQp08fJkyYwJIlSwgLC8uTODJKNseNG5fukgOFSWxsLJ07d6ZVq1Z8/fXXWoeT6yIjI1m+fDldu3ZVp6AXzyYgIICQkBB+++03rUPJt/LXYh0iXTExMezatQudTsfjx4/Zt28f7dq1e6bn9PPzo0aNGnh5eeVQlIXLgwcPGD16NA8ePKBKlSp06dIFV1dXQkND+e+//1iyZAm1a9c2u8ZOQffNN99oHUKadu3aRUxMDDqdjh07dvDGG29gb2+vdVi5Zs2aNTx+/JiXX35Z61AKjDJlyuDr68uvv/5Kr169cHR01DqkfEcSlALkn3/+ITY2lr59+7J27Vo2btz4zAmKi4sLLi4uORRh4bN48WIePHjA0KFDTVZlNrp69WqhfX1LlSqldQhp2rhxI9bW1vTs2ZPffvuNvXv30qFDB63DyhVJSUn8/fff1K5d26Lfk/yoY8eO7N27l507d9K9e3etw8l3JEEpQIwfqgMGDODq1aucOHGC4OBgfHx8TOotXryYpUuXpvk8Pj4+rFmzBjDcFpg5cyZTp041Wf68VatW1KtXj//973/MmzePo0ePkpCQQN26dZkwYQIlS5bkxo0bzJ8/n1OnTpGUlESTJk148803TVoLAgMDGT9+PAEBAQwZMsQkjnv37tGvXz86d+7MtGnT1McpYzAyt/+FCxeYP38+Z8+excrKigYNGjBmzJhUTdh79+5l165dXLhwgZCQEGxsbKhUqRK9e/fG398//Rc9A2fPngWgZ8+eZrdXqlTJbPndu3f55ZdfOHr0KKGhoTg7O1O+fHm6dOmivg+JiYmsX7+egwcPcuPGDcLDw3F2dqZ27doMHjyY5557Tn2+Tz/9lC1btgAwc+ZMZs6caXL+KV/LlH8bX3ujq1evsmLFCk6ePMnjx4/x8vLC19eX1157DTc3N7VeyvduwIABLFiwgFOnTvH48WN1JVvjbTrjtQZPrs05c+YQEhLCypUruXnzJi4uLrRp04bXX389VUtGUlISq1at4u+//yYkJISiRYvSrVs32rZtS//+/VOdQ0Zu3rzJmTNnaNGihUmyby5BSXn9tmjRIlPXG8CePXv4+eefuX79Os7Ozvj6+jJq1CiGDh2a6jVJT2bfj/QcOXKE0NBQBgwYYHZ7fHw8S5YsYfv27URERFCqVCl69+6davXllO7evcuKFSs4evQojx49wtXVlSZNmjBkyJBUn0eQtdfDeC2vWrWKvXv3snHjRu7evUu7du3U9/nRo0f8/PPPHDx4kAcPHuDk5ETdunUZMmQIFStWTHX8rNS/desWP//8M4GBgYSGhuLg4ECxYsWoX78+Y8eONVlRvnnz5jg4OLBlyxZJULJBEpQC4saNG5w9e5ZmzZrh6elJp06dOH78OJs2bUr1xV2/fn2zzxEUFMSuXbsy3ZQdGRnJG2+8gZeXF506deL27dscPHiQt956i08//ZQxY8ZQtWpVunbtyqVLl9izZw+PHz9mzpw52TpHFxcXAgICWLt2LQC9e/dO85wuXLjAypUrqV+/Pj169ODy5cvs27ePa9eusXTpUpNznD9/PjY2NtSuXRsvLy/Cw8M5cOAA77//PuPHj6dXr17ZihdQvyRu3bpFjRo1MrXP6dOnmTJlCjExMTRp0oR27doRGRnJ5cuXWbt2rZqgPH78mG+//ZY6derQrFkzXF1duXfvHgcOHODw4cN8++23VK9eHTDcqouKimL//v20bNmSypUrmxwzICCALVu2EBwcTEBAgFpepUoV9e/9+/fz4YcfotPpaNmyJcWKFePGjRusW7eOI0eO8NNPP+Hq6mryvHfu3GHUqFFUrFiRzp078/jxY2xtbTN8DYzP6evrS4MGDTh8+DC///47ERERvP/++yZ1Z82axdatWylZsiQvvvgiiYmJrFmzhv/++y9Tr/fTNm7cCECnTp0oXrw49erVIzAwkLt371KyZEmz+2Tletu4cSOzZs3C2dmZTp064eLiwqFDh3jrrbdISkrCxiZzH8vZeT/MOX78OAA1a9ZMtU2v1zN16lSOHTtGxYoVad++PY8fP+a7775L83Pk3LlzvP3228TGxtKiRQtKly5NcHAw27dv5/Dhw8ybN8/kdczu6zF79mzOnTtH8+bNadGiBR4eHoDhmhs3bhwPHz6kcePGtGzZkvDwcPbs2cPRo0f55ptvTP4tZqV+SEgII0eOJC4ujubNm9O2bVvi4uK4ffs2f/75J6NHjzaJ19bWlueee46zZ88SGxsrt3myShEFwrfffqv4+fkpO3bsUBRFUaKjo5WOHTsqvXv3VpKTkzPcPywsTOnTp4/Srl075fTp02r5pk2bFD8/P2XTpk0m9f38/BQ/Pz/l22+/NSn/6quvFD8/P6VLly7KmjVr1HK9Xq9MmjRJ8fPzUy5cuKCWnzhxQvHz81MWLVqUKqa7d+8qfn5+yowZM0zK+/Tpo/Tp08fseRifL+VrYTR9+nSz5Xfu3En1PNHR0crgwYOVLl26KLGxsanOfezYsWaP/7S1a9cqfn5+So8ePZRFixYpJ06cUKKiotKsHx8fr/Ts2VNp3bq1cujQoVTb79+/b1L3wYMHqepcu3ZN6dixo/Lmm2+alKf1XhqNHTtW8fPzM7stPDxc6dy5s9KzZ0/l3r17Jtt27Nih+Pn5Kd98841aZnzv0npvFcX8+7ho0SL1+gkKClLL4+LilAEDBiitW7dWHj58qJYfO3ZM8fPzU4YMGWLyPj18+FB54YUXzF4/6UlMTFReeOEFpUuXLkpcXJyiKIqyceNGxc/PT1mwYEGq+lm93h4/fqx07NhR6dixo3Lz5k2T444fP17x8/NL8zU5ceKEWpbV9yM9w4cPV1q3bq3Ex8en2ma8Zt5++20lKSlJLb9y5YrStm3bVO9vYmKi0qdPH6VTp07KxYsXTZ7r1KlTir+/vzJlypRnej1mzJih+Pn5KT179lSCg4NTxTxq1CjF399fOXz4sEn5zZs3lU6dOimDBw/Odn3jv+eUn21GERERqcoU5cln8/Hjx81uF2mTUTwFQFJSEtu2bcPZ2ZmWLVsC4OTkhJ+fH/fv3+fYsWPp7h8fH8+0adMIDg7mnXfeoXbt2pk6rqOjI8OGDTMpM/Z5cXNzM2nh0Ol06rarV69m+tyyq27duqn633Tt2hWA8+fPm5Sb+1Xs5OREly5diIqK4sKFC9mOo2fPnrz88stERUWxdOlSxo8fT9euXRk0aBA//vgjISEhJvX379/Pw4cP6dChA02bNk31fMWKFVP/trOzo2jRoqnqVKhQgfr166u31nLC1q1biY6OZsSIEama6Nu1a8dzzz3Hzp07U+3n6enJwIEDs3y83r17U7ZsWfWxvb097dq1Q6/Xc/HiRbV827ZtAAwePBgHBwe13Nvb2+T6y6x///2XsLAw2rRpo7Z6+Pv74+DgwObNm9Hr9Wb3y+z1tn//fmJjY+natStlypRRy21sbFL9W0pPdt8Pcx4+fIiLiwt2dnapthlvCw4bNgxra2u1vFKlSnTs2DFV/YMHDxIcHMzLL79scosRoE6dOvj6+nLo0CGio6OBZ3s9Xn75ZYoXL25SdunSJf777z86depEkyZNTLaVKVOG7t27c+3aNa5du5at+kbmWpmLFCliNk5jy87Dhw/TPR+RmtziKQD2799PeHg43bp1M/mH06lTJ7Zt28bGjRtT/eMzUhSFTz/9lLNnz/Laa6/Rvn37TB+3dOnSJl8KgDrap2LFiib3YlNue/pLOTdUrVo1VZnxyzwqKsqk/NGjR/zyyy8cOnSI+/fvp5q34Fni1el0jBo1ipdffplDhw5x7tw5Lly4wKVLl7hx4wbr16/nyy+/VJuQjV9mjRs3ztTzX758mZUrV3L69GnCwsJSJSTh4eF4e3tnO34jY1+ac+fOcefOnVTbExISiIiIIDw8HHd3d7W8cuXKmbql87Snv9zgSXKW8v27cuUKYPjye1qtWrWyfNy///4bMPzbMXJycqJly5bs2LGDI0eO0KxZs1T7ZfZ6Mybn5uKtUaOGSRKQnuy+H+Y8fvzYbKJrjNfR0dHs+dWpU0e9HfZ0XDdv3jQ7P0pYWBh6vZ5bt25RrVq1Z3o9jLcvUzp37hxg+Ddt7vg3b95U/1+xYsUs1zf2M/rmm284fvw4TZs2pV69emne+oMniUtERESadYR5kqAUACnvmafUsGFDihYtyoEDB3j8+LHZDH/hwoXs2rWL9u3b89prr2XpuM7OzqnKjB8o6W3LqV/16XFyckrz+Cl/BT9+/JgRI0Zw//59ateuTaNGjXBxccHKyoorV66wf/9+EhMTnzked3d3OnfuTOfOnQEIDQ1l9uzZ7Nmzhy+++IIlS5YAqL8s0/rCSOnMmTO8+eabADRq1IjSpUur571//36uXLmSI7GDob8RwB9//JFuvbi4OJPHxl+PWZXe9ZPy/YuJicHKyspsh9CsDt0OCQnhyJEjlCxZMtUXZufOndmxYwebNm0ym6Bk9nozvr/mXpe0zsOc7L4f5tjb26c5Z1J0dHSa16K519cY1/bt2zMV17O8Hub2efz4MWBoCfv333/T3Dc2NjZb9UuUKMG8efNYsmQJhw4dYteuXQCULVuWoUOH0qZNm1T7Gn/wFORh6rlFEpR87v79+xw9ehQg3dlNt23blqrJe/PmzaxYsYLatWvzzjvv5GqcaTG2siQnJ6faZvzwyk0bN27k/v37ZocB//zzz+zfvz9Xjuvl5cV7773Hv//+y9WrV4mIiMDNzU0dcpyZ5uAVK1aQkJDAd999l+oL1fjLMKcYv4CXLl1qdhREWp5uRctpTk5O6PV6IiIiUrUUZHUCvM2bN5OcnMzdu3fTnLDuwIEDmWqVSIsx8Xr06FGqbcbzyExymt33wxw3N7c0rzdnZ+c0f/mbe32NcX322We0aNEiw2M/y+th7toyPl9mO7dntT4YWoc/+eQTkpKSuHjxIocPH2bt2rV8+OGHeHt7p7pFbkyCsnvNFGbSByWf27JlC3q9njp16tCtW7dU/xl/sT/dFHvy5Em+/PJLSpYsyYwZM8zef84LxlEG5m6jXL582ew+VlZWZhOa7DA2jxv77qR0+vTpHDlGWmxtbVM1YRubrY1JZ3ru3r1LkSJFUiUncXFxXLp0KVV9KyvDP/e0Xrv0thtvQRmb8C2FcTTSmTNnUm3LyigeRVHYtGkTAF26dDH7b6lWrVokJiaq/V6ywzis3Fy858+fz/R1nZPvR8WKFUlISOD+/fuptlWqVInY2FiTfj9G5v59ZDWunHo9jIz/fjJ7/KzWT8nGxoaaNWsyZMgQxo8fj6IoHDx4MFW9W7duATxzIlkYSYKSjxk/VHU6HdOmTWPKlCmp/ps2bRo1a9bk6tWramfPW7du8d5772Fvb89nn32maWZftmxZnJyc1NtQRmFhYSxfvtzsPkWKFCEiIiJH1rgwdjB8+gNy+/btHDp06Jmff9WqVQQFBZndtm7dOmJjYylbtqzalO3r60vRokXZvn07R44cSbVPyl+6xYsXJzIykuvXr6tlycnJ/PDDD4SHh6fa13iL78GDB2bjSW97165dcXJyYsGCBSbHM4qLi9MkeTHOTbJ06VKT6yE0NFQdjp4ZJ0+e5M6dO9StW5epU6ea/bdkbGV8OtnPipYtW+Lo6MjGjRtN+o4kJSWxaNGiTD9PTr4f9erVA8y3uhlvGy9cuNAkWbh69arZRK1ly5YUL16c1atXc/LkyVTbk5KSTBKbnHo9jGrUqEGNGjXYuXOn2U7Cer3eJK6s1r948aLZll1ja5K5H3rnzp3Dy8vLpBOwyBy5xZOPnThxgnv37mXYSatr166cPXuWjRs3Uq1aNebOncvjx49p1KgR//zzT6r6Li4uebbWja2tLb169WLFihUMGzYMX19fYmNjOXDgAPXq1TPbAbB+/fpcuHCByZMnU6dOHWxsbKhbt676QZsVHTt25Ndff2XOnDkEBgZSvHhxrly5wokTJ2jVqhV79+59pvPbtm0bP/zwAxUrVqRGjRp4eHgQGRnJuXPnuHTpEvb29kycOFGtb2dnx0cffcSkSZOYNGkSTZo0oXLlykRHR3PlyhXi4+PVD+5evXpx9OhR3njjDdq0aYOdnR0nT54kJCSE+vXrp1pcrmbNmtjb27N27VoiIyPVxNR4a6tBgwbs3r2b//3vfzRt2hQ7OzsqV66Mr68v7u7ufPDBB7z//vsMGTLk/9q7v5Cm3jCA419nzVJmQc6/YYEUCIPBbEpmRMOLisrd7MYbFQkihv2BQiQCBwWV3kjSTUuwlQjWhWgZzkqEo5MtxA51FQQp2kRCJkHNYRey4a+tUNvPTXo+1y/sPc85jOf997yUlpZSWFhIMBhkdnaWiYkJDAYDLS0tfxWv9Tp06BCVlZW43W5qa2upqKggGAzy+vVriouLURQlMjP0J+GkI3zyJpbCwkIMBgOqqvL+/fs117VZTafTYbfbuXv3LufOncNisZCRkcHY2BharZasrKw1LYvF831UVFTQ3t6O1+uN2kMR3nvj8Xior6+nrKyMQCDA0NAQZrM5asZAq9XicDi4du0aDQ0NmEymyIb52dlZJicn2bVrFy6XK67xWO3GjRtcunSJ5uZmenp6OHDgAGlpafj9flRVZWFhAbfbvaH2L1++pLe3F6PRSEFBAenp6Xz69AmPx0NmZmbU9zM9Pc3MzAxWq3VdzyBWSIKyhYX/VFdXeI3FYrHQ1tbG0NAQdrs9MtL0er0xjyDn5uZu6mV89fX1bNu2jf7+fnp7e8nNzaWmpoby8nKGh4ej2tfU1LC4uIiiKExOThIKhaitrd1QgpKdnU1bWxv379/H6/USCoU4ePAgra2t+P3+v05QGhsbURSFt2/fMj4+ztevX9FoNOTk5GC1WrHZbFEjK4PBwIMHD3C5XIyPj+Pz+dDpdOzfv5+qqqpIu/LychwOBy6Xi8HBQdLS0jCZTNy8eTNmpeDMzEwcDgcdHR309fVFvoNwgnL69GlmZmZ49eoVT548IRQKceLECY4cOQKsVMV0Op10dXXh8/nwer3s2LEDvV7PyZMnYx473QxNTU3s27eP58+f8+zZM/R6PTabDZPJhKIoMTewrra4uMjw8DA7d+7k2LFjf2x76tQpVFWlv79/QwkKwJkzZ9DpdDx69IiBgYFI5dTz589js9nWXG4+Xu8jLy8Ps9nMmzdvuHjx4n9mATQaDbdu3aKjowO3283Tp0/Jz8/Hbrezd+/emEsaxcXFPHz4kK6uLsbGxlBVle3bt5OVlcXRo0ejjmPHKx5h+fn5OJ1Ouru7GRkZ4cWLF2g0Gvbs2YPRaIyqDr2e9pWVlfz48YN3797x4cMHgsEger2eqqqqmMeew7NMZ8+eXdcziBUpy8vLy4nuhBBCxFtfXx937tzhypUrW2IEOzU1RXV1NcePH6e5uXlTf9vn83H58mWuX7+esETzV4mMRzwsLS1RXV1NXl7ehqtn/+tkD4oQYkubn5/n13HW3NwcnZ2dpKamcvjw4QT1LLZAIBB1rPf79+/cu3cPWLmWYLOVlJRQVlZGZ2fnb4vR/V+SMR7xMDAwwJcvX7hw4UKiu7JlyRKPEGJLe/z4MaOjoxiNRnbv3o3f70dRFL59+0ZdXV3UtHuiTUxMcPv2bcxmM9nZ2SwsLEQu9jSZTFgsloT0q6GhgcHBQebm5jY1Zskaj7+VkpLC1atXYxa5E2sjSzxCiC3N4/HQ3d3Nx48fCQQCaLVaioqKsFqtMW8gTrTPnz/jdDpRVTVy2qqgoCBy+/K/VtBL4iF+RxIUIYQQQiQd2YMihBBCiKQjCYoQQgghko4kKEIIIYRIOpKgCCGEECLpSIIihBBCiKQjCYoQQgghko4kKEIIIYRIOpKgCCGEECLpSIIihBBCiKTzE0F2pEH8VxknAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG5CAYAAACnaMHWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhBElEQVR4nO3de1xUdf4/8BeDMlyVq3jBVMAM1EQR17QxEZMShEqyLEUkXQINc/XrtW276JpbbeHuyq5GkbpZaqWYiCIppIZXUBMvEIoiFwFBYQZmYGZ+f/ibWcfhNnCAAV/Px6NHzOd8zufzPmfG4c3nfM7nmKjVajWIiIiIqFVEHR0AERERUVfApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApKod1dTU4MqVK6ipqenoUIiIiEhgTKraUV5eHubPn4+8vLyODoWIiIgExqSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiKgTkZXX4MyubMjKazo6FCJ6CJMqIqJORFYhR8YPOZBVyDs6FCJ6CJMqIiIiIgEwqSIiIiISAJMqIiIiIgEwqSIiIiISAJMqIiIiIgEwqSIiIiISQLeODqA+CoUCcXFxOHjwICorK+Hm5oZ58+bBx8en0f3S0tKwZ88e5Obm4t69e7C1tYWnpyfmzp0LV1dXnbopKSk4fvw4srKycOvWLXh5eWHDhg0Ntn3lyhV89dVXuHDhAhQKBfr27Ytp06YhJCREkGMmIiKizs0ok6p169bhyJEjePnll+Hi4oL9+/dj2bJliImJwZNPPtngfrm5ubCxsUFISAh69uyJO3fuIDExEREREYiNjYW7u7u27p49e3DlyhU88cQTuHfvXqPxnDx5EitXrsTgwYMxZ84cWFhY4NatWygpKRHsmImIiKhzM7qkKisrCykpKYiMjMTMmTMBAP7+/ggLC0NsbCxiY2Mb3DcsLEyvLDAwENOnT8fu3buxdOlSbfnq1avh5OQEkUiEOXPmNNimVCrFX//6V4wdOxYffvghRCJeMSUiIiJ9RpchpKamwtTUFEFBQdoysViMgIAAXLx4EcXFxQa1Z2dnB3Nzc1RVVemUOzs7NytBOnToEO7cuYP58+dDJBKhuroaKpXKoBiIiIio6zO6kars7Gy4uLjAyspKp9zDwwMAkJOTA2dn50bbqKyshFKpRFlZGXbu3AmpVApvb+8WxXP69GlYWVmhtLQUq1evxs2bN2FhYYEpU6Zg4cKFEIvFDe5bWlqKsrIy7eu8vLwWxUBERETGz+iSqrKyMjg4OOiVa8pKS0ubbCMyMhI3btwAAFhYWCA0NBQBAQEtiic/Px9KpRKrVq1CQEAA/vjHPyIzMxPff/89qqqq8Je//KXBfRMSEhAfH9+ifomIiKhzMbqkSi6Xo3v37nrlZmZm2u1NWbFiBWQyGQoKCpCYmAi5XA6VStWi+VDV1dWoqalBcHAwFi1aBAB45plnUFtbi4SEBISHh6N///717hsUFITx48drX+fl5WHNmjUGx0BERETGz+iSKrFYjNraWr1yhUKh3d6UYcOGaX/28/PD7NmzAQALFixoUTyadh40efJkJCQk4OLFiw0mVY6OjnB0dDS4TyIiIup8jG6iuoODg848JA1NmaFJio2NDUaNGoXk5OQWxwMA9vb2OuV2dnYA7s/fIiIiIjK6pMrd3R35+fmQSqU65VlZWdrthpLL5XrtNdeQIUMAQG9NKs3cLltb2xa1S0RERF2L0SVVEydOhFKpREJCgrZMoVAgMTERnp6e2jv/iouL9e6mKy8v12uvsLAQZ86c0SZHhvL19QUA7Nu3T6d83759MDU1xciRI1vULhEREXUtRjenytPTE76+vti0aRMqKirQr18/JCUloaioCMuXL9fWW7t2LTIzM5GWlqYtCwsLg7e3N9zd3WFjY4P8/Hzs27cPdXV1iIiI0OknMzMT586dAwBUVFSguroaX3/9NQBgxIgR8PLyAgA8/vjjmDp1KhITE6FUKuHl5YXMzEwcPnwYs2bN4pwpIiIiAmCESRUArFq1Cs7Ozjhw4ACqqqrg6uqK9evXaxOdhgQHByM9PR0nTpyATCaDnZ0dfHx8MGvWLLi5uenUPXv2rN5yB3FxcQDuJ2cP9rV06VI4Oztj//79+OWXX+Ds7IyFCxdixowZQhwuERERdQEmarVa3dFBPCquXLmC+fPnY/PmzS2+HElEbU9WXoNLKTfh4dcflnbmHR2OjtJrd7F79XG8sHYcHAf17OhwiOgBRjenioioo8kq5Mj4IQeyiqbXxSMi0mBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVERNRqsvIanNmVDVl5TUeHQtRhmFQREVGr8dE+REyqiIiIiATBpIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAEyqiIiIiATApIqIiIhIAN06OoD6KBQKxMXF4eDBg6isrISbmxvmzZsHHx+fRvdLS0vDnj17kJubi3v37sHW1haenp6YO3cuXF1ddeqmpKTg+PHjyMrKwq1bt+Dl5YUNGzY0GduWLVvwxRdfYNCgQfj6669bdZxERETUdRjlSNW6deuwY8cOPPvss4iOjoZIJMKyZctw/vz5RvfLzc2FjY0NQkJCsHjxYgQHByM7OxsRERHIycnRqbtnzx4cPXoUvXr1go2NTbPiun37NrZt2wYLC4sWHxsRERF1TUY3UpWVlYWUlBRERkZi5syZAAB/f3+EhYUhNjYWsbGxDe4bFhamVxYYGIjp06dj9+7dWLp0qbZ89erVcHJygkgkwpw5c5oV28aNG+Hp6QmVSoW7d+8admBERETUpRndSFVqaipMTU0RFBSkLROLxQgICMDFixdRXFxsUHt2dnYwNzdHVVWVTrmzszNEouYffmZmJlJTU/HWW28Z1D8RERE9GoxupCo7OxsuLi6wsrLSKffw8AAA5OTkwNnZudE2KisroVQqUVZWhp07d0IqlcLb27vFMSmVSsTExCAgIABubm7N3q+0tBRlZWXa13l5eS2OgYiIiIyb0SVVZWVlcHBw0CvXlJWWljbZRmRkJG7cuAEAsLCwQGhoKAICAloc0549e1BcXIzPPvvMoP0SEhIQHx/f4n6JiIio8zC6pEoul6N79+565WZmZtrtTVmxYgVkMhkKCgqQmJgIuVwOlUpl0OU+jbt37+LLL79EaGgobG1tDdo3KCgI48eP177Oy8vDmjVrDI6BiIiIjJ/RJVVisRi1tbV65QqFQru9KcOGDdP+7Ofnh9mzZwMAFixYYHA8X3zxBWxsbDB9+nSD93V0dISjo6PB+xEREVHnY3QT1R0cHHTmIWloygxNUmxsbDBq1CgkJycbHMvNmzexd+9ehISEoLS0FIWFhSgsLIRCoUBdXR0KCwtx7949g9slIiKirsfoRqrc3d2RkZEBqVSqM1k9KytLu91QcrkcUqnU4P1KS0uhUqkQExODmJgYve2vvPIKQkJCEB0dbXDbRERE1LUYXVI1ceJEfPvtt0hISNCuU6VQKJCYmAhPT0/tnX/FxcWoqanBgAEDtPuWl5fDzs5Op73CwkKcOXMGQ4YMMTiWQYMGYe3atXrlX3zxBWQyGaKjo9G3b1+D2yUiIqKux+iSKk9PT/j6+mLTpk2oqKhAv379kJSUhKKiIixfvlxbb+3atcjMzERaWpq2LCwsDN7e3nB3d4eNjQ3y8/Oxb98+1NXVISIiQqefzMxMnDt3DgBQUVGB6upq7WNnRowYAS8vL9ja2kIikejFuHPnTgCodxsRERE9mowuqQKAVatWwdnZGQcOHEBVVRVcXV2xfv16eHl5NbpfcHAw0tPTceLECchkMtjZ2cHHxwezZs3SW1/q7NmzessdxMXFAbifnDXVFxEREdGDjDKpEovFiIqKQlRUVIN16nv4cXh4OMLDw5vVhyF1m9M3EVFbU6nUKMm9/4iskty7sB/QAyKRSQdHRUQaRplUERGRrmsni5C+5RKkd2oAAMfiLiLzx98xNtQDg8b07uDoiAgwwiUViIhI17WTRUj5PEObUGlI79Qg5fMMXDtZ1EGREdGDmFQRERkxlUqN9C2XGq2TvvUSVCp1O0VERA1hUkWdhqy8Bmd2ZUNWXtN0ZaIuoujyHb0RqodJy2pQdPlOO0VERA1hUkWdhqxCjowfciCraPr5j0RdRXUzP+/NrUdEbYdJFRGREbOwbfp5p4bUI6K2w6SKiMiI9X7CHlb25o3WsXIwR+8n7NspIiJqCJMqIiIjJhKZYGyoR6N1xs724HpVREaASRURkZEbNKY3/N4eqTdiZeVgDr+3R3KdKiIjwcU/iYg6gUFjemPAaGdcOXwTx+IuYvwbQzHEtz9HqIiMCEeqiIg6CZHIBE6uPQEATq49mVARGRkmVURERNRpGPOahUyqiLo4Y/4CIiIylDGvWcikiqiLM+YvICKiroRJFREREZEAmFSRHl4uIiIiMhyTKtLDy0VERESGY1JFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVURERB2ES9h0LUyqiIiIOgiXsOlamFQRERERCYBJFREREZEAmFQRERERCYBJFREREZEAmFQRERERCYBJFREREZEAunV0APVRKBSIi4vDwYMHUVlZCTc3N8ybNw8+Pj6N7peWloY9e/YgNzcX9+7dg62tLTw9PTF37ly4urrq1E1JScHx48eRlZWFW7duwcvLCxs2bNBr89KlS0hKSkJGRgaKiorQo0cPDB06FPPmzUP//v0FPW4iIiLqvIxypGrdunXYsWMHnn32WURHR0MkEmHZsmU4f/58o/vl5ubCxsYGISEhWLx4MYKDg5GdnY2IiAjk5OTo1N2zZw+OHj2KXr16wcbGpsE2v/nmG6SmpsLb2xvR0dGYNm0azp07h3nz5iE3N1eQ4yUiIqLOz+hGqrKyspCSkoLIyEjMnDkTAODv74+wsDDExsYiNja2wX3DwsL0ygIDAzF9+nTs3r0bS5cu1ZavXr0aTk5OEIlEmDNnToNtzpgxA++++y66d++uLZs0aRLmzp2L//73v/jzn//cgqMkIiKirsboRqpSU1NhamqKoKAgbZlYLEZAQAAuXryI4uJig9qzs7ODubk5qqqqdMqdnZ0hEjV9+MOHD9dJqACgf//+GDhwIPLy8gyKhYiIiLouoxupys7OhouLC6ysrHTKPTw8AAA5OTlwdnZutI3KykoolUqUlZVh586dkEql8Pb2FixGtVqN8vJyDBw4sNF6paWlKCsr075mEkZERNR1GV1SVVZWBgcHB71yTVlpaWmTbURGRuLGjRsAAAsLC4SGhiIgIECwGJOTk1FSUoLw8PBG6yUkJCA+Pl6wfomo7alUapTk3gUAlOTehf2AHhCJTDo4KiLqDIwuqZLL5XqX2wDAzMxMu70pK1asgEwmQ0FBARITEyGXy6FSqZp1ua8peXl5+OyzzzB06FA899xzjdYNCgrC+PHjdfZds2ZNq2MgorZx7WQR0rdcgvRODQDgWNxFZP74O8aGemDQmN4dHB0RGTujS6rEYjFqa2v1yhUKhXZ7U4YNG6b92c/PD7NnzwYALFiwoFWxlZWVYfny5bCyssKHH34IU1PTRus7OjrC0dGxVX0SUfu4drIIKZ9n6JVL79Qg5fMM+L09kolVAzi6R3Sf0U1Ud3Bw0JmHpKEpMzRJsbGxwahRo5CcnNyquKqqqrBs2TJUVVXhk08+YbJE1IWoVGqkb7nUaJ30rZegUqnbKaLO49rJInwXfQTH4i4CuD+69130EVw7WdTBkRG1P6NLqtzd3ZGfnw+pVKpTnpWVpd1uKLlcrteeofuvWLECN2/exEcffdTkBHUi6lyKLt/RXvJriLSsBkWX77RTRJ2DZnTv4XOnGd1jYtV5ycprcGZXNmTljf+7IF1Gl1RNnDgRSqUSCQkJ2jKFQoHExER4enpq7/wrLi7Wu5uuvLxcr73CwkKcOXMGQ4YMaVE8SqUS7733Hi5evIj3339f59IiEXUN1RVNz9U0pN6jgKN7XZusQo6MH3Ig42feIEY3p8rT0xO+vr7YtGkTKioq0K9fPyQlJaGoqAjLly/X1lu7di0yMzORlpamLQsLC4O3tzfc3d1hY2OD/Px87Nu3D3V1dYiIiNDpJzMzE+fOnQMAVFRUoLq6Gl9//TUAYMSIEfDy8gIA/Otf/8KxY8cwbtw4VFZW4uDBgzrtTJkypS1OAxG1IwvbpudqGlLvUWDI6F5fT/07uom6IqNLqgBg1apVcHZ2xoEDB1BVVQVXV1esX79em+g0JDg4GOnp6Thx4gRkMhns7Ozg4+ODWbNmwc3NTafu2bNn9ZY7iIuLA3A/OdP0pXm8zfHjx3H8+HG9PplUEXV+vZ+wh5W9eaNJgpWDOXo/Yd+OURk3ju4R6TPKpEosFiMqKgpRUVEN1qnv4cfh4eFNrh1laN36+iGirkUkMsHYUI967/7TGDvbg3e0PYCje0T6jG5OFRFRRxg0pjf83h4JK3tznXIrB3Mup1APzeheYzi6R48aoxypIiLqCIPG9MaA0c64cvgmjsVdxPg3hmKIb3+OUNWDo3tE+jhSRUT0AJHIBE6uPQEATq49mRQ0gqN7RLo4UkVERC3G0T2i/+FIFRERtQpH94juY1JFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUTUIWTlNTizKxuy8pqODoWISBBMqoioQ8gq5Mj4IQeyCnlHh0JEJAgmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFJAA+coWIiLq1dMfbt28jMzMT+fn5kEqlAAArKyu4uLhgxIgRcHZ2FixIImOneeTKAO9esLQz7+hwiIioAxicVN26dQuff/45Tp06BQBQq9U6201MTAAAPj4+WLRoEVxcXAQIk4iIiMi4GZRUFRQU4M0338S9e/fg5eWFMWPGwMXFBVZWVgAAqVSK/Px8nDx5EidPnkRUVBT+/e9/o2/fvm0SPBEREZGxMCip+uKLL1BdXY2//e1v+MMf/tBgvddffx3p6el455138MUXX+Ddd99tdaBERERExsygieqnT5+Gr69vowmVxtixY+Hr64vTp0+3ODgiIqLW4o0k1F4MSqqqq6vh6OjY7PoODg6orq42OCgiIiKhaG4kkVXIOzoU6uIMuvzXr18//Prrr3jjjTfQrVvju9bV1eHXX39Fv379DA5KoVAgLi4OBw8eRGVlJdzc3DBv3jz4+Pg0ul9aWhr27NmD3Nxc3Lt3D7a2tvD09MTcuXPh6uqqUzclJQXHjx9HVlYWbt26BS8vL2zYsEHQeIiIiOjRYdBI1bRp03Dt2jUsWbIEFy5c0LvzD7h/N+D58+exZMkS5OXlYdq0aQYHtW7dOuzYsQPPPvssoqOjIRKJsGzZMpw/f77R/XJzc2FjY4OQkBAsXrwYwcHByM7ORkREBHJycnTq7tmzB0ePHkWvXr1gY2PTJvEQEQnN0laMkS+5w9JW3NGhENFDDBqpeumll/D7779j3759eOutt2Bubo4+ffro3P1XWFiImpoaqNVqBAYGYvr06QYFlJWVhZSUFERGRmLmzJkAAH9/f4SFhSE2NhaxsbEN7hsWFqZXpolh9+7dWLp0qbZ89erVcHJygkgkwpw5c9okHiIioVnamcM7ZHBHh0FE9TAoqTIxMcGyZcswefJk/PTTT8jMzERubq5OHQcHB4wbNw7Tpk3DyJEjDQ4oNTUVpqamCAoK0paJxWIEBARg06ZNKC4uNmhhUTs7O5ibm6OqqkqnvLltCB0PERERdU0tWlF91KhRGDVqFACgpqZGm7BYW1vD3Lx1q0lnZ2frrH2l4eHhAQDIyclpMomprKyEUqlEWVkZdu7cCalUCm9v7w6Lh4iIiLq+Fj+mRsPc3LzVidSDysrK4ODgoFeuKSstLW2yjcjISNy4cQMAYGFhgdDQUAQEBLR7PKWlpSgrK9O+zsvLa1EMREREZPxalVSVlJQgPz9fZ6TKxcUFTk5OLW5TLpeje/fueuVmZmba7U1ZsWIFZDIZCgoKkJiYCLlcDpVKBZHI8OdHtyaehIQExMfHG9wnERERdT4GJ1W1tbXYsWMHfvrpJxQWFtZbp0+fPpg2bRpCQkK0yUdzicVi1NbW6pUrFArt9qYMGzZM+7Ofnx9mz54NAFiwYIFBsbQ2nqCgIIwfP177Oi8vD2vWrDE4BiIiIjJ+BiVV1dXVWLx4MS5dugQLCwv4+PjAxcUFlpaWAACZTIb8/HxcuHABmzZtwi+//IK///3vsLCwaHYfDg4OKCkp0SvXXEYzZPFRALCxscGoUaOQnJzcoqSqNfE4OjoaHC/VT6VSoyT3LgCgJPcu7Af0gEhk0sFRERER/Y9BSVV8fDwuXbqE1157DXPmzGlwLlVNTQ3i4+Oxfft2xMfHIzIystl9uLu7IyMjA1KpVGdyeFZWlna7oeRyOaRSqcH7tVU8ZJhrJ4uQvuUSpHfuP2LiWNxFZP74O8aGemDQmN4dHB0REdF9Bk0yOnz4MMaMGYOIiIhGJ6ebm5vjzTffxOjRo3H48GGDApo4cSKUSiUSEhK0ZQqFAomJifD09NTeaVdcXKw38bu8vFyvvcLCQpw5cwZDhgwxKA5D46G2ce1kEVI+z9AmVBrSOzVI+TwD104WdVBkREREugwaqbpz5w4mT57c7PpDhgzBuXPnDArI09MTvr6+2LRpEyoqKtCvXz8kJSWhqKgIy5cv19Zbu3YtMjMzkZaWpi0LCwuDt7c33N3dYWNjg/z8fOzbtw91dXWIiIjQ6SczM1MbW0VFBaqrq/H1118DAEaMGAEvLy+D4iHhqVRqpG+51Gid9K2XMGC0My8FEhFRhzMoqbK3t0d2dnaz61+9ehX29vYGB7Vq1So4OzvjwIEDqKqqgqurK9avX69NdBoSHByM9PR0nDhxAjKZDHZ2dvDx8cGsWbPg5uamU/fs2bN6d+bFxcUBuJ+cPdhXS+Oh1im6fEdvhOph0rIaFF2+g76e+steEBERtSeDkqoJEyZg165d2Lx5M0JDQxu8800ul+Prr7/G6dOnERISYnBQYrEYUVFRiIqKarBOfQ8/Dg8PR3h4eLP6MKRuc+LpKoxpQnh1M58o39x6REREbcmgpCo8PBwZGRnYtm0bfvjhBwwbNgwuLi6wtrYGAFRVVSE/Px+//fYbZDIZ3N3dm524UMcztgnhFs18YGxz6xEREbUlE7VarTZkh5qaGnzzzTfYt29fg6uJOzo6IiAgAK+99pqgq613dleuXMH8+fOxefPmFk+cr8/MS39HaW1lq9pQKpSoqdJfj0vD3Lo7TM1MW9VHS1RXyKFSNfwRFYlMjCKpUtWpUH1PAYseZhB1M3yR2bZUJ1dCLq2F2Ko7uonb/z1siDGfM2OOzVgZ8zljbIYz1riApmNz7G6D7R5/6oDIWrD4p7m5ufbS2c2bN5Gfn69drsDKygouLi7o37+/4IFSw0prK3G79m7rGjEBYNPwZinkQMM5V9uxarpKZW3j867ajQ0gVXfQeWqMCPdj66j3sDHGes4A447NWBnzOWNshjPWuACjja1Vj6np378/Eygj4Ni9kWyoGZS1KtRUKpqsZ25jBtPu7f8Xi1KhhEJWpzNiJRKZwMyyW4eMntXH2P6qM9aRxwcZ2zl7kDHHZqyM+ZwxNsMZa1xA80aqOkqrH6hMHa+1w5y/Hy/A4U1NL33hu3AE3Lz7tqqvllKp1Lhy+CaOxV3E+DeGYsiE/ka1jELptbvY/clxvLB2HBwH9ezQWFQqNb6LPtLonZNWDuZ4JWZih55DYzpnDzPm2IyVMZ8zxmY4Y40LMO7Y2jT9/Omnn/DRRx+1ZRckgM4wIVwkMoGT6/1/PE6uPY0qoTI2hixFQUREwmnTpOrChQtISkpqyy5IAL2fsIeVfeM3FFg5mKP3E4avOUbtj0tREBF1DOO6UEodQiQywdhQj0brjJ3twdGhTqIzjDwSEXVFBs2pMnTU6datWwbVp44zaExv+L09UmedKuD+CNXY2XxwcWeiGXlsak4VRx6JqLMxpgWq62NQUrVu3TqYmDQ/eLVabVB96liDxvTGgNHOuhPCfY1rQjg1TTPymPJ5RoN1OPJIRJ2NsS1QXR+Dkqru3bvDwcEBQUFBzap/5MgRg54VSB2PE8K7Bo48ElFXcu1kUb1/KErv1CDl8wz4vT3SKL7XDEqqXF1dUVxcjNdff71Z9W/cuMGkiqiDcOSRiLoClUqN9C2XGq2TvvUSBox27vDvN4Mmqj/++OO4e/cuiouL2yoeIhIQRx6JqLPrTMvEGDRS9eSTT+LkyZPIz8+Hs7Nzk/WHDx/e4sCIiIiIOtMyMQYlVVOmTMGUKVOaXT8wMBCBgYEGB0VEREQEdK5lYtp9nSqpVMrLh0RERNQsnWmB6nZPqnbs2IFXXnmlvbslIiKiTqgzLVDNFdWJiIg6wMMLWapU6g6OyHhplol5eMTKysHcaJZTAAycU0VERESt1xkWsjQ2nWGZGI5UERERtSPNQpYPLxOgWcjy2smiDorM+Bn7MjFMqoiIiNpJcxey5KXAzolJFRERUTvpTAtZkuGYVBEREbWTzrSQJRmOSRUREVE76UwLWZLhmFQRERG1k860kCUZrt2TKrVaDbWaE/CIiOjR05kWsiTDtXtSFR4ejtTU1PbuloiIyCh0loUsyXAtXvwzKSmp2XWfe+65lnZDRETU5XSGhSzJcC1OqtatWwcTk8bffLVaDRMTEyZVREREDzHWhSwffnyO/YAeRhObsWtxUrVixYp6y6VSKa5evYpDhw5h/PjxGDduXIuDIyIiovbDx+e0TouTqueff77R7UFBQXj77bfxwgsvtLQLIiLqJCxtxRj5kjssuRRAp6V5fM7DNI/P4XyvprXZA5WHDRuG8ePHIy4uDt7e3gbtq1AoEBcXh4MHD6KyshJubm6YN28efHx8Gt0vLS0Ne/bsQW5uLu7duwdbW1t4enpi7ty5cHV11at/9OhRfPXVV8jLy4OtrS2mTp2K0NBQdOume1quXLmCL7/8EleuXEF1dTX69OmDwMBAvPjiizA1NTXo2IiIuiJLO3N4hwzu6DCohZr7+JwBo515KbARbXr3X+/evfH7778bvN+6deuwY8cOPPvss4iOjoZIJMKyZctw/vz5RvfLzc2FjY0NQkJCsHjxYgQHByM7OxsRERHIycnRqZueno7Vq1fD2toaixYtgkQiwZYtWxATE6NT78qVK4iKikJRURFee+01REVFoW/fvtiwYQP++c9/GnxsRERExoaPzxFGm41UqdVqnDt3DmZmZgbtl5WVhZSUFERGRmLmzJkAAH9/f4SFhSE2NhaxsbEN7hsWFqZXFhgYiOnTp2P37t1YunSptnzjxo1wc3PDp59+qh2ZsrS0xLZt2xASEoIBAwYAABISEgAA//jHP9CjRw8AQHBwMN566y0kJSVh0aJFBh0fERGRseHjc4TR4qQqMzOz3nKlUonS0lIcOHAAly9fhr+/v0HtpqamwtTUFEFBQdoysViMgIAAbNq0CcXFxXB2dm52e3Z2djA3N0dVVZW27Pr167h+/ToWL16sc6nvxRdfxNatW3HkyBHMmTMHwP2J92ZmZrC2ttZp18HBATdv3jTo2IiIiIwRH58jjBYnVYsWLWp0SQW1Wo3hw4dj4cKFBrWbnZ0NFxcXWFlZ6ZR7eNxfgTYnJ6fJpKqyshJKpRJlZWXYuXMnpFKpzryuq1evAgCGDBmis5+joyOcnJyQnZ2tLRs5ciR+/vlnfPLJJ5gxYwbMzc1x4sQJpKWlITIystE4SktLUVZWpn2dl5fXaH0iIqKOoHl8TmOXAPn4nKa1OKmaM2dOvUmVSCSCtbU1PDw84OnpaXC7ZWVlcHBw0CvXlJWWljbZRmRkJG7cuAEAsLCwQGhoKAICAnT6eLDNh/t5MBEKDAzEtWvXkJCQgJ9++gkAYGpqirfffhvBwcGNxpGQkID4+Pgm4yUiIupImsfn1Hf3nwYfn9O0FidV4eHhQsahJZfL0b17d71yzdwsubzp67krVqyATCZDQUEBEhMTIZfLoVKpIBLdn5evUCh02ny4H5lMpn1tamqKvn37YsyYMZg4cSLMzMyQkpKCzz//HPb29pBIJA3GERQUhPHjx2tf5+XlYc2aNU3GT0Qdi8sD0KNI8/icB9epAu6PUI2dzXWqmqPVE9WVSiVKSkpQWlqKurq6eut4eXk1uz2xWIza2lq9ck0iJBY3/SU3bNgw7c9+fn6YPXs2AGDBggUA/pdMadp8uJ8H+9i2bRt27dqFb775BpaWlgCASZMmYdGiRfjss8/w1FNP6S3BoOHo6AhHR8cm4yUi48LlAehRxcfntE6LkyqVSoWtW7di165dqKysbLTukSNHmt2ug4MDSkpK9Mo1l+QMTVJsbGwwatQoJCcna5MqzWW/srIyvflZZWVl2vlbALB7926MGjVKm1BpjB8/Hv/85z9RVFQEFxcXg2IiIiIyVsb6+JzOoMVJ1X/+8x98++23sLOzw/PPPw8HBwdBFsJ0d3dHRkYGpFKpzmT1rKws7XZDyeVySKVS7evBg+//BXrlyhWdeV+lpaUoKSnRufOwvLwcKpVKr03NqJxSqTQ4HiIiIup6WpxUHThwAP3798emTZv0RnFaY+LEifj222+RkJCgXadKoVAgMTERnp6e2pGl4uJi1NTUaNeTAu4nQHZ2djrtFRYW4syZMzp3+g0aNAiPPfYY9u7di6CgIG0yuHv3bpiYmOCZZ57R1nVxccHp06dx9+5d9Ox5P3NXKpU4fPgwLC0t0a9fP8GOnYiIiDqvFidV1dXVePbZZwVNqADA09MTvr6+2LRpEyoqKtCvXz8kJSWhqKgIy5cv19Zbu3YtMjMzkZaWpi0LCwuDt7c33N3dYWNjg/z8fOzbtw91dXWIiIjQ6ScqKgorV67EkiVL4Ofnh9zcXPz4448IDAzEwIEDtfVef/11rFmzBm+++SamTZsGsViMQ4cO4cqVK5g3b16D86mIiIjo0dLijMDV1VVn6QEhrVq1Cs7Ozjhw4ACqqqrg6uqK9evXNznhPTg4GOnp6Thx4gRkMhns7Ozg4+ODWbNmwc3NTafuuHHjsGbNGsTHxyMmJgY9e/bErFmz9FZlnzJlCmxtbbFt2zZs374dMpkM/fv3x5IlS5pcUoGIiIgeHS1OqkJDQ/Huu+/iypUreototpZYLEZUVBSioqIarLNhwwa9svDwcIOWepBIJI0uiaAxZswYjBkzptntEhER0aOnxUnVU089hZUrV2LZsmUYP3483Nzc9FZB13juuedaHCARERFRZ9DipEqhUOD48eO4e/cu9u3bBwB6K6yr1WqYmJgwqSIiIqIur8VJ1T//+U8kJyfDzc0NzzzzjGBLKhARERF1Ri1Oqo4cOYIhQ4Zg48aNvAOOiIiIHnmilu6oUCgwcuRIJlREREREaEVSNWTIEOTn5wsZCxEREVGn1eKkav78+Th58iSOHz8uZDxE9AhQqdQoyb0LACjJvQuVSt3BERERtV6Lr92dPn0aXl5eWLVqFUaNGtXgkgomJiaYM2dOq4Ikoq7j2skipG+5BOmdGgDAsbiLyPzxd4wN9cCgMb07ODoiopZrcVL11VdfaX8+c+YMzpw5U289JlVEpHHtZBFSPs/QK5feqUHK5xnwe3skEysi6rRanFTFxMQIGQcRdXEqlRrpWy41Wid96yUMGO0Mkcik0XpERMaoxUlVU8/hIyJ6UNHlO9pLfg2RltWg6PId9PV0aKeoiIiE0+KJ6kREhqiukAtaj4jI2DCpIqJ2YWErFrQeEZGxYVJFRO2i9xP2sLI3b7SOlYM5ej9h304REREJi0kVUStxzaXmEYlMMDbUo9E6Y2d7cJI6EXVaTKqIWuHaySJ8F30Ex+IuAri/5tJ30Udw7WRRB0dmnAaN6Q2/t0fqjVhZOZhzOQUi6vT44D6iFuKaSy0zaExvDBjtjCuHb+JY3EWMf2Mohvj25wgVEXV6HKkiaoHmrrnES4H1E4lM4OTaEwDg5NqTCRURdQlMqohawJA1l4iI6NHApIqoBbjmEhERPYxJFVELcM0lIiJ6GJMqohbgmktERPQwJlVELcA1l4iI6GFMqohaiGsuERHRg7hOFVErcM0lIiLS4EgVUStxzSUiIgKYVBEREREJgkkVERERkQCYVBEREREJgEkVERERkQCM8u4/hUKBuLg4HDx4EJWVlXBzc8O8efPg4+PT6H5paWnYs2cPcnNzce/ePdja2sLT0xNz586Fq6urXv2jR4/iq6++Ql5eHmxtbTF16lSEhoaiWzf903L69Gls3boVV69ehUqlQv/+/TFz5kz4+fkJdtxERETUeRnlSNW6deuwY8cOPPvss4iOjoZIJMKyZctw/vz5RvfLzc2FjY0NQkJCsHjxYgQHByM7OxsRERHIycnRqZueno7Vq1fD2toaixYtgkQiwZYtWxATE6PXbmJiIpYsWYJu3bph/vz5iIqKwogRI3D79m1Bj5uIiIg6L6MbqcrKykJKSgoiIyMxc+ZMAIC/vz/CwsIQGxuL2NjYBvcNCwvTKwsMDMT06dOxe/duLF26VFu+ceNGuLm54dNPP9WOTFlaWmLbtm0ICQnBgAEDAACFhYX47LPP8NJLL2HRokUCHikRERF1JUY3UpWamgpTU1MEBQVpy8RiMQICAnDx4kUUFxcb1J6dnR3Mzc1RVVWlLbt+/TquX7+OadOm6Vzqe/HFF6FWq3HkyBFt2Z49e6BSqfDGG28AAGQyGdRqdQuPjoiI2pNKpUZJ7l0AQEnuXahU/P6mtmN0I1XZ2dlwcXGBlZWVTrmHx/3nrOXk5MDZ2bnRNiorK6FUKlFWVoadO3dCKpXC29tbu/3q1asAgCFDhujs5+joCCcnJ2RnZ2vLzpw5g8ceewzp6emIjY1FSUkJbGxs8OKLLyI8PBwiUcN5aWlpKcrKyrSv8/Lymjh6IiISyrWTRUjfcgnSOzUAgGNxF5H54+8YG+rBx0hRmzC6pKqsrAwODg565Zqy0tLSJtuIjIzEjRs3AAAWFhYIDQ1FQECATh8PtvlwPw8mQvn5+RCJRPjoo48wc+ZMuLm5IS0tDVu2bIFSqURERESDcSQkJCA+Pr7JeImISFjXThYh5fMMvXLpnRqkfJ7B53NSmzC6pEoul6N79+565WZmZtrtTVmxYgVkMhkKCgqQmJgIuVwOlUqlHVVSKBQ6bT7cj0wm076urq6GSqVCREQEXn/9dQDAxIkTUVlZiV27dmH27NmwtLSsN46goCCMHz9e+zovLw9r1qxpMv6OZmkrxsiX3GFpK+7oUIiIDKZSqZG+5VKjddK3XsKA0c58rBQJyuiSKrFYjNraWr1yTSIkFjf9i37YsGHan/38/DB79mwAwIIFCwD8L5nStPlwPw/2IRaLUV1djcmTJ+vU8/Pzw4kTJ3D16lV4eXnVG4ejoyMcHR2bjNfYWNqZwztkcEeHQUTUIkWX72gv+TVEWlaDost30NdT/4oFUUsZ3UT1hy+/aWjKDE1SbGxsMGrUKCQnJ+v08WCbD/fz4GVBzc92dnY69TSvKysrDYqHiIjaVnVF01c0DKlH1FxGl1S5u7sjPz8fUqlUpzwrK0u73VByuVynvcGD74/CXLlyRadeaWkpSkpKtNuB/01mf3gul+a1ra2twfFQy/CyJBE1h0UzvyOaW4+ouYwuqZo4cSKUSiUSEhK0ZQqFAomJifD09NTe+VdcXKx3N115eblee4WFhThz5ozOnX6DBg3CY489hr1790KpVGrLd+/eDRMTEzzzzDPaskmTJgEA9u3bpy1TqVTYv38/evTooXcHIbUdzWVJSzvzjg6FiIxY7yfsYWXf+PeElYM5ej9h304R0aPC6OZUeXp6wtfXF5s2bUJFRQX69euHpKQkFBUVYfny5dp6a9euRWZmJtLS0rRlYWFh8Pb2hru7O2xsbJCfn499+/ahrq5O7y69qKgorFy5EkuWLIGfnx9yc3Px448/IjAwEAMHDtTWe/rpp+Ht7Y1t27ahoqIC7u7u+OWXX3D+/HksXbq03snuRETUcUQiE4wN9aj37j+NsbM9OEmdBGd0SRUArFq1Cs7Ozjhw4ACqqqrg6uqK9evXNzghXCM4OBjp6ek4ceIEZDIZ7Ozs4OPjg1mzZsHNzU2n7rhx47BmzRrEx8cjJiYGPXv2xKxZs/RWZTcxMcHatWvxxRdf4Oeff0ZSUhL69++Pd955B1OmTBH4yImEx8um9CgaNKY3/N4eqbNOFXB/hGrsbK5TRW3DKJMqsViMqKgoREVFNVhnw4YNemXh4eEIDw9vdj8SiQQSiaTJepaWloiOjkZ0dHSz2yYyFrybkx5Vg8b0xoDRzrhy+CaOxV3E+DeGYohvf45QUZsxujlVREREQhGJTODk2hMA4OTakwkVtSkmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVUREREQCYFJFREREJAAmVURERNRpWNqKMfIld1jaijs6FD3dOjoAIiIiouaytDOHd8jgjg6jXhypIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIqIOYsyTrslwnKhORETUQYx50jUZjiNVRERERAJgUkVEREQkACZVRERERAJgUkVEREQ6OIG+ZThRnYiIiHRwAn3LcKSKiIiISABMqoiIiIgEwKSKiIiISABGOadKoVAgLi4OBw8eRGVlJdzc3DBv3jz4+Pg0ul9aWhr27NmD3Nxc3Lt3D7a2tvD09MTcuXPh6uqqV//o0aP46quvkJeXB1tbW0ydOhWhoaHo1q3h0/K3v/0NP/30E5566imsX7++1cdKREREXYNRjlStW7cOO3bswLPPPovo6GiIRCIsW7YM58+fb3S/3Nxc2NjYICQkBIsXL0ZwcDCys7MRERGBnJwcnbrp6elYvXo1rK2tsWjRIkgkEmzZsgUxMTENtn/58mXs378fZmZmghwnERERdR1GN1KVlZWFlJQUREZGYubMmQAAf39/hIWFITY2FrGxsQ3uGxYWplcWGBiI6dOnY/fu3Vi6dKm2fOPGjXBzc8Onn36qHZmytLTEtm3bEBISggEDBui0o1arERMTA39/f5w9e1aAIyUiIqKuxOhGqlJTU2FqaoqgoCBtmVgsRkBAAC5evIji4mKD2rOzs4O5uTmqqqq0ZdevX8f169cxbdo0nUt9L774ItRqNY4cOaLXzoEDB3Dt2jXMnz/f8IMiIiKiLs/oRqqys7Ph4uICKysrnXIPDw8AQE5ODpydnRtto7KyEkqlEmVlZdi5cyekUim8vb21269evQoAGDJkiM5+jo6OcHJyQnZ2tk65TCbDv//9b8yaNQsODg7NPpbS0lKUlZVpX+fl5TV7XyIiIupcjC6pKisrqzdx0ZSVlpY22UZkZCRu3LgBALCwsEBoaCgCAgJ0+niwzYf7eTARAoD4+HiIxWLMmDGj+QcCICEhAfHx8QbtQ0RERJ2T0SVVcrkc3bt31yvXTA6Xy+VNtrFixQrIZDIUFBQgMTERcrkcKpUKItH9q50KhUKnzYf7kclk2tc3b97Erl278O677xo8QT0oKAjjx4/Xvs7Ly8OaNWsMaoOIiIg6B6NLqsRiMWpra/XKNYmQWNz0c4iGDRum/dnPzw+zZ88GACxYsADA/5IpTZsP9/NgHxs2bMCwYcMwceLE5h/E/+fo6AhHR0eD9yMiIqLOx+gmqtd3+Q343yU7Q5MUGxsbjBo1CsnJyTp9PNjmw/1otp85cwYnTpxASEgICgsLtf8plUrI5XIUFhZCKpUaFA8RERF1TUY3UuXu7o6MjAxIpVKdyepZWVna7YaSy+U6yc/gwfcfEnnlyhV4enpqy0tLS1FSUqK98/D27dsAgHfeeUevzZKSErzyyitYuHChwXOtiIiIqOsxuqRq4sSJ+Pbbb5GQkKBdp0qhUCAxMRGenp7aO/+Ki4tRU1Ojs55UeXk57OzsdNorLCzEmTNndO70GzRoEB577DHs3bsXQUFBMDU1BQDs3r0bJiYmeOaZZwAAo0aNwtq1a/Vi/Pjjj9G7d2/Mnj273pXaiYiI6NFjdEmVp6cnfH19sWnTJlRUVKBfv35ISkpCUVERli9frq23du1aZGZmIi0tTVsWFhYGb29vuLu7w8bGBvn5+di3bx/q6uoQERGh009UVBRWrlyJJUuWwM/PD7m5ufjxxx8RGBiIgQMHAgCcnZ3rXb7hH//4B+zs7CCRSNrmJBAREVGnY3RJFQCsWrUKzs7OOHDgAKqqquDq6or169fDy8ur0f2Cg4ORnp6OEydOQCaTwc7ODj4+Ppg1axbc3Nx06o4bNw5r1qxBfHw8YmJi0LNnT8yaNaveVdmJiIiImmKUSZVYLEZUVBSioqIarLNhwwa9svDwcISHhze7H4lE0qLRph07dhi8DxEREXVtRnf3HxEREVFnxKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIiISABMqoioQ1jaijHyJXdY2oo7OhQiIkEY5bP/iKjrs7Qzh3fI4I4Og4hIMBypIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiAXB5ACIi4pIKRALg8gBERMSRKiIiIiIBMKkiIiIiEgCTKiIiIiIBMKkiIiIiEgCTKiIiIiIBMKkiIiIiEgCTKiIiIiIBMKkiIiIiEgCTKiIiIiIBMKkiIiIiEgCTKiIiIiIBGOWz/xQKBeLi4nDw4EFUVlbCzc0N8+bNg4+PT6P7paWlYc+ePcjNzcW9e/dga2sLT09PzJ07F66urnr1jx49iq+++gp5eXmwtbXF1KlTERoaim7d/ndazpw5g+TkZJw/fx4lJSWwt7fHqFGj8MYbb8DR0VHwYyciIqLOyShHqtatW4cdO3bg2WefRXR0NEQiEZYtW4bz5883ul9ubi5sbGwQEhKCxYsXIzg4GNnZ2YiIiEBOTo5O3fT0dKxevRrW1tZYtGgRJBIJtmzZgpiYGJ16//73v5GRkQGJRIJFixbBz88Phw8fxrx581BWVib4sRMREVHnZHQjVVlZWUhJSUFkZCRmzpwJAPD390dYWBhiY2MRGxvb4L5hYWF6ZYGBgZg+fTp2796NpUuXass3btwINzc3fPrpp9qRKUtLS2zbtg0hISEYMGAAAGDBggV48sknIRL9L/8cM2YMoqOj8cMPP2D+/PlCHDYRERF1ckY3UpWamgpTU1MEBQVpy8RiMQICAnDx4kUUFxcb1J6dnR3Mzc1RVVWlLbt+/TquX7+OadOm6Vzqe/HFF6FWq3HkyBFtmZeXl05CpSnr0aMH8vLyDDw6IiIi6qqMbqQqOzsbLi4usLKy0in38PAAAOTk5MDZ2bnRNiorK6FUKlFWVoadO3dCKpXC29tbu/3q1asAgCFDhujs5+joCCcnJ2RnZzfavkwmQ3V1NXr27NlovdLSUp1LhEzCiIiIui6jS6rKysrg4OCgV64pKy0tbbKNyMhI3LhxAwBgYWGB0NBQBAQE6PTxYJsP99PUXKmdO3eitrYWkyZNarReQkIC4uPjm4yXiIiIOj+jS6rkcjm6d++uV25mZqbd3pQVK1ZAJpOhoKAAiYmJkMvlUKlU2st4CoVCp82H+5HJZA22nZmZifj4ePj6+uqMftUnKCgI48eP177Oy8vDmjVrmoyfiIiIOh+jS6rEYjFqa2v1yjWJkFgsbrKNYcOGaX/28/PD7NmzAdyfdA78L5nStPlwPw31kZeXh3feeQeurq5Yvnx5k3E4Ojpy2QUiIqJHhNFNVG/o8pumzNAkxcbGBqNGjUJycrJOHw+2+XA/9V0WLC4uxpIlS2BlZYX169fD0tLSoDiIiIioazO6pMrd3R35+fmQSqU65VlZWdrthpLL5TrtDR48GABw5coVnXqlpaUoKSnRbte4e/culixZgtraWnzyySccfSIiIiI9RpdUTZw4EUqlEgkJCdoyhUKBxMREeHp6au/8Ky4u1rubrry8XK+9wsJCnDlzRudOv0GDBuGxxx7D3r17oVQqteW7d++GiYkJnnnmGW1ZdXU1li1bhtLSUvztb39D//79BTtWIiIi6jqMbk6Vp6cnfH19sWnTJlRUVKBfv35ISkpCUVGRzjymtWvXIjMzE2lpadqysLAweHt7w93dHTY2NsjPz8e+fftQV1eHiIgInX6ioqKwcuVKLFmyBH5+fsjNzcWPP/6IwMBADBw4UFvvww8/xKVLlzB16lTk5eXpJHIWFhaQSCRtdzKIiIio0zC6pAoAVq1aBWdnZxw4cABVVVVwdXXF+vXr4eXl1eh+wcHBSE9Px4kTJyCTyWBnZwcfHx/MmjULbm5uOnXHjRuHNWvWID4+HjExMejZsydmzZqltyq75vE2iYmJSExM1NnWu3dvJlVEREQEADBRq9Xqjg7iUXHlyhXMnz8fmzdv1lt4lIiI2kbptbvYvfo4Xlg7Do6DGl+0mag1jG5OFREREVFnxKSKiIiISABMqoiIiIgEwKSKiIiISABMqoiIiIgEwKSKiIi6NEtbMUa+5A5L26afHUvUGka5ThUREZFQLO3M4R0yuOmKRK3EkSoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhIAkyoiIiIiATCpIiIiIhJAt44O4FEil8sBAHl5eR0cCRERERlqwIABMDc3b3A7k6p2VFRUBABYs2ZNB0dCREREhtq8eTOGDBnS4HYTtVqtbsd4HmkVFRU4efIk+vTpAzMzM8HazcvLw5o1a/DOO+9gwIABgrXbmTzq5+BRP36A5+BRP36A54DH3/bHz5EqI2Jra4spU6a0WfsDBgxoNIN+FDzq5+BRP36A5+BRP36A54DH33HHz4nqRERERAJgUkVEREQkACZVXYCDgwPCwsLg4ODQ0aF0mEf9HDzqxw/wHDzqxw/wHPD4O/74OVGdiIiISAAcqSIiIiISAJMqIiIiIgEwqSIiIiISAJMqIiIiIgFw8c9OTKFQIC4uDgcPHkRlZSXc3Nwwb948+Pj4dHRogrt06RKSkpKQkZGBoqIi9OjRA0OHDsW8efPQv39/bb2//vWvSEpK0tv/sccew7Zt29ozZEFlZGRg0aJF9W6LjY3F0KFDta8vXLiAf//737h69SqsrKzg6+uL+fPnw9LSsr3CbRMNvbca33//PZycnBAdHY3MzEy97WPGjMEnn3zShhEKRyaT4dtvv0VWVhYuXbqEyspKrFy5Es8//7xe3evXr+Of//wnLly4gG7duuGpp57CwoULYWtrq1NPpVLh22+/xe7du3Hnzh24uLhg1qxZmDx5cjsdlWGacw5UKhUOHDiA1NRUZGdno7KyEn369MGkSZPw6quvQiwW67Q5YcKEevv64x//iFmzZrXp8RiquZ8BQ77zOtNnoLnH39B7CgCjR4/G3//+dwBAYWEhXnnllXrr/eUvf4Gfn58gcTOp6sTWrVuHI0eO4OWXX4aLiwv279+PZcuWISYmBk8++WRHhyeob775BhcuXICvry/c3NxQVlaGH3/8EfPmzUNsbCxcXV21dc3MzLBs2TKd/a2srNo75DYxffp0eHh46JT169dP+3N2djYWL16MAQMGYOHChbh9+za+++475Ofn4+OPP27vcAUVFBSE0aNH65Sp1Wp8+umn6N27N5ycnLTlTk5OiIiI0KnbmW4zv3v3LuLj4+Hs7Ax3d3dkZGTUW+/27dt46623YG1tjfnz56O6uhrffvstcnNz8Z///Afdu3fX1t28eTP++9//Ytq0aXjiiSdw9OhRfPDBBzAxMRHsF4qQmnMOampqsG7dOgwdOhTBwcGws7PDxYsX8dVXX+Hs2bP4/PPPYWJiorPP6NGj8dxzz+mUDR48uE2PpSWa+xkAmv+d15k+A809/nfeeUev7PLly9i1a1e9AwyTJ0/G2LFjdcoe/KO01dTUKV28eFEtkUjU33zzjbaspqZG/eqrr6rffPPNDoysbZw/f16tUCh0ym7cuKH28/NTf/DBB9qytWvXqqdMmdLe4bW5s2fPqiUSifrw4cON1lu6dKn6hRdeUFdVVWnL9u7dq5ZIJOoTJ060cZTt79y5c2qJRKLesmWLtuytt95Sh4aGdmBUrSeXy9WlpaVqtVqtvnTpkloikagTExP16n366afqyZMnq4uKirRlp06dUkskEvWePXu0Zbdv31b7+vqq//73v2vLVCqVesGCBeqXXnpJXVdX14ZH0zLNOQcKhUJ9/vx5vX2/+uortUQiUZ86dUqnXCKR6JwDY9bcz0Bzv/M622egucdfn48++kg9YcIEdXFxsbasoKBA73dmW+Ccqk4qNTUVpqamCAoK0paJxWIEBATg4sWLKC4u7sDohDd8+HCdv7oBoH///hg4cCDy8vL06iuVSkil0vYKr13JZDLU1dXplUulUpw+fRpTpkzR+SvV398fFhYWOHz4cHuG2S4OHToEExOTei9f1NXVQSaTdUBUrWdmZtaskbXU1FSMGzcOzs7O2rLRo0ejf//+Ou/30aNHUVdXhxdffFFbZmJighdeeAElJSW4ePGisAcggOacg+7du2P48OF65RKJBADq/W4AALlcDrlc3vog21BzPwMaTX3ndbbPgKHHr6FQKJCamgovLy/06tWr3jrV1dWora1tbYj14uW/Tio7OxsuLi56Q7yaS0M5OTk6X7RdkVqtRnl5OQYOHKhTXlNTg+effx41NTWwsbGBn58f3nzzzU4/pwi4f8m3uroapqamePLJJxEZGYknnngCAJCbmwulUqn3INHu3btj8ODByM7O7oiQ20xdXR0OHz6MYcOGoU+fPjrbbt68CX9/f9TW1sLe3h6BgYEICwtDt25d5yuvpKQE5eXl9T441sPDA+np6drX2dnZsLCwwIABA/TqabZ3pSkDd+7cAQD07NlTb1tSUhJ2794NtVqNAQMGIDQ0FM8++2x7hyio5nznPSqfgfT0dFRVVTX4nsbHxyM2NhYmJiYYMmQI5s2bhzFjxgjWf9f5hnnElJWV1ZvFa8pKS0vbO6R2l5ycjJKSEoSHh2vLHBwcMHPmTDz++ONQq9U4ceIEdu/ejd9//x0xMTGd9pdqt27d8Mwzz2Ds2LHo2bMnrl+/ju+++w4LFy7Exo0b8fjjj6OsrAxA/XOHHBwccO7cufYOu02dPHkSd+/e1fvy7Nu3L0aOHAlXV1fU1NTgyJEj2LJlC27evIn333+/g6IVXlPv971796BQKGBmZoaysjLY2dnpzS/qqt8X27dvh5WVFf7whz/olA8bNgy+vr7o06cPysrK8MMPP+DDDz+EVCrFCy+80DHBtlJzv/Melc9AcnIyzMzM8Mwzz+iUi0Qi+Pj4YMKECXB0dERBQQF27NiBZcuWYd26dXjqqacE6b9z/oYhyOVyvcthwP0hU832riwvLw+fffYZhg4dqjPp9OHJyX5+fujfvz82b96M1NRUo5uM2VzDhw/Xuczx9NNPY+LEiZg7dy42bdqETz75RPueN/S5UCgU7RZvezh06BC6desGX19fnfIVK1bovPb398fHH3+MvXv3YsaMGcJOSu1ATb3fmjpmZmaP1PfF1q1bcfr0afzpT3+CjY2NzraNGzfqvJ46dSrmzZuHTZs24fnnn9e7W7AzaO533qPwGZBKpfj111/xhz/8Qe+9d3Z2xqeffqpT5u/vj9DQUPzrX/8SLKninKpOSiwW13tNWPOLszN+OTRXWVkZli9fDisrK3z44YcwNTVttP6MGTMgEolw+vTpdoqwfbi4uODpp59GRkYGlEql9j1v6HOh+fLsCmQyGY4ePYoxY8bUe4nnYZpbqbvSZ6Cp9/vBOo/K90VKSgq++OILBAQENGvkqXv37njppZdQVVWFK1eutH2A7aS+77xH4TOQmpoKhULR7Mu5PXr0wPPPP48bN27g9u3bgsTApKqTcnBw0A7/P0hT5ujo2N4htYuqqiosW7YMVVVV+OSTT5p1nGKxGD169MC9e/faIcL21atXL9TW1qKmpkY7jN/Q56IrfSaOHj2KmpqaZn95aiasVlZWtmVY7aqp97tHjx7aRNrBwQF37tyBWq3Wqwd0je+LU6dO4a9//SueeuopLFmypNn7aT4bXen7ob7vvEfhM5CcnAxra2uMGzeu2fsI/d3ApKqTcnd3R35+vt7dHllZWdrtXY1cLseKFStw8+ZNfPTRR3oT1Bsik8lw9+5dvcUQu4KCggKYmZnBwsICgwYNgqmpqd5f3LW1tcjOzu5Sn4nk5GRYWFhg/PjxzapfUFAAAF3qM+Dk5ARbW9t6R1guXbqk8367u7ujpqZG7264rvJ9kZWVhXfeeQdDhgzB+++/b9Dcya742ajvO6+rfwZKS0uRkZGBCRMmGDQqr3n/mzPi3RxMqjqpiRMnQqlUIiEhQVumUCiQmJgIT0/PLnfnn1KpxHvvvYeLFy/i/fffx7Bhw/TqyOXyem+h//rrr6FWq/UmrXYmFRUVemU5OTk4duwYfHx8IBKJYG1tjdGjR+PgwYM65+HAgQOorq7Wm3vUWVVUVOD06dOYMGECzM3NdbZJpVK9uWNqtRpbtmwBgC73tIFnnnkGx48f11lC5cyZM7h586bO+/3000+jW7du+PHHH7VlarUae/bsgZOTU73/njqL69evY/ny5ejduzfWr1/f4GWs+v4NyWQy7Nq1Cz179qz3LkpjZ8h3Xlf+DADAzz//DJVK1eDodX3vf0lJCRITE+Hm5ibYSB0nqndSnp6e8PX1xaZNm1BRUYF+/fohKSkJRUVFWL58eUeHJ7h//etfOHbsGMaNG4fKykocPHhQZ/uUKVNw584dvPHGG5g8eTIee+wxAPfvEEtPT8cf/vAHPP300x0RuiD+8pe/QCwWY9iwYbCzs8P169exd+9emJub60xUnTdvHhYsWIC33noLQUFB2hXVfXx8OnVS+aCUlBQolcp6vzyvXr2K999/H5MnT0a/fv0gl8vxyy+/4MKFC5g2bVqn+sX5/fffo6qqSnt55tixY9p5H9OnT4e1tTVmzZqFI0eO4O2330ZISAiqq6uxfft2uLq66jzOo1evXnj55Zexfft21NXVwcPDA7/88gvOnz+PP//5z03OS+woTZ0DkUiEpUuXorKyEq+++ip+/fVXnf379u2rTRZ++OEHHD16VLuuV1lZGRITE1FcXIzVq1fXO4m7ozV1/JWVlc3+zuuMn4Hm/BvQSE5OhqOjI0aOHFlvW7Gxsbh16xa8vb3h6OiIoqIiJCQkoKamBtHR0YLFbKJ++AIrdRpyuVz77L+qqiq4uroKvuaGsWjoeW4aaWlpqKysRExMDC5evIiysjKoVCr069cPzz77LF599dVOu5wCAOzatQvJycm4desWpFIpbG1t4e3tjbCwMLi4uOjUPX/+vPbZf5aWlvD19UVERESXWKcLACIjI1FQUIAffvhB7xdBQUEB/vOf/+DSpUu4c+cORCIRBgwYgMDAQAQFBendTm7MZsyYgaKionq3fffdd9q1ua5du6b37L8FCxbA3t5eZx+VSoVvvvkGCQkJKCsrg4uLC15//XVMmTKlzY+lpZo6BwAafJ4bADz33HNYtWoVgPtzrrZv347c3Fzcu3cP5ubm8PDwwGuvvQZvb2/hgxdAU8dvbW1t0HdeZ/sMNPffwI0bNzBr1izMmDEDCxcurLf+oUOHsGfPHuTl5aGyshLW1tZ48sknERoaKugfW0yqiIiIiATAOVVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRURERCQAJlVEREREAmBSRWQENE9X//LLL9u0n+joaEyYMKFN+2iu/fv3Y8KECdi/f39Hh2LU2us8/fLLL5gwYQIuXLjQrPqFhYWYMGEC/vrXv7ZpXJ3V5s2b4e/vjzt37nR0KNSOmFQRNZPml8iD/02aNAnTp0/HBx98gN9//72jQzQqnfmXrlqtxsyZMzFhwgQsW7aso8Npc3V1dYiNjcWYMWMwfPjwjg6nS3j11VchEona/A8lMi6d9wmzRB1E88BSAKiurkZWVhYOHTqEtLQ0fPbZZ0b9S2n16tWoqanp6DAAABKJBJ6ennBwcOjoUPRkZGTg1q1bMDExwalTp1BaWgpHR8eODqvNHDhwAPn5+ViyZElHh9Jl2NjYICAgAN9//z1mzZqF3r17d3RI1A44UkVkoH79+iE8PBzh4eFYsGAB/vWvf2H27NlQKBTYvHlzR4fXKGdnZwwYMKCjwwAAWFtbY8CAAbC2tu7oUPTs27cPAPDKK69AqVR2+UuUe/bsQa9evTBq1KiODqVLmTJlCpRKJX766aeODoXaCUeqiAQwffp0bN26FZcvX9aW1dXV4fvvv0dSUhJu3ryJ7t274/HHH8eMGTMwfvz4ZrV79uxZHDx4EBcuXEBpaSkA4LHHHsO0adMQFBSkV3/ChAnw8vLCn//8Z2zatAmnTp1CeXk5Pv/8c4wcORLR0dHIzMxEWlqazj6NWblyJZ5//nkAQFpaGg4fPozLly+jtLQU3bp1g5ubG0JCQjBx4kTtPvv378e6desAAElJSUhKStJui4mJwciRI7V1Hmxf48KFC9i6dSsuXrwIuVyO3r17Y9KkSXjttddgbm5e7zG/9957iI2NRXp6Oqqrq+Hu7o6IiAiMHDmyGWf6fyorK5GamopBgwbhjTfeQEJCAhITEzFr1iyYmJjo1C0sLMQrr7yC5557DqGhoYiNjUVGRgbq6uowdOhQLFiwAO7u7np9ZGZm4osvvsDVq1dhZmYGb29vREVFYe3atXrvT2MKCgqwdetW7ftsY2ODMWPGIDw8vNkjI7m5ubh8+TJefvllveMDAKVSiW+//RY//fQTSkpK4OTkhICAAEyaNKnBNsvLy7Ft2zYcP34ct2/fhqWlJUaMGIHw8HC4urq26nx8+eWXiI+PR0xMDIqKirBr1y7cuHEDHh4e2LBhAwBAJpPh22+/xZEjR1BQUAAzMzN4eHhgzpw5ePLJJ/X6N6R+aWkp/vvf/yI9PR0lJSUwMzODvb09vLy88Oabb+r8kfD444+jX79+2L9/P+bNm9f0m0GdHpMqIgFpfimp1Wq8++67OHr0KPr3748XX3wRNTU1+Pnnn7Fy5UosXLgQM2bMaLK9b775Brdu3YKnpyecnJxQVVWFkydP4pNPPsGNGzewcOFCvX3u3r2LyMhI9OjRA5MmTYJCoYClpWWDfYSFhdVbvmfPHpSXl0MsFmvLNm3ahG7dumH48OFwcHBARUUFjh07hnfffReLFi3C9OnTAQDu7u4ICQnBrl274O7ujqefflrbRlO/7A8fPowPPvgA3bt3x6RJk2Bra4tTp04hPj4eJ0+eRExMjE5MAFBVVYUFCxbA2toaU6ZMQXl5OQ4fPoylS5di8+bN9f4ib8ihQ4egUCjw3HPPQSwWY+LEiUhMTERmZmaDCVpRUREiIyMxcOBATJ06FQUFBTh69CgWLVqErVu3wt7eXlv35MmTWL58OUxNTeHr6wtHR0dkZGRg4cKFsLGxaXacWVlZWLp0KaqrqzFu3Di4uLigqKgIycnJOHHiBGJjY9G3b98m2zlz5gwAwNPTs97tH3/8MRITE9GnTx+88MILUCgU+O677/Dbb7/VW//WrVuIjo5GSUkJfHx88PTTT6OiogKpqak4deoUPvvsM52+Wno+tm/fjoyMDDz99NPw8fGBqakpAODevXt46623cO3aNQwfPhzBwcGQSqU4duwYFi1ahA8++AASiUTbjiH1a2pqsGDBAhQVFcHHxwcTJkxAbW0tCgsLcfDgQbz66qt6I6/Dhg3DgQMHcPPmTfTv37/J94M6OTURNUtBQYFaIpGolyxZorctLi5OLZFI1NHR0Wq1Wq3ev3+/WiKRqN966y21QqHQ1isqKlIHBgaqJ06cqL5165a2/OzZs2qJRKKOi4vTaffBOhq1tbXqxYsXqydOnKguKirS2SaRSNQSiUS9bt06dV1dnd6+b731lloikTR5rNu2bVNLJBL1ypUr1UqlstF4pFKpes6cOernn39eXV1drS3XnK+1a9fW20diYqJaIpGoExMTtWVVVVXq559/Xu3n56fOycnRliuVSvVf/vIXtUQiUcfHx9d7zJ9++qlOrHv37lVLJBL1xx9/3OTxPuiNN95QP/PMM+qSkhK1Wq1WnzlzRi2RSNQffvihXl3NMUokEvW2bdt0tm3evFktkUjUW7du1ZbV1dWpX375ZfWECRPU586d06m/Zs0abVsPqu881dbWql9++WW1v7+/+sqVKzr1z507p544caJ6+fLlzTred999Vy2RSNQ3b97U26b5XM6dO1ctk8m05bdv31YHBgbW+/5GRkaqJ06cqD5x4oRO+Y0bN9T+/v7qOXPmtOp8aP6tTZkyReczovH++++rJRKJeu/evTrld+7cUU+fPl09bdo0dU1NTYvqHz16VC2RSNQbNmzQ61cqlarlcrle+c6dO9USiUS9b98+vW3U9XBOFZGBbt26hS+//BJffvklNm7ciIULFyI+Ph5mZmaYP38+AGgvd7355pvo3r27dl9nZ2fMmDEDSqUSycnJTfZV30hDt27dEBwcDKVSibNnz+pt7969O958803tX+6GSk1NxaZNm/D444/jz3/+M0Si/31N1BePpaUlnn/+eVRVVelc/myJo0ePoqqqClOnToWbm5u2XCQSITIyEqampvXOb7KwsMCbb76pE+tzzz0HU1NTg2LKzs7G1atXMWrUKO3E9JEjR8LZ2Rmpqamoqqqqd78+ffpg5syZOmUBAQEAoNP/hQsXUFRUhHHjxuldVpo3b16z37Pjx4+jqKgIM2fOxOOPP66z7cknn8T48eORnp4OqVTaZFu3b98GAJ3RNI0DBw4AAObMmQMLCwttuZOTE0JCQvTqX716Fb/99hv8/f0xZswYnW39+/dHYGAgcnNzkZubC6B152PatGk6nxEAqKiowOHDhzFq1CgEBgbqbLOzs8PMmTNRUVGhHZ0ztL7GwyOlwP1/B2ZmZnrldnZ2AICSkpIGj4W6Dl7+IzLQrVu3EB8fD+B+gmNnZ4fJkyfj9ddf137JZ2dnw9zcvN5LKppLSNnZ2U32pZnr8csvv6CgoADV1dU628vKyvT26dOnD2xtbQ08qvsuX76MtWvXwtHRER999JHOL1Lg/lwZzXyS4uJiyOVyne2aeV8tpTknXl5eetucnZ3Rt29f3Lx5EzKZTOeSpouLi94lzm7dusHe3r7BRKg+mgnFzz33nLbMxMQEU6ZMwdatW3Ho0CG88MILevu5u7vrJHTA/cQDgE7/OTk5AFDvvB5nZ2f06tULhYWFTcZ58eJFAMCNGzfqvWX/zp07UKlUuHnzJp544olG27p37x5MTU3rvUSsiXfEiBF62+ory8rKAnD/c1JfXDdu3ND+39XVtVXnw8PDQ6/s8uXLUCqVqK2trbf//Px8AEBeXh7GjRtncP0RI0bAwcEB//3vf5GTk4Nx48bBy8sLAwYMqHc+GgD06NEDwP0Ejro+JlVEBhozZgw++eSTRuvIZDLtL9WHaZYQkMlkjbZRW1uL6OhoXL16FYMHD8aUKVPQo0cPmJqaoqioCElJSVAoFHr7af4yNlRxcTFWrFgBExMTrFu3Tm8JgXv37uGPf/wjiouLMXz4cIwePRrW1tYQiUTIycnB0aNHUVtb26K+NTQjK/WNmgD3z93NmzchlUp1kgArK6t665uamkKlUjWrb7lcjuTkZFhYWOhN3vf398fWrVuRmJhYb1JVX//dut3/en2wf83xNZT02tvbNyupqqysBIAmRzubs3yGWCyGUqlEXV2dNuYH4xWJROjZs6fefvV9zu7duwcA+PXXX/Hrr7822Kfmj4PWnI/G+r9w4UKji5hqzouh9a2trfHvf/8bcXFxOH78ONLT0wEAvXr1wuuvv44XX3xRb1/NHx4P32BBXROTKqI2YGlp2eBfppoVlhubPA7cvxR29epVBAQEYPny5TrbUlJSdO6oe1BDfzE3RiaTYcWKFaioqMCaNWv0LikB95cZKC4uxhtvvIE5c+bobNu2bRuOHj1qcL8P0yQnDa1CrSlvKIlqjbS0NO2o0pQpU+qtc/nyZfz+++96l52aSxN3U5+Npmg+Ox999BHGjRvXolg0NAnNvXv39JJZKysrqFQq3L17Vy/xKS8v12tLc3wP3rTQmNacj/o+55r2XnnlFSxYsKDZ/Te3PnB/BG3VqlVQqVT4/fffcerUKXz//ff47LPPYGNjg8mTJ+vU1yTALR09ps6Fc6qI2sDgwYNRU1OjvRzyoIyMDG2dxty6dQsAdO6c0zh37pwAUd6nVCrx3nvv4ffff0dkZGS9/TUVz/nz5/XKNJfDmjtSBPzvnGRmZuptKy4uxq1bt9C3b98mE9KW0KxN5evri4CAAL3/NHOEWrPmkGZ5hfpGRW7fvq2d39QUzWVlzWXA1tDcGam5NPcgTbz1fd7qK9NckmtuXEKdD40nnngCJiYmze7f0PoPEolEGDx4MF577TW8++67AIBjx47p1dOcV0PuQKXOi0kVURvQzMnZtGkT6urqtOXFxcXYsWMHTE1NtauyN0Sz9MDDCUtmZqagiwn+4x//QHp6OqZNm4ZXXnmlyXge/gWYnJysvQzyIBsbG5iYmBj0i/Hpp5+GtbU1EhMTce3aNW25Wq3Gf/7zHyiVSr01rYRQUFCAjIwM9O7dG++99x6WL1+u9997770HsViM5OTkei+7Nsfw4cPh7OyM48eP6y1JEBcXB6VS2ax2nn76aTg7O+O7776rNwGtq6urN9Gtj2Zu1KVLl/S2aUbsvv76a535fCUlJdi1a5defU9PT3h6eiIlJQUpKSl621UqlU68Qp0PDQcHB/j6+uK3337D9u3boVar9epkZWVpL+cZWv/atWv1jp5pRu3qm6ielZUFU1NTDBs2zKBjoc6Jl/+I2oC/vz/S0tJw9OhRhIWFYdy4cdp1qu7du4cFCxY0uYbQuHHj0Lt3b2zfvh3Xrl3DoEGDcPPmTfz666+QSCQ4cuRIq+PMysrCDz/8ALFYDFtb23on60okEu2crm+++QYxMTHIyMiAs7MzcnJycPbsWUyYMEFvwUpLS0s88cQTOHfuHNasWQMXFxeYmJjA39+/wbWqrKys8H//93/44IMP8Oabb8LX1xe2trY4c+YMrly5Ag8PD7z66qutPu6HJSYmQq1W47nnnmvw8qm1tTUkEgkOHTqEX375BX5+fgb3Y2pqiiVLlmDlypV4++23MWnSJDg4OCAzMxOlpaVwd3dv1jMkzczM8MEHH2DZsmWIjo7GqFGj4OrqChMTExQVFeH8+fPo2bMntm3b1mRb3t7esLS0xKlTp/TuYBw1ahSmTp2KxMREhIWFQSKRoLa2Fj///DOGDh2K48eP67X37rvv4u2338b777+PXbt2YfDgwRCLxbh9+zZ+++033L17F4cOHRL0fDzoT3/6E27evInY2FgcOHAAQ4cOhbW1NUpKSnD58mXk5+fjxx9/1M5xMqT+qVOnEBsbi+HDh6N///7o0aMHCgoKcOzYMZiZmenNqZLJZMjKysLo0aP1bvqgrolJFVEbMDExwQcffIBdu3YhKSkJP/zwA7p166ZdUb2hS2wPsrS0xOeff47Y2FicO3cOmZmZGDhwIN555x3Y29sLklRpJtHK5XJs3bq13jp9+vTB4MGD0atXL2zYsAGxsbE4ffo0lEolHn/8cXz66ae4fft2vauAv/POO/jHP/6B48ePQyqVQq1W48knn2x0AVBfX1/Y29tj27ZtSEtL066oPmfOHLz22mv13s7eGiqVCvv374eJiYnOXX/1mTp1Kg4dOoR9+/a1KKkCgLFjx+LTTz/Fl19+icOHD0MsFsPb2xvvvfceli1b1uz5Yh4eHvjyyy+xfft2pKen47fffkP37t3h6OgIiUTS7PgsLS0xZcoU7N27t95nHP7f//0fXFxc8NNPP+HHH3+Ek5MTXnnlFfj6+tabVPXt2xdxcXH47rvv8Msvv2D//v0QiURwcHDAiBEjdFbeF/J8aPTo0QMbN27EDz/8gJ9//hmHDh2CSqWCvb093N3dMWfOHJ2J94bUHzNmDIqKinDu3DmkpaWhuroajo6O2tX+Bw4cqBNLamoq5HJ5vU8/oK7JRF3feCcREbUrmUyG4OBguLq64j//+U+79n3jxg3MmTMHc+fORWhoaLv23ZCOPB9CWbhwIe7cuYOtW7e2eN046lw4p4qIqB1VV1frLaehVCqxceNGyOVynUeotJfHHnsMgYGB2LlzZ5NLfQjNGM+HEM6cOYPz58+3aiFe6nx4+Y+IqB3l5+dj4cKF8PHxQd++fSGTyXD+/Hlcv34dgwYNatZSBG0hPDwcdnZ2KCwsbPGSES1hrOejtaqqqhAVFdXkA8upa+HlPyKidlRRUYHY2FhkZmaivLwcSqUSvXr1gkQiwezZsw16qHJXwPNBXQmTKiIiIiIBcE4VERERkQCYVBEREREJgEkVERERkQCYVBEREREJgEkVERERkQCYVBEREREJgEkVERERkQCYVBEREREJ4P8B/glIBNNi7PwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mu_100: 0.31\n" - ] - } - ], + "outputs": [], "source": [ "asads['unpolarized'] = grb_polarization.create_unpolarized_asad()\n", "\n", @@ -792,51 +634,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "8fc63ee4", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeUklEQVR4nO3deVxU1f8/8BfDvooMmyuBEuKOIi6IigtuRaZYaaaU0gZuffpU9m3P6pNm5ZKZSpJaLlmm5i7hhiKhuCEgiiCmCAyr7DD39we/mRxnQECG4Q6v5+Phozj33Hvf98wMvOecc881EARBABEREVELJ9F1AERERET1waSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJC1ErcfXqVbzxxhvo168f7OzsYGxsDDs7OwwcOBBvvvkmzp49q7bPRx99BAMDA5V/ZmZm6Nq1K15++WWkpaVpPFdwcLDafoaGhpBKpRg5ciR+/vnnRl9HSUkJbG1tYWBggOnTpz+0/q+//opx48bB0dERxsbGkEql6N69O2bMmIGffvqpzn2jo6OV8a9du7bWemlpaWrXa25uDkdHRwwaNAhhYWE4ceJEg6+ViFQZ8NlDRPpNEAR88skn+OSTTyCXy9GvXz/4+PjAzs4ORUVFuHjxIk6fPo2KigqsWrUKoaGhyn0/+ugjfPzxxxg+fDhGjBgBAJDJZPjrr79w5coVtG3bFmfOnIG7u7vKOYODg/HTTz/hqaeeQt++fQEAFRUVSE1Nxe7du1FaWop3330Xn332WYOvZ8OGDXjppZdgYGAAExMT/PPPP5BKpRrrvvzyy1i3bh3Mzc0xceJEuLq6QhAEJCUl4fjx47C2tsatW7dqPdesWbOwceNGGBgYoF+/foiLi9NYLy0tDa6urmjTpg0WLFgAAKiqqkJubi4uXLiAmJgYyOVyBAQEYOPGjXBycmrwdRMRAIGI9NpHH30kABA6deoknDx5UmOdu3fvCosWLRI+++wzlfIPP/xQACB8+OGHKuXV1dXChAkTBABCcHCw2vFmzZolABA2bNigti0uLk4AIJiZmQmlpaUNvp5BgwYJEolEeOuttwQAwrJlyzTWO3HihABA6Nixo5CRkaG2vaKiQjh06FCt58nLyxPMzc0Fd3d3YcqUKQIA4dy5cxrr3rhxQwAguLi4aNx+/fp1YcSIEQIAoW/fvo26biISBA4PEemx1NRULF68GCYmJti/fz98fX011nN0dMTnn3+Ot956q17HlUgkCA4OBgD8/fffDYqpf//+sLOzQ1lZGYqKihq07+XLlxETE4NRo0bh7bffhomJCdavX6+x7qlTpwAAU6ZMQceOHdW2GxsbY8yYMbWea/PmzSgtLUVwcLDyWusaIqqLm5sb9u7di27duuH8+fNYs2ZNo45D1NoxaSHSYxs2bEBVVRWCgoLQo0ePh9Y3MjJq8DmMjY0bVP/cuXPIzc2Fi4sLHBwcGrSvImkIDg6GnZ0dnnzySSQmJmqcL6IYMkpJSWnQORTWrVsHiUSCmTNnYty4cXB2dsYvv/yC4uLiRh3PwsICb775JgA80pweotaMSQuRHouOjgYAjBw5skmPW11djfDwcADA0KFDa633xx9/4KOPPsJHH32Ed999F9OnT8ewYcPQsWNHbNq0qUHnLCsrw+bNm9GmTRs8/fTTAFBnD8i4cePQpk0b7Nu3D4GBgfjll1+QkpICoR7T+GJiYnDx4kWMHj0aHTt2hJGREZ5//nkUFhZi69atDYr7fop5QfHx8aiqqmr0cYhaq4Z/rSIi0cjMzAQAdOjQQW1bWloaIiIiVMpsbW2VE0nvd/ToUXz00UcAgNzcXBw+fBhJSUno3r073n///VrPv2vXLuzatUulzNzcHNOnT0evXr0adC2//vor8vLy8PLLL8Pc3BwAlD0gO3bswIoVK9C2bVtl/Q4dOmDnzp0ICQnBnj17sGfPHgCAtbU1hgwZghkzZmDatGkwNDRUO9e6desA/JsUKf5/2bJlWLt2LWbPnt2g2O+PCahJ+nJzc+Ho6Nio4xC1WrqeVENE2uPp6SkAEPbv36+2LSoqSgCg8u/BiaSKibia/vXt21fIz8/XeF5NE3GrqqqEtLQ04eOPPxYMDAwEDw8PoaioqN7XMnToUAGAcPr0aZXy//znPwIAYfny5Rr3q66uFo4fPy58+umnwuTJkwUnJyflNYwePVooKytTqV9QUCBYWloKtra2ahNm+/fvLwAQLly4oFL+sIm4CiUlJcpzZ2Vl1fPKiUiBw0NEeszZ2RkAcPv2bbVtI0aMgCAIEAQBlZWVdR7nww8/hCAIqK6uxs2bNzFv3jycP38ezzzzDORyeb1iMTQ0hIuLCz744ANMnz4dycnJWLlyZb32TUxMxMmTJ9GtWzcMGjRIZZuiN0TRO/IgiUQCPz8/vPfee/jtt99w584dHDx4EM7Ozjhy5Ai+//57lfo///wziouL8eyzz8LMzEzjuRo7IVfxOhgaGqr0ChFR/TBpIdJjiruFIiMjm+R4EokEnTp1wvLlyxEUFIRDhw5h1apVDT7OwIEDAQCxsbH1qq9IEpKSktQWcVMMM12+fFl5x1BdDAwMEBAQgMWLFwMA/vrrL5XtiuTnhx9+UDvX3LlzAdQkNqWlpfWK/X5RUVEAau6gasykZ6LWjp8aIj0WHByM//3vf9ixYwfee+89eHp6Ntmxly1bhj179uCTTz5BcHAwbGxs6r1vXl4eANSrl6a8vBybNm1S3mZtYGCgVufWrVs4ePAg1q1bhyFDhtQrBmtrawBQmZgbFxeH+Ph4tG/fHuPHj9e4399//42LFy9i+/btmDVrVr3OBdSs5Lts2TIAwPPPP1/v/YjoProdnSIibVMsLufi4iJER0drrJOdnV3nnJYHF5dTCAsLEwAIH3zwgUp5XYvL5ebmCo899pgAQPj6668fGv/PP/8sABDGjx9fax3FPBQLCwvlPJv9+/cLv/32m1BRUaFWv6ioSBg8eLAAQFiyZImyPCQkRAAgfPnll7We68iRIwIAYciQIcqyh81pSU1NVS4u5+XlpTaPhojqhz0tRHrugw8+gCAI+PTTT+Hr64v+/fsrl/HPz89HWloajhw5AgAYNmxYg4797rvvIjw8HN988w3mzp0Le3t7le1//PGH8vlE1dXVuHXrFvbs2QOZTIYBAwbg1Vdffeg5FENDc+bMqbWOjY0Npk6dioiICGzevBmhoaFISkrCwoUL0bZtW/j5+cHd3R1GRka4desW9u7di/z8fAwcOBBhYWEAgHv37mHLli0wNjauswdl5MiRcHNzw6lTp5CQkKCy/k1+fr7yLquqqirk5eXhwoULOH36NORyOcaNG4effvoJpqamD71uItJA11kTETWPpKQkYcGCBUKfPn2ENm3aCEZGRkLbtm0Fb29vYcGCBcLZs2fV9nlYT4sgCMIbb7whABDeeOMNZZmip+XBf9bW1sKAAQOEJUuW1Gsp++TkZAGA4OTkpLHH5H7R0dECAKFPnz6CINT0HoWHhwvPPfec4OnpKdja2gpGRkaCvb29MGLECOG7774TysvLlfuvXbtWACA8/fTTD43rs88+EwAI8+bNEwTh356W+/+ZmpoKDg4OwsCBA4WwsDDhxIkTDz0uEdWND0wkIiIiUeDdQ0RERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiERBb5KWsrIyJCcno6ysTNehEBERkRboTdKSnp6OkJAQpKen6zoUIiIi0gK9SVqIiIhIvzFpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApGDd2hpKQEW7duxZUrV5CYmIiioiIsWrQI48ePV6l35coVHDhwAFeuXMH169dRXV2N48eP13rcP//8E1u3bkVmZiYcHBwQFBSEKVOmNPyKiIiISC81uKeloKAAERERSE9PR9euXWutFxMTgz///BMGBgZo3759ncfctWsXlixZAldXV8yfPx89e/bE8uXL8fPPPzc0PL1QkleGsztSUJJXputQiIiIWowG97RIpVLs3LkTUqkUSUlJePnllzXWmzRpEp5//nmYmprim2++QUZGhsZ65eXlWL9+PQYPHoxPP/0UAPDkk09CLpdj48aNCAwMhLW1dUPDFLWS/HLE/34NLv0dYdHWTNfhEBERtQgN7mkxMTGBVCp9aD07OzuYmpo+tN65c+dQUFCASZMmqZQ//fTTKC0txenTpxsaIhEREemhBve0NLWUlBQAQLdu3VTKPTw8IJFIcPXqVQQEBKjtl5OTA5lMpvw5PT1du4ESERGRTuk8aZHJZDA0NETbtm1Vyo2NjWFjY6OSmNxv9+7diIiIaIYIiYiIqCXQedJSXl4OIyPNYZiYmKC8vFzjtsDAQPj6+ip/Tk9Px+LFi7USIxEREemezpMWU1NTVFVVadxWUVFR67wYe3t72NvbazM0IiIiakF0vricVCpFdXU18vLyVMorKytRWFhYr0m/REREpP90nrS4u7sDAJKSklTKk5KSIJfLlduJiIioddN50tKvXz/Y2Nhg165dKuW7du2CmZkZBg8erKPIiIiIqCVp1JyW3377Dffu3VPe2RMdHY2srCwAwJQpU2BlZYXMzEwcPHgQAJCcnAwA+OmnnwAAzs7OGDt2LICaOS2zZ8/GN998gw8++AA+Pj64cOECDh06hJCQENjY2DzaFRIREZFeaFTSsm3bNmRmZip/Pn78uPK5QgEBAbCyssKdO3cQHh6usp/i5759+yqTFqBmITkjIyNs27YN0dHRcHR0RFhYGKZOndqY8IiIiEgPNSpp2b59+0PreHl51fmAxAc9+eSTePLJJxsTDhEREbUCOp/TQkRERFQfTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFpaGLlcQHZqAQAgO7UAcrmg44iIiIhaBiNdB0D/uhGbiZiNiSjOLQMARIcn4PzO6xg00xOuPs46jo6IiEi32NNSDyV5ZTi7IwUleWVaO8eN2ExEfhuvTFgUinPLEPltPG7EZmrt3ERERGLQ4J6WkpISbN26FVeuXEFiYiKKioqwaNEijB8/Xq1uWloaVq1ahUuXLsHIyAiDBw9GWFgYbG1tVerJ5XJs3boVf/zxB3Jzc9GxY0fMmDEDo0ePbvSFNaWS/HLE/34NLv0dYdHWrMmPL5cLiNmYWGedmE2JcPF2gkRi0OTnJyIiEoMG97QUFBQgIiIC6enp6Nq1a631srKyMHfuXPzzzz8ICQnBc889h9OnT+ONN95AZWWlSt1169ZhzZo1GDBgAObPnw8nJyd88skniIyMbPgViVBmUq5aD8uDimVlyEzKbaaIiIiIWp4G97RIpVLs3LkTUqkUSUlJePnllzXW27x5M8rKyrB+/Xo4OTkBADw9PfHGG29g//79CAwMBABkZ2dj27ZtePrpp7Fw4UIAwBNPPIG5c+di9erVGDFiBAwNDRt7faJQml/epPWIiIj0UYN7WkxMTCCVSh9a79ixYxgyZIgyYQEAb29vdOrUCVFRUcqykydPoqqqCk8//bSyzMDAAJMmTUJ2djYSEhIaGqLomNuaNmk9IiIifaSVibjZ2dnIy8uDh4eH2jZPT0+kpKQof05JSYG5uTlcXFzU6im26zvnbnawtKt7royl1AzO3eyaKSIiIqKWRyu3PMtkMgDQ2CMjlUpRWFiIiooKmJiYQCaToW3btjAwMFCrBwA5OTkaz5GTk6M8DwCkp6c3VfjNTiIxwKCZnoj8Nr7WOoNe8OQkXCIiatW0krSUl9fMvTA2NlbbZmJioqxjYmKC8vLyh9bTZPfu3YiIiGiiiHXP1ccZoxZ4qazTAtT0sAx6geu0EBERaSVpMTWtmXvx4F1CAFBRUaFSx9TUtF71HhQYGAhfX1/lz+np6Vi8ePGjBa5jrj7OcPF2QnJUBqLDE+A7uwc8/Duxh4WIiAhaSloUQzv3D98oyGQy2NjYKHtSpFIp4uPjIQiCyhCRYl97e3uN57C3t691m5hJJAZwcGsDAHBwa8OEhYiI6P/TykRcBwcH2NraIjk5WW1bYmKiyvouXbt2RVlZmdqclCtXrii3ExEREWltGf/hw4fj1KlTuHv3rrLs7NmzyMjIgL+/v7Js6NChMDIyws6dO5VlgiBg165dcHBwQM+ePbUVIhEREYlIo4aHfvvtN9y7d085hBMdHY2srCwAwJQpU2BlZYUZM2bg6NGjWLBgAYKCglBaWootW7bAzc1NZcl/R0dHTJ06FVu2bEFVVRU8PT1x4sQJXLx4Ee+//77eLyxHRERE9dOopGXbtm3IzPz3AX7Hjx/H8ePHAQABAQGwsrKCk5MTVqxYgVWrVuGHH35QPnsoNDRUOZ9F4ZVXXoG1tTV2796NAwcOoGPHjnjvvfcwZsyYR7g0IiIi0ieNSlq2b99er3qurq5YtmzZQ+tJJBLMmDEDM2bMaEw4RERE1ApobU4LERERUVNi0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtDyGXC8hOLQAAZKcWQC4XdBwRERFR62Sk6wBashuxmYjZmIji3DIAQHR4As7vvI5BMz3h6uOs4+iIiIhaF/a01OJGbCYiv41XJiwKxblliPw2HjdiM3UUGRERUevEpEUDuVxAzMbEOuvEbErkUBEREVEzYtKiQWZSrloPy4OKZWXITMptpoiIiIiISYsGpfnlTVqPiIiIHh2TFg3MbU2btB4RERE9Oq3ePZScnIx169bh8uXLEAQBPXr0wGuvvQZ3d3e1upcuXcKaNWtw9epVWFpawt/fHyEhIbCwsNBmiBo5d7ODpZ1ZnUNEllIzOHeza8aoiIiIWjet9bQkJycjNDQUt2/fRnBwMIKDg3Hr1i3MmzcPN2/eVKmbkpKChQsXoqysDGFhYZg4cSL27NmDDz/8UFvh1UkiMcCgmZ511hn0gickEoNmioiIiIi01tMSHh4OU1NTfP/992jTpg0AYMyYMXj++eexdu1aLF68WFl37dq1sLa2xooVK2BpaQkAaNeuHZYsWYLY2Fj4+PhoK8xaufo4Y9QCL5V1WoCaHpZBL2h3nRYLW1N4Te4KCw4/ERERKWmtp+XixYvw9vZWJiwAYG9vj759++L06dMoKSkBABQXFyMuLg4BAQHKhAUAxo4dC3Nzc0RFRWkrxIdy9XHGsytGwHd2DwCA7+weeHb5CK0vLGfR1gz9g9xh0dZMq+chIiISE60lLZWVlTAxMVErNzMzQ2VlJW7cuAEASE1NRXV1NTw8PFTqGRsbw93dHSkpKdoKsV4kEgM4uNUkXg5ubTgkREREpCNaGx7q1KkTrly5gurqahgaGgKoSWSuXLkCAMjOzgYAyGQyAIBUKlU7hlQqxYULFzQePycnR7kvAKSnpzdp/ERERNSyaC1pefrpp7Fs2TJ8+eWXmD59OuRyOTZu3KhMNCoqKgAA5eU1a50YGxurHcPExERZ70G7d+9GRESEdoInIiJq4UryypAYmQHPUZ1azXQCrSUtTz31FLKysrBlyxYcOHAAANCtWzdMmzYNmzZtgrm5OQDA1LRmsmllZaXaMSoqKjQOMQFAYGAgfH19lT+np6erTO4lIiLSZyX55Yj//Rpc+jsyaWkKISEheO6553Djxg1YWlqiS5cuWLt2LYCa4SPg32Gh+4d6FGQyGezt7TUe297evtZtREREpH+0viKutbU1evfujS5dugAA4uLi4ODggM6dOwMAXF1dYWhoiOTkZJX9KisrkZKSgq5du2o7RCIiIhKBZl3GPzIyEklJSZg6dSokkppTW1lZwdvbG4cOHVLeBg0ABw8eRGlpKfz9/ZszRCIiImqhtDY8dP78efz0008YMGAAbGxscOXKFezfvx8DBw5EUFCQSt05c+YgNDQUc+fORWBgILKysrBt2zYMGDAAAwcO1FaIREREJCJaS1ocHBwgkUiwZcsWlJaWwtnZGbNnz8azzz4LIyPV03p4eODrr7/GmjVrsHLlSlhYWGDixIl45ZVXtBUeERERiYzWkpYOHTpg2bJl9a7fu3dvrF69WlvhEBERkcg165wWIiIiosZi0kIoySvD2R0pKMkre3hlIiIiHWHSQsoFikryy3UdChERUa2YtBAREZEoMGkhIiIiUWDSQkRERKLApIWIiIhEgUkLERERiQKTFiIiIhIFJi1EREQkCkxaiKjBuCAhEekCkxYiajAuSEhEusCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFrqwcLWFF6Tu8LC1lTXoRAREbVaTFrqwaKtGfoHucOirZmuQyEiIoJcLiA7tQAAkJ1aALlc0HFEzcNI1wEQERFR/d2IzUTMxkQU55YBAKLDE3B+53UMmukJVx9nHUenXexpISIiEokbsZmI/DZembAoFOeWIfLbeNyIzdRRZM2DSQsREZEIyOUCYjYm1lknZlOiXg8VaXV4KCMjA+Hh4bh06RIKCwvh5OSE0aNH47nnnoOZ2b/zQy5duoQ1a9bg6tWrsLS0hL+/P0JCQmBhYaHN8IiIiEQjMylXrYflQcWyMmQm5aJ9d2kzRdW8tJa03L17F6+88gqsrKzw9NNPw8bGBgkJCfjxxx+RnJyML774AgCQkpKChQsXwsXFBWFhYcjKysK2bdtw69YtLF26VFvhERERiUppfnmT1hMjrSUthw4dwr179/Ddd9/B1dUVABAYGAi5XI6DBw+iqKgI1tbWWLt2LaytrbFixQpYWloCANq1a4clS5YgNjYWPj4+2gqRiIhINMzruexGfeuJkdbmtBQXFwMA2rZtq1IulUohkUhgZGSE4uJixMXFISAgQJmwAMDYsWNhbm6OqKgobYVHREQkKs7d7GBpV/fSG5ZSMzh3s2umiJqf1pIWLy8vAMCXX36JlJQU3L17F5GRkdi1axemTJkCc3NzpKamorq6Gh4eHir7Ghsbw93dHSkpKdoKj4ioTiV5ZTi7IwUleXXPISBqLhKJAQbN9KyzzqAXPCGRGDRTRM1Pa8NDAwcOxOzZs7F582ZER0cry1944QWEhIQAAGQyGYCa3pcHSaVSXLhwodbj5+TkKPcHgPT09KYKvVV5cIEiOxcbvX7DE9VXSX454n+/Bpf+jlxYkloMVx9njFrgpbJOC1DTwzLoBf1fp0Wrdw+1a9cOffr0wfDhw2FjY4PTp09j8+bNsLOzw5QpU1BeXjNZyNjYWG1fExMTVFRU1Hrs3bt3IyIiQluhtwqteYEiIiKxcvVxhou3E5KjMhAdngDf2T3g4d+pVXzh1FrSEhkZiaVLl+Lnn3+Go6MjAGD48OEQBAE//PADRo8eDVPTmslClZWVavtXVFTAxMSk1uMHBgbC19dX+XN6ejoWL17cxFehvxQLFD1IsUDRqAVeTFyIiFooicQADm5tAAAObm1aRcICaHFOy86dO+Hu7q5MWBR8fX1RVlaGlJQU5bDQ/cM8CjKZDPb29rUe397eHh4eHsp/Li4uTXsBeowLFBER5+yQGGktacnLy4NcLlcrr6qqAgBUV1fD1dUVhoaGSE5OVqlTWVmJlJQUdO3aVVvhtWoNWaCIiPSTYs5OiR6v6UH6R2tJS6dOnZCSkoKMjAyV8sjISEgkEnTp0gVWVlbw9vbGoUOHUFJSoqxz8OBBlJaWwt/fX1vhtWpcoIiIiMRIa3NannvuOZw5cwZhYWGYPHkybGxscOrUKZw5cwZPPPGEcuhnzpw5CA0Nxdy5cxEYGKhcEXfAgAEYOHCgtsJr1bhAERERiZHWkpa+ffviu+++w4YNG7Bz504UFhaiXbt2CAkJwbRp05T1PDw88PXXX2PNmjVYuXIlLCwsMHHiRLzyyivaCq3VUyxQVNcQkb4vUEREROKj1Vueu3fvXq/nB/Xu3RurV6/WZih0H8UCRZruHlLQ9wWKqPF0sbZPSV4ZEiMz4DmqE9dMIWrFtDanhVo2xQJFDy4JbSk14+3OVKsbsZnYNu8oosMTANSs7bNt3lHciM3U6nk5aZSIAC33tFDL1poXKKKG49o+RKRr7Glp5VrrAkXUMFzbh4haAiYtRPRQXNuHiFoCJi1E9FBc24eIWgImLUT0UFzbh4haAiYtRPRQirV96sK1fYhI25i0ENFDKdb2qQvX9iEibWPSQkT1wrV9iEjXuE4LEdUb1/YhIl1iTwsRNQjX9iEiXWHSQkRERKLApIWIiIhEgUkLERERiQKTFiIiIhIFJi1EREQkCkxaiIiISBSYtBARtQAleWU4uyMFJXl1P02bqDVj0kJE1AKU5Jcj/vdrKOGTsolqxaSFiIiIRIFJCxEREYkCkxYiogfI5QKyUwsAANmpBZDLBR1HREQAH5hIRKTiRmwmYjYmoji3ZkJsdHgCzu+8jkEzPfkkayIdY08LEdH/dyM2E5HfxisTFoXi3DJEfhuPG7GZOoqMiAAmLUREAGqGhGI2JtZZJ2ZTIoeKiHSISQsREYDMpFy1HpYHFcvKkJmU20wRaQ/n7JBYcU4LERGA0nquj1Lfei0V5+zoDwtbU3hN7goLW1Ndh9Js2NNCRATAvJ6/+OtbryXinB39YtHWDP2D3GHR1kzXoTQbrfW0fP755zhw4ECt23/77Tc4ODgAAC5duoQ1a9bg6tWrsLS0hL+/P0JCQmBhYaGt8IiIVDh3s4OlnVmdQ0SWUjM4d7NrxqiaTn3n7Lh4O0EiMWimqIgaRmtJS2BgILy9vVXKBEHAsmXL4OzsrExYUlJSsHDhQri4uCAsLAxZWVnYtm0bbt26haVLl2orPCISiQfnX9i52Gjlj6pEYoBBMz0R+W18rXUGveAp2j/oDZmz0767tJmiImoYrSUtPXv2RM+ePVXKLl68iLKyMowZM0ZZtnbtWlhbW2PFihWwtLQEALRr1w5LlixBbGwsfHx8tBUiEbVwzT3/wtXHGaMWeKmcE6jpYRn0grjnfLSWOTuk35p1TsuRI0dgYGCA0aNHAwCKi4sRFxeHgIAAZcICAGPHjoW5uTmioqKaMzwiakF0Nf/C1ccZz64YAd/ZPQAAvrN74NnlI0SdsACtY84O6b9mS1qqqqoQFRWFnj17ol27dgCA1NRUVFdXw8PDQ6WusbEx3N3dkZKS0lzhEVELous1UyQSAzi4tQEAOLi1Ee2Q0P0Uc3bqIuY5O9Q6NFvSEhsbi4KCApWhIZlMBgCQStXHT6VSKXJycmo9Xk5ODpKTk5X/0tPTmz5oItKJ1rRmSnNRzNmpi5jn7FDr0GzrtBw5cgRGRkbw9/dXlpWX14ydGhsbq9U3MTFBRUVFrcfbvXs3IiIimjzO1qg13utPLRvnX2iHPs/ZodahWZKWkpISnDx5Ej4+PmjTpo2y3NS05o9kZWWl2j4VFRUwMTGp9ZiBgYHw9fVV/pyeno7Fixc3YdSth+Jef6KWgvMvtMfVxxku3k5IjspAdHgCfGf3gId/J/awkCg0S9Jy8uRJtbuGgH+HhRTDRPeTyWSwt7ev9Zj29vZ1bici8dL3NVN0TR/n7FDr0CxzWg4fPgxzc3OVnhEAcHV1haGhIZKTk1XKKysrkZKSgq5duzZHeETUwnD+BRFpovWkJT8/H3FxcRg2bBjMzFRnrltZWcHb2xuHDh1CSUmJsvzgwYMoLS1Vmf9CRK2LYv7Fg3e8WErNMGqBF+dfELVCWh8eioyMRHV1tdrQkMKcOXMQGhqKuXPnIjAwULki7oABAzBw4EBth0dELRjnXxDR/bTe03LkyBG0bdsW/fv317jdw8MDX3/9NUxNTbFy5Urs2bMHEydOxKeffqrt0IhIBDj/gogUtN7T8v333z+0Tu/evbF69Wpth0JEREQi1qzL+BORfuDaPkSkC822uBwR6Q+u7UNEusCeFtKJkrwynN2RgpK8updqJyIiUmDSQjpRkl+O+N+voYTLsBMRUT0xaSEi0jG5XEB2agEAIDu1QGtPryYSO85pISLSoRuxmSoPMIwOT8D5ndcxaCYfYEj0IPa0EBHpyI3YTER+G6/2jKXi3DJEfhuPG7GZOoqMSF1LmIvIpIWISAfkcgExGxPrrBOzKZFDRdRitIS5iExaiIh0IDMpt86nWANAsawMmUm5zRQRUcvHpIWISAdK6/lttb71iFoDJi1ERDpgXs/VhOtbj6g1YNJCpAUtYcIatWzO3exgaWdWZx1LqRmcu9k1U0RELR+TFiItaAkT1qhlk0gMMGimZ511Br3gyadaE92HSQsRkY64+jhj1AIvtR4XS6kZRi3w4jotRA/g4nJERDrk6uMMF28nJEdlIDo8Ab6ze8DDvxN7WIg0YE8LEZGOSSQGcHBrAwBwcGvDhIWoFkxaiIiISBSYtBAREZEoMGkhIiIiUWDSQkRERKLApIWISAMLW1N4Te4KC65IS9Ri8JZnIiINLNqaoX+Qu67DIKL7sKeFiIiIRIFJCxEREYkCkxYiolaIc3ZIjDinhYioFeKcHRIj9rQQERGRKDBpISIiIlFg0kJELR7nXxAR0AxzWpKTk7FhwwZcunQJFRUVaN++PZ588kkEBQUp61y6dAlr1qzB1atXYWlpCX9/f4SEhMDCwkLb4ZEOyOUCslMLAADZqQWwc7HhU22pTpx/QUSAlpOW2NhYLFq0CO7u7pg1axbMzc3xzz//IDs7W1knJSUFCxcuhIuLC8LCwpCVlYVt27bh1q1bWLp0qTbDIx24EZuJmI2JKM4tAwBEhyfg/M7rGDTTE64+zjqOjoiIWjKtJS3FxcX4/PPPMWjQIHz66aeQSDSPRK1duxbW1tZYsWIFLC0tAQDt2rXDkiVLEBsbCx8fH22FSM3sRmwmIr+NVysvzi1D5LfxGLXAi4kLERHVSmtzWo4cOYLc3FyEhIRAIpGgtLQUcrlcpU5xcTHi4uIQEBCgTFgAYOzYsTA3N0dUVJS2wqNmJpcLiNmYWGedmE2JkMuFZoqIiIjERms9LXFxcbC0tEROTg7+7//+DxkZGTA3N0dAQADCwsJgamqK1NRUVFdXw8PDQ2VfY2NjuLu7IyUlpdbj5+TkQCaTKX9OT0/X1qVQE8hMylUOCdWmWFaGzKRctO8ubaaoiIiaTkleGRIjM+A5qhMs2prpOhy9pLWk5datW6iursa7776LiRMn4uWXX8b58+fx22+/4d69e/jwww+VSYdUqv5HSiqV4sKFC7Uef/fu3YiIiNBW+NTESvPLm7QeEVFLU5Jfjvjfr8Glv6PeJS0t5QYKrSUtpaWlKCsrw1NPPYX58+cDAIYPH47Kykrs3r0bL730EsrLa/5AGRsbq+1vYmKCioqKWo8fGBgIX19f5c/p6elYvHhxE18FNRXzet6qWt96RETUPFrSDRRam9Nialrzx2fUqFEq5aNHjwYAJCQkKOtUVlaq7V9RUQETE5Naj29vbw8PDw/lPxcXl6YKnbTAuZsdLO3q/uZhKTWDcze7ZoqIiIgeRnEDxYPD+4obKG7EZjZrPFpLWhRDPnZ2qn+E2rZtCwAoKipS1rl/boqCTCaDvb29tsKjZiaRGGDQTM866wx6wZPrtRARtRAt8QYKrSUtism196/JAtRMoAUAW1tbuLq6wtDQEMnJySp1KisrkZKSgq5du2orPNIBVx9njFrgpdbjYik106vbnR8c+22OD3RJXhnO7khBSV7dk52JiOqrITdQNBetJS3+/v4AgL1796qU7927F4aGhvDy8oKVlRW8vb1x6NAhlJSUKOscPHgQpaWlymOQ/nD1ccazK0bAd3YPAIDv7B54dvkIvUlYbsRmYtu8o4gOTwBQM/a7bd5RrXehKiYAlnAiMxE1kZZ4A4XWJuI+/vjjmDBhAvbt24fq6mr07dsX58+fR1RUFGbMmKEc+pkzZw5CQ0Mxd+5cBAYGKlfEHTBgAAYOHKit8EiHJBIDOLi1AQA4uLXRmyEhLp5HRPqkJd5AodVl/N988004OTlh//79OHHiBJycnBAWFoZnnnlGWcfDwwNff/011qxZg5UrV8LCwgITJ07EK6+8os3QiJpUfcd+Xbyd9CZJIyL9priBoq4houa+gUKrSYuRkRFefPFFvPjii3XW6927N1avXq3NUIi0iovnEZG+UdxAoakHWaG5b6DQ2pwWotakJY79krhY2JrCa3JXWHCtImpBWtoNFFrtaSFqLVri2C+Ji0VbM/QPctd1GERqXH2c4eLthOSoDESHJ8B3dg94+HfSyVA3e1qImgAXzyMifdZSbqBg0kLUBLh4HhGR9jFpIWoiLW3sl4hI33BOC1ETakljv0RE+oY9LURNrKWM/RIR6RsmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIgekVwuIDu1AACQnVoAuVzQcUT6ic8eIiIiegQ3YjMRszERxbllAIDo8ASc33kdg2Z68kGpTYw9LURERI10IzYTkd/GKxMWheLcMkR+G48bsZk6ikw/MWkhIiJqBLlcQMzGxDrrxGxK5FBRE2LSQiRyHEsn0o3MpFy1HpYHFcvKkJmU20wR6T/OaSESMY6lE+lOaX55k9ajh2NPC5FIcSydSLfMbU2btB49HJMWIhHiWDqR7jl3s4OlnVmddSylZnDuZtdMEek/Ji2kExa2pvCa3BUW/AbSKBxLJ9I9icQAg2Z61lln0AuekEgMmiki/cekhXTCoq0Z+ge5w6Jt3d9SSDOOpRO1DK4+zhi1wEutx8VSaoZRC7w4t6yJcSIukQhxLJ2o5XD1cYaLtxOSozIQHZ4A39k94OHfiT0sWsCeFiIR4lg6UcsikRjAwa0NAMDBrQ0TFi3RWk9LfHw85s+fr3Hb999/jx49eih/vnTpEtasWYOrV6/C0tIS/v7+CAkJgYWFhbbCIxI1xVh65LfxtdbhWDoRNaWWMBdR68NDU6ZMgaen6kSlDh06KP8/JSUFCxcuhIuLC8LCwpCVlYVt27bh1q1bWLp0qbbDIxItxVj6/eu0ADU9LINe4DotRNS0FHMRdUnrSUufPn0wYsSIWrevXbsW1tbWWLFiBSwtLQEA7dq1w5IlSxAbGwsfHx9th0gkWhxLJ6LWpFnmtJSUlKCqqkqtvLi4GHFxcQgICFAmLAAwduxYmJubIyoqqjnCIxI1jqUTUWuh9Z6WL774AqWlpTA0NETv3r3x2muvoVu3bgCA1NRUVFdXw8PDQ2UfY2NjuLu7IyUlRdvhEWlFSxj7JSLSN1pLWoyMjDB8+HAMGjQIbdq0QVpaGrZt24awsDCsXr0ajz/+OGQyGQBAKpWq7S+VSnHhwoVaj5+Tk6PcHwDS09Ob/iKIGqkljP0SEekbrSUtvXr1Qq9evZQ/Dx06FCNGjMCLL76ItWvX4quvvkJ5ec3CV8bGxmr7m5iYoKKiotbj7969GxEREU0eNxEREbVMzbq4XMeOHTF06FAcP34c1dXVMDWt6TqvrKxUq1tRUQETE5NajxUYGAhfX1/lz+np6Vi8eHHTB01EREQtQrOviOvo6IjKykqUlZUph4XuH+ZRkMlksLe3r/U49vb2dW4nIqKWoySvDImRGfAc1YmP76BGa/YVcW/fvg0TExOYm5vD1dUVhoaGSE5OVqlTWVmJlJQUdO3atbnDIyIiLSjJL0f879dQwudh0SPQWtKSn5+vVnbt2jVER0djwIABkEgksLKygre3Nw4dOoSSkhJlvYMHD6K0tBT+/v7aCo+IiIhERmvDQx9++CFMTU3Rs2dPtG3bFmlpadizZw/MzMzwyiuvKOvNmTMHoaGhmDt3LgIDA5Ur4g4YMAADBw7UVnhEREQkMlpLWvz8/HD48GFs374dxcXFsLW1xbBhwxAcHIyOHTsq63l4eODrr7/GmjVrsHLlSlhYWGDixIkqiQ0RERGR1pKWoKAgBAUF1atu7969sXr1am2FQkRERHqg2SfiEhERETUGkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtRERETcDC1hRek7vCwtZU16HoLa09e4iIiKg1sWhrhv5B7roOQ6+xp4VahZK8MpzdkYKSvDJdh0JERI3EpIVahZL8csT/fg0l+eW6DoWIiBqJSQuRHuBYOhG1BpzTQqQHOJZORK0Be1qIiIhIFJi0EBGRVsnlArJTCwAA2akFkMsFrZ+Tk+/1E4eHiIhIa27EZiJmYyKKc2uSh+jwBJzfeR2DZnrC1cdZa+dVTL536e8Ii7ZmWjsPNS/2tBARkVbciM1E5LfxyoRFoTi3DJHfxuNGbKaOIiOxYtJCRERNTi4XELMxsc46MZsSm2WoiPQHkxYiImpymUm5aj0sDyqWlSEzKbeZIiJ9wKSFiIiaXGk9F3Ksbz0igEkLERFpgXk9Fzqsbz0igEkLERFpgXM3O1ja1X3XjqXUDM7d7JopItIHTFqIiKjJSSQGGDTTs846g17whERi0EwRkT5g0kJERFrh6uOMUQu81HpcLKVmGLXAS6vrtJB+4uJyRESkNa4+znDxdkJyVAaiwxPgO7sHPPw7sYeFGoU9LUREpFUSiQEc3NoAABzc2jBhoUZr1qRl48aNGDZsGGbNmqW27dKlSwgNDcWYMWMwadIkLF++HCUlJc0ZHhEREbVgzTY8lJWVhc2bN8Pc3FxtW0pKChYuXAgXFxeEhYUhKysL27Ztw61bt7B06dLmCpGIiIhasGZLWlavXo3u3btDLpejoKBAZdvatWthbW2NFStWwNLSEgDQrl07LFmyBLGxsfDx8WmuMImIiKiFapbhofPnz+PYsWOYO3eu2rbi4mLExcUhICBAmbAAwNixY2Fubo6oqKjmCJGIiIhaOK33tFRXV2P58uWYOHEiunTporY9NTUV1dXV8PDwUCk3NjaGu7s7UlJSNB43JycHMplM+XN6enrTBk5EREQtitaTll27duHu3bv45ptvNG5XJB5SqVRtm1QqxYULFzTut3v3bkRERDRZnKS/5HIB2ak1Q5LZqQWwc7Hh3QtERCKk1aSloKAAP/74I2bOnAlbW1uNdcrLax6WZWxsrLbNxMQEFRUVGvcLDAyEr6+v8uf09HQsXrz40YMmvXIjNhMxGxOVT5uNDk/A+Z3XMWimJxe2IiISGa0mLevXr4e1tTWmTJlSax1T05qHZVVWVqptq6iogImJicb97O3tYW9v3zSBkl66EZuJyG/j1cqLc8sQ+W08V+QkIhIZrU3EzcjIwJ49exAUFIScnBzcuXMHd+7cQUVFBaqqqnDnzh0UFhYqh4Xun5+iIJPJmJhQo8jlAmI2JtZZJ2ZTIuRyoZkiIiKiR6W1npacnBzI5XIsX74cy5cvV9v+7LPPIigoCC+99BIMDQ2RnJyMkSNHKrdXVlYiJSUF/v7+2gqR9FhmUq5ySKg2xbIyZCblon139flURCRenMemv7SWtLi6uuKzzz5TK1+/fj1KSkowb948tG/fHlZWVvD29sahQ4cwa9YsWFhYAAAOHjyI0tJSJi3UKKX55U1aj4jEgfPY9JvWkhZbW1v4+fmplf/6668AoLJtzpw5CA0Nxdy5cxEYGKhcEXfAgAEYOHCgtkIkPWZua9qk9Yio5eM8Nv3XIh6Y6OHhga+//hqmpqZYuXIl9uzZg4kTJ+LTTz/VdWgkUs7d7GBpZ1ZnHUupGZy72TVTRESkTZzH1jo02zL+CitWrNBY3rt3b6xevbqZoyF9JZEYYNBMT43fuhQGveDJcW4iPcF5bK1Di+hpIdIGVx9njFrgpdbjYik1YzcxkZ7hPLbWodl7Woiak6uPM1y8nZAclYHo8AT4zu4BD/9O7GEh0jOcx9Y6sKeF9J5EYgAHtzYAAAe3NkxYiPQQ57G1DkxaiIhI9BTz2OrCeWzix6SFiIj0Auex6T/OaSEiIr3BeWz6jT0tRESkdRa2pvCa3BUWzTARlvPY9Bd7WoiISOss2pqhf5C7rsMgkWNPCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kJERESiwKSFiIiIRIFJCxEREYkCkxYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKDBpISIiIlFg0kKtgoWtKbwmd4WFramuQyEiokYy0nUARM3Boq0Z+ge56zoMIiJ6BOxpISIiIlFg0kJERESiwKSFiIj0Duex6SfOaSEiIr3DeWz6SWtJy40bN7BhwwYkJycjNzcXZmZmcHFxwbRp0+Dr66tSNy0tDatWrcKlS5dgZGSEwYMHIywsDLa2ttoKj4iIiERGa0lLZmYmSkpKMG7cONjb26OsrAzHjh3DokWL8OabbyIwMBAAkJWVhblz58LKygohISEoLS3F1q1bkZqaih9++AHGxsbaCpGIiIhERGtJy+DBgzF48GCVssmTJyMkJATbt29XJi2bN29GWVkZ1q9fDycnJwCAp6cn3njjDezfv19Zj4iIiFq3Zp2Ia2hoCEdHR9y7d09ZduzYMQwZMkSZsACAt7c3OnXqhKioqOYMj4iIiFowrU/ELS0tRXl5OYqLixEdHY0zZ87A398fAJCdnY28vDx4eHio7efp6YmYmBhth0dEREQiofWk5bvvvsPu3bsBABKJBMOGDcPChQsBADKZDAAglUrV9pNKpSgsLERFRQVMTEzUtufk5Cj3B4D09HRthE9EREQthNaTlqlTp2LEiBHIyclBVFQUqqurUVlZCQAoLy8HAI2TbRWJSnl5ucakZffu3YiIiNBe4ERERNSiaD1pcXFxgYuLCwBg3LhxeOONN/DOO+/ghx9+gKlpzaI/iiTmfhUVFQCgrPOgwMBAlVun09PTsXjx4qYOn4iIiFqIZl9cbsSIEfjqq6+QkZGhHBa6f5hHQSaTwcbGRmMvCwDY29vD3t5eq7ESERFRy9Hsy/grhoTu3bsHBwcH2NraIjk5Wa1eYmIiunbt2tzhERERUQultaQlLy9PrayqqgoHDx6EqakpHnvsMQDA8OHDcerUKdy9e1dZ7+zZs8jIyFDeZURERESkteGhr776CsXFxejTpw8cHBwgk8lw+PBh3Lx5E6GhobCwsAAAzJgxA0ePHsWCBQsQFBSE0tJSbNmyBW5ubhg/fry2wiMiIiKR0VrSMnLkSOzduxe7du1CQUEBLCws4OHhgVdffRVDhw5V1nNycsKKFSuwatUq/PDDD8pnD4WGhtY6n4WIiIhaHwNBEARdB9EUkpOTERISgnXr1mlcrI6IiIjErdnvHtIWxQRfLjJHREQkPi4uLjAzM6uzjt4kLZmZmQDAtVqIiIhEqD4jJXozPJSfn4/Y2Fi0a9dOtHNhFAvkvffee8oF+VojtsO/2BY12A7/Ylv8i21RQ1/aoVX1tNja2iIgIEDXYTQJFxcXzssB2+F+bIsabId/sS3+xbao0RraodkXlyMiIiJqDCYtREREJApMWloQqVSK4OBg5TOZWiu2w7/YFjXYDv9iW/yLbVGjNbWD3kzEJSIiIv3GnhYiIiISBSYtREREJApMWoiIiEgUmLQQERGRKOjN4nJikZOTgx07diAxMRFJSUkoLS3F8uXL4eXlpVZ33rx5OH/+vFq5j48PvvrqK5WyiooKhIeH49ChQygqKkKXLl0wZ84cDBgwQFuX8kga0g4AcOnSJaxZswZXr16FpaUl/P39ERISAgsLC5V6YmuH2uzfvx9ffPGFxm07d+5Uu0vg5MmT2LBhA9LT02Fra4sJEyZg5syZMDIS90dcX17PhoiPj8f8+fM1bvv+++/Ro0cP5c/1/VyIQUlJCbZu3YorV64gMTERRUVFWLRoEcaPH69WNy0tDatWrcKlS5dgZGSEwYMHIywsDLa2tir15HI5tm7dij/++AO5ubno2LEjZsyYgdGjRzfTVTVcfdvh888/x4EDB9T279y5MzZv3qxSJsZ2qI24f6OJUEZGBn755Rd07NgRbm5uSEhIqLO+g4MDXnnlFZUyTbe1ffHFFzh69CimTp2Kjh07Yv/+/XjrrbewfPly9O7du0mvoSk0pB1SUlKwcOFCuLi4ICwsDFlZWdi2bRtu3bqFpUuXqtQVWzs8zOzZs9GuXTuVMisrK5WfY2Ji8H//93/o27cv5s+fj9TUVGzcuBF5eXn4z3/+05zhNjl9ez0bYsqUKfD09FQp69Chg/L/G/K5EIOCggJERETAyckJXbt2RXx8vMZ6WVlZmDt3LqysrBASEoLS0lJs3boVqamp+OGHH2BsbKysu27dOvz888948skn0a1bN5w8eRKffPIJDAwMMGrUqOa6tAapbzsAgImJCd566y2VMktLS7V6YmyHWgnUrIqLi4WCggJBEAQhKipK8PPzE86dO6ex7ty5c4WZM2c+9JgJCQmCn5+f8MsvvyjLysrKhOeee0549dVXmybwJtaQdnjzzTeFSZMmCffu3VOW7dmzR/Dz8xPOnDmjLBNjO9Rm3759gp+fn5CYmPjQui+88ILw4osvCpWVlcqytWvXCsOGDRPS0tK0GaZW6dPr2RDnzp0T/Pz8hKioqDrr1fdzIRbl5eVCTk6OIAiCkJiYKPj5+Qn79u1Tq7ds2TJh9OjRQmZmprLs77//Fvz8/IRdu3Ypy7KysgR/f3/h66+/VpbJ5XIhNDRUmDx5slBVVaXFq2m8+rbDZ599JgQEBDz0eGJth9pwTkszs7CwgI2NTYP2qaqqQklJSa3bjx07BkNDQwQGBirLTE1NMXHiRCQkJODu3buNjldb6tsOxcXFiIuLQ0BAgMo3iLFjx8Lc3BxRUVHKMjG2Q32UlJSgurpa47a0tDSkpaXhySefVBkKevrppyEIAo4ePdpMUTY9fX09G6KkpARVVVVq5Q35XIiFiYlJvRZHO3bsGIYMGQInJydlmbe3Nzp16qRy3SdPnkRVVRWefvppZZmBgQEmTZqE7Ozsh/Zy60p920GhuroaxcXFtW4XazvUhsNDLVxGRgbGjh2LyspK2NnZ4YknnkBwcLDKH6iUlBR07NhRrVtQ0bV87do1lQ+4mKSmpqK6ulrtIWDGxsZwd3dHSkqKskwf22H+/PkoLS2FsbExBgwYgNDQUHTq1Em5/erVqwCg1j729vZwcHBQaR+x0cfXsyG++OILlJaWwtDQEL1798Zrr72Gbt26AWjY50KfZGdnIy8vT+NDAT09PRETE6P8OSUlBebm5mpPPVa8f1JSUkQ/xFhWVobx48ejrKwM1tbWGDVqFF599VWVOU361g5MWlqw9u3bw8vLC25ubigrK8PRo0exceNGZGRk4OOPP1bWk8lkGjNzRVlOTk6zxdzUZDIZAM3zeKRSKS5cuKBSV1/awdTUFOPHj4eXlxcsLS2RnJyM7du34/XXX8f69euVf6wf1j6K7WKkT69nQxgZGWH48OEYNGgQ2rRpg7S0NGzbtg1hYWFYvXo1Hn/88QZ9LvTJw667sLAQFRUVMDExgUwmQ9u2bWFgYKBWDxD/+0cqlWLatGl4/PHHIQgCzpw5gz/++APXr1/H8uXLlV9s9a0dmLQ8ArlcjsrKynrVNTExUXvTPMw777yj8vPYsWOxdOlS7NmzB88884zyLoLy8nKVyWf3n1OxXZu02Q6K2Gu7voqKCpW6umyH2jSmfUaOHImRI0cqy/38/ODj44O5c+di06ZNePPNNwFAef2Ka3zwWHUNK7Z0LfX11LZevXqhV69eyp+HDh2KESNG4MUXX8TatWvx1VdfNehzoU8edt2KOiYmJnr//nnwBo1Ro0ahU6dOWLduHY4dO6acYKtv7cCk5RFcuHCh1lsTH7Rp0ya17rnGePbZZ7Fnzx7ExcUpkxZTU1ONfxQVv7hMTU0f+bx10WY7KGKv7fru/2Ot63aoTVO1T+/evdG9e3ecPXtWWaa4fk1/pCoqKnR2zU2hpb6eutCxY0cMHToUx48fR3V1dYM+F/rkYdd9f53W+P555plnEB4ejri4OGXSom/twKTlEXTu3BmLFi2qV92mevqmo6MjAKCoqEjl2NnZ2Wp1FV2p9vb2TXLu2mizHRT1NQ1zyGQylWvTdTvUpinbx9HRETdv3lSrL5PJ1OZ3yGQytVtmxaSlvp664ujoiMrKSpSVlTXoc6FPHnbdNjY2yoRNKpUiPj4egiCo9O7q8/vH1NQUNjY2KCwsVJbpWzswaXkEUqlU48JH2nT79m0AUFlESXEvf3FxscqkxStXrii3a5M228HV1RWGhoZITk5WGS6prKxESkoK/P39lWW6bofaNGX73L59W+W1d3d3BwAkJyeje/fuyvKcnBxkZ2er3HkjNi319dSV27dvw8TEBObm5g36XOgTBwcH2NraIjk5WW1bYmKiynuia9eu+PPPP5Geno7HHntMWa7P75+SkhIUFBSo/X3Qp3bgLc8tVHFxsVqXvyAI2LhxIwCorAg6YsQIVFdXY/fu3cqyiooK7Nu3D927dxf1HRZWVlbw9vbGoUOHVOZnHDx4EKWlpSq/nPWpHfLz89XKTp8+jeTkZPj4+CjLXF1d0blzZ+zZs0fltug//vgDBgYGGD58eHOEqxX69Ho2hKbX/tq1a4iOjsaAAQMgkUga9LnQN8OHD8epU6dUbnk/e/YsMjIyVK576NChMDIyws6dO5VlgiBg165dcHBwQM+ePZs17qZUXl6ucb7aTz/9BEEQMHDgQGWZvrUDe1p04KeffgJQs8YGUPOL5uLFiwCAWbNmAai5lfXjjz/G6NGj0aFDB5SXl+PEiRO4dOkSnnzySZVb/rp37w5/f3+sXbsW+fn56NChAw4cOIDMzEy8/fbbzXtxDVCfdgCAOXPmIDQ0FHPnzkVgYKBy5c8BAwaofDjF2g6avPbaa3j88cfh4eEBS0tLXL16Ffv27YOjoyNeeOEFlbqvv/46Fi1ahP/85z8YNWoUUlNTsXPnTjzxxBMq36zERp9ez4b48MMPYWpqip49e6Jt27ZIS0vDnj17YGZmpjL5sr6fCzH57bffcO/ePeXQRXR0NLKysgDUrBBsZWWFGTNm4OjRo1iwYAGCgoJQWlqKLVu2wM3NTaVH09HREVOnTsWWLVtQVVUFT09PnDhxAhcvXsT7778PQ0NDnVxjfTysHYqKijB79myMHj0anTt3BgDExsYiJiYGAwcOxNChQ5XHEnM7aGIgCIKg6yBam2HDhtW67fjx4wBquoJ/+OEHJCYmIjc3FxKJBC4uLnjiiScQGBiodgdOeXm58hkt9+7dg5ubG+bMmaPyrbylqU87KFy8eFH5jBULCwv4+/vjlVdeUXvGihjbQZN169YhJiYGd+7cUc5hGDx4MIKDg2FnZ6dW/8SJE4iIiEB6ejratGmD8ePHq63nI0b68no2xI4dO3D48GH8888/KC4uhq2tLfr374/g4GB07NhRpW59Pxdi8cwzzyAzM1Pjtm3btikfaXHjxg21Zw+FhoaqfTbkcjl++eUX7N69GzKZDB07dsTzzz+PgIAArV/Lo3hYO1hZWWH58uVISEiATCaDXC5Hhw4dMGbMGDz33HNqn3uxtoMmTFqIiIhIFDinhYiIiESBSQsRERGJApMWIiIiEgUmLURERCQKTFqIiIhIFJi0EBERkSgwaSEiIiJRYNJCREREosCkhRps//79GDZsGPbv36/rUOolPj4ew4YNw48//qi1cwwbNgzz5s3T2vFbi2eeeQbPPPOMrsNo8X788UcMGzYM8fHxWj3P9u3bMXLkSNy5c6de9ZvjsyZmn376KaZOnYry8nJdhyJaTFpagf/9738YNmwYnnjiCbWHMOoLsf2xKygowJo1azBz5kyMGTMGY8aMwdSpU7FgwQJs2LABubm5zRLHwxLQefPm1fm4hdaktLQU48aNw7Bhw/D111/rOhytKyoqwsaNGzFhwgTl8vn0aIKDg5GTk4Nff/1V16GIlrgfTEIPVVJSgqioKBgYGKCwsBAnTpzAqFGjHumYfn5+6N69O6RSaRNF2bpkZWXh9ddfR1ZWFtzd3TF+/HhYW1tDJpPh8uXL2LBhA3r16qXxGUP67ptvvtF1CLWKiopCSUkJDAwMcOTIEYSGhsLU1FTXYWnN9u3bUVhYiGnTpuk6FL3RqVMn+Pr64pdffsGUKVNgbm6u65BEh0mLnvvrr79QWlqKZ555Bjt27MDevXsfOWmxsrKClZVVE0XY+vz444/IysrC7NmzVZ5mrXD9+vVW274dOnTQdQi12rt3LwwNDTF58mT8+uuvOH78OMaMGaPrsLSiqqoKf/75J3r16tWiXxMxCggIwPHjxxEZGYknnnhC1+GIDpMWPaf4RTt9+nRcv34d586dQ2ZmJpydnVXq/fjjj4iIiKj1OM7Ozti+fTuAmiGFL774AosWLVJ5FPywYcPQt29fvP/++/j+++/x999/o6KiAn369MGCBQvQvn17pKWlYe3atbhw4QKqqqrg4+ODhQsXqvQqxMfHY/78+QgODsZLL72kEsedO3fw7LPPYty4cXj33XeVP98fg4Km/ZOSkrB27VokJCRAIpGgX79+CAsLU+v+Pn78OKKiopCUlIScnBwYGRmhS5cuCAoKwogRI+pu9IdISEgAAEyePFnj9i5dumgsv337Nn7++Wf8/fffkMlksLS0xGOPPYbx48crX4fKykrs3r0bp06dQlpaGvLz82FpaYlevXph1qxZePzxx5XH+/zzz3HgwAEAwBdffIEvvvhC5frvb8v7/1/R9grXr1/Hpk2bcP78eRQWFkIqlcLX1xcvvvgi2rRpo6x3/2s3ffp0rFu3DhcuXEBhYaHyCb6KIT7Few349725fPly5OTkYMuWLbh58yasrKzg7++PV199Va3Ho6qqClu3bsWff/6JnJwcODg4YOLEiRg5ciSee+45tWt4mJs3b+LSpUsYMmSIyhcATUnL/e/fIUOG1Ov9BgDHjh3D5s2bcePGDVhaWsLX1xevvfYaZs+erdYmdanv61GX2NhYyGQyTJ8+XeP28vJybNiwAYcPH0ZBQQE6dOiAoKAgtadQ3+/27dvYtGkT/v77b+Tl5cHa2ho+Pj546aWX1H4fAQ1rD8V7eevWrTh+/Dj27t2L27dvY9SoUcrXOS8vD5s3b8apU6eQlZUFCwsL9OnTBy+99BLc3NzUzt+Q+hkZGdi8eTPi4+Mhk8lgZmYGR0dHeHl5Ye7cuTAwMFDWHTx4MMzMzHDgwAEmLY3ApEWPpaWlISEhAYMGDYKdnR3Gjh2Ls2fPYt++fWp/zL28vDQeIz09HVFRUfXuBi8qKkJoaCikUinGjh2LW7du4dSpU3jjjTfw+eefIywsDB4eHpgwYQKuXr2KY8eOobCwEMuXL2/UNVpZWSE4OBg7duwAAAQFBdV6TUlJSdiyZQu8vLwQGBiIlJQUnDhxAqmpqYiIiFC5xrVr18LIyAi9evWCVCpFfn4+oqOj8cEHH2D+/PmYMmVKo+IFoPzDkZGRge7du9drn4sXL+Ltt99GSUkJfHx8MGrUKBQVFSElJQU7duxQJi2FhYVYuXIlevfujUGDBsHa2hp37txBdHQ0zpw5g5UrV8LT0xNAzTDfvXv3cPLkSQwdOhRdu3ZVOWdwcDAOHDiAzMxMBAcHK8vd3d2V/3/y5El89NFHMDAwwNChQ+Ho6Ii0tDT8/vvviI2NxQ8//ABra2uV4/7zzz947bXX4ObmhnHjxqGwsBDGxsYPbQPFMX19fdGvXz+cOXMGv/32GwoKCvDBBx+o1P3yyy9x8OBBtG/fHpMmTUJlZSW2b9+Oy5cv16u9H7R3714AwNixY+Hk5IS+ffsiPj4et2/fRvv27TXu05D32969e/Hll1/C0tISY8eOhZWVFWJiYvDGG2+gqqoKRkb1+1XdmNdDk7NnzwIAevToobZNLpdj0aJFiIuLg5ubG0aPHo3CwkKsWrWq1t8jV65cwZtvvonS0lIMGTIEHTt2RGZmJg4fPowzZ87g+++/V2nHxrbHt99+iytXrmDw4MEYMmQI2rZtC6DmPTdv3jxkZ2djwIABGDp0KPLz83Hs2DH8/fff+Oabb1Q+iw2pn5OTg1deeQVlZWUYPHgwRo4cibKyMty6dQt//PEHXn/9dZV4jY2N8fjjjyMhIQGlpaUcImoogfTWypUrBT8/P+HIkSOCIAhCcXGxEBAQIAQFBQnV1dUP3T83N1eYOnWqMGrUKOHixYvK8n379gl+fn7Cvn37VOr7+fkJfn5+wsqVK1XKly1bJvj5+Qnjx48Xtm/friyXy+XCf//7X8HPz09ISkpSlp87d07w8/MTwsPD1WK6ffu24OfnJ3z22Wcq5VOnThWmTp2q8ToUx7u/LRQWL16ssfyff/5RO05xcbEwa9YsYfz48UJpaanatc+dO1fj+R+0Y8cOwc/PTwgMDBTCw8OFc+fOCffu3au1fnl5uTB58mRh+PDhQkxMjNr2u3fvqtTNyspSq5OamioEBAQICxcuVCmv7bVUmDt3ruDn56dxW35+vjBu3Dhh8uTJwp07d1S2HTlyRPDz8xO++eYbZZnitavttRUEza9jeHi48v2Tnp6uLC8rKxOmT58uDB8+XMjOzlaWx8XFCX5+fsJLL72k8jplZ2cLTz31lMb3T10qKyuFp556Shg/frxQVlYmCIIg7N27V/Dz8xPWrVunVr+h77fCwkIhICBACAgIEG7evKly3vnz5wt+fn61tsm5c+eUZQ19PeoSEhIiDB8+XCgvL1fbpnjPvPnmm0JVVZWy/Nq1a8LIkSPVXt/Kykph6tSpwtixY4Xk5GSVY124cEEYMWKE8Pbbbz9Se3z22WeCn5+fMHnyZCEzM1Mt5tdee00YMWKEcObMGZXymzdvCmPHjhVmzZrV6PqKz/P9v9sUCgoK1MoE4d/fzWfPntW4nWrHu4f0VFVVFQ4dOgRLS0sMHToUAGBhYQE/Pz/cvXsXcXFxde5fXl6Od999F5mZmXjnnXfQq1evep3X3Nwcc+bMUSlTzKFp06aNSk+IgYGBctv169frfW2N1adPH7X5PBMmTAAAJCYmqpRr+vZsYWGB8ePH4969e0hKSmp0HJMnT8a0adNw7949REREYP78+ZgwYQJmzpyJNWvWICcnR6X+yZMnkZ2djTFjxmDgwIFqx3N0dFT+v4mJCRwcHNTquLq6wsvLSzks1xQOHjyI4uJivPzyy2rd+6NGjcLjjz+OyMhItf3s7OzwwgsvNPh8QUFB6Ny5s/JnU1NTjBo1CnK5HMnJycryQ4cOAQBmzZoFMzMzZbm9vb3K+6++Tp8+jdzcXPj7+yt7R0aMGAEzMzPs378fcrlc4371fb+dPHkSpaWlmDBhAjp16qQsNzIyUvss1aWxr4cm2dnZsLKygomJido2xZDinDlzYGhoqCzv0qULAgIC1OqfOnUKmZmZmDZtmsrwJAD07t0bvr6+iImJQXFxMYBHa49p06bByclJpezq1au4fPkyxo4dCx8fH5VtnTp1whNPPIHU1FSkpqY2qr6Cpt5oGxsbjXEqeoCys7PrvB5Sx+EhPXXy5Enk5+dj4sSJKh+msWPH4tChQ9i7d6/aB1JBEAR8/vnnSEhIwIsvvojRo0fX+7wdO3ZU+UMBQHmXkZubm8rY7v3bHvxDrQ0eHh5qZYo/8Pfu3VMpz8vLw88//4yYmBjcvXtXbV2FR4nXwMAAr732GqZNm4aYmBhcuXIFSUlJuHr1KtLS0rB792589dVXyu5nxR+4AQMG1Ov4KSkp2LJlCy5evIjc3Fy1JCU/Px/29vaNjl9BMTfnypUr+Oeff9S2V1RUoKCgAPn5+bC1tVWWd+3atV7DQQ968A8e8G/Cdv/rd+3aNQA1fxAf1LNnzwaf988//wRQ89lRsLCwwNChQ3HkyBHExsZi0KBBavvV9/2mSNg1xdu9e3eVxKAujX09NCksLNSY/CriNTc313h9vXv3Vg6lPRjXzZs3Na7fkpubC7lcjoyMDHTr1u2R2kMx9Hm/K1euAKj5TGs6/82bN5X/dXNza3B9xbylb775BmfPnsXAgQPRt2/fWocNgX+TmYKCglrrkGZMWvTU/WPw9+vfvz8cHBwQHR2NwsJCjd8E1q9fj6ioKIwePRovvvhig85raWmpVqb4JVPXtqb69l8XCwuLWs9//7flwsJCvPzyy7h79y569eoFb29vWFlZQSKR4Nq1azh58iQqKysfOR5bW1uMGzcO48aNAwDIZDJ8++23OHbsGJYuXYoNGzYAgPIbaG1/RO536dIlLFy4EADg7e2Njh07Kq/75MmTuHbtWpPEDtTMXwKAnTt31lmvrKxM5WfFt8yGquv9c//rV1JSAolEonHSaUNvI8/JyUFsbCzat2+v9kd03LhxOHLkCPbt26cxaanv+03x+mpql9quQ5PGvh6amJqa1rqmU3Fxca3vRU3tq4jr8OHD9YrrUdpD0z6FhYUAanrMTp8+Xeu+paWljarfrl07fP/999iwYQNiYmIQFRUFAOjcuTNmz54Nf39/tX0VX4L0+ZZ5bWHSoofu3r2Lv//+GwDqXKX10KFDat3l+/fvx6ZNm9CrVy+88847Wo2zNoremOrqarVtil9o2rR3717cvXtX4y3JmzdvxsmTJ7VyXqlUivfeew+nT5/G9evXUVBQgDZt2ihvf65PV/KmTZtQUVGBVatWqf2RVXyDbCqKP8oREREa776ozYO9bU3NwsICcrkcBQUFaj0KDV20b//+/aiursbt27drXWQvOjq6Xr0XtVEkY3l5eWrbFNdRn4S1sa+HJm3atKn1/WZpaVlrD4Gm9lXE9b///Q9Dhgx56LkfpT00vbcUx6vvBPqG1gdqepE//fRTVFVVITk5GWfOnMGOHTvw0Ucfwd7eXm14XZEYNfY905pxToseOnDgAORyOXr37o2JEyeq/VN8s3+wG/f8+fP46quv0L59e3z22Wcax7Obg+LuBk1DMCkpKRr3kUgkGpOcxlB0rSvmAt3v4sWLTXKO2hgbG6t1fyu6vBWJaF1u374NGxsbtYSlrKwMV69eVasvkdT8Cqit7erarhi+UnT/txSKu6AuXbqktq0hdw8JgoB9+/YBAMaPH6/xs9SzZ09UVlYq59E0huIWd03xJiYm1vt93ZSvh5ubGyoqKnD37l21bV26dEFpaanKPCIFTZ+PhsbVVO2hoPj81Pf8Da1/PyMjI/To0QMvvfQS5s+fD0EQcOrUKbV6GRkZAPDIyWVrxKRFzyh+0RoYGODdd9/F22+/rfbv3XffRY8ePXD9+nXlhNKMjAy89957MDU1xf/+9z+dfgPo3LkzLCwslENYCrm5udi4caPGfWxsbFBQUNAkz/RQTGJ88Jfm4cOHERMT88jH37p1K9LT0zVu+/3331FaWorOnTsru8F9fX3h4OCAw4cPIzY2Vm2f+78ROzk5oaioCDdu3FCWVVdXY/Xq1cjPz1fbVzE8mJWVpTGeurZPmDABFhYWWLduncr5FMrKynSS0CjWTomIiFB5P8hkMuWt8fVx/vx5/PPPP+jTpw8WLVqk8bOk6I188AtAQwwdOhTm5ubYu3evylyUqqoqhIeH1/s4Tfl69O3bF4Dm3jnFkPP69etVEojr169rTN6GDh0KJycnbNu2DefPn1fbXlVVpZLsNFV7KHTv3h3du3dHZGSkxonIcrlcJa6G1k9OTtbYA6zoddL05e/KlSuQSqUqE42pfjg8pGfOnTuHO3fuPHQi2IQJE5CQkIC9e/eiW7duWLFiBQoLC+Ht7Y2//vpLrb6VlVWzPdvH2NgYU6ZMwaZNmzBnzhz4+vqitLQU0dHR6Nu3r8ZJhl5eXkhKSsJbb72F3r17w8jICH369FH+8m2IgIAA/PLLL1i+fDni4+Ph5OSEa9eu4dy5cxg2bBiOHz/+SNd36NAhrF69Gm5ubujevTvatm2LoqIiXLlyBVevXoWpqSn+85//KOubmJjg448/xn//+1/897//hY+PD7p27Yri4mJcu3YN5eXlyl/mU6ZMwd9//43Q0FD4+/vDxMQE58+fR05ODry8vNQesNejRw+Ymppix44dKCoqUiarimGxfv364ejRo3j//fcxcOBAmJiYoGvXrvD19YWtrS0+/PBDfPDBB3jppZfg4+ODzp07o7KyEpmZmTh//jx69uyJr7766pHaq6G8vb0xevRoHDlyBMHBwRg6dCgqKysRFRUFT09PnDp1StmDVBdFIqK440eTzp07o2fPnrh8+TKuXLlS73V37mdtbY2wsDAsXboUISEhGDlyJCwtLRETEwMTExPY29vXa0itKV+PoUOH4rvvvkNcXJzanAzFXJ4zZ85g9uzZGDhwIIqKihAZGYkBAwao9SyYmJjgk08+wVtvvYV58+ahX79+ykn5mZmZuHjxItq0aYPNmzc3aXvc74MPPsCCBQvw8ccfY8eOHXB3d4epqSmysrJw+fJlFBQU4MiRI42qf/DgQezevRt9+vRBhw4dYGFhgbS0NJw5cwY2NjZq759//vkHd+7cwaRJkxp0DVSDSYueUfyivX+lWk1GjhyJFStWIDIyEmFhYcpvpHFxcRpvh3Z2dm7WBxLOnj0bRkZG2Lt3L3bv3g1nZ2fMmjULQ4YMwbFjx9Tqz5o1C/fu3cOpU6dw8eJFVFdXIzg4uFFJi6OjI1asWIHvv/8ecXFxqK6uxuOPP45ly5YhKyvrkZOWd955B6dOncK5c+cQGxuLvLw8SCQSODk5YdKkSZg6daraN7CePXti/fr12Lx5M2JjY3H27FlYW1vjsccew1NPPaWsN2TIEHzyySfYvHkzDh8+DFNTU/Tr1w+fffaZxhWPbWxs8Mknn2DDhg34888/le8DRdLyxBNP4M6dO/jrr7/wyy+/oLq6GuPGjYOvry+AmtU9w8PDsWXLFpw9exZxcXEwMzODg4MDxo8fr/EW2Obw7rvvwsXFBfv27cPvv/8OBwcHTJ06Ff369cOpU6c0TpK9371793Ds2DGYm5tj+PDhddadMGECLl++jL179zYqaQGAJ598EtbW1ti0aRMOHDigXAH21VdfxdSpU+u9lH5TvR7t2rXDgAEDcPToUcyfP1+lt0AikeDzzz/Hhg0bcOTIEfz2229o3749wsLC0LFjR43DIZ6envjxxx+xZcsWxMTE4PLlyzA2Noa9vT38/PzUbg1vqvZQaN++PcLDw7Ft2zacOHEC+/fvh0QigVQqRZ8+fdRWuW5I/dGjR6OiogKXLl1CYmIiKisr4eDggKeeekrjLdiK3qjAwMAGXQPVMBAEQdB1EEREzeHPP//EkiVL8MYbb4jim+6tW7cwffp0+Pv74+OPP27Wc589exYLFy7Ee++9p7Pk80G6bI+mUFVVhenTp6Ndu3aNXgW8teOcFiLSOzKZDA9+H8vOzsbGjRthaGiIwYMH6ygyzYqKitRuMS4vL8eqVasA1Dxyobn1798fAwcOxMaNG2tdQE9bWmJ7NIUDBw7g7t27eP3113UdimhxeIiI9M7PP/+M06dPo0+fPrC1tUVWVhZOnTqFkpISvPjii2pd9rp2/vx5fPnllxgwYAAcHR1RUFCgfLhpv379MHLkSJ3ENW/ePBw+fBjZ2dnN2mYttT0elYGBAf773/9qXJiP6ofDQ0Skd86cOYNt27bh+vXrKCoqgomJCbp06YJJkyZpfDKzrmVkZCA8PByXL19W3uXVoUMH5VOpW9siZGwPqg2TFiIiIhIFzmkhIiIiUWDSQkRERKLApIWIiIhEgUkLERERiQKTFiIiIhIFJi1EREQkCkxaiIiISBSYtBAREZEoMGkhIiIiUfh/nSQ5XgfWvxIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc3klEQVR4nO3dd1gU18IG8JeVXgQpipWIKGLHgiiiIjY0llhSvIndNEHRVHNzU4xRE1MsiUmsxBJLMLZYYgk2FFHEhoAoJViQXqTDnu8Pv9247oKALDDL+3sen4QzZ2bPzLZ3z8ycoyeEECAiIiKq42S13QAiIiKiimBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghkrATJ05AT08Pn332WW03BQAQHx8PPT09TJ06tbabIinPPfccnnvuudpuBlGdx9BCOuvmzZuYP38+unfvDmtraxgYGMDa2hq9e/fGu+++i7CwMLV1PvvsM+jp6an8MzY2hpOTE15//XXEx8drfKypU6eqrdegQQPY2Nhg0KBB2Lp1q5b3luqrrVu3Kl9zR44cKbduZmYmPvnkE3Tr1g3m5uYwMjJC8+bN4e7ujnfeeQfh4eHlrj9r1izo6enB1NQUmZmZZdZ78n0kk8nQsGFDODg4YMSIEfjqq69w9+7dquwu1XP6td0AouomhMDChQuxcOFCyOVydO/eHS+99BKsra2Rk5ODq1evYtWqVfj222/xww8/YPbs2WrbGDBgAAYOHAgASEtLw99//421a9ciMDAQ58+fR9u2bTU+9pgxY9CtWzcAQFFREWJjY7Fv3z4EBQXhxo0b+PLLL7W121RPrVmzBnp6ehBCYM2aNRg6dKjGevfu3YOHhwfi4+Ph6OiI//znP7C1tUVGRgbCwsKwfPlymJiYwNXVVeP6OTk52L59O/T09JCfn48tW7bA19e33LY9/j7Kzc3F/fv3ERwcjEOHDuHTTz/FZ599hg8//PCZ9p/qGUGkYz777DMBQLRs2VKcOXNGY50HDx6IBQsWiC+//FKl/NNPPxUAxKeffqpSXlpaKkaMGCEAiKlTp6ptb8qUKQKA2Lhxo9qyixcvCgDC2NhY5OfnP7X9QUFBZW6rrLpPtre2xMXFCQBiypQptd0USXFwcBAODg6VXi8qKkoAEIMHDxY9evQQBgYGIikpSWPdGTNmCABi+vTpQi6Xqy2/d++eCAsLK/Oxfv75ZwFAzJ8/XxgaGoouXbqUWbes95EQQsjlchEYGCisra0FALFkyZKn7yjR/+PpIdIpsbGxWLRoEQwNDXHo0CF4eHhorNe4cWMsXrwY77//foW2K5PJlNdpXLhwoVJt6tGjB6ytrVFQUICcnJxKrVsZ586dw+DBg2FpaQkLCwsMGzYMFy9eVKt37949LFy4EB4eHrC3t4ehoSGaNWuGSZMm4caNG2VuPzQ0FC+99BKaN28OIyMjNG3aFEOHDsXOnTuf2ja5XI65c+dCT08P48aNQ35+vnLZ/fv3MW3aNDRu3BgmJibo1q0bfv311zKv1xk4cCD09PRQVFSEhQsXwtnZGUZGRirX0YSFhWH8+PFo3LgxjIyM4ODggLfffhv3799Xa5tie5oEBARAT08PAQEBKuWKa1Byc3Px3nvvoVWrVjAyMoKTkxO++uorCCHUtiWEwA8//ICOHTvC2NgYzZs3h6+vL7Kysp56/Mqydu1aAMC0adMwdepUFBcXq7VV4ezZswAAPz8/jfvbtGlTdO/evdzHkslk8Pf3x6hRo3D16lWcP3++0m3W09PD+PHjERgYCABYuHChxueFSBOGFtIpGzduRElJCSZMmICOHTs+tb6+fuXPkBoYGFSq/qVLl5Ceng4HBwfY2dlV+vEq4vz58xg4cCCMjIwwe/Zs+Pj44Pjx4/D09MTp06dV6p46dQpLly6FlZUVxo8fj3nz5sHd3R2BgYFwc3PDlStX1La/du1a9O3bF3v27EHfvn3xzjvvYOTIkUhOTsbq1avLbVtBQQEmTpyIlStXYvbs2QgMDISJiQkAIDk5GX369EFAQABcXFzg7+8PV1dXvP3221ixYkW52x0/fjxWr16Nvn37wt/fH507dwYA/Pnnn+jbty/279+PwYMHY/78+XB2dsZPP/2Enj17Ii4urjKHtkzFxcUYNmwYdu3aBR8fH8ycORP5+fn48MMPsXDhQrX6/v7+8PPzQ0ZGBl5//XW8/PLLOHz4MAYPHoyioqJKP35RURF+/fVXWFpa4oUXXsCkSZNgaGiIdevWaQxNNjY2AB5d61VZ4eHhCAsLg7e3N1q2bKkMiGvWrKn0thS8vLzQr18/5Ofn448//qjydqieqeWeHqJq5eXlJQCIdevWVWn9srq1S0pKxLBhwwQA4evrq7ae4vTQmDFjxKeffio+/fRTsWDBAvHKK68IMzMz0aJFC3Hq1KkKtaEqp4cAiFWrVqks27NnjwAgnJycRGlpqbL8wYMHIjs7W21bly9fFmZmZmL48OEq5REREUJfX180atRIXL9+XW29xMRE5f8/eXooLS1NeHh4CD09PbF06VK1dadPny4AiPfff1+tLYaGhhqfiwEDBggAonPnziIlJUVlWU5OjrC2thYymUzteC9dulQAEEOGDNG4PU02btyo8blwcHAQAISPj4/Iy8tTlj948EBYWloKS0tLUVRUpCwPDg4WAESbNm1EWlqasjw/P1+4u7sLAJU+PbRt2zYBQLz++uvKsvHjxwsA4tixY2r1V61aJQAICwsL8d5774mjR4+K1NTUCj3WG2+8IQCI3377TQghRHFxsbC3txdmZmYiKytLrX55p4ce9/HHHwsAYvLkyRVqBxFDC+kUFxcXAUAcOnRIbVlcXJwyUCj+ff/99yp1FB+2AwYMUNbx8/MT7du3FwBEhw4dxIMHD9S2rQgtmv6ZmJiI999/X2RkZFRoH6oSWp4MJgqKL+QTJ05U6LFHjRoljIyMVL5wfX19BQDx3XffPXX9x0NLfHy8aN++vTAwMBBbtmxRq1tYWChMTEyEpaWlxhA1c+bMckPLnj171NbZsmWLACBeeeUVtWXFxcXiueeeEwBEQkKC2vY0eVpoiYmJUVtn8uTJAoC4du2a2r5s2LBBrb7iOaxsaBk0aJAAIM6ePass279/vwAgXnzxRbX6crlcLFiwQBgbG6u8Pp977jkxc+ZMcfnyZY2P8/DhQ2FhYSEsLS1Vrsl65513BACxevVqtXUqGlp++uknZfgjqgieHqJ6Iz4+Hp9//rnKv+XLl2use/LkSWWdVatWISoqCt26dcPZs2fRuHHjMh9j48aNEI9+DKCkpATx8fH48MMPsWzZMri7u+Phw4cq9RXXUzz+z8vLC8Cj6xSeXKa4E+NJnp6ekMnU386K+k/eynrgwAGMGjUKTZs2hYGBgXL7+/fvR2FhIVJTU5V1Q0JCAAA+Pj5l7veToqOj0adPH9y7dw+HDh3Cf/7zH4118vPz0aVLF1hYWKgt79evX7mP4ebmplZ26dIlAMCgQYPUlunr66N///4A1I9HVVhaWsLJyUmtvGXLlgCAjIwMtXYNGDBArX6/fv3QoEGDSj32rVu3EBQUBGdnZ/Tp00dZPnz4cNjb22PPnj0qzyHw6FqSxYsX4/79+9i+fTv8/f3Rv39/3L9/H+vWrUOPHj2U18g8bvv27cjJycHLL78MY2NjZbniFJGmdSpK/P9prLKuKSJ6Em95Jp1ib2+PyMhI3Lt3T23ZwIEDlR+SJSUl5V6borgdUy6X4+7du/jmm2+wcuVKvPjiizh06JDGgPCkBg0awMHBAZ988glu3ryJrVu3YtWqVViwYIGyztSpU9WCSHx8PH799VeV26cVyhqArEmTJhrL7e3tAUDlYs8VK1bA398fjRo1wpAhQ9CqVSuYmppCT08Pe/bswZUrV1BYWKisrxiPo3nz5k/dZ4WbN28iPT0d3bp1K/PiTkWbymp7WeVP7pumbTZt2lTjOory8sYYqSgrKyuN5YrrpEpLS9XapWmf9PX1YWtrW6nHXrt2LYQQaoP46evr4z//+Q++/fZbBAQE4N1339XY7pdeegkvvfQSgEe3Ii9duhSLFi2Cn58fRo8erdJOxXUrTz5Wp06d0KNHD4SFheHixYvo2bNnpfYBgPJ9qq1rvUj3MLSQTvHw8EBQUBCOHz+O6dOnP/P2ZDIZWrZsiRUrVuDevXsIDAzEDz/8gDlz5lRqO71798bWrVsRGhqqUq5p5NgTJ07g119/xdixYys8suyDBw80liclJQF41CsAPAprn332Gezt7XHp0iW1L/dz586pbUPx5Xz37l20b9++Qu0ZNWoUnJ2d8dFHH8Hb2xtHjx5VXgiq0LBhw3LbXla5gqZf54r9VOz3kxR3qSjqAVAG0JKSErULs6sj3Dz+eA8ePICjo6PKspKSEqSmpqJFixYV2tbjdwgtWLBAJQQ/bu3atRpDy5PMzMzwxRdf4MSJEzhz5gyCg4Mxbtw4AMDVq1eVr9nHe3SetGbNmiqFlqCgIACP3h9EFcHQQjpl6tSpWLp0KQIDA/Hxxx/DxcWl2rb97bffYv/+/Vi4cCGmTp2q/NKtCMWpArlcXm3tedyZM2cgl8vVeoBOnDgBAMoBw1JTU5GZmYlx48apBZaHDx8qT2M8zt3dHRcvXsShQ4cqHFqAR1+oJiYmmDdvHgYOHIhjx46p/IJv3749TExMcPXqVeTk5KidIjpz5kyFH0tBsZ8nTpzAjBkzVJaVlJQo76R6vPenUaNGAIDExES0bt1aZR1Nt4xXRffu3XHp0iWcPHlSLbScOXNGpVfmafbu3Yvk5GQ4OzuXeQotKCgIN2/exMmTJzWektJEcfzFY3ceKXpZBg4ciDZt2mhc77fffsO2bdvw3XffwdzcvML78ffffyM4OBgmJiZ44YUXKrwe1XO1eUENkTYoBpdzcHAQwcHBGuukpKRovPjxaRcQKi5K/eSTT1TKyxtcLj09XXkBaEUuZtXm3UOlpaXC1NRUODg4iJycHGXdoqIi5Z08AERcXJxy2eN3D0VERKi1oby7h4R4dLGlnp6ecHZ2Fnfv3lVZd+rUqVW+e0gTxd1DDRo0EOfOnVNZtmzZMuVAbI9T3FW0YMEClfJjx44JmUxW5oW4ZV04q3gNBQUFKcvOnDlTbXcPDRkyRAAQO3bsKLPOunXrBAAxadIkZdnXX3+t8e4vIYQ4ffq0MDY2Fvr6+srnKC8vT1hZWYkGDRqoPW+Pe/XVVwUAsWbNGmXZ0waX27Vrl3Jwua+//vppu0ykxJ4W0jmffPIJhBD44osv4OHhgR49esDNzQ3W1tbIzMxEfHw8jh07BgDKCzMr6qOPPsL69evx/fffw8/PT+1ahD179ijnJyotLcWdO3ewf/9+pKWloVevXnjzzTerZR+fNHz4cLzzzjs4dOgQunbtilu3buGPP/6AsbExNmzYoOyBkclkmDNnDpYuXYrOnTtjzJgxKCoqQlBQENLT0+Hl5aXsslfo0KEDVq9ejTfffBOurq4YM2YM2rZti7S0NFy4cAENGzZUW+dxb775JoyNjTFjxgz0798ff//9N1q1agUAWLp0Kf7++298/fXXOH/+PPr27Yv79+9j586dGDFiBPbs2VOh64cUzM3NsWHDBkycOBEDBgzAxIkT0apVK4SFheHIkSOwt7fHL7/8orLOtGnTsGzZMixZsgRXrlxBhw4dcPPmTRw6dAgvvPACdu3aVeHHL4uHhwf8/PywatUqdOrUCRMmTICBgQH27t2LRo0alXkNzpPi4uJw7Ngx2NraYuzYsWXWe+mll+Dv749du3Zh1apVsLa2xtatW/H++++jffv2cHd3R9OmTZGbm4uIiAj8/fffEELg22+/RbNmzQAAO3bsQGZmJkaNGqUs02TmzJnYsmUL1qxZg1mzZqksO3HihHJwwPz8fNy7dw/BwcGIi4uDkZERvvrqK7z33nsV2nciAOxpId0VFRUl/P39RdeuXYWlpaWyt6Bnz57C399f45DlFblVc/78+crhzBXKuuXZwsJC9OrVS3z99dcVGsJfiKoP43/27Fnh7e0tLCwshLm5uRgyZIgIDQ1VW6e4uFh8++23wsXFRRgbG4smTZqIV199VcTHxyv34/GeFoWzZ8+KcePGCTs7O2FgYCCaNm0qhg0bJn7//XdlnfKG8f/tt9+Evr6+cHBwELdv31aW37lzR0yePFnY2toKY2Nj0bVrVxEQECB+//13AUDttvTyeloUQkNDxdixY4Wtra0wMDAQLVu2FG+++WaZPQbXr18XPj4+wtzcXJiZmYkBAwaIEydOlHvLc2V6WoR41MOwatUq0b59e2FoaCiaNm0q3n77bZGZmVnhYfw/+ugjAUDMmzfvqXVnzZql0rt36dIl8cUXXwgvLy/x3HPPCWNjY2FkZCQcHR3FpEmTxOnTp1XW79u3rwAg9u7d+9THateunQAgwsPDVY6B4p+enp4wNzcXrVq1Ej4+PmLp0qXizp07T90u0ZP0hNAwdCIRUS3773//i8WLF+Pw4cMYNmxYbTeHiOoAhhYiqlX37t1TO/1w7do19O3bF4aGhrh7967K+CBEVH/xmhYiqlU9e/aEk5MTOnXqBDMzM8TExODAgQOQy+X45ZdfGFiISIk9LURUqz7//HPlBcw5OTmwsrKCu7s73n333TJHACai+omhhYiIiCSBcw8RERGRJDC0EBERkSToTGgpKChAdHQ0CgoKarspREREpAU6E1oSEhIwa9YsJCQk1HZTiIiISAt0JrQQERGRbmNoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoqYPyMgoQFhiDvIyC2m4KERFRncHQUgflZRYi/I9byMssrO2mEBER1RkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJ+pVdIS8vD9u3b8eNGzcQGRmJnJwcLFiwAD4+Pso6crkcf/31F06ePImYmBjk5OSgadOmGDRoEF5++WUYGRmpbffPP//E9u3bkZSUBDs7O0yYMAHjx49/tr0jIiIinVHpnpasrCwEBAQgISEBTk5OGusUFBRgyZIlyMrKwpgxY+Dn5wcXFxds3LgR77//PoQQKvX37t2Lr7/+Gq1bt8bcuXPRqVMnrFixAlu3bq3aXhEREZHOqXRPi42NDXbv3g0bGxtERUXh9ddfV6tjYGCAH3/8EZ07d1aWjRo1Cvb29tiwYQPCwsLQs2dPAEBhYSHWrVuHPn364IsvvlDWlcvl2LRpE0aPHg0LC4uq7h8RERHpiEr3tBgaGsLGxqbcOgYGBiqBRcHT0xMAkJCQoCy7dOkSsrKyMHbsWJW6L7zwAvLz83Hu3LnKNpGIiIh0UKV7Wp5Feno6AMDS0lJZFhMTAwBo3769Sl1nZ2fIZDLcvHkTQ4cOVdtWamoq0tLSlH8/HoSIiIhI99RoaNm2bRvMzMzQu3dvZVlaWhoaNGiARo0aqdQ1MDBAw4YNVYLJ4/bt24eAgABtNpeIiIjqkBoLLZs3b8bFixcxf/58lWtUCgsLoa+vuRmGhoYoLNQ80/Ho0aPh4eGh/DshIQGLFi2q3kYTERFRnVEjoeX48eNYt24dRo4cqXbtipGREUpKSjSuV1RUpPH2aACwtbWFra1tdTeViIiI6iitDy534cIFLF68GH369ME777yjttzGxgalpaXIyMhQKS8uLkZ2dvZTL/olIiKi+kGroeXGjRv4+OOP4ezsjM8//1zjaaC2bdsCAKKiolTKo6KiIJfLlcuJiIioftNaaImPj8cHH3wAe3t7fPXVV2We5unevTsaNmyIvXv3qpTv3bsXxsbG6NOnj7aaSERERBJSpWtadu3ahYcPHyrv7AkODkZycjIAYPz48ZDJZHj33XeRk5ODl19+WW2slWbNmqFTp04AHl3TMmPGDHz//ff45JNP4ObmhitXruDIkSOYNWsWGjZs+Cz7R0RERDqiSqFlx44dSEpKUv596tQpnDp1CgCUY6ooQswvv/yitv7w4cOVoQV4NJCcvr4+duzYgeDgYDRu3Bi+vr6YOHFiVZpHREREOqhKoWXnzp1PraMIMRU1atQojBo1qirNISIionpA63cPEREREVUHhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIaWOkYuF0iJzQIApMRmQS4XtdwiIiKiukG/thtA/4oLTULIpkjkphcAAILXR+Dy7ttwn+yC1m72tdw6IiKi2sWeljoiLjQJx5eHKwOLQm56AY4vD0dcaFIttYyIiKhuYGipA+RygZBNkeXWCdkcyVNFRERUrzG01AFJUelqPSxPyk0rQFJUeg21iIiIqO5haKmAvIwChAXGIC+j/GBRVfmZhdVaj4iISBcxtFRAXmYhwv+4hTwthQYTK6NqrUdERKSLGFrqAPv21jCzNi63jpmNMezbW9dQi4iIiOoehpY6QCbTg/tkl3LruL/mAplMr4ZaREREVPcwtNQRrd3s4e3vqtbjYmZjDG9/V47TQkRE9R4Hl6tDWrvZw6FnE0QHJSJ4fQQ8ZnSEs1dL9rAQERGBPS11jkymBztHSwCAnaMlAwsREdH/Y2ghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoeQq5XCAlNgsAkBKbBblc1HKLiIiI6if92m5AXRYXmoSQTZHITS8AAASvj8Dl3bfhPtkFrd3sa7l1RERE9Qt7WsoQF5qE48vDlYFFITe9AMeXhyMuNKmWWkZERFQ/MbRoIJcLhGyKLLdOyOZInioiIiKqQQwtGiRFpav1sDwpN60ASVHpNdQiIiIiYmjRID+zsFrrERER0bNjaNHAxMqoWusRERFVt7yMAoQFxiAvo/wzA7qEoUUD+/bWMLM2LreOmY0x7Ntb11CLiIiIVOVlFiL8j1vIq0e9/gwtGshkenCf7FJuHffXXCCT6Wnl8U2tjOA6zgmm7MkhIiJSYmgpQ2s3e3j7u6r1uJjZGMPb31Wr47SYNjJGjwltYdqo/N4eIiKi+oSDy5WjtZs9HHo2QXRQIoLXR8BjRkc4e7XUWg8LERERla3SoSUvLw/bt2/HjRs3EBkZiZycHCxYsAA+Pj5qdePj4/HDDz/g2rVr0NfXR58+feDr6wsrKyuVenK5HNu3b8eePXuQnp6OFi1a4NVXX8XgwYOrvGPVRSbTg52jJQDAztGSgYWIiKiWVDq0ZGVlISAgAE2aNIGTkxPCw8M11ktOToafnx/Mzc0xa9Ys5OfnY/v27YiNjcUvv/wCAwMDZd21a9di69atGDVqFNq3b48zZ85g4cKF0NPTg7e3d9X3joiIiHRGpUOLjY0Ndu/eDRsbG0RFReH111/XWG/Lli0oKCjAunXr0KRJEwCAi4sL5s+fj0OHDmH06NEAgJSUFOzYsQMvvPAC5s2bBwB4/vnn4efnh9WrV2PgwIFo0KBBVfePiIiIdESlL8Q1NDSEjY3NU+udPHkSffv2VQYWAOjZsydatmyJoKAgZdmZM2dQUlKCF154QVmmp6eHsWPHIiUlBREREZVtIhEREekgrdw9lJKSgoyMDDg7O6stc3FxQUxMjPLvmJgYmJiYwMHBQa2eYjlpV30coIiIiKRHK3cPpaWlAYDGHhkbGxtkZ2ejqKgIhoaGSEtLQ6NGjaCnp6dWDwBSU1M1PkZqaqrycQAgISGhuppf7ygGKHLo0Zi3WRMRUZ2lldBSWPhodL7HL7ZVMDQ0VNYxNDREYWHhU+tpsm/fPgQEBFRTi4mIiKiu00poMTJ6NJJrcXGx2rKioiKVOkZGRhWq96TRo0fDw8ND+XdCQgIWLVr0bA0nIiKiOksroUVxaufx0zcKaWlpaNiwobInxcbGBuHh4RBCqJwiUqxra2ur8TFsbW3LXEZERES6RysX4trZ2cHKygrR0dFqyyIjI+Hk5KT828nJCQUFBWrXpNy4cUO5nIiIiEhrcw8NGDAAZ8+exYMHD5RlYWFhSExMhJeXl7KsX79+0NfXx+7du5VlQgjs3bsXdnZ26NSpk7aaSERERBJSpdNDu3btwsOHD5WncIKDg5GcnAwAGD9+PMzNzfHqq6/ixIkT8Pf3x4QJE5Cfn49t27bB0dFRZcj/xo0bY+LEidi2bRtKSkrg4uKC06dP4+rVq/jf//7HgeWIiIgIQBVDy44dO5CUlKT8+9SpUzh16hQAYOjQoTA3N0eTJk2wcuVK/PDDD/jll1+Ucw/Nnj1beT2LwhtvvAELCwvs27cPhw8fRosWLfDxxx9jyJAhz7BrREREpEuqFFp27txZoXqtW7fGt99++9R6MpkMr776Kl599dWqNIeIiIjqAa1d00JERERUnRhaiIiISBIYWoio0jhfFRHVBoYWIqo0xXxVeZmap9kgItIGhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIomRywVSYrMAACmxWZDLRS23qGbo13YDiIiIqOLiQpMQsikSuemPZlkPXh+By7tvw32yC1q72ddy67SLPS1EREQSEReahOPLw5WBRSE3vQDHl4cjLjSpllpWMxhaiIiIJEAuFwjZFFlunZDNkTp9qoihhYhIg7yMAoQFxiAvo+DplSVI1/dPFyVFpav1sDwpN60ASVHpNdSimsfQUgGmVkZwHecEUyuj2m4KEdWQvMxChP9xC3mZhbXdFK3Q9f3TRfkVfK4qWk+KeCFuBZg2MkaPCW1ruxlERFSPmVTwh3NF60kRe1qIiIgkwL69NcysjcutY2ZjDPv21jXUoprH0FLP1dd7/YmIpEYm04P7ZJdy67i/5gKZTK+GWlTzGFrqsbjQJOyYcwLB6yMAPLrXf8ecEzp/yxwRkVS1drOHt7+rWo+LmY0xvP1ddX6cFl7TUk8p7vV/kuJe//rw4icikqLWbvZw6NkE0UGJCF4fAY8ZHeHs1VKne1gU2NNSD/FefyIiaZPJ9GDnaAkAsHO0rBeBBWBoqZd4rz8REUkRQ0s9xHv9iYhIihha6iHe609ERFLE0FIP8V5/IiKSIoaWeoj3+hMRkRQxtNRT9f1efyIikh6O01KP1ed7/YmISHrY01LP1dd7/YmISHoYWoioUjhfFRHVFp4eIqIKiwtNQsimSOXghMHrI3B59224T3bR6nVQeRkFiDyeCBfvljBtVP6db0Sku9jTQkQVopiv6snRlBXzVWlzos28zEKE/3ELeRzwkKheY2ghoqfifFVEVBcwtBDRU3G+KiKqCxhaiOipOF8VEdUFDC1E9FScr4qI6gKGFiJ6Ks5XRUR1AUMLET0V56siorqAoYWIKoTzVWlXXkYBwgJjkJdR/gXPRPUZB5cjogrjfFXaoxiLxqFHYw6gR1QG9rQQUaVwvioiqi0MLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1ERE+QywVSYrMAACmxWTo3EaSu7x/pLt7yTET0mLjQJIRsilROEBm8PgKXd9+G+2QXnRiLRtf3j3Qbe1qIiP5fXGgSji8PV5vROje9AMeXhyMuNKmWWlY9dH3/SPcxtBAR4dEpk5BNkeXWCdkcKdlTKbq+f1Q/MLQQEQFIikpX64F4Um5aAZKi0muoRdVL1/eP6geGFiIiAPmZhdVar67R9f2j+oGhhYgIgImVUbXWq2t0ff+ofmBoISICYN/eWm0G6yeZ2RjDvr11DbWoeun6/tVHplZGcB3nBNN6FDQZWoiI8GgiSPfJLuXWcX/NRbITROr6/tVHpo2M0WNC23o1KzhDCxHR/2vtZg9vf1e1HgkzG2N4+7tKfhwTXd8/0n0cXI6I6DGt3ezh0LMJooMSEbw+Ah4zOsLZq6XO9EDo+v6RbmNPCxHRE2QyPdg5WgIA7Bwtde4LXdf3j3QXQwsRERFJAkMLERERSQJDCxEREUmCVi/ETUxMxPr163Ht2jVkZ2ejSZMmGDx4MF5++WUYG/979fq1a9fw888/4+bNmzAzM4OXlxdmzZoFU1NTbTaP/l99vNefiIikR2uh5cGDB3jjjTdgbm6OF154AQ0bNkRERAQ2bNiA6OhoLFmyBAAQExODefPmwcHBAb6+vkhOTsaOHTtw584dLFu2TFvNo8co7vUnqovkcoGU2CwAQEpsFqwdGvLCUaJ6Smuh5ciRI3j48CF+/PFHtG7dGgAwevRoyOVy/PXXX8jJyYGFhQXWrFkDCwsLrFy5EmZmZgCApk2b4uuvv0ZoaCjc3Ny01UQiquPiQpMQsilSOdFf8PoIXN59G+6TXTimCFE9pLVrWnJzcwEAjRo1Uim3sbGBTCaDvr4+cnNzcfHiRQwdOlQZWABg2LBhMDExQVBQkLaaR0R1XFxoEo4vD1ebmTg3vQDHl4cjLjSpllpGRLVFa6HF1dUVAPDVV18hJiYGDx48wPHjx7F3716MHz8eJiYmiI2NRWlpKZydnVXWNTAwQNu2bRETE6Ot5lEty8soQFhgDPIyCp5emeoduVwgZFNkuXVCNkdCLhc11CIiqgu0dnqod+/emDFjBrZs2YLg4GBl+WuvvYZZs2YBANLS0gA86n15ko2NDa5cuVLm9lNTU5XrA0BCQkJ1NZ1qQF5mIcL/uAWHHo3r1bwZVDFJUelqPSxPyk0rQFJUOpp1UP/8ICLdpNW7h5o2bYquXbtiwIABaNiwIc6dO4ctW7bA2toa48ePR2FhIYBHPStPMjQ0RFFRUZnb3rdvHwICArTVdCKqRfmZhdVaj4h0g9ZCy/Hjx7Fs2TJs3boVjRs3BgAMGDAAQgj88ssvGDx4MIyMHt1iW1xcrLZ+UVERDA0Ny9z+6NGj4eHhofw7ISEBixYtqua9IKLaYFLB2+8rWo+IdIPWQsvu3bvRtm1bZWBR8PDwwKFDhxATE6M8LfT4aR6FtLQ02Nralrl9W1vbcpcTkXTZt7eGmbVxuaeIzGyMYd/eugZbRUS1TWsX4mZkZEAul6uVl5SUAABKS0vRunVrNGjQANHR0Sp1iouLERMTAycnJ201j4jqMJlMD+6TXcqt4/6ai86M1/LkWDS8wJhIM62FlpYtWyImJgaJiYkq5cePH4dMJkObNm1gbm6Onj174siRI8jLy1PW+euvv5Cfnw8vLy9tNY+I6rjWbvbw9neFmbXqhdpmNsbw9nfVmXFa4kKTsGPOCQSvjwDwaCyaHXNO8JZuIg20dnro5Zdfxvnz5+Hr64tx48ahYcOGOHv2LM6fP4/nn39eeWpn5syZmD17Nvz8/DB69GjliLi9evVC7969tdU8InoGNTX1Q2s3ezj0bILooEQEr4+Ax4yOcPZqqTM9LIqxaJ6kGItGl8IZUXXQWk9Lt27d8OOPP6Jdu3bYvXs3Vq1ahXv37mHWrFmYP3++sp6zszO+++47GBkZYdWqVdi/fz9GjhyJL774QltNI9I6XR+HRjH1Q03cri6T6cHO0RIAYOdoqTOBhWPRkNTUhc81rd7y3KFDhwrNH9SlSxesXr1am00hqlEch4aehmPRkNTUhc81rfW0EBFR2TgWDVHlMbQQEdUCjkVDVHkMLUREtUAxFk15OBYNkSqGFiKiWlDfxqIhqg4MLUREtaS+jEVDVF20evcQERGVT9fHoiGqTuxpISKqZbo6Fg1RdWNoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIqoGdWFCQV3H0EJEpIGplRFcxznBVEeH0df1/asNigkF8zhflNZwnBYiIg1MGxmjx4S2td0MrdH1/SPdxJ4WIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFqpxcrlASmwWACAlNgtyuajlFhERkRTw7iGqUXGhSQjZFInc9EfjGASvj8Dl3bfhPtkFrd3sa7l1RERUl7GnhWpMXGgSji8PVwYWhdz0AhxfHo640KRaahkREUkBQwvVCLlcIGRTZLl1QjZH8lQRERGViaGFakRSVLpaD8uTctMKkBSVXkMtIiIiqWFooRqRX8FhrStaj4iI6h+GFqoRJhWc36Si9YiIqP5haKEaYd/eGmbWxuXWMbMxhn176xpqERERSQ1DC9UImUwP7pNdyq3j/poLZDK9GmqR9nAcGiLSNXXlc43jtFCNae1mD29/V5VxWoBHPSzur+nGOC0ch0Y7TK2M4DrOCaY8fUhU4+rS5xp7WqhGtXazx0srB8JjRkcAgMeMjnhpxUCd+EKvzXFo8jIKEBYYg7yM8u/QkirTRsboMaEtTBuVf4qRiKpXXRtfi6GFapxMpgc7R0sAgJ2jpc6cEqrNcWjyMgsR/sct5PHuKyKqJrX9uaYJQwtRNeA4NESka+ri5xpDC1E14Dg0RKRr6uLnGkMLUTXgODREpGvq4ucaQwtRNeA4NESka+ri5xpDC1E1qE/j0BBR/VAXP9cYWoiqiWIcmid/mZjZGMPb31Unbusm7eFYNFQX1bXPNQ4uR1SNWrvZw6FnE0QHJSJ4fQQ8ZnSEs1dL9rDQUynGoiGqa+rS5xp7WoiqmS6OQ0NE9Vtd+VxjaCEiInpGdWVuHl3H00NERETPoC7NzaPr2NNCRERURXVtbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERUBXVxbh5dx9BCRERURXVtbh5dx8HliIiInkFdmptH17GnhYiI6BnVlbl5dB1DCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwuRxMnlAimxWQCAlNgsTs5GRDqLtzwTSVhcaBJCNkUqJ20LXh+By7tvw32yC8eHICKdw54WIomKC03C8eXharPM5qYX4PjycMSFJtVSy4iItIOhhWqFqZURXMc5wZQTiVWJXC4Qsimy3DohmyN5qoiIdApDC9UK00bG6DGhLUwblT/ZGGmWFJWu1sPypNy0AiRFpddQi4iItI+hhUiC8jMLq7UeEZEUMLQQSZBJBU+rVbQeEZEUMLQQSZB9e2u1WWWfZGZjDPv21jXUIiIi7WNoIZIgmUwP7pNdyq3j/poLJ20jIp3C0EIkUa3d7OHt76rW42JmYwxvf1eO00JEOoeDyxFJWGs3ezj0bILooEQEr4+Ax4yOcPZqyR4WItJJWg8t0dHR2LhxI65du4aioiI0a9YMo0aNwoQJE5R1rl27hp9//hk3b96EmZkZvLy8MGvWLJiammq7eURaUZPj0MhkerBztAQA2DlaMrAQkVbUhfG1tBpaQkNDsWDBArRt2xZTpkyBiYkJ7t69i5SUFGWdmJgYzJs3Dw4ODvD19UVycjJ27NiBO3fuYNmyZdpsHpHWKMahISLSFXXhc01roSU3NxeLFy+Gu7s7vvjiC8hkmi+fWbNmDSwsLLBy5UqYmZkBAJo2bYqvv/4aoaGhcHNz01YTiYiISEK0diHusWPHkJ6ejlmzZkEmkyE/Px9yuVylTm5uLi5evIihQ4cqAwsADBs2DCYmJggKCtJW84iIiEhitNbTcvHiRZiZmSE1NRX//e9/kZiYCBMTEwwdOhS+vr4wMjJCbGwsSktL4ezsrLKugYEB2rZti5iYGG01j4iIiCRGa6Hlzp07KC0txUcffYSRI0fi9ddfx+XLl7Fr1y48fPgQn376KdLS0gAANjY2auvb2NjgypUrZW4/NTVVuT4AJCQkVP9OEBFRtcjLKEDk8US4eLfknGNUZVoLLfn5+SgoKMCYMWMwd+5cAMCAAQNQXFyMffv2Yfr06SgsfDQvioGBgdr6hoaGKCoqKnP7+/btQ0BAgFbaTkRE1SsvsxDhf9yCQ4/GDC1UZVoLLUZGj26J8vb2VikfPHgw9u3bh4iICBgbP3rhFhcXq61fVFQEQ0PDMrc/evRoeHh4KP9OSEjAokWLqqPpREREVAdpLbTY2NggLi4O1taqc580atQIAJCTk4PmzZsDgMppHoW0tDTY2tqWuX1bW9tylxMREZFu0drdQ4qLax8fkwV4dC0KAFhZWaF169Zo0KABoqOjVeoUFxcjJiYGTk5O2moeERERSYzWQouXlxcA4MCBAyrlBw4cQIMGDeDq6gpzc3P07NkTR44cQV5enrLOX3/9hfz8fOU2iIiIiLR2eqhdu3YYMWIEDh48iNLSUnTr1g2XL19GUFAQXn31VeWpnZkzZ2L27Nnw8/PD6NGjlSPi9urVC71799ZW84iIiKpVXRjmXtdpdRj/d999F02aNMGhQ4dw+vRpNGnSBL6+vnjxxReVdZydnfHdd9/h559/xqpVq2BqaoqRI0fijTfe0GbTiIiIqlVdGOZe12k1tOjr62PatGmYNm1aufW6dOmC1atXa7MpREREJHFau6aFiIiIqDoxtBAREZEkMLQQERGRJDC0EBERkSQwtBARkc7JyyhAWGAM8jIKarspVI0YWoiISOcoJmjMyyys7aZQNWJoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoIdIBplZGcB3nBFMro9puChGR1mh1lmciqhmmjYzRY0Lb2m4GEZFWsaeFiIiIJIGhhYiItEouF0iJzQIApMRmQS4XtdwikiqeHiIiIq2JC01CyKZI5KY/mgMoeH0ELu++DffJLmjtZl/LrSOpYU8LERFpRVxoEo4vD1cGFoXc9AIcXx6OuNCkWmoZSRVDCxERVTu5XCBkU2S5dUI2R/JUEVUKQwsREVW7pKh0tR6WJ+WmFSApKr2GWkS6gKGFiIiqXX5mYbXWIwIYWqieyMsoQFhgDPIyyv/lR0TVw6SCAx1WtB4RwNBC9UReZiHC/7iFPP6qI6oR9u2tYWZtXG4dMxtj2Le3rqEWkS5gaCEiomonk+nBfbJLuXXcX3OBTKZXQy0iXcDQQkREWtHazR7e/q5qPS5mNsbw9nflOC1UaRxcjoiItKa1mz0cejZBdFAigtdHwGNGRzh7tWQPC1UJe1qIiEirZDI92DlaAgDsHC0ZWKjKGFqIiEincK4j3cXTQ0REpDM415FuY08LERHpBM51pPsYWoiISPI411H9wNBCRESSx7mO6geGFiIikjzOdVQ/MLQQEZHkca6j+oGhhYiIJI9zHdUPDC1ERCR5nOuofmBoISIincC5jnQfB5cjIiKdwbmOdBt7WoiISKdwriPdxdBCREREksDQQkRERJLA0EJERESSwNBCREREksDQQjpPLhdIic0CAKTEZnHCNCIiieItz6TT4kKTELIpUjmRWvD6CFzefRvuk104ZgMRkcSwp4V0VlxoEo4vD1eb+TU3vQDHl4cjLjSpllpGRERVwdBCOkkuFwjZFFlunZDNkTxVREQkIQwtpJOSotLVelielJtWgKSo9BpqERERPSuGFtJJ+ZmF1VqPiIhqH0ML6SQTK6NqrUdEz8bUygiu45xgyvccPQOGFtJJ9u2t1WZ6fZKZjTHs21vXUIuI6jfTRsboMaEtTBuV/74kKg9DC+kkmUwP7pNdyq3j/poLJ1IjIpIQhhbSWa3d7OHt76rW42JmYwxvf1eO00JEJDEcXI50Wms3ezj0bILooEQEr4+Ax4yOcPZqyR4WIiIJYk8L6TyZTA92jpYAADtHSwYWIiKJYmghIiIiSWBoISIiIklgaCEiIiJJYGghIiIiSWBoISIiIklgaCEiIp3DaQN0E8dpISIinaOYNoB0C3taiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBJqNLRs2rQJ/fv3x5QpU9SWXbt2DbNnz8aQIUMwduxYrFixAnl5eTXZPCIiIqrDauzuoeTkZGzZsgUmJiZqy2JiYjBv3jw4ODjA19cXycnJ2LFjB+7cuYNly5bVVBOJiIioDqux0LJ69Wp06NABcrkcWVlZKsvWrFkDCwsLrFy5EmZmZgCApk2b4uuvv0ZoaCjc3NxqqplERERUR9XI6aHLly/j5MmT8PPzU1uWm5uLixcvYujQocrAAgDDhg2DiYkJgoKCaqKJREREVMdpPbSUlpZixYoVGDlyJNq0aaO2PDY2FqWlpXB2dlYpNzAwQNu2bRETE6PtJhIREZEEaP300N69e/HgwQN8//33GpenpaUBAGxsbNSW2djY4MqVKxrXS01NVa4LAAkJCdXQWiIiIqqrtBpasrKysGHDBkyePBlWVlYa6xQWFgJ41LPyJENDQxQVFWlcb9++fQgICKiuphIREVEdp9XQsm7dOlhYWGD8+PFl1jEyejSZVXFxsdqyoqIiGBoaalxv9OjR8PDwUP6dkJCARYsWPWOLiYiIqK7SWmhJTEzE/v374efnh9TUVGV5UVERSkpKcP/+fZiZmSlPCz1+qkchLS0Ntra2Grdva2tb5jIiIiLSPVoLLampqZDL5VixYgVWrFihtvyll17ChAkTMH36dDRo0ADR0dEYNGiQcnlxcTFiYmLg5eWlrSZSPcJp6omIpE9roaV169b48ssv1crXrVuHvLw8zJkzB82aNYO5uTl69uyJI0eOYMqUKTA1NQUA/PXXX8jPz2dooWrBaeqJiKRPa6HFysoKnp6eauW///47AKgsmzlzJmbPng0/Pz+MHj1aOSJur1690Lt3b201kYiIiCSkTkyY6OzsjO+++w5GRkZYtWoV9u/fj5EjR+KLL76o7aYRERFRHVFjw/grrFy5UmN5ly5dsHr16hpuDREREUlFnehpISIiInoahhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKShBqfe0hbCgsLAQAJCQm13BIiIiKqLAcHBxgbG5dbR2dCS1JSEgBg0aJFtdwSIiIiqqy1a9fC2dm53Dp6QghRQ+3RqszMTISGhqJp06YwNDSs7eZUSUJCAhYtWoSPP/4YDg4Otd2cWsPj8C8ei0d4HP7FY/EvHotHdOU41KueFisrKwwdOrS2m1EtHBwcnpo26wMeh3/xWDzC4/AvHot/8Vg8Uh+OAy/EJSIiIklgaCEiIiJJYGipQ2xsbDB16lTY2NjUdlNqFY/Dv3gsHuFx+BePxb94LB6pT8dBZy7EJSIiIt3GnhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBJ0ZXE4qUlNTERgYiMjISERFRSE/Px8rVqyAq6urWt05c+bg8uXLauVubm745ptvVMqKioqwfv16HDlyBDk5OWjTpg1mzpyJXr16aWtXnklljgMAXLt2DT///DNu3rwJMzMzeHl5YdasWTA1NVWpJ7XjUJZDhw5hyZIlGpft3r1b7S6BM2fOYOPGjUhISICVlRVGjBiByZMnQ19f2m9xXXk+KyM8PBxz587VuOynn35Cx44dlX9X9H0hBXl5edi+fTtu3LiByMhI5OTkYMGCBfDx8VGrGx8fjx9++AHXrl2Dvr4++vTpA19fX1hZWanUk8vl2L59O/bs2YP09HS0aNECr776KgYPHlxDe1V5FT0OixcvxuHDh9XWb9WqFbZs2aJSJsXjUBZpf6JJUGJiIn777Te0aNECjo6OiIiIKLe+nZ0d3njjDZUyTbe1LVmyBCdOnMDEiRPRokULHDp0CO+//z5WrFiBLl26VOs+VIfKHIeYmBjMmzcPDg4O8PX1RXJyMnbs2IE7d+5g2bJlKnWldhyeZsaMGWjatKlKmbm5ucrfISEh+O9//4tu3bph7ty5iI2NxaZNm5CRkYF33nmnJptb7XTt+ayM8ePHw8XFRaWsefPmyv+vzPtCCrKyshAQEIAmTZrAyckJ4eHhGuslJyfDz88P5ubmmDVrFvLz87F9+3bExsbil19+gYGBgbLu2rVrsXXrVowaNQrt27fHmTNnsHDhQujp6cHb27umdq1SKnocAMDQ0BDvv/++SpmZmZlaPSkehzIJqlG5ubkiKytLCCFEUFCQ8PT0FJcuXdJY18/PT0yePPmp24yIiBCenp7it99+U5YVFBSIl19+Wbz55pvV0/BqVpnj8O6774qxY8eKhw8fKsv2798vPD09xfnz55VlUjwOZTl48KDw9PQUkZGRT6372muviWnTponi4mJl2Zo1a0T//v1FfHy8NpupVbr0fFbGpUuXhKenpwgKCiq3XkXfF1JRWFgoUlNThRBCREZGCk9PT3Hw4EG1et9++60YPHiwSEpKUpZduHBBeHp6ir179yrLkpOThZeXl/juu++UZXK5XMyePVuMGzdOlJSUaHFvqq6ix+HLL78UQ4cOfer2pHocysJrWmqYqakpGjZsWKl1SkpKkJeXV+bykydPokGDBhg9erSyzMjICCNHjkRERAQePHhQ5fZqS0WPQ25uLi5evIihQ4eq/IIYNmwYTExMEBQUpCyT4nGoiLy8PJSWlmpcFh8fj/j4eIwaNUrlVNALL7wAIQROnDhRQ62sfrr6fFZGXl4eSkpK1Mor876QCkNDwwoNjnby5En07dsXTZo0UZb17NkTLVu2VNnvM2fOoKSkBC+88IKyTE9PD2PHjkVKSspTe7lrS0WPg0JpaSlyc3PLXC7V41AWnh6q4xITEzFs2DAUFxfD2toazz//PKZOnaryBRUTE4MWLVqodQsqupZv3bql8gaXktjYWJSWlqpNAmZgYIC2bdsiJiZGWaaLx2Hu3LnIz8+HgYEBevXqhdmzZ6Nly5bK5Tdv3gQAteNja2sLOzs7leMjNbr4fFbGkiVLkJ+fjwYNGqBLly5466230L59ewCVe1/okpSUFGRkZGicFNDFxQUhISHKv2NiYmBiYqI267Hi9RMTEyP5U4wFBQXw8fFBQUEBLCws4O3tjTfffFPlmiZdOw4MLXVYs2bN4OrqCkdHRxQUFODEiRPYtGkTEhMT8fnnnyvrpaWlaUzmirLU1NQaa3N1S0tLA6D5Oh4bGxtcuXJFpa6uHAcjIyP4+PjA1dUVZmZmiI6Oxs6dO/H2229j3bp1yi/rpx0fxXIp0qXnszL09fUxYMAAuLu7w9LSEvHx8dixYwd8fX2xevVqtGvXrlLvC13ytP3Ozs5GUVERDA0NkZaWhkaNGkFPT0+tHiD914+NjQ1eeeUVtGvXDkIInD9/Hnv27MHt27exYsUK5Q9bXTsODC3PQC6Xo7i4uEJ1DQ0N1V40T/Phhx+q/D1s2DAsW7YM+/fvx4svvqi8i6CwsFDl4rPHH1OxXJu0eRwUbS9r/4qKilTq1uZxKEtVjs+gQYMwaNAgZbmnpyfc3Nzg5+eHzZs349133wUA5f4r9vHJbZV3WrGuq6vPp7Z17twZnTt3Vv7dr18/DBw4ENOmTcOaNWvwzTffVOp9oUuett+KOoaGhjr/+nnyBg1vb2+0bNkSa9euxcmTJ5UX2OracWBoeQZXrlwp89bEJ23evFmte64qXnrpJezfvx8XL15UhhYjIyONX4qKDy4jI6NnftzyaPM4KNpe1v49/mVd28ehLNV1fLp06YIOHTogLCxMWabYf01fUkVFRbW2z9Whrj6ftaFFixbo168fTp06hdLS0kq9L3TJ0/b78Tr18fXz4osvYv369bh48aIytOjacWBoeQatWrXCggULKlS3umbfbNy4MQAgJydHZdspKSlqdRVdqba2ttXy2GXR5nFQ1Nd0miMtLU1l32r7OJSlOo9P48aN8c8//6jVT0tLU7u+Iy0tTe2WWSmpq89nbWncuDGKi4tRUFBQqfeFLnnafjds2FAZ2GxsbBAeHg4hhErvri6/foyMjNCwYUNkZ2cry3TtODC0PAMbGxuNAx9p07179wBAZRAlxb38ubm5Khct3rhxQ7lcm7R5HFq3bo0GDRogOjpa5XRJcXExYmJi4OXlpSyr7eNQluo8Pvfu3VN57tu2bQsAiI6ORocOHZTlqampSElJUbnzRmrq6vNZW+7duwdDQ0OYmJhU6n2hS+zs7GBlZYXo6Gi1ZZGRkSqvCScnJ/z5559ISEjAc889pyzX5ddPXl4esrKy1L4fdOk48JbnOio3N1ety18IgU2bNgGAyoigAwcORGlpKfbt26csKyoqwsGDB9GhQwdJ32Fhbm6Onj174siRIyrXZ/z111/Iz89X+XDWpeOQmZmpVnbu3DlER0fDzc1NWda6dWu0atUK+/fvV7ktes+ePdDT08OAAQNqorlaoUvPZ2Voeu5v3bqF4OBg9OrVCzKZrFLvC10zYMAAnD17VuWW97CwMCQmJqrsd79+/aCvr4/du3cry4QQ2Lt3L+zs7NCpU6cabXd1Kiws1Hi92q+//gohBHr37q0s07XjwJ6WWvDrr78CeDTGBvDog+bq1asAgClTpgB4dCvr559/jsGDB6N58+YoLCzE6dOnce3aNYwaNUrllr8OHTrAy8sLa9asQWZmJpo3b47Dhw8jKSkJH3zwQc3uXCVU5DgAwMyZMzF79mz4+flh9OjRypE/e/XqpfLmlOpx0OStt95Cu3bt4OzsDDMzM9y8eRMHDx5E48aN8dprr6nUffvtt7FgwQK888478Pb2RmxsLHbv3o3nn39e5ZeV1OjS81kZn376KYyMjNCpUyc0atQI8fHx2L9/P4yNjVUuvqzo+0JKdu3ahYcPHypPXQQHByM5ORnAoxGCzc3N8eqrr+LEiRPw9/fHhAkTkJ+fj23btsHR0VGlR7Nx48aYOHEitm3bhpKSEri4uOD06dO4evUq/ve//6FBgwa1so8V8bTjkJOTgxkzZmDw4MFo1aoVACA0NBQhISHo3bs3+vXrp9yWlI+DJnpCCFHbjahv+vfvX+ayU6dOAXjUFfzLL78gMjIS6enpkMlkcHBwwPPPP4/Ro0er3YFTWFionKPl4cOHcHR0xMyZM1V+ldc1FTkOClevXlXOsWJqagovLy+88cYbanOsSPE4aLJ27VqEhITg/v37ymsY+vTpg6lTp8La2lqt/unTpxEQEICEhARYWlrCx8dHbTwfKdKV57MyAgMDcfToUdy9exe5ubmwsrJCjx49MHXqVLRo0UKlbkXfF1Lx4osvIikpSeOyHTt2KKe0iIuLU5t7aPbs2WrvDblcjt9++w379u1DWloaWrRogf/85z8YOnSo1vflWTztOJibm2PFihWIiIhAWloa5HI5mjdvjiFDhuDll19We99L9ThowtBCREREksBrWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaqNIOHTqE/v3749ChQ7XdlAoJDw9H//79sWHDBq09Rv/+/TFnzhytbb++ePHFF/Hiiy/WdjPqvA0bNqB///4IDw/X6uPs3LkTgwYNwv379ytUvybea1L2xRdfYOLEiSgsLKztpkgWQ0s9sHTpUvTv3x/PP/+82iSMukJqX3ZZWVn4+eefMXnyZAwZMgRDhgzBxIkT4e/vj40bNyI9Pb1G2vG0ADpnzpxyp1uoT/Lz8zF8+HD0798f3333XW03R+tycnKwadMmjBgxQjl8Pj2bqVOnIjU1Fb///nttN0WypD0xCT1VXl4egoKCoKenh+zsbJw+fRre3t7PtE1PT0906NABNjY21dTK+iU5ORlvv/02kpOT0bZtW/j4+MDCwgJpaWm4fv06Nm7ciM6dO2ucY0jXff/997XdhDIFBQUhLy8Penp6OHbsGGbPng0jI6PabpbW7Ny5E9nZ2XjllVdquyk6o2XLlvDw8MBvv/2G8ePHw8TEpLabJDkMLTru77//Rn5+Pl588UUEBgbiwIEDzxxazM3NYW5uXk0trH82bNiA5ORkzJgxQ2U2a4Xbt2/X2+PbvHnz2m5CmQ4cOIAGDRpg3Lhx+P3333Hq1CkMGTKktpulFSUlJfjzzz/RuXPnOv2cSNHQoUNx6tQpHD9+HM8//3xtN0dyGFp0nOKDdtKkSbh9+zYuXbqEpKQk2Nvbq9TbsGEDAgICytyOvb09du7cCeDRKYUlS5ZgwYIFKlPB9+/fH926dcP//vc//PTTT7hw4QKKiorQtWtX+Pv7o1mzZoiPj8eaNWtw5coVlJSUwM3NDfPmzVPpVQgPD8fcuXMxdepUTJ8+XaUd9+/fx0svvYThw4fjo48+Uv79eBsUNK0fFRWFNWvWICIiAjKZDN27d4evr69a9/epU6cQFBSEqKgopKamQl9fH23atMGECRMwcODA8g/6U0RERAAAxo0bp3F5mzZtNJbfu3cPW7duxYULF5CWlgYzMzM899xz8PHxUT4PxcXF2LdvH86ePYv4+HhkZmbCzMwMnTt3xpQpU9CuXTvl9hYvXozDhw8DAJYsWYIlS5ao7P/jx/Lx/1cce4Xbt29j8+bNuHz5MrKzs2FjYwMPDw9MmzYNlpaWynqPP3eTJk3C2rVrceXKFWRnZytn8FWc4lO81oB/X5srVqxAamoqtm3bhn/++Qfm5ubw8vLCm2++qdbjUVJSgu3bt+PPP/9Eamoq7OzsMHLkSAwaNAgvv/yy2j48zT///INr166hb9++Kj8ANIWWx1+/ffv2rdDrDQBOnjyJLVu2IC4uDmZmZvDw8MBbb72FGTNmqB2T8lT0+ShPaGgo0tLSMGnSJI3LCwsLsXHjRhw9ehRZWVlo3rw5JkyYoDYL9ePu3buHzZs348KFC8jIyICFhQXc3Nwwffp0tc8joHLHQ/Fa3r59O06dOoUDBw7g3r178Pb2Vj7PGRkZ2LJlC86ePYvk5GSYmpqia9eumD59OhwdHdUevzL1ExMTsWXLFoSHhyMtLQ3GxsZo3LgxXF1d4efnBz09PWXdPn36wNjYGIcPH2ZoqQKGFh0WHx+PiIgIuLu7w9raGsOGDUNYWBgOHjyo9mXu6uqqcRsJCQkICgqqcDd4Tk4OZs+eDRsbGwwbNgx37tzB2bNnMX/+fCxevBi+vr5wdnbGiBEjcPPmTZw8eRLZ2dlYsWJFlfbR3NwcU6dORWBgIABgwoQJZe5TVFQUtm3bBldXV4wePRoxMTE4ffo0YmNjERAQoLKPa9asgb6+Pjp37gwbGxtkZmYiODgYn3zyCebOnYvx48dXqb0AlF8ciYmJ6NChQ4XWuXr1Kj744APk5eXBzc0N3t7eyMnJQUxMDAIDA5WhJTs7G6tWrUKXLl3g7u4OCwsL3L9/H8HBwTh//jxWrVoFFxcXAI9O8z18+BBnzpxBv3794OTkpPKYU6dOxeHDh5GUlISpU6cqy9u2bav8/zNnzuCzzz6Dnp4e+vXrh8aNGyM+Ph5//PEHQkND8csvv8DCwkJlu3fv3sVbb70FR0dHDB8+HNnZ2TAwMHjqMVBs08PDA927d8f58+exa9cuZGVl4ZNPPlGp+9VXX+Gvv/5Cs2bNMHbsWBQXF2Pnzp24fv16hY73kw4cOAAAGDZsGJo0aYJu3bohPDwc9+7dQ7NmzTSuU5nX24EDB/DVV1/BzMwMw4YNg7m5OUJCQjB//nyUlJRAX79iH9VVeT40CQsLAwB07NhRbZlcLseCBQtw8eJFODo6YvDgwcjOzsYPP/xQ5ufIjRs38O677yI/Px99+/ZFixYtkJSUhKNHj+L8+fP46aefVI5jVY/H8uXLcePGDfTp0wd9+/ZFo0aNADx6zc2ZMwcpKSno1asX+vXrh8zMTJw8eRIXLlzA999/r/JerEz91NRUvPHGGygoKECfPn0waNAgFBQU4M6dO9izZw/efvttlfYaGBigXbt2iIiIQH5+Pk8RVZYgnbVq1Srh6ekpjh07JoQQIjc3VwwdOlRMmDBBlJaWPnX99PR0MXHiROHt7S2uXr2qLD948KDw9PQUBw8eVKnv6ekpPD09xapVq1TKv/32W+Hp6Sl8fHzEzp07leVyuVy89957wtPTU0RFRSnLL126JDw9PcX69evV2nTv3j3h6ekpvvzyS5XyiRMniokTJ2rcD8X2Hj8WCosWLdJYfvfuXbXt5ObmiilTpggfHx+Rn5+vtu9+fn4aH/9JgYGBwtPTU4wePVqsX79eXLp0STx8+LDM+oWFhWLcuHFiwIABIiQkRG35gwcPVOomJyer1YmNjRVDhw4V8+bNUykv67lU8PPzE56enhqXZWZmiuHDh4tx48aJ+/fvqyw7duyY8PT0FN9//72yTPHclfXcCqH5eVy/fr3y9ZOQkKAsLygoEJMmTRIDBgwQKSkpyvKLFy8KT09PMX36dJXnKSUlRYwZM0bj66c8xcXFYsyYMcLHx0cUFBQIIYQ4cOCA8PT0FGvXrlWrX9nXW3Z2thg6dKgYOnSo+Oeff1Qed+7cucLT07PMY3Lp0iVlWWWfj/LMmjVLDBgwQBQWFqotU7xm3n33XVFSUqIsv3Xrlhg0aJDa81tcXCwmTpwohg0bJqKjo1W2deXKFTFw4EDxwQcfPNPx+PLLL4Wnp6cYN26cSEpKUmvzW2+9JQYOHCjOnz+vUv7PP/+IYcOGiSlTplS5vuL9/Phnm0JWVpZamRD/fjaHhYVpXE5l491DOqqkpARHjhyBmZkZ+vXrBwAwNTWFp6cnHjx4gIsXL5a7fmFhIT766CMkJSXhww8/ROfOnSv0uCYmJpg5c6ZKmeIaGktLS5WeED09PeWy27dvV3jfqqpr165q1/OMGDECABAZGalSrunXs6mpKXx8fPDw4UNERUVVuR3jxo3DK6+8gocPHyIgIABz587FiBEjMHnyZPz8889ITU1VqX/mzBmkpKRgyJAh6N27t9r2GjdurPx/Q0ND2NnZqdVp3bo1XF1dlaflqsNff/2F3NxcvP7662rd+97e3mjXrh2OHz+utp61tTVee+21Sj/ehAkT0KpVK+XfRkZG8Pb2hlwuR3R0tLL8yJEjAIApU6bA2NhYWW5ra6vy+quoc+fOIT09HV5eXsrekYEDB8LY2BiHDh2CXC7XuF5FX29nzpxBfn4+RowYgZYtWyrL9fX11d5L5anq86FJSkoKzM3NYWhoqLZMcUpx5syZaNCggbK8TZs2GDp0qFr9s2fPIikpCa+88orK6UkA6NKlCzw8PBASEoLc3FwAz3Y8XnnlFTRp0kSl7ObNm7h+/TqGDRsGNzc3lWUtW7bE888/j9jYWMTGxlapvoKm3uiGDRtqbKeiByglJaXc/SF1PD2ko86cOYPMzEyMHDlS5c00bNgwHDlyBAcOHFB7QyoIIbB48WJERERg2rRpGDx4cIUft0WLFipfFACUdxk5OjqqnNt9fNmTX9Ta4OzsrFam+IJ/+PChSnlGRga2bt2KkJAQPHjwQG1chWdpr56eHt566y288sorCAkJwY0bNxAVFYWbN28iPj4e+/btwzfffKPsflZ8wfXq1atC24+JicG2bdtw9epVpKenq4WUzMxM2NraVrn9Coprc27cuIG7d++qLS8qKkJWVhYyMzNhZWWlLHdycqrQ6aAnPfmFB/wb2B5//m7dugXg0Rfikzp16lTpx/3zzz8BPHrvKJiamqJfv344duwYQkND4e7urrZeRV9visCuqb0dOnRQCQblqerzoUl2drbG8Ktor4mJicb969Kli/JU2pPt+ueffzSO35Keng65XI7ExES0b9/+mY6H4tTn427cuAHg0Xta0+P/888/yv86OjpWur7iuqXvv/8eYWFh6N27N7p161bmaUPg3zCTlZVVZh3SjKFFRz1+Dv5xPXr0gJ2dHYKDg5Gdna3xl8C6desQFBSEwYMHY9q0aZV6XDMzM7UyxYdMecuq69d/eUxNTct8/Md/LWdnZ+P111/HgwcP0LlzZ/Ts2RPm5uaQyWS4desWzpw5g+Li4mduj5WVFYYPH47hw4cDANLS0rB8+XKcPHkSy5Ytw8aNGwFA+Qu0rC+Rx127dg3z5s0DAPTs2RMtWrRQ7veZM2dw69atamk78Oj6JQDYvXt3ufUKCgpU/lb8yqys8l4/jz9/eXl5kMlkGi86rext5KmpqQgNDUWzZs3UvkSHDx+OY8eO4eDBgxpDS0Vfb4rnV9NxKWs/NKnq86GJkZFRmWM65ebmlvla1HR8Fe06evRohdr1LMdD0zrZ2dkAHvWYnTt3rsx18/Pzq1S/adOm+Omnn7Bx40aEhIQgKCgIANCqVSvMmDEDXl5eausqfgTp8i3z2sLQooMePHiACxcuAEC5o7QeOXJErbv80KFD2Lx5Mzp37owPP/xQq+0si6I3prS0VG2Z4gNNmw4cOIAHDx5ovCV5y5YtOHPmjFYe18bGBh9//DHOnTuH27dvIysrC5aWlsrbnyvSlbx582YUFRXhhx9+UPuSVfyCrC6KL+WAgACNd1+U5cnetupmamoKuVyOrKwstR6Fyg7ad+jQIZSWluLevXtlDrIXHBxcod6LsijCWEZGhtoyxX5UJLBW9fnQxNLSsszXm5mZWZk9BJqOr6JdS5cuRd++fZ/62M9yPDS9thTbq+gF9JWtDzzqRf7iiy9QUlKC6OhonD9/HoGBgfjss89ga2urdnpdEYyq+pqpz3hNiw46fPgw5HI5unTpgpEjR6r9U/yyf7Ib9/Lly/jmm2/QrFkzfPnllxrPZ9cExd0Nmk7BxMTEaFxHJpNpDDlVoehaV1wL9LirV69Wy2OUxcDAQK37W9HlrQii5bl37x4aNmyoFlgKCgpw8+ZNtfoy2aOPgLKOXXnLFaevFN3/dYXiLqhr166pLavM3UNCCBw8eBAA4OPjo/G91KlTJxQXFyuvo6kKxS3umtobGRlZ4dd1dT4fjo6OKCoqwoMHD9SWtWnTBvn5+SrXESloen9Utl3VdTwUFO+fij5+Zes/Tl9fHx07dsT06dMxd+5cCCFw9uxZtXqJiYkA8Mzhsj5iaNExig9aPT09fPTRR/jggw/U/n300Ufo2LEjbt++rbygNDExER9//DGMjIywdOnSWv0F0KpVK5iamipPYSmkp6dj06ZNGtdp2LAhsrKyqmVOD8VFjE9+aB49ehQhISHPvP3t27cjISFB47I//vgD+fn5aNWqlbIb3MPDA3Z2djh69ChCQ0PV1nn8F3GTJk2Qk5ODuLg4ZVlpaSlWr16NzMxMtXUVpweTk5M1tqe85SNGjICpqSnWrl2r8ngKBQUFtRJoFGOnBAQEqLwe0tLSlLfGV8Tly5dx9+5ddO3aFQsWLND4XlL0Rj75A6Ay+vXrBxMTExw4cEDlWpSSkhKsX7++wtupzuejW7duADT3zilOOa9bt04lQNy+fVtjeOvXrx+aNGmCHTt24PLly2rLS0pKVMJOdR0PhQ4dOqBDhw44fvy4xguR5XK5SrsqWz86OlpjD7Ci10nTj78bN27AxsZG5UJjqhieHtIxly5dwv379596IdiIESMQERGBAwcOoH379li5ciWys7PRs2dP/P3332r1zc3Na2xuHwMDA4wfPx6bN2/GzJkz4eHhgfz8fAQHB6Nbt24aLzJ0dXVFVFQU3n//fXTp0gX6+vro2rWr8sO3MoYOHYrffvsNK1asQHh4OJo0aYJbt27h0qVL6N+/P06dOvVM+3fkyBGsXr0ajo6O6NChAxo1aoScnBzcuHEDN2/ehJGREd555x1lfUNDQ3z++ed477338N5778HNzQ1OTk7Izc3FrVu3UFhYqPwwHz9+PC5cuIDZs2fDy8sLhoaGuHz5MlJTU+Hq6qo2wV7Hjh1hZGSEwMBA5OTkKMOq4rRY9+7dceLECfzvf/9D7969YWhoCCcnJ3h4eMDKygqffvopPvnkE0yfPh1ubm5o1aoViouLkZSUhMuXL6NTp0745ptvnul4VVbPnj0xePBgHDt2DFOnTkW/fv1QXFyMoKAguLi44OzZs8oepPIogojijh9NWrVqhU6dOuH69eu4ceNGhcfdeZyFhQV8fX2xbNkyzJo1C4MGDYKZmRlCQkJgaGgIW1vbCp1Sq87no1+/fvjxxx9x8eJFtWsyFNfynD9/HjNmzEDv3r2Rk5OD48ePo1evXmo9C4aGhli4cCHef/99zJkzB927d1delJ+UlISrV6/C0tISW7Zsqdbj8bhPPvkE/v7++PzzzxEYGIi2bdvCyMgIycnJuH79OrKysnDs2LEq1f/rr7+wb98+dO3aFc2bN4epqSni4+Nx/vx5NGzYUO31c/fuXdy/fx9jx46t1D7QIwwtOkbxQfv4SLWaDBo0CCtXrsTx48fh6+ur/EV68eJFjbdD29vb1+iEhDNmzIC+vj4OHDiAffv2wd7eHlOmTEHfvn1x8uRJtfpTpkzBw4cPcfbsWVy9ehWlpaWYOnVqlUJL48aNsXLlSvz000+4ePEiSktL0a5dO3z77bdITk5+5tDy4Ycf4uzZs7h06RJCQ0ORkZEBmUyGJk2aYOzYsZg4caLaL7BOnTph3bp12LJlC0JDQxEWFgYLCws899xzGDNmjLJe3759sXDhQmzZsgVHjx6FkZERunfvji+//FLjiMcNGzbEwoULsXHjRvz555/K14EitDz//PO4f/8+/v77b/z2228oLS3F8OHD4eHhAeDR6J7r16/Htm3bEBYWhosXL8LY2Bh2dnbw8fHReAtsTfjoo4/g4OCAgwcP4o8//oCdnR0mTpyI7t274+zZsxovkn3cw4cPcfLkSZiYmGDAgAHl1h0xYgSuX7+OAwcOVCm0AMCoUaNgYWGBzZs34/Dhw8oRYN98801MnDixwkPpV9fz0bRpU/Tq1QsnTpzA3LlzVXoLZDIZFi9ejI0bN+LYsWPYtWsXmjVrBl9fX7Ro0ULj6RAXFxds2LAB27ZtQ0hICK5fvw4DAwPY2trC09NT7dbw6joeCs2aNcP69euxY8cOnD59GocOHYJMJoONjQ26du2qNsp1ZeoPHjwYRUVFuHbtGiIjI1FcXAw7OzuMGTNG4y3Yit6o0aNHV2of6BE9IYSo7UYQEdWEP//8E19//TXmz58viV+6d+7cwaRJk+Dl5YXPP/+8Rh87LCwM8+bNw8cff1xr4fNJtXk8qkNJSQkmTZqEpk2bVnkU8PqO17QQkc5JS0vDk7/HUlJSsGnTJjRo0AB9+vSppZZplpOTo3aLcWFhIX744QcAj6ZcqGk9evRA7969sWnTpjIH0NOWung8qsPhw4fx4MEDvP3227XdFMni6SEi0jlbt27FuXPn0LVrV1hZWSE5ORlnz55FXl4epk2bptZlX9suX76Mr776Cr169ULjxo2RlZWlnNy0e/fuGDRoUK20a86cOTh69ChSUlJq9JjV1ePxrPT09PDee+9pHJiPKoanh4hI55w/fx47duzA7du3kZOTA0NDQ7Rp0wZjx47VODNzbUtMTMT69etx/fp15V1ezZs3V85KXd8GIePxoLIwtBAREZEk8JoWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKShP8DDecNoaPRn0cAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHRCAYAAACW3ZisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfwElEQVR4nO3dd1gU1+I+8JdeRRAQVNSIKIIVCxZExd6C3URjlKjEGLEl9+qNNzHNcjWaxJhvNBiisWs0KvYWbCgiio0miiIWpEnv7Pz+8LcT110QkGXZ4f08j0/CmbOzZ87uwrvnnJnREQRBABEREZFE6Gq6AURERERVieGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIoKOjgz59+mi6GVqlT58+0NHR0XQziEgFhhuiaqajo6P0z8jICG+99RamTJmCqKgoTTeR1Cw4OFh87f39/cusm5+fj1WrVqFr166oW7cuDA0N0aBBA3Tq1Al+fn44e/ZsmY9funSp+FwxMTGl1tu0aZPS+9Lc3BwODg7o378/Fi9ejNjY2EodL1F109d0A4hqqy+//FL8/4yMDISGhmLz5s3Yu3cvLly4gA4dOmiucaRW8kAjDzcffvihynrZ2dno3bs3rl27Bnt7e4wZMwb29vbIzs7GjRs34O/vj/T0dPTu3Vvl4wVBwG+//QYdHR0IgoANGzZg1apVZbatffv2GDlyJAAgLy8PSUlJuHz5Mr799lssXboUs2fPxqpVq6Cvzz8fVIMJRFStAAilffT8/PwEAMKUKVOqvU29e/eu1ufUdr179y71dSzL8+fPBRMTE6FFixbCmDFjBADCtWvXVNb99ttvBQDCwIEDhYKCAqXtaWlpQnBwcKnPdezYMQGA4OPjI9jb2ws2NjYq9yMIgrBx48Yy33t///230KRJEwGAMGPGjNcfKJEGcVqKqAYZOHAgACA5OVmhPCMjA9999x369u0LBwcHGBoawtbWFt7e3rh06VKp+4uOjsbUqVPx1ltvwcjICPXr14enpyfWrVtXrvZ899130NXVhYeHB9LS0hTaM2/ePDg4OMDY2BitWrXC999/j7i4OOjo6MDHx0dhPz4+PtDR0UFcXBzWrl2Ldu3awcTERGGdT2xsLCZPnoxGjRrB0NAQDRs2xOTJk1VOhcj39+DBA6VtZ86cgY6ODr766iuFcvkameLiYixbtgwtWrSAkZERGjdujIULF6KwsFBlH+zcuROdOnWCiYkJ6tevj/fffx9PnjwpV/+psnXrVuTl5cHHx0fsp9Kmpi5evAgAmDlzJgwNDZW2W1lZoUePHqU+14YNGwAAvr6+eO+995CSkoJ9+/ZVqt1eXl44fvw4DA0N4e/vj/Dw8Erth6g6cFyRqAY5deoUAKBz584K5VFRUfjvf/+LXr16YdiwYbCyssLDhw8RGBiIo0eP4uDBgxg8eLDCYw4fPoxx48ahoKAAgwcPxoQJE5Ceno4bN25g5cqVmDlzZqntkMlkmDdvHtauXYvRo0dj27ZtMDY2BvBiDUjfvn1x7do1uLm54b333kNGRgaWLl2K8+fPl3l8c+fOxfnz5zFs2DAMHToUenp6AIArV66gf//+yMrKgre3N1xdXREdHY2tW7fiwIEDOHXqFLp06VLh/lRl4sSJOH/+PIYMGQILCwscOXIEK1euRFJSEjZu3KhQ94cffsAnn3wCS0tLTJ48GZaWljh+/Dh69OiBunXrVur5N2zYAF1dXUyePBn29vawt7fH9u3bsWrVKpiZmSnUtba2BgDcuXOnws/z7NkzBAYGomXLlujRowcsLCywevVq+Pv745133qlU21u1aoXx48dj69at2L59O9zc3Cq1HyK10/TQEVFtg/8/LfXll1+K/+bPny/07NlT0NHREYYPHy5kZmYqPCY9PV1ITk5W2ldCQoLQoEEDoVWrVgrlycnJgoWFhWBgYCCcOXNG5eNebZN8WiovL08YPXq0AEDw8/MTSkpKFOp+8803AgDh3XffFWQymVj+8OFDwcbGRuXUxpQpUwQAQsOGDYW4uDiFbTKZTGjVqpUAQNi6davCtp07dwoABGdnZ4V2yPd3//59pWMLCgoS+/dl8mmkjh07CqmpqWJ5dna20Lx5c0FXV1d4+vSpWH7//n3BwMBAsLKyUniekpISsX8q+iv00qVL4jST3KeffioAEH777Tel+gcPHhQACIaGhsLMmTOFQ4cOCU+ePCnXcy1fvlwAICxbtkws69Spk6CjoyPExsYq1X/dtJTcb7/9JgAQevXqVa52EGkCww1RNZP/UVT1z9XVVdi2bVuF9jd79mwBgBAfHy+WrVq1SgAgzJkzp9xt6t27t5Camip4eHgIOjo6wooVK1TWlQcBVcFiyZIlZYabH3/8UekxFy5cEAAI3bt3V/l8PXv2FAAIZ8+eVdpfZcLNyZMnlR6zePFiAYBw8OBBpWNZvHixUv179+4Jurq6FQ43U6dOFQAI27dvF8tu3bolABDc3d1VPmbNmjVC3bp1Fd4n9vb2wsSJExX65GUymUx8nR49eiSWr127VgAgLFiwQOkx5Q03R48eFQAILi4u5ThiIs3gmhsiDRFefLmAIAjIzs7G5cuXYWdnh/feew///e9/leoHBwdj/PjxaNy4MYyMjMTTddeuXQsAePz4sVg3JCQEADBkyJByt+fZs2fw8PDAlStXsHXrVixYsECpTmZmJu7du4dGjRrhrbfeUtres2fPMp/D3d1dqezatWsAgL59+6p8jLy8qtZ4vDrlBwCNGzcGADx//lypXarORHJ0dBQfU16ZmZnYtWsXLC0tMWrUKLG8TZs26NSpE0JDQ3Hz5k2lx82ZMwdPnjzB/v37sWDBAgwYMABZWVnYvn07evfujcWLFys95u+//8a9e/cwYMAANGrUSCyfOHEiDA0NsWnTJhQVFVWo/XKCIAAAr/FDNRrDDVENYGZmBnd3d/z1118wMzPDypUrkZCQIG7ft28fevXqhcOHD4vXN/niiy/w5Zdfin98CwoKxPrp6ekAoPCH7XUSExNx584d2NvblxpSMjMzAQB2dnYqt5dWLmdvb69UlpGRAQBo0KCBysfIy+XH9KYsLS2VyuSnNZeUlCi1q7RjUnUsZdm2bRtycnLwzjvviOuX5F63sNjU1BQjRozAihUrcOLECaSlpeHnn3+Gnp4evv32W1y/fl2hvnw/ry7srlevHt5++20kJSXhwIEDFWq/nHwxta2tbaUeT1QdGG6IahBLS0s4OzujuLhYHDkAgC+++AKGhoYICwvD/v37sXr1anzzzTf46quv4OzsrHI/gOJozuu0b98ef/zxBx4/foxevXohLi5OqY6FhQWAF6M8qpRWLqfq2758YW5iYqLKxzx9+lShHgDo6r741VVcXKxUv6pCkPz5Sjum0tpbGvmZS7/++qvSxfJmz54N4EUAysvLe+2+DA0NMWvWLEyYMAHAi5EaueTkZOzfvx8AMGHCBKXn2rt3L4DSg9TrBAUFAQC6du1aqccTVQeeLUVUw8inRmQymVh29+5dtG7dGi4uLgp1ZTIZLly4oLSPbt26Yc+ePTh69KjSWVRlmTRpEoyNjTFx4kT06tULf//9N1q2bClut7CwgKOjIx48eIAHDx4oTU2pasvryM+4OXPmjMrt8j+mHTt2FMusrKwAAAkJCXByclKoHxYWVuE2qNKxY0f89ddfOHv2rNKUWVxcnMLI2uuEhYUhPDwcDRs2LHWq8MqVK7h58yZ2796NKVOmlGu/derUAfDPVBEA/PHHHygsLESnTp1KvRBkYGAgTp06hfv376NZs2blPo7o6Gj8+eef0NHRwcSJE8v9OKJqp9EVP0S1EMo4y2bfvn0CAMHAwEBITEwUy52dnYU6deoIjx8/FstkMpnwxRdfiPsLCgoSt718tpSqRadlnS0lCIJw4MABwcjISLC3txdu376tUPerr76q9NlSqhYAy2QywdnZWQAg/Pnnnwrb/vzzTwGA0LJlS4WzpeRnUU2YMEGh/s2bNwVzc/MyFxSrIl9Mu3HjRrGsKs+W8vX1FQCUukhbEATh1KlTAgChR48eYtm6deuES5cuqawfFRUl9ndoaKhY3rJlSwGAcPny5VKf6/PPPxcACIsWLRLLXreg+MyZM0LTpk0FAMLHH39c6r6JagKO3BBpyMsXmcvJyUFkZCSOHj0KAFi2bJnCWo/58+fjo48+gpubG8aMGQMDAwMEBwcjMjISb7/9Ng4ePKiwbxsbG2zfvh1jx46Fl5cXhgwZgnbt2iEzMxM3b95EQkIC7t+/X2rbvL29ceDAAYwaNQp9+vTBqVOn0L59ewDAggULsH//fuzcuRMxMTEYOHAgMjIysHv3bvTq1Qv79+8Xp43KQ0dHB3/88QcGDBiAd955ByNGjECrVq0QExOD/fv3o06dOti8ebPCPkeMGIEWLVpgx44dePToEbp27YqHDx/iwIEDGDFiBHbv3l3u5y/NW2+9hf/973/49NNP4ebmhnfeeQd169bF8ePHkZ6ejnbt2qlcAPyq7Oxs7NixAwYGBmWOyPTt2xeOjo64ePEiIiIi0Lp1axw7dgwzZ87EW2+9BQ8PDzRu3BgFBQWIjY3F8ePHUVRUhDlz5ojXADpz5gzu3LmDtm3bqly8LTdt2jQsXboUGzduxNdff61wK4Xr16+L782CggI8e/YMly9fRmRkJHR1dfHJJ59g5cqV5exFIg3RdLoiqm2g4hRwPT09wd7eXvD29hZOnDih8nEbN24U2rdvL5iamgrW1tbCyJEjhZs3bwpffvml0siN3O3bt4X3339faNiwoWBgYCDUr19f6NWrl/Drr78qtUnV7ReCgoIEc3NzwcrKSmF04Pnz58Ls2bOFBg0aCIaGhoKzs7OwatUq4fLlywIAYe7cuQr7KWvkRi46OlqYNGmSYG9vL+jr6wv29vbCe++9J0RHR6us//DhQ2H8+PGClZWVYGxsLHTu3FnYu3fva08FV0XVyI3c9u3bBTc3N8HIyEiwsbER3nvvPeHx48flvv2Cv7+/AEAYNWrUa+suXbpU4RT+mJgYYdWqVcLgwYOF5s2bC6ampoKhoaHQuHFjYdSoUQqnrguCIEycOFEAIKxZs+a1zzVgwAABgPDXX38p9MHL/0xNTYVGjRoJ/fr1ExYvXqzy+jhENZGOILw0WUtE9AY2bNiADz/8EOvXr8eMGTM03RwiqqUYboiowp48eYKGDRsqlD18+BA9e/bE06dPER8fr7SdiKi6cM0NEVXYmDFjUFRUhE6dOsHS0hIPHjzAoUOHkJubi+XLlzPYEJFGceSGiCrsl19+wZYtWxAbG4uMjAyYm5vDzc0Nfn5+GD16tKabR0S1HMMNERERSQqvUExERESSwnBDREREklIrw01+fj5iYmKQn5+v6aYQERFRFauV4SY+Ph6+vr6Ij4/XdFOIiIioitXKcENERETSxXBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDRERUjXKf5+PqnljkPs/XdFMki+GGiIioGuWmFyD8r7vITS/QdFMki+GGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJEW/og/Izc3Fzp07ERkZiaioKGRlZeGzzz7DkCFDFOpFRkbi2LFjiIyMxL1791BSUoJz586Vut9Dhw5h586dSExMhK2tLcaOHYsxY8Yo1UtOTsbPP/+MK1euQCaTwc3NDbNnz0bDhg0reihEREQkQRUeucnIyMCmTZsQHx8PJyenUuuFhITg0KFD0NHReW3wOHDgAFauXIlmzZph7ty5aNOmDdasWYNt27Yp1MvNzcXcuXNx/fp1TJo0CVOnTkVsbCxmz56NjIyMih4KERERSVCFR26sra2xb98+WFtbIzo6Gh9++KHKeiNHjsR7770HIyMj/PDDD0hISFBZr6CgAL/99hu6d++Ob7/9FgDw9ttvQyaTYfPmzfD29kadOnUAAPv378ejR4/w66+/wsXFBQDQtWtX+Pj4YNeuXaW2hYiIiGqPCo/cGBoawtra+rX16tWrByMjo9fWu3btGjIyMjBy5EiF8lGjRiEvLw+XLl0Sy86cOYNWrVqJwQYAmjZtio4dOyIoKKj8B0FERESSpfEFxbGxsQCAVq1aKZQ7OztDV1cXd+7cAQDIZDLExcUp1QMAFxcXPH78GLm5uepvMBEREdVoFZ6WqmqpqanQ09ODlZWVQrmBgQEsLCyQmpoKAMjMzERhYaHKUSN5WUpKCpo0aaK0PSUlRdwPAMTHx1flIRAREVENovFwU1BQAH191c0wNDREQUGBWA94EXpU1Xu5zqsCAwOxadOmKmgtERER1XQaDzdGRkYoLi5Wua2wsFBctyP/b1FRkcp6L9d5lbe3Nzw8PMSf4+PjsWTJkjdqNxEREdVMGg831tbWKCkpwfPnzxWmpoqKipCZmSlOOVlYWMDQ0FBheklOXmZjY6PyOWxsbErdRkREVF1kMgHJcS8uXZIcl4F6TS2gq6uj4VZJj8YXFLdo0QIAEB0drVAeHR0NmUwmbtfV1YWjo6NSPeDFBQMbNmwIU1NT9TeYiIioEu6HJmLXnDMIDogAAAQHRGDXnDO4H5qo4ZZJj8bDTceOHWFhYYEDBw4olB84cADGxsbo3r27WNa7d29ER0crBJyHDx8iPDwcffr0qa4mExERVcj90ESc/jEcOWn5CuU5afk4/WM4A04Vq9S01N69e5GdnS1OBwUHByMpKQkAMGbMGJibmyMxMRHHjx8HAMTExAAA/vjjDwCAvb09Bg0aBODFOplp06bhhx9+wOLFi+Hu7o4bN27gxIkT8PX1hYWFhfi8o0aNwqFDh7Bw4UK8++670NPTw+7du2FlZYV33323kl1ARESkPjKZgJDNUWXWCdkShaad7ThFVUUqFW527dqFxMR/Uua5c+fE+0YNHDgQ5ubmePr0KQICAhQeJ/+5Q4cOYrgBXoQWfX197Nq1C8HBwahfvz78/Pwwbtw4hcebmppizZo1+Pnnn7F582bx3lJ+fn6wtLSszKEQERGpVWJ0mtKIzatyUvORGJ2Ghq6vv0guvZ6OIAiCphtR3WJiYuDr64sNGzbA2dlZ080hIiIJu3fxCYJ+vvHael5+7dG8B28CXRU0vuaGiIhqttzn+bi6Jxa5z8sefSDVTCxffyuiitSj12O4ISKiMuWmFyD8r7vITVd9oVQqm32rejCrZ1xmHTNrY9i3qldNLZI+hhsiIiI10tXVQbfJLmXW6fa+CxcTVyGGGyIiIjVr5m6PfvPclEZwzKyN0W+eG5q522uoZdKk8SsUExER1QbN3O3RtLMdYoISEBwQAY9preHs1ZgjNmrAkRsiIqJqoqurA1vHugAAW8e6DDZqwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERKWSyQQkx2UAAJLjMiCTCRpuEdHr8fYLRESk0v3QRIRsjkJOWj4AIDggAtf33UO3yS68FxLVaBy5ISIiJfdDE3H6x3Ax2MjlpOXj9I/huB+aqKGWEb0eww0RESmQyQSEbI4qs07IlihOUVGNxXBDREQKEqPTlEZsXpWTmo/E6LRqahFRxTDcEBGRgrz0giqtR4pMLY3gNtoJppZGmm6KZHFBMRERKTAp5x/d8tYjRaZWxug0toWmmyFpHLkhIiIF9q3qwayecZl1zKyNYd+qXjW1iKhiGG6IiEiBrq4Ouk12KbNOt/ddoKurU00tIqoYhhsiIlLSzN0e/ea5KY3gmFkbo988N17nhmo0rrkhIiKVmrnbo2lnO8QEJSA4IAIe01rD2asxR2yoxuPIDRERlUpXVwe2jnUBALaOdRlsSCsw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERSVju83xc3ROL3Of5mm5KtWG4ISIikrDc9AKE/3UXuekFmm5KtWG4ISJ6A7XxWzFRTcdwQ0T0Bmrjt2Kimo7hhoiIymRqaQS30U4wtTTSdFPUgqNv0sNwQ0REZTK1MkansS1gamWs6aaoBUffpIfhhoiIiCSF4YaIiIgkheGGiIiIJIXhhohIi3DxK9HrMdwQEWkRLn4lej39ij4gNzcXO3fuRGRkJKKiopCVlYXPPvsMQ4YMUar74MED/Pzzz7h16xb09fXRvXt3+Pn5wdLSUqGeTCbDzp07sX//fqSlpcHBwQGTJk1C//79K71PIiIiqp0qHG4yMjKwadMm2NnZwcnJCeHh4SrrJSUlYfbs2TA3N4evry/y8vKwc+dOxMXF4ddff4WBgYFYd8OGDdi2bRvefvtttGrVChcuXMA333wDHR0d9OvXr1L7JCIiotqpwuHG2toa+/btg7W1NaKjo/Hhhx+qrLd161bk5+fjt99+g52dHQDAxcUFn3zyCY4ePQpvb28AQHJyMnbt2oVRo0Zh/vz5AIDhw4dj9uzZ+OWXX9CnTx/o6elVaJ9E2iL3eT6iTifApV9jyV5DhIg0RyYTkByXAQBIjstAvaYW0NXV0XCr1K/Ca24MDQ1hbW392npnz55Fjx49xBACAJ07d0bjxo0RFBQkll24cAHFxcUYNWqUWKajo4ORI0ciOTkZERERFd4nkbbg+gkiUpf7oYnYNecMggNe/B0NDojArjlncD80UcMtUz+1LChOTk7G8+fP4ezsrLTNxcUFsbGx4s+xsbEwMTFB06ZNlerJt1d0n0RERLXZ/dBEnP4xHDlpimfV5aTl4/SP4ZIPOBWeliqP1NRUAFA5wmNtbY3MzEwUFhbC0NAQqampsLKygo6OjlI9AEhJSanwPl+VkpIiPh4A4uPjK3lkRET/qK1D/lSzyWQCQjZHlVknZEsUmna2k+z7VS3hpqDgxRC7qgW+8vBRUFAAQ0NDFBQUvLZeRff5qsDAQGzatKkSR0JEpNr90ESEbI4SvxkHB0Tg+r576DbZBc3c7TXcOqrNEqPTlEZsXpWTmo/E6DQ0dH39MhNtpJZwY2T04s6xRUVFStsKCwsV6hgZGZW7Xnn3+Spvb294eHiIP8fHx2PJkiXlOxgiolfIh/xfJR/y7zfPjQFHS0hx9C2vnGv4yltPG6kl3Minjl6eCpJLTU2FhYWFOMJibW2N8PBwCIKgMDUlf6yNjU2F9/kqGxsbcT9ERG+CQ/7SIdXRNxNL1V/0K1tPG6llQbGtrS0sLS0RExOjtC0qKgpOTk7iz05OTsjPz1daBxMZGSlur+g+iYjUpSJD/lRzSXnBrX2rejCrV/alJcysjWHfql41taj6qe32C71798bFixfx7Nkzsezq1atISEiAl5eXWNazZ0/o6+tj3759YpkgCDhw4ABsbW3Rpk2bCu+TiEhdOOSv/co7+iaTCdXUoqqlq6uDbpNdyqzT7X0XSY8sVmpaau/evcjOzhaniIKDg5GUlAQAGDNmDMzNzTFp0iScOXMG8+bNw9ixY5GXl4cdO3bA0dFR4VYN9evXx7hx47Bjxw4UFxfDxcUF58+fx82bN/HFF1+IF/ADUO59EhGpiyaH/KW4PkQTasOC22bu9ug3z01h2g14MWLT7X3tnnYrj0qFm127diEx8Z8hu3PnzuHcuXMAgIEDB8Lc3Bx2dnb46aef8PPPP+PXX38V7wM1a9YspbUxM2bMQJ06dRAYGIhjx47BwcEBn3/+OQYMGKBQryL7JCJSB/mQf1l/HNUx5C/V9SGaUFtG35q526NpZzvEBCUgOCACHtNaw9mrca0IxJUKN7t37y5XvWbNmmH16tWvraerq4tJkyZh0qRJVbZPIiJ1kA/5qzpbSq6qh/x5dlbVqk0LbnV1dWDrWBcAYOtYt1YEG0CNa26IiKRKPuT/6qJNM2vjKg8aUl8foglccCt9DDdEGvLq+gn+cdIuzdzt8c5PfeAxrTUAwGNaa7yzpk+Vj6Dw7KyqxwW30sdwQ6QBtfmGdlJSHUP+tWV9SHWrztE3qn5quYgfEZWO6yeoImrT+pDqVpsX3EodR26IqhHXT1BFcX2IetXWBbdSx3BDNVru83xc3ROL3OdlrznQFlw/QRXF9SFEFcdwQzVabnoBwv+6i1yJrCfg+gmqDK4PIaoYrrkhqkZcP0GVxfUhROXHkRuqEKlNE1U3rp+gN8H1IUTlw3BDFSK1aaLqxvUTRETqx3BDVM24foKISL245oZIA7h+gohIfThyQ6QhXD9BRNXB1NIIbqOdYFqLTlTgyA0REZGEmVoZo9PYFppuRrXiyA0R0Ruojd+KiWo6jtwQEb2B2vitmKim48gNERERSQrDjZbjRfWIiN4Mpxalh+FGy0n5onoymYDkuAwAQHJcBu+UTURqIZ9aNLUq++rhpD245oZqpPuhiQjZHCXeQTs4IALX991Dt8kuvMgdERGViSM3VOPcD03E6R/DxWAjl5OWj9M/huN+aKKGWkZERNqA4YbKrTqmiWQyASGbo8qsE7IlilNUVGtxfQjVdDVhLSjDDZXL/dBE7JpzBsEBEQBeTBPtmnOmykdREqPTlEZsXpWTmo/E6LQqfV4ibcH1IVTT1YS1oAw39FrVOU2UV84PQ3nrERFR7cNwQ2Wq7mkik3IOtZe3HhER1T4MN1Sm6p4msm9VD2b1yh5uN7M2hn2relXyfJqmifUTNWE+nIhInRhuqEzVPU2kq6uDbpNdyqzT7X0XydxBWxPrJ2rCfDgRkTox3FCZNDFN1MzdHv3muSmN4JhZG6PfPDde54aIiMrEi/hRmeTTRGVNTaljmqiZuz2adrZDTFACggMi4DGtNZy9GktmxIaIiNSHIzdVrDrXM1THdWc0OU2kq6sDW8e6AABbx7oMNkREVC4MN1WsutYzVNd1ZwBOE9Gb4QJmIqpuDDdaSBO3J2jmbo93fuoDj2mtAQAe01rjnTV9GGzotbiAmYiqG8ONltHk7Qk4TURERNqA4UbL8PYEREREZWO40TK8PQEREdVU1XGiS3nwVHAtw9sTEBFRTXQ/NBEhm6PE2YXggAhc33cP3Sa7VPv6TI7caJnadnsCIiKq+TRxoktZGG60TG27PQEREdVsmjzRpTQMN1qI152hyqop8+FEJB018UQXrrnRUrw9AVVUTZoPJyLpqIknunDkRovxujNUXjVtPpyIpKMmnujCcFOFOORf9UwtjeA22gmmPPur0mrifDgRSUdNPNGF4aaKVOe9nmoTUytjdBrbAqZWZX9wqHQ1cT6ciKSjJp7ownBTBTjkTzWZJufDOZpJVDvUtBNduKD4DZV3yL9pZztJrInhNJH20dR8OBcwE9UuNelEF7WGm5iYGGzYsAG3b9+GIAho3bo1Zs6ciRYtWijVvXXrFtavX487d+7AzMwMXl5e8PX1hampqUK9wsJCBAQE4MSJE8jKykLz5s0xffp0dOnSRZ2HUqqKDPk3dLWuplapj3yaiLSHfD68rPdpVc+Hy0czXyUfzeQlC4ikqaac6KK2aamYmBjMmjULT548gY+PD3x8fPDo0SPMmTMHDx8+VKgbGxuL+fPnIz8/H35+fhg2bBgOHjyIL7/8Umm/y5cvx+7duzFgwADMmTMHurq6WLBgAW7evKmuQylTTTwFjuhl1T0fzgXMRKRpahu5CQgIgJGREdatW4e6dV+kuAEDBuC9996Dv78/lixZItb19/dHnTp18NNPP8HMzAwA0KBBA6xcuRKhoaFwd3cHAERGRuL06dOYOXMmJkyYAAAYNGgQfHx8sG7dOqxbt05dh1OqmngKHNGr5PPhL08TAS9GbLq9X7XTRLVtNJOIah61jdzcvHkTnTt3FoMNANjY2KBDhw64dOkScnNzAQA5OTkICwvDwIEDxWADvAgtJiYmCAoKEsvOnj0LPT09eHt7i2VGRkYYNmwYIiIi8OzZM3UdTqlq4ilwRKo0c7fHOz/1gce01gAAj2mt8c6aPlU+PcTRTCLSNLWFm6KiIhgaGiqVGxsbo6ioCPfv3wcAxMXFoaSkBM7Ozgr1DAwM0KJFC8TGxoplsbGxcHBwUAhBAODi8mLI/e7duyrbkpKSgpiYGPFffHz8Gx3by2riKXBEpamO+XCOZhKRpqltWqpx48aIjIxESUkJ9PT0ALwIPJGRkQCA5ORkAEBqaioAwNpaeXja2toaN27cEH9OTU0ttR7wIsSoEhgYiE2bNlX+YF6jOof8iWo6TSxgJiJ6mdrCzahRo7B69WqsWLECEydOhEwmw+bNm8UwU1hYCAAoKHgxNG1gYKC0D0NDQ7GevG5p9V7e16u8vb3h4eEh/hwfH6+w5qcq1KRT4Ig0ST6aqepsKTmOZhKROqkt3IwYMQJJSUnYsWMHjh07BgBo1aoVJkyYgC1btsDExATAizUzwItRnVcVFhYqTG0ZGRmVWu/lfb3KxsYGNjY2b3ZA5aCJU+B43RmqiTiaSUSapNbr3Pj6+uLdd9/F/fv3YWZmhubNm8Pf3x/Ai2kr4J8pJfmIzstSU1MVQom1tbU4nfVqPQDVEmBqGl53hmoqjmYSkaao/fYLderUQbt27dC8eXMAQFhYGGxtbdGkSRMAQLNmzaCnp4eYmBiFxxUVFSE2NhZOTk5imZOTEx49eoScnByFuvJ1PC/XJSLNqykX9CKi2qVa7y11+vRpREdHY9y4cdDVffHU5ubm6Ny5M06cOCGeHg4Ax48fR15eHry8vMSyPn36oKSkBIGBgWJZYWEhjhw5AldXV9jZ2VXfwRAREVGNpLZpqevXr+OPP/5Aly5dYGFhgcjISBw9ehRdu3bF2LFjFepOnz4ds2bNwuzZs+Ht7Y2kpCTs2rULXbp0QdeuXcV6rq6u8PLygr+/P9LT09GoUSMcO3YMiYmJWLhwoboOhYiIiMqpJqwFVVu4sbW1ha6uLnbs2IG8vDzY29tj2rRpeOedd6Cvr/i0zs7O+P7777F+/XqsXbsWpqamGDZsGGbMmKG030WLFsHOzg7Hjx9HdnY2HB0dsWLFCnTo0EFdh0JERETlVBPWgqot3DRq1AirV68ud/127drhl19+eW09IyMjfPzxx/j444/fpHlEREQkUdW65oaIiIhI3RhuiIiISFIYbohqmZqw2I+ISJ3UehE/Iqp5asJiPyIideLIDREREUkKw00V45A/ERGRZnFaqopxyJ+IiEizOHJDRGpV3aOZuc/zcXVPLHKf57++MhFJEsMNEamVfDTT1Mq4Wp4vN70A4X/dRW56QbU8HxHVPAw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0QkGTKZgOS4DABAclwGZDJBwy0iIk3gXcGJSBLuhyYiZHMUctJe3DAzOCAC1/fdQ7fJLmjmbq/h1hFRdeLIDRFpvfuhiTj9Y7gYbORy0vJx+sdw3A9N1FDLiEgTGG6ISKvJZAJCNkeVWSdkSxSnqIhqEYYbItJqidFpSiM2r8pJzUdidFo1tYiINI3hhoi0Wl56QZXWIyLtx3BDRFrNxNKoSusRkfZjuCEirWbfqh7M6hmXWcfM2hj2repVU4uISNMYbohIq+nq6qDbZJcy63R73wW6ujrV1CIi0jSGGyLSes3c7dFvnpvSCI6ZtTH6zXPjdW6IahlexI+IJKGZuz2adrZDTFACggMi4DGtNZy9GnPEhqgW4sgNEUmGrq4ObB3rAgBsHesy2BDVUgw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0QkKaaWRnAb7QRTSyNNN4WINIQ3ziQiSTG1MkansS003Qwi0iCO3BAREZGkqHXkJiEhAQEBAbh16xYyMzNhZ2eH/v37491334WxsbFY79atW1i/fj3u3LkDMzMzeHl5wdfXF6ampgr7KywsREBAAE6cOIGsrCw0b94c06dPR5cuXdR5GERERKRF1DZy8+zZM8yYMQORkZEYNWoUZs+ejdatW+P333/H119/LdaLjY3F/PnzkZ+fDz8/PwwbNgwHDx7El19+qbTP5cuXY/fu3RgwYADmzJkDXV1dLFiwADdv3lTXYRAREZGWUdvIzYkTJ5CdnY3/+7//Q7NmzQAA3t7ekMlkOH78OLKyslCnTh34+/ujTp06+Omnn2BmZgYAaNCgAVauXInQ0FC4u7sDACIjI3H69GnMnDkTEyZMAAAMGjQIPj4+WLduHdatW6euQyEiIiItoraRm5ycHACAlZWVQrm1tTV0dXWhr6+PnJwchIWFYeDAgWKwAV6EFhMTEwQFBYllZ8+ehZ6eHry9vcUyIyMjDBs2DBEREXj27Jm6DoWIiIi0iNrCjZubGwBgxYoViI2NxbNnz3D69GkcOHAAY8aMgYmJCeLi4lBSUgJnZ2eFxxoYGKBFixaIjY0Vy2JjY+Hg4KAQggDAxcUFAHD37l11HQoRERFpEbVNS3Xt2hXTpk3D1q1bERwcLJa///778PX1BQCkpqYCeDGa8ypra2vcuHFD/Dk1NbXUegCQkpJSaltSUlLE5wKA+Pj4Ch4NERERaQu1ni3VoEEDtG/fHr1794aFhQUuXbqErVu3ol69ehgzZgwKCgoAvBipeZWhoSEKCwvFnwsKCkqtJ99emsDAQGzatOkNj4aIiIi0gdrCzenTp/Hdd99h27ZtqF+/PgCgd+/eEAQBv/76K/r37w8joxdXEC0qKlJ6fGFhoRhcgBfra0qrJ99eGm9vb3h4eIg/x8fHY8mSJZU7MCIiIqrR1BZu9u3bhxYtWojBRs7DwwNHjx5FbGysOKX08pSRXGpqKmxsbMSfra2tkZycrLIeAIW6r7KxsSlzOxER1Ry5z/MRdToBLv0aw9TK+PUPIHqF2hYUP3/+HDKZTKm8uLgYAFBSUoJmzZpBT08PMTExCnWKiooQGxsLJycnsczJyQmPHj0Sz8KSi4yMFLcTEZH2y00vQPhfd5GbXvpyA6KyqC3cNG7cGLGxsUhISFAoP336NHR1ddG8eXOYm5ujc+fOOHHiBHJzc8U6x48fR15eHry8vMSyPn36oKSkBIGBgWJZYWEhjhw5AldXV9jZ2anrUIiIiEiLqG1a6t1338Xly5fh5+eH0aNHw8LCAhcvXsTly5cxfPhwcZpo+vTpmDVrFmbPng1vb28kJSVh165d6NKlC7p27Sruz9XVFV5eXvD390d6ejoaNWqEY8eOITExEQsXLlTXYRAREZGWUVu46dChA/7v//4PGzduxL59+5CZmYkGDRrA19dXvMIwADg7O+P777/H+vXrsXbtWpiammLYsGGYMWOG0j4XLVoEOzs7HD9+HNnZ2XB0dMSKFSvQoUMHdR0GERERaRkdQRAETTeiusXExMDX1xcbNmxQuoAgERFpVsr9DOz/70WMXNoDNs3qaro5pIXUtuaGiIiISBMYboiIiEhSGG6IiIhIUhhuiIiISFIYboiIiEhSGG6IiKjGkMkEJMdlAACS4zIgk9W6E3qpCqj1ruBERETldT80ESGbo5CTlg8ACA6IwPV999BtsguaudtruHWkTThyQ0REGnc/NBGnfwwXg41cTlo+Tv8YjvuhiRpqGWkjhhsiItIomUxAyOaoMuuEbIniFBWVG8MNERFpVGJ0mtKIzatyUvORGJ1WTS0ibcdwQ0REGpWXXlCl9YgYboiISKNMLI2qtB4Rww0REWmUfat6MKtnXGYdM2tj2LeqV00tIm3HcENERBqlq6uDbpNdyqzT7X0X6OrqVFOLSNsx3BARkcY1c7dHv3luSiM4ZtbG6DfPjde5oQrhRfyIiKhGaOZuj6ad7RATlIDggAh4TGsNZ6/GHLGhCuPIDRER1Ri6ujqwdawLALB1rMtgQ5XCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERDWKqaUR3EY7wdTSSNNNIS3Fe0sREVGNYmpljE5jW2i6GaTFOHJDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJKir64dL1u2DMeOHSt1+969e2FrawsAuHXrFtavX487d+7AzMwMXl5e8PX1hampqcJjCgsLERAQgBMnTiArKwvNmzfH9OnT0aVLF3UdBhEREWkZtYUbb29vdO7cWaFMEASsXr0a9vb2YrCJjY3F/Pnz0bRpU/j5+SEpKQm7du3Co0eP8N133yk8fvny5Thz5gzGjRsHBwcHHD16FAsWLMCaNWvQrl07dR0KERERaRG1hZs2bdqgTZs2CmU3b95Efn4+BgwYIJb5+/ujTp06+Omnn2BmZgYAaNCgAVauXInQ0FC4u7sDACIjI3H69GnMnDkTEyZMAAAMGjQIPj4+WLduHdatW6euQyEiIiItUq1rbk6dOgUdHR30798fAJCTk4OwsDAMHDhQDDbAi9BiYmKCoKAgsezs2bPQ09ODt7e3WGZkZIRhw4YhIiICz549q74DISIiohqr2sJNcXExgoKC0KZNGzRo0AAAEBcXh5KSEjg7OyvUNTAwQIsWLRAbGyuWxcbGwsHBQSEEAYCLiwsA4O7du2o+AiIiItIGapuWelVoaCgyMjIUpqRSU1MBANbW1kr1ra2tcePGDYW6pdUDgJSUlFKfOyUlRXwuAIiPj6/4ARAREZFWqLZwc+rUKejr68PLy0ssKygoAPBipOZVhoaGKCwsVKhbWr2X96VKYGAgNm3aVNmmExERkRaplnCTm5uLCxcuwN3dHXXr1hXLjYyMAABFRUVKjyksLBSDi7xuafVe3pcq3t7e8PDwEH+Oj4/HkiVLKn4gREREVONVS7i5cOGC0llSwD9TSi9PGcmlpqbCxsZGoW5ycrLKegAU6r7KxsamzO1EREQkHdWyoPjkyZMwMTFRGD0BgGbNmkFPTw8xMTEK5UVFRYiNjYWTk5NY5uTkhEePHiEnJ0ehbmRkpLidiIiISO3hJj09HWFhYejVqxeMjY0Vtpmbm6Nz5844ceIEcnNzxfLjx48jLy9PYX1Onz59UFJSgsDAQLGssLAQR44cgaurK+zs7NR9KERERKQF1D4tdfr0aZSUlChNSclNnz4ds2bNwuzZs+Ht7S1eobhLly7o2rWrWM/V1RVeXl7w9/dHeno6GjVqhGPHjiExMRELFy5U92EQERGRllB7uDl16hSsrKzQqVMnldudnZ3x/fffY/369Vi7di1MTU0xbNgwzJgxQ6nuokWLYGdnh+PHjyM7OxuOjo5YsWIFOnTooOajICIiIm2hIwiCoOlGVLeYmBj4+vpiw4YNShcQJCIiIu1WrbdfICIiIlI3hhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhR9dT9BTEwMNm7ciFu3bqGwsBANGzbE22+/jbFjx4p1bt26hfXr1+POnTswMzODl5cXfH19YWpqqrCvwsJCBAQE4MSJE8jKykLz5s0xffp0dOnSRd2HQURERFpCreEmNDQUn332GVq0aIEpU6bAxMQEjx8/RnJyslgnNjYW8+fPR9OmTeHn54ekpCTs2rULjx49wnfffaewv+XLl+PMmTMYN24cHBwccPToUSxYsABr1qxBu3bt1HkoREREpCXUFm5ycnKwbNkydOvWDd9++y10dVXPgPn7+6NOnTr46aefYGZmBgBo0KABVq5cidDQULi7uwMAIiMjcfr0acycORMTJkwAAAwaNAg+Pj5Yt24d1q1bp65DISIiIi2itjU3p06dQlpaGnx9faGrq4u8vDzIZDKFOjk5OQgLC8PAgQPFYAO8CC0mJiYICgoSy86ePQs9PT14e3uLZUZGRhg2bBgiIiLw7NkzdR0KERERaRG1hZuwsDCYmZkhJSUF7733HgYNGoQhQ4Zg9erVKCgoAADExcWhpKQEzs7OCo81MDBAixYtEBsbK5bFxsbCwcFBIQQBgIuLCwDg7t276joUIiIi0iJqm5Z69OgRSkpKsGjRIgwbNgwffvghrl+/jr179yI7OxtffvklUlNTAQDW1tZKj7e2tsaNGzfEn1NTU0utBwApKSmltiUlJUV8LgCIj4+v9HERERFRzaa2cJOXl4f8/HyMGDECc+fOBQD07t0bRUVFCAwMxNSpU8URHAMDA6XHGxoaorCwUPy5oKCg1Hry7aUJDAzEpk2b3uRwiIiISEuoLdwYGRkBAPr166dQ3r9/fwQGBiIiIgLGxsYAgKKiIqXHFxYWisFFvr/S6r38fKp4e3vDw8ND/Dk+Ph5LliypwNEQERGRtlBbuLG2tsb9+/dRr149hXIrKysAQFZWFho1agQAClNGcqmpqbCxsVHY38unkL9cD4BC3VfZ2NiUuZ1ILvd5PqJOJ8ClX2OYWhlrujlERFQJaltQLF8k/Gogka+NsbS0RLNmzaCnp4eYmBiFOkVFRYiNjYWTk5NY5uTkhEePHiEnJ0ehbmRkpLid6E3lphcg/K+7yE0vfZqTiIhqNrWFGy8vLwDA4cOHFcoPHz4MPT09uLm5wdzcHJ07d8aJEyeQm5sr1jl+/Djy8vLEfQBAnz59UFJSgsDAQLGssLAQR44cgaurK+zs7NR1KERERKRF1DYt1bJlSwwdOhRHjhxBSUkJOnTogOvXryMoKAiTJk0Sp4mmT5+OWbNmYfbs2fD29havUNylSxd07dpV3J+rqyu8vLzg7++P9PR0NGrUCMeOHUNiYiIWLlyorsMgIiIiLaPW2y/861//gp2dHY4ePYrz58/Dzs4Ofn5+GD9+vFjH2dkZ33//PdavX4+1a9fC1NQUw4YNw4wZM5T2t2jRItjZ2eH48ePIzs6Go6MjVqxYgQ4dOqjzMIiIiEiL6AiCIGi6EdUtJiYGvr6+2LBhg9IFBKl2S7mfgf3/vYiRS3vAplldTTeHiIgqQW1rboiIiIg0geGGiIiIJIXhhoiIiCSF4Ybo/5PJBCTHZQAAkuMyIJPVuuVoRESSoNazpYi0xf3QRIRsjkJOWj4AIDggAtf33UO3yS5o5m6v4dYREVFFcOSGar37oYk4/WO4GGzkctLycfrHcNwPTdRQy4iIqDIYbqhWk8kEhGyOKrNOyJYoTlEREWkRhhuq1RKj05RGbF6Vk5qPxOi0amoRERG9KYYbqtXyynmDzPLWIyIizWO4oVrNxNKoSusREZHmMdxQrWbfqh7M6hmXWcfM2hj2repVU4uIiOhNMdxQraarq4Nuk13KrNPtfRfo6upUU4uIiOhNMdxQrdfM3R795rkpjeCYWRuj3zw3XueGiEjL8CJ+RHgRcJp2tkNMUAKCAyLgMa01nL0ac8SGiEgLceSG6P/T1dWBrWNdAICtY10GGyIiLcVwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcEP0ElNLI7iNdoIpb5RJRKS1eIViopeYWhmj09gWmm4GERG9AY7cEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGk6Gu6AZpQUFAAAIiPj9dwS4iIiKiimjZtCmNj41K318pwk5iYCABYsmSJhltCREREFbVhwwY4OzuXul1HEAShGttTI6SnpyM0NBQNGjSAoaGhpptTYfHx8ViyZAk+//xzNG3aVNPN0Sj2xQvsh3+wL/7BvniB/fAPqfQFR25UsLS0xMCBAzXdjDfWtGnTMpNrbcK+eIH98A/2xT/YFy+wH/4h9b7ggmIiIiKSFIYbIiIikhSGGy1kbW0NHx8fWFtba7opGse+eIH98A/2xT/YFy+wH/5RW/qiVi4oJiIiIuniyA0RERFJCsMNERERSQrDDREREUkKww0RERFJSq28iJ82SElJwZ49exAVFYXo6Gjk5eVhzZo1cHNzU6o7Z84cXL9+Xanc3d0dq1atUigrLCxEQEAATpw4gaysLDRv3hzTp09Hly5d1HUob6wifQEAt27dwvr163Hnzh2YmZnBy8sLvr6+MDU1VainjX2hytGjR7F8+XKV2/bt26d0VsSFCxewceNGxMfHw9LSEkOHDsXkyZOhr6/dvw6k8nqWV3h4OObOnaty27p169C6dWvx5/J+JrRBbm4udu7cicjISERFRSErKwufffYZhgwZolT3wYMH+Pnnn3Hr1i3o6+uje/fu8PPzg6WlpUI9mUyGnTt3Yv/+/UhLS4ODgwMmTZqE/v37V9NRVU55+2LZsmU4duyY0uObNGmCrVu3KpRpa1+8Srt/m0lYQkICtm/fDgcHBzg6OiIiIqLM+ra2tpgxY4ZCmapT/ZYvX44zZ85g3LhxcHBwwNGjR7FgwQKsWbMG7dq1q9JjqCoV6YvY2FjMnz8fTZs2hZ+fH5KSkrBr1y48evQI3333nUJdbeyLskybNg0NGjRQKDM3N1f4OSQkBP/973/RoUMHzJ07F3Fxcdi8eTOeP3+OTz/9tDqbW+Wk9nqW15gxY+Di4qJQ1qhRI/H/K/KZ0AYZGRnYtGkT7Ozs4OTkhPDwcJX1kpKSMHv2bJibm8PX1xd5eXnYuXMn4uLi8Ouvv8LAwECsu2HDBmzbtg1vv/02WrVqhQsXLuCbb76Bjo4O+vXrV12HVmHl7QsAMDQ0xIIFCxTKzMzMlOppa18oEahGysnJETIyMgRBEISgoCDB09NTuHbtmsq6s2fPFiZPnvzafUZERAienp7C9u3bxbL8/Hzh3XffFT766KOqabgaVKQv/vWvfwkjR44UsrOzxbKDBw8Knp6ewuXLl8Uybe0LVY4cOSJ4enoKUVFRr637/vvvCx988IFQVFQklvn7+wu9evUSHjx4oM5mqpWUXs/yunbtmuDp6SkEBQWVWa+8nwltUVBQIKSkpAiCIAhRUVGCp6encOTIEaV6q1evFvr37y8kJiaKZVeuXBE8PT2FAwcOiGVJSUmCl5eX8P3334tlMplMmDVrljB69GihuLhYjUfzZsrbF0uXLhUGDhz42v1pc1+8imtuaihTU1NYWFhU6DHFxcXIzc0tdfvZs2ehp6cHb29vsczIyAjDhg1DREQEnj17Vun2qlN5+yInJwdhYWEYOHCgwjeSQYMGwcTEBEFBQWKZtvbF6+Tm5qKkpETltgcPHuDBgwd4++23FaagRo0aBUEQcObMmWpqZdWT6utZXrm5uSguLlYqr8hnQlsYGhqW6wJ0Z8+eRY8ePWBnZyeWde7cGY0bN1Y47gsXLqC4uBijRo0Sy3R0dDBy5EgkJye/dtRck8rbF3IlJSXIyckpdbs298WrOC0lEQkJCRg0aBCKiopQr149DB8+HD4+Pgp/xGJjY+Hg4KA0FCkf0r57967CLwJtExcXh5KSEqWbwRkYGKBFixaIjY0Vy6TYF3PnzkVeXh4MDAzQpUsXzJo1C40bNxa337lzBwCU+sfGxga2trYK/aNtpPh6ltfy5cuRl5cHPT09tGvXDjNnzkSrVq0AVOwzISXJycl4/vy5yhtDuri4ICQkRPw5NjYWJiYmSnfIlr93YmNjJTGtmZ+fjyFDhiA/Px916tRBv3798NFHHymsu5JSXzDcSEDDhg3h5uYGR0dH5Ofn48yZM9i8eTMSEhLw9ddfi/VSU1NVpnx5WUpKSrW1WR1SU1MBqF5rZG1tjRs3bijUlUpfGBkZYciQIXBzc4OZmRliYmKwe/dufPzxx/jtt9/EP+qv6x/5dm0kpdezvPT19dG7d29069YNdevWxYMHD7Br1y74+fnhl19+QcuWLSv0mZCS1x13ZmYmCgsLYWhoiNTUVFhZWUFHR0epHiCN9461tTUmTJiAli1bQhAEXL58Gfv378e9e/ewZs0a8UuwlPqC4aYayGQyFBUVlauuoaGh0hvrdf7zn/8o/Dxo0CB89913OHjwIMaPHy+eNVFQUKCwiO7l55RvVzd19oW8/aUdY2FhoUJdTfeFKpXpn759+6Jv375iuaenJ9zd3TF79mxs2bIF//rXvwBAPH75Mb66r7KmNGu6mvp6qlPbtm3Rtm1b8eeePXuiT58++OCDD+Dv749Vq1ZV6DMhJa87bnkdQ0PDWvHeefVkk379+qFx48bYsGEDzp49Ky4UllJfMNxUgxs3bpR6yuartmzZojQkWBnvvPMODh48iLCwMDHcGBkZqfzDKf8FZ2Rk9MbP+zrq7At5+0s7xpf/qNeEvlClqvqnXbt2cHV1xdWrV8Uy+fGr+oNWWFiosWOuCjX19axuDg4O6NmzJ86dO4eSkpIKfSak5HXH/XKd2vreGT9+PAICAhAWFiaGGyn1BcNNNWjSpAk+++yzctWtqju11q9fHwCQlZWlsO/k5GSluvIhXBsbmyp57rKosy/k9VVNr6SmpiocX03oC1Wqsn/q16+Phw8fKtVPTU1VWn+SmpqqdDqxNqmpr6cm1K9fH0VFRcjPz6/QZ0JKXnfcFhYWYrCztrZGeHg4BEFQGCmW+nvHyMgIFhYWyMzMFMuk1BcMN9XA2tpa5QWm1OnJkycAoHCxKvl1EHJychQWXkZGRorb1U2dfdGsWTPo6ekhJiZGYZqmqKgIsbGx8PLyEstqQl+oUpX98+TJE4XXv0WLFgCAmJgYuLq6iuUpKSlITk5WONNI29TU11MTnjx5AkNDQ5iYmFToMyEltra2sLS0RExMjNK2qKgohfeDk5MTDh06hPj4eLz11ltiudTfO7m5ucjIyFD6GyGVvuCp4FouJydHaZpBEARs3rwZABSuztqnTx+UlJQgMDBQLCssLMSRI0fg6uqq9WeTmJubo3Pnzjhx4oTC+pHjx48jLy9P4Re5lPoiPT1dqezSpUuIiYmBu7u7WNasWTM0adIEBw8eVDhdfP/+/dDR0UHv3r2ro7lqIaXXs7xUve53795FcHAwunTpAl1d3Qp9JqSmd+/euHjxosJlAK5evYqEhASF4+7Zsyf09fWxb98+sUwQBBw4cAC2trZo06ZNtba7qhUUFKhcT/fHH39AEAR07dpVLJNSX3Dkpgb7448/ALy4Pgnw4hfSzZs3AQBTpkwB8OL03q+//hr9+/dHo0aNUFBQgPPnz+PWrVt4++23FU6FdHV1hZeXF/z9/ZGeno5GjRrh2LFjSExMxMKFC6v34CqoPH0BANOnT8esWbMwe/ZseHt7i1dj7dKli8KHWJv74lUzZ85Ey5Yt4ezsDDMzM9y5cwdHjhxB/fr18f777yvU/fjjj/HZZ5/h008/Rb9+/RAXF4d9+/Zh+PDhCt/UtI2UXs/y+vLLL2FkZIQ2bdrAysoKDx48wMGDB2FsbKywgLS8nwltsnfvXmRnZ4vTJcHBwUhKSgLw4orN5ubmmDRpEs6cOYN58+Zh7NixyMvLw44dO+Do6KgwOlq/fn2MGzcOO3bsQHFxMVxcXHD+/HncvHkTX3zxBfT09DRyjOX1ur7IysrCtGnT0L9/fzRp0gQAEBoaipCQEHTt2hU9e/YU96XtffEyHUEQBE03glTr1atXqdvOnTsH4MUQ9K+//oqoqCikpaVBV1cXTZs2xfDhw+Ht7a10tlFBQYF4/53s7Gw4Ojpi+vTpCt/wa6Ly9IXczZs3xfvomJqawsvLCzNmzFC6j4629sWrNmzYgJCQEDx9+lRcZ9G9e3f4+PigXr16SvXPnz+PTZs2IT4+HnXr1sWQIUOUromkjaTyepbXnj17cPLkSTx+/Bg5OTmwtLREp06d4OPjAwcHB4W65f1MaIvx48cjMTFR5bZdu3aJtyG5f/++0r2lZs2apfS5kMlk2L59OwIDA5GamgoHBwe89957GDhwoNqP5U29ri/Mzc2xZs0aREREIDU1FTKZDI0aNcKAAQPw7rvvKn3utbkvXsZwQ0RERJLCNTdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN6RWR48eRa9evXD06FFNN6VcwsPD0atXL/z+++9qe45evXphzpw5att/bTF+/HiMHz9e082o8X7//Xf06tUL4eHhan2e3bt3o2/fvnj69Gm56lfHZ02bffvttxg3bhwKCgo03RStxHBDCv73v/+hV69eGD58uNINOaVC2/4oZmRkYP369Zg8eTIGDBiAAQMGYNy4cZg3bx42btyItLS0amnH64LqnDlzyrxNRm2Sl5eHwYMHo1evXvj+++813Ry1y8rKwubNmzF06FDx1gf0Znx8fJCSkoI///xT003RStp9MxmqUrm5uQgKCoKOjg4yMzNx/vx59OvX74326enpCVdXV1hbW1dRK2uXpKQkfPzxx0hKSkKLFi0wZMgQ1KlTB6mpqbh9+zY2btyItm3bqryHlNT98MMPmm5CqYKCgpCbmwsdHR2cOnUKs2bNgpGRkaabpTa7d+9GZmYmJkyYoOmmSEbjxo3h4eGB7du3Y8yYMTAxMdF0k7QKww2J/v77b+Tl5WH8+PHYs2cPDh8+/MbhxtzcHObm5lXUwtrn999/R1JSEqZNm6Zw93O5e/fu1dr+bdSokaabUKrDhw9DT08Po0ePxp9//olz585hwIABmm6WWhQXF+PQoUNo27ZtjX5NtNHAgQNx7tw5nD59GsOHD9d0c7QKww2J5L+QJ06ciHv37uHatWtITEyEvb29Qr3ff/8dmzZtKnU/9vb22L17N4AXUxnLly/HZ599hiFDhoh1evXqhQ4dOuCLL77AunXrcOXKFRQWFqJ9+/aYN28eGjZsiAcPHsDf3x83btxAcXEx3N3dMX/+fIVRivDwcMydOxc+Pj6YOnWqQjuePn2Kd955B4MHD8aiRYvEn19ug5yqx0dHR8Pf3x8RERHQ1dVFx44d4efnpzTsfu7cOQQFBSE6OhopKSnQ19dH8+bNMXbsWPTp06fsTn+NiIgIAMDo0aNVbm/evLnK8idPnmDbtm24cuUKUlNTYWZmhrfeegtDhgwRX4eioiIEBgbi4sWLePDgAdLT02FmZoa2bdtiypQpaNmypbi/ZcuW4dixYwCA5cuXY/ny5QrH/3Jfvvz/8r6Xu3fvHrZs2YLr168jMzMT1tbW8PDwwAcffIC6deuK9V5+7SZOnIgNGzbgxo0byMzMFO/6LJ9alL/XgH/em2vWrEFKSgp27NiBhw8fwtzcHF5eXvjoo4+URlCKi4uxc+dOHDp0CCkpKbC1tcWwYcPQt29fvPvuu0rH8DoPHz7ErVu30KNHD4UvCqrCzcvv3x49epTr/QYAZ8+exdatW3H//n2YmZnBw8MDM2fOxLRp05T6pCzlfT3KEhoaitTUVEycOFHl9oKCAmzcuBEnT55ERkYGGjVqhLFjxyrdufxlT548wZYtW3DlyhU8f/4cderUgbu7O6ZOnar0+wioWH/I38s7d+7EuXPncPjwYTx58gT9+vUTX+fnz59j69atuHjxIpKSkmBqaor27dtj6tSpcHR0VHr+itRPSEjA1q1bER4ejtTUVBgbG6N+/fpwc3PD7NmzoaOjI9bt3r07jI2NcezYMYabCmK4IQDAgwcPEBERgW7duqFevXoYNGgQrl69iiNHjij90Xdzc1O5j/j4eAQFBZV7+D0rKwuzZs2CtbU1Bg0ahEePHuHixYv45JNPsGzZMvj5+cHZ2RlDhw7FnTt3cPbsWWRmZmLNmjWVOkZzc3P4+Phgz549AICxY8eWekzR0dHYsWMH3Nzc4O3tjdjYWJw/fx5xcXHYtGmTwjH6+/tDX18fbdu2hbW1NdLT0xEcHIzFixdj7ty5GDNmTKXaC0D8A5OQkABXV9dyPebmzZtYuHAhcnNz4e7ujn79+iErKwuxsbHYs2ePGG4yMzOxdu1atGvXDt26dUOdOnXw9OlTBAcH4/Lly1i7di1cXFwAvJhezM7OxoULF9CzZ084OTkpPKePjw+OHTuGxMRE+Pj4iOUtWrQQ///ChQv46quvoKOjg549e6J+/fp48OAB/vrrL4SGhuLXX39FnTp1FPb7+PFjzJw5E46Ojhg8eDAyMzNhYGDw2j6Q79PDwwMdO3bE5cuXsXfvXmRkZGDx4sUKdVesWIHjx4+jYcOGGDlyJIqKirB7927cvn27XP39qsOHDwMABg0aBDs7O3To0AHh4eF48uQJGjZsqPIxFXm/HT58GCtWrICZmRkGDRoEc3NzhISE4JNPPkFxcTH09cv3a70yr4cqV69eBQC0bt1aaZtMJsNnn32GsLAwODo6on///sjMzMTPP/9c6u+RyMhI/Otf/0JeXh569OgBBwcHJCYm4uTJk7h8+TLWrVun0I+V7Y8ff/wRkZGR6N69O3r06AErKysAL95zc+bMQXJyMrp06YKePXsiPT0dZ8+exZUrV/DDDz8ofBYrUj8lJQUzZsxAfn4+unfvjr59+yI/Px+PHj3C/v378fHHHyu018DAAC1btkRERATy8vI4NVURApEgCGvXrhU8PT2FU6dOCYIgCDk5OcLAgQOFsWPHCiUlJa99fFpamjBu3DihX79+ws2bN8XyI0eOCJ6ensKRI0cU6nt6egqenp7C2rVrFcpXr14teHp6CkOGDBF2794tlstkMuHf//634OnpKURHR4vl165dEzw9PYWAgAClNj158kTw9PQUli5dqlA+btw4Ydy4cSqPQ76/l/tCbsmSJSrLHz9+rLSfnJwcYcqUKcKQIUOEvLw8pWOfPXu2yud/1Z49ewRPT0/B29tbCAgIEK5duyZkZ2eXWr+goEAYPXq00Lt3byEkJERp+7NnzxTqJiUlKdWJi4sTBg4cKMyfP1+hvLTXUm727NmCp6enym3p6enC4MGDhdGjRwtPnz5V2Hbq1CnB09NT+OGHH8Qy+WtX2msrCKpfx4CAAPH9Ex8fL5bn5+cLEydOFHr37i0kJyeL5WFhYYKnp6cwdepUhdcpOTlZGDFihMr3T1mKioqEESNGCEOGDBHy8/MFQRCEw4cPC56ensKGDRuU6lf0/ZaZmSkMHDhQGDhwoPDw4UOF5507d67g6elZap9cu3ZNLKvo61EWX19foXfv3kJBQYHSNvl75l//+pdQXFwslt+9e1fo27ev0utbVFQkjBs3Thg0aJAQExOjsK8bN24Iffr0ERYuXPhG/bF06VLB09NTGD16tJCYmKjU5pkzZwp9+vQRLl++rFD+8OFDYdCgQcKUKVMqXV/+eX75d5tcRkaGUpkg/PO7+erVqyq3k2o8W4pQXFyMEydOwMzMDD179gQAmJqawtPTE8+ePUNYWFiZjy8oKMCiRYuQmJiI//znP2jbtm25ntfExATTp09XKJOv8albt67CyIqOjo647d69e+U+tspq37690nqjoUOHAgCioqIUylV9Gzc1NcWQIUOQnZ2N6OjoSrdj9OjRmDBhArKzs7Fp0ybMnTsXQ4cOxeTJk7F+/XqkpKQo1L9w4QKSk5MxYMAAdO3aVWl/9evXF//f0NAQtra2SnWaNWsGNzc3cTqwKhw/fhw5OTn48MMPlaYV+vXrh5YtW+L06dNKj6tXrx7ef//9Cj/f2LFj0aRJE/FnIyMj9OvXDzKZDDExMWL5iRMnAABTpkyBsbGxWG5jY6Pw/iuvS5cuIS0tDV5eXuJoS58+fWBsbIyjR49CJpOpfFx5328XLlxAXl4ehg4disaNG4vl+vr6Sp+lslT29VAlOTkZ5ubmMDQ0VNomn8qcPn069PT0xPLmzZtj4MCBSvUvXryIxMRETJgwQWFaFADatWsHDw8PhISEICcnB8Cb9ceECRNgZ2enUHbnzh3cvn0bgwYNgru7u8K2xo0bY/jw4YiLi0NcXFyl6supGt22sLBQ2U75iFJycnKZx0OKOC1FuHDhAtLT0zFs2DCFD92gQYNw4sQJHD58WOmDKycIApYtW4aIiAh88MEH6N+/f7mf18HBQeEPCgDxrCpHR0eFueeXt736B10dnJ2dlcrkQSA7O1uh/Pnz59i2bRtCQkLw7NkzpetSvEl7dXR0MHPmTEyYMAEhISGIjIxEdHQ07ty5gwcPHiAwMBCrVq0Sh73lfwi7dOlSrv3HxsZix44duHnzJtLS0pTCTHp6OmxsbCrdfjn52qHIyEg8fvxYaXthYSEyMjKQnp4OS0tLsdzJyalc01CvevUPI/BPsHv59bt79y6AF384X9WmTZsKP++hQ4cAvPjsyJmamqJnz544deoUQkND0a1bN6XHlff9Jg/2qtrr6uqqECDKUtnXQ5XMzEyVIVneXhMTE5XH165dO3EK79V2PXz4UOX1b9LS0iCTyZCQkIBWrVq9UX/Ip1xfFhkZCeDFZ1rV8z98+FD8r6OjY4Xry9dV/fDDD7h69Sq6du2KDh06lDpdCfwTejIyMkqtQ8oYbkhhjcDLOnXqBFtbWwQHByMzM1PlN4vffvsNQUFB6N+/Pz744IMKPa+ZmZlSmfyXUVnbqmo0oSympqalPv/L374zMzPx4Ycf4tmzZ2jbti06d+4Mc3Nz6Orq4u7du7hw4QKKioreuD2WlpYYPHgwBg8eDABITU3Fjz/+iLNnz+K7777Dxo0bAUD8RlvaH5uX3bp1C/PnzwcAdO7cGQ4ODuJxX7hwAXfv3q2StgMv1lcBwL59+8qsl5+fr/Cz/FtrRZX1/nn59cvNzYWurq7KxbMVPb0+JSUFoaGhaNiwodIf28GDB+PUqVM4cuSIynBT3veb/PVV1S+lHYcqlX09VDEyMir1mlg5OTmlvhdV9a+8XSdPnixXu96kP1Q9JjMzE8CLEbhLly6V+ti8vLxK1W/QoAHWrVuHjRs3IiQkBEFBQQCAJk2aYNq0afDy8lJ6rPzLkpQvJaAODDe13LNnz3DlyhUAKPOquSdOnFAapj969Ci2bNmCtm3b4j//+Y9a21ka+ehOSUmJ0jb5Lz51Onz4MJ49e6byVO2tW7fiwoULanlea2trfP7557h06RLu3buHjIwM1K1bVzwtvDxD2Fu2bEFhYSF+/vlnpT/G8m+kVUX+x3vTpk0qzzYpzaujd1XN1NQUMpkMGRkZSiMUFb044tGjR1FSUoInT56UejHD4ODgco2GlEYe2p4/f660TX4c5Qm2lX09VKlbt26p7zczM7NSRxxU9a+8Xf/73//Qo0eP1z73m/SHqveWfH/lPRGgovWBF6PS3377LYqLixETE4PLly9jz549+Oqrr2BjY6M0rS8PUJV9z9RWXHNTyx07dgwymQzt2rXDsGHDlP7JRwpeHT6+fv06Vq1ahYYNG2Lp0qUq59urg/xsDlVTP7GxsSofo6urqzIMVYZ8SF++VullN2/erJLnKI2BgYHSsLt8qF0eWMvy5MkTWFhYKAWb/Px83LlzR6m+ru6LXxel9V1Z2+XTZvJph5pCftbXrVu3lLZV5GwpQRBw5MgRAMCQIUNUfpbatGmDoqIicZ1PZchP/VfV3qioqHK/r6vy9XB0dERhYSGePXumtK158+bIy8tTWOckp+rzUdF2VVV/yMk/P+V9/orWf5m+vj5at26NqVOnYu7cuRAEARcvXlSql5CQAABvHEJrG4abWkz+C1lHRweLFi3CwoULlf4tWrQIrVu3xr1798SFsQkJCfj8889hZGSE//3vfxr9RtGkSROYmpqKU2dyaWlp2Lx5s8rHWFhYICMjo0ru2SJfjPnqL9eTJ08iJCTkjfe/c+dOxMfHq9z2119/IS8vD02aNBGH3z08PGBra4uTJ08iNDRU6TEvf8O2s7NDVlYW7t+/L5aVlJTgl19+QXp6utJj5dOSSUlJKttT1vahQ4fC1NQUGzZsUHg+ufz8fI0EH/m1ZzZt2qTwfkhNTRUvGVAe169fx+PHj9G+fXt89tlnKj9L8tHNV78oVETPnj1hYmKCw4cPK6yVKS4uRkBAQLn3U5WvR4cOHQCoHu2TT3X/9ttvCkHj3r17KkNez549YWdnh127duH69etK24uLixVCUVX1h5yrqytcXV1x+vRplQuqZTKZQrsqWj8mJkbliLJ8FEvVl8TIyEhYW1srLJim1+O0VC127do1PH369LUL2oYOHYqIiAgcPnwYrVq1wk8//YTMzEx07twZf//9t1J9c3Pzart3k4GBAcaMGYMtW7Zg+vTp8PDwQF5eHoKDg9GhQweViyXd3NwQHR2NBQsWoF27dtDX10f79u3FX9IVMXDgQGzfvh1r1qxBeHg47OzscPfuXVy7dg29evXCuXPn3uj4Tpw4gV9++QWOjo5wdXWFlZUVsrKyEBkZiTt37sDIyAiffvqpWN/Q0BBff/01/v3vf+Pf//433N3d4eTkhJycHNy9excFBQXiL/0xY8bgypUrmDVrFry8vGBoaIjr168jJSUFbm5uSjdabN26NYyMjLBnzx5kZWWJoVY+HdexY0ecOXMGX3zxBbp27QpDQ0M4OTnBw8MDlpaW+PLLL7F48WJMnToV7u7uaNKkCYqKipCYmIjr16+jTZs2WLVq1Rv1V0V17twZ/fv3x6lTp+Dj44OePXuiqKgIQUFBcHFxwcWLF8URqbLIA4v8DCdVmjRpgjZt2uD27duIjIws93WLXlanTh34+fnhu+++g6+vL/r27QszMzOEhITA0NAQNjY25ZrKq8rXo2fPnvi///s/hIWFKa0Zka81unz5MqZNm4auXbsiKysLp0+fRpcuXZRGKgwNDfHNN99gwYIFmDNnDjp27CieXJCYmIibN2+ibt262Lp1a5X2x8sWL16MefPm4euvv8aePXvQokULGBkZISkpCbdv30ZGRgZOnTpVqfrHjx9HYGAg2rdvj0aNGsHU1BQPHjzA5cuXYWFhofT+efz4MZ4+fYqRI0dW6BiI4aZWk/9CfvnKwar07dsXP/30E06fPg0/Pz/xG25YWJjK08Tt7e2r9caU06ZNg76+Pg4fPozAwEDY29tjypQp6NGjB86ePatUf8qUKcjOzsbFixdx8+ZNlJSUwMfHp1Lhpn79+vjpp5+wbt06hIWFoaSkBC1btsTq1auRlJT0xuHmP//5Dy5evIhr164hNDQUz58/h66uLuzs7DBy5EiMGzdO6RtdmzZt8Ntvv2Hr1q0IDQ3F1atXUadOHbz11lsYMWKEWK9Hjx745ptvsHXrVpw8eRJGRkbo2LEjli5dqvIK1BYWFvjmm2+wceNGHDp0SHwfyMPN8OHD8fTpU/z999/Yvn07SkpKMHjwYHh4eAB4cbXVgIAA7NixA1evXkVYWBiMjY1ha2uLIUOGqDw1uDosWrQITZs2xZEjR/DXX3/B1tYW48aNQ8eOHXHx4kWVi31flp2djbNnz8LExAS9e/cus+7QoUNx+/ZtHD58uFLhBgDefvtt1KlTB1u2bMGxY8fEK/J+9NFHGDduXLlvgVBVr0eDBg3QpUsXnDlzBnPnzlUYfdDV1cWyZcuwceNGnDp1Cnv37kXDhg3h5+cHBwcHldMwLi4u+P3337Fjxw6EhITg9u3bMDAwgI2NDTw9PZVOma+q/pBr2LAhAgICsGvXLpw/fx5Hjx6Frq4urK2t0b59e6Wrjlekfv/+/VFYWIhbt24hKioKRUVFsLW1xYgRI1Semi4f3fL29q7QMRCgIwiCoOlGEBHVNIcOHcLKlSvxySefaMU350ePHmHixInw8vLC119/Xa3PffXqVcyfPx+ff/65xkLqqzTZH1WhuLgYEydORIMGDSp9VfbajGtuiKhWS01Nxavf8ZKTk7F582bo6emhe/fuGmqZallZWUqnXhcUFODnn38G8OJWGdWtU6dO6Nq1KzZv3lzqhQrVpSb2R1U4duwYnj17ho8//ljTTdFKnJYiolpt27ZtuHTpEtq3bw9LS0skJSXh4sWLyM3NxQcffKA0VaBp169fx4oVK9ClSxfUr18fGRkZ4k1uO3bsiL59+2qkXXPmzMHJkyeRnJxcrX1WU/vjTeno6ODf//63ygsg0utxWoqIarXLly9j165duHfvHrKysmBoaIjmzZtj5MiRKu/krWkJCQkICAjA7du3xbPaGjVqJN7FvLZd7I39Qaow3BAREZGkcM0NERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJyv8DuM+wezw6at4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiW0lEQVR4nO3dd1gU1+I+8Hfp0pVmQxQLIpbYlaJSRDFK1KjRXGPsKWqiKZZcTTQxmtzERBPLVTQSu36NhcQegyggVoyKiNiQKyKw9N7m94e/nbjugix9lvfzPD7Jnjkze2a28O6ZM2dkgiAIICIiIqrndOq6AUREREQVwdBCREREksDQQkRERJLA0EJERESSwNBCREREksDQQkRERJLA0EJERESSwNBCREREksDQQkRERJLA0EJEag0aNAgymazGn2fp0qWQyWQ4c+ZMjT9XRbRu3RqtW7eu62YQkRoMLUTV4MyZM5DJZBg0aFCZdR4+fAiZTMY/iFps586dkMlkkMlkOHnyZLl109PT8fnnn+OVV16BqakpDA0N0aJFC/Tr1w8ff/wxIiMjy11/xowZkMlkMDY2Rnp6epn1FKFQ8U9HRwfm5uZwcHDAsGHD8O233+Lx48eV2V2iWqdX1w0gooZt9uzZGD9+PFq1alXXTamyTZs2QSaTQRAEbNq0Cb6+vmrrJSQkwM3NDQ8fPoSjoyP+9a9/wdraGmlpabhy5QpWr16NRo0aoXv37mrXz8rKwp49eyCTyZCXl4cdO3Zg9uzZ5bZt4MCBYqjOycnBkydPEBYWhmPHjuGLL77A0qVLsXDhwirtP1FNY2ghojplbW0Na2vrum5GlcXExODs2bPw8fFBWloagoKC8PTpU9jZ2anU/fzzz/Hw4UNMnToVmzdvVjkN9+TJEzx58qTM59q1axeys7Px0UcfYe3atQgICHhpaBk0aBCWLl2qVCYIAg4cOICZM2di0aJFAMDgQvUaTw8R1bHnx3Ts378fffr0gbGxMZo0aYLx48er7bpXjDcpKCjA4sWL0aZNGxgaGqJt27ZYtmwZCgsL1T7X6dOnMXToUDRp0gSGhobo0KEDFi5ciIyMjAq1tbCwEGvXrsWwYcPg4OAAQ0NDNGnSBD4+Pjh27JjadRRjRDIzM/HRRx+hdevW0NfXF/+AqhvToti/sv69eBquuLgY69evR79+/WBubg5jY2N0794da9euRWlpqUqbBEHA2rVr4eLiAiMjI7Ro0QKzZ8+u8HFQJyAgAAAwZcoUTJ48GUVFRQgMDFRbNzw8HAAwZ84cteOGmjVrhh49epT7XDo6Opg7dy5GjBiB69ev48KFCxq3WSaT4fXXX8f+/fsBAF9++WW5YYmorrGnhaieWL9+PYKCguDv74+BAwfiwoUL2Lt3L/7++29cu3YNhoaGKuuMGzcOly5dwpgxY6Cvr4/Dhw9j6dKluHz5MoKCgpT+IG7cuBHvvfceTExMMHbsWNja2uLMmTP49ttv8fvvvyMsLAyWlpbltjE1NRUffvghXF1dMXjwYNjY2ODJkyf4/fffMWzYMAQEBGD69Okq6xUWFsLLywupqanw9fWFubk52rRpU+bzTJ48We34oHPnzuGvv/6CsbGxWFZUVIQRI0bgxIkTcHJywptvvgkjIyMEBwdjzpw5uHDhArZv3660nblz5+Knn35Cs2bNMHPmTPHYXbhwAYWFhTAwMCj3OKjbv19//RUWFhYYNWoU8vLy8PHHH2Pz5s2YP3++SjCxsrICANy5cwevvPKKRs8VGRmJK1euYPDgwbC3t8fkyZPx22+/YdOmTejbt69G21Lw9PSEu7s7QkNDceDAAcyaNatS2yGqcQIRVVlwcLAAQBg4cGCZdR48eCAAEBwcHJTKv/jiCwGAYGZmJly/fl1p2YQJEwQAwt69e5XKBw4cKAAQ2rdvL6SmporleXl5Qr9+/QQAwrZt28Tyhw8fCgYGBoKZmZkQHR2ttK333ntPACDMmDFD7XM8Lz8/X4iPj1fZt/T0dMHFxUVo3LixkJubq7TMwcFBACB4e3sL2dnZKusq9j84OFhl2fP+/vtvwczMTLC2thbu3r2rsv7s2bOF4uJisby4uFiYOnWqAEA4dOiQWB4WFiYAENq2bSvI5XKx/Plj9+Jr9DK7d+8WAAgzZ84Uy15//XUBgPDnn3+q1P/555/F1/zTTz8VTp06JaSkpFToud555x0BgLBr1y5BEAShqKhIaNq0qWBiYiJkZGSo1Fccny+++KLc7S5evFgAIEyaNKlC7SCqCzw9RFRPfPDBB+jSpYtS2YwZMwAAFy9eVLvOkiVL0LhxY/GxkZERVq5cCQD45ZdfxPIdO3agsLAQs2fPRseOHZW28fXXX8PMzAzbt29HQUFBuW00NDREy5YtVcotLCwwdepUpKWl4dKlS2rXXbVqFUxMTMrdflkSEhLw6quvoqioCIcPH0bbtm0BAKWlpfj555/RtGlT/Pjjj9DV1RXX0dXVxapVqyCTybBz506xfOvWrQCAf//732jSpIlY/vyx05Ti1NDkyZPFMsX/b9q0SaX+rFmzsGjRIhQVFeG7777D4MGDYW1tjTZt2mDGjBn4+++/1T5PTk4Odu3aJfboAICenh7+9a9/IScnR2k/NdWiRQsAQHJycqW3QVTTeHqIqJ7o1auXSpm9vT0AIC0tTe06AwcOVClzd3eHrq6u0iWzV69eBQB4eXmp1G/cuDG6d++Os2fP4vbt2+jWrVu57YyKisJ3332Hs2fP4smTJ8jPz1darm4MjpGREbp27VrudsuSnZ2N4cOH4/Hjx9i9ezdcXV3FZXfu3EFqairat2+P5cuXq12/UaNGiI6OFh8rjkV5x04Td+/eRXBwMJycnNC/f3+xfOjQoWjatCkOHTqElJQUpcHGMpkMK1aswPz583HixAlERETg6tWruHDhAjZv3oytW7diw4YNYmhV2LNnD7KysvDOO+/AyMhILJ88eTJWrVqFgIAAvPfeexq1X0EQBLFtRPUVQwtRNdDRedZpqW7Qp4JimaLui9SNJ9HTe/YRLSkpUbuOuitT9PT0YG1tjaSkJLFMMcC0WbNmarejKC9vvg8AiIiIgJeXF4qLi+Ht7Q1/f3+Ym5tDR0cH165dw+HDh9X21tja2lbqj2FJSQneeOMNREZGYuXKlXjjjTeUlsvlcgBAbGwsli1bVuZ2srOzxf9XHIvyjp0mAgICIAiCUi+LYlv/+te/sGrVKgQGBuKTTz5RWdfS0hJvvPGGuF85OTn45ptvsHz5csyZMwf+/v5K7VT02rz4XJ07d0bPnj1x5coVXL58WW0AfpmEhAQAgI2NjcbrEtUWnh4iqgYWFhYA/vkjqk5KSgoA9eGksp4+fapSVlxcjJSUFJibm6u0LzExUe12FFeMKOqVZfny5cjLy8PJkydx7NgxrF69Gl9++SWWLl1a7iDQyv56nzNnDo4ePYoZM2aovRRX0d5Ro0ZBEIQy/z148EBlnfKOXUU9f4XQokWLVK5yWrVqFYB/Th+9jImJCb766iu4u7ujoKAAYWFh4rLr16+Lpwn79++v8lxXrlwBoP50VEUEBwcDQKUH8xLVBva0EFUDJycnGBoa4s6dO5DL5eLVIc87f/48ALz09IsmQkJC8NZbbymVhYaGoqSkRGlisu7du+PAgQM4c+YMvL29leqnp6fj2rVrMDIygrOzc7nPd/fuXTRp0kTtlT0hISGV3xE1Vq1ahQ0bNsDX1xfr169XW6djx46wtLREREQEioqKoK+v/9Lt9ujRA1evXkVISAgcHR2VlimOXUUdPnwYSUlJcHJygru7u9o6wcHBuHPnDkJCQtSeklLHzMwMwD+nbIB/wsigQYPEMT0v2rVrF3bv3o0ffvgBpqamFd6Pv/76C2FhYWjUqJE4VoaoXqqrEcBE2ubtt98WAAhTpkwRSktLlZbFx8cLLVq0EAAIZ86cUVpW3tUziiuO3n77baXyilw99OuvvyptR19fX7CwsBBiY2OVtjV79mwBgDB9+nS1z/G8IUOGCACEv//+W6l88+bNAgABgLB161alZQ4ODuVejaNu/3/77TdBR0dH6NKli9orYp63ZMkSAYDw7rvvqly5JAiCkJCQIERFRYmPQ0NDq+3qocGDB6u9uut5imPz5ptvimX/+c9/hJs3b6qtf+7cOcHIyEjQ09MTHj9+LAiCIOTm5gqWlpaCrq6uWKbOxIkTBQDCpk2bxLLyrh4qLS0VfvvtN6FJkyYCAOE///nPy3aZqE6xp4WomqxatQqXLl3C1q1bcf78eQwePBjm5uaIi4vD4cOHkZWVhQULFlT413ZFODs7w8XFRWmelnv37uHVV19V6oFp3bo1Vq9ejVmzZqFHjx4YN24cbGxsEBISgvPnz6Njx4749ttvX/p8c+fOxYkTJ+Du7o5x48bBwsICly9fRmhoKMaMGSNOUlZVEydORGlpKXr37o0ffvhBZXnr1q3FcR1LlizB33//jf/+97/4/fff4eXlhRYtWiApKQmxsbEICwvD119/jU6dOgEA3NzcMGfOHPz888/o3Lmz0rFr3LhxmeN+XvTgwQP8+eefsLa2xsiRI8us98Ybb2Du3Ln47bff8PPPP6NJkybYuXMn5s+fj44dO6Jfv35o1qwZcnJyEBUVhb/++guCIGDVqlVo3rw5AGDv3r1IT0/HiBEjxDJ1pk+fjh07dmDTpk0qg3jPnDkjTuiXl5eHhIQEhIWF4cGDBzA0NMS3336LTz/9tEL7TlRn6jo1EWmTrKws4euvvxZ69eolmJmZCXp6eoKdnZ0wfPhw4ciRI2rXqUpPS35+vvDvf/9baN26tWBgYCC0adNGWLp0qZCfn6/2uU6cOCEMHjxYsLS0FAwMDIS2bdsKn376qZCWlqZSV11PiyAIwu+//y707dtXMDU1FSwsLITBgwcLISEhwtatW6utpwX/v9emrH8vzodTWloqbNu2TfDy8hIaN24s6OvrC82bNxfc3NyEr7/+Wnj06JFK/Z9//lno2LGjYGBgIDRr1kx4//33hfT09Je2V+Gzzz4TAAjz5s17ad0ZM2YIAIQffvhBEARBuHr1qvDVV18Jnp6eQuvWrQUjIyPB0NBQcHR0FN58803h3LlzSuu7uroKAITDhw+/9Lk6dOggABAiIyMFQfjn+Cr+yWQywdTUVGjVqpXg5+cnfPPNN8L//ve/l26XqD6QCcJzJ02JSBIGDRqEkJAQ8ONLRA0Jrx4iIiIiSWBoISIiIklgaCEiIiJJ4JgWIiIikgT2tBAREZEkMLQQERGRJGhNaMnPz0dMTIzKHWeJiIhIO2hNaImLi8OMGTMQFxdX100hIiKiGqA1oYWIiIi0G0MLERERSQJDCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwsRERFJAkMLERERSQJDCxEREUkCQwsRERFJAkMLUQ3ITcvHlf2xyE3Lr+umEBFpDYYWohqQm16AyAN3kZteUNdNISLSGnqaVH7w4AG2bt2KmJgYpKamwsjICA4ODpgwYQLc3NwAAKWlpThx4gRCQkIQGxuLrKwsNGvWDF5eXhg/fjwMDQ2VtjlgwAC1zzVz5kxMnDixkrtFRERE2kaj0JKYmIjc3FwMHToU1tbWyM/PR0hICBYtWoRPPvkE/v7+yM/Px8qVK+Hi4oLXXnsNjRs3RlRUFLZu3YqrV69i9erVkMlkStvt1asXhg4dqlTWvn37qu8dERERaQ2NQkv//v3Rv39/pbLRo0djxowZ2LdvH/z9/aGvr49169ahS5cuYp0RI0agadOm+OWXX3DlyhX06tVLaRv29vbw9fWtwm4QERGRtqvymBZdXV3Y2toiOzsbAKCvr68UWBQ8PDwAAHFxcWq3U1BQgIICnv8nIiIi9TTqaVHIy8tDQUEBcnJyEBYWhgsXLsDT07PcdVJTUwEAFhYWKsuOHz+OQ4cOQRAEODg4YNKkSRg8eHBlmkZERERaqlKhZd26dQgKCgIA6OjoYMCAAZg3b1656+zevRsmJibo27evUnnnzp3h6emJZs2aQS6X48CBA/jqq6+Qk5ODkSNHlrm9lJQUyOVy8XFZPThERESkHSoVWsaOHYtBgwYhJSUFwcHBKCkpQVFRUZn1t2/fjsuXL+Ojjz6CmZmZ0rL169crPR42bBimT5+OTZs2wc/PT+VqI4WgoCAEBgZWpvlEREQkQZUa0+Lg4CBe8fPtt98iLy8PCxcuhCAIKnVPnz6NzZs349VXXy2350RBX18fo0ePRnZ2NmJiYsqs5+/vj4CAAPHf4sWLK7MrREQNEidAJCmqlsnlBg0ahNu3byM+Pl6p/NKlS1ixYgX69++Pjz/+uMLbs7W1BQBkZmaWWcfa2hpOTk7iPwcHh8o1noioAeIEiCRF1RJaFFf9KK4gAoBbt25h8eLFcHJywrJly6CnV/EzUQkJCQAAS0vL6mgeERERaQGNQktaWppKWXFxMU6cOAFDQ0O0bt0aAPDw4UMsWLAATZs2xbffflvmuJT09HSVstzcXOzfvx8WFhZwcnLSpHlERESkxTQaiPv9998jJycH3bp1g42NDeRyOU6dOoVHjx5h1qxZMDY2Rm5uLj755BNkZWVh/PjxOH/+vNI2mjdvjs6dOwMADhw4gNDQULi6usLOzg5yuRxHjx7F06dP8e9//xv6+vrVt6dEREQkaRqFFi8vLxw5cgSHDx9GRkYGjI2N4eTkhHfffRfu7u4AgIyMDCQlJQEANm7cqLKNoUOHiqGlS5cuuHnzJv744w9kZmbCyMgIzs7OWLBgAXr27FnVfSMiIiItolFo8fb2hre3d7l1mjVrhrNnz1Zoe71790bv3r01aQIRERE1UNUyEJeIiIiopjG0EBERkSQwtBAREZEkMLQQERGRJDC0UJ3gFOJERKQphhaqE5xCnIiINMXQQkRERJLA0EJERESSwNBCREREksDQQkRERJLA0EJERESSwNBCREREksDQQkRERJLA0EJUzUpLBSTfzwAAJN/PQGmpUMctIiLSDnp13QAibfLgYiIitkUjJ/XZTL9hW6Jw7eA99JvkjDZ9mtZx64iIpI09LUTV5MHFRJxeHSkGFoWc1HycXh2JBxcT66hlRETagaGFqBqUlgqI2BZdbp2I7dE8VURE1aYh3sONoYWoGiTeTlXpYXlRjjwfibdTa6lFRA1bQ/iD3hDv4cbQQlQN8ir4pVHRekRUNQ3xD3pDwNBCVA0aWRpWaz0iIlLF0EJUDZp2bAKTJkbl1jGxMkLTjk1qqUVERNqHoYWoGujoyNBvknO5dfq95QwdHVkttYiISPswtBBVkzZ9msJ7bneVHhcTKyN4z+3OeVqo3uAEiCRVnFyOqBq16dMUDr3sEBMcj7AtUXCb5gInT3v2sEhQblo+ok/Hw9nbHsaNyz/1JyWcAJGkjD0tRNVMR0cGG0cLAICNowUDi0Rp49UnnACRpI6hhYioAeAEiKQNGFrqoYYwKRIR1S5OgEjagKGlHtLGbmkiqlucAJG0AUMLEVEDwAkQSRswtBARNQCcAJG0AUMLEVEDwAkQSRswtBARNRCcAJGkjpPLERE1IJwAkaSMPS1U6ziFOFHd4gSIJFXsaaFaxSnEiYiosjQKLQ8ePMDWrVsRExOD1NRUGBkZwcHBARMmTICbm5tS3YcPH2Lt2rW4ceMG9PT00L9/f8yePRuWlpZK9UpLS7Fnzx4cOnQIqampaNmyJSZOnAgfH58q7xzVL4opxF+kmEKc59SJiKg8GoWWxMRE5ObmYujQobC2tkZ+fj5CQkKwaNEifPLJJ/D39wcAJCUlYc6cOTA1NcWMGTOQl5eHPXv24P79+9i4cSP09fXFbQYEBGDnzp0YMWIEOnbsiNDQUHz55ZeQyWTw9vau3r2lOlPRKcQdetmxq5qIiNTSKLT0798f/fv3VyobPXo0ZsyYgX379omhZceOHcjPz8fmzZthZ2cHAHB2dsZHH32EY8eOifWSk5Oxd+9ejBo1CvPmzQMADB8+HHPmzMH69esxaNAg6OrqVnknqe5pMoV4805WtdQqIiKSkioPxNXV1YWtrS2ys7PFspCQELi6uoqBBQB69eoFe3t7BAcHi2WhoaEoLi7GqFGjxDKZTIaRI0ciOTkZUVFRVW0e1ROcQpyIiKqqUqElLy8P6enpePz4Mfbt24cLFy6gR48eAJ71nqSlpcHJyUllPWdnZ8TGxoqPY2Nj0ahRIzg4OKjUUywn7cApxImIqKoqdfXQunXrEBQUBADQ0dHBgAEDxNM7crkcAGBlpdrFb2VlhczMTBQWFsLAwAByuRyNGzeGTCZTqQcAKSkpZbYhJSVFfC4AiIuLq8yuUC1RTCFe3ikiTiFORETlqVRoGTt2LAYNGoSUlBQEBwejpKQERUVFAICCgmfd+88PtlUwMDAQ6xgYGKCgoOCl9coSFBSEwMDAyjSf6oBiCnF1Vw8pcApxIiIqT6VCi4ODg3hKZ+jQofjoo4+wcOFCbNy4EYaGz7r3FSHmeYWFhQAg1jE0NKxQPXX8/f2VLrOOi4vD8uXLK7M7VEsUU4g/P08L8KyHpd9bnKeFiIjKVy2Tyw0aNAjff/894uPjxVM7z5+6UZDL5TA3Nxd7UqysrBAZGQlBEJROESnWtba2LvM5ra2ty11O9ROnECciosqqlmn8FadxsrOzYWNjA0tLS8TExKjUi46ORrt27cTH7dq1Q35+vsp4lFu3bonLSftwCnEioqppqLdD0Si0pKWlqZQVFxfjxIkTMDQ0ROvWrQEAAwcORHh4OJ4+fSrWu3LlCuLj4+Hp6SmWubu7Q09PDwcPHhTLBEHA4cOHYWNjg86dO2u6P0RERFrtwcVE7P3gDMK2PJsWJGxLFPZ+cAYPLibWcctqnkanh77//nvk5OSgW7dusLGxgVwux6lTp/Do0SPMmjULxsbGAICJEyfizJkzmDt3LsaMGYO8vDzs3r0bjo6O8PPzE7dna2uLsWPHYvfu3SguLoazszPOnTuH69evY8mSJZxYjoiINPZiL0QTB3Ot6dFt6LdD0Si0eHl54ciRIzh8+DAyMjJgbGwMJycnvPvuu3B3dxfr2dnZ4aeffsLatWuxceNG8d5Ds2bNEsezKLzzzjswMzNDUFAQjh8/jpYtW2Lx4sUYPHhw9ewhERE1GNp8U1beDkXD0OLt7V3h+wG1adMGq1atemk9HR0dTJw4ERMnTtSkKUREREq0vReCt0OppoG4JG25afm4sj8WuWnlfxiIiOqrivZCSHnAKm+HwtBCAHLTCxB54C5ytfiNTkTaTZNeCKni7VAYWoioErS9d66hXk4qZfWhF6KmPxeK26GUR9tvh8LQQlQDjC0N0X10Oxhr6S8ebe6da8iXk0pZfeiFqOnPheJ2KOXR9tuhMLQQ1QDjxkboOaY9jBuX/6uI6hfFQM4XTzMoBnIyuNRfDaUXQnE7lBf31cTKSPIDjSuCoaWeYbc0Ud1oCAM5tVlD6oVo06cp3vhpENymuQAA3Ka54I01g7Q+sAAMLfUKu6WJ6k5DGMip7RpSL0RDvR1KtdwwkapO2+cXIKrv6sNATqo63pRVu7GnpR5gtzRR3asPAzmpejTUXoiGgKGlHmC3NFHdaygDOYmkjKGlHmC3NFHda0gDOYmkiqGlHmC3NFH90JAGcmr7XEKknTgQtx5QdEuXd4qI3dJEtaOhDORUzCVEJCXsaakH2C1NVL9wICdR/cTQUk80pG5pIiKiyuDpoXqkoXRLExERVQZ7WuoZdksTERGpx9BCREREksDQQkRERJLA0EKkBXLT8nFlfyxy08qfWZmISMoYWoi0QG56ASIP3EUuZ00mIi3G0EJERESSwNBCREREksDQQnWC9z0hUsZxSUQvx9BCdUJx3xPjxkYvr0zUAHBcEtHLMbQQERGRJDC0EBERkSQwtBAREZEkMLQ0cKWlApLvZwAAku9noLRUqOMWERERqce7PDdgDy4mImJbNHJSn12tELYlCtcO3kO/Sc5o06dpHbeO6qsXg24TB3Pe2JMaPH4uagdDSwP14GIiTq+OVCnPSc3H6dWR8J7bncGFVDDoEqni56L28PRQA1RaKiBiW3S5dSK2R/NUESlRBF3FF7OCIug+uJhYRy0jqjv8XNQuhpYGKPF2qsoH7EU58nwk3k6tpRZRfcegS6SKn4vax9DSAOVVcPKqitYj7cegS6SKn4vap9GYlujoaBw/fhyRkZFITEyEubk5XFxcMH36dNjb24v1BgwYUOY2evXqhR9++AEA8OTJE7zxxhtq633xxRfw9vbWpHlUQY0qOHV+ReuR9mPQJVJV15+Lhng7FI1Cy65du3Djxg14enqibdu2kMvlOHjwIKZPn44NGzbA0dERALB48WKVdW/fvo39+/ejd+/eKst8fHzQr18/pTIXFxdNmkYaaNqxCUyaGJX7C8HEyghNOzapxVZRfcagS1JTG3/Q6/pzobgdSkOiUWgZN24cPv/8c+jr64tlXl5emDJlCnbu3IklS5YAAHx9fVXWjYyMhEwmU9t70r59e7XrUM3Q0ZGh3yRntVcPKfR7y5mX65GIQZekpjb+oPNzUfs0GtPSpUsXpcACAPb29mjdujXi4uLKXK+wsBAhISF45ZVXYGtrq7ZOXl4eioqKNGkOVUGbPk3hPbc7TJoo37DQxMqIlzuTCkXQLQ+DLjU0/FzUvioPxBUEAWlpabCwsCizTkREBLKzszF48GC1ywMDAzFkyBD4+Phg5syZuHjxYlWbRRXQpk9TvPHTILhNe3Yqzm2aC95YM4iBhdRi0CVSxc9F7ary5HKnTp1CcnIypk6dWm4dAwMDDBw4UKlcR0cHvXv3xoABA2BtbY2EhATs27cP8+fPx8qVK9G/f/8yt5mSkgK5XC4+Lq+nh8qmoyODjeOzwGnjaMFfBFSuNn2awqGXHWKC4xG2JQpu01zg5GnP9w01aPxc1J4qhZa4uDj8+OOPcHFxwdChQ9XWycnJwfnz59G3b1+YmZkpLbOzs8OqVauUyoYMGYJJkyZh3bp15YaWoKAgBAYGVqX5RFQJDSXoNsQrM6jyGsrnoq5VOrTI5XIsWLAAJiYm+Oqrr6Crq6u2XkhICAoLC8s8NfQic3Nz+Pn5YefOnUhKSipzDIy/vz/c3NzEx3FxcVi+fLnmO0JEpEZDvDKDqL6rVGjJzs7G/PnzkZ2djbVr18La2rrMuqdOnYKpqSlcXV0rvH1FUMnKyioztFhbW5f7vERERKRdNB6IW1BQgIULFyI+Ph7ffPMNWrduXWbdlJQUREZGYsCAATAwMKjwcyQkJABAuYN7tRm7pYmIiFRp1NNSUlKCpUuXIioqCitWrEDnzp3Lrf/XX3+htLS0zFND6enpsLS0VCpLTk7G0aNH0bZt2wbbk8JuaSIiIlUahZZ169YhLCwMrq6uyMrKwsmTJ5WWvzhB3KlTp2BtbY3u3bur3d6GDRvw+PFj9OzZE9bW1khMTERQUBDy8/PxwQcfaLgrRA1TaamA5PsZAIDk+xlo4mCudYMAc9PyEX06Hs7e9jBubPTyFYhIK2kUWu7evQsACA8PR3h4uMry50PLo0ePEBMTg3HjxkFHR/1ZqN69eyMhIQEHDx5EVlYWTE1N0bVrV0yaNAlOTk6aNK1G8QuT6qsHFxMRsS1anJEzbEsUrh28h36TnLVqfojc9AJEHrgLh562/AwSNWAahZaffvqpwnVbtWqFs2fPllvHx8cHPj4+mjShTvALk+qjBxcT1d6KISc1H6dXR3JiKyLSOlWeEZeIal9pqYCIbdHl1onYHo3SUqGWWkREVPMYWogkKPF2ark3aQOAHHk+Em+n1lKLqCpeHJfEsEn1UW5aPq7sj0VuWvnfPTWpytP4E1Hty0svqNZ6VHcayrgkkr76MFSCPS1EEtSognP4VLQe1Q3FuKQXe80U45IeXEyso5YR1U8MLUQS1LRjE5W7yr7IxMoITTs2qaUWkaY4LolIcwwtRBKkoyNDv0nO5dbp95az1s3Xok04LolIcwwtRBLVpk9TeM/trtLjYmJlxMudJYDjkog0x4G4RBLWpk9TOPSyQ0xwPMK2RMFtmgucPO3ZwyIBHJdEpDn2tBBJnI6ODDaOz24uauNowcAiERyXRKQ5hhYiojrAcUlEmmNoISKqIxyXRKQZjmkhIqpDHJdEVHHsaSEiqmMcl0RUMQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLQRjS0N0H90Oxpx5k4iI6jFe8kwwbmyEnmPa13UzSEIYdIlU8XNR8xhaiEhjDLpEqvi5qHk8PURERESSwNBCREREksDQQkRERJLA0EJE9VppqYDk+xkAgOT7GSgtFeq4RURUVzgQ9yVe/MJs4mDO+4IQ1ZIHFxMRsS0aOan5AICwLVG4dvAe+k1y5h2QiRog9rSU48HFROz94AzCtkQBePaFufeDM3hwMbGOW0ak/R5cTMTp1ZFiYFHISc3H6dWR/BwSNUAMLWXgFyZR3SktFRCxLbrcOhHbo3mqiKiBYWhRg1+YRHUr8Xaqyg+GF+XI85F4O7WWWkTUsNWXsWUc06KGJl+YzTtZ1VKriBqOvPSCaq1HRJVXn8aWsadFDX5hEtWtRhWcBr2i9YiocurbUAmGFjX4hUlUt5p2bAKTJkbl1jGxMkLTjk1qqUVEDU99HCrB0KIGvzCJ6paOjgz9JjmXW6ffW86cfoCoBtXHsWUMLWrwC5Oo7rXp0xTec7ur/IAwsTKC99zunKeFqIbVx6ESHIhbBsUX5vODj4BnX5j93uLEVkS1oU2fpnDoZYeY4HiEbYmC2zQXOHna8wcDUS2oj0MlGFrKwS9MkgpjS0N0H90Oxlo4zkpHRwYbRwsAgI2jBT9/RLVEMVSivFNEtT1UQqPQEh0djePHjyMyMhKJiYkwNzeHi4sLpk+fDnt7e7HeihUrcPz4cZX1W7VqhR07diiVlZaWYs+ePTh06BBSU1PRsmVLTJw4ET4+PpXcperFL0ySAuPGRug5pn1dN4OItIhiqMTp1ZFl1qntoRIahZZdu3bhxo0b8PT0RNu2bSGXy3Hw4EFMnz4dGzZsgKOjo1jXwMAA8+fPV1rfxMREZZsBAQHYuXMnRowYgY4dOyI0NBRffvklZDIZvL29K7lbREREVFX1baiERqFl3Lhx+Pzzz6Gvry+WeXl5YcqUKdi5cyeWLFkiluvq6sLX17fc7SUnJ2Pv3r0YNWoU5s2bBwAYPnw45syZg/Xr12PQoEHQ1dXVpIlERERUjerTUAmNrh7q0qWLUmABAHt7e7Ru3RpxcXEq9UtKSpCTk1Pm9kJDQ1FcXIxRo0aJZTKZDCNHjkRycjKioqI0aR4RkWRp87gkkr76MlSiygNxBUFAWloaWrdurVSen58PPz8/5Ofnw8zMDN7e3nj33XdhbGws1omNjUWjRo3g4OCgtK6zs7O4vGvXrmqfNyUlBXK5XHysLjQREUkFxyURvVyVQ8upU6eQnJyMqVOnimVWVlaYMGECOnToAEEQcOHCBRw6dAj37t3DmjVroKf37GnlcjkaN24MmUw5sVlZPbufT0pKSpnPGxQUhMDAwKo2n4iIiCSiSqElLi4OP/74I1xcXDB06FCx/J133lGq5+3tDXt7ewQEBCAkJEQcYFtQUKByugl4NohXsbws/v7+cHNzU2rL8uXLq7I7REREVI9VekZcuVyOBQsWwMTEBF999dVLB8yOGzcOOjo6uHz5slhmaGiIoqIilbqFhYXi8rJYW1vDyclJ/PfiKSYiIiLSLpUKLdnZ2Zg/fz6ys7Px/fffw9ra+qXrGBoawtzcHJmZmWKZlZUVUlNTIQjKN1tSjFWpyHaJiIioYdA4tBQUFGDhwoWIj4/HN998ozIAtyy5ubnIyMiApaWlWNauXTvk5+erDKK9deuWuJyIiIgI0DC0lJSUYOnSpYiKisKyZcvQuXNnlToFBQXIzc1VKf/1118hCAL69u0rlrm7u0NPTw8HDx4UywRBwOHDh2FjY6N2+0RERNQwaTQQd926dQgLC4OrqyuysrJw8uRJpeW+vr5ITU3FtGnT4OPjg1atWgEALl68iIiICPTt2xfu7u5ifVtbW4wdOxa7d+9GcXExnJ2dce7cOVy/fh1LlizhxHJEREQk0ii03L17FwAQHh6O8PBwleW+vr4wNTWFq6srLl26hOPHj6O0tBQtWrTAzJkzMX78eOjoKHfuvPPOOzAzM0NQUBCOHz+Oli1bYvHixRg8eHAVdouIiIi0jUah5aeffnppHTMzMyxevLjC29TR0cHEiRMxceJETZpCREREDUylL3kmIiIiqk0MLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURU7xlbGqL76HYwtjSs66YQUR3S6N5DDRW/MInqlnFjI/Qc076um0FEdYyhpQL4hUlERFT3eHqIiIiIJIGhhYiIiF6qPgyV4OkhIiIieqn6MFSCPS1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJDC1EREQkCQwtREREJAkMLURERCQJeppUjo6OxvHjxxEZGYnExESYm5vDxcUF06dPh729PQCgtLQUJ06cQEhICGJjY5GVlYVmzZrBy8sL48ePh6GhodI2BwwYoPa5Zs6ciYkTJ1Zyt4iIiEjbaBRadu3ahRs3bsDT0xNt27aFXC7HwYMHMX36dGzYsAGOjo7Iz8/HypUr4eLigtdeew2NGzdGVFQUtm7diqtXr2L16tWQyWRK2+3VqxeGDh2qVNa+ffuq7x0RERFpDY1Cy7hx4/D5559DX19fLPPy8sKUKVOwc+dOLFmyBPr6+li3bh26dOki1hkxYgSaNm2KX375BVeuXEGvXr2Utmtvbw9fX98q7goRERFpM43GtHTp0kUpsADPAkfr1q0RFxcHANDX11cKLAoeHh4AINZ7UUFBAQoKCjRpDhERETUgGvW0qCMIAtLS0tC6dety66WmpgIALCwsVJYdP34chw4dgiAIcHBwwKRJkzB48OCqNo2IiIi0SJVDy6lTp5CcnIypU6eWW2/37t0wMTFB3759lco7d+4MT09PNGvWDHK5HAcOHMBXX32FnJwcjBw5ssztpaSkQC6Xi4/L6sEhIiIi7VCl0BIXF4cff/wRLi4uKgNpn7d9+3ZcvnwZH330EczMzJSWrV+/XunxsGHDMH36dGzatAl+fn4qVxspBAUFITAwsCrNJyIiIgmpdGiRy+VYsGABTExM8NVXX0FXV1dtvdOnT2Pz5s149dVXy+05UdDX18fo0aOxatUqxMTEoGvXrmrr+fv7w83NTXwcFxeH5cuXV2pfiIiIqP6rVGjJzs7G/PnzkZ2djbVr18La2lptvUuXLmHFihXo378/Pv744wpv39bWFgCQmZlZZh1ra+syn5eIiIi0j8ahpaCgAAsXLkR8fDx++OGHMgfg3rp1C4sXL4aTkxOWLVsGPb2KP1VCQgIAwNLSUtPmERERkZbS6JLnkpISLF26FFFRUVi2bBk6d+6stt7Dhw+xYMECNG3aFN9++22Z41LS09NVynJzc7F//35YWFjAyclJk+YRERGRFtOop2XdunUICwuDq6srsrKycPLkSaXlvr6+yM3NxSeffIKsrCyMHz8e58+fV6rTvHlzMewcOHAAoaGhcHV1hZ2dHeRyOY4ePYqnT5/i3//+t8qcMERERNRwaRRa7t69CwAIDw9HeHi4ynJfX19kZGQgKSkJALBx40aVOkOHDhVDS5cuXXDz5k388ccfyMzMhJGREZydnbFgwQL07NlT450hIiIi7SUTBEGo60ZUh5iYGMyYMQMBAQE8rURERKSFNBrTQkRERFRXGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgS9DSpHB0djePHjyMyMhKJiYkwNzeHi4sLpk+fDnt7e6W6Dx8+xNq1a3Hjxg3o6emhf//+mD17NiwtLZXqlZaWYs+ePTh06BBSU1PRsmVLTJw4ET4+PlXeOSIiItIeGoWWXbt24caNG/D09ETbtm0hl8tx8OBBTJ8+HRs2bICjoyMAICkpCXPmzIGpqSlmzJiBvLw87NmzB/fv38fGjRuhr68vbjMgIAA7d+7EiBEj0LFjR4SGhuLLL7+ETCaDt7d39e4tERERSZZGoWXcuHH4/PPPlUKHl5cXpkyZgp07d2LJkiUAgB07diA/Px+bN2+GnZ0dAMDZ2RkfffQRjh07Bn9/fwBAcnIy9u7di1GjRmHevHkAgOHDh2POnDlYv349Bg0aBF1d3WrZUSIiIpI2jca0dOnSRSmwAIC9vT1at26NuLg4sSwkJASurq5iYAGAXr16wd7eHsHBwWJZaGgoiouLMWrUKLFMJpNh5MiRSE5ORlRUlMY7RERERNqpygNxBUFAWloaLCwsADzrPUlLS4OTk5NKXWdnZ8TGxoqPY2Nj0ahRIzg4OKjUUywnIiIiAjQ8PaTOqVOnkJycjKlTpwIA5HI5AMDKykqlrpWVFTIzM1FYWAgDAwPI5XI0btwYMplMpR4ApKSklPm8KSkp4nMBUOrpISIiIu1TpdASFxeHH3/8ES4uLhg6dCgAoKCgAABUTiMBgIGBgVjHwMAABQUFL61XlqCgIAQGBlal+URERCQhlQ4tcrkcCxYsgImJCb766itxwKyhoSEAoKioSGWdwsJCpTqGhoYVqqeOv78/3NzcxMdxcXFYvnx5JfeGiIiI6rtKhZbs7GzMnz8f2dnZWLt2LaytrcVlilM7z5+6UZDL5TA3Nxd7UqysrBAZGQlBEJROESnWfX67L7K2ti53OREREWkXjQfiFhQUYOHChYiPj8c333yD1q1bKy23sbGBpaUlYmJiVNaNjo5Gu3btxMft2rVDfn6+yniUW7duicuJiIiIAA1DS0lJCZYuXYqoqCgsW7YMnTt3Vltv4MCBCA8Px9OnT8WyK1euID4+Hp6enmKZu7s79PT0cPDgQbFMEAQcPnwYNjY2ZW6fiIiIGh6NTg+tW7cOYWFhcHV1RVZWFk6ePKm03NfXFwAwceJEnDlzBnPnzsWYMWOQl5eH3bt3w9HREX5+fmJ9W1tbjB07Frt370ZxcTGcnZ1x7tw5XL9+HUuWLOHEckRERCTSKLTcvXsXABAeHo7w8HCV5YrQYmdnh59++glr167Fxo0bxXsPzZo1SxzPovDOO+/AzMwMQUFBOH78OFq2bInFixdj8ODBld0nIiIi0kIyQRCEum5EdYiJicGMGTMQEBCgdmI7IiIikrYqz4hLREREVBsYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIioxuWm5ePK/ljkpuXXdVNIwhhaiIioxuWmFyDywF3kphfUdVNIwhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqoQchNy8eV/bHITcuv66YQEVElMbRQg5CbXoDIA3eRm15Q100hanBKSwUk388AACTfz0BpqVDHLSKp0qvrBhARkfZ6cDEREduikZP6rJczbEsUrh28h36TnNGmT9M6bh1JDXtaiIioRjy4mIjTqyPFwKKQk5qP06sj8eBiYh21jKSKoYWIiKpdaamAiG3R5daJ2B7NU0WkEYYWIiKqdom3U1V6WF6UI89H4u3UWmoRaQOGFiIiqnZ5FRz0XtF6REAlBuLm5uZiz549uHXrFqKjo5GVlYVFixbBz89Pqd6AAQPK3EavXr3www8/AACePHmCN954Q229L774At7e3po2kYiI6lgjS8NqrUcEVCK0ZGRkIDAwEHZ2dmjXrh0iIyPV1lu8eLFK2e3bt7F//3707t1bZZmPjw/69eunVObi4qJp84iIqB5o2rEJTJoYlXuKyMTKCE07NqnFVpHUaRxarKyscPDgQVhZWeH27duYOXOm2nq+vr4qZZGRkZDJZGp7T9q3b692HSIikh4dHRn6TXLG6dXqf9gCQL+3nKGjI6vFVpHUaTymxcDAAFZWVho/UWFhIUJCQvDKK6/A1tZWbZ28vDwUFRVpvG0iIqp/2vRpCu+53WHSxEip3MTKCN5zu3OeFtJYrU0uFxERgezsbAwePFjt8sDAQGzYsAEymQxOTk6YPn06+vTpU1vNIyKiGtCmT1M49LJDTHA8wrZEwW2aC5w87dnDQpVSa6Hl1KlTMDAwwMCBA5XKdXR00Lt3bwwYMADW1tZISEjAvn37MH/+fKxcuRL9+/dXu72UlBTI5XLxcVxcXI22n4iIKkdHRwYbRwsAgI2jBQMLVVqthJacnBycP38effv2hZmZmdIyOzs7rFq1SqlsyJAhmDRpEtatW1dmaAkKCkJgYGBNNZmIiIjqmVoJLSEhISgsLCzz1NCLzM3N4efnh507dyIpKUntGBh/f3+4ubmJj+Pi4rB8+fJqazMRERHVL7USWk6dOgVTU1O4urpWeB1FUMnKylIbWqytrWFtbV1tbSQiIqL6rcZnxE1JSUFkZCQGDBgAAwODCq+XkJAAALCwsKipphEREZGE1Hho+euvv1BaWlrmqaH09HSVsuTkZBw9ehRt27ZlbwoREREBqOTpod9++w3Z2dni1TthYWFISkoCALz++uswNTUV6546dQrW1tbo3r272m1t2LABjx8/Rs+ePWFtbY3ExEQEBQUhPz8fH3zwQWWaR0RERFqoUqFl7969SExMFB+fPXsWZ8+eBfBsJlxFaHn06BFiYmIwbtw46Oio79Tp3bs3EhIScPDgQWRlZcHU1BRdu3bFpEmT4OTkVJnmERERkRaqVGjZt29fheq1atVKDDNl8fHxgY+PT2WaQVQhpaUCku9nAACS72egiYM554kgIpKgWptcjqguPLiYiIht0eJN28K2ROHawXvoN8mZU4gTEUlMjQ/EJaorDy4m4vTqSJW7zOak5uP06kg8uJhYxppERFQfMbSQViotFRCxLbrcOhHbo1FaKtRSi4iIqKoYWkgrJd5OVelheVGOPB+Jt1NrqUVERFRVDC2klfLSC6q1HhER1T2GFtJKjSwNq7UeERHVPYYW0kpNOzaBSROjcuuYWBmhaccmtdQiIiKqKoYW0ko6OjL0m+Rcbp1+bzlzvhYiIglhaCGt1aZPU3jP7a7S42JiZQTvud05TwsRkcRwcjnSam36NIVDLzvEBMcjbEsU3Ka5wMnTnj0sREQSxJ4W0no6OjLYOFoAAGwcLRhYiIgkiqGFiIhqnLGlIbqPbgdjXrFHVcDTQ0REVOOMGxuh55j2dd0Mkjj2tBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLQQERGRJDC0EBERkSQwtBAREZEkMLRQg2BsaYjuo9vB2NKwrptCRESVpFfXDSCqDcaNjdBzTPu6bgYREVUBe1qIiIhIEhhaiIiISBIYWoiIiEgSNB7Tkpubiz179uDWrVuIjo5GVlYWFi1aBD8/P6V6K1aswPHjx1XWb9WqFXbs2KFUVlpaij179uDQoUNITU1Fy5YtMXHiRPj4+GjaPCIiItJSGoeWjIwMBAYGws7ODu3atUNkZGSZdQ0MDDB//nylMhMTE5V6AQEB2LlzJ0aMGIGOHTsiNDQUX375JWQyGby9vTVtIhEREWkhjUOLlZUVDh48CCsrK9y+fRszZ84ss66uri58fX3L3V5ycjL27t2LUaNGYd68eQCA4cOHY86cOVi/fj0GDRoEXV1dTZtJREREWkbjMS0GBgawsrKqcP2SkhLk5OSUuTw0NBTFxcUYNWqUWCaTyTBy5EgkJycjKipK0yYSERGRFqrReVry8/Ph5+eH/Px8mJmZwdvbG++++y6MjY3FOrGxsWjUqBEcHByU1nV2dhaXd+3atSabSURERBJQY6HFysoKEyZMQIcOHSAIAi5cuIBDhw7h3r17WLNmDfT0nj21XC5H48aNIZPJVNYHgJSUFLXbT0lJgVwuFx/HxcXV0J4QERFRfVBjoeWdd95Reuzt7Q17e3sEBAQgJCREHGBbUFAAfX19lfUNDAzE5eoEBQUhMDCwehtNRERE9VatTuM/btw4bNmyBZcvXxZDi6GhIYqKilTqFhYWisvV8ff3h5ubm/g4Li4Oy5cvr4FWExERUX1Qq6HF0NAQ5ubmyMzMFMusrKwQGRkJQRCUThEpTv1YW1ur3Za1tXWZy4iIiEj71OqMuLm5ucjIyIClpaVY1q5dO+Tn56uMSbl165a4nIiIiKhGQktBQQFyc3NVyn/99VcIgoC+ffuKZe7u7tDT08PBgwfFMkEQcPjwYdjY2KBz58410UQiIiKSmEqdHvrtt9+QnZ0tnsIJCwtDUlISAOD1119HVlYWpk2bBh8fH7Rq1QoAcPHiRURERKBv375wd3cXt2Vra4uxY8di9+7dKC4uhrOzM86dO4fr169jyZIlFZ5YTjFgl1cRERERSY+DgwOMjIzKrSMTBEHQdMPjxo1DYmKi2mV79+6Fqakp1qxZg6ioKMjlcpSWlqJFixYYPHgwxo8fL17urFBaWopdu3YhKCgIcrkcLVu2xL/+9a+Xzqb7vJMnT3IgLhERkUQFBATAycmp3DqVCi31UXp6Oi5evIhmzZqJl0tLjeIKqMWLF6tMtteQ8Dj8g8fiGR6Hf/BY/IPH4hltOQ4V6Wmp1auHapKlpaVGPTP1mYODw0vTZkPA4/APHotneBz+wWPxDx6LZxrCcajVq4eIiIiIKouhhYiIiCSBoaUesbKywuTJkzW6i7Y24nH4B4/FMzwO/+Cx+AePxTMN6ThozUBcIiIi0m7saSEiIiJJYGghIiIiSWBoISIiIklgaCEiIiJJ0JrJ5aQiJSUF+/fvR3R0NG7fvo28vDysWbMG3bt3V6n7wQcf4Nq1ayrlffr0wffff69UVlhYiC1btuDkyZPIyspC27ZtMX36dPTu3bumdqVKNDkOAHDjxg3897//xZ07d2BiYgJPT0/MmDEDxsbGSvWkdhzKcuzYMaxcuVLtsoMHD6pcJRAaGoqtW7ciLi4OlpaWGDZsGCZNmqRyywyp0ZbXUxORkZH48MMP1S7bsGEDXFxcxMcV/VxIQW5uLvbs2YNbt24hOjoaWVlZWLRoEfz8/FTqPnz4EGvXrsWNGzegp6eH/v37Y/bs2bC0tFSqV1paij179uDQoUNITU1Fy5YtMXHiRPj4+NTSXmmuosdhxYoVOH78uMr6rVq1wo4dO5TKpHgcyiLtbzQJio+Px65du9CyZUs4OjoiKiqq3Po2NjZ45513lMrUXda2cuVKnDlzBmPHjkXLli1x7NgxzJ8/H2vWrEHXrl2rdR+qgybHITY2FvPmzYODgwNmz56NpKQk7N27F//73//w3XffKdWV2nF4mWnTpqFZs2ZKZaampkqPIyIi8O9//xuvvPIKPvzwQ9y/fx/btm1DWloaPv7449psbrXTttdTE6+//jqcnZ2Vylq0aCH+vyafCynIyMhAYGAg7Ozs0K5dO0RGRqqtl5SUhDlz5sDU1BQzZsxAXl4e9uzZg/v372Pjxo3Q19cX6wYEBGDnzp0YMWIEOnbsiNDQUHz55ZeQyWTw9vaurV3TSEWPAwAYGBhg/vz5SmUmJiYq9aR4HMokUK3KyckRMjIyBEEQhODgYMHDw0O4evWq2rpz5swRJk2a9NJtRkVFCR4eHsKuXbvEsvz8fGH8+PHCu+++Wz0Nr2aaHIdPPvlEGDlypJCdnS2W/f7774KHh4dw4cIFsUyKx6EsR48eFTw8PITo6OiX1n3rrbeEKVOmCEVFRWLZpk2bhAEDBggPHz6syWbWKG16PTVx9epVwcPDQwgODi63XkU/F1JRUFAgpKSkCIIgCNHR0YKHh4dw9OhRlXqrVq0SfHx8hMTERLHs0qVLgoeHh3D48GGxLCkpSfD09BR++OEHsay0tFSYNWuWMHr0aKG4uLgG96byKnocvv76a8HX1/el25PqcSgLx7TUMmNjY5ibm2u0TnFxMXJzc8tcHhISAl1dXfj7+4tlhoaGePXVVxEVFYWnT59Wur01paLHIScnB5cvX4avr6/SL4ghQ4agUaNGCA4OFsukeBwqIjc3FyUlJWqXPXz4EA8fPsSIESOUTgWNGjUKgiDgzJkztdTK6qetr6cmcnNzUVxcrFKuyedCKgwMDCo0OVpISAhcXV1hZ2cnlvXq1Qv29vZK+x0aGori4mKMGjVKLJPJZBg5ciSSk5Nf2stdVyp6HBRKSkqQk5NT5nKpHoey8PRQPRcfH48hQ4agqKgITZo0wfDhwzF58mSlP1CxsbFo2bKlSregomv57t27Sh9wKbl//z5KSkpUbgKmr6+P9u3bIzY2VizTxuPw4YcfIi8vD/r6+ujduzdmzZoFe3t7cfmdO3cAQOX4WFtbw8bGRun4SI02vp6aWLlyJfLy8qCrq4uuXbvivffeQ8eOHQFo9rnQJsnJyUhLS1N7U0BnZ2dERESIj2NjY9GoUSOVux4r3j+xsbGSP8WYn58PPz8/5Ofnw8zMDN7e3nj33XeVxjRp23FgaKnHmjdvju7du8PR0RH5+fk4c+YMtm3bhvj4eCxbtkysJ5fL1SZzRVlKSkqttbm6yeVyAOrH8VhZWeHvv/9Wqqstx8HQ0BB+fn7o3r07TExMEBMTg3379uH999/H5s2bxT/WLzs+iuVSpE2vpyb09PQwcOBA9OvXDxYWFnj48CH27t2L2bNnY/369ejQoYNGnwtt8rL9zszMRGFhIQwMDCCXy9G4cWPIZDKVeoD03z9WVlaYMGECOnToAEEQcOHCBRw6dAj37t3DmjVrxB+22nYcGFqqoLS0FEVFRRWqa2BgoPKmeZmFCxcqPR4yZAi+++47/P777xg3bpx4FUFBQYHS4LPnn1OxvCbV5HFQtL2s/SssLFSqW5fHoSyVOT5eXl7w8vISyz08PNCnTx/MmTMH27dvxyeffAIA4v4r9vHFbZV3WrG+q6+vZ03r0qULunTpIj52d3fHoEGDMGXKFGzatAnff/+9Rp8LbfKy/VbUMTAw0Pr3z4sXaHh7e8Pe3h4BAQEICQkRB9hq23FgaKmCv//+u8xLE1+0fft2le65ynjjjTfw+++/4/Lly2JoMTQ0VPtHUfHFZWhoWOXnLU9NHgdF28vav+f/WNf1cShLdR2frl27olOnTrhy5YpYpth/dX+kCgsL62yfq0N9fT3rQsuWLeHu7o6zZ8+ipKREo8+FNnnZfj9fpyG+f8aNG4ctW7bg8uXLYmjRtuPA0FIFrVq1wqJFiypUt7ruvmlrawsAyMrKUtp2cnKySl1FV6q1tXW1PHdZavI4KOqrO80hl8uV9q2uj0NZqvP42Nra4tGjRyr15XK5yvgOuVyucsmslNTX17Ou2NraoqioCPn5+Rp9LrTJy/bb3NxcDGxWVlaIjIyEIAhKvbva/P4xNDSEubk5MjMzxTJtOw4MLVVgZWWlduKjmpSQkAAASpMoKa7lz8nJURq0eOvWLXF5TarJ49CmTRvo6uoiJiZG6XRJUVERYmNj4enpKZbV9XEoS3Uen4SEBKXXvn379gCAmJgYdOrUSSxPSUlBcnKy0pU3UlNfX8+6kpCQAAMDAzRq1Eijz4U2sbGxgaWlJWJiYlSWRUdHK70n2rVrhz/++ANxcXFo3bq1WK7N75/c3FxkZGSo/H3QpuPAS57rqZycHJUuf0EQsG3bNgBQmhF00KBBKCkpQVBQkFhWWFiIo0ePolOnTpK+wsLU1BS9evXCyZMnlcZnnDhxAnl5eUpfztp0HNLT01XKzp8/j5iYGPTp00csa9OmDVq1aoXff/9d6bLoQ4cOQSaTYeDAgbXR3BqhTa+nJtS99nfv3kVYWBh69+4NHR0djT4X2mbgwIEIDw9XuuT9ypUriI+PV9pvd3d36Onp4eDBg2KZIAg4fPgwbGxs0Llz51ptd3UqKChQO17t119/hSAI6Nu3r1imbceBPS114NdffwXwbI4N4NkXzfXr1wEAb7/9NoBnl7IuW7YMPj4+aNGiBQoKCnDu3DncuHEDI0aMULrkr1OnTvD09MSmTZuQnp6OFi1a4Pjx40hMTMSCBQtqd+c0UJHjAADTp0/HrFmzMGfOHPj7+4szf/bu3VvpwynV46DOe++9hw4dOsDJyQkmJia4c+cOjh49CltbW7z11ltKdd9//30sWrQIH3/8Mby9vXH//n0cPHgQw4cPV/plJTXa9Hpq4osvvoChoSE6d+6Mxo0b4+HDh/j9999hZGSkNPiyop8LKfntt9+QnZ0tnroICwtDUlISgGczBJuammLixIk4c+YM5s6dizFjxiAvLw+7d++Go6OjUo+mra0txo4di927d6O4uBjOzs44d+4crl+/jiVLlkBXV7dO9rEiXnYcsrKyMG3aNPj4+KBVq1YAgIsXLyIiIgJ9+/aFu7u7uC0pHwd1ZIIgCHXdiIZmwIABZS47e/YsgGddwRs3bkR0dDRSU1Oho6MDBwcHDB8+HP7+/ipX4BQUFIj3aMnOzoajoyOmT5+u9Ku8vqnIcVC4fv26eI8VY2NjeHp64p133lG5x4oUj4M6AQEBiIiIwJMnT8QxDP3798fkyZPRpEkTlfrnzp1DYGAg4uLiYGFhAT8/P5X5fKRIW15PTezfvx+nTp3C48ePkZOTA0tLS/Ts2ROTJ09Gy5YtlepW9HMhFePGjUNiYqLaZXv37hVvafHgwQOVew/NmjVL5bNRWlqKXbt2ISgoCHK5HC1btsS//vUv+Pr61vi+VMXLjoOpqSnWrFmDqKgoyOVylJaWokWLFhg8eDDGjx+v8rmX6nFQh6GFiIiIJIFjWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaiIiISBIYWoiIiEgSGFqIiIhIEhhaSGPHjh3DgAEDcOzYsbpuSoVERkZiwIAB+OWXX2rsOQYMGIAPPvigxrbfUIwbNw7jxo2r62bUe7/88gsGDBiAyMjIGn2effv2wcvLC0+ePKlQ/dr4rEnZV199hbFjx6KgoKCumyJZDC0NwDfffIMBAwZg+PDhKjdh1BZS+2OXkZGB//73v5g0aRIGDx6MwYMHY+zYsZg7dy62bt2K1NTUWmnHywLoBx98UO7tFhqSvLw8DB06FAMGDMAPP/xQ182pcVlZWdi2bRuGDRsmTp9PVTN58mSkpKTg//7v/+q6KZIl7RuT0Evl5uYiODgYMpkMmZmZOHfuHLy9vau0TQ8PD3Tq1AlWVlbV1MqGJSkpCe+//z6SkpLQvn17+Pn5wczMDHK5HDdv3sTWrVvRpUsXtfcY0nY//vhjXTehTMHBwcjNzYVMJsOff/6JWbNmwdDQsK6bVWP27duHzMxMTJgwoa6bojXs7e3h5uaGXbt24fXXX0ejRo3qukmSw9Ci5f766y/k5eVh3Lhx2L9/P44cOVLl0GJqagpTU9NqamHD88svvyApKQnTpk1Tupu1wr179xrs8W3RokVdN6FMR44cga6uLkaPHo3/+7//w9mzZzF48OC6blaNKC4uxh9//IEuXbrU69dEinx9fXH27FmcPn0aw4cPr+vmSA5Di5ZTfNG++eabuHfvHq5evYrExEQ0bdpUqd4vv/yCwMDAMrfTtGlT7Nu3D8CzUworV67EokWLlG4FP2DAALzyyitYsmQJNmzYgEuXLqGwsBDdunXD3Llz0bx5czx8+BCbNm3C33//jeLiYvTp0wfz5s1T6lWIjIzEhx9+iMmTJ2Pq1KlK7Xjy5AneeOMNDB06FJ999pn4+Pk2KKhb//bt29i0aROioqKgo6ODHj16YPbs2Srd32fPnkVwcDBu376NlJQU6OnpoW3bthgzZgwGDRpU/kF/iaioKADA6NGj1S5v27at2vKEhATs3LkTly5dglwuh4mJCVq3bg0/Pz/xdSgqKkJQUBDCw8Px8OFDpKenw8TEBF26dMHbb7+NDh06iNtbsWIFjh8/DgBYuXIlVq5cqbT/zx/L5/9fcewV7t27h+3bt+PatWvIzMyElZUV3NzcMGXKFFhYWIj1nn/t3nzzTQQEBODvv/9GZmameAdfxSk+xXsN+Oe9uWbNGqSkpGD37t149OgRTE1N4enpiXfffVelx6O4uBh79uzBH3/8gZSUFNjY2ODVV1+Fl5cXxo8fr7IPL/Po0SPcuHEDrq6uSj8A1IWW59+/rq6uFXq/AUBISAh27NiBBw8ewMTEBG5ubnjvvfcwbdo0lWNSnoq+HuW5ePEi5HI53nzzTbXLCwoKsHXrVpw6dQoZGRlo0aIFxowZo3IX6uclJCRg+/btuHTpEtLS0mBmZoY+ffpg6tSpKt9HgGbHQ/Fe3rNnD86ePYsjR44gISEB3t7e4uuclpaGHTt2IDw8HElJSTA2Nka3bt0wdepUODo6qjy/JvXj4+OxY8cOREZGQi6Xw8jICLa2tujevTvmzJkDmUwm1u3fvz+MjIxw/PhxhpZKYGjRYg8fPkRUVBT69euHJk2aYMiQIbhy5QqOHj2q8se8e/fuarcRFxeH4ODgCneDZ2VlYdasWbCyssKQIUPwv//9D+Hh4fjoo4+wYsUKzJ49G05OThg2bBju3LmDkJAQZGZmYs2aNZXaR1NTU0yePBn79+8HAIwZM6bMfbp9+zZ2796N7t27w9/fH7GxsTh37hzu37+PwMBApX3ctGkT9PT00KVLF1hZWSE9PR1hYWH4/PPP8eGHH+L111+vVHsBiH844uPj0alTpwqtc/36dSxYsAC5ubno06cPvL29kZWVhdjYWOzfv18MLZmZmfj555/RtWtX9OvXD2ZmZnjy5AnCwsJw4cIF/Pzzz3B2dgbw7DRfdnY2QkND4e7ujnbt2ik95+TJk3H8+HEkJiZi8uTJYnn79u3F/w8NDcXSpUshk8ng7u4OW1tbPHz4EAcOHMDFixexceNGmJmZKW338ePHeO+99+Do6IihQ4ciMzMT+vr6Lz0Gim26ubmhR48euHDhAn777TdkZGTg888/V6r77bff4sSJE2jevDlGjhyJoqIi7Nu3Dzdv3qzQ8X7RkSNHAABDhgyBnZ0dXnnlFURGRiIhIQHNmzdXu44m77cjR47g22+/hYmJCYYMGQJTU1NERETgo48+QnFxMfT0KvZVXZnXQ50rV64AAFxcXFSWlZaWYtGiRbh8+TIcHR3h4+ODzMxMrF27tszvkVu3buGTTz5BXl4eXF1d0bJlSyQmJuLUqVO4cOECNmzYoHQcK3s8Vq9ejVu3bqF///5wdXVF48aNATx7z33wwQdITk5G79694e7ujvT0dISEhODSpUv48ccflT6LmtRPSUnBO++8g/z8fPTv3x9eXl7Iz8/H//73Pxw6dAjvv/++Unv19fXRoUMHREVFIS8vj6eINCWQ1vr5558FDw8P4c8//xQEQRBycnIEX19fYcyYMUJJSclL109NTRXGjh0reHt7C9evXxfLjx49Knh4eAhHjx5Vqu/h4SF4eHgIP//8s1L5qlWrBA8PD8HPz0/Yt2+fWF5aWip8+umngoeHh3D79m2x/OrVq4KHh4ewZcsWlTYlJCQIHh4ewtdff61UPnbsWGHs2LFq90OxveePhcLy5cvVlj9+/FhlOzk5OcLbb78t+Pn5CXl5eSr7PmfOHLXP/6L9+/cLHh4egr+/v7Blyxbh6tWrQnZ2dpn1CwoKhNGjRwsDBw4UIiIiVJY/ffpUqW5SUpJKnfv37wu+vr7CvHnzlMrLei0V5syZI3h4eKhdlp6eLgwdOlQYPXq08OTJE6Vlf/75p+Dh4SH8+OOPYpnitSvrtRUE9a/jli1bxPdPXFycWJ6fny+8+eabwsCBA4Xk5GSx/PLly4KHh4cwdepUpdcpOTlZeO2119S+f8pTVFQkvPbaa4Kfn5+Qn58vCIIgHDlyRPDw8BACAgJU6mv6fsvMzBR8fX0FX19f4dGjR0rP++GHHwoeHh5lHpOrV6+KZZq+HuWZMWOGMHDgQKGgoEBlmeI988knnwjFxcVi+d27dwUvLy+V17eoqEgYO3asMGTIECEmJkZpW3///bcwaNAgYcGCBVU6Hl9//bXg4eEhjB49WkhMTFRp83vvvScMGjRIuHDhglL5o0ePhCFDhghvv/12pesrPs/Pf7cpZGRkqJQJwj/fzVeuXFG7nMrGq4e0VHFxMU6ePAkTExO4u7sDAIyNjeHh4YGnT5/i8uXL5a5fUFCAzz77DImJiVi4cCG6dOlSoedt1KgRpk+frlSmGENjYWGh1BMik8nEZffu3avwvlVWt27dVMbzDBs2DAAQHR2tVK7u17OxsTH8/PyQnZ2N27dvV7odo0ePxoQJE5CdnY3AwEB8+OGHGDZsGCZNmoT//ve/SElJUaofGhqK5ORkDB48GH379lXZnq2trfj/BgYGsLGxUanTpk0bdO/eXTwtVx1OnDiBnJwczJw5U6V739vbGx06dMDp06dV1mvSpAneeustjZ9vzJgxaNWqlfjY0NAQ3t7eKC0tRUxMjFh+8uRJAMDbb78NIyMjsdza2lrp/VdR58+fR2pqKjw9PcXekUGDBsHIyAjHjh1DaWmp2vUq+n4LDQ1FXl4ehg0bBnt7e7FcT09P5bNUnsq+HuokJyfD1NQUBgYGKssUpxSnT58OXV1dsbxt27bw9fVVqR8eHo7ExERMmDBB6fQkAHTt2hVubm6IiIhATk4OgKodjwkTJsDOzk6p7M6dO7h58yaGDBmCPn36KC2zt7fH8OHDcf/+fdy/f79S9RXU9Uabm5urbaeiByg5Obnc/SFVPD2kpUJDQ5Geno5XX31V6cM0ZMgQnDx5EkeOHFH5QCoIgoAVK1YgKioKU6ZMgY+PT4Wft2XLlkp/KACIVxk5Ojoqndt9ftmLf6hrgpOTk0qZ4g98dna2UnlaWhp27tyJiIgIPH36VGVehaq0VyaT4b333sOECRMQERGBW7du4fbt27hz5w4ePnyIoKAgfP/992L3s+IPXO/evSu0/djYWOzevRvXr19HamqqSkhJT0+HtbV1pduvoBibc+vWLTx+/FhleWFhITIyMpCeng5LS0uxvF27dhU6HfSiF//gAf8Etudfv7t37wJ49gfxRZ07d9b4ef/44w8Azz47CsbGxnB3d8eff/6Jixcvol+/firrVfT9pgjs6trbqVMnpWBQnsq+HupkZmaqDb+K9jZq1Ejt/nXt2lU8lfZiux49eqR2/pbU1FSUlpYiPj4eHTt2rNLxUJz6fN6tW7cAPPtMq3v+R48eif91dHTUuL5i3NKPP/6IK1euoG/fvnjllVfKPG0I/BNmMjIyyqxD6jG0aKnnz8E/r2fPnrCxsUFYWBgyMzPV/hLYvHkzgoOD4ePjgylTpmj0vCYmJiplii+Z8pZV16//8hgbG5f5/M//Ws7MzMTMmTPx9OlTdOnSBb169YKpqSl0dHRw9+5dhIaGoqioqMrtsbS0xNChQzF06FAAgFwux+rVqxESEoLvvvsOW7duBQDxF2hZf0Sed+PGDcybNw8A0KtXL7Rs2VLc79DQUNy9e7da2g48G78EAAcPHiy3Xn5+vtJjxa9MTZX3/nn+9cvNzYWOjo7aQaeaXkaekpKCixcvonnz5ip/RIcOHYo///wTR48eVRtaKvp+U7y+6o5LWfuhTmVfD3UMDQ3LnNMpJyenzPeiuuOraNepU6cq1K6qHA9162RmZgJ41mN2/vz5MtfNy8urVP1mzZphw4YN2Lp1KyIiIhAcHAwAaNWqFaZNmwZPT0+VdRU/grT5kvmawtCihZ4+fYpLly4BQLmztJ48eVKlu/zYsWPYvn07unTpgoULF9ZoO8ui6I0pKSlRWab4QqtJR44cwdOnT9Vekrxjxw6EhobWyPNaWVlh8eLFOH/+PO7du4eMjAxYWFiIlz9XpCt5+/btKCwsxNq1a1X+yCp+QVYXxR/lwMBAtVdflOXF3rbqZmxsjNLSUmRkZKj0KGg6ad+xY8dQUlKChISEMifZCwsLq1DvRVkUYSwtLU1lmWI/KhJYK/t6qGNhYVHm+83ExKTMHgJ1x1fRrm+++Qaurq4vfe6qHA917y3F9io6gF7T+sCzXuSvvvoKxcXFiImJwYULF7B//34sXboU1tbWKqfXFcGosu+ZhoxjWrTQ8ePHUVpaiq5du+LVV19V+af4Zf9iN+61a9fw/fffo3nz5vj666/Vns+uDYqrG9SdgomNjVW7jo6OjtqQUxmKrnXFWKDnXb9+vVqeoyz6+voq3d+KLm9FEC1PQkICzM3NVQJLfn4+7ty5o1JfR+fZV0BZx6685YrTV4ru//pCcRXUjRs3VJZpcvWQIAg4evQoAMDPz0/tZ6lz584oKioSx9FUhuISd3XtjY6OrvD7ujpfD0dHRxQWFuLp06cqy9q2bYu8vDylcUQK6j4fmraruo6HguLzU9Hn17T+8/T09ODi4oKpU6fiww8/hCAICA8PV6kXHx8PAFUOlw0RQ4uWUXzRymQyfPbZZ1iwYIHKv88++wwuLi64d++eOKA0Pj4eixcvhqGhIb755ps6/QXQqlUrGBsbi6ewFFJTU7Ft2za165ibmyMjI6Na7umhGMT44pfmqVOnEBERUeXt79mzB3FxcWqXHThwAHl5eWjVqpXYDe7m5gYbGxucOnUKFy9eVFnn+V/EdnZ2yMrKwoMHD8SykpISrF+/Hunp6SrrKk4PJiUlqW1PecuHDRsGY2NjBAQEKD2fQn5+fp0EGsXcKYGBgUrvB7lcLl4aXxHXrl3D48eP0a1bNyxatEjtZ0nRG/niDwBNuLu7o1GjRjhy5IjSWJTi4mJs2bKlwtupztfjlVdeAaC+d05xynnz5s1KAeLevXtqw5u7uzvs7Oywd+9eXLt2TWV5cXGxUtipruOh0KlTJ3Tq1AmnT59WOxC5tLRUqV2a1o+JiVHbA6zodVL34+/WrVuwsrJSGmhMFcPTQ1rm6tWrePLkyUsHgg0bNgxRUVE4cuQIOnbsiJ9++gmZmZno1asX/vrrL5X6pqamtXZvH319fbz++uvYvn07pk+fDjc3N+Tl5SEsLAyvvPKK2kGG3bt3x+3btzF//nx07doVenp66Natm/jlqwlfX1/s2rULa9asQWRkJOzs7HD37l1cvXoVAwYMwNmzZ6u0fydPnsT69evh6OiITp06oXHjxsjKysKtW7dw584dGBoa4uOPPxbrGxgYYNmyZfj000/x6aefok+fPmjXrh1ycnJw9+5dFBQUiF/mr7/+Oi5duoRZs2bB09MTBgYGuHbtGlJSUtC9e3eVG+y5uLjA0NAQ+/fvR1ZWlhhWFafFevTogTNnzmDJkiXo27cvDAwM0K5dO7i5ucHS0hJffPEFPv/8c0ydOhV9+vRBq1atUFRUhMTERFy7dg2dO3fG999/X6XjpalevXrBx8cHf/75JyZPngx3d3cUFRUhODgYzs7OCA8PF3uQyqMIIoorftRp1aoVOnfujJs3b+LWrVsVnnfneWZmZpg9eza+++47zJgxA15eXjAxMUFERAQMDAxgbW1doVNq1fl6uLu7Y926dbh8+bLKmAzFWJ4LFy5g2rRp6Nu3L7KysnD69Gn07t1bpWfBwMAAX375JebPn48PPvgAPXr0EAflJyYm4vr167CwsMCOHTuq9Xg87/PPP8fcuXOxbNky7N+/H+3bt4ehoSGSkpJw8+ZNZGRk4M8//6xU/RMnTiAoKAjdunVDixYtYGxsjIcPH+LChQswNzdXef88fvwYT548wciRIzXaB3qGoUXLKL5on5+pVh0vLy/89NNPOH36NGbPni3+Ir18+bLay6GbNm1aqzcknDZtGvT09HDkyBEEBQWhadOmePvtt+Hq6oqQkBCV+m+//Tays7MRHh6O69evo6SkBJMnT65UaLG1tcVPP/2EDRs24PLlyygpKUGHDh2watUqJCUlVTm0LFy4EOHh4bh69SouXryItLQ06OjowM7ODiNHjsTYsWNVfoF17twZmzdvxo4dO3Dx4kVcuXIFZmZmaN26NV577TWxnqurK7788kvs2LEDp06dgqGhIXr06IGvv/5a7YzH5ubm+PLLL7F161b88ccf4vtAEVqGDx+OJ0+e4K+//sKuXbtQUlKCoUOHws3NDcCz2T23bNmC3bt348qVK7h8+TKMjIxgY2MDPz8/tZfA1obPPvsMDg4OOHr0KA4cOAAbGxuMHTsWPXr0QHh4uNpBss/Lzs5GSEgIGjVqhIEDB5Zbd9iwYbh58yaOHDlSqdACACNGjICZmRm2b9+O48ePizPAvvvuuxg7dmyFp9KvrtejWbNm6N27N86cOYMPP/xQqbdAR0cHK1aswNatW/Hnn3/it99+Q/PmzTF79my0bNlS7ekQZ2dn/PLLL9i9ezciIiJw8+ZN6Ovrw9raGh4eHiqXhlfX8VBo3rw5tmzZgr179+LcuXM4duwYdHR0YGVlhW7duqnMcq1JfR8fHxQWFuLGjRuIjo5GUVERbGxs8Nprr6m9BFvRG+Xv76/RPtAzMkEQhLpuBBFRbfjjjz/wn//8Bx999JEkfun+73//w5tvvglPT08sW7asVp/7ypUrmDdvHhYvXlxn4fNFdXk8qkNxcTHefPNNNGvWrNKzgDd0HNNCRFpHLpfjxd9jycnJ2LZtG3R1ddG/f/86apl6WVlZKpcYFxQUYO3atQCe3XKhtvXs2RN9+/bFtm3bypxAr6bUx+NRHY4fP46nT5/i/fffr+umSBZPDxGR1tm5cyfOnz+Pbt26wdLSEklJSQgPD0dubi6mTJmi0mVf165du4Zvv/0WvXv3hq2tLTIyMsSbm/bo0QNeXl510q4PPvgAp06dQnJycq0es/p6PKpKJpPh008/VTsxH1UMTw8Rkda5cOEC9u7di3v37iErKwsGBgZo27YtRo4cqfbOzHUtPj4eW7Zswc2bN8WrvFq0aCHelbqhTULG40FlYWghIiIiSeCYFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikgSGFiIiIpIEhhYiIiKSBIYWIiIikoT/B+I6goouf7ANAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "titles = {'grb': 'GRB ASAD', 'grb & background': 'GRB+background ASAD', 'background': 'Background ASAD', 'unpolarized': 'Unpolarized ASAD'}\n", "for key in titles.keys():\n", @@ -892,20 +693,10 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "id": "2f180dd5", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best fit polarization fraction: 0.88 +/- 0.183\n", - "Best fit polarization angle: 80.116 +/- 5.942\n", - "MDP: 0.451\n" - ] - } - ], + "outputs": [], "source": [ "polarization = grb_polarization.fit(mu_100, asad_corrected['counts'], bounds=([0, 0, 0], [np.inf,np.inf,np.pi]), sigma=asad_corrected['uncertainties'])\n", "\n", @@ -925,21 +716,10 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "c1f14711", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHOklEQVR4nO3dd1wT9/8H8FfCHioKCG5FXLgXWhVlKO49Wm3dq27bWq22dX2drW0dba0b96irKG7rxI2oFfdCVEBA2Rvu90d+OY0JSBi5BF7Px8NHe3efu3tfcgnvfO4zZIIgCCAiIiLSI3KpAyAiIiL6EBMUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPQOExQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFCLSiWfPnkEmk2HIkCFSh0JEBoAJChV59+7dw4QJE1CnTh2UKFECpqamKFu2LDp37ox169YhJSVF6hALzJAhQyCTyfDs2TOpQ8lWQEAAvvzyS/E9MjExgb29Pdzc3PDjjz/i/v37avsor+39f5aWlnBxccE333yDiIgIjedyd3dX28/Y2BgODg7o3LkzDh8+nOvrCAkJgZGREWQyGWbMmJFt2YyMDKxZswZt2rRBqVKlYGJigtKlS6NevXoYMWIEfH19s91/69atYvzHjh3Lstzp06c1vk5lypRB69at8e233yIwMDBX10uUF8ZSB0Akpblz52LOnDnIzMzEJ598gsGDB8Pa2hrh4eE4ffo0RowYgZUrV+LatWtSh1okpaamYuLEiVi1ahVkMhlatGgBDw8PFC9eHNHR0QgICMDChQuxYMEC7N+/H127dlU7Rvfu3dGgQQMAQHh4OA4dOoRff/0Ve/bsQUBAAGxtbTWee/DgwahcuTIAICkpCffv34efnx8OHTqEVatWYdSoUVpfz9q1a5GZmQmZTIYNGzZg7ty5MDZW/xrOyMhAly5dcOTIEdjY2KBz584oX748UlNTERQUhG3btuHevXvo1q1bludavXo1ZDIZBEHA6tWr4e3tnW1slSpVEmu3UlNTERERgevXr2PJkiVYsmQJBgwYgFWrVsHa2lrr6ybKFYGoiJo/f74AQKhQoYJw6dIljWUOHDgguLu76zgy3Rk8eLAAQHj69GmBn+vp06cCAGHw4ME53mfIkCECAKFu3brC7du3NZZ59uyZMGrUKGHjxo0q65XXtmHDBpX1SUlJQv369QUAwuzZs9WO16ZNGwGAcOrUKbVtu3fvFgAIlSpVyvE1KKWnpwvly5cXihcvLowdO1YAIOzZs0dj2c2bNwsAhPr16wvR0dFq2xMSEoR///03y3Pdu3dPACC0bdtWaNy4sWBiYiKEhYVpLHvq1CkBgNCmTRuN2wMDA4W6desKAIQOHTp8/EKJ8gkf8VCR9OzZM8yePRsmJiY4dOgQmjVrprGc8lfsh3bt2oXWrVujRIkSsLCwQN26dbFw4UKNj4MqV66MypUrIzY2Fl9//TUqV64MExMTzJ49O0fbAcVjqCFDhqBChQowNTWFg4MDBgwYoPHRBgAkJiZi8eLFaNKkCYoVKwZra2vUqlULEydORHh4OABAJpNh48aNAIAqVaqI1fvKWgOlN2/eYPr06ahVqxYsLCxQokQJeHl5ZfnYIC4uDl9//TXKly8Pc3Nz1KxZE7/++isyMzM1ls/K2bNn4ePjA1tbWxw7dgy1a9fWWK5SpUpYtWoVBgwYkKPjmpub4/PPPwcAXL16VauYlLUQWT0eys7hw4fx4sULfPrppxgzZgwAYM2aNRrLXrhwAYDiMVWJEiXUtltaWsLDwyPLcymPO3ToUAwZMgRpaWnw8fHROmYAaNCgAU6cOAF7e3scOXIE+/fvz9VxiLTFRzxUJG3YsAFpaWn47LPPUKdOnWzLmpmZqSzPmDEDCxcuhJ2dHQYMGABra2scPnwYM2bMwNGjR3Hs2DGYmpqq7JOamgpPT0+8efMG3t7eKF68OKpUqZKj7UeOHEGvXr2QlpaGrl27wtnZGS9evMDevXvh5+eHU6dOoVGjRuKx3r59Cw8PD9y8eRM1atTAsGHDYGpqisePH2PDhg3o1asXHBwcMGvWLOzfvx83b97EpEmTYGNjAwDifwEgODgY7u7uePbsGdzc3NChQwckJCTg4MGD6NChA1atWoWRI0eK5VNSUuDl5YWrV6+ifv36+PzzzxEdHY3//e9/OHPmjFbvkfKP7OjRo+Ho6PjR8poelXyMiYmJVuVPnDgBAGjSpInW51q9ejUARdJRp04dNG7cGMeOHUNwcDAqVaqkUlb52OnBgwdanyc1NRUbN25EiRIl0LNnTyQlJeGbb77B2rVrMXXqVMhkMq2PWbp0aYwePRrz5s3D1q1b0aNHD62PQaQ1qatwiKTg6ekpABDWrFmj1X4XLlwQHwuFhoaK69PS0oQuXboIAIT58+er7FOpUiUBgODl5SXEx8erHTO77W/evBFsbGwEW1tbISgoSGXbf//9J1hZWQkNGzZUWd+/f38BgPDll18KGRkZKtvi4uJUHhl87BFPmzZtBJlMJmzfvl1l/du3b4X69esL5ubmKo8OlI/NevXqpXLuJ0+eCCVLltTqEU+VKlUEAMKJEydyVP5DWT3iSUxMFB9ZLFmyRG0/5SOewYMHC7NmzRJmzZolTJs2TejZs6dgYmIiuLi4qL0XH/PixQvByMhIqF69urhuxYoVAgDhhx9+UCt//fp1wcTERJDJZMIXX3wh7NmzR3j27FmOzrV9+3YBgDBq1ChxXe/evbN8LT/2iEfpxIkTAgChYsWKOYqDKK+YoFCRVKtWLQGAcPjwYa32GzFihABAWLVqldq2+/fvC3K5XKhSpYrKemUCcuPGDY3HzG770qVLBQDC77//rnHfyZMnCwDEP5jh4eGCXC4XypQpozEZ+lB2CcqNGzcEAEKfPn007rt//34BgPDHH3+I65ydnQW5XC48evRIrfysWbO0SlAsLCwEAMLdu3fVtgUGBorJg/Lfh4mI8tq6d+8ulhkzZoxQoUIFAYDQunVrISEhQe3YygRF079SpUoJ8+fPF5KTk3N0DUpz584VAAgLFiwQ10VFRQmmpqZC2bJlhfT0dLV9du7cKTg6Oqqdv0ePHoKvr2+W51Im3xcuXBDXHThwQAAg9OvXT618ThOUu3fvCgAECwuLHFwxUd7xEQ+RFq5fvw4A8PT0VNtWvXp1lC9fHk+fPkVMTIxK2wFzc3PUq1cvy+Nmtf3ixYsAgJs3b6q0SVFSPgK4e/cuXFxccPXqVWRmZqJ169awsrLS6tqyOndMTIzGcyvbYdy9exeAou3Jo0ePUKFCBVStWlWtvLu7O+bMmZOnmJRu3Lihdqw2bdpoHGPln3/+wT///KOyrl27dvDz88v2Ec+pU6fg7u4OAEhLS8OzZ8+wdOlSfP/99zhy5AhOnz4NufzjzfgyMzOxbt06yOVyDBo0SFxfqlQpdO3aFXv27IGfn59aj5x+/fqhZ8+eOHXqFM6fP4/AwECcP38e+/fvx/79+zFo0CD4+PioPLJ59OgRTp06hRo1auCTTz4R13fo0AGOjo7Yv38/IiMjYWdn99G4PyQIAgDk6hERUW4wQaEiqUyZMrh79y5evnyp1X4xMTHi/lkd9/nz54iOjlZJUEqXLp3tF3tW26OiogBk3ZhSKT4+HgAQHR0NAChXrly25XNCee7jx4/j+PHjHz238rVxcHDQWC4n7Ug+LP/06VO8evUKNWvWVNk2ZMgQMRl59OgRqlWrluVxNmzYgCFDhiAjIwNPnjzBjz/+iJ07d2LMmDFYu3ZtjmIxMTFBtWrV8Mcff+DmzZs4d+4cdu7cif79+39036NHjyI4OBjt27dXe1+GDBmCPXv2YPXq1Rq7DJuYmMDb21tsnJuRkYE9e/Zg2LBh2LRpE3r27KnSHmTNmjUQBEEtUTM2Nsbnn3+OX375BT4+PpgyZUqOrvt9r169AgDY29trvS9RbrAXDxVJrVq1AgCcPHlSq/2USUdYWJjG7aGhoSrllD72qzOr7crj3Lx5E4LikazGf4MHDwbwroGrtolXdudetmxZtufesGGDSnllL6EPZfWaZaVly5YAtH+PsmJkZIRq1aph27ZtaNasGdatW/fRwc40Ufb4unLlSo7KKxvHHj16VG1ANOW4LUeOHEFISEiOrqFfv3746quvAAD//vuvuO39njrTp09XO9cvv/wC4OPJblZOnToFAFn2eCPKb0xQqEgaOnQoTExMsGfPHty5cyfbsu93HW7YsCEAxeibH3r06BFevHiBKlWqqPSEyYvmzZsDAM6dO5ej8q6urpDL5Th79iwSEhI+Wt7IyAiA4pd5Xs9drFgxODs74+XLl3j8+LHadk2vWXZGjBgBQPEHPqukJzfkcjmWLVsGAJg2bZrGa8/O27dvASBH3abDwsJw8OBBFC9eHMOHD9f4r2XLlsjIyMD69etzHEOxYsUAvHvsAigeZb1+/Ro1atTI8lxOTk548OCB1j2qXr9+jVWrVgGA2EWbqMDpvNULkZ5Q9jipXLmycPXqVY1lDh8+LHh4eIjL/v7+4j6vX78W16enpwvdu3cXAAjz5s1TOUalSpWyHdgru+2RkZGCjY2NYG9vL1y+fFlte0ZGhtqAYgMGDMhxL55vv/1WAJDloF9ubm6CXC4X1q1bp3H7rVu3hPDwcHFZ+Zr27t07z714BOHdQG3169cX7ty5o7HM1atXNTbyzKoXj5Ky19X69etV1mc3UNvTp0+FEiVKCACEvXv3fjR+5esxZsyYLMs8fPhQkMlkQoUKFcTXbNu2bcKxY8fU3j9BEITQ0FDB2dlZACDs2rVLXN+uXTsBgLBz584sz7V27VoBgDBgwABx3ccayd64cUOoV6+eAEDo1KnTxy6ZKN/IBOG9FJyoiHl/qPsWLVqgSZMm4lD3Z8+excOHD9GkSROVAb2mTZuGn376CaVLl0afPn1gZWWFw4cP4/bt22jVqhVOnjypMg6KcuCzrOa7+dj2kydPomfPnoiPj4eXlxdq164NmUyGkJAQXLx4EVFRUUhOThbLv337Fu7u7rh16xZq1qyJ9u3bw9TUFE+fPsXRo0fh6+srNv48evQoOnTogKpVq6J3794oVqwYbGxsMH78eADAixcv4OnpiYcPH6J+/fpo1qwZbGxs8OLFC9y6dQu3b9/GxYsXxdqWlJQUuLm5ieOgtG/fHtHR0eLAdr6+vhg8eHCOBw1LTU3FhAkTsHr1asjlcrRo0QINGzZE8eLFERUVhYcPH+L06dMQBAHTp0/HvHnzxH2HDBmCjRs3im1QPhQYGIjGjRujYsWKePDggfieubu748yZMypD3aelpSE4OBj79+9HQkICunbtin/++SfbR3eCIKBq1ap4+vQpAgICVMaq+ZCHhwdOnz6NgwcPonPnzpg8eTKWLVsGR0dHtGrVShwT5+nTp/Dz80NSUhK6d++Offv2QSaT4enTp6hatSpsbW3x8uVLtXF4lOLj41GmTBmkpaXh1atXKFWqFE6fPg0PDw+Voe7T0tIQGRmJgIAABAQEAAC++OIL/PXXX3lufE2UY9LmR0TSu3PnjjB+/Hihdu3aQrFixQQTExPB0dFR6NChg7B27VqNXUq3b98utGzZUrC2thbMzMwEFxcXYd68eUJSUpJa2bzUoCg9ffpUGDdunODs7CyYmZkJxYoVE2rUqCF88cUXwr59+9TKx8fHC/PmzRPq1q0rWFhYCNbW1kKtWrWESZMmqdR4CIIg/PLLL0LNmjUFU1NTjcO4x8bGCvPnzxcaNWokWFlZCebm5kLlypWFTp06CatWrVLrzhwTEyN89dVXQtmyZQUzMzOhRo0awpIlS4THjx9rXYOidPXqVWHUqFFCrVq1hGLFignGxsaCra2t0KJFC2HGjBnCvXv31Pb5WA2KIAhCr169BADC8uXLxXWauhnLZDLBxsZGaNWqlbBq1SqN3YI/dOzYMQGA2jg1mmzdulUAIHTr1k0QBEF4/vy58Pvvvws9evQQqlevrnJfduzYUdi8ebNK7cqMGTMEAMJXX3310XONHDlSACD8+uuvgiC8q0F5/5+5ubng6OgouLm5CVOmTBECAwM/elyi/MYaFCIiItI7bCRLREREeocJChEREekdJihERESkd5igEBERkd5hgkJERER6hwkKERER6R2DTFCSk5Nx//59lcGpiIiIqPAwyAQlODgYI0eORHBwsNShEBERUQEwyASFiIiICjcmKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYoREREpHeYoBAREZHeYYJCREREeocJChEREekdJihERESkd5igEBERkd5hgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCUo+SHybjIDdD5H4NlnqUIiIiAoFJij5IDE6BYF7HyExOkXqUIiIiAoFJihERESkd5igEBERkd5hgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYoREREpHeMtd0hMTERO3bswJ07d3D37l3ExcVh+vTp6NixY46Pce3aNWzevBkPHjxAZmYmKlSogP79+8PLy0vbcIiIiKgQ0jpBiYmJgY+PDxwcHODs7IzAwECt9j906BAWL16MJk2aYOTIkTAyMsLz58/x+vVrbUMhIiKiQkrrBMXW1hb79u2Dra0t7t27h1GjRuV439DQUPz222/o1asXJk2apO2piYiIqIjQug2KqakpbG1tc3Wyf/75B5mZmRg+fDgAxeMiQRBydSwiIiIqvLSuQcmLgIAAVKxYEZcuXcLKlSsRERGBYsWKoWfPnhg2bBjkcrbZJSIiIh0nKC9evIBcLseiRYvQv39/VK1aFWfPnsWmTZuQkZGB0aNHa9wvMjISUVFR4nJwcLCuQiYiIiIJ6DRBSUpKQmZmJkaPHo3PP/8cAODu7o64uDjs3r0bAwcOhKWlpdp+vr6+8PHx0WWoeivxbTLungxBLa8KsCxpLnU4REREBUKnCYqZmRmSkpLQtm1blfVeXl64fPkyHjx4gAYNGqjt161bN7Rs2VJcDg4Oxrx58wo6XL2UGJ2CwL2PUKlxaSYoRERUaOk0QbG1tcWLFy9QsmRJlfXK5bi4OI372dnZwc7OrsDjIyIiIv2g01apNWrUAKBoU/I+5bKNjY0uwyEiIiI9VWAJSmRkJIKDg5Geni6u8/T0BAD4+fmJ6zIzM3H48GEUL15cTGCIiIioaMvVI549e/YgPj5e7Fnj7+8vjgTbu3dvWFtbY/Xq1Thy5Ah27tyJMmXKAABatWqFxo0bY8uWLYiOjoazszPOnTuHW7duYcqUKTA1Nc2nyyIiIiJDlqsEZefOnQgLCxOXz549i7NnzwIAvL29YW1trXE/mUyG+fPnY+3atfj3339x5MgRVKhQAT/88AO8vb1zEwoREREVQrlKUHbt2vXRMjNmzMCMGTPU1ltaWmLixImYOHFibk5NRERERQCHbiUiIiK9wwSFiIiI9A4TFCIiItI7TFCIiIhI7zBBISIiIr3DBIWIiIj0DhMUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPQOExQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFCIiItI7TFCIiIhI7zBBISIiIr3DBIWIiIj0DhMUIiIi0jtMUPIoM1NAxJMYAEDEkxhkZgoSR0RERGT4jKUOwJA9vRKGS5vuIuFNMgDAf10Qbux7jOaDaqGKq6PE0RERERku1qDk0tMrYTi5NFBMTpQS3iTj5NJAPL0SJlFkREREho8JSi5kZgq4tOlutmUubb7Lxz1ERES5xAQlF8LuvVGrOflQQlQywu690VFEREREhQsTlFxIik7J13JERESkiglKLljYmOVrOSIiIlLFBCUXHGuWglUp82zLWNmaw7FmKR1FREREVLgwQckFuVyG5oNqZVum+cBakMtlOoqIiIiocGGCkktVXB3hNbmhWk2Kla05vCY35DgoREREecCB2vKgiqsjKjVxwP1TIfBfF4SWw2ujhkcF1pwQERHlEWtQ8kgul8HeqQQAwN6pBJMTIiKifMAEhYiIiPQOExQDwokJiYioqGAbFAPBiQmJiKgoYQ2KAeDEhEREVNQwQdFznJiQiIiKIiYoeo4TExIRUVHEBEXPcWJCIiIqipig6DlOTEhEREURExQ9x4kJiYioKGKCouc4MSERERVFWicoiYmJWL9+PaZMmYLOnTujdevWOHz4cK5O/tNPP6F169aYNm1arvYvKjgxIRERFTVaD9QWExMDHx8fODg4wNnZGYGBgbk68b1793D48GGYmprmav+ihhMTEhFRUaJ1DYqtrS327duHv//+G2PGjMnVSQVBwLJly9C+fXuUKsW2EznFiQmJiKio0DpBMTU1ha2tbZ5OevToUTx9+hQjR47M03GIiIiocNJ5I9nExET89ddf+OKLL/Kc6BAREVHhpPPJAn18fGBmZoZ+/frleJ/IyEhERUWJy8HBwQURGhEREekJnSYoISEh2L17N2bOnKlV41hfX1/4+PgUXGBERESkV3SaoCxfvhx16tSBu7u7Vvt169YNLVu2FJeDg4Mxb968fI6OiIiI9IXOEpSAgABcvnwZ8+bNQ2hoqLg+IyMDKSkpCA0NRfHixWFlZaW2r52dHezs7HQVKhEREUlMZwnK69evAQA//PCD2raIiAh8+umnGD9+vFZtU4iIiKhwKrAEJTIyEgkJCShXrhyMjY3RqFEjzJ8/X63czz//DEdHRwwcOBBOTk4FFQ4REREZkFwlKHv27EF8fLzYs8bf31+sIenduzesra2xevVqHDlyBDt37kSZMmXg4OAABwcHtWOtWLECJUuWhJubWx4ug4iIiAqTXCUoO3fuRFhYmLh89uxZnD17FgDg7e0Na2vr/ImOiIiIiqRcJSi7du36aJkZM2ZgxowZ+XIsIiIiKlp0PpIsERER0ccwQSEiIiK9wwSFiIiI9A4TFCIiItI7TFCIiIhI7zBBISIiIr3DBIWIiIj0DhMUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPQOExQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFNIo8W0yAnY/ROLbZKlDISKiIogJCmmUGJ2CwL2PkBidInUoRERUBDFBISIiIr3DBIWIiIj0DhOUfGBpY4aGvZxhaWMmdShERESFgrHUARQGliXN0bhPNanDICIiKjRYg0JERER6hwkKERER6R0mKESUIxwbh4h0iQkKEeUIx8YhIl1igkJERER6hwkKEekVPkoiIoAJChHpGT5KoqKAifjHMUExMBwUjojI8DER/zgO1GZgOCgcEREVBaxBISIiIr3DBIWIiIj0DhMUIiIi0jtMUIiIiEjvMEEhIiIivcNePDqQlpEGmUwGI5kRZDKZ1OEQFTmZQiYyhUzIIIOR3EjqcIgoB5ig5LOg10E4+vgorr26hsCwQLyKe4XYlFgAgJHMCOWLl4dTSSe4lnNFm0pt4OXkBVMjU4mjJio8YlNicfTRUVx8cRGXX17G07dPEZ4QjkwhEwBQ0rwkKpSogAaODdC8XHN0qd4FFUpUkDhqIvoQE5R8EJUYhVUBq7Dl1hbcjbybZbkMIQPBMcEIjgnGqWensNh/MUqYlUCPmj0w3nU8mpRtosOoiQoPQRBw+NFhrL2+FoceHkJKRtaDX71Nfou3yW9xK/wWNt3chLGHxqJp2aYY0WgEBtYbCAsTCx1GTkRZYYKSB68TXmPe2XlYe30tktKT1LabGZmhkk0l2FnaQQYZ4lPj8SL2BaKSosQyMSkx2HhzIzbe3Aj3yu6Y4z4HrSu11uVlEBksQRCwK2gX5p+bj/9e/6exTBnrMihbrCwsTCyQnpmO1wmv8TzmOdIz08UyV19dxdVXVzHj5AxMbj4ZX3/yNSxNLHV1GUSkAROUXEjLSMOKKysw58wc8fENAMggQ6uKrdC7Vm+4V3aHi70LTIxM1PYPjQvFhZAL2H9/P3zv+4rHOP3sNNr4tEG/2v3wU9ufUMmmks6uicjQ3Ai7gQmHJ+D88/Mq6x2sHNDHpQ86OndEs/LNYGdpp7ZvcnoybobdxNHHR7H37l7cDL8JAIhKisKPp37EqoBVWNx2MfrX6c92Y0QSYYKipbsRdzFw30AEhAaI6yxNLDGi4QhMbj4ZVUpW+egxyhQrg94uvdHbpTeS0pKw5dYWLLm4BA+iHgAAdgXtwqGHh7C8w3IMaTCEX5BE70nPTMe8s/Pwv7P/E9uVAECzcs0wreU0dKvR7aMNYc2NzdGsfDM0K98MM9vMRMCrAPx26TfsuL0DGUIGXsS+wOd7P8fOoJ1Y3WU1HKwdCvqyiOgDWicoiYmJ2LFjB+7cuYO7d+8iLi4O06dPR8eOHT+6b0BAAI4fP45bt24hIiICpUqVQqNGjTB8+HDY2an/ytE3qwNWY9KRSUhOV8w+KYMMwxsOxzzPebn+ArMwscDIxiMxrOEwbLixATNOzkBEYgTiU+MxzHcYDj48iPXd1qOEeYn8vBQig/Qs+hn67+mPSy8uieucSzljaful6FStU66T+cZlG2NLry343u17TDk+BYceHgIA+N73xYWQC9jaayu8q3rnyzUQUc5oPQ5KTEwMfHx8EBwcDGdnZ632/euvvxAYGAg3NzdMmjQJXl5eOHXqFEaMGIGoqKiPH0AiqRmp+PLglxh9cLSYnNSwrYFLIy5hTbc1+fLrykhuhBGNRuDBhAcY1mCYuH7v3b1ovq65WLtCVFSdDT6LpmuaismJkcwIs9vMxu0xt9G5eud8qWmsZV8LfgP8sO/TfbC3tAcARCZGouPWjlhyYQkEQcjzOYgoZ7SuQbG1tcW+fftga2uLe/fuYdSoUTned9y4cahXrx7k8nd5kaurKyZOnIi9e/di5MiR2oZT4GKSY9B9R3ecCT4jrhvXdBx+avdTgTSiszG3wbru69CleheMODACb5Le4F7kPTRb2wx7++2FRxWPfD8nkb7bELgBow6OEhu2Vi1ZFVt7bUWz8s0K5Hw9avZAiwotMOyfYfB76IdMIRPfHv8Wt1/fxpquazS2LSOi/KV1DYqpqSlsbW1zdbIGDRqoJCfKdcWLF0dwcHCujlmQIhIi4LHRQ0xOzIzMsLHHRvze6fcCb+Hfs1ZPXB15FbXtawMAopOj0XFrR/je9y3Q8xLpm98u/oZhvsPE5MS7qjeujbpWYMmJUmmr0vDt74uZrWeK6zbe3IjeuxRtx4ioYEk+1H1iYiKSkpJQooR+tbF4EfsCrX1aIzAsEABgZ2mHM0POYFD9QTqLwamkEy4Ov4jO1ToDAFIyUtBrZy9s+2+bzmIgkoogCJh3dh6+Pva1uG6C6wT4DfCDjbmNTmKQy+SY4zEHf/f9WxxQ8cCDA+i4tSMSUhN0EgNRUSV5gvL3338jLS0Nnp6eWZaJjIzE/fv3xX8FXdsSFh8Gj40euBd5DwBQrlg5nBt6rsB/sWlSzKwY9n26DwPqDgCgGOxt4L6B2Ht3r85jIdKlJbcW48dTP4rLc9znYFmHZTCW677zYR+XPjj8+WFYm1oDAM4En0HPnT3FNmlElP8k7WZ848YN+Pj4wMPDA40bN86ynK+vL3x8fHQS09ukt2i/pT0evXkEQPGs+8SgE6hsU1kn59fExMgEm3tuRjHTYlgVsAqZQiY+2/0ZfPv7ooNzB8niIiooJ218sePmX+LyknZL8E2LbySMCPCs4ol/B/2LtpvbIjYlFsefHEe/v/thT789bJNChY4gCJIPcSFZDUpwcDB++OEHODk5Ydq0admW7datG9asWSP+++GHHwokpoTUBHTZ3gW3wm8BACqWqIhTg09JmpwoyWVy/Nn5TwyuPxgAkJaZhp47e8L/ub/EkRHlr91PdmGHw7vk5Lf2v0menCg1LdcUhz8/DCsTKwCKxz1D/xnK3j1UqEQmRqLF+haS/32RJEEJDw/HN998AysrKyxevBiWltk3OLWzs0ONGjXEf5Uq5f8Iq6kZqei9qzcuhFwAANhb2uP4wON6NYmYXCbH2m5r0btWbwCK0TB77OyBJ2+fSBwZUf44+eQkJviPFZd/bP0jJjefLF1AGrSo0AK+/X1hbmwOANj631bMOTNH4qiI8kdKegp67OiBSy8uwWuTF/we+EkWi84TlJiYGHzzzTdIS0vDkiVL9GaANhlksLdSjHtQ3Kw4jn5xFNVtq0sclTpjuTG29d6Gtk5tASgy3S7buiA6OVrawIjy6GHUQ/T9uy/SBUVvnSHVh2GOu37+4fes4okdvXdABkUV+Jwzc7D11laJoyLKG0EQ8KXfl/APUdSclLIohboOdSWLp8ASlMjISAQHByM9/d2EXElJSZg6dSoiIyPx008/oUIF/amdMDEywcYeGzHlkyk42P8gGpZpKHVIWTI1MsXfff9GTbuaAIC7kXfR7+9+KpOf5UVmpoCIJzEAgIgnMcjMZPU1FayY5Bh029ENb5PfAgDqxbtikevPkj8Dz073mt2xxHuJuDzMd5hYA0tkiJZdXgafGz4AAAtjCxzofwAVS1SULJ5cNZLds2cP4uPjxdFf/f398fr1awBA7969YW1tjdWrV+PIkSPYuXMnypQpAwD43//+h7t376JTp04IDg5W6Y1jYWEBNze3vF5Pnshlcvzs/bOkMeSUjbkNDvY/iGZrmyEqKQrHnxzHj//+iIVtF+bpuE+vhOHSprtIeKPoneC/Lgg39j1G80G1UMXVMT9CJ1KRKWRiwN4BYq+5mja1MOLh1I/Op6MPvmr+FR5EPcCqgFVIzUhF37/74vqo65y7hwzOscfH8M2xd229NnTfgMZls+68ogu5SlB27tyJsLAwcfns2bM4e/YsAMDb2xvW1tYa93v0SNEz5tChQzh06JDKNkdHR8kTFENTtVRV7Pt0Hzw3eSI9Mx2L/BfhkwqfoFuNbrk63tMrYTi5NFBtfcKbZJxcGgivyQ2ZpFC+W3R+kTj3TSmLUtjssR03Lr+SOKqckclkWNFxBe5H3cfpZ6fxKu4V+u/pj2MDj0nSHZooN17EvkD/Pf3FyTe/d/sen9b5VOKocpmg7Nq166NlZsyYgRkzZmi9H2nHrZIbfm73M746+hUAYPD+wQgYFQCnkk5aHSczU8ClTXezLXNp811UauIAuVx/q93JsJwLPieOdSKDDDv77ERlWWXcgGEkKIDi8fD23tvRaFUjhMaH4tSzU/lSm0mkC+mZ6RiwZwDeJL0BAHSp3gVzPeZKHJWC5AO1Ud5NajYJfVz6AFAMid/3775IzUjV6hhh996Ij3WykhCVjLB7b3IdJ9H7IhIi8Nmez8RfbTPbzBQbfxsaR2tH7Oq7C0YyxWOpRf6LcPTRUYmjIvq4Oafn4NzzcwCACsUrYGOPjZDL9CM10I8oKE9kMhnWdVuHaqWqAQCuh17H7NOztTpGUnRKvpYjyk6mkIlB+wfhVZyipsSjsgd+bP3jR/bSb60qtsJP7X4Sl4f8MwSRiZESRkSUvRNPTmD+ufkAFLOD7+izA6UsSkkc1TtMUAqJ4mbFsbPPTpjIFSNaLjq/COeCz+V4fwsbs3wtR5SdP6/+iSOPjgBQTMq3tddWg2gU+zFfNf8K7au2B6CYMmPkgZGFdhC3xLfJCNj9EIlvOdy/IYpKjMLAfQMhQHF/zvecjxYVWkgclSomKIVIwzIN8T+P/wEABAgYuG8gYpJjcrSvY81SsCplnm0ZK1tzONbUn+yadCc/u54/jHqIqcenisube25GmWJl8hyjPpDJZNjQfQPsLBXjO+2/tx/rAtdJHFXBSIxOQeDeR0hkrapBGn94PMLiFZ1dvKt649uW30ockTomKIXMlBZT0LpSawBAcEwwJhyekKP95HIZmg+qlW2Z5gNrsYFsEfT0Shh2TjwN/3VBABRdz3dOPI2nV8I+sqe6jMwMDN4/GEnpSQCAcU3Hwbuqd77GK7Uyxcpgbde14vKkI5Pw39Mg1jaQ3vg76G/suL0DAFDSvCQ2dN+gN+1O3qd/EVGeGMmNsKnHJhQ3Kw4A2HxrMw7cP5Cjfau4OsJrckO1mhQrW3N2MS6ilF3PP2xArex6rm2SsuTCElx8cRGAYiLOxW0X51usuVFQjym61+yOkY1GKs6RlogxR79EwN4HrG0gyYXHh2OM3xhx+fdOv6NssbISRpQ1JiiFUCWbSvi94+/i8hi/MTl+1FPF1RGfLndHy+G1AQAth9fGp8vcmZwUQTntep7Txz1Br4Mw8/RMAIouxRt7bISVqVWe48yLgnxM8Wv7X8WJRv3Dz+N8CfbqIQWpRutWDmUflaQYZLVXrV7oX6e/Ts6dG0xQCqkv6n2Bjs4dAQAv415i2onsZ4x+n1wug71TCQCAvVMJPtYpovKz63mmkIlRB0eJ3d+/bfEtWlZsqV6uEE2zYG1qjdVdVovLf9uvxauElxJGRPogPx+ZamvP3T3Yf28/AMWEuCs7r9Tr6SSYoBRSMpkMf3X5C9amilF9VwWswplnZySOigxJfnY9Xx2wWpynplqpapjjoT4JoJRf3AWlXdV2GNZgGAAg2SgJUy59XWh79dDH5fcjU23EJMdg4uGJ4vIfnf5AaavSBXa+/MAEpRCrWKIiFnktEpdHHBiBpLQkCSMiQ5JfXc9D40Lx3YnvxOVVXVbB3Fi1nZOUX9wFbYn3EpS2UMzNc/zlUewM2ilxRCSF/H5kqq3v//0eofGhABSjxSoH99RnTFAKuTFNx6BlBUVV+qM3j7Do/KKP7EGkkF9dzycdmYSYFMVjmyENhsCjiofKdqm/uAtaSYuS+LnZL+Ly10e/RmxKrIQRkRSkHK378ovL+PPqnwAASxNL/N7xd71+tKPEBKWQk8vkWNN1jTiA22L/xXj05pHEUZEhyI+u534P/PD3nb8BAHaWdljSbolamaIwzUKnil3QIK45ACA0PhSzTs2SOCLSNalG607LSMOog6PEAdnmus9FJZtK+XqOgsIEpQioZV8LX3/yNQAgJSMFEw9P5HNwypG8dD1PTEvEuEPjxOVfvH+BraWtWrmiMs3Cp69Hw8LIAgCw4soK3Aq/JXFEpEtSjda97PIy8V6r71Afk5pPytfjFyQmKEXED61/QPni5QEAhx8dhu99X4kj0j0OzZ07ue16/rP/zwiOCQYAeFbxxMB6AzWWKyrTLNilO2By3W8AABlCBsb6jeUPhSJEitG6Q+NCMeeMokG6DDKs7roaxnLjfDt+QWOCUkRYm1rjV+9fxeVJRyYhMS1Rwoh0j0Nz5562Xc+fxzzHYn/FIGzGcuNsn3kXpWkWxtWeIE7q6R/ij003N0kcEemKFKN1Tz85HfGp8QCA0Y1Hw7Wca74dWxeYoBQhfVz6iNPZB8cEY8G5BRJHRIXVt8e/FYezH990PGrZZ/3FXJSmWTAzMsPvnd4Novjt8W8RnRwtXUCkU7ocrfvyi8vYeHMjAMDG3Ab/8/xfvh1bV5igFCEymQwrOq4QG8wuubAEz6KfSRsUFTpnnp3BrqBdABSDQc1y/3iD0KI0zYJ3VW+xi2dEYgR/KBQxuhitO1PIxKQj79qazHWfK05gaUiYoBQxNe1qYnLzyQAUDWann5wubUBUqGRkZqh8Mc73nA8bc5sc7VuUpllY0m4JzIwUbWqWXV6GJ2+fSBwR6VJBj9a95dYWXH55GQDgYu+CL5t8ma/H1xUmKEXQ927fi9n0jts7cDHkosQRUWGx5voa3Ay/CQBo6NgQwxoO02r/ojLNQiWbSmLPutSMVEw9PlXiiKiwiEuJUxkYcVmHZTAxMpEwotxjglIElTAvgbnuc8Xlr45+xd4ElGfRydH44d8fxOXlHZfDSG4kYUT6bXqr6XCwUowwu+fuHpwLPidxRFQYLDi3QBwxtnuN7mK7Q0PEBKWIGtl4JFzsXQAAl19e5vDblGeLzi8SZ0n9rM5naFWxlcQR6bdiZsUwz3OeuPzV0a+QKWRKGBEZuucxz/Hbpd8AAKZGpvjF+5eP7KHfmKAUUcZyY5Wbd9qJaZynh3ItJCYESy8tBaD4YlzotVDagAzE0AZDUc+hHgAgIDQAW25tkTgiMmQzT81ESoZiGIVJzSahaqmqBj3+ExOUIqyDcwe0r9oegCLzXnZ5mcQRkaGaefrdF+ME1wmobFNZ2oAMhJHcSGV8ouknpxe58Ykof9wKvyWOq1PSvCSmt1J0gDDk8Z+YoBRxS7yXQC5T3AYLzi1AREKExBGRobkVfgsbb7wbb2GG2wyJIzIsXk5e6Fq9KwDgVdwrLLvEHwqkvWknponz7Xzv9j1KWpSUOKK8Y4JSxNUpXQcjGo4AAMSlxmHheVbNk3Y+/GIsZWH4I77q2k/tfhJ/KCz2X4w3SYY7MSLp3r9P/8WRR0cAABVLVMQ413Ef2cMwMEEhzHKfBQtjxSRmf1z9A89jnkscERmKk09OqnwxjncdL3FEhqmmXU0MbTAUABCTEoNF5xfl+liG3OaAtJcpZKp0U5/nMQ/mxtlPHWEomKAQyhYri0nNFINrpWakYvbp2dIGRAYhU8jE1BPvvhjne84vNF+MUpjVZpY4eNuKKyvwIvZFro5jyG0OSHu7gnYhIDQAgGK24s/rfS5xRPmHCQoBAKa2nCqO+Lnx5kbcj74nbUCk93bc3oHrodcBAA0cG2BA3QESR2TYKpSogAmuEwAAyenJmHN6jsQRkb5LSU/BjJPv2ny9/6iwMCg8V0J5UtKiJL5rqRh9MFPIxIJAw5tYinQnPTNdpaZtcdvFheqLUSrftfoOxc2KAwDW31iPe5H8oUBZWxe4Dk+jnwIA2jq1hXdVb4kjyl/8RiHRhGYTULZYWQDAoRA/PDbnlyNptv2/7Xj45iEAwL2ye6H7YpSKraUtprZQPDbLFDJVRuYlel9yerLKRJOLvHLfbklfMUEhkaWJJWa1eTfz7F77DRwCn9SkZ6Zj7tl3UyXMbjNbumAKocnNJ6sMgX/15VWJIyJ9tPb6WryMewlAMaR947KNJY4o/zFBIRVDGwxFtVLVAAAPLP/Dv69OShwR6ZvdT3fh0ZtHAACPyh5oU7mNxBEVLlamVpjZZqa4PONfjitDqpLTk1WGhHj/h2VhwgSFVJgYmajMD7L4xgLWopAoAxn45dbP4vIcdzbkLAgjG42EU0knAMCJJydwNvisxBGRPlkTsAav4l4BAHrU7IGGZRpKHFHBYIJCavq49EHtknUAAIFR13HwwUGJIyJ9can4v3gWp2iU51XFC26V3CSOqHAyMTLBzNbvalFmnprJHwoEoOjUngBMUEgDuUyOafWni8szT/PLkRRtT/xsd4jLs91nSxdMEfB5vc9R3bY6AOBM8BmcenZK4ohIH6wOWI3Q+FAAQM+aPdHAsYG0ARUgJiikUYcKnVAx2RkAcCPsBvbf2y9tQCS5XU92IMJU8cXY1qktWlVsJXFEhZux3Fjl1zFrUSgpLUlllOHCXHsCMEGhLMhkMnSP/EJcnnV6FjKFTAkjIimlZaTh1/fanrDnjm58WvtTuNi7AAD8Q/xx7PExiSMiKb1fe9KrVi/Ud6wvcUQFiwkKZaluQlM0slN0Xfvv9X/Yc2ePxBGRVDbf2ozg+GAAgHsZD7Ss2FLiiPIuM1NAxJMYAEDEkxhkZhZM7URezmMkN1JJBvm4tehKSkvCIv+iU3sCMEGhbMggw7T677o4zj4zGxmZGRJGRFJIy0jDvLPvenZ9W/87CaPJH0+vhGHnxNPwXxcEAPBfF4SdE0/j6ZUwvTtPb5feqOdQDwBw5eUVHHp4KF9jJMOwKmAVwuIV903vWu/uicKMCQply6OsJ1pUaAEAuBNxB7uCdkkcEenappubxOG0XRIawbV0M4kjypunV8JwcmkgEt6ozvab8CYZJ5cG5luSkl/nkcvkKt25WYtS9CSmJRaptidKTFAoWzKZDP/zeDcvz+wzs5GemS5hRKRLqRmpmHfuXe1Jt0jDnik1M1PApU13sy1zafPdPD/uye/zdK/RHQ0dFWNdXA+9jn/u/5On+MiwrLq2CuEJ4QAUw0DUdagrcUS6oXWCkpiYiPXr12PKlCno3LkzWrdujcOHD+d4/7i4OPz888/o2rUrvL29MWnSJNy/f1/bMEiHPCp7oE0lxWihD6IeYPt/2yWOiHRl442NeBb9DADgUdYLVZNrSRtQHoXde6NWo/GhhKhkhN17o1fnkclkmOvxbnoBNlovOhLTErHYfzEAxWP3olJ7AuQiQYmJiYGPjw+Cg4Ph7Oys1b6ZmZmYNm0aTpw4gV69euHLL7/E27dvMWnSJISEhGgbChUgSxszNOzlDEsbM8hkMpUq5jln5iAtI03C6EgXUjNSMf/cfHH5/bFxDFVSdEq+ltPleTpX6wzXcq4AgFvht9hovYj469pfYu1J39p9Uad0HYkj0h2tExRbW1vs27cPf//9N8aMGaPVvqdPn8bt27cxffp0DB06FL169cLy5cshl8uxYcMGbUOhAmRZ0hyN+1SDZUlzAECbym3gVcULAPD47WNsvrVZyvBIB3xu+CA4RtFzp6NzRzS2byJxRHlnYWOWr+V0eR6ZTIa57u9qUeacmSNZLYquekAVdQmpCSq1J++PLlwUaJ2gmJqawtbWNlcnO3PmDEqVKoXWrVuL62xsbODh4YHz588jNTU1V8cl3Xi/inne2XmsRSnEPqw9KSyjxjrWLAWrUubZlrGyNYdjzVJ6eR7vqt5io/WgiCD8HfR3rmPMLV31gCJF7cnrhNcAgH61+6F26doSR6RbOm0k++DBA1SrVg1yueppa9WqheTkZD7m0XMtKrRAO6d2AICn0U+x6eYmiSOigrIhcAOexzwHAHSq1kl8tGDo5HIZmg/Kvh1N84G1IJfL9PI8MplMZVyUuWfn6rTrv656QJGG2pM2Rav2BNBxgvLmzRuNtS/KdVFRURr3i4yMxP3798V/wcHBBRonZe39tijzzrEWpTBKSU9RrT0pZKPGVnF1hNfkhmo1HFa25vCa3BBVXB31+jxtndqiZQXFQHl3Iu7g7zu6qUXRVQ8oUvjz6p+ISIwAAHxa592IwkWJsS5PlpKSAlNTU7X1ynUpKZobjPn6+sLHx6cgQ6Mc+qTCJ2hftT2OPj6KZ9HPsPHmRoxoNELqsCgfbbixASGxitrMztU6o2m5phJHlP+quDqiUhMH3D8VAv91QWg5vDZqeFTIc82JLs4jk8kw23022m1W1GbOOTMHfV36wkhulF9ha6RNz6SyLrlrBkAKCakJ+OnCTwAUtSc/tv5R4oikodMaFDMzM43tTJTrzMw0Nxjr1q0b1qxZI/774YcfCjROyt777RHmn5uP1Ay2HSos1GpP3nuv3+/ZVRjI5TLYO5UAANg7lcj35KQgz+NVxUucrPFe5D2dDKCoqx5QBPxx9Q9EJkYCAD6r81mRrD0BdJyglCpVSuNjHOW6rBrf2tnZoUaNGuK/SpUqFWiclL3m5Zujg3MHAFDUotzYKHFElF/WBa7Di9gXAIAu1bugSdl3PXc+7NlF0vmw678u2qLoqgdUURefGo+fLygm5izKtSeAjhOUatWq4eHDh8jMVO0ad/fuXZibm6NChQq6DIfy4P12CfPOzWMtSiGQkp6CBecWiMuFre1JYeNR2QNuFd0AKGpRdtzeUaDn01UPqKIiqxrJP668qz3pX7c/atkb9uCIeVFgCUpkZCSCg4ORnv5uWPQ2bdrgzZs3OHv2rLguOjoap06dQosWLTS2TyH91Kx8M3R07ggAeB7zHD43fKQNiPJs7fW1eBn3EgDQrUY3NC7bWOKIKDu6rkXRVQ+ookJTjeT7tSdymbxI154AuUxQ9uzZg40bN+LQIcWsmv7+/ti4cSM2btyI+Ph4AMDq1asxcOBAREREiPu5u7ujdu3aWLhwIXx8fLBv3z5MmjQJmZmZGDZsWD5cDukS26IUHsnpyVh4fqG4XJSG0zZkHlU+mIbidsFOQ6GrHlBF1e9XfkdUkqLJQ/86/VHTrqbEEUkrV714du7cibCwd/3dz549K9aKeHt7w9raWuN+RkZG+Omnn/Dnn39iz549SElJQc2aNTF9+nRUrFgxN6GQhFzLuaJTtU449PAQnsc8x4bADRjdZLTUYVEuvF970r1GdzQq00jiiCinZrvPhsdGDwDA3DNz0bZTxwI9n656QBU1cSlxWHJhCQDWnijlKkHZtevjLcZnzJiBGTNmqK0vVqwYpk2bhmnTpuXm1KRnZreZjUMPFTVp88/Nx5AGQ2BmzEZyhkTfak8KW2+hguZe2R3uld1x+tlpPHzzEHuf7oYpCvYHn656QBUl79eeDKg7ADXsauT5mB9OSVCqUnGDeq902kiWCp+m5Zqic7XOAICQ2BCsD1wvcUSace6QrK0JWINXca8AAD1q9kDDMg0ljYe9hbT3foPmxQGLkIEM3ucGJDYlFksu5m/tSWGYkoAJCuXZ+21RFpxfgJR0/RoHoTB8UAtKUlqSXtWeUO60qdwGn5RSjC77PPkZLhc/xfvcgPx+5Xe8SXoDAPi87ueobls9T8crLFMSMEGhPGtStgm6VO8CAHgR+wLrAtdJHNE7heWDWlDWXF+D0PhQAEDPmj3RwLGBtAFRrjy9EoZWN7qLywdttyMDGbzPDUBsSmy+tj0pTFMSMEGhfPF+FfOCc/pRi1KYPqgF4cPak8IyY3FRo7zPqyfVQa2EBgCACNNQXCr+r1imKN/n+m7F5RV4m/wWAPBFvS9QzbZano6nzZQE+o4JCuWLxmUbo1uNbgCAl3Evsfb6WokjKlwf1IKwKmAVwuIVv6x71+qNeg71JI6IcuP9+7xr1Ofiej/b7UiHYhyqonyf67OY5Bj8cvEXAICRzChf2p4UpikJmKBQvnm//cKC8wuQnJ59clDQCtMHNb8lpSWJU7kDKJJTuRcW79+/1ZJqv1eLEobL79WiFMX7XN+tuPKu9mRg/YFwLuWc52MWpikJmKBQvmlUphG611A8B38V90ryWpTC9EHNb39d+0usPenj0oe1Jwbsw/u323u1KAdtd4i1KEXxPtdnH9ae/OCWP5PgFqYpCZigUL56vxZl4fmFktaiFKYPan5KTEtUqT1hzx3D9uF97pxUGy4Jiq7ikaZhuFjiZJG8z/Xd8svLEZ0cDQAYVH8Qqpaqmi/HLUxTEjBBoXzVsExD9KjZA4CiFmVNwBrJYilMH9T89Ne1vxCeEA4A6OvSF3VK15E4IsoLTfd5t8gvxP/3K7UDjT93LnL3uT6LTo7Gr5d+BaCoPfne7ft8PX5hmZKACQrluw9rUZLSkrItn/g2GQG7HyLxbf7XthSWD2p+SUhNEGtPZJCx7Ukh8eF9XjW5FmonKCZ7jDINx1nTo1KGRx9YdmmZWHsyuP7gfKs9eV8VV0d8utwdLYfXBgC0HF4bny5zN6jvPCYolO8aODZAz5o9AQCh8aFYHbA62/KJ0SkI3PsIiQXUiK8wfFDzy1/X/sLrhNcAgL61WXtSmHx4n//wybs2DfPOzuNknnoiOjkav136DQBgLDfG963zt/bkfYY+JQETFCoQ79eiLPJf9NFalIJm6B/U/JCQmoCfLvwEQFF7wrYnhc/793nbBh7o4NwBABAcE4yNNzZKGRr9v98u/oaYFMW0G4PrD4ZTSSeJI9JfTFCoQNR3rI9etXoBAMLiw7AqYJXEEdHvV34Xa0/61e4HF3sXiSOigvb+AIrzzrEWRWpvkt6o1p7kc9uTwoYJChWY93+hL/ZfLHktSlEWmxIr1p7IZXKOGltENCvfDB2dOwIAnsc8x4bADRJHVLT9cuEXxKXGAQCGNRiGKiWrSByRfmOCQgWmnkM99HHpA0BRi/LXtb8kjqjoWn55uTgZ2YC6A1DTrqbEEZGuvJ+Mzj83n7UoEolMjMSyy8sAAKZGpgXa9qSwYIJCBWpm63e9RBb7L0ZiWqKE0RQ+OekBFZ0crTIg1PvvCRV+ruVc0blaZwBASGwI1geulziioukn/5+QkJYAABjZaCQqlqgocUT6jwkKFai6DnXR16UvACA8IZy1KPksJz2gfrv4m8qAUHmdjIwMz/uPW+efm68Xk3kWJeHx4fj9yu8AADMjM0xvNV3iiAwDExQqcDPbzIQMil4zi/0XIyE1QeKIio4PG+Xlx2RkZHialmuKLtW7AABexL5gLYqOLfZfjKR0RRu8L5t8iXLFy0kckWFggkIFrk7pOuhbW1GL8jrhNWtRdGjJhSVslEcAVHv0LDi/gLUoGhTEoJGv4l5h5bWVAAALYwt81+q7fDt2YccEhXRiZmvWouhaREIEll9eDoCN8ghoXLYxulbvCkBRiyL1ZJ76qCAGjVx47t2cZOOajoOjddEbIDK3mKCQTtQuXRv9avcDAEQkRuDPq39KHFHhx0Z59KH3e/RIPZlnURASE4LV1xUjaVuZWGFqy6kSR2RYmKCQzrzfFuWnCz+xFqUAhcWH4Y+rfwBgozx6p1GZRuheozsA4GXcS9aiFLD3u3VPcJ0Aeyt7iSMyLExQSGdc7F3waZ1PASjGBFD+AaX8t+j8IrFR3pgmY9goj0QfTubJWpSC8fTtU6wLXAcAKGZaDFNaTJE4IsPDBIV06v22KD9f+BnxqfESR1T4BEcHqzTKm9ZqmsQRkT5pWKYhetTsAUDRgHNNwBppAyqkZp6eifTMdADA5OaTYWtpK3FEhocJCulULfta6F+3P4D/r0W5wlqU/Db7zGyxWnlis4lslJcNSxszNOzlDEsbM6lD0akPa1E4DUX+uhV+C1tvbQUA2FrY4ptPvpE4IsPEBIV07sfWP0IuU9x6P1/4GfFpcRJHVHgEvQ7CppubAAA25jaY1pK1J9mxLGmOxn2qwbKkudSh6FQDxwboWbMnACA0PhSrA1ZLHFHhMuPkDAgQFP/vNgMlzEtIHJFhYoJCOlfTrib611HUokQlRWHlncJXi1IQ4ynkxIx/ZyBTyAQAfNfyO5S0KKnT85Nm+lhT82GPHjZazx/ngs/B76EfAKB88fIY23SsxBEZLiYoJIlZbWbBWG4MAPg9aAVijd5KHFH+KojxFD7mQsgF+N73BQCULVYWE5pN0Nm5KXv6WFPz/mSe4Qnh+PXirxJHZPgEQcD0k+96zM1xnwNzY/15zw0NExSSRDXbahjVaBQAIDE9AQdst0kckWETBAHfnXg3QuXsNrNhaWIpYURkCOZ5zIORzAiAout/eHy4xBEZtoMPDsI/xB8AUMuuFgbVHyRxRIaNCQpJZmabmbA2tQYAnLU5jEcxDyWOyHAdf3kM556fAwBUt62OoQ2HShwRGYIadjUwqrHih0J8ajzmnpkrcUSGKyMzAzP+nSEuz/ecL9YSU+4wQSHJOFg74NsW3wIAMmWZmBfIL8fcyEQm5l+fIy7zi5G0MavNLFiZWAEAVgWswv3I+xJHZJi2/rcVt1/fBgA0K9dM7MpNuccEhST19Sdfo7SFAwDA7/kBXAy5KHFEhudS8VO4E30HANC0bFP0rtVb4ojIkDhYO4hDsGcIqrUAlDOJaYn4/t93c10tarsIMplMwogKByYoJClrU2tMrf+u7cS3x7+FIAgSRmRYEtISsM/OR1zmFyPlxteffC2Ol7P37l5cCLkgcUSG5deLv+JF7AsAQKdqneBe2V3agAoJJigkuc+dB8IxpTwAwD/EH//c/0fiiAzHH0HLEW0SBQDoWr0rPKt4ShwRGSJrU2vMcX/3mJA/FHIuNC4Ui84vAgAYyYywpN0SiSMqPJigkOSM5cboHfmuUefU41PFkVApay9iX+D3oOUAAGOZMZZ484uRcm9Yw2GoaVcTgKLL+t67eyWOyDD8eOpHcdbwL5t8iVr2tSSOqPBggkJ6oX58czQv/QkA4OGbh1hxeYXEEem/GSdnIClDMUT5sJojUN22usQRkSEzlhtjcdvF4vK3x7/lRIIfcSPsBtYHrgcAlDAroTKFAOUdExSSVGamgIgnMZBBhillvxcnEpx7di7HZMjG1ZdXsfnWZgCAZYY1ptTjkPaUd+8/Jnwa/RS/XPhF4oj0lyAI+ObYN+KQ9j+0/gH2VvYSR1W4MEEhyTy9EoadE0/Df10QAODtTjnckzoCAGJTYjHjJHsTaCIIAr46+pW43C3yc5Q045D2lHcymQzLOiwTB29bcH6B2PiTVB14cAD/Pv0XAOBU0gkTXDlyc35jgkKSeHolDCeXBiLhjWoVcpeXX8AiQzEmw4YbG3Dt1TUpwtNru4J2iaNVVi3ujDbRnSWOiAqTOqXriPPHJKYlYurxqRJHpH+S05Px9dGvxeWf2v4EM2P9mWepsGCCQjqXmSng0qa7GrcVz7BB16gBAAABAiYdmcTeBO+JS4nD18fefTHOafw/GIODstE7+TEx4Rz3ObC1sAUAbL+9HeeCz+VXeIXCz/4/4/HbxwCA1pVao1etXhJHVDgxQSGdC7v3Rq3m5H0eb7uI3Y4vhFzAtv84T4/SnDNz8CruFQDFeAve5TtIHBHpm/yYmLCkRUnM95wvLk88MhEZmRmq59HDGZp14enbp1hwfgEARbfiPzr9wbGHCojWCUpqaipWrlyJnj17om3bthg9ejSuXr2ao32vXbuGSZMmoWvXrujUqRNGjRqFo0ePah00Gbakj8zwawwTfPp6lLj87fFvEZMcU9Bh6b3br29j6aWlAAAzIzMs77CcX4xUYEY0GoEGjg0AKHqrrLm+RmW7Ps7QrAuTjkwSezdNajYJdUrXkTiiwkvrBGXhwoXYtWsX2rVrh4kTJ0Iul2Pq1Km4detWtvudP38e33zzDdLS0jBkyBCMGDECZmZmmD9/Pnbt2pXrCyDDY5GDX1x1EpugXZn2AIDQ+FCVYaSLIkEQMO7QOGQIil+x01tNR9VSVSWOigozI7kRlndYLi5/d+I7hMaFShiR9A7cP4ADDw4AAMoWK4vZ7rOlDSgHDLmmS6sE5c6dOzh58iRGjRqFsWPHolu3bli6dCkcHR2xcuXKbPfdu3cvbG1tsXTpUvTu3Ru9evXCb7/9hnLlyuHw4cN5uggyLI41S8GqVPa/uqxszbGqz1+wNLEEAPx59U9cenFJF+HppS23tuBs8FkAQNWSVTGt1TSxizYARDyJQWYm2+pQ/nKr5IbB9QcDAGJSYjD56GRpA5JQUloSJh6ZKC7/4v0LipkVkzCinDHkmi6tEpQzZ87AyMgI3bp1E9eZmZmhc+fOCAoKQnh41uNWJCYmolixYjA1NRXXGRsbo0SJEjAzM7zMjnJPLpeh+aDsR1tsPrAWqpSqjLnuihmOBQgYfXA00jLSdBGiXnmT9AZTjk8Rl1d0XIHQ69EqXbT91wVh58TTeHolTKowqZBa4r1EbDC7K2gXDj08JHFE0ph7Zi6eRT8DAHhU9sCntT+VNqAiQKsE5eHDhyhfvjysrKxU1teqpfhj8+jRoyz3bdCgAZ4+fYq1a9fixYsXePnyJTZu3Ij79++jf//+uQidDFkVV0d4TW6oVpNiZWsOr8kNUcVVMXHZpOaTxOfgt8JviW0wipKvjn6F1wmvAQA9a/ZEzbcNNXbRTniTjJNLA5mkUL6ys7TDr+1/FZfH+o1FfGq8hBHp3vXQ6/j5ws8AAFMjUzaM1RGt+idGRUXB1tZWbb1yXWRkZJb7Dh48GKGhodi8eTM2bdoEADA3N8fcuXPh5uaW7XkjIyMRFRUlLgcHB2sTNumpKq6OqNTEAfdPhcB/XRBaDq+NGh4VIJe/++Aby42xustqNFvbDAIEzDo9C31c+qBKySoSRq47hx8exqabis9LCbMSWN5hBc59r7mLttKlzXdRqYmDyutIlBcD6w3EppubcPLpSQTHBGPWqVn4pX3hGmX2w0empSoVh1wuQ1pGGob7Dhfbf/3Y+kfOt6MjWiUoKSkpMDExUVuvfGyTkpJ17wwTExNUqFAB7u7uaN26NTIyMnDgwAHMmzcPv/76K2rXrp3lvr6+vvDx8dEmVDIQcrkM9k4lAAD2TiU0/lFtWq4pxruOx4orK5CUnoThvsNxYtAJyGWFu5d8bEosRh8cLS7/4v0L5C/Ns+2iDQAJUckIu/cGZV3Uf0wQ5YZMJsPKzitRd2VdpGSkYOnlpehXux+alW8mdWj54umVMFzadFf8bPmvC8KNfY/RfFAt7EjZgBthNwAAdUvXxdSWHLhOV7T6hjczM0NamnobgNTUVHF7VpYuXYoLFy5g1qxZ8PLygre3N3777TfY2tpi+fLlWe4HAN26dcOaNWvEfz/88IM2YVMhMM9zHiqWqAgAOPXsFP648ofEERW87058h5DYEABAW6e2GNZw2Ee7aCvltBxRTlWzrYaZbWYCADKFTAzePxhJaUkSR5V3WY1qnfAmGVv+9MXs03MAAHKZHOu6rYOpkammw1AB0CpBsbW1VXnUoqRcZ2dnp3G/tLQ0+Pn54ZNPPoFc/u6UxsbGaNasGe7fv68x8VGys7NDjRo1xH+VKlXSJmwqBIqbFcf6buvF5WknpuFB1AMJIypYJ56cwMprip5xliaWWN1lNWQyWY66aAM568pNpK2pLaeiadmmAID7Ufcx/eR0iSPKm+xGtU5HOtY5LkFqpiLZ/7r512harqkuwyvytEpQnJ2d8eLFCyQkJKisv3Pnjrhdk5iYGGRkZCAjI0NtW0ZGBjIzM5GZmalNKFQEeTl5YXzT8QCApPQkDNk/RG10y8IgKjEKg/cPFpcXei0U29zktIu2Y81SBRojFU3GcmNs6rkJ5saKe3DZ5WU49fSUxFHlXnajWh+03YZgi4cAACfrqpjjMUeXoRG0TFDc3d2RkZEBX19fcV1qaioOHToEFxcXODg4AADCw8NVGrKWLFkS1tbWOHfunEpNSWJiIvz9/VGxYkV2NaYcWdR2EZxLKRLhiy8uYrH/4hzvq6sBi/IyPokgKLpTK4ezb+fUDuNdx4vbc9pFmw1kqaDUtKuJhV4LxeWh/wxFbEqshBHlXlaPQh9ZBOGQrWIAUSPBCL+4rBDHZCLd0SpBcXFxgYeHB1avXo2VK1fC19cXkydPRlhYGL788kux3Pz58zFw4EBx2cjICJ999hlCQkLw5ZdfYteuXdixYwdGjx6NiIgIDBo0KP+uiAo1K1Mr+HT3gQyKP8AzT82E/3P/HO2riwGLnl4Jy9P4JBtubMCeu3sAALYWtvDp4aPWGDinXbSJCsrEZhPRplIbAEBwTDBGHRhlkJN6anoUmiRPxFrHJRBkilr9rpFfwLWSq65DI+RiqPsZM2agb9++OHr0KJYvX4709HQsXrwYDRo0yHa/QYMG4ccff4SxsTF8fHywbt06WFlZYe7cufD29s5t/FQEtazYEj+0VjSUzhAy8NmezxCVqN42Steya2yXk/FJHkY9xMTD70aqXNN1DcoWK6uxbBVXR3y63B0thyt6v7UcXhufLnNnckI6IZfJ4dPDByXMFD3wdgbtxKqAVRJHpb0PH5kKELDF4XdEmSoGHXVOdEEf2Rd8ZCoRredpNzMzw9ixYzF27Ngsy2TVK6ddu3Zo166dtqckUjOzzUycCT6Ds8Fn8SL2BYb8MwS+n/lKNnhSdo3tlLIbnyQhNQG9dvVCQpqifdeIhiPQs1bPbI+Xky7aRAWlsk1lbOi+Ab129QIATD4yGc3KNUPDMg0ljiznlI9MTy4NBACctvHDleKnAQDmGRYYFjYFLcbV4WdLIoV7IAkqtIzlxtjWaxvsLBU9xw4+OIhfL/76kb0KTnaN7ZSU45N8SNnu5Pbr2wAAF3sX/NbhtwKJkyg/9azVE5OaTQIApGSkoN/ufgbXHkX5yDS09FPsLL1aXD86YSo+G9eRtZISYoJCBqtc8XLY3HOzuDz1xFQce3xMkljyMj7Jn1f/xNb/tgIArE2tsaffHlibWudrfEQF5ad2P6FJ2SYAgEdvHuGLvV8YXO+6YnWMsbbyYmTI0gEAg8sOx68/z2JyIjEmKGTQOjh3wPdu3wNQDB716e5PJRkfJbfjk5x8clJlhtgN3Tegpl3N/AyNqECZGpliV59dsDG3AQAceHAA3//7vbRBaSElPQU9d/bE85jnABTtThZ6LuJjHT3ABIUM3lyPuehavSsAIDo5Gt22d0N0crROY8jN+CR3I+6i967eSM9U/Gqb8skU9HHpU6BxEhWEKiWr4O++f8NIZgQAWOy/WJxDSp8JgoARB0bg/PPzAAAHC0eMfjUdJnL1KV1I95igkMGTy+TY0msLatsrerTcj7qP7ju6Izk9+zYh+RqDluOTvE54jU7bOiEmRTFeStfqXbGo7aICj5OooLR1aotlHZaJyyMPjMS/T/+VMKKP+9/Z/2HLrS0AFCM2b/XcAZsMzmGlL5igUKFQ3Kw4fPv7wtZC8eVyNvgsPtv9mVg7oQs5HZ8kJjkGnbZ2wrPoZwCAho4Nsa33NhjJjXQWK1FBGNt0LL5srBgTKzUjFd13dMfVl1cljkqzP6/+iVmnZwEAZJBhS88tqG/bQNqgSAUTFCo0nEo64dDnh2BlYgUA+Of+Pxh1YBQyBd1No/Cx8UniU+PRaVsnBIQGAADKFiuLA/0PsFEsFQoymQwrOq1AtxrdACju945bO+JuRPZd8HVt081NGHdonLi8uO3ij3brJ91jgkKFims5V+z/bL/4DHnDjQ0Y4TtCp70KshqfJDEtEV23d8WFkAsAADtLOxwfeBzlipfTWWxEBc1YbowdvXegdaXWAICopCh4bvIUu9FL7e+gvzH0n6Hi8vRW0/Fty28ljIiywgSFCp22Tm2xtddWcYj4DTc24It9XyAtI+sZswva26S38N7sjdPPTgMAbMxtcHzgcbjYu0gWE1FBsTCxgO9nvmjoqBi0LSw+DG182uDaq2uSxrXu+jp8tuczsVZ1gusEzPecL2lMlDUmKFQo9a3dFzv77ISxXDFY8o7bO9BzZ0/EpcTpPJZXca/QxqcN/EMUcwYVMy2Go18cRQPHBjqPhUhXSpiXwPGBx9G0bFMAwJukN/Dc6ImTT07qPBZBELD4/GKMODBCTE5GNByBpR2WSjb6NH0cExQqtPq49MG+T/fBzEgx9ojfQz+0WN9CbJyqC1cjrqDJ6ib47/V/AAB7S3ucHnIaruU4+RgVfraWtjgx6IT4uCcuNQ7tt7THH1f+0NnkgklpSRi8fzC+O/mduO6bT77B6q6r1SbiJP3Cd4cKtS7Vu+DQ54fEQaRuv76NJqubwPe+b4GeVxAEnLbxQ/ejnREaHwpAMXeJ/zB/NCrTqEDPTaRPipsVx+HPD6NL9S4AFBN8jj88HkP/GVrgNZqP3jxCa5/W2Hzr3YjTCzwX4Od2P7PmxAAwQaFCz7OKJy4Nv4RqpaoBUDTa676jO8b6jS2QL8iXsS/x2cm+2OrwB9IyFe1e2lRqg8sjLqOabbV8Px+RvrM0scT+T/djaoup4rqNNzeiwaoG8H/un+/nEwQBqwNWo/5f9cV2L5Ymlvi779+Y7jadyYmBYIJCRUINuxq4NOISutfoLq5beW0lavxeA9v+25Yv1c3J6cn42f9nuPzpgn9fnRDXT3SdiOMDj6O0Vek8n4PIUBnJjbC43WJs6blF7Fb/5O0TtNrQCkP/GYqw+LB8Oc/Vl1fRakMrjD44GolpiQCAqiWr4uLwixyp2cAwQaEio5RFKez7dB/+6vwXLIwtAACh8aH4fO/naLCqAbb/tz1XA7vFpcRhxeUVqPVHLUw9MVWczbVEeils89yFZR2XwcSIQ2cTAcDn9T7HjdE38En5T8R1Pjd84LzcGZOPTEZwdHCujnsh5AJ67+oN17WuYld+ABjdeDRufHkD9Rzq5Tl20i1jqQMg0iWZTIbRTUajXdV2+OroV2JblFvhtzBg7wB8dfQr9HXpix41e8C1nCuKmRXTeJy3SW9x+tlp7L+/H/vv7VeZYl4GGQY4f4Gmh7ugXXlvnVwXkSGpWqoqzg49K47mGp0cjYS0BCy7vAwrrqyAZxVP9HPpB88qnnAq6aTxkUxGZgZuv76NAw8OYPed3bgZflNle027mljafinaO7fX1WVRPmOCQkWSU0kn/PPZPzj88DBmn5mNKy+vAADCE8Lx+9Xf8fvV3yGXyVGtVDVULFERxc2KA1C0XwmODsbT6Kcaj9u+anssbrsY5ZIqY7/fBY1liEgxoNvEZhPRv05/zD0zF2sD1yI5PRmZQiZOPDmBE08Uj0lLWZRCDdsacLB2gJHMCMnpyXgV9woPoh4gIS1B7biO1o6Y3mo6xjQZw5pLA8cEhYq0jtU6ooNzB5x6dgp/XP0Dfg/8kJKRAgDIFDJxP+o+7kfdz/YY1qbW+LT2p5jcfDLqlK4DAIh8GlPgsRMVBvZW9ljRaQVmtpmJP67+gU03N6n8AHiT9AYXX1z86HFcy7libJOx+KzOZzAzNivIkElHmKCQ5CxtzNCwlzMsbaT5UpHJZPCs4gnPKp6ISY7BwQcH4R/ij4svLuJ+5H0kpSeplC9mWgx1StdBk7JN0NG5IzyrePILkSiP7K3sMdt9Nma1mYWA0AD4PfDD1VdXce3VNYQnhKuUNZIZoWKJimhStglaVmiJnrV6omKJihJFTgWFCQpJzrKkORr30Y/utyXMS+Dzep/j83qfA1B0V1Q+HxcEASUtSnJiP6ICJJPJ0KRsEzQp20Rcl5qRisjESGQKmTCRm8DO0o6zfxcBTFCIsiGTyVDSoiRKWpSUOhSiIsvUyBRli5WVOgzSMXYzJiIiIr3DBIWIiIj0DhMUIiIi0jtMUIiIiEjvMEEhIiIivcMEhciAST2GDBFRQWE3YyIDpk9jyBAR5SfWoBAREYE1kvqGNShERERgjaS+YQ0KERER6R0mKEQFgFXFRER5w0c8RAWAVcVERHnDGhQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFCIiItI7TFCIiIhI7zBBISIiIr3DBIWIiIj0jtYDtaWmpmLdunU4duwY4uLiULVqVYwYMQJNmzbN0f4nT57E7t278fjxYxgbG6NSpUoYMWIEGjdurHXwRERU+CW+TcbdkyGo5VUBliXNpQ6HdETrGpSFCxdi165daNeuHSZOnAi5XI6pU6fi1q1bH913/fr1mDt3LkqXLo1x48Zh+PDhqFq1KiIjI3MVPBERFX6J0SkI3PsIidEpUodCOqRVDcqdO3dw8uRJjBkzBv379wcAtG/fHkOGDMHKlSuxcuXKLPcNCgrCxo0bMW7cOPTr1y9vURMREVGhplUNypkzZ2BkZIRu3bqJ68zMzNC5c2cEBQUhPDw8y33//vtvlCpVCn369IEgCEhMTMx91ERERFSoaZWgPHz4EOXLl4eVlZXK+lq1agEAHj16lOW+AQEBqFmzJnbv3o1u3bqhQ4cO6NGjB/bs2ZOLsImIiKgw0+oRT1RUFGxtbdXWK9dl1ZYkLi4OMTExuH37Nq5fv44hQ4bAwcEBhw8fxrJly2BsbIzu3btned7IyEhERUWJy8HBwdqETURERAZGqwQlJSUFJiYmautNTU3F7ZooH+fExMRg1qxZ8PLyAgC4u7tjyJAh2LRpU7YJiq+vL3x8fLQJlYiIiAyYVgmKmZkZ0tLS1NanpqaK27PaDwCMjY3h7u4urpfL5fD09MT69esRHh4OBwcHjft369YNLVu2FJeDg4Mxb948bUInIiIiA6JVgmJra4uIiAi19crHL3Z2dhr3K168OExNTWFtbQ0jIyOVbSVLlgSgeAyUVYJiZ2eX5bGJiIio8NGqkayzszNevHiBhIQElfV37twRt2s8iVyOatWqISYmRq0GRtluxcbGRptQiIiIqBDTKkFxd3dHRkYGfH19xXWpqak4dOgQXFxcxBqQ8PBwtYasHh4eyMjIwJEjR8R1KSkpOH78OCpXrswaEiIiIhJp9YjHxcUFHh4eWL16NaKjo1GuXDkcOXIEYWFhmDZtmlhu/vz5uHHjBs6ePSuu6969O/z8/PDbb78hJCQEDg4OOHr0KMLDw7Fw4cL8uyIiIiIyeFrPxTNjxgwxuYiPj4eTkxMWL16MBg0aZLufmZkZli5dipUrV+LQoUNITk6Gs7MzFi9eDFdX19zGT0RERIWQ1gmKmZkZxo4di7Fjx2ZZZvny5RrXlyxZEjNmzND2lERERFTEaD1ZIBEREVFBY4JCREREeocJChEREekdJihERESkd5igEBERkd5hgkJERER6hwkKERHprcxMARFPYgAAEU9ikJkpSBwR6YrW46AQERHpwtMrYbi06S4S3iQDAPzXBeHGvsdoPqgWqrg6ShwdFTTWoBARkd55eiUMJ5cGismJUsKbZJxcGoinV8Ikiox0hQkKERHplcxMAZc23c22zKXNd/m4p5BjgkJERHol7N4btZqTDyVEJSPs3hsdRURSYIJCRER6JSk6JV/LkWFigkJERHrFwsYsX8uRYWKCQkREesWxZilYlTLPtoyVrTkca5bSUUQkBSYoRESkV+RyGZoPqpVtmeYDa0Eul+koIpICExQiItI7VVwd4TW5oVpNipWtObwmN+Q4KEUAB2ojIiK9VMXVEZWaOOD+qRD4rwtCy+G1UcOjAmtOigjWoBARkd6Sy2WwdyoBALB3KsHkpAhhgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYoREREpHeYoBAREZHeYYJCREREeocJChEREekdJihERESkd5igEBERkd5hgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYoRESk1yxtzNCwlzMsbcykDoV0yFjqAIiIiLJjWdIcjftUkzoM0jHWoBAREZHeYYJCREREeocJChEREekdrROU1NRUrFy5Ej179kTbtm0xevRoXL16VesTf/3112jdujV+++03rfclIiKiwk3rBGXhwoXYtWsX2rVrh4kTJ0Iul2Pq1Km4detWjo9x5swZBAUFaXtqIiIiKiK0SlDu3LmDkydPYtSoURg7diy6deuGpUuXwtHREStXrszRMVJSUvDHH39gwIABuQqYiIiICj+tEpQzZ87AyMgI3bp1E9eZmZmhc+fOCAoKQnh4+EePsX37dgiCgM8++0z7aImIiKhI0CpBefjwIcqXLw8rKyuV9bVq1QIAPHr0KNv9w8PDsXXrVnz55ZcwM+OAO0RERKSZVgO1RUVFwdbWVm29cl1kZGS2+//xxx+oVq0avLy8tDktIiMjERUVJS4HBwdrtT8REREZFq0SlJSUFJiYmKitNzU1Fbdn5fr16zhz5gz++usvLUMEfH194ePjo/V+REREZJi0SlDMzMyQlpamtj41NVXcrkl6ejqWLVsGb29v8XGQNrp164aWLVuKy8HBwZg3b57WxyEiIiLDoFWCYmtri4iICLX1yscvdnZ2Gvc7evQoQkJCMGXKFISGhqpsS0xMRGhoKEqWLAlzc3ON+9vZ2WV5bCIiIip8tEpQnJ2dERgYiISEBJWGsnfu3BG3axIeHo709HSMGzdObdvRo0dx9OhRzJ8/H25ubtqEQ0RERIWUVgmKu7s7duzYAV9fX/Tv3x+A4vHOoUOH4OLiAgcHBwCKhCQ5ORmVKlUCAHh5eaFaNfWZKL///ns0b94cXbt2zdWjHyIiIiqctEpQXFxc4OHhgdWrVyM6OhrlypXDkSNHEBYWhmnTponl5s+fjxs3buDs2bMAgEqVKonJyofKlCmjdc2JsjEue/MQEREZnkqVKmXZrENJqwQFAGbMmAEHBwccPXoU8fHxcHJywuLFi9GgQYPcxqm1sLAwAGBDWSIiIgO0Zs0a1KhRI9syMkEQBB3Fk2+io6Nx5coVlClTRuziXJgpey398MMPWdZEFVa89qJ37UX1uoGie+1F9bqBonvtBVKDog9sbGzg7e0tdRg6V6lSpY9mnIUVr73oXXtRvW6g6F57Ub1uoGhfe1a0ns2YiIiIqKAxQSEiIiK9wwTFANja2mLIkCEa50Eq7HjtRe/ai+p1A0X32ovqdQNF+9o/xiAbyRIREVHhxhoUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPSOQQ7UVhhFRkZi9+7duHv3Lu7du4ekpCQsW7YMDRs2VCs7ceJE3LhxQ229q6srlixZorIuNTUV69atw7FjxxAXF4eqVatixIgRaNq0aUFdita0uXYA+O+///DXX3/hwYMHsLKygoeHB0aOHAlLS0uVcoZw7ZocPnwYCxcu1Lht3759aq39z58/jw0bNiA4OBg2Njbo1KkTBg0aBGNjw/p4G+r7pY3AwEBMmjRJ47aVK1eidu3a4nJO73N9lJiYiB07duDOnTu4e/cu4uLiMH36dHTs2FGt7LNnz/D777/jv//+g7GxMT755BOMHz8eNjY2KuUyMzOxY8cO7N+/H2/evEH58uXxxRdfoG3btjq6qo/L6XUvWLAAR44cUdu/YsWK2LJli8o6Q7jugmJY32CFWEhICLZt24by5cvDyckJQUFB2Za3t7fH6NGjVdZp6qa2cOFCnD59Gn379kX58uVx+PBhTJ06FcuWLUO9evXy9RpyS5trf/jwIb766itUqlQJ48ePx+vXr7Fz5068ePECP//8s0pZQ7j27AwfPhxlypRRWWdtba2yfOnSJXz//fdo0KABJk2ahCdPnmDTpk14+/YtvvnmG12Gm2eG/n5po3fv3mozuJcrV078f23uc30UExMDHx8fODg4wNnZGYGBgRrLvX79GhMmTIC1tTVGjhyJpKQk7NixA0+ePMGqVatgYmIill2zZg22bt2Krl27ombNmjh//jzmzp0LmUwGLy8vXV1atnJ63QBgamqKqVOnqqyzsrJSK2cI111gBNILCQkJQkxMjCAIgnDq1CnBzc1NuH79usayEyZMEAYNGvTRYwYFBQlubm7Ctm3bxHXJycnCZ599Jnz55Zf5E3g+0Obap0yZIvTo0UOIj48X1x04cEBwc3MTLl++LK4zlGvX5NChQ4Kbm5tw9+7dj5YdOHCgMHToUCEtLU1ct3r1aqF169bCs2fPCjLMfGXI75c2rl+/Lri5uQmnTp3KtlxO73N9lZKSIkRGRgqCIAh3794V3NzchEOHDqmV++WXX4S2bdsKYWFh4rqrV68Kbm5uwj///COue/36teDh4SH8+uuv4rrMzExh3LhxQq9evYT09PQCvJqcy+l1z58/X/D29v7o8QzlugsK26DoCUtLSxQvXlyrfdLT05GYmJjl9jNnzsDIyAjdunUT15mZmaFz584ICgpCeHh4ruPNTzm99oSEBFy7dg3e3t4qvzTat28PCwsLnDp1SlxnKNf+MYmJicjIyNC47dmzZ3j27Bm6du2q8jinZ8+eEAQBp0+f1lGUeVdY3i9tJCYmIj09XW29Nve5vjI1Nc3RwGNnzpxBixYt4ODgIK5r0qQJKlSooHKd58+fR3p6Onr27Cmuk8lk6NGjByIiIj5a46wrOb1upYyMDCQkJGS53VCuu6DwEY+BCgkJQfv27ZGWloZSpUqhS5cuGDJkiMofqocPH6J8+fJq1YbKquVHjx6pfDHouydPniAjI0NtQi0TExNUq1YNDx8+FNcVhmufNGkSkpKSYGJigqZNm2LcuHGoUKGCuP3BgwcAoPZ62NnZwd7eXuX10HeF4f3SxsKFC5GUlAQjIyPUq1cPY8aMQc2aNQFod58bsoiICLx9+1bjBHm1atXCpUuXxOWHDx/CwsJCbbZf5f3x8OFDg3sMmJycjI4dOyI5ORnFihWDl5cXvvzyS5U2RoXxurXBBMUAlS1bFg0bNoSTkxOSk5Nx+vRpbNq0CSEhIZgzZ45YLioqSmM2r1wXGRmps5jzQ1RUFADNbW1sbW1x8+ZNlbKGeu1mZmbo2LEjGjZsCCsrK9y/fx+7du3C2LFjsXbtWvEP9cdeD+V2Q2DI75c2jI2N0aZNGzRv3hwlSpTAs2fPsHPnTowfPx5//vknqlevrtV9bsg+dp2xsbFITU2FqakpoqKiULJkSchkMrVygOHdH7a2tujfvz+qV68OQRBw+fJl7N+/H48fP8ayZcvEH5qF7bq1xQSlAGRmZiItLS1HZU1NTdVuvo/57rvvVJbbt2+Pn3/+GQcOHEC/fv3EngApKSkqjczeP6dye34ryGtXxpvVNaWmpqqU1fW1a5Kb18PT0xOenp7iejc3N7i6umLChAnYvHkzpkyZAgDi9Sqv6cNjZff4T9/oy/tV0OrWrYu6deuKy61atYK7uzuGDh2K1atXY8mSJVrd54bsY9epLGNqalro7o8POzh4eXmhQoUKWLNmDc6cOSM2fi1s160tJigF4ObNm1l2JfzQ5s2b1arvcuPTTz/FgQMHcO3aNTFBMTMz0/jHUfkFZ2Zmlufzfqggr10Zb1bX9P4faimuXZP8ej3q1asHFxcXBAQEiOuU16vpD1ZqaqrOrjE/6Mv7JYXy5cujVatWOHv2LDIyMrS6zw3Zx67z/TJF4f7o168f1q1bh2vXrokJSlG47uwwQSkAFStWxPTp03NUNr9msCxdujQAIC4uTuXYERERamWVVat2dnb5cu73FeS1K8trenQRFRWlcj1SXLsm+fl6lC5dGs+fP1crHxUVpdY+IyoqSq0bqz7Tl/dLKqVLl0ZaWhqSk5O1us8N2ceus3jx4mIyZmtri8DAQAiCoFLrWpjuDzMzMxQvXhyxsbHiuqJw3dlhglIAbG1tNQ5IVJBevXoFACqDGyn74SckJKg0Prxz5464Pb8V5LVXqVIFRkZGuH//vsojkLS0NDx8+BAeHh7iOimuXZP8fD1evXql8v5Wq1YNAHD//n24uLiI6yMjIxEREaHSI0bf6cv7JZVXr17B1NQUFhYWWt3nhsze3h42Nja4f/++2ra7d++qvOfOzs44ePAggoODUblyZXF9Ybo/EhMTERMTo/YdXtivOzvsZmxgEhIS1Kr0BUHApk2bAEBl1E13d3dkZGTA19dXXJeamopDhw7BxcXF4HpFWFtbo0mTJjh27JhK+4qjR48iKSlJ5YvbkK89Ojpabd3Fixdx//59uLq6iuuqVKmCihUr4sCBAypdkffv3w+ZTIY2bdroItx8YcjvlzY0vbePHj2Cv78/mjZtCrlcrtV9bujatGmDCxcuqHQjDwgIQEhIiMp1tmrVCsbGxti3b5+4ThAE/PPPP7C3t0edOnV0GndepKSkaGwftnHjRgiCgGbNmonrCtN15wZrUPTIxo0bASjGtwAUX0i3bt0CAAwePBiAomvpnDlz0LZtW5QrVw4pKSk4d+4c/vvvP3Tt2lWly56Liws8PDywevVqREdHo1y5cjhy5AjCwsIwbdo03V7cR+Tk2gFgxIgRGDduHCZMmIBu3bqJI2w2bdpU5YNtSNf+oTFjxqB69eqoUaMGrKys8ODBAxw6dAilS5fGwIEDVcqOHTsW06dPxzfffAMvLy88efIE+/btQ5cuXVR+cek7Q36/tDFr1iyYmZmhTp06KFmyJJ49e4YDBw7A3NxcpeFkTu9zfbZnzx7Ex8eLjyP8/f3x+vVrAIqRdK2trfHFF1/g9OnTmDx5Mvr06YOkpCRs374dTk5OKjWPpUuXRt++fbF9+3akp6ejVq1aOHfuHG7duoUff/wRRkZGklyjJh+77ri4OAwfPhxt27ZFxYoVAQBXrlzBpUuX0KxZM7Rq1Uo8liFdd0GQCYIgSB0EKbRu3TrLbWfPngWgqApetWoV7t69izdv3kAul6NSpUro0qULunXrptYrJiUlRZzfJD4+Hk5OThgxYoTKL3F9kJNrV7p165Y4R4mlpSU8PDwwevRotTlKDOXaP7RmzRpcunQJoaGhYpuETz75BEOGDEGpUqXUyp87dw4+Pj4IDg5GiRIl0LFjR7UxcQyBob5f2ti9ezeOHz+Oly9fIiEhATY2NmjcuDGGDBmC8uXLq5TN6X2ur/r164ewsDCN23bu3ClO4/D06VO1uXjGjRundq9nZmZi27Zt8PX1RVRUFMqXL4/PP/8c3t7eBX4t2vjYdVtbW2PZsmUICgpCVFQUMjMzUa5cObRr1w6fffaZ2ufWUK67IDBBISIiIr3DNihERESkd5igEBERkd5hgkJERER6hwkKERER6R0mKERERKR3mKAQERGR3mGCQkRERHqHCQoRERHpHSYolK3Dhw+jdevWOHz4sNSh5EhgYCBat26N9evXF9g5WrdujYkTJxbY8YuKfv36oV+/flKHoffWr1+P1q1bIzAwsEDPs2vXLnh6eiI0NDRH5XXxWTNk//vf/9C3b1+kpKRIHYrBYoJSyCxatAitW7dGly5d1CYVLCwM7Q9bTEwM/vrrLwwaNAjt2rVDu3bt0LdvX0yePBkbNmzAmzdvdBLHx5LNiRMnZjvlQFGSlJSEDh06oHXr1vj111+lDqfAxcXFYdOmTejUqZM4BD3lzZAhQxAZGYm///5b6lAMlmFN1kHZSkxMxKlTpyCTyRAbG4tz587By8srT8d0c3ODi4sLbG1t8ynKouX169cYO3YsXr9+jWrVqqFjx44oVqwYoqKicPv2bWzYsAF169bVOMdOYffbb79JHUKWTp06hcTERMhkMpw4cQLjxo2DmZmZ1GEVmF27diE2Nhb9+/eXOpRCo0KFCmjZsiW2bduG3r17w8LCQuqQDA4TlELk33//RVJSEvr164fdu3fDz88vzwmKtbU1rK2t8ynComf9+vV4/fo1hg8frjIrs9Ljx4+L7Otbrlw5qUPIkp+fH4yMjNCrVy/8/fffOHv2LNq1ayd1WAUiPT0dBw8eRN26dfX6PTFE3t7eOHv2LE6ePIkuXbpIHY7BYYJSiCi/VAcMGIDHjx/j+vXrCAsLg6Ojo0q59evXw8fHJ8vjODo6YteuXQAUjwUWLlyI6dOnq0x/3rp1azRo0AA//vgjVq5ciatXryI1NRX169fH5MmTUbZsWTx79gyrV6/GzZs3kZ6eDldXV3z11VcqtQWBgYGYNGkShgwZgmHDhqnEERoaik8//RQdOnTAjBkzxOX3Y1DStP+9e/ewevVqBAUFQS6Xo1GjRhg/frxaFfbZs2dx6tQp3Lt3D5GRkTA2NkbVqlXRp08fuLu7Z/+if0RQUBAAoFevXhq3V61aVeP6V69eYevWrbh69SqioqJgZWWFypUro2PHjuL7kJaWBl9fX1y4cAHPnj1DdHQ0rKysULduXQwePBjVq1cXj7dgwQIcOXIEALBw4UIsXLhQ5frffy3f/3/la6/0+PFjbN68GTdu3EBsbCxsbW3RsmVLDB06FCVKlBDLvf/eDRgwAGvWrMHNmzcRGxsrzmSrfEynvNeAd/fmsmXLEBkZie3bt+P58+ewtraGh4cHvvzyS7WajPT0dOzYsQMHDx5EZGQk7O3t0blzZ3h6euKzzz5Tu4aPef78Of777z+0aNFCJdnXlKC8f/+2aNEiR/cbAJw5cwZbtmzB06dPYWVlhZYtW2LMmDEYPny42muSnZy+H9m5cuUKoqKiMGDAAI3bU1JSsGHDBhw/fhwxMTEoV64c+vTpozb78vtevXqFzZs34+rVq3j79i2KFSsGV1dXDBs2TO37CNDu9VDeyzt27MDZs2fh5+eHV69ewcvLS3yf3759iy1btuDChQt4/fo1LC0tUb9+fQwbNgxOTk5q59emfEhICLZs2YLAwEBERUXB3NwcpUuXRsOGDTFhwgSVGeU/+eQTmJub48iRI0xQcoEJSiHx7NkzBAUFoXnz5ihVqhTat2+PgIAAHDp0SO0Pd8OGDTUeIzg4GKdOncpxVXZcXBzGjRsHW1tbtG/fHi9evMCFCxfw9ddfY8GCBRg/fjxq1KiBTp064cGDBzhz5gxiY2OxbNmyXF2jtbU1hgwZgt27dwMA+vTpk+U13bt3D9u3b0fDhg3RrVs3PHz4EOfOncOTJ0/g4+Ojco2rV6+GsbEx6tatC1tbW0RHR8Pf3x8zZ87EpEmT0Lt371zFC0D8IxESEgIXF5cc7XPr1i1MmzYNiYmJcHV1hZeXF+Li4vDw4UPs3r1bTFBiY2OxYsUK1KtXD82bN0exYsUQGhoKf39/XL58GStWrECtWrUAKB7VxcfH4/z582jVqhWcnZ1VzjlkyBAcOXIEYWFhGDJkiLi+WrVq4v+fP38es2fPhkwmQ6tWrVC6dGk8e/YMe/fuxZUrV7Bq1SoUK1ZM5bgvX77EmDFj4OTkhA4dOiA2NhYmJiYffQ2Ux2zZsiUaNWqEy5cvY8+ePYiJicHMmTNVyi5evBhHjx5F2bJl0aNHD6SlpWHXrl24fft2jl7vD/n5+QEA2rdvDwcHBzRo0ACBgYF49eoVypYtq3Efbe43Pz8/LF68GFZWVmjfvj2sra1x6dIlfP3110hPT4excc6+lnPzfmgSEBAAAKhdu7batszMTEyfPh3Xrl2Dk5MT2rZti9jYWPz+++9Zfo/cuXMHU6ZMQVJSElq0aIHy5csjLCwMx48fx+XLl7Fy5UqV1zG3r8fSpUtx584dfPLJJ2jRogVKliwJQHHPTZw4EREREWjatClatWqF6OhonDlzBlevXsVvv/2m8lnUpnxkZCRGjx6N5ORkfPLJJ/D09ERycjJevHiB/fv3Y+zYsSrxmpiYoHr16ggKCkJSUhIf82hLoEJhxYoVgpubm3DixAlBEAQhISFB8Pb2Fvr06SNkZGR8dP83b94Iffv2Fby8vIRbt26J6w8dOiS4ubkJhw4dUinv5uYmuLm5CStWrFBZ/8svvwhubm5Cx44dhV27donrMzMzhW+//VZwc3MT7t27J66/fv264ObmJqxbt04tplevXglubm7C/PnzVdb37dtX6Nu3r8brUB7v/ddCad68eRrXv3z5Uu04CQkJwuDBg4WOHTsKSUlJatc+YcIEjef/0O7duwU3NzehW7duwrp164Tr168L8fHxWZZPSUkRevXqJbRp00a4dOmS2vbw8HCVsq9fv1Yr8+TJE8Hb21v46quvVNZn9V4qTZgwQXBzc9O4LTo6WujQoYPQq1cvITQ0VGXbiRMnBDc3N+G3334T1ynfu6zeW0HQ/D6uW7dOvH+Cg4PF9cnJycKAAQOENm3aCBEREeL6a9euCW5ubsKwYcNU3qeIiAihe/fuGu+f7KSlpQndu3cXOnbsKCQnJwuCIAh+fn6Cm5ubsGbNGrXy2t5vsbGxgre3t+Dt7S08f/5c5byTJk0S3NzcsnxNrl+/Lq7T9v3IzsiRI4U2bdoIKSkpatuU98yUKVOE9PR0cf2jR48ET09Ptfc3LS1N6Nu3r9C+fXvh/v37Kse6efOm4O7uLkybNi1Pr8f8+fMFNzc3oVevXkJYWJhazGPGjBHc3d2Fy5cvq6x//vy50L59e2Hw4MG5Lq/8PL//3aYUExOjtk4Q3n03BwQEaNxOWWMvnkIgPT0dx44dg5WVFVq1agUAsLS0hJubG8LDw3Ht2rVs909JScGMGTMQFhaG7777DnXr1s3ReS0sLDBixAiVdco2LyVKlFCp4ZDJZOK2x48f5/jacqt+/fpq7W86deoEALh7967Kek2/ii0tLdGxY0fEx8fj3r17uY6jV69e6N+/P+Lj4+Hj44NJkyahU6dOGDRoEP766y9ERkaqlD9//jwiIiLQrl07NGvWTO14pUuXFv/f1NQU9vb2amWqVKmChg0bio/W8sPRo0eRkJCAUaNGqVXRe3l5oXr16jh58qTafqVKlcLAgQO1Pl+fPn1QsWJFcdnMzAxeXl7IzMzE/fv3xfXHjh0DAAwePBjm5ubiejs7O5X7L6cuXryIN2/ewMPDQ6z1cHd3h7m5OQ4fPozMzEyN++X0fjt//jySkpLQqVMnVKhQQVxvbGys9lnKTm7fD00iIiJgbW0NU1NTtW3Kx4IjRoyAkZGRuL5q1arw9vZWK3/hwgWEhYWhf//+Ko8YAaBevXpo2bIlLl26hISEBAB5ez369+8PBwcHlXUPHjzA7du30b59e7i6uqpsq1ChArp06YInT57gyZMnuSqvpKmWuXjx4hrjVNbsREREZHs9pI6PeAqB8+fPIzo6Gp07d1b54LRv3x7Hjh2Dn5+f2odPSRAELFiwAEFBQRg6dCjatm2b4/OWL19e5Y8CALG3j5OTk8qz2Pe3ffhHuSDUqFFDbZ3yj3l8fLzK+rdv32Lr1q24dOkSwsPD1cYtyEu8MpkMY8aMQf/+/XHp0iXcuXMH9+7dw4MHD/Ds2TP4+vpiyZIlYhWy8o9Z06ZNc3T8hw8fYvv27bh16xbevHmjlpBER0fDzs4u1/ErKdvS3LlzBy9fvlTbnpqaipiYGERHR8PGxkZc7+zsnKNHOh/68I8b8C45e//9e/ToEQDFH78P1alTR+vzHjx4EIDis6NkaWmJVq1a4cSJE7hy5QqaN2+utl9O7zdlcq4pXhcXF5UkIDu5fT80iY2N1ZjoKuO1sLDQeH316tUTH4d9GNfz5881jo/y5s0bZGZmIiQkBDVr1szT66F8fPm+O3fuAFB8pjWd//nz5+J/nZyctC6vbGf022+/ISAgAM2aNUODBg2yfPQHvEtcYmJisixDmjFBKQTef2b+vsaNG8Pe3h7+/v6IjY3VmOGvXbsWp06dQtu2bTF06FCtzmtlZaW2TvmFkt22/PpVnx1LS8ssz//+r+DY2FiMGjUK4eHhqFu3Lpo0aQJra2vI5XI8evQI58+fR1paWp7jsbGxQYcOHdChQwcAQFRUFJYuXYozZ87g559/xoYNGwBA/GWZ1R+M9/3333/46quvAABNmjRB+fLlxes+f/48Hj16lC+xA4r2RgCwb9++bMslJyerLCt/PWoru/vn/fcvMTERcrlcY4NQbbtuR0ZG4sqVKyhbtqzaH8wOHTrgxIkTOHTokMYEJaf3m/L91fS6ZHUdmuT2/dDEzMwsyzGTEhISsrwXNb2+yriOHz+eo7jy8npo2ic2NhaAoibs4sWLWe6blJSUq/JlypTBypUrsWHDBly6dAmnTp0CAFSsWBHDhw+Hh4eH2r7KHzyFuZt6QWGCYuDCw8Nx9epVAMh2dNNjx46pVXkfPnwYmzdvRt26dfHdd98VaJxZUdayZGRkqG1TfnkVJD8/P4SHh2vsBrxlyxacP3++QM5ra2uLH374ARcvXsTjx48RExODEiVKiF2Oc1IdvHnzZqSmpuL3339X+4Oq/GWYX5R/gH18fDT2gsjKh7Vo+c3S0hKZmZmIiYlRqynQdgC8w4cPIyMjA69evcpywDp/f/8c1UpkRZl4vX37Vm2b8jpykpzm9v3QpESJElneb1ZWVln+8tf0+irjWrRoEVq0aPHRc+fl9dB0bymPl9PG7dqWBxS1w//73/+Qnp6O+/fv4/Lly9i9ezdmz54NOzs7tUfkyiQot/dMUcY2KAbuyJEjyMzMRL169dC5c2e1f8pf7B9Wxd64cQNLlixB2bJlMX/+fI3Pn3VB2ctA02OUhw8fatxHLpdrTGhyQ1k9rmy7875bt27lyzmyYmJiolaFray2Viad2Xn16hWKFy+ulpwkJyfjwYMHauXlcsXHPavXLrvtykdQyip8faHsjfTff/+pbdOmF48gCDh06BAAoGPHjho/S3Xq1EFaWprY7iU3lN3KNcV79+7dHN/X+fl+ODk5ITU1FeHh4WrbqlatiqSkJJV2P0qaPh/axpVfr4eS8vOT0/NrW/59xsbGqF27NoYNG4ZJkyZBEARcuHBBrVxISAgA5DmRLIqYoBgw5ZeqTCbDjBkzMG3aNLV/M2bMQO3atfH48WOxsWdISAh++OEHmJmZYdGiRZJm9hUrVoSlpaX4GErpzZs32LRpk8Z9ihcvjpiYmHyZ40LZwPDDL8jjx4/j0qVLeT7+jh07EBwcrHHb3r17kZSUhIoVK4pV2S1btoS9vT2OHz+OK1euqO3z/i9dBwcHxMXF4enTp+K6jIwM/Pnnn4iOjlbbV/mI7/Xr1xrjyW57p06dYGlpiTVr1qicTyk5OVmS5EU5NomPj4/K/RAVFSV2R8+JGzdu4OXLl6hfvz6mT5+u8bOkrGX8MNnXRqtWrWBhYQE/Pz+VtiPp6elYt25djo+Tn+9HgwYNAGiudVM+Nl67dq1KsvD48WONiVqrVq3g4OCAnTt34saNG2rb09PTVRKb/Ho9lFxcXODi4oKTJ09qbCScmZmpEpe25e/fv6+xZldZm6Tph96dO3dga2ur0giYcoaPeAzY9evXERoa+tFGWp06dUJQUBD8/PxQs2ZNLF++HLGxsWjSpAn+/fdftfLW1tY6m+vGxMQEvXv3xubNmzFixAi0bNkSSUlJ8Pf3R4MGDTQ2AGzYsCHu3buHqVOnol69ejA2Nkb9+vXFL1pteHt7Y9u2bVi2bBkCAwPh4OCAR48e4fr162jdujXOnj2bp+s7duwY/vzzTzg5OcHFxQUlS5ZEXFwc7ty5gwcPHsDMzAzffPONWN7U1BRz5szBt99+i2+//Raurq5wdnZGQkICHj16hJSUFPGLu3fv3rh69SrGjRsHDw8PmJqa4saNG4iMjETDhg3VJperXbs2zMzMsHv3bsTFxYmJqfLRVqNGjXD69Gn8+OOPaNasGUxNTeHs7IyWLVvCxsYGs2bNwsyZMzFs2DC4urqiYsWKSEtLQ1hYGG7cuIE6depgyZIleXq9tNWkSRO0bdsWJ06cwJAhQ9CqVSukpaXh1KlTqFWrFi5cuCDWDGVHmXQoe95oUrFiRdSpUwe3b9/GnTt3cjyuzfuKFSuG8ePH4+eff8bIkSPh6ekJKysrXLp0CaamprCzs8vRY7H8fD9atWqFP/74A9euXVNrQ6Fse3P58mUMHz4czZo1Q1xcHE6ePImmTZuq1RiYmppi7ty5mDp1KiZOnIhGjRqJDebDwsJw69YtlChRAlu2bMnX1+N9M2fOxOTJkzFnzhzs3r0b1apVg5mZGV6/fo3bt28jJiYGJ06cyFX5o0ePwtfXF/Xr10e5cuVgaWmJZ8+e4fLlyyhevLja/fPy5UuEhoaiR48eWl0DKTBBMWDKL9X3R3jVxNPTE8uXL8fJkycxfvx48ZfmtWvXNHZBdnR01OlkfMOHD4exsTH8/Pzg6+sLR0dHDB48GC1atMCZM2fUyg8ePBjx8fG4cOECbt26hYyMDAwZMiRXCUrp0qWxfPlyrFy5EteuXUNGRgaqV6+OX375Ba9fv85zgvLdd9/hwoULuH79Oq5cuYK3b99CLpfDwcEBPXr0QN++fdV+WdWpUwdr167Fli1bcOXKFQQEBKBYsWKoXLkyunfvLpZr0aIF5s6diy1btuD48eMwMzNDo0aNMH/+fI0jBRcvXhxz587Fhg0bcPDgQfE+UCYoXbp0QWhoKP79919s27YNGRkZ6NChA1q2bAlAMSrmunXrsH37dgQEBODatWswNzeHvb09OnbsqLHbqS7MmDEDlSpVwqFDh7B3717Y29ujb9++aNSoES5cuKCxAev74uPjcebMGVhYWKBNmzbZlu3UqRNu374NPz+/XCUoANC1a1cUK1YMmzdvxpEjR8SRU7/88kv07ds3x8PN59f7UaZMGTRt2hSnT5/GpEmTVGoB5HI5FixYgA0bNuDEiRPYs2cPypYti/Hjx6N8+fIaH2nUqlUL69evx/bt23Hp0iXcvn0bJiYmsLOzg5ubm1p37Px6PZTKli2LdevWYefOnTh37hwOHz4MuVwOW1tb1K9fX210aG3Kt23bFqmpqfjvv/9w9+5dpKWlwd7eHt27d9fY7VlZy9StWzetroEUZIIgCFIHQUSU3w4ePIiffvoJX3/9tUH8gn3x4gUGDBgADw8PzJkzR6fnDggIwFdffYUffvhBskTzQ1K+HvkhPT0dAwYMQJkyZXI9enZRxzYoRGTQoqKi8OHvrIiICGzatAlGRkb45JNPJIpMs7i4OLVuvSkpKfj9998BKKYl0LXGjRujWbNm2LRpU5aD0RUUfXw98sORI0cQHh6OsWPHSh2KweIjHiIyaFu3bsXFixdRv3592NjY4PXr17hw4QISExMxdOhQtWp3qd24cQOLFy9G06ZNUbp0acTExIgTezZq1Aienp6SxDVx4kQcP34cEREROn3N9PX1yCuZTIZvv/1W4yB3lDN8xENEBu3y5cvYuXMnHj9+jLi4OJiamqJq1aro0aOHxhmIpRYSEoJ169bh9u3bYm+rcuXKibMvF7UBvfh6UFaYoBAREZHeYRsUIiIi0jtMUIiIiEjvMEEhIiIivcMEhYiIiPQOExQiIiLSO0xQiIiISO8wQSEiIiK9wwSFiIiI9A4TFCIiItI7/wcfj0U3iyfB/gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "grb_polarization.plot_asad(asad_corrected['counts'], asad_corrected['uncertainties'], 'Corrected ' + titles['grb'], coefficients=polarization['best fit parameter values'])" ] @@ -954,21 +734,10 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "id": "7e456b61", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RelativeX: 107.101 degrees\n", - "RelativeY: 17.101 degrees\n", - "RelativeZ: 107.101 degrees\n", - "IAU: 80.116 degrees\n" - ] - } - ], + "outputs": [], "source": [ "print('RelativeX:', round(polarization['angle'].transform_to(MEGAlibRelativeX(attitude=attitude)).angle.degree, 3), 'degrees')\n", "print('RelativeY:', round(polarization['angle'].transform_to(MEGAlibRelativeY(attitude=attitude)).angle.degree, 3), 'degrees')\n", From 357948ba78d27438382fe74f9e1ae5031249ea87 Mon Sep 17 00:00:00 2001 From: nmik Date: Mon, 21 Oct 2024 23:01:09 -0500 Subject: [PATCH 06/31] stokes methods almost there --- .../polarization/Stokes_method.ipynb | 399 +++++++++--------- 1 file changed, 203 insertions(+), 196 deletions(-) diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index c18b34c6..4acd89db 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -31,12 +31,12 @@ { "data": { "text/html": [ - "
17:48:49 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "
22:45:10 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m17:48:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=724899;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923100;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m22:45:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=533190;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=861861;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -51,7 +51,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=54272;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=975797;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=174233;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75480;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -66,7 +66,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=459658;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=180518;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=645613;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=101305;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -80,7 +80,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276602;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53908;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=656616;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=106640;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -93,7 +93,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=193268;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=668207;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=10275;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845848;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -106,7 +106,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=361311;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=625873;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=884194;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=398259;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -119,7 +119,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=904539;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117634;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=408112;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819623;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -128,11 +128,11 @@ { "data": { "text/html": [ - "
17:48:50 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
22:45:10 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m17:48:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=558471;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=152915;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m22:45:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=495983;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=232609;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -145,7 +145,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=703382;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431419;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=662022;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=512349;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -158,7 +158,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=645219;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=172104;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=755205;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=374924;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -167,12 +167,12 @@ { "data": { "text/html": [ - "
17:48:50 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
        "                  require the C/C++ interface (currently HAWC)                                                     \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m17:48:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=292551;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=942329;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=324886;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359536;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -187,7 +187,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=745702;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=783980;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=29089;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=122223;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -202,7 +202,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=650182;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=178745;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=549308;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=241326;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -212,11 +212,11 @@ { "data": { "text/html": [ - "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
22:45:11 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=741150;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=186955;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m22:45:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=66660;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=824640;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -225,12 +225,12 @@ { "data": { "text/html": [ - "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "
22:45:11 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=742568;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=962888;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m22:45:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=113226;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=698079;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -245,7 +245,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882353;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=667840;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856134;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=669028;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -260,7 +260,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=759704;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=463318;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=800978;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=295554;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -383,7 +383,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "This tasks takes around 30 seconds... \n", + "This class loading takes around 30 seconds... \n", "\n" ] } @@ -404,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "26df3de8", "metadata": {}, "outputs": [ @@ -420,12 +420,14 @@ } ], "source": [ - "qs, us = source_photons.compute_pseudo_stokes(az_ang, show=True)" + "qs, us = source_photons.compute_pseudo_stokes(az_ang, show=True)\n", + "np.save('qs.npy', qs)\n", + "np.save('us.npy', us)" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "id": "c69dae6c", "metadata": {}, "outputs": [ @@ -436,14 +438,14 @@ "this task takes around 25 seconds...\n", "\n", "Creating the unpolarized ASAD...\n", - "random_values [0.73691292 0.69931264 0.77894102 ... 0.2754562 0.8476367 0.31028896]\n", - "unpol_azimuthal_angles [ 1.18008168 0.9720552 1.49226106 ... -1.44619515 1.93446454\n", - " -1.25026843] rad\n" + "random_values [0.7020638 0.94086807 0.15846523 ... 0.82078006 0.62674554 0.73505378]\n", + "unpol_azimuthal_angles [ 0.98720613 2.44752417 -2.23587581 ... 1.79036498 0.57494522\n", + " 1.1694967 ] rad\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNn0lEQVR4nO3dd3xUVf7/8Xc6kEJJINSlhhBQEJaiQCihCKJRvhTRH4gK6CJErCCuuiIgi666FKmCUUCNgggoReEbQUB6lQSIsoQOSQiQkJ7c3x98Z5ZxhhBCJskNr+fjsY91zj33zufMnSRvzj1zx8UwDEMAAAClnGtJFwAAAFAQhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYApUqXLl3k4uLi9Od5++235eLiop9//tnpz1UQ9erVU7169Uq6DKBUI7QAJvfzzz/LxcVFXbp0uWGf48ePy8XFhT+KAEyN0ALgjjR69GjFxsaqbdu2JV0KgAJyL+kCAKAkBAQEKCAgoKTLAHALmGkB7lDXr+lYunSp2rZtqwoVKqhKlSoaNGiQTp8+bbePZb1JZmam3njjDdWvX19eXl5q2LChJkyYoKysLIfPtWHDBvXq1UtVqlSRl5eXGjdurNdee02XL18uUK1ZWVmaOXOmHnjgAdWtW1deXl6qUqWKunfvrjVr1jjcx7JG5MqVK3rppZdUr149eXh46O2337Yb/5/Hd6P//fkSXE5OjmbNmqV7771Xfn5+qlChglq2bKmZM2cqLy/PribDMDRz5kw1a9ZM5cqVU61atTR69OgCvw7AnY6ZFuAON2vWLK1cuVLh4eHq3Lmztm/frqioKO3fv1/79u2Tl5eX3T4DBw7Uzp071b9/f3l4eGjFihV6++23tWvXLq1cudJmIe3cuXM1cuRIeXt7a8CAAapWrZp+/vlnTZ06VatWrdKWLVtUqVKlfGu8ePGixowZo/bt26tHjx6qWrWqzp49q1WrVumBBx7Q/PnzNXz4cLv9srKyFBYWposXL6pnz57y8/NT/fr1b/g8Tz75pMO1Qb/88ov+93//VxUqVLC2ZWdn66GHHtK6desUHBysxx9/XOXKlVN0dLQiIiK0fft2LVq0yOY4L7zwgqZPn64aNWromWeesb5227dvV1ZWljw9PfN9HYA7ngHA1KKjow1JRufOnW/Y5z//+Y8hyahbt6617R//+IchyfD19TUOHDhg0/+xxx4zJBlRUVE27Z07dzYkGUFBQcbFixet7enp6ca9995rSDI+//xza/vx48cNT09Pw9fX14iNjbU51siRIw1JxogRIxw+x/UyMjKMkydP2o3r0qVLRrNmzYzKlSsbaWlpNtvq1q1rSDK6detmpKam2u1rGX90dLTdtuvt37/f8PX1NQICAozff//dbv/Ro0cbOTk51vacnBzj6aefNiQZ3333nbV9y5YthiSjYcOGRlJSkrX9+tfu+vMDwB6Xh4A73PPPP6+7777bpm3EiBGSpB07djjc580331TlypWtj8uVK6cpU6ZIkhYuXGhtX7x4sbKysjR69Gg1adLE5hiTJ0+Wr6+vFi1apMzMzHxr9PLyUu3ate3aK1asqKefflrJycnauXOnw30/+OADeXt753v8Gzlz5oz69Omj7OxsrVixQg0bNpQk5eXlacaMGapevbo++ugjubm5Wfdxc3PTBx98IBcXFy1ZssTa/umnn0qS/v73v6tKlSrW9utfOwD54/IQcIdr3bq1XVudOnUkScnJyQ736dy5s11bx44d5ebmpr1791rb9uzZI0kKCwuz61+5cmW1bNlSmzZt0uHDh9WiRYt86zx06JDef/99bdq0SWfPnlVGRobNdkdrcMqVK6fmzZvne9wbSU1N1YMPPqjTp0/ryy+/VPv27a3bjh49qosXLyooKEiTJk1yuH/58uUVGxtrfWx5LfJ77QDkj9ACmJyr67UJU0cLPy0s2yx9r+doPYm7+7VfDbm5uQ6PFxgY6HCfgIAAXbhwwdpmWWBao0YNh8extF+6dOmGtUvStm3bFBYWppycHHXr1k3h4eHy8/OTq6ur9u3bpxUrVjicralWrVqhblSXm5urRx99VHv37tWUKVP06KOP2mxPSkqSJMXFxWnChAk3PE5qaqr1vy2vRX6vHYD8EVoAk6tYsaKk//4hdSQxMVGS44BSGOfPn9df/vIXm7acnBwlJibKz8/PrrZz586pWbNmdsc5e/asTb8bmTRpktLT0xUdHW23UHbKlClasWKFw/0Ke2fdiIgIrV69WiNGjNBrr71mt91Sb9++ffXtt98W6JiWfc6fP68GDRrYbLO8do4ugQH4L9a0ACYXHBwsLy8vHT169IbB5ddff5Wkm16CKaiNGzfatW3evFm5ublq2bKltc3y345ulX/p0iXt27dP5cqVU0hISL7P9/vvv6tKlSoOP9njqJbb8cEHH2j27Nnq2bOnZs2a5bBPkyZNVKlSJW3btk3Z2dkFOm6rVq0k5f/aAcgfoQUwuXLlymnQoEHKycnRq6++KsMwbLafOnVK77//vqRrH+ktChMnTrRZ75KRkaHx48dLkp566ilr++DBg+Xh4aEZM2bo999/tznGm2++qStXrmjw4MEOP1Z9vXr16unixYs6cOCATfuCBQu0bt262x2O1bfffquxY8fq7rvv1jfffGO9TPZn7u7uioiI0NmzZ/X8888rPT3drs/Zs2cVExNjfWx57SdPnqyLFy9a269/7QDkj8tDQBnwwQcfaOfOnfr000/166+/qkePHvLz81N8fLxWrFihlJQUjRs3zuEi0MIICQlRs2bNbO7T8scff6hPnz4aMmSItV+9evX073//W6NGjVKrVq00cOBAVa1aVRs3btSvv/6qJk2aaOrUqTd9vhdeeEHr1q1Tx44dNXDgQFWsWFG7du3S5s2b1b9/fy1durRIxjV48GDl5eWpTZs2+vDDD+2216tXzxo+3nzzTe3fv19z5szRqlWrFBYWplq1aunChQuKi4vTli1bNHnyZDVt2lSS1KFDB0VERGjGjBm66667bF67ypUr33DdD4DrlPRnrgEUjZSUFGPy5MlG69atDV9fX8Pd3d0IDAw0HnzwQeOHH36w65/ffUos93UZOnSoTbvlHioZGRnG3//+d6NevXqGp6enUb9+fePtt982MjIyHNa2bt06o0ePHkalSpUMT09Po2HDhsarr75qJCcn2/V1dJ8WwzCMVatWGe3atTN8fHyMihUrGj169DA2btxofPrpp4Yk49NPP7XpX7du3Xzve+Jo/JLy/d+f74WTl5dnfP7550ZYWJhRuXJlw8PDw6hZs6bRoUMHY/LkycaJEyfs+s+YMcNo0qSJ4enpadSoUcN47rnnjEuXLt20XgCG4WIYf5pLBoAb6NKlizZu3Gh3CQoAigNrWgAAgCkQWgAAgCkQWgAAgCmwpgUAAJgCMy0AAMAUCC0AAMAUykxoycjI0JEjR+y++RUAAJQNZSa0xMfHa8SIEYqPjy/pUgAAgBOUmdACAADKNkILAAAwBUILAAAwBUILAAAwBfeSLgAAANxYbm6usrOzS7qMIuHh4SE3N7dC709oAQCglEpNTdWpU6fKzDeru7i4qHbt2vLx8SnU/oQWAABKodzcXJ06dUoVKlRQ1apV5eLiUtIl3RbDMJSQkKBTp04pKCioUDMuhBYAAEqh7OxsGYahqlWrqnz58iVdTpGoWrWqjh8/ruzs7EKFFhbiAgBQipl9huV6tzsWZloAADCJ3UvjnHbsv/YPctqxiwozLQAAwBQILQAAoMBWrlypkJAQNW/eXGPHjlVAQICOHz9eLM9NaAEAAAVy4cIFPfXUU1q2bJkOHDigRo0aKSkpqdie/5ZDS1pamhYuXKhXXnlFffr0UadOnbRmzZp898nJydGQIUPUqVMnffnll3bb8/Ly9MUXX2jgwIHq3r27nnzySa1fv/5WSwMAAE60bds2NW/eXE2bNpUkDRs2TJ6enpKk9PR0PfzwwwoNDdWQIUOc8vy3vBD38uXLioyMVGBgoBo1aqS9e/fedJ9ly5bpwoULN9w+f/58LVmyRA899JCaNGmizZs365133pGLi4u6det2qyUCAIBicP2ngbZs2aIOHTpo7NixTrsZ3i3PtPj7+2v58uX65ptvNHLkyJv2T05O1meffabHH3/c4faEhARFRUWpb9++evXVV/XQQw/pn//8p5o3b65Zs2YpNzf3VksEAABOcN999+nAgQM6fPiwJGnhwoXKysqSJLVv316nTp3SkCFD9Mcffzjl+W85tHh6esrf37/A/efOnas6deqoR48eDrdv3rxZOTk56tu3r7XNxcVFjzzyiBISEnTo0KFbLREAADhB1apVtXDhQvXt21ctWrRQXFycNRO4uLho+vTpeuKJJxQVFeWU53fqfVpiYmK0du1azZw584Y3lImLi1P58uVVt25dm/aQkBDr9ubNmzuzzAKZfWbtTfuMrNmrGCoBANypSsO9VB5++GE9/PDD1scLFiyQJA0dOlRnzpyRu7u7Pv/8c6c8t9NCi2EYmjZtmsLCwnTXXXfp7NmzDvslJSWpcuXKdqHGktwSExMd7peYmGizYjk+Pr6IKgcAALfq66+/dvpzOC20rFmzRseOHdM777yTb7/MzEx5eHjYtVtWI2dmZjrcb+XKlYqMjLztOgEAQOHdaHLBGZwSWq5evap58+bpscceU2BgYL59vby8lJ2dbdduWdjj5eXlcL/w8HB16NDB+jg+Pl6TJk26jaoBAEBp5pTQ8tVXXyk7O1thYWHWy0IJCQmSpNTUVJ09e1YBAQHy8PCQv7+/9u7dK8MwbC4RWS79BAQEOHyOgICAG24DAABlj1NCy/nz55WSkqInnnjCbtuiRYu0aNEiLViwQEFBQWrUqJG+//57xcfHq169etZ+MTExkqRGjRo5o0QAAGAyTgkt/fr1U2hoqE1bcnKy/vWvf6l3797q2LGjatSoIUnq2LGjZs6cqeXLl+vFF1+UdG0R74oVK1S1alXdddddzigRAACYTKFCy7Jly5Sammq9hLNlyxbrHW/79eun4OBgBQcH2+xjuUxUr149m0BTrVo1DRgwQF9++aVycnIUEhKiX375RQcOHNCbb74pNze3Qg0MAACULYUKLVFRUTp37pz18aZNm7Rp0yZJUs+ePeXj43NLx3v22Wfl6+urlStXau3atapdu7beeOONG96QDgAA3HkKFVoK81nsGjVqWIPNn7m6umrw4MEaPHhwYcoBAAB3AKfeERcAABSdgtydvbDMcFf3W/7uIQAAgJJAaAEAAAXm4uKiS5cuWR8HBATo+PHjxfLchBYAAGAKrGkBAAC3LT09XYMGDdLFixdVr149LVq0qMifg9ACAAAKzM3NTbm5udbHGRkZkq7ds61Dhw4aO3asDMNwynNzeQgAABRYo0aNtH37dknSt99+q6tXr0qS2rdvr1OnTmnIkCH6448/nPLchBYAAFBgH330kcaMGaNWrVpp79698vf3l3Rtge706dP1xBNPKCoqyinPzeUhAABMojTcS6V3796Ki4uzPp44caIkaeDAgTpz5ozc3d31+eefO+W5CS0AAOC2FeZu+beKy0MAAMAUCC0AAMAUCC0AAMAUCC0AAMAUCC0AAJRizrpRW0m43bHw6SEAAEohDw8Pubi4KCEhQVWrVpWLi0tJl3RbDMNQQkKCXFxc5OHhUahjEFoAACiF3NzcVLt2bZ06darYvkXZ2VxcXFS7dm25ubkVan9CCwAApZSPj4+CgoKUnZ1d0qUUCQ8Pj0IHFonQAgBAqebm5nZbf+jLEhbiAgAAU2CmBQAAaPaZtTftU9LffcRMCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAX3W90hLS1NX331lWJiYhQbG6uUlBSNHz9evXv3tvbJy8vTunXrtHHjRsXFxSklJUU1atRQWFiYBg0aJC8vL7vjfv/99/rqq6907tw5Va1aVf3791e/fv1ub3QAAKDMuOWZlsuXLysyMlLx8fFq1KiRwz4ZGRmaMmWKLl++rIcfflgREREKCQnRp59+qrFjx8owDJv+K1as0Hvvvaf69etrzJgxuuuuuzRt2jQtWbKkcKMCAABlzi3PtPj7+2v58uXy9/fX4cOH9cwzz9j18fDw0Mcff6y7777b2vbQQw+pevXqWrhwoXbv3q3WrVtLkjIzM/XJJ5/ovvvu08SJE6198/Ly9Pnnnys8PFy+vr6FHR8AACgjbnmmxdPTU/7+/vn28fDwsAksFqGhoZKk+Ph4a9uePXt0+fJlPfLIIzZ9+/btq/T0dP3666+3WiIAACiDinUh7sWLFyVJFStWtLbFxcVJkpo0aWLTNzg4WK6urjp69GjxFQgAAEqtW748dDu+/PJLeXt7q127dta2pKQkubm5qXLlyjZ9PTw85Ofnp6SkJIfHSkxMtNl2/ewNAAAoe4ottCxatEi7du3SSy+9ZLNGJTMzU+7ujsvw9PRUZmamw20rV65UZGSkM0oFAAClULGElg0bNuiTTz5Rnz597NaueHl5KScnx+F+WVlZDj8eLUnh4eHq0KGD9XF8fLwmTZpUZDUDAIDSxemhZefOnXr33Xd133336eWXX7bb7u/vr9zcXCUnJ9tcIsrOztaVK1duuOg3ICBAAQEBTqsbAACULk5diBsTE6M33nhDwcHBmjBhgsPLQEFBQZKkw4cP27QfPnxYeXl51u0AAODO5rTQcvz4cY0bN07Vq1fX1KlTb3iZp1WrVvLz89OKFSts2lesWKFy5crpvvvuc1aJAADARAp1eWjZsmVKTU21fnpny5YtunDhgiSpX79+cnV11SuvvKKUlBQNGjTI7l4rNWvW1F133SXp2pqWYcOG6aOPPtJbb72ltm3bav/+/frxxx81YsQI+fn53c74AABAGVGo0BIVFaVz585ZH2/atEmbNm2SJPXs2VOSrCFm7ty5dvv36tXLGlqkazeSc3d3V1RUlLZs2aJq1app9OjRGjBgQGHKAwAAZVChQsvXX3990z6WEFNQDz30kB566KHClAMAAO4AxXpHXAAAgMIitAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFNwv9Ud0tLS9NVXXykmJkaxsbFKSUnR+PHj1bt3b7u+x48f18yZM3Xw4EG5u7vrvvvu0+jRo1WpUiWbfnl5efrqq6/03Xff6eLFi6pdu7YGDx6s7t27F3pgAACgbLnl0HL58mVFRkYqMDBQjRo10t69ex32u3DhgiIiIuTj46MRI0YoPT1dX331lY4dO6a5c+fKw8PD2nf+/PlasmSJHnroITVp0kSbN2/WO++8IxcXF3Xr1q3wowMAAGXGLYcWf39/LV++XP7+/jp8+LCeeeYZh/0WL16sjIwMffLJJwoMDJQkhYSE6KWXXtKaNWsUHh4uSUpISFBUVJT69u2rF198UZL04IMPKiIiQrNmzVKXLl3k5uZW2PEBAIAy4pbXtHh6esrf3/+m/TZu3Kj27dtbA4sktW7dWnXq1FF0dLS1bfPmzcrJyVHfvn2tbS4uLnrkkUeUkJCgQ4cO3WqJAACgDLrlmZaCSEhIUHJysoKDg+22hYSEaNu2bdbHcXFxKl++vOrWrWvXz7K9efPmzijzlpyJuXjzTjWdXwcAAHcqp4SWpKQkSXI4I+Pv768rV64oKytLnp6eSkpKUuXKleXi4mLXT5ISExMdPkdiYqL1eSQpPj6+qMoHAAClkFNCS2ZmpiTZLLa18PT0tPbx9PRUZmbmTfs5snLlSkVGRhZRxQAAoLRzSmjx8vKSJGVnZ9tty8rKsunj5eVVoH5/Fh4erg4dOlgfx8fHa9KkSbdXOAAAKLWcElosl3auv3xjkZSUJD8/P+tMir+/v/bu3SvDMGwuEVn2DQgIcPgcAQEBN9wGAADKHqfcEbdq1aqqVKmSjhw5YrctNjZWjRo1sj5u1KiRMjIy7NakxMTEWLcDAAA47Tb+nTt31tatW3X+/Hlr2+7du3Xy5El17drV2taxY0e5u7tr+fLl1jbDMLRixQpVrVpVd911l7NKBAAAJlKoy0PLli1Tamqq9RLOli1bdOHCBUlSv3795OPjo8GDB+vnn3/WCy+8oP79+ys9PV1ffvmlGjRoYHPL/2rVqmnAgAH68ssvlZOTo5CQEP3yyy86cOCA3nzzTW4sBwBAMTDDrT0KFVqioqJ07tw56+NNmzZp06ZNkqSePXvKx8dHgYGBmj59umbOnKm5c+dav3to1KhR1vUsFs8++6x8fX21cuVKrV27VrVr19Ybb7yhHj163MbQAABAWVKo0PL1118XqF/9+vX1wQcf3LSfq6urBg8erMGDBxemHAAAcAdw2poWAACAokRoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApkBoAQAApuDuzIOfPHlSCxYs0MGDB3XlyhUFBgaqe/fuGjRokMqVK2ftd/DgQc2ZM0dHjx6Vt7e3unbtqhEjRqhChQrOLA8AAJiI00LL+fPn9eyzz8rHx0d9+/aVn5+fDh06pIULF+rIkSOaMmWKJCkuLk4vvvii6tatq9GjR+vChQuKiorSqVOn9P777zurPAAAYDJOCy0//vijUlNT9fHHH6t+/fqSpPDwcOXl5WndunVKSUmRr6+v5s2bJ19fX02fPl3e3t6SpBo1aui9997Tjh071LZtW2eVCAAATMRpa1quXr0qSapcubJNu7+/v1xdXeXu7q6rV69q165d6tmzpzWwSNL999+v8uXLKzo62lnlAQAAk3FaaGnZsqUkaerUqYqLi9P58+e1YcMGrVixQv369VP58uV17Ngx5ebmKjg42GZfDw8PBQUFKS4uzlnlAQAAk3Ha5aF27dpp2LBhWrx4sbZs2WJtHzJkiEaMGCFJSkpKknRt9uXP/P39tX///hsePzEx0bq/JMXHxxdV6QAAoBRy6qeHatSooRYtWqhz587y8/PTr7/+qsWLF6tKlSrq16+fMjMzJV2bWfkzT09PZWVl3fDYK1euVGRkpLNKBwAApYzTQsuGDRv0/vvva8mSJapWrZokqXPnzjIMQ3PnzlX37t3l5eUlScrOzrbbPysrS56enjc8fnh4uDp06GB9HB8fr0mTJhXxKAAAQGnhtNCyfPlyBQUFWQOLRYcOHbRmzRrFxcVZLwtdf5nHIikpSQEBATc8fkBAQL7bAQBA2eK0hbjJycnKy8uza8/JyZEk5ebmqn79+nJzc9ORI0ds+mRnZysuLk6NGjVyVnkAAMBknBZa6tSpo7i4OJ08edKmfcOGDXJ1dVXDhg3l4+Oj1q1b68cff1RaWpq1z7p165Senq6uXbs6qzwAAGAyTrs8NGjQIG3fvl2jR4/W//zP/8jPz09bt27V9u3b9eCDD1ov7QwfPlyjRo1SRESEwsPDrXfEbdOmjdq1a+es8gAAgMk4LbTcc889+vjjj/Xpp59q+fLlunLlimrUqKERI0boscces/YLDg7Whx9+qDlz5mjGjBmqUKGC+vTpo2effdZZpQEAABNy6keemzZtWqDvD2revLlmzZrlzFIAAIDJOW1NCwAAQFEitAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFMgtAAAAFNwd/YTHDlyRJ9++qkOHjyorKws1axZUw899JD69+9v7XPw4EHNmTNHR48elbe3t7p27aoRI0aoQoUKzi4PAACYhFNDy44dOzR+/HgFBQVp6NChKl++vE6fPq2EhARrn7i4OL344ouqW7euRo8erQsXLigqKkqnTp3S+++/78zyAACAiTgttFy9elXvvvuu7r33Xk2cOFGuro6vRM2bN0++vr6aPn26vL29JUk1atTQe++9px07dqht27bOKhEAAJiI09a0rF+/XhcvXtSIESPk6uqq9PR05eXl2fS5evWqdu3apZ49e1oDiyTdf//9Kl++vKKjo51VHgAAMBmnzbTs2rVL3t7eSkxM1N///nedPHlS5cuXV8+ePTV69Gh5eXnp2LFjys3NVXBwsM2+Hh4eCgoKUlxcnLPKAwAAJuO00HLq1Cnl5ubq9ddfV58+ffTMM89o3759WrZsmVJTU/WPf/xDSUlJkiR/f3+7/f39/bV///4bHj8xMdG6vyTFx8cX/SAAAECp4bTQkp6eroyMDD388MMaM2aMJKlz587Kzs7WypUr9fTTTyszM1PStZmVP/P09FRWVtYNj79y5UpFRkY6pXYAAFD6OC20eHl5SZK6detm0969e3etXLlShw4dUrly5SRJ2dnZdvtnZWXJ09PzhscPDw9Xhw4drI/j4+M1adKkoigdAACUQk4LLf7+/vrPf/6jKlWq2LRXrlxZkpSSkqJatWpJks1lHoukpCQFBATc8PgBAQH5bgcAAGWL0z49ZFlce/09WaRra1EkqVKlSqpfv77c3Nx05MgRmz7Z2dmKi4tTo0aNnFUeAAAwGaeFlq5du0qSfvjhB5v2H374QW5ubmrZsqV8fHzUunVr/fjjj0pLS7P2WbdundLT063HAAAAcNrlocaNG+uBBx7Q6tWrlZubq3vuuUf79u1TdHS0Bg8ebL20M3z4cI0aNUoREREKDw+33hG3TZs2ateunbPKAwAAJuPU2/i/8sorCgwM1Jo1a/TLL78oMDBQo0eP1sCBA619goOD9eGHH2rOnDmaMWOGKlSooD59+ujZZ591ZmkAAMBknBpa3N3d9dRTT+mpp57Kt1/z5s01a9YsZ5YCAABMzmlrWgAAAIoSoQUAAJgCoQUAAJgCoQUAAJiCUxfi3ml2L735t1L/tX9QMVQCAEDZw0wLAAAwBUILAAAwBUILAAAwBUILAAAwBUILAAAwBUILAAAwBUILAAAwBe7TUsy4lwsAAIXDTAsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAFQgsAADAF95IuAAAAONfsM2tLuoQiwUwLAAAwBWZaitB3lXbetM8jl9oUQyUAAJQ9zLQAAABTKNbQ8vnnn6tTp04aOnSo3baDBw9q1KhR6tGjhx555BFNmzZNaWlpxVkeAAAoxYrt8tCFCxe0ePFilS9f3m5bXFycXnzxRdWtW1ejR4/WhQsXFBUVpVOnTun9998vrhJLjYIsmBpZs1cxVAIAKEllZQFtUSm20DJr1iw1bdpUeXl5unz5ss22efPmydfXV9OnT5e3t7ckqUaNGnrvvfe0Y8cOtW3btrjKBAAApVSxXB7at2+fNm7cqIiICLttV69e1a5du9SzZ09rYJGk+++/X+XLl1d0dHRxlAgAAEo5p4eW3NxcTZs2TX369FHDhg3tth87dky5ubkKDg62affw8FBQUJDi4uKcXSIAADABp18eWrFihc6fP6+PPvrI4fakpCRJkr+/v902f39/7d+/3+F+iYmJ1n0lKT4+vgiqBQAApZVTQ8vly5e1cOFCPfHEE6pUqZLDPpmZmZKuzaz8maenp7Kyshzut3LlSkVGRhZVqQAAoJRzamj55JNP5Ovrq379+t2wj5eXlyQpOzvbbltWVpY8PT0d7hceHq4OHTpYH8fHx2vSpEm3WTEAACitnBZaTp48qVWrVikiIkKJiYnW9qysLOXk5Ojs2bPy9va2Xha6/lKPRVJSkgICAhwePyAg4IbbAAAoC87EXLxpn5pNqxTJcczAaaElMTFReXl5mjZtmqZNm2a3/dFHH1X//v319NNPy83NTUeOHFFYWJh1e3Z2tuLi4tS1a1dnlQgAAEzEaaGlfv36mjx5sl37J598orS0ND3//POqWbOmfHx81Lp1a/34448aOnSoKlSoIElat26d0tPTCS0AAECSE0NLpUqVFBoaatf+zTffSJLNtuHDh2vUqFGKiIhQeHi49Y64bdq0Ubt27ZxVIgAAMJFS8YWJwcHB+vDDD+Xl5aUZM2Zo1apV6tOnjyZOnFjSpQEAgFKi2G7jbzF9+nSH7c2bN9esWbOKuZri912lnTftU1M3X1QFAMCdplTMtAAAANwMoQUAAJgCoQUAAJgCoQUAAJhCsS/ERdGYfWbtTfuMrNmrGCoBAKB4MNMCAABMgdACAABMgdACAABMgdACAABMgdACAABMgdACAABMgdACAABMgdACAABMgdACAABMgTviAgBKzO6lcTft89f+QcVQScEVVc0FubM5bDHTAgAATIHQAgAATIHQAgAATIHQAgAATIGFuGVYQRZ5jazZqxgqAQA4y5mYiyVdQrFhpgUAAJgCoQUAAJgCl4dKoYJM9dVsWqVInotLSACcpSD3MylOZrwnDGwx0wIAAEyBmRaYDrNDAJylIL9f2qphMVQCR5hpAQAApkBoAQAApsDlIZMqzsW6QGnAIkoUh4Ld84TLQyWFmRYAAGAKzLTgplj4CgC3piC/N3HrmGkBAACmQGgBAACmwOUh3FSBFqbVdH4dKLtK251TAZROzLQAAABTYKalDONj0YA5FNXHucvqx8JL27i+q7Tzpn1qit+tzsBMCwAAMAWnzbTExsZq7dq12rt3r86dOyc/Pz81a9ZMw4cPV506dWz6Hj9+XDNnztTBgwfl7u6u++67T6NHj1alSpWcVR4AADAZp4WWL774QgcPHlTXrl3VsGFDJSUlafny5Ro+fLhmz56tBg0aSJIuXLigiIgI+fj4aMSIEUpPT9dXX32lY8eOae7cufLw8HBWiSjDStt0shnxGt65iureTAW5jPLIpTYFqslsCnZnXdwqp4WWgQMH6q233rIJHWFhYXrqqae0ZMkSvfnmm5KkxYsXKyMjQ5988okCAwMlSSEhIXrppZe0Zs0ahYeHO6tEAABgIk4LLXfffbddW506dVSvXj3Fx8db2zZu3Kj27dtbA4sktW7dWnXq1FF0dDSh5Q5ToI++tnd+HUBBFOdHtQsy+9G2GL8T5831XxTbcxWVgsz8oHQr1oW4hmEoOTlZFStWlCQlJCQoOTlZwcHBdn1DQkIUF8e9GwAAwDXF+pHnn376SQkJCXr66aclSUlJSZIkf39/u77+/v66cuWKsrKy5Onpabc9MTHRur8km9kbAABQ9hRbaImPj9dHH32kZs2aqVevawu4MjMzJcnhYltLUMnMzHQYWlauXKnIyEjnFYxbUqCp661FM3VdnF8dz5dFAuZQoEt1lZxeBpysWEJLUlKSxo0bJ29vb02cOFFubm6SJC8vL0lSdna23T5ZWVk2ff4sPDxcHTp0sD6Oj4/XpEmTirp0AABQSjg9tKSmpmrs2LFKTU3VzJkzFRAQYN1muSx0/WUei6SkJPn5+TmcZZGkgIAAm2MBt4pFv3euO3kGrSDv+zOV+LguSienhpbMzEy99tprOnnypD788EPVq1fPZnvVqlVVqVIlHTlyxG7f2NhYNWrUyJnlAQAAE3Hap4dyc3P19ttv69ChQ5owYYLuuusuh/06d+6srVu36vz589a23bt36+TJk+ratauzygMAACbjtJmWjz/+WFu2bFH79u2VkpKiH3/80WZ7z549JUmDBw/Wzz//rBdeeEH9+/dXenq6vvzySzVo0EC9e/d2Vnn4P0V118biXBxbVhXnJYvivL9IQRTVnVMLPK4CXPYryH1IHlHZvJsrUFo5LbT8/vvvkqStW7dq69atdtstoSUwMFDTp0/XzJkzNXfuXOt3D40aNeqG61kAAMCdx2mhZfr06QXuW79+fX3wwQfOKgWlRGn7HpIC3R0zpgAHqnnzLgWZRSkqpW0W5U7/KGppe9+XNrw+uBXFekdcAACAwiK0AAAAUyjW2/gDxaU4vxjtTr7fS2m7FFXcivN9VlSL3fnSQJgZMy0AAMAUmGkBUGYUeBahIAusUWowOwQLZloAAIApEFoAAIApcHkIuE0FmbquqSpF8lwFWfhanPe9YNq+dOF8oKxjpgUAAJgCMy0oVfiXYv54fcomzitQMMy0AAAAUyC0AAAAUyC0AAAAUyC0AAAAU2AhLlBKFOy7ZYoGCz8BmBEzLQAAwBQILQAAwBS4PAQUg+K89AMAZRUzLQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBS4Iy4AU+BLHgEw0wIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyhVNxcLisrSwsWLNCPP/6olJQUNWzYUMOHD1ebNm1KujQAAFBKlIqZlilTpujrr79Wjx499Pzzz8vV1VVjx47VgQMHSro0AABQSpR4aImJidGGDRv0zDPP6LnnnlN4eLj+/e9/q3r16po9e3ZJlwcAAEqJEg8tGzdulJubm8LDw61tXl5e6tOnjw4dOqTz58+XYHUAAKC0KPHQEhcXp9q1a8vb29umPSQkRJL0+++/l0RZAACglCnxhbhJSUny9/e3a7e0JSYmOtwvMTFRSUlJ1seWcBMfH++EKqWUswlOOS4AAGZx5MgRpx27bt26KleuXL59Sjy0ZGZmysPDw67d09PTut2RlStXKjIy0q590qRJRVofAAC4ZsT8ZU479vz58xUcHJxvnxIPLV5eXsrOzrZrz8rKsm53JDw8XB06dLA+TklJUXx8vBo3bmwNPEUlPj5ekyZN0htvvKG6desW6bFLg7I+Pqnsj5HxmV9ZH2NZH59U9sfo7PEV5JglHlr8/f2VkGB/6cVy6ScgIMDhfgEBAXbbWrduXfQFXqdu3bo3TYFmVtbHJ5X9MTI+8yvrYyzr45PK/hhLcnwlvhC3UaNGOnXqlK5evWrTHhMTY90OAABQ4qGlS5cuys3N1cqVK61tWVlZWr16tZo2barAwMASrA4AAJQWJX55qGnTpuratavmzZunS5cuqVatWlq7dq3OnTuncePGlXR5kq5dwnryyScdfsqpLCjr45PK/hgZn/mV9TGW9fFJZX+MpWF8LoZhGCX27P8nMzPT+t1DqampatCggYYPH662bduWdGkAAKCUKBWhBQAA4GZKfE0LAABAQRBaAACAKRBaAACAKZT4p4dKo927d+unn37SgQMHlJCQoCpVqqhVq1YaNmzYDW9292cJCQmaOXOmdu7cqby8PLVs2VIRERGqWbOmk6u/ucTERC1dulSxsbE6fPiw0tPTNW3aNLVs2bJA+y9cuNDhVyh4enpq/fr1RVztrbvd8Uml+/xZpKSkaM6cOdq0aZMyMzMVEhKi5557rkA3fXr33Xe1du1au/a//OUvWrx4sTPKdSgrK8u6CD8lJUUNGzbU8OHD1aZNm5vua4ZzJBV+jKX958wiLS1NX331lWJiYhQbG6uUlBSNHz9evXv3LtD+t/M+Lg63M741a9ZoypQpDrctX768VHzKKDY2VmvXrtXevXt17tw5+fn5qVmzZho+fLjq1Klz0/2L+/wRWhyYM2eOrly5oi5duqhOnTo6c+aMvv32W/36669asGDBTd9oaWlpGjNmjK5evarBgwfL3d1dX3/9tSIiIrRw4UJVrFixmEbi2MmTJ/XFF1+odu3aatCggQ4dOlSo47z88ssqX7689bGra+mYuLvd8ZX28ydJeXl5GjdunP744w8NGjRIFStW1HfffacxY8Zo/vz5Bfpl4+npqbFjx9q0/fnb1p1typQp+vnnnzVgwADVrl1ba9as0dixYzVt2jQ1b978hvuZ4RxZFHaMFqX158zi8uXLioyMVGBgoBo1aqS9e/cWeN+ieB872+2Mz2LYsGGqUaOGTZuPj09RlXhbvvjiCx08eFBdu3ZVw4YNlZSUpOXLl2v48OGaPXu2GjRocMN9S+T8GbCzd+9eIzc3164tNDTUmDdv3k33X7JkiREaGmrExMRY244fP2506dLFmDt3bpHXe6uuXr1qXL582TAMw4iOjjZCQ0ONPXv2FHj/BQsWGKGhoUZycrKTKrw9tzu+0n7+DMMwNmzYYISGhhrR0dHWtuTkZKN3797GhAkTbrr/5MmTjZ49ezqxwps7dOiQERoaanzxxRfWtoyMDGPQoEHG3/72t3z3NcM5MozbG2Np/zmzyMzMNBITEw3DMIzY2FgjNDTUWL16dYH2vd33cXG4nfGtXr3aCA0NNWJjY51Z4m05cOCAkZWVZdN24sQJo1u3bsY777yT774lcf5KV2QvJe655x67f83cc8898vPzU3x8/E33//nnn9WkSROFhIRY2+rWratWrVopOjq6yOu9VRUqVJCfn1+RHOvq1asyStmn5m93fKX9/EnSxo0bVaVKFXXq1MnaVqlSJXXt2lWbN2+2fuHozeTm5tp9hUZx2bhxo9zc3BQeHm5t8/LyUp8+fXTo0CGdP3/+hvua4RxJtzfG65XGnzMLT0/PQl/mKKr3sTPdzviul5aWptzc3CKoqGjdfffd8vDwsGmrU6eO6tWrd9O/dyVx/ggtBZSWlqb09PSbTjvn5eXp2LFjatKkid22kJAQnT59Wmlpac4qs1g9+uij6t27t3r16qWJEyfq4sWLJV3SbTPL+Tt69KiCgoLswnVISIgyMjJ08uTJmx4jIyNDvXv3Vu/evdWnTx99+OGHxTq2uLg41a5d2+6SlCWI/P777w73M8s5kgo/xuuVxZ8zi6J4H5vBmDFj1KtXL/Xs2VOvvfZaqR+XYRhKTk6+6d+7kjh/rGkpoG+++UbZ2dkKCwvLt9+VK1eUlZXlMJlb2hITE/WXv/zFKXUWB19fX/3P//yPmjVrJg8PDx04cEDLly9XbGys5s+fX+zrIoqSWc7fxYsX1aJFC7t2S41JSUlq2LDhDff39/fXY489psaNG8swDG3fvl3fffed/vjjD02bNk3u7s7/1ZCUlHTT19kRs5wjqfBjlMr2z5nF7b6PSzsvLy/17t1bLVu2lLe3t44cOaKvv/5azz33nD755JNS+916P/30kxISEvT000/n268kzl+ZDy15eXnKzs4uUF9PT0+5uLjYte/bt0+RkZHq2rWr/vrXv+Z7jMzMTEmym26zHP/6PkWhKMZ3qwYMGGDzuEuXLgoJCdHEiRO1fPlyDR48+Lafw6K4x1fc508q3BgzMzOt9RSmxmeffdbmcbdu3VSnTh3Nnz9fGzduVLdu3QpYfeFlZmYW6nUuiXNUWIUdo1S8P2cl5Xbfx6VdWFiYzT90Q0ND1bZtW0VERGjRokV65ZVXSrA6x+Lj4/XRRx+pWbNm6tWrV759S+L8lfnQsn//fo0ZM6ZAfRctWqS6devatMXHx+uNN95QgwYNCvQFjl5eXpLk8I+Q5fqepU9RuN3xFZUePXro448/1u7du4v0l2lxj6+4z59UuDF6eXk5vF58OzUOHDhQCxYs0K5du4oltHh5eRXqdS6Jc1RYhR3jjTjr56ykOON9XNo1b95cTZs21e7du0u6FDtJSUkaN26cvL29NXHiRLm5ueXbvyTOX5kPLX/5y180fvz4AvX98zTu+fPn9fLLL8vb21tTp05VhQoVbnoMPz8/eXp6KikpyW6bpa2g93opiNsZX1GrVq2arly5UqTHLO7xFff5kwo3xipVquRbY2FeCy8vL/n5+RX5ObwRf39/JSQk2LXf7HUuiXNUWIUdY36c8XNWUpzxPjaDatWq6cSJEyVdho3U1FSNHTtWqampmjlzZoHemyVx/sp8aPH39y/wTY6ud/nyZb388svKzs7WRx99VOBfLq6urmrQoIEOHz5sty0mJkY1a9YsUPgpqMKOr6gZhqFz584pKCioSI9b3OMr7vMnFW6MQUFBOnDggPLy8mwWwcXGxqpcuXKFuj9CWlqaLl++rEqVKt3yvoVhuefF1atXbdZnxMTEWLc7UhLnqLAKO8YbcdbPWUlxxvvYDM6cOVNsP2cFkZmZaV0g/OGHH6pevXoF2q8kzh+fHnIgPT1dY8eOVWJiot577718X/jz58/bfSysc+fOOnz4sM0v1RMnTmjv3r3q0qWLs8p2Ckfju3Tpkl2/7777TpcuXVK7du2KqbKiYdbz17lzZ128eFGbNm2ytl26dEnR0dFq3769zXXm06dP6/Tp09bHmZmZDj9d89lnn8kwjGI7h126dFFubq5WrlxpbcvKytLq1avVtGlT6yJFs54j6fbGWJZ+zqRri47j4+OVk5NjbbuV93Fp52h8js7hr7/+qiNHjqht27bFWN2N5ebm6u2339ahQ4c0YcIE3XXXXQ77lZbzV+ZnWgpj4sSJio2N1QMPPKD4+HibXybly5dXaGio9fHkyZO1b98+m5PWt29fff/99xo3bpwGDRokNzc3ff3116pcubIGDRpUrGO5kc8++0ySdPz4cUnSunXrdODAAUnS0KFDrf0cjW/AgAEKCwtTgwYN5OnpqYMHD2rDhg0KCgqyuR9FSbqd8Znh/HXp0kVLly7VlClTdPz4ceudKPPy8uxW/L/44ouSpK+//lrStRX/w4YNU/fu3a2fsNmxY4e2bdumdu3aqWPHjsUyhqZNm6pr166aN2+eLl26pFq1amnt2rU6d+6czfoxs54j6fbGaIafM4tly5YpNTXVellgy5YtunDhgiSpX79+8vHx0bx587R27VpFRUVZ7w57K+/jklTY8Y0cOVKNGzdWcHCwvL29dfToUa1evVrVqlXTkCFDSmw81/v444+1ZcsWtW/fXikpKfrxxx9ttvfs2VOSSs35I7Q4YLl3wurVq7V69WqbbdWrV7cJLY5UqFBB06ZN08yZM/X5559bvxdl9OjRpWZKcMGCBTaPrx/n9X/UHenRo4d+++03bdy4UVlZWQoMDNRjjz2mJ554QuXKlXNKvbfqdsZnhvPn5uam9957T7NmzdKyZcuUmZmpJk2aaPz48Tf9qK+Pj4/at2+vnTt3au3atcrLy1OtWrX0zDPPaNCgQcV6m/jXX39dgYGBWrdunVJTU9WgQQNNnTpV99xzT777meEcWRR2jGb4ObOIiorSuXPnrI83bdpkDWA9e/a84S3rb+d9XJwKO76wsDBt27ZNO3fuVEZGhvz9/fXQQw/pySefVJUqVYql9pux/L3bunWrtm7darfdElocKYnz52KU1tssAgAAXIc1LQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILQAAwBQILUApsnDhQnXq1El79+4t6VKcolOnTnr++edLugwAJsVt/GFaZ8+e1aOPPmrT5u7ursqVK6tFixb6f//v/6lhw4YlVF3pZBiGfvrpJ/3www/6448/lJaWJl9fXwUEBKhZs2YKCwuzub38u+++a/d9I0CnTp10zz33aPr06SVdCu4whBaYXq1atdSjRw9J176hOyYmRuvXr9emTZv00Ucf6e677y7hCkuPf/7zn1qzZo18fX3Vvn17BQQEKDMzU3/88Yd++OEHXb169abfiQMAJYXQAtOrVauW3TeKzp8/X4sWLdL8+fP51+D/2b9/v9asWaOgoCBNnz5d3t7eNttTUlKs34oNAKURoQVlUr9+/bRo0SIdPnzY2nbkyBEtXrxYsbGxSk5OVoUKFVSjRg117NhRTzzxhM3+ycnJWrx4sbZu3aoLFy6oQoUKatGihZ5++mk1aNDApm9+U+UDBw6UJH399dc27efPn9ecOXO0Y8cO5eTkqHHjxho2bFi+Y1q9erVWrFhhDRb16tXTI488ot69exfoNTl06JAk6f7777cLLJLk6+trMys1cOBA6zfbXn8Z7s9jPXjwoBYtWqRDhw4pMzNT1atXV1hYmB5//PECfRuxYRiaOXOmvvnmG3Xv3l2vv/663N3dZRiGVq9erR9++EHHjh1Tbm6udcx9+vSxOUZmZqaWL1+udevW6dy5c8rNzVWlSpUUEhKiIUOGqFGjRvnWYLnU2KtXLz322GOaPXu2fvvtN+Xm5qpZs2Z69tlnFRwcbLPPkSNHtHr1au3bt08XLlxQdna2ddZv0KBBcne3/fVqeS8sWLBAn3zyiTZv3qyLFy9q7Nix6t27d6GPt3DhQs2dO1e//PKL0tLS1LhxY0VERCg4OFiJiYmaPXu2du7cqbS0NDVv3lwvvvii6tSpY/canDlzRosWLdLOnTuVnJwsX19ftW3bVk8//bSqV68uSdq7d6/GjBkjSdq3b586depk3X/8+PE278VffvlFy5Yt09GjR5WVlaVatWqpV69eGjhwoNzc3Kz91qxZoylTpmj8+PHy8/PTkiVL9Mcff6hixYp2PzcAoQVlmouLiyQpLi5Oo0aNkqurqzp27KjAwEClpqbq+PHjWrVqlU1oOX36tJ5//nklJCSoTZs26tixoy5duqSNGzdq586d+uijj9S0adNC15SYmKjnnntOCQkJatu2rRo3bqz4+Hi9/PLLatmypcN9pk2bpmXLlqlq1ap64IEHJEmbNm3SlClTdPToUesfkvz4+flJkk6dOlWgOvv376+1a9fq999/V//+/eXj4yNJNmtboqOj9c4778jDw0NhYWGqVKmSdu7cqcjISO3YsUPTpk2Tl5fXDZ8jJydH7777rtavX68BAwZo9OjRcnFxkWEYmjhxotavX6/atWure/fu8vDw0M6dOzV16lQdP35co0aNsh7n3XffVXR0tBo2bKjevXvLw8NDCQkJ2rNnj9q0aXPT0GJx5swZjRo1SkFBQXr44Yd1/vx5RUdHKyIiQv/+979tzvuqVau0detWtWjRQvfee68yMjK0b98+zZs3T4cPH9akSZPsjp+VlaUXXnhB6enp6tChg9zc3FS5cuVCHy87O1svvfSSsrKyFBYWpuTkZEVHR+ull17SrFmz9Morr8jf3189e/bUqVOntHXrVo0bN06LFi2yCQ4xMTF65ZVXlJ6ervbt26t27do6d+6cfvrpJ23fvl2zZ89WzZo1Vb16dT355JOKjIxU9erV1atXL+sxrn+N586dqyVLlqhq1arq1KmTfHx8dODAAc2ePVuxsbF655137MYSHR2tnTt3qn379nrkkUeUlpZWoHOGO4wBmNSZM2eM0NBQ4+WXX7bbtmDBAiM0NNR4/vnnDcMwjBkzZhihoaHGpk2b7PpeunTJ5vHIkSONLl26GNu3b7dpP3HihHH//fcbQ4cOtWkPDQ01IiIiHNY4YMAAY8CAATZtkydPNkJDQ43PPvvMpn3FihVGaGioERoaauzZs8favnfvXiM0NNQYPHiwkZKSYm2/cuWK8fjjjxuhoaHGvn37HD7/9c6fP2/06tXL6NSpkzFhwgQjOjraOHv2bL77WGo9c+aM3bbU1FSjd+/eRrdu3Yzff//d2p6bm2v84x//MEJDQ43IyEibfa5/ra5evWq89NJLRmhoqLFo0SKbfitXrjRCQ0ONKVOmGNnZ2db2rKwsY9y4cUZoaKhx+PBhwzAMIyUlxejUqZMxfPhwIycnx+Y4OTk5xpUrV2762ljeS6GhocacOXNstm3fvt0IDQ21O+/nzp2ze768vDxjypQpRmhoqHHgwAGbbQMGDLC+XzMyMuxqKOzx3nrrLZvXaMmSJUZoaKjRu3dvY8aMGUZeXp512wcffGCEhoYaP//8s7UtOzvbGDBggHH//fcbR44csXmO/fv3G126dDHGjRtn057fe37Hjh3WcaalpdmM5V//+pcRGhpqREdHW9tXr15thIaGGp07dzZ27tzp8JiABR95humdPn1aCxcu1MKFCzVr1iyNHj1akZGR8vT01IgRI2z6OvpXf8WKFa3/ffToUf3222+6//771bZtW5t+derU0YMPPqhjx47p2LFjhao1Oztb//u//6vKlSvbffLpwQcfVO3ate32Wbt2rSTpqaeess52SNcu5zz55JOSrk2x30y1atU0ceJEVatWTevXr9dbb72lgQMHKjw8XP/4xz+0e/fuWxrL5s2blZqaqgceeMDmU1qurq4aOXKk3NzcbljXpUuX9MILL2jPnj167bXXNHjwYJvt3377rcqXL68XX3zR5rKIh4eH9ZyuX79ekqwzM56ennJ1tf2V5ubmJl9f3wKPycfHR0OGDLFpa9u2rf7617/q2LFjOnLkiLU9MDDQZrbCUkvfvn0lSbt27XL4HCNHjnT4Pizs8Z577jmb16hbt26SpNzcXA0fPtw623j9tj/++MPatnXrVp07d06PPfaYGjdubHPs5s2bq0OHDtq2bZuuXr3q8Pn/7Ntvv5UkvfrqqypfvrzNWJ599lm5uLhow4YNdvt16NBBrVu3LtBz4M7F5SGY3unTpxUZGSnpvx957t69u81HnsPCwrR06VK98cYbCgsLU+vWrdWiRQtVrVrV5lgxMTGSrq1pWbhwod1znThxwvr/f17bUhAnTpxQVlaWWrVqZfeHy9XVVXfffbfd5Zu4uDhJcnjpyNL2+++/F+j5W7durS+//FL79u3T/v37deTIER08eFDR0dGKjo7W4MGD9cwzzxToWJa6HH3aKDAwUDVr1tTJkyeVlpamChUqWLddvHhRo0aN0oULFzRp0iR16NDBZt+MjAwdO3ZMAQEBWrJkid2xc3NzJf33XHh7e+vee+/Vtm3bNHz4cHXp0kX33HOPQkJC7NaB3ExQUJBNrRbNmzfX7t27FRcXZ13bkp2drW+//VYbNmzQiRMnlJ6eLsMwrPskJibaHcfT0/OG75vCHM/X11eBgYE2bf7+/pKk2rVr260psmy7/liWtU4nTpxw+J6/ePGi8vLydPLkSTVp0sRh7deLiYlR+fLl9cMPPzjc7uXlZT131wsJCbnpsQFCC0yvbdu2+te//pVvn6ZNm2ratGlavHix1q9fr9WrV0uSmjRpor/97W9q1aqVJOnKlSuSpF9//VW//vrrDY+Xnp5eqFot/1q1rGP4M0ftaWlpcnV1VaVKley2ValSRS4uLgX+V7B0Ldi1bt3a+q/anJwcrV27Vh988IEWL16szp072y06zW8sVapUcbjd399fJ0+e1NWrV+1Cy9WrV1WrVi2Ha4NSUlJkGIYSEhKsYdSRjIwM63+/8847WrRokdavX6/58+dLuhZmevfurWeeeaZAC4LzG4ulPTU11dr25ptvauvWrapTp47CwsJUuXJlubm5KTU1VUuXLlV2drbdcSpXrmwz83G9whzP0YJqS1BztM0yk5OTk2NtS0lJkST99NNPDuuyuP71zs+VK1eUm5ub77lz9PNzo9ceuB6hBXeMFi1aqEWLFsrMzFRMTIy2bNmi7777TuPGjdNnn32mmjVrWn/RjxkzRv369SvQcV1cXKz/+v+z1NRUm0s6luMnJyc77O+ovUKFCsrLy9OlS5fsQk1ycrIMw3D4B6qg3N3d9eCDD2r//v1at26d9u7dW6DQYnnOixcvOtxuaf9zbY0aNVKvXr303nvvacyYMfr3v/9t8wfL0j84ONgaQG6mXLlyGjFihEaMGKEzZ85o7969WrFihZYuXarMzEy9+uqrBTrOzcZiOZexsbHaunWr2rZtq6lTp9pc1jl06JCWLl3q8Dg3CiyFPV5RsATKf/7zn2rfvv1tH8/b21suLi5atWrVLe13o9cGuB5rWnDH8fLyUsuWLTV69GgNGTJEmZmZ2rlzp6T/TlFbpswLwtfXVwkJCXbtZ8+etfmXuXRtXYynp6eOHDmizMxMm215eXn67bff7I4TFBQkSQ5v7b9v3z5JKvCnY/Jz/foDC8sakby8vBvWZanheufPn9fp06dVs2ZNh5dbHnjgAb322ms6ceKExowZYxMWKlSooLp16yo+Pt46C3AratasqT59+mjGjBkqX768tmzZUuB94+LiHH5q5cCBA5L+O+YzZ85Iku677z67dSiWvreiqI93KyyzXbfynnd1dXX4npCu/QxdvnxZJ0+eLJL6gOsRWnBH+O233+xCgvTff0F7enpKuvYLvGnTptqwYYPDxYJ5eXl2f6SbNGmic+fO2bRnZ2dr5syZdvt7enqqa9euSk5OVlRUlM2277//3uEvesvHSiMjI20uA6WmpurTTz+16ZOf7du365dffrG5NGBx6tQp/fzzz5Kurd+wsHxM+sKFC3b7dOzYUT4+Plq9erX+85//WNsNw9DcuXOVm5ub7z1kevXqpfHjx+vkyZN6/vnnlZSUZN3Wv39/ZWRk6P3333d4KeHMmTM6e/aspGuLeh0tjE5JSVF2drb13BZEamqqFi1aZNO2Y8cO7d69W/Xr17fOQFnWkfw5UPznP//R4sWLC/x8FkV9vFthuQVAVFSUwwCak5NjV5evr6/D94R07dxJ0tSpU3X58mW77UlJSdzEEIXG5SHcEb744gvt3btXLVq0UI0aNeTp6amjR49q9+7dqlmzps1Nst566y298MILmjBhgpYuXaqgoCB5eXnpwoUL+u2333T58mXrJ1ekazf52rlzp8aOHatu3bqpXLly2rlzp3x9fa0LH6/37LPPas+ePfrkk0908OBBBQUFKT4+Xtu2bVObNm2ssz4W99xzj/r166dly5Zp6NCh6ty5swzD0MaNG5WQkKB+/foV6Nb78fHxmjlzpipWrKgWLVqoVq1aMgxDp0+f1rZt25Sdna1HHnnEZp1Jq1at9NVXX+n9999X586dVa5cOVWvXt16g7pXX31V77zzjv72t7+pa9euqlSpknbv3q0jR44oJCREgwYNyrem+++/Xy4uLpoyZYr1UlFAQIDCw8N16NAhrV27VgcPHlTr1q3l7++v5ORknThxQjExMXrrrbdUo0YNJSQkaNiwYWrUqJEaNmyogIAAXblyRZs3b1ZOTs5Na7he8+bNtWLFCsXExKhZs2Y6d+6coqOj5eXlpXHjxln7hYSEKCQkRNHR0UpKSlKzZs10/vx5bdmyRffdd581ABZUUR/vVnh6euqdd97R2LFj9fzzz6tVq1Zq0KCBXFxcdO7cOR04cEAVK1a0CU+tWrVSdHS0Xn/9dQUFBVnvf9SwYUO1a9dOQ4cO1WeffabHHntM7dq1U2BgoK5cuaLTp0/rwIEDGjZsmOrVq+e0MaHsIrTgjvDII4/I29tbsbGx2rdvnwzDUGBgoIYMGaIBAwbYrLuoWbOmFixYoKioKP3yyy9as2aNXF1d5e/vrxYtWqhLly42x27btq0mTJigyMhI/fjjj/L19VXXrl01YsQI60eSrxcQEKBZs2Zp9uzZ2rFjh/bv36/GjRvrgw8+0J49e+xCi3RtjU1QUJC+++4761qBevXqadiwYdabzd1Mz549VaFCBe3YsUPHjh3Trl27lJWVpYoVK6pNmzbq1auX3djuvfdejRw5UqtWrVJUVJRycnJ0zz336P7775ckde3aVVWqVNHixYu1adMm6x1xhw4dqscffzzfG8tdX5erq6smT56sF154wRpcXn/9dd177736/vvvtXXrVqWnp6ty5cqqXbu2nnvuOf31r3+VJFWvXl1PPfWU9uzZo127dunKlSuqWLGiGjdurP79+6tdu3YFen2ka+f+5Zdf1uzZs7V8+XLl5eWpZcuWdnfEdXNz09SpU613NT58+LC1rnbt2t1yyCjq492qkJAQLVy4UF9++aW2bdum3377TR4eHgoICFBoaKj1o9IWlm/q3rNnj7Zu3aq8vDxVq1bN+mm9YcOGqUWLFlq6dKl2796t1NRU+fn5qUaNGnryySet3xUG3CoX4/rP1AHAHej62/i//vrrJV0OgBtgTQsAADAFQgsAADAFQgsAADAF1rQAAABTYKYFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYwv8HC5MSOI4TPNgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKrklEQVR4nO3dd3xUVf7/8Xc6kEJJINSlBggobSkKhhK6aNSliLsgKqCrNCuIq64IyBf9IlKkSDEKqLAgAitN+AZQegdJCAGW0CENSEhP7u8PfpllnIGEkElyw+v5eOxjnXPPvfM5cyfJm3vPnHEyDMMQAABAMedc1AUAAADkBaEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFQLHSsWNHOTk5Ofx5PvroIzk5OWnLli0Of668qFWrlmrVqlXUZQDFGqEFMLktW7bIyclJHTt2vGOfM2fOyMnJiT+KAEyN0ALggTR8+HBFRESodevWRV0KgDxyLeoCAKAo+Pn5yc/Pr6jLAHAPuNICPKBun9OxfPlytW7dWmXKlFGFChXUv39/XbhwwWafnPkmaWlpev/991W7dm15eHiobt26GjdunNLT0+0+1+bNm9WjRw9VqFBBHh4eql+/vt59911dv349T7Wmp6dr5syZevzxx1WzZk15eHioQoUK6tKli9atW2d3n5w5Ijdu3NCbb76pWrVqyc3NTR999JHN+P84vjv974+34DIzMzVr1iw98sgj8vHxUZkyZdS8eXPNnDlT2dnZNjUZhqGZM2eqcePGKlWqlKpVq6bhw4fn+XUAHnRcaQEecLNmzdLq1asVEhKiDh06aPfu3Vq6dKkOHz6sQ4cOycPDw2affv36ae/everTp4/c3Ny0atUqffTRR9q3b59Wr15tNZF27ty5evXVV+Xp6am+ffuqUqVK2rJliyZPnqw1a9Zo+/btKleu3F1rjI+P16hRo9S2bVt17dpVFStW1KVLl7RmzRo9/vjjmjdvnoYMGWKzX3p6uoKDgxUfH69u3brJx8dHtWvXvuPzvPDCC3bnBv3666/6v//7P5UpU8bSlpGRoSeffFIbNmxQgwYN9Ne//lWlSpVSWFiYRowYod27d2vRokVWx3n99dc1ffp0ValSRS+//LLltdu9e7fS09Pl7u5+19cBeOAZAEwtLCzMkGR06NDhjn3+85//GJKMmjVrWtr++c9/GpIMb29v48iRI1b9n3vuOUOSsXTpUqv2Dh06GJKMgIAAIz4+3tKekpJiPPLII4Yk49tvv7W0nzlzxnB3dze8vb2NiIgIq2O9+uqrhiRj6NChdp/jdqmpqca5c+dsxnXt2jWjcePGRvny5Y3k5GSrbTVr1jQkGZ07dzaSkpJs9s0Zf1hYmM222x0+fNjw9vY2/Pz8jJMnT9rsP3z4cCMzM9PSnpmZabz00kuGJOOnn36ytG/fvt2QZNStW9eIi4uztN/+2t1+fgDY4vYQ8IAbOXKkHn74Yau2oUOHSpL27Nljd58PPvhA5cuXtzwuVaqUJk2aJElauHChpX3x4sVKT0/X8OHD1bBhQ6tjTJw4Ud7e3lq0aJHS0tLuWqOHh4eqV69u0162bFm99NJLSkhI0N69e+3uO2XKFHl6et71+Hdy8eJF9erVSxkZGVq1apXq1q0rScrOztaMGTNUuXJlTZ06VS4uLpZ9XFxcNGXKFDk5OWnJkiWW9q+//lqS9I9//EMVKlSwtN/+2gG4O24PAQ+4li1b2rTVqFFDkpSQkGB3nw4dOti0PfbYY3JxcdHBgwctbQcOHJAkBQcH2/QvX768mjdvrm3btun48eNq2rTpXes8duyYPvvsM23btk2XLl1Samqq1XZ7c3BKlSqlJk2a3PW4d5KUlKQnnnhCFy5c0Pfff6+2bdtatp04cULx8fEKCAjQhAkT7O5funRpRUREWB7nvBZ3e+0A3B2hBTA5Z+dbF0ztTfzMkbMtp+/t7M0ncXW99ashKyvL7vH8/f3t7uPn56erV69a2nImmFapUsXucXLar127dsfaJWnXrl0KDg5WZmamOnfurJCQEPn4+MjZ2VmHDh3SqlWr7F6tqVSpUr4WqsvKytKzzz6rgwcPatKkSXr22WettsfFxUmSoqKiNG7cuDseJykpyfLfOa/F3V47AHdHaAFMrmzZspL++4fUntjYWEn2A0p+XLlyRX/605+s2jIzMxUbGysfHx+b2i5fvqzGjRvbHOfSpUtW/e5kwoQJSklJUVhYmM1E2UmTJmnVqlV298vvyrojRozQ2rVrNXToUL377rs223PqfeaZZ/Tjjz/m6Zg5+1y5ckV16tSx2pbz2tm7BQbgv5jTAphcgwYN5OHhoRMnTtwxuOzcuVOScr0Fk1dbt261afvtt9+UlZWl5s2bW9py/tveUvnXrl3ToUOHVKpUKQUGBt71+U6ePKkKFSrY/WSPvVrux5QpUzR79mx169ZNs2bNstunYcOGKleunHbt2qWMjIw8HbdFixaS7v7aAbg7QgtgcqVKlVL//v2VmZmpd955R4ZhWG0/f/68PvvsM0m3PtJbEMaPH2813yU1NVVjx46VJL344ouW9gEDBsjNzU0zZszQyZMnrY7xwQcf6MaNGxowYIDdj1XfrlatWoqPj9eRI0es2hcsWKANGzbc73AsfvzxR40ePVoPP/yw/vWvf1luk/2Rq6urRowYoUuXLmnkyJFKSUmx6XPp0iWFh4dbHue89hMnTlR8fLyl/fbXDsDdcXsIKAGmTJmivXv36uuvv9bOnTvVtWtX+fj4KDo6WqtWrVJiYqLGjBljdxJofgQGBqpx48ZW67ScOnVKvXr10sCBAy39atWqpS+++ELDhg1TixYt1K9fP1WsWFFbt27Vzp071bBhQ02ePDnX53v99de1YcMGPfbYY+rXr5/Kli2rffv26bffflOfPn20fPnyAhnXgAEDlJ2drVatWunzzz+32V6rVi1L+Pjggw90+PBhzZkzR2vWrFFwcLCqVaumq1evKioqStu3b9fEiRPVqFEjSVK7du00YsQIzZgxQw899JDVa1e+fPk7zvsBcJui/sw1gIKRmJhoTJw40WjZsqXh7e1tuLq6Gv7+/sYTTzxh/Pzzzzb977ZOSc66LoMGDbJqz1lDJTU11fjHP/5h1KpVy3B3dzdq165tfPTRR0Zqaqrd2jZs2GB07drVKFeunOHu7m7UrVvXeOedd4yEhASbvvbWaTEMw1izZo3Rpk0bw8vLyyhbtqzRtWtXY+vWrcbXX39tSDK+/vprq/41a9a867on9sYv6a7/++NaONnZ2ca3335rBAcHG+XLlzfc3NyMqlWrGu3atTMmTpxonD171qb/jBkzjIYNGxru7u5GlSpVjNdee824du1arvUCMAwnw/jDtWQAuIOOHTtq69atNregAKAwMKcFAACYAqEFAACYAqEFAACYAnNaAACAKXClBQAAmAKhBQAAmEKJCS2pqamKjIy0+eZXAABQMpSY0BIdHa2hQ4cqOjq6qEsBAAAOUGJCCwAAKNkILQAAwBQILQAAwBQILQAAwBRci7oAAOaXlZWljIyMoi6jQLi5ucnFxaWoywBgB6EFwH1JSkrS+fPnS8w3Pzs5Oal69ery8vIq6lIA/AGhBUC+ZWVl6fz58ypTpowqVqwoJyenoi7pvhiGoZiYGJ0/f14BAQFccQGKGUILgHzLyMiQYRiqWLGiSpcuXdTlFIiKFSvqzJkzysjIILQAxQwTcQHcN7NfYbldSRoLUNJwpQVAgdq/PMphx/5znwCHHRtA8ceVFgAAYAqEFgAl0urVqxUYGKgmTZpo9OjR8vPz05kzZ4q6LAD3gdACoMS5evWqXnzxRa1YsUJHjhxRvXr1FBcXV9RlAbhPhBYAJc6uXbvUpEkTNWrUSJI0ePBgubu7S5JSUlL01FNPKSgoSAMHDizKMgHcIybiAijxbv9E0Pbt29WuXTuNHj26xCyIBzwouNICoMR59NFHdeTIER0/flyStHDhQqWnp0uS2rZtq/Pnz2vgwIE6depUUZYJ4B4RWgCUOBUrVtTChQv1zDPPqGnTpoqKipKvr6+kW1ddpk+frueff15Lly4t4koB3AtuD+XR7Ivrc+3zatUehVAJULwVl7VUnnrqKT311FOWxwsWLJAkDRo0SBcvXpSrq6u+/fbboioPQD4QWgA8UJYtW1bUJQDIJ0ILgAdCbGxsUZcA4D4xpwUAAJgCoQUAAJgCoQUAAJgCoQUAAJgCoQUAAJgCoQUAAJgCoQUAAJgC67QAKFB5WT06v1h1GniwcaUFAACYAqEFQInk5OSka9euWR77+fnpzJkzRVYPgPtHaAEAAKbAnBYAD5SUlBT1799f8fHxqlWrlhYtWlTUJQHII0ILgBLJxcVFWVlZlsepqamSpO3bt6tdu3YaPXq0DMMoqvIA5AO3hwCUSPXq1dPu3bslST/++KNu3rwpSWrbtq3Onz+vgQMH6tSpU0VZIoB7RGgBUCJNnTpVo0aNUosWLXTw4EH5+vpKujVBd/r06Xr++ee1dOnSIq4SwL3g9hCAAlVc1lLp2bOnoqKiLI/Hjx8vSerXr58uXrwoV1dXffvtt0VVHoB8ILQAeKAsW7asqEsAkE/cHgIAAKZAaAEAAKZAaAEAAKZAaAEAAKbARFwA960kLdJWksYC3Iu8fEN7UX86kNACIN/c3Nzk5OSkmJgYVaxYUU5OTkVd0n0xDEMxMTFycnKSm5tbUZcD4A/uObQkJyfrhx9+UHh4uCIiIpSYmKixY8eqZ8+elj7Z2dnasGGDtm7dqqioKCUmJqpKlSoKDg5W//795eHhYXPcf//73/rhhx90+fJlVaxYUX369FHv3r3vb3QAHMrFxUXVq1fX+fPnS8w3KDs5Oal69epycXEp6lIA/ME9h5br168rNDRU/v7+qlevng4ePGjTJzU1VZMmTVLjxo311FNPqXz58jp27Ji+/vprHThwQF988YXVv8hWrVqlKVOmqEOHDnr22Wd15MgRTZs2Tampqfrb3/52fyME4FBeXl4KCAhQRkZGUZdSINzc3AgsQDF1z6HF19dXK1eulK+vr44fP66XX37Zpo+bm5u+/PJLPfzww5a2J598UpUrV9bChQu1f/9+tWzZUpKUlpam+fPn69FHH7WsWPnkk08qOztb3377rUJCQuTt7Z3f8QEoBC4uLvyhB+Bw9/zpIXd3d8t3eNyJm5ubVWDJERQUJEmKjo62tB04cEDXr1/X008/bdX3mWeeUUpKinbu3HmvJQIAgBKoUD/yHB8fL0kqW7aspS3nu0EaNmxo1bdBgwZydnbWiRMnCq9AAABQbBXqp4e+//57eXp6qk2bNpa2uLg4ubi4qHz58lZ93dzc5OPjo7i4OLvHio2Ntdp2+9UbAABQ8hRaaFm0aJH27dunN99802qOSlpamlxd7Zfh7u6utLQ0u9tWr16t0NBQR5QKAACKoUIJLZs3b9b8+fPVq1cvm7krHh4eyszMtLtfenq63Y9HS1JISIjatWtneRwdHa0JEyYUWM0AAKB4cXho2bt3rz755BM9+uijeuutt2y2+/r6KisrSwkJCVa3iDIyMnTjxo07Tvr18/OTn5+fw+oGAADFi0Mn4oaHh+v9999XgwYNNG7cOLu3gQICAiRJx48ft2o/fvy4srOzLdsBAMCDzWGh5cyZMxozZowqV66syZMn3/E2T4sWLeTj46NVq1ZZta9atUqlSpXSo48+6qgSAQCAieTr9tCKFSuUlJRk+fTO9u3bdfXqVUlS79695ezsrLfffluJiYnq37+/zVorVatW1UMPPSTp1pyWwYMHa+rUqfrwww/VunVrHT58WBs3btTQoUPl4+NzP+MDAAAlRL5Cy9KlS3X58mXL423btmnbtm2SpG7dukmSJcTMnTvXZv8ePXpYQot0ayE5V1dXLV26VNu3b1elSpU0fPhw9e3bNz/lAQCAEihfoWXZsmW59skJMXn15JNP6sknn8xPOQAA4AFQqCviAgAA5BehBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmILrve6QnJysH374QeHh4YqIiFBiYqLGjh2rnj172vQ9c+aMZs6cqaNHj8rV1VWPPvqohg8frnLlyln1y87O1g8//KCffvpJ8fHxql69ugYMGKAuXbrke2AAAKBkuefQcv36dYWGhsrf31/16tXTwYMH7fa7evWqRowYIS8vLw0dOlQpKSn64YcfdPr0ac2dO1dubm6WvvPmzdOSJUv05JNPqmHDhvrtt9/08ccfy8nJSZ07d87/6AAAQIlxz6HF19dXK1eulK+vr44fP66XX37Zbr/FixcrNTVV8+fPl7+/vyQpMDBQb775ptatW6eQkBBJUkxMjJYuXapnnnlGb7zxhiTpiSee0IgRIzRr1ix17NhRLi4u+R0fAAAoIe55Tou7u7t8fX1z7bd161a1bdvWElgkqWXLlqpRo4bCwsIsbb/99psyMzP1zDPPWNqcnJz09NNPKyYmRseOHbvXEgEAQAnkkIm4MTExSkhIUIMGDWy2BQYGKioqyvI4KipKpUuXVs2aNW365WwHAAC459tDeREXFydJdq/I+Pr66saNG0pPT5e7u7vi4uJUvnx5OTk52fSTpNjYWLvPERsba3keSYqOji6o8gEAQDHkkNCSlpYmSVaTbXO4u7tb+ri7uystLS3XfvasXr1aoaGhBVQxAAAo7hwSWjw8PCRJGRkZNtvS09Ot+nh4eOSp3x+FhISoXbt2lsfR0dGaMGHC/RUOAACKLYeElpxbO7ffvskRFxcnHx8fy5UUX19fHTx4UIZhWN0iytnXz8/P7nP4+fndcRsAACh5HDIRt2LFiipXrpwiIyNttkVERKhevXqWx/Xq1VNqaqrNnJTw8HDLdgAAAIct49+hQwft2LFDV65csbTt379f586dU6dOnSxtjz32mFxdXbVy5UpLm2EYWrVqlSpWrKiHHnrIUSUCAAATydftoRUrVigpKclyC2f79u26evWqJKl3797y8vLSgAEDtGXLFr3++uvq06ePUlJS9P3336tOnTpWS/5XqlRJffv21ffff6/MzEwFBgbq119/1ZEjR/TBBx8Um4XlLobH596pquPrAADgQZWv0LJ06VJdvnzZ8njbtm3atm2bJKlbt27y8vKSv7+/pk+frpkzZ2ru3LmW7x4aNmyYZT5LjldeeUXe3t5avXq11q9fr+rVq+v9999X165d72NoAACgJMlXaFm2bFme+tWuXVtTpkzJtZ+zs7MGDBigAQMG5KccAADwAHDYnBYAAICCRGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACm4FrUBQAAgKJ3MTw+905VHV/H3XClBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmIKrIw9+7tw5LViwQEePHtWNGzfk7++vLl26qH///ipVqpSl39GjRzVnzhydOHFCnp6e6tSpk4YOHaoyZco4sjwAAGAiDgstV65c0SuvvCIvLy8988wz8vHx0bFjx7Rw4UJFRkZq0qRJkqSoqCi98cYbqlmzpoYPH66rV69q6dKlOn/+vD777DNHlQcAAEzGYaFl48aNSkpK0pdffqnatWtLkkJCQpSdna0NGzYoMTFR3t7e+uqrr+Tt7a3p06fL09NTklSlShV9+umn2rNnj1q3bu2oEgEAgIk4bE7LzZs3JUnly5e3avf19ZWzs7NcXV118+ZN7du3T926dbMEFknq3r27SpcurbCwMEeVBwAATMZhoaV58+aSpMmTJysqKkpXrlzR5s2btWrVKvXu3VulS5fW6dOnlZWVpQYNGljt6+bmpoCAAEVFRd3x+LGxsYqMjLT8Lzo62lFDAQAAxYDDbg+1adNGgwcP1uLFi7V9+3ZL+8CBAzV06FBJUlxcnKRbV1/+yNfXV4cPH77j8VevXq3Q0NCCLRoAABRbDv30UJUqVdS0aVN16NBBPj4+2rlzpxYvXqwKFSqod+/eSktLk3Trysofubu7Kz09/Y7HDgkJUbt27SyPo6OjNWHChIIfBAAAKBYcFlo2b96szz77TEuWLFGlSpUkSR06dJBhGJo7d666dOkiDw8PSVJGRobN/unp6XJ3d7/j8f38/OTn5+eY4gEAQLHjsDktK1euVEBAgCWw5GjXrp1SU1MVFRVluS2Uc5vodnFxcYQSAABg4bDQkpCQoOzsbJv2zMxMSVJWVpZq164tFxcXRUZGWvXJyMhQVFSU6tWr56jyAACAyTgstNSoUUNRUVE6d+6cVfvmzZvl7OysunXrysvLSy1bttTGjRuVnJxs6bNhwwalpKSoU6dOjioPAACYjMPmtPTv31+7d+/W8OHD9Ze//EU+Pj7asWOHdu/erSeeeMJy62fIkCEaNmyYRowYoZCQEMuKuK1atVKbNm0cVR4AADAZh4WWZs2a6csvv9TXX3+tlStX6saNG6pSpYqGDh2q5557ztKvQYMG+vzzzzVnzhzNmDFDZcqUUa9evfTKK684qjQAAGBCDv3Ic6NGjfL0/UFNmjTRrFmzHFkKAAAwOYfNaQEAAChIhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKrkVdQEky++L6XPu8WrVHIVQCAEDJw5UWAABgCg6/0hIZGamvv/5aR48eVXp6uqpWraonn3xSffr0sfQ5evSo5syZoxMnTsjT01OdOnXS0KFDVaZMGUeXBwAATMKhoWXPnj0aO3asAgICNGjQIJUuXVoXLlxQTEyMpU9UVJTeeOMN1axZU8OHD9fVq1e1dOlSnT9/Xp999pkjywMAACbisNBy8+ZNffLJJ3rkkUc0fvx4OTvbvxP11VdfydvbW9OnT5enp6ckqUqVKvr000+1Z88etW7d2lElAgAAE3FYaNm0aZPi4+M1dOhQOTs7KyUlRR4eHlbh5ebNm9q3b5/69etnCSyS1L17d82YMUNhYWGEFgAA7lNePihiBg4LLfv27ZOnp6diY2P1j3/8Q+fOnVPp0qXVrVs3DR8+XB4eHjp9+rSysrLUoEEDq33d3NwUEBCgqKgoR5UHAABMxmGh5fz588rKytJ7772nXr166eWXX9ahQ4e0YsUKJSUl6Z///Kfi4uIkSb6+vjb7+/r66vDhw3c8fmxsrGV/SYqOji74QQAAgGLDYaElJSVFqampeuqppzRq1ChJUocOHZSRkaHVq1frpZdeUlpamqRbV1b+yN3dXenp6Xc8/urVqxUaGuqQ2gEAQPHjsNDi4eEhSercubNVe5cuXbR69WodO3ZMpUqVkiRlZGTY7J+eni53d/c7Hj8kJETt2rWzPI6OjtaECRMKonQAAFAMOSy0+Pr66j//+Y8qVKhg1V6+fHlJUmJioqpVqyZJVrd5csTFxcnPz++Ox/fz87vrdgAAULI4bEXcnMm1t6/JIt2aiyJJ5cqVU+3ateXi4qLIyEirPhkZGYqKilK9evUcVR4AADAZh4WWTp06SZJ+/vlnq/aff/5ZLi4uat68uby8vNSyZUtt3LhRycnJlj4bNmxQSkqK5RgAAAAOuz1Uv359Pf7441q7dq2ysrLUrFkzHTp0SGFhYRowYIDl1s6QIUM0bNgwjRgxQiEhIZYVcVu1aqU2bdo4qjwAAGAyDl3G/+2335a/v7/WrVunX3/9Vf7+/ho+fLj69etn6dOgQQN9/vnnmjNnjmbMmKEyZcqoV69eeuWVVxxZGgAAMBmHhhZXV1e9+OKLevHFF+/ar0mTJpo1a5YjSwEAACbnsDktAAAABYnQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATMG1qAsoSS6Gx+feqarj6wAAoCTiSgsAADAFQgsAADAFQgsAADAFQgsAADAFJuICAFBMzb64Ptc+r1btUQiVFA9caQEAAKZAaAEAAKZAaAEAAKZAaAEAAKZQqKHl22+/Vfv27TVo0CCbbUePHtWwYcPUtWtXPf3005o2bZqSk5MLszwAAFCMFdqnh65evarFixerdOnSNtuioqL0xhtvqGbNmho+fLiuXr2qpUuX6vz58/rss88Kq8RCwUxwAADyp9BCy6xZs9SoUSNlZ2fr+vXrVtu++uoreXt7a/r06fL09JQkValSRZ9++qn27Nmj1q1bF1aZAACgmCqU20OHDh3S1q1bNWLECJttN2/e1L59+9StWzdLYJGk7t27q3Tp0goLCyuMEgEAQDHn8NCSlZWladOmqVevXqpbt67N9tOnTysrK0sNGjSwandzc1NAQICioqIcXSIAADABh98eWrVqla5cuaKpU6fa3R4XFydJ8vX1tdnm6+urw4cP290vNjbWsq8kRUdHF0C1AACguHJoaLl+/boWLlyo559/XuXKlbPbJy0tTdKtKyt/5O7urvT0dLv7rV69WqGhoQVVKgAAKOYcGlrmz58vb29v9e7d+459PDw8JEkZGRk229LT0+Xu7m53v5CQELVr187yODo6WhMmTLjPigEAQHHlsNBy7tw5rVmzRiNGjFBsbKylPT09XZmZmbp06ZI8PT0tt4Vuv9WTIy4uTn5+fnaP7+fnd8dtAACg5HFYaImNjVV2dramTZumadOm2Wx/9tln1adPH7300ktycXFRZGSkgoODLdszMjIUFRWlTp06OapEAABMLy/rf10Mjy+EShzPYaGldu3amjhxok37/PnzlZycrJEjR6pq1ary8vJSy5YttXHjRg0aNEhlypSRJG3YsEEpKSmEFgAAIMmBoaVcuXIKCgqyaf/Xv/4lSVbbhgwZomHDhmnEiBEKCQmxrIjbqlUrtWnTxlEllnisvgsAKEmKxRcmNmjQQJ9//rk8PDw0Y8YMrVmzRr169dL48eOLujQAAFBMFNoy/jmmT59ut71JkyaaNWtWIVcDAADMotBDC3K3f3nuqwD/uU9AIVQCAEDxUSxuDwEAAOSG0AIAAEyB0AIAAEyB0AIAAEyBibiFLG+rEtbNtUde1mApTEweBgA4GldaAACAKRBaAACAKXB7CACAe8BXpBQdrrQAAABTILQAAABTILQAAABTILQAAABTYCLuA471VQDA3PK2/lfJwJUWAABgCoQWAABgCtweKoZ+Krc31z5VVaEQKgEAoPjgSgsAADAFQgsAADAFQgsAADAFQgsAADAFJuIC94m1boCSIy9fhoiiw5UWAABgCoQWAABgCtweAvDA4ZYeioO8vA/V1vF1mAlXWgAAgCkQWgAAgClwe8ik8vKtnlUbsdQ/ABRXfGXLveNKCwAAMAWutAAATK+4Ta7+YNN3hfZcDxKutAAAAFMgtAAAAFPg9hBMp7hdBgaKi7z8bOxpeyrXPq9W7VEQ5QAFjistAADAFAgtAADAFLg9BNPJy9oGfxa3hwAzyNNS9sVMXtbJMuNzmQFXWgAAgClwpaUEy1tCr5trj9kX1+fap3UejsME2sJRmK8z5/TBxblHUeBKCwAAMAVCCwAAMAWH3R6KiIjQ+vXrdfDgQV2+fFk+Pj5q3LixhgwZoho1alj1PXPmjGbOnKmjR4/K1dVVjz76qIYPH65y5co5qjzcg4K6zZQXBbX0dV5uabEWRcljxkmdKDx5+b2A4s1hoeW7777T0aNH1alTJ9WtW1dxcXFauXKlhgwZotmzZ6tOnTqSpKtXr2rEiBHy8vLS0KFDlZKSoh9++EGnT5/W3Llz5ebm5qgSAQCAiTgstPTr108ffvihVegIDg7Wiy++qCVLluiDDz6QJC1evFipqamaP3++/P39JUmBgYF68803tW7dOoWEhDiqRAAAYCIOCy0PP/ywTVuNGjVUq1YtRUdHW9q2bt2qtm3bWgKLJLVs2VI1atRQWFgYoaUEycv6KoWJTz8A+Vfc1kvK0++X8Ny7VG1U4f6LgcMU6keeDcNQQkKCatWqJUmKiYlRQkKCGjRoYNM3MDBQu3btuuOxYmNjFRcXZ3l8exACAAAlT6GGll9++UUxMTF66aWXJMkSOnx9fW36+vr66saNG0pPT5e7u7vN9tWrVys0NNSh9SLvittVlOKGqzp3V9ivT3G7SlCY8jKxfv+OPExoLnf/tQD3qtBCS3R0tKZOnarGjRurR49bn9pIS0uTJLuTbXOCSlpamt3QEhISonbt2lkdf8KECY4oHQAAFAOFElri4uI0ZswYeXp6avz48XJxcZEkeXh4SJIyMjJs9klPT7fq80d+fn7y8/NzUMUAAKC4cXhoSUpK0ujRo5WUlKSZM2daBY2c20K3z03JERcXJx8fH7tXWQCzydPts+W5d3mQbyHBfMy4bg5fUFi8OTS0pKWl6d1339W5c+f0+eefWybg5qhYsaLKlSunyMhIm30jIiJUr149R5YHAABMxGHL+GdlZemjjz7SsWPHNG7cOD300EN2+3Xo0EE7duzQlStXLG379+/XuXPn1KlTJ0eVBwAATMZhV1q+/PJLbd++XW3btlViYqI2btxotb1bt26SpAEDBmjLli16/fXX1adPH6WkpOj7779XnTp11LNnT0eVhxKuML96ALhfefom9R0l8/2al1unT19rVQiVwAwcFlpOnjwpSdqxY4d27Nhhsz0ntPj7+2v69OmaOXOm5s6da/nuoWHDhjGfBQAAWDgstEyfPj3PfWvXrq0pU6Y4qhTcBeurPJgKal2UB3m9E6ngXsfidmWQ3wsorhw2pwUAAKAgEVoAAIApFOoy/gDuT2Gue5Gn5yrn8DIsiuOaHw/67TGgsHGlBQAAmAKhBQAAmAK3h4C7+GDTd7n2eVqsIYE7y8saLHnBeiYAV1oAAIBJcKUFMBEz/mu7OE6gzYu8XGVD4WDdGOTgSgsAADAFQgsAADAFbg8BxURhXgI3422mvOA2QvHC+UBB40oLAAAwBUILAAAwBW4PASUMl+SLl7x9g3PB4NyjpONKCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAUm4uKBxaTFuyuo16ekrgkDoPBxpQUAAJgCoQUAAJgCt4cAFDluIQHIC660AAAAU+BKC3CfmNBbOHidAXClBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmIJrURcgSenp6VqwYIE2btyoxMRE1a1bV0OGDFGrVq2KujQAAFBMFIsrLZMmTdKyZcvUtWtXjRw5Us7Ozho9erSOHDlS1KUBAIBioshDS3h4uDZv3qyXX35Zr732mkJCQvTFF1+ocuXKmj17dlGXBwAAiokiDy1bt26Vi4uLQkJCLG0eHh7q1auXjh07pitXrhRhdQAAoLgo8tASFRWl6tWry9PT06o9MDBQknTy5MmiKAsAABQzRT4RNy4uTr6+vjbtOW2xsbF294uNjVVcXJzlcU64iY6OdkCVUuKlGIccFwAAs4iMjHTYsWvWrKlSpUrdtU+Rh5a0tDS5ubnZtLu7u1u227N69WqFhobatE+YMKFA6wMAALcMnbfCYceeN2+eGjRocNc+RR5aPDw8lJGRYdOenp5u2W5PSEiI2rVrZ3mcmJio6Oho1a9f3xJ4Ckp0dLQmTJig999/XzVr1izQYxcHJX18UskfI+Mzv5I+xpI+Pqnkj9HR48vLMYs8tPj6+iomxvbWS86tHz8/P7v7+fn52Wxr2bJlwRd4m5o1a+aaAs2spI9PKvljZHzmV9LHWNLHJ5X8MRbl+Ip8Im69evV0/vx53bx506o9PDzcsh0AAKDIQ0vHjh2VlZWl1atXW9rS09O1du1aNWrUSP7+/kVYHQAAKC6K/PZQo0aN1KlTJ3311Ve6du2aqlWrpvXr1+vy5csaM2ZMUZcn6dYtrBdeeMHup5xKgpI+Pqnkj5HxmV9JH2NJH59U8sdYHMbnZBiGUWTP/v+lpaVZvnsoKSlJderU0ZAhQ9S6deuiLg0AABQTxSK0AAAA5KbI57QAAADkBaEFAACYAqEFAACYQpF/eqg42r9/v3755RcdOXJEMTExqlChglq0aKHBgwffcbG7P4qJidHMmTO1d+9eZWdnq3nz5hoxYoSqVq3q4OpzFxsbq+XLlysiIkLHjx9XSkqKpk2bpubNm+dp/4ULF9r9CgV3d3dt2rSpgKu9d/c7Pql4n78ciYmJmjNnjrZt26a0tDQFBgbqtddey9OiT5988onWr19v0/6nP/1JixcvdkS5dqWnp1sm4ScmJqpu3boaMmSIWrVqleu+ZjhHUv7HWNx/znIkJyfrhx9+UHh4uCIiIpSYmKixY8eqZ8+eedr/ft7HheF+xrdu3TpNmjTJ7raVK1cWi08ZRUREaP369Tp48KAuX74sHx8fNW7cWEOGDFGNGjVy3b+wzx+hxY45c+boxo0b6tixo2rUqKGLFy/qxx9/1M6dO7VgwYJc32jJyckaNWqUbt68qQEDBsjV1VXLli3TiBEjtHDhQpUtW7aQRmLfuXPn9N1336l69eqqU6eOjh07lq/jvPXWWypdurTlsbNz8bhwd7/jK+7nT5Kys7M1ZswYnTp1Sv3791fZsmX1008/adSoUZo3b16eftm4u7tr9OjRVm1//LZ1R5s0aZK2bNmivn37qnr16lq3bp1Gjx6tadOmqUmTJnfczwznKEd+x5ijuP6c5bh+/bpCQ0Pl7++vevXq6eDBg3netyDex452P+PLMXjwYFWpUsWqzcvLq6BKvC/fffedjh49qk6dOqlu3bqKi4vTypUrNWTIEM2ePVt16tS5475Fcv4M2Dh48KCRlZVl0xYUFGR89dVXue6/ZMkSIygoyAgPD7e0nTlzxujYsaMxd+7cAq/3Xt28edO4fv26YRiGERYWZgQFBRkHDhzI8/4LFiwwgoKCjISEBAdVeH/ud3zF/fwZhmFs3rzZCAoKMsLCwixtCQkJRs+ePY1x48bluv/EiRONbt26ObDC3B07dswICgoyvvvuO0tbamqq0b9/f+Pvf//7Xfc1wzkyjPsbY3H/OcuRlpZmxMbGGoZhGBEREUZQUJCxdu3aPO17v+/jwnA/41u7dq0RFBRkREREOLLE+3LkyBEjPT3dqu3s2bNG586djY8//viu+xbF+Stekb2YaNasmc2/Zpo1ayYfHx9FR0fnuv+WLVvUsGFDBQYGWtpq1qypFi1aKCwsrMDrvVdlypSRj49PgRzr5s2bMorZp+bvd3zF/fxJ0tatW1WhQgW1b9/e0lauXDl16tRJv/32m+ULR3OTlZVl8xUahWXr1q1ycXFRSEiIpc3Dw0O9evXSsWPHdOXKlTvua4ZzJN3fGG9XHH/Ocri7u+f7NkdBvY8d6X7Gd7vk5GRlZWUVQEUF6+GHH5abm5tVW40aNVSrVq1c/94VxfkjtORRcnKyUlJScr3snJ2drdOnT6thw4Y22wIDA3XhwgUlJyc7qsxC9eyzz6pnz57q0aOHxo8fr/j4+KIu6b6Z5fydOHFCAQEBNuE6MDBQqampOnfuXK7HSE1NVc+ePdWzZ0/16tVLn3/+eaGOLSoqStWrV7e5JZUTRE6ePGl3P7OcIyn/Y7xdSfw5y1EQ72MzGDVqlHr06KFu3brp3XffLfbjMgxDCQkJuf69K4rzx5yWPPrXv/6ljIwMBQcH37XfjRs3lJ6ebjeZ57TFxsbqT3/6k0PqLAze3t76y1/+osaNG8vNzU1HjhzRypUrFRERoXnz5hX6vIiCZJbzFx8fr6ZNm9q059QYFxenunXr3nF/X19fPffcc6pfv74Mw9Du3bv1008/6dSpU5o2bZpcXR3/qyEuLi7X19kes5wjKf9jlEr2z1mO+30fF3ceHh7q2bOnmjdvLk9PT0VGRmrZsmV67bXXNH/+/GL73Xq//PKLYmJi9NJLL921X1GcvxIfWrKzs5WRkZGnvu7u7nJycrJpP3TokEJDQ9WpUyf9+c9/vusx0tLSJMnmclvO8W/vUxAKYnz3qm/fvlaPO3bsqMDAQI0fP14rV67UgAED7vs5chT2+Ar7/En5G2NaWpqlnvzU+Morr1g97ty5s2rUqKF58+Zp69at6ty5cx6rz7+0tLR8vc5FcY7yK79jlAr356yo3O/7uLgLDg62+oduUFCQWrdurREjRmjRokV6++23i7A6+6KjozV16lQ1btxYPXr0uGvfojh/JT60HD58WKNGjcpT30WLFqlmzZpWbdHR0Xr//fdVp06dPH2Bo4eHhyTZ/SOUc38vp09BuN/xFZSuXbvqyy+/1P79+wv0l2lhj6+wz5+UvzF6eHjYvV98PzX269dPCxYs0L59+woltHh4eOTrdS6Kc5Rf+R3jnTjq56yoOOJ9XNw1adJEjRo10v79+4u6FBtxcXEaM2aMPD09NX78eLm4uNy1f1GcvxIfWv70pz9p7Nixeer7x8u4V65c0VtvvSVPT09NnjxZZcqUyfUYPj4+cnd3V1xcnM22nLa8rvWSF/czvoJWqVIl3bhxo0CPWdjjK+zzJ+VvjBUqVLhrjfl5LTw8POTj41Pg5/BOfH19FRMTY9Oe2+tcFOcov/I7xrtxxM9ZUXHE+9gMKlWqpLNnzxZ1GVaSkpI0evRoJSUlaebMmXl6bxbF+SvxocXX1zfPixzd7vr163rrrbeUkZGhqVOn5vmXi7Ozs+rUqaPjx4/bbAsPD1fVqlXzFH7yKr/jK2iGYejy5csKCAgo0OMW9vgK+/xJ+RtjQECAjhw5ouzsbKtJcBERESpVqlS+1kdITk7W9evXVa5cuXveNz9y1ry4efOm1fyM8PBwy3Z7iuIc5Vd+x3gnjvo5KyqOeB+bwcWLFwvt5ywv0tLSLBOEP//8c9WqVStP+xXF+ePTQ3akpKRo9OjRio2N1aeffnrXF/7KlSs2Hwvr0KGDjh8/bvVL9ezZszp48KA6duzoqLIdwt74rl27ZtPvp59+0rVr19SmTZtCqqxgmPX8dejQQfHx8dq2bZul7dq1awoLC1Pbtm2t7jNfuHBBFy5csDxOS0uz++mab775RoZhFNo57Nixo7KysrR69WpLW3p6utauXatGjRpZJima9RxJ9zfGkvRzJt2adBwdHa3MzExL2728j4s7e+Ozdw537typyMhItW7duhCru7OsrCx99NFHOnbsmMaNG6eHHnrIbr/icv5K/JWW/Bg/frwiIiL0+OOPKzo62uqXSenSpRUUFGR5PHHiRB06dMjqpD3zzDP697//rTFjxqh///5ycXHRsmXLVL58efXv379Qx3In33zzjSTpzJkzkqQNGzboyJEjkqRBgwZZ+tkbX9++fRUcHKw6derI3d1dR48e1ebNmxUQEGC1HkVRup/xmeH8dezYUcuXL9ekSZN05swZy0qU2dnZNjP+33jjDUnSsmXLJN2a8T948GB16dLF8gmbPXv2aNeuXWrTpo0ee+yxQhlDo0aN1KlTJ3311Ve6du2aqlWrpvXr1+vy5ctW88fMeo6k+xujGX7OcqxYsUJJSUmW2wLbt2/X1atXJUm9e/eWl5eXvvrqK61fv15Lly61rA57L+/jopTf8b366quqX7++GjRoIE9PT504cUJr165VpUqVNHDgwCIbz+2+/PJLbd++XW3btlViYqI2btxotb1bt26SVGzOH6HFjpy1E9auXau1a9dabatcubJVaLGnTJkymjZtmmbOnKlvv/3W8r0ow4cPLzaXBBcsWGD1+PZx3v5H3Z6uXbvq999/19atW5Weni5/f38999xzev7551WqVCmH1Huv7md8Zjh/Li4u+vTTTzVr1iytWLFCaWlpatiwocaOHZvrR329vLzUtm1b7d27V+vXr1d2draqVauml19+Wf379y/UZeLfe+89+fv7a8OGDUpKSlKdOnU0efJkNWvW7K77meEc5cjvGM3wc5Zj6dKlunz5suXxtm3bLAGsW7dud1yy/n7ex4Upv+MLDg7Wrl27tHfvXqWmpsrX11dPPvmkXnjhBVWoUKFQas9Nzt+7HTt2aMeOHTbbc0KLPUVx/pyM4rrMIgAAwG2Y0wIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIUIwsXLlT79u118ODBoi7FIdq3b6+RI0cWdRkATIpl/GFaly5d0rPPPmvV5urqqvLly6tp06b629/+prp16xZRdcWTYRj65Zdf9PPPP+vUqVNKTk6Wt7e3/Pz81LhxYwUHB1stL//JJ5/YfN8I0L59ezVr1kzTp08v6lLwgCG0wPSqVaumrl27Srr1Dd3h4eHatGmTtm3bpqlTp+rhhx8u4gqLj//5n//RunXr5O3trbZt28rPz09paWk6deqUfv75Z928eTPX78QBgKJCaIHpVatWzeYbRefNm6dFixZp3rx5/Gvw/zt8+LDWrVungIAATZ8+XZ6enlbbExMTLd+KDQDFEaEFJVLv3r21aNEiHT9+3NIWGRmpxYsXKyIiQgkJCSpTpoyqVKmixx57TM8//7zV/gkJCVq8eLF27Nihq1evqkyZMmratKleeukl1alTx6rv3S6V9+vXT5K0bNkyq/YrV65ozpw52rNnjzIzM1W/fn0NHjz4rmNau3atVq1aZQkWtWrV0tNPP62ePXvm6TU5duyYJKl79+42gUWSvL29ra5K9evXz/LNtrffhvvjWI8ePapFixbp2LFjSktLU+XKlRUcHKy//vWvefo2YsMwNHPmTP3rX/9Sly5d9N5778nV1VWGYWjt2rX6+eefdfr0aWVlZVnG3KtXL6tjpKWlaeXKldqwYYMuX76srKwslStXToGBgRo4cKDq1at31xpybjX26NFDzz33nGbPnq3ff/9dWVlZaty4sV555RU1aNDAap/IyEitXbtWhw4d0tWrV5WRkWG56te/f3+5ulr/es15LyxYsEDz58/Xb7/9pvj4eI0ePVo9e/bM9/EWLlyouXPn6tdff1VycrLq16+vESNGqEGDBoqNjdXs2bO1d+9eJScnq0mTJnrjjTdUo0YNm9fg4sWLWrRokfbu3auEhAR5e3urdevWeumll1S5cmVJ0sGDBzVq1ChJ0qFDh9S+fXvL/mPHjrV6L/76669asWKFTpw4ofT0dFWrVk09evRQv3795OLiYum3bt06TZo0SWPHjpWPj4+WLFmiU6dOqWzZsjY/NwChBSWak5OTJCkqKkrDhg2Ts7OzHnvsMfn7+yspKUlnzpzRmjVrrELLhQsXNHLkSMXExKhVq1Z67LHHdO3aNW3dulV79+7V1KlT1ahRo3zXFBsbq9dee00xMTFq3bq16tevr+joaL311ltq3ry53X2mTZumFStWqGLFinr88cclSdu2bdOkSZN04sQJyx+Su/Hx8ZEknT9/Pk919unTR+vXr9fJkyfVp08feXl5SZLV3JawsDB9/PHHcnNzU3BwsMqVK6e9e/cqNDRUe/bs0bRp0+Th4XHH58jMzNQnn3yiTZs2qW/fvho+fLicnJxkGIbGjx+vTZs2qXr16urSpYvc3Ny0d+9eTZ48WWfOnNGwYcMsx/nkk08UFhamunXrqmfPnnJzc1NMTIwOHDigVq1a5Rpacly8eFHDhg1TQECAnnrqKV25ckVhYWEaMWKEvvjiC6vzvmbNGu3YsUNNmzbVI488otTUVB06dEhfffWVjh8/rgkTJtgcPz09Xa+//rpSUlLUrl07ubi4qHz58vk+XkZGht58802lp6crODhYCQkJCgsL05tvvqlZs2bp7bfflq+vr7p166bz589rx44dGjNmjBYtWmQVHMLDw/X2228rJSVFbdu2VfXq1XX58mX98ssv2r17t2bPnq2qVauqcuXKeuGFFxQaGqrKlSurR48elmPc/hrPnTtXS5YsUcWKFdW+fXt5eXnpyJEjmj17tiIiIvTxxx/bjCUsLEx79+5V27Zt9fTTTys5OTlP5wwPGAMwqYsXLxpBQUHGW2+9ZbNtwYIFRlBQkDFy5EjDMAxjxowZRlBQkLFt2zabvteuXbN6/OqrrxodO3Y0du/ebdV+9uxZo3v37sagQYOs2oOCgowRI0bYrbFv375G3759rdomTpxoBAUFGd98841V+6pVq4ygoCAjKCjIOHDggKX94MGDRlBQkDFgwAAjMTHR0n7jxg3jr3/9qxEUFGQcOnTI7vPf7sqVK0aPHj2M9u3bG+PGjTPCwsKMS5cu3XWfnFovXrxosy0pKcno2bOn0blzZ+PkyZOW9qysLOOf//ynERQUZISGhlrtc/trdfPmTePNN980goKCjEWLFln1W716tREUFGRMmjTJyMjIsLSnp6cbY8aMMYKCgozjx48bhmEYiYmJRvv27Y0hQ4YYmZmZVsfJzMw0bty4ketrk/NeCgoKMubMmWO1bffu3UZQUJDNeb98+bLN82VnZxuTJk0ygoKCjCNHjlht69u3r+X9mpqaalNDfo/34YcfWr1GS5YsMYKCgoyePXsaM2bMMLKzsy3bpkyZYgQFBRlbtmyxtGVkZBh9+/Y1unfvbkRGRlo9x+HDh42OHTsaY8aMsWq/23t+z549lnEmJydbjeV///d/jaCgICMsLMzSvnbtWiMoKMjo0KGDsXfvXrvHBHLwkWeY3oULF7Rw4UItXLhQs2bN0vDhwxUaGip3d3cNHTrUqq+9f/WXLVvW8t8nTpzQ77//ru7du6t169ZW/WrUqKEnnnhCp0+f1unTp/NVa0ZGhv7v//5P5cuXt/nk0xNPPKHq1avb7LN+/XpJ0osvvmi52iHdup3zwgsvSLp1iT03lSpV0vjx41WpUiVt2rRJH374ofr166eQkBD985//1P79++9pLL/99puSkpL0+OOPW31Ky9nZWa+++qpcXFzuWNe1a9f0+uuv68CBA3r33Xc1YMAAq+0//vijSpcurTfeeMPqtoibm5vlnG7atEmSLFdm3N3d5exs/SvNxcVF3t7eeR6Tl5eXBg4caNXWunVr/fnPf9bp06cVGRlpaff397e6WpFTyzPPPCNJ2rdvn93nePXVV+2+D/N7vNdee83qNercubMkKSsrS0OGDLFcbbx926lTpyxtO3bs0OXLl/Xcc8+pfv36Vsdu0qSJ2rVrp127dunmzZt2n/+PfvzxR0nSO++8o9KlS1uN5ZVXXpGTk5M2b95ss1+7du3UsmXLPD0HHlzcHoLpXbhwQaGhoZL++5HnLl26WH3kOTg4WMuXL9f777+v4OBgtWzZUk2bNlXFihWtjhUeHi7p1pyWhQsX2jzX2bNnLf//x7kteXH27Fmlp6erRYsWNn+4nJ2d9fDDD9vcvomKipIku7eOctpOnjyZp+dv2bKlvv/+ex06dEiHDx9WZGSkjh49qrCwMIWFhWnAgAF6+eWX83SsnLrsfdrI399fVatW1blz55ScnKwyZcpYtsXHx2vYsGG6evWqJkyYoHbt2lntm5qaqtOnT8vPz09LliyxOXZWVpak/54LT09PPfLII9q1a5eGDBmijh07qlmzZgoMDLSZB5KbgIAAq1pzNGnSRPv371dUVJRlbktGRoZ+/PFHbd68WWfPnlVKSooMw7DsExsba3Mcd3f3O75v8nM8b29v+fv7W7X5+vpKkqpXr24zpyhn2+3HypnrdPbsWbvv+fj4eGVnZ+vcuXNq2LCh3dpvFx4ertKlS+vnn3+2u93Dw8Ny7m4XGBiY67EBQgtMr3Xr1vrf//3fu/Zp1KiRpk2bpsWLF2vTpk1au3atJKlhw4b6+9//rhYtWkiSbty4IUnauXOndu7cecfjpaSk5KvWnH+t5sxj+CN77cnJyXJ2dla5cuVstlWoUEFOTk55/lewdCvYtWzZ0vKv2szMTK1fv15TpkzR4sWL1aFDB5tJp3cbS4UKFexu9/X11blz53Tz5k2b0HLz5k1Vq1bN7tygxMREGYahmJgYSxi1JzU11fLfH3/8sRYtWqRNmzZp3rx5km6FmZ49e+rll1/O04Tgu40lpz0pKcnS9sEHH2jHjh2qUaOGgoODVb58ebm4uCgpKUnLly9XRkaGzXHKly9vdeXjdvk5nr0J1TlBzd62nCs5mZmZlrbExERJ0i+//GK3rhy3v953c+PGDWVlZd313Nn7+bnTaw/cjtCCB0bTpk3VtGlTpaWlKTw8XNu3b9dPP/2kMWPG6JtvvlHVqlUtv+hHjRql3r175+m4Tk5Oln/9/1FSUpLVLZ2c4yckJNjtb6+9TJkyys7O1rVr12xCTUJCggzDsPsHKq9cXV31xBNP6PDhw9qwYYMOHjyYp9CS85zx8fF2t+e0/7G2evXqqUePHvr00081atQoffHFF1Z/sHL6N2jQwBJAclOqVCkNHTpUQ4cO1cWLF3Xw4EGtWrVKy5cvV1pamt555508HSe3seScy4iICO3YsUOtW7fW5MmTrW7rHDt2TMuXL7d7nDsFlvweryDkBMr/+Z//Udu2be/7eJ6ennJyctKaNWvuab87vTbA7ZjTggeOh4eHmjdvruHDh2vgwIFKS0vT3r17Jf33EnXOJfO88Pb2VkxMjE37pUuXrP5lLt2aF+Pu7q7IyEilpaVZbcvOztbvv/9uc5yAgABJsru0/6FDhyQpz5+OuZvb5x/kyJkjkp2dfce6cmq43ZUrV3ThwgVVrVrV7u2Wxx9/XO+++67Onj2rUaNGWYWFMmXKqGbNmoqOjrZcBbgXVatWVa9evTRjxgyVLl1a27dvz/O+UVFRdj+1cuTIEUn/HfPFixclSY8++qjNPJScvveioI93L3Kudt3Le97Z2dnue0K69TN0/fp1nTt3rkDqA25HaMED4ffff7cJCdJ//wXt7u4u6dYv8EaNGmnz5s12JwtmZ2fb/JFu2LChLl++bNWekZGhmTNn2uzv7u6uTp06KSEhQUuXLrXa9u9//9vuL/qcj5WGhoZa3QZKSkrS119/bdXnbnbv3q1ff/3V6tZAjvPnz2vLli2Sbs3fyJHzMemrV6/a7PPYY4/Jy8tLa9eu1X/+8x9Lu2EYmjt3rrKysu66hkyPHj00duxYnTt3TiNHjlRcXJxlW58+fZSamqrPPvvM7q2Eixcv6tKlS5JuTeq1NzE6MTFRGRkZlnObF0lJSVq0aJFV2549e7R//37Vrl3bcgUqZx7JHwPFf/7zHy1evDjPz5ejoI93L3KWAFi6dKndAJqZmWlTl7e3t933hHTr3EnS5MmTdf36dZvtcXFxLGKIfOP2EB4I3333nQ4ePKimTZuqSpUqcnd314kTJ7R//35VrVrVapGsDz/8UK+//rrGjRun5cuXKyAgQB4eHrp69ap+//13Xb9+3fLJFenWIl979+7V6NGj1blzZ5UqVUp79+6Vt7e3ZeLj7V555RUdOHBA8+fP19GjRxUQEKDo6Gjt2rVLrVq1slz1ydGsWTP17t1bK1as0KBBg9ShQwcZhqGtW7cqJiZGvXv3ztPS+9HR0Zo5c6bKli2rpk2bqlq1ajIMQxcuXNCuXbuUkZGhp59+2mqeSYsWLfTDDz/os88+U4cOHVSqVClVrlzZskDdO++8o48//lh///vf1alTJ5UrV0779+9XZGSkAgMD1b9//7vW1L17dzk5OWnSpEmWW0V+fn4KCQnRsWPHtH79eh09elQtW7aUr6+vEhISdPbsWYWHh+vDDz9UlSpVFBMTo8GDB6tevXqqW7eu/Pz8dOPGDf3222/KzMzMtYbbNWnSRKtWrVJ4eLgaN26sy5cvKywsTB4eHhozZoylX2BgoAIDAxUWFqa4uDg1btxYV65c0fbt2/Xoo49aAmBeFfTx7oW7u7s+/vhjjR49WiNHjlSLFi1Up04dOTk56fLlyzpy5IjKli1rFZ5atGihsLAwvffeewoICLCsf1S3bl21adNGgwYN0jfffKPnnntObdq0kb+/v27cuKELFy7oyJEjGjx4sGrVquWwMaHkIrTggfD000/L09NTEREROnTokAzDkL+/vwYOHKi+fftazbuoWrWqFixYoKVLl+rXX3/VunXr5OzsLF9fXzVt2lQdO3a0Onbr1q01btw4hYaGauPGjfL29lanTp00dOhQy0eSb+fn56dZs2Zp9uzZ2rNnjw4fPqz69etrypQpOnDggE1okW7NsQkICNBPP/1kmStQq1YtDR482LLYXG66deumMmXKaM+ePTp9+rT27dun9PR0lS1bVq1atVKPHj1sxvbII4/o1Vdf1Zo1a7R06VJlZmaqWbNm6t69uySpU6dOqlChghYvXqxt27ZZVsQdNGiQ/vrXv951Ybnb63J2dtbEiRP1+uuvW4LLe++9p0ceeUT//ve/tWPHDqWkpKh8+fKqXr26XnvtNf35z3+WJFWuXFkvvviiDhw4oH379unGjRsqW7as6tevrz59+qhNmzZ5en2kW+f+rbfe0uzZs7Vy5UplZ2erefPmNiviuri4aPLkyZZVjY8fP26pq02bNvccMgr6ePcqMDBQCxcu1Pfff69du3bp999/l5ubm/z8/BQUFGT5qHSOnG/qPnDggHbs2KHs7GxVqlTJ8mm9wYMHq2nTplq+fLn279+vpKQk+fj4qEqVKnrhhRcs3xUG3Csn4/bP1AHAA+j2Zfzfe++9oi4HwB0wpwUAAJgCoQUAAJgCoQUAAJgCc1oAAIApcKUFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYwv8DJST/w4yN9EsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -453,12 +455,14 @@ } ], "source": [ - "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(len(az_ang), show=True)" + "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(len(az_ang), show=True)\n", + "np.save('unpol_qs.npy', unpol_qs)\n", + "np.save('unpol_us.npy', unpol_us)" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "id": "da3b6513", "metadata": {}, "outputs": [ @@ -506,13 +510,132 @@ "A = 0.69, B = 0.63, C = 1.70\n", "Rmax, Rmin: 1.3229800864200185 0.6920318836053398\n", "Modulation mu = 0.31312379886593844\n", - "hhhhhhhh (12,) (12,)\n", "mu: 0.31048713272678163 +/- 0.0012843969646897993\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG5CAYAAACnaMHWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzCklEQVR4nO3deXwU9f0/8NfuJtnc90HIBTlJuBMCCAYIpwqCVmw9EAGhiFpp1Yraw9qqfNVqi79WLIjg3apVQAkIopACcoUrJBACuSEJua9NdpPd+f2xZJJNNskmbDK7m9fz8cjjkfnsfGbeM7uZvPczn/l8ZIIgCCAiIiKimyKXOgAiIiIiW8CkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRkwqRpATU1NyMrKQlNTk9ShEBERkZkxqRpA+fn5WLVqFfLz86UOhYiIiMyMSRURERGRGTCpIiIiIjIDJlVEREREZsCkioiIiMgM7KQOgGgwEAQBLS0t0Gq1UodCRERdsLe3h0Kh6HN9JlVE/Uyj0aC4uBgqlUrqUIiIqBsymQzBwcFwdXXtU30mVUT9SKfTITc3FwqFAkOHDoWDgwNkMpnUYRERUQeCIKCsrAxFRUWIiorqU4sVkyqifqTRaKDT6RASEgJnZ2epwyEiom74+fkhLy8Pzc3NfUqq2FGdaADI5fxTIyKydDd7J4FXeiIiIiIzYFJFREREZAZMqoiIiIjMgEkVkRRuuaV/fixEdnY2pkyZgujoaCQmJiIjI6PLdefOnYsxY8Zg3LhxSEpKwunTp8XXnnzySQwbNgwymQxnzpzp9T62bt0KmUyG7du3i2UpKSmIj4/HuHHjMGrUKHzwwQcAgIqKCowbN078iY6Ohp2dHSorK3uMpatjaGpqwl133YXo6GiMHTsWc+bMweXLl03aX3d1AUCtVuOJJ55AVFQURo8ejSVLlpi03a6Ov6dj7Gp/Pb2HffXll19izZo1Pa7Xm89ad+t291pX56Wn96i7c93K2Ge0u/O5Z88eTJgwAWPGjMHkyZNx9uxZ8bXu3qObrdtVrN3V6+74u4qlp89vd8fQ3Wv98Rk1SqABc/HiRSEpKUm4ePGi1KHQAGlsbBQyMzOFxsZGwxeA/vmxEMnJycLWrVsFQRCEL774QpgwYUKX61ZVVYm/f/XVV8KYMWPE5YMHDwqFhYVCWFiYcPr06V7tIzc3V7jllluEyZMnC19//bUgCIKg0+kELy8v4ezZs+I6SqVSqK2t7RTXG2+8ISxYsMCkWLo6hsbGRmHXrl2CTqcTBEEQ/t//+3/C9OnTjZ6Hjvvrqe6vf/1r4YknnhBfLy4u7nG7PR1/d8fY3f66ew+7M336dCE3N9foaw888ICwZ8+eHrfRm89ad+t291pX56W798iUz5qxz6ggdH0+KysrBW9vb+H8+fOCIAhCamqqMHLkSHHd7t6jm6nbXaxd1evu+HuKpb32n9/u6vW0TVM/o11es01kOVfhQYBJ1eBjyUnV8uXLhU2bNonLzz//vPDKK6/c9DGXlpYKbm5uQnNzsyAI+otrQECAkJ2d3WPdrVu3CmPHju1U3vGfWU/70Gq1wqxZs4STJ08K06dPN0iqvL29hYMHDwqCIAhnz54Vhg4dKqjV6k77HDFihME/j65iMfUYBEEQTpw4IYSFhRl9rav9GatbX18vuLm5CTU1NV2ub2y7ph5/x2Pszf66O/6OukqqNBqNEBYWJmg0mm7r9+az1t26pm6np/e+/XvU07nu6jPaUfvzeeLECSEqKsrgdTc3NyEtLa3H9+hm6nYVa3f1ujv+7mLpqP3nt7t6vdlmd5/Rm02qePuPaJA6efIkEhMTDZYnTJjQab1f/OIXBs3x7X8KCws7rV9YWIjAwEDY2emHwZPJZAgNDUVBQUGXsSxduhQhISH4wx/+gI8++qjH2Hvax1tvvYWpU6ciISHBoJ5MJsN//vMf/OxnP0NYWBhuvfVWfPDBB3BwcDBY78iRI6iqqsKCBQt6jKU3x7BhwwYsWrSoU7kp+2tf98qVK/D29sarr76KCRMmICkpCfv37+9xu6Yef0em7K+372F3fvzxR0yZMgX29vbdrtebz1p36/blM2tM+/eop3Pd1We0lbHzGRUVhYqKChw5cgQAsHPnTtTV1SEvL6/H9+hm6nYVa3f1ujv+7mJpr+Pnt7t6pmzTnJ/RLvUpFaM+YUvV4GOpLVUqlUpwdXUVv5kLgiB4e3sL5eXlN33MJ0+eFKKjow3KEhMThf379/dYd9u2bcLtt9/eqbxjC0F3+0hPTxcmT54stnK0/2bd3NwsTJ8+Xfz2fPz4cWHIkCFCWVmZwbZWrFgh/Pa3vzUaY1etFQ1VTUJ9RaPwr3c2Gz2GV155RZg8ebLQ0NDQ6bXu9mesblpamgBA+OCDDwRBEIRTp04JPj4+QklJSbfbNfX4Ox6jqfsThK7fw1YPPfSQMHbsWGHs2LGCi4uLEBsbKy63tlqtWbNG+Pzzz7vcRqvefNa6W9fU7XTXUtXxPeruXHf3Ge2o4/n84YcfhGnTpgnx8fHC448/LsTFxQk7duww6T3qS93uYu2uXk+fta5iac/Y30V39UzZprFz2h5v/1kRJlWDT5d/oJMn98+PiQ4fPixMmjRJXL548WKXt6V+/vOfi//0Ov4UFBR0Wv9mbv8JgiA4Ojp2Su56c/vvnXfeEYYMGSKEhYUJYWFhglKpFPz8/IR33nnH6C2CCRMmCHv37hWX6+rqBFdXV+HChQtG4+vqH2t5fo1w/Uq1UJ5f0+kY3njjDSEhIcGgX4ep+zNWt6ysTJDL5UJLS4vBcezbt6/b7Zpy/MaO0ZT9tWfsPTTG2O0/nU4nhIeHC3V1dYIgCMIHH3wgft7ef/99g3Ut5fafsfeou3Pd3WfUmK7OZ1NTk+Dp6SlkZ2f3+j0ytW53sXZXz9TPWsdYWvX0d9FVPVNeE4SuzymTKivCpGrwudk/0P6yYcMGYdy4cYJWqxU0Go2wZMkSYdGiRWbb/vTp0w06/SYkJBhdr6qqSrh69aq4/PXXXwtBQUFip9dWxv6ZmbqP9t+sS0pKBFdXVyEzM1MQBEHIzs4WvLy8hPz8fHH99957T5g6dWqXx9YxltZjaE2qPtz0icExvPnmm0J8fLxQWVlpdHvd7a+7unPmzBF27dolCIIg5OTkCD4+PkJRUVG32zXl+I0dY3f7M/U9NMZYUnX06FFh/vz5PdZtvw1TPgc9rWvKdoydl67eI1PPdeu+Wz+jPZ3Pa9euia/97ne/E372s5+Jyz19Jm6mrrFYu6vX0/F3F4sgdP130V29rl7rzWeUSZUVYVI1+FhqUvXQQw8Jd999tzB69Ghh0qRJwvPPPy8EBgYKZ86cMcv2L168KEyePFmIiooSEhIShHPnzomvPfLII2KTfF5enpCYmCiMGjVKGDNmjDBr1iyDf1q//OUvhaCgIEGhUAj+/v5CRESESftor+M/gU8//VTc36hRo4RPPvnEYP1bbrmlU4tId7G0HkNsTJwQN2KkMG3qdPEYCgsLBQBCeHi42NoyceJEk/bXU90rV64IM2bMEI/lyy+/NGm73R1/d+e7q/319B52x1hStW7dOmHz5s0m1RcE0z9rPa3b3WtdnZee3qOePmvtz0PrZ7Sn87ly5UohJiZGiIiIEJYsWWLQOtbTZ+Jm6hqLtad63R1/d7EIQtef3+7qdfVabz6jN3vNlgmCIPRPby3qKCsrC6tWrcLmzZsRExMjdTg0AJqampCbm4vhw4fD0dFR6nBEcXFx+PzzzzFq1CipQ7EZFQW10LUIkNvJ4BPqLnU4VmvkyJH48ccf4e/vL3UoNAjd7DXbrh9iIiILVl9fj6tXryIuLk7qUIg66W7wTiJLx6SKaJBxdXVFTU2N1GEQEdkcjlNFREREZAZMqoiIiIjMgEkV0QDg8yBERJbvZq/VTKqI+lHrNBsqlUriSIiIqCcajQYAoFAo+lSfHdWJ+pFCoYCnpyeuX78OAHB2doZMJpM4KuoPmhYNBK0AGWRoamqSOhwi6iWdToeysjI4OzuL80D2FpMqon42ZMgQABATK7JNDZVN0OkEyOUyVKstZ0wyIjKdXC5HaGhon7/8Mqki6mcymQyBgYHw9/dHc3Oz1OFQP/n246NorNHAycMBC/4QK3U4RNQHDg4OkMv73jOKSRXRAFEoFH2+T0+WT1Ojg7pSCwV0FjV6PhENHHZUJyIiIjIDJlVEREREZsCkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiIiIzIBJFREREZEZMKkiIiIiMgMmVURERERmwKSKiIiIyAyYVBERERGZAZMqIiIiIjNgUkVERERkBkyqiIiIiMyASRURERGRGTCpIiIiIjIDJlVEREREZmAndQDGaDQabNmyBXv37kVdXR0iIiKwcuVKJCYmdlsvNTUVO3bsQE5ODmpra+Hp6Ym4uDgsX74c4eHh4no1NTVISUnB4cOHkZ+fD61Wi9DQUNx7772YNWuW2eIhIiKiwcMiW6rWr1+Pzz//HHPmzMGTTz4JuVyOZ599FufOneu2Xk5ODtzc3LB48WL85je/waJFi5CdnY3Vq1fj8uXL4noZGRnYvHkz3N3dsXTpUqxcuRJKpRIvvfQS3n//fbPFQ0RERIOHTBAEQeog2svMzMSjjz6KNWvW4P777wcAqNVqLFu2DJ6enti4cWOvtldZWYl77rkH8+fPxzPPPAMAuHbtGuRyOYYMGSKuJwgCfvOb3+D8+fP45ptv4OTkZPZ4srKysGrVKmzevBkxMTG9Og4ismyfPvEDVJVqOHsr8cA/ZkodDhFJwOJaqg4ePAiFQoGFCxeKZUqlEvPnz0dGRgZKS0t7tT0vLy84Ojqivr5eLBs6dKhBQgUAMpkMSUlJ0Gg0uHbtWr/FQ0RERLbJ4vpUZWdnIzg4GC4uLgblsbGxAIDLly8jICCg223U1dVBq9WioqICX3zxBRoaGpCQkNDjvisrKwEAHh4eZomnvLwcFRUV4nJ+fn6PMRAREZF1srikqqKiAj4+Pp3KW8vKy8t73MaaNWtQUFAAAHBycsLSpUsxf/78buvU1tbi22+/xZgxY+Dr62uWeHbu3Ilt27b1GC8RERFZP4tLqtRqNezt7TuVOzg4iK/35LnnnoNKpcK1a9eQkpICtVoNnU4Hudz43U6dToe//OUvqK+vx69//WuzxbNw4UJMnTpVXM7Pz8fLL7/cY/xERERkfSwuqVIqlWhubu5UrtFoxNd7MmrUKPH3WbNm4aGHHgIAPP7440bX//vf/45jx47hd7/7HSIjI80Wj6+vr0GrFxEREdkui+uo7uPjY9APqVVrWW+TFDc3N8THx2Pfvn1GX9+6dSu2b9+O1atXY968ef0eDxEREdkmi0uqIiMjUVRUhIaGBoPyzMxM8fXeUqvVnbYHAF999RW2bt2Ke++9Fw8++OCAxUNERES2x+KSqhkzZkCr1WLnzp1imUajQUpKCuLi4sQn7UpLSzs9TVdVVdVpe8XFxUhLS+s0LtT+/fvx9ttvY86cOXjiiSduOh4iIiIa3CyuT1VcXBySk5OxadMmVFdXIygoCHv27EFJSQnWrVsnrvfKK6/gzJkzSE1NFcuWLVuGhIQEREZGws3NDUVFRdi1axdaWlqwevVqcb3MzEy8+uqrcHd3R0JCQqdbg6NGjcLQoUN7FQ8RERENbhaXVAHACy+8gICAAHz33Xeor69HeHg4XnvtNYwbN67beosWLcLRo0dx7NgxqFQqeHl5ITExEUuWLEFERIS4Xn5+Ppqbm1FdXY3/+7//67Sd559/XkyqbiYeIiIiGjwsbpoaW8ZpaohsF6epISKL61NFREREZI2YVBERERGZAZMqIiIiIjOwyI7qRER089J35ULT2AIHJzuMnj9c6nCIbB6TKiIiG5W+O1fsPM+kiqj/8fYfERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiIiIzIBJFRHRTaorU0Fd3wwAEARB4miISCpMqoiIboJG1Yw9/3cSWo0OAKBt1kkcERFJhUkVEVEf6XQCfvznWdQUN4hlzSottC1MrIgGIyZVRER9lPZFNgpPlxmUCToBmd/lSxQREUmJSRURUR9c+akYZ3dcAQDI5DLYOynE105/fRmNtWqpQiMiiTCpIiLqpYq8WqT+65y4POnBEbB3shOXNaoWpH2RLUVoRCQhJlVERL3QWKvGvrdOiR3To6YFYeRtYZ3Wy/qhEBUFtQMdHhFJiEkVEZGJdC067N9wBvXljQAAvwgPTF0xEjKZTFyn9TagIABHP7zAIRaIBhEmVUREJjr68UWUXKgEADh7KjH7qXjYOSgM1rFzVMDN3wkAUJxZifyT1wc8TiKSBpMqIrIq6btykfZlNtJ35Q7ofi/+WIjMvfqn+uR2Msz+zXi4eDl2Wk8mk2HSgyPE5eOfXoS2WTtgcRKRdJhUEZFVSd+di9NfXUb67oFLqkovVeHI+xni8q0rRsE/yqvL9cMmBCAwzhsAUFuqwvk9HGKBaDBgUkVE1I2GikZ8/7dT0Gn1faNGzgtD9IzgbuvIZDJMfigWrV2tzmy/DFUNh1ggsnVMqoiIutCi0eL7v51GY40GABAY521wa687PmHuiEkOAQA0N2px8j+X+i1OIrIMTKqIiIwQBAGH3juPspwaAICrnxNmPTkecjvTL5sJ90aJ41ddOliE8ryafomViCwDkyobIFXHXSJbdn53Hi4fugYAsFMqMOfpeDi6O/RqG04eSoz/WaR+gUMsENk8JlU2QIqOu0S2rCi9HMc/uSguT1s9Gj6h7n3a1sh5YXAPcAYAlFysQt7xErPESESWh0kVEVE7taUN+PHtM2htUBp3VwTCJwf2eXsKOzkmLWnrh3Xs0yy0aDjEApEtYlJFRHSDprEF+948BXVDMwAgNN4fCYujbnq7ofH+GDrKBwBQX9aI8yl5N71NIrI8TKqIiAAIOgEHN55DVVE9AMAzyAUzHhsDmVzWQ82edRpiYccVNFQ13fR2iciyMKkiIgJw+uvLyD9ZCgBwcLbDnKcS4OBsb7bte4e4YcTsUABAi5pDLBDZIiZVRDTo5Z0owan/XgYAyGRA8q/GwSPQxez7SbgnCg7O+iEWslOvisM1EJFtYFJFRINaZWEdDm48Jy4n3heDkLF+/bIvR3cHxN8TKS5ziAUi28KkiogGraZ6Dfa9mYbmJv3TeBFTAjF6wfB+3WfcnDCxFaz0UhVyfiru1/0R0cBhUkVEg5JOq8MPb59B3fVGAIDPMHckrRoNmezmO6Z3R24nx+R2Qywc/ywLLWoOsUBkC5hUEdGgdPyzLFw7XwFAf1tuzlPxsFMqBmTfIeP9ETzWFwDQUNHE2RCIbASTKiIadLJTr4pjRckUMsz+9Xi4+joNaAyTlsSKwzWc/SYHDZUcYoHI2jGpIqJBpexKNQ5tOS8uT1kWhyEjvAc8Dq8gV8TOaRti4cS/swY8BiIyLyZVRDRoqKqasO+tU9A26wAAI2aFIHZWqGTxxN8TCaWrfiysy4eu4Xp2lWSxENHNY1JFRIOCtlmL7/9+GqoqNQAgIMYLtzwcJ2lMjq4OiL+nbRqcnz66AEHHIRaIrBWTKiKyeYIg4PDWTFzPrgYAuPg4Ytavx0NhJ/0lMHZ2CDyDXAEAZZdrcOXINYkjIqK+kv6KQkTUzy7sK8ClA0UAAIW9HHN+Ew9nD6XEUenJFXJMfqjdEAv/zkJzU4uEERFRXzGpIiKbdi2zAj99dEFcTvrlaPiGe0gYUWfBY/wQMl4/iruqUo1z33KIBSJrxKSKiGxWXZkKP2w4DUGr76c05s7hiJw6VOKojJv04AjIFPohFs59k4P68kaJIyKi3mJSRUQ2qbmpBfveOoWmumYAQPBYX0z4RYzEUXXNc6grRs4NAwBom3U4/hmHWCCyNkyqiMjmCIKA1E3pqMyvAwC4D3FG8uPjIJf37xQ0N2v8zyLh6KYfYiHnp2KUZHGIBbJM6btykfZlNmcD6IBJFRHZnLM7c5B7tAQAYO+kwJynE8TxoCyZ0sUeCfdGi8tHOcQCWaj03bk4/dVlpO9mUtUekyoisikFp6/j5OeX9AsyYMZjY+F1Y8gCaxCTHAyvEH285Tk1yD50VeKIiMhUTKqIyGZUX63Hj/84C9xo3Em4NwphCQHSBtVL+iEWYsXlk/++xCEWiKwEkyoisgnqhmbse+sUmhv1CcjwiUMwblGExFH1TdAoX4Ql+AMAVNVqnNmRI3FERGQKJlVEZPV0OgEH/nkWNcUNAADvUDdMe3Q0ZDLL7pjenYkPjoD8xhAL51NyUXddJXFERNQTJlVEZPXSPr+EwjNlAAClqz3mPBUPe0c7iaO6OR5DXDDy9mEAOMQCkbVgUkVEVu3KkWs4u1N/e0wml2HW2vFw83eWOCrzGH9XBBzdHQAAucdKUHyhUuKIiKg7TKqIyGqV59UgdVO6uDz5oREYOtJHwojMy8HZHhN+bjjEgo5DLBBZLItsH9doNNiyZQv27t2Luro6REREYOXKlUhMTOy2XmpqKnbs2IGcnBzU1tbC09MTcXFxWL58OcLDww3W3b9/P44cOYLMzExcvXoV48aNw9tvv91pm6dPn8batWuN7m/jxo0YOXJk3w+UiPpM0An4/q1T0Gp0AIDo6UGIuzEiuS2JnhGMzH35qMyvQ0VeLbIPFiEmOUTqsIjICItMqtavX48DBw7g3nvvRXBwMHbv3o1nn30WGzZswJgxY7qsl5OTAzc3NyxevBgeHh6orKxESkoKVq9ejY0bNyIyMlJcd8eOHcjKysKIESNQW1vbY0z33HMPYmNjDcqCgoL6fpBEdFPU9c3QtehbbfwjPTF1xUir7pjeFblchskPxSLl5eMAgBP/uYThk4bAwdnyBzMlGmwsLqnKzMzE/v37sWbNGtx///0AgHnz5mHZsmXYuHEjNm7c2GXdZcuWdSpbsGAB7rnnHmzfvh3PPPOMWP673/0Ofn5+kMvlePjhh3uMa+zYsZgxY0avj4eI+kdrQuXspcTs34yHwl4hcUT9Z2icD4YlBiDvRCmaajU4syMHE++33HkMiQYri+tTdfDgQSgUCixcuFAsUyqVmD9/PjIyMlBaWtqr7Xl5ecHR0RH19fUG5QEBAZDLe3f4KpUKLS0chI9ISi1NWvF3uZ0Ms38TD2cvRwkjGhgTHxgBud2NIRZ256K2tEHiiIioI4trqcrOzkZwcDBcXFwMyltvvV2+fBkBAd2PkFxXVwetVouKigp88cUXaGhoQEJCwk3FtX79ejQ2NkKhUGDMmDFYs2YNRowY0W2d8vJyVFRUiMv5+fk3FQPRYFdf3giNqu2Lza0rR8E/0lO6gAaQe4AzRt8xHGd35kDXIuDYp1mY85t4qcMionYsLqmqqKiAj0/np3day8rLy3vcxpo1a1BQUAAAcHJywtKlSzF//vw+xWNnZ4fp06dj8uTJ8PDwQF5eHv7zn//giSeewDvvvIPo6Ogu6+7cuRPbtm3r036JqLOLPxSKv9sp5YieFixhNANv7KIIXEq9isZqNfJPlOJaRoVNPe1IZO0sLqlSq9Wwt+/cAdPBwUF8vSfPPfccVCoVrl27hpSUFKjVauh0ul7f7gOA0aNHY/To0eLyrbfeihkzZmD58uXYtGkT/vrXv3ZZd+HChZg6daq4nJ+fj5dffrnXMRARoGvRIevHtqTK3sniLl/9zsHJDok/jxaHkTj60QXc9epUyOW210GfyBpZ3FVJqVSiubm5U7lGoxFf78moUaPE32fNmoWHHnoIAPD444+bJcbg4GDceuutSE1NhVarhUJhvIOsr68vfH19zbJPosEuP60UjTUacVk2SBOJqGlByNibj4q8WlQW1CHrx0LEzgqVOiwiggV2VPfx8THoh9Sqtay3SYqbmxvi4+Oxb98+s8TXyt/fH83NzWhqajLrdonIuAv7C3teaRCQyWW4ZWnb8C5pn1+CRtX5iygRDTyLS6oiIyNRVFSEhgbDJ1syMzPF13tLrVZ32t7NunbtGhwcHODk5GTW7dqS9F25SPsyG+m7cqUOhaxcTXEDrp3Xf7EarC1U7Q0Z4Y3hk4cAAJrqmnH66ysSR0REgAUmVTNmzIBWq8XOnTvFMo1Gg5SUFMTFxYlP/pWWlnZ6mq6qqqrT9oqLi5GWloaYmL6N6VJdXd2p7PLlyzh8+DASExP71E9rsEjfnYvTX11G+m4mVXRzOnZQJ2Di/SOgsNefi4w9eagp5hALRFKzuD5VcXFxSE5OxqZNm1BdXY2goCDs2bMHJSUlWLdunbjeK6+8gjNnziA1NVUsW7ZsGRISEhAZGQk3NzcUFRVh165daGlpwerVqw32c+bMGZw9exaAPnFqbGzEBx98AEA/0Oe4ceMAAC+++CKUSiVGjRoFLy8v5OXl4ZtvvoGjo2OnbUpFuDEXmCBwTjCyPS0aLS4dLAKgH5fKTqlAc6O2h1q2z83PCaPnD8eZ7Veg0wo49slFzH3m5oaOIaKbY3FJFQC88MILCAgIwHfffYf6+nqEh4fjtddeExOdrixatAhHjx7FsWPHoFKp4OXlhcTERCxZsgQREREG6546darTcAdbtmwBoE/OWveVlJSEffv24fPPP0dDQwM8PT0xbdo0LFu2DMHB0j/OXVfWiKZafX8K/qMhW5R3vATqev1nfPjEISi+WClxRJZj7MJwXDpQBFW1GgWnrqMovRzBo/lwDJFULDKpUiqVeOyxx/DYY491uY6xyY9XrFiBFStWmLQPU9ddvHgxFi9ebNI2pVBVVCe2VLU0aZGekovRdwyXOCoi82nfQT12diiTqnbsHe2QeF8MDr57DgBw7KMLGLp+KuQK3iIlkgL/8qxc6Hh/ODi35cbHPr6IK0euSRgRkflUFtahNEvfV9IzyBUBMV4SR2R5Im8dCr8IDwBAVVG9Qf8zIhpYTKpsgJ2j4ThZBzeew9XzPY88T2TpLhq0UoVAJuOTfx3J5DJMfqjdEAtfZIu3S4loYDGpsiGKG09F6bQCvv/bKVTk1UocEVHfNTe1IPt/VwEACgc5Im8NkjgiyxUQ7YWIKYEAAHV9M059lS1xRESDE5MqG+LgbIfQBH8A+k7re14/ibrrKomjIuqbnKPFaG7UT54cMWUolC6dp6+iNon3x0DhoL+kZ+4rQPXVeokjIhp8mFTZEJlMhplPjIN/lCcAoLFajT2vnURTrab7ikQW6OL37W79zQqRMBLr4OrjhDELwgEAwo0hFohoYDGpsjF2SgXmPpMAj6EuAPQjUX/315NobmqRODIi05Xn1KAspwYA4DPMHb7hHhJHZB3G3hkOF29HAEDhmTJoNTqJIyIaXJhU2SBHNwfcti4Rzl76yafLLtfgh/93BjotL7BkHQyGUZjFDuqmslMqkHh/2+wRGhW/TBENJCZVNsrNzwnz1k2AvZN+uIXC02U4tCWDo66TxdOomsVhQeydFAifMlTiiKxLxJRA+Ed6AmibbYGIBgaTKhvmE+qOOU/HQ26n/5Z/6UAR0r7gU0Fk2S4fvoYWtX52gMipQXBwssgxii2WTCbD5KWxBmVMrogGBpMqGzc0zgczHhsL3Lh7cmb7FWTuy+++EpFEBEHAhXYd1Eewg3qf+Ed6IvLWthY+TmFFNDCYVA0C4ZMDDQYHPLItE7nHSySMiMi469nVqCqsAwD4R3nCJ8xd4oisV+J9bX2rWjRatlYRDQAmVYPEqNuGYcyd+setIQAH/nkWJZxDjSzMhe8LxN9jZ4VKGIn1c/F2hML+xiVegPg0JRH1HyZVg0jifdGIStKPSq1t1mHvX9NQVVQncVREek31GuQe07egKl3sMXzyEIkjsn6tg4ECQH7adQkjIRocmFQNIjKZDEmrRiF4jC8A/ePWe/7vJOorGiWOjAjITr0KbbN+2I+oaUGwc1D0UIN6IrZUASg4VSphJESDA5OqQUZuJ8esX48XB1NsqGzCd6+d5ASsJClBEAwmTx4x0/o6qI++fTjG/ywSo28fLnUoIpm8bXyvqsJ61JZy2iqi/sSkahCyd7TDvN8mwD3AGQBQVVSPfW+loUXDJ4RIGsWZlagpbgAABMZ5wzPIVeKIem/0/OFIWByF0fMtJ6nqiK1V1id9Vy7SvsxG+q5cqUMxoNPywQdjmFQNUk4eStz23AQ4ujsAAEouVuHAP89CxyeESAIX9rd1UB/BDur9hv2qrE/67lyc/uoy0ndbTlKVf7IUTTX6OWU5oLQhJlWDmHuAC+Y9OwF2Sn3flbwTpfjpg0z+kdCAUtWokXdC34Li6O6AYYkBEkdke1pvA5ZcrEJTPSdYp75rbmrBTx9misut/SBJj0nVIOcX7oHZvx4PmUJ/0b2wrwBndlyROCoaTC4dKIJw41ZCzIxgKOx4WTK31qcABZ2AojNlEkdD1uz015dRX94kLrd/GIKYVBGA4LF+mPbL0eJy2ufZuHSgSMKIaLDQ6QRc/OFGB3UZEJNsfR3UrUH7f3y8BUh9VVlYh/SUPIMyTnZuiEkVAQCikoIMZrf/33vnUXCaF1/qX1fPlaO+TD+kR/AYX/HhCTIvuZ0MSld7AEDRuTJom/lQCvWOIAg4sjVDbFW2c+SQJ8YwqSLRmAXDMfK2MAD62wQ/vH0G1y9XSxsU2bT2HdQ5gnr/kclkCB3vD0A/D2BxJmdToN7JTr2KkotVAAD3AGfYOzGpMoZJFYlkMhkmL4kVR7JuUWvx3esnxUfdicypoaIRhaf0raHO3kqEjPeTOCLbFprgL/6ef4qt0GS6pjoNjn96UVyesjyOt/26wKSKDMjkMsxYMwaBcd4AAHV9M3b/3wmoqpp6qEnUOxd/LELrg6YxM0IgV/By1J+CRvtCbqf/R1iQdp1P+ZLJTvz7Eprq9ANED588BMFj+AWoK7yKUScKewXmPBUP71A3AEB9WSO+e/0kNCqOuk7modPqkPWjvoO6TAaMSA6WOCLb5+Bkh6Ej9VNUNVQ2oSKvVuKIyBqUXqoS/1btnRSY/FCsxBFZNiZVZJSDsz3mrZsAV19HAEBFfh2+/9tpaFs4JgndvIJTZVBVqQEAofH+cPFxkjiiwSGs/S1APgVIPdBpdTi8NUNcTlgcDRcvRwkjsnxMqqhLLl6OuG1dovjU0LWMCqS+ew4CR12nm3Sx/Qjqs9lBfaCExrclVQVpnLKGupe5Nx+V+XUAAJ8wN8TN5d9qT5hUUbc8g1wx95kEcfDAK0eKcaxdh0Wi3qotVaHoXDkAwNXPCcGjfSWOaPBw8XYUJ1OvyK9DfXmjxBGRpWqobELaF9n6BRkwdcVI9ns0Ac8Q9Sgg2gszfzUOrQ97nE/JwzkLm9yTrIc42CeA2Fkh4hQqNDDC2rdW8SlA6sLRjy6guUk/ntmI5BD4R3lJHJF1YFJFJglLCMDUlaPE5eOfXMTlw9ckjIiskbZZi0sH9aP1yxUyRE1nB/WBFjqhfb8q3gKkzorOliH3WAkA/XycE+6Lljgi62EndQBkPUYkh0BV1YRTX14GAKS+ew5O7g4I4u0bMlHeiVI01eon9B2WOATOHspeb2P07cOhaWyBgxMvX33hHeIGV18n1Jc3ojizEhpVMxyc7aUOiyxEi0aLI9vaJkye+EAMHF0dJIzIurClinpl/N2RGDFTPz+bTivg+7+dQnlejcRRkbVof+tvxOy+zfM3ev5wJCyOwuj5w80V1qAik8nEpwB1WgGFZ8sljogsydmdOagtVQEAhozwQlRSkMQRWRcmVdQrMpkMU5bHiRfl5iYtvnvtpPhHSNSV6qv14vQoHoEuCIz1ljiiwav96Op8CpBa1RQ34OzOKwAAmUKGqStGcuT0XmJSRb0mV8iR/Ktx8I/2BAA01miw57UTaKxVSxsYWTSDVqpZIbxYSyhwhDccnPW3TwvPlEHH8ecGPUEQcHhrBnQt+iFzRt8xHF7BbhJHZX2YVFGf2DkoMPeZBHgGuQAAaktU2Pt6GpqbWiSOjCxRi6atg7rCXo6oabylICW5nRwh4/RTjWhULSjJqpI4IpJazk/FuHa+AgDg6uuE8XdHSByRdWJSRX3m6OqA29YlwtlL39m4LKcG+zec4bde6iTnaDE0Kn3CHT45kB1fLUD7gUD5FODgplE14+jHbeMP3vJwLOwd+SBIX/Cs2YhRF7/CmEvbge09PE0VHw/s3GlYtnAhcOpUzzt56in9T6u6OriOi8VtzkH4dtyz0Ng5o+hsGf4394+Ydmkb7qpWQ9AJ+nGIlu8BEhLa6n77LfDooz3v09UVuNhhsNHf/hb47LOe686fD/zrX4ZlEyYAJSU91339deCBB9qWs7KAWbN6rgcAJ04AgYFty5s2AX/+c8/1oqOBH34wLHvwQeDgwZ7rrloFvPiiYVmwicMVfPwxMGNG2/KBA8CSJabVLSoyXH7pJWDz5k6rXRz3HOCu/+Y74u0ngEMhwCefGK40cyZw6VLP+/zjH4Ff/rJtubgYSEw0Ld79+4GYmLblTz8Fnn2253pDhgAnTxqWrV4N7NrVc9377wfeeMOwbMQIoL6+57rvvgssWNC2nJYGLFrUcz0AuHDBcPmtt/Q/NwQrnCC75S0Icjvkb0/D5BfmQgaY/RqBWBPnituxg9cIIwyuo5mj++UakRbxCzQGzQYAhJafQdiiVYbrGblG3LXtF21xdfd/x8RrRCfTp/ftGtHxMzjAmFTZCIdmFZwbyoGGHlYMMfLEVVkZcPVqzzup7TABqyAAV6/CG1cxp/pP2J38CnQKe2QPmQrnikIkXv2wbV2NxrBuY6Np+3Qzck+/qsq0upWVnctKSkyrq+rQ8b6lxbR6AKDVGi7X15tW18Ojc1l5uWl1a4w8gWlqvGp152VT6xqLo0PdCs9wXL+RUHlX5cD/4v+A0Lmd65aWmrbfjsmIVmt6vC0dbk+rVH0/1spK0+pWGbm1du2aPuHoSWOHEc81GtPjFTpMJ1Vba1BXCSAwIh3XhoxHvaMvqurt4V2T1y/XCJPwGmF0Vef2C6VGWhRv8hpR7hWBzMBkAICipQm3HPk70NBhUFgj1wjnhnZPjfb0f6djHKbEW27kqVRTrhEdP4MDjEmVjdDYO0Pl4gtnzx5aqvz8jJcFmdDHxd3dcFkmE+sFogrJWe9hf+xqQCbH2ZH3wV6rRlTO95DJZXB26HC7x8nJtH26unYu8/Iyra63kafLhgzpuR4AODsbLtvZmbZPAFAoDJddXU2rGxDQuczX17S6xhIyU+NVKjsvm1rXWBwd6l6IXCz+PqL8CGRBQfrj6iggwPiFv6OOnwmFwvR47Tpc8pydTatr7HPj7W1aXS8jI1EPHWpaS5VTh4mmHRxMP9aODwK4u3eqG1Z/EdcwHgCQHzsH3oUp/XaN6JEFXCPSd+UiXOkFBx8t7B0VXVS6YYCuEap2LVXOZr5G6IKCcXjcbyDI9fHEF+6Cm6c94Nlhe0auESoX37a4evq/0zEOU+Lt6zWi42dwgMkEoePXma59/vnniI6ORmRkJFyNfZABtLS0wK7jhYsAAFlZWVi1ahU2b96MmPa3IG7Sp0/8AFWlGs7eSjzwj5lm225fZHyXh58+MLztYAlxkTQ0jS347PEf0NykhZ1SgQf+mcyBJgdQT9eGurJG/GftAQCAX7gHFr08ZYAjtCyWdC1t1Z8xXfi+AIffzwCgn+f17vVTobAzrau1JZ4rS9Cr7Oef//yn+Bj0kCFDEBUVZfDj6+uLt956CxqNBr///e/7JWCybCPnDYOqSo2zO3PEMp3W5LydbEzOkWvi/GGRU4cyobIwbn5O8A5zQ2V+HcpyatBQ1QQXL0epw6IBoKpR48S/s8TlqSviTE6oqGu9SqrWr1+PS5cuiT+pqalITU0VEy03NzfU19dD2bGpkAaVCb+IhqpKjez/6e99tzRpe6hBtkgQBFzYf/MjqFP/Cov3R2W+vn9XwanriJ0VKnFENBCOf3JRfCI3KikIgbE+EkdkG3qVVE2ZMgVTprQ1D1dXV+PSpUs4f/48Dh48iLy8PMjlckydOtXsgVLXLG0uNJlMhkkPjWhLqjRaNDe18BHdQabsSg0q8vSdRv3CPeA7zEi/L5JcWEIATn+tH0W7II1J1WBwLbMClw9dAwAoXewx8QHzdUcZ7G7qv5ynpycmTpyIiRMnYvny5diyZQv279+PR015DJbMxhLnQHN0dYBCKYdWrQME4PKha4idzYv1YHJxf4H4O1upLJfPcHc4eyuhqlTjWkYFvwDZOG2LDke2ZojLE+6LhlMfJjYn48x2A1Umk2HlypVwdnbGP/7xD3NtlqyYvbLtCZfMffnoxTMRZOXU9c248lMxAMDB2Q7hkwN7qEFSkclkCIvXP1Wmbdah6BwnWLZl6btyUX1VPwaCX6QHRiTzC485mb1X2siRI3HixAlzb5askLxdp8eqwnqUXDQyJgzZpOxDV6HV6EfWj0wKYsuHhTOYYPnU9W7WJGtWd12F019fBqAf7WLqipH6wTvJbHqVVJ04cQI1PYwRoek4gBvRDZnfFfS8Elk9QRAMbv3FzuI3YUs3NM5bHJep4NR16LScasrWCIKAIx9kil924uaFsZ9jP+jV18dnnnkGMpkMfn5+iI6ORnR0NKKiohAdHQ1fX1+kp6fj4MGDmDNnTn/FS9ZIBkAA8k6WoqGyCS7efGTblpVcrBJvLwwZ4cWZ7q2Awl6B4DF+yD1eAnV9M65nV2PICCOD55LVKki7jsLTZQAAZ08lEhZHSRyRbepVUrVixQpkZ2cjOzsbhw4dwqFDh8ThFGQyGQRBgKenJ0aOHInCwkKEGJvugAYdO6UCLU1aCDp9C0bCvdFSh0T9yKCDOp8ksxqhCf7IPa6f8y4/7TqTKhvS3NSCnz7MFJcnPRTLMeP6Sa+Sqocfflj8va6uDpcvXxaTrEuXLqGgoABVVVVYv349AECpVCI8PBxRUVF4SsIJDklado4KaDU6fVL1QyHG3R3JQeasRPquXHG4DlOeMm2sVSP3mP4fs6ObPYZPNDKtBlmkkPF+kMllEHQC8tNKMfGBGPFLM1m3019fRn15EwAgaLQPwiebOF0X9Vqfe4+6ublh/PjxGD9+vFimVquRk5MjJlrZ2dm4cuUKLly4wKRqEJPLZRiWGIDcYyVorNEg73gJIqYMlTosMkH67lxxKgpTkqrsg1fFEfSjpgdDYd/D/GlkMRxdHRAQ44WSC5WoLVGh5loDPIOMT0dG1qOysA7pKXkAAIW9HFOWjWSy3I/M+kiOUqlEbGwsYmNjxTKdToeCAnZQHuzi5oaKLRgZe/OZVNmg1pbIViNm8va/tQmL90fJBf1TuvlppUyqrJwgCDiyNQPCjS86Y+4Mh0egi8RR2bZ+f85ZLpdj2LBh/b0buuUWqSPoZG5uDbQtAhR2MvikecAraDWqHAJw/VI1yqffDV9NidQhUg/av4dI6/5JoauO4agNXAIAGNqYA4+7/zwQIVI3evP+AUCYnReOhfwKAJC/bT/Grl/S3yFalN6er4FwMzFlu45Fid8iAIB7cwXGvvUK8KZ5pg2zxHMFAPjpJ0l3z8FjbMXRo1JH0Ilv+4VSIC7SG4cTnwAAZDaFYdrx7VKERb3Q8T3szsVbZ4m/x578DCiyvM/kYNOb9w8A3AF43rEQ1R5huK4MQuPpC3BSdz+Mji3p7fkaCH2NqcnBDcfnrxWXpxx6C3YlpyWPy9axtzANmMi8H2Cv0T9qfyVsBpoceGvBVjQ4eSM/aDIAwKmxEmFXmVBZq7DWZFgmR0HQRGmDoT47MXYZmhz1LUjD81MRbMaEirrGpIoGjH1LE6Jz9wEAtHZKXArneGa24lL4PAhyfaf0mCvfQS6Y5xYDDbz2CXHBjUSZrEupzwhkRd4OALBvVmHy6U0SRzR4WOTtP41Ggy1btmDv3r2oq6tDREQEVq5cicTExG7rpaamYseOHcjJyUFtbS08PT0RFxeH5cuXIzw83GDd/fv348iRI8jMzMTVq1cxbtw4vP3222aNhzqLy96FjJi7AAAXIhdg9MXtkIFzAloznUyOixG3AQBkOi1GXNkjcUR0M/wqLsGpsRKNTt4oGjIeLQol7LRqqcMiE+lkchxOfFxcTjj3EVwaOUXYQLHIpGr9+vU4cOAA7r33XgQHB2P37t149tlnsWHDBowZM6bLejk5OXBzc8PixYvh4eGByspKpKSkYPXq1di4cSMiIyPFdXfs2IGsrCyMGDECtbW1/RLPgJpsed8oy9t1ZPQdrm+G9gAQpLqCq84RqHMLRFHygwhpvCxtoNQlY+9hR4VO0Whw8QMABDddgeuYCAARAxgldcWU968jGYDQljxkwRtaO0dcnfYLhDVekjyugWCJcfU2pgz3Saj00v/9+aiLEed9vV/+P1jiubIEMkEQLKqZIDMzE48++ijWrFmD+++/H4B+/Ktly5bB09MTGzdu7NX2Kisrcc8992D+/Pl45plnxPLS0lL4+flBLpfj4YcfhoeHh9GWKnPGk5WVhVWrVmHz5s2IiYnp1XFYo0+f+EEc4+iBf8wUy/PTSrHvzVMAgOCxfrht3QSpQqQedPUetvfd6ydReEY//cXc3yYgdLy/0fVo4Jny/hnT/m80JjkYSatGW0Rc/c0S4+pNTA2VTfjymVQ0N2kBGbDwpVvgH+nZL3H1dmDgwcLi+lQdPHgQCoUCCxcuFMuUSiXmz5+PjIwMlJb27jEDLy8vODo6or6+3qA8ICAAcnnPh2/ueAgIGe8PV18nAEDR2TLUlDRIHBH1VV1ZIwrP6hMqV19HBI/1kzgiMoeg0b5QOOivjwWnrkPQWdR3b+rC0Y8u6BMqACOSQ/otoQKA0fOHI2FxFBOqDiwuqcrOzkZwcDBcXAwHKGsdUPTy5Z5vFdXV1aG6uhpXrlzBa6+9hoaGBiQkJAx4POXl5cjKyhJ/8vPz+xSDrZHLZYid0zYn3IXvOTistcr6sRCtXeJikkMgl3OkZltg56BA8Gj9Q/ONNRqUXamWNiDqUdHZsrYpotwdMOE+zrEqBYvrU1VRUQEfH59O5a1l5eXlPW5jzZo14ijuTk5OWLp0KebPnz/g8ezcuRPbtm3r035tXcz0YJz6MhvaZh0uHShCwuIo2Dta3MeRuqFr0emTKgAyuQwxM4IljojMKTTBH/lp1wHoJ1j2j/KSOCLqSotGiyPb2iZMnvhADBxdHSSMaPCyuP9iarUa9vadZ892cHAQX+/Jc889B5VKhWvXriElJQVqtRo6nc6k233mjGfhwoWYOnWquJyfn4+XX3651zHYIkd3B4TfEojs1KvQqFpw5UgxpzWxMvlppWis0QAAwib4w9nLUeKIyJxCx/vre60L+qQq8T7b7wdqrc7uzEFtqQoAMGSEF6KSgiSOaPCyuKRKqVSiubm5U7lGoxFf78moUaPE32fNmoWHHnoIAPD44493VaVf4vH19YWvr2+Xrw92I+eGITv1KgAgc18+YpKDOdGnFbnwfds8f7GzQrtZk6yRk4cS/lGeuH6pGtVX61FT0gCPIZw3ztLUFDfg7M4rAACZQoapKzhhspQsrk+Vj48PKioqOpW3lvU2SXFzc0N8fDz27dtnEfFQG99wD/hF6h/FrcyvQ2lWlcQRkalqihtwLUP/N+Ae4IyhIzvfIifrF5YQIP5ecONWIFkOQRBweGsGdC36jo2j7xgOr2A3iaMa3CwuqYqMjERRUREaGgyfCMvMzBRf7y21Wt1pe1LGQ23i5oaJv2fuY4d1a3Hxh7ZWqhGzQiBjB3WbFBbfNjxG/ikmVZYm56diXDuv/3Lj6uuE8XdzfDipWVxSNWPGDGi1WuzcuVMs02g0SElJQVxcHAIC9N+cSktLOz1NV1XVuaWjuLgYaWlpfR4XytR4qG/CJw2Bo7u+f1ru8RKoqpokjoh60qLR4tLBIgCA3E6G6GnsoG6rPIa6wH2IMwCg9GIlmuo0EkdErTSqZhz9+KK4fMvDsXzYxwJY3DsQFxeH5ORkbNq0CdXV1QgKCsKePXtQUlKCdevWieu98sorOHPmDFJTU8WyZcuWISEhAZGRkXBzc0NRURF27dqFlpYWrF692mA/Z86cwdmzZwEA1dXVaGxsxAcffAAAGDt2LMaNG9ereKhvFPYKxCSH4OyOKxC0Ai7+UIj4e6KkDou6kXu8BOp6fT/D4ZMCxaSYbI9MJkNYQgDSd+VCEIDCM2XsBG0hTn6RjcZq/YNSoQn+BrdqSToWl1QBwAsvvICAgAB89913qK+vR3h4OF577TUx0enKokWLcPToURw7dgwqlQpeXl5ITEzEkiVLEBFh2Cx66tSpTsMdbNmyBYA+OWu/r77GQ6aJnR2CczuvQBCAi/sLMW5RBOR2FteISjdc3N++gzqf2LR1YQn+SN+VC0D/xCeTKumV59bgwl79nRo7pQK3LI2TOCJqZZFJlVKpxGOPPYbHHnusy3WMTSmzYsUKrFixwqR99GZdU+KhvnP1cULohADknyiFqlqNvJOlCJ8cKHVYZERlYdsDBZ5BrgiI4dhFts4/2gtKV3uo65tRdLYcLRot7BwUUoc1aOl0Ag5vyUDrBHPj746Am5+TtEGRiM0BZBFGtu+wvpcjz1sqg1aq2SF8dHsQkMtlCL3RYb1FrUXxhUqJIxrcsn4oRFlODQD9F5tRd3CaGEvCpIosQmCcNzyD9GPglFysQkVBrcQRUUfNTS3I/p9+XDGFgxyRt/I20GAR2v4pwJOc71Qqqho1Tvw7S1yeuiIOCnaVsCgWefuP+uCtt/Q/PYmPB9o9yQgAWLgQOHWq57pPPaX/aVVXB9yYA9GYu6rVEHSC/nH75XuA9vMvfvst8Oij4qIMQFzgDByJehAAcOHhV3Fr9seAqytw8aLhhn/7W+Czz3qOd/584F//MiybMAEoKem57uuvAw880LaclQXMmtVzPQA4cQIIbHf7ctMm4M9/7rledDTwww+GZQ8+CBw82HPdVauAF180LAs28am8jz8GZsxoWz5wAFiyBIDhe5hzdBaaox8GAEQUpEIZ8whQVGS4rZdeAjZv7nmf06cDn3xiWDZzJnDpUs91//hH4Je/bFsuLgYSE3uuBwD79wPtnwT+9FPg2Wd7rjdkCHDypGHZ6tXArl09173/fuCNNwzLRowAOkzybtS77wILFrQtp6UBixb1XA8ALlwwXL6Ja0Twy49B4bwMWrk9ClLOQXjxNhhtozTxGmFwbdh+YwDlHTu6vUZ0yczXiEXfPQkXdXVbXF0ZoGtE+3N1/Oo6aJxGAgCikoIQGOsj+TWiRwN9jej4GRxgTKpsRW0tcPVqz+uFGOlYXFZmWt3aDq1HgtBtPef2C5oOj2I3NnaqG1n6FU4MuxvN9s647DcJiYf/AWXHfQJAVZVp8VYauU1RUmJaXZXKcLmlxbR6AKDVGi7X15tW18Ojc1l5uWl1a2o6l5kab8epltRqsW779/CCzy3i77FnvwAqjWy/psa0/RqbM7O01LS6HZMRrdb0Y21pMVxWqUyv21FlpWl1jQz1gmvX9AlHTxobDZc1GtPjbe100+omrhH2ZcUY6nAahUEToVJ6obzRGX6V2Z3rmniNMLg2tA4BaMI1wig3I4Nd3sQ1wrmxCs6NFW1xdWWArhGt5+qa/2hcvpFQKV3sMfGBG18OJL5G9Fp/XyOM/c8YQEyqbIW7OxBkwu0YPz/jZabUdXc3XJbJuq2navcNy9mhw2P3Tk6d6joAiLp+FJlBM9Fi54js8fdgVM2xzhv28jItXm/vzmVDhvRcDwCcnQ2X7exM2ycAKDp04nV1Na2usTHPfH1Nq2ssITM13o5TLSmVYt3W97DSKxzlPvpZ733q8uHrpDK+fQ8P0/ZrbCaCgADjF/6OXF0NlxUK04/VrsMlz9nZtLrGPjfe3qbV9TLSmX/oUNNaqpw6dEB2cDD9WDv2d7vJa0TYtYsoxEQAQMGI2fDLV3Vez8RrhMG1wfPG58+Ea4RRHT8PwE1dI1ROXoZxdWWArhGqajVaBDkOTXxSLJtwXzScPG7EJ/E1otf6+xrR8TM4wGSC0PHrDPWXrKwsrFq1Cps3b+7zYKTW5NMnfoCqUg1nbyUe+MdMk+pUXa3Hf3/7PwD66U/ufXMaR+uWUOt7qFDKoVXrAAC3rhzFya+tRF/+BrvSUNWEzx7/EQDgHeaGn62/1SLiMidLjKs1plZ+kR5Y+KdbeF20UOzhRhbFK8hVnEeutlSFq+lGmoBpwLUmVPZOCkRM4XAXg5GLlyP8wtvm6qwrM9JSRWan07a1e8hk0E+YzITKYjGpIosTNzdU/D2DwytYlMhbgzgVxiAWOqHtKcACzgXY7wRBgEbV1g8wbl4YfIcZuY1HFoNJFVmc0Hh/uPg4AtBPi1F33fa/EafvykXal9niyNWWomPvgBEcQX1QC4tv6/eXf5JJVX/SqJrx4/87C12zvpVYJgMSFnMKL0vHpIosjlwhR+zsG61VApD5fYG0AQ2A9N25OP3VZaTvtqykStfSllT5R3nCJ1TaTqAkLa8QV3H07uKLlVA3NEsckW2qyK/F9t8fQc7RYrHM3sUODs72EkZFpmBSRRYpJjkYcjt9v4FLB4rQotH2UIP6Q4u67bzHzgrtZk0aDGQyGUIT9LcABa2AorNlEkdkWwRBP6n8zj/+hNqSGy30N7pPcWog68CkiiySk7tSnP9PXd+MnCPFPdQgc2uq00Cr0d96gAwYPtnE4SjIpoUltLsFmMZbgObS3NSCA++cw6H3zkN745af73B3OLo79FCTLAmTKrJYce3mA8zYm9+pfw/1r6wf2+b5s3NQ8JsyAQCGxHjBwVn/sELR2TJoW3QSR2T9KgvrsP33R3Dl8DWxLG5uGO7802TIFXzSz5owqSKL5RfhAd8bj3BX5NXiena1tAENIpcOFOHkf9qmg7Bz5KWC9OR2coSM0w8QqlG1oIQTLN+USweLsOMPR1BzTT+Eu72TAjOfHIcpy+KgsOcXGWvDKyVZLJlMZjC8QuY+2++wbgnOfZOD1E3pBrOcyBW8VFCbsAntbgFyaIU+aVFrcfDdc0j9V7p4m90nzA13vTxV7PpA1odXSrJo4ZMDoXTVP/GSe7QYqhp1DzWorwRBwPHPLuL4Z1limZ2S35Sps+AxvuJtqYK067w130tVV+ux4w9HkJ3aNo/diFkhuPOlW+AR6CJhZHSzmFSRRbNzUCAmWT82kk4rGPTz6QtLHQ9KajqtDv/bfB7nvmk7Lwk/j4K9M5Mq6szB2R6Bcfp58+rLG1FZYMLk0AQAyD50FTt+fwRVRfq5H+2UCsx4fCxufWQU+y3aAA6NTP1m9O3DoWlsgYPTzX3MYmeHIP3bHAgCcOH7Aoy9M7zPt6PSd+eKc3uNnj/8puKyFS0aLX7851nknyjVF8iAqctHInZ2KC4MgjHCbJm5/gaNCUsIwNX0CgD61iqfMI5h1p0WjRY/fXDB4IuhV4grZj05Hp5BRiaFJqvEpIr6jbmSFjc/Z4TE+6Mg7TpUlWrkp13H8Il8vN8cNKpm7HvrFIoz9Z2N5QoZZjw+ln06bER/fnEIjffHkW2ZAID8tFKM/1lkv+3L2tUUN2D/26dRmd/Wohc9IxhTHo7jLXYbw9t/ZBXaD6+QyfkAzaKxVo2UV46LCZWdUoG5z05gQkUmcfV1gs8wfetUeW4tGioaJY7IMuUcLcb23x8WEyqFgxzTHh2Nab8czYTKBjGpIqsQNNJH7MBZnFmJqiL24bgZ9eWN+PalYyjPrQUAKF3tccfvJiJ4tK/EkZE1CY1vN8HyaY6u3l6LRovDWzPww9tn0Nyon5nAM8gFd708BdHTgiWOjvoLkyqyCjK5DLFzOLyCOVRdrcc3fzqKmmL9uDjO3kos+OMk+Ed6ShsYWZ2whLakKj+tVMJILEttaQO++dNRXGh3nYq8dSgW/WUKvILdJIyM+huTKrIa0dOCxOby7NSr0Kg4mWtvXb9cjW9fOoqGyiYAgEegC+588RZe6KlPfIa5w8XbEQBwLaMCmsYWiSOSXu7xEnz9whFU5OlbgRX2cty6ahSmrxkDe0d2Y7Z1TKrIajg42yPy1qEA9APnZf/vag81qL2r6eVIeeU41PX6ZNRnmDsW/HES3PycJI6MrFX7CZZ1LQKunhu8twC1LTr89GEm9v/9NJpvJJfuQ5yx8C+3YERyCGQyTjczGDCpIqti2GG9gIMOmij3WDG+e/0kWtT6vh2Bcd6Y//uJcPJQShwZWTvDW4CDc3T1ujIVvn3pKDL2tD1EE35LIO56ZSp8QjnUxGDCtkiyKt4hbgiM80ZxZiVqihtw7XwFgti5ulsX9xfg0PsZwI38M2xCAJKfGMuBBsksAmO9Ye+kQHOjFoVnyqDT6gbVtEb5aaU4uPEcNCp965TcTobJD8UidnYoW6cGocHzySebEde+wzqHV+iSIAg4s+MKDm1pS6iipwdh1tpxTKjIbBT2CgSP0U+wrK5vRumlKokjGhi6Fh2OfXIR+948JSZUbv5OWPjSLYibE8aEapBiUkVWJywhAM7e+ttWBaeuo66M4+N0JOgEHPv4Ik7+55JYNnrBcCT9cvSgakWggTHYbgHWVzTi278cM5juatjEANz96lT4DveQMDKSGq+uZHXkdnLEztS3VgmC/vYWtdFpdUjdlI7zu/PEssT7YzDpgRH89kz9InicH2TywTHBcuGZMnz9/GFcz64GoJ+F4JaHYzFr7Xg4ONtLGxxJjkkVWaWYmSGQK/QX8awfC9Gi0UockWVo0Wjx/d9PIztV/2SkTAYkrRqFsXeGSxwZ2TJHVwcMGeEFAKgtVaH6ar3EEZmfTqvDiX9n4bvXT4pP0Lr6OmHBi5Mxct4wfmEhAEyqyEo5eyoxfJJ+/r+mumbkHi2ROCLpaVTN2PN/J1Bw4/aL3E6GmWvHIyY5ROLIaDBofwuw4JRt3QJsqGpCyivHcXZnjlgWmuCPu1+dykFzyQCTKrJanA+wjapGjV1/OYaSi/pOwvaOCty2LpETT9OACY0PEH/PP2k7SVVRejm+fv6w+LclU8gw8cERmPNUPJSuvN1HhjikAlkt/yhP+AxzR0VeLcpyanD9cvWg/NZYd12F3etPoLZUBQBwdLPHvHWJ8Atnh1kaOO4BzvAKcUVVYT2uX6mGqloNZ0/rHQdNpxNw+r/ZOL39ivj0rIu3I2Y+OQ4B0V7SBkcWiy1VZLVkMhni5rYNr3BhEM4HWFlYh2/+dFRMqFx8HLHgxclMqEgSYmuVABSctt7WKkEnYPerx3H667aEKnisH+5+dSoTKuoWkyqyahG3DIXSRd8Ef+Wna2isVUsc0cApvVSFXX8+BlW1/pg9hrrgzj9NhudQV4kjo8HKoF+VFQ+t0FijQXFmJQD9ZO6J90Vj3m8T4OjuIHFkZOmYVJFVs1MqED0jGIB+7rFLB4okjmhgFJ4tw+71J6Bu0D+F5BfugTv/OBmuPpzHj6TjF+4Bpxu3/K6ml4vTIlkDQSeIc/a1tk45eypxx+8mYuzCCHHICKLuMKkiqxc7OxS4cb278H0BdDrbHSMHAK4cuYa9f00T/2ENHeWD2383kd+iSXIyuQyh4/WtVdpmHa6ml0sckWnqyhqR8upxNDe2JYFBo31w9/qpCIz1ljAysjZMqsjquQc4I2ScfpqM+vImFNrY49ztZe7Lx4//PAtBq08ch08cgnm/TYCDE585IcsQNqHd6OoW/rcoCAKyDhTiq+f+J97uAwB7J/3Ts5xwnHqLSRXZhPbDK2TY4PAKgiDg1FfZOLI1U7w1MWJmCJKfHAeFPefxI8sxdKQP7JT6z2TBqesW23KsqmrC3r+m4X+bzostVLIb/xHtnex4u4/6hEkV2YTg0b5wD3AGAFw7X2FTIzoLOgE/fXgBp768LJaNXRSBqY+MhJwXfrIwdg4KBI3xBQA01WpQdrla2oCMyDlajP+uO4TC02ViWfT0IN5Cp5vGpIpsgkwuQ+yctuEVMr+3jeEVdC06HHjnLDK/a2t9m/TgCCT+IprTYpDFCou3zAmWm+o0+OHtM/jh7TPiVDNOHg6Y83Q8pq0ew9YpumlMqshmRE8LhsJB/5HOTi2CpvVJHivVotZi75uncOVIMQB94jj90TEYPX+4xJERdS9kvB9ac/78tFJpg7mh4PR1/HfdIeQcLRbLhk8agnteS0JYQkA3NYlMx6SKbIbS1R6RU4MAAM2NWlw+dFXiiPpOXd+M3etPoOis/vaEwl6O2b8Zj6hpQRJHRtQzJ3cl/G8MkllzrQE1xQ2SxaJRNSN1Uzr2vpGGxhtjuild7JH8xFjMfHIcb/mRWTGpIpvSfoT1zL0FEATL7CTbHVVVE779yzGUXroxj5+THW57bgK/TZNVMbwFKE1r1bWMCnz13GGD8euCx/rhZ6/fiogpQ3kLncyOSRXZFJ8wdwTE6L8hV1+tN3hM2hrotAK++dNRVBXWAQAc3R0w/w8TERjrI3FkRL0TNqHtS0DBAA+t0KLW4qcPMpHyynHUlzcC0E8yfuuqUZj3bAJcvBwHNB4aPDi4DdmcuLlhKM3St/Jk7svH0JHWk5A01WrQdKNxzdXPCbc/lwiPQBdpgyLqA49AF3gEuqCmuAGlWVVoqtUMyK2269lVOPhuusEtx8A4b0xbPRpufs79vn8a3NhSRTZnWGIAnG9MlZF/8jrqKxoljqhn2mad/pcbCZVXsCvu/NNkJlRk1UJvzAUoCEDBmf5trdI2a3HiP5fwzZ+OigmVwl6OyQ/F4o4XJjKhogHBpIpsjsJOjpiZIQD0Yzxd3F8ocUTG1Zc3Ij0lFzv/9BPUdc1iuX+kJ+b/cRJvUZDVa98PsD8nWK7Ir8WOP/yEszuuoLUbpV+EB+5+dSpG3T6MQyXQgOHtP7JJI2aF4MyOKxC0Ai7+UIjxd0dYxMjjtaUq5B0vQe7xEpRdqen0utxehttfSIS9o2X8aY6+fTg0jS2cBof6xD/KE45u9miqa0bRuXK0aLSwczDf36FOq8O5b3Jx6r/Z0N2YukmukCH+niiMuXM45Aq2G9DA4pWSbJKLlyOGJQYg92gJmmo1yD1WgshbpRmOoKa4AbnH9IlURV6t0XVkChkErQClq73FJFQAOCYW3RS5XIaQ8f7ITr2KFrUWxRkVCBnv33NFE1Rfq8fBd8+h7HLblxOvEDfMeGwMfMLczbIPot6ynKs3kZmNnBuG3KMlAIDMfQUDmlRVFdUh93gJco+Vik/ydeQT5oZhk4ZgeOIQpKw/DlWlmo94k80JSwhAdqp+zLj8U9dvOqkSdAIy9ubjxL+zoNXo+yLKZMCYO8MRf0+kRbRI0+DFpIpsVkCMF7xD3VBZUIfr2dUoz+l8u81cBEFAZWEd8m60SFVfNT7YoV+4B4ZNDMCwiUPgMYSd0Mn2BY32gcJeDm2zDgVp1yEs7/vYcXVlKqT+K91gqBSPQBdMf3Q0/KO8zBEu0U1hUkU2SyaTIW5OKA5tyQCgH17BnARBQEVu7Y0WqRLUlqqMrucf5YnhE4dg2MQAPoFEg469ox2GjvJB4ekyqKrVKM/t/ZcbQRBw6UARjn58Ac2NWrF85LwwJN4XAzslW6fIMjCpIpsWMXUojn+WBY2qBVeOFMPB5eY+8oIgoOxKjdhHqr7MyHANMmBIjBeGTRyC4YkBcPFxuql9Elm7sIQAFJ7WT7nU2wmWVVVN+N9758X6AODq64hpq8dY1Rh0NDgwqSKbZu9oh+jpwTi/Ow/aZh1a1NqeK3Ug6ASUXqpC3olS5B4vQUNFU6d1ZDJgSKw3hk8agmETAuDM4RCIRKHj/cTfe5NUXTlyDUe2ZkLd0DbkSPSMYExeMgIOzvZmjZHIHJhUkc2LnR2K87vzAMDkpEqnE1BysRJ5x0qQd6IUqhsTsbYnk8swdKQPhk8agrAEfzh5KM0ZNpHNcPZyhF+kB8ou16CqsA6OHt2PrN5Uq8HhbRnigyYA4OSpRNLKUQiNN8/Tg0T9wSKTKo1Ggy1btmDv3r2oq6tDREQEVq5cicTExG7rpaamYseOHcjJyUFtbS08PT0RFxeH5cuXIzw8vNP6hw4dwtatW5Gfnw9PT0/ccccdWLp0Kezs2k7L7t27sX79eqP7+/rrr+Hjw+ZnS+cR6ILgsb4oOlsOQdf1eroWHYovVCL3uD6RaqrVdFpHrpAhaLQvhk8cgtAEfzi6cYZ7IlOExQeIwx9om7v+clNw6jr+tzkdjTVtf3/hkwMxZXkc/97I4llkUrV+/XocOHAA9957L4KDg7F79248++yz2LBhA8aMGdNlvZycHLi5uWHx4sXw8PBAZWUlUlJSsHr1amzcuBGRkZHiukePHsXvfvc7jBs3DmvXrkVOTg4+/PBDVFVV4emnn+607UceeQSBgYEGZa6uruY7aOpXcXPCUHS2vFO5tkWHa+crkHu8BPknS6Gub+60jsJejqAxNxKpeH8oXXjbgai3wib44+TnlwBAHAqhPY2qGUc/vohLB4rEMqWrPaYsH4mIWwI7rU9kiSwuqcrMzMT+/fuxZs0a3H///QCAefPmYdmyZdi4cSM2btzYZd1ly5Z1KluwYAHuuecebN++Hc8884xY/s477yAiIgJvvvmm2DLl7OyMjz/+GIsXL0ZYWJjBdiZNmoQRI0aY4QhJCsHj/ODm54S6Gx3LW5q0OLjxHPLTSqFRtXRaX+EgR8g4PwyfOAQh4/05ojjRTfIMcoWbvxPqrjdC12I4rMK1jAqk/usc6svb+iuGjPdD0spR7J9IVsXixvA/ePAgFAoFFi5cKJYplUrMnz8fGRkZKC0t7dX2vLy84OjoiPr6erEsLy8PeXl5uPPOOw1u9d19990QBAEHDhwwui2VSgWttvcdnUl6crkMsXNCxWWNqgXZ/7tqkFDZKRUInxyIWWvHYcm7szD71/GImDKUCRWRGchkMoO5AAH907RHPshEyivHxYTK3kmBpF+OwtxnEphQkdWxuP8W2dnZCA4OhouL4cCIsbGxAIDLly8jICDAWFVRXV0dtFotKioq8MUXX6ChoQEJCQni65cu6ZugY2JiDOr5+vrCz88P2dnZnba5du1aNDY2wt7eHomJiXj88ccREhLSp2MkaUTPCMbxT7MMyuydFAiND8DwiUMQPNbXrPOSEZGh0AR/8aERAGiqaUbmd23jxwXGeWPa6jFw8+MwJGSdLC6pqqioMNr5u7WsvLxzv5iO1qxZg4KCAgCAk5MTli5divnz5xvso/02O+6n9XVA30p2++23Y/z48XBxcUFWVhY+//xzPPbYY3jvvfe6TfDKy8sNtpWfb97BJ6l3HF0d4OBiB01DCxQOcsx6cvyN0Z6ZSBENhCExXlC62ItDJAg6/W1AhYMcE++PQdycMMjknKqJrJfFJVVqtRr29p07Ajs4OIiv9+S5556DSqXCtWvXkJKSArVaDZ1OB7lcf7dTo9EYbLPjflSqtpGxZ86ciZkzZ4rLSUlJmDhxIn71q1/ho48+Muin1dHOnTuxbdu2HuOlgWOnVEDT0AKlqz0fzSYaYHKFHCHj/XD50DWxzC/SAzPWjIVHIKdtIutncUmVUqlEc3PnJ7BaEyGlsuexgEaNGiX+PmvWLDz00EMAgMcffxxAWzLVus2O++lpH2PGjEFcXBzS0tK6XW/hwoWYOnWquJyfn4+XX365x/iJiGzViJkhYlJl76TAnS9Ohlxhcd17ifrE4j7JHW+/tWot8/X17dX23NzcEB8fj3379hnso/02O+7HlLGn/P39UVtb2+06vr6+iImJEX86PlFIRDTYDBnhLQ7+ae9kx4SKbIrFfZojIyNRVFSEhoYGg/LMzEzx9d5Sq9UG24uKigIAZGUZdlouLy9HWVmZ+Hp3rl27Bk9Pz17HQkQ02MkV7DdFtsnikqoZM2ZAq9Vi586dYplGo0FKSgri4uLEjuGlpaWdOn5XVVV12l5xcTHS0tIMnvQbPnw4QkND8c033xgMkbB9+3bIZDJMnz5dLKuuru60zZ9++glZWVmYOHFin4+TiIiIbIvF9amKi4tDcnIyNm3ahOrqagQFBWHPnj0oKSnBunXrxPVeeeUVnDlzBqmpqWLZsmXLkJCQgMjISLi5uaGoqAi7du1CS0sLVq9ebbCfxx57DM8//zyefvppzJo1Czk5Ofj666+xYMECDBs2TFxvzZo1iI6ORkxMDFxcXHDp0iWkpKTA399f7KtFREREZHFJFQC88MILCAgIwHfffYf6+nqEh4fjtddew7hx47qtt2jRIhw9ehTHjh2DSqWCl5cXEhMTsWTJEkRERBisO2XKFLz88svYtm0bNmzYAA8PDyxZsqTTqOwzZ87E0aNHceLECTQ1NcHHxwd33nknli1bBm9vbzMfOREREVkri0yqlEolHnvsMTz22GNdrvP22293KluxYgVWrFhh8n6SkpKQlJTU7TqrVq3CqlWrTN4mERERDU4W16eKiIiIyBoxqSIiIiIyAyZVRERERGZgkX2qiIiICBh9+3BoGlvg4MR/19aA7xIREZGFGj1/uNQhUC/w9h8RERGRGTCpIiIiIjIDJlVEREREZsCkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZmBndQBEBEw+vbh0DS2wMGJf5JERNaKV3AiCzB6/nCpQyAiopvE239EREREZsCkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiIiIzIBJFREREZEZ2EkdANFAGn37cGgaW+DgxI8+ERGZF/+z0KAyev5wqUMgIiIbxaSKiIgIbMmmm8dPDhEREdiSTTePHdWJiIiIzIBJFREREZEZMKkiIiIiMgMmVURERERmwKSKiIiIyAyYVBERERGZAZMqIiIiIjNgUkVERERkBkyqiIiIiMyASRURERGRGTCpIiIiIjIDJlVEREREZsCkioiIiMgMmFQRERERmQGTKiIiIiIzYFJFREREZAZMqoiIiIjMgEkVERERkRnYSR2AMRqNBlu2bMHevXtRV1eHiIgIrFy5EomJid3WS01NxY4dO5CTk4Pa2lp4enoiLi4Oy5cvR3h4eKf1Dx06hK1btyI/Px+enp644447sHTpUtjZGZ6Wuro6vPvuu0hNTYVarUZsbCwee+wxxMTEmPW4iYiIyHpZZEvV+vXr8fnnn2POnDl48sknIZfL8eyzz+LcuXPd1svJyYGbmxsWL16M3/zmN1i0aBGys7OxevVqXL582WDdo0eP4ne/+x1cXV2xdu1aJCUl4cMPP8SGDRsM1tPpdFi3bh2+//57/OxnP8Ojjz6KqqoqrF27FoWFhWY/diIiIrJOFtdSlZmZif3792PNmjW4//77AQDz5s3DsmXLsHHjRmzcuLHLusuWLetUtmDBAtxzzz3Yvn07nnnmGbH8nXfeQUREBN58802xZcrZ2Rkff/wxFi9ejLCwMADAgQMHcP78efz5z3/GjBkzAAAzZ87EAw88gK1bt+KPf/yjmY6ciIiIrJnFtVQdPHgQCoUCCxcuFMuUSiXmz5+PjIwMlJaW9mp7Xl5ecHR0RH19vViWl5eHvLw83HnnnQa3+u6++24IgoADBw4YxOPt7Y1p06aJZZ6enkhOTsahQ4eg0Wj6cJRERERkayyupSo7OxvBwcFwcXExKI+NjQUAXL58GQEBAd1uo66uDlqtFhUVFfjiiy/Q0NCAhIQE8fVLly4BQKc+Ub6+vvDz80N2drbBulFRUZDLDfPP2NhYfPPNNygsLERERITROMrLy1FRUSEu5+fndxs3ERERWS+LS6oqKirg4+PTqby1rLy8vMdtrFmzBgUFBQAAJycnLF26FPPnzzfYR/ttdtxP+0SosrISY8eO7TKeioqKLpOqnTt3Ytu2bT3GS0RERNbP4pIqtVoNe3v7TuUODg7i6z157rnnoFKpcO3aNaSkpECtVkOn04mtTa237Fq32XE/KpXKIJ6u1uspnoULF2Lq1Knicn5+Pl5++eUe4yciIiLrY3FJlVKpRHNzc6fy1kRIqVT2uI1Ro0aJv8+aNQsPPfQQAODxxx8H0JYQGesPpdFoDPahVCq7XK+neHx9feHr69tjvERERGT9LK6jesfbb61ay3qbpLi5uSE+Ph779u0z2Ef7bXbcT/vbgt7e3t3GY+wWIhEREQ0+FpdURUZGoqioCA0NDQblmZmZ4uu9pVarDbYXFRUFAMjKyjJYr7y8HGVlZeLrretmZ2dDp9MZrHvhwgU4OjoiJCSk1/EQERGR7bG4pGrGjBnQarXYuXOnWKbRaJCSkoK4uDjxyb/S0tJOT9NVVVV12l5xcTHS0tIMnvQbPnw4QkND8c0330Cr1Yrl27dvh0wmw/Tp08Wy6dOno7KyEqmpqWJZdXU1fvzxR0yZMsVofysiIiIafCyuT1VcXBySk5OxadMmVFdXIygoCHv27EFJSQnWrVsnrvfKK6/gzJkzBsnOsmXLkJCQgMjISLi5uaGoqAi7du1CS0sLVq9ebbCfxx57DM8//zyefvppzJo1Czk5Ofj666+xYMECDBs2TFxvxowZ+PLLL7F+/Xrk5eXBw8MD27dvh06nw4oVK/r9fBAREZF1sLikCgBeeOEFBAQE4LvvvkN9fT3Cw8Px2muvYdy4cd3WW7RoEY4ePYpjx45BpVLBy8sLiYmJWLJkSadhD6ZMmYKXX34Z27Ztw4YNG+Dh4YElS5Z0GpVdoVDg9ddfxzvvvIP//ve/UKvVGDFiBJ5//nmEhoaa+ciJiIjIWskEQRCkDmKwyMrKwqpVq7B582ZOxkxEg9anT/wAVaUazt5KPPCPmVKHQ2Q2FtlSRUREtmv07cOhaWyBgxP/BZFt4SeaiIgG1Oj5w6UOgahfWNzTf0RERETWiEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiIiIzIBJFREREZEZMKkiIiIiMgMmVURERERmwKSKiIiIyAyYVBERERGZgZ3UAQwmarUaAJCfny9xJERERNRbYWFhcHR07PJ1JlUDqKSkBADw8ssvSxwJERER9dbmzZsRExPT5esyQRCEAYxnUKuursbx48cRGBgIBwcHs203Pz8fL7/8Mn7/+98jLCzMbNu1RTxXvcPzZTqeK9PxXJmO58p0A3Gu2FJlQTw9PTF37tx+235YWFi3GTS14bnqHZ4v0/FcmY7nynQ8V6aT8lyxozoRERGRGTCpIiIiIjIDJlU2wMfHB8uWLYOPj4/UoVg8nqve4fkyHc+V6XiuTMdzZTpLOFfsqE5ERERkBmypIiIiIjIDJlVEREREZsCkioiIiMgMmFQRERERmQEH/7RiGo0GW7Zswd69e1FXV4eIiAisXLkSiYmJUodmUS5cuIA9e/bg9OnTKCkpgbu7O0aOHImVK1ciJCRE6vAs3ocffoj33nsPw4cPxwcffCB1OBYpKysLW7duRXp6OjQaDYYOHYo777wTixcvljo0i1JYWIgtW7YgPT0dtbW1CAgIwOzZs3Hfffd1O0q1LVOpVPj3v/+NzMxMXLhwAXV1dXj++edx++23d1o3Ly8P//jHP5Ceng47OzvccssteOKJJ+Dp6TnwgUvAlHOl0+nw3Xff4eDBg8jOzkZdXR0CAwMxc+ZM3HfffVAqlf0aI5MqK7Z+/XocOHAA9957L4KDg7F79248++yz2LBhA8aMGSN1eBbj008/RXp6OpKTkxEREYGKigp8/fXXWLlyJTZu3Ijw8HCpQ7RY169fx8cffwwnJyepQ7FYx48fx/PPP4+oqCg8/PDDcHJywtWrV1FWViZ1aBaltLQUq1evhqurK+6++264u7sjIyMD77//PrKysrB+/XqpQ5RETU0Ntm3bhoCAAERGRuL06dNG17t+/Tp+9atfwdXVFatWrUJjYyP+/e9/IycnB//6179gb28/wJEPPFPOVVNTE9avX4+RI0di0aJF8PLyQkZGBrZu3YpTp07h73//O2QyWf8FKZBVysjIEJKSkoRPP/1ULGtqahLuu+8+4dFHH5UwMstz7tw5QaPRGJQVFBQIs2bNEv785z9LFJV1ePHFF4W1a9cKv/rVr4SlS5dKHY7Fqa+vFxYtWiS88MILglarlToci/bhhx8KSUlJQk5OjkH5yy+/LCQlJQm1tbUSRSYttVotlJeXC4IgCBcuXBCSkpKElJSUTuu9+eabwuzZs4WSkhKx7MSJE0JSUpKwY8eOAYtXSqacK41GI5w7d65T3a1btwpJSUnCiRMn+jVG9qmyUgcPHoRCocDChQvFMqVSifnz5yMjIwOlpaUSRmdZRo8e3elbXEhICIYNG4b8/HyJorJ8Z86cwcGDB/GrX/1K6lAs1vfff4/KykqsWrUKcrkcjY2N0Ol0UodlkRoaGgAAXl5eBuU+Pj6Qy+WwsxucN04cHBxMGqzy4MGDmDJlCgICAsSyCRMmICQkBD/++GN/hmgxTDlX9vb2GD16dKfypKQkAOj3az6TKiuVnZ2N4OBguLi4GJTHxsYCAC5fvixFWFZDEARUVVXBw8ND6lAsklarxYYNGzB//nxERERIHY7FOnnyJFxcXFBeXo4HH3wQ8+bNw+23344333wTarVa6vAsyvjx4wEAr732GrKzs1FaWor9+/djx44duOeee3iLuRtlZWWoqqoyOklwbGwssrOzJYjKulRWVgJAv1/zB+dXAxtQUVFhNGNvLSsvLx/okKzKvn37UFZWhhUrVkgdikXasWMHSktL8be//U3qUCxaUVERtFotXnjhBcyfPx+//OUvcebMGfz3v/9FfX09XnzxRalDtBiTJk3CI488go8//hiHDx8Wyx966CGsWrVKwsgsX0VFBQB0ec2vra2FRqOBg4PDQIdmNT777DO4uLhg0qRJ/bofJlVWSq1WG+2Y2PpHxW/JXcvPz8ff/vY3jBw5ErfddpvU4VicmpoavP/++1i6dOmgeaqorxobG9HU1IRFixZh7dq1AIDp06ejubkZO3fuxIoVK/iEaTuBgYEYO3Yspk+fDnd3d/z000/4+OOP4e3tjXvuuUfq8CxW6/W8p2s+kyrjPvroI5w8eRJPPfUU3Nzc+nVfTKqslFKpRHNzc6dyjUYjvk6dVVRUYN26dXBxccFf/vIXKBQKqUOyOO+99x7c3Nz4T84ErX9ns2bNMiifPXs2du7ciYyMDCZVN+zfvx9vvPEGPvnkE/j7+wPQJ6CCIOBf//oXZs+ezdvxXWj9nPGa33v79+/He++9h/nz5+Ouu+7q9/2xT5WV8vHxEZuE22st8/X1HeiQLF59fT2effZZ1NfX469//SvPkRGFhYX45ptvsHjxYpSXl6O4uBjFxcXQaDRoaWlBcXExamtrpQ7TYrTejvH29jYob+2MXVdXN+AxWaqvv/4aUVFRYkLVaurUqWhqamK/oG60fs66uua7u7uzlcqIEydO4NVXX8Utt9yCp59+ekD2yZYqK9U6RkdDQ4NBZ/XMzEzxdWqjVqvx3HPPobCwEG+99RaGDRsmdUgWqby8HDqdDhs2bMCGDRs6vf6LX/wCixcvxpNPPilBdJYnJiYGJ0+eRFlZGUJDQ8Xy1j6NvH3apqqqyuitl5aWFgD6hyPIOD8/P3h6eiIrK6vTaxcuXOD13ojMzEz8/ve/R0xMDF566aUBe7qUSZWVmjFjBv79739j586duP/++wHom4FTUlIQFxdn8NjtYKfVavGnP/0JGRkZePXVVzFq1CipQ7JYw4cPxyuvvNKp/L333oNKpcKTTz6JoUOHShCZZUpOTsYnn3yCXbt2ISEhQSzftWsXFAqF+MQb6YcxOXHiBAoLCw1uie7fvx9yuZxPmfZg+vTp2LNnD0pLS8Xre1paGgoLC/Hzn/9c4ugsS15eHtatW4chQ4bgtddeG9Bbo0yqrFRcXBySk5OxadMmVFdXIygoCHv27EFJSQnWrVsndXgW5Z///CcOHz6MKVOmoK6uDnv37jV4fe7cuRJFZnk8PT3F8Vza++KLLwDA6GuDWXR0NO644w6kpKRAq9Vi3LhxOHPmDH788UcsWbKEt5jbue+++3Ds2DE88cQT+NnPfgZ3d3ccOXIEx44dw4IFCwb1uWp9WrT19t7hw4dx/fp1AMA999wDV1dXLFmyBAcOHMCvf/1rLF68GI2Njfjss88QHh5udEobW9XTuZLL5XjmmWdQV1eH++67Dz/99JNB/aFDh/brF2uZIAhCv22d+pVarRbn/quvr0d4eDhWrlyJiRMnSh2aRXnyySdx5syZLl9PTU0duGCs1JNPPomamhrO/WdES0sLPvroI+zevRvl5eUICAjA3XffzdYDIzIzM7F161ZkZ2ejtrYWgYGBuO2223D//fcP2sE/AeDnP/85SkpKjL72n//8B4GBgQCA3NzcTnP/Pf7445369Nmyns4VoO+m0JXbbrsNL7zwQr/EBjCpIiIiIjILPv1HREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM2BSRURERGQGTKqIiKzEz3/+815Nf7N7925MmzYNu3fv7seoiKjV4J1siYgsQnFxcbdzdQHAkCFD8Pnnnw9QREREfcOkiogsQlBQEObMmWP0NVdX1wGOxjYkJSUhLi4OPj4+UodCNCgwqSIiixAUFIQVK1ZIHYZNcXV1ZUJKNIDYp4qIrM60adPw5JNPorKyEq+88gruvPNOzJ49G48++ihOnz5ttI5KpcL777+PpUuXYvbs2bjjjjvw9NNP49y5c53WffLJJzFt2jSo1Wps3rwZ9913H5KTk/H++++L6xw8eBCrVq3C7NmzsWjRIrz++uuoq6vr1O/pL3/5C6ZNm4bMzEyjcW3ZsgXTpk3D999/b/Lx19XV4Y033sBdd92F2bNn45FHHjFav6s+VX05f0TUMyZVRGSV6uvr8fjjjyMvLw9z587FtGnTkJWVhWeeeQY5OTkG69bW1mLNmjXYtm0b3NzcsGjRIkybNg2XLl3C2rVr8b///c/oPv7whz9gz549GD9+PBYvXozAwEAAwK5du/CHP/wBRUVFmDdvHm677TZkZGTgqaeeQktLi8E2Fi5cKNbpSKvVIiUlBR4eHpg2bZpJx93c3IynnnoKZ8+exdy5c3HHHXfg+vXr+POf/4z//ve/Jm0D6N35IyLT8PYfEVmEq1evGrQEtTdy5EhMmjTJoOzy5cu466678Otf/xpyuf77YXx8PF5//XV89dVXeOaZZ8R1//73vyM3NxfPPvssFixYIJZXVVVh1apVeOONNzBx4kQolUqDfVRUVGDr1q1wd3cXy+rq6vD222/DyckJmzZtQkhICABg1apVeOaZZ5CVlYUhQ4aI648dOxbDhg3D/v378cQTT8DJyUl87fjx4ygrK8O9994LBwcHk85TRUUFgoOD8c4778De3h4AsGTJEjzyyCPYuHEjpk2bBj8/vx6305vzR0SmYUsVEVmEq1evYtu2bUZ/jh071ml9JycnPProo2JCAAC33XYbFAoFLl68KJZVV1fjxx9/RHx8vEFCBQBeXl64//77UV1djbS0tE77WL58uUFCBQCHDh1CY2Mj7rjjDjGhAgA7OzusXLnS6LEtXLgQKpUK+/fvNyj/9ttvAQB33nlnV6fFqF/+8pdiQgUA/v7+WLx4MTQaTad9dMXU80dEpmNLFRFZhIkTJ+Kvf/2ryesHBwfD2dnZoMzOzg7e3t6or68Xyy5evAitVovm5majLWFFRUUAgPz8fEyZMsXgtdjY2E7rX7lyBQAwZsyYTq/FxcVBoVB0Kp83bx7+9a9/4dtvvxUTu8rKShw5cgSjRo3CsGHDejjaNgqFAiNHjuxUPnbsWABAdna2Sdsx9fwRkemYVBGRVXJxcTFarlAooNPpxOXa2loAQHp6OtLT07vcXlNTU6cyb2/vTmUNDQ0A9K1cHcnlcnh4eHQqd3NzQ3JyMvbs2YOcnByEh4dj9+7d0Gq1vW6l8vDwMGhdatUaT2t8PTH1/BGR6ZhUEZFNa00efvGLX+Dxxx/vVV2ZTNbl9qqqqjq9ptPpUFNTY7RP06JFi7Bnzx588803WLt2LXbt2gUXFxckJyf3KqaamhrodLpOiVVrPF0lS0TU/9iniohs2ogRIyCTyZCRkWGW7UVERACA0VavCxcuQKvVGq03cuRIREREYN++fTh+/DiKioowZ84cODo69mr/Wq3W6LGcPXsWABAVFdWr7RGR+TCpIiKb5uPjg+TkZJw/fx6fffYZBEHotE5mZqbR23/G3HrrrXBycsKuXbtw9epVsbylpQVbtmzptu7ChQtRW1uL//u//wOATh3nTbVp0yY0NzeLy9evX8eXX34JBwcHzJo1q0/bJKKbx9t/RGQRuhtSAQAefPDBTkMemOqpp55CYWEhNm7ciO+++w4jR46Eq6srysrKcPHiRRQVFeHrr782qdXIzc0NTzzxBN544w2sWrUKM2fOhIuLC44ePQoHBwf4+voavW0IAHPnzsW7776L8vJyxMTEIDo6utfH4uPjg6amJixfvhxTpkxBU1MTfvzxR9TU1GDt2rUmDadARP2DSRURWYTWIRW6cu+99/Y5qXJ3d8c777yDr776Cj/88AO+//576HQ6eHt7IzIyEg8//LDRDuZdufPOO+Hm5oaPPvoIe/bsgYuLC6ZOnYpHH30U9957L4KCgozWc3FxQVJSEvbu3dvnVip7e3u89dZbePfdd7F3717U19cjNDQUa9euxezZs/u0TSIyD5lgrC2ciIh6raioCA888ACSk5Px0ksvGV3n4YcfRklJCb766it2KieyMexTRUTUS3V1ddBoNAZlarUa//jHPwAASUlJRusdPXoUubm5mD17NhMqIhvE239ERL105swZvPbaa0hMTIS/vz9qampw6tQplJSUID4+HjNnzjRYf/v27bh+/Tq+/fZbODg44MEHH5QociLqT0yqiIh6adiwYZgwYQLS09NRXV0NAAgKCsIjjzyC++67r9MYUp9++inKysoQEhKC5557DkOHDpUgaiLqb+xTRURERGQG7FNFREREZAZMqoiIiIjMgEkVERERkRkwqSIiIiIyAyZVRERERGbApIqIiIjIDJhUEREREZkBkyoiIiIiM/j/rIRIv1BPaPUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyTklEQVR4nOy9d3xb5dn//5HkveSVxPGMHWeS4QwSkpAJJAFKoOzRlgCB0tKGtrSk8KNAmaXlAdLn6Zc2ZYRSKNAQQoCQQcgiITvOdqa3LVvy3pal8/vjyvGRE9s65+hoX+/XSy9L8hm3ZZ37XPc1PpdOEAQBDMMwDMMwPoTe2wNgGIZhGIa5GDZQGIZhGIbxOdhAYRiGYRjG52ADhWEYhmEYn4MNFIZhGIZhfA42UBiGYRiG8TnYQGEYhmEYxudgA4VhGIZhGJ+DDRSGYRiGYXwONlAYxsfZunUrdDodnn32WZePpdPpMGfOHJeP0x9ajjcQWLx4MXQ6HYqKimTvM2TIEAwZMsRtY2IYf4ANFIa5CJ1OB51OB71ej3PnzvW53dy5c7u3XblypecG6GWKioqg0+mwePFibw9FNqLR5PgICwtDeno6brvtNnz//fe97tfa2or4+HjodDrcfffdHh61+zlx4gRuv/12DBw4EBERERgxYgSeeeYZtLW1eXtoDIMQbw+AYXyRkJAQdHV14e2338ZLL710ye/PnDmDrVu3dm/HSEyZMgUnT55EcnKyt4dyCVlZWd2GVUtLC3bv3o1Vq1Zh9erVWLVqFX74wx/22P7jjz9GQ0MDdDodVq9ejZqaGiQlJbl9nJs3b3b7Ofbs2YN58+bBarXi1ltvRUZGBr799ls899xz2Lx5MzZv3ozw8HC3j4Nh+oI9KAzTC4MGDcLkyZPx7rvv9mqAvPXWWwCAG264wdND83mioqIwcuRInzRQhgwZgmeffRbPPvss/vKXv2DHjh14+umnYbfb8dhjj12y/YoVK6DX6/G73/0OHR0deO+99zwyzqFDh2Lo0KFuO77NZsN9992H1tZWrFq1Ch9++CFeeeUV7NmzB7fccgt27tyJ119/3W3nZxg5sIHCMH3w4IMPwmQy4csvv+zxvtVqxcqVKzF9+nSMHj26z/3PnDmDn/zkJ0hLS0NYWBhSU1Pxk5/8BGfOnOl1+6qqKjzwwAMYNGgQIiMjkZeX1+8Nsb88hWeffRY6nQ5bt251+ndWVFTgueeew4wZM5CSktI91rvvvhsnTpy45LjZ2dkAgPfee69HyEQMc/WXg6LkM3H8G1atWoUpU6YgKioKiYmJuPPOO1FeXu70b5PDI488AgAoLCyE2Wzufv/YsWPYvXs3rrrqKixbtgxhYWHdhqka7HY7XnvtNYwcORIRERFIT0/Hr3/9azQ2Nl6ybW//25UrV3Z/zlu2bMGcOXMQGxuLuLg4XH/99Th58qTssWzbtg0nT57ErFmzsGjRou739Xo9/vznPwMA/v73v4Ob3TPehA0UhumDu+66C9HR0ZfclNauXYvq6mo8+OCDfe67b98+TJ48Gf/+979x+eWX47e//S2uuOIK/Pvf/8bkyZOxb9++HttbLBZMnz4d77zzDoYPH45f/epXyMvLw8MPP+z2lez27dvxpz/9CfHx8bjlllvw61//GldccUW3UXD48OHubefMmYNHH30UADB+/Hg888wz3Y+8vLx+z6P0MxH5f//v/+FHP/oRhgwZgkceeQRjxozBxx9/jKuvvhodHR0u//2ON2GdTtf9fMWKFQAoyTUxMRE33HADTp48iR07dqg6z69//Ws8//zzmD17Nh599FEkJyfjjTfewLx589De3i77OF9++SXmz5+PuLg4PPzww5g5cybWrVuH2bNnw2KxyDrGt99+CwBYuHDhJb/LycnB8OHDUVxcjPPnz8seF8NojsAwTA8ACGlpaYIgCMIDDzwgGAwGobS0tPv3CxYsEOLi4oSWlhbh//v//j8BgPDuu+92/95utwsjR44UAAj//ve/exz7o48+EgAII0aMEGw2W/f7Dz74oABA+NWvftVj+3379gkhISECAOGZZ57p8busrCwhKyur17/hmWeeEQAIW7ZsueRvmz17do/3qqqqhMbGxkuOkZ+fL0RHRwsLFy7s8X5hYaEAQLj33nt7PfeWLVsuGa+az0T8G2JjY4UjR4702Oeuu+4SAAgff/xxr2Poa0wX/+2CIAh/+MMfBABCTk5O93ttbW1CQkKCYDQahdbWVkEQBOGLL74QAAg/+tGPZJ1T5N577xUACElJSUJRUVH3+zabTbj55psFAMJzzz3XY5/e/rfvvvuuAEAwGAzCN9980+N3v//97wUAwiuvvCJrTLfeeqsAQFi1alWvv7/++usFAMK6detkHY9h3AF7UBimHx588EHYbDa88847AIDi4mJs2rQJ99xzD6KionrdZ9euXSgoKMC0adNwzz339PjdHXfcgSuvvBKnTp3Cd999B4BCRh988AFiY2MvCYtMnjz5kmNozcCBAxEbG3vJ++PHj8e8efOwZcsWWK1Wl86h9DNxZOnSpRg7dmyP90Tv1d69exWNo6ioqDsH5Xe/+x1mzZqF559/Hnq9Hq+++mr3dv/9739RV1eHO+64A5GRkQDI25CSkoJVq1ahrq5O0XkB4NFHH0VWVlb3a71ej7/85S/Q6/Xd3y853Hnnnbjqqqt6vPfQQw8BkP95NDQ0AACMRmOvvxffr6+vlz0uhtEaNlAYph+mTp2KsWPH4p133oHdbsdbb70Fu93eb3jn4MGDAIB58+b1+nvx/UOHDgEACgoK0Nrairy8vF5vGO7WLQGAr776CjfccAMGDx6M0NDQ7rySL774Ah0dHbJDB32h9DNxZPLkyZe8l5GRAQCKDYXi4mL88Y9/xB//+Ee88cYbOHv2LG6++Wbs2LGjRwWPGN657777ut8LCQnBPffcg/b2drz//vuKzgsAs2fPvuS9nJwcZGRkoKioSLYxoOXnwTC+DJcZM4wTHnzwQSxduhRff/013n33XUyaNAkTJkzoc3txdTp48OBefy++L96QxO0HDRrU6/YpKSlqhy6L5cuX41e/+hUSEhJwzTXXIDMzE1FRUdDpdFizZg0OHz7scq6H0s/Ekfj4+EveCwmhqctmsykax+zZs50mDp88eRLfffcdRo4ciSuuuKLH7xYvXoz/+Z//wT//+U8sXbpU0bn7+/8WFxejoaGh17/1YrT4PERDWPy/XIz4vpzxMIy7YAOFYZzw4x//GMuWLcPDDz+M8vJyPP300/1uL07+JpOp199XVlb22E78WVVV1ev2fR1Hr9ejs7Oz19/JXY13dXXh2WefRUpKCg4ePHiJAdGXgJlSlH4m3kT0nhQUFPRImnXk2LFj2LVrF6ZPny77uFVVVRgxYsQl74ufiSf/dnEcp0+f7vX3YlXV8OHDPTYmhrkYDvEwjBPi4+Nx6623oqysDNHR0bjrrrv63V70rvS1Ut+yZQsAYOLEiQCAkSNHIioqCvn5+b2uaPs6TkJCAqqqqnrND9m/f3+/YxSxWCyor6/H9OnTLzFOmpubu0MzjhgMBgDKvBdKPxNv0dHRgffffx96vR73338/HnjggUseCxYsAAD885//VHTsbdu2XfLe+fPnUVpaiiFDhnjUWyGG1NavX9/rmE6fPo2srCzk5OR4bEwMczFsoDCMDF544QV89tln2LBhQ68JpY7MmDEDI0aMwHfffYdVq1b1+N2qVauwY8cODB8+HFdeeSUAIDQ0FPfccw+ampouSZLdv38/Pvjgg17PM2XKFHR1deHdd9/t8f7KlSuxc+dOWX/XwIEDERUVhQMHDqC5ubn7favVikcffbTX3JOEhATodDqUlJTIOgeg/DPxFp9++ilqamqwYMECvP3223jrrbcueXzyySeIjo7GJ5980meIpDeWL1+O4uLi7td2ux2/+93vYLfbe+S6eILZs2dj1KhR2L59O9auXdtjTMuWLQMAPPzww316kBjGE3CIh2FkkJmZiczMTFnb6nQ6vPfee7jmmmtwxx134MYbb8TIkSNx6tQprFmzBrGxsfjXv/4FvV5aH7z00kvYvHkz3njjDezfvx9XXnklKisr8fHHH+O6667rcRMR+eUvf4l3330XP/vZz7B582ZkZGQgPz8f33//PX7wgx9cIjDXG3q9HkuXLsWf/vQnjB07FjfeeCM6OzuxZcsW1NbWYu7cud3eDZGYmBhMnToVO3bswD333IPhw4fDYDBg0aJFGDdunGafiTcQwztLlizpc5u4uDjcdtttWLlyJf797393C705Y8aMGcjLy8Mdd9wBo9GIDRs24PDhw5g0aRIef/xxTcYvF4PBgHfffRfz5s3DrbfeiltvvRWZmZnYvHkz9u/fjxkzZuDXv/61R8fEMBfDHhSGcQNTp07Fvn37cPfdd+P777/HX/7yF+zatQt33XUX9u3bh6lTp/bYPjk5GTt37sR9992HgoICvPHGG8jPz8ebb77Z541i9OjR+OabbzBjxgx88cUXWLFiBcLDw/H9999j0qRJssf6/PPP43/+538QGRmJf/zjH1i9ejUmT56MvXv39mmUvf/++7j++uuxfv16/PGPf8Qf/vCHXsNBrnwmnub06dPYtm0bBg0a5LSFgVjFpSTM8/rrr+Opp57C1q1bsXz5cpjNZjz66KP49ttvERER4dLY1SD+P2688UZs3LgRr7/+OhoaGvD0009j06ZN3IeH8To6QWAtY4ZhGIZhfAv2oDAMwzAM43OwgcIwDMMwjM/BBgrDMAzDMD4HGygMwzAMw/gcbKAwDMMwDONzsIHCMAzDMIzP4ZcGSnt7O06dOoX29nZvD4VhGIZhGDfglwZKcXExHnzwwR6y0QzDMAzDBA5+aaAwDMMwDBPYsIHCMAzDMIzPwQYKwzAMwzA+BxsoDMMwDMP4HGygMAzDMAzjc7CBwjAMwzCMzxHi7QEwDMMw/oHNZoPVavX2MBgfJTQ0FAaDQbPjsYHCMAzD9IsgCDCZTGhoaIAgCN4eDuOj6HQ6GI1GpKSkQKfTuXw8NlAYhmGYfmloaEB9fT0GDBiA6OhoTW4+TGAhCAJaWlpgNpsRGRmJ+Ph4l4/JBgrDMAzTJ4IgoLq6GnFxcUhOTvb2cBgfJjIyEh0dHaiurobRaHTZkOUkWYZhGKZPbDYbbDYb4uLivD0Uxg+Ii4vr/s64ChsoDMMwTJ90dXUBAEJC2OHOOEf8nojfG1dgA4VhGIZxCuedMHLQ8nvCBgrDMAzDMD4HGygMwzAMw/gcbKAwDMMw3sdupwfDXIANFIZhGMa7CALQ2Ag0NAAaJFf6Ex0dHVi2bBlSU1MRGRmJqVOnYtOmTbL2PX78OG677Tbk5OQgKioKycnJmDVrFr744ose2zU3N+OZZ57BwoULkZiYCJ1Oh5UrV8o6x4svvgidTocxY8Yo/dNchg0UhmEYxru0tQHt7UBHBxkqQSSnv3jxYrz22mu45557sHz5chgMBlx33XX47rvvnO5bXFyMpqYm3HvvvVi+fDn+8Ic/AAAWLVqEFStWdG9nsVjw3HPP4eTJkxg/frzssZWVleGll15CdHS08j9MA3SCH+oWnzp1Cg8++CD++c9/YsSIEd4eDsMwTMDS3t6OwsJCZGdnIyIiQvsTWK1AfT09DwkhIyU0FIiNBcLCtD+fD7F3715MnToVf/nLX/Db3/4WAH3eY8aMwcCBA7Fr1y7Fx7TZbJg0aRLa29tRUFAAgLw0dXV1SElJwf79+3H55Zfj3XffxeLFi/s91p133gmz2QybzQaLxYJjx445Pb+W3xf2oDBMczNQVsbxb4bxNHY70NIC2GxklOh0QEQEhXkaGshY8QA5OTn40Y9+dMn7c+fOxezZs9123lWrVsFgMOChhx7qfi8iIgIPPPAAvv/+e5SWlio+psFgQEZGBupFow9AeHg4UlJSFB1n+/btWLVqFd544w3FY9AKVt5hgg9BAGprAZMJKC4GystpolywABgyxNujY5jgQQztXOwpCQ8HOjvJSImNJaPFTToszc3NKCoqws9+9rNLfnfkyBHcfffdve5ntVrR0NAg6xyJiYnQ6y/1Bxw6dAjDhw+/RKV3ypQpAID8/HxkZGQ4PX5LSwva2trQ0NCAtWvX4uuvv8Ydd9wha2y9YbPZ8Mtf/hJLlizB2LFjVR/HVdhAYYIDqxUwm4HKSuD8ecBioZVbWBgQH08Gy5EjQGYm0MtEwjCMxlitQGsrhXV6u+bCwmibxkZaQERFucVIOXbsGARBuCQ3o6ysDLW1tRg3blyv++3cuRNz586VdY7CwkIM6WXxU1lZicGDB1/yvvheRUWFrOM/9thj+Mc//gEA0Ov1uPnmm/F///d/svbtjb///e8oLi7GN998o/oYWsAGChO4tLYCVVVARQUZJXV1tCqLjiajJC1NmvAiIoDCQqCkhL0oDCOXyZPJE6kGMaTqzOgQ0yR1uv63TUkB9u9XPAwxr+JiA+Xw4cMA0KeBMn78eNnVNn2FV9ra2hAeHn7J+2LuRltbm6zj/+pXv8Ktt96KiooKfPLJJ7DZbOjs7JS178XU1NTg6aefxh/+8AcMGDBA1TG0gg0UJnAQBHIJm0xAaSkZGw0N9L7RCKSmkuu4NyIjabujR9mLwjByMZkoROrHHD16FIMGDcKgQYN6vH/kyBHo9fo+y2sTEhJw9dVXu3RusfvvxbS3t3f/Xg4jR47EyJEjAQA/+clPMH/+fNxwww3Ys2ePYun5p556ComJifjlL3+paD93wAYK49/YbBSuMZnIS1JVRUmvISFAQgKQkwMYDPKOlZoKnDvHXhSGkYvCxMtu5HpPHHHmSVE5lmPHjvVaepufn4+cnJw+S2w7OztRW1sr6xwDBgyAoZd5aPDgwSjvxcCrrKwEAKSmpso6/sXceuut+OlPf4rTp08rqnQ9c+YMVqxYgTfeeKNHeKm9vR1WqxVFRUWIi4tDYmKiqnEphQ0Uxv/o6CBDRMwnqamhZLuoKDJKUlPVxarF1cqxY+xFYRg5KA2p2O1UUmy19u3NdLZ/ZyftGxtLCxEXOXr06CUJpXa7Hd9++y1mzZrV5367du1yOQclLy8PW7ZsQWNjY49E2T179nT/Xg1iaEhuEq9IeXk57HY7li5diqVLl17y++zsbDz66KMeq+xhA4XxD5qayEtSVgYUFUmKk3FxwMCBknHhKqmpwNmzFCLKytLmmAzDEK2tkoGhBr2e9u3oII9KbCyVJ6ukuroaZrO522Mh8te//hUWi6XfChYtclBuvfVWvPrqq1ixYkW3DkpHRwfeffddTJ06tbuCp7W1FSUlJUhOTkZycnKP8Q8cOLDHMa1WK/71r38hMjISo0ePljU+kTFjxuCzzz675P2nnnoKTU1NWL58OYYOHaromK7ABgrj27S1AVu3ksHQ1EQTVHw8eThcmJj6RDR0jh4FMjLYi8IwWtHRIVXtuFKNo9NJRkpjo0uCbkePHgUAbNy4ET//+c8xcuRI7N69Gxs2bAAAHDhwAHv27MHUqVMv2VeLHJSpU6fitttuwxNPPIHq6mrk5ubivffeQ1FREd5+++3u7fbu3Yu5c+fimWeewbPPPtv9/k9/+lM0NjZi1qxZSEtLg8lkwgcffICCggL8z//8D2JiYrq3/b//+z/U19d3h26++OILlJWVAQB++ctfwmg0Ijk5GTfddNMl4xQ9Jr39zp2wgcL4NoWFwPHjFF8eNMgzBgN7URhGW0RBNkHQJCzTLejW0UHe1Lg4VV6Zo0ePwmAw4KOPPsLSpUvx7rvvYubMmdi2bRtuuukm5OfnI9QdCyEH/vWvf+EPf/gD3n//fdTV1WHcuHH48ssv+w0vidxxxx14++238eabb6KmpgaxsbGYNGkSXnnlFSxatKjHtq+++iqKi4u7X69evRqrV68GAPzoRz+C0WjU9g/TAJa6Z3wXux1Ys4ZyTTIzPXvuc+eA3FzguuvYi8IENS5LlwsCJa63tJARobWWiVhOq0LQbcmSJdi+fTtOnz6t7ZiCGJa6Z4KDykrKOfFGLf7gwWSkqJCaZhjGgc5OCtWKUvZaExZGx21spBCSgjX30aNHFedpMJ6DDRTGdzl3jrL9tUqAVUJUlKSLwj16GEYdNht5TwRBfrm/GkJD6fhNTVIoyQmCIODEiRNsoPgwbKAwvklzM3DmDJCU5L0xsBeFYdQjCOTRsFo905U4JIQMleZmMlScLCwKCwvR3NzMBooPw0myjG9SXEzS9MOGeW8Mjl4UruhhGGWIVTvuCu30hsFA5xJDPTExfXpucnJy4IcpmEEFz7iM72G3AydPUmjH20aB6EW5UI7HMIwMbDYKteh07g3t9IZeTx6btjbKS+nq8uz5Gc1gA4XxPSorqcHfRQJEXkH0ohw5wrkoDCMHQSDjxGp1j1aRHBwF3RobaSyM38EGCuN7nD1LE4qLJWqawV4UhpFPR4d7q3bkIgq6dXaSkaKyuy/jPdhAYXyLpibvJ8deDFf0MIw8xKodb4R2ekMUdOvqIkG3XjoHM74LGyiMb1FSQsmxCQneHklP2IvCBDlOE0rF0E5Xl2eqdpQQHk7ja2gA2tu9PZqARsvEYzZQGN/BZgNOnACio72fHHsxUVHkPWEvChNkhFyQpu9ylmza3k6hHV8zTkTCwqTSZ67ecRvi9yREg5YGPnYXYIIaMTnWG8qxcmAvChOEGAwGGAwGNDY29r1RVxd5T/R631tcOBIaSmPlyh630djY2P2dcRXWQWF8h3PnyIviK8mxFxMVReM7ehRIT/ftiZhhNEKn02HgwIGorKxEeHg4oqOjoXNMfhV77bS3S0mpvkxHB+W6RUV5eyQBhSAIaGlpQWNjIwYPHtzzO6ISxQZKa2srPvroI5w4cQInT55EU1MTnnjiCVx77bWKT/7nP/8ZX375JaZNm4ZXXnlF8f5MAOGLybG9kZoqeVE83cCQYbyE0WhEW1sbLBYLzGZzz19arRTaEUXSfB2bjRYXUVH+MV4/QqfTIT4+XrPOyIoNlIaGBqxcuRKDBg1Cbm4uDh06pOrEBQUF+PrrrxHmq/FKxrOIyrHDh3t7JP3DXhQmCNHpdBg8eDAGDhwIq6OmSF0d8O23dE34amj2Yjo6ALMZWLDAN7SWAojQ0FBNQjsiig2UpKQkfPbZZ0hKSkJBQQEeeughxScVBAHLly/HggULcPDgQcX7MwGGzUbKsTEx/nHDF70o5eUkgc8wQUKP3IKuLuDgQcodGz7cf/I6DAaq5jGZ2Avq4yi+G4SFhSHJRTf8hg0bUFhYiAcffNCl4zABQkUF3ez9ZQUmelFYXZYJZo4fp4VFVpb/hUri4iik7C9GVZDi8eVqa2sr/v73v+NHP/qRy4YOEyCIybHh4d4eiXwcvSgME2yYzcC+fUB8vO8mtfdHYiL9DSaTt0fC9IPHq3hWrlyJ8PBw3H777bL3sVgsqKmp6X5dXFzsjqEx3qCxkVYy/uI9Ebk4F8XfVpAMoxarFdi9m65db3Ybd4XwcPKelJbS9cv4JB41UEpLS7Fq1So8/fTTipJj165di5UrV7pvYIz3KC4G6ut9Pzm2N1JTqW9QWRnnojDBw7FjwKlTwJAh3h6Ja8TH0/U7aZLvissFOR41UP76179izJgxmDNnjqL9Fi1ahBkzZnS/Li4uxgsvvKDx6BiP09XlX8mxFxMVRX/DsWPsRWGCA5MJ2LuXQiT+FJLtjcREaq1RWUl5NIzP4TED5cCBA9izZw9eeOEFVFZWdr9vs9nQ0dGByspKxMXFITo6+pJ9k5OTkZyc7KmhMp6iooIe/uxiTUujENWYMexFYQKbzk4K7bS0+G9ox5HQUEpyLylhA8VH8ZiBUl1dDQB46qmnLvmd2WzGHXfcgV/84heKclMYP+fsWZog/HklJuaisBeFCXQOHyZjPCfH2yPRjvh4Sna//HL/TPYNcNxmoFgsFrS0tCAtLQ0hISGYOHEiXnzxxUu2+8tf/oKUlBT8+Mc/Rk4gffGZ/mloIAMlEDxjgwfTxD12rH97gximLyoqgAMHKJk9kPI1EhKAwkL6+/j+43OoMlA+/fRTNDc3d1fW7Ny5s9tDcssttyAmJgYrVqzA+vXr8fHHH2Pw4MEYNGgQBg0adMmx/vd//xcJCQmYOXOmC38G43eIybEjR3p7JK4THS1V9KSlsReFCTwOH6YuwGlp3h6JtoSE0PVaUsIGig+iykD5+OOPYXKoH9++fTu2b98OAJg/fz5iYmK0GR0TmHR1ASdOALGxgXMzZy8KE6g0N1OlWiB4O3sjIQE4fx6YMoUbCPoYqgyUTz75xOk2Tz75JJ588klNjsUEGOXlVA0QSEml7EVhAhWTiTRPhg719kjcg5iHUl4eGMm/AYQf1nYyfs+ZM5QcG0ixbIC8KGfPsrosE1iUlZEMgIZN4HwKg4H+vqIib4+EuQg2UBjPUl9Pq5VAdBdHR1P46uhRQBC8PRqGcZ32dkoijY/39kjcS1IS5cU1NXl7JIwDbKAwnqWoiNzFgTrhsReFCSSqqmhRYTR6eyTuxWikysKKCm+PhHGADRTGc1itpBwbSMmxFxMdTX8ne1GYQKCignKrQkO9PRL3otdTRc+5c94eCeMAGyiM5xCTY/2tMaBSxB49vBpj/JmuLrphB7r3RCQpiZoHNjR4eyTMBdhAYTzHmTPkVQi05NiLYS8KEwiYzUBtLZXhBgNxcRR+5vCsz8AGCuMZ6upIayDQvSciqalkkLEXhfFXKiqo/44/t6JQgk5Hcvdnz/LCwkdgA4XxDGJybLC4i0UvyrFjPNkx/ofdTguKXpq3BjRJSeRBqavz9kgYsIHCeAKrFSgoIBdqoCbH9oaoLsteFMbfqK2lEE+whHdEYmKo1JjDPD6Bx7oZM0FMWRlQWQkMGeLtkXiWmBj6u48do5BPMBlnjH9jMlHvHZVqz+dLdDhwVA+rVeNxXURoKDB5rB3ZmRp5KXU68hqdOQOMGcPXrJdhA4VxP2fO0IUe6KWKvSF6UcaMCbxGa0zgUljoUu7JgaN6NDR64ObeBuw/qkd2pk27YyYlkYFmsQRPzpyPwgYK415qa2myC9YLnb0ojL8hCpa5EN4RPSc6nYDICI3GdRFt7YAg6LT30kRHU7lxWVnwzls+AhsojHspKqIJb/Bgb4/Ee7AXhfEnTCbqYJyS4vKhIiOAu2/S0LvhwIdrDGhtc8uhaWFx9iwwfjyJuDFegT95xn10dpJyrNEY3J6DmBj6LLiih/EHSkqkBnrBSmIiyfxXV3t7JEFNEH8DGbdTVkYXOLtJpR49ZrO3R8IwfdPaSuGNQO2VJZeoKGqUyNU8XoUNFMZ9BHNy7MXExABtbbQqYxhfRWwOGOwGCkA9w06fpl5EjFdgA4VxDzU1wZ0c2xvh4dTSnWF8lbIyCkMaDN4eifdJSiKPp8nk7ZEELWygMO5BVI6Ni/P2SHyH+Hiq6Glu9vZIGOZSrFZaVLD3hAgPp9yxsjJvjyRoYQOF0R4xOZYnup7ExpLRxol3jC9SVUWyAHzdShiNFKp2t+Ic0ytsoDDaU1pKN+HkZG+PxLcwGCgnp7LS2yNhmEuprAS6urzTbVwQKCzsa1VuiYkk2MbXrFdgA4XRntOnqUSRk2MvJTaW3OhdXd4eCcNI2O3AuXP0/fQ0Nhvw4ovAffcBTz7pW436wsLoWi0t9fZIghI2UBhtsVgo/4STY3snPp4mYIvF2yNhGAmLhTwY3gjv/PvfwN699Pz4ceDXv6bmor5CQgJJBHR0eHskQQcbKIy2FBVREignx/ZORATpK3AeCuNLmExUBh8V5dnz7t4NfPppz/dqa8mTsm6db4R8EhLIeOMwj8dhA4XRjo4OWvn4Q5KdzUZj/fhj4A9/AP7yF89V10RFkSHHML6AIFB4JzLSs+etqACWL5de33knMHYsPe/qAv7+d+Cvf/W+50IMVbNEgMfhXjyMdojJsdnZXhtCn23eBQGxjeVIKc9HSkU+BpmOIKyzpccmp82x2D/9EdnnUt3q3WikFWtTk3di/gzjSH09VfC40BxQMR0dwCuvAC0XrsEZM4C77qJcmJUrgc8/p/c3bybD4Pe/BwYO9Nz4LiYhgYy4KVM8b8gFMWygMNogCMCpU5QcG+K9r5Vjm/fItjqkVuUj1ZSPtKp8xLT2LzOfe2o9jmb/AHXxQ+SdTG2r99hYuiFUVbGBwngfsTlgaqpnzicI5B0pLKTXaWnAL39JFW4GA/DAA8CwYcD//i8ZMmfPUl7K734H5OV5ZowXIxooFRXA0KHeGUMQwgYKow0WCzUZ8+Yqp70dyedPYmRJPlKr8pFUX9j3phFxqBqcB1NqHmIbyzH66KfQC3ZMP/IWtsx/zmlzQ5davev1dPyKCiA3V8UBGEZDiovJHeiphp6bNpFnBCAxtCeeuDT3ZdYsICMDePllydv47LPAj38M3Hyz55uPis0Ti4rYQPEgbKAw2lBYSKuw9HTPndNmo9VVfj5w+DBQUIC5fZXvhoUBl11G7dPHj0dEdjay9HpkAbRKe2QHUF2NweUHcXfGXmDy5H5P7XKrd6ORbgxWK5djM96jpYWUUj0V3jl3DvjHP6TXv/gFkJnZ+7bZ2cBrr9Fj/34K/7z3Hl3zS5cCiPHIkLtJTKR5rqUFiI727LmDFDZQGNfxVHKsIJDX4fBhMkqOHpVi2BdvCh10uUPJJTx+PDBqVN8CVOHhwL33UqIsALz9Nu3nzlCV0Uh/i8VCnY4ZxhuYTKRunJPj/nM1NZFHRHQ7Xn89MHt2//vExABPPQV89BE9AGDnTqCkBLFT/oDWMA8uiIxGMrDKy4Hhwz133iCGDRTGdUpKqKmWOya5xkbg0CHJS9KffkhKCs4YJ6B4wATUZ43DrXcoKJm88krgiy/I0CovB9avB37wA5eH3ydin4/qajZQGO8h9plxd3NAux14/XWpvH74cOD+++Xtq9cDd99N4dDXXgNaW4HSUiww/Qpbr/gtLMOmum/cjhgM9CgsZAPFQ7CBwriGmBwbEqK9x+H8eWDZsr7LDGNju0M2GD8eSEnBvjUGtLbpEBUuAFCQvKrTAUuWAL/9Lb3+z3+AOXNoBecuIiPpbxw/3n3nYJi+6OjwXHPAVasoTAPQdbtsmfLQ5pQpwP/8D/DSS0BpKcKsrZi/4zkcbboLWHQHGTLuJimJFmTcCNUjsA4K4xpms/uSYz/6qKdxEhZGoZd776XV2PvvA48/DixYAKSkuH6+4cPJKAHIHS26lN1FfDytKBsa3HsehumNqioqMXa3gZKfD3z4IT3X6WgRoFZpOi0NePVVKku+wNj8/wAvvOAZHaO4OLpey8vdfy6GDRTGRQoLyeWqtaehvBzYs4eeJyYCzz9Pk9xzzwG33EKZ9O5YMf3kJ1KuyldfubfVekwMGUKsKst4g4oKEkRzY5J2ZIuFDAq7nd646y5gwgQXDxoJPP44Dl1+P+y6C3PA/v3Ab34jlS67C72e5odz59x7HgYAGyiMK7S3uy85ds0aSeb6hhsoDOKJLqvJyVTGCFCV0MqV7juXXk+Pigr3nYNhesNmo5usG8MUepsVM799mcIhADBpEnD77docXKfDybG3YP2cF9AefuFvMJnIo7ptmzbn6IukJFpA+VJTwwCFDRRGPSYT9ahIStL2uHV1wLff0vPISGDhQm2P74ybbyavDUBNzPLz3Xeu+HjSVlAlqMIwKjGb6dp1Y3nxlPy3kWy+0PRv4EDycGjs9axIycP6G5dLekIdHZSn8vbb7usYHhtLnk9eWLgdTpJl1FNVRa5bmcmxfcrQX8S4A+sw5sJGJ4Zei/xN8ld5be2yN+2biAgK9bzxBr1++2167o5KB6ORwkjV1RRfZxhPUFFBVWQREW45fNb5bRhzei29CAmhpFg3qSa3xgwE/vQn4M03JQG4zz8nD9Hjj2vv4dXpaOF0+jQwerTnReOCCPagMOqw22nlr2DSEWXoW9v6fnQ2tiP35Fd0Cp0B+UNv6nf7ix+CQJOFy2H1OXOkVVlxMalfuoOwMPKeVFW55/gMczGCQNVj7hIbKynBlO/+Kr1+6CGSrncnYWEk3vazn0kLpmPHyGtz+rT250tMlDzIjNtgA4VRR309tUVXEMMWPSc6nYCoyN4fY0o3IqKTsvGLhs4BkpL63LavhzFOwOSxdtf+Pr2eyo5FPviAkoHdgdjd2BdayzOBT20thXjckTvW2gr86U8I7SJX5vncq6jKzhPodMC111IZshiitVio0eDGjdqeKyaGqoa4msetcIiHUUd1Nam4qghLREYAd9/Ui0aJzQZ8+Vn3y5ylNyJniMJGfFoyejSVM+7cSaWF//0vlThrTXw83TAaGjyjScEENyaT6mu3XwQB+Nvfuivfao1DsG/6z5Hj5hBIWzu1npC4DBHzl+PKLX/CwKrjlIvyf/+HsxvPYP+0n8FuUOZe7bNreXQ0cOYMMHasZzRYghD+VBl1VFSQK1XLyee776SS20mTgCFDtDu2Wu69V3IZf/45Te5aI67GuNyY8QSFhRQS0dpw+PJLYMcOAEBnaBS+mfn/wRbinhwXQArjCsKlod5aXRK+mPMyjg1f1L197ukNmPfl40BNjaKwcUOjDvuP9nKrTEqi0Ky5/y7pjHrYQGGU09lJ4mxaligKAvCZ5D3BD3+o3bFdISUFuPFGet7V5Z6yY52OVmDu1FxhGIBKfisqpBCIVhQUAO+80/1y98xfozHWvUnfk8faYYzrO9QbGW3AkSt/il2zHkOXIRwAMLDmNBbsfAFREXZZ4WKdjrwmvSb2R0VRSIvDPG6DQzyMcsRwhJadi48cocQ9gJJTx47V7tiuctttwDff0N+8axdw/DiAcdqew2gko6+jg/r0MIw7EJsDDhqk3THr64FXXqEQLQD88IcoS5gOuNLtWwbZmQKyM+WEgGcDN2cAL74ImM1IspzG3aNOACNHOt3Tadfy2FgK84wf7/5+RkEIe1AY5ZjNtKTQUjht9Wrp+c03+1bpXlQU8KMfSa/ffhsQXEzCvZj4eJro2V3MuJPSUgpZapUzYbOR7ohYzXLZZVSi72vk5FDDQRGtkmbFMA+HZ90CGyiMcoqKSAdAKwoLqWMxQCu7adO0O7ZWXH21lBNz9iyyz36r7fFDQymExOXGjLtoa6OSeS0Tsf/zH+oyDpDo2+OP+64n4corabEBUK6MFlV5EREU8i4tdf1YzCWwgcIoQ+wdYzRqd0zH3JMbb/TNCc5gAB54oPvl+AP/QkiXFqpwDkRHU5iLy40ZdyA2B9Tq2t23D/jkE3qu1wO/+51blWldJjwcmD2bnnd0ANu3a3PcuDgK87hLuTaIYQOFUUZ1NRkpWjUHNJuliSI2ljwVvsr48dTyHUBUaw3GnVyl7fHj40m3gXt8MO5ATOaUqfzcLyYT8Npr0ut77wXGjHH9uO5m/nzpuVZhnsREmsfcUeEX5LCBwihDvAi18nKsXSt1Or3+erdJb2vGffd1/+3jTn6KqGYNc0aio8ntzPFsRmusVvLOaVF519lJ0vItLfR62jTgpptcP64nGDpUUog+e1ZKzHeF8HDynnCYR3PYQGHkY7NR/olW5cXNzdIqJiyMDBRfJy2te5whtg6MP7BSu2PrdGT8cLkxozXV1aQgq0X+yYoV0o09NZUk5n0pqd0Z11wjPdfKixIfT2Gezk5tjscAYAOFUUJtLcWwtTJQ1q+nxD0AmDdP27wWd3LnnegIpx5E2ee2AqdOaXfs+HhaibVrnN/CBDeVleRFcbWEfdOmnouK3//efT193MXs2dLnsG0b5aO4SmIizY+Vla4fi+mGDRRGPtXVFIIQM+FdwWoFvviCnut0/uMiBoCYGBydcI/0+u23tUtsjYvjcmNGW+x28ni4mjd2/jzwj39Irx95xDfUnpUSFUUVPQCFqXbudP2YoaHkYS4udv1YTDdsoDDyKSvTTkRsyxYpGXTaNHIV+xFnRl6L+rgMelFQ0C3x7TLiRMcJd4xW1NSQwetKhU1zM+WdiCGMhQuBuXO1GZ83cEeybEICGXHs/dQMNlAYebS1URWAFuEdwQ6sWSO99hVZewUI+hDsnuDQ7fi997RxFQO00i0slJKHGcYVTCa6ftV6Pu124I03JKM5Nxd48EHNhucVRo4EMi4sME6c0CbvKyGBwjwVFa4fiwHABgojF1HeXoM8kbTSfdKEcNllwIgRLh/TG5SlXo6KtIn0wmymZoJaYDTSqpfLjRlXEQRa1bsirPjZZ8DevfQ8NpbyTkKVdQT2OXQ67b0oYvl2SYnrx2IAcC8eRi7V1RR60EBDYdTRT6UXN9/s8vG8yaEpS5D6+S9olblqFem4uNqILTqavFXV1SSlzTBqaWggz4dD9c75Eh0OHNX33gDvIkKsrbj5Px8hBIAAHbZO+y0qdw12ul+bP0Q55s4lz2dXF/Dtt8CPf+y64ZWYSAbhlCna5OoFOexBYZwjCBRy0CBbf4ClAAOrjtOLjAxg0iSXj+lNGhKyKB4PUOz53/92/aA6HU2UXG7MuIrJRMKKsbHdbx04qkdDow6tbc4fA8/sRkgXhS5P51yDc0mXy9pPEKjs2KcdLXFxUluNxkZgzx7XjxkfT55P7nCsCWygMM6pr6eQgwbhnR7qqzfdpF3TMm9y992S8bZ5M3DunOvHNBqp3LjNzS1hmcCmpIS8ng46JaLnRKcTEBXZ/2N46VbpUCOvdrq948MYJ2DyWB/Po9I6zGMw0JzG1TyawCEexjlmM2Xxu1hpE9tQjiFl39OLxERgzhzXx+YLxMUBt98OvPsueZvefptau7siXmU0kihedTWQlaXZUJkgoqWFjNw+qnciI4C7b7L1vX99PbDyQhPPAQNwzUPDAX0/2/sjY8cCKSnkacrPp58pKa4dMz6evJ+dndp2fA9CAmD5yridykpaFbioFjny2GfQ4YJeyA03+Lj/VyE/+IE0sR07Buze7drxQkK43JhxDVebA373nVRJNmtWYHg7L0av76ks+803rh8zLo5yf1jLyGUC8BvHaIrVSu5KV8M79fXIOUsXvzUkEliwQIPB+RChocD990uv330XsrIQ+yM2lrwoXG7MqKG0VGqfoAbHbr9iF+BA5KqrJOPrm29oYeAKYWGUeMsGisuwgcL0j8WiTYv2r76CwUY37LMjFmrXDdmXmDqVXMYAeT6+/NK144ndjWtrXR4aE2R0dpJxq7b3jslEAoQAhRj9UTFWLomJ3V3KUVsLHDjg+jEjIjgPRQPYQGH6x2wmATJXFGTb24F16wAAdp0Bpy67UaPB+Rg6HfDAA1Io7OOPydWrlqgoSpKtqtJmfEzwUFVF1SRqDZRg8Z6IaN1A0Gik/LGmJtePFcSwgcL0T0mJayJPALlNL1yo57JmozVmgAYD81FyckgLBaC+RR9+6NrxwsK4jTujnIoKClWoyfMSBGqiJzJzpnbj8lUmTgSSk+n5/v1UtegKMTFUusxhHpdgA4Xpm5YWcvW6Im9vs/WQtT868hbXx+Xr/OhHklG3YYNrrl6jkTQVWlu1GRsT+NhsrjUHLCqSjOJRo4BBgzQbms9iMEgLC7ud5AJcPZ5Ox95PF2EDhemb6mpaBbhioOzaRccBUJE2CbUJ2RoNzodJSABuuWCI2e3AO++o73ZsNFKY6MJnyDBOMZspd0mtovHWrdLzYAjviFx9tRSe3bTJ9eT0mBhOcncRxToora2t+Oijj3DixAmcPHkSTU1NeOKJJ3Dttdc63ffAgQPYtGkTjhw5ArPZjMTEREycOBEPPPAAkkX3GuM7VFXRjVVtFYAgAKtXd788OTYIvCciN95I3hOzGTh0iBLvJk9WfhyDgT5HkymwExUZ7TCZKG8sIkL5vna71JnbYACuvFLbsfkyAwcCeXl0vVZVAUeOAHBB6VrsqVVbK4WPGEUo9qA0NDRg5cqVKC4uRm5urqJ9//73v+PQoUOYOXMmHn30UVx11VXYsmULlixZghpXY36MttjtJG/vSrXNkSOSqurQoagaPE6bsfkD4eHA4sXS63feodJDNcTG0v/C1fJHJvARmwOq7QNz4gR5XwBgwgRtupf7E47yB64my0ZGUmiW81BUo9iDkpSUhM8++wxJSUkoKCjAQw89JHvfRx55BOPGjYPeQfBnypQpWLp0KVavXo0H/b2FdyBRW0tVAK40vvvsM+n5D38I1Lom9OZ3XHkl8MUXVK5ZVgasX0+CbkoxGummUVNDqzyG6Yu6Olr996Ee65Rgq965mMsvl8Kqu3cjPKMBrYhXdyydjgQXy8spl4dRjGIPSlhYGJJUdljNy8vrYZyI78XFxaGYa8Z9C7OZrH+1K7HCQuDgQXo+cCAwY4Z2Y/MXdDpgyRLp9X/+Qy0DlCKWG3MeCuMMk4mS29U09rRagZ076Xl4uKQNEkyEhgLz5tHzri5kn/vWteMZjZLsPaMYryfJtra2oq2tDUYNGtExGlJefkmTMUU4VO7gppvU57H4O8OHSz2HmprIi6KGsDAWfmKcU1RE3xU11+2hQ5Jux9SprssL+CsODQSHnlqvPsEdYNl7F/G6gfLf//4XVqsV80SrtRcsFgtOnTrV/WBvi5vp6KAyQ7VGo9ksuYpjY6XyvWDlzjul57t2qTtGfDz1RGpp0WRITADS1EQLC7XhHUftk2AM74ikpQGXXQYAMDaUYZDlhPpjhYWRZ4oNFFV4tZtxfn4+Vq5ciblz52LSpL6zpdeuXYuVK1d6bmDBjtlMVn9mprr9v/hCSui89lp11QSBRGoqMHQoJQyfPauuY2pcHCU/VlWRGBzDXIzJRNetmjyl1lZgzx56HhtLCbLBzPz5wPHjAIAR5zZgf+Zo9ceKjCTvZ16eNmMLIrxmoBQXF+Opp55CTk4Oli1b1u+2ixYtwgyHHIbi4mK88MIL7h5i8FJdTRUnalQom5upvBag/dUkhfoRbe3Ah2uch69Gx1+JPFBF08F/7kaBzJLr0FBg8lg7sjMvlBtXVrKBwvROaSmFUtV0Hd6zR8qTmDGDwrvBzPTpwIoVQEsLckp24HDHgwBUhrwcZe9jYzUdZqDjlRBPVVUVHnvsMURHR+OVV15BlJNEzOTkZIwYMaL7kZWV5aGRBiGCQNa+2uTYDRsooROgLqFqe4H4OKLtJgg6tLY5f5xOkQzs9PM7Ze3T2qZDQ6MO+49euEzj4ijHgMuNmYtpb6frlnvvaEN4ODB3LgAgxNaBIee3qj9WTAwZJxzmUYzHDZSGhgY89thjsFqtePXVV1mgzddoaiJrX03+idVK4R2AkvRuuknTofkSk8faYYwTEBUp79E1KA11F1R0B9acQrKtyuk+Oh0l51mtF04aH09lpKJOBcOIVFVR13E1Bkp9PSXIAsCAAVwSK+LQQHDoaRc0UcQCAZa9V4zb/HgWiwUtLS1IS0tDyAV3YVtbGx5//HFYLBYsX74cGRkZ7jo9oxbRFak0RwKgJLvaWnp+xRWUexGgZGcKyM5U6MlonwZ8WAgAuCn2O1Kb7YcP1xjQ2ubwRkSEVG4cDP1RGPmUl5O4oprQzM6dkhz7rFnqQkSBSHY2LMnDkWw5jcSaC/ljCsVJu4mOJu/n1Kn8+SpAlYHy6aeform5uVv9defOnai+oNFwyy23ICYmBitWrMD69evx8ccfY/DgwQCA559/HidPnsR1112H4uLiHtU4kZGRmBkMXTN9ncpKuoCUXkR2+6XCbExPZsyQuhvv2uXUQOkVMeFu7Fhtx8b4L11dlECtVvXVsXpn1ixtxhQgnBuxEMmW0/Ri40b1Bkp8PMveq0CVgfLxxx/DZDJ1v96+fTu2X4hhzp8/HzF9yKOfPXsWALBu3TqsW7eux+9SUlLYQPE2Nhvd/NQkch04IHVAHT0aGDlS27EFAhkZ9CgtBU6epAlLqeih0UhGJCfcMSLV1XTjU+OxNJlI6RgAsrKA7CBo5qmA4pyZmLhnBUK72smQu+8+dfowkZHk/TSb2UBRgCoD5ZNPPnG6zZNPPoknn3xS8X6MF7FYKB6tpkzRoSkge0/6YcYM4KOP6Pn33yuvcoqNpRtSdTUbKAxRWUkVOOHhyvd1TI5l78kldIVG4VzWbIw8dyH5f+dOdbpOOh3lorDsvSI4GMZImM10ESpdIZw61a0ZgPR06mfB9M706dJzNaJtBgNNdhUV2o2J8V/E5oBqpO0FgcM7Mjg1dKH0wpUGgnFxLHuvEDZQGInSUnWrMMfck5tu4iSw/sjKIqVKgIy6ujrlx4iNpVCc2u7ITOBQX0+hQhVVd/G1hVJYdtQoTrzuA3PicNQlDKEXBQVASYm6A4lNCLncWDZ8J2GItjZalSud6CoqKFQBkMT2Be0Apg90OsmLIgjA7t3Kj5GQQDkHXG7MmM3U/qCPvL/+6KHtwdonfaPT4dyIBdJrtV4Ulr1XDBsoDFFdTda90kqAzz+Xmmn94Afq1GeDDVfDPOHh5CZmXQVGrLpT2hxQsCPr/IX8E70+OLuNK6Bw6FxpbtuyRX2YRqzCY2TBBgpDVFUp11FoaAA2b6bnkZHUd4dxTk6OpDNz9Ch9jkqJjCRdBSZ4sVrpZqeivDjFfBzRLRdW8hMnqm8MqiUVFZSjIWqy+BDW8FhpYdHUJHmNlSLK3jc3aze4AIYNFEaSt1fqJv7qK2klMX++KjdzUOIY5rHbpSZtSjAayahsbNR2bIz/IFbdqTAuhhZvlV74QnKsmPQdG0tJ9754A1/gEObZtEndMUTZ+wu6YUz/sIHCSPLpSia6jg4yUAByES9a5J6xBSqOLvWdO5XvHxtLxglPdMGL2UzXocLEdr3NiuyS7+hFeDipm3oTi4W8QXPmkHjhpElkfPuaN+WyyyStmSNHKLymFMOFpp8cnpVFkLesZAAAZjPOlxlw4LBR6vvihKGntmNqUxMAoDB7Fr7f6Vwav63dlUFqjCBQYnBTE63WrFaqsFEjwqSG3Fzqe2I202SnVHhNVPstL1evbsn4N8XFqr6vg8sPIqKTrl1Mneq573xv1NfTY+5cYMQIem/uXJIr2L0bOH0ayMxU37xUS3Q66s/z3nv0euNG4N57lR8nJoZl72XCnw4DVFTgQOVANDTK67Db2qZD2jlp1X946E2y9hEESuTzSh6tzUYeh/JymvROn6byzPBwYNw4Wh2VlEgJv+7GMcxjswF79yo/htFINym5ViUTOLS00CpcRf5J1rmt0gtvVu80N9PfMG0aMH689L5eT8bKTTfR++XlFALy1LXZH/PmSc3/vv1WXam/2PRT7FvG9Al7UIIdqxUoKYFVIMl1nU5AZET/u4R2NCO16jAAoDlmIFrTchGlkzd5hIZSJ2C309FBE2BzM7Wi1+tp5ZKURJNecjKQmEiThcFAk4XJRBOmmkaJapgxg6qgAArzXHWVsv2NRpq4zeaAbszI9EJ1NRncOTnK9mtrQ3oJ5Tx1hMciPC9P+7HJob2dNFimTCFhx96qkIxGUm119KZkZVHTTG+RkECej127yMjYv58aoypBlL23WFj23glsoAQ7ZjNVkejoQomMAO6+yUmX3m17AYG2iZk7FXf/0MtxYkEAWlspTNLSQquasDAySLKzSRgtIYEMkpiY3ifDxESaeNavJ6PFE5Pg8OFkMNXUAPn5NHYliqBiuXF1NRsowUZVFX3vxdW8XPbsQYitAwBQkj0Tw7zhzrRagcJC8lxOn97/36DXU2+vlBQyUk6eJMNl4EDlpdVacc01kjzAxo3KDRRR9r6sjHuWOYENlGBHTLRTcrE7ltgpvTi1wGYjz0hTExkmAMWoY2MpH2PQIDI4EhKUJRCOHEmx4ZMnyXhw9wSo19ME/cUXZFTt3atc6C4ykib78eO9N2EznsVup/+5mqo5B2n7opzZGKbhsGRhswHnztH1NWsWLSTkkJhIlYLp6XSdnD1LuSlqlK9dJS9Pyh87eJB+Dhig7BiOsvdyP4MghA2UYKeoSFkCWmcnXZQAGQSjR7tlWD0QwzVNTfTcYKDJecAAmrDEcI3RqHxF6YjBQAZXZaXnQj2igQLQqkypgRIfL7n7fUHLgnE/tbUUXlDaCbuhATh0CADQHDUA5kGjAXgwr8NuJ+MkK4tyOZQmvoaEkNdl8GDyppw6Rde9UuPAVQwG8qJ8+CH9TZs3A3feqewYRiMZKGaz1PqCuQROkg1mmpvp5qYk0e7wYYofAxQ/dsUgkENjIyWCCgIwdCjFpG+5BbjrLuDWW8mgyM2liUqLsSQl0d/V0EDGkLsZOZI8PQAZfqJHSC6sqxB8mM30PVFafbNzZ3fZ7rmsOYDOw9N/URF5N+fNU5Xc282AAcDChXQcq5W8KZ5OFL/qKqkCZ9Mm8gwpgWXvZcEGSjAjrryVlLc69o7xRHinooJ0Ee65B7juOnKvZma6VxRu9GgyHDwhSW0wUBUDQBPW/v3K9tfrpTbuTHBQVkbeBKUhva1bu5+ey5qj6ZCcUlpK1+zcudokhoaGkgLujTcCQ4aQZ8aTVTEDBtD5ATIy8vOVH4Nl753CBkowYzLRT7meB8dy2PBwMhbcidildexYz8ZpQ0IoYTYuzjMrHFd78xiNtDrlNu6BT0cHGShKw3kmE3XiBVAfn4Xa+CHaj62/c+t0ZJxoHc5ISQGuv57KpVtbyVDxVJfv+fOl52qUZePiWPbeCWygBCt2O1nvSrwnBQVS35iJE92boGa308U7ZozyWLsWDBhA5Y+1te4P9Vx2mXTD2b9fCqHJhdu4Bw9i1Z1SA2XHju6nRUPneC6huqaGSmpnz1ZeEi2XsDAKyy5aRDlpZ8+S+Ju7mTxZCs/u2UN5QUqIjeXwrBPYQAlWamro5qtkovNkeKemhlzBY8a49zz9cdllVG1QUuLe84jJuQB5QQ4cULa/GM8WPWJM4FJdTR4CJeXBgtCjeqc4x0O9dxobaY6ZMQMYNcr950tLo47qM2bQuQsLleeGKCEkhPJgADrPt98q259l753CBkqwYjbTykZuJr0gSAaKwUDeBXdhs5GI0fjxriXTuUpoKIV6oqPd751wNcwTHU1hHl9Q22Tcg9jUU2n1S1GRZGSPHImWWA9Up7W2UjXc1KnAhAme89hERNC19IMfkFbK6dPubah5cZhH6fUnyt77Us8hH4INlGClvFzZKqyoSLL0x4xxb5JqdTVl+/uCiNGgQVKox505HmPHSuG2ffuUh5WMRjKiPOHaZryDGA5QGt7Zvl16PmeOpkPqlY4OMqQmTPBev5msLAr5XHEFeWNLStzjTRk8mEqfAUroP35c2f5GI4WGlIaHggQ2UIIRUWbaF8M7XV0UY58wQZmqqjsZO5ZKmd0Z6hETcwH6/1zQq5BNTAwp0XI8O3AREyqVLA7sdim8o9f37KLtDqxW4Px5Co9eeSV9r71FVBQwcyZ5U+LjyZvijoTUa66Rnm/YoGzfqCjyNnH+WK+wgRKMmM3k9lQSPnE0UNzZnt1kokS34cPddw6lhIaSURYZSasxd+F489i5s+/tekOnk7obM4FJZaX0f5bLyZMULgXI6HenmJ/NRsZJbi55aryh8noxOh0l5954I3lCq6q0z9WaNk3yfu7apcwI0unIiCsr03ZMAQIbKMFIdTVNJnJDPCYTJZwBwLBh7mtw1dlJq4kJE7zbEKw3UlJIj8Vsdp8o1Lhxktdo717obQrPEx9PXh5PCMwxnqWrS3nVHdAjORaz3JgcKwg0R6SlUeKor3g/RWJiyGiaO5c8tFqWIoeFSQrQVmsPvRlZOMreMz1gAyXYEATl8vZ79kjP3Rneqaig2PHQoe47hyuMH09jc1eoJzSUyiUBoK0NKeUKwzxGI+WgcJgn8Kipof9tfLz8faxWyRMXFubea7eoiNScr7pK2Rg9iU5HeW0pKdpfI47Jshs2KEuWFWUCRE8X0w0bKMGGeCEoCe94ojlgezutavLylCXvehJxkg8Pd59qpUOYJ7PoO2X7hobSZ8hli4GH2UzXiBLPYn4+JdYCFJZVKo0vl/JyOva8eVQ548uEh1OSf0ODtpUzmZlSUn9xMeW7yIVl7/uEDZRgw2ymSUtuol19fbcCJdLSgIwM94yrvJy8E9nZ7jm+VqSmkkhddbV7Qj15ed03kvSS3crDPNHR5GrncuPAoqREuZqyY3hn9mxtxyNiNlO4eM4c980NWpObS2FqrfPJXFGWjYwkLxTTAzZQgo3KSkqyk5tot3evtNJwl/ektZXGk5fn/uaDWpCXR4aUO0I9oiomgLDOFqRWHVa2f3w8eci4bDFwEDVFlCS4trVJodnYWMrr0pq6Okq2nzmTctP8hZgYqjKqqdHWkL/ySslLtWOHsgUMy973ChsowYSYaKckvOOJ/JPycprg/GUFFh5On0VYmHsMAQfRtuxShWGe6GguNw40RHl7pdetmCw9Y4b2YdPmZhrX9OlUhu9vDBtGn6eWukEREVLjz7Y24MgR+fuy7H2veLFInfE44sp68GB527e2Sl06ExPds0pqbKQb/vjxnlOb1IL0dPKk7NxJk4uWeg8TJ9Jk196OrLLvcdD+CACZn41Ytlha6htCd4zrVFeTF1PJd8xRnE3r6p22Nvp+TZ1K/Wj86boVSUwERoygthJiP51+aGsHPlzj3LubrpuOWSDJ+zMf7cG+0imyhhMaasDk5BhkV1e7r2eRH8IelGDCbKZSNrmJdocOSW5KdylCVlbSjVSu0eRLTJxIVUdah3rCw2niBxDR2YSBlUeV7R8fTzcQpU0HGd9DrLpTIs7W0AAcPEjPk5OB0aO1G09nJ40nL4+8J95QidWKESNoLuwnrCI6ngRBh9Y254/ziRPRZaBcobTiPWhtFWTt19Cow35TCuWPsex9N3787WIUU1KiTDzJ3eqxdXXkfRg3zj9XYRER9LmEhGgvMe8Q5sksUijaFhdHNyl2F/s/dXXk+VSSf7Jzp3STmzVLOyOiq4uE2EaNorwTX622k0tKCnkr+hFumzzWDmOcgKhIeY+w2HCY0ijfJ6q9DhnNp5zuo9NRHozVbmDZ+4vgEE+w0NKiLNHOagX276fn0dHadxUWu3hecQUwYIC2x/YkmZm0mty1i4wtrZJ8J01ClyEcIbYOZBTvAmwPyT92aChVVlRV0fgY/8Vspms3LU3+Pu6o3rHbyTgZMoQqdtxVsuxJdDryLp061WcJd3amgOxMhT18oqcA/0u5ewvCdwE39R8a/3CNAa1tF8Yjyt4nJSk7Z4DCHpRgQam8/bFjNDECFG7QerVUU0OxX39MsLuYiRPJENAy1BMZiYr0SQCAiPYG4MQJZfvHxrK7OBCorCTDVK6HsaqK5O0B+k4OGaLNOEpKqHHmVVcpV7P1ZdLT6XPSUv5+yhTJa7V3r7J9Q0JIsJIBwAZK8FBVRV4Luatwd4Z37HYymMaN813VSSVERlKOjk6naWv30iEu9OYxGrnc2N+xWqnqTkl45+LkWC1Cp52dFN6ZPp2SSwMJg4G8w1ardrpGRqOUoF5aqqw/VlwcGYMsew+ADZTgwG5Xlmhnt0vlxaGh5CHQkupqWo1pmbznbbKyqBKpvFyztu7lGVPQpb/gufr+e2XeELFLKqvK+i9iebErBopW40hJ8R8ZAKUMGUJJ+lrmbDk2VHWUanAGy973gA2UYKCujqTZ5YZ3zpyRpNwdlE01wWajhNLx45VVJvg6Oh01E8zI0KwzaVdYFMoHU5gHdXWSoq/c8YSGcpdUf0asupOrIFtURB4XQOo54yqCQF7BUaP8Pym2L8LCyIvS1KTZ4qKHgeLojZYzFpa974YNlGBATLST22HUneEdk4lWKyNGaHtcXyA6miYmu13qgeIihRkuhnnKyki3gvE/ioqULQ7ckRwrNij09RYUrpKTQ8n6Wsnfp6ZKHqdTp5SFWln2vhs2UIKBigpKvpIbjxYNFL1e6q6rBVYraQ5MnBgYVQC9kZ1N3qGyMk1WYyVpU2HTXyi2Uxrm4e7G/ouoKio3vGO3S+Edvb5H00mXsFiod42SMJM/Eh1NIWct5e/FxZ0gAPv2yd+PZe+7YQMl0OnspKQrmeGduPoSKalr1ChtJ6bKSsqYz83V7pi+hhjqSUtTlhzXB51hMTCl5tELi0VZl9SQELpxaVmhwHgGsepObhi0oEAKC0yYoE3yeUcHGTv+1GfHFYYPp89Nq8RytXkoouw9h3nYQAl4zGZaRcs0NNKLv5deaBne6eigx4QJyruy+hsxMTQ5dXVpsgoqHXKl9GLXLmU7x8aSfgWXG/sXolEpt+pu61bpuVbJsdXVZGinpmpzPF8nPp5yd7QyDHJzpaqn/Hz5oVaDQdKJCnLYQAl0zGa6Uco0CjKKHfJPHFcArlJeTuGPQI9liwwdSmXUpaUuGwdlWVdIN6pdu5S5oOPjKeFZ69byjPuw2ynZVa7eiNUq5SeFhWlz3drtlLc2erR/dBjXihEjqAJOixwyxxC51UqtQ+QSE8M6RmADJfBRkGgX1WpBkuVCCCE7W5sqAIDKXQGqCNKyqZ4vo9ORwF1qqsvCS53hF9oBALSqPXtW/s5RUbRy4zwU/6GmhoxKueHV/Hzphjp1Kv3PXaWujlb/WVmuH8ufGDiQFhdaeS8cvdBKy41Z9p4NlICmsVFRol1WmZvCOxUV5O4MtskuNpZuGB0dkiqvWhx68ygO84SFad/QkHEfZjMZlXINDXdU71gslJMRSFIActDpKPdOr9em+m3sWGmBuH+//MR5UccoyPNQ2EAJZMxmWlnJdBUPcYeB0txM+gnjx/t351O1DB1KGguuhnquuEL6/HbuVB7mKS933UhiPENZmXzNkbY2aWUeG0s5Xq7S2kpNRQM5mb0/0tNpMaVFcnloKCXNAzQXy21ZodOx7D3YQAlsTCb6osswDEI7mjC4+gi9GDRIux4e5eUU11XS7CyQEOPQAwe6NtkYjVLDRpOJ4tNyiYuTvGmMb9PeTgaK3PDO3r3koQOotFgLMbXqaqq2GzTI9WP5I3o9cNlllLunhfy9WtE2lr1nAyVgsdko/0Sm9yStdB/0woUV/hVXaNPDo6GB9AXGjdPmeP5KXBx9pm1trrmN1YZ5xKoALjf2fZQ29XQM72hRvWOzkcEzcmRwejxFRPl7LXJRJk2SEo337JHv/WTZewRJxmIQUlND5cXJybI217y8WBBI92TKlOBdiTkybBhNeqIWjBqmTQP+8Q/6bHfuBO65R77hJ3Y3njIluKoy/IzzO0pw4MgQWI86r7oL7WjCLQcOQQ+gJXoAPj8zFjjr3Khoa+/nlzU1pKiq9jsaKISG0sJq3Toy2ly5ZmJiKBclP5+8U0VF8qoZHWXvg6XU+yKC2EQOcEwmiiXLSbTr6EBq+QEAQHuEQydOV6itpdyHsWNdP1YgoNdTqKu1VX0uSkKC1GCxvFxZ4qtYFcDlxr6LIODAtno0tIejtU3n9DHg3H7oBUq6PJ8+A63tBln7CQIZtb1Gg2pr6foPVKVnJeTkUGhWi0RVtaJtkZFSf6UghA2UQEQQaLUstwogPx8hXRTHLsuc6voK226nlcLYsYHXnt0VMjLIyGhoUH+MGSp784hVAZyH4rs0NMDaQcarTicgKrL/R06lFOYzDZ3mdHvHhzFOwOSxFxnKzc0Ukg0WrSJnREZS3ld9vevy944tQ5QYKHFxFGYKUtl7DvEEIg0N5EGRK3ftkLhVljUNLufuWywUWhJX+wwRF0ersvx8MlTUMG0asGIFPd+1C7j7bvn7RkSQe1lMtmV8C7O5+0YYGQHcfVM/JakdHcAH5PWE0YhrHhwOGFzs/VRVRaHIAQNcO04gMWwYCazV1gJJSeqPM2AAVUWdPQucO0f/azmfc2wsbWs2B1/JN9iDEpiYTPLLi202qgQA0BkSCdPgPNfObbNRGCEvT36iXzCRk0N5I2qrA5KSpBBcSQmVL8vFaKTvBpcb+yZKqrzy86XqHS3yiqxW8nyOGBHcCe0XExdHuijeCvMEuew9GyiBSEmJ/O7FJ050q1CWDZ4Ee4iLfXKqqiihS4s8lkAkLY3i2q5k5juGeZRU84jlxkE62fk0XV103cqtnHEsV9Uiqd1ioe9lsCfH9oYoWNfY6Npx1OahBLHsPRsogUZLC010cnM/HCa64vRprp27q4uMnbw8beS2A5HQUDLeXMlDcbXcuLJS/bkZ92CxUBKznEWFg9cTEREkgugKgkDfx1GjAr+RpxrE8Iyrhn1WllTReOyY/LySIJa9ZwMl0DCZaLKRE14RhG4DxaYPQUnqFCc7OKGykjwEwdKeXS2ZmZSMqDbxbcAAWtUBtLJSEhqIi6M8FLmS24xnMJtJkEuh1xMTJ7puVDQ2UjiYk2P7ZtQo8kqLfcXUoNNJ3i6bjaTv5RDEsvdsoAQaZWV0IciJSZ8/3/2lrx48DtawaPXn7ewkEbIJE0gmm+mb5GQyUlyZcNR6UcTuxkEs/uSTFBfLv24cwzvTXPR6AvQ9zMnhirv+SE0lHSNXxQ7VhHmCWPaeDZRAorOTVscqqndKs1yc6MrL6QIeOtS14wQDOh15mTo71Xsy1BooERGUXMl5KL5DSwvd+OTI2zt4PWEwSH1e1CLKqIseOaZ3RPl7u9016flRo6TihYMH5SfLB6nsPRsogURVFcUpVRgo5ZlT+9nQCe3tdOHm5WnTCyQYyMigFavauHJKimQMnj2rbGUXERHU4k8+hxJ5ewevJ8aNc7301Gym71J6umvHCQaysiiE7YpxbzAAl19Oz9vagCNH5O0XpLL3bKAEEhUVlKgqx0ioqJBuUiNGoC3KhRr/8nK6WXIMWz5RUZR4V1ur/hiOXpTvv+97u4sRy43FPAbGu1RVkWdETlhWy+odQaDvwGWXUQiB6Z+QEBKfbG11LYfL8f8mN8zjKHsfRLCBEijYbLS6kqs94nhhuDLRtbSQ+3P8+OBuLqaGnBya9EQ9C6U4GihKVGVjY+nGxKqy3sdup7CsXE+Io4EyxcWk9vp68rZq1bk8GMjOpkocV66dvDwpsXnPHkCQWT4chLL3fEcJFMxmcv/JVSjVaiVWXk7iThkZ6o8RrAweTO51tauitDTp5nL6tPzjiCv1IEy68znq6siLJif/pLKyh9fTJWVTgL4vw4axoKISIiIk+Xu1uiQREWSkAEBdHZLMp+XtF4Sy92ygBAomE+WCREQ437auDigooOcZGXSjU0NTE51v3DhWn1SDwUCaKM3N6nt9qE2WFcuNu7rUnZfRBrOZvJBydIO0DO+0t5P3LtflxhbBR24uGYeuhGcdqnnSS3b3s6EDoucziMI8bKAEAoJA/R2iZZYJ790r3RBdmegsFkocS0lRf4xgJzOTjAW1+SBqVWXj48lQDaLJzicpL5ev+qylgVJdTQuT1FTXjhOMxMZSNY4rCauXX979P5dtoASh7D0bKIFAXR1NOJ4M79hsVPI2bBh7T1whIYGMPLWGQkaGFF47eZL6IMkhPJz+f5yH4j06O6mXkpwQi1ZeT4BCE21t1MyT88bUMXw4GSpqFaHj48nIAWCsL0VcY5m8/YJM9p6/nYFAZaXUKt0Zra3A4cP0PDlZvYu3vp5urlye6Dq5uWTwqQ23OHpRlFTzREZSmIfxDmYzXUdy8k+08noCFJpITCTDmFFHcjItzlwx8B3CPFnlMr0oQSZ7zwZKIFBURCtiOZ6MAwekG+HUqeq9H7W1VFosN6zE9E16Ok14amParqjKmkyuN0Fj1GE207UoR6pey/BOTQ0l2fK16xqjRpGkg9ru4A4GypAymQuLIJO9V2ygtLa24p133sFvf/tbXH/99Zg1axa+/vpr2fs3NTXhL3/5C2644QbMnz8fjz76KE6dOqV0GIxIUxNVY3gyvGO1kmHD5YnaEBFBNwy1qyJRQAoAjh+Xf5yYGPr+BFFM26coKiIvljMcvZ5JSa4ltra20vctJ0f9MRhi8GAqO1Yrf5+a2h2eHWgpQESbjOs2yGTvFRsoDQ0NWLlyJYqLi5Gr8EKx2+1YtmwZvvnmG9x88814+OGHUVdXh0cffRSlpaVKh8IA0gpYThzbapUaVMXEkECTGmpqqGEdJ9hpR1YWecHUNCPT6SQviiDID/Po9fQIksnOp2hspPCAnPCOVl5PgIzRjAxObNcCnY7mUEFQr2V0YZGog4DU0r3y9gki2XvF8oFJSUn47LPPkJSUhIKCAjz00EOy9926dSuOHTuG5557DnPmzAEAzJs3D3fffTfeffddPP3000qHw5SWSjcaZxw5QslxAGWRq1WPbGig0mJuza4dgwaRF6Sykip7HGhrBz5c07/KaELnTFyL/wIATJ9/j287b5B3XvtwhJ5sxOTQMmRP53wij2E2k/dq0CDn22rVHNBmo0XKyJGc2K4VYpJ6VdUl160spk4F/kvXbUbxbgBXO9/HaKSmsBZLwC8SFXtQwsLCkKRSIGjbtm1ITEzErFmzut+Lj4/H3Llz8d1336EzCCxCTWlvJzexJ8M7oouYE+y0Ra+nME9bW3eGvtixQBB0aG3r/1EeORSNMbQqHmg6Cntdo9N9Wtt0aO0woKElBPs/kSkWxWiDyURGgrOFhVZeT4BuaMnJfO1qSUgICbe1talLcs/NRWskdZFOqTgkLSD7I4hk7z2aJHv69GkMGzYM+osuylGjRqG9vb3PMI/FYsGpU6e6H8VBJvfbJyaT/CoAm02Stw8LAyZMUHfOmhpyDw8cqG5/pm8yMqSmYAAmj7XDGCcgKlLGIwooy6ZqHr1gx7Dq72Xtp9NRZYi1VWZXVcZ1bDZaWIhdbftDK68nQLlJI0fKE3Nk5JOdTXOimooevR7lWbRYNNiswKFD8vaLjKTWJmoFHv0Ej3aIqq2txfjx4y95X/TI1NTUYKjYodWBtWvXYuXKle4env9RXk5fUDmT1unTZMwAZJyomaQEgcqZZ85k/QR3EBdHyYtHjgAJCcjOFJCdqaAp2WXTgcc+BQBMbd2BqTc5dxd/uMaA1jbQTVMQ2PXvCWpq6FocMMD5tlpV7zQ1UdUOJ8dqT3g4eVE2biRDReHcWJY5FcMK1tGLPXt6VuX1RWIiLVBrasgrFqB41EDp6OhAWC95C+J7HX0kGi1atAgzHLQeiouL8cILL7hnkP5CVxcJ9sjto6HFRNfURCt81j5xH0OHkoFitcrrSu1Ibi7d9MxmOkZTk7xVOkAGSmOjPG8c4xpmM3lFnFXw2O3aeD0BWt0PHx7QNzOvkpsLHDwoFRAooGrweHSGRCKsq43CeTab887WMTGUh1JREdD/U48ug8PDw3vNMxHfCw8P73W/5ORkjBgxovuRxTFUmnBqa+XlnzhWduj15CpWg8VCYQi5OS+MctLSaIJTI6PtWM1js5G4l1yCTELbq5SWykswP3XKda8nQMau3U45Tuwhcw9ifpDFojjsYjeEoix1Mr1oagJOnJC3Y3Q0ecYDWFXWowZKYmIianqR4hbfU5t8G5RUVlJpWx9GXQ9KSqRa/csuU9e9VKwA4OZi7iU0lPIE1IqnOarK7typbF8uN3Y/bW30OcvxVGkV3rFYKGeMO467l2HD6P8qGpUKKEpzqM4SvWbOSEqiRYUrPYF8HI8aKMOGDcOZM2dgv8jiO3nyJCIiIpDBF5A87HZqDijXfa/FRFdfT3FPDu+4n6wsUoxU01Z9+HCauAAgP1++yqVeT4mbXEnnXsxmSoJ2tkjQyuspCHS+0aNZFsDdJCaSl0pFsmxZ6mTYdRfCOrt3y/PCiKqyZTL7+PghbjNQLBYLiouL0eVQejV79mzU1tZi+/bt3e/V19djy5YtmD59eq/5KUwv1NTQROfJ8uKaGsqPkNMWnnGN5GQyBNWUEer1Upinq0t+mEevIyM0CEoXvUpVFXkjnSS2G+uLXfd6ApKII6s+e4YRIyi3SOHiojMsBlWDx9GL6mr5PbJiY4EzZ+g7FYCoSpL99NNP0dzc3B2a2blzJ6ovWI233HILYmJisGLFCqxfvx4ff/wxBg8eDACYM2cOVq1ahZdffhlFRUUwGo1Ys2YN7HY77r//fo3+pCDAZCLLWY6xYDaTtwUgA0NhAhcAWlUbDFROx7gfnY48IadPy0uYu5jp04EvvqDnu3YBc+fKOSkZNCaTa51ymb4RBLrxyOiBk16sUXinuhoYO5ZW94z7SUmhSqlTpygvRQFlmVdgcMWFMuM9e+TNt0lJFO6vribp/QBDlYHy8ccfw+TQf2D79u3dXpH58+cjpo9/jMFgwJ///Gf8v//3//Dpp5+io6MDI0eOxBNPPIFMNSp8wcr58/J6eADaeU8GDAjIC8Bnycigm0p9vRSykcvIkeRdq6ujygK5xmx0NN1AJ07kZEp3UF9P11J8vNNNM4odmj46NJVTRGcnedSGD1e3P6McnY68KCdPksGvQLemPHMqLt/9Jr3Yswe4807nO0VE0P+5tDQg52dVBsonn3zidJsnn3wSTz755CXvx8bGYtmyZVi2bJmaUzMNDbTK9WR4p7GRblpKy14Z9URHU0Lyvn3KDRSDgSTR162TlEgd1Jv7xGgkj1t9PVdquQOzmXKCnMiTR7dUI7HGweupVhRRXFWzR8yzpKXRNVtXp8hj3RozgK75s2fJ6202y9s/Lo7CPBMnuibk54Ow2pa/YTJRKZoc92FjI3W3BWiiUuOlam0lbw0nMHue7GyacNQ0InMUe9q1q+/tHImJodi5GkVMxjkVFeTRcOKdGlLm0OxR7aLCbqf/5ejRAXfT8nnCw8nQUNOdfMoU6bncap7ERKrkUdtV2YdhA8XfKCmhCUeOWuG+fVKN/BVXqHPbWyxk3KjJXWFcIzWVYtpqElcvu0wqZd2/n/o2OUNs5V5ervx8TP9YrXTtyigvztLCQBG9YKwZ5R2ystQtLhz/33INlPBw+n710SrGn2EDxZ9obaVJzlPhHUGgcw4fztL23sBgoHySpiblPTcMBul/3tkJHDggbz+jESguVt8+nukdi4WMBifVOGHtjUgxH6MXar2e4vmGDVNf/cO4htivrBfdr37JypI6XB87Jr8ayGik0FCAyQTwXcefMJkoB0WOyFN7u9R4Kj6eEreUIpYosvaJ9xAbCDY1Kd9XTZhHbFbIYR5tqa6mm4cTYcW00r3QCy56PdvbKV+sl75mjIcICaE5V6ngok4nLSxsNvkLi6QkMoYqK5Wdz8dhA8WfEAV55JSdHjokWdNTp6rzgFgspJ8go+qAcROJibSqUhPmGTtWEvPbt0+eVyQ0lKoPWPZeW0pKZEnVpxdrEN6prqZETSfJuIybycig6jm5YokijlVbjl7w/ggNpXB+SYmyc/k4bKD4C52d1BxQbjM3V8M7Nhs9uPup98nNpf+Fg+ihLEJCpMnO0aPmjOho+q4FeCt3j9HcTN5PZ9duRwcGl9P/qC0yXp3X02YjOf1Rozgs622Sk8lIVBrmGTVKWlgcPEj5JXKIj6fqHzn5Zn4Cf4P9haoqygqXk3/S1UUrZoAqcMaNU34+sREhh3e8T3o6TXa1tcr3VdObJz6evGdqqhCYSzGb5XWWPngQITbycpVlXqHOwKitlbxujHcRBRdbW5UZ+waD1NqgrY06k8shIYH+/wHUU4sNFH+hooIMDzlaJMePS8lVkyer0y+pq6OVu1xBOMZ9RETQalqNwTBunKRcunevvNVYdDS5pTkPRRtMJrpBOQvNOng9yzKn9bNhP9TW0ndFhlot4wHS0ymPT2kuimOYR241j1hOHkBhHi6Q9wPO7yrHgZVmWDtHACed559cvut7DLvwfKdhGorXON+nzdEryNL2vkdWFnnF5KrCioSGkrbCli20GsvPd954Tiw3Li2lKiJGPXY7qfM60y1y8Hp2hkSiKnW88nO1tJAxy8mxvoPRSNduQYH88DwATJhAzR07O8lAefhheR61xERSGp8yJSD6prEHxQ848MkpNDQb0NoZgtY2Xb+P9uYuZJzfAQDoMoTjTPJUp/u0tukgCFQtEBoKqT17AEon+y2DBlHio5rW6mrDPKWlARXP9gq1tfRwlmju4PUsTb0cdoMKr2d1NZUli2WqjG8wdKiU0yeXiAggL4+e19WRUqwc4uNp+wAJ87CB4gdYW8ktr9MJiIrs/5FTexARnVSSWpY5FWFxEU73ER/GOAGTx9opXj5iBCtQ+hJ6Pf1P2tok8T255OVJobo9e+SFeUS3NId5XMNspv+Zs9WsQ3inOF1FeMdmo9X2yJHcR8nXSEuj/JD6emX7qanmMRjoUVio7Fw+Ct+BfB1BuGB56xAZAdx9kxMr/NUt3U+H3DMLQ6YobMPd0gLUsLS9TyJqojQ0KOuVExZGLt9t2+j/e+QIMGlS//uEhtL3zmRSLxbGkDSAM0NfELrzDGz6EJSmXg7F/hOLhdSe+X/le0RFkRdl/35lfbUuv5yMTUGg/LF775W3X2IiiS02NyvuqOxrsAfF16mrk+8abGuTEqpiYymOqZSaGiqNY2l73yMujsq+1YR51PbmKSxU7rFhiPp6+vwSE/vf7uzZ7v9pVWoerKEqcgfq6qg8VYbWCuMFhgwhz4bckmGAwjWjRtHz0lL5LSjERUwAtKxgA8XXESsA5LBnjyTGNWOG8uodu52MnOHD2U3sqwwdSv8bJRMdQJ1OxZvX7t3yNFWMRjJY1ZQ3M7SKbWhwnn/i4L4vzVIR3hGbh3JSu++SmkpSAUo1UdRU8+j15LU7f17ZuXwQNlB8naIiQK6tsH279HzWLOXnamigVTqHd3yXtDTybin1ooSHU8k5QDe0Y8ec7xMVRVVDnIeinK4u4MQJ8mQ6M/ZFA0WnQ3nm1P637Y3qalqhJycr35fxDKGhtPBraFC2nxoDBaBQUkmJ8vP5GGyg+DLNzeSm08n4NzU0kOogQBPV6NHKz1dbSxMdNxjzXUJDKRFSzcSjNMyj09H5xBYLjHzKykhc0VmotLxc6kI7ciTaIxXkFgFkCNls7PX0BzIzaaHQ1iZ/n9RUacFYUCBfC0lMcvfzMA8bKL6MyURfMjn17zt3SrkCs2YpV6EUJzrWUPB9srJIiEtup1ORSZMoYRYAvv9eXm5TfDzdbJVMqgyVhQqC9Hn3hastKerqaEGSlqZ8X8azDBxIXY7VhnkEQVIId4ZORyHdc+f8umUFGyi+TFmZfENj2zbp+ezZys9VV0duQZ7ofJ/kZFKoVNpAMDJSqt5paKAQhDPi4ijZk8M88qmro/i/nJCLo4EyVUV4R1R85uRY30eUCmhuVmY0OBquSsM85eV+3bKCDRRfpb2dKgDkdBKuqgJOnqTnmZkUplFKXR0wbBhPdP6A2OOjs1OZ+BPQM8wjR7QtJIQmU5NJ2XmCmaIiMgCdKYfW1ACnTtHzrCzl3Yc7Ouj/w313/If0dEpoVuL9zM2VKsEOH5YvnhgTQ/lmfhzmYQPFV6mqopWrHHnki5NjlcaieaLzPzIyaNJSKv50+eVSddf33wOCjBLimBjyCHC5sXOsVknW3Nl1uHev9FxNeKemhhWf/Y2EBLp2lSS56/WkYwTQokRuV3KdjhLdz5712zAPGyi+SkUFrY7llAq7Wr0jTnQpKcr3ZbxDdDStrJTGs6OiJH2cujoMqDrpfJ/4eEqgVnquYKSsjLxNSsM7agyUxkYKGThrQsj4DjodXbdWqzKDX42qLECLmMpKddpJPgAbKL5IVxclN8nxnhQVkd4CQNUdaoyMhgaWtvdHsrPp5iRq38jFoTdPRpGMMA+XG8tH7JniLDm2uZkUfQGq9MnJUXae5mYyUlk51v9IT6e5XYn3c9w4qV3F/v3yQ7sxMaQe7ae9edhA8UWqq2nFKkfO3NXkWFEOmbVP/I/UVHLvK10dXX55tzGaUbxTXpgnPFwyhJneqa2lvDE5KswHDkg3mSuuUB6WtVgooV2JdDrjG4iieko8kqGhUoJ7U5O8BHfH850+7ZchWjZQfJHKSoo1hof3v53dLoV39PqeXWvlIk50LPLkfxgM5PlqalIWY46J6e6UGt1iwYCa0873iY+nVVhLi6qhBgVicqwcHSFXwjt2OyVKsvaJ/yKq/spRdBZRK9qWmEg5jX7oAWUDxdew2ykhMTra+bYFBVKp6YQJ8ip+Lj5XRwdV7/BE559kZpJaaVOTsv0cqnmyS79zvj13N+4fq5Uq6eQkx3Z2SqKKsbHKRRXFZpHp6erGyngf0fulpI3EpElSvtHu3fIXJVFRZND6YTUPGyi+Rm0tGR1ywjtbt0rP1UrbG40c3vFnEhOp+kqpJsrUqd2TXXbpd84nO4OBy437o7RUnnIsQKWiovDdlCnKk1xrakhKIDZW8TAZHyE8nBaGSjRKYmKAMWPoeXU1eezkEhtLYR6lsgRehg0UX8NkooREZx4Uq1XSsQgLUyfyxBNdYDBsGE08StzFsbGUeAcgtqUaiTVn5e1TWOh3k5xHOHOGwqxyqu5cCe90dZGhqDSplvE9srLo++IJ0bbERFrEVFXJ38cHYAPF1ygslCeWlp8vufWnTiU3nhLEiY6l7f2f9HTKIVLaddghzJNRKCPMw+XGvVNTIz851maT9E/Cw7tzgWRTW8uKz4FCSgrJOyhJXhX1UABl5cYRERRaFPs++QlsoPgSDQ2UiCgnl8TV6h2e6AKHiAhKmFQqaX3FFbBfaESZWbTT+UouMpJi2ZyH0pOiIlosyPFEFhRIjR4nTnSeCH8x9fXkMVO6H+N7iEnuSjwoAwaQjgpAuYpKDA6jkTx9VquycXoRNlB8CZOJyn6dTXRtbZJ7LzZWEt5SgihtzxNdYDBkCP0vW1vl72M0ojplLAAgtqmSvADOCA9XFvsOdDo75SfHAq6Fd9rbKSSgppUF45tkZCgvUJgzR3q+caP8/RITqWrTj/LIWJnLlygpIavaWYPAvXslca4ZM+TFvR1pb6e8FZa2DxwGDSJdFJNJkXhXyZAZSKk8TC927XKe22A0SoZ0TIwLAw4QSkvJoyTHaBAEyUDR60mPRgkWC4UFBg1SPEzGR0lO7k6SbmsHPlzjPGE6rP0q/FC/EgZ7F9rXb8Ga+PtgNzi/B4SGRmJyUhSyS0r8pjCCPSi+QmsrTXZKwztqpe0HDWJp+0BCrycl4bY2RTHtsqxpEHBhBbdTRphH7G7sZ7Fst3H6tPzk2KIiKUlx7FjlBl5zM4XyWNo+cNDpEBpF3x1B0KG1zfmjXjCiMIM0ryI6GjHg7G5Z+zU06rC/KoV68yhVn/YSbKD4CmJzQGcGSkODpKGQnKxcQwHgiS5QycggD4eY4yCD9qhEmAZcRi/Ky8mL1x8GAyVkHz5M4Y1gxmIho0NOcizgWninqYkVnwOUyTfnwBhlRVS4DVGRgqxH0egF3fuPLlzvdHudjhYeViGEFqiVld76cxXBIR5foayMfjozGnbulFbIs2Y5DwddTFMT9/AIVOLiKERz+LA8HZ0LFGZeicHmY/Ri507nob+UFErQO3+evDbBSlERGftyBdMcDRSlsgAWC/1vExOV7cf4PNlzhyLbeo7k6+VWVdpHA4dSAJMJgyvycfcV5f16xD9cY0Brm8MbxcV+kcvEHhRfwGqlBEU5zQFdrd6xWGgVxhNdYCLmkCjI1C9Kl8qNsWuX8x1CQ9mL0tFBFTly1ZtNJikJedgwZa0l7Hb6f+bmsuJzoJKdTSXocjWG9Hpg/nzp9TffyD9XQgItLtrblY3RC7CB4gtUVVHZr5PJLrqpiioGADIylFrAPNEFPunppK2gQKukNSoZ5oGj6EVJibz8kpQU2u78eZUD9XPE5Fi5hoajqJbS8E59PS1eWNo+cElPJ8NBiVTAvHmSB/2bb+QbN+J5/ED6ng0UX6CigoTTnLRozzp/kfdEqZHBE13gExpKYRclrdxB1TzdsBelfwRBSo4NkRkldyX/pLaWPGNcNRW4REbSwlGJ2GJioiTcVlsL7N8vbz+Dge4dftCdnA0Ub2O3A+fOyRJ5GnJ+q/RCTfUOT3TBQWYmGQ/NzbJ3KVVqoADkRSkrCz4visVCk/vAgfK2b2iQPJ9pacoSXa1WMojE7rdM4DJkCBkPSgx+xzDPpk3y90tIoJCjj3cnZwPF21gsssI7CfWFiK+7YPGOHKm8RJgnuuBhwAC6CSpoINgaM5AquwCauCoqnO8UGkorv8OH/Uqd0mUKC+UJKors3Ssltiv1ntTUUBiJFZ8Dn8GDlbesmDBBCjPu3y8/tBsfT15WOde5F2EDxdtUVpIGipNeOrlFW6UXaqXteaILDnQ6MjasVmWN/Rx68+D77+XtI3pRzp1TNkZ/RWlyLOBaeKehgeTQnYR/mQAgNJSuWwUyATAYgKuvpud2u/xkWYOBHnLUo70IGyjeRBDIPe6s0Z9gR07xVnqu15N6rFLq6+nLzxNdcJCRQW5cJbkojgaK2CnbGaGh1AvoyJHg8KKUlJBnSm5ybFsbNfYEKGdg2DD552pro+uVJQGCh8xM5S0rrr5aykfctEm+UGNiIoUqGxuVj9NDsIHiTerrqYLHiWbFgKqTiG294K6fMEHZ6g3giS4YiY4mTQUl7uKUFEmH4exZ+a3ZBw+mqpZA96IIAnDqFCXGyk2OPXhQMtymTlWmW1RTQ58tS9sHDwMH0nWo5LodOFDqil1dTSFXOYiijj4c5mEDxZvI7GnicnKsONGxtH1wkZNDN0QlstbTFWqiAMHjRTGbyYMiNzkWcC2809xM4R2lYoyM/6LX0/+8uVlZl+MFkrKs7AaCej0tXM+eVTZGD8LffG9SXEyTe3/lwlYrMgt3AAC6DOHKFSgFQZK254kuuBBX3xaL/H3UGCjiuQK9oqewkFzvcqvgrFap9DM6GhgzRv65BIGScFkSIPhIT6f/fVOT/H0uv1wS+tyzR34eS1IS6aEolCXwFHzH8hbNzTShO5Mkz89HeAd9UcsypzrPV7mYpib6snMPj+AjJAQYNYq+A3JXY2lpkgDgqVPyK4FCQyl2HqgVPe3typNjjx2TyjgnT1bWddxuY8XnYCUxkYwUBWKLCA0l4TaANLW+/VbefrGxlIPio6JtbKB4C5OJrNy4uP63c5C2Lx46R/l5amp4ogtmMjOVr8bUVPMAge1FKSkhT1RSkvx9XAnvCCDhLiY4yc0lQ19BZ/IemigbN8pblOh0JBVw9qyykJKHYAPFW5SX05ejv+aAbW3dEtntYbGoTJuo7Bw2G4n+8EQXvCQmUvM/BZooParElIR5RC9KoOWiiMqxoaHyk2NtNknePjQUmKjw2tXrObwTzKSnU8hGSeglLU0KI5aXS+KAzkhKokRZJYm5HoINFG/Q0UHxbGfu4r17uxMcCzOvhN2gwEUM0Jc7IYEnumAnN5dWYl1d8rbPyJBCgidPKnM1ixU9geRFqa6mfLEBA+Tvs2ePNOFPmECrVCWEhFDeChOcxMRQkruSaw8ArrlGer5hg/xzNTf7ZJhH5nKA0ZTiYpq8nDX7cwjvnMuao/w8tbW0cuOJLrjJyKBVUl2d/JvsjBnARx+R92D3buD66+Xt5+hFyclRlnfhqxQWAm1tOF8biwPb9M6dQ4KA+V9+BlEpZUv8D1C5ph9PqQNtbRee9OdZZYKD7GzS0Onqku+5mz4dWLGCcp927gQefFBeUnd0NHDmDHlgfKiYwndGEiw0NpJnJCKi/8m7oYE0FAC0RA+AacBlys5jtVIISWnHYybwiIgggTAlLtxp06TnSsI8AHlRSkp8XqVSFm1tlCyckIADR/VoaNShta3/R2zJCSSbTwEAauKzcS5xktN9xIcAqugLjWZBxaAnNZUWFkqu2/BwYM4cet7ZCWzfLm+/pCTKi1RS8ecB2EDxJHY7GScVFc4l53fu7E6QKs6ZBegU/qssFlotp6aqHCwTUGRn0+TVvUR3wpAh0nfn+HFlbeBFXZRAqOhxSI4V/xSdTkBUZN+PiadXde9+atzNiIpCv9v3eIRaYUwwYPLtw730BzM+Q3g4LSyUXHtAz2TZDRvkJb9GRVEJfVmZsnO5GQ7xeJLTp4GjR6mywpkbzSG8U5QzR9l5BIE8MJMmsbQ9QwwaRJ6Nqip5isI6HbmLV60iQ3nPHmDhQvnnS0kBiorIizLcT2+2onJsaGiPkEtkBHD3TX30OCopAd7ZS8+TkzH9VzMwPURmP6TWVkpmvvVWFlVkiKwsYN8+ykUMD5e3T3Y2XXOnT9P1d+4cgBHO94uNpTDP+PE+E2JkD4qnqK+nST4y0nlOSFWVlIGdkYH6RIUdiBsbqXyZOxczIno9dcFubZVfuuhYzSO3N49IWJj/e1GqqijhV4ly7Jo10vNFi+TnDgCS4rOS8zGBTUoKfR9cSZaVqyybmEgJ4dXVys7lRthA8QRiyWF1NU1AztixQ3o+e3b/SrO9UV1NCYqsfcI4kplJlWNyVSZzcqQ+MEePKm8qlpJCN3h/zUU5f55CYnKTzGtqgK1b6Xl0dE9XuzMEgRIbWfGZccRgIOl7pdfezJm0QACAbdsQYpUR2o2MJE+ND1Xz8JXgCQoKKI4vJ7QD9AjvKO6909lJ51DSNZUJDuLiKLdEbiKcGOYByOviKDwmh7Aw/1WXFZNjlRj5X34plXIvXKhM9Vn0erIkAHMxGRlk8DY3y98nKkq6d7S1IbPwO3n7xcZSaEiuJIGbYQPF3dTWkvckJkbehFVURGXIALnklcaiRS8NT3RMb4iifXINBrWibSKiF6WoSPm+3qS4mDwicg2U1lZg/Xp6HhIC3HCDsvNZLLSAcdb6ggk+kpNpTlcqpOYQ5hl6er28fZKSKA9KbidzN8MGijvp6iKp8Npa+YaGo/dk9mxl57PbycoeNUpZ7JsJHtLSlMW0hw2jCRIgT4iSVRxAXpSwMP/yotjt5D0JD5efLLhhg9R3Z+5cZZ4Xm43mClZ8ZnpDp6PQX1ubMjn64cMpyRbAgOoCxDcUO98nPJyu09JSlYPVFjZQ3MmJExTeycqSl0dit0t163p9z9WrHETlWNY+YfoiLIxi2nIltHU66XvoKN+uBFEXxV+8KNXVypJju7qAL76QXt90k7Lz1dWRQeNMeoAJXtLTKQQoN38MoGt3wYLulyPOyVSWNRqpmscHFhRsoLgLs5k0T4xGKVnJGQUFUs+UvDxlnVMBWhXn5jpvQMgEN1lZFG6U6w1xbB6oJszj6EXxkdh2v5w7R92L5eaQ7Ngh5fVMmaK8c3htLV23SjuVM8GD0UgLT6XVPLNndwuCDivcDH1Xp/N9kpLoPJWVysepMWyguAOrlRIKGxqUlQy6Et5pb6ewDruJGWcMGEArMrnJsiNGSCGLQ4ekUIYS/EVdtrVVWXKsIACrV0uvb75Z2fk6OymMxF5Pxhk5OeTFtMnU1QEo6fXCAiOiswkZxTIWGKGhdI5iGSEhN8MGijs4dowmObmhHYBWlt9dyLQOCwOmTlV2zupqchGzcizjDJ2OjI5OGaspgMKNohelq4uEo5TiL16U4mIp5CKHgweliXzECMr/UkJNDRmMcuQHmOAmLY1C+C4oyw49LVMTJSFB8iR6ETZQtMZkotBOYqJ85T+AVqZNTfR86lRl7l6bjRKoRo1iDQVGHhkZFEKUK9rmapgH8H0vit1OYVYlybGffSY9/+EPlWsWNTSQYRMITRUZ9xIZSR5ypdU8Y8agMY4WrimVh+WFbhIS6DxeDvPw3UxLOjsptNPSoqw1O9CzqZPS8I644ruQsc0wTomOpslOroEyapSUE3XgAIVClBIWRjdiX/WimEzUi0TutXv2LHVtBshzqdTr2dpKCxGlOStM8DJkCBnPcr2fAKDT4dxwKVlWlrKsWAVaUqJoeFrDBoqWHD5M2c9KDYW2NkkEKyYGmDBB2f41NbQKk6t4yTAAxbTlYjBIHY6tVnVhHoBu5L7qRTl/npQ05XovHb0nN92kvH+JxUJeJaWLGSZ4GTyYyv4VelEKh10Fu+7C9/Pbb+UtECIjlVUNuQHFBkpnZyfefPNN/PCHP8TVV1+Nn/70p9gnc7Lav38/Hn30Udxwww247rrr8NBDD2HDBpmlT75ORQWtLAcMUN6gb+9emhgBKulU4u5tbaUv0tChys7JMIMHK7upOoZ5Vq1SlqwnInpRjh71LS9KSwspaCYlydveZJL6ExmNpH2iBEGga3fECA7LMvIJDSV9E4WGQ3tkAorTLnj46uqA/fvdMDjtUXxlvPzyy/jkk09wzTXXYOnSpdDr9Xj88cdxRHR19sF3332Hxx57DFarFYsXL8aSJUsQHh6OF198EZ988onqP8An6OggQbb2dvkTnCOuVO9UVZGLWOyZwjByCQlRJug3dqzUQqG4GNi0Sd15Bw+m/X1JF6W4mFalcpVcP/9cCo/94AfK8s0AusGwtD2jhsxMkq5QGGY9NdShG7ncBoJeRpHc6IkTJ7B582b87Gc/w1133QUAWLBgARYvXow333wTb775Zp/7rl69GklJSXjjjTcQdsHDsGjRIvz4xz/G119/jdtvv92FP8PLHDpE7mE1XozGRtofINfd6NHy97XZKBY5cqTy5DyGAYAQAwA72tqAD9c486YYMGDYg7jmzOMAgPZ3PsAXjXNgDXMeWgwNBSaPtSM7U6CbeUgI5W8MGeJ91WMxOTYyUpZHKay9EfjmG3oRHg5ce63yc9bU0LVuNCrflwluBg6kBanZrKiYojxlAlqiByC6xUzVZ2azz4cXFXlQtm3bBoPBgEWLFnW/Fx4ejuuvvx7Hjx9HVT/6/a2trYiNje02TgAgJCQERqMR4UpXH75EaSn9swcNUpeJ/913kqt85kxl7l6Lhb5gmZnKz8swAEKj6HoUoENrm/NHsXEMzmdcCQCIaG/A8AOfyNqvoVGH/Ucdvtu+5EWprFSUHDu84CspJHvNNcqFEW02MoqU5AAxjIheT4vSlhb5Se4ABL0B54ZfKDm224HNm900QO1QZKCcOXMG6enpiL4oGXPUhdr/s2fP9rlvXl4eCgsL8dZbb6GsrAzl5eV47733cOrUqW5vjN/R1kahnc5O9U2+HKt35sxRtm9dHVVXyFWqZZiLmHzbMBiTQxEVakVUpCDrcfSK+2AzkDE+5tQaDLBW9Lu9Tkf9Q3ooZ4ulvEeOeD8X5dw5GlxkpNNNDV0dGH7igqy9Xg84LNZkI4aSWNqeUUt2tqT4qoDzw66RvO2bNqnLI/MginyrNTU1SOolx0J8z9KPMuW9996LyspKvP/++/jXv/4FAIiIiMBzzz2HmTNn9ntei8WCGod/RLEPKNxBEMhzUlQkxeWVUl1N/XoAyiNRoibZ1EQVP9nZ6s7NMACypw5G9vgE4OOPabKS5UUYANgXAZ9+CoO9CzdWvAP85Pd9bv3hGgNa23r5RWqq5EXxlgJyczNV3snMHRtW+A0i2i8kKM6YobzbOEALiylTZBlEDNMrMTEUItyxQ1GYpjVmADBxIhV0mM1UeTpxohsH6hqKDJSOjg6E9hLGEMM2HaLbsxdCQ0ORkZGBOXPmYNasWbDZbPjiiy/wwgsv4LXXXsNll13W575r167FypUrlQzV/RQXU+5Iaqr6GPrF2idK8kiqq6kCQOw0yzBqiYggI3vXLvmT3W23UR5GQwPtd/w40M813CuOXhRv5aKIyrEyFhk6uw1jCxxKi5XK2gMUGmJpe0YLhg8nA6O+XlnftvnzyUABKFnWhw0URSGe8PBwWHvpcNh5QTSmv1ySN954A7t27cIzzzyDq666CvPnz8frr7+OpKQk/PWvf+33vIsWLcI///nP7sdTTz2lZNja09JCoR273bUkN8fqnVmz5O9ntdK5hw/n5FhGG4YMoRLgtt5cHb0QFQX86EfS67ffVhQP70b0onjDK2q3AydPkidDRu5XesluGJsr6MW4ceqS4mtqKF+Npe0ZV0lMpEVqdbWy/S6/XDJo9uyR39ncCygyUJKSknqEWkTE95L7WM1brVZ89dVXmDZtGvQOE0FISAimTp2KU6dO9Wr4iCQnJ2PEiBHdjyxvKqYKAtWQl5a6lpxaVCRNyiNHKnMVm800ybECJaMVKSlkLMhtIAgAV18teQLOngW2bFF+XtGLcviw5+PhlZWkXySnoacgYNTRT6XXarwnAFXtDR/u/colJjAYMYKuISUNPENCgKuuouc2Gwm3+SiKDJTc3FyUlZWh5aIP48SFPIrcPuLIDQ0NsNlssPUyAdlsNtjtdtjVrL68wfnzNJmmpSlXjnRErfdEEGiSGzVKuSAcw/SFY2WAIMjbx2AAHnhAev3+++qai6WmksHuqYoem430g06eJG+knCTzEyeQbD4FAKhLyFau9gxQvktUFFfdMdqRkkLVYCaTsv2uuUZ6vmmT/GvewygyUObMmQObzYa1a9d2v9fZ2Yl169Zh9OjRGHRBLKyqqqpHImtCQgJiYmKwY8eOHp6S1tZW7Ny5E5mZmf5RatzURJL0BoPy0kJH7HZKbgLoxnDllfL3FQWeODmW0ZqMDApZKnH5jh9PCZ8AVaesXq38vKIuiju9KO3tJLG/ezfwySfAf/9LOWRyQy0Of9fJsTerC63W1NDChvPGGK3Q6STtrH5yQC8hNZWEFwGgvJxyyHwQRX7G0aNHY+7cuVixYgXq6+uRlpaG9evXw2QyYdmyZd3bvfjii8jPz8f2C0mgBoMBd955J9566y08/PDDWLBgAex2O7766iuYzWbv55TIwW6n0E5FhfqqHZGCAilumJenLMHJYgHGjFFf1swwfWE0kuF77Jiy79d991HSnc1GN/L585XfhB0rerRq29DYKDUALC4mw8tuB2JjKawjt4qmpKS791Bz1AAU58zCdCe7XILdTvk9nDfGaE1GBnnlKiqU9YGbP59aTgCULDtmjHvG5wKKA6FPPvkkBg0ahA0bNqC5uRk5OTl45ZVXkJeX1+9+P/nJTzB48GCsWrUKK1euhNVqxdChQ/Hcc89hjlL9D29w9iyt8NLTXQvtAOql7QWBJrfhw107P8P0RW4uTVpWq3zhwbQ04PrrgbVrSRPoX/8CfvMbZee9uKJHzTVmt5OXwmQiQ6eigryeISFkfGVlqRNTXLOm++mxETdC0IcAUOjpaWighQhL2zNaYzBQBV1hobLrdto0KldubqZKvIceotc+hGIDJTw8HD//+c/x85//vM9t+qrKueaaa3CNY+zLX2hsJNdweLjr/8CuLlKPBSiHREmLdrudVpos8MS4i7Q08i7U1ChL3L7zTkqSbWoCtm6l/jRKDWnHXBS5XpTOTsonqayk/LCaGvJURESQQZCS4lozvpoa+nsAdIZF49TQhVBh4lD467LLXAsNM0xfZGfTd91sputIDmFh1OTyiy/oOhKvWx+C22g6w26nUqyqKvn/+P44dIgmcYCMEwW9FCAIlBzLFQCMuwgLU9UtFTExgKMi9FtvKU+8c/Si9JeL0tREHs1t24APPwQ+/ZQ0hRoaKLQ0YgR5S4xG1zsFf/llt9LtmZHXwRqq4HoV6epiaXvGvYSFUU5JY6Oycv/586XnGzf6XLIsGyjOOH2aYvKZma5Pdi0tNHGLKKneAej8LPDEuJshQyg/Q0npIgAsXCiFMAoKJE+hEkQviqMuit1OuVfHj5PB8NFH1E34wAH6XWYmGSWpqcoMfme0tgLr19PzkBCcGq1C1h4gIbikJPZ8Mu5l6FDl8vdZWXTtAHTdnTnjlqGphQ2U/qiro9BOVJTrE58gAMuXkysaoFj/5MnKjhESQgl+DONOBgwgQ8NsVrZfSAhw//3S6/feI9exEhx1UcrKKDH900+p8mbdOgrjRETQ9TNsGI1VTV6JHDZskIy0OXPQHpWo7ji1tTRe7pnFuJPoaEp0ralR5glxTLvYuFH7cbkAGyh9YbNRaMdi0Ub18bPPyNgByB2+bJn8REDxy8ahHcYTiInYHR3K1WEnTZI0QqqrydOhlNRUCuF8+inFxWtqSDVz5EiKtcfHu+7NdEZXF8XmRX74Q3XH6eggA4o9n4wnGDaM8pyUSAXMnClVtO3YIV9N2gPwHa8vCgrIpZyZ2W9Z4PkSHQ4c1aMfIVwMrDyCeev/1W0Nbp32W1R8Lz+fpU3UvnL3pMwwIpmZVGoshifkotORF+XRR8m4WbUKETfOR6tOwTHCw+n8ISHeEyPcsUNS1Z0yhUo5D6g4jsVCScdqmgoyjFISEsiQ37dPvlRAZCQZKRs3knGyY0fP3BQvwne83qipIe9JXJxTrYQDR/VoaNShta33B2pqMX3Ln6EXaCV68LK7cDZ5Sp/b9/YQQAZSaCTbk4yHiI6msITCdu4AKK4tTnBtbRh38H3lx4iK8p5xIgg9BefUek/sdkpaHDHCdWkChpHLiBF032pulr/PggXScx8K87CBcjFdXRSKqaujfjdOED0nOp2AqMiej+hwK67e/SdEtdcBACpTJ+DU5Xddsl2/j3AbosJtMKZEYfJtLgrEMYwSsrPpxqpEoVLknnu687aGnt6ExLpzGg/OjRw8KCXpjhghKXUqxWKhqqI+WoAwjFsYNIgSZpXI3+fmSurkp097ru2EE3hJfjEVFZTJnJWlSPExMgK4+6aLSiPffgeouiAhnJyMwX9+DHfFAYpEnk6dAqZPpwfDeJLUVJrsamqUl9gbjcAddwDvvgsdBFxx8J/YOvgl94xTaz77THr+wx+qU3612Sg5dt481j5hPIsof19QQC0e5CRn63SULLtiBb3euBG47jr3jlMG7EG5GJuNXLOu9gbauVNKEAwJoaRYpRNVSwu56lg/gfEGISEUz25oUKeP8IMfdOdepFYfQVrJbo0H6AbOniUdFoCS45UIKTpSVUXG3ahR2o2NYeSSnk6LbLFqVA5z5khh1S1blFfguQE2UNxBWRngqKa7ZIlUa66E6mr6kskINTGMW8jMpNJ2UVxQCaGhwOLF3S8n7nsH/WaT+wIXe0/U5I50ddHnNWGCtrosDCMXvZ5Kjq1W+ddcTAwwYwY9b2kB8vPdNjy5sIGiNe3twJ/+JJVqzZ4NXHut8uN0ddEXa8QIbi7GeI+kJDKSxYoWpUybhqoU6poa21hBWia+islEnk+AQlRz56o7TmUlibJxzyzGm2RlUWi2qkr+Po6aKOK14EXYQNESQQD+9jfqfgrQ6vORR9QZGBYLiVBlZGg7RoZRyrBhZDD3Jz/fFzodDk5Z0l2Jho8+osoWX+TzzyXdl+uvVxfm7eykxcmECa6HiRnGFUT5eyXVPJddJikenzkDlJe7Z2wy4SRZLfn6a6lTcWQk8Pvfq1ePrK8n7wurTzLeJj2dPCm1tWQ0K6QuORens6/GiMJN5Dr+8EPg4YfdMFAXaGwEvvmGnoeHq08QLC8nUTa5zQ4Zxp3k5JAOzwk7AAPa2oEP1/QfthyZugATy98BAJx4czNOl43DTS/O8MBgL4U9KBqRVF3Qs8/O0qXqW6s3NlI8kJNjGV8gMpK8KLW1qg+xf/y9sIZcMLbXr5e8jL7CunVSOfU116irvGlvJw9MXp775PcZRglRUcDo0QgF5aEIgnPdrRPpV8OmJ99F9unNaKtV2JNLQ9hA0YCI9gZcueXl7q6nuPFGKdlIDWYz1aQnJ2szQIZxlexschmrlMFui0zEiXG30Qu7HXj3XQ0H5yIdHcBXX9FzvR5YpLIpYHk5eU5Y1p7xJYYNw+TcFhiju2Rpb+kTjCjPpOq1yI56ZFsOeW3oHOJxEZ3dhjnf/xnRLReSCEePBu69V/0BrVbKZeEEO8aXSEmhsluzWXVeVMGYH2J8ydeUX3XgAD0mTdJ4oCr49lsqpQZoYaFGlr6lhYyb8eNZNZbxLeLjkT0zE9nhe+VXk2YvBFa3AosW4Yo//Na94+sH9qC4yJj8/yDddMHCjI8Hfvc715r6mc00QXJyLONL6PWkidLaqk4TBYAtJLyn8f7OO+oSb7XEZgPWrJFe33yzuuOUl9Pkz9ct44uMHEnhHrlyAePHAw8+CEyc6FWDmw0UV9i/H2Pz/wMAsOv0wOOPK2usdjGCQPknI0dyDJvxPTIzlXdKvZhZs6RVXGkpsGGDJkNTzZ49kpjVuHHqklsbGylPZ9w4lgRgfJOBA0nOXon8vQ/AIR61VFUBr73W/fLw5MWYMGaMa8esryf9BbEnAsP4EuJ389gx+Z1SHWhrBz78PARJwx7CglOPAQDa3/0QXzTNhTU8xuXhhYYCk8fakZ0p08NzcVNAtd6TykoKVQ0erG5/hvEEo0aR/H1bm9MmuL4Ce1DU0NkJvPJKd315Ufo0nByjcnJzxGKhFVx8vOvHYhh3IHoYFCjCis5AsYKgNHYUzmbNBgBEdDRixIGPFXX37uvR0KjD/qMKprQTJ6gxGkCJrRMmyN9XpK6OlHbHjlW+L8N4krQ0Em/zIy8KGyhq+Oc/qWcHgKa4VGyb+hvXXbsdHRTnH8YdixkfJj2dWi8o6PExeawdxrielQLHpi5Gl4H6flx2ei0GWsuVdfm+6KHTkddEkZK+o/dETVNAQSBP6pgxXHHH+D56PQmxiSrlfgCHeJSyebMUNw8Lw455T8IaFo1QqEsc7MZsJgtXVPFjGF8kLAy4/HLSDWluJr0eJ2RnCsjOvDgZNgnATcAnn8Bg78KisreBJ59UPawP1xjQqqQCuqQE2LePnicnAzNnKj+pxQIkJpKBwjD+QFYW3WOqqtTrdHkQ9qAoobAQePNN6fXPf476RA3yRex2KlMcNYpLFBnfJzeXbsplZZI0vBpuuYVu8ACwe7fURdjdNDWR5L7IokXKK+/sdjJQxo2j3ByG8QdCQ+nabWnxfgWdDNhAkUtzM/Dyy1IL6oULgXnztDl2XR3lnWRlaXM8hnEnOh15UVJSgIoK9ceJjAR+9CPp9dtvu2fS7OigzqzvvQf85jd0zu++o99FRwPz5ys/ZnU1hbpGj9Z0qAzjdnJyqGWF2eztkTiFQzxyEARg+XIpuSg3F1iyRLvj19TQhB8bq90xGcadxMUBU6dSqKelhW70apg3D/jyS+D8efJQfvttz46qarDZ6HiHD9PjxIm+Y+433kj6EEppaKBxqv27GcZbREZSUvc335CR7cOl8WygyGH1atJLAMiIWLaMYvFa0NpKbjduLsb4G7m5lHSXn0/Kx3oVDlm9nox9Mf/k3/8mNVclRoMgIKaxAplF+ci05AOfHO6/g2t2NglRTZxIP5Vis1Ebe7mqnAzja+TmAgcPUn8tV7S73AwbKM44ehR4/316rtORi3jQIO2OL0qHs4YC42/o9cCUKRTmMZnopq2GMWOAadOA77+ncOfq1T1DP71RX085Kxe8JIuqq/vctCV6ACrTJqAqNQ+mwePRERlPvyi68JBJW/uFJ4JAJcncaZzxV+LiKOdx1y42UPyWmhrgz3+WEgHvuEPb3iE2G3VAHTVK3eqTYbyN0Uihnq+/Jm+gmnAJACxeTFU1XV3AZ59RXsjAgdLv29uB48elsE1hYZ+Hag+LQeWg8SgflIeKlAlojBnc042trt9hN6HhBlqBMow/M3w4GfmNjeq6d3sANlD6oquLjBOxidiECWSgaInoXsvM1Pa4DONJhg8HiovJ2zh8uLqY9uDBwA03kHFitQIrV1J1jWiQFBRI3cIvJjQUbTmX4Ux8HioG5aEuMQeCXqqGI5PJRRkAABAEhMKKyddncSsKxv8ZMIAM7aNH2UDxO957Dzh5kp4nJwOPPaZ9CXBtLXDllepXnQzjCziGeior1Yd6br+ddIYaG6nKRqy0uRidjnK2xo8H8vKAkSMRGR6OcQDGdW/khmqg8+dJcfYH45xuyjB+wejRdJ9zxfvpRthA6Y3Dh4HPP6fnISHA73+vvYXZ3EzZ1Nx3hwkEEhIo1LN+vfpeH9HRwN13A3//+6W/GzxYMkjGjvV8xVtrK/3My2OtIiZwGDyYyo7PnaOfPgYbKBfxzfPbMfvDTyA6cPde/hDOnhgFnOh9++7EOaVUV9Mq0DHOzjD+zIgRFOo5flx9qGfBAgrnFBRQ24fx4+mhZWK6GsrLKVcsI8O742AYLdHryYty5gxpfGlVnaoRbKA40tyMyWueQWgXWR1nhszFkazrgTbnE62ikHRXFyXIjhjh0zXoDKMIg4G8KJWVJKWdkqLuGL/5jfZjc4WmJiA8nFRjOZmdCTQyM0n23mTyuXxIvtpEBAF46CHE1xUDAOoTsnBw5i8QFQWnjcqMcQImj1Ug+V1SQpO3j30ZGMZlEhMpH6WxkSpvAoGKCmDkSPW5NQzjy4SEUKl/W5vPyd+zB0WkvZ00GAAgPBzxL/0ed6SFQvNku7IyirXPmkWrMoYJNEaOpFDPyZPqQz2+Ql0dNUQcN86//w6G6Y/sbFo0V1f7lCYXe1BEIiOBr74CfvUr4M473dNVuKqKfs6d6xedJBlGFSEhFOqJj6cJz18RBHJ7jx5NJZkME6hERJAqdH29aw1ANYYNFEf0emDpUlotaU1tLfUsmTWLZe2ZwCc5mfpL1ddTsz5/pKaGQlZjx3p7JAzjfnJzSZerttbbI+mGDRRP0NhIk9306dz9lAkeLrtMquzxN+x2wGIh4yQhwdujYRj3ExtLlWoWi7dH0g0bKO6mtZWqGqZMIZl8jmMzwYIY6omL84vW7j2orqawDi8omGBixAgyVEQFdS/DBoo76eig1WNeHnDFFVyiyAQfAwcCkyeT27iz09ujkYfNRqGp8eM9LwjHMN4kKYkS28V8SS/Dd0x30dVF0tijR5OcfQgXTDFBypgxUr8ef8BkokqGkSO9PRKG8TwjR5JgW0uLt0fCBopbsNlIOjg3F5gzh9uyM8FNaCiFOKOjfSq+3StWK7WhmDBBnVw/w/g7ovx9Y6O3R8IGiuYIArWCT0ujcuKYGG+PiGG8T0oKhXosFjICfJXKShJQHDbM2yNhGO+g05Hn3weSw9lA0ZqiIipNnDfPJ/7BDOMzjB1LJfa+Gurp6KBHXp7P9SRhGI+SmekTfafYQNGS8nJyC8+d6/3mZgzja4SFUbJ4ZCSV3fsaFRXAkCE+2dWVYTyKwUBhzqQkrw6DDRStMJsp92TOHO6xwzB9kZoKTJxI14svhXpaW0n7ZMIETmhnGIC8nTNmeHUIbKBoQV0dJRTNnMmxa4Zxxvjx5KUoKfH2SCTKy+nazcry9kgYhrkAGyiu0txMiX/TprEkNsPIITycQj3h4VKDTm/S3EyVRuPHs1YRw/gQfDW6QlsbUFpKCrGTJ7NKLMPIJS2NwikmE2kGeZPyclLQdEeDUIZhVMMGilo6O6liJy+PeuwYDN4eEcP4F3l51Obdm6GehgbSZxk/nhcYDONjsIGiBlEldtQoyjsJDfX2iBjG/4iIoF49ISEkLe9pBIF0T0aP5qo7hvFB2EBRit1Oxkl2NlXssNokw6gnM5M8KZWVng/11NYCRiPnjjGMj8L1dEoQVWJTUkiIjRuJMYzrTJxIeSClpWT4uwtBoHLipibqM9LVRWWUiYnuOyfDMKphA0UJpaXUOn7ePJ7UGEYrIiMp1PPFF5QTYjRqc9yuLjJEmprIMAGAqChaWAwbRp2WWZSNYXwWNlDkUllJsfJ586iZEsMw2pGZCYwbB+zeTf2r1CSdd3SQMdLURCJwej0da+BAID2dVDETE4H4eC4nZhg/gA0UOVgsNPldcw1JYTMMoy06HZXri6EeZ9eZ3d4zXGOzka5KbCyVDKekkDGSmEhVOgzD+B1soDijoYEqDObOBUaO9PZoGCZwiY6mUM+XX5Iyc1yc9DurlQTVmpvJMNHpaHujka7LgQPJGElI4Ko6hgkQ2EDpj+ZmEpK68krSSWAYxr1kZ9O1tmePFLKxWim8GhNDvXzS0yXvSFwch2sYJkBhA6Uv2tvJ1TxlCnD55SzixDCeQAz1mExkoIwe3TNcw2X9DBM0sIHSG3Y7lROPG8cqsQzjaWJigBtvJK8JdxZmmKCFr/7eMBiA3Fxg1iwgLMzbo2GY4CMiwtsjYBjGy7CBcjFhYWSczJ5NmgkMwzAMw3gcNlAuJi2NYt4c1mEYhmEYr8Hp773BxgnDMAzDeBXFHpTOzk68/fbb2LhxI5qamjB06FAsWbIEl19+uaz9N2/ejFWrVuHcuXMICQlBVlYWlixZgkmTJikePMMwDMMwgYliA+Xll1/G1q1bcdtttyE9PR1ff/01Hn/8cSxfvhzjxo3rd9933nkH7733HubMmYOFCxeiq6sLhYWFsFgsqv8AhmEYhmECD0UGyokTJ7B582b87Gc/w1133QUAWLBgARYvXow333wTb775Zp/7Hj9+HO+99x4eeeQR3H777a6NmmEYhmGYgEZRDsq2bdtgMBiwaNGi7vfCw8Nx/fXX4/jx46iqqupz3//+979ITEzErbfeCkEQ0Cp2F2UYhmEYhrkIRQbKmTNnkJ6ejuiLmm+NGjUKAHD27Nk+9z1w4ABGjhyJVatWYdGiRVi4cCFuuukmfPrppyqGzTAMwzBMIKMoxFNTU4OkpKRL3hff6yuXpKmpCQ0NDTh27BgOHjyIxYsXY9CgQfj666+xfPlyhISE4MYbb+zzvBaLBTU1Nd2vi4uLlQybYRiGYRg/Q5GB0tHRgdBeOoWGXVBb7ejo6HU/MZzT0NCAZ555BldddRUAYM6cOVi8eDH+9a9/9WugrF27FitXrlQyVIZhGIZh/BhFBkp4eDisVusl73d2dnb/vq/9ACAkJARz5szpfl+v12PevHl45513UFVVhUGDBvW6/6JFizBjxozu18XFxXjhhReUDJ1hGIZhGD9CkYGSlJQEs9l8yfti+CU5ObnX/eLi4hAWFoaYmBgYLhJBS0hIAEBhoL4MlOTk5D6PzTAMwzBM4KEoSTY3NxdlZWVoaWnp8f6JEye6f9/rSfR6DBs2DA0NDZd4YMS8lfj4eCVDYRiGYRgmgFFkoMyZMwc2mw1r167tfq+zsxPr1q3D6NGjuz0gVVVVlySyzp07FzabDevXr+9+r6OjA5s2bcKQIUPYQ8IwDMMwTDeKQjyjR4/G3LlzsWLFCtTX1yMtLQ3r16+HyWTCsmXLurd78cUXkZ+fj+3bt3e/d+ONN+Krr77C66+/jtLSUgwaNAgbNmxAVVUVXn75Ze3+IoZhGIZh/B7FUvdPPvlkt3HR3NyMnJwcvPLKK8jLy+t3v/DwcLzxxht48803sW7dOrS3tyM3NxevvPIKpkyZonb8DMMwDMMEIDpBEARvD0IpR44cwS9+8Qs89dRTyMrK8vZwGIZhGIZRQFZWFiIiIvrdRrEHxRcwmUwAwKXGDMMwDOOH/POf/8SIESP63cYvPSj19fXYu3cvBg8e3C0S5yqitgp7ZeTBn5d8+LNSBn9eyuDPSxn8ecnHnZ9VwHpQ4uPjMX/+fLccOysry6lVx0jw5yUf/qyUwZ+XMvjzUgZ/XvLx1melqMyYYRiGYRjGE7CBwjAMwzCMz8EGygWSkpKwePHiXrs1M5fCn5d8+LNSBn9eyuDPSxn8ecnH25+VXybJMgzDMAwT2LAHhWEYhmEYn4MNFIZhGIZhfA42UBiGYRiG8TnYQGEYhmEYxufwS6E2d5Ofn4+PPvoIZ86cQUNDA2JiYpCbm4t7770XY8eO9fbwfI4DBw5g06ZNOHLkCMxmMxITEzFx4kQ88MADSE5O9vbwfA6LxYJVq1bh5MmTKCgoQFtbG5YvX44JEyZ4e2hepbOzE2+//TY2btyIpqYmDB06FEuWLMHll1/u7aH5JK2trfjoo49w4sQJnDx5Ek1NTXjiiSdw7bXXentoPsfJkyexfv16HDp0CCaTCXFxcbjsssuwZMkSZGRkeHt4PkVhYSHeffddnDp1CrW1tYiIiEBWVhbuuusuzJgxw6NjYQ9KL5SVlUGv1+PGG2/Er371K9xxxx2ora3FL3/5S+zZs8fbw/M5/v73v+PQoUOYOXMmHn30UVx11VXYsmULlixZgpqaGm8Pz+coLS3Fhx9+CLPZjJycHG8Px2d4+eWX8cknn+Caa67B0qVLodfr8fjjj+PIkSPeHppP0tDQgJUrV6K4uBi5ubneHo5P8+GHH2Lbtm2YNGkSli5dihtuuAGHDx/GkiVLcP78eW8Pz6cwmUxobW3FwoULsXTpUvzkJz8BADzxxBNYu3atZwcjMLJoa2sTbrzxRuGxxx7z9lB8jkOHDgk2m+2S92bOnCmsWLHCS6PyXVpaWoSGhgZBEARhy5YtwsyZM4WDBw96eVTe5fjx48LMmTOFDz/8sPu99vZ24c477xQefvhhL47Md+no6BAsFosgCIJw8uRJYebMmcK6deu8PCrf5MiRI0JnZ2eP90pKSoSrrrpKeO6557w0Kv+hq6tLuO+++4R77rnHo+dlD4pMIiIiYDQa0dzc7O2h+Bx5eXnQ6/WXvBcXF4fi4mIvjcp3iYqKQlxcnLeH4VNs27YNBoMBixYt6n4vPDwc119/PY4fP46qqiovjs43CQsLY7ExmYwdOxahoaE93svIyMCQIUN4jpKBwWDAwIEDPX7/4xyUfmhpaYHVakVDQwM2bNiAwsJC/PjHP/b2sPyC1tZWtLW1wWg0ensojB9w5swZpKenIzo6usf7o0aNAgCcPXsWgwYN8sbQmABFEATU1dVhyJAh3h6KT9LW1oaOjg60tLRg586d2LNnD+bOnevRMbCB0g/PPPMM9u7dCwAIDQ3FokWLuuNxTP/897//hdVqxbx587w9FMYPqKmp6dUbIL5nsVg8PSQmwNm0aRPMZjPuv/9+bw/FJ/nb3/7WnXOi1+sxa9Ys/PrXv/boGALeQLHb7bBarbK2DQsLg06n637905/+FHfccQeqq6uxfv16dHV1wWazuWuoPoErn5dIfn4+Vq5ciblz52LSpElaD9Gn0OLzYoCOjo5LXPAAfWbi7xlGK4qLi/H666/jsssuw8KFC709HJ/ktttuw5w5c2CxWLBlyxbYbDbZc51WBLyBcvjwYTz66KOytn3//feRlZXV/XrYsGHdz+fPn48lS5bg5ZdfxvPPP6/5OH0FVz4vgC78p556Cjk5OVi2bJk7huhTuPp5MUR4eHivk19nZ2f37xlGC2pqarBs2TJER0fj+eefh8Fg8PaQfJKsrKzu+WrhwoX4zW9+g9///vf4xz/+4bGFVsAbKJmZmXjiiSdkbdtfwlloaChmzJiBDz74AB0dHQE7YbryeVVVVeGxxx5DdHQ0XnnlFURFRbljiD6FVt+vYCcpKQlms/mS98UyddbTYbSgubkZjz/+OJqbm/F///d//L1SwJw5c/Dqq6+itLQUmZmZHjlnwBsoSUlJmgkXdXR0QBAEtLa2BqyBovbzamhowGOPPQar1YrXX389aC58Lb9fwUxubi4OHTqElpaWHomyJ06c6P49w7hCR0cHfv/736O0tBSvvfYaJ8cqRAyzerKSh8uMe6Guru6S95qamrBt2zYMHDgQCQkJXhiV79LW1obHH38cFosFf/7zn1mZkVHMnDlzYLPZeghBdXZ2Yt26dRg9ejRX8DAuYbPZ8Oyzz+L48eP44x//iDFjxnh7SD5Lb/e/rq4ubNiwAeHh4R417ALeg6KG3/3udxgwYABGjx6NhIQEVFVVYd26daipqcGzzz7r7eH5HM8//zxOnjyJ6667DsXFxT10BSIjIzFz5kwvjs43ee+99wAARUVFAIANGzZ0K6bee++93hqW1xg9ejTmzp2LFStWoL6+HmlpaVi/fj1MJlNQ5DKp5dNPP0Vzc3N3KGznzp2orq4GANxyyy2IiYnx5vB8hr/97W/YuXMnpk+fjqamJmzcuLHH7+fPn++lkfker776KlpaWjB+/HgMGDAANTU12LRpE0pKSvDII494NHSvEwRB8NjZ/ITVq1fj22+/RXFxMZqbmxEbG4vRo0fjrrvuwvjx4709PJ/j9ttvh8lk6vV3KSkp+OSTTzw8It9n1qxZff5u+/btHhyJ79DR0dHdi6e5uRk5OTlYsmQJpkyZ4u2h+Sz9XXsff/wxBg8e7OER+SZLly5Ffn5+n78P1muuNzZv3oyvvvoK58+fR0NDA6KiojBixAjcfPPNuPLKKz06FjZQGIZhGIbxOTgHhWEYhmEYn4MNFIZhGIZhfA42UBiGYRiG8TnYQGEYhmEYxudgA4VhGIZhGJ+DDRSGYRiGYXwONlAYhmEYhvE52EBhGIZhGMbnYAOFYTTm66+/xqxZs/D11197eyiyOHToEGbNmoV33nnHbeeYNWsWli5d6rbju5ulS5f2q/7rCuLnLz4efvhht5xHDu+88w5mzZqFQ4cOdb9XXFzcY3y3336718bHBBfci4cJev70pz9h3bp1iIuLw+rVqxEWFubtIWmOeFPhtgO+S15eHvLy8jBw4EBvD6UHRqMRixcvBgCsWrXKu4Nhggo2UJigprW1FVu2bIFOp0NjYyN27NiBq666yqVjzpw5E6NHj0ZSUpJGo2SCgby8PNx///3eHsYlxMfHd49r/fr1Xh4NE0xwiIcJar799lu0tbXhtttug16vx1dffeXyMWNiYpCVlcWdZBmGYVyAPShMUPPVV1/BYDDg7rvvxrlz53Dw4EGYTCakpKT02O6dd97BypUr+zyOY9fmr7/+Gi+//DKeeOIJXHvttd3bzJo1C3l5efjDH/6AN998E/v27UNnZyfGjx+PX/3qV0hNTUVRURFWrFiBw4cPo6urC1OmTMGvf/1rJCYmdh/n0KFDePTRR7F48eJLVtyVlZW44447sHDhQjz55JPdrx3HINLb/gUFBVixYgWOHz8OvV6PiRMn4he/+MUlXXG3b9+OLVu2oKCgABaLBSEhIRg6dChuvfVWzJkzp/8P3QnNzc34/PPPsXv3bpSVlaGhoQFGoxGTJ0/G4sWLkZaW1mN78X+zfPlyWCwW/Oc//0FJSQliYmIwd+5cPPzwwwgPD++xT1dXFz766CN8+eWXsFgsGDBgAK6//nrMmzcPd955Z/fnJ4cdO3bg008/xenTp9HZ2Ym0tDQsXLgQt99+OwwGg0ufBQC89NJLWL9+PT766CNs374dX331FSoqKnDVVVfhySefhMViwdq1a7F3715UVFSgpaUFSUlJuOKKK3DfffchISHhkmNWVVXh73//O/bu3Yuuri4MHz4cDzzwgMtjZRgtYQOFCVqKiopw/PhxXHHFFUhMTMSCBQtw4MABrFu37pIb94QJE3o9RnFxMbZs2XLJDbAvmpqa8MgjjyApKQkLFixAWVkZdu3ahd/85jd46aWX8Itf/AIjRozAddddh9OnT2Pbtm1obGzE8uXLVf2NMTExWLx4cXfuwK233trn31RQUID//Oc/mDBhAhYtWoQzZ85gx44dOH/+PFauXNnjb1yxYgVCQkIwduxYJCUlob6+Hjt37sTTTz+NRx99FLfccouq8QL0mb7zzjuYMGECZs6cicjISBQXF+Obb77B999/j7feeusSAxIAVq9ejb1792LGjBmYOHEi9uzZg08//RQNDQ14+umne2z7yiuvYMOGDUhNTcVNN90Eq9WKTz75BMeOHVM01n/84x/44IMPMGDAAMyaNQsxMTE4cuQI3nzzTZw8eRLPPfec6s/hYt544w2cOHEC06ZNw/Tp07sNj8OHD+Pjjz/GxIkTMWrUKISEhODMmTNYs2YN9u7di7feequHN89iseDnP/85zGYzpkyZguHDh6O4uBiPPfZYn99zhvEGbKAwQcuXX34JAFiwYAEA8i68/vrr+Prrr7F48WLo9VIEdMKECZdM3nV1dfjpT3+KsLAwPP7447LOee7cOdx+++34xS9+0f3ea6+9hjVr1uAXv/gF7rvvPtx2220AAEEQsGzZMuzevRunTp3CiBEjFP+NsbGxuP/++7tzB/rLcdi9ezeeeeaZHjk4L774IjZs2IDvvvuux/t//vOfkZqa2mP/1tZW/PznP8fbb7+N66+/HhEREYrHCwBZWVn47LPPEBcX1+P9gwcP4je/+Q3+9a9/9fp5HzhwAP/85z+RmZkJAHjwwQdx//3349tvv8XPf/5zJCcnd2+3YcMGDBs2DH/729+6x/njH/8YS5YskT3Offv24YMPPsCUKVPw/PPPIzIyEgD931577TV8/vnn2Lp1q8seJZFz587h7bffxqBBg3q8P3HiRHz22WeIiorq8f769evx0ksvYfXq1fjJT37S/f6KFStgNpuxZMmSHu+vXbsWr776qiZjZRgt4BwUJijp6urCxo0bER0djSuvvBIAEBUVhZkzZ6Kqqgr79+/vd/+Ojg48+eSTMJlM+P3vf4+xY8fKOm9kZOQlN0Hxxm80Gnt4OHQ6Xffvzp07J/tvU8v48eMvSRC+7rrrAAAnT57s8f7FxglAn9+1116L5uZmFBQUqB5HTEzMJcYJQDfiIUOG9Pm/ufXWW7uNEwAIDw/HVVddBbvdjlOnTnW/v3HjRgDAvffe28OISk5O7vH5O2P16tUAgN/97nfdxglA/7ef/vSn0Ol02Lx5s+zjOeOuu+66xDgBgISEhEuME4AM7+joaBw4cKD7PavVim+//RYJCQk9Qn8A8IMf/ADp6emajZdhXIU9KExQ8t1336G+vh7XX399j9DFggULsHHjRnz11VeYMmVKr/sKgoCXXnoJx48fx3333Yerr75a9nnT09Mv8SyI1T45OTnQ6XS9/s5iscg+h1p689AMGDAAAOWFOFJXV4cPPvgAu3fvRlVVFTo6Onr83tXxHjp0CP/9739x4sQJNDQ0wGazdf8uNDS0132GDx9+yXtiya7j+M+ePQsAGDdu3CXbjxkzRvYYT5w4gcjIyD4Tq8PDw1FSUiL7eM4YNWpUn7/btm0b1q5di9OnT6O5ubnH5+X4vyj5/9u7u5ik3jgO4F+JcCUhrghqs9y0phcoEerMYr1o16yXi66A0aKLrrpozXXRjVu1apMLvciVYW9szrUUoVdWU5IyKpgbpbUZYWFBE1AzA/4XDgZ/0FIS2fh9Ls85POcR3M73nN/zPOfTJ/z69QtisTihLMlgMCAUCvH58+d/1mdCUkEBhWSlyEUlUt6J2L59O3g8Hvr6+uDz+ZLeybe2tsJkMqGurg5KpXJB583Ly0vYFhlIOd++379/L+g8i5HsLjxy/lAoFN3m8/lw7NgxuN1uCIVCSCQSsNlsMBgMDA8Po7e3FzMzM4vuh8lkwtmzZ7Fq1SpUVVVBIBBEQ53RaMTXr1+Tfm6+7y+2/5OTk2AwGMjPz084PnYw8p/4fD4Eg8F5B09PTU39dXt/kmywKwDcuXMHzc3N4HK5qKysBI/Hi4aPjo6OuN9iYmJi3rbm2k7IcqCAQrKO2+3Gy5cvAWDe1U0fPHiQ8MjfYDCgvb0dQqEQp0+fXtJ+ziXylCX2LjkicgFaSnq9Hm63GyqVCnK5PG7fjRs30Nvbm1L7165dA4vFwpUrV1BYWBi378mTJym1DcwGsVAohPHxcXC53Lh9Xq/3r9vJy8tDTk4Ourq6Uu7T3/j/0zVgNrhqtVqsXbsWV69ejQsY4XAYt2/fjjs+EuJ+/PiR9BxzbSdkOVBAIVnHaDQiFAqhvLw84QIIzF74jUYj9Hp9XEB58+YNLl68iI0bN6KxsXHZVpxds2YNgORllKGhoaSfYTAYKT3ViOVyuQAgOnYnls1mS7n90dFRFBUVJfw2379/x+joaMrtl5SUYGhoCHa7Hbt27Yrbt5BZPGVlZbBYLHA6nUn/j9JhfHwcgUAAYrE44emHw+FIKL0VFhaCxWLh3bt3mJ6ejivzhEKhBc9iImQpUUAhWSUcDqOnpwc5OTloaGhIOtgTAJxOJwYHB+FwOFBaWgqn04kzZ84gNzcX586dS7jzTqdNmzZh9erVCWUor9cLrVab9DMcDgcfP35MuCgtRmSKr91uR3FxcXT7w4cP0d/fn1LbAMDn8+FyueD1eqMll+npaVy+fPmflLrq6+thMBjQ1taGqqqq6Pfh8XgWtJT7oUOHYLFYcP78eTQ2NiaUjDweD/x+P4qKilLu81wKCgqQm5uL9+/f4+fPn9FSmN/vTzo1ncViYc+ePbh//z50Ol3cLJ7u7m44nc4l6yshC0UBhWQVq9WKL1++QCQSzRlOgNnZK4ODg9Dr9SgtLYVGo4HP54NEIklaZmCz2Wl7idrKlStx8OBBtLe34+jRo6itrcXU1BT6+vogEomiTzhibdu2DQ6HA6dOnUJ5eTmYTCYqKiogEokWfP79+/fj1q1baGpqwuvXr8Hn8zE8PAyr1QqpVIpnz56l9PcdOHAATU1NUKlU2L17N4LBYLQkV1JSEh3kulgSiQR1dXV49OgRFAoFdu7ciZmZGZhMJpSVlcFsNsdNMZ9LdXU15HI5rl+/jiNHjqC6uhp8Ph8+nw8ulws2mw0qlWpJAwqDwYBMJoNOp4NSqURtbS0mJiZgsVjA5/OjU6tjqdVqWK1WtLa2wm63Y8uWLRgZGUF/fz8qKyuj3zUhy40CCskqkcGxsSu8JrN3715oNBo8fvwYJ06ciD4qHxgYSDrNVSAQpPUtryqVCkwmE3q9Hvfu3YNAIIBcLseOHTvw9OnThOPlcjkCgQDMZjNsNhuCwSAUCsWiAsr69euh0WjQ0tKCgYEBBINBbN26FZcuXcLY2Ng/CShMJhOdnZ3o6uoCm81GTU0N1Gp1woJri9XQ0IDNmzejp6cHnZ2d4PF4OHz4MMRiMcxmc9IBw8moVCpUVFSgo6MDr169QiAQAIfDwYYNG6BQKFBfX/9P+jsftVoNDocDg8GAu3fvoqCgAPv27YNSqYy+5C/WunXr0NzcjJaWFrx48QJv376N/n5Wq5UCCskYOeFwOLzcnSCEkEzQ3d2NCxcu4OTJk5DJZGk553yvLsg09FZskk60UBshJOt4PB78/97s27dv0Gq1WLFiBWpqatLep7a2NkilUhw/fjzt557PyMgIpFIppFLpnFO8CVkKVOIhhGSdmzdv4vnz56ioqACXy8XY2BjMZjMmJyehVCqTrti6VAQCQVwpJrK4XKbIz8+P6x+9pZukC5V4CCFZx2KxQKfT4cOHD/D7/WCxWCguLoZMJkvLuBFCyJ9RQCGEEEJIxqExKIQQQgjJOBRQCCGEEJJxKKAQQgghJONQQCGEEEJIxqGAQgghhJCMQwGFEEIIIRmHAgohhBBCMg4FFEIIIYRkHAoohBBCCMk4/wFzT/QoZTLh4AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuOUlEQVR4nOydd3wb9f3/X5L3nontJJ5x4ixn7x0CSYASKHsTChTaUmhLC4UvbSlllJZS6K8tbVhhFkJYgUwI2Xsvx87yjG0ND3nbsnS/P945S47X3elknaT38/HQI9JZd/eRovvc+/Mer7dOEAQBDMMwDMMwGkLv6QEwDMMwDMNcChsoDMMwDMNoDjZQGIZhGIbRHGygMAzDMAyjOdhAYRiGYRhGc7CBwjAMwzCM5mADhWEYhmEYzcEGCsMwDMMwmoMNFIZhGIZhNAcbKAyjcbZs2QKdTodnnnnG5WPpdDrMnz/f5eP0hprj9QWWLVsGnU6HoqIiyftkZGQgIyPDbWNiGG+ADRSGuQSdTgedTge9Xo9z5871+L4FCxZ0vHfFihX9N0APU1RUBJ1Oh2XLlnl6KJIRjSbnR3BwMIYMGYKbbroJu3fv7na/pqYmxMbGQqfT4fbbb+/nUbuXt956Cw8++CCmTZuG8PBw6HQ6PP30054eFsN0EOjpATCMFgkMDER7ezveeustvPDCC13+fubMGWzZsqXjfYyDqVOn4tSpU0hMTPT0ULqQnp7eYVg1NjZiz549WLVqFT7//HOsWrUKP/zhDzu9/5NPPoHFYoFOp8Pnn3+OqqoqJCQkuH2cmzZtcvs5HnvsMVgsFsTFxWHQoEG9GuMM4wnYg8Iw3ZCUlITJkyfjnXfe6dYAefPNNwEA11xzTX8PTfOEh4djxIgRmjRQMjIy8Mwzz+CZZ57BX//6V2zfvh2///3vYbfb8dhjj3V5//Lly6HX6/Gb3/wGra2tePfdd/tlnEOHDsXQoUPdeo6PP/4YRUVFqK6uZs8Jo0nYQGGYHnjggQdQWVmJb775ptN2q9WKFStWYObMmRg1alSP+585cwZ33303Bg8ejODgYAwaNAh33303zpw50+37DQYD7rvvPiQlJSEsLAzjx4/v9YbYW57CM888A51Ohy1btvT5OcvLy/Hss89i1qxZSE5O7hjr7bffjry8vC7HzczMBAC8++67nUImYpirtxwUOd+J82dYtWoVpk6divDwcMTHx+PWW2/FhQsX+vxsUvjZz34GACgsLITJZOrYfuLECezZswcLFy7EE088geDg4A7DVAl2ux2vvPIKRowYgdDQUAwZMgS//OUvUVdX1+W93f3frlixouN73rx5M+bPn4+oqChER0fj6quvxqlTp2SNZ8mSJUhPT1f8eRjG3XCIh2F64LbbbsOvfvUrvPnmm7juuus6tq9evRpGoxEvvfQSzp492+2++/fvx+WXX476+nosXboUo0aNQn5+Pj744AN89dVX+O677zBlypSO95vNZsycORPnz5/H7NmzMXv2bFRUVOChhx7CokWL3Po5t23bhj//+c9YsGABbrjhBkRGRuLMmTNYtWoVVq9ejZ07d2LcuHEAgPnz56O2thavvfYaxo0b1+l7GT9+fK/nkfudiPz73//G6tWrsXTpUsybNw979+7FJ598gqNHj+LIkSMICQlx6fMLgtDxXKfTdTxfvnw5AEpyjY+PxzXXXIPPPvsM27dvx5w5c2Sf55e//CW2bduGm2++Gddeey02bNiAV199Fdu3b8eOHTsQGhoq6TjffPMNvvrqK1x55ZV46KGHkJeXh7Vr12L//v3Iy8vTpOeKYRQhMAzTCQDC4MGDBUEQhPvuu08ICAgQSktLO/6+ePFiITo6WmhsbBT+7//+TwAgvPPOOx1/t9vtwogRIwQAwgcffNDp2B9//LEAQMjJyRFsNlvH9gceeEAAIPziF7/o9P79+/cLgYGBAgDhD3/4Q6e/paenC+np6d1+hj/84Q8CAGHz5s1dPtu8efM6bTMYDEJdXV2XYxw5ckSIiIgQlixZ0ml7YWGhAEC45557uj335s2bu4xXyXcifoaoqCjh2LFjnfa57bbbBADCJ5980u0YehrTpZ9dEAThd7/7nQBAyMrK6tjW3NwsxMXFCTExMUJTU5MgCILw9ddfCwCEO++8U9I5Re655x4BgJCQkCAUFRV1bLfZbML1118vABCeffbZTvt093/7zjvvCACEgIAA4bvvvuv0t9/+9rcCAOGll16SNbZLj/1///d/ivZnGHfAIR6G6YUHHngANpsNb7/9NgCguLgY3377Le644w6Eh4d3u8+uXbuQn5+PGTNm4I477uj0t1tuuQWzZ89GQUEBduzYAYBCRh9++CGioqK6hEUmT57c5RhqM3DgQERFRXXZPm7cOFx22WXYvHkzrFarS+eQ+50488gjjyA3N7fTtgceeAAAsG/fPlnjKCoq6shB+c1vfoO5c+fiT3/6E/R6PV5++eWO93366aeoqanBLbfcgrCwMAAUEklOTsaqVatQU1Mj67wA8Oijj3YKqej1evz1r3+FXq/v+H1J4dZbb8XChQs7bfvxj38MQP73wTBahg0UhumFadOmITc3F2+//TbsdjvefPNN2O32jhtkdxw6dAgAcNlll3X7d3H74cOHAQD5+floamrC+PHjERMT0+X97tYtAYA1a9bgmmuuQUpKCoKCgjrySr7++mu0trbCbDa7dHy534kzkydP7rItNTUVAGQbCsXFxfjjH/+IP/7xj3j11Vdx9uxZXH/99di+fXunCh4xvHPvvfd2bAsMDMQdd9yBlpYWvP/++7LOCwDz5s3rsi0rKwupqakoKipCbW2tpOOo+X0wjJbhHBSG6YMHHngAjzzyCNatW4d33nkHkyZNwoQJE3p8v8ViAQCkpKR0+3dxu3hDEt+flJTU7fuTk5OVDl0Sr732Gn7xi18gLi4OV1xxBdLS0jp0Mb788kscPXoUra2tLp1D7nfiTGxsbJdtgYE0ddlsNlnjmDdvXp+Jw6dOncKOHTswYsQITJ8+vdPfli1bhr/97W9444038Mgjj8g6d2//v8XFxbBYLN1+1ktR8/tgGC3DBgrD9MFdd92FJ554Ag899BAuXLiA3//+972+X/SCVFZWdvv3ioqKTu8T/zUYDN2+v6fj6PV6tLW1dfs3qavx9vZ2PPPMM0hOTsahQ4e6GBA9CZjJRe534klE70l+fn6npFlnTpw4gV27dmHmzJmSj2swGJCTk9Nlu/idaOGzM4yWYAOFYfogNjYWN954I95//31ERETgtttu6/X9onelp5X65s2bAQATJ04EAIwYMQLh4eE4cuQILBZLlxtVT8eJi4vDsWPHYLVaERQU1OlvBw4c6OtjAaDqodraWlx//fVdjJOGhoaO0IwzAQEBAOSt1uV+J56itbUV77//PvR6fYdE/aWUlZVhw4YNeOONN2QZKFu3bsXcuXM7bTt//jxKS0uRkZEhyXvCMP4E56AwjASee+45fPHFF9iwYUO3CaXOzJo1Czk5OdixYwdWrVrV6W+rVq3C9u3bMXz4cMyePRsAEBQUhDvuuAP19fVdkmQPHDiADz/8sNvzTJ06Fe3t7XjnnXc6bV+xYgV27twp6XMNHDgQ4eHhOHjwIBoaGjq2W61WPProo93mnsTFxUGn06GkpETSOQD534mn+Oyzz1BVVYXFixfjrbfewptvvtnlsXLlSkRERGDlypUdoSspvPbaayguLu54bbfb8Zvf/AZ2u71TrgvDMAR7UBhGAmlpaUhLS5P0Xp1Oh3fffRdXXHEFbrnlFlx77bUYMWIECgoK8OWXXyIqKgrvvfce9HrH+uCFF17Apk2b8Oqrr+LAgQMdOiiffPIJrrrqKqxevbrLeX7+85/jnXfewU9+8hNs2rQJqampOHLkCHbv3o0f/OAHXQTmukOv1+ORRx7Bn//8Z+Tm5uLaa69FW1sbNm/ejOrqaixYsKDDuyESGRmJadOmYfv27bjjjjswfPhwBAQEYOnSpRg7dqxq34knEMM7999/f4/viY6Oxk033YQVK1bggw8+6BB664tZs2Zh/PjxuOWWWxATE4MNGzbg6NGjmDRpEh5//HFVxi+HN998s6NqStTz+frrr1FWVgaAPHu//e1v+31cDNOBp+ucGUZrwEkHpS+600ERyc/PF+68804hOTlZCAwMFJKTk4U77rhDyM/P7/ZYFRUVwr333iskJiYKoaGhwrhx44R33nmnW10Rke3btwtz5swRwsLChKioKOGqq64Sjh49KksHxWq1Cn/729+EkSNHCqGhoUJSUpJw5513CkVFRR0aHoWFhZ32OXPmjPCDH/xAiI+PF3Q6XafvoLfxyvlOevoMgtC3Fsul9KaDIlJQUCAAEJKSkoS2trZej7dz504BgDBu3Lg+zy1+h+fOnRNefvllIScnRwgJCREGDRokPProo4LFYumyT286KN391gSh+/9bKePq6SHnWAzjDnSC4CSjyDAMwzAMowE4B4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM5vNJAaWlpQUFBAVpaWjw9FIZhGIZh3IBXGijFxcV44IEHOslGMwzDMAzjO3ilgcIwDMMwjG/DBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM5Aj09AIZhGMZ7sNlssFqtnh4Go0GCgoIQEBCg2vHYQGEYhmH6RBAEVFZWwmKxQBAETw+H0SA6nQ4xMTFITk6GTqdz+XhsoDAMwzB9YrFYUFtbiwEDBiAiIkKVGxDjOwiCgMbGRphMJoSFhSE2NtblY7KBwjAMw/SKIAgwGo2Ijo5GYmKip4fDaJSwsDC0trbCaDQiJibGZSOWk2QZhmGYXrHZbLDZbIiOjvb0UBiNEx0d3fF7cRU2UBiGYZheaW9vBwAEBrLTnekd8Tci/mZcgQ0UhmEYRhKcd8L0hZq/ETZQGIZhGIbRHGygMAzDMAyjOdhAYRiGYfwDu50ejFfABgrDMAzj+9hsQF0dPTRmpLS2tuKJJ57AoEGDEBYWhmnTpuHbb7+VtO/Jkydx0003ISsrC+Hh4UhMTMTcuXPx9ddfd3pfQ0MD/vCHP2DJkiWIj4+HTqfDihUruj2mnPe6EzZQGIZhGN9GNE5aWujR3OzpEXVi2bJleOWVV3DHHXfgtddeQ0BAAK666irs2LGjz32Li4tRX1+Pe+65B6+99hp+97vfAQCWLl2K5cuXd7zPbDbj2WefxalTpzBu3Lhejynnve6Ea8YYhmEY30U0TlpbgZAQet3YCAQG0msPs2/fPnz88cf461//il//+tcAgLvvvhtjxozB448/jl27dvW6/1VXXYWrrrqq07aHH34YkyZNwiuvvIIf//jHAICUlBRUVFQgOTkZBw4cwJQpU3o8ppz3uhP2oDAMwzC+SXt7Z+NEpyPDRBCAhgYyVi6SlZWFO++8s8shFixYgHnz5rltiKtWrUJAQECHIQEAoaGhuO+++7B7926UlpbKPmZAQABSU1NRW1vbsS0kJATJycmS9pfzXnfCHhSGAQCzGQgLAyIiPD0ShmHUQDRO2tocxolIcDAZLY2NQFQUGhobUVRUhJ/85CddDnPs2DHcfvvt3Z7CarXCYrFIGk58fDz0+q4+gcOHD2P48OFdVHqnTp0KADhy5AhSU1P7PH5jYyOam5thsViwevVqrFu3DrfccouksWkVNlAYpqICWLeOEudiYoAhQ4D4eCAuDoiNpcmMYRjvoTfjBKDXwcFAUxMQFIQTJ05AEIQu+RZlZWWorq7G2LFjuz3Nzp07sWDBAklDKiwsREZGRpftFRUVSElJ6bJd3FZeXi7p+I899hj++9//AgD0ej2uv/56/POf/5S0r1ZhA4Vh8vKA6mogKQmoqgJKS8kFHBwMREYCAwYAKSkOgyUmBggI8PSoGcbzTJ4MVFZ6ehQOkpOBPXt6N05E9Hq6jhsacOLoUQDoYqAcvbi9JwNl3LhxkqttegqZNDc3I6SbXJjQ0NCOv0vhF7/4BW688UaUl5dj5cqVsNlsaGtrk7SvVmEDhfFvjEbg9GkyQKKjyQARaW2lOHVxMVBQQNvCw8loSUkBBg6k98fF0TaWAWf8jcpK4MIFT4+iM1KME5GgIKClBccPHUJSUhKSkpI6/fnYsWPQ6/UYM2ZMt7vHxcXh8ssvd2m4YgfgS2lpaen4uxRGjBiBESNGAKAk20WLFuGaa67B3r17vbZFARsojH+Tl0dx6CFDuv4tJIQeCQn02m6nEsWGBtrv6FGaACMiyFBJSSFvi2i0XFwBMYzPooFEyk4kJko3TkRCQnAiLw/jxowhz6nTfkeOHEFWVhYieshNa2trQ3V1taTTDBgwAAHdeF5TUlJwoRsjr6KiAgAwaNAgSce/lBtvvBEPPvggTp8+jZycHEXH8DRsoDD+i9lMnpFLVk09oteTByU83LFNLFmsrQXKy+l1cDAZLQkJwKBBZKzExVFoKCjILR+FYTzCgQOeHgFhtZLnxGqVZ5wAgE6H4/n5uGXpUvKaXlxY2O12fP/995g7d26Pu+7atcvlHJTx48dj8+bNqKur65Qou3fv3o6/K0EMDUlN4tUibKAw/supUzSpKVyhAKAYdnQ0PUTa2shoqagAzp2jVVlYGCXeLllCxgrDMOrgbJwo8FoaTSaYzGZUGI0OfZTAQPzjH/+A2WxGbm5uj/uqkYNy44034uWXX8by5cs7dFBaW1vxzjvvYNq0aR0VPE1NTSgpKUFiYiISExMd4zcaMXDgwE7HtFqteO+99xAWFoZRo0ZJGp8WYQOF8U+qq8lAueTCVoXgYHqIhoggUGiouBg4exbwkOgRw/gconHS3q44pHo8Lw8AsHHrVvz0sccwYuRI7Dl6FBs2bAAAHDx4EHv37sW0adO67KtGDsq0adNw00034cknn4TRaER2djbeffddFBUV4a233up43759+7BgwQL84Q9/wDPPPNOx/cEHH0RdXR3mzp2LwYMHo7KyEh9++CHy8/Pxt7/9DZGRkR3v/ec//4na2tqOyqCvv/4aZWVlAICf//zniImJUfRed8EGCuOf5OcDFgvQH7FZnY48KLGxZBTl5nJ+CsO4SlsbGSc2m0uKsMfz8hAQEICP33wTj/z2t3jnk08wZ+ZMbN26Fddddx2OHDmCIDeHZt977z387ne/w/vvv4+amhqMHTsW33zzTa/hJZFbbrkFb731Fl5//XVUVVUhKioKkyZNwksvvYSlS5d2eu/LL7+M4uLijteff/45Pv/8cwDAnXfe2cnokPNed6ETBEFw+1lUpqCgAA888ADeeOMNr03+YTyIxQJ8+im5csUE2P6gvZ1CPkuXAsOH9995GcZFWlpaUFhYiMzMzI7yV4+iknECAPc/8gi27dqF02I+TXs7JcSzBpIi1PytsNQ9438UFAA1NZQT0p8EBtKEd+qU5rqpMozXoKJxApAHZZTzQrcHKXym/2EDhfEv6uuBEyfIc+IJbYCkJKCkRFviVgzjLahsnAiCgLyCgs4GCkALibY2Upr1viCDz8AGCuNfnD5NarH9GdpxJjycShnPnvXM+RnGW2ltVdU4AYDC4mI0NDR0NVB0OpIEaGqiBHfGI3CSLOM/NDaS9yQujjRNPEViIhlKEyYAUVGeGwfDeAuicWK3q2acAEBWRgaEmpru/xgQQOcTS49Zw6jfYQ8K4z+cOQMYDGQgeJK4OMqBKSry7DgYxhsQjRNBUNU4kURQECXNNjZy3pgHYAOF8Q+am4Fjxygz39ON/vR66t2Tl0eTH8Mw3eNsnHiqoiYkhMI8TU2eOb8fwwYK4x+cPUveE3cIsylh4EBSmr0ofMQwzCW0tHjeOAEoHyUwkAyUbpr6Me6DDRTG92lpocZ+0dGe956IBAfTxHv6tKdHwjDaQyvGiUjgxXRNLj3uV9hAYXyf8+e15T0RGTiQxlZV5emRMIwk+kXXUzROAG0YJyLBwSSt39DApce9oOZvhA0UxrdpayPvSXi4YxWkFaKjSZfl/HlPj4RheiXw4rXT7u6cqeZmMk50Om0ZJyLBwTTGi52Cma6Iv5FAFeZbNlAY3+b8eeDCBRJI0yJifx7WWmA0TEBAAAICAlAnejbcQUsLGeyiBokW0espTNzYSIsfpgt1dXUdvxdX0diSkmFUxGqlyp2wMO1OeImJ1J+npIT78zCaRafTYeDAgaioqEBISAgiIiKgU1OJWRCoR5bNRteq1m/+bW3UET062rOaShpCEAQ0Njairq4OKSkpqvw+2EBhfJeiIqqSycjw9Eh6xrk/T3Y2T3aMZomJiUFzczPMZjNMJpO6B7fZqEpGr/dMCwolWK1UgqyF5okaQafTITY2VrVOx7INlKamJnz88cfIy8vDqVOnUF9fjyeffBJXXnml7JP/5S9/wTfffIMZM2bgpZdekr0/w/RIezt5T4KDtes9EXHuzzNokKdHwzDdotPpkJKSgoEDB8Jqtap78JMngf37gawsdY/rThoaSHBxzhwgM9PTo9EEQUFBqoR2RGQbKBaLBStWrEBSUhKys7Nx+PBhRSfOz8/HunXrEKzFRCjG+ykupkdamqdH0jfO/XnYQGE0jlr5BR3Y7RTm1Ou9S7gwNJQ8P/v20SKjv7uj+wGy/ckJCQn44osv8Omnn+InP/mJopMKgoDXXnsNixcvRjz/pzJqY7MBx49T+KS/pbGVIvbnqa/39EgYpn8xGunhjfeCwYMBkwnYtYtCPoyqyDZQgoODkeBiJ9gNGzagsLAQDzzwgEvHYZhuKSmh/JOUFE+PRDrcn4fxVy5coAqe8HBPj0Q+Oh3luOXnA0eOeHo0Pke/Z+Q1NTXhP//5D+68806XDR2G6YLdTh2LAe9KXuP+PIw/YrOR59Cbu3qHhJAHdP9+WhwxqtHvVTwrVqxASEgIbr75Zsn7mM1mVDmpbRYXF7tjaIwvUFZG2ife5D0RGTgQKC3VfuURw6iFwUAhEm+8Xp1JSCCBuZ07KVQVGenpEfkE/WqglJaWYtWqVfj9738vKzl29erVWLFihfsGxvgGgkC5J3a7d7qLnfvzsIHC+ANlZZS74U3ezp5ISwPOnAH27AEuu4wlA1SgXw2Uf/zjHxgzZgzmz58va7+lS5di1qxZHa+Li4vx3HPPqTw6xuu5cMF7vScizv15OATK+DLt7XRD9+bwjjMBAWSkHDtG1XijRnl6RF5PvxkoBw8exN69e/Hcc8+hoqKiY7vNZkNraysqKioQHR2NiIiILvsmJiYiMTGxv4bKeCOCQFoKVivQzW/Ia4iOBsrLyUhhA4XxZSorAbOZKmF8hfBwUq4+eRIYMYK9KC7SbwaK0WgEADz99NNd/mYymXDLLbfg4YcflpWbwjAdVFaSjog3e09ExP48ubm+4fpmmO4oKyMvirdIAUglPp7KpquqgAEDPD0ar8ZtBorZbEZjYyMGDx6MwMBATJw4Ec8//3yX9/31r39FcnIy7rrrLmR5k4ogoy1OnqRSRV9ITuP+PIyvY7XSgiI62tMjUZ/wcOp2XFHBBoqLKDJQPvvsMzQ0NHRU1uzcubPDQ3LDDTcgMjISy5cvx/r16/HJJ58gJSUFSUlJSOqmo+z/+3//D3FxcZgzZ44LH4PxawwGimUnJ3t6JOrA/XkYX6eigsI7qameHol7CAujMG1urvf0FtIgigyUTz75BJWVlR2vt23bhm3btgEAFi1ahEhfWMUy3sOpU9T+fMgQT49EPcT+PAaDb4StGMaZ0lIK7/hqq5O4OAo719bSc0YRigyUlStX9vmep556Ck899ZQqx2KYHjGbScWxG++cVyP25zlzhg0UxrcQ+0758o07MpKqCisqfPtzuhn2HTPeTV4e9a+JjfX0SNSH+/MwvkhFBVBd7ds3bp2Okn+5dYVLsIHCeC/V1b7pPRHh/jyML1JSQmKKQUGeHol7iYsjLwovMBTDBgrjveTnAxaLb3pPAO7Pw/geLS2UPOrL3hOR6Gian5x0vxh5sIHCeCe1tXTjHjDAt7PkBw6kCa6szNMjYRjXKS/3/fCOiF5P6rLcQFAxbKAw3klBAU108fGeHol7ce7PwzDejnizDuz3PrWeIS6OPnNTk6dH4pWwgcJ4H3V1JMyWmOjb3hMR5/48DOOtNDfT79jXFxXOxMaSt9dJloORDhsojPdx5gyVF/tLr5roaEq0O3/e0yNhGOWUl1PSt6/mjHVHQAD9yyFaRbCBwngXjY3A8eO0CvMnhVWxP09Li6dHwjDKKCpy5GX4E7GxQGEh0Nbm6ZF4HX40wzM+wenTgMnkfz0uEhPpc3PCHeONNDaSgeIPybGXEhtLniMO88iGDRTGe2hqAo4dowven7wnACUVBgWRF8Vu9/RoGEYe/hjeEQkKAmw2+g4YWfjZLM94NefOURtzf/OeiDj352EYb6KwkIxsfwvviERHk7w/6xnJgg0UxjtoaQGOHqUL3V8nOef+PAzjLdTXk2HtT9U7lxIXR7IIRqOnR+JVsIHCeAfnzpHnwFdl7aXC/XkYb6O8nBRVY2I8PRLPERJCSbKsKisLNlAY7dPWRrkn4eH+6z0R4f48jLdx/jyFd/wtb+xSIiMpzMM5ZJLx818M4xWcP0+rMH/3ngDcn4fxLiwWoLTUv8M7InFxpN9kNnt6JF4DGyiMtrFayXsSGur73U+lwv15GG+hvJyUn6OjPT0SzxMeTpWIHOaRDBsojLYxGGiSS0729Ei0A/fnYbyFc+fo9+rv4R2R8HDyCAuCp0fiFfCvhtE2lZUUyggO9vRItAX352G0Tk0NcOGC/7SkkEJ8PM1pNTWeHolXwAYKo10EgfQTIiI8PRLtwf15GK1TXk6/0agoT49EO0REkKouh3kk4Sc9rxmvpKaGEsr8UX1SCmJ/ntxcytFhGK0gCFSxEhrqto7j50t0OHhcD6vVLYfvICgImJxrR2aaCmEZnY68wYWFwOjRrh/Px2EDhdEuRiOtNgYP9vRItEliInlQSkqA4cM9PRqGcVBTQx4UN1bvHDyuh6XOPcZPJ5qBA8f1yEyzqXO8+HhOHpYIGyiMdiktJf0EN63AvB7n/jzZ2ZyIyGiHCxeAhga3Li5Ez4lOJyCsLweiIGBowXpknv0e53KWoHDYQknnaG4BBEGnrpcmKoqS/ysq2EDpAzZQGG3S0kIGCod3eicpib4ngwFISfH0aBjGEd4JD++XxUVYKHD7db14N2w24I03gF1rAQADjXmYMSsYmDmzz2N/9GUAmprVGulF9HoSnCwpAXJyVD64b8FLLkabGI0k8sQrjN4JDydjjvvzMFqhqoq8A1oQZ2tqAp57Dli7tvP2v//dswnmcXFkoDQ2em4MXgAbKIw2MRho5cPibH3D/XkYLXHhAt14IyM9Ow6TCXjiCeDgQXodGAiMGEHPW1vJcPFUuW9MDFBbSyXHTI+wgcJoD7udstz7Y4ITBGDzZmDlSmDPHvLceJuIEvfnYbSC3U7ePE8bJ2fOAL/+NVBcTK8jI4E//pGMEjGh3GwGXniBen31NwEBFP5iNehe4RwURnvU1JCbOC7O/efatAn4xz86b4uIADIz6ZGRAWRlAamp2hWLc+7PM3IkrRQZxhOYzeT9TEz03Bj27AFeftlheCQnA7//PTBkCL3+v/8DHnuMxlpQAPzrX8AvftH/yfixsbQQmz6duh0zXeCZjNEe/VVe3NICfPBB1+2NjcCJE/QQ0evJSMnIcBgvmZnaSeIdOJCSZcvKaIwM4wnKyijvIzy8/88tCMCXXwIrVji8oKNGAU891TmXLS6OjJQnniAjZvNmIC0NuOGG/h1vbCx5eCorgfT0/j23l8AGCqM9Sksp98TdK5ovvwSqq+l5bi7FpwsL6XGphLzdTpNJcTGwdatje1xcZ4MlMxMYNIhcuP1JcDCN8fRpNlAYz2C3U/WOJ8I7Nhvw3/8C69c7ts2bBzzySPd5bEOHAr/8JfDSS/T6vfdoATJ1av+MF6Bx2e1k1LGB0i1soDDaormZLtiYGPeep7oa+Pxzeh4QAPz0p509NnV1DmNFfJSW0kToTE0NPQ4dcmwLDqYJxzlElJHh/lVlUhJVJlRXa6OCgvEvjEYK7yQl9YvKa3ML/RvU1gg8+yJw+LDjj7feCtx2W++LnFmzgNtvBz76iDwuf/sb8Je/9K+xEB1Nc8vUqVwQ0A1soDDaQiwvVugFkDoxTt3xP2S30AxXMPxKHNyfBux3fkfcxcdEIBNAJqC3WRFdW4K46kLEVRcivuY8EmoLEdB0SfVMWxsl6V1a+jt0KLmW3RWfj46m8k6DgQ0Upv+5cIGqY8LC+k3lNbLRgEXbnwFqLibDBgYCP/85sGCBtAPccguV++7YQYujP/2JDBV3L5BE4uLoezMaWTG7G9hAYbRFZSV5KRQmekqZGONqi5B15lsAQFtQOPaPuAMtzVIm02A0hGejPDwbuJhvFxNlx03TjQ4vy/nzVE1TUdG1GujcOeDDD4FHH5X/waQSGEgeqJEj3XcOhrkUm43CixcbA8pSeVVIgqkA8757FqHNtbQhKoryTeT0uNHp6HqsrKTwlNEIvPgiGSr94dEICaFu7eXlbKB0AxsojHaw2+nm7kL3UykT44ztb0Mv2AEAJ8fdDH1cNMIhr7S4QwK7XUcekcREYMoUpzc0U76KaLhs3Urbtmwh1/PAgQo+nQRiYykU1dLCDQSZ/sNgIN2RS9SM+1R5VcquXcAHrzgqdQYNokqdQYPkHyskxFHZU11N1XD/+Q/w8MPqjrknIiPJOJo4sf9z1zQOGyiMdqiuptI/FUIgPU6Mhw8DZQfo+YABmPDE1ZgQIn8CFSWwm1voeVciAYymxyAgNycOuUf+B9hsKPjblzg44yeSziO7k2p0NLmsTSZK+mOY/qC0lIwFdxvFgkC5Y+++69g2ejTw5JOuqU4nJJD35cknaZXz7bdU2YPrXR5yn8TFkefGbKY8MqYDFmpjtIPBQF4GdyWT2mzAO+84Xt91l2L9AdH7Kwg6NDX3/TiSdS2sgTR5Dz29EUJ1raT9LHU6HDgu4zINCiKXsdGo6HMxjGza28kD4O62FO3tpFnibJwsWAA8+6w65x4+nKp+RN55ByniYsadhIWRx7Oiwv3n8jLYQGG0Q2mpe8XQtmxxqK1mZwNz5yo+1ORcO2KiBYSHSXsExEbh7IgrAQCBtjaMP/dFn/vodOQ1kV0JERFBYSVvU8RlvJPKSlr9uzMxu6GBlGA3bnRsu/12ElhTM1dk3jzg5pvpud2OWZtfQkxdqXrH74nwcMpR42u2ExziYbRBUxNls7sre761FXj/fcfre+8l8TWFZKYJyEyTGRqasxR44GugvR2jz67B6Cev71UzQnEn1ZgYumFYLNoRkmN8l7IysqLdpYZaWUlJq6UXDYXAQEpsnTfPPee7/XYKk+7Zg2BrExZt/SO+vfYVAG6UCRDDPNXVFG5iALAHhdEKYnmxuwwUZ1G2qVNJmK2/SUgALr+cnjc3A2vWuOc8kZGkhsthHsbdWK0U3nHXdZufD/zmNw7jJCqK+um4yzgBaOHyy1+SjhGAmIZyzP7+RQoxuYuICPIScZinE2ygMNqgspKqeNyRxV5TA3z2GT3X64Fly9Q/h1Suv97huVm9mmLPaqPT0Tl4smPcTUWF+8I7O3YATz9NCxeAynBffpnk691NWBjwf/+H5tBYAEByxVHgjTfcdz6djhKMCwvddw4vhA0UxvOI3YvdlWT3v/85DIElSxxNwzxBcjIwZw49r68HNmxwz3liYqjM2Z1SngwjqiurmTsmCMCnn5Kqq1hGnJsL/PWvXcqY3crAgdi+8P9g01/MhFi3Dli71n3ni48nPRTRIGPYQGE0QFUVhV/c4SYuKXEk1oWFkQS2p7npJsfzL790jxERHQ3U1tLqlmHcQWsrhXfUzHOyWoH/9/8654stXAg884xHevyYk0ZhxxSnyp7ly4GjR91zsshIWrSw57MDNlAYz+PO8uIVK8hDAwA33qiNpNG0NGqxDpBx9v336p8jJIRWn5yHwriLigpaWMTFqXO8hgYyRL77zrHtzjt7bvjXT5zJuhx5uRc7Hdvt1GCwvFz9E+n1lABcUqL+sb0UNlAYz1NS4p7y4qNHgQMXdQwSE4GlS9U/h1JuvNHx/LPPujYhVIOwMEdZNcOoTUkJ3bDVMB4qK4HHHweOH6fXQUGUHHvzze7vai6Bo5PuASZPphcNDVRV1NCg/oni4+l7bWxU/9heCBsojGdpbKTViNqeDcGumiibWxg+HBg3jp5XVlJCoNrExJB3qr6+7/cyjBxaWki3Qw3viSBQ/5uyMnodEwM8/7wjV0sDCPoA4Ne/vqguC5JE+Otf1V9YREdTDgqHeQCwgcJ4GqMRqKtTPUE249wWatwHAFlZ7i1LVIpzLsqqVY5QlFpERdEqj8M8jNqUl1N1nBoGyqlTjuqV5GS68Y8Y4fpx1SY8nKqKxF5hhw8Db7+t7jkCAshjJBprfg4bKIxnKS+nFZSK5cUB7a0Yd9BJDttFUTa3kZsL5OTQ8+JiRzhKLcTPXFmp7nEZRsyTUNh1vBPO6rC33UZGilZJTqZ+PeJ89fXX6lfixcWRweYOCQIvQ4OzNuM32GyUI6Gy92RMwZeIaLxYvTJ5siOUojV0OoesNgCsXKm+1HVUFH3H7shxYfyTpibyTqqhfdLQ4AhvRkQAM2e6fkx3M2YM8BOnZp//+Q9w4oR6x4+NJe8ULyzYQGE8iNlMF6KK5cUhzbUYl7eSXnhalE0KkycDGRn0/PRp4NgxdY8fE0PfcVWVusdl/BcxvKNG3ti2bQ6tk/nztZUn1huLFgHXXEPPbTbKoVHLoBC9UhcuqHM8L4YNFMZzGI1UXhwWptohcw9/hOD2iw1sFi1yJLVpFZ2uc0XPqlXqHj8sjL5jzkNh1KKoiIx/NcKy337reL5okevH609+9CNgwgR6Xl9PEvxNTeocOzqavFR+LrTIBgrjOYqLSd5ZLcrKkF2wDgBgDQyjeLY3MGuWQyHz6FGgoEDd44eEsLYCow6NjWSgqBHeOXeOHgB1F7/Y+8ZrCAigUujBg+l1SQnwt7+pE06NiyOvp8Hg+rG8GDZQGM8gNsZSs7x4xQroBaqEyRt7o3oCUu4mIAC44QbHa7W9KLGx9F2rtbpj/BdRil2NsKw3e09EIiOB3/3OoXK7fz/w3nuuHzc4mJoT+nmYhw0UxjOI5cViyZ6rHD8O7NsHAGgMS0D+mOvUOW5/sWCBo8363r3kXVKLqCi6qZhM6h2T8U8KC8mgdjW809oKbN1Kz0NCgLlzXR+bpxg0iETmxKq5L75QRx06KorCPH6c4K5CjRjDKKC8nPIv1Ihj2zuLsh0YezdsgaEAvOjCDgoCfvhD4M036fWqVcDQx9U5dmAgfUeVlUB6ujrHZPyP+noynNUI7+za5VBLnT3bPW0uVKS5Bfjoy97mqkkYNu1BTNn9OgCg7d9v4IvqubAFSkv6DQoCJufakZnmVMUXH0/XrMmk7dJrN8IeFKb/aW+nOLZa3pNt26hpGYCa+EyczbhMneP2N4sWOUqut29HZJ2KapJiubHaYnCM/1BeTl5PNcI7ztohGg7viCr+gqBDU3Pvj6MZ1+B86mwAQHBbIxLP7etzH/FhqdPhwPFLbsehoeRpckffHy+BDRSm/xHLi9XIP2lt7dT59NCU+0iW2hsJDXX0C7LbMfK4irkoMTHU2K2mRr1jMv7F+fPkjXNV9LCsDMjLo+epqdpUjb3I5Fw7YqIFhIdJexSOvrJj3xEl30vaR6cjr0m3BTsREZRI7KcLCw7xMP2P0UgqiWpU8HzzjSO3YtIkGAZPAJpdP6zHuOoqah7Y3IysM99h/4jbgbAE148bHk43BpPJkevCMFKxWIDSUnV+O87JsVdcoYlmgD2RmSYgM01GqNg2CtifAFRVYXD5Qdy+oLpPj9NHXwagqac5Ky6Ortnqamp46mewB4XpfwoL1Yk5WyzAp5/Sc28QZZNCZCQZKQAC7O3Izf9CnePqdLT65R4fjBLE8I6rYVmr1ZFAGhhIyeG+RECAo++XzQZs3+7a8SIiKFfHT5sHsoHC9C/19VTbr0Yc++OPHaWzl1/uOwmg115LZYYARpxdi+CWOnWOGxNDq+DWVnWOx/gPhYX0m3Q1vLN/Py0sAGDaNFVVpDWDs9G1ebPrxwsLo/Ca2m0wvAA2UJj+xWAgI8XVlVhZGbB+PT0PDQVuv931sWmF2NiOxMEgWyty8r5S57gxMVxuzMinqYlW8Kx9Io30dIfo3Jkzrnst4+Komkc07PwINlCY/kUsL3Z1Jfbeew59gOuvV6f0UUv88Iew6yjZNyfva3VE1oKCqILKz9UpGZmYTBTecbWpp8kEHDpEzwcO1G4TTzWYP9/xfMsW144VFUWLOj8M87CBwvQfVivpKLg60Z04AezZQ8/j44HrrnN5aJpjwAAUZlO5dHBbI7BunTrHjYigcmM/dBczCjEaqYok0MWaiu++c/zuLr/c9UWKlpk3z/H5tmxxrQpHp6PwmprijV6CD/9CGM2hRnnxJaJsuOMOdfv5aIi8sTdCwMUKh6++Uid3JDqa/h/80F3MKEAQyKCNiHDtODYbGSgA3bgXLnR5aJomPt7hITIagVOnXDtebCzljzU0uDw0b4INFKb/MBqptborLdW3b6e4LkCx3su8VJRNAvUxQ1CYOote1NYCmza5ftDISHIXcx4KI4XaWjJoXc0/OXrU8ZubOBEYMMDloWke5zCPq8myMTEUZvOzMA8bKEz/UVhIGelKaWvrJMqGH/1IHal8DXNk9C2OF59/TjkkrqDX08OP1SkZGZhMlP/kqgdl40bH8yuucO1Y3sKMGQ7v7s6dNH8pRa+nua60VJ2xeQmyg4pNTU34+OOPkZeXh1OnTqG+vh5PPvkkrrzyyj73PXjwIL799lscO3YMJpMJ8fHxmDhxIu677z4k+qEIjV9RV0fJma6Ed775hrwwADBhAj18nOq4obgwZDIGlx2gz751q+vu8ZgYimdbrQ4tb4bpjooKujm6IqZWW9vRyBOxscCUKWqMTPuEhgLTp1MOSmMjcOAAMHOm8uPFxlK4rbnZtYWeFyHbg2KxWLBixQoUFxcjOztb1r7/+c9/cPjwYcyZMwePPvooFi5ciM2bN+P+++9HVVWV3KEw3oTBQPFTsS25XOrqOouy3XuvemPTOCfHOXlRVq1yvbtpTIzDdc8wPSEmtbsa3tm82eH5W7jQ9WRbb0JNTRTxuq2sdO04XoTsX0pCQgK++OILJCQkID8/Hz/+8Y8l7/uzn/0MY8eOhd4pe3vq1Kl45JFH8Pnnn+OBBx6QOxzGW3C1vPiTTxzdTxcuBDIyVBua1jEnjQJGjwZOngQuXAD27nVtJRYSQu5moxFISVFvoIxvYTbTDXHQIOXHEAT/DO+IjB1LCbPV1cDBg66Va4uGXWmpQ2fFx5F9twgODkaCwn4M48eP72SciNuio6NR7IclVH6D1UquSaXhnfJyYO1aeh4S4luibFK56SbH808/db1MOCwMKClx7RiMb2MyUeWYC0ntAwx5ZFQDwJgxrhk73khAADB3Lj1vbwd27HDteDExlMvnSj6LF+HxJNmmpiY0NzcjxhcljxnCZKKVmNL/Y2dRth/+0D+b3U2YAIgh1XPngMOHXTtedDS5iv2sbJGRQUmJy7kOQ09vcLzwN++JiHOYx1XRtrg4kmrwE7FFjxson376KaxWKy7rpVzUbDajoKCg48HeFi+jspK8KBf7y8giLw/YtYuex8WRgeKP6HTAjTc6Xov5OEqJiiJ3s5h0zDDONDbSdeuCqGJQWyPSCi96DCIiXAtLejOZmY4+Yfn5rlXQiWrQolfKx/FottKRI0ewYsUKLFiwAJMmTerxfatXr8aKFSv6b2CMeohCT0q6FwsC8Pbbjtd33OE32evdMn06MGQI9fY4eZKMt1GjlB1LLM+uqACystQbI+MbiPL2Lvw2hhZvQaDtorjgvHmu6R95O/PnA+++S8+3bHEtTB0dTV7UyZN9PuHYYx6U4uJiPP3008jKysITTzzR63uXLl2KN954o+Px9NNP99MoGZcRm9MpCe/s3w+cPk3P09N9X32yL/R6db0o0dFUpeFqVRDje1RWkmqzCzpDOeedwjuLF6swKC9m3jxHqfaWLa7lkMXHA1VVfiG26BEDxWAw4LHHHkNERAReeuklhPexuk5MTEROTk7HI110lzHax2hUXl68davj+Z13+rwomyTmzqVGawBVBZw7p/xY0dEUz66uVmdsjG9gt5Ph6kLH8biqcxhQfZZeZGf7TdVJjyQmUkUPQMZffr7yY4lVeH4gttjvBorFYsFjjz0Gq9WKl19+mQXafJ0LF8iwkFte3NpKHhSAJspeQoB+RWAgdW8WWbVK+bHCw0kllPNQGGdEo9WFwoWhBU7ek0WLVBiUD6Bmh+OICOD8eZ9v+uk2A8VsNqO4uBjtTtLczc3NePzxx2E2m/GXv/wFqamp7jo9owXa2pR3Lz50CGhpoefTp/t8rFUWl1/uKNnetYtyUpQSEuJ38tlMH5hMlCSrJG8MAFpbkXF+CwCgPTDEUWbr78yY4SgU2LGDCgeUEhNDYZ7aWlWGplUUzfqfffYZGhoaOtRfd+7cCePFVdgNN9yAyMhILF++HOvXr8cnn3yClItiUH/6059w6tQpXHXVVSguLu5UjRMWFoY5c+a4+nkYLSGWFysxRMXKHQCYNUu1IfkEwcHAddcBK1bQCuqzz4BHH1V2rJgYchX7kXw20wfl5bQgUCpvv2sXgttIVLE4cw6GKjV0fI3wcFpsbdtGDTsPHqTXSoiMpAR3k4mqG30URQbKJ598gkonud1t27Zh27ZtAIBFixYhsod8g7NnKSa5du1arBWFty6SnJzMBoqvUVlJJXFyy4vb2hy9OyIjHbFbxsGSJZQk29hI7uLbbnPkpsghOpqqrIxGRykk47+0tZH+iQvlxc7KseeGL8ZQFYblMyxYQAYKQNL3Sg0UUZW7ogIYPly98WkMRQbKypUr+3zPU089haeeekr2foyPIAikeOjUBfV8iQ4Hj+v79GwOLjmKec3NAIBzKTOw9xvp5YnNLYpG632EhwPXXAN8/DFV4XzxBfDgg/KPExhI+xsMbKAwJG9vsVA5uxIuXKASeAA10akwDxwJwK7e+Lyd8eMpPFtbSzl2DQ0AFOb6iFV4Ptz00+NCbYyPUlvbpbz44HE9LHU6NDX3/hh0dmfHPmcGze7z/c4PQSC3tI9er535wQ8c7dy//ZaSG5UQGUleFDvfSPweo1G5qCLQyXtSMHSxa12QfRE1pe/9oOknGyiMezAaKfzgFO4TPSc6nYDwsO4fkcFtSL+wBwDQFhyB2oxxPb63p0dMtIDJuX5ws42OduhLtLUBq1crO46fJNwxEiguVp6LZLUC338PALDpA3E2w891i3pCLel756afPgqXRjDuobS0x0S7sFDg9ut6EAfbfxCwNgEAgmdNxa036AGwkFiPXHcdsGYNrcbWrgVuuEG+5kxEBCVGGo0kAsX4J/X19BtQWl68fz+FhwCUpU1HS2gMwuHbZbCKyMqiwoHSUiAvDxGjK9EUqLCreGgo5QyNG6fuGDUCe1AY9WltpYtPyUS30xHe4eodCSQkUNkxQJU4lySfS0KnI9ezHwg/Mb0gytsrEVUEKMx4kXM5fq4c2xs6XSdNlMxzm5UfKybGp5t+soHCqI/RSCspuQaK1Qrs3UvPw8Kogy/TN9df7xDC++orh36MHKKjaSXW2qru2BjvQazMVKLYbDKRdhEADByIykHjVRuWT+JkoGSc/V654FpUlMPz5YOwgcKoj8FAIQe5marHjlHeCgBMneonma4qkJwMiCX69fXApk3yj+EHCXdML7gqb79pk+Mme/nlgI5vLb0yYACQmwsAiK4rx4CqAmXHCQig791gUHFw2oFzUBh1EcuLlbiJObzTLc0twEdf9r6qjY29AVeBehcZvtqFTdalko8fFARMzg1BZns7TXSDB7s0XsYLqaoieXslrUdsNkd4R6+npp47e9+FAXlRjh8HAGQXbcbR1Bxlx4mKoiq8adPktxTROL71aRjPU1NDq3C54Z32dg7vXILoQBKEvsury8OGojaKDIsBhpOw11gkl2Zb6nQ4cFxP2irFxT7f34PpBpOJcpiUqL4ePerorDtxInkHtIogaOf3PWtWRzl3VslW6OztfezQAzExZFxeVHb3JdhAYdRFLC92EmiTxPHjFJ4AgClTqITOz5mca0dMtMTy6nDgQuZMAIBesGOYcY+k/XQ6mqytVtBEZzRSoiTjX1y4oLzflZP2Ca64Qp3xuIOmJuD0aXq0KzQG1CQ8nLweAMJa6zCo7KDy4zQ3O4xEH4JDPIy69FJe3CvO4Z2ZM9Udk5eSmSYgM01GifXo6cBjnwIAprXsxLTrLu9zl4++DEBT88UXYn8PV0pNGe+jtZUaTooNKOVQW+toSxETQ4sLLSIm7o8dSxUv584BQ4d6vgnp/PnA9u0ALibLYrKy4wQFkZE5apRqQ9MC7EFh1KOlhQwUuROdzQbsIXE2hIQAkyapPjS/IDvbkUNw9Kgj4Vgqer2jvwfjP5hMdPNW0n9n82aHN2LhQs/f8C+lvZ2MkfZ2Gt/ChZTEm5FB220e1liaMAEtobQYGFK6V3m5cEwMzb1KKvg0DBsojHqIqxS5E92JE46wgifCO4JAMdy6OtdaoHsanY5augM0IR84IP8YYn8PLbjAmf7BaFRWdScInbRPsGiRuuNylYYG4MwZSvpeupTEzAIC6Dd++eVAWhpw9qxnjZTAQBRnkfR9gM3auYu7HKKjae71sTAPGyiMelRW0sUud6LzdHjHYCBvQ2MjrULEOHVhIXkTampoZaKV5LreEA0UANi9W/7+sbGORGfG9xEEMkiVJMeeOkWhIQAYMwYYNEjdsSlFEEh00GCgHI8f/ABIuUSpNTaWjJQhQ4Dz5z3ah6pw6GWOF0ql74OCaO71MT0UjfnjGK/FbqcbulwdBZvNcSMNDgYmK4zBKqW1lTwnixaR27ehwfGoqqIbdWMjvUcUMdPrSWI6LIweISHKxK3cwciR5O61WICDB2nMcjxSzv09kpPdN05GG7gib6/F5Ni2Niq5jYsD5s0DcnJ6zoeLj6dxb9zoyEnxQJludeIw1EYNQWx9GXmTjUZg4ED5B4qIoM8+caLPNGlkA4VRh5oauqHL7eVy8mRH/w5MnuzozttflJTQJDZyJMXPuzOwmps7Gy6ioJnFQqGh5mZatel0dIMXjZfQ0P4XmwsIoFXjxo1knBw+DEyfLu8YYn+PsWPdM0ZGOxiN9JuWa4w2Njo68UZEaCOxvbaWvLg5OTQeKZouYquIDRvIk5KV1f9Gik6HsxkLMPn4+/R6yxbg5pvlHycmxpFPpCThWYOwgcKog8FAZXxDhsjbzznm2t/ibCYTGSTTpvWe3Cd6Si7Vd7BaOxsu9fV0zOpqx/P2djJegoPpGAMHun8CnDHDsbrdvVu+gRIdTRO9knJxxruorCTDWu5vcts28lYA5KnwpCyA3U6hJrsdmD2bkuwv6otIYsAA8qBu3Ehe4KysfvdAnM24rLOBctNN8scgNv00mdhAYZhOlJWRt0DORWWzOQyU4OD+rd5payNDYuFC5cJSQUHkSo6L67zdbqebu7PhUl1NXomKCvcrtY4dSzkFTU1UAmq1yvPkREfTatJoBDIz3TdOxrPYbMrl7bWSHNvSQmGNlBTymmRlKTvOwIEOT0phIf3u+9FIaYhMgjFpNAYaTtJceu4cVeXJQazCKy8Hhg1zz0D7GU6SZVynuVmZjsKpU+SWBShuqiRRTyklJTQBjBmj/rH1epr0U1Joopg4kSa/6dPJYBFXnu4iKMihR9HYSHFtOYj9PcTmcYxvUlVFoVm5+SfnzlH1C0DXkFKjwFXMZjKwxowBrrnG9XEkJ1NOSkwMGT39nBRfmO2ULLtZYYfjmBia27y5GtEJNlAY1zEaydCQW17sqd471dUUbpk2rX9zRIYNo0n0wgX3n8vVah6xv4cHqxsYN2MykQciLEzefp72nths5OVoaQEuu8xhVKjBoEG0mIiMJOOnHynJmO2Yj7ZtU1b+HBPjyAf0AdhAYVynspJWG3JEmux2x43TecXvbtrbyaCaOLFr6aG7CQqiHkN2O4Vf3MnEiY44/J498ic7H+7vwVyktFRergZAiddbqSklQkKAuXPVH1dvNDaSBMDAgeQ1mThRfXG4IUPISAkLI29EP2ENiXTMgxYLJbjLxbkKzwdgA4VxDbud8hXkdi/Oz6cbIEA37f4K75SUUHzZUxUq6elUMeRuL0poKE3eAHm3CmS2c/fh/h4M6P+2vFy+13PXLodC8ezZ/RuWraykMU+aRMaJ3IR8OaSlkZESHEyGXH8xf77judIwj1iF5wOwgcK4htimXW7+iSfCO7W1tNqaNq3/y5lF9HpStAwLc+TfuAtXwzxBQQ4hLsa3MJlI20duaMQT2idWKynC6nTA4sXAggX9U12WkUFJ9AEB/ROWBcj4EpOW9+5V5ml1rsLzcthAYVzDaKSLSM5KSnAK7wQGAlOnumdszthsVEEzfjyQmur+8/VGcjIwerQjNOYupkxxCMjt3i3/XDExZKA0N/f9Xsa7EOXt5YRHLlwg3SKArqGRI90zNmfq6ighNyODvCajR/evTklWFhkpojqtuwkKAubMoedtbcoWFtHR9L35QJiHDRTGNUpKZGsgJJoKHFLq48f3z2qorIwm1QkT3H8uKYwbRyJR7gyhREY6QllGI4Xi5CBOdBzm8S0EgZJM5V53zsmxV1zh3jJcQaBr1mwmT+BVVwFJSe47X29kZ5ORYrP1T2Wbq2EesQrPYFBtSJ6CDRRGOU1NtKqSGd5JLezn8E59PeXKTJ/evzHz3oiJIeOsutq9zcpcCfMEBdEq2wcmOsYJi4VCs3LCO+3twKZN9DwwkMIs7qK1lRJhw8PJMJk923MhWZHhw+kzt7W5/3rIyXH0NTp+XFlfrMhIMkK9vAqPDRRGOQYDrbDlJNoJAtKKLkpki7Ls7sRuJyNq7FhyE2uJUaMo0a+iwn3nmDbNsdJV4i4W+3t4Q6NERhomE+nxyPGg7N/vaEkxbZp6Zb2XUlNDv7cRIyikM2yYdvrKjBxJ3g13J4/rdA4viiA4qqbkIDb9FAsRvBQ2UBjlVFTQBSSjUd6A6tOIaLx4cY8bJ7/6Ry7l5VROPGmSdiY6kdBQCjk1NTkaEapNXJwjV6C0VH5FQmwsreBqalQfGuMhyssdqqNScU6OdZf2SXk5eTvnzqVkWLl9vfqD0aNJ2r+hwb0dv+fNczzfvFn+AiEsjOYVLw/PsoHCKEMUS5JZpphZssPxwt3hncZGuvFPm6ZMzrs/yM6mLqrurBJwJcwTEUHfo5dPdMxF2tspb0zOdWsyAYcO0fOBA2lhoTZWK/3OFiygpPn+brIph9xcMqLq6tynE5SSQl4kgP6/Cgvl7a/TUSjOy6vw2EBhlGE2yy8vFgRkll40UPR694Z37Ha6sEePJgNAqwQGOtqjNzS45xzOzQL37JG3r07Xv2WWjHsxm6m8Xc51u2mTYwV/+eXuqaIxGBytIbSOTkdG2pw59F26y7vonOejJFk2NpYMFHd5Z/sBNlAYZRgMJDUtI3ktvuosohovJpiNGydfJEoOlZW02psypf/bp8slNZVWS+4qY0xKchhpZ8/KLz8U+3u4u4cQ435MJvp/lFp5JwjAd9/Rc72eqlnUxmYj43zsWG17TpzR6Sg8O2sWeVHcoWk0e7ajDFyJ9H10NOUNebH3U+MzN6NZCgtlV8SkFjqFd2bOVHlATjQ3k7t42jTvaDsuTnaRke5bjbkS5omJ8fqJjrlISYk8eftz5xwG7bhxyjt/94bJRIsJTzUdVIpOR7ltM2fSZxCTiNUiKgqYPJme19QAR4/K298HqvDYQGHkU1dHHgo5mfxO1Tt2nb7zDVNNBIEm4ZEjqTTQWxgwgLqyVla6pzTQFQMlOJgmOjZQvJumJkpsl3PdOocE3XHNCgJ5H8aMkd+0UAvo9eSlnT6dDLm6OnWP76omSkQENT300io8lbssMX6BwUDZ9snJ0vc5fx5R9SRyZEzORbK7wjtGI3lNpk6VVV2kCXJzSdLbaJT33UohNZVKmsvKgFOnaEUWFyd9/9BQ8pqNH6/uuJj+46K8/fmgbBzcFQCrte9drtq4F7EABOjwRfUMtHwp7ZpqbpE4pupq+h16Q+5JT+j1ZKAIAhn/Op16SflTppBntaGBjMXmZnmGXHS0w7vjDd7kS2APCiMfJWWKTr13SjLnuGFQoGSw2lq6qBMS3HMOdxIdTQZAbS15LNRGXAELAvX5kENsrHtWiEz/cdE7d/BkICx1OjQ19/4INJYjtrYYAGBMHIFqXUKf+4gPQaCS/j5TSkwm8na6Mx+tPxCNlKlTaX5UK+E9KIhyUQCa3+QmuYvGjZd6P9lAYeTR1kZCSjKrd0QDxa7Toyx9eh87KKSkhFQYR492z/H7g5EjydvhjoRZV8I84kTnA/09/BK7nVz9UVEdnhOdTkB4WM+PYQbHb6Q8c0av7+3uERMtYHJuL+HKujr6XXlTKLY3AgIoH2XyZNIbUius4kqYR68nj05/9BFyAxziYeRhMlF4QE7DvaKiDrXUygFj0BIWB0BleXezmeKtU6fKa4CmNUJCqOx4zRpaMcnsc9QrQ4dSrovJBBw7dnGVJzEfQZzoKipIu4XxLmprqdrEaWERFgrcfl0v1+GuXR1PJ9w3FRMGqXzNGgwU1nRH4q2nCAykZOKCAvXCKiNHUsi3spKu26oqeR7i6GhavMltDqkB2IPCyKOykn7ocioBnMI7hWmz1R+T1UoGyuTJnmsopiZDh9JDbZElnc7hRbHZSL5cDlFRtAp3R/iJcS8mE1W2SZW3r66mmywApKc7esOoRVMT3SxHjVL3uFogLo6MeLXCKs7S93Y7lRzLISaGDFR3Kt+6CTZQGOkIAnXEldPDwym8I0CHoiFuKC8uKaEbem6u+sf2BAEBVHYcGEjJyGriSphH7O/hLvVMxn1UVNDvSmq7h337HCEKdwgqVlRQWXFKivrH1gLDh9P33SI1W7gPnMM8W7bI2zc0lLyxXhieZQOFkU5NDVnhctyWJSUdKqTG5NFoDlO5v0ZNDYVBpk2T59XROkOGkGtX7djxiBGOMtNDhxBglTGBevFE59dYreT50kp5cWsreQJGjdK+iKJSBg+mMLha18qgQY5cncJCCpvLISSE5mIvw0d/HYxbMBrluYmBTuGd0gyVe++IIkQTJtCE4EuIctrR0ep6LAICHNL3bW1IuXBQ3v4hIXSzY7wHs5nyIaRWyjQ2Uq4DQPkhaguoGQx0805LU/e4WkKvpwVGc7N8BdiecEX6PiaGwvONjeqMpZ9gA4WRTmkphR3kdAV2p4FSWkrxcV/V5khMJPlvk0ld8TanFXFq8a5e3tgNXjrR+TVGozx5+wMHHHlG06er2wW8vZ1u2rm5XpewKZuMDDLw1FpgzJnj0HbaulWe4RMdTVVTXub9ZAOFkUZzMxkEcsM7paX0fORINIerqE1SV+doOCijH5DXMWYMyYCrKVedm9vhBRtcsg96mwTFLhFxovNi+Wy/o6REnriXs0aO2vknoghhRoa6x9UiYWHkRamuVud40dEkrQ/QMY8fl75vQADlFHnZdcsGCiMNo5EyweXEsZ3KFDFLRe+JzUZ5LWPH+rabGCCdiIkTKVlWivSnFIKCSMwOQLC1CYMMMnp8iBMddzf2DhoayOMlNbzT1gYcvBj2i4pSV1PIbifjdswY315UOJOVRdewWgKHzmEeucmykZGUu+KOVhpugg0URhoVFXRjkuOWdQrvqJpod+ECxbAnTVLX/axVcnLUF29z+v/IKFMQ5ikqUs9gYtyHyUTGrVTp9WPHyFsKkBGrZrsIUb/Dn3R0EhOpwlAtz8WUKY4cwN27KeFYKjEx5HlRy6PTD7CBwvSN3U6Z45GR0vcpK3MkU+bkqCfG1NBAceypU+Ul63ozwcHkRRHj92owcWJH1VN62W7o7DLi2XFxNMl5WTzbLzEYaGEh1dBwrt6ZrqLisyBQsu7o0fLmEV8gJ4fC0XKMiZ4IDnb8vzQ3y+twHB5O+jNeJHvPBgrTN2Yz3ZDk5J+4I7xjt5PhM3as97Vmd5WsLFp5qhVaCQnpiGeHtVqQaDwlfd/gYPKeXFQHZjSK3IWFzebIPwkOpuo4tRDDw97cFFApgwfTQy2DfqaTlpQcLSOdjjzgagtAuhE2UJi+MRrJ8g4Pl76Pc3hnpkribOXlpBTrL6EdZ/R6umEEB6sXz3au5imSGeaJjATOnfOqeLbfUVNDD6kLC1GeHSAPm5ptFoxG8iTEq6yD5A2IirlNTeqUHI8b50h63rdP3jFjYshAUcOb0w+wgcL0TVGRvKS28nJauQEkLjRwoOtjaGoiVcZp07y/86lSBg8mF3l5uTqNyCZPhk1POUWpxbvkHTMujjxrXiif7TcYjRQGkFrB467wTkMDjSEnR71jehsZGWScqZH/IYZ8AcovOnlS+r4xMWSEekmYhw0UpncaGsiVrzS8o4b3RBCoXHn0aP90ETszdiwZB2poK0RGwpAyDgAQ0WgCzp6Vvm94ON38vKxs0a+4cEG6vL0gOAwUvb6jyksVKispRJmcrN4xvY2ICFJxVitB1bnowNmw7IugIIfApRfg40o5jMsYDGSly0lyVTu8U1lJq48pU3xXGlsq8fFkpGzZQoaKi1UWpRkzMUhUk929W54BGBZGvZl8pQeSL9HWRq58qbIAxcV0nQH0/ym16qcvWlrIQBo1yv/CspeSnQ0cOdJjVVVzC/DRl9Ku58C2abhBH4gAezsaN+/BVwMe6vP7DQoCJufakRkeTv/fEydq/v/Ez2d7pk/E0lapN8LKSspNAOiCdHXV1NpKXpxp0+iGzJAnadAgVVZBZWnTIeDiJLV7t7wwT2ws/X/X1ro8DkZlTCb6f5EaDnVehaspzlZZSVpFQ4aod0xvZcAAIDOzS7JsUBD9Kwg6NDVLe9TZIlCeNB4AENFoRviFs33uY6nT4cBxPRmtJpN6uWxuhA0UpmesVso/kZPzobb3xGSiyc2f49eXEhFBCbMqiLe1hsWicsBFMa4LFxzKv1KIjKQxiCtvRjuYTOTKl9pA07kaRC0DxWolT86YMerqqXgrOh3NY3Y7fS8XmZxrR0y0gPAweY/yLMf8OqxyV6/v1elo4WG1wnHdeoFMAId4mJ4xm6kKYNAg6fuomX8iCHQhzZrl+3075DJ8OHDqFLnxMzNdOlRR6kykmE7Qi927pavz6vX0/1JaSvF1RjsUFUlPjjUYHEnt2dnqaRYZDDR3+IOsvVRSU4GUFDIOLnqVMtMEZKYpqO6pnQzs1gN2O0ZX7cTo6+7s8a0ffRmAJlFCSa+nR0WF5nP62IPC9IzBIK/JmMEAnDlDzzMz5Rk23WGxkDvS1+XslRAURDFku50qnFygaIhCXQWAwjwlJS6PgVERsSmc1PwTd1Tv2GwUms3Nle7F8QeCgsij1NDgeol+bKxjYSDX+xkVRXkoYlNIjcIGCtM9gkCrKjnaJ2qLs5nNZOjIqSDyJzIyyGXsovBSY8RAVCVeXEmdPy8vZBMbS4Ykh3m0g8lEN0Cpia7OzQHVMlDMZpIX8DdBRSlkZFA+XU2N68dyruaRs7iIjaUcJY3LBLCBwnSPxUIeETnNAZ3zT1w1UKxWMpL8qW+HXETxtvBwh8CWQkrTnbwocsoWxdwCL1Kn9HlEY1FKxZvFAuTl0fPBgykE4SqCQOW0o0bJW+D4C1FRtLBQwzhwNijlXLehoVSAoHE9FDZQmO4xGIDGRumrMJMJOH2anmdk0GTnClVVtALj7P/eSU6mG4HYzFEhpRkuhHm4eaB2sNnIdS/1ut2/3xFqmDZNnbLT6mryEAwf7vqxfJVhwyhHqLHRteMkJTm8VGfPyjM4goPlhYU8ABsoTPdcuEArMKkTltribLW1NMFx/Lpvxo0jfRQXVmT1MUMcq+f8fHmCUrGx9H4vEX/yaaqrKXSgpLxYzfDOiBHyvK/+RlISkJ6uzjWjVLQtNpZkJFw1ktwIGyhMV1pbaRUmJ/fDObwze7Zr529ooFJazv6XRmwsMH48eZ1c6fUhTnSC0DkvoS+CgynZjpsHeh6TiRR+JYRWAq3NwOHD9CI+Xh2PR10dXbssC9A7Oh0ZcTab655HpXko0dH0/6XhMA8bKExXjEZH91EpVFXRqhtQR5TJZKLVvFrljv7AqFFUNeWKkaB0ogMopHD+PDcP9DRlZQ7lrz5IuXDIcXOcOlUdlWaDgfLG1Oi/5eukpZEnxVUDITXVUTGZlyc9Hy0ggK5XDXs+2UBhulJRQZa9xIlO1fCOzUalzcOHa16GWVOEhVHZcXNzJxEoWWRlOW4sx4+TBo1UYmO5eaCnaWmRJW8/pNjJCFUjvNPURLo4I0e6fix/IDiYFhZ1da41/9TpHIsLu506HEslKoryxzS6sGADhemM3U7lxXJ6cagZ3qmuJnezGtUE/sawYZScrFQh0nmis9kogVIq4eF0g+JyY88hypdLyD/R2dsxuPTijSwiQp1+SpWVFJZ1Vf/In8jKIuPe1ZJjZwNTbphHzFvSIGygMJ2prqZVsNTwTnU1KZoCFNpx1bCoqaEbLZcnyicwkOLaDQ3KV2SuhHnCwynM48pqkFGO0SjZ8znIcAzBbReTIydPlu4t7Ym2NlrcjB7NDT3lEBND3mJXPY/DhtHCDqCGhFKFEyMiKElWo3ko/EtiOmMwUJggIkLa+50bzM2a5VpYpqWFJkoWd1JOaip5v+SEZ5wZMcLRlPHwYfotSCU2ln4/LmqyMAoQBEpsl2jYp19QufdOZSV579LTXT+Wv5GdTfOeK2rMer3Di9LeDhw6JG0/nY4WNhcuKD+3G5FtoDQ1NeHtt9/Gr3/9a1x99dWYO3cu1q1bJ3n/+vp6/PWvf8U111yDRYsW4dFHH0VBQYHcYTDuoqREXmmvms0BTSbqU+FqB2R/Jj6ebhJKV2R6veOG1dYmfaIDHIYRh3n6H7EaQ0p5sWBHetnFclSxZYIr2GxkyObmcs8sJaSkqFNy7Eo1T2kpVW9qDNkGisViwYoVK1BcXIxsmSqfdrsdTzzxBL777jtcf/31eOihh1BTU4NHH30UpRoXjPELGhvJkpZaXlxTA5w8Sc8HD3atLFgQ6PwjRnDnU1fJzqZVlNKSY6UTnbgaKylRdl5GOUYjhfYiI/t8a4L5DCKaq+jFuHGuh1ONRlpUuNi00m/R6ymx2Gp1rTfO6NGO//8DB6SXL8fEaFb2XraBkpCQgC+++AKffvopfvKTn8jad8uWLThx4gSefPJJ3Hvvvbj++uvxj3/8A3q9Hu+8847coTBqYzRKTrID0Dm8M3Oma+EdsayZGwO6zpAh5EmRI7bmTG6uI8S3f788nYa4OFqNaVj8ySepqKDrT0L+h6rVO3Y7XbujR5N8OqOM9HSqoHPFSAgMpHJxgDxaR49K20/UMVKaXO9GZBsowcHBSEhIUHSyrVu3Ij4+HnPnzu3YFhsbiwULFmDHjh1oU1oeyahDeTkZHFI9GGo2BzSbKfeE1SddJyyMEu+UZuYrnegA+v8T+zgx/UN7O3mtJFbeiQaKXad3/D8rpaoKSEjgnlmuEhJCJce1ta4lmSut5gkLo3JjjSW492vA8PTp0xg2bBj0l1j5I0eOxNdff43S0lIMHTq0P4fEXOT8rgs4uKIa1vbhQF7fBkpIcy1+ePwE9ADqo1Lw9dFs4FjvHpTmlh7+YLXS6o8nOfXIyAAOHqS4ckiI/P1nzAA2b6bnu3dTpYcUnJsHcrJz/1BVRTe2pKS+31tWhhgLNXY0DxyJga52Cq+qAubMkSdLwHRPVhaFZiwW5R3cJ0yg6721lfRQbDZpC87YWPKg1NdL96D3A/1axVNdXd2t90XcVlVV1e1+ZrMZBQUFHY/i4mK3jtMfObiyAJbGQDS1BqKpWdfnY+DZPdALJO5zfshsNLXo+9xHEMiA6VLRKLZmd7XBIOMgOZkeSssHxYkOINl7OfksMTGkpcMe0f7BZKIKOCkhFqdeLWXpM3p5owRqa+lmNmyYa8dhiLg4WqS5UvIbEgJMmkTPLRaHBERfREZSDpPGwjz96kFpbW1FcDcVIuK21h6yiFevXo0VK1a4c2h+j7WJ8gx0OgFhEua5YWXbOp6XD5uF8DBprsGgIGBy7iWqhRYLXVSuajEwDgICqB/Kxo3ktpWbHyROdLt2UV5SXp50Ma/YWMpDMRq5G3V/UFwsvfLOyUApTZsOl+p3jEaqAFIY8me6Yfhw4MQJ6QZnd0yf7gi/794NjBnT9z5iY9jKSk15svvVQAkJCek2z0TcFtKDK3rp0qWY5ZTjUFxcjOeee849g/RXbDYAOoSFArdf18dqubYWWHGcnicn48r7MgGdwoqR+nqy3lk/QX2cNVGUuG1nzOg80Uk1UMSku/JyNlDcTU0NhdOkGAlVVcDp0/Q0NhON0SkAFF63DQ1kxI4YoWx/pnsGD6brtqJCecHA5Mm0QLHZyCC9/35p+4my99Ona6ZcvF9DPPHx8d2GccRtPSXfJiYmIicnp+ORzjczdamrk+fC373b0bvBVXE2sTEgr8LUJz6eJjmllQFTpjgmKuf/cylERQHnzmm2x4fPcOECGaBSckCcOlQXD3ExvGMwUM4Eaxapi15PybLNzcplAiIjgbFj6bnJROrOUhDLjXtItfAE/WqgDBs2DGfOnIH9kknr1KlTCA0NRSr3X/EMBoO87G21eu+Irca5MaD7GDZMuSZKeDgwfjw9r6oCzp6Vvm9sLO2jUQltn0AQgDNnqAJDyvXjVNVR5IqBIobiR43i69YdpKdTJ3dXSo6VaBmFhZFhpKFr1m0GitlsRnFxMdqdhGfmzZuH6upqbNvmyF+ora3F5s2bMXPmzG7zU5h+QI7McU0NxUgBUkB0pVKjupo8J2yYug9XNVGUli2Gh9Nkx6qy7sNkojCaFO9jQ0PHddsQmYTqWBeu28pK8szxdesewsJIuM2VBn7TpjmMRznXbUiIpoQWFRkon332Gd59912sXbsWALBz5068++67ePfdd9HQ0AAAWL58Oe666y6YnKyx+fPnY/To0XjxxRexYsUKfPHFF3j00Udht9vxox/9SIWPw8imrY3ijlIbfDm7+mfPdm0FVV1N3pOwMOXHYHonLIy8KEonu2nTHL+NXbvkedq4eaB7KSuj/i1S+mbt39/hRStLn6H8urVayYMyZgwrPruTrCwK1dTVKds/Lo6S5AGgtBRRF0vL+yQmhvJfXOkLpCKKMmE++eQTVDqtjLZt29bhFVm0aBEie5BbDggIwF/+8hf8+9//xmeffYbW1laMGDECTz75JNJYQdQzGI0Ud9QPlPZ+tcI7zc1krbM8tvtxRRMlJoZUQo8fp4mrpER6QrPYPLC21tGAkFEHm43CO1L1R5zyT0pdKS82GoFBg1xra8H0TWIiMHQoeb2U6pLMmAHk5wMAUot2wTD8lr73iY4miQCTSROFC4oMlJUrV/b5nqeeegpPPfVUl+1RUVF44okn8MQTTyg5NaM2BoP0/g/O4R1XJymTiY7BSXbuR2zAaDIpq6qZMYMMFIA8aFInrqgoMmoqK9lAUZvKSrp2U1L6fm9rKxmoABAdDfPAkYCSvnA2GyXkzpolr6Eoo4ycHCrvd0Vs8WILmSHFu3FAioESGEge8spKTRgo/Zoky2gMQSAXvBQXMdDZxe9KeMduJxfiiBHSQ0uMckRNlIYGZeEWsbsxIL95YFCQpmLaPkNpKYVnpWhlHD3qSGydOhWCXmFopqqKkjdZIbh/GDyYHkrF05KTOxaRiebTCG+SmHQbGUnaOhqowOO7gz9TU0OZ4lJllXfscDx3pfeOxUIrag7r9R9paQ5NFLkMGEC5QgC5fysqpO/LzQPVp62NwjtS+1Y5G5UzFIZ3BIFyxkaNkr6gYVwjMJC+78ZGVTqTZ5RJXFzExDjaJ3gYNlD8GYOBfvxSJpyqKnI3AmTVuxLeERsDcv+O/sNVTRTnG5uTGmmfREeTQcrVPOpRXk7/j1Kqd2w26skCkLdl3Dhl56ypoYWMaKgy/UNGBv0/q1CFl162q5c3OhERQfcFDcjes4Hiz5SWkgteqoaCGuGdtjYK63BTyP7HFU0UpeXGAQH0WymTWEXA9E1xMV2LUlpDnDrl8JpNnKg8d8RkojChq80FGXlERFAoXKmBkpHRkeeXYjyO4BYJVUE6HV235eXKzqki2tCzZfqf5ma6aUh1EzuHd1yp3jGbqevqoEHKj8Eow1kTZcCATn9qbgE++rK33IQ0XBWXjtiaYiA/H198VIvmcInqv/bhCDpVh8mBpcicxdoZLtHcTAq9UpOOnY1JZyNTDi0tZNjwosIzZGcDR45IVwx2Rqcj7+cXX0Av2DG4dC+Ay/reLyaGcsfa2jyaEM0eFH9FLP+UYqBUVTm6YqamKs8dEQSq68/J4caAnqAbTRTxv0EQ+u5gfX6wI+9o4JndkrpeNzXr0NQaAEtjIA6sPNPfn9j3KCuj/z8pBoogOMqLAwKoR4sSzGZHd2ym/xkwgOQYlIZcnAzT1GIZeSgWi8dVZdlA8VcqKylLW0pTKOfqHVd673BjQM+TkUH/5xerOibn2hETLSA8rO9H5VBHHsqwsm2S9gkPE6DT0W/H2ty1USgjk8JCMjakiKSdP++4qeXm0rUnF0Gg6q/hw1mYzVPodLSos9vJoyGXnBw0h5FBm3zhMHnh+iI4mET5PGygcIjHH7HZaKKTKgCkVnhHjGNzY0DPcYkmSmaagMw0iTkpQhpwKBUoLcVAw0ncPrMCGNi3wN9HXwagqRlAu41+e3yjU0ZdHeWfxMdLe7+TOJvi8I64qGBZe8+SmkrXrtEoX8tIr0dZ+gwMy1+LQFsbcOiQtCrM0FBqgyL24/IA7EHxR6qq6CEl4c1sVie8095OK4DsbGX7M+rgiiaKTgfMnet4vX27vP3tdtcaoPk7ZWXkdldSXuysZSOHqiq67qUaRYx7CAqi9gINDYr0STqpB0utwgsIUF7erBJsoPgjBgMlvknpgaOWtD03BtQOrmiizJvneL51q7x9BYHLjZUiCNRNOiREmrhhRQV5WwAKzyjxWtpsFFIYNoy7FmuBjAzKPVLQV8uYnIvWoItyEvv3U/jGC2ADxR8pLpYunexsoLgizlZTQyt3KcqXjHtxRRMlOdnRhKyoyHETlIJOx80DlVJdTe52qYaG8ypZqTib2ENJSXsERn2ioujaU3Dd2gOCUDJ4Kr1oagKOHVN5cO6BDRR/o76eVldSwjsmU0ezKaSnKw/vNDWRYcINxrSDK5ooSr0oej1571xpI++vlJWRe19Bc0DF4Z3qagrJsnKsdhg2jDzfCpSZi4fMdLyQI7boQdhA8TeMRkq2kzLRqeU9MZtJfVZCQiXTTzhroshl1ixHmGHbNukxcZ2ObrIGg/xz+jN2O3D6tPQqnJqaznljSjwgoqAiLyq0RVISLRYVXENlKZPQHnBR02TvXo/nl0iBDRR/48IFh1JgX6iRfyI2BszJ4caAWqIbTRTJxMU5JNONRoeXTQpBQfLCQgx9xwaD9ETV/fsdYTRXkmMTE1lQUWvodKQsa7PJziNpDwxFxeBJ9KK2FigoUH98KsN3DH/CaqW8ASlVAEaj4weckaE8Di2KSnFjQO1xiSaKLObPdzzftk36fnFxFK7g5oHSKSsj7YrwcGnvVyP/hAUVtUtaGnlSFGiUlDlX88hpWeEh2EDxJ0wmMhikGChqVe9UVdFKXYlIFONeRE0UJcmy06Y5JLB37KB8FilER9PNj6t5pNHeTgsFqaXFTU0kiw5QQq0SefqmJvKw8aJCmwQHU5dji0V2wvmFtKkOT/aePZpPWGcDxZ+orCQvipQKHjXyT1pbKZSUmalsf8a9iJoo9fXyJ6rwcEf4oK7OcVOUck6AmwdKpaKCFhZSq3cOHXIYi9OmKQurms0U2rmkXxOjIdLTydiXKRXQFhJFqsIAhQ0LC90wOPVgA8VfEAT6MUpxExsMlJQHkHExeLCyc4o9PDiOrV1c0URxFm2TU80TG0u/RSWhJX+jpIQMDqkN21xtDigIFE4aPpxzxrSMK1IBMxSItnkI/gX6C7W1tBKTUl6shvdEbAw4YoS0fj+MZ3Blops40RG627uXxP+kEBtLoUau5umdlhYSZ5OaHGu1AgcO0POICFIelUttLa3MWftE+2Rn0/+53Goc58RpjeehsIHiLxiNVOIpJRdEjd47dXUUN+fGgNpn2DBlE11QkMOAbWnprL3R1342G4UvmJ4pL6ccLimdiwES3xIbwU2ZomxhUF1NXlOpOS+M5xClAuRW4iUkOMQWi4vpd6ZR2EDxF0pLacLqQ7I6oq6CVm0AkJWlPDxjNjukmRlt44omilLRtqgoUpX1Ai0Gj1FURP9KNTRcbQ4o9svKypK/L9P/hIeTF0XJdev8+9BwmIcNFH+gpYVi2RLCO2lFKnhPuDGgdyFqoiiZ6EaNIr0MADh8mDxnUoiLIyPWw+3cNUtjIxlwUpNj7XaHgRIcTOE3udTU0PmU5pwx/U9mJiWey83n8pI8FDZQ/AGjkUrSoqP7fGtaoZOBojT/xGymmxbHsb2HzEwKvcid6PR6YM4cem6zdc5f6o2wMDoXlxt3T1kZ5YNIyRkDKKlddPWPH6+s55Uobc/9sryHlBTSRKmqkrffoEGOMvL8fPn79xNsoPgDFRV08+hDdCmqvgIJVRfDO9nZ9ONXQm0txTilNiRkPI8rmihKwzzh4dw8sCfOnaPrVWoljXOyoxJxtpYW8rywtL13ERhIc61Uz6Uzzr8Tqflj/QwbKL6O3U4lnRJ672SWbne8UOo9aWykGw9PdN6FK5oomZnU8wUA8vLIYyeF2FhuHtgdNTWUMyaGzvpCEBxuer2eEmTlYjbTSjw5Wf6+jGdJS6PiB7lSAV6Qh8IGiq9TVUUPCa7irBIVDBSTiUI73BjQ+1CqiaLTdfaibN/e83udiYwkg5bDPJ25cIH+D6R2Li4tdVREjR4tKZTbhYYGMlCl9OhitEVCAs25cr2fWVmOefr4cfoNaAw2UHwdo5Gkq/sQaIuyXEBizTl6kZ2tbCVls1EX1JycPquFGA3iiiaKs2jbli3S9tHpKKwgVqsw5A05c4ZydKReQ87hHSXNAevryVgUvWCMd6HTUZJ7W5u8qjidzhHmsdmoyaTGYAPF1ykulpQLkqpG9U5tLVVn8ETnvSjVRElOJlE+gH5zUo2O2FjSYdDg6s0jmM30fUit3gFcLy82m+malSoIx2iP1FSae2tr5e3n/HvRoGgbGyi+TGMjTXYSwjvphSqEd6qqyPsSEaFsf8bzuKKJokT6PjqaKsw4zEOUlpLHU+o1ZDJ11i2SG1oVvZ7DhrHX05uJiFCmiTJihEOU79AhzbWfYAPFlzEYpJUXl5UhrpqaRpkTh1OynFxaWymjnEWevBtXNFFmz3ZUnWzfTgnafREQQDdGbh5IxsKZM9JzTwDXvSei15MlAbyfjAy6/trapO8TEOAIC7a1kZGiIbhJii8jJs71lfjmpF1RkjkHEmsHOmMyUamq0tJkRjtkZjpWU3JKxWNjSYPj0CHKfcrPJyE3KfsVFck/n69RWYnzeY04WJEK635p3ozL1u2BmC22pmkWLF/2neTa7NwyqbqaRN3Y6+n9iB2oq6rkzcMzZgAbN9LzPXuUlam7Cfag+Crt7VReLCWjv5OBoiD/RBAoh2DECK4C8AX6WxMlNpZW8v7ePLC0FAdL4mFp0KOpWdfnA1VVGFh5AgBgiUxBRWiGpP0EgYyfoECBVtyZmZ781IxaBAVRgYLFIm+/sWPJcwoA+/bRvUMjsIHiq1RW0uqor144ZWUdCY2GhBFoilRQHiyGkURlQsa7cUUTZdo0qswBqOmklMkuKIjep+GmZW6nrQ04cwZWkIGv0wkID+v9MaZkA/QChdFKsuchPBx97iM+YqIFTE6rIa0Vpf22GO2RlkYVm3KSzoOCHNo5jY1UcqwROMTjiwgC/cja2/t2mTt1Li5Mm6PsfGYztXaXKsvNaB9nTRQ5uhrh4WSkbN9O+x4+DEBCbkR0NKnKTpnin164igq6jvRUvRMWCtx+XS+VVDYb8NV6eq7XI/fnVyB3gMzKq/wKYPi8PhWmGS9iwADKJyotlda5XmT6dGDbNnq+Zw8wYYJ7xicT9qD4IqWllGwnpemXU3inMFVBeMdqpX+HDpW/L6Nd4uOpdNHVMI846fVFXBzFzv21eWBRkTxv1f79jv4pkyfTjUkOojZSerq8/RhtI2qitLRIS1IXmTTJYaju3StvXzfCBoqvYbcDx47Rv32Is6GkhDQrAJgGjkRjhMxJDqBJUrTaGd9CqSbKhAmO1duePQiwtvT+foAa1LW0+Ge5cXMz9d7pKxzrzPr1judXXin/nGYz5RrJNWwY7ZOaSt5sObkoYWEOr0l1NTWf1ABsoPgaxcWkiyAlruxqcixAyY0jRjjyDhjfQRTvktsrJyjIoaXT2oohJRL7fERE0I3a35oHlpXRdyzVQKmsvBg6A+mejB8v73yCQB6UnBzpzQgZ7yEqihKf5Xo/NSjaxr9OX8JmA44cITefmJXdG075JyUZCgyUhga6qbCb2DdxRRPFKcyTcX6LtH3i4qg82d+aBxYWUt6N1NybDRscRtzixfJzdiwWEudir6fvIupRiSF4KUyd6jBY9+zRxEKBDRRf4vx5imVLyT0pKaFcFQAYORLNEQrUT0wmSqaU2nWV8T4yM0mAT67C5KhRHb+LlLJDCGmV4G6OiPC/5oF1deT1lCozb7UC331HzwMCgMsvl3/OqioS9RIVRBnfY/Bg8q6JeUpSiI6mZpMAJW1roKqODRRfwWol70lQkDSxqx0u9t4RJbKHD2eJbF9GqSaKXt8hfa8XbMgq2dHHDvDP5oEXLjg8GlLYs8eRWzBjhry8FYAq+2w2Tmr3dYKDyfspVxPFWaTt6FF1x6QANlB8hXPnyCsiJfdEEBz5JzodMHOm/PNVV1OCHTcG9G1c0URxCvMMLd4ibZ/YWLpp19fLO5c3IgiULxYSIj0XxDk5dskS+eesuah9IsXLyng36emUfN7UJH0f527YR46oPiS5sIHiC7S2UtJcWJg0TYNLwjuyOqeKVFeT90RKrgvj3ThrosghI6PDgE02nUR4g7HvfaKjKezhD2Ge6mpKkJV6/ZWVOUS0Bg8GcnOVnTM7m25cjG8zcCAtWOV4PwcMIM8LQL83D6s7s1CbL3D2LK06pbptXQ3vNDXRBMcS2f6BqIly9qw80TadjrwoH3wAAMg4twXADb3vIzYPvHDBMVH6KmVllGguNVn1Uu+J3NBqSwu5/jMy5O3HeCd6PS0iz53r2NTcAnzUR7+mUdEzMR5nAACH3tyHkqJRuO55hR3uXYQ9KN5OczN5T6KiKJmxLwTBYaAoDe+YTI4kLMY/UKqJcjEPBQDSz8vozVNYSDdUX8VuJ60JqWqfra3Apk30PDgYuOwy+eesqqJO5cnJfb+X8Q1SU4GYGATp6boVhL57NZ1JdtwTBhXuRpNFZoK8irCB4u0UFFDGdVKStPcXFdHqFKCMbanVAyI2G904RoxgDQV/QqkmSnIyTANHAgDiaoqkJcDGxtJ5ysrkjtJ7MBrJfS71+tuxgyqcAPJ6RkXJP2ddHa2o/bGVgL8SEwNkZmJyigEx0dL6NFmThsASS6HZJFMe4gIaPTZ8DvF4M42NlGkdGyt90nESZ+sQ05JDbS1NqtwY0L8QNVH27ZNdVl6UNR8DjKfoxdatfYcYgoLIS7B/P8XQ+1JE9kbKysjQl/rZ1q1zPFeSHFtfT0YNX7f+R1YWMo8fR+aEBGledgConw58WgpdchKuvM1zasO8BPZm8vNpFSY11KJGeMdspiS7iAj5+zLejUJNlJLM2bDrLk4127dL6/MhNjwTFVN9ifZ28nxKzec5d84hPZ6ZSVVVcjGbHV4wxr8YMoQSseUILi5ZAjz1FPCf/3RWmO1n2EDxVurqyHuSkCA91FJY6BDfGTNGvoaCmGTHGgr+iUJNlNawWFxInkgvjEYyrPsiIIC8J0eOOCrOfIWKCsrjklq9s2GD47mS5FibjfKHsrNZs8gfCQmh0J6c8KzYX83Dvxc2ULyVU6co6U2Ou93V8I7JRDeplBT5+zLejwuaKOfS5ztebJWYLBsTQ96GPXt8K2G2pIQ+l5T+VU1Nju8rLKxzp2ip1NZSGJg1i/yX9HT6vTU3e3oksmADxRupqSE9hAEDpHtPnMM7en1nxUAp2O00WY4cycmx/kxaGlWeyNREKRoyA+0BFxWOd+ygG7QUUlMpsfbYMXnj1CotLVSuLTXUsnWr46Yyb56yfJzqavJ6cljWf0lOpoWlHOl7DcB3Gm8kL4+MFDnx5PPnybUMKAvvWCy0CuMkO/8mPp6SXE0mWbu1B4WhLO2iSmV9vfTckqAgMsQPHXL8fr2Z8nK6SUi5/gShs/bJ4sXyz2e1kpuetU/8G71euSK0B2EDxdswm4ETJ6isWE580FVxNjE5Vo5QF+Ob5OTQJCenUyqA4qHzHS+2bZO+Y0ICeRH27pV9Ts0hlllLqaYoKKC8MYByCJTkflVVkYHH0vbMRU0U1NV5eiSSYQPF2zhxgqxgOR4Q5947SsI7ra20n9jCm/FvUlPJZSzTi1IxeKJDv2PPHnnx8LQ0qmY5cULWOTVFYyN5MqUmxzp7T668Utk5a2vJuJHSAoPxbeLi6DqS2/jTg7CB4k0YDJQcK1cJ8tw5R2+T3Fz5bdbNZopfSmlEyPg+QUGUi1RXJ8tdbA8IciRnt7aSpopUgoNpgj1wQLZhpBnKyhwJq30Q3Frv8HpGRChvSREezmFZxkF2NlV1yVWE9hBsoHgLgkCJgo2N8g0M5/CO3OodQSCPzYgR0kV+GN8nM5N+h7W18vZzrkKRWs0jMmAAGUX79klPstUS586RcSchyTzz7CagrY1eXHYZlYrKRVxYcEsKRmTIEMojk6OJ4kHYQPEWKipIrEmuF8PV6h2LhfJO0tPl7cf4NjExtBqT6y4eOdJRGn/4sPx4eFoa5WYUFMjbz9PU1pKeixRZAEFAdr6LyrGCQB6U4cO56o5xEBYmXxPFg/Av1xsQBBJla22V34Pj7FkSxwKAsWOVhXeysiS5pRk/Y9gw0kaRo1Gi1zsaCNpsnb17UggNpWtg716vmWQBUHhHlJvvgxTjccRYLvYhGjNGmX6JxULXOmufMJeSnq5IEdoTsIHiDZSWAmfOKMvEd6V6x2ol4yg7W/55Gd9n0CD6TYoGsFRcCfMAVMFWXU29eqTI5nsaQaDrNyxMUuXdiLNrHS+UeE8Aqt7JyJC/IGF8H4WK0J6ADRStY7dT7ondLl+k6dLqHbk9FcxmuhkMGSJvP8Y/CAgARo2iUIKcpLuMDEfi5qlTlPwtB52OPAMnT9KNX+uYzaR/IqF6J7S5Bhllu+hFTIz8kCxA+Tk2G1fdMd0TEEBhHi8oN2YDResUF1OYRkkFzZkzjtXtuHHyNUwsFkqO5RJFpifS0+nGKyfcotM5wjwANRCUS3g4hXv27tX+RFtaSkacBCXXrNPfIsB+MQH48suVXXs1NfR/wgsLpifS0ijcKFMRur9hA0XL2GzULE2nI/ewXFwJ79TVkaQ5K1AyvRERQcJtciW0nQ0UJWEegIx2gwE4eFC76pg2Gy0UpOSO2e3ILiDtEwE6ZcqxABkow4aRAccw3REfT15IjYd52EDRMufPk/KkktwT5+qdgAD54R2TiYwTqaJSjP8ydCgZ0I2N0vdJTibvHEBeQlFhVQ56PXkJjh1zKK5qDYOBHlKuo8OHEdlA4a6KwRPl6x0BlPgYGMhVd0zv6HRkxLa1aVoThQ0UrWK1kvckKEiZBkJBgcM6Hj9eXvVPezvlvAwbJv+8jP+RlEQuY7nJsvPnO54r9aJERtINee9eeQZSfyAIZHi1tUnzZjgpx54ZoVA51mx2NIZjmN5ITSVPilwto36EDRStcu4ctWVXqt4qJscC8sXZzGbSa+ASRUYKOh15Q9rb5QmozZrl0OjYtk15Rc7gwVTGe+iQsv3dQXs7GU3790vTPjGb6b0AGsMSUJ46Vdl56+spATIgQNn+jP8QHk7eTw13OJYtDdrW1oa33noLGzduRH19PYYOHYr7778fU6ZM6XPfAwcO4P3338f58+dhs9kwZMgQ3HDDDVisNNbqq7S2kohVWJiyJDm73WGgBAbKD+9YLMCcOco8N4x/kpZGiqXiCl4KMTHAhAmUQ2IyAfn5VBUkl4AA8hgcO0ahDU9Luzc00PV3/Dh5l6RoCG3c2GGg5Q9dAkEfAECm672+njxKvLBgpJKZSfeatjZqJ6ExZHtQXnzxRaxcuRJXXHEFHnnkEej1ejz++OM4duxYr/vt2LEDjz32GKxWK5YtW4b7778fISEheP7557Fy5UrFH8AnOXsWuHBBuZv20vBOZKT0fQWBDKPMTGXnZvyTkBBSiXVF+n7LFuXnj4lxeC3kCMepjdEIrF1Lworp6dKME5uNDBQAdp0eBUMVLtjMZjJOOG+MkcqgQWREazRZVpaBkpeXh02bNuHHP/4xfvrTn2Lp0qV49dVXkZycjNdff73XfT///HMkJCTg1VdfxQ033IDrr78ef//73zF48GCsW7eu1339iuZmsmjF2LoSvvjC8VxueMduo4l1wABl52b8l4wMynWSU/Y7bZrDU7dzJ+VeKSUtjXI+jh5VfgxXOHMG+OYbWlwMHy69imb//o7eKBdSp6EpXEJI6FLsdvrusrMlicExDAC6x2hYE0XWHXDr1q0ICAjA0qVLO7aFhITg6quvxvLly2EwGJCUlNTtvk1NTYiKikKwkxspMDAQMax02JmCAuq745Sger5Eh4PH9ZLm7pSyA1iwZw8AoDksFl9Xz0b7l33Ho5vFRacAOjdPcoxcEhJIHOzkSemaO2FhZKRs20YhiiNHAAnh4m4JDKQw06FD5Enor+7bNhudc88eGsPQofKuH6cF2lmlybE1NeRFYu0TRi5paSQX0NAgz9veD8gyUM6cOYMhQ4Yg4hLBoZEjRwIAzp4926OBMn78eHz00Ud48803sWTJEuh0Onz33XcoKCjAM888o2z0vkZjI63+YmM7JbkdPK6Hpa7vCU9vs2Lirv92vN477j7UtUcAMvIWg4J1no/hM97L8OFAXl63Me3mFuCjbozlQcELMB/bAABFH27Drgsyc6YuEhQETM5NQGZbNYV6rr7a/XH1piby/Bw9Sl7H+Hh5+1dWkscUAJKSUDF4AqAkQlVdDUycqLkbDOMFJCaSYVtcrLnfjywDpaqqCgndxDfFbeZe4lj33HMPKioq8P777+O9994DAISGhuLZZ5/FnDlzej2v2WxGlVOmcXFxsZxhew/5+aSZkJPTabPoOdHpBIT14jUedfQzxDSUAwCMSaNRPnIBwnXSBayC7G2YPCdOmSgcwwA00aWkUC7GxdV8UBCAZkAQdGhq7rrL+fiJmB4chdC2egwu3oO2uha0Byn4DTYDB47rkXlFGlXBnThBN213YTaT5+fsWQqLym1FAQAbNjieL1kC6BQUVlqt5LFhUUVGCaImyunTFCrUUPdrWQZKa2srgrqpKhHDNq29dEcMCgpCamoq5s+fj7lz58Jms+Hrr7/Gc889h1deeQWjR4/ucd/Vq1djxYoVcoaqHIuFwiyDBtFE21/lenV1tApLSOjxBxIWCtx+XQ+Z/SYT8MHH9Fyvx8CnfozbM2WUbTY10TGumCZz4AzjRGAgJctu2NAx2U3OteNAryHKQJRmzcGw/LUIsrViuGk3ioYukHXa5hYygKxWkNckPh44cIBCPe7Ipzp/niT6zWaa3JXki1mtwLff0vPAQGDhQmCLgrFUVdFn7K+QFuN7pKaS5762Vr4X0I3IuqpCQkJg7WaWaWtr6/h7T7z66qvIy8vDm2++Cf3FG/Bll12Gu+++G//4xz/w3//+t8d9ly5dillOyZ7FxcV47rnn5AxdOtXVpMAaEEAX/IgRFPJwd67MqVM00Qwfrmz/t94itzoAXHWV/Cocs5n0JHoI0TGMZDIygLi4jskuM01AZlofJbPD5gBPUhffmY1bMPO6ub2//xI++jKgs3dmwABKWt27lzwTShPOL8Vup4XErosN/VzJ19q1y5GcOGOGtIqf7qipAcaO1WSZKOMlREZSgvWhQ5oyUGT5chISEjqFWkTEbYk9CBJZrVasWbMGM2bM6DBOAEqSnTZtGgoKCro1fEQSExORk5PT8UjvDxnnQYPopr1+PfDJJ8CmTVQh4EqVQU/U1JBmwoABytxrhw87JsyYGOD22+Xtb7dT9VBOjqbce4yXEh1NN245pYsjRzo8HYcOkSfTVdLSyBuan+/6sQAqX966Ffj+e0oqTEtzLZncSTkWV7qYHJudrXwcDAPQwkKnc889TiGy7kbZ2dkoKytD4yWS0nl5eR1/7w6LxQKbzQZbN5r/NpsNdrsddqUqku4iNJRi6Dk59PzYMSrfXbmSJlA11ffy8miiUWK5Wq3A8uWO18uWyU90qqmhFS/372DUIjubkk+au0k66Q693tFA0Flo0BVCQshY2revo4xXMdXVZFDs30+eRle1RkpKqNoJoHmmlxB3rxiN5OVl7RPGVQYPpkWChpRlZRko8+fPh81mw+rVqzu2tbW1Ye3atRg1alRHBY/BYOiUyBoXF4fIyEhs3769k6ekqakJO3fuRFpaWq/hIY+i09HNOzubVkwNDeRNWbmSygPPnnVNGMpspmS+pCRlq7HVq0l3AaCJaoG82D0A+kEOGyapHTzDSCIlheLacvrzqNHh+FKSksi42L9fuZR+cTGwZg1d69nZ6lwnXZJjFVz7dXWUmCs2XWQYVwgKohQDDfXmkRWYHTVqFBYsWIDly5ejtrYWgwcPxvr161FZWYknnnii433PP/88jhw5gm3bqHQwICAAt956K95880089NBDWLx4Mex2O9asWQOTyYSnn35a3U/lLoKDKfQzaBBNDgUF5P1ITKRJIiODdBjkTDYnTpD+g5IEN7OZwk8ArUAffFB+iKalhX6YWVnyz88wPaHXU9jm/HnSCZGSbJ6ZSV684mLKyTIYXM+J0unIUMrLo2PLuZnb7RR63bWLVGqHDVMnBNraSmEigOaUyy5TdpzKSso94bwxRi3EarSmJk+PBICCXjxPPfUUkpKSsGHDBjQ0NCArKwsvvfQSxo8f3+t+d999N1JSUrBq1SqsWLECVqsVQ4cOxbPPPov5zl1NvYXoaHq0t5MHYvt2qhoQw0KpqX2vtAwGmoiVtFUHgLffdnhvliwhgSi5mEy02uXup4zapKdT2LK6Wnolzdy5wPvv0/P164F77nF9HOHhVDq/dy8tBKSIyLW2kvDawYOUvKqmANr27Y7Oy3PmKNOeaGykEJbS0BDDdIdYDVZerol8RNkGSkhICH7605/ipz/9aY/v+cc//tHt9iuuuAJXXHGF3FNqm8BAWsEkJdGkUVJCruC4OFpxZWWRAXLpClIQKK+lsVHZ5Hf0KFUbATTh3nmn/GPY7XT+uXO5+ymjPmFh5EXZvl26gTJvHvDhh/Tb/OILYNIkYMwY18eSkkI6D/v3k8eiNy9nbS2N+dQpWmioLV6lRnJsRQV5g3hhwaiJXk9hnrNnlen6qD0cTw/Ap4iIoDCPKHW9bx/w2WfA559TKMe530FFBU2YSkI7lybG3n23sknUYqHVISvHMu4iK8shoy2FgQOBW2+l53Y78PLL6lT06PW0EDhxgsJOPVFWRvkmBQV0HattnJw7R9c9QN+NU0sLyTQ30+cZPZpbUjDqI2qiaKA/Dxso7iAggPJShg+nFY7JRAm1zuXKR4+SGzkqSv7xv/kGKC2l58OHA5dfrmycZjNNwlL7pjCMXAYMoFCPwSB9n5tuotwKgMJDr76qPMHVGbEB5549jhCLiCBQVc2aNQ7xNXfoijh7T5Qmx1ZUUL4O991h3EF0NC20pVbguRE2UNxNaChZpMOHU8z46FHgyy8paU+J96SqCvj4omKsTqcsMRYgUTe9XlneCsNIRaejUITYbVcKAQHAr37lEEc8eBD46it1xjN4MFW9HTxIRglA18KuXaTqqteTZ8Md8femJkd1UlhY56olqbS20nc5ZowmcgQYH2XoUPeLk0qAf+H9hV7vyEtJTSXPipJyxXfecVi2ixcrcxED5NVJSqIJm2HcSWoqhW7kCLfFx5ORInoY3ntPHcG1gAD6zR87RvlidXVkmOzaRd4epQnrUtiyxZHUPn++shh/ZSV5pFiziHEnoiaKh2EDxRMEBysK7QysOEbNyQDaX0liLEArx/p6SmBUSwKcYXoiOBgYNYpySQTpzSsxYQJw44303GajfBSpuSy9ER1NXoi9eymkk5dHIRN3hjoFgcK8IkuWyD+G1UoelDFjOKmdcS8hIVSN2k3vvf6EDRQvQWdvx+Td/3FsuOsu5RNqXR3ty6swpr8QDQC5Ca+3306GNECib//4hzwjpydSU4HCQsqNGTaMJmR3UlBA+i4Ahbzk9soCaKxDhijbl2HkMmYMLRI8CBsoXsLo018jtvbiBJedDbhSrm0y0SQXF6fO4BimL0Q1ZpNJ3n4BAcCvf+3wOO7ZQ14PVxG7Lg8d2j/eCFe9J+3tlNg7dqzHV7WMnxAR4d6QpwTYQPECQpuqMfH4B44NDz2kfFIVExW5uRjT34hKrK2t8vYbMAB49FHH67ffpnJdV+mvEt36eodmUWQk4NSZXTJGI90sWPGZ8SPYQPECJux/G8HtFxNjr7iCKoKUYjbThM8likx/M3gwPeR6UQBg6lTg2mvpeXs78Je/aEaOu0++/96xMFi4UH44yWajsOy4ce4PRTGMhmADReucPInMc5sBAG3BESTK5goWC7m23aHxwDC9ERBAybINDcp0Te6+2+H5q6gA/vUvdfJR3IkgdNY+WbxY/jFMJqqCYkkAxs9gA0XL2GzAf//b8fLopLtdq02vrycXMyfHMp5C7M9TUyN/36Ag4PHHHeW527dTibCWOX7c0W08N1e+59JuJ+n93FxNSI8zTH/CBoqWWbeOVGcBmOOG4myOwr4dIkYj3SASElwfG8MoITKSQpRyNFGcSU4GHn7Y8Xr5ckd1jBZxte9OVRVdr0r1jhjGi2EDRavU1FDTtIvsmvxTCHoXqg3a22k1NmwY9+9gPEt2NiksK80hmT3bcbNvawP+8hcEWFvUG59a1NQAu3fT85gYYNo0efsLAhlyo0cra4nBMF4OGyha5b33OvqFnBt2OYyJI107nrgSS01VYXAM4wJJSfQ7lNOf51Luu4/6hQBAaSkm7/lPr2/3CN99R2FagJLb5ZYH19RQeXZOjvpjYxgvgA0ULZKfT00FASAiAkcm3+v6MWtqSCAqNNT1YzGMK+j1lKjd1ua4gcslOJjyUS7+noee+RbZhd+rOEgXOXMG+Ppreq7TAYsWyT+GyUTfU2ysqkNjGG+BDRStYbMB/3FaDd5xB1rDYl07ZmMjJdiJK06G8TRpaVTurjQXBaCE05/8pOPlrAP/RJTlggqDcwGbjbqWP/44JbcCwOTJ8gWv7HbK1xkxQvUhMoy3wI1YtMaGDcD58/Q8I4Ni7V+7eEyjkY41cKCLB2IYlQgNJe/A1q0U8lHKggXU+G/TJgS1t2D25heB2/7qljL68yU6HDyu77Epc0R9JWZs/RsGGvM6tpkTh2N71sNo/lJa/lizmEpjt5Nxkpjo4qgZxnthA0VLWCzA++87XruiGCtis5ErPSeHk2MZbZGVBRw86OgNpZQHH4Tl4GnE1JYirrqQlGYfeki9cV7k4HE9LHXdXEOCgGGFmzDj4Osdgop2nR5HRt2Cw2Nug6APBJrlnSsoUGDvCeP3sIGiJZwSY7FgAYlauUp1NSfHMtokMZGMlFOnXDNQQkOxY8FvsXj1LxFoawPWriXdECWS8r0gek50OgFhF1O5glvrMWXnP5FetKPjfQ2RSdg179cwJ41CGABAnphckNCGydPCXPMsMYwPwAaKVigocIhOhYcDy5apc9yaGmD6dBZ5YrTJ8OHAyZN093ehCZ4lLgO7Jz2EOfv+QRv+3/8j5VU3NDsLCwVuv84GHD0KvPoqVciJLFyIyAcewKLwcAAKEoCbmigke/X17PFk/B5OknXm5Engz38GSkv7V0L7EsVY3HabOp2Gm5ooFs/t2RmtMmQIkJKirD/PJRRkLUZR1jx60dQE/PWv6DFhxAX0NiuFkX73O4dxEhkJPPEENTV0ZTFQUUFepUGD1Bksw3gxbKA488EHpEz56qsUw37/faCw0P3GyrffAmfP0vP0dOAHP1DnuGYzNWfzcMtshumRoCBKlq2rc/060+mwb+bDZPAAVOr73nuuj9GJuNoiLF79S+DLLx0bx40jj42rIaWWixmyY8aw94RhwCGeznz+ueN5RQXw6af0SE2lyWfOHPVzOerqOifGPvig64mxAFUBNDdTop2e7VBGw2RmktZHba3LnsP24HAq8f3Nb0g9+auvKB9l6lTXxmi3I+fkNxi3/x0E2i96ZQIDgXvuAa65Rp1rrKKCvgvOF2MYAOxB6czOncDzz5MUt/OEU1oKfPwx8LOfAT//ObByJVBers4533+fmvgBwLx5tHpSA6ORmrKlpalzPIZxFzEx1ILBFU0UZ4YOBX70I8fr115zLYRUVQX88Y+YtHe5wzhJTwdeeQW49lp1jJPWVgr1jhnDCwqGuQh7UJxJTMSX1TPQNHMMQifXIbVoF9ILt2Gg4aTjPcXF9PjgA1QnDEVx5lyUD5+DUTMHIDNNpov6zBlg40Z6HhamXmJsczMZPZdfTrFxhtE62dmkZ9LSoo7a8dVX0/H27KFr4eWXgRdekO+d3LUL+Ne/HIsIAPmjr8OIP96prtaKwUCeE+40zjAdsIFyCU0N7WiyBqFJl4DqzGtwNPMahDeZkVmyA1kl25BUld/x3viqc4ivOocJB95B1Xc5wDWzKRQkRVzJbqfEWDHufuut6nQZttuBkhJaiY0e7frxGKY/GDSI8qUqK9Xx+ul0wCOPkOih0UilzB99BNx1l7T9m5qAN9+kfjripvAEbJ36S9RkTcCIYIUS/d1htZIHJTeXwkYMwwBgA6UL4ZGB5IFwnijCElCYcC0KJ1yL8AYj0gu3I+38NiRUne14S4KxAHirAHjrLdIvmX3RWOkppv7dd8Dp0/Q8NZXi2GpQXk4S4tOnq5PLwjD9gdifp7CQQh1q/HYjI4Ff/xp48kk65qpVZLhPmND7fvn5FL6prHRsmzkTazN+jlohBuEydU36xGCgxF6utmOYTrCBcgnX/SwD+OILiol3SwKA6+hRXo4jb+xC6rntSKgtdLwlLw/Iy4P9jTdhTB6Dksy5KM2YidbQGAAk7vSDVe9BdGR/N+YnMH4T0uOYOuSv+6K+nlRjFy7kBmOM95GeTnlT1dVkZKvBiBHkNVmxgryVr7xCOSnx8V3fK/bRWbmSPJEAhV5//GPgssvQ9pV8Rdg+sdnIWzNvnlvk+RnGm2EDxRUGDcKZybfgwPBbEWspQWbJdmSVbENcXSkAQC/YkVxxDMkVxzB5979RnjQe59PmIsmch9DWOgDAubS5KIodL2ni61XHymYDysqoWqFH44phNExEBBkUu3apZ6AAwHXXAcePk6y+xUJGyh//2NlLU15O20WvJkBj+eUvHWXL7sBgIMXYrCz3nYNhvBQ2UFxkcq4dB47r0RaWioLk21Ew5TbE1BQjvXAb0gu3I6qOqn30gh1DKg9hSOWhjn2tgaE4NuM+hIf17TIOCqJz9UhJCcXup0xhDQXGexk6FDh8GGhoUC/BW68HfvELElGrrqbk2U8/pbwvQaBw6xtvOHRI9Hr62003uTdMarORzMD06eokBjOMj8EGiotkpgnITLs0YS4VwB2AcDsl6W3fDuzYQcl6TgTdcQt+eEMcFEliO1NTQxPpzJm0CmUYb2XgQAr1nD+vbgVaTAzlozz9NIVvPv6YDPqtW4Hdux3vS0kBfvUraq7pbsxm+rzZ2e4/F8N4IWyguBOdjlaEQ4eSoNPp02SoHDlCCXFLl7p+DquV3MRz57LmCeP96HRkHBQUkNCamlUtY8aQZ+Sjj8hI+fOfO/990SLgvvso78Td2O3kzVm4kBcVDNMDbKD0F+LEq/bKrKiIck76qkxgGG8hLY08GaWl6le23HQTcOIEhXlEoqJIgHH6dHXP1Rtil3HOF2OYHmHJQm/GaKTJdcYMrgBgfIeQECrTDwnpXOqrBgEBFMIZOJBeT5hAfXT60zgRBArvjB4NREf333kZxstgD4q30tJCvUsuv5yqABjGl0hLo9LbjRvJ29BdWbBS4uOBf/7T0Uyzv5PKa2ooJ6Y/8lwYxothA8UbsdtJbn/MGPV69zCM1sjJoWqerVvJQyghaba5BfjoSymVNxH0OCB9OJL1iPrCaCSPjYuNERnG12EDxRthtVjGH9DpgIkTgcZGYN8+ICOjx3LcoCAAzYAg6NCktphad+dSisVChtaIEaqNh2F8FTZQvI2GBurbwWqxjD+g11OOVXMzJbZmZ3drIYh6RFare4fTpx5RX1RWktGlphAdw/gobKB4E6Ja7JQpnP3P+A/BwcCcOSQJf/48/fb1nfP7u9cj0hj19VTCPGqUp0fCMF4BV/F4EyUlwJAhrBbL+B8REcCCBVR+XFjo6ALuTVRWkgeIk9oZRhJsoHgLolrsrFks7MT4J3FxwGWXUWn9hQueHo08mppIdG70aF5cMIxE2EDxBkS12MmTWS2W8W9SUsiTIgiAyeTp0UinooIaAg4a5OmRMIzXwAaKN1BURK7h8eM9PRKG8TxZWSTkVldHVTFaR2xCOGZMl9wZhmF6hpNktY6oFjtzJilrMgwD5OZS2GTHDiqtCQ/39Ih6pqKCGiCmpnp6JAzjVbA5r2VEtdipUzmxjmGc0eko5DlhAokWtrV5ekTd09ZGTQ9zc1mziGFkwgaKVhHVYkeNosQ6hmE6ExhISeOjRlH5sU2DZcYVFeQ5ycjw9EgYxutgA0WrOKvFqtlynmF8idBQ6tmTng6cO0eGvRZobQXOniWvyfjxfA0zjALYQNEiolos9+tgmL6JiqLy4wEDyOvoSex2WlyUlABDhwLXXsuiigyjEDZQtIbNBpSWAuPG8cTGMFJJTKTy49BQMhA8gcUCFBTQGJYsAa66isuKGcYF2EDRGiUlFLOeOpVLEhlGDqmpFO5pawOqqvrvvGI4x2Ihr+f111NeDId1GMYl+ArSEqJa7MyZrBbLMErIyaHux1u2UA+fqCj3nctuJ/n6hgbSKZo8GRg82H3nYxg/gw2U7hAEauwVGdl/stRWK2mezJ5NCX8Mwyhj/HgyUvbsoWspLEz9c9TVUShp4EC6ZnNy2GPCMCrDV9SlxMQAmZlkLJSX06QTGwtER3fb5l01iopIIXPCBPedg2H8Ab2eQi3NzcCRI+TdUOvabWujHLGgIGDaNLpe3emlYRg/hg2US4mPB374QxJIMxppMiotpeoAm40mo5gYUq5Uy7tiMpG3ZtYsVotlGDUICiLPRlMT5YdkZ7smlGa3Uz+sujpHOGfIEPXGyzBMF9hA6Q6djsp74+LIddvSQkZEZSW1ejebgbIyinHHxNBD6eTX0gJUVwOXX85qsQyjJuHhwPz55EkpLKSyXyWLCudwzpVXAsOHu9ebyjAMADZQpBEaShUCqanApEmUzGowkGelrIxULAWhs3dFCoJAnpnRo6mRGMMw6hIbS+XH69bR9SqnG7hzOGfqVArnREe7bagMw3SGDRS56PVAQgI9Ro0iF7LR2Nm70txMoZqYGJrQevKusFosw7if5GTypKxfTwuLvjyVdjtd0xYL5YVNmULhnP5KmGcYBgAbKK4THk59NjIyaCKrqqLJraiI+nCcO0cTW3Q0rebEHJOGBgrvLFjAarEM424yM4G5c4HvviMPaE/XnBjOGTCAxNZycjicwzAegg0UNQkIoDj1wIEUsmloIGPlwgUyWMrLSdQpPJzKIKdMYbVYhukvRo2ia3LHDsofc9YaslopnBMQQNflhAnkAWUYxmOwgeJOIiPpkZUFzJhBibZGI4WCbDZWi2WY/kSno+qb5mZg3z66LoODKewjhnMmT6ZcMw7nMIzHYQOlvwgMBFJS6DFuHNDeznknDNPfBATQYqGxETh5kgyRhARg0SJg5EgO5zCMhuA7pKdg44RhPENICPXssVopjDNhAuWHMQyjKfguyTCM/xEZCVxzjWvibQzDuBVOgGAYxj9h44RhNI1sD0pbWxveeustbNy4EfX19Rg6dCjuv/9+TJkyRdL+mzZtwqpVq3Du3DkEBgYiPT0d999/PyZNmiR78AzDMAzD+CayDZQXX3wRW7ZswU033YQhQ4Zg3bp1ePzxx/Haa69h7Nixve779ttv491338X8+fOxZMkStLe3o7CwEGazWfEHYBiGYRjG95BloOTl5WHTpk34yU9+gttuuw0AsHjxYixbtgyvv/46Xn/99R73PXnyJN5991387Gc/w8033+zaqBmGYRiG8Wlk5aBs3boVAQEBWLp0ace2kJAQXH311Th58iQMBkOP+3766aeIj4/HjTfeCEEQ0NTUpHzUDMMwDMP4NLI8KGfOnMGQIUMQ4azACGDkyJEAgLNnzyKphz4XBw8exJgxY7Bq1Sq8//77sFgsiI+Px1133YUbbrih1/OazWZUVVV1vC4uLpYzbIZhGIZhvAxZBkpVVRUSEhK6bBe39ZRLUl9fD4vFghMnTuDQoUNYtmwZkpKSsG7dOrz22msIDAzEtdde2+N5V69ejRUrVsgZKsMwDMMwXowsA6W1tRVB3SgtBgcHd/y9O8RwjsViwR/+8AcsXLgQADB//nwsW7YM7733Xq8GytKlSzFr1qyO18XFxXjuuefkDJ1hGIZhGC9CloESEhICq9XaZXtbW1vH33vaDwACAwMxf/78ju16vR6XXXYZ3n77bRgMhh7DQ4mJiUhMTJQzVIZhGIZhvBhZSbIJCQmdckFExG09GRHR0dEIDg5GdHQ0Ai4RR4q72Pa8vr5ezlAYhmEYhvFhZBko2dnZKCsrQ2NjY6fteXl5HX/v9iR6PYYNGwaLxdLFAyPmrcRyLwyGYRiGYS4iy0CZP38+bDYbVq9e3bGtra0Na9euxahRozpCNAaDoUulzYIFC2Cz2bB+/fqOba2trfj222+RkZHBIRyGYRiGYTqQlYMyatQoLFiwAMuXL0dtbS0GDx6M9evXo7KyEk888UTH+55//nkcOXIE27Zt69h27bXXYs2aNfj73/+O0tJSJCUlYcOGDTAYDHjxxRfV+0QMwzAMw3g9sqXun3rqqQ7joqGhAVlZWXjppZcwfvz4XvcLCQnBq6++itdffx1r165FS0sLsrOz8dJLL2Hq1KlKx88wDMMwjA+iEwRB8PQg5HLs2DE8/PDDePrpp5Genu7p4TAMwzAMI4P09HSEhob2+h7ZHhQtUFlZCQCshcIwDMMwXsgbb7yBnJycXt/jlR6U2tpa7Nu3DykpKR0ica4iir+xV0Ya/H1Jh78refD3JQ/+vuTB35d03Pld+awHJTY2FosWLXLLsdPT0/u06hgH/H1Jh78refD3JQ/+vuTB35d0PPVdySozZhiGYRiG6Q/YQGEYhmEYRnOwgXKRhIQELFu2rNtuzUxX+PuSDn9X8uDvSx78fcmDvy/pePq78sokWYZhGIZhfBv2oDAMwzAMoznYQGEYhmEYRnOwgcIwDMMwjOZgA4VhGIZhGM3hlUJt7ubIkSP4+OOPcebMGVgsFkRGRiI7Oxv33HMPcnNzPT08zXHw4EF8++23OHbsGEwmE+Lj4zFx4kTcd999SExM9PTwNIfZbMaqVatw6tQp5Ofno7m5Ga+99homTJjg6aF5lLa2Nrz11lvYuHEj6uvrMXToUNx///2YMmWKp4emSZqamvDxxx8jLy8Pp06dQn19PZ588klceeWVnh6a5jh16hTWr1+Pw4cPo7KyEtHR0Rg9ejTuv/9+pKamenp4mqKwsBDvvPMOCgoKUF1djdDQUKSnp+O2227DrFmz+nUs7EHphrKyMuj1elx77bX4xS9+gVtuuQXV1dX4+c9/jr1793p6eJrjP//5Dw4fPow5c+bg0UcfxcKFC7F582bcf//9qKqq8vTwNEdpaSk++ugjmEwmZGVleXo4muHFF1/EypUrccUVV+CRRx6BXq/H448/jmPHjnl6aJrEYrFgxYoVKC4uRnZ2tqeHo2k++ugjbN26FZMmTcIjjzyCa665BkePHsX999+P8+fPe3p4mqKyshJNTU1YsmQJHnnkEdx9990AgCeffBKrV6/u38EIjCSam5uFa6+9Vnjsscc8PRTNcfjwYcFms3XZNmfOHGH58uUeGpV2aWxsFCwWiyAIgrB582Zhzpw5wqFDhzw8Ks9y8uRJYc6cOcJHH33Usa2lpUW49dZbhYceesiDI9Mura2tgtlsFgRBEE6dOiXMmTNHWLt2rYdHpU2OHTsmtLW1ddpWUlIiLFy4UHj22Wc9NCrvob29Xbj33nuFO+64o1/Pyx4UiYSGhiImJgYNDQ2eHormGD9+PPR6fZdt0dHRKC4u9tCotEt4eDiio6M9PQxNsXXrVgQEBGDp0qUd20JCQnD11Vfj5MmTMBgMHhydNgkODmaxMYnk5uYiKCio07bU1FRkZGTwHCWBgIAADBw4sN/vf5yD0guNjY2wWq2wWCzYsGEDCgsLcdddd3l6WF5BU1MTmpubERMT4+mhMF7AmTNnMGTIEERERHTaPnLkSADA2bNnkZSU5ImhMT6KIAioqalBRkaGp4eiSZqbm9Ha2orGxkbs3LkTe/fuxYIFC/p1DGyg9MIf/vAH7Nu3DwAQFBSEpUuXdsTjmN759NNPYbVacdlll3l6KIwXUFVV1a03QNxmNpv7e0iMj/Ptt9/CZDLhRz/6kaeHokn+9a9/deSc6PV6zJ07F7/85S/7dQw+b6DY7XZYrVZJ7w0ODoZOp+t4/eCDD+KWW26B0WjE+vXr0d7eDpvN5q6hagJXvi+RI0eOYMWKFViwYAEmTZqk9hA1hRrfFwO0trZ2ccED9J2Jf2cYtSguLsbf//53jB49GkuWLPH0cDTJTTfdhPnz58NsNmPz5s2w2WyS5zq18HkD5ejRo3j00Uclvff9999Henp6x+thw4Z1PF+0aBHuv/9+vPjii/jTn/6k+ji1givfF0AX/tNPP42srCw88cQT7hiipnD1+2KIkJCQbie/tra2jr8zjBpUVVXhiSeeQEREBP70pz8hICDA00PSJOnp6R3z1ZIlS/CrX/0Kv/3tb/Hf//633xZaPm+gpKWl4cknn5T03t4SzoKCgjBr1ix8+OGHaG1t9dkJ05Xvy2Aw4LHHHkNERAReeuklhIeHu2OImkKt35e/k5CQAJPJ1GW7WKbOejqMGjQ0NODxxx9HQ0MD/vnPf/LvSgbz58/Hyy+/jNLSUqSlpfXLOX3eQElISFBNuKi1tRWCIKCpqclnDRSl35fFYsFjjz0Gq9WKv//9735z4av5+/JnsrOzcfjwYTQ2NnZKlM3Ly+v4O8O4QmtrK37729+itLQUr7zyCifHykQMs/ZnJQ+XGXdDTU1Nl2319fXYunUrBg4ciLi4OA+MSrs0Nzfj8ccfh9lsxl/+8hdWZmRkM3/+fNhstk5CUG1tbVi7di1GjRrFFTyMS9hsNjzzzDM4efIk/vjHP2LMmDGeHpJm6e7+197ejg0bNiAkJKRfDTuf96Ao4Te/+Q0GDBiAUaNGIS4uDgaDAWvXrkVVVRWeeeYZTw9Pc/zpT3/CqVOncNVVV6G4uLiTrkBYWBjmzJnjwdFpk3fffRcAUFRUBADYsGFDh2LqPffc46lheYxRo0ZhwYIFWL58OWprazF48GCsX78elZWVfpHLpJTPPvsMDQ0NHaGwnTt3wmg0AgBuuOEGREZGenJ4muFf//oXdu7ciZkzZ6K+vh4bN27s9PdFixZ5aGTa4+WXX0ZjYyPGjRuHAQMGoKqqCt9++y1KSkrws5/9rF9D9zpBEIR+O5uX8Pnnn+P7779HcXExGhoaEBUVhVGjRuG2227DuHHjPD08zXHzzTejsrKy278lJydj5cqV/Twi7TN37twe/7Zt27Z+HIl2aG1t7ejF09DQgKysLNx///2YOnWqp4emWXq79j755BOkpKT084i0ySOPPIIjR470+Hd/vea6Y9OmTVizZg3Onz8Pi8WC8PBw5OTk4Prrr8fs2bP7dSxsoDAMwzAMozk4B4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMAzDMIzmYAOFYVRm3bp1mDt3LtatW+fpoUji8OHDmDt3Lt5++223nWPu3Ll45JFH3HZ8d/PII4/0qv7rCuL3Lz4eeught5xHCm+//Tbmzp2Lw4cPd2wrLi7uNL6bb77ZY+Nj/AvuxcP4PX/+85+xdu1aREdH4/PPP0dwcLCnh6Q64k2F2w5ol/Hjx2P8+PEYOHCgp4fSiZiYGCxbtgwAsGrVKs8OhvEr2EBh/JqmpiZs3rwZOp0OdXV12L59OxYuXOjSMefMmYNRo0YhISFBpVEy/sD48ePxox/9yNPD6EJsbGzHuNavX+/h0TD+BId4GL/m+++/R3NzM2666Sbo9XqsWbPG5WNGRkYiPT2dO8kyDMO4AHtQGL9mzZo1CAgIwO23345z587h0KFDqKysRHJycqf3vf3221ixYkWPx3Hu2rxu3Tq8+OKLePLJJ3HllVd2vGfu3LkYP348fve73+H111/H/v370dbWhnHjxuEXv/gFBg0ahKKiIixfvhxHjx5Fe3s7pk6dil/+8peIj4/vOM7hw4fx6KOPYtmyZV1W3BUVFbjllluwZMkSPPXUUx2vnccg0t3++fn5WL58OU6ePAm9Xo+JEyfi4Ycf7tIVd9u2bdi8eTPy8/NhNpsRGBiIoUOH4sYbb8T8+fN7/9L7oKGhAV999RX27NmDsrIyWCwWxMTEYPLkyVi2bBkGDx7c6f3i/81rr70Gs9mM//3vfygpKUFkZCQWLFiAhx56CCEhIZ32aW9vx8cff4xvvvkGZrMZAwYMwNVXX43LLrsMt956a8f3J4Xt27fjs88+w+nTp9HW1obBgwdjyZIluPnmmxEQEODSdwEAL7zwAtavX4+PP/4Y27Ztw5o1a1BeXo6FCxfiqaeegtlsxurVq7Fv3z6Ul5ejsbERCQkJmD59Ou69917ExcV1OabBYMB//vMf7Nu3D+3t7Rg+fDjuu+8+l8fKMGrCBgrjtxQVFeHkyZOYPn064uPjsXjxYhw8eBBr167tcuOeMGFCt8coLi7G5s2bu9wAe6K+vh4/+9nPkJCQgMWLF6OsrAy7du3Cr371K7zwwgt4+OGHkZOTg6uuugqnT5/G1q1bUVdXh9dee03RZ4yMjMSyZcs6cgduvPHGHj9Tfn4+/ve//2HChAlYunQpzpw5g+3bt+P8+fNYsWJFp8+4fPlyBAYGIjc3FwkJCaitrcXOnTvx+9//Ho8++ihuuOEGReMF6Dt9++23MWHCBMyZMwdhYWEoLi7Gd999h927d+PNN9/sYkACwOeff459+/Zh1qxZmDhxIvbu3YvPPvsMFosFv//97zu996WXXsKGDRswaNAgXHfddbBarVi5ciVOnDgha6z//e9/8eGHH2LAgAGYO3cuIiMjcezYMbz++us4deoUnn32WcXfw6W8+uqryMvLw4wZMzBz5swOw+Po0aP45JNPMHHiRIwcORKBgYE4c+YMvvzyS+zbtw9vvvlmJ2+e2WzGT3/6U5hMJkydOhXDhw9HcXExHnvssR5/5wzjCdhAYfyWb775BgCwePFiAORd+Pvf/45169Zh2bJl0OsdEdAJEyZ0mbxramrw4IMPIjg4GI8//rikc547dw4333wzHn744Y5tr7zyCr788ks8/PDDuPfee3HTTTcBAARBwBNPPIE9e/agoKAAOTk5sj9jVFQUfvSjH3XkDvSW47Bnzx784Q9/6JSD8/zzz2PDhg3YsWNHp+1/+ctfMGjQoE77NzU14ac//SneeustXH311QgNDZU9XgBIT0/HF198gejo6E7bDx06hF/96ld47733uv2+Dx48iDfeeANpaWkAgAceeAA/+tGP8P333+OnP/0pEhMTO963YcMGDBs2DP/61786xnnXXXfh/vvvlzzO/fv348MPP8TUqVPxpz/9CWFhYQDo/+2VV17BV199hS1btrjsURI5d+4c3nrrLSQlJXXaPnHiRHzxxRcIDw/vtH39+vV44YUX8Pnnn+Puu+/u2L58+XKYTCbcf//9nbavXr0aL7/8sipjZRg14BwUxi9pb2/Hxo0bERERgdmzZwMAwsPDMWfOHBgMBhw4cKDX/VtbW/HUU0+hsrISv/3tb5GbmyvpvGFhYV1uguKNPyYmppOHQ6fTdfzt3Llzkj+bUsaNG9clQfiqq64CAJw6darT9kuNE4C+vyuvvBINDQ3Iz89XPI7IyMguxglAN+KMjIwe/29uvPHGDuMEAEJCQrBw4ULY7XYUFBR0bN+4cSMA4J577ulkRCUmJnb6/vvi888/BwD85je/6TBOAPp/e/DBB6HT6bBp0ybJx+uL2267rYtxAgBxcXFdjBOADO+IiAgcPHiwY5vVasX333+PuLi4TqE/APjBD36AIUOGqDZehnEV9qAwfsmOHTtQW1uLq6++ulPoYvHixdi4cSPWrFmDqVOndruvIAh44YUXcPLkSdx77724/PLLJZ93yJAhXTwLYrVPVlYWdDpdt38zm82Sz6GU7jw0AwYMAEB5Ic7U1NTgww8/xJ49e2AwGNDa2trp766O9/Dhw/j000+Rl5cHi8UCm83W8begoKBu9xk+fHiXbWLJrvP4z549CwAYO3Zsl/ePGTNG8hjz8vIQFhbWY2J1SEgISkpKJB+vL0aOHNnj37Zu3YrVq1fj9OnTaGho6PR9Of9flJSUoK2tDRMnTuwSltTr9cjNzUVZWZlqY2YYV2ADhfFLxJuKGN4RmTRpEgYMGICdO3eirq6u25X8m2++ic2bN+Pyyy/HvffeK+u8ERERXbaJiZS9/a29vV3WeZTQ3SpcPL/dbu/YVldXhx//+McwGAzIzc3F5MmTERkZCb1ej7Nnz2LHjh2wWq2Kx7F582Y888wzCAsLw9SpU5GcnNxh1K1fvx6VlZXd7tfb9+c8/qamJuj1esTExHR5v3Mycl/U1dXBZrP1mjzd3Nws+Xh90V2yKwB8/PHH+Pe//43Y2FhMmTIFAwYM6DA+Vq1a1en/orGxsddj9bSdYTwBGyiM32EwGLB//34A6FXddOPGjV1c/uvWrcP777+P3Nxc/Pa3v3XrOHtC9LI4r5JFxBuQO1mzZg0MBgPuu+8+3HPPPZ3+9sEHH2DHjh0uHf+dd95BcHAw3njjDaSmpnb62/fff+/SsQEyxOx2OywWC2JjYzv9rbq6WvJxIiIioNPp8PXXX7s8Jilc6l0DyHB97733kJCQgLfffruTgSEIAv73v/91er9oxNXU1HR7jp62M4wnYAOF8TvWr18Pu92OsWPHdrkBAnTjX79+PdasWdPJQDly5AhefvllDBo0CM8//7zHFGejoqIAdB9GOXPmTLf76PV6l7wazly4cAEAOnJ3nDl27JjLxy8vL0dGRkaX/xuz2Yzy8nKXj5+dnY0zZ87g+PHjmDNnTqe/yaniGTlyJPbu3YvS0tJuf0f9gcViQUNDAyZOnNjF+5Gfn98l9Jaamorg4GAUFBSgtbW1U5jHbrfLrmJiGHfCBgrjVwiCgLVr10Kn0+Gpp57qNtkTAEpLS3Hy5Enk5+djxIgRKC0txdNPP42QkBD8+c9/7rLy7k/S0tIQHh7eJQxVXV2N9957r9t9oqOjcf78+S43JSWIJb7Hjx/H0KFDO7Z/++232LNnj0vHBoCkpCRcuHAB1dXVHSGX1v/f3t2DpNqGcQD/vyerRayg0qaCPqglLSyx4qEvm6WPoUnlCWxoamhobygoyKGWhj4oEEKiNAmKKMgyzMgIImqQiMBwSfs4hHSGlyP1Zr3UKc8D/X+zcF8+Ln+f677u++dPjIyMfEqry2AwwO12Y3JyEtXV1fHnEQ6H33WUe3t7O7xeLwYHBzEwMPCiZRQOhxGJRFBQUPDHNb8mKysL6enpODk5wf39fbwVFolEEo6mp6WloaGhASsrK7Db7c+meJxOJ87Pz7+sVqL3YkChb8Xv9+Py8hIajebVcAL8O71ydHQEl8uF0tJS2Gw2XF9fQ6vVJmwzyOXypF2ilpqaira2NszMzKCrqwu1tbW4u7vD1tYWNBpN/A3HUxUVFTg+PkZfXx/Ky8shk8mgVquh0WjevX5LSwvm5uYwOjqK/f19KJVKnJ6ewu/3QxAEbG5u/tH3a21txejoKERRRH19PWKxWLwlV1RUFN/k+lFarRbNzc1YXV2F2WxGXV0dHh4esL6+jrKyMng8nmcj5q/R6XQwmUyYmppCZ2cndDodlEolrq+vcXFxgUAgAFEUvzSg/PjxA0ajEXa7HRaLBbW1tbi5uYHX64VSqYyPVj9ltVrh9/sxMTGBw8NDFBcXIxgMYmdnB1VVVfFnTfS3MaDQt/J7c+zTE14TaWxshM1mw9raGnp6euKvyn0+X8IxV5VKldRbXkVRhEwmg8vlwuLiIlQqFUwmE2pqarCxsfHi8yaTCdFoFB6PB4FAALFYDGaz+UMBJTc3FzabDePj4/D5fIjFYigpKcHw8DBCodCnBBSZTAaHw4GlpSXI5XLo9XpYrdYXB659VH9/P/Lz87G8vAyHw4GcnBx0dHSgsrISHo8n4YbhRERRhFqtxvz8PPb29hCNRqFQKJCXlwez2QyDwfAp9b7FarVCoVDA7XZjYWEBWVlZaGpqgsViiV/y91R2djbGxsYwPj6O3d1dHBwcxH8/v9/PgEKS8c/j4+Pj3y6CiEgKnE4nhoaG0NvbC6PRmJQ137q6QGp4KzYlEw9qI6JvJxwO47//za6urjA9PY2UlBTo9fqk1zQ5OQlBENDd3Z30td8SDAYhCAIEQXh1xJvoK7DFQ0TfzuzsLLa3t6FWq5GZmYlQKASPx4Pb21tYLJaEJ7Z+FZVK9awV8/twOanIyMh4Vh9v6aZkYYuHiL4dr9cLu92Os7MzRCIRpKWlobCwEEajMSn7Rojo/zGgEBERkeRwDwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSQ4DChEREUnOL36X5pm0Zo+iAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvPklEQVR4nOydd3wb9f3/X5K894rtxNtx4iRk7z0IJCFASNmrEGigFFoo5VtS+LWFUiilg9EBNIwEKJQRAgSyICE7ZO+9PGNbtrxt2bIs3e+Pd86S43V3Okkn+f18PPSwdNZ97mNZd/f+vMfrrRMEQQDDMAzDMIyG0Ht7AgzDMAzDMJfDBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMAzDMIzmYAOFYRiGYRjNwQYKw2iczZs3Q6fT4dlnn3V5LJ1Oh5kzZ7o8TneoOV9/YNGiRdDpdMjPz5e8T2ZmJjIzM902J4bxBdhAYZjL0Ol00Ol00Ov1OH/+fJfvmzVrVtt7ly9f7rkJepn8/HzodDosWrTI21ORjGg0OT+CgoKQmpqKW265BT/88EOn+5nNZsTExECn0+HOO+/08Kzdx8WLF/HPf/4T11xzDTIzMxEcHIz4+HhcffXVWLlypbenxzAAgABvT4BhtEhAQABaW1vxzjvv4E9/+lOH3589exabN29uex/jYPz48Th58iQSEhK8PZUOZGRktBlWjY2N2LVrF1asWIGVK1dixYoV+NGPftTu/Z988glqa2uh0+mwcuVKVFZWIj4+3u3z3Lhxo1vH/+c//4mXXnoJWVlZmDVrFpKTk1FQUICVK1diw4YNePzxx/Hyyy+7dQ4M0xPsQWGYTkhKSsLYsWOxbNmyTg2Qt99+GwBw/fXXe3pqmicsLAyDBg3SpIGSmZmJZ599Fs8++yz++te/Ytu2bfj9738Pu92OJ554osP7ly5dCr1ej1//+tewWCx47733PDLP/v37o3///m4bf/z48di8eTMuXLiAZcuW4cUXX8RHH32EgwcPIioqCq+88gr279/vtuMzjBTYQGGYLnjggQdQVlaGb775pt12q9WK5cuXY/LkyRgyZEiX+589exb33HMPUlJSEBQUhH79+uGee+7B2bNnO32/0WjET37yEyQlJSE0NBQjR47s9obYXZ7Cs88+C51Oh82bN/f4d5aUlOC5557DlClTkJyc3DbXO++8EydOnOgwblZWFgDgvffeaxcyEcNc3eWgyPlMnP+GFStWYPz48QgLC0NcXBxuv/12XLx4sce/TQqPPPIIACAvLw8VFRVt248dO4Zdu3Zh9uzZWLJkCYKCgtoMUyXY7Xa8/PLLGDRoEEJCQpCamorHH38cdXV1Hd7b2f92+fLlbZ/zpk2bMHPmTERGRiIqKgrXXnstTp48KXkuN954I2bMmNFh++DBg3HbbbcBgKTvDsO4Ew7xMEwX3HHHHfjVr36Ft99+GwsXLmzbvmrVKpSXl+Oll17CuXPnOt137969uOqqq1BfX48FCxZgyJAhOHXqFP773//iq6++woYNGzBu3Li295tMJkyePBkXLlzA1KlTMXXqVJSWluKhhx7CnDlz3Pp3bt26FX/+858xa9Ys3HTTTYiIiMDZs2exYsUKrFq1Cjt27MCIESMAADNnzkRNTQ1ee+01jBgxot3nMnLkyG6PI/czEXn99dexatUqLFiwADNmzMDu3bvxySef4PDhwzh06BCCg4Nd+vsFQWh7rtPp2p4vXboUACW5xsXF4frrr8fnn3+Obdu2Ydq0abKP8/jjj2Pr1q249dZbccMNN2D9+vV49dVXsW3bNmzfvh0hISGSxvnmm2/w1Vdf4ZprrsFDDz2EEydOYM2aNdi7dy9OnDjhsucqMDAQAIU5GcarCAzDtAOAkJKSIgiCIPzkJz8RDAaDUFRU1Pb7uXPnClFRUUJjY6Pw//7f/xMACMuWLWv7vd1uFwYNGiQAEP773/+2G/vjjz8WAAi5ubmCzWZr2/7AAw8IAIRf/vKX7d6/d+9eISAgQAAgPPPMM+1+l5GRIWRkZHT6NzzzzDMCAGHTpk0d/rYZM2a022Y0GoW6uroOYxw6dEgIDw8X5s2b1257Xl6eAEC49957Oz32pk2bOsxXyWci/g2RkZHCkSNH2u1zxx13CACETz75pNM5dDWny/92QRCE3/3udwIAITs7u21bU1OTEBsbK0RHRwtms1kQBEH4+uuvBQDC3XffLemYIvfee68AQIiPjxfy8/PbtttsNuHGG28UAAjPPfdcu306+98uW7ZMACAYDAZhw4YN7X73m9/8RgAgvPTSS7Lmdjm1tbVCUlKSoNPphBMnTrg0FsO4Cod4GKYbHnjgAdhsNrz77rsAgIKCAnz33Xe46667EBYW1uk+O3fuxKlTpzBp0iTcdddd7X532223YerUqTh9+jS2b98OgEJGH374ISIjIzuERcaOHdthDLVJTExEZGRkh+0jRozAlVdeiU2bNsFqtbp0DLmfiTOPPvoohg0b1m7bAw88AADYs2ePrHnk5+e35aD8+te/xvTp0/HHP/4Rer0ef/vb39re99lnn6G6uhq33XYbQkNDAQDz5s1DcnIyVqxYgerqalnHBYDHHnsMGRkZba/1ej3++te/Qq/Xt32/pHD77bdj9uzZ7bY9+OCDAOR/Hs4IgoDFixfDaDTiZz/7GQYPHqx4LIZRAzZQGKYbJkyYgGHDhuHdd9+F3W7H22+/Dbvd3naD7IwDBw4AAK688spOfy9uP3jwIADg1KlTMJvNGDlyJKKjozu83926JQCwevVqXH/99ejbty8CAwPb8kq+/vprWCwWmEwml8aX+5k4M3bs2A7b0tLSAEC2oVBQUIA//OEP+MMf/oBXX30V586dw4033oht27a1q+ARwzv33Xdf27aAgADcddddaG5uxgcffCDruAA6zfnIzs5GWloa8vPzUVNTI2kcNT8PZ5544gl89tlnmDZtGlfwMJqAg4wM0wMPPPAAHn30UaxduxbLli3DmDFjMGrUqC7fX1tbCwDo27dvp78Xt4s3JPH9SUlJnb4/OTlZ6dQl8dprr+GXv/wlYmNjcfXVVyM9PR1hYWHQ6XT48ssvcfjwYVgsFpeOIfczcSYmJqbDNjE/wmazyZrHjBkzekz+PHnyJLZv345BgwZh4sSJ7X63aNEi/P3vf8dbb72FRx99VNaxu/v/FhQUoLa2ttO/9XLU/DxEnnzySbzyyiuYPn06Vq9e7XJeD8OoARsoDNMDP/7xj7FkyRI89NBDuHjxIn7/+993+37RC1JWVtbp70tLS9u9T/xpNBo7fX9X4+j1erS0tHT6O6mr8dbWVjz77LNITk7GgQMHOhgQXQmYyUXuZ+JNRO/JqVOn2iXNOnPs2DHs3LkTkydPljyu0WhEbm5uh+3iZ+Ktv/3xxx/Hq6++ilmzZuGbb77pMnTJMJ6GDRSG6YGYmBjcfPPN+OCDDxAeHo477rij2/eL3pWuVuqbNm0CAIwePRoAMGjQIISFheHQoUOora3tcKPqapzY2FgcOXIEVqu1rfJCZN++fT39WQCoeqimpgY33nhjB+OkoaGhLTTjjMFgACBvtS73M/EWFosFH3zwAfR6fZtE/eUUFxdj/fr1eOutt2QZKFu2bMH06dPbbbtw4QKKioqQmZkpyXuiJoIg4Oc//zlef/11XH311fjqq6/a8m0YRgtwDgrDSOD555/HF198gfXr13eaUOrMlClTkJubi+3bt2PFihXtfrdixQps27YNAwcOxNSpUwFQWeddd92F+vr6Dkmy+/btw4cfftjpccaPH4/W1lYsW7as3fbly5djx44dkv6uxMREhIWFYf/+/WhoaGjbbrVa8dhjj3WaexIbGwudTofCwkJJxwDkfybe4vPPP0dlZSXmzp2Ld955B2+//XaHx6efforw8HB8+umnbaErKbz22msoKChoe2232/HrX/8adru9Xa6LJxAEAQ8++CBef/11XHPNNVi1ahUbJ4zmYA8Kw0ggPT0d6enpkt6r0+nw3nvv4eqrr8Ztt92GG264AYMGDcLp06fx5ZdfIjIyEu+//z70esf64E9/+hM2btyIV199Ffv27WvTQfnkk08wf/58rFq1qsNxfvGLX2DZsmX42c9+ho0bNyItLQ2HDh3CDz/8gOuuu66DwFxn6PV6PProo/jzn/+MYcOG4YYbbkBLSws2bdqEqqoqzJo1q827IRIREYEJEyZg27ZtuOuuuzBw4EAYDAYsWLAAw4cPV+0z8QZieGfx4sVdvicqKgq33HILli9fjv/+979tQm89MWXKFIwcORK33XYboqOjsX79ehw+fBhjxozBk08+qcr8pfLcc8/h7bffbhME/POf/9zhPSNHjmync8MwHsfLZc4MozngpIPSE53poIicOnVKuPvuu4Xk5GQhICBASE5OFu666y7h1KlTnY5VWloq3HfffUJCQoIQEhIijBgxQli2bFmnuiIi27ZtE6ZNmyaEhoYKkZGRwvz584XDhw/L0kGxWq3C3//+d2Hw4MFCSEiIkJSUJNx9991Cfn5+m4ZHXl5eu33Onj0rXHfddUJcXJyg0+nafQbdzVfOZ9LV3yAIPWuxXE53Oigip0+fFgAISUlJQktLS7fj7dixQwAgjBgxosdji5/h+fPnhb/97W9Cbm6uEBwcLPTr10947LHHhNra2g77dKeD0tl3TRA6/9/2NKfuHlI/W4ZxFzpBcJJRZBiGYRiG0QCcg8IwDMMwjOZgA4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcPmmgNDc34/Tp02hubvb2VBiGYRiGcQM+aaAUFBTggQceaCcbzTAMwzCM/+CTBgrDMAzDMP4NGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMAzDMIzmCPD2BBiGYRjfwWazwWq1ensajAYJDAyEwWBQbTw2UBiGYZgeEQQBZWVlqK2thSAI3p4Oo0F0Oh2io6ORnJwMnU7n8nhsoDAMwzA9Ultbi5qaGvTp0wfh4eGq3IAY/0EQBDQ2NqKiogKhoaGIiYlxeUw2UBiGYZhuEQQB5eXliIqKQkJCgrenw2iU0NBQWCwWlJeXIzo62mUjlpNkGYZhmG6x2Wyw2WyIiory9lQYjRMVFdX2fXEVNlAYhmGYbmltbQUABASw053pHvE7In5nXIENFIZhGEYSnHfC9ISa3xE2UBiGYRiG0RxsoDAMwzAMoznYQGEYT9HQALB+BMMwjCTYQGEYT2A0Al98AWzbBjQ1eXs2DMNoCIvFgiVLlqBfv34IDQ3FhAkT8N1330na9/jx47jllluQnZ2NsLAwJCQkYPr06fj6668VH2fz5s3Q6XSdPnbt2uXy3ysVTslmGHdjswF79wIlJUBZGVBeDkydCiQne3tmDMOoid0OtLQAOh0QHCx5t0WLFmHFihX45S9/iQEDBmD58uWYP38+Nm3ahKlTp3a7b0FBAerr63HvvfeiX79+MJvN+Pzzz7FgwQL85z//wYMPPqj4OI8++ijGjRvXbltOTo7kv8tVdIIPahafPn0aDzzwAN566y3k5uZ6ezoM0z0nTwJr1wJpaUBAAJCfD4SFARMnAkOHAir2rmAYd9Dc3Iy8vDxkZWUhJCTE29PRHnY7YLGQd7Slhc7z2FhJ5/aePXswYcIE/PWvf8X//d//AaDPe+jQoUhMTMTOnTtlT8dms2HMmDFobm7GqVOnZB9n8+bNmDVrFj777DPcfPPNso6t5neFQzwM407q68l7EhYGhITQhSsnh35u3EiPujpvz5Jhej3Z2dm4++67O2yfNWsWZsyY0flOdjtgNgPV1UBtLdDaCgQF0c/mZknHXbFiBQwGQztPR0hICH7yk5/ghx9+QFFRkey/xWAwIC0tDTU1NS4fp76+XhVNEyWwgcIw7uTAAQrr9O3bfntiIpCSAhw+DKxaBeTleWd+DMOgoaEB+fn5GDFiRIffHTlyBMOHD2+/0WYDzGZYjUaY8vJgqqiAqaEBpvp6mKqrYaqthamoCKayMphMJphMJtjt9k6PffDgQQwcOLCDSu/48eMBAIcOHZL0NzQ2NsJkMuH8+fN45ZVXsHbtWsyePdul49x3332IiopCSEgIZs2ahX379kmai1pwDgrDuIuiIuDYMTJE9J2sBcLCgIED6X2rVwNjxwKjR9MKjGEYj3Hs2DEIgtDBQCkuLkZVVZXDQGltdYRyWluxY/duzPrRjyQdIy8vD5mZmR22l5aWou/lCxigbVtJSYmk8Z944gn85z//AQDo9XrceOON+Ne//qXoOEFBQbjpppswf/58JCQk4MSJE/jb3/6GadOmYefOnRg1apSkObkKGygM4w5aWii009oKdNe/RK8HMjLIRbxtGyXQTp4McEM2xhcYO5Y8hFohORlQsMo/duwYAHQwUA4fPgwAGD5kCMkENDWR9yQgAAgJwYiRI/HdF190PqjdTu+NjAQCApDcRVJ8U1MTgjtJqBXzN5okVv398pe/xM0334ySkhJ8+umnsNlsaGlpUXScyZMnY/LkyW2vFyxYgJtvvhnDhw/HU089hXXr1kmak6uwgcIw7uDECeDCBSA7W9r7Y2OB8HDg7FnAZAImTQJyczv3vDCMVigrAy5e9PYsXObo0aNISkpCUlKSY6Mg4MjBg9Dr9RiakkIGyiXDRCQ2JgZXzZzZ9cDNzUBoKC1SupCAFzsAd9y1ue33Uhg0aBAGDRoEALjnnnswZ84cXH/99di9ezd0Op3Lx8nJycENN9yAlStXwmazweCB5H42UBhGbaqqaBUXGwsEBkrfLygIGDAAKC0F1q2ji//48WS4MIwW0VqpvML5HDt2zOE9EQTAagWam3Fo715kZ2QgPDKy04qclpYWVFVXdz2wzUaP6Gj0SUnp9Kbet29fXOzEyCstLQUA9OvXT9HfdPPNN+OnP/0pzpw5g9zcXFWOk5aWhpaWFjQ2NnqkszUbKAyjJnY7GSc1NZRfIhedDujXj1Zre/cCFRXAlCmUx8IwWsPDSZPu4ujRo7jt1lsd+SUWC+w2G77fsQPTJ0/uslx45549mHX99ZKOkXfhAjKzsjpsHzlyJDZt2oS6urp2N/3du3e3/V4JYsimtrZWteNcuHABISEhiIiIUDQnubCBwjBqkpdH4Z20tC5dupKIiCADp6CAqnwmTACGDycXM8MwqlFuNKKiogKlRUW0sACAwED84913YaqsxLAhQ7rcd8TQoV3noIhcykVJjo3t9Nc333wz/va3v2Hp0qVt+iQWiwXLli3DhAkTkJaWBgAwm80oLCxEQkICEpxy1MrLy5GYmNhuTKvVivfffx+hoaEYcmn+Uo8DABUVFejTp0+7MQ8fPoxVq1bhmmuugd5DoWe+2jGMWjQ1AXv2UFgnLMz18QwGymExmYDvvye5/EmTgJgY18dmmN7OJdXXo5cEyr79/ns8/NRTGJSbi11792L9998DAPYfOoTd+/ZhwtixHYboMQdFxGKh49ntHfLKJkyYgFtuuQVPPfUUysvLkZOTg/feew/5+fl455132t63Z88ezJo1C8888wyeffbZtu0//elPUVdXh+nTpyMlJQVlZWX48MMPcerUKfz9739v83ZIPQ4A3HbbbQgNDcXkyZORmJiIEydOYOnSpQgLC8Of//xnKZ+uKrCBwjBqceQIlQwrCe10R0ICeVSOH6cqnylTgP79XfPQMExvRVR9NZsBqxVHjx2DwWDAx++8g0d/8xss+9//MG3SJGz55hssvPtuHDp6FIFycsk6IyiIjmmxUNLsZbz//vv43e9+hw8++ADV1dUYPnw4vvnmG0yfPr3HoW+77Ta88847eOONN1BZWYnIyEiMGTMGL730EhYsWKDoOAsXLsSHH36Il19+GXV1dejTpw9uvPFGPPPMMyx13xMsdc9ojrIy4Msv6eITF+eeY9jtVDHR2kp6KWPHtqsoYBh34TdS9xYL5XdZreTJCAzE4scew9adO3HG3fk0LS3kFY2J8ev2Fix1zzBaorWVkgXNZvcZJwBdUNPSgPh44IcfgDVrKOzDMEzPCAKdo62t1MgvKAjQ6XD0xAkM8cRCNzCwrTqIkQYbKAzjKmfOAKdPA+npnjleVBSFePLzKYH22DHyrjAM0zVWK3kxAgPbwqOCIODE6dOeMVB0OvKciGJvTI+wgcIwrlBXR+XAERGy2qu7TGAgaaYAwLffUtPBhgbPHZ9hfI2WFvKiOCWp5hUUoKGhwTMGCkDnbWsrGSlMj3CSLMMoRRCAgwcpzOKtXKjkZPKoHDxI1T6TJ5N0PsMwDux2Cq1cVqafnZkJoTuhNXcQEEAGSnCwPCHHXgh7UBhGKUVFwNGjXTcD9BRi08GKClKgvaQMyTDMJVpayHOhheTUgAAK8TQ10SKH6RI2UBhGCS0tpHlis3XfDNBTGAxAVhZQX0/ibgzDEIJA3hOdTjul+YGBNCer1dsz0TRsoDCMEo4fJ9VYJ/VFTRATQ0m7Tl1MGaZX09pK54OWVJgNBgo7mc3sRekG2QaK2WzGu+++i//7v//Dtddei+nTp2Pt2rWKDv6Xv/wF06dPx5IlSxTtzzBeobIS2L+fyn21FkOOi6NcFD/oMMswqtDSQsaAFsI7zojibbyY6BLZBkptbS2WL1+OgoIClxTlTp06hbVr1yIoKEjxGAzjcZybATr1w9AMYgllXp63Z8L4IT6n6ykmx2rNOAEceWt+5kVR8zsi20CJj4/HF198gc8++ww/+9nPFB1UEAS89tprmDt3LuLcKWzFMGpz/jxw8qTrzQDdSWwscOEClx0zqhFwKTzS2trq5ZnIxGqlEI+WwjvOiF4UPxJvE78jASp85rINlKCgIMTHx7t00PXr1yMvLw8PPPCAS+MwjEcxm8l7olYzQHcRGwvU1gLFxd6eCeMnGAwGGAwG1NXVeXsq8rBY6KdWFxM6HXlSzGa/EVusq6tr+764isfNSrPZjDfffBN33323y4YOw3iUQ4fopi8KpGmVSz1GcO4c6bNo9eLM+Aw6nQ6JiYkoLS1FcHAwwsPDodP698pmIy+iTqftPA9Rgl+v77SRoK8gCAIaGxtRV1eHvn37qvL98LiBsnz5cgQHB+PWW2+VvI/JZEJlZWXb6wIuo2Q8TWkpcPgwkJSkzXj25cTHkzFVXe3e/kBMryE6OhpNTU0wmUyoqKjw9nR6pqWFtEa0lsjeGTYbGVJhYd7VVHIRnU6HmJgYREdHqzKeRw2UoqIirFixAr///e9lJceuWrUKy5cvd9/EGKY7WltJzr6pCUhN9fZspBEZCZSUkJHCBgqjAjqdDn379kViYiKsWtfvsNupBURVFdC3r7dn0zN2OyW2jxsHjBjh7dkoJjAwUJXQjohHDZR//OMfGDp0KGbOnClrvwULFmDKlCltrwsKCvD888+rPDuG6YLTp4GzZ31LQl6no/5Ap08DQ4f69KqM0RZq5Re4lZISoLCQWkH4SmJveDhw5AiFkHlRAcCDBsr+/fuxe/duPP/88yh1kuK22WywWCwoLS1FVFQUwsPDO+ybkJCABC2WdDL+T10dJcZ6uhmgGsTHA2Vl1CvIF1aRDKMWeXkU4vGlnI74eFpQHD0KzJjh7dloAo8ZKOXl5QCA3/72tx1+V1FRgdtuuw0///nPZeWmMIxbEQTgwAGgvJx63fgaoaFUvlhYyAYK03toaqIbva95IXQ6Ok9PnKDk9uRkb8/I67jNQDGZTGhsbERKSgoCAgIwevRovPDCCx3e99e//hXJycn48Y9/jOzsbHdNh2HkU1hILldvNwN0hZgYCk+NHu0byYIM4ypFRZQc3r+/t2cin+hoWhCJCflar5RyM4oMlM8//xwNDQ1tlTU7duxo85DcdNNNiIiIwNKlS7Fu3Tp88skn6Nu3L5KSkpCUlNRhrH/+85+IjY3FtGnTXPgzGEZlLBZqBghQwqmvEh9PzQNLSnwrh4ZhlCAI1IsqMNA3qu06o18/8gANGtTrz1lFBsonn3yCsrKyttdbt27F1q1bAQBz5sxBRESEOrNjGG9x/DiQn++bqzBnAgPpop2f3+svdkwvwGQiz2efPt6eiXLCw6mq59Ahqhr0VUNLBXSCzzVXAE6fPo0HHngAb731FnJzc709HcbfMJmAL76gC4MvX+hEKivpgnf77dpWwGUYV9m3D9i0ibwPvozFQqGq667TvjCkG/HRwDrDuAm7nToV19ZqsxmgEmJiKCbP0veMP2O1AqdOUR6HrxMcTH16Dh7Utgqum2EDhWGcOX+esui13AxQLgYDPc6f9/ZMGMZ9FBdTgqm/LCz69qVw1Zkz3p6J12ADhWFEGhspMTY42P9CIQkJdLGrrvb2TBjGPZw7Rz/9pVotMJAS9A8dol49vRA2UBhG5NAh4OJFyqL3N6KiSHSOwzyMP1JbS+Js/uI9EUlKoj5gJ096eyZegQ0UhgGoDPfIERJH8sesebER2dmzftPWnWHaKCwkIyUmxtszUReDgaQCDh0Camq8PRuPwwYKw4jNAJubgdhYb8/GfSQk0GrMFzrRMoxUbDZKjo2I8J+8MWcSEqgS79gxb8/E47CBwjDl5aQT4iudipUSFkYy4EVF3p4Jw6hHWRkZ3v4W3hHR6cize/x4r1tcsIHCMKWlVMoXEuLtmbifqChSqbRavT0ThlGHCxfo++zP529sLFBfTxL4viddphg2UJjejd1OF7jeon4cH0+rMKeO4gzjs5jNlFfla40BldCvH4WyLl709kw8BhsoTO+mqopu2P6ce+JMUBDF7PPzvT0ThnGdoiI6h3vD+RsZSZ6iQ4d6TaI7GyhM78ZopFVYeLi3Z+I5YmNJM6KpydszYRjlCAKFK4OC/LPyrjNSUujczcvz9kw8AhsoTO8mL48ucL2JuDgSbOtFrmLGD6moIA+KP/TLkkpoKKDXkwR+L8gjYwOF6b3U11MuRm9wDzsjSt9fuODtmTCMcvLzyfvZW/LHRFJSgIICh3KuH8MGCtN7KSsjcaeoKG/PxPPEx9MFvrbW2zNhGPm0tFCPGn8TZpNCUBBVLB0/7vcVPWygML2XixfJk6DvhadBdDRL3zO+i9gYMD7e2zPxDnFxFOLy895avfDKzDAALBbyIPhDa3Yl6HQUzz5zxu9XYYwfcu4cfYf9pTGgXMLDqbmp0ejtmbgVNlCY3onRSL0teqOLWCQ+nnoQ9TJ1SsbHqanxz8aActDpgIAAv/eAsoHC9E5KS6kHT29dgQG0CjObWfqe8S3ExoC91fspEhND564fywWwgcL0Pmw2qmDpjcmxlxMVRWGe1lZvz4RhekZsDBgZ6Z+NAeUQHU3eJD8O87CBwvQ+TCbqDtqbwzsi8fGUbFhW5u2ZMEzPlJbSozdpn3RFQADlj/lx2wo2UJjeR1kZuUVDQ709E+8THEzek4ICb8+EYXrmwgX6vgYHe3sm2iAykvJxbDZvz8QtsIHC9C4EgS5yYWHenol2EKXvm5u9PROG6ZrGRvqe9tbS4s6IiaFeRCaTt2fiFthAYXoXYsyWwzsOYmMp5MXS94yWKSoi3Q8+dx2EhtLCwk/zUNhAYXoXRiPQ0ECuUYYICKCEQ5a+Z7RKb2wMKJXQUL9tHsgGCtO7KCx03JAZB6L0fV2dt2fCMB0pLyfND06O7Uh0NC28/PDcZQOF6T2Imh+9rTmgFKKjSVuCwzyMFhEbA4aHe3sm2iMykhqf+mGYhw0UpvdgNLLAU1fo9VQZcfYsS98z2sJiofAO5550jl5PDz9cXAR4ewIM4zGKi+nm6+kYtt0OrFtHLthrrtGugZSQQBe5ysreLSPOaIviYqpSycz0+KEvFOqw/6geVqt7jxMYCIwdZkdWusLFQXQ0eZlaWihPx09gA4XpHVit3msO+MUXwHvv0fOvvwbuvx+48krt5cFERNDNoKiIDRRGO5w7Rx4CL7Sl2H9Uj9o66eep3mZFVEMJ6iL6wW6QMd8mYN9RPbLSFeqZxMRQfl15OZCaqmwMDcIGCtM7KC8nvYCUFM8e9/x54MMPHa/r64HXXgM2bQIefhjo18+z8+mJiAiSvh8+nKslGO9TXU0LCy8ZzKLnRKcTEBrS9fvCGiqQc3od+p9Zh9CmGhiTh+H7eS9A0Pd8DjU1A4Kgc81LExhIAnZlZWygMIzPUVZGVxtPKlBaLMDf/+7oc5OW5mjMd+QI8OijwK23Aj/6kXaaFiYkkHR2WZnnjTmGuZyCAgqN9u3r1WmEhgB3LrzMu2G3A4cPA2vXAnv20OtLJJUdxR2Gr4Abbuhx7I++NMCsRr+/iAiSChg9mjxOfgAbKIz/Y7fTievpCoBlyxzt0Pv3B/7yFzJM3niDPDotLcB//wts2wY88ggwaJBn59cZISE0r8JCNlAY79LaSsmxERHaCoc2NAAbN1Je2eWJqXq9w1D56CNgyhTPeX9iYihXp6rKb0K0/mFmMUx3VFUBFRWeLS/euxdYs4aeBwUBTzxBXpIxY4B//QtYuNCxyikoAJYsAd58k+S8vU1MDFXzWCzengnTm9FaY8Dz54F//hNYtAh45532xklcHHD77bR93jza1tQELF3qufmFhdExy8s9d0w3wx4Uxv8xGunGn5am2pDdZfcHN9Vg/hf/hNiKcM/YB3BuXwawT3xHOBD3AGKvm4XxO/6J+MpzVF20Zg3Mm3dj38SfojhjMqDTuZ7dr4S4ODKaSkqArCzPHZdhnLlwgbwRXmwMqG9tQU7edgw9/w3w7umObxg2DJg/H5gwgQQgAeCee4AffiBJg127KPwzfrz7J6vT0SKosBAYMsT9x/MAbKAw/k9eHoUuVKTL7H5BwNStryK0uQYAUNhvPI6kzweaOr7XHD4AX171Cq44swpjjn6AwNZmhJkrMf37PyE/ZSJ2jn0YtWEJrmX3KyEwkAymvDw2UBjv0NBA1Ttxcd45flkZsHYtFq7ZiBDLZQqtYWFUhTdvHpCe3nHfiAhg8WLKPwOA//yHks5VvgZ1SkwMhZUbG/1C1I4NFMa/qa8nN7HKIk9dZffnnFyN9JK9AICmkBjsnfEYwkIBoCsPiB4XRi1E2YDJGPfD60gpon0zL+5CP+Nh7BtxLwqGzVd17pKIj6cV7PjxdMFlGE8iNgYcMMBzx7TZgAMHKDR74AAgCGhnUmRmkrdkxgzqf9Md06dTnsqhQxRe/t//gPvuc9/cRaKi6Lw1GoHsbPcfz82wgcL4N2VlVAWQmOiW4dtl9xcXA/992/G7Jx/FTWMjAUjxfsQDd/0W2LGD4tY1NQhqbcLk/W9iYMH3wKhHPOvNiImhFWxxsTaSd5neg90OnDpFHgdPVKPU1gIbNlA1zmX5GzZ9APLSpuLC0Gsx58GB0pN1dTrgoYeAX/yCVjNffQXMnOn+c9hgIO9naSkbKAyjeYqLHVLQ7sRqJZduSwu9nj8fGDtW3hg6HTB1KjByJAm7rV8PAEgwnQEef5zKkW+/3TMxeVEY69w5IDdXW1UUjH9TXk75Tz0kx7qk8ioISKg4hQEnVyM9bxsM9tZ2v24M74Ozg+bjeMYcNAXHIixUAHQyw6z9+pGMwIcfktH1738DL73kfn2hqCgKzzrnxfgovj17hukOi4VEnjzRw+OjjyjLHyChJFfcuRERwCOP4DvDbIzd/k/E1hXRBe7zz4Ht20ngbdQodebdHfHxDle7t3IBmN5HQQFVo4SFdfs2uSqvABDQ2oz++Zsx+Ow3SKi50OH3RX3H4OSA61DUd2w7kTXFMkU33ghs2UILpTNnaNEx380h29hYMvAqKryuH+MqbKAw/ovYHLCzRDY1OXYMWLmSngcEUEmxCl6OiuQr8MW8f2Hsuc8w/MjHpAthNALPPENx8J/8xL3GV2QkXeiKithAYTyDxULhHQnfa6kqryIpBT9g0rZXENTSvpTfEhyJ8wOuxrlB16AhipSdKcOE8sbESjpFBAbSguLpp+n1Bx8Akya5V/IgOJg+R6ORDRSG0SwlJXRTd6NKa6ClAXj5ZUcH4LvuIlE2lbAbAnFs5B0Yvngy8PrrZAwBtCo7cIA8NbNnuycEo9M5pO+HDfMbdUpGwxQVUbNKGbkanaq8Xo7ZDNz/MtBidmwbMACYPx/BU6diSHAwqDDXDdVyQ4fSObpxI1XXvP028Otfq38cZ8LCKMwzYoRPh2f5isP4JzYbZbNHRbn1MON+eJ3UGwG6iS9c6J4DpaYCL7xASXdiVU19PfCPfwC//a37Wq3Hx1OisdHonvEZxpmzZ8kQVjt3YsMGMlIAMhj+/nd6zJ7tmZyu++4jjyRAytEHDrj3eDExlMtTW+ve47gZNlAY/6SiglZibnSl9s/fhMwLW+hFeDjwy1+6NwFOpwOuvpqS7aZPd2w/epT6+nzyCVTvCx8aCjQ3k/gTw7iTqirKP1FbOdZmoy7iIj/9qWfLlwFaKN1/v+P1m2+6V6k5IoK0ZHx8YcEhHsY/MRrpAuAmcaTweiOm7Pu3Y8PDD7tNkrupmRqKOUgAcpagb8hsjNv5OiIajGSYfPghatZsx/fzXkBzqHTDrEe1WlH6ftQoku1nGHdQWEheQbU7fO/Z47hRjxwJZGSoO75UrrySwjzHjpFX8tNPgR//2D3H0utpsVRcTFV4Pgp7UBj/QxAovNOTmJJSbDZM2vp3BFkvuYxnzQKmTVP9MGLqjCDoYG7q+DgfPw4rrnkDRwbdBLuOTuWY6gIM2fPfTt/f1aO2Tod9R7u5FMTHk0eqpET1v5FhADjO2fBw9XMmvvrK8VxCd2G3odPRQkYMX33xhXs9k9HRNH5zs/uO4WbYQGH8j5oaWjG5K7zz+edINB4HADREJJHL2A2MHWZHdJSAsNCuH0GRwTg2+X6sW/AqrIFkkOUUbEK0vr7b/cSHTkdek24jQ6L0fX6+W/5OhkFdHRnB0dHqjnvuHHDiBD1PTfVMeX53pKZS6TFACfyvvw4ICiuEeiI6mnJQfLh5IId4GP/DaKT4q9quYoBCHf/7HwDArtPjh+lP4Ooe9BqUkpUuyOjBkwlYZwFr1iCg1YJbwjYA11/f414ffWmAuUnC8HFxtMIdN84venwwGqOigsI7ycnqjuvsPVmwQBuVaLfcQomypaXAiRPIjtuAY2lz1T9OYCAZQaWl7pdacBMa+G8xjMoUFpIbVW1XcXMzlRTbyGg4POQWVCRfoe4xXMFZAGrNGkfpsxrExFASo7uqhZjeTUmJ+orPlZUkbAhQBc2sWeqN7QrBwcDPftb2ctTedxHS7KZqm8hIR1doH4QNFMa/MJtJS8Ed4Z133227QVcmDMSBoXepfwxXSE+nUmeA5nnkiHpjGwwO6XuGUZPWVlpUiGW4avHNN22LCVxzjWfKiaUyciSJLQIIttRj/KF33HMccWFRWeme8d0MGyiMf1FWRnFXtWPZu3cD69bR8+Bg7JzxfxD0GoyQXnON4/nateqOnZDgkL5nGLWorKS8MTVVkZub23pZISDA/fLySrj//rZw6cC8DUgsPaz+McLCqG2Aj5Ybs4HC+BdiCEJNPZLqauCf/3S8XrwY9dEp6o2vJhMnOrxHu3Y5ROTUIDKSkhmLi9Ubk2EqKsigUFMS4PvvKQ8NoAo7LbZqiI0F7r237eX4Hf9WX8cIIM+Rjya4s4HC+A9WK8k7q6keKwjAa6/RjRmgDqFz5qg3vtoEBABzLyXc2e3At9+qN7ZORyuyM2d8NqbNaJDCQnX1dez29sJsCxaoN7bazJmDisRBAICouovUEFRtYmIoUVY02HwINlAY/6G8nLwdauafrF7tkKWOjSWpea33tpg715FsuH49xfjVIiGBLnYVFeqNyfRezGb6PqkZkt2/3+FJHTpU1d5YqqPXY8/kX8Cuu+Tx/ewz9fWGIiOpQsoHwzxsoDD+Q1kZeVHUWo0VFgLLlzteP/aY23v7qEJ8PIV6ADLYdu1Sb+ywMHLH+7C2AqMhKiooZ0zN82rVKsdzbwqzSaQ2LhNHB/2IXlitwBtvqFuBJ4a7fbACjw0Uxj+w26mcTmyk5ypWKzUTa2mh19dfD4werc7YnsCdybLBwdybh1GHsjI6d9VqDpiXBxy+lGzaty/p9vgAB4feiYaIRHpx+DB1K1eT6GjKQ3FHjosbYQOF8Q+qqmg1plYlwH//Sxc7gMp377lHnXE9xfDhQMqlRN6jR9U1KKKjyS3f2KjemEzvw26n5oBqLSqA9t6T66/XhjCbBFoDQrBvkkMbBe+8Q2EZtYiOJm+qj3k+feO/xzA9UVZGN0w1VE4PHwa+/JKeBwQATzyhLQ0FKeh0HYXb1CIqyiFNzjBKqamhEmO18k+qqx2eh/BwYPZsdcb1ECVp44HJk+lFbS3w3nvqDR4cTN4TH8tDYQOF8Q/y89UpU2xoAF591REDvuceICvL9XG9waxZDsNq0yZKSFQDg4FWvz52sWM0RkWFeosKgEKZYkL4nDnuaxbqTh54wDHvb7919BFSg/BwCoOrmd/iZthAYXyfujrKfHe1ekcQqHmXqLo4YoS2SxR7IiKiTa0STU3qxrUjI8k9z+XGjFIuXiRjV42quJYWR66VXg9cd53rY3qD+Hjgxz92vH7jDfWq8GJiyCj0IaFFNlAY38dopHitq1LZmzY5endERFDVjo/EsLvEXf15oqIcCqAMI5eWFsqLUiu8s3kzhUUAYMoUoE8fdcb1BtdcA+Tk0POCgvYND10hPJw8Vj6Uh+LjV1+GAcmvu9porKwM+M9/HK8feYQ0P3yd7GxgEAlBoaAAOHlSnXHFix3noTBKMJnI86mGgSIIPlda3C0GA11/xOvZ//5H1ydX0ekop66oyPWxPAQbKIxv09xMN15XqndsNupS3NREr2fPplWYv+COZFmdji6kPqitwGiAigryoqigWZRccshRpTZoEDBwoMtjep3+/YFrr6XnLS20eFLD+xkTQwaKeK3TOGygML5NeTmFGVxZiX32GXDqFD1PTqZENX9iyhSHENbOnerFoKOj6cbgY9oKjAbIz1ctiXXQsS8cL3zde+LMXXdRTgpA6rg7drg+ZnQ0XS99JMGdDRTGtykpoUTNwEBl+xcUAB9/TM/1euBXvyK1VH8iMBC4+mp63toKfPedOuNyuTGjhPp6WlioEN6JqS1Ev4v76UViokNB2R8ICwMefNDx+u23XdceCgig62VpqWvjeAg2UBjfxWajsjlXkmO//dZRiXLLLY58DX9j3jxHtcS6dfTZuUpwMGCxsIHCyKOiggxbFQTarjjtlEB63XXqdjHXAhMnAuPH0/OqKhKQdJWoKBKhVOMa4GZU0hdmGC9QUUGVJMnJbZsuFOqw/6heUtRBZ7dh4YbtCAVg0wdgZcCNsH4p7QLX1Kxwzt4iKYlkv/fsoQTFvXvVWW2GhZEXasQI18diegfi6t1FYyK4uRYD8jfSi9BQh5fQn9DpyIty+DAtBtasAa68EhgwQPmYMTHkwTKZ6LqgYWQbKGazGR9//DFOnDiBkydPor6+Hk899RSuce790QX79+/Hd999hyNHjqCiogJxcXEYPXo0fvKTnyDBHyomGM9iNFKSrJNA2/6jetTWSdNV6Fd2DKFNlI9R1G8cau2RgMzcMaWRJa9wzTVkoACkGaGGgRIVRf+HhgZ1JcsZ/8RmI4PWVUkAADmn1iLAdqlX1lVXqSf4pjUSE4E77wSWLaNE2X//m/qEKTXwQkPpumk0at5AkR3iqa2txfLly1FQUIAcsVZbIm+++SYOHjyIadOm4bHHHsPs2bOxadMmLF68GJWiOBbDSEEQKLxz2UVJ9JzodALCQrt/DLy4uW2/ogEzenz/5Y/oKAFjh/mQUNmoUQ5v08GD6rR1F1u5+5C2AuNFqqooSdvV/BOrFQNOrgYA2HV66rvjz1x/PZCZSc8vXAC++ca18UJCKFFZ48j2oMTHx+OLL75AfHw8Tp06hQedk3h64JFHHsHw4cOhd9KrGD9+PB599FGsXLkSD/hb9QTjPsRM9C7Ki0NDgDsXdhNjtVqBTy5lxYeGYtrDY4Bg7cdkXUKvJy/KsmX0eu1aIF76+dspBgMZi0Yjaa4wTHeUl1OJq6uJ6Nu3I6ypCgBQnD4R6U5hXr8kIAB4+GFgyRI63z78kPr2KBWki4khbZW6OkeFnwaR7UEJCgpCvFj6JJORI0e2M07EbVFRUSgoKFA0JtNLcTWssH+/IyN+wgTfawaolNmzHdoTGzbA0KpCMk1EBK3GWPae6YmLF12PiwqCo5kngNNXLHRtPF9h0CBKdgcoRPPWW8rHEj2fGi839noVj9lsRlNTE6LVkjxmegeFhXShU9rHY9s2x3OxX01vICoKmDaNnjc2IuPCVtfHjIkht31VletjMf5LczNQXOx6eOfYMapCAVARNwAVSUNUmJyP8OMfO3qO7dqlPLSq19O1U+NCi143UD777DNYrVZceeWVXb7HZDLh9OnTbQ/2tvRyGhvJQFGqHtvUBOzeTc8jI3tfBYqTsuzAk9+4rlAZGkqdkrncmOmOigrql+NqSMGpN82x3IXqNBv0FSIiHAqzgKN3mBJiYsjz2dLi6qzchlfLjA8dOoTly5dj1qxZGDNmTJfvW7VqFZYvX+65iTHaxmik2KnSnIfdux0n5ZQpFN/tTQwYQM3Izp1DXOV59Kk6g8YwF+TBxR4fFy8CgwerN0/GvzAaqYrHlRBPSQmVyAMwh8XjQvo0qKNH632amoGPJMgcRDTPwAKQHkrlNzuwXn+LpPEDA4Gxw+zISr+0IImJoYVeeTmQmqp02m7Fa1fmgoIC/Pa3v0V2djaWLFnS7XsXLFiAKU69UQoKCvD888+7e4qMVhHdkkrL7LY6hTV6U3jHmfnzgX/8AwAw+Oxq7Et1sX9JdDT1+LBYek8+DyMdQaDVuqulwF9/3ebxOzP4Ogj6AAAqdej2EoGBAJoAQdDBLEHmwByYAlNsDhKqzyHedBaG8jLUR/bteccmYN9RPbLSbY4Dt7ZSsqxGDRSvhHiMRiOeeOIJhIeH46WXXkJYDxndCQkJyM3NbXtkZGR4aKaM5rBaKf6sNI5dV0cltgB1K+6tK/5p09oSjLMLtiC4uda18aKjyX1vMqkwOcbvqK0lUUVX8k8aGoCNl4TZgoNxblDP2lu+wNhhdkRHyZM4KOo/rW3/3NKtPb5fpyMjroOAZUQEXU81muDucQ9KbW0tnnjiCVitVrzyyiss0MbIo7yckjHT0pTtv3OnQ+J52jRHS/PeRnAwVfR89RUC7FZkn90AYKHy8cTVmNEIpKSoNUvGX6iooKoRV8qBv/2WEm0BYPZstATLF1bUIlnpgsOrIZWJk4B9JBcwsmorRi68qdu3f/SloXPvTHQ0LSqqqx2NCTWE267OJpMJBQUFaG1tbdvW1NSEJ598EiaTCX/5y1+QpvQmw/ReSkvpRqi0TbtzeGf6dHXm5Ks4qT8POLna9VVUaCiphDLM5ZSU0GJA6YKgtbW9OJm/C7P1RHIyMPBSWDYvT3k1Tng4FR1otNxYkQfl888/R0NDQ5v6644dO1B+qdzppptuQkREBJYuXYp169bhk08+Qd++FB/74x//iJMnT2L+/PkoKChoV40TGhqKadOmdTwYw4jY7aSiqFT7xGQCjh+n5ykpLCzWrx9KUkaj38UDiGgwUuirm2T1HhF7fGhc/InxMK2tlIzpyndi505H+HDcODp/96ozPZ9l6lTgzBl6vm0bcPvt8sfQ6WixV1gIDNFeubYiA+WTTz5BWVlZ2+utW7di66WV6Zw5cxDRxQ3k3LlzAIA1a9ZgzZo17X6XnJzMBgrTPZWV5CpWGhbcts1RUjtjRu8qT+yCs4OvRb+LB+jFmjWuGSgREZRwV1HBBgrjQAwh9OunbH9BAFatcrxesECdefk6U6YA775Lz3fsUGagALSwKC4mT4rG+hkpMlA+/fTTHt/z9NNP4+mnn5a9H8N0idHomkw2h3c6UJI6DvVhfRBprgD27XOtgZgo/lRWBvTvr+5EGd+lvJzK+pVWd5065fAUZGYCw4erNjWfpk8fUpc9dYpCq4WFQHq6/HGiosgzrcF2Fb00Q5DxSfLylF/kLl4Ezp+n5zk5yldzfoagN+BUziXhNkEA1q1zbcDISContfl5XyNGOoWFrpWeOwmz4YYb2PPpjHPUQalom9hPq7RUnTmpCBsojG9QV0cnkCjzLBf2nnTJmew5sOkvOVO/+841ZcmoKGrkyLL3DEBhg7Iy5eXFRiNJugMUiuBztz2TJzsMtu3blatCR0XRAtCpqEULsIHC+AaiemxkpPx9BcFhoOh07VcdDJpCY1GUOZVe1NVRPFspYWEUhlPaI4TxLyoqXEua/uYbR3XZ/PmuNxr0N+LjHcmtxcXkvVRCTAwtKjSmY8QGCuMbFBWRnLqSMsULFxxleFdcocl6f29zZrBTf4+1a10bLCiILpYMU1ZGCwQlqs9mM2mfAGSYXOMfwmyqo0aYJySEVKA1Vm7cy5qQMD5JczMlgSl1E3N4p0dMiYMpATE/n5Luzp9XnugaFUUGYXMzXfiYXseFXaXYv+IsrFX1gH0gcEK+gZJ7fCPGNJG62LmsK7FnU1y73zc1qzJV32fSJGDpUvI0bdsG3H23sjydsDBazA0frpk8H/agMNqnvJzyGpR0LxZPWoBWcZMnqzkz/0Gna9fl2CUvSlQUSZtzd+Ney/4VZ1Fb0ghzsx7mlgCYm3SyHk2Ndgw49nXbeIdyFnZ4jyDQTbTXR31iY4GhQ+l5WRkZGUoQdYxqXWx7oSJsoDDap6SEqkKUdB0+ccIRVx01ivU5umPGDFKDBYAtW6j3iRICA+n/xXkovRZrMyVb6iCvx4z4GFDxA6IaSWurNGU0WpLTO31fdJSAscO02UfGo0yd6nguLsjkEhFB57yGwjwc4mG0jc1G4QY1wju9tXOxVEJDgSuvBFavpnj0998rF8UKD6dw0ejRmnEXM54nNLAVdy5U8P//zZdtT/suvh53juGy9W6ZPBl4803yGG/fDtx7r/zzTmxFUFwM5Oa6Z54yYQ8Ko21MJsouVxLeaW11VKQEBQHjx6s6Nb/k8jCPK2WLJpOm3MWMBxG/NkqS2s+eJc8nQE1BR49WbVp+S1QUMGIEPS8vp89QCTExpFvTrI0EHzZQGG1TXk6reSXJlocOUQdVAJgwwRG+YLomLQ0YNoyeX7wIHDmibJyICPrsOQ+ldyKWBusVeE8ul7VnD5w01AjzREdTvp9GwrNsoDDapqBAuQolV+8ow9mLclnPLMmI7mINqlMyHqBNSVimcWEyOUplo6KAmTPVnJV/M2mSI09vxw5l3cnF/DGNnLdsoDDaxQUVSkNrs0OBMjyc3cRymDABiLtU0rl7t3LxpqgoMjA1pk7JeAClrQ5Wr3bsO2+eaxL5vY2ICGDkSHpuMgGnTysbJzKSVGWVGDgqwwYKo13KyxWrUKYU7nXEUadM8X4tos1GsV0x5KRlAgKAOXPoud0OrF+vbBzRXVxZqdrUGB+grk6ZgdLc7PiuBQS09+Qx0nAO8ygVbYuJoXNWA+ctGyiMdjEaFatQZlzY7HjhbWl7QSBtgshIajt/7hypZGqZuXMdCY7ffgtYrfLHENUpNRLPZjxERYWy5Orvv3eUtk+b5vDi+RJ2Oxnl3lqITJjQPsyjxFAMC6PrkwbKjdlAYbSJ3U5uRgW9d4JaGtCveB+9iItziBh5i+JiWpXMnQssXAgMHEihq7w8uoFrkfh4YOJEel5dTaEeJQQFUZsCpvegJH/Bbm+fHHvDDerNxxPU11NZ/dmz1IuqtJR+ehrncHZVFXDypLJxgoOV9/VRETZQGG1SWUknmIL8k8yinTDYL+U9TJ2qrA+IWlRW0mpyxgwgKQlISaGeIgsWAKmpFPYpKtJmnoYaybIxMXSx1rrHiFEHm43yjuRW7+zfT4KMAFWRZWerPze1MZtp8XHqFJXTZ2TQOXPLLbQoKijwTh6HGr15xPNWqVijSrCBwmiTigpagYSFyd61f8FmxwtvVu80NJCRNXly+742ej2QlUVGyrXXklT1+fN0QVCaXOgOhg0jIwoAjh0jY0oukZEse9+bqKykEIdO5q3FV7wnFgudp6dO0Xc6IYHytW69Fbj+euosHBtLFTV9+3rHezhuHHkuAeVhnqgoyiXycpiHDRRGmxQVOU4yGYSYq9C3/JJ2R3IyMGCAyhOTSEsL/Q1jxjgElC4nIIAUG2+8kcI/wcHAmTPKY/hqc3l/HiVelIAAWkVyHkrvQFxYyNEuqa526O0kJwNjx7pnbkppbaXv7+nT5DEJDyeP6M03AzfdROd3fHz7vzkqiry3Oh39fZ4kLIyuOwAtDo4dkz+GwUBzF7vAewk2UBjt0dREJ4aC6p30vO3QC5fcqtOne0fkyWajpNghQyiPoyc1zeBg8lbcfDMwaxYZJ6dPe/7C1hmzZjlKPTdtUhaqiYigeLYWjC7GvShZWOze7fhuTJumTH1WbWw28gadPUu5YgEB5BW56SbgtttIlTo5ufu5ZmaSsVVWRgsWT6JGmCc0lLxhXkQD3wSGuYyKCrL8leSfOFfveCu8k59PoZHp0+XpOISHk3v2ppvIsGlqIkPFm6XJ4eEOsaymJmDzZvljREeTLoMWDC7GfTQ1UR6J3PNW1CsCHInZ3kAQ6Lpz/jxV2tlspCuycCEZJVOmkNKynKalo0YBgwaRkeNJA33sWMe1Z+dO6OwazHGTABsojPYoK1PWvbisDAkVJE5UHZsFpKe7YXI9cPEieQxmzlTeOTkmhlZAN95IF0hvlya72p8nPJzmznko/o24sJDzvW9sdIR3EhKAnBz3zK07GhooofXMGZpPbi7lh91+OzXPzM5W1moDIG/SlCkUAhKTgD1BSIij91h9PZJLDnvu2CrCBgqjLex28kBERMjf10naPr+/FzoXV1WRXsiMGZQg5yp9+gCzZztKk0tLaSXmaXdxVhYweDA9LyhwNHKTik7Hsve9AaNR/sJi3z5HBdvEiZ4LyTY1OSpwqqsd1XW33UY/Bw4kw1oN4uMpUb652bPe0ClT2p6m5ynszeNlZC5RGcbNiMqjSroXOxkoBdkzMEq1SUmgsZHCGDNmqJuYq9PRxbNvX8ppOXiQjJTQUNom18vUBU3NwEdfdl2OnZF4HaZc0lTIX7oWO2cNlzV+oC4HY61lyJpi9b6qL6M+gkALC7k3dU+Hd2pryVAODqYckokTKRybkOBe40jUPtq9m64PKp233TJmDF0nmpqQVrAT+lE/h6/d8n1rtoz/U15O4YCUFHn75ee3lcEaEwbDHJEIwEMlu1YrHXvcOIo5uwOxNDktjWLkBw7Qz6go0ldRmFgYGAigCRAEHczd6EqdTpqK0cFLEWqpRVrBTghV1WgKlaP0GYB9p0KRZTKp411itEVNDRnochYWLS30PQaoHP2KK9wxMwdiE7wJE8hISEz0nEaSTkchl/JyulZ5IpQVHEzH3LIFQS2NSCk7iMqcce4/ropwiIfRFhcvOkrc5ODkPTmXMVPdOXWH3U4VO4MGUZa/uy94Kpcmjx1mR3SUgLDQ7h8hEQG4kDsXAGCwt+KKou963Ed86HQ0L6tNx3ko/oq4sJDjQTl82KG2On68+88do5GM43Hj6KenBRxDQ6n0OCzMc2X3Tr15sgp9L8zDHhRGO1gsVKYotwpAENoMFLtOj7z0aZ6zvPPz6WI3fbryRDoliKXJ2dmUE3L4MFX8JCWRUJREstIFZKVL9DRNvAp48FMAwMjaHRi58CZJu330pYG8Mzod5bAMlxceYnyA0lLy4slZWPzwg+P5pEnqz8mZ1lbK/5gyhQwFb9G3L4WVNmygPDsFQpSyGD2ajMbGRmRe/AEHWlsAeFFZWybsQWG0g8lErmK5Bsrp020rkrJ+I9EcEqP61DqlpIQuMDNnKsuZUQOxNPnmm+nCV1fnvi6kyckORdxz5+R7Q3Q6WsU2Nqo/N8Z7iCFOOeetzebo7xQSQtVq7qSsjMLG3hJudGboUFpcFBS4Xzk6MJBCWgCCrGb0vbjfvcdTGTZQGO1gNNJKR24S5WXJsR6hupo8PtOmyc+XcQdiafLYse5VonVOZJTbQFCvJwOKVWX9C3FhIae8+MQJR0XL6NGKVKMlY7VS+GnkSHm6RO7CYCCPUUqKZ6TwncI8GXkKRdu8BBsojDZQWgVgswHbLsVWAwNRlDFZ9al1wGymm+yECZQPoiUGDSJjparKPeM7GyjOLnqp2O1e7+/BqEx5OSW8yrn5O1fvuDu8U1pKyeXO/bC8TWQkGQ56vfsFDEeMgCWIZBtSCndrt4N6J7CBwmiDujpa+csVNztyhEoHAWDcOLQGuTmma7WSa3bECCrj84aUfnfExFA5sru8KOnpjiqc48fp/yaHyEgqk/ZGl1fGPRQWysu/EgSHgRIQ4N7eOy0tdEMeMcK9XholZGTQ3240utdoCAxEUSYt3AJbm6hztI/ABgqjDcrLyeUrV6DNKbzjdml7sWInJ4dWP57QMlDC4MFk6Lmjj4ZO5/Ci2O3A3r3y9o+OphUjy977Bw0NlN8hJ//k/HlH/tKwYeoJonVGSQkZ1dnZ7juGK4weTeerm3tVFWap0JvHC7CBwmiDkhJyd8rR82hpcYQZQkMdHTzdRUEBJYrOnOndSoCeiIuji567cj2cwzzOrnophIWx7L0/IS4sIiOl7+Op8I7FQjltI0dqVxwwMJBUZhMS3No52Nh3BJqCL3mn9+4lVVsfgA0UxvuIYRO51Tv79zv600ya5N4EuLIyGn/6dDIAtM7gweSNcocXJTfXUcp88KC8i51OR56n4mL158V4HqORVv5yNEXERYVO11Zh4hYuXiRxw6ws9x1DDeLiyEhpaZEfMpWIoDcgP+2S9L3FIt/z6SXYQGG8j9Ly4i1bHM/dGd6praXS2KlTvdOAUAl9+lDCrDsSUvV6x42lpYWMFDlERZGB4umeQoy6KOmbdfGio3Jl0CBZmj2yaGoiw2nECM8LsilhwABSob540dGbSGUupPlemIcNFMb7KKkCMJup0RhAhs2IEe6ZW1MTeU/Gj6fkU19i8GCK77tjVea88pUb5omOJqOPwzy+TVUVPeRoAHmq905JCeWKZWS47xhqotORnlF2NiWRu4GyxGFoCo2hF87eZw3DBgrjfQoK5Od07N7tWIFPmeKeVVJrK60Qhw2ji4fWKnZ6IimJVmZlZeqPPXy4QwVz7155q76gIHo/Gyi+TXk5GfBy1FA9oR5rNpOXb/hwxT2qvIIohR8R4RbPp6A3oCjzkiZKSwuwZ4/qx1AbH/rvMX5JfT2djFoL7wgCVexkZ9NFQ6tJdj1xxRVUAqp2m/fAQEd5aEMDlRzLISSEjD/Gd7l4UV4lW2Ul9Y0CgMxMSjh3ByUlZJinprpnfHcidliurXWLh6PAx6p52EBhvEtFBYUg5MSxa2uBQ4fouZhroTaFhZRZP3Ome8sg3U1ysvu8KK6ItkVHOypAGN/DYqE8Iq2FdxoayHj2Ne+JM1dcQfMvLFRdCr8iaYgjyf/AAfq8NIyP/gcZv6G0lEInckI0O3Y4hL6mT1f/QlRRQfOZMYOMFF9Gp6MLXmCg+j1wRo92rKB375an4xARQcYJh3l8k4oKWijIEVb0RHlxaSkwcCDQr597xvcEBgMZcKmpZKSoiU5PIXGAwqxy21V4GDZQGO9hs5GbX46GAuBecba6OrrwTplCbmh/oF8/ShgsLVV33LAwR5O3ykpqICgV0SBVe06MZ5DbN6u+Hjh6lJ4nJbnn3Kqrc3T59rV8scuJjHTk1qndtmKa74R52EBhvEdlJSmKysk/qaigRmMA9ddQ80JnsVD8etw46jjqL+h09PcYDOrHtV0J80RFeaajK6MugkD/NznJsXv3OryeEye6x4AoLaVwr9iKwddJT6fqwYoKdaXwBw50eIYPHdJ0mJUNFMZ7iFUAcip4xMaAAHlP1LrQ2WxU3jd0KJXQ+mr8uitSUijhV22Pxfjxjv+BXHdxVBQZqO5qbMi4B7FvlpyFhbvDO7W1lCs2bJj6Y3uTkSPJ6FJTCl+vd3Q4ttmUNf30EH52FWZ8isJC+eqvztU7zq5KVxArdjIyaExfrdjpDr3ecfFualJv3JgY0lsBSIBLjkJsWBjNhfNQfIvyckqulJrYbrFQQiZA3xd3dAAvKyOdosRE9cf2JqIUfp8+6krh+0iYhw0UxjuYzRROkVMFUFTkEDFSMxGupoZWXzNmyG9W6EukpbnHi+JKb57AQLf2IGHcgJjYLtXLeOCAQ7NowgT1NYuqqylnw5/Css64Qwo/J4dygYD2HeE1BhsojHcoL6eTTU4VgHNyrFreE4Ck9gcOdJyw/opeTxdxQVA3pu2KgRIdTYanjzQv6/W0tpLnU2lzQLXLiwWBEnaHDgXi49UdW0vk5Dik8K1W18fT6RxhHrtds2EeNlAY72A00okhdTUlCA4DxfnkchWLhW7cOTnqjKd1MjIo+a6kRL0xk5MdycpnzlDys1SioshQNZnUmw/jPsTEdomeT5291aFYGhZG+h5qIkrt+1obCrnodJTvlZOjnsCh8zXUObdPQ7CBwngeu51yPuSsws6dc4Qmhg1Tb7VUXk4JpL6smyAHg4FuEjabus36nFfGcpJlAwNpVe6OpoaM+pSXk1EfEiLp7UmlRx36O2PHqpvfJQg0n2HD3Nd0UEuEhFDpcWSkOsKL2dmOiqfjx8nw1BhsoDCep6pK1ioMgHu0T+x2ungOGeIbHU/VIjOT8lHUzEVxJcwTHk5lq2pVKTDuo6iIeilJJLVgp+OF2uEdk4kWKv7uPXEmKYmqoOrrXZcM0OkcoXK7Hdi5s/v3ewE2UBjPU1FBJ5dUHQWbzeGCDAighDE1qK6mBDRf6XiqFgEB5EWxWNSJZwNAVpajguLoUXkS2lFRjpYHjHYxm8molbqwEOxILbhkrAYGAmPGqDcXu50MlOHD5eWx+QNDhpDXqKjI9bE0HuZhA4XxPMXF8ly9J044tDJGj1av0kZMjvXnyp2uyMpS14ui0zn0LWw2EuaSCsve+waivL3E0GyfyjMIa7p03o4cKb9jeXeUl5NBLJa49yb0emDECPo8Xe2lk5FB1wEAOHlSXv6YB2ADhfEszc1k+csReXJH52KzmTRY+vdXZzxfQ2yo1tSknhdlwgTHczl5KHo9PVj2XtuUlZHnQmIH48xiN4V3bDbyfo4Y0TsXFwDpomRkuG7U63SO3jyCQH3ONAQbKIxnkdtkzGp1xEaDgymTXQ3Ky6kZl7tavvsC2dmUIKxWgurgwQ7Dc/9+eaXMkZEse69l7Hb6/0hNbBcEh4Gi16t33gJ07iYnu0fwzVfQ6cj729Li+jmjYdE2NlAYz2I00gklNcRz6JDDjTlxouTqgW6x2ejmOXiw/0nayyEoiLwojY1USeMqBoPjRmSxAIcPS983JoYE87jcWJvU1JD7X+LCIrqmENH1l0rZr7hCnse0O2w2ylUaMUJeLyB/JD2dPCmuhmXS0hx5eKdOaSrU2ouvzozHEQRSgg0Pl76PO8I7VVUOF2lvp39/Wo2Wl6szntLmgSEhLHuvZcrLyZCVeO6mFjj979UM75SVsfdEJCSEPgc1elk5J8tqyIvCBgrjOcQVstQqgOZmRy5DZCQl2qlBVRWd2Gom7fkqISG0Gq2vVye8IibvASTQJWfM4GB1KhMY9bl4kTxkEptzprmjvLi1lbypo0ap40n1B7KyyJMkas0oRaNhHjZQGM9RXk7JqVI9KHv3OvIYJk9WR+SpoYFuoNnZro/lL4h9OdTwogQFUaUVQEbPyZPS942OJoVbNZsZMq7T1ET5J1LF0IxGxFWeBwBUxueQt1INSkspZ6q3qD5LITGRQjSunrv9+jmuiWfPqiMEpwJsoDCeo6SEcj4krsLaZZSr1XunvJxCO2pdNP2B0FDSVaitVceLojTMI8rec5hHW5SWkvdTqufTSaivOGOSOnOwWslQGjVKfgd0f0anI2+wGsmyzmEejVTzsIHCeIaWFlqFSU2Ws1ioEgSgG9cVV7g+h9ZWeuTmSjeSegsDBtBqTA3jYOxYRynqrl3SFWIDAugiq1Y+DKMOYthNqtqyk4FSlKGSqGJpKSWF9lZZgO5ITydFXVdzUTQo2sYGCuMZxPJiqQbKwYOO8I5aLdpNJgplpKe7Ppa/ER5OXpTqaiopVWMsAKioQGzVBXn75uWx7L1WsFjo/yHVe1Jb2xbWq4lMQV1MmjpzsFgoB03NXj7+QmioOsmyycm0UAGoV5oGFgpsoDCeoaKC3LRS+3g4hwbUkravqaHSYnYRd87AgUBCgjqlvk5hnnb9WHoiOprKJmtqXJ8D4zplZfL6Zu3e3WbgFqROVsdTWVJC/aOyslwfy1/JzqbEYVf78zh7UUQPthdhA4VxP2J5sdSqGatV/RbtdXVUCZSZ6fpY/kpEBHk+Kitd96I4qcqmFcjIQ4mIoIoEzkPRBsXF9F2Q6rlwCu/kp6qQf9LcTGG/ESMkK9j2ShITKYHYVa8HGyhMr6O+nk4cqauwo04t2seNU8etW1FBq4z4eNfH8mdyc9WJZ8fFtWlVxFQXIEoU7eoJnY5l77WC1Uqufqmqz2YzCSsCMIfFoyJ+oOtzuHiRzlteWHSPXk/eYVeTZfv0AQYNouclJV4v+2cDhXE/5eVkpEjtm+Ec3pmkwiqspYW8OGJ8lemaqChg6FAy6FzNA3EK82QUy6zmKShQr0cQowyjkbxpcXHS3n/gQJsicXHGJEDn4u1FDFeMGKFODpq/k5ZGpeBqJst6uZqHDRTG/YjlxVJk5W02h5s4KEidFu0mEyWApaa6PlZvIDdXnQudk3HZrnFcT0RHO6TVGe9x8SIZHAryxorUKC8uKSHNE05ql0Z4uDrJslOmOHKHtm3zasI6B/UY99LaSqvhqChcKNRh/1F9twvjPmUncXVtLQCgsO9YbF8rr99GU/NlGwSB8k8mTOAKAKnExABDhlCTxrg45YmO/frRqq6oCImmUwgxVwGQUMUVHExer5KS3t3M0ZvYbPLCO1YrsG8fPY+IQHnyUEBGr8gONDaS12TEiN7dL0suWVmUO2I2K+9VFB9P4aITJygH6dgxR1Weh+H/PONeTKa2KoD9R/WordPB3NT1o+85h0vxfL8p3b63s4cg0M20zRapqaEVOVcAyGPwYLo5uVpNc8mLooOAlMLd0veLiADOnXM9WZdRRnk5hfmkqscePuxQAB43DoLexbVvSQl5A9jrKQ/RU+xqJd60aXQOzpvn1ZYgsr9FZrMZH3/8MU6cOIGTJ0+ivr4eTz31FK655hpJ+9fX1+PNN9/E1q1bYbFYMHjwYDz88MPI5eZP/kl5Oa2Gg4PbPCc6nYDQzlppCAKyLlIowKYPgKn/OIQFyXcvBgYCY4ddurGZTKSfoFY31d5CXBwZKbt3S79JdcbEicCnnwIA0gp3AZgjbb/YWPrulJezF8UblJTQeSu1541T9Q4mTQJcUUpvaCAv2rBhLKgoF72eklwvXCDjXqn36eqrKRctPd2rrQVkGyi1tbVYvnw5kpKSkJOTg4MHD0re1263Y8mSJTh//jxuv/12REdH48svv8Rjjz2Gt956C2lpKoj6MNqisLDDRS40BLhzYSeZ5mfPAsvI8jeMGoFbbg0B4EJGusVCJyj37lDGkCHk5pUjc345/fujMbwPwhsrkFRySLrrOSyMVuQXL7KB4mnsduD8eelJ7Tabo6lnUBDJ0a914fglJSQt0LevC4P0YjIyyMCvrlZetRgUpInEZNnmVXx8PL744gt89tln+NnPfiZr382bN+PYsWN46qmncN999+HGG2/EP/7xD+j1eixbtkzuVBit09BAQk9SvRc7nRIp1ajeKS8nbYCUFNfH6o0kJNBqzGhUPoZOh+IMquYx2FsdeQpSiIykMI8a/YEY6ZhM8sI7p06RgixAjSJdEUKsq3P0hmLviTLCw6liUQ3BRS8j24MSFBSEeIVW2ZYtWxAXF4fp06e3bYuJicGsWbPw3XffoaWlBUFSM8YZ7VNeThccKZ2DBcFhoOj17YS+FGG3U6Ld9OmaWAn4LIMHk3R5XZ30hMnLKE6fhNwTX9OL3bvpfyKFuDgyjioq2IviSUpL5SVZXh7ecfXYY8bw/9tV+vcnTZqmpnY5JE3NwEdfSrwe2lIBgwFhu3dg4QtT3DPPHvBokuyZM2cwYMAA6C+Liw0ePBjNzc0o8rIoDKMyYstuKQZCQYFDnOuKK1zPGamuphscCzy5RlISSeC70H69PHkomoMi6cW+fdL1TUJDKUx38aLiYzMyEQQK74SHS3+/WF5sMJCwolKqqymsNHSo8jEYom9fqqK7pMgsFg0Igoyig5YA+lnrSjmWa3jUQKmqqurU+yJuq+xC98BkMuH06dNtj4KCArfOk1EBmw3Iz/eeOFtlJbk5pR6f6ZohQyiPqL5e0e6C3oDClEsesaYmqviQSmQk5SZxmMczVFWR10pqeCcvzyGvPmyYa+dbeTl57Pr0UT4GQ4jKsmYzYLdj7DA7oqMEhIXKeAS10s9o7/Uu86gOisVi6TSEI26zWDq31FatWoXly5e7c2qM2lRV0YooIUHa+9U0UMxmSvLi5Fh1ELucHjtGBoMCClInYmDeBnqxaxcwdqy0HePiyHtTXs5Jk56gtJRyx6TmbTmHd5yUg2XT3EznLKs9q0d6eluybFZ6PLLSZRr5xcX0PVjgnfAO4GEDJTg4GC0tLR22i9uCu0iuWrBgAaZMcXxIBQUFeP75590zSUYdysulx7FLSsjbAjh6wbhCRQVpAXAcWx10Ogq7nTlDNy8Fq+Ti5NFoNQQjwGahPJSf/Uxa6C8kxBHmYQPFvQgClaeGhkpPUHVeWLiSN2Yy0f+Xz1n1iIwkg2/fPp/tQebREE9cXFynYRxxW1fJtwkJCcjNzW17ZGRkuHWejAoUFUnP5lfTe2Kz0Wps8GBWoFSTfv0o8U5hLootIASlqaPpRW0tcPq09J05zOMZamvJgyI1vFNSQrljgGsLC0Egwzc3l89Ztenfn7pAN18use0bePTbMGDAAJw9exb2y9QhT548iZCQENZB8RdE/Qqpia5qGihVVXSh5P4d6qLTUfKiweBo4iaT4nSn/61zaKAn4uLIK+ZqK3mme0pLKc9IahhPrfCOeExWjVWfy5JlfQ23GSgmkwkFBQVovdTdEgBmzJiBqqoqbN26tW1bTU0NNm3ahMmTJ3OJsb9QXk6rMSllqRUVFDoASI7eVTd+VRV5T5T2oWC6JiWFSsbFaiuZXEwf71gh79olvQlZSAipmnI1j3vJy6M8EKnhHbXKi00mWlBI7ZrMSMdgoOthY6NPto1QlIPy+eefo6GhoS00s2PHDpRfWt3cdNNNiIiIwNKlS7Fu3Tp88skn6HvppjNz5kysWLECL774IvLz89uUZO12O+6//36V/iTG65SV0ckQIOHrpaaGQkMDxc+574570OupUuPcuQ76ClJoCY4kL8yRI/Qdyc+X/r8SwzyjRrGujTuorycDUGp4p6qKBNoAMi769VN2XJuNys45OdZ9iMmyNTU+ZwQqMlA++eQTlDnFordu3drmFZkzZw4iukiiMxgM+Mtf/oLXX38dn3/+OSwWCwYNGoSnnnoK6eyS9w/sdopLS3UTO4d3Jk927djl5RRzTUx0bRyma9LS6IJXWqosjDZxIhkoACXLSjVQ4uLomEaj8psh0zWlpeT1lHruiNL2gGvhHVGviMM77iMqiioaDxzoHQbKp5eaf3XH008/jaeffrrD9sjISCxZsgRLlixRcmhG61RXkwaJlJVYTQ31egEofOBKDlJrK63GcnNZItud6PX0GV+4QCEauZ/1hAnA0qX0/IcfgNtvl7afGOYpLmYDxR0UFJDHU2qSqlqez6oqYPx4r3bM7RVkZ5OyrMXiWisCD8Mp04y6VFRQvFNKDsju3Y646KRJrhkWJhOt/tgT535SU2lVJvZfkUOfPg59mrw8eX1+IiNJ5dQpr41RgcZGauopNbzT0ODwgiUmSmtl0RkWC4XrWO3Z/aSkUH6fjyXLsoHCqEtxMa3EpBgbalbv1NRQYzsfWh34LNHRdFPpQvm5R5xDAnKqeeLjuZrHHZSV0fkjtepu3z5HyffEicoXFpWV1EqB9W3cj5gs29AgPTldA7CBwqiHxUL6J1IudM6rMOdVtRLq6mh1zcmxnqN/f/J+KfFmTFJYbhwc7AjzMOpRVERGhtTkY+eFhSv5J7W1FC6UkkzPuE5GBl2ba2q8PRPJsIHCqEdFBV10pBgoe/c6bm6uhncqKsg48VG1RJ8kJYU+76oq+fumpjqk1E+elBcqioqiKiIO86hDczOF2qSGdywWSrYE6DwfPFjZcRsaaFHBIVnPER1NCwuTydszkQwbKIx6GI104xBbZ3aHWuEdq5VW8gMHKh+DkU9ICHm9qqvl76vTOVbedjuwZ4/0fePi6AIrJ3eF6ZqyMvofxsRIe//Bg2SkAJTcqrTkW2xHwYsKz5KTQ4nQnbSc0SJsoDDqIAikayGhTbvB2uxYhcXEUO6IUioqKIbNZYqeJzOThL2UyGgrzUPhMI+6FBXRuSs1zKKGeqzd7tA+4Yo7z5KSQnk/PpIsywYKow61tbSylRDe6Xdxv8OCnzhR+SpMECj/ZPBgaV4bRl2Sk+mhxGU8YIBDk+HQIRJ+kwqHedShpYXCO1K9JzYbhWYBKgseMULZcaur6TrBrU08T0AAXS/r630iWZYNFEYdyssld7pNy9/heOFKeEesPOAyRe9gMFBoTUllgF7v6H5rtTo8alLgMI86GI2UQyQ1/+TYMbqxAcCYMeQ9U0JVFYUaJHhbGTeQmalcJsDDsIHCqENpKd10enDZ6m1WpBRdyjkIDyfpdKWYTJT0JXUFyKhPWhoZpeKNSw6uhHmsVg7zuMrFi9JzxgB1wjtWK10nuOLOe8TEkHaND4R52EBhXMdqJSVKKeEd4yEEWi+588ePV15iaLHQhY57eHiXuDgyUpRoogwd6lhF79tH3yOpREdTbx4O8yijtZVE76RqnwiCQ94+IAAYO1bZcU0mICGB1YC9jZj/o/FkWTZQGNepqKBwi4TuxVlFTuEdV3rvVFRQwpdYrsp4B52OLnYtLQ7xLqkEBjpudI2NFEKQSmws3eyceoIxMjAapbekACjnR8w1GjlSebfwujpKiuecMe+SkqI8f8yDsIHCuE5FBd2gelBx1dltyCi+5CYOCaELnRLsdrqhDR7MnW21QGoqeVKUCEA5hwqcS897IjiYvAAc5lFGaamkc7aNnTsdz5WGdxobKbmWtU+8T2AgGYp1dZpOlmUDhXGd/HxJzb4Sy44hpKWOXowZo1yWXtRtyMhQtj+jLuHhlAukJMwzerRjNb1nj6M3kxSio2llLyc0xJCn6+xZ6R3HAUf+iV5PoVklVFZSaKdPH2X7M+qSkUFe77o6b8+kS9hAYVyjro7cxRJi2WkFTqswV8I7lZVUPSLnAsu4l8xM8mbJjWmHhgKjRtHzqirgzBnp+3I1jzIqKuSFd4qKKKEWoFW3kqR0ux0wm7nbuJaIi6NkZQ0ny7KBwrhGRQVVcPRkLNjtSM0nA8VmCCQPihLMZlpx9++vbH/GPYgrYyVeFLHcGHAkYkohKIjDPEooLSVxPQleTwDqqD7X1pJhw4KK2iInh0I8GvVCsoHCuEZpKa2I9D18lc6cQVgT9W0p7TdKeZJdRQVVjXAHVG0RGEirYyXaCuPHO74/u3bJi4lzmEcedjt9XnI0SNQoL66spNW6hER6xoOkpWlaWZbbSDLKaW2l/BMpoRanVVhR5mQoWkfZbFRePHhwzwYR43nS08nwbGyUdwOMjgaGDKEqnosXKaQgNZEyLo7eX1bGyqRSqKzEhZON2F+cBuu+ns+hyNqLuP7cOQBAVVw21v0grTy4ybn7gdVKRmd2tpIZM+5ETJb9/ntNln6zgcIop7yc8gZ68mYIQlsVgF2nx8V0hauwqiq6IXEVgDbp04cuciUlnRooTc3AR192XnWVGz4JY0BlxoeW7cGJEVKFvEKB1mzg+HEERudh7C0DkDWBvWtdUlaG/XkxqLVIq34bfOr7tudn06+EuUle/khgIOi8TUjg8I5WycykRWZdneY8XGygMMo5e5aSIkNCun9fXl5bImNp4nC0BEcCkKmZAZCbeOpU5eEhxr3odJS8fO4chRIuebkCAwE0AYKgg7mLljtnEydjDN4CAKTk/YB9A2+XceBAwCoAjY3Y99lZNlC6QhCAc+dgFeiyr9MJCO3u1BXsGFBABopdp8fFQTMQFio9/BYYCIwdZqfy82nTlEvjM+4lPp6MlFOn2EBh/IS6OjJQEhJ6fq+ThkJ+2hRlx2toIMOE3cTaJi2NkiFra9uqRMYOs2PfUX23aSL20ERUxWUjruoC+lSdRYKtHOYIqeWoApqadBCgg7WZlWW7pLqaQmF68kCGhgB3LuxmoXDsGNBQDgDQjxqJG++MhuyFRVMTYAxmr6fWGTAAOHGCwnEaEtFjA4VRxoUL5LrNze35vZfyTwTokJ86CYqKDCsqyDhJTFSyN+MpoqJoNXbsWJuBkpUuICtdwo2teSLw0QUAwMKYncB110k+7EcrBJit2rmwapLSUsoPklrm+70jvINZs5Qd02SiEHBSkrL9Gc+QlkbX1spKUpjVCJxpyMinpQU4fpySG3tKVi0upiRGABWJg9EUGif/eK2t9GANBd+gf38KJ8jtk6O0eSDg+B5qVxTT++TlSQ+zWCzAjkttKcLClFXvCBR2Q24uJ7VrnaAgSpZVogbtRvhbw8insJBySqQoQjqFd4oyFYqziQ3G2E3sG6SkUFxbriZKRoZj9XbsmDyFS/EGKLcfUG+htpYqpOIkLhB27aLwDABMmaJM9VlMuuTqKt8gM1N5Z3I3wQYKIw9BoGQqg0FarNJpJVycodBAqamhMlSl0viMZwkOpmRZuasxnc6xUrfbqcOxXNhA6ZzSUsrjkqq+rFZ4JzNTmfIs43ni42mRUF7u7Zm0wQYKI4+yMtI+kRJTNhqpogMA+vdHY6SCOHRdHVn1mZny92W8R0YGuY2bm3t+rzPOoYQtW+Qft7VV8y3kvUJhIRAQIC3UUlkJHD5MzxMTaXEgF5uNjExWfPYdxCo8m01+eNZNsIFyOWVlwIYNvBLrirNn6aYjRYjLOY9AqUS2yUShHSnVQox2SEqi5Ei57dwHDXIkQh86JF/h0m6nc5hx0NBABorU3jtbtzqaNs6apSx/pKqKVuSsfeJbpKVR6F7ueesm2EC5nKYmOpkLC709E+1RV0fN3KQaC849PJQ0B7TZqOxtwAD5+zLexWCg1VhDgzzper0euOoqei4I7UMNUrmUlM1corSUclCkaFxc/pkrDe9UVVGfl540khhtERysqWRZNlA6o7KSqlTktH7vDYilxVJWYtXVwMmT9DwtTdlKSlyFcZKdb5KWRjkPcpPuZs92VGtt2CDvPNTrKazIYR4HhYVkMBokqMfm5QEFBfR80CBl8ucWC4X3OCzrm2RlkYe8ocHbM2EDpUsuXCDJboaQU1oMtG/6pjS8U11N3hOpXVcZbSG2JZDrLu7TBxg5kp4bjVTRIxW9ngzb0lJ5x/RXmprI4JCaqLppk+P5lVcqO2ZFBYX4NKSnwchArJiUU0XnJthA6QyDgZKETpyQ5572Z+SUFgPtyosVGSjNzVQllCW1JwujSXJy6FySm9MlhnkA4Lvv5O0rCByiFSktJXe9FAPFZgM2b6bnAQHUVkIugkAr79xcaR4bRnvodPT/04DsPRsoXZGcTK5iDZVceQ25pcX19cDRo/Q8KUmZPL3JRP8DXoX5NqmpFBKsrpa338SJjpLYH36Q526OiSEPqMUi75j+iJiPI8VYOHCAclUAYPx4qp6TS3097cdhWd9GVJb1MmygdEVkJGA20425tyOntBgA9uxx5A1MmiRf/ZVXYf5DWBiVmso1UAIDgRkz6HlLC1WWSCUmhsM8ABloeXmeDe9UVlJ4QKogHKNNQkIoB8nLfXnYQOmOxEQyUKqqvD0T7yKntBhwvXqnvp4VKP2JrCzKDZGbuHr11Y7nGzZI3y8wkAzk3l7NU1ZGhqEUA6WhAdi9m55HRQGjR8s/ns1G/+OcHG5J4Q8MHw6MHevVKbCB0h0xMY7S2t6K3NJisxk4eJCex8VRqalcKip4FeZP9O1Lxr7cZNmsLIfQ17lz5A2QSmwsh3mKi8lQk7IK3rEDbe2mZ8ygHBS51NTQOcsLC/8gNFR6zqGbYAOlO3Q6ujEfP66JjGavcOECrcKkijzt3++40E2cKF/kqbWVLqo5OfL2Y7RLYCCF65ScQ0q9KDExFG7orWEeq5XO3ehoae93Du+4on3Svz+F9RhGBdhA6Ym4ODrxRMn23kRLC1UyRUVJNzScwztKqneqq1n7xB9JS6Mbl1xthenTHR6AzZsdxm9PiPv01moeo5EMNCkLi9JSOs8B8lwqkadvaaFrBFfdMSrCBkpP6PW0Gjt6lMIXvYnCQopjS3XzWSyOBm+RkcDQofKPyQqU/kmfPlTRI7fDcUSEI4+pvt6RJyEFsZpHbj8gf+DiRfJGBgX1/F6xtBgg74mS/BGTiZLolQi7MUwXsIEihT59qNz4wgVvz8RzyC0tBqh3ingzmDBBfgVOUxNdUHkV5n/odCS619wsX6FZqSaKWN7c28I8Nhtw/rx0aXsxvKPTATNnKjtmXR3lmynJXWGYLmADRQoGA3kEjh7tPRLaRiMpUEotLQZcD+9UVlJCJWuf+CdpaeTVELU2pDJsmLIGggEBvVO0rbycPBpSwjsnTzqaK44YQeFVuTQ0UIVferr8fRmmG9hAkUpiIknfy6kk8GXOnCGPhtTS4tZW0j8BKPtblCqXiqh9MmiQsu6pjPaJjCTvmNxqnssbCG7cKH3f3hjmKSmhhZSUMKkajQFNJgrfccdxRmX4TiCVwEA64Y8epZuxPyO3tBigz0VMgBw3Tr7AT10da5/0BrKyKJQgNdlVxLmB4MaN0sNEvS3MY7dTeEeCCqyh1ULlxQAtKpR4Pe12yj0bMIC1TxjVYQNFDklJJP7k7y5juaXFgOvhHZOJbl5SVS8Z3yQlhcIIcsUPL28gKLZS6AkxJ8Lfz1kRk4lCYBLO3ZTCPUBjI72YPFlZYrrY54cXFowbYANFDsHB5G4+dkx+op+vYLVSXFpOabHNRt2LAUpyHTNG3jFF7RMl5Y2MbxEcTMmUNTXy91WqiSKKtvWGME9pKVUbStAiyTrvFCpTGt6prKReW0r69jBMD7CBIpfkZOpLU1zs7Zm4h8JCusjJURA8dcpxwxk9Wv5KrLKSVtWpqfL2Y3yTjAwyVJqa5O03YYKyBoIxMeQRLCmRdzxfQxAovCMhbyy0qRp9i/fTi4QEZZIAViuFdZQ0A2UYCbCBIpewMPIYnDxJFwR/QhDo79Lr5eWQuBreqakhpdHgYPn7Mr5HUhIZ+nKTZQMDHWWwchoIimEef+/NU1VF4S8J4Z3+BZuhFy55gWfNUpaYXllJCxnWPmHcBBsoSkhOJmVZo9HbM1EXsbRYTpmvIDgMFIOBEmTlYDaTYZKRIW8/xnfR68kgbWiQb+Q7a6LIDfOcPy/fa+NLlJY6Sn57ICdPhfBOTQ2F66SIwTGMAthAUUJEBMWzT5709kzU5exZeaXFABlqoi7F8OHyY9EmE63A5OitML5PWhr1iZHbnycry9GnSU4DwdhYuqH6azWPIFCeTWhoj9U0MVV5SKi5JDo5cKCy0KqY58LaJ4wbYQNFKYmJVIor102tVerqgNOn5WsZOId3RElyqQgCXehyc1n7pLcRG0s3NyXnjxIviqhq7K/VPLW1ZHxJCO9knlNJ+0TsUs0wboLvCkqJiXHc1P2B/Hz5pcXO4R29npIY5VBTQ6toLlHsneTkUD6XzSZvv+nTHWEFOQ0E4+LIy+CPYZ7SUupVJCYRd4XNhqzzJG1v0wcA06bJP5Yg0GfICwvGzfC3yxX69KEwj1zpbq1htQLHj9PFTc4Fp6iImpIBwJAh8jVMKivJZS+1JTzjX6SmkkEsVxMlIsKRjC2ngaA/V/Pk5ZHR1pNY2uHDCG2qBgCUpI2T1q/ncmpqaD+uumPcDBsorhAXRxfXM2e8PRPXEEuL5bprd+50PJdbvSOueln7pPcSGkpelOpq+fsqaSBoMNANvKBA/vG0TH09LRSkeD/FxoAA8nJmKzteVRUvLBiPwK0nXUGnIyPlxAnyIMhJLtUKl0qLL9REYf+3IbIUyK9Z9wPES+KXtVNg/rL77sVNzjpZlZWU78KrsN5NVhZw4ADJpcspMx82jBKrjUbg0CGEDSiH2SAh0ToujsKZEsXMfILSUvLi9rTAMJvbQrLNQZEoSR0r/1iiqCJrnzAegD0orpKQQBfJ8+e9PRNlXCot3l+WjNo6HcxN0h6G8jLEVlEFRXn8QJgMiT3uIwjkfg4MBF1QuUSR6duXDI3KSnn76fXUnwcABAHZ5yQ2EBTDPP5SzdPaStV3AQE9h2d37Gjrxn4+YwbsBpn9sgDynrCoIuMh2EBxFYOBXJ1HjtAq0Ne4VFpstdFXQacTEBba82NIsaN64mLWZEn7hIUKiI4SMDa3idz7rH3CBARQsqWSPC6nBoLZZ74DBAntJwwGupH7S5jnwAHKg0tJ6fm9TuGdc1kKwzvV1bSwYFFFxgNwiEcNEhPJg3LhAjB4sLdnI536+g6lxaEhwJ0Le6iqaGwEPllFzw0GjHpoKkYlyqjEKCwj7RMuUWQAquKKiCCRMTk6OmIDwYMHEdFgRF/jEdRmjeh5v9hY/wjzXLgA7N1Ln0NP7SWMRuohBqA2OhUVcQMh+y9vaiKPJy8sGA/BHhQ1CAggj8DRo/LbyHuTvDz5pcUAsHq1owvqzJnyDA27nW4MAwdyiSJDiLlISjRRnBoI5l74Vto+MTFUieLL1TxVVcC2bfQ8Lq7n92/e3PY0L2d2z9U+nVFZSSE5OUrTDOMCfIdQi+RkaiDoK65jpaXFZjPw1Vf0XK8HbrlF3nFra8kgYu0TRkSnAwYMoBCp3C7hTg0EM4t2INBS3/M+vl7NY7EA27eTgrOUXBBBcIR3dDrk958p/5iCQB4u1j5hPAh/09QiKIg8KceOyb/IegOlpcVr11JoCCDBLLmNwkTtEyX6C4z/kprq8GzIwamBYIDdiswLW6TtJ4Z5RE+gryAIFNY5fZrOIynGwunTDm/RsGEwRygIrdbX0znLCwvGg3AOymV8+e98mMv7A8e7L5l1JjAQGDvMjqy+femiV1Sk7TitIACnTsnvWtzcDHz5JT3X6YBbb5V3XDH8xSWKzOVERtL34vBhaSELZ666Cvj6awCXkmVxTc/7xMRQgvipU8Do0cpCHt7g9Glg/35aGEitgPv+Mml7CU6mDlRUkPdEbjiYYVyAPSjOlJdj8LrXMOqHpZLLbc1NOtTW6bDvqJ4S1QSBdFHkdmn1JEYjGVJyG/StX++otpg6VX6podieXUrFAdP7yMqi80ZuHldWFirjqYFgfKXEBoIGA30Xt29vSx7VPEYjlQqHhEj3QFqtjlyV4GD5goriGHY7heEYxoOwgSLS2gqMGYPc418h9/w6JDcXSCqb1enIEGm7piYnU0WPlnUWxK7FciomLBZg5UrHa7neE4Dc97m5rH3CdE5KChkNcjVRAFwY6EiWldxAMD6ezoGtW8mTomXMZjI0amspUVUqe/c6wliTJimrWqqooGNq2SvM+CUc4hEJCAAefhh4+mnoBTuuK1kO3Pf/etztoy8NMDv3HouIoHjvyZPy8zM8QX09SfPL7Vr83XcOSfLJk+VfrBob6eLIFzmmK4KCqLpr2zbZlSL52TMxas87CLC1UMXKokXSwpeJibSY2LSJ3q/F1gt2O/UbunCBvBhywlGXh3eUHLuuDpg4UV44mGFUgD0ozjz2mCNpdPduMjKUkJRERkBFhXpzU4u8PFqhyoklW63A5587XivxnphMFBLq00f+vkzvISODQhhms6zdrMERyE+dTC/kNBAEHB6J77/XZmXPsWPAwYNAejotpKRSW0v5KgB5i4YPl39sUYYgK0v+vgzjImygOBMWRkaKyHvvKcsliY6mkjytuY3F0uKoKHmlghs2ONzu48fLT3K12ynBduBA30lGZLxDYiJ5TxRoopzOnuN4IbWBoEhqKoUxN250dOjWAhcvUv+c6Gj5vb62bQNslwQUZ86kvBu5mEwUluWqO8YLsIFyObfc4ljlnzgB7NunbJw+fchAkVs26U4KC4GyMnmlxVYrsGKF4/Vtt8k/bk0NVU1wiSLTE3o93RDNZtmLg9Kk4WiIuJT4feiQfA9mejqFMzZsoIRUb1NfT/kxzc3KVJddDe80NJAAJSfHMl6CDZTLCQgA5s93vH7/fccqRA5xceQePXNGvbm5glharNPJiyVv2uS40I8Zo+xiVVkJ5OTIS8plei9pabRil9ufR6d3JMsKAnlDZO2vI+9gZWV7r6E3aG0Fdu5ULllQWAicO0fPc3LI+JKL0QhkZsqv9mMYlZBtoLS0tOCNN97Aj370I1x11VX46U9/ir1790rad9++fXjsscdw/fXXY/78+XjwwQexfv162ZN2O8OGUTgCoJj0FoniT87odJSIeuwYrUS8jZLS4tZW4LPPHK+VeE9aWmhVzDFsRioxMWQoKMjhuuAs475hg3zRRJ2OEmXLymh/b3lADx6k1hlZWcpCM06NARV5T6xWMvIGD+awLOM1ZBsoL774Ij799FNcffXVePTRR6HX6/Hkk0/iyJEj3e63fft2PPHEE7BarVi0aBEWL16M4OBgvPDCC/j0008V/wFuQacD7rnH8frDD9valMsiPp5WYeJKxpucOye/tHjLFoere+RIYNAg+cc1mSjcpcWKJka7DBpE3kyZybLmiET6rgJAeTnd5OWi15ORUlRERkq9EmUzF8jLA/bskdYEsDNsNkfvHYMBmDZN/hjl5ZQLxGFZxovIMlBOnDiBjRs34sEHH8TDDz+MBQsW4NVXX0VycjLeeOONbvdduXIl4uPj8eqrr+Kmm27CjTfeiFdeeQUpKSlYu3atS3+EWxg+nBQmAVrJKZmjXk+u6mPHKI7sLTrpWtwjNpvr3hOAYvqDBnGJIiOPlBQKbSjJBblagSbK5RgMZKTk5VGoyFOS+NXV8poAdsbRo47w1Jgx5JGSg91O14yhQ/m8ZbyKLANly5YtMBgMWLBgQdu24OBgXHvttTh+/DiM3VxMzGYzIiMjEeQk0hUQEIDo6GgEBwcrmLoHcPaifPqpsotUUhJdZC9cUG9ecsnPp+6nckqLt29v178DV1wh/7gNDVR5oCT+zfRu9Hr6zrW2yleWdWogiJ07lYdYAwLISDlzhkIm7l5ktLTQeVdeLl+l2Rnn8M6VV8rfv6qKjCMOyzJeRpaBcvbsWaSmpiL8snK3wYMHAwDOdRPKGDlyJPLy8vD222+juLgYFy9exHvvvYfTp0/jjjvu6Pa4JpMJp0+fbnsUeEqrIDsbmDGDntfXA198IX8Mg4HKl48elX+hVQOrlTw4ERHSS4vtdjLIRJR6T8Ruq3JF4RgGIA9K377yvShODQRhtVIljFICA+k6cOIEhTyVhHqlIDYBPHVKehPAzmhqIqMMoMXBuHHyx6isJK8nJ7UzXkaWkmxlZSXi4+M7bBe3mbrRLrj33ntRWlqKDz74AO+//z4AICQkBM899xym9RAjXbVqFZYvXy5nqupx113U/6K1FfjqK6rwket6TUoiL0Z+vudL9oqKKOFPjhdDrB4AKElu2DD5x7XZ6ObA2ieMUgID6bu3bh19n+Qkizo1EMSGDe0r8+QSHExGw5Ej5FWZPl390MeZMyRp0Leva60gfviB9FwAyj2RO0+xtDgnR/kcGEYlZBkoFosFgZ184cWwjUU8MTohMDAQaWlpmDlzJqZPnw6bzYavv/4azz//PF5++WVc0U0IYcGCBZgyZUrb64KCAjz//PNypq6c5GRg3jzgm2/oxP/kE+BnP5M3RmAgXdiOHqXVmJKsfCUIAqnh6nTSL3qCnf5GkdtvV2Zg1NRQSImT7BhXyM6mZFGTSV4FWlYW3WTPnaNHXp5rIYuQEDLyDxygc3nqVPXO4/JyRxPA6GjXxnLWPlES3jEaSYdGie4Kw6iMLD9icHAwrJ2EKVouuT27yyV59dVXsXPnTjzzzDOYPXs25syZg1deeQXx8fH4xz/+0e1xExISkJub2/bI8HQ/l1tvpVUFAHz7rSM3Qw59+5I2geiZ8ATl5bJLi1MLdzvkvgcOdFREyKWqiuL3ctUvGcaZsDDy4lVVyVd1vuoqx3OlybKXzyU1lUIxu3bJL2HujKYmSoqtqZHXBLAzKiocVUt9+5KhIYeWFvqMBw1iryejCWQZKPHx8ajsRLxI3JbQRa6B1WrF6tWrMWnSJOidYqsBAQGYMGECTp8+3anhoxliYoAbbqDnNhvw3//KH0MsFzx+XJl8vhLklhYLAoYe+p/j9W23KbtQWSysfcKox4ABdA7K1SSZPt3hOdy8WZ0csIgIuvnv3k0hGVfOZbudDJ3z5+lccdUo2LzZMZ9Zs+SPV15OcgDs9WQ0giwDJScnB8XFxWi8rJrlxIkTbb/vjNraWthsNtg6UWS12Wyw2+2wq7EacScLFzrcr9u3K9M26duXqnmUeGB6orWVEnmNRnJnHz9OCXed5Ax1RVrJHsRVnqcX/fsDY8cqm0tlJXltWPuEUYPYWPIGlJfL2y8iApg0iZ7LbSDYHVFRlPi9cydJ6is1UsQmgGlp8poAdoYguCbOZrdT/skVV7g+F4ZRCVkGysyZM2Gz2bBq1aq2bS0tLVizZg2GDBmCpEuhBKPR2K7SJjY2FhEREdi2bVs7T4nZbMaOHTuQnp6u3VJjkbCw9tUs772nbAyrlSoC5GKz0QVEDNucOEGdSjdupF45//0v8NFHlD+yciUlFjY2Sk/oFQSMOq6C9wQg7ZPcXL7QMeqRm0thVrklw85hHrkNBLsjNpa8Otu2KTufxSaAUVHqVMucOwcUF9PzoUPly9NXVtJihr2ejIaQdQcZMmQIZs2ahaVLl6KmpgYpKSlYt24dysrKsGTJkrb3vfDCCzh06BC2XirvMxgMuP322/H222/joYcewty5c2G327F69WpUVFTgt7/9rbp/lbuYO5cqeYxG4PBhWv1AppchKYkuJiNGtE9Es9koHGM2O36azeTWrq2lm77FQg/RyBMEcmEHB9MjMpJWdoGBso2LvhcPILHyUt+gzEzqWqyE+nq64LL2CaMmSUmUMHv6tLwb+rBhDi0isYGg2AzUVeLjyXO5eTMZ41JzPurrybBpaiJPpRq42hiwqgqYPJlzxhhNIXuJ+/TTTyMpKQnr169HQ0MDsrOz8dJLL2FkD8mU99xzD/r27YsVK1Zg+fLlsFqt6N+/P5577jnMFDULtE5gIHD33cDf/06v338fmD4agIxs/qgooLSUShbj4sj4qK6mi5ZogDhrLQQEtDdA4uPJKFEzia2z3BOlOgwmE91IZISWGKZHdDpKlj19ms4RqR5XvR6YPZu8i2IDwdtvV29eSUkUst20yaGZ0h3OTQDVkhxw1noJCgKcKh4lUV9Phgl3LWY0hmwDJTg4GA8//DAefvjhLt/TVVXO1VdfjaudZah9kWnTKISSlwecP4/0tO041XeGvDGSk6lcUa+ni5roBQkPJ6NFbQOkJ44cQZ/ykwCAmph0xIhxe7mI2icDBnAVAKM+aWn0KC2V1+F39mzgf/8jA2XDBqrKU2qAd0a/fmRwbNxIC4ruvIeHDlGlTUaGemXK+/c7+gVNnEihZDkYjcCQISyoyGgOFc/SXoJe304Cf8T+96Gzt8obIzqaVoO5ubTiSk0lt3NUFBkqnr65O+meHB/hgvekupq1Txj3YTBQEmdzM3kipNKnj+sNBHsiLY3mtWFD10nw+fmUqJuQ4JAtUANXwjsWC11vcnN5UcFoDjZQlDB6dJu6amR9KQadX+flCbnAsWP0AFATmYLCLAWdT0WqqkgcS+4KjmGkkpVFHki5FT1qNBDsiYwMyhXbsKHj/KqrqfpPENQNf9bVUbkzQIsDubpFYmmxK71/GMZNsIGiBJ0OuPfetpejjv0PAdYmL07IBZy8J4euuB2CXqHb2WIh9zZXATDuJDiYqlTq6uQJpanVQLA7dDr6/ldWUsWQqBnV0kJKsWVl6nsXt293eJNmzpQfNmps5NJiRrOwgaKUgQMp6x1AWHM1co9/5eUJKeDkSapGAlAfmYzzGTOVj2Uy0cqWtU8Yd9O/P+VqVVVJ30fNBoLdoddT2LasjHJSampIefbkSaqOUzP3xWZrXzqtRPskIYEXFYxmYQPFFe6+G3YdfYRDjq6gihxfol3uya3KvSeCQEl6ubme6zPE9F4iIymHq5vmpJ3iLk2Uy9HryYgqLATWr6ck1r59pVceSUEQgLfeIhVagIyMzEx5Y9jtlBzLIVlGo7BfzxVSU3F+4BwMOL0OgdYm4LPPgMWLvT0raZw9S5VEAJCYiPz+VwJKO8nX19NNg7VPGE8xcCCV6tfWSm+w59xA8Px5UnXuqSxYKQYDGSkXLtC5IXGOFwp12H9U36Mq/+AjKzBq3xoAgF1nwPeDHkD5l9IWB03Nl57odOrpsDCMG2APioscG3UnWg2XVkZr1lDJni/g3LH45pthN7jQPr6igowTqaq1DOMqCQlkbMg939RuINgdAQFkSMloArj/qB61dTqYm7p+JJ/cglH7lrXts3XCL5EfM7LbfZwfgkDVOoGhAVxazGgaNlBcpCksHsdyLzUSbG0lQSitc/48sGcPPU9IIJ0Ipdhs9GCRJ8bTDB5MuSVms/R9Lm8g2KLUbegeRM+JTicgLLTjI7PmMGbsfrnt/YdH/xglQ67s9L1dPkLsiA6xYOy1XLnDaBsO8ajAkcE3Y/C5NQhuaaCL3sKF2k48+/RTx/Mbb6SLvFKqqshzwmWKjKfp25fyLvLyAERK20dsILhlC1Xy7NzpSJ7VEKEhwJ0LL2uuWlgILHkeEHWX5s7FiIdvxghdxyas3VJYSG02rhmizmQZxk2wB0UFWoIicHzErfRCEIAPPvDuhLojP5+alAFkWMyZ49p4VVXkxlZTeIphpKDXU4ms3Q5ARkdhZ02U118ndVetU1kJPPsslQUD1Gn8oYfki6vZbCQod8UVnNDOaB42UFTizODrHfHcffvaxM80x2efOZ7/6EcOd7cSmptpf7nVAwyjFunpVNpuk6GJMnQoiS0C9B1+7jnypGgVs5nmKFYt5eQAv/61MgOjspJLixmfgQ0UlbAHBAF33unY8N575E3REkVFJOwEUFXBvHmujVdcTMZJcrLLU2MYRQQGksEh51zT64Gnn3Z07G5tBf7yF+Dbb90zR1dobQX+/OdLYSxQc8Lf/U65x7KyknJ32OPJ+ACcg6Ims2YBX3xBhsDp09R3Y+JEb8/KwaefOi7kCxe6pstQV0fek9Gj2VXMeJfsbEBPN/CmZuAjSeW2odAN+S0mVL2G7HMbKUz0r3/h4G4zTg67qcu9AgOBscPsyEr3wOJDEIB//csRgoqMBJ55hiTtlVBbS/2+uLSY8RHYg6ImBgPw4x87Xn/wAcV8tUBJCbBtGz2PjATmz1c+liDQeFdcAaSkqDM/hlFKaCgCwylUKQjSSm3NTTo0WgLw/djHcTR3YdtQo/a+iyE/LIfZjE73qa3TYd9RD102P/rI0QgwMBD4f//PtWT08nIyTtTsBcQwboQNFLWZMAEYNIieiy3YtcBnnzl6l9xwg2suXpOJEmxHjOAOqIwmGHtjf0SHWREWbJNXchumw9HJi3F4tGNhMfLkZ5hx8J8ID25t916djrwmPYmoqUH/0+sdWkU6HfDEE6T6qpTmZgpt5eaqM0GG8QAc4lEbnQ5YtAj4zW/o9f/+B8yYoa7MtVzKyoBNm+h5eDhw3XXKx2ptpTj27NnKXc0MozJZV/ZHVsBF0vdRchP+0S3AmnDgP/8BBAEDTq/DgIR64Fe/aivD/+hLA8we6AmaWrIX43b+y7HhJz9p6/ulmPJySihmjyfjQ7AHpTNcTW4dMgQYN46eV1YCq1e7PidXWLHC4T1ZsMC13hslJeRmdmU1xzDuIDeXPIP19cr2nz+fDBIxp2rHDuD558n74CFiTWcxe8eL0AtO3s4FC1wb1GYDmpronOV8McaHYAPlcqKiKEdDbiOyy7nnHkf447PP3NPeXQrl5Y44dlgYcP31ysdqbiblzbFjgZAQdebHMGqRmKhM/t6ZGTMo10Msvz94EPj975UbPXIoK8PM755FYOslg2jKFOC++1wft6IC6NOH5QAYn4MNlMuJj6fKFJPJtWBzRoaj/XljI/D55+rMTy6ff05hGYBCOxERyscqKiJJe3c1WGMYV9DpKP9Lp3PN6zF2LOmOhIfT61OngKefRoi5Sp15dkZ9PfCHPyC0qQYAUJ50BfD445Q34gqCAFRXk/eEFxWMj8EGSmcMG0ZCRkVFro1z553UMAwAvv6awj2epLLS0VY+JMQ1V3FtLY3BZcWMlklNpVyLsjLXxhkyBHjhBUcX4oICzPnm/xBZX+r6HC+npYVCSRcvAgBqIlOx9arfuSaiKCJ2e+bSYsYHYQOlM4KDKYfEYCC9D6UkJgLXXkvPW1ooYdaTrFzp8J7Mn0/hKyUIAlBaSmXF/fqpNz+GURuDgYTbWlpcL7fJzgZeeonOYwARDUZcv+H/EF2V7/o8Rex24OWXgZMnAQBNoTFYN/M5tARL7C3UExUVFPbiTuOMD8IGSlekp5Mn5eJFR4KpEm65xZGUumEDqa96gupqYP16eh4URMJsSikvp9DXyJFqzIxh3IuoblxR4fpY/fqRkZKWBgAIa67G1WuebDMoXGbZMofMfkgINl/9LBoiVFJmbmoiDy6XFjM+ChsoXaHTUTijXz+qXFFKVBR1DAbI0PFUI8EvvnC0kr/mGiAmRtk4ra1k7Iwe7XB3M4yWCQqixUVdnWuLC5H4eODFF2FKGEjDtzRS4uyBA66N+9VX9AAo1+TJJ1GdMMDFyTphNJJhxV5PxkdhHZTuiIykhLm1a2k10o24WXcS2wbdj7AgdDVCm6qBH37A+qVnUZk4SNZUupXYttmAmhpK7BUfa9c6dvzRj2Qdqx0XL1LC7+DBysdgGE+TnU2GRWUlVbC4SlQUvr/mBUz59gWkGA8BFgvljfzqV8DUqfLH27kTePddx+uHH6ZrjVoO1tZWmuOQIa4n2jKMl2ADpScGDqRGXceP0/PLlFMDAwE0iRLbXQ0Siv1X3Imp+/4NABi+ZzlWX/lnSSqsOnsrwpqqEGw2oey8CVlpRrromkz0s7ISqKrqeqU4d67y+LPZTBe60aO9KzTHMHKJiKCb87Zt6hgoAFoDw7B+xh9w1e6XkF6wk86Nv/6VJATkNN48cQL4+98deku33QbMmaPKHNswmSh3JiND3XEZxoOwgdITej0lzBYX00l/2cVu7DA79h3V95iPVzR0DurOfIGouhL0LT+K/pX7YOw3AqHmSoQ1muhhrkRYY8Wl15UIbTQhtKkaOigTjmsOicLa8FvQJKF5WlNnVZnFxXSR57JixhcZMAA4fJi8i0pDnJdhNwRix6zfIL34H5RTJgjA66+TkXLTTT0vOoqLqTpIvGBceWX7LuhqIJYWz57NpcWMT8MGihQSEoAxY0jwLCamTfoaALLSBWSlS2kIqAMS76a27gBmbfqjo8LGBZqCY9AYloDGsAQ0XPppDqWfprgcWPVhgAx57rY/rbqakntHjWIXMeObxMeTkXLwoGoGCgAIegPwi19QCPiLL2jj+++TlsmiRV0bKdXVwLPPOkTfRo4EHnlE/X5WNTWUL8YLC8bHYQNFKkOHAvn5QGGhck2BKVOo5O/cuZ6NE52Oet3Ex6MxLAEltj5oCE2AOSwe5vAEmMMT0BQWD7shsMshAgEEyvC+iHkusNtJR2LyZKqGYBhfJTeXwrNms2stHi5H7LkVGUnGCUDGSn09GR2XawU1NQF//CNVxAGks/Sb37Rb7KiGyUQLC+6Vxfg4bKBIJSiIQj2lpQ7xI7nodMDPf05xa4uFVngJCfQQn4s/Y2PbRN7CAXSd2y/FeyOTsnKKXw8frv7YDONJ+vUjY+DcOfXFynQ64OabKd/ljTcotLJhAylH/9//OYwPm43O+XPn6HVCAlUBqWkwiZjNdN0YOFD9sRnGw7CBIoe0NLpp//ADXZSUKKpmZ9PFTKtYrVSeefXVyoXdGEYr6HSUR3XmDJXdq6HOejnz5pEs/iuvkGf0hx9IKv+pp6jy7403gH376L3h4RTmiY9Xfx4AlRanpwN9+7pnfIbxIJxcIBc1tFG0THExXeAGySuDZhjNkp5OiwtXmgj2xLRpwG9/66h2O3yYvCTvvw98+y1tCwggoyU93T1zaG2lBQaXFjN+An+L5RIeDkyYQKsxs9nbs1EXs5nc1GPGuGelyTDeICCA2jQ0NVG4xV2MHk15JmKTwTNn2jcJfewx94ZNKyqApCQuLWb8BjZQlNC/PwmXFRU5tAz8geJi8pxwW3bG38jOJokANeTvu2PQIODFFzsmqN57LzBjhvuOKwhUvTNkCGsWMX4DGyhKELVRYmMdWfm+TnU15dVwWTHjj4SEUCVedbX7FxWZmdS/JyWFXt9wg6PdhbuoqaHrEXctZvwITpJVSlwchUI2bKALgy+HRMSy4qlT2zq3MozfkZND/XOqqlxKUu2urYWDFGDOmwg1V6EpPAH4SvrYiigvp0UT98ti/Ag2UFzhiitIGyUvjy5+vkpZGcWuuayY8WeiokgXZfduRQaKtLYWzhhg1veRJZTY7lhSMZsprDNAxUaDDKMB2EBxhcBAhzZKdbVvCiO1tJC41NSpFOJhGH8mNxc4doxK6WWW0Utta+EqbYKJUiktpRwbFlVk/Aw2UFwlJQUYMQLYsYMueEq0UbxJcTFd3FjYiekNJCZSnsbx47INFOltLTxIcTF5T4YP59wxxu/gb7QajBwJpKYCFy96eybyaGwkIavRo90juc0wWmTQILqZNymIvWiJoiL6O666iivvGL+EDRQ1CAsDxo8noaTGRm/PRjpiWTHrJjC9idRUEksrK/P2TJRTWEiLiquv5twTxm9hA0UtsrIoadZXtFEqK6nR2ahR6ndTZRgto9dTybHVCrcnlKiNIFBifnAwGSfcsZjxY9hAUQu9Hhg7lqoD3CmprQY2GwlWjRxJ4lUM09vIyCBPSl5ez53FtYJonISHA3PmcFiH8XvYQFGTmBgK9dTWUrdirVJWRs3Ehg719kwYxjsEBQFXXkmGytmz2m9bIQjAhQuU2Dtnjvv6+TCMhmADRW0GDaKKmMJCb8+kc1paKE9m9GhHzxCG6Y306QPMn0/nQnExhT21iN0OnD9PMgZz5pDnh2F6AWygqE1AAHlRwsJIsVJrFBVxWTHDiISFAbNm0aOxkRYWdhkaJO7GbifPSZ8+wNy51EmdYXoJbKC4g+RkSj4tL9dWfLuhgXRaxowhQ4phGDonRo8mb0pEBIV8tJA8a7MB586RdsucOSzExvQ62EBxF8OHU5y4uNjbMyEEgXRaBg8G0tK8PRuG0R5ZWcB111HbinPnyKD3FjYbhXX69SPPCffIYnohbKC4i9BQCvUIgncvdCKVldRIjMuKGaZr4uOBefPo3C0tpWo3TyN6TlJTyThJSPD8HBhGA7CB4k4yM4Fhwyjvw5txbZsNMJmorNiFLq4M0ysICQGmTwdmz6ZqvLw8z52/ra1knGRkUFgnLs4zx2UYDcIGijsRZeSTkryrWllaSq7iK67w3hwYxpfQ66nH1rXXkpFw9ixVwLkTq5WMk6wsMk58sfkow6gIGyjuJjqaOh43NADNzZ4/vsVCPUfGjKGKBYZhpJOeTnkpublUTVNX557jWK2Uc9K/PynERke75zgM40OwgeIJcnPp4Q1tlOJiSvrLyfH8sRnGH4iJIY/GhAmUk6K2N7SlhYyT3Fw6jswuywzjr7CB4gkMBkq6i4jwrBhUXR01FBs9msuKGcYVgoOBadPIuyGqutpsro9rsZBxMngw5bxERLg+JsP4CWygeIrERDIUPKWNYrMBJSXAkCFASor7j8cw/o5OR3lc115L5/PZs661tLBYyNC54gqS3WdlZ4ZpBy+rPcmwYdTsq6iIEuHkIgiODqydPWw2RwmxXk/JuSNHclkxw6hJSgoZKdu3A8ePU18ruTkjzc1UHTRsGDBzJskSMAzTDjZQPElICIV6Vq2i8IsYa25t7dzgaGlp70bW6ShUExhIj6AgGiMigh5hYXSM4GB6REVxPJth3EFUFIV7YmKAvXtJJl+qDL3ZDBQUUJXQjBl0zjIM0wE2UDxNejqpzO7e7Ui2MxjI2BANj4gIh+ERHk7GhrPhIb4OCiJPCcMwnicwEJg0icqQt2+nkE92Np3PXWE2U7L8qFGktRIc7Ln5MoyPwQaKp9HpqOw4Pp68IZ0ZH5zQyjC+gU5HHcxjYoCtW4EzZ0igsbOQTUMDVdWNHk3GSWCgp2fLMD4F3wm9QVgYMHSot2fBMIxaJCdTs8EdO4CjRymJ1lloraGBemGNGwdMmcLGCcNIgA0UhmEYNYiIoFLh2FgK4TY2UkJtfT2pOY8fD0yezB5ShpEInykMwzBqERBAhkhcHLBtG3D6NOWJTZoETJzYfX4KwzDtYAOFYRhGbXJyqPR42zYK/0ycyAntDCMTNlAYhmHcQZ8+wA03sNeEYRTCJj3DMIy7YOOEYRTDBgrDMAzDMJpDdoinpaUF77zzDr799lvU19ejf//+WLx4McaNGydp/40bN2LFihU4f/48AgICkJGRgcWLF2PMmDGyJ88wDMMwjH8i20B58cUXsXnzZtxyyy1ITU3F2rVr8eSTT+K1117D8OHDu9333XffxXvvvYeZM2di3rx5aG1tRV5eHkwmk+I/gGEYhmEY/0OWgXLixAls3LgRP/vZz3DHHXcAAObOnYtFixbhjTfewBtvvNHlvsePH8d7772HRx55BLfeeqtrs2YYhmEYxq+RlYOyZcsWGAwGLFiwoG1bcHAwrr32Whw/fhxGo7HLfT/77DPExcXh5ptvhiAIMJvNymfNMAzDMIxfI8tAOXv2LFJTUxEeHt5u++DBgwEA586d63Lf/fv3Y9CgQVixYgUWLFiAefPmYeHChfj8888VTJthGIZhGH9GVoinsrIS8fHxHbaL27rKJamvr0dtbS2OHTuGAwcOYNGiRUhKSsLatWvx2muvISAgADfccEOXxzWZTKisrGx7XVBQIGfaDMMwDMP4GLIMFIvFgsBOmlwFBQW1/b4zxHBObW0tnnnmGcyePRsAMHPmTCxatAjvv/9+twbKqlWrsHz5cjlTZRiGYRjGh5FloAQHB8NqtXbY3tLS0vb7rvYDgICAAMycObNtu16vx5VXXol3330XRqMRSUlJne6/YMECTJkype11QUEBnn/+eTlTZxiGYRjGh5BloMTHx6OioqLDdjH8kpCQ0Ol+UVFRCAoKQkREBAyXKSvGXmpJXl9f36WBkpCQ0OXYDMMwDMP4H7KSZHNyclBcXIzGxsZ220+cONH2+04PotdjwIABqK2t7eCBEfNWYmJi5EyFYRiGYRg/RpaBMnPmTNhsNqxataptW0tLC9asWYMhQ4a0eUCMRmOHRNZZs2bBZrNh3bp1bdssFgu+++47ZGZmsoeEYRiGYZg2ZIV4hgwZglmzZmHp0qWoqalBSkoK1q1bh7KyMixZsqTtfS+88AIOHTqErVu3tm274YYbsHr1arzyyisoKipCUlIS1q9fD6PRiBdffFG9v4hhGIZhGJ9HttT9008/3WZcNDQ0IDs7Gy+99BJGjhzZ7X7BwcF49dVX8cYbb2DNmjVobm5GTk4OXnrpJYwfP17WHMRqIS43ZhiGYRjfIyMjAyEhId2+RycIguCh+ajGt99+y1U8DMMwDOOjvPXWW8jNze32PT5poNTU1GDPnj3o27dvmwaLq4ily7/97W+RkZGhypj+DH9e0uHPSh78ecmDPy958OclHXd+VlI8KLJDPFogJiYGc+bMccvYGRkZPVp1jAP+vKTDn5U8+POSB39e8uDPSzre+qxkVfEwDMMwDMN4AjZQGIZhGIbRHGygXCI+Ph6LFi3qtBki0xH+vKTDn5U8+POSB39e8uDPSzre/qx8MkmWYRiGYRj/hj0oDMMwDMNoDjZQGIZhGIbRHGygMAzDMAyjOdhAYRiGYRhGc/ikUJu7OXToED7++GOcPXsWtbW1iIiIQE5ODu69914MGzbM29PTHPv378d3332HI0eOoKKiAnFxcRg9ejR+8pOfcJfqTjCZTFixYgVOnjyJU6dOoampCa+99hpGjRrl7al5lZaWFrzzzjv49ttvUV9fj/79+2Px4sUYN26ct6emScxmMz7++GOcOHECJ0+eRH19PZ566ilcc8013p6a5jh58iTWrVuHgwcPoqysDFFRUbjiiiuwePFipKWleXt6miIvLw/Lli3D6dOnUVVVhZCQEGRkZOCOO+7AlClTPDoX9qB0QnFxMfR6PW644Qb88pe/xG233Yaqqir84he/wO7du709Pc3x5ptv4uDBg5g2bRoee+wxzJ49G5s2bcLixYtRWVnp7elpjqKiInz00UeoqKhAdna2t6ejGV588UV8+umnuPrqq/Hoo49Cr9fjySefxJEjR7w9NU1SW1uL5cuXo6CgADk5Od6ejqb56KOPsGXLFowZMwaPPvoorr/+ehw+fBiLFy/GhQsXvD09TVFWVgaz2Yx58+bh0UcfxT333AMAeOqpp7Bq1SrPTkZgJNHU1CTccMMNwhNPPOHtqWiOgwcPCjabrcO2adOmCUuXLvXSrLRLY2OjUFtbKwiCIGzatEmYNm2acODAAS/PyrscP35cmDZtmvDRRx+1bWtubhZuv/124aGHHvLizLSLxWIRTCaTIAiCcPLkSWHatGnCmjVrvDwrbXLkyBGhpaWl3bbCwkJh9uzZwnPPPeelWfkOra2twn333SfcddddHj0ue1AkEhISgujoaDQ0NHh7Kppj5MiR0Ov1HbZFRUWhoKDAS7PSLmFhYYiKivL2NDTFli1bYDAYsGDBgrZtwcHBuPbaa3H8+HEYjUYvzk6bBAUFsdiYRIYNG4bAwMB229LS0pCZmcnXKAkYDAYkJiZ6/P7HOSjd0NjYCKvVitraWqxfvx55eXn48Y9/7O1p+QRmsxlNTU2Ijo729lQYH+Ds2bNITU1FeHh4u+2DBw8GAJw7dw5JSUnemBrjpwiCgOrqamRmZnp7KpqkqakJFosFjY2N2LFjB3bv3o1Zs2Z5dA5soHTDM888gz179gAAAgMDsWDBgrZ4HNM9n332GaxWK6688kpvT4XxASorKzv1BojbTCaTp6fE+DnfffcdKioqcP/993t7Kprk3//+d1vOiV6vx/Tp0/H44497dA5+b6DY7XZYrVZJ7w0KCoJOp2t7/dOf/hS33XYbysvLsW7dOrS2tsJms7lrqprAlc9L5NChQ1i+fDlmzZqFMWPGqD1FTaHG58UAFoulgwseoM9M/D3DqEVBQQFeeeUVXHHFFZg3b563p6NJbrnlFsycORMmkwmbNm2CzWaTfK1TC783UA4fPozHHntM0ns/+OADZGRktL0eMGBA2/M5c+Zg8eLFePHFF/HHP/5R9XlqBVc+L4BO/N/+9rfIzs7GkiVL3DFFTeHq58UQwcHBnV78Wlpa2n7PMGpQWVmJJUuWIDw8HH/84x9hMBi8PSVNkpGR0Xa9mjdvHn71q1/hN7/5Df7zn/94bKHl9wZKeno6nnrqKUnv7S7hLDAwEFOmTMGHH34Ii8XitxdMVz4vo9GIJ554AuHh4XjppZcQFhbmjilqCrW+X72d+Ph4VFRUdNgulqmzng6jBg0NDXjyySfR0NCAf/3rX/y9ksHMmTPxt7/9DUVFRUhPT/fIMf3eQImPj1dNuMhisUAQBJjNZr81UJR+XrW1tXjiiSdgtVrxyiuv9JoTX83vV28mJycHBw8eRGNjY7tE2RMnTrT9nmFcwWKx4De/+Q2Kiorw8ssvc3KsTMQwqycrebjMuBOqq6s7bKuvr8eWLVuQmJiI2NhYL8xKuzQ1NeHJJ5+EyWTCX/7yF1ZmZGQzc+ZM2Gy2dkJQLS0tWLNmDYYMGcIVPIxL2Gw2PPvsszh+/Dj+8Ic/YOjQod6ekmbp7P7X2tqK9evXIzg42KOGnd97UJTw61//Gn369MGQIUMQGxsLo9GINWvWoLKyEs8++6y3p6c5/vjHP+LkyZOYP38+CgoK2ukKhIaGYtq0aV6cnTZ57733AAD5+fkAgPXr17cppt57773empbXGDJkCGbNmoWlS5eipqYGKSkpWLduHcrKynpFLpNSPv/8czQ0NLSFwnbs2IHy8nIAwE033YSIiAhvTk8z/Pvf/8aOHTswefJk1NfX49tvv233+zlz5nhpZtrjb3/7GxobGzFixAj06dMHlZWV+O6771BYWIhHHnnEo6F7nSAIgseO5iOsXLkS33//PQoKCtDQ0IDIyEgMGTIEd9xxB0aMGOHt6WmOW2+9FWVlZZ3+Ljk5GZ9++qmHZ6R9pk+f3uXvtm7d6sGZaAeLxdLWi6ehoQHZ2dlYvHgxxo8f7+2paZbuzr1PPvkEffv29fCMtMmjjz6KQ4cOdfn73nrOdcbGjRuxevVqXLhwAbW1tQgLC0Nubi5uvPFGTJ061aNzYQOFYRiGYRjNwTkoDMMwDMNoDjZQGIZhGIbRHGygMAzDMAyjOdhAYRiGYRhGc7CBwjAMwzCM5mADhWEYhmEYzcEGCsMwDMMwmoMNFIZhGIZhNAcbKAyjMmvXrsX06dOxdu1ab09FEgcPHsT06dPx7rvvuu0Y06dPx6OPPuq28d3No48+2q36ryuIn7/4eOihh9xyHCm8++67mD59Og4ePNi2raCgoN38br31Vq/Nj+ldcC8eptfz5z//GWvWrEFUVBRWrlyJoKAgb09JdcSbCrcd0C4jR47EyJEjkZiY6O2ptCM6OhqLFi0CAKxYscK7k2F6FWygML0as9mMTZs2QafToa6uDtu2bcPs2bNdGnPatGkYMmQI4uPjVZol0xsYOXIk7r//fm9PowMxMTFt81q3bp2XZ8P0JjjEw/Rqvv/+ezQ1NeGWW26BXq/H6tWrXR4zIiICGRkZ3EmWYRjGBdiDwvRqVq9eDYPBgDvvvBPnz5/HgQMHUFZWhuTk5Hbve/fdd7F8+fIux3Hu2rx27Vq8+OKLeOqpp3DNNde0vWf69OkYOXIkfve73+GNN97A3r170dLSghEjRuCXv/wl+vXrh/z8fCxduhSHDx9Ga2srxo8fj8cffxxxcXFt4xw8eBCPPfYYFi1a1GHFXVpaittuuw3z5s3D008/3fbaeQ4ine1/6tQpLF26FMePH4der8fo0aPx85//vENX3K1bt2LTpk04deoUTCYTAgIC0L9/f9x8882YOXNm9x96DzQ0NOCrr77Crl27UFxcjNraWkRHR2Ps2LFYtGgRUlJS2r1f/N+89tprMJlM+N///ofCwkJERERg1qxZeOihhxAcHNxun9bWVnz88cf45ptvYDKZ0KdPH1x77bW48sorcfvtt7d9flLYtm0bPv/8c5w5cwYtLS1ISUnBvHnzcOutt8JgMLj0WQDAn/70J6xbtw4ff/wxtm7ditWrV6OkpASzZ8/G008/DZPJhFWrVmHPnj0oKSlBY2Mj4uPjMXHiRNx3332IjY3tMKbRaMSbb76JPXv2oLW1FQMHDsRPfvITl+fKMGrCBgrTa8nPz8fx48cxceJExMXFYe7cudi/fz/WrFnT4cY9atSoTscoKCjApk2bOtwAu6K+vh6PPPII4uPjMXfuXBQXF2Pnzp341a9+hT/96U/4+c9/jtzcXMyfPx9nzpzBli1bUFdXh9dee03R3xgREYFFixa15Q7cfPPNXf5Np06dwv/+9z+MGjUKCxYswNmzZ7Ft2zZcuHABy5cvb/c3Ll26FAEBARg2bBji4+NRU1ODHTt24Pe//z0ee+wx3HTTTYrmC9Bn+u6772LUqFGYNm0aQkNDUVBQgA0bNuCHH37A22+/3cGABICVK1diz549mDJlCkaPHo3du3fj888/R21tLX7/+9+3e+9LL72E9evXo1+/fli4cCGsVis+/fRTHDt2TNZc//Of/+DDDz9Enz59MH36dERERODIkSN44403cPLkSTz33HOKP4fLefXVV3HixAlMmjQJkydPbjM8Dh8+jE8++QSjR4/G4MGDERAQgLNnz+LLL7/Enj178Pbbb7fz5plMJjz88MOoqKjA+PHjMXDgQBQUFOCJJ57o8nvOMN6ADRSm1/LNN98AAObOnQuAvAuvvPIK1q5di0WLFkGvd0RAR40a1eHiXV1djZ/+9KcICgrCk08+KemY58+fx6233oqf//znbdtefvllfPnll/j5z3+O++67D7fccgsAQBAELFmyBLt27cLp06eRm5sr+2+MjIzE/fff35Y70F2Ow65du/DMM8+0y8F54YUXsH79emzfvr3d9r/85S/o169fu/3NZjMefvhhvPPOO7j22msREhIie74AkJGRgS+++AJRUVHtth84cAC/+tWv8P7773f6ee/fvx9vvfUW0tPTAQAPPPAA7r//fnz//fd4+OGHkZCQ0Pa+9evXY8CAAfj3v//dNs8f//jHWLx4seR57t27Fx9++CHGjx+PP/7xjwgNDQVA/7eXX34ZX331FTZv3uyyR0nk/PnzeOedd5CUlNRu++jRo/HFF18gLCys3fZ169bhT3/6E1auXIl77rmnbfvSpUtRUVGBxYsXt9u+atUq/O1vf1NlrgyjBpyDwvRKWltb8e233yI8PBxTp04FAISFhWHatGkwGo3Yt29ft/tbLBY8/fTTKCsrw29+8xsMGzZM0nFDQ0M73ATFG390dHQ7D4dOp2v73fnz5yX/bUoZMWJEhwTh+fPnAwBOnjzZbvvlxglAn98111yDhoYGnDp1SvE8IiIiOhgnAN2IMzMzu/zf3HzzzW3GCQAEBwdj9uzZsNvtOH36dNv2b7/9FgBw7733tjOiEhIS2n3+PbFy5UoAwK9//es24wSg/9tPf/pT6HQ6bNy4UfJ4PXHHHXd0ME4AIDY2toNxApDhHR4ejv3797dts1qt+P777xEbG9su9AcA1113HVJTU1WbL8O4CntQmF7J9u3bUVNTg2uvvbZd6GLu3Ln49ttvsXr1aowfP77TfQVBwJ/+9CccP34c9913H6666irJx01NTe3gWRCrfbKzs6HT6Tr9nclkknwMpXTmoenTpw8Aygtxprq6Gh9++CF27doFo9EIi8XS7veuzvfgwYP47LPPcOLECdTW1sJms7X9LjAwsNN9Bg4c2GGbWLLrPP9z584BAIYPH97h/UOHDpU8xxMnTiA0NLTLxOrg4GAUFhZKHq8nBg8e3OXvtmzZglWrVuHMmTNoaGho93k5/y8KCwvR0tKC0aNHdwhL6vV6DBs2DMXFxarNmWFcgQ0Uplci3lTE8I7ImDFj0KdPH+zYsQN1dXWdruTffvttbNq0CVdddRXuu+8+WccNDw/vsE1MpOzud62trbKOo4TOVuHi8e12e9u2uro6PPjggzAajRg2bBjGjh2LiIgI6PV6nDt3Dtu3///27i4myS+OA/hXIlxliCuD2iw3relFQs6XmcV6s2vWy0VXwGiji666aM110Y1btWqTC72olWFvbM61FKFXVyuSMiqYG2W1OaalBU1AzTngf9Fk8ActJZHN7+eS5+E8R3B7vpzfOed5jqmpqXn3o7u7G2fOnMGKFStQVVUFmUwWDXVWqxXfvn1L+r7ZPr/Y/o+Pj0MgECA3Nzfh/NjJyH/i9/sRCoVmnTw9MTHx1+39SbLJrgBw584dNDU1QSKRoLKyEvn5+dHw0dbWFvddjI2NzdrWTK8TLQYGFFpyhoeH8fr1awCYdXfTBw8eJAz5WywWtLa2YuvWrTh16tSC9nMm06Mssb+Sp03fgBaS2WzG8PAwdDod1Gp13LEbN27g+fPnKbV/7do1iEQiXL58GQUFBXHHnjx5klLbwO8gFg6HMTo6ColEEnfM5/P9dTurVq1CVlYWOjo6Uu7T3/j/6BrwO7gajUasWbMGV69ejQsYkUgEt2/fjjt/OsT9/Pkz6TVmep1oMTCg0JJjtVoRDodRVlaWcAMEft/4rVYrzGZzXEB59+4dLly4gA0bNqChoWHRdpxdvXo1gORllP7+/qTvEQgEKY1qxBocHASA6NydWE6nM+X2h4aGUFhYmPDd/PjxA0NDQym3X1xcjP7+frhcLuzcuTPu2FxW8ZSWlsJut8Pj8ST9P0qH0dFRBINBlJeXJ4x+uN3uhNJbQUEBRCIRPnz4gMnJybgyTzgcnvMqJqKFxIBCS0okEkFXVxeysrJQX1+fdLInAHg8HvT19cHtdqOkpAQejwenT59GdnY2zp49m/DLO502btyIlStXJpShfD4fjEZj0veIxWJ8+fIl4aY0H9NLfF0uF4qKiqKvP3z4ED09PSm1DQBSqRSDg4Pw+XzRksvk5CQuXbr0T0pddXV1sFgsaGlpQVVVVfTz8Hq9c9rK/dChQ7Db7Th37hwaGhoSSkZerxeBQACFhYUp93kmeXl5yM7OxsePH/Hr169oKSwQCCRdmi4SibB7927cv38fJpMpbhVPZ2cnPB7PgvWVaK4YUGhJcTgc+Pr1KxQKxYzhBPi9eqWvrw9msxklJSUwGAzw+/2oqKhIWmbIyclJ20PUli9fjoMHD6K1tRVHjx5FbW0tJiYm8OLFCygUiugIR6xt27bB7Xbj5MmTKCsrg1AohFwuh0KhmPP19+/fj1u3bqGxsRFv376FVCrFp0+f4HA4oFQq8ezZs5T+vgMHDqCxsRE6nQ67du1CKBSKluSKi4ujk1znq6KiAvv27cOjR4+g0WiwY8cOTE1Nobu7G6WlpbDZbHFLzGdSXV0NtVqN69ev48iRI6iuroZUKoXf78fg4CCcTid0Ot2CBhSBQACVSgWTyQStVova2lqMjY3BbrdDKpVGl1bH0uv1cDgcuHLlClwuFzZv3oyBgQH09PSgsrIy+lkTLTYGFFpSpifHxu7wmsyePXtgMBjw+PFjHD9+PDpU3tvbm3SZq0wmS+tTXnU6HYRCIcxmM+7duweZTAa1Wo3t27fj6dOnCeer1WoEg0HYbDY4nU6EQiFoNJp5BZR169bBYDCgubkZvb29CIVC2LJlCy5evIiRkZF/ElCEQiHa29vR0dGBnJwc1NTUQK/XJ2y4Nl/19fXYtGkTurq60N7ejvz8fBw+fBjl5eWw2WxJJwwno9PpIJfL0dbWhjdv3iAYDEIsFmP9+vXQaDSoq6v7J/2djV6vh1gshsViwd27d5GXl4e9e/dCq9VGH/IXa+3atWhqakJzczNevXqF9+/fR78/h8PBgEIZIysSiUQWuxNERJmgs7MT58+fx4kTJ6BSqdJyzdkeXZBp+FRsSidu1EZES47X68X/f5t9//4dRqMRy5YtQ01NTdr71NLSAqVSiWPHjqX92rMZGBiAUqmEUqmccYk30UJgiYeIlpybN2/i5cuXkMvlkEgkGBkZgc1mw/j4OLRabdIdWxeKTCaLK8VMby6XKXJzc+P6x6d0U7qwxENES47dbofJZMLnz58RCAQgEolQVFQElUqVlnkjRPRnDChERESUcTgHhYiIiDIOAwoRERFlHAYUIiIiyjgMKERERJRxGFCIiIgo4zCgEBERUcZhQCEiIqKMw4BCREREGYcBhYiIiDLOf86CoPZBQ12LAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACteklEQVR4nOydd3gbZfa2H0mWey9xr2mOSXF6bwQSIBBYetmlhs5Sll1Y+GBhKcuy7G8pW4BQEpalJCQBEtKA9IT0xOnFaW5xk3u3LM33x/FIclw0M+rSua/Ll6WxZuaVrHnnvKc8RyUIggCGYRiGYRg3Qu3qATAMwzAMw1wMGygMwzAMw7gdbKAwDMMwDON2sIHCMAzDMIzbwQYKwzAMwzBuBxsoDMMwDMO4HWygMAzDMAzjdrCBwjAMwzCM28EGCsMwDMMwbgcbKAzj5mzatAkqlQovv/yyzcdSqVSYMWOGzcfpC3uO1xu4++67oVKpcP78ecn7ZGRkICMjw2FjYhhPgA0UhrkIlUoFlUoFtVqNM2fO9Pq6mTNnml67aNEi5w3QxZw/fx4qlQp33323q4ciGdFosvzx9/dHSkoKbrrpJuzYsaPH/ZqbmxEZGQmVSoXbb7/dyaN2HPX19XjyyScxdepUJCUlITAwEP369cO4cePwzjvvoKmpydVDZBj4uXoADOOO+Pn5oaOjA5988gn+8pe/dPt7fn4+Nm3aZHodY2bcuHE4fvw4YmNjXT2UbqSnp5sMq6amJuzcuRNLly7F8uXLsXTpUvzqV7/q8vrFixejrq4OKpUKy5cvR1VVFWJiYhw+zvXr1zv0+NXV1ViwYAHGjRuHuXPnIi4uDnV1ddiwYQOeeuopfPTRR9ixYwfCw8MdOg6G6Qs2UBimB+Lj45GYmIiFCxfilVdegZ9f10vl448/BgBcc801+Pbbb10xRLclODgY2dnZrh5Gj2RkZHQLPb300kt45ZVX8PTTT3czUBYsWAC1Wo3f//73+Nvf/obPPvsMv/vd7xw+zv79+zv0+Kmpqairq4NWq+32t1//+tf44osv8MEHH+CZZ55x6DgYpi84xMMwvXD//fejrKwMP/zwQ5fter0eixYtwqRJk5CTk9Pr/vn5+bjzzjuRnJwMf39/JCUl4c4770R+fn6Pry8vL8d9992H+Ph4BAUFITc3F5999lmvx+8rT+Hll1+GSqXCpk2brL7PCxcu4JVXXsHkyZORkJBgGuvtt9+OY8eOdTtuZmYmAOCzzz7rEjIRw1x95aDI+Uws38PSpUsxbtw4BAcHIzo6GrfeeitKSkqsvjcpPProowCAc+fOobKy0rT9yJEj2LlzJ2bNmoVnn30W/v7+JsNUCUajEf/4xz+QnZ2NwMBApKSk4KmnnkJ9fX231/b0v120aJHpc964cSNmzJiBsLAwhIeHY+7cuTh+/LjksWg0mh6NEwC46aabAKDX7ynDOAv2oDBML9x222343e9+h48//hjXXXedafuKFStQUVGBN998E6dPn+5x3z179uCyyy5DQ0MD5s2bh5ycHJw4cQL/+9//8P333+Pnn3/G2LFjTa/X6XSYNGkSzp49iylTpmDKlCkoLS3FQw89hNmzZzv0fW7ZsgV//etfMXPmTNxwww0IDQ1Ffn4+li5dihUrVmD79u0YMWIEAGDGjBmora3Fu+++ixEjRnT5XHJzc/s8j9zPROQ///kPVqxYgXnz5mH69OnYtWsXFi9ejIMHDyIvLw8BAQE2vX9BEEyPVSqV6fGCBQsAUJJrdHQ0rrnmGixbtgxbt27F1KlTZZ/nqaeewpYtW3DzzTfj2muvxbp16/DOO+9g69at2LZtGwIDAyUd54cffsD333+PK6+8Eg899BCOHTuG1atXY8+ePTh27JjNobWVK1cCAIYPH27TcRjGZgSGYboAQEhOThYEQRDuu+8+QaPRCEVFRaa/z5kzRwgPDxeampqE//f//p8AQFi4cKHp70ajUcjOzhYACP/73/+6HPvrr78WAAiDBw8WDAaDafv9998vABCefPLJLq/fs2eP4OfnJwAQXnrppS5/S09PF9LT03t8Dy+99JIAQNi4cWO39zZ9+vQu28rLy4X6+vpux8jLyxNCQkKEK664osv2c+fOCQCEu+66q8dzb9y4sdt4lXwm4nsICwsTDh061GWf2267TQAgLF68uMcx9Dami9+7IAjCiy++KAAQsrKyTNtaWlqEqKgoISIiQmhubhYEQRBWrlwpABB+/etfSzqnyF133SUAEGJiYoTz58+bthsMBuH6668XAAivvPJKl316+t8uXLhQACBoNBrh559/7vK3P/7xjwIA4c0335Q1Nr1eL7z00kvCSy+9JPz2t78VcnNzBQDCzJkzhZaWFlnHYhh7wyEehumD+++/HwaDAZ9++ikAoKCgAD/99BPuuOMOBAcH97jPL7/8ghMnTmDixIm44447uvztlltuwZQpU3Dy5Els27YNAIWMvvjiC4SFhXULi4wZM6bbMexNv379EBYW1m37iBEjcOmll2Ljxo3Q6/U2nUPuZ2LJ448/jmHDhnXZdv/99wMAdu/eLWsc58+fx8svv4yXX34Zf/jDHzBt2jS8+uqrUKvV+Pvf/2563TfffIOamhrccsstCAoKAgBcccUVSEhIwNKlS1FTUyPrvADwxBNPID093fRcrVbjrbfeglqtNn2/pHDrrbdi1qxZXbY98MADAOR/Hh0dHfjzn/+MP//5z/jnP/+JvLw8/OY3v8GKFSske3QYxlGwgcIwfTB+/HgMGzYMn376KYxGIz7++GMYjUbTDbIn9u/fDwC49NJLe/y7uP3AgQMAgBMnTqC5uRm5ubmIiIjo9npH65YAwKpVq3DNNdcgMTERWq3WlFeycuVKtLW1QafT2XR8uZ+JJWPGjOm2LTU1FQBkGwoFBQWmG/I777yD06dP4/rrr8fWrVu7JMiK4Z177rnHtM3Pzw933HEHWltb8fnnn8s6LwBMnz6927asrCykpqbi/PnzqK2tlXQce34egYGBEAQBRqMRxcXFWLRoEX7++WeMGTNGlm4LwzgCNlAYxgr3338/CgoKsGbNGixcuBCjR4/GyJEje319XV0dACAxMbHHv4vbxRuS+Pr4+PgeX5+QkKB06JJ49913cfXVV2P79u2YNm0annzySfzpT3/CSy+9ZMo9aWtrs+kccj8TSyIjI7ttE6uqDAaDrHFMnz4dgiBAEATo9XpcuHABy5Ytw6RJk0yvOX78OLZt24bs7GxMmDChy/5iifJHH30k67yA9f+v+BlZw56fh4hKpUJycjLuuusuLF++HCdPnsRjjz2m6FgMYy84SZZhrPCb3/wGzz77LB566CGUlJTgT3/6U5+vF70gZWVlPf69tLS0y+vE3+Xl5T2+vrfjqNVqtLe39/g3qavxjo4OvPzyy0hISMD+/fu7GRC9CZjJRe5n4kpE78mJEye6JM1acuTIEfzyyy9dDBtrlJeXY/Dgwd22i5+JO7x3AJgwYQIiIyMlVYAxjCNhA4VhrBAZGYkbb7wRn3/+OUJCQnDbbbf1+XrRu9LbBL9x40YAwKhRowAA2dnZCA4ORl5eHurq6rrdqHo7TlRUFA4dOgS9Xt+tZHTv3r3W3hYAqh6qra3F9ddf3804aWxsNIVmLNFoNADkrdblfiauoq2tDZ9//jnUarVJov5iiouLsW7dOnz00UeyDJTNmzdj2rRpXbadPXsWRUVFyMjI6NEz4goaGhpQX1/fY14SwzgTDvEwjARee+01fPvtt1i3bp3ViXvy5MkYPHgwtm3bhqVLl3b529KlS7F161YMGjQIU6ZMAQBotVrccccdaGho6JYku3fvXnzxxRc9nmfcuHHo6OjAwoULu2xftGgRtm/fLul99evXD8HBwdi3bx8aGxtN2/V6PZ544okec0+ioqKgUqlQWFgo6RyA/M/EVSxbtgxVVVWYM2cOPvnkE3z88cfdfpYsWYKQkBAsWbJEclgGoFBaQUGB6bnRaMQf/vAHGI3GLrkuzuDw4cNobW3ttr29vR2PPfYYjEYj5s6d69QxMczFsAeFYSSQlpaGtLQ0Sa9VqVT47LPPcPnll+OWW27Btddei+zsbJw8eRLfffcdwsLC8N///hdqtXl98Je//AXr16/HO++8g71795p0UBYvXoyrrroKK1as6Hae3/72t1i4cCEefvhhrF+/HqmpqcjLy8OOHTtw9dVXdxOY6wm1Wo3HH38cf/3rXzFs2DBce+21aG9vx8aNG1FdXY2ZM2eavBsioaGhGD9+PLZu3Yo77rgDgwYNgkajwbx583rVzlDymbgCMbwzf/78Xl8THh6Om266CYsWLcL//vc/k9CbNSZPnozc3FzccsstiIiIwLp163Dw4EGMHj3a6Yqtn3zyCRYuXIjJkycjPT0dkZGRuHDhAn788UeUlZVh8ODBXaqaGMYVsAeFYRzA+PHjsWfPHtx+++3YsWMH3nrrLfzyyy+47bbbsGfPHowfP77L62NjY7F9+3bcc889OHHiBN555x3k5eXh/fffx1NPPdXjOXJycvDzzz9j8uTJWLlyJRYsWICAgADs2LEDo0ePljzWV199Ff/3f/+HoKAgfPjhh1i+fDnGjBmD3bt392qUff7555g7dy7Wrl2LP//5z3jxxRd7DAfZ8pk4m1OnTmHz5s2Ij4/HNddc0+drxSouOcmyb7/9Nl544QVs2rQJ7777LiorK/HEE09gw4YNTi/pvemmm3DTTTehoKAAX3/9Nd566y2sXLkS/fv3x1tvvdVjPhLDOBuVIFjIKDIMwzAMw7gB7EFhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt8MjDZTW1lacPHmyRyVEhmEYhmE8H480UAoKCkwdZhmGYRiG8T480kBhGIZhGMa7YQOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt8PP1QNgGIZhPAe9Xg+DweDqYTBuiFarhUajsdvx2EBhGIZhrFJfXw+dToe2tjZXD4VxU1QqFSIiIpCQkACVSmXz8dhAYRiGYfqkvr4eJSUlCA0NRWxsLLRarV1uQIz3IAgCmpqaUFlZiaCgIERGRtp8TDZQGIZhmD7R6XQIDQ1FSkoKGyZMrwQFBaGtrQ0VFRWIiIiw+bvCSbIMwzBMr+j1erS1tdnlhsN4P+Hh4TAYDHbJU2IDhWEYhukV8Uaj1WpdPBLGE/Dzo8BMR0eHzcdiA4VhGIaxCntPGCnY83vCBgrDMAzDMG4HGygMwzAMw7gdbKAwjDfR2AgIgqtHwTAMYzNsoDCMt3DhAvDdd0BenqtHwjCMDNra2vDss88iKSkJQUFBGD9+PH766SdJ+x49ehQ33XQTsrKyEBwcjNjYWEybNg0rV660+Tz79+/HvHnzEB0djeDgYAwdOhTvvfee4vcpFzZQGMYbqK8HNm8GiouB7duBkyddPSKGYSRy99134x//+AfuuOMOvPvuu9BoNLjqqquwbds2q/sWFBSgoaEBd911F9599128+OKLAIB58+ZhwYIFis/z448/YuLEiaioqMCLL76Id999F1dffTWKi4vt86YloBIEz/MHnzx5Evfffz8++ugjDB482NXDYRjXotcDP/0EHD0KDBwIlJfT9iuvBNLSXDs2xuNpbW3FuXPnkJmZicDAQFcPx+vYvXs3xo8fj7feegu///3vAdBnPnToUPTr1w+//PKL7GMaDAaMHj0ara2tOHHihOzz1NfXY9CgQZg0aRKWLl0KtVq6L8Oe3xf2oDCMJyMIwJ49ZJxkZgIaDZCUBLS3Axs3AhUVrh4hw3gEWVlZ+PWvf91t+8yZMzF9+nSHnXfp0qXQaDR44IEHTNsCAwNx3333YceOHSgqKpJ9TI1Gg9TUVNTW1io6z5dffony8nK8/vrrUKvVaGpqgtFoVPYGbYANFIbxZE6eJAMlMREICDBvT08HqquB9esBi0mKYZjuNDY24vz58xgxYkS3vx06dAjDhw/vcT+9Xg+dTifpp7cb/IEDBzBo0CCEh4d32T5u3DgAQJ7EnLKmpibodDqcOXMGb7/9NtasWYNZs2YpOs/PP/+M8PBwlJSUYPDgwQgNDUV4eDgefvhhtLa2ShqPPeBePAzjqZSWAtu2AYGBQERE17+pVORROX2aPClz5gDBwa4ZJ8O4OUeOHIEgCN0MlOLiYlRXV/dqoGzfvh0zZ86UdI5z584hIyOj2/bS0lIkJiZ22y5uu3DhgqTjP/300/jwww8BAGq1Gtdffz3+9a9/KTpPfn4+Ojo6cO211+K+++7DG2+8gU2bNuGf//wnamtr8dVXX0kak62wgcIwnkhDA7BlC5UV9+/f82s0GiArC8jPJyNm1izA39+542S8mzFjgLIyV4+CSEgA9u5VtOuRI0cAoJuBcvDgQQDo1UAZMWKE5GqbhISEHre3tLQgwNL72YmYv9HS3AwYDBTOtfzRaAA/8y38ySefxI033ogLFy5gyZIlMBgMaG9vl36elhbTtsbGRjQ3N+Ohhx4yVe1cf/31aG9vx4cffohXXnkFAwcOlPS+bYENFIbxNPR6qtQpLKSk2L7QaslIOXIECAoCpk6liY1h7EFZGVBS4upR2Mzhw4cRHx+P+Pj4LtsPHToEtVqNoUOH9rhfVFQULrvsMusnMBrJqOjo6GZoBAUGoq25GWhqom1GI2A0orXT8AsyGilcK9aziPv6+wNRUeQtBZCdnY3s7GwAwJ133onZs2fjmmuuwa5du6BSqUydhi9GDNkEBQWZtomPb7vtti6vvf322/Hhhx9ix44dbKAwDHMRggDs20cGR0aGNGMjIABISaHVZVAQMG6caVJjGJvoxSvgEmwYy5EjR3rMP8nLy0NWVhZCQkJ63K+9vR3V1dUXbwTa2kyGhmhQxMXEQCNWw4hGBoDE2FiUXLhAXlGArk2VCqWlpQCApIQEQNyv828QBFqotLd3zT2z4MYbb8SDDz6IU6dOYfDgwUhMTERJD8ak6TxJSaZtSUlJOHr0aDeDrV+/fgCAmpqaHs9pb9hAYRhPIj8f2L0biI+nsI1UQkNpnx07yEjpxWXNMLJQGFJxNw4fPoxbbrmlyzaj0YgNGzZg2rRpve73yy+/SM9B2b8fGWlpZiOjc5GQO3w4Nm7fjvr29i4JrLs6k1ZzR4zovhARFxgtLeRJ6WHBIYZs6urq6Di5udi4cSPq6+u7nmfXLtPfRUaPHo2ffvrJlCQrIuapxMXFSXrPtsJVPAzjKZSVAVu30oopMlL+/pGRQHg4HeP0aXuPjmE8koqKClRWVpo8CSLvvfcedDodhg0b1uu+Yg6K6Wf1avy0ZAl+WrYMP337bZefhMREMjTU6i4GxY3XXguDwYAFn31m2tbW1oaFX36J8WPGIDUlBQDQ3NyME6dOQVdVRS/SaoG2NlT04BXR6/X473//i6CgIOTk5NB5bryRzmMh3tbW1oaFCxdi/PjxSE1NNW2/+eabAQCffPJJl+N+/PHH8PPzw4wZM/r6SO0Ge1AYxhNobKSk2Pr63pNipRAXR2qzmzaRB6Zz8mMYX+Xw4cMASDn1kUceQXZ2Nnbu3Il169YBAPbt24ddu3Zh/Pjx3fbtloNSXw80N8vybo4fMwY3XXcdnnvlFVRUVmJAVhY+++ornC8sxCcWsvK79+/HzGuuwUvPPouX//hHMnQEAQ8+/DDqm5sxbdo0JCcno6ysDF988QVOnDiB//u//0NoaCidZ/x43HTTTXjuuedQUVGBAQMG4LPPPsP58+e7GSIjR47Evffei08//RQdHR2YPn06Nm3ahG+++QbPPfdcl3CQI2EDhWHcnY4OSoo9fx4YNMj2/JGUFODsWSo/vvJKIDbWLsNkGE/k8OHD0Gg0+Prrr/H4449j4cKFmDp1KjZv3ozrrrsOeXl50Gq11g/U0UG5J1JeexH/ff99vJiSgs+XLEFNbS2GX3IJfvj6a0ybPLnvHbVa3HL11fjkm2/w/vvvo6qqCmFhYRg9ejTefPNNzJs3r+t5/vtfvPjii/j8889RU1OD4cOH44cffugxjPXBBx8gLS0NCxcuxLfffov09HS8/fbbePLJJ2W/P6Ww1D3DuDOCQDknW7eSbL1Fpr1NGI3AmTNkrFxxBYV+GKYHvF3qfv78+diyZQtOnTpl24GamijR1dmfUWsr5Zh1ekpcDUvdM4yvcPo0sGsX0K+f/YwTgNzDWVlAQQGFeyw0EBjGlzh8+LApT0MxRiNdQ64o4ffzo3MbDM4/t4NhA4Vh3JWKCvKcaLWkd2BvNBrKZzl5ks6j19v/HAzjxgiCgGPHjtluoLS1UYjHzwVZE35+ZJz0oHHi6bCBwjDuSFMTsHkz9dFJTnbcebRa6ttz8CCVILugIRjDuIpz586hsbHRNgNFEMiDcVF1jlPRaGgMXnb9cpIsw7gbYlLsuXOkFOvoSS8oiIygPXvo8ZgxLOTG+ARZWVmwOQ2zvZ28jwqSY+2Gnx95UNra7BsKdjGyPSjNzc349NNP8fvf/x5z587FtGnTsGbNGkUn/9vf/oZp06bh2WefVbQ/w3glBw4Ahw6RZ8NZLuOwMCpB/uUX4Phx55yTYbwBsbuv2oUBCZWKzt/SYpbE9wJkf6J1dXVYtGgRCgoKMGDAAMUnPnHiBNasWQN/bl7GMGbOnKGk2Lg453cfjoqic27eTGXIDMP0jV5PXgtX5J5cjJ+fWf7eS5BtoMTExODbb7/FN998g4cffljRSQVBwLvvvos5c+YgOjpa0TEYxuuorCQxNo0GcNV1kZBAcexNm4CLlDUZhrkIseeOOzTgFD04XuRFkW2g+Pv7IyYmxqaTrlu3DufOncP9999v03EYxmtobibjpLrasUmxUkhNJUXM9etpPAzDdMdgoPCOO3hPRDrl772lIs/pn2xzczM++OAD/PrXv5Zs6Oh0OlSJ/QcAFBQUOGp4DON8DAbK/ThzxjlJsdZQqYDMTNJg2bCBhNzcRASKcR0eqOnpWNrbKaG9l27CLqFT/h6trdRE0AXY83vidANl0aJFCAgIMDUjksKKFSuwaNEixw2KYVxJXh6V+TozKdYaopBbfj6Fey67zPkKmYxboOkMX+j1egR5UYWITbhDaXFvaLVkoAQHu2Q+6ejoAAD42eHcTh19UVERli5dij/96U+ykmPnzZuHyRY9CQoKCvDaa685YogM41zOngV27gRiYpyfFGsNPz8Scjt2jIyTGTPcx4BinIZWq0VAQADq6uoQFhYGlbvdkF2BWFrsjkUeGg2NTZTAdzL19fXQaDQmw9YWnDrbvPfeexg6dKjsVs2xsbGI5YZmjLeh05GCK0AGijvi70+enbw80leYONG15ZSMS4iNjUVJSQmKi4sREREBrVbru4aKIFB3cb3e/bwnIoJAfYFUKqcl8AqCgKamJtTX1yMxMdEu3w+nGShiy+rXXnsNpRbVAQaDAW1tbSgtLUV4eDhCQkKcNSSGcR0tLZQUq9NR3ok7ExwMJCZS08KgIGDUKFePiHEy4Z3NJHU6HUpKSlw8GhdjMFBSuzuGdyzR6+l6daKXR6VSITIyEhEREXY5ntMMlIqKCgDACy+80O1vlZWVuOWWW/DYY4/Jyk1hGI9ETIo9fRoYMMC9JzmR8HCa8LZvJ4MlO9vVI2KcTHh4OMLDw6HX62HwwsZ0ktm/nzyKmZmuHknfVFSQgTJnjtMSebVarV1COyIOM1B0Oh2ampqQnJwMPz8/jBo1Cq+//nq317311ltISEjAb37zG2RlZTlqOAzjPhw8SBNcWppr5bHlEhNDsfctW0inpV8/V4+IcQFarRZaT/re2pPGRlJaDgqiCh53JjycKgNLSz12QaHIQFm2bBkaGxtNpb/bt283eUhuuOEGhIaGYsGCBVi7di0WL16MxMRExMfHIz4+vtux/vnPfyIqKgpTp0614W0wjIdw7hwlxUZHA54YzkxMBE6cAAoL2UBhfI+zZ0kbaNAgV4/EOn5+ZEgdPkyeWg9McFc04sWLF6OsrMz0fMuWLdiyZQsAYPbs2QhlzQSG6U51NXkfBAHw5KTv8HAqPx450j0UNBnGGej1wNGj1LfKUxLF4+OB4mKgqMj9Q1I9oMhAWbJkidXXPP/883j++eftciyG8Xg6Osg4qax0/6RYa0RHA2Vl9F4SElw9GoZxDoWFFC7JyHD1SKQj5p4cO0bj9oR8Nws8xAxkGA+nvBw4f54mCU9ZffVGYCDJaft6NQfjOwgC5Z6o1Z6VNwbQIuLcOY/sreXhMyXDeAjFxe4ni20LoaFUhWQ0unokDON4yspogeGJHsOQEFpQnDjh6pHIhg0UhnE0BgMl13VqSXgF0dEU4qmsdPVIGMbx5OeTMqsnJrYDlNCenw9Y9LTzBNhAYRhHU1FBN/KoKFePxH4EBdGEzWEextuprwdOngTi4lw9EuVERtL7yM939UhkwQYKwziaCxdIP8Tbmu2FhJDOAod5GG/mzBmgttbzFxgxMZQs29jo6pFIhg0UhnEkRiNNcN5Yeh8dTd4hnc7VI2EYx9DWRqXF4eEeVwHTjZgYCvGcPu3qkUiGDRSGcSQ6nfeFd0SCg6knCYd5GG+loICMcG8QJVSrydA6coQMLw+ADRSGcSSlpXQTDw529UgcA1fzMN6K0UghET8/j1Rh7ZF+/agi6dw5V49EEmygMIyjEAQK73hq5r8UxDCPh1UHMIxVSktJnK2HFi0eiyh/f+QIVRe6OWygMIyjqK4mgTZvDO+IiGGeCxdcPRKGsS+nTpF2kbd5Py3l790cNlAYxlGUllLGvDcmyFoSEkJhHkFw9UgYxj7U1JCB4sk9s3pDFIs8etTtr1k2UBjGEYjhnaAgV4/E8URHk6eIwzyMt3D2LOmGREa6eiSOIT6elHEtmv66I2ygMIwjqKuji9+bwzsiISEc5mG8h9ZW8i5ERnp+aXFvhIYCLS0kQOfGsIHCMI6gtBRoaKDW7L5AUBB5jNzcZcwwVjl/nhK/PVk5Vgr9+pGBUl3t6pH0ChsoDOMIzp0D/P29dwV2MdHR5DFy48mOYaxiMFBpcWAgoNG4ejSOJTKSPL1uLH/PBgrD2Jv6esqS94XwjkhoKCUEc5iH8WRKSryvtLg3VCpKAj561G3l79lAYRh7U1ZGRoo3dS+WQnAwV/Mwns3JkyTQ5m19s3pDlL8/e9bVI+kRNlAYxt4UFJAgktrHLq+oKDLOampcPRKGkU9VFeVReYOsvVRE+fvDh91S/t7HZlCGcTBNTWSgREe7eiTOh8M8jCdz+jQltkdEuHokzkWUvz9/3tUj6QYbKAxjT0pLKfHM18I7AMW0uZqH8USamyk51hcXFn5+JN529Kjbyd+zgcIw9qSoiNym3l4B0BvR0WSk1da6eiQMI51z5yjEExPj6pG4hoQESg52M/l7NlAYxl60ttJE50vVOxfDYR7G0+joIO9JcLDvLixE+fvjx93K+8kGCsPYC9Fz4GsxbEtUKprs3LQqgGG6UVxM5cW+lBzbE/HxdN2Wl7t6JCbYQGEYeyG6R/38XDsOVxMdTR4UDvMw7o4gACdO0G/Ri+CruKH8PRsoDGMP2tspvOOtzcXkEBZGOjAc5mHcncpK8hr4gjCbFPr1I4PNTRSh2UBhGHsg6n+wgcJhHsZzOH2apAF8pWeWNSIjaXHhJvL3bKAwjD0oLqZkO63W1SNxD2JiKK5fV+fqkTBMzzQ2krcgNtbVI3EfVCq6do8dI8PNxbCBwjC2oteTt8DVybE1NVQq6A6EhZHoFYd5GHdFLC32Re2TvnAj+Xs2UBjGVioq6IJ2ZXnxgQPA/PnAY48Bn33m+lJBlYq6OZ8759pxMExP6PXAkSOUGOprLSmsoVbT53L4MOXWuXIoLj07w3gDJSU04bmqCiA/H3jjDRoDACxb5h5GSnQ0hb7q6107Doa5mKIiyhvj5NiecRP5ex+vh2QYGzEYSNrdAUl2ZwtV2HdYbbI7eiKsrgSXr/ozAltbu/5h+XIcOwXkjb2XvBl9oNUCY4YZkZlmZ4MmLIw0FS5c8E3pf8Y9EQTKsVCpOGesN7Rakks4cwYYNMhlw2ADhWFsobKSfhIT7X7ofYfVqKvv3bgIbq7CjJ9fQGAreShK44biXNoUTNr3AQAg58hyGPQCdo2c37eR0gLsPaxGZpqd+3Co1TTJnT8PZGfb99gMo5Tycmroyd6TvtFq0efqyAmwgcIwtnDhAsVpAwPtfmhxblCpBARddHhtWyMu2/InhDVVAABqojKwbfaL0AeEQhOoxfjt/wQADDv5LbR+AvaP69lIaWkFBEHluHkoOprc6Q0NXMrJuAenTpEgWWio1ZdK8WLaA4d5MT0cNlAYRilGI7lAQ0IcepqgQOD26yy8G+3twEuvADWdCaj9+iHqzZdwU0wQAAOAy4EfBeDf/wYEAdlHv0N2loGSaC8yUr78ToPmFgcOPjyckogvXAAGD3bgiRhGAvX1ZKBILC225sW0Gy3A+u0aBO/vbqCojB3wb2+Ctr0Z2vYmaPVN0Bj00MVlQx9g3cgS8UQjiA0UhlGKTkc3X2fqKBgMwP/9H7VGB8gA+POfu3dhnT2bjJF//Yti7itX0u/777eak2JXxM7OBQVsoDCu5/x5UkmV+F3sy4spBbVBT4aFvgna9ib4WxgZ4mNVczP89U3Q6um3f+ff6HEz/AxtPR67OiId3815D0aNxDwaR4VyHQgbKAyjlNJSoLmZuqA6A0EAPvwQ2LGDngcGAn/6E5Cc3PPrL7+cjJF//pP2/eEH8vo8+KBzjZToaNJnaWyU5FZnGIdx9ix5PGWWFnfzYvbGnj3A//5HmkTNzQ4t042uK8DQ4h9xOvsqq691eCjXQbCBwjBKEASnhHe68PXXwNq19FijAf74R+sZ9pddRsbIe+/RmFevpu3ONFIiIqgU+sIFl1YEMD5OfT15PB0lqNjaSteZPdSTg4JobgkOph/xcUgIXfurVgEAxp34CuOemmFV4sDhoVwHwQYKwyihupqqAZwlzrZmDfDVV+bnTzwBjBolbd9Zs2jF+M47ZiNFEMhIgcYRo+2KWM1TUMAGCuM6KispWdtR1Ttr1piNk7Aw8hxaGhYXGxu9PQ4KIiOkL3Q6YNcumofWrgWuvdYx78nFsIHCMEooLaWQRW/hFTuScn47sPED84Z77wVmzJB3kJkz6fe771KYZ80aMlISH4VTjJToaDJQmpqc63ViGJELF8hr6Ajl2LY24Ntvzc/feANIS7P/eURuv50MFABYupRyzoKCHHc+F8FKsgyjhLNnaUJwcJgkoeIwJm9+y6wK+6tfAdddp+xgM2cCTz5pnqDXrsW47f8CBKM9hto34eG0uuTePIwr6OggA9lRpe7r1gG1tfR40iTHGicAkJkJTJ1Kj+vqKL/MC2EDhWHkUltLHhQHh3ciq85i9pY/Q2PozGybORO46y7bDjpjBvDUUyYjZcCpdZiy55+ON1I0GnM1D8M4m6oqSlyNjLT/sdvbgeXLzc9vucX+5+iJ224zLzaWLyePrpfBBgrDyKW01PHCY2VlmPnjn+Cvb6bno0cDv/2tfdzT06cDv/ud6VjZZ9Zh/Lb3KPTjSKKizGEehnEmlZUUhnGAoCJ++olyQQBgwgTybjiDlBRzqLepCVixwjnndSJsoDCMXM6do069jgrv1NUBL7+MoJYaAIAubjDw7LOUaGovpk0Dnn4aRhVNAf3zf6JyZIMDNRIiIui9lZY67hwM0xMFBXTN2hu9nppzijjLeyJy663mhNrvv/e6xpxsoDCMHBoaqHuxo8I7LS0kvNaZq1EbnopNl7/smJXf1KnYPuMZk5GC9esda6RoNGTUFRY65vgM0xNNTWQUOyK8s349VdQAwLhxQP/+9j9HXyQkkN4RQHOHZajJC2ADhWHkUFpKXgBHdOfV64G//hU4fRoA0BwcgzUzXkV7oOM6ARdlTsWGyX+EUdW5CtuwgbQcHGWkREWRmmdzs2OOzzAXU1lJngV7X7N6PfDNN+bnzvaeiNx8s7kr8w8/UK6Nl8Blxgwjh4ICCrXYu1TRaCTD4MABeh4Sgo2zX0FTYD8Ew7G9M86nTsGGKcCl296EWjAAGzfiXCGwc+pTENT2KUE29QFJjiSBu9JS5682Gd+kvJyuL2vaInLZuJGMH4ByxAYOtO/xpRIbC1x5JeWgtLdT2fH997tmLHaGPSgMI5WmJjJQ7B3eEQRg4UJg82Z67u8PvPgi6qIy7HueHhAXXudTpmD95OdMnpTMMxsxduM/0NJkRHOLyuafunoV9h5Wm8M8RUUOf28MA6ORJAHsndDe0eEe3hORG24wq8muWWM2nDwcNlAYRiplZeQqtrdU9rffUoIbQJ6Z3/8eyMmx7zl6YcwwIyLCBQQHCagcNBFbL30OBjU5VgcUbMKsPX9HSEAHgoMExT8qFXmATH1AoqPpptHigdrbjGdRXU0hD3tfs5s3k2cGAHJzgexs+x5fLlFRwNVX0+OODmDxYteOx05wiIdhpCKu+u3pKl6/Hli0yPz8kUeoVNFJZKYJF3U3HQdMeBZ4802gowMZZzcjI9lIZckK33e3PiCRkWSglJYCWVm2DJ9h+qaykvKdUlLsd0yDAViyxPz81lvtd2xbuP568p40NwM//0zPk5JcPSqbYA8Kw0ihtZVuqvYM7+zdS1UzIr/+NUlWu5rx46kRoVjWvHUr8H//Z7/EWdHQ4TAP42iKi+l7bE9JgC1bzKXyw4c7zdtplbAwc08eo9ErvChsoDCMFEpLSUHWXqWKJ06Ql0IUR5s7F7jpJvsc2x6MGwc895zZSNm2Dfj738l9bA+iosjga221z/EY5mJaW8kItmd5sbt6T0TmzTPn22za5PEl/WygMIwUiovptz3E0oqKgFdfJWVLAJgyBZg/3+F9fWQzdizw/PPm97x9u/2MlMhIc8sAhnEEjigv3r6ddJAA4JJLgKFD7XdsexASQqEdgJLvLTugeyBsoDCMNdrbabVvj5WYTge89BIJvgHkIn7qKfuXQNqLMWOA//f/zOU+v/wC/O1vthspfn40gXKYh3EUFRXk8RC/u7ZycdjE3bwnInPnmueq7dtp7vJQ2EBhGGuUlVE1gK0GSmMj8PLLZuXJrCzyUNhrAnUUo0d3NVJ27jRXHdmCmCwrepIYxl4IAgkCBgfb75g7dpgN6uxsWly4I4GBXcPFX37purHYCBsoDGONkhLbV2JtbcBrr5ljwgkJ5Emx5wTqSEaNAl54wRyGWreObgK2EBVFhh+HeRh7U1dHIR57lRcLPXhP3C0ka8mcOSTgBgC7dyOm4oRrx6MQNlAYpi/0elI+tWWiMxopd+PYMXoeEUH9dhzVz8dRjBxpXjWWlZnfj1I4zMM4iooKElYMDbXL4VIKd5FHBgAGDaJrwZ3x9ycJ/E6G7//chYNRDhsoDNMXFRVAVZVtxsTOncCuXfQ4KIjCPImJdhme05k1y/x4/XrbjydW87S3234shhEpLSXRQ3t4OQQBQ/Mskk1vucW9vScil11GnloAiRfykFh+yMUDkg8bKAzTFyUl5EURZaSVsGGD+fETT3h2D5qJE8nIAigBz9Yy4chICvOUldk8NIYBQNdrQYHdwjupF3YjuuoMPRkwgBLHPQE/vy6JvKMPf257WNbJsIHCML1hMFB4x5Y+HrW1wL599Dg2lkTQPJmAACqLBkiqfscO246n1VIIjMM8jL3Q6ei6s0d5sSBg5BEP9J6ITJ9uUtFNqDyKxJL9Lh6QPNhAYZjeqKykyS46Wvkxtm41K7BOn+6+5cRysAzzWHqHlBIZSYYgh3kYe1BRQUnptng9O0ks3od+1afoSWYmCRh6EhoNcPvtpqfD93uWF4UNFIbpjQsXKIQRGKj8GBs3mh/PnGn7mNyBIUNMsW0cOkQ3BFsQq3k4zMPYA3uVFwsChuVZlOh6mvdEZNIk1ERnAgBidPnmfDgPgA0UhukJo5FW9bZUARQVAadP0+P+/YG0NPuMzdWoVGYviiB0NcKUoNWSl0lU62UYpTQ0kMFsj/yTvDzEVp4EANRGpTu1iaddUatxaNRvzM+/+MLcYsPNYQOFYXqiqoomOlvCO97oPRG59FLzanLDBtvdxhERVM2j19s+NsZ3EeXtbS0vFgTg669NT4+MuI2qgjyUktRxqIgZRE8KCqi3lgfguZ84wziS0lJKAlXqKjYaqVkXQBPbtGl2G5pbEBdn1kQpLQWOH7fteFFRlO/DYR7GFkTRP1tzvQ4fNn2na8JTUZQxycaBuRiVCvuG3Wl+/tVX9utO7kDs0PmMYbwMQaDwjlhO2wNnC1XYd1jd64K/X+kRXNYpaV+SPBqbN8XIHkaLuzf6vfRS4OBBerxhg21t5/39qb9PSQmQmmqf8TG+hcFA+Sf2qN6xUI3Nu+RWCGoNAPe/ofdFScJIlCcMRXzZEbrONm3qmvDuhrAHhWEuRkzY7CO8s++wGnX1KjS39PyTdsJc3XIibVavr+vrRxAohOK2rXosNVG2brW9p05EBOXscJiHUUJVFZUX25p/cuQIeVAA1Icn42yal3g/VaquuShffeX21xobKAxzMWVl1NgvJKTXl4jXtUolIDio60+YtgWZRdsBAO3aYOj6j+v2Gqk/EeECxgxz04S2wEBg8mR6bA9NlOhoCvPYWhXE+CaVlfQ97MPzKQkL78mRXNF74h1UJgw1y/RXVAA//+zaAVlBdoinubkZX3/9NY4dO4bjx4+joaEBzz33HK688kqr++7btw8//fQTDh06hMrKSkRHR2PUqFG47777ECs2NmIYV3P2LE1yEkoKgwKB26+7yPW7+RegowUA4D9zCm650Q+e7h7ulVmzzJPc+vXAjBnKjyWGeYqLgeRkuwyP8SEKC+k7ZAvHj5vDlgkJKMiaDnhbs+1f/xo4cIAeL15MoVo7aMY4AtkelLq6OixatAgFBQUYMGCArH0/+OADHDhwAFOnTsUTTzyBWbNmYePGjZg/fz6qqqrkDoVh7E9tLemf2NJ7x1K8zJYbtieQk9NVE6Wy0rbjiWGejg7bx8b4Di0tdN3aGt6x7Fh8881e5T0xMXCgWdG6uhpYu9a14+kD2QZKTEwMvv32W3zzzTd4+OGHZe376KOP4quvvsLDDz+Mq6++Gg888AD++te/orq6GsuXL5c7FIaxP6WlpKWgVN6+utq8AuvXz7bEUU9ApaIVGGAfTZSoKMolKC+3fWyM71BRAdTV2ZYge+oUsL9TCr5fP+9eXFioy2LpUjLw3BDZBoq/vz9iYuRXJABAbm4u1BfVkufm5iI8PBwFBQWKjskwduXcOXITK1WM3LzZLII0Y4ZHaydIxlLjxVZNlIAAkrwvKbF9XIzvUFZG152fDYWpFronuOkm247l7mRmAlOn0uO6OuCHH1w7nl5w+ezZ3NyMlpYWRPThmtPpdDh58qTph40ZxiE0NNCN0ZbwjjeLs/VGfDwwbBg9vnABOHHCtuOFh1OZtwfoNDBugNFI4mO2NPU8fRrYu5cex8aavYLezG0W4nPLl1NhgJvhchPxm2++gV6vx6V9fCFWrFiBRYsWOW9QjG9SWkqriX79lO1/7hzpMADA4MG+leg5a5apNBPr11O/HqVER5OhU14OJCXZZ3yM91JbS2HByEjlx7DMPbnxRjeu7bcjKSnk5d2wAWhqAlas6Br6cQNc6kHJy8vDokWLMHPmTIwePbrX182bNw8fffSR6eeFF15w4igZn6GggNy6SsMyvug9EZk0yVzeuW2bbZooYpjH1oRbxjeoqKAbbB+yAH1y9qy5gV5MDHD55fYbm7tz661m1d3vv6c2AW6EywyUgoICvPDCC8jKysKzzz7b52tjY2MxePBg0096erqTRsn4DE1NVKaoNLxjMFD+CUBGzpQp9hubJxAYSEYKADQ3Azt32na8oCCzN4ph+qK4mK45pXljS5aYH99wg294T0QSEswGWUsLhXrcCJcYKOXl5Xj66acREhKCN998E8H2aI3NMLZQVmabCuXBg0BNDT0eM8Y+ctuehqVstmWptRIiImhl7IZxccaNaGsjA0XpdVtQAPzyCz2OjgZmz7bf2DyFm282G2U//ECViG6C0w2Uuro6PP3009Dr9fj73//OAm2Me1BURCswpU3GfDm8I5KTQwmzAJCXR6qwSgkNpaRlDvMwfaHT2bawsPSe/OpXtgu9eSKxsYAotNreTmXHboLDDBSdToeCggJ0WAgutbS04JlnnoFOp8Pf/vY3pHJTMMYdaG2lOLTS8E5zs1nmPSyMPCi+iFptP00UjYaOwXooTF+Ul1N4VUlYpqiI8qUAMnCuuMK+Y/MkbrjBrCa7dq3bLAwUVfEsW7YMjY2NJvXX7du3o6Kzf8YNN9yA0NBQLFiwAGvXrsXixYuRmJgIAHj11Vdx/PhxXHXVVSgoKOhSLhwUFISpYl02wziTykqq3lGa27RjB608AMo98aUY9sXMnElNyAAK89x4o/JjhYZSZdS4cb6hJ8PIQxAoRKO0986SJWbNnuuvd1u5d6cQFQVcfTWwbBmpOC9eDFx3natHpcxAWbx4McrKykzPt2zZgi1btgAAZs+ejdDQ0B73O336NABg9erVWL16dZe/JSQksIHCuIaKCuWrMIDDO5YkJJAmyuHDpClz8iSAS5QdKzKSykdraqi6gmEsqa+na1dJeKekhDpwA5Qv5sveE5HrrwfWrCGP8M8/U9K7i6USFBkoSyzjdr3w/PPP4/nnn5e9H8M4FUGgahGFJYrBjZVm/Y+kJNI/8XUuvdT8mWzYACQpNFCCgqiyoLKSDRSmO2IStdgLSg5LlpgVn6+7zvYOyN5AWBhw7bXkATUagdWrzZ2PXQT7TRnfpr6eEu0UVt1knNlodhPPmKG81NGbmDSJyo4BYOtWaDoUaqKIScsse8/0RGkpfUfkhv8uXDBLAoSFAVddZf+xeSrXXmtW5N2zh6QXXAgbKIxvI67CeglL9okgIPOMD3UulkpQkFkTpakJKYU2aKKEh1Myo5jjwzAA5UkUFChbWCxdavaeXHstwDIXZoKDKdQD0MJLzCdzEWygML6N0lUYgJia04ioLaInOTnKXM3eioUmSmb+z8qPExFBCcy2lCwz3odOR7lJcuXty8rMOWMhIcDcuXYfmsczd675c/3lF+DAAZcNhQ0Uxnfp6CAXpsImYwPPrTc/8YXmYnK45BJTT6OEC3kIblZoYPj7A3q925Q9Mm5CRQV51eRW3ixbZm5COW+ecnl8byYwkLo5A8DQocq1oewAGyiM71JVRSJPCpqMqYwd6F/QGcfWas0hDYaw0ERRC0YMOG+DJgrL3jMXU1hoznOSSmUlNbIEKJRxzTX2H5e3MGcO8MQTwOuvA8OHu2wYbKAwvktlJVWJyJ3oACQW70dQWx09GT9eWQ6Lt2PhVRp07mdzMrFcwsNZ9p4x09hIoRq5+SeixgdAmh98zfaOv79bVCSygcL4LkVFisWZMk9bhHd8XfukNxISKNQDILK+CDGVJ5UdJyyMZe8ZM5WVVH0nx0DR6825J0FBFN5h3B5FOigM4/G0tFCCrBKRp8ZGpBRRe/bWwAgEulgrwK2ZNQs4ehQAkHV6PYCB8o9hKXufmWnf8TGeR6dI6NkSP+w7rIZeb32XxKIDmNnSQvslT8LODdLaWrS0Kh4lYwfYQGF8E1HePiND/r7bt0NjoFmxIGs6BvvxZdQrkyah4z8fwq+jDelnNwPt9ypryMay9wxA5cHnzwOhodi3X426emm6Q4lnfzE9PpM4Ec0t8vSKvKV7RUsr8OV3EpNeDSmARoPgXdtx3euTHTuwXuCZlfFNRHl7JcaFhbT92QGXwvWR2k7q6ylsFRVFqrbuQHAwCjOmIOv0evi3NwG7d1O/Irmw7D0D0HeguhqIjTV5TlQqAUF9pJGpjAZklJAWT4dfAKozRyLYT3o+lFYLjBlmtGXULkerBdACCIIKzS1S9+qcG+sUCi3aATZQGN9DEGg1rqTEsKwMOHYMAFATnoaamAEA3GDyqqujEMjo0fTezp2j5odu4G04N2BWZ3gHVEWhxEAJCqIeISx779uIie0W4mpBgcDt1xl63+foUaCVEtr9xo7CLTdqAfTxei9kzDAj9koMh5kwGMiDEuG6JopsoDC+R10drcSU5J9s2mR6mJ95qXtI29fUkHDV5MkUAikpISnv06eBrCxlXiI7Up44DA3BcQhrriTRp6oq+UaGSkXv48IFIDvbMQNl3J/iYvkhwh07zI8nTLDveDyEzDQBmWkyjbLiYmoWOM814R2Aq3gYX6SykkoV5XpQBMEU3hGgwpl0N6jeEV3eU6ea8zNSU4ErryQPSn4+0OY6Fy0AQKVGfuZl9Nho7GLkySI8nPQvWPbeN2ltpZumnOodQQB2drZa0GiAsWMdMzbGIbCBwvgepaV0I5cb/jh5kvYFUJ44HE0hcQ4YnAwqKijvZPp0YMyYru8nJoZayA8bBpw963INEZOBAlCHYyWaKCx779tUVND/X47n8+xZ2g8gwTHWPvEoOMTD+Ba2NBmzSI49N8DF0vZlZeQZmTmT5Kh7CjWFhlKZb3AwsHcvGS0uyt9oCEtERfwl6Fd+lBJ5T58GBsosObaUvXeXJGDGeZSXy09stwzvTJxo/zHZgtFI70f8ffHj3p6Lxn1QEHlLvRg2UBjfQpS3l9vYT68Htm6lx/7+KMqYBHTYfXTSKCmhSWrWLGDIkL5f6+9P4Z/QUGD7djJqXHRzPzvwMjJQAEqWlWugAGbZ+xEj7Do2xs0RBFN5sSzE8I5KRYrPzqCxkeYZS6NCHIMlKhWFncQftbrr78BAun4DAsw//v70IwjAnj2UfxYlTdPFE2EDhfEtKivpJi1X3n7PHnOYZOJEdGiDXWOgFBXR5DVrlvQbvFpN1T2hocCWLS6r8CnMmIIJu9+nHJItW4B7FWiiWMres7vedxATweX0zSopoZwlgGTbnXEjNxjoGh0yhL6folHh59f7j0bT83ZrCfhtbbToCA93aUM/R8IGCuNbFBYqEwqzTOy89FKgwG4jkoYgUGgqKIjOn5Ul/xiDB1Ni8KZNLqnw6fAPpqaKmzaRgaFEEyUsjIzMyko2UHyJykqgqYmqSqQiek8A54V3SkvJQ3nppY7vlJybS4uN0lIgJcWx53IRnCTL+A7Nzcrk7evrKYcDAKKjnd/d01K3ZfZsZcaJSEqKayt8Zs0yP96wQf7+lrL3jO9QUkL/ezll/c7OP2lrI42W0aMdb5wAdI4xY+icrd6pyc8GCuM76HTym4wBwLZt5i6o06c7151qNAJnzpBre84cIC3N9mPGxJCRMmwYGT7OrPAZNgyIjaXH+/dTibRcRNl7oxsI5DGOp72dPJ9yFhZVVcCpU/Q4M1N+zpkSiovpXEpyq5QycCAwaBCFlbwQNlAY30FJFQDQdaU/Y4Zdh9QnBgMZJ3FxZJzIcW9bIySEvBnjxpFXqarKfsfuC7Wa3N8AGRibN8s/RkQE5STU1Nh3bIx7IvbNkmOgWIZ3nCHO1thozvVypjCiRkPnDAryyuuBDRTGNxCrAOS6XktKuq7EnNVNVzROEhPJOHHEClCs8Jk+HWhoIJVWZ3CpRYn2+vXyNVGCg82y94z3U1lJHkw5uWPOVo8tKQFyclxT9puYSGHnsjKv8yqygcL4BrW15CWQUwUAdNE+cZr3pKODklhTU8k4iXOgIJy46ps9mx6fPev4SS4pyVweXVhI71UOlrL3jPdz/ry8qrv6euDIEXqckKCsY7kcxLYZI0e6rvXFiBFkqHQKSXoLbKAwvoFYBSDHg2Ipy65Wk6fB0ej1dMPOzCSjITra8ecEqMLnyispP+X0aXPOjaOwTJZdv17+/ix77xvU11NoVs7CYs8es5E9caJjjQaDgcreR4xwbRPL0FBKmG1qcn1rCzvCBgrjG4jy9nImq2PHzDLZubmONxba280Kq5dfLt/bYytihU9GBo3DkRPd5Mlml/2WLZDXZhUse+8rKNG8cWb1TlkZeQQvucSx55HCoEFelzDLBgrj/SiVt7cM78x0cGPAtjbKOcnJIeNEiRS/PRB7+AwdSpUyDQ2OOU9IiPnm0dhIq145WMreM95LaSktKqSKCra0AHl59Dg6mm7YjqK9nTwWziortoaYMBsYSCFtL4ANFMb70enogpVTBSCqNAKUIe/IRLuWFsr9GDaMQh+unuwsK3zKyhxX4WNrmCcoiAxPxjsRFxZhYdL32b/fHPYTu3s7iqIi0iRyZlmxNZKSvCphlg0UxvuprKRJKyBA+j67d1OlCEDqp3L2lUNzM03CubnkpQkKcsx55CJW+MyY4bgKH0tNlH375JdJhodTfoKLOzUzDqKqir4TckKdzlKPdVVZsRRGjKDkYC9ImGUDhfF+CgvlGxjOCO80NtLYRo0iQ0BufyBHo1bT2ObMcUyFj0Zj/mwtE5KlEhZGxhOHebyTigp5fbP0enOoMCSEDGBH4cqyYmt4UcIsGyiMd6NE3r6mhlzFAK3whw61/7jq62mSGzcOmDZNWX8gZzFoEHDVVZSfkp9v3wofS02UDRvkaaKw7L13I3dhceiQ2es5bpzjPBtVVeS9y811XVmxNQYOpB8PT5hlA4Xxbior5cvbb9li9hTMmGH/OHZdHd1UJ0ygZnlarX2P7wiSk8lIycoiI8Ve5b3JyUB2Nj0uKCAvjRxY9t47aWqSv7BwhnqsZVmxGJ50R/z8yIsSEODRCbNsoDDeTXk53bzk9M+xDDXYO7xTU0NG06RJ9ONJbdKjoyncM2CAfXNSbEmWZdl770TuwsJgMBso/v4UmnQEYlmxI7yq9iYpicJcpaUea8CzgcJ4L4JAq3I5GgqFhVTuC9CN2J4x5qoqao43ZYrjKwwcRUgIaT60tdkv1DNlijnEtXmzPE0Ulr33TsQqFKkG/MmT5JkEyDhxRFK7u5UVS2HkSCA+nj5PD8QDZ0iGkUhtLZUYy3ETWybHWuZH2EpzMxkn06eT69UTjRORjAyqErCXURASYnbJNzTI00Rh2Xvvw2iksJ2c8mJniLMVF7tfWbE1QkOBsWMpId8DE2Y9eJZkGCtUVpJhIHW1YzCYwzsaDZXZ2ovycqB/f4pdu2tinVQCAqiCoa5OfqO/3rAM81h2j5YCy957F9XV8sqLBcFsoGg0dEO2N42NdN26Y1mxNQYN8tiEWTZQGO9Frrz94cNmUbLRo+V5Xvqio4PCFkOGeLbnxJKsLLqB2CsBb/hwcy+TvXvl5ZSw7L13IS4sgoMlvTyy+qy5JcWwYfJCulJx57Jia/j50Xzm728Og3kIXjJbMsxF6PWUf6I0vGPPzsU6HcWB09Ptd0xXExlJKzPxxmArF2uibNkifV+WvfcuiotleSlSC34xP3FE9Y4nlBVbIzmZFgEXLnhUwiwbKBej15OLkfFsRHl7qVUAra1mN3FICCWx2gNBoHEMGeI4NVpXMXAgvSdRe8JWLHN+fv5ZXviIZe+9g9ZWCkXIUI9NLei8blUq+xsonlJWLIXcXI9LmGUD5WIuXJBfScC4H5WVlBQm1SjYsYMmR6BrVYmt1NWRkZSVZZ/juROJiZQwa68JLyUFGDyYHsvVRGHZe+9AZnlxeEMJIms6DdPBg+3fcdyTyoqtERZGCfoelDDLBsrFGI10U7GX65pxDYWF8vraOEravrKSypWjoux3THdBpSLPkMFgP4PeMlnW8n9iDZa99w4qKuj7JFG8MKPIIrxj7+odTywrtsbgwZSs7yEJsx6WjuwkamvJck5OdvVIGCU0NdH/T2p4p6qKZLIBcoEOGWKfcbS2Um6FI1u+u5r0dPKkVFbSSrMPWlqBL7/rW9dC2zYNN6g+hFowoHHDLqyIeUBi3F8DrZCFMXFFyMzMlPEGGLdBEKi8WGJyLACkF1uUF9s7vOOJZcXW8POjKqeSElqI26sQwEGwB6Un9HpyL9urhJJxLnJVKDdvNieOzZxpv0S4igrK+rdy4/ZotFoSbqur6zX5TlwMC4IKzS19/9QZw1Haj5q8hTaWI7C0wOo+pn1bA7B3a71HJQEyFoiVWBJvmkFNOsRXnaAnoqFsLzy5rNgayckeozDrZZ+8HdHpqNTR3jFNxqGc3VmKfZ+fhL5xAHBUwtdbEHDV9xsR2fl0RccsNFpZ5QPkDegTg4E8KEOGeJacvRIyM6lEuKbGXCpswZhhRuw9rJYcBbqQORHJ5XkAgAHlv+BIUobVfVpayQDStwu9joNxcyoqyPsp0aBPKbTovWPv8E5JCSWVemJZsRRGjiRvlZhj46awgdITajVdKOXlbKB4GPuW5qOuxghAC0i4IUbXnDUl2ZXHDkGFNhlokX6+XkPlVVWU9Z+RIf1gnkpYGDX827GjR8MgM01AZppB+vEmjwE67z3D63di+HW3WN3ly+80aG4BeT0rK9lA8UQuXJClW5RS4CD1WG8oK7aGmDC7Zg3l2rhpN3UO8fSEKJ9dXOzqkTAy0TeTmqgKAoKDrP8MKt1m2rdg4ExJ+4g/EeECxgzrxUVaXU03bTmJup7MgAH0Xu1RRRMXR4l8APVFkpv4yrL3nkdbG3D+vPSciIYGxJdS3lhjaLz9FgLeVFZsjUGD6Lp144RZ9qD0RmQk/eNaWnznJuMNGMhgCAoCbr9Owqr9Z7OGwriHxmNclIyVfm/U15OapXiT9QX69aOEwpMn7aPkOX68uWnjrl3A1VdL20+tNsveu+mqkOmBigoqTkhLk/b6PXugFuhaL8qYhCH28nR4U1mxNbRa8qKUlMjL2XMi7EHpjYgIumDKy109EkYORhkGxoULdDMDqPzOXqXAFRVknHj7CswSlYo8RoJgn54448ebH+/aJX0/tYpl7z2R0lJqCSGxvBg7zfknRemT7DMGbywrtkZKChljJSVumTDLBkpv+PnRP6y01NUjYaSi1wMdMgwUyxuf5Q3RFtra6GbtzaXFvZGaShUC9tAQysigkm8AOHJERuhIxbL3nobc7sWtrcD+/QCA5sAo6Ppl22cc3lhWLIWRI+lac8PFOBsofREeTheOwQ5uf8bx6HSAIGMV4AgDRdQDSUmxz/E8CT8/KjluarL9mlGpzP8TgwHYt0/6vix771lUVdG1K1Xefv9+k5euIGUCoLLDbcyby4qtER5O77u+3u06grOB0heRkZTsyO5iz6CiApAqXVNbC5zo1FBISbGPQWE00kR3ySW+N8mJiCXH9uhnZSm8ZeHStwrL3nsW5eWyuhebemYBOJ9ip/BOSQlJAnhrWbE13FRhlg2UvggKIneiG7q+mB4oLJReFrhnjznmai/vSVUV3Zx9obS4N4KDqS19VZXtxxoyxOz2379fupw+y957FufPA4GB0l6r1wN79wIA2v1DUNpvuO3nF8uKR4703rJia2i1pDCr1ZInxU1gA8UagYEU5mHcG1G3RuoE44jwTlUVJYr6SoJdb/TvT5U8tk50Gg1VGQBUTSe2I5CynyDwwsITaGigZHWpCepHjtC1DqAkdSyMGolJtb1hMJAh6wtlxdYQE2YvXHCbhFk2UKwRGUkTnRtZlUwPVFTQ/0gt4Svd2grk5dHjqCj7JLQ2NpJhMmCA7cfydGJjyUixh4FgGeaRU80TGkoLCzeZaJleKCuj61ZqgqxFeMcu1TtlZSSR7wtlxVIYOZJ0iNzEuGcDxRphYXQBuck/jOmF8nLpN6MDB8zJYOPHSzNqpJw/I4MuboY8SWo1GYO2MHKkWc9k1y7p/+OICJK8r6mx7fyMYykpoe+JlGvQYDDnIvn7ozR5tG3nFsuKR41ir6dIeDh5Ld0kYZYNFGuIFw+rU7ovRiNVbUhdhVkmXNojvKPXU0ghO9t3Y9gXk5xMolu2lhwHBpLkOEDGRn6+tP2CgynxkvNQ3Jf2dso/kVq9c/IkJbcDwMiRMGgl5q30hlhW7IuSAH0xeDB9LvbII7MRNlCkEBlJ7mI3sCiZHqipoaoRKTLZBoMpyQ5BQcBwOyTZVVQACQm+WwHQExoNJcu2tNhecjxunPmx1DCP2K6CFxbuS3k5GRxSDZSddmwO6MtlxdYQE2b79XP1SNhAkYSoKmsPASrG/lRWkqtWSpnisWOUmAfQ5CRVubI3jEY63iWX2H4sbyMjgyY5W70Y48aZPVNy8lDCw82y94z7UVYmXT1WEMwGilpNN1Bb8PWyYmuICbMubhfBBooU/P3pQiorc/VImJ64cIFWQVLCK/YO79TUUKKtL5cW90ZgIBlutbV0g1FKZCSFzwDSaSgpkbZfRATL3rsrRiNw9qz0sOz58+b5d9gw6fv1BJcVW0elogR1S++lC2ADRSohIVwV4I60t9MqWUqjK0Ewr8A1GvKg2IpORzFsN2y05RZkZdFnI+YOKEVJbx5/f5a9d1fkqsdaVO/YFN7hsmLpBAYC0dEuHQIbKFKJjKQLiqsC3AudjlbJUvJPzp83h+mGDbO9625zM13Evta7Qw5iGbetRoLScmOWvXdPysspP0mBeqxNns/yci4r9iDYQJFKSIhZDIxxHyoraZUsJVZq7/BOeTlVqiQk2H4sb2bQIMozaG5WfoykJHO+wIkT0hcKLHvvnpw/DwQESHttaanZyBw8mNSalSAIVD47fDiXFXsIbKBIRaWiSdbNehX4PAUFtEqWguXK29bYql5PP0OGcBzbGomJQHq67ca9aFQKArUqkALL3rsfDQ1kdCip3rH0pMmlvp4M1rQ05cdgnAobKHKIjKTaeVtWgoz9aGykm56U/I+KCkrKA0jt1VZBNZ2OWpSnp9t2HF9AraaSY9GoU4ql12v3bmn7sOy9+yEqc0vN27JX/olOR9erVMOIcTlsoMhBrArgyc49qKyk1ZiUjH7LG5qt4R1BoO9BTo7Ly/A8hvR0Muhs8WQMHGhO2svLk65Sy7L37kVJCXkdpajHVlebu46np1OoTwkGA/30769sf8YlsIEiB42GfrP4k3tQXk7Ggvh/6Qt7uYkBqkiJiKAKFUYa/v6UmFhXp9xQUKvNobn2dmpZIAWWvXcf2tvJWHR2eKe6mozblBTlx2CcDhsocgkLowSvjg5Xj8S3MRppopNSidPQQF1QAUpotTUGLZYWs6tYHllZdJOwxVCw9H5Z3rz6gmXv3YeKCteox9bUUGhXar4a4xawgSKXyEiyxln8ybWIK2IpE93eveZV+/jxtiW1trSQKByXFssnPJwMO1uuneHDzTeZvXulyeiz7L37UFoqXT22sRE4fJge9+sHZGYqO2dbG3lZle7PuAzZBkpzczM+/fRT/P73v8fcuXMxbdo0rFmzRvL+DQ0NeOutt3DNNddg9uzZeOKJJ3Dy5Em5w3AdgYEU++Y8FNdSWUnGgpQVkWX1jq3hnfJyKndNTLTtOL7KoEH0P1Na9qvVUvdZgDxjx45J249l712PXPXYPXvMBujEicoXFlVVlP/EcgAeh2wDpa6uDosWLUJBQQEGDBgga1+j0Yhnn30WP//8M66//no89NBDqKmpwRNPPIEiTyrfDQ6m8ALjOoqLaVVkbdJqbwf276fH4eFmyXQlGAx0vJwcaQl+THfi46ktgC0GvhLRNpa9dz2uUo+tryf9FG4K6HHInmVjYmLw7bff4ptvvsHDDz8sa99NmzbhyJEjeO6553DPPffg+uuvx3vvvQe1Wo2FCxfKHYrriIykCbauztUj8U3a28lAkaIee/Cgudpj7FhpCbW9UVlJ8thcWqwclYq0YwRBuTdj9Gjz/3HXLml9flj23vXIUY9tazMvLCIiyMBQQmMj5amx9olHIttA8ff3R4xCJb/NmzcjOjoa06ZNM22LjIzEzJkzsW3bNrR7ivs1NJTcyxzmcQ2VlWQcStFRsFd4RxAo5yUnh8J8jHLEEJnS7uChoWap8vJySlqXAsveuxY56rH795sN2AkTlC8sdDogOVm5+izjUpzqpz516hQGDhwI9UXu8SFDhqC1tbXXMI9Op8PJkydNPwWunmTUarpgpHZVZexLZSUl2lnTIDEYzAaKvz+Qm6v8nPX1tJJjHQXb0WrJwGhsVF5yrKR5IMveuw5XqMcajeSJGTSI1Z49FKcG5aqrqzFixIhu20WPTFVVFfr3cANYsWIFFi1a5OjhySMiglZjbW3SVwWMfTh/XpoX49Qpcxhu1Cjb/k8VFdRg0MXdPb2GzExa1VZVKVP1HT8eWLCAHu/aBUy/w/o+YWFk3FZW2t4okpGHqB7br5/113Z0mIUVg4OpcksJYjkza594LE41UNra2uDfw6pX3NbW1tbjfvPmzcPkyZNNzwsKCvDaa685ZpBSiYykqoCKCnMTM8bxNDTQZy4l/8RezQHb2shrpjQOznQnJIQSlrdvV2agxMWRN+vMGeDMGQSPrkSzxsrNz1L2nktOnYsc9djDh6kxK0B5Y1JKknuiqoq8pmyMeixODfEEBAT0mGcibgvoZYUbGxuLwYMHm37S3SFJUaslS7+szNUj8S1EeXtrk44gmF3/ajVNdEopL6dVWHKy8mMw3Rk4kP6P9fXK9rcwOlMKJYq2sey982lvJ6+nkuodpeEdsecTqz17NE71oERHR6OqqqrbdnGb0uRblyFOdqNHc9mpsxANQitJc+F1RWZhrpwc6Y3JLsZgoMqDnBzbKoCY7sTF0Q3k2DFl/5/x44EvvwQAJBfuRF7mPOv7RESQ0GJNDSdOOpCzO0uxb2k+9K0ddA01R0kr8xWMuG7zbgQD6ND4Y/mFsej4rufrrqWvVkxVVRROUtq7h3ELnGqgDBw4EIcOHYLRaOySKHv8+HEEBgYi1dNCJZGRlCVeXU3lp4xjMRop70eC0FNKgZ3CO9XVdCPLyFB+DKZ3srOB48eV5XJlZNBNqKIC8aWH4d/eCASF9L1PcDCVqFdWsoHiQPYtzUfdhSaLLVpAQiPrfrpTCG6pBgCUJIxCfUcwYKWrSI8RoLo6yl3hZp4ejcOW/TqdDgUFBeiw6Fkzffp0VFdXY8uWLaZttbW12LhxIyZNmtRjfopbExJCPT643Ng5VFfTj4T8k5QCCzexLQZKVRXpdkjRbmDkI4bOlFxDKpXpf6sWDEi9sEfaPix773D0rTTvq1RAcKARwf4dCA4SrP4MKN1uOsaFrIlWXx8RLmDMsIvCdc3NlETvDqkAjE0o8qAsW7YMjY2NptDM9u3bUdGpaXDDDTcgNDQUCxYswNq1a7F48WIkdsqCz5gxA0uXLsUbb7yB8+fPIyIiAt999x2MRiPuvfdeO70l2/ju3+fRUp4J4ahEd75hELSnCzDmnmhkjmf5c4ciyttbMRaCm6sQqztFTzIylEtci7kuXFrsODQaKjlevZpCAXLDaBMmACtXAgDSS3aidMgM6/tYyt572qLIwwgK1+L2YafIW2XNyBcEYPUv9FitxsSHxmBimIReSxej05HOjpSKIcatUWSgLF68GGUWyaFbtmwxeUVmz56N0F4SGDUaDf72t7/hP//5D5YtW4a2tjZkZ2fjueeeQ5o7KP39738Y+82/EFhfiW+v+KfE2nkt0A7sXXySDRRHU1IiKY6dVmKnFu0VFeQ94fCdY8nIoM9YpyMpfDnk5FDIr6EBKRf2Qm3Qw6pjOCKCwjw6HecoOBqjkSpypITvCwrMOWZDh0rv2WOJIJAHZfBgzgv0AhQZKEuWLLH6mueffx7PP/98t+1hYWF49tln8eyzzyo5tWP58EMkF1LlR2LbedRFZVjdpaUVEAQV9M0SAqyMctragKIiSeGd9GI75J+0t9NkxyJPjicoiAzBzZtp1Svn89ZogDFjgI0b4d/RgvjSgwBG9r2Ppew9GyiOpaNDem6RPXrv1NeTh4y1T7wC7p5kyc03A9u2AQDm+m8BrrNu9X/5nQbNLZDW9p1Rjk5HiW9WPG1+7c1IqjhIT2JjlZcZVlTQzcvTErc9lQEDgAMH6H8stRxVZPx4YONGAGJytBUDBTDL3vcgHMnYEaMBiIqS9lp7qMfqdGTsyv0OMW4J+8AsueEG8+pt2zZpTchEDB20WmAcQ3k5fb5WRJuSivdCY+z8P0yYoMz7IbqlL7mEO6A6i+hoMlKUNPMbNQodGsolSS7cJU3jhGXvnYNRkBaqKSszd4gfNEhZhZXBQP97zhnzGthAsSQpySzoVVIivQkZQBcGd0p1HAUFtOq1gl2qd6qr6YbJpcXOZfBgMghbWuTtFxiI8qRcAKAS1dOnre/TmbeiuGEhIx0pic/2CO9UV5O3hsM7XgMbKBdz1VXmx9u39/66ixHA5caOor6ejD9r+Sd6PZKK9wIA2v1DyAOihKoqulmyRLZzEUNqCq6j4jSLkMBOCaqy4k1TziKEkY7ofJaaqGqP8E5NDXlfuNu418AGysVceaWyMI9KRS5KOWEhRhqivL01V/GRI/DXNwMASlLHKQvPNDaSp4bdxM5HrSajsr1ddri0JG0cBHRet1K7G8fEAGfPcpjHERg7c/LUEkKsOh2J9QGUY6akpURbG13vrH3iVbCBcjGi/DZAYk5iXNQaajW5i8XuuYz9EEsPra3GLFZhXVbUcigvp9CO3HJXxj6kp9NnLzNc2hoUhYrYbHpSVCRNiC0ykq7X4mL542T6xiDmAUkwUDoLEwAAU6YoO59ORxVgSjWPGLeEDZSeyM01P7a8ePpCpaKVGId57IvBQPkn1nq1GI2mFu0dai1KU0bJP5deT8fJzubSYlcREEDaJrW1sr2R51MschekeFHUakq6Pn2aPZ/2xGiU5wGzh4HS0EDXLSe1exVsoPTEsGHm1fr27dInL7WakmsZ+yH2OrJmoJw5Q7kjAC4k5KJDq0CavrKSVmDuIBroy/TvT8mOtbWyditIlpmHAlApelERfccY+1BdLb1bdFkZcKpT9TkzU1mCa2Mj5YuxJIDXwQZKT4SFmRMsS0spTi2FyEha7bf21WaTkUVBgSR5e8sbUkGygioAQSB3f06O1VJmxsFERJCRotPJ2q0+PAV1kZ03qRMnpBk4YWF0gysqkj9OpmfKy6Uv6iwLEaZOVXa+ykoybLj5o9fBBkpvWLoapYZ5IiJoUuTSRfvQ3k6rKymiS50ufQEqFCaPk3+umhoqLVYq7MbYl8xMCrPp5Sk0m3KPBAHYI6F5IECr71OnWGzRXhQUSEo9AQBYNI5VFN4xGuk7MnAgh2W9EDZQemPiRPlhHq2WJrnSUseOzVcoKSFjz9rK6MIFav4GQNcvGy1B0fLPpdPRJGctlMQ4h6QkMhhramTt1iU5Wmo1T2wshRo4f8x2GhvpelRJuLWUlJiLEAYOVJbgWlNDC0PWPvFK2EDpjchIykUBaPI6c0bafmFhpK0gNQbL9I74mVsLuVjciBRV7zQ3U3+WgQPl78s4hoAA+n/INFCq4gaZpdXz8qSFWwMDyVvXaeQyNlBeTrpFUvRPtm41P1Ya3qmuJgVi1izySthA6YvJk82PpYZ5IiNpNd6ZsMkopL6eVldSOglbGijpCvJPqqqoPTuXKLoX6elkOLa1Sd9HpQbGdYb42tupv48UIiMpzCPnXEx35BQJWM6plnOtVPR6Cuuw4rPXwgZKX1iGeaSKtgUH04qc81Bso6iI8nmsqcfW1ppFnlJS0BAhU+RJEKjvzqBB3J7d3UhIIG0Lucb+BAVhnuhoOo8U/RSmZ/R6WlRIyRkrKDB7rIYMIf0puVRV0X7ckdpr4Rm5LyIigOHD6XFFhbQeHwC5p1lCWzlGI3DyJBl71oyGPXvMhqOS3juiQi3HsN0PjYYMx/p6efsNH27u27Rnj7TkV62WvkdShRmZ7lRUmHNCrGGP8E5dHX0//P2V7c+4PWygWENpmKe0lCW0lVJRQStZmeEdRT08qqpIPyFaQWIt43hSU4GQEHnXklYLjBxJjxsazB42a7D0vW2UlpJAmzWDQRDMc6larSy809xMuUOsWeTVsIFiDSXVPOHhZN1zVYAyRC0Za9onra2UCAmQgSE3ydVopDyFAQMUDZNxArGx5MKXK6SmJMwTGUkhQ5a+l4/RSN4nKcmqZ8+aQ2mXXGJOapaDTkffi3795O/LeAxsoFgjPBwYMYIeV1QA+fnW99FoKHmL49nyaW+n8I4UN/GBA/R6gBIj5eaQ1NRwe3Z3R6Uiw7OlRZ4c/Zgx5u/Dzp3S9lWrafWfn8/S93KpribBNCn5J7aGdwSBPCicN+b18H9XCkrCPOHhlIciU2jK5ykuptWRFFVISzlzJfknNTUkCBYSIn9fxnmkpJi9klIJDTXLBJSXk1dOCrGx9B1k6Xt5lJeT0WDtWro4vDNpkvxz1dXR94EXFl4PGyhSmDCBvCKA9GqeyEi6AcrsyurznDlDq2Zr2icGA7B3Lz0OCjInM0tFr6f/Y2amsnEyziMigkpJ5VbzWBqtUnvzsPS9MgoKpCWrnjplrnAcMUKZMGJVFV23Urw1jEfDBooULMM8Oh2FIKwREEDhh7Iyx47NmxC1T6R4T44dowRIABg9Wn7/nOpqWi0nyyxLZlxDZiYZpXLk6C0NlM5O15Jg6Xt5iOqxUgwGSw+0kvBORwf9X7glhU/ABopULPtEWDa46ovgYArzcDxbGoWF5L6Vkn9ia3intpZLFD2JlBTKF5KjLBsXZ76RnT4t3ZvJ0vfyKC83h136wmg0Gyh+fsqq7mpqaAHD4R2fgA0UqUyYQBcVQAaKFCn7yEhyZ8psG++TGI20apWifSII5soMjYY8KHJobSXDhNuzew5BQVRtJTc3RIkXRZS+l5q34uuUlFBYVgyD98bx4+Yw3ciRyuTpa2ooaTowUP6+jMfBBopUQkO7hnlOnZK2T2Mjr8SkUFFBE50U7ZPz581x7GHD5E90VVVAfDxL23saGRl0ExQrt6SgpNwYYOl7qej1dD06Q5ytrY0Wienp8vdlPBI2UORgGeaRUs2jUtEFxQl31ikooAnImvYJ0DW8o8RN3NBA4R1rKz7GvUhMJANWjhclI8OslXH4sHQRNlH6Xk5vGV9EVI+1ln9iMJhD4/7+5n5JctDpaFGRmCh/X8YjYQNFDuPHKwvzFBVJ66rqq7S1UeKx1Kx8SwNF7kTX2EgeFw7veB5aLRmWcsqNVSpzmMdgAPbtk34ugKXvrVFWRl4Ua7lcR46Y/2+jR0tbiFwMLyx8DjZQ5BAaCuTm0uOqKuDECev7RESwqqw1Skqka59UVJhvGgMGSAsJWaLTUeWOlHMx7kdaGlXINTdL38cyD0VOmCcmhr5rLH3fM0YjqcJK0RGyNbzT0MALCx+EDRS5yK3m8fOjlRuXG/fO6dOUGCt6p/rClt47RiN5awYMoJU143n060dufjlhnksuMecp7dsnXTyRpe/7pqaGDH5rns+ODmDHDnocGEgqv3LR6cg44YWFT8EGilzGjesa5hEkhHnCwmilISUk5GvU1VGSndSJx5byYrGEmUsUPRe1Ghg8mLwaUsv3NRpg7Fh63NICHDok/Vwsfd87ZWVAU5N1D8rBg2bNorFj5VfgGAxkVPLCwudgA0UuoaHAqFH0uLoaceXHrO8TGUkrPp3OoUPzSIqKpGufNDQAR4/S44QE+Z1Mq6spaVKJeiXjPqSkkNEv3vSkoDTMI0rfy1Wx9QVE9VhrRoOt4Z3aWppDeWHhc7CBogSL3jxp5yVU8wQH08qN81C6YjRSHk9IiLSV0d69Zi/UhAnyVlMdHbQvK1B6PmKDRzlGw8iR5sTX3bulezNZ+r5nmpokqceqDXqzQRgcbF7cyaG6GujfX5luCuPRsIGiBIswT+q57VAZJUhiBwSw8NPFlJcDpaXSE11tCe/U1FDpKEvbez4qFbn79XrphkZQkFnHqLqa8p6kwtL33Skrk6Qem1iyj4wZgK5ZucrNej39vzMylI2T8WjYQFFCSIhpJRDcUo14ncQwT2mpPLe0tyNqnwQFWX9tWxtw4AA9Dg8HsrPlnaumhm5qrEDpHaSkUFhQjkqzUtG22FgypjnR3YxE9dj0s1vMT5SEd6qqqGUBLyx8EjZQlGJRzZNZuLWPF3YSHk7N8DjMQ7S2kvZJVJS01x86ZNaSGTdOnhZCWxu9nhUovYfQUArXyQnzjB1rDgtK7W4MsPT9xUhUj9V0tCK5sNMQtFTiloPYM0tuM1DGK2ADRSnjxpkumswiCWEetZomxwsXnDA4D6CkhG4u0dHSXm9LeEeUtmcFSu9CdPt3dEh7fVQUVQABlFMi51qMjKRqHpa+l6wem3phL7QdnYuKiRPlGxnNzZS3IjcZnvEa2EBRSnCwqUldcGsN4sqPWt8nIoJWHlJ1GLyZM2eka58YDOZGbwEBZrE8qdTX0ypMyrkYz0EU3JOjiWKLaBtL3xMS1WOzCm0M7+h0tKgQWxUwPgcbKLZgWc1zTkKYJzKSVh5ioztfpbaWFDqlJseePGmWyR45kowUqYirMFag9D4CAqizbU2N9H2UGiiicevr0veCIEk91k/fjLQLnYuKiAhq6in3PM3NtLCw1t2c8Vr4P28LY8eiQ0OriNTzv1jP8vf3p5WHryfbFRWRV0OqHonljURueEdchcmVxGc8g/R0Ch1IFVJLSTHraZw4IS/JNjaWDBRfTnQX9ZyshHeSC3fDz9DZdXrSJPn9c0RtJF5Y+DRsoNhCcDAupJBsc1BrrVlErC9CQmiS81VlSrnaJ4Jgzj9Rq82KoFIQBNKf4VWY95KQQCEAOSrNopFrNAJ79kjfT6wa8mXp+/JySeqx6efsUL2TkSFNwJHxWnjWtpGiTIvePNskiLZFRgKVlfLc0t5EWZk87ZOiIno9QD1V5KjA1teT0BYrUHovGg0lvsox+C29cFu29P66ixGl70+f9t0FRmGhdfXYxkYkFlPX6ObgGGDIEHnn6OggbzSLKvo8nDVoIyWp49Ch8Sd35o4dwIMP9u3ODAmhRLuKCukVLN7E+fNUsilF+wToGt4ZN07euXQ6unlZa2bGeDapqYCKkldbWoEvv7MSThCG4JqwRIQ1lAIHD2LlZ6VoiJBmxGo1WRhTW4XMiVW+FzZsaiLvkbXradcuaIxUWVWYMQXZcsM7NTX02fLCwudhD4qNdGiDUJTUGXaoqwOOHOl7B5WKEu58UTq7tZVKNaVqnwC25Z90dJA4G+PdxMZCG0BTmSCo0Nxi5adVg2P9rzLtnnFkjfV9On/qGjXYey7cN6/f8nJJ6rGWvXcKsxSEd6qrWVSRAcAGSs/IdN+eTbO4CKWEeaKjKRPe1xqQFReTV0Oq56iqiiTGAYpHJyRIP5fRyNL2voJKhTGX90NEQBuCgwRJP0U5l8GgIV2Owed+Qpi2xeo+KhXNC3rBzzel76Wox9bXU/diAA3BcdDFyVR8bm2lEBJL2zPgEE93goPJchfLUyVQlDQOHZoA+BnagF9+AR56qO+LOCqKQjx5ecCll/pOC/HTp+lzkapHYmnsWcqUS8FopAZjEv+HjGeTefkgZFbtpxCqpMTKEKBsKrBhA/zbm3BLxCbg8sv73OPL7zRobgHloojS975iAIvqsda8J7+YqxnPpU2TP7fpdCSqKGcxwngt7EG5mLg4ICmJElkl0uEXiJLUzjBPQwPJslsjKYmqWXxFWbamhqTCpcbtjUZg9Wrzc4vWApLhVZjvEBFBJcc6nfR9rjKHebB6tXTPqUrle9L3FRUUerGWf2KxqDiTPk3+eRobqepObt4K45WwgXIxajU1omttlVW6WJhpEebZvt36DmFh5gZ4ckokPRW52if795urd0aMkC93rVGTEcj4Dv370+pdauhl4EBzjtKZM5QfJZWoKN+SvhfVY/sSSaypMeXgNYQloipKZv5XQwP17GFpe6YTNlB6Ii2N8hdklAJfSB1jvnh37JDWHyQ1lSa5s2cVDtRDMBhIDTY0VLrLd+VK8+Orr5Z/Tj8/bjDmayQnk+EgVXxNpQKuvNL83NJjZ43oaN+Rvq+vJ8PDWujsl19Mi62CzKnKwjupqb5Z3cj0CBsoPRESQisrGUmsBr9As4hYQwNw+LD1nQID6Sa6fz+5jL0VudonxcXkWQJIhGvMGOnnEt30Gk6v8jmCg8mLIqc3z7RpZtGxrVvpZiwFPz+6AXv74gKgXLmKCus9cSyqdwqypss7h8FAc+DAgb6Tk8dYhWfx3sjKoptkW5v03i9TpphjsNu2Ud8YayQl0SR36hQwdKjy8bozndonZyuCsO+w2mqvxNE7VqOz5yz2p1+DEyv7bkpmSUtn81RWjvVRMjLoutXrpXnQAgKAyy4Dvv+e9lm/HvjVr6SdKyaGvtsNDRSy9UZKSsh7kpjY9zWl0wHHjtHj1FTURaUDrb2/vBvV1fR5cniHsYBn8d5ITKQfGcmyGD3aXLsvNcyj1dLktn8/CSF5Gy0tZHxFR2PfYTXq6vvWmdDXtyAzfz0AQK8JwJG02ZI1KppbVBBAqy9tENvePklSEnnq5JTwX3GF+fGaNdJzwrxd+r6jA9i3jxZp1sI7lnl3U6bI94JUV5OoolQBR8YnYAOlNzQakmhubJSe3R8QYA7zNDaa9ACsEh9PZYtSevl4GsXFNPlER5s8JypV71oTlxT9BP+OFgDA+QGXwi8iVLK2RXCgEcH+HYiID8SYmwa68E0zLkOrpTCB1FANQLkrubn0uKzMHF60hlpN13x+vndK3+fn04+Uhn0W4R3ZvXeam2lhl5kpbz/G6+FlZl+kpZlXSVLVT6dMMV+s27aRV8UaGg2t+g4epNwXb0oSE7VPLMoGgwKB26/rodLCaATWrDA9HfjbuRiYJkMM69w5Cs3NncFxbF8mLY3EvlpapK/Ir7qKci0A8qJIuW4Bum5LSshj403S901N5D0JCbEe4i4rMwsqZmaSRP1eGeeqqKB94uMVD5fxTtiD0hcREXTBydFWGDXKPCnu3AmrCRciMTFkCEnRUPEUqqtJKyIuTtrrDxwwlxYPHy4vHm000mc9YAAbJ76OKPQlJ8wzdqzZwNizhzyaUggNJW+pt0nfHzxI16IUwbSLwztyEJNjs7M5b4zpBn8jrCFmlUs1NAICzE3tmpqkGxwqFcXPjx71HvE2UftEagKhLaXFtbVkUHKDMUatJrEvOeFZjQaYM4ceCwKwbp3084WFeZf0fXk5zVvx8dIE02wJ79TUkHeak2OZHmADxRrJyVReJydZdvJk82MpvXlEwsO9R7xN1D4JC5Pm0SgpoURhgD5vMZdHKlVVFN4JDZU/Vsb7SEkxezekMnu2+Yb800/SFyWxsWbpe0/HaAT27qXFlZSwdkmJudR6wAD5EvVVVbQIFEu9GcYCNlCsodWS+7GuTvo+SsM8AE2s+flUvujJyNU+WbXK/HjuXHlS12K1FEvbMyLR0ZTcKSc8GxUFTJpEj+vqSHhMCgEB3iN9LyrqSkmMBWzznrS0UK5QVpa8/RifgQ0UKWRkkCegoUHa6/39u4Z5xOQ7KQQFkYt6/355ho27cfYsjV9Ky/TmZtKfAGiyt9K0rRuihoKvNG5jrKNS0Yq+vV2eN1Kpsqw3SN+3tJD3RKuVnlxs6SGWm39SWUkLssREefsxPgMbKFKIiaFGZBUV0vexvFjlhHkAumgLCsyZ8Z5GSwtV70itRtqwgfYBgBkz5IdpamrITSxVUI/xDZKTqbmdHO/nJZeY8yGOH6fKMCl4g/T94cMkCyDV0C8spB+AvMxSk+EBMhpbWkj7hJNjmV7gb4ZUBg6ki0qK+BpAKrLBwfR41y553hCtlm7SBw6Qd8HTKC6myVqKgWI0Aj/8YH4uNzm2rY08Vunp8vZjvJ+wMKrCk1PNo1J17XK8Zo20/Txd+l6nI09vXJz08KqtybGRkXzdMn3CBopUUlPJkyK1z4e/PzB+PD1ubpYu/iQSH085HJ4o3pafT0aWlInuwAFz1dKwYfInLJ2OkmrlJucxvkFmJlXlSF1YAOTFE0McmzZJV3i2lL73JIxG0jypr6f3IAVBMBsoKlXXwgApiMmxnNTO9AEbKFIJDCR3pIwOx13CPJZaAVLQaGiyOHhQ3jldTXU1uX2lJsdaek+uuUb++errqaRUTlIt4zskJdF1JOcaCg4Gpnc2u2ttBTZulLafp0rfnz8PnDghPTEWIE+RuLAYOlSeuGRrK3mc+veXNUzG92ADRQ4ZGbSykhp2yc01l8/t2iW/Y3FsLE2sniTeVlgovXlaSQmt3ABlpcWNjbQCkzOxMr5FYCAly8o18i2TZdeskaan4onS921tlBirVptD0lKwNTk2KYmTYxmrsIEih3796MKSqomi1ZqreZSEeVQquoiPHfMMjQW52ieWVRJXXSXfC1JVRQl93iQxztif9HRascupsMnMBHJy6HFREXX0lYKl9L0ncPQoJeTLETi0DO+o1ebSbCkYjRQyGzKEvZ6MVdhAkYNaTdnqra3SVSNtqeYByG0sGjfuLt5WWkqGlBSDobkZ+PlneuzvL7+0WKwCEJV+GaY3EhJocSHXaFBScuxJ0vfV1SRnEBNDBpxUTp0yVzSOGGG907EltbWUHMvKsYwE2ECRS1oaxVtra6W93jLMs3u3Mp2ElBTyTLi7ENS5c5SMKKXc9+LSYqly+CJ1dSxtz0jDz4/ylOR0OAbIMyDefHfuRFCzRAPHE6TvBYEWPTU18j2QtoR3qqoo5BYeLm8/xidhA0UuISF0gUldjWm1wIQJ9LilRX6YB6DYsFpN+7qreFtzM8XepSTLCcauyrFyS4sBWv1lZPBEx0gjNZWuI6kVOQBdu7Nn02ODAf1PSuzP4wnS94WFFN5JSZHngTQazQaKnx8wcaL0fdvaaB7j5FhGIrINlPb2drz//vv41a9+hcsuuwwPPvgg9uzZI2nfvXv34oknnsA111yDq666Cg888ADWyWnK5S5kZdHF2doq7fW2hnkAyrU4d44E0NyR4mJz4y8rJJYcMAtaDRsmX6LeYKAflshmpBIXR/ljcsM8c+aYhMQGnFwLlVFCubK7S9+3t1NirCDIL/M9ftz8Gebmytu/spJy6pKS5J2T8VlkGyhvvPEGlixZgssvvxyPP/441Go1nnnmGRyyUmmybds2PP3009Dr9bj77rsxf/58BAQE4PXXX8eSJUsUvwGXIF5kUvt8DB9uvpCVhnn8/WkFuH+/OTTiLggCubQlap8MOrbC/ESp9yQ6mqXtGemoVBTmaW6WV2HTrx8wZgwAILi5Cuklu6TtJ0rfS13EOJMTJ2ixo6T6Tak4myBQdd+QIfLyXRifRpaBcuzYMaxfvx4PPPAAHnnkEcybNw/vvPMOEhIS8P777/e57/LlyxETE4N33nkHN9xwA66//nq8/fbbSE5Oxhqpao3ugkZDybJSO6VahnlaW81de+WSmEjaA8ePK9vfUVRXU1KghFh2eEMJkov30pO4OHOVkxxqaijMJrVfCMMAZNCGh8vPRbFQlh2Sv6qPF1ogSt+LWiHuQl0deU8iImhekoPBYG6gqNWahSilwMmxjAJkGSibN2+GRqPBvHnzTNsCAgIwd+5cHD16FOXl5b3u29zcjLCwMPj7+5u2+fn5ISIiAgGe2EMlLY0ucqmVNfYI82g0NPHl5cnrL+JoCgvJWJOQ6JpzykKYTUlpcXs77cMS2YxcRGl1OR2OAQpldCoVJ5fnIaxOghCbKH1/5ozsYTqUvDwynPr1k7/vkSPm4oDRo+XpplRVUel2ZKT88zI+iywDJT8/HykpKQgRq1I6GTJkCADgdB/5Ebm5uTh37hw+/vhjFBcXo6SkBJ999hlOnjyJ2267TcHQXUxEBOVASDVQhg8338D37FHe9TQujibYgweV7W9vOjrIZSwhWdVP34xBZ3+kJ/7+5gREOVRV0WfAIk+MEvr3N+cwSUWt7lJyPPCExJJjd5O+Ly4mIyMpSVmDPqXhHVGgcuBA+edkfBpZwcCqqirE9NCrQdym62Nlctddd6G0tBSff/45/vvf/wIAAgMD8corr2CqlS+7TqdDlUVyW4G7JJ8NGABAosqrnx+FeX76icI8+/bJEzgSUaloNXf0KEnvx8fLP4Y9KS2ligUJ5b6Z+Rvg32FDaTFA7vlRo+S7pxkGoDBPVBR5AqT2nQGAWbPQ8d8v4GdoR1b+z0DrHaRS2xcRESQPsHs3hTKVfN/tRUcHhXb0emWVbx0dwI4d9DggQJ7qs05HcxbnjDEykWWgtLW1QdvDjUEM27T14RXQarVITU3FjBkzMG3aNBgMBqxcuRKvvfYa/vGPf+CSSy7pdd8VK1Zg0aJFcobqHJKTAc1RQA+0tAJfftd3uCJBPQ2X4icAQMHi7dheIX0VotUCY4YZkZkm0ARbWUnu2tmzXStUdu4crUathemMRgw6vtL8fO5c+edqbqa8E5a2Z5QSHExelH375Bko4eEoyJqG/vk/w7+9CdiyxboHUK2mUPD+/WTIjx9PixpXXK+nTlG4SWlo9OBBsydo3Djrxpkl9fW0Dy8qGJnIMlACAgKg70GHo73ThddXLsk777yDY8eO4eOPP4a607146aWX4s4778R7772HDz/8sNd9582bh8kW3TILCgrw2muvyRm6Y9BqoQ3WAq0GCIIKzVaKa85FjkCrfzgC2+uRVLgb+voW6LUS47gtwN7DamSmdbqmk5NpdZad7bp8jPJyKnuWMtEfPIiIzth9ecIwxGdmyj+fTkehnbg4+fsyjEhGBhkNer2sm2Z+9lz0z+9UP169mtSPrRkbISFUPVRSQvsMH05VQc70pjQ2kvckNFSaiGJPKBVnE4zkseGcMUYBsgKRMTExXUItIuK22F6qOPR6PVatWoWJEyeajBOAkmTHjx+PkydP9mj4iMTGxmLw4MGmn3Q3+rKPuS4TEUHtCA40IjhI6PMnKESDokwK62gNbRh3/Aur+wQHCVCpqCyyy0cUEkKle/v3y2slbw9qa2nC+u47qqiRkvi20uw9OZmjoGuxIJAHZeBAZfFzhhERjVyZmijVcYNQGd2ZR3H2LHklpKBWk9evXz8yFL7/nrwZzmooePAgLSY6E31lo9cDO3fS46AgSpCVisFIybFyuh0zTCeyPCgDBgzAgQMH0NTU1CVR9tixY6a/90RdXR0MBgMMPSSmGQwGGI1GGN29z0wvZF42EJnt+TRZSVFIHP8r4LcbgPZ2DDn+PYbMn2Z1vy+/0/TsnRHF286coXwUR9PURI0LDx2i0uL4eGmiSxcumLoWNwbHoSRtgvxzNzTQSoyl7Rlb8fcnQ3frVtk37WMD52L6rnfoyerV8q670FA6b0kJ8MMP1MdmzBj5YmlyKC2l6zU+Xrlhv3+/WYF3wgT6/OTQy32BYawh6xs7Y8YMGAwGrFhhFtpqb2/H6tWrkZOTg/jOhM3y8vIuiaxRUVEIDQ3F1q1bu3hKmpubsX37dqSlpXlmqbHIwIFUzSPFk5GYCNxyCz02GoF//1t5z46AAIoF79/vWEGotjbg8GFg2TJg40Zyaw8eLEk1FgBN5J2rxWMDr4agVtDFVKejVajUczJMX6Sl0Y1Wpujh2bRpaPPvNCi2bZOvqaLR0Lnj4ih51pHeFIOBFgYtLbZdN7b03tGoeVHBKEaWgZKTk4OZM2diwYIFeP/997FixQo8+eSTKCsrw0MPPWR63euvv47f/OY3pucajQa33norioqK8NBDD2HJkiX4+uuv8eCDD6KyshJ33nmn/d6RK0hNpTyM6mppr//Vr8wx2dOnaTWllMREKh90hHhbRwfluSxfDqxbRxPdoEE0uUpN9GtpMXUt7tD442T/OfLHYTCQm5lXYoy9iI+na6eyUtZuBr9AnB3Y2Xlbrzd35JZLWBhdS7W11JdqyxZ5fYKkcPo0eXZtSSovLAS2b6fHoaGkCSMHP618jwvDdCJbc/j5559HfHw81q1bh8bGRmRlZeHNN99ErpUv7p133onExEQsXboUixYtgl6vR//+/fHKK69gxowZCofvJgQGkkdh61ZpAkh+fsCjjwLPPksrpy++oJJjJcmffn60OjpwgEJF9mieZzRSH5EDB0jHITCQjq1EonrjRsodAXC+/wy0BYQjGDJXi7W1LG3P2Be1mvpA/fADGeIyvtuns6/EkKPf0pM1a4DrrlMWPhG9KQ0NwK5dFAodP55yNmyt9GlupnyXoKBuFTdnC1XYd1htte+oymjA7B/eRUynZ/ho5hU4uEpa9Y7JMeWnwFvKMJ3IvuMEBATgkUcewSOPPNLra957770et19++eW4/PLL5Z7SM8jIIHdqc7M0hcXsbOCKK2iCa20FPvgAeOEFZRNTXBx5Og4fBiyqnWQjCDRJ5uXR6kuloglUafjNaOziHTo1REFyLECeqVGjKDGYYexFVhYZvWVlssIQDRHJwMiRZMCXl9NvOYmjFyN6U4qLu+am2PJ9P3yYcl0GDer2p32H1airtz7PjDi6DDG6fABAbVgKdmffAUOLvPlJG8zeE0Y5XA5hL+LjabKT4zK+805zdvuePeY+F3JRqynZ78gR2S5rE5WVwIYNVJlz6hQdLzNTuXECUPVAcacs+CWXoDZGQfdhvZ4MJbkdjxnGGv7+VPbb1CQ/D8xCWRarJSrL9oXYviEmhrwpK1ZQAryS3JSKClpk9OvXYysJ0XOiUvVeOZjUchajjnwBADCq1Ng1/SkEhPlLqjoMDhIQrNUjIlaLMTexeiyjHG4raS/ExNEzZ2iyk9JjJiQEuP9+4M036flHH1GMV8nKKSrKPDFddpl0T0xdHRk2R46QqzkpyX4aDZa5NddcA1QoOIZYHsnhHcYR9O9P36/ycmkVaSJjx1JzTJ2OQinl5fZRdQ4Pp+u/qKirN0Vq3xujkZLmGxutvp+gQOD263owzDo6gKf/DzBSaEd9/a8w566BACQacWVltLC5ZY5tCxzG52EPij1JSzPLaEtl0iSzbHR1NdDZBkARycnUF6eoyPprm5poYl26lJLggoLIwLKXcVJaSscHaCKX0/lURK+ncebmsgol4xgCA4GhQ6kaR44XRaOhEC1AXo61a+03Jo2GPIbR0eRN+f57ygWT4k05e5bmAFsqZ775hrw3AM1pt98ub//aWgphs3HC2AgbKPYkJIQqTeQIQKlUwEMPmRPZ1q5VXpETGkqTbF5e75NtWxt5S5Yto5COSkWTib3Ldy1KixV1LQZoVZqcLE1fhmGUMnAghUPkhkcvv9ycXPvTT7CadSqX8HAaW2UleVO2bzclnPdIaystCrRaeZ2GLTlzBliyhB6r1cCTT8pbHDQ20jyoRCmaYS6CDRR7k5VFk5YcXZK4OOCOO+ixIJA2itLJLiWFJpmL27x3dFBuyXffkRGkpGRYKi0tNGEDyrsWd3SQ92TECC5TZBxLSAh5UWprpXcnB8ionziRHtfXm8tx7YlGQzf7yEjKUVu5kirseuLoUfKeyglVWaLXA++8Y17c3HST/NL+igryuvSiKs4wcmADxd4kJtIE0Udn5x65+mrzZFBYCHz7rbLzBwTQDX3/fvKWGI3kHl65klZhOh15JJKSlHk1pGBRWoxp05SVPpeVsfeEcR6DBlGCqkz5e1x1lfmxPZJleyMigsZYXm72pliKzFVVUTVRTIwyOQAAWLzYbPxkZAA33yxvf4OBFhaDB7u2gSnjNbCBYm80GgqZNDbKy8DXaEgbRdRTWLyYSn6VkJREK6l9+0hg7bvvyOhJS6MfpROYFASha3Ls1VfLP4boPRk+nOPYjHMICwMuuYQMeDnXbU6OWXTxxAnKAXEUojclIoIMlJUr6boWE2Nra5V7LvLzKR9NPI/c0A5ARlJsLHcbZ+wGGyiOIC2NJhE5ybIAeQuu6dQK0euB999XVmbo50cu4R07KJ8lMZFCT8642eflmUuLc3LovHIpK6Mxs3Is40yysykxVaoiNECeAsuS4zVr7D+ui4mIoNyUsjIyUtavp+s8OVmZ56K9nUI7YnjrlluUXbc1NeQ9CZQm5sYw1mADxRFERNAFLjfMA1DGvKgoe/AgsGmTsjEkJNDKbuBA5QlzSli1yvz4GgXCbB0dFB7KzWXvCeNcIiKAIUPkJ8vOmEFVcABdr/aWrO8JPz/ypoSHU2hHrVbedPDLL82Vf/37AzfeKP8YTU30GXByLGNH2EBxFAMG0GpGbrJrUBBV9Yh88gkCWuuUjcHZN/iyMhKcA8jVO0FB12JR94RzTxhXkJ1NN/2aGun7BAeTkQJQ3tfGjQ4ZWo9ERtKYxTCTXE6coBAwQEbPk08qCwFXVFBoR0qrD4aRCBsojiI5WVnpIkC6KKJkfX09cvd8at+xOYpVq8whqSuvlJ+E29FBuTsjRrCbmHENMTF0w6+QqSp4sbKsI7oT94bChFRNRyvw7rvm0M7ttyszdAwGChNxcixjZ9hAcRRaLbmL5bZjF7n/fpOibP/8n5FYlme/sTkCi67F0GqBOQq6FldUkPeEc08YVzJkCF17cq7djAzKuQIoB+vwYYcMzZ6M2Pc59esBqELoV79SdqDqajLs0tLsNziGARsojiU9neLCSoyU6GjgrrtMT6fs/RfUHe12HJydsYy9KyktNhhIaj83l70njGvp149u2GVl8vZzVsmxHYivOILBR7+nJ1ot8MQTymUHqqvp8xLzcBjGTrCB4khiYshIUdrAb/ZsWs0BiGi4gKEHF9txcHbEHqXFYu4Je08YdyAnhwzlxkbp+0ycSIm2ALBzp3xNFSeh0bdi2q63oUJnGOrXv1ZeGtzcTLluSqp+GMYKbKA4mkGDKMbb0SF/X7UaePRRGNSUtDbk8FLSPXA3Dh40VwHk5MhPcDUYyMvEuSeMu5CQQBVwpaXS97EMbRqNZjVlNyN370JENHa+r+xsYN485QerrCT1ans0SmSYi2ADxdGkpChTqBRJS8PxYTcAADTGDpLBlyPH7Qzs4T1h3RPGnVCpyNj28+u7/83FzJljFltcu1bZwsSRHDqEwcfpeu3QBFDVjtLQjsFALT2ys83vmWHsCH+rHE1gIF3AcsoWL+LoiFtQF9rZX+P4ceDHH+00ODtgWVocEyO/tFj0ngwfzjFsxr0QWy3I8aLExXXtTr57t2PGpoTmZuC990xP88bcrbxvD0BzWnQ0J8cyDoMNFGeQnk5aCQoFnAx+Adg+9jHzhs8+s8ngsSuWJZVXXilfQ0H0ngwcaP+xMYwtqFTURBDo2vfGGpbJss5QlpXKokWm8unSuKE4laPA22lJdTVdt53Vhgxjb9hAcQbx8RTqUZosC+BCQi7ODphFT5qagI8/ttPgbMCya7GS0mLRezJsGHtPGPckNZUSQOV4UUaMIKMboPwssfWDKzlwgEJOAPR+gdgy4SlAZcP039JC1zwnxzIOxIFd4xgTKhWJGJ0+TTdlhTHfA+PuQ1b5birH3boVmDkTGDPGLkM8W6jCvsNqWcK3A05swbhOr9CZjOnYtTG6z9e3tF60QdQ9GTRI5mgZxkmo1eRFOXOm01OoQksr8OV3fV3DGmSnzsWoUlpEVL/4f9g96TFUx0n7nmu1wJhhRmSm2UnsrakJ+Oc/TU8PjL0XDaGJCIYNx6+spPCQaIgxjANgD4qzSE0FoqLkNxC0oC0wArj3XvOGDz6gJDU7sO+wGnX1KjS3SPxpBgYeWWna/1DWPKv7CAKpTGq1IEOttpa9J4z7k54OpKdDq6KEV0Gwfn0cTbkcbVoKfURXncGclb/D6E3vwlhTZ3XfunoV9h6249T8ySfmvmAjRuB09pV9v94aRiPlswwZwsmxjEPhb5ezCAmhKhUlDQQtufRSSigFyAPx5Ze2jw3mlkEqlYDgoL5/4jpKMWP/e4iqp5Lnin45aEnub3W/4CABEeECxgwz0tjj49l7wrg/Gg0wbBjGJFYgIswo6XuuiQzFpjmvoDaSEkhVEDD47I+4edX9GHn2O4QEdPS4n0pFXg25Lbx6Ze9es8JzUBDw29/aFtoBKP8tKkp5/x+GkQiHeJxJVhbFgltblet9qFTAI4/QRKPXAytWANOn2625XlAgcPt1hp7/WFgILF0KbNnSpdS5391X4/YpvezTEwYDkF8HXH65czstM4xSMjKQOTwCmZXnZVStDATufYd6VH31FdDcDP/2JozetQCjS9cCDzxgXmx08uV3GjTLyMftk8ZG4F//Mj+/7z77NPOrrgZGj1bePZlhJMIeFGeSmEhxW1u9KElJwC230GOjkbRRDDIMBLmcOAG89hrw2GMkaS8aJ4GBpEIpNjaUSmWlWU6cYTwBrZaMiZYWee4NPz/g2muB998HZs0yby8sBF54AXjzTZuS5/vko4/ImACAkSNpQWArbW3kUeLkWMYJsIHiTDQa0kRpbLS92+mvfmVeyZ0+Tas0eyII5O35f/8PeOaZrnoOYWHU+fSTT4Cbb5bXwdRgIBfx8OHsPWE8i6ws0kYpL5e/b1QU9bt5662uJfXbtwMPPwwsXkwdge3Fzp3Axo30OCSkM7Rjh07DYnKsLfopDCMRNlCcTVoa9euwIVkWAK3oHnnE/Px//7PPSkwwAr/8Ajz9NPDSS127ssbEkJv444+BW28lQ0UulZWce8J4Jv7+ZFg3NSn3WA4eTEbKY4+Z+/a0twNffAE8+iiSC3bYvniprwf+8x/z8/nzgdhY244JkOe0oYEWWUrVZxlGBpyD4mwiImgldvgwrapsIScHuOIK0jdobQU+/JA8HgpWSipjBwae3YTcE98AdRfpNiQlAddfT2XNWq3y8RqNZJhddhmLOzGeSf/+VBpfXq7ci6BWUyPQSZMoN2XVKro2yssxvfw1ZCWMRt7kBwAoLOH98EPzAmjsWEqstwd1dZwcyzgV9qC4goEDaQXS0GD7se6802zo7N4N7Nghb/+2NuCHHzDvm/mYvuttRFgaJ5mZFN75979pQrXFOAGocodzTxhPJjCQdFHq623P+woNBe6/H3j3XSq37yS1bB+u+vZRYOFCeX2AAAoZbd1qPv4jj9gntANQ7lz//kB4uH2OxzBWYAPFFaSlkau4uNj2ZmLiJCeyYIE0Sf3GRmDJEnL/LliAkCaL8NAll1B45513gClT7OPOFb0nw4ax94TxbAYOJEPbXsmt6emUhP7MM2gKiQPQ2Rj022/JwNi4UVrYp7aWknFFHniAwrL2oK2NPD/c0JNxImyguAKVChg3jjwU58/bfrzJk82KstXVwOef9/7amhrq5XPffZS3Uldn+lNh0lj8OPct4I03qIzQXisvgCbzuDiKwTOMJxMSQl6U2lr7dRZXqYApU/DD9R/gwCW3wqDp9FZWVwNvvw388Y+kZtsbgkDCjfX19HzCBJIfsBc6HeWOcXIs40TYQHEVwcHknQgONjXwUoxKBTz0EBAQQM/XrKHSYEvKymh1NX8+sGyZufmZWg1MnYrV1/4TP07/M3TxObaNpSeMRppo2XvCeAuDBpF3oqrKroc1aAOxb/id+OFX79MiRuT4ceB3v6PkV9EIsWTrVkpuByh5/eGH7bfAaG0lj+vQofKbgTKMDbCB4koSE2mlU1srP9Z8Mf36AXfcQY8FgfJGOjpIb+Ef/yADZs0as4aDnx819/vPf4A//AG1MQ7UNWDvCeNthIVRKFSns73qpgeawhNJJ+Wll6i0GaDzrF1L1/Lq1eYcmJoaSowVefhh2xPwRQwG8vIOG0bS9gzjRNgcdjVDh1JFQF4ercpsyfe45hpg82ZyBRcUAE89Rb8tCQykyp9rr7VffLovjEaaQC+9lJUnGe9i8GCqxquudty1NHo05autXElaKS0t5M344ANg3TrKM/nuO3PC/ZQp9GMvzp+nnLnJk9l7wjgd/sa5Go0GmDiRvAxFRUBGRq8vldJFNeqS32LO2d9BLRi7GCdtAWE4mTMPp3KuQXtAGLC1+7Edgk5Hkzd7TxhvIzKSvAq//AJER9s3Z8sSrZbK/KdPp/yxTZto+7lzwHPPmV8XEUHeFXtRVkYh6KlTeXHBuAQO8bgDYWG06lGrzdLUFojVvVK6qJaEDMLRQfNM+zYFxWDnyPvx1TWLsDv7DtQaw613GrYXRiPF6IcP5wmO8U6ys6ns1lbhRSnExFAeyl//Sgn2F/PII/YrAW5oIE/N5MmcGMu4DPaguAvp6SSqtHkzJZKKCa8AxgwzYu9hteQWIEcm3oumuDQYNAEoypgMo0YLfwD+6DtWrtXSuexGVRUpWLL3hPFWYmLISNmzx355H9bIyaG8sh9/pEq8hgbSKZo40T7Hb28nCYQJEzjvhHEpbKC4EyNHUkXPiROUj9LpMs5ME5CZJlcU6jKLxw5sJNgbovdkxgxlkvgM4ykMGQIcO0bVNXbyYEgJ5wJXw++6SxHaUI7aqAzgO2khpj7DuUYjhY6ys4Hx48mryzAugg0Ud0KrJflrnQ4oKQFSUlw9IuVUVXHuCeMbiOrIeXk2GyhaLYAWMZwrZY8Q1AdlAQpyyHoM5xYXU8XdlCldvLgM4wrYQHE3oqPJSFmzxq4rMqdiNJKRNWOGZ46fYeSSk0Oez8ZGm/Kt5IZzldJjOFfUdJk2jeYhhnExbKC4IwMHUgb9zp1AUJCdM1edgOg9yc529UgYxjkkJJAM/NGjdP0qRFk41w40N9OiYubMnhNwGcYFcIDRHRGl8AcMsI8UvjMRvSdDh7L3hPEdVCoSbvPzs1100dkYDCRJMHw4kJvr6tEwjAk2UNyVwEAq8QsLI2+KpyB6Tzj7n/E1kpOp229pqatHIo9z50h/afJk+zQGZRg7wQaKOxMfT6WDDQ2esSoTBDJQ2HvC+CIqFX33AXOvK3entJQWQdOmcZ8sxu1gA8Xdyckh12thobn3hrtSVUVaEJx7wvgqqalAVpZneFHq62nhM2UK5dAwjJvBBoq7o1aTYFJKChkp7oogkFz/sGEkuc0wvohaTV4UoxFoa3P1aHqnvZ2kDMaOZSkAxm1hA8UTCA2lVY5Wa/f27najqopKE9l7wvg66en0465eFFGMLSeHDBRH9RBiGBthA8VTSE2lyUSnc7+VmSCYK3fYe8L4OhoNeRL1evJUuBuFhRTSmTIF8Pd39WgYplfYQPEkcnOpOub8eVoFuQvV1Zx7wjCWZGRQWNbdKvB0OiqFnjqVujEzjBvDBoon4edHpYBxcRQ/dgfE3JNLLuEJj2FEtFpKbm9pgcNlYaXS3AzU1FBOW3q6q0fDMFZhA8XTiIwk12xHB1BX5+rRkPckMpJ1TxjmYrKyyIty5gxVzLiSjg6zGNvw4a4dC8NIhA0UTyQrCxg9mpLwXLk6Y+8Jw/SOvz9w2WXUpby2FsjPp149zkYQKCk2K4v6fLEYG+MhcC8eT0SlAsaMASoqgLNnqfeHMzPxOzooll1bS+Em9p4wTM/ExgKzZpERf/gwGSmlpUBiok1NBWVRWkrJ69OmAcHBzjknw9gBNlA8lYAACvVUVVEiXmKi48/Z1ERGkV5Phsn06STtHRXl+HMzjKeiUtH1mZBAlW6WhkpSkmMVXOvqgNZW4IorgH79HHcehnEAbKB4MnFx5LJdu9bmNu+9YjBQnkl1NXVWzsigap20NOoXxDCMNFQqMkgSE8lQOXSIDBWDgbbb27vR1kZG0OTJwKBB9j02wzgBNlA8nexsoLwc2LOHJiF7xZdbWii/pLWVPCSTJlEMOz6ehZ0YxhZUKmosmJRkNlTOnCHpgMRE+xgqLMbGeAFsoHg6ajUwfjwZE+fPU8hFKUYjlSHqdJTgl5JC+SXp6Ry7Zhh7o1KRAGNyMlBcbDZUBIGMl6Ag5ccuKKBjiArUDOOBsIHiDQQHkxt35UoyVOLi5O3f1kb7NTaSt2TcODJ0EhPJAGIYxnGo1RQyTUkBiorMhgpAxovcUGplJS0wpk1jZWfGo2EDxVtITiZPyvr1lItibfUlCFSFo9PRBJmUROqS6enUfp1hGOeiVtP1l5pKHpDDh6lKT7w+AwKsH6Oxka7rWbPoOAzjwbCB4k0MG0ZVNocOUT5KT94PvZ5WWPX1tLoaMYLKlJOTWR+BYdwBtRrIzCSvSkEBcPAghW81mr4NFb2ePDBjx9JcwDAeDhso3oSfHzBxIhkgxcU0wYnU19N2MRFv/HiqyGGBNYZxTzQaSkxPTycD5eBBMlj8/MhQsWz0J4qxDRhAUvYcmmW8ADZQvI3wcMpHWbWKNFL0enL5hoZSwuugQRTr5sQ5hvEMNBrKCRMNlbw8MlT8/Wmx4e9PvbmioylMa0tyLcO4EWygeCOZmaQ0u3s3TVq5ubQSi4lx9cgYhlGKnx95SDIyKDfFMvSjVpOsvtwEeYZxY9hA8VZGjyY3cHy8tOQ6hmE8Az8/8oRmZpoNlfR0Ml4YxotgA8Vb0Wq75qAwDONdaLXA4MFkmKjVLMbGeB1soDAMw3gyXH3HeCmc6s0wDMMwjNvBBgrDMAzDMG6H7BBPe3s7PvnkE/z4449oaGhA//79MX/+fIwdO1bS/uvXr8fSpUtx5swZ+Pn5IT09HfPnz8fo0aNlD55hGIZhGO9EtoHyxhtvYNOmTbjpppuQkpKCNWvW4JlnnsG7776L4cOH97nvp59+is8++wwzZszAFVdcgY6ODpw7dw46nU7xG2AYhmEYxvuQZaAcO3YM69evx8MPP4zbbrsNADBnzhzcfffdeP/99/H+++/3uu/Ro0fx2Wef4dFHH8XNN99s26gZhmEYhvFqZOWgbN68GRqNBvPmzTNtCwgIwNy5c3H06FGUl5f3uu8333yD6Oho3HjjjRAEAc3NzcpHzTAMwzCMVyPLQMnPz0dKSgpCQkK6bB8yZAgA4PTp073uu2/fPmRnZ2Pp0qWYN28errjiClx33XVYtmyZgmEzDMMwDOPNyArxVFVVIaYHuXRxW2+5JA0NDairq8ORI0ewf/9+3H333YiPj8eaNWvw7rvvws/PD9dee22v59XpdKiqqjI9LygokDNshmEYhmE8DFkGSltbG7Q9NJnz7+yq2dbW1uN+Yjinrq4OL730EmbNmgUAmDFjBu6++27897//7dNAWbFiBRYtWiRnqAzDMAzDeDCyDJSAgADo9fpu29vb201/720/APDz88OMGTNM29VqNS699FJ8+umnKC8vR3x8fI/7z5s3D5MnTzY9LygowGuvvSZn6AzDMAzDeBCyDJSYmBhUVlZ22y6GX2JjY3vcLzw8HP7+/ggNDYXmIlnmqKgoABQG6s1AiY2N7fXYDMMwDMN4H7KSZAcMGIDi4mI0NTV12X7s2DHT33s8iVqNgQMHoq6urpsHRsxbiYyMlDMUhmEYhmG8GFkGyowZM2AwGLBixQrTtvb2dqxevRo5OTkmD0h5eXm3RNaZM2fCYDBg7dq1pm1tbW346aefkJGRwR4ShmEYhmFMyArx5OTkYObMmViwYAFqa2uRnJyMtWvXoqysDM8++6zpda+//jry8vKwZcsW07Zrr70Wq1atwttvv42ioiLEx8dj3bp1KC8vxxtvvCFr0GIyLlfzMAzDMIznkZ6ejsDAwD5fI1vq/vnnnzcZF42NjcjKysKbb76J3NzcPvcLCAjAO++8g/fffx+rV69Ga2srBgwYgDfffBPjxo2TNYaysjIA4ERZhmEYhvFAPvroIwwePLjP16gEQRCcNB67UVtbi927dyMxMdFU4mwrYmXQCy+8gPT0dLsc05vhz0s6/FnJgz8vefDnJQ/+vKTjyM/KIR4UdyAyMhKzZ892yLHT09OtWnWMGf68pMOflTz485IHf17y4M9LOq76rGQlyTIMwzAMwzgDNlAYhmEYhnE72EDpJCYmBnfffXePvYaY7vDnJR3+rOTBn5c8+POSB39e0nH1Z+WRSbIMwzAMw3g37EFhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxOzxSqM3R5OXl4euvv0Z+fj7q6uoQGhqKAQMG4K677sKwYcNcPTy3Y9++ffjpp59w6NAhVFZWIjo6GqNGjcJ9993HTSB7QKfTYenSpTh+/DhOnDiBlpYWvPvuuxg5cqSrh+ZS2tvb8cknn+DHH39EQ0MD+vfvj/nz52Ps2LGuHppb0tzcjK+//hrHjh3D8ePH0dDQgOeeew5XXnmlq4fmdhw/fhxr167FgQMHUFZWhvDwcFxyySWYP38+UlNTXT08t+LcuXNYuHAhTp48ierqagQGBiI9PR233XYbJk+e7NSxsAelB4qLi6FWq3HttdfiySefxC233ILq6mr89re/xa5du1w9PLfjgw8+wIEDBzB16lQ88cQTmDVrFjZu3Ij58+ejqqrK1cNzO4qKivDll1+isrISWVlZrh6O2/DGG29gyZIluPzyy/H4449DrVbjmWeewaFDh1w9NLekrq4OixYtQkFBAQYMGODq4bg1X375JTZv3ozRo0fj8ccfxzXXXIODBw9i/vz5OHv2rKuH51aUlZWhubkZV1xxBR5//HHceeedAIDnnnsOK1ascO5gBEYSLS0twrXXXis8/fTTrh6K23HgwAHBYDB02zZ16lRhwYIFLhqV+9LU1CTU1dUJgiAIGzduFKZOnSrs37/fxaNyLUePHhWmTp0qfPnll6Ztra2twq233io89NBDLhyZ+9LW1ibodDpBEATh+PHjwtSpU4XVq1e7eFTuyaFDh4T29vYu2woLC4VZs2YJr7zyiotG5Tl0dHQI99xzj3DHHXc49bzsQZFIYGAgIiIi0NjY6OqhuB25ublQq9XdtoWHh6OgoMBFo3JfgoODER4e7uphuBWbN2+GRqPBvHnzTNsCAgIwd+5cHD16FOXl5S4cnXvi7+/PYmMSGTZsGLRabZdtqampyMjI4DlKAhqNBv369XP6/Y9zUPqgqakJer0edXV1WLduHc6dO4ff/OY3rh6WR9Dc3IyWlhZERES4eiiMB5Cfn4+UlBSEhIR02T5kyBAAwOnTpxEfH++KoTFeiiAIqKmpQUZGhquH4pa0tLSgra0NTU1N2L59O3bt2oWZM2c6dQxsoPTBSy+9hN27dwMAtFot5s2bZ4rHMX3zzTffQK/X49JLL3X1UBgPoKqqqkdvgLhNp9M5e0iMl/PTTz+hsrIS9957r6uH4pb8+9//NuWcqNVqTJs2DU899ZRTx+D1BorRaIRer5f0Wn9/f6hUKtPzBx98ELfccgsqKiqwdu1adHR0wGAwOGqoboEtn5dIXl4eFi1ahJkzZ2L06NH2HqJbYY/PiwHa2tq6ueAB+szEvzOMvSgoKMDbb7+NSy65BFdccYWrh+OW3HTTTZgxYwZ0Oh02btwIg8Egea6zF15voBw8eBBPPPGEpNd+/vnnSE9PNz0fOHCg6fHs2bMxf/58vPHGG3j11VftPk53wZbPC6AL/4UXXkBWVhaeffZZRwzRrbD182KIgICAHie/9vZ2098Zxh5UVVXh2WefRUhICF599VVoNBpXD8ktSU9PN81XV1xxBX73u9/hj3/8Iz788EOnLbS83kBJS0vDc889J+m1fSWcabVaTJ48GV988QXa2tq8dsK05fMqLy/H008/jZCQELz55psIDg52xBDdCnt9v3ydmJgYVFZWdtsulqmzng5jDxobG/HMM8+gsbER//rXv/h7JYMZM2bg73//O4qKipCWluaUc3q9gRITE2M34aK2tjYIgoDm5mavNVCUfl51dXV4+umnodfr8fbbb/vMhW/P75cvM2DAABw4cABNTU1dEmWPHTtm+jvD2EJbWxv++Mc/oqioCP/4xz84OVYmYpjVmZU8XGbcAzU1Nd22NTQ0YPPmzejXrx+ioqJcMCr3paWlBc888wx0Oh3+9re/sTIjI5sZM2bAYDB0EYJqb2/H6tWrkZOTwxU8jE0YDAa8/PLLOHr0KP785z9j6NChrh6S29LT/a+jowPr1q1DQECAUw07r/egKOEPf/gD4uLikJOTg6ioKJSXl2P16tWoqqrCyy+/7OrhuR2vvvoqjh8/jquuugoFBQVddAWCgoIwdepUF47OPfnss88AAOfPnwcArFu3zqSYetddd7lqWC4jJycHM2fOxIIFC1BbW4vk5GSsXbsWZWVlPpHLpJRly5ahsbHRFArbvn07KioqAAA33HADQkNDXTk8t+Hf//43tm/fjkmTJqGhoQE//vhjl7/Pnj3bRSNzP/7+97+jqakJI0aMQFxcHKqqqvDTTz+hsLAQjz76qFND9ypBEASnnc1DWL58OTZs2ICCggI0NjYiLCwMOTk5uO222zBixAhXD8/tuPnmm1FWVtbj3xISErBkyRInj8j9mTZtWq9/27JlixNH4j60tbWZevE0NjYiKysL8+fPx7hx41w9NLelr2tv8eLFSExMdPKI3JPHH38ceXl5vf7dV6+5nli/fj1WrVqFs2fPoq6uDsHBwRg8eDCuv/56TJkyxaljYQOFYRiGYRi3g3NQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt4MNFIZhGIZh3A42UBiGYRiGcTvYQGEYhmEYxu1gA4VhGIZhGLeDDRSGYRiGYdwONlAYxs6sWbMG06ZNw5o1a1w9FEkcOHAA06ZNw6effuqwc0ybNg2PP/64w47vaB5//PE+1X9tQfz8xZ+HHnrIIeeRwqeffopp06bhwIEDpm0FBQVdxnfzzTe7bHyMb8G9eBif569//StWr16N8PBwLF++HP7+/q4ekt0RbyrcdsB9yc3NRW5uLvr16+fqoXQhIiICd999NwBg6dKlrh0M41OwgcL4NM3Nzdi4cSNUKhXq6+uxdetWzJo1y6ZjTp06FTk5OYiJibHTKBlfIDc3F/fee6+rh9GNyMhI07jWrl3r4tEwvgSHeBifZsOGDWhpacFNN90EtVqNVatW2XzM0NBQpKencydZhmEYG2APCuPTrFq1ChqNBrfffjvOnDmD/fv3o6ysDAkJCV1e9+mnn2LRokW9Hseya/OaNWvwxhtv4LnnnsOVV15pes20adOQm5uLF198Ee+//z727NmD9vZ2jBgxAk8++SSSkpJw/vx5LFiwAAcPHkRHRwfGjRuHp556CtHR0abjHDhwAE888QTuvvvubivu0tJS3HLLLbjiiivw/PPPm55bjkGkp/1PnDiBBQsW4OjRo1Cr1Rg1ahQee+yxbl1xt2zZgo0bN+LEiRPQ6XTw8/ND//79ceONN2LGjBl9f+hWaGxsxPfff4+dO3eiuLgYdXV1iIiIwJgxY3D33XcjOTm5y+vF/827774LnU6Hr776CoWFhQgNDcXMmTPx0EMPISAgoMs+HR0d+Prrr/HDDz9Ap9MhLi4Oc+fOxaWXXopbb73V9PlJYevWrVi2bBlOnTqF9vZ2JCcn44orrsDNN98MjUZj02cBAH/5y1+wdu1afP3119iyZQtWrVqFCxcuYNasWXj++eeh0+mwYsUK7N69GxcuXEBTUxNiYmIwYcIE3HPPPYiKiup2zPLycnzwwQfYvXs3Ojo6MGjQINx33302j5Vh7AkbKIzPcv78eRw9ehQTJkxAdHQ05syZg3379mH16tXdbtwjR47s8RgFBQXYuHFjtxtgbzQ0NODRRx9FTEwM5syZg+LiYvzyyy/43e9+h7/85S947LHHMHjwYFx11VU4deoUNm/ejPr6erz77ruK3mNoaCjuvvtuU+7AjTfe2Ot7OnHiBL766iuMHDkS8+bNQ35+PrZu3YqzZ89i0aJFXd7jggUL4Ofnh2HDhiEmJga1tbXYvn07/vSnP+GJJ57ADTfcoGi8AH2mn376KUaOHImpU6ciKCgIBQUF+Pnnn7Fjxw58/PHH3QxIAFi+fDl2796NyZMnY9SoUdi1axeWLVuGuro6/OlPf+ry2jfffBPr1q1DUlISrrvuOuj1eixZsgRHjhyRNdYPP/wQX3zxBeLi4jBt2jSEhobi0KFDeP/993H8+HG88sorij+Hi3nnnXdw7NgxTJw4EZMmTTIZHgcPHsTixYsxatQoDBkyBH5+fsjPz8d3332H3bt34+OPP+7izdPpdHjkkUdQWVmJcePGYdCgQSgoKMDTTz/d6/ecYVwBGyiMz/LDDz8AAObMmQOAvAtvv/021qxZg7vvvhtqtTkCOnLkyG6Td01NDR588EH4+/vjmWeekXTOM2fO4Oabb8Zjjz1m2vaPf/wD3333HR577DHcc889uOmmmwAAgiDg2Wefxc6dO3Hy5EkMHjxY9nsMCwvDvffea8od6CvHYefOnXjppZe65OC8/vrrWLduHbZt29Zl+9/+9jckJSV12b+5uRmPPPIIPvnkE8ydOxeBgYGyxwsA6enp+PbbbxEeHt5l+/79+/G73/0O//3vf3v8vPft24ePPvoIaWlpAID7778f9957LzZs2IBHHnkEsbGxptetW7cOAwcOxL///W/TOH/zm99g/vz5kse5Z88efPHFFxg3bhxeffVVBAUFAaD/2z/+8Q98//332LRpk80eJZEzZ87gk08+QXx8fJfto0aNwrfffovg4OAu29euXYu//OUvWL58Oe68807T9gULFqCyshLz58/vsn3FihX4+9//bpexMow94BwUxifp6OjAjz/+iJCQEEyZMgUAEBwcjKlTp6K8vBx79+7tc/+2tjY8//zzKCsrwx//+EcMGzZM0nmDgoK63QTFG39EREQXD4dKpTL97cyZM5Lfm1JGjBjRLUH4qquuAgAcP368y/aLjROAPr8rr7wSjY2NOHHihOJxhIaGdjNOALoRZ2Rk9Pq/ufHGG03GCQAEBARg1qxZMBqNOHnypGn7jz/+CAC46667uhhRsbGxXT5/ayxfvhwA8Ic//MFknAD0f3vwwQehUqmwfv16ycezxm233dbNOAGAqKiobsYJQIZ3SEgI9u3bZ9qm1+uxYcMGREVFdQn9AcDVV1+NlJQUu42XYWyFPSiMT7Jt2zbU1tZi7ty5XUIXc+bMwY8//ohVq1Zh3LhxPe4rCAL+8pe/4OjRo7jnnntw2WWXST5vSkpKN8+CWO2TlZUFlUrV4990Op3kcyilJw9NXFwcAMoLsaSmpgZffPEFdu7cifLycrS1tXX5u63jPXDgAL755hscO3YMdXV1MBgMpr9ptdoe9xk0aFC3bWLJruX4T58+DQAYPnx4t9cPHTpU8hiPHTuGoKCgXhOrAwICUFhYKPl41hgyZEivf9u8eTNWrFiBU6dOobGxscvnZfm/KCwsRHt7O0aNGtUtLKlWqzFs2DAUFxfbbcwMYwtsoDA+iXhTEcM7IqNHj0ZcXBy2b9+O+vr6HlfyH3/8MTZu3IjLLrsM99xzj6zzhoSEdNsmJlL29beOjg5Z51FCT6tw8fxGo9G0rb6+Hg888ADKy8sxbNgwjBkzBqGhoVCr1Th9+jS2bdsGvV6veBwbN27Eyy+/jKCgIIwbNw4JCQkmo27t2rUoKyvrcb++Pj/L8Tc3N0OtViMiIqLb6y2Tka1RX18Pg8HQZ/J0S0uL5ONZo6dkVwD4+uuv8Z///AeRkZEYO3Ys4uLiTMbH0qVLu/wvmpqa+jxWb9sZxhWwgcL4HOXl5dizZw8A9Klu+uOPP3Zz+a9Zswaff/45hg0bhj/+8Y8OHWdviF4Wy1WyiHgDciSrVq1CeXk57rvvPtx1111d/va///0P27Zts+n4CxcuhL+/Pz766COkpqZ2+duGDRtsOjZAhpjRaERdXR0iIyO7/K26ulrycUJCQqBSqbBy5UqbxySFi71rABmu//3vfxETE4NPP/20i4EhCAK++uqrLq8Xjbiampoez9HbdoZxBWygMD7H2rVrYTQaMXz48G43QIBu/GvXrsWqVau6GCh5eXn4+9//jqSkJLz++usuU5wNCwsD0HMYJT8/v8d91Gq1TV4NS0pKSgDAlLtjyaFDh2w+/oULF5CRkdHtf6PT6XDhwgWbjz9gwADk5+fj8OHDmDp1ape/yaniGTJkCHbt2oWioqIev0fOoK6uDo2NjRg1alQ378eJEye6hd5SU1Ph7++PkydPoq2trUuYx2g0yq5iYhhHwgYK41MIgoDVq1dDpVLh+eef7zHZEwCKiopw9OhRnDhxAtn/v737CWX/j+MA/vwxVtJYYXNB+RMXGw350/L/vPw5OG1rag5ODg5yVSjKDlwchqiVJH8TEmVMTEhJqKWlpjls8y8t38Mvi5/xy799P+X5OK5tn/fns8Oen8/r/Xq/MzNxfn6O9vZ2iMVidHZ2vrrzDqWkpCRERUW9KkNdXV1heHg46GckEgnOzs5e/Sl9xlOL78HBAVJTUwOvLy4uYnNz80vfDQAymQxOpxNXV1eBksv9/T16e3u/pdRVVVWF+fl5mM1m5OfnB66H2+3+0FLudXV1sNls6OrqQkdHx6uSkdvthtfrRUpKypfH/BapVAqxWIzj42Pc3d0FSmFerzdoa3pkZCTKysqwsLAAi8XyootnZmYG5+fnPzZWoo9iQKFfxW634+LiAkql8s1wAvzbvXJ4eIjZ2VlkZmbCZDLB4/FApVIFLTNER0eHbBO1iIgI1NbWYmRkBI2NjSguLsbt7S3W19ehVCoDTziey8nJwdHREVpbW5GdnQ2RSASFQgGlUvnh41dXV2NsbAx9fX3Y3d2FTCbDyckJ7HY71Go11tbWvnR+NTU16Ovrg8FgQGlpKfx+f6Akl5aWFpjk+lkqlQqVlZVYWlqCTqdDSUkJHh4esLKygqysLFit1hct5m8pKCiAVqvF0NAQGhoaUFBQAJlMBo/HA6fTif39fRgMhh8NKGFhYdBoNLBYLNDr9SguLsb19TVsNhtkMlmgtfo5o9EIu92OwcFBHBwcID09HQ6HA5ubm8jLywtca6K/jQGFfpWnybHPV3gNpry8HCaTCcvLy2hubg48Kt/e3g7a5iqXy0O6y6vBYIBIJMLs7CympqYgl8uh1WpRVFSE1dXVV+/XarXw+XywWq3Y39+H3++HTqf7VEBJSEiAyWTCwMAAtre34ff7kZGRgZ6eHrhcrm8JKCKRCBMTE5ienkZ0dDQKCwthNBpfLbj2WW1tbUhOTsbc3BwmJiYQHx+P+vp65Obmwmq1Bp0wHIzBYIBCocD4+Dh2dnbg8/kgkUiQmJgInU6Hqqqqbxnve4xGIyQSCebn5zE5OQmpVIqKigro9frAJn/PxcXFob+/HwMDA9ja2sLe3l7g97Pb7QwoJBj/PD4+Pv7tQRARCcHMzAy6u7vR0tICjUYTkmO+t3WB0HBXbAolLtRGRL+O2+3Gf+/NLi8vMTw8jPDwcBQWFoZ8TGazGWq1Gk1NTSE/9nscDgfUajXUavWbLd5EP4ElHiL6dUZHR7GxsQGFQoHY2Fi4XC5YrVbc3NxAr9cHXbH1p8jl8helmKfF5YQiJibmxfi4SzeFCks8RPTr2Gw2WCwWnJ6ewuv1IjIyEqmpqdBoNCGZN0JE/48BhYiIiASHc1CIiIhIcBhQiIiISHAYUIiIiEhwGFCIiIhIcBhQiIiISHAYUIiIiEhwGFCIiIhIcBhQiIiISHAYUIiIiEhw/gDgOIRxsPKpXAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7JUlEQVR4nOydd3hb5dn/v5Isb1t2bMd2vGLH2XsvsggJO6yGWUZLoEBbxgslP/LSQhmllJb1vi9pwwqFUgIJ0LASQsgiezl7OIl3vORty5Zl6fz+uH0sObGl52hLvj/XpSuScsYjWec593OP762SJEkCwzAMwzCMH6H29QAYhmEYhmEuhA0UhmEYhmH8DjZQGIZhGIbxO9hAYRiGYRjG72ADhWEYhmEYv4MNFIZhGIZh/A42UBiGYRiG8TvYQGEYhmEYxu9gA4VhGIZhGL+DDRSG8XM2b94MlUqFZ5991uVjqVQqzJ071+Xj2MOd4w0G7rnnHqhUKhQWFgrvM3DgQAwcONBjY2KYQIANFIa5AJVKBZVKBbVajbNnz/a63bx587q2XblypfcG6GMKCwuhUqlwzz33+HoowshGk+0jNDQU6enpWLx4MXbu3NnjfgaDAXFxcVCpVLj99tu9PGrv8sILL3R9Nz/88IOvh8MwCPH1ABjGHwkJCUFHRwfeffdd/OlPf7ro//Pz87F58+au7RgrU6ZMwYkTJ5CYmOjroVxEVlZWl2HV0tKCXbt2YfXq1fj888+xevVq3HDDDd22X7VqFRoaGqBSqfD555+jpqYGCQkJHh/nxo0bPX4OWw4cOIDnnnsO0dHRaG5u9uq5GaY32IPCMD2QnJyMSZMm4f333+/RAHnnnXcAANdee623h+b3REZGYtiwYX5poAwcOBDPPvssnn32WbzyyivYtm0b/vCHP8BiseDxxx+/aPsVK1ZArVbjd7/7HYxGIz744AOvjHPQoEEYNGiQV87V1taGO++8E5MnT77IQGMYX8IGCsP0wn333YeKigp8/fXX3d43mUxYuXIlZsyYgREjRvS6f35+Pu666y6kpaUhNDQUAwYMwF133YX8/Pwet6+srMS9996L5ORkREREYNy4cXZviPbyFJ599lmoVCps3rzZ4ec8f/48nnvuOcycORMpKSldY7399ttx/Pjxi46bnZ0NAPjggw+6hUzkMJe9HBQl34ntZ1i9ejWmTJmCyMhI9OvXD7feeivKysocfjYRfv3rXwMACgoKUF1d3fX+0aNHsWvXLsyfPx9Lly5FaGhol2HqDBaLBa+++iqGDRuG8PBwpKen47HHHkNjY+NF2/b0t125cmXX97xp0ybMnTsXMTExiI2NxdVXX40TJ044Na6nnnoKBQUFWLlyJdRqviUw/gOHeBimF2677Tb813/9F9555x1cf/31Xe+vXbsWVVVVePnll3HmzJke9927dy8uu+wyNDU1YdGiRRgxYgROnjyJjz76CP/5z3/www8/YPLkyV3b6/V6zJgxA+fOncMll1yCSy65BOXl5XjggQewcOFCj37OrVu34s9//jPmzZuHm266CdHR0cjPz8fq1auxdu1abN++HWPHjgUAzJ07F/X19XjjjTcwduzYbt/LuHHj7J5H6Xci89Zbb2Ht2rVYtGgR5syZg927d2PVqlU4dOgQ8vLyEBYW5tLnlySp67lKpep6vmLFCgCU5NqvXz9ce+21WLNmDbZt24ZZs2YpPs9jjz2GrVu34uabb8Z1112H9evX4/XXX8e2bdvw008/ITw8XOg4X3/9Nf7zn//gyiuvxAMPPIDjx4/j22+/xd69e3H8+HFFnqsff/wRb7zxBl577TUMHjxY8WdiGI8iMQzTDQBSWlqaJEmSdO+990oajUYqKSnp+v/LL79cio2NlVpaWqT//u//lgBI77//ftf/WywWadiwYRIA6aOPPup27E8++UQCIA0dOlQym81d7993330SAOnRRx/ttv3evXulkJAQCYD0zDPPdPu/rKwsKSsrq8fP8Mwzz0gApE2bNl302ebMmdPtvcrKSqmxsfGiY+Tl5UlRUVHSFVdc0e39goICCYB0991393juTZs2XTReZ74T+TPExMRIhw8f7rbPbbfdJgGQVq1a1eMYehvThZ9dkiTp97//vQRAysnJ6XqvtbVVio+Pl3Q6nWQwGCRJkqSvvvpKAiD9/Oc/FzqnzN133y0BkBISEqTCwsKu981ms3TjjTdKAKTnnnuu2z49/W3ff/99CYCk0WikH374odv//b//9/8kANLLL78sPK76+nopIyNDmj17tmSxWLqNdcOGDYo+I8N4AvbnMYwd7rvvPpjNZrz33nsAgKKiImzYsAF33HEHIiMje9xnx44dOHnyJKZPn4477rij2//dcsstuOSSS3Dq1Cn89NNPAChk9K9//QsxMTEXhUUmTZp00THcTf/+/RETE3PR+2PHjsWll16KTZs2wWQyuXQOpd+JLQ8//DBGjx7d7b377rsPALBnzx5F4ygsLOzKQfnd736H2bNn4/nnn4darcZf//rXru0+++wz1NXV4ZZbbkFERAQA4IorrkBKSgpWr16Nuro6RecFgEceeQRZWVldr9VqNV555RWo1equ35cIt956K+bPn9/tvfvvvx+Asu/jt7/9LWpra/H+++938xwxjL/ABgrD2GHq1KkYPXo03nvvPVgsFrzzzjuwWCxdN8ieOHDgAADg0ksv7fH/5fcPHjwIADh58iQMBgPGjRsHnU530fae1i0BgG+++QbXXnstUlNTodVqu/JKvvrqKxiNRuj1epeOr/Q7sWXSpEkXvZeRkQEAig2FoqIi/PGPf8Qf//hHvP766zhz5gxuvPFGbNu2rVuCqBze+cUvftH1XkhICO644w60tbXhww8/VHReAJgzZ85F7+Xk5CAjIwOFhYWor68XOo47vo81a9bgww8/xF/+8hfk5OQI7cMw3oZzUBjGAffddx8efvhhfPfdd3j//fcxceJEjB8/vtftGxoaAACpqak9/r/8vnxDkrdPTk7ucfuUlBRnhy7EG2+8gUcffRTx8fFYsGABMjMzERkZCZVKhS+//BKHDh2C0Wh06RxKvxNb4uLiLnovJISmLrPZrGgcc+bMcZg4fOLECfz0008YNmwYpk2b1u3/7rnnHvztb3/D22+/jYcffljRue39fYuKitDQ0NDjZ70QV7+P2tpaPPDAA5g/fz4efPBBh9szjK9gA4VhHHDnnXdi6dKleOCBB1BWVoY//OEPdreXvSAVFRU9/n95eXm37eR/Kysre9y+t+Oo1Wq0t7f3+H+iq/GOjg48++yzSElJwYEDBy4yIHoTMFOK0u/El8jek5MnT/Ya+jh69Ch27NiBGTNmCB+3srISQ4cOveh9+Tvx1mcvLi6GXq/Hxo0be63aWbBgAQDgtddew6OPPuqVcTHMhbCBwjAOiIuLw89+9jN8+OGHiIqKwm233WZ3e9m70ttKfdOmTQCACRMmAACGDRuGyMhI5OXloaGh4aIbVW/HiY+Px+HDh2EymaDVarv93759+xx9LABUPVRfX48bb7zxIuOkubm5KzRji0ajAaDMe6H0O/EVRqMRH374IdRqdZdE/YWUlpZi/fr1ePvttxUZKFu2bMHs2bO7vXfu3DmUlJRg4MCBQt4Td5CQkIB77723x//bunUr8vPzceWVV2LAgAEYNWqUV8bEMD3BBgrDCPDCCy/gxhtvRFJSUo8JpbbMnDkTQ4cOxU8//YTVq1fjZz/7Wdf/rV69Gtu2bcOQIUNwySWXAAC0Wi3uuOMOvP3223j22Wfx2muvdW2/b98+/Otf/+rxPFOmTMGBAwfw/vvvdyVJAqSXsX37dqHP1b9/f0RGRmL//v1obm5GdHQ0AErcfeSRR3rMPYmPj4dKpUJxcbHQOQDl34mvWLNmDWpqanDllVfi3Xff7XGbxsZGDBgwAJ9++ilef/11Yc/HG2+8gbvuuqsrUdZiseB3v/sdLBZLt1wXT5ORkdGrnss999yD/Px8/Nd//Rcuu+wyr42JYXqCDRSGESAzMxOZmZlC26pUKnzwwQdYsGABbrnlFlx33XUYNmwYTp06hS+//BIxMTH45z//2c29/qc//QkbN27E66+/jn379nXpoKxatQpXXXUV1q5de9F5fvvb3+L999/Hgw8+iI0bNyIjIwN5eXnYuXMnrrnmmosE5npCrVbj4Ycfxp///GeMHj0a1113Hdrb27Fp0ybU1tZi3rx5Xd4NmejoaEydOhXbtm3DHXfcgSFDhkCj0WDRokUYM2aM274TXyCHd5YsWdLrNrGxsVi8eDFWrlyJjz76qEvozREzZ87EuHHjcMstt0Cn02H9+vU4dOgQJk6ciCeffNIt42eYYIKreBjGA0ydOhV79+7F7bffjp07d+KVV17Bjh07cNttt2Hv3r2YOnVqt+0TExOxfft2/OIXv8DJkyfx+uuvIy8vD8uXL8djjz3W4zlGjBiBH374ATNnzsRXX32FFStWICwsDDt37sTEiROFx/r888/jb3/7GyIiIvCPf/wDn3/+OSZNmoQ9e/b0apR9+OGHuPrqq7Fu3Tr88Y9/xO9///sew0GufCfe5vTp09iyZQuSk5MdtjCQq7jefvtt4eO/9tprePrpp7F582a88cYbqK6uxiOPPIIff/xRWKSNYfoSKkmykVFkGIZhGIbxA9iDwjAMwzCM38EGCsMwDMMwfgcbKAzDMAzD+B1soDAMwzAM43ewgcIwDMMwjN/BBgrDMAzDMH5HQBoobW1tOHXqFNra2nw9FIZhGIZhPEBAGihFRUW47777UFRU5OuhMAzDMAzjAQLSQGEYhmEYJrhhA4VhGIZhGL+DDRSGYRiGYfwONlAYhmEYhvE72EBhGIZhGMbvYAOFYRiGYRi/I8TXA2AYhmECB5PJBLPZ7OthMH6IVquFRqNx2/HYQGEYhmEc0tjYCL1eD6PR6OuhMH6KSqWCTqdDSkoKVCqVy8djA4VhGIaxS2NjI8rKyhAdHY3ExERotVq33ICY4EGSJLS0tKC6uhoRERGIi4tz+ZhsoDAMwzB20ev1iI6ORnp6OhsmTK9ERETAaDSiqqoKOp3O5d8KJ8kyDMMwvWIymWA0Gt1yw2GCn9jYWJjNZrfkKbGBwjAMw/SKfKPRarU+HgkTCISEUGCmo6PD5WOxgcIwDMM4hL0njAju/J2wgcIwDMMwjN/BBgrDMAzDMH4HGygMwyijuRmQJF+PgmGYIIcNFIZhxJAk4ORJ4PPPgRMnfD0ahgkajEYjli5digEDBiAiIgJTp07Fhg0bhPY9duwYFi9ejJycHERGRiIxMRGzZ8/GV1995dJ58vPzceuttyI9PR2RkZEYNmwYnnvuORgMBpc+qxLYQGEYxjEdHcCePcD69UBlJbB3L9DQ4OtRMUxQcM899+DVV1/FHXfcgTfeeAMajQZXXXUVfvrpJ4f7FhUVoampCXfffTfeeOMN/P73vwcALFq0CCtWrHDqPCUlJZgyZQp27dqF3/zmN3j99dcxffp0PPPMM7jtttvc98EdIQUgJ0+elGbNmiWdPHnS10NhmOCnpUWS1q+XpFdekaQPPpCkL7+UpL/8RZJ++EGSLBZfj47xMK2trdLx48el1tZWXw8lKNm9e7cEQHrllVe63mttbZUGDRokTZ8+veedTCZJamuTJLO5x//u6OiQxo4dKw0dOtSp87z44osSAOno0aPd3r/rrrskAFJtbW2vn8edvxf2oDAM0zt6PfDdd0BeHpCZCcTHA2o1kJ4OHD0KnDvn6xEyjFvIycnBz3/+84venzdvHubMmeOx865evRoajQb3339/13vh4eG49957sXPnTpSUlHTfQZKAlhagro4eLS2AydQtL0yj0SAjIwP19fVOnaexsREAkJyc3O3UqampUKvVCA0NdcdHdwgbKAzD9ExhIfDNN0BRETB4MBARYf2/6GggJITCPl6MSTOMJ2hubkZhYSHGjh170f8dPnwYY8aM6XE/k8kEvV4v9LBYLD0e4+DBgxgyZAhiY2O7vT9lyhQAQF5e3oUnBYxGQKsFLBagqQmoq0NLeTn0paU4m5+P1157Dd999x3mz5/v1Hnmzp0LALj33nuRl5eHkpISrFq1CsuXL8fDDz+MqKioHj+Lu+FePAzDdMdiAY4cAXbsAMxmIDcX6El8KS0NOH0aOHgQmDnT++NkGDdx9OhRSJJ0kYFSWlqK2traXg2U7du3Y968eULnKCgowMCBAy96v7y8HKmpqRe9L793/vx565uSBLS20jUaGgpoNGSomM14/He/wz/++U8AgFqtxo3XX4///Z//ceo8V1xxBZ5//nn86U9/wtq1a7ve/+///m+88MILQp/XHbCBwjCMlfZ2YNcuYP9+QKcDkpJ631ajAVJSgEOHgIEDyWBh+haTJgEVFb4eBZGSAuzb59SuR48eBYCLDJRDhw4BQK8GytixY4WrbVJSUnp8v7W1FWFhYRe9Hx4e3vX/XZhMQFsbGSe2aDR49Ne/xs+uvx7ny8rw6X/+A3NbG9r1eiAyEggNVXYeAAMHDsTs2bNx0003ISEhAd988w3+9Kc/ISUlBb/5zW+EPrOrsIHCMAzR2Ahs2wYcO0Y5JjExjveJjwdqa4Hdu4Frrrl44mSCm4oKoKzM16NwmSNHjiA5OfminIvDhw9DrVZj1KhRPe4XHx+Pyy67zKVzyx2AL6Stra3r/wGQ90QOp6ovzs4YNmQIhg0ZAgC46+c/x8IbbsC1t9yC3d9+C5VWi4iwMBjb2ug4Nh7Ri84D4JNPPsH999+P06dPIz09HQBw4403wmKxYOnSpbjtttuQkJDg0ucWgQ0UhmHoRrN5M1BSAuTkAD2stHolM5OSZY8dA8aP99gQGT+kF6+AT3BhLEePHu0x/yQvLw85OTm95ly0t7ejtrZW6BxJSUnQaDQXvZ+amoqyHoy88vJyAMCAAQPkk1lzTwT42XXX4VePPYbTJSUYmp2N1KQkOk9DAxAeTosJtfri8wB46623MH78+C7jRGbRokVYuXIlDh486LJhJgIbKAzT18nPB7ZsoWS7wYMpdKMErRbo14/c6xkZQGKiZ8bJ+B9OhlT8jSNHjuCWW27p9p7FYsGPP/6I2bNn97rfjh07XM5BGTduHDZt2oTGxsZuCay7d+/u+v+u3BOgR+9JT7R2ekYampoArRbjxozBpu3b0ajXI1ZOcg8Px+4dO6zn6aSyshLx8fEXHdNkMgFwT6diEdhAYZi+itkMHDgA7NxJq6ncXOePlZQEnDpFAm4LFyo3chjGR1RVVaG6urrLkyDz5ptvQq/XY/To0b3u644clJ/97Gf461//ihUrVuCJJ54AQIqv77//PqZOnYqMjAzAaIShrg7FlZVITEpCok14paq6Gv0vyBUzmUz45yefICIiAiOGDqXzXHcd/vq//4sV//43nvjNb4CODhhraug8kyYhIymJkm/VagwZMgTff/89Tp8+jSGdYSMA+Pe//w21Wt1rTo67UWygGAwGfPLJJzh+/DhOnDiBpqYmPPXUU7jyyisVn/wvf/kLvv76a0yfPh0vv/yy4v0ZhnGS1laq0jl4kIyLfv1cP2ZWFkngDxwIDB/u+vEYxgscOXIEAPD999/joYcewrBhw7Br1y6sX78eALB//37s3r0bU6dOvWhfd+SgTJ06FYsXL8ZTTz2Fqqoq5Obm4oMPPkBhYSHefffdrtyTPQcPYt5NN+GZpUvx7P/7f137/+qxx9DY1ITZM2YgLTUVFVVV+Ndnn+Hk6dP42wsvIDo6ms4zaRIWX389nnruOVRVVyM3Jwcf/PvfKCwpwbuvvgrU13d5VX732GP47rvvMGvWLPzmN79BQkICvv76a3z33XdYsmRJt3CQJ1FsoDQ0NGDlypVITk5Gbm4uDh486NSJT548ie+++85rgi8Mw3RSW0shnfx8MioiI91z3PBwICqKtFHS0oAL9BYYxh85cuQINBoNPvnkEzz88MN4//33MWvWLGzZsgXXX3898vLyoBXM+3CWf/7zn/j973+PDz/8EHV1dRgzZgy+/vprCi+1tVH+SUjPt+tbbrgB7370EZa/9x5qamsREx2NiePG4eVnnsGiq67qfp7ly/H79HR8+OmnqKuvx5iRI/H1J59g9ty5ZAh1dADNzZg9ahR2rF+PZ195BW+99RZqamqQnZ2NF198EU8++aRHvwtbVJKkrC1pe3s7mpqakJCQgJMnT+L+++9X7EGRJAkPPfQQsrKycODAAWRnZyvyoJw6dQr33Xcf3n77bQztdF8xDCNAcTGwdSslxebkCCfcCWOxkDbKpEnA3Lk966cwAUVbWxsKCgqQnZ3dVZIaTCxZsgRbt27F6dOnfT2Ui5Ek8my0tytLXHcVi4USciMigLg4Rbu68/eiWEk2NDTU5fKi9evXo6CgAPfdd59Lx2EYRhBJoiqb774jD8rgwe43TgCrDP6RI0BBgfuPzzBu5siRIxgxYoSvh9EzRqOiyh23oVb7RR6Z16XuDQYD/v73v+PnP/+5V+qoGabPYzJRvsmGDTTpZGcLVwI4RXQ0HX/3bmvlAcP4IZIk4fjx4/5poFgspHuiVnv2evVjvF7Fs3LlSoSFheHmm28W3kev16OmpqbrdVFRkSeGxjDBR3Mzia8dPQoMGOC9vJD0dKsM/owZ3jknwyikoKAAzc3N/mmgtLd7P7TjZ3jVQCkpKcHq1avxhz/8QVFy7Nq1a7Fy5UrPDYxhgpGqKhJfKyqiyhpv5g9cKIPvpax/hlFCTk4OFKZhegdb70kfzuPyqoHy5ptvYtSoUV2dEkVZtGgRZto0IysqKvJqwyKGCTjOnqVKnfp658TX3EF8PFBTY5XB93YcnWECFaOxz3tPAC8aKHIt+QsvvNBNEMdsNsNoNKK8vByxsbE9SgonJiYikdUpGcYxFguQl0fia2p1752IvYWtDL6NUiXDML3A3pMuvGagVFVVAQCefvrpi/6vuroat9xyC37zm98oyk1hGMYGi4VKiPfvBxIS6OFrQkOpTFGWwfeHMTGMP2M0UmJ7H/eeAB40UPR6PVpaWpCWloaQkBBMmDABL7744kXbvfLKK0hJScGdd96JnJwcTw2HYYKf6mryVKSk+JdIWlISJczu2cMy+AxjD/aedMMpA2XNmjVobm7uqqzZvn17l4fkpptuQnR0NFasWIF169Zh1apVSE1N7bGVNQD8z//8D+Lj4zFr1iwXPgbDMCgtpcktM9PXI+mOSkVjOnGCSpyHDfP1iBgn8Mtk0mCjrS3gvSfu/J04ZaCsWrUKFRUVXa+3bt2KrVu3AgAWLlzYpf3PMIyXMJvJS+FPnhNbIiJIUn/3bu+WOzMuo+n0eJlMJkRERPh4NEGMxUK6QRpNQHtP5E7HIb1I8yvBqSN8+umnDrdZtmwZli1b5pZjMQzjgMpKCvGkpvp6JL2Tmkodjw8cAObMCehJuC+h1WoRFhaGhoYGxMTEQMV/N88QBN4TAGhsbIRGo+kybF3B60JtDMN4gJISKkv0514psgz+4cPUpDA729cjYgRJTExEWVkZSktLodPpoNVq2VBxJ2Yz0NhILSlMJl+PhpDH0dYmtLkkSWhpaUFjYyNSU1Pd8vtgA4VhAh2TiToT63S+HoljYmIAvZ4SZlNSKPTD+D2xnSE5vV6PsrIyH48mCGlvp/COP2kFmc0UblLQ7VylUiEuLg46N81FbKAwTKBTXk43/YwMX49EjIwM4MwZUpmdNs3Xo2EEiY2NRWxsLEwmE8xms6+HEzy0tADff08LjaQkX4/GSkUFkJwMXHqp8C5ardYtoR0ZNlAYJtApLqbVjoL2ET4lJATo35/69GRl+XfeDHMRWq0WWn9a6Qc6R49SBd6QIUBngqlf0NZG4/Fh2LhvtkhkmGDBaCRZ+/h4X49EGf360QS4e7f/xNwZxts0NVFOVr9+fbZjsT34G2GYQOb8eep3E2gGCkDaKGfOAMeP+3okDOMbTpyg8Cy3cukRNlAYJpApKqJyXTdoDngdWQZ/714yshimL9HQQN6TxET2nvQCfysME6gYDNSILxC9JzL9+1PH5X37SKiKYfoKJ04AtbXsPbEDGygME6iUlQF1deSFCFRUKqrqOX6cSqUZpi9QVwccOUIGOuvJ9AobKAwTqBQUkE5BoDffi4ykSoG9eylpkGGCnePHyXPYr5+vR+LXsIHCMIFIYyPlnwTLBDdgAOm5HDhAapoME6zU1lJpMXtPHMIGCsMEIufPU5JdIKjHiqBWk5Fy6BAZXgwTrBw9SguMQM4d8xJsoDBMIHLmDFXBBFP2v9zheM8e4f4fDBNQVFdTcmxyMntPBAii2Y1h+gh1dZQgm5Dg65G4n4wMoLCQPCkME2wcO0Z5Vuw9EYINFIYJNMrKaJKLifH1SNyPrQx+VZWvR8Mw7qOqirwnKSm+HknAwAYKwwQSkkTluBERwesiTkgAmpuBkhJfj4Rh3MeRI9QYMFjyxrwAGygME0jo9VTtEizVO70RFUUidFzRwwQDFRXAqVPcGFMhbKAwTCBx/jytwqKjfT0SzxIXR8ZYba2vR8IwriFJJGnf2mpNBGeEYAOFYQIFiwU4fTr4jROAPCjNzUBlpa9HwjCuUV5OYdkBA3w9koCDDRSGCRSqquiGHezhHYDya8LCqKKHYQIVSaLcE6Oxbyws3AwbKAwTKJSWkj5IZKSvR+Id4uIopNXc7OuRMIxzlJWR15NzT5yCDRSGCQQ6OshNHIylxb0RG0uKmxzmYQIRi4W8Jx0d7D1xEjZQGCYQqKykEE8wirP1htwEsbTUt+NgGGcoLeXcExdhA4VhAoGSEsBkoryMvkRcHOWhtLf7eiQMI47FQpU7FkvfCcl6ADZQGMbfaW+nlVhfFHjS6Ujan1VlmUCiuBg4e5a9Jy7CBgrD+Dvl5UBNTd8K78iEhlIMv6LC1yNhGDHMZvKeSBIpPjNOwwYKw/g7RUU06Wm1vh6Jb4iJodWoxeLrkTCMY4qLSQU5Lc3XIwl4QpTuYDAY8Mknn+D48eM4ceIEmpqa8NRTT+HKK690uG9eXh4++eQT5Ofno6GhAdHR0cjNzcXdd9+N0aNHO/UBGCaoaWujm3Nf7n4qq8rW1ABJSb4eDcPYp6CAjOnwcF+PJOBRbKA0NDRg5cqVSE5ORm5uLg4ePCi8b2lpKdRqNa677jr069cPTU1N2LBhA37729/i5ZdfxtSpU5UOh2GCm/PnKQcjO9sjhz9XrML+I2qYTB45fBdaLTBptAXZmU701omMBAwGqmRiA4XxZ9rbyYMSF+frkQQFig2UhIQEfPHFF0hISMDJkydx//33C+97zTXX4Jprrun23g033IBbb70Vn332GRsoDHMhspJqiOJLVYj9R9RoaPRCV+RWYN8RNbIzzc7tHx5OK9NRo9w7LoZxJ1VVQH09kJnp65EEBYpnvdDQUCS4MVkvPDwcOp0OzawWyTDdaWmhm7IHpe1lz4lKJSHCQx7p1jZAklSueWni4ylZuLGRG64x/ktlJSV199V8MTfjmWWZA1paWmAymdDQ0ID169ejoKAAd955py+GwjD+S1kZrcYGDfL4qSLCgduvd+DdMJmAtWspH+S224QNhY+/1MDQ6uIAY2Jo8q+sZAOF8U8kiZJjo6J8PZKgwScGyjPPPIM9e/YAALRaLRYtWoS77rqr1+31ej1qamq6XhcVFXl8jAzjc86dIzVVWVHVl5SWAq+8Qh4dgCqLnn/ee2NTq+lRWgoMHuydczKMEurryXjn/BO34RMD5Ve/+hVuueUWVFVVYd26dejo6IDZ3Pvqbe3atVi5cqX3BsgwvqaxkZLtfK19IknADz8AK1ZQR1aZo0eBNWuAm2/23lhkVVmjse8p6jL+T2UlhWUVlhcrTlSXLEioPo2W6P5oixQP/7qUqO4jfGKgDLZZAS1cuBBLlizBSy+9hOeff77H7RctWoSZM2d2vS4qKsILL7zg8XEyjM8oKyMjJTnZd2NoaQHeegvYts36XkoKJQJaLMDHHwNjxwJDh3pnPDodGW2VlZyEyPgfpaWUzK5SlnSuNFH9kj3/i2Fn10OCCueTx+Js1lwUZMyEKdRBaMnVRHUf4BMDxRatVouZM2fiX//6F4xGI8J6WBklJiYiMTHRB6NjGB8gSaR9EhpKYQ1fcPIk8Ne/dpeYX7gQuO8+YPVqYNUqMlL+9jfg9de9029Eq6UExPJyNlAY/8JopH5ZTrSjUJKonlRxDMPOrqftISGtMg9plXmYuf//UJY+GYWD5uJ8+mRYQkK77eeWRHUf4HMDBQCMRiMkSYLBYOjRQGGYPkVdHa3GfBHesViAzz8HPvrIqtwaFQX8+tfAJZfQ61tvBfLygFOnSIJ+xQrg0Ue9M76YGMrNmTTJP3JzGAYgQ76hwSXD2WGiusUCPP4P62udjs4JQGM2IbNoBzKLdtD1On06MGcOleVrNO5JVPcBHjNQ9Ho9WlpakJaWhpBODYe6ujrEX6CI2dTUhC1btqB///4X/R/D9EnKyoCmJu83GqutBV57DTh0yPresGHAE08A/ftb39NogMcfBx55BGhtBX78EZgwAZg92/NjjI+nm4Fe79vwF8PY4o3y4o0bybMKAAMH0rV65gywdSs9Oo0VtLRQ3tgPP5BEwaxZ6CfNgyEy8JLLnTJQ1qxZg+bm5q7Kmu3bt6Oq0xV80003ITo6GitWrMC6deuwatUqpKamAgB+97vfISkpCSNGjEB8fDwqKyvx7bffoqamBs8++6x7PhHDBDKSRJ2LIyMVx7JdYUDJXuDhVynvBaBzL15M5cQ9eSpSUoAHHqBJEgCWLydjxtaQ8QQREWQUVVaygcL4B5JE1W3R0Z47h8EA/POf1tdLltB1OXQoPX75S2pQuGULsHMnXSMALTr+8x9cgf+gPiYNxblzgSmzAqbLslMGyqpVq1Bh011069at2Lp1KwBKeo3u5Q911VVX4ccff8Snn36K5uZmxMTEYMSIEfjDH/6AsWPHOjMUhgku9HrKsfBSeEdtNmHqgZUYfepL65v9+gH/9V/AmDH2d543DzhwgCbFlhbKR/nTnzwfeomMpDDP6NFeNeIYpkfq6jxfXrxqldVDMmPGxdemRgOMH0+PBx8E9u6l63L/fvLsAIhrKkPcwX8BD/yLSvVnzwZmzfKoEKSrOGWgfPrppw63WbZsGZYtW9btvRtvvBE33nijM6dkmL5BaSnd7L2RBFpWhoVf/xX9as5a35syBXj4YXExtAceAE6coLDLiRPAZ59RjooniYsjD0pDA2tOML6nqsqp8mJhzp8HvvqKnmu1wD332N8+LIzyxS65BGhuBnbsQMWarUguPwIVOkuM8/Pp8f77ZOjPmUN5K34mMucXSbIMwwAwm2nSiInx7HkkifJG/vEP9Gtro1NrtNDc+wvg6quVeSWioigf5amnKInvk0+AceMo3OMpoqMpObeykg0UxveUlDhVXizMe+91eUFwww0UXhUlOhpYuBA/Gq4Eamow7PwWTKjZRB5IgK7ZQ4fosXw5MHkyeVYmTXL/53ACH9UwMgxzEVVVdNP1ZHjHYABefRV44w2g0zipj83A+mteBa65xrlJdvhw4JZb6LnFQuXJLS1uHPQFqNXk0i4u9tw5GEaEtjYyUDxlKB88CHSqrqNfP+Cmm5w+lCEyESdH30iyAP/3f3TN2ho7JhOwYwfw5z8Dd98NfPgh5bXYEVH1NGygMIy/UFJCegoREZ45/unTVA68ZUvXW2eGXI4vL38D9Qk5rh375pvJUAHI0Pr73107niPi4uj7ag3A2kkmeKiq8lwDy44O4J13rK/vvtt9c0NGBnDHHcA//kEtLK65pruGS0sLJdv+/vfAunXuOacTsIHCMP5ARweFdzwx0VksJEu/dCmFRgAKzTz5JPZc8jA6QtzQxlijocRaWbBtyxZg0ybXj9sbOh31Pqms9Nw5GMYRlZXkYfBEefG6dWSEA1SpM2eO+8+hUtGx778fWLkS+OMfKfldNoRiYoAFC9x/XkE4B4Vh/IGKCqC6GkhPd+9x6+qoFDgvz/re0KGkbZKcDHzpxnMlJ1MFwd/+Rq///vdOr4oHkgdDQiiX5vx50oRgGG9jsXiuvLixEfjXv6yv77vP86rStpVARiOwfj0ZXqGhjvf1EOxBYRh/oLiYvCjuVFLev58qcmTjRNY2eeklz2mIzJlDKzCAwi+vvgqVxUMx7NhYSvaTEwgZxpvI5cVOyNs75OOPrXlcl14KDBni/nPYIyyMxBevuMK7570A9qAwjK9pbydFyAsS7RR3Oe1EbTZh7L4PMPzYF13vGSL6YeecJ1AZMxb42rpta5sL4+6NX/2KSo4rKoCTJzEq/N/YPfxO958nPp48KNXVQKcYJMN4jaoqSjp3t9ezsNCa9xERAdx1l3uPH0CwgcIwvub8eaCmBsjK6va20i6nABDbVIZ5O15GUu2ZrveKB0zBlmmPwRimA3rJKXVrCD0ykkqPly4FLBaMPLQKhQnj0ZQ10o0nAa3y2tspD4ANFMbblJTQhePO8mJJAt5+29oHa/FivxZS8zRsoDCMrykqoonpAitBSZdTAMg6uxlTtv8vtB1khZjVITg45V6cHn4tNCoVImWRpgvQaoFJoy0ufYSLGDoUuP124KOPoJYsmLvzFaxL+V8Abq5QklVlx45lVVnGe7S2kqiiu8M7u3YBR47Q8+RkYNEitx6+tQ34+EtBpWdzOqDRIHL3dlz/4ky3jkMUNlAYxpe0tlIDMDuNMh12OQUoRPT+X8nQAYC0NGh+9ztMysnBJLjZ+BDlpptIx+HYMcQYqjFlx/8BNz/uXkNCVpWtq+vTK03Gy8jdi92YoK3uaCdRNplf/tJtCapaLYBWQJJUCroad5oHDUa3jMEZOEmWYXzJ+fN0c3W1k/d331mNk7lzqXInx0VtE1fpLD1uDyX57KyCraRg606ioymZkMuNGW9SUUHlxSHuW+MPO/al9Xc8ZgwwbZrbjj1ptAW6WAmREQoeoR30r86NifsKYQ/KhVRXk6DVjBnsMmY8z7lzVmVUZzEYgG3b6HlkJPDQQ0C4G7RN3EFSEnbP/C1mbfozvf7HP6j02F3dVFUqWh4WF1uF4hjGk8jlxW5sSRFpqMHIQ6vohVpN3YrdeP/JzpSQnamwmq60lPoLLfJNeAdgD8rFNDfTZCe3nWcYT9HcTPknrkrbb9vWJVuP2bP9xzjppCR7Fk5ld4o9tbWRToo7S4Pj4ylh0ZPy+gwjU1tLSe1ulLefdGgltB2d1/AVV7C2TydsoPREYyN5UhjGk5SVkRqqq4l2339vfb5woWvH8hA7Jz6AxthOr0l+PvDvf7vv4LGxdM1ymIfxBlVVlDsmqya7SELVSQwp3EgvoqMpuZwBwAZKzzQ1AeXlvh4FE+ycO0fhCVcUIgsK6IYPUM5Jbq57xuZmOrQR2DHnd9ZQ1urV1moFV5GPWVbmnuMxjD2Ki92nrmqxYOLuFdbXt9/umXYXAQobKD0hSfQj9GEXRybIaWig35ir4Z0A8J7I1CYNAX7+c3ohSZTI29TknoPHxpLAlVJVO4ZRgsFAhrC7you3bEFi9SkAQH1cps+VW/0NNlB6o76e4owM4wlKS+nm7MpqyWgENm+m56Ghnmkm5m5uuAEYPZqe6/XU9l3qWZ9FEfHxlBtQVeX6sRimN+TyYncYKK2twAcfdL08MPV+t1YFBQNsoPSEWk2WMuehMJ5Akki3JCzMtUz9HTusiaGXXEIdiv0dtRp47DFrg7UdO4ANG1w/bmgoeU/kbs0M4wkqKqiKx5WqO5k1a8ioBlCUNg0VaeNdP2aQwQZKT6hUNOFxTJvxBLW1pH/Sh8I73UhMBH7zG+vrt98mj5KrREVRXo/FR8J0THAjlxe7I0ekogL4gnplmdUh2D1+ievHDELYQOkNnY4mzTZPdFNj+jRlZVRi7IqOQlkZcOwYPU9PDzwNkBkzrEaV0Qi8+qrr+SPx8eT17FyVMoxbqamh35Y7wjsrV3b93k+NvA6NMW7SBQoy2EDpDbl0Ua/39UiYYMJiISFAV8Mxtt6TBQsCU1RwyRISggIo5PWvf7l2vKgoCs1yuTHjCdxVXnz4MIU2ASAuDkfH3ur62IIUNlB6Q6slMSme7Bh3Ul1NvylXwjsmk1UyPiQEuPRS94zN24SHA088YU0M/Pxz4NAh144ZGkrVPAzjboqKXC8vNpuBd96xvr7rLnSEukdPJRhhA8UekZFUCuqOKgOGAShsaDC4tgrbu5cqCQDq1+HujqreZNAg4M47ra9fe801Fee4OMrvaW52eWgM00VLC/2uXFWP/f57qwGdmxu4iwsvwQaKPXQ6cuu5S6uB6duYzSSq5mqS3fr11ucLFrh2LH/guuuAsWPpeW0t8D//4/yiQA7NcjUP406qquh35cq129wMfPSR9fV997km0tgH4G/HHtHR9KPicmPGHVRW0kTXr5/zx6iqAvLy6Hn//tYbeyCjVgOPPmpNGt69u7sRpgSNhvJxuAKPcScVFWQ0u1Je/O9/Wxe7c+YEXmK7D2ADxR5qNU12vBpj3EFJCdDe7lozvx9+sHoXFiwInhVYQgLw8MPW1++843zpcVwclYO2t7tlaEwfx2x2vby4uBj45ht6HhYG3H23e8YW5ATJ7OZBYmIoZsiy94wrmEwU3nElX8RsJgMFIMPkssvcMzZ/YepU4Mor6Xl7O7BqlXPHiYsjJWhOcGfcgavlxZIEvPuuVZ/npptIC4hxiGJdXYPBgE8++QTHjx/HiRMn0NTUhKeeegpXyhOLHfbv348NGzbg8OHDqK6uRr9+/TBhwgTce++9SPTXP1hsLJUa19YCSUm+Hg0TqMiT3AAX9A4OHrSWvU+a5LrQmz/yy18C27ZRaHXPHtJICQtTdgy5Aq+8HMjI8Mw4mb5DVRXpYUVEOLf/vn107QJ0D7nhBveNLchR7EFpaGjAypUrUVRUhFyFnVP//ve/4+DBg5g1axYeeeQRzJ8/H5s2bcKSJUtQ4699byIjqfad81AYV6iuJq+A0putLRdqnwQjYWFUmQTQdbd/v3PHiYkhtzyryjKuUljo/HVrMpH3ROYXv3BtDuhjKPagJCQk4IsvvkBCQgJOnjyJ+++/X3jfX//61xgzZgzUNnHzKVOm4OGHH8bnn3+O++67T+lwvINWS0l3I0b4eiRMoFJc7NrEVFdHHgWAkmwnTXLPuPyRWbOsoaxt20h1VilxceRtqqlhzyfjPC0tlIPobHjn66+pPBkARo4EZs5039j6AIo9KKGhoUhw0rU8bty4bsaJ/F5sbCyKioqcOqZX0OkowZFl7xlnMBhcm+QAYONGqzdg/nz3NCvzV8aMsSYk7t1LnhSlyJ5PTnBnXKGy0vny4ro6ax6VSkVlxYGo+OxDfN7b2WAwoLW1FTp/FpuKjaUVsF5PfU8YRgl6PU1yAwc6t78k9Y3wjoxGQ16TdesoLLZnD5VlKiU8nNzzo0e7fYhM3+DctmLsP5oD0zHlCrJTfvoYuQYDAODM4IXYc3gwcPji7Vp53dsrPjdQPvvsM5hMJlxqR1FPr9d3y1HxurdFTrqrqmIDhVFOVRVV4IQ4d7n1rzhs9QSMHQukpLhxcH7KrFlkoAAU5nHGQJFVZV0V2GL6JmYz9v/UjIY25aHZhNozGHSaFhXt2kjsGnk32lrte0+0WqdGGdT41EDJy8vDypUrMW/ePEycOLHX7dauXYuVK1d6b2A9ERlJvRgmTPDtOJjAQpIoWdOF5oC5p2xEy+QOwMHOiBGUa1NbCxw4QFU90dHKjhETQ4ZdRQUbKIxy9HqYTKQ5pFJJiBCVL5IkzMz7B1SgfY+Ovx3qeB0i0bs6slYLTBrNCd0X4jMDpaioCE8//TRycnKwdOlSu9suWrQIM22Si4qKivDCCy94eojdkWXveTXGKKGhwSUNhTBjIzIKt9OLmBhrhUsA0toGfPylaO6MBhNTLsHQ2rVARwd2Lt+LgsH2dV/kST47s/NGoFaT16q0FBgyxLXBM32PqqouUcSIcOD26wW1sLZtAyqP0fO0NExYeiUmaFlHyxl8YqBUVlbi8ccfR1RUFF5++WVEOmiclpiY6HudlOhoWolVV7OBwohTXU2rfyfDMrmFP0Jj6aAXl14akH5grRZAKyBJKhgU5LueGjAbQ4+vBQCkn9mKY+kOcm9agX1H1MjOtLkZ6HTk+Wxrc03Bl+l7FBYqT2o1GoH337e+vvfegLxm/QWvGygNDQ14/PHHYTKZ8Nprr/ne8BBFrj6qqKAOrAwjQnk5TXLOSNJLEoaeDfzwzqTRFuw7oobJpGy/5oyhaIlKQlRLNdIq8hCnakB7eM+Lg9Y2MoAuOodsoFRVAZmZzn0Apu/R1ERzvSpV2X5ffGEVU5w4MbjlALyAxwwUvV6PlpYWpKWlIaQzObC1tRVPPvkk9Ho93njjDWQEmspjbCxNdtOmBXeZJ+MezGaq/pKb4CkkofoU+jV0JoQPHx6wqqjZmVJ3r4YS6i8BvvgCasmMn8X/BFx+eY+bffylpmfvjFZL5dnnz7OBwogjh/PVaeL7mM3At9/Sc42GvCeMSzhloKxZswbNzc1dlTXbt29HVVUVAOCmm25CdHQ0VqxYgXXr1mHVqlVITSUr9Pnnn8eJEydw1VVXoaioqFs1TkREBGbNmuXq5/EsLHvPKKGmhnJQnPyt5J5aZ30RoN4Tl7mEDBQAFNvvxUCxS0wMcO4cMHkyLywYMc6fVx7eOXmSekAB5Dnhik+XccpAWbVqFSpsBJC2bt2KrVu3AgAWLlyI6F6y7c+cOQMA+Pbbb/GtbGl2kpKS4v8GSmQkxbKrq9lAYRxTXU1iYc708DAYkFVA11S7NhKhfVWBMjeX8ncqKoCjR0n8Kj5e2THi4635Y32hRJtxjY4O8pQrzTXcscP63Bn1Y+YinDJQPv30U4fbLFu2DMuWLVO8n9+j0bDsPSNGWZnzCXJbtyKkwwgAKBo0F4P7aoKnSkWaKJ99RqGaHTuAq69WdozwcFpYVFaygcI4RvaSK2nsKUnAzp30PCSEvHWMyziRudfHiYujskWj0dcjYfyZtjb6nTirkLxhQ9fTM0OcCGsEE7ae1W3bnDtGZCSFeaTetSgYBgAZskobe+bnW5Njx45VrtnD9AgbKEqJjaW8Au5uzNhDlrd3piS9oIAmPAD6+FzUJSrrGh50ZGVZE4SPH7feCJQQF0eJjw0Nbh0aE4QUFioPy9qGd6ZPd+tw+jJsoCjFVvaeYXqjqop+J86EeNZbS4tPDerj3hOAwjyXXGJ9vX278mPExFhLRxmmNxobyYOixPMpSVYDRa0OaDFFf4MNFGeIiKAkKobpjeJi55JjjUZgyxYAQIcmDGey5rp3XIGKq2EelYpyA0pK3DcmJvioqiJDVok0QGGh1fAdNYqFPN0IGyjOoNNRiKex0dcjYfyRpiaa6JzJP9mxA2hpAQAUZ18CU6jzPXyCivR0IDubnp8+7ZwnJC6ODJRWBXK2TN9CLi9WIqzI1Tsegw0UZ5Ddxc7Ewpngp7qafh/OJMp9/33X0zNDr3DjoIIAV8M8Oh3pVHCYh+kJk4k840oXFrKBolJxeMfNsIHiDLJ1XV7u23Ew/kllJf2rVBSstBQ41tlkLCMD+v7D3TuuQMc2zNOpu6SIkBDKFzh/3n1jYoIHvZ50dpQYKKWl1rDhsGHUgZtxG2ygOEtMDFnbFm6RzdhgsVBM2hnviU1pMRYsUK5kGeykpACDB9PzggLSmVFKbCzt29Hh3rExgU9VlfLyYg7veBQ2UJxFpyNru7bW1yNh/Im6OuWrMIDcyz/+SM9DQqhzsT9iMFAJdFOTb85vG+ZxJlk2Pp6uWZYJYC6koIDLi/0MNlCcJTKSku14omNsqa6mm3hkpLL99uyxanRMm+Z/lQBmM7myy8uBgQN9J1boqoESFkbj5vAsY4tcXhwXJ75PRQWJ/wHUkqF/f48MrS/DBoorhITQRM0wMufP0+9CaXjGJjnW7xoDNjRQ5YxORzLzV18NjB5NK06zk12KnSUpiTo7A2QwOVPuHx1NY2dVWUamshJoblYWmpWl7QHvh3fq6ymUXFcX1GkGbKC4gk7HsveMFZOJ9E+Uej8qK4G8PHqenAyMGeP2oTmFyUQrxIYGcl9ffz3lgISFkScjK8s3N3pXNVFkVdm6OrcNiQlwAqm8uL2d5oz0dLr35OcDZ85Qkq/J5L1xeAE2UFxBp6PJm8uNGcB5efsffrDe5BcsUDZJegq9Hjh7FkhLAxYtIqMgykaTJSYGmDOHrgFnklVdYeZM63e0bZtyAykqirRmuNyYAazlxUrCO3o9cOoUPc/KUtZY0FWKiiikdM01wK23AtddB4wbZ/2/U6fot93W5r0xeQinuhkznciy99XVNJEzfZvqauVVAGYzGSgA3XTnz/fM2EQxGmmSi44G5s2jUE5vnyc5GZg9m6T5a2qAhATvjDE+Hhg5EjhyhHJJzp0DMER8f5UKCA0lbxd3JWeqq8mblp4uvs+uXdbn3vSe1NSQgT1tGt1/tFpaLAwebO3Yff48XRPl5TQfRUWR8RUVFXCVgWyguEpEBMUCZQuW6bsUFwPh4cr2OXCAJh0AmDTJezf5C5EkWnU1NwNDhwJTpogl/eXmkhdx82b67FFeUr6dNYsMFIC8KHEKDBTA2pW8pcV7Y2b8k6oq8qKEhorv44vwjslExtS8eVRyfyHh4eTNycoCJk+mbWUDvrqaPJ2hoWTgx8b6h6fWAf4/Qn9Hp7P2b2D6LnLIQGl4x1b7xFfJsS0t5BYODQUuvxy44gplFQnjxgETJpCB5q0Y+IwZ1gn2p5+Uh3nkruSyqB7TN5EkyqNSUnVXX09dtQHynGdmemRoFyGHdkRy1EJCgNRUui5vugm4+WbgyiuBnBzytJw5Y81b8WNNIPaguEp0NE1y1dXKGkwxwYWcf5KTI75PbS2VFwOkQDlxomfG1htmM62qOjqA8ePJg6MkDi+j0VASbVMTVfsMHuz51VlsLDB2LHDwIFBVhYTqUzDEKFDelVV+y8uV/c2Y4KKhQXnfrF27rJUz06d7J2xSU0Pe+mnTlHl6ABpfQgI9Ro60dvWWq+AKC2ku0OnIu6IkRO1h2EC5gB+e34qwc1UoGTRMcA8NtNIgTOpfgmye6PouVVU0aSmRt9+40TrRXXaZcml8V6ivp5tzRgaFc7KzXTMqwsMpH6WpiSY8b1wLs2aRgQIgq2ArSsYobA0gq0FPm+bd757xH2Tvd08hk97wdnmxHNqZO5e8Iq4SE9N73sr585SHFh3tF0m2bKDYMm8eLtu8mdrc958Kc4hoPkEY9m1rQvYdloCI6zFuRpKUy9tbLN3DO5dd5vZh9YhcCq3VUjXMuHHuy8GIi6NJ9JtvaIWmZNJ3hmnTgLfeAjo6kFnwEzD6PgAKVrM6HXm+amtJX4Xpe5w/T8ap6Lzd1AQcPkzP+/cHBg3y3NhkioroPGPHuv/YveWtnD1L10aIb00ENlBsyc0FNm9GiNmInLqDKMt03JmytQ2QJBVM7RJNdImJXhgo41fU15MLVkn+yZEj1jLXsWM9fzMHaPKpqaHJbsoUZVULoqSlkWfj++/pe3EmZCRKdDTF2PfsQaShBinVx9CYNUp8f1s1aDZQ+h7t7bSwUBLe2bPHKk7ojfBOTQ0ZEc6EdpQi562kplLIt7bW5wtuNlBsue464J13AABzVLuA6yc73OXjLzUwtIJW0dXVbKD0RfR6qn5RooVg6z25/HL3j8mWtjargNz8+cCoUZ6d7IYNo9j+9u0Uz1ba30QJs2Z15fHkFG1FnhIDBSBPUlkZlxv3RaqryYjOyBDfx5vVO3JoZ84c7+qsANa8FR/D8Qhb5s+3Tqa2lrIo3hasYvyD8nJaaYiuphobrRNdTAwwdapnxmWxkAu7uJiMhuuvJ4+Dp1diKhUl3I4aRStUT1YJTJ7c9XmyS36CyqLwmtXpKFnQD+LtjJepqFBWXmwwdOU8oV8/Ksf3JMXFngvtBAhsoNgSEWGV0Zb7j4iiVpOuQnu7Z8bG+CcdHcrl7Tdtst60L72UVvHuprmZfr/h4VReeMUV3g1jhISQHH5ODiXfeUoOPzKSjCEAEcYG9C8/rGz/2FgyGFkNum/hTN7Y3r3W63baNM+GP2pryfs4dapfVdV4GzZQLsQ2WVEuARVBrSKjhrsb9y1qashNLBrHliTPap+YzZRUV1VF3pLrr6fwhS+qVKKiKGk2MZG8FJ7CpjdPVsFWZfvKatCsh9K3qK+nuVpJ/om3qndMJuv128cVytlAuZB586yu+t27FeyossreM30HvZ7CA6IKsqdOkccFoK68SuLfjujoIK9JQgJw7bXknVEyAXuCxEQqP1arPXdtTJoEU2fFXUbhDuVicZGR9Dfh7sZ9h6oqEigU9KBoOtqA/fvpRWws6Yl4iuJiKvtndXI2UC4iIQEYOJCel5YqyysJD3eu/TsTuJSWKsvp+P5763N3e0+qqymZbtEiCq34S9+N7GyqeKiv94ziclgYyjIpjyesvRk4dEjZ/rIadGOj+8fG+CdlZYryxlJL91u71ntSN6eujkI606b16dCODBsoPWFrHSsJ87Dsfd+irY0mOtH8E4OB+sYAtGqfOdN9Y7FYyAAYOdI/e8uMGUNKuWVl1onejRTlzLa+kL9jUaKj6Zpl72ffwGgkL4UC72JmoU31zvTpHhgUyANaUUElvp6QAAhA2EDpiVE2pYpKwjw80fUtqqtp1S1qoGzdar05z5mjvLGgPerqqLLAG8JRzqBW06pw+HDqfaK0Qs4B5WkTYdR2Gma7dilLVler6VFe7tYxMX6KXF4sqNGjNpswoKRzoRoVJdYLxxk4tHMRig0Ug8GA9957D0888QSuvvpqzJ49G999953Qvnq9Hn//+9/xyCOP4PLLL8fs2bNxUC7b8ieSkqwW7MmTlPwqgkZDcWxOuOsbVFXRqke0CseT4R29nm7+SpsVepOwMMpHSU+nCgo3YtFoUZTeubJtbaUu0UqQZe/dbDgxfkhlJf2dBa/btIqDCDUZ6MWUKZ6puquro+NOm+behUuAo9hAaWhowMqVK1FUVITc3FxF+5aUlODjjz9GdXU1cvy9b82UKfSvxQLs2ye+X3Q0Tb5yjxUmeCkuFu+Ceu4cdQ8FyMvhTk9HYyOt7IYMcd8xPUVsLFX2REeTRosbOZfpQphHp7MqAjPBiyTRtaige/HAku3WF54I78hVZOPHuzdpPghQbKAkJCTgiy++wGeffYYHH3xQ0b5Dhw7F119/jY8//hi33HKL0lN7F1vxLCVhnrg4soZra90+JMaPaGxU1gXVk96Tykpq0xAocu2pqeRJMRrpWnETZSnj0BbW6UHas0eZ+FpEBG3P4dngpq6OvI2C4R2VpQNZZbvoRXg4GRHupriYeuF44tgBjmIDJTQ0FAlOSuBGRkYi1p9d0LYMGWK9+Rw8KJ7YFxFByZAs/BTcVFeTGJpImaLRCGzZQs/lMIe7aG0lUbThCjv5+prBg8mdXVVF14sbkNQhKM3qXOEajco8nwBVY3lSr4XxPfLvTTCRvH/5EYS3dxY9TJrk/sqa+nq6fjm00yMBkSSr1+tx6tSprkeRN0p5NRqS0QZospM7WDpCpaIfXGmp58bG+B650Z+ImuTevaS5AJC6qjurbCoqaPXl7V4drqJSUVXPuHGU+6FUu6QXinLmWF9sVSjaFhtLYafWVreMhfFDSktpbhcsL84s8mDvnY4OSsweNw7IzHTvsYOEgGgWuHbtWqxcudL7J546FfjhB3q+e7fVYHFEbKxV9t7TfU8Y72OxkFs2JkZse9sQ4Zw5vW+nFJOJJrmRI33eddQpNBoqtW5spLyAwYNd/hxVKaPIfV9fT8JaBoN4voFOR8ZSdTXfMIIRo5E8ZKJhWbMZ6Z0GSocmFCETJ7p3PCUlpLk1YYJ7jxtEBISBsmjRIsy00YwoKirCCy+84PkTjxtHBkZ7O62CLRaxCVSnIwNFrw+8lS3jmNpaeoh0ru7osIYaoqK6l7C7SmUl5XNkZbnvmN4mIoKSZg0GMg6ys106nKTW0Er322/JgNu9m9ShRQgJob9XVRUbKMFIdTVVZIr+bU+eRERrPQCgPG0CMtzZlbuhgQz0adM82+07wAkIAyUxMRGJIjcDdxMWRkbKnj2UXJWfL9bBMjTU2iqbDZTgo7oa585rsf9IjMPIRP/yY7isM7xT2H8idnwtHsNutZfjaTZTDsysWZ4pe/Qm/fpRXs6335LRlZzs2vHkYwFUzSNqoABkRBYUUPjJX5R4GfdQWalMFmCHNbxTMnAm3FZf09FBocSZM9kQdkAA+oW9jFxuDCir5omIcLvWA+MnlJVhf3l/NDSqYGi1/0g+Z/3NFKRMdbi97UOS6AbZ43xaUwP070+S9sFAZibl5zQ3uy45P2wYtawAgLw8OqYoOh19t6LaR0xgIHcvFs3/kqSu5oBmdQjKMqY42EEBJSXk9eTQjkPYQHHE5MnONQ+MjSVXsZLJkfF/2tuB0lKYJHI+qlQSIiN6eYRbMPA8/WYsKjX0ORN737aXhy5WwqTRF2jqSBLdREeMUKTn4PeMHEnXm6ty+Go1GTsArVZtu9A6IiqKrlkuNw4u5E7zovkn+fldlZjnk8fCFCbWVFBoHLKqMod2HOKxEI9er0dLSwvS0tIQEhIQkaSeiY+nsM7Jk2T5nj8vFraJiaELorpauGMmEwDo9Z2TDGmORIQDt1/fi/poSQnwPsmnq0eNxOJbIgG4QalUlulWKJTo96hU5LFsbASOHqWkWWebss2aBfznP/R82zZgwQKx/WTZ+/Pn6fxMcCB3LxYNuduEdwoz3NQzy2ym39X06RzaEcQpy2HNmjVobm5GTafq4vbt21FVVQUAuOmmmxAdHY0VK1Zg3bp1WLVqFVJTU7v2/eCDDwAAhZ3hj/Xr1+NwZwnv3Xff7fQH8ShTp5KBAlA+yvXXO97HVvbexcQ/xo+oru7s8yKQn2DbaHKKG13EVVXkaYiPd98x/QWtloyL+noqwXS2adrgwZTLUllJEgENDeKr59hYqtLq6KDEWSbwOX9evHuxJHUZKBaVGkVp090TaiguJqVYzm8Sxqmrb9WqVaiQdSAAbN26FVs7NQcWLlyIaDseg3fffbfb62/lZDb4uYHSaVgJGygAeU4KCujmFIhloMzFFBeLu2ZtQ4LuMlCam+n8IsnagUp0NIV71q+nm4Uzk7lKRWGeNWuo+m7HDuDKK8X21elIX0avB1JSlJ+b8S/a26lCTNRALSzs0jmqShmFtnAdIiG5NobGRvpNTp8eXGFZD+OUgfLpp5863GbZsmVYtmzZRe9vVSqe5A+kpZFr8Px54Phx8Q62Oh2Vo9bVWZP2mMClpYVW5CJ/+/p64NQpep6ZSeXA7qCykowTVytd/J3MTPqeGxqEZckvYtYsMlAACvOIGijh4ZQDU13NBkowIHcvFvXG2VbvZLkhvGM2U17VtGmBLQngA3hZL4JKZe3No6R5YGQk6Ttwwl1wUF0tbpzu20erf0Bc4M8RcuLo8OHB7yKOi6MKJVdaRmRn0+ICAI4dU9YIMCyMvGVM4FNdTbIPoqKZNgZK6UA3NAcsKeHQjpOwgSKKbfNA29wCe8iy927u2sr4iMpKMjpEEjdtfyO2vx1Xz5+R0Xc6nubm0vftrAy+SkVeFKBbXoEQOh3lwLipTxDjIySJwuyiYZXSUms/pmHD0Brpoue7sZHGMG2ae1tc9BHYQBFl6FDryvnAgc5ESQHkhDvR7Rn/RJIoji1SkdXeTg0mAbrRuaMapKODuu2OHOl8ZUugkZ5OoSxXvChyuTFAYR5RYmPp5sLez8BGaddxWyPW1d47cmhn7FiStGcUwwaKKLbNA9vagCNHxPbT6egi4e7GgU1dHYUIRMI7hw9bwzGTJ7vHoKiqopt1X6oI02pJdK2+3vljZGZa4/4nT4obHBoNhXNtigGYAETWohKVerA1UKa7GN4pLSUje9IkDu04CRsoSrB11YuKtsm9fHglFtjo9eJt2t1dXmyxkJE7apT72737OwMHkqZQU5Pzx5DDPADw00/i+0VHk9dMcrGCg/Ed58+TcSBSRVlRQU0rAQovupKI3tRE1y2HdlyCDRQlyM0DAboJWSx2N+8iIoIT7gKd8nIxHQWLxWqghIbSb8ZVamupX82gQa4fK9BISCAPSKfOklM4G+aRZe/r6pw/N+M7TCaad0XDO7aKw654T8xm8p6MGdO3PJ4egA0UJYSHUzwRoJvG2bNi+8XGUoIjy94HJh0dNNGJhHfOnqXfBkC/lfBw18+v11PlTkyM68cKRIYMIcOvo8O5/QcMsBp3Z86IJ61HRXEVXiCj15Nx6e38k/Jyqh7j0I7LsIGiFGeaB8bEcMJdIKPXUx6EiIFiG95xR3lxQwOFGoYMcf1YgUpGBnlSlJQJX4gzYR6VinJRysudPy/jO6qqKLwuEhbV6626RVlZ1vJ0pUgS6SWNHcstTtwAGyhKmTJFefNAW9l7JvDQ6ynpVcQb4m4DpaqK4uGJia4fK1AJC3M9WdaVap6iIudLnRnfUVgorvq8a5f1uSvhHXkh01ekADwMGyhKiY+3rmaLihDVJJjlLyfcieatMP5DSYmYyFN1NWkuAFRa7Kp6sMFAOjrDh7t2nGBg4EC62bS0OLd///7W9gBFReI5YbKaLVfhBRZNTb4pL66tpbwT0fMydmEDxRlswjzpxbvsbGiDrew9Ezi0tpKLX2TCcXf1TkUF3ZhFO7AGM/3706rUlTCpM2GesDAKE7iSpMt4n6oqMlJE8rbq66mFCUDXmrNy9B0dtADti8nsHoINFGewKTdOKxYM87DsfWBSXU0raKX5J64aKO3tVA0wciQ3mgQorDpkCIXazGbnjjFzpjU8u22bePlweDhX4QUact6QyLWza5fVsz19uvOJrTU15DV1Nn+FuQie+ZwhI6OriVj/iqMIMwpoNMi1+Cx7H1hUV9MNMcRBX02DwSre17+/68qRVVU00WVmunacYCIzk8qtnfVCJiQAI0bQ87IyylEQQa7Ccza8xHiXjg7624pWvdmWF7sS3qmvpzBiX9Mq8iBsoDiDTfNAtWRBerlg80CdjlZinHAXGEgSTXQiQksHDljLYCdPdq280GymkvRRo0hNlSEiI+kG4K5qHtHO6rLsPYd5AgNZu0akC3ZzMyk/A7SwyM117pytrZSnxgsKt8IGirPYhHmySnfa2dAGeaLjhLvAQP5beTu8o9fTZJmT49pxgpHsbLoRtLY6t/+MGVa3/08/iYV5uAovsKiqEq+6273bGjJ0NbyTmtrlWWfcAxsozmIjnJVevh9qs4BXhBPuAovqarE+HmYzsK/TixYRQZ4PZ5EkSqYeOVK8RLIvkZJCoS9nc7ni4oDRo+l5ZSUJt4kQHU0VWlyF5/8UFYmHWdyhHitJNE8MG8b5Ym7GQWCd6RWNhpQCN21CaEcrkssPAxjneD854U5WpGX8l8pKsT4eJ05YVYInTnQtLFNXR6Xszrqagx21mm4E586RsXDB36a1Dfj4S/vNGXNi5mAaDgEATrz3Ew5OHeb4vFI6YLFAu2cLJt06DNlTU53+CIwHaWmh6jeRqjuDwdp1vF8/+l05Q2MjeVnT053bn+kVNvdcoVs1j2C5MSfcBQZms3iinTvDO9XVlGchEj/vq2RmkhFnI9wm24SSpIKh1f4jv/9MWFRkxKQV7YTBAIf7GNrUMLSHoKGyDfs+y/fBh2aEqKqyGgyO2LfPmg84bZrz3g+9npLi4+Od25/pFTZQXGH8eJg1NDOmF+8Wi2fLeShcbuzf1NaKydtLklVRWK0mD4qzNDdTWKcvy9qLEBNDHiabZNlJoy3QxUqIjHD80MRFoyqFwnCxzRVINRYK7acCXd+mNid7AjGep6JTOFNj34sGwD3ibGYzefI4X8wjcIjHFSIiUJE6Fmml+xBpqKFGcY5c87YJd66WojKeo7oaaGujyhE7xDaUWjUXRo50raFfRQW5mV1p895XyMkB8vIoGTIsDNmZErIzFeijhEwFVlCY5+qoncD1jqXJP/5cBYNRAwjKpzBexmymPCGRHjhGI7B/Pz2PjaVr1xlqa8lzwtL2HoE9KC5SljnN+sLW1W+P6GgKH3DCnf9SVia0Cusm1OdK7522Nsp3GTGCO6CKMGAAVU0464m0DcXtEgzPqjv/Lnzd+ieyUrdI/smBA2SkABTeEfG49ERdHXk83dG1nLkINlBcpCzTie7GcXEUt3RFz4HxHEYjUFoqNNF1M1BcyT+prKTcCk60EyMkhLxNzc3iirC29O9PJcsAVfIIXYudBoqzSraMZ6mqovJzB15PAN3DO85W7xiNlPzEnnCPwQaKi7RGJqCqX2fOQEGBmFaCLHtfIdhokPEuer2QvH14WwOSqk7Qi4wM53vmdHTQZDdypPMrub5IVpa1mZ8z2CS5Cy8uADZQ/JXiYrGmniYTsHcvPY+KAsaMce581dUUjmXtE4/BBoobKE63CfPIP3xHREZSqSTjf1RXk9HgYLLLOL+3K3HSJe9JVRVNcrwSU0ZcHOWiOCt8OM3mulVqoDQJtLdgvIfBQG1ERMI7hw7R9gBdt87IAsjaJ0OH8qLCg7CB4gaK0pyY6OLiyINiUyrJ+AlFRUIiaZllNrkLzhooFgt5AEaN4h4ezpCbSzcLZ9pHZGdTqAegPkqipf+SxFV4/kZVlXhTT3eEd5qaKJeQk2M9ChsobqBOl4Xm6M7Ki6NHraJd9oiJoR85h3n8i+ZmmuwcTHTqjnakVxygFzqd86XBNTVAYiK3aHeW9HRyszvjRVGprIZlRwclTooiV24x/kFlJRmOjpp6ms3WRWR4ODB+vHPnq6mxNq9kPAYbKD0hScoy9VUqlGZ1elHMZmv5moN9EBLCbdz9jepqMhwdlAsnlx+GtqONXkya5Lybt6aGKndESiOZi9FqKVnWm3koKhV52biaxz+wWMTLi48etYbnJk1yzmtpNpPHbvBgrrjzMIoNFIPBgPfeew9PPPEErr76asyePRvfffed8P5NTU145ZVXcO2112LhwoV45JFHcOrUKaXD8Bz9+tHNqbFR0W6lmTYTnWi5cXw8UFLCqrL+RGUlTXgODI70EjdU7zQ00G9t8GDn9meIrCy6OTmTFzJypLVb9f79YqEitZrKS7kKzz+oraWHiPqyO8TZ5HYUXHHncRQbKA0NDVi5ciWKioqQq7BfiMViwdKlS/HDDz/gxhtvxAMPPIC6ujo88sgjKCkpUToUz6DT0YSncPKpTh5lteBFJzqdjnJQuEuqf2Cx0MrYkdiaJHWVF5s1WmDcOOfOV1VFxklCgnP7M0RCAl2zzjThDAmhlTRAC4WjRx3vo1KRbg3nofgHVVWU9OqovNhisWrehIY6r/pcV0e5TyLlzIxLKDZQEhIS8MUXX+Czzz7Dgw8+qGjfzZs34+jRo3jqqafwi1/8AjfeeCPefPNNqNVqvP/++0qH4jlycsiNp6CcUFJrrBOdwSA20Wk0NNn5i3HW16mvp5WYo0S7s2dJORhARepY57oOGwzW8ATjGioVGXoWC+WSKMWZME9ICIn5Mb6nrEysEufkSTIuAMo9cea6NRrJg8YVd15BsdR9aGgoEpxc8W3ZsgX9+vXD7Nmzu96Li4vDvHnzsGHDBrS3tyNUpI7d0wwYYG1GpuSzTpkCbN5Mz/fsEUvAiosjVdnp08Vq+BnPUV1Nq+i0NPvb2YTwyjKnwcHWPVNeTquwVO6K6xYyMuharalR3ipgwgQyODo66G/7q185zi3Q6Whh0dbGKqI+4tyucuz/7DRMtUYAg4DD9tfbE3bvhLwc2BF2CQoddL0GqDt2N+Tfl7OaR4wivJoke/r0aQwePBjqC7pGDh8+HG1tbf4T5omKIi+KbG2LIk90AK3ERBQu4+LoPBzm8T3l5Vavlj1sDZQMJ+Tt29vptzFihPMdVJnuhIeTN8qZsv3ISGDsWHqu14vpE8lNP53VYGFcZv/qfDSUG2Awauhhrxu1AUgroPwTszoEZ5KmOu5g3aqCJNFc0OWgaWgg7RNH1UKMW/Dq7FhbW9uj90V+r6aXvA+9Xo9Tp051PYqKijw6TgAU0waUuYwjI4HRo+m56ESn1dI5zp9XPkbGfZhMVFHlKLxTXd31d63uNxitUYnKz1VZSV6azEwnBsr0ysCB5LZ3JuncNswj0ptHvm6dyXth3ILcVVoFx52o0wz5iDFQzlBl6hiE6KKEOlhHRkjQxUqYNNpCEgQxMax94kW8agYajcYeQzjye0a5edMFrF27FitXrvTk0C5mwACq6KmrA5KSxPebOhU4eJCe79kjpm8RG0s3PVfKVRnXqKmh1bcj162NUnBx2lQ7G/aC2Uz5J6NG8SrM3fTvT5UVxcXWyhxRbBs97t4N3HGH430iIympevx4Ljf1BZ0O6ohQM26/3sG2H27vejrgumm4/Qon2hUUVJMRnOjEooRxCq96UMLCwtDe3n7R+/J7Yb3UpC9atAhvv/121+Ppp5/26Dg7B0M5ArW1yvazLTkVTbiLjyePC1cF+I7qagq9ONJFsPmbFjljoFRXk8ErN6pj3IdKRe739nbl/XISEqxie4WFYgKKOh15UFj23jdInTo0ImHSnTvpX5Wqu7dMFIuFvKxDhrAx6kW8aqD069evxzCO/F5vybeJiYkYOnRo1yNLDr94msxMWuX2YFT1SmIiGTYAeUVEjI7wcMoOZ1VZ31FS4jhJ2WAgSXQALVFJqI3LUXYOSSIvzahRzlUQMI7JzCSDX2n+GND9xiWiZRQdbVUeZryPudNAcWQwlJRQd3IAGD6cfh9Kqasjg5S1T7yKVw2UwYMHIz8/H5YLFBhPnDiB8PBwZPhbbC81lVa7SgWZbL0ooqJtUVHA2bPOtY5nXMNgoARZR43GDh7sykkqy5yqfCUli0kp1A9iFBAZSSXHzoioKS03VqvpN8Cy975B1Esme08A53vv1NbSdcuKz17FYwaKXq9HUVEROmySTOfMmYPa2lps3bq16736+nps2rQJM2bM8I8SY1tCQmiyU6gq65SuQlwcrcSUhpQY1ykvJ8+GIwPFxtjsphwsil5PlSYiHVcZ58nJIW9Ya6uy/TIyrGXfx46JhW5iYigPRWlIiXENo1H8O7dNerbtYC2KyUTGKIdlvY5TWXpr1qxBc3NzV2hm+/btqOp0c950002Ijo7GihUrsG7dOqxatQqpnRf93LlzsXr1arz00ksoLCyETqfDl19+CYvFgl/+8pdu+khuJjOT8hJaW8Xd8gMHUsJeVRUJtrW0OE7ai4oiwaGKClYW9TZFRbQStpegbDYD+/bR84gIVKWMBhRE/tDSQr8fZ5sKMuKkplKyc2WlskopOT/hyy8p52DfPmDePPv7yHkoNTXWzsiM56mu7uyF5KCooLoaOHOGnufkKNfIAWhhkZjI2ic+wCkPyqpVq/Duu+/iyy+/BABs3boV7777Lt5991002Vl1aDQa/OUvf8Gll16KNWvWYPny5dDpdHj99deR6a8ll/37AykpylzGtolYol1SVSpa9RUUODdOxjkMBkqKdNSV9ORJ64p6/HhYNALKlbbU1NAExzcxz6NWU65Ba6vyhn5KvZ8RESx77wtEdaPcEd5pbCTPp4haLeNWnPKgfPrppw63WbZsGZYtW3bR+zExMVi6dCmWLl3qzKm9j1pNq16l2itTpgBffUXP9+wBZs1yvE98PIUbGhsd63Ew7qG8nBLgHJWD2+YSTZ0KKGmeK0lkCOXmcgWAt8jMpLBpfb1j49OWYcOsImwHDlCCvKPQc2goJWKOHOnKiBlRJIkWFSqBlADb8I4zBors+fTXBXSQwzKWIqSlUQimuVl8H9suqfv2iQm+xcaSUiFX83iPoiIyQh3pz8gGilqtvMlYUxPlKjiS0GfcR0wMGYRKk2U1GqsmSlsbcOiQ431iY0loUWnOC+McDQ3ksXJUXtzQABw/Ts/T0pwTWJM9n0q0sBi3wQaKCAkJFNdWksB6YZfUY8cc76NW037+Ivkf7MjhHUdlh6Wl1sZww4cr927V1FB5opKVPOM6OTl0TfUiANkrSsM8Op31psl4nqoqmlMdeSN377aG+KZNU+69tFjI6Bw6lD2fPoINFBHkbqmtrcrKgJ0pN46Lo1U9r8Y8z/nzFAKIi7O/nY16bLe/qQgWC4UJRBSFGfcyYAAtLJT2yxk/3hrW2bPHcR5LSAglUbMeinc4f15MnM3V8E5DA2uf+Bg2UERJSyO3sZKSY2eaB8qrMW4e6HlEqneA7qtopSqUcj4Rh3e8T0gI5ZQ0NSlbWISFWTuR19cDp0873icqihLcWcfIs7S3k9fTUam+wQDk5dFzW/FMJej15IXjfECfwQaKKHFxFMNUEtOOiiLVUIBWV4WFjvcJCaFJTg4pMJ5BNLzT2EgVPACtpJSWGtbUUNk5T3K+ISvLmvSqBGfCPDU1tLhgPEd1tdWzYQ/bvL+pU5V3DTeZaPHC2ic+hQ0UJQwaRD9cJaWLzoi2yc0DTSZl42PEEQ3v7Ntn/XvbNpQTwWymSZInOd8RF0erYKX5IZMnW29qItetnETPeSiepbqa5kVHlVWulhfX1JDnhcM7PoUNFCWkpVlLF0VxJg8lPp4Scjmm7TkKCym0I1q9AygP79TX09+SBZ58i+zeV2Lw63QUHgIoSVru5dIbajU9WPbec0gShdEiI+1v194O7N9Pz2NinCv/bmggeQl/UzfvY7CBooToaFoNK6nmSUqiFRxAioYiIaLQUFp582TnGVpaKP/EUXinvd0qshcTQ9n8Sqitpd+LIxVhxrOkp9N1qDRZVqn3MzaWflcikgKMchobadHmKLyTl0cl4gAtEB0tQi7EYKAGrt5qSsv0ChsoSsnOJkteySTkTJgnOpqaBypVwmQcI4d3HE10R45YJ7rJk5VNdPLvY+BAZ0bIuBOtlsrDleaHOJOHUl+v3BBixKiqojCao4Z9tuGdGTOUn0evp+ovVn32OWygKGXAANKzUNLO3dlyY72eJztPIBrecaW8uK6Oficc3vEPsrLoxibSAFBmwACruNepUwhvdXDNh4eT5grnoXiG8+cpcdVewqvZbJ1jIyKAsWOVnUOSrNonShNrGbfDfwGlhIdTsqySPJScHKsS4eHD5EJ0RGQkXSisKuteRMM7kmSd6EJCrGWnotTX0+8kPNypYTJuJiGB5MqVGg+yF0WSMKBEYHERFgYUFysfH2Mfk4m+V0dez6NHrUboxInKc0gaGiic64zqLON22EBxhqwssq7bBdvZqlTWFXhHB3DwoNh+EREU5mFtBfchGt45d87qvRozRryTNWBtz84xbP9BpaKkR7mySpRp07qeZhTtsrNhJzod5Y6JLEIYcfR68ko6um5dFWerqaEwvqPzMF7BqWaBfZ7UVCpBq60FQAJcrW3Ax1/2HjJI6ZiOS/ENAKBg9R7srJ7t+DzSQGCvBdjwI7SRWkxaPBjZU1Pd8AH6MIWF5BFRUr2jNLwjlyim8t/Kr8jIIE9Kba14fkFuLoXqamuRfD4PIR1tAMJ63z4mhipNqqvZQHUnVVW0IAyz891bLFYDJSREec+sjg46Bqs++w3sQXEGrZak7xsaujpwS5IKhtbeH4W60WjXUnlcasletLaY7W5vaFXB0KaGoT0Ehvp2NJxvwb7P8n34oYOA5mYK74j0xHHFQGlooBsbt2f3L8LDqXRYSf6YWt319w8xtyOt/ID97UNC6CbHStDupbDQsRczP99aJTlunONy5AuprSUDllWf/QY2UJwlIwMIDcWkYW3QxUqIjLD/CI8OQXk6NQ8Mb29GVuMxh/tERkiI1Jq6+lSZ2rh80SXKy8l4cKTqqtdTaA2g1VRiovg5jEaKe3MM2z8ZOJBudC0t4vvYVPNklQmEeaKjyRDm0Kx7aGoig8/T4Z36elp4ct6Y38AhHmdJTgaSk5FdV4XsqwUt7vjJwN+2AgAu0+4ErhcQEKqrx8eb+sFgVFjLz1yMM+JszoR3kpKAlBTFw2O8QP/+pItSXCyuTyPnILW2IrNsN/ZbzPa31+msORPcwdp15PLi5OTet5Eka3mxjddLmLY28niyLIBfwR4UZ9FoyNpWUrY4caL15ijaPDA2lrVQ3IGS8I4r5cWNjZSMqVQcivEOKhWVkLa3U8KsCFotNf4EEN7ehKTK4/a3j4qiJFkuN3YPsmClvbLfkhJKgAdIOVZpkqusfcILC7+CDRRXyMigOKeouzg62to8sLJSrHkg3+jcg2j1TmsrcOgQPU9MtKoAi2Aw0Eqb+3f4NxkZVGauJBfFJsyTXuwgzCNrdbAStOt0dNA8GRNjf7sdO6zPbSqvhJAkWsCw9onfwX8NV5ArNZR0OLaNjW7dKraPfNFwSNt55OodRxPQwYPWMtTJk9GVACRCbS25oWXNG8Y/iYoi76eSlhWTJsGiot9OWvEux95PnY48dtzw0zVqasiQdNTU01Y9VqmB0tREnmpeWPgdbKC4gqytYDCIJ8TNnGm9SW7bJrafvL2oS5rpTnMz5Rx4unqnuZl+D7wK839ycih0I7cycER0NKpSRgMAYpoqyPiwR2wsJWSzErRrVFVR4rmdxNWopgoq7QbI8FS6QKiuJhE/zhfyO3gmdZW0NJqMRHNRdDoqgQPo4jt5UvxcbKA4h2h4x2y25p9ERFBypChyjxAuUQwMUlPpoSBPpDTLZmXuqDdPWBjluXAeimsUFdnXPgGQUeSC98Rspofc8ZrxK9hAcZX4eLopKQnzzJljfb5li/h+SlUwGUI0vHPqlNXQHD9emY5JTQ31bklIcHqYjBdRqynnoKVF2PtZmqnAQAFo1e/I08L0TksLtfpwsLBItzVQlJYX19aS54TDO34JGyjuIDeXYs2i1TZTp1p7RGzfLm50WMy8IlNKU5N49Y7tTUdJeEduMJabqyxnhfEt6enk9WpuFtrcEN0f+rjOpOkzZxyHb2JjKRleieYKY6Wqiqri7OgWRbTWWquqMjKUGxq1tXTdKmllwXgNNlDcQVoaWfmi7dwjIykBE6B95KoRR0jgygClnD9P37FI2aEc3lGrgUmTxM8hT6Ic3gks4uPppqYgT6Qo3WaF7qgzeWws/TaqqpwcYB9HbpRqp5Ixq2wXVHL1gFLvidFIXtLsbCcHyHgaNlDcQUwM9d1QUhVgG+YRreZRqUjhlHVRxBEN75SVAaWl9HzYMMdqs7bU1tKNzlGlAeNfqFSkFNzeLnxNFaUrCPPIN9Zz55wcYB/GbKbE1+hou5tllbgQ3tHrSbiPtU/8FjZQ3EV2tjXhSoSJE61Klrt2kTXvCLWaQjxKDKG+TFOTd6p3TCZleimM/6DQ+1kbl4Pm6M5Gg0eOOA7fJCZSOKi+3rVx9jVqax12L9Yam5FWmUcv+vdXfg02NdFiJIQF1f0VNlDcRVqaMvEnrRaYMYOet7Z2Vy/tDZXKmjjGOOb8eXKxi4R3nDVQLBY6Pod3ApPYWJI3FzX6VSqUZXaKtnV0AAccNA+MiyPjRy6DZcSoqqJ50U7Dv7TSvVBLnQvCadOU5X81NZF3JjPTxYEynkSxgdLe3o7ly5fjhhtuwGWXXYZf/epX2CtycwWwceNG3Hvvvbjssstw7bXX4s9//jPqg2VlERFB7mIl6pSzZ1ufi4Z5wsPFFGgZuimIhHcaG4ETJ+h5WpqyRDuLhcJ7jpQuGf8lO5v+joLez9JMm1DCLgFVWZ0OOH6cRduUUFxsLSTohfRCG/VYZ8I7GRmsfeLnKDZQXnrpJXz66adYsGABHn74YajVajz55JM4fPiw3f2+/PJL/PGPf0RsbCx+/etf49prr8WPP/6Ixx57DEaR8EYgMHAgTUiiE9GoUeR1AYB9+8SqCeLjrZ4BpncaG6k/h8gEtH+/NQdBaXgH4CS7QCctjTwdgouLqpSR1vDs/v2Or/ekJPIIlJS4Ns6+gsFAc5y9nC6jEQNK9wMA2sJ1FKoRxWymvKPBg7nqzs9RZKAcP34cGzduxP3334+HHnoIixYtwuuvv46UlBQsX7681/1MJhNWrFiBsWPH4tVXX8UNN9yA+++/H88++yzOnj2Lr7/+2uUP4hekplLMWVQTRaMBZs2i5x0d3eWaeyMmhtyTXM1jH9mIE0l2dSX/RK3m8E6gExFBpaaCYR5JHWKt8jIYgKNH7e+g1dKN8NQpFwfaR6iqorCYPa/kwYMIMdPCtjRzmrKeZfX1rH0SICgyULZs2QKNRoNFixZ1vRcWFoarr74ax44dQ2VlZY/7nTt3Ds3Nzbj00kuhsrFYZ8yYgYiICGzcuNHJ4fsZoaFklYuWGwPKwzxqNV2MxcXKx9eXEK3eMZmseQQxMcpWYgCdgzUUAp+sLLquRL2fNs0DhUTbkpLoN8nS946prCRtIXvJqzaLuZKsGcqOX1ND4XjZC8b4LYrSl/Pz85Geno6oC/6ww4cPBwCcOXMGycnJF+1n6rzow3qQLA4LC0N+fj4sFgvUwdDDJCODDBWj0aFEMwAyaFJSKPH1yBGrsqE94uLIXWww2E0i64uc21WO/Z+egqnWBKgGAYft/6ZSSw9iXmsrAKCg/2Ts/Mp+3FumcxfuNh0sDBhg9X6KlJ1OmEA30I4O8sD96lf2wwWxseTVO3eOzsP0jMVC35G98mL5OwfQro1E5YCx4sdvb6drlsOyAYEii6CmpgYJPUh5y+/pe1kdpKenQ6VS4ciRI93eLy4uRn19PYxGI5rs9LLR6/U4depU16PIn+WjU1JotSQa5lGprJooFgvw00+O94mLIzdlLx6rvsz+1floqGiFoT0EBqMGhlaV3UfGqR+79j2bOt3h9vJDAt2MtFFiBg3j52i1yryfkZHA2M4bo15P+kSOiIuj3luiDQr7InJ5sb38E5vy7uIBU2DRKGhJIWufpKa6Nk7GKyjyoBiNRmh76E8S2plt3Vuya1xcHObNm4d169YhKysLs2fPRnV1Nd544w2EhISgo6PDbqLs2rVrsXLlSiVD9R0aDXW0/fFHWpWJMHs2sGoVPd+6FbAJofV6DoCExXgl0A1TG7UNUEFyGHnRGpsxsJRcxcawGOgHTUakRrArdUcHtNFhmHTzEFeGy/gTsvezrc1u99wupk6lJFmAwjyOGs4lJpJ3oKSEjCHmYqqqyDOckdH7NjbhncJ0heGdpibKH1LSZ4vxGYoMlLCwsK5wjS3t7e1d/98bTzzxBIxGI9566y289dZbAICFCxdiwIAB2Lp1KyLs3E0WLVqEmTNndr0uKirCCy+8oGTo3iU9nVZYoiGYjAwyNAoKgNOnyRXsyLjR6Wj7adP4YrPFQgZGRLgFt1/vwNhYtwUwd/52F8zBrTepAQiUmra3003mppuADF6JBQ3JyfSoqRFLfJbbVQBkoNxxh/3tQ0LoWj15kvs29UZZmf35zGLpyvnp0ISiNHUihH2YLS2UL2bP+GH8CkUGSkJCAqp7aFZX0xnOSLQTW42OjsZLL72EyspKlJeXIyUlBSkpKXjwwQcRFxeHGDsZ24mJiXaP7XckJVGop7JSPEdkzhyrmNO2bcAtt9jfXs5DqazkbHRbZC0LlYCx8cMP1ufz54ufo6bG+jdmggfZ+2n7u7BHQgJtf/o0JcBWVDj+TfTvTwnulZX8+7mQtjaa0+wJK5461VUOXpE2Hh3aCIRC0OspdxxPSnLDYBlvoCgHJTc3F6WlpWi5QN75+PHjXf/viOTkZIwbNw4pKSloamrC6dOnMUlJY7ZAQK0mF66CVu5d5cYAsGWL4/1CQylZ7Px558cZjJgFO0OXlNCNBSD9GiUy2Y2N9Pdlz1XwkZ5O1R2CHY4VV/NERVGGNffnuRi5e7E9A8VGGE9R9Y7FQt/7kCHsuQogFBkoc+fOhdlsxtq1a7vea29vx7fffosRI0Z0VfBUVlYKJbKuWLECZrMZixcvVjjsAEBhK3ckJQEjRtDz0lIxaeyYGErOE+3/E+w0NAAdgt/Fhd4T0UmrrY2MQ3YTByeJiZRAKSp9b2ugOOpuLNOvH4V5DAbl4wtmystp0dVbebEkWfNP1GprywER5I7mfN0GFIpCPCNGjMC8efOwYsUK1NfXIy0tDevWrUNFRQWWLl3atd2LL76IvLw8bLXR9fjoo49QUFCAESNGQKPRYNu2bdi7dy+WLFnSVaYcVMTHk5FSUCAugz5nDkliA+RFcbSqj4+nVYdeT7Hzvs7582IeK7MZ2LyZnms0wNy54ueoqaHvun9/Z0bI+DsqFa2yz56l35IjwzUjgwya8nLg2DExccB+/aiBYFEREIxznzO0tND3Jytr94QcRgOA0aPRHhYDtPa+eTdqa4GRI5V1KWd8jmLhkWXLlmHx4sVYv3493nzzTXR0dODll1/GuHHj7O43aNAglJaW4u2338Zbb70Fg8GAP/7xj7jrrrucHbt/o1JRIpzRKNzKHTNnWit0tm1zvF9EBLktuXkgce4cIOIIOXDAKms+ebJYM0GZpiYK77D+SfCSlkaLCpF2EioVJaoDdL3u2+d4H42Grt0TJ8TnhmAnP5+Mf3u5hrZK20p673R00PfMHccDDsV9psPCwvDQQw/hoYce6nWbN99886L3pk+fjulKGzoFOnKPj4YG+ysDmdhYYPx4muT0eprARo60v09kJN2Yx4zp27HVhgYKjakFqi9slYsvu0z8HC0t9H1zUnJwExdHXW5PnRIzXqdOBb74gp7v3g1ceqnjfZKS6PdaXs6tElpbgcOH6bu2J9Zpa6BMnQpsEzx+XR0lNPf17zkACQLpVj8mNpYktEXj2UB36fstWxxvHx9PHhQlXZSDkfPnybuhEuhcLOcK6HSkCCpKTY213xIT3AwaRCtvkfyuoUOthszBg1SG7oiICNruzBnXxhkMnDtHoWp7YdPz5ykkBtD33YNgaK/U1ZE3W0TbhvEr2EDxNNnZNMmJJrJOnWptM759O02S9oiOppV9Xw/znD3rsD07ABLCk7/TefPs9/uwRZLoex482HF/HybwSUsj47++3vG2Go21eWBbG3DokNg5EhMptGFHRTvoaW8n70lUlP2wqU31jqLwjtFI13hWlvNjZHwGz7SeRslEB9DKSq4MaGoC8vLsb69S0Y25sNCFQQY49fUk8CSyqrKt3lES3mluprwEdhP3DaKiKGdB1DMp56EAYuXGAM0LdXV9+9o9d468I46S/G3DO7bftSNqaljaPoBhA8XTREbSRKckzCP35gHEwjxxcXSRi5Y0BxtyeMdRtVRBgVV/YvBgyjMQpaaGck9EcomY4GDgQPrXkRcTAMaNs3rw9uwRS35Vq8kDeuKE2DmCjY4O6qsTHm5fU6imhvKBAPKEiLYQASikO3QoJ7UHKGygeAPZvSjayn38eGs3z927oelw0FxMp6Mk0fJy58cYyJw7RzcHR0nCzirHWizkKh40qG8nIvc1BgygkmCRxUVYGF23AHn0ZBFARyQlkYHdFwUXCwtJMNGRoq6tR0pJeKe5meZRJQsRxq9gA8UbDBhA4QdRd7FWC8zoVElsa0NasQMBKLWaHmVlro0zEBEN75hMVm+UVts9GdkRsrYFh3f6FmFhlFwpet0qVZWVz2GxiBs0wYLZTN6TkBDHuWPOlhfr9XTNKkmoZfwKNlC8gdKJDugW5hl4brPj7ePiKITR11q5i4Z39u2z6lpMm2b1UIlQU0OrMCV6KUxwkJVFBq2dbutdTJ5sTaC2Tep0RFISJXn3pUq8khKqynGUG9LURIYMQJ4WOezmCNnrOXgwez0DGDZQvEVWFq0WRCY6gGTv+/UDAKSW7keY0UGmf1wceRMqK10aZsBx7hwZgI4mIVvtEyXhHbOZYuUs8tQ3SUmhJMvOhqh20emAYcPoeVkZ6ZyIoNOR8dxXkmUtFlKNBRyX/trm80ybJm5sNDTQnMiaRQENGyjeQslEB1BSV2cDQY2lAwNLttvfPiSELuS+FOapq6PP22nI2d1OVvhMSADGjhU/hzzRcXinbxISQqtw0VJgZ8I8KhWFEI8fF89TC2TOnyePkUhljbPlxXo9STyIthlh/BI2ULxFSAj1+BCRz5axCfMMKtrsePvYWPIo9JWKANHwzubN1lXYvHnKMvpramiii4pyephMgJORQeX/In2enDFQAArzVFVR6COYkSQyxDo6qMLRHq2tJHwHUPXc0KFi55Dnv+xs58fJ+AVsoHiT9HSa6ES7mA4a1LVyT606gogWvf3t4+Op4qCqysWBBggi4R1Jcj68wxMdA5DxkJwsVjo8YIC1auTUKWWJ8SqVtZw2WKmsJHE6R5U7APXMklV5p04VF0iUe/qw1zPgYQPFm/TvTxOdqCaKStUV5lFBQlaBg+YTYWF0QfeFcmPR8M6ZM0BxMT0fPlzZpFVXR0afEt0FJvhQq8n7KeJBAaxeFEkC9u4VP09SEuWh6B0sRAKZEyfIMyISenE2vFNfT3+vsDDFw2P8CzZQvIk80SkRVLMph806u9nx9tHR5FkI9i6pouEdZ7VPADJQBg3iHh4MeT9FEzSdDfPExtLcIIsJBht6PXmIRLwnJpPVuIuKAkaPFjtHWxuVLbP2SVDABoq3SUsjI0LUSElPR01CLgAgoeaM4yTY+HgK8Ygm4wYikkRJdhER9m8a7e3UewegSeuSS8TPYTJRrgr38GAAuq5Ec5dyc62evUOHlJX+x8UBJ08Gp1zAiRO0qBAp1z982BoKnzJFvGeWXk8GkCPpfCYgYAPF2yQkUMhAgQFRlGMjfS/fcHsjMpIu7GBuHlhXRx4UR7Lzu3dTgz8AmDnTcVKeLTU19LfiHh4MQIaw6E1SraabKkBGspzoKUJiIlBdbQ1LBgt1dWR42etYbIsz4mySRAs/lrYPGgSvOMZtqFRUtnj6NIVhBBK/inJmY/ze96CCRAbKrbfa9xxERJBom6hbNNAoL6eJyFFuiCvhnYYG+v5EOiQzfQONBoAZra3Ax1/avwGmWqZjHtYBAApX7cCOSlHvnQZaKReTwk8hO5hExk6fptwQkUocs9kaGgsNtbYQcIQsbc/aJ0EDe1B8gdx0TrDDcWtUIsr7dxobZWWOY9Tx8XQTb2hwbZz+iCRR4mt4uN3JO6JFb+0E3b8/MGqU+DmMRqqqyMhwbaxMUKGNpIZ2ElQwtNp/FMSNQ1so5UdlFvwElV7vcB/50dAWin0HLMEjutjURMJsCQliBtfJk9a5a+JE8WRXvZ6uWUeJ80zAwAaKL4iNpTi1gmz9s1lzrS8cdTiOiaHVRDBW88jhHQeTUPaZjdaqi/nzxUsUAWuLdo5jMzZMWjwYukQtIrUmREZIdh/h0SHIH3ENAEAtmTH+7BcO94mMkKBS0W/W1KEKnmTZ/HxryFQEZ8I7ZjPljeXmBo/XieEQj88YNIhW+Eaj0AqhMGMmZux/CxpLB4V57r679zirSkX/V1Jild4OFs6fp7wSe+XCkoScfJvwzrx5ys7R1EQrN9GcA6ZPkD01Fdlj4oBPPiHjNynJ/g7zrgLuXQO0t2PY2XUY9t83O+wB9fGXGhhaQQb1yZPAuHHKcqf8DYOBeunExYktEiTJWl6s0QCTJomdp76ezsFez6CCPSi+YsAAuskKiqoZw2JQnjaBXtTWkhqjPfr1oxVYMCXLytU7DsI7yfrjiG3sbF8/erRYWaOMwUDH5zg20xMREbS4EAnP6nTAZZfR87Y24Ntvxc+jVtN1XlTk1DD9hrNnaY5zZMzJnDtnnRPHjBFv6llbS38XVnwOKthA8RUaDQmHtbQIa5YUDZprfeGomic+nm62O3YET8miYHhnyLkN1hfyDUKU2loK7YhWGzB9j4EDyYAQ6Ztz3XVWz8FXX1mVUUWIiKDS3EDVNDIaqcw6Nla8qsaZ8A5ACxbRTsdMwMAGii/JyiJDQlAOuzRjqjUctH274wkyK4sSSvfvF1fB9GfOn7dm6veCxtSG7OJOxd2ICGWTHEDHHzJEWc4K07dITaVyYBGpgNRUYMYMet7QAPz4o/h5kpKoI3Kg5pLJHlwlxr5soKhU3QXv7GEx03fFis9BB8/CviQmhkqOBTVRzNpwajkO0I3Ukb6CVksX7YEDVHYcyMjVO5GRdsM7GUU7ENrRSi8uuUSZCmxzM7mIuYcHYw+tlq5b0Sq5G26wPv/yS0roFCEighYhZ84oHqLPMZlIbC0yUjyXq7TU2ixx+HDHOkcyFon+HiwJEHSwgeJrBg2iC1g0DGMjfe+wmgegOLhaTaEeJZ2U/Y3aWlpJOpi0cvJtwjtKtU9qa2nFK1ptwPRdMjPphihy3Q4eTPkUAHkBlcjfJyRQFUygXbsFBSSJoCT/y7b3jrwQE0GlYsXnIIUNFF+TmkpeDtEOxOPHW/vP7NlDjbcckZ5ON/ddu8RXb/6GQHgHFRVIKT8MAGiMTaNVmCiSRDk7wSSOxXiO/v3p5isqFXDTTdbna9aIh1zlEHAgJcuazcDRo+Rp0mrF97PNP1FioKjVnDMWpLCB4ms0GmDECLo5iiTDhYSQbDtASWh79jjeR62mFd+RI46rf/wRwfCObXz/3ODLlBkaTU2UzMfhHUYEjYaMWdGeWuPGAdnZ9Dw/n4TLRFCrySg/cQLo6HBqqF6nqIgeStpEVFfT9wLQ96TE86LVcs5YkMJCD/6AbbKsSHhh9mxgHcloY8sWYM4c+9sDdHOPjSX3cqBVqdTWUrKdveodi6XLQLGo1CjIvRTjlJyjpgbIyRGPezNMejrlLDny7AFkLN94I/C3v9Hrzz8XVzeWk2XLyvw/lGGxAEeP4lxdDPafihQqdAKAIcf3QFY8ORw/E0cdtBIAbJzH3HcnaFFsoLS3t+Pdd9/F999/j6amJgwaNAhLlizB5MmTHe67b98+fPjhhzh37hzMZjPS09Nx00034fLLL3dq8EFDdDStxvbtEzNQRoygKgK9nhJlGxvJ+HBESgqtUrZvB666SlxC2tfI4R172iRHj3aFycqSx6M1KhGAYDjLYqHyz9xc18fK9B0SE8njVlIiptcxcybw4Yf0O923DygsFCuNDQuj3+jp0/5voJSWAgUF2F8xCA3N4h7MtLPbu56fTpkJQ6v4vnILAib4UOwXe+mll/Dpp59iwYIFePjhh6FWq/Hkk0/i8OHDdvf76aef8Pjjj8NkMuGee+7BkiVLEBYWhhdffBGffvqp0x8gaMjNJVelSNKdWg3MmkXPzWZKgBVl4EAKlxw44NQwvY5teMceGzd2Pc3PUah9UldHKpQc3mGUoFLRddvWJpZTEhJCuigyX3whfq6kJCrbFZQk8AmSRKEriwUmM91aVCrH8v5ZDUeQWn0UAOWOtSdnCLUFiNSaoEvUYtLiwb781IwHUeRBOX78ODZu3IgHH3wQt912GwDg8ssvxz333IPly5dj+fLlve77+eefIyEhAa+//jpCO8vBFi1ahDvvvBPfffcdbr75Zhc+RhAgJ8tWVlK+iCNmz7ZOcFu2AFdcIXYerZY8Kfv30zn9XdwoP59WqPaUKA0G8goBaA+NQlH6dCjyDen1pLkgJx8zjCjp6fS7aWykijlHLFhAUvlNTSS2+POfi6ms6nQU5iws9N8wZHk5KcempABkbyAiHLj9ejueTEkClr7f9TL27htx+wKBXLyaGvIq3XprYLcCYOyiyIOyZcsWaDQaLFq0qOu9sLAwXH311Th27Bgq7XTfNBgMiImJ6TJOACAkJAQ6nQ5hgRJq8CRqNVWdtLaKJcvm5FhDHseOUZKZKHFx9O/27TRR+iv5+eQZCQ2170L/6acuhc7CnLkwaxToITQ3k97EYF6FMU6g01HYRbSaJzycwqsAeT/XrhXbT6WiMO7x42IKtr7g+HG6DkXl6QHKiTt5kp5nZACXXiq2X00NSTSwcRLUKDJQ8vPzkZ6ejqgL+h0M7yznPGNHUGjcuHEoKCjAO++8g9LSUpSVleGDDz7AqVOnurwxfR4lyrIqVXdNlJ9+Unau9HTK7di1yz+ltPPzgR9+oM/pKPRiE945N1hheKeykrxI3LmYcZacHDI2REv4r7nGKiq2fr14JVBSEv1eZTEzf6Kqiq5ZJdeR2Uw5OTJ33imW8NreTtvJVVFM0KLIQKmpqUFCD0mc8nt6O6uIu+++G/PmzcOHH36I22+/Hbfddhv+9a9/4bnnnsMcB1Uoer0ep06d6noUBZImgBLkZFnR1ZhS0TZbNBpr6fGJE8r29TRKjJOyMuv4MzNRm6jAE9LeTsbZ8OGsfcI4T1oaeSVFGggCzjcRlMtpT51yZpSe5cQJ6ismkqwvs2mT1dgaNkxc2r6mhow1JWXMTECiKAfFaDRC24Pwjhy2MRqNve6r1WqRkZGBuXPnYvbs2TCbzfjqq6/wwgsv4NVXX8XIkSN73Xft2rVYuXKlkqEGLoMGAXl5FOqJiLC/7YABZNDk51MCXUmJsnbjkZEUP9+5k8qORTuOehIlxgnQzXuC+fOVGRpVVXQObtHOuEJUFF23Bw6IqxBfdx1JBVgs1ETw+uvFpNqTkigPRa+nKiJ/oLaWwjRKpAva24GPP7a+vvtu8Wu3sRGYMEGZCBwTkCjyoISFhcHUQ/yzvTP+by+X5PXXX8eOHTvwzDPPYP78+Vi4cCFee+01JCQk4M0337R73kWLFuHtt9/uejz99NNKhh1YpKZS+EU0p8TWi+Kow3FPJCdTT5Ht25V1WvUESo0Ts5lWYQCtLOfOFT+XxUKu9ZEjeaJjXEcu/xXND3G2iWBsLP1uz51TPkZPcfIkGQ1ybpsI33xj9RRPmkTXoQgGAy3ceFHRJ1BkoCQkJKCmh8Z28nuJvVj0JpMJ33zzDaZPnw61jeJfSEgIpk6dilOnTvVo+MgkJiZi6NChXY8sf9cCcAW1mtydosqys2ZZVx5btyrvWiy3Kc/Pd9x80JMoNU4AauUu/x4nTVJW3VBTQ6tdjmMz7mDAAPo9KSkDdraJYFwchVRE+3d5koYGSo5NShL3gDQ3A599Rs9VKuCuu8TPp9eTcecP3l7G4ygyUHJzc1FaWoqWlpZu7x/vlE/P7UXoqqGhAWazGeYeLkCz2QyLxQKLPyZq+oqsLJrsamsdb9uvHzB6ND0vL3eu82loKHlS9u3zTc8PZ4wT4OLwjhJqaij35IKEb4ZxirAwCrcqMVCcbSIoizQWFysfp7s5fZrmKXsqzxfy+efWxOC5c8WlDuR+WUOGsLR9H0HRX3nu3Lkwm81Ya1Ma197ejm+//RYjRoxAcmcGd2VlZbdE1vj4eERHR2Pbtm3dPCUGgwHbt29HZmYmlxrbEhVFk1cP3qoecSVZViY+3ir6JlpV4A6cNU6am63dT2NjyYMiSmMjJSSzcizjTjIzKVxoJxfvIm680fr888/FBd+0WgqtKPWYupOWFlJwTkgQ957U1FhLq0NCgNtvFz9fQwNd6xze6TMoMlBGjBiBefPmYcWKFVi+fDnWrl2LRx99FBUVFXjggQe6tnvxxRdx5513dr3WaDS49dZbUVJSggceeACffvopPvnkE/zqV79CdXU17lLi4usrDBpEng2DwfG2M2bQxQ4A27Y537E4M5Okqnfv9k7psbPGCUDhLNnYnTtXWR5JZSWVhrKbmHEnKSmUKCq6sACoO7kcZjx9Gv0rjort178/JcXb0Z7yOPn5lCunJFl31SprrttVVykrS66pIW+LiCAeExQo9pMtW7YMixcvxvr16/Hmm2+io6MDL7/8MsaNG2d3v7vuugu///3vERISgpUrV+Ldd99FVFQUnnvuOSxcuNDZ8QcvKSniybLR0cDEifS8ro5WNc6g0dDq5PBhz5cyumKcAM6Hd4xGa54Pw7iTkBAKPzQ2iu8jNxHsZPiR1WL7RUVRpd/ZswoH6SZaW2meiYsTD7eUlQHff0/PIyIAJerhZjMtmgYNUjxUJnBR3CwwLCwMDz30EB566KFet+mtKmfBggVYsGCB0lP2TWRlWdFs/TlzrDHsrVuBsWOdO29UFJUf79xJHgZPlDK6apwUF1tbs+fkKEt0raykc9prPMgwzpKeTtePwSCucmrTRDCtdB/i6wtgjBjoeL9+/WghMX689xVVz50j6X0lYdKPPrJ6Zm+4QZlmSm0thaG5X1afgjON/JnMTJqERMItkydbdVN27HBNDjs1lTwxrh6nJ1w1TgDaX+YyBcqxZjNVPowcyS3aGc+QlETeT1GxReCiJoKjT3wutl+/fnTj9nZie3s7eVmjosSvI7mLOkBeF9umiSLU1ZEx5Egbigkq2EDxZ6KigKFDxQyUsDBg2jR63tJCzQCdRS49PnXKvaXH7jBOOjqs2ichId0ThB0hi1txaTHjKdRqCvO0tChLYF2woKtZZW7RZkQ2C4R2NRq6YZ844d12FefOUdWRaP6IJAEffGB9fcstygwNo5E+q783NmXcDhso/k5OjniGvKuibbaEhlIi3r597un94Q7jBCC1zoYGej5liribWJJoFTZ8OK/CGM+Slka/SyWNOG2aCKolM4Yd+1Jsv6QkSmw/cYKk9j1tqHR0UHuM8HDxxPS8PPK4AORdUppzWFNDxhBL2/c52EDxd5KTxd2oY8dab9h79ohVANmjXz+akLZvpxWhs7jLOAG6h3eUJMfKJYpcWsx4mn79KBdFSTUPAFx9NTo6O3EPOrVOrNw/IoK8NuvXA598Avz738DmzdThvKzM9TngQgoLySBKSRHbXrJ0957ccYdy5ebGRvJKhShOmWQCHP6L+ztqdeeFaUZrG/Dxl/aMFQ0mDZiFIY3fAO3t2PHWXhTmCrYvB80bk0ZbkJ1p45rOzCQxpj17KBFXqUCSO42ThgZg71563q8f9eMQpbqaDDglglIM4yy5uRQitVjEr5m4OJwbfBmGnPwW2o7OJoIilS5ZWXQeg4GMmrw8WliEhFCFn5xc2q8fPY+Lc669g8VClTsajVjfIABZBdusif45OaR8rYTmZkoAzsxUOFgmGGADJQDQRoUBTQZIkgqGVvvbnkqfiyEnvwEAZORvwfE0BV6GVmDfETWyM210VOTS40OHyMWqpDzXncYJQCtDWeNl7lxxz1Jrq7UElGG8QVoa6XU0NChqwXBy1I3IPbUOaklhE0G1moyR6GjreyYTeT6rqsjzAVCuWnQ0hYYGDLAaLLGxjg2p4mI6juC1rDabMGb/h9Y37r5b+QKnpobmH39pjMh4FTZQAoBJtwzBvn8ehqnZ6NDN2ZQxDC1RSYhqqUZaxQEkmithiHbcZbS1DZAkVc9FO9HR5GbdsYMmNpGOre42TiSpu/aJkuqdykqa5LhEkfEWMTHk2Th6VJGB0hybisKMmcgp3mZtInjFFc6NQasl48O2iV9bm7XZ4MmTdH3KXc3T0uj6joujMduWLksShY0Ayj8RYOi59YhpKqcXY8YADrSyLsJiocXF4MHKupQzQQMbKAFA9tRUZGcCWLOGJhBHmgeNs4E1a6CWLLj+4J+Al15yuAr7+EuNfe9MaiqFenbuBC6/3L6L2N3GCUATqrwKHDpUXMeko4OqAEaM4P4djHfJyaHkUDncIsjhYTeRgQJQE8EFC9xXFh8eTg/ZIyEaGrJYSBROMFE1xNSK8Uf/bX3j7ruVGxkNDWQssWZRn4Vn7EAhOZku1Koqx9veeCNV4ABkLCxf7nrPDtvS40OHet/OE8YJ4LxybHU1JfRxiSLjbeSbu5IGggD0CUNQkdoptKikiaAzyKGhlBRSaR06lPI9wsJortm+nUJNP/xAxougINywY18isq3zc8+YQV4QpdTW0nWrRNCNCSrYQAkUZHl2o9Fxr52YGOC//9vqNdm4EfjmG9fHEBZG4Z29eymT/0I8ZZyYTNYmiKGh4ol2kkSrsBEjaOwM403Cw+ma1esVl/+eGH2T9YVoE0F3IYeG0tMpb2vIEFog5eSI7d/QgOFH1gAALCo1YNOXTZiODvrORM/JBCVsoAQSWVlkINTWOt42Oxt4+GHr63fecb5Hjy0JCaQkuWNH9xJGTxknAFUQyZoS06eTgJ0I9fU00fIkx/iKkSMpnKKw5Lg8bYLV63f6tDX/w1eEh4uHmT77DFoTxYvPDlno3HxQW0tzDeeN9WnYQAkkIiLIBStioAAk3HbDDfTcYgFeflms+aAjsrIoH2TPHlrZedI4AZwP71RV0erPNkmQYbxJbCyVt+v1yrqMX9BEEJ8Lyt/7mqoqKo8G0KEJw9Hxtzt3HFnaXjAhlwlO2EAJNHJyyFARFU676y5qJgZQuONPf6IwkStoNOT+zcujGLUnjZPaWlKPBWglOnq02H6SRGEdZ2LfDONOhg2jEIlI/pgtl1xizSXbt8+aJO7P/OtfFJ4BcHTIIrRGClT8XYjRSKFczhvr87CBEmgkJ1PJrOhkp9EATzxhVX48exb4v/9zPaYdE0MGwK5dnjNOAOq7I8fvL71U3M1sNpOnR1TxkmE8RVQUldg2NHTdvIW4oIkgvvjC7UNzK4WFpFUEwBgajcMjFjt3HL2e5jm+dvs8bKAEGioVhXna28VdxjExwLJl1kTRzZuBtWtdH0tammf1RS7UPlES3gG4tJjxH+TS+IoKZfvZNBHE1q3uCdF6ig8/7Fr4HBt7M9pDox3s0AtNTRSa5Y7jfR6evQORzEzSQ1GSeDdwIPDII9bX779vv1xYBFnkyVPs2mWtFho5UlmzMI2G5bEZ/yE8nLwoLS3oWQ3Rzn6dTQRhNrtnYeEJjh2ztqFITMTp4dc6d5zmZip7zshw39iYgIUNlEBEabKszCWXAD/7GT23WIC//IVUVv2RjRspqVdGiXIsQO5xwX4hDOMVcnMp7Hj+vLL9rr7a+lv+/nuxJoLeRJK6NwS87TZYQpy89qqrydMkolbNBD1soAQq2dnkvVDaZfiOO4CJE+l5U5N7kmbdiSRRV9Y33rDmnsyYQb13RJD34c6njL+h1ZIXxWRSds3FxVnDm62tXVUyfsPu3SSbD5Dn41LxBqXdsFgodJ2by9L2DAA2UAKX/v2VJcvKaDTA449bwyUFBcD//q93haB6w2ymBN6PP7a+d+21wO9+Jx6Plg0UNU9wjB+Sk0OLi56EDu1x3XXWfKqvvqIbuT9gNlPuicyddzqfOyLrFrG0PdMJGyiBikpF5YtKkmVloqNJaTYigl5v2YJhR31cIdDWBrz4IrmwZX7xC2DJEvEJr7mZV16Mf6PRWJvm2QodOmLAABIpBKxNBP2BTZuAkhJ6PmwYMHWq88fS68l4k5OCmT4P+8EDGdtk2f6OOxZftO8jjwB//jMAYNy+91ERnYP67HHuH2cn54pV2H9EfVGOYFhrPeZu+CMS9KcBAGZ1CHbNegxFqrnAfxScoCMKrR38k2b8nMxM0uc5fZrCGaLceCPpDgHubyLoDO3t3b2dd93l/AKhtpbKsUeOdM/YmKCAPSiBTHi4c8myMjNmADffDABQSxZcuv3PiGpSWAapgP1H1GhoVMHQan2EVJXjsq+e6DJO2rWRWDf3eZwYMK/bdkIPk7YrUqUNZ0OF8VPUalKX1WqVJbwOHgyMGUPPPd1EUIRvviGvBwBMmgSMGuXcccxmStYfN461T5husIES6MjJss5m9t9+O00uAMLbmzD7hxco3OIBZM+JSiUhMkJCRvNJLPrhceiaywEAhsgEbLj6FTQMHIPICEnZI7QDkeEWRMaHQTcgCpMWs4Is48ekpdHioqxM2X4Xyt/7KnesuRlYvZqeq1TONQSUKSujfDrZ+GKYTniZGej070+li+fOUW6JUtRq4L/+C40P/A6xjWWIrysA3nyTElM9lM8REQ7cnrYL+Ohla7JfZiYin3kGVyclAVCYU2OxkLv8yiudX8UxjDdRqeiGfOYM5ZTodGL7jR9PmkaFhdYmgr74zX/+ubWB59y5tFByBoOBVi6TJ3tWU4kJSNiDEuioVKS6aDIpk9G2JToaWy97Gu0hnUmzP/3k0eZkg05+RwmxsnEyejTlwiQlOXfAmhrSTXB2kmQYX5CcTGrH5eXinhB/aCJYU2MVjAsJIS+sM0gSJdiOGMEdx5keYQMlGMjMdKqluy2NcZnYPP0J6xv//Ke1SZ+7kCRMOPwhpu74X2s58KxZwLPPOuf9kampoUkuKsotw2QYrzFqFHlPlOSRXXKJ1Zj3RRPBVausi4srryRDyxn0eiornjiRW1IwPcK/imAgPJxK/OrqXDpMcfp0HBnXuRqSJOCVV5SrXvZGRwem/vQ6Jhz7t/W9G24gTRat1vnjNjaScTNokOtjZBhvk5BARkpVlbgXxZdNBMvKrFIAERFdSfaKMZloYTFxIqvGMr3CBkqwkJ1NHgQXZbCPjL8NmDKFXrS0kNJsa6trYzMYgOefx6D8HwAAElSkb/KLX7i+cqqsJOPE2fAQw/iakSPpJi1XxIiwcKFvmgh+9JHV+3nDDeK5MxdSUkJzFpcVM3ZQnCTb3t6Od999F99//z2ampowaNAgLFmyBJMnT7a7380334yKXjp5pqWl4d///neP/8cIkpREoZ6zZ10Ll6goaRZPPEFql8XFJDu/dKlzSbN1dcBzz9G4AHSotdg55wnMWjTd+THKGI1k4Awd6vqxGMZX6HRUdvzjjwCozLa1Dfj4S3saJ1EYPehqjM77BDCb0f7Ab1GXkIO6foNQl5CNun6D0BCfCUnd8xSv1QKTRluQnamgCig/36rDotN19+IooamJrtvJk7lfFmMXxQbKSy+9hM2bN2Px4sVIT0/Hd999hyeffBJvvPEGxtgpE/vtb3+L1gtW4hUVFXjnnXccGjeMACoV3ahPn6ZkWVd60URGAsuWkZFiMAA7dlBJ4eLFyo5TWkr5JZ1y/MbQaHw/6w9oyhoJxZU6PVFZSbLYLI3NBDrDhwPHjkF7ugOAFpKkgsGB4/JQ9iIMP/IFQsxGhJoMSK44iuSKo13/b1aHoE6XhZr4QZ2PHNTGZcOkjQRagX1H1MjOVHAd/vOf1ue33GJVolaCxUJhosmTuds44xBFd7Hjx49j48aNePDBB3HbbbcBAC6//HLcc889WL58OZYvX97rvrNmzbrovQ86O2AuWLBAyTCY3sjIoGRZvd51waP0dMoPeeEFio1/9BG5ZDs1Uxxy4gTtK5ciJiVhw6znUBmWhUi4QbvBbCa9lpEjfaumyTDuICoKGDcOk07twr6adJg6BLyVETpsvexpDD3+FeJqzyGqpXuISGPpQGLdWSTWne16T4IKjTGpqInLQWP/QUDKQKqgiY+3f66DB4FDh+h5Sgpw+eUKP2AnFRUkjTBhArelYByiyEDZsmULNBoNFi1a1PVeWFgYrr76aqxYsQKVlZVIVpDR/cMPPyA1NRWjR49WMgymN+Rk2S1b3KPIOHkycNttJGctScDf/kaPAQPs77dzJ20nZ/pnZwN/+AMat/UHXExn6UKvJ2Ns4EA3HZBhfMzQocgeeRTZjcUKvIJjOx8gPZVz56gB6Llz9Cgr65Z8q4IEXdN56JrOAyU/Afs7/yM+3trIMCeHHikpFIqxWIDOxSQA6ojuTGK70Ug5cpdcAsTGKt+f6XMoMlDy8/ORnp6OqAvKOYcPHw4AOHPmjLCBcvr0aRQVFeFOAQVCvV6PGpsS2qKiIgWj7mNkZwP795Pnwh1Nt26+mSa6XbsoafbFF6m6pzdRpW++AVassE6KY8cCTz3lXhEmSaKyzLlznXMzM4w/Eh5OQmzffktVLkqNAJ2O9h8/3vpeWxuVIdsYLh3nihBivqAbcl0dzRv791vfi4ig+USno/0BMlx68IYLUVJCcv2cM8YIoshAqampQUIPJWHye3oFWegbNmwAIBbeWbt2LVauXCl87D5NYiLFdvPz3WOgqNXAo4+SsmxJCT1efx34f/+vewWOxUJt19essb43bx7wm9+4VkbcE7LyppJGawwTCAweTMrQ5eXuydGQvarDhnW99dnngLaqDAOaz2BG/Bmrx+XCCsDWVuD48e7v3XWXc5V3dXU0lsmTXcuPY/oUin4pRqMR2h5uNqGdmdhGo1HoOBaLBT/++CMGDx6MgQIu+kWLFmHmzJldr4uKivDCCy+IDbqvISfLnjzperKsTGQk8N//TTkpLS3kTfn0U+DWW+n/TSaSx9+yxbrPz35G/Tk8EWeuqqLGYv36uf/YDONLtFr6bX/1FYVEwsLcfgpJrUG9LgvtKZmYcf2czjclKlWWQ0Oyx8W2fHnChO7eGVHMZso9ueQSIDXVPR+C6RMounuFhYXBJHd8s6G9M9cgTPBiysvLQ3V1NRYLVoUkJiYiMTFRfKB9nYwMKjt2R7KszIABVNXz3HM0mf373+TuHTmSZOrlBDq1Grj/fuCqq9xz3gtpbaVJnN3ETLCSnU2P4mLvScCrVJS82r8/MG2a9f3GRjJUGhspQd6ZBcf589Qccdw4tw2X6RsoMlASEhJQ3YMgkJwfImpEbNiwAWq1GpdddpmS0zOihIVR2eKmTSRDrWBSsa+/MAUjJtyFcfs/ACQJ7S+/CkN0EuLqKCeoQxOK7XOfRFn7dODLno/tMpWVZIA5StRlmEAlJIRu5sXFVObvoSZ6jrVWACC+8wFgvbJjA6DFjNFI4o/cDJBRiCIDJTc3FwcPHkRLS0u3RNnjnXHKXIGcgPb2dmzZsgXjxo1jr4gnGTSI4seFhUJN9LRaAK1wqL+wb/DNiK06i5ySnxBqMiC00zhpC43F93OeQVXicIeVOk6npHR0UGXQiBHcu4MJbrKyKMfq9Gm351qJXutuOZdkouuVW1EwTqBolp87dy7MZjPWyp0sQQbHt99+ixEjRnRV8FRWVvZaabNr1y40Nzez9omn6dePklQjIkgwzQGTRlugi5UQGeHgEQnsm/so6uOzuvZtjk7Ghmv/iuaMYQ7318VKmDTa4txnqq4mjxCXFjPBjlpNFXAhIS63r7gQ4WvdxYcusgOTcpu5GSDjNIo8KCNGjMC8efOwYsUK1NfXIy0tDevWrUNFRQWWLl3atd2LL76IvLw8bN269aJjbNiwAaGhoZgzZ47ro2fsk5kJXHopNfeqqLCbj5KdKSlQlQwFZv038I9/AFFRiL73XlwbHw+3qMP2hiQB9fUUB/dA4iDD+B1paZRrdeQIMGSI2w6r7Fp3EpOJ2ltceilVFjKMEygu8Vi2bBmSk5Oxfv16NDc3IycnBy+//DLGCSRAtbS0YOfOnZg2bRqiXekXw4gzaBAwZw7www9WcTN3kJICPPOMe44lQl0diUmxq5jpK6hUwJgxdKOXS+sDhdJS8nSOGuXrkTABjEqSRHt8+w+nTp3Cfffdh7fffhtDuZpDjLw8SppNSHAsa+2PnD5N3hP2vDF9jc2bgb17u2mZ+DVNTbQYWrSIw7GMS3BgsK8wdiwwYwblccj9cQIFg4HCOoMH+3okDON9Ro8mafjaWl+PxDGSRPL6o0dToi/DuAAbKH0FlYpUHCdPJl0Cg8HXIxKnooJWYizyxPRFEhIoVFJV1a2vjl9SWUlhZG4GyLgBNlD6Emo1eVHGjweKikifwN9payMlymHDeMJj+i6jRlFlnoJ2Il7HaKRcmcmTAytfhvFb2EDpa4SEkOT06NGkENmDMrDfUFdHhtSIEewuZvo2Oh0lzOr11PfKHykpIc0Wzgtk3AQbKH2RsDBKNh06lCoEOjp8PaLuSBJNdo2N1Dl1/nz3NxxkmEBjxAjSAaqq8vVILqa+nuaVyZP5WmXcBhsofZXISBJyy84mI8XsYV0EUUwmqtiJigKuvBKYOpUnPIYB6JoYO5aMAX+5XgEaS3k5jS0tzdejYYIINlD6MjEx5J1IS6Pupb52HTc1kbGUmwtccw1rnjDMhQwbRn2oyst9PRIr5eU0Jm4GyLgZNlD6OvHxZKQkJlJOiq+qBCoqyHU9ZQpwxRVUucAwTHfCwynJvaXFP/LHWlspkX3yZPLwMIwbYQOFoRbr8+eTR6WkxLvnNpuBM2fo+cKFlHMSHu7dMTBMIJGbS20s/MGLUlxMXh3WKGI8ABsoDJGWRkZKSAjppHgDgwHIz6dzX3MNdylmGBFCQ8mLYjT6VipAr6dFzaRJfN0yHoF/VYyVgQMpcbajgxRnPUlNDXlrxo4Frr6aRdgYRgnZ2fQoK/PN+Ts6yECZMAFISvLNGJighw0UpjtDhgCzZ1PCqiektS0W0jYxGKjT6fz5HLtmGKWEhFBSqiT5RhW6tJS0iUaP9v65mT4DGyjMxYwaBcycSV6Oxkb3HddopJBOXBxw1VW0+tJo3Hd8hulLZGVRPoq3QrIyzc200Jg8mfPFGI8S4usBMH6ISkXGg9EI7NxJ8eXoaNeO2dBASX3Dh5OSbVycW4bKMH0WtZq8KAUFtJiIjfW8ZpAkkfdkwgTuVMx4HDZQmJ5Rq4Fp06iUce9eWq1FRCg/jiSRYdLaSn2AJk+mJD+GYVwnLQ0YOZI8k8XFVBUnSaTqGhFhfbjLcKmsJAmAiRO5NxbjcdhAYXpHo6FQT3s7cOgQJeWFhYnv39FBqzudjlRhhwzhSY1h3IlKBcydS4Z/U5P1oddTontLCz3v6LAaLuHhpCSt1HBpbydP6MKF7AFlvAIbKIx9tFpKmm1vB44fp5i3yKTW0kIrupwc2r9/f8+PlWH6Imo1lfvGxHR/32KhBFrZaGlspFCQXn+x4RIaSgaLPcOlpITUnYcP987nYvo8bKAwjgkPp/Lj9naSxM/NtZ/cWl1N/UImTaIwUWSk14bKMEwncu5YdHT3Mv4LDZfmZqvHxWAgI8Zk6m64AGS0cDNAxouwgcKIERVFJcEdHdZ+OReKM5nN5DUJDaVtR49mASeG8Td6M1zkkmXbUFFNjTVUNGYMkJ7uu3EzfQ42UBhxdDoyPL77jnJLcnKsOSVGI72XlkZy9RkZvh0rwzDKUKloIRIVBaSkWN+XDRcl+WcM4wZ4ecsoIyEBuOwySpIrLKT36uro+ahRJFnPxgnDBA+y4RLC61nGu7CBwignJYU8KRERwIkTlNk/axYZLrGxvh4dwzAMEwSwScw4R0YGSdXv20eaCIMGcQkxwzAM4zbYQGGcZ9AgUpNkuXqGYRjGzXCIh3ENNk4YhmEYD8AGCsMwDMMwfgcbKAzDMAzD+B2Kc1Da29vx7rvv4vvvv0dTUxMGDRqEJUuWYPLkyUL7b9y4EatXr8bZs2cREhKCrKwsLFmyBBMnTlQ8eIZhGIZhghPFBspLL72EzZs3Y/HixUhPT8d3332HJ598Em+88QbGjBljd9/33nsPH3zwAebOnYsrrrgCHR0dKCgogF6vd/oDMAzDMAwTfCgyUI4fP46NGzfiwQcfxG233QYAuPzyy3HPPfdg+fLlWL58ea/7Hjt2DB988AF+/etf4+abb3Zt1AzDMAzDBDWKclC2bNkCjUaDRYsWdb0XFhaGq6++GseOHUNlZWWv+3722Wfo168ffvazn0GSJBgMBudHzTAMwzBMUKPIQMnPz0d6ejqioqK6vT+8s/32mTNnet13//79GDZsGFavXo1FixbhiiuuwPXXX481a9Y4MWyGYRiGYYIZRSGempoaJCQkXPS+/F5vuSRNTU1oaGjA0aNHceDAAdxzzz1ITk7Gd999hzfeeAMhISG47rrrej2vXq9HTU1N1+uioiIlw2YYhmEYJsBQZKAYjUZotdqL3g8NDe36/56QwzkNDQ145plnMH/+fADA3Llzcc899+Cf//ynXQNl7dq1WLlypZKhMgzDMAwTwCgyUMLCwmAymS56v729vev/e9sPAEJCQjB37tyu99VqNS699FK89957qKysRHJyco/7L1q0CDNnzux6XVRUhBdeeEHJ0BmGYRiGCSAUGSgJCQmorq6+6H05/JKYmNjjfrGxsQgNDUV0dDQ0F0ijx8fHA6AwUG8GSmJiYq/HZhiGYRgm+FCUJJubm4vS0lK0tLR0e//48eNd/9/jSdRqDB48GA0NDRd5YOS8lbi4OCVDYRiGYRgmiFFkoMydOxdmsxlr167teq+9vR3ffvstRowY0eUBqaysvCiRdd68eTCbzVi3bl3Xe0ajERs2bMDAgQPZQ8IwDMMwTBeKQjwjRozAvHnzsGLFCtTX1yMtLQ3r1q1DRUUFli5d2rXdiy++iLy8PGzdurXrveuuuw7ffPMNXnvtNZSUlCA5ORnr169HZWUlXnrpJUWDlpNxuZqHYRiGYQKPrKwshIeH291GsdT9smXLuoyL5uZm5OTk4OWXX8a4cePs7hcWFobXX38dy5cvx7fffou2tjbk5ubi5ZdfxpQpUxSNoaKiAgA4UZZhGIZhApC3334bQ4cOtbuNSpIkyUvjcRv19fXYs2cPUlNTu0qcXUWuDHr66aeRlZXllmMGM/x9icPflTL4+1IGf1/K4O9LHE9+Vx7xoPgDcXFxWLhwoUeOnZWV5dCqY6zw9yUOf1fK4O9LGfx9KYO/L3F89V0pSpJlGIZhGIbxBmygMAzDMAzjd7CB0klCQgLuueeeHnsNMRfD35c4/F0pg78vZfD3pQz+vsTx9XcVkEmyDMMwDMMEN+xBYRiGYRjG72ADhWEYhmEYv4MNFIZhGIZh/A42UBiGYRiG8TsCUqjN0+Tl5eGTTz5Bfn4+GhoaEB0djdzcXNx9990YPXq0r4fnd+zfvx8bNmzA4cOHUV1djX79+mHChAm49957uQlkD+j1eqxevRonTpzAyZMn0draijfeeAPjx4/39dB8Snt7O9599118//33aGpqwqBBg7BkyRJMnjzZ10PzSwwGAz755BMcP34cJ06cQFNTE5566ilceeWVvh6a33HixAmsW7cOBw8eREVFBWJjYzFy5EgsWbIEGRkZvh6eX1FQUID3338fp06dQm1tLcLDw5GVlYXbbrsNM2fO9OpY2IPSA6WlpVCr1bjuuuvw6KOP4pZbbkFtbS1++9vfYvfu3b4ent/x97//HQcPHsSsWbPwyCOPYP78+di0aROWLFmCmpoaXw/P7ygpKcHHH3+M6upq5OTk+Ho4fsNLL72ETz/9FAsWLMDDDz8MtVqNJ598EocPH/b10PyShoYGrFy5EkVFRcjNzfX1cPyajz/+GFu2bMHEiRPx8MMP49prr8WhQ4ewZMkSnDt3ztfD8ysqKipgMBhwxRVX4OGHH8Zdd90FAHjqqaewdu1a7w5GYoRobW2VrrvuOunxxx/39VD8joMHD0pms/mi92bNmiWtWLHCR6PyX1paWqSGhgZJkiRp06ZN0qxZs6QDBw74eFS+5dixY9KsWbOkjz/+uOu9trY26dZbb5UeeOABH47MfzEajZJer5ckSZJOnDghzZo1S/r22299PCr/5PDhw1J7e3u394qLi6X58+dLzz33nI9GFTh0dHRIv/jFL6Q77rjDq+dlD4og4eHh0Ol0aG5u9vVQ/I5x48ZBrVZf9F5sbCyKiop8NCr/JTIyErGxsb4ehl+xZcsWaDQaLFq0qOu9sLAwXH311Th27BgqKyt9ODr/JDQ0lMXGBBk9ejS0Wm239zIyMjBw4ECeowTQaDTo37+/1+9/nINih5aWFphMJjQ0NGD9+vUoKCjAnXfe6ethBQQGgwGtra3Q6XS+HgoTAOTn5yM9PR1RUVHd3h8+fDgA4MyZM0hOTvbF0JggRZIk1NXVYeDAgb4eil/S2toKo9GIlpYWbN++Hbt378a8efO8OgY2UOzwzDPPYM+ePQAArVaLRYsWdcXjGPt89tlnMJlMuPTSS309FCYAqKmp6dEbIL+n1+u9PSQmyNmwYQOqq6vxy1/+0tdD8Uv+7//+ryvnRK1WY/bs2Xjssce8OoagN1AsFgtMJpPQtqGhoVCpVF2vf/WrX+GWW25BVVUV1q1bh46ODpjNZk8N1S9w5fuSycvLw8qVKzFv3jxMnDjR3UP0K9zxfTGA0Wi8yAUP0Hcm/z/DuIuioiK89tprGDlyJK644gpfD8cvWbx4MebOnQu9Xo9NmzbBbDYLz3XuIugNlEOHDuGRRx4R2vbDDz9EVlZW1+vBgwd3PV+4cCGWLFmCl156Cc8//7zbx+kvuPJ9AXThP/3008jJycHSpUs9MUS/wtXviyHCwsJ6nPza29u7/p9h3EFNTQ2W/v/27jyoqvp94PgbRAi4gogIaonjgsmILBnlwh33tWkYt7KZAsTCUcZKRzOmxXK0dEzTSUlUcokUU1zyspWQCwio4BKKC46IGiiowAVDtt8fDvfH7V6QTbjf7vOa8Q8/55zPee45l3ue81nO+eQTrK2tWb58OR06dGjvkAySs7Oz5vdq4sSJLFy4kKVLl7J58+Y2u9H6zycovXr14tNPP23Uug0NOOvYsSPDhw8nIiKC8vLy/+wPZkuOV35+PosWLcLa2ppVq1ZhZWX1PEI0KK31/TJ29vb23L9/X6e8dpq6PE9HtAa1Ws2SJUtQq9X88MMP8r1qgpEjR7JmzRpyc3Pp1atXm+zzP5+g2Nvbt9qDi8rLy6mpqaGsrOw/m6A093gVFRWxaNEiKioqWLdundH84bfm98uY9evXj4yMDEpLS7UGyl66dEmzXIiWKC8vZ+nSpeTm5rJ27VoZHNtEtd2sbTmTR6YZ6/Hw4UOdspKSEo4dO0a3bt2ws7Nrh6gM1+PHj1myZAkFBQWsXr1answommzkyJFUVVVpPQjqyZMnREdH4+rqKjN4RItUVVWxbNkyMjMz+eqrrxg0aFB7h2Sw9F3/KisriYuLw8LCok0Tu/98C0pzLF68GAcHB1xdXbGzsyM/P5/o6GgKCwtZtmxZe4dncJYvX87ly5eZPHkyOTk5Ws8VsLS0xMfHpx2jM0w7duwA4ObNmwDExcVpnpjq5+fXXmG1G1dXV0aNGkVYWBiPHj2iZ8+exMbGkpeXZxRjmZpr//79qNVqTVdYUlIS9+7dA2DatGkoFIr2DM9gbNy4kaSkJIYNG0ZJSQnx8fFay8ePH99OkRmeNWvWUFpairu7Ow4ODhQWFvL7779z69Yt5s+f36Zd9yY1NTU1bba3/xFRUVEkJCSQk5ODWq2mU6dOuLq6MmvWLNzd3ds7PIMzc+ZM8vLy9C5zcnJi7969bRyR4VMqlfUuO378eBtGYjjKy8s17+JRq9X06dOHOXPm4O3t3d6hGayG/vYiIyPp3r17G0dkmBYsWMC5c+fqXW6sf3P6HD16FJVKxY0bNygqKsLKyooBAwYwdepURowY0aaxSIIihBBCCIMjY1CEEEIIYXAkQRFCCCGEwZEERQghhBAGRxIUIYQQQhgcSVCEEEIIYXAkQRFCCCGEwZEERQghhBAGRxIUIYQQQhgcSVCEaGUxMTEolUpiYmLaO5RGycjIQKlUEh4e/tz2oVQqWbBgwXOr/3lbsGBBg0//bYna41/7b+7cuc9lP40RHh6OUqkkIyNDU5aTk6MV38yZM9stPmFc5F08wuh9++23REdHY2NjQ1RUFObm5u0dUqurvajIawcMl4eHBx4eHnTr1q29Q9Fia2uLv78/APv27WvfYIRRkQRFGLWysjISExMxMTGhuLiYEydOMGbMmBbV6ePjg6urK/b29q0UpTAGHh4ezJ49u73D0NG5c2dNXLGxse0cjTAm0sUjjFpCQgKPHz9mxowZmJqaolKpWlynQqHA2dlZ3iQrhBAtIC0owqipVCo6dOjAO++8Q3Z2Nunp6eTl5eHk5KS1Xnh4ONu3b6+3nrpvbY6JieGbb77h008/ZdKkSZp1lEolHh4efP7554SGhnL69GmePHmCu7s7H330ET169ODmzZuEhYVx/vx5Kisr8fb25uOPP6ZLly6aejIyMvjwww/x9/fXueP++++/eeutt5g4cSIhISGa/9eNoZa+7bOysggLCyMzMxNTU1O8vLwIDg7WeSvu8ePHSUxMJCsri4KCAszMzOjbty/Tp09n5MiRDR/0Z1Cr1Rw6dIiUlBRu375NUVERtra2DBkyBH9/f3r27Km1fu25Wb9+PQUFBezevZtbt26hUCgYNWoUc+fOxcLCQmubyspK9uzZw5EjRygoKMDBwYEpU6YwevRo3n77bc3xa4wTJ06wf/9+rl69ypMnT+jZsycTJ05k5syZdOjQoUXHAmDlypXExsayZ88ejh8/jkql4u7du4wZM4aQkBAKCgo4fPgwaWlp3L17l9LSUuzt7Xn99dcJCAjAzs5Op878/Hx+/PFH0tLSqKysxMXFhcDAwBbHKkRrkgRFGK2bN2+SmZnJ66+/TpcuXZgwYQJnz54lOjpa58Lt6empt46cnBwSExN1LoD1KSkpYf78+djb2zNhwgRu375NcnIyCxcuZOXKlQQHBzNgwAAmT57M1atXOXbsGMXFxaxfv75Zn1GhUODv768ZOzB9+vR6P1NWVha7d+/G09OTN998k2vXrnHixAlu3LjB9u3btT5jWFgYZmZmuLm5YW9vz6NHj0hKSuKLL77gww8/ZNq0ac2KF54e0/DwcDw9PfHx8cHS0pKcnBz++OMPTp06xdatW3USSICoqCjS0tIYPnw4Xl5epKamsn//foqKivjiiy+01l21ahVxcXH06NEDX19fKioq2Lt3L3/99VeTYt28eTMRERE4ODigVCpRKBRcuHCB0NBQLl++zNdff93s4/Bv33//PZcuXWLo0KEMGzZMk3icP3+eyMhIvLy8GDhwIGZmZly7do2DBw+SlpbG1q1btVrzCgoKmDdvHvfv38fb2xsXFxdycnJYtGhRvd9zIdqDJCjCaB05cgSACRMmAE9bF9atW0dMTAz+/v6Ymv5/D6inp6fOj/fDhw8JCgrC3NycJUuWNGqf2dnZzJw5k+DgYE3Z2rVrOXjwIMHBwQQEBDBjxgwAampq+OSTT0hJSeHKlSsMGDCgyZ+xU6dOzJ49WzN2oKExDikpKXz55ZdaY3BWrFhBXFwcJ0+e1CpfvXo1PXr00Nq+rKyMefPmsW3bNqZMmcILL7zQ5HgBnJ2dOXDgADY2Nlrl6enpLFy4kJ07d+o93mfPnmXLli306tULgPfff5/Zs2eTkJDAvHnz6Nq1q2a9uLg4+vfvz8aNGzVxvvvuu8yZM6fRcZ4+fZqIiAi8vb1Zvnw5lpaWwNPztnbtWg4dOsSff/7Z4halWtnZ2Wzbtg1HR0etci8vLw4cOICVlZVWeWxsLCtXriQqKor33ntPUx4WFsb9+/eZM2eOVvnhw4dZs2ZNq8QqRGuQMSjCKFVWVhIfH4+1tTUjRowAwMrKCh8fH/Lz8zlz5kyD25eXlxMSEkJeXh5Lly7Fzc2tUfu1tLTUuQjWXvhtbW21WjhMTEw0y7Kzsxv92ZrL3d1dZ4Dw5MmTAbh8+bJW+b+TE3h6/CZNmoRarSYrK6vZcSgUCp3kBJ5eiHv37l3vuZk+fbomOQGwsLBgzJgxVFdXc+XKFU15fHw8AH5+flpJVNeuXbWO/7NERUUBsHjxYk1yAk/PW1BQECYmJhw9erTR9T3LrFmzdJITADs7O53kBJ4m3tbW1pw9e1ZTVlFRQUJCAnZ2dlpdfwBvvPEGL774YqvFK0RLSQuKMEonT57k0aNHTJkyRavrYsKECcTHx6NSqfD29ta7bU1NDStXriQzM5OAgADGjh3b6P2++OKLOi0LtbN9+vTpg4mJid5lBQUFjd5Hc+lroXFwcACejgup6+HDh0RERJCSkkJ+fj7l5eVay1sab0ZGBr/++iuXLl2iqKiIqqoqzbKOHTvq3cbFxUWnrHbKbt34r1+/DsDgwYN11h80aFCjY7x06RKWlpb1Dqy2sLDg1q1bja7vWQYOHFjvsmPHjnH48GGuXr2KWq3WOl51z8WtW7d48uQJXl5eOt2SpqamuLm5cfv27VaLWYiWkARFGKXai0pt906tV155BQcHB5KSkiguLtZ7J79161YSExMZO3YsAQEBTdqvtbW1TlntQMqGllVWVjZpP82h7y68dv/V1dWasuLiYj744APy8/Nxc3NjyJAhKBQKTE1NuX79OidPnqSioqLZcSQmJrJs2TIsLS3x9vbGyclJk9TFxsaSl5end7uGjl/d+MvKyjA1NcXW1lZn/bqDkZ+luLiYqqqqBgdPP378uNH1PYu+wa4Ae/bsYdOmTXTu3JlXX30VBwcHTfKxb98+rXNRWlraYF31lQvRHiRBEUYnPz+f06dPAzT4dNP4+HidJv+YmBh27dqFm5sbS5cufa5x1qe2laXuXXKt2gvQ86RSqcjPzycwMBA/Pz+tZT///DMnT55sUf0//fQT5ubmbNmyhZdeeklrWUJCQovqhqeJWHV1NUVFRXTu3Flr2YMHDxpdj7W1NSYmJvz2228tjqkx/t26Bk8T1507d2Jvb094eLhWglFTU8Pu3bu11q9N4h4+fKh3H/WVC9EeJEERRic2Npbq6moGDx6scwGEpxf+2NhYVCqVVoJy7tw51qxZQ48ePVixYkW7PXG2U6dOgP5ulGvXrundxtTUtEWtGnXduXMHQDN2p64LFy60uP67d+/Su3dvnXNTUFDA3bt3W1x/v379uHbtGhcvXsTHx0drWVNm8QwcOJDU1FRyc3P1fo/aQlFREWq1Gi8vL53Wj6ysLJ2ut5deeglzc3OuXLlCeXm5VjdPdXV1k2cxCfE8SYIijEpNTQ3R0dGYmJgQEhKid7AnQG5uLpmZmWRlZfHyyy+Tm5vLZ599hoWFBd9++63OnXdb6tWrF1ZWVjrdUA8ePGDnzp16t7GxseHGjRs6F6XmqJ3ie/HiRfr27asp//3330lJSWlR3QCOjo7cuXOHBw8eaLpcysvLWbt2bat0dY0bN46YmBi2b9+Ot7e35ngUFhY26VHu06dPJzU1lVWrVrFixQqdLqPCwkJKSkro3bt3i2Ouj52dHRYWFly9epV//vlH0xVWUlKid2q6ubk5o0aNIi4ujsjISK1ZPEeOHCE3N/e5xSpEU0mCIoxKeno6f//9Nx4eHvUmJ/B09kpmZiYqlYqXX36ZDRs2UFxczJAhQ/R2MygUijZ7iVrHjh2ZNm0au3btYs6cOQwfPpzHjx+TlJSEh4eHpoWjLk9PT7KysliyZAmDBw/GzMwMd3d3PDw8mrz/8ePH88svv7B+/XoyMjJwdHTk+vXrpKeno1QqOX78eIs+39SpU1m/fj2BgYGMHDmSqqoqTZdcv379NINcm2vIkCGMHTuWP/74A39/f0aMGEFFRQWJiYkMHDiQ5ORkrSnm9Xnttdfw8/Njx44dzJo1i9deew1HR0eKi4u5c+cOFy5cIDAw8LkmKKampvj6+hIZGUlAQADDhw+ntLSU1NRUHB0dNVOr6woKCiI9PZ2tW7dy8eJF+vfvT05ODikpKbz66quaYy1Ee5MERRiV2sGxdZ/wqs/o0aPZsGEDR48eJTg4WNNUfubMGb3TXJ2cnNr0La+BgYGYmZmhUqk4fPgwTk5O+Pn5MWzYMI4dO6azvp+fH2q1muTkZC5cuEBVVRX+/v7NSlC6devGhg0bCA0N5cyZM1RVVeHi4sJ3333HvXv3WiVBMTMzIyoqit9++w2FQsHQoUMJCgrSeeBac4WEhODs7Ex0dDRRUVE4ODgwY8YMvLy8SE5O1jtgWJ/AwEDc3d3Zt28fZ8+eRa1WY2NjQ/fu3fH392fcuHGtEm9DgoKCsLGxISYmhoMHD2JnZ8eYMWMICAjQvOSvrq5du7Jp0yZCQ0NJS0vj/PnzmvOXnp4uCYowGCY1NTU17R2EEEIYgiNHjrB69WoWLlyIr69vm+yzoVcXGBp5K7ZoS/KgNiGE0SksLOTf92b3799n586ddOjQgaFDh7Z5TNu3b0epVDJ37tw233dDcnJyUCqVKJXKeqd4C/E8SBePEMLoREREcOrUKdzd3encuTP37t0jOTmZsrIyAgIC9D6x9XlxcnLS6oqpfbicobC1tdWKT97SLdqKdPEIIYxOamoqkZGRZGdnU1JSgrm5OX379sXX17dNxo0IIZ5NEhQhhBBCGBwZgyKEEEIIgyMJihBCCCEMjiQoQgghhDA4kqAIIYQQwuBIgiKEEEIIgyMJihBCCCEMjiQoQgghhDA4kqAIIYQQwuBIgiKEEEIIg/N/NiDnYZHyGogAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyi0lEQVR4nOydd3xb5fX/P5K894pnbMfO3glZZCeEEUgJK+wCoQ2FtpRRKBS+baHQlkIp69eWNgUSSqEEEkaADAJkkb23nem9JO8py9L9/XFydeXEtu69utrn/XrpFUm547Gk+9zznPE5OkEQBDAMwzAMw/gQem8PgGEYhmEY5kLYQGEYhmEYxudgA4VhGIZhGJ+DDRSGYRiGYXwONlAYhmEYhvE52EBhGIZhGMbnYAOFYRiGYRifgw0UhmEYhmF8DjZQGIZhGIbxOdhAYRgfZ9OmTdDpdHj22WddPpZOp8OcOXNcPk5faDneQGDx4sXQ6XQoKiqSvc+AAQMwYMAAt42JYfwBNlAY5gJ0Oh10Oh30ej3OnDnT63Zz5861b7t8+XLPDdDLFBUVQafTYfHixd4eimxEo8nxERYWhv79++Pmm2/Gjh07etyvra0NCQkJ0Ol0uOOOOzw8avdy4efh+Lj00ku9PTyGQYi3B8AwvkhISAi6urrw9ttv409/+tNF/3/q1Cls2rTJvh0jMXnyZJw4cQIpKSneHspF5Obm2g2r1tZW7Ny5EytXrsQnn3yClStX4oYbbui2/YoVK9DY2AidTodPPvkEtbW1SE5Odvs4v/32W7efA+j+eTjSv39/j5yfYfqCDRSG6YG0tDRkZGRg2bJleO655xAS0v1SeeuttwAA1157LT799FNvDNFniYqKwrBhw7w9jB4ZMGDARaGnZ555Bs899xwee+yxiwyUpUuXQq/X4/HHH8dLL72Ed999F7/85S/dPs6BAwe6/RxAz58Hw/gKHOJhmF647777UFVVhS+//LLb+xaLBcuXL8e0adMwYsSIXvc/deoU7r77bmRlZSEsLAyZmZm4++67cerUqR63r66uxo9//GOkpaUhMjIS48aNw7vvvtvr8fvKU3j22Weh0+mwadMmp39nRUUFnnvuOUyfPh3p6en2sd5xxx04fvz4RcfNy8sDALz77rvdwgJimKuvHBQln4nj37By5UpMnjwZUVFRSEpKwm233Yby8nKnf5scfv7znwMAzp07B6PRaH//6NGj2LlzJ+bNm4cnn3wSYWFhdsNUDTabDa+88gqGDRuGiIgI9O/fH48++iiampou2ran73b58uX2z3njxo2YM2cOYmNjERcXhwULFuDEiROqx8Ywvgh7UBimF26//Xb88pe/xFtvvYXrr7/e/v7q1atRU1ODF198EadPn+5x3z179uDyyy9Hc3MzFi5ciBEjRqCgoAD//e9/8fnnn+Obb77BpEmT7NubTCZMmzYNZ8+exYwZMzBjxgxUVlbigQcewJVXXunWv3PLli3485//jLlz5+Kmm25CTEwMTp06hZUrV2L16tXYtm0bxo4dCwCYM2cOGhoa8Prrr2Ps2LHdPpdx48b1eR6ln4nIP/7xD6xevRoLFy7E7NmzsWvXLqxYsQKHDh3CwYMHER4e7tLfLwiC/blOp7M/X7p0KQBKck1KSsK1116LVatWYevWrZg5c6bi8zz66KPYsmULbrnlFlx33XVYv349XnvtNWzduhXff/89IiIiZB3nyy+/xOeff46rr74aDzzwAI4fP441a9Zgz549OH78uKLQWkNDA9555x1UVVUhPj4eEyZM4PwTxncQGIbpBgAhKytLEARB+PGPfywYDAahtLTU/v9XXXWVEBcXJ7S2tgr/93//JwAQli1bZv9/m80mDBs2TAAg/Pe//+127A8//FAAIAwdOlSwWq329++77z4BgPDII490237Pnj1CSEiIAEB45plnuv1fbm6ukJub2+Pf8MwzzwgAhI0bN170t82ePbvbe9XV1UJTU9NFxzh48KAQHR0tzJ8/v9v7586dEwAI99xzT4/n3rhx40XjVfOZiH9DbGyscPjw4W773H777QIAYcWKFT2OobcxXfi3C4Ig/Pa3vxUACPn5+fb32tvbhcTERCE+Pl5oa2sTBEEQvvjiCwGA8MMf/lDWOUXuueceAYCQnJwsFBUV2d+3Wq3CjTfeKAAQnnvuuW779PTdLlu2TAAgGAwG4Ztvvun2f7/+9a8FAMKLL74oe1wAenyMHTv2os+bYbwBh3gYpg/uu+8+WK1WvPPOOwCA4uJibNiwAXfeeSeioqJ63Gf79u0oKCjA1KlTceedd3b7v1tvvRUzZsxAYWEhvv/+ewAUMnr//fcRGxt7UVhk4sSJFx1Da1JTUxEbG3vR+2PHjsVll12GjRs3wmKxuHQOpZ+JIw899BBGjx7d7b377rsPALB7925F4ygqKsKzzz6LZ599Fr/61a8wa9YsPP/889Dr9Xj55Zft23388ceor6/HrbfeisjISADA/PnzkZ6ejpUrV6K+vl7ReQHg4YcfRm5urv21Xq/HX/7yF+j1evvvSw633XYb5s2b1+29n/zkJwCUfR6//OUvsW3bNhiNRjQ3N2PPnj1YtGgRDh06hMsuu0yzEBrDqIUNFIbpgylTpmD06NF45513YLPZ8NZbb8Fms9lvkD2xf/9+AMBll13W4/+L7x84cAAAUFBQgLa2NowbNw7x8fEXbe9u3RIA+Oqrr3DttdciIyMDoaGh9rySL774AmazGSaTyaXjK/1MHJk4ceJF72VnZwOAYkOhuLgYv//97/H73/8er732Gk6fPo0bb7wRW7du7ZYgK4Z37r33Xvt7ISEhuPPOO9HR0YH33ntP0XkBYPbs2Re9l5+fj+zsbBQVFaGhoUHWcbT6PP76179i2rRpSElJQUxMDCZOnIiPP/4YN910E0wmUzeDjWG8ARsoDOOE++67D8XFxVi7di2WLVuGCRMmYPz48b1u39jYCADIyMjo8f/F98Ubkrh9Wlpaj9unp6erHbosXn/9dfzgBz/Atm3bMGvWLDzyyCP43e9+h2eeecaee2I2m106h9LPxJGEhISL3hOrqqxWq6JxzJ49G4IgQBAEWCwWVFRUYNWqVZg2bZp9mxMnTuD777/HsGHDLsrHEEty//3vfys6L+D8+xU/I2do+Xn0xAMPPACAcpMYxptwkizDOOGuu+7Ck08+iQceeADl5eX43e9+1+f2ohekqqqqx/+vrKzstp34b3V1dY/b93YcvV6Pzs7OHv9P7mq8q6sLzz77LNLT07F///6LDIjeBMyUovQz8Sai96SgoKBb0qwjR48exfbt27sZNs6orq7G0KFDL3pf/Ex84W8HgH79+gEgnRiG8SZsoDCMExISErBo0SK89957iI6Oxu23397n9qJ3pbcS340bNwIALrnkEgDAsGHDEBUVhYMHD6KxsfGiG1Vvx0lMTMThw4dhsVgQGhra7f/27t3r7M8CQNVDDQ0NuPHGGy8yTlpaWuyhGUcMBgMAZat1pZ+JtzCbzXjvvfeg1+vtEvUXUlZWhvXr1+Pf//63IgNl8+bNmDVrVrf3zp49i9LSUgwYMKBHz4g32LlzJwAKPzGMN+EQD8PI4A9/+AM+/fRTrF+/vseEUkemT5+OoUOH4vvvv8fKlSu7/d/KlSuxdetWDBkyBDNmzAAAhIaG4s4770Rzc/NFSbJ79+7F+++/3+N5Jk+ejK6uLixbtqzb+8uXL8e2bdtk/V2pqamIiorCvn370NLSYn/fYrHg4Ycf7jH3JDExETqdDiUlJbLOASj/TLzFqlWrUFtbi6uuugpvv/023nrrrYseH330EaKjo/HRRx/JDssAFEorLi62v7bZbPjVr34Fm83WLdfFE4iGbU/v/9///R8A4Ic//KFHx8QwF8IeFIaRQU5ODnJycmRtq9Pp8O677+KKK67Arbfeiuuuuw7Dhg1DYWEhPvvsM8TGxuI///kP9HppffCnP/0J3377LV577TXs3bvXroOyYsUKXHPNNVi9evVF5/nFL36BZcuW4ac//Sm+/fZbZGdn4+DBg9ixYwd+8IMfXCQw1xN6vR4PPfQQ/vznP2P06NG47rrr0NnZiY0bN6Kurg5z5861ezdEYmJiMGXKFGzduhV33nknhgwZAoPBgIULF2LMmDGafSbeQAzvLFmypNdt4uLicPPNN2P58uX473//axd6c8b06dMxbtw43HrrrYiPj8f69etx6NAhTJgwAU888YQm45fLK6+8gi+++AIzZ85EdnY2wsPDUVBQgHXr1sFqteK+++5z6ilkGHfDHhSGcQNTpkzBnj17cMcdd2DHjh34y1/+gu3bt+P222/Hnj17MGXKlG7bp6SkYNu2bbj33ntRUFCA1157DQcPHsSbb76JRx99tMdzjBgxAt988w2mT5+OL774AkuXLkV4eDh27NiBCRMmyB7r888/j7/+9a+IjIzEv/71L3zyySeYOHEidu/e3atR9t5772HBggVYt24dfv/73+O3v/1tj+EgVz4TT3Py5Els3rwZaWlpuPbaa/vcVqziUpIs++qrr+I3v/kNNm3ahNdffx1GoxEPP/wwvvvuO9kibVpx/fXXY/bs2Th69CjeffddvPHGG9i3bx+uvvpqfP7551i6dGmv+TcM4yl0guAgo8gwDMMwDOMDsAeFYRiGYRifgw0UhmEYhmF8DjZQGIZhGIbxOdhAYRiGYRjG52ADhWEYhmEYn4MNFIZhGIZhfA6/NFA6OjpQWFiIjo4Obw+FYRiGYRg34JcGSnFxsb3DLMMwDMMwgYdfGigMwzAMwwQ2bKAwDMMwDONzsIHCMAzDMIzPwQYKwzAMwzA+BxsoDMMwDMP4HGygMAzDMAzjc4R4ewAMwzCM/2C1WmGxWLw9DMYHCQ0NhcFg0Ox4bKAwDMMwThEEAVVVVWhsbIQgCN4eDuOD6HQ6xMfHIz09HTqdzuXjsYHCMAzDOKWxsRENDQ3o168foqOjNbkBMYGDIAhobW2F0WhEZGQkEhISXD4mGygMwzBMnwiCgJqaGsTFxSElJcXbw2F8lMjISJjNZtTU1CA+Pt5lI5aTZBmGYZg+sVqtsFqtiIuL8/ZQGB8nLi7O/ntxFTZQGIZhmD7p6uoCAISEsNOd6RvxNyL+ZlyBDRSGYRhGFpx3wjhDy98IGygMwzAMw/gcbKAwDMMwDONzsIHCMAzDMEx3BAHQINHVFdhAYRiGYRgvYjab8eSTTyIzMxORkZGYMmUKNmzYIGvfY8eO4eabb0Z+fj6ioqKQkpKCWbNm4Ysvvui2XUtLC5555hnMnz8fSUlJ0Ol0WL58eY/H3LRpE3R6PXQhIdDpdN0eO3fudPXPlQ2nZDMMwzCMF1m8eDFWrlyJRx55BIMHD8by5ctxzTXXYOPGjZgxY0af+xYXF6O5uRn33HMPMjMz0dbWhlWrVmHhwoX417/+hZ/85CcAAJPJhOeeew45OTkYO3YsNm3a1PtBOzsBAA/dfz8mXXD+QYMGufS3KoENFIZhGIbxErt378aHH36Iv/zlL3j88ccBAHfffTdGjRqFJ554Atu3b+9z/2uuuQbXXHNNt/cefPBBTJgwAa+88ordQMnIyEBlZSXS09Oxd+9eTJo0qecDWq1AezsAYObUqVj0wx+6+Beqh0M8DMMwTNCTn5+PH/ZwM547dy5mz57ttvOuXLkSBoPBbkgAQEREBH784x9jx44dKC0tVXxMg8GA7OxsNDQ02N8LDw9Henp63zsKAtDa2i33pLm5WRNNEzWwgcIwjG/Q1QXU1ADHjgGbNgFGo7dHxAQJLS0tKCoqwtixYy/6v8OHD2PMmDE97mexWGAymWQ9bDZbj8c4cOAAhgwZcpFK7+TJkwEABw8elPU3tLa2wmQy4cyZM3j11Vexdu1azJs3T9a+dsxm8p6c70h874MPIi4uDhEREZg7dy727t2r7HguwiEehmG8g80G1NeTIVJdDZSUAI2NNEF2dpLBcvnl3h4lEwQcPXoUgiBcZKCUlZWhrq6uVwNl27ZtmDt3rqxznDt3DgMGDLjo/crKSmRkZFz0vvheRUWFrOM/9thj+Ne//gUA0Ov1uPHGG/G3v/1N1r4A6HpraQF0OoRFROCmH/wA11x1FVJycnD8+HG8/PLLmDlzJrZv347x48fLP64LsIHCMIxnEAQyQEwmMkiKi4GGBjJI9HogLg5ISwMiIoCmJuDUKWD0aHqP8U0mTgSqqrw9Con0dEDFKv/o0aMAcJGBcujQIQDo1UAZO3as7Gqb3sIr7e3tCA8Pv+j9iIgI+//L4ZFHHsGiRYtQUVGBjz76CFarFZ3nk12dIoZ2urqAiAhMmzIF08aPB8LCgIQELFy4EIsWLcKYMWPw1FNPYd26dfKO6yJsoDAM4z6am8kgqakhD0ltLa3S9HogJgZITgYiI4EL5bHj4oDKSuD4cTZQfJmqKqC83NujcJkjR44gLS0NaRf81g4fPgy9Xo9Ro0b1uF9iYiIud9HLJ3YAvpCOjg77/8th2LBhGDZsGABKsr3yyitx7bXXYteuXc7l59vb6REW1usmgwYNwnXXXYdPPvkEVqsVhvNhIHfCBgrDMNrR1kYGidFIBonRSAaJzUYGSVwckJFBBooz0tOBwkJg1CigXz/3j51RjrOkS0+jcjxHjx7tMf/k4MGDyM/PR3R0dI/7dXZ2oq6uTtY5+vXr1+NNPSMjA+U9GHmVlZUAgMzMTFnHv5BFixbh/vvvx8mTJzF06NDeN7RYyHtiMDi9LrOzs9HZ2YnW1laPdLZmA4VhGPWYzWSQmExAaSmtqJubySCJjCSDJDXVnnSniPh4Ot7x44AbqygYF/Bw0qS7OHLkCG699dZu79lsNnz33XeYNWtWr/tt377d5RyUcePGYePGjWhqaup209+1a5f9/9UghoYaGxt738hmowWE1UqhVSecPXsWERERiImJUTUmpbCBwjCMMurqgIoKepSXU17J+dg14uKAAQOAEI2mltRUoKCAvCjJydock2EcqKmpgdFotHssRN544w2YTCaMHj261321yEFZtGgRXn75ZSxdutSug2I2m7Fs2TJMmTIF2dnZAIC2tjaUlJQgJSUFKSkp3cafmpra7ZgWiwX/+c9/EBkZiREjRvQ+KIuFFhkX5MAYTSb0u8BDcujQIaxevRpXX3019HI8oBrABgrDMPJpbQW+/JKSXMPDySDJzu4zdu0SiYl0roICYPp095yDCWqOHDkCAPj666/xs5/9DMOGDcPOnTuxfv16AMC+ffuwa9cuTJky5aJ9tchBmTJlCm6++WY89dRTqKmpwaBBg/Duu++iqKgIb7/9tn273bt3Y+7cuXjmmWfw7LPP2t+///770dTUhFmzZiErKwtVVVV4//33UVBQgL/+9a/dvB1/+9vf0NDQYK8M+uKLL1BWVAQYDPjFffchPj4eAHDrj36EyPBwTJsyBam5uTh+/DiWLl2KqKgo/PnPf3bp71UCGygMw8inuJgSXgcPVhe2UUNqKoV5Rowgg4VhNOTIkSMwGAz48MMP8dBDD2HZsmWYOXMmNm/ejOuvvx4HDx5EaGioW8fwn//8B7/97W/x3nvvob6+HmPGjMGXX37ZZ3hJ5NZbb8Xbb7+NN998E7W1tYiNjcWECRPw4osvYuHChd22ffnll1FcXGx//clXX+GTr74CAPzwllvsBsr1Cxbg/RUr8Mo//oGm5mb069cPN954I5555hmPSt3rBEEQPHY2jSgsLMR9992Hf//7330n/zAMox02G/DZZ1Rdk5PjufMKAnlQZswApk3z3HkZOx0dHTh37hzy8vLs5a+BwpIlS7BlyxacPHnS20PxDIJAeSetreQF7a3Cp7PTXmasBC1/K6wkyzCMPCorgbIyz1fU6HSSF6WvhD+GUcGRI0f6ztMINDo7qdouNLR348RHYAOFYRh5nD5Nk5tMXQZNSUoi1dmCAs+fmwlYBEHA8ePHg8dAsVrtarEeC9G6gGIDpa2tDe+88w4ef/xxLFiwALNmzcLatWtVnfyll17CrFmz8OSTT6ran2EYD9HcTMquDtUDHkWnoyqeY8doLAyjAefOnUNLS0twGCiiWqzF4r6kdo1RbKA0NjZi+fLlKC4udilZpqCgAGvXrkWYn3xQDBPUFBeTB8ObSarJyaS3Eiy5Aozbyc/PhyAIPXYxDjg6Opyqxfoaig2U5ORkfPrpp/j444/x05/+VNVJBUHA66+/jquuugpJSUmqjsEwjIewWoETJ4DoaHkKsO5Cr6dQz+HD5KZmGEYeXV3kPdHrvXsNK0TxSMPCwpDsomDS+vXrce7cOdx3330uHYdhGA8gCrJdIAblFfr1Iy/KqVPeHgnD+Adi1U5XFyXG+hEeN6Xa2trwz3/+Ez/84Q9dNnQYhvEAp09TiXEPHVc9jl5PZY+HD1MlAsMwfdPeTuEdPwrtiHhcqG358uUIDw/HLbfcInsfk8mE2tpa+2tHoRmGYdxIYyMZKN5Kju2Jfv3Ig3LqFNBDgzeGYc4jNgIMCfGr0I6IRw2U0tJSrFy5Er/73e8UJceuXr0ay5cvd9/AGIbpmeJioKEB8CVBRIOBJPaPHAGGDPFO2XOQ4oe6nsGLwkaAWqHlb8SjBsobb7yBUaNGYc6cOYr2W7hwIaY79OEoLi7GH/7wB41Hdx6zGaitBVS2uGaYgKGri5JjY2J8T9ApLY08KGfOUCNBxq2EnG/+2NXV5eWRMLJpa+uxEaC7EX8jIRo0DPWYgSI2XPrDH/7QrWuk1WqF2WxGZWUl4uLiEB0dfdG+F3ZvdCuVldRCfMECXpkxwU15OV0P57up+hQGAxAbCxw6RH2BfCE/JoAxGAwwGAxoampCbGyst4fDOMNsJgMlJMTji4umpib778VVPGag1NTUAAB+85vfXPR/RqMRt956Kx588EFFuSluQRCkdvIDB3p3LAzjTU6epOvBV5Pr0tLIg3LmDDUSZNyGTqdDamoqKisrER4ejujoaOh8zavGEFYriRl2ddG129mp7jgWC/3b0SFrc0EQ0NraiqamJmRkZGjy+3CbgWIymdDa2oqsrCyEhITgkksuwR//+MeLtvvLX/6C9PR03HXXXcjPz3fXcJTR1ESxdzZQmGClvh44e9a3kmMvJCSEtFkOHQIGDfJdQypAiI+PR3t7O0wmE4xGo7eHw/RGRwd5UFwtKbZayVMZFSV7F51Oh4SEBHtXZFdRZaCsWrUKLS0t9sqabdu22T0kN910E2JiYrB06VKsW7cOK1asQEZGBtLS0pCWlnbRsf7f//t/SExMxMyZM134MzRGEIBz5yj7uYeQE8MEPEVFZKhnZHh7JH2TlkaG1NmzwLBh3h5NQKPT6ZCRkYHU1FRYxNU141sUFwN79pCgoav3rqoqur4uu0z2LqGhoZqEdkRUGSgrVqxAVVWV/fWWLVuwZcsWAMCVV16JmJgYbUbnLXQ6qlyoqKD4NsMEExYLJcfGxflecuyFhIZSrtjhw+Tx9DMhKn9Eq/wCRmOamsg46eqinCxXE5o7OugYHqwAuhBVBspHH33kdJunn34aTz/9tCbH8jiiHHBRERsoTPBRWkqrpwEDvD0SeWRkkMfz3DkqO2aYYMNmA3bupKT2ALoG/E+5xVMkJpK7jHt+MMHGqVNkoPuLNyI0lFaMhw+7vmpkGH/kxAng6FEgJ8cvBdl6I3D+Eq2Jj5fCPAwTLNTWkieiXz9vj0QZGRlASQl5PRkmmDCZyHsSE6MoodUfYAOlNwwGqhI4d87bI2EYzyEmx8bFeXskyggLo+v18GGqPmCYYMBiIeOkvh5IT/f2aDSHDZS+SEqiVVlTk7dHwjDux2wmV3FiordHoo7MTArLcq8uJlg4cgQoKKB8MV9PaFcBGyh9ER9PxgmHeZhgoLQUqKnxbe2TvggPp/j7kSOUNMgwgUxlJVXtJCcHrJIyGyh9odeT2/jsWW+PhGHciyAAhYXSb95fycyksGxJibdHwjDuo6MD2L6d5Oz9dUEhAzZQnJGcTCvLxkZvj4Rh3IfJRDf11FRvj8Q1RM2Go0fZi8IELqdOkSGem+vtkbgVNlCcERtLfQ04zMMEMmfPknJyIDSCy8igv6eszNsjYRjtEQTg9GkSKPQXKQCVsIHiDL2eKgTOnPH2SBjGPXR0UKJdQoK3R6INUVFUyXPkCE3mDBNINDQA1dX+m8yuADZQ5JCcTK3n6+u9PRKG0Z6SEgrxBFIsOyODFhXl5d4eCcNoS1UVCYj6e0sZGbCBIofYWK7mYQITQSDvSWgoaf8ECtHRpCp77Bh7UZjAoriYvPoBWFZ8IWygyEGno3jf6dM82TGBRXU1JYH7e3JsT2Rk0DVbWentkTCMNrS0UG5VoIRjncAGilySksiDwmEeJpA4exZob3e9NbsvEhND+TXsRWEChaoqqij1N6VnlbCBIpeYGLJeOabNBAptbaR9kpTk7ZG4j/R0Ksmsrvb2SBjGdcrLyaMfSOHYPmADRS46HVUHcJiHCRRKSqg5YCAbKHFxZIgdO+btkTCMa5jNpH0SJOEdgA0UZSQlUTy7ttbbI2EY17DZqO9ORETgr8bS04GTJ0nGn2H8lepqSjFgA4XpkZgYErPiMA/j71RVUbJdv37eHon7iY+n6/bECW+PhGHUU1FBC4sAF2dzhA0UpURHU0ybZbQZf+bMGXIZR0V5eySeITWVyqlNJm+PhGGU09VF12yQJMeKsIGilKQkcrXxRMf4K62tZGQnJ3t7JJ4jMZG0jNiLwvgjRiOlFgSBeqwjbKAoJTqaku44zMP4K8XFgZ8c2xOpqWSg1NV5eyQMo4zKSqCzEwgP9/ZIPAobKGqIiaFqHg7zMP6GzQYcP06hHX2QXf6JiaQhUVDg7ZEwjHwEgcI7gahV5IQgm6E0QgzzGI3eHgnDKKOigh6BqBzrDJ2OkoKPH6eGawzjD9TW0r0miKp3RNhAUUNUFKlvcjt3xt84cwawWKi8OBhJSqIQT2Ght0fCMPKorqa8sSBoDnghbKCoJTaWwjxWq7dHwjDyaGoKvuTYC9HpqGvz0aP0eTCMr3P2bNAuKNhAUUtyMlm2LP7E+AvFxST0FGSVABeRnMxeFMY/aGqikGyQXrNsoKglIoJ0JLiah/EHrFaqYImJCb7k2AvR6ynUc+QI9ddiGF+lqgpobiaPfRAS5DOVi8TFkcu8q8vbI2GYvikvp5VYMCjHyiElhbwoxcXeHgnD9E5JCRASErSLiuD8q7UiOZmyq7lTKuPriGXxQaaj0Ct6PRAWBpSWenskDNMz7e1koHireqegwOuNcdlAcYXwcBLP4WoexpdpaCADJSXF2yPxLeLjybPU3u7tkTDMxVRV0bXrDQNl82bgjTeAF1/0ajJ5iNfOHCjExdHkf8klQdXEifEjiotpohs27KL/Oluiw74jelgs7h1CaCgwcbQNeTneXZF1Iy6O2tfX1AC5ud4eDcN0p6yMPBie7jZ+7hzw//4fPd+xA/jiC+DOOz07hvOwgeIqSUn0Q6quBvr39/ZoGKY7FgsJk8XFUYntBew7okdj08Xva047sPeIHnk5PlSWHxJCYa+qKjZQGN/CYiFDIT7es+dtaQFeeIEiAwBw+eXAHXd4dgwOsIHiKuHhlCRbWsoGCuN7lJeT8Zyd3eN/i54TnU5ApJukFto7AEHQud1Lo4rYWNKZmDQpaBMRGR+kpoaSuHu5bt2CzQa88goZ7ACQkwPcf3+PCxtPwQaKFsTHU5hn4kQO8zC+xalTNPGEhfW5WWQEcMf17vFufPCZAW19pXlYLKRwe+IEPQoKyOh/8klg7Fi3jMlOQgJ1Jq+r4xwdxneoqKBrwMl1qykrVgB799Lz2Fjgvvs8e/4eYANFC5KSyINSWUlWJ8P4AnV15B3wtb47TU1khIgGyalT6NG98re/Af/4h3uNfrFtRU0NGyiMb2CzkcHuSe2TPXuADz+k53o98PjjPqE4zQaKFoSFSWEeNlAYX6GoiLr3ZmR4bwyCgNjGMvQvPYGs+mPA+uPOxQ11OkoOrK4G1qwBrrvOvWMMDaVrd8QI956HYeRgMlGDQE8ZzJWVFNoRS4p/+ENg/HifqE5lA0UrEhOlMA9rTTDeprOTvBPx8Z6NIXd20nUgekdOnMC1zc1975OeDgwfLj0sFuCxx2jCXLECmDfPvY3SHMuNIyPddx6GkUNVFdDWRt49d2M2U1Jsayu9vvRS4Kab3H9embCBohWJiVTOWVkJDBjg7dEwwY5YWebu32JDQzdjBGfO9K2sHBIC5Od3N0h66jMyZw6wcSNVFXz8MXDvve76C8hA4XJjxhcQBLqGNDZOepQTEARM2/x3DCgqAgA0xvfH+kGPoevz82aBtT9gMCBq1zZc/8fpmo5HLmygaEVoKMUOS0rYQGG8T2EhxZK1zt+oraV4tZhDUlnZ9/axsShPGI7ypBFozBqOK+7Nl+dh/OEPge+/J2/KF18AV19NnhZ3wOXGjK/Q0EALC42bA/YkJzCycDUGnN0EAOgMicSG6b9BkzUasCe0nzcPGs2ajkUJbKBoSWIiJSVOnhy07bEZH8BkovwTrfvu1NYCDz4ouYN7IiuLBOFE70hWFjavDkVbuw5RkQIQLrNSqF8/YOFCYNUq8sj897+UuOcuuNyY8QWqqshrmJmp6WEvlBPoV3UMUw68Zf//XbMeRWd6NqLgIKRotZIHJd57KQtsoGhJYiK5iisrgbw8b4+GCVbOnaNJTmtdntWruxsnISHA4MHdDRIthaUWLQI2bKCqny1bKFl28GDtju8IlxszvkBxMXk93ZQ3FhkB3DGzBvjlC4BwfrFw442YufhSABcsHsrKaMGx0DvhHYANFG0JOf9xlpSwgcJ4B7OZwi9a9+9obQXWraPnoaHAs8+SYeLOEuDoaOC224ClS+n1smXAH//onsmby40Zb9PSQkaBxuEdR/RWC/XXqa+nN8aMAe66y23ncxX2ZWpNYiIlOXEDMsYblJS45ya7fr30m77sMmD0aM+IEl51lVQmffQo5b+4C7HcmGG8QVUVyQLExbntFON3v0ULGIDmiF/9yvO9fhTAHhStEfNQKiqAgQO9PRommBAESo4NCZG8eVpgsVB4ByDvxfXXqzpMewepyirDgOzh92Jm5Z8AAI3/bznW3DAZgv7i47jckJDLjRlvUl5O15ebDIZB577F0BNf0ouQEOCppzzf60ch7EHRGvHHVVzs3XEwwUdjI01yWntPNm+m3AwAmDKF4tIKEB0tgqBDW7vyR2HqdFSnDAcAxDeWIfvo+h63a2zSYe8RF6a0+HiqoqipUX8MhlGD2Uy5Y1qHZs+TUHsGM/b8P+mNBx5wXz6XhrCB4g6SkqiKoq9qB4bRGqMRaG7WVtTMZgM+/VR6feONig8xcbQN8XECoiJVPqKAQ5f+2H68CUffR1xIa7dtdDrymrjUkNCx3JhhPEl1NeWFuMNAaW7GrG//iBDr+Q7FV15JDz+AQzzuICGB8lAqKvzCSmUChMpKKpHVskx23z4pL2PECEqMVUhejoC8HFcbEQ4B6qYB27cjsqMBt3SuBG6+0/6/ThsSyiU2lhYXXG7MeJKKCjKOtc7rslqBv/4VMS3VAIDalCFIvv9+bc/hRvgKdAcGAz3OK/QxjNvp6qKwotYJdqtWSc9VeE805e67pdyaTz8lXRatiY+n44ohLYZxN11dtKB1R3Lshx8C+/cDANrD47H1sqc9k9yuEWyguAtR+r6lxdsjYYIBk4nyJ7RMeisoAI4fp+fZ2dRnyptkZpKiLEA9f95/X/tzREdTaJbzUBhPYTSSUax1efHu3dTLCoBNp8d3055EW4zG4o1uhg2UC2lvd95tVQ5iwl1FhevHYhhnGI2UaKelgrFj7sn11/tGyOPWW8mIAIBvv3WPlzIsjMuNGc9RWUnXrpZNZisqgFdftb88NHExKtPHaXd8D+EDM46PIAjAL35BVQpvvUWxO1cwGMgdfe6cNuNjmL4oKdF2gisvB3bupOdJSdS8zxeIiyOFWYCu2eXLtT+HY7kxw7gTsTmglontHR3dOxRPm4YTo7wcnlUJJ8mK6HS0ajofktn0j0OoyJ4ka9de9ReSkujG0dTkVvEdJshpa6NVmJbhnc8/p8kTAK691rfi1tdeC6xZQ16j/fuBgwcBTNDu+NzdmPEUtbX0O9YqvCMIwP/7f5LMRXY28NBDwNfukc53N+xBceRHP7I/zT3xtWydhl71F+LjyTjhMA/jToxGbY3g+noKnwAkWDZ/vjbH1YqwMOp2LLJsGXQ2V6uEHOByY8ZTVFeTp0MrD8rq1cDWrfQ8MpLE2KKitDm2F2ADxZFrrkFHdBIAILd8FxJR71SjoU/9Bb2eJruzZz34RzBBR1UV3VC1UqD86ivpBz1/vpTz4UvMni0pNZ87hwFnNmp7fLHc2GbT9rgM48jZs9rljR09Sv2qRB55RPuGoR6GQzyOhIQg4oc3A//6F/SCFTdFfutU1tup/kJyMoWOGht9XlaY8UNsNnLnxsZqc7z2dgqfAGTwXHutNsfVGr0eWLwY+O1vAQBj9r+HgvRZAMK0Ob5juTE3D2Tcgehd1yK8U1tLTQBFg3rRImDqVNeP62XYg3IhN98sPd+wQYrDqyU2ltQ9OczDuIOGBpqctArvbNgglcbPnu3bN+exY+2lz9GtJowq/Ey7Y0dHU24Plxsz7qKqiu4Nri4uLBbgz3+mRTAAjBsH3Hlnn7v4C2ygXEh+PpCXR89LS6n5mivo9RQzP3PG9bExzIUYjRTD1iIM09VFybEiN9zg+jHdzeLF9vLnscc/Qnh7o3bHDg0Fysq0Ox7DOFJSQikArpbvv/WWdJ9KTQUef9ynOxQrgQ2Unpg8WXr+zTeuHy85mcoW6+tdPxbDOFJeTpORToMs/e+/J4MHIM+EP1Sw5OQAl18OAAjraseogx9od+z4eDJQuNyY0Zr2djJQXO298+23wNq19Dw0lJJiA6hilHNQemLsWMqGbm+njOglS1xLZIqNpTJQreKNDAOQmmpJiTa5TYLgclNAr3HHHbB8twWhXR0YXLAWKF+guONyj8THU6IslxszWlNVReHZ/HycLdFh3xG94kaXiabTuOKrN+038R2X/hznjgwBjly8bXuHqwP2DuxB6YnwcGDmTHre3g5s2+ba8XQ6MnDOnHE9p4VhREwmzZKv0ysOSKKCQ4YAI0e6fEyPkZSEE6NvAgDoBSvw7rvaHDckhAQbudyY0ZqyMroXGAzYd0SPxiZ5khbiw9rQjBkOHYpPDLoGx/pf2ev2gkAeVl+SM5IDGyi9cd5tDIASB10lKYnDPIy2GI2UIBfmeuXKiMMrpRc33KBNyMiDFIy6AW0R572TO3dKPYRchcuNGa2xWGgxcH5hIXpOdLq+JS3ER3R4Fy7f9RJiWymB29RvKA5N/4nT/eLjBEwc7V+/Yw7x9MbQoaTCV1pKk11ZmWs15TExZKCUl5OxwjCuUlREYkwuklx3GumVh+hFejpw6aUuH9PTdIVGYt/ouzBzzxv0xrJlwEsvuW5ocbkxozU1NfR7ys7u9nZkBHDH9TIEBz/6CCinDsWIj0fKi0/ithQ9AA3FCn0E9qD0hk4HXHGF9FpU1nTleFFRwOnTHOZhXKe5mSY6DRLixpxYJb244Qa/rQA4mX8FGhJy6EVhoeuhWYDLjRntqaigijk1nk+rFfjyS3qu1wNPPBHQhjMbKH0xZ440WX/3nesNBJOSKJ5dW+vy0JggR5S3d1FDIbq5Cnml56Wx4+OByy7TYHDeQdAbcHDSvdIb//lPLxLPCuFyY0YrbDbKRVR73R4+TMm1AHk6R4/WbGi+CBsofZGQIJUc19cDe/e6dryYGBLBKi93eWhMkCMmbrro7Rh27DPohfNx6QULtO2I7AUq+k8CxoyhF1VVkiquK3C5MaMVJhMtUNWWF2/ZIj2fNUuTIfkybKA4wzHMo0WybHQ0cOoUJ90x6tFK3r6pCQMLvwYAdIWEA9dco8HgvIxOB9zr4EX56CNJGVct8fFULcVhHsZVqqooZKimgZ/ZDGzfTs+jouwqyoEMGyjOGD+ehNYA8qC4WoWTlEQdLE0m18fGBCdi0qar5cVr1iDEagYAnBlyZeAIPA0cSOFZgHJ1Pv7YteNxuTGjBYJA4R213YX37ZO8eFOnalK95+soNlDa2trwzjvv4PHHH8eCBQswa9YsrBWV7Jywb98+/PnPf8Ydd9yBK664ArfeeitefPFFmHz5Zm0wSHF5m41yUVxBTLrj3jyMWoxGmqhcaaNuNtuT7Ww6PQpG+oGsvRJ++ENJ9OHLL2lR4Apcbsy4SkMD/Q7VinVu3iw9nz1bkyH5OooNlMbGRixfvhzFxcUYNGiQon3/+c9/4sCBA5g5cyYefvhhzJs3Dxs3bsSSJUtQ68uJo46aKN9843oVTkwMh3kY9ZSX06reFb79lpJsAZzNmYnW2DQNBuZDpKZKnZgtFuC//3XteI7lxgyjhqoqCjfGxCjft6VFyoFMSAj45FgRxbNccnIyPv30UyQnJ6OgoAA/+clPZO/785//HGPGjIHeoTnS5MmT8dBDD+GTTz7Bfffdp3Q4niEjg34QR47QzeHECWDECPXHS0igEE9DA2uiMMro6CBtHld6eFitwGef2V8eGbbI5WH5JIsWUd5YczOtPhcuBAYPVnesqChKlK2pCeiyTsaNFBeTV0+NNs/OnVJF2syZfisFoBTFHpSwsDAkizkZChk3blw340R8Ly4uDsXFxaqO6TG0VJaNjqYOtGJjNoaRi8lEng9X8kV27rTnU1RmjkNt0kCNBudjxMQAt90mvV6+XL33U6fjcmNGPS0t9Nvh8I4ivJ4k29bWhvb2dsRr0fDMnUybJsX8t22jPBK16HTkoq+s1GZsTPBQXU0iT2qbaggC8Mkn9pcnRgeo90Rk/nzygALkAXVFKoDLjRm1VFVRJZiahUVdHf12AVJ6VusF9EO8bqB8/PHHsFgsuKwPgSiTyYTCwkL7wyvelvBwqe68o4Na07tCXBx1otVCSIoJDgSB3MSuJMcePUr5TwCQl4eqzHGaDM1nCQ0F7r5ber18uXrBRS43ZtRSXk4LUzWhme+/l/IVZ8/2uz5ZruDVXjwHDx7E8uXLMXfuXEyYMKHX7VavXo3ly5d7bmC9ccUVwLp19HzDBuDKK9UfKy6OKnlMJmmFxzB90dREYUFXvI2ffio9v/FGoD4IJrtp04Bhw4CCAsrf2bCBPCtKcSw3zs3VfpxMYGI2U3NAFmdTjNc8KMXFxfjNb36D/Px8PPnkk31uu3DhQvz73/+2P37zm994aJQXMGgQMGAAPS8sJA+IWsLDgc5OzkNh5GM0UsKnmioAgMpkxRBHaiowfbpmQ/NpLhRv++AD9SFaLjdmlFJdTfpZagyUigrg5El6np9/UYPBQMcrBkp1dTUee+wxREdH48UXX0SUE5d1SkoKhg4dan/kemv1otNdXHLsCuHhrhk5THBRWUkNwvQqL1tH78nCha6XKvsTw4eTJwWg6jmHKiZFcLkxo5SKCjJo1eSNOXpPgig5VsTjM1RjYyMee+wxWCwWvPrqq0jxt5K9OXMojt3VBWzcCP31iwGoVPSLjyd3cWsrVfYwTG90dbkmb28ySZNdTEz3Fg4BRHsH8MFnPcf5YzMWY4FuF/SCFV0rP8UXuAbtUcoqEkND4zAxuQl5XG7MyKGri9Rj1STHCoJUvaPTUXlxkOE2D4rJZEJxcTG6urrs77W3t+OJJ56AyWTCSy+9hGx/dFfFxVEXSQBobERm6W71x4qNpbwCX1bSZXyD2lpa+auNY69eLSWHXnMNEBmp1ch8AnFxKgg6tLX3/KgO648TgxcAAEK6zBi+5/1et+3t0dikw97KVC43ZuRhNKpvDnj2rNRYduTIoDSIVXlQVq1ahZaWFrv667Zt21BzPrP9pptuQkxMDJYuXYp169ZhxYoVyDifBPr888/jxIkTuOaaa1BcXNytGicyMhIz/cVCvPxyexXPwFMbcDJthrrjhISQ66+mhpPumL4xGql6LCJC+b4tLcD69fQ8NJS6FgcYE0fbsPeI3mlRXMHE2zD43DcIs7RhyNkNODNmIRoTB8g6R3sHGUAWIUQqNw4wQ4/RmMpKSpJVc906ap8EWXKsiCoDZcWKFahyaJy1ZcsWbDnvPr7yyisR00sS3+nTpwEAa9aswZoL2qCnp6f7j4EydixZsyYTMsr2IarNBESqE69DTAwl3U2cGFTlY4xCSkrUNwdbv17S7pg3T71YlA+TlyMgL0dO+XAMEHoz8O670As2LKj7CLj3MVnn+OAzA9raQTlAjY1kNObkuDRuJoARmwOqSWq3WqWQbEiIlD8VZKgyUD766COn2zz99NN4+umnFe/nFxgM5EX58EPoBRsGn/sWp5JvUXesuDjJfR+ANw5GA9raaCWmprzYYqHwDkAG8PXXazo0v+QHPwBWrqTcrz176DNSmsBotdJ3wgYK0xu1tWTEqpnXjx+XErEvuSRwOo0rxOtCbX7LvHn2p0POfg0IKssOY2LIBc/lxkxvGI3q5e03bqQSR4BypzIztR2bPxIeDkyeTM/b2oBDh5Qfg8uNGWdUV5MRrMaDwuEdAGygqCctjUI9AOJbKpFadUzdcXQ6chmz7D3TGzU1dCNUWhZss3Uvp73xRk2H5ddMnSo9375d+f5cbsw44+xZdbknFov0m4yIkIzpIIQNFFdw0EQZePJr9ccRZe8dKp4YBgDFsYuK1JWh79kjVZuMHAkMHarp0Pya8eOlm8euXcrl76OiyPvCsvdMTzQ1kf6JmvDO/v3kVQeAKVPUGTkBAhsorjB1Ksxh5L7LLtpG7jw1xMdTDgqXGzMXIv4u1OSfODQFZO/JBYSHU2I6QOq8R48q25+7GzN9UVVFvys1ukVBLs7mCBsorhAWhqKBcwAAIVZz9x+WEiIiqBSNDRTmQmpqaKWu1INy4gQ9AJLH7qPXVdDiWBmhNszD3Y2ZnigpoZCsUtXntjby6AFk3Iwbp/nQ/Ak2UFzk7BCHhoGuSN+HhbHsPXMxory90hL0C5sCqpXHD2QmTJCqd3buVJ7wKnY35gR3xpH2dprL1Yiz7dpFPdoAYMaM4GpH0QM8a7lIffJAmBIH0otTpyhfQA2i7D2vxhgRi4UmOqXhnbIyaRWWlBTUVQB9EhlJuSgAVToVFCjbX+xuzAnujCNVVepVnzm80w02UDSgMN/Bi7Jhg7qDxMVRYhWvxhgRk4kmOqXlxZ99Rsm1ADUFVNOkLFhwDPPs2KF8fy43Zi6kooKuP0PPPaF6I7y9EThwgF706wcMG+aGwfkXbKBowJkBc2A1nL8JbNoEp3rbPRESQlU8XBXAiNTUkLs3PFz+PvX1wHff0fOoKOCqq9wztkBh8mTpRrJjh2TYyUUsNxa1Zpjgxmajpp4qNItyirZKhu6sWRyWBRsomtAZFovS3PMrseZmyb2ulOhoWo0pnSSZwKSkRHmJ4RdfSOXqV13FXbKdERMDjBlDz2tqgPPtOGTD5caMI6KxqsJAyT3jQ+JsVitVpXq51xQbKBpxZohGYZ7aWkq8Y4KblhaKZSuZ6NragLVr6XlICIV3GOe4Us2j09FnzeXGDEAh+vZ2MlwVENNSjdSa4/QiJwcYMED7sclFEEhkLitLKsX3EsGdIqwh1RljgNRUWkkdPEg/1H79lB0kJoYS7oxGdQlWTOBgNOJsMbDPmAxLl7wKnqFHv8GE81o8Z/LmYtfWVKf7tHe4NMrAYMoU4M03yb2+Ywdw993KqqYSEoDSUvXdppnAobxcVc5XfskF3hNvNo4tKgKSk32isSh7ULRCp5eUZQUB+PZb5cfQ6+nh0CmaCVKqq7Gvoh8am/Voa9c5fbS3WjH06Of23Q8MvknWfoJAE6HX82itVvIaVVfT6q2wkBKEPUFCAjBiBD2vqFBe7i+WG3OYJ7jp6CBDVYWo4qCiTdILb4Z3ysrI+zNvHi24vQwbKFoyb55k+X7zjbrM/thYSrJSKr3NBA42G3DuHCw2St7U6QRERfb9GFS7FzFtVAFWnj0ZnenZTvcRH/FxAiaO9mAVimiMVFWRMXLyJP3b2EgeiJEjqYNrVZXn2j+4EubhcmMGoKo7FU094+uKkNRYRC+GDQPS07UfmxzEhfHcuUD//t4ZwwVwiEdL+vUj5b8DB2g1deSIvaGgbOLjKcRTW+sTFizjBerqKNFOTxNdZARwx/VODNY3pJtq1j1X4o7JPmLgWq2UG9PaSv9aLOQljIoiYzwvj37n8fHkyYiNpf/v6KAJv7SUtnE3U6cCS5fS8+3bgdtvV7a/WG48aRJXXwQr1dVkUCt0Rw446wPJsbW1lDtz+eXAwIHeGUMPsIGiNVdcIdWyb9ig3ECJjKSJ3GhkAyVYMRrpNyA3Dm21Art30/OICOW/Oa1wNEZaW+m1TkeVRDExQH4+GfEJCWSQiMZIT0RE0M3+iy/U9zRRQnIyNVMsLCQPZkUFkJkpf3/HcuPkZPeNk/FNBIFCgwqTYyEIyD27CQBg0+mhnz5d+7E5o7GRfrezZwPDh3v+/H3ABorWTJlCk2lzMyXctbTQ5KyEsDBKtho50j1jZHyb8nJlEtcFBeRaBig0okQ3RS3OjJGBA4GUFHnGSG8MGEAlwHv2AEOGuN8zMW0aGSgAeVEWLZK/b1QUxe9rathACUaam+m7V5p/UlCAmBbKXarKHIdMTyeliqHWadPI++/N5NweYANFa0JDgTlzaOVnsQCbNwMLFig7htiEjKsCgg+zWXmi3c6d0vMpU7QfkyNWK+WLAGSMxMaSMdKvnxSmiYnRxpjQ6ahfTmkpeTTcHRefOhVYtoye79ihzEBxLDf2sVUo4wFqashIUZo/slkK7xTnz4ECn53rdHTQ73XSJJo3fDA06XsjCgSuuEJ6rkYThWXvgxeTiVyucg0UQZCEAfV6mmzcSXU1GSM33UR5GrfdBlx2GTB6NOk3xMVpO9HFxtLf1NFBHht3kp4u5bucOqX8+nMsN2aCC7Gpp5LfflcXsG0bPTWEoTR3qpsG1wOdncC5c+ShnDZNsSy/p2ADxR0MGAAMHkzPz54FzpxRtn9oKMveBytKE+1KSqTs+1GjlIcTldDVRavE8eOB3FztjZHeGDKEyoBLS92vsuxKNQ+XGwcnVivlLSnNkzp0yC7KWZI5GV1hCvNX1NLVRfel4cMpKTcszDPnVQEbKO5C1EQB1HlRoqLo5sOy98FFcbEyeWnH8M6ll2o/HkcqK0ldUjS+PYVeT4qWCQnuv/m70jxQLDeurtZ2TIxvU1tLmj1K808cOhefGTBH0yH1is1GC+a8PEpF8LKUvTPYQHEXjpbp5s3kUlNCfLwU12SCg6Ym+s6VqAg79n1yZ/5JZyeFLsaP90wS7oUkJ5OR0tCg/FpSQnY2PQDgxAnlTQBjYsh1zt2Ngwejka4NJTd7s9m+uOgMi0ZphptDs4AkYZ+ZSWFZd1fGaQAbKO4iOhoQS8ZaW5WvxmJiKMOa81CCB6NRWdWX0Sg1txMTVd1FRQXlmHhTI2HkSGDQIOVKr0qZej4XQBCUX7fc3Tj4KCtTHibZs4d0RwCUDJgOm8EDUs5FRUBSEgmKJiW5/3wawAaKO3EM83zzjbJ9xdg+y94HD5WVVA0iN6/DU96Tjg6KW48f711N/NBQYPJkqmyrq3PfeaY6JCsqNVCio2lBwnkowUF7O8kCKO1efEH1jtspLycPz9y5QFqa+8+nEWyguJNRo6Sys0OHlBsbcXEsex8sqEm0czRQ3Jl/Ul5OnhNvdlgVycwkQ6mmxn0y+Pn50iR+5IikMSMH7m4cXBiN9PtQkn/S0gLs20fPk5JQkz7KPWMTqamhkOOcOeQF9SPYQHEnOl13L8p33ynbPy6OXMXuXC0yvoHSRLuWFrp5AmQE5+a6Z1xtbeTRGTfOd0oRx46lv7e01D3H1+mkZFmbTVLplQuXGwcPoqGsRFhx+3bJuJ45E4LejddVXR3NFbNmeT65XQPYQHE38+ZJLvtvvlHmDYmKIhci56EEPkYjfddyE+327JESMadMcZ8CZHk5TWxi4qgvEBkp6b24K4ncMczD5cZMTwgCJURHRyvbzyG849beO01NtPCZPt1vVcnZQLkQcaLXKqySnEzy4wCJcB06pGz/kBC6STCBTWmpskQ7T4R3mpupYmfsWJ+TwLbL4JeXu6diZsgQSbL+4EFlInFcbhwcNDaSAaAkvFNbCxw9Ss8zMynp2x20tVFO25QpdP/xtetXJmygXEhqKk1MtbXaHdMVTRRR9t5s1m48jG/R3k5VMnIT7To7gf376XlcHLVodwcVFXTsjAz3HN8VRBn89HQap9bo9ZLh19VFHislcLlx4CNW3SnxoGzdKmlbzZrlHsPBbKZ8tvHjfVbCXi7+O3J3ERVFCnu1tdqJpE2aJFnZu3YpS7qLiyNL3WTSZiyM76E00e7QISm/YdIk9+SG1NfTTXbMGN9dfblbBt8V0TYuNw581MjbO4izuSW8Y7GQ1sno0cCMGcpyY3wQNlB6YvBgmmAaGrQ5XmgolXcBtBrbtEn+vmFh5C7mPJTARWminbvDO4JAFWcjR7pXW0ULhgyhBYU7ZPBHjJCMxn37YOhSkPTK5caBTVcXeSmUlBeXlUm6RYMGad/80molldghQ4DZs70jqKgxbKD0RGIiMHSotkbBhWEeJZNpRARdDEzgoTTRzmqVDJTwcKqu0ZraWhJyGuXm8kctEBskukMG32CQ9GXMZmSU7ZO/L5cbBzYmk3J5e3d6T2w28pzk5pJKbJSH+vq4Gf/2/7iTIUMomam1VdbNo70D+OCzvlztebiy3zCkGAuA4mKse+ss6voNkTcWIRehB2yYGH8OeXPy5O3D+AcNDcoS7QoL7Q3G3CI7b7ORYT57Nhnq/oAog//NNzRmLZufTZsGfP01ACCnaDtOps2Qv69juXFEhHZjYryP0Ui5HnK/V0GQDBSdDpg5U7uxiIuc1FSqGlUqGufDsAelNzIyqFLAibiaKKwpCDq0tff9OJF3pX2/3BMbnG5vf3QY0NgWir2fnnXjH8x4BaWJdu4O7xiNNNGNGKH9sd2Ju2TwR4+2fzeZpbuht1rk7xsXJ/VXYgKLkhJlhvDp01Iy96hRUoWYVmOJjyfjRMvj+gBsoPSGTkeTtM3WZ3OyiaNtiI8TEBXp/FE5dCa6QmjFO7B4E2JD22Xtp9NROMjSpmByZPwDJYl2jr1hxA6/WmK1UlLn2LF+0UisG44y+FomporHBRBmaUNm9UFl+3Z1cblxoCGW8Cpp6ukY3pk9W7uxVFTQ7+yyy3yz2s5FOMTTFzk5lMhUU9NrQlNejoC8HLmaKeFAxQzg228RZmnDrVl7uwtC9cIHnxnQ1g66gdhsfl02xjhgsUirHzmUlkoevZEjtXflVlfTJOeusmV3I8rgb91KBpZWFQxTpwIbNwIA8kq3oW6gAsMwNpbc7xMm8HUbKIhVd3kyw+1WK/0mAfpNOlaHuTqOri7giivcpyTtZfiK6YuQELoRtLZqJ9wmdjgGlEto22xcthhIiGWocg2U8+3ZAWgf3rFYSJht/HhlbeN9DXfI4I8fb881yC3bCZ1NwVwQH08JlXzdBg7V1TQXyzWAjx6V2pVMmCC/W3lfNDaSkTRzJuVLBihsoDgjL49KLbXSIRkzRkqs2rNHmeEjCFxuHEjU1FD4UG6iq6OBonX34spKkrN3l7Klp3CHDH54uD2cFtHZhNSqI/L3jYqikACHeQIDQaCKSiVGhjvCO5WVZOyMHq3N8XwUNlCcERVFuSh1ddroLISFSdL3TU1AQYGy/d2hmsl4h5IS+caJ0ShpKOTnUyKrVnR2UqXJuHEBoZ1gl8EvK9NOydXBLZ9dtE3+fjod5QhwuXFg0NBAi1W5Xk+LRerl5Gg8u0JLC92XhgzxXRFFjWADRQ6DBlFClFbCbeeT7gAoC/Po9XRT6yNpl/ETWlspn0TuROf4O9Hae1JeTp7CgQO1Pa630OloEaClDP4ll8BqoJK97OIdygwfsV1Fe7s2Y2G8h9FIHjG5VXf79tG1DlBYVosFgNFIYUwtFyk+ChsockhMJGtVq3LBiROlhLldu+R7ZvQ68rqw7L3/IybayU10dVd5cUcH3WzHjfN7WexuxMXRQqCjQxvDICoKlVnk+Yxsr1fm+RRVqbnc2P+pqKC5W67nQuvOxV1d5JUZOjTgvScAGyjyGTqUckdEa9gV4uJInhugH7xs96+OvCech+L/VFeTYSqjj06ouQU4cj7vITWVQhhaUV5OHkItj+kriDL4JSWahGdLcx0S3JX05gkJISPQiaYS4+Morbpra5OaTMbHa6P6XFtLOZHZ2a4fyw9gA0Uu6enkBtdqknF00ysJ80REaC9GxXgWmw0oKpKdaJdZtldKpr70Uu1WTq2ttBocMyYwS2AdZfA1MOrLcibDpjtvUO7YoczoiY0lKXLubuy/iPL2cr2eO3dK4fgZM7Rp6llfTzIAQaJMHICzkpvQ6Wg1Jgja5IA4GiiO7ntnxMXR6lsLTw7jHerrKela5kTXv9hhta5leKe8nDyDgbwaE2Xw6+tdvm4t4bEoTxtHL2pqpKRlOSQk0HdeW+vSGBgvYjQqq7pzDO9oUb3T3EyLGrn6KwEAGyhKyMkBsrK0KRnMyJBuDIWF8nUSRPlsDvP4L0aj7B5PBmsnMsUmdbGxUmjQVZqaqKpgzJjAj2VrKINflO0Q5hGrM+QQFUW5MJyH4r+UlMj3XNTXA4cO0fPUVFoIuEpNDSXHpqS4fiw/gQ0UJYjCbW1t2gi3iV4UQZBilc4wGGh71lXwXyoq6LckwzDIqD6E0K7zSZ6TJ2vjJgZIR2H48ICUx74IDWXwi/tfCpvu/LSpNMwTFqatgBzjOcSqO7nhnW3bpHDe7NmuLwIsFjpekCTHirCBopT8fO2E29TmocTEUA4Dx7P9j85OWonJnOgGlDmEd7QqL66vJ29MgIs8dUOUwa+upkoIlXREJMCYNpJeVFQo88rEx1NYra1N9fkZL6G06k5rcbbaWvLEBHI4tgfYQFFKZCQJt9XXu14ZMHiw1NL+4EEqiZRDXBzFs7XSZWE8h9FIMtUyKgF0Nityy86rx4aF0Q3WVUTv26hRQeUqBkAy+Dk5LnsxSgc49FJREuaJj6fvnsM8/ocoby/Hg1lVJZWhDxhAvzlXaWggj6eSDsoBABsoahg0SNI2cAWxygCglfXBg/L2i46mVRjnofgfRiO5a2VMNMnGQkSaG+jFJZdoI/JkMpFRPHKk68fyNyIjJZFEF2TwS3NVGihieJbLjf0LsepObodvrb0nTU107kCUAnBCACkzeZDERIoF7t0reUDUMmUK8PXX9HzXLnlVGjodGTeVldokXzGeo6hIdjO+/iUa996x2chAmTNHWav4QEKUwd+9m64dFeXV7dEptG9hIfVlqaigEJIcxO7GkyZpl0/EuI2zOyuxb0UBLPVRgD7Gef6HIOCaL7cg4fzLz9rnoO2zvr/ndmeOc6ORvCfJyXKHHTCwB0UtQ4ZoI9w2Zoy0Mt67V37ybXw8xb8tFtfOz3iO5mZy78sRehIEe3mxTafXpodHTQ2QlkYhymDFUQa/slL9caZOlZ4rEW2Lj+dyYz9i38pTaKzuQFtnCNo69Ghr1/X5iKgsRkID5SVV9RsJkyHN6T6CQEZPaGgPAxCTYwO4Y3FfsIGilvR0Wo256q4ND5dyCxobaVUmh7g4CjHxROc/1NRIWgbOKCtDXBP1kTGmjZSfnNcbViv9XsaO1abduz8jyuC3t6uXwZ+mMszD5cZ+haWDEqp1EBAV6fwxtHyjfd+SQbNl7RMVKSA+TsDE0T0UPRiNVGnXv7+n/mSfgkM8ahGF206epPwRV5KXpkwh1UGAwjxyVrjh4XTemhoylhjfRzRm5bj2d0rhnbLcS5GmxbkzMjgkKDJkCAmtnT2rTvhKVJY+dw44dYpuJP36yds3LIxCQ6NGKT8v41nO10FEhttwx/VOiiIEAfhqKz3X6zH5Z1MxOd4FOQpBoPyTyZN7ca8EPuxBcQWthNsmTZJi4UrKjcPDWVfBX7Ba6aakojlgWY6L6rEWC7VoHz9edv5LwKPXk5FisajXNFLrRUlIoPASq0H7PqKUg16G9khRkXQvGD1afs+e3mhspPkiCJNjRdhAcYWQEFoFuSrcFhdH/RUA0kmQ2zwwPp4mOtZV8H1MJvny9rW15JkDUJuQj9ZYFz1klZVkTA8e7NpxAo3+/SnJXa14m6OBoiQPRVSD5jCP72Of12UYKFp3HDeZSHfL1UIMP4YNFFfJyyPXrqslv2p688TGsuy9v1BdTTo3UVHOt3X4/ov7uzjRmc30GDcu6DQUnBIVRZIBdXXq9s/OloSzTpyQb+iI5cYVFerOy3gOJQtPx3lbLGdXi9lMaQRBmhwrwgaKq0RGkqZEQ4Nrwm1qVGXFNu68EvNtBAE4c0Z+eMVhoivqP7WPDWVQUUEu4vx8144TqOTlkcFgNqvbX6zmEYRueUNOiYujkIAWLTMY99DSAthkfj9GI13jABm9cvOR+jpeRgalEAQxbKBogRbCbZmZ0mqsoED+saKjaaJzVdWWcR+ieqgc7ZGWFuDwYXoak4q6BBcMi/Z2MmDHjydjlrmYjAwqvVZbDedYbqxUVba+XpuWGYx7qKkBbDLnVS29J4JA88Dw4UF/3bKBogUJCVQd4aonQ/xhK2keGB9PkyvL3vsuVVVUXixHiXLfPvuquixnqmuNwcrLyXjOzVV/jEAnJISu3aYmdfvn55OBAwBHjsg/TmQklxv7OkqKH7TMP2looHtKECfHirCBohVDhtCk09Ki/hhqwjwxMXROXon5LiUlsrsXd6veyXVhomtpoXOOG6dKLTWoyMmh60iN/L1OJyXL2mzKqvAiIqiyi/E9RHl7OddsSwsZpwAZq64uCIxGSmh3VfsoAOCZSytE4TZXSo6HDJFK0w4ckBcXF2XvOeHON2lro1JwOZn4Fgt5UAAgNlbqmquGigryDAR5DFsWyckUXlVr5KsN84jlxq4sahj3UFdHDznG/d69UjnypZe65vU0m2lhMXCg+mMEEGygaIVORwJrgqA+4U6vl8I8nZ3AoUPy9ouLo1W6C23kGTdRVSW7ezEOH5aUTSdOhKBX2aulsZEqVMaMcW2yDBZ0OgqFdXaqS1odMgRISqLnBw/KL/sXq/A4zON7GI10Lcq5fnZq2DOrpobyEeX2dgpw2EDRkuxs0lZwZcJRU24sJuiy7L3vUV5O/8pRj9Uqjl1VRQl2rDAsn+xsMjLU5HLp9ZIXpatLfv6YwUA3QPZ++h5lZfISVDs7ydsNkME5fLj6c9psJN43YgQ3kjwPGyhaEhJCJcft7erLB8eOlfQqdu+Wd5yICPLasB6Kb2GxkBS6HO+JzSYZKGFhUn8mpdTV0UQ5erS6/YOV6Ghyq6s18tWKtsXGUq4Dez99B7OZDBSlXs/Jk10zLOrryUjmpHY7bKBoTV4ekJKi3li4sHngqVPy9gsLk69Ay3iGmhoyGOSUF588KQl9jRtHRqdSBIHOOWpUULZmdxlRE6WzU/m+I0ZIN7R9++SHeRMSuNzY1zCZ5IdlHb2eroZ3amspOTbYm3k6wAaK1kRG0g2ivl69NonaME9FhfrurIz2VFaSB0yOgqsW4Z2mJspHcsXNHMxkZACpqeqMBYNBum7NZinZ2RkREaQwzHkovkN1NXm0nDXo08rrCdC8HRrKybEXoNhAaWtrwzvvvIPHH38cCxYswKxZs7B27VrZ+zc3N+Mvf/kLrr32Wlx55ZV4+OGHUVhYqHQYvs3AgVS1oVabZNIkKTlLroESF0dWP4d5fAObjZQlo6PlbS8m2un19P2robaWSmbFhE1GGaGhrmmiqA3zREVRKJDxDYqL5bWkOHlSmuPHjyfvt1qMRspfzMhQf4wARLGB0tjYiOXLl6O4uBiDBg1StK/NZsOTTz6Jb775BjfeeCMeeOAB1NfX4+GHH0ZpIHXlTUigzH61q6L4eKl5YFkZYhvLne8TEkKrdV6J+Qa1tbQSl1NeXFYmJdMOH66uC6rVSqs+XoG5Rk4OGZVqSn9Hj5YM0j17KAdJDvHxtGpXaxgx2iFWVXkyvGO1kgdl+HDWLLoAxZ9GcnIyPv30U3z88cf46U9/qmjfTZs24ejRo3jqqadw77334sYbb8Qbb7wBvV6PZcuWKR2KbzN0qGvCbQ4/+KwSmT0+oqPJ+mfZe+9TVUXlpnJWYo5limrDOw0NZAz1769uf4ZISaHPUE2YJzRUkgloa5MvExAbSyJxvLjwPkYjzdly8kC08HoClKeWlETGMdMNxQZKWFgYklUm4G3evBlJSUmYNWuW/b2EhATMnTsX33//PTrVJKf5Kmlprgm3ORgo/UsUhHlMJl6J+QLnzslvDqiFjkJdHXlP5BhETO/odJSoaDZL4ltKUCPaptdzubGvUFUliV/2haPXc9gwdV5Pkbo6WtDKDQcHER71J508eRKDBw+G/oIvf/jw4ejo6AisMI+rwm1ZWXYV0JSaE4joaHS+jyjXzXko3qWxkRJk5YR3amsplg1QeaEa7RKLhX5vXJ6oDdnZFKZVk0M2frxUgbVrl3y5gbg48n7KDQsx2mO1Usm3nJ5ZWmkWtbXR74W7jfeIRw2Uurq6Hr0v4nu1vWgQmEwmFBYW2h/F/tK/QhRuc9GLohdsyK6Q0eNDr6dHZaW68zHaUFUl303s2LtF7URXW0uhCVaf1IaYGFKWVaOJEh4OTJxIz5ubgaNH5e3H5cbep66OjFI5PXC0Uo+tqaH7hNhwkumGR3s5m81mhPVQcim+Z+7F07B69WosX77cnUNzDyEhVHK8Zg1Z50pFfKZMAT75BACQW74T5SMvd75PbCzJ3qs5H6MNpaX02ctJeNNiJdbYSLL2csqZGXnk5ZFsvcXivNz0QqZOBb7/np7v2EHii84IDyf9lZoaruTwFjU18vLG6uq6ez3Vfl9WK3nXhw3j5Nhe8KiBEh4e3mOeifheeC9lWgsXLsT06dPtr4uLi/GHP/zBPYPUmgEDJOE2pe57sXlgYyOyKvfD0GWG068sPp7OVVtLmg6MZ2lvJwNRjjhbWxspUQL0G1Hj5u3oIMOEE+y0JTOTvhOT6aIbUHsH8MFnvRv/IZbJuMkQCoPVgraNO/FZ2k8BnYwbkHUocKIcoYmNmHjzYORNYUPFo5SVySsV3r1bKkRwxXtSWwv068fXbh941GxLSkrqMYwjvtdb8m1KSgqGDh1qf+T6U6zdFeE2g8GeHR5qNSOtQkZVQGQk3SQ5D8U7VFeTm1hO0ty+fZLEudouqCYTGb7sItaW0FBa2TY2dnsLAARBh7b23h9NXdEoS58AAIhqr0NsaUGf29sfnSFoa9ehsaIVez+WqSDNaENHByW9ygnvOIZlXTFQ6uulak+mRzxqoAwePBinTp2C7YLs+BMnTiAiIgLZ2dmeHI7nEIXbRClzJXSr5pFZbhwaKmWYM55F/NzlNBrTIo7d0kKTHLuItScnh9z9ra0AgImjbYiPExAV6fxRkS+Jtg2u3CZrn6hIATrQIsbSwb15PIrRSMaoMwOlrY1CfwC1k1CoBWanpYUMk7w8dfsHCW4L8ZhMJrS2tiIrKwsh5yfr2bNnY9OmTdiyZQvmzJkDAGhoaMDGjRsxbdq0HvNTAgJRuG3PHuUqn+PGocsQjhCrGVmluwHbT53fjOLjyV3Z0aGupwujDrE5oJwqAIsF2LuXnsfEUJNJpTQ3076sfeIe+vWjUE95ORAdjbwcAXk5MqtyWiYC2w2A1YphNdsw7Lp7ZXnIPlgpoM2iMOeFcZ2aGsoJcZZvdOCA5PWcMkWd1xMggyg/n8PwTlBloKxatQotLS320My2bdtQc15k6KabbkJMTAyWLl2KdevWYcWKFcg4H8OdM2cOVq5ciRdeeAFFRUWIj4/HZ599BpvNhh/96Eca/Uk+ytChlNEvt7pDJDwcVVnj0L9kFyLb6yk5S1SZ7Y24OMqDMJn45uVJjEZKoJNTTXPkiNQ3adIkeR6XC6mtpSQ9lrZ3DzodXbdnzpAmihIvVUwMJS4fOEC/i9OnSV/FGeI5WGvRcwgClRfL0SHRwuvZ1UWPoUPVGzhBgioDZcWKFaiqqrK/3rJlC7Zs2QIAuPLKKxHTyw3YYDDgpZdewj/+8Q+sWrUKZrMZw4YNw1NPPYWcQE8USksjd97Jk4q7VZblXCqJte3e7dxACQ2lC6Cmhg0UT1JZSZUYchLtXJ3obDaqABg8mCc5dyJqojQ2ytO1cWT6dDJQABJtk2WgnP8u1YjEMepoaqLFnLPwTleX5PWMiqLcQjWYTJSAHagpDRqiykD56KOPnG7z9NNP4+mnn77o/djYWDz55JN48skn1Zzaf9HpqNfCyZN0Y1HQWKoiexIE6Cg+vWsXcPfdzneKiiLhp0sucWHQjGxsNuDsWXmrMJtNSrQLC1P3HYnt4NkAdS+xsbSwOHxYuYEyZQrwj3/Q971tG123To3J8/8vV+CNcZ2aGvJsO6uyPHbMno+EiROVl5+LNDQAs2dz+F0GnFnnSbKzSR1WoXBbR2QialLOe01KS+VJYosNyNQk5jLKqasjV76cm9ipU7Q9QBoZaiaqujoqYZeT78K4Rn4+hQGUqrzGx0ur7KoqCiPIxWrlnlqeorJSnry9Fj2zxLwxTo6VBRsonkQUbmtvV7xCKs5yuCAcy9x6IzaWVgVczeMZqqtpdeWJOHZXF63KWR7bM2RlUTKjGmXZaVI1D7Ztk7+f1dqtxJlxE11dlK/nLLwjCJKoYkiIes90TY2kjcU4hQ0UT5OXR5OdQp2S4v4OBoqj+mhv6HRUxnbqFK/EPMG5c/I9IeL3p9NJ3W+VUF9PibHnezUxbiYsjKrw1PTmcdS32bFD/n6CwN2NPUFtLV1PTnSLEmvPSG0IxoxR15TTYqGFxZAhnDcmEzZQPE1EBJWUNjQoMhwa47LRFHf+hnTihLyOxUlJ5L5Us/Jj5NPURGE3OeqxZWX0ACgnSc4+F1JXRwmXHMP2HLm5dFNqa1O2X1ISfc8AhWdLSuTvy92N3Y/RSDmBTq6l/iUOxqXa6h2TiRannBwrGzZQvEFeHoVgmpsV7VaWc/7CsNmkbPK+iImhCZXDPO6lupq+SzkqlI7eLzUTndlMLuZAr3rzNfr1I8l7Nc38HMM827fL20evp5yVHlqDMBpSWiqrh1X/YofrVo3XUxAoZDd8OPfMUgAbKN4gKYmqLxR6NspzFIZ5AMqJOHmSyxbdSWmp1EnaGa4aKLW1VLLODeU8i15PuhXt7cqvpalTpeeyDRQdeVm5ZYX7aG8nL5WT8E5MSxUS68/RiyFDSEFWKU1NtIDh5FhFsIHiLQYNkmKSMjGlDpNW6QcOyFtdJSXRCp/j2e6ho4PKueWEaurqgMJCep6bK0/Q7UKammiSVCPsxrhGdra9eaci+vWj7wwgr4is0I2OEjgd9KYYjTEaJcOhD3LLNBBnMxrJOGFRRUWwgeItsrIUT3aCXmoeiI4OqRNuX0RF0UqBwzzuQWwOKMdAcbULqtgKnmPY3iEujiowXK3mketFiY4mg4aT3N2DKG/vxNgfUO6Qf6KmvFhcSMoR6mO6wQaKt4iNpVW00snO8cYmN8wTF0dhHhZ/0p6KClmTHIDu35eaic5kotAOlyh6j4ED1WmiqDFQ4uNp5a2meojpG0GgyjsnsgBhHU1IMx6jF5mZ6oQRxY7jLKqoGDZQvEl+PoV4xOZTchg3Tkqy2rNHXogoOZkmOnYXa0tXF6nHOolhAyDvx6FD9DwlhW50ShAE8oQNGcKdi71JVhZ9f6LQnlzS0yXdmtOn5Yk1xsSQlhGHZ7WnoYEWh06u3azS3dAL5+dYNc0BBYHCSMOHq1eeDWJ4pvMmWVkUk1Si9hoRQeqjAE2Sp0873yc8nNyMYnkrow1GI01ycsI7+/dLhujkyconuqYm8rrxKsy7hIdTsqwar4ajF0WOJopOR545Ds9qj9FIwopO+qL1L3Yx/6ShgYygAQOU78uwgeJVIiJoJa1Ujl5NmCc+nkTblLqmmd6pqiLDT44eiasy2bW1VFqsRjeF0ZbcXPrOlWqiqA3zFBdTeTmjHZWV5Insa6FgNiOjfD8AoD0igQxTpZhMNMfzdasKNlC8zYABdKEo0TuYNEm6sOTI3gPkqTGZ6MJkXEcQ5DcHtFgk3ZroaHVdULu6lIeFGPeQmqpOE6V/fzJuAKCgQF7+mZhIz2Ee7bBYyOhzplt08CBCrGQYludMAQwGZecxm2luHzRI5UAZNlC8TUYGlSEqiWknJkpli8XF8nJLwsIombO0VN04me7U19NNQ87K6MgRabU9caLyEmGbjb5zDu/4BqImSlub8gobR00UOWGe0FAyThU2GGX6oLZWCr30hYN3uixHhdfTaKTEWm5JoRoWU/A2oaFUfrZli/N2345MmSJpauzaBVx3nfN9EhMpZ2XiRIqlM6o5+90Z7NudAYveuSrklK3fQ/R9bDVMR+ln8lZi7R3nn9hs5D1R0/+DcQ+OmihK3PfTpwMffkjPt28HfvAD5/tER1PFyYQJ3MNFC4xG8lj3NQdarXbvtCUkAtWZY5Wdw2ajHJcZM1izyAXYg+IL5OTQxdLeLn8fxzwUuWGehARaPXCPD5fZ940RjeZwtLXr+nyYWyzILqJ8g86QSJxOnuR0H/EhCHQzCjXYpNAA4xuIiY9KZQJycqQV9fHj8vLPEhIonKQ0V43pmZIS5wu0ggJ7v7Oy9EtgDVG4oBO1kfi6dQk2UHyB1FTyniiZ7Pr3l+TOjx2T19dHLHMrLlY+RkaipQUWM5Ue6nQCoiJ7fww07UGYhcI7ZQOmITw2rM/tL3zER1kwcXinOtVZxr0MHKhcJkCnk5JlbTZ5Se7R0bQa5zwU12ltpTw8BeGd4v5T+9iwF2prKfdETn8uplfY9+QLGAwU5lFiOOh05EX57DOpeeDcuc73S0qi5M7JkzlkoJaqqvP6MwZERgB3XN+HAN6Lm+xP8++cgfwJCsXyCk8CM2dygzFfJCuLNIbq6miRIZdp04CPP6bn27cD8+f3vb1YblxaCgwbpn68jCRvL2rS9IQg2KvubDo9SjMnQ1F6bEcHzemc1O4y7EHxFfr3p5VSS4v8fdSUGyckkPuRwzzqkatL0dZGYnoAraTGKoxjd3SQYcKdi32TiAhKVlcaesnPp4aPALWrOB9K6JOEBDJQOjqcbsr0QUUFLS76qsgpLbUXHtSkj4I5PFbZOcTkWPZ6ugwbKL5CSgr9oJWEeYYNI/EugJoHytE4MRioCuHcOXXjDHbMZvrs5HYuFsvHp09XniwnSmSLNzPG98jNJSNSSf7YhWEeOTlkcXFkyHCYRz3t7dTyw1nDPgfNorIcheEdQaAw0rBhysuSmYtgA8VX0OkozNPRIb900eDQPLC9XV7zQIAu0OJiZd4ahqiuphWzHANl61bp+axZys/V0kLlrCxt77ukp1MumNJkWaWibVxu7DqlpWT0OzNQHMuLcxWWFzc3kzHJkgCawDOfL5GVRR4ROS5fkcmTpedKVGUbGlhCWw2VlfKaLjY1kVcLIO/Y8OHKztPcTDLcPNH5Nno9rZZbWpRpogweLDV9PHiQVt3OiI0l752c/ltMdwSBZBnCwvr2bJhMpLgNAHl5aItRkFsk7p+dTZIOjMuwgeJLJCRQvoEShcrx46XqnN275U1eej3tc/asqmEGLVYrfWaxMmLS27dLhsyMGcq9ILW1Uq8mxrfp318KwchFr5dE27q65IV54uO53FgtRiOVF/fr1/d2jt+D0t47ViuF2Tk5VjPYQPE1Bg6kCUvOKh0AIiO7Nw88c0befsnJdME2NqobZzBiMpHhIGd15Ep4x2ajXJfBg1mYyx9ITCRNFKXS90qbB0ZFUeI1h3mUc+4cfXZOmgN280Ir7ZnV0MCKzxrDBoqvkZVFP3Il3VLVhHnEFR+HeeRTVUW5PpGRfW9XWwscPUrPMzOVr6gaG2m1zBOd/6BGE2XYMMnY3b/feaKtTkeeT+5KroyODhJec7awaG2lthQAlY3n5Sk7T10dVWjJ6c/FyIINFF8jOpouDCVuXDUGik5HZZKnTyvvJxKMiM0B5WjHfP+99JnOmqXcC1JbSytyOaEkxjfo35+8kkquW4NBWqV3dgL79jnfJz6eDBQlVUPBTmkpXVPJyX1vt2+fZGBOmaLsuhUrKAcMUDVEpmfYQPFF8vLoBid3NZaUpLx5IEAXbHm5skaFwUpDA7nW5YR3tmyRns+cqew8XV303fclJMX4HhERpByq9FpyDPNs2+Z8ezHBncuN5SEIVFqs1zsv83dc3CnNP6mrk6QiGM1gA8UXycyUFCrl4uhFkdubJyaGqg84zOOcqir6rJzFsCsru1UBIDtb2Xnq68ng5A6o/seAAVQlokRMbdQoyVO2bx8MXU72DQmhUJLcRUiwU1tLuXbOlH4tFlLjBugaHzlS2XkaGylnjJuwagobKL5IeDitxpS4ix0TupSEeaKiKMzDpYt9U1pK8X9nbl9XtU/q6miii4hQvi/jXdLT6aEkWdZgkKp5OjqQUbbf+T6xsRRu5GvWOUVFtLBwFi49ckQKm02apExkzWymuYEVnzWHDRRfJTeXVktms7zts7NpcgSoeaBcEbbkZFr1K61ACCZaW2kV5u7wjtlM3zlPdP6JwUDCeko1UaZKaqXZxTLCPAkJZMgqFYcLNjo7KTk2IcH5tg7qsYrDOyaT1PCV0RQ2UHyV9HT60cudhMTmgYDUPFAOYqdUrgzonepqcuE660xaVESGDEAVGkoayAH0XaelSV2qGf8jO5t+J3K6i4uMGWOv/Mgq2Q291UnLiqgoWu1zHkrflJbSZ+QsOdax3UBoKGlLKaG5mXIAWdpec9hA8VVCQuhHr2SiU9M8ECD35+nT8rVXgo2yMjIAnU1Ajt4TNeGdpib6zpX27GF8h6Qk8oAZjfL3CQ2155CFWdqQVXXA+T5hYXQDZnrn1ClJlLIvTp+W8v3GjXMuI+BISwsZl0pzzRhZsIHiy/TvT7kIct3Fw4dLsdb9++U1DwRohVFdzSuynujsJJGn+Pi+txMEKf9Er6fmgEpoa6OVMU90/s+gQWTsKzH4HX4veaXfO98+Pp6S29vaVAwwCKirI4+mM+VYwPXqnYwMqW0BoylsoPgyqank8pebDGcwABMn0vP2dkl0yBmRkZT/wCuyi6mpoWRlZ3Hskyclhc8xY5T34jCZeKILFPr3J0+Kkio8h5V7TvlO6GxOJAbi4ynsyIuKnikqIu+zHC0hMf9Ep5Oar8pBEGieHTKEFZ/dBBsovoxeT0l3ShLuHFcAcsuNAYqbnzqlTAkzGKiooM8kLKzv7VxJjnWc6Lhzsf8TGUmVWEqq8MLC7DfHiM4WpFU66UxuMNDvhsuNL8ZiAU6coDnNmeFQUSEtzIYOVbawEPPSWPHZbfBs6OtkZSmzzsePl3IYdu+Wb9wkJdEqnic8CZuNwjvOVmFWK6nHAvTZO1RlyKKpic7BE13gMGCAsio8oJtoW3aRjGoesbsx5451p6yMvJlKwztKe+/U1lK1pbPwL6MazsbzdZKS7MmZ7R3AB585yxSPwZz0ccgs2wuYTFj/79OoTR0m40RRCLXlYmLSGeTdxTdKAGSwmUzOwy5Hj0qr5QkTnIu5XUhtLXlP5JRDMv5BRoakiSJXdG/CBHSFhCOky4zs4h2A9f6+E7PF7sa1tcorxgKZ06elvkXOcCwvVmKgiDlGrPjsVtiD4uvodAiNovCCIOjQ1u78cTpzhn33nBPfyNqnrV2HRnM49m5posRQhrxJYvJqX7gizma1UgiJW7QHFgaDVIUn14sZHo6K/pRDFtHRCBw/3vf2XG58MfX1JGInJ5eroYF0UgBKTlciUy92LmbFZ7fCBoofMPHGfMRHWRAVbkVUpOD0UTV0BiwhlHA3qHgT4kLanO6j09EkaukUSLiNIfe5E+NEb7UA27fTi4iI7i0H5MAt2gOXnBzypimQCigd4FD9Jac3T1gY9d9iiOJiqRu4MxxD4GqqdwYOlNc8lFENh3j8gLy5+ciznKYVlayVdhhQPRP4+muEdrXjloTNwBVX9LnHB58Z0CY2SC0upthqMNPQQB4UJ2GXjPL9kmrvlCnKe3HU1VFYiCe6wEPURDl92rnI33nKsyehSx+KEJuFwg8/+UnfidMJCbSgaG21i70FLV1d8pNjAfXlxRYLfSfcudjtsAfFX8jPV6atcOWV0vOvv5Z/Hr0eOHNGWcOzQKS6WlZzwNyzLoizWSw0kQa7MRio6HRUzWOxyL5uu0KjUJ4xgV7U1UkhiN6Ii6Mka7HEPZgpL5efHNveDhw8SM+Tkuh7kkttLYWQWPHZ7bCB4i9kZVEoQG7p4uDBkoVfWCjfDazX0zkqKlQNM2AoKaE8gj5Wr4auDmSVnE+yi4khLQsl1NbSZMot2gMXURNFQcnxuWyHMM+OHX1vbDCQIVRYqEyOIBARm546kwQAgAMHJCHLyZOVlfeLnYvlnIdxCTZQ/IXISArvyBV/0unUe1EAEjoKVtraSBvBSXgnt3wXQrvOe5qmTZNXNeAIT3SBT1QUfccKRNtKsibDqj8ffd++3bnhkZFBGkbB3E+rsVF+ciygPrzT3k7XKys+ewQ2UPyJAQPI0pcrYT9njnTT3LRJfnVOUhIliLa2qhhkAFBdTTkoTgyU/OLN0gul4mziRMediwOfvDxFmiidYbGozhhLL4xG8gz0RXQ05V8cPixfdTrQKCmRdc0CoHCb2Ew1MpKUn+VSW0vl42lpakbJKIQNFH9ClEKX2+E4JkYSf2pudu4uFklICO4wT3k5rVr70KAINbcgu/L8JJeUBIwapewcPNEFD46aKDIpyVNYzZOVRbljwehFsVopOTYmRl5y7PHjUmXVhAnKPJ8tLaQ4y52LPQIbKP5EWBi5ixsb5e9z1VXSc7lhHoOBVnznzikbXyBgschqDphdvB0GsV/K9OnKJyxxomNp+8DHYKDvWoEmSnnOpdJvQ06YJyqKbtRHjgSfF6Wigh5ykmOB7uJsSsI7YtI8a594DJ4d/Y3sbDJU5FbZjBwpJWEeOSLfK5KURIm1TU3qxumv1NRQvoCz/JOzDuEdpdU7zc000bH2SfCQk0PS9DI1UcwR8cDo0fSiqkreYiEzMzi9KGfOkHEmp8RfEKT8E4OBPChyEVWBk5PVjZNRDBso/kZ6Oslayw3z6HTdNVA2bJC3n9gttbxc+Rj9maoq8qL0NdnV19ububXEpJFiqBJqa6XqDiY4EDVRFIR5uvV0EsUA+yIqirwnwZSL0txMOTpyk2OLiiTl3dGjlbWlMJuBQYO4c7EHYQPF33CU0JbLZZdJIYhvv5XXsVivJ0/NmTPqxumP2GxUCeBs0tq2DXqBbgDF+bOVTVg2G090wcrgwXTtydUymjpV+o3IMVAAync5c0bq0BvolJRQvpzcPlZqe+/YbLRoY6+nR2EDxR/p359WS3KrbBITJQn2hgYpg90ZycnkQVHSNt6fqa2l1ZWzlutbJHG2ovzZys4hynDzRBd8iF4zuSXHiYnA8OH0vKyMbsbOiIqiMEYweFFsNkqOjYqSn8vlWF6spC2FzUZVlDIVgRltYAPFHxHFveSGeQB1mihizDxYwjzV1VT+25fsfE2NXd2zLj4XjUkDlJ2jtpYmuthY1cNk/JTISPJ+KjH4pztU88j1omRmkidQjkHjz1RWUk6d3E7ONTX0uQDkwZQbFhLJy1O2PeMybKD4I6KEdlubfPXIceOkLPf9+0lfQc55IiNJBCoYVCrPnXOeaOfQufhsrkLvSVcXfY7coj14GTCAylrlJrkrzUMB6JoNBi/KmTOk7RQRIW97teJsAHlouHrH47CB4q9kZZG7UW4uisEAXH45PbfZKBdFDklJlDiqxFvjjzQ10YpMQXjnTI5CA6W+nj5PnuiCl/R0ZZooKSlUogxQgqfcKrysLPIWBGqn49ZWWjgp8YI46kApyT8BSHYhMlLZPozLsIHiryQmUsmxEsPh8sulpLsNG+Ql68XEUP1/oId5qqrISOkr9FJaai/3NKUMQXOswmZhdXXk+ZK74mMCD1ETpaVFvldSFFsE5HtRxN/Y4cPyk3L9ieJiMvidLSgctz96lJ5nZipQcD7/HbEwm1cI8fYAGBcYOJBUEW02eUli/foBl1wC7NtHIZ5Dh+i1M2JigJMnqSwvUIXFSkudNgd0DO8U5yvUPjGbaRXG0vZMdrbk/ZSTdDl1KrBsGT3fvh1YtEjeebKyyKAuLg6ssKLNBhQU4GxrCvatDZXV+WPK1tUYeP753uxrcfJzebe+9vbzT9hA8QoBercJErKyqLyuoUH+PmqSZZOSKMFMTt6KP9LaSpN4X6sxQZDCOzodSpQaKEYjrdy4czEjaqLIvZ7S02kxApDmR3W1vP0iIshjGmhelOpqoLwc+8pT0NikQ1t73w+hrh4DzmwEAJhDo3E0+0qn+9j3BXmcQyN5Le8N2EDxZ2JiKLNcQadUTJokaQbs2iXPuImKooTcQFWo3L+fcgL60lI4c0aK/48ahfYoBWqSgkAu/eHDeSXGEIMGkSdAruGgJswDkEFcVBRYuShnzwJmMyxWun3pdAKiInt/jD33pb0txZlh8xEWF9Hn9vZHhA1RYV2ITw3HxJsHe/MvDlrYLPR38vIoVNPVRSEEZ4SEAPPmAatW0eT43XfAjTc63y8ujsI848YF1k22uJg+v8zMvv8uh+RYzJwJyCzCACB1Wc3NVTlIJuDIzpY0UeT0kJk2DXjvPXq+Ywdwww3yzhMRQWHLQ4fo9+fv125bG1BY2E2FOTICuOP6Xgw9sxn4+Ct6bjBgxKMLMCJFplFYWkolzDcuCNzQto/Dn7q/k5lJF6sSbYULpe/lJOslJZFLWq572R9obycvkqgS2Rs2G/D99/TcYOi+mpWDyUQrZhZ5YkQiIihhWq73MytLMnALCpRJ5otelKIipaP0PUpK6DOT2ybiu++kSscZM+RX/QgChX6HDGHjxIvwJ+/vRERQfFqJgZKZKTUiKy8Hjh2Td57OzsCS0D5wgCbt7Oy+tzt+XLohjB+vzNAwm2mCE3MIGEZkwABljT8dDWNHyXZnhIeTYS16Wv0VQSDvifj3OMNmA1avll5ff738czU3U0UfKz57FTZQAgHRddvZKX8fNcmy8fGkPSAnbd7XKS0lAyU93XlozKF6R3HnYjE5lrVPmAtJT6feOXK9IY6qstu2KTtXZiaFM/3Zi1JdTXlwckJiALBnjySPMHq0skWC2NBTbhkz4xbYQAkEMjLIdalEE2XqVKkp3vbtCDXLEHxLSqLJtLJS3Th9hY4OCu10dTmfgLq6pJtBWJjy/h2cHMv0hqiJ0twsL8yanS0ZusePK/Oail6Hw4f914tSVEQ5KNHR8rb//HPpuRLvic1GizBu6Ol12EAJBEJDKVba1CR/n7AwYO5cet7Zibwzm+Tt09Xl/2GeQ4dIH8JZaEfcVvxcJ03qu0/PhTQ2cnIs0zfZ2eSZlHPt6nSSF0UQlIV5ACkX5bzYoF/R0XFRcmyfnD4tCbNlZQETJsg/V0MDfSfs9fQ6bKAECtnZtEqyKwvJwCHMM7BwvbxVXGIiXfxms4pB+gAVFVRWnJpKhp0zHKt3lIZ3ODmWcUZiIuWiyA3zqOnNIxIeTr95f8xFKSmhzyhZZnm/o/fkuuuUJbrW1lJ1JDf09DpsoAQKaWkU01YS5snNtff5SKw/h5S6U873SUykc8jtCeJLdHbSqtNslrcSM5ulVWpUlLJVGCfHMnIZOJBK/uUYDfn5dJ0DwJEjyrymAHlRSkr8y4siCCRxEBoqL1RqNEp5Y3FxkqdYDuJ3wJ2LfQI2UAIFvZ7CPC0tyvZzKDkedmad8+1Fr4M/tnI/dIgE1+TKze/bJ3mkpk6lEJdcODmWkUv//pRDJqfkWKeTvCg2W/cOvXIIC6PHwYP+k+xuNNJ8Izc59ssvpS7O11zjvEO5I/X15KVhxWefQLGB0tnZiTfffBM33HADLr/8ctx///3Ys2ePrH337t2Lhx9+GNdeey2uueYa/OQnP8H69esVD5rphawsqbmfXGbOtHfpzC/ejBCLjBBRYiLd6JWEk7xNVRWFdvr1kxfaAdSHdzg5llGCqIkiN+nVsZpHaZgHoKR6h8aXPo+YHCsm9fdFWxsg3lNCQ4Grr1Z2rvp6CstyQ0+fQLGB8sILL+Cjjz7CFVdcgYceegh6vR5PPPEEDh8+3Od+33//PR577DFYLBYsXrwYS5YsQXh4OP74xz/io48+Uv0HMA6Ilr+SME9kJBkpAMK62pFzbouTHUAGSn29/3Q4tlgoVNPaKj+G3dYG7N1Lz+PjgTFj5J+Pk2MZpYiaKHLywAYPlgTHDh1S7jUNCyOvwqFDvu9FMZtJmK4vIUVHNmygaxcA5sxRViYsNvTk69ZnUGSgHD9+HN9++y1+8pOf4Gc/+xkWLlyI1157Denp6XjzzTf73PeTTz5BcnIyXnvtNdx000248cYb8eqrryIrKwtr16516Y9gzqPT0eTV3i65OOVw1VX2p4MKZXi0DAZ6+MsK7OhRSuxVMvHs2iXpykyfrswTYjLR98DJsYxcRE0UOdetTieJtnV1kd6HUkQvytmzyvf1JKWlFOKRowBrtQJffCG9vu46ZeeqraXkeTHHh/E6igyUzZs3w2AwYOHChfb3wsPDsWDBAhw7dgzVfcigt7W1ITY2FmEOcfyQkBDEx8cjXEmMkOmbrCz5ZYsigwahPomSwlKMhfLEnBITSfhJ6erN09TU0ASelKQsh0RteEdMjg2k9vaM+9HrgWHD5HlQAPXNA0VCQ33fiyImxxoM8vqM7dhB1zsAXHKJ/FwzkeZmyuOTcy7GIygyUE6dOoX+/fsj+gKhnOHDhwMATp8+3eu+48aNw7lz5/DWW2+hrKwM5eXlePfdd1FYWIjbb79dxdCZHomPJ0+BkjCPToczQyQvCjZscL5PQgLpBfhymMdiIU9Ic7P8BDuAjLuDB+l5SgrdOOTCybGMWrKz5QuDDRsmVaLt3y+FNZQgelHOnFG+ryeoraVFUGqq820FAfjsM+m1EmE2gD6/yEh52kiMx1BkoNTW1iK5hxi++J6pj1r+e+65B3PnzsV7772HO+64A7fffjvef/99PPfcc5g9e3af5zWZTCgsLLQ/igOpdbg7yM8n16/cVu4Azg2cgy7DeQ/Dxo3OZfP1elqF+bKL+PhxEndSGlPetk367GbOlK+hwMmxjCskJMhfvev1wKWX0nOLhSrOlBIaSsmghw4pa5PhKUQPrRw9koIC8rYAlM8zdqyyc5lMkiI34zMo8mWZzWaE9lABIYZtzH2Id4WGhiI7Oxtz5szBrFmzYLVa8cUXX+APf/gDXnnlFYwcObLXfVevXo3ly5crGWpwk5VFq6uGBtlJoZbwWJzLno7BRRtpUtixA3BiOCIlhXrzZGRQEqkvdf00mSi0k5CgrMwQUB/e4eRYxlVCQgB0ob0d+OCzvo3cVGEGLscaAED5/zZic+0c2acJDQUmjrYhLyODFhlnzyrzFLqbzk7gxAn5ybGO3pPrrlMmUS8IlLfHnYt9DkUGSnh4OCw9xCs7z1vffeWSvPbaazh+/Djeeust6M//CC677DLcfffdeOONN/Cvf/2r130XLlyI6Q6ldcXFxfjDH/6gZOjBRVQUeVH275dftQKgcOB8MlAAaiDozECJi6Oci40bqUJm8mT5JbzupKuLQjsNDTTpKMFkIs8LQIaeklwSo5HE3Dg5llFJaHQY0NQFATq0OaniL44bjdbIZES31yKrbC/iiw6jMk2m56Ad2HtEj7ycUJovDhyg37qSPC13UlZG+SQDBjjdNKapUhJUTEpSrvjc1EReGg7L+hyKzMXk5GTU9pDbIL6X0ot7zGKx4KuvvsLUqVPtxglASbJTpkxBYWFhj4aPSEpKCoYOHWp/5PIK1Tm5ubSKUOC6reo3Ck1x5y/SI0fkqcX260cx4h07yFDxBW2UggJ6iJ+BEr7/XkpUnDVL/v5mM4V1WDmWcYGJtwxBfKIeUaEWREUKfT4io/U4PPEu+77TDixFdHiX0/10Ovp926fc9HTKJfOlXJRTp6QwshOGHv9cumavuUb5Iqm2lhJquXOxz6HIgzJo0CAcOHAAra2t3RJlj59fcQ4aNKjH/RobG2G1WmHtISfCarXCZrPBpqQslnFO//6UrFlTQ8/loNPhzNCrMH7PO/R6wwbgnnuc7xcXR5PCwYOUbDZnDoU6vEFdHbB7N41JjdiSY3jnvD6MLMTkWFagZFwgb0oG8nIArFxJhr+z5pS2OUDll8Dp00isP4fbo9YB8+f3ucsHnxm6e2dCQ6lD8MGD5EXxdlVlXR1VEsrIBwnrbEb+yfNJ/eHhyoXZrFay1Hhh4ZMo8qDMmTMHVqsVq1evtr/X2dmJNWvWYMSIEUhLSwMAVFdXd0tkTUxMRExMDLZu3drNU9LW1oZt27YhJyeHS421JjQUGDWKQi8KkmXPDponJXh++638pmKRkaTAePo0sHYtKbd6GquVQjt1ddSbSCkVFTR+gCZquYYdJ8cyWpKWRnldcirx9HpgyRLp9fvv0zWvFF/yohQVUdhFRqh02Ol1CO3qoBfz5ilv8NfQQJ4TDu/4JIoMlBEjRmDu3LlYunQp3nzzTaxevRqPPPIIqqqq8MADD9i3++Mf/4i77pJcjwaDAbfddhtKS0vxwAMP4KOPPsKHH36I+++/H0ajEXfffbd2fxEjkZ9PIRijUfYu5sgEYMoUetHQoEwEKjSUjJSqKmDNGs9X+BQWUmJdTo7y0A6gPjlWnOQ49MhogaiJ0toqTxdlxAhgxgx63tgIqFHmDgkhL8qhQ97tVG6x0HUcF+f0GtZbLRh58vxiWacDHPS5ZFNXR96TC6QzGN9Accry008/jZtvvhnr16/HG2+8ga6uLrz44osYN25cn/vdfffd+O1vf4uQkBAsX74cb7/9NqKjo/Hcc8/hyiuvVDt+pi8iI8mL0tAgXwAKABy/j6+/VnZOMQ+jvZ16Yhw5ouzcamlooNBOdLS9t5AiBEHqgAooC++YTGSYcXIsoxXZ2VTB0tgob/vFi6Xciy++UNdtPD29uxfRG5SX0wJHRngn59xWRLef9zJNmaI8vCp683lh4bMolswLDw/Hz372M/zsZz/rdZs33nijx/evuOIKXOHQPZfxAIMGUYZ+XZ38ip5x4yj+XVNDlUBGozKhM52OvBg1NRQmam0FJk50n0KjzUbGidEIDB2q7hhFRSRaBdCKVO7fKwicHMtoT3w8kJcHHDsmL58rNRW44QbynnR1AcuWAf/3f8rOGRJCOS8HD9Lv2RsN806domvKWTWRIGDY0U+l10qF2QCaE1NSOLzjw3DRd6ATH0837T5E9C5Crwcuv5yeCwLwzTfqzp2aSkbR998DmzcDHR3qjuOMU6doIlcb2gFc61yclcXJsYz2DBxIvy+5eWA33SSpy+7aReEapaSnA5WV3slFaWigsLCcxcHhw0iqoxBybcoQyv9Sc74hQ3yntJq5CDZQgoGhQyn00dwsf5958yTRog0bFCXadiMhgdzV+/bRcZT0CJJDUxNpIERGOq946A3H8I5e373PiZx9hw3j5FhGe7KyaIUvt21FZCTgkPuHt95Sft2GhAAxMeR1ddeC4kJsNvK2Hj1K17MccbbPP7c/PTHqBuULk44OMkxY2t6nYQMlGEhNpdVYH80cL6JfP2q4BZD3RexNo4aoKDp/QQGwbp2ipN0+EUM7NTVU9aCWwkKpydjYscpKpPV6jmEz7iE8nBYXDQ3y95k7l8K6AEnFy+mrdSGiF8WduSiCQIbX4cPAp58CH39MWkppac6NjdJSYO9eAEBzVD+UDpje9/Y9UVtL5+LOxT4NGyjBwvDhdDNVIqTmSrLshYSFAYMHk0LkmjU0ebrKmTO06srOdk2iWm14BwBCDJwcy7iP3FzKBZHbDPDCsuP//ld5x3HD+d/0wYPae1EaG0mp+YsvKF9m/XpaOIlNOeWIpTl4T44NvQ6CXoX3srmZ5iP2fPo0bKAEC1lZNNkp0SeZOFGaMHbvBurrXRuDwUCru6Ym8qQcP66+wqe5meLsYWGulQharZQjA1AVhNiAzRniuA3cmp1xI6mplN+kJIdsxAipCq2pSV3ZcVoaeVFOnVK+74W0tJCXcu1a4MMPga++ogWKmB+XnS0/PNvYSIrVACyhkSgc2LcoXa/jiY7m8I4fwLNrsKDXAyNHUhKaxSJPDjokBLjsMmDVKrqRf/cdJeK5gk5H/TWqqsj93NJC/WuUrGQEgVy8FRUXVe2cLdFh3xE9+uic0I2cs9sw47wLvTRzIrZukOcNaRcXlrwCY9yJXk+/8bNnKaQp11O4eDEZ8J2dwJdfkrqskkRu0Yty6BAtKpSW7re30/V57hxVyDU00JyTnEzhWLXJ7GvW2MuDTw+ZD0toFEKhcJFTW0sijNy52OdhD0owMWAATQ5KclEcy8I3bNBO0yQ9nbwzW7fSQ4k41NmzFLvuIbSz74gejU06tLU7f+hNNZi07e/2fU/kXC5rv7Z2HQTQBBsayTY+42aUaqIAlEN2ww30vKsLeOcd5ecVvSgnT8rbvrOTPCObNwP/+x91GD5yRBJwzM+nv0OtcWI2k4ECAHo9CkeqEGaz2ch4GjxY/TgYj8GzazARGgqMHk2uVqtV3uo/M5P2EZsHHj1Kr7UgMZHGtHs3aaXMnk0VBH3R2kpVO2K1wQWInhOdTkBkHzIOOlsXLv/mRYRbKD5fMmA6TIOmIEonwwA73zcqNDEGE28e7Hx7hnGFuDhaXBw9qqyh3Y030qJC7E918CBpHMnFYCCD4vBhuqH3FIbp6iJvaGkphYNqa+n6SEqixHgtPYybN0tG2vTpaItJBZT2JhWrhOS2sWC8ChsowUZ+PsW1TSb5/WquvJIMFICSZbUyUAAyMvLzKR+lvZ0aDfbmenUM7Qzu2zCIjADuuL6PEstlywFjAT1PS0POCw/ijmiZDStPnqSw1Jw58rZnGFcZOJAMFLnhWYDCMvfcA7z6Kr1++23gtdcAKDAaUlPJ8Dh5UjJuxLLgsjJ632ikcSUkUJ6b0m7CcrDZuiXH4vrrgWMqjmMyUY6OnFJmxutwiCfYiIqiC7S+Xn64ZupUqQnX9u3K9FTkEB5OLuCSEkqeFRVdL6SoiGLimZmurcz27KHSRoA8MU88IT/R1mxm5VjG84g5E3I1UURmzyYxMoDCL+vXK9tf9KIcOkQy9AcOUE7axx9TsmpzMyXgDx1KCx53GCcAnddR6dnJAqVH2tro71Ej6sZ4BTZQgpHBg2m1I7cqJyxM8hZYLMCmTdqPKSSEbvp1dRSCKizs/v9tbRTa0elcK+s1mc6vIs+zeLGyyc5oZOVYxvOEhZGhoSQPBeix23GoWWHZcWoq5a19/jmpSove12HD6DrwRCf6zz6TnquRtQfI8zpoEId3/Ag2UIKRhARa8SgRTLtQE8UdDQD1euo/Igh0jv377fke2L+fVlCulAZarcDLL0seoClTgGuvlb+/zUZVR8OHc/UO43lycylsI1cTRWTYMEnfp7kZow/+T9n+BgOdOzGRjtW/v7qGnGo5e1aS7c/IACZNUn6MlhZaBI0Z45pmEuNR+JsKVoYOpXCP3HBNbq5U0ltcLD+zXw2ZmRRS2rSJNErOnNEmtPPBB5TrAlCVw0MPKcvkb2igSTonR/0YGEYtqal0g1aiiSJyzz32njNDjn+BuKYyZftHRTlPYHcXjrkn112nbg6oqCAPFDcG9CvYQAlWRPl7JcJtjl4UNRLaSkhOplLkXbuoDNlqdS2x7cABYOVKem4wAL/6lZRXIxeTiVzErBzLeANRE6WtTfIsyqVfP6rqAaAXrLj0wFtuGKAbqK2V+mTFxJAuk1Kam0mNd8wYLi32M9hACVZ0Okn+Xq6c9YwZkmt3yxblrmalxMZSeWVrq2uhnbo64JVXpLDUXXeRq1oJZrOUJ8Mw3iI7m0K0SnNRADJQkpMBADkVu5Fevl/bsbmDL7+UujlffTUZGkoRBR25747fwQZKMNO/vzL5+8hIKZbd0SGtbNxJRASFVEJUVsRbrcBf/ypN6BMnqkuyMxopxMTJsYw3iYujsnyl1TwAXUt3321/eckuFd2OPUl7O1X1AXT9L1ig/BiNjVShN3o0e0/8EDZQghm9Hhg1ihQg5eLJMI8WfPSRpOGSnAw88ojyJDlOjmV8ifx88gbK7efgyOzZMPWjXLKEBhVlx57k22/JewrQwigpSfkxqqroupWr+cT4FCzUFuzk5pJX4IgVQAjaO4APPuvjJiwMxfykfCTVnQVOnsSad0rQkJQn+3ShocDE0Tbk5bihCuhCDh+m5mQAGSWPP64uf0RMjs3N1XR4DKOKrCzKIautVR620Ouxb8pPcNWXj9Hr99+nm7+3EmB7w2oFVq+WXl93nfJj1NdTmHjUKO3GxXgU9qAEO2FhwKhRCNVRnFcQnPSh6dDjRN5V9t1zj38tu39NW7sOjU067D3i/p9deHtD97yTO+6gZolqMJlIK0VpUi3DuAO1mijnqU0dhtO5c+lFczP1zfE1du+WQs/jxpH8gBIEgbRbhg/npoB+DBsoDJCfj4lD2xEfZUFUpOD0UTFsDroMVLI4uOhbxBtaZO2nO9/nRo1nWhGCDdO2/JWSYwGa4BYtUncsMTk2P1+z4TGMy4iaKGIIRCF7xi5Gl+G8wNqaNSRb70s4CrOp8Z7U1VHVH3tP/BoO8TBAdDTyLhuEPP0mqm5xmkwWCVRMBzZuRFhnK27+9mHg1792usr54DMD2pQ291LB2OMfI0OsUEhMBB59VL04U00NJ8cyvkdqKv0my8vlt2lwoDW6H46PWYQxB96ncMo77wC/+50bBqqCwkLgxAl6np0NXHKJsv0FgZLap09Xl7fC+AzsQWEIUf6+oUHe9jffLE2MlZWkK+IuhVkF9Ks6hglH3qMXOh3wy18q6wDriM1GK1ROjmV8DZ2OSmc7OpRropznxOgbpfDH3r3Avn0aDtAFLhRmU1p9U1tL17zakC7jM7CBwhCJiTTh1dTI275/f+qSOmgQve7sBP72N+D11+XrqmhNUxOmb3oReuH8hH3rrcDYseqPx8mxjC8jaqLIXVRcgDUkghRmRd55R9Ic8RbV1dSQFKAQjdKO4TYbeU9Gj+aOxQEAGyiMxNChFNdukdlMLD0d+POfSUBJ5LvvqFrG0zFtmw147TVEtZE+RHX6aDJQXKG2lpNjGd8lNla9JorIrFlSC4vSUkl3xFt8+aXkEVqwwC7PLxuTibxCI0ZoPzbG47CBwkikpdGEp0T+PiwM+OlPgccek1QeS0ro9ZYt7hlnT3z+ObmpAbSHx2P7nF+5Fpbp6KD9OTmW8WXy8ykEojbzXKfr3u34f/+T359La1pbKUwM0LziuPCRg81GxtrYsbyoCBDYQGEkdDpaeeh0ysM0s2eTYqvYSK+9nToHv/mm+8t2CgqA//zH/nLT1F+hPSrZtWOycizjD2RlUZ8dJZ3JL2ToUCmU0twsaQd5mq+/pnkDoJ47SkM0NTW0yFLaxoLxWdhAYbrTvz8ZGdXVyvfNziajZO5c6b21a4Enn1TmlVFCSwud87xk97Ext6A8Q2HW/4XYbNRniJNjGV8nNJSa4DU3U0m8Wu6+Gwg/X3b81VcU7vEkXV3AF19IrxcuVLa/1Uq5OGPHqqpqYnwTNlCY7hgMlP1uNqvzfEREkJz8gw/S5AkAp08Djz6KrJKdmg4VggC88YaU2Dt8OA5f8kPXj9vQQMmHnBzL+AMjRpDXoKRE/TFSUoCbbqLnNhslzHqSbdsofwQAJk2ihZISqquBjAwSsGMCBjZQmIvJy6MEWLVuY52Oevb85S+SFHdrK2Z/8zwmH3gbOptGlQJffgnsPG/0xMYCjz8OQa+Bx4OTYxl/IiQEmDKFfq+uhHpuuEEqO963z71lx4JAXpqVK0mi4JVXpP9T08yzqYm8J1FRmg2R8T5soDAXExZGZXpNTao1FgBQAt+rrwLTptnfGlOwCvPWPu1a5QEAnDoFLFsmvX7kEYrFu4qYHDtwoOvHYhhP0a8feR7q6tSHesLDu5cdv/22tmXHVitw7Bh5Zx54APj5zyl3rLBQ0k8aMkS5+qvVSrligwdrN1bGJ2ADhemZgQOp+6+rhkR0NOWgLFkCm468G6nVx8igOHhQ3TFbW8k7I06e119Pk7MWiMmxGRnaHI9hPMXIkXSDdyXUM2uWlGRaVkY5ZK7Q0QHs2EH6SPfcAzz1FMnYV1Z23y43F7jlFuD//k+5MJsgAOPHS1WETMDAUvdMz0RH04S3ZQu5fZVOGo7odMDChdhQNRzTv/szYtqM1OjsmWeA226jiUluMqogAH//u5R0O2QIcNdd6sfmCCfHMv5MaCiFeiorydBW41HU6YD77iOZAIDKjmfPVtYFvL4exvV7YPl+N1LLDyLE2nnRJjadHsa0kSjLvRRl2VPQGnd+QbBZ/mnaxUJDg0ESjGQCCjZQmN4ZPJi8HKKiqovUpg7Dp/PfwLzdf0Vm2V4yNv73P+q78dhj8soK160Dvv+enkdHU/xaTMZ1lfp6To5l/Ju0NPImfvcdXU9Khc4Auu7nzgU2bqQquf/9D7j//t63FwTytuzaRV2ICwvRr4eWF5aQCJRlTEBx1qUozZwEc7iD0eNCj67QmHB1fyfj87CBwvROUhJpJOzdq4mBAgDm8HhsuuIZ3GFZAXzwAXktDh6kkM+vftW3AuS5c8Bbb0mvH36YJmStqKsDJkzg5FjGvxk9msI8Z8+qz8u4+26SnDebKcxz9dWSxhFAeR8FBWSQ7NoFVFT0eJjWyCRU5ExBWc6lqM4YA1sIGRIGAFFwsW+X1YrQMD0m3sa6J4EKGyhM3wwdSoltLS1ATIw2x9TpKawzbBhpmDQ0UK7L009TnPr66y8OKbW1AS+9JJU+X3stcOml2owH4ORYJnAIDaVro7qarqtkFaKFycnAokXA++/TIuLttyl/5OBBMkj27KEk+p7IzcXRhEtxOm0q2rIG4o4bBEhmklXd33QhZjMZYddeCwxWWJLM+A1soDB9k54ODBhAVTNaGSgiY8YAr71GRsrRozQRLlsGHD9O3hHxfIJAirTl5fR60CBg8WJtx8LJsUwgkZ4OXHIJsGkT5Y+oCYNefz2puxqNwIEDwJ139qyNpNeT53PKFHqkp+PwZwa0tesQpROgmVHiSEUFzUt5edofm/EZuIqH6RudTmpb7opSZW8kJQHPPw/cfLP03q5dwKOPksAbAHzzDbD5fPZcZKS2eScAJ8cygcnYseQRLC5Wt394ePeFgKNxEhFB8gGPPkqlwn/6E3DddZLukTvp6KAQ09ixpAHDBCz87TLOyc4mZcfq6u5xaK0wGKgSZ/hw0k1pbqZzPfEEqVt++qm07S9+ob2Xo7hY8hQxTKAQFuZ6qGfGDGDrVhJETEoCJk8mL8no0d5LTC0vJ40lvl4DHjZQGOcYDCSeVFRE2iPuWrVMnEgGyksvASdP0rlWrJD+f/58mjC1pKKCvDJz5mgfwmIYb5OZSYnfmzdfFOpp7wA++My5x1A37GmED2hER2QC5Y+Vgh59YC8B1pr2dvLqjh3L3s4ggA0URh6i/H1NjcsdfvueGDOgn/oSxoe8g6HHV9vfrU/Mw9epP4HVyYSqaGKsrQU6O0mWX2nvD4bxF8aOJVn5khJg4ECyUdoBQdChTVZ5bwhadcmACqNDy0gsAFpQDBrkHk8u43OwgcLIIzycvCgbNpCholeeviR/YgzD1rEPoDRxFKbu/ye6QiKwYdpTaLZEADL7FzqdGJubqax4zhyqVGKYQCU8nEI9NTVAfT0mjk7C3iN6Vb1AlRAaCkwc7UKrjAtpa6N5Z8wYVfMP43+wgcLIZ9AgYP9+8jyoUKmcONqmaGKsGTodnw+ZBp1gg6A3yNZNcDoxdnRQHHvyZGDcOHmDYRh/JiuL5OC3bkXeoFjk5fjh1F9eTnlq2dneHgnjIfzwV8p4jZgYKifculWVgZKXIyAvR23JoUalil1dlEszahQwdSqvxJjgYdw4UnwtKaEkU3+ipYWScseMca3tBuNX8OzMKGPwYEq2a2jw9kiUY7MBZ87Q5DxrFstjM8FFRARV4ISEUFsHf6KykvpuuZj/xvgXbKAwykhOJiOlpsbbI1FOURHlz8ydS318GCbYyM6mUE9VldQN3NdpaqI8GvaeBB1soDDKGTaMvA+trd4eiXwqKsgomTuX9BwYJlgZP540REqd1Ar7CpWVNOd4QgSO8SnYQGGUk5FBZcdVVd4eiTxqa0kFc9YsShZkmGAmMpKqegwGoLHR26Ppm8ZGWliMHu3tkTBegA0URjk6HSXLCoJ75O+1RCwnnjaNYtgMw5COyLhx5J2wuqFXjlZUVdFck5rq7ZEwXoANFEYdOTmS/L2vIpYTT5zI5cQMcyHjx1NOSkmJt0fSM/X1QGwsVdwxQQkbKIw6QkLI7dreTl4KX8NiAc6dozFyOTHDXExUFIV6dDpKRPUlBIES8UeMUNdDiAkIeNZm1JOfT94Jk4ka7vmKq9hmA86eJWG5mTPdoLfNMAFCbi5J4VdU+M71C1BYNj6evSdBDhsojHrCwoDZs4Ef/IBWOSdP+sZKTCwnnjOHy4kZpi90Omom2L8/ibj5AqL3ZPRoIDHR26NhvAgbKIxr6HTkSVm4kNzFtbVkIHhrNVZezuXEDKOE6GgScLPZfGOBYTLRgmf4cG+PhPEybKAw2hAdTeGUa68FUlLIm+LpEkaTiQyj2bO5nJhhlJCX5xuhHpuNFjmjR1OIhwlq2EBhtEOno4nuuuuorLehgRJVPaFY2dREWf/TppHSLcMw8tHpKJ8sK4u8kN7CaGTvCWOHDRRGe6KigBkzyJuSng6cOuXe3j0dHbTymzSJVoEMwyhHDPV0dXmnMs9qpUXGuHFUXswEPWygMO4jN5eMlOnTycNx9qz23hSxnHjMGMqB4XJihlFPfj4Z+eXlng31mM10ztRUYOhQz52X8WlCvD0AJsCJjCQDJScH2LmTvCnp6dpk53M5McNoi1jVU1ZGXsnsbPecp6uLFi1NTWSchIVRzsnkyVx5x9hhA4XxDNnZQL9+wMGDwP79pHOQk+OaUXHuHPUFmjuXwkoMw7hObCyFer76CmhpAWJiXD+mzUbHamqiJqMGAxAXBwwcKM0Nycm8yGC6wQYK4zkiIigM078/eVNOnyaXrhqlyLIymjjnzmWtBIbRmkGDqJJm/37qYaU0dCoIpDLd2Cjls8TEAGlpFPrt148ekZHaj50JGNhAYTxP//6UmyJ6U06fpklL7urJaKQV2Zw5QGamO0fKMMGJTkdJ5xUV9Ojf3/k+ZrMUtunqIq9mYiIwciSFdfv1I++MTuf+8TMBARsojHcIDyc3cnY2eVPOnJHcvH3R1ESrsrlzaZXHMIx7iIuja3TNGgrLXJgbIlb7NDZ2zyMZM4YWDikpJJbIieuMSthAYbxLZiZJ5R86JHlTcnJosruQ9nZazU2dSpMgwzDuZdAg6odz4ADpC7W2XpxHkp9P12xKCj04j4TRCDZQGO8TFkbuZNGbcvo0rbz69ZO2sVhIQn/cOFrV8aqMYdyPXk/XZnk5XZexsZQ3NmAAXZ8pKZygzrgNNlAY3yE9HbjmGuDoUWDPHipJzs0FQkKonHjwYBKA4xUaw3iO+HjgiivIg8l5JIwHYQOF8S3CwoBLLiHJ7V27qKePzUZJenPm8GqNYbwBJ6MzXkCxgdLZ2Ym3334bX3/9NZqbmzFw4EAsWbIEkyZNkrX/t99+i5UrV+LMmTMICQlBbm4ulixZggkTJigePBPApKUBV19Nse2CAmoAyOXEDMMwQYNiA+WFF17Apk2bcPPNN6N///5Yu3YtnnjiCbz++usY4yRx8Z133sG7776LOXPmYP78+ejq6sK5c+dgMplU/wFMABMaSjkno0dTQh7DMAwTNCgyUI4fP45vv/0WP/3pT3H77bcDAK666iosXrwYb775Jt58881e9z127Bjeffdd/PznP8ctt9zi2qiZ4IKNE4ZhmKBDUSnE5s2bYTAYsHDhQvt74eHhWLBgAY4dO4bq6upe9/3444+RlJSERYsWQRAEtLW1qR81wzAMwzABjSID5dSpU+jfvz+iLxDsGT58OADg9OnTve67b98+DBs2DCtXrsTChQsxf/58XH/99Vi1apWKYTMMwzAME8goCvHU1tYiuQelT/G93nJJmpub0djYiKNHj2L//v1YvHgx0tLSsHbtWrz++usICQnBdddd1+t5TSYTamtr7a+Li4uVDJthGIZhGD9DkYFiNpsR2oMGRdh51U+z2dzjfmI4p7GxEc888wzmzZsHAJgzZw4WL16M//znP30aKKtXr8by5cuVDJVhGIZhGD9GkYESHh4Oi8Vy0fudnZ32/+9tPwAICQnBnDlz7O/r9XpcdtlleOedd1BdXY20tLQe91+4cCGmT59uf11cXIw//OEPSobOMAzDMIwfochASU5OhtFovOh9MfySkpLS435xcXEICwtDTEwMDBdUZCSe17Zobm7u1UBJSUnp9dgMwzAMwwQeipJkBw0ahLKyMrS2tnZ7//jx4/b/7/Ekej0GDx6MxsbGizwwYt5KQkKCkqEwDMMwDBPAKDJQ5syZA6vVitWrV9vf6+zsxJo1azBixAi7B6S6uvqiRNa5c+fCarVi3bp19vfMZjM2bNiAAQMGsIeEYRiGYRg7ikI8I0aMwNy5c7F06VI0NDQgKysL69atQ1VVFZ588kn7dn/84x9x8OBBbNmyxf7eddddh6+++gqvvvoqSktLkZaWhvXr16O6uhovvPCCdn8RwzAMwzB+j2Kp+6efftpuXLS0tCA/Px8vvvgixo0b1+d+4eHheO211/Dmm29izZo16OjowKBBg/Diiy9i8uTJasfPMAzDMEwAohMEQfD2IJRSWFiI++67D//+978xdOhQbw+HYRiGYRiNUZSDwjAMwzAM4wnYQGEYhmEYxudQnIPiC4iKtSx5zzAMwzD+R25uLiIiIvrcxi8NlKqqKgBgNVmGYRiG8UPk5JD6ZZJsQ0MDdu/ejYyMDHsfIFcR5fN/85vfIDc3V5NjBjL8ecmHPytl8OelDP68lMGfl3zc+VkFrAclISEBV155pVuOnZuby5VBCuDPSz78WSmDPy9l8OelDP685OOtz4qTZBmGYRiG8TnYQGEYhmEYxudgA+U8ycnJWLx4MZKTk709FL+APy/58GelDP68lMGflzL485KPtz8rv0ySZRiGYRgmsGEPCsMwDMMwPgcbKAzDMAzD+BxsoDAMwzAM43OwgcIwDMMwjM/hl0Jt7ubgwYP48MMPcerUKTQ2NiImJgaDBg3CPffcg9GjR3t7eD7Hvn37sGHDBhw+fBhGoxFJSUm45JJL8OMf/xgpKSneHp7PYTKZsHLlSpw4cQIFBQVob2/H66+/jvHjx3t7aF6ls7MTb7/9Nr7++ms0Nzdj4MCBWLJkCSZNmuTtofkkbW1t+PDDD3H8+HGcOHECzc3NeOqpp3D11Vd7e2g+x4kTJ7Bu3TocOHAAVVVViIuLw8iRI7FkyRJkZ2d7e3g+xblz57Bs2TIUFhairq4OERERyM3Nxe23347p06d7dCzsQemBsrIy6PV6XHfddXjkkUdw6623oq6uDr/4xS+wa9cubw/P5/jnP/+JAwcOYObMmXj44Ycxb948bNy4EUuWLEFtba23h+dzlJaW4oMPPoDRaER+fr63h+MzvPDCC/joo49wxRVX4KGHHoJer8cTTzyBw4cPe3toPkljYyOWL1+O4uJiDBo0yNvD8Wk++OADbN68GRMmTMBDDz2Ea6+9FocOHcKSJUtw9uxZbw/Pp6iqqkJbWxvmz5+Phx56CHfffTcA4KmnnsLq1as9OxiBkUV7e7tw3XXXCY899pi3h+JzHDhwQLBarRe9N3PmTGHp0qVeGpXv0traKjQ2NgqCIAgbN24UZs6cKezfv9/Lo/Iux44dE2bOnCl88MEH9vc6OjqE2267TXjggQe8ODLfxWw2CyaTSRAEQThx4oQwc+ZMYc2aNV4elW9y+PBhobOzs9t7JSUlwrx584TnnnvOS6PyH7q6uoR7771XuPPOOz16XvagyCQiIgLx8fFoaWnx9lB8jnHjxkGv11/0XlxcHIqLi700Kt8lKioKcXFx3h6GT7F582YYDAYsXLjQ/l54eDgWLFiAY8eOobq62ouj803CwsJYbEwmo0ePRmhoaLf3srOzMWDAAJ6jZGAwGJCamurx+x/noPRBa2srLBYLGhsbsX79epw7dw533XWXt4flF7S1taG9vR3x8fHeHgrjB5w6dQr9+/dHdHR0t/eHDx8OADh9+jTS0tK8MTQmQBEEAfX19RgwYIC3h+KTtLe3w2w2o7W1Fdu2bcOuXbswd+5cj46BDZQ+eOaZZ7B7924AQGhoKBYuXGiPxzF98/HHH8NiseCyyy7z9lAYP6C2trZHb4D4nslk8vSQmABnw4YNMBqN+NGPfuTtofgkf//73+05J3q9HrNmzcKjjz7q0TEEvIFis9lgsVhkbRsWFgadTmd/ff/99+PWW29FTU0N1q1bh66uLlitVncN1Sdw5fMSOXjwIJYvX465c+diwoQJWg/Rp9Di82IAs9l8kQseoM9M/H+G0Yri4mK8+uqrGDlyJObPn+/t4fgkN998M+bMmQOTyYSNGzfCarXKnuu0IuANlEOHDuHhhx+Wte17772H3Nxc++vBgwfbn1955ZVYsmQJXnjhBTz//POaj9NXcOXzAujC/81vfoP8/Hw8+eST7hiiT+Hq58UQ4eHhPU5+nZ2d9v9nGC2ora3Fk08+iejoaDz//PMwGAzeHpJPkpuba5+v5s+fj1/+8pf49a9/jX/9618eW2gFvIGSk5ODp556Sta2fSWchYaGYvr06Xj//fdhNpsDdsJ05fOqrq7GY489hujoaLz44ouIiopyxxB9Cq1+X8FOcnIyjEbjRe+LZeqsp8NoQUtLC5544gm0tLTgb3/7G/+uFDBnzhy8/PLLKC0tRU5OjkfOGfAGSnJysmbCRWazGYIgoK2tLWANFLWfV2NjIx577DFYLBa8+uqrQXPha/n7CmYGDRqEAwcOoLW1tVui7PHjx+3/zzCuYDab8etf/xqlpaV45ZVXODlWIWKY1ZOVPFxm3AP19fUXvdfc3IzNmzcjNTUViYmJXhiV79Le3o4nnngCJpMJL730EiszMoqZM2cOrFZrNyGozs5OrFmzBiNGjOAKHsYlrFYrnn32WRw7dgy///3vMWrUKG8PyWfp6f7X1dWF9evXIzw83KOGXcB7UNTwq1/9Cv369cOIESOQmJiI6upqrFmzBrW1tXj22We9PTyf4/nnn8eJEydwzTXXoLi4uJuuQGRkJGbOnOnF0fkm7777LgCgqKgIALB+/Xq7Yuo999zjrWF5jREjRmDu3LlYunQpGhoakJWVhXXr1qGqqioocpnUsmrVKrS0tNhDYdu2bUNNTQ0A4KabbkJMTIw3h+cz/P3vf8e2bdswbdo0NDc34+uvv+72/1deeaWXRuZ7vPzyy2htbcXYsWPRr18/1NbWYsOGDSgpKcHPf/5zj4budYIgCB47m5/wySef4LvvvkNxcTFaWloQGxuLESNG4Pbbb8fYsWO9PTyf45ZbbkFVVVWP/5eeno6PPvrIwyPyfWbNmtXr/23ZssWDI/EdzGazvRdPS0sL8vPzsWTJEkyePNnbQ/NZ+rr2VqxYgYyMDA+PyDd56KGHcPDgwV7/P1ivuZ749ttv8dVXX+Hs2bNobGxEVFQUhg4dihtvvBEzZszw6FjYQGEYhmEYxufgHBSGYRiGYXwONlAYhmEYhvE52EBhGIZhGMbnYAOFYRiGYRifgw0UhmEYhmF8DjZQGIZhGIbxOdhAYRiGYRjG52ADhWEYhmEYn4MNFIbRmLVr12LWrFlYu3att4ciiwMHDmDWrFl455133HaOWbNm4aGHHnLb8d3NQw891Kf6ryuIn7/4eOCBB9xyHjm88847mDVrFg4cOGB/r7i4uNv4brnlFq+NjwkuuBcPE/T8+c9/xpo1axAXF4dPPvkEYWFh3h6S5og3FW474LuMGzcO48aNQ2pqqreH0o34+HgsXrwYALBy5UrvDoYJKthAYYKatrY2bNy4ETqdDk1NTdi6dSvmzZvn0jFnzpyJESNGIDk5WaNRMsHAuHHj8KMf/cjbw7iIhIQE+7jWrVvn5dEwwQSHeJig5rvvvkN7eztuvvlm6PV6fPXVVy4fMyYmBrm5udxJlmEYxgXYg8IENV999RUMBgPuuOMOnDlzBvv370dVVRXS09O7bffOO+9g+fLlvR7HsWvz2rVr8cILL+Cpp57C1Vdfbd9m1qxZGDduHH7729/izTffxJ49e9DZ2YmxY8fikUceQWZmJoqKirB06VIcOnQIXV1dmDx5Mh599FEkJSXZj3PgwAE8/PDDWLx48UUr7srKStx6662YP38+nn76aftrxzGI9LR/QUEBli5dimPHjkGv1+OSSy7Bgw8+eFFX3C1btmDjxo0oKCiAyWRCSEgIBg4ciEWLFmHOnDl9f+hOaGlpweeff46dO3eirKwMjY2NiI+Px8SJE7F48WJkZWV12178bl5//XWYTCb873//Q0lJCWJiYjB37lw88MADCA8P77ZPV1cXPvzwQ3z55ZcwmUzo168fFixYgMsuuwy33Xab/fOTw9atW7Fq1SqcPHkSnZ2dyMrKwvz583HLLbfAYDC49FkAwJ/+9CesW7cOH374IbZs2YKvvvoKFRUVmDdvHp5++mmYTCasXr0au3fvRkVFBVpbW5GcnIxLL70U9957LxITEy86ZnV1Nf75z39i9+7d6OrqwpAhQ/DjH//Y5bEyjJawgcIELUVFRTh27BguvfRSJCUl4aqrrsK+ffuwZs2ai27c48eP7/EYxcXF2Lhx40U3wN5obm7Gz3/+cyQnJ+Oqq65CWVkZtm/fjl/+8pf405/+hAcffBBDhw7FNddcg5MnT2Lz5s1oamrC66+/rupvjImJweLFi+25A4sWLer1byooKMD//vc/jB8/HgsXLsSpU6ewdetWnD17FsuXL+/2Ny5duhQhISEYPXo0kpOT0dDQgG3btuF3v/sdHn74Ydx0002qxgvQZ/rOO+9g/PjxmDlzJiIjI1FcXIxvvvkGO3bswFtvvXWRAQkAn3zyCXbv3o3p06fjkksuwa5du7Bq1So0Njbid7/7XbdtX3zxRaxfvx6ZmZm4/vrrYbFY8NFHH+Ho0aOKxvqvf/0L77//Pvr164dZs2YhJiYGhw8fxptvvokTJ07gueeeU/05XMhrr72G48ePY+rUqZg2bZrd8Dh06BBWrFiBSy65BMOHD0dISAhOnTqFzz77DLt378Zbb73VzZtnMpnws5/9DEajEZMnT8aQIUNQXFyMxx57rNffOcN4AzZQmKDlyy+/BABcddVVAMi78Oqrr2Lt2rVYvHgx9HopAjp+/PiLJu/6+nrcf//9CAsLwxNPPCHrnGfOnMEtt9yCBx980P7eK6+8gs8++wwPPvgg7r33Xtx8880AAEEQ8OSTT2Lnzp0oLCzE0KFDFf+NsbGx+NGPfmTPHegrx2Hnzp145plnuuXg/PGPf8T69evx/fffd3v/pZdeQmZmZrf929ra8LOf/Qxvv/02FixYgIiICMXjBYDc3Fx8+umniIuL6/b+/v378ctf/hL/+c9/evy89+3bh3//+9/IyckBANx333340Y9+hO+++w4/+9nPkJKSYt9u/fr1GDx4MP7+97/bx3nXXXdhyZIlsse5Z88evP/++5g8eTKef/55REZGAqDv7ZVXXsHnn3+OTZs2uexREjlz5gzefvttpKWldXv/kksuwaeffoqoqKhu769btw5/+tOf8Mknn+Duu++2v7906VIYjUYsWbKk2/urV6/Gyy+/rMlYGUYLOAeFCUq6urrw9ddfIzo6GjNmzAAAREVFYebMmaiursbevXv73N9sNuPpp59GVVUVfv3rX2P06NGyzhsZGXnRTVC88cfHx3fzcOh0Ovv/nTlzRvbfppaxY8delCB8zTXXAABOnDjR7f0LjROAPr+rr74aLS0tKCgoUD2OmJiYi4wTgG7EAwYM6PW7WbRokd04AYDw8HDMmzcPNpsNhYWF9ve//vprAMA999zTzYhKSUnp9vk745NPPgEA/OpXv7IbJwB9b/fffz90Oh2+/fZb2cdzxu23336RcQIAiYmJFxknABne0dHR2Ldvn/09i8WC7777DomJid1CfwDwgx/8AP3799dsvAzjKuxBYYKS77//Hg0NDViwYEG30MVVV12Fr7/+Gl999RUmT57c476CIOBPf/oTjh07hv/f3t3FJPnFcQD/QoozTXFFUMtyaU62FCNfZhbrRbtmvVx0hYwWXXTVRWuui27cqlWbXOhFrgyzYjnXVNRenU0JyrB0OlNrU9LCBAeiZgb8LxwM/jyaSiKbv8/lcx7OOT6P2/N7zu+c88jlchQUFCy53R07dgSMLHhW++zevRssFouxbHx8fMltrBTTCA2PxwMwPy/E18TEBKqrq6HX62E2mzE7O+tXHmx/Ozs78eTJE/T29sJms8HpdHrLIiMjGX+TmpoacMyzZNe3/4ODgwCAjIyMgPP37t275D729vYiOjp6wYnVUVFRGB4eXnJ9fyMUChcsa21tRV1dHfr7++FwOPyul++9GB4exu/fvyEWiwPSkmw2G+np6fj27ds/6zMhwaAAhaxLnoeKJ73jsX//fvB4PLS3t8NutzO+yVdUVKClpQUFBQWQy+XLajcmJibgmGci5WJlf/78WVY7K8H0Fu5p3+VyeY/Z7XacO3cOZrMZ6enpyMrKQmxsLNhsNgYHB9HW1oa5ubkV96OlpQVXr15FdHQ0cnJyIBAIvEFdc3Mzfvz4wfi7xa6fb/+np6fBZrMRHx8fcL7vZOS/sdvtcDqdi06enpmZWXJ9f8M02RUAHj9+jLKyMnC5XGRnZ4PH43mDj5qaGr97MTU1tWhdCx0nZC1QgELWHbPZjPfv3wPAorubPn/+PGDIv6mpCVVVVUhPT8fly5dXtZ8L8Yyy+L4le3geQKtJq9XCbDZDoVBAJpP5lT148ABtbW1B1X/v3j1wOBzcuXMHiYmJfmWvX78Oqm5gPhBzuVyw2Wzgcrl+ZVardcn1xMTEgMViob6+Pug+LcX/R9eA+cBVrVZj8+bNuHv3rl+A4Xa78ejRI7/zPUHcxMQEYxsLHSdkLVCAQtad5uZmuFwuZGRkBDwAgfkHf3NzM7RarV+A8vHjR9y8eRPbt29HSUnJmu04u2nTJgDMaZSBgQHG37DZ7KBGNXyNjIwAgHfujq+urq6g6x8dHUVSUlLAvRkfH8fo6GjQ9aekpGBgYADd3d04dOiQX9lyVvEIhUIYDAaYTCbG/6NQsNlscDgcEIvFAaMffX19Aam3xMREcDgcfP78GbOzs35pHpfLtexVTISsJgpQyLridrvR2NgIFouF4uJixsmeAGAymdDT04O+vj6kpaXBZDLhypUriIqKwrVr1wLevENp586d2LhxY0Aaymq1Qq1WM/4mLi4OX79+DXgorYRniW93dzeSk5O9x1+8eAG9Xh9U3QDA5/MxMjICq9XqTbnMzs7i9u3b/yTVVVhYiKamJlRWViInJ8d7PSwWy7K2cj916hQMBgOuX7+OkpKSgJSRxWLB5OQkkpKSgu7zQhISEhAVFYX+/n78+vXLmwqbnJxkXJrO4XBw5MgRPHv2DBqNxm8VT0NDA0wm06r1lZDlogCFrCtGoxHfv39HZmbmgsEJML96paenB1qtFmlpaVCpVLDb7cjKymJMM8TGxobsI2qRkZE4efIkqqqqcPbsWeTn52NmZgbt7e3IzMz0jnD42rdvH/r6+nDp0iVkZGQgIiICIpEImZmZy27/+PHjePjwIUpLS9HZ2Qk+n4/BwUEYjUZIJBK8efMmqL/vxIkTKC0thUKhwOHDh+F0Or0puZSUFO8k15XKyspCQUEBXr58iaKiIhw8eBBzc3NoaWmBUCiETqfzW2K+kNzcXMhkMty/fx9nzpxBbm4u+Hw+7HY7RkZG0NXVBYVCsaoBCpvNhlQqhUajgVwuR35+PqampmAwGMDn871Lq30plUoYjUZUVFSgu7sbe/bswdDQEPR6PbKzs73XmpC1RgEKWVc8k2N9d3hlcvToUahUKrx69QoXLlzwDpV3dHQwLnMVCAQh/cqrQqFAREQEtFot6urqIBAIIJPJcODAAbS2tgacL5PJ4HA4oNPp0NXVBafTiaKiohUFKFu3boVKpUJ5eTk6OjrgdDqRmpqKW7duYWxs7J8EKBEREaitrUV9fT1iY2ORl5cHpVIZsOHaShUXF2PXrl1obGxEbW0teDweTp8+DbFYDJ1OxzhhmIlCoYBIJEJNTQ0+fPgAh8OBuLg4bNu2DUVFRSgsLPwn/V2MUqlEXFwcmpqa8PTpUyQkJODYsWOQy+Xej/z52rJlC8rKylBeXo53797h06dP3vtnNBopQCFhg+V2u91r3QlCCAkHDQ0NuHHjBi5evAipVBqSNhf7dEG4oa9ik1CijdoIIeuOxWLB/9/Nfv78CbVajQ0bNiAvLy/kfaqsrIREIsH58+dD3vZihoaGIJFIIJFIFlziTchqoBQPIWTdqa6uxtu3byESicDlcjE2NgadTofp6WnI5XLGHVtXi0Ag8EvFeDaXCxfx8fF+/aOvdJNQoRQPIWTdMRgM0Gg0+PLlCyYnJ8HhcJCcnAypVBqSeSOEkL+jAIUQQgghYYfmoBBCCCEk7FCAQgghhJCwQwEKIYQQQsIOBSiEEEIICTsUoBBCCCEk7FCAQgghhJCwQwEKIYQQQsIOBSiEEEIICTsUoBBCCCEk7PwHQC2U673MzvAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACz50lEQVR4nOydd3gc5dX2791V7703y733jruxKbHpPQEDhpDAC0lIcCAkECAQCEkg3/uGxDRT4lBsbAzYGDDuxr3bsixbxZLV26pLq935/jgazcqWtDOzs/38rmsv766mPLveeeY8p9xHJwiCAIZhGIZhGDdC7+oBMAzDMAzDXAobKAzDMAzDuB1soDAMwzAM43awgcIwDMMwjNvBBgrDMAzDMG4HGygMwzAMw7gdbKAwDMMwDON2sIHCMAzDMIzbwQYKwzAMwzBuBxsoDOPmbNu2DTqdDs8++6zdx9LpdJg7d67dx+kPLcfrDSxbtgw6nQ6FhYWy98nKykJWVpbDxsQwngAbKAxzCTqdDjqdDnq9HufPn+9zu3nz5nVvu2rVKucN0MUUFhZCp9Nh2bJlrh6KbESjyfoREBCAtLQ03HLLLfjhhx963a+lpQVRUVHQ6XS48847nTxq57BmzRosXrwYcXFxCAoKQkZGBq677jrs3bvX1UNjfBw/Vw+AYdwRPz8/dHZ24u2338aLL7542d/z8vKwbdu27u0YiSlTpiAnJwdxcXGuHsplZGZmdhtWzc3N2Lt3L9asWYPPPvsMa9aswQ033NBj+48//hhGoxE6nQ6fffYZampqEBsb6/BxbtmyxeHn6OzsxD333IPVq1dj8ODBuO222xAZGYny8nL88MMPOHToEKZNm+bwcTBMX7CBwjC9kJiYiOTkZLz77rt47rnn4OfX81J56623AABLlizBunXrXDFEtyUkJATDhg1z9TB6JSsr67LQ0zPPPIPnnnsOjz/++GUGysqVK6HX6/HrX/8ar7zyCt577z386le/cvg4Bw4c6PBzPPPMM1i9ejV+97vf4bnnnoNe39OhbjKZHD4GhukPDvEwTB888MADKC8vx5dfftnjfZPJhFWrVmHGjBkYMWJEn/vn5eXh7rvvRmpqKgICApCSkoK7774beXl5vW5fUVGB+++/H4mJiQgODsa4cePw3nvv9Xn8/vIUnn32Weh0Omzbts3m5ywtLcVzzz2HmTNnIikpqXusd955J06fPn3ZcQcMGAAAeO+993qETMQwV385KEq+E+vPsGbNGkyZMgUhISGIiYnB7bffjosXL9r8bHJ4+OGHAQAFBQWoqqrqfv/kyZPYu3cvFixYgBUrViAgIKDbMFWDxWLB3/72NwwbNgxBQUFIS0vDL3/5SzQ0NFy2bW//t6tWrer+nrdu3Yq5c+ciPDwcERERuPbaa5GTkyN7LOXl5Xj11Vcxbdo0vPDCC5cZJwDg7++v+DMyjJawB4Vh+uCOO+7Ar371K7z11lu4/vrru9/fsGEDKisr8fLLL+PcuXO97nvgwAEsXLgQjY2NWLp0KUaMGIEzZ87gww8/xOeff47vvvsOkydP7t6+uroaM2bMQH5+Pq644gpcccUVKCsrw0MPPYRFixY59HPu2LEDf/7znzFv3jzcdNNNCAsLQ15eHtasWYMNGzZg9+7dGDt2LABg7ty5qK+vx+uvv46xY8f2+F7GjRvX73mUfici//znP7FhwwYsXboUc+bMwb59+/Dxxx/j2LFjOHr0KAIDA+36/IIgdD/X6XTdz1euXAmAklxjYmKwZMkSrF27Fjt37sSsWbMUn+eXv/wlduzYgVtvvRXXXXcdNm/ejNdeew07d+7Erl27EBQUJOs4X375JT7//HNcffXVeOihh3D69Gls3LgRBw4cwOnTp2WF1tasWYOOjg7cfvvtaG1txVdffYVz584hPDwcV1xxRff/N8O4FIFhmB4AEFJTUwVBEIT7779fMBgMQnFxcfffFy9eLERERAjNzc3C7373OwGA8O6773b/3WKxCMOGDRMACB9++GGPY3/00UcCAGHo0KGC2Wzufv+BBx4QAAi/+MUvemx/4MABwc/PTwAgPPPMMz3+lpmZKWRmZvb6GZ555hkBgLB169bLPtucOXN6vFdRUSE0NDRcdoyjR48KoaGhwlVXXdXj/YKCAgGAcM899/R67q1bt142XjXfifgZwsPDhePHj/fY54477hAACB9//HGvY+hrTJd+dkEQhN///vcCACE7O7v7vdbWViE6OlqIjIwUWlpaBEEQhC+++EIAIPz4xz+WdU6Re+65RwAgxMbGCoWFhd3vm81m4cYbbxQACM8991yPfXr7v3333XcFAILBYBC+++67Hn/77W9/KwAQXn75ZVljuvvuuwUAwosvvihkZGQIAHo8brrpJqG5uVnR52QYreEQD8P0wwMPPACz2Yx33nkHAFBUVIRvv/0Wd911F0JCQnrdZ8+ePThz5gymT5+Ou+66q8ffbrvtNlxxxRXIzc3Frl27AFDI6D//+Q/Cw8MvC4tMmjTpsmNoTUJCAsLDwy97f+zYsZg/fz62bt1qdz6C0u/EmkcffRSjR4/u8d4DDzwAANi/f7+icRQWFuLZZ5/Fs88+i9/85jeYPXs2nn/+eej1erz66qvd23366aeoq6vDbbfdhuDgYADAVVddhaSkJKxZswZ1dXWKzgsAjz32GDIzM7tf6/V6/OUvf4Fer+/+fcnh9ttvx4IFC3q89+CDDwKQ/31UVlYCAH7/+98jKysLhw8fRlNTE/bu3YtJkyZh7dq1+PnPfy57TAzjCNhAYZh+mDp1KkaPHo133nkHFosFb731FiwWS/cNsjcOHz4MAJg/f36vfxffP3LkCADgzJkzaGlpwbhx4xAZGXnZ9o7WLQGAr776CkuWLEFycjL8/f2780q++OILtLe3o7q62q7jK/1OrJk0adJl76WnpwOAYkOhqKgIf/zjH/HHP/4Rr732Gs6dO4cbb7wRO3fu7JEgK4Z37r333u73/Pz8cNddd6GtrQ0ffPCBovMCwJw5cy57Lzs7G+np6SgsLER9fb2s42jxfVgsFgBATEwMvvjiC4wfPx6hoaGYOnUqNmzYgLCwMHzwwQea5fkwjBrYQGEYGzzwwAMoKirCpk2b8O6772LixIkYP358n9sbjUYAQHJycq9/F98Xb0ji9omJib1un5SUpHbosnj99dfxox/9CLt378bs2bPxi1/8An/4wx/wzDPPdOcitLe323UOpd+JNVFRUZe9J1ZVmc1mReOYM2cOBEGAIAgwmUwoLS3F2rVrMWPGjO5tcnJysGvXLgwbNuyyMluxRPnNN99UdF7A9v+v+B3ZQovvQzzGggULEBER0eNvycnJmDp1KiwWCw4ePCjreAzjCDhJlmFs8JOf/AQrVqzAQw89hIsXL+IPf/hDv9uLXpDy8vJe/15WVtZjO/HfioqKXrfv6zh6vR4dHR29/k3uaryzsxPPPvsskpKScPjw4csMiL4EzJSi9DtxJaL35MyZMz2SZq05efIk9uzZ08OwsUVFRQWGDh162fvid+LMzy6OozdjBwCio6MBAK2trc4aEsNcBhsoDGODqKgo3Hzzzfjggw8QGhqKO+64o9/tRe9KXyW+W7duBQBMmDABADBs2DCEhITg6NGjMBqNl92o+jpOdHQ0jh8/DpPJdFlJqNyVb3V1Nerr63HjjTdeZpw0NTV1h2asMRgMAJR5L5R+J66ivb0dH3zwAfR6fbdE/aWUlJRg8+bNePPNNxUZKNu3b8fs2bN7vJefn4/i4mJkZWX1aSw4goULF+L555/HyZMne/37qVOnAKC7pJxhXAGHeBhGBi+88ALWrVuHzZs395pQas3MmTMxdOhQ7Nq1C2vWrOnxtzVr1mDnzp0YMmQIrrjiCgCkN3HXXXehsbHxsiTZgwcP4j//+U+v55kyZQo6Ozvx7rvv9nh/1apV2L17t6zPlZCQgJCQEBw6dAhNTU3d75tMJjz22GO95p5ER0dDp9PhwoULss4BKP9OXMXatWtRU1ODxYsX4+2338Zbb7112eOTTz5BaGgoPvnkE9lhGYBCaUVFRd2vLRYLfvOb38BisfTIdXEGs2bNwrhx47Br167LhAbffPNN5OTkYNCgQb3muzCMs2APCsPIICMjAxkZGbK21el0eO+993DllVfitttuw3XXXYdhw4YhNzcX69evR3h4ON5///0e4lgvvvgitmzZgtdeew0HDx7s1kH5+OOPcc0112DDhg2Xned//ud/8O677+JnP/sZtmzZgvT0dBw9ehQ//PADfvSjH10mMNcber0ejz76KP785z9j9OjRuO6669DR0YGtW7eitrYW8+bN6/ZuiISFhWHq1KnYuXMn7rrrLgwZMgQGgwFLly7FmDFjNPtOXIEY3lm+fHmf20REROCWW27BqlWr8OGHH3YLvdli5syZGDduXLek/ObNm3Hs2DFMnDgRTzzxhCbjl4v4/zFnzhzcdNNNWLJkCYYMGYJTp05h06ZNCA0NxXvvvdftLWMYV8AeFIZxAFOnTsWBAwdw55134ocffsBf/vIX7NmzB3fccQcOHDiAqVOn9tg+Li4Ou3fvxr333oszZ87gtddew9GjR/HGG2/gl7/8Za/nGDFiBL777jvMnDkTX3zxBVauXInAwED88MMPmDhxouyxPv/88/jrX/+K4OBg/Pvf/8Znn32GSZMmYf/+/X0aZR988AGuvfZafP311/jjH/+I3//+972Gg+z5TpzN2bNnsX37diQmJmLJkiX9bitWcSlJlv373/+Op59+Gtu2bcPrr7+OqqoqPPbYY/j+++9li7RpyZgxY3D48GHcfffdOHDgAF577TUcOXIEd911Fw4dOqQofMUwjkAnCFYyigzDMAzDMG4Ae1AYhmEYhnE72EBhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7fBIA6WtrQ25ubloa2tz9VAYhmEYhnEAHmmgFBUVdXeYZRiGYRjG+1BsoLS0tOCdd97Br3/9a1x77bWYPXs2Nm3apOrkr7zyCmbPno0VK1ao2p9hGIZhGO9EsYFiNBqxatUqFBUVYdCgQapPfObMGWzatAkBAQGqj8EwDMMwjHei2ECJjY3FunXr8Omnn+JnP/uZqpMKgoDXX38dixcvRkxMjKpjMAzDMAzjvSg2UAICAhAbG2vXSTdv3oyCgoLuhlsMwzAMwzDW+Dn7hC0tLfjXv/6FH//4x7INnerqatTU1HS/5uRYhmEYhvFunG6grFq1CoGBgbj11ltl77NhwwasWrXKcYNiGIZhGMatcKqBUlxcjDVr1uAPf/iDouTYpUuXYubMmd2vi4qK8MILLzhiiAzDMEw/mEwmmM1mVw+DcUP8/f1hMBg0O55TDZR//OMfGDVqFObOnatov7i4OMTFxTlmUAzDMIxNGhoaUF1djfb2dlcPhXFTdDodIiMjkZSUBJ1OZ/fxnGagHDp0CPv27cMLL7yAsrKy7vfNZjPa29tRVlaGiIgIhIaGOmtIDMMwjAwaGhpw8eJFhIWFIS4uDv7+/prcgBjvQRAENDc3o6qqCsHBwYiKirL7mE4zUCorKwEATz/99GV/q6qqwm233YZHHnlEUW4KwzAM43iqq6sRFhaGtLQ0NkyYPgkODkZ7ezsqKysRGRlp92/FYQZKdXU1mpubkZqaCj8/P0yYMAF/+tOfLtvuL3/5C5KSkvCTn/wE2dnZjhoOwzAMowKTyYT29nbExcWxccLYJCIiAg0NDTCbzfDzs8/EULX32rVr0dTU1F36u3v37m4PyU033YSwsDCsXLkSX3/9NT7++GMkJycjMTERiYmJlx3r//2//4fo6GjMmjXLjo/BMAzDOAIxIdbf39/FI2E8AdEo6ezsdI2B8vHHH6O8vLz79Y4dO7Bjxw4AwKJFixAWFmbXoBiGYRj3gr0njBy0/J2oMlA++eQTm9s89dRTeOqppzQ5FsMwDMMwvoViqXuGYRiGYRhHwwbKpVgsQHOzq0fBMAzDMD4NGyiXUlICbNwIdCX9MgzDMIwjaW9vx4oVK5CSkoLg4GBMnToV3377rax9T506hVtuuQXZ2dkICQlBXFwcZs+ejS+++KLHdk1NTXjmmWdw1VVXISYmBjqdrt8WMnl5ebj99tuRlpaGkJAQDBs2DM899xxaWlrs+aiKYAPlUsxmoKgI2LIFqK939WgYhmEYL2fZsmX429/+hrvuuguvv/46DAYDrrnmGuzatcvmvkVFRWhsbMQ999yD119/Hb///e8BUIuYlStXdm9XXV2N5557Djk5ORg7dmy/xywuLsaUKVOwd+9ePPLII3jttdcwffp0PPPMM7jjjjvs+7AKcHqzQI9ApwMuXgS+/x5YvBhgdVuGcS4dHYDBQA+G8WL279+Pjz76CH/5y1/w61//GgBw9913Y9SoUXjiiSewZ8+efve/5pprcM011/R475FHHsHEiRPxt7/9DQ8++CAAIDk5GWVlZUhKSsLBgwcxefLkPo/5wQcfoL6+Hrt27cLIkSMBAA8++CAsFgvef/991NXVITo62p6PLQv2oPSGTgdkZwPnzwM7dgDce4JhnEdLC/D558Dq1bRIOHmSFgxOdC0zvkd2djZ+/OMfX/b+vHnzMGfOHIedd82aNTAYDN2GBAAEBQXh/vvvxw8//IDi4mLFxzQYDEhPT0e9VRQgMDAQSUlJsvZvaGgAgMu0y5KTk6HX6xU1+7UH9qD0hb8/MGAAcOIEEBQEzJoF2Ck6wzCMDI4cAQoKgJgY4PhxCrsaDEBYGBAbC6Sk0L/R0UBUFHtZGLtpampCYWEhfvazn132t+PHj+POO+/sdT+TyQSj0SjrHDExMdDrL/cJHDlyBEOGDEFERESP96dMmQIAOHr0KNLT020ev7m5Ga2trTAajdiwYQM2bdqE2267TdbYLmXu3Ll4+eWXcf/99+OPf/wjYmNjsWfPHrzxxht49NFHndYzj++4/REYCGRkAIcO0fNp04BefmAMw2hEcTFw9CgZIZGRgLiCM5mApiagvBzIz6f3goOB8HAgOZm2i46mB4dkGYWcPHkSgiBclptRUlKC2tpajBkzptf9du/ejXnz5sk6R0FBAbKysi57v6ysDMnJyZe9L75XWloq6/iPP/44/v3vfwMA9Ho9brzxRvzv//6vrH0v5aqrrsLzzz+PF198ERs2bOh+/3e/+x1eeOEFVcdUAxsotggNBZKSgL17aUIcP97VI2IY76S9Hdi3D+jsJOPEGn9/yQABAEEAWlvJaDl1Cjh2TPKyREcDqak9vSzs/XQMkyaR0egOJCUBBw+q2vXkyZMAcJmBcuzYMQDo00AZO3as7GqbvsIrra2tCAwMvOz9oKCg7r/L4Re/+AVuvvlmlJaW4pNPPoHZbEZHR4esfXsjKysLs2fPxk033YTY2Fh89dVXePHFF5GUlIRHHnlE9XGVwFetHCIjadLctYuMlGHDXD0ihvE+jh2j0M7Agba31emAkBB6JCTQe52dZLBUVgKFhfReUBAZLSkpl3tZWLrdfsrLKT/Iwzlx4kSv/eKOHz8OvV6PUaNG9bpfdHQ0Fi5caNe5xQ7Al9LW1tb9dzkMGzYMw7ruTXfffTcWLVqEJUuWYN++fYrl5z/66CM8+OCDOHv2LNLS0gAAN954IywWC1asWIE77rgDsbGxio6pBjZQ5BIbS5UF27eTkZKZ6eoRMYz3UF5OuSfx8eQtUYOfH3lLoqLotehlaW4GcnLIANLrKSwUFQWkpQEjRwKXxP4ZBchMunQKdozl5MmTvZbeHj16FNnZ2X3mXHR0dKC2tlbWOeLj42HoJV8qOTkZF3sx8srKygAAKSkpso5/KTfffDN++tOf4uzZsxg6dKiiff/5z39i/Pjx3caJyNKlS7Fq1SocOXLEbsNMDmygKCE5mTRSvv8euPpq97o4GcZTMZmA/fvJkFA5GfeKtZclPp7e6+yk89TUUJVeWxsgM4eA6QWVIRV348SJE5cllFosFnz//feYPXt2n/vt2bPH7hyUcePGYevWrWhoaOiRKLtv377uv6tBDA3JTeK1pqKiotcyYpPJBIA6FTsDNlCUkpFBE9uWLWSkxMS4ekQM49mcOgWcPUtVc47Gz49CtpGR5EnJyQGGD+fFhg9TWVmJqqqqbo+FyD/+8Q9UV1dj9OjRfe6rRQ7KzTffjFdffRUrV67s1kFpb2/Hu+++i6lTp3ZX8LS0tODChQuIi4tDXFxcj/EniGHOLkwmE95//30EBwdjxIgRssZnzZAhQ/DNN9/g7NmzGDJkSPf7//3vf6HX6/vMydEaNlCUImqk5OWRJ+WqqyjGzTCMcmpqaBUeFQU4SVuhm4gIoKKCSpkTEzknxUc5ceIEAOCbb77Bz3/+cwwbNgx79+7F5s2bAQCHDh3Cvn37MHXq1Mv21SIHZerUqbjlllvw5JNPorKyEoMGDcJ7772HwsJCvP32293b7d+/H/PmzcMzzzyDZ599tvv9n/70p2hoaMDs2bORmpqK8vJy/Oc//8GZM2fw17/+FWFW96f//d//RX19fXdl0BdffIGSkhIAwP/8z/8gsis5/Te/+Q02bdqEWbNm4ZFHHkFsbCy+/PJLbNq0CcuXL1cddlIKGyhq0Ospke/cOWDbNmDhQkrGYxhGPmYzhXbq6wGrVZpTSU4GcnOBESMoJ4XxOU6cOAGDwYCPPvoIjz76KN59913MmjUL27dvx/XXX4+jR4/CX21elEzef/99/P73v8cHH3yAuro6jBkzBl9++WW/4SWR2267DW+//TbeeOMN1NTUIDw8HBMnTsTLL7+MpUuX9tj21VdfRVFRUffrzz77DJ999hkA4Mc//nG3gTJ79mzs2bMHzz77LP75z3+ipqYGAwYMwJ/+9Cc88cQTGn7y/tEJgiA47WwakZubiwceeABvvvmm4uQfmxQUAOvWAYMH2962o4PCPRMmAHPncikjwyghJwfYtIkMA5mVCg7h3DkykK6+mnWOeqGtrQ0FBQUYMGBAd+mrN7F8+XLs2LEDZ8+edfVQvAItfy98NdpDQABV8xw9SjopFourR8QwnoHRSN6T0FDXGicAJeaeO0cJ8IzPceLECVV5GozjYQPFXkJCyE28fz+VSXqeQ4phnIvFAhw4QHol7pCcGhJC/x49SmEnxmcQBAGnT59mA8VNYQNFCyIiqJpn925yWzMM0zf5+dQAMC3NfUIqqakk7ibK6DM+QUFBAZqamthAcVM4aUIrYmNJz2H7dkqYzc529YgYxv1obiY5e39/96p+CwykMR09CmRlqReLYzyK7OxseGAapnPo7CSPYi8y/M7CTZYvXkJSEoV4tm4FZDZ4YhifQRCo8WZpKXks3I2UFMpDOXfO1SNhGNfT0kJKzC6EDRStSUsDGhtJI6WmxtWjYRj34cIFkptPSaHGfu6Gvz8l7R49SgqzDOOrdHZS804XwwaK1uh0pIhZWUlGSkODq0fEMK6nrY1CO4Lg3r1vkpKo+V1enqtHwjCuo62NUhZcDBsojkCvpxyUwkIScnOxm4xhXM6xY3Q9dMl2uy1+fiSBf/QoubgZxtcwm93Gg8gGiqMwGMhIyc0Fdu50C2uUYVxCaSlw+DDJyXuCmGFiIlBWBpw54+qRuBWcTOojtLdTiEfltarl74QNFEdiLeS2Zw8LuTG+R0cHhXba2jynsabBQGM9epTyyXwcQ1e+kIkXWd6PxUIefzvK/8VOx34aLEbYQLmU9etJ7l4rgoPJrX3wID14FcL4EqdOUTuIjAxXj0QZ8fFAdTVw+rSrR+Jy/P39ERgYCKPRyF4Ub6ejg7z9dpTZNzQ0wGAwdBu29uAB/lYn0dEB/PKXwD//SUl8kycD0dHaHDssjCa8H34gg6Wf9t0M4zVUVZFRHhPj/E7F9qLX0zV74gT16dFqLvBQ4uLicPHiRZSUlCAyMhL+/v7Qcfdn70IQqKijs5N+/6LHTGY+iiAIaG5uRkNDA5KTkzX5fbCBIqLXSyqwDQ3Aq68Czz2nXTlkdDT9h+/cSUbKoEHaHJdh3JHOTmr/0NDguk7F9hIbS3koJ08Cs2a5ejQuJaKr8qq6uhoXL1508WgYh9DZSYnhBgNVo5rN9FxsBSEDnU6HqKio7q7I9sIGioifH/Df/6J14EgEN9cAJ07g1DOrcWzSMpu7+vsDk0ZbMCDDhvszIQEoKaHKnqAgbu/OeC+5ufTwtNCONTodlR2fPg0MG0YeFR8mIiICERERMJlMMHPPIu9j1y4qr8/Kotfl5ZQwPn++7EP4+/trEtoRYQPFmsRE7Fz4NBZu+DX0ghkjj3+Ki5HDcSFtWv/7tQIHT+gxIEPGRZuWRv0+duwAbrrJpTLCDOMQ6uooMTYsjAxxpezfT56LQYOAUaNcq5sSHU2aRidPAvPmuW4cboS/vz/8uRWAd1FVRcZJRAR5UgAK7XR2qruGNYINlEtoGTQWRyYuw8SDbwMA5u77K75OfB1NEcm9bt/aBgiCTlkVcUYGGSnFxRzqYbwLsVNxTQ0wdKjy/c+cAV54oed7AwZQ3tbo0cDIkb328Mm/oMOhE3rHVPMLw4GTTcAn38E/NACTbhmMAVN7nw8YxiM5exZoanI7rz4bKJdw/cNZQPJwIHAmsHs3AjqasfTQn4BXXunV27F6vQEtSnXY/PzokZsLDBxIrmSG8QbOnaPKnYwM5b9rQQDeeefy9wsK6LFhgySCOHo0MGYMMHw4EBKCQyf0MDY46jrSAdADHSbAaMLBT/PYQGG8h4YGyr90wxAmGyi9odMB//M/pHx58SJNjv/6F/Doo9oZEwkJ1JisutotfxgMo5jGRgrPBAUpSqzrZvduSRwtNRWYMoWqaM6fl8rzLRYygs6dA9atI4Nl8GCMCByLCzFjUJEwHAFhDnBJCwJa23QQoIOprVP74zOMqzh/HqitVefxdDBsoPRFSAjw5JPAr39NsbgtW2i1tmiRNscPCyPjJz+fDRTG8xE7FZeVqavaMZmA996TXt93H5X6A+R6PnmSjJUTJ2jhIGKxALm5GIlcjMQnMOv9YBg2hLwro0fTpKtRifPqNQJaTP4AS4Ew3kJbG3k8o6LsEmdzFGyg9EdGBvDww8Bf/0qv//1vci9rlTcSFUUrxrFjXZqIxDB2U1gIHD9Ong81E92XXwIVFfR8zBhg0iTpb2FhwLRp9AAAo7GnwVJc3L2pwdJJVTenTwMffUTGybBhUg7L4MHqRagMBsAEKr9kGG+gsJCqdQYOdPVIeoUNFFvMmUNGxFdf0Srvz38G/v53aihmL3Fx5F67cMFztSIYprWVqnZ0OnXXRUMD8Mkn9FynI+9Jf6HUyEhg5kx6AEBtLXa/ewqxJSeQWnUc4Q2l0rYdHWQ4HT9OrwMDgREjyFgZP17ZxCyOyWSSNCIYxlMxm8nQDw522x5Z7ufTcUfuu08yICoryUDRoq+OwUCruTNnWAKf8VwOHyYjW22n4o8/Bpqb6fn8+eSlVEJMDIoGzsWuKY/ii5vfBN5+m1ShFyygXC9r2tuBI0eA99+nbT7/XPl4OzspNMswnkxxMelyJSa6eiR9wgaKHPz9gRUrJD2GgweBTz/V5tgJCfRDqazU5ngM40xKSoBjx0jQTI1H4eJFYONGeh4YCPz4x/aPKT6eNEseewx46y1g5UpKep879/KGhWvWkNGiBJ2OGgly8zzGUxEESTndjbW42ECRS3w8JcyKbt7Vq2klZi+hoeQi5xUZ42m0t1Nop6NDfa+a996TcjpuuIHk5bUmKQm48krgV78C3n0XeOMNKcfFaAS+/17Z8QwGqsA7d077sTKMM6iooHuOG3tPAM5BUca4ccBddwEffkgW6KuvIuTq/4cWQ4LNXfslJobCPOPGUTyQYTwBsQTYRtJ4XyJq8eUnceXevQCA1uBofOF/MzrXq8vraJXXz4wWGKmpdB0fPEjvrV9P1XlKPEChoeRFGTCAE9wZzyM3lxbGvYgeuhPsQVHKzTdLq6/GRlyx9SXozXa6emNiSHmzqMj+8TGMM6iooLLi+HibVTGiiFpLq9WjRcC4vW91b3Ng9N1o6AzpuY2ChyCQZ1N2gc7AgVQtBFBp9P79yj5/UhKFt/LylO3HMK6mvp6UYy/Nz3JD2EBRil5PruKu/9y4qlxMPfKWjZ1sYDBQHPDMGW2SbxnGkXR2UminqYkq0Wwgek50OgEhwfQYUbYN8bV0c6+LHoCLIxZ0/03tIzJCwKTRCq6fG26Qnq9bp+QboKqHiAgK87a0KNuXYVzJ+fNkpERFuXokNuEQjxrCwkjE7YknAJMJI/O+QH3KMAB2tGQXOx1XVADJLKPNuDGnT9MKTOx6KpPgIODO682Uu/KzVd3vR/9iGe4YDwBO1heZMAHIzCTP5Zkz9LlGjJC/f2IieVDOnKFjMYy709pKpcVRUR7RYoU9KGoZOBD46U+7X07d/Q8qtVRLSAip+nGyLOPOtLRQWXFkpPrs/w0bqMUDAEycSHokrkCns8+LYjBQcvDRoyTzzzDuTn4+dS72EPVyNlDsYdEinB98JQDAr7MdeOkl+9y9sbGUvCRqQjCMu1FSYl//qPp6Ku0FKFx6772aDU0Vs2ZJlUP799PnU0J8PH0fp09rPzaG0RKTiWTtQ0M9RmSQDRQ7OTj9Z6iJ6hKWungR+Mc/1IuuRUdT0yZ7PDEM40jy8igTVe0Et3o1uZkBqpzJyNBubGrw9weWLKHngqBcuE2vp/Ds8eNAXZ3242MYrSgupnuUnOTYtja3yK1iA8VOzH6B+O6K36EjIJTe2LOHXNhqMBiozDgnh5NlGfejtpYmORmJsb0RUXcB+OYbehEcDNxxh4aDs4PFi6Xy/u+/V25oxMSQZ+jkSc2HxjCaIAjk5dPp5DXP/P57yrP8+9/Jq+8i2EDRgMbwZPww+1fSG+++S640NcTHk5u5rEybwTGMVly4QLkWKvtQjT/wtmR433STenE3rQkNBa66ip6bTNR3Swk6HSXMnj5N8X2GcTdKS4GCAvkFGN9+S9fCtm3KlZY1hA0UjbiYMY00UgCahP/yF3Uu3+Bg+mGcP6/tABnGHsxmWkmFh6vK/k8pP4LUki5htLg44LrrNB6gnSxZIoWtNm0iF7cSoqPJeDtxQvuxMYy95ObSfSUkxPa2589L95/BgyW9IBfABoqW3HWX9J9ZWwu8+qq61uyxsRTrb2rSdnwMo5ayMmrLriK8o7OYe2oF/eQn7tf/Iy4OmD2bnjc2At99p/wYyckUnmXvJ+NO1NbS/URuYvu330rPFy50zJhkwjooWmIwUL+eX/yCfhQnTpAs/j33KDtOdDTpTBQVASNHOmSoDKOIggJagakwLAac24LY+gJ6MWgQMGeOxoPTiOuvB7Zupeeffw5cfbWyZOCICDLijh8npVkP0JlgfIC8POQXAYdqY232tzR0tuOG77YjAECnIQDrGufB/3e7cf2fZjplqJfCHhStiYqizsfixLZ2LdDVb0Q2ej3FxU+fVueBYRgtaW2lFdilnYBl7jvm0AfS6/vuo9+3OzJggKTJUlEB/PCD8mOkppI7XWm5MsM4guZm4NQpHKpMubzdRC+PhLwfENBBMhf5GbNhNIehxcg5KN7F8OE99R1ee42SlJQQH0/7sLuYcTXFxeQRVGOgrFuHkNZaOkzGdGDUKI0HpzE33ig9/+wz5ZIBoaG0qDh2jCvxGNeTnw/U1sIk0ILZut1Eb4/hhZu7dy0a2tV+ItJ14VgO8fSGINDDHhftkiUkgb1rF9WT//nPlDgr10UeFEQT3blzQFqa+nEwjL2o1T6pqelWZ7XoDDg6+V6kO2B4mjJmDHlSCgro2jt1SrlRlZpK+xYV0bEYxhV0dFDpu1XH4u52E71RVga8c5yep6biyiURQFonsNQ14R2APSiXEx1ND3s9Fzod8MgjknFRWAj885/KVmSxsTTRNTTYNxaGUYs92icffthdonh68LVojEzVeHAOQKe73IuilOBgOs7Ro9RYkWFcQVEReeHldi22TgxfuNAtcqjYQLmUqChg2jSK3dmrpBcSAvz2t+QNASgBb/Pm/ve5dCx1dfRDYxhXoFb7JD+fxJ4AdASE4sioOx0wOAcxc6ZU8XDwoDpl59RU8sIUFGg7NoaRg8VC3j9/f3rYwmwGtmyh5wYDMH++Y8cnEzZQemPYMHLrFhfbH0fOyCBPisjKleQyl4NeT+65nBxeiTHOR9Q+CQtTtpoSBBIr7PIWnhx7O9oDIxw0SAfg5wcsXSq9VtpEEKBQbkAAeVFslU4wjNZcvEgL26QkedsfPkzeUgCYPNltRBQ5B6U39Hpg6lQK85SWysoBaW0DVq/vK0Y/DxNHnMXQ0xuAzk40PfMyvl76OjqCZEzaQgZgNsN/93ZMunMEBkyVqQTIMPYiap+kKgzNHDxISaIAkJSEsyOWAB0Kz11SQiu5yEh54lJac+WVwEcfkSd1+3bSboHCBokpKeRByc8Hhg51yDAZpldycmiBIbZwsIW19smVVzpmTCpgD0pfREYC06dTDL0fwTTReyYI/Zdv7R51PyrihgMAwpoqMXXrX9HSAptlXy1terSY/GGs6sDBT2V6XhhGC9Ron5jNwKpV0uu774bFIMPFbE19Pf0bFkadgnNzaSx1dc4ruw8JkeTvOzuBL75QfgzRvS7XY8owWlBVRUqwiYnytq+ro07eAFXqTZjguLEphA2U/hg0CBg7llZzfUyMk0ZbEBnRf+lWSLCAoDA/7FnwW7QFRQIA0ssOIst43OZ+IcECdCBXuamFXcWMk2htpQRtpaXFmzdTaBSgUOlMFRUAFRVUqn/bbcCtt5KhMHAgVSXk55OIYXm5cjl6pSxZQuEeAPj6a/iZVOSkxcbS/CG6zxnG0Zw9S4vqCJlh1e+/l1IZFixQ36ncAXCIpz/0emDSJArzXLzYa2v4ARkCBmTIXdVFAyn3UYdIAAvNW4HrbSvFrl5vQEsrOA+FcR7iTXXgQPn7tLQA//2v9Pq++5RXAhiNpCUyYgRNlPHx9Bg1isItFRUUeiosJCOlvZ2S0CMjKZFXy8k1JgaYO5eqG5qbMTB3M44MvNHmbj0ID6f5o6REnY4MwyihoYHCO3Jl7QXh8uodN4I9KLYID6dQj9msTbnv9OlSVc+ePcoS6Do7OeGOcQ55eeQ9UHLD//RTMjAAYNYs8qAopbyc9uutNDI0FMjOJq/M7beTd2XxYiAzk7wp+fk07ooK7TqwXn9999Nhpz6HzqJwkaDT0bjPnmXhNsbxnD9PCwu5Sa6nT9PiGwBGj5bf7dhJsIEihwEDKNRTWmp/DDwoiBJwAXLDHTkif1+zWfoxMYyjqK2l0lol2ieVlcCGDfTcz68rqVQhDQ2S98QWBgPF2EePplDM7bdTh+TJkylnprSUhBIvXKDjqjUOMjLIiwogtLkK2Rd2Kj9GbCwZXpWV6sbAMHJob6fS4qgo+e0k3DQ5VoQNFDnodDTxpaer00S4FLFrKkAVAkrghDvG0ajRPvngA8m7t2SJ/PJGa8rLgSFD5Cf3WRMeTuGoWbOAO+4AbrkFWLSIKpCamiifJi+PEgg7FJYUWQm3jc5Zq1z+PiSEPDxazB0M0xcFBeQ9lBveaW4mpXOAFgbTpztubCpRnIPS0tKCjz76CKdPn0ZOTg4aGxvx5JNP4uqrr7a576FDh/Dtt9/i+PHjqKqqQkxMDCZMmID7778fcWqUKp1JSAj9B375JVUZREWpP9b48TShNjYC+/ZRQqKccjCDntzYdXVuU6fOeBlqtE/y8iRDOzycjAOlNDaSd1GL7t1+fuSqTk4mz2dDA03cpaWUu1JSQsZUSAgZUraErEaOBAYPBvLyEFefj8TSowDGKBtTZCSFecaPlyecxTBKMJtJ1j4oSErstsXOnZKxPmeOqk7ljkaxB8VoNGLVqlUoKirCoEGDFO37r3/9C0eOHMGsWbPw2GOPYcGCBdi6dSuWL1+OmpoapUNxPpmZNMGUl9uXsOrnJ1U3dHRIJV620Olpsi0sVH9uhukPUftE7oJBEIC335Ze33FHj94fsrHHe2KLiAgyMObMAe68kwyo+fMpaVVO12GdDrjhhu6XI06qkL+PiaGSaW7+yTiC4mL6LSu5fr75Rnq+aJH2Y9IAxR6U2NhYrFu3DrGxsThz5gwefPBB2fs+/PDDGDNmDPRW8bEpU6bg0UcfxWeffYYHHnhA6XCcz4QJtBIrKlJW4XApc+YAX39Nz7dvp9dyiIigxKZRo3glxmhPUREZ32Iity327qXfI0DhFFE7RAmNjbR6GzXK8f0//P1JQC0lhQypL76gz2tr1Tl9OprCEhHWVIHki4fJna6kEWBAAK1yCwt7rQZkGNUIAlXuAPK9IGIzTIDuY9nZjhmbnSj2oAQEBCA2NlbVycaNG9fDOBHfi4iIQJGn9JsJCqJQT2CgfdoGw4dLq9QjR+RXCMXHk7ta1JpgGK1obaUwhNzwocnUU5Rt2TL57mVrysvJw6Emb8UeMjLoGpTjvTUYcGaU5EXB+vXKzxcTQzeF1lbl+zJMX1RUUOhfiffEzZNjRVyeJNvS0oLW1lZERka6eijySU0FJk6krHy1Zb96PSX0AbSy2r1b3n7+/rQvJ8syWiNqn8jV69i0SQpZjB4NTJmi/JxNTeRdGDnS+d1Tg4KopFlUrrXB+cFXoi2gK3F4xw5KuFVCdDTlj3ElHqMlublk9MoNrXZ0ANu20fOAgJ5FG26Gyw2UTz/9FCaTCfP76Z5YXV2N3Nzc7odbeFvGjSOlWXvGYh3W2bFD/n7x8eSi84S8HcZzOHeOynflaJ80NQEff0zPdTp1omwAGTiDB1PIxRUMGEDJsv20sxAx+wfh9OAfdb0wK5e/F7/b/HwVA2WYXqivJ6+n3ModgMKy4u99xgx1OWNOwqVKskePHsWqVaswb948TJw4sc/tNmzYgFXWrmR3ICCAQj2VlbSSUvIDERkwgBoRlpRQ/brc40RE0CqssJA0FhjGXmprydiW+zv++GPKHQFIbVVNPlZzM3kEXeE9EYmPp1DP+fOyJuqcwT/C2DNrYDCbSNb/ttuoRFMusbF03RqNVNnDMPZw/jwZKUqaUVqHd9w0OVbEZR6UoqIiPP3008jOzsaKFSv63Xbp0qV48803ux9PP/20k0Zpg6QkcmvX1qpTrtTperrXdioQgYqKosQopZoODNMbxcWUByVH+6SsDPjqK3oeEKBOlE08zqBByrsla4lOR5N7Z6esyrzW4GjkD1rQ9aKVjBQlREaScSKneohh+qO1lUqLo6JkG/ihjeVSp/HkZG3K+h2ISzwoFRUVePzxxxEaGoqXX34ZITbaqcfFxbmvTsqoUTTZnD1LrmqlK8HZs4HVq+n5jh09RKH6JS6OVmLFxfZVEzE+Tf7eMhxakwdTbSNgGQ7k2g7vXPH9+8joupmfHH4jju/qPzmvtbeefi0tFO5wRuWOLTIyyJNSXS0rUffMqBsx+Oxmqp744gsSppNbUafTkebR2bOkmOvqz854Lvn55HVXIPcx8OwlybFu/vtzugfFaDTi8ccfh8lkwquvvuq+hodc/P2BadNoZaRGyjolhfQfAPrBya3OEZNlc3OVK1syTBeH1uTBWNqMljY9Wjr80NKq6/cRfuE0MgopobslKBqHBt9scx9BoEmwxz28tJQMa1d6T0QCAxUlyzZGpkrtKmpqlOWPARTmKSsjg4hh1NDZSWkBISGy+2XpLGZk53UZKHo9aQG5OQ4zUKqrq1FUVIROK7dpa2srnnjiCVRXV+OVV15Benq6o07vXOLjKdRjNKprAS9W8wDKJruEBMob4ImOUYmpja5PHQSEBNt4BFkw/dhb3fuemPhj+EcE294vWEBkhIBJo7v64Yjek9Gj5fcMcTQDBlAOiphXYwurJoJYv17ZIiEsjPJvWCqAUcuFC5SHqKC0OLX8MEJaugorJk3yiO7aqkI8a9euRVNTU7f66+7du1HZ5T246aabEBYWhpUrV+Lrr7/Gxx9/jOSuDonPP/88cnJycM0116CoqKhHNU5wcDBmWd+oPY2RI+kHc+oUeUSUuM5mzQLeeYcmue3bSe1Szv7h4XTOggJ1SboM03VjDQ604M7rbdxkT54EqnLpeWYmpv56PqYaVDTPFHNP0tKU7+so4uIo1JOXJy8PZ8QI8rqcOUOLhMOHSXpALhERFOYZO1ZZx2iGASg5VqejHDCZDD1vlS/lxton1qgyUD7++GOUl5d3v96xYwd2dK38Fy1ahLA+suHPdSnXbdy4ERs3buzxt6SkJM82UAwGcvuWldFDSdlkTAwwZgwlL5WXU7nn4MHy9o2KoklyzBj56p8MIyJ259brAdgwNvbskZ7fdJO6G2trK02s7uQ9AaRk2dxc0jaSk1Nyww3ASy/R83XrlBkosbEU5iovd48wF+M5NDZS/qECD0hgaz0yL+6jF9HR3R263R1VBsonn3xic5unnnoKTz31lOL9PJqYGCo93rSJ3Ng2kn97MGuWlF29fbt8AyUujjwoxcXy92EYkU6ZHhCLRTJQ/PzUibIBUu6JO4Z309MpbFpTI0/VdsoUWoiUlgLHj9OqVm7CemAgVeAVFbGBwiijpITSCRTM9wPObYFe6LrW58+Xt7hoaXF5U1o3WsJ4CUOHUmXChQs0qctlxgxJJnznTmllaws/P/qxcbIso5TaWvlNL8+elVo7jB+vzPgWEfOz3M17IqIwWRYGA3DdddLrzxQ2EYyOppCSGokCxjcRBDKEAwLkX0OCgIFnrRoDygnvmEx0fBf3jXLDWcLD0esp1JOQQCsruYSFSW63ujqK98tFTJZVKr3N+DbFxfKNWuvwzowZ6s538SI1JXPnZnlZWXQtyu2NNX++JLi2ezf1RZFLdDQZfUrmCca3qauj61ZJ9WtODiKNpLtTkTRaXvpBXR2FIbvyR10FGyiOIDKSQj3t7bIktLuxFm1TUs0TFkbuuIIC+fswvo3ZTF43OcnYgiAZKAaDuvCOu3tPROLiyEiRa+wHBgLXXkvPLRZgwwb55/L3p++Wr1tGLiUldE9RIk9vpRx7fohM5dj6egpXKkjCdQRuPFN4OIMGUYZ+cbH8cM3kySTiBNANQUkjwpgYSpblTqmMHMrL6SHHWMjPlzR+Ro+WV+VyKWVldON3Z++JyJAhZGzIvf6uuUaayL/9VtmiJDaWvl8l+zC+icVCodbQUPlVoi0twK5dAIB2/1AUZ8nwfnZ00ELEDa5VNlAchV5PBkdqqvzupYGBJPoGkE7CoUPyzxcbS3ooFy4oHyvjexQW0kQkZ6KzN7zT3k5G+pgxnlFSKybLytUXiogAFi6k521twCUViv0SFcXS94w8qqpoUaGk/9rOnd05Tucz58LsJ6PSs7aWPIlyEsUdDBsojiQsjEI9ZrP8mLbaMI/BQC5jTpZlbNHaSisxOWWK1uEdnU5SUFVCaSmQmUkPTyAgABg+XH6yLEDJsqI36ssv5Xtf9Hq6brskGBimT4qLyQBWkqBuFd7JHSgzvCNWCMlt3+BA2EBxNAMGAOPG0SQtJ9QzdiytyABg/35y0cklIYF+xEoS9Rjfo6SEVklyDJTiYskDOGKE8rJD0XviaYJkWVl0HcpdWCQnS97P+npg61b554qNlf5PGKY3OjvliwiKFBXRQgRAbUw2aqJl9OxpbyfDxE1EFNlAcTQ6HVXnpKfLC7/4+QFXXEHPOzqAffvknys0lFbH+fnqxsr4BufOkbEgx2CwN7xTVuZZ3hOR2FhaXCipjLNu9Ll+vXyZgfBwEt/iMA/TF+XltPBUEt6x8p7kD1kkL5xbU0MLXQUS+o6EDRRnEBJCoR6DQZ7bWG2YB5CSZZV4Xhjfoa6ODGW5rRGsDZTp05Wdq6ODQh2jR0saP57E4MEU4pIbrhkyRGpfX1ICHDwobz+djsLBubnKtJMY36GoiDyRgYHytjeZJC+evz8KBs6Vt19jI/3u3eR6ZQPFWWRmksBVebltcaxhw8iKBYAjRxDYapR/npgY6SbEMJdSXExhCzmu4tJSSqYFSIBQaefxsjKqBBgwQPEw3QIxWVaJF+WGG6Tn69bJ3y8mhlbIajqiM95Nezt5PaOi5O+zb5/U+HLGDJgCZVzvra1kALmRsrF7mEm+woQJNOkXFfUvia3Xk/T92rWAxYKMwp2oy1oi7xwGA/3IcnJoRefOmhOMczGbybsWFub46p2ODnqMGeM2qzHF+PtTsux33/UQrGptA1av7yM8JkzFtZFpJIx16hQ2v3kONfFDZZwsHOgMBo4fg3/EWUy6ZTAGTHWtSBbjJpSWUuhFiaH/jZVy7MKFgBypndpaMsjFxbEbwHcvZxIURG7ywED6wfWHVZgn8/x2ZeeJjycXs1VDR4bp1j6R6wmxJ7xTXk4eCE/1nohkZZHwYkNDd1GDIOjQ0trHo82AY0Nv6t598NHP+t720ofJHy1NFhhLm3Hw0zzXfF7G/RCF/OQa+hUVUl+3pCQKscpBDO+4UTI7GyjOJjWVup5WVvYfb7YStUqoPI2wZgWVOSEh5BY8f96+sTLehah9IqfrdWWlVPqana1ME8Fkot/fmDFuUapoFzEx3cmyk0ZbEBkhICS4/0fp8HloDY4CAGSV7EGCqdTmPvSwQAeSCDC1yeyRxHg3zc1koCjoXIwtWySpiYUL5XnRxea2bhTeATjE4xqGDycLt6Gh77iiTkdelA8/BABkF+3Aubib5Z8jNpbK0iZOVNfYjfEu2tro9yB3ovvhB+m50vBOWRmVKWZnK9vPXRk8GDh5EgOSOzAgQ47BpQfMPwI+/BB6wYKlbeuBux+UdarVawS0mDzcqGO04+JFyikcJKNEGKAw7nff0XO9HliwQN5+YnhHbvK8k2APiisID6eGTXV1/W9nFeYZWLRN2Tmio+n4clVsGe+muFi+9gmgPv/EZCJjyBu8JyJpaeRBUpIsay1/v3u3/OoccbXLYosMQF5wf3/5YZdjxyQF5AkT5JclNza6Zc6ie43Gl8jKIjd4fxNRUhJVTwCIrS9AZF2R/OOLOhcc5mEACtfo9fImutpaSqYFKI9EiWhTeTm5ib3FewJIybINDfINh7AwEmgEaKHQJZhlE/EGIbd/F+O91NdTNaYS7RPr5NhFMpVjxeaDcrocOxk2UFxFcjL9KJqb+99uzpzup5n5CpNl4+KoYkiJZDfjfSjVPtm7V7oRK/WetLSQaqyLu6Bqjqgsa1RQ8m/dFkCJ4CIAdLKB4vNcvEhGsagsbgujkdTHAUodmDRJ3n61tXQ/Uioj4ATYQHEV0dEU87NlPMycCYuO/puyzm9T5voVpbpZodK3UaJ9AqgP71RUeJ/3RCQ6mj6XkjDPlCmSR0SxgdKpzBhivAtBIK9bSIj8zsVbt0oaW/Pmyav6EQRaJA8aJP88ToQNFFeh09GEZ8uDEh2NiuSxAICwpgpSm1RyjpAQ+qGzQqVvYjbTb0au9onRCJw8Sc+TkshzIIfOTvotjx0rX+3S0xg8mL7Djg5520dGkugiQIsEJQsFQeCFhS9TXU3J5nJzxgShh7Q9rrxS3n5NTbRwcbPqHRE2UFxJcjK5wtva+t2scKAU5sHOncrOERtLP3S5reMZ76K8nP7/5bpv9+2TjNmZM+WvqioqKIbdnwChp5OaqjxZVmwgCCjzouh0tLDgZFnfpKSEDP6wMHnb5+aSpxSgpp5y88Zqa+m6VdoE1EmwgeJK4uPJgLBRzVOSOQOd+q6KiJ07lSXQiQ0ExR8v41so0T4B1IV3OjtpJebN3hNASpZtbJRvOFjnoezdK/9cej0vLHwVs5mMUyWdi9V4TwSBFsduGt4B2EBxLQYDrThttHQ3BYSiOGUyvaivB44fV3ae8HD6wdvqAcR4F21tVL0j103c1CT9tuLj5WsvVFaSZ8GbvSciYrKs3MTz5GSpk3NuLq1Y5aDT0QqaFxa+R0WFss7FLS2SZz04mDyfcmhsdOvwDsAGiutJSaFkJhsdU89nzZVeKO1wHBtLNxGWvvctSkqopYJcA+XAAcmInT5d3qrKbCYDe9w4+V4aTyYqigwxJZ4Nay+KWGUhh4gIMmq45Ni3KC5W5vXctUtKE5gzR/5+NTVknChpQuhk2EBxNYmJ9AOxsSIrTp6MDv8uRdgffpCfqAeQ272zk0qOGd9BifYJoC68U1FBXgK53hZvYPBg+l7b2+VtrzYPJTaW8l14YeE7mEyk+BwZKX8fUTkWkB/esVjoHuLm1y0bKK4mMJB6fdgwUMx+gSjJ7GrY1tICHDyo7DzR0XTDspGQy3gJdXVkkMrUPvEztQJHjtCL6Gip+qQ/RO/JmDG+4T0RUZosO3CglKR87Bhdv3IIDKSbCC8sfIfSUvLOyQ3vXLggiSpmZso3OER9FTcUZ7OGDRR3IC2NEpZsuHILB86VXigN80RHk0uvtFT5+BjPQ6H2SUrxQckrN22aPMlrMfdk8GA7BuqB+PlRpYTcZFmdTgrzdHYChw/LP1d0NK2o5XprGM+mqIjuA3LbRFgnxy5aJD/ZtaaGmtHKFYFzEWyguANJSd0t3fujInms5Po7cED+SgygSVWnk1p3M96LUu0TAOlFu6UXcsI7ZjNppoweTYl5vkZmpqzQbDfWYR4l1TwxMXQz4Z5a3k9rq7KkdpOJxNkAmt+tVMf7xWIhQ9kDBBXZQHEHQkPJi2JjshP0BuCKK+iFydSz46wcYmPJQGlsVDdOxjNQqH1i6GxHSvEBehEeDowaZXunqipSQh4yxI6BejCRkeROl5ssO3IkXecAhWdtJMV3I6qBFhYqHiLjYVy8SPcAuZok+/dLi9rp05VJ4kdFuX14B2ADxX3IzLTdPBDoaSUrDfNERtKPk1dj3o1C7ZO08kPw7+zKTZo2zXZSrdlMOS5jxpBSsa8yaJD8ZFk/P2Byl1RAS4uk1iuH2FggP5/KwBnvpaBAWVK7Gu0TgErdMzPli8C5EBli/YxTSEqiH4woPdwXQ4fSyrWykhLu6urkW9x6PcU2z52j47ipOA9jB0q1TwBkFSsM71RVUfWZr3pPRFJS6FFVJU+5c9o0YNs2er53LzB+vLzzREXR/2lJibzkZcajyN9bhkOf5MJU1wZgEHDCtt8gpKkS1x0+Ah2AprBEbCgYDxT2vV+rdW2E2UyFGR4Ae1DchagoMlJsqMpCp5O8KBYLsHt3/9tfSlwcJVDaOg/jmYjaJzKNVr3ZhIyLXdocoaHkFekPQaDfzujRUsjCV/HzI2XZpiZ5va7Gj5eSH/fvl98fy3phwXgdh9bkwVjeipZ2P7S0G9DSqrP5SM/ZAh3I235mwJVoaet/P0Ggxai/3kxzgweEdwA2UNwHsXmgnMTX2bOl50rDPGFhpFDJjci8E1H7RE4nUwCJpccQaOpqWDl5su3qgaYminV7yArM4YjJsnI6DwcHUzsAgIzI8+flnyc2lq5ZuUq0jMdgaiVxRB0EhATLeASZMbTgGwCAAB1Khi+UtV9khIBJieWkhuwhoVkO8bgTSUk0ibW29l8ZkZlJj6IiqoEvL6d95aDT0co3N5eSIeWUkzKegah9IrcxIFRU7xiNFGJ0Y/VJpxIRQWXWhw7J81pNmyZpGO3dK79EOzycJAJKShSF7xgPQCBPWnCQgDuvl+FVO3IEaKoEAOgmTsD1P44BIENtuLMTKGiU36HcDeC7kzshs3kggJ7Jsmo6HJeXUx4L4z2I2idys/nNZqQVUcmryS9IXk5EczNNcJy/JDFwICU2ykmWnTxZ+u6UlBvrdOT9zM2VHxpiPANR/0ruNaVGORaQ8hU9JLwDsIHiXuj1NNnJKQOeNUt6rjTMExxMkykrVHoPKrRPcPIkgtqpTLE0bZLtTsQmE4WO5HrrfIWUFFKXlaMsa63SW1ysrKIuJoZaC/DCwnuwWACTgiauJpPkgQsPlyrD5FBfT2kEHqT6zAaKuyE2D7TVaycxUZroioqU6yRERpJCpVw9Bsa9Uah9AqCHjk5xlowOqPX1FNqRKZ/vMxgMypJl1fbmCQmhKq0LF5SPkXFPKiuVecSOH6cUAACYNEm+4qw4z4udtT0ENlDcjYQEWmXJUai0DvNs367sPLGxJDLF0vfegULtE1gs3SGGTr0/StMn2d6noYHksQMC1I/TW8nMlH/dWnc3VhLmAWhhcfYsLyy8hZISee0SRKwNWuvfkS3q6mjOT06Wv48bwAaKuxEQQBUScqoCZs6Uklx37lT2Q/f3p7AAK1R6Piq0T3DmTHdFyMXkiej0t5HVL/aKkqP34YuEh1PCa02N7W1TUoD0dHqem6us5D8mhhYWZWXqxsm4D52dZGzKDckKApWnAzR/y9XRAchwHjTIdhjXzWADxR0RbwI2mgciKkoqW6yslLpayiUmhkodlfT0YdyP4mK6MSoxUPbs6X5akC4jvNPURNVfCQkqBugjiMmycjqGi2EeQaC+WnIJCOCFhbcgFirIraQ8d04qMx87Vn4PrI4O+l2KRrEHwQaKOyI2D5TjRbEnzBMdTas3lr73bETtE7kS2YLQnX9i1vvhQqoMV7HRSLknYrNK5nKSkyVlWVuobR4IkCF67pyUi8B4JmLnYrkeFOvwzpQp8s9TW0u5aR4W3gHYQHFPQkIo1i/H9TttmpQTsHu3ba+LNQYDPfLz1Y2TcT11dZQ0qSRx9dy57ptoRfJYdATI6MnR3EyhRy4v7huDARgxgr4rW4mPAwdSTgBALSuUeDHFhQWLLXou7e10HSrRExLDO4AyA8VopPCO3IRaN4INFHclPZ1ilLbySkJCKJsboB/isWPKzhMbS5a8HG8N436I2if99W+6FKvwjqzqnY4OqixLTFQxQB9DTJa1tbjQ66UkR5OJxLfkwgsLz+fiRWVh2fJyKaw3ZIj8/drbyTDx0NwxNlDclaQkuunI0USxJ8wTGUk3OF6NeR5mM+UdKdE+EQTJQNHrUZIxrf/tAak9O5cX2yYsTH6yrD3VPLyw8GxEY0NmSwrV3hMxvOOh2kVsoLgrYvNAOWWLEydKjdv27pWnaCmi01Gy1dmzyqqAGNdTXk4PJdonhYVSBcjIkWgPlpFTYjSSeiyXF8tDdKfbSpYdNUq6bg8eJI+pXHhh4bk0NwMFBcqS2q3zT6bJWFSINDSQwSzXEHIz2EBxZ7Kz5SXCBQRIP9rWVklpUC4xMXTTqq5WPkbGdSjVPgF6iLPJ6r0jCJRP4UHy2C4nOZmUZW0pvvr7S+HZ5mbg5En55+CFhedSUkIhQLn5J01NwKlT9DwpSX41Tlsb3Rs8NLwDsIHi3ojNA+VMQPaEecQOx8XFyvZjXEdrK92clDaOs8o/kbUSa2qi3weXF8tHryeV59ZW28my1mEeJaqyAC8sPJX8fDJO5VbdHTwo/Y6mTpUfzq2tpbCsB+eOsYHizsTGkvtejhTy6NGSRX7wIN1YlBARQaJRSqqAGNdRUkITkBIDpaREkkkfNkyqIumP+nouL1aD3GTZCRMk9/u+fcq8Ibyw8Dzq6+kalHPtiahVj21ooIRauYaQG8IGijsjNg+UM2kZDFIDwc5OdUl3VVWU08C4P+fOSdUccrH2nsyUUb0DUPkrdy9Wjtxk2ZAQSWyxuhrRNeeUnYcXFp7FxYvKOo6bTMDhw/Q8PJx6PsmhpYW876mp6sbpJrCB4u4oEdeZPVt6rjTMExhI+Qzc4dj9qa2l/yelVTXWBsr06ba37+ggV7QHu4hdysCB9P3ZyiOzWhWnF6lYWFRW8sLCExAECsuGhMg3+E+c6NkcUO6CpLaWrlsPD82ygeLuJCTIl0IeMkQqJztxQpJFlkt0NHU4VlIFxDgfNdon5eWSbsagQfImLi4vtg8xWdZWjohVXkHahR/63/ZSAgNplc2aKO6P2ENJbfWOkvBOUxNd53LvHW6KZ4/eF/D3l18iptNJXhSLBdi1S9m5oqPJqOEOx+6LqH0SHq4s7KK0egcgAyUzk8uL1aLXk/quLZXY6Ghg6FAAQFRdESIaFV5/sbG0sGhuVjlQxikUF9P/UZgM5WZAfXPA5mby0nhw9Y4IGyiegJI8A+swz44dys7j708XRUGBsv0Y5yFqn9gT3pFjoFgsZAxxebF9JCTQAsNk6n87q9VxZomK3jxi2I9xT8xmMiKVeD3Pn5dymJQ0B6ypIe+dEn0kN4UNFE/A0PXfJKeaJyODVm0AxTuVtmWPjSV3sdIqIMY5FBTQzU5J2/TqakqkBMgjIsfoaGqiydTDY9guR6yAsqX4amWgZFxUGObR6+nmdeaMvDmCcT4VFfRQW72jRD22pYXCO16Q2M4Giicg/tDkTj7WXhSl1TxRUTSZskKl+9HaSqswpdon1r8BJeGdhAQuL7aXwEBytdsyUNLSul3yidU5CGytV3ae+Hi6ZpUuSBjnUFysXFTR2kCZPFnePqJukYdX74h4pv6tj9Jq8sPq9ba3C2+aiSV4DwBQuXE/vtPdLOv4/v7ApNE6DPD3pzLWYcPsGC2jOaL2ycCByvZTGt4BaBWWmekVqzCXk5ZGTTwFof/vc+pUoKQEesGC1OL9ABbIP0dwMN0Az5/3mpuT12Ay0cJCibFfUdGzOaBcz0tNDSnNKl3EuCnsQfEA/IPIjhSgQ0ur7UdFQBrqIkgOOb7iNCx1Rln7GRt0OHhCTxeDeDNk3Ie8PMpnUJKTVF8PnD5Nz1NTKQRoCy4v1pb4eEpatFVubKXsm1akMMwDUM5BXh6HZ92N0lIKsyoJ76hpDigIJG/vJeEdgA0Uj2DSLYMRmRKKkGABIQGd9K+NR2kWTXY6CBhUtc/m9jodicGZTJC6KHOYx32orSUFSqWJb3v3SqHB6dPlTVxieTHnn2hDTAxV6thq/Dl4MFqCaeWbXHpEXh8ua8QqPE6WdS8KCylJ1t9f/j5qyosbG2nu9qLEdg7xeAADpiZjwNRkaia2aZO80MvwKcBvPgUATOv4AdOu799dvHq9AS3ifKjTUZfVs2ep46qH19J7BRcu0ASkdPJRox5rNJIEu5IJlekbvZ7UeK3/L/rY7mLmNAw+sxEGswk4ckR+SE48T0gIkJNDiqN83bqe1lYKuykJuTQ1SY0jk5LkeT0BCu9kZ5Oh6iXwL9iTSEoiw0GO3sHgwdJFcUTFaiw2lspZbXVkZRyP2UxVOEq1TxobSbAPIG9Idrbtfbi82DEkJtL/nQ1J+pIMqwaOSpsHAvT/XFrKWkbuwsWL5DlTYjQcOqS8OaDFQqFZpflpbg4bKJ5ETAzFs201IANo9STGLk1dqzEliDFzsbkc4zrKyshYVBre2b9fuiHOmCFvouPyYseQkCCFTvuhInkMOvxD6MWBA8p77AQF0fV+/rzKgTKaUlBAc7GSvDE15cWNjdTfx8sWFmygeBJi80C5ipH2tHIHKOs8L8+2yBTjWNRonwDqqnfE8mK5zcwYeYSFkQe0oaHfzSwGfxQnT6IXTU3AqVPKzyUqy9owhhgH09BA+SdKwjsmE3lQADJoR4yQt59YveNlsgBsoHgayckkPS6nX86YMZL6oJrVmNjhmLUVXIda7ZOWFslrFhNDpYpyzzdggNdUAbgVGRm2Ze8BFKVZNXJUs7AQE3I5Wda1XLxIBr8So+HkSeXNAS0W6mAvJ4TrYbCB4mnEx9MNR06Yx9+ffuSAutVYQAD9+MV6fMb5FBfT/7VSA+XAAZq0AKrekZMw2d5OZcwc3nEM8fHkBbOxuChOngSzvqt+Ye9eKh9VgnWyrNJFCaMNgkBhtoAAZcnKaqp3RCPIy8I7ABsonoefH1nKtpQpRewN80RF0YWmNMmWsR9BUKd9AqhrDtjQwN2LHYkoe28jzGMKCEVF8hh6UVWlrlMxJ8u6ltpaWlwoyRuzbg7o5weMGyf/XJmZyvr8eAhsoHgiqalklYsr5P6YOFHqhrxvn/LVmOituXhR+TgZ+1CrfdLeLsWxIyPlx7Hr66kclsuLHYO/P91IZCwuSjLtDPMEBtL8wMmyruHiRUl2XibRNedI0A2g5oAhIbZ3Mpvp/zkrS9043RzFBkpLSwveeecd/PrXv8a1116L2bNnY9OmTbL3b2xsxF/+8hcsWbIEixYtwmOPPYZcsZEZI4/ERHnCTwCVJY8eTc8rK5V3KjYYyBhSs4pj7EPUPlG6Mjp0SAojTJ0q3/tisXilm9itSE6mm4qNhcLFDCvPp9J+WiJxcdSywobHhtEYi4VkAcLCFOVypV1QEd4RS5i99LpVbKAYjUasWrUKRUVFGDRokKJ9LRYLVqxYge+++w433ngjHnroIdTV1eGxxx5DcXGx0qH4LkFBZDHLMVCAnj92NZNdTAwl3PFE5zw6O6k7bUSE8oRVNeJsgsDlxc4gPl6WllFrSKyU2FxYSGXmSomKIu8nJ8s6l8pK6qWjMG8s7YLV3Cy3OWBdHSW1h4YqOpenoNhAiY2Nxbp16/Dpp5/iZz/7maJ9t23bhpMnT+LJJ5/EvffeixtvvBH/+Mc/oNfr8e677yodim+TlkYrMTkdjrUoN+YOx86lvJwmOaXhHZOJEmQBWsGJ3jNbWCzcvdgZREdTdZycHDJ7r1u9nn4DnCzrXIqKqCeOnBBNF2FNFYiu7fJuDx4sr2+POP9nZqocqPuj2EAJCAhArJKmR1Zs374dMTExmD17dvd7UVFRmDdvHnbt2oWOjg5Vx/VJkpJkJdwBoB/74MH0vKCAbnxK0OvJa5OXpzyHhVFHfj5NQEq1T44elRKap0yR8o9sIQi0EmMci05HNxQ5Df2m2akqC5DHprSUc8icRXMzVUsq9J5kXrTynsgN79TVeXV4B3BykuzZs2cxePBg6C8puxo+fDja2to4zKOE8HBKlpVTbgzYvxqLjZW6cjKOpaWFcgfUtExXI84GADpweMdZJCWR0W/Lq5GWRtc4QB2p1YRYAwNplX3unPJ9GeXk51Nyu8JFfMZFFfkndXUk3ClqXXkhTjVQamtre/W+iO/V1NT0ul91dTVyc3O7H0UcUyWysigZUo5Xw97VWFgYrfo4zON4SkpoklPa9KuzU/q/DQ6WX6YIADo9lxc7C5nlxtDppJuVxSKF7pQSF0fVPHKlCRh1dHRQ76uwMEXaJ/7tTUiu7OqZlZgorzmgWMEpt5Ggh+LUbsbt7e0ICAi47H3xvfY+BIw2bNiAVatWOXJonklSEl0Mzc22y9nS08kVWFpKLsiGBuVy5uHh1OF4zBjluhyMPASBvuOAAOXf8YkTUuhg0iQ6hlz8/Li82FmEhFA1z/nzto3QadOAzz6j53v3Agv670reK1FRVFVSVETXLuMYxGRmhSW/KSUHoRe6vGlymwPW1ZGXxovDO4CTDZTAwMBe80zE9wL7iLcvXboUM62qEYqKivDCCy84ZpCeRHQ0ueUrKmwbKOJqbN06Wo0dPAjMn6/sfLGxUuM60fXMaIuVwFP+BR0OndDLboU0efdedGUaYaffFSheb9vAaW3remJgSSSnkp5OYRtbDBlCBkZ9PbUuaG9Xnpek00nJsiNGyM9LYuRjsdDCz99fsaGvurx44kTlvwUPw6mzUkxMTK9hHPG9vpJv4+LiMHTo0O5HphdnLStCp1PfPFBNuXFQELkxOVfIcVy40N1R+NAJPYwNOrS02n60NluQVkjqsZ2GQJyPmyxrP0Gg1Zp/iAJvC2M/oux9W1v/2+n10nXb0aG8K7n1+crKOFnWUZSUkIcqKUnZfiYTkksOAgDaA8LkiSpaLD6jWeRUA2Xw4MHIy8uD5ZLS2JycHAQFBSE9Pd2Zw/EOkpLIcLA10QHA0KFSGenhw/IaDl5KVBSFILjiSnustU8gNZHW6QSEBPf/yGg8jeD2egBAWdoEBIQH2twnJFhASEAnIsMtmHTbUBd9aB8lLo6uJTl5IVpU83CyrOMQBPJOWSw0Fyvh5EkEmKiBZGn6ZHlhXTGk7wM5Yw7z9VVXV6O5uRmpqanw63IpzpkzB9u2bcOOHTswd+5cAEB9fT22bt2KGTNm9JqfwtggPp4mu7o6imv3h8FAq7FvviED4+hR+S5FkZgYirVevMhlqVpTVkbhurS0Hm8HBwF3Xm+j4mPlzu6n6TdNx51zZepe5OYCCxcC42z8dhht8fOjcuODBykxsj/EruStrdSrxWxWlwMmJstOnEjGEaMNlZX0vSr1ngA9DM6SjGmQNaMajfR/6QOaRao8KGvXrsV7772HjRs3AgB2796N9957D++99x6aupL0Vq5ciZ/85Ceoqqrq3m/u3LkYOXIkXnrpJaxatQrr1q3DY489BovFgvvuu0+Dj+ODGAzUPFBuCaK95cZifJUrqbSnoECd9onFIjUH9PMj/RM5tLdTIq2tGyTjGJKTJXd9f/j7AxMm0PPGRlqtq0H02HB3cm3JzSVpAKUtKayaA5r1fihLmyBvv+ZmWhwqVZj2QFR5UD7++GOUW0kv79ixAzt27AAALFq0CGF9JGwaDAa88sor+Oc//4m1a9eivb0dw4YNw5NPPokMLy+XcijJyWSomEy2E7TGjJFCQmpXYzExtGKYPNlrJZadjj3aJ2fPAmJu17hx8hUsjUa6aSlVq2W0IT6ebmrNzbZvbtOmAbt30/O9e4FRo5SfT6ej8+TkACNHctWWFhiNZKCoCbfk53frSpUmjkWnfwgAG57Pzk6ar31Es0iVgfLJJ5/Y3Oapp57CU089ddn74eHhWLFiBVasWKHm1ExvWDcPtHWhBAbSamzPHvK6nDlDk5USoqLoZlpSQnktjP0UF1MFj8L+VgDU9d4BaHKdOJFvVK4iMpKMw8pK2wbKxIl0YzKbyUC5/351K+j4ePqtXbzotR1wncq5cxReHzZM+b5WHuyi1Gn9bGiFKA/hI4sKri30BgIDyeXnrOaBBgPd1LiVuzYIArURUKN9IgiSgWIwyA/v+FAlgNui05GR0NJie1vrvkqVlerDNAEB9P+el6duf0aitRU4eZIWh2qMRSsD5UKqzFxAo5E85gr6/HgybKB4C2JipZymYJMmSUqH+/ap668TF0crMblS+0zf1NR0a58oJj+fblgA3cDkxsG7Spk5/8TFJCTQtShH7Ma6mkfNwkIkPp5+N3zt2kd+PlBVpS68U1lJOWcAauIGoyVE5rXf0UEaOj4CGyjeQlISuf7kJMuGh0sx7PJy0t5QSng4nYul7+3nwgVKflSaZAdIeQmAst479fVknChVE2a0Ra7sPdDTO6a23BiQzsfJsuoxmUiYLTRUXUVVV3IsQNU7smhrIw+YD5QXi7CB4i2EhpIXRe6qyN7VmE5Hbsa8PNtVCEzfdHZSkp2akkFBkKp39Pqe/6e2aGnhMnF3ICiIrls5BkpcnJSjZO05U4pOR4bpmTPyPDfM5Vy4QHk8apNVLykvlkVDA4WTfCT/BGADxbvIzKQJR07Ixt5yY0BKuGNlWfWUlpL2icLupwCkSRIgBUq52haiXLqPVAK4Pamp8oUPtRBtAyRlWfaAKkeUtdfrlfW7EmlqotwVAEhMhDFapjJ6QwM1B/ShVgVsoHgTYvNAsWFcf8THk34KAJw7h5Cmqv63743gYDKGjh2Tl/vCXE5BAU14anpq2BPe8bGVmFuTkEDXkpxkWa3yUPz9yZPCybLKKSuj8JgaYTYAOHRImi+nTJGXYCsINE/YEuP0MthA8SaioiivQEWYJ/WCytVYaiq5mzmerZzmZqqEUqN9AkjhHQCYPl3+fg0N5G3j8mL3ICaGrl05YZ70dOkmJXYlV0t8PBnItbXqj+GLiKExtZU0VvknspW8m5vpfD6UfwKwgeJd6HTkFZGzEgN6XBxpF37oZ8N+CAoiV+exY5RPwcinpIRuDmpkx8XmZABpMMgNEVkstBrj8mL3wWCgcuPGRtvb6nTSwkLsSq6WiAhWllVKdTV5ndRWv5lM5EEByNstpzkgIMnb+1iLAjZQvI3kZPnu4qys7gstsewEAjpkhIZ6IzWVJrn8fHX7+yL2aJ8APcXZlIR3xGohzj9xL5SEC+zVMRLR6Sg5OyeHk2XlcvYsXUNq++CcPCnNzRMnys8naWqi/BMfkLe3hg0UbyMujlbTckTbdLruyU4vmJFeekDdOQMCKIfi6FHuciwXe7RPAPXhHaORy4vdkfh4WlELMirirLuSHzmiriu59XkrKznRXQ5iHyR7cresE5vlhnfMZvJS+6BmERso3oZeDwwcKM9dDPTIQ8ksURnmAchzU1zM7dzlYo/2SXm5pOI7aJCyiaulhSXO3ZGICPJqWWRU4IldyQEyTo4dU39eTpaVz/nzFJJVmzNm1RwQfn5SA0hbiPL2PpZ/ArCB4p2kpNAFIMebMXx4900yrewQ9J0qPSD+/pTEdewYCQoxfWOP9gnQ03uiJLzD5cXuTVaWfFVnrcI8gJQsKzacZC6nvZ3CMxERkgq3UqyaA2LMGPlJtg0NFAL0wcasbKB4I9bNA21h1b8loLMVSWV2rMaSkkiXg1dj/SNqn6h1FavNPxHLi31wJeYRKPl/EbuSA1JXcrWICtScLNs3BQV0zdpj3FuHd+T2zAKo509GhvrzejBsoHgj/v6kEmo0ytveajWWesGO1ZifH3ljjh2TX0nkixQU0A1FjchTdTV5XwBacSupxhHLi31I6MmjiI+XvzoXu5IDUldye4iKovwKziG7HLOZvCdBQfZdO2ryT0Svp48uKthA8VaUNA8cPx6dBhIKS7uw1z7p+sREEjISb6JMT5qbKU9HjXIsoD68w+XF7o/Sii4twzxxcZws2xfFxVTWb0+SalVVd3NADBok//pvaKBQsI+KKrKB4q2IlRpyhJwCA1GWOh4AENxaT6V0ajEYaDV27Jg8RVtfo7iYQi1q9Qy4vNi7UWKgTJ4sbb9nj30LC39/8t7Yc+17I4JAniVAndqziNrwjtFI4R0fFVVkX6+3EhpKOSGFhZR3YIOSzGlIF8M7e/eS+JdaEhLIg3L6tLKL0dsRBLoB+Pur0z6pq6PvFCAPmZK260Yj7cPlxe6NQQ/AjNZWYPV6W7+RSMxNHo+UkoNAVRW+eTMP1YnyhL/8/YFJoy0YkGGVlBsfT/NFdbXPrtgvo6KCklvtLfFVE94RBPKA+5i8vTXsQfFmMjJkV9SUpk+BRdf1c7CnCRlAK7G4OODECfl5ML5AdTW5itXGk/fulao8ZsxQJtrU2srlxR6AfwjlJQnQoaXV9uNs2pzufdPObpO1T0urDsYGHQ6euGT6j4ggrycny0rk5tK1Exam/hjWzQETEuRfh83NtND0Ya8nGyjeTHw8xbVlCDm1B0WiIq5r9XXxov1dTuPiSDPg1Cn7juNNXLhAk47ayc46vKNEnK29nX4HPij05GlMumUwIqP1CPE3ISRYsPmoHDwNnQYyarKLdyE0sNPmPjodGbm9isdGRVHCrT3ib95CXR0ZKPYaCIcPS7mAU6fKX1g0NEh9mnwUDvF4M2LvhoYGWav2orTpSK7qsvT37gVuvln9uXU6OuepUxQuUitu5C10dNBkpzbE0tBAHimAQndiJ2o5cPdij2HA1GQMSGgD1q2j/2ObocBAIH8ysHs3gtqMuCPrsE0BsNXrDWhp7eOPcXEU0igupmROXyYvj64de8LdgPr8k8ZGYOxY9borXoDvfnJfwN+fykplhlmK0jRq5S4SE0MXuOje9GWOHyfPlNrwzr59UhLk9OnKwjsNDeRW5vJizyAhQX6COwDMni09377dvnP7+ZFRlJsrXzTOG2lupnyv2Fj7+t9YNwcMDQVGjpS3nw/L21vDBoq3k5wslZjaoDEsGXXRWfTi7Fn727DrdHSBnT5NZXa+SkUFTVJxceqz8bm82HcQE9zlGigTJ0qqpHv32h+eSUigcKSoeuqLFBTQnKVWDkDk1ClJE2rSJPmLBLHqzkf1T0TYQPF24uNp8mpulrV5SaaVF0XsG2EP0dE9k8R8DZOJvB/NzapDLP7tTdSIEaBjDBkif2cuL/ZMFCS4IyBAyklqbZVW7GoJD6drVtTt8DVMJgqnhoWpq7azRk31DkDGaWKifcm5XgAbKN5OVBTd1GSGeUoyrJIvtQjzAOTFycmhJne+xqlT5I2yQ6o6tXg/9e8BlId3jEZajatpSsi4DgUJ7gB6hnl27LD//L6cLFtYSGKT9oZXBEEyUJQ0BwTI0MzMtO/8XgAbKN6OTkf5BzJF0+piB0or/ePHtZGsj4ig1eDx474V166qAg4eJC+SHSJP6YW7pRdKwjsAdy/2VKwT3OUwZozUfPLAAdke037PX11NoR5fwmKhRYWfn/3iaNbNAUePlt8csKODzu3j4R2ADRTfICGBEq7EVXh/6HSSK7Kzk0rktCA5mTwJFy9qczx3p7OTQmT19XZNNH6mViRf7Po/iI5WVlHQ1sbdiz0Vf3/yusnVETIYgFmz6LnJZL/301eTZS9eBIqKyOtoL9YhciXhHaPRp+XtrWEDxReIj6cffGOjvO2naVzNA1As1WQiCXx7JLk9hTNn6JGZaVcVQHrZAfiZuxq4TZumLCZeX0+VVDzReSYpKbIT3AFoH+YRk2V9KcE9J4cqaIKD7T+W2vLihgZSfVbTTNTLYAPFFwgJIQ9Gfb287UeOpEoCgEIUvSo6qSAlhRrleXtDstpaWj1FRFAHVDsYcGGX9EJpeKexkbsXezIKE9wxdKjkLTt2TP713hdhYXRuX0mWrawEzp/XprS3qopCPADpychdJAgCeV9TU+0fgxfABoqvkJEhv5W6nx81IgMoh0GrCpyQELoAjx2T12XZE7FYKAegttbuic7Q2Y70soP0IjwcGDVK/s5mM5cXezoKE9yh00lhHosF2L27/+3lEB1NnkC5FUWeTF4eGWRa9KuyDu8o8Z60ttI8yfknANhA8R3i4ykfQe5EYx0ztbc3jzWpqbSy8NZ+H2fPUpJderp9Ak8Aki8ehn9n1/+X0vBOYyNNtJx/4rmICe5KEl7nSL15NAnz+EqybEMDhXe0CoeqLS82Gsko9HXl7S7YQPEVYmPphy93NTZ+vJTFbq1iai9BQZSwe+yYvKRdT8JopO8qNFR+xn4/pBfaEd7h8mLvIDFRfoI7QAaNWNKek0NhC3swGGgeOHvWu5Nlz50jr6cWhkFzs7rmgAAtLLKyfFre3hr+FnwFPz+auOSWLYaEUB8IAKipodisVqSkkAdFjNF6AxYLuXUrK7WpADCZkHqB3MQdAaFURqqEtjbWUfAG4uOVyd4DPZNld+7UZgxFRfYbO+5KWxsZFNHRdns9AZBQnmhQKmkOKOLj8vbWsIHiS4iy93K9IdbVPFqGeQID6XH0qPy8GHfn/HkptKPF6ufYMQSYSIPmYvpUZZoMXF7sPQQHk0Ev1/MJaF/NExZGuRFHj2qXMO9OFBSQ8aVV3ofa/BPBwvL2l8AGii+RkCDJWMth8mTJ+teq3FgkOZni2lp6ZlxFYyMZcIGBUvWTvVglOF4YMFPZvty92LtIT1dmyCclSe0QCgq0yR/JzKSw7A8/eJdMQGcnydoHB9svay8eT01zQACwCNIczQBgA8W3iIigm5Zcd3F0NJUuAjTJlZZqNxZ/f7qAjx717AoBQaAJqaxMu4oZUeQNQIdfMMpSFEhkA1Icm8uLvYP4eMrdUnKdaO1FCQoibY4DB0i80VvyUS5cAEpKtAnLAhQqEpOalTQHBOg75bBsD9hA8SXUVAU4KswD0KRw8SKV93kqBQW0skxN1S6x7eTJblG94pTJsPgpEGwSy4uTk7UZC+N6YmOp5FiJrskVV0i/xx07tDEowsNpgbNnD5UeezqCQJ3W9XrtRNHUVu+IcFi2B7zE8jUSEsiVaTLJy2uYNg1YtYqe79sH3HCDdmPx86NJ79gxYOBATSpfnEpzM30n4ufQij17up8WpF+hbF+xvJgT7bwHMcH94EH5K/2YGOr/cuwYNek8dw4YPNj+scTEULhpxw66Xj15xV9aSguMfoz5/As6HDqhl5V6o7OYcf33exAMwKz3w9rSyehcbzts1Co6xvR6DsteAntQfA1R9l5umCclhWLgAJUt2qtOeSmJiRQeyc3V9riORgztFBdrq/poNlOcH0CnIRAlKZOU7S+WF/t4m3avIyWFfnNK8j9E0TYA2L5du7EkJdECZ+tWoKJCu+M6mzNnyNjqZ2F06IQexgYdWlptP2LPH0Bwax0A4ELKFDSYQ2XtJwiU5+cfZLCrqag3wgaKryHGkpVUBYiuSkHomaGuBQYDua+PH5efvOsOXLhAY05N1Sa5TiQnp/v/pixtAjr9FErlc3mxdxIfT0ankmtkxgwpB2LXLm3VmzMygLo64PvvtV+0OIOaGvIq2QipiJ4TnU5ASHD/j5GFm7v3Kxy+2Ob21o/IwHZMWsjek0vhEI8vkppKN1e5TJsGrFlDz/ftAxYt0nY8CQnkQcnJkST23ZnWVkm8TgtZbGuswjsXshSGd7i82HuJiCAjpaJC/m8uLAyYOJF+q7W1VAavVE+nL3Q6YMAAuslv20ZzgieFaPPyyIssM7E9OAi48/p+DLyaGmBVV1uKuDjM+/kYwCDTIGxpIbXe2Qqr9XwA9qD4IgkJVFbX0iJv+0GDJIXFo0fpBq0lYuz1+HFlnh1XceQICc2JoS+tsFi6wzvw88PFdAUaCoBUXsw6Ct6HTkeeMSUJ7oD21TzWGAxAdjapzO7c6TkaKU1NlBwbG6vdMbdskcJvCxcq86o2NJAXmeXtL4MNFF8kJoYuCLl5KHq9JDhkMtENWmvi4mgVcvq09sfWkpISMtKSkrQv4z17lr4DABg3Dp0BClekDQ20qtUy5MS4D4mJ9JtTYghMmSJ11N6zR3sjwt+ffnOepJFy/jx5LLQyUCwW4Ntv6blOByxYoGx/URaAr9vLYAPFFzEY6ILoKmWVhSPLjQG6sBMSqMS2tlb742tBezsJ1nV0kKdCa6zCO5ip0N0r5hdwebH3EhenXPY+MFDKIWtqcsziwpM0UtrbaY6JjNROFuDECSlZeNw4ZRV0Fgt9X1rpsHgZbKD4KklJyqoCRo+WYswHDjim0V9MDIUpxEZb7saxY1SWKDZj0xJBkAwUg0GZRDZAN63ISM4/8WaCgiisqDQMah3m0bKaxxprjRR3rcgTBPJSlpdrGwb95hvp+ZVXKtu3qYlyhTgs2ytsoPgq8fE0qcj1ovj7U8IdIMVwtUano9VHTg5QVaX98e2hrIxWh/HxyvriyOX8eakZ2+jRynVVuLzYN0hNVR6mGTdO+j3t3w+DyUHKzTExlNu2fTs1F3QnmpspB2frVvJCaXUNNzRIeWMREcrF2YxGlrfvBzZQfJWICLow1JQbA44J8wAUOmlsdC8vislEn7e1VdvEOmuswzszZijfv72dy4t9gfh4ZQnuAN2MxZBhezvSLmjcV8saa40Ud+h+LAiU0L5hA13DcXHahlO2bZO8yfPnKzd8WlrII6tFF2UvhA0UXyYzU1lFzsSJUmLo3r2OizUnJ5MXpbzcMcdXyokTVE7piNAO0DO8o9f3zPeRQ2sruf85vOP9xMaSEW9HmCcz30FhHhFRI2XLFtdW5bW20nX1xReUFDtkiLaeCkGQkmMB5eEdk4nmU75u+4QNFF8mIUFZVUBoKIUfAArB5Oc7ZlwRETS5HD/u+oS7ykqSGI+J0a5fx6UUFUmNGEeMoAorJRiN3L3YV9DraWGhJMEdoN9Vl/cv+eJhBLYr3F8JokbKxYvkSVHi7dGK4mIyTHbvpmvDEVUyZ89Koazhw5XLDjQ0SPo2TK+wgeLLxMVRYqWSVY6jq3lEUlJoAtCyg7JSOjvpMzY2OnYSsTe809DAZYq+hFippUQZVq+nBoIADJZOZBXvdsDArHCVRopYaffFF+SBHTyY5jhHYO09USNe2dBAOUVBCtWifQg2UHyZwEDlVQHW1SWONFDCwmhSO3bMddoKp05RRYKjczvEJDsAmD5d2b5mM61YZSpiMl5AfDytvJW2hpgzp/vpwKJt2o6pN5ytkVJaCnz5JRlEYWF0bq21ikRaWiThu+Bg5bIAAMkVpKVpOy4vgw0UXyc1VVnJcGwsxXIBKrl1ZJ5ISgrlfhQXO+4cfVFTQ+XUkZGObeBVUiK5iYcNU56EK7qJOY7tO4SHK09wB6hjeJchm1x5AsHN1Q4Y3CU4QyOlo4PCsBs2UI+sgQMdo1Nkza5d1FoCIMNPqRdEzBvj8E6/cC8eXyc+nvRNBAGADq1twGobLcJHhE/HOJwFABx6+wByR14v+3T+/sCk0RYMyJAxUYWE0Krr2DHaMTbWOd0+zWZqilhfLxljjsLe8E59PbUiCA3VbEiMB5CZSf1klKDTUbLsRx9BBwEZBTsBLHXI8HoQHk7e0D17yLMxbJh2x66oIO9MXh7NZVp2Fu8Pe7RPADIuo6IcVxXoJbCB4uvExADR0fDXmwHoIQg6tNgo7DmXOB3j8B4AILlgH45k3yD/fK3AwRN6DMiQGT9PS6M4dmEhTW7JyTQJxcbSwxHx29xc0nnJzHR8+Z894R2AVo+Oqi5i3JeEBDLaOzqUJW93GSgAkJW/A04xUACaZzo6SCMlONj+sGlnJ0kR7N9Poa7sbMclsV9KYSHNSQCFkQYNUn6MxkZg6FDOG7MBGyi+jl4PDBiASUnHcbA6TVYuW0dQGhoiUhDRUIqkqpOI0hnREWS7w2prGyAIOmX5coGBdCF3dNBFnZdHuSF+flJoIy1NMljs7ahaV0e5NWFhjk9eKy8ngTaAJjklEtkAxcGDgzm844tYJ7grCROkpaE2diBias4jtrorCd1Z+UtJSRTO3LoVuOYa9b/b6mpKhD1zhgyfwYO1HactLi0tVrqIEeXtuS2FTdhAYYDERAyIacKASR3yLfr6qcC6ddALFtwc/B1w3XU2d1m93mDTO9MnAQGSEQKQy7ixkVYzublkaImx+bQ0msBjY5WFPiwWipVXV5NR5GisvSdqwjtieTG7iX2PgADynB0/rjiPoSh7DmJqugzjHTuA2293wAD7ICODjPItW8hIUVJhYzaTZ3PfPvrtZ2U5J+RrTUcHibMB5MGaO1f5MZqbWd5eJpwkyyiXvQd6duzcsEFZyaMW+PvT6ikzk/JEsrJo0i4uphXamjXA6tXAunWUQFdYSJ+vvyS9vDxyGztL2dHe/JPGRu5e7MukpFCoQ2HiadEAq948O3Y4V2tIrUZKbS3lfXz7LY138GDnGycAeW7EeXLGDHWtJYxGyQPG9At7UBi6yJKSKANerkhYRgYwaRLd/KuqSBDJuimZs/HzI2+CmL1vNtNEUlZGgnI6HX3O2FgqrRY9LBER9LeGBpp8goPtDxPJobpaaqqWlaXczS6WF7Ob2HeJjycPYUuLIk9hS1g8yuJHIrnqFFWRFRRQDoezsNZICQ7uXyLeYqHrZO9eqqzLzHStboi92icAeVCckd/mBbCBwhAZGRTTVcL115OBAgDr1wOzZrnPRWcwkLElGlxmM00MlZXkTQHIYImJIYOloYH+5uiqHRF7wztcXsxER0sdwBVWceVnziUDBSAvijMNFKCnRkpwMInI6S9x6BuNFM45dYoWDUOGuHZ+KS+n8QK0MBg1SvkxOjtpbuLrVhYc4mGIhARymba3y99n9GjSHABIr+TUKceMTQsMBrqhp6XRRDdoEIW1amvJ+3PkCP3t0knSUey2UvJUW16cmuocbw/jnuj15H1TKtgGoCD9Clh0Xb/1nTtdI4bYl0aKxULelfXrySBISaGHqxc/330nPVeTHAuwvL1C2EBhCDEm2tAgfx+djrwoIuvWaT4shyEm1aakkMEyYoS6eLIa6uqoGSJAE7TSHh4AGZJcXswkJtJ1qDAHrC0oEuWpE+hFVZVy76lWhIfT3LNnD4VyGhspN2XjRgpdDRniFka4zmKWDBS9vmcOnhKMRppzgoO1G5wXwwYKQ/j70w1PqTrlzJlSk7oDB1yj+uppWHeCnjFD+UqspYUmbXYTM6LsvZKFRReF2ZL0fbdsuyuIiaEb9vbtwOefA4cOkeHlTI+mDZJLDpG3FaB2H2qVajs61C1IfBT3+N9n3IOUFFqJKcnq9/MDllqJPX3+ufbj8jasq3fUiLPV19OkzuXFTGgoJbgrXVgAKMmcJomb7d7t/Eo8a5KS6N/GRvKaOMubKZOBZzdLL9QoxwIkjR8YyF3HFcAGCiMhVgU0Nyvbb9EiyQ27dSuFMJjeaWgATpyg50lJ6pITm5oowdBNVpeMi8nKkvrCKKDTPwSYPJleGI1SAqirSEkhr4mblc0Ht9YitXg/vYiNBSZMUHcgUd6eDRTZ8AzHSIiiX0rdxSEhwOLF9Nxkovgx0zv79kkJidOnKw/vdHbSPuKKk2GSktQtLICe0gDbt2s3Ji9iSP630Atd1+yCBeoNqIYGCqM7qsOyF8IGCiOh01F9vhLBNpEf/Ui6cDduVFYN5EvYK87W0EDJzJx/wojExJD3U43ncuJEyfu5dy9ft5ciWDAk36ox4MKFKo8j0MKEdYsUodhA6ejowBtvvIEbbrgBCxcuxE9/+lMcOHBA1r4HDx7EY489hiVLluCaa67Bgw8+iM2bN9vekXEeSUkUOlAaj46PJy0DgAycLVu0H5un09QkudHj4tRprhiNXF7M9ESvp1ChGg9KQICUB9XaSgmqTDcJ5ScQ2VRGL8aOVe+5bG4mLxeXFytCsYHy0ksv4ZNPPsGVV16JRx99FHq9Hk888QSOHz/e7367du3C448/DpPJhGXLlmH58uUIDAzEn/70J3zyySeqPwCjMXZUBfQoOf78c9cm3bkjBw5QiAZQF94BuHsx0zvJyWRsqPGAcJinTwblWnlP1CrHApK8vVylbgaAQgPl9OnT2LJlCx588EH8/Oc/x9KlS/Haa68hKSkJb7zxRr/7fvbZZ4iNjcVrr72Gm266CTfeeCP+/ve/IzU1FZs2bbLrQzAaEhJCk52KqgAMHEirDIAk5vfv13Zsno694R3uXsz0RUIChXrUhHnGjJH6whw8qM4T4400NiK9iAQV2wPDgWnT1B+rqYmSmV0tNudhKDJQtm/fDoPBgKVWZaWBgYG49tprcerUKVRUVPS5b0tLC8LDwxEglrUB8PPzQ2RkJAJd0fSJ6ZuMDPWxaGsvyvr1WozGO2htJbVagJKRhw1Tfoz6elqFxcRoOjTGC/Dzo8ouNZ5Pg0EKz5pMlIvCANu3w2A2AQAKBvXTL8gWZjOF4XhhoRhF6cR5eXlIS0tD6CV9H4YPHw4AOHfuHBITE3vdd9y4cVi9ejXeeustXHXVVdDpdPjuu++Qm5uLZ599Vt3oGccQH0/1+m1tyhtzTZhABs6FC6SWeuaMupuxm5N/QYdDJ/QwmeRtn5F/BFd0dAAAziZOx8EvAmzsAbReWjna2AiMG8flxUzvpKbSCr2zU3mlyJw5wFdf0fMdO9QrpXoLggBY5UeeH7IIqmcxlrdXjaJfcU1NDWJ7EYcS36uuru5z33vuuQdlZWX44IMP8P777wMAgoKC8Nxzz2HWrFn9nre6uho1NTXdr4uKipQMm1GKGCs1GpUbKKL8/T/+Qa/Xrwd++1uNB+h6Dp3Qw9gg312bcn5X9/NzyVegpVX+vv7+kJqMcXkx0xdJSdJ1q1TEb+hQWuFXVlIid329b+dLnDsHdN1nKmKHwRidBUBlTp3RSN4tTmxXjCIDpb29Hf69uLnEsE17P2EBf39/pKenY+7cuZg9ezbMZjO++OILvPDCC/jb3/6GkSNH9rnvhg0bsGrVKiVDZezBz4+8IKLktFLmzAE++IDi4Xv3Uj6Kl5XXiZ4TnU5AsA0bztDZhvQy6vrcFhgBY+YohOjlqfX6+wOTRltokuPyYqY/goJIJuDECeUGik5H3cjXrqVy2N27gWuvdcw4PYFvpOTY3IGL7TsW981SjSIDJTAwEKZefNodXa7r/nJJXnvtNZw+fRpvvfUW9F0u6vnz5+Puu+/GP/7xD/z73//uc9+lS5di5syZ3a+LiorwwgsvKBk6o5SUFKo6sViUhxT8/Wly+/BD2n/DBuCnP3XMOF1McBBw5/U2Vlabvwc6KV4TNHsq7rgRULwayzcCw4dzkzGmf9LTKddJzXU7Zw4ZKACFeXzVQGlt7e5NZPILRn7GbNgOyPZBeztVV3F4RxWKfsGxsbE9Qi0i4ntxfUj4mkwmfPXVV5g+fXq3cQJQkuzUqVORm5vbq+EjEhcXh6FDh3Y/MjMzlQybUUN8PPXDUJvRf/XVlMcCUBdQNeJv3kBLC/Cf/0iv1Qg9CQK5bNLStBsX450kJVG+g5rrLStLWunn5FC4xxfZvZuMFABF2bPR6W/HoqChgeXt7UCRgTJo0CCUlJSg+ZKb1unTp7v/3htGoxFmsxnmXnQxzGYzLBYLLKL8N+MeREbSRaWm3BigNupiU632dsBXS8nXrKF4PkClxV0J5YoQuxerCbcxvkVEBHk/1fbDstZE2blTmzF5GlbhnfND7QzvGI1k9KmtAPJxFBkoc+fOhdlsxoYNG7rf6+jowMaNGzFixIjuCp6KiooeiazR0dEICwvDzp07e3hKWlpasHv3bmRkZHCpsbuh09GKyh5NhKVLJTfzl19Cb5ZZ8uItVFRI3Z39/IB77lF3HFHkSW2Ld8a3UNk8EEBPA6UrzOFTXLhAlYcAkJmJmjgVas8igkAlxl6Wf+dMFOWgjBgxAvPmzcPKlStRX1+P1NRUfP311ygvL8eKFSu6t/vTn/6Eo0ePYkfXD9xgMOD222/HW2+9hYceegiLFy+GxWLBV199haqqKjz99NPafipGGxISqHJETdkiQO7madNIoKy+Hlnnt+Jkup0rEk/i/felbNolS9RPVI2NVL7N5cWMHKybB14iCSFr3yFDgLNngYICumH7UoLnt99KzxctAsx2CKuxvL3dKL7rPPXUU0hMTMTmzZvR1NSE7OxsvPzyyxg3bly/+919991ITk7GmjVrsGrVKphMJgwcOBDPPfcc5s6dq3L4jENJSKBQj5qyRZEbbuhWUB12ch1OptkhF+1J5ORILvKICODWW9Udx2Qi45DDO4xcxOaB1dXKDRSAvChnz9LzHTuAH/9Y2/G5KyYT8P339NzfH5g7F7CnpVhDA/1f+HK5tp0oNlACAwPx85//HD//+c/73OYfogbGJVx55ZW4UsxLYNyfoCASf8rNVW+gDB1KeRc5OYiqv4C0soOoHThJ23G6GxYL8Pbb0us771R3owAkkScuL2bkIjYPVKsXdcUVwDvv0O94xw7grrt8Q6J93z4puXj6dMqjswcWVrQb/uaY/klLowZ19nDDDd1PR5/5zM4BeQA7d0or0IwMYLEdYa36eiodVSqYx/g29jQPjIkBRo+m5+XlQF6etmNzV6ySY2HvQprl7TWBDRSmf+Lj6ebYVXanismTqbIAQGrFMUTXnNdocG5Iezvw3nvS6/vuozweNQgC5f9weTGjFHuaBwIk2ibiC8my5eXA0aP0PClJMtDUwp5PTWADhemf2FiqHlFbbgzQDdqqweSwk17sRVm/nmL/ADBxIiW3qkVMsuP8E0Yp9jQPBKgkXkyM37WLPALezBarZJOFC+0PyzQ20nWrNrTLAGADhbGFwUDy2fYKrS1YgLbACABAZv4OoKpKg8G5GTU1khKnXg/ce699x+PyYsYerJsHKiUsjAxsAKitBU6d0nZs7oTZTGKSAF23WjRKbGnxreonB8EGCmOb5GQKN9gjphcYiLzhJJ2tFyzAF19oNDg34sMPJf2Jq66yf4JqaqJVsC8kKDLaY908UA2+ooly5AgtLgBg0iT1BQEiHR0sb68RbKAwthFl75ua7DrM2eE/Qqe+S1Fx82b7RODcjfPnpRLF0FCq3LEHLi9m7EVsHigqGStlyhQpOXvPHknTx9vQMjkWkBp7sry93bCBwtgmPJySvezJQwHQHhyFcwO63KetrT0nBk9GEKisWOjqUHzrrZQgZw8NDTTJ8SqMsYf0dArxqPF+BgYCU6fS86Ym8jR4G3V11BQVoKTiSRpIIIjy9gGqWwwyXbCBwthGp6OVmD2VPF2cGCaVHOOLL9TFx92NffuAkyfpeVIS8KMf2X9MLi9mtMCe5oFAzzDP5s2SEe4tfP+9lAA8f776ijsRs5m+I84/0QQ2UBh5iLL3drp5jRHpKEmfQi+qq6lzqAejN5uAd9+V3rj3Xvsbg4k9PLi8mLEXe5sHjh9PnjyAPA3e4vUE6DqzlrbXIrxTX095P12yCox9qGiwwvgk8fE0UTU02J1EdmbUjUgr3k8v1q2jVZqHJoIOyfkSKCujF6NGUe8he2lupu7FrKHAaEFWFrVeuITWNmD1elseAwMyxv8MV2z7MwDA/K+V2FwyFPWxA22e1t8fmDTaggEZbup1OXUKKC2l52PGaNPUr7aWpAVCQuw/FsMeFEYmgYG0olebcGdFZdIoYNAgepGfDxw/bvcxXUFguxGjjv6XXuh0wP33a2No1ddzeTGjHdbNAyE5+ARBh5ZW248zybNxajCFLQ1mE2Zu+TNMxhab+xkbdDh4wo1vMVp7Tzo7pXA4owlu/Oth3I60NG1yRnS6HvL3WL/e/mO6gAkn/oOAjq5KpPnzgYG2V5WyaGnh8mJGO8TmgV1hnkmjLYiMEBASLP9xYsZy1MTSoiKyqRTzDr2GkCBLn9vrdOQ1cdvCn6YmKbwcFka9d+ylro6+aw7vaAaHeBj5xMcDwcF0A7XXhTljBoUwKiuBQ4c8rq17RN0FDD+3kV4EBWnX8dVkolyfpCRtjscwlzQPHJAhYECGUmVYPTDzCeCXvwSam5FRuBt3+m/oMyF89XoDWuzPqXcc27dLPcbmzdOm4qa+ntp6BAbafywGAHtQGCXExNDDznJjAHQTXrJEeu1hXpQJB94mwTkAuPFG+8WdRIxGSrLj8mJGS+xpHiiSlAQ89pj0+p13pKaYnoQg9Ez2XbjQ/mOaTGQIcnhHU9hAYeSj11PCnb2y9yJXXin1qti2TX2lgbM5fBgpJQcBAM2hcT3DVfYiaijwKozREnubB4pMmwZcfz097+wEXnlFu/nAWZw/DxQU0PMhQyicai81NbRI0SLRlumGDRRGGaKyqRbNw0JCgMWL6XlnJ/DVV/Yf09GYzbRy7OLYpGXaGRNieXFqqjbHYxgRe5sHWnP33cCwYfS8shJ47TX72mA4G62VYwFaWAwebL/EANMDNlAYZSQk2Cf8dClLlkjiSBs3Sr1s3JVvvqF8GQCVsUNQmD1Hu2M3NZFHicuLGUdgT/NAa/z8gN/8hhSmAdJH8ZQQbVub1FcoKAiYNcv+Y7a3k2HCukWawwYKo4ywMLqBarESA8gtKqpVNjVJXUXdkeZmYPXq7pd7xz8I6DS8hIxGyj2JitLumAwjYm/zQGvi44Ff/UqqNHv/feD0afuP62h276YkfwC44gpt9Epqa+n74MR2zWEDhVFOVpYmsvfdiDFtANiwQZvwkSP45JPuyb1owGxUxo/Q9vjNzfTdcnkx4wjsbR54KRMnArfcQs8tFspH0cL4cSTW2ieLFmlzzIYG0nXy46JYrWEDhVFOfDy5NMUyPXsZMAAYN46el5dTbxt3o7ycegcBgL8/jk5apu3xOzpoguNVGONI7Gke2Bt33AGMHk3Pa2uBv/3NfRcYJSWSlyc9HRg61P5jtrVRdVR6uv3HYi6DDRRGOXFxJHuv5WrJuhJm3TrtjqsVq1ZJsfulS9Ecnqjt8bm8mHEG9jYPvBSDAfj1r6Ww5JEjwKefanNsrfnyS+n5okXaeCpraqhwgPPGHAIbKIxyAgKoFFarPBSAPCiihkBubq+9Q1zGyZPAnj30PDJScmtrSUMDfX5u0c44EnubB/ZGdDQZKfqu28l//4vE0qPaHd9eTCbg//6PkvAB8lTOm6fNsRsbqXrH3i7ITK9w0IxRR0oKrZYEQZuViE5HuSivv06v160Dhg+3/7j2YrH0KCvGj3+sfSMwLi9mnMmAAdovAMaMAe68E/jwQ0AQMGPbX1B+1f8CwY7rJ5V/QYdDJ/T9yumHNFXhiu9fRFy1JCh3fMztOPm9vHG19ldUKCpqc/WOw2APCqOOhAS6OLsakGnC7NkkJgVQHorYadSVbNsGnDtHz7OytFGdvJSmJqk6imEcTWJij+aBmnHzzcD48QCA4LZ6zN/zMnQWx+WjHDqhh7Gh72aFkQXHsPjzx7qNk05DALZNexz7h94pq0liS6sOgkCLr17lTWpr6buMi3PYZ/R12EBh1BEVRcaElmEef39J/l4QgM8/1+7Yamhro/JJkfvvd4wrt76eck8iI7U/NsNcyiXNAzVDrwcef7y77UNy5QmMPvyhtuewQvSc6HSXNCsMsmDiuTW4etvTCG6nPLmmsER8+6NXUTpivqImiSHBAiIjBEwa3UtScVMThXf0fBt1FBziYdQhyt7v2qXtcRcvBj7+mIyDLVuAu+6iuLkr+OwzWiUBwJQpwNixjjlPSwuXFzPO45LmgZoSEQE88QQsv30KesGMUcc/AQ4Np5JkBxEcBNx5fZenpqUF+Mc/gAN7pA0mTEDY44/j6vBwABp5dESvJ4dlHQqbfox6EhO1Uaa0JixMkp/u6JAS25xNdTUZKAB5TZYtc8x5OjrIc5SocVUQw/SHFs0D+2L48J5l+H/7G1BVpf15LqWkhJJ191gZJ7fdBvz+95LqrVbU1lJFlFZNQpleYQ8Kox7xAq2tVZQ/0dpG7dj7IjToBizRfQW9YEHrZxvxud8tsPjJr27x9wcmjbZgQIYge5/L+OADSeflmmsclwjH5cWMK7BuHugA7Z0zo25ATOkpZF3cS5Uur7wCvPii43rV7NlDCfaigGRoKPDLX5LnU2sEgc4zeDB7PR0Me1AY9QQFUdMwmbFscW4ShP4T06r8klCYPhMAJdulntkqO6mtpVUHY4MOB0/Y8dPOywO2bqXnYWHA7berP5YtjEYuL2acj5bNA3tDp8OOab9EU1iXZzA3t2c+l1ansZgx7sA7wJ//LBknmZnAX//qGOMEIIMrPJzDO06ADRTGPrKygOBgWRUBk0ZbEBkhLzHt7Ngbu/cbk/sZolEnaz+djrwm/ZUe9osgAG+/Lb2+/Xbt3cMiFguXFzOuQ6vmgX3QERCOXfOflCTgP/8c+OEHzY4f2GrEVduexogTa6U358wB/vIXkkFwFDU19N1FO66EmiE4xMPYR0ICyTwXFtKKrB8GZAgYkCE3SW0gkD8SOHUKkcYS3PTfu6jfxYQJ9Bg6tNeKmtXrDWixp03Qnj2SHHZqKoV3HEVTExk/XF7MuALr5oEOyqWojRsMLF8O/Otf9MY//kGLmuRk+w589iyu2vAyQpu7clsMBuC++4Af/cixYReLhUK/Awc67hxMN+xBYexDp6Mwj8mkfQ+OW2/t+frcOWrY99vfkmDayy9T86+aGm3O19FBkvYi997r2AZgRiMZJ66qUmJ8m6AgMha0ah7YF1dfDcyaRc+bmykfxZ4+Xps3A7/9bbdx0hocDfzpTyRR4OickIYGul7Z6+kU2IPC2E96OokV1dRo6w0YP55iyXv2AIcPAwUF0t+am6l1+u7d9DorC5gwAQmtk3AhfCRU/bS/+AKoqKDnY8cCkyfb+wn6p6WFvE6caMe4irQ0urYsFsfpeeh0wMMPA/n5wMWLwPnzFEb92c+UHaejA/j3v3t0JC6PG4E9C5/EjSOcpCFUU0MLMl5UOAU2UBj7CQ6mkMvOndqHKwYPpsc999DkcPQoTahHjlCIRKSwECgsxEJ8hg6/YFSkjAUCx1M4SE4Jb309eWcAmlDvu8+xhkN7OyXGcniHcSXWzQMdKRQYEgI88QTwm9+QobFpEzBiBOWMyKGykhJhRVVnALkjlmD3qOUICvGDZvom/WGxUL5Odrbjz8UAYAOF0YoBA4BDh8izERrqmHPExgILFtDDbKZqm8OH6bznzlGCK4CAzlakX9gLvLEXAGCMTENZ2kSUpk1CZeKoXkuWJ+/+LwZ3VQGcG7wI+48NAo71PZR+e3TIgcuLGXdAbB5YUOB4JeMBA4Cf/hT4f/+PXv/f/1Euh60S/qNHKfFV7MAcEAA8/DAOGRfC0qoDYIecgBLEa9aRCbhMD9hAYbRBQbKsJhgM5GodNoyalBmNwNGjKNxwBIkXDnVLXANApLEEkcYSDDv1OToNgShLGI3ilEkoSZ6IhrAURBsLMfDsZgBAh18w9o34CVpb5XlPVMs6GI2krukoXQiGkYsjmgf2xcKFwKlTwPffk1r0yy8Dr74KBAZevq0gAGvXUgNCS5fUfFIS8OSTNOb1zhlyN7W1wKhRJD3AOAU2UBht0OkozHP2LHk3nN1+PDISmDMHwoC5+PI4EFZ+Hiklh5BccghxVWegF2iC8zO3I73sINLLDgIAGsOTIOgM3X8/PfZW6GKiESJjVSYKwinGYqHJl1dijDtg3TzQUd5PEZ0OeOgh8nheuEBy+//6F/DYYz23a2kBXnsN2LtXem/SJOBXv3KNgWA203WbleX8c/swbKAw2pGRISnLuih0QaXMAJDd9biFclWOHaNQ0OHDUn8dAOGN5dLOCQkY9+QSjAtwcDxb7OPB8vaMOyA2D6yudryBAlD10IoV1FhQ7Lk1cqTUKfzCBeCllyihFiCj5o47qKrPVY356us5vOMC2EBhtCM4mEIuu3e7V25FWBgwcyY9BIFWbWLuSk6OJFR1333OUXStr6cyRa4EYNwBRzYP7Iv0dKrs+etf6fW//kU6RyUlpJXS1pXkFRpKhsykSc4bW2/U1lLCfUiIa8fhY7CBwmjLgAF083eGu1gNOh25abOygBtvJFdyTg6Nddgw54yhtdU5eToMIxfr5oG95YM4gjlzKB/l66+psud3v5MSYQG6Rp580iG9ghTR2UnzRmama8fhg7BQG6MtiYmUle+M7qVaEBJCyarOMk64vJhxR6ybBzqT5cslY93aOJk3jwTdXG2cAPSdxMRweMcFsIHCaIuYLNverr2yrDdQX089POLiXD0ShpFwdPPAvggIIGVoMXRiMFAp8i9+4TxPji3q66kc2l3G40NwiIfRnsxMlyfLui0NDRRP5/Jixt2wbh7oyBYPl5KcTOXG27ZRntigQc47ty1MJsrRychw9Uh8EvagMNojKstaVcsw4PJixr2xbh7obDIzSS3anYwTgNSrY2Ptb27IqIINFMYxZGdTOWFLi6tH4j40NnL3YsZ9cVbzQE+ioYFabbDH0yWwgcI4BlFZtrLS1SNxH4xGSiLm8mLGXUlLoxCPRYUAobfR3k6hLltS/IzDYAOFcQx6PSfLXkprKytRMu6NdfNAX0fMoXOHSiIfhQ0UxnFkZFB5HueiUKgrKIjVYxn3Rmwe6OxyY3ekoYFyYpyZMMz0gA0UxnGEhHCyrEhpKZVxcv4J4+4MGCApufoqbW1UVpye7uqR+DRsGjKOJTsbOHKEPAi+KhPd0kL6DqNHu66XCMPIRcPmga1twOr1jmkc2upIG6qmhhYTvKBwKWygMI4lMZH0FS5e9F2p6LIyqgTgZDvGE9CgeaC/P4BWQBB0aGnVdni9nktrGhuBKVOc35Wd6QEbKIxj0euB4cOB/HxKlvW1C76lhb4D9p4wnoIGzQMnjbbg4Ak9TCYNx9UL/v50Lk0Rvb28oHA5bKAwjicjg+TdfVFZlr0njCdiZ/PAARkCBmR4aPVeTQ15frkdhcvhJR3jeHw1WZa9J4yn4qrmge5AczMwZAhfs24A/w8wziE7m1ZivqQsW1ZGTcbYe8J4Gq5qHuhqmpqAsDBuR+EmsIHCOIfERLpRV1W5eiTOgb0njKdj3TzQV6itpfBWbKyrR8KADRTGWej1wLBhvqMsy94TxtNxZfNAVyAIpPY8aBAZZozLYQOFcR5isqy3x7XZe8J4A77WPFBs5pma6uqRMF3w7Mk4j9BQSj6rqXH1SBwLe08YbyE93XeaB9bUkHESHe3qkTBdsIHCOBdvT5Zl7wnjTYjdt729eaDFAphMtLBg3AaeQRnnkpREq5TqalePxDGUlZERxt4TxhvwleaBDQ0c3nFD2EBhnIuoLNva6n1u45YWSq4bM4a9J4z34AvNA2tqKEcuIsLVI2Gs4FmUcT4ZGd4pAsW5J4w3Yt080BuxWCjPJjvb1SNhLoENFMb5hIaS/Ls3Jcuy94TxVsTmgd6qBF1fT+XULM7mdvBMyriGgQOp01erg1udOgv2njDeil4PjBxJYR5vuV6tqaujcuqwMFePhLkENlAY15CU5D3KsqL3hCt3GG9l6FBgxAjgwgUSNPMWzGYK8WRluXokTC8o7mbc0dGBt99+G9988w0aGxsxcOBALF++HJMnT5a1/5YtW7BmzRqcP38efn5+yMzMxPLlyzFx4kTFg2c8GFFZNj+fJghPvrGXlZH6ZHq6q0fCMI7BYACmTAFKS4HycpKD9wY4vOPWKL4rvPTSS/jkk09w5ZVX4tFHH4Ver8cTTzyB48eP29z3nXfewXPPPYeEhAQ8/PDDuP/++zFw4EBUe2vJKdM/mZmeryzL3hPGV4iJAaZOpYZ63hLqqa2l5NiQEFePhOkFRR6U06dPY8uWLfjZz36GO+64AwCwePFiLFu2DG+88QbeeOONPvc9deoU3nvvPTz88MO49dZb7Rs14x2IybL793tucy72njC+xLBhQHExcPIkqUJ7cs+azk4af2amq0fC9IGiJd/27dthMBiwdOnS7vcCAwNx7bXX4tSpU6ioqOhz308//RQxMTG4+eabIQgCWrxVSZRRxsCBQECAZ67I2HvC+BoGA3lRYmPJOPdk6urIK8ThHbdF0ayal5eHtLQ0hIaG9nh/+PDhAIBz5871ue+hQ4cwbNgwrFmzBkuXLsVVV12F66+/HmvXrrV53urqauTm5nY/ioqKlAybcWeSk0m90ROTZcXKHfaeML5EdDQZKc3NnrmwEKmro+s3MNDVI2H6QFGIp6amBrG9uOLF9/rKJWlsbITRaMTJkydx+PBhLFu2DImJidi0aRNef/11+Pn54brrruvzvBs2bMCqVauUDJXxFMRk2YICz0qWbW1l7wnjuwwdSqGeEyc8M9RjMpE3KCPD1SNh+kGRgdLe3g5/f//L3g8ICOj+e2+I4Ryj0YhnnnkGCxYsAADMnTsXy5Ytw/vvv9+vgbJ06VLMnDmz+3VRURFeeOEFJUNn3BnrZFlPyUUpLeXcE8Z3sa7qKSvzvDBJTQ3NNd5SjeSlKFr6BQYGwmQyXfZ+R0dH99/72g8A/Pz8MHfuXOnkej3mz5+PqqqqfvNX4uLiMHTo0O5HJic1eRdhYZ6lLMveE4bpGerxtJzChgaac3pZcDPug6LZNTY2FjW93ETE9+Li4nrdLyIiAgEBAYiIiIDBYOjxt+joaAAUBmJ8GFFZ1hOakpWWcu4JwwAUnh05ksI9niLg1t4O+Pmx6rMHoMhAGTRoEEpKStB8SdOo06dPd/+915Po9Rg8eDCMRuNlHhgxbyUqKkrJUBhvIzmZ3MSVla4eSf+ISYHsPWEYugamTgXi4jynqqe2lnoLJSW5eiSMDRTNsHPnzoXZbMaGDRu63+vo6MDGjRsxYsQIJCYmAgAqKiouq7SZN28ezGYzvv766+732tvb8e233yIrK6tP7wvjI+j1wPDh5Cq2WFw9mr7h3BOG6UlUlGeFesTwjp9iIXXGySj6HxoxYgTmzZuHlStXor6+Hqmpqfj6669RXl6OFStWdG/3pz/9CUePHsWOHTu637vuuuvw1Vdf4e9//zuKi4uRmJiIzZs3o6KiAi+99JJ2n4jxXNw9WZa9JwzTO2JVz7FjVNXjrtdHWxuVFXN4xyNQbEI+9dRT3cZFU1MTsrOz8fLLL2PcuHH97hcYGIjXXnsNb7zxBjZu3Ii2tjYMGjQIL7/8MqZMmaJ2/Iw3ISbLHjzongYKe08Ypnf0eqrqKSujXj3uWtVTXQ0kJNCDcXt0guApmU0Subm5eOCBB/Dmm29i6NChrh4OoyUlJcBnn1FOSlCQq0cj0dpKBsoNN7A0NsP0xZkzwKZNZKC4W3+b8nK6jhcsoMRexu1xUz8c47MkJ9PD3ZRluXKHYWwzZAjd/C9ccJ9cMkGQxnPllWyceBBsoDDuhcEAjBjhXsmynHvCMPIQQz0JCeSxcDUWC5CfDwQHA4sWUSI+4zHwbMu4HxkZVBlQX+/qkRCi94RlsRnGNmJVT0uLa6t6OjuBvDwqKb76amDAANeNhVEFGyiM+xEe7j7KsqwayzDKEUM9xcWu8YR2dADnzgFZWWScsKS9R8IzLuOeDBxI4Z4++js5jdJSIDubvScMowRRwC0+3vkCbi0twPnzFM656iogJsa552c0gw0Uxj0RlWVdmSzL3hOGUU9kJBkpra3OC/U0NJDXZsIEYOFCki5gPBaedRn3xGCgFVBTk+uSZUtLKW7N3hOGUceQIcCoUc6p6qmpASoqgGnTgDlz3EumgFEFGyiM+5KRQcqyrkiWFb0nY8aw94Rh1GJd1VNa6rjzlJeT92TOHGDGDO5S7CXwzMu4LxERpNza1VDSqZSVsfeEYbQgMpK8Gm1t2od6RI0Ts5lCOhMm8ILCi+D/Sca9GTiQXLXnz5ML12x2/DlF3RP2njCMNgwerH2ox1rjZPFi0k/S6bQ5NuMW8OzLuDdpaZSJP2aMNCHl5VHyrMnkmHOy94RhtEWs6tEq1NPZSWXEcXGsceLFcL9pxr3R6ciLMnAgeTbKyqhfT36+5NqNiKBSwoAA+8/X1kZuY/aeMIy2RERQqGfTJqC5GQgNVXecjg66/gcMAObNc8/GoowmsIHCeA7BwaRJkp1Nq7GKCslYKSkhj0p4OBkrajP4WfeEYRzH4MFUBnzkCFX4KF0EtLTQwmT4cEqIDQ93zDgZt4ANFMYzCQwkIyIjA5g8GaisBC5epFyV8nISeAsNJWNFbldV9p4wjGMRq3pKS+mRliZ/38ZG2mfcOGDWLC4j9gHYQGE8H39/IDWVHhMnUn5KaSkZK5WVFBoKDiZjJTS070Q69p4wjOMRQz0bN8oP9dTWUpL81Km0L5cR+wRsoDDehcEAJCXRY9w4mtTKyiTPysWL5H2JiSGVSdFTInpPWDWWYRzPoEF0rR0+bDvUU15Oi4zZs7mM2MdgA4XxXvR66gUSH0+TYV0dGSsFBWSolJXRSiw6mlZo2dlAZqarR80w3o9eT6HZ/kI9gkD5Kno9aZwMH85lxD4GGyiMb6DTkdckJoa6rBqNZKAUFlKCbVAQe08YxplERFDIZuNGamlh3TfHYqGFRHg4VepkZ7tunIzLYAOF8U0iI+kxbBhNjnV1lMPCMIzz6C3UYzZTSDYxEZg/n5qGMj4JGygMExbGXU8ZxhWIoZ6yMgr1JCSQbEBWFhknrHHi07A/m2EYhnEdYqinvZ08J8OGkXo0Gyc+D3tQGIZhGNcyaBBV3ZlMrHHCdMMGCsMwDONadDoqI9bpuFKH6YYNFIZhGMb1cAUdcwn8i2AYhmEYxu1gA4VhGIZhGLeDDRSGYRiGYdwONlAYhmEYhnE72EBhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt4MNFIZhGIZh3A42UBiGYRiGcTvYQGEYhmEYxu3wyG7G7e3tAICioiIXj4RhGIZhGKVkZmYiKCio32080kApLy8HALzwwgsuHgnDMAzDMEp58803MXTo0H630QmCIDhpPJpRX1+P/fv3Izk5GQEBAZocs6ioCC+88AKefvppZGZmanJMb4a/L/nwd6UM/r6Uwd+XMvj7ko8jvyuv9aBERUVh0aJFDjl2ZmamTauOkeDvSz78XSmDvy9l8PelDP6+5OOq74qTZBmGYRiGcTvYQGEYhmEYxu1gA6WL2NhYLFu2DLGxsa4eikfA35d8+LtSBn9fyuDvSxn8fcnH1d+VRybJMgzDMAzj3bAHhWEYhmEYt4MNFIZhGIZh3A42UBiGYRiGcTvYQGEYhmEYxu3wSKE2R3P06FF89NFHyMvLg9FoRFhYGAYNGoR77rkHo0ePdvXw3I5Dhw7h22+/xfHjx1FVVYWYmBhMmDAB999/P+Li4lw9PLejuroaa9asQU5ODs6cOYPW1la8/vrrGD9+vKuH5lI6Ojrw9ttv45tvvkFjYyMGDhyI5cuXY/Lkya4emlvS0tKCjz76CKdPn0ZOTg4aGxvx5JNP4uqrr3b10NyOnJwcfP311zhy5AjKy8sRERGBkSNHYvny5UhPT3f18NyKgoICvPvuu8jNzUVtbS2CgoKQmZmJO+64AzNnznTqWNiD0gslJSXQ6/W47rrr8Itf/AK33XYbamtr8T//8z/Yt2+fq4fndvzrX//CkSNHMGvWLDz22GNYsGABtm7diuXLl6OmpsbVw3M7iouLsXr1alRVVSE7O9vVw3EbXnrpJXzyySe48sor8eijj0Kv1+OJJ57A8ePHXT00t8RoNGLVqlUoKirCoEGDXD0ct2b16tXYvn07Jk6ciEcffRRLlizBsWPHsHz5cuTn57t6eG5FeXk5WlpacNVVV+HRRx/F3XffDQB48sknsWHDBucORmBk0draKlx33XXC448/7uqhuB1HjhwRzGbzZe/NmjVLWLlypYtG5b40NzcLRqNREARB2Lp1qzBr1izh8OHDLh6Vazl16pQwa9YsYfXq1d3vtbW1Cbfffrvw0EMPuXBk7kt7e7tQXV0tCIIg5OTkCLNmzRI2btzo4lG5J8ePHxc6Ojp6vHfhwgVhwYIFwnPPPeeiUXkOnZ2dwr333ivcddddTj0ve1BkEhQUhMjISDQ1Nbl6KG7HuHHjoNfrL3svIiICRUVFLhqV+xISEoKIiAhXD8Ot2L59OwwGA5YuXdr9XmBgIK699lqcOnUKFRUVLhydexIQEMBiYzIZPXo0/P39e7yXnp6OrKwsnqNkYDAYkJCQ4PT7H+eg9ENzczNMJhOMRiM2b96MgoIC/OQnP3H1sDyClpYWtLa2IjIy0tVDYTyAvLw8pKWlITQ0tMf7w4cPBwCcO3cOiYmJrhga46UIgoC6ujpkZWW5eihuSWtrK9rb29Hc3Izdu3dj3759mDdvnlPHwAZKPzzzzDPYv38/AMDf3x9Lly7tjscx/fPpp5/CZDJh/vz5rh4K4wHU1NT06g0Q36uurnb2kBgv59tvv0VVVRXuu+8+Vw/FLfm///u/7pwTvV6P2bNn45e//KVTx+D1BorFYoHJZJK1bUBAAHQ6Xffrn/70p7jttttQWVmJr7/+Gp2dnTCbzY4aqltgz/clcvToUaxatQrz5s3DxIkTtR6iW6HF98UA7e3tl7ngAfrOxL8zjFYUFRXh73//O0aOHImrrrrK1cNxS2655RbMnTsX1dXV2Lp1K8xms+y5Tiu83kA5duwYHnvsMVnbfvDBB8jMzOx+PXjw4O7nixYtwvLly/HSSy/h+eef13yc7oI93xdAF/7TTz+N7OxsrFixwhFDdCvs/b4YIjAwsNfJr6Ojo/vvDKMFNTU1WLFiBUJDQ/H888/DYDC4ekhuSWZmZvd8ddVVV+FXv/oVfvvb3+Lf//630xZaXm+gZGRk4Mknn5S1bX8JZ/7+/pg5cyb+85//oL293WsnTHu+r4qKCjz++OMIDQ3Fyy+/jJCQEEcM0a3Q6vfl68TGxqKqquqy98UyddbTYbSgqakJTzzxBJqamvC///u//LtSwNy5c/Hqq6+iuLgYGRkZTjmn1xsosbGxmgkXtbe3QxAEtLS0eK2Bovb7MhqNePzxx2EymfD3v//dZy58LX9fvsygQYNw5MgRNDc390iUPX36dPffGcYe2tvb8dvf/hbFxcX429/+xsmxChHDrM6s5OEy416oq6u77L3GxkZs374dCQkJiI6OdsGo3JfW1lY88cQTqK6uxiuvvMLKjIxi5s6dC7PZ3EMIqqOjAxs3bsSIESO4goexC7PZjGeffRanTp3CH//4R4waNcrVQ3Jberv/dXZ2YvPmzQgMDHSqYef1HhQ1/OY3v0F8fDxGjBiB6OhoVFRUYOPGjaipqcGzzz7r6uG5Hc8//zxycnJwzTXXoKioqIeuQHBwMGbNmuXC0bkn7733HgCgsLAQALB58+ZuxdR77rnHVcNyGSNGjMC8efOwcuVK1NfXIzU1FV9//TXKy8t9IpdJLWvXrkVTU1N3KGz37t2orKwEANx0000ICwtz5fDchv/7v//D7t27MWPGDDQ2NuKbb77p8fdFixa5aGTux6uvvorm5maMHTsW8fHxqKmpwbfffosLFy7g4YcfdmroXicIguC0s3kIn332Gb7//nsUFRWhqakJ4eHhGDFiBO644w6MHTvW1cNzO2699VaUl5f3+rekpCR88sknTh6R+zN79uw+/7Zjxw4njsR9aG9v7+7F09TUhOzsbCxfvhxTpkxx9dDclv6uvY8//hjJyclOHpF78uijj+Lo0aN9/t1Xr7ne2LJlC7766ivk5+fDaDQiJCQEQ4cOxY033ogrrrjCqWNhA4VhGIZhGLeDc1AYhmEYhnE72EBhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt4MNFIZhGIZh3A42UBhGYzZt2oTZs2dj06ZNrh6KLI4cOYLZs2fjnXfecdg5Zs+ejUcffdRhx3c0jz76aL/qv/Ygfv/i46GHHnLIeeTwzjvvYPbs2Thy5Ej3e0VFRT3Gd+utt7psfIxvwb14GJ/nz3/+MzZu3IiIiAh89tlnCAgIcPWQNEe8qXDbAfdl3LhxGDduHBISElw9lB5ERkZi2bJlAIA1a9a4djCMT8EGCuPTtLS0YOvWrdDpdGhoaMDOnTuxYMECu445a9YsjBgxArGxsRqNkvEFxo0bh/vuu8/Vw7iMqKio7nF9/fXXLh4N40twiIfxab7//nu0trbilltugV6vx1dffWX3McPCwpCZmcmdZBmGYeyAPSiMT/PVV1/BYDDgzjvvxPnz53H48GGUl5cjKSmpx3bvvPMOVq1a1edxrLs2b9q0CS+99BKefPJJXH311d3bzJ49G+PGjcPvf/97vPHGGzhw4AA6OjowduxY/OIXv0BKSgoKCwuxcuVKHDt2DJ2dnZgyZQp++ctfIiYmpvs4R44cwWOPPYZly5ZdtuIuKyvDbbfdhquuugpPPfVU92vrMYj0tv+ZM2ewcuVKnDp1Cnq9HhMmTMAjjzxyWVfcHTt2YOvWrThz5gyqq6vh5+eHgQMH4uabb8bcuXP7/9Jt0NTUhM8//xx79+5FSUkJjEYjIiMjMWnSJCxbtgypqak9thf/b15//XVUV1fjv//9Ly5cuICwsDDMmzcPDz30EAIDA3vs09nZiY8++ghffvklqqurER8fj2uvvRbz58/H7bff3v39yWHnzp1Yu3Ytzp49i46ODqSmpuKqq67CrbfeCoPBYNd3AQAvvvgivv76a3z00UfYsWMHvvrqK5SWlmLBggV46qmnUF1djQ0bNmD//v0oLS1Fc3MzYmNjMW3aNNx7772Ijo6+7JgVFRX417/+hf3796OzsxNDhgzB/fffb/dYGUZL2EBhfJbCwkKcOnUK06ZNQ0xMDBYvXoxDhw5h48aNl924x48f3+sxioqKsHXr1stugH3R2NiIhx9+GLGxsVi8eDFKSkqwZ88e/OpXv8KLL76IRx55BEOHDsU111yDs2fPYvv27WhoaMDrr7+u6jOGhYVh2bJl3bkDN998c5+f6cyZM/jvf/+L8ePHY+nSpcjLy8POnTuRn5+PVatW9fiMK1euhJ+fH0aPHo3Y2FjU19dj9+7d+MMf/oDHHnsMN910k6rxAvSdvvPOOxg/fjxmzZqF4OBgFBUV4bvvvsMPP/yAt9566zIDEgA+++wz7N+/HzNnzsSECROwb98+rF27FkajEX/4wx96bPvyyy9j8+bNSElJwfXXXw+TyYRPPvkEJ0+eVDTWf//73/jPf/6D+Ph4zJ49G2FhYTh+/DjeeOMN5OTk4LnnnlP9PVzKa6+9htOnT2P69OmYMWNGt+Fx7NgxfPzxx5gwYQKGDx8OPz8/5OXlYf369di/fz/eeuutHt686upq/PznP0dVVRWmTJmCIUOGoKioCI8//nifv3OGcQVsoDA+y5dffgkAWLx4MQDyLvz973/Hpk2bsGzZMuj1UgR0/Pjxl03edXV1+OlPf4qAgAA88cQTss55/vx53HrrrXjkkUe63/vb3/6G9evX45FHHsG9996LW265BQAgCAJWrFiBvXv3Ijc3F0OHDlX8GcPDw3Hfffd15w70l+Owd+9ePPPMMz1ycP70pz9h8+bN2LVrV4/3X3nlFaSkpPTYv+X/t3dvMU3dcQDHv60IchmXCCtbvJB5iSRyGUOMU8k2ccbpA3HuwYet1LKxmD2ZbDFkDyZGsxk1kURNJmwOxzYyA4pWEBXmggwmFIWAqLBEGc6q4CgVx7DtHkhPOLYgUMAm/D6P//85//+Pc0jOr//LOX19bNu2jby8PDZs2MCsWbPGHC/A/PnzKS4uJjQ0VFVuNpvZvn07+fn5Hq93fX09R48eZd68eQB8/PHHbN26lYqKCrZt20ZkZKRy3Llz51i0aBGHDh1S4vzwww/JzMwcdZxXrlyhoKCAlJQUdu3aRWBgIDB43w4cOMCpU6f49ddfvR5RcmlvbycvLw+dTqcqT0pKori4mKCgIFV5WVkZe/bsoaioiI8++kgp/+abb3jw4AGZmZmq8pKSEvbt2zchsQoxEWQNipiWnj59Snl5OcHBwaxatQqAoKAgVq9ejcVioa6ubsTz+/v7yc7O5t69e+zYsYO4uLhR9RsYGOj2EHQ9+MPCwlQjHBqNRqlrb28f9d82XgkJCW4LhN977z0Arl+/rip/NjmBweu3fv16bDYbra2t444jJCTELTmBwQdxTEzMsPdm8+bNSnICEBAQwJo1a3A4HNy4cUMpLy8vB0Cv16uSqMjISNX1f56ioiIAPv/8cyU5gcH7lpWVhUaj4eLFi6Nu73m2bNnilpwAREREuCUnMJh4BwcHU19fr5QNDAxQUVFBRESEauoPYOPGjcyZM2fC4hXCWzKCIqalqqoq/vnnHzZs2KCauli3bh3l5eWYTCZSUlI8nut0OtmzZw/Nzc0YDAbS0tJG3e+cOXPcRhZcu31ee+01NBqNx7qHDx+Ouo/x8jRCExUVBQyuCxnq0aNHFBQUUFNTg8Viob+/X1XvbbwNDQ388ssvtLS00NPTg91uV+pmzpzp8ZzFixe7lbm27A6Nv62tDYD4+Hi345cuXTrqGFtaWggMDBx2YXVAQAB37twZdXvPExsbO2zdpUuXKCkp4ebNm9hsNtX1Gnov7ty5w3///UdSUpLbtKRWqyUuLo6//vprwmIWwhuSoIhpyfVQcU3vuLzxxhtERUVx+fJlrFarx1/yubm5VFZWkpaWhsFgGFO/wcHBbmWuhZQj1T19+nRM/YyHp1/hrv4dDodSZrVa+eSTT7BYLMTFxZGcnExISAharZa2tjaqqqoYGBgYdxyVlZXs3LmTwMBAUlJSiI6OVpK6srIy7t275/G8ka7f0Pj7+vrQarWEhYW5HT90MfLzWK1W7Hb7iIunnzx5Mur2nsfTYleAn3/+mcOHDxMeHs6yZcuIiopSko8TJ06o7sXjx49HbGu4ciFeBElQxLRjsVi4cuUKwIhvNy0vL3cb8i8tLeX48ePExcWxY8eOSY1zOK5RlqG/kl1cD6DJZDKZsFgsGI1G9Hq9qu6HH36gqqrKq/a/++47/P39OXr0KHPnzlXVVVRUeNU2DCZiDoeDnp4ewsPDVXXd3d2jbic4OBiNRsPp06e9jmk0nh1dg8HENT8/n9mzZ/Ptt9+qEgyn08lPP/2kOt6VxD169MhjH8OVC/EiSIIipp2ysjIcDgfx8fFuD0AYfPCXlZVhMplUCcrVq1fZt28fr776Krt3735hb5x96aWXAM/TKLdu3fJ4jlar9WpUY6jOzk4AZe3OUI2NjV63f/fuXWJiYtzuzcOHD7l7967X7S9cuJBbt27R1NTE6tWrVXVj2cUTGxtLbW0tHR0dHv+PpkJPTw82m42kpCS30Y/W1la3qbe5c+fi7+/PjRs36O/vV03zOByOMe9iEmIySYIiphWn08nZs2fRaDRkZ2d7XOwJ0NHRQXNzM62trSxZsoSOjg6+/PJLAgIC+Oqrr9x+eU+lefPmERQU5DYN1d3dTX5+vsdzQkND+fPPP90eSuPh2uLb1NTEggULlPLz589TU1PjVdsAOp2Ozs5Ouru7lSmX/v5+Dhw4MCFTXWvXrqW0tJRjx46RkpKiXI+urq4xvcp98+bN1NbW8vXXX7N79263KaOuri56e3uJiYnxOubhREREEBAQwM2bN/n333+VqbDe3l6PW9P9/f15++23OXfuHIWFhapdPGfOnKGjo2PSYhVirCRBEdOK2Wzm77//JjExcdjkBAZ3rzQ3N2MymViyZAk5OTlYrVaSk5M9TjOEhIRM2UfUZs6cyfvvv8/x48fJzMxk5cqVPHnyhMuXL5OYmKiMcAz1+uuv09rayhdffEF8fDx+fn4kJCSQmJg45v7fffddfvzxRw4ePEhDQwM6nY62tjbMZjOpqan89ttvXv19mzZt4uDBgxiNRt566y3sdrsyJbdw4UJlket4JScnk5aWxoULF8jIyGDVqlUMDAxQWVlJbGws1dXVqi3mw1m+fDl6vZ7vv/+eLVu2sHz5cnQ6HVarlc7OThobGzEajZOaoGi1WtLT0yksLMRgMLBy5UoeP35MbW0tOp1O2Vo9VFZWFmazmdzcXJqamli0aBG3b9+mpqaGZcuWKddaiBdNEhQxrbgWxw59w6sn77zzDjk5OVy8eJHPPvtMGSqvq6vzuM01Ojp6Sr/yajQa8fPzw2QyUVJSQnR0NHq9njfffJNLly65Ha/X67HZbFRXV9PY2IjdbicjI2NcCcrLL79MTk4OR44coa6uDrvdzuLFi9m/fz/379+fkATFz8+PoqIiTp8+TUhICCtWrCArK8vthWvjlZ2dzfz58zl79ixFRUVERUXxwQcfkJSURHV1tccFw54YjUYSEhI4ceIE9fX12Gw2QkNDeeWVV8jIyGDt2rUTEu9IsrKyCA0NpbS0lJMnTxIREcGaNWswGAzKR/6GioyM5PDhwxw5coQ//viDa9euKffPbDZLgiJ8hsbpdDpfdBBCCOELzpw5w969e9m+fTvp6elT0udIny7wNfJVbDGV5EVtQohpp6uri2d/mz148ID8/HxmzJjBihUrpjymY8eOkZqayqeffjrlfY/k9u3bpKamkpqaOuwWbyEmg0zxCCGmnYKCAn7//XcSEhIIDw/n/v37VFdX09fXh8Fg8PjG1skSHR2tmopxvVzOV4SFhanik690i6kiUzxCiGmntraWwsJC2tvb6e3txd/fnwULFpCenj4l60aEEM8nCYoQQgghfI6sQRFCCCGEz5EERQghhBA+RxIUIYQQQvgcSVCEEEII4XMkQRFCCCGEz5EERQghhBA+RxIUIYQQQvgcSVCEEEII4XMkQRFCCCGEz/kfJ8qhjYXmekcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACw40lEQVR4nOydd5wU9f3/X7t7vfdeuKMcvTdpgihY0diIHSNGowmYaDT61Wis0Zio+eb7M0ERrFFEUFSKiEjvHa4A14/j+t1eb7vz++N9c7vHtZnZ2dvZ3ffz8dgHu8OUz87tzLw/7/J66wRBEMAwDMMwDKMh9I4eAMMwDMMwzKWwgcIwDMMwjOZgA4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMBrn559/hk6nwwsvvGDzvnQ6HebOnWvzfvpCzfG6AkuWLIFOp0NeXp7kbQYNGoRBgwbZbUwM4wywgcIwl6DT6aDT6aDX65Gdnd3revPmzetcd/Xq1QM3QAeTl5cHnU6HJUuWOHookhGNJuuXl5cXEhIScNttt2Hfvn09btfY2IiQkBDodDrceeedAzxq+/HCCy90Ox+XvgYPHuzoYTJujoejB8AwWsTDwwPt7e1YuXIlXn311W7/f+7cOfz888+d6zEWpk6dioyMDERERDh6KN1ITk7uNKwaGhqwf/9+rF27FuvWrcPatWvxi1/8osv6X3zxBYxGI3Q6HdatW4fKykqEh4fbfZzbtm2z6/778qJ9++23OHr0KK655hq7joFh+oMNFIbpgejoaMTGxmLVqlV48cUX4eHR9VJ5//33AQA33HAD1q9f74ghahY/Pz8MHz7c0cPokUGDBnULPT3//PN48cUX8fjjj3czUFasWAG9Xo8nnngCb7zxBj788EP84Q9/sPs47e29mDt3bo9GislkwsqVKwEAv/71r+06BobpDw7xMEwvPPjggygpKcF3333XZXlbWxtWr16NGTNmYOTIkb1uf+7cOdx7772Ij4+Hl5cX4uLicO+99+LcuXM9rl9aWooHHngA0dHR8PX1xfjx4/Hhhx/2uv++8hREF/7PP//c7/csLi7Giy++iJkzZyImJqZzrHfeeSfS09O77TclJQUA8OGHH3YJCYhhrr5yUOScE+vvsHbtWkydOhV+fn4ICwvDL3/5S1y4cKHf7yaFRx99FACQm5uL8vLyzuWnT5/G/v37MX/+fDz11FPw8vLqNEyVYDab8Y9//APDhw+Hj48PEhIS8Pvf/x61tbXd1u3pb7t69erO87x9+3bMnTsXgYGBCAoKwnXXXYeMjAzFYxPZuHEjioqKMH36dIwdO9bm/TGMLbAHhWF64Y477sAf/vAHvP/++7jppps6l2/YsAFlZWV4/fXXcf78+R63PXToEK688krU1dVh0aJFGDlyJDIzM/HJJ5/gm2++wY8//ogpU6Z0rl9RUYEZM2YgJycHs2bNwqxZs3Dx4kU8/PDDWLBggV2/586dO/HXv/4V8+bNwy233IKAgACcO3cOa9euxYYNG7Bnzx6MGzcOAM28a2pq8M4772DcuHFdzsv48eP7PI7ccyLy//7f/8OGDRuwaNEiXH755Thw4AC++OILnDhxAsePH4e3t7dN318QhM73Op2u8/2KFSsAUJJrWFgYbrjhBnz11VfYtWsXZs+eLfs4v//977Fz507cfvvtuPHGG7Flyxa8/fbb2LVrF3bv3g0fHx9J+/nuu+/wzTff4JprrsHDDz+M9PR0bNy4EYcOHUJ6erpNoTXxO7P3hNEEAsMwXQAgxMfHC4IgCA888IBgMBiEwsLCzv9fuHChEBQUJDQ0NAj/8z//IwAQVq1a1fn/ZrNZGD58uABA+OSTT7rs+/PPPxcACGlpaYLJZOpc/uCDDwoAhMcee6zL+ocOHRI8PDwEAMLzzz/f5f+Sk5OF5OTkHr/D888/LwAQtm/f3u27XX755V2WlZaWCrW1td32cfz4ccHf31+4+uqruyzPzc0VAAj33Xdfj8fevn17t/EqOSfidwgMDBROnjzZZZs77rhDACB88cUXPY6htzFd+t0FQRCee+45AYCQmprauaypqUkIDQ0VgoODhcbGRkEQBOHbb78VAAh33323pGOK3HfffQIAITw8XMjLy+tcbjKZhJtvvlkAILz44otdtunpb7tq1SoBgGAwGIQff/yxy//96U9/EgAIr7/+uqyxWVNYWCgYDAYhODhYaGhoULwfhlELDvEwTB88+OCDMJlM+OCDDwAA+fn52Lp1K+666y74+fn1uM3evXuRmZmJyy67DHfddVeX/1u8eDFmzZqFrKws7N69GwCFjD799FMEBgZ2C4tMnjy52z7UJioqCoGBgd2Wjxs3DldccQW2b9+OtrY2m44h95xYs2zZMowZM6bLsgcffBAAcPDgQVnjyMvLwwsvvIAXXngBf/zjHzFnzhy89NJL0Ov1ePPNNzvX+/LLL1FdXY3FixfD19cXAHD11VcjJiYGa9euRXV1tazjAsDy5cuRnJzc+Vmv1+Nvf/sb9Hp95+9LCr/85S8xf/78LstEj4fc82HNypUrYTKZcPfdd/f622aYgYQNFIbpg2nTpmHMmDH44IMPYDab8f7778NsNnc+IHvi6NGjAIArrriix/8Xlx87dgwAkJmZicbGRowfPx7BwcHd1re3bgkAfP/997jhhhsQGxsLT0/PzrySb7/9Fi0tLaioqLBp/3LPiTWTJ0/utiwxMREAZBsK+fn5+Mtf/oK//OUvePvtt3H+/HncfPPN2LVrV5cEWTHUcf/993cu8/DwwF133YXm5mZ8/PHHso4LAJdffnm3ZampqUhMTEReXh5qamok7UfN8yFiNps7k2MfeughRftgGLXhHBSG6YcHH3wQy5Ytw6ZNm7Bq1SpMmjQJEyZM6HV9o9EIAIiNje3x/8Xl4gNJXD86OrrH9WNiYpQOXRLvvPMOHnvsMYSGhuKqq65CUlIS/Pz8oNPp8PXXX+PEiRNoaWmx6Rhyz4k1ISEh3ZaJVVUmk0nWOC6//PJ+E4czMjKwe/duDB8+HNOnT+/yf0uWLMHf//53vPfee1i2bJmsY/f1983Pz4fRaOzxu16KmudDZNOmTSgsLMT06dO7easYxlGwgcIw/XDPPffgqaeewsMPP4wLFy7gz3/+c5/ri16QkpKSHv//4sWLXdYT/y0tLe1x/d72o9fr0dra2uP/SZ2Nt7e344UXXkBMTAyOHj3azYDoTcBMLnLPiSMRvSeZmZldkmatOX36NPbu3YsZM2ZI3m9paSnS0tK6LRfPiSO/u/id2XvCaAk2UBimH0JCQnDrrbfi448/hr+/P+64444+1xe9K73N1Ldv3w4AmDhxIgBg+PDh8PPzw/Hjx2E0Grs9qHrbT2hoKE6ePIm2tjZ4enp2+b/Dhw/397UAUPVQTU0Nbr755m7GSX19fWdoxhqDwQBA3mxd7jlxFC0tLfj444+h1+s7JeovpaioCFu2bMF7770ny0DZsWMH5syZ02VZTk4OCgsLMWjQIEneE3tQXFyM77//HsHBwVi8eLFDxsAwPcE5KAwjgZdffhnr16/Hli1bekwotWbmzJlIS0vD7t27sXbt2i7/t3btWuzatQvDhg3DrFmzAACenp646667UFdX1y1J9vDhw/j00097PM7UqVPR3t6OVatWdVm+evVq7NmzR9L3ioqKgp+fH44cOYL6+vrO5W1tbVi+fHmPuSehoaHQ6XQoKCiQdAxA/jlxFF999RUqKyuxcOFCrFy5Eu+//36315o1a+Dv7481a9Z0hq6k8M477yA/P7/zs9lsxh//+EeYzeYuuS4DjZgce88993QmBDOMFmAPCsNIICkpCUlJSZLW1el0+PDDD3HVVVdh8eLFuPHGGzF8+HBkZWXh66+/RmBgID766CPo9Zb5wauvvopt27bh7bffxuHDhzt1UL744gtce+212LBhQ7fj/O53v8OqVavwm9/8Btu2bUNiYiKOHz+Offv24frrr+8mMNcTer0ey5Ytw1//+leMGTMGN954I1pbW7F9+3ZUVVVh3rx5nd4NkYCAAEybNg27du3CXXfdhWHDhsFgMGDRokW9inspOSeOQAx1LF26tNd1goKCcNttt2H16tX45JNPOoXe+mPmzJkYP348Fi9ejODgYGzZsgUnTpzApEmT8OSTT6oyfrlYJ8ey9gmjNdiDwjB2YNq0aTh06BDuvPNO7Nu3D3/729+wd+9e3HHHHTh06BCmTZvWZf2IiAjs2bMH999/PzIzM/H222/j+PHjePfdd/H73/++x2OMHDkSP/74I2bOnIlvv/0WK1asgLe3N/bt24dJkyZJHutLL72Ev//97/D19cV//vMfrFu3DpMnT8bBgwd7Nco+/vhjXHfdddi8eTP+8pe/4LnnnusxHGTLORlozp49ix07diA6Oho33HBDn+uKVVzvvfee5P2/9dZbePbZZ/Hzzz/jnXfeQXl5OZYvX46ffvpJskib2mzZsgX5+fmcHMtoEp0gWMkoMgzDMAzDaAD2oDAMwzAMoznYQGEYhmEYRnOwgcIwDMMwjOZgA4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTSHUxoozc3NyMrKQnNzs6OHwjAMwzCMHXBKAyU/Px8PPvhgF9lohmEYhmFcB9kGSmNjIz744AM88cQTuO666zBnzhxs2rRJ0cHfeOMNzJkzB0899ZSi7RmGYRiGcU1kGyhGoxGrV69Gfn4+hgwZovjAmZmZ2LRpE7y8vBTvg2EYhmEY10S2gRIeHo7169fjyy+/xG9+8xtFBxUEAe+88w4WLlyIsLAwRftgGIZhGMZ1kW2geHl5ITw83KaDbtmyBbm5uZ0NtxiGYRiGYawZ8CTZxsZG/Pvf/8bdd99ts6HDMAzDMIxr4jHQB1y9ejW8vb1x++23S96moqIClZWVnZ+5eodhGIZhXJsBNVAKCwuxdu1a/PnPf5aVHLthwwasXr3afgNjGIZh+sVkMqGtrc3Rw2A0iqenJwwGg2r7G1AD5Z///CdGjx6NuXPnytpu0aJFmDlzZufn/Px8vPzyyyqPjmEYhukJQRBQUlICo9EIQRAcPRxGo+h0OgQHByMmJgY6nc7m/Q2YgXLkyBEcOHAAL7/8Mi5evNi53GQyoaWlBRcvXkRQUBD8/f27bRsREYGIiIiBGirDMAxjhdFoRE1NDSIjI+Hv76/Kw4dxLQRBQENDA8rLy+Hr64uQkBCb9zlgBkpZWRkA4Nlnn+32f+Xl5Vi8eDF++9vfyspNYRiGYeyLIAgoKytDUFAQTxSZPvH19UVLSwvKysoQHBxssyFrNwOloqICDQ0NiI+Ph4eHByZOnIhXXnml23p/+9vfEBMTg3vuuQepqan2Gg7DMAyjAJPJBJPJhKCgIEcPhXECgoKCUFtbC5PJBA8P20wMRVt/9dVXqK+v76ys2bNnT6eH5JZbbkFAQABWrFiBzZs344svvkBsbCyio6MRHR3dbV//+7//i9DQUMyePduGr8EwDMPYg/b2dgCw+WHDuAfi76S9vd0xBsoXX3yBkpKSzs87d+7Ezp07AQALFixAQECATYNiGIZhtAXnnTBSUPN3oshAWbNmTb/rPPPMM3jmmWdU2RfDMAzDMO7FgCvJMgzDMAzD9AcbKAzDuCcNDUBHfgXDMNqDDRSGYdyPykrgm2+AjRuB4mJHj4ZxY1paWvDUU08hLi4Ovr6+mDZtGrZu3Spp2zNnzuC2225Damoq/Pz8EBERgTlz5uDbb7/tsl59fT2ef/55XH311QgLC4NOp5Oszv7KK69Ap9Nh9OjRcr+azbCB4ghMJqCpydGjYBj3pL4e2L6dDJOcHODrr4E9e8ijwjADzJIlS/CPf/wDd911F9555x0YDAZce+212L17d7/b5ufno66uDvfddx/eeecdPPfccwBIfX3FihWd61VUVODFF19ERkYGxo0bJ3lsRUVFePXVV3sUUB0IdIIT6hZnZWXhwQcfxHvvvYe0tDRHD0caDQ1AaSlw8SKQlwfodMC11wIqqO0xDCOR1lbgxx+B06eBoUMBDw+gpoauy7g4YMoUYMgQQMV+Is5Oc3MzcnNzkZKSAh8fH0cPx6U4ePAgpk2bhr/97W944oknAND5Hj16NKKiorB3717Z+zSZTJg0aRKam5uRmZkJgLw01dXViImJweHDhzFlyhSsWrUKS5Ys6XNfv/zlL1FeXg6TyYSKigqcPn263+Or+XthD4q9MJuB8nLgzBlyI//3vzRT278faGwELlwADhwgbwrDMPbHZAL27qVrMjWVjBOAJgnDhgF1dcD33wObNwMduk6Me5Camoq777672/J58+bh8ssvt9tx165dC4PBgF//+tedy3x8fPDAAw9g3759KCwslL1Pg8GAxMRE1NTUdC7z9vZGTEyMrP3s3LkTa9euxdtvvy17DGrByjtq0txMXpKSEnIdV1WRMeLtTTfB1FTLzCwoiGZxCQnAqFEOHTbDuDyCABw9Sq+EBLomrTEYaHlzM5CVBRQVAePHA2PHAr6+DhkyMzDU19cjLy8Pv/nNb7r938mTJ3HnnXf2uF1bWxuMRqOkY4SFhUGv7+4POHbsGIYNG9ZNpXfq1KkAgOPHjyMxMbHf/Tc0NKCpqQlGoxEbNmzApk2bsHjxYklj6wmTyYTf/e53WLp0KcaMGaN4P7bCBootCAJQXU2zrcJCehmNNFMLDAQiIgA/v5639fMjI2XfPiAqCoiMHNixM4w7kZlJ11pEBNCXkKSPD4V+KiuBnTtpojFlCk0uenjAMM7P6dOnIQhCt9yMoqIiVFVVYezYsT1ut2fPHsybN0/SMXJzczFo0KBuyy9evIjY2Nhuy8VlxRITuB9//HH85z//AQDo9XrcfPPN+Ne//iVp257497//jfz8fPz444+K96EGbKDIpbWVDJLSUrp5VVRQfomHB3lJBg2yuI77IzoaOHeOwj5XXw14etpz5AzjnhQUkLHh6wuEhkrbJjycrucLF4DvvgNGjgQmTaLljIXJk8ljrAViYoDDh2VvJuZVXGqgnDhxAgB6NVDGjRsnudqmt/BKU1MTvC/15gGduRtNEospHnvsMdx6660oLi7GmjVrYDKZ0NraKmnbS6msrMSf//xnPPfcc4h08MSZDZT+EASgtpYMkuJiSnCtqSEviZ8f3cTi4ynpVS46HZCcTC7luDi6ATIMox7l5VSx09pKkwc5GAxAUhKFaU+eJENn4kQKyfbwUHFLSkrIiHNiTp061WOvuJMnT0Kv1/daXhsaGoorr7zSpmOL3X8vpbm5ufP/pTB8+HAMHz4cAHDvvfdiwYIFuOGGG3DgwAHZ0vPPPvsswsLC8Lvf/U7WdvaADZSeaGsjz0hpKZCbSx6Tujq6YQUH001LLW+HtzfNyg4dAmJjyVBhGMZ26urIOKmspMocpfj5URJtRQWwbRuQnU1hn+RkZRMTV0Jm4qVdUTiW06dP91h6e/z4caSmpvZaYtva2oqqqipJx4iMjIShh8qw2NhYXOjBwLt48SIAIE7h8+DWW2/FQw89hLNnz8qqdD137hxWrFiBt99+u0t4qbm5GW1tbcjLy0NQUBDCwsIUjUsubKBcSlkZlSFWVNCsy9eXvCQxMfaLQUdEAOfPU4z8uusoDs4wjHKam4EdO4D8fMopsdWQ0OkoTywkhBJoN2wAxowBJkxwb6kABSEVrXHq1KluCaVmsxk//fQT5syZ0+t2e/futTkHZfz48di+fTtqa2u7JMoeOHCg8/+VIIaGpCbxily4cAFmsxnLli3DsmXLuv1/SkoKli9fPmCVPWygXEpDA2kiJCcPrBs3OZmMlCNHgJkzB+64DONqmEwkvJaeDgwerK6miacnkJJCYm+HD5OHdfJkYMQIziFzQsrKylBeXt7psRD55z//iYqKij4rWNTIQbn11lvx5ptvYsWKFZ06KC0tLVi1ahWmTZvWWcHT2NiIgoICREREICIiosv4o6Kiuuyzra0NH330EXx9fTFy5EhJ4xMZPXo01q9f3235s88+i7q6OrzzzjsYPHiwrH3aAhsoPaHTDXyM2dOTQjzHj1NOi9x4OcMwlDN26BBw7BgZ/V5e9jlOQACQlkZh4B9+sIR9EhLsczzGLpw6dQoA8MMPP+CRRx7B8OHDsX//fmzZsgUAcOTIERw4cADTpk3rtq0aOSjTpk3DbbfdhqeffhplZWUYMmQIPvzwQ+Tl5WHlypWd6x08eBDz5s3D888/jxdeeKFz+UMPPYTa2lrMmTMH8fHxKCkpwaefforMzEz8/e9/R4BVxdq//vUv1NTUdIZuvv32WxQVFQEAfve73yE4OBgRERG46aabuo1T9Jj09H/2hA0ULRESQmXL+/aRO9lB8sIM47ScOUNVcdHRvZf4q4VOR6HfsDAKJRUXW8I+gYH2PTajCqdOnYLBYMDnn3+OZcuWYdWqVZg9ezZ27NiBm266CcePH4ennT1jH330EZ577jl8/PHHqK6uxtixY/Hdd9/1GV4SWbx4MVauXIl3330XlZWVCAwMxKRJk/D6669j0aJFXdZ98803kZ+f3/l53bp1WLduHQDg7rvvRnBwsLpfTAVY6v5ScnOB9espbu0ITCbg7Fmajc2dy0l4DCOV3FxSgfX0JANloDEayUiJiaHrd9gwl5DMd2Wp+6VLl2Lnzp04e/aso4fiMrDUvStjMACJicCJE6SRwjBM/5SWAj//TC0mHGGcAFThl5ZGjUA3bgQ2bdKORgjTI6dOnZKdp8EMHGygaJGAAMqB2bePNFcYhukdoxH46ScKj0qQBbcrej1JBSQnkyf0m28o+Z3RHIIgID09nQ0UDcMGilaJi6OSZ24oyDC909REWicXLpAcvVZCot7eFCZuaaHE9/Z2R4+IuYTc3FzU19ezgaJhOElWq+j1JAh3+jRV9fSiZsgwbkt7O7BrF4VC1S4nVou4OOrRVVBABhSjGVJTU+GEKZhuBXtQtIzYUHD/fpLsZhiGMJvJu3jypLrKzmrj7U2TjdOnacwMw0iGDRStEx1NMfb9+0mCn2EYMkwOHiTtIHuXE9tKTAz18OrQnGAYRhpsoGgd64aCJ086ejQM43jOnyel2OBg8jBqHT8/yiNLTychOYZhJMEGijNg3VDQqoETw7gdxcVUTqzXk5ihsxATQ2qzXHbMMJJhA8VZiIigioV9+6gRGsO4G9XVVLFTX+98kvIBAXTdpqc7eiSK4YRSRgpq/k7YQHEmkpNpFnbkiKNHwjADS0MDGScXL1KzPmckOpq0UZws4d3Dg4o927lUmpGA+DsRfze2wGXGzoTYUPDYMW4oyLgPbW3A7t2UezJkCIV3LiGnQIcjp/R2zyP39AQmjzEjJUnBLDE4mAyszEynCk8ZDAYYDAbU1tYikHsMMf1QW1vb+ZuxFTZQnA1uKMi4E2Yz/dZPniTPSS/lxEdO6WGsHQCRtibg8Ck9UpIUiidGRZGBMmYMXctOgE6nQ1RUFC5evAhvb2/4+/tDpxVBPEYzCIKAhoYG1NbWIjY2VpXfCBsozkhSErmKDx7khoKMa3P8OHD4MHkM+2g8JnpOdDoBvv31JxMEjDz5JaJKTiNr1CJcTJgsaShNzYAg6Gzz0oSGkoGSlQVMm2bDjgaW4OBgNDU1oaKiAuVOFqJiBg6dToeQkBDVOiOzgeKMWDcUjI+nrqkM42pkZVE5cVgYIDG04OsD3HlTP96N778HjnwIAIi7cAS4/npgyRLAy6vPzT772oDGJknD6B2djhLez5wBRo2i5FknQKfTITY2FlFRUWhjPSamFzw9PVUJ7YiwgTLQ1NQAp05RFYItyX4BAbSvffvIbewk7mKGkURREbBzJxkN4eHq7TcnB1i5suuy776ja/Lxxwcmrys8nIyvc+eACRPsfzwVUSu3gGGkwFU8A0FtLbBlC/DcczRT+9vfgCeeAHJzbdsvNxRkXJHWVjJOGhvpN64WTU107YnVKGPGWLwm+flkoGzYYH9Jer2eQj2nTtGYGIbpEfag2Iv6epKn372bQjGXGhBtbcB//gO89pryHBJuKMi4IoWFJGimpjdDEIB336WuxwBVA73wAlXVvPkmSdG3tQHvv09l/MuXU2jJXkRGkgclO5uvW4bpBfagqEljI2k1vPQScO+9wD//CRw92tU4iYmx3PjS02mmaAvcUJBxJQSBwh96vboNAH/6iRRoAcDXF/jjH2n/SUlkoNx4o2XdY8eAZcvIM2kvDAYK0546RR4jhmG6wR4UG8k914LSjYcQf24X4i4chsHUPYGswT8S+SmzUZA6B1XhQxBbdATztj4PAGj8f6vwXdl0tHv23fCsT/2F6Giaje3fD1x9tXY7uzJMf1RUULglKkq9fRYWAv/+t+Xzo4+SnpCIlxfwwAPAxInA229TGX9tLfDKK3Q9PfAAtZtQm+hoCvPm5gJpaervn2GcHDZQlNDSQm7gXbuQeOAwUtpbuq3S4BuOnKTZyEmag/LwNEsYpxnIjpiC1PjpSL6wH35NVRh+6HMcnPBA38fsS3/BuqFgXBwwaZIKX5JhHEBODqnGqiVl39ICvPEG/QsACxYAc+b0vO6ECcD//i+9RO/J5s0UQn38cQAqV8t5elLp9MmTwODBgArKmwzjSvAVIZXWVgrX7N5N+iMd/XCsT2CTbwgKBs1CQcpslEePBHQUQSPfSFfPx/HLliJh/REYTG0YdfYbFIy8CrUhiT0eWpL+gnVDwdhYdZMLGWYgaG4mjRA1K9JWriSPDEDhnAcf7Hv9oCDgmWcoqf399+m6LyoC/vhHDJ9wL44OvhmAirpD0dHk4cnPJyOFYZhO2EDpi7Y2EoravZtmVI2N3VZp9glCbsJMXBg6G1f+egTSDAaQs1YA0FdlTRTgcQvw+ecwmNtxfc6/gb/8pceEWcn6CxERJAe+dy9pO/QhbMUwmiM/n0I8aj2od+8mDwhAYZwnn5QWqtHpKLQzejTlp+TkAO3tmHjoA0QXHMHBuX8AEKrOGL29Kd/mzBmSHehBxp9h3BU2UC6lrY1CJZs2UU5HfX33dQICgMsuA2bNwvrcCWho8YCfrwAYZJb63nILJe+VlZEhtH8/7dcWrBsKzpxp274YZqAwm8l74ulJCaS2UlIC/Otfls+//jV5UOSQkEBlyZ9+CqxfDwgC4ktP4NqvfwukPArMmGH7OAHyeObmkqdG7hgZxoVhA8Waxx4DPvqIkuQuxc8PmD4dmD0bGDu2MxFVyLfhZurtTQl4r71Gn1eupEQ9WxLyPD2pUogbCjLORGkphTqio23fV1sbGRaix/Pyy4GrrlK2L09P0i6aMAGNr70Nv8ZKeLfUAX/9K+1z6VKqCrIFX18y0M6cIYVobl3BMADYQOlKfn4X46TNwxdFydNQkDIbF+MnwWzwBApBrw6amm085vTplJx37Bh5Ur76CrjzTtv2KTYU3L+fclH6kfBmGIeTnU05KH59V7NJ4uOPqaoNIO/Eb35j+0N/3Dhs/MX/YdLO/0VK4R5atnUrGRWPPw4MHWrb/mNi6BxcvMj5YwzTAQc8rVm8GO0e3shJmo0fZ/0PPvnFZ9g29Umci7wM9a1eaGzSdXsJAt34FFf26nSUuCe6tb/6itzTtpKQABQXk9uYYbRMQwM1v1RB0j6u8CDw9df0wcOD8k7UMHoAtHoHYtvMZ7B/1mOW/K7iYjrGl1/apuYcEEAJuRkZqoyVYVwBNlCs+cUvsOmRddg/9wmUDZsB70Av+PkK/b6CgwRMHmODPHZCArBoEb0X1SxtxdOTEu7On7d9XwxjT/LygKoqm5Vb/RorMH3nW5YF99+vfmWMToecYVeRXorYpNNkIq/Ns8/aJpYYHU2GGgsuMgwADvF0xdsbNzw2ghLibHXZymXxYmDHDrpRHzxILeYnS2sD3ysREZR8V11NvT8YRmuYTOQ18PW1qYJFZzZh7t7X4dNSSwumTaNKNnsRF0d5KJ9/Dqxda8khWbYMeOQRylWTS1AQhXgyMkgKn2HcHPagaAU/P5rxibz3HvoWPpFAUBApYoo6EAyjNYqLqT+Ojcqxo49/htjyM/QhMpIMBXsnm3p4AHffTYqzokHR0EAJum+91aMsQb9ERlI1U0+J+gzjZrCBoiXmzAFGjqT3Fy9aYulK0emAwEC64YkdXBlGS5w/T79NWzR7TpzA6ONfAADMOj11Cg8MVGmAEhg1Cnjnna4Ktdu3U1VgZqa8fYWGAkYjhXoYxs3hEI+W0OmAhx4Cfv97chmvWQPMnQsgRvk+IyIoUba4mDUWGG1hNJKBYks4o6YG+Mc/oOtQaj458R6MHzFCnfH1QlMziSd2JRgY8hQG6aZiyt7/g2dbE1BSAvNTf8KeuU+hMGWW5P176oZjcns2UkaOHFhDi2E0BntQtEZKCnDttfS+pQVYtcq2/Xl7U5w/J8f2sTGMmuTlUShDqbS92UyhlI5wSFHMBKSPvVW14V2KWKknCN2r+cRXetwV+Orq/0NpBBlJesGMcYdWobFR6HWbS1/GRg8cPutrKZVmGDeFDRQtcuedQHAwvd+9G9HFJ2zbnyiBX1dn+9gYRg3a2oD0dMqTUporsn496QcBaPINxY7pT3T2v7IHk8eYERzUf1WfOTIaP13/OkpjxgAAgupLkFp9TFJFoE5HnqA2eACnTinLY2EYF4FDPFokIAC4917qqgpg0v5/I2/hvwAoVK0NCaGYdkEBxcsZxtEUFZHej9KwY2YmlfYCgE6HvZc/gSbfUPhd0pRTTVKShJ67ifdGzHXAX08BAK6o3Qg8Oq7fTTr7bukNJNyYk0M9gRjGDWEPilaZP79TZyGkpgCjzn6rfF96PVUJZWWRW5xhHI0YvlCiclxfT5Uy4m/5tttQGjdetaGpxtSpFm2XAweAykp52wcGAidOUKiXYdwQNlC0il5PCbMd7u+Jpz6BT2OV8v1FRFA5pxoqtQxjC5WV5BlQkhwrCMA//2kRMxs5ErjjDnXHpxYeHsCVV9J7sxn48Ud520dHUzVfbq76Y2MYJ4ANFC0zdGhnkzOv9iaMP7xa+b78/Ggmxjc7xtHk5ZE+T1CQ/G2//556TAHkYXjiCXW6H9uLhQstAnRbtsiTw/fwIAG7U6dYJoBxS9hA0Tr33osWrwAAQOr5bZRYqJSwMMpFaWpSaXAMI5OWFlJKDQ2VnxybnQ188IHl8/Ll5BnUMpGR1KEcACoqgKNH5W0fE0NdnvPyVB8aw2gdNlC0TlAQTk66x/L5P/9R3pQsLIyk9AsK1Bkbw8iloAAoLZVvWDQ2Ut6J6ElYtIhyPJyBa66xvN+yRd62Xl7kSTl9mvPHGLeDDRQn4HzaNagISaUPubnyb3IiBgOJOZw7R7F8hhlIBIEStT086CVnu3ffJbFBABgyBLjvPvuM0R5MnGgxyA4flt8MMDaWPCiFhaoPjWG0DBsoToCgN2Df5N9YFnzyCcXwlRAZSbPYigp1BscwUikro75QcvvubNtGjTQBysn44x8tqmnOgMEALFhA781mYOtWeduLbQBOn+aJBeNWsIHiJJRGjkLu4CvoQ329RQNCLgEB1NCMY9rMQJObS/lPAQHStykspLCmyG9/Sx4FWxG7KOfmDkzo5KqrLMmyP/wgP0wbE0OVT6IXiWHcADZQnIhjU+6nGSRAN7nz55XtKCSEXO2traqNjWH6pLGRDAJRF0QKLS3AG29YdEAWLABmz1ZnPIWFQGIiEB5OIU97Xwvh4Zacmaoq4NAhedv7+9MYbUmSZxg5mEwOL6hgA8URKPzDN/uFWTQfBIFmlkpmf+Hh5G4vKpK/LcMooaCA9E/kGCjvv08hIQBITgYefFCdsdTV0fUzfTpw3XUkiJidTZ5Je3L11Zb3mzbJ3z4mhiYlZWXqjYlheiM9Hdizx6FDYANlIKmrIzdtdjbdeJVYp9dfTzM/gLwg27fL34enJ7mblXpgGEYOZjN5T3x8pGuW7N5tSQb38qK8E29vdcZSVASMGwcMGkTexAULyLtx8aJ9c7PGjyfxNQA4fly+aGJQEIVnMzLUHhnDdMVspnYSDu4FxQaKvWlroxtfZia1lx88mEokR4xQFk/28AB+/WvL59Wrlc38IiIo/t7RCZZh7EZJCYVUpCrHlpQA//qX5fNDDynv2XMpxcVAXBwwaZJFh8XHB5gzB5g3jyYNBQX2SUbV60m4DaD9K6nGi4qie0mVDarSDNMfJSX03HIwbKDYA0GgB/+5c+Qp8fcHrrgCuO02cikPHQqMHUs3LCUW6rhxwIwZ9N5oBP77X/n7CAqiSiDRhc4w9uL8ecqf8PPrf12TifROxOvi8sstcvG20tBA+SzTpnVP1NXrgQkTSLMkIIDGbA/11vnzLV6kH3+kCYwcQkLouj17VvWhMUwnBQWaMILZQFGT5mZyH2dl0fsxY4CbbgJuv51mbBERlllbQgIZKhcuKDvWAw9YGq19/738qhydjqTCMzJYRpuxH3V19DCVKsx24oSlkWBcHPCb38hXnO0JQSAvzqhR5MXsjZQUmkQkJ9M41HZxh4ZS7gtAk4sDB+Rtr9PRuTxzRrnUAMP0RUsLXbNqXHc2wgaKrZhMFLfOyiL3cUQEJcMtXkylhSkpPWs26PXkRfHyUhaiiYwkwwegeOGKFfLd0hERpOrJpYuMvcjPJ29iaKi09UW9EwC4915pXhcpXLxI18yUKZZy396IiCBPyoQJZNSoHQa1TpbdvFn+9mFhlHAsGnIMoyYXLtAzTeo1a0dkyDkSjY2N+Pzzz5Geno6MjAzU1dXh6aefxjXWcs69cOTIEWzduhUnT55EeXk5wsLCMHHiRDzwwAOI0HpPjUtpaCBFyNZW+kNOnQqkppJGg9REwLg4qiA4dYr+lctNN5GbuKSERJx27aJYulS8vcm4yclRL8bPMCImE1UC+Pv3bxQANHMTGwH6+QGTJ6szjuZmmgTMnk0hEin4+VFOSnAwjamxka5XNWaVY8fSvoqLgZMn6YEQHy99e72e7jmnT1Mum1pGHMMA9DzQ6TQhhijbg2I0GrF69Wrk5+djyJAhsrb997//jWPHjmH27NlYvnw55s+fj+3bt2Pp0qWorKyUO5SBp72djIHMTJrBJCWRO3jxYjIMEhLkdVbV6ehm5eurzF3r5dW19PKDD+RXBoWHU7y9rk7+8RmmLy5coIewVOXYw4ctv9/LLrOEMG1BEMiLM3IkkJYmb1sPD/K4XH013ayzs5X3wbJGp7MkywLKkmUjI6ncODvb9vEwjEhtLRVPhIc7eiQAFHhQwsPDsX79eoSHhyMzMxO/tq4o6YdHH30UY8eOhd5qNjV16lQsW7YM69atw4Nq6RyoiSDQw7u8nLwNERFkjAwaRDdeW2dUMTE0CzpyRFn7+SlT6HXoECU1rVkjr09JSAjFGwsKKD7PMGpx7hxdM1LLg63DO5dfrs4YysvpNz5lirzJg4hOR97NoCAa37lzFLa1teR5/nxSg25vJyn/u++WZ5AZDDSmEydofGqUYDNMURHlRg0dSlECByPbg+Ll5YVwhdbV+PHjuxgn4rKgoCDka62apLWVZn9ZWWSgpKVRefDixVQFEB2tXhLR6NFUOaA01r10qaX52jffyBNg0+vJRZyVxd1SGfWoqaHZvdTQbX09eVAAMijGjLF9DK2tdE1Nniy/e/KlxMQA115LRnxuru0JqkFBwMyZ9L6uDti7V/4+oqLIo5uTY9tYGAawNPP08ZEWkh0AHD6KxsZGNDU1ITg42NFDsSBm/AcFUYnj7bdT0tyQIfaZqURGkgu6tFSZ/kJsLHDzzfS+vR147z15+4mMJKNGrnAUw/RGbi7NxKTmfOzbZ6kmmz1bmbfjUvLzybuglmcwMJAS32fMIM+MrdeLrcmyHh4UHj51Sn65MsNcSnm5pdBDI8gO8ajNl19+iba2NlxxxRW9rlNRUdElR8Wu3paQEIp/JyRQIpuctvC2MHq0RYBJiYfqtttIVba8HDh2jMoXxXLG/vD1pdlmbi59Z4axhbY2Kl8PCpLuZdy50/JejfBOZSUl506dqm6yn6cnGSghIaR2m5tLJclKZpwjR5IqdGEhJRMXFABIkbePmBgyxPLzaQLFMEopLKQcMH9/R4+kE4caKMePH8fq1asxb948TJo0qdf1NmzYgNWrVw/MoEJDLSJoA0lYGBkpe/bQ+x5u7E3NwGdf9zaz9EPimAcx+6dXAQD1/3wf3xdNhslDosfHPByeWVWYbM5HyuxkhV+CYUA3upISytMCkFOgw5FT+l4n+T6NVfjFiZPQAagLjMW3Z4YD6fLCp03NVh/a2shQnzuXHuBqo9ORV+bSvBS5Sb06HXlR3nuPPm/ZAkQ+LG8fXl5kHJ07xwYKo5y2NgrvBAY6eiRdcJiBkp+fj2effRapqal46qmn+lx30aJFmCnGazu2ffnll+09xIFn1CiaSVVUdJEF9/QE0AQIgg6NfRTpZEXNRGr0eMSXHkdAfRmGHl2Lo2PulnhwA9ACHP7yHBsojG2cPUsPzQ7PxZFTehhrezc4UrJ2QQcKSZ5LmovGZuWRZ09PkCciJYUq5OxJYiJV8e3aRd7PxMTuCrX9MW8e8OGH5MH86ScYblkCwFfePiIi6DvX1EgPqTGMNRcvUlWY2OdNIzjEQCktLcXjjz8Of39/vP766/Drp44/IiLC+XRSlBAcTDfVHTsozNPhNp48xozDfcxArTk28yHErv8t9IIJ4zK+RP6ohWjy7//cNTWTAdTW0Er5KxpQEWSckIoKCntYGdji71anE+Dr032TYYU/d74vTpsDP19lfXA8PYHJqXX0Zvr0galsCQ2lZoNBQcDRo/RZzr0qIIBybrZtAxoakJS7C2cSFsgbQ1AQPWAKC9lAYZSRl0cl9GqU9qvIgBsoRqMRjz/+ONra2vDWW2+5h+EhhxEjSICpvLyz82lKkoCUJKn6C/GA6Xrgm29gMLXhF34/Azf9ot+tPvvaQN4Zk4mOLVW7gmGsycmhipyEhG7/5esD3HnTJb/j4mLgg46+MqmpuH5JPACFWiMmE3CuABg/o8fj2w2x2WBwMCX7FhTQTFSqkb9wIRkoAIZmbpZvoOh0VIl39ix5YTVSgcE4CY2NpIWlEe0Ta+z2S66oqEB+fj7arfq8NDU14cknn0RFRQXeeOMNJGrMnaQJAgOpLXt1tXJRKGsRqD175G0rCPL7+jAMQIqtmZnyZvHWybFyVJB7orCQDJOJE23bjxIubTZ47pz0HldpaZ35OhHlmQirVlA2HBFhcdMzjByKiuh5o0HvmyIPyldffYX6+vrOypo9e/agrOPCuOWWWxAQEIAVK1Zg8+bN+OKLLxAbGwsAeOmll5CRkYFrr70W+fn5XapxfH19MXv2bFu/j2uQlkalg2VlVEIsl4QEuuHl5dGsqqxMukdEr6Ntxo1j8SdGHgUF5H1LTZW2viB0FWez5fqvq6P9TZ9OVWmOIiWFJhli8mxycv9S9GKy7L//DQAYfn4Tjsc9Iu+4fn5UgVFQYJ/EYMZ1OX+eqlXVKO1XGUUGyhdffIESKw2AnTt3YmfHTGjBggUI6CVR7Pz58wCAjRs3YuPGjV3+LyYmhg0UEX9/8qL88AMZFkp+ODNnWjwhe/YAv+g/zAMA0BvIoCkq6rvrK8NYI4o8eXpKL83PybF08x41qkveiizMZvq9TpvW6YlwKGKzwd27qddOXFz/1RFz5wKrVwPNzRiS9xNOX3Y/AJn5AKIq9IQJmuijwjgBVVVk1Go01UKRgbJmzZp+13nmmWfwzDPPyN6O6UD0opSUyGskJjJzJvDpp/RejoECkLv6/Hk2UBjplJbSjU5O7pJa0vbFxWQETJqkneRuPz/giivIUDh2rH8Dxc+PQlw//ACv9iYk5+wAcJW8Y4aFUZiruJg8NwzTH0VF5H3UqP4VZ1NpFR8fmgnV10uPZVsjhnkAS5hHKhER5H2pqpJ/XMY9yc6WJ/JkMlnyTwwG5dpDjY3UBXnaNPklvvbGw4PCXTqdNKVXK2XZIZmb5B/Py4u8SZxDxkjBbCavZ0CAdgz7S2ADRcsMGULek4sXlW0/a5blvZxk2aAg6jVSUKDsuIx70dBAN7qwMOnbpKdbDOCJE5U1yhQES5NLrXr7YmPJ4JfSrX3IEFRGDAUAhFeepxwWuYSFkbGogUZvjMYpKaFni0bDOwAbKNrG25u8KE1NynptWInbyTJQdDpySWdkKPPeMO5Ffj4ZG3IMFDWqdy5epLyVKVO0W1rr5UWdYY1GSaufT7vG8mHLFvnHCwmhv4WY28MwvVFQQAKBPj2IE2kEjV7VTCeDBwNJSRRXlkt8vG1hntJSZcdl3AezmUqLfX2lJ3O3tVkMZm9vCs/IpbmZwp9Tp2qyPLILiYlkqLS09LtqfuoctHp0VCHt2CHfE2IwUN5LR0ECw/RISwt5PTV+7bCBonU8Pamip7VV0g2uG0rDPN7e9PDhVu5MX1y8SIl2cipwjh0j4wKgsmC5MzhBIK/NyJGUTK51YmLo/EgI87R7+uJ8Skfj1JaWronEUhGl7zmHjOmNCxfo96hBcTZr2EBxBlJSyBOixJuhNMwD0I/3/HnK8maYnjh/njwicrRHrB+6SsI75eU085syRZPaDd0wGMiQqq2VtHrm4GstHzZtIoNMDoGBdM0WFcnbjnEfsrMplC9VEsBBsIHiDHh4kBfFbCbXthzi48nAASjMU1oqfduQEFIY5GRZpidqaymRU84srKkJOHCA3gcGUo6VHFpb6Tc5ebKmk/u6kZBApcQSQjZVoSkojxpOH/LzyRUvB52OqqmysuiewTDW1NZSpZfGvScAGyjOw6BBVLKoJPnN2ouyd6/07fR6uqlmZPCNjumOmBwbGip9mwMHyMgA6HcpdwaXnw8MG0aVO85EZCRV9Eip5sElybKbN8s/Xng4VWnImZAw7kFREXW+Dg529Ej6hQ0UZ0GvJ/l5nY60H+RgS5gnMpJCS1bKwQyD9nYqFQ4MlFdBY129I1ecrbKSPANTpzqfUqpOR4ZVY6OkkE1BymyLpszu3ZacHan4+ZG3lb2fjDWi4rOvr3Yr36zQ/ggZC4mJpI0iNxfFljCPry/NeHNz5R2TcW0uXLCU+UrEu8kIHD1KHyIiqHO3VNraKPdk4kTn7TUTH096LxJyukwe3qREC9D199NP8o8XEkIhONFjxTDl5fT8cJLwKBsozoToRfHwkD+jUhrmAUjfIitLvueGcV3OnqXZmIyGkol5uy2hwjlz5M3gCgrIyB47VuZANURoKBkpEsM81sqy2LxZfrJseDhJC7BUACNSWEj3camKzw6GDRRnIz6eKgLk3nRsCfOEhVGuQWGhvO0Y16SqisrPZc7CBuUo7L1TU0MhnenTnb/D9pAh5A2SktOVmGjJtSkqAs6ckXcsMQzG0vcMQL+7zExlqs0OQts1Rkx3dDpgzBhy3dbWSv+xiWGe3FxLmCc6Wtq2BgMJTWVlURxdo30bmAEiL4+UUWNjJW8S0FCKqNKOB2xiovSuwyYT5T/NmEGVMM5OQgIlJxqN0pKLr77aYphs3gyMHi3veGFhVAo+ebL2ehUxA0bO/os48t90tNUEAh4hACTcw00JgMEAvwN7cNMrM/tf3w6wB8UZiY0Fhg+X36PHljBPZCR5UMrL5W3HuBZtbVTVFRwsy1BNzb8kOVbqtoWF9FCXW46sVQICqNOwVBG1GTMsk5C9eyVrqXQSEkLGEGuiuDVH1p6DsbwVjW2eaGzSo7FJ1/+r1YP+NSoQCFUJNlCclTFjKI5YUyN9G1vCPAEBpGHB7mL35sIFymuQoxwLYHD+z5YPUsXZ6uoo72L6dKpKcRVSUynEYzL1v66nJzB/Pr1vbwe2bZN3LGvpe7k5LIzL0NZEvdx0EODnK/Hl1U7/BjsurMohHmclKoqkvg8elN5PwZYwD0Cz5qwsStR19lwARhl5efSgk1HmG1ydh/CajiqwtDRpVThmM836p06VHg5yFuLjKbxTVSXN0Fu4EFi/nt5v3gzceKO8BOOICPJEVVU5hTgXYwfayRj29QXuvEmCYZyeTh67hQuBRx6x8+B6hz0ozszo0eT+ldNzw5YwT3g4hXjYXeye1NfTTFxO12IAydkKkmOLi4G4OGDSJNfLefLxoSagUr2fcXE0KQAorHvqlLzjBQTQ346vW/dFblf6H38ENmwAHn0U2LrVPmOSABsozkx4OBkpZWXS3bfWzQN375Z3PE9Pmrlxp1T3pLBQenKniCB0Vu+YdfquBnJvtLdTKeSUKSQE54oMGkTXUlubtPUXLrS837RJ3rF0OjJSsrKkhZUY16KqSt7f3WQizzxAxrT1M2OAYQPF2Rk1ih4YUrUV4uIsom3nzsmXwo6IIDc/d0p1LwSBfi+ikSqVrCwE1NNvrDR2nDTjRjSCkpIUDtYJiI2la0nqdTttmiWUe+AA9SOSQ0QES9+7K4WF8vKPMjIsydgTJshrBKoybKA4OyEhlDBbXi69X44tYZ6gIPrx5ufL245xbioqKEQgMznWWto+b7DE8E5NDRknDrwx2h1PT2DoUDLGpK5/5ZX03mSS73b38SFFWZa+dy9MJso3lBMm3bfP8n76dPXHJAM2UFyBESNohlRRIW19W8I8Oh0ZKZmZ8uOajPNSUEB5DHK0NEwmYNcuAEC73hNFyTP638Zspt+VK3tPRBITSV9IaofyBQssD5offpDfwDMkhB5WLY4rG2UGmNJSyluS6vUUBGD/fnqv15N+jgNhA8UVCAoiCfDKSmk3LTXCPKWlLKHtLrS304NNbvfTkyc7PQSF8VPR5iVBXruujvJO5FSXOSvR0fSSGuaJibHowZSVAceOyTteWBhNYpR0RGeck7w88pxJ9aDk5Fi0rtLSHC7uxwaKqzBiBN3sysqkrW+LJoqXFxlCnCzrHhQXk0Eqt0R1h6V6Jzt5rrRtamrIgHaCVvA2YzCQMrOE5oGdXNqfRw5iaTg3/nQPWlpoAionqV30ngCWyjEHwgaKq+DvTz+o6mppGdvWYR65BgpAXpScHPnKlozzkZdHvyk52jctLZ2x7FZPPxTGTZG2XVOTxbvnDiQk0LXb0CBt/SlTLGXehw5JD+uKhIeTgSLHKGKckwsXyDsnRxbA2kDRQGNONlBcibQ0mn1KCdlcEubxr5MZ5gkOptkuNxB0bRobFWmf4PBhMjYAFA6aCZPBq/9tGhpIMdYdwjsiERFU0SM1zGMwUC4KQF5MucmyISF03bImiuuTnU2hHQ+JeqzFxZbih7Q06QKgdoSVZF0JX19g/Hhy/ba39//DnDmz092blLcb5UNulX4svZ6Ol5FB4SU5paeM81BURF65wYPlbWcV3slLlVG9ExnpXmqnOh2FebKzu5SCNjUDn31t6HETP/PVWKRbA71gRsOGrdjgfQcEfc/rdscAmIbB83wuJi8JQcp06Q0fGSeitpY8n3KuJWvviYOrd0T4qeJqDB1KUtolJf2vaxXmScqVWc0D0MOkuFjasRjnQ9Q+8fCgmbtU6uvJgwIAISEoi5XoKq6vJ0PI3Yzd+HhKDK6r60wTEYTem7hVGKI6Q2b+DRUIzz4srflbZxM4TxhrdTj8RaYDvzRjVwoLyeCXk8tlbaBcdpnqQ1KCm90J3ABvb/KiNDT0r1JpFeYJrziLgHqZhoavL2WIc9Kda1JVReXFERHyttu3z1KCPnu2tNl9SwslcUrp0+NqhIRQyXFlJSaPMSM4qP9Gbrkjr+ncfFTuRukN4HwF6HTkqWlraHXQF2bsiiBQ1Z2fn3Rjv6qKpCMAKvGPi7Pf+GTAIR5XZMgQ+pFdvNi/nsSsWZ0GRkrhbmRH3iLvWGFhdDFMnOjawlruSGEheTXi4+VtZyXOhssvB9IlbFNTQ7+lqCh5x3IVBg8G0tORMtSElCQJqp+mccDxSKC8HPEXjuDOy4ol5+589rUBjU0gI9JkkucdY7RPeTl5tuWEdw4csLzXSHgHYA+Ka+LpSV6U5ub+xdSsyo1TChSEecLCyPrmpDvXwmSi3i0BAfJUKKuqSP8EIG/I0KHStjMagdRUWV2SXYr4eEsCqxSsk2UFQVlDN7OJw7OuSEEBJbf7S9AdEtFgeAdgA8V1SUqi+vf+pLStwjxRVWfhXyfzhmUwUI7C2bPy+j0w2kbs2yI3vLNrl+V3cPnl0oyb9nZaTyNuZYcQEEDXoZweV1ddZXHh79wp//oTQImUjOvQ1kYTCzm5J/X1lklFVBRNFDQCGyiuio8PxbWlzMisk2XzFGiiREaS1c4NBF0HUYHSx0fedtbhnTlzpG1jNJL3wB3zT6xJSSEjQ2oLibAw6sMFkEEp19gQO5NLldpntM/FixTikRPeOXzYop01bZo8j6mdYQPFlUlMpJtdfzMrqzCPomqewECywrmBoGvQ3EzVO3K1T4qLaTuAZmGJidK2q6mhdd09hykujs65nE7F1vkC1nkEUtDrSX+FW1a4Drm5ZGx4SdAdEtFoeAdgA8W1iYqSplIZF4eqcNK5CK84qywuHRRErsX+KocY7VNURA8uORLZQPfkWCmYzXRDdYfmgP3h40PJsnIMlKlTLe+tHzRS0elIg4Vxfhoa6G8px3vS0gIcPUrvg4JI00pDsIHiyoSGUg6BhDBPwSAr6fu9e+UfixsIug7Z2ZbcIqkIgkWcTacDZs+Wtl1dHeVfuHt4RyQ5mc59q8QS4MhIqtoDqPWE1F5cIuHhFBrilhXOT1ERhdnlKMCeOGEJ8U2ZormKLjZQXBmdjlztEvp8FKRYGSi7FYR5xAaCrIni3FRX0wNLbnJsTo6lS+6oUdK3d6fmgFKIjaVzJyefy5YwT3Aw5QBxFZ7zc+4c3YflGBkd/bIAaC68A7CB4vrExNBMuJ8ZWX1QHCpCO+TMz59XFuYJD6dtuRGZ81JURLPpoCB52ylJjgWoX8+gQfKO5cp4epL0fX/Vd9ZYGyhywzx6PYWWzp3jKjxnpqqKdIvkhHdMJuDgQXrv40PSFBqDDRRXJzKSXH4Sbni5iTaGeUQdB24g6JyYzaQm6e8vL5PfbLYYKB4ewIwZ0rZrbCS1Sw7vdCUxkRShO5otSlo/tqOnzpkz8sM14eHk/ZLbGZnRDqKoYmCg9G3S0y2TyYkT5SXWDhBsoLg6Xl40Q5VioCRZ5Q0oCfOIDQQzM+mhxTgXpaXkOZMb3klPt3TjnTBBuvelutr9mgNKITqajDapHY51OosXxWy29EGSSkAAhYF5YuGcKBVV1HD1jggbKO5AfDz9iPsxGmoDLdU8isM8ERGUKCs3WY9xPPn5lNUvt9zXqnOxrPBOfT3lSLlbc8D+0OtJgbe+Xvo206ZZ3iup5hGr8KRqsDDaoaRE/sRCECy/Ew8PYPJk+4zNRvjO4A5ER1u0SvqhSzXPHgWibX5+lBXOCpXORUsLqQHLqQAAqKxc/J14e3d9UPZ3PE9PS2iC6UpCAs2IpRopaWmWROOjR+n8yiE83OJBY5yL/Hz5oorZ2SToBpDYnxxZ/AGEDRR3ICiIjBQp5cYpNhooAD3ksrJYodKZEHMQ5IqzHTtmeYhOny79JunuzQH7IzycqpukhnkMBotx2NpKfxc5eHuT94TFFp0LUVRRrmaRE4R3ADZQ3IeUFElJd/VBcZZeDLZU81RUcOmiM5GdTfFruc36lIZ3jEb6Tbprc8D+0OlI36S5WXp1jS3lxoClMzlPLJyHCxfIiJU7sRANFJ1OutfTAbCB4i5ER1PCrJSbzywbvSgeHjSjE2XPGW1TW0shObnJqk1NlgdhYCAlyEpBbA4YHy/veO5GQgKdV6lVOWPHWvKHDh609FeRCncmdz5ycihnSY6oYnEx9U4DKDQo1/sygLCB4i5ERNANSErzQKvePIrDPNxA0HkoLKTfhVyxtAMHLPo6M2dKv0lyc0BpBAdTCwCpYR4vLyoXBah8NCND3vEMBnrl5MjbjnEMtbUkjCnXe2ItzmbtddMgbKC4Cx4e5FKXMhuLjbU9zBMYSA8i0VJntInZTPlCfn7yq2mU9N4BuDmgHAYPpkRkqd4QW0TbAIv0vRyhOMYxFBbS30nuxML6d8EGCqMZYmPJtS7lZmdrmEeno+TczEwuXdQy5eXUol2u9onRaGkyFhEhvckYNweUR3w8ueCleD4BYNIki9T5/v3y1WGDg2kSw2EebSMIlC8kc2Lh21hJExKA+j7FxdlpgOrABoo7ER1NRoMUL4oaYZ6ICPK+XLyobHvG/uTnWxRd5bBnj0VXZ84c6TfJ+npuDigHf3/yfEoNlQYEUNkoQFpEcsv9dTrybJ09y9L3WqasjHJJZOaNxec7j/cEYAPFvfD3J4tZymwsNpbcy4DyMI+3Nz3EOKatTdralGmfAMrDO9XV9Nvi5oDSEXsVSfVEqhHmKS626GQw2iMvj5LUZeqXJOY7T/4JwAaK+5GcLF3ESQ0vSlgYGTgSOiozA8yFC/QQklu9U15O8vYA5ZLIafbX1EQeAUY68fH0N6qulra+raqy/v7kVWPpe23S1EShc5kTC6/WOkRfPEkfoqIseYYahg0UdyMqitz5jY39r6uGgSI2EORkWe2Rm0tufLlaJJd6T6T2/xAEbg6oBG9v0kSRGuYJD6eOyAD9jZV4Pzl/TLvk59MkQWbeWNKFQ9ALHfmH06fL69vjINhAcTfCw6WXG6sR5jEYqPyRY9raor6exNmUNOqzNlDkiLOZzdwcUClJSVSJJ5Z194e1F0WJaFtEBD0Ei4vlb8vYD7OZvJc+PpZkaIkkF1l1qHeC8A7ABor7odeTa09ss90fammiFBVxA0EtIWqfyM0/KSigWTlAIk9yvCGCwM0BlRIbS9eRVE0UW1VlvbzoYcg9tbRFcTHdS2W2iDC0tyDh4hH6EBwsverOwfCdwh2JjSXrW4r7Vg0DRYxpc58PbSAIpPLr7T1w2ici3BxQGR4eZBBK1SdJSLAo9aanS1ejtSY0lDynElpkMAPE+fOU3C5TQyim+Bg8TR25h1Onyva+OAo2UNyRqCiyoqXc7NQI8wCWBoJSXdSM/RD7JMnVPhEES+8dvb6r8SoFvZ6bA9pCQgI9mKTkj1n3WDGbgUOH5B8vNJQSc1kTRRvU1FCoPDJS9qYJSqp3zGaHezvZQHFHfHyo+kKq+JMaXpTwcIpp883O8RQUUFVVQIC87c6dA0pL6f24cfJ7eHh4cHNAW4iKIi0jqcmytpYbi9L32dnyt2XUJzdXWVjWZEJ8wUEAQJuHL127Umhqot+bA5HRYYhxKRITgRMnaFbcXzb3zJnARx/R+z17gFtukX88T0+yxs+fd4ryNpelvZ1mYUFBAICcAh2OnNKjra3/Tccd2o9RHe/3+89GztfS3MSdEQIncStrFr2eqnOk5oUMG2apojt2jOQFvL3lHTMigkKzSh6MjHq0tgJnzpDnW271zZkz8GmhEF9xwiQke3n1v017O12vDjZQ2IPirkRFUW6IFH0StcI84eGWWQDjGIqLyQvSEd45ckoPY60OjU39vBqBhDyqAjDr9DgfeVn/23S8BNAN1dNfwo2R6ZuEBPJ81df3v65ebwnztLaSkSIXUXmaPZ+OpaCAigwUhHesvWdFyZdJ20bs8aPkeCrCBoq7EhpKPz6pxoKtvXkAS58P1kRxHLm5FFvumEWJnhOdToCfb++v2JZ8BNdRyWl59CjoQ4P6XL/Ly7MNwcHA5NuHOepbuw5hYZT8qqSax7qLrVR0OtKuOXvW0tqAGVgEgTRpDAb5IVJB6DRQTHoPFCdOkbZdbS2pjju4oSeHeNwVnY4UPaW6i2fOBD78kN4rDfPodDT7y8wERo1il/9A09hI+QQ95I74+gB33tRHE8nPd3e+jb5hOu68QWJ3XbOZvG7XXw+kcQWPzeh0JNqWlSUtiXHsWHrINDVRoqzJBEDmdRcRYZG+d7DL3y0pLaUwm5IE8/PnKSkeQHH0OLR5+QOQcO22tFAagINhD4o7ExMjXfwpJkadMI/YQFDp9oxyCgspwVJuciugvEU7NwdUn/h4izeyPzw9gcmT6X19PeUxyMXPjwwcUf+GGViys+n8y01qB7pct3kJM6RtIzYPdXB4B2ADxb2JiqKHlVRtBTXCPD4+FFfgBoIDi6h94uUl33NVUmL5ew0ZIu/GVV1Nxgk3B1SP4GDqqSU1zGOrqixA+WPp6dJyXxj1qK8nb5lS9eUOA0WADgXxEicWtbWUEK0BxWc2UNwZT09q9DaQ5cYAxdHPnZOm58CoQ1UVeVCU3HSsH2qXSUyyE2lq4qote5CaSpUWJgnu+kmTyFMK0ANLScuJ8HAyiLjkeGDJy6PzHhYmf9uios6Gj+VRI9DkK9FzWldHzwUNhODZQHF34uKk37BiYmgGDdgW5gkNtTwwmYGhoIBmY4GB8re1Tq6UY6CIrmIO76hPfLz0nlr+/sCYMfS+vByhVQq8l3o9VfScOiW9GzpjG+3t5LUKCFAmmGY1sZBcvSMmQmvkmmUDxd2JjqYLQJCYoa+GF0VsIHjuHDcQHAhMJqrCCAiQr6FQXQ1kZND7xEQqc5WzbUSEJlzFLoefH3lRFIi2dVEVlUNUFE1KuD/PwHDhAiUnK80FsZpYSDZQ6uroPqGB/BNAgYHS2NiIDz74AE888QSuu+46zJkzB5s2bZK8fV1dHf72t7/hhhtuwIIFC7B8+XJkZWXJHQajFkFBZC2bJRoK1gbK7t29r9cfkZHkQenIMGfsyMWL9GBRctM5cMBiRMoN79TXU2I1Nwe0D8nJ9K8Ulb2pUzvfJuQrUJUFKEzk60teFCmhJcY2xEotueJ6AIWFzp6l98nJqA+SWEFnNJIh2iHk6Ghk3zmMRiNWr16N/Px8DBHd/RIxm8146qmn8OOPP+Lmm2/Gww8/jOrqaixfvhyF7O53HCkpysI82dnKwzyi2BRrotif/Hx6iCm50e1T0MMDoMowT09uDmhP4uLIO1Vd3f+64eGkLAsgtDoXgfUXlR0zOrpLbgNjJyorKTFdaVm30ryx5mbKP9EIsg2U8PBwrF+/Hl9++SV+85vfyNr2559/xunTp/H000/j/vvvx80334x//vOf0Ov1WLVqldyhMGoRFSXP9a9WsmxwMGmiSJkBMspoaqKZlJIku/p6mi0D5H0Ry8ylUF1NuUbcHNB+eHsDQ4dKM1CALg+q5CKFXhTRyD1zhsOz9iQ7m8ItSj0ZSiYWra3kJdNIeAdQYKB4eXkhXGFMeceOHQgLC8OcOXM6l4WEhGDevHnYvXs3WrnTrWOIiAD0Cg0UW8I8EREk33zhgvJ9MH1TVEQPMCUGyuHDlKgH0E1OjhFrNJJnjpsD2pekJDrHUhJXrcqNk4v2Kj9mdDRporCWkX1obqa8L6W9j+rrgdOn6X1UFF2HUtCIvL01AxocPnv2LIYOHQr9JTHpESNGoLm5mcM8jsLDAzDIEBW+NMxzUaG7WHx4cemi/cjOphwQJSWD1uJsctzEJhMZM3ISahllxMTQQ0iKJkpCQuffJLoiA95NNcqOGRBAD1HOHbQP+fmk2qvUUOhUDAZdt1InFrW1lAgvpZngADGgBkpVVVWP3hdxWWUvF1lFRQWysrI6X/n5+XYdp1si9wFm7UXZa8NsLDycYq1SVDEZeVRX082uozGgLFpagCNH6H1wMDBihPRtxc63LItufzw8qJpHqoBahxdFL5gRX3hQ+XGjo8lAkVpFxEjDbKbSYm9v5TokSsI7gkDe0vh4Zce0EwPai6elpQVePVhn4rKWXtyUGzZswOrVq+05NKbDq9XUBHz2df8XRkDDbCwC9eap/H4fthhul3QYT09g8hgzUpI64tfBwVRuXFAAjB6tbOxMzxQVkdtWSaLqsWOWsMG0afJuljU11GvJz0/+cRn5REfTLNlk6v/vNH068NVXAMRy4/nKjhkcTCGec+e6KtUytnHxIiUgKzXuW1qAo0fpfXAwMHy4tO0aGkgvR0PhHWCADRRvb+8e80zEZd69VBksWrQIM61m7Pn5+Xj55ZftM0g3xdPPE6hphQAdGpv6X7/RMw4VoYMRUZ2N8Iqz0FeUod5fwkXVBBw+pUdKUocLUq+n0sXMTGDkSC5JVQuzmc6pEu0TQHn1jtlMD8qkJPnHZJQRGUnJlLW1/fdZGjoUjb5h8GuqQmzxMZqRKOlYq9OR9/PMGTJGlfSJYbpz/jwVDSg17o8ds/RWkzOxqK2lPDUlfbrsyIA+DcLCwnoM44jLeku+jYiIQFpaWucrWaz/Z1Rj8m1DERzuAT/PNvj5CpJeRakWo3FYyZ5+19fpyGvSrWgnMtKi1cGoQ0kJnVMl4Z32dopjA/TwGjdO+rZic0AO7wwc/v6UiyIlTKrX40IyGZwGUxs90JQSHk46RpxDpg5GI1Xc2eLFUNrUU5S319gEcUA9KEOHDsXJkydhNpu7JMpmZGTAx8cHiRpo7+yupEyLRcpgT+CLL+ihJsWCn3IZcOQjAMDE2t2YeNOiPlf/7GtDz94ZX19yTeblkbYDYzsFBTSTUjI7Pn3aktMwebK8SpyaGkrEVFqBwCgjKYk8ZhIoSpqOoZkb6cOBA8AMiV1uL0WvpzDC6dMUSlCis8NYyM2l6yctTdn2JpOyiYXJRH9LDU4q7GYuVVRUID8/H+1imSKAyy+/HFVVVdi5c2fnspqaGmzfvh0zZszoMT+FGUDCwsg4kdo8MD7eomaZmWmbKmxYGM0emiTEl5i+aWmhBEalRoLS6h2AmwM6iqgoqr6QUG5cGjsWrZ4dE5BDhyyl5EqPe/Eiy9/bSlsbhcuCgpSFZAEyFOvq6L2ciUVtLR1XY/kngEID5auvvsKHH36IjRvJCt+zZw8+/PBDfPjhh6jvmHmtWLEC99xzD8rLyzu3mzt3LkaNGoXXXnsNq1evxvr167F8+XKYzWb86le/UuHrMDah15ObT/yRS8G6msc6b0EuYWFUKllUpHwfDHHhAp1LJXpFZrPFQPH0pE64UmlspJmbRhqNuRXh4WSQSgjzmA2eKIibQh/q6+nBqBQPD8DHhx6OLH+vnIICoLRUvfCOnMRlMZHe31/5se2EIgPliy++wMqVK/H1118DAHbu3ImVK1di5cqVqOvj4WYwGPDGG2/giiuuwFdffYV3330XwcHBePvtt5HESXXaIDaWEqukqrtau4dtUZU1GOhmd/YsK1TaSnY2zcI8FERwz561lI5OmCAvRMTNAR2Hpyd5M41GSavnJ1h5xvYrVJUViYmhyhPWsVKGIJAHWq9XLmwoCBZ5ew8P8qBIpaVFs0ntinJQ1qxZ0+86zzzzDJ555pluywMDA/HUU0/hqaeeUnJoxt5ERVFcubZW2oMmKYnEfQoLSf2wqkqZailAD7eCAtoHP+SUUVtLsWyl58/aC6akOeDkyZpLtHMbYmPJAyYI/YYJimInw6T3gMHcTg+2X/9aeWhBzD1JTycjSel+3JWyMgqR2ZIDcv68JcQ+bpz0KqDmZvr7aTC8AwxwFQ/jBPj4kNEhNQ8FsHhRBMG2ME9QED3kWIhPOYWFZKQEB8vf1vrvp9cDU6ZI31bs48HNAR1HZCQ9mBoa+l21zdMPpXHj6YMalTgsf6+c7GwKj9pSqq1UFsBopNCgkmq/AYANFKY7CQmUOCc11GId5rFFVRYgIyUry7bEPXfFbKZz5+urzIuRn295wIweLa9Rmdjvh5sDOg7xQSMxzFOYZPUgszXMExBACdIsfy+PhgYK79jqMRb/fjodMHWq9O1qa8nrpSQcPACwgcJ0JzqaEqakymcPGmQpDz5zRnp31Z6IiKBkseJi5ftwV/LyKESm1F2rdBYGcHNALaDT0bUo8bq9kDTNEo4R8xdsISqK5e/lkpdnW1gcoMICsbhgxAjpYmtiOFDDXk82UJjuhITQzUbiTAw6ncWLYjbbdrPz8qJ95OQo34c70tZGEteiMq8SlIo8ic0BNdbHwy2JiqLfgAQPZLNfmEVzIz/f9klBSAjdM86ds20/7oLJRHk7fn7K++4AyicWoqiihr2ebKAw3dHpaDYsIZbdiXW5sS3VPAC5O8+fl1fu7O6cO0cPGYUdhP1rL1IOAQAMGyYvJl1TQzkvXF7seCIj6W8h9dqxLke11Yui09Hv5swZefcOd+XCBXrZaiBY/93kGCi1tZY2CRqFDRSmZ6KjyV3fQ++kHklNtWShnzplW3fikBB66HHZojQaG8l74u+vOMSSmG9D9U5NDSVWc3NAx+PnRy57qd5P6weaGmGe8HDS4GH5+/7JyqIQiy0KvJWVJA0A0KRSziShoUHzVVdsoDA9ExVlcdlK4dIwjy1Jd2KYIiuL9sX0zZkz5J63wYORmG+V3Cy3OWB7O5WaM9ogMVGSoiwACsuJf7uMDHnVez2h19OM/NQp6WNwR6qqKIxta3mv0rBsWxslxmo4vAOwgcL0hqcnJdzJuWFZh3lsreaJiCD3Z1mZbftxdaqrgRMn6HwpjGP7NlUhoqyjj0tSkrxckvp6IDCQwztaIjKSZuXNzdLWFx9sggAcPGj78aOiqBqM5e97JyeHJn+2hleUGigalre3hg0Upnfi42mGLNWLMXSoJXfhxAnpVUA94edHZYt8k+ubkyctCq4KSS7aBx06SsqVhHdiYpTprjD2ISJCnvdzuorlxgDNzL29ybPH8vfdaW6m5NjQUNvCK3V15KkCKLw+aJD0bWtqyHPm46P8+AMAGyhM70RFkZUtNeFOp7N4UUwm22PaoaEU5pE6E3Q3SkroRhcba9ONblCRDeXFjY0U+9ZwHNvt8PCg3AKpeWCDB1t0OE6coL+prcTEUMk755F1Jz+fPMO2iqMdOmSZPE6fLu8abG93iqo7NlCY3gkKohuN1JkYoK5om5hwxw0Eu2M2A8eO0cPEBu+FZ0sd4kpP0IeoKHmdiBsbydPF4R3tIcreS/F+6vWWap62Nvpd2YqY+JmRwb21rDGb6Zx4edkujqa067jY1FPj4R2ADRSmPwYNolCLVNLSLKJDx47ZVm7o4UE3z/Pnle/DVcnPJ++SwrJikfjCQ9ALHW74yy6TNwurqaFZoEZlst2ayEjSuJB6/VmXG6sR5gEo7JCTw/L31pSUkFfJlr47ACUgHz1K74ODLXo2UqipoXu0E/Q706a+LaMdoqMtCXdS4pV6PXlRvvuO3IiHDgFz5yo/fmQk6XNcvKhpxcMBRZzl6nQ2l/Z2qd6Rm39SVwdMnMjNAbVIcDA9gCoqKIm5P0aPpjL1hgbg8GG6dm2d4QcEUKJ7VhZfuyLnzpFxYXXd5hTocOSUXnIDeQBIyDuOOR0SEOejp+Pgt159rt9kHSWvrwfGjnWK61b7I2QcS0QEWdtKmgcC6vTmaWoiQ0fOFezKnD9PRpuN3hO0tCC2iGZhTT4h8mZh3BxQ28gVW/T0pE7UAG1z+rQ642D5ewu1tWSgXBJaOXJKD2OtDo1N0l+xOZa8sfOxM/pdXxDIM+rp0dHp2lYPzgDBBgrTNwYD3ejkqLqOGEFVBABw5IjtSXfJySRGdOaMbftxBZqayLXr50dxbFs4ehQeJtKqKEqeLq9MWXQTO8mNzi2JiiIjUmrjTbWreQC6D4gPZncnJ4cMNfHe2IE479LpBPj59v/y925DUjGVg7d5+qJm0DhJ2wUHCZg8uEMWQOP6JyIc4mH6R5wlm0zSHmIGA4ULNm2iq+/IEWD2bOXH9/Kiip7Dh8lr4M45DxkZJMo2dKjt+7Lq4VGUfBlk7dFopBk3NwfULqKMeW2ttGZ0EybQ37OtjSrwHnrI9uosnY5CTWfOWMJI7khbG127QUG9hlZ8fYA7b5JQln3iJNBKEg6e0yfjl7foAUgs584vB2KSKfzmBLAHhemf6GjLjU4q1mEeW3vzAHSzNRop1OOu2gpGI3D8OD1sbGkuBtAN89AhAECrpx9KY8dJ31Y8/7aGmBj74utLXcalVuH5+QHjOn4HlZXqJaez/D0lxpaUqOO5sG4OKDdvrLmZxBidBDZQmP7x86OHkZw8lNGjLSqJR47YrmWi09GFlZFBMW135ORJSnpUozzw9OnO/ISCuKkwG2R4QoxGbg7oLCQmSu+nBdgnzGMtfy9nLK6CINA9S6ez3eNoMlkmfB4elKQulZYW8kY7SXgHYAOFkUpSkrybi8FgudlZl8TZgo8PuYgPHZKnzeIKlJaSURETo44omtUsLC9xRh8r9kB1NTcHdBYiI+m6kTpBmDLF8vtSy0ARx1FSYumY7U6Ul9P3VsMwOH7ccu+bOlXeNVhbS/kvThQiZwOFkUZUFF0McnRNrHvzqBHmAegBXVbWVUXR1REEujE1NlIujq2YzZ0qv+0GLxTFTpY3Fm4O6DyEh1u6g0shNBQYPpzeFxZSmbAaeHq6r/x9Tg5du1LKvfvj558t7+XKNxiNNLFworwxNlAYaYjCPnI8F2PGWJKxDh+GoV2F7qZ6PT0cT5+mC98dKCggF7Fa0tRZWeQFAXAxfiLaPWT046ivp78pV+84BwYDVcHJqcKzDvPY2q7CGlH+3p2UoRsbqR2FlCRlKfsSPZ+BgcCkSdK3FQSamDiZLAAbKIw09Hr55cYeHhaFyqYmxFxQIcwDUJjH05NunrYo1ToD7e0kyiYI6lVAdKnekRneMRots3LGOYiNtTygpGAPVVnAIn+fnu4+8vd5eVRarIaBcuCAJcw+c6Y8T0hDA3nAnSj/BGADhZFDTAzNyOQIps2a1fk2KU+lMA9A3oTiYkrAdeWbXXY2eYrU8p4IguWho9fjQtJUeds3NHBzQGdDlL2X2l08Ls5S6WHlbVMFUf6+tFS9fWoVk4mMMV9f26vuANvCO2JbCiebWLCBwkgnOlpeG3eAJJU7Zv7xBQegN6mkBmsw0I305ElyG7sizc2UXOzjY5l92kpenqU3ypgxaPWWERdva6Pz7mSzMLcnKIiMFDkyAWKYRxCAgwfVG0tAAP2u3aES78IFCmepcb1UVVGnaYDuwyNGyNu+oYH6qjnZxIINFEY63t6U/yHHQPH0pGxzAF5tjYgvUaFTqkhQkCXh09YyZi2SmUk3ODXjxrZoKNTWUnkxGyjOhU5HeShyFJ3tlYcCkLGUmen68vdnz9L9SUoPs/7YudMSops7V56h0d5OEwsnzBtjA4WRR2Ii/eDlhFWsqnlSCnerP568PMvswlWorSXvSUiI7U3brLE2UKxzDaRgNJIejho3XGZgiYqSF54dPNhSjipWkKmFO8jfV1VReFYNzSKga3jn8svlbSvqFqk1lgGEDRRGHlFR8uLZADB+PMVhASQX7VcvzAPQwzs6mh7mxcXq7dfRnDpFomxqeiuKi4H8fHqflia/3XpbG6vHOivWsvdS0OksBmx7uzo6Rtb7FuXvXTXJPTfX4nG0lYICS8Xi0KHyr8HaWgqHd9yDnQk2UBh5hITQQ1OOqqyXV2eYx7utHtEXT6o7prAwCvFYZ7k7M+XlVEYdHa1uS3Trigy54Z3GRrrBOeEsjAF5vRISlOWhAOpW8wAW+XtXlApoaSHF65AQdXI+tm+3vJ83T/72ra1Oq1vEBgojD52Okq3kunytevMkqlnNI5KURC5VZ+94LIqy1dWpU5pojXV4x/rhIwWj0aKFwzgn8fHyDPhRoyyl7YcPy6ve6w9R/v7kSdeYVFgjVimpodhqNgM7dtB7vb5LVaQkmpqcemLBBgojn5gYSn5tkSG8NnEi2joEwRLy96mvJunlRQ/Qw4fJA+GsFBVRAqFaZcUilZWWyonkZHL5yqGujgxTNT06zMASFUUPK6n5Yx4eJH0P0ITk9Gl1xyPK3+flqbtfR5KXB+zeTYadGrlj6ekU6gWo747cMmGjkbZx0okF320Y+URGkiS2nGoeb28UJ9LNzqelVv2bnTiu2loqi3RGOW2TiUTZTCb126FbV2LIDe+YTOQ54+aAzk1YGD2sBBktIqw9bdYeODUQ5e9Pn3bO6/VSCguBH38kj5BaEwxbkmMBy8RCDR0WB8AGCiMfT0/60cts2FcwyA69eS4lKYk8EJmZ9tm/PcnJoTCVPRJRbS0vFrU0GOfFYKDr1iyjAm/CBPJOAsDeveqGeQDKs3IF+fsLF8g4aWy0iNzZSmur5T7p6ys/LGs2k7fMiScWbKAwyoiLkyefDeBiwmS0GzoEx/bZIcwDUDJgYCB5UeQk8joaseOzl5d6omwidXVUFQTQzWrQIHnb19bSg0Rtrw4z8Mh9WPn6Wqp5RO+kmvj40H3EmeXvS0rIOKmtlX9t9cWhQ5Yqp8suk39fqKuje6ETTyxUFFhg3IroaPrx19VJLqVr9/RFYewkpBTtJe9Lejo1FFSbmBjKtzh4ELjySufIm8jMJBfx4MHq79u68/P06fIrC5qbKW+FcX4iIzv//k3NwGdf9+/6j/a/GvOxCwBQ/MlW/Fw+R9KhPD2ByWPMSEnqx/CIibEkljrbbL+8nIyTqiq6dtVUarVF2h6ge2x8PHk/nRQnuHMzmiQwkBROZXopchOtstDtFebR6cjNmp4OnD9vn2OoSV0dVe4EB6sryiZiS3inpYW8Oqwe6xoEBsLTm277gqBDY1P/r9yQcaj1J8Mh9sIx6CvKJG1nrNXh8CkJj5iAAKo2cTb5+8pKYOtWoKwMSE1V1zipraU+YwDlDimZyDU3q+vRcQBsoDDKGTSIbiwyKIyfCpOhowvnvn2yQkSy8PMjl+jBg/JE5RzBmTM0e7SHEdDcTIm3ACU2p6XJ276mhrZz0ioA5hJ0OkyeG4pgnxb4+QrSXn465KZdRZtDwMjCH/vdRqcjr4nklJWoKPIiqtmY0J5UV5NxUlJCnhO1vbS7d5NAHkDJsXKTXFtbabLjxOEdgEM8jC2IZYtirb0E2jz9cDF+IhIKDtBFnpkJjBxpn/HFxdGs7MgRYM4cbTbKqqggLYioKPuEoo4etehMTJsm/xi1tcCkSfJauzOaJmV2ElJKD5KXUerfdfYVwAOfAmYzxhb9gLF/vrXPh+ZnXxvQKGfuEhJCRvqhQ6SZpOV8J6ORwjpFRcCQIfa5btUI7zipvL017EFhlBMRIb/cGEDBoAEI8wB044iPpz49WtRaEAQaW22t/TwUtoR3zGZ6ydVMYbRNZCQ9vOSoyoaHkw4HQHkXave+EsOyJ04A335L+VhapK4O2LaNWkYMGWKf8t2SEksVYnKysjBNbS2px4oVWE4KGyiMcsSyRTk3OgAXEqdaci3sGeYBLAliBw/KDkfZneJiuhHZywBoa6MZKUDCUaNHy9u+vp5yjTj/xLXw9qZSdpkTCyxYYHn/ww/qjgmgsOzQoZTT8d135P0TwxxaoKGBjJPsbArr2Etb5FLviVzPryDQeVNb7NEBsIHC2EZcHF1AMkqG27wDqIEgQCGOs2ftMzaRpCSa8Rw/bt/jyEEUZWtpISPAHpw8aWlJMGWK/DBNba2lyRzjWsTHy3/4T55sUTI9eFC+gSMFg4ESTn19gZ9+ojwPexxHLo2NNJ6zZ8k4sUcyO0DGhWig6HQUmpZLQwNNSJw8vAOwgcLYSlSUvC6pIla9ebB3r7pjuhSDgcoXjx8nQSUtkJtL7ebt2cTLluaAAN3okpO1mbvD2EZkJGmQyOmp5eEBXHEFvW9v79rETm3Cw+m3d/o0hXwc2VSwuZm+a0YGGSf2zMc6d87SlX30aGVGRm0tVf6Ehqo7NgfABgpjG/7+isqNMW2axUW6d6/9RZpCQ8lboYWOx62t5L729KSHhD0wmSwGipeXJX9AKm1t9ECKjlZ/bIzjCQ9XlD+Gq66yvN+61b7XrY8PMGwYjXHjRvo9D/S129JCzfrOnCHPjr1zOmxNjgUoNOsifbOc/xswjic5WV7jQIDCGmPH0vuysoHRKxE7Houqqo7i7FmS97Zn8mlWluXhM3GifBVKF6kCYHpBr6frtq5O3nbx8Zaqu8JC+2uX6PV03QYFAbt2AZs3k/7IQNDaCuzcSaHSlBT1FZ4vQWdup+8IkCFk7WWWitg3y0UmFmygMLYTFUUJbnLcxcDAhnkA8liEh1PZcVmZ/Y/XEw0N5D0JDLSvq9iW6h2ADJSEBLvflBkHEhtL/8ptOWHvZNmeCA0lD8bZsxTyOXvWvt6btjbSIjl+nAwke3k6rYi9cNQyqZg6lbzTcnGxvllsoDC2o9RdPH26xQ25Z8/A9OKIjKRZ48GDjqkQEEXZ7DnDEQSLgWIwUIKs3O3b2+3TtJDRDpGRZCjLFTKcOZMmJADN+OVOTJTi5UUhn6YmYNMmOnZzs/rHaW+nCdPRo2SciN/Vzgw6b5XTozS8YzSS4anEuNEgbKAwtmMwkAtUrrs4ONhS+lpSQomjA0FyMrmmB7rjcVUV6TxERNi3/XlOjsVDNHasfNGrxka6KXN5sWsjlpDLnVh4e1uqS1paLGGJgUCnI8M5IoJyUjZuJINfLUwmMu4PHaJw1gAZJ55tjUgo6MgZCwykLtJKaGlRr5uyBmADhVGHmBjZ5cYABj7MA9ANNiiIvChVVfY/XlubxTipqbG/bLx19Y7cFu0APbBErxjj2ihoVwGga5hn61bVhiOZoCASSsvLo5DPmTO26ymZzZREf/Ag5YcNoJrtoMI98DB1JADPnq0s/NvcTPc2FwnvAGygMGoRHa2s3PiyyyxlrAMV5gFovFVVXTv92kpzM+m65OZSIu7OncC6dcAnnwBffAEcPmzRjbEnYnhHp6NqKbm4UBUA0w+RkVStJbc6ZvBg8poClA/iCKVmT08SdhMEyoX5+WfK8VKCINC9YP9+S6f2AWRInkrhnZAQ8i65CNyLh1EHPz96+J4/L2/mHRpKVQFnzpBGSUEBhWDsjU5HGiQZGfQwltpETxBoxllfTyGt+nrqKVReTp+bmsjNKgj0gPfxIdGpsDA6P/Z+6IvnEKDvFBYmb3sXqwJg+iEykh5qtbXyHmw6HZUcr1hBn7duBR580C5D7JeYGLoODx+mCcLMmfJUVAWB8k327KFzEBxsv7H2gG9DBeJKO1oHxMTIb+gpUltLYnr2EpFzAK7zTRjHk5xMhoZcZs60bLdnz8AYKEDXjsdxcV1nTYJAszHREKmrI49LeTktFw0RnY7ySXx96RUVRft0lLiZreJsYhUA55+4B15elNNx+rT8mffcucCqVRTC/PlnYMkSxzWVDAigBNq8PJLJnzYNGDOm/1wvsR/Wrl0OEzcblLMDOnR4jpVI2wPkBRYES2WWi8AGCqMe1uXGcpLLLrvMMhPbuxe48077jK8nxI7HYlJcbS3pLFRWkiHS3GzpGe/pSUaIjw/NOr28tKeyamt5cU0NxfYHKDmQ0QBiQ01BkPd7DgigHLIdO8iA37+f8icchcFAoafycuqZU1pK10BfrRpOn6ZQbHCw/XPDekGV6p36evp7uNjEgg0URj3Cw2kWUlMj7wEXHg4MH05VNQUFJABlTwl4a/R6OtahQ9QbByDDw9eXSvUiIhw3K5SLdV+jlBRyF8ultXXgzj2jDSIj6ffe1CTfMF2wgAwUgPJAHGmgiERG0sP65Em6JmbN6tkrm5FBYxevc0eQm4vQaqperIgcjgil4o21tZY8QBeCs+AY9dDrlZUbAxTmERmoah6RgABgxAhyEQ8bRjkp4sXuLMYJYHv1jlgF4GKzMKYfxNCG3HYVAMkEiIbwiRMkF6AFfH0pgbaqikI+Bw9aPKEAGfLbtzv+9y4adwByB89Tvh8X7ZvFHhRGXWJiyFBpb5eXrDVjBrByJb3fuxdYvNg+4+sNDV7YOQU6HDml73Jf7YsrNh2A6DP5vmkWjF/3r7XSZK1zVVNDDyoHuboZByFOLPbskb+tmCz78cf0eds24K671B2fUgwGmmxUVVEYp6yMJkJVVdSZWGwi6ihMpk4DxawzoCB1NmRKKhJi3ywXnFiwgcKoS1QUxXPFjppSiYwk78XZs1SmW1xs3141TsCRU3oYa6UZTt4tRkSVUI8hY0AcLvoMApqkG12eniDP1/DhLlUFwEgkOtqiYyRXRPCKK4BPP6VEzR9/BH75SwB2FCKUS1gYhXEyMym3TKyyk1PpYw9On+7sK1QYNxktPsEAZOpIAS4nb28Nh3gYdfHzowtfrjol4BjRNg0jek50OgF+vn2/xuRvgl4gPZcLKZfBzw/9biO+goMETB7d7pJVAIxERNl7JeHZ8HAqbwXogSvmcmkJb28K+TQ10e9cC20crDoXnx9kQ3inpobyxgagX9BAw1MlRn2Skmh2IJcZM4DVq+n93r3ArbeqOixnxdcHuPOmPmZWLS3AV9/Qe70eI3+7ACNjZc7EauuAeterAmAkEhBA4Y6CAqpQk8tVV1GeB0CaKCMUCATaG73e8V4TkZaWzklYq6cfCuKmQXFbzvZ27XwvlWEPCqM+UVGUpCa3iVhMDJUJAiT4ppWEO62zdavFYzVrljIvSE0N/d1crAqAkUFSkjLZe4A8KGJI9+BB+DRVqzcuV+Tgwc5zXThoJkweCs2Txka617pgeAdgDwpjD8LCyO3bS7lxUzPwWS8JnCNDZmE8sgEAR9/bj8wxt8g+vKcnMHmMGSlJAySb70ja24H16y2fb5F/vgDQzVKULmfck8hIKrFvbaV/5WAwAPPmAV99BZhMSDn/E6qGsAe0V6zCO7lDbAjvGI2W+60Lwh4URn16KTcWK3YFQYfGpp5fZ2Ms5cYJOXt6Xa+vl7FWh8On3OSnvWMHCVMBNItVYmS0ttIfx0VnYYxEIiLIg6YkfwygME8HqWd/GLi+Ws6G0UjS+gAQEYGymDHK91VX59J9s1zzWzGOx7rcuIPJY8wIDuo7YbM9Oh7VofSQjarMQoSpVHKyp5+vAJ2ObopSS3OdGrOZZqwit92mbD9GI1VesYHi3nh5UZhHbsNPkbg4kpcHEGwsQnRFuoqDcyF277Z0fZ8zB9ApfAy7Qd8sDvEw9iEqipLtjMZO92NKkoCUJAnJm82XAZ+RuuJNgbuBG2+UfNjPvjagUWEY3enYvx8oKqL3o0aR2JwSjEZg3Dj5bn3G9YiLoyocubL3IldeSZ28AaRlb8HhpJEqD9AF2G4lbT9vHqC06KmujiqvXDixnT0ojH3w9aVSPiXuYkeqyjoLggCsXWv5rNR7Igg0E3NzzRmmA+t+WkqYMYM0RwCkFuyCZ2uDioNzAYqLu7ajsKUxam0teaoDAtQZmwZhA4WxHwkJFGuRG4tOTLT0g8nI6BQzYqw4fpwqnQAgNRWYMEHZfhoa6IHiwrMwRgYhIZR0qTQPxdsbuPxyAICHqQXJOTvVG5srYJUcq7gxoEhTE4XkXBg2UBj7ER2tfDZm7UWx7tDLENbek1tvVS7VbzRScqQD2swzGkSvp6TL+nrl+7BKlh18dovtY3IVBMFioOh0lH+ilJYWCsm6+MRCtoHS2tqKd999F7/4xS9w5ZVX4qGHHsKhQ4ckbXv48GEsX74cN9xwA6699lr8+te/xpYt/AN2WcS+Lqwqqy6ZmZ1xfsTHU0t5pTQ00ANJg72IGAdhLXuvhMGDURVOekbhFeeodQUDZGVZtJ3GjrWtNLi2lrxdjurCPEDINlBee+01rFmzBldddRWWLVsGvV6PJ598EidPnuxzu927d+Pxxx9HW1sblixZgqVLl8Lb2xuvvPIK1qxZo/gLMBrGlu7GyckWdcQzZ4BqFn7qxNp7cvPN8nuniLS309/IhasAGAVERlK5sdJqHgDnhy20fNi6VYVBuQBqhndqauge6Uzd1hUgy0BJT0/Htm3b8Otf/xqPPPIIFi1ahLfffhsxMTF49913+9x23bp1CA8Px9tvv41bbrkFN998M9566y3Ex8dj06ZNNn0JRsPExNAD1KrcWBI6ncWLIgjUMp0B8vMtkuIREbbd6GprubyY6Y6/P123Nhgo+amXo93QoY66fTuFJNyZtjZg1y567+Vlm9fTZNJOPyE7I8tA2bFjBwwGAxYtWtS5zNvbG9dddx3OnDmD0tLSXrdtbGxEYGAgvKxKGT08PBAcHAxvb8VdCBitI3Y3VhLmueoqS2fdb74BKirUHZszYu09uekm22ZQRiNV7/j62jwsxsVISgKamxVv3uYdgNzEjjyyhgYqiXdnjh61eJKnTetRYVsy4sQiJkadsWkYWQbKuXPnkJCQAP+OMjKRER36C+fFqoIeGD9+PHJzc/H++++jqKgIFy5cwIcffoisrCzccccdCobOOAU+PlSRU1Mjf9uYGOC66+h9ayvwySeqDs3pKCmxzMICA4EFC2zbX0uLpVqKYawRZe9t8HxkDbYK8/zwgwqDcmKswzvzbJC2B4CqKjIgL3kOuyKyhNoqKysR3kNij7isoo8Z7n333YeLFy/i448/xkcffQQA8PHxwYsvvojZs2f3edyKigpUWpWa5ufnyxk242gSEqgsVon40+23Az/+SLOw7dtJtM1de8asW0fqsQCwaJFt7dUbG2kWx+EdpiciIigJs7ZW8W+kJHI0aoPiEFRbTEndFy8qa2Tp7DQ0WMKywcHA+PHK92U2U4jHxcuLRWQZKC0tLfDswaUshm1a+rC2PT09kZiYiLlz52LOnDkwmUz49ttv8fLLL+Mf//gHRo0a1eu2GzZswOrVq+UMldESUVEkJtTQIF9UKDCQjJRVq8jA+eAD4MUX3a/qpKoK2LaN3vv6WjxLShGrAFy0yRhjI56e9BA8fly5EavTIXvYAkw4vJo+//gjcM89ao3Qedi719J7Y/ZsS9haCXV1dA91E0NPVojH29sbbT00OWltbe38/954++23sXfvXjz//POYP38+FixYgLfeegvh4eH45z//2edxFy1ahPfee6/z9eyzz8oZNuNoQkNpRqZU/On66y31/idOWBptuRPffGO5yV1zje3qkbW1VF6stAKIcX1iYy0JmQrJHTLf0shu2zblpcvOjJrhnepqqm4MDrZtP06CLAMlPDy8S6hFRFwW0UtNdltbG77//ntcdtll0Ft1XfTw8MC0adOQlZXVo+EjEhERgbS0tM5Xsi3ywMzAY6v4k6cncO+9ls+rV7vVjc6zpQ7YvLnjg6es3kQ9Ip47N5mFMQqJjKQwYINyufpmvzBg6lT6UFXlfpOL8vKumkVDhijflyBQTtCgQaoMzRmQZaAMGTIERUVFaLjkB5uent75/z1hNBphMplg6uGhYjKZYDabYRZj64xrIpYbK20zPHs2MHQovc/PB376Sb2xaZy0jO9I1hoA5s+3XfW1ro50Ljj/hOkLW4QWrbFSlnW7ZNmdVlL/l19uW2habEvhRhMLWQbK3LlzYTKZsGHDhs5lra2t2LhxI0aOHInoDsGn0tLSLomsoaGhCAgIwK5du7p4ShobG7Fnzx4kJSVxqbGrExlJbkml2go6HXD//ZbPn35qUxmks+DR3oxhZzquN72ehNlspbaWQmaBgbbvi3FddDoSA7NF9h4AJk6k/j4AcOgQeVLcAUHo2rnYVnG26mq6bsVz6QbIMlBGjhyJefPmYcWKFXj33XexYcMGPPbYYygpKcHDDz/cud4rr7yCe6ySoQwGA375y1+isLAQDz/8MNasWYPPP/8cDz30EMrLy3GvtfuecU18fCjpTkm5scjo0aQhANBN7uuv1RiZpknL3gyflg6jbvZsdbQPGhvdyk3M2EBMDBnGtoRUDQbgyivpvdnc9aHtyuTmAgUF9H7ECNuv3cZGYPBgtyoQkC11/8wzz+C2227Dli1b8M9//hPt7e14/fXXMb6f0ql7770Xzz33HDw8PLB69WqsXLkS/v7+ePHFF7HAVj0HxjlISCBFWRuS7nDffZaku3XrXFoCX29qw5jMdZYFt95q+05bWqjjrIs3GWNUQgXZewAWAwWgMI8t9wBnQe3OxT4+biHOZo3seidvb2888sgjeOSRR3pdp7eqnKuuugpXWccjGfciKopiqErKjUUSEoCFC4FNmyjE89//An38Fp2ZQdnbEdDYoS00dSq5223FTZqMMSrh50c5Dzk5tuU+xcRQg7yTJ0kP5cwZ8oi6KiaTJf/Ew6Nrd3YlVFdTPpCb5Y3J9qAwjGLEcmNbwjwAcMcdFnn2H36wuFFdCZMJI09+afmshvcEoIRHN2gyxqhIUpI6vXTcKVn21ClLrs2kSeSFsoW6OqoAcjNZADZQmIFDpyMVWBvKFgGQB+CWW+i92Qx8+KHNQ9Mc+/aRAieAktixwPDhtu9TEOh8uVEVAKMCKsjeA6AGeaLndO9e25NvtYx1no2t2ietrTShiIuzbT9OCBsozMASE0MuT6XlxiI33mhRQT10yKI14AoIQpemgOljb1dnv/X1FGJzMzcxYyMREeT9tLXc2MvLkovR2tq1BNeVaG62NEf09wcmT7Ztf9XVVLnjhnljbKAwA4tYbmzrzc7bG7j7bsvnVassfWqcnaNHKeYPoDxsKErixquzX6ORjLqQEHX2x7gHHh4U5rH1mgXcI8xz4IBFt2jmTDLMbMFoBFJT3TIsywYKM7B4e1MOhBo3u7lzLeWy58+7zozMyntyYuTt6pUVNjRQiM2NyhQZlUhKot9Ne7tt+0lJsQgu5uQA2dm2j01rqFm9095O5z0+3rb9OClsoDADT3y87eXGACWMWYu3ffwx9O2ttu3T0aSnU4UDAGNwAvISLlNnv21tdL46xBQZRhaxsRTmUaOs39qLsnWr7fvTEtXVwLFj9D4yEhg50rb91dTQeXez8mIRNlCYgUcsN1YjSW7CBHoBQHk50jK+tX2fjqRL7sltgE6lS7S2lkJrnH/CKMHHh8IMahgoc+aQJxUAduxQp0JIK+zebQk1X365RbNJKdXV5HXy8bF9bE6IDX2fGUYhISFkpJSVqSO3fv/91OXYbMaoE1/gdOICwNcJZdxzc4HDh+l9ZCTyBs8F1Lp3G400m3PTGx2jAsnJwJEj5I2zJR/Czw+YNYu6Gzc0UEWPrZUudiKnQIcjp/SScvp9mqqxcMN6+Hd8/s40H7Vf918W3NRbxw6xk3RCguTxuhrsQWEGHp2OckdsLTcWGTQIuOIKAIBXawMmnP6vOvsdaKy8J/jFLyDoVZw/tLW5bRybUYnYWEqydqMwz5FTehhrdWhs6vvVXN+OmVtfgX8DCSteiB6HEp/kfrdrbNJBECgnrJvNJ3o93VgWgA0UxjFER6tTbixy112d2fIjz32HgA4NEaehuBjYs4feBwd3vYHbSmMjCdu5YZkioyJeXtQLRg0DZcQIi8F8+jRw4YLt+7QD4u1JpxPg59vLy8eMy4/9C9EVGQCABv8IHJj3RO/r9/AKDhIwecwlVYhVVZSc7O8Pd4VDPIxjiIqiUE9NjTp5EeHhwC9+AXzxBfSCCeMPrwbufcr2/Q4U69ZZYteLFlli9GpQU0M6Cm7UBZWxE4mJpDvU2mpb+axOByxYQPIAAPDjj9RnS6P4+gB33tRLw8RvvgHOdXiBvLzg/9IzuHlIMAAbGiwKAhUSJCUp34cLwB4UxjF4edHFZ2sTMmt+8Qs0+YQAAJLy9gCZmert255UVgI//UTv/fyAa69Vd//19ZRoZ2vCHsPExpJwmyjjbgvz5lmk23/6yfYSZkdw9KjFyAKA5ctJkt5W6uooP89Nq3dE+I7FOI6EBEsimBr4+eHUxLssnz/4wDm6pn79teXmfM016rp0TSaarXJ5MaMGnp70AFZjYhESQk0wAQobiQnizkJREfC3v1k8n7ffDsyerc6+q6tJ2t7NRRXZQGEch5rlxh1kD1uImqBE+pCZCezbp9q+7UJtLbBlC7338qLwjtr7Dwri/BNGPRISKH9MjfLgBQss7zWcLNuN+nrglVcsif7TpwN33qne/puayOvp5rCBwjiO4GB6cKqhKtuBoDfg4PhfWRZ8+KF6ibj24PvvqXcHAFx5pW0t7XuitpbcxG6caMeoTEyMemGe8eNpXwCVMFdW2r5Pe2MykedETOxNTgZ+/3v1Qqj19dRU0c3DOwAbKIwjUbvcuIOCuKkojRlDHy5eBDZvVnX/qtHUBHzbISxnMAA336z+MZqb3T7RjlEZDw/1wjwGAzB/Pr03m0kbReusWmVRiw0KAp59lqrk1EIsHBCboboxbKAwjiU6muLarSpK1Ot0ODr1Acvnzz/XZmv3LVss45ozR/0wTEsLhY04vMOoTWIi/baae1MZk8GVV1r6Q33+OanLapWtW4ENG+i9wQD86U/q53fV11M5N/fMYgOFcTCRkZQIpmKYBwCqI4aS1DRAGfFffaXq/m2mrY2SY0VuuUX9Y4h9PEQXOsOoRXQ0XbtqhHmioy1N9drbgb//HfjiC+0luKenA+++a/n88MPA6NHqHqOpidSe3ViczRo2UBjH4uWlXnfjS7n7bos844YNJK2vFX76yXJznz7dPmGY2lo6tx4sd8SojMFAXYnr6tTZ3+9+11Wc8NNPgXfe0Uz+mF99GfDaa5Zqu+uvBxYuVP9A1dU0oeCeWQDYQGG0QFwcJZ6Zzf2vK4foaLqRAHSj++QTdfevFJOpq0fnttvUP4bZTDNQnokx9iIhgQQFm5ps35eHB/Db33YVa/vpJ+CFF9QzghTi0d6My3980TKJGjcOeOCBvjdSSl0dNWU09N/Dxx1gA4VxPNHRJEpkjzyR226zNCT8+Wfg/Hn1jyGXPXuAkhJ6P24czUTVRqwE4PwTxl5ERdFLjTAPQDkXt9wCPPWURaX21CngyScp2d0RCGZcvv/vCK3Kpc+xsTQeexgQra1kqHHPrE7YQGEcj6jTYY8wT0AAsHix5fOqVY6NbQtC16aAt95qn+MYjeQmDgqyz/4ZRq9XN8wjMnMm8PLLJEMAUDnvH/9IOSADzOjjnyOlsKNHlp8fVeyo0YG9J6qrqXKHRRU7YQOFcTw6HYkSNTbaZ//XXGPRFDh1yrGKlYcPA3l59H7YMGDsWPscp7GRSri5EoCxJ/Hx9OBW+9odPpy0RhI7RBdra4HnngN27lT3OH2xdy/GHvsUACBABzzxhGU89qC2lsI73doauy+cPcdog6goujBbWtRtlAfQfu+7D3j9dfq8ejUwcaJNbtqcAh2OnNLLy+ETBFz1/VqI6W87Em/HhW96vwSblFZwtrWRq5jDO4y9iYyk31lFBRkqahITQ9fs668DJ07Q7/rNNyk8ettt9jW+c3KAt97q/Hh8yv2YMHmy/Y4nJt9yeKcL7EFhtEFkJJXE2iPMAwAzZtCsDAAKC22W1T5ySg9jrQ6NTdJfQQVnEFlGLdmrg5JwLnJ6n+sLAt2AZU+ojEZyj3MlAGNv9HryBNpLZyggAHj++a4VPp98Yt8Kn+pqCjF1SPmfG3QFMkbbQUTRmpoakltg9dgusIHCaANPT/uVGwM027r/fsvnzz6zqfpAvDfqdAL8fKW9Jmau6dw+Y/xt8PPT9btNcJCAyWNkVjcZjeSKVtsTxTA9ERdHrRRUVoTuRKzwufdeyzKxwkdtw6itjcqJKyoAABWRw7F76jL7h0praijM7eNj3+M4GRziYbRDXBzlaJjN6vW1sGbECPKk7N1LN4T1621u8OXrA9x5k6n/FbOzgQ+O0PuoKMz4/SzMMEjYTi6CQO7ihAT1980wPRERQTP/ixe79XxqagY++1qlihePxUicF4fLdv4DHqZW4NQp1D7yJIzL/4zESSp4HgSBhNgyM+lzeDh2zv8fmHReAOyYWC9KLNgzv8VJYQ8Kox2io8mla09Z+nvvteSerF8/MM3JLq3cuflm++kcNDbSQ4LDO8xAodNRbx6rRFkxLCkI8sKg/b2yYubg+yv+iiZvqvAJqilC1OtPABkZtn+PDRuAH3+k915ewDPPoNkvzPb99kdtLYVkObzTDTZQGO0QFERGSk2N/Y4RFwdcey29b2kB/vtfdfdvMgEFBdRPZNUqqjy45x7SPgEoziw2R7MHRiMQFqZ+V2SG6Yv4+C6Ti8ljzAgOkh7+lPNqSEzDD4v+geog8jh4N9dS+a8tFT5Hj9L1KrJ8uX30iXqiupo8ngEBA3M8J4JDPIy2SEmxv5ja4sXUNbWxkWZMN9xA+S8y8WhvRnhZLrDpPGX95+ZSCXFfjQ9vusm+uSF1ddTC3h4hMobpjbAwEjG7cAEICEBKkoCUJDuEMDuJxJdeb2LGj68ivtTGCp8LF6ikWVSyvv12YPZs+wz7UsSQ7KBBA3M8J4MNFEZbREWRe9Ue5cYiQUF0E/vwQ7oprV5NlQJ9UVNjMUJycnDdyVwEGS9AJyU2HRxM+gajRwOLFqnxDXqmvZ0MExZ6YgYaMcxz/jw9dAdAf6fNOwBbLn8Rlx/7Fwaf66jK++QTyoV55BFp5W/19VSxIyb4Tp9uc16aLOrqyHPC4Z0eYQOF0RYRERSeqKmx74P2+uuBjRuB8nLgyBHg+HHyPJjNNAuzMkaQm9tNzju4t/3GxpIxkpJC/6am0vcZCMG08nIy8Lj/DuMI4uLoYVtXN2AKxmaDJw7MWo7Bl8UCH31EC7dto8agTz/dd9jEZCLPyYUL9Dk5Gfj97wfW+1hdTcmxwb3eUdwaNlAYbSGWGx8+bF8Dxdubuh2LYkz/+hfJTOflSSo/Nuk9UBUyCMaIVAyZO4gMkUGD1BerkoogUP7JpElcXsw4htBQykXJyxvYFgs6HbWMiImh67mtzdLD589/7t07sXo1cOwYvQ8KAv7nfwBf3wEbNgC616SmsuJzL7CBwmiPuDh64NpQbiypvFG4AleHb0BYZTbNuMrKelyt1csfVeGDUROWiqrwwagOS0WpTwLMOk/4+QoYcr09Y+0Sqa2lm2xqqqNHwrgrOh0weDCV6Q5QmKcLs2aRB/aVV8hYLyoiefr/+R+SGLBm61bgm2/ovcEA/OlPAx9maWigijv2ePYKGyiM9oiKooZcdXWyXZ+engCaxPLG/tY2YM/4h3Dt9mdgMJPUdJ1/FCpDUlEZOhiVoamoCk1FvV9UrzdbzbTNKC+nHBeu3mEcSVwcGcpi6exAI/bwefFFMlBqOyp8HnvMkviank56JyIPPUTXzkBTXU1yAGEDUMrspLCBwmgPsdy4qEj2TW7yGDMOy+iRU5c8Cht/8f/g01QNY2gyWr27dyqloE33ZFhPT8hXebUHLS1kQKWlOXokjLsTEkIls9nZjsuriIkB3ngD+OtfgZMnKeTzt79R8uy8eaQUK/a+ue464OqrHTPOhgZg2jSuuOsDNlAYbTJoEHDunOzNlJU3xnS8AEAD4Rq5lJdT7J8bjTFaYPBgEk6zlyK0FMQePu++axFf++QTEmcUK3bGjgUeeMAx42tuplyxuDjHHN9JYNON0SbR0ZZyY6Z3zGYqlRw50n7qtAwjh7g48p7U1jp2HJ6ewO9+R0KJIqJxEhMDPPUU9flxBFVVlC/Dis99wgYKo02sy42Z3qmuphi2AqE5hrELQUFUOjsQbST6Q6cjzaMnn7QkjPn6Ul5KYPdw7oBRV0cJ7Typ6BMO8TDaxMODwjyHDrHwWF9UVFAcm2WyGS2RkgKcPu3YMI81s2ZRCHT3bmDOHCApyXFjaW2l+xuHd/qFDRRGu4gXsMnEM42eaGyk9uxDhjh6JAzTlfh4Spg1GrVTWZaSQi9HU1NDXk9Wj+0XNlAY7WJdbhwS4ujRaI/SUvIy8Y2O0RoBARR2PHPG7gaKJM0jG/atOjU15PXUjEaBdmEDhdEugYH08M3PZwPlUtrbqXxy+HBWoWS0yaBBVOZrJw+oPM0jFY6lBu3tdL1yxZ0k2EBhtE1yMpCV5ehRaI+KCqoAcGQsnWH6Ii6OJhY1NdRGQmXkah4pRVW9I6ORzgl7PSXBBgqjbaKiKM+isdFxfW60SE0NMHcunRuG0SL+/hYvih0MFGWaRw6muhoYN27ge/44KRpIr2aYPoiKopvcxYuOHol2qK2l8Bf33WG0zqBBVMljcjJDwh6YTPRKTHT0SJwGNlAYbaPXA6NG0ftme2SsOSFlZWSc2GFWyjCqEhfHekYitbUU3uHmgJJhA4XRPklJ7EURaW2lJLthwxw9EobpH19fMqarqhw9EsdTU0PJsaxZJBk2UBjtYzAAY8aQe9Tdpe/LymgGlpDg6JEwjDTERG6xQZ87Igg0uRg0yNEjcSrYQGGcg+Rkit2WlDh6JI7Duu+Oo3qIMIxc4uJImKy62tEjcRx1dRbZBEYybKAwzoGHB3UfbWmB3esKtUp1NcXzeRbGOBM+PhTmcWcDpaaGjBPWc5IFGyiM85CSQl4Ud81Fqaig3BNHNjljGCUkJVHCu7tOLhobyUhjUUVZsIHCOA+enuRFaWpyvxtdYyPg5cV9dxjnJDbWfcM8DQ2k4cThHdmwgcI4F6mplAlfWurokQwsZWXkPeKbHOOMeHuTce2O5cbV1aTnxLIAsmEDhXEuvLzIi9LQ4D5VAWL10siR2mhdzzBKSEykijx3837W1wODB/O1qwA+Y4zzMXgweRLKyhw9koGhspL67iQnO3okDKOc2FjyIlRWOnokA0dzM3mPWJxNEWygMM6Hjw/1s6itdQ8J7aoq6lrMfXcYZ8bTk8I8RqOjRzJwVFcDEREU4mFkwwYK45wMHkwXfXm5o0diX+rqSHmS++4wrkBiIkkGuIvgYl0d3asMBkePxClhA4VxTvz8KBelpoYEzFyVsjIqr46MdPRIGMZ2oqPpt+wO1TxtbWSYxMU5eiROCxsojPMybBi5TysqHD0S+9DWRhLZ3HeHcRXcKcwjCitGRzt6JE4LGyiM8+LvTz16Kitd04tSXk7JwNyenXElEhKoGs/VwzxGI3k/vbwcPRKnhQ0UxrkZNsw1KwMEgW5wI0bQrJNhXAUxzONq16w1ogQCTy5sgg0UxrkJCgJGj6YwjyA4ejTqUVND7mFOjmVcDQ8PYOhQqsJzVYxG6rvDwoo2wQYK4/ykpdHDvKrK0SNRj4oKuokHBTl6JAyjPvHxVDbf3OzokdiHmhrSLfL1dfRInBo2UBjnJySEVFbLy13Di9LcTLNM7rvDuCpRUfRyxTCP2Uz6TElJjh6J0+Mhd4PW1lasXLkSP/zwA+rq6jB48GAsXboUU6ZMkbT9tm3bsHbtWmRnZ8PDwwPJyclYunQpJk2aJHvwDNPJiBHA6dOW0IgzU1ZGiYRcnsi4KgYDGeDbtzt6JOpjNJLnk8M7NiPbg/Laa69hzZo1uOqqq7Bs2TLo9Xo8+eSTOHnyZL/bfvDBB3jxxRcRFRWFRx99FA888AAGDx6MClctE2UGjrAwMlKcXf7eZCIPyogR3LuDcW0SEigE0tjo6JGoS0UFfbfAQEePxOmR5UFJT0/Htm3b8Jvf/AZ33HEHAGDhwoVYsmQJ3n33Xbz77ru9bnvmzBl8+OGHePTRR3H77bfbNmqG6YkRI4AzZ2gGExzs6NEoo6qKjC3uu8O4OpGRFOapqCDhRVegvJzkD8aPd/RIXAJZU7QdO3bAYDBg0aJFncu8vb1x3XXX4cyZMygtLe112y+//BJhYWG49dZbIQgCGl3NamYcT2Qk9azp43eoeaqqyNBylRs2w/SGXk+J4PX1jh6JOjQ1kTjbtGncHFAlZHlQzp07h4SEBPj7+3dZPmLECADA+fPnEd2Lat6RI0cwevRorF27Fh9//DGMRiPCwsJwzz334JZbbunzuBUVFai0SqbKz8+XM2zGnRgxAsjIoBJGZ6uAqa8nw4RLixl3IT6efvMNDeR5cFbMZiA/n9pvjBnj6NG4DLIMlMrKSoSHh3dbLi7rLZekrq4ORqMRp0+fxtGjR7FkyRJER0dj06ZNeOedd+Dh4YEbb7yx1+Nu2LABq1evljNUxl2JjqZZ2cmTzmeglJbS2LnvDuMuhIeTt6GkxLkNlKIi+h7Tp3NjQBWRZaC0tLTAswdVS68OKd+WXqSLxXCO0WjE888/j/nz5wMA5s6diyVLluCjjz7q00BZtGgRZs6c2fk5Pz8fL7/8spyhM+6CTgeMGgVkZZFHIiDA0SOSRlsbzcKGD6fvwDDugF5P1Tw5OY4eiXLEhqUzZjhv7ptGkZWD4u3tjba2tm7LW1tbO/+/t+0AwMPDA3PnzrUcXK/HFVdcgfLy8j7zVyIiIpCWltb5SuYEQqYvYmPJE1FS4uiRSKe8nLw/LI3NuBtxceQ9ccZclLY2us9MnEh9dxhVkWWghIeHd8kFERGXRURE9LhdUFAQvLy8EBQUBMMl7q/QDs2Kuro6OUNhmN7R6Ui4zWBwjhJGQaCcmZEjubEY436Eh5NmiLMpQQsCkJdHHqDJk9nzaQdkGShDhgxBUVERGhoauixPT0/v/P8eD6LXY+jQoTAajd08MGLeSkhIiJyhMEzfxMcDgwcDFy86eiT9U1NDrmGegTHuiE5HHs/GRudSgi4tpTy3mTOBXqIHjG3IMlDmzp0Lk8mEDRs2dC5rbW3Fxo0bMXLkyM4KntLS0m6VNvPmzYPJZMLmzZs7l7W0tGDr1q0YNGhQr94XhlGEXk9NBAEq/9MyFRU0C2MjnXFX4uJI2MxZwjyNjUBdHXDZZaTlwtgFWUmyI0eOxLx587BixQrU1NQgPj4emzdvRklJCZ566qnO9V555RUcP34cO3fu7Fx244034vvvv8dbb72FwsJCREdHY8uWLSgtLcVrr72m3jdiGJHERCrZzc3VbuluS4tFD4Jh3JXQUDJSsrMpsV3L4RKTCSgoACZMIFkDxm7I7sXzzDPPdBoX9fX1SE1Nxeuvv47x/SjneXt74+2338a7776LjRs3orm5GUOGDMHrr7+OqVOnKh0/w/SO6EXJziZDQItu2NJSCkdx3x3GndHpKNG0vJzyOgYN0q6RUlBAUvbTp3M7CjujEwRnCvoRWVlZePDBB/Hee+8hLS3N0cNhtIzJBHzzDXDhAt30tITJBJw7B1x7LZVGM4y7U1gIbN1K4ZOUFO0ZKVVVFIa6/npuRzEAsPnHuDYGAyk7trUBHeXwmqG6mioYtGY4MYyjSEwEFiygpPHcXG0lzba0UDPSKVPYOBkg2EBhXJ+UFLrxaU0XpbISSEtzbgVNhlGbhATgqqsoaTwnRxtGilhSPHw45Z4wAwIbKIzr4+FBPTKam8mTogXq66nV/ODBjh4Jw2iP+HjypISGUg6Z2ezY8Vy8SF3GZ8wAelBTZ+wDGyiMe5CSQjc9rXQ6Li8nN3EvzTUZxu2JjQUWLqTeVDk5jjNS6utJqmDGDArJMgMGGyiMe+DlRV6Uhgagvd2xY2lvJ09OWpr2kgAZRkvExFC4JzLSMZ6U9nZK3B0/Hhg2bGCPzbCBwrgRgwfTrMzRXpSKCvKcJCU5dhwM4wxER5MnJTqajBSTaeCOnZ9PSexTp3JJsQPgM864D97ewLhxVMI4kDc5awSBpO1HjNCmLgvDaJHISDJSYmMHzkipqAB8fEjK3s/P/sdjusEGCuNeiF6UsjLHHL+2lvp3cN8dhpFHRAQlzsbFAefP29dIaW6mKrupUyl3jXEIbKAw7oWvL6nLGo2O8aKUl5PsfljYwB+bYZyd8HDypCQl2c9IMZsptDNyJOWtMQ6DDRTG/Rg6lBp8lZcP7HFbWigplpPtGEY5YWGUOCsaKWonvRcXU0hpxgySKGAcBhsojPvh70/qsjU1A1sVUF5O7ml2GTOMbYSGUrhn0CDKSVHLSKmtpQq7GTO4u7gGYAOFcU+GDiV3cWWlfY8jCNSavbyc9BRGjuRZGcOoQUgIeVJSUsiTYqsIY1sb9eyaMAEYMkSVITK2wQYK454EBlIuSmWlulLabW3UY6eoCMjKAs6epWoAvZ5ufKmp6h2LYdyd4GAyUgYPJk+KLUZKfj7tZ8oU1ifSCDyVY9yXtDTg5EnqUKpEIdJkIu9IQwN5R0wmksH29yeBqbg4ipeHhtJsjz0nDKM+QUFkpOh01B18yBD5cvRlZXTdzpxJpcWMJuA7JuO+BAdTyGXPHjIk+ps1NTeTIVJfTwmvej3pIwQFUeJrRAQZI6GhVC3EMMzAEBhIRopeT57LwYNJPVoKjY2Uj3bllTSxYDQDGyiMezNiBHD6NIVlrEt/29osnpGmJgoDeXsDAQEWLRXRGAkMZJVJhnE0AQFkZOh0QGamNCPFbAYKCkjAcfTogRknIxk2UBj3JjSUjJR9+4DWVjJKTCbAYKAbXkQEtX8PD7eEaribKcNoE39/YP58mjBkZFACbV+KzYWFNNmYPp2ueUZTsIHCMCNHAnl5NPMaPJg0UkRjxN/f0aNjGEYO/v7AFVfQ9XzmDCWm92SkVFfTvzNnUpiW0RxsoDBMeDhwyy2UHMehGoZxfvz8yEjR64FTp8iTYp382tpKTUNnzeK2ExqGDRSGAbgZGMO4Gr6+wLx55Ek5edJipAgCeUyHDgUmTnT0KJk+YAOFYRiGcU18fIC5cy1GSnIyVeyEhFBohzuKaxo2UBiGYRjXxdpIOX6cktwXLqR+O4ymYQOFYRiGcW28vclIMRjIUBk+3NEjYiTABgrDMAzj+nh5UeKsIHAyvJPABgrDMAzjHuh03GfHiWAzkmEYhmEYzcEGCsMwDMMwmoMNFIZhGIZhNAcbKAzDMAzDaA42UBiGYRiG0RxsoDAMwzAMoznYQGEYhmEYRnOwgcIwDMMwjOZgA4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcTtnNuKWlBQCQn5/v4JEwDMMwDCOX5ORk+Pj49LmOUxooJSUlAICXX37ZwSNhGIZhGEYu7733HtLS0vpcRycIgjBA41GNmpoaHDx4ELGxsfDy8lJln/n5+Xj55Zfx7LPPIjk5WZV9ujJ8vqTD50oefL7kwedLHny+pGPPc+WyHpSQkBAsWLDALvtOTk7u16pjLPD5kg6fK3nw+ZIHny958PmSjqPOFSfJMgzDMAyjOdhAYRiGYRhGc7CB0kF4eDiWLFmC8PBwRw/FKeDzJR0+V/Lg8yUPPl/y4PMlHUefK6dMkmUYhmEYxrVhDwrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcTinUZm+OHz+Ozz//HOfOnYPRaERAQACGDBmC++67D2PGjHH08DTHkSNHsHXrVpw8eRLl5eUICwvDxIkT8cADDyAiIsLRw9McFRUVWLt2LTIyMpCZmYmmpia88847mDBhgqOH5lBaW1uxcuVK/PDDD6irq8PgwYOxdOlSTJkyxdFD0ySNjY34/PPPkZ6ejoyMDNTV1eHpp5/GNddc4+ihaY6MjAxs3rwZx44dQ0lJCYKCgjBq1CgsXboUiYmJjh6epsjNzcWqVauQlZWFqqoq+Pj4IDk5GXfccQdmzpw5oGNhD0oPFBUVQa/X48Ybb8Rjjz2GxYsXo6qqCr/73e9w4MABRw9Pc/z73//GsWPHMHv2bCxfvhzz58/H9u3bsXTpUlRWVjp6eJqjsLAQn332GcrLy5Gamuro4WiG1157DWvWrMFVV12FZcuWQa/X48knn8TJkycdPTRNYjQasXr1auTn52PIkCGOHo6m+eyzz7Bjxw5MmjQJy5Ytww033IATJ05g6dKlyMnJcfTwNEVJSQkaGxtx9dVXY9myZbj33nsBAE8//TQ2bNgwsIMRGEk0NTUJN954o/D44487eiia49ixY4LJZOq2bPbs2cKKFSscNCrt0tDQIBiNRkEQBGH79u3C7NmzhaNHjzp4VI7lzJkzwuzZs4XPPvusc1lzc7Pwy1/+Unj44YcdODLt0tLSIlRUVAiCIAgZGRnC7NmzhY0bNzp4VNrk5MmTQmtra5dlBQUFwvz584UXX3zRQaNyHtrb24X7779fuOuuuwb0uOxBkYiPjw+Cg4NRX1/v6KFojvHjx0Ov13dbFhQUhPz8fAeNSrv4+fkhKCjI0cPQFDt27IDBYMCiRYs6l3l7e+O6667DmTNnUFpa6sDRaRMvLy8WG5PImDFj4Onp2WVZYmIiBg0axPcoCRgMBkRFRQ34849zUPqgoaEBbW1tMBqN2LJlC3Jzc3HPPfc4elhOQWNjI5qamhAcHOzooTBOwLlz55CQkAB/f/8uy0eMGAEAOH/+PKKjox0xNMZFEQQB1dXVGDRokKOHokmamprQ0tKChoYG7NmzBwcOHMC8efMGdAxsoPTB888/j4MHDwIAPD09sWjRos54HNM3X375Jdra2nDFFVc4eiiME1BZWdmjN0BcVlFRMdBDYlycrVu3ory8HL/61a8cPRRN8n//93+dOSd6vR5z5szB73//+wEdg8sbKGazGW1tbZLW9fLygk6n6/z80EMPYfHixSgrK8PmzZvR3t4Ok8lkr6FqAlvOl8jx48exevVqzJs3D5MmTVJ7iJpCjfPFAC0tLd1c8ACdM/H/GUYt8vPz8dZbb2HUqFG4+uqrHT0cTXLbbbdh7ty5qKiowPbt22EymSTf69TC5Q2UEydOYPny5ZLW/fjjj5GcnNz5eejQoZ3vFyxYgKVLl+K1117DSy+9pPo4tYIt5wugC//ZZ59FamoqnnrqKXsMUVPYer4Ywtvbu8ebX2tra+f/M4waVFZW4qmnnoK/vz9eeuklGAwGRw9JkyQnJ3fer66++mr84Q9/wJ/+9Cf85z//GbCJlssbKElJSXj66aclrdtXwpmnpydmzpyJTz/9FC0tLS57w7TlfJWWluLxxx+Hv78/Xn/9dfj5+dljiJpCrd+XuxMeHo7y8vJuy8UyddbTYdSgvr4eTz75JOrr6/Gvf/2Lf1cymDt3Lt58800UFhYiKSlpQI7p8gZKeHi4asJFLS0tEAQBjY2NLmugKD1fRqMRjz/+ONra2vDWW2+5zYWv5u/LnRkyZAiOHTuGhoaGLomy6enpnf/PMLbQ0tKCP/3pTygsLMQ//vEPTo6ViRhmHchKHi4z7oHq6upuy+rq6rBjxw5ERUUhNDTUAaPSLk1NTXjyySdRUVGBN954g5UZGdnMnTsXJpOpixBUa2srNm7ciJEjR3IFD2MTJpMJL7zwAs6cOYO//OUvGD16tKOHpFl6ev61t7djy5Yt8Pb2HlDDzuU9KEr44x//iMjISIwcORKhoaEoLS3Fxo0bUVlZiRdeeMHRw9McL730EjIyMnDttdciPz+/i66Ar68vZs+e7cDRaZMPP/wQAJCXlwcA2LJlS6di6n333eeoYTmMkSNHYt68eVixYgVqamoQHx+PzZs3o6SkxC1ymZTy1Vdfob6+vjMUtmfPHpSVlQEAbrnlFgQEBDhyeJrh//7v/7Bnzx7MmDEDdXV1+OGHH7r8/4IFCxw0Mu3x5ptvoqGhAePGjUNkZCQqKyuxdetWFBQU4NFHHx3Q0L1OEARhwI7mJKxbtw4//fQT8vPzUV9fj8DAQIwcORJ33HEHxo0b5+jhaY7bb78dJSUlPf5fTEwM1qxZM8Aj0j5z5szp9f927tw5gCPRDi0tLZ29eOrr65GamoqlS5di6tSpjh6aZunr2vviiy8QGxs7wCPSJsuWLcPx48d7/X93veZ6Ytu2bfj++++Rk5MDo9EIPz8/pKWl4eabb8asWbMGdCxsoDAMwzAMozk4B4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMAzDMIzmYAOFYVRm06ZNmDNnDjZt2uTooUji2LFjmDNnDj744AO7HWPOnDlYtmyZ3fZvb5YtW9an+q8tiOdffD388MN2OY4UPvjgA8yZMwfHjh3rXJafn99lfLfffrvDxse4F9yLh3F7/vrXv2Ljxo0ICgrCunXr4OXl5eghqY74UOG2A9pl/PjxGD9+PKKiohw9lC4EBwdjyZIlAIC1a9c6djCMW8EGCuPWNDY2Yvv27dDpdKitrcWuXbswf/58m/Y5e/ZsjBw5EuHh4SqNknEHxo8fj1/96leOHkY3QkJCOse1efNmB4+GcSc4xMO4NT/99BOamppw2223Qa/X4/vvv7d5nwEBAUhOTuZOsgzDMDbAHhTGrfn+++9hMBhw5513Ijs7G0ePHkVJSQliYmK6rPfBBx9g9erVve7Humvzpk2b8Nprr+Hpp5/GNddc07nOnDlzMH78eDz33HN49913cejQIbS2tmLcuHF47LHHEBcXh7y8PKxYsQInTpxAe3s7pk6dit///vcICwvr3M+xY8ewfPlyLFmypNuM++LFi1i8eDGuvvpqPPPMM52frccg0tP2mZmZWLFiBc6cOQO9Xo+JEyfit7/9bbeuuDt37sT27duRmZmJiooKeHh4YPDgwbj11lsxd+7cvk96P9TX1+Obb77B/v37UVRUBKPRiODgYEyePBlLlixBfHx8l/XFv80777yDiooK/Pe//0VBQQECAgIwb948PPzww/D29u6yTXt7Oz7//HN89913qKioQGRkJK677jpcccUV+OUvf9l5/qSwa9cufPXVVzh79ixaW1sRHx+Pq6++GrfffjsMBoNN5wIAXn31VWzevBmff/45du7cie+//x7FxcWYP38+nnnmGVRUVGDDhg04ePAgiouL0dDQgPDwcEyfPh33338/QkNDu+2ztLQU//73v3Hw4EG0t7dj2LBheOCBB2weK8OoCRsojNuSl5eHM2fOYPr06QgLC8PChQtx5MgRbNy4sduDe8KECT3uIz8/H9u3b+/2AOyNuro6PProowgPD8fChQtRVFSEvXv34g9/+ANeffVV/Pa3v0VaWhquvfZanD17Fjt27EBtbS3eeecdRd8xICAAS5Ys6cwduPXWW3v9TpmZmfjvf/+LCRMmYNGiRTh37hx27dqFnJwcrF69ust3XLFiBTw8PDBmzBiEh4ejpqYGe/bswZ///GcsX74ct9xyi6LxAnROP/jgA0yYMAGzZ8+Gr68v8vPz8eOPP2Lfvn14//33uxmQALBu3TocPHgQM2fOxMSJE3HgwAF89dVXMBqN+POf/9xl3ddffx1btmxBXFwcbrrpJrS1tWHNmjU4ffq0rLH+5z//waefforIyEjMmTMHAQEBOHnyJN59911kZGTgxRdfVHweLuXtt99Geno6LrvsMsyYMaPT8Dhx4gS++OILTJw4ESNGjICHhwfOnTuHr7/+GgcPHsT777/fxZtXUVGBRx55BOXl5Zg6dSqGDRuG/Px8PP74473+zhnGEbCBwrgt3333HQBg4cKFAMi78NZbb2HTpk1YsmQJ9HpLBHTChAndbt7V1dV46KGH4OXlhSeffFLSMbOzs3H77bfjt7/9beeyf/zjH/j666/x29/+Fvfffz9uu+02AIAgCHjqqaewf/9+ZGVlIS0tTfZ3DAwMxK9+9avO3IG+chz279+P559/vksOziuvvIItW7Zg9+7dXZa/8cYbiIuL67J9Y2MjHnnkEaxcuRLXXXcdfHx8ZI8XAJKTk7F+/XoEBQV1WX706FH84Q9/wEcffdTj+T5y5Ajee+89JCUlAQAefPBB/OpXv8JPP/2ERx55BBEREZ3rbdmyBUOHDsX//d//dY7znnvuwdKlSyWP89ChQ/j0008xdepUvPTSS/D19QVAf7d//OMf+Oabb/Dzzz/b7FESyc7OxsqVKxEdHd1l+cSJE7F+/Xr4+fl1Wb5582a8+uqrWLduHe69997O5StWrEB5eTmWLl3aZfmGDRvw5ptvqjJWhlEDzkFh3JL29nb88MMP8Pf3x6xZswAAfn5+mD17NkpLS3H48OE+t29pacEzzzyDkpIS/OlPf8KYMWMkHdfX17fbQ1B88AcHB3fxcOh0us7/y87OlvzdlDJu3LhuCcLXXnstACAjI6PL8kuNE4DO3zXXXIP6+npkZmYqHkdAQEA34wSgB/GgQYN6/dvceuutncYJAHh7e2P+/Pkwm83IysrqXP7DDz8AAO67774uRlRERESX898f69atAwD88Y9/7DROAPq7PfTQQ9DpdNi2bZvk/fXHHXfc0c04AYDQ0NBuxglAhre/vz+OHDnSuaytrQ0//fQTQkNDu4T+AOD6669HQkKCauNlGFthDwrjluzevRs1NTW47rrruoQuFi5ciB9++AHff/89pk6d2uO2giDg1VdfxZkzZ3D//ffjyiuvlHzchISEbp4FsdonNTUVOp2ux/+rqKiQfAyl9OShiYyMBEB5IdZUV1fj008/xf79+1FaWoqWlpYu/2/reI8dO4Yvv/wS6enpMBqNMJlMnf/n6enZ4zbDhg3rtkws2bUe//nz5wEAY8eO7bb+6NGjJY8xPT0dvr6+vSZWe3t7o6CgQPL++mPEiBG9/t+OHTuwYcMGnD17FvX19V3Ol/XfoqCgAK2trZg4cWK3sKRer8eYMf+/vbuLSeqN4wD+lQhXEuKKoDbLTWt6oZChzizWi3bNernoChgtuuiqi9ZcF924Vas2udCLXBn2xuZcSxF6ZTUlKaOCuVFamyMsLGgCas6A/4WDwZ+jpSSy8ftcnnN4nkdwO9/zvJ1yfPny5Z+1mZBUUEAhWSl6U4kO70Tt3LkTAoEA/f398Pv9jE/ybW1tMJvNqK+vh0qlWlS9eXl5SceiEykXOvf79+9F1bMUTE/h0frD4XDsmN/vx4kTJ+DxeFBeXg6pVAoulwsWi4WRkRH09fVhdnZ2ye0wm804f/481qxZg+rqaohEolioM5lM+PbtG+PnFvr+4ts/NTUFFouF/Pz8pOvjJyP/id/vRygUWnDy9PT09F+X9ydMk10B4N69e2hpaQGfz0dVVRUEAkEsfHR2dib8FpOTkwuWNd9xQlYCBRSSdTweD16/fg0AC+5u+ujRo6Quf6PRiI6ODpSXl+Ps2bPL2s75RHtZ4p+So6I3oOVkMBjg8XigVquhUCgSzt26dQt9fX0plX/jxg1wOBxcu3YNhYWFCeeePXuWUtnAXBALh8OYmJgAn89POOfz+f66nLy8POTk5KC7uzvlNv2N//euAXPBVafTYf369bh+/XpCwIhEIrh7927C9dEQ9/PnT8Y65jtOyEqggEKyjslkQjgcRkVFRdINEJi78ZtMJhgMhoSA8u7dO1y+fBmbN29GU1PTiu04u27dOgDMwyjDw8OMn2GxWCn1asRzu90AEJu7E89ut6dc/tjYGIqKipJ+mx8/fmBsbCzl8ktKSjA8PAyHw4E9e/YknFvMKp6ysjJYrVa4XC7G/6N0mJiYQDAYRGVlZVLvh9PpTBp6KywsBIfDwYcPHzAzM5MwzBMOhxe9iomQ5UQBhWSVSCSC3t5e5OTkoLGxkXGyJwC4XC4MDQ3B6XSitLQULpcL586dQ25uLi5cuJD05J1OW7Zswdq1a5OGoXw+H3Q6HeNneDwePn/+nHRTWoroEl+Hw4Hi4uLY8cePH2NgYCClsgFAKBTC7XbD5/PFhlxmZmZw9erVfzLU1dDQAKPRiPb2dlRXV8e+D6/Xu6it3I8cOQKr1YqLFy+iqakpacjI6/UiEAigqKgo5TbPp6CgALm5ufj48SN+/foVGwoLBAKMS9M5HA727duHhw8fQq/XJ6zi6enpgcvlWra2ErJYFFBIVrHZbPj69SskEsm84QSYW70yNDQEg8GA0tJSaLVa+P1+SKVSxmEGLpebtpeorV69GocPH0ZHRweOHz+Ouro6TE9Po7+/HxKJJNbDEW/Hjh1wOp04c+YMKioqwGazIRaLIZFIFl3/wYMHcefOHTQ3N+Pt27cQCoUYGRmBzWaDTCbDixcvUvr7Dh06hObmZqjVauzduxehUCg2JFdSUhKb5LpUUqkU9fX1ePLkCZRKJXbv3o3Z2VmYzWaUlZXBYrEkLDGfT01NDRQKBW7evIljx46hpqYGQqEQfr8fbrcbdrsdarV6WQMKi8WCXC6HXq+HSqVCXV0dJicnYbVaIRQKY0ur42k0GthsNrS1tcHhcGDbtm0YHR3FwMAAqqqqYt81ISuNAgrJKtHJsfE7vDLZv38/tFotnj59ilOnTsW6ygcHBxmXuYpEorS+5VWtVoPNZsNgMODBgwcQiURQKBTYtWsXnj9/nnS9QqFAMBiExWKB3W5HKBSCUqlcUkDZuHEjtFotWltbMTg4iFAohO3bt+PKlSsYHx//JwGFzWajq6sL3d3d4HK5qK2thUajSdpwbakaGxuxdetW9Pb2oqurCwKBAEePHkVlZSUsFgvjhGEmarUaYrEYnZ2dePPmDYLBIHg8HjZt2gSlUomGhoZ/0t6FaDQa8Hg8GI1G3L9/HwUFBThw4ABUKlXsJX/xNmzYgJaWFrS2tuLVq1d4//597Pez2WwUUEjGyIlEIpGVbgQhhGSCnp4eXLp0CadPn4ZcLk9LnQu9uiDT0FuxSTrRRm2EkKzj9Xrx/2ez79+/Q6fTYdWqVaitrU17m9rb2yGTyXDy5Mm0172Q0dFRyGQyyGSyeZd4E7IcaIiHEJJ1bt++jZcvX0IsFoPP52N8fBwWiwVTU1NQqVSMO7YuF5FIlDAUE91cLlPk5+cntI/e0k3ShYZ4CCFZx2q1Qq/X49OnTwgEAuBwOCguLoZcLk/LvBFCyJ9RQCGEEEJIxqE5KIQQQgjJOBRQCCGEEJJxKKAQQgghJONQQCGEEEJIxqGAQgghhJCMQwGFEEIIIRmHAgohhBBCMg4FFEIIIYRkHAoohBBCCMk4/wGFRYNjj0vGFwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwwklEQVR4nOy9d3gc5dX+f++uVr33ZjUXuXdscDcGbJpNTDEloUMoeQ0JCQZ+hBJICIGX9n0TiGkGAsHGGDDgBrZx77bcVCxbVrPVZa16253fH8ejWdkqM7Ozu7PS+VzXXppd7cw8Wu08c55T7mMQBEEAwzAMwzCMjjC6ewAMwzAMwzAXwgYKwzAMwzC6gw0UhmEYhmF0BxsoDMMwDMPoDjZQGIZhGIbRHWygMAzDMAyjO9hAYRiGYRhGd7CBwjAMwzCM7mADhWEYhmEY3cEGCsPonF9++QUGgwEvvPCCw8cyGAyYNWuWw8fpCS3H2xe4++67YTAYkJ+fL3uflJQUpKSkOG1MDOMJsIHCMBdgMBhgMBhgNBpx6tSpbt83e/bsjvcuW7bMdQN0M/n5+TAYDLj77rvdPRTZiEaT/cPb2xuJiYm4+eabsWvXri73a2xsRGhoKAwGA26//XYXj9q5WK1WfP7555g+fTpiY2Ph7++PIUOG4J577sHx48fdPTyGgZe7B8AwesTLywvt7e348MMP8be//e2i3+fm5uKXX37peB8jMWnSJGRlZSEyMtLdQ7mI5OTkDsOqoaEBu3fvxsqVK7Fq1SqsXLkSv/rVrzq9f/ny5bBYLDAYDFi1ahWqqqoQERHh9HFu3LjR6ee4/fbbsWLFCiQmJmLhwoUICgrC0aNH8cknn+CLL77A2rVrcfnllzt9HAzTHexBYZguiImJwcSJE/Hxxx93aYB88MEHAIDrr7/e1UPTPf7+/hg6dKguDZSUlBS88MILeOGFF/Daa69h27ZteO6552Cz2fDEE09c9P6lS5fCaDTiT3/6E1paWvDJJ5+4ZJwDBw7EwIEDnXb8ffv2YcWKFRgxYgRycnLwr3/9C6+++irWrFmDDz/8EK2trXj55Zeddn6GkQMbKAzTDQ888ABKS0vxww8/dHq9ra0Ny5Ytw5QpUzB8+PBu98/NzcWdd96JhIQEeHt7Iz4+HnfeeSdyc3O7fH9ZWRnuu+8+xMTEwM/PD2PHju3xhthTnsILL7wAg8GAX375pde/8+zZs/jLX/6CqVOnIjY2tmOst99+OzIzMy86bmpqKgDgk08+6RQyEcNcPeWgKPlM7P+GlStXYtKkSfD390d4eDhuvfVWnDlzpte/TQ6PPvooAOD06dOoqKjoeP3YsWPYvXs35syZgyVLlsDb27vDMFWDzWbDG2+8gaFDh8LX1xeJiYn4/e9/j9ra2ove29X/dtmyZR2f8+bNmzFr1iwEBQUhODgY1157LbKysmSPJS8vDwAwZ84c+Pv7d/rdggULAKDTZ8Ew7oBDPAzTDbfddhv+8Ic/4IMPPsANN9zQ8frq1atRXl6OV199FSdPnuxy33379uGKK65AXV0d5s+fj+HDhyM7Oxv/+c9/8N133+Hnn3/GJZdc0vH+yspKTJkyBXl5eZg2bRqmTZuGkpISPPTQQ7jqqquc+ndu3boVf//73zF79mzceOONCAwMRG5uLlauXInVq1djx44dGDNmDABg1qxZqKmpwdtvv40xY8Z0+lzGjh3b43mUfiYi//rXv7B69WrMnz8fM2fOxJ49e7B8+XIcPnwYGRkZ8PHxcejvFwShY9tgMHRsL126FAAluYaHh+P666/H119/jW3btmH69OmKz/P73/8eW7duxS233IIFCxZg/fr1eOutt7Bt2zZs374dvr6+so7zww8/4LvvvsPVV1+Nhx56CJmZmVizZg327duHzMxMWZ6rESNGAAA2bdqEpqYm+Pn5dTo+AFxxxRWK/0aG0RSBYZhOABASEhIEQRCE++67TzCZTEJRUVHH7+fOnSsEBwcLDQ0Nwv/3//1/AgDh448/7vi9zWYThg4dKgAQ/vOf/3Q69pdffikAENLT0wWr1drx+gMPPCAAEB5//PFO79+3b5/g5eUlABCef/75Tr9LTk4WkpOTu/wbnn/+eQGAsHnz5ov+tpkzZ3Z6raysTKitrb3oGBkZGUJAQIAwb968Tq+fPn1aACDcddddXZ578+bNF41XzWci/g1BQUHCkSNHOu1z2223CQCE5cuXdzmG7sZ04d8uCILw5z//WQAgpKWldbzW1NQkhIWFCSEhIUJjY6MgCILw/fffCwCEX//617LOKXLXXXcJAISIiAghPz+/43Wr1SosXLhQACD85S9/6bRPV//bjz/+WAAgmEwm4eeff+70u6eeekoAILz66quyx/X73/9eACAkJSUJjzzyiLBkyRLhuuuuE7y8vIRbb71VqK+vV/R3MozWcIiHYXrggQcegNVqxUcffQQAKCgowE8//YQ77rjjIte4yM6dO5GdnY3LLrsMd9xxR6ffLVq0CNOmTUNOTg62b98OgEJGn3/+OYKCgi4Ki0ycOPGiY2hNdHQ0goKCLnp9zJgxuPzyy7F582a0tbU5dA6ln4k9ixcvxqhRozq99sADDwAA9u7dq2gc+fn5HTkof/rTnzBjxgy89NJLMBqNeP311zve99VXX+HcuXNYtGhRh3dh3rx5iI2NxcqVK3Hu3DlF5wWAxx57DMnJyR3PjUYjXnvtNRiNxo7vlxxuvfVWzJkzp9NrDz74IABln8cbb7yB9957DxUVFR05KD/88APGjBmDu+66CwEBAbKPxTDOgA0UhumByZMnY9SoUfjoo49gs9nwwQcfwGazddwgu+LgwYMA0G0FhPj6oUOHAADZ2dlobGzE2LFjERISctH7na1bAgA//vgjrr/+esTFxcFsNnfklXz//fdoaWlBZWWlQ8dX+pnYM3HixIteGzBgAAAoNhQKCgrw4osv4sUXX8Rbb72FkydPYuHChdi2bVunCh4xvHPPPfd0vObl5YU77rgDzc3N+OyzzxSdFwBmzpx50WtpaWkYMGAA8vPzUVNTI+s4WnwegiBg8eLFePTRR/Hcc8+hqKgIdXV12LZtGwwGA66++mr885//lHUshnEWbKAwTC888MADKCgowNq1a/Hxxx9jwoQJGDduXLfvt1gsAIC4uLgufy++Lt6QxPfHxMR0+f7Y2Fi1Q5fF22+/jeuuuw47duzAjBkz8Pjjj+O5557D888/35F70tLS4tA5lH4m9oSGhl70mpcXpc9ZrVZF45g5cyYEQYAgCGhra8PZs2fx9ddfY8qUKR3vycrKwvbt2zF06FBceumlnfYXS5Tff/99RecFev//ip9Rb2jxeXzyySf4f//v/2Hx4sV46qmnkJiYiMDAQEybNg3ff/89/Pz88NRTT6G+vl7W8RjGGXCSLMP0wm9+8xssWbIEDz30EM6cOYPnnnuux/eLXpDS0tIuf19SUtLpfeLPsrKyLt/f3XGMRiNaW1u7/J3c1Xh7ezteeOEFxMbG4uDBgxcZEN0JmClF6WfiTkTvSXZ2dqekWXuOHTuGnTt3djJseqOsrAzp6ekXvS5+Jq7828VE2NmzZ1/0u9jYWAwdOhSHDh1CTk4OJkyY4LJxMYw9bKAwTC+EhobipptuwmeffYaAgADcdtttPb5f9K50V+K7efNmAMD48eMBAEOHDoW/vz8yMjJgsVguulF1d5ywsDAcOXIEbW1tMJvNnX63f//+3v4sAFQ9VFNTg4ULF15knNTX13eEZuwxmUwAlHkvlH4m7qKlpQWfffYZjEZjh0T9hRQXF2P9+vV4//33FRkoW7ZswYwZMzq9lpeXh6KiIqSkpHTpGXEWokesu1Ji8XVvb2+XjYlhLoRDPAwjg5dffhnffPMN1q9f32VCqT1Tp05Feno6tm/fjpUrV3b63cqVK7Ft2zYMGTIE06ZNAwCYzWbccccdqKuruyhJdv/+/fj888+7PM+kSZPQ3t6Ojz/+uNPry5Ytw44dO2T9XdHR0fD398eBAwc6ufPb2trw2GOPdZl7EhYWBoPBgMLCQlnnAJR/Ju7i66+/RlVVFebOnYsPP/wQH3zwwUWPFStWICAgACtWrJAdlgEolFZQUNDx3Gaz4U9/+hNsNlunXBdXIJZJv/HGGxf9De+99x6Ki4sRGxvbo84Pwzgb9qAwjAySkpKQlJQk670GgwGffPIJrrzySixatAgLFizA0KFDkZOTg2+//RZBQUH49NNPYTRK64O//e1v2LhxI9566y3s37+/Qwdl+fLluOaaa7B69eqLzvM///M/+Pjjj/Hwww9j48aNGDBgADIyMrBr1y5cd911FwnMdYXRaMTixYvx97//HaNGjcKCBQvQ2tqKzZs3o7q6GrNnz+7wbogEBgZi8uTJ2LZtG+644w4MGTIEJpMJ8+fPx+jRozX7TNyBGN65//77u31PcHAwbr75Zixbtgz/+c9/OoTeemPq1KkYO3YsFi1ahJCQEKxfvx6HDx/GhAkT8OSTT2oyfrk88sgj+Pzzz3HkyBEMGTIE8+fPR2hoKA4ePIhNmzbBZDLhn//8Z4e3jGHcAXtQGMYJTJ48Gfv27cPtt9+OXbt24bXXXsPOnTtx2223Yd++fZg8eXKn90dGRmLHjh245557kJ2djbfeegsZGRl499138fvf/77LcwwfPhw///wzpk6diu+//x5Lly6Fj48Pdu3apShv4KWXXsL//u//ws/PD//+97+xatUqTJw4EXv37u3WKPvss89w7bXXYt26dXjxxRfx5z//uctwkCOfias5ceIEtmzZgpiYmF5bGIhVXEqSZd988008++yz+OWXX/D222+joqICjz32GDZt2iRbpE0rAgMDsWPHDrz44ouIi4vDF198gbfeegtZWVm4+eabsXPnTixcuNClY2KYCzEIgp2MIsMwDMMwjA5gDwrDMAzDMLqDDRSGYRiGYXQHGygMwzAMw+gONlAYhmEYhtEdbKAwDMMwDKM72EBhGIZhGEZ3eKSB0tzcjJycHDQ3N7t7KAzDMAzDOAHFBkpjYyM++ugj/PGPf8S1116LGTNmYO3atapO/o9//AMzZszAkiVLFO1XUFDQ0WGWYRiGYZi+h2IDxWKxYNmyZSgoKMCgQYNUnzg7Oxtr167lZlQMwzAMw1yEYgMlIiIC33zzDb766is8/PDDqk4qCALefvttzJ07F+Hh4aqOwTAMwzBM30WxgeLt7Y2IiAiHTrp+/XqcPn26o58FwzAMwzCMPS5Pkm1sbMR7772HX//61w4bOgzDMAzD9E28XH3CZcuWwcfHB7fccovsfSorK1FVVdXxnJNjGYZhGKZv41IDpaioCCtXrsRzzz2nKDl29erVWLZsmfMGxjAMwzCMrnCpgfLOO+9g5MiRmDVrlqL95s+fj6lTp3Y8LygowMsvv6zx6BiGYZjesFqtaGtrc/cwGB1iNpthMpk0O57LDJQDBw5gz549ePnll1FSUtLxutVqRUtLC0pKShAcHIyAgICL9o2MjERkZKSrhsowDMNcgCAIKC0thcVigSAI7h4Oo0MMBgNCQkIQGxsLg8Hg8PFcZqCUl5cDAJ599tmLfldRUYFFixbhd7/7naLcFIZhGMY1WCwW1NTUICoqCgEBAZrcgJi+gyAIaGhoQEVFBfz8/BAaGurwMZ1moFRWVqKhoQEJCQnw8vLC+PHj8de//vWi97322muIjY3Fb37zG6SlpTlrOAzDMIxKBEFAeXk5goOD2ZvNdIufnx9aWlpQXl6OkJAQh41YVQbK119/jfr6+o7Kmh07dnR4SG688UYEBgZi6dKlWLduHZYvX464uDjExMQgJibmomP9v//3/xAWFobp06c78GcwDMMwzsJqtcJqtSI4ONjdQ2F0TnBwMGpra2G1WuHl5ZgPRNXey5cvR2lpacfzrVu3YuvWrQCAq666CoGBgQ4NimEYhtEP7e3tAODwDYfp+4jfkfb2dvcYKCtWrOj1Pc888wyeeeYZTY7FMAzDuB/OO2F6Q8vviMuVZBmGYRiGYXqDDRSGYRiGYXQHGygMwzDOoqEBOJ+/wTCMMthAYRiGcQb5+cCqVcCmTUBLi7tHw+iYlpYWLFmyBPHx8fDz88PkyZPx008/ydr3+PHjuPnmm5GWlgZ/f39ERkZixowZ+P7771Wf55dffoHBYOjysXv3bof/XrlwSjbDMIyW2GzAkSPArl1AWxtQUkKvzZwJ+Pm5e3SMDrn77ruxcuVKPP744xg8eDCWLVuGa665Bps3b8a0adN63LegoAB1dXW46667EB8fj8bGRnz99deYP38+/v3vf+PBBx9UfZ7Fixfjkksu6fTaoEGDtPmjZWAQPFCzOCcnBw888ADef/99pKenu3s4DMMwRHMzGSaHDgGhoUBUFHlPTp8Ghg0DZs8GumjnoXeam5tx+vRppKamwtfX193D6VPs3bsXkydPxmuvvYY//vGPAOjzHjlyJKKjo7Fz507Fx7RarZgwYQKam5uRnZ2t+Dy//PILZs+eja+++go33XSTonNr+V3hEA/DMIwWVFcD69YB+/YBcXFknACAjw+QmgpkZgIbNwJ1de4dJ9MlaWlp+PWvf33R67Nnz8bMmTOddt6VK1fCZDJ18nT4+vrivvvuw65du1BUVKT4mCaTCQMGDEBNTY3D56mrq+vQwXE1HOJxBw0NwKlTgMlEk5e3t/QQn5vN7h4lwzByyc8Htm4FysuBQYMuvn59fOj1nBxKmr3iCoBVWXVDfX098vPz8fDDD1/0uyNHjuD222/vcr+2tjZYLBZZ5wgPD4fReLFP4NChQxgyZMhFKr2TJk0CAGRkZGDAgAG9Hr+hoQFNTU2wWCxYvXo11q5di0WLFjl0nnvuuQf19fUwmUyYPn06XnvtNUycOFHW36sFbKC4GkGgFdaePYCosmcw0Lb4MJvp4e9P7uCAAIpd2xswFxo03t50HIZhXId9vonVCgweDHRxEwJA1/SgQbQ4Wb+ejJSwMNeOl+mSY8eOQRAEjBkzptPrxcXFqK6uxujRo7vcb8eOHZg9e7asc5w+fRopKSkXvV5SUoK4uLiLXhdfO3v2rKzjP/HEE/j3v/8NADAajVi4cCH+7//+T9V5vL29ceONN+Kaa65BZGQkMjMz8frrr2P69OnYuXMnxo0bJ2tMjsIGiqspKKAJbcAAICiIXhMEWlW1tUk/m5uB+nrpuc0mHUMQJEPG/qefn2TU+PvTCi09nQ0XhnEGzc3A7t3AwYNSvklveHmRkXLyJBkpV14JREQ4fahOY+JEwK7tiduJjQX271e827FjxwDgIgPl8OHDANCtgTJmzBjZ1TaxsbFdvt7U1AQfH5+LXhfzN5qammQd//HHH8dNN92Es2fPYsWKFbBarWhtbVV1nilTpmDKlCkdz+fPn4+bbroJo0ePxtNPP41169bJGpOjsIHiSpqbgb17aVs0TgAyIESviVza26WHaNhUV5OLua2NVnNmM+DrC3RhtTMM4wDV1RTSOXGCFhtK+o+ZTJInZd06MlKio503VmdSWgqcOePuUTjM0aNHu2xoe+TIERiNRowcObLL/cLCwnDFFVc4dG6xA/CFNDc3d/xeDkOHDsXQoUMBAHfeeSeuuuoqXH/99dizZw8MBoPD5xk0aBAWLFiAVatWwWq1wmQyyRqXI7CB4kqOHiUPihZlWmI4qCfy8oADB4CEBM5pYRitKCgg46SsrOt8EzmIRkpenhTu6cL9rnu68Qq4DZXjOXbs2EXeE4DyMtLS0hDQTeVVa2srqqurZZ0jKiqqy5t6XFwcznRh5JWUlAAA4uPjZR3/Qm666Sb89re/xYkTJ5Cenq7JeQYMGIDW1lY0NDS4pLM1GyiuoqyMXMFRUb0bFloxYABNgDk5QDcrAIZhZKIk30QORiOQlkYlyKKRkpio3XhdgYpwih45evRop4RSALDZbNi0aRNmzJjR7X47d+50OAdl7Nix2Lx5M2prazvd9Pfs2dPxezWIIRsxiVeL8+Tl5cHX1xeBSjyGDsAGiiuwWikxtr4eUGkNq8JspjyUAweA5OTOYSWGYeSjJt9EDqKRkp8vGSnJydocm5FFeXk5KioqOjwJIu+88w4qKysxatSobvfVIgflpptuwuuvv46lS5d26JO0tLTg448/xuTJkzsqaxobG1FYWIjIyEhERkZ2Gn/0BSHCtrY2fPrpp/Dz88Pw4cMVnQcAKioqEHXBd/zw4cNYvXo1rr766i6rkZwBGyiuICeHHklJrj93TAyd+/BhoBdFQoZhusCRfBM5GAyUJ1ZYCGzYAMyZQ0YL4xKOHj0KANiwYQMeeeQRDB06FLt378b69esBAAcOHMCePXswefLki/bVIgdl8uTJuPnmm/H000+jvLwcgwYNwieffIL8/Hx8+OGHHe/bu3cvZs+ejeeffx4vvPBCx+u//e1vUVtbixkzZiAhIQGlpaX4/PPPkZ2djf/93//t8HbIPQ8ALFq0CH5+fpgyZQqio6ORmZmJpUuXwt/fH3//+98d+nuVwEJtzqa2lrwngYGUsOpqjEaKyx49qq9se4bxBAoKgDVrqOpm0CDtjRMRg4E8J+3tZKScOOGc8zAXcfToUZhMJnz55ZfYsGEDlixZgsrKSmzZsgUDBw5ERkYGzE7O4fv000/x+OOP47PPPsPixYvR1taGH374ocfwksiiRYtgNBrx7rvv4uGHH8Ybb7yBxMREfPfdd/jDH/6g6jw33HADKisr8cYbb+CRRx7B8uXLsXDhQuzfvx/Dhg3T9G/vCZa6dyaCAPzyCxko6emOxasdJTeXxnD11e4dB8N4Avb5Ju3t5P101XVz9iyFhWfNAs67591NX5a6v//++7F161acYKNQE1jq3lPIzyfPRWKi+42CxERalZ065d5xMIzeaW6mkM6mTSSEmJLi2us3Pp7yxzZuJCPJ89aQHsXRo0c78jQYfcEGirNobibPCaCP5FRRiXb/fhobwzAXI/bT2bu3cz8dVxMbS4KLmzcDGRlspDgJQRCQmZnJBopOYQPFWRw5Qh4UGT0UXEZ8PFBcTE3LGIbpjKvyTeQSFQWEhABbttDCwl5NmtGE06dPo76+ng0UncJVPM6gtJTarUdHu07zRA5eXiSrffAgdVflPiAMQzf+o0eBnTsp38RRfRMtiYigsWzbRnkpkybpZ2x9gLS0NHhgGma/gb/pWtPeTqGdhgZ99tiIjATOnWO3McMAUr7Jxo3uyTeRQ1gYLXZ27KBHe7u7R8QwLkFHy/s+Qk4OJaPqVWzJYCDp++PHyY2tpxAUw7iSc+fIM5Gd7Rx9Ey0JCSHDac8e8vhMmcLtK5g+j86WCh6OxULek6AgWo3plaAgWoUdOMCrMaZ/0tZGXpMTJ/SRbyKHoCBaXOzdS14fu061DNMXYQNFKwSBEtkqKki9Ve8kJlLJcW6uu0fCMK6nsBAoKqJcLE/yRAQGkibLwYOkscQVeUwfhg0UrTh9Gjh2TB+aJ3Lw8aEyxgMHKF+GYfoLNhtVshmNVHrvafj7U65MRgaVIZ9vCucKOKGU6Q0tvyMecCf1AJqayO1qMnmGq1gkNpZUK8/3omCYfkFJCS0oumne5hH4+lK/nqNHKVTl5EWG1/lqxHYOCTO9IH5HvDSoYGUDRQsOHyaXcUKCu0eiDJOJqgMOH6bQFMP0B7KzKQfF39/dI3EMHx9g4EDyBh0+7NRTmUwmmEwm1NbWOvU8jOdTW1vb8X1xFK7icRRR8yQmRl+aJ3KJiKDKo4MHgSuv9IzwFMOopbKS8q5U5InlFRpw4KgRbW1OGJcdZjMwcZQNqUkyXOXe3iQdkJ0NjB7tNA+uwWBAdHQ0SkpK4OPjg4CAABgMBqeci/FMBEFAQ0MDamtrERcXp8n3wwPvqDqivZ1CO01NlHviqQwYQBPc4MHc5p3p25w4AdTVqfJ2HjhqhKVWwaQrCPBtqUWzb4iyEzUB+48akZpklff+iAgyuk6fBkaNUnYuBYSEhKCpqQmVlZWoYI8r0wUGgwGhoaEICVH4ne8GNlAcITubJryUFHePxDH8/Ukf5cABMrQ8MXGQYXqjro6u2chIVbuLnhODQYBfL01a/evLMfOnvyCkpgBZo27E4Ql30TXWC03NgCAYlHlpjEZKeD92DBg61GlVSQaDAXFxcYiOjkabs91IjEdiNps1Ce2IsIGilpoa8p6EhOhb80QuiYlAXh6QlQWMGePu0TCM9pw6BVRVAUOGOHQYP1/g9ht68G6cOQP8+c/AuUoAwIgjX2HEhEDghl/1euwvvjWhUU1RTkwM9RIqKnK6F1Sr/AKG6Q1OOFCDqHlSVeUZmidyMJvJ2DpwgATnGKYv0dJCHobgYOfmWZ0+DTz1FOW62PPxx9T0z1mYzeShycriFhZMn4ENFDXk5ZFU/IABsty2HkN0NBldGRnuHgnDaMvp00BZGX3HnUV2NvDMM5KBn5wM3HCD9Pu333ZutU1MDHVQLytz3jkYxoWwgaKUxkYK7Xh5Udy3L2E0AnFxZHydPevu0TCMNlit9J329XVepV1GBoV1RD2S9HTglVeAe+4B5s6l19rbgb/9jRY4ziAwkBL2T5xwzvEZxsVwDopSMjIozns+jq209NC36RzG7/kAXu1NaPILQ7NfGJr8w+mnuO0bCptX50RVRaWHjhASQpooBw/SioxjzYynU1RED2dV2u3aBbz2mtTXaswY8qT4+dHzhx6ixoRixd+LLwKvvuocobjISDJQxo6lcBbDeDBsoCjh7Fly0cbGdty4lZYeTtn2T6QU7+r1fS3mQDT6haHJN+z8z3DUZoQBU0KA0FAgPJzasAcGah9TT0ykSW7wYFoJMoynIgiUlwE4J5l90ybgnXdIPh8AJk8G/vSnzpVwJhO99uc/Uxjo3DnJSNHaiAgLI12jvDwyUhjGg2EDRS5tbbQCam7utBJTUnoYWZ4lyzgBAJ+2evi01SOstqjzL/Zc8EYvLzJYQkNpcrJ/jBxJjcWU4utLjwMHaH9xJcgwnkZZGd2snZHM/sMPwNKl0vNZs4DFi7sOI/n4AM8+Swm0xcVU6fPSS8DLL2trOBmN5AU9dgwYPpwlAxiPhg0UuWRlASdPUvfTLui19FAQgGc+lp7fcw8pP547d/Gjpgaorqbtlpaex9XeThUDF1YNABQXevNNdUZKfDyJPx07BlxyifL9GUYP5ORQWEVLhVVBAFasAP7zH+m1a64BHnywZ29mcDDwwgvAk0/S9Z2TQ6Ghp5/WNpQaFUXJsgUF5AVlGA+FDRQ5nDtHZcUhIepXJAcOUKIeQDf/66+Xl7DX1ITvV1iAmhr4t1QjpP0c/BrPwbfpHPyazsG3sRp+Tefg02yBUbB13retDQX/uwI7Zi+RNcROeS4mE8WzMzJIVyEiQtnfyzDu5tw5MgK0rNwRBIzd/zFw9GvptZtvBn79a3kVfdHRwHPPkVEiNhl9913g0Ue1qwg0m2luycykXj3cvoLxUNhA6Q2bDdi3j1Y8agWebDbg00+l57/+tfxqAj8/NEcGwuLdc4KfwWaFb4sFfs3n4N9UjZm734RfSw2STm/DvmG3oyZEhhflQontiAjKRTl0CJgzp2+VVDN9n9xc8kYOHarJ4Qw2K6buexfDTq2VXrzrLuDGG5UdKC2NkmhffJE8oBs20GLg1ls1GScASbitpMTzmpgyzHnYtO6NvDxaiTiiebJ1K7lcAWDQIGDqVEW7TxxlQ0iwAH+/7h9+AUYYwsPQHJ+G6oETkTV6IQDAAAETs7/scV9/PwEGA1UHdapGMhhocsvMpG7NDOMpNDZSWDYiQhvDur0dl215XTJODAbgkUeUGyciY8YAjz8uPf/iCzJUtMLfny7m3FztjskwLoY9KD3R2EjeE7NZfWv2tjbg88+l53fJ68lhT2qSIL9xmMi8ecD9K4HaWqTkb0XKxFt6LLPsVmI7MBAoL6cQVXy80/p8MIym5OXR91aLHIyWFuDVV5Fyej8AwGYwwfiHx4GZMx077owZ5Jn96CN6/q9/If7yCJyMmuzYcUWioijENWYMJc0zjIfBHpSeOHSI9BMccZGuXy8pO44Z47o+N76+wK/O9/6w2YCvvlJ/LLFPDwtAMZ5AWxtw9CgZ144mnzY2UihmPxkn7UYzts551nHjROSGG4AFC2jbZsO0zX9HVGW2NscODQVqa50nDMcwToYNlO44cwY4cqST5oliGhuB5cul53fdpc3Y5HL11UBQEG1v2aJeHdbbm46zfz91hGUYPZOfT7kXjpYW19ZSafCxYwCANi8/rJ/1Es4mTXJ8jPbccw8wfToAwMvagrlbXkCQ5YzjxzUYyEg5fpzkERjGw2ADpSvsNU8ccY2uXi315Zg2jfJPXIm/f6fVmUNelNhYcpkfOaLN2BjGGdhslDPl5eVYOLKqiiptTp6k50FB2HT1X1ESM1qbcdpjNFI+yqhRAADf1lrMXv9nqkJylKgoum7FHDiG8SDYQOmK48epNbsa/RARiwX45hvaNhqpcscdXHedpAGxeTOtLNVgNNKK9MgRoLRUu/ExjJacOUPVK47IyJeWkqBa0XmRxPBw4G9/Q1WUE1WVzWbgmWdwLox0lgLryyi01Njo2HFNJgr3ZmZSTyKG8SDYQLmQc+coITQ01DEVxhUrSOcAAK66ihJM3YG/PzB/Pm076kUJC6MJ89AhSdqbYfREVhaV7qpVPy4sJONEzBuLjqamf8nJ2o2xOwIC8MvcF1HnH0XP8/Lo3HIbfXVHTAz9XWc0CBsxjAthA+VCamro4Yi4U1kZsPZ8OaK3N7BokRYjU8/110udlzdvdswDkpgo9fpgGD1RUUGeT7W5J7m5FNaprqbnAwZQv5y4OO3G2AtN/hFYP+sltHif93oePty5148afH1p/5wcbQbJMC6CDZSuMBgc00744gups+n8+e5XYQ0IICMFIDfvypXqj+XvT/H9Awc48Y7RFydOAPX16hrwHTtGCbFiEvigQeS9cMO1WxOShC1XPi95cLds6Sz0qIboaDLeumqJwTA6hQ0UrcnPB375hbYDA4GFC905Gon58yUtl40bKXFOLQkJ5DIWu8QyjLupraXvY1SU8n3376ceOWJIdvhwauSndadhBVTGDAf++EdJpn7VKuD779UfMCSEjK9Tp7QZIMO4ABZq05rPPqNmYgBw003aNilzhMBA8qIsXy55UR55RN2xvLwocfDgQWqeGBqq6VAZRil5Px7DgR0RaDMq6wyclLcVU7a8DqNACaRnEydi28SnYf3p4tbkTa52GF56KfDQQ8C//kXPP/iA8sCmTVN3vPBwSpYdNUq98CTDuBD2oGhJZiYpzwLUW+Paa907nguZP19KHvz5Z4rZqyUqimL1GRmSQcYw7qC5GQc2VcHS4ovGJoPsx4Cj6zH1l390GCd5SdOxbsqfUdfm1+X7BYHCvi4VU543D7jlFtoWBOCNNzp0WRQTEUEhntOntRsfwzgRNlC0QhCAZcuk57feCvgoW805naAgKjsGKEfm6697fn9PGAxUmZSVRZoRDOMuTp9GWysZyQZDzz2nxMe4vG8xfd87MID2OzlkLvZc/if4Bnr1uF9IsICJo1xcwXbHHcAVV9B2ezvw17+q0zUxmSgf7fhxKUeOYXQMh3g0IqFoL5B9XqI6MZG6/+qRBQsolt3cTM3Jbr5ZfSJgcDCp0xYWkseIYVxNezt5FAwUkvHzBW6/oRe9j9JSYNkH0vMFCzDo3nsxyAAAOtQKERsT1tRQvkxDA2mk/OMfynNuoqOB4mLSeElNdcpwGUYr2IOiAQabFWP2fyK98JvfON4DxFkEB0uhJ0e9KOLxcnIc12pgGDUUFtIN16hgKvv5Z6ls9/rrgXvv1abjsTPx8gKefFJqflhVRYm9SltPiF7d7GwOzTK6hw0UDRiUvxmhNQX0ZMgQSm7TMzfcIE1U69dLug9qiIwk3Re1CrUMoxZBoBCjElkAqxXYtIm2jUbgxhv1b5yI+PoCzz0n6bIUFVG4p7VV2XGioykPxZEcNIZxAWygOIixvRXjj34mvXDXXfqf8EJCgGuuoe22NiphVIu3N036LNzGuJqSErrRKpG1z8iQtEAmTKDKFk8iJITCOyEh9DwzE/jf/1UmYx8URGGi3FznjJFhNIINFAcZnLMGQY3nVyLjx3c0/NI9N9wgCUGtWwffRge8KBERpK9QX6/J0BhGFjk5QEuLpJIsh59/lrbFxFNPIzYWeP55qSJv167OXdPlEBlJYR6+Zhkdw0myjtDYiBGH7SaGO+9031iUEhYGXH018N13QGsrhh1bhR2jHlB/rNxccjkPG6btOBmmK6qrSTlWSUuK2lpgzx7aDgkBLrnEOWMTEQTqfxMUJHk8ZNLUDHzxbU95bOmInfEMZm14AUbBipZvfsQ3PrfCZpJXA232isHEiCKk5uUBo53QoZlhNIA9KI7wzTfwba4FAOSnzQTS0tw8IIUsXNjhRRmctQa+zTXqjmM0Uk7LiROceMe4htxcMjiU3Ph/+UUqr509mxJPnUl+Pl0XpaWSSm0viBorgtC7jkte+ATkJc0AAPi01CHy1D7ZGjCWOgP2l8VRyTEnuDM6hQ0UtZw7R94HADaDCUfG/8bNA1JBWBgwdy4AwMvaglHZDuSiREZSNQUn3jHOpqGBbqwREfLzvQQB+Okn6bmzwztFRaTWevnl5KHIz5eVJzJxlA0hwfK0XPz9BBQOvbxj36GFP8vax2CgRUQbvCiPp7DQWZ8CwzgEh3jUsmJFR7O8rEFXoz44DrrUUOiNhQuBdeuAtjYMz/0BJ8ctBKBCnj8wkAyU/HzHOkEzTG+cOkVltkOGyN/n5Emg4HylXXo6kJTknLEBpA1kNJJxkpJCxntNDV0bAwf2uGtqkoDUJAXziHUksD8CqKpC4pn9uH12da9epS++NaFRdOgYjVQJlZam/+R+pt/BHhQ1lJZSeS6ANi9fZIy4zc0DcoCICOCqqwAA5vZmDD32jfpjhYZSmEdp2SPDyKW1lYTZgoOVa5+IONN7UlFBYaTZs6WQb2AgMH06JfOWlmp7PpMJmDWLtq1WYOtWZfvHxpLhpPW4GEYD2EBRw+efd8Syc0bcgCa/MDcPyEFuvBFWIznThmT+QLF9NUREUJfkM2c0HBzD2CHeTJUoqLa0SDduHx8yFpxBVRVdO9Onk5fGnrg4YOpUCk8pFVfrjdmzpW1R40UuAQHkCT5xQtsxMYwGsIGilLw8YMsW2g4KQuaoG5Ufo62NJtmqKpqsWlokZUt3EBmJU0NEL0oTsHq1uuOIGX6sicI4A5uNvCdms7KOfbt2kWEAkJHgjE6+FgvlpU2b1r3UwLBhJEVQXKytlzEpCRg0iLZPnZJCWXKJiiIDxWLRbkwMowGKc1AaGxvx5ZdfIjMzE1lZWairq8PTTz+Nq6++utd9Dxw4gJ9++glHjhxBRUUFwsPDMX78eNx3332I9JReLp9+Km3fcgvaBX9AXoK+hFh6CJAOQWsrPcQKGIOBJmBv784Ps9lpEvqZo2/GwBMbYLK1U6+eG24g17RSIiPJQLnkEnLDM4xWFBdTQmdCgrL97MM7V16p7ZgAuoZLS8n4GT+++1wOgwGYPJnyUU6cINl6JWGqnrj8csqzAciLcs898vcNCyNNmbw8YNw4bcbDMBqg2ECxWCxYtmwZYmJiMGjQIBw6dEj2vu+99x5qa2sxa9YsDBgwAGfPnsWqVauwa9cufPjhh4hQ27TOVRw9Chw8SNtRUaQjskbhMdrayBiZMoVi1M3NVILY3CxtNzaSq7i2lia/xkaa1FpbO3taLjRixOcqyicbA6NxIvVKDDu1lsawejVw++2Kj4OQEEkTZcQI5fszTFeIsvY2G0m+y6W0FDhyhLbj4oDhw7UdV2MjGU6TJtGjN4PDx4e8LDU1tJ9WybozZgAffUSh5y1bSJNJ7mLGYKDFxPHj9PnorQs7029RfCeLiIjAN998g4iICGRnZ+PBBx+Uve+jjz6K0aNHw2h3EU+aNAmLFy/GqlWr8MADKoXCXIEgAJ/YNQS8/XZJiVUJZWVAfDxl93t5kZeiJ0+F1drZeBF/NjVReMhiISOmuZkMmtZWqZzRbAaSk2Wv0g4PvwXpeRtgFKzkRZk/X7kXxWgkhcucHHJpa7VCZPo35eUUvlAiaw8AGzdK21dcoW2lSksLeXTGjaMFh1yDIDyc8lTWrKEwrxYLs+BgYOJEYPduErE7fJi8OXKJjiYPSkGBsuoohnEiig0Ub29v1Z6OsWPHdvlacHAwCpTGTV3N7t1SIllSkpQ5rwSrlWLhM2bIN25MJkpk60nO22ajyfJCA2bPHpqsZIbP6gNjkDf4Cgw6sZ7G+cMPwK23yhunPZGRVGpZViY1NmMYR8jJIW/FgAHy97FaJQNFLPvVitZWuqGPGkXGhpKcGABITaWmops3k0GvRV7M7Nk0TwEU5lFioHh50d+QmUn5LLywYHSA27+FjY2NaGpqQohCKWiXYrUCn9k1BPzNb9TlglRU0EpFa8VZ0WsRHk7emYEDgZEjgaFDaYWmgOOjb5Ymp+++k5ILleDvT4aS3o1OxjOwWMhAUVK5A5AXQWwMOH68Np4KgMIoeXl0fc2cqT4kMmYMibgVFipr9tcdEydKuW27d5NBp4SYGBrL2bOOj4VhNMDtBspXX32FtrY2XN7D6qayshI5OTkdD5d7WzZtongxQJPSpEnKj2GzUZb/yJFSky9nM2gQnUtBQ7CG4DipbFH0oqghNFRq5sYwjnDyJF07YQrL+Z2RHGu1UqgpLY2uE0c8H15elFibnExdmR3FbCbvLEAenu3ble3v7085clxyzOgEtxooGRkZWLZsGWbPno0JEyZ0+77Vq1fjgQce6Hi8/PLLrhtkSwvw3/9Kz++6S10cu6qKQh+DB2s3tt4QvTVlZcr2u/kCL4rSlRhAq9WqKsmwYxg1NDVRaXFYmLLrrrZWCneEhJB3wVFsNjJOEhOBOXMkb4UjBARQiCgwkGTnHcV+obd5s/L9o6Mpyb3age7mDKMRbjNQCgoK8OyzzyItLQ1Llizp8b3z58/H+++/3/F49tlnXTRKUCKb6CaeOFFdZYog0DGGD9dmUpOLwUCCUYKgTHchPp5c1wB5X378Ufm5vbzIyBFLHxlGDXl5FBpVGt7ZskVqDDhrlvIckQsRBPJyxMRQsm1oqGPHsycujip7xOo9Rxg0SMrTOX5cuUJsSAiF1E6dcmwcDKMBbjFQysrK8MQTTyAgIACvvvoq/Htxk0ZGRiI9Pb3jkZyc7JqB1tcDX31F2wYDle6poaaGLnx3ZMcnJZHBUV6ubL9bbpG8KN9+K7sbayciI0n589w55fsyTFsb3WQDApTlfF3YGFCL8E5+Phklc+bITjpXxNChwIQJlP/hiIibwdBZWVapF8VgIG9VZqa6a55hNMTlBorFYsETTzyBtrY2vP766/oWaPvmGyl/Y9YsKg1WQ3k5TUDh4VqNTD5eXuT1qa9XplabkCBJgtfVkSdJKcHBtBorKlK+L8MUFpKoodLmk6dOkUEB0KLAUa2R4mLK5br8cudVpRkMlNuWnk6eGkeUpWfNksJhmzdLApByiYoir5X4GTKMm3CagVJZWYmCggK0i25WAE1NTXjyySdRWVmJf/zjHxigpGTQ1VRXU/4FQDd5NaJlAN3c/f3JQHEXqalSTogSFi2SJrpvv+3o3iwbg4FCWjk52lQpMP0Hm41W8Uajcr0hLZNjxbyQyy93bgdkQOoTFBPjWO5WZCRVCAEU4snKUra/yUQG2fHjfN0ybkW55CiAr7/+GvX19ag6f8PbsWMHys+HEG688UYEBgZi6dKlWLduHZYvX46486uOl156CVlZWbjmmmtQUFDQqRrHz88P053VxEsNX34puVqvvpomDTWUllLljtJVoJYEBJCBtGOHslh+YiLFxrdtI0/I2rXAr36l7NyRkTTJl5Yqlyhn+i8lJeRJUCjMZmpvkXpleXs71hiwooLmgCuuoNJ9VxAWRtecoyJus2cDGRm0vWmTcgVd0Ug6c8b5hhnDdIMqA2X58uUotUu+2rp1K7ae7xZ61VVXIbAb9dGT5xMm16xZgzUXhAxiY2P1Y6BUVAAbNtC2nx9VtaihsZG8L8OGaatgqYbBg0kXoq5OWaLuokVUrigIwKpVwDXXKNN98PWlST4/nw0URj7Z2ZSDorCMN7FAo8aA1dWUsDp7tuu9n1qIuF12GfDee5RHsn078MADyq5bHx+65rOz2UBh3IYqA2XFihW9vueZZ57BM888o3g/XbB2rRQDvuEG9Rn7JSW08tLDjTkykkqOMzOVGShJSTTRb99OXpR164AFC5SdOzyctBXGj3edBgzjuYhVJCq8jgNPbJCeqA3v1NaS92L6dBJScwdjx9IYMjIoj0apMKSvL8nvb9xIC6U9eySNFLlER9P/obLSOYnBDNMLbhdq0x1Hj5KnAaDKG6U3Y5GWFlqBjBihD9loseTYYFAunnbLLdL2qlXK9w8Pp8mWk2UZORQVkZGiUF06sL4UsSXnr924OHWSAPX1tLCYPJmqatzl+TSZaGGQkqJexM1RTZTgYPJGsVQA4yZ0cOfUGa+9Jm3fcot6F3FZGekR6Mk9mpioruQ4JYVWYwCVDG/Y0OPbL8JkIh2K3FzlFQVM/8JmI2+bv79i42DIabvkWDWNARsbyTiaOJFCLO5eWAQEkNcjKEidiNuIEZIX6tAhdeJr4eHkdVXT8oJhHIQNFHs2bpTkoaOjgXnz1B2nrY0qXkaNohwUvSCWHDc0KM/OX7RI2v76a+VaDZGRVDbKCpVMT5SXkxaIwpCCwWbFkLzz2idqGgO2tFDvqHHjyHOhpteWM4iNpfGoEXEzGqWmpjablDyshPBwuma55JhxA2ygiAgC8NRT0vM77lCvPlleTp6K1FRtxqYlqak0+Ss1FMTEPYD2tRfCkkNwMLnPCwuV7cf0LwoKyLhX6LmMKTmMwMYKeqK0MWBbGynWjhyprjOxsxk6lLw6akTc7A21TZuUezDFburHj0vKvAzjIthAEbFaqUtxRATFr0WpdzXHqaujyU6pfoMr8PenkkOlmijAxV6UtjZl+wcHU1UAT3RMV7S2UhhQRWfzTsmxV1whf8f2dsqxSE8nb4Ovr+JzOx2DAbjkEjJUlIq4xcdLVUgFBWSIKSU6msqNOYeMcTE6ij+4GS8vYPFi/HByIFBYgNrV8lZRTRdql1VU0AXtKt0ENQwcCBw8SC7j4GBl+02aBOzdS5n9P/9MGjFyiYggbYWzZ/WVm8PogzNnyPuoVLG5tpbKiwE0+4bA95JL5O1n35n48ssd60zsbHx8SB9FVGZW0u7j8stpYQCQFyVKYcsNb28yknJz9ekVZvos7EG5gNpWb5T6p6KxySDrIQiUiGc2g1Y2586R90TPk11kJBkbSrscA529KCtXKvOi+PjQTUGL1vJM3+P0aboRKg2xbN0Kk428cqcHXi5/f1GbR6vOxM5GFHEzGpV5QKdNkz6TrVthsKnwYEZE0OdlsSjfl2FUwgbKBfgHesHf3AZ/P0H2IyRYwMRR542T8HASRdM76ek00SktGR48WGpdX1FBKzIlRESQS52rAhh76uoo/KC0X9UFjQHzhsgM7zQ30/d/2jS68XsKKSmUC1ZVRYmzcggMJM8nAFgsiC8+oPy8YpdjDvMwLoRDPBdww6Mp1CRQjZGRXUEZ90rCJu4iMZEeZWXKwy233grs30/bX31FK1C51UqhoeRWLypyb38iRl8UF1PXb6XXXV5eh0euPGIILGEpAGRUqFVXU9uH+HilI3U/Y8aQgXLoEH1ecq69yy+nVhcAUk9uRG7UpcrOaTCQV/jECcphc3cJNtMv4G+ZVtTUkGGSnu7ukcjDZKKS4+Zm5SXHQ4ZQpQRAOQN79yo7r9lMEx1rojAAfQ9ycykEqPTGZ+c9yUmbK3+/ujq6ueulnFgJJhPpEqWmyi//HT++I/k4oXAPfFrqlJ83MpLyx5TqKDGMStiDohVlZaQ8qba5lztISaFJp7ISAK0km5qBL77tfdKOi7wBs3EQAJC/Yhd2lsvro2Q2AxMHxyO1uJjOq6R5IdM3qawkD4pSOfUWqTFgu8kHeUkzICv7pLmZEj/10IJCLQEBVBL9ww9kNPTmCTKZqErpu+9gsrUjrXArCkKvUXZOf3/67AoKFDdxZBg1sAdFC+rrqceMp4Us/PyokeG5cx05dIIgLzn4dOgYtJipKWR84V4017fL2s9Sa8D+XH/KQbHrZs30YwoL6fvQTZPRbtm9uyOXqTB1Gtq8A+TtJ4Z33NlhXAtiYymHpqlJnoibnSbKoNMb1Z0zJIS8n0r1WBhGBWygaEFpKVXFeOKqYuBAICgIEwfWIyRYfmKwb6AXziRPBgB4tzchrfpgr/sYDBTSaWsDTXRix1qm/9LeTjc8NXlbP0vS9nmDFTQGrK313PDOhaSnU2NBORV5qakdJdwxVdkIshQrP19EBHm8zpxRvi/DKIRDPI7S1ERx8+HD3ddYzBEiIoCBA5F69ChSr1WYoBh3KfBXWonNErYDN0zo8e1ffGtCY9P5J5GR5EE5c0a57gXTdzh7VupbpYSyMqmpZ1wcymNHAhdqEnVFczPlunhyeMceg4E0UQ4eJGOvt4TZyy8HPvoIAJB6chOAO5Sdz2ymnKG8PNZEYZwOe1AcpbSULtTERHePRD3p6bSabJYzw9sxdqykvLl3rzKFWPuJjum/iMqoSlWXN9qFKObMkb846CvhHXvi4qg6To5GycyZsBlo2k89uUmZKq1IZCRdt0p7AzGMQthAcYTWVqqAGTHCs8vuEhJoBatUuM3HR9JEqasDjh1Ttr840dWpqChgPJ/GRio5V6pDYrVK4R2jkQwUudTVURVaXwjviPj6khqunP5aYWEoSaAKvICGCuDoUeXnEzVRilWEiBhGAR58V9UBpaXkOVEiO61HTCYKUakpOZ4yRdretUvZviEhJG7HDQT7J8XF9P9XaqAcOXK+8gzKGgOK4R1P1D7pDdGDK+P6PT3ITsxu82bl5zIaySjKyWGpAMapsIGilvZ2yj8ZOVK+SJmeSUkh13dFhbL9xo+XZLR371bmMjYaJfEnNa5mxrPJzaVrR6k3wy45VlFjwOpq8tr1pfCOSFyc5NnoheKkyWgxn6942rmT5jGliJooSucLhlEAGyhqKS+nqp20NHePRBt8fcmLcu6cslWRvz8wbhxtnzsnNSWTS2Sk1CSO6T9UV5OasFLtk7o6yVMXHExdfpXs29fCOyIBAaQIfe5cr2+1eXkjL2kGPWluVu75FM/X1MTeT8apsIGiBquVEsRGjyaXcV9h4EDZq7BOOBLmsRd/YvoPRUVkMCht0rdli5SMPXu2/MaATU19q3qnK5KT6bOR4Y3MTbXL21ET5gHIQGSpAMaJsIGihqoqCocMHOjukWhLeDgwaJByb8akSdKqdNcu5XHpkBCKZyttXMh4JlYr/b8DA5WX5ttJ2ysK75w7R6GdvqxcLIZ5ZFTXlEcOQ13w+VycI0fUhWoiI2m/s2eV78swMmADRSmCQAbKiBHk5uxrpKfTqlRJXDowkLxJABk3J08qO6cot89VAf2D0lJ6KA3vnDrV0RgQQ4YoS06vqyPjuy+Gd0SCgihZVkaYBwYDTg86rywrCMAvvyg/nygVIP5PGEZj2EBRSnU1VR0MGeLukTiH+Hh1JceXXSZtKw3zeHlRwuypU8r2YzyT/Hwq0Rc1dOSi1nvSH8I7Iikp9NnK8GKeHihJ32PTJnUVOeHhtCCpr1e+L8P0AhsoSqmooP415zuD9jlEVdyWFmXCa5deKrnr1YR5IiJoJVZTo2w/xrNobqYbWni4sv1aWzsaA8LbmxrlyaW6msI7fbF650Li4siTIkNbqCEohqoQAUpUP3FC+fnCwlgThXEabKAowWKhcEZ6urtH4lySk6lCSdSakENoKBk2AE12SrP7xdh5UZGy/RjPQuxirVT7ZNeujsaAmDpVWXhVDO94spiiXEJDyQsqR7QN6NRAULUmitlMxg1rojAa0w+uWA0pK6PQTl9OtAPI9X6+y7GiSceRah6DgW462dmsidKXycujPBCl2kFqtU8aG6lrd38I74ikpZEHVM61O2WK1GZg61Z1FTlRUZLhyTAawgaKXOrrKY49bJi7R+IaBg6k1ZiSkMull0rbO3cqP2dUFFBSQg+m71FTQ2E8ucqvImVlVGkCkGdPDEvIQaze6Q/hHZHYWDL2RY9TT/j7S/lj9fXAvn3KzxcYSOdiTRRGY9hAkUtpKa1M4uLcPRLXEBpK3iIl5YdRUVLycH6+8vJDX1/KNcjPV7Yf4xkUF1MYT2n+1saNkjfgiiuUlSbX1/ef8I5IeDgZKWrCPJs2qTtncDCFeZTkrTFML/Sjq9YBmptpUhwxQrlugyczeDDFlxsb5e/jSDUPQJNrbq46+W1Gv9hsdAPz91d2DdlsUudio7HzzbQ3GhvJ6O1P4R2APt+BA+Vft6NHS16tAweUCzUCVDJeVsaaKIymsIEih5ISShwVG3L1F+Li6O9WUnKshYFSVcVVAX2N8nK6eSnVPjl8WPLijRunbH+xeqev54x1RVwcGYNyjBSTCZg1i7atVspFUYq3NxmTrInCaAgbKL3R1kZuy5Ej+7bIU1cYjZRz094u33UbH09aDACtmJUqVJpM9FAq9sbom4IC8kT6+yvbT21yLNA/wzsiERFknMkN88yeLW2rDfOEh5OWkZzcF4aRQT+8chVSWkouYvGm299ITqaJTon8vX01z+7dys8ZFUU3NLmTK6NvWlspbKc096SuTvr+BAdTSwW5NDaSMdTfwjsiRiOFeeQaC0lJZMwBZGSo6Y0VGkrXLHs/GY1gA6UnrFbKhRg1Sn5Tsr6Gjw/l3tTWyi85tjdQ1FTziEJT3ECwbyB2q1ZavbNli1T2OmuWsmuwP4d3ROLjKQdHbj6Xo8myJhOFenJzWROlL1BX5/acIjZQeqK8HIiJoeqd/kxaGq2O5PT4AEgqX1y5ZmbK30/EYCAjJSeHqwL6Anl59D9VauTbh3euvFLZvv05vCMSFUVGodzrb8YMSZ9myxZaoCklMpLEFtn76fkcOQJkZLh1CP346u0Fm42y2UeOVN4zpK8REkLlw3KFmAwGKVlWEIA9e5SfMzKSwmusieLZ1NVR4qRSaftTp8iwAaiaTEljwP4e3hExmeizkyF7D4DCaBMn0nZ1NSUoK0X0frImimfT2KiLBSIbKN1RVUWrDzEu298ZPJjCPXJLFx1RlQXoXFYrVwV4OsXFJNAWGqpsP0eSY8XwjtKKob5IXByFXVpa5L1fS00UNR4YRh8UFiovcHACbKB0hSCQt2DECFJJZEj4KSlJfsnxwIGSeueRI+q6nYqdUrkqwDMRBLpR+fgoC7Vc2Bhwxgxl5+XwjkRMjLIwz4QJ5AUBKEFZzbXH3k/PxmajliM6mHf5Cu4Km01SUmUI+5JjOf067MM8Viuwd6/yc4aF0WqYGwh6JpWVlCCr1JOxe7dk0E6ZoqwxoCBweMceLy9aLMgVXzObJYOwtRXYsUP5OX18aI5g76dnUl5Onk+lVXdOgA2UrjCZgKFDlXdc7eskJ9OKTK7rz160TU01j1gVcPIkVwV4IoWFtApT6oV0JDnWZuPwzoUkJJCh0toq7/1ahHlE7ycrQnseeXnqNIucABsoXRETQwYK0xlvbwp7WSzyOg7bG3mHDsGrTYFkvkhUlG7ioYwC2tooyS44WNl+lZVScmZsLH3flCAIlC/F4R2JmBgyGOQ2/hw0iCrxAKrCKy1Vfs7wcNZE8UTE5FilSe1Ogq/iC4mIAMaO7V/dT5WQlkZfXjkxbaNR6nDc1ob4ogPKzyd2SmV3sWdRUkKuYjXhHdFbNmuWckPDYCD9D0bC21tZmMdg6OxF2bxZ+TlZEdozKSykAhGdGChe7h6A7ggOVr5q608EB1Nuzt698oS3pkwB1q4FAAwo2IHsOIUJjwBdLNnZ1NTMz0/5/ozrOX2aco+8vZFXaMCBo0ZZqUuXr92N2PPbPzZPh+Vbee0lmprPbxiNHN7pioQEMjza2wHI+ExnzgQ+/ZSMxc2bgVtvVd4oVfR+Vlfr5obH9IAgkPfEx0c3bV3Yg8IoZ8gQMhTkVOaMHNlRFRBftA+mdpnljvZERFCIh7UVPIPGRtIxOW/AHjhqhKXWgMamnh/WmjpElx4DAFgC41Dim9LrPuJDEOjmafb35vBOV8TGUrhVbjVPZCQwZgxtl5YCWVnKzxkURArUHObxDMrK6H+lo+gBX8mMcmJi5Hc5Npk6eqiY25uRUHpI+flMJrLqs7Pl5b4w7kVUEj2vfSJ6TgwGAf5+3T8GVeyBUaD/79mUS+Hvjx7f3+nha0OIXysmLkhy0x+tc3x9gdRU+XkogOMNBA0GCtHm5LAmiieQl0dJzTpIjhXhEA+jHIOBSo5PnKC7T28S5lOmABs3AgBSinagcvBk5eeMjqYbX1kZiU8x+kQQKO/AbL7ITeznC9x+Qw83qr9KlV7Dfj0Zw4YruKkVF1NIYc5gpSPuPwwYABxQkAd22WXAe+/RTWv7duCBB2ihoITISMpHEpuuMvqkqUlXybEi7EFh1JGURIaCnC7HY8d25I4kn9kDo1VGMsKF+PtT6Rsn3emb6moKxSnNA2luBg6d966Fhiqvoquv5+qd3oiNpc9WrhfS11dShG5sVNeywteXypu58ae+0VlyrAhfzYw6zGapy3FvE57ZDFxyCQDAp60eMSVH1J0zMpI6papRpWVcQ1ER/X9ENVK5HDwo6XRMnqzM0GhoIAOWq3d6xt+fQrNKwqSOVvMAlPuSm0tGKKM/BIHC5zpKjhXhEA+jnuRkUhusr+9d72LKFGDrVgBAYsFOAGOVn0+c6AoKuNJKj1itFPYLDFRe8bF7t7QtlqbLpbqavANyqsr6O0lJACjhtakZ+KK3KilhNBYERCGgoQLWQ4exakUz2rzlKfuazcDEUTakxodTfsOZM1TuzOgLHSbHirAHhVFPSAh9qeXoK4wfj3YTxa8TC3arS5ozGilUlJnJSXd6pLSUHkrDO+3twL59tO3vT+XkSmho4N47comL60gZEwQZFVLNJpxOoDCPydaOyFP7ZFdWWWoN2H/USCq2JhNVdjH6Iz9fd8mxInxFM46Rmiqvw7GvL0oSxwMA/Jpr1JUtAmQQnT1LD0Zf5OdTmMbXV9l+x45JjckmTOg96dqehgbq1cPhHXkEBmLiJB+E+LbIrpAqHSi1rBhYslPWPgYDie11aN9ERJA2jpIqIsb56DQ5VoRDPIxjREXRDaW1lRQre6AoZSoGFOyiJ7t2kUaKUnx9acV98qQkx824HzGBWc1EZx/ese/fJAcxvMPibLJJnZGM1Lof5XudrOnAjmCgthZJJftx+9WNvVbzfPGtCY32bXhCQsi7VlzcUX7O6IDCQmovodPQG3tQGMeIiqLJR0aY58yASbAaz9vEu3ap1zSJiqKboVzpbsb5FBfTRKe0wabNJhkoZjMwfryy/cXwjtKcl/5MfDwlMdfVyXu/nZYRWlqAjAzl5zQYyNPFWkb6QVSO7UISQC+wgcI4hrc3JcvW1vb61jbvAJyNGUtPKisp4VUNoaGkiJmfr25/RntOnaJJzkuhUzY3l7wgACmXKomD19dzeEcNwcH0mYmfuxzsPVv2Hi8lRESQJoocgUfG+ZSXU9WdDpNjRdhAYRwnPp6SVsUmbz1wesBU6cmuXerOZzDQJJuZCVkNXhjnUlNDxqKaKhqu3nEPaWkUlpVxzQIg41Hsg7V3r7okdX9/8sBwywp9cPo05aAEyKvKcgdsoDCOEx1NX3IZ+iQFiZfCZjj/tdu5U/4EeSFRUVJMm3EvxcUULggJUbafIEgGitFI+idKaGri8I5a4uKoHFyuppC3NyUwA/S/PnZM3XlDQyms0KKiJxejHTpPjhVhA4VxnNBQWsXKyAlp8QlBeez55NjSUvVhGjEhV22YiNEGm40mOj8/5YZCcTFpYwCkHKvEwKmvZ3E2RwgNJSNFbvNAoLOHS22YJzycwrvi/51xD0VF9H9gA4Xp8xgMVG4slor2QlGyBmEegDw3eXkk0cy4h/JyyitQU0Vj/79XU70TF8fhHbUYDBTmkSMRIDJxopRjtHu3umRXs5nOzZoo7kNUjtVxcqwIGyiMNsTE0OQlIyekOMXuZrRzZ/dv7I1gKn3kZFk3UlBAJcZqRJ4cyT9pbOTwjqMoDfP4+1NfLYAWBWr7YkVE0DUrI7GecQIekBwrwgYKow1RUZLB0AtN/hFSM7jCQsfySMLCSPSNY9qup7WVpO2V5p4AQEWFdINLTSUDVy719XRj5a7WjhERQTcptWEetd7PkBBKrC4qUrc/4xgekBwrwgYKow2+viScJlcp0t6l70iYJzKSyha5MsD1nDlDhoaaMIt9Z1y14mwc3nEMg4G8UDJDswBID0UUd1Obh2I0kjfmxAnWRHE1zc2UM6ZUr8hNsIHCaEdiIqm8yqnM0cpA8fKiR06O+oogRh15efRTiTS9iP3/nMM77iMujowFubkooaHAsGG0feaMei9IZCS1q6ioULc/o47CQvWLCjfABgqjHdHR8ie72FhJXvnkScfEm6KjKReivFz9MRhl1NWRq1hNcmxtLXD8OG3HxpLQn1zE8A5X72hDZCSFZ10d5hHniYICdfszyhEE8lp5e+s+OVaEDRRGO8LCZJcbA9BGnRKgG1ZTE90wGddQVEQ3NTX5J/v2Sa79Sy9V5gkRwzs6L4/0GIxGWijITZQFtCk3Bsgbc+IEiy26iooKMgijotw9EtmwgcJoh9EIpKTI7/ExZYq07Ug1D0A3rOxsMlQY5yIIpD/j6yuv2dyFqK3eEQQO7ziD+HhaVTc3y3t/TAyVKAPk/VQbpomIoH1ZE8U1iMmxgYHuHols2EBhtCU2lm5a7e29vzcxUepInJ2trDfIhYgCUOwydj4VFVR5pSa809wMHDpE26GhUjWXHBoaOLzjDKKjaVXt6t48ZjMZnWIuE+M8mptpjvWQ5FgRNlAYbRG7G8vVOBAnOnvZczWYTLSiz8riygBnU1REngw1K7GDB6k8GSBpeyUeGA7vOAeTiTwicj2fgHZJ7hERZKAoCTExyhGVYz0kOVZEsYHS2NiIjz76CH/84x9x7bXXYsaMGVi7dq3s/evq6vDaa6/h+uuvx1VXXYXHHnsMOTk5SofB6BV/fyAhQX4ein2Yx5GJDiDjqLiYJPQZ59DaSiux4GB1+zsa3hk8mMM7ziAhgTwaovHYGwMGSJ6szEz51/uFhIayJoqzEQSqcvQA5dgLUWygWCwWLFu2DAUFBRg0aJCifW02G5YsWYKff/4ZCxcuxEMPPYRz587hscceQxF/QfsOAwbIn+hSU2lVDABHjzqmLil2S1WrcMn0zqlTJG2vItHOYGunBFmA/lejR8vfmat3nEtMDK2u5YZ5DAbJwLTZqMOxGoxGwMeHkmVZJsA5eGByrIhiAyUiIgLffPMNvvrqKzz88MOK9v3ll19w7NgxPP3007jnnnuwcOFCvPPOOzAajfj444+VDoXRK9HR1DxOTrmxwSC5ix2Z6EQiIymBU4m7mpFHWxtw5AgZFyq0T6JLjkqiYBMmKDvGuXNknHhYDN1jMJupmkeJJ0SrKrzISPJ8VlaqPwbTPadPqw/JuhnFBoq3tzciVMaxtmzZgvDwcMyYMaPjtdDQUMyePRvbt29Hq9xVN6NvwsPpRqI0DwVwvJonLIxWgZwsqz15eVRxIXq8FDKgQGVzQDG8M3Agh3ecSUKC7H5aACjcJuYDZWQoazxojygTwGrQ2uOhybEiLk2SPXHiBAYPHgzjBYlxw4YNQ3NzM4d5+gomE4Vu5HoxhgyRkrccmegAchkHBFCyrNWq/jhMZ0TviY+POuVYwYbEwvOrbLMZGD9e/r4c3nENMTF0I5PbrsJolMI8bW2UAK2WoCC6kbImirZ4aHKsiEsNlOrq6i69L+JrVVVVXe5XWVmJnJycjkcBr471j9j8TY6RYD/RtdvlKaglOppW+qyvoB35+TTZqfSeRFWdgH/j+et7zBhl3Y+rqzm84wp8fGhhIddAAbRRlQUozFNRQflNjDbYJ8d6ebl7NKpw6ahbWlrg7e190eviay3ddKRdvXo1li1b5syhMVoTHU2VHnV1lKnfG1OmAD/+SNu7dgEzZ6o/t48P5bPk5gJJSeqPwxDt7cDhwzTRdXH9yiGlWGXvHUEgNzWLs7mGAQOA/fvpfy7npjZyJHm36utpv7Y2dR42b2+6ZrOzaQz8v3acykoKm3lgcqyISw0UHx+fLvNMxNd8fHy63G/+/PmYOnVqx/OCggK8/PLLzhkkow2BgbTazs+XZ6AMH076KRYLcOAAVeN0832QRWQkVZxMmCDv/Ez3iN4TUVRPBcmigWI0kv6JXMTwTlyc6nMzCoiLk0p/5QjxeXkBl1wCbN5MeSRHjtA1p/bcJ04AI0ZQPgzjGGJyrAPXrbtxaYgnPDy8yzCO+Fp3ybeRkZFIT0/veCQraS7GuI+kJPny2SaTdONqaXEsng3QJGuxcH8eR7Fa6aZjMqk2GINrChFaV0xPhg5V1r+nuppuXBzecQ2+viTapqR5oFaibYGBJE9w5AiXHDtKczPl4Xn44sylHpTBgwfjyJEjsNlsnRJls7Ky4OvriwEebOkxXRAdTTe15maa+HrjssuADRtoe+dOZZUeF2IwUIgpO5vc0GrczgxVQxUUOLQKS3SkeofDO64nMZEWCFarPGGvceMoRNPaCuzZAzz8MACVgmDx8RSaHTnSo1f+bqeoCKiqopwiAHmFBhw4alSWg2xNBEwm+O/ZgRv+OrX39zsBp3lQKisrUVBQgHa7niwzZ85EdXU1tm7d2vFaTU0NNm/ejClTpnSZn8J4MJGRkidDDqNHUwUOQImyjmb0R0VR0h1Xh6lD9J6IYloq6VRerCT/pK6OwzvuIC5OCrfKwcdHqsqyWGhRoJaAAPreHT7MLSvUIibHmkwdeUQHjhphqTWgsUnBo9WLflq6zg11Bao8KF9//TXq6+s7QjM7duxAeXk5AODGG29EYGAgli5dinXr1mH58uWIOz/BzJo1CytXrsQrr7yC/Px8hISE4Ntvv4XNZsO9996r0Z/E6AYvLyA5mZLnxKoeAE3NwBffdrXCMuGy2ElIPbUZaGzE5veOoWTARMWnNZuBiaNsSE0y0801N1fqvsrIp7CQ8k8cyQeoqEBEZS4AoDo8DeF234NeOXeOwoQc3nEtAQH0uR8/Lr/v0WWXSWJtu3cDEQpUgi8kIYHyxwoLqTs6owwxOTY6uuMlca1nMAjwk+HMBtDhQfMPcSAX0EFUGSjLly9HqV2/k61bt3Z4Ra666ioEdqNYZzKZ8I9//AP/+te/8PXXX6OlpQVDhw7F008/jSSutuibxMeTRW+zwWw2AU2AIBjQ2NT120/GTyUDBUD8qR04FXmJ8nM2AfuPGpGaZCUvSl4eXbRquu/2V2w2aj0AyAvPdceePR2bxcmXQXabP0GgpEsWZ3MPycmSF0NOQ8dLLqEVu9VKeSjXPgBA5f/Nz4/+/4cPU5jHw/rHuJ0ekmP9fIHbb5Ah/XDwIIXb584FnnnGCYOUhyoDZcWKFb2+55lnnsEzXfxhQUFBWLJkCZYsWaLm1IynER3dUYY4cVQI9vcSB61OHY/2XT7wam9B8pndOOjTDsEof4JqaiYDqOMcwcHA2bN00bKBIp+iIjLsHBVHs5NAL0qeAtnr6ro6Eu9icTb3IIZ5amvlJVoGBgKjRpHQYnk5wqrz0OivrFdbJxIS6PuXn09GKiOPlhYKsSlJRO+KjRspD3DnTmDSJGDePG3GpxDPVG9hPIfgYArvnDmD1KRg8mr0iBdwcgKwcyd8W2px28DDJOwlky++NV3snQkNpYz2UaMc8wb0F2w24Ngx2vbzU3+c2tqO41gC42AJSwYgM6+guprc+xzecQ9BQZQsm5srvxLk0kvJQAGQWLATZ4Y5YKD4+pLn5PBh8uZ4qNCYyykqIsE7R0LaLS2SWGZQEDBnjjZjU4FLy4yZfkpKCrnr5TJlirTtSNmiSGQkhXg4WVYeZ85QDoCjyan79nUkOhYkXiY/VCMINEly3pB7SUmhyhy5Jb+XXtrxP+6UGK2WhATyoLBUgDzE5FgvL8cMun37JHmISy91awUkGyiM84mOpi+53GaQEydKF8Xu3Y5n84sXbE4O6yv0hiCQ16O9XZkcfVfYhXcKEhWUFzc20rlVyuozGhEXRytouT21wsOB9HQAQOi5AgTXOdhqwtubKoQyMrhHjxy0Uo7dvl3anjbNsWM5CBsojPOJilJWbuzvT9oKALn6c3K0GUNBAXC+2ozphjNngJMnHc/9aG4GDh0CADT5haIscpj8fS0Wam7G4R33EhpK34Pqavn72JWRpxQ52JkcICOpsJA8ekzPnD5NystBQeqP0dhIVZeAlFfkRthAYZyP2UxxZLkGCqCdOqWI2NKdJ7ruEQQqLW1rk/Ro1HLwYIfHrDjpUsCgYKqpq6Pvi5zqEca5pKVRuE1JmOc8ycUaXLdmM+VBHTpE42C6RkyOdVQ5dt8+ydM9bpzbK6h4BmBcQ3w8hWrkTnSTJkkXx86d2oRmwsPJG9PY6Pix+iIlJZQUqYUw2gXlxbKxWskwUaKXwjiPuDgyVhsa5L0/Pp6MSwAxVdnwa7y4tYmqMYiePaZrxORYRysVt22TttX2VNIQNlAY1xAdTRNdfb289wcFSe7F8nIqOXSU8HByVxcUOH6svoaYe9LSQt4mR2hvB/bupW1/f5TFya/CQm0tVX7ZiUwxbiQsjHKBlIR57LyfiVoky3p50XcyI0N+b6/+hCBQk0U75VhV1NdLPdDCw6nFhJthA4VxDSEhlAeiJMxjX81jb9mrxWSi8sWsLJbRvpCyMu28J8eOSSvuCRNgMymoAqitpRuioyEmRhsMBtIhUeJ1tAvzaGKgAPSdKCnRJh+tr1FVRYsuR436PXtocQEAU6fqIsTq/hEw/QODgcoWlUx0U6ZIYZ5t27QxKqKigOJimuwYiePHaXXqSIKdiF31juKGj01NJLPO6Ie4OEpcl3vtpqaiPpBCdDElR+V7TXvCZCLP2uHDHKK9EC2SYwFdVe+IsIHCuI6YGJpo5JYMBgcDY8fSdkWFY03IRPz8KAmM49kSZWXkItairNdmkwwUs1lqIieHlhYqK3W0TJLRlogIWp3LDfMYDChKJu+nUbBKol+OEh0NlJayF8Welhb6PBxNjq2t7RDZQ2RkR7m4u2EDhXEdUVGSfLZcZsyQtu26YDtEZCSFM+TqO/R1MjMpJBMc7PixcnOlG9mYMcq0VCwWmmi5JYG+MBqpmkduoiwuSIzWogoPoMVNWBh5UbTwyvQFioooR8/Ra2b3bkpQB8h7ooPwDsAGCuNKfHyogVVNjfx9Jk8mwSaAXJBijNQRwsKoU25+vuPH8nREz5RWomj24R27XARZ1NZSBYgblSuZboiOpgRMmd7PyuihaPIJpScHD2pXIhwdTTfkrCxtjufJiMmxRqPjrQDsc/ymT3fsWBrCBgrjWhITyciQWzbs70+dUgG6gR0+7PgYjEaqCsjK0sbg8WRE74mjzcVERAPFaCTjUi7nO15rkqTLaE9UFHnYZHo/BaMJBYnnDdTWVqk6xFGMRvIWHD2qzBPbF9EqObamRupcHhuri+odETZQGNcSFaVMVwFwTpgnKoq6HJ9xUI7bk6msJO+JViW9RUXS5zlsmDKjp6GBjFHOP9Envr6KvZ/5iXZVePaeNUeJiKDvbn/3ouTna5Mcu3OnVIAwdar8nlkugA0UxrWEhdEEo2T1M2GCVHa6e7c27mIfH7ooc3MdP5ankplJ/wetJOXtcw2UhncsFloZO5rsxziPhARFHsezMWPQaj6fg7R3r3beSqORjOqjRylU2x9pbdVGORboXL2jo/AOwAYK42qMRsozUJKg6u0t3fCamqReEY4SFUXS9/1xkquuphWoloqtjuSf1NdTGbqOVm/MBURFURWczDJfm8mMswPOh2cbGqQwghaEh9N1m5mp3TE9CbGvWESEY8epqiKJAYAM0NRUx8emIWygMK4nNpYy8pWsqJwR5hErivpjO/esLPrbtfJYVFRIpdupqcoMn/Z2+j6wvL2+iYggw0CB2GKRfTWPlmEeg4G8KMeO0U22P2GxkKiaj4/jCeX2bUSmT9fdAoENFMb1REcrLzcePVq6me7fryyHpTsMBkr8y8rqX+3cxZVnVJR2E5Jd7x3F4myivD3nn+gbo5G8XAq8nyWJE6Wb6J492io4h4fTd+fYMe2OqXfa28moKCmhggNHsa/e0Yk4mz1soDCux8+P3IlKZO9NJukCamvTbjUWFUWu0qIibY7nCeTkULJjeLh2x3QkvGOxUJM5Pz/txsM4h5gYMmpFzYxeaDf7UVdcgMKKJ05oO57YWDK2y8u1Pa5eOXyYQjIpKY5rldiLXyYn61LBmQ0Uxj0kJkptveViH+bZskWbcZjNNOHm5GjTMVnvWCy04tTSe2K/io2N7ehmK5uWFqoQYfRPdDRVjSjJIbM3WLUSbRMJDdU+v0WvFBVRsnFkJFVVOYoOpe0vhA0Uxj1ERytKuANA8stinsKRI9olt0ZHU7fk/tDlODubVrJaek/27ZNc95deqszwaW6m7wGHdzyDwEAyQpWEZydNklb7u3drvxCIi6MFRmmptsfVE/X1ZFC0tTmeGCuiU3E2e9hAYdyDioQ7GAzShWSzATt2aDOWoCCaNLds6dsJd6KnIzJS22Q4R8I7NTW0CtZq0mWcT1ISVdPJJTgYGDGCtktKgMJCbccTHEyG7pEjfdMLarWS56moSLswTEmJlNSelkYhVh3CBgrjHlQk3AEAZs6UtrWq5gHowq+sBH75pe92S83JIe+JlsZAczNw6BBth4YCQ4cq27+ujkJCjkp1M64jOppK/5XoEV3mhN489sTFUX7L2bPaH9vdHD9OxldystTd3VF0rH1iDxsojPuIjVWUcAeALlIxxyE7mzrxaoHBQCuJvDztev7oifp6itOHh2vbCOzgQSmXaPJkZce22Vje3hMRBfWUhHns2x44w0AJDKTvYV/zopSU0OcVGqqs8WZv2BsoU6dqd1yNYQOFcR/R0Yr6e3Rgb/Hbx1EdxcuLPClHjgAHDvStiS4nhzxEWncKti8vViPOFhTE+SeehtlM14mS8GxUlNTj5fRp5+SLJCSQMnRfqchrbCRDorFRu3YUAFBcLGk/DRmiXaNQJ8AGCuM+AgLo4lAy0QHOqeYR8fenRNzdu+mm3hcQqxy09p60t1NVAUCf2+jRyvavrZWa0DGeRVwceb+UGPH2YR57w1Yr/P1pTEeOaKu34g5sNrq2Tp+mULiWeED1jggbKIx7SU5W3lsnNpYqegCqvNG6+iY0lCpLtm3rG80ET5wgzQOtPRXHjkmCeRMmKFe1bGig/7/O1CsZGURHk0GgRDDR2XkoACV7njqlfSKuq8nJodyuAQO0z8+y9zrrOLwDsIHCuJvoaJJsbm5Wtp8zpO/tiYsj1+qWLYo6uOqOxkZaUYaGaus9ATpX7yhVj21ro4mX5e09k9BQChcquTYSEyX106ws5/TA8vMjr05GhrLcNj1RUUEVigEBlFujISHn8qUQ2LBhug+vsoHCuJeICOqmq9QImDZNuuFu2+acfJGUFKoK2LpVuQGlF3JzSWVT64nIZpMMFLMZGD9e2f6ivL3WOTGMazAY6PpQ2nJCzFMSBCk8qDWJiRQayc93zvGdSXMzzWe1tU7JDUnO07/2iT1soDDuxctLeXdjgIyaUaNou7RUewltgAyg1FSqFtq1y/NWZE1NlHsSHKxdeaJIbi6VLAPAmDHKKwwsFnJfa6GIybiHmBjlTT/tPW1aNg+0x8eHxnX4sGdV4wkC9Rk7dco5nb0FAUmnz3ubDQZgyhRtj+8E2EBh3E98PF2cShPbnKWJYo+3N91IDx4kt7EncfIklSk6I4ziiDgbQDeOhATtxsO4nqgo5U0/Bw2SvGaHD2vT9LMrEhLIg5KX55zjO4OTJ6l6MD7e8S7FXRBxLg/Bted1YkaO1FZN2kmwgcK4n6go5f09ALoxiglk27c7z8MRGEihqN27JfVFvdPcTDcAZ3hPAMlAMRo7a1zIobGRPCc6j38zveDnRzdTpWrQokHb3k4eA2fg7U2elIwMz+hUXl1NeSfe3k6raksrtFvE6bx6R4QNFMb9BAfTKl9puXFgIDBxIm2fO+fctusREXQz3rpVO3E4Z3LqFIW+tNRPECkqkqqbhg2jVbQSLBZavbG8veczYIDypp/2HjdnhXkASnQvKqJrQc+0tpJxUlnpPK+iIEgGitHoEeEdgA0URi+kpCjr7yHiTE2UC0lIoJvrli3KvT2upKWFKncCApwjIW9fIqomvCPK22tdVcS4nqgo8qQouXZHjCCPKUAhDaUGjlzMZsqNOnRIuZSBKzl0iPLcnJF3cp6IyhMIaji/sBo9Wvmiwk3wDMHog6go5f09AOCSS2iCBIBdu2C0OtGdazBQ0mx+PmXaO2tidZS8PPJwOEsh0pH8EzEMp2P1SkYBERFUcqzE+2kyUYdjgEKRzsztio2la0GvodnTp6kbeEwMhaScRJJ99Y6HhHcANlAYvRAVpby/B0AXtZgD0dCA+GInxbRFTCbq2XP8OJVJ6k2xsrWVJnxneU8qKqTJPjVVeQJufT2F9Dj/pG9gMqmrwnOFaBtA10BgIHkp9CYVYLFQaMdgoKpEZ2GzISmfDBSbwaRcs8iNsIHC6AOzmSY6pXkoQKdqnuQ8J4d5ADKK4uNp5ePMvBc15OWRdouzBNDsJcrVTHQWC+XFiC5+xvOJi1NehTd2rFRivnevc0v4Y2MpH0tPrSva24GdO6nKThSvcxbZ2QhoqAQAlCSM86hrjw0URj/Ex9NEpdQrMWZMx0WXULgX5rZGJwzuAoKD6bFjh/ZS+2qw2UjeOyODJn4nlCkCcLy8uKlJ+94ijHtRU4Xn7U3tEQDaLzPTOWMDyMsTHExVbY0umBvkcPgweWFTUpyfi2XXe6cwdUYPb9QfbKAw+kGc6JRqI3h5dfSU8LK2ILnYiZUB9kRH00rol1+AqirXnPNCBIFi7OvXA99+SyvF+HjnnKu2VvIYxcaSx0sRAhlOHN7pW4ghO6XeT3sD15lhHoCu1dJSSkZ1N0VF5DWKjHS+UKHVSosoAO1GM4qTVSwq3AgbKIx+CAmhi9bBME9aoQvCPCJJSVQeuGWL61dnZWXAzz+TYZKVRWGdgQOdk3sCAJs2Sd6tyy5TXnFgE6T/MdO3UFOFN3Gi9F3dvds57SpETCYqbT9yhPKg3EV9PXk02tpcU2Z//HhHz6Pi+Ilo8w5w/jk1hA0URj+o7e8BkB7H+RtfYslB+DSrMHLUIMrhnzpFE48rpLWrqsggWrWKXMVhYcDgwcrl5pVgswFr1kjPr7xS3TGSksi9z/QtoqPJ2FBS2RYQQCWvABn5zq60iYqivlQ7d1L1jKur8KxW8hQVFdF14Arswjt5SZ4V3gHYQGH0RkwMTXRK1R+Nxo7mV0bBigH5O5wwuG4wm2nCOXKEdB2ctRKsqSF37cqV5CIOCgLS012T9HboELnIAcr5UZvY56zwE+NexCo8pd5PV/TmETEaSVju+HHgm2+AL7+kc54965pqvGPHaI5ITnaOuvOFWK1kjAFoN/mgMH6S88+pMWygMPpC7O+hJsxjJ9rmkmoee/z9aRW5e7f21QJ1dWSQrFxJBoqvLzB0qGvFluy9J9dco+4YBoNzlG0Z9yP2rFIqEzBpkhQqdHYeCkAlx4MGkae2tZU8DCtXAl9/Td5IsQGm1pSU0NwQGupcT6c9R450/D/ODLgE7WY/15xXQ5wUrGYYlfj40ER37JjyXIW0NFhCEhFiKUZM6THS7HBlQmZYGMXht20jr4ajstWNjWTsHD5MrunISDJMnKQ22S2lpVLPlMhISWRLKUYjTdBM3yQhgTxtSjyIYWEUns3MBIqL6eHssluAvJ4xMfRoaqIQU34+XbeJiRQyTUykMJSjNDaSIdTYSMaRq9gmibMVpnleeAdgA4XRI4mJVC4rCMpuxgYDCtJmYvShz+n59u3Ar37llCF2S3w8aZFs2UKeBjU35JYW4MQJMkxKSugY6elOKUfMKzTgwFFjjxG1Mfs2YMT5m87hpKtx/HtlOSRNoj6Wl4nl7fsyUVF0Q29sBKCg4d2ll0plxrt2ATff7JThdYufH805gkDeyrw8qvYJC6Ok85QUuq7V5E7ZbOT9PH2ajB5X0dYmeaT8/HA2cSLgAT0TL4RnC0Z/REfTRKciWbYgTarmwdat3b/RmaSkUFx761Zl6pVtbVSNs2oVlQ03NNCkFhvrtBv7gaNGWGoNaGzq+tFS34aBORsAAFajF44lzev2vd09BIGMTLOfk7RZGH0QFkaVMo6UG2/f7txqnp4wGKhkOjWVPB0mE3DwIOWrrFhBIoWlpcryVXJyyKs0YIDzquu6IiNDmj8nTYLVy3ky+s6EPSiM/ggLo1BCVRXFjBVQF5KAivBBiKo+SZU1rnIZ2yNW9mRn04Q3Y0bPBkZ7O62wMjJIbM3f37nlwnaInhODQYBfF5IMqblb4dtKceyilGkwhIfCHwpvIDYbzCYbJt44zMHRMrrGaCTj3K5yRBaxsWSI5+bSdZCZSQ0F3YnJRGXAERF0kVRVUchk715Szh0yhIyOniTqy8spZywgQPE85jD2/4Np04AS155eK9hAYfSHWG5cWKhq91PJs8hAAciLcfvt2o1NLmLS4IEDZKSMH3/xe2w2UqHNyKD4t9lMho2zVGB7wM8XuP2GLuTG//hDx2bKb69GyjAVkuT5+fR3zUhRPT7GQ4iJUZcjdd11wJtv0vZ337nfQLHHbCYjKjaWwlfl5RQGCgmha3zQIFoE2Se/NjeTkVBb69q8E4CSf8WKqIAAmnt+VHEcm831+W4XwCEeRp/ExNCKTIWuSF7SDAg4f2Ft2+Y+l3FgIK3Adu0ib46IIJDxtWYNTcaFhTTRJSe7xTjpltxcyoUByMAYOlTdcVpaXKf7wLiXqCgyyJWW7U6bRuEhQAql6BF/f7pWhw6l6zs3F/j+eypZ3rKFFhytrZRUfuoULbRcfZM/eFASzZs8Wf2c0tTk9q7j7EFh9Il9ubFCxcVG/0iUx45ETOlRkoE/dcr1qxiRiAi60LdsoQnNagWOHqXYtM1GyXd+Oi3/u7C0WM1E29JC3iQuL+4fBATQTU3posBspu/Yf/5D+/7wA3D//c4ZoxaI+SrBwXRN19SQUXLoEF3z1dV0bbtjwWFXvSNqQymmrY1CzG42UNiDwugTMbNejR4KgHw9JMuKJCTQ37FhAyXcHT9ON+yBA/VrnNTWShNdQECnVgKKsFioCskVst6MPkhOVue1nDdPqpT56Sf9NPbrDTFfRcxLaW6WjBdX09JCXdYBKpkeM0bdcWpq6Lp188KCDRRGvyQmKleUPU9RylRJrXHbNtcoRXaHwUAhktpauugHD9ZGX8GZbNwoSYHPmaO+qZnFor/QFeNcoqLUeduCg4HZs2m7qYmMFE/D25u8Du7qN7Vvn1Q5eNll6hPtLRYKT/m4t/qHDRRGv0RFkYdBxUqq1dcuMbWqyrnt3OVgMlEehjtWVUqx2YC1a6XnapVjBYGOFRenzbgYzyAyUn3exfXXS9vff0/hE0Y+F1bvqMFmo4ejQpMawAYKo18iIihxrqZG3f520vduD/N4EgcPSkmK48ap759TX095N5x/0r/w8lK/ck9Kou8cQNUye/ZoN66+TmOjpPgcEgKMGqXuOHV1FB6KidFubCphA4XRL6KeiNr26JMmSTHtHTtUh4v6HfbJsVdfrf44YoKzK3sGMfrA5MCtZcECafu77xwfS39h3z4pLDtlivqGhBYLGSc68PaygcLom9hYchercfX6+VGZHUCrgowMTYfWJyktJe0WgEJsl1yi/lgNDWRgullLgXEDxvM3RzXJsuPGUbIpQMrKubnajasvo0X1DkCemNRUx8ejAWygMPomOposeaVdUkU4zKOMtWulm8q8eepXYe3ttC+Hd/onolGqJjndYADmz5eer16tzZj6MvX1FJoFKCw+TKVqc1MTLex0EN4BWAeF0Tv+/hSXzsrqWVa6O8aPl/r67NlDZXhuzkzXLS0twM8/07aXF3DVVeqPZbFQaMeV3aQZ/XDePmlqNeGLb5XvbmqfgwW+n8G3uRa2rdvxXey9aAq4uDLGbAYmjrIhNclNYox6Yc8eSdRy6lT1C4uaGjJw3FWFdAHsQWH0T1IS5Y+ocRebzXTBAlR+t3evtmPrS2zfTqEwgCoAHMkdqa3Vtwgd41TMvrT2FaCssaT4qGvzRdZAqh4zClakHvmhy/dZag3Yf5RvY5pU7wB03aalqTdwNIb/s4z+iYmhahC1ybL28dgtW7QZU1/kR7uGHWpLi0VaW6U8AqbfMfHmwQiJ84e/j5UefoLix+lR18JqJENn2Km1CPJq6vR7g4EWLP0+9722Vsqvi4wE0tPVHae9nQoT3Kweaw+HeBj9ExpKRkpJCZW/KWXkSHJbVldTnFYsf2U6iKjIAU6eb7CYlqZ+kgMoju3ry+Gdfkzq5DikTo4jsbXMTPpOKSYEKJsObN4Mn9Z6LAr4qZPh/MW3JjQ2aTdmj2XXLqmIYPr0njun94So+qyT/BOAPSiMJ2Aw0ATX0KBuf5NJcnu2twM7d2o3tj7C4KwLvCeOVN6wvD0jkpCgquFnB/bJst9/715FaL2iVXinpoa8njoKy7KBwngGMTG0KhdlnJXC1Tzd4tNiQfLp859JYKD6vjsidXUkk62TODbjRqKi6LpV21dn4EDygALU+FMsgWeIc+eo+ShAoRm1TVEFgQxJnYVl2UBhPIOoKMdUZQcPlmKrR49SuIcBAKSf2gCT9Xwgf84cx6qcbDaa7HQUx2bciKgGrbLpJwAuOe6JXbskr9K0aeo9n2LYW0fhHYANFMZTMJloNaVWD8VgkLwogtBZ1KgfY7BZMeykRsqxAMvbM50xGsmbpjbBHSCxQNHgPXwYyM/XYmR9A63E2SwWumZDQx0ekpawgcJ4DvHxNOGpTdu3D/OwgQIAiCs+gKCGMnoyfrz6vjsi4kSnJpmZ6ZuIq3K1jf9MJvaidIV9E9SEBDIE1dLYSPvrTPVZsYHS2tqKd999F7/61a9wxRVX4Le//S327dsna9/9+/fjsccew/XXX49rrrkGDz74INavX6940Ew/RbTw1bqLk5IkCecTJ6gqqJ8zJOsH6YmjpcUAJTInJ+tuomPciGiwiho7apgzhwQXAZIKUBvq7Uvs2CFpQ02frv6aa2khvSgdhmUVGyivvPIKVqxYgSuvvBKLFy+G0WjEk08+iSNHjvS43/bt2/HEE0+gra0Nd999N+6//374+Pjgr3/9K1asWKH6D2D6Eb6+dPNzJJ7NybISJSWIP0NJh/WB0cCECY4dr62NJjoO7zD2BAbSzU9teBagyhJR2bitjVoy9He0rN4JC9OlLIAiAyUzMxMbN27Egw8+iEceeQTz58/HW2+9hdjYWLz77rs97rtq1SpERETgrbfewo033oiFCxfizTffREJCAtbyl42Ry4ABlG2uttzQPk67das6ddq+gt11lzv0GserbljenumOpCT1lTwi110naXysWQNje6vj4/JUKiqA7GzaTk6mz1cttbUU3jGbNRmaligyULZs2QKTyYT5dvFAHx8fXHvttTh+/DjKysq63bexsRFBQUHw9vbueM3LywshISHw4d4ojFzENuBq3cXR0VIjraKi/ptwZ9d3p91oRt4QB/ruiFgsQGIi9zpiLiYqir4XLS2OHWPKFNq2WJCS149VobXynlittEhLSHB8TE5AkZJsbm4uEhMTESDGAs8z7PyEf/LkScR0U6Y0duxYfPHFF/jggw8wb948GAwG/Pzzz8jJycELL7ygbvRM/yM4GIiLI8NCba+YGTOo+SBAXhSdtBZ3KVu3dlRW5CXNQItvCACVSYwi7e1koDDMhURF0fVaW+uYh23+/I6bc/rxb3Es8UqNBug+8goNOHDUqCj3f+732yHKIH7fPBN13/bs/WzqTj6qtpb+LzorLxZRZKBUVVUhogt1SPG1ysrKbve96667UFJSgs8++wyffvopAMDX1xd/+ctfML2X8qjKykpUVVV1PC8oKFAybKavkZoquTfVMHUq8P77FCbatg34zW/Uy0N7IoIArJFKi7OGXOf4MRsbKU+AwztMV5jNFIo4dMix78jQocCQIcCJEwg7l4/4ssOoSR2j3TjdwIGjRlhq5Se4BtWVIKIyFwBQGTYQZd6JgEzJ/4uiODU1JO52gdNBLygyUFpaWmDuIk4lhm1aenDfmc1mDBgwALNmzcKMGTNgtVrx/fff4+WXX8Ybb7yBESNGdLvv6tWrsWzZMiVDZfoyMTGAvz/dFP39le8fGgqMGUOTZXk5GTvDh2s+TN2SkwOcOgUAqIoYhIrwIVDxKXbGYiFBrvBwh4fH9FHi4kgJVhAcq/JasAB47TUAwMicb7Hdww0U0XNiMAjw8+39/eknpOT+ooHT4e8nL4/ObAYmjrogd6+1lQxHnaLIQPHx8UFbF36o1tbWjt93x1tvvYXMzEx88MEHMJ5frV5++eW488478c477+Df//53t/vOnz8fU6dO7XheUFCAl19+WcnQmb5ERAStwqqr1RkoAIV5Dh2i7a1b+5eBYp8cO+y68zcLB5OF6+qAUaP6lyeKUUZUFF2vDQ2ONeucMoW69lZWIunsXgRZzgDQX4msUvx8gdtv6CXMWl8PfCPpwIx7cArGxaoMzTY00P9Dp+EdQGGSbERERKdQi4j4WmRkZJf7tbW14ccff8Rll13WYZwAlCQ7efJk5OTkdGn4iERGRiI9Pb3jkaxji49xAUajY80DAeCyyyR/544d6kWkPA2LRRKpCwpCQdqMnt8vB6uVjBwdT3SMDggLI8PCEZkAgKrNrpPCkunHv3NwYB7EZ59R/x0AmDzZMe2Smhr6f+jY66nIQBk0aBCKi4vRcMGNIfO8mt2gbhoVWSwWWK1WWLu4CVitVthsNti4SyWjhLg4mqhaVZYa+vuThDZAE+bhw9qNTc/89JPUXfaKK2D10qDipq6OhLhY/4TpCYPBcdl7kauuQpsXxUPSTv7smAicp5CdDaxbR9u+vsCDDzp2vPp6yufTsddT0chmzZoFq9WK1XZSw62trVizZg2GDx/eUcFTVlbWKZE1LCwMgYGB2LZtWydPSWNjI3bs2IGkpCQuNWaUER3tWPNAoP+Jtlmt0gRnMDjed0ektpa8J4647Zn+QUwMLSxEI1ktgYHIG3wFAMCrvQXYsEGDwemY9nbgn/+UdJvuuMOxZOO2NsDLS5fqsfYoykEZPnw4Zs+ejaVLl6KmpgYJCQlYt24dSktLsWTJko73/fWvf0VGRga2np/0TSYTbr31VnzwwQd46KGHMHfuXNhsNvz444+oqKjAs88+q+1fxfR9zGZaje3f3+XKvakZ+KKX0jtT+yT8yuwP77ZGtG3bhVWJv1PkURCTzlKTPETsbf9+SgoGSDVWq8mpsVHXiXaMjoiKIqmA2lqHQws5IxZgSNaPMEAAfviBkme9FN3SPIdvvgHERf/AgZ1CXKqoqaFiAZ17PRX/N5955hnExMRg/fr1qK+vR1paGl599VWMHTu2x/3uvPNOxMXFYeXKlVi2bBna2towcOBA/OUvf8GsWbNUDp/p1yQmAvv2kWfgvAqq2QygCRAEAxp7Lb3zRX7iFAw5/TPMbU1IyNqE7EEK+tE0AfuPGpGa5CH5K2s07Fos0tJCAlxcXszIwc+PRMFOnHDYQKkPjkdhwmQkn9lNjfN27ABmztRooDqipARYvpy2jUbgd7/TRvV53DjdiyoqNlB8fHzwyCOP4JFHHun2Pe+8806Xr1955ZW48krPF9ZhdEJMjCT+FBYGgDwa+xWIHhUOvQJDTpOi6uRDH6IqeSwaguN63a+pmYwgtY2VXc7Zs1LVUkwMdS7WAlHoiQ0URi6JicCxY5oc6lj6AjJQAOpyPGNG32pUKQjAu+9KuXbXX08eFEew2eihU/VYe/qoP4zpFwQEUG+e7OwOAyU1SVDo0RgOtM4BNm6Eub0JC469DrzySq8rlC++Ncnw0OgI+35XV1/t+ApMxGIBxo7VZR8PRqdER1OSZ1MTeVQcoCR6NM6FpyKs+jSQm0tzgdjKoi+wZQuQkUHbUVHA7bc7fsy6OsoX84CqO/2m7zKMHJKSKOHLkaZ/Dzwg5WNkZwMrV2ozNr1g13cH3t7AFVdoc1xBoPBafLw2x2P6BxERtKBwtNwYAAwGZI+4QXr+XR8qOa6rAz78UHr+0EMOG3QA6HOPjaVcIJ3DBgrj2cTEkCfFkdJFf3/g97+Xyu2+/JJWY32FLVskzZjp07WbmBoa6LPn8A6jBJOJkqo1Kg0uSJtJCZ8AsHs30EPTWo/i448lI27KFEkWwVGamjym/xgbKIxnExZGRooj5cYAuYVvuom2rVbgjTeA5u46bHkQggD8+KP0/BoFScC9UVtLq2Hx5sAwcomNpe+mBvpXNpNZ+l7bbFTR4+kcOyZ5Pf39ycurBU1NFF7zgPAOwAYK4+kYDI6ryorceis1zgKAM2doBePpZGcDp0/T9uDB9NCKujpaCetY6InRKdHRlAehhWgbQHlVYh7UTz9R6bun0tZGmicid95JCwEtqKmh6qluVN/1Bs8sjOcTG0vlco56PLy8gCeekErv1q6lMmZPxr60WEvvidVKhonOhZ4YnRIcTEaKo55PkZAQYPZs2m5slLwPnsjKlbRAAoD0dGDePO2OXVtLCzqtkuSdDBsojOcTFUUrDC0mu4QE4N57pefvvKPdJOpqampIGwIgKfrp07U7dm0t3WQ4/4RRS0oKhRy0Yv58afv77z2zv1ZxMfDVV7RtMgGPPqqdh7K93eMWFWygMJ6PyUTaAFpUBQC0Ypk4kbYtFuD//s+xKiF3sWGDJCl+5ZVUwaMVFgv1Q1LbTZphoqPJa6m2n9aFJCWR+BhAibJ792pzXFchCMC//iVdszfcQEacVlgslC/mIfknABsoTF9BbB7oaI8PgPJa/ud/yG0M0ETnab0+Luy7o6WbGKDS5aQkbY/J9C8iI+mGWVur3THtvSh2PeM8gbTcnyUBu5gYyonTkpoa0o3SolTZRbCBwvQNRFVZrbwoYWFkpIh88AGpsXoK+/YBlZW0PXGitm7d5maWt2ccx8eHVGW1umYB8qAkJtL28ePAqVPaHduJ+DZbMG6fnebJI49oK0MvahYNGKDdMV0AGyhM38DXl9yhWuaLTJoEzJ1L2y0tVHqshYfGFTgrORaQXMUeUgnA6JjERLqmtAqhGo2dvSgeItw2+dBS+LSc14WZOVMKVWlFfT1pFnlQeAdgA4XpS4iTnQbaCh3cey+FjwBqcLZihXbHdhZnzkjy2LGx2k92tbVUXtxXO8cyriMqim6cWpYFz55NSeEAsG0bNRLUMbFnDmFw/mZ6EhgI3Hef9iexWCjnx8M0i9hAYfoOsbE0MWmkUAmA4rV/+IOUSb9iBWmL6JkLuxZrqVMiNhqL672hIsP0SlgY6XJoGebx8ZFyrqzWzteD3mhpwSU77TRP7r7bOUZEYyN5mD2skSIbKEzfITiY+sJoXRacni4lrNlswBtvwKtNp50Cm5uBTZtoW8u+OyJieMeDShUZHWM0kjdOK8E2kWuukTx869ZRiFaPrFiBoLoSAEB5zAjtr1eA/naz2SOvWTZQmL5Faqq22goiN99MhgoAlJZi/J73tT+HFvzyi6SqO2OG5OrWispKWolpfVym/xIbSyt7LXVLIiKAadNou64O2LxZu2NrRUEBsGoVAMBq9MLeqb9zjipzTQ15qjwwqZ0NFKZvERND2hxaS12bTNRQ0NcXADDoxHokFe/S9hyOIgid3dnXXqvt8cUE4bQ0bY/L9G+iosj7qWW5MQAsWCBtr16tbW6ao9hsJGd/3ig7PPwW1IY6qWy/tpYWFWIrAA+Cs9yYvkVEBFWX1NRoLyIWHw/cfz8JtwGYvvdtrE0YAiBE2/OcJ6/QgANHjWhrk/f+yLJMXJWfDwCojErHhqNDgKM979OkpDtAdTV9vgkJCnZimF4ICCAvyunTtNLXioEDgREjqNy4uBg4dAiYMEG74zvChg0duWy1wQk4PPwWaFhULGG10sLFQ69Z9qAwfQujkSYmLRNl7bnySuDSSwEAfi21uHT7205TmT1w1AhLrQGNTfIeacekLq7HBl4nax9BoKQ5WYurc+eo2aCW+gwMA5DonzPyRPQo3FZdDXzyScfTvVMfhdWkocqzPbW1pA/lYeXFImygMH2P2FhtJbTtMRiARx9Fk18oACC+eD81FXQCoufEYBDg79fDw9eGEcU/I7WI+u40+wajdMi0nvexe4QEC5g4qhf3d3MzJd0mJzvlb2X6OdHR9P1ytOHnhUyaJCWHHjoEFBZqe3w1fPCBlCc2Zw7K48Y471w1NeT5DQhw3jmcCId4mL5HTAy5imtqaOLTmpAQ7J72e8z+6Xl6/tFHwOjRkoKlxvj5Arff0E0CYVER8O67kkQ2AN/r5+LWm0wANEw6rKqiz9UDKwEYDyAykq5Zi6Ujz0sTTCbguuvIKADIi/K732l3fKXs3w9s307bwcHAPfcAm5x4vtZWj15UsAeF6XuYzVTNo6W2wgWUDJiIzMHnk1BbW12vMtvSAnz6KfDYY52ME0yfDixapP356uqAIUM8pk0742F4edGNVOtEWYBKd8V8tM2bnTov9EhzM/Dee9Lz++4jI8VZNDTQ3+2h4R2ADRSmr5KYKPWfcBJ7xt4HS8h5r8nJk8CXXzrtXJ3Yt4/asK9cKRlFsbHACy8Af/qTtl2LAdKoCAz0uD4ejIeRnEw5ZFqHZv39KXcMoLjpV1+5p2XFf/8LlJfT9pgxwKxZzj1fTQ15psLDnXseJ8IhHqZvIjYPrK3VtjLADquXL3bO/COu/vEJMoRWrgTGjweGD3fK+VBZCbz/PrDLrrzZywu48Ubgppucl7xaWUk3j4gI5xyfYQDKlYiJoe9bfLzs3ZqagS++7dmzF+C9ANcbvodRsAGrV6Px5x3IHXoNTqbPQ8v5fLLuMJuBiaNsSE1yIBk+L0/qC2Q2Aw8/7HxV1/p6qlpyhraKi/DckTNMTwQEkBdFa1XZCzgXORi47TZ6YrMBb76puQaLwWYFvv2WvCb2xsno0cA77wB33OE848Rmo3DS4MEeJ5PNeBhmM4khygzziJVngtB7tVqFVyyODl3Ysa9/YxXGHPwMNyy/CxM3vwm/Mye73ddSa8D+ow7cKq1WkiYQdVgWLVJkgKmirY0WLx6eM8YeFKbvkpwMHD1KoR5n3lxvvBE4cADIygLKysjL8dhjmhw6ujIL0w/8H1B9WnoxJITi1zNnOt9oEKXtnZQAzDCdSE6mcGJtba/5GRNH2bBfgU7Q8UvvRkXKeKRnfo+Ewj0wCjaYbO0YcvpnDDn9Myqih+HE8OtRmDIVgpFujU3NZADJPUeXrFlDIWCAyql/9SsHDiaTmhq6bp1RJOBC2EBh+i4xMTTZNTTQT2chqsw+9hjJ7G/cCFxyCTBlivpj1tXhkh2fYXDOOuk1g4GaoP3mN879e+yprCRPDUvbM64gIoKMlNzcXg2U1CQBqUlKc8xG0qOsjAyHn37q6AMUVZ6FqPIsTA0Ppyabc+fii18i0OhI54yKCuA//5GeP/KIaxRdLRbqYu7hmkUc4mH6LmFhZKScO+f8c8XGAg8+KD3/5z/VtXkXBGr298gjnY2TtDTgtdcodu0q44Sl7Rl3MHgwffecmOCOmBgq8f34Ywqd2pfiVlcDn38O3HsvLt36BiKrTqg/z/vvS73B5s1zXn6aPTYbfXYeqh5rD3tQmL6LwUA317w8p52iU4KecCWmpexHUv4OoK4OJc/+P2y+6kXAIG8dEFxTiEt2/gsxpZI+fauXH45O+A0mPHW160t8WdqecQcDBlD1SXW18xvc+fgAc+cCV11F5frffw/s3Us3+fZ2pJ3ciLSTG1ERPRQIu5a8onI9ILt30wOgcMuddzrtz+hEXR15PD24vFiEDRSmbxMbKylUaigAZTYDaBIT9MRXDdgy/n+wsCwLAU3ViDtzEClHfkTmkPk9HAkwtTdj3PEvMSp7FUw2qfwxb8A07B7/IMyxEZhgcuJqsjvOnaMJ2cPdxIyH4etLXpSdO13XgddgAEaNokd5uRT+Od8yI6o8G/jfbPK4zJtHRk1P1YGNjcC//y09f+AB13k+LRbKGXOmxoqL4BAP07eJjCQvgMbVPBNH2RASfLFsvCk0CHtm/L7jfZMyPkJcc363MvODKvfg5rUPY2zmig7jpC4oFpuvehG7r3wa5tiI3mXonQFL2zPuJDWVDGOtu5LLIToauPtu4KOPsGfqYlSFpkq/q64GvviCktTfeINyZbriP/+RQrwTJgDTpjl92B00NdHn1wdgDwrTt/HyojDPzp2altz1nKA3BvC+Hvj+e3hZW3FtxmvA6693dg33oGkSdNNNmO3jA02l6pXC0vaMO4mJodBiSQlVvrgDHx+cSp+LowPmIsVyFFfUfAfs2dMR/sEvv9AjPZ3k9MXwT24u8OOPHcfAQw+5rkS/qYk8UH0gvAOwgcL0B+LjaYJobycjwBXceSeQkUG9ck6fplXXXXdR8tr335OqZJNdecDo0TSR6aWct64OmDyZpe0Z92A00o3/1CkyCNwpNmYwoDxuFPDwcAr/rF0LbNggdUzPyaHHRx9R+Gf3bqnD+e23u9ZYqKkh5djISNed04mwgcL0fWJiKEnNYnGdGqqPD/DEE8Af/0iG0apVdO6ffiKDRcSVmiZyYWl7Rg8kJUkNBJ2kBq2Y6GhaaNx6K7BlC/DDD0B+Pv3u3DlaeIikpgLXX+/a8dXWUh5NH1lYcA4K0/fx9aVcCleUG9uTlgb8+te0LQjA0qWScWIwkNbCu+9STw69GCcAhZ8SEljannEvQUF0DVVWunskF+PjQ5U/b78N/O1vFN6x9/IYDFS+7CqPLUALIaMRiItz3TmdDHtQmP7BgAHAoUOudxcvWEAt1u07DqelkWDTkCGuG4dcWNqe0RMDBwJHjlADQa2bYGqBwQCMHEmPigqq/jl6lJoTuvr6FlWf+0j+CcAGCtNfiI2lFVldHYVVXIWoMvviizSB3HwzcO21+nXBsrQ9oyfi4ymsorCBoFuIiqLwj7uoqQFGjAD8/Nw3Bo1hA4XpHwQH0wRXUOBaAwWgieudd2i1pXevRFUVxbBZ2p7RA2YzMHQotY/Qu4HiTgSBEvD7WN4YGyhM/yElhbLt3YEntDxvb6eJjqXtGT2RlERJ26JCqhvopBjthGM7TH09dXDvQ+EdgA0Upj8RG0vuz8ZGwN/f3aPRHyxtz+iRiAgyUk6edLmB0rVitBPPpRaLRapW7EOwgcL0HyIiSB+gpoYNlK5gaXtGjxgMlHCanU1hDBfmb00cZcP+o0a0tTn3PGYzHFOMbmggD7HeQ8gKYQOF6T8YjRS+2LLF3SPRHyxtz+iZAQNogeGKBoJ29KwYrRNaWuja7YOqzx4QGGcYDYmLI22C1lZ3j0RfsLQ9o2d8fcmLUl3t7pHoj5oaErJzoeHmKthAYfoX0dGSOiUjUVdHNwC9lj8zTEoKhR+bnJwM4mnU1tJn41ASiz5hA4XpX3h7kwS1xt2NPRqWtmc8gdhYKjWuqHD3SPSD1UqVd300sZ0NFKb/kZAg6QYwLG3PeAZGI2miNDWR4jFD3pOQkD5XXizCBgrT/4iNpYu6ttbdI3E/LG3PeBIDBtC1yyFaoqaGvEoBAe4eiVNgA4XpfwQEkJQ7h3lY2p7xLIKDqT+PHhsIuoPW1j5deccGCtM/SUqii1sQ3D0S91JVRQl2LG3PeAppaeTt6++VeA0NpOfUR8M7ABsoTH8lNpY8KQ0N7h6J+2Bpe8YTSUiQGgj2ZywWEp4MD3f3SJwGGyhM/yQsjCa5/hzmYWl7xhMRGwj29zyUujqqSPSEPl8q6bt/GcP0hMFAnoP+7EE5d46SY1nanvE0kpMpLFlX5+6RuIe2NhKc7OPCimygMP2X2FjSRWnWop2oh8HS9ownExFBFT39NcxTU0PJ7dHR7h6JU2EDhem/REVR/LY/hnlY2p7xZMQGgq2t/U/PSBAoPJuW1ue9n2ygMP0XLy+6yPujHgpL2zOejn0Dwf5EdTVpwYwY4e6ROB02UJj+TXw8rcba2909EtfB0vZMX8DPr/81ELTZSOp/9Oh+ofzMBgrTv4mNpVhuf6oIYGl7pq+Qmkq5VP2lgWB5OeWd9APvCcAGCtPf8fUl0bb+kofC0vZMX0JsINgfkmXb22meGjuWPKD9ADZQGCYpiRLt+kMDMpa2Z/oSYgPBhoa+f/2WlNB1m57u7pG4DDZQGEZsHlhV5e6ROB+Wtmf6GklJfT9M29JC0gDjx5PXt5/ABgrDBAcDY8aQm7gvJ8uytD3TFwkOpu90X15gnDlD+TYDB7p7JC6FDRSGAYBRo8izUFzs7pE4D5a2Z/oq4o27rc2943AGjY2ULzZ+PEkj9CPYQGEYgNymEydSHLu+3t2jcQ4sbc/0VfpyA8EzZyjvpB/KArCBwjAiqalUvldcTKGQvkRLC0vbM32XvtpA0GIhvZcxY/p0U8Du6H9/McN0h8EATJhAYZCyMnePRlsqK1nanunbJCdT+W1faSAoCFS5M3x4v71u2UBhGHvCwijWa7FQn4++AkvbM32dvtZAsKqK5qPRo909ErfBBgrDXMjw4VQVUFTk7pFoA0vbM/0BsYFgW5vnNxC02cjQGj2ajJR+iuKU4NbWVnz44YfYsGED6urqMHDgQNx///245JJLZO2/ceNGrFy5EqdOnYKXlxeSk5Nx//33Y8KECYoHzzBOwdsbuOQScq/W1lIZoydTWUnub5a2Z/o6AwZQh/LqaupW7qmUlvYrSfvuUOxBeeWVV7BixQpceeWVWLx4MYxGI5588kkcOXKk130/+ugj/OUvf0F0dDQeffRR3HfffRg4cCAq+4pLjuk7JCYCI0cCZ896tkKlzUYCTyxtz/QH+kIDwbY2CsmOHw8EBLh7NG5FkQclMzMTGzduxMMPP4zbbrsNADB37lzcfffdePfdd/Huu+92u+/x48fxySef4NFHH8Utt9zi2KgZxtmIugP5+bSaiY9394jUYbGQi5il7Zn+QmoqcOAAGeaeqLpaUkKeoCFD3D0St6PIg7JlyxaYTCbMnz+/4zUfHx9ce+21OH78OMp6qHz46quvEB4ejptuugmCIKCxsVH9qBnGFQQFUainvp7KdD0RlrZn+huxsUBcHFBR4e6RKKelhZLzx49nvSIoNFByc3ORmJiIgAvcTsOGDQMAnDx5stt9Dxw4gKFDh2LlypWYP38+5s2bhxtuuAFff/21imEzjIsYMoQehYXuHolyWNqe6Y8YjcCwYdRA0NP0jIqLSRWXr1kACkM8VVVViOgi0U58rbtckrq6OlgsFhw7dgwHDx7E3XffjZiYGKxduxZvv/02vLy8sGDBgm7PW1lZiSq7PgsFBQVKhs0w6vHyIoXZ4mJSYvWkjHqWtmf6K2IDwZoaz7lm6+vJuBo7luUAzqPIQGlpaYHZbL7odW9v747fd4UYzrFYLHj++ecxZ84cAMCsWbNw991349NPP+3RQFm9ejWWLVumZKgMox1xcaTkuH07VfR4yuRx7hwwZQq7ipn+R3Aw5aIcOeI5BsqZM1RWzHIAHSgyUHx8fNDWRTOm1vOCVj7dTITi615eXpg1a1bH60ajEZdffjk++ugjlJWVISYmpsv958+fj6lTp3Y8LygowMsvv6xk6AzjGGPHAqdPU1WPJ0wgLG3P9HcGDSIDpa2NpPD1TE0NVeyMGcPVdnYoMlAiIiJQ0UXikRh+iYyM7HK/4OBgeHt7IzAwEKYLVp9h563burq6bg2UyMjIbo/NMC7B3x+YNAn44QfqLurv7+4R9QxL2zP9HfsGgnFx7h5N9wgCVQpOnkzXLNOBoiTZQYMGobi4GA0NDZ1ez8zM7Ph9lycxGjF48GBYLJaLPDBi3kpoaKiSoTCM6xk4kJLvPEFhlqXtmf6O2UzXq94bCFZWkrhcP5a07w5FBsqsWbNgtVqxevXqjtdaW1uxZs0aDB8+vMMDUlZWdlEi6+zZs2G1WrFu3bqO11paWvDTTz8hJSWFPSSM/jEaqZlgSIi+SxhZ2p5hiKQkuhbq6909kq6xWkkKYMwYSuplOqEoxDN8+HDMnj0bS5cuRU1NDRISErBu3TqUlpZiyZIlHe/761//ioyMDGzdurXjtQULFuDHH3/Em2++iaKiIsTExGD9+vUoKyvDK6+8ot1fxDDOJCoKGDcO2LyZku+8FHeLcD4sbc8wRGQkGep5eWSo6I2yMgo/DR/u7pHoEsWz6zPPPNNhXNTX1yMtLQ2vvvoqxo4d2+N+Pj4+eOutt/Duu+9izZo1aG5uxqBBg/Dqq69i0qRJasfPMK5n5Eia8IqKqFJAT7C0PcNIGAx0LWRnk7dCTyFPUdJ+2jT957S5CYMgeJqSDZCTk4MHHngA77//PtLT0909HKY/cvo08P335FHR08rs3Dmq4Ln1VlaPZRgAaGoC/vtf2tZTA8GCAkqKXbCAKu6Yi1DcLJBhGJB8/IgRJOCmJxu/qoq8OmycMAzh5wekp5Pxrheam8mDMm4cGyc9wAYKw6hBbCYYEUFxZD1QVUXjYplshulMSgpV9TQ3u3skRHExhZ70FiLWGWygMIxawsKoqsdioQZf7sJqpZyYpiZSjmVxNobpTFwcPbppx+JS6uvJWGJJ+15hA4VhHGH4cPJYuEsbpa4OOHGCJt/rriMxOZ70GKYzRiMwdCgZB+4OyZ45QyEn7pHVKzqskWQYD8JsBi65BCgpIU9KSIhrzmuzkex+aysZJZMmcSUAw/REUhJdn+5sIHjuHOWHjR3LVXYyYA8KwzjKgAFUenz2LBkOzqa5GcjNJYPk6quBmTPZOGGY3ggJoZyPkhIyFFztSREEylcbOVJf1UQ6hj0oDKMF48cD+fnUUyM+3nnnqagAqqupgujSSz2nUyvD6IHJkwFfXyAri0KjkZEkM+8Kb0ZFBSXVjxzp/HP1EdiDwjBaEBREoZ76etIh0Zq2NuDkSfp5xRXAlVeyccIwSgkOBqZPB266CbjsMrqesrOpAs6ZHhWrlRYWY8e6LgzcB2APCsNoxZAhVE1z4gSVEGqFxUJu6bQ0YOpU7lDMMI4SHk7X0vDhZKAcP04/o6LIy6G1R6WkhBLZhw3T9rh9HDZQGEYrvLyAiROpoqe6miZBR7DZ6FiCQOXDEyaQe5phGG0ICyNPimioHDtGPyMjyVAxahBkaG0FGhqAWbNINI6RDRsoDKMlsbGkDrl1K7ly1Zb8NjYChYW06poyhZL7OOufYZxDSAjlpwwbJhkqOTlkpERGOmaonDlDQnGDBmk23P4CGygMozWjR1Oo58wZKm1UgpjpX1dH8erJkyluzjCM8wkOppL9YcMoVHvkCBkqYWFAdLRyQ6WpiTyh48eTJAGjCE6SZRit8fenhNm2NvKEyKW1lcqHjUZg7lxgzhw2ThjGHQQFUUj15pspKd3bmwyW0lJKeJXLmTOUj5aS4rSh9mXYg8IwzmDgQFqFHT1KybO9hWeqq4HyclKYvOwy1klgGD0QGEjej/R0WjwcPkw/Q0LIo9JTCLeujgybsWO1yWXph7CBwjDOwGikFVhhIfX/6M7gsFqp7bq3NwmujR3L3U0ZRm8EBNC1OWQIGShHj9LP4GAgJqZrQ+XsWcpHc6YuUh+HDRSGcRaRkbT62rQJCA29OAZdX09VOsnJlAg7YIBbhskwjEz8/YExY8hQOXmSPConT5KnJSaGKvkA8ogGBdF7ObldNWygMIwzGTkSOHWK2quLrdUFgWLTLS2UkHfJJbRCYxjGM/DzA0aNovySU6eAjAz6GRBAhkp5OemsREa6e6QeDRsoDONMfHzIAPn+e/KYeHlRSCcqipJgBw/mFRbDeCq+vtR2YtAgMlBEj0p0NBkwjEOwgcIwziYlhSaxffvIQBk+nBJhWaqeYfoGPj50XQ8aRBIDZjOFeBiHYAOFYZyNwUAJs9XVNIGNGiXFqhmG6Tt4ewNDh7p7FH0GniUZxhWEhgILF6pXlmUYhulncHE2w7gKNk4YhmFkwwYKwzAMwzC6gw0UhmEYhmF0BxsoDMMwDMPoDjZQGIZhGIbRHWygMAzDMAyjO9hAYRiGYRhGd7CBwjAMwzCM7mADhWEYhmEY3cEGCsMwDMMwuoMNFIZhGIZhdAcbKAzDMAzD6A42UBiGYRiG0R1soDAMwzAMozu83D0ANbS0tAAACgoK3DwShmEYhmGUkpycDF9f3x7f45EGSmlpKQDg5ZdfdvNIGIZhGIZRyvvvv4/09PQe32MQBEFw0Xg0o6amBnv37kVcXBy8vb01OWZBQQFefvllPPvss0hOTtbkmH0Z/rzkw5+VMvjzUgZ/Xsrgz0s+zvys+qwHJTQ0FFdddZVTjp2cnNyrVcdI8OclH/6slMGflzL481IGf17ycddnxUmyDMMwDMPoDjZQGIZhGIbRHWygnCciIgJ33303IiIi3D0Uj4A/L/nwZ6UM/ryUwZ+XMvjzko+7PyuPTJJlGIZhGKZvwx4UhmEYhmF0BxsoDMMwDMPoDjZQGIZhGIbRHWygMAzDMAyjOzxSqM3ZZGRk4Msvv0Rubi4sFgsCAwMxaNAg3HXXXRg1apS7h6c7Dhw4gJ9++glHjhxBRUUFwsPDMX78eNx3332IjIx09/B0R2VlJVauXImsrCxkZ2ejqakJb7/9NsaNG+fuobmV1tZWfPjhh9iwYQPq6uowcOBA3H///bjkkkvcPTRd0tjYiC+//BKZmZnIyspCXV0dnn76aVx99dXuHpruyMrKwrp163Do0CGUlpYiODgYI0aMwP33348BAwa4e3i64vTp0/j444+Rk5OD6upq+Pr6Ijk5GbfddhumTp3q0rGwB6ULiouLYTQasWDBAjz++ONYtGgRqqur8T//8z/Ys2ePu4enO9577z0cOnQI06dPx2OPPYY5c+Zg8+bNuP/++1FVVeXu4emOoqIifPHFF6ioqEBaWpq7h6MbXnnlFaxYsQJXXnklFi9eDKPRiCeffBJHjhxx99B0icViwbJly1BQUIBBgwa5ezi65osvvsCWLVswYcIELF68GNdffz0OHz6M+++/H3l5ee4enq4oLS1FY2Mj5s2bh8WLF+POO+8EADz99NNYvXq1awcjMLJoamoSFixYIDzxxBPuHoruOHTokGC1Wi96bfr06cLSpUvdNCr90tDQIFgsFkEQBGHz5s3C9OnThYMHD7p5VO7l+PHjwvTp04Uvvvii47Xm5mbh1ltvFR566CE3jky/tLS0CJWVlYIgCEJWVpYwffp0Yc2aNW4elT45cuSI0Nra2um1wsJCYc6cOcJf/vIXN43Kc2hvbxfuuece4Y477nDpedmDIhNfX1+EhISgvr7e3UPRHWPHjoXRaLzoteDgYBQUFLhpVPrF398fwcHB7h6GrtiyZQtMJhPmz5/f8ZqPjw+uvfZaHD9+HGVlZW4cnT7x9vZmsTGZjBo1CmazudNrAwYMQEpKCs9RMjCZTIiOjnb5/Y9zUHqgoaEBbW1tsFgsWL9+PU6fPo3f/OY37h6WR9DY2IimpiaEhIS4eyiMB5Cbm4vExEQEBAR0en3YsGEAgJMnTyImJsYdQ2P6KIIg4Ny5c0hJSXH3UHRJU1MTWlpa0NDQgB07dmDPnj2YPXu2S8fABkoPPP/889i7dy8AwGw2Y/78+R3xOKZnvvrqK7S1teHyyy9391AYD6CqqqpLb4D4WmVlpauHxPRxfvrpJ1RUVODee+9191B0yT//+c+OnBOj0YgZM2bg97//vUvH0OcNFJvNhra2Nlnv9fb2hsFg6Hj+29/+FosWLUJ5eTnWrVuH9vZ2WK1WZw1VFzjyeYlkZGRg2bJlmD17NiZMmKD1EHWFFp8XA7S0tFzkggfoMxN/zzBaUVBQgDfffBMjRozAvHnz3D0cXXLzzTdj1qxZqKysxObNm2G1WmXPdVrR5w2Uw4cP47HHHpP13s8++wzJyckdzwcPHtyxfdVVV+H+++/HK6+8gpdeeknzceoFRz4vgC78Z599FmlpaViyZIkzhqgrHP28GMLHx6fLya+1tbXj9wyjBVVVVViyZAkCAgLw0ksvwWQyuXtIuiQ5Obljvpo3bx7+8Ic/4KmnnsK///1vly20+ryBkpSUhKefflrWe3tKODObzZg6dSo+//xztLS09NkJ05HPq6ysDE888QQCAgLw6quvwt/f3xlD1BVafb/6OxEREaioqLjodbFMnfV0GC2or6/Hk08+ifr6evzf//0ff68UMGvWLLz++usoKipCUlKSS87Z5w2UiIgIzYSLWlpaIAgCGhsb+6yBovbzslgseOKJJ9DW1oY333yz31z4Wn6/+jODBg3CoUOH0NDQ0ClRNjMzs+P3DOMILS0teOqpp1BUVIQ33niDk2MVIoZZXVnJw2XGXXDu3LmLXqurq8OWLVsQHR2NsLAwN4xKvzQ1NeHJJ59EZWUl/vGPf7AyI6OYWbNmwWq1dhKCam1txZo1azB8+HCu4GEcwmq14oUXXsDx48fx4osvYuTIke4ekm7p6v7X3t6O9evXw8fHx6WGXZ/3oKjhT3/6E6KiojB8+HCEhYWhrKwMa9asQVVVFV544QV3D093vPTSS8jKysI111yDgoKCTroCfn5+mD59uhtHp08++eQTAEB+fj4AYP369R2KqXfddZe7huU2hg8fjtmzZ2Pp0qWoqalBQkIC1q1bh9LS0n6Ry6SWr7/+GvX19R2hsB07dqC8vBwAcOONNyIwMNCdw9MN//znP7Fjxw5MmTIFdXV12LBhQ6ffX3XVVW4amf54/fXX0dDQgDFjxiAqKgpVVVX46aefUFhYiEcffdSloXuDIAiCy87mIaxatQqbNm1CQUEB6uvrERQUhOHDh+O2227DmDFj3D083XHLLbegtLS0y9/FxsZixYoVLh6R/pkxY0a3v9u6dasLR6IfWlpaOnrx1NfXIy0tDffffz8mTZrk7qHplp6uveXLlyMuLs7FI9InixcvRkZGRre/76/XXFds3LgRP/74I/Ly8mCxWODv74/09HQsXLgQ06ZNc+lY2EBhGIZhGEZ3cA4KwzAMwzC6gw0UhmEYhmF0BxsoDMMwDMPoDjZQGIZhGIbRHWygMAzDMAyjO9hAYRiGYRhGd7CBwjAMwzCM7mADhWEYhmEY3cEGCsNozNq1azFjxgysXbvW3UORxaFDhzBjxgx89NFHTjvHjBkzsHjxYqcd39ksXry4R/VfRxA/f/Hx0EMPOeU8cvjoo48wY8YMHDp0qOO1goKCTuO75ZZb3DY+pn/BvXiYfs/f//53rFmzBsHBwVi1ahW8vb3dPSTNEW8q3HZAv4wdOxZjx45FdHS0u4fSiZCQENx9990AgJUrV7p3MEy/gg0Upl/T2NiIzZs3w2AwoLa2Ftu2bcOcOXMcOub06dMxfPhwREREaDRKpj8wduxY3Hvvve4exkWEhoZ2jGvdunVuHg3Tn+AQD9Ov2bRpE5qamnDzzTfDaDTixx9/dPiYgYGBSE5O5k6yDMMwDsAeFKZf8+OPP8JkMuH222/HqVOncPDgQZSWliI2NrbT+z766CMsW7as2+PYd21eu3YtXnnlFTz99NO4+uqrO94zY8YMjB07Fn/+85/x7rvvYt++fWhtbcWYMWPw+OOPIz4+Hvn5+Vi6dCkOHz6M9vZ2TJo0Cb///e8RHh7ecZxDhw7hsccew913333RirukpASLFi3CvHnz8Mwzz3Q8tx+DSFf7Z2dnY+nSpTh+/DiMRiPGjx+P3/3udxd1xd26dSs2b96M7OxsVFZWwsvLCwMHDsRNN92EWbNm9fyh90J9fT2+++477N69G8XFxbBYLAgJCcHEiRNx9913IyEhodP7xf/N22+/jcrKSvz3v/9FYWEhAgMDMXv2bDz00EPw8fHptE97ezu+/PJL/PDDD6isrERUVBSuvfZaXH755bj11ls7Pj85bNu2DV9//TVOnDiB1tZWJCQkYN68ebjllltgMpkc+iwA4G9/+xvWrVuHL7/8Elu3bsWPP/6Is2fPYs6cOXjmmWdQWVmJ1atXY+/evTh79iwaGhoQERGBSy+9FPfccw/CwsIuOmZZWRnee+897N27F+3t7RgyZAjuu+8+h8fKMFrCBgrTb8nPz8fx48dx6aWXIjw8HHPnzsWBAwewZs2ai27c48aN6/IYBQUF2Lx580U3wO6oq6vDo48+ioiICMydOxfFxcXYuXMn/vCHP+Bvf/sbfve73yE9PR3XXHMNTpw4gS1btqC2thZvv/22qr8xMDAQd999d0fuwE033dTt35SdnY3//ve/GDduHObPn4/c3Fxs27YNeXl5WLZsWae/cenSpfDy8sKoUaMQERGBmpoa7NixA8899xwee+wx3HjjjarGC9Bn+tFHH2HcuHGYPn06/Pz8UFBQgJ9//hm7du3CBx98cJEBCQCrVq3C3r17MXXqVIwfPx579uzB119/DYvFgueee67Te1999VWsX78e8fHxuOGGG9DW1oYVK1bg2LFjisb673//G59//jmioqIwY8YMBAYG4siRI3j33XeRlZWFv/zlL6o/hwt56623kJmZicsuuwxTpkzpMDwOHz6M5cuXY/z48Rg2bBi8vLyQm5uLb7/9Fnv37sUHH3zQyZtXWVmJRx55BBUVFZg0aRKGDBmCgoICPPHEE91+zxnGHbCBwvRbfvjhBwDA3LlzAZB34c0338TatWtx9913w2iUIqDjxo27aPI+d+4cfvvb38Lb2xtPPvmkrHOeOnUKt9xyC373u991vPbGG2/g22+/xe9+9zvcc889uPnmmwEAgiBgyZIl2L17N3JycpCenq74bwwKCsK9997bkTvQU47D7t278fzzz3fKwfnrX/+K9evXY/v27Z1e/8c//oH4+PhO+zc2NuKRRx7Bhx9+iGuvvRa+vr6KxwsAycnJ+OabbxAcHNzp9YMHD+IPf/gDPv300y4/7wMHDuD9999HUlISAOCBBx7Avffei02bNuGRRx5BZGRkx/vWr1+PwYMH45///GfHOH/zm9/g/vvvlz3Offv24fPPP8ekSZPw0ksvwc/PDwD939544w189913+OWXXxz2KImcOnUKH374IWJiYjq9Pn78eHzzzTfw9/fv9Pq6devwt7/9DatWrcKdd97Z8frSpUtRUVGB+++/v9Prq1evxuuvv67JWBlGCzgHhemXtLe3Y8OGDQgICMC0adMAAP7+/pg+fTrKysqwf//+HvdvaWnBM888g9LSUjz11FMYNWqUrPP6+flddBMUb/whISGdPBwGg6Hjd6dOnZL9t6llzJgxFyUIX3PNNQCArKysTq9faJwA9PldffXVqK+vR3Z2tupxBAYGXmScAHQjTklJ6fZ/c9NNN3UYJwDg4+ODOXPmwGazIScnp+P1DRs2AADuuuuuTkZUZGRkp8+/N1atWgUA+NOf/tRhnAD0f/v/27uXmCaeOA7g31YoQRBotLYaUCJIIJGHyCOINj5AD3ogPg6c2qbGevDkwRjiwQtGjZrAAQ4SRRCVSIgBCogCwUClCkVLIAhoAhW0yENKARHb/g+kTfvf5VmoTfr7HHd2Z4Ytyf52fjOzCoUCHA4H9fX1K65vOZmZmYzgBAD4fD4jOAEWAm8/Pz+0t7fbjs3Pz6OhoQF8Pt8h9QcAp0+fRnBw8Lr1lxBn0QgK8UjNzc349esXTp065ZC6OHnyJOrq6qBUKpGUlMR6rcViwc2bN9HV1QWZTIa0tLQVtxscHMwYWbCu9tmzZw84HA5r2ejo6IrbWCu2ERqBQABgYV6IvYmJCZSUlKC1tRV6vR5zc3MO5c72t6OjAy9evEB3dzcmJydhMplsZd7e3qzXREREMI5Zl+za97+/vx8AEBMTwzh/3759K+5jd3c3fH19F51Y7ePjg8HBwRXXt5yoqKhFy5qamlBRUYHe3l4YjUaH+2X/WwwODuLPnz+Ij49npCW5XC6io6Px7du3deszIc6gAIV4JOtDxZresTpw4AAEAgFaWlpgMBhY3+QLCgrQ2NiItLQ0yGSyVbXr5+fHOGadSLlU2d+/f1fVzlqwvYVb2zebzbZjBoMBFy9ehF6vR3R0NBISEuDv7w8ul4v+/n40Nzdjfn5+zf1obGzEjRs34Ovri6SkJIhEIltQV1tbix8/frBet9T9s+//zMwMuFwuAgMDGefbT0ZejsFggMlkWnLy9Ozs7IrrWw7bZFcAeP78OfLy8hAUFITExEQIBAJb8FFWVubwW0xPTy9Z12LHCfkXKEAhHkev1+PDhw8AsOTupnV1dYwh/5qaGhQXFyM6OhrXrl3b0H4uxjrKYv+WbGV9AG0kpVIJvV4PuVwOiUTiUPbkyRM0Nzc7Vf+jR4/A4/Hw4MEDhISEOJQ1NDQ4VTewEIiZzWZMTk4iKCjIoWx8fHzF9fj5+YHD4aCystLpPq3E/0fXgIXAtaioCFu3bsXDhw8dAgyLxYJnz545nG8N4iYmJljbWOw4If8CBSjE49TW1sJsNiMmJobxAAQWHvy1tbVQKpUOAcrHjx9x9+5d7Ny5E9nZ2f9sx9ktW7YAYE+j9PX1sV7D5XKdGtWwNzQ0BAC2uTv2tFqt0/UPDw8jNDSU8duMjo5ieHjY6frDw8PR19eHzs5OHD582KFsNat4oqKioFarodPpWP+PXGFychJGoxHx8fGM0Y+enh5G6i0kJAQ8Hg+fP3/G3NycQ5rHbDavehUTIRuJAhTiUSwWC6qrq8HhcJCVlcU62RMAdDodurq60NPTg8jISOh0Oly/fh0+Pj64desW483blXbt2oXNmzcz0lDj4+MoKipivSYgIABfv35lPJTWwrrEt7OzE2FhYbbjr1+/Rmtrq1N1A4BQKMTQ0BDGx8dtKZe5uTncv39/XVJd6enpqKmpQWFhIZKSkmz3Y2xsbFVbuZ87dw5qtRq3b99GdnY2I2U0NjaGqakphIaGOt3nxfD5fPj4+KC3txe/f/+2pcKmpqZYl6bzeDwcPXoUr169QmlpqcMqnqqqKuh0ug3rKyGrRQEK8SgajQbfv39HXFzcosEJsLB6paurC0qlEpGRkcjNzYXBYEBCQgJrmsHf399lH1Hz9vbG2bNnUVxcjAsXLiA1NRWzs7NoaWlBXFycbYTD3v79+9HT04OrV68iJiYGXl5eiI2NRVxc3KrbP3HiBJ4+fYqcnBx0dHRAKBSiv78fGo0GYrEYb9++dervO3PmDHJyciCXy3HkyBGYTCZbSi48PNw2yXWtEhISkJaWhjdv3kAqleLQoUOYn59HY2MjoqKioFKpHJaYLyY5ORkSiQSPHz9GZmYmkpOTIRQKYTAYMDQ0BK1WC7lcvqEBCpfLRUZGBkpLSyGTyZCamorp6Wmo1WoIhULb0mp7CoUCGo0GBQUF6OzsxN69ezEwMIDW1lYkJiba7jUh/xoFKMSjWCfH2u/wyubYsWPIzc1FfX09Ll++bBsqb2trY13mKhKJXPqVV7lcDi8vLyiVSlRUVEAkEkEikeDgwYNoampinC+RSGA0GqFSqaDVamEymSCVStcUoGzfvh25ubnIz89HW1sbTCYTIiIicO/ePYyMjKxLgOLl5YXy8nJUVlbC398fKSkpUCgUjA3X1iorKwu7d+9GdXU1ysvLIRAIcP78ecTHx0OlUrFOGGYjl8sRGxuLsrIytLe3w2g0IiAgADt27IBUKkV6evq69HcpCoUCAQEBqKmpwcuXL8Hn83H8+HHIZDLbR/7sbdu2DXl5ecjPz8f79+/x6dMn2++n0WgoQCFug2OxWCz/uhOEEOIOqqqqcOfOHVy5cgUZGRkuaXOpTxe4G/oqNnEl2qiNEOJxxsbG8P93s58/f6KoqAibNm1CSkqKy/tUWFgIsViMS5cuubztpQwMDEAsFkMsFi+6xJuQjUApHkKIxykpKcG7d+8QGxuLoKAgjIyMQKVSYWZmBjKZjHXH1o0iEokcUjHWzeXcRWBgoEP/6CvdxFUoxUMI8ThqtRqlpaX48uULpqamwOPxEBYWhoyMDJfMGyGELI8CFEIIIYS4HZqDQgghhBC3QwEKIYQQQtwOBSiEEEIIcTsUoBBCCCHE7VCAQgghhBC3QwEKIYQQQtwOBSiEEEIIcTsUoBBCCCHE7VCAQgghhBC38x+vJaDlwfrXYgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACu30lEQVR4nOydd3hb5dn/v5K8ty3PeDvOJjskZDkJgQQIBMoeLYQSynyBlpYUSgtllFL6FuivNCWsAIWXhIQRyISQvfey4xHHey95yJZl6fz+uHMs2Zbtc7Ql35/r0hVJPuORovOc+7nH91YIgiCAYRiGYRjGjVC6egAMwzAMwzC9YQOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt4MNFIZhGIZh3A42UBiGYRiGcTvYQGEYhmEYxu1gA4Vh3JydO3dCoVDgxRdftPlYCoUC8+fPt/k4A2HP8XoDy5Ytg0KhQFFRkeR90tLSkJaW5rAxMYwnwAYKw/RCoVBAoVBAqVTiwoUL/W63YMGC7m1Xr17tvAG6mKKiIigUCixbtszVQ5GMaDSZP/z8/JCUlITbbrsNBw4csLifVqtFREQEFAoF7r77bieP2rF0dnbib3/7GyZOnIigoCCEhYVhzpw5WLt2rauHxjAAAB9XD4Bh3BEfHx90dXXhgw8+wF/+8pc+f8/Pz8fOnTu7t2NMTJ8+HTk5OYiOjnb1UPqQmprabVi1tbXh4MGDWLduHb766iusW7cOP/vZz3psv2bNGmg0GigUCnz11Veor6+HWq12+Di3b9/u0ON3dnZi8eLF2LlzJ9LS0nD//ffDaDRi06ZNuOOOO3D27Fm89NJLDh0DwwwGe1AYxgJxcXGYNm0aPvroI4sGyPvvvw8AuOGGG5w9NLcnKCgIo0ePdksDJS0tDS+++CJefPFFvPHGG9izZw/+9Kc/wWg04umnn+6z/apVq6BUKvG73/0OOp0OH3/8sVPGOXz4cAwfPtxhx3/nnXewc+dOzJw5E2fPnsU777yDlStX4ty5c5g6dSpeeeUVHD161GHnZxgpsIHCMP3w4IMPoqqqCt9//32P9/V6PVavXo1Zs2Zh7Nix/e6fn5+Pe++9F4mJifDz88OwYcNw7733Ij8/3+L21dXVeOCBBxAXF4fAwEBMmjRpwBviQHkKL774IhQKBXbu3Dno56yoqMBLL72E2bNnIz4+vnusd999N7Kzs/scNz09HQDw8ccf9wiZiGGugXJQ5Hwn5p9h3bp1mD59OoKCghAVFYU777wT5eXlg342KTz22GMAgIsXL6K2trb7/bNnz+LgwYNYuHAhVqxYAT8/v27D1BqMRiP+8Y9/YPTo0QgICEBSUhJ+/etfo7m5uc+2lv5vV69e3f0979ixA/Pnz0doaCjCwsKwZMkS5OTkSB7L119/DQD4wx/+gODg4O73Q0JC8Pzzz0MQBPz73/+27oMyjJ3gEA/D9MNdd92F3/zmN3j//fdx0003db+/YcMG1NTU4PXXX0dBQYHFfY8cOYKrrroKLS0tWLp0KcaOHYvz58/jv//9L7799lv8+OOPuPzyy7u3r6urw6xZs1BYWIg5c+Zgzpw5qKysxMMPP4xFixY59HPu3r0bf/3rX7FgwQLccsstCAkJQX5+PtatW4cNGzZg3759mDhxIgBg/vz5aGpqwttvv42JEyf2+F4mTZo04Hnkfici//73v7FhwwYsXboU8+bNw6FDh7BmzRqcOnUKJ0+ehL+/v02fXxCE7ucKhaL7+apVqwBQkmtUVBRuuOEGrF+/Hnv27MHcuXNln+fXv/41du/ejdtvvx033ngjtm7dirfeegt79uzB3r17ERAQIOk433//Pb799ltce+21ePjhh5GdnY1NmzbhyJEjyM7OluS5qqqqAgBkZGT0+Zv4nqPDTAwzKALDMD0AICQmJgqCIAgPPPCAoFKphNLS0u6/L168WAgLCxPa2tqEP/zhDwIA4aOPPur+u9FoFEaPHi0AEP773//2OPYXX3whABBGjRolGAyG7vcffPBBAYDw1FNP9dj+yJEjgo+PjwBAeOGFF3r8LTU1VUhNTbX4GV544QUBgLBjx44+n23evHk93quurhaam5v7HOPkyZNCcHCwcM011/R4/+LFiwIA4b777rN47h07dvQZrzXfifgZQkNDhdOnT/fY56677hIACGvWrLE4hv7G1PuzC4Ig/PGPfxQACBkZGd3vtbe3C5GRkUJ4eLig1WoFQRCE7777TgAg/PznP5d0TpH77rtPACCo1WqhqKio+32DwSDcfPPNAgDhpZde6rGPpf/bjz76SAAgqFQq4ccff+zxt9///vcCAOH111+XNKaZM2cKAISNGzf2+dvXX38tABAAdH92hnEFHOJhmAF48MEHYTAY8OGHHwIAiouL8cMPP+Cee+5BUFCQxX3279+P8+fPY+bMmbjnnnt6/O2OO+7AnDlzkJubi7179wKgkNFnn32G0NDQPmGRadOm9TmGvYmNjUVoaGif9ydOnIgrr7wSO3bsgF6vt+kccr8Tc5544gmMHz++x3sPPvggAODw4cOyxlFUVNSdg/K73/0OWVlZePnll6FUKvH3v/+9e7svv/wSjY2NuOOOOxAYGAgAuOaaaxAfH49169ahsbFR1nkB4Mknn0Rqamr3a6VSiTfeeANKpbL79yWFO++8EwsXLuzx3q9+9SsA0r+PJUuWAABeffVVtLe3d7/f1tbWIym8qalJ8rgYxt6wgcIwAzBjxgyMHz8eH374IYxGI95//30YjcbuG6Qljh8/DgC48sorLf5dfP/EiRMAgPPnz0Or1WLSpEkIDw/vs72jdUsAYOPGjbjhhhuQkJAAX1/f7ryS7777DjqdDnV1dTYdX+53Ys60adP6vJecnAwAsg2F4uJi/PnPf8af//xnvPXWWygoKMDNN9+MPXv29KjgEcM7999/f/d7Pj4+uOeee9DR0YFPP/1U1nkBYN68eX3ey8jIQHJyMoqKiiQbA/b4Pp588klMnDgR+/fvx7hx4/D444/jsccew7hx41BbW9v9O1Qq+RbBuA7+9THMIDz44IMoLi7G5s2b8dFHH2Hq1KmYPHlyv9trNBoAQEJCgsW/i++LNyRx+7i4OIvbx8fHWzt0Sbz99tu4/vrrsW/fPmRlZeGpp57Cn/70J7zwwgvduSc6nc6mc8j9TsyJiIjo856PD6XPGQwGWeOYN28eBEGAIAjQ6/WoqKjA+vXrMWvWrO5tcnJysHfvXowePRpXXHFFj/3FEuX33ntP1nmBwf9/xe9oMOzxfYSEhGDv3r149tln4ePjg/feew9r1qxBVlYW9u7dC4PBAB8fH0RFRUk6HsM4Ak6SZZhB+MUvfoEVK1bg4YcfRnl5Of70pz8NuL24+hQTEXtTWVnZYzvx3+rqaovb93ccpVKJzs5Oi3+Tuhrv6urCiy++iPj4eBw/fryPAdGfgJlc5H4nrkT0npw/f75H0qw5Z8+exf79+3sYNoNRXV2NUaNG9Xlf/E6c/dlDQkLwl7/8pY/OT2FhIVpbWzF16lT4+vo6dUwMYw4bKAwzCBEREbj11lvx6aefIjg4GHfdddeA24velf5KfHfs2AEAmDJlCgBg9OjRCAoKwsmTJ6HRaPrcqPo7TmRkJE6fPg29Xt/nRiJVw6Kurg5NTU24+eab+xgnra2t3aEZc1QqFQB53gu534mr0Ol0+PTTT6FUKrsl6ntTVlaGrVu34r333pNloOzatQtZWVk93issLERpaSnS0tIsekZcwSeffAIAXqecy3geHOJhGAm88sor+Prrr7F161aLCaXmzJ49G6NGjcLevXuxbt26Hn9bt24d9uzZg5EjR2LOnDkAAF9fX9xzzz1oaWnpkyR79OhRfPbZZxbPM336dHR1deGjjz7q8f7q1auxb98+SZ8rNjYWQUFBOHbsGFpbW7vf1+v1ePLJJy3mnkRGRkKhUKCkpETSOQD534mrWL9+Perr67F48WJ88MEHeP/99/s81q5di+DgYKxdu1ZyWAagUFpxcXH3a6PRiN/97ncwGo09cl2chSX9lR9++AGvv/46hg8fjoceesjpY2IYc9iDwjASSElJQUpKiqRtFQoFPv74Y1x99dW44447cOONN2L06NHIzc3FN998g9DQUHzyySc9EhD/8pe/YPv27Xjrrbdw9OjRbh2UNWvW4LrrrsOGDRv6nOd//ud/8NFHH+GRRx7B9u3bkZycjJMnT+LAgQO4/vrr+wjMWUKpVOKJJ57AX//6V4wfPx433ngjOjs7sWPHDjQ0NGDBggXd3g2RkJAQzJgxA3v27ME999yDkSNHQqVSYenSpZgwYYLdvhNXIIZ3li9f3u82YWFhuO2227B69Wr897//7RZ6G4zZs2dj0qRJuOOOOxAeHo6tW7fi1KlTmDp1Kp555hm7jF8Oo0ePxoQJE7qF444fP44ff/wR8fHx+Pbbb3sIuDGMK2APCsM4gBkzZuDIkSO4++67ceDAAbzxxhvYv38/7rrrLhw5cgQzZszosX10dDT27duH+++/H+fPn8dbb72FkydPYuXKlfj1r39t8Rxjx47Fjz/+iNmzZ+O7777DqlWr4O/vjwMHDmDq1KmSx/ryyy/jf//3fxEYGIh3330XX331FaZNm4bDhw/3a5R9+umnWLJkCbZs2YI///nP+OMf/2gxHGTLd+Js8vLysGvXLsTFxQ3awkCs4pKTLPvmm2/i+eefx86dO/H222+jtrYWTz75JH766SfJIm325J577kF5eTk+/PBDvP322ygpKcEzzzyDs2fPYty4cU4fD8P0RiEIZjKKDMMwDMMwbgB7UBiGYRiGcTvYQGEYhmEYxu1gA4VhGIZhGLeDDRSGYRiGYdwONlAYhmEYhnE72EBhGIZhGMbt8EgDpaOjA7m5uejo6HD1UBiGYRiGcQCyDRStVosPP/wQv/3tb7FkyRJkZWVh8+bNVp38b3/7G7KysrBixQpZ+xUXF3d3mGUYhmEYxvuQbaBoNBqsXr0axcXFyMzMtPrE58+fx+bNm+Hn52f1MRiGYRiG8U5kGyhqtRpff/01vvzySzzyyCNWnVQQBLz99ttYvHgxoqKirDoGwzAMwzDei2wDxc/PD2q12qaTbt26FRcvXuzuZ8EwDMMwDGOO05NktVot/vOf/+DnP/+5zYYOwzAMwzDeiY+zT7h69Wr4+/vj9ttvl7xPXV0d6uvru19zcizDMAzDeDdONVBKS0uxbt06/OlPf5KVHLthwwasXr3acQNjGIZhGMatcKqB8s9//hOXXXYZ5s+fL2u/pUuXYvbs2d2vi4uL8corr9h5dAzDMMxgGAwG6PV6Vw+DcUN8fX2hUqnsdjynGSjHjh3DoUOH8Morr6CysrL7fYPBAJ1Oh8rKSoSFhSE4OLjPvtHR0YiOjnbWUBmGYZheCIKAqqoqaDQaCILg6uEwbohCoUB4eDji4+OhUChsPp7TDJSamhoAwPPPP9/nb7W1tbjjjjvw+OOPy8pNYRiGYZyDRqNBU1MTYmJiEBwcbJcbEOM9CIKAtrY21NbWIjAwEBERETYf02EGSl1dHdra2pCYmAgfHx9MmTIFr776ap/t3njjDcTHx+MXv/gFMjIyHDUchmEYxkoEQUBNTQ3CwsLYm830S2BgIHQ6HWpqahAeHm6zEWuVgbJ+/Xq0trZ2V9bs27ev20Nyyy23ICQkBKtWrcKWLVuwZs0aJCQkIC4uDnFxcX2O9f/+3/9DZGQk5s6da8PHYBiGYRyFwWCAwWBAWFiYq4fCuDlhYWFobm6GwWCAj49tPhCr9l6zZg2qqqq6X+/evRu7d+8GACxatAghISE2DYphGIZxH7q6ugDA5hsO4/2Iv5Guri7XGChr164ddJvnnnsOzz33nF2OxTAMw7gezjthBsOevxGnK8kyDMMwDMMMBhsoDMMwDMO4HWygMAzDeDJtbQALpzFeCBso3kpzM3DsGFBRARiNrh4NwzD2prkZOHwYWLMG2LuXr3MPRqfTYcWKFRg2bBgCAwMxY8YM/PDDD5L2PXfuHG677TZkZGQgKCgI0dHRyMrKwnfffWf1eZYtWwaFQtHvo7y83ObPLAVOyfZGurqAffuAkyeBkBAgJQUYPRpITQUCAlw9OoZhbKG5GTh/HjhzBqivB8LDgRMngKgoYOJEV4+OsYJly5Zh3bp1eOqppzBixAisXr0a1113HXbs2IE5c+YMuG9xcTFaWlpw3333YdiwYdBqtVi/fj2WLl2Kd999F7/61a9kn+ehhx7CVVdd1eM8giDg4YcfRlpaGhITE+37BfSDQvBAzeLc3Fw8+OCDeO+99zBq1ChXD8f9OHYM2LGDDBKjEaiuBjo7gdhYMlSGDwfUalePkmEYOTQ3Azk5wNmzZJhER9N1rFQCtbV0jS9ZAiQn2/3UHR0duHjxItLT0xHAixy7cvjwYcyYMQNvvPEGfvvb3wKg7/uyyy5DbGws9u/fL/uYBoMBU6dORUdHB86fP2+X8+zduxdz587Fq6++OmCFrj1/Kxzi8TZKS8ntGx1N3pKgICA9HcjMBHQ6YNcu4MsvgW3bgKIi8rYwDOO+aDTAoUN03e7eDSgUwKhRQEwMGScAPe/spL83N7t2vB5KRkYGfv7zn/d5f8GCBZg3b57Dzrtu3TqoVKoeno6AgAA88MADOHDgAEpLS2UfU6VSITk5GU1NTXY7z+effw6FQoG7775b9nishUM83kRrK8WiOzuBpKSef1OpgPh4ejQ3A+fOAdnZQEICMHYskJYGhIa6ZNgMw1hAo6FQztmzQEMDeUtGjSIDxRIpKUB+PrBnD7BoEeDr69zxejCtra0oKirCI4880udvp0+f7vemrNfrodFoJJ0jKioKSmVfn8CJEycwcuTIPiq906dPBwCcPHkSyRK8Ym1tbWhvb4dGo8GGDRuwefNm3HHHHXY5j16vx9q1azFr1iykpaUNOhZ7wQaKt2A0AgcOkAdl5MiBtw0Lo0dnJ1BTA2zdCkREACNG0CM+3rQyYxjGuYiGyZkzZJjExAxsmIioVOQtzc4mY2bGjMH3YQAAZ8+ehSAImNgrh6esrAwNDQ2YMGGCxf327duHBQsWSDrHxYsXLd7cKysrkZCQ0Od98b2KigpJx3/66afx7rvvAgCUSiVuvvlm/Otf/7LLebZu3Yr6+nrcc889ksZiL9hA8RbOnqUJLTWVJiop+PmRp8VoBBobgaNHgdOnKYY9Zgwn1TKMM9FoTDkmomEyerQ8I8PfnxYYhw+TkTJihOPGCwDTpgFmbU9cTnw8zWMyOXv2LAD0MVBOnToFAP0aKBMnTpRcbRMfH2/x/fb2dvj7+/d5X8zfaG9vl3T8p556CrfeeisqKiqwdu1aGAwGdHZ22uU8n3/+OXx9fXH77bdLGou9YAPFG6isBA4eJK9IUJD8/ZVKmszUakCrJS/MhQuUxzJmDJCRQc8ZhrE/9jBMzImIoHDvnj30PCbGnqPtSVUV4KSSU0dy5swZiw1tT58+DaVSicsuu8zifpGRkX2qXeQidgDuTUdHR/ffpTB69GiMHj0aAHDvvfdi0aJFuOGGG3Do0CEoFAqrz9Pa2opvv/0WixcvhtrJxRVsoHg6Wi3lnbS1USKsrQQFUT6KwQDU1VFS7bFjZKSMHEkeF45tM4ztNDX1zDGx1TAxJzERKCggI+XaawGJNznZ9OMVcBlWjufs2bN9vCcA5WVkZGQgODjY4n6dnZ1oaGiQdI6YmBioLHi3ExISLOqKVFZWAgCGDRsm6fi9ufXWW/HQQw8hLy8Po0aNsvo833zzDbRardPDOwAbKJ6N0Uiu3IsX7e/KVamAuDh6iOWN2dk0AYwbR0YMt15nGPmYGyaNjfY1TEQUCrpGCwrIuzpvnmPyyqwIp7gjZ86c6ZFQCgBGoxE//fQTsrKy+t1v//79NuegTJo0CTt27EBzc3OPBNZDhw51/90axJCNmMRr7Xk+++wzhISEYOnSpVaNwxbYQPFkcnNJjC05GXBkG3TzpNraWkqqjYwko2jkSKoEYhhmYJqayNA/d85kmEhJfrUWX1+q7GERtwGpqalBbW1ttydB5J///Cfq6uowfvz4fve1Rw7Krbfeir///e9YtWpVtz6JTqfDRx99hBkzZnRX1mi1WpSUlCA6OhrRZiH3mpoaxMbG9jimXq/HJ598gsDAQIwdO1bWecypra3Fjz/+iLvuugtB1qQP2AgbKJ5KbS2wfz+5bkNCnHNOPz9yHRuNNNkeOUK5KkuXco4Kw/RHY6PJA+kMw8Sc4GDKQzlwgIwUB4i4eTpnzpwBAGzbtg2PPvooRo8ejYMHD2Lr1q0AgGPHjuHQoUOYMWNGn33tkYMyY8YM3HbbbXj22WdRU1ODzMxMfPzxxygqKsIHH3zQvd3hw4exYMECvPDCC3jxxRe733/ooYfQ3NyMrKwsJCYmoqqqCp999hnOnz+P//3f/0XIpfuD1POYs2bNGnR1dbkkvAOwUJtnotORlH1Tk2u8F0olTXajRpGi5blzzh8Dw3gCx48D69ZRnpiPD10zarVzy39ZxG1Azpw5A5VKhS+++ALbtm3DihUrUFdXh127dmH48OE4efIkfB2cd/fJJ5/gqaeewqeffoonnngCer0e33///YDhJZE77rgDSqUSK1euxCOPPIJ//OMfSEpKwrfffovf/OY3Np3ns88+Q2xsrM1GmLWw1L2nIQjkOdm/nyTrXZ2w2tgItLcDt9zCXhSGMaehgdRflUrK5XKlJonRCOTlkSijFSJu3ix1v3z5cuzevRt5eXmuHopXwFL3Q5kLF6iqJiHB9cYJQLkoLS3kvmYYxkRODnksXG2cAGQkiSJux47RQocBQB4UMU+DcS/YQPEkGhootOPrSx1M3YXYWJqM6+tdPRKGcQ/EhNiYGNcbJyLmIm4FBa4ejVsgCAKys7PZQHFT2EDxFPR6CuvU1gJW1sU7jMhIWimyF4VhiNxcWlBERbl6JD2JiKAFzp49NJcMcS5evIjW1lY2UNwUruLxFI4fJ+2EtDT37JMTF0crxnHj3G9SZhhnIjbjjI52H++JOaKI2+7dwHXXOU7EzQPIyMiAB6ZhDhnc8E7H9KGoiASRYmPJTeuORESQZDd7UZihTn4+qTA7WRZcMgoF5aMUFpKIm9Ho6hExjEXYQHF3mpupRNFopFCKu6JQkAGVnU2ubYYZirS1UdPOqCj39HSK+PiQJsqJEzRehnFD3PgKYtDVRQJLlZWkCOnuREaaGp8xzFAkL49yOxzZoM9emIu4lZa6ejQM0wc2UNyZM2fokZrq3qsxEYWCJmZRMZNhhhLt7XS9RkR4xvUKsIgb49Z4yFU0BCkrAw4dIlexJyWxRUVRiSXnojBDjYICoLraM7wn5qSmAhUVVNmj1w+4KSeUMoNhz98IGyjuSFsb5Z3odJ432bEXhRmKdHQAp05RU02VytWjkYe5iNvRoxZF3HwuNSPt6upy9ugYD0P8jfjYoYEtlxm7G0YjZdaXlFCnYE8kKop0IM6fB2bOdPVoGMbxFBaS9yQjw7bDlChw7IxyMEeGzfj6AtPGG5GecskYEUXcjhyh6qNec49KpYJKpUJzczNCQ0MdOzjGo2lubu7+vdgKGyjuRnY2rcRSUjxvJSYielHOnQPGjKGYPMN4K52ddM0GBVF1jA0cO6OEplm6doqvXovQ1ko0RGTI01xpB46eUSI9xWB6LyLC5L2NjOzhvVUoFIiNjUVlZSX8/f0RHBwMhTtqvDAuQxAEtLW1obm5GQkJCXb5fbCB4k5UVVFGfWgoZdhbS3s7NSnz9wcWL3aNgWDuRbniCuefn2GcRWEh5XCkp9t8KNFzolAICBygz5rC2IUR5zdh/PHP4N/ZioKRi3F4zhOSztHeAQiCwrKXZtiwfkXcwsPD0d7ejrq6OtSyCi1jAYVCgYiICITbqRULGyjuQns7rVxaW4HMzB5/kuv2nbVzJdIKdwIAur5Yh4JR1yBn/M1oDx6423Aft68tiF6Us2eB0aPZi8J4J3o9Ve4EBNi1eWdgAHD3TQbLfzxxAnj//R6lwZl5W5F5yxRJIdXPv1FB297PH0URt/x8WizNn99dkaRQKJCQkIDY2FjoHR2DYjwSX19fu4R2RNhAcQcEgRp4XbzYxzgB5Ll9kyqOdhsnAOBj0GF09rcYcX4j8jKuxqkxt6E1JN7yzpbcvrYQFUUeFPaiMN5KUREZCqmpjj9XRQXw4Yc0V1ji3/+mVhNhYbadx8eHQswnT9I1PGlSjz/bK7+AYQaDq3jcgdxcWhUlJlqMYZu7fYMC+3+E+rRjzrF3uvcrT74cXSqSxlcZuzCmYDNu/345rjzyv4jXlfTYV6EQepzLLph7UTQaOx6YYdwAg4G8J76+gJ+f486j1QKrVwOPP97TOBk5Evj734EZM+i1RgO8+659zskibowbwB4UV1NXR12KAwMp92QABnT7AsCHnwKt1fR8/HgkvvI8TVobNgAbNwLt7VAKRmQUbEfGhZ+AWbOA224DMjIGdvvaglpt8qKIEynDeAPFxfRITnbM8Y1GYMcO4JNPepbsR0UB990HzJtH4ZdHH6Xk+pYW0jKZNQuYPdv288fEkFd3927g+usBO+UVMIxU2IPiSnQ6YN8+mnwSEmw71oULZIgAtKJ77DHyYEREAPfeC3zwAXD33SYjSBDo3E89Bbz8MtQ15207f38oFNTV9exZVqpkvAejkbwnSqVDGnhG1+QAv/0t8PbbJuPE1xe4/XZg5UpgwQKTWm1kJPCrX5l2/s9/7OexFEXc9u61s3uVYQaHDRRXIQjAsWMU3klLs60tu8EA/Otfpq6kd9xB2fjmhIQAd94JvPcesGxZz9XQkSNY/P3TuPan5xBbedqiUJNNREdTA0Hu0cN4CyUllH/S+zqzkcC2Oszf/wYWff9bqqYRmTkTeOcd4Oc/t6wsnZVlyvPSaMhIsQfmIm7nztnnmAwjEQ7xuIrCQlJtTEiwPX69YQN5UABa8dx8c//bBgXR35csAX74AfjqKwozAUisPonEzSeBojG0UpsyxTbDSUShoFDP2bOki2JrEh/DuBKjkX7LgkDVO/ZApwO++QY3rF8Hny6d6f3UVGD5cmDixIH3VyiARx4hI6Klhbyje/cCc+bYPjZ/f7pmc3IoCdeO1UoMMxDsQXEFzc00gahUtpffVlUBn39OzxUKCu1IEYvy96e48rvvAo8/jpZQsxBTTg7w5z8Dv/kNJcmJnhlbUKuB+nrKRWEYT6a8nBYYtoZlAVOo9bHHgM8+6zZOdP6hwMMPA2+9NbhxIhIZSUaKyMqV9ms3ER1Nc015uX2OxzASYAPFFRQU0MWelGTbcQSBXLm6Syuu664jzRE5+PoCixbh+1vexY6Zv4Mmwizh78IF4LXXgCeeAHbtolCStSiVnIvCeD6CQL9hg4G8kbZw8SLw/PPA668DNTUAAKNCibMjl+K7W9+j61luOe+cOZQkC5AnZeVK+4Rs/fzoOPn5th+LYSTCBoqz0esp7yQ83PaW7Lt3A8eP03O1GvjFL6w+lKBU4ULaAmz82b+B3/++Z0+RkhLgf/+XqgW2bbM+WU70ouTmWj1OhnEplZVkuMf3oyUkBY2GNEt+/WtKtBWZNAmbbnoHB6c+jE5/G/rdPPKIKcfs4EGaJ+xBTAx5jpqa7HM8hhkENlCcTXk5eU+iB1Z1HZTmZlKTFHn4YdtXdACgUNIK7M03gT/9qadHprKSknEfeojKlnW6/o9jCaWSjJQzZ2h1xzCehCBQjodOR0nncunqonyxhx8GtmwxhU7j44E//AH485/RHJli+zjDw+kcIqtW2SfUEx5O805xse3HYhgJsIHibMTMfFsTYz/6yFRKOGuW/TVGFApg2jRyP7/yCjBhgulvdXWUu/Lgg+RRkYNaTftzLgrjaVRXU4jDmtyT48cpVPr++9SQD6BqnPvuo+qcGTPsk5AuMns2MHcuPW9pIY+NraEehYJkCrKzydhiGAfDVTzORKMhF6labdtxTp0Ctm+n58HBZCg4CoWCjJMJE8ioWLuWqo8AcvX+61/0eaZOlXY8cy/K6NGDitMxjLtQuPEsjh0ZBr1S+uIiVFOOKYffR2JpT3n6CyOuxqmp96JDFQVsNL3f3mGv0YI8nadP07xz6BDlkc2fb9sxo6OBsjLSRkmxg7eHYQaADRRnUlJCk4Ut8WudjlZDIvfdZ7vBI5XRoynsc+ECsGYNxbcBcltLNVAAmuTy8ughZz+GcRW1tTi2XwuNTroo27jz32D6qQ+hMpq8DdXRY3BgykOoU4+kN/pRb7ZLJW9YGOWNvfYavV61Chg/HkCs9cf096fQVEEBGyiMw+EQj7MwGMgDERJimyt37VrKBQFIU2TRIvuMTw7DhwMrVpgMrRMnaFUlFaWSSiJPn6buzQzj7uTkQH/JzhisJ1ZQoIC4zlLMPLGq2zjRBqmxb97vsP2GN6BNGjHgvuFhAqaNt0NpP0ACb/Pm0fPWVvuEeqKjaZHC1XiMg2EPirOorCS3qA3Kk+ENRcB3X9ELHx/STrC1EqgX7R3Ujn1wVBidcj2mVFGibt7/24SjMx8ZZB9aGU4bb0R6UgxV8+TmsheFcW9EFWRlIgAJPbEA4L3vTc+vvhpBDz6I2QEBmA07GR5yePBBCgs3NQFHjiA94CecS7rK+uNFRNB1W1x8ySPDMI6BPSjOorCQEsusVJ5UGA2Yse+fJi2SW2+1q4tVdCkLggLadmmPs8mLoL/ULTktfzv0Gu2g+2iaFTh6RkmGVVQU5aKISYMM447k5FCiqdTFQEeHKUfMz49aS9hLcdYaxFDPJaYeehdB2jrrj6dQkCc4J8c2bSSGGQQ2UJxBWxtl/9uQKzKmYBOiay/phyQmUhdiOzJtvBHhYYO7rs0fPuHBKBqxEADg19WOy8p+GHB7hYJcy90yKjExQG0t66Iw7ktTE92I5cgC7NoFaLX0fO5c90gEv+KK7gRZv842zDny/2wL9cTEkEe4osI+42MYC3CIxxmUlJAOwYgRVu0e1FqLaadWm9547DG798NITxGQnmLFamjKdcDjmwAAU0u+w9Rnr+t3pfn5NypozZMClUpyF585A4waRRVJDONO5OZSiEeqQrMgAJs2mV4vWeKYcVnDgw9S3ldDA1IqjiAj/0cAV1p3LDFZtrAQSE4efHuGsQL2oDgao5GSYwMCrMsXEQRMO7gSfl2X7uyLFgGXXWbfMdpCSoqpV0hlJSXMyiE2lmS+8/LsPzaGsYWWFhJmi46Wnth+/jxJ2APAyJFAZqbjxieX0FBa3FxiyqFV5MG0lqgo8gyz6CLjINhAcTQ1NaQeGxNj3f4HDiCp5BAAoD0wkuLZ7ob5KvG77+TtK3pRTp/mXBTGvcjLI1FBOaFZc+/JddfZf0y2cvnlKMy8FJbVa0nHyNpQT2QkeYZLSuw4QIYxwQaKoykspKQ5a2ToW1tJu+ASR694yDqJbUdz+eXkCQFIMVNux9OYGPaiMO5FWxuFHqOipHs+m5qoMzFA3oo5cxw2PFs4NuNXaAu8ZHSdOAH88IN1B1IqaV7LybFPx3OG6QUbKI6kvZ1coFFR1u3/yScU/wZQMmw6StPcc8KDStXTi7JxY//b9re/6EURkwsZxpXk55PRLMfz+cMPJgn4q6+2vZ2Fg9D7h2DP9CdMb3zwgfWhnthYSpQVtZkYxo6wgeJISkvJRWyNgZKdTQ3FAOh9ArFv2mP27dVhb66+mhLnACqxlGtosBeFcRfa28lYjoyU7j0xGLqvVygUwDXXOG58dqBs2OW4MOJqetHeDvzzn9aFegICgM5OEm5jGDvDBoqjEAS62fr6kodADno9NRC7xKmp96It2MocFmcREmLq89HeDvz0k7z92YvCuAsFBfK9J0ePmrwQU6fa1s7CSRyf8aCpfPrUKWDrVusOFB1NHifOIWPsDBsojqKujjwo1iTHrltH+wLAyJHIH+NGpYoDcf31pucbN8qPS7MXhXE1HR1kJIeGyltYuHtyrAX0fsHA44+b3vjoI+rYLBcxWba42H6DYxiwgeI4iospyVVuUmtpKfDll/RcpQIeewyCUqYHxlWkppqkr8vL5Zccq1Skenn6NHlhGMbZFBZSPkWsjIZ6FRWm33pcHDB5smPG5gimTDH182pvB/7f/5O/sFAqgcBAKrHmZFnGjrCB4gg6O+lijYiQt5/RSKEdMdHuppuA9HTrx6HTWb+vtfT2osglNpZWcexFYZxNZyeFOoKDqdeVVDZvNj2/9lr5IV1b0GrpWrElSfWXvzSFek6fNuXSyCE6mhYlVVXWj4NhesEGiiMoK6NQhVxp+x9+oORYgGLYd95p/RiqqsiLk5/v3JyO6dNNq8+jR+VLYYtelDNn2IvCOJfCQvq9xsVJ30enA378kZ77+gJX2dCETw5GI80z5eUkCNfaSuEpawgKAv7nf0yvV6+Wb2gEBdF3IYrUMYwdYAPFERQUkNtTjhx9QwNNDCKPPmqqipFLVxeg0QCzZpGEfGUlTRydndYdTw4qFa0iRazxosTF0ZgLCuw3LoYZCL2ejOKAAHnX7e7dpuTQuXPJuHY0bW3kNQkKovL+a64hI0XMW7OGyZNNlUcdHdaFeqKiqDUAJ7kzdoINFHvT2EjGgJzmYgDw3numie7KK4FJk6wfQ0UFSdBPmULGwtKlwLBhNK6yMsd3IF20yKQBYU3JsehFOXXK+lUhw8ihqIhu8HKqb3r33XF0cqzoNamqIoPiZz+jBYivL13rgYEkFmcty5aZvJ9nzvT8bFKIimJlWcausIFib4qLyXshZyV1+LBJgTIsjGLC1tLRQZ6SyZPJA6NUAhkZwI030gQaGkqrr5oa27qZDkRoqKnkWKsFduyQfwzRi5Kfb9ehMUwfDAa6Ifv6yhNXy8sz6X9kZpIXw1G0tpJ3IjSUvCZXXtlzjhk2jHp0VVZan6jaO9Tz8cfycltUKvr+cnMdN7cwQwo2UOxJVxfJPoeFSRdV02qB//zH9PqBB2xzE5eV0WSZkdHzfV9fYOxY4JZbKE6uUFAib2Oj9ecaiN7KsnInTfaiMM6iuJgeCQny9nOG98RgII9ETQ21lLjxRuqKbklAbtIkMuxtSVSdONH0WXQ64O235V27sbHkibKmXJlhesEGij2pqKALU05457PPSDMFIK+H6HmwhpYWMkQmT+6/kiAwkNzBt9wCzJxJBlJuLq3Q7El6uqnrclkZGRpy4VwUxtEYjcDZs3TDl5Pz1dwM7NlDz0NCKP/E3rS0kJcmIoKq4+bPJw9Kf4SGkkhca6tt+Wb33WdKFM7OBr7/Xvq+QUG0oOBkWcYOyKilYwaloIAmPKkTXV6e6eL38wMeecQ2OfuKCjJOEhMH3zY8nCbVUaOAkyfJm1JdDSQlWZ+c25vrr6fJH6DPOX6avP1FL8rJk7RqtNe4GEaktJSqd6RcM+aY99256ir7/jYNBjLqjUZgxgwyOqTqKY0aRfNKSQkwfPiAm7Z3AJ9/Y2khE4LYKU/hqs3PAgC6PvoUmxunoyVc4ndkHA2cq4fvul2YdvtIpM+Q6ZlimEuwB8VeNDfTRCfVe9LVRZnyYqz27rttk8eur6eb+cSJ8oyc2Fjqo3PTTRQWKimhhzj52sKMGabv4+hRhDRbodUQG0vubbkdkhlmMIxGyj0BqHpHIgqjoa/2ib1obiYDQ60mAz8rS57Yo68vMG0aGfctLf1uAgCCoIC23fKjKGIizo24AQDgY9Dh8l1vob3N2O/2PR46FbQ6FTSVWhz9knPIGOthA8VelJRQPkd4uLTtv/nGJA2dnk6xZWsxGqkPyIQJ8quHADJoUlIob+SGG+gYFy7YlnAH0CQpxrMFASNzZLiKRXx8aHzsMmbsTXk5LSpk5p4klB8joxmgcKnc3BVLGAz0G29oAK64girvMjKs86gmJ1N4tbzcYrLqtPFGhIcJCAoc+HH2imVoCaVFU3xdNiYVbRh0H/GhAJ1X326HhQ4zZJEd4tFqtfjiiy+QnZ2NnJwctLS04Nlnn8W1ElYRx44dww8//IDTp0+jtrYWUVFRmDJlCh544AFEW3NjdReMRgqRBAdL635aUQF88QU9VyqpH4Yt6pPV1eRpEHM+rEWlolBKSgrlpZw4Qf/GxlIJoTWT5aJF9Fk7O5GR/wMOjvkFECh9tQqAVpMXL9KKcKAYPMPIITubDIOgIFm7jcwx0/axR3JsUxMtBlJTyeuYmmpbqFehoITZwkJauPSS7U9PEZCeIkVqwBcY8wTw3HMAgKn56zH12SWS5rjPv1ZC26Fg6XvGJmR7UDQaDVavXo3i4mJkZmbK2vc///kPTpw4gblz5+LJJ5/EwoULsWPHDixfvhz19fVyh+I+VFaS0SGlMaAgACtXmpLYbriBjAJr0evpxj1livy+P/3h70/emFtuAebNo3Pk5pL7WS5hYeSmBuDX2YYRRTK7HAPklWpq4jAPYz8aG0n7RE7PHQChLZVIKDtGL2JjKT/EWrq6yIhobgZmzyavSVqabcaJSGQkzQkNDbaFay+7jNShATqWqHQ9GOJnMLAHhbEe2R4UtVqNr7/+Gmq1GufPn8evfvUryfs+9thjmDBhApRmFvj06dPxxBNP4KuvvsKDDz4odzjuQWEh3cSlxLF37zZVtMTGUu6JLVRUkEt31CjbjmOJkBBa0Y0YQT06zp0jb01iorxV5/XXd8uBj83bgOLxMmP2SiUlEefn0+e0xwTODG3KysgwkBmeGVOwqTt8gWuusd7z2dhI11JqKoV0UlKsO85AjB1L10xZGRk+1jJnDmk1AcDevfI8tfouquqRkePDMCKyPSh+fn5Qy+0xc4lJkyb1ME7E98LCwlDsqa2629poEoiKkrb9tm2m5w89RGW/1tLRQYbRlCnyBKbkEhVFJY6icqVc6fyMDJosAUQ2lyKu4qT8MURH00Tb0CB/X4Yxx2g0ScXLMHZVXTqMLLx0/fr4UHK5XPR6yu9qbTV5TRxhnADkCZ02jT6vLfLz06eb5pd9++QpURuNtknwM0MalyfJarVatLe3I1xqcqm7UVpKq6HIyMG3bWwkLwRAyo/TZJbd9qasjLwbvUXZHMWwYSbp/MREcpFLbQZo1uV4VM538s8dGkqTelmZ/H0ZxpzaWhIzk5n3lnJxNwI6L1XGzJkjPSFepKGBjJOkJLqGZs1yvGchLQ0YPdo2IyEoyBTK0mhMlU9SyctjZVnGKlxuoHz55ZfQ6/W48sor+92mrq4Oubm53Q+38bYIAuVm+PlJc/Xu329KGpszx7ZQRXMznXfyZGmJufZClM5fupRc3AaDtNyUK65AWzDdEBJLDlundhkSQt+3o3sJMd5NaSl1ypadHGulcqxeTxpJWi3lY11/PRkpzkCpJA9raChJEViLuRDd3r3S91OpqMJRFKNkGBm4VKjt5MmTWL16NRYsWICpAySbbdiwAavNO/26CzU1KDzZiGPl6dCfHNxIWLhpH8RG7ps6s9BkUSSpL+29ld4FgcIsU6eSV8MV+PoC48bR5JObO7g8v48P8kdfh0nHPqEY/qZN8nsORUfT566udt3nZjwbMeFbbjuJ/Hyo6/IAAA3q4YiSmvMl5poMH065Jq743cbEUFXPrl2kSmtN3szll5O3p6MDOHAAePhhCnMNhkJBSfxFRdKKCBjGDJcZKMXFxXj++eeRkZGBFStWDLjt0qVLMXv27B77vvLKK44e4uAUFeFYUQQ0usEv+CBtPWKrKLzTFJqEioB0oF2eB6W7C3xDA7mX5YqyOYLMTFO55iAT34WR1+CyE/8HH6OelDjvvlueizsggPJeSkrYQGGso7KSQjzJyfL2M+u7kzdmCa6Qct0ZDKSXMneu4/PEBmP8ePLiiEn1cvH3JyNlzx4yOE6dkl7BFBlJRuHEia79DhiPwyUhnurqajz99NMIDg7G66+/jqBBXK3R0dEYNWpU9yM1NdVJIx2Ajg7g/HnoL9l4CsXAwkUjq/d2Z/+XDp+DoCBIFj0KChQQHiZg2ngjTXqiKJvUxFxHkpRE45CQvKoLDEdh6jx60dYG7Nwp/3wREZSUbEuvEWboUlRE15CcG6VZ3x2dbwiKM+ZJ26+xka4Nd7gxBwVRzptOZ33zTfMwz+7d0vdTq8lQ42RZRiZO96BoNBo8/fTT0Ov1ePPNNz1XoK20lGK6SnJbBgYAd980QG7EwT3dT8c/MBvjU63Mo6iopkZetoqy2YvAQGozf+CAJBfuuZFLMfIilRzj+++BxYvleYGiokzJubaUTjJDj/Z2SlKVktBuzvbt3QZxXsZVMPgEAJBw/TY2klFgS6WePcnMpKT6vDzrtJemTiVDR6sFDh2i70SK4eXrS7kweXmD9gdiGHMc5kGpq6tDcXExusxEgtrb2/HMM8+grq4Of/vb35BsjavRHRAEWsVLTU6trzcJHCUnW19WaC7KFhxs3TEcQVoaTVQSVmb1UZmoiaWSY5SUkL6KHMQ4V1GRvP0Yprzc5NWQitHYo+9OTqbE5NjOTpof3MmIVqnIyAgMpO9BLr6+pIsEkJFy/Lj0fWNi6Jr1ZEFOxulY5UFZv349Wltbu9Vf9+3bh5pLvSluueUWhISEYNWqVdiyZQvWrFmDhEtiSC+//DJycnJw3XXXobi4uEc1TmBgIOY6omW5I6ivpz46UlUozbPebaneKS8nYaeRI63b31HEx9Ojrk5SdULe2BsQW3PJYNu4kVzgcoiKopXw5Ze7l6HGuDeFhWQ0yEkSPXGiu+KscthkNIclIQgSSmbr6uim7G65UgkJlI+yfz/lscmtAJw7F9ixg57v3UuJv1IIC6P5q6iIQj4MIwGrDJQ1a9agyqxMdPfu3dh9KSa5aNEihPQjuV5QUAAA2LRpEzaZJZ0BQHx8vOcYKMXF5MmQWiq4b5/puVmyryza2yl27upkO0uoVCTgtm0beZcGMcBK02aZ8lYOH6Yqh7i4AffpQUQEJfyVlTlGQZfxPpqbrbs59kqOlXW+adOkVbo4m4kTycCvqpJvQE2cSCXLLS107ep0lEArhfBwICeH8ue6M/4Zpn+sunrWrl076DbPPfccnrvUZErOfm6PXk+NASMipG1fW0vbA+T9sDa8I96M09Ot29/RJCfTKqmlZdASTkHpQ4Jvn31GLvRNm4D775d+LpWKjLSCAjZQGGmUlZHImBxDuLoaOHqUnkdHoyJ5OqCTsF9bG+VquGsIOzSUjKfNm6XnkYj4+gIzZ9JipKMDOHKEvMJSiImhxV1pqfPEJRmPxuVCbR5HWRlNXFKTe+3hPWluplWKs0XZ5BAVRcZXba207RcvNq0uf/iBVmJyUKtpomPpe2YwxJyxwEB518+WLSYF1GuugaCUGBqqryfPhDvrfowcSQmr1lTWmBskckTbRK/JJU86wwyGm97t3JiCAgphSHVR9s4/kYsgUMXKuHHuF8/uTWYmhaGkKL1GRJjKFltb5Zcci25mlr5nBqOujvIf5IR3OjvJcAbk9d0RBArHjhzpeo2igfD1pYRZHx+6juQwfrxJ5v/oUXl9fmJiqI8XLywYCbCBIoemJrq4pHpPqquptA6gbH5r5K3r66kscsIE+fs6GxmaKAB69OfB99/L69ehUFCCbF6eqX0Aw1iitJSM4H5y4yyyb5+phcPs2dJLkzUaCnE6S8reFpKTaeFTXi7v2lOpTN7gzk5Tp2MphIXR9+ou7UoYt4YNFDmUlJCRIrVJ2P79pufWeE/cTZRtMERNFKkGyogR1MgMoAnr7Fl551OrKdHvUgUZw/TBYCAVU7mN/cyT+K+9Vvp+9fW0GPGE5qcKBYWNRSE1OVgb5lEoyEg5f57y+RhmANhAkUpXF11UoaHSXbe2hnfEnjPjxsnf11XI0EQBACwxq4z4/nt55woKovOUlMjbjxk6VFWRkS8nvHPhAhk1ACWljxkjbb+uLjKIPCkBNCKCjJTGRnkGw9ixpkXT8ePkoZJKdDT9v5SXyxoqM/RgA0UqlZWUCyI18a2qihLzAJqw5OaPiKJskyd7ltaHuSaKFGbNMk10hw7JX8mFh1OYh1djjCWKiykMIbUUFujrPZG6IBFF4DwhvGPO2LFUYSgnn0upNC26urqAgwel7ytWDYnzI8P0AxsoUikspFwHqROdefWONd6TsjLyRribKNtgqFQUtmltlRbX9vUFrrmGnvdS7ZSEWk3GUEWF/LEy3o1ORzdBOdL2ra3U9RcgD908iX13AAptjhwprwGmO+DvT2XHRiOVSEvFfF7bs6f/7SyhVlM+X1OTvP2YIQUbKFJoaaGJTk4eiHl4R255sVZLk8WUKZ4paGSuiSIF85LjbdvklRz7+pJbnaXvmd6Ul1NOiJzr1qzvDhYulN5HR6ej37A7NDK1hrQ08qTI8aKMGmVS0z51ypRULIWICDJOOFmWGQA2UKQgJsdKXYlVVFAcG6DS20tS/5IpL6eVmDv18ZBDZKQ8TZTISNNqrKXFtIKVilpN37ecckfG+7l4kf6Vquba24MnNzk2Lo7Cm56IUkkLorAw6f1yFArT4sto7FkUIGXf0FDK6zPr18Yw5rCBMhhGIyXMyRF5skWcTaMhF7E7i7JJITOTvjspmihAz5LjjRvllT1GRJB7nZPuGJHWVjJQ5CTHnjplChVOnCgvl6S5mTwK7ihtL5XoaGDSJFpYSL1us7JMz+WGeWJiTLl9DGMBD74DOgkx21yq9glgfXhHEOiCHTdOvtfF3UhOlqeJMnKkKd/m4kXg3Dnp51Kp6MYgeq0YRpS2l9qSArC+tLi1lRLZ3VXaXg7jxwOJidKNhowM01x17py8Lsn+/rSIYWVZph882Nx3EhcvUkw6KEja9uXlJtfyiBHyXL51dZ4jyjYYAQH0+Q8c6FP51N4BfP5NX9nwtISlmJX3dwBAyaqN2HuljC7HQiZwUg9s2A7fIF9Mu20E0md4uJHHWIcg0E3P11e6F7K2lvrKAOR1mTFD+vnq68k4kbOIcVcCAylhduNGKuEfLOFXoSBF6LVrydjYt6+nN3QwoqNpYTFt2qA9vJihB3tQBqK9nUpY5VQBWFu9YzDQRDdxorzzuTO9NFHEfF9BUEDb3vdxPm4utAH02ZOKD0BRV2dxO4uPDhW0nT7QNnVCU9GGo19yCeOQpbGR1GPlGAxbtpgUiRcvJq+cFIxG+n2PGOHe0vZyGD6cvJlS+/SYd6GXI9oGkEwAJ8sy/cAGykCUlFCIQk4VgHkcVk54p6qKXKWeJMo2GPHx9JkuaaJMG29EeJiAoEDLj4AQH1wYTa51pWDEhKKN/W5r8eHXBQUod0XfwYl3Qxa50vZ6PVWPAWSYLF4s/VwaDd1kPU37ZCBUKurTExgoLWSTmmoKb2VnS0+OB8jDFRJCybJS816YIQOHePpD7IDq6yt9NVVaaloJmJfgDUZnJ02oWVnSQ0megEpF38PFi4AgID0FSE8ZZBLKWgQ8sAYwGDDu4maM++Nt0rVntFp8vjkI2k7+WQ9ZjEbyeoaESPdo7N9PhgZAwoFyPJj19cBll3lfeCI+nkLN+/aRATZYqGzuXODzz+n5vn0AbpF+ruhoynmpqPCOPB7GbrAHpT9qa8mDIqdlurXhnfJyktQeMUL6Pp5CcjJNcFI1EqKiepYcy6kMCAqSV/3DeB/V1eSNlFO9Y54ce9110vfr6qLf2/Dh0vfxJCZOpNLpqqrBt7W2Nw9AeS5dXSSGyTBmsIHSH0VFpKshpwOq+YU5a5a0fbRamuQ8VZRtMCIjyQUsVfoe6NufR26XYwBgO2VoUlJComlSBdYuXgRycuh5aiqJlUmloYEMocRE+eP0BEJCKHm1tXVw8cSkJFpkAUBeHoKbK+WdS60mj7VUcUdmSMAGiiV0OtkdUMMbi01N60aPlu55KSujhDRPVaCUgqiJIlWQadQokzepsNB0A5GC6tJPmuPZQw+9nm5ycjoJW9t3B6D8jBEj5PX58TRGjiQPkRSFWbNk2dSLMjVRIiPp++TGn4wZbKBYoqyMQjwyqgBSLlrRuVijobCEp4uyDUZSEq2QpGokKBQ9SxVldTm+dINhA2XoUVFBnjqp4Z22NmDnTnoeGAjMny/9XB0dVKHmzQsLgLy6U6eSztBgYVqzeS9FroGiVNJcmJtrqqZihjxefFe0gfx8umCkqkIKAlKKLl2Q5vLPg+yDykpyKXuqPLZUAgLIiyJVtA2gyU5cCe/fLy9EBJC35lJ5MzNEKCqim5vUUOlPP5lCFwsWyEtQ93RpezkkJdE8VV098Hbx8d1ii1ENhQhvltHXB6AFYWWlvCogxqthA6U3DQ000clIjo3UFCO86ZJmwJgx0lZwdXWUEDpRhhiZJ9NLE2VQenc5liujbTTKa3zGeDZaLQl+SZUEEATrk2MBypUYOVJ6hZ8no1CQp0gQBvdMmnlRMkp2yztPUBD9P7ImCnMJNlB6o9GQ6zc0VPIuPS5EKeEdg4EMlEmT5ElxezIJCT00USRh7nI/dEj+ObkqYOhQXk4hRKnX0+nTpt5N48dTc0upCAIlkA6lkti4OGnVeGbe44ximQYKQP9/eXmUT8QMeVgwwhIKhfRkOUFAeolZeEdK9U5dHV3wY8ZYP0ZPQ6nsoYki6ftNTCT3clkZJco2NUm/ASmVtBJrbvY+jQqmD4XbC3Ds3HDos/0kbT9n+2aIJsme6OtRaqH1Qm/aReef0WDKqxoqhIQAw4ZRC4GBdGJiYmhey8lBZHMJwhuLAMgw5NRqum7Lyz23mztjN9iDYiMRDRcR0XJpJTZunDQXc3Mz5WR4kyibFORqogCmniiCABw+LH0/pZIMGg7zeD9NTTh2VA9Nh7+ktghCQxOSSg4CANoC1ciLnSltP4GMal+F0buk7aWSmkqikoNhXs1TKDM06+tL13pRkbz9GK+EDRQb6ZGtLjW8A3h+t2JrsEYT5YorTM/lhnkCAynhmcXbvJuysu6IgEIxeEuEzNqDUApUKVI0YiECg1WS2ymEB3dh2ohW75K2l0pcHC2q2toG3m72bBgVdGtJvbhb/vUXFUWemtZWKwfKeAsc4rEFQUBqEZUXGxVKKGfOHHwfMeQQF+fgwbkpmZnUlr2rS1qV1IgRNGE1NAAnT1IDR6kiXGo1uYrr6uQpAjOegyhtr6DKncAA4O6bBknkfOlA99Nx983AuBEyStLz8yl3TI6Ao7cQFUWVNg0NQHBw/9tFRqIm/jLEV55GaHMF5YLJUduNjCQDpayMNKWYIQt7UGyhsJAuQAA18eOl9fBoaqJY7kAXuDeTlESTnFRNFKUSmD6dnuv1wIkT0s8VEkKrPaldWRnPo66OSlOl6gi1twOnTtFztVrejVN004iKqUMNpRLIyJDk2ShOzzK9kFuBp1RSqCcvj72fQxw2UGzBTNq+JH3uABua0dnp/eJOAxEQQF4ROZooYh4KID/MExZG4k8s3OadlJZSaarUfJATJ0yGxvTp8gQSGxrIuPZWaXspxMeT53OQXJSytFndYR7s3Svf0IiJIe9nfb2VA2W8ATZQrEUQug0Uo0KJ0lQJ1TttbRTDHarhHRG5migTJpjCOkeOSJfMB2iVXFMjreEZ41l0dZHxKadK6+BB03Pz/CYpNDWR9omftEohryQ2ljzFYvfnftAFhKM8bjK9qKmh/yc5hISQ1gxL3w9p2ECxloKCbmXFytgJ0AVK6P/R1EQrMKliUt5KfLw8TRRfX2paBpB7OTtb+rn8/WnFzFUB3kdlJd38pJb7dnUBR4/S86Ag4LLLpJ+rvZ0MEzl6Kd6Inx8tMJqaBt20MNXMqyy3wzFAFX+5ufIWJIxXwQaKtZhdcIUpWQNsaEZrK8VwvbnvjhRETZSWFumuX1vCPGLSHUvfexdFRRS6k9qs79w5U/7E1KnyuofX15NRPRSk7QdDDHENEjYtTpoFg/JSIvzevfJ77KjVtAislNkZmfEahvid0koEAdi3DwCFd4qSJVTv6PUUu+UJjkhJkaeJIjYsA8hNLyemHRVFN5iKCvnjZNyTjg6StpeSmC5irqNjbvAOhiCQYTNyJC8uAJrDQkMHvXY7/UJQmTiFXjQ0yPN8AmR4dnWx93MIw1ebNeTnk2sZQPWwSdD5SwzvRERQDJeh7yItTXqYJziYJMkBaiYmR8bex4eSKC9elDtKxl0REyilGiiCYMo/8fEhg1cqLS10Qx5K0vYDERJC3iQJYZ6SDDPvsjVhnqgomm/b2+Xvy3g8bKBYg9mFVpwuQZwNoKQyMTmUIYYPJzex1BizLWEetZoMlJYWefsx7klhITXqk9pxvLDQ1CV3/Hh5Zf719VQeP9Rzx8xJTzd1gh6AspQZpjlv3z751XRRUSRJwIrQQxI2UORiVr0DlQplUqp3jEa6MIdyeaIlRE0UqSXHthgo4eEsfe8tNDeT21+OwWD+e5ET3jEYqKR2xAjp+wwF4uLIyBtEVbbLN8iU4K7RAGfPyjuPSkWPggIrB8p4MmygyCU31xSWmDQJnf4Suh63tpKLeKiXF/dG1ESRKtqmVptuFBcvyisdVippJVdQwOJPnk5ZGd3swiWEVkWsNVCamiiMNBSl7QdCVJWVEObp0QJErmgbQOcpKZE+TzBeAxsocjGPo0rpvQPQRRwfz111LSGGvaTGmG3xokRH081Njkgc414IAuUk+PtLT1itrjblH40YIa8LcUMDhSKHqvJzf8hQlcXll9NiBAAOHJBfNhwWRgYpK0IPOdhAkYPR2F29Ax8f6Sux9vahK489GKImilTFSHNxLTndjQHyYrW2cpjHkxGrsaKjpe9jrfdEr6fk6rQ06fsMJSSqysLf39SuoqXF1GpAKgoFXbu5ufJLlRmPhg0UOZw/b7qRSm0Y1tFBqwcO71hGqaSGYK2t0kIvycnUywggXQupZcoiISEsfe/JlJbSb0VOsz5zA0WOemx9PUmuc+6YZSSqygKwPcyjVpMeCitCDynYQJGD6D0B5IV3IiPlrfiGGsnJ5MaVYmwoFKZVsNFI0vdyiI6mSe6SCjDjQRgM1EAuVELel0hzMxmyAHnq5JQKazQUEpIj6DaUkKEqi6lTSb0XoHLvwbwuvQkMpH1Y+n5IwQaKVKwN7zQ3U6xWpXLc2DydiAgKgUnVRLElDyUggCc6T6W6mh5yckiOHjWFBa64QnpTQa2WfitDubGnFBITyfM5WOjF19d03Wq1wPHj8s8VEUHeTwnlzYx3wAaKVHJyTMmVU6ZIS5rr6qIJMSHBsWPzBuRooowaZargOH5c/oQVEUErcbmrOMa1lJTQ/5mYcCkFa/NP6uspx4KFFQcmLk669zPLRtE2tZr+X8rL5e/LeCRsoEjFmuodjYZuhpx/MjiJidI1UVQq082msxM4eVLeuaKiyFvDE53n0NlJRmVEhPR9dDrTSj08nAxbKQgC6XuMGsXS9oMRGipZVRYTJ5rCc4cPy19YiIrQFy7IHibjmfDVJwWDAdi/n577+poy0gdDoyH9hMBAx43NW5CriWK+GhYlzKUi5hQUF8vbj3Ed5eVkVMoRZzt92nQTvPxy6WHWlhbyCrD2iTTS0qQZGz4+wMxLfcs6OuTnjwHkRSkqkp8cz3gkbKBIITvbdOM0T/YaCEGgMkXu3yEdOZooEyeaXP2HD1snoX3hwqBKmIybcPEirZ7lJKyaG65yqndqa6mZpZxGhEOZuDhahGm1g287d67puTVhHlERmjVRhgRsoEjB/EKaPVvaPm1tlKfC4R3piJooUpJl/fwoFwigFW9OjrxzRURwjw9Poa2NDBQ53hODwaST4+9PBq3U/bq6KCeKkYZaLV1V9rLLTPljR49KM2rMUSppgZiXx4rQQwA2UAbDPLzj50euYik0NZGGAq/CpCNqorS1SZt8bKnmUalM0veMe1NWRsaknPyT3FyTPsfkyWSkSKGxkQwhDu9IR1SVldKIU6UyLfI6O+WLLQJkEFVUdHeUZ7wXNlAG4+xZ00QnNbwD0E02PV16WSNDiJooUsSfLr/clMR46JD8FZVaTa5ilr53bwoKyJiUk7BqrTibKG0v9TpnCFFVVq8ffFvzIgNrwjzBweR54TCP18MGymCYi7OZx08HorOTYuXx8Y4ZkzcjaqJIkb4PCSGXMUDia3KTXkNDadXHYR73paGBbkRytE8EwZR/olSauukORmcnrfC5LYV84uLo2pUS5hk71hSuO35cWj+f3oSHk5dMikHEeCxsoAxE7/CO1IlOVI9lDQXrGD6chJ+kaKKYr47lVvMoFLQa4x4f7ktZGRmRctRjS0tJFh0Axo2T3qRTlLZn3SL5+PmRYSfFQFEqTV6Uri754VmADNbaWgr1MF4LGygDceaMqZzNvCPnYGg0VJHCEtnWkZhIE5CU0It5Hoq18ezqao5nuyNGIyVDBgfLC5Wa3/CkSgIAdK2PGsXXrbUMGyZNVRboGebZvVv+ufz86Dxil2rGK2EDZSCsEWczGOgi5QZj1hMQQDcKKZooMTGmiouCAgS11so7V1AQaTKw9L37UVNDoTs54R3AOvVYrZZKZVkWwHri46Wryo4aZfIwnzplna4JSwV4PWyg9EdXF3DgAD3395ce3hFFnji8YxupqdI1UcxuQkklMsM8AMWz8/I4nu1ulJSQ8SgjYTVQW0//lwB5MaXmgdXVUWgnJkb+OBlCjqqsQmFa9BmNplC6HMScF06W9VrYQOmP06dNZXPTp0svU2xqootUTsyc6UtcHLmMpWiimBsoxQfkn0uMZ/NE5z7o9WRoiJoZEkkssaJ6RxDIgzJyJEvb24pUVVmgZ9HBnj3yz6VSUTiuoIA1UbwUvhr7wxpxNoBWfGlpdh/OkEOpJDewFE2UtLRuQbzYqrPw65Sgx2COry+t6M6f54nOXaislC9tj14GqtTwjkZDXk8O79iOqCor5TrKyDAlJJ87J73NhTnR0SwV4MWwgWKJri5TRUhgIOmfSEGrJXc0q8faB6maKApF92pZKRiQXHFU/rni4ijhjpNl3YOiIsrn8vOTvIuvXou4ytP0IiaGboBSqK8nI1emt4axgKgqKyVRVqEweVGMxp6SDlIJDaUyZc4h80rYQLFEfr6pNl9ueCcqSn5SH2MZOZooZqvl1DIrwjwhIZTvwsqyrqe1la5BmddRcsURqIyXStNnzJBW+WMw0IOl7e2DUknXrFRPpK29eQAyUvLy5PfjYtweNlAsceqU6bmc8E5LC63aOI5tP6RqoowZ0533k1x5FMquTvnnUqtJE8Ua4SjGfhQWksteZpuIlHKzBGmp4Z2GBlpUcNWd/ZCjI5OaagqtZWdTLphcoqOp2kvUvmG8Br6T9qazk/RPAArviA3ppKBSsciTvRk2jDwpg4V5VKpuzQvfrg7EV54aeHtLREWRt6aoSP6+jH3Q6ykfITRUlqGvNOiRUnGEXgQHk0CbFBobgcxMutYZ+xAbK2+RZu5FsSbM4+9PCxi5StKM28MGSm/27KFEV4BWYVJj4EYjxbC5vNi+BAaSkSJFJ8HWah6lkkI9585JU7Fl7E9JCa2EZV5HsVVn4ae/1Bl32jTqCzMYOh0ZtpzUbl/8/QEflfTtbe3NA5C3LS9PmiwB4zGwgdKbTZtMz6WKswFkoKSkSFebZaSTnEyercGYPBldKsoXSiw5ZF1MOjaW5LO55Nj5CAKQk2MqH5VBD4NUanlxfT0lR7PX0/6oZBgoSUmm/kd5edKkBXoTFUXeMO6r5VWwgWJORwfwww/0PCiI2rTLgcsUHUNMDBl+g62O/P1RmUj/Z4EdTSbBLjn4+VFyZW4ulxw7m6oqCq/JbbIpCN0CfQalj/TrtqWFtE+keFsYeSgvGSiCxB5XM2eansvtqQWQQaRUkrIs4zWwgWLOtm2mBMkZM+St4hQKLi92FGq1tDwUAGWpNjQPFImNpZJja1ZyjPXk5VHYRYZyLABqcaClSq+qYZOk7a/TkTE6bJj8cTKDo7xUQWWUaOSbGygHrAjPApQsW1wsTcmW8Qh46WDO2rXdT3f6zEPFN4O7KdsvpatApWIdBUehUlG2/5Ejg66uK5Knw6hQQikYqSfLsmXyGs0BlKBZXk6rMZY+dw4aDRko0dHy9zXrvVOWOhOS6nGam8noteZ8jHQEAYCE6y8lhUJtlZWUA9bcLL0LtUhYGO1fWkr/t4zHwx4Uczo7YVSqoPMNQWHkZGjbFYM+BIEuPt9AH/k3QkY6CQmU5zOIAJQuIBzVMZcqOCoqrI9Jq9VU9siNyJzDhQuUQyCztBhAt4EiQIHyZIndizUaMnq5c7FjUShIwFLKdqIXxWi0rjO5QkEVXLm50oTiGLeHDRRz1q7F5ofXYfeVzyEgxAdBgcLgjwAjwgM6Me16zj9xKDExJtXIQShOtEOYh0uOnYdOR8ZgRIR8I7+ysru8tCZ6NDqCJEjjCwLdwDg51vEoldJDLvYI86jV9JuorrZuf8at4BBPL5b8diLwdSEwQmIFSFUVlcJeNcKxAxvqhIWRkVJdPajrtzjpClxx4j16cegQcNtt8s+nUtFqLDubegJxIqXjKC6m/1ep0vTmmIV3ehimA9HWRnkqHN5xPD4qU9PVwRgxghYGDQ3AyZOm1iFyCAoig7ekhA1QL0C2B0Wr1eLDDz/Eb3/7WyxZsgRZWVnYvHmz5P1bWlrwxhtv4IYbbsCiRYvw5JNPIjc3V+4w3IfmZiqR4xuYY1EoyCUvIeTSEpKAxkizskUpUvmWiI2lXJTycuv2ZwbHaKScAz8/664hMw9ZcdLMATY0Q6OhlbY14SRGHkoV/b/q9RK2VZpKxPV64Phx684ZHk5hHinSBIxbI9tA0Wg0WL16NYqLi5GZmSlrX6PRiBUrVuDHH3/EzTffjIcffhiNjY148sknUeqJuhMGA9042VJ3DrGxkie7HtU81sSzARKcMhppsmMcg6g5Y00FnEZDHagBaMKToAlLkrZfaysZu5wz5nhUKgrdOTvMU1/PCwsvQLaBolar8fXXX+PLL7/EI488ImvfnTt34uzZs3j22Wdx//334+abb8Y///lPKJVKfPTRR3KH4nrETHMuL3YOMTH0fUtQlS1LsUMeCkD/txcucMmxo8jNJdVea6TmjxzpTobs8f89EAYDrdTlaq0w1qEAKfVKkAgAQC0KLvXUwtGj1nlBfH0pz6iwUP6+jFsh26fq5+cHtZXdenft2oWoqChkZWV1vxcREYEFCxbghx9+QGdnJ/xktFd3OU1NFDcNDnb1SIYGAQGkOpmTM2in20b1cMoxqKuj3kptbdb9P4WF0Sr/wgXOWbA3DQ3UPdraUm4zw7MsVWJ4R1xUcPm4U2hv1OHzL1RA+3DgrBR1WRWuiJuOjJbtQHs7dr57BhUDVGb5+gLTxhuRntJLbyU6mrSMWlpMBg/jcTi1iicvLw8jRoyAslcjqTFjxqCjo6PfME9dXR1yc3O7H8Xu0hSqs5Pq9xnnkZgoLZ6tUJji2V1d1sezAUrcO3+e+3zYm4ICMhis0Q/S6SiREgAiI1EfM1LafhoNhWTlJl8ysvANoLWvIADaZgO0el9Jsg3adgUKEkwd5BMuHBhwW02zAkfPWLiNhYfTAtITUweYbpya2dnQ0ICJEyf2eV/0yNTX12P48OF9/r5hwwasXr3a0cOTh1gJwOEd5xIbS+EAKRn+M2YA339Pzw8e7Nk1VQ5qNXlQioqAMWOsOwbTk/Z28oRFRlqXC3LihMn9P306oJC41tLpeFHhBKbdNgJHv8yHvuNS0832DgqvSejR05g+CfoDAfDt6kBqxUEc9++CoOy7X3sHIAgKy+sVpZI8rnl5dM1yvpFH4lQDRafTWQzhiO/pdDqL+y1duhSzZ5us6uLiYrzyyiuOGaRUmprIjRglQXeBsR9RUZR019w8uIEybhx1J25tpXi2Xm+dMJdKRZPduXPUu0VOIzTGMmIrAQsLEkmYlRdjxgxAih6fKG/P4R2Hkz4jAekzzIoHzpwBtm6lkv1B8QEKpgD79yOgoxl3jTwLXHZZn60+/0YF7UBOTbWaEmVra7nLvIfi1BCPv78/Oi0kPYnv+fv7W9wvOjoao0aN6n6kpqY6dJySaG0l3QYla905FZWKku6kaCv4+ADTptHz9naaJK0lLo5UabkywHYMBjL2AgKsM/YMBlNlVmAgMGGCtP00GjJurcyhY2wgLs7k+ZSCPap5QkLouucwj8fi1LtrVFQU6i1oUojvWZt863T0err5cSWAa4iPN6mBDsYVZtUd5qtuuXDJsf0QDT1rw6M5OSYDdfJk8opIobmZ5e1dhehtllpuPG2aSRfnwAHrO4uHhtI1KyVvjXE7nGqgjBgxAvn5+TD2urHk5OQgICAAyckeIhff1EQrMXYbuoaYGFPoZjAmTzbdkA4dsq1HR2wslS42NFh/jKGOIFDCsSCQ0WcN5obmFRLLi1ne3rUoleRxlqoqGxwMiPmKdXWUUG0N0dFATQ3J3zMeh8MMlLq6OhQXF6Orq6v7vXnz5qGhoQG7d+/ufq+pqQk7duzArFmzPKfEWKOhMIOnjNfbCAsjY0GKtkJgIDBpEj0Xy1ptOW9zMyXMMtZRV0dGnrXeE0EwlRerVKYQ3mCISe2cf+I6EhKkq8oC9gnz+PlRSPDiRev2Z1yKVUmy69evR2tra3doZt++faipqQEA3HLLLQgJCcGqVauwZcsWrFmzBgmXVi3z58/HunXr8Nprr6GoqAjh4eH45ptvYDQa8ctf/tJOH8nBGI30g0+U1NSdcRSpqdINhRkzSNQLoJvbSIklqb1RKMhzlp0NjB9PORSMPPLzyVhIkqj62huxbw9AiZMhIdL202hoNR0RYd15GduJi6PyX/H/YjCmTyfPi9FI1+2991p3XrEKb9o01qzyMKwyUNasWYOqqqru17t37+72iixatAgh/UwaKpUKf/vb3/Dvf/8b69evh06nw+jRo/Hss88ixVNK/0ThHy4vdi3msveD5RRcfjkZF4JA4QFrJzqAVuAFBVRyPHq09ccZirS2UnjHlso3c1XgGTPknXvKFC43dSX+/rSwOH1amoESEUElwufOUd5SaSlgTRpARARds2VlEquIGHfBKgNl7dq1g27z3HPP4bnnnuvzfmhoKFasWIEVK1ZYc2rXo9HQ6m+QjrqMg4mJodVYc/PgVRmRkWRM5OTQJFdebr0HTCw5zs4mTwxXcUnn4kUKs42wofO3eV8lqQaKKG/PiwrXk5REoolGo7Rr54oryEABKMxjjYGiUlGop6CArlk2Uj0Gnl3l0t5O3YsZ1+LvT5Od1KoAe1XzAKaS44oK244zlNDrgbNnycVurVFXW2vKIRo+XHo+Ccvbuw/x8eSBlpLgDvTMQ7Glp5ZaDZSUcIK7h8EGihza22n1zCsx9yAxkWTspWC+2rZlogPoN6DXk0olI42SEqCqyrZrp7c4m1RY3t59CAsjI0XqwiI2FsjMpOcFBVSRYw2iUVQmRdGPcRfYQJGDRkPhAm4a5x7ExEgXfxo2zOQezs0FGhttP3d+vu3HGQoIAoXXFArbNEisNVBY3t69SE+XLtgG9PR+Wru4UCgooTo3l0J+jEfABoocmpuplp+lzt0DtZoMRqmt3MWJThBMVT3WIsrtc0v3wamupuobW4QNW1spRATQqjotTdp+LG/vfsTHkzdLavNNe5QbA7SwrKqiB+MRsIEila4ussJZ6Ml9UCqpKkCq+JM9VmIiYslxTg7dBJn+ycujm5EtJZ7HjplWvldcIT3RkeXt3Q9RVVaq9zE52ZTUnp0tPTzUm4AAajBpixYS41TYQJGKONFx/ol7IRqMUty2w4ebblSnTslzM1siOtrkHWAs09xMBoqtYVFzg1Kqeqx4fpa3dy/kqsoCJi+KIPSs5JJLfDxVBXGCu0fABopUmprIkg8MdPVIGHNiYqRXBSiVJP4EUJLriRO2ndvHh2582dm2Seh7Mxcu0ErZFu0TvZ5KUwH6vx4zRtp+LG/vvrhCVRYgaYKODvo9cS7KwHR2Sg+fOwg2UKQgCBTisVb9knEcoaHSZe8B+5YbA+RRKynhXh+W0OlotRoWZpv2xOnTpnyFyy+XngPG8vbuS2ysSVVWCpmZJi/cqVP0f2stycmU4M75YwNz8KBtxqAdYANFCm1tFD/n8I57kpYmPeHusstM5aZHjkgvU+6PoCBaBebn23Ycb6S4mMpCbW2qaa16LMvbuy8BARR6k2qgKBQmL0pXF3D0qG3n9vOjY3R0WH8cb6a8nJLSOztdOgw2UKTQ1ESrsMhIV4+EsURMDLmLpVxMvr6mBnNtbSaVSlvPn5/vcneoW2E0UujLx4cethxHzDnw86Pu1FJpbSXjlZVD3ZOkJDI2pIZHzb2ftq7shw0jTZTsbNuO4410dVFSuhtUO7GBIoW2Nqrd54nOPYmONsneS8Geom0ArdAbG9llbE5lJYW+bPU65uWZqj0mTZLeoLGri3KObPXeMI4jLk6equzYsaYWI8ePQ9VlQ/Wcjw/lRZ04wVpGvcnLo0onW/LG7AQbKIPR2Umrbls0HBjH4u9PcWWpHoypU02r+kOHKMfIFhQKMpDOnXO5S9RtyM2l0Jet6q3WirO1tLC8vbsTHi5PVValMiW5d3QgvsLGJPeYGJK+P3XK9jnAW2htpdBXcDDNqy6GDZTBaGqi0A6vxNwbObL3QUHAhAn0vK7OPp6PmBguORZpaKCQlz2uGdFAMa/AkgLL23sG6enS88eAHtU8ScU2hnkUCgr1nDtHORcMcPIkzWNusiBnA2UwNBqKY7OOgnsTE0M3I6krIXuKtgH0+/D1JeG2ob4au3CBrpvwcNuOU1Zm6p0yerS847G8vWcQF0dhO6lGysSJ3VIPSSWHoDDamOQeFkZeTy47Jm2YM2fIOHGTLu3uMQp3xWCgm42oYsi4L1FR5OmSmnB3+eWm5/YwUABTybEbJJe5jPZ2SjyMjLQ9Z8uW3jssb+8ZREeTeKLUMI+fX3eSu7+uBQk1Z20fQ3Iy5VwMZYVZMTG2o8Otqt7YQBkIMY7N5cXuj1JJni6p3gu1Ghg5kp4XF9vHqAgKogt8KJccFxUBtbX2MQ5s6V7MTT09A5WKwjzWqMoCSC3bb/sY/P3JK3P0qLxwkzeRn0/JsWJDVTeBDZSBaGqiOHZIiKtHwkhBriFpb9E2gG6KeXnSK4q8CYOB4vmBgbY31GxspERbgEI1w4ZJ37e5mfaxpbyZcR4JCbTAkJpDNmVKd8g9rewAINhBxTkhwaT9MdRobSXviZskxprDBspAdHRI75rKuJ7YWEApI6xg7zwUgFbuDQ1Ds+RYzBmxh8fx8GGTN0yO9wRgeXtPIy5OnqpsUBCVnAMIbq+HujbP9jGoVLS4OHWKrt+hxKlTlH/iJomx5vASoz+0WroQOLzjOYSEAEpaubd3AJ9/M9gqPhXXhyUirLkcxuwcfP1/rdAFSk/E9PUFpo03Ij3FLKykVNJkm51Nug1+flZ8EA8lN5eMCnuswsw9WnKaAwoCy9t7GgEB5PE6e1Z61+mZM0kJGkBy8X4AI2wfh+j9PHECuPLKoaF7VVlJrSTi4233ejoA9qD0R1MTJV5ym3aPwjeQXL+CoIC2ffDHxUSKZysFI2IvHJS0j/jQNCtw9IyFSygmhnJaSkqc+dFdS20tVe/Yo7S4vZ1WdQBdf8OHS9/XaGR5e08kOZlChFKT3KdPh1FB115y8QH7VM6JZcfZ2UBpqe3Hc3cMBgrttLe7rUo6Gyj90dJCLcHdpNyKkca0JYkID9AhKNCIoEBh0Edl5uzufUeW7JC0T1CgAIWCJkSLzVh9fel3c/780Ck5vnCBYtmi0qctnDhh+mKnT5d3DQoCy9t7IvHx5AGVqiobFoaa+MsAAKHNFfZbDISG0o37+HHb+3S5O26aGGsOh3gsYTSSu4vj2B5H+sJMpFcfpv9DKW5+IQM4ngiUlyOu6gzunlkhKaz3+TcqaAdK+I+Lo+ogNxI9chhtbbTqtJe30TwfSE54R4RFFT2P8HC6ZsrLJRu5ZakzEV95ml4cOEDNB+1BUhLlkOXnA2PG2OeY7kZbG1UtBQZKbx/hAtg9YAlBoAuGJzrPw8+P4tlSq2gUCmDBAtPrnTvtM46QEHKdDoWS44sXgfp6+xgo5p1qg4Ko+7QclErOP/FUZKrKlqWYyo1tbh5ojr8//faOHaMbuTciJsa6+SKcPSj9kZLi1pYlMwDDhpGLVhCkufoXLAD++196vmMHcPvt9gkRiEl3kyaR69gb0euptDgkpN9QTGGJAsfOKC2Hw3oxrPQ45l9y8xfHTcO+jdKuwfaOS09USpa391RiY2mBodNJSrTWhsSgRj0SsfV5ZCRXVdnPWxkfT4uLs2flV5G5O1VVZKC4aWKsOexBsURIiFvH5ZhBEGXvtVrp248fT88rKkz6G7YilhxfvGif47kjpaXklh/A23jsjBKaZmmJxynnf+zeLzdpvuSEZUEgg1JMkmY8EDG5WYaGUFHSLNMLe3pRVCqaF06don5d3oIHJMaawwaKJSIiuLzYk4mMpIdUXQWAygpFduywzziUSvKcnDvXTzathyMI1HtIqRywnFr86ArFwInHEcpmpJZT/klHQDjqh0+VnLQcFGBEeGAnpl2f5IxPzjgCX1/KI5Fx3fYwUOylZSSiVpOxdOKE9yS7FxTQAsxDFuAc4ulNaChdJLY2OmNch1JJ8ex9+6TvM3MmsHIlNQ7bswdYvtw+DSJjYylZtrSUqsK8iepqkraXaMwHBgB33zRAQ7ZNO4FLzd8CFs/HXTcrAEhs4FZTQ0bSQjvoYTCuY9gw0jcxGiVVbzWHJaEpIgURTSVUNdfYaF/PQGIiGeEjRni+aGdbG323bp4Yaw57UHoTHQ3MmsVlip5OXBz9H0rtUBoUZOrx0draLQJlM76+NA5RxMybyM8nV7G9WkH89JPpublHSwoaDcvbewMxMbRIlJGcWpZ6yYsiCPZrWSESEkLHPX7c872gZ854RGKsOWygMN5JbCyVK8ppQuaIMA9AxtLFi7TK9xaam8nosldDvpISSigGyNOUni59X0FgeXtvITycflMywjylaQ7KQxERy47z7CCp7yqqq4GTJ2kucvPEWHPYQGG8k+Bguhjl5KFMmEDqwQCVutqr4V9ICCXselM798JCSgC2lzvdFu9Jayt9x1xe7PkoFBRKkeFBaYzKMCVpnz4tXexNKn5+5NU5etT+x3YGRiONva3NNL95CGygMN5LSgo1fJSKSgXMm0fPDQZg9277jUWtJo9DY6P9jukqOjsp8Tc83D5KywaDSX/G/P9AKs3N9P2yvL13EBdHoTqpIRWFwhSeNRjsF541Jz6evBCnT9v/2I6moMDtFWP7gw0Uxnsx11WQivnq3V6ibQCtXBoagG3bSNTMkykuJi0Fe3ksTp40dZC9/HL5CeptbSxv703ExNBvQI4H01xx2BFhHqWSDKczZzwrVKvVksHm70/JsR4GGyiM9xIdLX+iS001Vdvk5QFlZfYZi1IJZGbS8bZsodWYJ9LRQd4TX1/7VDkBtoV3urpMNw/GO/D3p9V+U5P0fUaPNhm2x4/LW5RIJSqKctpOnJDe1NDVnDlDOkXDhrl6JFbBBgrjvfj6UphHTh4K0FP63p7JsioVGSk1NWSkVFTY79jOQKMhD1Benv0mvNZWk35FWBgwdaq8/VtaaD97Jesy7kFiIoVrpFa+qVQmL0pnJxkpjiA5mcqZi4occ3x7UlND3snYWI9KjDWHDRTGuxk2TN5EBwBZWabcih077LtaUiqB4cNpdbhli/26sDqa6mpg82YyTjIzJUmRS2LPHlOuwbx58r0yTU1UvcPy9t5FbKw8NWjA8WEegMakUJAaa2enY85hD4xGGmNrq/2aeLoANlAY7yYmhip65DT9iowEpkyh53V11I/DnigUVEbb1gZs3QpcuGDf49uboiIyTioryTixV2gHALZvNz1fuFD+/p2d5CVjvIvISAqpyK3CEw3VI0ccp1uSlER5WPZqieEILlwgT48HJsaawwYK491ERNBEJ7dk2FFhHhGxnLKrC/jhB/ec7ASB8k02byZjavhw+7qKy8pM2hLp6fKVdjs6yJPD4R3vQ6mk60NOWa+vLyVZA/R7tffCwvw84eEURrKXFIE9aW+nsmI/P49MjDWHDRTGu7FmogOA6dNNq7H9++WVK8shKYmMlR9/pAnVXdRmDQbg8GEal5jLY+8qGXPvidzkWIBW1xERbKB4K/Hx9Jvr6pK+j1huDDguzANQCMpdy47PnKHWGomJrh6JzbCBwng/cmXvAVqZz5lDz9vb7d+IzJxhw+h8P/1ESW2uNlJ0OtKA2bOHXO2OqJAxGEyeKWu0TwBavbK8vfcilhvLUYOeMsXUuPLgQXnXvByUSjKgzpyhknt3obaWqow8ODHWHDZQGO8nJoYqPdwtzGNOXBypVe7aZWqW5gpaWijkdPQoeXcc1ZL91CmT9snUqfJF1kR5ew8tn2QkEBRECdByyo0DAoDJk+l5U5NjQ6eRkZTE6y5lx6JibEuLRyfGmsMGCuP9BAfTakeugTJmjMl7cOqU4wXWoqMpX2bvXseu/vqjtpbyTXJyKB8kONhx57I1OZbl7YcGKSnyNU3MwzyO9HwCZMTn5lLrB1dTWEhj8fDEWHPYQGGGBikpFKqRg1Jp8qIYjeTdcDRiSGX/fjJUnNVBtaQE2LSJEldHjDC5yR1Ba6up62xoKDBtmvxjaDS0SpSrOst4FrGxlOgp59q9/HKTTMCBA44NmQYFUYjRUeJwUmlvJ8+rr69XldyzgcIMDWJiKM9D7iQyf77p+U8/OSc/JCyMEtyOHKFcEEfqLQgClSNu3kw3/cxMx8eu9+41fSZrtE8AqtJIT2d5e29HrSajXU65cWgoMH48Pa+udryoWmIilR3n5Dj2PAPhRYmx5rCBwgwNoqMpz0FumGfYMJLRBsjL4CxXbkgIuWqPH6f8F0dUEYliTtu2mbRZnHHDN5e2tya809VFRpTYwZbxXlQqqsKTkygLOK+aByAPSkQEXatyVavtQW0tJdfHxHhFYqw5bKAwQwNrZe8BxzUQHIygIJqcT52inA05qpqD0dlJVTq7dlGYJCHBfsceiLIy8tgAPfseyaG5mbxMnH8yNIiPJ0+fnJysGTNMzx1toAAUlq2vJ0PBmRiNJj0WLyy3ZwOFGToMG0YXtNwwzZw5plLWnTudm7waEEA38XPnqLpG7krSEm1tZPAcOkTfSVSU7ceUink11MKF1nlsNBoyqDxchIqRSGwsGaRytIzUapPns7jY8X2vFAr6TZ4759weW4WFFFryosRYc9hAYYYOMTHklZAjew9QuGX6dHqu0VBZoTPx96fckLw8CsfIKbvsTUMD9QA6c4YMn5AQuw1zMBRGM+0TpdI67ROA5e2HGqGhZKTI9X46ozePOeHhFIo9ftw5i5iODspT8/HxqsRYc9hAYYYOouqoNWEeZ2qiWMLXl4yUixfJSLGm5Lm8nCp1Ll6kSh17NfyTSFzlaeptBJD2iTUaK6K8PYd3hhZpafKr8MwNFEeXG4skJwP5+RTquXCBEnRLS8mrUlND121TE3lCtVoytq01Zs6coZCplyXGmsMSjMzQQaGgvIfiYvn7TpliEns7eBC+Ka0AQu0+xAHx8SEj5cIF8oJcfbX0RNH8fMo3aWsj40Tp/LVJRv6PphfWJMcCJnl7LxGiYiQSG0ul7zqddMN62DDT9Z6bS8aBo383AQHklTTPVVMo6HpTKimJ1dJzpZIWIeLDz48e4nNfX9pefAgCGUFqtVcrKXvvJ2MYS8TF0WTQ1SXvwvb1BbKygO+/B/R6pBTtw5mUaxw3zv5QqchIKSwkI+WqqwZWUzUaKcl23z76vNYkpdoB3842JBVfcrOHhpqausmluZl0U7x4UmYsYF6FJ8d7NnOmaUFy6BBw3XUOGV4P4uPpIWI09n0YDD1fd3WR8dXfNpby5nx8qPLOi+GrnBlaiLL3LS3yQwwLFpCBAiC9YLtrDBSADKyMDHIfi0aKpZwMvZ4m5SNHXN5UL6N0D3wMlzRosrKs0z4RJ2tnVRwx7oOvL3lDjh+Xb6B88QU9P3DAOQZKb0QPCSMb/taYoYXY38OaPJTMzO5s+djqcwhtrbTz4GSgVNLqqa0N2Lq1rz6LVkt6IwcOkHvcxSWIIwrNwjvWdC4G6LOyvP3QJSHB5FWQSlqayZtx5ox8HSTGpbCBwgw9rOnvAVAs2SxZNrPIBcmy5igUNAHr9ZQ4KzZGa2oio+XUKVp1hoW5cpQI1ZQjvi6bXqSkkKFnDSxvP7SJjSUDVU4VnkJhEm0zGsmbyHgMbKAwQ4+YGEo8s0addd68bu2OzIvbnSN9PxjJyTSmH3+kbqabN1MibWamW2iFpBf0agxorVoty9sPbcLD6dp193Jjxm5wDgoz9IiOpvyT5mbKupdDTAwwYQJw6hTCWysRXZMDYJRDhimLYcOo78iOHaaSZHeQvTYakV5A0vZGhRJKa7VPWN6eET2GcnvrjBpF13tjI1W+tLe7heHuTApLFDh2Rimv96ghCVCpEHRoH256dbbDxjYQ7EFhhh4+PtbL3gM9wjzizdctiIuj5NmMDPcwTgDgzBkEt9UCACoTp1ivWsvy9gxAv3GVSl6Xb6XS5EXp7KRE2yHGsTNKaJoV0LbLeHT60L8a13VpZgOFGZokJFgnew8AM2eiy4e0GFIvOrjbsFz8/NwrBLLdFN4pHHGV9cfRaMhLNMRWvkwvYmIo1CM32XWIh3lEe06hEBAUKPHh10X/hjtX0NEcDvEwQ5OYGEq4a20lXQ45BAaiNHUW0i/sgF9nG+V9zJrlmHF6MlotsH8/AKDDLwTlyTMG2WEAOju9tt8IIwN/fyApiXregMJ97R3A598M7DFUGCfhFr9g+HW2oWvfIWxIbEZHoDSZAV9fYNp4I9JT3CDfzEYCA4C7b5KoXCuq1C51TXgHYA8KM1QR1UitDPNczDRTQv3JjcI87sS+fd3epcLUeTD6+Fl3HJa3Z8xJSgK6urqldARh8HBFm84XuelXAwB8DDpknvhKcqhD06zA0TND7FYpCNYVEdiZIfatM8wlxIQ7uY0DL1GdMAFtgZdks48dsz6fxZsxC+/kXbo5WIVGQ0mOLG/PAJQoHRSEaSO1CA+THrLIn3wLulRkJI8t2IhINA66j0JBXhNZyaXewPHjwB//CHz1FXlCXQSHeJihi5hwJ1f2HoCgVKEgbQEm5qwj8ag9e4Drr3fQQD2Qigogm7RPNBHJqIsaAav7rTY3AyNHsrw9Q1wyVtOb6pG+RE5+RDjQthj47jv4dOlwi249cNeyAff4/BsVtDJ7FHo8ggB89hkt3j7+GLjhBuCWW1wyFPagMEMXUfbeSnXJgjQzRVQO8/TErONzYeZV1ifusrw90xulkryfra3y9735ZlObhU2bWFnWEocOAQUF9Dw9HfjZz1w2FDZQmKFLYCBVhlgZnmmMSEODeji9KCgASkrsODgPxmg0GWxKJYoyFwy8/UCwvD1jibg4MnoNEhM+RdRq6gIOUI7F11/bf2yejNFI3hORu+92aR8hNlCYoU1ysnWy95fokSy7w8XS9+7C2bNALWmfYPJktAfZkDvC8vaMJWJjrfd+3nqrKVzIXpSe7Ntn6v6clmZ913E7wQYKM7SJiSE1WSsz1osy5plWGLt2yV/ReSNmybFWNwYUYXl7xhJBQeT9bGqSv290tMmL0t4OfPutXYfmsRgMwOefm17fcIPLrzs2UJihjVpNSXdWhnl0gRHA1Kn0oq6OvAdDGTPtEwQHAzNs0D5heXtmIFJSrBdJNPeifP890NJiv3F5Kjt3AuXl9HzcOGD0aJcOB7DCQOns7MTKlSvxs5/9DFdddRUeeughHJHYIfLo0aN48sknccMNN+C6667Dr371K2zdulX2oBnGboiy97a4ec2k74d8suz+/aaQ2dy5pGxrLc3NpgZxDNOb2FjyfrZbUWYTEwNcdUnZuL0d2LDBvmPzNLq6gC++ML2+5x6Xe08AKwyU1157DWvXrsXVV1+NJ554AkqlEs888wxOnz494H579+7F008/Db1ej2XLlmH58uXw9/fHq6++irVr11r9ARjGZkTZe6PRuv2nTydvAUAy2tZMmN6CuYG2cGH/20lBo6H/G5a3Zyxho/cTt95q6ln13XfWVQV5Cz/+SM1GAWDSJOCyy1w6HBFZBkp2dja2b9+OX/3qV3j00UexdOlSvPXWW4iPj8fKlSsH3Perr76CWq3GW2+9hVtuuQU333wz3nzzTSQmJmLz5s02fQiGsYmYGJK7t3aC8vMD5syh5x0dwMGD9hubJ1FVZQpxJSaSdokt6HQsb8/0j0pFiZzWhmdiY01GtFY7dL0onZ2AuZPgnntcN5ZeyDJQdu3aBZVKhaVLl3a/5+/vjyVLluDcuXOoFi0wC2i1WoSGhsLPzOXr4+OD8PBw+Pu7rhkRwyA8HIiPp3bs1sJhnr7eE1tcxB0d5Dnh8A4zEPHx9K+1yensRQG2bqX8OYC8waNGuXY8ZsgyUPLz85GUlIRg0Z19iTFjxgAACkRxFwtMmjQJFy9exPvvv4+ysjKUl5fj448/Rm5uLu666y4rhs4wdkKhAIYPp9CMNd2NAWDMGNJmAIDTp4H6evuNzxPopX3Sw2CzBo3G1C+JYfojNtbU9NMa4uNNv9W2NkqYHUrodMCXX5pe332368ZiAVna0fX19VBbmDDE9+pEK8wC9913HyorK/Hpp5/ik08+AQAEBATgpZdewty5cwc8b11dHerNJvxisU6bYexFQgJNdKIwmFwUCprovviCjJydO10mD+0SsrOBmhp6PnGi7YYFy9szUggNpYVBWZn1Wjm3307GtdFIYZ6lS6mMeSiwcaOpVHv2bCAjw6XD6Y2sq1+n08FXlAk2Qwzb6AYQvPL19UVycjLmz5+PrKwsGAwGfPfdd3jllVfwj3/8A+PGjet33w0bNmD16tVyhsow8oiKoomuqso6AwUwGSgATXg33+wWmfBOwVz7xNbkWJa3Z+SQlgbk51u/v+hF2b6dPDHff09Gi7ej1QLr19NzhQJww0iGLAPF398fegttHTsv1aIPlEvy1ltvITs7G++//z6Ul4StrrzyStx777345z//iXfffbfffZcuXYrZs2d3vy4uLsYrr7wiZ+gMMzBimKew0PpjJCRQqCcnBygtpWMNH26/Mbor7e2kQAnYrn0CUHhHzAtimMGIiaFEdZ0OsDaf8bbbSAnaaCThtuuv934vyoYNpgTjefNIbsHNkJWDolare4RaRMT3oqOjLe6n1+uxceNGzJw5s9s4AShJdsaMGcjNzbVo+IhER0dj1KhR3Y/U1FQ5w2YYaYglrba0Fx+KybL795uUeOfMsf4mIdLYSNU7oaG2j43xfmJiKF/JFi2jYcPoJg3QTXvjRrsMzW1paQG++YaeK5XAnXe6dDj9IctAyczMRFlZGdra2nq8n32prXpmZqbF/TQaDQwGAwwWMq0NBgOMRiOM1mpQMIy9iI6mpLuGBuuPMWeOqVvq7t0kgOTt2FP7xGik7yw93bbjMEMHX18gNdV6PRSR2283ta345hvv1jP65hvTQuyqq8hAc0NkGSjz58+HwWDABrN68c7OTmzatAljx45F3KUqhurq6h6JrJGRkQgJCcGePXt6eEq0Wi327duHlJQULjVmXI9SSSEZW0oNQ0KoVA+gCfPECfuMzV2prgbOnKHniYm2lyg2N5PnhPNPGDmIYovWVuEB9PsVCzZaWqiRoDei0VBJNUBJ6Hfc4drxDIAsA2Xs2LFYsGABVq1ahZUrV2LDhg146qmnUFVVhYcffrh7u1dffRW/+MUvul+rVCrceeedKC0txcMPP4y1a9fiiy++wEMPPYTa2lrce++99vtEDGMLw4bZ1DwQQM8Ged4e5jHv4Lxgge1JwY2NQFISdaplGKnExlL+k606JnfcYfoNf/MNVHob5gF3Zf160/y2aJFbaw3JruF77rnnEBcXh61bt6K1tRUZGRl4/fXXMWnSpAH3u/fee5GQkIB169Zh9erV0Ov1GD58OF566SXMnz/fyuEzjJ2JiaFQT0OD9W7PyZMpyVOjAQ4fpknT2sogd8ZoNFXviGXWth6vs9PtSh0ZD0Ds2VRTY1vuUlISeVF27wY0Gow4vxHHM2+13zhdTKC23uQZ8vOj5GA3RraB4u/vj0cffRSPPvpov9v885//tPj+1VdfjavFNtcM446oVBTm2b3b+mP4+ABZWeRG1euBvXuBa66x3xjdhexsU/+OiRNtX4m1tHB4h7EOhYLKjYuKbD/W7bcDe/YAgoAxZ77CqbTrAXhHCsK4U2tNHaCvu87thRBlNwtkGK8nMZES7wbQ9RkU8zCPeRjEm7BncixAXqvEROsFt5ihTWwsLTAGqAiVREoKiZYBCOxowpgC78hFCWmrxvDcLfQiIMAjhCTZQGGY3sTF0crClt48GRmmRnc5OUBlpX3G5i50dJi0T4KCgCuusO14gkAG4VDQjWEcQ0wM5S7ZUm4sYpY4OiFnPVRdNixW3ITJZ/8PKuOlqsKlSz1iIcA60gzTGx8fIDOTQjODiIW1dwCff6Oy+LcxcQsxuXQ1AODMyl04M0V+l1BfX2DaeCPSU2yoTnAEBw6YyjDtoX3S0kI3Fw7vMNYSEECLgnPnbA9dpKYCs2YB+/cjqKMRmblbAFxvl2G6gpDmCoy4+CO9CA4GbrrJpeORCntQGMYSw4aRodKPu1iUOhEEBbTtlh85iVdCAFUEpBb8BK0W/W7b30PTrMDRM254mZpL25uHs6xFDO9ERNh+LGbokpREOjq2lBuLmImXjTm9zpS74YGMP/E5lMIlrbEbb/SYpH03nPkYxg2IjwciI/sN80wbb0R4mICgwP4fUKtRNWwiACCstQopLdkDbt/7oVDQJGtrSN3u1NRQx2bAJO9vC2J4h8XZGFuJjaWQoy1q0CJpaShJnQUACGpvALZts/2YrqCkBGkXdgIAOvzDKLzjIXCIh2Es4edHeSSHD9Ok14v0FAHpKX2VkfsQvgB48yQAYFHXj8BN0oXMPv9GBa07ilmaJ/0uXGi79olYhu2mapaMBxEZSeGdpiYKZdjI2Ul3IqV4P71Yt450Qy41x/UYPv8cCtBiJ2fCrZjsQT2G2IPCMP2RnEw3X1vk6q+4gmLjAOW0eLCbGAB5O+ypfQJQeCchgcM7jO0olVRubKtg2yWa1MNRlHgpAbyhAfjxR7sc12kUFlKvLADagEjkjVni4gHJgw0UhumPQcI8kggMBGbOpOdtbZ7fhCwnB6iqoucTJtiufSIIlGw7fLjtnhiGAagKT6EALPR+s4YTl91terFunRvGXAfg88+7n54cdwcMPgEuHIx82EBhmP4ICKAwT1OTbccxFydcvZo8KZ6KvZNj29o4vMPYl9hY+5UbA6iPykRZ8qX+WnV1nuNFyc2lEDWAtuBo5A73PLFINlAYZiCSkmiVb8tq7LLLgFsvyWULAvCPf3hmE8GmJpNxZe4ZsoWGBpOnimHsQVAQGby2LizMODPZA70on33W/fTsxDthUHlY7gzYQGGYgRFzI2yd7H7xC0qwAyin5bXXgPx8W0fnPJqagD/+saf2SYAd3MVaLWnOcHiHsScpKXbN92qMHgFMm0Yvamt7ehLdkbNngZMn6Xl8PApHemaLGTZQGGYggoJItMmWPBSAbsCPPGJSXO3oAF58ESgrs3mIDkc0ToqL6XV0dA+NCKvh6h3GUcTE2N6VvDfmv3l39qIIAvDf/5pe33knBKVnFuyygcIwg5GaSp12jUbbjqNSAb/9LYV8AFJP/dOfKK7trlgyTl55xT4t2hsaKKExKsr2YzGMOdHR9vF8mjNyJDBlCj2vqXHfHlsnT1IjT4BC1PPmuXQ4tsAGCsMMRkIC9a3QaGw/lp8f8Ic/mETJ6uqAF16wW0KfXdFoLBsn9vJ4cHiHcRQqFV1jLS32Pa65F+XLL22TIHAEgtAj9wR3303fhYfCBgrDDEZICK1EbA3ziAQHU3hH7PNTWgq8/LJ93dG2otEAzz9vMk7UavsaJ21t9D1w7x3GUYjXl62eT3NGjwYmT6bn1dXAzp32O7Y9OHIEyMuj52lp1E/Ig/HMwBTDOJu0NEo8MxpJDMpWIiOBl14CVqwgwyc3F/jrX8ko8HHeZVlYosCxM8oe4XT/dg0WbnkeEY1knGiD1PhxwV/Retg646Tdkt3V2GjqGs0wjiA2lhYXLS327dx7552mKry1a0ms0B28FEZjX++JPeYqF+LZo2cYZ5GQAISG2tdlHB9PnhRRkvv4ceDtt+274huEY2eU0DSbmhMaG5uxYNOz3cZJW6Aa31/5Omp8E2U3OhQfgkAhHLHBIgBKkM3M9PgJlHFjQkPJCLZHaNacMWOAidRjC1VV7uNF2b8fuHiRnmdmAjNmuHY8doBnB4aRQng4ddttaLDvcdPTyWsi9vfYtQv44AP7dGOVgOg5USgERKIJS3Y+iyiNyXOyfclf0RWbIKvJoaVHeJiAaeMvGV5aLVVHcXiHcTRpaabSeHvSOxfFTqq1VmMwAP/3f6bXP/+5V+R2cYiHYaSSkQGcP0/Ggz0v/nHjgN/9jrRRjEbgu+/IIPK7y37nGIQIQYNb9j8LNJpyToJefRVLh8UBsPPk29BA7vfoaPsel2F6ExNDxr9OB/j72++448YB48cDZ84AFRXA7t326UtlLbt3Uy4bAIwda8qT8XDYg8IwUomPp5i2nRqR9WDGDOB//sf0+r//xfDcLfY/jwUCOjS4cstzPRNiX33VcfokHN5hnEVMDBn7jqiSu8tsAbF2reu8KF1dPb0n99zjFd4TgA0UhpFOZCQZKfaq5unNwoXAsmXdLy/f/w7SSvc55lyX8O/Q4LqfnkVkYxG94WjjRAzvsDgb4wx8fUnHyN55KADpGYmaRuXlruux9dNPpgaeEyeSZ8dLYAOFYaSiUFDXXa3Wcee4+WbgZz8DACgFIxbsfx2xlaccc67mZly5+TlEaYrotaONE4CMu5gY+wi9MYwUhg2j0Kkj8rrMc1HWrHG+F0WvB774wvT6nnuce34HwwYKw8ghIYGqbhwR5hFZtoy8KQBUxi7M+/Fl4MIF+56juRn4wx+6PSfaICcYJwCHdxjnExPjuGt2/HjK+QCobcX+/fY/x0Bs3WpSop42jXRavAieJRhGDmo1lS7aU0K7NwoF8PjjKL/U4t1X307lyBUV9jn+JeNEzDlpC1Rj+7WvOd44aW+nREUO7zDOJCKCErIdEeZRKPp6UZwlE6DTUQWRiJd5TwA2UBhGHgoFeQAc6UEBAJUKexesQFXMOHqt0VDfnvp6247b3NxDIVYbpMbGhX9FS3iijQOWQGMjVe9weIdxJgoFlfO3tTnm+BMnmjwXJSXO86Js2mTKh5s1i8LPXgYbKAwjl/h4SvR0ZC4KAINPALZlvYDGyDR6o6aGPCnWGkeicVJURK+jorD92tfQHOoE40Q8f2ame6huMkOL2FhSaHZEB2KFomdFjzO8KFotsH696fx33+3Y87kI1kFhGLnExJDLuLGRDBUH0ukXgh2LX8bNPz1NBkpxMfXteekleboOFowTvPoqWo4kAg7QsepDRweHdxjXERMDhIXRdeCI9gqTJgGjRlHLiuJiYONGqvAJDAQCAuhfPz+L5b+W2k0MxriTGzHxUul0Ufo87D+eDhzvf3uL7SY8ADZQGEYuSiV5ApzUbr0jKMrUt0ejAXJygL/9DXj2WWl9e5qbqStxL+MEiYnAEYcO3URDA90kYmOddEKGMSMgAEhOBs6dc4yBIuai/PnP9Pq99/puo1SajBXx38BABDQHYjIC0eUTCL1PIPS+l/71CUCXTyA6fS/97dL7gkKJ0We+BgAYFUocHnM3tO3SdE96tJvwANhAYRhrGDaMVkQdHTTZOON8L74IPPccJZseOQL861/Ak08OLMokGidijw5z48SZtLQAU6dyeIdxHUlJwKlT9leCFpkyhXJRzp+3/HejkUIzvULDtvgUL2YuRFdcIoIweAm1ry9M7SY8BDZQGMYaRKn2xkbn9ZQZPpyqb158kdQjf/qJVDLvv9/y9u5inOh0ZMxxeIdxJTExFJJtb3dMaFahIK/mjz/StdfeTo+ODnqIr83fsyVXxccHw5+5HcPjXNwHyIGwgcIw1qBSkcGwZ49zm95NmAD89rcU4jEaga+/JiPl5pt7bucuxglA4Z3oaA7vMK4lKorUoJuaZBso7R3A599I8f5FA753AlKiSIIAlUGHrtYO+Og7EKrU4rqZbZaNmt4GjsFAvX/i4mR9Dk+DDRSGsZbERMoB6ew0dSN2BrNmAY88ArzzDr1evZoSAK+6il67k3EijmfiRGn5MgzjKJRKavi5Z4/kXXx9AbQDgqCA1u7J5AoAgYB/IOAPKMMEYKz3ekOsgWcMhrGWuDjyDDQ0UOmxM1m8mBJm//tfev2vfwGhocCYMe5lnOh0NMsnJbnm/AxjTloacOwYleqHhAy6+bTxRhyVWWFjDZ6YH+IM2EBhGGvx9aUV2f79zjdQAOC228hI+e47Cve88QaFUcrK6O9RUcArr7jOOAEoR0dU32UYVxMbS6JtubmSDJT0FAHpKezVcBUs1MYwtpCU5DgBqMFQKIAHHgDmzaPXnZ19jRNXey40GirJ5vAO4w4oFCbVV53OtWNhBoVnDYaxhbg4U+KdgyTcB07QU0GR/hvMu9CGYWVHAQDawChsX/AaWo4mAUcHP7bD6Owkw8TVRhLDmJOcTBVlNTX0nLFMa6tjNGNkwAYKw9iCvz+5jI8etbuBIj1BzxfbZj6H6Sc+QFB7PQ5P+iWa/ZJkKcQ6RMBJrN7h8A7jTvj4AOPGUS8bg4G1eSzR3EwhsJEjXToMNlAYxlaSk8lA6eqyayhDXoKeP05mPdr9Sopwk4jDEvSam0nu29PkKxnvJz2dFhT19Vz+bonqarp2XdzYkw0UhrGVhARq6a7R2NUl6tEJeno9rUw5vMO4I0FBVPG2ezcbKL1pb6eF1pgxrh4JJ8kyjM0EBNCKrKHB1SNxHxoaKFHXFdVNDCOFzEwqzddoXD0S96KqCkhNdW313yXYQGEYeyAm2xk81ONhbzQaUtrl8A7jrqjV9ButqXH1SNwHvZ5C1ePGkbCdi3H9CBjGG0hIIDVXXo2ZwjtcIcG4O6NH02+1w5HlbB5EdTXNZamprh4JADZQGMY+BAfTRd3Y6OqRuJ7GRiq95vAO4+4kJpIhXV3t6pG4HoOBSovHj3cbzycbKAxjL1JTyT1qS4dSb6CpiRR2ndmfiGGsQamkcEZHB127Q5m6OkoYzshw9Ui6YQOFYexFQgJ1Fm5udvVIXIdeT5M+h3cYTyE1lbx9dXWuHonrEATyfI4dK7vTsyNhA4Vh7EVoKLmMh3KYp6mJwjsJCa4eCcNIIyCAbsxNTXSjHoo0NZFUwogRrh5JD9hAYRh7kp5OEu9DeaLLyCCFXYbxFDIy6Abd1OTqkbiGmhpSjY2IcPVIesAGCsPYk4QE8qS0tLh6JM6nq4uasXF4h/E0IiLoBj0US45bW4HAQGDUKFePpA9soDCMPYmIoEZkQ1G0rbGRPj+HdxhPZMQICvdota4eiXOpqiIPkhv2zGIDhWHsTUYGtXIfamEeMbwTEODqkTCMfBISgLQ0umEPFTo6yOs5diz962awgcIw9iYhgXRR2tpcPRLnIZZocniH8VQUChJuMxggsUOn51NVBaSkuG3PLDZQGMbeiCJlQynMo9FweIfxfFJT6Tc8FHJR9HpK6L/sMlLTdUPYQGEYe6NQUI+PoRTLbmig8E5goKtHwjDW4+tLwm0tLd4vuFhbSwuptDRXj6Rf2EBhGEeQkECCR0MhzGMwUL4Nh3cYbyA9nTpxe7MH1GgkQcnx491a8ZkNFIZxBGo1yUYPBdE2FmdjvInQUMpF8WZl2fp6UzdnN4YNFIZxBEolkJk5NDwojY3kJnYjiWyGsYkRIyjR3Rv1jASBDJRx4+gzujFsoDCMo0hIoJLb9nZXj8RxGAzkLk5JcfVIGMZ+xMRQqMcbuxxrNEBYmNvJ2luCDRSGcRQxMeRG9eYwD1fvMN6IQgGMGUP/6nSuHo19qakh1dioKFePZFDYQGEYR6FS0SrFG93EIg0N5D1xc1cxw8gmKYmaf3pTyXFbG/XJckNZe0uwgcIwjmTYMMqS97ZVGEDhHYPBrcsUGcZqfHwoT0Orpd+5N1BVRaGr+HhXj0QSbKAwjCOJjfXeME9zM4d3GO8mLY1CtfX1rh6J7YiLJDeVtbcEGygM40h8fKiUT6Nx9UjsjxjeCQlx9UgYxjEEBVEuSkOD5/fWqq6mkJUH6RWxgcIwjiYxkQyVzk5Xj8R+GI3Uf4fDO4y3M3w4Vb00N7t6JNbT1UXVhOPH01zkIbCBwjCOJj6eMua9Kcyj0QDh4RzeYbwftZo0jTw5WdYDZO0twQYKwzgaX1/vC/M0NJCrODTU1SNhGMczciR5HjxR08hoJLXnceNIl8mDYAOFYZxBUhKpy3pDG3ejkaoa0tNdPRKGcQ5i7oYnCrc1NJi8QB4GGygM4wzi46nkuKTE1SOxneZm8pxweIcZKiiVVP3S2Un5HJ5EXR0l+nqgt1N2tkxnZyc++OADbNu2DS0tLRg+fDiWL1+Oyy+/XNL+27dvx7p163DhwgX4+PggNTUVy5cvx9SpU2UPnmE8Bn9/ICsL2LgRqKggY8VTaWyk1VhYmKtHwjDOIy0NiIujfA5PMc41GjJMRo509UisQrYH5bXXXsPatWtx9dVX44knnoBSqcQzzzyD06dPD7rvhx9+iJdeegmxsbF47LHH8MADD2D48OGo8+aukQwjkpAAzJkDdHRQTNgT0etpFZmR4eqRMIxz8fcnL0pTk+eUHFdX02IiOtrVI7EKWR6U7OxsbN++HY888gjuuusuAMDixYuxbNkyrFy5EitXrux333PnzuHjjz/GY489httvv922UTOMpzJqFE1we/dSwponJa0ZDEBhISX8pqa6ejQM43yGDweOHSMvorv3stFqKUF/zBhXj8RqZHlQdu3aBZVKhaVLl3a/5+/vjyVLluDcuXOoHiCB6Msvv0RUVBRuvfVWCIIArVZr/agZxlNRKICpUymjvqjIcyS0BQG4eJGSBRcsAAIDXT0ihnE+4eEULqmtdfVIBqeqisJSnhKOsoAsAyU/Px9JSUkI7tUYbMwlC62goKDffY8dO4bRo0dj3bp1WLp0Ka655hrcdNNNWL9+vRXDZhgPxtcXmDuXvBAXL7p6NNIoKQEiI4ErryR5e4YZqowcSZ7PtjZXj6R/Ojup2m7cOErw9VBkhXjq6+uhVqv7vC++118uSUtLCzQaDc6ePYvjx49j2bJliIuLw+bNm/H222/Dx8cHN954Y7/nraurQ71ZL4Ti4mI5w2YY9yMkhJJmv//e/ZNmq6rIqJo/n5IEGWYoIwqeFRRQyMcdEWXtU1JcPRKbkGWg6HQ6+Pr69nnfz8+v+++WEMM5Go0GL7zwAhYuXAgAmD9/PpYtW4ZPPvlkQANlw4YNWL16tZyhMoz7Ex9PRsqWLRTTjox09Yj60tBA4lRXX+1xKpQM4xAUCsrryMujpHEL90SXYjBQ/slll7nf2GQiy0Dx9/eH3oLQVOelHiP+/v797gcAPj4+mD9/fvf7SqUSV155JT788ENUV1cjrp/V2dKlSzF79uzu18XFxXjllVfkDJ1h3JMRI8g42bOH3MbulNvR0kJdXLOygNGjXT0ahnEfUlIot6O6mkQY3YnaWurA7AVCirIMFLVajVoLyUFi+CW6n1KmsLAw+Pn5ISQkBCqVqsffIi+tGltaWvo1UKKjo/s9NsN4NGLSbFMTcOoUxbd7XSMuob0dKC8HZswApkzxmPbsDOMUfH3JQ7FlC+V6uEuehyDQXHLlle612LESWd9qZmYmysrK0NYrOSg7O7v77xZPolRixIgR0Gg0fTwwYt5KBCfeMUMVHx/SR0lLo6RZV2ss6PVUYTRhAjBzpvtMvgzjTqSnk4S8WX6ky2looFCxB8raW0LWzDN//nwYDAZs2LCh+73Ozk5s2rQJY8eO7faAVFdX90lkXbBgAQwGA7Zs2dL9nk6nww8//IC0tDT2kDBDm+BgYN48KmMsL3fdOEStk5EjKbTj4TFshnEYISEU+mxocPVITNTVkdZSeLirR2IXZIV4xo4diwULFmDVqlVoampCYmIitmzZgqqqKqxYsaJ7u1dffRUnT57E7t27u9+78cYbsXHjRrz55psoLS1FXFwctm7diurqarz22mv2+0QM46nExVH58ebNrkmaFQQyTpKSWOuEYaSQmUmh2ZYW1/e6aWmhhc6oUa4dhx2R3Yvnueee6zYuWltbkZGRgddffx2TJk0acD9/f3+89dZbWLlyJTZt2oSOjg5kZmbi9ddfx/Tp060dP8N4F2LS7O7dJK0dFOS8cxcXk8v6yiu9ZgXGMA4lJobaPmRnu95Aqa4m3ZPYWNeOw44oBMHVAW/55Obm4sEHH8R7772HUV5kLTIMAOqW+tNPwMmTZLD4yF5HyKeigv699lqP105gGKdSVAR88w15HvupZHU47e1AZSXws5951fXL2W8M4274+ACzZ9PKzBlJs/X1pDw5b55XTW4M4xSSk0kUbYBWLw6nqoqUqd2t5NlG2EBhGHdETJqNjHRs0mxzMyX5zZ7NWicMYw0qFYVWOjpc01tLryevq4fL2lvCuz4Nw3gTMTGUNGswOKZSQKslt/D06cAgOWQMwwxAejoQHU1VNM6muppE47xQ6ZkNFIZxZzIzSSyttpYMCnvR2UlJsRMm0PG9bOXFME4lMJDk7xsanKtjZDAAra3A+PFeKQnAsxLDuDtTpgATJ5JB0dVl+/FErZPRo8lD44UTG8M4ncxMqn7TaJx3zvp6UyWRF8IGCsO4OyoV5YgMH06GhS0rNFHrJDWVuhOz1gnD2IeoKDJSamqccz5BIANl7FjnyhE4ETZQGMYTCAqipFm1Gigrs/44RUV0jAULgLAwuw2PYRiQSJqvL5X9OpqmJiAigqQIvBQnCCwwDGMXoqNJfn7zZlo5qdXy9q+ooI7JV15JbmGGYezLsGFUdpybS8JtSiV5QAd7WNOMs6YGuPxy5ytOOxE2UBjGk8jIAK64Ati5k8IzUl27dXVUjrhoEU2gDMPYH6WSrs+ICCo77uwEdDp6GAymf41GyicTn/cO2wpCX+NGqSSNJJWK9gsM9CpZe0uwgcIwnsakSeTePX6c8lIGS3JtbqbtFyygJoAMwziOhAR6mCMIZFR0ddFD1C7p/dz8tWjcdHTQv52dPbVWMjOpf5cXwwYKw3gaKhUwaxZVC1y8SDHo/lzEotbJzJlUUswwjPNRKMj7YY+2FQYDGTE+PtaFhjwITpJlGE8kMJCSZqOjgdJSy9uIWieTJrHWCcN4CyoV5ZI5o0eXi+EZi2E8FbWakmYVir4KlqLWydixwJw5Q2IyYxjGu2ADhWE8mfR0Ct80NABtbfSe0QhcuEDS1/Pm0WqLYRjGw2ADhWE8nYkTSW22tJRi00VFlDy3YAGVOjIMw3gg7PdlGE9HqSQvikYDnD0LxMeTcRId7eqRMQzDWA0bKAzjDQQEUD6KwUDVOomJrh4RwzCMTbCBwjDeQlQU8LOfcbUOwzBeAc9kDONNsHHCMIyXwLMZwzAMwzBuBxsoDMMwDMO4HWygMAzDMAzjdrCBwjAMwzCM28EGCsMwDMMwbgcbKAzDMAzDuB1soDAMwzAM43awgcIwDMMwjNvBBgrDMAzDMG4HGygMwzAMw7gdbKAwDMMwDON2sIHCMAzDMIzbwQYKwzAMwzBuh4+rB2ANOp0OAFBcXOzikTAMwzAMI5fU1FQEBAQMuI1HGihVVVUAgFdeecXFI2EYhmEYRi7vvfceRo0aNeA2CkEQBCeNx240NTXh8OHDSEhIgJ+fn12OWVxcjFdeeQXPP/88UlNT7XJMb4a/L+nwdyUP/r7kwd+XPPj7ko4jvyuv9aBERERg0aJFDjl2amrqoFYdY4K/L+nwdyUP/r7kwd+XPPj7ko6rvitOkmUYhmEYxu1gA4VhGIZhGLeDDZRLqNVqLFu2DGq12tVD8Qj4+5IOf1fy4O9LHvx9yYO/L+m4+rvyyCRZhmEYhmG8G/agMAzDMAzjdrCBwjAMwzCM28EGCsMwDMMwbgcbKAzDMAzDuB0eKdTmaE6ePIkvvvgC+fn50Gg0CAkJQWZmJu677z6MHz/e1cNzO44dO4YffvgBp0+fRm1tLaKiojBlyhQ88MADiI6OdvXw3I66ujqsW7cOOTk5OH/+PNrb2/H2229j8uTJrh6aS+ns7MQHH3yAbdu2oaWlBcOHD8fy5ctx+eWXu3pobolWq8UXX3yB7Oxs5OTkoKWlBc8++yyuvfZaVw/N7cjJycGWLVtw4sQJVFVVISwsDOPGjcPy5cuRnJzs6uG5FRcvXsRHH32E3NxcNDQ0ICAgAKmpqbjrrrswe/Zsp46FPSgWKCsrg1KpxI033oinnnoKd9xxBxoaGvA///M/OHTokKuH53b85z//wYkTJzB37lw8+eSTWLhwIXbs2IHly5ejvr7e1cNzO0pLS/H555+jtrYWGRkZrh6O2/Daa69h7dq1uPrqq/HEE09AqVTimWeewenTp109NLdEo9Fg9erVKC4uRmZmpquH49Z8/vnn2LVrF6ZOnYonnngCN9xwA06dOoXly5ejsLDQ1cNzK6qqqqDVanHNNdfgiSeewL333gsAePbZZ7FhwwbnDkZgJNHe3i7ceOONwtNPP+3qobgdJ06cEAwGQ5/35s6dK6xatcpFo3Jf2traBI1GIwiCIOzYsUOYO3eucPz4cRePyrWcO3dOmDt3rvD55593v9fR0SHceeedwsMPP+zCkbkvOp1OqKurEwRBEHJycoS5c+cKmzZtcvGo3JPTp08LnZ2dPd4rKSkRFi5cKLz00ksuGpXn0NXVJdx///3CPffc49TzsgdFIgEBAQgPD0dra6urh+J2TJo0CUqlss97YWFhKC4udtGo3JegoCCEhYW5ehhuxa5du6BSqbB06dLu9/z9/bFkyRKcO3cO1dXVLhyde+Ln58diYxIZP348fH19e7yXnJyMtLQ0nqMkoFKpEBsb6/T7H+egDEBbWxv0ej00Gg22bt2Kixcv4he/+IWrh+URaLVatLe3Izw83NVDYTyA/Px8JCUlITg4uMf7Y8aMAQAUFBQgLi7OFUNjvBRBENDY2Ii0tDRXD8UtaW9vh06nQ1tbG/bt24dDhw5hwYIFTh0DGygD8MILL+Dw4cMAAF9fXyxdurQ7HscMzJdffgm9Xo8rr7zS1UNhPID6+nqL3gDxvbq6OmcPifFyfvjhB9TW1uKXv/ylq4filrzzzjvdOSdKpRJZWVn49a9/7dQxeL2BYjQaodfrJW3r5+cHhULR/fqhhx7CHXfcgZqaGmzZsgVdXV0wGAyOGqpbYMv3JXLy5EmsXr0aCxYswNSpU+09RLfCHt8XA+h0uj4ueIC+M/HvDGMviouL8eabb2LcuHG45pprXD0ct+S2227D/PnzUVdXhx07dsBgMEie6+yF1xsop06dwpNPPilp208//RSpqandr0eMGNH9fNGiRVi+fDlee+01vPzyy3Yfp7tgy/cF0IX//PPPIyMjAytWrHDEEN0KW78vhvD397c4+XV2dnb/nWHsQX19PVasWIHg4GC8/PLLUKlUrh6SW5Kamto9X11zzTX4zW9+g9///vd49913nbbQ8noDJSUlBc8++6ykbQdKOPP19cXs2bPx2WefQafTee2Eacv3VV1djaeffhrBwcF4/fXXERQU5IghuhX2+n0NddRqNWpra/u8L5aps54OYw9aW1vxzDPPoLW1Ff/617/4dyWD+fPn4+9//ztKS0uRkpLilHN6vYGiVqvtJlyk0+kgCAK0Wq3XGijWfl8ajQZPP/009Ho93nzzzSFz4dvz9zWUyczMxIkTJ9DW1tYjUTY7O7v77wxjCzqdDr///e9RWlqKf/zjH5wcKxMxzOrMSh4uM7ZAY2Njn/daWlqwa9cuxMbGIjIy0gWjcl/a29vxzDPPoK6uDn/7299YmZGRzfz582EwGHoIQXV2dmLTpk0YO3YsV/AwNmEwGPDiiy/i3Llz+POf/4zLLrvM1UNyWyzd/7q6urB161b4+/s71bDzeg+KNfzud79DTEwMxo4di8jISFRXV2PTpk2or6/Hiy++6OrhuR0vv/wycnJycN1116G4uLiHrkBgYCDmzp3rwtG5Jx9//DEAoKioCACwdevWbsXU++67z1XDchljx47FggULsGrVKjQ1NSExMRFbtmxBVVXVkMhlspb169ejtbW1OxS2b98+1NTUAABuueUWhISEuHJ4bsM777yDffv2YdasWWhpacG2bdt6/H3RokUuGpn78fe//x1tbW2YOHEiYmJiUF9fjx9++AElJSV47LHHnBq6VwiCIDjtbB7CV199hZ9++gnFxcVobW1FaGgoxo4di7vuugsTJ0509fDcjttvvx1VVVUW/xYfH4+1a9c6eUTuT1ZWVr9/2717txNH4j7odLruXjytra3IyMjA8uXLMX36dFcPzW0Z6Npbs2YNEhISnDwi9+SJJ57AyZMn+/37UL3mLLF9+3Zs3LgRhYWF0Gg0CAoKwqhRo3DzzTdjzpw5Th0LGygMwzAMw7gdnIPCMAzDMIzbwQYKwzAMwzBuBxsoDMMwDMO4HWygMAzDMAzjdrCBwjAMwzCM28EGCsMwDMMwbgcbKAzDMAzDuB1soDAMwzAM43awgcIwdmbz5s3IysrC5s2bXT0USZw4cQJZWVn48MMPHXaOrKwsPPHEEw47vqN54oknBlT/tQXx+xcfDz/8sEPOI4UPP/wQWVlZOHHiRPd7xcXFPcZ3++23u2x8zNCCe/EwQ56//vWv2LRpE8LCwvDVV1/Bz8/P1UOyO+JNhdsOuC+TJk3CpEmTEBsb6+qh9CA8PBzLli0DAKxbt861g2GGFGygMEMarVaLHTt2QKFQoLm5GXv27MHChQttOubcuXMxduxYqNVqO42SGQpMmjQJv/zlL109jD5ERER0j2vLli0uHg0zlOAQDzOk+emnn9De3o7bbrsNSqUSGzdutPmYISEhSE1N5U6yDMMwNsAeFGZIs3HjRqhUKtx99924cOECjh8/jqqqKsTHx/fY7sMPP8Tq1av7PY551+bNmzfjtddew7PPPotrr722e5usrCxMmjQJf/zjH7Fy5UocOXIEnZ2dmDhxIp566ikMGzYMRUVFWLVqFU6dOoWuri5Mnz4dv/71rxEVFdV9nBMnTuDJJ5/EsmXL+qy4Kysrcccdd+Caa67Bc8891/3afAwilvY/f/48Vq1ahXPnzkGpVGLKlCl4/PHH+3TF3b17N3bs2IHz58+jrq4OPj4+GD58OG699VbMnz9/4C99EFpbW/Htt9/i4MGDKCsrg0ajQXh4OKZNm4Zly5YhMTGxx/bi/83bb7+Nuro6/N///R9KSkoQEhKCBQsW4OGHH4a/v3+Pfbq6uvDFF1/g+++/R11dHWJiYrBkyRJceeWVuPPOO7u/Pyns2bMH69evR15eHjo7O5GYmIhrrrkGt99+O1QqlU3fBQD85S9/wZYtW/DFF19g9+7d2LhxIyoqKrBw4UI899xzqKurw4YNG3D48GFUVFSgra0NarUaV1xxBe6//35ERkb2OWZ1dTX+85//4PDhw+jq6sLIkSPxwAMP2DxWhrEnbKAwQ5aioiKcO3cOV1xxBaKiorB48WIcO3YMmzZt6nPjnjx5ssVjFBcXY8eOHX1ugP3R0tKCxx57DGq1GosXL0ZZWRn279+P3/zmN/jLX/6Cxx9/HKNGjcJ1112HvLw87Nq1C83NzXj77bet+owhISFYtmxZd+7Arbfe2u9nOn/+PP7v//4PkydPxtKlS5Gfn489e/agsLAQq1ev7vEZV61aBR8fH4wfPx5qtRpNTU3Yt28f/vSnP+HJJ5/ELbfcYtV4AfpOP/zwQ0yePBlz585FYGAgiouL8eOPP+LAgQN4//33+xiQAPDVV1/h8OHDmD17NqZMmYJDhw5h/fr10Gg0+NOf/tRj29dffx1bt27FsGHDcNNNN0Gv12Pt2rU4e/asrLG+++67+OyzzxATE4OsrCyEhITg9OnTWLlyJXJycvDSSy9Z/T305q233kJ2djZmzpyJWbNmdRsep06dwpo1azBlyhSMGTMGPj4+yM/PxzfffIPDhw/j/fff7+HNq6urw6OPPora2lpMnz4dI0eORHFxMZ5++ul+f+cM4wrYQGGGLN9//z0AYPHixQDIu/Dmm29i8+bNWLZsGZRKUwR08uTJfSbvxsZGPPTQQ/Dz88Mzzzwj6ZwXLlzA7bffjscff7z7vX/84x/45ptv8Pjjj+P+++/HbbfdBgAQBAErVqzAwYMHkZubi1GjRsn+jKGhofjlL3/ZnTswUI7DwYMH8cILL/TIwXn11VexdetW7N27t8f7f/vb3zBs2LAe+2u1Wjz66KP44IMPsGTJEgQEBMgeLwCkpqbi66+/RlhYWI/3jx8/jt/85jf45JNPLH7fx44dw3vvvYeUlBQAwIMPPohf/vKX+Omnn/Doo48iOjq6e7utW7dixIgReOedd7rH+Ytf/ALLly+XPM4jR47gs88+w/Tp0/Hyyy8jMDAQAP2//eMf/8C3336LnTt32uxRErlw4QI++OADxMXF9Xh/ypQp+PrrrxEUFNTj/S1btuAvf/kLvvrqK9x7773d769atQq1tbVYvnx5j/c3bNiAv//973YZK8PYA85BYYYkXV1d2LZtG4KDgzFnzhwAQFBQEObOnYvq6mocPXp0wP11Oh2ee+45VFVV4fe//z3Gjx8v6byBgYF9boLijT88PLyHh0OhUHT/7cKFC5I/m7VMnDixT4LwddddBwDIycnp8X5v4wSg7+/aa69Fa2srzp8/b/U4QkJC+hgnAN2I09LS+v2/ufXWW7uNEwDw9/fHwoULYTQakZub2/3+tm3bAAD33XdfDyMqOjq6x/c/GF999RUA4He/+123cQLQ/9tDDz0EhUKB7du3Sz7eYNx11119jBMAiIyM7GOcAGR4BwcH49ixY93v6fV6/PTTT4iMjOwR+gOA66+/HklJSXYbL8PYCntQmCHJ3r170dTUhCVLlvQIXSxevBjbtm3Dxo0bMX36dIv7CoKAv/zlLzh37hzuv/9+XHXVVZLPm5SU1MezIFb7ZGRkQKFQWPxbXV2d5HNYiyUPTUxMDADKCzGnsbERn332GQ4ePIjq6mrodLoef7d1vCdOnMCXX36J7OxsaDQaGAyG7r/5+vpa3GfkyJF93hNLds3HX1BQAACYMGFCn+0vu+wyyWPMzs5GYGBgv4nV/v7+KCkpkXy8wRgzZky/f9u1axc2bNiAvLw8tLa29vi+zP8vSkpK0NnZiSlTpvQJSyqVSowfPx5lZWV2GzPD2AIbKMyQRLypiOEdkalTpyImJgb79u1Dc3OzxZX8+++/jx07duCqq67C/fffL+u8wcHBfd4TEykH+ltXV5es81iDpVW4eH6j0dj9XnNzM371q1+huroa48ePx7Rp0xASEgKlUomCggLs3bsXer3e6nHs2LEDL774IgIDAzF9+nTEx8d3G3VbtmxBVVWVxf0G+v7Mx6/VaqFUKhEeHt5ne/Nk5MFobm6GwWAYMHm6vb1d8vEGw1KyKwB88cUX+Pe//42IiAhcfvnliImJ6TY+1q1b1+P/oq2tbcBj9fc+w7gCNlCYIUd1dTWOHDkCAAOqm27btq2Py3/z5s349NNPMX78/2/v7kKaeuM4gH9na0LZUnrZCixBC73ILbHErNGbXY9eLrraxhHWRVddREi3QkUF7iIvirL1xiAk0qnRG0UtFzZrQ1hagYwZWVvo1ovEtv+F7LC1Y/90bR7Y93O5s53zuAnne57f87IJJ06cyGk7Z5PsZUl9Sk5K3oByyel04tOnTxAEASaTKe3Y9evX8ezZs6zOf+XKFahUKly8eBHl5eVpxx49epTVuYGZIBaPxzE5OYnS0tK0Y+Fw+K/Ps3TpUigUCnR3d2fdpr/xe+8aMBNc7XY7VqxYgcuXL6cFjEQigVu3bqW9Pxnivn79KnmN2V4nWggMKFRw+vv7EY/HUVtbm3EDBGZu/P39/XA6nWkB5fXr1zh79izWrl2Ltra2BVtxdtmyZQCkyyijo6OSnykqKsqqVyNVMBgEAHHsTiqv15v1+cfHx1FRUZHx23z58gXj4+NZn7+qqgqjo6Pw+XzYsWNH2rG5zOKpqamB2+1GIBCQ/D/Kh8nJSUSjUdTV1WX0fvj9/ozSW3l5OVQqFd6+fYvp6em0Mk88Hp/zLCaiXGJAoYKSSCTQ29sLhUKB1tZWycGeABAIBDA8PAy/34/q6moEAgGcPHkSxcXFOHXqVMaTdz6tW7cOS5YsyShDhcNh2O12yc+o1Wp8+PAh46Y0H8kpvj6fD5WVleLr9+/fx8DAQFbnBgCNRoNgMIhwOCyWXKanp3H+/Pl/Uupqbm5GX18fOjs7sXXrVvH7CIVCc1rK/eDBg3C73Th9+jTa2toySkahUAiRSAQVFRVZt3k2ZWVlKC4uxsjICH7+/CmWwiKRiOTUdJVKhV27duHevXtwOBxps3h6enoQCARy1laiuWJAoYLi8Xjw8eNH6PX6WcMJMDN7ZXh4GE6nE9XV1bDZbJiamkJ9fb1kmaGkpCRvm6gtXrwYBw4cwLVr19DS0oKmpib8+PEDz58/h16vF3s4Um3evBl+vx/Hjx9HbW0tlEoldDod9Hr9nK+/b98+3Lx5E+3t7RgaGoJGo8G7d+/g8XhgMBjw9OnTrP6+/fv3o729HYIgYOfOnYjFYmJJrqqqShzkOl/19fXYu3cvHjx4ALPZjO3bt+PXr194/Pgxampq4HK50qaYz6ahoQEmkwlXr17F4cOH0dDQAI1Gg6mpKQSDQXi9XgiCkNOAUlRUBKPRCIfDAYvFgqamJnz79g1utxsajUacWp3KarXC4/Hg0qVL8Pl82LBhA8bGxjAwMIAtW7aI3zXRQmNAoYKSHBybusKrlN27d8Nms+Hhw4c4evSo2FU+ODgoOc1Vq9XmdZdXQRCgVCrhdDpx9+5daLVamEwmbNu2DU+ePMl4v8lkQjQahcvlgtfrRSwWg9lsnldAWb16NWw2Gzo6OjA4OIhYLIaNGzfi3LlzmJiY+CcBRalUoqurC93d3SgpKUFjYyOsVmvGgmvz1draivXr16O3txddXV1YtWoVDh06hLq6OrhcLskBw1IEQYBOp8Pt27fx6tUrRKNRqNVqrFmzBmazGc3Nzf+kvX9itVqhVqvR19eHO3fuoKysDHv27IHFYhE3+Uu1cuVKXLhwAR0dHXj58iXevHkj/n4ej4cBhWRDkUgkEgvdCCIiOejp6cGZM2dw7NgxGI3GvFzzT1sXyA13xaZ84kJtRFRwQqEQfn82+/z5M+x2OxYtWoTGxsa8t6mzsxMGgwFHjhzJ+7X/ZGxsDAaDAQaDYdYp3kS5wBIPERWcGzdu4MWLF9DpdCgtLcXExARcLhe+f/8Oi8UiuWJrrmi12rRSTHJxOblYvnx5Wvu4SzflC0s8RFRw3G43HA4H3r9/j0gkApVKhcrKShiNxryMGyGi/8eAQkRERLLDMShEREQkOwwoREREJDsMKERERCQ7DChEREQkOwwoREREJDsMKERERCQ7DChEREQkOwwoREREJDsMKERERCQ7/wGt1A4wl0keIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyjklEQVR4nOydd5xU5fX/PzOzvbK9N9oCgrSVzlJUxIaKBVsUI9YYNcFINIkaozFGk6i/5GuCIqjRiKIiFkBEpPfeYdm+bGV3Z9vs7uzM/f1xuHNnYXfn3jt95rxfr3kxM3vLM8Pc557nlM/RCIIggGEYhmEYxoPQunsADMMwDMMwF8IGCsMwDMMwHgcbKAzDMAzDeBxsoDAMwzAM43GwgcIwDMMwjMfBBgrDMAzDMB4HGygMwzAMw3gcbKAwDMMwDONxsIHCMAzDMIzHwQYKw3gAP/30EzQaDV544QW7j6XRaDB9+nS7j9MXjhyvLzB//nxoNBoUFxfL3ic7OxvZ2dlOGxPDeDtsoDB+iUajgUajgVarxZkzZ3rdbsaMGZZtly1b5roBupni4mJoNBrMnz/f3UORjWg0WT+CgoKQnp6OW2+9Fdu3b+9xv7a2NvTr1w8ajQZ33nmni0ftXJYsWYKHHnoI48ePR1hYGDQaDX7/+9/b3O+bb77B9OnTER0djYiICIwfPx7vv/++C0bMMBIB7h4Aw7iLgIAAdHV1YcmSJfjzn/980d9Pnz6Nn376ybIdIzFu3DgcP34c8fHx7h7KRWRlZVkMq9bWVuzYsQMrVqzAF198gRUrVuCmm27qtv3y5cuh1+uh0WjwxRdf4Ny5c4iLi3P6ONevX+/0cyxcuBB6vR4xMTFITU3t0xgX+ec//4lf/vKXiIuLw913342goCCsWLEC8+fPx+HDh/H66687fdwMA7AHhfFjkpKSkJeXh6VLl/ZogLz77rsAgOuvv97VQ/N4wsLCMGTIEI80ULKzs/HCCy/ghRdewGuvvYbNmzfjueeeg9lsxsKFCy/afvHixdBqtfjNb36Djo4Ol3kKBgwYgAEDBjj1HJ988gmKi4tRX18vy3NSXFyMp556CrGxsdizZw/+9a9/4R//+AcOHTqEAQMG4G9/+1uvniiGcTRsoDB+zQMPPICqqip888033d43Go1YtmwZJk2ahGHDhvW6/+nTp3HPPfcgLS0NQUFBSE1NxT333IPTp0/3uH11dTXuv/9+JCUlITQ0FKNGjerzhthXnsILL7wAjUaDn376yebnPHv2LF588UVMnjwZycnJlrHeeeedOHbs2EXHzcnJAQC8//773UImYpirrxwUJd+J9WdYsWIFxo0bh7CwMMTGxuL2229HRUWFzc8mh1/84hcAgKKiItTW1lreP3LkCHbs2IHLL78cixYtQlBQkMUwVYPZbMbf//53DBkyBCEhIUhPT8evfvUrNDU1XbRtT/+3y5Yts3zPGzZswPTp0xEZGYmoqChce+21OH78uKLxzJ49G1lZWbK3f++999DR0YHHHnus29hiYmLw7LPPAgD+/e9/KxoDw6iFQzyMX3PHHXfg17/+Nd59913ceOONlvdXrVqFmpoavPrqqygoKOhx3927d+OKK65Ac3Mz5syZg2HDhuHEiRP473//i6+++go//PADLrvsMsv2dXV1mDRpEgoLCzFlyhRMmTIFlZWVePjhhzFr1iynfs5NmzbhL3/5C2bMmIGbb74ZEREROH36NFasWIFVq1Zh69atGDlyJABg+vTpaGxsxJtvvomRI0d2+15GjRrV53mUfici//d//4dVq1Zhzpw5mDZtGnbu3Inly5fj4MGDOHDgAIKDg+36/IIgWJ5rNBrL88WLFwOgJNfY2Fhcf/31+Pzzz7F582ZMnTpV8Xl+9atfYdOmTbjttttwww03YO3atXjjjTewefNmbNmyBSEhIbKO88033+Crr77C1VdfjYcffhjHjh3Dd999h927d+PYsWNO81z9+OOPAMiwuZCrr7662zYM43QEhvFDAAhpaWmCIAjC/fffL+h0OqGsrMzy96uuukqIiooSWltbhd/97ncCAGHp0qWWv5vNZmHIkCECAOG///1vt2N/8sknAgAhNzdXMJlMlvcfeOABAYDw5JNPdtt+9+7dQkBAgABAeP7557v9LSsrS8jKyurxMzz//PMCAGHDhg0XfbZp06Z1e6+6ulpoamq66BgHDhwQwsPDhdmzZ3d7v6ioSAAg3HvvvT2ee8OGDReNV813In6GyMhI4dChQ932ueOOOwQAwvLly3scQ29juvCzC4Ig/OEPfxAACP3797e8ZzAYhJiYGCE6Olpoa2sTBEEQvv76awGAcPfdd8s6p8i9994rABDi4uKE4uJiy/smk0mYO3euAEB48cUXu+3T0//t0qVLBQCCTqcTfvjhh25/++1vfysAEF599VVFY7vw2L/73e963SY+Pl4AINTV1fX49/DwcAGA0NraqmoMDKMEDvEwfs8DDzwAk8mE9957DwBQUlKCdevW4a677kJYWFiP+2zbtg0nTpzAxIkTcdddd3X727x58zBlyhScPHkSW7ZsAUAho48++giRkZEXhUXy8vIuOoajSUxMRGRk5EXvjxw5EjNnzsSGDRtgNBrtOofS78Saxx9/HCNGjOj23gMPPAAA2LVrl6JxFBcXW3JQfvOb3yA/Px9/+tOfoNVquyV4fvbZZ2hoaMC8efMQGhoKgDwHycnJWLFiBRoaGhSdFwCeeOKJbiEVrVaL1157DVqt1vL7ksPtt9+Oyy+/vNt7Dz74IADl34cS9Ho9ACA6OrrHv4vvi9sxjDNhA4Xxe8aPH48RI0bgvffeg9lsxrvvvguz2Wy5QfbEvn37AAAzZ87s8e/i+/v37wcAnDhxAm1tbRg1alSPk7+zdUsA4Ntvv8X111+PlJQUBAYGWvJKvv76a3R0dKCurs6u4yv9TqzJy8u76L2MjAwAUGwolJSU4I9//CP++Mc/4o033kBBQQHmzp2LzZs3d6vgEcM79913n+W9gIAA3HXXXWhvb8eHH36o6LwAMG3atIve69+/PzIyMlBcXIzGxkZZx3Hk98Ew3gobKAwDWq2XlJRg9erVWLp0KcaOHYvRo0f3ur24gkxJSenx7+L74g1J3D4pKanH7ZOTk9UOXRZvvvkmrrvuOmzduhX5+fl48skn8dxzz+H555+35J50dHTYdQ6l34k1/fr1u+i9gABKkTOZTIrGMW3aNAiCAEEQYDQacfbsWXz++eeYNGmSZZvjx49jy5YtGDJkCCZMmNBtf7FE+Z133lF0XsD2/69cz4Mjvw8l2PKQ2PKwMIwj4SRZhgHws5/9DIsWLcLDDz+MiooKPPfcc31uL07QVVVVPf69srKy23biv9XV1T1u39txtFotOjs7e/yb3NV4V1cXXnjhBSQnJ2Pfvn0XGRCOKhtV+p24E9F7cuLEiW5Js9YcOXIE27Zt62bY2KK6uhq5ubkXvS9+J57w2fsiNzcXdXV1OHXqFCZOnNjtb5WVlWhtbUV6enqvoU+GcSRsoDAMaMV6yy234MMPP0R4eDjuuOOOPrcXvSu9lfhu2LABADBmzBgAwJAhQxAWFoYDBw5Ar9dfdKPq7TgxMTE4dOgQjEYjAgMDu/1tz549tj4WAKoeamxsxNy5cy8yTlpaWiyhGWt0Oh0AZat1pd+Ju+jo6MCHH34IrVZrkai/kPLycqxduxbvvPOOIgNl48aNyM/P7/ZeYWEhysrKkJ2d3aNnxJOYOXMmtm7dijVr1lxkoKxevdqyDcO4Ag7xMMx5XnrpJXz55ZdYu3Ztjwml1kyePBm5ubnYsmULVqxY0e1vK1aswObNmzF48GBMmTIFABAYGIi77roLzc3NFyXJ7tmzBx999FGP5xk3bhy6urqwdOnSbu8vW7YMW7dulfW5EhMTERYWhr1796KlpcXyvtFoxBNPPNFj7klMTAw0Gg1KS0tlnQNQ/p24i88//xznzp3DVVddhSVLluDdd9+96PHpp58iPDwcn376qaKE0DfffBMlJSWW12azGb/5zW9gNpu75bp4Kvfddx+Cg4Pxz3/+s1tfoYaGBova8sMPP+ym0TH+BntQGOY8mZmZyMzMlLWtRqPB+++/jyuvvBLz5s3DDTfcgCFDhuDkyZNYuXIlIiMj8cEHH0CrldYAf/7zn7F+/Xq88cYb2LNnj0UHZfny5bjmmmuwatWqi87zy1/+EkuXLsUjjzyC9evXIyMjAwcOHMD27dtx3XXXXSQw1xNarRaPP/44/vKXv2DEiBG44YYb0NnZiQ0bNqC+vh4zZsyweDdExP4rmzdvxl133YXBgwdDp9Nhzpw5uPTSSx32nbgDMbyzYMGCXreJiorCrbfeimXLluG///2vRejNFpMnT8aoUaMwb948REdHY+3atTh48CDGjh2Lp59+2iHjV8K7775rqZoS9Xy+/vprlJeXAyDP3m9/+1vL9jk5OXjttdfw+OOPIy8vD/PmzbNI3ZeXl2PhwoUXeVYYxmm4u86ZYdwBrHRQbNGTDorIiRMnhLvvvltITk4WAgIChOTkZOGuu+4STpw40eOxKisrhfvuu0+Ij48XQkJChJEjRwpLly7tUVdEZPPmzcLUqVOF0NBQITIyUrjmmmuEgwcPKtJBMRqNwt/+9jdh6NChQkhIiJCUlCTcfffdQnFxsUXDo6ioqNs+p0+fFq677johNjZW0Gg03b6Dvsar5Dvp7TMIgm0tlgvpSwdF5OTJkwIAISkpSejs7OzzeFu3bhUACCNHjrR5bvE7PHPmjPD6668Lubm5QnBwsJCamio88cQTgl6vv2ifvnRQevqtCULP/7dyxtXbo7djrVq1SsjPzxciIiKEsLAwIS8vT1i2bJns8zKMI9AIgpXEIsMwDMMwjAfAOSgMwzAMw3gcbKAwDMMwDONxsIHCMAzDMIzHwQYKwzAMwzAeBxsoDMMwDMN4HGygMAzDMAzjcXilgdLe3o6TJ0+ivb3d3UNhGIZhGMYJeKWBUlJSYuk+yzAMwzCM7+GVBgrDMAzDML4NGygMwzAMw3gcig2UtrY2vPfee3jqqadw7bXXIj8/39KGWyl//etfkZ+fj0WLFqnan2EYhmEY30SxgaLX67Fs2TKUlJRg4MCBqk984sQJrF69GkFBQaqPwTAMwzCMb6LYQImLi8OXX36Jzz77DI888oiqkwqCgDfffBNXXXUVYmNjVR2DYRiGYRjfRbGBEhQUhLi4OLtOunbtWhQVFeGBBx6w6zgMwzAMw/gmAa4+YVtbG/7973/j7rvvttvQkYvJZILRaHTJuRjvIjAwEDqdzt3DYBiGYS7A5QbKsmXLEBwcjNtuu032PnV1dTh37pzltVz9E0EQUFVVBb1eD0EQFI+V8X00Gg2io6ORnJwMjUbj7uEwDMMw53GpgVJWVoYVK1bgueeeU5Qcu2rVKixbtkzx+fR6PRobG5GQkIDw8HC+ATHdEAQBra2tqK2tRWhoKPr16+fuITEMwzDncamB8tZbb2H48OGYPn26ov3mzJmDyZMnW16XlJTgpZde6nMfQRBQU1ODqKgoxMfHqxku4weEhoaio6MDNTU1iI6OZiOWYRjGQ3CZgbJ3717s3LkTL730EiorKy3vm0wmdHR0oLKyElFRUQgPD79o3/j4eMVGhslkgslkQlRUlN1jZ3ybqKgoNDU1wWQyISDA5VFPhmEYpgdcNhvX1NQAAH7/+99f9Lfa2lrMmzcPjz32mKLclL7o6uoCAL7hMDYRfyNdXV38e2EYhvEQnDYb19XVobW1FWlpaQgICMCYMWPw8ssvX7Tda6+9huTkZPzsZz9D//79HT4OdtkztuDfCMMwjOehykD5/PPP0dLSYqms2bp1q8VDcvPNNyMiIgKLFy/GmjVrsHz5cqSkpCApKQlJSUkXHev//b//h5iYGEydOtWOj8EwDMMwjC+hykBZvnw5qqqqLK83bdqETZs2AQBmzZqFiIgIx4yOYRiGYRi/RJWB8umnn9rc5tlnn8Wzzz7rkGMxHoogAGYzwEJnDMMwjINRLHXPMADQ0dGBRQsXIjUtDaGhoRg/fjzWrVsna9+jR4/i1ltvRf/+/REWFob4+Hjk5+fj66+/7vk8ixYhNTXV5nn27t2L2bNnIyoqCpGRkZg1axYOHDhgz8dkGIZh3AQbKIwq5v/sZ/j7//t/uGvuXLz54ovQAbjmmmuwZcsWm/uWlJSgubkZ9957L95880384Q9/AEB6N4sXL+5+nvnz8fe//x133XUX3nzzTeh0uh7Ps2/fPkyZMgWFhYV4/vnn8dxzz+H06dOYNm0aTp486bDPzTAMw7gIwQs5ceKEMHXqVOHEiRO9bmMwGIRjx44JBoPBhSPzD3Zu2iQAEF57/nlBaGgQhHPnBENRkTAgJ0eYOGGCqmN2dXUJI0eOFHJzc6Xz7NxJ53ntNct7BoNBGDBggDBx4sRu+19zzTVCTEyMUFdXZ3nv7NmzQkREhDB37tw+z82/FYZhGM+DPSheTP/+/XH33Xdf9P6MGTMwbdo055y0owMrli+HTqfDgz//Ob2n1SIkOhr333EHtu/YgbLTpyk/RQE6nQ4ZGRlobGy0vLdixQo6z4MPWt4LCQnB/fffj+3bt6OsrMzy/ubNm3HFFVd0a0CZkpKCadOm4ZtvvkFLS4u6z8sw/ozZDDQ3A2fPAq2t7h4N42ewKpWX0tLSguLiYjzyyCMX/e3QoUO48847e9zPaDRCr9fLOkdsbCy0WisbtrMTaG7G/sOHMXjgwO4qvRoNxo0bBwA4sGMHMpKTgfBwQNu7Ddza2gqDwQC9Xo9Vq1Zh9erVmDdvnuXv+/fvx+DBgy9SA7ac58ABZGRkAKBcldDQ0IvOERYWhs7OThw5cgQTJkyQ9bkZxu8wmYCWFno0NwNNTUBdHXDuHNDWBhgMwNChwJVX9nlNM4wjYQPFSzly5AgEQcDIkSO7vV9eXo76+npceumlPe63detWzJgxQ9Y5ioqKkJ2dTS+MRpq0TCZU1tQgpQdNG/G9szU1tNrq6gIiIoDAwB6Pv3DhQvznP/8BAGi1WsydOxf//Oc/LX+vrKxESkrKxec5/97Zs2ct7+Xm5mLHjh0wmUzQna8q6uzsxM6dOwEAFRUVsj4zw/g0XV2SESIaIrW1QH09GSHt7WSsAEBICD0iI+lx7BiQkwMMHuzez8D4Df5noOTlAVYaLm4nORnYs0fxbkeOHAGAiwyUgwcPAkCvBsrIkSNlV9skJyfTk64ui3GC4GAY2tsR3EM36pCQEACAobMTCA4GOjpon4gIen2BYuuTTz6JW265BWfPnsWnn34Kk8mEzs5Oy98NBgOCg4N7P4/BYHnv0UcfxSOPPIL7778fTz/9NMxmc7e+T9bbMozPYzSSASIaI3o9UFMDNDaSIWIwUBhWo6FrMzQUiI4GkpKA3to9NDYCu3cDaWnkHWUYJ+N/BkpVFeADq+nDhw/3qM576NAhaLVaDB8+vMf9YmJicMUVV8g/kclExonRSKspAKEhIeiwMiRE2tvbLX+HRkPbd3bS5BgeDoSFdXMPDxkyBEOGDAEA3HPPPZg1axauv/567Ny5ExqNxtJpuNfzWIV0Hn74YZSVleG1117D+++/DwDIy8vD008/jZdffpnFAxnfpbWVvCDNzWRE1NbSNSd6RERDJDSUHjExQEqKcv2i1FTg1CngwAHAqrs8wzgL/zNQRK+Ap6ByPEeOHLnIewJQXkb//v177AoNUNijvr5e1jkSYmOha20lI8PKk5GSnIwKq47UIpXV1QCAVOvPFBQkxbfFkE8vK7RbbrkFDz30EE6dOoXc3FykpKT0GJoRvSKpqand3n/55Zfx1FNP4ejRo4iOjsaIESMsYoGD2S3N+CJGI7B2LVBcTIaIVksLg9BQIC6OnjsqZ0Sno/nq4EEgO5s8KQzjRPzPQFERTvFEDh8+3C2hFADMZjN+/PFH5Ofn97rftm3b5OegHDyI7MTEi8Izo4YPx4bNm9HU1NQtgXXn+e921IgR3Q+k09Ek2d5ORkpkZDeDR0QMw4hJvKNGjcKGDRsuPs/5vJJRo0ZddIyYmBhMmTLF8vqHH35Aenq6xVPDMD7FmTNAUREZDD2EXR1OTAwlzu7eDSQm9ppfxjCOwP8MFB+gpqYGtbW1Fk+CyFtvvYW6ujqMuNBAsEJWDorZDBgMSI6KoknvgtyRW264Aa//859Y/P77eOqXvwRAVTRLP/4Y4/PykJGeDgBoa2tDaXk54uPiEC+u5jo7UVNQgMTsbAr5nD+20WjEBx98gNDQUAwbNozOc8steP3117F48WI89dRT0nmWLsX48eMtFTy9sXz5cuzevRuvv/5692okhvEFOjqA/fvJW+IK40QkMxMoKKCk2R68uAzjKNhA8UIOHz4MAPj+++/x6KOPYsiQIdixYwfWrl0LgCTfd+7cifHjx1+0r80cFEGgWHZbG016PdzYx+fl4dYbb8QzL76ImtpaDOzfH+//738oLi3Fkrfesmy3a98+zLj+ejy/aBFe+O1v6c2gIDz09NNoampC/pQpSMvJQVVNDT766COcOHECf/vb3yz5IuPHj8ett96KZ555BjU1NRg4cCDef/99FBcXY8mSJd3GtGnTJrz44ouYNWsW4uLisGPHDixduhSzZ8/GE088oej7ZRiv4NQpyqcbMMC15w0KooTavXvJWImJce35Gb+BDRQv5PDhw9DpdPjkk0/w+OOPY+nSpZg6dSo2btyIG2+8EQcOHECgGterIFCuSB/GicgHb7+NP6Sn48NPP0VDYyMuveQSfPPJJ8iXkTw3b+5cLPnwQ7y9ZAnONTQgMjISY8eOxauvvoo5c+Z0P88HH+APf/gDPvzwQzQ0NODSSy/FN998c1EYKy0tDTqdDq+99hqam5uRk5ODl156Cb/+9a8R0FtVAsN4K62t5D2JjOy96saZJCUBJ09SyPyKKy7ysjKMI9AIgkLJTw/g5MmTeOCBB/DOO+8gNze3x23a29tRVFSEnJwcS1mqr7BgwQJs2rQJp06dctxBBYEmvZYWiiu7okOxIFACrkZDybOhoW6Z6Hz5t8L4KHv3AuvXkyaJu7qJt7RQ6fJ117nei8P4BRyY90IOHz5sydNwCIJAXpPWVtcZJ4CkwaDVUilzc7MkEsUwTM/o9VRJEx/vPuMEoEWFTgfs2kUlzQzjYNhA8TIEQcCxY8cca6C0t9NqSKdzz4QXEEAhpbY2mnyNRtePgWG8hSNHqJImPt7dIwHS04GyMuDQIXePhPFB2EDxMoqKitDS0uI4A6W9nTwXWq17YtkiWi15U4xGSe3S+6KPDONc6urIQElM9Iy8D52OxrJ/v2cpdDM+AWcPehn9+/eHw9KGOjrIONFoPEPPQAz5iH1/urpsNhxkGL/i8GG6Zi8QKXQrcXHA6dOkjXL11e5d6DA+Bc/8/kpnJxkBguAZxok1gYE0ybW2csiHYUQqK4Hjx0mm3tPIzKSy55Mn3T0SxodgA8UfET0UZrNrBZ6UoNNJDQfFRoUM468IAuV5GAyAlaqyxxAcTEmze/bQ9cowDoANFH/jgs7EHo3YcNBoJEOFYfyVsjLyTnhy/5vkZCo73ruX88cYh8AGij8hGidGo+cbJ9bodLRyNJvdPRKGcT0mE3UQNpspJ8tT0WrJgDp8GCgpcfdoGB/A5w0UL9Shcw4mEyXXXdCZ2CsICCCjqrPTKYfn3wjj0RQVUVNAT/aeiERG0r+7drHXk7EbnzVQRHnzrq4uN4/EAzCbyTjp6LioM7FXoNHQw0mlx+JvhCXxGY/DaKQS3oAACnd6A+np5EE53zOMYdTiszOyTqeDTqdDU1MTIkWr3h8RjZP2dscaJ2LfHq3WNW7nwEDyoBiNDk/sbWpqsvxeGMajKCigm33//g47ZGGpBnsPa51YHKcDzEMRePIs8uadRM6VPbcjYRhb+KyBotFokJiYiMrKSgQHByM8PBwab/Mc2IvZTOqsBgPd4B05I507R2XAABkosbHO98yIpdHnux3biyAIaG1tRVNTE1JSUvzv98F4Nu3t5D0JD3eoFMDew1rom5z9W9cB0GHP52eQM3OgeyX5Ga/FZw0UAIiOjobBYEBdXR1qa2vdPRzXIggU0unoIPewI2++ovqsSF0daTRERTnXSDGb6XOFhTlswtNoNOjXrx+io6MdcjyGcRgnTgAVFcCgQQ49rLhO0WgEhDopamRoBwRBA6Ohi0TchgxxzokYn8anDRSNRoOUlBQkJibC6G9iX2VlwObNpPLoyBBMQQHw5ptUEQSQoSBqlGRmAo8+CjjzZl9YCOTlASNHOuRwgYGBHNphPI+WFmoI2K+f07wPoSHAnTc6R1/o45U6tBlAC5Y9eygvxUGeT8Z/8GkDRcQv8wsKCii0ExwsGRP2UlcHPPcc9coBgOuvByZOBF5+mcI9JSWk1fDCCzQhOYPQUODYMWDECPKkMIwvcuwYUF0N5HpA/oYg0CJETRK5TgecPQvs2wfk5zt+bIxP47NVPH5NXR1QXAwkJDjumB0dwJ//LBknl14K/PznwPDhwKuvSueqqQGefpomWGcQG0v5L0VFzjk+w7ibxkZSjY2Pd30fqq4uurZ+/BFYsgT43e+Au+4Cbr4Z+OILdcdMTaWKnrIyx46V8Xn8woPidxQVUY6IAi9Gn5n9goCJm95GzpkCAEBLRBLWDv8tOr4Wq2lyEHr53zDt+xcQW18ItLTA9Ls/YFv+UyjLmdLtUIGBQN4IM3IyVZYL63QUsjp6lFaXXBrM+BqHDwMNDU73ngR2tgJHCmi+KCykf0tLe/e4/ve/wKRJpBirhOhoWjTt3g0kJXluew3G4+DZ3dfo6KCGYjExinbrK7N/+ImVyDnzIwDAqAvG91OeQ4PQDzBI27Rp4vH1zL9i5pZXkFG1FzqTEVM2/AU7GxfgyJCbpA0NwJ7DWuRk2hH7TkykibS01KHllwzjdmpryfhOSnKsJEBdncUQmbK1GP3OFSKqpUre/qGhFC7u6gI++ghYuFD5GDIzyQg6ehQYPVr5/oxfwgaKr1FaSpNRTo6i3XrL7E+q2I9xB5ZYXu/I/xXaU7MRhh48IKGh2DL7OYzb+k8MOL0OGgiYsP8d9Ouswb5xC2Do0FJmv735ykFBNHkfP06fk8uDGV9AECgxtqVFvWpsVxdV/hQWSl4R0aN6nsze9hWl6nNy6NG/P/0bGAg8+CAdY+NG4MYbgQEDlI0rMJAWTXv3krESF6fu8zF+BRsovoQgUJKqTqc69NEts7+qClj4KiCc74Fz662Y+rNJAPryfmiAmx4D/hcHfPIJAGDI0a8wJLoWnwz8DVqMDpLZT0qiPJvqauUuZ4bxRM6epes3NVX+Pg0NwNatkiFSUiJL78ioC4Y+NgfxeVbGSFZW720wbruNclIA4IMPgD/+Uf4YRRISgFOnqKrnyitdn1/DeB1soPgStbU0QSUm2n8sg4Gqc8SVV14eJcvJQaMB7ryTkvz+7/9Iv2TbNsws+B3WTnkOCHWAsm9EBK0UT51iA4Xxfsxm4OBBFFYGYe/hfrK8jFqTEdd+sQiRzX2Hagyh/dAQOwANcf3RENsfVRH9oQ9PRWi4Vn6Z8TXXAF9/TUnw+/eTp0dpqb9GA2RkkOezf3+H67swvgcbKL5EYSEZFvbqDQgCaZ2IHUnT0ijurHTFM2sWuXJffRVob0dizTFcv+4pbJz9RwAOqDCKjycDZeRI52qvMIyzKS0FTp3C3pqB0LfIC1kOPrOhm3EiQAN9ZBrOxfTHuZj+qO9H/xpCY3vcPzBQQaJ6YCAtUP7xD3r9/vvA668rnxPCwuhYu3aRp8iTuzMzbocNFF/BYCD3sMLk2B757DNg2zZ6HhZGpYZqJ5KxY4FXXiGXcGMj+jWXY9Y3C4GJzwEDB9o3zthY+syFhZx4x3gvXV3klQBgNNEN36bKq2DGyJOfW15unvFbnE2/DKbA7jtpgB7zxcRqOkVMmwasXEmhpIICmiOmTLG520WkpdHC4sABYPJk5fszfgMbKL5CaSmFeOy86aeW7gLWf0QvNBrynNgrujZgAPDaa9A/9UdE68sRamgEnn0WWLSIDBi1aDTkOTl6FBg2rPf4OcN4MmL+SGYmcL4BsE2V1+3bAX05Pb/kEkz91aTzf3COMiwA8pbcc4+Uf/LBB8CECcrz3XQ6CsseOkT5L0pybhi/grOUfAGzmfp2BAfbJYsd3VSGyRv/SiEegFy6l13mmDEmJWHdda+jKuESet3eDvzpT8D339t33IQESpQtLrZ7iAzjcjo7yXsSHCzfwBYE4HPJe4Kbb3bO2HpizBhScQYoiV7t9RsTQ3PArl2ObWLK+BRsoPgC1dWk0mhHcmxgRwuu3PQiAo3nxU0mTwZuvdVBAyQ6gyOxesbLKM0+79Y1m4F//hP4+GPJKFJKQACVHR87RsdjGG/i9GnyfqakyN/n6FEKkQBUeWOPF1IpGg0wf770+n//o/CyGjIyKFR0/LhDhsb4Hmyg+AKFhbQaUdubxmTCpI2voV9zBb3OzgaeeMIp+iImXRC2zPgtcMMN0puffAK89Zb6nkHJyTTJV1Q4ZpAM4woMBvKeRERQUohcrL0nc+e6Xgdo0CApd0SvB776St1xgoMpRLtnj9RCg2GsYAPF22ltpURRe4SPPvoIaeV7AADtwVGUHxLipD7sAKDRAvffTw9xcl2/nkI+bW3KjxcSQs3MTpxw7DgZxpmcOAFUViorky8qIrEzgMKbU6c6Z2y2+NnPpAqeL79Ub2AkJZGw5J496r2ojM/CBoq3U1IC1Nerr97ZsgVYsQIAYNZosXXGb12nK3LDDdRYUFw97t8PPPMMNQNUSmIicOaMun0ZxtU0N9PvPSZGWd7Yl19Kz2+80X29qFJTgauuoucGA/Dpp+qOI2qjHD3KDUCZi+AqHm9GTI4NDVWXHFtURHon59k5egGqU0fCqZUAAAztwMcrxfHmI+HKOOT/8CKCO1uAoiK0PvY0Nsx6EU0xvYpy90As0BUF7NuNwKgw5N06CDnjFcT1GcaVHD1KngMlDQFraoBNm+h5ZCSpsbqT22+nrscdHcCaNcD11yvLpRGJiJCaCaamOtd7y3gV7EHxZiorgfJycvUqpamJlGI7OgAAhQMvx9HBN9jYyT5ER4kgaNBmkB4l0cOx6sq/oTk8CQAQ3lqLK7/5DaJKjnTbzubDGIi2FgH6s63Y89lpp34WhlFNfT11LE5MVCZ09tVXUiL4tde6/0YeE0NeHEBqJKiW9HTyBh875pChMb4BGyjeTEEBleiFhirbr6uL1F1rauj1oEHYNekxpyfb5Y0wIzpKQFjoxQ9jUjrWXf866uOoCVmwsQVXb/gdhlRu7HH73h6a86JUxnaVCbcM42wOH6acjdieFV57pKlJKukNCgKuu84pQ1PMTTcBUVH0fNMmCrOqISCAEmZPnlSfLM/4HBzi8Vaam6lEUU1y7NKlNEkCQL9+wDPPwLwlCHCyHEFOpoCczL7CR9HATX8G/vpXYO9e6MxdmPLTq0BODU2EMvj4c6CtMwA9NVtmGLdTXU1eguRkZQuCb7+1eDsxa5ZkFLibsDBg3jzgnXfo9fvvAy++qO5Y8fEkl3D2LInWMX4Pe1C8lZISWoUpTY5dv56afgG0annmGZoYPIXQUOD3v6dJWGTpUpLFloPu/E/a5Nw8GoZRjCBQk73WVloYyKW9HfjmG3qu1XYv0fcEZs+mahyArtPzsv2KCQqiEBaLLjLnYQPFGzGZSNwoPFxZDPvUKeouLPLQQ8DQoY4fn73odMAvfkEt3kXWrJG58/lVqdHIZYuMZ1FRQSGMtDRl+/3wg9RVfOpUyRjwFAIDgbvvll5/8AEgqBRNjImh0LUauQHG52ADxRupqKCHkuTY+nrgz3+WZKWvvloqE/RENBqqEhBXmrt2URxeLiYTudMZxhMwm8m70NWlrNt4Vxc16BOZO9fRI3MMU6dSXx0AOHMGWUWb1R0nJgZoaKDkf8bvYQPFGykooAlPbu8OoxH4y1/ISAGosd6CBc4bn6MICABmzKDnXV3ATz/J31cQJDlwhnE3xcV03Sr1nmzZIiWzjx0rGQGehlbbTQL/0r0fQGtSkdSm09F1X1DguLExXgsbKN6GXk+Z8nLzRgQB+M9/JJXV+Hjgt79VJq3dGyYTrXacGUq5/HLp+Q8/yD+XVkvudL3eOeNiGLl0dZH3RKtVVnEnCMAXX0ivXdkUUA2jRgEjRwIAIpurMOSM3LDsBcTHU+sKcUHF+C1soHgbxcVkFMhNslu9unt54rPPKkvQ64vSUoqNFxU5z0jJzAQGD6bnxcXUd0gOWi19T2rLHhnGUZw5Q9eIUu/Jvn1SwujgwcAllzh8aA5FowHuucfycvSRjxFgVJFLEhlJ80pZmQMHx3gjbKB4E0YjlShGRckrUTxyRCr/A4Bf/hIYONAxY2loIHfsxImkX1BY6Dwj5YorpOc//CB/v3796Ptqb3f4kBhGFh0dZGiEhtICQQnWTQFvvtn1TQHVMGiQpT9QaIceQw9/aWOHHtBoKE/n1CmuxvNzWAfFCyjcUYm9K07D2NIBGMKBgChgd9+TVVhLDWavehUh5y/wY8Pn4kDDTGBlz9sblNzDOzspATU/HxgzhqoK1q0jI6V/f8dPpFOnAu++S+fduBG47z55k31CAo2ppESZpDjDOIpTpyihfcAARbvF1ZygBQZAnpdx45wwOCdx110wb9kGrWDCkCNfAA1XKZdDiI8npezqapK/Z/wS9qB4AXtXnIb+bCvamrpIzt2g7VPyvaO5A1PWvYSQdsq/KE8eg+2X3NfnPoJARoXN1BRBILdzbi4wejS9l5ZGfUH69XNOuCc8nDw1ANDSQhU9cggIoETio0cliXCGcRVdXSSIGBGhuKnfsMMrpBc33aSu15a7SE1FQe5sAEBgV7u6RoIhIbQgYU0Uv4YNFC9AlG3XQEBYiMmm3Pvowq8Q30C5F82RKdh++dMIDdfa3C86SkDeCBs38spKWg1NmtTdi+FsI0VtmCcpiWLZXLbIuJrKSqrAUSiEGN1UjvSSHfQiNlaqZHMXRiOFdEUlWxkcGXU7jAHnewWtWUPfhVJiYkgtW8F5Gd+CQzxeRGhgF+68EYCmj5u/IABrpRt45MvP4NbsMDikQ3FrKwkozZ7d86QrGinr1pGRkpPjuHDPiBHUXK2mhpQq6+rkTfwhIRTHPnmS5bMZ11JSQl4UuXIA57n0+ApLTylcf71jKu7kYjLRNd7SQte7yUTnDw+na09mqLQ9LBaHh8zFmCMf0zH++1/gN79RNpbYWJpHyssVh8gY34A9KN6AaI9oNLZv+IWFFPMGgOHDgexsx4zBZKKqnUsv7XuSSk2VPCmOTJzVaoGZM+m5IFCbd7kkJZGuQl2dY8bCMLZob6ffnJKGgABC285hYPH533ZYGC0GnIUgkDFSW0uGwMmTdM02N1MlzZgxwDXXALfeSqKO4eGKxBIPD5mL9pBoerF5s3Jtk4AAmu/kVu4xPgcbKN6AmMkuJw69caP0PD/fcWMoLQUyMoDx423L64tGSkyMY40Ua02U9evlHzcqilaDLP7EuIqKCtLxUJgcmnv0K+jM57v5Xn01GQWOoqODxlRaSsbIqVPAuXNkCAwdStfsLbcAd9xBKs7TppGoY2oqXfuDBilSZzYGhuHIqNulN95/X/mY4+IoD0WJijTjM3CIxxuQ237cZKKW5wBNOpMnO+b8DQ3S8eTKdItGiiOre5KSyINz6BDFtI8dk68NERtL248Y4dhJn2F6orCQfu9KkmNbWjDoxHcAAJM2ALrrr1d/fpOJjHIxVCMIFKqJiADS0+n6jI0lT2d0tLxxDhtGhk1Li+x5oCD3auQVrSTD5uBBCs+KyfVyiI6mPJSyMs/XgWEcDntQPJ26OvkGytGjkvrimDHkprUXsaQ4L095DoczPCkXKsvKJS6OVotFRfaPgWH6ormZ8k/i4pTtt3YtAo0GAEDRwMvlh4fMZjJCqqvpOjt5kn7nra107Y0bB1x7LTXfvPNO6oZ82WWU1xEXJ9+ISkmhhUZVleyPZNZd0Ejw/feVVdSJ6runTnElnh/CBoqno6QiRvSeAOSetZeeSoqVkpoKzJrlOCNl0iSKzQPA1q2AwSBvP62WVn1HjkgNExnGGZSXA42NtPqXS2cnsGoVAECABsdHKJC1LyggL2dwMHkZrrqKQjV33kn5I1OmAEOGAMnJlDSuFo2G8tp0OmXdhqdOJcMGoDlgs8JGgvHxwNmzlCvD+BVsoHgyHR3A8eOAVkZoxGikGzZAk5AjhJ2sS4rtqSRISXGckRIcbFGqRHu79JnlkJREn6m0VP35GaYvBIGk7YOCbOdqWbNhAxkZAIozJqE5WqYsfnMzGezXXQfcdReV448YQTkjERGOF01MS6PqPAVeFGi1wL33Sq//+19li4SwMFqI8HXrd7CB4smUltKqQSsjOXbvXnLpAsCECYpLGy+itZUeEycq1nHoEUcaKWo1UQIDacI+fty5DQ4Z/6W+nvIllFwzJhPwpSQJf3DorfL3rakBsrIor0SJQaQWrZa8KIKgTJ9k9GhLI0FUVwNr1yo7b1QUha7Y++lXsIHiqQgCXZBy48PW1Tv2hnfEkuKRIx0rEe8oI2XwYFohApT4evas/H2Tkyk/QMkKkGHkUl6uKIkUALBzp+U3XJVyKeriBsvbz2ikvIzcXNf26cnMpIdS8TVrL8onnygLE8XFUT6ekmud8XrYQPFUamvpRpqYaHvbtjZg9256Hh0trVTUoqSkWCmOMFI0motLjuUSHk6hoVOnlJ+XYfrCbKbflZLQiiB0awp4fMQt8s9XW0vzg2isuwqdjsJIRiPlzshl4EApPNvUBKxcKX/foCD6fln63q9QfPdpa2vDe++9h6eeegrXXnst8vPzsXr1aln77t27F3/5y19w55134sorr8S8efPw6quvoo4FtC6mqIgMDzkrse3bpYli8mTFfT+6UV+vvKRYKSkplMhnj5EyY4ZkPP34o7KupwkJdCNpbFR+Xobpjepq8swpqd45fJjKaAEgJweVaWPk7ScIgF5Ppb9KuyQ7guxsCisp9UTefbek57RypSXvRhaxsZQQLIayGZ9HsYGi1+uxbNkylJSUYODAgYr2/fe//439+/dj6tSpeOKJJ3D55Zdjw4YNWLBgAc6dO6d0KL6LwQCcOCG/zNC6emf6dPXn7eykmLaakmKlJCfbZ6TExNA4ASofPnBA/r79+pFxcuaMsnMyTF+UllJeRmio/H2svCeYO1e+50WvJ29pTo6yMTqKwEDSJGpvly+DANDiRFTHbW8Hli+Xv6943ZaVKRkp48UoNlDi4uLw5Zdf4rPPPsMjjzyiaN9f/OIX+N///odHHnkE1113HR588EH85S9/QX19Pb744gulQ/FdxORYOSuxhgYSQALI3as2Z8QRJcVKEY2U2FgyUpTqHKhNltVoaLI7dowmSYaxF6ORPCFKSosLC0m4DKAKsylT5O9bW0uluwqVah1KTg4ZHArUZQEA8+ZJRtzatfLzSnQ6MowKCjjJ3U9QbKAEBQUhTqkA0XlGjRoF7QU5DaNGjUJUVBRKSkpUHdPnMJvJexIUJE/afssW6cY+bZr6ZDlHlRQrJTmZclLUGCl5edINYedOKrmUS3w8eYs4ps04gspKSuJU0nvHelF2443yrneAvDRaLSWLu5PgYPKiNDcrC7H260efF5AaCcolPp48KKIgJePTuD1Jtq2tDQaDAdFKVh6+TE0NXYBJSfK2d0T1TksL5bs4qqRYKaKREh+vzEgJCJBCWl1d3b8LOfsGB5MXRcnkyjA9UVxMvyO5+SBVVbS4AKiE1tobaIvaWhJATJOpleJMBgyguUqpiNoNN0iLiy1bpDwcW0RGkkHEmih+gdsNlM8++wxGoxEzxU61PVBXV4eTJ09aHj7tbTlzhsIOolpqX1RWStUoOTnq8kZMJjKIHF1SrJTkZJLFV2qkqA3zADSxlpZK3Z8ZRg0Gg/LOxStXSr/x666Tr1tkNtOCYtgw+5LhHUVoKFX0NDYq836GhVFDQpFly5Q1/zx1ihcWfoBbf+EHDhzAsmXLMGPGDIwdO7bX7VatWoVly5a5bmDuorWVtE/kTnSO6FzszJJipYhGinWDQVtjysqi8sWCAqCwEP1GnEFbmMzk7ZAQmhRPnHB+UjDju4jS9qKcuy30esmYDgmhPjlyaWigUGxWluJhOo1BgyhJva5OniyCyKxZwFdfkTfp8GHKxxkjo4opPp4WFVVVnuFFYpyG2+5IJSUl+P3vf4/+/ftj0aJFfW47Z84cvPPOO5bH73//exeN0sWUllJsVY6BIgj2GyjWJcWe0uFXDPckJMj3pFh5UQacVuhFSUwkrxX3+WDUUlhIhrTcHJJvvpFkAWbNUtbUs66Ock8c0QjUUUREkLrsuXPKklcDA4Gf/Ux6LbeRYHAwJSVz/pjP4xYDpbq6GgsXLkR4eDheffVVhNkIZ8THxyM3N9fyyPKk1YOjMJtJgj00VN5EV1gohSYuuYRu6EpwZUmxUpKSyJMi10jJz7ck9mad+QlakwI57KgocplzyTGjBr1eWedigwH49lt6rtNRLoZc2toox2XAAOXjdDaDB9PCSmny6uTJ5AEFSPvJWjKhL2JjKW+Fq/B8GpcbKHq9HgsXLoTRaMTrr7+OeHckZXoilZXkKpZraNjTudgdJcVKsTZSzpzpe2UWEUEJvgBCOpqQeXansnPFxVGyLAtAMUqpqCAjJSpK3vbff08GMUCGtZKFRW0thWNTUpSP09lER1NeTG2tMi/KhY0EP/tM3n6xseSxKS9XNk7Gq3CagVJXV4eSkhJ0WYn4GAwGPP3006irq8Nf//pXZLhaotmTOXOGvBpyRJ5MJslACQig0mAluKukWClJSRS+CQ+nm0BfWEnfDy5cp+w84sqPJztGCYJAq/jQUHn5W11dlHMhMneu/HOZTOQtGDrU/blivTFkCBlqShWaR46kfQFK2JcjxKbT0YM9nz6NqiTZzz//HC0tLRb1161bt6KmpgYAcPPNNyMiIgKLFy/GmjVrsHz5cqSct/j/9Kc/4fjx47jmmmtQUlLSrRonNDQUU8U+Df5GczNlpcv1Jh07RqsHgJLK5K7eAKmkePZs95QUKyU5mUJQp06RfkJvXHopfZ66OqRX7kVo2zkAfWxvjSgAVVjo3komxruoqyMPitzwzqZNtA9AoVUloer6ejqPp4VjrYmNJUNj924ACueWyZMpWR2g1h1yFq/x8eQJbmzse25gvBZVBsry5ctRZdWDYdOmTdh0fkU/a9YsRPTSw6WgoAAA8N133+G7777r9rfk5GT/NVBKSig7X67wktrkWLGkOC/Pu27E/fuTUWY297561OnIi7J8ObSCGTmn1wO4Wf454uIoSZknO0Yu5eUUFpRzMzWbuwuz3azgtwmQgTJlijz5AXcydChdq4IAQIFo5MSJwJIl9Hz7duC222zvExVFlTzl5XzN+iiqDJRPP/3U5jbPPvssnn32WcX7+R0mEyXHhofLc90ajcDWrfQ8JITKg+XiSSXFSkhNpclIr+9b2vu8gQIA/U//AAgKepuIk11FBU92jG1MJvLqya2m2btXEhcbMoTyNeTS0kJhJLllzO4kMZEWWjtaoSiDIDFRkgs4c4bk822JVWo09L2cPEnfpzfNaYwsPEDpx885e5Zuiunp8rbfu1dK5pwwQb7AkyeWFMslMpIMqxMn+jZQkpNRnTwCSVWHEdVUQdsPHSrvHBoNGXwFBTTZqW0ZwPgHVVV0E5WbsKq2KSBA1XYDBiiv1HMXw4YBmj0AAEM78PFKeeXXw6InYRTIy773nZ04Ofwmm/sE6rKQV1uLnMk1FA5mfAo2Od1NQQG5f+UaGmqqdzo6PLekWC45OZRkaKPkuHDQldILpcqycXFkMHJnbcYWZWWU1B4SYnvbEyco7AGQoT1unPzzdHXRY8gQ7zGak5MRGEprX0HQoM0g73E6ebLlEGlF22Xto2/RYU9JDIXJGZ+DDRR3oteTgSIzWTWgsw3YtYteREdT9rstxJLiIUM8t6RYDqmp9JltVPOUZk9GZ8D5SqgtW5TpJEREkDudpe+ZvujstJ20bY219+Smm5SFIurqKNThTRWPGg3yrstAdEgnwkLMCAsVZD2MSenQ96PPmVR7DLHCuT6312ionNkIHVVTieJ3jM/AIR53IibHiiV2Nsgo2S5dhJMny+vFUVlJ2fUTJ3p2SbEtIiOp6uHYsT7DPKbAEBRm5WPImbUkirVtG9BHn6eLiIigm8+IERzTZnrm7FkyHLKzbW9bVkadtgHy0CnRLBIEmh/GjJHvYfUQcq4ehhyhGDhToCx3pmUi8GkZNBAwN3Y7VRv2wscrdWgzANDqyEN89qy8/xPGa+AZ2F10dQFHj1JypkzXbVbhT9ILOROdu7sUO5rsbFlhnlM5doZ5qqpowmOYnhAl1uUY/NaVO3PmKFskNDXR/JCTo2h4HoFWSwrXgkAhZrmcF1wEQNU8ctFoSCaA8SnYQHEX5eWUZCcz8S3U0IDkswfoRWKiba+Lp3QpdiSpqeRWtxHmqYkfCn30+aTjI0fIiySX0FCaULmdO9MTra10I5TTL6uuTpIECA8HrrpK2blqasj7oKRLsieRmUlez7Nn5e/Tv7/UcPDQIUl11xaxsfT/Ind7xitgA8VdnD5NnoCgIFmb55RthlY47zmYNs2210WMXXtbSXFfRETQhGer34dGg8JBUgNBrF+v7DxRUfT/Y1TQ04fxDyoqKOwiJ/9k1Sry+AHANdco1DAR6BqXq43kieh0FCrt6pKfH6LRSF4Uk0nKubNFv36kYSRHhZbxGnzkzuVlNDSQta+gbHBA8U/SCznhnaYm0hXwtpJiW4hhHpOpz82KB86UDLMff7S5fTfi4qiniJUYIcMAII2OgADbDT07OoC1a+l5YCBw3XXKzmMyU9msXPkBTyUrixJ8lVxLasI8Wi3l6Zw+rawXEOPRsIHiDsrKyICIjpa1eURTJZLOnZeBzsmxXSosrtrS0uwYpIciM8xjCIuj5EKAvEmHDsk/R1AQfYcc5mGsaWyk34Qcafv9+ylJGyC15770e3pCECiHQ04ivCcTGEheFINBmpdsMWSI9H1Zf4+2iI+n0LnYToDxerz81++FmM1UJRIeriA5VqG0vV5PN3FbSozeSHg4rcqOHrUdm7/iCmAPCUbhhx+UlVnHxlIJeF6e11VQMM6hcN0p7N2RBKPWdlh2wqadEGtXftJOxVmZYmUGsSpeq/GdipT+/WmxVF0tb9Gk1VJoes0aCg3t20dVi7aIiJCaDXqLqB3TJ+xBcTU1NeTulNtgTBCQfWaD9FqOgdLYSJObnM7I3kh2NoVsbIVtLrtMaqS4Y4eyBLqYGMp1YU0UBgDMZuz9oRb6jmCb4mGGVjNSS3cDADoDQlEUM0q2WJkg0KIlMDRQWRNQTyYoiJp5trTID7WqreaJjibpe7neGsajYQPF1ZSXk3iY3IS5wkJE68sBANXJw22vDMxmmgS8SdhJKTLDPAgMlPJ1jMbuKry2EF3rrFDJAEBdHYwdlKSu0fQtOJbVdBQhnU0AgMr0sQiOCJQtVhYWYkZ0SCfyrvOx67d/f8qpkVu+P2IEeUQA6o4sN2E9Lo48NUoq9xiPhUM8rqSri6x7uQ3GgG431ZL+02EzaCNqJ/hyXwoxzHPkiLwwz9df0/MffqBqCrnExFAy87hxvpdszCijrMySfBkaAtx5Yx+egHe3WZ5m3TweWdMUJGiXltK1O1tmDylvITQUGD4cWLeOQs+2KgsDAui6+/FHykE5cIA8orYIDqYFWnGxby/S/AT2oLiSykqqDpEb3jGbLQaKWaNDabaMOGxDA8V5lRhB3ojcME9ODjVaAyinRBTZkoNYushhHv+mq4vyxuTkjAkChRMBqvQZO1b+eUwmuhkPHeo70gDWDBpEiaxyk1jVhnliY6maR25yLeOx+OBV4MGUltJkJzfp8uhRS+O68pSx6AyxEZMWBEoq85Xkur4QwzyNjba3vfxy6bkSTRSdjh6sUOnfiMrCcoyG4mIpjDF8uBSmkEN9Pd1cs7JUDdPjCQ+n76S+Xl4p8KhRUjPGnTvl56/ExNBCrbxc9VAZz4ANFFfR3k4reCWqkBul6p2C7Bm2t29tpUnAl8M7ImFh5B1paLC97bRpUk7JTz8pE2CLiyPD0la+C+O7lJTQwkKOB0XsuwMAEyYoO099Pak++3I4MTdXSkC3RXCw5IFqbqYFmxzEhUVBgfpxMh4BGyiu4uxZ8obI1UMwGqnRHQBjQAhK08bb3qehgeK7SjUXvJWsLCkpuC8iI6WbhV4vlR7LISqK9uEwj38iLizkXlNieAegHAq5tLZSnoYYjvRVoqJI36W2Vp4XRW2YJyGBFhZyFjCMx8IGiqsoKqJ/5Qov7d1rKYstz5qAroAQ2/u0tdEEJ1NfxetJSaEbhzPDPFotuZlZodI/UbKwqKmRwoEDByrT4qipoaROX9QuupDcXDJU5Fy3eXnSnLljh81GoRYiI6lggKXvvRo2UFxBSwsZKHKTY4Fu1TvF/WWEdwwGupH6Q3hHJCyM8m3kuItHjZK+/z17lK2s4uPpRiXnPIxvoWRhYR3eGS/D4ynS1UUe0yFD/GNxERtLicBySo7DwiSBxXPnaKEgB42G8n9OnpRv1DAeBxsorqCiglYLchqMAeQJEZtkRUWhKm2U7X0aGugGHB+vcpBeipgQbCvMo9MBM2fSc7MZ2LCh7+2tiYggI5OT7vwLpQsLtfkndXXkbbHVwsKXGDqUcm2ammxvax3m2bat9+0uJC6OKierq5WPj/EI2EBxBQUFJBomt3Rwxw6p++eUKRC0MlZvzc0U3rHVxMzXSElRX82jJGQTEUGlprwa8x/Ky6W2EbZobiZdHoC8mEqMjcZGumGHyAjj+goJCdSpWU4TwXHjpLlz+3b5121oKM2jLLbotbCB4mzEcjclng2r6h1ZnYs7O8kFnZqqfHzeTmgoqVTKCdmkpgLDhtHzsjJy/8olNpZWYnKVMBnvRhCULSz27JGM1wkT5IdqmprI+M3JUT9Wb2XYMDLKbLWgiIqi8mSADBqlWkanTlF3acbrYAPF2VRU0CQkVzitoQE4eJCeJyZSXNoWjY10A/WHBLueyMykG4qc/htXXCE9V5IsGxZGFR0c5vEPxIWF3PCOdfWOkvyT2loysP0tNAuQp2ngQHleFLXVPHFxFELjKjyvhA0UZyJ2Lg4Lk7+i2rpVWonl58vbT6+nSS4wUP1YvRklom2TJ0uu9M2bla2sIiPp/5Mbkfk+5eUUtpGzsOjoAPbvp+dRUfIWFQAlxprNpLDqj2g05EXR6Sjvri+sc3qUGCgBAXSeM2fUjZFxK2ygOJO6OkrSUlK9Yx3emT7d9vZicqicNua+SkgI5d/ICfOEhkqt29valCfd1dbKW/Ex3ou4sAgPl7dAOHSIvGsA5UvIzQOrraUcKn/uGZOWRosrW8394uKoPBmgnJKzZ+WfIy6OwkJyEnIZj4INFGdSVkY3QbnKkFVVUl5Edra8RDuxOsifyot7QklS4pVXSs+VhHmCg2nVW1oqfx/G+6ipoWtRTXhHbvWOINANc+hQ//V8ApTfI+aX2PJmTpokPVfiRYmOJi8zh2e9DjZQnIXJRKuwKBv9c6xRmhwLkIGSmUmeAX9GFG2TU2UzdKiUUHzokDKPSEwMaTFw0p3vUlpKukJhYba3NZkkSYDgYGDkSHnnaGykG6c/JsdeSEYGqULb8oqoDfOIYosnT7LYopfBBoqzqKpS1rlYELobKPn5tvcxmykfwp/0E3ojJIRcxXIMFI1G0kQBqKW7XGJiSDBKiYuZ8R6MRjJAo6PlbX/ypNSnafRo+Y1A6+ooQVTueXwZnQ4YMYLmMlFeoSdSUiSD7tQphLXUyj+HKLZYq2Afxu2wgeIsSkvpYpM7YRUVSS7IYcPkyWQ3N5OHxt/DOyJKDLWZM6Xy0R9/lK9vIrrjWVvBN6msVLawUCPO1tFBvz1/TY7tiexs8qTY8mZaVfOklyrwooSHU7idpe+9CpmNYRhFdHbSKkyuciygLrzT0EArCiVhJF8mNRXQUsdTQzvw8cq+khWTMD1lNFIr9gI1NVj/76OoTh0l7zzmwcDhFgSu2oi8eYORMz7F7qEzHkJxMYVtgoJsbysIUqhBq6W+MXKoqaHkUH/ULeqNgACqfrJl+E+cCHz8MQAgo3gbDuTcIP8cUVHAiRPApZf6d96PF8EeFGdw9iy5cGNj5W1vNku9d3Q6qcqkLwSBVmIcw5YIDkZgKNncgqBBm6Hvx/HsWZZds47/YHN7y6NDh7YOHfRVbdjzmczeIIznYzBQOarczsVlZdKK/5JL5C0UzGbqXCyW1zISiYkUqhUronoiM9Ni2CVUH0VIu17+8ePjyTtmq2KI8RjYQHEGotKhXCv92DHKawCAMWPkTXStreS25PBON/KuTkV0SAfCQgWbj9qB49ERTDoX2eVbEa1tlrVfWKgADSjZztjOmig+Q0UFNYSUu7BQI87W0EDHz8pSPj5fJz7edndyjcYS5tEKZmRW7Oh92wsJCiLvmNgAkvF4OMTjaFpbqeW63EkOAH76SXouJzkWoIs4MVHZefyAnFm5yKnfTxORzTweLVCXD3z7LQJMnbg1ZjMwa5aNfYiPvyBPCsxcFeAzFBWRV0OuZ0NN9+K6Oto2IkL5+HwdnY5yUXbs6HvhNXEi8PnnAIDs8m0oHy7vmgVAuUVnzlA4Tq78A+M22IPiaMRVmNz8E6NREgsLCZE/0bW0kDiZP7RnV0JwsPzePEB3MTyxXFQOYoKtrS7KjHfQ1ESeT7kGf10d5ZkBFGaV02airY1+nwMHqh6mz5NyPp+rr+tq0CBLa4C0qv0I7GyVf/x+/Whu4GRZr4ANFEdTWEgJX3JXYfv2Sc2yxo+X19HUYKDtOLzTM5mZZEAYjba3HTRIyjk4cEC5vklXF2sr+AJi52K5Zb/Wxqzc6p3qavpt+mvPLDkkJFCIu7m5922swjw6cxdSy3bLP75OR6H306f5uvUC2EBxJHo9ZaGrlbZXUr0THy+vFNkfSUmhlbAcL4pWC1x2GT3v7JR6qsjFZJLvrWE8E7FzcXCwvM7FgHL1WJOJDOYhQ+Sfwx+JjKSFl95G8qtVuXFGiYJ2FQDNm+Xl5AVjPBq+UhyJ2GBM7iqsrU1aiUVFAaNGyduvpYXCGFwF0DNBQeRGl9M8EOgeVlMS5gHo5sYS2t7NuXMUmpXZUTiwowU4fJheJCZS3oQt6uro+Jwca5usrL4reQBg6FC0h9A8m1q+R5nnMyKC5lBuWeHxsIHiKMRVWEiI/LyQnTsl5cQpUyg0ZAujkQwT1lDom4wM+p7khHkuvVQS1Nu9W1leiUZDLQ3kCr0xnkdZGd2wZCauppbvkX4j48fLu94bG8l7IieE6+8kJtIioy8jRadDeSZ5rgK6OpR7PqOi6LqVMz8wboMNFEdRV0erMCXhHbXVOzExHMe2RXKy/DBPcDDJlAPkWj51Sv55tFrKLWAJbe/EZKJ8BAVVNemlCsM7zc1UMdK/v4oB+iHx8XTt2gjzlGWpbB4onqO6mjVRPBw2UBxFeTmVGMud6BoagIMH6XliIjWwk0NjI1UNyFG69GeCgqjKSW5+iNowj0ZDoToO83gn1dUktiYzvKM1GZFatodeREaS4JotamoobCHzHH5PQAB9X01NfW5WnToSnYHnGzru2qXMGxIURF5P1kTxaNhAcQQqVmHYulUKC+TnKysXTk9XNj5/JSODJjs5E1denpS8qDQPRXQXd7Fom9dRVkZhVpmhl9TqAwjsMtCLvDzbeWBGI13nubksCaCElBQKm/cROjXrAlGaen5h0doq5QXJJTaWwvKtCsqUGZfCBoojULgKA6Cuesdspjp+Li+WR0oKhdzq621vGx1NOQIA3bSUdCuOi6NVcnW1unEy7qGzkwxLBR2FsyoUhndqaykcm5GhYoB+TGIieaj6KjcGUJxhR5hHVK1lTRSPhQ0UR6BwFYaqKmrTDlAFgNzMfrOZJrqwMFXD9DsCAynMY6tkUWTcOOm5tUqoLYKDaaXMVQHehdgzS27emGBGVvl5AyUoSMpb6oumJgrfckhWGVFRZNjZuHbLU8aiS3c+wX3HDmUJ7lotzRGnTrEmiofCBoq9GI0U3lGwCrM0BgTke09EMjOVbe/viNU8YrVUX1gbKErDPP360e9AznkYz6CkhG5MMntmxdWeQlj7+ZymUaNsL0ja22kbrrhTR3Y25Xf1QVdACCrTx9ALvZ66FSuBNVE8GjZQ7EXxKkzoHt6ZOlX+uTQaSQqakUdyMoXe5IR50tOBtDR6fvy4zSS9bsTGkp6GktAQ4z5aWij/QEEvq/QSqxCCnJYUej0Zrpwcq47ERPJO2tA4sauaJyKCclDY++mRsIFiLyUl5FaU27m4qEiKeQ4bRhehXHQ6eZ2OGYnAQBJtUxrmMZuBPXuUnUcQ6PfAeD6lpVThJbY5kIFYXmzWaLt723qjqYnCt3L0jZiLiY8nA8/GtVuRMU5KVt6+XXm4JiqKPC+sieJxsIFiDwaD4lUYNm+WnisN7/BEp470dPru5IRf7FGVjYmhTqkGg7L9GNdiNtMNKTRUvux8eTmi9VRKXpc41HZI12ymB3s81RMYSAaeDQPFGBxBYosAJSWfOaPsPPHxtB97Pz0ONlDsoaJCEk6Ti9jDQ6sFJk3qe1sRcUXAPTzUkZQkP8yTmyt5qfbtU5ZTIlYFVFSoGibjIqqqKO9ASS8rq6Tp8qyJfWx4npYWqkLhfln2kZpqs9wYQLfePJbu8HJhTRSPhe949lBYSEaD3J445eXSzWvIEPmJteLFyQaKOsQwj5ycEp1Oah7Y3q5MW0Gno/8jnug8m8JCMjxDQ+XvY9UcUJRY75OmJjKKlSTPMxeTmCj1zumLCRMknRk1YZ7YWPK82DoP41L4jqeWpibKN1AS3rEuXZXboh2QLjbWeVKPGOaR01RMbbkxQL+H4mJlCbaM62htpbJSJddtfb1FFqA+OgstUTLCNq2tVIXC4mz2ER1NRoqtxp/9+kmqvhUVyrVNWBPFI2EDRS1ieEfJCsn6ZienCgCgVTxPcvYjVvPIkb4fPVpKet61S1kjwOhoiplzPNszKSuj34ASA8UqF6kkXUZ4R2zoqSQBnumdnBx5eV3WYR6l1TxaLYV6Tp9mTRQPgg0UNYidi4OD5YddGhokcbbMTPnJcw0NHNpxBAEB8qt5QkKAkSPpeX29sqQ7caIrKFA3TsZ5iMmxQUHyw7JAt4VFsRwDpamJDFXOP3EMiYm0YLCVD2aPgQLQAoY1UTwKLgtRQ309/ZDj41FYqsHew1qbFWoDTu7F+POW+ZF+E3BopcwJsisZhi42UBxCejpNdB0dZFz2xbhxUpnxzp3AoEHyzxMXR7+P+nplK3XGudTU0P+LEs9GW5ulqWdreDzOxQyETR1nvZ7UY+UqSzN9k5AglRv3ZfQlJNAipKCA8oyqqpS1BYmIIM94aSkblx4C3/nUUF5OPSIiIrD3sBb6Jg3aDH0/UoqkJLszyRNtbm95GAMtHsfAELYn7UJJNY89qrJiDxGu5vEsioooZKqkVcS+fZYmkBWZE+SFW41GSfCPsR+Z5cYA7PeisCaKR8EGilLMZkqyi4wENBrL71ijERAW2vMjMsCA1OoDAIC20Fi0pg3sddtuj2ATPWKCEZ0ajrxbFazimYsJCCBPiJwE1thYYPBgel5crKwRoEZDN8HTp5XlrzDOw2CgEKtSj5ZVeKdMTvVOWxtVB3H+iWNJTSVBTCXlxmoMlLg41kTxIHhJrhSxa+0FLsDQEODOG3tpVLV9D2Ci+GnYtHG48yYBgIymVqdPA2PHKhd0Y3onPZ1yEOSGeU6doue7dgHXXy//PPHxQGUlxbP5ZuV+SkupFcGAAfL3MRqlMF94OGpSRgC2isCamigcwaE9xyJ2N25tpX97Iz2dcvxKS8kTojTMaq2JIreJK+M02IOilNJSWo0pcROrqd4Ru3Jym3bHkphIxuW5c7a3tUdVNiyMVtPl5cr2YxyPIJCxHxioLDn2yBG6IQJAXh4ErYz1XFMTlRcrOQ9jm+hoMvqVhnms9GtkExdHeSysieJ22EBRgprOxSYTsHs3PQ8NlSSZbaHX03mSkpSPk+mdgABaRTc32942M1P6/o8cUT5hRUVRWEFJC3jG8dTWkmaR0sRHpbpF4v+zksRMRh4aDZUbiwZjX9gb5unXjzVRPAQ2UJRQVUWTndzOxQB1xRVvhmPGyG8q2NBAN8jwcOXjZPpGDPO0t/e9nUYjeVFMJmDvXmXniY2l30tVlbpxMo6hqIi8WRER8vcRBMlACQggbRxbiPL2HNJzDklJ8npq5eRIC4vDh+UtRqzRaqkC69Qp1kRxM2ygKEHsXBwUJH8fNeEds5nOk5mpbHyMPJKSaDXt7GqekBCaTHkl5j7a2ykXQUm/LIBc/GIYcNQoeSFdvV7KlWAcj3W5cV9oNJIXxWxWft0CkiZKba3yfRmHwQaKXNrbadJSMtFZr8K0WiAvT95+LS202mNXsXPQ6aiaR87KatgwyYu1b5/y8sPoaAoLKmk6yDiOsjIyNJR4PQH1qs/Z2crOw8gnKIgWba4oNw4PJ69baanyfRmHwQaKXM6epRW3EgOltFRy7w8fLt/F3NBASrPcaMx5pKXJC/MEBEiGZWsrcPSosvPExdENsrJS3TgZ9QgCuel1Ovp/VIKYXKnRdPei9UZnJ52DBb6cS1oaeZdthV5yc6W5ev9+MjaUEh3Nmihuhg0UuRQV0WSlZKJTswoD6KbZv7/87RnliNU8csI89lTzBAbShFpSomw/xn7q6tSpgp49K62crW90fSEmtbOB4lwSE8m7YSthXauVEpuNRvJ+KiU+nkI8LLjoNthAkUNLCxkodog8yTZQWlsp3s3hHeei05EQm5wwz5gxkmG6a5fyxLmYGOrnI6fhGeM4SkqkxFUlqLlum5pIEkBJfhqjnH795JcbT5okPVcT5gkMpGu9sFD5voxDYANFDuXldEH06yd/n3PnKPcAoKxyuZn9DQ20CmOhJ+eTlkZibbYMh7AwYMQIel5TQ8qySoiNJU8Nq1O6js5Ocs8ruWZFlJYXCwLJ4bO8vfPRaMi7LCdkc8klknG6Z4+6PLC4ODJQlFYCMQ6BDRQ5FBSQNa2kq7B1KEBJeKe1lXQ6uIOx80lMpIfSah7rG5gcdDr6/+SVmOsoKyNjUmlybGMjSQMA5BGRY3S0tVHYgcM7riExUZ4QXkCAdN0aDJamj4pgTRS3wndBW4idi5VOdNYKhnINlI4OchGnpCg7F6MOrZa6n8pZHdlTbgzQ76ekhFdirqKggP5/5eoOiViH8OQkxwLkXY2NVV7KzKgjMZHyfeT0ubKu5tm2Tfm5RE2UkydZE8UNKDZQ2tra8N577+Gpp57Ctddei/z8fKxevVr2/s3NzXjttddw/fXXY9asWXjiiSdw8uRJpcNwHRUVdFNREsduayOBIIBWVXITXhsa6EbGKzHXkZZGCr+2XMbW/48FBQhtrVN2nuhoMnbPnFE3TkY+585Rzpia60hpeAeg+SE7m72eriI4mLxbcgyUUaPIwADI+DzfmVoR8fEUnmVNFJej+IrS6/VYtmwZSkpKMHDgQEX7ms1mLFq0CD/88APmzp2Lhx9+GA0NDXjiiSdQ5okuNLOZ8kjCwuS1WRexatGOcePk79vUROEdpSWRjHrEME9Dg+1trVbUaWUKvShaLRkpR46Qp4xxHqKnKipK2X4GA3DgAD2PjSWtHFuYTPR/yy0pXEt6urztgoIkmYDmZuUyAQCF7wwG5blnjN0oNlDi4uLw5Zdf4rPPPsMjjzyiaN+ffvoJR44cwTPPPIP77rsPc+fOxVtvvQWtVoulS5cqHYrzqa0l/Yr4eGX7qakCMBoprpqaquxcjH2IYR45fXas/i/TS1Q0IUtMJF2coiLl+zLyMBoph0SpcQKQXoaoeTFunDyPSFMTnYu9nq4lMVH+ws9e0TaAFhenTrHgootRbKAEBQUhTmk+xnk2btyI2NhY5OfnW97r168fZsyYgS1btqDT0/7zy8uVdy7u6urWoh3Dh8vbr7GRErJ4JeZ60tLIDWwrzNO/v8VYTao8iECjQvGngAAKJx05wg0EnUV5OVBd7brwjl5PkgDcM8u1xMTID6mNHSvlIu3YIS80dCFxcbRg5Uo8l+LSoOmpU6cwaNAgaC/4YQ0dOhTt7e2eFebp6iKLWamGwtGjUsfNsWPlh2saG6kcOThY2fkY+xHLupua+t7OSlVUZ+5CWpUK8aekJLqJsoS2czh9mv6flCbHdnV17zoulpXboqODe2a5AyWimWFhUrPH+nqa15Ui/p64Es+luNRAqa+v79H7Ir53TmzOdQF1dXU4efKk5VHiClXOqip1ZYpqwjvialpuXJVxLFotkJUlr8LG6v80q1xFmEc0QI8d46oAR9PQoD459tgxKcyXlyfPwBGr7rh7sXtQkpTsiDAPa6K4HJdmY3Z0dCCoB6VF8b2OXpIHV61ahWXLljlzaBdTWkrxaCUejQtbtI8dK28/MY7N6rHuIzmZ/v/M5r4nvuHDaYVtMCDj7G7sMasI1SQn0420spJzjhxJSQmFXNSU6atZWIjijSpD3oyd6HQAumAwAB+v7FsXJah9AuZq/h+0ghkt67ZhVb/7ZeewBAYCeSPMyEk/3/izrIyaiDJOx6UGSnBwcI95JuJ7wb0YA3PmzMHkyZMtr0tKSvDSSy85Z5AArYxOn1aua1BUJJWijRghP3eloQEYOpTj2O4kIYGaOba09J1gGRhI0vdbtyKksxnxNccBDFV2rvBwKl8/cYINFEfR1SUlxyqpuAPIMBV1i5QsLPT67vkNjEsJDA0AGjogQIM2G2LQbYhGZeKlSKs+gIiWaoSeLcK52AHyTmQA9hzWIidToMXJyZPAkCFcVu4CXGqgxMbG9hjGEd/rLfk2Pj4e8Uoraezh7FnSUlDaOl2NOJsgkKeG49juJTKSXPWVlbYrQMaPB7ZuBSBW8yg0UAA61+nTwMiRvAJ3BBUVlBybkaF838LC7gsLOQsF0dvGoopuI+/WQdjz36MwNrXJykepGDAZadUHAACDKjfDkGZbn8rQDgiCRmpobK2JwgUNTselBsqgQYNw6NAhmM3mbomyx48fR0hICDLUTC7OQMxxUboyUuMmFkXgOLzjXjQaMhLlCKmNHQuzRgutYEZ66Q5AmK981d6vH+U5nT7NBoojKCggg0FNsz41121LC3ncuLzYbeSMT0HOwCBg+XJKcrdlWDaMA7b/HyAIGH5uK4bfcJfN6/bjlbru3pmwMKr2KylhA8UFOM1HVVdXh5KSEnRZKfdNmzYN9fX12LRpk+W9xsZGbNiwAZMmTeoxP8XltLbSTUphs76wlhpJ32LgQPk3ncZGMk6io5WNk3E8Yo8Py3KpFyIjUZt0CT1trqSqHDXExVFyJifd2YdeT14QtV5WtfkncXHqmhEyjiMmhv4f5HQ3jomRckcqKtRX0vXrx5ooLkKVB+Xzzz9HS0uLJTSzdetW1NTUAABuvvlmREREYPHixVizZg2WL1+OlPNu0OnTp2PFihV45ZVXUFxcjOjoaKxcuRJmsxk///nPHfSR7KSujn7scuXpz5NeqiK8A5DOSv/+ylfgjONJSCBDsanJpoFZnjUBSVXn2xns3KkutBAXRxPdmTMkyc2oo6SEDP3cXOX7WgvnDR4sf2HR2gpcdhlft+5Gq6VQ/ObN8rafPFlSk922jar3lBIXR6qyFRUkDcE4DVUelOXLl2PJkiVYuXIlAGDTpk1YsmQJlixZguY+VoM6nQ5//etfMXPmTHz++ed4++23ER0djTfeeAOZnpKDIYr4yOmWaUU3ZVG5BkpbGyVdcXjHMwgJIdE2W3ooACoyrP6P1TQPBGhyjYoi4bb2dnXH8HdMJko2johQZyxYe0/kNgcEaH7g8mLPIDmZriU5fXbsbR4IsCaKC1HlQfn0009tbvPss8/i2Wefvej9yMhILFq0CIsWLVJzao8kqLMFiVVH6EVSknyrvKGBVu2cg+A5pKdLjR77oCUqBfXRWYjVl1BWf0ODum62iYnkQSkupsoARhlnz9JDrYaQGvVYs5k8bZx/4hkkJlLYpanJdmg+Lo6usxMnyPNWXq7utxMfTwbKZZepa6vAyILrpBxAxtnd0Arn9TDGj5e/kmtpoeaAXK7mOcTHkydFhkejNO38DU0QJBVSpYjy94cPq+u06u+cOUNeFDUKzE1NlAMEULm33DCdYKbtQ0OVn5NxPKGh5PmUk4cCOMaLEh1NYUVPUj/3QfjO6ACyKlSEd0QVSi5T9CzExEcZk11JmgPCPADL36uluZmqd9Qmx+7eLYV0lSwsBKjLOWKcR0aG/KTVSZOk52oNFK2WKnpOnVLX24eRBRsodqI1GZF+9nxzwMhI+QqDDQ3kjuQ4tmcREEDlxjLyUGrjBsMQej6sc+AAGZ1qCA6mmyPL3ytDTI5VW0mjJrwD0P8Vh3c8i4QE8qTYavgJ0IJg4EB6XlhIidJqEDVRzheIMI6HDRQ7Sao8iKCu84XyeXnyk2ubmii8I7fhFeM6UlJoVWRrZaTRoiLjfGJlZycZKfacs6iIu6XKxWwm5diwMHUh0o4OYN/5Zo/R0VTBIxetlvPGPI24OFrwNTbK294RXpSwMKrCdEVvOD+FDRQ7SS9VoaFgNNIkxzLnnokoey92pe6D8kyrlbc9YZ6wMPpdnDih/hj+RGUlPdR6Mvbvl0IC48crq9rT6RRX+TFORqulkl+5mkKOMFAAMm5ZE8Vp8PLdHsxmpJ03UEy6QOjElt62EJuMsRKhZxIdTSuyujoK2/VBdepICtF0dJCBYjKpv3lZy9+7srWDN3LmDN0UQkIAAIWlGuw9rLWpsScyfvNuiJ1YfhIm4qyNZnMAyZ4DYOPEUxHLjeVcg6mppJ9SXEwGRm2tOmM3Lo48KKyJ4hTYg2IPZ84grI3E6qpSR8nP6tfrKanr/OTKeBgaDU1eMjwopoBgQDRM9XoyMNQSHU0rwFOn1B/DH2hpoe/Zyojbe1gLfZMGbQbbD0OrGannFxbGgBAUxYyWtZ8gUBJtYBg3B/RIEhOp5FdG/hgAx3hRAgMpb0xOiwxGMWyg2INVkl03V39fCAKVk6alOWlQjENITJQv/mQt8GWdeKmG+HjKrWD5+94pLb1Id0b0nGg0AsJC+35k6w8htINuYpXpYxEcEWhzn7BQAWFBXYiONCPvNhWKtYzzCQsjz4iaPJTt29WfNz6e8sfkGkaMbDjEYw/nb0YCNFKypC0MBrqQuArAsxFl75ubbQuwiZLngkBhnnvvVX/e2FgSfisokDwzjITZTHk6oaE9JseGhgB33mjq+xj/3Gh5mnnbZNw5xcb2IidPAjNnAmNYGsBjycqStG1skZlJnuyyMloU1Ncr7sEGgOaJ06fpOJdconx/plfYg6KWqipL9nZNXC7aw2T+sPV6uuGpuRAY1xEWRjFtOeJP0dGSCmxZmX2VOFot5ScdPcry9z1RVUXxfrU5Okaj5M4PCaHKO7n7BQSwLICnk5gov9wYkETbBAHYsaPvbXtDq6VznjzJmigOhg0UtVi58kvSFWgotLRQfgOrx3o+mZnytU2swzz2VPMANMlaN7FjJIqK6P8kLEzd/gcP0jUI0P+Z3DwwvZ7l7b2B2FhaAMpVlZ08WXq+dav687ImilPgu6RauhkoE/vY0ArTeVcyV+94BwkJpPYrx0ixLjG3Nw9Fp6MV2ZEjLH9vTVsbrVLt8T5ad72dOlX+fno99WxRI6nPuA6dTlm5cXa2pOZ99Kh8w+ZCwsLI48maKA6FDRQ1WPXwaIpKgz5Kpux1SwuVrfIqzDsQZe/lJL+lp0uJz8eP258wl5xM4SKWv5cQk2PVGigdHZIbPzwcGDNG3n5iYrvahoSMa0lOppwwk4zcIo1GSpY1m9WHeQBJE0WtojRzEWygqMGqh0d5loLwjl5P7nsb2hqMhxAYSGEeuasqMcxjNgN79th37qAgCgMeO8ZxbYCMhJMn6XtRq0Oydy8lqQMkbR8os1yYE9u9C3eUGwOSdlJFhfpjMN1gA0UNasqLAZrosrKcMCDGaaSk0EpMTo+c8Q5qHmh97sJCUkz1d6qrqaGiPUmq1uGd/Hz5+zU2cmK7NxEeTteO3IXFwIHS7+rQIfUl/qLBy5ooDoMNFKV0dJBMNgBER+NcgkxNhM5O+gHzKsy7SEigCU+GaBtycyXv2L599stfi/L3cssmfZniYsmToYa2NvJ8ArS6vvRS+ftyYrv3oSTBXaORqnlMJvsWF3Fx9FtlTRSHwFecUg4dkn74l10GQSvT3cxVAN5Jv360cpYz4eh0pIkCUMLc4cP2nz8piTRRamvtP5a3YjBQeMeWHk1f7N4tGYyTJ8sPE5lMdANLTlZ/bsb1JCZShZYY0rOFI3vzNDZy7piDYANFKdYVGnKbAwJ0g8vIoBg64z1otbR6luv2dWQ1D0ATXkuLf8vfl5WRgWZPB2G11TvNzZzY7o3ExysrN87NlUJ4+/fL85j2hFZLjUYPHGA1aAfABooSzGbJ/RcUBIwaJW8/lrf3bkTZezlVAaNGSbHoXbvk5a7YIiHBMZVB3oggkHFmT3JsSwuF3AC6CQ0bJn9fvZ68JxER6s7NuAedjhYWcq8ZrVbyonR1SeFANaSkUN7Ynj2Ouf79GDZQlHDqlNTnYfRo+ZoIXAXg3YiVV3JWRKGh1I0YIOnsggL7zx8TQ+W1jjiWt1FbS9oS9lw727dLejJTpijLJWlvp3wGxvsQ9U3kLCwAx4V5dDoqST90iBNm7YQNFCVYu+wnKKjeEasA7ImhM+4jPJxW0XJXY45UlQUk+fsjR/xP/r6oiBJc7fFgbNkiPVcS3unoIM8Ny9t7J2K5sdxQy9ChFFIFyOMmN3+lJyIiyJO6YweHeuyADRQliCI+Wq2UDCmHlhZSN+QqAO8lM1P+hGX923CEgQKQB6G2lsqO/YWODkqO7ddP/TEaG0neHqAb1uDB8vdtaqIbltq+P4x7iYiQ308LIM+HWM3T2Um6OfaQlkahnl27WMtIJXzHlEt5uSTAM2QIWeZyEKsAWN7eu0lIoBWRnNLhuDhg0CB6XlREGh72Yi1/bzTafzxvQEyOtcdA2LZNujlMnUrXolz0etItkivoxngeWVnKvI6OCvMAtCBNT6dqPg71qIINFLmord7hKgDfID6eVtNyV2PWvxF7Eu6sSUoiI9kfShhF5VidjroIq0WtOJsgkGEj5jEw3kliIoXp5Bopw4dLWkZ79kDXZadsfUQE5Sru3OmfSe52wgaKXOwpL05K4ioAbycoiFZDavJQHFFuLI5Bq6WmZr7uMj53jgwxe/I/6uokkbv0dKrqkEtrKye2+wLx8VS5JXdhERAgze/t7Uip2Gf/GFJTKdRj1SKFkQcbKHJoaKDVHEBaJqmp8vdleXvfIS2NqkHklA5mZUlhvSNHKA/JESQnk1Ll2bOOOZ6nUlwsNddUy9at0v+VmvCOqKXBeC8BAXQtKvFeWIV5Moq39LGhTLRaum8cPuyflXh2wAaKHHbvliY6Jd4Tlrf3LRISKA9ETrKsRiN5UUwmSYfDXsLCyEg6ftwxx/NE6upoMrcnORZQL84GSPL2SowaxjNJTZVCdnIYOZIq9wCkle6C1uSAnK/wcAr17NjBoR4FsIEiB+tKDCUGiihvz1UAvkFsrDJ3saPLjUV8Wf6+tRXYuJG8lvYklldVSeq7OTkU4pFLVxeterm82DdQomME0KLy/LUbZGxDWtV+x4wjNZUS5rmqRzZsoNiivZ1kiwG6OYnVGXJoaqLyVJa39w2Uyt5fcollJYa9eyWxMHuJivJN+XujkTRLzpwho8Ie74Xa5FhAKi9mz6dvEBlJxq7chQUglRsDyC7b6phxiKGeI0eA06cdc0wfhw0UW+zfL5WWjhsnX8tElLdXkq/CeD5KVvUBAUBeHj1vbaXkVkchyt8rmXQ9GUGgUOrhw2QE2lO5A3Q3UCZPVravXk/VO2o7JzOeR3Y2Cf7JZfRoCucCyKrYDo3ZQYsL61CPr1y7TsTOWcAPUFu909ZGP0ZehfkW8fG0IhPMAHQwtAMfr+y9R0ymZgKmYCMA4OT/dmFv0RhFpwsMBPJGmJGTeUFibmwscOIEhXrGjlX6KTyPY8fI9Z2cbLkxqKasjJJsARJmU9qJuLOT5e19jcREMgw6OuS1KAkOpsXF5s0I6WxBUuVhAJc6ZiypqeT93LULuPxyFvDsA/5m+sJkkjQsQkOBSxX8QPV6lrf3RaKigIQEBGqov4cgaNBm6P1xJi4PJi2tA1JLdqKtDX1uf+FD36TBnsM9XKYaDf22jhyxT5LbEygtpdBOeLgkNW4P9iTHtrfTzYkXFr5FfDwlXSvxWji6mkdEqyUD+MgR3wvTOhg2UPri+HEp32D0aGWKkmIVAFvHvkdWFvKSqxEdJSAstO9HYHQYapJHAAAiW2uQ2l5kcx/xodGQ16RX4VhfkL+vrwc2baKVrVJPR08IgmSgaDTUHFAJYt+suDj7x8J4DoGBNB8rMVDGjkWXjrwtGSXb5TcdlENYGC16d+7kUE8fcIinL9SGd1je3rdJTEROQhtyxrbLM1oDLgMWUyXANYEbgRvlhQ8+XqlDW1/OEZ2OvA5HjlAow9sk2dvagJ9+ooobJcnnfdCvvlBqSXHJJcoNjeZmIDfX/hwYxvNISZHKjeUsHENCcDZ9LDJLtiGkXU9hyBEjHDueU6foPnPFFbyY7QH+RnpDECQDRauVkh3lwPL2vk18PIV65OoZTJ4sTT7r1zt2JZaYSDfkkhLHHdMVdHWRkFpBAdC/v8Mm56zCTdILpeEds5mue5a3901ERW8Fooll2VYJ1lsdVM0jIoZ6jh7lUE8vsIHSG2VltLIDaCWmRNGyqYnc1Sxv75uEhFC5oFzXbEyMpIlSX++43jwAlbAHBHiX/L0gUNn1wYOObcYnCMgqOm+gaLXdG7/JoaWFrlnWP/FNoqLo/7axUfYuFRnjLDlk2LHD8ddYWBg9du5UNC5/gQ2U3tixQ3quJLwDUNIiVwH4NqmpyroKX3WV9Pz77x07lqQk8qCIoQ1P58QJYPt2GrcDS3kTzp1EREsNvRg5UnnCbVMTeT3ldipnvI+cHEVJ5V1BYShPOV8lV19Pv11Hk5wM1NSwgFsPsIHSG2rVYzs7aVXL4R3fRonsPQCMGiX9Jvbtc6wKrDfJ35eXUxJrWJj9UvYXMKBko/RCqTgbQFo1WVksb+/LiN2NO+R3KS5OtwrzbN/u+DFZV/WIPd8YAGyg9Ixe310mW0myq15vKUVlfJi4OGVlizodJcIBtEr64QfHjicpiRRYa2oce1xH0tBASbEGg8PzPDRmE3LKzlfvWHeklYvRSPtxeMe3SUhQXG5ckj4eZs15rSPrBpSOJCyMEt537qTrhAHABkrPWCt+Kp3oRHl7b6uoYJSh09FqW67sPdA9U3/dOscmy0ZFkQfAU1dgBgP12KmqonJPB5NQfRThhnp6MXas8vyvpiZeWPgDKsqNO4MiUZU6kl7U1TlPpj4lhY7PoR4LbKD0hFoDRRDopsPy9v5BcjJNJHInk4QEYMx5Jdm6Omqj4Eji4ylGXlbm2OPai8kEbNtGXkkHVuxYk1VkJc6mVPsEoBtWRgYlQDO+TWqqsusWQFm21W9q2zYnDAoUWszIoPuPM3JdvBA2UC6kpUWykOPjaUKVS1sbuep4FeYfJCRQdZeCskXMmiU9d3SybGwseVG+/ppc0a2tjj2+GsSKnf37HVuxY01Xl0Xps0sX3L2LtIJjIC3NwQNjPJLERPKWKfB+lmdNkAzrbducE+YBpFDPjh0c6gEbKBezaZPkeh83TlnCnF5PNwmWt/cPoqLIiJWrhwIAl11GvxGAXLn19Y4bj0YDDBhARtPWrcDKlWRsu9NdfOoUTbaJic5rvnfoEELa6f+gInOc8l4+bW3kOeGFhX8QFaW4u3FHSDQwfDi9qKoCioqcNDhQqKe+nvJRHBkG9kLYQLmQdeuk50rzT5qbaZXIioD+gUZD/99KPBUXJsuuX+/4cfXrR8qyjY3At99SQq4jDSG5nD1LBn9wsHONdqveOyU5Kqp3xL5ZLG/vPygsNwbQXVfHWWEegOaVzExSrvXzUA/fSa0xGoENG+h5WJhkMctFq2V5e38jMZGMji4F7dhFAwWgMI8zPBw6HU1yKSnAoUPAl1+SMJoS7RZ7aGykip3WVufmZBmNltLPzoBQnE1XoPgswgsL/0MsN25vl7/PxImSR91Z1TwioaGU6L1zp3sWFx4CX5HWbN4suevz8pTFy81mSamQ8R8SEkgQTEmYJzmZdFEAoLqaDAhnERZG3hSzmbyD335Lng1n0t5OnpOzZ2ml6kz27qUQDYDi9EkwBwQp2190obO8vX8RH0+hViXqrTExwNCh9LyiwvnJ6MnJfh/q4Y5Y1nz1leXpFu1ElK7U2dzFIBrggkDek/BwJw2O8UhCQ+nmdvq0lFsih6uuAg4coOfffy8ZLM5Ao6HJLjaWYueVlaS0OmqU4/NCTCbyaJw4AQwc6HyvhFV4pzBLRXinpYXLi/2RgAAqN961S1kX7UmTKPQCkBfFmYrhYgj52DE6zyWXOO9c1phMJCRZXU1eJtEocwPsQbFmIylRmrQBOBN/GdoMGpsPQSCXX6DGxPL2/kpGBikIK2HcOEmKfccO17RcDwoioyE8HNiyhQzyM2cc66rev5+Ucl2hBdTeblF87giOREXyaOXH0OvJ66mk1xbjG6SmStIQcpk4UXruzDwUkZAQMqCdHerp6ABKS2kuWr4c+OwzqgZ0luaLTNiDYs3u3dhy51sILj2FwKhQBELexB0YICAvuR5IVJhUy/gG8fGUCNreLl9HIzAQmDmTckO6uoAffwRuusm54xSJiaFJr6IC+OYbWpnl5dkvPX/6NHlP4uNd40ncvdsiWV6aPRmCNgCQec1aMBholcr4H9blxnJ/+wkJQG4uCSKK/a+cXZ6elETVcDt3kkyBzrZnXxbNzVSRVFFBnlW9nuaiqCjyKgW43zxw/wg8icBATPnrXODLL3HZIAVWdW0t/Wji4503NsZziY+nCa6pSZnQ16xZZKAAFOa58UbX9YERk2hbWsjjUVpKXp0hQ9RNTFVV5IEMDFQW6rIH6+qd/irCO52dNF7OG/NPIiIoPFtcrMw4nzRJUmzetg249VZnjE5CDPUcP07eWqXFGyKCQF6Yqir6zGfPklGi09Hn90AFdA7xOAK93iP/cxkXERBA//9KwzRpacCIEfS8oqK7grGriIggo6SrC1izBvjuO5rAlNDURNVvLS2uEztrbaUEWQCIiUFtkopJW6+nMBsvLPyXrCxllTyA68M8AC18IiPJi3LunPz9urrIENm7F1ixgsI3q1dTaDckBBg0iMK+8fEeef9iD4q9sLw9A9BKTBDoocQLMmsWcPgwPV+7Vv3qyB40Ghp/bCxQUEAT2ujRwKWX2hY96+igip3ycprsXMXOnVLJ9JQpELQq3N56PSULByms/GF8h6QkulEbDPIF/pKTSRDxzBl6VFUpS7RVixjq2bGDkux783QaDJTgKoZu6uvJWxgeTtd4Robzx+og2INiL62t9B/PVQD+TUICVcQolZefOFFK0Ny2TVnzQUcTHExGRkgIhWtWraIJrrckWrOZck6OH6eWEI6Kjcths529d3hhwQAkzhcTo9z7aS3adl6Hx+mIoZ4TJ6RKIhG9nsJOP/wA/O9/wBdfkBFvMNBvPDcXSE/3uipTNlDspamJrFJ7EwwZ76ZfP3KTKp3ogoKAGTPoudFI4mbuJi6ODJWaGsrk/+mnnj/XgQPkOk5Pd60XoqlJKtEWkxaV0tJC4S0WVvRvdDrS6lG6MLA2ULZudeyY+kKs6tm1CygsJO/rV18Bn3xCCe9HjlBpf04OXcPJybTw8FLYQLGXlhaqp2cVSv9GlKdW0jhQ5MIGgs5UqJSLqBORkEDVMitX0qpNLMk8c4ZWjnFxdKN3Jdu2SeOYMkXdtdfQQMYJLywYUaRPSblxWppU/XXqFBVKuIqkJBKY++47CguXl9M1OHAghZ7i4jyiAscR8F3VHkwmujHxKowB6Heg1SpXfczMpERVgEoXxQoBTyAigjwU7e2UXLd6NY1v40b6rO7oX2Md3slXUb0DkOu7f3/XVU0xnotYbqxEDRoAJk+WnrsqzAPQb3bgQBp3bi7NH1FRPrlI9r1P5EqamliFkpFISFA30QGU9Caydq3jxuQItFqKY2dmknGybh2FfFxVsWNNfT25sQEaU//+yo9hMJDbmxcWDEB5GampymTvAdc1D+wJnU55124vhA0Ue2hqohiflyUeMU4iPJx+D2oMlClTpN/Rli2W/jIeRUgI9fWJjXWf98G6SdvUqerG0NhInh9eWDAiWVnK1aAzMij/CqBEcT9u6ucs2ECxh/Z2lrdnupOZqVxXAaAV/bRp9Lyjw9J2wSOJjHSfO9k6vDN1qrpjNDe7vuqI8WwSE8kjoWRhoNFIXhRBoPJfxqGwgaKWjg6qXOBVGGNNQgL9Ls5LsCvCOlnW08I8nkBNDZVYArTiVbM4MBqlkBXDiMTFKe9uDLg3zOMHsIGilqYmVqFkLiY+Xn0eSv/+lPwGAIWFiKlzb6Muj2PLFum5Wu+JXk+VOyxvz1ij1dL1p7QKLydHEmk7csQ1TT/9CDZQ1KLX0yrOA+WBGTcSGKhO9l7EKll24En2onTDEeEd8bpV0jOJ8Q+Skyls09Ulfx/rMI/ZTOJojMNgA0UNogqlWD/PMNakptLvQ42eydSplptn9pmfEGA0OHhwXkpFBWmvACRApebaM5vp5uNFUt+MC0lMJK+4PeXGrhRt8wPYQFEDy9szfSHK3qupxAkLs2h7BHYZ0L90k4MH56XYK20PUHJsVBSXFzM9ExpKVTlK81AGDpTuBYcOqRNrZHqEDRQ1NDVRUhWrUDI9EROjrr+HiFWYZ8iZNQ4alBcjCI4xUBobyfMSFeWQYTE+SEaG1IRSLtZhHpOJwzwOhA0UNTQ3UxzbB5X7GAcg9sJQu5IaOJD2B5B47iT61Rc5cHBeSEkJUFZGz4cNU++5NBgs3yvD9EhSkvqmnyJczeMw+A6rFJOJbkDsJmb6IjGRVlZKZe8B2s+q5HjAST/3ojgiObatjW48fN0yfRETQ95xpd7PIUOoTBkA9u/3TKFFL0SxgdLZ2Ym3334bN910E6644go89NBD2L17t6x99+zZgyeeeALXX389rrnmGjz44INY6216Dyxvz8ghIYEEzdR6UaZNQ5eOupDmnNmgTlfFF7AO72i13XUnlNDQQCXg7ugdxHgPar2fWi0wYQI97+qiBpuM3Sg2UF555RV8+umnuPLKK/H4449Dq9Xi6aefxqFDh/rcb8uWLVi4cCGMRiPmz5+PBQsWIDg4GC+//DI+/fRT1R/A5bC8PSOHyEjyoqjNQ4mIQGkO5VoEdbb6r9u4oACoqqLnI0bQClcNLS3U6ZXDsowtkpNJZVhpLop1NY+/Xq8ORtHVeuzYMaxfvx4PPvggHn30UcyZMwdvvPEGkpOT8fbbb/e57xdffIG4uDi88cYbuPnmmzF37lz84x//QFpaGlavXm3Xh3ApLG/PyCUrS53s/XkKcmdLL7zN0+goNllVMakN73R2Uvt5UVCLYfpCbXfjYcOoTBkgD0pFhePH5mcEKNl448aN0Ol0mDNnjuW94OBgXHvttVi8eDGqq6uR1EuMt62tDZGRkQgKCpJOHhCAaPE/1BtgeXtGCQkJ0kpMhaBfXeJQNERlIKapDDh2jBJF/UnDw2yWdCUCAronIiqhsZHyA1g9lpFDSAhdZ0ePAqDfjKEd+Hilrd5NOozIuQYjDvwP6OpCxctLsHHWH2WdMjAQyBthRk6mCu0kH0aRB+X06dNIT09H+AXhjaFDhwIACgoKet131KhRKCoqwrvvvovy8nJUVFTg/fffx8mTJ3HHHXeoGLobaGqi0mKWt2fkEB9PKyq1YR6NBicHWHlRvv/eMePyFk6cAOrq6Pno0RQ2U4NeD2Rn0+KCYeSQkQF0dVnWFYKgQZvB9mPvoFvREkb3h7TyPYg9s0fWfvomDfYc5vDjhSjyoJw7dw5xPSSZie/ViZNJD9x7772orKzEhx9+iA8++AAAEBISghdffBFTbbhu6+rqcO7cOcvrkpISJcN2HHo9TZQsb8/IITiYhJ+OHlVt1J7OuRyXHVwKnbkL+PFH4J57/Of354jwjqjom5bmmDEx/kFiIhAejrxBbdhzOkxBOkowDl52HyZvfA0AMGn/YnyXPRJmXe/XrKGdDCClKS/+gCIDpaOjA4E9TI5i2Kajj0qDwMBAZGRkYPr06cjPz4fJZMLXX3+Nl156CX//+99xySWX9LrvqlWrsGzZMiVDdTyCQC5nlrdnlJCWRuqSKukIjkJZ9mRkF24k/Z3t2y1Ksz6NySSFd4KCgHHj1B1HbOrJ+SeMEmJigPh45NTVIufadGX7ClOA2m+BY8cQ1VSB27VfATfe1OvmH6/UoY07WvSIIgMlODgYxh7MvM7OTsvfe+ONN97AsWPH8O6770J7PpN+5syZuOeee/DWW2/hP//5T6/7zpkzB5OtMqRLSkrw0ksvKRm6/bS2ko4C558wSkhIoJi2qMOhgoLcq8hAASjM42UGSmGpBnsPaxWtEJMqDuHy86Gx0tTLsOX7vsM7ht5ykRsbgcGDueqOUYZGQ92N1XjrNRrggQeAX/+aFraffAJMn66+As2PUWSgxMXFoba29qL3xfBLfC9ubKPRiG+//RZ33nmnxTgBKEl2/Pjx+PLLL2E0Gnv0zojH7e3YLkOvJw0F/pExSoiNpd9MU5NqA6Um+VLy3FVWkjemstKrPHl7D2uhb9Io2if9tBTeOZU2DW0Geft3m0IEgSp4uOqOUUNSEiVnq0lyHzAAuPJKWlAYDMAHHwBPPOGccfowirJyBg4ciPLycrReIAN87Ngxy997Qq/Xw2QywdSDqqbJZILZbIbZbFYyFNfT0kJloxplEy3j5+h09LtpblZ/jAuUZb0tWVb0nGg0AsJCbT8igjqRU07hHWNAKM4NGCtrv+goAXkjrOYRsaknh3cYNSQkUFGE2iT3n/1M8tytXw+cPu2wofkLijwo06dPxyeffIJVq1ZZKm86Ozvx3XffYdiwYZYS4+rqarS3tyMrKwsAEBMTg4iICGzevBn333+/xVPS1taGrVu3IjMzs8/wkNsR5e15omPUkJws5TCpFQqbORP473/pt7h+PXDXXbS68yJCQ4A7b5Qh/b97L9BJi6DAyeMw75ZAACpaBjQ2UrIjez0ZNQQHk/ft4EF1Se7R0cDttwNLltDrxYuBV19lsUAFKPqmhg0bhhkzZmDx4sV4++23sWrVKjz55JOoqqrCww8/bNnu5Zdfxs9+9jPLa51Oh9tvvx1lZWV4+OGH8emnn+KTTz7BQw89hNraWtxzzz2O+0TOgOXtGXtISAAiIuxrwx4TA4wfT88bG4FduxwyNI/EunrHnnyb1laSLWevJ6OWtDRaWAgq9UmuvVbSLjp5Eti40XFj8wMUm3LPPvssbr31VqxduxZvvfUWurq68Oqrr2LUqFF97nfPPffgD3/4AwICArBs2TIsWbIE4eHhePHFFzHL2n3tiej1FPNXmUPA+DmRkWSkqHUVi1x1lfTcy8I8smlpkYyv8HDAxrzSK6Koohfl6jAeSFIS/Q7VLi4CAoAFC6TX77/PjQQVoNhHHBwcjEcffRSPPvpor9u89dZbPb5/5ZVX4sorr1R6SvfT0cGJdox6NBrKQykstO84I0dSyKKmhjqm1tT4ljqqIAD/93+UVAhQbxO1mi8NDZSgzF5Pxh6io+k3VFOjXihw9Ggqk9+1C6ivBz77DLj3XseO00fhYJgtWN6ecQSJieoakFmj1VJlAEA383XrHDM2T2H9emDLFnoeHg7Mm6f+WE1NFN7xsjwdxsPQaOh3dEFhiGLuv1/6LX71FXD2rP1j8wPYQLGFXk+Z3NymnbEHsSKgsdG+41xxhZRk98MPlDTrC1RUUBKhyGOPqV8UdHXRjYXVYxlHkJREnrzzel+qSEkBbriBnnd1Ae+955ix+ThsoNiiqYnc8/4iL844h5AQEn5qaLDvOHFxQF4ePT93Dti3z/6xuRujEfjb36TOz7NmdW9drxRxUdFL41KGUURion3lxiK33kphR4DCPfv32z00X4cNlL5geXvGkWRnk/fD3qYb1smya9fadyxP4L//BcRGo2lp3ZMK1dDYSJUToaF2D41hEBhI1669BkpYWPfck3ffJW8K0ytsoPQFy9szjiQlhTwg9fX2HWfMGCnkuGcPeVK8lf37gS+/pOcBAcBTT5G3SS1mM4W9OKmdcSSpqfS7sldQdNo0IDeXnpeVAd9+a//YfBg2UPpCryeBnn793D0SxhcICgIGDbI/D0Wnk5JlzWbKRfFG9HrgjTek1/feSxLh9tDSQpozLKrIOJLERKrisUfLCCAP6oMPSq8/+QTBBjs9Mz4MGyh9wfL2jKPJyCCXcR+dv2VxxRXS73LdOvtXdq5GEIA335RyckaPBq6/3v7jNjaScRIdbf+xGEYkOppymuxdXAC0SLn8cnre2oqRe9+3/5g+ChsovdHVRdYuJ9oxjiQ5mVZj9oZlEhPppg6QRsOBA3YPzaV8+y2FpwCa/J980jES4AYDlYUyjKPJyZE0euzlnnssOVIDTn2PuPoCxxzXx2ADpTeam1nennE8AQG0grKneaCItzYQLCoCli6VXj/5pGP65bS10aTP4R3GGSQmUpjWXu8nQL/3228HAGggYOLef6uX0/dh2EDpDZa3Z5xFejolgtoreT1unJQftXOn/SXMrqCjA3j9damSac4cYOxYxxy7sZHKONU0dmMYW8THk2FhbzWPyHXXWbR6kuuOIauQ+/RcCBsovcHy9oyzSEyk0KG91TwBAVIs22QCfvzR/rE5m/feo+oFgFzmjpT8bmkhrRnuFss4g8BAykl0lIESGEgKs+cZvfs9SQuIAcAGSs+YTCxvzzgPrRYYPNj+igDg4jCPB7uJ00q2A6tX04ugICopdpQAotFI1U2pqY45HsP0RFqapI/lCPLyUJFOwothbeeAFSscc1wfgQ2U3oiJYVcx4zzS0qgc1l4jJSWFmggCQGUlcPiw/WNzAmFtdZiw5U3pjQULpDb0jqCxkcJdvtQ8kfE8xHJjR+SQnWff+Adh0p7v0/Pll0BVlcOO7e2wgdITGg2Fd7jRGOMs4uJotW9vmAfw+GRZjdmE6dtfR3DH+Ul94sTuariOoLGR1D6Dgx17XIaxJjKSkrAdFeYB0BydhqODz/fpMRq7J5D7OWyg9ER4OMvbM85FowEGDqREWXvDMhMmSK3gt22j/lEexNDDnyO15hC9iI+nRoCO1BYym+k7TE933DEZpjeys+1PcL+A/cPvgCG0H73Yvh04eNChx/dW2EXQE9HRnH/COJ+0NCplF0va1RIYCMycSW3cu7qAl14CFi70DA2fU6dw6b7/AgAEaKD59a8lY8pRNDXR9+cJn5fxfRITqQqvvd2+tgxWGAPDcHDsfEzY8ga98e67pLKs0znk+IWlGuw9rFXWBsyUDuh0CNu5FTe+bEfzTjtgD8qFhIbSRMfy9oyz6deP8jAc0Uvnmmuk8MaJE6Qtsnmz/ce1h7Y24PXXoRVMAICjI28Dhg93/HkaGihc5mjDh2F6Qiw3doSqrBWFgy4njSQAKCmREsodwN7DWuibNGgzKHh0BtC/egfovqiEDZQLSU6m0k2Wt2dcQf/+FHe2tyogJYU8J6IXobUVeO01kpN3lPqlUv7zH0vCX3XcEBwefadzztPZSW53hnEFAQFUIu/ARFkAgEYLPPCA9Prjjx0WrhU9JxqNgLBQmY+gLvo32n15XRziYRh3kp5OIUW9vlc1VUM78PFKOa7eYQi88v/hsm3/h+zCn+it9evRtPsEtk5/Gg3xA3vcKzAQyBthRk6mA0uUN24ENmwAABgDQ/HTpN9A0AYAMDnuHIDUcZzDO4wrSUmhvCeTyWFhGADAkCHAjBl07bS0AB99BDzyiMMOHxoC3HmjzGuwvJzC0HPcE94B2IPCMO4lIoLEn3qo5hElQgRBvltWb4rAD+N+g58mLERnAPX6iGqqwKxvFmLAvi/R1iZcvE+TBnsOO3AqqKoC/u//LC93TXoMzRFOSjpvaKB8sdhY5xyfYXoiKYkWFs5ISL/nHim3Ze1aag3hp7CBwjDuJieHVmKm7iubvBFmREcpcMmKjzDg7LCZWHPjWzgXPxgAoDN3YfyBd3Ht5ucQK5yzbKvRkNdEUfJcX3R1AX/7mxRWmjEDJQOmO+jgPdDayuqxjOsJD3d4ubGFuDjgttvoudkMvPOORwswOhMO8TCMu0lLo/BOQ0M3ccCcTAE5mfaERJKAO16hWPYXXwCCgJSKfZi7+jHgiSeAvDx8vFKHNkemqHzyCXDyJD1PTgYeeghwljRLRwe5mbg5IOMOsrMpId0Z3HADaRpVVQFHjgBbtwJTpjjnXBciCPS5vvuOEu/nzHHNeXuAlx0M425CQ4EBA5zT7C8wkPrdvPiiFAbR6+n1O+9Aa3KU6wQ0kX72GT3X6UjK3pnNNsXmgKwey7gDsdzYGUnoF/TpwdKljumi3BclJcAHH1Ci7qJFlEf2448Or1ZSAhsoDOMJZGVR5ZjDYi0XMHIkVfRcdpn03tdf46qvf4V++lL7j9/cDPz975Ir+q67qN+QM9HrKTzmqH4+DKOEuDgykJ0R5gGoW/no0fS8tpa8oI6mupr6//zyl/RYsQKoqZH+rtUCe/c6/rwyYQOFYTyB1FSa8Bwhfd8b0dHA738PPPig5aYeU1+EG9c+gQEn16iPcwsC8M9/AnV19HrECOCmmxw06F4wmcig4+aAjLvQ6chAdpZys0ZDPavEKqHPPydDxV70egrfLFpE3pIPPiDviYhWS4bRPfcA778vdUx3A5yDwjCeQFAQSd9v2+bcklmNBrjuOuCSS4DXXwfKyhBg6sD4rf8PeHUvydBHRCg75vffkzw3QGJpv/61Y0sve0KvJ4OL808Yd5KSQteUo8uNRTIygGuvBVatIr2fpUuBp59WfJgAYxsGFu3E4PKfgGX7etZdGjIEyM8HJk+mnLjycueGaGXABgrDeAqZmcDu3RRrdnbTu5wc4O9/x+k/LMWgE9/Re9u2AadOkUz+JZfIO055OVUZiPzyl+QJcjYNDcCwYW6fQBk/JzGR2iw0NfWqY2Q3t99O+SB6PbBlC6lGy1FkNhqBffuATZswd9suBJh6yGHJyACmTSPDxAONfTZQGMZTSE4mTY9z51wTuggOxu5Jv0Bx/Bjk736Tug3X1QG/+x2VOc6b1/eq0GgktdrOTnp99dXUuNDZCAKVM2dmOv9cDNMXYWFUhXf6tPMMlIgI4O67gX/9i16/8w7le/V0bZrNwLFjZNBs3Upib7jgRp+QQAZJfj5VInmwajobKAzjKQQEUGLphg0uza0oyZiE79IG4aajr1EljtlM5cIHDvTddPCDDyQRqYwM4Oc/d82AW1po0mb1WMYTyMwEjh517jmuuIJ68xQW0jW3bh0wezb9TRDo/U2b6NFDb6/24CgUZkxFxeBpuPLBwV6jG8QGCsN4EunpUuliaKjLTmsIjwf+9CdKxPv4YzJSxKaDjz4KTJ3afYe9e6l7MkAJt7/5jfPDUiJic0Bu6Ml4AomJdK22tTkv5KjTUXL7b39Lrz/8kKQJ9u4lo6S8/OJ9QkKA8eOBadPwZelYtHYEIixUALQObjfhRNhAYRhPIjGRQj11dWSsuBKdjkI7l15KCbQ1NVLTwX37aIIMDSUD4Y03pP3uu8+1zfoMBlKP9WDXNONHiOXGjY3OzYkaNozCMps2UVn/woUXb6PTAWPH0nbjxlkk84VyJyetOwk2UBjGk9BqKcxTXOy+MQwZQpopb79NkyEArF9PHpVf/5oamInaD5ddRlUGrqK9nTw1HN5hPAWtlgzmLVucf67584GdOy8WbRs+nIySSZMoaddHYAOFYTyN1FTq9SHmWriD8HBaoY0eDfznP2QYVFSQOqyolxITAzz+uGs9GQ0NtGJNSHDdORnGFsnJdB10dVEumQrkdS1PQs64X2Dsjn+jJTIZxQOmozQnH20RCUA7gB97P7Y3wgYKw3ga8fGkr3D2rPsMFIAm3MsvB4YOpZBPQUF3MbcnnyQtElfS3EwhKGfrrDCMEhITKSdKr1dcZh8YCMAgdi23vf3R9Ctw9JYrur8pU23f20SX2UBhGE9DowEGDQLOnCGDwN25FqmpwKuvUmhHlNu++WZJhttVGI3kTk9Jce15GcYWoaFUyXbsmGIDJW+EGXsOa53W5UIkMJDO5U2wgcIwnkhaGqmyNjd7Rkw5MJDi3zNnkhz/yJGuH4NeT6tUzj9hPJH0dODgQcWLCvu7lvsu3lEMzTD+RkwMTXg9aBq4lcxMYNQo93h19Hpqqni+MoFhPIrERMrdamtz90h8BjZQGMZTGTCAwho99c3wN8xmSkB0dek1w8glJobCO42N7h6Jz8AhHobxVNLSKAlVr3eejPZ55FUQqD+23YihLg/sF8IwACg/KicHKC1190h8BjZQGMZTiYykkMbRo04zUJRWENh9LrU0NtJ34Qn5OAzTG8nJVGFmNHpfyYwHwgYKw3gyOTnA4cNOa+fuNRUEBgN9FwzjySQkkNezqck1Xb19HDZQGMaTEXvONDY6ZcLzigoCsccJV+8wnk5ICCWSHznCBooD4CRZhvFkwsIoWba+3t0jcR+NjSRexxM+4w3k5FCp8YVy9Ixi2EBhGE8nK4v+dXYcxlNpbiYjzUtaxDN+TnY2Pc6edfdIvB6+4hnG00lJIe9BQ4O7R+J6OjuptwlX7zDegk5HQoZmM/WwYlTDBgrDeDrBwcDAgf6pryCWWCcmunskDCOfrCzqcMxeFLtgA4VhvIGsLFqZ+Vtcu7GRYvpBQe4eCcPIR6ejppaCwMqydsAGCsN4A8nJVMLoT8myJhNN8Glp7h4JwygnM5M8n+xFUQ0bKAzjDQQEUIfjpiZ3j8R1NDWRpgTnnzDeiFZLXhSdjr0oKmEDhWG8hYwMykcxOFny1VNobKTeO+Hh7h4Jw6gjI4MWFhUV7h6JV8IGCsN4C0lJ9PC0DsfOQBCogicz090jYRj1aDTkRQkKAlpa3D0ar4MNFIbxFrRaWo35w0TX2kqeEw7vMN5OaioweDDnoqiADRSG8SbEkIevGymNjVRa7OQuzgzjdDQaYMQIksH3pxwyB8AGCsN4E/HxJNzm69U8ra1UXqzRuHskDGM/ycnAkCFAZaW7R+JVsIHCMN6ERkNhnrY2ytPwRerqgMhISjBkGF9AowGGDyfvp17v7tF4DWygMIy3kZYGREVRjxpfw2gkA2XMGNJ9YRhfISkJGDoUqKpy90i8BjZQGMbbiIkhI8UXq3nKyii0c+ml7h4JwzieSy4h76A/9tVSARsoDOONDBxIZbhms7tH4jj0ehKkGzeO9F4YxtdISCAvSnW174ZoHQgbKAzjjaSlkcqqr8SzTSYqw7z0UtY+YXyb4cPp2mUvik3YQGEYbyQyEsjO9p1qnooKMrrGjHH3SBjGucTGUqinpoa9KDZgA4VhvJXsbPI8mEzuHol9tLZScuy4cSxrz/gHl1xCuWS+ssBwEmygMIy3kpZGk1xjo7tHoh5BoMTYSy4BBgxw92gYxjX060fibTU1vpVH5mDYQGEYbyUsDOjf37tXYVVVJD532WUk5c8w/sLQoUBcnG9W4zkInhEYxpvJyqJ/jUb3jkMNHR0k2T9uHK0oGcafiIqipPC6Ovai9AIbKAzjzaSm0irMGysCSkupiVpurrtHwjDuYehQKj2urXX3SDwSNlAYxpsJDiZNFG8zUOrqKCF23DjSPmEYfyQiAhg5kq5fb092dwJsoDCMt5OZSTf5zk53j0Qeopx9Xh51LGYYfyY3l64D9qJchOKlS2dnJ5YsWYLvv/8ezc3NGDBgABYsWIDLLrtM1v7r16/HihUrcObMGQQEBCArKwsLFizA2LFjFQ+eYRhQp9SEBEq2S0lx92hsU1pKyb3Dh7t7JAzjfsLDyYuybh1dxzqdu0fkMSj2oLzyyiv49NNPceWVV+Lxxx+HVqvF008/jUOHDtnc97333sOLL76IxMRE/OIXv8D999+PAQMGoK6uTtXgGYYBEBhIHY6bmtw9Etvo9TRelrNnGIncXFpcVFe7eyQehSIPyrFjx7B+/Xo88sgjuOOOOwAAV111FebPn4+3334bb7/9dq/7Hj16FO+//z5+8Ytf4LbbbrNv1AzDdCcjAwgKAtrbgZAQd4+mZ0wmoLISmDiRxsswDBEaSl6UNWso3MN5WQAUelA2btwInU6HOXPmWN4LDg7Gtddei6NHj6K6D+vvs88+Q2xsLG655RYIgoC2tjb1o2YYpjuJiRTq8WRNBVHOfvRod4+EYTyPQYOoKq+qyt0j8RgUGSinT59Geno6wi+Qox46dCgAoKCgoNd99+7diyFDhmDFihWYM2cOZs+ejRtvvBGff/65imEzDNMNnc6zwzwtLUBXF8vZM0xvhISQ8S62fmCUhXjOnTuHuLi4i94X3+stl6S5uRl6vR5HjhzBvn37MH/+fCQlJWH16tV48803ERAQgBtuuKHX89bV1eGc1cqwpKREybAZxj9IT6ebf2OjZwmfmc1AeTlNvixnzzC9M3AgeRmrqjgMCoUGSkdHBwIDAy96PygoyPL3nhDDOXq9Hs8//zwuv/xyAMD06dMxf/58fPDBB30aKKtWrcKyZcuUDJVh/I/4eGDUKGDXLlJpTUpy94iIqiqqTrjsMkCjcfdoGMZzCQoiQ/7bb8mL0sP91p9QZKAEBwfD2IPrqfO8/kJwL1n54vsBAQGYPn265X2tVouZM2fivffeQ3V1NZJ6mVDnzJmDyZMnW16XlJTgpZdeUjJ0hvF9NBpg0iSS0N66FSgqIil8d/a4aW+n8M6UKUB0tPvGwTDewoABpG1UWUn/+jGKDJS4uDjU9iAmI4Zf4uPje9wvKioKQUFBiIiIgO6CGu+YmBgAFAbqzUCJj4/v9dgMw1ih0VCX1OhoYNMm4PRp0hxx10qstBQYMoQeDMPYJjCQKnq++YbEF89HKPwRRUurgQMHory8HK2trd3eP3bsmOXvPZ5Eq8WgQYOg1+sv8sCIeSv9PClmzjDeTmYmcM01tBorKADcUTVXWwtERlJiLItPMYx8+vcn72dFhbtH4lYUGSjTp0+HyWTCqlWrLO91dnbiu+++w7BhwywekOrq6osSWWfMmAGTyYQ1a9ZY3uvo6MC6deuQnZ3NHhKGcTSxscDs2cDYsZSkWl/vunMbjVTyPHYs5Z8wDCOfgADyonR1UT6Zn6IoxDNs2DDMmDEDixcvRmNjI9LS0rBmzRpUVVVh0aJFlu1efvllHDhwAJs2bbK8d8MNN+Dbb7/FP/7xD5SVlSEpKQlr165FdXU1XnnlFcd9IoZhJEJDgenTKeSzYwd5UtLSnJ+sWlpK3psRI5x7HobxVXJy6CG2hvBDFMvVPfvssxbjoqWlBf3798err76KUaNG9blfcHAw3njjDbz99tv47rvv0N7ejoEDB+LVV1/FuHHj1I6fYRhb6HTUmK9fP8pLOXOGJj5nhV0aGyU5ez+OnzOMXeh05EUpKfFshWgnohEEQXD3IJRy8uRJPPDAA3jnnXeQm5vr7uEwjPdQXQ1s3AgUF9OqzNH9cEwm4NQpYPJkejAMox6zmZJlCwtdpyFkNtMio7KSGnped51rztsDbqw/ZBjG5SQlAVdfTaGXoiLHK89WVJDAFMvZM4z9aLXkRdFonJ/o3t4OlJVR5Z/RCEyYQJ5XN8IdiRjG34iMBK64gvRSdu+miS852f7jWsvZh4XZfzyGYcjgHziQPJO9VMqqxmwGGhoooT0ggHoBDR1KFUSRkY49lwrYQGEYfyQwkETd+vUDtmyxX9RNlLMfM8ZvE/oYxilotcCll1LuWGurY3pZtbcDNTW0OImJIU/JgAFASopHSQKwgcIw/opGA1xyCXlSNm60T9Stqoo6KuflsZw9wzia9HRg8GDg2DFqCqoG0VtSV0fJ66K3JDPTI7wlPcEGCsP4OxkZwLXXSkZKRoayVZooZz91KsvZM4wzEBWiCwroWouIkL+vwUCiiQYDeUvGjZO8Je5sgyEDNlAYhqGJa/Zs8qbs3w/ExdFDDqKcPVfUMYzzSE0lL8rhw/RvX5hMUm5JUBB5YIYMIW+JEuPGzbCBwjAMERICTJsmiboZDLZF3WpryahhOXuGcS4aDeWiFBRQ9V1U1MXbtLVRCMdgICXp8ePJW5Kc7PHekp5gA4VhGAmdjuTpxWaDBQWUl9KT8SHK2V9+OcvZM4wrSE4mT+X+/ZKBYjJRG4v6etI1svaWOCKh1o2wgcIwzMUMHEgT4E8/UV5KdvbFSpainP3w4e4YIcP4JyNGUMlxdTXlf3V0UIh24kRaTCQleaW3pCfYQGEYpmcSE6kj8ubNwJEjlFQnJsE2NFBsm+XsGca1JCZS9c3RoxSCFStxfFB7iA0UhmF6JyKiu6ibwUDhnOpq0lFJT3f3CBnG/xg/ngyThASf8Zb0BBsoDMP0jSjqFhND3pSjR8mVzHL2DOMeQkPp4eOwgcIwjG00GmDYMPKkbN9Ogmw+6FJmGMZzYAOFYRj5pKcDN9/s025lhmE8A55lGIZRBhsnDMO4AJ5pGIZhGIbxONhAYRiGYRjG42ADhWEYhmEYj4MNFIZhGIZhPA42UBiGYRiG8TjYQGEYhmEYxuNgA4VhGIZhGI+DDRSGYRiGYTwONlAYhmEYhvE42EBhGIZhGMbjYAOFYRiGYRiPgw0UhmEYhmE8DjZQGIZhGIbxOALcPQA1dHR0AABKSkrcPBKGYRiGYZSSlZWFkJCQPrfxSgOlqqoKAPDSSy+5eSQMwzAMwyjlnXfeQW5ubp/baARBEFw0HofR2NiIXbt2ISUlBUFBQQ45ZklJCV566SX8/ve/R1ZWlkOO6cvw9yUf/q6Uwd+XMvj7UgZ/X/Jx5nflsx6Ufv36YdasWU45dlZWlk2rjpHg70s+/F0pg78vZfD3pQz+vuTjru+Kk2QZhmEYhvE42EBhGIZhGMbjYAPlPHFxcZg/fz7i4uLcPRSvgL8v+fB3pQz+vpTB35cy+PuSj7u/K69MkmUYhmEYxrdhDwrDMAzDMB4HGygMwzAMw3gcbKAwDMMwDONxsIHCMAzDMIzH4ZVCbc7mwIED+OSTT3D69Gno9XpERERg4MCBuPfeezFixAh3D8/j2Lt3L9atW4dDhw6htrYWsbGxGDNmDO6//37Ex8e7e3geR11dHVasWIHjx4/jxIkTMBgMePPNNzF69Gh3D82tdHZ2YsmSJfj+++/R3NyMAQMGYMGCBbjsssvcPTSPpK2tDZ988gmOHTuG48ePo7m5Gc888wyuvvpqdw/N4zh+/DjWrFmD/fv3o6qqClFRUbjkkkuwYMECZGRkuHt4HkVRURGWLl2KkydPor6+HiEhIcjKysIdd9yByZMnu3Qs7EHpgfLycmi1Wtxwww148sknMW/ePNTX1+OXv/wldu7c6e7heRz//ve/sX//fkydOhVPPPEELr/8cmzYsAELFizAuXPn3D08j6OsrAwff/wxamtr0b9/f3cPx2N45ZVX8Omnn+LKK6/E448/Dq1Wi6effhqHDh1y99A8Er1ej2XLlqGkpAQDBw5093A8mo8//hgbN27E2LFj8fjjj+P666/HwYMHsWDBAhQWFrp7eB5FVVUV2traMHv2bDz++OO45557AADPPPMMVq1a5drBCIwsDAaDcMMNNwgLFy5091A8jv379wsmk+mi96ZOnSosXrzYTaPyXFpbWwW9Xi8IgiBs2LBBmDp1qrBv3z43j8q9HD16VJg6darw8ccfW95rb28Xbr/9duHhhx9248g8l46ODqGurk4QBEE4fvy4MHXqVOG7775z86g8k0OHDgmdnZ3d3istLRUuv/xy4cUXX3TTqLyHrq4u4b777hPuuusul56XPSgyCQkJQXR0NFpaWtw9FI9j1KhR0Gq1F70XFRWFkpISN43KcwkLC0NUVJS7h+FRbNy4ETqdDnPmzLG8FxwcjGuvvRZHjx5FdXW1G0fnmQQFBbHYmExGjBiBwMDAbu9lZGQgOzub5ygZ6HQ6JCYmuvz+xzkofdDa2gqj0Qi9Xo+1a9eiqKgIP/vZz9w9LK+gra0NBoMB0dHR7h4K4wWcPn0a6enpCA8P7/b+0KFDAQAFBQVISkpyx9AYH0UQBDQ0NCA7O9vdQ/FIDAYDOjo60Nraiq1bt2Lnzp2YMWOGS8fABkofPP/889i1axcAIDAwEHPmzLHE45i++eyzz2A0GjFz5kx3D4XxAs6dO9ejN0B8r66uztVDYnycdevWoba2Fj//+c/dPRSP5F//+pcl50Sr1SI/Px+/+tWvXDoGnzdQzGYzjEajrG2DgoKg0Wgsrx966CHMmzcPNTU1WLNmDbq6umAymZw1VI/Anu9L5MCBA1i2bBlmzJiBsWPHOnqIHoUjvi8G6OjouMgFD9B3Jv6dYRxFSUkJ/vGPf+CSSy7B7Nmz3T0cj+TWW2/F9OnTUVdXhw0bNsBkMsme6xyFzxsoBw8exBNPPCFr2w8//BBZWVmW14MGDbI8nzVrFhYsWIBXXnkFf/rTnxw+Tk/Bnu8LoAv/97//Pfr3749FixY5Y4gehb3fF0MEBwf3OPl1dnZa/s4wjuDcuXNYtGgRwsPD8ac//Qk6nc7dQ/JIsrKyLPPV7Nmz8etf/xq//e1v8Z///MdlCy2fN1AyMzPxzDPPyNq2r4SzwMBATJ48GR999BE6Ojp8dsK05/uqrq7GwoULER4ejldffRVhYWHOGKJH4ajfl78TFxeH2trai94Xy9RZT4dxBC0tLXj66afR0tKCf/7zn/y7UsD06dPx+uuvo6ysDJmZmS45p88bKHFxcQ4TLuro6IAgCGhra/NZA0Xt96XX67Fw4UIYjUb84x//8JsL35G/L39m4MCB2L9/P1pbW7slyh47dszyd4axh46ODvz2t79FWVkZ/v73v3NyrELEMKsrK3m4zLgHGhoaLnqvubkZGzduRGJiImJiYtwwKs/FYDDg6aefRl1dHf7617+yMiOjmOnTp8NkMnUTgurs7MR3332HYcOGcQUPYxcmkwkvvPACjh49ij/+8Y8YPny4u4fksfR0/+vq6sLatWsRHBzsUsPO5z0oavjNb36DhIQEDBs2DDExMaiursZ3332Hc+fO4YUXXnD38DyOP/3pTzh+/DiuueYalJSUdNMVCA0NxdSpU904Os/k/fffBwAUFxcDANauXWtRTL333nvdNSy3MWzYMMyYMQOLFy9GY2Mj0tLSsGbNGlRVVflFLpNaPv/8c7S0tFhCYVu3bkVNTQ0A4Oabb0ZERIQ7h+cx/Otf/8LWrVsxadIkNDc34/vvv+/291mzZrlpZJ7H66+/jtbWVowcORIJCQk4d+4c1q1bh9LSUvziF79waeheIwiC4LKzeQlffPEFfvzxR5SUlKClpQWRkZEYNmwY7rjjDowcOdLdw/M4brvtNlRVVfX4t+TkZHz66acuHpHnk5+f3+vfNm3a5MKReA4dHR2WXjwtLS3o378/FixYgHHjxrl7aB5LX9fe8uXLkZKS4uIReSaPP/44Dhw40Ovf/fWa64n169fj22+/RWFhIfR6PcLCwpCbm4u5c+diypQpLh0LGygMwzAMw3gcnIPCMAzDMIzHwQYKwzAMwzAeBxsoDMMwDMN4HGygMAzDMAzjcbCBwjAMwzCMx8EGCsMwDMMwHgcbKAzDMAzDeBxsoDAMwzAM43GwgcIwDmb16tXIz8/H6tWr3T0UWezfvx/5+fl47733nHaO/Px8PP744047vrN5/PHH+1T/tQfx+xcfDz/8sFPOI4f33nsP+fn52L9/v+W9kpKSbuO77bbb3DY+xr/gXjyM3/OXv/wF3333HaKiovDFF18gKCjI3UNyOOJNhdsOeC6jRo3CqFGjkJiY6O6hdCM6Ohrz588HAKxYscK9g2H8CjZQGL+mra0NGzZsgEajQVNTEzZv3ozLL7/crmNOnToVw4YNQ1xcnINGyfgDo0aNws9//nN3D+Mi+vXrZxnXmjVr3Dwaxp/gEA/j1/z4448wGAy49dZbodVq8e2339p9zIiICGRlZXEnWYZhGDtgDwrj13z77bfQ6XS48847cebMGezbtw9VVVVITk7utt17772HZcuW9Xoc667Nq1evxiuvvIJnnnkGV199tWWb/Px8jBo1Cn/4wx/w9ttvY/fu3ejs7MTIkSPx5JNPIjU1FcXFxVi8eDEOHjyIrq4ujBs3Dr/61a8QGxtrOc7+/fvxxBNPYP78+RetuCsrKzFv3jzMnj0bzz77rOW19RhEetr/xIkTWLx4MY4ePQqtVosxY8bgscceu6gr7qZNm7BhwwacOHECdXV1CAgIwIABA3DLLbdg+vTpfX/pNmhpacFXX32FHTt2oLy8HHq9HtHR0cjLy8P8+fORlpbWbXvx/+bNN99EXV0d/ve//6G0tBQRERGYMWMGHn74YQQHB3fbp6urC5988gm++eYb1NXVISEhAddeey1mzpyJ22+/3fL9yWHz5s34/PPPcerUKXR2diItLQ2zZ8/GbbfdBp1OZ9d3AQB//vOfsWbNGnzyySfYtGkTvv32W5w9exaXX345nn32WdTV1WHVqlXYtWsXzp49i9bWVsTFxWHChAm47777EBMTc9Exq6ur8e9//xu7du1CV1cXBg8ejPvvv9/usTKMI2EDhfFbiouLcfToUUyYMAGxsbG46qqrsHfvXnz33XcX3bhHjx7d4zFKSkqwYcOGi26AvdHc3Ixf/OIXiIuLw1VXXYXy8nJs27YNv/71r/HnP/8Zjz32GHJzc3HNNdfg1KlT2LhxI5qamvDmm2+q+owRERGYP3++JXfglltu6fUznThxAv/73/8wevRozJkzB6dPn8bmzZtRWFiIZcuWdfuMixcvRkBAAEaMGIG4uDg0NjZi69ateO655/DEE0/g5ptvVjVegL7T9957D6NHj8bUqVMRGhqKkpIS/PDDD9i+fTvefffdiwxIAPjiiy+wa9cuTJ48GWPGjMHOnTvx+eefQ6/X47nnnuu27auvvoq1a9ciNTUVN954I4xGIz799FMcOXJE0Vj/85//4KOPPkJCQgLy8/MRERGBQ4cO4e2338bx48fx4osvqv4eLuSNN97AsWPHMHHiREyaNMlieBw8eBDLly/HmDFjMHToUAQEBOD06dNYuXIldu3ahXfffbebN6+urg6PPvooamtrMW7cOAwePBglJSVYuHBhr79zhnEHbKAwfss333wDALjqqqsAkHfhH//4B1avXo358+dDq5UioKNHj75o8m5oaMBDDz2EoKAgPP3007LOeebMGdx222147LHHLO/9/e9/x8qVK/HYY4/hvvvuw6233goAEAQBixYtwo4dO3Dy5Enk5uYq/oyRkZH4+c9/bskd6CvHYceOHXj++ee75eC8/PLLWLt2LbZs2dLt/b/+9a9ITU3ttn9bWxseffRRLFmyBNdeey1CQkIUjxcAsrL+f3v3FtPUHQdw/NuKEC7jEmFlixcyL5FELmOIcSpxEzVeHojTBx9cqWXDGJ9MXAzZw5JF44yaSKIm002HY5NoQNEK4gQ1yEChOggOFUwUcVYFR6k6xLZ7ID3h2IJAAZvw+zz+/+f8/z/OITm//i/nTKGwsJDQ0FBVudlsZvPmzeTm5nq83rW1tRw8eJDJkycD8NVXX7F+/XrKysrYuHEjkZGRynHnzp1j+vTp7Nu3T4lz3bp1ZGZmDjjOa9eukZeXR0pKCt9//z2BgYFAz33bs2cPp06d4uLFi16PKLk0Nzfz008/odPpVOVJSUkUFhYSFBSkKi8pKWH79u0UFBTw5ZdfKuU//vgjT548ITMzU1VeVFTErl27hiVWIYaDrEERY9Lr168pLS0lODiY+fPnAxAUFMSCBQuwWCzU1NT0e35XVxfZ2dk8evSIrVu3EhcXN6B+AwMD3R6Crgd/WFiYaoRDo9Eodc3NzQP+24YqISHBbYHw8uXLAfj7779V5W8mJ9Bz/ZYtW4bNZqOxsXHIcYSEhLglJ9DzII6Jienz3qxevVpJTgACAgJYtGgRDoeDW7duKeWlpaUA6PV6VRIVGRmpuv5vU1BQAMCWLVuU5AR67ltWVhYajYYLFy4MuL23Wbt2rVtyAhAREeGWnEBP4h0cHExtba1S1t3dTVlZGREREaqpP4CVK1cyceLEYYtXCG/JCIoYkyoqKvj3339ZsWKFaupi6dKllJaWYjKZSElJ8Xiu0+lk+/btNDQ0YDAYSEtLG3C/EydOdBtZcO32+eijj9BoNB7rnj59OuA+hsrTCE1UVBTQsy6kt2fPnpGXl0dVVRUWi4Wuri5VvbfxXr9+nePHj3Pz5k06Ojqw2+1K3fjx4z2eM2PGDLcy15bd3vE3NTUBEB8f73b8rFmzBhzjzZs3CQwM7HNhdUBAAPfv3x9we28TGxvbZ92lS5coKiri9u3b2Gw21fXqfS/u37/Pq1evSEpKcpuW1Gq1xMXF8eDBg2GLWQhvSIIixiTXQ8U1vePyySefEBUVxZUrV7BarR5/yR86dIjy8nLS0tIwGAyD6jc4ONitzLWQsr+6169fD6qfofD0K9zVv8PhUMqsVitff/01FouFuLg4kpOTCQkJQavV0tTUREVFBd3d3UOOo7y8nO+++47AwEBSUlKIjo5WkrqSkhIePXrk8bz+rl/v+F+8eIFWqyUsLMzt+N6Lkd/GarVit9v7XTz98uXLAbf3Np4WuwIcO3aM/fv3Ex4ezuzZs4mKilKSjxMnTqjuxfPnz/ttq69yId4FSVDEmGOxWLh27RpAv283LS0tdRvyLy4u5ujRo8TFxbF169YRjbMvrlGW3r+SXVwPoJFkMpmwWCwYjUb0er2q7tdff6WiosKr9g8fPoy/vz8HDx5k0qRJqrqysjKv2oaeRMzhcNDR0UF4eLiqrr29fcDtBAcHo9FoOH36tNcxDcSbo2vQk7jm5uYyYcIEfv75Z1WC4XQ6+f3331XHu5K4Z8+eeeyjr3Ih3gVJUMSYU1JSgsPhID4+3u0BCD0P/pKSEkwmkypBuXHjBrt27eLDDz9k27Zt7+yNs++99x7geRrlzp07Hs/RarVejWr01traCqCs3emtrq7O6/YfPnxITEyM2715+vQpDx8+9Lr9adOmcefOHerr61mwYIGqbjC7eGJjY6murqalpcXj/9Fo6OjowGazkZSU5Db60djY6Db1NmnSJPz9/bl16xZdXV2qaR6HwzHoXUxCjCRJUMSY4nQ6OXv2LBqNhuzsbI+LPQFaWlpoaGigsbGRmTNn0tLSwrfffktAQAA7duxw++U9miZPnkxQUJDbNFR7ezu5ubkezwkNDeXu3btuD6WhcG3xra+vZ+rUqUr5+fPnqaqq8qptAJ1OR2trK+3t7cqUS1dXF3v27BmWqa7FixdTXFzMkSNHSElJUa5HW1vboF7lvnr1aqqrq/nhhx/Ytm2b25RRW1sbnZ2dxMTEeB1zXyIiIggICOD27dv8999/ylRYZ2enx63p/v7+fPbZZ5w7d478/HzVLp4zZ87Q0tIyYrEKMViSoIgxxWw2888//5CYmNhncgI9u1caGhowmUzMnDmTnJwcrFYrycnJHqcZQkJCRu0jauPHj+eLL77g6NGjZGZmMm/ePF6+fMmVK1dITExURjh6+/jjj2lsbOSbb74hPj4ePz8/EhISSExMHHT/S5Ys4bfffmPv3r1cv34dnU5HU1MTZrOZ1NRULl++7NXft2rVKvbu3YvRaGThwoXY7XZlSm7atGnKItehSk5OJi0tjT/++IOMjAzmz59Pd3c35eXlxMbGUllZqdpi3pc5c+ag1+v55ZdfWLt2LXPmzEGn02G1WmltbaWurg6j0TiiCYpWqyU9PZ38/HwMBgPz5s3j+fPnVFdXo9PplK3VvWVlZWE2mzl06BD19fVMnz6de/fuUVVVxezZs5VrLcS7JgmKGFNci2N7v+HVk88//5ycnBwuXLjApk2blKHympoaj9tco6OjR/Urr0ajET8/P0wmE0VFRURHR6PX6/n000+5dOmS2/F6vR6bzUZlZSV1dXXY7XYyMjKGlKC8//775OTkcODAAWpqarDb7cyYMYPdu3fz+PHjYUlQ/Pz8KCgo4PTp04SEhDB37lyysrLcXrg2VNnZ2UyZMoWzZ89SUFBAVFQUa9asISkpicrKSo8Lhj0xGo0kJCRw4sQJamtrsdlshIaG8sEHH5CRkcHixYuHJd7+ZGVlERoaSnFxMSdPniQiIoJFixZhMBiUj/z1FhkZyf79+zlw4ABXr17lr7/+Uu6f2WyWBEX4DI3T6XS+6yCEEMIXnDlzhp07d7J582bS09NHpc/+Pl3ga+Sr2GI0yYvahBBjTltbG2/+Nnvy5Am5ubmMGzeOuXPnjnpMR44cITU1lQ0bNox63/25d+8eqamppKam9rnFW4iRIFM8QogxJy8vjz///JOEhATCw8N5/PgxlZWVvHjxAoPB4PGNrSMlOjpaNRXjermcrwgLC1PFJ1/pFqNFpniEEGNOdXU1+fn5NDc309nZib+/P1OnTiU9PX1U1o0IId5OEhQhhBBC+BxZgyKEEEIInyMJihBCCCF8jiQoQgghhPA5kqAIIYQQwudIgiKEEEIInyMJihBCCCF8jiQoQgghhPA5kqAIIYQQwudIgiKEEEIIn/M/xpsrTOjJ5LwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyP0lEQVR4nOydd3gc5dX2793VqlerW9WSbNlyrzLuxhTTTO/NgCkpL5CQQOBNIQkJIRACeZOPxAFsIBCKAWOKG8Yd914kd/W66l2r3fn+OB7Nypa0M7Oz/fyuay/Prndmnl3tPHOeU+6jEwRBAMMwDMMwjAehd/cAGIZhGIZhLoQNFIZhGIZhPA42UBiGYRiG8TjYQGEYhmEYxuNgA4VhGIZhGI+DDRSGYRiGYTwONlAYhmEYhvE42EBhGIZhGMbjYAOFYRiGYRiPgw0UhvEQNm3aBJ1Oh+eff97hY+l0OsybN8/h4wyGluP1BRYvXgydToeioiLZ+2RmZiIzM9NpY2IYb4YNFMZv0el00Ol00Ov1OHPmzIDvmz9/fu97ly9f7roBupmioiLodDosXrzY3UORjWg02T4CAwORmpqKW2+9FTt27Oh3v/b2dkRHR0On0+Guu+5y8aidy1tvvYVHH30U+fn5CA0NhU6nwy9/+csB39/Y2IiXX34Zd999N/Ly8hAQEACdTodvv/3WhaNmGCDA3QNgGHcSEBCAnp4evPXWW/jjH/940f+fOnUKmzZt6n0fIzFt2jQUFBQgLi7O3UO5iIyMjF7Dqq2tDTt37sSKFSvw2WefYcWKFbjxxhv7vP+jjz5CU1MTdDodPvvsM9TV1SE2Ntbp49ywYYPTz/HUU0+hqakJMTExGDp06KDGOECG6dNPPw0ASE1NRVxcHKqrq50+Toa5EPagMH5NYmIipkyZgmXLlvVrgLz55psAgOuuu87VQ/N4QkNDMXLkSI80UDIzM/H888/j+eefx8svv4ytW7fi17/+NaxWK5566qmL3r906VLo9Xr8/Oc/R1dXF9555x2XjDM7OxvZ2dlOPceHH36IoqIi1NfXD+o5EcnIyMC3336Luro6lJaWYuHChU4dH8MMBBsojN/z8MMPo6qqCl999VWf181mM5YvX44ZM2YgLy9vwP1PnTqF++67DykpKQgMDMTQoUNx33334dSpU/2+v7q6Gg899BASExMREhKCCRMmDHpDHCxP4fnnn4dOp8OmTZvsfs6Kigr87ne/w8yZM5GUlNQ71rvuugvHjx+/6LjDhg0DALzzzjt9QiZimGuwHBQl34ntZ1ixYgWmTZuG0NBQDBkyBHfccQfKy8vtfjY5/OhHPwIAnDt3DrW1tb2vHz16FDt37sSCBQvwzDPPIDAwsNcwVYPVasWrr76KkSNHIjg4GKmpqfjJT36C5ubmi97b3992+fLlvd/zxo0bMW/ePERERCAyMhLXXHMNCgoKFI1n4cKFyMjIkP3+mJgYLFiwAEOGDFF0HobRGg7xMH7PnXfeiZ/+9Kd48803ccMNN/S+vmrVKtTU1OCll17C6dOn+913z549uOyyy9DS0oJFixYhLy8PhYWF+M9//oMvvvgC3377LaZOndr7fpPJhBkzZuDs2bOYNWsWZs2ahcrKSjz22GO44oornPo5t2zZgj/96U+YP38+br75ZoSHh+PUqVNYsWIFVq1ahe3bt2P8+PEAgHnz5qGxsRGvv/46xo8f3+d7mTBhwqDnUfqdiPy///f/sGrVKixatAhz587Frl278NFHH+HQoUM4ePAggoKCHPr8giD0but0ut7tpUuXAqAk1yFDhuC6667Dp59+iq1bt2L27NmKz/OTn/wEW7ZswW233Ybrr78ea9euxWuvvYatW7di27ZtCA4OlnWcr776Cl988QWuuuoqPPbYYzh+/Di++eYb7NmzB8ePH/dIzxXDaIrAMH4KACElJUUQBEF46KGHBIPBIJSWlvb+/5VXXilERkYKbW1twv/+7/8KAIRly5b1/r/VahVGjhwpABD+85//9Dn2hx9+KAAQcnNzBYvF0vv6ww8/LAAQnnzyyT7v37NnjxAQECAAEH7zm9/0+b+MjAwhIyOj38/wm9/8RgAgbNy48aLPNnfu3D6vVVdXC83NzRcd4+DBg0JYWJiwcOHCPq+fO3dOACDcf//9/Z5748aNF41XzXcifoaIiAjh8OHDffa58847BQDCRx991O8YBhrThZ9dEAThV7/6lQBAyMrK6n2to6NDiImJEaKiooT29nZBEAThyy+/FAAI99xzj6xzitx///0CACE2NlYoKirqfd1isQg33XSTAED43e9+12ef/v62y5YtEwAIBoNB+Pbbb/v83y9+8QsBgPDSSy8pGtuFx/7f//1f2fuIn2v9+vWqzskwauEQD8OAwjwWiwVvv/02AKC4uBjr16/H3XffjdDQ0H73+f7771FYWIhLLrkEd999d5//u/322zFr1iycOHEC27ZtA0Aho/fffx8REREXhUWmTJly0TG0JiEhARERERe9Pn78eFx66aXYuHEjzGazQ+dQ+p3Y8vjjj2Ps2LF9Xnv44YcBALt371Y0jqKiot4clJ///OeYM2cOfv/730Ov1+OVV17pfd8nn3yChoYG3H777QgJCQFAIZGkpCSsWLECDQ0Nis4LAE888USfkIper8fLL78MvV7f+/uSwx133IEFCxb0ee2RRx4BoPz7YBhvhA0UhgGQn5+PsWPH4u2334bVasWbb74Jq9Xae4Psj/379wMALr300n7/X3z9wIEDAIDCwkK0t7djwoQJiIqKuuj9ztYtAYCvv/4a1113HZKTk2E0GnvzSr788kt0dXXBZDI5dHyl34ktU6ZMuei1tLQ0AFBsKBQXF+O3v/0tfvvb3+K1117D6dOncdNNN2Hr1q19KnjE8M4DDzzQ+1pAQADuvvtudHZ24r333lN0XgCYO3fuRa9lZWUhLS0NRUVFaGxslHUcLb8PhvFGOAeFYc7z8MMP4/HHH8fq1auxbNkyTJ48GRMnThzw/U1NTQCA5OTkfv9ffF28IYnvT0xM7Pf9SUlJaocui9dffx1PPvkkYmJicPnllyM9Pb1XF2PlypU4dOgQurq6HDqH0u/Elujo6IteCwigKcpisSgax9y5c+0mDhcUFGDbtm0YOXIkpk+f3uf/Fi9ejL/85S/497//jccff1zRuQf7+xYXF6Opqanfz3ohWn4fDOONsIHCMOe599578cwzz+Cxxx5DeXk5fv3rXw/6ftELUlVV1e//V1ZW9nmf+O9AmhIDHUev16O7u7vf/5O7Gu/p6cHzzz+PpKQk7N+//yIDYiABM6Uo/U7cieg9KSws7JM0a8vRo0fx/fffY8aMGbKPW11djdzc3IteF78TT/jsDOMNsIHCMOeJjo7GLbfcgvfeew9hYWG48847B32/6F0ZaKW+ceNGAMCkSZMAACNHjkRoaCgOHjyIpqami25UAx0nJiYGhw8fhtlshtFo7PN/e/futfexAFD1UGNjI2666aaLjJPW1tbe0IwtBoMBgLLVutLvxF10dXXhvffeg16v75Wov5CysjKsXbsW//73vxUZKJs3b8acOXP6vHb27FmUlpYiMzNTlveEYRjOQWGYPrzwwgv4/PPPsXbt2n4TSm2ZOXMmcnNzsW3bNqxYsaLP/61YsQJbt27FiBEjMGvWLACA0WjE3XffjZaWlouSZPfu3Yv333+/3/NMmzYNPT09WLZsWZ/Xly9fju3bt8v6XAkJCQgNDcW+ffvQ2tra+7rZbMYTTzzRb+5JTEwMdDodSkpKZJ0DUP6duItPP/0UdXV1uPLKK/HWW2/hzTffvOjx8ccfIywsDB9//HFv6EoOr7/+OoqLi3ufW61W/PznP4fVau2T68IwzOCwB4VhbEhPT0d6erqs9+p0Orzzzju4/PLLcfvtt+P666/HyJEjceLECaxcuRIRERF49913oddL64A//vGP2LBhA1577TXs3bu3Vwflo48+wtVXX41Vq1ZddJ7/+Z//wbJly/CDH/wAGzZsQFpaGg4ePIgdO3bg2muvvUhgrj/0ej0ef/xx/OlPf8LYsWNx/fXXo7u7Gxs3bkR9fT3mz5/f690QCQ8PR35+PrZu3Yq7774bI0aMgMFgwKJFizBu3DjNvhN3IIZ3lixZMuB7IiMjceutt2L58uX4z3/+0yv0Zo+ZM2diwoQJuP322xEVFYW1a9fi0KFDmDx5cq+EvCt58803e6umRD2fL7/8EmVlZQDIs/eLX/yizz4/+9nPeo1Wcd+XX34Z//nPfwAAN9xwQx9tHIZxCu6uc2YYdwEbHRR79KeDIlJYWCjcc889QlJSkhAQECAkJSUJd999t1BYWNjvsSorK4UHHnhAiIuLE4KDg4Xx48cLy5Yt61dXRGTr1q3C7NmzhZCQECEiIkK4+uqrhUOHDinSQTGbzcJf/vIXYdSoUUJwcLCQmJgo3HPPPUJRUVGv1sW5c+f67HPq1Cnh2muvFYYMGSLodLo+38Fg41XynQz0GQTBvhbLhQymgyJy4sQJAYCQmJgodHd3D3q87du3CwCE8ePH2z23+B2eOXNGeOWVV4Tc3FwhKChIGDp0qPDEE08ITU1NF+0zmA5Kf781Qej/bytnXAM9+jtWRkbGoPv09zdnGK3RCYKNvCLDMAzDMIwHwDkoDMMwDMN4HGygMAzDMAzjcbCBwjAMwzCMx8EGCsMwDMMwHgcbKAzDMAzDeBxsoDAMwzAM43F4pYHS2dmJEydOoLOz091DYRiGYRjGCXilgVJcXIyHH364j5w0wzAMwzC+g1caKAzDMAzD+DZsoDAMwzAM43GwgcIwDMMwjMfBBgrDMAzDMB4HGygMwzAMw3gcbKAwDMMwDONxBLh7AAzDMIz3YDabYbFY3D0MxgMxGo0wGAyaHY8NFIZhGMYuzc3NMJlM6OrqcvdQGA9Fp9MhKioKSUlJ0Ol0Dh+PDRSGYRhmUJqbm1FeXo7w8HDExcXBaDRqcgNifAdBENDW1oba2lqEhIQgOjra4WOygcIwDMMMislkQnh4OFJTU9kwYQYkJCQEXV1dqKmpQVRUlMO/FU6SZRiGYQbEbDajq6tLkxsO4/tERkbCYrFokqfEBgrDMAwzIOKNxmg0unkkjDcQEECBmZ6eHoePxQYKwzAMYxf2njBy0PJ3wgYKwzAMwzAeBxsoDMMwDMN4HGygMJ6NIACtre4eBcMwDONi2EBhPBerFdi3D/j8c6CszN2jYRiGcQpdXV145plnMHToUISEhCA/Px/r16+Xte+xY8dw6623IisrC6GhoYiLi8OcOXPw5Zdf9nlfa2srfvOb32DhwoUYMmQIdDodli9f7tAxnQ0bKIxnYjYD27cDW7YAFRXAzp1AZ6e7R8UwDKM5ixcvxquvvoq7774br7/+OgwGA66++mps27bN7r7FxcVoaWnB/fffj9dffx2/+tWvAACLFi3C0qVLe99nMpnwu9/9DgUFBRg/frwmx3Q2OkEQBJedTSNOnDiBhx9+GP/+97+Rm5vr7uEwWtPZSYbJoUNASgoQHAycOQPMng1Mn+7u0TGMX9HZ2Ylz585h2LBhCA4OdvdwfI7du3cjPz8fL7/8Mn72s58BoO98zJgxSEhIwPfff6/4mBaLBZMnT0ZnZycKCwsBkJemoaEBSUlJ2Lt3L6ZOnYply5Zh8eLFqo/ZH1r+XtiDwngWLS3A+vXAwYNAejoQEQEYjUBiIrB/P4d6GMYd9PQAXV2ADzcJzMrKwj333HPR6/Pnz8fcuXOddt4VK1bAYDDgkUce6X0tODgYDz30EHbs2IHS0lLFxzQYDEhLS0NjY2Pva0FBQUhKSlI9zv6O6WxY6p7xHEwmYONGoKgIyM4GAgOl/4uJAerrKdRz7bXkVWEYxvl0dZFXs7kZ6O6m6zIwkBYOAb5xC2ltbUVRURF+8IMfXPR/hw8fxl133dXvfmazGU1NTbLOMWTIEOj1F/sEDhw4gBEjRiAyMrLP69OmTQMAHDx4EGlpaXaP39bWho6ODjQ1NWHVqlVYvXo1br/9dlljc+UxleAbvy7G+ykvJ+OkuhoYPhzor2V3RgZw6hR5VzjUwzCuobiYPCeBgYBeT8ZKRwddo0YjEBRE/xoMgJeKuR09ehSCIFyUm1FWVob6+nqMGzeu3/22b9+O+fPnyzrHuXPnkJmZedHrlZWVSE5Ovuh18bWKigpZx3/qqafwr3/9CwCg1+tx00034e9//7usfV15TCWwgcK4nzNnyDhpawNycmgS7I+AACApiUI9KSmAjFUFwzAO0NEBFBYCmZlkfBgM0uLBYgHmzQNqaqT363TuM1KSkoC9e1XtevToUQC4yEA5dOgQAAxooIwfP152tc1A4ZWOjg4EBQVd9LqYv9HR0SHr+E8++SRuueUWVFRU4OOPP4bFYkF3d7esfV15TCWwgcK4D0EAjh2jhFidDsjKsr9PTAzQ0EChnvh4DvUwjDM5fZpCr9nZF/+fwQDU1gKVla4fl8YcOXIEiYmJSExM7PP64cOHodfrMWbMmH73i4mJwWWXXebQucUOwBfSeb5qMSQkRNZxRo4ciZEjRwIA7rvvPlxxxRW47rrrsGvXLtXy8844phLYQGHcg8VCGic7dgBhYZQEK5f0dJo49+8HZsxw3hgZxp/p6KBKurCwgd+TkHDxa/0VhrrCs+JAAujRo0f7Lb09ePAgsrKyEDbAd9Dd3Y36+npZ54iPj4ehn9B1cnIyysvLL3q98rzhN3ToUFnHv5BbbrkFjz76KE6ePKlZtaszjjkYbKAwrqe7mwyTffuAuDjyiighIIAMmgMHKMzDoR6G0Z7Tp4GqKuD8CrpfNm4c/BhWKy1GLBYyUAICKGclMJC2BwrnupgjR45clPxptVrx3XffYc6cOQPu9/333zucgzJhwgRs3LgRzc3NfRJld+3a1fv/ahBDQ3KTeN11zMFgA4VxLe3twNatwOHDQGoqEB6u7jhiqGfHDg71MIzWiN6TiIj+E9blotfTw2iUjJXWVimfRTRWjEa3GSs1NTWora3t9ViI/O1vf4PJZMLYsWMH3FeLHJRbbrkFr7zyCpYuXdqrg9LV1YVly5YhPz+/t4Knvb0dJSUliIuLQ1xcXJ/xJ1zgyTKbzXj33XcREhKCvLw8WeOzxRnHVAMbKIzraGqiFdfJk8CwYY4bFenpVNWzbx8wc6Y2Y2QYRvKe5ORod0xbY0UQSFulrY0eomclOJj+34UcOXIEALBu3Tr88Ic/xMiRI7Fz506sXbsWALBv3z7s2rUL+fn5F+2rRQ5Kfn4+br31Vjz77LOoqalBTk4O3nnnHRQVFeGtt97qfd/u3bsxf/58/OY3v8Hzzz/f+/qjjz6K5uZmzJkzBykpKaiqqsL777+PwsJC/OUvf0G4zSLw73//OxobG3srg7788kuUndeW+p//+R9ERUUpPqYzYQOFcQ21tcB33wGlpTTpaTEJBQQAyclUdpyWRgYLwzCOoZX3ZDB0OpoDRGNF9KxYLEBUlEsrgY4cOQKDwYAPP/wQjz/+OJYtW4bZs2dj8+bNuOGGG3Dw4EEYnWw0vfvuu/jVr36F9957Dw0NDRg3bhy++uqrQcNLIrfffjveeustvPHGG6irq0NERAQmT56Ml156CYsWLerz3ldeeQXFxcW9zz/77DN89tlnAIB77rmn10BRckxnwlL3jPMpLSXjpK6OKnW0nvTOniVD5brrAJkZ7wzDDMCRI8CaNb16RJ0BATiXkIBhaWkIthVP1BoxVyUmxqVelCVLlmDLli04efKky87py7DUPeM9nDpFk11TE3lOnLEiS08n9dn9+7U/NsP4E6L3JDLSed6TgTAYKE/FhTobAHlQXJVTwSiDDRTGOQgCTXTr1tGqaNgw57ltbUM9JSXOOQfD+AOnT5OuiZKyfy0xGMhIslpdcjpBEHD8+HE2UDwUNlAY7bFYgF27KCE2JIRUX51NdDSdd+dOmuAYhlGGO70nIgEBlDzrIi/KuXPn0NraygaKh8JJsoy2dHUB339PlTWJiWQ4uIq0NAop7d/PVT0Mo5RTp8h7Mny4+8YgCrp1dlJVj5OTZbOysuCFaZh+A3tQGO1oa6Nk2L17SePElcYJQKuvoUNJwM0mU51hGDt0dJA2kTu9JyIBAeRB6elx7zgYt8MGCqMNjY3A2rVUATBs2ODy2M4kKori1zt3kigcwzD2Eb0n7so9scVNybKM58EGCuM41dXA6tVU7puTQ65Zd5KeTh6U/fv77wvCMIyEJ3lPRFycLMt4JmygMI5RXExlxKLqpItVIPvFYKBQz8GDHOphGHt4kvdExMXJsoxnwgYKox6TCfj2W6C5mdqxe8rqC+BQD8PIQY735LwX0qW+SNtkWfaCehVaJh2zgcKop6SE1GEzM10qTS2b9HQa4759PMkxTH+cPGnXe2IQBEAQYHZ10iony3olPef/XgEBjhcJKzZQ2tvb8fbbb+NnP/sZrrnmGsyZMwerV69WdfI///nPmDNnDp555hlV+zNuxGolUaeICHePZGAMBtJg4VAPw1xMRwcltdvJPTFarQjq6kJTW5trS3I5WdYraW5uhsFggEEDj7piE6epqQnLly9HYmIicnJycODAAVUnLiwsxOrVqxHozN4OjPOorqaHJ8Wt+yMyEqivB3bsABISgNBQd4+IYTwD0XsiQ/ckrq0N5U1NKAMQFRYGY0AAXOIztVophKzTUSdkxmMRBAFtbW1obm5GcnIydBp41RUbKLGxsfj8888RGxuLwsJCPPLII4pPKggCXn/9dVx55ZXYz/1TvJOyMooPe0NzPlHAbe9eYPZszwxHMYwrEb0nUVGycsciu7qA+nqYurpQ7gIBtT709NA84wkJ+Myg6HQ6REdH93ZFdhTFBkpgYCBiY2MdOunatWtx7tw5vPDCC/jBD37g0LEYN9DTQzf8yEh3j0QeYlXPoUNkrAwb5u4RMYx7UeA9EYns6kJkVxfMej0sYhKrKygpoTy3OXN4ceHhGI1GTUI7Ii6Xum9vb8c///lP3HPPPQ4bOoybqKoCamtd02NHK8RQz86dFOpxl5Acw7gbhd6TCzFarXCpLyMigjSWJk8G4uJceWbGzbjcQFm+fDmCgoJw2223yd7HZDKhrq6u93kxJzy6l7IywGx2vyCbUtLSaOW4bx+Hehj/RYX3xK1ERADl5cC5c2yg+BkuNVBKS0uxYsUK/PrXv1aUHLtq1SosX77ceQNj5NPdTeEdjWKMLsW2qodDPYw/InYsVuk9cRvR0UBhITBunPctjBjVuNRA+dvf/oYxY8Zg3rx5ivZbtGgRZtp0py0uLsYLL7yg8egYWVRVkfZJerq7R6KOyEigoYFDPYx/cvIkVd95i/dEJC6OPCilpaRYzfgFLjNQ9u3bh127duGFF15AZWVl7+sWiwVdXV2orKxEZGQkwvq5YcTFxSGOXXueQXExYLF4d0Z9aipN1Hv3cuId4z94q/cEINE2vZ6u2+xsvmb9BJcZKDU1NQCAX/7ylxf9X21tLW6//Xb8+Mc/VpSbwriYzk7gzBkgJsbdI3EMMdQjVvVkZbl7RAzjfLzVeyKSkEALpLo6zkXxE5xmoJhMJrS1tSElJQUBAQGYNGkS/vCHP1z0vpdffhlJSUm49957kcU3Cs+mooIqYXwhd8M21JOYyKEexrdpb/de74mImCxbVMQGip+gykD59NNP0dra2ltZs3379l4Pyc0334zw8HAsXboUa9aswUcffYTk5GQkJiYisR/V0f/7v/9DTEwMZs+e7cDHYFxCSQn9q0GPBY+AQz2Mv+Dt3hMRMVl27FhOlvUDVN1pPvroI1RVVfU+37JlC7Zs2QIAuOKKKxAeHq7N6BjPob2dtAiGDHH3SLTDYCAjhUM9jC/T3k4di73ZeyISG0selLIyykVhfBpVBsrHH39s9z3PPfccnnvuOU2OxXgAFRUUEvG1SSEiQgr1JCd7h3Q/wyjh5EmgpsY3ql+Mxr7JsoxPw92XGHmcO0erL29fgfVHSgoJV9lUlzGMTyB6T+x0LPYq4uPJi2IyuXskjJNhA4WxT0sLZc/7UnjHFoOB8k/Kytw9EobRFtF7kpDg7pFoR2Qk0NpKcxLj07CBwtinogJoavJO9Vi5REeTl6i7290jYRht8EXviUh0NFBQwNerj8MGCmOfs2cloSRfJTqaclHOV6MxjNcjVu74kvdEJDaWrtXSUnePhHEiPnzHYTShqYnKi32987TRCPT0kLeIYbwdX6rc6Q/bZFnGZ2EDhRmc8nKguZncxL5ORAQp5Vqt7h4JwziGL3tPRMRkWZtO94xvwQYKMzCCAJw+DQQH+4eIWXQ0TXa1te4eCcOoR/SeREf7pvdEJDKSEviLitw9EsZJsIHCDExDA3lQfD28IxIaSg3VbEQIGcbrEL0n8fHuHonz4WRZn4YNFGZgysupnM+flIFDQykpWBDcPRKGUY7Yc8fXvScicXGcLOvDsIHC9I8gAKdO0Q3bH8I7IjExtPpsbHT3SBhGOaLuiT94TwBOlvVx2EBh+sdkImVVfwnviISHk9eIwzyMt+Fv3hOR+HgSbeNkWZ+DDRSmf8rKaMILC3P3SFyLTkerMrFzM8N4C/7mPRGJjKRKQ06W9TnYQGEuxmql6h1/yj2xJSaGYtptbe4eCcPIw1+9JyKcLOuTsIHCXExNDeVh+GrvHXtERpJAHYd5GG/BX70nImKyLPfT8inYQGEupqwM6OykBFl/hJsHMt6Ev3tPAClZ9tQpd4+E0RA2UJi+WCx0kUdEuHsk7iU6mmLa7DJmPB1/956IxMdTw09OlvUZ2EBh+lJVRUqq/la9cyFi88DqanePhGEGxmoFTpygBYW/ek9EWFnW52ADhelLWRl5DYKC3D0S98LNAxlvoL6ePAYxMe4eiWcQFQUUFrLn00cIcPcAGA/CbKbwTlSUu0fiGUREkKrslCm8OmU8k5oaykFJS5O9y9kSHfYd0cNsduK4QDb+lLFWDEt3oSpzXBxpopSVAVlZrjsv4xTYQGEkKitJoE3BZOfTxMTQDcBkAhIT3T0ahrmYkhIgMFDRLvuO6NHU7AJ16A5g7xE9hqVbnH8uEaOREtxPnWIDxQdgA4WRKC2lJFmFE55T6emhMbkj5BQSIjUPZAOF8TTa26lflkKPp+g50ekEhAQ7YVwAOjoBQdA53UvTL2KybH29/0ol+AhsoDBEVxeJs0VHu3skEhs2AG++CQQHA7/+NTBsmOvHIDYPHDfOv3oSMZ5PTQ3p9ai8LkKCgbtucI5344OVBrR3OOXQ9omIoNyxoiI2ULwcTpJliIoKz0m2M5uB//f/gNdfJzXXujrgpZdoxehqxOaBDQ2uPzfDDEZVFVXxBPA6sw86HVX0FBTAPS4cRivYQGEIsfeM0ejecdTWAr/4BbBmTd/XKyqA//s/6rLsSsTmgVxuzHgSViuFMfxdr2gg4uPJw1Ra6u6RMA7ApjdDeRZnzjjde2KveiCx/ABmbvozgruaAQA9hkAcmXg3Rh/+GIHdbcD27dj74jc4mbdo0PNoWj0gNg8sLgZGjXL8eAyjBXV1lGMRF+f8c338MbBuHZCRAUyaBEyeDCQlOf+8jsDJsj4BGygMeScaGoDsbKeeZsDqAcGK8cc/weQj70EvWAEAzWFJ+Hb2/6I+Jhu1Iam4YuvvAQATd7+F8siRqI3NHfhEWlcPxMRQ2WJbm/91d2Y8k5oaWlg4ux3FiRPAf/4jnXPPHtpOSSFjZdIkYMwYz9RNio+nPBROlvVa2EBhyFWs1ztd66O/6gFjVysu2foqUkt29b6vPHUKvp/7M5iDIhAKAabh01HQcCNGHf0cBmsPFnz/ItZc/zd0B13s3nZK9UBkJCXKVlU53YhjGFkUFzu/2k4QgLfe6v//ysvp8eWXNI4xYyTvytChzh2XXDhZ1uthA8XfaW11+QXcWz1QVAS8+CLprwDkkr3zTqTcdhtu1esB2HhArr0XeK4AKCxEeGsNbjn5F+B//5cMKxucUj0gGm5lZWygMO6nrY1uvM6uuNu6lVRZAdJG+slPgAMHgH376HUreTvR3Q3s30+PN98EkpIwJXoyziVMQWPGOABuymuzTZYdO9b9+XWMYthA8XcqKoDGRiAnx7Xn3bQJ+PvfJUnq8HDgqadoBdYfAQHA008DTz4JNDeTq/nzz4Gbb3bNeKOjydM0fbpnurMZ/6Gmhq4BZ+ZWdHUBy5dLzx98kOaInBzg1lvJSDp0iIySffv6NuirqsKIqq8xovBrWPQBqNwwBpWpU1CRMhnN0WmaluvbzTcTwzylpZyL4oWwgeLvnD1LN38XSbnrLWZM3vFvoOAr6cXsbOCZZ+wn3sXFkRHz/PPkfn7vPSA3l9zLziY6mtzq1dVAerrzz8cwA1FVRb9/Z16zK1eSgjIghW5sCQsDZsyghyBQFeC+fWSwHD9OAosADNYeJFccRHLFQUzCm2gJjUdZ8hSUDZ2MisQJMBsdzKGxl29mNJKX9fRpNlC8EDZQ/JnmZppYXNS5OKTNhAXf/QmJpgLpxcsuAx57TH48feJE4LbbgI8+IhfzK68Af/2r8/VbjEZStK2sZAOFcR8WC3nyIiOdd466OuDTT2lbryfvyWDodFThk5EB3HQT0N6O6u+OoHXbASSW7EV4a03vWyPaazHqzGqMOrMaVp0BtYl5qEidgsrUyWiMyVTkXZGdbxYXx8qyXgobKP5MeTkZKa6QcT9yBAu/eBkhnY30PCCADJMrrlB+rDvuoLjy4cM06bz6KnlVnO0FEpNluXkg4y7E8uKEBOed4z//ATo7afuqq5Qb5KGhSLw2H4nX5pN3pbxc8q4cPdqbLa8XLEisOoLEqiOYuHcZLZQeegiYNUvWaWTnm0VGcrKsl8JCbf7MmTPkudA78WcgCJQr8qtf9RonbWHxpAyrxjgByDh46ilpsjl0iDwqziYmhtzetbXOPxfD9Ed1NRkPISHOOf7p08B339F2WBhw552OHU+nA1JTgeuvB377W+D994Ff/Qq45pqLQ7p1dcA//kHl01qi01G/osJCVpb1MthA8Vfq66kqxZnhnfZ2MkSWLevN+C9LmoQ1178ODB/u2LFjYoCf/Uwyrj76iCoMnElwMN0cqqqcex6GGYjiYuclaQsCVeGIas133KF9KCk4GJg6FXj0UWDpUuCf/wQeeUTqJ9TWBnz7rbbnBChZtrqa5jzGa2ADxV+pqABaWpwnlV1SQl6O77/vfeno+Duwdu5v0RWsrPvqgIwZA9xzD20LAvCXvyCkzaTNsQciLIzCPK6W3GeY1lYyjhV2L5bNjh2U4AqQlsnVVzvnPLYMHQpcey3NFSJffEG5NloilhifOqXtcRmnwgaKPyIIdKGGhjqnQ++2beTdKC+n52FhwC9/icOT74Wg1zh346abaEUGAM3NmLnxJeisPdqew5boaG4eyLgHsXuxMxJku7vJ0yny4IOu1Q1JT5cqhWpqyFjSmvh4KVmW8QrYQPFH6uqoGkXrhLGeHlKe/POfpSS7zEzgL38Bpk3T9lwiej1po8THAwASao5j6qF3nHMugPRa2to4zMO4HlHQ0BkJ2l9+KTXEHD9eMvpdyQ03SNuff669lzIykooCiou1PS7jNNhA8UfKy+kmGx6u3TEbGoBf/pLcsyLz5wMvv+x86euICNJROd92flzhp0gpdsIKDCCPU2AgVQQwjKvo6XFeeXFDAzUEBKSyYmd4Vu0xbpykVXLqFHDsmLbH1+lozjt3jkO0XgIbKP6G1QqcPKmtcXL8OHkxxPi1WEL85JOuU10dMaKPXsMlW//qPC9HdDTl8LS2Ouf4DHMhJhMZEs6Qt3//faly5oorpIRVV6PTATfeKD1fuVL7c0RGUhVec7P2x2Y0hw0Uf6O2lly5WoR3BAFYtYp64og5GbGxwB//SAl2rl6FXXMNijNJQyGwu41CTc4oK4yMpFwADvMwrqKmhuTng4O1Pe65c1LVTGgocNdd2h5fKTNnkrAaAOzerX3VTXg4LSxYKsArYAPF3ygr06ZNe08Pqbi++aaUcT9uHKm6jhzp+DjVoNNh16wn0BR+PqR0+vTA3VgdwWAg44tLFhlXUVysvXEidisWm/7ddpvzGxDaIyAAWLRIeq61F0Wvp2u3okLb4zJOgQ0Uf8JiofCOFnHsL7+kbqciN99MQkxunuB6AkOxYdZz6DGcl87/5htgyxbtTxQdTXkoXV3aH5thbGlpIW+dxtdWSukuUmMGSDTtuus0Pb5qrrhCWkBt3Kh9xVxEBMkg9Dix2o/RBDZQ/InqanJtOhreEQRg9Wrp+S9+Adx/v8fIv9fHZGHvJY9JL/zjH9p7O6KjqQu0WPnAMM6ipkZzzSK9xYxJu228i4sXu7aseDBCQ4Err6Rtsxn4+mttjy9eu7YdmBmPhHvx+BOlpaR30I+r+GyJDvuO6GWlbCRUHsZl5/MvqpLH47ua2cBK+/t1dCocrwOcHX4FphuP0Aqso4MUbV95RbukXaORVmAVFdw8kHEuYjhCw5YUeae+QkTz+eOOGQNccolmx9aE666j/DaLhRZDt9yiXYhLVISurXVNHzJGNexB8RfMZirdG0CFct8RPZqadWjvsP/IPL62d7/jwxbK2qe9QwdBoKRZlyzUdDrgBz+QjIfiYpLV1hKxeaDWqpcMI9LTQ6FEDcuLgzqbMPHoB/REp6MGfe4oKx6MuDhgzhzabmkBNmzQ9viBgRTmYTwaNlD8haoqKlUcILwjek50OgGhIQM/ovXNGFa2HQDQFRSBmpzpg77/wkdUpIApY62u+czBwaSPIq68NmzQts9HTAy5ibkigHEWtbWalxePPfABgsxt9GTBAiA7W7Nja4qtcJvW8vdRUSR8196u3TEZzeEQj79QUkIXeGDgoG8LCQbuumGQieDLDYCFrJmgK+fjjlsMADzYg5CWBvzoR6RmC5AXJTtbG60H2+aBF3ZmZRgtqKmhsKxWocmSEuQUfgMAMAcEwyj2svJEhg0DJkwADh6ka2zXLmDGDG2OHRlJnqnaWiAjQ5tjMprDHhR/oLubSm4dXYUJArBunfT8iiscO56rmDsXWLiQtru7KR9Fq5VTWBhw5gwrUzLOoagICAnR7nhvvQW9QB7MY+Nv077dhdbYCrd99pl211lAAJVX19RoczzGKbCB4g9UVFCDrJgYx45z8qTUx2LkSO9KDl2yRHJlV1QAf/+7NpNdTAxNctw8kNGa5mZtuxfv2wccOAAAaAmNx4nRN2hzXGcyYQL18wJo/iko0O7YYWFkAPLiwmNhA8UfKC6mi9DR7NT166Xtyy937FiuJjCQ8lHCwuj5tm2kkeIoYWHcPJBxDtXV2pUXi408z7NnwoOwBLioDYUjOFP+PiqK8vIaG7U7JqMpbKD4Op2dVGniaHinvV0SPAsJAWbNcnhoLicpCXjiCen5W29RZZMjcPNAxllUVFBpsRblxWvW9GoB1SaMwtn0OY4f01XMmkUtNADKQykv1+a4YWE0r3GYx2NhA8XXKS+n8IOj4Z1t28jYAaj8T8u4uCuZPh24/nra7umhfJSWFseOGR1N37Ojx2EYEbOZPJ9ahHdaW4H//rf36f78hz2vrHgwjEZJ5VYQ+nZMdwSdjoy/ykptjsdoDhsovo6YMxLgYMGWNybHDsT990v9gmpqgNdek/qRqCEqipsHMtpSW0uhBy0MlA8/lIzn+fNRF5/r+DFdzZVXSoui776j600LoqKowtEZTUUZh2EDxZdpa6NupY5m6p87RwlqAJX+5eQ4PjZ3EhAA/PznUmx/zx7g88/VH090w2vlemYYrcqLy8okqfjAQODeex0fmzsIC5MWRt3d2uSPAVRu3NhIuSiMx8EGii9TUUEXn6P5J7bJsVdc4V3u4YGIjweeekr6LO+9R+XCaomOJkOu04V6/oxvIgj0W3K04zgALF8uCZzdfDMptHorixZJ+Thffw1DjwaNOoOCyOBhsUWPhIXafJlz56iBnyNN/Lq6qJ8NQCuwuXO1GZuT6egEPlhp73NPxbhxt2PMoQ8BqxWn/rkOe2b+WPY5jEZgylgrhqULZKAUF1PlBQs/MY7Q3EweFEfDOwcOALt303ZsbN9qGG8kPh6YPRvYvBlobsaw09/hcMbVjh83OJiu3XHjHD8WoynsQfFVmpvponM0vLNjB4WKAGDmTCA83PGxORGxkloQ5PUH2jv8VvQYyI2edm4bOlt7ZPcWamrWYe8RvXRiq1Vq7MYwahG7FztyrVkswNtvS8/vu0+7ZnvuxEb+fuTRzwBBg7YZkZG0sBDnOcZjYAPFV6muJiPF0VWYl2mfTBlrRVSk/N5AgZHBKEvPBwAEd7cgq2G/rP10OhJ36pNbJzYP7OlxwydnfIbycvJ6OlJevH69lCA/YoTXeD7tkp3d6+mIbK5Aevkux48ZGSl5rRiPgkM8vkplpVRGp5aKCuDIEdpOSQFGj9ZmbE5kWLqAYekKewMlzwb+QBov87o3ATdMtrvLBysNaO+44MXoaPrea2uB5GRlY2AYgPIhioocW1i0tQHvvy89f+ghbbRUPIUbbwQOHwYAjCv8DN8Nn+7Y8QwGyvuprtamRxejGT70q2V66emh0jlHFSgv9J74QnJsf0yaJLnTd+1Sn+gaHEw3GNZVYNRSW0sltI4YKB9/LJXhzp4NjBqlzdg8hUmTqAkogKTaY4itKXT8mOHhlLPniNwAozlsoPgi9fWOayj09AAbNtB2QABw6aWaDM0jMRqlLqmdnVJioRrCwijMw/09GDVUV1Pc0E7X8QGprAS+/JK2AwNJ88fXuED+ftTRzxw/ZlQUCVpyTy2Pgg0UX6S2lm60jqi97tkj9aiYNs3xUmVPZ46N9Lco6a+G6Gj6/uvrHR4S42eI5cVivyg1LF8u5UDdcAOQkKDFyDyPuXPREULq2KnFOxz3WoaGAh0dnIfiYbCB4ouUlalfgYn4knKsHEaPliqe9u9XL1vPzQMZtTQ2knGr1vN55AhV3QHU2uLmmzUbmsdhNOJE3iIAgF6wAqtWOXY8nY5yUVhs0aNgA8XX6OykiywyUv0xamvpJg3QCmzCBE2G5tEYDBSvB2gFKk70ShGbB547p93YGP+gpoaMWzXlxRZLn27FuPde7+2XJZPTI6+COeB86fS331IljiNERdHirksDAThGE9hA8TXEJDtHDJRvv5VyKC67zLcqAAbDNsyzebP648TEkMuZmwcySigvp2tNTTL6d99R7hMAZGX5ds7YebqDInAi67x3t6uLOjY7QlQUy957GIrLjNvb2/Hhhx/i+PHjKCgoQEtLC5599llcddVVdvfdt28f1q9fj8OHD6O2thZDhgzBpEmT8NBDDyHOmyWYPYmaGlpNiYplCtFZLWSgADRZLlig4eA8nJwcKg+urASOHgXq6qQ270oQhZ+qqhyvpGL8g64uqrxTE95pb6dWDSJLlvjNouJo7g3IO/UVhXm++orybtSGt41G8p7W1JCsAuN2FP+Km5qasHz5chQXFyNHYdO4f/7znzhw4ABmz56NJ554AgsWLMDGjRuxZMkS1NXVKR0KcyGCQBoKDiTZJVUckPpSTJpE8tL+gk4nCVoJArBtm7rj6PUUMiot1W5sjG8jdi9Wk4z+6adSQvuMGcCYMRoOzLNpDU9CaeZMetLYCGza5NgBQ0JoDmU8AsUelNjYWHz++eeIjY1FYWEhHnnkEdn7/uhHP8K4ceOgt7Hup02bhscffxyfffYZHn74YaXDYWxpbib3pAPhneyTfpYceyFz5lB7eoDCPNdfr+44Ym+ezk7fkBhnnEt1tTrPZ3U1sHIlbQcEAIsXaz0yj6dgzE3IOLeVnqxc6VhYWqzCa252LEzOaILiv2JgYCBi1bi9AUyYMKGPcSK+FhkZiWJRlplRT22tQz08QjoakFq8k55ERwNTpmg3Nm8hNZVi+ABw+rT63jrR0bSiq67WamSMryIIlD+ipnvxu+9K/RYWLQKSkrQdmxdQHz9CUrkuKwP27VN/sPBwoLWVuxt7CG6Xum9vb0dHRweiHO0Zw1DOg16vevWQU7QBeuG8TPyCBbQi80fmzpUSDrdsAe64Q/kxAgJoRVxRwd2NmcFpaCDPZ3Q0zpbosO+Ivm+PpwEIaa/DDVu3QQegMzgKq0LvRI/dDt7U6dvnuPFG4Ngx2v78c2DqVHXHEefOqirq+8O4FbdnUn3yyScwm824dJCsc5PJhBMnTvQ+2NvSDxYLhRTUJmUKAnLPrJWee0FjQKcxa5a0vXmzelXYqCjgzBluHsgMTk0NJbqGhWHfET2amuV10044tQM60G/zePbVaLaEydpPEKhKSGUevWcyZYqU2Hr0KHDqlPpjRURQHopFYU8vRnPcukQ+ePAgli9fjvnz52Py5IEbtK1atQrLly933cC8kbo6CimoTGqNrz6G6JbzIkVjxwJDh2o3Nm8jPp5cxseOUenn2bPqVlMxMeRB4eaBzGCUlVFStU7X6znR6QSE2Eldyq7Y3rtdOXwWQkPkG9JGI3X+9hn0eqrg+cc/6PnKlcDPf67uWFFRdM3W1fmuEq+X4DYDpbi4GL/85S+RlZWFZ555ZtD3Llq0CDNnzuyz7wsvvODsIXoXtbUk1axSnCnnhI2GgD8mx17I3LmSy3jLFnUGSlCQ1DyQDRSmPzo7qdrrguqdkGDgrhsGWcE3NgLLj9L20KG45oFUQOfnK/7584H//Id0oLZvB+67D0hMVH6ckBCaS2tr2UBxM24J8VRXV+Opp55CWFgYXnrpJYTaSQ6Li4tDbm5u7yODY/oXU16u3mfb2oq0IlqNdQWGA5dcouHAvJQZM2hVCwBbt6rvchoWRmEe7pLK9IdYXqy0YmTnTuk3NWOG73YaV0JgIHDttbRtdVD+PjCQPFuMW3G5gdLU1ISnnnoKZrMZr7zyCgu0aUFnJ11MahONN21CgKUbAFCUc6njfXx8gchIYOJE2jaZgOPH1R2Hmwcyg1FVpa682LYVg4132e+56ipp/lq/nipy1BAZSYu+Tl/MKPYenGagmEwmFBcXo8cmQbCjowNPP/00TCYT/vznPyMtLc1Zp/cvTCb1dfuC0Kcx4OkRV2o4MC9HFG0D1Hc4DgujBEguN2YuxGqlnk1KZQGam4FDh2g7IUEqi2doDrzsMtru7FQvfx8VRaEi7m7sVlTloHz66adobW3tVX/dvn07as7/IW+++WaEh4dj6dKlWLNmDT766CMkn4+///73v0dBQQGuvvpqFBcX96nGCQkJwWyxWRujjOpqqhRRE+I5fbpXObEmNhdNQzIB+HksW2TaNFqNdXdTTPvhh5V/x7bNA0WtBoYBqLy4rk65euzu3VJ4Z+ZMDu9cyPXXA6tX0+Lrq6/oudLrVpQJqKkB0tOdM07GLqoMlI8++ghVNu3kt2zZgi3nV5hXXHEFwgdYEZw+fRoA8M033+Cbb77p839JSUlsoKhBEKiHhxqRJ6CP96Qwe6FGg/IRQkKA/HzKQWlpAQ4eVKevIFbzsDolY4vYvVhp35fvv5e2Z8zQdky+QHIy5dF9/z2FVrdsUddTLCyMFm+TJ7MR6CZUGSgff/yx3fc899xzeO655xTvxyikpYUmOjX5Jx0dvaELc0AIzqbPAWefXMCcOWSgAPRdqTFQbJsHsoHCiJSV0Updyc2vrY0MZQCIiwOGD3fK0LyeG26QDLnPP6fuzkqNjKgo8nA1NanrkcQ4jNuF2hgHqa2lRDA18vbbtpGRAqA4aw56jOpKlH2aSZOk73bXLuo6qxS9nm5E3DyQERmgvNguu3dLwn+XXOI3XYsVM3IkMGoUbZeUAPv3Kz9GWBgtAFn23m3wr9vbqaqilYGaicomvHMml5Nj+8VolNzonZ10g1CDbfNAhqmpoZW5Us8nV+/I58YbpW2xoaISxLYhavtxMQ7DBoo344i8fXExcOIEbWdmoi5uhLZj8yXmzJG2N29WdwyuCmBsqayk61dJv6v2dqkRXkwMeQmYgZk6VVLEPnSI9IiUEhlJHhhuV+EW2EDxZurrqRJATV6DjfcEV1zhuUlgHR3kCnfnBDF6NDBkCG3v309uX6WIVQFcbsxYrZR8qXRhsW+f1LmYwzv2MRiogkdEjRdF7EpuMmk0KEYJ/Av3ZkR5e6UVPN3dwKZNtG00AvPmaT0yxxEECl+VltJE7k41VoMBECvMenr6utmVIFYFqG0+yPgG9fXqyou5ekc5l14qLeC2blWeTxIURHlnnIfiFthA8WbKy5W5iEV27JC8ADNmqEuwdSadncDJk2QYLFxIj+Rk0hJx181dqzCPyUQrMsZ/EbsXK1lYdHUBe/fSdmQka+rIJSgIuPpq2rZagS+/VHeMkhJtx8XIgg0Ub6Wri8oU1ZS/rV8vbV/pQcmxotekpATIyyP37OjR1F1YXAm5qz9GTo4Uzz56FCHtdcqPER5ONyZejfk3paXK20ns2ydVkE2fLvWJchVFRZSzVlZGej4WLxJzvPpq6fteu5ZKtZUQFUU5Q0r3YxzGbd2MGQcxmSjpUqnKYWUlcPgwbQ8d6jkrsa4uStyNigIuv5zGZTsJJydTKGrtWsrjUNOl1BF0OvKifPghIAhIP7sFddk3KT+GWBUwgpOS/ZL2dnV9s9xZvVNXRzf4SZPot1tfT9eg1Uphy4gIMr5dbTSdp6MT+GDlYOeOxdRhCzD8xGqgowP7X12PwrE3yz6+MSAWU+IrMKy2lj4v4zLYQPFWamrUydvbek8uv9wzkmNraijZd+RIWh0O1EAyK4uMhG+/pffHxLh2nKKBAiDz7GYcUGqgAFJVgNmsvvs0472I5cXDhsnfp7tbKm8PDwfGjnXO2PrDbKYxz59PVTGCQOHhujpaJJWV0b81NWSwhISQwRIRoS78rACjEUAHIAg6tHcM/t6DOTci58Qa6CBg+PGvsD/7ZgVznw57u+MxrLoayMx0cNSMEthA8VaKi2kyUEJPD7BhA20bDBQ2cSei10Rs8DVmjP1JLS+PXK1bt9IM5cr8mdRUMpLOnkWs6RQiW8rREzJU2TGiomgVajKRV4jxL6qq6Cav5OZ98GCvoCLy851+4+9DSQmFN8ePp+c6HV2vkZFkZE2dSkKRosFSWkr/ivliwcGSh0Vjg3zKWCv2HtH3FjYNhjkkBVUpE5Fcvh8RbTVIaT+Nhrgcu/t1dJIBZBYMNFdNncrVUy6EDRRvRK28/d695HkAqBGeqz0QttTWkqt4xAgqmYyPl7efTke9MTo6SNl12DCaBF3F3LnA2bMAgOzizTiRcKey/W2rAthA8S/Udi92V/VOfT39XqdPHzxnJjycHhkZdG22tZHBUldHHpaaGklLJCiIDJbISIcNlmHpAoalK8iFCZ4O/D9SlL0q5HvgBvterA9WGsg7o9fT52lslCQHGKfDpqA3UltLRorSie5C7RN30N0NnDpFruMFC4CrrpJvnIgYDGTUjB1LE76cJZRWzJ7d6xrOLtqkrqooJIRWY4x/UVdHN30lie1mMxniAFX9TJjgjJH1f96aGso7GarQSxgWRrlxEycC110H3HUXcMstFFLOyiJDraSEkm7PnaPvRU0LCaVMmyZt79ypbF+djvKHWGjRpbAHxRsRO0krSUozmaR+FPHxrpvobBHdwDk5ZGA4kugaGEg5IR0d5NHIyXFNkl5cHIWZjh1DdEsZYurPAshUdgyxeaDaHkqMd6KmvPjwYal6ZOpU1+UtlZSQd1IM7ThCSAiFR1NT6XidnZKHpbKSQp4VFbR4GTJE+YJFLkOGALm5ZBgVF9O5lXgxxQR3VvB1GexB8TasVnXy9t9+KwmdXXaZazPuzWbg9GlaJc2bR2V/WlThhIVRHk1KChkprtJImTu3dzPjzCbl+0dGUqkmlxv7F8XFFOJQgjuqdxoayBCaPt054dPgYLpmx40jmYO77gJuvZW8k/X1zvWITp8ubYueKblERZHh1t2t7ZiYAWEDxduor6eHkvwTq5UMFIBclZdd5pyx9UddHanAZmQAixYBU6Yo14AYjOhoMlJiYlwnpjRjBqw6MvAyzm1RrnBrMJAxxbL3/kNbG62+lYR3LBbJQAkOppCJs+npIQ/txInk8XAFQUHkyZg4kUJDlZXOO1d+vrStNMwTFUULC5a9dxlsoHgbauTtDx2SYqeTJjnPhWqL2UyGSUcHeRyuvdZ5SaGJiVQGGRAghb+cSWQkKlMnAQDC2kzA8ePKjxEeTvF3d8n3M66lpoZubkr6Zh09Kik+T5mi3PuihtJSKqWdNMn557qQwEAKPXd1OS8nRQw1AUBBgTJV58BA8p6w59NlsIHibaiRt7dNjr38cm3H0x8NDWScpKWR12TaNG29Jv2RmUmGUEcHeW2cTFHWPOnJli3KDxAVRd9Tfb1mY2I8GLG8WElodft2adsV1TtNTZRn4azQjhyysuharqhw3jlEL4ogSPoycgkJIVVdxiWwgeJNdHcrV6FsapJirVFRfTPZtaanh3JBWlspgfXaaynW7CpGjqSJvL5eXcdhBZSn56PHcH5Fu3278rh5aCjL3vsLFgt5yxTkjemsFikEERhI5bvOxGIho2DCBOXq1FoSEEBjsFol7RetcTQPpabG6fMLQ7CB4k3U1pJLUomb+LvvyHAAqKzXWSJPjY2UCDt0KHlN8vNd45K2Racj1/SUKeRpctYEB6DHGILilPMTXUsLiWkpQaejv0V5ueZjYzwMFeXFcTU24YdJk5SLMiqltJQ8nu4I7VxIZiaQne08L8rw4ZKWia0InhzCw+l654WFS2ADxZuorSVjQ264RBCcr33S00Orw+ZmqjK47jrXJdf1h15PJczjx5Mr1okVAWcy50lP1IZ5SktdowHBuI+aGiqtVWBkpBdtk544u3qnuZnmiunTleW2OQu9nq5fvd45Dfr0esmTbDYDBw7I31cM0XGCu0tgA8WbUCpvX1AgrdDHjFEuuGSPri4SXUtKIsNkxgz3xa5tMRqpZHHkSMqFcVLn1bKkSegKPK9jsmuXckMjKopCcFwV4NsUFSnzJgpWpBWdV48NCCD9E2dhsdAcMX68Z/WZSUsjT4ezvCiXXCJtK63mCQ+nvyknuDsdNlC8BTXy9mvXStvO8J5UVNAkct117o1b90dICGmupKc7TSPFajCiNPP86razU3nCndFIHihejfkura2UIKvguk2oO4HQ9vOJ3hMnOterUV5OHs8pUzyjcaiITkdGU1CQc/I9xoyRvtc9e6QwuByioihk54JkfH+HDRRvQam8fWurVAUQFtZ3xaAFZjNd1GPGOD8+rpbISNJIiY11WuZ9UbYk2obNm5UfIDSUPGOuEpljXIuK8uJhJTbhHWdW77S00DWcn09zhKeRnEzKr87wohiNZJQBFEY6dkz+vqGhtCDhPBSnwwaKt1BdraxMccsWSfFw/nztE1arq2kC8SS3cH/Ex5OREhzslImuNnGMlHC3f7/y1R5XBfg2lZXKrltBQGbZ+YWFwdBXWExLbEM7WVnOOYej6HTUbyssTJleiVxsq3mUhnk4wd0lsIHiDVit5AFQ0rfFmdonFgt5aMaOdV1vEEdISyONlO5uzfM9BL2B8l0AWo3aSpPLITycvktuQuZ7iAnkCrwnQ+pOI6Lt/G9h3Djn9WqqqKAFxuTJnhXauZDEROp9JerIaMmkSVJV465dyo4fFUWSD52d2o6J6QMbKN5AQwM95MaxT5+mvAsAGDGCmn5pickEJCR47sqrP3JzgVmzaCXW3KztsefMkbaVhnn0erpBuEIBl3EtdXV03SooL04754LqndZWMtbz85X39HIHY8ZIwoZaEhoqNUM0mSihXi6RkZzg7gLYQPEGamuVdUHdtEna1tp7Igg0UeTleUZJohLGj6fywspK+j61IidHqpA6elR58lxEBOWhOKnaiHET1dVU2SW3sk0QkF5M1TtWnd454R2rlUrbx44lrRFvIDYWGD2avIxae1HU9ubhBHeX4CTVLkZLzm4rxb7jOTAXyPhzCQIWfbcL4QCsOgM+bZwD80r78e8OuZ5KcUU4fLjMHTwI/flJv6OD8kWys7WR4NfpyIvy4Yc0gW7bBlx/vfz9xTyUujryTDG+QXGxsrL7oiJENFOeVE3SWCQpqdiTS0UFhU2mTqXrwVsYMwYoLCSPhZa9xPLzgTfeoOt21y7gnnvk7xsWRn/jSZM8O0zmxXjRL9RP6e7Gvl2daOoMQnuHzu4jqKoY4a1k1VcmjEWTNULWfoJAF5jdlJLaWgqXKOnK6kkEBFCoJy+PwmBaeS0cCfOEhHBVgK/R0qK4vNi2905JphPCO+3t9DubPl2ZGrUnEBVFXh+TSVv9kZgYms8AMjaUJNJHRtI1q3XImOmFDRRPx2SCuZvcmjqdgNCQwR851ZKbsnLYdLvvt31ERQqYMnaQi7+lhcI64gXtrQQHU9JsZibFnbWY8FJTJZf56dPKK4YCA8n1zvgGYnmxkhyP8wnWAnQoy9BYFsBqBUpKKFTijd5PgBYVCQnaJ5TbhnmU9OZh2XunwyEeT8fmxx8SDNx1g50V/xapimTKw1MxJV7DvIaqKprgfCEMERFB5cerV1OlhRbx+DlzpES7LVuAO+6Qv29kJBk1HR2eqyvDyKeyktz+csuLS0p6DdSq+Dx0hg4BoPG1m5BAOVjeFNqxJTyc8si+/ZbCPEo6Qw/G9OnAO+/Q9q5dwI03yttPr6dHZSXloTGa46W/VD+ipER+fLOujlbvAFXYaBmr7eyki3HUKN+Jt8bGkkZMeDiVDDrK7NnSd7N5s/KyxaYmXo35Aj09JAugxHvy/fe9m0Vps7QdT3s7iZFNm+a9oVmR3Fwqj9YyOTUlhaQIAGoPokRzRUxwV6JEy8iGDRRPRpTJlmsQ2Lonta4AqKwEMjLc2wjQGaSkkCS+2ey4WFpcHLmhARJxEku95RAQQPkwXBXg/ZhMisuLbQ2Uc2ka5p8IAnlmRo/2/tAsQCHmCRMkFVytEOdLQVDWsiI6mgwalr13CmygeDKivL1cl6yzDBSzmR5jxnive3gwcnIoLq9FbHuujfS90g7HYWG08mbZe+9G7F4st4KnvLy3FYMpfiTaQ+O0G0tVFSkde3No50KGD6eFhZbaQbaqskryUIKDKSzLnk+n4CO/WB+lulp+Amd7O3DkCG0nJGgrzlZTQzofGRnaHdPTGDGCvmuz2bHjzJghxca3blWWgBsVRSsxZ8h6M66juFiZRpCN90TT6p3OTlrg5OdTtYqvEBRETRTb2x2/XkVycqSWFQcPktGhZDyc4O4U2EDxVKxWmujkxrH37ZNcntOmaZcnYrHQJDd2rDaaIZ5KWhoZdo4qQ0ZG0uQJ0LGOH5e/b3g45Qrwasx7aWmhcKiS8mKb9gilmRo1BxQEmj/y8oCRI7U5pieRnU2dyrXqr6W3EcYzm4EDB+TvGxUlJbgzmsIGiqfS2EgtveXqFTgrvFNXR8m23iRrr4bAQJrMm5ocD7GoDfPodFJVAOOdiI0f5S4sqqqkxPacHLRFJGkzjupqyo+YNk27ahdPwmikXBSzmdR6tUBt88DISCop54WF5rCB4qnU1JALU04b9J4e8qAA9P7Ro7UZgyCQgTJ6tPfJ2qshM5NuLI4KL02bJnmbtm9X5oaOjKSVr1aua8a1lJdLhqYcbJtLztDIe9LVRYb2tGlUqearZGXRNatVV+ExY6R5bs8e+Um4nODuNNhA8VQqKqRGcvY4epRCAwAwZYrUodNRGhtpFeYvNf5DhtCk5+hKKCRE8mK1tFBMWy5RUfS9cxMy76Onh4xLJSqtNvknmhkoxcUU1hErynwVg4G8KIKgTXjFaKT5E6D59Ngx+fuGh3OCuxNgA8UTMZsp6UpuHNtZ4Z2aGipN9KUEO3uIKpvd3Y4dR22YJyiIVsDsLvY+amuVlRfX1gInTtB2ZqbUcNIRamrIQMrP126h4slkZNACSisvitowT1QULSo4wV1T2EDxREwmctHKWYmJTa4AmpAmTdJmDC0t5AnwBe0EJaSmAklJjnswJk6kVRVAfx8lcfKQEFoFM95FTQ0ZtkFB8t6vdXinq4sMpKlTtRVp9GT0elKXNRgkL7IjTJokGXa7dsn3iISFUUieFxaawgaKJ1JbK3+iO3tWupmOHatdrkh1Na1MEhO1OZ63YDSSWq6jybJGo3TT6exUJv4UGUnfvxYTLuM6ioqUtSnQOrxTUkLl8lrloHkLqam0kNLCixIaSgYPAJhMiKk7LW8/TnB3CmygeCIlJfJFnpwR3unspAvOl2TtlZCZKUnPO4JtmEdJh2OxKkDrpmiM82huJqNSbli2vp5k1QEqcU9Pd+z8tbW0is/Pl9GS3MfQ6YBx42jO1KKzsM08mlasMMzDCe6awgaKp9HWRqWH7iwvrqryTVl7uURHk86Co+7avDxJ/Gn/fvlS+gYD6eBwVYD3oLS8eOdOyUPnqPeku5sMnqlT/c/jKZKURInBWngw8vN7F2apxTvsvNmGyEhOcNcYNlA8jdpaWgXIMVBqaqgTL0DhGC1KCs1mmvBGj/YdaWw1DB9On98RjQWDgRoIAlThsUPBZBcRQX9bJUq0jPuoqFBWXqxleKesjAzqsWMdO443o9PR5w8PdzxRNSamN/cuurEYkS0yQ0dBQTR3ch6KZvjxHchDqa6mlZUccSXbvAatvCeirH1mpjbH81ZSUqhrqqOTzZw50raSME9UFCU8NjQ4dn7G+ZjNysqLm5pIGgCg35gj11p3N80Xkyb5X2jnQhISyGtZVeV4ua/NfJpRpiDMExzMCe4a4gd1aF6EKG8vVn/YQ+vwjihrP3Omb8vayyEggHJw1q6lyW6AXJyOTuCDlYMYk0Iuro0cisjmCghHjmLlB43oCJXj6YoEekJhLDiAKfeMxrD8ZHWfg3E+YvdiuWXCO3dKnrEZMxzL8zKZKKyjRYmyLzBmDFBYSCEvRzzKl1wCvPMOACCjbAfOTLpJ3n62Ce5yRDaZQWEPiichtu2WsxJrbZVWYYmJ2jTy8xdZe7lkZkrt1C9AXKwKgg7tHYM8OvU4nT4PAKCDgKST2wZ/v+3DbERTnRl7Pznlqk/MqKGmhkKBcsuLtQzvNDVR5Y6/e09EhgwhI6WmxjEvytChlLwMINFUgOAOmZ5MTnDXFDZQPInaWvny9vv2kccD6JPUpRpR1j4vjy1/kchIykXpJ8wzZawVUZECQkPsPyqGz+7dL6tih6x9QkME6EATrLlDpuQ24x7OnZNf3t/SAhw+TNsJCY6pNItJub7cZVwNo0eT98TRZNXzom06CEgpkSkTYDDQXMoJ7prAIR5PorJSvry91uEdUdZeVFJliOxskqq/YIU8LF3AsHSLvGMIQ4HdKUB5ORJrjuGuSxtkeck+WGlAewc4UdaTEcuL5arH7t4tLSy0CO9kZfl2vx01REVR2fHGjfTdqE32nz4d+OQTAEBqyQ4Al8nbLyKC9KmmTvXNRo0uhD0onoLZTPoncnQUzGapOWBEhDY9N/xR1l4OQ4dSwqwjLludTjIirVZqRKYEi0xDiHE91dUUbpWbN7Z9u7TtSHjHYqEE2eHD/VOryB55eRT6duS6zc5G+/l8saSKg+TdlkNMDHmjuZrHYdhA8RTq6siLISf/5MgRqTnWlCmOW+mtrf4pay8Hg4GSZdvbHfNkqO3xAbCB4skoKS9ua5MaR8bGUu6IWhoaKN/ifJ4EcwFhYaQI29io/vrR61GWTtetwWIGDhyQt19wMHlcq6rUnZfphQ0UT0FJHw+twztVVeQq9leRJ3tkZJAL35GS3xEjpDDAgQPK9FUsFm0UMhltEcuL5arH7tlDejgAeU8c0Rmqr6f8Fa1aW/giublUxu1APkhZxiXSEyULi7Aw4MwZ7m7sIGygeAqlpfKME0GQ9E+MRmpK5wiirH1eHruKByIiglzpdXXqj6HXS8Zkdzcpy8pFENhd7InU1tIKXa6BYlu9c8klA7/PHl1d5NkbNkz9MfyBkBCaH1taVMvP1ySNQZfxfNHA3r2SgWmP6GhadNbXqzovQ7CB4gm0t1OCrJyJ7vRp6UY5fryy5mT9UVVFfUD8VdZeLjk5ZBCKoTU1OBLm4SZknocSr2dHh2SURkdT2FAtJhN5Blj7xD45OZRDpjLcYjUYUTp0Kj1pa5OkHewRFia1LWFUwwaKJyDK28vp42Eb3pk2zbHzms30GDOGs83tkZxMRpwjnoxx4ySDcs8e+bFxvY5CCZyL4jkIApUXy10g7NtHxgxA3hO115sgkEcgN5evWTkEBZEXpbNT+v4VUpyqIsyj05HYpdiKhFEFGyieQE0NJWAGyKj61tJAqalxXGrbX9DrqRlZR4d6Q8FopKRmgBKTjx2Tt59OL4n4MZ6BKMYlt7xYq+odUfvE0e7H/kR2Nn1fFRWqdi9LngyL/vzcvGuX/LySmBjyfMptEspcBBso7kYQgKIiWWWKYS1VUp+HESOkTrlqEGXtx4xhWXu5ZGTQd+5IsqxtUrOtsTkYOh0ZRpyH4jmI3YvllBd3dfWVBRgzRv15a2vpZuvIte9vGI3AhAnkLVbR/NNsDEXV0An0pK6OwuxyEFVlOcyjGjZQ3I3YnltG/klqiY170dHqnbo6IC6OZe2VEBZGhqEjnozJkyVP2c6d8ldjgYGUSM14BhUV5FWTU4mzfz+FGADHwjsWCz1YTFE5w4bRXFdWpmr3PtU8chcWej39rfm6VQ0bKO5Ggbx9arFGBoooaz96NMvaKyU7m+LackWbLiQsjNrCA/S3P3tW3n6RkXRTdCRJl9EGs5m8nnLDO1pV79TXk+eEE9qVYzCQFwVQde2Wp02TqhyVJLhHR9NvRTRQGUWwgeJuKivph2+nxDeoqwXx1edzFpKTHRNoYll79SQm0g3CEYXKS1Qk3UVFUWM4DvO4n5oa+eXFZrMkCxAWRonSaqmvJw+eo5V7/kp6Os15KiriOkOHSEKWJSXy81mioui3wmEeVbCB4k56emTL26dV7IZeOK9k6mhzQJa1V49eTyWiXV3qk2Vtk5vlGigBAXQ+7pLqfqqryfCQk7t18KDk9crPV991uLOTzscJ7eoRr12rVb6eiS22MgFywzwBAeSxLi9Xfj6GDRS3YjLJXolllGsU3mFZe8dJTyepcrUiTENsVmPFxfJXdGFhVLbI6pTuQ0xql6vgqlX1jqh9kpSk/hgMaceovXbV6hhFRtJ1q1Iszp9hA8Wd1NZe1CW3P/Q93UitPF8FEBlJ5a5qYVl7xwkNJQPDEZVINauxqCipZxPjHsQwm9zwjvi3DQmRciCUIgi0sGDtE8cJDibxNjWVeEOHSqH1wkL5x4iJobmCw7OKYQPFnZSWynITJ1UegrHnfJKVIy28WdZeO7Ky6KbT1qZuf1svmNzVWHg4nY8nOvehpLz4yBHp9zFtmvpy/uZmWpiw9ok2ZGRQqE1FyXHvwkIQ5HclDwoikThWg1aMYgOlvb0db7/9Nn72s5/hmmuuwZw5c7B69WrZ+7e0tODll1/GddddhyuuuAJPPPEETpw4oXQY3o8CefsUrcqLWdZeOxITaTWlNickNVX6OxQUyPOKiF1zeaJzHxUVtECQU16sVfWOyURlsnKrhpjBSU4GEhLUyQWoDfOEh1PzQEc6ovshig2UpqYmLF++HMXFxcjJyVG0r9VqxTPPPINvv/0WN910Ex577DE0NDTgiSeeQKm/1YqbTNLKaDCsVqSWkJu4xxCo3k1sNpMVz7L22qDTUaitu1t9sqztakys9LBHZCTlrXA82/V0d1P+iZzwjsUi3cCCgkj/Rg09PXRTy85Wtz9zMQYDhcvUdAjPzqYcFgA4dEh+yXJMDHk+WQ1aEYoNlNjYWHz++ef45JNP8IMf/EDRvps2bcLRo0fx7LPP4oEHHsBNN92Ev/3tb9Dr9Vi2bJnSoXg3NTU0idmTtz91CiEdFOusGjqBYqhqqK1lWXutSU8H4uPJ2FSD2jwUUdyPcS1KuhcfPSrdACdPltdQsD/q6uiGyF5PbUlLo6Tz1lZl+9l2JTebgQMH5O0XGkrGDJcbK0KxgRIYGIhY0YJUyObNmzFkyBDMmTOn97Xo6GjMnz8f27ZtQ7fKZk5eh9hoTI5Ims2Nqyxj+iBvHASrlSbLsWNZ1l5LgoPJi6JW+j4nR5Isty1HHYygIIqdcx6K66mqIo+GnGtoxw5pe+ZM9edsbKTVvloDh+mfuDhasKnxaKjJHwMoZ02uMCMDAJDRnU47Tp48ieHDh0N/Qfx21KhR+PLLL1FaWopsf3BlNjXRhSFnJXbeQBGgQ0WayuaA4iqMZe21JyuL+qy0tspLnLRFXI2tXi2txuSUooaEkH6OI6JfjDIEAWe3lWJfwXCYC+yESAUrbty4AyEALAYjPq2ahp6V8sKqHbaCo+3tZJhkZKgeNjMAOh2J3p0+TQs4OTlFImPG0OKyrQ3Yu5eMVjmNXmNiyMhtapI39zOureKpr6/v1/sivlY3gDVrMplw4sSJ3kex2DDPW6mqohuaPQ9KRUVvH4eauJHoDFEhrMay9s4lLo5uIGqTZdUk3UVG0m9IbQURo5ymJuw7rEdTRyDaO3SDPiJKC3vDsqVJk9HcE2Z3H/EhCFRdZzSCwnhDh7IkgLNIS5MUmpVg25W8rY3CeXKIiKB5n5PcZeNSD0pXVxcC+3GPiq91DVD2tWrVKixfvtyZQ3MtZ8+Sm9ie1W4T3ilOURneaWykG9qIEer2ZwZHpyMXfGGh/JWULbarsT175B0jMpJ+QzU1VN3BOJ/qapjPi4/qdAJCBkkFG16xrXe7InsmQkOUCesZjcCUMT3kQRk5UtnqnpFPZCTl5B0/rlxVOz8f2LyZtnfulFe8oNNJzQMd0bLyI1xqoAQFBfWbZyK+FjRAnHXRokWYaRPHLS4uxgsvvOCcQTqbpib6gcppl25roKSqLFOsqSHtFJa1dx5paVS2aDIpV/oUV2ObN0urMXuTncFAbunqajZQXIWNVHlIMHDXDQNUbgkCsOq8emxAAGY8NhkzwlVUeTU0AkHRjvXcYuyTlUV6NRaLsurGSZPo2hXF+B55RJ4hGRND4dn2dvlqxH6MS03zIUOG9BvGEV8bKPk2Li4Oubm5vY8Mb47JlpfLKy9ubqZVOYCmqFQ0RarI4mdZe9cQFEQrIrUKr2qS7iIiKNGadRWcT3c33VTk3IBOnZIqrMaPV56XJGIy0ere3jzBOEZKCi0WlapCh4bS3xegEPqZM/L2E0NKXM0jC5caKMOHD8epU6dgvWBSLSgoQHBwMNJ8fbUgCPRDDg62r+S6Z0/vzac8XaU4W3U1y9q7imHD6GakRlth0iQprLNrl7xeO1FRVD2ktoKIkY/YvViOgWLbe0etOJuocaNQZ4pRQUiIeul7NfljopemrEz5+fwQpxkoJpMJxcXF6LHpGjl37lzU19djy5Ytva81NjZi48aNmDFjRr/5KT5FQwN5UOSUaduWF6eryD8R83lY1t41xMXRildN+W9oqBTWqaujygI5+7S3c7mxK6iultf9VhCk8mK9vu8NTAl1dRQyTElRtz+jjMxMMhyUylxMnSrNrUrKjaOjyfvpL7IaDqAqB+XTTz9Fa2trb2hm+/btqDlfxXDzzTcjPDwcS5cuxZo1a/DRRx8hOTkZADBv3jysWLECL774IoqKihAVFYWVK1fCarXiwQcf1OgjeTAVFdTHY+jQwd/X1SUJAEVFoS4+F1DaNqK2liY4FnhyHbm5JFtvNp8vw1BAfj6VLAJknA4fPvj7dTryupSVccKdM1GiWXT2rOS6HztWfXimsZHCB76+YPMUkpMlwUV7c7MtMTF07RUUUF5hebk8ozI6mkKG1dWcY2QHVR6Ujz76CG+99RZWrlwJANiyZQveeustvPXWW2hpaRlwP4PBgD//+c+49NJL8emnn+KNN95AVFQUXnvtNaT7eiMsQaD4dGiofY/GoUOSB2TaNAh6FdL0ra1UucOy9q4jNZVWvmq8GtOmSb8LW5GvwYiKIgNFTdMzRh6iaq8c3Qrbv5scPZv+aGujOcKb8+y8jYAA9dL3atSgjUbyyFVUKD+fn6HKg/Lxxx/bfc9zzz2H55577qLXIyIi8Mwzz+CZZ55Rc2rvpa6O6t8VVu8gPx9Q+jsWu62yi9i1BAZSSG3DBlqVKQmt9bcagx2jPTKS3msy8d/aWdTUkLFvb2UtCFL+iU6nPrwj/i0TEtTtz6gjLU0KmyqprsnPB8Q2LTt3AjfdJG+/iAjyuE2ZwovIQeACe1dRXk6rI3tZ/RaL1DguKEjKFFdCXR1NcipbEjAOIFZeuGI1FhhIKzG1InGMfcrKaIVtz9jsNSoBjBqlrqzfaqV2B7m5nDfmauLjaVGhtMfV0KHUkwsATpyQn2wbE0PzNPfUGhQ2UFyB1UrhHTklhydPSsqGEycq78FhtZLLPyeHJzl3MGQIVfSoCfOoKTcOCaEOu4z2dHVRroCc8M7330vbanvvNDbSjcvXw92eiF5PIfH2dnlVdLao6UoeEkLGKJcbDwobKK7AZKKEKDXhHaWIfR44OdZ9iAmuSrP0L1iNBbfL0GaIjiZjSI3Hhhmc2lr5fVNsDRS15cV1dbSwUKudwjhGaqo676ftPC03DwWgxOuzZ5UbRH4EGyiuoKxMfmxT/IHr9VTGppT6ekqwY4En95GaSoqyaty3NquxlFIZq7HwcMo54nJj7RG7F9uryKqokLxYublUcq6U7m665lkZ2H1ER9MCQel1m5MjhdMPHqS5Xu75qqpYy2gQ2EBxNmJ4JyLC/nvLyvrGsZUaGRYLnY+7FrsXo5H+fs3NyldHNquxtGIZ1Tx6PYXy2FWsLUrKi229J2qrd0wmyoNQUubKaE92NhmlFgXtCXQ66brt6QH275e3X3g45SXytTsgbKA4m5oaergivNPQQFY5V3S4n8xMCg0olb/PyeldgSdWHITRLGM1FhFBK3glkyozOA0NZDRER9t/rxbhneZmquJSqp/DaEtqKs3VSq9bNeXGOh0lunMO2YCwgeJsysqAzk5KirKHowZKfT3d4OSci3Eu0dG0GlPqLrZZjRmsPUit3Gt/H9EQ6qfPFaOSmhpy1dvzoFRXS8q/2dnKm0UCVMYcFsbJsZ5AaCj9HZX25hG7kgMkuCi2K7BHdDSFCFtblZ3PT2ADxZn09FB4R06opqGBytQAmqjOq+/KxmymevrMTMXDZJxETg6FYJQKqdmsxjLKZIR5xIoAzkPRjrIyup7sVcLZirOp9Z7U1tLKXU3uCqM9mZl03co1MgAqRZ8yhbbFruRyiIzk5oGDwAaKM6mupslHjh7Jnj1SvoIa70ldHU1wSg0bxnmkpNDfQ6nhMHp072osvWIP9BYZE2VgIGlxMI7T2UnfpSvKiy0WSpAdMYJlATyFoUNpLlXqkVQT5jEYyBji5oH9wgaKMykro8lHjpaJo+GdxkYqb+UYtucQEEDKsq2tvZ2pZe93voIr0NyOhKoj9veJjCRXcUeHysEyvcgtL66rAwoLaTsjQ13uV2Mj5TxwTxbPwWikuVTUo5LLxInS/Ltzp/xrXmwe2Nmp7Hx+gCqpe0YGZjOFd+Sswjo7qf8OQJOV0jbrHR1kBHEM2/PIyKAJqKlJmbro9OnApk0AxGoeO4rCUVFAcTHdXPl34Bhi92J7xr4W4Z36emDyZHnVQozryMgg0TVBAKBDRyfwwUp7kvQRmJM0Eamlu4H6enz7r0LUJI+VcbJEGIVuTIk/hWHXynm//8AeFGdRVUUJknKqdw4ckES9pk0jl58S6uoolJCYqHycjHOJjKTVmNIwz6RJ6DFQN9uUYhmrsYAAlr3XArG8WI5YmqPhna4uutZZFsDzSEgAkpJg1PUAAARBh/YO+4+TafN7D5FycrOsfdo7dGjqDMLe1dw88ELYQHEWJSUUX5bTMt3R8I7YuVipYcO4huxsMiCUuHCDg1E1dAIAILSjnrxx9ggLo5srK1OqRywvtuf5bGgAjh+n7ZQUdV4rk4kWFZw35nno9UBuLqYkViEqUkBoiLxHbfY0mAOCAQBZpVsRHthtdx+djq5Xc0cPLTKYXjjE4wy6u4EzZ+RpKFgslCALUDXGuHHKztXayp2LPZ2hQ+lRW6so16As4xJyFwMU087NHXyHqCjypok9XRjl1NRQFYa962nXLsmrNWOGugTX5mZakATwNOyRpKZiWLqAYaMbFIhmGoGSfGDzZgR1t+KO1D12F50frDSgvQOA1UJzBBusvfCS2xlUVtKNQs5NoqCApMqBvklWchHbs3PnYs/FYKBk2bY2Rcmy5Wn5sOrOX6JyqgJE2XuuCFBPaam87sWOqsc2N5PAHucLeS5DhlD5t9Jqnrlzpe0tW+TvJ4DuHUwvbKA4g+JiuhHJMTYcCe9w52LvISODDFYFfTe6QqJQHTeKnpSV2Tc8dDoyUgoK2FWsBrG82I7nM7CzGTh8mJ4kJKjLITGZyDjhhYVnM3w4ecSVqDRPmCC1Ntm1S35vHp2OPO9KKv58HDZQtKazkzpUyvGeCELf5oCi0I9cuHOx9xAeTjcyhY3BilNtqkN27rS/Q3w8lRtXcMKdYmpq6Jqy485PLbEJ78ycqXxxYLFQlZ/Y9ZrxXFJTyWBVIn0fEADMmkXb3d3yNVH0egrxKFWx9WHYQNGaigr6gckxUEpLJQXB0aPlNRS0hTsXexfDhpFRqkChUrGBEhQkNahklFFdTcaDHc9nWvF26Yma8uL6etY+8RbCwmhhodRoUBPm0em4eeAFsIGiNSUl9EOTk/hme8NRGt7hzsXeR0oKKVQqmOxawpPREDOMnpw8KS8eHhdHrmKlQlP+jNUqq7zY2N2GpPID9CQujqrnlNLQQPtxzyzvYNj560+J9P3IkeTNBEhGQu61GBzMzQNtYANFS9rb5Yd3ABICElFqoHDnYu8jMJBuTAo7pZZl2Eho2/5mBkJ0SfNEJ5+GBjL+7JQXp1fshsF6Pr/nkkuUl/Z3dpKHRrzpMZ6PioUF9HpgzhzatlqB7dsHf79ITAx54ZublY/TB2EDRUsqKujGIKe8uK6OVsQANadSKrLGnYu9k/R0MlQUaKKUZSgM8+h0FPY7fpyTZeUilhfbUXQdVrpNeqImvGMyUcdjNV2PGfegcmHRa6AAwObN8vaJiKBKPA7zAGADRVvOnSPL2WBPEhmS9gmg3Hsidi7OyFC2H+N+EhPp5mQyyd6lYUiW5C4+coRupPaIj6ecCi45lkdZmd3y4gBzB1Ir99GT6Ghg1Chl5xAE0i0aOVLeHMF4DioWFsjMlMrICwroerSHeP8oKVE1TF+DDRStaG2l8mK54R1HyovFzsVDhyrbj3E/BgOtxlpb5e+j00mdUnt6gL177e8TGEg3RE6WtY/M8uLksr0IsJxvSTF9unIjo7mZPFucHOt9qFhYQKfr60XZulXeftHRZKBw4082UDRDDO/IaQ7Y3i41B4yLIyl0JTQ1cedibyY1VRJVk4uaVu5xcZQTpbC02e8Qy4vt5Z8U2eQRqOm9YzJJejiMd2Ew0Jyr5JoF1IV5xBwyDvOwgaIZ586Ri1jOqurAASk3YNo0ZToKHR20OmYFSu8lNpaMFCWrsbw8qQx93z55FQVRUXTj5WTZwamspKq4wSrvurowtJTCsp1BkcCYMcrO0dND51DaqZzxHNLSpBwRuSQlUUgPIA+7nGvRYCDvZ3m5qmH6EmygaEFzM7nk5KpCOhreSUrizsXejE5HN6rubvmqkQYDMHUqbXd0SEqm9s4TFQUUFiorkfQnrFa6adjTIDpwAMYeyj8oT89XHt6pryePFosqei+xsVTR44j0vVwvSlQULXr9/LplA0ULKipkKVAC6JtDEBqqfCXGnYt9A1GhUolWiW2YR041D0DJspWVnCw7EPX1ssqLbXvvlGTOUn6ehgYKEQQHK9+X8Qx0OvobdnUpk6OfOVOar7dulbdvTAz9Lmtq1I3VR+C7nBacPk1hFzlGw/HjUoLk5MnK8kgEgXIXeBXm/UREUJa/ktXYxIn0OwPICyenP4jRSBMrJ8v2T00N5YSFhg78HrO5t+quyxiG6qHjlZ1DDMtmZqofJ+MZqFlYREdTfx6Afm+Fhfb3CQykxayfNw9kA8VRGhspVig3vGPbBXXaNGXnslqpcocbjPkGWVlkdMrVKgkKIiMFoN+dqKNjj/h4chdzj4+LKSuTjLiBOHSot7S7JGUarAYVHceHDmXtE18gIoISnV3R4Tgiwu+bB7KB4ijl5ZQ0JaePTleXFIMMDFTeHFAQyMXInYt9g5QUMjaVGA5qwjyRkZQnxcmyfenoIANFQXjnXJrC8I4gkHEzciSHZX2F7GxlCwuAcg1F7+e2bfL2jY4m41ZJMr2PIaNhDDMggoCzG89gX8FwmAvsf5WZZ3ZhxvmV2Nn02di5Xl6Tvw5RG0in4/COLxEURAbn998DCQny9pk6lW50VisZKIsX2zdYbZVlx4yRJkp/p6aGPFGDyc739PQmtZsDglGeNAlBSs4hSg+w9onvIHqxGxokAUV7hIaSx3zbNlosHDpEIX57+3R0ULmx3PnBx2CT3hEaGrDvgICmjkC0d+jsPjIL1vXueixzoax92jt0EAS6ARlDArhzsa+RkUEhhq4uee+PjKTO1wDFp0tL5e0XH083ZE6WlaiqIkNvsPLio0d7y0or0qbBEqDIPKFQwLBh8vSRGO8gOJiq8JSGTNVoooSEUJhHEJSdy0dgA8URysth7iHjQacTEBoy8COxuwxDa6g0tCkqFS1powZ9/4WPqOAuTFnIMWyfIymJVkdK3Li2pelywzxGI3le5Oat+DpdXTTx2wvN9qnemaHsHGYz3ViUCjEyno/ShQVAHhOx19POnfL2jYkhiXylfYB8BA7xqEWUEddRwlxIMHDXDYNUVbyztncz6sbLcNeNChKfTCY63xVXqh0t46kYDEBuLrBhg/x98vOBN9+k7Z07gdtuk7efmCxbV8eJ1mfPkjzAYMaDxQLs2EHbgYGoTJ0CKOm9KLak4I7jvoe4sKirk99yxGikkuN166i9wu7dwOzZg+8THk6/0+pqv1QgZg+KWkwmchHLSXyzWIDvvqNtgwGYP1/ZuerraSLlzsW+SVoarazk9udJTJTyJk6fBmpr5e0XGUnnOHdO3Th9he5u4OBB+s4HC+8UFEjlpJMmoceo8PpraiLjM0hhWIjxfAIC6G/b3KxsP6VhHp2ODBs/TXBnA0UtFRWUnS+nombvXqkfyrRpyixhsXMxayj4LuIqW0np4iWXSNu7d8vfLzqadBiUuKZ9jbNnqfrOnhqzrSTADIXhnfZ2ylXgjuO+S1oaJbIqafw5ejQwZAht798vTzY/JoZyx+R0Mfcx2EBRg9VKsfzwcHnvX79e2r78cmXn4s7Fvo+oUNnZKV/zQE0eCkC/pZoa+cm1vobZTBUUoaGDiyRarVJ4JyBAajMgF1H7xE+rL/wCcV5WsrAwGKSwTk9PXyN4IESZAD9sHsgGihpqa2mSFy3hwairk6TtY2MloS25cOdi/yA1VWruJ4fMTMkDcPSo/FVcQICULOuPlQFnz9Jq1J5o2smT0o1nwgQpuVEOVit5UHJzWfvEl9HpqO1IR4cyMbV586RtOWEese+TH1bg8dWjhrIy+lEOJo8t8t130o/3ssuUNRnjzsX+Q2QkGR1ySxd1Okm0zWKRjGA5JCRQZ1V/E4ASvSfBwfYNfkfCO01NFEpj7RPfR1xYKMlFycqSEqePHUNoq4wcsuhoyh3zs9AsGyhKsVgoMVGOcqzVKoV3dDoyUJTAnYv9i6ws+n3JVahUG+aJiPDPZNlz5yi0lZw8+PsEQTJQDAblHcdNJvpbsmaR7xMVpbynlk4nSd8LAtLPyZC+j46mUuPqahWD9F7YQFFKTQ39SOSEd44eleKG48YpNzRaWrhzsT8hSt+LCdX2GDVKugnu369sdSUmy3Z22n2rT6DEe3LmjNRFduxYeYsR2/MAZKAw/kFWFi1G5TTvFLGp5sk8KyPMYzTSwqWiQsUAvRe+8ymltJTKFOW0TbdNjr3iCmXnaW2liZGl7f2H4GDKN5Ib5jEYpIaTnZ3A4cPyzxUXRyt9f0mWLSqizyqnYZ8j4Z26OgqhsfaJ/5CSQpU2SpRlhw6lax3AkLoziG4qsb9PZCTlUCkxhLwcNlCU0NND4R05rtvWVmmii4jo2+RNDmIVgL8Lavkb6emUyCrXG6KmeSBA5zAYgBMnfD9ZtqeHvCeBgfb7ENmGd/R65ddtYyN5Pbnfkf8QEkI6VXI9nyI2XpSsYhlelJgYMoDl6h75AGygKKG6mn4ccsI7mzZJ7t5585RV4VitdIPizsX+R3IyhQLlxrTHj5eEwHbvVra6SkgASkp8f8ITvSf2ck8ASh4W3eh5eRQKk0tbGyXOs/aJ/5GZSQZ/d7f8fWbP7p3fs4s32V8oBAfTfaGyUvUwvQ02UJRQWkqrMXvKkILgmPZJUxN5aTi8438EBNAKXG5VQFAQMGkSbTc1kUdELuHhdFP15WTZnh4KfRkM8rwajoR3WPvEf0lOplYSSpJlhwyh3EQAUa2ViDXJ6JMVFkZhHl/3ep6HDRS5mM3ywztnzkiT/ogRylVg6+tpH64C8E9EhUq5k5BtGEIUF5NLTIxvJ8sWF9NDrtChrYFiq9ZrD6uVZAFyc9nr6Y8YjQ5L32eckRHmiY6mBG6lnZS9FDZQ5FJZSSskOeGddeukbaXJsRYLPcReK4z/ER9PN1S54k9TpkiVXrt2KVtdxcVRiKdERpKet2GxSN4TOf1wysqk72HkSGX5X42NZOyx9on/kpZG+Sjt7fL3ueQSWPTUDyrj3Gb7IdqwMPJ6+omqLBsociktpR+PPTdxZyew5Xxde3AwMGuWsvM0NNBEx+Ed/0VUqJRraEREUDksQBNXcbH8c4mhj8JC33MbFxdT/oka74ma6p2sLGUlyYxvER9PoR4lAojh4ahIozYKIR2NwJEjg79fp6Pr1ZfDsjawgSKHri4K78hJmNu+XbKgZ82SpzZrC3cuZgAyUJWECmzFxOTIZ9uSkEAGuKj94Qso9Z4A6sM7ZjP9rVj7xL/R62lh0d6uyNgvyponPZFz7cbEkEdfTqNBL4cNFDlUVtIKSU4XYke0T7hzMSMSFUUJs3KZMUN6/5o1ytzMYWGUP3H2rLIxejIlJeQ9kVO5A5DnSfz8OTnKRBVNJlo9s/YJk5IiNfeTSUXaVHQbzy9kd+ywXwnkR80DFcyAfozoMrdXKlxWBhw/TttpaZQ0pQTuXMzYEmAAYEFHJ/DBSns9nOKRP2wesk99C7S1Yd9fN+DE6BtkncZoBKZkDMWwwkJqjOft3jurVXKVyxFUBBzvvTNpEjf0ZGgRm55O1XRRUbJ2sQQEoSh1Bkac+5YWFnv3Dv4b1OtpIXv2LHnbfVhp3Hc/mVZ0dtIPQan35PLLlWfzc+dixgZjGIUmBEGH9g77jwPDb+7dd8SRlehos8jar6lZh71FUWQgK8lf8VRKSuiaVeLRUGugtLZSGJcbejIiOTlkJMvtqQXgTMY86YmcME9yMi2GT8ooTfZi2ECxR0UFJa7ayT/RWXuoczFArvb585Wdp7OTOxczfZhy2whEResQajQjNESw++hOSkf5+YS7iPZajKraYncfnY5i5eYeHeVqFBYqax3vaajxntTWShN9ZqYyD6bJRPlC8fGKhsn4MOnpUisJmVQkjkdHSDQ92buXDN/BCA2lx86dyhVsvQgO8dijqIj+tZMPkFKymzwgACUsynTv9WIycedipg/D8pMxLNkMfPYZhQzlCI3l3Ag8twcAMKPkU8z46exBPXkfrDSgveP8k4QEClNWV8vP3fA0SkvJe6LEyLDVjlHiPREVn0eMYO0TRiIoiBp5btokr/cTAEFvQMmwOcg9vopyEXfuBC67bPCdkpPJsN65k/IdDfbCwN4He1AGo72dDBQZ2ifZJ9dKT5QqxwKUkT18uE/HExkVKFWoHD26twkZzp0DDh6Uf67QUCmk6Y2I3hNBUJZHoza8I0oCsPYJcyHDhpFSs4Jk2aKsudITOWEenY68NQUF9PBB+G44GOXlssI7YW21SC7fT0/i46k/ihLEzsU80TEXolShUqcDbrxRev7558rON2QIJfgpqQLyFMrKyLhS4v1paJAm99RUZSFWURIgPFzZOBnfJy6OwoUK+lzVxedKHpcjR+SpxYaE0L1j505l+iteAhsog1FURG4zO66z4efWQy+cj9tfdplyV1tdHXcuZgZGqULlJZdIE93Bg9R6QS5DhtBN29uSZUXvicWiTHtoxw5Js0KJ96S7m7ydrH3CDERuLv22xKax9tDpJOl7qxXYtk3efomJlF6wc6f8c3kJbKAMREsLTdL2wjuCFblnz1fv6HT244YXIvbw4M7FzEAoVag0GIAbbpCer1wp/1yisJm3JcuWl5MhprREX23+iclENwZvzdVhnE9aGuV1KekWPtcmzCMqkttDp6MO2oWFwNGjysbo4bCBMhAVFdRfw06ya2LFIUS0VdOTCROUZ/M3N9M5WNqeGQg1CpULFkjNJrduVaYSGx9PyabeIgQlCDQxK/WeNDdLFT9JScr6XzU309+EJQGYgTAaKVm2uVn+dZuWJv0OT56k+5AcgoJoMb17t/dctzJgA2Ugzp6lH5idpNWckw40BgQovMOdixl7pKYqU6gMCgKuuYa2rVbgiy/knys0lEIYSkJD7qS8nFpRKPVm7NwpeYlmzJDvwRQEyjthSQDGHsOGKVaWVeVFAWhh0d5OSd9dXfL382DYQOmP5mZaQdoL7zQ3I7WYKgA6gyOBadOUnYc7FzNyiY6mG6KSRLhrrpFKk9evt6+tYEtcHHDqFHVO9WQEATh2jGLvYWHK9lVdXmyhlW5cnLLzMf5HTAzlKSkJ88yeLW1v3qysiWdGBi0slFTveTBsoPRHeTnloNjzamzaBIOV1ALP5SxQ7u7lzsWMEnJySJ3SXkt2kchIKSeqsxP45hv554qJoSoCT0+WraggQ0qp96S1FTh0iLbj4qTSbDkIoL8F54wxchB1cuz12BGJjye5AIDuRUrK/o1GynvZv5+q2rwcNlD648wZ++EdQegjbX9mhIrwDncuZpSQkkJevcZG+ftcf730O/7qK/mTpF5Pv8uCAs9NlhVzT7q7lZf67tkjSZErCe8A9N2wJAAjl5QUMqCV5IHNVaiJYsuQIRTi2bGDCjC8GDZQLqShgaxWeyW/J0/2ri6r40ahOVphPJo7FzNKCQ0lg1auaBtAE+Mll9B2YyOwcaP8fePj6VqorFQ0TJdRWaku9wQAtm+XtpU2BwwIUB5OYvyXgABKlm1tlR+use1OvmWLfK+pSEYGCTXu369sPw+DDZQLaWyUhNMGw8Z7Uph9pfLzcOdiRg2ZmWTYyvWEAMBNN0nbK1fK94iEhJAhffq0khG6BjH3pLNTufekqQk4cIC2hwwBRo6Uf07AJyXFGSeTmUl5ZHK9n5GR1CEbIE/78ePKzhcQQPeWAwekdi1eiGIDpbu7G2+88QZuvPFGXHbZZXj00UexZ88eWfvu3bsXTzzxBK677jpcffXVeOSRR7B27Vr7O7oanW5wl29HB5VuAjAbQ3AubfbA7x0I7lzMqGHoUDJs5ahMigwfDowZQ9vl5VSKKJfYWMrxaGlRNk5nU1VFXkw13pP//lcStJo5U357CdGwYwOFUUpkJF2HSpJlRdE2QHmYByD5CkGgUI+nJ7sPgGID5cUXX8THH3+Myy+/HI8//jj0ej2efvppHD58eND9tm3bhqeeegpmsxmLFy/GkiVLEBQUhD/84Q/4+OOPVX8At7BtW29sr3jYHPQYFeaQiJ2LOY7NKMVopKQ7sTGlXGy9KErk72NiKOxZUqLsfM7m6FG6jux5Oi+ktBRYs4a2Q0KAW26Rv6/oQeHcWEYN2dnk2ejslPf+adOkjtzff69OJTYtjZJl9+xRVg3kISgyUI4fP44NGzbgkUcewQ9/+EMsWrQIr732GpKSkvDGG28Muu9nn32G2NhYvPbaa7j55ptx00034a9//StSUlKwevVqhz6Ey7FNjs1VEd6pqaGVH3cuZtSQnk4Tl5J+OZMnS7odSpqL6fWUb3H8uPI4uLOoqiKvjsxOsX1YtkzyhNx8Mxlgcmhp4aodxjGGDqWHXC9KcDCQn0/bra3q8kkMBkrSPXTIe3SNbFBkoGzevBkGgwGLFi3qfS0oKAjXXHMNjh07hurq6gH3bW9vR0REBAJtWsYHBAQgKioKQUFBKobuJkpKSFIYADIyUBc3Qtn+PT3kfRkzhl3FjDoSEujmrCRZ1pEmgvHxVM4rV9XS2Rw7RsaZUnHDgweBvXtpOy6OKpzkYjLx9co4hsEA5OVRuEVuHpha0TZbIiLI87pzpzLBOA8gQMmbT506hdTUVIRdkME+atQoAMDp06eROIBXYMKECfjggw/w5ptvYuHChdDpdPj2229x4sQJPP/88+pG7w5svCe4/HLAqnBVVVurXFabYWzR66kR2blz5LaVu7KfMwd47z3KX9m167xOQob9/YKDybA+c8b9Ycnq6n5zT86W6LDviH5AL7jOasHCL5ZB9Jd8n3c/ilYrkMXvyURHD3tQGAfJyJAacsppDjthAhkYLS10zba3K2vnIJKSQl3Kd+2iNhhy867cjCIDpa6uDrH9fKnia6ZBVC7vv/9+VFZW4r333sO7774LAAgODsbvfvc7zJ49eJKpyWRCnc1qsdhd4lFms1SmGRAAzJsHfKdgf6uVcgemTpViiwyjhpQUaeKS60kwGoFFi4Dly8mwWbkSSH1C3r5xcVTNM2mSe9syHD9OK9ALxA33HdGjqXlgA2LEme8Q03AOAFA7JAfHh84HOpQYHFIyuzFY0bTJMBLh4ZRDtnu3PAMlIACYNQtYvZoq93btAubPV35evZ6Mo6NHaZEht3LNzSi60rq6umDsp+pEDNt0DaL/bzQakZaWhnnz5mHOnDmwWCz48ssv8cILL+DVV1/FaFE5rx9WrVqF5cuXKxmqc9i1S3KRXXKJ8olaVI7NztZ+bIx/MWQI5ZScOqXsd3jllcBHH1GYceNGBN9yH9php6UDQCWSovbP2LGqh+0QtbUUXu0n90T0nOh0AkIusP0DzB2YcuTd3ucHpz+M0FAdSBJWBj09lNQeFAhjcACm3KpAdZZhLiQ7m8KNcr0hc+eSgQJQmEeNgQLQuUJDKdSTmCg//8qNKDJQgoKCYO7Hh9p9XpNhsFyS1157DcePH8ebb74J/Xn30qWXXor77rsPf/vb3/Cvf/1rwH0XLVqEmTNn9j4vLi7GCy+8oGTo2mAb3lHTGLC2lgR4uDEgowXZ2VLyqtz8iLAwYOFCykExmzHi+JfYmXe//f30elr9FRRQHN0d+RjHjvXrPbElJBi464YLknk/WAF0nC/Lnj4dlz82CoDMhN+uLirNvvlmbknBaENSEv2WysvJq2GPkSMpD6y2lnRNmpqohFgNycm00Ni5k+5hHp5XpSgQFRsb2yfUIiK+FjdA8yyz2Yyvv/4al1xySa9xAlCSbH5+Pk6cONGv4SMSFxeH3Nzc3keGnD+q1tTUSA2YEhOVryKbmyX3HsNoQWoqrYKUSN8DwHXX9apUDi/4GgFmmXLYYrJsebmy82mB6D1RWvlWVwd89hltGwzA4sXKz5uUpE5vhWH6Q68nZdmuLnmVcXq9pIlitZLMhVp0OvK8FhQoF39zA4oMlJycHJSVlaHtAtGX4+c/aE5OTr/7NTU1wWKxwNLPH8NiscBqtcLqqf0+RL79Vqojv+wy5UlG1dXUYCw+XvuxMf5JWBh5UZSItgGUT3J+wgvqbkXuWZliiUFBNEG6Q1n2+HEqtYyOVrbff/4jqe5efbUy5WZBoHPm5nr8SpPxMtLTKUwr99p1pDfPhYSEUP7arl3KhOPcgKK77Lx582CxWLBq1are17q7u/HNN98gLy+vt4Knurq6TyJrTEwMwsPDsXXr1j6ekvb2dmzfvh3p6emeXWpssQAbNtC2Xk9Z0Ero6KAVq5ckJjFeRGYmrYqUijjZlByPObESOqvMkIeYLHvqlOvUKevqyHuSkKBsvzNngO/OZ7GHhwN33KFs/5YWmshF/RiG0YrQUDJ85RoomZlSOKiwkLSAHCExkUJFO3eqE4BzEYoMlLy8PMyfPx9Lly7FG2+8gVWrVuHJJ59EVVUVHnvssd73/eEPf8C9997b+9xgMOCOO+5AaWkpHnvsMXz88cf48MMP8eijj6K2thb33Xefdp/IGRw6JFmakybRJK2Eqir6caWkaD82xr8Rpe+VaKIA9HucMgUAENFWg/RzW+XtFx1NBveXX5Jk/FdfUWVATY3zhNyOH6cQqZKkPkEA3n5b8nrefrty1dnaWmmlyzBaI3ayl6vwait9v1Xm9ToQOh3NASdOAEeOOHYsJ6K4Xu65555DYmIi1q5di9bWVmRlZeGll17ChAkTBt3vvvvuQ3JyMlasWIHly5fDbDYjOzsbv/vd7zBv3jyVw3cR69ZJ25dfrmxfs5mqAPLyvKb2nPEiAgMpr2nrVuXKqjfe2CtcNurIp4Awy76mik4HZGWRMdLcTFoshYVUNh8TQys9USVZi46/YqM0pbknu3dLE29SEoV3lGCx0GM4V+wwTiIhgQzgPRbI8hXMnk06RgBV89x6q2PnDwoi43vPHlroqFFmdjKKDZSgoCD88Ic/xA9/+MMB3/O3v/2t39cvv/xyXK70Bu9umpqk5mpRUaRhooTqapqwMzM1HxrDAKBJLjCQPBshCvpCjRmDurjhiDWdwpD6s+QptLPQ6MVgIINE9Gp0dEguY52OKtWSkuh3n5BAmg9q8jgKCsgQUpI70tNDWi8iixcrb8pZX0+TN1fuMM5Cp6Mwj1Ao7/1JSZQmUFhI5f5FRY7fV+LjKWT7/ffANdeQ0eJB8JLeHhs30oQHUO5JgAKbzmKhJLuxY7lrMeM8EhPJCFYa5tHpUDDmZum5Evn7CwkJoQl0xAjysAQGkndlzRrg44+BDz8Etm8Hzp6Vn7tSX0+lxUpzT9askSqN8vJIs0gp9fX0WZQYfAyjlPR0ZZ51LZNlRTIyKF9LrFL1INhAGQxB6Kt9ctllyvavqyMLNStL23ExjC16Pd1MW1sVdywtzZyB5vDzrt0DB8iocBTRu5KZSSvEhAQSpdq5k9Rr//tf4Ouv7eeuFBaSV0ZB7omxq5WOL/LQQ8qb/IndxtnryTib4GBli9eZMyWDZtMmZQ1DB8JopGt0//7z7S88BzZQBqOwkNqzA7QSU+LuFQQyUPLy1PVOYBglpKZSpUprq6LdBL0BR3JtmgiKmiFa0p935ezZwb0rjY3kPYmPV2RgjD70EVXfALTaVJNDYjLReD0wJs/4IGLoU87iIjqaOpMDdH95/XXFi5J+GTKEdFm+/57CtR4CGyiDYZscq1Q5trGRfkycZMe4giFDqMfGIP2wBuJk1uXoDDqvbrx1q3O1EeR6V/bsodYQCipoIlorkXv8vARCYCCgpjpQ1D4ZOZK1TxjXIHpE5FbBPfywlIC+Y4djoVlbMjIor2X/fm2MHg1gA2Ug2tslxb7QUHKtKaGmhiZgL+h3wPgAOh0JAZrN8lu5n8cSEIxTo66lJ1YrYKNz5HQG8q4cOECvK/CeTD24DAbr+Xyx669XJ4rY3EwJvu7u2sz4D7Y/cTmaJElJwE9/Kj1/911tSoUDAigZ/cABSsL1ALgt50Bs3UouL4Dqz5VkN7e20sSbm+ucsTFMf6Smkteuvl6xVs/JUddi7PEVpLq6bh3phoSHO2ecA3FhZZAC4qqPI6v0/IIiKop656jBZCLvCS8sGBfTYQ7AB6t0Mj130zFu/B0Yc+hDwGpFx+9fxprrX0dH2MDXvdEITBlrxbD0QbwjUVHkudyxgwx8LaQCHIA9KAPhSGPA6mpaDSrVbmAYRwgPB8aMoRCNQi9KV0iUpJDc0SF1T/UGBAGTdr8pPb/7bnV5Xz095GYfoGUHwzgDYzD5CQTo0N4dgPYOnazHrpF3oyxpEgAgpLMRMzb8CZ2tPQO+v6lZh71HZNzy09Io93LPHreHethA6Y/KSur4CADDhpHin1xEr8uoUcqrBxjGUfLyyHuiJo/k+uul3+xXX3m0BHYftm5FXO0JAEBjdIZyMUUR0fPE2ieMC5ly63BEDQ1DaLQRoYE9CA22IDREsPsICdNj16U/Q1sYhTITTQWYcfTtft+r05GhIeuSNhjoGjh40D19t2zgEE9/7NolbV9xhTJDo7qa/rgcw2bcQUQEMHEiNbeMi1OW6Dl0KGmGfP89uXk3blTuPXQ13d0Ugz/PgWkPYr7a5NaGBmDGDCr9ZBgXMSw/GcPyz3fLXreOqtdke/HCgcm/AJ55BujpwcjjX2Dk1cP7yuID+GClAe1KinMiIijcefKkWws92INyIV1dwL59tG009hXGsUdPD2kojBnDFQCM+8jNJeG26mrl+950k7T9+eeKQ0Uu58svKSEdQFnSJFSmTlF3nI4O1j5h3M+IEfSv2IFbDsOHA488Ij3/+9+BkhLHx2I0Oq+/lkzYQLmQdesk8ZsZM5QlCtbUUN7JsGHOGRvDyCE0lCTrW1slFWS5jBgBjB5N2+XlFIf2VJqagE8+AQBYdXrsmviQ+mOZTGTUsfYJ405SU+k3qDREe+WVwKWX0nZnJ/Dii9qIuLkZDvFcQM1f3oEorP1t6ELUrBzcE9LRafOkqQnIz/e4fgaMHzJ8OCm1VlYqDzfedBO5mQHyouTnaz8+Lfjvf3sn4bPDL0dD9DCEQkVSnyCQQNzs2dzQk3EvAQGUv7huHYVc5aYX6HTAD35AStDnztHi4m9/o9CPF+dC8tVoy7lzSCjZDwBoCh+KoqhxdjOpBYH++Ea9hRqiKUmoZRhnERREuSgdHcrcxQApVYpGzfHjpKjsaZSWkhItAISE4PCke9Qfq6mJtU8Yz2HYMCpzb2xUtl9QEPCLX0ilwd9/T+KHXgwbKLa8/Xbv5rncyxEaClnZ1FGRAqbEV5DlGxHhxg/AMDZkZdFkJzbOk4teD9zoZPl7R1m2TMqPuflmdIbKV5y9iLo6+p6iozUZGsM4RFQULXRVqEIjORn4yU+k5++8Q55UL4VDPCKCAHzwAW3r9Zjw43mYECszQaipCWixSglODOMJGI2Ui1JSQnFpJdUpc+cC//kPld7u2kVGTkqK04aqiIMHgb17aTsujsqj1cq29PSQocOeT8aTyMkBDh+mog2lKQPTpgG33kr5WVYr8Oc/I2Th39CuUybe6AmwB0VEpwN27wZ+9Stg1iwK18ilpoZ+UArVOxnG6WRm0s1XqRfFaASuu462BQH44gvNh6YKi6WPpxP33utYzlddHV3rrH3CeBIpKfRQ2xfrrruA8eNpu7ERM7/7E3RWhQnzHgAbKLbExgIPPEArMrm0t0uJTQzjaej1NFHp9VKnYLksXEgtGwBgwwbSCXE3331HDc0AWhQokQHoj8ZGKsvmxHbGkzAY6J7S1qau1N9gAH72s95Fc0LNcUw7+LadnTwPNlAcpaqKVqlDh7p7JAzTP2lpdBOuqFC2X1gYlS8CJEH59dfaj00JHR0UdhJ58EHHqm7a28kwychwfGwMozUZGZQXpXZhEBVFVTwBlMkx9sRKpJ/dqt34XAAbKI7Q3U0u57w8Lk9kPBedDhg3jm7Gzc3K9l20SBIdXL2aclncxeefS5P19OkkiOgIJhMtLLhnFuOJRERQXqOaZFmR3FxgyZLep/nbXqMKOC+Bk2QdoaaG4oS8AmM8neRk6tJ74ACV1MolLo5kszduBFpaSEL/2msVnfpsiQ77jugdau0T0mbCdSs+RwAAq86Ar1MeRIuNRlGHUrupp4c8KLm5vLhgPJfsbEoK7+iQwq1KueoqnFt/EsPOfAdjz3kRt1deUddQ08XwlakWi4WUOseMoYRChvF0xo2jVZlSl7FtyfHKlYrlr/cd0aOpWV6H1oEeo3e/hwALNeI8NuI6VAem9q9HJPdSLC2lhQV3LmY8meRkSuBWmywLADodds/8Eeqizyucl5UB//d/bu9ULAc2UNRiMgEJCSxrz3gP8fEUjqyuVjY5ZWaSeBtAXsPt2xWdVvSc6HT2NYX6e6S0n8bwcxsAAF2B4Tgx5Y6B9YjGykgobGoir0l+PjcGZDwbvZ6SZTs6HOqLYwkIxoZZ/4vuwPMibtu3A6tWaTRI58EhHjUIAulDzJ/vFW4yhull7FjgxAkqr1VSFn/jjVITzc8/J1l4hRLaIcHAXTconGQFAfjlv4HzEvZB996OW64PBaBysrZYKFl4+nQgPV3dMRjGlWRkAEOG0D0nPl71YZojhmLHnJ9i7re/pxeWLSMPoth7ywNhD4oaGhpIitiNbagZRhXR0RTqMZmUlS+OHSuFQ86cAf78Z+oXUlHhXFfx7t3AkSO0nZwMXH21Y8crLyeX+eTJXt2jhPEjQkMpV6q+3uFDladPB265hZ6cF3HT4rjOgg0UNdTW0g+GpbEZbyQvj1ZiNTXy99Hp+uaibN9Obd0fewx46CHg1VeB9eup7F4rg6WnB1i+XHp+//2O5XuJ3Z3z86V+JQzjDWRnU5KsUi2j/rj7bknEraGBjBSlXc9dBBsoSmltpR8Ky9oz3kp4OE1QSpuRzZhBuigX5m2YTMCmTZR498gjVNb4179SxU91tfpxrlkjKeDm5QGXXKL+WFYrJQeOG0c9ihjGm0hMJD0jJYuKgbhAxA3Hj1PPHg+Ec1CUUlVF5ZqsncB4MyNHAseOAccskD0NGAzAj34EPPoocPo09Qo5epQmONuOybW1VJa8cSMAYFF4Airix6EudSxQO0ZeHL21Ffjvf6XnDz3kWEimooKS2jm0w3gjOh1dsydPUh6VwWB/n8EQRdyefZa8J198QVGBWbO0Ga9GsIGihM5O+qHk5fEkx3g3ISHAxInA+jPK9w0IoMly5EjgttuoTOfUKTJWjhwBCgr6GCzhrTUY0fotcO5bYCvIuB8zhrwZYwYwWD75hHRXAJKzdyTfq72drt1LL1WmAcMwnkR6Ol0rJpM2C2RRxO2f/6Tn//d/lJCblub4sTWCDRQlVFfTj4QbizG+wPDhgKEIcEBADQDlheTl0UM0WE6eJGPlyBFYjhfCYLE5SXU1PTZQ6TCSkigJV3yYzcCXX9L/BQYC992nfmyCQJonY8dyUjvj3QQH06JgyxbVBkpHJ/CBjcAhhGtxSfYJDDuzEejoQNP//glrr/sreowhgCUVMBgQums7bvjDTI0+hDLYQJFLTw+1vh492nH3GsN4AoGBZFx0WiCW8WqC0UjXyejRwB134JMVFoSXn0R6/WGM6zkMFBaij6xsVRU91q+n5yEhUtLe9dc7VFqJ6moq0Zw6lRVjGe8nK4vK/VtbKZdMJkYjgA5AEHRo77D9Hx02TfofRJnOYUhTEaIaSzF589+wccYzgO68edDUpeUnUAQbKHKpqaGVXmamu0fCMNoREADAgo4OXd+VlYZ09BjQmjAWzRljMO6G2yn8c+JEr4cFJ070rSLoOD+DRkUBN9+s/sRdXdR76MoryUhhGG8nLo7CMKdOKTJQpoy1Yu+A7SaCsP2y53DlqicRaG5HdskWNCaPxImR15IHJcp9nb7ZQJGD1Urqk/n53Jad8SmMIQFAQxcEXLiycsK5xArhwEApnAOQIVFYKOWwnDxJ19yjjzomhFhcTHH2kSMdHjvDeAQ6Hf2mT5wgL6TMsvth6QKGpQ8mbpgE5D4J/PGPAIDJe9/C5FkR1IdrkXvCOwAbKPIQVTe5bwfjY0y5dTj2fnIK5obzGiEBzpkSjEYMLEMfFERlz6I2Q1cXVSo4YpzU1lJCbH6+0z4Tw7iF9HSqSKurI6++VkyfTh7LTz+l6+/NN6VFhJvgK1cOdXUk7a3ApcYw3sCw/GQMy0+mRNLPP6d8D3f/zh31UnZ3kzrmggWO5a8wjCcSGEj9eTZsIEVzLb3699wjJbg3NVHX47vvdpuRz1lj9mhqog6wXAHA+DKpqeQ6rqx090gcp6SEvJ1jxrh7JAzjHMaMoST0s2cxQGKJOgwG4Oc/B2Jj6fnRo8C772p3fIWwgWKPmhoyTsQ/GMP4IjodhViCgymx1Fupr6fPkJ/vmCw+w3gyQUHAvHlkiJ8961Cn44uIjiYRN6ORPCqLF2t3bIWwgTIY7e30R+IkO8YfSEoi17G3elF6emhBMWkSNRZkGF8mLIzEB1NSyEjRsmnnyJHAb38L3HqrW8vz2UAZjMpKYNgwnuwY/2HsWAppNjS4eyTKKSkhGQAx2ZZhfJ3oaMq1io0Fioq0P7abYQNlILq7qdQxL48Fnhj/IS6O4ttadiV2BU1NlMiXn39xM0OG8WUSEshICQmhhpg+BN95B6K6mhIH09PdPRKGcS2jR5Owmcnk7pHIw2KhZoDjx/P1yvgnqanA/Pm0qNCi47GHwAZKf1itlH8yZgxrKDD+R3Q0NfIzmeha8HTKyqjB2aRJ7h4Jw7iPnBwSVmtt9c4QbT+wgdIfgkD6CcOGuXskDOMe8vKoIZmnr8ZaWsiIys93TNiNYXyB0aOBGTNIqFDsBu7FsIHSH0FB5D0JCXH3SBjGPYSHU8iksVHbEkYtsVrJezJuHC8mGAYguYDJk6k5ZkUFRQK8GDZQ+iMpiWXtGSY3lyrYqqrcPZL+qagAhg6lCVmnc/doGMYz0OuBSy6hBUZxMbWO8FLYQLmQ5GT640ZFuXskDONeQkIor6O1VVu1Si1obwc6O4Fp06gsmmEYCaOR2rPk5QHnzvXtFu5FsIFyIcHBlHDHMAx5EtPTPUu8TRBI82T0aPZ0MsxABAeT2mx2NnDmjOeGageBDRSGYQYmMBCYMIHcxJ7iKq6qIr2WadNYo4hhBiM8nMqPU1LIk+JN2kZgA4VhGHtkZZFCa0WFu0dCYZ2WFjJOPEDpkmE8npgYksQfMkR7tVknwwYKwzCDExAATJxIVTMdHe4bhyBQ0t/Ikdwfi2GUkJhIRkpICFBe7u7RyIYNFIZh7JORQfke7pzcamvJa5KfT23hGYaRT1oa5aRYLHQteQFsoDAMYx+9nnJRAgKoqsfVdHeTOuaUKZR/wjCMcoYPp+qe5mavUJtlA4VhGHmkpJA2ijtyUYqLaXIdPdr152YYX2LsWK9Rm2UDhWEYeeh0pNoaFgacOkWlxy0tzi9frKsjGfv8fNJ3YBhGPTodeSKnTqWQrQerzXInPIZh5JOUBFx2GXlRysvJVVxVRQmsgYFU1hgeThoMWmA200pv3jw6N8MwjiOqzXZ1AQcPUqVeYKC7R3URbKAwDKOMnBx6CAJ5UBoa6FFZCVRXU4PBzk5aqYWGksESFqauM3hpKfXZGTdO+8/BMP6MqDbb1QUUFNA1reYadSKeNRqGYbwHnQ6IjKRHRgYl0ZrN1GCwoYFCM2Vl9NxkolBQQIBksISGDt5Dp7GR3j99OjXwZBhGW0S12a4uUpsdPtyjxA/ZQGEYRjuMRiA+nh4ibW2Sl6W6mjwtDQ1SyXJwsBQaEt3MFguFjmbMAFJTXf85GMZfCA8njZQ1a4CzZ0ka30Oab7KBwjCMcwkLo0dqKlUQWCxAUxMZKfX1lM9SV0cGS3c3reCsVnr/pEnuHj3D+D6i2uzq1VQxl5np7hEBYAOFYRhXYzCQ7PaQIbRaAyhnpaGBwjq1tZTHMnUqKV8yDON8RLXZNWs8o60F2EBhGMYTCA4GkpPpMWqUu0fDMP5JejrlpKxfT4uFlBS3DsdzsmEYhmEYhnEvI0YAs2ZRWNbNsAeFYRiGYRiJceOosscdbS1sYAOFYRiGYRgJnQ6YNo2S1d0Ih3gYhmEYhrkYN2uisIHCMAzDMIzHoTjE093djbfeegvr1q1DS0sLsrOzsWTJEkydOlXW/hs2bMCKFStw5swZBAQEICMjA0uWLMHkyZMVD55hGIZhGN9EsYHy4osvYtOmTbj11luRmpqK1atX4+mnn8brr7+OcXb6Zbz99tt45513MG/ePCxcuBA9PT04d+4cTCaT6g/AMAzDMIzvochAOX78ODZs2IAf/OAHuPPOOwEAV155JRYvXow33ngDb7zxxoD7Hjt2DO+88w5+9KMf4bbbbnNs1AzDMAzD+DSKclA2b94Mg8GARYsW9b4WFBSEa665BseOHUN1dfWA+37yyScYMmQIbrnlFgiCgPb2dvWjZhiGYRjGp1FkoJw6dQqpqakIu0DAZdR55cfTp08PuO++ffswcuRIrFixAosWLcLChQtxww034NNPP1UxbIZhGIZhfBlFIZ66ujrExsZe9Lr42kC5JC0tLWhqasLRo0exf/9+LF68GImJiVi9ejVef/11BAQE4Prrrx/wvCaTCXV1db3Pi4uLlQybYRiGYRgvQ5GB0tXVBaPReNHrgedbpHd1dfW7nxjOaWpqwm9+8xssWLAAADBv3jwsXrwY77777qAGyqpVq7B8+XIlQ2UYhmEYxotRZKAEBQXBbDZf9Hp3d3fv/w+0HwAEBARg3rx5va/r9XpceumlePvtt1FdXY3ExMR+91+0aBFmzpzZ+7y4uBgvvPCCkqEzDMMwDONFKDJQYmNjUVtbe9HrYvglLi6u3/0iIyMRGBiI8PBwGAyGPv8XExMDgMJAAxkocXFxAx6bYRiGYRjfQ1GSbE5ODsrKytDW1tbn9ePHj/f+f78n0esxfPhwNDU1XeSBEfNWoqOjlQyFYRiGYRgfRpGBMm/ePFgsFqxatar3te7ubnzzzTfIy8vr9YBUV1dflMg6f/58WCwWrFmzpve1rq4urF+/HpmZmewhYRiGYRimF0Uhnry8PMyfPx9Lly5FY2MjUlJSsGbNGlRVVeGZZ57pfd8f/vAHHDx4EFu2bOl97frrr8fXX3+Nv/71rygtLUViYiLWrl2L6upqvPjii9p9IoZhGIZhvB7FUvfPPfdcr3HR2tqKrKwsvPTSS5gwYcKg+wUFBeG1117DG2+8gW+++QadnZ3IycnBSy+9hGnTpikag1gtxOXGDMMwDON9ZGRkIDg4eND36ARBEFw0Hs1Yt24dV/EwDMMwjJfy73//G7m5uYO+xysNlMbGRuzevRvJycm9GiyOIpYu//KXv0RGRoYmx/Rl+PuSD39XyuDvSxn8fSmDvy/5OPO7kuNBURzi8QSio6NxxRVXOOXYGRkZdq06RoK/L/nwd6UM/r6Uwd+XMvj7ko+7vitFVTwMwzAMwzCugA0UhmEYhmE8DjZQzhMbG4vFixf32wyRuRj+vuTD35Uy+PtSBn9fyuDvSz7u/q68MkmWYRiGYRjfhj0oDMMwDMN4HGygMAzDMAzjcbCBwjAMwzCMx8EGCsMwDMMwHodXCrU5m4MHD+LDDz/EqVOn0NTUhPDwcOTk5OD+++/H2LFj3T08j2Pfvn1Yv349Dh8+jNraWgwZMgSTJk3CQw89xF2q+8FkMmHFihUoKChAYWEhOjo68Prrr2PixInuHppb6e7uxltvvYV169ahpaUF2dnZWLJkCaZOneruoXkk7e3t+PDDD3H8+HEUFBSgpaUFzz77LK666ip3D83jKCgowJo1a3DgwAFUVVUhMjISo0ePxpIlS5CWlubu4XkU586dw7Jly3DixAnU19cjODgYGRkZuPPOOzFz5kyXjoU9KP1QVlYGvV6P66+/Hk8++SRuv/121NfX43/+53+wa9cudw/P4/jnP/+JAwcOYPbs2XjiiSewYMECbNy4EUuWLEFdXZ27h+dxlJaW4oMPPkBtbS2ysrLcPRyP4cUXX8THH3+Myy+/HI8//jj0ej2efvppHD582N1D80iampqwfPlyFBcXIycnx93D8Wg++OADbN68GZMnT8bjjz+O6667DocOHcKSJUtw9uxZdw/Po6iqqkJ7ezsWLlyIxx9/HPfddx8A4Nlnn8WqVatcOxiBkUVHR4dw/fXXC0899ZS7h+JxHDhwQLBYLBe9Nnv2bGHp0qVuGpXn0tbWJjQ1NQmCIAgbN24UZs+eLezfv9/No3Ivx44dE2bPni188MEHva91dnYKd9xxh/DYY4+5cWSeS1dXl2AymQRBEISCggJh9uzZwjfffOPmUXkmhw8fFrq7u/u8VlJSIixYsED43e9+56ZReQ89PT3CAw88INx9990uPS97UGQSHByMqKgotLa2unsoHseECROg1+svei0yMhLFxcVuGpXnEhoaisjISHcPw6PYvHkzDAYDFi1a1PtaUFAQrrnmGhw7dgzV1dVuHJ1nEhgYyGJjMhk7diyMRmOf19LS0pCZmclzlAwMBgMSEhJcfv/jHJRBaGtrg9lsRlNTE9auXYtz587h3nvvdfewvIL29nZ0dHQgKirK3UNhvIBTp04hNTUVYWFhfV4fNWoUAOD06dNITEx0x9AYH0UQBDQ0NCAzM9PdQ/FIOjo60NXVhba2Nmzfvh27du3C/PnzXToGNlAG4Te/+Q12794NADAajVi0aFFvPI4ZnE8++QRmsxmXXnqpu4fCeAF1dXX9egPE10wmk6uHxPg469evR21tLR588EF3D8Uj+cc//tGbc6LX6zFnzhz85Cc/cekYfN5AsVqtMJvNst4bGBgInU7X+/zRRx/F7bffjpqaGqxZswY9PT2wWCzOGqpH4Mj3JXLw4EEsX74c8+fPx+TJk7UeokehxffFAF1dXRe54AH6zsT/ZxitKC4uxl//+leMHj0aCxcudPdwPJJbb70V8+bNg8lkwsaNG2GxWGTPdVrh8wbKoUOH8MQTT8h673vvvYeMjIze58OHD+/dvuKKK7BkyRK8+OKL+P3vf6/5OD0FR74vgC78X/7yl8jKysIzzzzjjCF6FI5+XwwRFBTU7+TX3d3d+/8MowV1dXV45plnEBYWht///vcwGAzuHpJHkpGR0TtfLVy4ED/96U/xi1/8Av/6179cttDyeQMlPT0dzz77rKz3DpZwZjQaMXPmTLz//vvo6ury2QnTke+ruroaTz31FMLCwvDSSy8hNDTUGUP0KLT6ffk7sbGxqK2tveh1sUyd9XQYLWhtbcXTTz+N1tZW/P3vf+fflQLmzZuHV155BaWlpUhPT3fJOX3eQImNjdVMuKirqwuCIKC9vd1nDRS131dTUxOeeuopmM1m/PWvf/WbC1/L35c/k5OTgwMHDqCtra1Pouzx48d7/59hHKGrqwu/+MUvUFpaildffZWTYxUihlldWcnDZcb90NDQcNFrLS0t2Lx5MxISEhATE+OGUXkuHR0dePrpp2EymfDnP/+ZlRkZxcybNw8Wi6WPEFR3dze++eYb5OXlcQUP4xAWiwXPP/88jh07ht/+9rcYM2aMu4fksfR3/+vp6cHatWsRFBTkUsPO5z0oavj5z3+O+Ph45OXlISYmBtXV1fjmm29QV1eH559/3t3D8zh+//vfo6CgAFdffTWKi4v76AqEhIRg9uzZbhydZ/LOO+8AAIqKigAAa9eu7VVMvf/++901LLeRl5eH+fPnY+nSpWhsbERKSgrWrFmDqqoqv8hlUsunn36K1tbW3lDY9u3bUVNTAwC4+eabER4e7s7heQz/+Mc/sH37dsyYMQMtLS1Yt25dn/+/4oor3DQyz+OVV15BW1sbxo8fj/j4eNTV1WH9+vUoKSnBj370I5eG7nWCIAguO5uX8Nlnn+G7775DcXExWltbERERgby8PNx5550YP368u4fncdx2222oqqrq9/+SkpLw8ccfu3hEns+cOXMG/L8tW7a4cCSeQ1dXV28vntbWVmRlZWHJkiWYNm2au4fmsQx27X300UdITk528Yg8k8cffxwHDx4c8P/99Zrrjw0bNuDrr7/G2bNn0dTUhNDQUOTm5uKmm27CrFmzXDoWNlAYhmEYhvE4OAeFYRiGYRiPgw0UhmEYhmE8DjZQGIZhGIbxONhAYRiGYRjG42ADhWEYhmEYj4MNFIZhGIZhPA42UBiGYRiG8TjYQGEYhmEYxuNgA4VhNGb16tWYM2cOVq9e7e6hyOLAgQOYM2cO3n77baedY86cOXj88ceddnxn8/jjjw+q/usI4vcvPh577DGnnEcOb7/9NubMmYMDBw70vlZcXNxnfLfddpvbxsf4F9yLh/F7/vSnP+Gbb75BZGQkPvvsMwQGBrp7SJoj3lS47YDnMmHCBEyYMAEJCQnuHkofoqKisHjxYgDAihUr3DsYxq9gA4Xxa9rb27Fx40bodDo0Nzdj69atWLBggUPHnD17NvLy8hAbG6vRKBl/YMKECXjwwQfdPYyLiI6O7h3XmjVr3Dwaxp/gEA/j13z33Xfo6OjArbfeCr1ej6+//trhY4aHhyMjI4M7yTIMwzgAe1AYv+brr7+GwWDAXXfdhTNnzmD//v2oqqpCUlJSn/e9/fbbWL58+YDHse3avHr1arz44ot49tlncdVVV/W+Z86cOZgwYQJ+9atf4Y033sCePXvQ3d2N8ePH48knn8TQoUNRVFSEpUuX4tChQ+jp6cG0adPwk5/8BEOGDOk9zoEDB/DEE09g8eLFF624Kysrcfvtt2PhwoV47rnnep/bjkGkv/0LCwuxdOlSHDt2DHq9HpMmTcKPf/zji7ribtmyBRs3bkRhYSFMJhMCAgKQnZ2NW265BfPmzRv8S7dDa2srvvjiC+zcuRNlZWVoampCVFQUpkyZgsWLFyMlJaXP+8W/zeuvvw6TyYT//ve/KCkpQXh4OObPn4/HHnsMQUFBffbp6enBhx9+iK+++gomkwnx8fG45pprcOmll+KOO+7o/f7ksHXrVnz66ac4efIkuru7kZKSgoULF+K2226DwWBw6LsAgD/+8Y9Ys2YNPvzwQ2zZsgVff/01KioqsGDBAjz33HMwmUxYtWoVdu/ejYqKCrS1tSE2NhbTp0/HAw88gJiYmIuOWV1djX/+85/YvXs3enp6MGLECDz00EMOj5VhtIQNFMZvKSoqwrFjxzB9+nQMGTIEV155Jfbt24dvvvnmohv3xIkT+z1GcXExNm7ceNENcCBaWlrwox/9CLGxsbjyyitRVlaG77//Hj/96U/xxz/+ET/+8Y+Rm5uLq6++GidPnsTmzZvR3NyM119/XdVnDA8Px+LFi3tzB2655ZYBP1NhYSH++9//YuLEiVi0aBFOnTqFrVu34uzZs1i+fHmfz7h06VIEBARg7NixiI2NRWNjI7Zv345f//rXeOKJJ3DzzTerGi9A3+nbb7+NiRMnYvbs2QgJCUFxcTG+/fZb7NixA2+++eZFBiQAfPbZZ9i9ezdmzpyJSZMmYdeuXfj000/R1NSEX//6133e+9JLL2Ht2rUYOnQobrjhBpjNZnz88cc4evSoorH+61//wvvvv4/4+HjMmTMH4eHhOHz4MN544w0UFBTgd7/7nerv4UJee+01HD9+HJdccglmzJjRa3gcOnQIH330ESZNmoRRo0YhICAAp06dwsqVK7F79268+eabfbx5JpMJP/zhD1FbW4tp06ZhxIgRKC4uxlNPPTXg75xh3AEbKIzf8tVXXwEArrzySgDkXfjrX/+K1atXY/HixdDrpQjoxIkTL5q8Gxoa8OijjyIwMBBPP/20rHOeOXMGt912G3784x/3vvbqq69i5cqV+PGPf4wHHngAt956KwBAEAQ888wz2LlzJ06cOIHc3FzFnzEiIgIPPvhgb+7AYDkOO3fuxG9+85s+OTh/+MMfsHbtWmzbtq3P63/+858xdOjQPvu3t7fjhz/8Id566y1cc801CA4OVjxeAMjIyMDnn3+OyMjIPq/v378fP/3pT/Huu+/2+33v27cP//73v5Geng4AePjhh/Hggw/iu+++ww9/+EPExcX1vm/t2rUYPnw4/vGPf/SO895778WSJUtkj3PPnj14//33MW3aNPz+979HSEgIAPq7vfrqq/jiiy+wadMmhz1KImfOnMFbb72FxMTEPq9PmjQJn3/+OUJDQ/u8vmbNGvzxj3/EZ599hvvuu6/39aVLl6K2thZLlizp8/qqVavwyiuvaDJWhtECzkFh/JKenh6sW7cOYWFhmDVrFgAgNDQUs2fPRnV1Nfbu3Tvo/l1dXXjuuedQVVWFX/ziFxg7dqys84aEhFx0ExRv/FFRUX08HDqdrvf/zpw5I/uzqWX8+PEXJQhfffXVAICCgoI+r19onAD0/V111VVobW1FYWGh6nGEh4dfZJwAdCPOzMwc8G9zyy239BonABAUFIQFCxbAarXixIkTva+vW7cOAHD//ff3MaLi4uL6fP/2+OyzzwAAP//5z3uNE4D+bo8++ih0Oh02bNgg+3j2uPPOOy8yTgAgJibmIuMEIMM7LCwM+/bt633NbDbju+++Q0xMTJ/QHwBce+21SE1N1Wy8DOMo7EFh/JJt27ahsbER11xzTZ/QxZVXXol169bh66+/xrRp0/rdVxAE/PGPf8SxY8fwwAMP4LLLLpN93tTU1Is8C2K1T1ZWFnQ6Xb//ZzKZZJ9DLf15aOLj4wFQXogtDQ0NeP/997Fz505UV1ejq6urz/87Ot4DBw7gk08+wfHjx9HU1ASLxdL7f0ajsd99RowYcdFrYsmu7fhPnz4N4P+3d3cxSb1xHMC/ksFMQ1wR1Ga5aU22BCPUmcV60a5ZLxddAaNFF1110Zrrohu3atUmF3qRK8Pe3JxrKkqvzKYkZVQwm6m1KWlhYRNQMwP+Fw4Gf8BUEtn4fS7POTzP4zlu53ee3/MCCIXCsOt37ty56DZ++PABaWlpUQdWs1gsjIyMLLq8vxEIBFHPdXZ2oqWlBQMDA3C73SH3K/hZjIyM4Pfv3xCLxWFpSQaDgYKCAnz58uWftZmQWFCAQpKS/6XiT+/47d69G1wuF93d3XA6nRG/5Ovq6mAwGFBeXg6lUrmketPT08OO+QdSLnTuz58/S6pnOSJ9hfvr93q9gWNOpxOnTp2C3W5HQUEBJBIJMjIywGAwMDQ0hK6uLszNzS27HQaDARcvXkRaWhqKi4vB5/MDQZ1er8e3b98i/m6h+xfc/unpaTAYDGRmZoZdHzwY+W+cTic8Hs+Cg6dnZmYWXd7fRBrsCgAPHjxATU0NOBwOioqKwOVyA8FHU1NTyLOYmppasKxoxwlZDRSgkKRjt9vx+vVrAFhwddPHjx+Hdfl3dHSgoaEBBQUFOH/+/Iq2Mxp/L0vwV7Kf/wW0knQ6Hex2O1QqFeRyeci5O3fuoKurK6byb926BSaTiRs3biA7Ozvk3PPnz2MqG5gPxLxeLyYnJ8HhcELOTUxMLLqc9PR0pKSkoLW1NeY2Lcb/e9eA+cBVq9Viw4YNuHnzZkiA4fP5cP/+/ZDr/UHcz58/I9YR7Tghq4ECFJJ09Ho9vF4vhEJh2AsQmH/x6/V66HS6kADl3bt3uHr1KrZs2YKqqqpVW3F2/fr1ACKnUQYHByP+hsFgxNSrEWx0dBQAAmN3glkslpjLHxsbQ05OTtiz+fHjB8bGxmIuPy8vD4ODg7Bardi3b1/IuaXM4hEIBDCZTLDZbBH/j+JhcnISbrcbYrE4rPejv78/LPWWnZ0NJpOJjx8/YnZ2NiTN4/V6lzyLiZCVRAEKSSo+nw/t7e1ISUlBZWVlxMGeAGCz2dDX14f+/n7k5+fDZrPhwoULYLFYuHTpUtiXdzxt3boV69atC0tDTUxMQKvVRvwNm83G58+fw15Ky+Gf4mu1WpGbmxs4/uTJE/T09MRUNgDweDyMjo5iYmIikHKZnZ3F9evX/0mqq6KiAh0dHaivr0dxcXHgfjgcjiUt5X7s2DGYTCZcvnwZVVVVYSkjh8MBl8uFnJycmNscTVZWFlgsFgYGBvDr169AKszlckWcms5kMnHgwAE8evQIjY2NIbN42traYLPZVqythCwVBSgkqZjNZnz9+hWFhYVRgxNgfvZKX18fdDod8vPzodFo4HQ6IZFIIqYZMjIy4raJ2tq1a3H06FE0NDTg5MmTKCsrw8zMDLq7u1FYWBjo4Qi2a9cu9Pf349y5cxAKhUhNTYVIJEJhYeGS6z98+DDu3buH6upqvH37FjweD0NDQzCbzZBKpXjx4kVMf9+RI0dQXV0NlUqF/fv3w+PxBFJyeXl5gUGuyyWRSFBeXo6nT59CoVBg7969mJubg8FggEAggNFoDJliHk1JSQnkcjlu376NEydOoKSkBDweD06nE6Ojo7BYLFCpVCsaoDAYDMhkMjQ2NkKpVKKsrAxTU1MwmUzg8XiBqdXB1Go1zGYz6urqYLVasX37dgwPD6OnpwdFRUWBe03IaqMAhSQV/+DY4BVeIzl48CA0Gg2ePXuGM2fOBLrKe3t7I05z5fP5cd3lVaVSITU1FTqdDi0tLeDz+ZDL5dizZw86OzvDrpfL5XC73TAajbBYLPB4PFAoFMsKUDZt2gSNRoPa2lr09vbC4/Fgx44duHbtGsbHx/9JgJKamorm5ma0trYiIyMDpaWlUKvVYQuuLVdlZSW2bduG9vZ2NDc3g8vl4vjx4xCLxTAajREHDEeiUqkgEonQ1NSEN2/ewO12g81mY/PmzVAoFKioqPgn7V2IWq0Gm81GR0cHHj58iKysLBw6dAhKpTKwyV+wjRs3oqamBrW1tXj16hXev38feH5ms5kCFJIwUnw+n2+1G0EIIYmgra0NV65cwdmzZyGTyeJS50JbFyQa2hWbxBMt1EYISToOhwP//zb7/v07tFot1qxZg9LS0ri3qb6+HlKpFKdPn4573QsZHh6GVCqFVCqNOsWbkJVAKR5CSNK5e/cuXr58CZFIBA6Hg/HxcRiNRkxPT0OpVEZcsXWl8Pn8kFSMf3G5RJGZmRnSPtqlm8QLpXgIIUnHZDKhsbERnz59gsvlApPJRG5uLmQyWVzGjRBC/o4CFEIIIYQkHBqDQgghhJCEQwEKIYQQQhIOBSiEEEIISTgUoBBCCCEk4VCAQgghhJCEQwEKIYQQQhIOBSiEEEIISTgUoBBCCCEk4VCAQgghhJCE8x/7gA0By6pBwwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG5CAYAAACnaMHWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABomElEQVR4nO3deXhU5fk//vfMJJns+0LIRjZCAmELQRbZQdQIaMHWBREpFEGLdako9ltri1L9VFv92VIXClqrVquySNhEILJD2EICISE7Wci+TTKTzJzfH0NOMlknYZIzM3m/rovrynnmPGfuGSYn9zyrTBAEAURERER0W+RSB0BERERkDZhUEREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVQOosbER6enpaGxslDoUIiIiMjEmVQMoNzcXq1atQm5urtShEBERkYkxqSIiIiIyASZVRERERCbApIqIiIjIBJhUEREREZmAjdQBEBERDRStVoumpiapwyAzZWtrC4VC0ef6TKqIiGhQqKurQ0FBAQRBkDoUMlMymQyBgYFwdnbuU30mVUREZPW0Wi0KCgrg6OgIHx8fyGQyqUMiMyMIAkpLS1FQUIDIyMg+tVgxqSIiIqvX1NQEQRDg4+MDBwcHqcMhM+Xj44OcnBw0NTX1KaniQHUiIho02EJF3bndzweTKiIiIiITYFJFREREZAJMqoiIiIhMgAPViYhocJo8uX+ue+JE/1y3lzIyMvD444+jrKwMbm5u2LZtG0aOHNnpuXfddReKi4shl8vh4uKC9957D+PGjQMArFu3Djt37kRubi7Onz+PsWPH3nZs//vf/3Dw4EFs3rzZZK+hu3N7c53bItCAuXr1qjBt2jTh6tWrUodCRDSoNDQ0CGlpaUJDQ0NrIdA//8zErFmzhK1btwqCIAhff/21MGHChC7PraysFH/+9ttvhdGjR4vHR44cEfLz84WQkBDh/PnzRj33jBkzhOzs7C4ff+SRR4S9e/f2eJ3evIbuzjX2Op1+TnqB3X9EREQSWbFiBT766CPxeMOGDXjjjTdu+7o3b97E2bNnsXTpUgDA4sWLkZ+fj8zMzE7Pd3d3F3+urq42mAU3ffp0BAYG3nZMLZqamnDs2DHMnj272/N68xq6O7e378XtYPcfERGRRM6ePYt169YZHL/wwgsdzvvFL36B9PT0Tq+xa9cuBAUFGZTl5+fD398fNjb6P/MymQzBwcHIy8tDREREp9dZtmwZDh06BABITEzs0+sxxqFDhzBlyhTY2tp2e15vXkN357q5ufX6vegrJlVERCaQsjsbmoZm2DnYIDYhVOpwyAI0NDQgOzsbo0aNEsuSk5MRFxfX4dz//ve//R7Pp59+CgD45JNPsH79+l4nVsuWLcOlS5cAAJmZmbj33nthZ2cHANi+fTuGDRsm/vzAAw+YLnAzwqSKiMgEUvZkQ1WhhqOnkkmVpZg0SdKnP3/+PEaOHCm2oKSnp8PFxQVeXl4dzu1tS1VQUBCKiorQ3NwMGxsbCIKAvLw8BAcH9xjX448/jieffBLl5eWdxtKVlqQMAGbOnIlt27aJiVQLQRCwb98+vPXWW/j000/xzjvvAACeeeYZPPHEE31+Dd2d6+rq2uf3oreYVBER0eAk8Sy9s2fPQq1WQ6fTQavVYuPGjV3OrOttS5Wvry/Gjx+Pzz77DMuXL8c333yDwMDATru7qqqqoFKpMHToUAD6liQvLy94enr2+jX15PTp04iOjoazszOWLVuGZcuWmeQ19HSusde5XRyoTkREJIGzZ88iNDQUY8eOxbRp0xAUFITTp0/j4sWLJrn+Bx98gA8++ADDhw/Hn//8Z2zdulV8bOXKldi5cycA/cD0+++/H7GxsRgzZgzef/99fP/99+Jg9dWrVyMwMBAFBQWYP3/+bSUj3333He6//36Tv4aezu3uMVOSCYIg9MuVqYP09HSsWrUKH330EaKioqQOh4hM6POnfxS7/x55v/tZTTTwGhsbkZ2djdDQUNjb20sdDgAgJiYGX331lcGYKms3cuRIHDp0CL6+vlKH0qnb/Zyw+4+IiGiA1dXV4caNG4iJiZE6lAGVmpoqdQj9ikkVERHRAHN2dkZ1dbXUYZCJcUwVERERkQkwqSIiIiIyASZVREQ0aHBuFnXndj8fTKqIiMjqKRQKAIBGo5E4EjJnLZ+Pls9Lb3GgOhERWT0bGxs4OjqitLQUtra2kMvZpkCGdDodSktL4ejoKK5y31tMqoiIyOrJZDL4+/sjOzsbubm5UodDZkoulyM4OFhc+LS3mFQREdGgYGdnh8jISHYBUpfs7OxuqxWTSRUREQ0acrncbFZUJ+vDTmUiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEyASRURERGRCTCpIiIiIjIBJlVEREREJsCkioiIiMgEmFQRERERmQCTKiIiIiITYFJFREREZAJMqoiIiIhMgEkVERERkQkwqSIiIiIyASZVRERERCbApIqIiIjIBJhUEREREZkAkyoiIiIiE2BSRURERGQCNlIH0BmNRoMtW7Zg//79qK2tRXh4OFauXIn4+Phu6yUlJWHHjh3IyspCTU0N3N3dERMTgyeeeAJhYWHiedXV1UhMTMSxY8eQm5sLrVaL4OBgPPjgg5gzZ47J4iEiIqLBwyxbqjZt2oSvvvoK8+bNw7p16yCXy/Hiiy/i0qVL3dbLysqCi4sLlixZgmeffRaLFi1CRkYGVq9ejczMTPG81NRUfPTRR3B1dcWyZcuwcuVKKJVKvPbaa/jXv/5lsniIiIho8JAJgiBIHURbaWlpePLJJ7FmzRo8/PDDAAC1Wo3ly5fD3d0dmzdv7tX1KioqsHjxYiQkJOCFF14AABQWFkIul2PIkCHieYIg4Nlnn8Xly5exa9cuODg4mDye9PR0rFq1Ch999BGioqJ69TqIyLx9/vSPUFWo4eipxCPvz5Y6HCKSgNm1VB05cgQKhQILFy4Uy5RKJRISEpCamoqSkpJeXc/DwwP29vaoq6sTy4YOHWqQUAGATCbDtGnToNFoUFhY2G/xEBERkXUyuzFVGRkZCAwMhJOTk0F5dHQ0ACAzMxN+fn7dXqO2thZarRbl5eX4+uuvUV9fj7i4uB6fu6KiAgDg5uZmknjKyspQXl4uHufm5vYYAxEREVkms0uqysvL4eXl1aG8paysrKzHa6xZswZ5eXkAAAcHByxbtgwJCQnd1qmpqcH333+P0aNHw9vb2yTx7Ny5E9u2besxXiIiIrJ8ZpdUqdVq2Nradii3s7MTH+/JSy+9BJVKhcLCQiQmJkKtVkOn00Eu77y3U6fT4U9/+hPq6urwm9/8xmTxLFy4EFOnThWPc3NzsXHjxh7jJyIiIstjdkmVUqlEU1NTh3KNRiM+3pNRo0aJP8+ZMwePPfYYAOCpp57q9Py//e1vOHXqFF555RVERESYLB5vb2+DVi8iIiKyXmY3UN3Ly8tgHFKLlrLeJikuLi4YP348Dhw40OnjW7duxfbt27F69WrMnz+/3+MhIiIi62R2SVVERAQKCgpQX19vUJ6WliY+3ltqtbrD9QDg22+/xdatW/Hggw/i0UcfHbB4iIiIyPqYXVI1c+ZMaLVa7Ny5UyzTaDRITExETEyMONOupKSkw2y6ysrKDtcrKipCcnJyh3WhDh48iPfeew/z5s3D008/fdvxEBER0eBmdmOqYmJiMGvWLHz44YeoqqpCQEAA9u7di+LiYqxfv1487/XXX8eFCxeQlJQkli1fvhxxcXGIiIiAi4sLCgoKsHv3bjQ3N2P16tXieWlpaXjjjTfg6uqKuLi4Dl2Do0aNwtChQ3sVDxEREQ1uZpdUAcCGDRvg5+eHffv2oa6uDmFhYXjzzTcxduzYbustWrQIJ0+exKlTp6BSqeDh4YH4+HgsXboU4eHh4nm5ubloampCVVUV/vznP3e4zssvvywmVbcTDxEREQ0eZrdNjTXjNjVE1ovb1BCR2Y2pIiIiIrJETKqIiIiITIBJFREREZEJmOVAdSIiun0pu7OhaWiGnYMNYhNCpQ6HyOoxqSIislIpe7LFwfNMqoj6H7v/iIiIiEyASRURERGRCTCpIiIiIjIBJlVEREREJsCkioiIiMgEmFQRERERmQCTKiIiIiITYFJFREREZAJMqoiIblNtqQrquiYAgCAIEkdDRFJhUkVEdBs0qibs/fNZaDU6AIC2SSdxREQkFSZVRER9pNMJOPT3i6guqhfLmlRaaJuZWBENRkyqiIj6KPnrDOSfLzUoE3QC0vblShQREUmJSRURUR9cP1GEizuuAwBkchlsHRTiY+e/y0RDjVqq0IhIIkyqiIh6qTynBkkfXBKP73h0BGwdbMRjjaoZyV9nSBEaEUmISRURUS801Khx4J1z4sD0yOkBGHl3SIfz0n/MR3lezUCHR0QSYlJFRGQkXbMOB9+9gLqyBgCAT7gbpq4YCZlMJp7T0g0oCMDJT69wiQWiQYRJFRGRkU5+dhXFVyoAAI7uSsx9bjxs7BQG59jYK+Di6wAAKEqrQO7ZmwMeJxFJg0kVEVmUlN3ZSP5fBlJ2Zw/o8149lI+0/fpZfXIbGeY+Ow5OHvYdzpPJZLjj0RHi8enPr0LbpB2wOIlIOkyqiMiipOzJxvlvM5GyZ+CSqpJrlTj+r1Tx+M4Vo+Ab6dHl+SET/OAf4wkAqClR4fJeLrFANBgwqSIi6kZ9eQN++Os56LT6sVEj54dg+MzAbuvIZDJMeiwaLUOtLmzPhKqaSywQWTsmVUREXWjWaPHDX8+joVoDAPCP8TTo2uuOV4gromYFAQCaGrQ4+99r/RYnEZkHJlVERJ0QBAFHP76M0qxqAICzjwPmrBsHuY3xt824ByPF9auuHSlAWU51v8RKROaBSZUVkGrgLpE1u7wnB5lHCwEANkoF5j0/Hvaudr26hoObEuN+FqE/4BILRFaPSZUVkGLgLpE1K0gpw+n/XBWPp6+OhVewa5+uNXJ+CFz9HAEAxVcrkXO62CQxEpH5YVJFRNRGTUk9Dr13AS0NSmPvD0fYJP8+X09hI8cdS1vHYZ36PB3NGi6xQGSNmFQREd2iaWjGgbfPQV3fBAAIHu+LuCWRt33d4PG+GDrKCwBQV9qAy4k5t31NIjI/TKqIiAAIOgFHNl9CZUEdAMA9wAkz146GTC7roWbPOiyxsOM66isbb/u6RGRemFQREQE4/10mcs+WAADsHG0w77k42Dnamuz6nkEuGDE3GADQrOYSC0TWiEkVEQ16OWeKce6bTACATAbM+vVYuPk7mfx54hZHws5Rv8RCRtINcbkGIrIOTKqIaFCryK/Fkc2XxOP4h6IQNManX57L3tUO4xdHiMdcYoHIujCpIqJBq7FOgwNvJ6OpUT8bL3yKP2LvC+3X54yZFyK2gpVcq0TWiaJ+fT4iGjhMqohoUNJpdfjxvQuovdkAAPAa5oppq2Ihk93+wPTuyG3kmNRmiYXTX6SjWc0lFoisAZMqIhqUTn+RjsLL5QD03XLznhsPG6ViQJ47aJwvAsd4AwDqyxu5GwKRlWBSRUSDTkbSDXGtKJlChrm/GQdnb4cBjeGOpdHicg0Xd2WhvoJLLBBZOiZVRDSolF6vwtEtl8XjKctjMGSE54DH4RHgjOh5rUssnPkyfcBjICLTYlJFRIOGqrIRB945B22TDgAwYk4QoucESxbP+MURUDrr18LKPFqImxmVksVCRLePSRURDQraJi1++Nt5qCrVAAC/KA9MfjxG0pjsne0wfnHrNjgn/n0Fgo5LLBBZKiZVRGT1BEHAsa1puJlRBQBw8rLHnN+Mg8JG+ltg9NwguAc4AwBKM6tx/XihxBERUV9Jf0chIupnVw7k4drhAgCAwlaOec+Oh6ObUuKo9OQKOSY91maJhS/T0dTYLGFERNRXTKqIyKoVppXjxL+viMfTfhUL7zA3CSPqKHC0D4LG6VdxV1Wocel7LrFAZImYVBGR1aotVeHHd89D0OrHKY1eEIqIqUMljqpzdzw6AjKFfomFS7uyUFfWIHFERNRbTKqIyCo1NTbjwDvn0FjbBAAIHOONCb+IkjiqrrkPdcbIu0IAANomHU5/wSUWiCwNkyoisjqCICDpwxRU5NYCAFyHOGLWU2Mhl/fvFjS3a9zPImDvol9iIetEEYrTucQCmaeU3dlI/l8GdwNoh0kVEVmdizuzkH2yGABg66DAvOfjxPWgzJnSyRZxDw4Xj09yiQUyUyl7snH+20yk7GFS1RaTKiKyKnnnb+LsV9f0BzJg5tox8Li1ZIEliJoVCI8gfbxlWdXIOHpD4oiIyFhMqojIalTdqMOh9y8Ctxp34h6MREicn7RB9ZJ+iYVo8fjsl9e4xAKRhWBSRURWQV3fhAPvnENTgz4BCZ04BGMXhUscVd8EjPJGSJwvAEBVpcaFHVkSR0RExmBSRUQWT6cTcPjvF1FdVA8A8Ax2wfQnYyGTmffA9O5MfHQE5LeWWLicmI3amyqJIyKinjCpIiKLl/zVNeRfKAUAKJ1tMe+58bC1t5E4qtvjNsQJI+8ZBoBLLBBZCiZVRGTRrh8vxMWd+u4xmVyGOc+Mg4uvo8RRmca4+8Nh72oHAMg+VYyiKxUSR0RE3WFSRUQWqyynGkkfpojHkx4bgaEjvSSMyLTsHG0x4eeGSyzouMQCkdkyy/ZxjUaDLVu2YP/+/aitrUV4eDhWrlyJ+Pj4buslJSVhx44dyMrKQk1NDdzd3RETE4MnnngCYWFhBucePHgQx48fR1paGm7cuIGxY8fivffe63DN8+fP45lnnun0+TZv3oyRI0f2/YUSUZ8JOgE/vHMOWo0OADB8RgBibq1Ibk2GzwxE2oFcVOTWojynBhlHChA1K0jqsIioE2aZVG3atAmHDx/Ggw8+iMDAQOzZswcvvvgi3n33XYwePbrLellZWXBxccGSJUvg5uaGiooKJCYmYvXq1di8eTMiIiLEc3fs2IH09HSMGDECNTU1Pca0ePFiREdHG5QFBAT0/UUS0W1R1zVB16xvtfGNcMfUFSMtemB6V+RyGSY9Fo3EjacBAGf+ew2hdwyBnaP5L2ZKNNiYXVKVlpaGgwcPYs2aNXj44YcBAPPnz8fy5cuxefNmbN68ucu6y5cv71B23333YfHixdi+fTteeOEFsfyVV16Bj48P5HI5Hn/88R7jGjNmDGbOnNnr10NE/aMloXL0UGLus+OgsFVIHFH/GRrjhWHxfsg5U4LGGg0u7MjCxIfNdx9DosHK7MZUHTlyBAqFAgsXLhTLlEolEhISkJqaipKSkl5dz8PDA/b29qirqzMo9/Pzg1zeu5evUqnQ3MxF+Iik1NyoFX+W28gw99nxcPSwlzCigTHxkRGQ29xaYmFPNmpK6iWOiIjaM7uWqoyMDAQGBsLJycmgvKXrLTMzE35+3a+QXFtbC61Wi/Lycnz99deor69HXFzcbcW1adMmNDQ0QKFQYPTo0VizZg1GjBjRbZ2ysjKUl5eLx7m5ubcVA9FgV1fWAI2q9YvNnStHwTfCXbqABpCrnyNi7w3FxZ1Z0DULOPV5OuY9O17qsIioDbNLqsrLy+Hl1XH2TktZWVlZj9dYs2YN8vLyAAAODg5YtmwZEhIS+hSPjY0NZsyYgUmTJsHNzQ05OTn473//i6effhr/+Mc/MHz48C7r7ty5E9u2bevT8xJRR1d/zBd/tlHKMXx6oITRDLwxi8JxLekGGqrUyD1TgsLUcqua7Uhk6cwuqVKr1bC17TgA087OTny8Jy+99BJUKhUKCwuRmJgItVoNnU7X6+4+AIiNjUVsbKx4fOedd2LmzJl44okn8OGHH+Ivf/lLl3UXLlyIqVOnise5ubnYuHFjr2MgIkDXrEP6odakytbB7G5f/c7OwQbxPx8uLiNx8t9XcP8bUyGXW98AfSJLZHZ3JaVSiaampg7lGo1GfLwno0aNEn+eM2cOHnvsMQDAU089ZZIYAwMDceeddyIpKQlarRYKRecDZL29veHt7W2S5yQa7HKTS9BQrRGPZYM0kYicHoDU/bkoz6lBRV4t0g/lI3pOsNRhERHMcKC6l5eXwTikFi1lvU1SXFxcMH78eBw4cMAk8bXw9fVFU1MTGhsbTXpdIurclYP5PZ80CMjkMkxe1rq8S/JX16BRdfwiSkQDz+ySqoiICBQUFKC+3nBmS1pamvh4b6nV6g7Xu12FhYWws7ODg4ODSa9rTVJ2ZyP5fxlI2Z0tdShk4aqL6lF4Wf/FarC2ULU1ZIQnQicNAQA01jbh/HfXJY6IiAAzTKpmzpwJrVaLnTt3imUajQaJiYmIiYkRZ/6VlJR0mE1XWVnZ4XpFRUVITk5GVFTf1nSpqqrqUJaZmYljx44hPj6+T+O0BouUPdk4/20mUvYwqaLb036AOgETHx4Bha3+vUjdm4PqIi6xQCQ1sxtTFRMTg1mzZuHDDz9EVVUVAgICsHfvXhQXF2P9+vXiea+//jouXLiApKQksWz58uWIi4tDREQEXFxcUFBQgN27d6O5uRmrV682eJ4LFy7g4sWLAPSJU0NDAz755BMA+oU+x44dCwB49dVXoVQqMWrUKHh4eCAnJwe7du2Cvb19h2tKRbi1F5ggcE8wsj7NGi2uHSkAoF+XykapQFODtoda1s/FxwGxCaG4sP06dFoBp/5zFXe9cHtLxxDR7TG7pAoANmzYAD8/P+zbtw91dXUICwvDm2++KSY6XVm0aBFOnjyJU6dOQaVSwcPDA/Hx8Vi6dCnCw8MNzj137lyH5Q62bNkCQJ+ctTzXtGnTcODAAXz11Veor6+Hu7s7pk+fjuXLlyMwUPrp3LWlDWis0Y+n4B8askY5p4uhrtN/xkMnDkHR1QqJIzIfYxaG4drhAqiq1Mg7dxMFKWUIjOXkGCKpmGVSpVQqsXbtWqxdu7bLczrb/HjFihVYsWKFUc9h7LlLlizBkiVLjLqmFCoLasWWquZGLVISsxF7b6jEURGZTtsB6tFzg5lUtWFrb4P4h6Jw5J+XAACn/n0FQzdNhVzBLlIiKfA3z8IFj/OFnWNrbnzqs6u4frxQwoiITKcivxYl6fqxku4BzvCL8pA4IvMTcedQ+IS7AQAqC+oMxp8R0cBiUmUFbOwN18k6svkSblzueeV5InN31aCVKggyGWf+tSeTyzDpsTZLLHydIXaXEtHAYlJlRRS3ZkXptAJ++Os5lOfUSBwRUd81NTYj46cbAACFnRwRdwZIHJH58hvugfAp/gAAdV0Tzn2bIXFERIMTkyorYudog+A4XwD6Qet73zqL2psqiaMi6pusk0VoatBvnhw+ZSiUTh23r6JW8Q9HQWGnv6WnHchD1Y06iSMiGnyYVFkRmUyG2U+PhW+kOwCgoUqNvW+eRWONpvuKRGbo6g9tuv7mBEkYiWVw9nLA6PvCAADCrSUWiGhgMamyMjZKBe56IQ5uQ50A6Fei3veXs2hqbJY4MiLjlWVVozSrGgDgNcwV3mFuEkdkGcYsCIOTpz0AIP9CKbQancQREQ0uTKqskL2LHe5eHw9HD/3m06WZ1fjx/7sAnZY3WLIMBssozOEAdWPZKBWIf7h19wiNil+miAYSkyor5eLjgPnrJ8DWQb/cQv75UhzdkspV18nsaVRN4rIgtg4KhE0ZKnFEliV8ij98I9wBtO62QEQDg0mVFfMKdsW858dDbqP/ln/tcAGSv+asIDJvmccK0azW7w4QMTUAdg5muUax2ZLJZJi0LNqgjMkV0cBgUmXlhsZ4YebaMcCt3pML268j7UBu95WIJCIIAq60GaA+ggPU+8Q3wh0Rd7a28HELK6KBwaRqEAib5G+wOODxbWnIPl0sYUREnbuZUYXK/FoAgG+kO7xCXCWOyHLFP9Q6tqpZo2VrFdEAYFI1SIy6exhGL9BPt4YAHP77RRRzDzUyM1d+yBN/jp4TLGEkls/J0x4K21u3eAHibEoi6j9MqgaR+IeGI3KaflVqbZMO+/+SjMqCWomjItJrrNMg+5S+BVXpZIvQSUMkjsjytSwGCgC5yTcljIRocGBSNYjIZDJMWzUKgaO9AeinW+/981nUlTdIHBkRkJF0A9om/bIfkdMDYGOn6KEG9URsqQKQd65EwkiIBgcmVYOM3EaOOb8ZJy6mWF/RiH1vnuUGrCQpQRAMNk8eMdvyBqjH3hOKcT+LQOw9oVKHIpLJW9f3qsyvQ00Jt60i6k9MqgYhW3sbzP9tHFz9HAEAlQV1OPBOMpo1nCFE0ihKq0B1UT0AwD/GE+4BzhJH1HuxCaGIWxKJ2ATzSaraY2uV5UnZnY3k/2UgZXe21KEY0Gk58aEzTKoGKQc3Je5+aQLsXe0AAMVXK3H47xeh4wwhksCVg60D1EdwgHq/4bgqy5OyJxvnv81Eyh7zSapyz5agsVq/pywXlDbEpGoQc/VzwvwXJ8BGqR+7knOmBCc+SeMvCQ0oVbUaOWf0LSj2rnYYFu8ncUTWp6UbsPhqJRrruME69V1TYzNOfJomHreMgyQ9JlWDnE+YG+b+ZhxkCv1N98qBPFzYcV3iqGgwuXa4AMKtroSomYFQ2PC2ZGotswAFnYCCC6USR0OW7Px3magraxSP206GICZVBCBwjA+m/ypWPE7+KgPXDhdIGBENFjqdgKs/3hqgLgOiZlneAHVL0PYPH7sAqa8q8muRkphjUMbNzg0xqSIAQOS0AIPd7X/6+DLyzvPmS/3rxqUy1JXql/QIHO0tTp4g05LbyKB0tgUAFFwqhbaJk1KodwRBwPGtqWKrso09lzzpDJMqEo2+LxQj7w4BoO8m+PG9C7iZWSVtUGTV2g5Q5wrq/UcmkyF4nC8A/T6ARWncTYF6JyPpBoqvVgIAXP0cYevApKozTKpIJJPJMGlptLiSdbNai31vnRWnuhOZUn15A/LP6VtDHT2VCBrnI3FE1i04zlf8OfccW6HJeI21Gpz+/Kp4POWJGHb7dYFJFRmQyWWYuWY0/GM8AQDquibs+fMZqCobe6hJ1DtXDxWgZaJp1MwgyBW8HfWngFhvyG30fwjzkm9yli8Z7cyX19BYq18gOnTSEASO5hegrvAuRh0obBWY99x4eAa7AADqShuw762z0Ki46jqZhk6rQ/oh/QB1mQwYMStQ4oisn52DDYaO1G9RVV/RiPKcGokjIktQcq1S/F21dVBg0mPREkdk3phUUafsHG0xf/0EOHvbAwDKc2vxw1/PQ9vMNUno9uWdK4WqUg0ACB7vCycvB4kjGhxC2nYBchYg9UCn1eHY1lTxOG7JcDh52EsYkfljUkVdcvKwx93r48VZQ4Wp5Uj65yUIXHWdbtPVtiuoz+UA9YESPL41qcpL5pY11L20/bmoyK0FAHiFuCDmLv6u9oRJFXXLPcAZd70QJy4eeP14EU61GbBI1Fs1JSoUXCoDADj7OCAw1lviiAYPJ097cTP18txa1JU1SBwRmav6ikYkf52hP5ABU1eM5LhHI/Adoh75DffA7F+PRctkj8uJObhkZpt7kuUQF/sEED0nSNxChQZGSNvWKs4CpC6c/PcVNDXq1zMbMSsIvpEeEkdkGZhUkVFC4vwwdeUo8fj0f64i81ihhBGRJdI2aXHtiH61frlChsgZHKA+0IIntB1XxS5A6qjgYimyTxUD0O/HOeGh4RJHZDlspA6ALMeIWUFQVTbi3P8yAQBJ/7wEB1c7BLD7hoyUc6YEjTX6DX2HxQ+Bo5uy19eIvScUmoZm2Dnw9tUXnkEucPZ2QF1ZA4rSKqBRNcHO0VbqsMhMNGu0OL6tdcPkiY9Ewd7ZTsKILAtbqqhXxj0QgRGz9fuz6bQCfvjrOZTlVEscFVmKtl1/I+b2bZ+/2IRQxC2JRGxCqKnCGlRkMpk4C1CnFZB/sUziiMicXNyZhZoSFQBgyAgPRE4LkDgiy8KkinpFJpNhyhMx4k25qVGLfW+eFX8JibpSdaNO3B7Fzd8J/tGeEkc0eLVdXZ2zAKlFdVE9Lu68DgCQKWSYumIkV07vJSZV1GtyhRyzfj0WvsPdAQAN1RrsffMMGmrU0gZGZs2glWpOEG/WEvIf4Qk7R333af6FUui4/tygJwgCjm1Nha5Zv2RO7L2h8Ah0kTgqy8OkivrExk6Bu16Ig3uAEwCgpliF/W8lo6mxWeLIyBw1a1oHqCts5Yiczi4FKclt5Agaq99qRKNqRnF6pcQRkdSyThSh8HI5AMDZ2wHjHgiXOCLLxKSK+sze2Q53r4+Ho4d+sHFpVjUOvnuB33qpg6yTRdCo9Al32CR/Dnw1A20XAuUswMFNo2rCyc9a1x+c/Hg0bO05EaQv+K5ZiVFXv8Xoa9uB7T3Mpho/Hti507Bs4ULg3Lmen+S55/T/WtTWwnlsNO52DMD3Y1+ExsYRBRdL8dNdv8f0a9twf5Uagk7Qr0P0xF4gLq617vffA08+2fNzOjsDV9stNvrb3wJffNFz3YQE4IMPDMsmTACKi3uu+9ZbwCOPtB6npwNz5vRcDwDOnAH8/VuPP/wQ+OMfe643fDjw44+GZY8+Chw50nPdVauAV181LAs0crmCzz4DZs5sPT58GFi61Li6BQWGx6+9Bnz0UYfTro59CXDVf/Md8d7TwNEg4D//MTxp9mzg2rWen/P3vwd+9avW46IiID7euHgPHgSiolqPP/8cePHFnusNGQKcPWtYtno1sHt3z3Uffhj4v/8zLBsxAqir67nuP/8J3Hdf63FyMrBoUc/1AODKFcPjd97R/7slUOEA2eR3IMhtkLs9GZM23AUZYPJ7BKKN3Ctuxw7eIzphcB9Ni+2Xe0Ry+C/QEDAXABBcdgEhi1YZntfJPeL+bb9ojau7vztG3iM6mDGjb/eI9p/BAcakykrYNangWF8G1PdwYlAnM65KS4EbN3p+kpp2G7AKAnDjBjxxA/Oq/oA9s16HTmGLjCFT4Viej/gbn7aeq9EY1m1oMO45XTrp06+sNK5uRUXHsuJi4+qq2g28b242rh4AaLWGx3V1xtV1c+tYVlZmXN3qTmZgGhuvWt3x2Ni6ncXRrm65exhu3kqoPCuz4Hv1JyD4ro51S0qMe972yYhWa3y8ze26p1Wqvr/Wigrj6lZ20rVWWKhPOHrS0G7Fc43G+HiFdttJ1dQY1FUC8A9PQeGQcaiz90ZlnS08q3P65R5hFN4jOj3Vse1BSSctird5jyjzCEea/ywAgKK5EZOP/w2ob7cobCf3CMf6NrNGe/q70z4OY+It62RWqjH3iPafwQHGpMpKaGwdoXLyhqN7Dy1VPj6dlwUYMcbF1dXwWCYT6/mjErPSP8bB6NWATI6LIx+CrVaNyKwfIJPL4GjXrrvHwcG453R27ljm4WFcXc9OZpcNGdJzPQBwdDQ8trEx7jkBQKEwPHZ2Nq6un1/HMm9v4+p2lpAZG69S2fHY2LqdxdGu7pWIJeLPI8qOQxYQoH9d7fn5dX7jb6/9Z0KhMD5em3a3PEdH4+p29rnx9DSurkcnK1EPHWpcS5VDu42m7eyMf63tJwK4unaoG1J3FYUYBwDIjZ4Hz/zEfrtH9MgM7hEpu7MRpvSAnZcWtvaKLirdMkD3CFWblipHE98jdAGBODb2WQhyfTzj83fDxd0WcG93vU7uESon79a4evq70z4OY+Lt6z2i/WdwgMkEof3Xma599dVXGD58OCIiIuDc2QcZQHNzM2za37gIAJCeno5Vq1bho48+QlTbLojb9PnTP0JVoYajpxKPvD/bZNfti9R9OTjxiWG3gznERdLQNDTji6d+RFOjFjZKBR75+ywuNDmAero31JY24L/PHAYA+IS5YdHGKQMcoXkxp3tpi/6M6coPeTj2r1QA+n1eH9g0FQob44Zam+N7ZQ56lf38/e9/F6dBDxkyBJGRkQb/vL298c4770Cj0eB3v/tdvwRM5m3k/GFQVapxcWeWWKbTGp23k5XJOl4o7h8WMXUoEyoz4+LjAM8QF1Tk1qI0qxr1lY1w8rCXOiwaAKpqNc58mS4eT10RY3RCRV3rVVK1adMmXLt2TfyXlJSEpKQkMdFycXFBXV0dlO2bCmlQmfCL4VBVqpHxk77vu7lR20MNskaCIODKwdtfQZ36V8h4X1Tk6sd35Z27ieg5wRJHRAPh9H+uijNyI6cFwD/aS+KIrEOvkqopU6ZgypTW5uGqqipcu3YNly9fxpEjR5CTkwO5XI6pU6eaPFDqmrnthSaTyXDHYyNakyqNFk2NzZyiO8iUXq9GeY5+0KhPmBu8h3Uy7oskFxLnh/Pf6VfRzktmUjUYFKaVI/NoIQBA6WSLiY+YbjjKYHdbf+Xc3d0xceJETJw4EU888QS2bNmCgwcP4kljpsGSyZjjHmj2znZQKOXQqnWAAGQeLUT0XN6sB5OrB/PEn9lKZb68Ql3h6KmEqkKNwtRyfgGyctpmHY5vTRWPJzw0HA592NicOmeyDlSZTIaVK1fC0dER77//vqkuSxbMVtk6wyXtQC56MSeCLJy6rgnXTxQBAOwcbRA2yb+HGiQVmUyGkPH6WWXaJh0KLnGDZWuWsjsbVTf0ayD4RLhhxCx+4TElk49KGzlyJM6cOWPqy5IFkrcZ9FiZX4fiq52sCUNWKePoDWg1+pX1I6YFsOXDzBlssHzuZjdnkiWrvanC+e8yAehXu5i6YqR+8U4ymV4lVWfOnEF1D2tEaNov4EZ0S9q+vJ5PIosnCIJB11/0HH4TNndDYzzFdZnyzt2ETsutpqyNIAg4/kma+GUnZn4Ixzn2g159fXzhhRcgk8ng4+OD4cOHY/jw4YiMjMTw4cPh7e2NlJQUHDlyBPPmzeuveMkSyQAIQM7ZEtRXNMLJk1O2rVnx1Uqxe2HICA/udG8BFLYKBI72QfbpYqjrmnAzowpDRnSyeC5ZrLzkm8g/XwoAcHRXIm5JpMQRWadeJVUrVqxARkYGMjIycPToURw9elRcTkEmk0EQBLi7u2PkyJHIz89HUGfbHdCgY6NUoLlRC0Gnb8GIe3C41CFRPzIYoM6ZZBYjOM4X2af1e97lJt9kUmVFmhqbceLTNPH4jseiuWZcP+lVUvX444+LP9fW1iIzM1NMsq5du4a8vDxUVlZi06ZNAAClUomwsDBERkbiOQk3OCRp2dgroNXo9EnVj/kY+0AEF5mzECm7s8XlOoyZZdpQo0b2Kf0fZnsXW4RO7GRbDTJLQeN8IJPLIOgE5CaXYOIjUeKXZrJs57/LRF1ZIwAgINYLYZOM3K6Leq3Po0ddXFwwbtw4jBs3TixTq9XIysoSE62MjAxcv34dV65cYVI1iMnlMgyL90P2qWI0VGuQc7oY4VOGSh0WGSFlT7a4FYUxSVXGkRviCvqRMwKhsO1h/zQyG/bOdvCL8kDxlQrUFKtQXVgP94DOtyMjy1GRX4uUxBwAgMJWjinLRzJZ7kcmnZKjVCoRHR2N6OhosUyn0yEvjwOUB7uYu4LFFozU/blMqqxQS0tkixGz2f1vaULG+6L4in6Wbm5yCZMqCycIAo5vTYVw64vO6AVhcPN3kjgq69bv85zlcjmGDRvW309DkydLHUEHd2VXQ9ssQGEjg1eyGzwCVqPSzg83r1WhbMYD8NYUSx0i9aDt/yGSu58pdMM+DDX+SwEAQxuy4PbAHwciROpGb/7/ACDExgOngn4NAMjddhBjNi3t7xDNSm/fr4FwOzFlOI9Bsc8iAIBrUznGvPM68LZptg0zx/cKAHDihKRPz8VjrMXJk1JH0IF324MSICbCE8finwYApDWGYPrp7VKERb3Q/v+wO1fvnCP+HH32C6DA/D6Tg01v/v8AwBWA+70LUeUWgpvKADScvwIHdffL6FiT3r5fA6GvMTXaueB0wjPi8ZSj78Cm+LzkcVk7jhamAROR8yNsNfqp9tdDZqLRjl0L1qLewRO5AZMAAA4NFQi5wYTKUoW0JMMyOfICJkobDPXZmTHL0Wivb0EKzU1CoAkTKuoakyoaMLbNjRiefQAAoLVR4loY1zOzFtfC5kOQ6welR13fB7lgmi4GGnhtE+K8W4kyWZYSrxFIj7gHAGDbpMKk8x9KHNHgYZbdfxqNBlu2bMH+/ftRW1uL8PBwrFy5EvHx8d3WS0pKwo4dO5CVlYWamhq4u7sjJiYGTzzxBMLCwgzOPXjwII4fP460tDTcuHEDY8eOxXvvvWfSeKijmIzdSI26HwBwJeI+xF7dDhm4J6Al08nkuBp+NwBAptNixPW9EkdEt8On/BocGirQ4OCJgiHj0KxQwkarljosMpJOJsex+KfE47hL/4ZTA7cIGyhmmVRt2rQJhw8fxoMPPojAwEDs2bMHL774It59912MHj26y3pZWVlwcXHBkiVL4ObmhoqKCiQmJmL16tXYvHkzIiIixHN37NiB9PR0jBgxAjU1Nf0Sz4CaZH7fKMvaDGT0DtU3Q7sBCFBdxw3HcNS6+KNg1qMIasiUNlDqUmf/h+3lOwxHvZMPACCw8TqcR4cDCB/AKKkrxvz/tScDENycg3R4QmtjjxvTf4GQhmuSxzUQzDGu3saU6noHKjz0v39e6iLEeN7sl78P5vhemQOZIAhm1UyQlpaGJ598EmvWrMHDDz8MQL/+1fLly+Hu7o7Nmzf36noVFRVYvHgxEhIS8MILL4jlJSUl8PHxgVwux+OPPw43N7dOW6pMGU96ejpWrVqFjz76CFFRUb16HZbo86d/FNc4euT92WJ5bnIJDrx9DgAQOMYHd6+fIFWI1IOu/g/b2vfWWeRf0G9/cddv4xA8zrfT82jgGfP/15m2v6NRswIxbVWsWcTV38wxrt7EVF/RiP+9kISmRi0gAxa+Nhm+Ee79EldvFwYeLMxuTNWRI0egUCiwcOFCsUypVCIhIQGpqakoKendNAMPDw/Y29ujrq7OoNzPzw9yec8v39TxEBA0zhfO3g4AgIKLpagurpc4Iuqr2tIG5F/UJ1TO3vYIHOMjcURkCgGx3lDY6e+PeeduQtCZ1Xdv6sLJf1/RJ1QARswK6reECgBiE0IRtySSCVU7ZpdUZWRkIDAwEE5OhguUtSwompnZc1dRbW0tqqqqcP36dbz55puor69HXFzcgMdTVlaG9PR08V9ubm6fYrA2crkM0fNa94S78gMXh7VU6Yfy0TIkLmpWEORyrtRsDWzsFAiM1U+ab6jWoPR6lbQBUY8KLpa2bhHlaocJD3GPVSmY3Ziq8vJyeHl5dShvKSsrK+vxGmvWrBFXcXdwcMCyZcuQkJAw4PHs3LkT27Zt69PzWruoGYE4978MaJt0uHa4AHFLImFrb3YfR+qGrlmnT6oAyOQyRM0MlDgiMqXgOF/kJt8EoN9g2TfSQ+KIqCvNGi2Ob2vdMHniI1Gwd7aTMKLBy+z+iqnVatjadtw9287OTny8Jy+99BJUKhUKCwuRmJgItVoNnU5nVHefKeNZuHAhpk6dKh7n5uZi48aNvY7BGtm72iFssj8ykm5Ao2rG9eNF3NbEwuQml6ChWgMACJngC0cPe4kjIlMKHuerH7Uu6JOq+Iesfxyopbq4Mws1JSoAwJARHoicFiBxRIOX2SVVSqUSTU1NHco1Go34eE9GjRol/jxnzhw89thjAICnnnqqqyr9Eo+3tze8vb27fHywG3lXCDKSbgAA0g7kImpWIDf6tCBXfmjd5y96TnA3Z5IlcnBTwjfSHTevVaHqRh2qi+vhNoT7xpmb6qJ6XNx5HQAgU8gwdQU3TJaS2Y2p8vLyQnl5eYfylrLeJikuLi4YP348Dhw4YBbxUCvvMDf4ROin4lbk1qIkvVLiiMhY1UX1KEzV/w64+jli6MiOXeRk+ULi/MSf8251BZL5EAQBx7amQtesH9gYe28oPAJdJI5qcDO7pCoiIgIFBQWorzecEZaWliY+3ltqtbrD9aSMh1rF3BUi/px2gAPWLcXVH1tbqUbMCYKMA9StUsj41uUxcs8xqTI3WSeKUHhZ/+XG2dsB4x7g+nBSM7ukaubMmdBqtdi5c6dYptFokJiYiJiYGPj56b85lZSUdJhNV1nZsaWjqKgIycnJfV4Xyth4qG/C7hgCe1f9+LTs08VQVTZKHBH1pFmjxbUjBQAAuY0Mw6dzgLq1chvqBNchjgCAkqsVaKzVSBwRtdComnDys6vi8eTHoznZxwyY3f9ATEwMZs2ahQ8//BBVVVUICAjA3r17UVxcjPXr14vnvf7667hw4QKSkpLEsuXLlyMuLg4RERFwcXFBQUEBdu/ejebmZqxevdrgeS5cuICLFy8CAKqqqtDQ0IBPPvkEADBmzBiMHTu2V/FQ3yhsFYiaFYSLO65D0Aq4+mM+xi+OlDos6kb26WKo6/TjDEPv8BeTYrI+MpkMIXF+SNmdDUEA8i+UchC0mTj7dQYaqvQTpYLjfA26akk6ZpdUAcCGDRvg5+eHffv2oa6uDmFhYXjzzTfFRKcrixYtwsmTJ3Hq1CmoVCp4eHggPj4eS5cuRXi4YbPouXPnOix3sGXLFgD65Kztc/U1HjJO9NwgXNp5HYIAXD2Yj7GLwiG3MbtGVLrl6sG2A9Q5Y9PahcT5ImV3NgD9jE8mVdIry67Glf36nhobpQKTl8VIHBG1MMukSqlUYu3atVi7dm2X53S2pcyKFSuwYsUKo56jN+caEw/1nbOXA4In+CH3TAlUVWrknC1B2CR/qcOiTlTkt04ocA9whl8U1y6ydr7DPaB0toW6rgkFF8vQrNHCxk4hdViDlk4n4NiWVLRsMDfugXC4+DhIGxSJ2BxAZmFk2wHr+7nyvLkyaKWaG8Sp24OAXC5D8K0B681qLYquVEgc0eCW/mM+SrOqAei/2Iy6l9vEmBMmVWQW/GM84R6gXwOn+GolyvNqJI6I2mtqbEbGT/p1xRR2ckTcyW6gwSK47SzAs9zvVCqqajXOfJkuHk9dEQMFh0qYFbPs/qM+eOcd/b+ejB8PtJnJCABYuBA4d67nus89p//XorYWuLUHYmfur1JD0An66fZP7AXa7r/4/ffAk0+KhzIAMf4zcTzyUQDAlcffwJ0ZnwHOzsDVq4YX/u1vgS++6DnehATggw8MyyZMAIqLe6771lvAI4+0HqenA3Pm9FwPAM6cAfzbdF9++CHwxz/2XG/4cODHHw3LHn0UOHKk57qrVgGvvmpYFmjkrLzPPgNmzmw9PnwYWLoUgOH/YdbJOWga/jgAIDwvCcqoXwIFBYbXeu014KOPen7OGTOA//zHsGz2bODatZ7r/v73wK9+1XpcVATEx/dcDwAOHgTazgT+/HPgxRd7rjdkCHD2rGHZ6tXA7t091334YeD//s+wbMQIoN0m75365z+B++5rPU5OBhYt6rkeAFy5Ynh8G/eIwI1roXBcDq3cFnmJlyC8ejc6baM08h5hcG/YfmsB5R07ur1HdMnE94hF+9bBSV3VGldXBuge0fa9On1jPTQOIwEAkdMC4B/tJfk9okcDfY9o/xkcYEyqrEVNDXDjRs/nBXUysLi01Li6Ne1ajwSh23qObQ807aZiNzR0qBtR8i3ODHsATbaOyPS5A/HH3oey/XMCQGWlcfFWdNJNUVxsXF2VyvC4udm4egCg1Roe19UZV9fNrWNZWZlxdaurO5YZG2/7rZbUarFu2//DK16TxZ+jL34NVHRy/epq4563sz0zS0qMq9s+GdFqjX+tzc2GxyqV8XXbq6gwrm4nS72gsFCfcPSkocHwWKMxPt6WQTctbuMeYVtahKF255EfMBEqpQfKGhzhU5HRsa6R9wiDe0PLEoBG3CM65dLJYpe3cY9wbKiEY0N5a1xdGaB7RMt7Vegbi8xbCZXSyRYTH7n15UDie0Sv9fc9orO/GQOISZW1cHUFAozojvHx6bzMmLqurobHMlm39VRtvmE52rWbdu/g0KGuHYDImyeRFjAbzTb2yBi3GKOqT3W8sIeHcfF6enYsGzKk53oA4OhoeGxjY9xzAoCi3SBeZ2fj6na25pm3t3F1O0vIjI23/VZLSqVYt+X/sMIjDGVe+l3vvWpz4e2g6vz6bm7GPW9nOxH4+XV+42/P2dnwWKEw/rXatLvlOToaV7ezz42np3F1PToZzD90qHEtVQ7tBiDb2Rn/WtuPd7vNe0RI4VXkYyIAIG/EXPjkqjqeZ+Q9wuDe4H7r82fEPaJT7T8PwG3dI1QOHoZxdWWA7hGqKjWaBTmOTlwnlk14aDgc3G7FJ/E9otf6+x7R/jM4wGSC0P7rDPWX9PR0rFq1Ch999FGfFyO1JJ8//SNUFWo4eirxyPuzjapTeaMO3/z2JwD67U8efHs6V+uWUMv/oUIph1atAwDcuXIUN7+2EH35HexKfWUjvnjqEADAM8QFP9t0p1nEZUrmGFdLTC18Ityw8A+TeV80UxzhRmbFI8BZ3EeupkSFGymdNAHTgGtJqGwdFAifwuUuBiMnD3v4hLXu1Vlb2klLFZmcTtva7iGTQb9hMhMqs8WkisxOzF3B4s+pXF7BrETcGcCtMAax4AmtswDzuBdgvxMEARpV6zjAmPkh8B7WSTcemQ0mVWR2gsf7wsnLHoB+W4zam9b/jThldzaS/5chrlxtLtqPDhjBFdQHtZDxreP+cs8yqepPGlUTDv1/F6Fr0rcSy2RA3BJu4WXumFSR2ZEr5Iiee6u1SgDSfsiTNqABkLInG+e/zUTKHvNKqnTNrUmVb6Q7vIKlHQRK0vIIchZX7y66WgF1fZPEEVmn8twabP/dcWSdLBLLbJ1sYOdoK2FUZAwmVWSWomYFQm6jHzdw7XABmjXaHmpQf2hWt77v0XOCuzmTBgOZTIbgOH0XoKAVUHCxVOKIrIsg6DeV3/n7E6gpvtVCf2v4FLcGsgxMqsgsObgqxf3/1HVNyDpe1EMNMrXGWg20Gn3XA2RA6CQjl6MgqxYS16YLMJldgKbS1NiMw/+4hKMfX4b2Vpefd6gr7F3teqhJ5oRJFZmtmDb7Aabuz+0wvof6V/qh1n3+bOwU/KZMAIAhUR6wc9RPVii4WApts07iiCxfRX4ttv/uOK4fKxTLYu4KwYI/TIJcwZl+loRJFZktn3A3eN+awl2eU4ObGVXSBjSIXDtcgLP/bd0OwsaetwrSk9vIETRWv0CoRtWMYm6wfFuuHSnAjv93HNWF+iXcbR0UmL1uLKYsj4HCll9kLA3vlGS2ZDKZwfIKaQesf8C6Obi0KwtJH6YY7HIiV/BWQa1CJrTpAuTSCn3SrNbiyD8vIemDFLGb3SvEBfdvnCoOfSDLwzslmbWwSf5QOutnvGSfLIKqWt1DDeorQRBw+ourOP1Fulhmo+Q3ZeoocLS32C2Vl3yTXfO9VHmjDjv+33FkJLXuYzdiThAWvDYZbv5OEkZGt4tJFZk1GzsFombp10bSaQWDcT59Ya7rQUlNp9Xhp48u49Ku1vcl7ueRsHVkUkUd2Tnawj9Gv29eXVkDKvKM2ByaAAAZR29gx++Oo7JAv/ejjVKBmU+NwZ2/HMVxi1aASyNTv4m9JxSahmbYOdzexyx6bhBSvs+CIABXfsjDmAVhfe6OStmTLe7tFZsQeltxWYtmjRaH/n4RuWdK9AUyYOoTIxE9NxhXBsEaYdbMVL+DnQmJ88ONlHIA+tYqrxCuYdadZo0WJz65YvDF0CPIGXPWjYN7QCebQpNFYlJF/cZUSYuLjyOCxvsiL/kmVBVq5CbfROhETu83BY2qCQfeOYeiNP1gY7lChplPjeGYDivRn18cgsf74vi2NABAbnIJxv0sot+ey9JVF9Xj4HvnUZHb2qI3fGYgpjwewy52K8PuP7IIbZdXSON+gCbRUKNG4uunxYTKRqnAXS9OYEJFRnH2doDXMH3rVFl2DerLGySOyDxlnSzC9t8dExMqhZ0c05+MxfRfxTKhskJMqsgiBIz0EgdwFqVVoLKAYzhuR11ZA75/7RTKsmsAAEpnW9z7ykQExnpLHBlZkuDxbTZYPs/V1dtq1mhxbGsqfnzvApoa9DsTuAc44f6NUzB8eqDE0VF/YVJFFkEmlyF6HpdXMIXKG3XY9YeTqC7Sr4vj6KnEfb+/A74R7tIGRhYnJK41qcpNLpEwEvNSU1KPXX84iStt7lMRdw7Foj9NgUegi4SRUX9jUkUWY/j0ALG5PCPpBjQqbubaWzczq/D9aydRX9EIAHDzd8KCVyfzRk994jXMFU6e9gCAwtRyaBqaJY5Ietmni/HdhuMoz9G3Aits5bhz1SjMWDMatvYcxmztmFSRxbBztEXEnUMB6BfOy/jpRg81qK0bKWVIfP001HX6ZNRrmCvu+/0dcPFxkDgyslRtN1jWNQu4cWnwdgFqm3U48WkaDv7tPJpuJZeuQxyx8E+TMWJWEGQybjczGDCpIotiOGA9j4sOGin7VBH2vXUWzWr92A7/GE8k/G4iHNyUEkdGls6wC3Bwrq5eW6rC96+dROre1kk0YZP9cf/rU+EVzKUmBhO2RZJF8QxygX+MJ4rSKlBdVI/Cy+UI4ODqbl09mIej/0oFbuWfIRP8MOvpMVxokEzCP9oTtg4KNDVokX+hFDqtblBta5SbXIIjmy9Bo9K3TsltZJj0WDSi5wazdWoQGjyffLIaMW0HrHN5hS4JgoALO67j6JbWhGr4jADMeWYsEyoyGYWtAoGj9Rssq+uaUHKtUuKIBoauWYdT/7mKA2+fExMqF18HLHxtMmLmhTChGqSYVJHFCYnzg6Onvtsq79xN1JZyfZz2BJ2AU59dxdn/XhPLYu8LxbRfxQ6qVgQaGIOtC7CuvAHf/+mUwXZXwyb64YE3psI71E3CyEhqvLuSxZHbyBE9W99aJQj67i1qpdPqkPRhCi7vyRHL4h+Owh2PjOC3Z+oXgWN9IJMPjg2W8y+U4ruXj+FmRhUA/S4Ekx+PxpxnxsHO0Vba4EhyTKrIIkXNDoJcob+Jpx/KR7NGK3FE5qFZo8UPfzuPjCT9zEiZDJi2ahTGLAiTODKyZvbOdhgywgMAUFOiQtWNOokjMj2dVoczX6Zj31tnxRm0zt4OuO/VSRg5fxi/sBAAJlVkoRzdlQi9Q7//X2NtE7JPFksckfQ0qibs/fMZ5N3qfpHbyDD7mXGImhUkcWQ0GLTtAsw7Z11dgPWVjUh8/TQu7swSy4LjfPHAG1O5aC4ZYFJFFov7AbZSVaux+0+nUHxVP0jY1l6Bu9fHc+NpGjDB4/3En3PPWk9SVZBShu9ePib+bskUMkx8dATmPTceSmd295EhLqlAFss30h1ew1xRnlOD0qxq3MysGpTfGmtvqrBn0xnUlKgAAPYutpi/Ph4+YRwwSwPH1c8RHkHOqMyvw83rVVBVqeHobrnroOl0As5/k4Hz26+Ls2edPO0xe91Y+A33kDY4MltsqSKLJZPJEHNX6/IKVwbhfoAV+bXY9YeTYkLl5GWP+16dxISKJCG2VglA3nnLba0SdAL2vHEa579rTagCx/jggTemMqGibjGpIosWPnkolE76JvjrJwrRUKOWOKKBU3KtErv/eAqqKv1rdhvqhAV/mAT3oc4SR0aDlcG4KgteWqGhWoOitAoA+s3c4x8ajvm/jYO9q53EkZG5Y1JFFs1GqcDwmYEA9HuPXTtcIHFEAyP/Yin2bDoDdb1+FpJPmBsW/H4SnL24jx9JxyfMDQ63uvxupJSJ2yJZAkEniHv2tbROOborce8rEzFmYbi4ZARRd5hUkcWLnhsM3LrfXfkhDzqd9a6RAwDXjxdi/1+SxT9YQ0d54Z5XJvJbNElOJpcheJy+tUrbpMONlDKJIzJObWkDEt84jaaG1iQwINYLD2yaCv9oTwkjI0vDpIosnqufI4LG6rfJqCtrRL6VTeduK+1ALg79/SIErT5xDJ04BPN/Gwc7B845IfMQMqHN6upm/rsoCALSD+fj25d+Erv7AMDWQT97lhuOU28xqSKr0HZ5hVQrXF5BEASc+zYDx7emiV0TI2YHYda6sVDYch8/Mh9DR3rBRqn/TOadu2m2Lceqykbs/0syfvrwsthCJbv1F9HWwYbdfdQnTKrIKgTGesPVzxEAUHi53KpWdBZ0Ak58egXn/pcplo1ZFI6pvxwJOW/8ZGZs7BQIGO0NAGis0aA0s0ragDqRdbII36w/ivzzpWLZ8BkB7EKn28akiqyCTC5D9LzW5RXSfrCO5RV0zToc/sdFpO1rbX2749ERiP/FcG6LQWYrZLx5brDcWKvBj+9dwI/vXRC3mnFws8O858dj+urRbJ2i28akiqzG8OmBUNjpP9IZSQXQtMzksVDNai32v30O148XAdAnjjOeHI3YhFCJIyPqXtA4H7Tk/LnJJdIGc0ve+Zv4Zv1RZJ0sEstC7xiCxW9OQ0icXzc1iYzHpIqshtLZFhFTAwAATQ1aZB69IXFEfaeua8KeTWdQcFHfPaGwlWPus+MQOT1A4siIeubgqoTvrUUyqwvrUV1UL1ksGlUTkj5Mwf7/S0bDrTXdlE62mPX0GMxeN5ZdfmRSTKrIqrRdYT1tfx4EwTwHyXZHVdmI7/90CiXXbu3j52CDu1+awG/TZFEMuwClaa0qTC3Hty8dM1i/LnCMD3721p0InzKUXehkckyqyKp4hbjCL0r/DbnqRp3BNGlLoNMK2PWHk6jMrwUA2LvaIeH/TYR/tJfEkRH1TsiE1i8BeQO8tEKzWosTn6Qh8fXTqCtrAKDfZPzOVaMw/8U4OHnYD2g8NHhwcRuyOjF3haAkXd/Kk3YgF0NHWk5C0lijQeOtxjVnHwfc81I83PydpA2KqA/c/J3g5u+E6qJ6lKRXorFGMyBdbTczKnHknykGXY7+MZ6YvjoWLj6O/f78NLixpYqszrB4Pzje2ioj9+xN1JU3SBxRz7RNOv0PtxIqj0BnLPjDJCZUZNGCb+0FKAhA3oX+ba3SNmlx5r/XsOsPJ8WESmErx6THonHvholMqGhAMKkiq6OwkSNqdhAA/RpPVw/mSxxR5+rKGpCSmI2dfzgBdW2TWO4b4Y6E39/BLgqyeG3HAfbnBsvluTXY8f9O4OKO62gZRukT7oYH3piKUfcM41IJNGDY/UdWacScIFzYcR2CVsDVH/Mx7oFws1h5vKZEhZzTxcg+XYzS69UdHpfbynDPhnjY2pvHr2bsPaHQNDRzGxzqE99Id9i72KKxtgkFl8rQrNHCxs50v4c6rQ6XdmXj3DcZ0N3aukmukGH84kiMXhAKuYLtBjSweKckq+TkYY9h8X7IPlmMxhoNsk8VI+JOaZYjqC6qR/YpfSJVnlPT6TkyhQyCVoDS2dZsEioAXBOLbotcLkPQOF9kJN1As1qLotRyBI3z7bmiEaoK63Dkn5dQmtn65cQjyAUz146GV4irSZ6DqLfM5+5NZGIj7wpB9sliAEDagbwBTaoqC2qRfboY2adKxJl87XmFuGDYHUMQGj8EiZtOQ1Wh5hRvsjohcX7ISNKvGZd77uZtJ1WCTkDq/lyc+TIdWo1+LKJMBoxeEIbxiyPMokWaBi8mVWS1/KI84Bnsgoq8WtzMqEJZVsfuNlMRBAEV+bXIudUiVXWj88UOfcLcMGyiH4ZNHAK3IRyETtYvINYLCls5tE065CXfhPBE39eOqy1VIemDFIOlUtz8nTDjyVj4RnqYIlyi28KkiqyWTCZDzLxgHN2SCkC/vIIpCYKA8uyaWy1SxagpUXV6nm+kO0InDsGwiX6cgUSDjq29DYaO8kL++VKoqtQoy+79lxtBEHDtcAFOfnYFTQ1asXzk/BDEPxQFGyVbp8g8MKkiqxY+dShOf5EOjaoZ148Xwc7p9j7ygiCg9Hq1OEaqrrST5RpkwJAoDwybOASh8X5w8nK4recksnQhcX7IP6/fcqm3GyyrKhvx08eXxfoA4Oxtj+mrR1vUGnQ0ODCpIqtma2+D4TMCcXlPDrRNOjSrtT1XakfQCSi5VomcMyXIPl2M+vLGDufIZMCQaE+E3jEEwyb4wZHLIRCJgsf5iD/3Jqm6frwQx7emQV3fuuTI8JmBmLR0BOwcbU0aI5EpMKkiqxc9NxiX9+QAgNFJlU4noPhqBXJOFSPnTAlUtzZibUsml2HoSC+E3jEEIXG+cHBTmjJsIqvh6GEPnwg3lGZWozK/FvZu3a+s3lijwbFtqeJEEwBwcFdi2spRCB5vmtmDRP3BLJMqjUaDLVu2YP/+/aitrUV4eDhWrlyJ+Pj4buslJSVhx44dyMrKQk1NDdzd3RETE4MnnngCYWFhHc4/evQotm7ditzcXLi7u+Pee+/FsmXLYGPT+rbs2bMHmzZt6vT5vvvuO3h5sfnZ3Ln5OyFwjDcKLpZB0HV9nq5Zh6IrFcg+rU+kGms0Hc6RK2QIiPVG6MQhCI7zhb0Ld7gnMkbIeD9x+QNtU9dfbvLO3cRPH6Wgobr19y9skj+mPBHD3zcye2aZVG3atAmHDx/Ggw8+iMDAQOzZswcvvvgi3n33XYwePbrLellZWXBxccGSJUvg5uaGiooKJCYmYvXq1di8eTMiIiLEc0+ePIlXXnkFY8eOxTPPPIOsrCx8+umnqKysxPPPP9/h2r/85S/h7+9vUObs7Gy6F039KmZeCAoulnUo1zbrUHi5HNmni5F7tgTquqYO5yhs5QgYfSuRGu8LpRO7HYh6K2SCL85+dQ0AxKUQ2tKomnDys6u4drhALFM622LKEyMRPtm/w/lE5sjskqq0tDQcPHgQa9aswcMPPwwAmD9/PpYvX47Nmzdj8+bNXdZdvnx5h7L77rsPixcvxvbt2/HCCy+I5f/4xz8QHh6Ot99+W2yZcnR0xGeffYYlS5YgJCTE4Dp33HEHRowYYYJXSFIIHOsDFx8H1N4aWN7cqMWRzZeQm1wCjaq5w/kKOzmCxvogdOIQBI3z5YriRLfJPcAZLr4OqL3ZAF2z4bIKhanlSPrgEurKWscrBo3zwbSVozg+kSyK2a3hf+TIESgUCixcuFAsUyqVSEhIQGpqKkpKSnp1PQ8PD9jb26Ourk4sy8nJQU5ODhYsWGDQ1ffAAw9AEAQcPny402upVCpotb0f6EzSk8tliJ4XLB5rVM3I+OmGQUJlo1QgbJI/5jwzFkv/OQdzfzMe4VOGMqEiMgGZTGawFyCgn017/JM0JL5+WkyobB0UmParUbjrhTgmVGRxzO6vRUZGBgIDA+HkZLgwYnR0NAAgMzMTfn5+nVUV1dbWQqvVory8HF9//TXq6+sRFxcnPn7tmr4JOioqyqCet7c3fHx8kJGR0eGazzzzDBoaGmBra4v4+Hg89dRTCAoK6tNrJGkMnxmI05+nG5TZOigQPN4PoROHIHCMt0n3JSMiQ8FxvuKkEQBorG5C2r7W9eP8YzwxffVouPhwGRKyTGaXVJWXl3c6+LulrKys47iY9tasWYO8vDwAgIODA5YtW4aEhASD52h7zfbP0/I4oG8lu+eeezBu3Dg4OTkhPT0dX331FdauXYuPP/642wSvrKzM4Fq5uaZdfJJ6x97ZDnZONtDUN0NhJ8ecdeNurfbMRIpoIAyJ8oDSyVZcIkHQ6bsBFXZyTHw4CjHzQiCTc6smslxml1Sp1WrY2nYcCGxnZyc+3pOXXnoJKpUKhYWFSExMhFqthk6ng1yu7+3UaDQG12z/PCpV68rYs2fPxuzZs8XjadOmYeLEifj1r3+Nf//73wbjtNrbuXMntm3b1mO8NHBslApo6puhdLbl1GyiASZXyBE0zgeZRwvFMp8IN8xcMwZu/ty2iSyf2SVVSqUSTU0dZ2C1JEJKZc9rAY0aNUr8ec6cOXjssccAAE899RSA1mSq5Zrtn6en5xg9ejRiYmKQnJzc7XkLFy7E1KlTxePc3Fxs3Lixx/iJiKzViNlBYlJl66DAglcnQa4wu+G9RH1idp/k9t1vLVrKvL29e3U9FxcXjB8/HgcOHDB4jrbXbP88xqw95evri5qamm7P8fb2RlRUlPiv/YxCIqLBZsgIT3HxT1sHGyZUZFXM7tMcERGBgoIC1NfXG5SnpaWJj/eWWq02uF5kZCQAID3dcNByWVkZSktLxce7U1hYCHd3917HQkQ02MkVHDdF1snskqqZM2dCq9Vi586dYplGo0FiYiJiYmLEgeElJSUdBn5XVlZ2uF5RURGSk5MNZvqFhoYiODgYu3btMlgiYfv27ZDJZJgxY4ZYVlVV1eGaJ06cQHp6OiZOnNjn10lERETWxezGVMXExGDWrFn48MMPUVVVhYCAAOzduxfFxcVYv369eN7rr7+OCxcuICkpSSxbvnw54uLiEBERARcXFxQUFGD37t1obm7G6tWrDZ5n7dq1ePnll/H8889jzpw5yMrKwnfffYf77rsPw4YNE89bs2YNhg8fjqioKDg5OeHatWtITEyEr6+vOFaLiIiIyOySKgDYsGED/Pz8sG/fPtTV1SEsLAxvvvkmxo4d2229RYsW4eTJkzh16hRUKhU8PDwQHx+PpUuXIjw83ODcKVOmYOPGjdi2bRveffdduLm5YenSpR1WZZ89ezZOnjyJM2fOoLGxEV5eXliwYAGWL18OT09PE79yIiIislRmmVQplUqsXbsWa9eu7fKc9957r0PZihUrsGLFCqOfZ9q0aZg2bVq356xatQqrVq0y+ppEREQ0OJndmCoiIiIiS8SkioiIiMgEmFQRERERmYBZjqkiIiIiIPaeUGgammHnwD/XloD/S0RERGYqNiFU6hCoF9j9R0RERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEyASRURERGRCTCpIiIiIjIBJlVEREREJmAjdQBEBMTeEwpNQzPsHPgrSURkqXgHJzIDsQmhUodARES3id1/RERERCbApIqIiIjIBJhUEREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEyASRURERGRCdhIHQDRQIq9JxSahmbYOfCjT0REpsW/LDSoxCaESh0CERFZKSZVREREYEs23T5+coiIiMCWbLp9HKhOREREZAJMqoiIiIhMgEkVERERkQkwqSIiIiIyASZVRERERCbApIqIiIjIBJhUEREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEzARuoAOqPRaLBlyxbs378ftbW1CA8Px8qVKxEfH99tvaSkJOzYsQNZWVmoqamBu7s7YmJi8MQTTyAsLKzD+UePHsXWrVuRm5sLd3d33HvvvVi2bBlsbAzfltraWvzzn/9EUlIS1Go1oqOjsXbtWkRFRZn0dRMREZHlMsuWqk2bNuGrr77CvHnzsG7dOsjlcrz44ou4dOlSt/WysrLg4uKCJUuW4Nlnn8WiRYuQkZGB1atXIzMz0+DckydP4pVXXoGzszOeeeYZTJs2DZ9++ineffddg/N0Oh3Wr1+PH374AT/72c/w5JNPorKyEs888wzy8/NN/tqJiIjIMpldS1VaWhoOHjyINWvW4OGHHwYAzJ8/H8uXL8fmzZuxefPmLusuX768Q9l9992HxYsXY/v27XjhhRfE8n/84x8IDw/H22+/LbZMOTo64rPPPsOSJUsQEhICADh8+DAuX76MP/7xj5g5cyYAYPbs2XjkkUewdetW/P73vzfRKyciIiJLZnYtVUeOHIFCocDChQvFMqVSiYSEBKSmpqKkpKRX1/Pw8IC9vT3q6urEspycHOTk5GDBggUGXX0PPPAABEHA4cOHDeLx9PTE9OnTxTJ3d3fMmjULR48ehUaj6cOrJCIiImtjdi1VGRkZCAwMhJOTk0F5dHQ0ACAzMxN+fn7dXqO2thZarRbl5eX4+uuvUV9fj7i4OPHxa9euAUCHMVHe3t7w8fFBRkaGwbmRkZGQyw3zz+joaOzatQv5+fkIDw/vNI6ysjKUl5eLx7m5ud3GTURERJbL7JKq8vJyeHl5dShvKSsrK+vxGmvWrEFeXh4AwMHBAcuWLUNCQoLBc7S9ZvvnaZsIVVRUYMyYMV3GU15e3mVStXPnTmzbtq3HeImIiMjymV1SpVarYWtr26Hczs5OfLwnL730ElQqFQoLC5GYmAi1Wg2dTie2NrV02bVcs/3zqFQqg3i6Oq+neBYuXIipU6eKx7m5udi4cWOP8RMREZHlMbukSqlUoqmpqUN5SyKkVCp7vMaoUaPEn+fMmYPHHnsMAPDUU08BaE2IOhsPpdFoDJ5DqVR2eV5P8Xh7e8Pb27vHeImIiMjymd1A9fbdby1aynqbpLi4uGD8+PE4cOCAwXO0vWb752nbLejp6dltPJ11IRIREdHgY3ZJVUREBAoKClBfX29QnpaWJj7eW2q12uB6kZGRAID09HSD88rKylBaWio+3nJuRkYGdDqdwblXrlyBvb09goKCeh0PERERWR+zS6pmzpwJrVaLnTt3imUajQaJiYmIiYkRZ/6VlJR0mE1XWVnZ4XpFRUVITk42mOkXGhqK4OBg7Nq1C1qtVizfvn07ZDIZZsyYIZbNmDEDFRUVSEpKEsuqqqpw6NAhTJkypdPxVkRERDT4mN2YqpiYGMyaNQsffvghqqqqEBAQgL1796K4uBjr168Xz3v99ddx4cIFg2Rn+fLliIuLQ0REBFxcXFBQUIDdu3ejubkZq1evNnietWvX4uWXX8bzzz+POXPmICsrC9999x3uu+8+DBs2TDxv5syZ+N///odNmzYhJycHbm5u2L59O3Q6HVasWNHv7wcRERFZBrNLqgBgw4YN8PPzw759+1BXV4ewsDC8+eabGDt2bLf1Fi1ahJMnT+LUqVNQqVTw8PBAfHw8li5d2mHZgylTpmDjxo3Ytm0b3n33Xbi5uWHp0qUdVmVXKBR466238I9//APffPMN1Go1RowYgZdffhnBwcEmfuVERERkqWSCIAhSBzFYpKenY9WqVfjoo4+4GTMRDVqfP/0jVBVqOHoq8cj7s6UOh8hkzLKlioiIrFfsPaHQNDTDzoF/gsi68BNNREQDKjYhVOoQiPqF2c3+IyIiIrJETKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEyASRURERGRCTCpIiIiIjIBJlVEREREJsCkioiIiMgEbKQOYDBRq9UAgNzcXIkjISIiot4KCQmBvb19l48zqRpAxcXFAICNGzdKHAkRERH11kcffYSoqKguH5cJgiAMYDyDWlVVFU6fPg1/f3/Y2dmZ7Lq5ubnYuHEjfve73yEkJMRk17VGfK96h++X8fheGY/vlfH4XhlvIN4rtlSZEXd3d9x11139dv2QkJBuM2hqxfeqd/h+GY/vlfH4XhmP75XxpHyvOFCdiIiIyASYVBERERGZAJMqK+Dl5YXly5fDy8tL6lDMHt+r3uH7ZTy+V8bje2U8vlfGM4f3igPViYiIiEyALVVEREREJsCkioiIiMgEmFQRERERmQCTKiIiIiIT4OKfFkyj0WDLli3Yv38/amtrER4ejpUrVyI+Pl7q0MzKlStXsHfvXpw/fx7FxcVwdXXFyJEjsXLlSgQFBUkdntn79NNP8fHHHyM0NBSffPKJ1OGYpfT0dGzduhUpKSnQaDQYOnQoFixYgCVLlkgdmlnJz8/Hli1bkJKSgpqaGvj5+WHu3Ll46KGHul2l2pqpVCp8+eWXSEtLw5UrV1BbW4uXX34Z99xzT4dzc3Jy8P777yMlJQU2NjaYPHkynn76abi7uw984BIw5r3S6XTYt28fjhw5goyMDNTW1sLf3x+zZ8/GQw89BKVS2a8xMqmyYJs2bcLhw4fx4IMPIjAwEHv27MGLL76Id999F6NHj5Y6PLPx+eefIyUlBbNmzUJ4eDjKy8vx3XffYeXKldi8eTPCwsKkDtFs3bx5E5999hkcHBykDsVsnT59Gi+//DIiIyPx+OOPw8HBATdu3EBpaanUoZmVkpISrF69Gs7OznjggQfg6uqK1NRU/Otf/0J6ejo2bdokdYiSqK6uxrZt2+Dn54eIiAicP3++0/Nu3ryJX//613B2dsaqVavQ0NCAL7/8EllZWfjggw9ga2s7wJEPPGPeq8bGRmzatAkjR47EokWL4OHhgdTUVGzduhXnzp3D3/72N8hksv4LUiCLlJqaKkybNk34/PPPxbLGxkbhoYceEp588kkJIzM/ly5dEjQajUFZXl6eMGfOHOGPf/yjRFFZhldffVV45plnhF//+tfCsmXLpA7H7NTV1QmLFi0SNmzYIGi1WqnDMWuffvqpMG3aNCErK8ugfOPGjcK0adOEmpoaiSKTllqtFsrKygRBEIQrV64I06ZNExITEzuc9/bbbwtz584ViouLxbIzZ84I06ZNE3bs2DFg8UrJmPdKo9EIly5d6lB369atwrRp04QzZ870a4wcU2Whjhw5AoVCgYULF4plSqUSCQkJSE1NRUlJiYTRmZfY2NgO3+KCgoIwbNgw5ObmShSV+btw4QKOHDmCX//611KHYrZ++OEHVFRUYNWqVZDL5WhoaIBOp5M6LLNUX18PAPDw8DAo9/Lyglwuh43N4Ow4sbOzM2qxyiNHjmDKlCnw8/MTyyZMmICgoCAcOnSoP0M0G8a8V7a2toiNje1QPm3aNADo93s+kyoLlZGRgcDAQDg5ORmUR0dHAwAyMzOlCMtiCIKAyspKuLm5SR2KWdJqtXj33XeRkJCA8PBwqcMxW2fPnoWTkxPKysrw6KOPYv78+bjnnnvw9ttvQ61WSx2eWRk3bhwA4M0330RGRgZKSkpw8OBB7NixA4sXL2YXczdKS0tRWVnZ6SbB0dHRyMjIkCAqy1JRUQEA/X7PH5xfDaxAeXl5pxl7S1lZWdlAh2RRDhw4gNLSUqxYsULqUMzSjh07UFJSgr/+9a9Sh2LWCgoKoNVqsWHDBiQkJOBXv/oVLly4gG+++QZ1dXV49dVXpQ7RbNxxxx345S9/ic8++wzHjh0Tyx977DGsWrVKwsjMX3l5OQB0ec+vqamBRqOBnZ3dQIdmMb744gs4OTnhjjvu6NfnYVJlodRqdacDE1t+qfgtuWu5ubn461//ipEjR+Luu++WOhyzU11djX/9619YtmzZoJlV1FcNDQ1obGzEokWL8MwzzwAAZsyYgaamJuzcuRMrVqzgDNM2/P39MWbMGMyYMQOurq44ceIEPvvsM3h6emLx4sVSh2e2Wu7nPd3zmVR17t///jfOnj2L5557Di4uLv36XEyqLJRSqURTU1OHco1GIz5OHZWXl2P9+vVwcnLCn/70JygUCqlDMjsff/wxXFxc+EfOCC2/Z3PmzDEonzt3Lnbu3InU1FQmVbccPHgQ//d//4f//Oc/8PX1BaBPQAVBwAcffIC5c+eyO74LLZ8z3vN77+DBg/j444+RkJCA+++/v9+fj2OqLJSXl5fYJNxWS5m3t/dAh2T26urq8OKLL6Kurg5/+ctf+B51Ij8/H7t27cKSJUtQVlaGoqIiFBUVQaPRoLm5GUVFRaipqZE6TLPR0h3j6elpUN4yGLu2tnbAYzJX3333HSIjI8WEqsXUqVPR2NjIcUHdaPmcdXXPd3V1ZStVJ86cOYM33ngDkydPxvPPPz8gz8mWKgvVskZHfX29wWD1tLQ08XFqpVar8dJLLyE/Px/vvPMOhg0bJnVIZqmsrAw6nQ7vvvsu3n333Q6P/+IXv8CSJUuwbt06CaIzP1FRUTh79ixKS0sRHBwslreMaWT3aavKyspOu16am5sB6CdHUOd8fHzg7u6O9PT0Do9duXKF9/tOpKWl4Xe/+x2ioqLw2muvDdjsUiZVFmrmzJn48ssvsXPnTjz88MMA9M3AiYmJiImJMZh2O9hptVr84Q9/QGpqKt544w2MGjVK6pDMVmhoKF5//fUO5R9//DFUKhXWrVuHoUOHShCZeZo1axb+85//YPfu3YiLixPLd+/eDYVCIc54I/0yJmfOnEF+fr5Bl+jBgwchl8s5y7QHM2bMwN69e1FSUiLe35OTk5Gfn4+f//znEkdnXnJycrB+/XoMGTIEb7755oB2jTKpslAxMTGYNWsWPvzwQ1RVVSEgIAB79+5FcXEx1q9fL3V4ZuXvf/87jh07hilTpqC2thb79+83ePyuu+6SKDLz4+7uLq7n0tbXX38NAJ0+NpgNHz4c9957LxITE6HVajF27FhcuHABhw4dwtKlS9nF3MZDDz2EU6dO4emnn8bPfvYzuLq64vjx4zh16hTuu+++Qf1etcwWbeneO3bsGG7evAkAWLx4MZydnbF06VIcPnwYv/nNb7BkyRI0NDTgiy++QFhYWKdb2lirnt4ruVyOF154AbW1tXjooYdw4sQJg/pDhw7t1y/WMkEQhH67OvUrtVot7v1XV1eHsLAwrFy5EhMnTpQ6NLOybt06XLhwocvHk5KSBi4YC7Vu3TpUV1dz779ONDc349///jf27NmDsrIy+Pn54YEHHmDrQSfS0tKwdetWZGRkoKamBv7+/rj77rvx8MMPD9rFPwHg5z//OYqLizt97L///S/8/f0BANnZ2R32/nvqqac6jOmzZj29V4B+mEJX7r77bmzYsKFfYgOYVBERERGZBGf/EREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIqJ2zp8/j+nTp+Nf//qXUeevW7cO06dP7+eoiMjcMakiIiIiMoHBu4MlEZGJvPLKK2hsbJQ6DCKSGJMqIqLb5OfnJ3UIRGQGmFQREXXj0qVL+Pjjj5Geng6FQoHx48fjySefRGBgoHjOunXrcOHCBSQlJYlle/bswaZNm/Dyyy/Dy8sLW7duRWZmJpRKJSZPnoynn34abm5uUrwkIuonHFNFRNSFtLQ0PPvss3BycsLixYsxZswY/PTTT1i7di0KCwuNusbRo0fx8ssvw9vbG/fffz+GDh2Kffv2YcOGDf0cPRENNLZUERF14fTp03j++eexaNEisWzHjh14++238d577+HPf/5zj9c4fvw43nvvPcTGxgIAtFotnnvuOZw/fx6pqakYOXJkv8VPRAOLLVVERF0ICgrCggULDMoWLFiAwMBAnDhxAlVVVT1eY+7cuWJCBQAKhQJ33303AODq1asmjZeIpMWkioioC7GxsZDLDW+TcrkcsbGxEAQBmZmZPV4jKiqqQ5mPjw8AoK6uzjSBEpFZYFJFRNQFDw+PbsuNSYqcnJw6lCkUCgD6rkAish5MqoiIulBZWdltubOz80CGQ0RmjkkVEVEXUlJSoNPpDMp0Oh0uX74MmUyGiIgIiSIjInPEpIqIqAv5+fnYtWuXQdmuXbuQn5+PyZMnw93dXZrAiMgscUkFIqIuTJw4Ee+99x5OnjyJ0NBQZGdn4/jx43Bzc8O6deukDo+IzAxbqoiIuhATE4O//vWvqK+vxzfffIMLFy7gzjvvxObNmzF06FCpwyMiMyMTBEGQOggiIiIiS8eWKiIiIiITYFJFREREZAJMqoiIiIhMgEkVERERkQkwqSIiIiIyASZVRERERCbApIqIiIjIBJhUEREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJ/P/5kHpjaPKCygAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -522,7 +645,7 @@ } ], "source": [ - "mu, mu_err = source_photons.calculate_mu(bins=20, show=True)" + "mu, mu_err = source_photons.calculate_mu(bins=20, show=True)\n" ] }, { @@ -535,220 +658,104 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "f19a7f75", "metadata": {}, - "outputs": [], - "source": [ - "PD, PD_err, PA, PA_err = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "641b46c1", - "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[-3.14159 rad -2.77199 rad -2.40239 rad -2.0328 rad -1.6632 rad\n", - " -1.2936 rad -0.923998 rad -0.554399 rad -0.1848 rad 0.1848 rad\n", - " 0.554399 rad 0.923998 rad 1.2936 rad 1.6632 rad 2.0328 rad 2.40239 rad\n", - " 2.77199 rad 3.14159 rad]\n" + "modularion factor: 0.31048713272678163 +/- 0.0012843969646897993\n", + "------- Q/I, U/I -0.28751326582102654 0.8931376011806802\n", + "PD: 0.9382742950043191 +/- 0.12342890897514582\n", + "PA 76.82040325366 +/- 3.8511941530269103\n" ] }, { - "ename": "NameError", - "evalue": "name 'azimuthal_angles' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[8], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(bin_edges)\n\u001b[1;32m 4\u001b[0m asads \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m \u001b[43mazimuthal_angles\u001b[49m\u001b[38;5;241m.\u001b[39mkeys():\n\u001b[1;32m 6\u001b[0m asads[key] \u001b[38;5;241m=\u001b[39m grb_polarization\u001b[38;5;241m.\u001b[39mcreate_asad(azimuthal_angles[key], bin_edges)\n", - "\u001b[0;31mNameError\u001b[0m: name 'azimuthal_angles' is not defined" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAJvCAYAAAAtNjaIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hc5ZX/v9NnNJJGo957712jZtmWC2BsijFgegsBstnsbgpLSPLbkGQJ2WSzZDfAQihLh1ANGHdLtmyNeu+9916mz/39cZnBxpKtMpo75f08jx7Zo5n7nhmN5n7vec/5HhZFURQIBAKBQCAQCFYBm+kACAQCgUAgEAhrh4g3AoFAIBAIBCuCiDcCgUAgEAgEK4KINwKBQCAQCAQrgog3AoFAIBAIBCuCiDcCgUAgEAgEK4KINwKBQCAQCAQrgog3AoFAIBAIBCuCiDcCgUAgEAgEK4KINwKBQCAQCAQrgst0AKZieXkZ77//Ppqbm9HS0oKFhQU89dRTuP7669f0+IWFBbz00ks4d+4cVCoVYmJi8MQTTyAqKuqK+5aUlOD1119HX18fXFxccMMNN+C+++4Dl2szLyeBQCAQCAQLxWYyb3Nzc3jjjTfQ19eH8PDwdT1Wr9fjySefxKlTp3Drrbfisccew8zMDH70ox9hYGDgsvvK5XI8/fTTcHR0xI9+9CPk5+fjzTffxPPPP2/Kp0MgEAgEAoGwIjaTKnJzc8Onn34KNzc3tLa24tFHH13zY4uKitDY2IhnnnkG27dvBwDs3LkTd911F15//XX86le/Mt73hRdeQFhYGP70pz8ZM20ODg54++23cdtttyEoKMikz4tAIBAIBALhUmwm88bn8+Hm5rahxxYXF8PV1RXbtm0z3ubi4oIdO3agpKQEarUaANDb24ve3l7s37//si3SW265BRRFoaioaFPPgUAgEAgEAuFa2EzmbTO0t7cjIiICbPblWjYmJgZffPEFBgYGEBYWhvb2dgC4og7O3d0dHh4e6OjoWHWNyclJTE1NGf+/sLCAvr4+REZGgs/nm/DZEAgEAoFAMCdqtRojIyPIzMyEi4vLlq9HxBuA6elpJCUlXXG7IZM3NTWFsLAwo/haKcPn5uZ2mTj7LkeOHMEbb7xhmoAJBAKBQCBYHL/4xS+wZ8+eLV+HiDcAKpVqxeyX4TaVSgUAxu3T1e67vLy86hoHDhxAbm6u8f+dnZ147rnnsG/fPuTk5MDT03NTz4GwAm+9Bbz0EnD2LMBUdvOHPwQWF4HXX2dm/dU4ehR49lnAzY3+HhPDXCx//zvwn/8JBAXRsYSEbPqQOp0Oc3NzmJmZwczMDObm5rC0tITFxUUsLy9Dr9cb78tisSAWi6/4EgqFEM3PI+DxxzH/wx9Cf+AAeDwe+Hw+eDzepmNcCb1eD7VaDY1GY/zOPX8e7r//PTr/9CfMOztjaWnpsi+lUnnZMfh8vvE5ODk5wcXFBVKpFC4uLnB0dNySuAkEe4SiKDQ2NmJhYQGurq7405/+BG9vb7OsTcQbAIFAYBRml2K4TSAQAPhWtK12X8P9VsLd3R3u7u5X3B4bGwsHB4cVLUkIm0QuBzIzgYQEZtYfGABOnQJefhmwlN+vRgN873vA//0fcN99wP/8D+DkxGxMv/gFcNNNwJ13ArfcArzyCnDPPWt6qFqtxsTEBCYnJzExMWH8mpmZAUVRAABHR0e4u7vDx8cHzs7OcHZ2hpOTk/HfYrEYLBZr9UXefpu+APjd70zxbNdPSgrw618jSq8HDh++4scajQYLCwuYn583fjd8zczMoLW1FVqtFgD9WWYo8/Dw8DD+28XF5YqyEQKBsDoURaGqqgoikQg7duzA5OQkAFxVB5gSIt4AuLq6rrjl+d1t0ku3Ub28vK64b8wGsheRkZGIjIwEQF91kw9QE7G0BJw/D/zHfzAXw5tvAkIhcPvtzMVwKVotcNddwOef07Hdey/TEX1LQgJQUQE88QQtKvV6+vslLC0tYXBwEIODgxgZGcHExATm5uaMP5dIJPDw8EBUVNRlwkQkEm0utgcfBO64A2hpWXeGcm5uDufOncO2bdsgkUg2tr6zM5CTAxw/Djz++BU/5vF4cHV1haur64oP1+v1mJubu0zcTkxMoKWlxbirwOVyja+Xv78//P394eXlRbwrCYRVWFxcxOTkJNLS0uDm5mYUb+aC/GUCiIiIQH19/RXiqaWlBUKhEAEBAcb7AUBbWxtiY2ON9zNc9R84cGBD67NYLMzOzqKqqgoZGRlwdnbexLMhAAAuXADUamD3bmbWpyh6q/S22+iTL9PodLRY++wz4KOP6EyXpeHgALz2GsDjgXrgAUzPzaEzM9Mo2GZmZgDQmTRfX18kJCRclkHassafAwcAqRR44w3guee2Zo1rsWcPvbZeD6zzAo/NZkMqlUIqlRovFAE6c7CwsHCZoBsbG0NzczN0Oh04HA58fHyMYs7f3x8SieTqWUoCwU5wcnJCYWHhlpVQXAu7E2+Tk5NYWlqCn5+f8aqyoKAARUVFOHfunNHnbXZ2FmfPnkVOTo7xpBASEoLAwEB88cUXOHDgADgcDgDgs88+A4vFQkFBwYbjEovF4HK5KCsrQ25uLhwcHDb3RO2dmhrA0ZG57crz54GuLuBvf2Nm/e/yL/8CfPgh/WVhwo2iKMzNzRlF2mBGBjIqKxH/T/+EzvvugzIvD9HR0fDz82NGQAiFwN1309nK3/0OYCIblZ4OLCwA3d3AOk3IV4PFYhm3jsPCwoy3a7VajI2NGX8fbW1tkMvlAGjh7O/vb/xd+Pn5kW55gl3R3d2N2dlZpKSkMCbcABsTbx9//DEWFxeN250XLlzA+Pg4AODgwYNwdHTEyy+/jGPHjuGDDz6Aj48PAGD79u346KOP8Oyzz6K3txcSiQSfffYZ9Ho9HnroocvWeOKJJ/DUU0/hxz/+MQoLC9Hd3Y1PP/0UN954I4KDgzccO4/Hg0wmw4ULFyCXy5Gbm2u2vXObpK4OSExcd5bCZLz3Hl2Af4l3IGP8938Df/kL8MILwMGDTEcDAFAoFOjp6UFXVxe6urowOzsLgC5h8PPzg/J//geap5/GXZ9+CtZPfwpckulmhAceoOsDz55lJptr6IavqzOZeFsNLpcLPz8/+Pn5ISsrCwC9ZT00NGQUdCUlJVCpVGCz2fD390dYWBjCwsLg6+tLSj8INsvg4CCampoQHh7OeAbapsTbBx98gNHRUeP/z507h3PnzgEA9uzZs2qnFYfDwR/+8Ae88MIL+Pjjj6FSqRAdHY2nnnoKgYGBl903JycHv/3tb/HGG2/g+eefh0QiwT333IMHHnhg0/ELBAKjgKuurkZ2dvamj2m31NUBm8iEbgqKAo4dA268kTnxaKC4GPinf6IzbyvUS5kLnU6HoaEho1gbGhoCRVHw8PBAdHQ0QkJC4O/vD7FY/O2DjhwB8vLo17G+ns6kMkVqKuDjQ9edMSHevL0BT0/6fc2AABeLxVfU505OTqK/vx9dXV0oLS3F2bNnIRKJEBISYhRz5vC7IhDMwdjYGGpraxEYGLih+nZTw6IMLVkEs9LW1obvfe97eOWVV67oNF1YWABA76kTNoBSSZ/o//pX4PvfN//67e30du0XX9DCgynUajpj4+oKnDsHfLPNbw4oisLMzIxRrPX09EClUkEkEhlP7KGhodcu4u/qAuLjacuVP/zBPMGvxoMPApWVQEPDmh+i1+uhUCggEok2n5HaswcQieiGEwtDr9dfJs4HBwdBURTc3NyMv+/g4GCym0CwShYWFnDu3Dl4enoiPT19xazb1c7pW4FNZd5sBYNo0+l06OnpQVhYGOMpWquiqYku0F/BeNksHDsG8HjAN/WTjPHHPwIdHUB1tVmEG0VRGBwcRHNzM1pbWzEzMwM2m43AwEDk5eUhLCwM3t7e6xMxYWHA008Dv/413X0aH791T+Ba7N1LNy0MDgL+/mt6CJvNvjybuBmSkmhPPAuEzWYjICAAAQEB2L59O5RKpXFbvKOjA+Xl5cb3QmxsLGJiYsjFKcFqcHR0RGxsLIKCgizmXEzEmwUzNzeH1tZWLC4uIjk5melwrIf6eoDFYs7f7fhxID+f2W2+nh7gN7+ht0wTE7dsGYqiMDAwgObmZjQ3N2N+fh6Ojo6IiYlBeHi4abItP/0p7bX2+ON0BpGpD8/du+m1T5wAvlMLuxrLy8tobW1FdHT05puQkpJoQT43B2zUdsRMCIVCxMTEGLeXpqen0dXVhba2Nhw7dgxff/21UcjFxsYSIUewSJaXl7G0tAQPDw+EmMA83JQQ8WbBuLq6IiUlBdXV1eDz+ZfZkxCugqGo21QZj/WgVNJF7f/2b+Zf2wBFAf/4j4C7+5bEodfrLxNsCwsLcHJyMp6IAwICTFu0LhDQzRaFhbS5sAnqSzeEmxuQkUFnVtco3jQaDYaGhi7r5twwhkxyfT19cWBFGHzoMjIyoFAo0NraiubmZpw4cQLHjh1DQECA8f1DrJIIloBKpYJcLgebzUZBQYHFZNwMEPFm4fj5+UGlUqGpqQl8Ph/hW9xpZhPU1TG3ZVpaCigU9BYbU3z+OfDll8DHH5ss+6fX69Hf328UbIuLi3B2dkZcXJxRsG3ph9vOnbTB8E9/CuzfTwspJrjuOrp7l6LMnwGMjqbHvNXVWZ14uxSRSISUlBSkpKRAoVCgra0Nzc3NOHny5BVCbsPGxgTCJtBoNJDL5dDpdJDJZBYn3AAi3qyC0NBQqNXqy+YxElaBouiT27/8CzPrV1XRGT+mtmwB4Le/BXbtokdNbZKpqSnU1NSgtrbWKNji4+MRFxcHf39/836o/elPQGgoPW7sqafMt+6lyGTAM88Avb0mmcG6Lng82jKlrs68624hIpEIycnJSE5OhlKpNAq5U6dO4fjx4wgKCkJKSgri4uIY9dQi2A86nQ7l5eVQKBQW7blKxJuVEB0dbfy3SqUiXVurMTUFzMwwN2i9tpYWbkxZhNTX0wLy0083nBnSaDRoaWlBdXU1ent7IRQKkZiYiMTERPj5+TF3FertTdtkvP468K//ykztmyGjW1trfvEG0OKtvd3865oBoVCIpKQkJCUlQaVSoa2tDbW1tfjss8/w9ddfIyEhAampqfDx8bHITAjBNlCr1dBoNMjMzLToWkwi3qyMiYkJVFRUICsryzhrlXAJY2P0928MmM1OXR2Qm8vM2gAtbDw8gH371v3QkZERVFdXo6GhAUqlEiEhITh48CCio6MtJ+vx4IN088KFC7QHnLnx8aFrCevq1pTZFAgEiIyMNN3Flrc3Lc5tHIFAYLxgmJmZQU1NDWpqalBZWQlvb2+kpqYiISFh83NrCYRvoCgKer0eIpHIImvcvgsRb1aGm5sbXF1dUV5ejpycHFIT8l0MJs1eXuZfW6UCWlvp4epMoFbTwua+++gttjWgVCrR0NCA6upqjIyMwMnJCRkZGUhJSVl10DmjbN8OBAfTIpUJ8cZi0dm3NW5dCoVC03o+eXt/+x63E6RSKXbu3Int27ejs7MT1dXVOHbsGE6cOIHY2FikpqZalIUDwTppaWnB1NQUcnNzrWJKCBFvVgabzUZ6ejpKS0uNc1BN5iNlCxgyb0yIt+ZmQKtlrlniq6+AyUk6O3UNBgcHUVFRgaamJuj1ekRERGD79u2IiIiw7A8uNpvuNv3jH4Hnn2fGjiUpid6WXgNarRYzMzOQSqXGWcqbwsuLtgpRKumZq3YEm802TnlYXFxEXV0dqqurUV9fD1dXV6SmpiI1NdVia5QIlktnZye6uroQHx9v2Z9/l0DEmxXC5XKRlZWFCxcuoKmpCZmZmUyHZDmMjtINA0yc1A3ZGKaaFV57jbayWMXIVq/Xo62tDaWlpejv74dUKkVBQQGSk5MturbjCh54gDbt/egjZmxDkpKA//xPYH4euIatxdLSEuRyObZt22aaLLnhomRsjJ6da6c4OjoiNzcXOTk56O/vR3V1NYqKilBcXIzk5GRkZ2dbZuaYYHH09/ejpaUFkZGRFufldjWIeLNS+Hw+srOzwTHjyCOrYGyMmawbQE8zCAgAmBBCKhXtP/bHP17xI41Gg9raWpSWlmJ6ehqBgYG48847ERUVZZ1bTUFB9Jbp558zI94MzTCdnfTMU3Pi7U1/t3PxZoDFYiEoKAhBQUHYs2cPKioqUFFRgcrKSkRHRyMnJwcBAQFMh0mwUJaWllBfX4+goCCzjLQyJUS8WTHCb7ZNDF5JCQkJRMwxKd7Gxr49uZobw5ZtRobxpsXFRZSXl6OiogJKpRKxsbE4ePAg/Pz8mInRlGRkrHnr0uRcKqDMzaWZN8JliMVibN++Hbm5uaivr0dpaSleffVV+Pv7IycnB9HR0VazJUYwD2KxGDKZzCqb/4h4swFUKhWGh4ehUqmQkZFh3x9Qo6PMCSgmheMlW7YTExMoLS1FXV0dOBwOUlNTkZWVBalUykxsW8E6ti5Njqcn/Z0JAeXhQdf92VnTwnrg8XhIS0tDamoqOjo6cPHiRXz44YeQSqWQyWRISUkBn89nOkwCg8zNzWFqagqhoaFwd3dnOpwNQcSbDeDi4oKMjAyUl5ejtrYWKSkp1rkdZgrGxmgjVSYYHQWYmkFbVwdNUBA+PHIEHR0dcHJyws6dO5GWlmbM0NoUl46KMnfXqUAASKVrElCGwfQmu6DicGirEpJ5uyYsFsvY4DA8PIzS0lIcP34cRUVFSEtLQ3Z2Nmn2skMMdagODg4IDg622mQHEW82goeHB1JSUlBVVQWBQIC4uDimQ2KG0VFmt00ZWHtgYADc48cx4+CA+fl53HLLLYiPj7ftLfSYGNoOpa6OGcsQL681CSiDiDb52iTzti58fX1x8OBB7Nq1C3K5HBUVFSgrK0NWVhZyc3OJX5ydoFQqUVpaCj6fj6ysLKsVbgARbzaFr68vNBqNfW8JzM8DLi7mX5eizF7zNjw8jLNnz6KjvR3/2t8P7kMP4bHHHrOPrCufz+yoKG9v5rJfUiltF0JYNxKJBHv37sW2bdtw8eJFlJWVoaKiAtnZ2ZDJZLaZpSYA+HZeKQDIZDKrP08S8WZjBF3SgWbwl7IrtNo1G9SalLk52iTXUA+1hYyNjaGoqAgtLS1wd3fHnQUFED7zDISFheYdGdXRQduT9PbSxrkPPQRERJhv/aQkoKHBfOtdyhozb/Pz8ygtLUV2djacTVWbx+UCOp1pjmWniEQiFBYWQiaToaSkBCUlJUbfzMzMTKs/sROuhMViwdHREdHR0TaRaSXizUYZHh5GVVUV0tLS4Ovry3Q45kOrpU9u5kahoL9vYQ3N5OQkioqK0NTUBBcXF9xyyy1ISEgAu6WFvoMZhKOR118HHnmEFosURX//wx+AV181n32HhwdQVmaetb6Lg8O3v/OrQFEU1Go1KIoy3docDv0+J2wasViMvXv3IicnB+fPn8fZs2dRWlqKvLw8pKenW85YOMKG0ev1UKlUEIlESE9PZzock0HEm43i4+MDPz8/1NTUgMfjwcPDg+mQth6KAvR6ZsSb4WS6BWvPzMyguLgYdXV1cHJywo033ojk5ORva9qUSvq7ubZ8Ojpo4abXX/mzhx+ma9DCw7c+DqHw2+dubrhc5gQUk2vbKE5OTrjhhhuQk5ODc+fO4eTJk7h48SK2bduG1NRU264ftWEoikJtbS2mp6exc+dOq65x+y5EvNkoLBYLycnJ0Gg0qKioQE5ODlyYqAUzJ4atJBsRb8vLyzh79iyqqqrg4OCA6667DmlpaVeOWTK3eHvttdW3Z1ksOvv27LNbHwcRbwQT4+LiggMHDiAvLw9FRUU4evQoLly4gJ07dyIhIcE+6kltiKamJgwNDSE9Pd2mhBtAxJtNc+kc1N7eXiQzZWNhLky5NcXg2jqdDhUVFSgqKgIAFBYWIjMzc/UtHMPa5jqx9Pau/nwpiv65OWCxVs7+2cPapOZtS3F1dcWtt96K/Px8nDlzBp988gkqKipw/fXX21cZihXT3t6Onp4eJCYmwsfHh+lwTA4RbzYOh8NBVlaWaYZiWzqGrQ0mTmyG13eTa3d1deHYsWOYnJxEWloaduzYcW0vKkPGTaXa1NprJjj46pm34GDzxKFSAUwVHq+xMUYsFiMvL8+0fmJaLd1tS9hyPDw8cMcdd6Cnpwdff/01XnnlFaSkpGDnzp1wZGJ+MmFNKJVKdHZ2Ijo6+rImPlvCDs7oBEPGZmZmxjjI3ia7qdhsWjwwsaVkEG8bXHt6ehrHjx9HW1sbgoKC8P3vfx/ea7UdEQjo7+baQnzoIbo5YSUoiq57MwdK5bfP3dyssTGGy+WavuNbq6UbJghmIyQkBI899hgqKytx9uxZNDU1oaCgAFlZWaQezgIRCoXYvn07HGz474SINzuCz+djaWkJZWVlyM7Ots1sHFP1QBsUUCqVCufPn0dpaSkcHR1x2223IS4ubn21NU5O9PfZ2XWtvWEiIui6tocfvrzblKLo283RrADQz5ep7IdKtSbhqFQq0dXVhbCwMNN5iDHVUW3nsNlsZGZmIj4+HkVFRTh58iSqq6uxd+9eRJjTIoewKhMTExgaGkJiYqJNCzeAiDe7wjCE9+LFi6isrERmZqbNFXEyJt6kUnrbdmJiTXenKAr19fU4deoUFAoF8vPzkZubuzFrgoAAOhPT2Ajs3bv+x2+EBx6gu0pfffVbn7eHHzafcAPo5xsba771LmV8nLYquQYqlQrd3d3w9/c3nXjT6Yh4YxAHBwfccMMNSEtLw7Fjx/DOO+8gIiIC1113nVUOOLcVZmZmUFFRYTe/A/IJYGdIJBJkZmZCLpejoaEBSYYZkbaCWAwsLJh/XTabPpmvYWzR8PAwjh49isHBQcTFxWH37t2b6wTmcICEBKC2duPH2Ajh4ebpKl0JvZ6ea3rLLcysPzoKREYys/bCAtk2tQC8vLxw3333obW1FcePH8cLL7yArKwsbN++3TbLUiyYhYUFlJWVQSKR2GRn6UoQ8WaHuLm5IT093SZcpq9gjc73W8I1RiZpNBoUFRXh4sWL8PT0xAMPPIBgUxX3JyUBpaWmOZY10NUFLC19O6De3Jh5FJrFrE24DBaLhZiYGISHh6O0tBTnz59Hc3Mz9u/fj7CwMKbDswtUKhXkcjlEIhEyMzPtpgaRiDc7xeubAeo6nQ6jo6Pw8/NjOCITwaR4u8rA8L6+Phw5cgRzc3MoLCxEdna2aT9kkpJo/7U11mJZPYaZpkyIN62W3h7/5m/IrOj19PubibUJq8Lj8bBt2zYkJCTgyJEjeOutt5CSkoI9e/bY5kWyBcHn8xEYGIigoCC7mohBxJudMzo6iurqaqjVaoSEhDAdzubx9gYGB5lZ28sL6Oy87CaVSoVTp06hoqICgYGBOHz4MNzd3U2/dlISLSpaWgBb9/MDaPHm5cWMiJmcpJsz1rA2n89HcHCw6bbRZmbo3zPJvFkkUqkU9913H2pqanD8+HF0dHRg3759iImJYTo0m0Or1WJ+fh6urq6IiopiOhyzQ8SbnePn54e5uTk0NjaCz+dbfwbOywuoqmJu7ZIS4387Ojrw5ZdfQqFQ4Prrr0dmZubWObQnJtLfa2rsQ7zV1DC7ZQqsSbyJRCIkJCQwsjaBGVgsFlJTUxEeHo6vvvoKH3zwAeLi4nD99dcTbzgTodfrUVFRgfn5eRQWFtqmc8I1sP2qPsI1iY2NRUBAAGpqajA+Ps50OJuDyW3TkBCgvx/LMzP49NNP8c4778Dd3R1PPPEEsrKytna0jpMTIJMBf//71q1hKczMAKdOAbt2MbN+Rwf9fQ31ijqdDnNzc9CZyjjasC1PxJvF4+zsjDvvvBO33XYbenp68Ne//hV1dXWgmJwEYwNQFIXq6mpMT08jPT3dLoUbQMQb4RuSkpLg5eWFWXN5hW0V3t60/5e5pg1cApWQAGi1+Pszz6CtrQ033XQT7rnnHvPNlH3wQeD4cWBoyDzrMcV779Fbh/fey8z669iyXVxcxLlz57C4uGiatQ0XJmTb1CpgsViIj4/HD37wA4SHh+PTTz/Fu+++i7m5OaZDs1oaGhowOjqKtLQ0u7EFWQki3ggA6A+Z9PR0RH5jf2CyTIG5MZxQzZx9W1pawiff1LtFKZX4wQ9+gJSUFPMOsr7jDrpZ4c03zbcmE7z2GnDDDcwJmLo6ZrdsHRyYMycmbAixWIyDBw/i8OHDGB0dxV//+ldUVlaSLNw6UalUmJiYQFJS0ton0NgoRLwRjBiExsjICM6cOYPl5WWGI9oAhj9oM4q37u5uvPTSS+gaH4fa3x9ZQiGcDFMPzIlEAhw8CLz++uqD462dhga6pvGhh5iLgUnxNjpKsm5WTFRUFH7wgx8gPj4eX375JT788EMoFAqmw7IKKIqCQCDA9u3bERAQwHQ4jEPEG+EKXF1dweFwIJfLoWJg+3FTGDJvazDL3Sw6nQ6nTp3CW2+9BXd3dzz++OPgZ2aCVV+/5WuvyoMP0jVZFy8yF8NW8vrrtBnyvn3MrD8zA/T3M9cUQmxCrB6hUIgDBw4YB96/+OKL6OvrYzosi2ZwcBAlJSXQarV24+N2LYh4I1yBQCCATCaDTqeDXC6HRqNhOqS14+lJbysZisq3iJmZGbz22mu4ePEiCgsLce+999LZtqQkOjPDVOZr+3a6kP7ll5lZfytRKIC33qJr3ZjyczII8zVm3lgsFrhcrum2z9vb6cYYgtUTExODxx9/HFKpFG+88QaKioqg1+uZDsviGBsbQ21tLZydne22OWEliHgjrIiDgwOysrKgUCjQ3NzMdDhrh8MB4uO/NXHdAhoaGvDSSy9heXkZDz30EPLy8r4dx5KcDExN0fM+mYDNBv7pn2iRU1nJTAxbxe9+B8zPA48/zlwMlZWAUAis0VfK2dkZ119/PZydnTe/tmEkmK2NtLNjJBIJ7r//fhQUFKC4uBhvvPGG9TeNmZDp6WlUVlbCy8sLiQY7JAIAIt4IV8HZ2Rkymcz6DCYN2S8To1ar8dlnn+Hjjz9GZGQkvv/978Pf3//yO23bRgvIkydNvv6a+cEP6Fmnjz1GDzG3BVpbgT/8AfjXf6VnqjLFiRP075iJDEBPD7C4SMSbjcFms7F9+3Y8+OCDmJubw0svvWRdF8xbhFqtRnl5OaRSKdLS0szb/GUFEPFGuCouLi7g8/lQKBRoa2tjOpy1kZQENDcDarXJDjk8PIz//d//RXNzM26++WbceuutEAqFV97RxYX2Wzt2zGRrrxsuF3jxRbqw/6WXmIvDVFAU8MQTQEAALd6YYnkZKC4GrrtuzQ9ZWFhAUVERFhYWNr8+kyPBCFtOYGAgHnvsMYSGhuLDDz/EF198YV0lKyaGz+cjKSkJGRkZdjFofr2QV4SwJmZmZtDe3o6WlhamQ7k2SUmARkNnazYJRVEoLS3Fq6++Cj6fj+9///tITk6++lXg3r3A6dN0DEyRkwM88gjw85+bpXljS3n3XeDsWeCvfwWYnBN57hztH7h375ofotfrsbCwYJpapro6uqaTdJvaLCKRCIcOHcL+/ftRX1+Pl19+GWNMmY4zhEqlQn9/PwDAx8fHruaVrgci3ghrwtfXF3Fxcejs7ERXVxfT4VwdwziiTW6dqlQqfPjhhzh+/DiysrLwyCOPrM0U8rrr6NosuXxT62+a3/8e4POBH/+Y2Tg2w+ws8C//Atx227oyXlvCsWN09o+pMgImLUoIZoPFYiEtLQ2PPvoo2Gw2XnnlFdQz2cFuRjQaDeRyOdra2uw667gWiHgjrJnQ0FBERESgubnZeGVkkUgkdMflJsTb9PQ0/va3v6G7uxt33nkn9uzZs/YW9dRUwM2NnnbAJG5uwH/8B525euMNZmPZCDod8MAD9Hblf/0X09HQv8+9ewGmam/q6r6dYUuweTw8PPDII48gLi4On3zyCU6cOGHT3ag6nQ4VFRVQKBSQyWQk43YNiHgjrIvo6GiEhIRY/h/WJpoWOjs78fLLL0Ov1+ORRx5BdHT0+g7A4QB79gBffbWh9U3K/ffT26ePPkpvPVoTP/sZ8MUX9DgsPz9mY+nuprfh17FlalLm5ugOZpJ5syt4PB5uvvlmXHfddZDL5Xj77bet0zz9Ghjmlc7OziIrK4sZk3Mrg4g3wrqJj4+Hj48PAFjuB8kG/NYoisKFCxfwzjvvICAgAN/73vfg4eGxsfVvuw2orQUaGzf2eFPBYgEvvAAUFAC33vqtT5ml8/zzwH/+J/39xhuZjoa2XhGL17116+DggIyMDDg4OGxu/XX6yxFsBxaLBZlMhnvvvRejo6N45ZVXbK4OTqfTQavVIj09HVKplOlwrAIi3ggbpre3F8XFxZY5ZDk5GZiYWPOQdrVajY8//hgnT55Efn4+Dh8+vHI36Vq58UbA3Z2eCMA0PB7w0Ue0uWthIdDUxHREV+fFF2mvup/+FPiHf2A6Gtpf7Y036Nmx65wpyuPx4O3tvflMdU0N/XtcbxaYYDOEhITg0UcfhUAgwN/+9jebsRNRq9XgcrnIzs6Gp6cn0+FYDUS8ETaMv78/HB0dUVZWhqWlJabDuZy8PDrrdPr0Ne86OzuL1157De3t7bj99tuxc+fOzbem8/nAPffQGRtLKLyVSGjvOV9fYOdOOitoaVAU8D//Q9uC/OhHwHPPMR0RTXExvWX54IPrfqhKpUJHR8fmx8ydOkV3EPP5mzsOwapxcXHBww8/jKioKHz44Yc4ffq0VdfBdXZ2oqioCGoT2jrZC0S8ETYMl8tFVlYWeDwe5HI5lEol0yF9i4cHkJZ2Tb+1np4evPzyy1CpVHj44YcRGxtruhgeeojO/llC7RtANzCcOkXXj8lktFCylAH2s7PA4cPAD39IZ93+/GfmGgO+y2uvARERQG7uuh+qVCrR2tq6ub8NtRo4c4b5bluCRcDj8XDw4EHs3r0bJSUleP/99y3rs3eN9Pf3o6WlBUFBQeCTi5J1Q8QbYVPw+XzIZDLo9XrLsxC57jo627TClAGKoiCXy/HWW2/Bx8cHjz76KLxMPfA7IYEWkJawdWrAw4MeWv/oo7RQuukmYHKS2ZguXqS3ub/+Gnj/fcsSbnNzwMcf01k3pmK6cAFYWiLijWCExWIhNzcXd999N/r7+/HKK69gYmKC6bDWzOjoKOrr6xEcHIyoNY6aI1wOEW+ETSMSiZCXl2d5Y7T27qXnjFZVXXazXq/H0aNHcezYMchkMtx9990QbZX560MP0Zm34eGtOf5GEAqBv/wFOHKEFk5JSXRmx9zodPS80m3b6O3cujq6rsySeO892pj3vvuYi+HYMcDLi9iEEK4gPDwcjz76KDgcDl599VX0MjVTeR1otVrU1tbCx8cH8fHxTIdjtRDxRjAJIpEIbDYb09PTqK6utow6DJmMrvW6xG9No9Hgww8/RFVVFQ4cOIA9e/Zs7eiVu++mi9z/+MetW2Oj7N9PC6aoKGDXLtpWpKFh69fV6YBPPgGys4Ff/hJ46il6ekFw8NavvR60Wton79ZbmbUqMfjLkRFBhBVwdXXFww8/DF9fX7z11ltosvCGJC6Xi5ycHKSkpJB5pZuAfBoQTIpOp8PIyAhqa2tBMV1PxeXS3ZXf1L0pFAq8+eab6Orqwp133onU1NStj0EioYvvX3oJGB/f+vXWi58fvbX8/PO0D1xiIi0UTpwwfT3c0hJdZxcVBRw8SI+6KioCfvMbZga9X4t336X93X7xiw0fgsfjbW7Ez/AwLbCZ8pcjWAUCgQB33303YmNj8dFHH0HO9HSXFVhaWkJTUxP0ej2cnZ3JvNJNQl49gknx8PBASkoKhoaGLKOV/brrALkcc729ePXVVzE1NYX7778fkZGR5ovhRz+ixcmf/mS+NdcDh0PXv3V1Ae+8Q9fA7d1Lb6e+8grQ2blxIadWA+XlwNNP06Ol/umfgPR0+rbiYnrL1BIxbOnedNOmvNUcHByQnp6+cZ+3EyfoWrvduzccA8E+4HA4uPXWW5GTk4Njx47hxIkTzF9Af4NSqURpaSnGx8ehW6EGmbB+LPByl2Dt+Pr6Qq1Wo6GhAUKhEGFhYcwFs3cvoNej+Fe/gi4tDQ8//PDa5pOaEldX2q/sL3+hvcvc3c27/lrh8YC77qK7PouKaLH56KP0z9zc6G3orCz6e2IivR0sEtHbeRoNoFDQwq+igp7rWlYGVFfTNWOOjvSkhx/9yPK2R1fiww+B9nY6+7YJ9Ho91Go1+Hz+xjINx4/TYnejZtEEu4LFYmH37t1wcnLC8ePHsbCwgJtvvnnto/22AMO8UgBk7JUJIeKNsCUEBwdDr9fDnWGh0qPTwcnDAxHd3dj5wgtwXKfJqsn453+mtyb/67+A3/6WmRjWCosF7NhBf01N0VmysjJakP3nf9K2HpfC4VzZ0RsSQou8O++kvyclAQKB2Z7CptDr6d/R9dfT3cKbYGFhAefOncO2bdsgkUjW92Cdjs68PfHEpmIg2B8ymQxOTk745JNPsLS0hDvuuAMCBv7+dDodysrKoFKpkJubu3WNYXaITYk3tVqNV199FSdOnMDCwgLCwsLwyCOPICMj46qPu/322zE6Orriz/z8/PDee+8Z/79tlW2eRx99FPfcc8/Gg7dBQkNDAdDZh9nZWbi6upp1/YaGBnz22We4NTMTsaWlYDF5xefhQZ+E//IXOgvn7c1cLOvBzY0WMddfT/9frwc6OoCWFnpgvEJBb42KRPSXRAKkpgLW7JT+7rtAczPwt78xG8fp08D0NN1YQiCsk7i4OIjFYrz//vt4/fXXcffdd5t9ZiibzYZUKkV8fDxzF842ik2Jt2effRZFRUU4dOgQ/P398fXXX+NnP/sZnn/+eSRepc3+hz/8IRQKxWW3jY6O4m9/+9uKwi89PR3XfcdzKSIiwjRPwgbp6upCe3s7MjMzNz4rdB1QFIXS0lKcOHECSUlJiL7lFrASEugh57fdtuXrr8pTT9Fjln78Y7q2zBphs+mGA1v1ZpqdBX7yE+DQIboblklefx2IiQGucfFJIKxGcHAwHnroIbz99tt49dVXcc8995hlN4SiKCwsLMDZ2RlxcXFbvp49YjPirbm5GadPn8bjjz+Ow4cPAwD27t2LBx54AC+++CJefPHFVR+bn59/xW3/93//BwDYvUKhcEBAAPbs2WOiyG2fsLAwTE9Po6KiAjk5OXBxcdmytSiKwsmTJ3Hx4kXk5+dj586ddDt6VhbtlM+keHN1pa0nHnyQ9n8rLGQuFsLK/OIXdFfsn//MbBwzM8Cnn9KduMROgbAJPD098fDDD+Odd94xCji/Lba+aWpqQn9/PwoLCxnZrrUHbKbbtLi4GBwOBwcOHDDeJhAIsG/fPjQ1NWFsbGxdxzt16hR8fHyQkJCw4s9VKtXm5xXaCWw2G+np6XB2dkZZWRkWFxe3ZB2KovD111/j4sWLuP7661FYWPitj9BDD9HF32scVL9l3H8/kJ9Pb6GS949lUVkJvPACLZiY9HUDaHNgrRa4915m4yDYBBKJBA8++CDc3d3x5ptvYmBgYMvWam9vR09PD+Li4ohw20JsRrx1dHTA398fYrH4stsNrv+dnZ1rPlZ7ezv6+vqwa9euFX9+7Ngx7NmzB7t378a9996LkydPXvOYk5OTaGtrM3719fWtOR5bgMPhICsrCwKBYN1Cei1QFIWjR4+ivLwc+/fvR1ZW1uV3uOMOumD+rbdMvva6YLFogdDdTWfhCJaBTgc89hjdRfsP/7DiXTQaDZaXlzE/P4/p6WnjRYhKpUJXVxfa2trQ1NSExsZGo02Os7MzwsPD0dvbi4aGBjQ0NKCxsRHz8/MAgPn5eQwMDGBkZAQTExOYnZ2lSzhefx244QbrqY0kWDwikQj33HMPvL298dZbb6G/v9/ka/T29qKtrQ3R0dEICgoy+fEJ32Iz26ZTU1MrWkAYbptcx/xGgxhbacs0Pj4eO3bsgI+PD6ampvDJJ5/gN7/5DZaWlnDzzTeveswjR47gjTfeWHMMtgiPx0N+fr6xbZ2iKJM4bFMUhS+//BLV1dW46aabkJKScuWdJBLaGPa114Ann2R2Kyo+nu4+/d3v6G7M8HDmYiHQvPgiUFWFySNHMN/fD6VSCaVSicjISDg6OqKpqQnd3d2XPSQoKAiJiYlQqVRob28Hl8sFl8sFm80G9xvTYRaLheXlZSwtLQGg36sURcHHxwcAMDY2htbW1suOG7q8jLjKSqg/+ABnjh2DUCiESCSCUCiEUChEZGQkWCwWFAoFuFwusV4grBmDme+7776Lt99+G3fffbfJRJZOp0NnZydCQ0NJDbgZsBnxplKpVvwQ4/P5xp+vBb1ejzNnziAiIgLBK/hRvfDCC5f9/4YbbsAjjzyCl19+Gddff/2qaeIDBw4gNzfX+P++vj781tItI7YAg3AbHBxEb28vZDKZ8US3ESiKwpEjR1BbW4ubbroJycnJq9/5wQeBt9+m53le8rtghP/3/+iB54cPAyUl1mOjYcVQFIWlpSUsLCxgYWEBi4uLUKvVkInFwE9/isEDB1ADgN3SYhRLBkNRf39/uLq6GsUSl8s1frY4OzvjekM37ndYWlqCSqVCWlraFbsCAN3oFBYWBp1OB41GA61WC9HTT9Pdyfv2IXxkBEqlEgqFAvPz85iamjIO8i4vL8f8/DwEAgGcnJzg6OiI4OBgODk5Qa/XEwd7worw+XzcfffdeO+994wCbqVz3XrhcDjIz883/l0QthabEW8CgQAajeaK29VqtfHna6G2thYTExM4dOjQmu7P4/Fw66234k9/+hPa2tpW7Wp1d3dn3PPMknBycsLCwgIqKyuRmZm5oRONXq/HkSNHUFdXh1tuueWqHcUAgO3baYPY115jXryJxbQRbE4Obdz7l78wG4+NodFoMDs7i5mZGQgEAgQFBWFpaQlnz54FQJ/AHB0dIWGzQR06BFZkJKSvvorrJJIVLwIlEsn6fdpAD+GempqCVqtd9T5sNhtsNpteV60G3n8fuPde8MVihF8lK5uUlISlpSUsLi5icXERU1NT8Pf3B0CXfvT29hpFnYuLC9zd3VcUkAT7g8fj4fDhw3j//ffxzjvv4PDhw0Zrp/UyMzOD1tZWpKenkxo3M2Iz4s3NzQ0TExNX3D41NQUAaxZOJ0+eBJvNXrXebSU8v/G0MtSxEK6NRCJBZmYm5HI5ampqkJqauq4tVL1ej88++wyNjY04ePAg4uPjr/0gNht44AF6SPzzz9Ou/0ySlkZPMfjhD4GCAnpbl7BuKIqCXq8Hh8PB2NgYmpubjfVoPB4PAQEBAACxWIycnBw4OTnR2QGKAu65h25iqaqC2BIurr76ip5S8dBD17yri4vLqp3bXl5e4HA4WFhYwOzsLAYGBhAWFoaYmBgsLi5iYGAAUqkUUqmUnHDtlEsF3LvvvovDhw+vexrO4uIiysrK4OTkRDK9ZsZmxFt4eDhqamqwtLR02dWloXD4alewBtRqNYqLi5GcnLyuLNnw8DAAbKkFhi3i5uaGtLQ0VFZWoqOjY83zRvV6PT755BM0Nzfj4MGD6/MReuABupvw1VfpUU1M84MfAOfO0Sfr5GSAyVFiVoLB9Hl8fBzT09OYnZ1FREQEIiIiIBAI4ObmhvDwcEilUojFYuNFAYvFurwu9pVXaEPe994DzDnrdjUoip5gkZVF10VuAoMwM6DT6aDX6wEAy8vLGBwcNDZxiUQi+Pj4ED8uO4TL5eLOO+/Ehx9+iPfeew933HHHmuvVFAoFSktLIRKJkJmZyegILnvEZqTy9u3bodPpcOTIEeNtarUaR48eRWxsLLy8vADQBcKrdXrK5XIsLi6u2KgAALPfHQsE+oPwo48+gkQiMdaiENaOt7c30tPT11xzodPp8PHHH6O5uRmHDh1a/wknKIjOtjz3HKBUrj9gU8Ni0SLCwwO4/XbLiMkCWVpaMpZFNDc348KFC+jr6wOfz0dUVBS8v+nKdHFxQWJiIgICAuDo6Lh6Nre2FvjHf6Q7TO+800zP4hoUF9P1j08/bfJDczgc43awp6cndu/ejV27diE9PR2+vr7G7JtSqcSZM2fQ0NCA0dHRq273EmwDLpeL22+/HeHh4Xj//ffR3t5+zcfo9XrI5XKw2WxkZWWRphkGsJnMW2xsLHbs2IGXX34Zs7Oz8PPzw7FjxzA6Ooonn3zSeL/f/e53qK2txblz5644xsmTJ8Hn81FQULDiGp988glKSkqQk5MDLy8vTE1N4ejRoxgbG8PTTz9N3sAbxHDiVSqVmJycNNbtfBe9Xo+PP/4YbW1tuP322xEdHb2xBX/+c9oy5LXXLGNupEQC/P3vdP3bvfcCH3xAb/HaMVqtFhMTE8av5eVlJCUlITAwEMHBwfD394dEItlYt/LAAHDjjUBc3Jab8YpEIiQlJa1tpuNvfkNnX2+8cUtjMiASiYxZNwMURcHd3R3j4+Po7e0Fi8WCp6cnMjMzzRITgRm4XC4OHTqEjz76CB988AFuv/32qyYj2Gw2wsPD4erqCqFQaMZICQZsRrwBwM9//nN4eXnh+PHjWFxcRGhoKJ577rmrdyB+w9LSEkpLSyGTyVadwZaQkIDGxkZ8+eWXmJ+fh1AoRExMDJ588kmkbXKANQEYGBhAa2srWCzWFQ7gFEXh888/R2trK+64447NZTkjI+lsy7PPAg8/bBmdnikpdKH6rbcC//IvtKiwM2d9jUYDDocDNpuN2tpajIyMwNHREV5eXvDw8DBueW5qRuLsLD2nlcsFvvwS2OITD5/PR2Bg4LXvWFICnDlDdyAz+HsXiUTGxp+lpSVMTEwYs286nQ7FxcXw8vKCj48PpFKpSax+CJYBh8PBbbfdho8++gh///vfcffddyMkJOSy++j1eoyNjcHHx8dYS0pgBhZFURTTQdgjbW1t+N73vodXXnmFbLdeQm1tLQYHB5GZmWlsBKEoCseOHUN5efnamxOuRXMzXVf00kvAo49u/nim4qWXgMcfB/793+lZqDaORqPB6Oio0aQ2LS0N3t7eWFxcBIfDWVvGaq0sLwPXXQc0NQEXLgAbzdyuA7VajdHRUXh7e1/dQmHvXmB4GKirs9isq0qlQkdHB0a+sS8RCoXw9fUltXI2hlarxXvvvYeBgQHcf//9xgtpiqJQVVWFsbEx7Ny507R/mzaAuc/plvkpQbBbkpKS4OXlhcrKSkxPTwOgR5+VlZVh3759phFuABAbSw8ff/ZZYAWLGcZ47DHg3/6N3tr97/9mOpotpbm5GSdOnEBtbS00Gg1iY2ONRfaOjo6mPTmoVMAttwDV1XTGzQzCDaCLuuvq6uipCatRVgacOAH88pcWK9wA2m4pPj4eu3btQm5uLnx8fIz+mRRFoaWlxfg3S7BeuFwu7rjjDnh5eeHtt982ujgY6iDT0tKIcLMAbGrblGD9sFgspKamoqKiAiqVCnK5HEVFRcbiapPyi1/Q45Defps28LUUfvUrYGGBLqjn84Hvf5/piEzC9PQ0+vv7ERISAolEAqlUaqy52tK6GaWSHo9WXAwcPQpkZ2/dWhvhN7+hxaSVWMWwWCy4urrC1dXVeJtCoTB2sIrFYgQGBiIgIIDYkFgpfD4fd911F9544w28+eabyMvLw/j4OJKTk401ygRmsdzLPILdwuFwIJPJMD4+jmPHjkEmkyEvL8/0CyUk0NmYf/93egi4pcBi0XNPf/jDbzNxVlrdYJj7efbsWVy4cAFTU1PGbI2Pjw9CQkK2VrjNzAB79tCZrU8+AXbu3Lq1NkJ1Ne3t9otfAFZsteDg4IBdu3YhJycHUqkUbW1tKC0tNf6cVOdYHyKRCPfeey84HA7ee+89BAUFkTo3C4Jk3ggWSUdHBz7//HN4e3uDx+NBpVJtzVX8L38JpKYC77wD3H+/6Y+/UVgs2kjYx4feQh0cpOvhNjFKzFxcaprb3d2N7u5u+Pj4ICEhAW5ubuYrcu/vp5sTRkfpZgBLy7gBtDCPiKAzg1aOwUfPzc0N8fHxWF5eBkAbuZaWliIgIACBgYFwcHBgOFLCWnFwcMADDzyAV155BaWlpYiKiiLZVAuBZN4IFsfg4CA+/PBDRERE4J577oFOp0NZWdmK4882TUoKXfv25JN0J6IlwWLRTQtvvAH83/8BN98MfDPg3BLRaDTo6urC6dOnjUPcw8LCsGfPHqSmpsLd3d18wq2hgbZeWVqiZ9kyJNy4XC7c3NxWnt979CjwxRf0tqkViPL1wOPxjOPE2Gw2vL290dPTg9OnT6OsrMw4+YZguYyNjeHMmTMQCAS47777MDMzgw8++IB4/1kIRLwRLIrJyUm8++678PHxwW233QZHR0fIZDIsLy+joqLC6BJvUv78Z/ok/4tfmP7YpuD+++mTfFERve03MsJ0RJehVCrR3NyMU6dOobW1FW5ubkZTbD6fb37/w1OngLw82vi4tBRgsJvbMJLripmiy8vAP/wDsGsXbc5swzg4OCAhIQF79uxBcnIylEqlcSqNXq/fmr9pwqaYnp5GVVUVJBIJhEIhvLy8cOedd6K/vx+fffYZ2Qa3AIh4I1gM8/PzeOutt+Do6IjDhw8bT/rOzs7IzMzEzMwMurq6TL+wnx/wzDPACy8AVVWmP74puO46uuB+YIBusvjqK6Yjgk6nA0Bvi/X39yM4OBiFhYVISUmBs7Oz+QPSaOgt5j17AJmMfr0uMaBlAsMW8hUnu2efpWeq/vWvduPnx+FwEBAQgIKCAsTGxgIAent7cfr0aXR2dm5NZp2wbubn51FeXg4XFxekpaUZs+XBwcE4ePAgmpqacOzYMSLgGIaIN4JFoFar8e677wIA7rnnnita0V1dXZGbm7vuwclr5oc/pBsYHnsM+EaUWBxpabQPWFYW7cL/T/9EW2CYEYqiMDY2hosXL6KsrAwA4O7ujl27diEmJoY5t/XubiA/n270ePZZ4OuvASYE5HeYn5/HV199hfn5+W9vbGujx7M9+aRlzFRlAMMcTE9PT3h6eqKtrQ2nTp1CU1PT1W1VCFuKXq9HRUUFHBwckJmZecWw+ZiYGOzbtw9lZWWQy+UMRUkAiHgjWAAUReGTTz7B9PQ07rrrrlWzNi4uLmCz2ZiZmVnT/L11weUCL74IVFYC//u/pj22KfHwoLdQ//IXOt6sLKC11SxLj42N4dy5cygvL4der79sHu2KNV3m4r336LFS4+P0pIInn7RcvzSKokeyBQTYhQnztXB0dERSUhJ27dqFkJAQDAwMYG5ujumw7BY2m42UlBRkZWWt+jednp6OvLw8nDhxAh0dHWaOkGDAQj/hCPbEmTNn0NbWhttuu81YK3U1Zmdn0dbWZvot1Jwc4JFH6K230VHTHtuUsFh0prC8nM68paXRmZwtzMJptVrU1NSAx+MhJycHeXl58PX13bL11sTAAD3m7K67gP376WHzWVnMxnQt3nuP7nz9618BYnRqRCAQIDo6Grt37zZ+BlRUVKCxsRFKpZLh6GwfjUaD9vZ2UBQFV1fXa3aUFhYWIjIyEh999BHGx8fNFCXhUoh4IzBKfX09zp8/j127diFyjVtIISEhiIiIQHNzMwYGBkwb0O9/T2fhfvIT0x53K0hKojOFjz4KPP00Pe7riy9M5gk3NTWFsrIyqNVqcLlcFBQUICcnxzhjlDEUCrpGMSqKbuJ4+236ywK2Sa/K7Cw9t/a22+gaRsIVcDgcsFgsUBQFFxcXDA4O4syZM2huboZarWY6PJtEp9OhoqIC3d3dRnuXa8FisXDrrbfCxcUF77333pofRzAdRLwRGGNwcBBHjhxBcnIycnJy1vXY6OhoBAUFoa6uDqOmzJK5uQF/+APt+3b6tOmOu1WIxXS3bH09EBICHDhAC4OWlg0fcmZmBnK5HBcvXoRKpTKa6jI+EoeigI8+AmJigN/+lu7WbG8H7r7bOor+n36a7mr+85+ZjsTiYbFYiIiIQGFhIcLCwtDX14eioiLSmWpiKIpCdXU1ZmdnkZmZeWVX9FUQCAQ4fPgw1Go1PvjgA2MDE8E8EPFGYIS5uTm8//778PX1xY033rgh/6+EhAQEBgaaXlQ88ACwfTtw333AN3P9LJ7YWOD4ceCzz4DOTrr54vvfp8XNOmhra0NJSQmUSiXS09Oxbds2ODk5bU3Ma4Wi6AaEggLaky8hAWhspEW2hWfbnJycsHv3bjgVFdHdzL/7HeDvz3RYVgOPx0NUVBQKCwuRnJwMNpsNrVaLnp4eIuRMQF1dHcbGxpCenn7ZuLO14uLigjvuuAODg4P46quvSAeqGSHijWB21Go13nvvPeMA5I0Wu7NYLCQmJkIikUCv12PJVAa2bDa9DafRAPfeC1jLSYLFAm66CWhupkd+ff45PTPz5puB8+dX3U7VarXG187HxwepqakoKCiAD8M2G1CpgNdeo7eDb7iBnlFqMLa1ki5NNpsN4dgY2A8+SGdFf/hDpkOySvh8Pjw9PQHQXpBNTU0oKirC2NgYw5FZLxRFGRsUDK/tRggMDMT+/ftRXV1t7EAnbD1EvBHMCkVR+PTTTzE9PY3Dhw+vK01/NZqbm3HhwgXTCTg/P1rAnThB18FZEwIB8LOfAb29wCuvAB0dwLZttPfZBx/QIgj072JwcBBnz55FTU0NANpTz8/Pz3yTEFZidJTOUAUF0Q0kERHAuXNAWRk97sqKWJ6dReW+fVh2dKQnZVjD9q6F4+3tjW3btkEkEqG8vBxlZWWm+7u3E5RKpfHi18/Pb9PHM5S+HD9+nHSgmgki3ghm5ezZs2htbcXBgwfX1Fm6ViIjI8Hj8SCXy03XnbZnD12n9Mtf0oav1oZQCDz8MD0q6uhRwNGR7s709IT60CG0PPss6uRyuLq6Ii0tjdlYR0aA//kferva15euabvlFtoG5bPPaA83KxQ+mqefxkhrKzRvvAFIpUyHYzM4OzsjOzsb6enpWFxcJN5w66C/vx+nT5/GwsKCSY+7a9cuRERE4KOPPsKEtZSbWDFEvBHMRkNDA86dO4fCwkJEmXhkEZ/Ph0wmg16vh1wuN51b+7/9G521OnwYsNYtGjabzlidPg20tED/k59AVVWF2Kefxg0PPIC0P/4Roi++AAYHzReTTkc3WfzlL/Tr6+cH/PM/Aw4OwN/+Rk8fePFFq9keXZHPPqPr3B58kLZzIZgcHx8f7NixA+7u7gCAyspK9Pf3k9qrVRgdHUV9fT0CAwNNXsvKZrNx8OBBSCQS0oFqBoh4I5iF0dFRfP7550hKSkJubu6WrCESiZCdnX3Z7MRNw+EA775Li4177rHc6QtroL+/H8rgYLB/9SuwGxpAtbSA9dRTdGfqHXfQxrH+/sDBg/SkgnPngMXFzS9MUcDwMF2D99RT9HxWFxfa6uQnPwGcnOjatvFxOkP40EPABoqnLYqeHrrx5cYbaQ86wpZhmAKg0+nAZrNRV1eHixcvYtEU710bYmpqClVVVfDx8UF8fPyWrGHoQFUqlfjoo49IU8kWwqAtOsFeUKlU+Pvf/w53d3fs379/S+upHB0dsX37dtOOafLxoQXc7t10I8Avf2m6Y5uB5eVl1NXVYXJyEgkJCQgODqZrDaOj6W3hp5+mty3LygC5nP76t3+jh6cDtNDy96ezY/7+9JenJ8Dn0554HA6g1dINHgoFLdQGB+mvoSH6u8FA2MeHrr375S/p72lptN2JLaFW02LY1ZXeCq6vZzoiu4DD4SA1NdVoIVRcXIyYmBiEhoYyHRrjUBSF+vp6uLm5ISUlZUs/g6VSKW677Ta89dZbOH/+PAoKCrZsLXuGiDfClkJRFL744gssLi7i+9//vlnGKBmE2+DgICYnJ5GUlLT5D6vCQuBXv6JFTUaGVZisUhSFnp4etLa2GreVPTw8Vr6zjw/dlXrzzfT/tVqgqYmulzMIsKEhWogcPUpbqGi1Vx5HKKRr1gxiLyuL/ndAAJCeTv/bCmvX1gxFAf/4j/QM2gsXIPT2RrRazdzMVzvEzc0NBQUFaG9vZ7bxxoJgsViQyWTg8XhXzCvdCkJDQ1FQUICioiIEBgYiJCRky9e0N4h4I2wpVVVVaGxsxKFDhzbkI7QZ2Gw2BgYGwOPxEBcXt/kD/vKXQFUV7ZBfXGzxdUxLS0toaWlBUFAQoqOj1yecuVx6WzMpafX7UBQt4HQ6gMejM3D2zu9/T8/G/dvfgPR0CABEREQwHZXdweFwEBMTY/x/U1MTOBwOIiMjzSJeLAWlUommpiYkJiaa3WR727Zt6O/vx8cff4zHHnsMjo6OZl3f1rGfdzHB7IyMjODYsWPIzMw0jXhaJ76+vkhISEB3d7dp2tc5HOD994G4ONp3rLt788c0MXq93mhg6ujoiMLCQsTHx29NxpPFokWbUEiEGwC8+SY9F/f//T+6yxf0zMjR0VHTNdAQNgSfz0dXVxeKi4sxPT3NdDhmQaPRQC6XY2ZmBtqVsuRbDJvNxq233goA+Pjjj0n9m4kh4o2wJSiVSvz973+Hh4cH9uzZw1gcwcHBiIqKQmtrKwZN0U0pFgNffkk7+193HTA5ufljmoilpSWUlJSgqakJU1NTAEC268zFyZO0YHv4YVq8fcPy8jIqKipI5x3DREREYNu2beByubhw4QJaNjE+zhrQ6XQoKyuDSqWCTCZjbLSdo6MjDh48iN7eXpw7d46RGGwVIt4IJsdQ57a0tIRDhw6Zpc7takRGRiIuLm71eq/14uEBHDsGzM3RFhzz86Y57iYYGBhAcXExtFot8vPzTfdcCdemtJT2pNuzB3jpJduu6bNinJyckJeXh5iYGEYyUeaCoihUVlZifn4eWVlZjG9XhoSEYPv27SguLka3Be5WWCtEvBFMTkVFBZqamnDTTTeZvc5tNUJDQyEQCKBUKk2zbRIWRs8S7eyk7SAYzKxMT0+jtrYWvr6+2LZtGyQSCWOx2B21tbSAT00F/v53ulaQYLGwWCyEh4cjISEBADA0NIShoSGGozItLBYLXl5eyMjIgIuLC9PhAADy8/MRGhqKjz/+2OTmwPYKEW8EkzI8PIzjx48jKysLsbGxTIdzBW1tbZDL5Zidnd38wZKT6YHp1dV05sVgh2EmDCOBXF1dkZeXh+TkZMaznHZFSwudbYuIoLfSHRyYjoiwTqamplBdXY3a2lqbyMYZLkyDg4MtKvtuqH9js9mk/s1EEPFGMBmGOjdvb2/s3r2b6XBWJD4+Hs7OzigrKzONiadMRg9KP3cOOHSI9jnbYiiKQkdHB86ePWsczC0lo5fMS0sLsGsX4OVFb6E7O694NzabDScnJ7vqcLQmEhMTkZKSguHhYZw7dw5zc3NMh7Rh2tvbceHCBYt9DmKxGAcPHkRfXx+KioqYDsfqIZ8oBJNAURSOHDkChUKB2267zWIzQBwOB1lZWRAIBJDL5aaZibhjB/Dpp8CpU/QJfQu72VQqFeRyOVpbWxEeHm5RV9d2Q0kJkJtLm/CePAm4ua16VycnJ2zfvt3ko4gIpsPf3x8FBQXgcrlobGxkOpwN0dvbi7a2NkRHR1t02URwcDB27tyJ8+fPk/q3TULEG8Ek1NfXo7m5GQcOHLD4LBCPx4NMJgObzTbdVep11wFnzwLt7fSJva/PNMe9hKWlJZw7dw6Li4vIzs5GdHQ0yeiYm08/pSdtJCUB588D3t5MR0QwAWKxGHl5eUhPTwdA/63prGQU3vDwMBoaGhAaGmoVnoJ5eXkICQnBZ599BqVSyXQ4Vgv55Cdsmvn5eXz99ddITEy0yDq3lRAKhdi+fTu8vzn5mqQGIysLuHCBrn3LzqZd9k2ISCSCt7c38vPzjYO4CWbkhRfoua8HDtBbpWsoBjf8bcxbQEcy4eqw2WwIBAJQFIWKigqUlJRYhcVLb28v/P39reazl8Vi4aabboJKpcLXX3/NdDhWCxFvhE1BURQ+//xz8Hg8XH/99UyHsy4MWavW1laUl5ebRsBFRtLWET4+QH4+cObMpg6n1+vR1NSEubk5sNlsJCQkEO82c0NRtPnuD34A/OhHwHvvAQLBGh9KQavVgqKoLQ6SYCpYLBZSU1Oh1Wpx/vx5TFqQl+NKZGVlmWYEoBmRSCS4/vrrUVdXh9bWVqbDsUqIeCNsiqqqKnR1deGmm25izAhys7i7u2Nqago1NTWmOcl6eQFFRUBODr2d+t57GzqMWq2GXC5HT08Paa9nCo0GeOAB4NlngT/+EfjznwGyVW3zODs7Iz8/HxKJBHK5HP39/UyHdBmLi4soLi7G0tISOByOVZZPJCUlISoqyugJSlgf1vcbJ1gMMzMzOHHiBNLS0hAeHs50OBvG3d0daWlpGBkZQUNDg2kO6uREd6EePgzcdRfwhz/QGZw1Mjc3Z6xvy8nJgb+/v2niIqyd2Vlg/35afL/7LvDjHzMdEcGM8Pl8ZGVlITQ0FA4WZAOjUChQWloKgI7RWmGxWNi/fz8oisJXX31FstPrhIg3woagKAqfffYZHBwcGB1/ZSq8vb2RmJiIvr4+DAwMmOagPB7wxhvA008DTz5J10pNTFzzYXq9HhUVFeDz+cjPz7cYo2O74uJF2sdPLqfr2w4fZjoiAgOwWCzExsbC3d0dFEWhpaWF0SJ7QzaezWYjKysLPB6PsVhMgaOjI/bt24fm5mar7fRlCiLeCBvCsJVw8803Q7DG+h9LJzAwEBkZGfDz8zPdQVks4Le/pU1c5XK6S/H06VXvrtfrjR/Mubm5VrsVbbXodMBvfgNs2wb4+9NNJzt3bvhwjo6O2LZtG+MjigibR6lUYnBwECUlJabxiNwAFRUV0Gg0kMlkNlP7GhcXh/j4eBw9epSUh6wDIt4I62ZiYgKnT5+GTCZDcHAw0+GYFG9vb7DZbMzOzmJ4eNh0B963D6ivB2JjaauJp56i66m+gaIoNDY2ory8HBRFwcnJCRwOx3TrE67N4CBQWAj827/R2dKiIiAoaFOH5HA4kEgk5HdpA4hEIuTn54PL5aKkpMQ0Y/bWSXR0NLKysiAWi82+9layb98+cDgcHDlyhGyfrhEi3gjrQq/X49NPP4WLiwt2biIjYekMDAyguroa4+Pjpjuojw9w4sS3xe95eUB3N/R6PaqqqtDb2wsfHx+r6hqzGT77jM6KdnXRfn2//rVJ5pQqFAo0NDSYxgyawDhCoRC5ublwdnZGaWmpWTJFFEWhr68PFEXBzc3Nok14N4pIJMKBAwfQ0dGBmpoapsOxCoh4I6yLkpISjIyM4JZbbrH6eourER8fDy8vL1RWVmJmZsZ0B2az6fq3CxeAyUlQycnofOYZjI2NIT09HUGbzPQQ1olCATzxBD2btqCA3ibdts1kh1er1ejt7YVarTbZMQnMYjD5jo+PN8vkjIaGBjQ0NJhmHrMFExkZidTUVBw7dszmn6spIOKNsGbGxsZQVFSE/Px809aFWSAGrycXFxeUlZWZ/go7MxOoqcFyYSEif/1r7H7hBXhbgSGoTXH0KN2U8PrrwEsvAR9/TI+8IhCuAZvNNl5ojY6ObplXWWtrK/r6+pCUlGTxk2tMwd69eyESifD555+T7dNrQMQbYU0Y2rldXV2xzYSZCUuGw+EgIyMDLi4upjHwvQSNRgM4O0P86afQvP02+IZ6uKefBhgqhrYb2troGsR9+wA/P6CqCvj+9+nmEgJhnSgUCuN2nyk/J7q7u9HR0YHY2FgEBASY7LiWjEAgwP79+9HT02M62yYbhYg3wpqora1Ff38/9u3bZ7FD57cCwxaJRCKBXq83yfbX7OwsTp8+jbGxMXqNu+8GWluBn/0M+M//BKKigLffXpcvHGENzM0BP/kJEB8PNDfTmbbTp2nRTCBskJCQEKSmpmJ4eBiVlZUmE3ALCwsIDw9HWFiYSY5nLYSHhyMuLg7Hjx8ns0+vAhFvhGuyvLyMkydPIjExESEhIUyHwxi1tbWQy+XQarUbPsbMzAzkcjkcHR0v928Ti4FnngFaWui5qPfeSw+4r6w0QeR2jl4PvPoqPbrsxRfpbtKWFuDWW7c82yYQCBAaGmozdjqElfHz80NGRgYmJiY27Vdm+HxJSkpCTEyMKcKzOvbu3QuNRoPTV7FVsneIeCNck1OnTkGv19uEGe9mCA8Px/Ly8obnoE5PT0Mul8PJyQkymWzlho/gYOCjj+iZqIuLdG3cQw8BpjIOticoirb7yMwEHnkE2LWL3jJ9+mnATB5ZQqEQcXFxNuPJRVgdT09PZGVlISIiYsPHmJ6exqlTp0zbJGWFODs7Y+fOnaisrMTQ0BDT4VgkRLwRrorBMqOwsNDujUadnZ2RmZmJmZkZVFVVrbugtqWlBRKJBFlZWdfeet6xA6iuBv7nf4DPPwdCQ4G776ZvI1wdrRb48EMgK4t+HSkKKCkB3nmHNt41ayhazMzMbCpbS7Ae3N3dIRKJoNFo0NjYCJ1Ot+bHzs/Po7y8HM7OzjZpB7JeMjMz4eXlha+++srkNce2ABFvhFXR6/X48ssv4evri7S0NKbDsQhcXV2Rnp6OsbExjIyMrOkxBpGXkZGxNuFmgMulbSx6e2lfuIsXgbQ02vH/6FF6O5DwLQsLwH/9FxAeDtxxBz1f9uhRoKKC3oJmgKWlJZSUlJDB23bG4uIi+vv7UV5eviYBt7y8DLlcDgcHB2RmZlrloHlTw2azsW/fPmMtIeFyyDuEsCplZWUYHx/HjTfeSD5MLsHLywsFBQXw9fW95n0nJydx7tw5KJVK8Pn8jTntOzkBP/oR0NEBfPABvZ26bx9deP/qq4C9F/UODdHeeQEBwE9/SpsfV1fTzQjXX0976xEIZkQqlUImk2F2dhZlZWXXzLzW1taCy+Wu7+LODggICEBaWhpOnz7N2EgyS4V8qhFWZH5+HmfPnkVGRsaaRIq9YTDnHBwcRHd394r3mZycRHl5OQQCgWkMjblc4PbbgbIy4Nw5ugD/e9+jRzj98pdAQ4P9dKiq1fTA+HvvpesEX3qJfi26u+lO3ZQUpiMk2Dmurq7IysrC3NyccezdaiQnJ0Mmk5HGlhXYtWsXOBwOjh8/znQoFgURb4QVOXbsGPh8vk2PwDIFi4uLaGpqwsB3Ggqmp6dRXl4OV1dXZGRkmHa2JYsF5OfTI51aW+muyf/+byAxEYiJAX7xC3pSgK0JObWa3gZ98EHA25vOqsnlwHPP0Q0d//EfdPaNQLAQXF1dIZPJ4O/vf8XYO51Oh6amJmg0Gjg4OMDBwYGhKC0bkUiEPXv2oKGhYdULZXuEiDfCFXR0dKC5uRl79+4lXXLXIDo6GkFBQairq8Po6CgAuki9oqICLi4uphdu38VgfzE2Bnz5JW0z8te/0pMDoqKAn/8cqKmxXiGnUgFffAHcfz/g6UlvF1+8SNcC1tYC7e3Av/wL4OzMdKQrwmKxwOfzybxaO0YqlSIwMBAAPY1Br9eDoihUV1ejr6+P1EOugaSkJAQFBeGrr74izT/fQDbXCZeh1Wpx9OhRhIaGIj4+nulwrIKEhASo1WpUVVUhOzsbrq6uSE1NhVQq3VrhdikCwbdTA/73f2mrkb//nf73s88CYWFAYSEgk9FfUVGWWQumUND1anI5UFoKnDwJzM8D0dHAP/4jcOgQXetnJWLI2dkZe/fuZToMggWwtLSEqqoqYxnK2NgYMjMz4eLiwmxgVgCLxcK+ffvw0ksvobS0FPn5+UyHxDhEvBEuo6KiAnNzc7jrrrtItmCNGOag1tTUYGRkBK6urvDw8GAuID4fuO46+uull4CzZ4FPPqHtMl55hc7CSSS0/5lBzGVlAW5u5o2TooDOTrqGTy6nv+rqaKsPkQhITwf++Z9pwRYXZ97YCAQTIxaLkZKSgk8//RQUReGWW26Bp6cn02FZDZ6ensjMzERJSQlSU1MhFouZDolRiHgjGFEoFDh37hxSU1OZFR9WiE6nw8LCAmZmZhAYGAg2m20ZHy48HrBnD/0F0COiKiq+FUwvvgj85jf0z8LCaJsNf3965qe//+X/lkrXl/HS6YDRUbobdHDw2y/D/5uagKkp+r6RkbSIfPhh+nt8PB27lbOwsICKigpkZGQYm1wI9ouvry+SkpLQ0tKC5eVlpsOxOrZt24ba2loUFRVh3759TIfDKES8EYycP38eOp0O27dvZzoUq0Kn06G8vBwqlQq5ubloamrC4uIicnNzLa9mUCKhJw3s2kX/n6KAnh5ayFVUAH19QH093RgwOnp5rZxIRAs5sZgWVjwe3QHL4dDZMo3m2+/T08DICC3gDAgEl4vCHTtooZaZCVw6KsyG0Ov1WFpaIiajBCwtLUEsFiMvLw+enp6YmJhAWFgYsWFaBw4ODsjPz8fp06eRlZUFd3d3pkNiDCLeCABg9CPatm2b3U9SWA+GwuO5uTlkZ2fD0dERiYmJKCkpQVlZGXJyckxjE7JVsFj09IbQUOCuuy7/mUZzZeZsaAhYXv5WpGk0tEAzCDmDqJNKvxVqhu9ublZTq0YgmJLR0VFUVlYiMzMTnp6eiIyMRHh4ONhsNvR6PRFw6yArKwvl5eU4ffo07rjjDqbDYQybEm9qtRqvvvoqTpw4gYWFBYSFheGRRx5BRkbGVR/32muv4Y033rjidj6fj1OnTl1x+5dffon3338fo6Oj8PDwwG233YaDBw+a6mkwwunTpyESiZCdnc10KFYFRVFgs9lIT0+HVCoFAOPrWFJSgvLycshkMvM1LpgSHo+23iD2GwTChpmamkJVVRV8fHwuK0dhs9lYWlqCXC5HWloaaVxYI1wuF4WFhfjkk0/Q399v7OS1N2xKvD377LMoKirCoUOH4O/vj6+//ho/+9nP8PzzzyMxMfGaj//xj38MkUhk/P9KV0Off/45/vSnP6GgoAB33HEH6uvr8fzzz0OpVOLuu+826fMxF8PDw2hoaMD+/fvB5/OZDsdq0Gq14HK5K44Oc3R0RFZWFsrKyjA9PU1qCAkEO8Rg0Ovm5oaUlJQrmsCEQiH4fD4qKiqQn59veWUWFkpCQgJKS0tx4sQJPPzww3bZXGcz4q25uRmnT5/G448/jsOHDwMA9u7diwceeAAvvvgiXnzxxWseo6Cg4KpXPyqVCn/729+QnZ2N33xT5L1//37o9Xq8+eabOHDggNUVJVMUhRMnTsDDwwMpxJV+zUxOTqKqqgo5OTmr/s6lUikKCwste9uUsKWIxWLIZDLLaF4hmJ22tjY4OjoiPT19xWQAh8NBRkYGzp8/j4qKCuTk5Fhnlt7MsFgs7NmzB//3f/+HlpYWxMbGMh2S2bGZjfbi4mJwOBwcOHDAeJtAIMC+ffvQ1NSEsbGxNR1naWlp1TEmhtqmm2+++bLbb7nlFigUCpSWlm44fqbo6OhAb28vdu/eTeou1sjS0hIqKyshkUiuWR9oEG7Nzc1oamoyR3gEC4LL5cLDw4PMq7RTUlNTrzmvVCgUIjMzEwsLC6ivrzdjdNZNSEgIIiIicOrUKegubYyyE2zmE6WjowP+/v5XXOHGxMQAADo7O+Hl5XXVY9xxxx1QKBQQiUTIy8vDD37wA7he0gXX0dEBgHbVv5SoqCiw2Wy0t7djj8GS4TtMTk5iymCLAKCvr2/tT26L0Ov1OHnyJIKDgxEREcF0OFaBRqNBeXk5+Hw+0tLS1pyud3BwQENDA/h8PnmtbQRDBymbzcbCwgKmpqZAUZTRQV8kEsHNzQ09PT3QarUQCoVgs9lgsVhgsVgIDAwEh8OBUqkkkxhsCI1Gg+rqasTFxa25+UsikSA1NZXMNl0nu3fvxosvvojKykpkZWUxHY5ZsRnxNjU1BbcVTEYNt01OTq76WCcnJ9x6662Ii4sDj8dDfX09Pv30U7S0tOCVV14xCsKpqSlwOBxjYboBHo8HZ2fny8TZdzly5MiKTRFMUltbi4mJCdxyyy3kpLFG6uvroVKpkJ+fv67t0ODgYKjVarS2toLP5yMoKGgLoyRsFp1OB4VCAYVCYaxX7OzsxPT0NJRKJRQKBdRqNZKTkxEQEICZmRk0NjZeJs7c3d3h6OiItrY2AHQjC0VRRoHn6+sLDoeD+vp6jI2Ngc1mQygUQigUIiwsDN7e3lheXsbc3ByEQiFEIhEEAgH5W7VgdDodysrKNjTyytvbGwB9UTA/P08aGNaAp6cnUlJSUFxcjKSkJLuqGbQZ8aZSqVY8mRoK8FUq1aqPPXTo0GX/3759O2JiYvCb3/wGn376Ke655x7jMVZLf/P5/KuuceDAAeTm5hr/39fXh9/+9rerP6EtRq1W4+zZs0hISDCOayFcm6ioKAQHB2+ohikyMhJqtRr19fUQi8V27VFkiRgGhc/MzGBhYcFYPrFnzx4IBALj37eLiwt8fHwgFAqNmfmAgIAVu97m5ubA4XCwbds2SCSSFdeNiYlBYGAgFAoFlEollEqlse5pYmLisq00Ho8HPz8/JCQkAKCzPKSm0jLQ6/WorKzE/Pw8cnJyNmy51N3djfb2duTm5q76niF8y/bt29HQ0ICSkhLsMvhX2gE2I94EAgE0Gs0Vt6vVauPP18Pu3bvx17/+FVVVVUbxJhAIVh2Kq1arr7qGu7u7RZ2sKyoqsLy8jJ07dzIdilUwMTEBV1dXODo6bsoHLy4uDmKx+LLteIJ5UavVmJ2dxczMDGZmZgDAaOdiyHgEBwfD0dHR2A0I0L+71dhMNszJyWnVppegoCD4+voas4Dz8/NGsba8vIzTp09DLBZDKpUav8gJnxnq6+sxOTm56XmlISEhGBkZQXl5ObZt20a2Uq+Bs7MzsrOzUVpaiuzsbLtpDrKZCnU3N7cVty0Nt21EOHl6emJ+fv6yNXQ6nfED34BGo8H8/PyK27aWiEajwcWLF5GcnHzFFjDhSgzt/t3d3Zs+FovFQkhICNhsNmZnZzE7O7v5AAlXRaVSYXFxEQAwMzOD48ePo6ysDL29vWCz2Zd9NuTl5SEpKQlBQUFwc3ODWCxmfJvSUJbh5eWFiIgIBAcHG29PTU2Fp6cnFhcX0djYCLlcbnxcV1cXJiYmVm3AIpgWf39/k4wWNHSgGgzAye/v2mRnZ4PFYuHixYtMh2I2bCbzFh4ejpqaGuMIEgPNzc3Gn68HiqIwOjp6WXG54d+tra2Xmdm2trZCr9dbTSF6VVUVFAoF8vLymA7F4tFoNKiqqoKTkxPCwsJMeuzW1lbMzc0hNzeXTLUwMSqVCiMjIxgZGcHU1BTc3d0hk8ng7OyM1NRUuLi4mOUK3bDNuRVbm4Zj+/n5Afi2Tg+gt/B6enqgUCjA5/Ph7e0NX19fuLu7My5GbY3x8XF4eHiYdGdFKBQiNTUVcrkco6Oj8PHxMdmxbRGRSGT01czNzYWDgwPTIW05NpN52759O3Q6HY4cOWK8Ta1W4+jRo4iNjTV2mo6NjV3R6blS9uOzzz7D7OzsZR0sqampcHZ2xueff37ZfT///HMIhUKrmE6g0WhQUlKCxMREknVbA3V1dVCpVEhLSzO5lUpaWhoEAgHkcrnxpEvYOIYMxcTEBE6cOIHGxkawWCwkJiYiNTUVAJ3V8PPzM9vWioODA1JTU81yMuFwOMaLADabjV27dmHbtm0IDAzE1NQUKioqjB2yc3NzZN6qCejt7UVZWRlGR0dNfmx3d3fk5+cT4bZGZDIZKIq6LPtsy9hM5i02NhY7duzAyy+/jNnZWfj5+eHYsWMYHR3Fk08+abzf7373O9TW1uLcuXPG2w4dOoSdO3ciNDQUfD4fDQ0NOH36NCIiIq7wjXv44Yfx5z//Gb/61a+QmZmJuro6nDhxAt/73vfg7Oxs1ue8EQzZyfz8fKZDsXimp6cxMjKC9PT0LTnZ83g8yGQylJSUQC6XIzc3l0y4WCdKpRIjIyMYHh6GWCxGcnIyXFxckJSUBG9vb8ZfT71eb7QfYsJHUSKRQCKRICYmBgqFAhwOBzqdDhcuXACbzYa3t7dxbBPxeVwfhsk0ISEhWyawDPWLIyMjkEqldtVNuV7EYjEyMjJQVlaG7Ozsy6Yl2SI2I94A4Oc//zm8vLxw/PhxLC4uIjQ0FM899xySk5Ov+rjdu3ejsbERxcXFUKvV8PLywuHDh3Hfffdd8cdyyy23gMvl4oMPPsCFCxfg6emJf/iHf7iiY9US0Wq1KCkpQUJCgtXU5zGJq6srCgoKtlSUGzK2FRUVUCqVjIsNa2FmZgbNzc2Ynp421q15enoCoEWxpcw7XFhYwLlz567abWouDCczDoeDvLw8DA8PY2RkBAMDA+DxeNi1axcxE14jExMTqKmpgZ+f31UbWUyBVqtFY2MjxGKxsbaLsDI5OTkoLy9HWVkZtm/fznQ4W4pN/aUKBAI88cQTeOKJJ1a9z1/+8pcrbvvZz362rnX279+P/fv3rzs+pqmtrcXCwgLJul0DjUaDkZERBAYGmiWbKhaLUVBQABaLdZnxK+Fy1Go1FhcX4erqCpFIBB6Ph5SUFHh5eRG7jHXi7OwMZ2dnREdHY2FhATMzM+ByuaAoCjU1NfD19YWXlxcRCqswOjoKd3d3JCcnb/lrxOVykZqaitLSUrS3tyMqKmpL17NmDKPI5HI5srOzbbpT16bEG2F1dDodSkpKEBsbS4akX4O6ujpMTk7C09PTbNsUhhNAVVUV2Gw2UlNTyYnzGxYXF9Hd3Y2BgQGIRCLs2LHDOFKIsHkutSpRqVRQKBSoqKiAWCxGWFgY/P39ybzNb6AoCiwWC/Hx8aAoymwXWW5uboiKikJraytcXV3JZ/hVyMnJQUVFBcrLy206UUEu7+2E+vp6zM7OYtu2bUyHYtH09vZiZGQEycnJjNSXBAQEYGRkBI2NjWZf29LQarWoqKjA2bNnMTo6isjISOTl5RFRu4UIhULk5uYiLy8Pzs7OaGhosMqZzVuBQqHA2bNnMTk5CRaLZfbseHh4ODw8PNDZ2WnWda0NQ0d5aWmp0efVFiGZNztAr9fj/PnziImJueZ8V3tmaWkJzc3NCA4ONo6qMTfe3t5ITExEXV0d+Hy+3W2RUBSFyclJ4zB3NpuNpKQk+Pv7k61kMyKVSpGeno7l5WUolUoAdAa0q6sLYWFhdmdto1arIZfLQVEUY8+dxWIhLS2NZEHXQF5eHqqrq1FRUXHZZCNbgog3O6ChoQHT09NW0VTBJD09PRAKhYiNjWU0jsDAQKjVarS0tMDd3d0umkv0ej36+vrQ1dUFhUKBHTt2wNHREWlpaUyHtikkEolV1scacHBwMNqcLC8vY3x8HP39/fDy8kJkZKRdzN/UarUoKyuDRqNBbm4uox2fhtrO+fl5KBQKcjG+ChKJBMnJybh48SIyMzNtsiaWXMraOBRF4fz584iKiiJ+QdcgLi4O2dnZFnFlGx4ejuzsbLsQbhMTEyguLkZTUxNcXV2xbds2u8vsWAOenp4oLCxEcnIylpeXcf78+Ss8M22R+vp6LC4uIisry2JGL3V3d6O6upr4Q16FvLw8KBQKVFVVMR3KlkDEm43T3t6OyclJMk3hKiwsLGBqagosFsuivIEMju1DQ0MYHx9nOJqtY2pqCgKBANu2bUNqairjlhqmZHFxESUlJcbxXNYOm81GQEAACgoKkJCQYLRnWVhYsFnT3+joaGRlZVnU+zIuLg5cLhd1dXVMh2KxSKVSJCQkQC6X2+R7k4g3G6esrAx+fn4ICAhgOhSLRK/Xo6amBg0NDRY7Q3B4eBiVlZVXzNS1VrRaLVpaWoyF15GRkcjJybEKk+v1YpiFrNPpmA7FpLBYLAQHB0MkEoGiKJSVlaGoqAhjY2NMh2Yyuru7odFo4ODgAFdXV6bDuQwej4fk5GRMTEygt7eX6XAslqysLMzOzqKtrY3pUEwOEW82zPj4OLq7uyGTyZgOxWLp6OjA/Pw8UlJSLLaL0TCLs6ysDAsLC0yHs2EoisLAwADOnDmDnp4e4+2kEcG6YbFYyMrKgkgkMhqkWnumsbW1FU1NTZicnGQ6lFXx8PBAUFAQOjo6bDKzZAp8fX0RGBhokyOzyKemDVNWVgYnJyfGC/Atlbm5OXR0dCAyMtKitkS+C4fDQUZGBkQiEeRyOZaXl5kOad0YpnvU1tbCzc0NO3bsQHh4ONNhEUyEk5MTsrOzkZGRgcXFRVRXVzMd0obp7u5GR0cHYmNjLb5OODY2Fvn5+eQC6CrIZDL09fVtyfxZJiG/cRtleXkZdXV1yMjIsIgCfEukpaUFzs7OViEiDHNQXVxcrOqD2uCzxOVy4erqipycHKSlpVlUbSHBdHh7e2PHjh1IT08HQHdF9vf3W2xJwncZHBxEU1MTwsLCEBYWxnQ414TL5UIoFEKj0dh0XexmiI6OhkQisbnsm/WcBQjrwtBhY+1WC1tJWloaMjIyrEYMCQQCZGRkQCgUQqVSQavVMh3SVRkdHcWZM2eMdVBxcXF20T17KQ4ODkhJSTHabdgDbDbb+HzHx8dRV1eHsrIyqFQqhiO7NhqNBoGBgVa3W9HV1YXKykrSfboCbDYbmZmZaGhosPrt/EuxjrMWYV3odDpUVFQgISHBYlrbLQmlUgmlUgkej2e1GaDy8nKUl5dbZK2LTqdDQ0MDKioq4ObmBqlUynRIjMHj8eDv72+TPlNrITw8HDKZDPPz8yguLrbY7JAhQxwSEoKkpCSGo1k/4eHh4PF4aGpqYjoUiyQ1NRVsNtumbEOIeLNBWlpaMD8/TxoVVqG+vt7qU+hxcXGYnZ1FVVWVRW1JKRQKlJSUoL+/HwkJCcjIyACfz2c6LMZQq9Xo7e216TE918LDwwMFBQWQSCSorq6GRqNhOqTLmJ+fx5kzZzA0NMR0KBuGy+UiNjYWIyMjFiuQmUQkEiEpKQkVFRU20/lNxJsNUlZWhuDgYOK+vQKjo6MYGxtDdHQ006FsCldXV6SlpWFsbAz19fVMh2NEIBDA0dER+fn5CA4OZjocxlEoFGhoaLD77SyBQIDMzEzk5+eDx+NBo9FgaWmJ6bCwvLyMsrIyiEQio2edteLn5wcPDw80NjZa1AWdpZCVlYXFxUWbyU4S8WZjDA0NYWBggGTdVkCr1aKhoQFeXl6MzS41JV5eXkhOTsbAwADm5uYYi0Oj0aC6uhoLCwtgs9lIS0uzSc82wuZgsVjGMo729nYUFxdjYGCAsXhUKhXkcjk4HA5kMplNbG0nJCRYtO0Rk3h4eCAsLMw4o9baIeLNxigrK4NUKkVkZCTToVgc7e3t0Gg0iI+PZzoUk+Hv74+dO3cyZnUyPT1trGUyDDAnEK5FVFQUfH19UVtby9hWaktLC3Q6HWQyGQQCgdnX3wrEYjGkUikoirLrrfrVkMlkGB4exuDgINOhbBoymN6GWFhYQGNjI3bv3m01HZTmJCAgABKJxOY6/wzPp6WlBY6OjmaZpkFRFDo6OtDe3g6pVIrU1FSrbf4gmB8ul4vk5GR4eHigvr4es7OzKCgoMKutUXx8PFQqlc19HgBAdXU11Go1srOzmQ7FoggPD4ebmxvkcrnVTx0iZ3gboq6uDmw2GykpKUyHYnHo9Xo4OTnBz8+P6VC2DI1Gg7q6OrOYUapUKvT09BhHWxHhtjJcLhceHh7gcsl18kr4+fmhoKAA4eHhZhFuFEUZLSO4XK7NduMHBgZicnLSqpswtgIWi4WMjAy0trZaRM3lZiDizUagKAo1NTWIjY2FUChkOhyLYnh4GEVFRRbvi7ZZEhIS4O3tjaqqKkxNTW3JGgqFAlqtFkKhEIWFhYiMjCT1NVdBLBZDJpPZrEgwBQ4ODggMDAQAdHZ2oqWlZctqkurq6tDX12eVU0rWg4eHB3x8fNDc3Gwz3ZWmIjExEQDQ0NDAcCSbg4g3G2FgYABTU1Mk6/Yd9Hq9cTvR1rMfLBYLqampcHV1RXl5uckNKefn51FSUmLs1rL119MUUBQFrVZrEwXS5oDNZqOzsxO1tbUm9zBsbm7GwMAAUlJSrL6zdC3ExMRArVaju7ub6VAsCgcHB0RFRaGmpsaq/y6JeLMRampq4OLiQuwZvkNvby8UCgViYmKYDsUssNlsZGRkICQkxKS1PJOTk7hw4QIEAoHV26yYk/n5eXz99deYn59nOhSrIDQ0FGlpaRgeHkZ5ebnJsuVdXV3o6upCfHy8TZdOXIpYLEZkZCTZiVmB5ORkjI2NYWRkhOlQNgwRbzaAWq1GU1MTkpOTyRbWJWg0GrS3tyMgIABOTk5Mh2M2uFwuoqOjwWazMT8/v+ku0KGhIWMXc05Ojs105hEsE19fX2RlZWFmZgatra0mOaazszOio6MREhJikuNZCxEREVZfmL8VhIeHw8nJCbW1tUyHsmGIeLMBmpuboVarkZyczHQoFsXy8jKEQiGioqKYDoURKIpCdXU1ysrKNmXFoFAo4Ovri8zMTLJVSjAL7u7uyMvLM2Z5N7q9NT8/D4qi4OHhgYiICFOGaDUYGpmsvUDflLDZbCQlJaG+vt5qa6GJeLMBampqEBISAhcXF6ZDsSgkEgm2b99ut9sGLBYL6enpUCgUKC8vX1fhMkVRxqaH8PBwpKSkEPsZgllxcnICl8vF0tISioqKMDMzs67HT01N4fz58+jt7d2aAK0ENpuNiYkJtLS0MB2KRZGcnAylUmmy7K65IZ/GVs709DT6+vpIo8J36O3tJVeaABwdHZGVlYW5uTlUVVWtqQhcr9ejpqYGpaWl5DUkMA6fzwefz8fFixfXbIMzNzeH8vJyuLm5ISgoaIsjtGw4HA6io6MxMjKC6elppsOxGNzd3REQEICamhqmQ9kQRLxZObW1tRAIBHZTkL8W5ubm0NDQgMnJSaZDsQikUikyMjIwOzt7TYsEjUaDsrIyjIyMIC0tjVhcbBInJyfs3bvXrmouTQ2Px0N2dja8vLxQWVmJvr6+q95/aWkJcrkcjo6OSE9PJxlj0H56zs7OaG5uZjoUiyIlJQXd3d2MjhfcKORdbcXo9XrU1tYiISHBJubymQqDNYjBO4pA+z4VFhbC0dFx1fohnU6H8vJyzM3NITs7Gz4+PmaO0vZgs9ng8/lEQGwSw8zc4OBgNDc3X7UJp6+vD3w+H1lZWaRG8xtYLBZiY2MxOzuL2dlZpsOxGOLi4sDlclFXV8d0KOuGfKJYMd3d3ZifnyeNCpcwPT2NiYkJREdHk87b78DhcEBRFMrLy9HR0XHFz/V6PdhsNmQyGVxdXRmI0PZYWlpCeXk52X42ASwWC/Hx8SgoKLhqHWtMTAxyc3PB5/PNGJ3lY7iAI7XR3yIQCBAXF4fa2lqr83wj4s2Kqa2thYeHh934Fq2Fjo4OODk5wdvbm+lQLBIWiwWpVIrW1lbj9pNer4dKpTJuT5EPd9Oh1WoxNjZmtR1tloiDgwP0ej2qq6uNNXA6nQ5yuRwTExNgsVhEuK2CSCSCXq+HQqFgOhSLITk5GdPT0+jv72c6lHVBxJuVolKp0NraSrzdvkNCQgKSkpLIa3IVIiMjERISgvr6egwPD6O2thYXLlwwuaM9gbBVsFgsUBSFqqoqjI2NobKyEtPT06R8ZA3U1taisrKS6TAshqCgIEilUqvbOiXizUrp6OiAVqtFXFwc06FYDBRFwcHBAVKplOlQLJ64uDj4+fnh448/RldXF2JiYkhdFsFqYLFYSElJgbu7Oz744AP09PQgIyODZI3XQEBAAGZnZzE+Ps50KBYBi8VCXFwcWltbreoClnxaWynNzc3w9fUlH1bfMDc3h9OnT5PaojXCYrEgEong6OgImUxGmhMIVgebzYazszOUSiV0Oh0cHR2ZDskq8PDwgFQqRXt7O9OhWAyxsbFYXl6+ZiezJUHEmxWiVqvR0dGB2NhYpkOxGNrb28Fms006z9OWWV5eRnd3N/Lz8xEQEICRkRGTD7InAEKhEHFxcXZrFL3VBAYG4tChQ5DJZOQ1XgeRkZGYmZnBxMQE06FYBD4+PnBxcbEqKxUi3qyQjo4OaDQaIt6+YX5+HqOjowgPDye1bmvEwcEBBQUFCA8PB0VRaG9vh1wuJ4XMJkYgECA0NJTMgzUxo6Oj0Gg0EIvFCAkJQVhYGFgsFqampjY1Cs5e8PT0JI1ul2CwUmlpabGarVMi3qyQ5uZm+Pj4EDuHb+jo6IBIJIK/vz/ToVg8MzMzaGpqAkVRxm0mFouFrKwsAIBcLodarWYyRJtCo9FgeHiYCAoTMjw8jIqKiiu6A7VaLSorK1FZWWk1J2AmSU1NhYeHB9NhWAyxsbFYXFy0mq5TIt6sDI1GQ7ZML0Gn02FhYQERERGk4P4aLC8vo7y8HLOzs1ec3IRCIbKzs6FWq1FWVkasLUzE8vIyqqqqrjnZgrA2JiYmUFNTAz8/P4SGhl72My6Xi/T0dExPT1td5yBTLCwsoKuri+kwLAI/Pz9IJBKr2TolZzsro7OzE2q1moi3b+BwONi+fTuZpnAN9Ho9qqqqwOVykZGRAQ6Hc8V9xGIxZDIZ2Gw2EW8Ei2N2dhYVFRVwd3df1SLJzc0NycnJGBwctKric6aYm5tDc3MzFhYWmA6FcVgsFmJiYtDS0mIVhr1EvFkZzc3N8PLygpubG9OhMI5Wq8X8/DwAkFq3a9DS0oL5+XmkpaVd1cBUIpEgNzcXQqEQGo3GKj7ECPbB7OwsJBLJNeeV+vn5ISgoCN3d3WT79Br4+vpCIBCgp6eH6VAsgtjYWCwsLGBgYIDpUK4JEW9WhFarRXt7O8m6fUN/fz/Onz9ParSuAUVR0Gq1iI2NXbO1jF6vx4ULF9DY2Li1wREI10Cn0wEAgoODkZOTs2LW+LvEx8cjLy+PlFJcAzabjeDgYAwODpK6TNAeeE5OTlaxdUre2VZEV1cXVCoVEW+gBUlPTw98fHzIKJxrwGKxkJSUhJCQkDU/hs1mIzQ0FL29vWhra9vC6GwbDocDiUSyJsFBuBK1Wo1z584Zt0DXmmFns9ng8XhQKBTEz+waBAUFgaIoss2Mb7tOm5ubLX7XgYg3K6K5uRmenp6kQwjA2NgYlpeXryhaJnyLXq/HxYsXjfMf10tgYCBiYmLQ3t5OtlU2iKOjI7Zt20YMZDeAVqtFWVkZNBoN3N3dN3SM2dlZtLW1obe317TB2RACgQDJycnw9fVlOhSLIDY2FvPz8xgaGmI6lKtCxJuVoNPp0NbWRrJu39DT0wOpVEomTFyFpqYmzMzMQCQSbfgY4eHhCAsLQ1NTE+mYJJgNvV6PyspKLC4uIisrC2KxeEPH8fHxQXBwMJqamjA3N2fiKG0HPz8/YnD+DQEBAXB0dLT4rVMi3qyEgYEBKJVKREZGMh0K41AUBWdnZ4SHhzMdisUyPDyM3t5exMXFQSKRbOpYsbGxyMvLIx/uG2Bubg5fffUVEQ7rpL29HVNTU8jMzNz0+zcuLg5OTk6oqqoidV1XYXh4GNXV1UyHwThsNhuRkZHo6OhgOpSrQsSbldDZ2QmxWExmUOLbQcLe3t5Mh2KRLC0toa6uDr6+vggODjbJMQ0Zzra2NkxPT5vkmPYC6XhcP+Hh4ZDJZCbpqmez2UhLS4NWqyUi+iqwWCwMDQ2R1whAWFgYJiYmLPq1IOLNSujq6jKOgLFnNBoNuru7yRX0VWCxWPD09ERSUpJJj6vX6zE1NYXy8nLiC0XYErq7u7G0tAQul2tSOySxWIzCwsIN187ZA97e3nBwcCD1rQBCQ0PBYrEs2sCYiDcrYHFxESMjI2SbEMDQ0BCam5tJNmMV9Ho9HBwckJaWBi6Xa9Jjs9lsZGRkQCQSQS6Xkxo4gknp6elBU1MTxsfHt+T4HA4Her0ejY2NmJ2d3ZI1rBkWi4XAwEAMDw/bvUm3YdxiZ2cn06GsChFvVoBB/YeFhTEcCfP09/fDy8uLDPpegcnJSRQVFW2p7x2Px4NMJgOHwyFzUAkmY2hoCI2NjQgLC1uXpc1GmJ6eRm1tLbkAXAF/f3/odLoNd6jbEuHh4RZt9EzEmxXQ2dkJHx+fDXdc2Qrz8/OYm5tDQEAA06FYHHq9HvX19RAIBFvueycQCIz1SKbO7tkajo6O2L59O7EKuQrj4+OoqalBQEDAlnfTs9lsJCUlYXFxkWwProBIJEJBQQH8/PyYDoVxwsLCoFQqMTg4yHQoK0LEm4VDURS6urrIlinojluBQABPT0+mQ7E4urq6sLy8jMTERLOs5+DggKSkJLDZbCwuLlrs1SnTcDgcODk5EZPeq8BiseDr62vyGs3VkEgkCAkJQVtbGxQKhVnWtCacnZ3BYrEs3qR2q/H19YVIJLLYujci3iyckZERLC8vE/EGwNPTE7GxsWTkzXdYXl5Ge3s7wsLC4OTkZNa1dTodLl68iKqqKrv/sF8JhUKBuro6IhJWQKlUgqIoeHh4IDU11azNWFFRUeDxeBgbGzPbmtZERUWF3U9WYbPZCAsLs9i6N3IWtHA6OzshEAjg7+/PdCiM4+HhQV6HFVAqlXBxcWHEA5DD4SApKQljY2Oor683+/qWjlqtRn9/P6kN/A7Ly8s4f/48Y6OruFwutm/fbjIrHVtDKBRiYGDA7i/IwsPDMTw8bJHNWUS8WTidnZ0ICQmx+22X9vZ2TE5OMh2GReLq6orc3FzG3iNeXl5ITk5Gf38/WlpaGImBYD2oVCrI5XJwOBxGxROPxwNFURgcHIROp2MsDkskICAASqUSExMTTIfCKGFhYcbSJUuDiDcLxlAsae9bpkqlEu3t7VhaWmI6FItCq9Wirq4OSqWS6VDg7++PuLg49PX1WUQ8BMtEo9FALpdDp9NBJpMx3jVu2Na2dDd9c+Pi4gJnZ2f09/czHQqjODk5wcvLyyK3Tol4s2B6enqg1+vtXrwNDQ0Zi5oJ39Le3o6hoSGLaRYIDQ3Fjh07IBQKmQ6FYKH09fVBoVAgKyvLIsatOTg4IDw8HF1dXVhcXGQ6HIsiICAAk5OTdp+VNLw/LG0L2ab6/NVqNV599VWcOHECCwsLCAsLwyOPPIKMjIyrPq64uBhnzpxBa2srpqen4enpiezsbNx///1XFIDffvvtK3rgHDhwAD/5yU9M+ny6urrg5uZm98PXh4aG4OXlBR6Px3QoFsP8/Dy6u7sRFRVlESdBAwKBAHq9HlVVVQgICLD7EWYCgQDh4eGMZ5gshbCwMIuzPYqIiMDQ0BDq6+uRk5PDdDgWQ1BQEIKCguy+ZCcsLAwXLlzA+Pg4vLy8mA7HiE2Jt2effRZFRUU4dOgQ/P398fXXX+NnP/sZnn/++ataKPzxj3+Em5sb9uzZAy8vL3R1deHTTz+FXC7Hq6++esUHb0REBO64447LbtuKQvr+/n4EBQWZ/LjWxPLyMubm5uw++3gpFEWhoaEBYrHYIo2bWSwWWCwWqqqqTDaf0loRCoWIiYlhOgzGaWxshJeXFzw8PCxKuAF0V2FCQgLkcjlGR0ft/oLDgEG06fV6u+7wDwgIAJvNNhrEWwo2I96am5tx+vRpPP744zh8+DAAYO/evXjggQfw4osv4sUXX1z1sc888wxSUlIuuy0qKgr//u//jpMnT+LGG2+87Gfu7u7Ys2eP6Z/EJRiKRe39SpDH4yExMZF4u13CwsICZmdnIZPJLPJDlcViITU1FWVlZSgvL0dOTg4kEgnTYTGCYRi6RCKxW0Pj5uZm9PT0WPQOgoeHB7KysuDh4cF0KBbF2NgYqqursWvXLrvd+eDxePDx8cHAwMA1d/HMieV98m+Q4uJicDgcHDhwwHibQCDAvn370NTUdFU/n+8KNwDYtm0bAKC3t3fFx2g0mi31bjK0adv7NAEej4egoCC7PfGthLOzM3bt2mXRGS3DHFSxWIyysjKoVCqmQ2KEpaUlXLx40W6bbbq6utDV1YW4uDiLt/nx9PQEi8WCRqNhOhSLQSKRQKvV2v24rICAAItr3rCZM2JHRwf8/f2vSMkbtiw6OzvXlfKcmpoCgBWvFqurq7Fnzx7odDp4e3vj0KFDOHTo0FWPNzk5aTwmQBfuXo3+/n6IxWK4urquOWZbQ6FQoKOjA5GRkaQI/hvm5ubg6OhoFTVUXC4XMpkMg4ODVhHvZtFoNFheXoZSqYRarQZFUcYiZ6VSibm5OXA4HAgEAohEIgiFQpuuJxocHERzczMiIiIQGhrKdDhrwlD7VlhYuOVj5qwBoVAIV1dXjIyM2HUiITAwEHK5HPPz83B2dmY6HAA2JN6mpqZWzEQYbluvR9i7774LDoeDgoKCy24PDQ1FYmIiAgICMD8/j6+//hr//d//jcnJSTz++OOrHu/IkSN444031rz+wMAAAgMDzeo6bmmMjIxgYGBgy+cdWgt6vR7l5eXw9vZGQkIC0+GsCT6fbzxxj4+PQyqVWvX2C0VRWFxcxMzMDGZmZrC4uIiUlBQ4ODigqakJAwMDl93fUD+1uLiI5ubmy34mEomwa9cuAEBNTQ1EIhGkUimkUqlNCAepVIrIyEhERUUxHcqa8fDwAEVR6O7uRnR0NNPhWAQ+Pj5oaWmBRqOx6r/dzRAYGAiAPi/HxcUxHA2NzYg3lUq14hvL8CG4nm2bkydP4quvvsLhw4evuNr4/e9/f9n/b7jhBvz0pz/Fhx9+iIMHD65am3XgwAHk5uYa/9/X14ff/va3K95Xp9NhaGgIO3bsWHPMtsjIyAg8PDzIluk39Pf3Q6VSWU0W41K0Wi1qamrg6OgImUxmNRkniqKwsLBgvNo+c+YMlpeXwWKx4OTkdFk3elhYGIKDgyEUCsHn88FmszE3N4fR0VG4u7vjxhtvhF6vh1KphFKpvMyCQavVor+/3+g35uDggOzsbDg4OFhdwfjs7CwcHR0hFoutSrgB9PkiODgYPT09CAsLs1uxcik+Pj5obm7G7Oys3dYEOjo6QiqVor+/n4g3UyMQCFasVTCMpVnrtk1dXR2ee+45ZGZm4nvf+941789isXD77bejvLwctbW1qzYyuLu7w93dfU0xjI6OQqPRGNW+PaJUKjE9Pb1iPaI9otfr0dHRAV9fX4vr1lsLXC4XmZmZKC0tRVVVFdLT0y1WkFAUhcnJSYyMjGBkZARarRZ79uwBj8dDdHQ0BAIBXFxcrrioWGmuLIvFglAoNHbgcjgciMXiK36HhkLo5eVlzMzMYHZ21lgqYDC19fHxga+vr0VZw3yXubk5lJaWIjAw0GJOcuslLCwMPT096OnpYWTknKUhEomwd+9euxeygYGBV2TWmcRmxJubm9uKozwMdWZrEU6dnZ146qmnEBoaimeeeWbNGR9Dtm1+fn4dEa9Of38/uFwufHx8THI8a2RkZARsNtuiWrOZZGBgAEql0qpPJlKpFBkZGSgvL0ddXR2Sk5MtrixAr9fj1KlTUKlUcHBwQEBAAHx9fY0nLj8/v3Udz9nZGbt3717z/R0cHODg4HDZOsHBwRgeHkZ7eztaWlogkUiQmpoKR0fHdcWy1SwtLaGsrAyOjo5Wl3G7FIFAgNDQULs3p70UwygxiqIs9qJrqwkICEBDQwPUarVFlDXYjHgLDw9HTU0NlpaWLruqNdSZXMsnbGhoCD/5yU8glUrxhz/8YV1Xt8PDwwBWbm7YCAMDA/Dz87OaraWtwNPTE3w+3+6v9gyIxWJERkZa3Al7vXh4eCAlJQXt7e3QaDSMfwhSFIXR0VEMDg4iLS0NbDYb0dHRkEgkFmNv4uvrC19fX2i1WoyPj2N0dNSYlRsaGoKLiwvj2VilUgm5XA4ej4esrCyrL3Ug3nyXo9FocPbsWSQkJNhtUiEwMBB6vR5DQ0MICQlhOhzbsQrZvn07dDodjhw5YrxNrVbj6NGjiI2NNWZwxsbGruj0nJqawo9//GOw2Wz88Y9/XFWEzc/PX3E1ptVq8c4774DH45lki4+iKPT399t1Zw9Ai5X1ZjlsGXd3d6vOZlyKr68vtm3bBj6fz9hoL51Oh97eXpw9exaVlZXQaDTGutjAwECTCbf5+XmcPHnSJFl5LpcLX19fpKamgsvlQq/Xo6WlBWfOnEFFRQWmp6dNEPHGmJiYAEVRkMlkjAtyU2F4j2i1WqZDYRwejwcul2vXg+o9PDwgFAotxjLEui+PLiE2NhY7duzAyy+/jNnZWfj5+eHYsWMYHR3Fk08+abzf7373O9TW1uLcuXPG2376059ieHgYhw8fRkNDAxoaGow/M2z1AMCFCxfw5ptvoqCgAD4+PlhYWMDJkyfR09ODRx991CS+W7Ozs1hcXLTrerfp6WlMTEwgIiLCblP0BiiKQn19PUJDQ1esqbJW2Gw2NBoNSkpKEBoaavZJInK5HDMzM/Dx8UFqauqWGchSFAWlUrklcxHZbDZ27tyJwcFBdHV14cKFC3BzczOreTNFUWCxWAgICICPj4/VZ9wuRa1Wo6mpCTqdziInmZgbT09Pu/Z7M7zPLaXuzXb+0gD8/Oc/h5eXF44fP47FxUWEhobiueeeQ3Jy8lUf19nZCQB47733rvhZcnKyUbwZTjInT57E7OwsuFwuIiIi8Otf/9pknaEGVW/Pmbfh4WGMjo7aTKZpMwwNDaG/vx/BwcFMh2JyeDwePDw80NDQAD6fv+XbMZOTkxAKhXB0dER8fDx4PJ5FF/+vBTabjcDAQAQEBGB8fBwzMzNgs9mgKGrLt6X1ej0qKyvh4eGBkJAQmxJuAF2o7+/vj66uLgQHB9t1GQtAi7eenh4sLi5affnGRgkMDERJSYlFdIDb1F+bQCDAE088gSeeeGLV+/zlL3+54rZLs3BXIyoq6gqrEFMzODgIDw8PiESiLV3HkhkfHyfjsEBnNTo6OuDl5WUx9VemJi4uDmq1GtXV1cjKylpzR/Z6WF5eRlNTE0ZHRxEWFobY2Fibez1ZLBa8vLyM5SFDQ0NobGxEZGQkgoODTX6ioSgKtbW1mJiYsIj6n60iIiICAwMD6Ovrs0qLHlPi5uYGNpuN6elpuxVvAQEBUKlUmJycZPwcZd97UhaIvQ9GXl5extLSEuN/GJbA8PAwFhcXrbrD9FqwWCwkJyfDzc3NWHtmKgzi9+zZs5idnUVqaqrdGD57enrC19cXzc3NKC4uxtzcnEmP39zcjKGhIaSkpNi095eDgwP8/f3R2dnJWH2mpcDhcFBYWGjXJT2Gc7MlbB/bVObN2qEoCmNjY3bt7D0+Pg4Wi2XRczvNRV9fH9zd3S16oLcpMMxBnZ6eNml3sVKpRFdXF0JDQxEZGcnItpdYLEZOTo7Zu0H5fD4SExMRHByM2tpalJSUICcnB1KpdNPH7u/vR3d3NxITE+Hr62uCaC2byMhIeHt7W5ytDRPY+5hCoVAIFxeXq85KNxdEvFkQMzMzUKvVdu1tJpVKERcXRyxCAKSnpxtNpm0dDodjzOB0dXXB19d3w6UD4+PjcHV1hUgkws6dOxntfuRyuYxeiDg7OyMvLw/9/f3Gi4DN1uv4+PiAzWZb/KB5U2Hw3iPQTRwXL15EXFycTWdcr4aXl5dFZN7ItqkFYVDz9rxtKpFIbLqGZj3w+Xy7qy3RaDTo6emBXC5ft3DV6/VobGxEWVmZsSOMadsKpVKJlpYWKJVKxmJgs9kIDg4Gi8XC9PQ0Tp8+jfHx8XUfZ2xsDEtLS+DxeHYj3AwoFApUVFRAoVAwHQqj8Pl8aDSaDb1/bAVvb2+LyLwR8WZBjI6OQiwW290J28D8/Dx6enrsvraEoigUFxcbzZ/tCR6Ph+zsbKjVapSVla3ZY0utVuPChQvo6+tDQkKCxVwAqFQqdHZ2rmu28lYiFovh7OyMsrIyY5f9WpiYmEBlZSV6enq2MDrLhcfjYWJiwmJsIpjE09PTrv3evLy8sLi4iMXFRUbjIOLNghgbG7PrrNvY2Bja2trsvrZkYmIC8/PzdrtVIxaLIZPJsLi4iMrKymuKeZ1Oh5KSEigUCuTl5dmkrYqpEAgEyMzMREREBFpaWtDY2HhND7rZ2VlUVFTA3d3dbho+vguXy4Wfnx8GBga2xLPPmnBzc8PCwoJJm4usCcM5munsGxFvFsTo6Khd17tNT09DKpXavXjr7++Hk5OTzTcqXA2JRIKMjAzjTMWrweFwEBYWhry8PJuzANkKWCwWoqOjkZiYiPHx8auehBcXF1FWVgZnZ2ekp6cz7m3FJAEBAVheXjbOy7ZXXF1dAYDRiR5MIpVKwefzGa97Iw0LFoJSqcTs7KzdZt4oisLMzIzdO5mr1WqMjY2R2YqgR4IZfN+USuUVnW7j4+NYXl5GcHCw2Sc02AJBQUEICAgAm82GSqUCm82+olFIoVDAwcEBWVlZdm9S6+rqCrFYjIGBgS3xI7QWHBwckJ+fD2dnZ6ZDYQSDpyLTmTci3iwEwxvBXjNvhjS8KawMrBnDjEh7Kwi/Gmq1GkVFRQgJCTFO3RgeHkZ1dTW8vLwQFBRksdlaPp+PwMBAxhsnVsOQSaupqYFSqUROTg74fD60Wq2xA9jd3d1iX19zk5qaarflDJdiz7sCAH2eZnrGqf3mwC2MsbExcDgcu72iY7PZCAgIsHvx5ufnh127dlnsyZ4J+Hw+wsPD0d7ejp6eHoyNjaG6uhp+fn5IT0+3aGEhEomQlJRk8RNT4uPjoVarUVpaCoVCgdLSUjQ3NwOARb++5sbFxYX8bYK2tZLL5XbbXObt7Y3Jyck1N1RtBUS8WQijo6Pw8PCw260JR0dHJCcn2+3zB+jCe4AYYa5EeHg4wsLCUFpaimPHjsHb2xvJyckWLyx0Oh0WFhaMv1tLxdHRETKZDEtLS3jzzTcxNzdHsr+r0NfXh/LycqbDYBQWi4WJiQmTT+6wFry8vKDX6xntuiXizUIgnaZjdmNIuxotLS0oLS1lOgyLJTY2FhEREVCr1UhMTLR44QbQBf9FRUWM2wqsBScnJzg4OGBsbAxhYWGk+WMVeDwexsbGrOJ3ulU4OzuDw+HYbdOCl5cXWCwWo3VvRLxZABRFYXx83G7r3ZRKJcrLy+26i0uv12NwcNDua0lWQ6FQQKFQID09HXfddRfZutoCBgYGsLi4iAceeIA0zFwFb29v8Hg8xmuemITNZkMqldqteOPz+ZBKpUS82TuGYn17nec5MzMDAHZd7zYxMQGNRkO2qlZAp9OhrKwM1dXVYLFYEIvF0Ol0qKmpwcLCAtPh2QwBAQHIyckxDh5vb29HV1cXw1FZHobRYENDQ0yHwij2LN4A2u+OyedPxJsFYHgD2Kt4mZmZgYODg13Xeo2Pj8PBwQFOTk5Mh2JxNDQ0YHl5GYmJicbb9Ho95ufnIZfLsby8zGB01k9vby8mJibAYrGMHl4ALZpbWlrs+gS9Gl5eXlAqlXa9derv74+kpCS7NS1mWrwS8WYBzMzMgMVi2a14m5ubs1vPIANzc3Pw9PRkOgyLY2BgAAMDA0hMTLxM2PJ4PMhkMrDZbMjlcosZP7USlmxsOzQ0hIaGhhVLFqKjoyGVSlFVVWX39ajfxc3NDTt3/n/23ju6kfNK834KORBgAHMAc84ZDGp2VKstS5ZsyZZljSSPnMbjWZ/ZMDre8XrP5/HaM94zO+udsRw0tjROsoKV5ZbU6sQOBHMzNnPOGSRyqPr+oAE3RbKbZBOoAur9naNz1AhVD8BC1a373vvc47wdZQhsNrlER0f7Re2pNwgLC8Pq6iprwSt3zyo8YmVlBWq1GiIRP233pFIpb5eM3dTU1JA6o4/hdDrR09MDrVa743KyVCpFVVUVnE4nGhsbOdnRGRwcjPvvv5+Txf8LCwtob29HQkICsrKytj1PURRKS0tB0zTa29t5m2HZCYFAAKVSybYM1pmcnGR90gBbhIWFwel0sla6QYI3DrC6usrbrBuwaXyZkpLCtgzWYBgGFEXxNnjfDZFIhOrqauTl5e36GoVCAZ1Oh+joaF7bzOyXlZUVtLS0ICoqCoWFhbu+TiaToaSkBEKhkLeeXruxvLyM+vp6Tt40+Irp6WlMTk6yLYMV3Ndsd822ryHBGwdYWVnZUmvCJ5xOJ69PfgDQ0tKCrq4utmVwipmZGdA07bEkuB1qtRoZGRkANn9LXMoQGY1G1NfXc642SiKRIDo6GiUlJXdc9oqIiEBZWRkJjj+GVCqFwWDgdZe8Wq3G+vo62zJYwT2Hm626NxK8cQA+Z97GxsZw7tw5tmWwhtvokesO/L5keXkZra2tmJ2d3df7rFYrGhoa0NnZ6SVl+8flcsFgMHDmBsViscDpdCIoKMiTUdsrCwsL0Ov1nAqO2SQoKAhyuRwLCwtsS2ENtVoNs9kMh8PBthSfIxKJoFKpSOaNr9hsNlgsFt5m3tbX13ndYbmysgKXy0WaFf4ETdPo6upCaGgoYmNj9/VemUyGwsJCTExM4ObNm15S6L/YbLa7Cm4lEgkWFxcxOjp6yMr8l4iICFZd9tnG3WjGV8uesLAwknnjK+6UM18zb3zvNF1cXIRUKuX1d3ArIyMjMBqNB56gEB8fj9zcXAwNDRGPsltwOByepo6dmhP2QkhICJKSktDf3w+r1XrICv2TyMhIGI1G3trVBAUFQavV8rZel027EBK8sYw7eONj5s3lcsFkMvE6cFlaWkJERATbMjiBzWbDwMAAkpOT7+qYSElJQXp6OiYmJjizXMkmNE2jubkZZrMZlZWVUCgUB95WVlYWhEIhenp6DlGh/xIREYGamhrelj0IBAIUFhby9hzutgthA36GyxxifX0dcrmclwa1JpMJAHj7wweA6upqOJ1OtmVwAqlUitLS0kOxjcnKykJaWhqEQqGnm5cNFAoFSktL7ypgulvm5+extrYGnU531781sVjsyWw6nU7eZlzciEQiXt5434rNZsPGxgbCw8PZluJzQkNDPaP7fA3JvLHM+vo6b3/8arUaZ86c4fU8T6FQCKlUyrYM1nEHsFFRUYcWEIhEIthsNly5coW1jkCxWIzY2FiIxWJW9g8AMTExOH78+KGdZ+Li4nDkyBHeB25uVlZW0NjYyFsrlampKTQ1NbEtgxXcvyk2sm8keGOZ9fV13ta7AZvBC18dujs6OtDb28u2DE7Q3NzsFbsUsVgMsViMpqYmViwNbDYbRkZGWJkAcfPmTU9zwWFn9imKwtraGhmdhc2lw4WFBdaWz9jGPWuYy1NOvIU7eGPjd0CCN5bhc81XT08Pr2tnFhYWeBu43srKygqWlpa8suwiEAhQXl4OpVIJvV7vWar3FVarFT09PT4v8B8eHsbQ0JBX99HX10f8CbE5RUMkEvE2kHWXBPj6t8UFZDIZxGIxK922JHhjGYvFwtv5eKurq7z0BwI2u/+sVitvA/dbGRgYgEqlQnR0tFe2LxKJoNPpIBKJeLG8NTk5id7eXqSnpyM5Odlr+0lPT8f6+jpvxyO5oSiK12a17jFhfO64ZSNwJcEbyzgcDt4GbyaTidVCbjYxGAwA+N2sAQBra2tYXFxERkaGV7OQEokEVVVVyMnJ4fSg+LtlcXERHR0dSExMPLAlyF7RaDTQaDQYGBjw6n78geDgYN4Gb0KhEMHBwQF/U7QbQUFBrExQCdyzmB/BxwHHTqcTdrudl58d2Kx1FAgEvA3c3ZhMJoSGhiImJsbr+5LL5Z7sXqDaiISEhCAjIwP5+fk+2V9GRgYMBgOvpwwAQEJCArKzs9mWwRpHjhyBVqtlWwYrKJVKVoI30i7EAfh4AXenmfkavMXFxUGtVvO+5i0uLg5xcXE+3afZbEZ3dzfm5uZQVlbm1UycSCQ61A7a3VhfX4dIJIJCofDMefUF4eHhKCgo4H0GOTg4GMHBwWzLYBU2LXnYJCgoCNPT0z7fL8m8cQA+Bm8KhQLl5eW8/OzApqcZH32RbmVlZYWVDjX3sedeYvTmrE6lUomKigqv3qSYTCbo9XrWmn8SExN56VP5ccbGxnjbtDA6OsrbGdVk2ZTH8NGdWywWIzo6mpdeUTRNo6Ojg7c1MsDmXXprayv6+/tZ2X9ERASKioowNTXlVbsWmqZht9u9Vg9ktVqh1+shFotRWFjolX3shcHBQYyNjbG2fy4wOjqKmZkZtmWwgkQigc1m46XhuFKpJA0LfEQulwd0AfVuTE9Ps5Jq5gImkwkTExO87bQFNseCWa1WVutk4uLikJ+fD5PJ5LXgamNjAx988IFXrAQcDgf0ej1omoZOp4NEIjn0fewVk8mE4eFhr2YxuY5arfY0IvENPtuFBAUFgaZpn9sB8S9q4Bh87bacnJzk7V2qO+PG5zqhiYkJqFQq1qdrJCUloby8HAKBwO+yBuvr63A4HKiqqmI9e5+QkACz2czbZUNg8/fMht8XF3Bfx9gYE8U27tIfX392EryxDNsnXbaw2Wy8rZMxGAyQy+WsjkxiE4fDgbm5OSQkJLAtBcCmT5fJZML58+cxOzvLtpw74s5uaTQanDhxghN1oxqNBkqlEpOTk2xLYY3g4GA4HA5e+p1JJBJQFMXLKQts+dyR4I1l+By88XWm5/r6Oq870+x2O2JiYhAfH8+2FA8KhQIRERFoa2vD0tIS23J2hWEYtLe3o7OzEwA4VXIRHx+P2dlZ3vp9BQcHc+aGxNdQFIWjR4/6vHOcC7CVeeNftTjH4OOyKcMwsNvtvA3e4uLieJt1AzbvVEtKStiWsQWKolBUVAS73Y7m5mZUVVWxvqS7E729vZienkZpaSnbUrah1WoRERHBS7sIYLODvKioiG0ZrMGFDDAbSCQSSCQSsmzKN/iYeaNpGgkJCbyt+UpISPDaKCiuwzAMZmdnOVlf5p6DqlKp0NbWdijF92q1GmfOnDmUY31wcBAjIyMoKChAbGzsXW/vsJHJZAgNDeVt8AZsdv+ura2xLYMVRkdHvT5Pl6solUqybMo3+Fj3JRQKUVhYiNDQULal+Byr1YrZ2dmAdPffC6urq2hpaeFsYbdQKERlZSXKysoOJQihKAoikeiut7WwsIC+vj5kZWUhMTHxrnV5i/n5eXR0dLAtgzWGhoZw48YNtmWwwtraGubn59mWwQoKhcLn9X4keGMZPi6fORwObGxs8NJWYGVlBS0tLbytC1pcXIRYLObkkqQbsVgMtVoNmqbR09MDu91+4G25DXTv1kIhIiICpaWlSE9Pv6vteBun04mJiQleFq4Dm0un5LPzD4lE4nPrJxK8sQwfg7f5+XlcunSJlwGMzWaDQCDg5d8d2Aze/KUuymq1YmpqCo2NjQde5nU6nVhcXDzw+xcXF7G0tASKoji5VPpx3FNDFhcXWVbCDlKp1KumzFyGBG8keOMVfJwwYLPZIBKJIBQK2Zbic/jcZetwOLC6uoqIiAi2pewJhUIBnU4Ho9HISrZ0bW0Nzc3NGB0d9el+7wapVIrg4GDeDqp3/7bvJlvrr0ilUjidTl6WhJDgjYfwMQPD5wCGz5/d4XAgIiICGo2GbSl7Jjg4GOXl5VheXkZ7e7vPlvqNRiMaGxuhVqs515l7J8LCwng7aUAmk0Emk3GyIcfbhISEIDs7m5flMBKJxOd/c/6lfTgGH4M3u93O6igfNpFKpZyu9/Im7kyWvxEeHo6SkhIYDAafLPdaLBY0NDRAKpWisrLS7zLUCQkJnuVTvhEcHIxTp06xLYMVgoKCkJaWxrYMVmAj80aCN5bh47IpAN4Gb1lZWWxLYA2LxQKJROJ3wQgAxMTEICYmBsBmVmyvnlZyuRz5+fn7sgRyuVxQKBQoLS31y5u74OBgXptQ8xWXy4XFxUWEhobybnVBLBb7PPNGlk1Zxh9PzndLUVERKioq2JbBCnwsZHbT3NyM7u5utmXcFevr67h06dKe69AkEgmSkpL2dLPirhcKCgpCTU2NX9sIjY+P83bO6eXLlzEyMsK2DJ/jcDjQ3NzMS587UvPGQ/iaeeMrZ8+exfj4ONsyfA5N09jY2PB7Y2a1Wo3k5GR0d3djenr6jq93OByYmpq644mdpmm0tLSgubn5sKSyysjIyJ6+n0CEpmleDmh3X8tIw4JvIMEby/iDZcJh09zcjMHBQbZl+ByHwwGapnmZbTUajaBp2u+DNwDIyclBfHw82tvb79hVaTab0d7eflv3dfe80uXlZc77uO0VtVqN9fV1tmWwAl8tM9zlEHxs1pBIJD5fVSHBG8HnbGxs+PwuhQu4T+h8qwcB4DGpValULCu5eyiKQmFhISIjI9HX13fX3XVdXV2YnZ1FaWmpX3Xi3g6VSgWj0ci2DFbga/BGURSEQiFvM2++hqzZEXyOy+Xyy6L1u4XPwZvD4YBQKAyYRhWBQIDS0lK4XK67yp4vLy9jfHwchYWFATXvViaTwW63g2EY3q0uSKVSzo5/8zbBwcG8PLeT4I3AC1wuFy9r/fgcvGm1WiQkJLAt41ARCoUQCoWwWq24ceMGCgoKoFAo9rUNjUaDurq6gFhOvhW1Wo2EhARe/taTk5Oh1WrZlsEKNTU1bEtgBTZKYfb9q/pv/+2/7XsnFEXhhz/84b7fRwhMnE4n707oABAdHY3jx4/zsuYNCNz6ToqiPDNMa2pqtgTnQqEQoaGh27IR09PTcDgcSEpKCrjADdg0bC0qKmJbBisolUq2JRB8jF9k3pqamva9k0A9aRMORnl5eUDUPu0XgUDA2xN7Z2cnRCIRcnJy2JZy6EilUuh0Oly7dg2NjY2orq723JwEBQWhtrZ2y+sXFhbQ3t6O+Ph4NuT6BIZhYDabIZFIeHezYjAYMDU1hezsbAgE/Cor1+v1UCgUKCgoYFuKT2Hj77zv4O3ll1/2ho5DwW634xe/+AU+/PBDbGxsIDU1FV/60pdQXl5+x/cuLi7i3/7t39Dc3AyaplFcXIy/+Zu/2XEY9Lvvvovf//73mJubQ0REBB555BF85jOf8cZHCkiioqLYlsAKc3NzmJ+fR2FhIdtSfI7BYAjIDJMbpVIJnU6H69evo7m5GVVVVTu+bmVlBS0tLYiKigro44BhGFy4cAFFRUUBt1x+J0wmE0ZGRpCZmcm74I1hGF52m7KRoNp38Mblotof/OAHuHTpEh599FHEx8fj7Nmz+Lu/+zv86Ec/uu2dgNlsxje/+U2YTCY88cQTEIlEeOWVV/A3f/M3+OUvf7nFLfytt97CP//zP6Ourg6f+9zn0NnZiR/96EewWq34whe+4IuP6de4XC6MjIwgNjaWd1mojY0NzM3NBfRFezf4MNNVrVajoqICVqvV85jBYEB9fT2OHDkCgUCApqYmhISEoKSkJKBXJAQCAcRiMW+7LgHwcsYnRVG8/dy+Zt/B21e+8hUcOXIENTU1SE5O9oamA9Hb24vz58/jr/7qr/D5z38eAHD69Gk8/fTT+MlPfoKf/OQnu773zTffxNTUFH72s58hOzsbAFBZWYmnn34aL7/8Mr7yla8A2LwA/fu//zuqqqrwD//wDwCABx54ADRN41e/+hUefPBBXi4H7geXy4W+vj6oVCreBW8Mw/DuTtwNX+ocw8LCPP8/Pz+/ZUqCTCZDbGwssrOzedGRJxKJeJ2F4WMQA/Dzc7MRvO37SmKz2fD888/ji1/8Ij7/+c/jxz/+MTo6Olj/g12+fBlCoRAPPvig5zGpVIr7778fPT09mJ+f3/W9ly5dQlZWlidwA4DExESUlJTg4sWLnsfa2tpgMBjw0EMPbXn/ww8/7BkmTbg97uMkkLMOu8FH2wQ3fPvsa2traGpqQn9/PxwOB8xmM8RiMQoKCnhTA8b3LAyfPzvf8IvM23/8x39gZmYGV65cwbVr1/Daa6/h1VdfhVqtRnV1NWpqalBRUeHzJZLBwUHEx8dvy+a4A7KhoaEda61omsbIyAg+8YlPbHsuOzsbzc3NMJvNUCgUnqkAHx8u7q5tGBgYwL333rujvqWlJSwvL3v+7R6RZDQaYTAYPI+LxWIoFArPOKGP417CNRqN28wQFQoFxGIx7Hb7tvEsIpEISqUSDMPs6HyuUqkgEAhgMpm23S3LZDJIpVLPRehWhEKhZ0j3rZ/DTVBQEIRCISwWC+x2O6xWK0wmE9bX1xEcHAyZTAan0+kxcXVDUZSnRmp9fX3biVCpVEIkEsFqtW5bmpFIJJDL5XC5XDsahe7lO7TZbFuWv4A/f4e7/W3UarWn8/Dj36FcLgfDMHC5XNu+pzt9h+6/jdls3mZuLJVKd/0OBQKBJxN8mN/hrX+bjY2Nbc7iO32H6enpkMvlnt/SQb9DiURyV8f3Tt/h7Y7vO32HHz++b/2O0tLS0NbWhtbWVtA0jVOnTu35O7zd38ZfzhEWiwVGoxFGo3Ff54hbud3xzdVzhEKhgFarxcbGxrbn93J8H+Q8y5VzREJCAiiKwvr6+r7PEW7udHxz8RzhF8EbAMTGxuJzn/scPve5z8FgMOD69eu4evUqLl68iLNnz0IqlaK0tBT33HMPqqurERIScsiyt7O8vLyjO7n7saWlpR3ft76+Drvdfsf3arVaLC8ve1r/b0UsFkOtVm8Jzj7O22+/jRdffHHb4+3t7ZiZmfH8Oy4uDiUlJbBYLKivr9/2+gceeAAAcOPGDayurm55rri4GPHx8ZiZmUFXV9eW5yIiIqDT6eByuXbc7unTpyGRSHbMUubm5iIlJQWLi4tobW3d8lxwcDCOHDkCALh69eq2H+nRo0ehUqkwMDCAiYkJ2O129PT0wOFwwOl0Ijs723MM3YpMJvNc7BobG7f9wKurq6HRaDA6OoqhoaEtz2m1WhQWFsJsNm/7rAKBAPfffz+AP2dSb6W0tBSxsbGYnp5GT0/PlueioqJQUVEBp9O543d45swZiEQidHV1YXFxcctz+fn5CA8Px+rq6rb3hoaGejoSd9ru8ePHoVQq0dfXt21eZEZGBjIzM7G6ugq9Xr/lOaVSiePHjwMAGhoatl0Ya2trERoaiuHh4W2DtJOSkpCfnw+j0bhNk0gkwpkzZwAAra2t206w5eXliI6OxsTEBPr6+rY8FxMTg7KyMtjt9h0/6/333w+KotDR0bHt91RYWAitVou5uTl0dHRseU6j0aC6uhoMw+y43VOnTkEmk6G3txezs7NbnsvKykJ6ejqWl5e3zRZVqVQ4evQoAODatWvbLhZHjhxBcHAwhoaGMDY2tuW5pKQkWCwWTExMIDY2dosuiUSC06dPA9gcF/fxi6pOp0NERATGx8cxMDCw5Tl/OkfMzc3BYrHs6xxxK2lpaX55jsjOzsYHH3yAj3Onc0RSUhLm5+fR3t6+5TlyjvgzXDxHsNFdSzGHmNu12Wxobm7G1atXodfrsbq6CoFAgNzcXNTW1qKmpsZrnUePPfYYEhIS8L//9//e8vjMzAwee+wxfOMb38BnP/vZbe+bn5/Ho48+iq997Wt4/PHHtzz33nvv4Z/+6Z/wi1/8Aunp6fjHf/xHnD9/HufOndu2nUceeQQZGRn4/ve/v6O+nTJv3/ve9/Av//IvSEtL8zzuL3fVbvabeXM4HOjp6UFycjIiIyP97q76bjJv/n5X7eYgmbexsTGEhIQgIiLC7+6qD5J5YxgG3d3dWFtbg0AggEQi2dL1zofMm5v9niNuxR8zbxKJxLPNj9e4Bvo5YmxsDAKBAImJibzKvNntdnz/+99Hc3Mznn/+eWRmZm7b/mFzqBXEUqkUtbW1qK2t9Zy83MurP/nJT/DTn/4Uly5dOsxdbtn3TvMy3SeD3ZZx3Y/v5b1SqXTXAly73X7bpeLw8HCEh4dvezwoKGhLN6sbgUCw4+O3vm83JBLJrqaBFEXddru3ayIQi8W3fe/tnpPL5ZDL5QCAurq6Lc+JRKLbvvd2FhMymWxLUfitCIXCA3+HUql017/nnf42u32HJpMJZrMZERERu773dtu9nXs/W9/h7Rp0bv0OZ2dnERQU5PkMB/0Ogbs7vm/3Hd7p+L7dd3jr8Q1sXmA3NjZQXl6OyMhIT7PKTrV/t/sOb/e34fo5oqmpCZGRkUhKSvI8v9dzxMfxp3PE/Pw8mpqacO+99+56DvHWeZbtc4TFYoFIJNqyrb2eIz6OP50jdlvZ8yZea/+iKAr5+fnIz8/H17/+dYyNjeHatWve2h00Gs22NDQAT7Zrp8AJ2DxgJRLJjkueH3+vRqOBy+XC6urqlqVTh8OB9fX1gBkq7U0YhoHVaoVEIuFFx92tTE9PY2xsbNe6yECGoqhtd9+BTHBwME6cOAGn04n29nZkZWXB6XSiubkZ5eXlAe1558ZgMNz2Ihmo8LkpC+Dn52ajOWXfwds//uM/3vZ5iqKgVCqRmpqKI0eOeKLjpKSkLXdgh01aWhra29thMpm2ROS9vb2e53dCIBAgJSVl27q7+72xsbGeSDw9PR0A0NfXt8WEs6+vDzRNe54n7I7T6cRHH32EsrIyxMTEsC3Hp/C1+w7YvGPdKbsdaAwPD8NoNKKwsBASiQQWiwXT09NITU2FUqmEWCz2jNEKdKsch8PBm87aW3HfpJAghj/4RfB29uzZPb2Ooij867/+K5599tlty2Te4OjRo/j973+Pt99+2+PzZrfb8cc//hE5OTmeTtP5+XlYrVYkJiZ63ltXV4ef/exn6Ovr83SSTkxMoL29HZ/73Oc8ryspKYFarcZbb721JXh76623IJPJdnVVJ2yHjz9y97IZH5FKpQFv2Do5OYne3t5db+JEIhF0Op2nJrimpmbXpSh/x+l0wuVyBbwx8064f+N89HTkmyUQm+w7ePvRj3502+dpmobBYEB3dzfee+89/MM//APi4uJ2zXwdFjk5OTh27Bh+/vOfY21tDXFxcXj//fcxNzeHZ5991vO6//W//hdu3Lixpdvk4Ycfxrvvvotnn30Wjz32GIRCIV555RWEhobiscce87xOKpXimWeewb/8y7/gO9/5DioqKtDR0YEPP/wQX/7yl3mxFHK3uJdKP14EzAf4nHmLjIwM6IuZu7stMTFxm5XQrUgkElRVVeHq1atobW1FTU2ND1X6DnegzsfgjaIoiEQiXgYxsbGxvMy2+kXmraioaE+vO3bsGD7xiU/gq1/9Kl5++WX8/d///X53tW/++3//74iKisIHH3wAo9GIlJQU/NM//dMdNSsUCvzoRz/Cv/3bv+FXv/qVZ7bpN77xjW02Jw8//DBEIhFefvllXLt2DZGRkfjGN76BRx991HsfLIAQCAQQCAS8dF6XSqUBv1S2G4FcUrC+vo7W1lZER0cjPz//jq+Xy+XQ6XQBXQMolUp5U9v3cWJjY3ecic0HvFkaxWXYSEZ4dV5NamoqampqtvmteAupVIqvf/3r+PrXv77ra/7f//t/Oz4eGRmJ7373u3vazwMPPODxUiLsH6FQyMvMW1xcHOLi4tiWwQoulwtWqzUgg1eVSoXs7GwkJSVty7ZIpVJkZGRsy0C5O/DcJuEpKSkBlZkUiUScnoNN8A6rq6uQy+UBWw6wGx+3uPEFXj9bxMfHY2Vlxdu7IfgR9957r9eX0QncYmpqChcvXgyoZWOTyYTl5WVQFLVr8CWTyZCZmbnrxcxgMKC/v58TIwYPk5WVlW2mrnzh5s2b28zM+UJjYyOmpqbYluFzAjJ4s9vtvBhITdg7gZRh2A9WqxVnz57d0dIm0JHJZB6bmEDAarVCr9eju7v7tkGX0+nE4uLirmUCoaGhKCoqwtTUlKczPhCYn5/nbfBmNBp5WRYCbGbY+WYBBQRo8NbR0cHbpSLCznR1dXnmxPIJsVgMp9MZ8F2XO3Gri7u/43A4oNfrQdM0KioqbluYbjKZoNfrtznb30pcXBzy8/MxMjISML+L9fX125qzBjI2m42XjRo0TYOmaV4mawIqeKNpGi+88AIGBgZwzz33eGs3fk8gFy3vhtFo3HHsSaAjFAohEol4Gby5x+H4e/DmcrnQ1NQEm82GqqqqXScC7JekpCRkZGQEjBferYPJ+QZfgzd3HTNfgzdff+5DN+mlaRrr6+vo6+vD2toa4uPjd5wpStiEj+l1vjYsAPzwO9sNtVrt95/darXCbrejsrLytqOTDsKt8xDtdvuu4324jt1uh9VqJcEbz6BpGjKZjJfBm8Ph4H7wtleTXrFYjFOnTuGv//qvbzsrjO8Eyp32fuBr9gngd/BWVVXlt95XDMOApmkolUocPXrUq59jeXkZjY2NqKio2HWsH5ehaRparXbLCEE+UVFREZBd1XdCKpXi1KlTbMtgBbvd7nN/u0M36aUoCkFBQUhISPDbO0dfwsfgTSgU8jLjCGz6JPKxoBfw73FBPT09MBgMqK6u3tfnEAgEUCqV+2rSCQ0NRVhYGJqbm1FVVbXNa5LryGQyFBYWsi2DNfwx4CbcHX6xbLpXk17C3uBjEKPValkp8OQCfLwjd2MymXD9+nWUlZX5VVZmcHAQo6OjyM/P33cAqlKpcPz48X29RyAQoLy8HA0NDWhsbERNTc2hL9F6E4PBAIlEcmj1gP6EyWTC5OQkUlNTeTdpYHFxER0dHThy5AjvEjdsZN746dnAIfiYeQsNDfXMmuUbi4uL6OzsZFsGK8jlcjgcDiwvL7MtZc+Mj4+jr68PmZmZPnWPFwqFqKiogFQqRVdXl8/2exg0NzdjeHiYbRmssL6+jsHBwYDy7NsrFosFFouFlzVvJHjjIXwM3iwWC0ZHR3nZtGA2mzExMcHLk7tAIEB4eLjf+NwZjUZ0dXUhOTkZGRkZB9rG+vo6PvjggwN12UokEuh0OpSUlBxo32xgNBphsVgQGRnJthRWsNlsoCiKd1k3YPOzSyQSXvp4kuCNh/Bx2dRsNqO7uxsWi4VtKT5HKpWCYRjeLhtHRERgZWXFL477oKAgVFZWIjc398DbcP+tDxqsy2QySKVSWK1WdHR0cP57W1hYgEAggEajYVsKK7g7Tf25vvOg8LXLFthMwpDgjWfw8SLu/oHzsevSPSYpUCYN7JfIyEjQNM3pkXlra2sYHx8HsBlscuFCbLPZMDMzg5aWFk57Qy4uLkKj0fC2KcdqtfI2gOFz8Gaz2Xy+XEyCN5bha/YJ4Gfw5i4893ez2oOiVCpx7Ngxzi6rGY1Gz3xGLi1tBwcHo7y8HMvLy7hx4wantN2KWCzm9UD6kJAQxMfHsy2DFbKysu4qS+3PmEymXecXewv+VRZyDD5mYMRiMQQCAS+DN5FIhOzsbN4amALgbOekxWKBXq+HVCq949grNggPD0dJSQlaW1shkUiQl5fHtqRt+FN9njdITExkWwJr8LWTnmEYmEwmn/vZkswby5jNZrYlsEJMTAxvU+xpaWkIDg5mWwZrmEwmXL58mVPZR7vdDr1eDwDQ6XSHVr+iVCpRW1t7aBe2mJgYFBQUcNJqZW1tjdNLut7GbrdjZWWFt99Bb28vp8shvIXVaoXL5SLBG9/ga/BWUlKC2NhYtmWwgtVqxeTkJNsyWEMul3PuO3Cbi1dVVR3q8odIJEJoaOih1sNotVrExcUB2PRU4wIulwt6vR6Dg4NsS2GNpaUlXLt2jfNNJd6ApmkMDw/DZDKxLcXnGI1GAPC5ryEJ3liGjzVvwOaPnY9LxsBmhuLGjRu8/dsLBALEx8djamqK9SyF+zgUi8UoLy8/9KUfq9WKnp4erxzrc3NzqK+vx/T09KFv+yBaHA4Hb+u9gM06VplMxjuDWuDP9ct8XE0hwRtP4esFvLe3Fw0NDWzLYAX3kimXlg19jXvKxsLCAmsaGIZBe3s7rl+/7rUg0mazYWRkxCv1nVFRUYiPj0d7ezvr3nmTk5PQaDS8rXsCNrOgfK1ldWfc+DjHnK3PToI3lrHZbLxMsyuVSpjNZs52zXkTuVwOsVjM6+BNpVIhJCQEs7OzrGno6urC7OwscnJy/NJYlKIoFBYWIjIyEs3NzVhdXWVFh8ViweLiIhISEljZP1dYX1/nbS2ru/yHj8Gb0WiEWCwmPm98hI91AgqFgtdLp2q1mtfBGwCUlZWxNiu5v78f4+PjKCgo8GtrC4FAgNLSUgQHB2NkZIQVDXa7HeHh4YiJiWFl/1zA5XJBIpHwNnhTKpVIS0vzy5ugu8VoNLKScSZWIRzAZDLx7kfvPtjNZjMvB1hHRkby0qD5Vtx/d1+7k5vNZgwNDSE7OxtardZn+/UWQqEQlZWVrF04g4ODUVVVxcq+uYJQKERdXR3bMlhDo9HwdqqGyWRixf6If2EyB3EXPPIJhUIBiqJ4W/OXlpaGnJwctmWwzuTkJC5cuODT0gGFQoGjR48iLS3N6/uSSCRISkryehG7SCSCQCCAwWDAtWvXfHZjsLi4iLW1NZ/si8vwcU7zrSwvL/N2FcVoNJLgja/wMXgTCAQ4c+YMr7vTbDYbHA4H2zJYJSIiAk6nE6Ojo17f18LCArq6usAwjM+WOeRyOfLz832WXRaJRDCZTNDr9V4PiGmaRmdnJ4aHh726H3+gs7OTtw1YANDU1ISpqSm2ZbACW8umJHhjGZlMxsuaNwC8nX8IbF74zp07h5mZGbalsIpMJoNWq8XIyIhXg42VlRW0tLT4PDvgcrlgMBh8lplRKpXQ6XQwm81obm72qhXL9PQ0zGYz0tPTvbYPf2F9fZ2XxfrAZs2j0+nk7ecny6Y8RS6X8zLzBgAjIyNobm5mWwYrCAQCBAUFccZklU3S0tLgdDo9w+APm42NDTQ1NSEkJAQlJSU+HXtlNBpRX1/v09+4Wq1GRUUFVlZW0NHR4ZV9MAyDwcFBREdH89Yew43L5YLRaORd3bIbd/KBjzYx7tFYbARvpGGBZfh8AadpGsvLy2zLYI3w8HDMz8+zLYN15HI5EhMTvbKEbLVaodfrIZfLUV5ezptsb1hYGMrLy71Wazc9PQ2TyYTS0lKvbN+fWF5eBk3TCA8PZ1sKK7htQvgYvBmNRrhcLlZuYEjmjWXUajUv58EBmz92h8PB267LiIgImM1m3i6b30peXh6ysrIOfbtSqRQJCQmHOq/UX4iMjERISAhomj70KQwREREoLCzkbbbpVlZXVyGXy1nJvnABhmGgVqsPdQScv+C+doeFhfl83yR4Yxm1Wo3V1VVemtWqVCoA/J00oNFoIJFIeLts/nEYhsHIyMihBLNOpxNra2ugKApZWVm8HNvjZn5+Hm1tbYfmA0fTNKRSaUDYrBwGmZmZOHLkCNsyWCM+Pp63NiluY+yQkBCf75sEbyyjVqvhcDh4eQFXKpUQCoW8Dd5EIhHuvfdeREVFsS2FE9A0jdHRUXR1dd31dpqamtDc3My6hQNFURCJRD6ts/s4MTExSE9PR09Pz113BBqNRpw7d47Yg3wMPs4zdcP2fGI2WVlZgVqtZiWrT4I3lnGvlfNx6ZSiKJSVlfHamZ2iKLhcLl5mXj+OUChEXl4eFhcXD9yFyzAMWltbsba2htLSUtZr3NRqNc6cOcN6UX9WVha0Wi1u3LhxV3WWnZ2dEIvFrH8erjAxMYHLly/z9vfrdDrxxz/+kdUxd2yysrKC0NBQVvZNgjeWcS8dsjWXkG0iIyN5OWHBjdlsxvvvv8/rxo1biYqKQnR0NHp6eg5kHdLZ2Yn5+XmUlpayUofCZdyjwA56ozg1NYXl5WXk5+fzcgzSTiwsLLCeWWWT9fV1MAzDW5uQ1dVV1s4z5BfIMiKRCCqVipeZN2DTxqGrq4u3qXeFQgGJRIKFhQW2pXCGvLw8OByOfRfZW61WLCwsoKioiDNL0RsbG7h06RI2NjbYlgKKolBaWors7GwA+5sKYLfb0dvbi9jYWERERHhLol9B0zQWFxd5/X2sr6+DoihPEoJvkMwbzwkLC+Nt5s3hcGBsbIyXNX9uIiIisLi4yLYMziCXy1FbW4vExMQ9v4dhGMhkMhw7doxTUztomsbGxgZnbk7cGaL5+XlcuHBhz80hLpcLwcHByM3N9aY8v2JtbQ1OpxORkZFsS2GN9fV1qFQqXmZirVYrLBYLybzxmbCwMN5m3ty1M3xtWgA2l47X19d5OxtwJ9zHxfz8/B0DjMnJSVy/fh0ul4uXdgUHITQ0FEKhEHq9/o7HHcMwkMvlqKyshEwm85FC7rO4uAiJRMJru5T19XXe1j+yaRMCkOCNE4SGhvI28yYSiaBQKHgdvIWHh0MgEJAOvo9B0zR6enrQ2tq6a+Zqbm4OHR0dUKlUrDcn+BMSiQRVVVWgaRqNjY27GiQvLy/j0qVL5MZiB9LT01FbW8vbejcAqKqqQk5ODtsyWMF9zSbLpjwmLCwMZrOZtydItVrN6+BNIpHg9OnTiI6OZlsKpxAIBCgtLcXGxgZ6enq2Pb+8vIzW1lZER0cjPz+fBYX+jVwuh06ng8ViQXd397bnbTYbWltbIZVKee2TtxsCgYCXUwVuRSgU8vbYWFlZgVwuZ63hjgRvHMAdufN16TQuLo7XdiHAZgaSYRjeWg7shrvOamxsbEsDg81mQ1NTE8LCwnw+r3Q/KBQKlJeXc7YbT6VSoaqqytPE4IZhGLS1tQEAp79ftpiZmUFDQwNnahnZYG5uDnq9nrffAZvNCgAJ3jiBe82cr0unsbGx+ypOD0TMZjM+/PBDYhmyA0lJSYiLi8Pw8LAnuJVKpSgoKEB5eTmni6XFYjGio6M5PZorODgYMpkMNpsNAwMDYBgGXV1dWF5eRklJCalz24GZmRk4HA5OH3veZnFxEWazmbffAZs2IQAZTM8J5HI5FAoFlpaW2JbCGktLSxCLxbwt/nVbhkxMTPB2wPXtKCoqgsvlgs1mw9LSEuLj4xEXF8e2rDtis9kwMTEBrVbL+eWl1dVV9Pf3w+FwICYmBhqNhhyLO2C32zE/P8/bWi83KysrvPZSXFpaYjXpwM+QmYNERUVhbm6ObRms0dvbi9HRUbZlsEpCQgJmZ2d3LR7nM+67+/r6erz++uuc8E3bC1arFX19fX5RzxodHY34+HgMDw9jbW3NL4JjNnCPGOPz9+N0OrGxscHb4M1oNMJoNLLqJ0mCN44QHR19V2Nr/B0+26W4iY+PB8MwBx4NFci4XC40NTXBarUiJSUFzc3NfhEQ+ROTk5OYmppCaGgo+vr6MDExwbYkTjIzM4OoqChezzNdXV0FwzC8Dd7c12o2m8xI8MYRoqKisLKyApvNxrYUVggLC4PJZOLt5wcAmUyGyMhI3tY+7gZN02hpaYHBYMA999yD48ePw+Vy7cmjjLA3pqam0NHRAa1Wi3vuuQcpKSm8rWW6EzqdjvdmxSEhISgrK+Ntt+3c3BwkEglpWCD8OYLn65gk9x0c37NvpaWlKCoqYlsGp3C5XHA6nSgvL0doaCgUCgWqqqrgdDpx/fp13na7HRZDQ0Nob29HQkICCgoKAAC5ubmeSRUWi4VNeZyCYRiIRCJez2MGNhtxYmJieNuFPD8/j6ioKFY/PwneOILbqJWvdW8ymQzR0dG8v9t3G82SjNImDocDYrEYNTU1W2ZIBgUFoba2Frm5uZw+ZtwXOS53m66vryMjIwOFhYXbLkYTExO4dOkSMZDGZgb4o48+4n1ZA8Mw6Ojo4LU359zcHOvzk7l71uMZIpEIERERvK57Ky8vZ/0HwQUGBwdRX1/P+4zS4OAgLl++vGsDh0wm8xwvvb29mJ2d9aW8PaFQKFBWVsY5nzeXy+UJyIqLi5GZmbnj6+Li4qBSqdDY2Mjr+cMAMDs7C6vVyttxUG7W19cxMTEBp9PJthRWcDqdWFpaYt1UnQRvHILvHacMw2B9fZ33QUtUVBRsNhtvl9ABYHx8HH19fdBqtXfMWjEMA6vVipaWFoyMjPhI4d6gaRpWq5VTx7TNZoNer0djYyOcTudtl36EQiEqKyshlUp5X2M4OTmJsLAwBAUFsS2FVVZWViAQCBASEsK2FFZYXFwETdOsJxpI8MYhoqOjsbCwwFuXfaPRiMuXL/PeqFatViM4OBiTk5NsS2GF2dlZdHZ2Ijk5GRkZGXd8PUVRKC4uRmpqKnp6etDU1AS73e4DpXdmY2MD586d44y1ycLCAi5fvgyTyYSKigqIRHe2+hSLxdDpdACAgYEBb0vkJBaLBYuLi0hISGBbCussLS0hNDSU0+UK3mR+fh4URZHgjfBnoqKiYLfbeVu0r1KpIJPJeJ1xcpOQkID5+Xnedd86HA7cuHEDcXFx++rooygKOTk5qKiowOrqKucycFxgbGwMjY2NCA4ORl1d3b465WQyGWpqapCXl+dFhdxleXkZIpEIsbGxbEthFZqmsbS0tKX+lG/Mzc0hNDSUdasYMmGBQ7jX0Ofn56HRaFhWww6RkZFYXFxkWwbruM1SjUYj5535DxOxWIyqqiqo1eoDdXJFRUWhrq7Oc2JdXV1FcHAwb7MEwOayMkVRiIyMRG5uLpKTkw/03bo7LA0GA4aHh1FUVMSb7zU+Ph5RUVF7ylQGMgzDIDs7m9fB2/z8POv1bgDJvHEKpVKJoKAgXte9RUZGYmNjg/f2BGKxGCdPnuRNEG80GnHz5k0wDIOQkJC7CgpkMhkEAgEcDgf0ej2uXbvGS+88mqYxPDyM+vp6OJ1OKBQKpKSk3LW9gcPhwOzsLG7cuMGLEg+bzQaGYTjdMewrhEIhkpKSeOvvxjAMJzpNARK8cQ6+T1oIDw+HUqnkffDmxmq1wmAwsC3Dq1gsFuj1eszPzx9qB5u7VoumaVy9ehXt7e28KbhfWFjApUuXcPPmzUO/AQgPD0dJSQlmZmbQ3d19qNvmIq2trWhra2NbBicYHh7mtUWIO7FAMm+EbURHR2NmZoYXd7Q7IRaLcfz4cd6OXfk4nZ2daG9vD9jjwW63Q6/XA9h0rj/s7EZoaCiOHDmCgoICLCwsoKen51C3fyfUajXuv/9+n9pLdHV1obGxEXK5HHV1dcjLyzv05b6YmBgUFBRgbGwMg4ODh7ptLrG8vIzl5WWPYTGfsdls6O3t5XXw5vb440Lwxu8FfA6SkJCAq1evYm1tjdXRG2xjtVohlUp56+DtJi0tDdeuXcPc3BxiYmLYlnOouFwuNDY2wm63o7a2FjKZzCv7oSgKiYmJiI2NhcvlArDZ7m+xWBAfH+/Vui2KonxyDJtMJgCbpRfR0dEIDw/3+vGi1WrhdDoD+kZrYGAAarWaE8tkbOOuReZzvdvExITHDYBtSOaNY7hb0flqEwFsmkCeO3eOl3VKHycsLAzh4eEBadFAURRCQkKg0+l8UkMjFos9AeLCwgI6Ojrw0UcfYWBgwGvWIiaTCdevX/cEV4fN6uoqWlpacOHCBc8xEhER4bNAPyUlBSEhIaBpOuC65FdWVrC0tLQnuxo+sLCwgODgYF41UH2cyclJaLVatmUACKDM28bGBn7605+ivr4eNpsN2dnZ+PrXv76rc7gbmqbxwQcf4PLlyxgcHMTGxgZiYmJw/PhxPPbYY9sO1CNHjuy4na985St44okn7vpzKBQKhIeHY2JiwjNnkG+oVCqIxWIsLi4G9F39XsnIyMD169cxNzfHiXT93cIwDIxGI1QqFfLz81nRkJubi6SkJIyMjGBwcBBDQ0Ooqqo69Gy30+nE8vLyobvRb2xsoLOzEysrK1AqlSgoKGB1aW9sbAy9vb2oqKhAZGQkazoOE5fLhaioqID4zd0tDMNgcXERiYmJbEthDafTiZmZGc7Y5QRE8EbTNJ599lkMDw/jscceQ3BwMN58801885vfxPPPP39bY0Wr1Yof/OAHyM3Nxac+9SmEhoaip6cHL7zwAtra2vB//+//3bbsUVZWhvvuu2/LY+np6Yf2ebRaLa8zb25bg/n5+TsG33xAo9EgPT09YDq8uru7MTU1hRMnTrDqlaRUKpGfn4/MzExMTEx4lkJ6e3shFosRGxvLme/c7a/lcDgQFxcHiUQCgUDgGSnHdnlBUlISlpaW0NLS4pUgmA0iIiJ4vUR4KzRNIykpideB7MzMDFwuF8m8HSaXLl1Cd3c3vvvd7+Lo0aMAgOPHj+Pxxx/HCy+8gO985zu7vlcsFuPHP/7xlgzAAw88gOjoaPzyl79Ea2srysrKtrwnISEB9957r1c+C7AZvLk747xVB8R1oqOj0draCrPZzLm5kGyQlZXFtoRDob+/H2NjYygsLGTd5NKNRCJBWlqa5992ux1jY2Po6+uDWq1GTEwMkpOTfW4V4XK5sLS0hNnZWczNzcHhcECj0SAuLg5SqRRVVVU+1XM7BAIBSktLPWO3ampqoFKp2JZ1YEZGRhAVFcWZ4J1thEIh72+kJyYmIJFIOFP/GBA1b5cvX0ZYWNiWJc2QkBAcO3YMV69evW09i1gs3nHp5p577gGwOWNxJ2w2m9fc7xMSEsAwDKampryyfX8gMjISUqmUM2OFuMDS0hJu3LjBtowDMzo6ioGBAWRnZ3Pm7nUnioqKcPr0aZSXl0OlUmF4eNjT7TswMICbN296hpQfFgzDwGAwYHx8HNPT0wAAs9mMpqYmrK6uIjk5GXV1daiurj60fR42QqEQFRUVkMvlmJ2dZVvOgTEYDOjp6SE1t7cwMjLCe/umyclJrzc47YeAyLwNDAwgPT1925eanZ2Nd955B5OTk0hNTd3XNt3Ftzt1lbz//vt48803wTAMEhMT8eSTT+LUqVO33d7S0tKWmZ27BYXAZpG6UqnExMTElowAnxCJRDh16hTry0FcgqZpTE5OIi4uzu+Wc5xOJ4aGhpCamuoXx7RQKER0dDSio6NB07Tn3GK32zE7O4uhoSEAm1m74uJiREZGYmlpCSsrK5DL5Z5lTYFAgJSUFBiNRthsNrhcLlitVmg0GqjVaszNzaG3txcWiwU0TYOiKMTHxyMuLg5BQUE4fvy4X2V/xGIxampqPNYk7ukO/sTAwACUSiXi4uLYlsIJ3MGsSqXyTNngGwzDYGJiApWVlWxL8RAQwdvKygoKCwu3Pe42p1xeXt538PbSSy9BqVRu+2Pl5eXh2LFjiImJwfLyMl5//XX8wz/8A0wmEx566KFdt/f222/jxRdf3NO+KYpCQkICJiYm9qU50KAoylPozfexNMBmNjIkJAQDAwN+F7yJRCIcOXKEM0ul++HWm8K8vDzk5eXBarVidXUVRqPRE1ytr69jbGxsS0Y+Pj4edrt9y6xVgUCAvLw8qNVqyGQyREdHQy6XIzg4GMHBwRAKhQA2j39/CtzcuH+rs7OzGB4ehk6n85vf7/r6Oubm5lBUVOR3Qae3mJmZgUQiQXh4ONtSWGNpaQkWi+W29fO+hnO/KJqm4XA49vRaiUQCiqJgs9l2vCi4H9vv8uavf/1rtLS04D//5/+8rW7jueee2/LvT3ziE/jSl76En//85zhz5syubdQPPvggampqPP8eHx/H9773vV01aLVaXLx4ES6Xy3My5xs0TeOjjz5CRkYGUlJS2JbDCTIyMtDU1ITl5WW/GJ21srKCwcFBlJaWBpTFgEwm22bHkZKSgpSUFM85jKZpuFwuzMzMICsrC1KpFAKBYMu5KiQkBCEhIT5W7xuUSiWMRiOam5tRWVnJmeWm2zE4OAiFQkGybrcwOzuL6OhoXgezk5OTnqw4V+Bc8NbR0YFvfvObe3rtr3/9ayQmJkIqle5Y1+Z+bD8XjfPnz+Pf//3fcf/99982k+ZGLBbj05/+NP75n/8Z/f39u9p7hIeH7+vOJSEhAQ6HA3Nzc7w9kQgEAmg0GszMzJDg7U9ERUUhODgYo6OjnA/eNjY20NTUBJVKxasTv0Ag8JxzDAYD+vv7ERUVxbvmI7VajYqKCjQ0NKCtrQ2lpaWcPw6ysrJgtVr9ItD0Bevr6zCZTKxZ+nCFiYkJREVFceoGlHPBm1arxbe+9a09vdZ98QoLC9tST+bG/dheL3LNzc34/ve/j6qqKvyX//Jf9qgYHl+jwxwbEhMTA5FI5Klx4isxMTG877z9OGVlZZw6ieyE2WyGXq+HXC5HRUUFb7PHfCcsLAxlZWVobm5Gf38/Z7umGYYBTdNQKpV+uVTtLYRCIZKTkzl/o+htDlI37204F7xpNBqcOXNmX+9JT09HZ2fnlsJiALh58yZkMtme1ql7e3vx7W9/G5mZmfj//r//b181Gu55Z4e5/CESiRAbG4uJiQnodLpD266/ERUVBYFAgNnZWSQnJ7MthxO4rVNMJhNEIhHnAjmXywW9Xg+hUOiVeaUE/yIqKgplZWWcXh4eHR3F6Ogojh49Sm40bkGpVHLGlJYtTCYTlpeXPTZkXCEgcsN1dXVYWVlBfX2957G1tTVcvHgR1dXVW2pMpqenPa34bsbGxvDss88iOjoa//RP/7TrxXBtbW3bY2azGa+99hqCg4MP3QcnMTERY2NjATuUfC+IxWJERkbCbDazLYVT0DSN69ev+3zQ+l4QCoVITU2FTqfjXGBJYIfo6GjIZDLYbDbOWSBZrVb09/cjMjKSBG63YDKZMD4+7pkHzFfGxsYAgHPTJTiXeTsIR48exWuvvYYf/OAHGBsb80xYoGkaf/mXf7nltX/7t38LAHjllVcAbAZf//W//ldsbGzgscceQ0NDw5bXx8bGeu48Xn/9dVy9ehXV1dWIiorC8vIy/vjHP2J+fh5///d/f+gZhrS0NFy5cgWzs7OIjY091G37E2VlZZyvlfE1AoEAWVlZuHHjBrRaLSc6wWiaxuLiIqKiojh3omMLkUgEjUbjN92W3mZqagq9vb1gGIYznXvd3d0QCoWcXdJli/HxcUxOTnLm78QWQ0NDiIyMhFqtZlvKFgLijCIUCvHDH/4Qzz33HP7whz/AZrMhKysL3/rWt+5oBmowGLCwsAAA+NnPfrbt+fvuu88TvOXn56O7uxvvvvsu1tfXIZPJkJ2djWeffRalpaWH/rni4+MhlUoxNDTE6+CNoigwDAOz2UzqUW4hPj4eExMT6OrqQl1dHatF1gzDoLW1FYuLizh+/DipT/wTSqWS08a6viY1NRVGoxEdHR2ccKtfWFjA7OwsSkpKyPL+LdA0jampKU6Z0rIBwzAYGhri5NJxQARvwOYw82effRbPPvvsbV/nzri5iYmJ2bLcejvKy8tRXl5+YI37xV0sOjQ0tGV6BB+5efMmZmZmcOLECZKF+xMURSE/Px/19fUYHh4+1Pm6+6WzsxPz8/MoLy8ngdstMAzjMaolx+0mBQUFcDgcaGlpgU6nY7UYXigUQqvV8ropbCcWFhZgs9l4n3VbWFjAxsYGJ43F+RtS+wlpaWmYmpo61FE8/khMTAwsFguWlpbYlsIp1Go1ioqKWPUfunnzJiYmJlBUVMR6JoVrrK+v47333jvUTnR/h6IolJSUQKPRsD5ySaPR7GjwzncmJycRHBzMuaVCXzM8PAyxWMzJMhASvHGc1NRU0DSN0dFRtqWwSmhoKFQqFSYnJ9mWwjni4+Mhl8tZKSx2D0/Pzc3llIElgdsIBALodDrPMbNXY/bDwmQyobGxkfc3xbsRHx/P+0H0wGa9W1JSEidrVknwxnFCQ0Oh0Wg8sxT5TEJCAmZnZ31+ovcHbDYbLly44NOB4DRNQygUoqamhpgoEw7MyMgI6uvrfRpIdXV1wWg0kjq3XYiJieF9Ft1ut2N8fJxz/m5uSPDmB6SlpWFoaIjXliHA5t1gUFAQ60stXEQqlSI4OBjd3d2eebDeZG5uDpcuXSJu9IS7JiYmBjRNo7Gx0Sc3ZtPT01hcXER+fj6xBtmBnp4eGAwGtmWwztjYGFwuFyfr3QASvPkFaWlpMBgMO06R4BNSqRR1dXW8r8PYjby8PDgcDq97vy0vL6O1tRVqtZr4uBHuGrlcDp1OB4vFgqamJq8u/1utVnR3dyMmJsYzGYfwZ9bW1jAyMrLveeCByPDwMEJCQjg7XYIEb36Ae82dLJ1usrGxQbJvO6BQKJCfn4+JiQmvGaEaDAY0NTUhLCwMJSUlpIPyDqhUKpw6dQoqlYptKZxGpVKhsrISBoPBq+c5g8EAsVi86wxqvjMxMQGZTIaIiAi2pbDO0NAQ0tLSOHuOI8GbH+DudiHB26b1QkNDAwYHB9mWwkkSEhKQlpbmFT88mqbR3NwMpVKJ8vJysly6BwQCAWQyGfmu9kBoaCiqq6u9ankTFRWFo0ePbpm6Q9jE4XBgenoaWq2WswGLr1hdXcXy8jJnl0wBErz5DampqRgbG+N9sT5FUUhKSsLU1BTvv4vdyM7ORmhoKBiGOdQlKIFAgOLiYuh0Ok52X3ERs9mMlpYWMt5tj4SEhEAgEMBgMGBgYODQtruwsLDj/GvCn5mcnITL5eKkLYavGRoagkAg4PQ8bXIU+wlpaWlwOp0YHx9nWwrrJCYmgmEY8l3cgaamJnR1dd31dhwOh6dhRqPRkKzFPnA4HKRD+gCsra2hv7//UDLsFosFbW1tsFqtvM8o3Y74+HiUlZURk21sBm8JCQmcruklwZufEBERgZCQEPT19bEthXWkUini4uIwNjbG+w7c2xEXF4fJycm78sZzuVxoamrC0NAQ8cQi+IzExERkZGSgr68PExMTB94OTdNobW2FSCRCUVERCd5ug0QiQXR0NNsyWMdut2N4eBgZGRlsS7ktJHjzEyiKQk5ODm7evAmaptmWwzopKSmIjo5mxZjWX4iPj4dWq0VXVxc2Njb2/X73hc9gMKCyshJyudwLKgmEncnMzERSUhI6OzsP7F/Y19eHtbU1lJaWkozxbWhpaSErGX9icHAQTqcTOTk5bEu5LSR48yNyc3NhMpnu6k40UFCr1cjLyyO1V3cgLy8PCoUCLS0t+wp0GYZBR0cHFhcXUV5ejtDQUC+qJBB2Ji8vD1qt9sBLeS6Xy1MDStiZ9fV1zM7OknPpn+jt7UVsbCznjxkSvPkRsbGxCA4O9rqPl79A0zSGh4fJ3MjbIBQKUVZWhtTU1H0ZkrqXo4uLi4ltwF0gk8mQlZVF6ogOCEVRKCgoQGhoKGiahslk2tf78/PzOeuQzxVGR0chk8kQExPDthTWcTgcGBgY4HzWDSDBm19Blk63QlEURkdHMTw8zLYUThMUFAStVgsAe/LHc09NKC4uRmxsrLflBTRSqRTp6emcLnz2F/r7+3H16lUYjcbbvo6maTQ0NGBmZsZHyvwXu92OqakpJCUlkS5cbDYqOBwOZGdnsy3ljpC/lp+Rk5MDo9FIBrRjM3hLTk7GzMwMcQTfA9PT07hw4QLW1tZ2fc34+DguXLiw7wwHYWccDgfm5uZIt+khkJqaColEAr1ef9vmmZ6eHqysrEChUPhQnX8yNzcHAMQe5E/09PQgOjqas1MVboUEb35GfHw81Go1ent72ZbCCbRaLQQCAcm+7YHo6GgEBwejsbFxx+BsdnYWnZ2d0Gq1XjH55SNmsxnNzc3E5+0QkEgkqKqqAgDo9XrY7fZtrxkaGsLY2Bjy8vIQEhLiY4X+h1arxfHjx0kzB/xryRQgwZvfQVEUsrOz0dvbS2wysDl9Ijk5mRgY7wGhUIiKigqIxWI0NjZuufgtLS2hra0NcXFxyM3NZVElgbA7MpkMOp0ONptt2wi42dlZ3Lx5E+np6SSTtAfcJRSki3yT4eFh2O12ErwRvEdOTg42Nja8Nr/S30hJSUFpaSnEYjHbUjiPRCKBTqeD0+lEf38/gM3mhM7OTmg0GuKFReA8QUFBqKurQ0pKypbHQ0NDkZWVhaysLJaU+Q80TePq1auHOsXC3+nt7UVkZCTCw8PZlrInSG+wH5KQkICgoCD09vYiISGBbTmsI5FIEBUVBWAzECHBx+1RKBSorq723HFTFAWdTgepVEqKlgl+gbt7d2ZmBiMjI57JAN6cixpITExMwGazIS4ujm0pnMB9M+telvcHyJnaDxEIBGTpdAeam5vJneQeCQoKgt1ux5UrV9DZ2Qm5XL4vKxHC3hAIBFCpVCQo9hIWiwUXLlzAm2++ybYUv4GmaQwODiIuLo7Utv6JkZER2Gw2v1kyBUjw5rfk5OTAYDBgenqabSmcQaFQYHR0lNS+7QG73Q69Xo/p6WkMDg4S70AvoVKpcPToUahUKralBBwWiwWjo6NIT0+HRCIhN257ZHJyElarlWQpb6G3txfh4eF+5WlJgjc/JTExEUqlEt3d3WxL4QypqalwuVwYGxtjWwqncTqdnoaFBx54AGVlZRgdHSVzcwl+g81mQ0NDAwDgoYceQn5+Pvr7+4mF0h6gKApJSUkICgpiWwoncDgc6OvrQ25url+V3JDgzU8RCAQoKChAZ2cnme/5J2QyGbRaLYaHh+F0OtmWw0kYhkFLSwuMRiN0Oh2USiUSExORm5uLwcFBDA0NsS0xoFhfX8fZs2fJFJBDZnV1FTRNo6qqCnK5HOnp6cjJyfGrzAlbaLVa5Ofnsy2DM/T19cFqtaKwsJBtKfuCBG9+THFxMcxmM1kuuIW0tDQAgMFgYFkJN6EoCpGRkSgvL0dwcLDn8ZSUFDID0gswDAOn00lqUw8J92SZ6OhoHDt2bEvNVmpqKmQyGex2O5aXl9mSyFlomsbAwAAxNP8Y7e3tSExMRFhYGNtS9gUJ3vyYyMhIxMXFob29nW0pnEEul+Pee+/1C4dsX7O6ugpgM1DbqR0+LS0NGo0GDMOQWkoC57DZbFvsLXZrsBkYGEBjY6PneCdsMjExgf7+fhK83cLa2hpGR0dRXFzMtpR9Q4I3P6eoqAiDg4PY2NhgWwpnEAgEcDgcWFhYYFsKZ3DPhdzLcbKwsIC2tjZ0dnaSjBGBExiNRly9ehU2mw3R0dG3fW12drZnkgg5L27itsJISEiAWq1mWw5n6OjogFgs9qsuUzckePNz8vLyIBQK0dnZybYUTjE+Pk7GEv2J0dFRDAwMIDs7e09dj1FRUSgqKsLExARaWlpITSWBVVZXV3Ht2jUIBALU1tbeMfhwTxKRy+XQ6/WeSQJ8ZmhoCC6XixgY3wLDMGhvb0dubq5fjgcjwZufI5fLkZ2djfb2dpIluYXk5GRIJBLed1BOT0+ju7sbqampnnrAvZCQkICKigosLi6ioaGBBHAHJCgoCEeOHCGdfXfB6OgogoKCUFtbu+dRTmKxGJWVlRAKhbxfPnU4HBgZGUFKSorH3JgAjI2NYW1tzS+XTAESvAUERUVFWFpaIuOybkEoFCIzMxPT09NYW1tjWw4rMAyD0dFRJCQkHGhZIDIyEtXV1dBoNMTA94AIhUIEBweT7+8AuGuzCgsLodPp9j3+TiaT4ejRo4iNjQXw52YHviEWi1FTU7Ovmzc+0N7eDo1G47dTikjwFgAkJycjODgYN27cYFsKp0hISIBKpUJvby/bUljBPfbqblrgQ0JCkJ2dDQCYm5sjXbz7xGKxoKuriyzd7ZP+/n5cvHgRVqsVQqHwwMGve7LF4OAgGhsbeRfA2e12MAyD4OBgiERkGqYbq9WKmzdv+vUsZxK8BQACgQBFRUXo7u6G3W5nWw5noCgKBQUFyMzMZFuKT9nY2EB9fT3MZjNEItGhnZyGh4dx/fp1LC4uHsr2+IDdbsfY2Bj5Xe4RhmHQ0dGBgYEBpKWlHdoyX1hYGFZWVtDW1sar8pL29na0trayLYNz9PT0wOl0+p23262Q4C1AKCoqgs1mw82bN9mWwinCwsI8tiF8OGmbzWbo9XowDLPvZaY7UVlZibCwMDQ2NhIrEcKh43K50NTUhMnJSRQXFx/qMp9Go0FZWRnm5uZ409y1uLiIhYUFMnx+B9rb25GWlubXnbckeAsQQkNDkZSURDzfdoCmaVy7di3gx2bZbDbo9XoIhcID1QjdCZFIhPLycsTHx6OtrY2MIiIcKhaLBevr66isrER8fPyhb//WLurx8fFD3z6XoGkavb29CAsLQ0xMDNtyOMXi4iKmpqZQVFTEtpS7ggRvAURxcTHGxsawsrLCthROIRAIoFKpPGNQAhGGYdDc3Ayn0wmdTgepVOqV/biX6LOzsz1Gv3zIaBK8x+zsLJxOJ4KCgnDixAmvjriKj4/33IAEMmNjY9jY2EBeXh7bUjhHe3s75HK535fTkOAtgMjJyYFCoUBTUxPbUjhHdnY2BAJBwDYvUBSFjIwM6HQ6KBQKr+8vLS0NcrkcDocDV65cwezsrNf36Y9IpVKkpKR4LZj2Z5xOJ27cuIGWlhbPMry7wcCbREdHQygUYn19PWCX/6VSKdLT07eMwCNs1qC2tbWhuLjY7xs4SPAWQIjFYpSWlqK9vZ2MQPkYbhft6enpgCq4ZxgGk5OTYBgGkZGRrNRwKBQKtLS0oLOzk/jBfQyZTIbc3Fzir/UxDAYD6uvrMTMzg6KiIiQmJvpcw+TkJNrb2zE/P+/zfXubuLg4v88seYOOjg7YbDZUVFSwLeWuIcFbgFFeXg6Hw0FsQ3YgISEB0dHRAdX519nZiY6ODqyvr7Oyf7FYjLKyMhQWFmJqagr19fWsaeEiTqcTq6urcDqdbEvhDBaLBVevXoVIJEJdXR1rPls5OTmIiopCS0tLwJSaLCwsoL29ndxE7QDDMGhsbER2djZCQkLYlnPXkOAtwFCr1cjJyeGlp9FeKC8vD5juq5s3b2JiYgJFRUWsL49otVrcc889EAgEARUc3y0mkwlXr16FyWRiWwrruI8LuVyOsrIy1NbWQqlUsqaHoiiUlpYiLCwMTU1Nfn/T4XK50NXV5fHGI2xleHgYS0tLqKysZFvKoUCCtwBEp9NhZWUFg4ODbEvhJE6nE11dXX59QR0eHsbQ0BByc3M5U3ytUqlw5MgRhIeHg2EYDAwMkECOAGCzw+/SpUueju+oqCif1LfdCYFAgPLycoSEhPh9dnRwcBBWqxUFBQVsS+Eker0eMTEx0Gq1bEs5FNj/9RAOnfj4eMTFxaGxsZFtKZyEoijMz8+ju7ubbSkHxmAwID09HSkpKWxL2YLbENhsNmN0dBSXL18OqBpDwv5wuVzo7e2FXq+HWq3mpG2FSCSCTqdDWFgYaJr2yxsOo9GI4eFhpKWlsZrN5CpLS0sYGhpCZWWl305U+DgkeAtQdDodRkZGsLCwwLYUziEUCpGXl4eFhQXMzMywLWdfuGtZiouLkZWVxbKa3VEqlairq0NQUBD0ej1aWlpgNpvZlkXwIRaLBRcvXsTo6Chyc3NRWVnJ+a7brq4uNDQ0wOFwsC1lX6ysrEAul5P5pbvQ2NgIpVIZUNYpJHgLUHJycqBSqUj2bReio6MRExODrq4uv+nMXV5exkcffQSDweAXd48ymQxVVVUoKSnB6uoqLzNwFEVBIpH4xd/rsHDPcZXL5YiLi8PRo0eRkpLiF99BSkoKLBYLmpqa/KroX6vV4ujRo6TWbQesVis6OjpQVlbm9/Ygt0KCtwBFKBSivLwcHR0dJOOxCwUFBaAoyi+yk+vr62hqaoJarYZKpWJbzr6Ii4vD8ePHPbUmfX19Aeuv9XHUajVOnz7t12N49ordbkdnZyfOnz+P1dVVAJv+iv60jKdSqVBZWQmDwYDW1lbON32ZTCYMDQ2BYRhO1BBykba2NrhcLpSXl7Mt5VAhf+0AprS0FMDmwUvYjkQiwbFjx1izKtgrJpMJer0eQUFBKC8v98uTtFAoBEVRYBgGRqMRbW1tuHbtGgwGA9vSCHcJTdMYGRnBhQsXMDMzg5ycHNa7n++G0NBQlJWVcb6sgmEYtLe3Y2JigvNBJlvQNI2mpibk5eUhKCiIbTmHiv9dBQh7RqlUIj8/3++WAHyJWCwGwzAYHR31LPdwjfb2dojFYlRWVvp92p+iKJSVlaGqqgoOhwP19fUBPSh8Y2MDFy5cwMbGBttSvMbw8DB6enoQGxuL48ePIyUlxS9vMG4lMjISR44c4Uwn904MDw9jdXUVRUVFZLl0F/r7+7G2thYw9iC34t9XAsId0el0aG9vR29vL/Lz89mWw0mcTieGhoYwPz8PnU7HtpxtFBcXQyAQQCKRsC3l0AgPD0ddXR3Gx8c9QTPDMAG3/EPTNEwmU8BlRkwmEzY2NhAdHY2kpCRERkb6dbZtJ9xL3bOzszCbzUhNTWVZ0Z/Z2NhAf38/UlNTERYWxrYcztLQ0ACtVovY2Fi2pRw6gXOWJOxIVFQU0tLScOXKFTJAfBfEYjGKioqwuLiI8fFxtuUA+LPFgtPphFKphFwuZ1vSoUNRFJKSkpCdnQ0AGB8fx/nz5zE0NOR33X58YW1tDa2trbh48SL6+vrAMAzEYnHABW63srGxgd7eXkxMTLAtxcPExASUSiWnO87ZZmxsDBMTE6ipqWFbilcgmTceUFdXh1/84he4efMmcnJy2JbDSSIiIpCYmIienh6Eh4ezWmRN0zRaW1uxtLSEuLi4gL4w3kp4eDgMBgP6+/sxMDAArVaL1NTUgAxc/Q2Xy4XGxkYsLy9DoVAgNzcXWq3WLzpI75aMjAzYbDZ0dnZCLBZzwqsuNzcXdrs9oLLUh83ly5cRHR2NjIwMtqV4BfKX5wEJCQlISUlBfX09yb7dhpycHEilUlbvsBmGQUdHBxYXF1FeXs6bwA0AgoKCUFhYiJMnTyI1NRXT09NYW1sDAFKzyQIul8vTFSwUCqFWq1FWVobjx48jOTmZV3VWeXl5iImJQVtbG5aXl1nTsba25umOD6QyisNmYmICo6OjqKurC9gbDJJ54wlHjhzBiy++iIGBAWRmZrIth5OIRCJUV1dDJpOxpqG3txdTU1MoLS1FREQEazrYRCqVIjMzE2lpaZ7MQltbG+x2O1JTUxEVFeU3J2SlUgmdTudXdhl2ux2jo6MYGxuD3W6HSqWCWq0OKIPT/UJRFIqLi9HT0wOFQsGKBofDgdbWVkgkEkRERPjNb4AN6uvrERkZGdDLyiR44wlJSUlITEzE5cuXkZGRQX74u+BeoltaWgLDMD4PoKRSKfLz8wOywHa/3JrZSUhIwPDwMJqbm6FUKpGSkoKEhATOZ39EIpFfBeF9fX0YHh4GRVHQarVITk72q8DTmwgEAk/Tl91uh8Ph8Ol3c+PGDTgcDlRVVZHz922Ynp7G0NAQHnnkkYD+nsiyKY+oq6vDzMwMhoaG2JbCeUZGRtDW1gar1eqT/ZlMJgBAWloakpKSfLJPfyI6Oho1NTWora1FcHCwp5kD2JzzytVlVavViv7+fp8dR/vFbDZjeHjYc/zJZDJkZGTg1KlTyMvLI4HbLnR2dqKhocFnf9eRkRHMzc2hqKiItcyfv3D58mWEh4cHfH03Cd54RHJyMhISEnD58mVS+3YHioqKIBAIfOKyPjs7i4sXL2Jpacmr+wkEQkNDUVpailOnTkEqlYKmaTQ0NOCDDz5Aa2srZmdnORXI2Ww2DAwMcGoEm9lsxtDQEOrr63H+/Hn09fV5zJKTkpKQnp4OsVjMskpu415C1uv1Xh9kT9M0JiYmkJqaiujoaK/uy9+ZnZ3FwMAAjhw5EvDNHIH96QhboCgKR44cwdTUFEZHR9mWw2kkEglKS0uxurqK/v5+r+1naWkJbW1tiI2NhUaj8dp+Ag13cCEQCHDPPfcgPT0dRqMRLS0t+OCDDzwXVHKTsonJZPLYrwwNDWFgYAAKhQKlpaU4ffo0WabfJzKZDDqdDjabzesm6AKBALW1tQFdv3VY1NfXIywsjBf1maTmjWekpaUhNjYWly9fRkpKCttyOE1YWBiys7MxPj6O9PT0Q59usLa2hubmZoSHh6OoqCig6zO8iVKpRHp6OtLT02EymbC8vOzpxKuvr4dSqURsbCzCw8N506HnHkM2NzeHmZkZrK+vo7CwEFqtFpmZmcjJyfH7aR1sExQUhMrKSuj1eiwtLSEqKurQ99Hb24vExESyfL0H5ufncfPmTXzqU58K+KwbEEDB28bGBn7605+ivr4eNpsN2dnZ+PrXv76nzsrvf//7eP/997c9rtVq8Zvf/GbLYzRN4/e//z3efPNNrKysID4+Hk888QROnjx5aJ/Fm1AUhbq6Orz00ksYGxsj9VV3ICUlBYmJiV650PX19UGlUqGsrIwXJxtfoFQqPRc6mqYRFxeH2dlZtLa2ep6vqamBVCqF1WqFRCIJiO/ebrdjbW0NoaGhEIvF6OjowOTkJIRCIaKiopCRkYHIyEgAm00xhMMhJCQEx48f98pNwfDwMIaHh6HRaEjwtgfq6+sREhKCgoICtqX4hIAI3miaxrPPPovh4WE89thjCA4OxptvvolvfvObeP755/c0eFwikeDv/u7vtjy20w/m+eefx29/+1s88MADyMrKwtWrV/Hd734XFEXhxIkTh/aZvElGRgaio6Nx+fJlErzdAYqiIBKJYLFYMDg4iLy8vEO72JeWlgIA5zsm/RWBQIC0tDSkpaXBYrFgZWUFa2trngttc3Mz1tfXERISgtDQUISGhiI8PPxQ673EYjHi4uK8UkM2MTGB5eVlrK6uehoOKioqEBUVhaSkJMTFxSEsLIwcX17GfTy5axsPYwzh8vIybt68ibS0NK9k9AKNxcVF9Pb24pOf/CRvjveACN4uXbqE7u5ufPe738XRo0cBAMePH8fjjz+OF154Ad/5znfuuA2hUIh77733tq9ZXFzEyy+/jIcffhh/+7d/CwD45Cc/ib/5m7/Bc889h6NHj/rFgePOvr388ssYHR1FcnIy25I4j81mw+TkJJxOJ0pKSg68Hbvdjhs3biA3N5fcTfsQuVyOuLg4xMXFeR7Ly8vD6uoqVldXMTMzg+HhYVRXV0Oj0WB2dhYGgwEymQwymQxyuRwKhWLfQZhCoTjw8ULTNFZXV2G1WmGxWGC1WrG+vg6dTgeBQICZmRk4HA5ERkZ6gk93J2JISMiB9kk4OFKpFP39/ZBKpXfl6m8ymdDc3AyNRkM8OffIpUuXoFKpUFhYyLYUnxEQwdvly5cRFhaGI0eOeB4LCQnBsWPHcO7cOdjt9j2ltV0uF6xW664X1atXr8LpdOLhhx/2PEZRFB566CF897vfRU9Pj9+kbLOyshAXF4dz587hy1/+Mqm3ugMhISEoLi5Ga2srVCoV0tPT970Np9OJxsZGmM1mLygk7Bd3wOPGZrN5gjODwYCpqSlYrVZP00NaWhqys7OxtraGnp6ebYGduxPQPRVCIBCAYRhYLBbIZDJQFAWapsEwDBQKBWQyGTY2NjA3N+cJziwWC4KCglBaWgqGYXD9+nUAmxk8mUwGlUoFp9MJiUQCnU7nw2+LcCcSExNht9vR19cHiURy4FUNs9kMhUJByin2yNTUFHp6evDQQw/xqo4zID7pwMAA0tPTtx3o2dnZeOeddzA5OYnU1NTbbsNqteLMmTOwWq1QqVQ4ceIEvva1r23x1BkcHIRcLkdiYuK2/bif3y14W1pa2jJWhe0B6BRF4d5778ULL7yA7u7uQ0n1BzqxsbHY2Njw1Krtp22fpmm0tLTAaDSiurqaZN04yK21YFlZWcjKygLDMLDb7bBarVs6XBUKBaxWKwwGA6xW65bgraGhweNBZzKZ0NPTsy3Tmpubi5SUFBiNRoyOjnoCwbCwMKjVagCbqwHHjh2DTCbj1UXJn0lPT4fdbkdXVxeUSuW+DJoZhgFFUYiIiEB4eDi5od4DDMPgww8/RFRUlN8kTg6LgDgjrKys7JgudVsvLC8v3zZ402g0+PznP4+MjAwwDIPGxka8+eabGB4exo9+9CPPiXN5eRmhoaHbflTu/dzOp+vtt9/Giy++uN+P5lUSExORmZmJ8+fPIzs7m1wg9kBGRgbMZvO+rQFu3LiB5eVlVFZW8mpeqb9DURSkUumWwE6tVqO4uHjL6249Hmpra8EwDGiahsFgAE3TqKqqQkhICCiKgkAg8GwvJibmtoPOg4KCDvkTEbxNTk4OFAoFwsLC9vW+3t5eOBwO0nm+D/r7+zExMYEnnniCd1lKzl2taZr2+BHdCYlEAoqiYLPZdlwWdT92J4PMr371q1v+feLECSQkJOD555/H5cuXPY0Ity6r7Hc/Dz74IGpqajz/Hh8fx/e+973b6vIFp06dwnPPPYempiZUV1ezLYfzuGccunG5XHuqc4yLi/PYVRACj1uPAZVK5fl/iqKgUqkQEhJCgnaeQFGUp454fX0dLpdry/L8TkxMTGBkZIQX/mSHhcvlwrlz55Camoq0tDS25fgczgVvHR0d+OY3v7mn1/76179GYmIipFLpji7X7scO0hr/2c9+Fr/4xS/Q0tLiCd6kUumOgeVe9hMeHs7JC3d4eDhKSkpQX1+P4uJiz2xPwp3p6+vD0tISqqurd73rW1xcRHh4OOkYIxB4SF9fH1ZWVlBTU7MlqL+V5eVldHV1ITExkTSP7YO2tjasrKzg0UcfZVsKK3AueNNqtfjWt761p9e6lyvDwsK21JO5cT92EOd6qVQKtVqN9fX1Lftrb2/31CZ8fD9cDM72wtGjR9HZ2YkrV67cseOW8Geio6MxPDyMjo6ObctoADA6Ooru7m6PfQOBQOAXxcXFuH79OvR6PWpra7fdHFutVrS0tPBmKsBhYbPZcOnSJRQWFvJ2ZBjngjeNRoMzZ87s6z3p6eno7OwETdNbMiA3b96ETCbbk8/bxzGbzTAYDFta7tPS0vDuu+9ifHx8SydRb2+v53l/JCgoCDU1Naivr0d5efkdU/yETUJCQlBUVIS2tjbI5fIt42ump6fR3d2N1NRUErjxmODgYDzwwANsyyCwhFgsRmVlJa5du4aGhgbU1tZuKfGRSqVITk5GUlIS72q27oZr167BZrPh2LFjbEthjYA4Wurq6rCysoL6+nrPY2tra7h48SKqq6u3/Fimp6cxPT3t+bfNZtvRuuE//uM/wDAMKisrPY/V1tZCJBLhjTfe8DzGMAzeeustRERE+PWdU1VVFRQKBS5cuMC2FL8iLi4OOTk5GBwcxNzcHABgYWEB7e3tSEhIQE5ODssKCQQCm7jnoFIU5bnWOJ1OrKysgKIoZGRk8GZs22GwsbGBhoYG6HQ6XteRci7zdhCOHj2K1157DT/4wQ8wNjbmmbBA0zT+8i//cstr3ea6r7zyCoDNTtVnnnkGJ0+ehFarBQA0NTVBr9ejsrIStbW1nvdGRkbi0UcfxUsvvQSn04ns7GxcuXIFnZ2d+B//43/4hUHvbkgkEhw7dgxvv/02qqqqyKDqfZCamgq5XO4ZPzQzM4OoqCheGUYSdsZoNOLGjRsoKioinaM8RqlU4ujRo6AoCi6XC01NTdjY2MCJEydIl/8+uXjxIsRi8ZZrMx8JiKNGKBTihz/8IZ577jn84Q9/gM1mQ1ZWFr71rW95ArLdCAoKQnV1NZqbm/H+++975iF+5StfwWOPPbYtlf3Vr34VKpUKb7/9Nt5//33Ex8fj29/+Nk6dOuXNj+gTioqKoNfr8eGHH+Kpp54i7er7IDY2FgzDYHV1FXFxcdBoNOT7I8DlcmF1dXXf1jKEwIOiKDAMg9///vdYXFzEF77wBRK47RP3qsZ9990HmUzGthxWCZgjR6VS4dlnn8Wzzz5729e5M263vu/b3/72nvcjEAjwxBNP4IknnjiQTi4jEAhw6tQp/Pa3v8XAwAAZzbIPzGYzGhsbQdM0bDYbqqqqSO0ggUDYQnd3N2iaRmhoKGZmZvZl4st33Ia8oaGhKCsrY1sO6wREzRvh8HAP8j579uye/fb4js1mg16vB8MwqKqqQnBwMBobG7d0KhMIBH5jt9uxsLCAuro6HD9+HBMTE+jr62Nblt/Q19eHoaEh3HvvvX5donRYkOCNsAWKovCJT3wCRqNxSwMIYWfc80qdTid0Oh0UCgUqKiqgUCig1+thMpnYlkggEFiGpmlIJBIcPXoUWq3W08w0ODiIxcVFtuVxHrvdjrNnzyIzM3NLVz+fIcEbYRthYWGora3F9evXyYnlDty4cQNms9kTuAF/tgdQKpWk1onnKBQKFBcXb5mRTOAXIyMjuHbt2rZpLKmpqdDpdGTpdA9cunQJFotl3zZigQwJ3gg7Ultbi+DgYLz33ntgGIZtOZwlKysLFRUVnmHibqRSKWpqaqBWq+FyuXa0oyEEPmKxGPHx8TuO1SMEPsPDw+jp6UFERMSOS33uwG1ubg7z8/O+lucXzM/PQ6/X48iRI1t8V/kOCd4IOyISiXD//fdjbGwMXV1dbMvhHKOjo3A6nQgKCrrjAOre3l5cvXoVRqPRR+oIXMFut2NsbGzH8X2EwGZwcBC9vb3IyMi441Lf9PQ0WlpasLKy4iN1/gHDMHj33Xeh0WjI7O2PQYI3wq6kpqYiNzcXH3zwAaxWK9tyOMPNmzfR3d2940i2nXCbcF6/fh0bGxteVkfgEhaLBV1dXbBYLGxLIfgQg8GAvr4+ZGZm7qlrv7i4GGFhYWhqaiKNTrdw48YNTE5O4v777ydNCh+DBG+E23LffffB6XTi/PnzbEvhBMPDwxgaGkJubu6ex15JpVJUV1dDKpXi+vXr5ORMIAQ4wcHBuOeee5CRkbGn1wsEApSXl3sanUiZxab90rlz51BYWLhlHCVhExK8EW6LSqXCsWPH0NLSsmWsGB+ZnJxEb28v0tPTkZKSsq/3SiQSVFVVQSaTYWFhwUsKCQQCm/T19WF4eBgA9l2fJRKJUFlZiZCQEGLwDeCjjz4CTdMBYYDvDUjwRrgjFRUViIqKwnvvvQeaptmWwxo2mw2JiYkHblWXSCSora1FWloaAJA6KAIhgLh58yYGBwfvahtSqRQVFRWQy+VwOBy89dqcmJhAW1sbTpw4QcbK7QIJ3gh3RCAQ4JOf/CRmZ2fR0tLCthyf4w6y0tLSUFBQcFfbctdtLCws4Pz588SKJcARiUSIiIggY5ACGJqmcePGDU85RWpq6qFst6mpCU1NTbyzG3K5XHjvvfcQFxeH0tJStuVwFhK8EfZEfHw8SkpKcP78eV4V3a+vr+PChQuYnZ091O1qNBqEhYWhsbERU1NTh7ptAndQKpXQ6XRQKpVsSyF4icHBQUxPT6OkpGTf5RS3IycnBwaDAa2trbyya2psbMTCwgI++clPbpstTvgz5Jsh7JmTJ09CLBbj7bff5sXJxGQyQa/XQ6lUHrqRplAoREVFBRISEtDe3o6hoaFD3T6BGzAMA6fTyYvfC19JSUlBVVUV4uLiDnW77hmeCwsL6Ojo4MUxtLi4iAsXLqCyshIxMTFsy+E0JHgj7Bm5XI4HH3wQg4ODaG9vZ1uOV7FardDr9Z5pCd5Y9qIoCoWFhcjIyMD09DTvlkf4wPr6Os6ePUs6jAMMk8mEq1evwmQyQSwW39Hr8aBERkaiuLgYU1NTWF1d9co+uAJN03jzzTcREhKCEydOsC2H85BCDMK+yMjIQHFxMd5//32kpKQErON1b28vaJpGdXU1JBKJV/eVmZmJtLQ0CIVCWK1WiMVi4mlEIHCUtbU1NDY2QiKR+KQrNC4uDiEhIQG/9H716lXMzMzgmWeeIRNJ9gDJvBH2zX333Qe5XI633norYFP5+fn5qK6uhlwu98n+hEIhGIZBY2Mj9Ho9b7vMCAQus7CwgOvXr0OpVKKmpsZnM2vdgdvAwAAmJiZ8sk9fMjc3h8uXL6O2thbx8fFsy/ELSPBG2DdSqRSf+tSnMDo6iqamJrblHBo0TaOrqwtmsxlisdjnd7oURaGgoABGoxFXrlwh47QIBA7hcDjQ1taGiIgIVFVVeT0jvxM2mw2dnZ2H3kDFJk6nE2+88QbCw8NRV1fHthy/gQRvhAORkpKCiooKfPTRR3seE8VlGIZBR0cHJiYmYDKZWNMRGhqK2tpaCAQCXLlyhQyrJhBYxuVyweVyQSwWo7q6GmVlZayVNeTl5SEmJgZtbW1YWlpiRcNhc/nyZSwtLeHhhx8mljr7gARvhANz8uRJqFQqvPHGG35v3tvb24upqSkUFxcfemfpflEqlaitrWVdB+HuUalUOH36NFQqFdtSCAfAYrHg2rVr6O7uBgCo1WpWpx9QFIXi4mJoNBo0Nzf7fSPM1NQUrl69irq6OkRHR7Mtx68gwRvhwEgkEjz88MOYnp7G9evX2ZZzYAYHBzEyMoL8/HzExsayLQfAprlrWVmZZ37qyMgInE4ny6oI+0UgEEAikRC/Kj9kZWUF9fX1sNvtnJqtKRAIUFZWhqSkJL9uYnA4HHjjjTcQGxuL2tpatuX4HeSMQrgrEhISUFNTg4sXL/rtEp9arUZWVhanTtC3YjKZ0N/f77EmIPgPJpMJTU1N5O/mZ4yNjeH69etQqVQ4cuQIgoOD2Za0BZFIhOzsbAiFQmxsbMBqtbItad+cP38eBoMBDz/8MLm5OQDkGyPcNUePHoVGo8Ebb7zhV15l7iWHqKgopKens6xmd5RKJe655x7QNI0rV66QwfZ+hNPpxPz8PMma+hkmkwnJycnQ6XSsNCbsh7a2Nr/rUB8dHYVer8fJkycRHh7Othy/hARvhLtGJBLh4YcfxsLCAi5evMi2nD2xtLSEK1eu+E3bfVBQEO655x7PSK1AaBIhELiEyWTCzMwMACA3Nxe5ubl+kREqLS2FzWZDY2OjX9w8WywWvPXWW0hKSkJlZSXbcvwW7h+ZBL8gJiYGx48fx9WrVzk/6mltbQ3Nzc3QaDR+5SkkFotRXl6OkpISj6M7yegQCHfP5OQkLl++jMHBQb/zrgwKCkJlZSU2NjbQ3NzM6eYxhmHw1ltvwWq14qGHHmK1+cPfIcEb4dCoqalBeno6Xn/9dc52QRmNRjQ2NkKlUqG8vNwv7qxvhaIoxMXFgaIorKys4KOPPsL09DTbsggEv8Tt3Xbjxg3ExsaipqbGLwOKkJAQlJeXw2AwcNofsrGxEX19fXj44YcDdjqPr/CvKxeB01AU5fHqee211zh5Bzg2NgapVIrKykq/H0GlVqsRGRnpufiQLBz3kMlkyM3NhUwmY1sKYQd6enowPz+PkpISFBUV+bXPWHh4OE6ePAm1Ws3J7OHU1BQ+/PBDVFVVITMzk205fg8J3giHikKhwCOPPIKpqSlcuHCBbTnbyM3NRXV1dUDMzhOJRCgpKUFxcTFmZmZQX1/P6btuPiKVSpGSkgKpVMq2FMKfYBgGZrMZAJCVlYW6ujrExcWxrOpwcI/Za2lpwcDAANtyPFgsFrz66quIjY3FyZMn2ZYTEJDgjXDoaLVanDhxAlevXsXg4CDbcuB0OqHX67G8vAyKojjfPbZf4uPjUVdXB5VKRYIEjuFwODAzM+NXnYCBjNlshl6vx/Xr10HTNGQymc/mk/oKiqIQEhKC/v5+jI2NsS0HDMPgzTffhN1ux6OPPur3Kx5cgQRvBK9QXV2NjIwMvP766zAYDKzpoGkaLS0tWF1d9eslkTuhVCpRXl4OsVgMi8WChoYGztYd8gmz2YzW1lZPpofADgzDYHR0FJcuXYLRaERRUZHf1bvuh/T0dKSkpKCrq4v1mtiGhgb09/fj4Ycf5pxfnj8TuEcvgVUoisJDDz0EiUSC1157jZUWdoZh0N7ejuXlZZSXl/PmxOF0OmGz2VBfX4/+/n5O1h4SCL6ko6MD3d3dSEhIwLFjx3jhLZaTk4P4+HjcuHGDtRu5yclJfPTRR6ipqUFGRgYrGgIVErwRvIZCocCjjz6K6elpVurf+vr6MDs7i5KSEl6crN24XeHT09MxODiI+vp6koUj8A6GYWCz2QAAiYmJqK6uRn5+fkBn4G+FoigUFhaioKAAarXa5/s3m8147bXXEBcXh+PHj/t8/4EOCd4IXiU+Ph6nTp3CtWvXfF5AGx8fj+LiYsTExPh0v1xAIBAgMzMTR44cgVgsDuglIgLh46yvr+PKlStobW0FAISGhkKj0bCsyvcIBAIkJCQAAObn57GxseGT/brr3BwOBx555BFS5+YFyBmd4HV0Oh0yMzPxZrINdAAARvdJREFUxhtvYG1tzev7m5ubg8vlgkqlCpgusoOiVqtRU1ODoKAg0DSNpqYmLC4usi2LNwiFQgQHB5OLl49wuVzo6+tDfX09GIZBTk4O25I4AcMw6O/vh16vh8Vi8fr+3DfrpM7Ne5DgjeB13PVvMpkML730Eux2u9f2NT09jebmZr8Ze+VL7Ha7p/O2ubmZFNH7gKCgIBw5cgRBQUFsSwl4GIbBlStXMDw8jIyMDNxzzz3ECPZPUBSFiooKCAQCNDQ0ePUcPDg4iPPnz+Oee+7h9Mxof4cEbwSfIJfL8fnPfx5ra2t4/fXXvWIiubCwgPb2diQkJCApKenQt+/vyGQyVFdXo6SkBGtra7h48SJGRkbYlkUg3BUGgwEOhwMURSErKwtHjx5FRkYGKRX4GDKZDDqdznMD5w1T74WFBbz22mvIyMjAsWPHDn37hD9Djm6Cz4iMjMRnPvMZ9Pf34/z584e67dXVVbS0tCAyMhKFhYV+OeLGV7gLiNPS0jweVw6Hg5Ou7P6OwWDAe++9x6pdTqBit9vR2dmJ+vp6j59ZdHQ0lEolu8I4jFKphE6nA0VRh+49aDab8dJLLyEkJASf/vSnSfDsZfjRdkPgDBkZGTh16hQ+/PBDREREoLCw8FC2u7KyguDgYJSWlpLAbQ8IhcItI2ra29tht9uRl5dHlpoOGWLVcrjQNI2xsTFPA1ReXh7JtO8DtVqNe+65B8DmTZtIJLrrc6bL5cLLL78Mu92Op556ipiF+wASvBF8TlVVFRYXF/H2228jLCzM0w11EGiahkAgQGpqKpKTk8nd3gFJSUlBT08Prly5gvj4eGRkZJAMBoGTrK+vo7e3F1qtFllZWQE3McVXMAyDhoYGBAcH39VNNMMweO+99zA1NYWnnnqK3Pz5CHKlI/gciqJw//33Iy4uDr///e8PvKRks9lw+fJlTE1NAQAJ3O6C8PBwHDlyBAUFBVhaWkJ9fT0ZdE/gDPPz82hrawPDMAgJCcGJEydQUFBAAre7gKIoJCcnY2JiAn19fQfeTmNjI9ra2vDAAw9Aq9UeokLC7SBXOwIriEQifO5zn4NYLD5QB6rT6URjYyMcDgfCwsK8pJJfUBSFxMREHD9+HBUVFRCJRHA6nejt7YXVamVbHoGHLC4u4sqVK2hqaoLVavXUacnlcpaVBQYJCQnIycnB4ODggZqXhoaG8MEHH6C6uhpFRUWHL5CwKyR4I7CGUqnE448/jpWVlX11oLr9ysxmM3Q6XcANlmYboVDoMTTd2NjAxMQEzp8/j97eXq9aDAQiQUFBOHr0KLEKOQCtra3Q6/WgKApVVVWorq4mmTYvkJqairS0NPT29sJkMu35fYuLi3j11VeRnp6OkydPelEhYSdI8EZglcjISDzyyCPo7+/f8witvr4+rK6uoqKigpWxL3wiNDQUJ06cQFpaGsbHx/HRRx8RD719IBQKoVKpiEnvHlleXvZkeWNjY1FZWYna2lpejbdjg+zsbNTU1Oy5ztXdWRocHIzPfOYzpGSFBUjDAoF1MjIycPLkSZw7dw4REREoKCi47evT09MRFRVFlkt9hFgsRmZmJpKTkzE8PAyZTAZgs3CcoiioVCqWFXIXi8WCgYEBZGRkkKW+XaBpGrOzsxgeHobBYEBmZiYyMjJ4OdaOTUJDQwFsmuxqNJpdz68ulwuvvvoqrFYrvvzlL5POUpYgwRuBE1RXV2NpaQlvvfUWlEolUlNTt71mZGQEMTExkMvlvJxTyDYSiQTZ2dmefw8NDWF6ehqRkZFITU0l2ZEdsNvtmJiYQFJSEgnedmBxcREdHR2wWCyIiIiATqdDREQE27J4C03TWFxcxPDwMKqrq7etbLhnlk5MTODJJ5/0BHwE30NynQROQFEUPvnJTyIlJQUvv/wyZmZmtjw/PDyMnp4eLCwssKSQ8HGKiopQXFwMq9WKhoYGXL582WeDrwn+i8ViwerqKoBN13+NRoO6ujoSuHEAgUCAiooKKBQK6PX6LSP0GIbBBx98gO7ubnzmM59BYmIii0oJJHgjcAahUIhHH30UkZGR+O1vf4uVlRUAwOTkJHp7e5Genk5OGBxCIBAgPj7ec+FVKBSeJdWFhQXSoUrwwDAMlpaW0NbWhvPnz6OnpwcAoFKpUFxcTGpXOYRIJEJlZSVEIhH0ej1sNhsA4Pr169Dr9fjEJz6BnJwcllUSyLIpgVNIJBI8/vjj+OUvf4lf//rXeOCBB7YYchK4SUREhCdrwjAMOjo6YLPZEBERAa1Wi6ioKFLUzFNMJpMnixMUFIScnBziB8ZxpFIpqqqq0N/fD5FIhBs3buDcuXOoq6tDeXk52/IIIJk3AgdRKBR44okn4HQ68dprr0Gj0dyxiYHAHSiKwrFjx1BQUACHw4GWlhZ89NFHhz5L0R+QSqVIS0vjVVE3TdOYm5vzjK9SKBSIiopCTU0Njh07hpSUFIhEJG/AdeRyOYqKijA8PIzXXnsNRUVFOHr0KNuyCH+C/IIInEQmk+GJJ57ACy+8gL6+PpSVlUEsFrMti7BHRCIRtFottFot1tfXsbS05Pn7tbW1ISIiAtHR0QH/N5XJZFuaPAKZjY0NTE1NYXJyEjabDaGhoUhLS4NAIEBeXh7b8ggHYGxsDL///e/BMAzp/uUYJPNG4Bwmkwn19fXY2NjAF77wBczMzOCVV16By+ViWxrhAKjVaqSkpADYHIRtt9tx48YNfPjhh2hqasLk5OSeDZr9DafTieXl5YAdNeaua3Q6naivr8f4+DhiY2NRV1eH2tpaslTux8zMzOCll15CUlIS/vqv/9rTGRyov1V/g2TeCJzCarVCr9d7MjcSiQSPPfYYfve73+GNN97Apz/9aXJB8GPEYjF0Oh2sVitmZ2cxMzODgYEBJCQkAADm5uag0WgCJiNnMplw/fp1HDlyBMHBwWzLORTW19cxMzODmZkZ2Gw2nD59GiKRCDU1NVCr1eT3GQAsLS3hN7/5DSIiIvDYY49BIpGAYRi0tbVBIpGQhgUOQII3AmdwOBxobGwETdOora31jMJJTU3FI488gldeeQUymQz3338/KIpiWS3hbpDJZEhOTkZycrIno2qz2dDS0gIACA8PR0xMDCIiIsj4M47gcrlw+fJlmEwmiMViREdHIzY21vNbDAkJYVcg4VBYW1vDr371KwQFBeELX/iC5zwcFxcHu92Ovr4+JCcnE99CliHBG4EzjIyMwGKxoKamZtuJITs7Gw8++CDeeustiMVi3HvvvSSACxDco6OkUilOnTrlych1dXVBKBTivvvuA0VRWFlZgVqtJsXuPsBkMmFxcRGLi4swGo04duwYhEIhEhISEBwcjPDwcJJhC0AMBgN+9atfQSgU4i/+4i+2nYeTk5MRExPjsQQisAc5CxI4Q0ZGBuLj43edr1dcXAyn04n33nsPDMPg9OnTJIALMKRSKZKSkpCUlASHwwGj0QiKouByudDQ0ACGYRAaGorIyEhEREQgODiYHAOHAMMwoCgKNpsNV69ehdlshkAgQGhoKOLj40HTNAQCAdLT09mWSvASBoMBL774IhiGwdNPP73r2DuZTAaaptHe3o7Y2FjSyMASJHgjsArDMOju7kZsbCw0Gs0dByOXl5eDoii8++67oGkaZ86cIRfvAEUsFnvG7wiFQhw9etSTDRoaGkJ/fz9Onz4NsViMqakpiEQihIaGcsqWg6IoyGQyTh2jDMNgY2MDa2trWF1dxerqKgQCAY4cOQKpVIq4uDiEhoZCo9GQLCdPWFtbw4svvgiKovD000/fcQncfTy3tbWhsrKSjMZjgYD5ZW5sbOCnP/0p6uvrYbPZkJ2dja9//evIzMy843uPHDmy63NlZWX4P//n/wAAZmdn8bnPfW7H1/3P//k/ceLEiYOJ5zG9vb0YGxvb15D5srIyCAQCvPPOO6BpmtTA8QSlUgmlUomkpCTQNA2j0ehpbBgeHsb6+jqATV+x0NBQZGRkICgoiE3JUKvVOHXqFKsabDYbVldXIRKJEB4ejtXVVVy7dg0URUGlUiEsLGzLjEpihs0vVldX8eKLL0IoFOKpp57aU2MNRVEoLi5GU1MTmpubUV1dHTANOf5CQARvNE3j2WefxfDwMB577DEEBwfjzTffxDe/+U08//zznk623fj2t7+97bG+vj689tprO7pJnzx5Ejqdbstjubm5d/cheMjg4CBGRkaQn5+PuLi4fb23pKQEFEXh7bffBk3TeOCBB0gAxyMEAsGWkUp1dXWemZmrq6tYW1vz1GR1dnZiaWkJKpUKQUFBnoAl0BohrFYrhEIhxGIx5ubmMDw8DKPRCLvdDgCIjY1FeHg4QkJCPBdbklnjNysrK3jxxRchFovx1FNP7WtMmUAgQFlZGfR6PfR6Perq6kgtnA8JiF/upUuX0N3dje9+97seB+jjx4/j8ccfxwsvvIDvfOc7t33/vffeu+2x9vZ2UBS1YzYtPT19x/cQ9s7ExAT6+vqQmZmJpKSkA22juLgYAoEAb775JmiaxoMPPkiKqHmMXC6HXC5HbGzslsejoqIgFAphNBoxPT0Ni8WC3NxcpKSkYGlpCcPDw1AqlZDJZJDL5VAqlYfWObm+vo7GxkZUVlbe9fxOh8MBi8UClUoFiqIwMTGBlZUVbGxswGg0wul0oqCgAImJiRAKhZDL5YiIiIBKpUJISIin+FwgEECj0RzGxyP4McvLy3jxxRchlUrx1FNP7VrjdjtEIhEqKiowOTnJqXIFPhAQwdvly5cRFha2ZfkzJCQEx44dw7lz52C32z3tznvBbrfj8uXLKCoqQmRk5I6vsVgsEIlEAeNH5Wvcy1oZGRl3tZ3CwkIIBAK8/vrrYBgGn/rUp0gAR9hCVFQUoqKiPP++1TCXoigIBAIsLS3BarXC4XAgIiICOp0OLpcLH330kSeok0qlEIvFyMzMhFAoxNLSEux2O8RiMUQiEUQiEWQyGcRiMWiahtPphN1uh9FohM1m8wz4ZhjG83qr1QqDwQCn0wmHwwGn0wmJRAKtVguapqHX62G1WmGxWEDTNIDNzL9cLofBYIDRaIRKpUJMTIwnSAO2zpolED7O0tISXnzxRcjlcjz11FN3VV4gkUiQmpoKAFhcXERISAi5LvqAgAjeBgYGkJ6evu2inZ2djXfeeQeTk5Oeg2sv6PV6GI3GXWtVXnzxRfzkJz8BRVHIzMzEl770JVRUVNx2m0tLS1heXvb8e3x8fM96AgmDweBZutpLPeJeyM/PB0VReP3110HTNB5++GESwBF25dalQo1GsyUL5XQ6Pb5zDMMgJSXFEzytr6/D6XR6jtvBwUEsLS1t2XZ+fj6SkpIwMzOD9vZ2mEwm9PT0wGazbWnGycvLQ3JyMpaXl9HW1gZgM5AUiUQICwuDVquFQCCAQqFASEiIJ4CUyWSeDEd+fr53viBCQLOwsIBf/epXUCgUeOqpp+7YJLZXXC4Xbty4AblcjqqqKo8FEME7BETwtrKygsLCwm2Pu0/Ky8vL+wrezp07B4lEgrq6ui2PCwQClJeX48iRIwgPD/eMbfq7v/s7/OAHP0BVVdWu23z77bfx4osv7llDILK2toaGhgYkJSUd+rzHvLw8CAQCvPbaa6BpGp/+9KfJyYOwb9wZMff/384aQ6fTwel0bvnPvTSp0WhQXl4Og8EAm82GkpISqNVqUBQFiqI8mY7o6Gjce++9EIlEOx6vRUVFh/8hCbxlfn7eY8D75JNPHlrgBmx2hJeXl6OhoQEtLS0oLy8nN9FehHPBG03TcDgce3qtRCLxeBPttCzqfsy9XLEXTCYTGhoaUFlZua0GICoqCv/8z/+85bHTp0/jySefxI9//OPbBm8PPvggampqPP8eHx/H9773vT3r8neMRiMaGxuhUqnueql0N3JycvDoo4/i1VdfxauvvorPfOYzJH1P8BoURUEsFu94jLnr7+RyOcLCwhAVFbVjN55QKCQ3GQSfMD09jd/+9rdQq9V48sknvdKwExISgvLycjQ2NuLGjRsoLi4mjWRegnPBW0dHB775zW/u6bW//vWvkZiYCKlU6umouhX3Y/sppLx8+TLsdvue2/vVajXOnDmD3/72t1hYWNi1Ri48PJy3XjjueaVSqRSVlZVevVhlZ2fjsccew6uvvopf/epXePzxx8kYFwJrKJVKVFdXH2qGg0DYLwMDA3j11VcRHR3t9XNieHg4SkpKcPPmTdjtdtLI4CU4F7xptVp861vf2tNr3cuiYWFhW+rJ3Lgf209n1blz5xAUFITq6uo9v8cdsG1sbOwavPGZubk5AJvLTL7IhGVkZOCpp57C7373O/ziF7/AE088QeYuElhBJBKRzk4Cq7S1teHdd99FRkaGz1YjYmJiEBUVBYFA4JnOQThcOBe8aTQanDlzZl/vSU9PR2dn57aD5ObNm5DJZHf0eXOztLSE9vZ23HffffvqTp2ZmQEAYlK4C0lJSYiLi/PpEmZ8fDyeeeYZ/OY3v8EvfvELfOELX0B0dLTP9k8gAJtZ59HRUSQnJxMPLIJPYRgG9fX1uHjxIsrLy3HmzBmfBlECgQBOpxPXrl1DYmLigS2hCDsTEOFwXV0dVlZWUF9f73lsbW0NFy9eRHV19ZZAbHp6GtPT0ztu58KFC6Bpetcl07W1tW2PLS4u4o9//CNSU1N5uyy6EzRNo7GxERMTEwDASu2ZRqPBM888g6CgILzwwgsYGRnxuQYCv7HZbBgaGtpX3S2BcLfQNI13330XFy9exIkTJ/CJT3yCleyXe6pHV1fXrtddwsHgXObtIBw9ehSvvfYafvCDH2BsbMwzYYGmafzlX/7lltf+7d/+LQDglVde2badc+fOITw8HMXFxTvu5yc/+Qmmp6dRWlqK8PBwzM3N4e2334bVasV/+k//6fA/mJ/CMAza29uxtLS0ry5fbxAUFISnn34ar776Kn7729/ioYceIhYLBAIhYHE4HHjttdcwODiIhx56iPWO5ZycHNjtdty4cQMSiYT4Dx4SARG8CYVC/PCHP8Rzzz2HP/zhD7DZbMjKysK3vvUtaLXaPW1jYmIC/f39+OxnP7vrHUp5eTlmZmbwxhtvYGNjA0FBQSgoKMCTTz55aJ5lgUB3dzdmZ2c9QS7bSKVSfP7zn8c777yDP/zhD9jY2EBVVRXpgiIQCAGF2WzG7373OywsLODxxx9HWloa25JAURQKCwvhcDjQ0tKC48ePkyaGQyAggjcAUKlUePbZZ/Hss8/e9nU7ZdyAzUaJW5ddd+LkyZM4efLkgTXygdHRUYyNjaGwsBAxMTFsy/EgFArxqU99CiqVCh9++CHW19dx+vRpEsARCISAYHV1Fb/5zW9gtVrx9NNPbxsTxyYCgQClpaVYWloigdshETDBG4EbuBsT4uPj2ZayDfesWrVajT/+8Y/Y2NjAQw89RLzgCF7DPepqPw1QBMJ+mZmZwe9+9ztIJBI888wzCAsLY1vSNoRCoWdM3ejoKKKjo4mN010QEA0LBPaZm5uDxWKBRCLhZOB2K+Xl5fjsZz+L/v5+vPDCCzAYDGxLIgQocrkchYWF5CJF8BqdnZ345S9/ieDgYM4GbrfidDoxMjICvV6/oz8rYW+Q4I1w1ywsLKClpQWjo6NsS9kz2dnZeOaZZ2AymfDzn/+ct7NmCd7F5XJhY2PDMy+VQDgsaJrGhx9+iNdffx25ubl4+umn/cIMWiQSQafTweFwoLGxEU6nk21JfgkJ3gh3xerqKlpaWhAZGYmsrCy25eyLmJgYfOUrX0FERAT+4z/+Ay0tLWAYhm1ZhADCaDTi0qVLMBqNbEshBBBmsxm/+c1voNfrcd999/ld+YdSqYROp4PRaERzczNommZbkt9BgjfCgdnY2EBjYyOCg4NRWlrqly7aSqUSf/EXf4Hy8nK8++67ePfdd8mdIIFA4Czz8/N4/vnnMTc3h7/4i7+ATqfzy8YrtVqNiooKCIVCErwdANKwQDgwZrMZSqXS8wP0V4RCIc6cOYPo6Gi8++67WFhYwGc/+1moVCq2pREIBIKH3t5evPHGG9BoNHjqqaf8fuyfRqPxjI+zWq1kCsk+8L9UCYF13JmpqKgo1NbW+lW6/nYUFxfji1/8ItbW1vDzn/8cU1NTbEsiEAgE0DSN8+fP45VXXkFmZiaeeeYZvw/cbsXhcODy5cvo6+tjW4rfQII3wr5wOp24fv2650fmj+n62xEfH4+vfOUrCAkJwQsvvID29na2JRH8HH8sJyBwB6vVipdeeglXr17FqVOnfDZc3peIxWKkpaVhcHCQjDHcI2TZlLBnaJpGc3MzzGYzpwwgDxuVSoWnnnoKZ8+exVtvvYWZmRmcPn0aIhH5uRD2R3BwMO6//362ZRD8lIWFBbz88sswmUz4whe+wImJCd4iNTUVdrsdPT09fmE5xTbkakTYEwzDoK2tDSsrK6iqqoJarWZbklcRiUR44IEHEBMTg7Nnz2JqagqPPPKIpz6DQCAQvAXDMGhtbcX777+PsLAwfOUrX+G8f9thkJ2dDbvdju7ubkRFRQVchvEwIfl8wp4YHx/H3NwcysrKeHEScVNWVoYvfelLsNvt+NnPfoYbN24QOxHCnjEajaivrydWIYQ9Y7FY8Morr+Ddd99FUVERvvzlL/PqnFtQUBBQtdTegmTeCHsiMTERarWaVycRNzExMfjqV7+Ks2fP4s0338TQ0BA++clPks4owh1xuVwwGAzEpJewJ8bHx/GHP/wBDocDn/vc55Cdnc22JJ9DURSCgoJA0zS6urqQnJwc8Cs9B4Fk3gi3ZXR0FCsrK6AoipeBmxuJRIJPfepTeOSRRzA4OIif/vSnpBuVQCAcCjRN49KlS3jxxRcRGhqKr33ta7wM3G6FpmkYDAbo9XqYzWa25XAOErwRdmVychLd3d1YXFxkWwpnyMvLw9e+9jUEBQXhl7/8Ja5cuUIMJgkEwoFZW1vDiy++iMuXL+Po0aN46qmnEBwczLYs1hGJRKisrIRIJEJDQwNsNhvbkjgFCd4IOzI/P4+Ojg5otVpkZmayLYdThIaG4otf/CJqa2tx4cIF/PrXv8b6+jrbsggEgp/R29uLn/70pzAYDPjiF7+Iuro6Yi1zC1KpFDqdDjRNQ6/Xk+k3t0COEsI2VlZW0NLSgujoaBQUFLAth5MIhUIcP34cTz75JJaWlvDTn/4U/f39bMsicAyFQoHS0lIoFAq2pRA4hMPhwDvvvINXXnkFKSkp+NrXvgatVsu2LE6iUCig0+kQFRXl15N8DhvSsEDYhkgkQkxMDIqKigLOhPewSU5Oxl/91V/hrbfewksvvYTi4mKcPn2aNDMQAGyajwayJyJh/4yPj+Ptt9/G+vo6HnjgAZSUlJDz7B1QqVTIysoCsLnMHBwczPvvjARvBA8WiwUSiQRqtRolJSVsy/EbFAoFHnvsMbS1teHDDz/E0NAQ7r//fs/JhsBfbDYbpqenERcXB6lUyrYcAovYbDZ89NFHaG5uRkJCAj7/+c8jPDycbVl+hc1mw/Xr1xEbG4vCwkJeB3AkeCMA2BzBcv36dWg0GhQVFbEtx++gKAqlpaVIT0/Hu+++i9///vfIzc3FJz7xCSiVSrblEVjCarWip6cHGo2GBG88ZmhoCO+88w7MZjPOnDmD8vJyUtt2AKRSKQoLC9HW1gaJRIKcnBy2JbEGCd4IcDgcaGxsBE3TpDnhLlGr1fj85z+P7u5unD17Fj/+8Y9x3333IT8/n9d3iQQCH7FYLPjggw9w48YNpKSk4Omnn0ZoaCjbsvyauLg4zxQGiUQS0CPDbgcJ3niOy+VCU1MTLBYLampqIJfL2Zbk91AUhfz8fKSkpODs2bN4/fXX0d3djfvvv59YABAIPKG3txd//OMf4XQ68alPfYrUEB8iycnJsNvtGB8fR1JSEi/nTvPvExO2MDc3B4PBgKqqKqhUKrblBBRKpRKPPPII8vPz8e677+K5557DqVOnUFpaSk7iBEKAYjQa8cc//hG9vb3IysrC/fffT86tXiAzMxMpKSm8DNwAErzxnri4OISFhZGMmxfJzMxEYmIiPvzwQ7z77rvo7u7Ggw8+yOuJFXxBJBIhKiqKtxcYPsEwDDo6OvDBBx9AIBDg0UcfRU5ODrlR8yJisRh2ux1NTU3IysriVQMIOaPwlN7eXgQFBUGr1ZLAzQfIZDI8+OCDyMvLwzvvvIMf//jHqK6uxj333AOJRMK2PIKXUCqVqKioYFsGwcvMzs7i7NmzmJiYQEFBAe677z7i7ecjRCIRRCIRmpubUV1dzZvSFNLuwkMGBwcxPDxMxjqxQEpKCr7+9a+jtrYWDQ0N+Nd//Vd0dHSAYRi2pRG8AE3TsNvt5LcWoJhMJrzzzjv4+c9/DqvViieffBKf/vSnSeDmQwQCAcrKyhAUFAS9Xg+TycS2JJ9AgjeeMTExgb6+PmRkZCApKYltObxELBbj2LFj+MY3vgGtVos33ngDv/jFLzA9Pc22NMIhs7GxgQ8++AAbGxtsSyEcIi6Xy3Pz1dPTg/vuuw9f+9rXkJKSwrY0XuKegyqRSKDX6+FyudiW5HXIsimPWFhYQGdnJ5KSkoglCAcICQnBo48+ivLycpw9exbPP/88ioqKcPLkSQQFBbEtj0Ag7MDQ0BDef/99LC8vo6ysDMeOHSOZNg4gkUig0+mwsrLCizFaJHjjESEhIUhPT0dGRgbbUgi3kJSUhK9+9atoa2vDhQsXcPPmTRw5cgSVlZWk0J1A4AjLy8v48MMP0d/fj6SkJDzyyCOIjo5mWxbhFuRyOeLi4gAAU1NTiImJCdhAjlwZeIDBYIBUKoVMJiMZN47irtvIzc3FpUuXcP78ebS2tuK+++5Deno66VgjEFjCZrOhvr4eer0eQUFB+OxnP4vs7Gzym+QwVqsVXV1dmJ6eDthpFiR4C3CMRiP0ej3+//buPKypK/8f+DsJBFCJsgREVkFkFwVFoSLgQsVtqlbF1m1qazudWp+prY5Tp99pbWvtU+3wTNtptVqX0aq1RZRxKVUBsaAgIIJEcUEFBFlkDWQh9/eHv9wxBjALEBI+r+fheeDk3OR8cnMvn9xz7jl2dnYYO3asoZtDnsHKygpxcXEIDQ3FqVOncODAAQwfPhyTJ0+Gq6uroZtHSL8hl8uRk5ODjIwMSCQSTJo0CRERETA3Nzd008gzWFpaYuzYsbh06RLy8/MxZswYk0u2KXkzYW1tbcjKygKfz8eoUaMM3RyiBQcHByxduhQ3btzAmTNnsHPnTnh7eyMmJgbDhg0zdPOIhgQCAeLi4ky268YUtbe3Iy8vD+np6WhubkZwcDCio6P7zRQUpkIoFCIkJAQ5OTng8/kIDAw0dJO6FSVvJkoqlSIrKwsAEB4eTnOJGSEOhwMfHx+MHDkSRUVFSE1Nxfbt2+Hn54fo6Gg4OjoauonkGTgcDo1bNBIKhQIFBQVITU1FQ0MDAgMDER0dDTs7O0M3jejIyckJo0aNQkVFBRQKhUl1n9JZxUQ1NDRAJpMhIiIClpaWhm4O0QOHw0FgYCD8/f1RUFCAtLQ0fPvttwgICEB0dHS/mlXc2LS0tODq1asICgrCwIEDDd0c0gGGYVBYWIjU1FTU1tbC398fL730EhwcHAzdNNIN3N3d4ebmBg6HA7lcbjJfpkwjCsJiGAYcDgdCoRCTJ0+m7hoTwuVyMXr0aAQFBSE/Px9paWn4+uuvERwcjKioKNjY2Bi6ieQpcrkc1dXVkMvlhm4KeQrDMBCJRDh37hwePnyIkSNH4sUXX4STk5Ohm0a6GYfDQWtrK86fP4/AwECTGHpCyZsJYRgGeXl5sLCwQEBAACVuJorH4yE0NBTBwcG4fPkyzp8/j4KCAoSEhCAyMpLG5hDSBYZhUFJSgnPnzuHBgwfw9PTEnDlz4OLiYuimkR5kaWkJoVCIvLw8mJubQygUGrpJeqHkzYQUFhaioqICoaGhhm4K6QXKWcVDQkJw6dIlXLhwAbm5uQgICEB4eLhJfLskpLvI5XJcvXoVv//+O6qrq+Hm5oYVK1bQSjP9BIfDQXBwMGQyGbKzsxEeHm7UvRWUvJmIGzduoLS0FMHBwXTZv58xNzfHc889h3HjxiEvLw9ZWVnYvn07PDw8EBERQfPEkX5NLBYjJycHly5dQnNzM3x8fDBz5ky4u7vTcdHPcLlchIaGIisrC5cvX8bkyZON9iYGSt5MQFVVFa5fvw5fX1+4ubkZujnEQPh8PsaPH49x48ahuLgYmZmZOHDgAOzt7REeHo7g4GCTGaxrLKysrBAUFAQrKytDN6XfqaurQ2ZmJvLz88EwDIKDgxEeHk43+PRzPB4PYWFhEIvFRpu4AZS8mQTlfDbKZUFI/8blchEQEAB/f3/cv38fv//+O5KTk3H27FmEhYVh3LhxtBZjL+Hz+dQt18uUn3mRSAQrKyv2qjTd7UuUzM3NMXjwYCgUCly/fh1eXl5GN50WJW9GrLq6GjweD7a2tpS4ETUcDgdubm5wc3NDbW0tsrKykJGRgfPnz2P06NGYMGECXYXoYTKZDFVVVXB0dKSZ+XuQQqGASCTC77//jrKyMtjb22PWrFkYNWoUve+kUxKJBPfv30dNTQ3Cw8ONqmfCeFpKVDx69AjZ2dlwdHSEra2toZtD+jg7OzvMnDkTMTExyMnJwcWLF5GTkwN3d3eEhITA39+f/sn1ALFYjLy8PEyaNInuAu4BdXV1yMvLQ35+PpqamuDh4YGXXnqJxnkSjVhZWWHChAm4cOECsrOzMX78eKPpSqXkzQg1NTXh4sWLGDx4MEaPHm3o5hAjMmDAAHaNxuLiYuTm5iIxMREnT55EUFAQQkJC6IYX0qfJZDIUFxcjLy8Pd+7cgaWlJUaNGoWQkBAMHTrU0M0jRkYgECAsLAxZWVnIzc1FaGioUST+lLwZmdbWVmRlZcHKygphYWE0lxvRiZmZGYKCghAUFKRy9SI7OxtOTk4ICQlBUFAQrc5B+ozKykrk5uaioKAAbW1t8PDwwLx58+Dn50dXjYle7OzsEBoaitraWkM3RWOUvBkZmUyGAQMGYOzYsXTCIt3C1tYWU6ZMQUxMDEpKSpCbm4uTJ0/i9OnTCAgIwJgxY2haBWIQbW1tKCwsRG5uLioqKjBo0CCMHTsWY8aMoTVHSbcaOnQoe+W2paWlz9/gQsmbkZDL5eByuRAIBHjuuecM3RxigrhcLnx8fODj44OmpiZcuXIFubm5uHLlCuzs7BAUFAR/f39a81ELPB4PNjY2dIVcC3K5HLdu3UJRURGKi4shl8vh7e2N+Ph4eHt703tJelRzczPS0tLg5+cHT09PQzenU5S8GQGFQoHs7GyYmZlh3Lhxhm4O6Qesra0xceJEPPfcc7h79y7y8vKQmZmJ1NRUCIVC+Pv7s4kcXZHr3KBBgzBx4kRDN6PPk8lkbMJ248YNSCQSCIVCREZGYvTo0RAIBIZuIuknBg0aBE9PTxQVFYHP5/fZZdMoeevjGIZBbm4u6urqEB4ebujmkH6Gw+HAw8MDHh4ekMvluH37NoqKinDx4kWkpaXB3t6eTeQcHR0pkSMak8lkuHnzJpuwSaVSODg4ICIiAv7+/ka/9iQxXn5+fpBKpcjPz4e5uTkcHR0N3SQ1lLz1cQUFBaisrMS4ceNoShBiUGZmZhg5ciRGjhwJuVyOO3fuoKioCJcuXUJ6ejrs7OzYRG7o0KGUyAFoaGhAeno6TRXy/8lkMpSUlKCoqAglJSWQSqVwdHTExIkT4e/vT/MOkj5j1KhRkEqluHbtWp/sYaDkrQ+rrq7GvXv3MGbMmD6Z+ZP+y8zMDN7e3vD29kZ7ezubyOXk5OD8+fOwsbHBiBEj4OXlheHDh8PCwsLQTSYGwDAM6urqcOvWLdy6dQu3b9+GTCbD0KFDERkZCX9/f7rxgPRJHA4HoaGhkEqlfS5xAyh569OEQiF9Yyd9Ho/Hw4gRIzBixAjMmjULpaWlEIlEuHXrFrKzs8HlcuHq6govLy94eXnBycnJaCbCJNprbW3FnTt32IStvr4ePB4Prq6uiIqKgr+/P/UiEKPA5XJhaWnJdqEGBgb2maUFKXnrg8rKyqBQKODm5kaJGzEqPB6PTdKAxzPg3759G7du3cKFCxdw9uxZWFlZwdPTk61Hn3Hj1t7ejvLycjZZKy8vB8MwsLe3h4+PD7y8vODh4WF0a0cSosQwDJqbm5GZmYmJEyf2iZ4ESt76mKqqKuTn58PV1RVubm6Gbg4herG1tYWtrS3Gjh0LhUKh8k/++PHj7D/54cOHw9XVFS4uLrCxsemT3RTkMZlMhgcPHqCsrAz37t3DnTt3IJFI2KQ8JCSEknJiUiwsLNhltLKyshAREWHweVYpeetD6urqkJOTg6FDh2LUqFGGbg4h3UrZferq6oro6Gi0tbWx3Wu3b99GdnY2gMdLeDk7O8PFxQUuLi5wdnY22pUerK2tMXnyZFhZWRm6KTpRjlkrKytDeXk5ysrKUFlZCYVCAXNzczg7O+O5556j7nBi8gYMGKCyDmp4eLhBv2RS8tZHNDY24tKlS7C1tUVISAhdeSAmz9LSEn5+fvDz8wPweKyUMkEoKytDVlYWWltbATwe//lkQufg4GAUiQKXy+3zM7U/SbkPntwPyn1gb28PFxcXhISEwNnZGY6OjkaxDwjpLtbW1ggLC0NLS4vB/0ebRPJWU1ODI0eOoLi4GCKRCK2trUhISMCYMWM0fo7q6mp89dVXyM7OhkKhwJgxY7B69WoMGzZMrW5ycjIOHjyIyspKCIVCvPjii5g/f75eMVhaWsLJyQkBAQF0QiT9kpWVFXvjA/D4qk9tba1KIlFQUACFQgEzMzPY29tDKBRCKBSyv9va2vapGfjFYjFEIhF8fX37zEBn4HGSVlNTg+rqapWfhoYGAI/3hbOzM8aPH89e/TTWq4eEdCflUBAAePjwocFWnDGJ5O3+/fs4cOAAXFxc2JmRtSEWi7FmzRq0tLRgyZIlMDMzw+HDh7F69Wrs2rVLZexGUlIStm7diqioKCxatAgFBQVISEhAW1sbXn75Za3bLpPJ0NbWBktLSwQHB2u9PSGmisPhwN7eHvb29uyxIZPJUFFRgQcPHrAJx82bN9mrQ1wuF3Z2dioJnVAohJ2dnUHGqMhkMpSXl7M3cPQmhmHQ0tLSYZLW3NwM4PF7bGNjA6FQiKCgIAiFQri4uMDW1tbgVxYI6csaGxtx8eJFeHl5wd/fv9df3ySSNx8fHyQnJ0MgECA1NRUffPCBVtsfPXoUZWVl+O6779gunPHjx2PFihU4dOgQVq1aBQCQSCT4/vvvER4ejk2bNgEAZs+eDYVCgb1792LOnDmwtrbW6rWvXr2KhoYGWq+UEA2Ym5vD3d0d7u7ubBnDMBCLxSrJSU1NDfLy8tDU1MTWGzhwIAQCAQQCAaytrdnfnyzrC3eRaUKZmDU2Nqr8NDU1qfwtk8kAPL4L2NbWFkKhEKGhoSpJrZmZSfwbIKRXCQQCBAYGorCw0CB3UpvEUatvd0Rqaip8fX3ZxA0A3N3dERISgnPnzrHJW25uLhoaGvDCCy+obD937lykpKQgMzMTsbGxWr22RCKhmxMI0QOHw8HAgQMxcOBAeHh4qDzW1taG6upq1NbWqiQ1ZWVlaGxshFgsVqlvYWHBJnIDBgyAhYUF+Hw+LCwsnvljZmYGLpfLXrHq6MoVwzDsj0KhgFQqhUQi6fTn6cebm5vZJE2hULDPy+PxVBJSJycnWFtbY8iQIRAKhbCxselT3cmEmILhw4dDKpWiuLi419ffNYnkTR8KhQK3b9/GjBkz1B7z8/NDdnY2xGIxBgwYgJKSEgCAr6+vSj0fHx9wuVzcuHGj0+StpqYGtbW17N83b94EAAwZMgQVFRXdFQ4hpANWVlawsrJSW6mkvb0dYrEYLS0taG5uRktLC3tFq6amBlKpFDKZDFKpFFKpFHK5XKvXVU6rkZKSolW3LYfDAZ/Ph7m5Ofh8Pvu7paUlhEIhPDw82IR14MCBXY5Hq62tVTn3EEK6F5fLZYdrSSSSXnnNfp+8NTY2QiqVdrhEi7KspqYGbm5uqK2tBY/Hg42NjUo9c3NzCASCLk+Qx44dw+7du9XKt23bpl8AhJA+r6qqytBNIIT0gpKSkl7pTetzyZtCoWDHaTwLn8/Xe1CtMkvu6Fuxsh9bWUcikXQ6PoTP53eZcc+ZM0dlXFtxcTG2bduG9evXs3fX9Rd3797Fxx9/jI0bN6qMXTJ1/TVuoP/G3l/jBvpv7P01bqB/x37z5k1s2bKl1+Luc8nblStXsGbNGo3q7tu3T+83SjlAuaOEUSqVqtSxsLDotNtEKpV2OdhZedfc00aMGAEfHx+t220K3N3d+2Xs/TVuoP/G3l/jBvpv7P01bqB/x67tTYu66nPJm5ubGzZs2KBR3Y66OrUlEAjA5/M77PJUlimTLjs7O7S3t+PRo0cqXacymQyNjY3d0h5CCCGEkK70ueTNzs4OcXFxvfZ6XC4Xnp6eEIlEao9du3YNw4YNY+9m9fb2BgCIRCKEh4ez9UQiERQKBfs4IYQQQkhP6XdT+VdVVeHu3bsqZVFRURCJRCoJ3L1795CXl4fo6Gi2LCQkBAKBAElJSSrbJyUlwdLSUiWhexY7OzusWLGiX16t66+x99e4gf4be3+NG+i/sffXuAGKvTdj5zAMw/TKK/WwPXv2AABKS0tx5swZzJgxA05OTgCA5cuXs/Xefvtt5OfnIz09nS0Ti8VYuXIlxGIx4uPjwePxcPjwYSgUCuzatQtDhgxh6yYmJuLLL79EdHQ0wsLCcOXKFZw+fRqvvfYali5d2jvBEkIIIaTfMpnkbdKkSZ0+9mSi1lHyBjxeo+zptU3feustuLi4qD3f8ePHcejQITx48AAODg6YO3cuFixYQMvJEEIIIaTHmUzyRgghhBDSH/S7MW+EEEIIIcaMkjdCCCGEECPS56YKMXY1NTU4cuQIiouLIRKJ0NraioSEBIwZM0bj56iurlYbf7d69WoMGzZMrW5ycjIOHjyIyspKCIVCvPjii5g/f353hqSVpqYmfPvtt0hPT4dEIoGfnx/efPNNjSZs7Grc4tixY9mlxB48eIBFixZ1WO///u//MGXKFN0aryd9Yv/0009x6tQptXI3Nzf85z//USlTKBQ4ePAgjh49irq6Ori4uGDJkiWYOnVqt8WiDV3jVigUOH36NNLS0lBSUoKmpiY4OTlh8uTJiI+PV5v0urPPx6pVq7BkyZJui+dpUqkUO3fuxK+//oqmpiZ4eXnh1Vdfxbhx4565rTEfy4DusaelpeHs2bMQiUSoq6uDg4MDwsPDsXz5crVJTBcuXIjKykq155gzZw7efffdbo1HU7rGvWvXrg6XQeTz+fjtt9/Uyk1pn3e2HwHA2dkZP/74I/u3oY7lrojFYhw8eBDXrl1DcXExmpqasGHDBo2nLtPmPJiRkYEffvgBd+/exZAhQzBjxgwsW7as0xWcOkLJWze7f/8+Dhw4ABcXF3h6erKL1WpKLBZjzZo1aGlpwZIlS2BmZobDhw9j9erV2LVrFwYPHszWTUpKwtatWxEVFYVFixahoKAACQkJaGtrw8svv9zdoT2TQqHA+vXrcevWLcTHx2Pw4ME4evQo1qxZgx07dsDV1bXL7Tdu3KhWJhKJcOTIkQ5PHFOnTsWECRNUygICAvQLQkf6xg48PsGvW7dOpWzgwIFq9Xbs2IH9+/dj9uzZ8PX1RUZGBj766CNwOJxeT1z1ibutrQ2bN29GQEAA/vCHP8DGxgZFRUX44YcfkJubi3/+859qNwGNHTsW06dPVynr6fkVN2/ejNTUVCxYsAAuLi44efIk1q1bh4SEhC7XMDTmY1lJ19i/+OIL2NnZITY2Fo6Ojrh16xYSExORlZWFnTt3qiXm3t7eal/IOrpZrLfoGrfS2rVrYWVlxf7N5ap3cpnaPl+9ejVaW1tVyiorK/H99993eP42xLHclYaGBuzevRuOjo4YMWIE8vLyNN5Wm/NgVlYW3n//fYwePRpr1qzB7du3sXfvXjx69Ahr167VvMEM6VYtLS1MQ0MDwzAMc+7cOSYyMpLJzc3VePv9+/czkZGRzLVr19iy0tJSJjo6mvnuu+/Ysra2NmbWrFnMunXrVLb/6KOPmNjYWKaxsVHPSLR35swZJjIykjl37hxb9ujRIyYuLo758MMPdXrOzz77jJk0aRJTVVXFllVUVDCRkZHMgQMH9G1yt9E39k8++YSJjY19Zr2HDx8yMTExzLZt29gyhULB/PnPf2bmzZvHyOVyndqvK33ilkqlTEFBgVr5Dz/8wERGRjLZ2dkq5ZGRkSpx94aioiK1z1pbWxsTHx/PvPHGG11ua8zHMsPoF3tH57yTJ08ykZGRzPHjx1XKFyxYoBa7IekT986dO5nIyEjm0aNHXdYzxX3ekd27dzORkZFqx7khjuVnkUgkTE1NDcMwDFNcXMxERkYyJ06c0Ghbbc6DS5cuZf74xz8yMpmMLdu+fTszadIkprS0VOP20pi3bjZgwAAIBAKdt09NTYWvry/8/PzYMnd3d4SEhODcuXNsWW5uLhoaGvDCCy+obD937ly0trYiMzNT5zboKi0tDba2tiqXxIcMGYKYmBhkZGSwa8VqSiqVIi0tDaNHj4aDg0OHdVpbWztcl7a3dVfs7e3taGlp6fTxjIwMyOVyzJ07ly3jcDh44YUXUF1drfWVXn3pE7e5uTmCgoLUyiMjIwFAbTJtJYlEAolEomfLNZOWlgYej4c5c+awZRYWFpg5cyaKiopQVVXV6bbGfCwD+sXe0TAR5WektLS0w21kMpnalRtD0CfuJ7W0tIDpZDIHU9znHfntt9/g5OTU4XEO9O6x/Cx8Pl/nCXY1PQ+WlpaitLQUs2fPVukinTt3LhiGQWpqqsavSclbH6JQKHD79m34+vqqPebn54fy8nKIxWIAQElJCQCo1fXx8QGXy8WNGzd6vsFPuXHjBry9vdW6CPz8/NDW1ob79+9r9XxZWVlobm7GtGnTOnx89+7deP755zF16lSsWrUKly5d0rnt+uqO2Nva2hAXF4e4uDjMnDkT27ZtY/e3UklJCaysrODu7q72OsrHe1N373MAqKurAwCVbkWlU6dOITY2FtOmTcPSpUuRkpKiW8M1VFJSAhcXF7Xua+X7ffPmzQ63M/ZjGdA99s4o14p+ctJzpdzcXMTGxuL555/HwoUL8dNPP+nW6G7QHXEvWrQIcXFxmD59OjZt2sR+pp98DcC09/mNGzdw9+7dTsfi9vax3JM0PQ8q9+vT4+Ds7e0hFAq1On/TmLc+pLGxEVKptMPsX1lWU1MDNzc31NbWgsfjwcbGRqWeubk5BAIBe6LsTXV1dQgODlYrV7a9trYWXl5eGj9fSkoK+Hw+oqKiVMq5XC7GjRuHSZMmwd7eHhUVFTh8+DDWrVuHzZs3a7VMWXfRN3Y7OzssXrwYI0eOBMMwuHjxIo4ePYpbt24hISGB/ZZWW1sLGxsbtbFgT34+elN373MA+PHHHzFw4ECMHz9epTwwMBAxMTFwcnJCbW0tfvnlF2zatAktLS1qVzC6S21t7TOPx44Y+7EM6B57Zw4cOAAej6d2PHt6emLUqFFwdXVFY2MjTp48iX/961+oqanBn/70J90D0JE+cVtbW2PevHkICAiAubk5CgoKkJiYiOLiYuzYsYNNivrDPlcmYx19+TbEsdyTND0PKvdrZ++xNvudkrcuKBQKjbvk+Hy+3issKC8fm5ubd/j8T9aRSCSd3pnC5/P1vhStS+wSiYRt59OPA9CqTS0tLcjMzMT48ePV7k5zdHTE1q1bVcqef/55LFu2DF9//bXeyZshYn/99ddV/p4yZQpcXV2xY8cOpKWlsTciSCQSjT4fujD0PgeAffv2IScnB++8847afv/mm29U/p4xYwZeffVVbN++HXFxcWqD4LuDru93XzqWddWdn7WUlBT897//xeLFi9VuYvnss89U/p4xYwbee+89HD58GPPnz+90yERP0SfuBQsWqPwdHR0NPz8/bNq0CYmJieydlKa+zxUKBc6ePQtvb294eHioPW6IY7knaXoeVHafdlb36Z6WrlDy1oUrV65gzZo1GtXdt2+fWleWtpQf2I7+gSp3urKOhYUF5HJ5h88jlUr1/vDrEruFhUWHY5yebrsm0tLSIJVKO+0yfZpAIEBcXBz279+Phw8f6nXCN3TsSgsXLsTOnTuRk5PDJm8WFhYafT50Yei4z5w5g++//x4zZ87U6Nu3ubk55s2bh61bt+L69esa3QWoLV3f7750LOuquz5rV65cwZYtWxAWFobXXnvtmfU5HA4WLlyIS5cuIT8/H7Gxsdo1XE/dfYxNmzYNX3/9NS5fvswmb6a+z/Pz81FdXa2WzHamN47lnqTpeVCZtHVWV5v9TslbF9zc3LBhwwaN6uo60PFJAoEAfD6/w0unyjJ7e3v29drb2/Ho0SOVS+8ymQyNjY16t0eX2G1tbbtsuzZtSklJwaBBgxAREaHxNsqErampSa/kzdCxK1lYWEAgEKCxsVHl9fLy8sAwjMqV3qc/H7owZNzZ2dn49NNPER4ertXt8sr9/OR71J3s7OxQXV2tVv6s97svHcu60jX2J928eRMbNmyAp6cnPvroI43nserp/dqV7oj7aQ4ODmrHsanuc+Dx+ZvL5Wo196Qh97m+ND0PPtmN6ujoqFb3yZubnoWSty7Y2dlpPEFfd+ByufD09IRIJFJ77Nq1axg2bBgGDBgA4H/z4YhEIpVuQpFIBIVCofd8ObrE7u3tjYKCAigUCpWBm8XFxbC0tNRorjPg8biKvLw8TJ8+vcPLy52pqKgA0PFAd20YMvYnicViNDQ0qAzwHjFiBJKTk3H37l2V7ohr166xj+vKUHFfu3YNGzduhI+PDz788EOtJqpU7vOOBsF3B+V8Ty0tLSqDuJ/1fvelY1lXusauVF5ejnfffRc2Njb4/PPP2Xg10dP7tSv6xv00hmFQWVmpsh9NdZ8DqrMEaJPoGnKf60vT86Byv16/fh3+/v5svZqaGlRXV6vc5fssdLepAVVVValNhxAVFQWRSKRy0r937x7y8vIQHR3NloWEhEAgECApKUll+6SkJFhaWhpk0H5UVBTq6uqQnp7OltXX1+PcuXOIiIhQScTKy8tRXl7e4fOcPXsWCoWi0y7T+vp6tbLq6mqcOHECXl5eel190pU+sUskkg7HOuzZswcMw6gM3J84cSLMzMyQmJjIljEMg6SkJAiFQgQGBnZ3aF3Sd5+XlpZi/fr1GDp0KLZs2dJpt0FH+1wsFuPIkSMYPHiwRqtY6CI6Ohrt7e04duwYWyaVSnHixAn4+/uz355N7VgG9Iu9trYWa9euBZfLxRdffNHpP+TGxka0t7erlMnlcuzfvx/m5uZarUzTXfSJu6PP6dGjR1FfX69yHJviPld61iwBhjqWu0tNTQ3u3r2r0u2t6Xlw+PDhcHNzw/Hjx1U+90ePHgWHw1G7macrdOWtB+zZswfA/+YzOn36NAoKCgAAy5cvZ+t98sknyM/PV9nhc+fORXJyMtavX4/4+HjweDwcPnwYNjY2iI+PZ+tZWFhg5cqV+PLLL/HBBx8gLCwMV65cwa+//orXXntNr7nmdBUdHY0jR45g8+bNKC0tZWeZVigUeOWVV1Tq/uUvfwEAHD58WO15UlJSYG9v3+mJ+9///jfKy8sRGhoKe3t7VFZW4tixY2hra8Pbb7/d/YFpQJ/Y6+rqsHLlSkydOhVubm4AgEuXLiErKwvjx4/HxIkT2W0dHBywYMEC/Pjjj5DL5fDz88P58+dRUFCAv//97+DxeL0U8WP6xC0Wi/Huu++iqakJ8fHxanNbDRs2jE1Gf/nlF2RkZCAiIgKOjo6ora3FiRMnUFVVhffff7/DQdbdwd/fHzExMdi+fTvq6+vh7OyMU6dOobKyEuvXr2frmdqxDOgX+3vvvYeKigosXrwYV69exdWrV9nHbGxs2Bn3L1y4gL179yIqKgpOTk5oampCSkoK7ty5g1WrVhmk+1CfuBcsWIDJkyfD09MTfD4fV69exZkzZ+Dt7a02d5qp7XOlzmYJUDLUsayJn3/+Gc3NzWx354ULF/Dw4UMAwPz58zFo0CBs374dp06dwqFDh+Dk5ARAu/Pgm2++iQ0bNmDt2rWYMmUKbt++jcTERMyaNavDmzs6Q8lbD9i5c6fK3ydOnGB/fzJ568iAAQOQkJCAr776Cnv37mXXQ3zrrbfUvr3OnTsXZmZmOHToEC5cuAAHBwe89dZbGg8S7W48Hg+ff/45vvnmG/z888+QSCTw9fXFhg0b2KTkWe7du4fr169j4cKFHS4pAwDjxo1DRUUFEhMT0dTUhEGDBmHUqFFYtmyZwb616RO7cmxfdnY2Tp06BYVCAWdnZ6xatQrx8fFq78Prr78Oa2trHDt2DKdOnYKLiws2btyo8c0d3UmfuBsaGtgT43fffaf2+PTp09nkLSgoCIWFhUhOTkZjYyMsLS3h5+eH9evXIzQ0tPsDe8Lf/vY3ODo64vTp02huboanpye2bNmC0aNHd7mdMR/LSrrGrpwP7Mn1LJVGjx7NJm+enp5wd3dHSkoK6uvrYWZmBm9vb3z44YeIiYnp9ng0pWvc06ZNQ2FhIXvDlaOjIxYvXoxly5bB0tJSpa6p7XPgf7METJgwAYMGDeqwjiGP5Wc5dOiQyvqs6enpbIIaGxvbaUzanAcjIiLw8ccfY/fu3UhISMDgwYOxZMkSrFixQqu2cpjOpoAmhBBCCCF9Do15I4QQQggxIpS8EUIIIYQYEUreCCGEEEKMCCVvhBBCCCFGhJI3QgghhBAjQskbIYQQQogRoeSNEEIIIcSIUPJGCCGEEGJEKHkjhBBCCDEilLwRQgghhBgRWtuUEEJ0lJubi6SkJBQWFqK+vh5WVlbw8PBATEwM5syZ0+Ui28uXLwefz8eOHTvw4MEDLFq0CGFhYfjiiy96MQJCiDGi5I0QQrQkl8vx5Zdf4vjx47CyssL48ePh7OyMlpYWZGdnIyEhAceOHcPnn38OR0dHte3Ly8tx584drFy50gCtJ4QYO0reCCFES9u3b8fx48fh6+uLTz75BEKhkH2svb0de/bswe7du7Fu3Tps374dFhYWKttnZGQAACZOnNir7SaEmAYa80YIIVq4f/8+Dh8+DIFAgM8++0wlcQMAHo+HV155BVOnTsWdO3fw008/qT1HRkYGnJyc4OXl1VvNJoSYEEreCCFEC6dOnYJCocDs2bNha2vbab3ly5cDAJKTk1XK6+vrUVhYSFfdCCE6o+SNEEK0UFhYCAAIDQ3tsp67uzvs7e1RUVGB2tpatjwzMxPt7e2IjIzs0XYSQkwXJW+EEKIFZSLm4ODwzLrKOjU1NWxZRkYGBg8ejKCgoJ5pICHE5FHyRgghPUyhUAAAJBIJsrOzMWHCBPB4PAO3ihBirCh5I4QQLdjZ2QEAHj58+My6yjrKmxqys7PR1tZG490IIXqh5I0QQrQQGBgIALh8+XKX9e7evYuamhpYW1uzNzZkZGSAz+cjLCysx9tJCDFdlLwRQogWpk+fDi6Xi+TkZNTX13dab9++fQCA2NhYcLlcKBQKZGZmYuzYsbCysuql1hJCTBElb4QQogVXV1csXLgQDQ0N+Otf/6pyMwLweHzbnj178Ouvv2LQoEFYsGABAKCoqAiPHj2iLlNCiN5ohQVCCNHSqlWr0NLSguPHj+Pll1/GhAkTVJbHKisrA5/Pxz/+8Q8MGzYMAHD+/HlwuVxEREQYuPWEEGNHyRshhGjJzMwM7733HiZPnoxjx47h6tWrSE9PR3t7OwAgICAAGzduhLOzM7tNRkYG/P39u5zYlxBCNEHJGyGE6Cg0NFRlst779+/jjTfewIMHD8AwDFteWlqKsrIyzJo1q8PncXJyQnp6eo+3lxBiGmjMGyGEdBNXV1ds2rQJjY2NeOedd1BdXQ2AFqInhHQvDvPk10NCCCF6u3DhAq5fvw53d3dMmTLF0M0hhJgYSt4IIYQQQowIdZsSQgghhBgRSt4IIYQQQowIJW+EEEIIIUaEkjdCCCGEECNCyRshhBBCiBGh5I0QQgghxIhQ8kYIIYQQYkQoeSOEEEIIMSKUvBFCCCGEGJH/B2RfLfKUR65BAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loading files...\n", + "Simulated PD, PA: 70%, 83 degrees E of N\n", + "Simulated Q/I, U/I: -0.2, 0.7\n", + "0.9382742950043191 0.12342890897514582 1.34077 rad 3.8511941530269103\n" ] } ], "source": [ - "bin_edges = Angle(np.linspace(-np.pi, np.pi, 18), unit=u.rad) # Define ASAD bins\n", - "asads = {}\n", - "for key in azimuthal_angles.keys():\n", - " asads[key] = grb_polarization.create_asad(azimuthal_angles[key], bin_edges)" - ] - }, - { - "cell_type": "markdown", - "id": "52e46d5e", - "metadata": {}, - "source": [ - "Calculate the ASAD of the GRB only by subtracting the background ASAD from the GRB+background ASAD" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "6ff34198", - "metadata": {}, - "outputs": [], - "source": [ - "source_duration = analysis.tmax - analysis.tmin # Duration of GRB simulation\n", - "background_duration = np.max(background['TimeTags']) - np.min(background['TimeTags']) # Duration of background simulation\n", + "print('modularion factor:', mu, '+/-', mu_err)\n", + "PD, PD_err, PA, PA_err = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu, show=True)\n", "\n", - "background_asad_grb_duration = (asads['background']['counts'] * source_duration / background_duration).astype(int)\n", - "grb_asad = asads['grb & background']['counts'] - background_asad_grb_duration\n", + "print('loading files...')\n", + "print('Simulated PD, PA: 70%, 83 degrees E of N')\n", + "sim_pd, sim_pa = 0.7, np.radians(83)\n", + "sim_u = sim_pd / np.sqrt((np.tan(2*sim_pa))**2 + 1)\n", + "sim_q = sim_pd / np.sqrt((np.tan(2*sim_pa))**2 + 1) * np.tan(2*sim_pa)\n", + "print('Simulated Q/I, U/I: %.1f, %.1f'%(sim_q, sim_u))\n", "\n", - "asads['grb'] = {'counts': grb_asad, 'uncertainties': calculate_uncertainties(grb_asad)}" + "print(PD, PD_err, PA, PA_err)\n" ] }, { "cell_type": "markdown", - "id": "e3cda8c6", - "metadata": {}, - "source": [ - "Calculate the unpolarized and 100% polarized ASADs, and calculate the modulation of a 100% polarized source" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4cddef85", - "metadata": {}, - "outputs": [], - "source": [ - "asads['unpolarized'] = grb_polarization.create_unpolarized_asad()\n", - "\n", - "asads['polarized'] = grb_polarization.create_polarized_asads()\n", - "\n", - "mu_100 = grb_polarization.calculate_mu100(asads['polarized'], asads['unpolarized'])" - ] - }, - { - "cell_type": "markdown", - "id": "7fb2ffdb", + "id": "57a5362a", "metadata": {}, "source": [ - "Plot the ASADs" + "Transform polarization angle to different conventions" ] }, { "cell_type": "code", "execution_count": null, - "id": "8fc63ee4", - "metadata": {}, - "outputs": [], - "source": [ - "titles = {'grb': 'GRB ASAD', 'grb & background': 'GRB+background ASAD', 'background': 'Background ASAD', 'unpolarized': 'Unpolarized ASAD'}\n", - "for key in titles.keys():\n", - " grb_polarization.plot_asad(asads[key]['counts'], asads[key]['uncertainties'], titles[key])" - ] - }, - { - "cell_type": "markdown", - "id": "539abbb2", - "metadata": {}, - "source": [ - "Divide the GRB ASAD by the unpolarized ASAD to correct for instrumental effects" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "50e01dd4", - "metadata": {}, - "outputs": [], - "source": [ - "asad_corrected = grb_polarization.correct_asad(asads['grb'], asads['unpolarized'])" - ] - }, - { - "cell_type": "markdown", - "id": "3275a6a6", - "metadata": {}, - "source": [ - "Calculate the minimum detectable polarization (MDP) of the GRB " - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "d79420fd", + "id": "7e456b61", "metadata": {}, "outputs": [], "source": [ - "source_counts = np.sum(asads['grb']['counts'])\n", - "background_counts = np.sum(background_asad_grb_duration)\n", - "\n", - "mdp = 4.29 / mu_100['mu'] * np.sqrt(source_counts + background_counts) / source_counts" - ] - }, - { - "cell_type": "markdown", - "id": "2ffedf1b", - "metadata": {}, - "source": [ - "Fit the polarization fraction and angle of the GRB" + "print('RelativeX:', round(polarization['angle'].transform_to(MEGAlibRelativeX(attitude=attitude)).angle.degree, 3), 'degrees')\n", + "print('RelativeY:', round(polarization['angle'].transform_to(MEGAlibRelativeY(attitude=attitude)).angle.degree, 3), 'degrees')\n", + "print('RelativeZ:', round(polarization['angle'].transform_to(MEGAlibRelativeZ(attitude=attitude)).angle.degree, 3), 'degrees')\n", + "print('IAU:', round(polarization['angle'].transform_to(IAUPolarizationConvention()).angle.degree, 3), 'degrees')" ] }, { "cell_type": "code", "execution_count": null, - "id": "2f180dd5", + "id": "ee9644fb", "metadata": {}, "outputs": [], - "source": [ - "polarization = grb_polarization.fit(mu_100, asad_corrected['counts'], bounds=([0, 0, 0], [np.inf,np.inf,np.pi]), sigma=asad_corrected['uncertainties'])\n", - "\n", - "if mdp > polarization['fraction']:\n", - " print('Polarization fraction is below MDP!', 'MDP:', round(mdp, 3))\n", - "else:\n", - " print('MDP:', round(mdp, 3))" - ] - }, - { - "cell_type": "markdown", - "id": "f7f553e1", - "metadata": {}, - "source": [ - "Plot the corrected ASAD for the GRB with the best fit sinusoidal function" - ] + "source": [] }, { "cell_type": "code", "execution_count": null, - "id": "c1f14711", + "id": "c516b973", "metadata": {}, "outputs": [], - "source": [ - "grb_polarization.plot_asad(asad_corrected['counts'], asad_corrected['uncertainties'], 'Corrected ' + titles['grb'], coefficients=polarization['best fit parameter values'])" - ] - }, - { - "cell_type": "markdown", - "id": "57a5362a", - "metadata": {}, - "source": [ - "Transform polarization angle to different conventions" - ] + "source": [] }, { "cell_type": "code", "execution_count": null, - "id": "7e456b61", + "id": "a461fd6d", "metadata": {}, "outputs": [], - "source": [ - "print('RelativeX:', round(polarization['angle'].transform_to(MEGAlibRelativeX(attitude=attitude)).angle.degree, 3), 'degrees')\n", - "print('RelativeY:', round(polarization['angle'].transform_to(MEGAlibRelativeY(attitude=attitude)).angle.degree, 3), 'degrees')\n", - "print('RelativeZ:', round(polarization['angle'].transform_to(MEGAlibRelativeZ(attitude=attitude)).angle.degree, 3), 'degrees')\n", - "print('IAU:', round(polarization['angle'].transform_to(IAUPolarizationConvention()).angle.degree, 3), 'degrees')" - ] + "source": [] }, { "cell_type": "code", "execution_count": null, - "id": "ee9644fb", + "id": "633ef604", "metadata": {}, "outputs": [], "source": [] From febcdd14abd86b959f2f291c04c945fd022dd651 Mon Sep 17 00:00:00 2001 From: nmik Date: Mon, 21 Oct 2024 23:01:17 -0500 Subject: [PATCH 07/31] stokes methods almost there --- cosipy/polarization/polarization_stokes.py | 195 +++++++++++++++++---- 1 file changed, 158 insertions(+), 37 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 6d640d4b..65dcee50 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -1,11 +1,11 @@ import numpy as np from astropy.coordinates import Angle import astropy.units as u -from astropy.stats import poisson_conf_interval +# from astropy.stats import poisson_conf_interval import matplotlib.pyplot as plt from scipy.optimize import curve_fit -from cosipy.polarization import PolarizationAngle -from cosipy.polarization.conventions import MEGAlibRelativeX, IAUPolarizationConvention +# from cosipy.polarization import PolarizationAngle +from cosipy.polarization.conventions import MEGAlibRelativeX#, IAUPolarizationConvention from cosipy.response import FullDetectorResponse from scoords import SpacecraftFrame import scipy.interpolate as interpolate @@ -37,6 +37,38 @@ def constant(x, a): return a +def rotate_points_to_x_axis(x_, y_, angle_): + """ + Rotate arrays of points (x_, y_) in the QN-UN plane by an angle + """ + # Create a matrix of rotation matrices for each point + cos_vals = np.cos(angle_) + sin_vals = np.sin(angle_) + + # Apply the rotation to each point + rotated_x = x_ * cos_vals - y_ * sin_vals + rotated_y = x_ * sin_vals + y_ * cos_vals + + return rotated_x, rotated_y + +def polar_chart_backbone(ax): + """ Preparing canvas for Stokes chart + """ + ax.spines['top'].set_visible(True) + ax.spines['right'].set_visible(True) + c0 = plt.Circle((0,0), radius=0.25, facecolor='none', edgecolor='k', linewidth=1, linestyle='--', alpha=0.3) + c1 = plt.Circle((0,0), radius=0.50, facecolor='none', edgecolor='k', linewidth=1, linestyle='--', alpha=0.3) + c2 = plt.Circle((0,0), radius=0.75, facecolor='none', edgecolor='k', linewidth=1, linestyle='--', alpha=0.3) + c3 = plt.Circle((0,0), radius=1.00, facecolor='none', edgecolor='k', linewidth=1, linestyle='-', alpha=0.5) + plt.gca().add_artist(c0) + plt.gca().add_artist(c1) + plt.gca().add_artist(c2) + plt.gca().add_artist(c3) + plt.hlines(0, -1, 1, linewidth=1, color='k', linestyle='--', alpha=0.3) + plt.vlines(0, -1, 1, linewidth=1, color='k', linestyle='--', alpha=0.3) + plt.plot([1,-1], [1,-1], linewidth=1, color='k', linestyle='--', alpha=0.3) + plt.plot([1,-1], [-1,1], linewidth=1, color='k', linestyle='--', alpha=0.3) + def calculate_azimuthal_scattering_angle(psi, chi, source_vector, reference_vector): """ Calculate the azimuthal scattering angle of a scattered photon. @@ -100,16 +132,17 @@ def get_modulation(_x, _y, title='Modulation', show=False): mu_err = 2/(popt[1]+2*popt[0])**2 * np.sqrt(popt[1]**2 * pcov[0][0]**2 + popt[0]**2 * pcov[1][1]**2) if show: + plt.figure() plt.title(title) - plt.bar(_x, _y, align='center', width=0.07, alpha=0.5) + plt.step(_x, _y, where='mid') perr = [popt[0]+np.sqrt(pcov[0][0]), popt[1]+np.sqrt(pcov[1][1]), popt[2]] merr = [popt[0]-np.sqrt(pcov[0][0]), popt[1]-np.sqrt(pcov[1][1]), popt[2]] plt.fill_between(_x, R(_x, *perr), R(_x, *merr), color='red', alpha=0.3) - plt.plot(_x, R(_x, *popt), 'r-', label='$\mu=$%.2f'%mu) + plt.plot(_x, R(_x, *popt), 'r-', label=r'$\mu=$%.3f'%(mu)) plt.legend(fontsize=12) - plt.ylim(Rmin-500, Rmax+500) plt.xlabel('Azimuthal angle [rad]') + plt.savefig('%s'%title) return mu, mu_err @@ -128,10 +161,15 @@ class PolarizationStokes(): sc_orientation : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile Spacecraft orientation """ + def __init__(self, source_vector, source_spectrum, response_file, sc_orientation): - # This will need to be changed into IAUPolarizationConvention hardcoded! + ###################### This will need to be changed into IAUPolarizationConvention hardcoded! + ###################### + print('This class loading takes around 30 seconds... \n') + ###################### + self._convention = MEGAlibRelativeX(attitude=source_vector.attitude) reference_vector = self._convention.get_basis(source_vector)[0] #px @@ -150,7 +188,7 @@ def __init__(self, source_vector, source_spectrum, response_file, sc_orientation self._energy_range = [min(self.response.axes['Em'].edges.value), max(self.response.axes['Em'].edges.value)] self._binedges = Angle(np.linspace(-np.pi, np.pi, 20), unit=u.rad) - + def convolve_spectrum(self, spectrum, response_file, sc_orientation): """ Convolve source spectrum with response and calculate azimuthal scattering angle bins. @@ -203,7 +241,6 @@ def calculate_azimuthal_scattering_angles(self, unbinned_data): azimuthal_angles : list Azimuthal scattering angles. Each angle must be an astropy.coordinates.Angle object """ - print('This tasks takes around 30 seconds... \n') azimuthal_angles = [] @@ -319,14 +356,22 @@ def calculate_mu(self, bins=20, show=False): be, unpolarized_asad = self.create_unpolarized_asad(bins=bins) mu_, mu_err_ = [], [] - for pol100asad_pa in polarized100_asad: + for i, pol100asad_pa in enumerate(polarized100_asad): + asad_corrected = pol100asad_pa / np.sum(pol100asad_pa) / unpolarized_asad * np.sum(unpolarized_asad) # print('be, asad_corrected:', be, asad_corrected) - mu, mu_err = get_modulation(be.value, asad_corrected, title='Modulation', show=False) + mu, mu_err = get_modulation(be.value, asad_corrected, title='Modulation PA bin %i'%i, show=True) mu_.append(mu) mu_err_.append(mu_err) + # plt.figure() + # plt.step(be[:-1], pol100asad_pa / np.sum(pol100asad_pa), where='post') + # plt.step(be[:-1], unpolarized_asad / np.sum(unpolarized_asad), where='post') + # plt.figure() + # plt.step(be[:-1], asad_corrected, where='post', linewidth=3) + # plt.show() + mu_ = np.array(mu_) mu_err_ = np.array(mu_err_) @@ -341,10 +386,10 @@ def calculate_mu(self, bins=20, show=False): plt.figure() plt.errorbar(np.arange(len(mu_)), mu_, yerr=mu_err_) plt.hlines(average_mu, 0, len(mu_), color='red', linewidth=4, - label=r'$\mu$ = %s +/- %s'%(average_mu, average_mu_err)) + label=r'$\mu$ = %.3f +/- %.3f'%(average_mu, average_mu_err)) plt.hlines(average_mu+average_mu_err, 0, len(mu_), color='red', linestyle='--', linewidth=2) plt.hlines(average_mu-average_mu_err, 0, len(mu_), color='red', linestyle='--', linewidth=2) - plt.xlabel('Energy bin') + plt.xlabel('bin') plt.ylabel(r'$\mu$') plt.legend() plt.show() @@ -451,50 +496,126 @@ def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False return qs_unpol, us_unpol - def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu): - # - # - # - # contunue here below - # make sure that the output PA is a polarization angle object. E.g.: - # polarization_angle += Angle(180, unit=u.deg) - # polarization_angle = PolarizationAngle(polarization_angle, self._source_vector, convention=self._convention).transform_to(IAUPolarizationConvention()) - # - # - # + def calculate_mdp(self): + """ + """ + ############################# + ############################# + pass + + def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False): """Calculate the polarization degree and angle, with the associated uncertainties, for a given q and u. This implements equations (21), (36), (22) and (37) in the paper Kislat et al 2015, respectively. - # Note that the Stokes parameters passed as the input arguments are assumed - # to be normalized to the modulation factor (for Q and U) on an - # event-by-event basis and summed over the proper energy range. - - Great part of the logic is meant to avoid runtime zero-division errors. """ pol_I = len(qs) pol_Q = np.sum(qs) / mu pol_U = np.sum(us) / mu - unpol_Q = np.sum(qs) / mu - unpol_U = np.sum(us) / mu + unpol_Q = np.sum(qs_unpol) / mu + unpol_U = np.sum(us_unpol) / mu - Q = pol_Q - unpol_Q - U = pol_U - unpol_U + Q = pol_Q/pol_I - unpol_Q/pol_I + U = pol_U/pol_I - unpol_U/pol_I - pol_PD = np.sqrt(Q**2. + U**2.) / pol_I - pol_PA = Angle(0.5 * np.degree(np.arctan2(U, Q)), unit=u.deg) + pol_PD = np.sqrt(Q**2. + U**2.)# / pol_I + pol_PA = 90 - 0.5 * np.degrees(np.arctan2(U, Q)) pol_modulation = mu * pol_PD + ###################### Need to understand why I need this rotation + ###################### + Q, U = rotate_points_to_x_axis( Q, U, pol_PA) + print('------- Q/I, U/I', Q, U) - pol_1sigmaPD = pol_1sigmaQ = pol_1sigmaU = np.sqrt((2. - pol_modulation**2.) / ((pol_I - 1.) * mu**2.)) + pol_1sigmaPD = pol_sQ = np.sqrt((2. - pol_modulation**2.) / ((pol_I - 1.) * mu**2.)) pol_1sigmaPA = np.degrees(1 / (pol_modulation * np.sqrt(2. * (pol_I - 1.)))) + print('PD:', pol_PD, '+/-', pol_1sigmaPD) + print('PA', pol_PA, '+/-', pol_1sigmaPA) + if show: + fig, ax = plt.subplots(figsize=(6.4, 6.4)) + polar_chart_backbone(ax) + plt.plot(Q, U, 'o', markersize=5, color='red',label='Measured') + pol_c = plt.Circle((Q, U), radius=pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1, label='Polarized source') + pol_c2 = plt.Circle((Q, U), radius=2*pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1) + pol_c3 = plt.Circle((Q, U), radius=3*pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1) + plt.gca().add_artist(pol_c) + plt.gca().add_artist(pol_c2) + plt.gca().add_artist(pol_c3) + plt.xlim(-1, 1) + plt.ylim(-1, 1) + plt.xlabel('Q/I') + plt.ylabel('U/I') + plt.tight_layout() + + plt.xlim(-1, 1) + plt.ylim(-1, 1) + plt.xlabel('Q/I') + plt.ylabel('U/I') + plt.tight_layout() + + plt.show() + + pol_PA = Angle(np.radians(pol_PA), unit=u.rad) return pol_PD, pol_1sigmaPD, pol_PA, pol_1sigmaPA if __name__ == "__main__": - pass \ No newline at end of file + + print('loading files...') + print('Simulated PD, PA: 70%, 83 degrees E of N') + sim_pd, sim_pa = 0.7, np.radians(83) + sim_u = sim_pd / np.sqrt((np.tan(2*sim_pa))**2 + 1) + sim_q = sim_pd / np.sqrt((np.tan(2*sim_pa))**2 + 1) * np.tan(2*sim_pa) + + qs, us = np.load('qs.npy'), np.load('us.npy') + qs_unpol, us_unpol = np.load('unpol_qs.npy'), np.load('unpol_us.npy') + + mu = 0.31 + + pol_I = len(qs) + pol_Q = np.sum(qs) / mu + pol_U = np.sum(us) / mu + unpol_Q = np.sum(qs_unpol) / mu + unpol_U = np.sum(us_unpol) / mu + + Q = pol_Q/pol_I - unpol_Q/pol_I + U = pol_U/pol_I - unpol_U/pol_I + + pol_PD = np.sqrt(Q**2. + U**2.)# / pol_I + pol_PA = 90 - 0.5 * np.degrees(np.arctan2(U, Q)) + + pol_modulation = mu * pol_PD + ###################### Need to understand why I need this rotation + ###################### + Q, U = rotate_points_to_x_axis( Q, U, pol_PA) + print('------- Q/I, U/I', Q, U) + + pol_1sigmaPD = pol_sQ = np.sqrt((2. - pol_modulation**2.) / ((pol_I - 1.) * mu**2.)) + pol_1sigmaPA = np.degrees(1 / (pol_modulation * np.sqrt(2. * (pol_I - 1.)))) + + print('PD:', pol_PD, '+/-', pol_1sigmaPD) + print('PA', pol_PA, '+/-', pol_1sigmaPA) + + + fig, ax = plt.subplots(figsize=(6.4, 6.4)) + polar_chart_backbone(ax) + plt.plot(sim_q, sim_u, 'x', markersize=20, color='tab:green',label='Simulated') + plt.plot(Q, U, 'o', markersize=5, color='red',label='Measured') + pol_c = plt.Circle((Q, U), radius=pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1, label='Polarized source') + pol_c2 = plt.Circle((Q, U), radius=2*pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1) + pol_c3 = plt.Circle((Q, U), radius=3*pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1) + plt.gca().add_artist(pol_c) + plt.gca().add_artist(pol_c2) + plt.gca().add_artist(pol_c3) + + plt.xlim(-1, 1) + plt.ylim(-1, 1) + plt.xlabel('Q/I') + plt.ylabel('U/I') + plt.tight_layout() + plt.show() \ No newline at end of file From 10d8adb8ecc8453886e1a988f47fc23ba8580faa Mon Sep 17 00:00:00 2001 From: nmik Date: Thu, 2 Jan 2025 14:21:49 -0600 Subject: [PATCH 08/31] finished draft, to be checked --- cosipy/polarization/polarization_stokes.py | 216 +++++++++++++-------- 1 file changed, 133 insertions(+), 83 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 65dcee50..23809604 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -4,8 +4,8 @@ # from astropy.stats import poisson_conf_interval import matplotlib.pyplot as plt from scipy.optimize import curve_fit -# from cosipy.polarization import PolarizationAngle -from cosipy.polarization.conventions import MEGAlibRelativeX#, IAUPolarizationConvention +from cosipy.polarization import PolarizationAngle +from cosipy.polarization.conventions import MEGAlibRelativeX, IAUPolarizationConvention from cosipy.response import FullDetectorResponse from scoords import SpacecraftFrame import scipy.interpolate as interpolate @@ -42,8 +42,8 @@ def rotate_points_to_x_axis(x_, y_, angle_): Rotate arrays of points (x_, y_) in the QN-UN plane by an angle """ # Create a matrix of rotation matrices for each point - cos_vals = np.cos(angle_) - sin_vals = np.sin(angle_) + cos_vals = np.cos(2*angle_) + sin_vals = np.sin(2*angle_) # Apply the rotation to each point rotated_x = x_ * cos_vals - y_ * sin_vals @@ -64,6 +64,10 @@ def polar_chart_backbone(ax): plt.gca().add_artist(c1) plt.gca().add_artist(c2) plt.gca().add_artist(c3) + plt.annotate('0.25', (0.25, 0), textcoords="offset points", xytext=(10,0), ha='center', fontsize=8, color='k', alpha=0.3) + plt.annotate('0.50', (0.50, 0), textcoords="offset points", xytext=(10,0), ha='center', fontsize=8, color='k', alpha=0.3) + plt.annotate('0.75', (0.75, 0), textcoords="offset points", xytext=(10,0), ha='center', fontsize=8, color='k', alpha=0.3) + plt.annotate('1.00', (1.00, 0), textcoords="offset points", xytext=(10,0), ha='center', fontsize=8, color='k', alpha=0.3) plt.hlines(0, -1, 1, linewidth=1, color='k', linestyle='--', alpha=0.3) plt.vlines(0, -1, 1, linewidth=1, color='k', linestyle='--', alpha=0.3) plt.plot([1,-1], [1,-1], linewidth=1, color='k', linestyle='--', alpha=0.3) @@ -188,6 +192,8 @@ def __init__(self, source_vector, source_spectrum, response_file, sc_orientation self._energy_range = [min(self.response.axes['Em'].edges.value), max(self.response.axes['Em'].edges.value)] self._binedges = Angle(np.linspace(-np.pi, np.pi, 20), unit=u.rad) + + self._exposure = sc_orientation.get_time_delta().to_value(u.second).sum() def convolve_spectrum(self, spectrum, response_file, sc_orientation): """ @@ -328,13 +334,23 @@ def create_polarized100_asad(self, bins=None): return bin_edges, np.array(_polarized100_asad_) - def calculate_mu(self, bins=20, show=False): + def calculate_photon_mu(): + """ Funciont to comput the mu for each photon + Should return an array of mu values """ - Calculate the modulation (mu) of an 100% polarized source. - This sohuld not depend on the specific events but only on our instrument responses. + ############################# + ############################# + pass + + def calculate_average_mu(self, bins=20, show=False): + """ + Calculate the PA-averaged modulation (mu) of an 100% polarized source. + This sohuld not depend on the specific events but only on our instrument responses at differend PA bins. In this sence we can pre-compute a cube of modulation factors to pull from. - MN note: I don't think this should depend on a source spectrum: this can be + MN note: Mu is energy-dependent. In this sense it depends on teh source spectrum and the mu(E) + response should be folded with that. For the Stokes parameters we would like to have a mu for each photon + so a mu(E, PA) Parameters ---------- @@ -389,7 +405,7 @@ def calculate_mu(self, bins=20, show=False): label=r'$\mu$ = %.3f +/- %.3f'%(average_mu, average_mu_err)) plt.hlines(average_mu+average_mu_err, 0, len(mu_), color='red', linestyle='--', linewidth=2) plt.hlines(average_mu-average_mu_err, 0, len(mu_), color='red', linestyle='--', linewidth=2) - plt.xlabel('bin') + plt.xlabel('PA bin') plt.ylabel(r'$\mu$') plt.legend() plt.show() @@ -496,53 +512,128 @@ def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False return qs_unpol, us_unpol - def calculate_mdp(self): + def calculate_mdp(self, total_num_events, mu, bkg_rate=22.0): + """ + Calculate the minimum detectable polarization of a given observation. + Assumes a default background count rate (~22 ph/s), but also allows for a custom value. + + Uses the exposure computed from teh sc_orientation object: + sc_orientation.get_time_delta().to_value(u.second).sum() + + Parameters + ---------- + total_num_events: int + total number of events that matches your polarized data + mu : float + PA-Averaged modulation factor + bkg_rate : float, optional + Background count rate (default is 22.0 ph/s) + + Returns + ------- + MDP99 : float + Minimum detectable polarization at 99% confidence level """ + + print('Calculating the MDP...') + print('Espoure:', self._exposure, 's') + print('Total number of events:', total_num_events) + print('Modulation factor:', mu) + print('Background rate:', bkg_rate, 'ph/s') + Ns = total_num_events - bkg_rate * self._exposure + MDP99 = 4.29 / (mu * Ns) * np.sqrt(total_num_events) + print('MDP_99%:', MDP99*100, '%') + return MDP99 + + + def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref_qu=(None, None), ref_pdpa=(None, None), ref_label=None): """ - ############################# - ############################# - pass + Calculate the polarization degree (PD), polarization angle (PA), + and their associated 1-sigma uncertainties given Q and U measurements + from both polarized and unpolarized data sets. - def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False): - """Calculate the polarization degree and angle, with the associated - uncertainties, for a given q and u. + This implements equations (21), (22), (36), and (37) from Kislat et al. (2015). - This implements equations (21), (36), (22) and (37) in the paper Kislat et al 2015, - respectively. + Parameters + ---------- + qs : array-like + Array of Q measurements (from polarized source). + us : array-like + Array of U measurements (from polarized source). + qs_unpol : array-like + Array of Q measurements (from unpolarized source). + us_unpol : array-like + Array of U measurements (from unpolarized source). + mu : float + Modulation factor. Used to convert raw measurements into normalized Q/I and U/I. + show : bool, optional + If True, display a diagnostic plot in the Q-U plane with + uncertainty circles, by default False. + ref_qu : tuple of (float or None, float or None), optional + Reference (Q, U) point (e.g., from simulation) to be plotted for comparison, + by default (None, None) (no reference shown). + ref_pdpa : tuple of (float or None, float or None), optional + Reference (PD, PA) point (e.g., from simulation) to be converted to Q/U + and plotted for comparison, by default (None, None) (no reference shown). + Returns + ------- + pol_PD : float + Polarization degree, PD = sqrt(Q^2 + U^2). + pol_1sigmaPD : float + 1-sigma statistical uncertainty on the polarization degree. + pol_PA : astropy.coordinates.Angle + Polarization angle (in radians internally), + computed as 90 - 0.5 * arctan2(U, Q) (converted into an Angle object). + pol_1sigmaPA : float + 1-sigma statistical uncertainty on the polarization angle (in degrees). """ pol_I = len(qs) pol_Q = np.sum(qs) / mu pol_U = np.sum(us) / mu + unpol_I = len(qs_unpol) unpol_Q = np.sum(qs_unpol) / mu unpol_U = np.sum(us_unpol) / mu - Q = pol_Q/pol_I - unpol_Q/pol_I - U = pol_U/pol_I - unpol_U/pol_I + Q = pol_Q/pol_I - unpol_Q/unpol_I + U = pol_U/pol_I - unpol_U/unpol_I - pol_PD = np.sqrt(Q**2. + U**2.)# / pol_I + polarization_fraction = np.sqrt(Q**2. + U**2.) + pol_PD = polarization_fraction * 100 pol_PA = 90 - 0.5 * np.degrees(np.arctan2(U, Q)) - pol_modulation = mu * pol_PD + ###################### ###################### Need to understand why I need this rotation ###################### Q, U = rotate_points_to_x_axis( Q, U, pol_PA) print('------- Q/I, U/I', Q, U) - pol_1sigmaPD = pol_sQ = np.sqrt((2. - pol_modulation**2.) / ((pol_I - 1.) * mu**2.)) + pol_modulation = mu * polarization_fraction + + polarization_fraction_uncertainty = pol_sQ = np.sqrt((2. - pol_modulation**2.) / ((pol_I - 1.) * mu**2.)) + pol_1sigmaPD = polarization_fraction_uncertainty * 100 pol_1sigmaPA = np.degrees(1 / (pol_modulation * np.sqrt(2. * (pol_I - 1.)))) - print('PD:', pol_PD, '+/-', pol_1sigmaPD) - print('PA', pol_PA, '+/-', pol_1sigmaPA) + # print('PD: %.2f'%(pol_PD*100), '+/- %.2f'%(pol_1sigmaPD*100), '%') + # print('PA: %.2f'%pol_PA, '+/- %.2f'%pol_1sigmaPA, 'deg') if show: fig, ax = plt.subplots(figsize=(6.4, 6.4)) polar_chart_backbone(ax) + if ref_qu[0] != None: + plt.plot(ref_qu[0], ref_qu[1], 'x', markersize=20, color='tab:green') + plt.annotate(ref_label, (ref_qu[0], ref_qu[1]), textcoords="offset points", xytext=(0,10), ha='center', fontsize=12) + if ref_pdpa[0] != None: + ref_q = ref_pdpa[0] * np.cos(2*ref_pdpa[1]) + ref_u = ref_pdpa[0] * np.sin(2*ref_pdpa[1]) + plt.plot(ref_q, ref_u, 'x', markersize=20, color='tab:green') + plt.annotate(ref_label, (ref_q, ref_u), textcoords="offset points", xytext=(0,10), ha='center', color='tab:green', fontsize=12) + plt.plot(Q, U, 'o', markersize=5, color='red',label='Measured') - pol_c = plt.Circle((Q, U), radius=pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1, label='Polarized source') - pol_c2 = plt.Circle((Q, U), radius=2*pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1) - pol_c3 = plt.Circle((Q, U), radius=3*pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1) + pol_c = plt.Circle((Q, U), radius=polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1, label='Polarized source') + pol_c2 = plt.Circle((Q, U), radius=2*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) + pol_c3 = plt.Circle((Q, U), radius=3*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) plt.gca().add_artist(pol_c) plt.gca().add_artist(pol_c2) plt.gca().add_artist(pol_c3) @@ -560,62 +651,21 @@ def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False): plt.show() - pol_PA = Angle(np.radians(pol_PA), unit=u.rad) - return pol_PD, pol_1sigmaPD, pol_PA, pol_1sigmaPA + polarization_angle = Angle(pol_PA, unit=u.deg) + polarization_angle = PolarizationAngle(polarization_angle, self._source_vector, convention=IAUPolarizationConvention()) + + polarization_angle_uncertainty = Angle(pol_1sigmaPA, unit=u.deg) + + + print('PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') + print('PA:', round(polarization_angle.angle.degree, 3), '+/-', round(polarization_angle_uncertainty.degree, 3)) + polarization = {'fraction': pol_PD, 'angle': polarization_angle, 'fraction uncertainty': polarization_fraction_uncertainty, 'angle uncertainty': polarization_angle_uncertainty, 'Q/I': Q, 'U/I': U, 'Stokes uncertainty': pol_sQ} + + return polarization if __name__ == "__main__": - print('loading files...') - print('Simulated PD, PA: 70%, 83 degrees E of N') - sim_pd, sim_pa = 0.7, np.radians(83) - sim_u = sim_pd / np.sqrt((np.tan(2*sim_pa))**2 + 1) - sim_q = sim_pd / np.sqrt((np.tan(2*sim_pa))**2 + 1) * np.tan(2*sim_pa) - - qs, us = np.load('qs.npy'), np.load('us.npy') - qs_unpol, us_unpol = np.load('unpol_qs.npy'), np.load('unpol_us.npy') - - mu = 0.31 - - pol_I = len(qs) - pol_Q = np.sum(qs) / mu - pol_U = np.sum(us) / mu - unpol_Q = np.sum(qs_unpol) / mu - unpol_U = np.sum(us_unpol) / mu - - Q = pol_Q/pol_I - unpol_Q/pol_I - U = pol_U/pol_I - unpol_U/pol_I - - pol_PD = np.sqrt(Q**2. + U**2.)# / pol_I - pol_PA = 90 - 0.5 * np.degrees(np.arctan2(U, Q)) - - pol_modulation = mu * pol_PD - ###################### Need to understand why I need this rotation - ###################### - Q, U = rotate_points_to_x_axis( Q, U, pol_PA) - print('------- Q/I, U/I', Q, U) - - pol_1sigmaPD = pol_sQ = np.sqrt((2. - pol_modulation**2.) / ((pol_I - 1.) * mu**2.)) - pol_1sigmaPA = np.degrees(1 / (pol_modulation * np.sqrt(2. * (pol_I - 1.)))) - - print('PD:', pol_PD, '+/-', pol_1sigmaPD) - print('PA', pol_PA, '+/-', pol_1sigmaPA) - - - fig, ax = plt.subplots(figsize=(6.4, 6.4)) - polar_chart_backbone(ax) - plt.plot(sim_q, sim_u, 'x', markersize=20, color='tab:green',label='Simulated') - plt.plot(Q, U, 'o', markersize=5, color='red',label='Measured') - pol_c = plt.Circle((Q, U), radius=pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1, label='Polarized source') - pol_c2 = plt.Circle((Q, U), radius=2*pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1) - pol_c3 = plt.Circle((Q, U), radius=3*pol_1sigmaPD, facecolor='none', edgecolor='red', linewidth=1) - plt.gca().add_artist(pol_c) - plt.gca().add_artist(pol_c2) - plt.gca().add_artist(pol_c3) - - plt.xlim(-1, 1) - plt.ylim(-1, 1) - plt.xlabel('Q/I') - plt.ylabel('U/I') - plt.tight_layout() - plt.show() \ No newline at end of file + print('Just some tests here...') + + pass \ No newline at end of file From 1b846d62663945fd7f26902373005113ed629de3 Mon Sep 17 00:00:00 2001 From: nmik Date: Thu, 2 Jan 2025 14:22:00 -0600 Subject: [PATCH 09/31] finished draft, to be checked --- .../polarization/Stokes_method.ipynb | 348 +++++------------- 1 file changed, 87 insertions(+), 261 deletions(-) diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 4acd89db..2b4e1988 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -31,12 +31,12 @@ { "data": { "text/html": [ - "
22:45:10 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "
13:44:38 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m22:45:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=533190;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=861861;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m13:44:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370358;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=107476;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -51,7 +51,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=174233;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75480;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=378263;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=256363;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -66,7 +66,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=645613;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=101305;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=690627;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=209244;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -76,11 +76,11 @@ { "data": { "text/html": [ - "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
13:44:39 INFO      Starting 3ML!                                                                     __init__.py:39\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=656616;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=106640;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m13:44:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=943246;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=339507;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -93,7 +93,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=10275;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845848;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=273500;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=598006;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -106,7 +106,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=884194;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=398259;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891273;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=607490;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -119,7 +119,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=408112;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819623;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105087;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=663583;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -128,11 +128,11 @@ { "data": { "text/html": [ - "
22:45:10 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
13:44:39 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m22:45:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=495983;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=232609;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m13:44:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=924500;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=313168;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -145,7 +145,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=662022;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=512349;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942000;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=917679;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -158,7 +158,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=755205;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=374924;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=533574;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=181138;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -172,7 +172,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=324886;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359536;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=954214;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967596;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -187,7 +187,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=29089;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=122223;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=19618;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62916;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -202,7 +202,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=549308;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=241326;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=314192;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=707597;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -212,11 +212,11 @@ { "data": { "text/html": [ - "
22:45:11 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m22:45:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=66660;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=824640;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=75715;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=261323;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -225,12 +225,12 @@ { "data": { "text/html": [ - "
22:45:11 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m22:45:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=113226;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=698079;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=260171;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=675966;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -245,7 +245,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856134;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=669028;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=318233;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=542346;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -260,7 +260,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=800978;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=295554;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=223049;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=226135;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -391,7 +391,9 @@ "source": [ "source_direction = SkyCoord(0, 70, representation_type='spherical', frame=SpacecraftFrame(attitude=attitude), unit=u.deg)\n", "source_photons = PolarizationStokes(source_direction, spectrum, response_file, sc_orientation)\n", - "az_ang = source_photons.calculate_azimuthal_scattering_angles(grb_data)" + "az_ang = source_photons.calculate_azimuthal_scattering_angles(grb_data)\n", + "\n", + "TOT_NUM_EVENTS = len(az_ang)" ] }, { @@ -404,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "26df3de8", "metadata": {}, "outputs": [ @@ -427,238 +429,69 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "id": "c69dae6c", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "this task takes around 25 seconds...\n", - "\n", - "Creating the unpolarized ASAD...\n", - "random_values [0.7020638 0.94086807 0.15846523 ... 0.82078006 0.62674554 0.73505378]\n", - "unpol_azimuthal_angles [ 0.98720613 2.44752417 -2.23587581 ... 1.79036498 0.57494522\n", - " 1.1694967 ] rad\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKrklEQVR4nO3dd3xUVf7/8Xc6kEJJINSlBggobSkKhhK6aNSliLsgKqCrNCuIq64IyBf9IlKkSDEKqLAgAitN+AZQegdJCAGW0CENSEhP7u8PfpllnIGEkElyw+v5eOxjnXPPvfM5cyfJm3vPnHEyDMMQAABAMedc1AUAAADkBaEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFQLHSsWNHOTk5Ofx5PvroIzk5OWnLli0Of668qFWrlmrVqlXUZQDFGqEFMLktW7bIyclJHTt2vGOfM2fOyMnJiT+KAEyN0ALggTR8+HBFRESodevWRV0KgDxyLeoCAKAo+Pn5yc/Pr6jLAHAPuNICPKBun9OxfPlytW7dWmXKlFGFChXUv39/XbhwwWafnPkmaWlpev/991W7dm15eHiobt26GjdunNLT0+0+1+bNm9WjRw9VqFBBHh4eql+/vt59911dv349T7Wmp6dr5syZevzxx1WzZk15eHioQoUK6tKli9atW2d3n5w5Ijdu3NCbb76pWrVqyc3NTR999JHN+P84vjv974+34DIzMzVr1iw98sgj8vHxUZkyZdS8eXPNnDlT2dnZNjUZhqGZM2eqcePGKlWqlKpVq6bhw4fn+XUAHnRcaQEecLNmzdLq1asVEhKiDh06aPfu3Vq6dKkOHz6sQ4cOycPDw2affv36ae/everTp4/c3Ny0atUqffTRR9q3b59Wr15tNZF27ty5evXVV+Xp6am+ffuqUqVK2rJliyZPnqw1a9Zo+/btKleu3F1rjI+P16hRo9S2bVt17dpVFStW1KVLl7RmzRo9/vjjmjdvnoYMGWKzX3p6uoKDgxUfH69u3brJx8dHtWvXvuPzvPDCC3bnBv3666/6v//7P5UpU8bSlpGRoSeffFIbNmxQgwYN9Ne//lWlSpVSWFiYRowYod27d2vRokVWx3n99dc1ffp0ValSRS+//LLltdu9e7fS09Pl7u5+19cBeOAZAEwtLCzMkGR06NDhjn3+85//GJKMmjVrWtr++c9/GpIMb29v48iRI1b9n3vuOUOSsXTpUqv2Dh06GJKMgIAAIz4+3tKekpJiPPLII4Yk49tvv7W0nzlzxnB3dze8vb2NiIgIq2O9+uqrhiRj6NChdp/jdqmpqca5c+dsxnXt2jWjcePGRvny5Y3k5GSrbTVr1jQkGZ07dzaSkpJs9s0Zf1hYmM222x0+fNjw9vY2/Pz8jJMnT9rsP3z4cCMzM9PSnpmZabz00kuGJOOnn36ytG/fvt2QZNStW9eIi4uztN/+2t1+fgDY4vYQ8IAbOXKkHn74Yau2oUOHSpL27Nljd58PPvhA5cuXtzwuVaqUJk2aJElauHChpX3x4sVKT0/X8OHD1bBhQ6tjTJw4Ud7e3lq0aJHS0tLuWqOHh4eqV69u0162bFm99NJLSkhI0N69e+3uO2XKFHl6et71+Hdy8eJF9erVSxkZGVq1apXq1q0rScrOztaMGTNUuXJlTZ06VS4uLpZ9XFxcNGXKFDk5OWnJkiWW9q+//lqS9I9//EMVKlSwtN/+2gG4O24PAQ+4li1b2rTVqFFDkpSQkGB3nw4dOti0PfbYY3JxcdHBgwctbQcOHJAkBQcH2/QvX768mjdvrm3btun48eNq2rTpXes8duyYPvvsM23btk2XLl1Samqq1XZ7c3BKlSqlJk2a3PW4d5KUlKQnnnhCFy5c0Pfff6+2bdtatp04cULx8fEKCAjQhAkT7O5funRpRUREWB7nvBZ3e+0A3B2hBTA5Z+dbF0ztTfzMkbMtp+/t7M0ncXW99ashKyvL7vH8/f3t7uPn56erV69a2nImmFapUsXucXLar127dsfaJWnXrl0KDg5WZmamOnfurJCQEPn4+MjZ2VmHDh3SqlWr7F6tqVSpUr4WqsvKytKzzz6rgwcPatKkSXr22WettsfFxUmSoqKiNG7cuDseJykpyfLfOa/F3V47AHdHaAFMrmzZspL++4fUntjYWEn2A0p+XLlyRX/605+s2jIzMxUbGysfHx+b2i5fvqzGjRvbHOfSpUtW/e5kwoQJSklJUVhYmM1E2UmTJmnVqlV298vvyrojRozQ2rVrNXToUL377rs223PqfeaZZ/Tjjz/m6Zg5+1y5ckV16tSx2pbz2tm7BQbgv5jTAphcgwYN5OHhoRMnTtwxuOzcuVOScr0Fk1dbt261afvtt9+UlZWl5s2bW9py/tveUvnXrl3ToUOHVKpUKQUGBt71+U6ePKkKFSrY/WSPvVrux5QpUzR79mx169ZNs2bNstunYcOGKleunHbt2qWMjIw8HbdFixaS7v7aAbg7QgtgcqVKlVL//v2VmZmpd955R4ZhWG0/f/68PvvsM0m3PtJbEMaPH2813yU1NVVjx46VJL344ouW9gEDBsjNzU0zZszQyZMnrY7xwQcf6MaNGxowYIDdj1XfrlatWoqPj9eRI0es2hcsWKANGzbc73AsfvzxR40ePVoPP/yw/vWvf1luk/2Rq6urRowYoUuXLmnkyJFKSUmx6XPp0iWFh4dbHue89hMnTlR8fLyl/fbXDsDdcXsIKAGmTJmivXv36uuvv9bOnTvVtWtX+fj4KDo6WqtWrVJiYqLGjBljdxJofgQGBqpx48ZW67ScOnVKvXr10sCBAy39atWqpS+++ELDhg1TixYt1K9fP1WsWFFbt27Vzp071bBhQ02ePDnX53v99de1YcMGPfbYY+rXr5/Kli2rffv26bffflOfPn20fPnyAhnXgAEDlJ2drVatWunzzz+32V6rVi1L+Pjggw90+PBhzZkzR2vWrFFwcLCqVaumq1evKioqStu3b9fEiRPVqFEjSVK7du00YsQIzZgxQw899JDVa1e+fPk7zvsBcJui/sw1gIKRmJhoTJw40WjZsqXh7e1tuLq6Gv7+/sYTTzxh/Pzzzzb977ZOSc66LoMGDbJqz1lDJTU11fjHP/5h1KpVy3B3dzdq165tfPTRR0Zqaqrd2jZs2GB07drVKFeunOHu7m7UrVvXeOedd4yEhASbvvbWaTEMw1izZo3Rpk0bw8vLyyhbtqzRtWtXY+vWrcbXX39tSDK+/vprq/41a9a867on9sYv6a7/++NaONnZ2ca3335rBAcHG+XLlzfc3NyMqlWrGu3atTMmTpxonD171qb/jBkzjIYNGxru7u5GlSpVjNdee824du1arvUCMAwnw/jDtWQAuIOOHTtq69atNregAKAwMKcFAACYAqEFAACYAqEFAACYAnNaAACAKXClBQAAmAKhBQAAmEKJCS2pqamKjIy0+eZXAABQMpSY0BIdHa2hQ4cqOjq6qEsBAAAOUGJCCwAAKNkILQAAwBQILQAAwBQILQAAwBRci7oAAOaXlZWljIyMoi6jQLi5ucnFxaWoywBgB6EFwH1JSkrS+fPnS8w3Pzs5Oal69ery8vIq6lIA/AGhBUC+ZWVl6fz58ypTpowqVqwoJyenoi7pvhiGoZiYGJ0/f14BAQFccQGKGUILgHzLyMiQYRiqWLGiSpcuXdTlFIiKFSvqzJkzysjIILQAxQwTcQHcN7NfYbldSRoLUNJwpQVAgdq/PMphx/5znwCHHRtA8ceVFgAAYAqEFgAl0urVqxUYGKgmTZpo9OjR8vPz05kzZ4q6LAD3gdACoMS5evWqXnzxRa1YsUJHjhxRvXr1FBcXV9RlAbhPhBYAJc6uXbvUpEkTNWrUSJI0ePBgubu7S5JSUlL01FNPKSgoSAMHDizKMgHcIybiAijxbv9E0Pbt29WuXTuNHj26xCyIBzwouNICoMR59NFHdeTIER0/flyStHDhQqWnp0uS2rZtq/Pnz2vgwIE6depUUZYJ4B4RWgCUOBUrVtTChQv1zDPPqGnTpoqKipKvr6+kW1ddpk+frueff15Lly4t4koB3AtuD+XR7Ivrc+3zatUehVAJULwVl7VUnnrqKT311FOWxwsWLJAkDRo0SBcvXpSrq6u+/fbboioPQD4QWgA8UJYtW1bUJQDIJ0ILgAdCbGxsUZcA4D4xpwUAAJgCoQUAAJgCoQUAAJgCoQUAAJgCoQUAAJgCoQUAAJgCoQUAAJgC67QAKFB5WT06v1h1GniwcaUFAACYAqEFQInk5OSka9euWR77+fnpzJkzRVYPgPtHaAEAAKbAnBYAD5SUlBT1799f8fHxqlWrlhYtWlTUJQHII0ILgBLJxcVFWVlZlsepqamSpO3bt6tdu3YaPXq0DMMoqvIA5AO3hwCUSPXq1dPu3bslST/++KNu3rwpSWrbtq3Onz+vgQMH6tSpU0VZIoB7RGgBUCJNnTpVo0aNUosWLXTw4EH5+vpKujVBd/r06Xr++ee1dOnSIq4SwL3g9hCAAlVc1lLp2bOnoqKiLI/Hjx8vSerXr58uXrwoV1dXffvtt0VVHoB8ILQAeKAsW7asqEsAkE/cHgIAAKZAaAEAAKZAaAEAAKZAaAEAAKbARFwA960kLdJWksYC3Iu8fEN7UX86kNACIN/c3Nzk5OSkmJgYVaxYUU5OTkVd0n0xDEMxMTFycnKSm5tbUZcD4A/uObQkJyfrhx9+UHh4uCIiIpSYmKixY8eqZ8+elj7Z2dnasGGDtm7dqqioKCUmJqpKlSoKDg5W//795eHhYXPcf//73/rhhx90+fJlVaxYUX369FHv3r3vb3QAHMrFxUXVq1fX+fPnS8w3KDs5Oal69epycXEp6lIA/ME9h5br168rNDRU/v7+qlevng4ePGjTJzU1VZMmTVLjxo311FNPqXz58jp27Ji+/vprHThwQF988YXVv8hWrVqlKVOmqEOHDnr22Wd15MgRTZs2Tampqfrb3/52fyME4FBeXl4KCAhQRkZGUZdSINzc3AgsQDF1z6HF19dXK1eulK+vr44fP66XX37Zpo+bm5u+/PJLPfzww5a2J598UpUrV9bChQu1f/9+tWzZUpKUlpam+fPn69FHH7WsWPnkk08qOztb3377rUJCQuTt7Z3f8QEoBC4uLvyhB+Bw9/zpIXd3d8t3eNyJm5ubVWDJERQUJEmKjo62tB04cEDXr1/X008/bdX3mWeeUUpKinbu3HmvJQIAgBKoUD/yHB8fL0kqW7aspS3nu0EaNmxo1bdBgwZydnbWiRMnCq9AAABQbBXqp4e+//57eXp6qk2bNpa2uLg4ubi4qHz58lZ93dzc5OPjo7i4OLvHio2Ntdp2+9UbAABQ8hRaaFm0aJH27dunN99802qOSlpamlxd7Zfh7u6utLQ0u9tWr16t0NBQR5QKAACKoUIJLZs3b9b8+fPVq1cvm7krHh4eyszMtLtfenq63Y9HS1JISIjatWtneRwdHa0JEyYUWM0AAKB4cXho2bt3rz755BM9+uijeuutt2y2+/r6KisrSwkJCVa3iDIyMnTjxo07Tvr18/OTn5+fw+oGAADFi0Mn4oaHh+v9999XgwYNNG7cOLu3gQICAiRJx48ft2o/fvy4srOzLdsBAMCDzWGh5cyZMxozZowqV66syZMn3/E2T4sWLeTj46NVq1ZZta9atUqlSpXSo48+6qgSAQCAieTr9tCKFSuUlJRk+fTO9u3bdfXqVUlS79695ezsrLfffluJiYnq37+/zVorVatW1UMPPSTp1pyWwYMHa+rUqfrwww/VunVrHT58WBs3btTQoUPl4+NzP+MDAAAlRL5Cy9KlS3X58mXL423btmnbtm2SpG7dukmSJcTMnTvXZv8ePXpYQot0ayE5V1dXLV26VNu3b1elSpU0fPhw9e3bNz/lAQCAEihfoWXZsmW59skJMXn15JNP6sknn8xPOQAA4AFQqCviAgAA5BehBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmILrve6QnJysH374QeHh4YqIiFBiYqLGjh2rnj172vQ9c+aMZs6cqaNHj8rV1VWPPvqohg8frnLlyln1y87O1g8//KCffvpJ8fHxql69ugYMGKAuXbrke2AAAKBkuefQcv36dYWGhsrf31/16tXTwYMH7fa7evWqRowYIS8vLw0dOlQpKSn64YcfdPr0ac2dO1dubm6WvvPmzdOSJUv05JNPqmHDhvrtt9/08ccfy8nJSZ07d87/6AAAQIlxz6HF19dXK1eulK+vr44fP66XX37Zbr/FixcrNTVV8+fPl7+/vyQpMDBQb775ptatW6eQkBBJUkxMjJYuXapnnnlGb7zxhiTpiSee0IgRIzRr1ix17NhRLi4u+R0fAAAoIe55Tou7u7t8fX1z7bd161a1bdvWElgkqWXLlqpRo4bCwsIsbb/99psyMzP1zDPPWNqcnJz09NNPKyYmRseOHbvXEgEAQAnkkIm4MTExSkhIUIMGDWy2BQYGKioqyvI4KipKpUuXVs2aNW365WwHAAC459tDeREXFydJdq/I+Pr66saNG0pPT5e7u7vi4uJUvnx5OTk52fSTpNjYWLvPERsba3keSYqOji6o8gEAQDHkkNCSlpYmSVaTbXO4u7tb+ri7uystLS3XfvasXr1aoaGhBVQxAAAo7hwSWjw8PCRJGRkZNtvS09Ot+nh4eOSp3x+FhISoXbt2lsfR0dGaMGHC/RUOAACKLYeElpxbO7ffvskRFxcnHx8fy5UUX19fHTx4UIZhWN0iytnXz8/P7nP4+fndcRsAACh5HDIRt2LFiipXrpwiIyNttkVERKhevXqWx/Xq1VNqaqrNnJTw8HDLdgAAAIct49+hQwft2LFDV65csbTt379f586dU6dOnSxtjz32mFxdXbVy5UpLm2EYWrVqlSpWrKiHHnrIUSUCAAATydftoRUrVigpKclyC2f79u26evWqJKl3797y8vLSgAEDtGXLFr3++uvq06ePUlJS9P3336tOnTpWS/5XqlRJffv21ffff6/MzEwFBgbq119/1ZEjR/TBBx8Um4XlLobH596pquPrAADgQZWv0LJ06VJdvnzZ8njbtm3atm2bJKlbt27y8vKSv7+/pk+frpkzZ2ru3LmW7x4aNmyYZT5LjldeeUXe3t5avXq11q9fr+rVq+v9999X165d72NoAACgJMlXaFm2bFme+tWuXVtTpkzJtZ+zs7MGDBigAQMG5KccAADwAHDYnBYAAICCRGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACmQGgBAACm4FrUBQAAgKJ3MTw+905VHV/H3XClBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmIKrIw9+7tw5LViwQEePHtWNGzfk7++vLl26qH///ipVqpSl39GjRzVnzhydOHFCnp6e6tSpk4YOHaoyZco4sjwAAGAiDgstV65c0SuvvCIvLy8988wz8vHx0bFjx7Rw4UJFRkZq0qRJkqSoqCi98cYbqlmzpoYPH66rV69q6dKlOn/+vD777DNHlQcAAEzGYaFl48aNSkpK0pdffqnatWtLkkJCQpSdna0NGzYoMTFR3t7e+uqrr+Tt7a3p06fL09NTklSlShV9+umn2rNnj1q3bu2oEgEAgIk4bE7LzZs3JUnly5e3avf19ZWzs7NcXV118+ZN7du3T926dbMEFknq3r27SpcurbCwMEeVBwAATMZhoaV58+aSpMmTJysqKkpXrlzR5s2btWrVKvXu3VulS5fW6dOnlZWVpQYNGljt6+bmpoCAAEVFRd3x+LGxsYqMjLT8Lzo62lFDAQAAxYDDbg+1adNGgwcP1uLFi7V9+3ZL+8CBAzV06FBJUlxcnKRbV1/+yNfXV4cPH77j8VevXq3Q0NCCLRoAABRbDv30UJUqVdS0aVN16NBBPj4+2rlzpxYvXqwKFSqod+/eSktLk3Trysofubu7Kz09/Y7HDgkJUbt27SyPo6OjNWHChIIfBAAAKBYcFlo2b96szz77TEuWLFGlSpUkSR06dJBhGJo7d666dOkiDw8PSVJGRobN/unp6XJ3d7/j8f38/OTn5+eY4gEAQLHjsDktK1euVEBAgCWw5GjXrp1SU1MVFRVluS2Uc5vodnFxcYQSAABg4bDQkpCQoOzsbJv2zMxMSVJWVpZq164tFxcXRUZGWvXJyMhQVFSU6tWr56jyAACAyTgstNSoUUNRUVE6d+6cVfvmzZvl7OysunXrysvLSy1bttTGjRuVnJxs6bNhwwalpKSoU6dOjioPAACYjMPmtPTv31+7d+/W8OHD9Ze//EU+Pj7asWOHdu/erSeeeMJy62fIkCEaNmyYRowYoZCQEMuKuK1atVKbNm0cVR4AADAZh4WWZs2a6csvv9TXX3+tlStX6saNG6pSpYqGDh2q5557ztKvQYMG+vzzzzVnzhzNmDFDZcqUUa9evfTKK684qjQAAGBCDv3Ic6NGjfL0/UFNmjTRrFmzHFkKAAAwOYfNaQEAAChIhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKhBYAAGAKrkVdQEky++L6XPu8WrVHIVQCAEDJw5UWAABgCg6/0hIZGamvv/5aR48eVXp6uqpWraonn3xSffr0sfQ5evSo5syZoxMnTsjT01OdOnXS0KFDVaZMGUeXBwAATMKhoWXPnj0aO3asAgICNGjQIJUuXVoXLlxQTEyMpU9UVJTeeOMN1axZU8OHD9fVq1e1dOlSnT9/Xp999pkjywMAACbisNBy8+ZNffLJJ3rkkUc0fvx4OTvbvxP11VdfydvbW9OnT5enp6ckqUqVKvr000+1Z88etW7d2lElAgAAE3FYaNm0aZPi4+M1dOhQOTs7KyUlRR4eHlbh5ebNm9q3b5/69etnCSyS1L17d82YMUNhYWGEFgAA7lNePihiBg4LLfv27ZOnp6diY2P1j3/8Q+fOnVPp0qXVrVs3DR8+XB4eHjp9+rSysrLUoEEDq33d3NwUEBCgqKgoR5UHAABMxmGh5fz588rKytJ7772nXr166eWXX9ahQ4e0YsUKJSUl6Z///Kfi4uIkSb6+vjb7+/r66vDhw3c8fmxsrGV/SYqOji74QQAAgGLDYaElJSVFqampeuqppzRq1ChJUocOHZSRkaHVq1frpZdeUlpamqRbV1b+yN3dXenp6Xc8/urVqxUaGuqQ2gEAQPHjsNDi4eEhSercubNVe5cuXbR69WodO3ZMpUqVkiRlZGTY7J+eni53d/c7Hj8kJETt2rWzPI6OjtaECRMKonQAAFAMOSy0+Pr66j//+Y8qVKhg1V6+fHlJUmJioqpVqyZJVrd5csTFxcnPz++Ox/fz87vrdgAAULI4bEXcnMm1t6/JIt2aiyJJ5cqVU+3ateXi4qLIyEirPhkZGYqKilK9evUcVR4AADAZh4WWTp06SZJ+/vlnq/aff/5ZLi4uat68uby8vNSyZUtt3LhRycnJlj4bNmxQSkqK5RgAAAAOuz1Uv359Pf7441q7dq2ysrLUrFkzHTp0SGFhYRowYIDl1s6QIUM0bNgwjRgxQiEhIZYVcVu1aqU2bdo4qjwAAGAyDl3G/+2335a/v7/WrVunX3/9Vf7+/ho+fLj69etn6dOgQQN9/vnnmjNnjmbMmKEyZcqoV69eeuWVVxxZGgAAMBmHhhZXV1e9+OKLevHFF+/ar0mTJpo1a5YjSwEAACbnsDktAAAABYnQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATIHQAgAATMG1qAsoSS6Gx+feqarj6wAAoCTiSgsAADAFQgsAADAFQgsAADAFQgsAADAFJuICAFBMzb64Ptc+r1btUQiVFA9caQEAAKZAaAEAAKZAaAEAAKZAaAEAAKZQqKHl22+/Vfv27TVo0CCbbUePHtWwYcPUtWtXPf3005o2bZqSk5MLszwAAFCMFdqnh65evarFixerdOnSNtuioqL0xhtvqGbNmho+fLiuXr2qpUuX6vz58/rss88Kq8RCwUxwAADyp9BCy6xZs9SoUSNlZ2fr+vXrVtu++uoreXt7a/r06fL09JQkValSRZ9++qn27Nmj1q1bF1aZAACgmCqU20OHDh3S1q1bNWLECJttN2/e1L59+9StWzdLYJGk7t27q3Tp0goLCyuMEgEAQDHn8NCSlZWladOmqVevXqpbt67N9tOnTysrK0sNGjSwandzc1NAQICioqIcXSIAADABh98eWrVqla5cuaKpU6fa3R4XFydJ8vX1tdnm6+urw4cP290vNjbWsq8kRUdHF0C1AACguHJoaLl+/boWLlyo559/XuXKlbPbJy0tTdKtKyt/5O7urvT0dLv7rV69WqGhoQVVKgAAKOYcGlrmz58vb29v9e7d+459PDw8JEkZGRk229LT0+Xu7m53v5CQELVr187yODo6WhMmTLjPigEAQHHlsNBy7tw5rVmzRiNGjFBsbKylPT09XZmZmbp06ZI8PT0tt4Vuv9WTIy4uTn5+fnaP7+fnd8dtAACg5HFYaImNjVV2dramTZumadOm2Wx/9tln1adPH7300ktycXFRZGSkgoODLdszMjIUFRWlTp06OapEAABMLy/rf10Mjy+EShzPYaGldu3amjhxok37/PnzlZycrJEjR6pq1ary8vJSy5YttXHjRg0aNEhlypSRJG3YsEEpKSmEFgAAIMmBoaVcuXIKCgqyaf/Xv/4lSVbbhgwZomHDhmnEiBEKCQmxrIjbqlUrtWnTxlEllnisvgsAKEmKxRcmNmjQQJ9//rk8PDw0Y8YMrVmzRr169dL48eOLujQAAFBMFNoy/jmmT59ut71JkyaaNWtWIVcDAADMotBDC3K3f3nuqwD/uU9AIVQCAEDxUSxuDwEAAOSG0AIAAEyB0AIAAEyB0AIAAEyBibiFLG+rEtbNtUde1mApTEweBgA4GldaAACAKRBaAACAKXB7CACAe8BXpBQdrrQAAABTILQAAABTILQAAABTILQAAABTYCLuA471VQDA3PK2/lfJwJUWAABgCoQWAABgCtweKoZ+Krc31z5VVaEQKgEAoPjgSgsAADAFQgsAADAFQgsAADAFQgsAADAFJuIC94m1boCSIy9fhoiiw5UWAABgCoQWAABgCtweAvDA4ZYeioO8vA/V1vF1mAlXWgAAgCkQWgAAgClwe8ik8vKtnlUbsdQ/ABRXfGXLveNKCwAAMAWutAAATK+4Ta7+YNN3hfZcDxKutAAAAFMgtAAAAFPg9hBMp7hdBgaKi7z8bOxpeyrXPq9W7VEQ5QAFjistAADAFAgtAADAFLg9BNPJy9oGfxa3hwAzyNNS9sVMXtbJMuNzmQFXWgAAgClwpaUEy1tCr5trj9kX1+fap3UejsME2sJRmK8z5/TBxblHUeBKCwAAMAVCCwAAMAWH3R6KiIjQ+vXrdfDgQV2+fFk+Pj5q3LixhgwZoho1alj1PXPmjGbOnKmjR4/K1dVVjz76qIYPH65y5co5qjzcg4K6zZQXBbX0dV5uabEWRcljxkmdKDx5+b2A4s1hoeW7777T0aNH1alTJ9WtW1dxcXFauXKlhgwZotmzZ6tOnTqSpKtXr2rEiBHy8vLS0KFDlZKSoh9++EGnT5/W3Llz5ebm5qgSAQCAiTgstPTr108ffvihVegIDg7Wiy++qCVLluiDDz6QJC1evFipqamaP3++/P39JUmBgYF68803tW7dOoWEhDiqRAAAYCIOCy0PP/ywTVuNGjVUq1YtRUdHW9q2bt2qtm3bWgKLJLVs2VI1atRQWFgYoaUEycv6KoWJTz8A+Vfc1kvK0++X8Ny7VG1U4f6LgcMU6keeDcNQQkKCatWqJUmKiYlRQkKCGjRoYNM3MDBQu3btuuOxYmNjFRcXZ3l8exACAAAlT6GGll9++UUxMTF66aWXJMkSOnx9fW36+vr66saNG0pPT5e7u7vN9tWrVys0NNSh9SLvittVlOKGqzp3V9ivT3G7SlCY8jKxfv+OPExoLnf/tQD3qtBCS3R0tKZOnarGjRurR49bn9pIS0uTJLuTbXOCSlpamt3QEhISonbt2lkdf8KECY4oHQAAFAOFElri4uI0ZswYeXp6avz48XJxcZEkeXh4SJIyMjJs9klPT7fq80d+fn7y8/NzUMUAAKC4cXhoSUpK0ujRo5WUlKSZM2daBY2c20K3z03JERcXJx8fH7tXWQCzydPts+W5d3mQbyHBfMy4bg5fUFi8OTS0pKWl6d1339W5c+f0+eefWybg5qhYsaLKlSunyMhIm30jIiJUr149R5YHAABMxGHL+GdlZemjjz7SsWPHNG7cOD300EN2+3Xo0EE7duzQlStXLG379+/XuXPn1KlTJ0eVBwAATMZhV1q+/PJLbd++XW3btlViYqI2btxotb1bt26SpAEDBmjLli16/fXX1adPH6WkpOj7779XnTp11LNnT0eVhxKuML96ALhfefom9R0l8/2al1unT19rVQiVwAwcFlpOnjwpSdqxY4d27Nhhsz0ntPj7+2v69OmaOXOm5s6da/nuoWHDhjGfBQAAWDgstEyfPj3PfWvXrq0pU6Y4qhTcBeurPJgKal2UB3m9E6ngXsfidmWQ3wsorhw2pwUAAKAgEVoAAIApFOoy/gDuT2Gue5Gn5yrn8DIsiuOaHw/67TGgsHGlBQAAmAKhBQAAmAK3h4C7+GDTd7n2eVqsIYE7y8saLHnBeiYAV1oAAIBJcKUFMBEz/mu7OE6gzYu8XGVD4WDdGOTgSgsAADAFQgsAADAFbg8BxURhXgI3422mvOA2QvHC+UBB40oLAAAwBUILAAAwBW4PASUMl+SLl7x9g3PB4NyjpONKCwAAMAVCCwAAMAVCCwAAMAVCCwAAMAUm4uKBxaTFuyuo16ekrgkDoPBxpQUAAJgCoQUAAJgCt4cAFDluIQHIC660AAAAU+BKC3CfmNBbOHidAXClBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmAKhBQAAmIJrURcgSenp6VqwYIE2btyoxMRE1a1bV0OGDFGrVq2KujQAAFBMFIsrLZMmTdKyZcvUtWtXjRw5Us7Ozho9erSOHDlS1KUBAIBioshDS3h4uDZv3qyXX35Zr732mkJCQvTFF1+ocuXKmj17dlGXBwAAiokiDy1bt26Vi4uLQkJCLG0eHh7q1auXjh07pitXrhRhdQAAoLgo8tASFRWl6tWry9PT06o9MDBQknTy5MmiKAsAABQzRT4RNy4uTr6+vjbtOW2xsbF294uNjVVcXJzlcU64iY6OdkCVUuKlGIccFwAAs4iMjHTYsWvWrKlSpUrdtU+Rh5a0tDS5ubnZtLu7u1u227N69WqFhobatE+YMKFA6wMAALcMnbfCYceeN2+eGjRocNc+RR5aPDw8lJGRYdOenp5u2W5PSEiI2rVrZ3mcmJio6Oho1a9f3xJ4Ckp0dLQmTJig999/XzVr1izQYxcHJX18UskfI+Mzv5I+xpI+Pqnkj9HR48vLMYs8tPj6+iomxvbWS86tHz8/P7v7+fn52Wxr2bJlwRd4m5o1a+aaAs2spI9PKvljZHzmV9LHWNLHJ5X8MRbl+Ip8Im69evV0/vx53bx506o9PDzcsh0AAKDIQ0vHjh2VlZWl1atXW9rS09O1du1aNWrUSP7+/kVYHQAAKC6K/PZQo0aN1KlTJ3311Ve6du2aqlWrpvXr1+vy5csaM2ZMUZcn6dYtrBdeeMHup5xKgpI+Pqnkj5HxmV9JH2NJH59U8sdYHMbnZBiGUWTP/v+lpaVZvnsoKSlJderU0ZAhQ9S6deuiLg0AABQTxSK0AAAA5KbI57QAAADkBaEFAACYAqEFAACYQpF/eqg42r9/v3755RcdOXJEMTExqlChglq0aKHBgwffcbG7P4qJidHMmTO1d+9eZWdnq3nz5hoxYoSqVq3q4OpzFxsbq+XLlysiIkLHjx9XSkqKpk2bpubNm+dp/4ULF9r9CgV3d3dt2rSpgKu9d/c7Pql4n78ciYmJmjNnjrZt26a0tDQFBgbqtddey9OiT5988onWr19v0/6nP/1JixcvdkS5dqWnp1sm4ScmJqpu3boaMmSIWrVqleu+ZjhHUv7HWNx/znIkJyfrhx9+UHh4uCIiIpSYmKixY8eqZ8+eedr/ft7HheF+xrdu3TpNmjTJ7raVK1cWi08ZRUREaP369Tp48KAuX74sHx8fNW7cWEOGDFGNGjVy3b+wzx+hxY45c+boxo0b6tixo2rUqKGLFy/qxx9/1M6dO7VgwYJc32jJyckaNWqUbt68qQEDBsjV1VXLli3TiBEjtHDhQpUtW7aQRmLfuXPn9N1336l69eqqU6eOjh07lq/jvPXWWypdurTlsbNz8bhwd7/jK+7nT5Kys7M1ZswYnTp1Sv3791fZsmX1008/adSoUZo3b16eftm4u7tr9OjRVm1//LZ1R5s0aZK2bNmivn37qnr16lq3bp1Gjx6tadOmqUmTJnfczwznKEd+x5ijuP6c5bh+/bpCQ0Pl7++vevXq6eDBg3netyDex452P+PLMXjwYFWpUsWqzcvLq6BKvC/fffedjh49qk6dOqlu3bqKi4vTypUrNWTIEM2ePVt16tS5475Fcv4M2Dh48KCRlZVl0xYUFGR89dVXue6/ZMkSIygoyAgPD7e0nTlzxujYsaMxd+7cAq/3Xt28edO4fv26YRiGERYWZgQFBRkHDhzI8/4LFiwwgoKCjISEBAdVeH/ud3zF/fwZhmFs3rzZCAoKMsLCwixtCQkJRs+ePY1x48bluv/EiRONbt26ObDC3B07dswICgoyvvvuO0tbamqq0b9/f+Pvf//7Xfc1wzkyjPsbY3H/OcuRlpZmxMbGGoZhGBEREUZQUJCxdu3aPO17v+/jwnA/41u7dq0RFBRkREREOLLE+3LkyBEjPT3dqu3s2bNG586djY8//viu+xbF+Stekb2YaNasmc2/Zpo1ayYfHx9FR0fnuv+WLVvUsGFDBQYGWtpq1qypFi1aKCwsrMDrvVdlypSRj49PgRzr5s2bMorZp+bvd3zF/fxJ0tatW1WhQgW1b9/e0lauXDl16tRJv/32m+ULR3OTlZVl8xUahWXr1q1ycXFRSEiIpc3Dw0O9evXSsWPHdOXKlTvua4ZzJN3fGG9XHH/Ocri7u+f7NkdBvY8d6X7Gd7vk5GRlZWUVQEUF6+GHH5abm5tVW40aNVSrVq1c/94VxfkjtORRcnKyUlJScr3snJ2drdOnT6thw4Y22wIDA3XhwgUlJyc7qsxC9eyzz6pnz57q0aOHxo8fr/j4+KIu6b6Z5fydOHFCAQEBNuE6MDBQqampOnfuXK7HSE1NVc+ePdWzZ0/16tVLn3/+eaGOLSoqStWrV7e5JZUTRE6ePGl3P7OcIyn/Y7xdSfw5y1EQ72MzGDVqlHr06KFu3brp3XffLfbjMgxDCQkJuf69K4rzx5yWPPrXv/6ljIwMBQcH37XfjRs3lJ6ebjeZ57TFxsbqT3/6k0PqLAze3t76y1/+osaNG8vNzU1HjhzRypUrFRERoXnz5hX6vIiCZJbzFx8fr6ZNm9q059QYFxenunXr3nF/X19fPffcc6pfv74Mw9Du3bv1008/6dSpU5o2bZpcXR3/qyEuLi7X19kes5wjKf9jlEr2z1mO+30fF3ceHh7q2bOnmjdvLk9PT0VGRmrZsmV67bXXNH/+/GL73Xq//PKLYmJi9NJLL921X1GcvxIfWrKzs5WRkZGnvu7u7nJycrJpP3TokEJDQ9WpUyf9+c9/vusx0tLSJMnmclvO8W/vUxAKYnz3qm/fvlaPO3bsqMDAQI0fP14rV67UgAED7vs5chT2+Ar7/En5G2NaWpqlnvzU+Morr1g97ty5s2rUqKF58+Zp69at6ty5cx6rz7+0tLR8vc5FcY7yK79jlAr356yo3O/7uLgLDg62+oduUFCQWrdurREjRmjRokV6++23i7A6+6KjozV16lQ1btxYPXr0uGvfojh/JT60HD58WKNGjcpT30WLFqlmzZpWbdHR0Xr//fdVp06dPH2Bo4eHhyTZ/SOUc38vp09BuN/xFZSuXbvqyy+/1P79+wv0l2lhj6+wz5+UvzF6eHjYvV98PzX269dPCxYs0L59+woltHh4eOTrdS6Kc5Rf+R3jnTjq56yoOOJ9XNw1adJEjRo10v79+4u6FBtxcXEaM2aMPD09NX78eLm4uNy1f1GcvxIfWv70pz9p7Nixeer7x8u4V65c0VtvvSVPT09NnjxZZcqUyfUYPj4+cnd3V1xcnM22nLa8rvWSF/czvoJWqVIl3bhxo0CPWdjjK+zzJ+VvjBUqVLhrjfl5LTw8POTj41Pg5/BOfH19FRMTY9Oe2+tcFOcov/I7xrtxxM9ZUXHE+9gMKlWqpLNnzxZ1GVaSkpI0evRoJSUlaebMmXl6bxbF+SvxocXX1zfPixzd7vr163rrrbeUkZGhqVOn5vmXi7Ozs+rUqaPjx4/bbAsPD1fVqlXzFH7yKr/jK2iGYejy5csKCAgo0OMW9vgK+/xJ+RtjQECAjhw5ouzsbKtJcBERESpVqlS+1kdITk7W9evXVa5cuXveNz9y1ry4efOm1fyM8PBwy3Z7iuIc5Vd+x3gnjvo5KyqOeB+bwcWLFwvt5ywv0tLSLBOEP//8c9WqVStP+xXF+ePTQ3akpKRo9OjRio2N1aeffnrXF/7KlSs2Hwvr0KGDjh8/bvVL9ezZszp48KA6duzoqLIdwt74rl27ZtPvp59+0rVr19SmTZtCqqxgmPX8dejQQfHx8dq2bZul7dq1awoLC1Pbtm2t7jNfuHBBFy5csDxOS0uz++mab775RoZhFNo57Nixo7KysrR69WpLW3p6utauXatGjRpZJima9RxJ9zfGkvRzJt2adBwdHa3MzExL2728j4s7e+Ozdw537typyMhItW7duhCru7OsrCx99NFHOnbsmMaNG6eHHnrIbr/icv5K/JWW/Bg/frwiIiL0+OOPKzo62uqXSenSpRUUFGR5PHHiRB06dMjqpD3zzDP697//rTFjxqh///5ycXHRsmXLVL58efXv379Qx3In33zzjSTpzJkzkqQNGzboyJEjkqRBgwZZ+tkbX9++fRUcHKw6derI3d1dR48e1ebNmxUQEGC1HkVRup/xmeH8dezYUcuXL9ekSZN05swZy0qU2dnZNjP+33jjDUnSsmXLJN2a8T948GB16dLF8gmbPXv2aNeuXWrTpo0ee+yxQhlDo0aN1KlTJ3311Ve6du2aqlWrpvXr1+vy5ctW88fMeo6k+xujGX7OcqxYsUJJSUmW2wLbt2/X1atXJUm9e/eWl5eXvvrqK61fv15Lly61rA57L+/jopTf8b366quqX7++GjRoIE9PT504cUJr165VpUqVNHDgwCIbz+2+/PJLbd++XW3btlViYqI2btxotb1bt26SVGzOH6HFjpy1E9auXau1a9dabatcubJVaLGnTJkymjZtmmbOnKlvv/3W8r0ow4cPLzaXBBcsWGD1+PZx3v5H3Z6uXbvq999/19atW5Weni5/f38999xzev7551WqVCmH1Huv7md8Zjh/Li4u+vTTTzVr1iytWLFCaWlpatiwocaOHZvrR329vLzUtm1b7d27V+vXr1d2draqVauml19+Wf379y/UZeLfe+89+fv7a8OGDUpKSlKdOnU0efJkNWvW7K77meEc5cjvGM3wc5Zj6dKlunz5suXxtm3bLAGsW7dud1yy/n7ex4Upv+MLDg7Wrl27tHfvXqWmpsrX11dPPvmkXnjhBVWoUKFQas9Nzt+7HTt2aMeOHTbbc0KLPUVx/pyM4rrMIgAAwG2Y0wIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIAAEyB0AIUIwsXLlT79u118ODBoi7FIdq3b6+RI0cWdRkATIpl/GFaly5d0rPPPmvV5urqqvLly6tp06b629/+prp16xZRdcWTYRj65Zdf9PPPP+vUqVNKTk6Wt7e3/Pz81LhxYwUHB1stL//JJ5/YfN8I0L59ezVr1kzTp08v6lLwgCG0wPSqVaumrl27Srr1Dd3h4eHatGmTtm3bpqlTp+rhhx8u4gqLj//5n//RunXr5O3trbZt28rPz09paWk6deqUfv75Z928eTPX78QBgKJCaIHpVatWzeYbRefNm6dFixZp3rx5/Gvw/zt8+LDWrVungIAATZ8+XZ6enlbbExMTLd+KDQDFEaEFJVLv3r21aNEiHT9+3NIWGRmpxYsXKyIiQgkJCSpTpoyqVKmixx57TM8//7zV/gkJCVq8eLF27Nihq1evqkyZMmratKleeukl1alTx6rv3S6V9+vXT5K0bNkyq/YrV65ozpw52rNnjzIzM1W/fn0NHjz4rmNau3atVq1aZQkWtWrV0tNPP62ePXvm6TU5duyYJKl79+42gUWSvL29ra5K9evXz/LNtrffhvvjWI8ePapFixbp2LFjSktLU+XKlRUcHKy//vWvefo2YsMwNHPmTP3rX/9Sly5d9N5778nV1VWGYWjt2rX6+eefdfr0aWVlZVnG3KtXL6tjpKWlaeXKldqwYYMuX76srKwslStXToGBgRo4cKDq1at31xpybjX26NFDzz33nGbPnq3ff/9dWVlZaty4sV555RU1aNDAap/IyEitXbtWhw4d0tWrV5WRkWG56te/f3+5ulr/es15LyxYsEDz58/Xb7/9pvj4eI0ePVo9e/bM9/EWLlyouXPn6tdff1VycrLq16+vESNGqEGDBoqNjdXs2bO1d+9eJScnq0mTJnrjjTdUo0YNm9fg4sWLWrRokfbu3auEhAR5e3urdevWeumll1S5cmVJ0sGDBzVq1ChJ0qFDh9S+fXvL/mPHjrV6L/76669asWKFTpw4ofT0dFWrVk09evRQv3795OLiYum3bt06TZo0SWPHjpWPj4+WLFmiU6dOqWzZsjY/NwChBSWak5OTJCkqKkrDhg2Ts7OzHnvsMfn7+yspKUlnzpzRmjVrrELLhQsXNHLkSMXExKhVq1Z67LHHdO3aNW3dulV79+7V1KlT1ahRo3zXFBsbq9dee00xMTFq3bq16tevr+joaL311ltq3ry53X2mTZumFStWqGLFinr88cclSdu2bdOkSZN04sQJyx+Su/Hx8ZEknT9/Pk919unTR+vXr9fJkyfVp08feXl5SZLV3JawsDB9/PHHcnNzU3BwsMqVK6e9e/cqNDRUe/bs0bRp0+Th4XHH58jMzNQnn3yiTZs2qW/fvho+fLicnJxkGIbGjx+vTZs2qXr16urSpYvc3Ny0d+9eTZ48WWfOnNGwYcMsx/nkk08UFhamunXrqmfPnnJzc1NMTIwOHDigVq1a5Rpacly8eFHDhg1TQECAnnrqKV25ckVhYWEaMWKEvvjiC6vzvmbNGu3YsUNNmzbVI488otTUVB06dEhfffWVjh8/rgkTJtgcPz09Xa+//rpSUlLUrl07ubi4qHz58vk+XkZGht58802lp6crODhYCQkJCgsL05tvvqlZs2bp7bfflq+vr7p166bz589rx44dGjNmjBYtWmQVHMLDw/X2228rJSVFbdu2VfXq1XX58mX98ssv2r17t2bPnq2qVauqcuXKeuGFFxQaGqrKlSurR48elmPc/hrPnTtXS5YsUcWKFdW+fXt5eXnpyJEjmj17tiIiIvTxxx/bjCUsLEx79+5V27Zt9fTTTys5OTlP5wwPGAMwqYsXLxpBQUHGW2+9ZbNtwYIFRlBQkDFy5EjDMAxjxowZRlBQkLFt2zabvteuXbN6/OqrrxodO3Y0du/ebdV+9uxZo3v37sagQYOs2oOCgowRI0bYrbFv375G3759rdomTpxoBAUFGd98841V+6pVq4ygoCAjKCjIOHDggKX94MGDRlBQkDFgwAAjMTHR0n7jxg3jr3/9qxEUFGQcOnTI7vPf7sqVK0aPHj2M9u3bG+PGjTPCwsKMS5cu3XWfnFovXrxosy0pKcno2bOn0blzZ+PkyZOW9qysLOOf//ynERQUZISGhlrtc/trdfPmTePNN980goKCjEWLFln1W716tREUFGRMmjTJyMjIsLSnp6cbY8aMMYKCgozjx48bhmEYiYmJRvv27Y0hQ4YYmZmZVsfJzMw0bty4ketrk/NeCgoKMubMmWO1bffu3UZQUJDNeb98+bLN82VnZxuTJk0ygoKCjCNHjlht69u3r+X9mpqaalNDfo/34YcfWr1GS5YsMYKCgoyePXsaM2bMMLKzsy3bpkyZYgQFBRlbtmyxtGVkZBh9+/Y1unfvbkRGRlo9x+HDh42OHTsaY8aMsWq/23t+z549lnEmJydbjeV///d/jaCgICMsLMzSvnbtWiMoKMjo0KGDsXfvXrvHBHLwkWeY3oULF7Rw4UItXLhQs2bN0vDhwxUaGip3d3cNHTrUqq+9f/WXLVvW8t8nTpzQ77//ru7du6t169ZW/WrUqKEnnnhCp0+f1unTp/NVa0ZGhv7v//5P5cuXt/nk0xNPPKHq1avb7LN+/XpJ0osvvmi52iHdup3zwgsvSLp1iT03lSpV0vjx41WpUiVt2rRJH374ofr166eQkBD985//1P79++9pLL/99puSkpL0+OOPW31Ky9nZWa+++qpcXFzuWNe1a9f0+uuv68CBA3r33Xc1YMAAq+0//vijSpcurTfeeMPqtoibm5vlnG7atEmSLFdm3N3d5exs/SvNxcVF3t7eeR6Tl5eXBg4caNXWunVr/fnPf9bp06cVGRlpaff397e6WpFTyzPPPCNJ2rdvn93nePXVV+2+D/N7vNdee83qNercubMkKSsrS0OGDLFcbbx926lTpyxtO3bs0OXLl/Xcc8+pfv36Vsdu0qSJ2rVrp127dunmzZt2n/+PfvzxR0nSO++8o9KlS1uN5ZVXXpGTk5M2b95ss1+7du3UsmXLPD0HHlzcHoLpXbhwQaGhoZL++5HnLl26WH3kOTg4WMuXL9f777+v4OBgtWzZUk2bNlXFihWtjhUeHi7p1pyWhQsX2jzX2bNnLf//x7kteXH27Fmlp6erRYsWNn+4nJ2d9fDDD9vcvomKipIku7eOctpOnjyZp+dv2bKlvv/+ex06dEiHDx9WZGSkjh49qrCwMIWFhWnAgAF6+eWX83SsnLrsfdrI399fVatW1blz55ScnKwyZcpYtsXHx2vYsGG6evWqJkyYoHbt2lntm5qaqtOnT8vPz09LliyxOXZWVpak/54LT09PPfLII9q1a5eGDBmijh07qlmzZgoMDLSZB5KbgIAAq1pzNGnSRPv371dUVJRlbktGRoZ+/PFHbd68WWfPnlVKSooMw7DsExsba3Mcd3f3O75v8nM8b29v+fv7W7X5+vpKkqpXr24zpyhn2+3HypnrdPbsWbvv+fj4eGVnZ+vcuXNq2LCh3dpvFx4ertKlS+vnn3+2u93Dw8Ny7m4XGBiY67EBQgtMr3Xr1vrf//3fu/Zp1KiRpk2bpsWLF2vTpk1au3atJKlhw4b6+9//rhYtWkiSbty4IUnauXOndu7cecfjpaSk5KvWnH+t5sxj+CN77cnJyXJ2dla5cuVstlWoUEFOTk55/lewdCvYtWzZ0vKv2szMTK1fv15TpkzR4sWL1aFDB5tJp3cbS4UKFexu9/X11blz53Tz5k2b0HLz5k1Vq1bN7tygxMREGYahmJgYSxi1JzU11fLfH3/8sRYtWqRNmzZp3rx5km6FmZ49e+rll1/O04Tgu40lpz0pKcnS9sEHH2jHjh2qUaOGgoODVb58ebm4uCgpKUnLly9XRkaGzXHKly9vdeXjdvk5nr0J1TlBzd62nCs5mZmZlrbExERJ0i+//GK3rhy3v953c+PGDWVlZd313Nn7+bnTaw/cjtCCB0bTpk3VtGlTpaWlKTw8XNu3b9dPP/2kMWPG6JtvvlHVqlUtv+hHjRql3r175+m4Tk5Oln/9/1FSUpLVLZ2c4yckJNjtb6+9TJkyys7O1rVr12xCTUJCggzDsPsHKq9cXV31xBNP6PDhw9qwYYMOHjyYp9CS85zx8fF2t+e0/7G2evXqqUePHvr00081atQoffHFF1Z/sHL6N2jQwBJAclOqVCkNHTpUQ4cO1cWLF3Xw4EGtWrVKy5cvV1pamt555508HSe3seScy4iICO3YsUOtW7fW5MmTrW7rHDt2TMuXL7d7nDsFlvweryDkBMr/+Z//Udu2be/7eJ6ennJyctKaNWvuab87vTbA7ZjTggeOh4eHmjdvruHDh2vgwIFKS0vT3r17Jf33EnXOJfO88Pb2VkxMjE37pUuXrP5lLt2aF+Pu7q7IyEilpaVZbcvOztbvv/9uc5yAgABJsru0/6FDhyQpz5+OuZvb5x/kyJkjkp2dfce6cmq43ZUrV3ThwgVVrVrV7u2Wxx9/XO+++67Onj2rUaNGWYWFMmXKqGbNmoqOjrZcBbgXVatWVa9evTRjxgyVLl1a27dvz/O+UVFRdj+1cuTIEUn/HfPFixclSY8++qjNPJScvveioI93L3Kudt3Le97Z2dnue0K69TN0/fp1nTt3rkDqA25HaMED4ffff7cJCdJ//wXt7u4u6dYv8EaNGmnz5s12JwtmZ2fb/JFu2LChLl++bNWekZGhmTNn2uzv7u6uTp06KSEhQUuXLrXa9u9//9vuL/qcj5WGhoZa3QZKSkrS119/bdXnbnbv3q1ff/3V6tZAjvPnz2vLli2Sbs3fyJHzMemrV6/a7PPYY4/Jy8tLa9eu1X/+8x9Lu2EYmjt3rrKysu66hkyPHj00duxYnTt3TiNHjlRcXJxlW58+fZSamqrPPvvM7q2Eixcv6tKlS5JuTeq1NzE6MTFRGRkZlnObF0lJSVq0aJFV2549e7R//37Vrl3bcgUqZx7JHwPFf/7zHy1evDjPz5ejoI93L3KWAFi6dKndAJqZmWlTl7e3t933hHTr3EnS5MmTdf36dZvtcXFxLGKIfOP2EB4I3333nQ4ePKimTZuqSpUqcnd314kTJ7R//35VrVrVapGsDz/8UK+//rrGjRun5cuXKyAgQB4eHrp69ap+//13Xb9+3fLJFenWIl979+7V6NGj1blzZ5UqVUp79+6Vt7e3ZeLj7V555RUdOHBA8+fP19GjRxUQEKDo6Gjt2rVLrVq1slz1ydGsWTP17t1bK1as0KBBg9ShQwcZhqGtW7cqJiZGvXv3ztPS+9HR0Zo5c6bKli2rpk2bqlq1ajIMQxcuXNCuXbuUkZGhp59+2mqeSYsWLfTDDz/os88+U4cOHVSqVClVrlzZskDdO++8o48//lh///vf1alTJ5UrV0779+9XZGSkAgMD1b9//7vW1L17dzk5OWnSpEmWW0V+fn4KCQnRsWPHtH79eh09elQtW7aUr6+vEhISdPbsWYWHh+vDDz9UlSpVFBMTo8GDB6tevXqqW7eu/Pz8dOPGDf3222/KzMzMtYbbNWnSRKtWrVJ4eLgaN26sy5cvKywsTB4eHhozZoylX2BgoAIDAxUWFqa4uDg1btxYV65c0fbt2/Xoo49aAmBeFfTx7oW7u7s+/vhjjR49WiNHjlSLFi1Up04dOTk56fLlyzpy5IjKli1rFZ5atGihsLAwvffeewoICLCsf1S3bl21adNGgwYN0jfffKPnnntObdq0kb+/v27cuKELFy7oyJEjGjx4sGrVquWwMaHkIrTggfD000/L09NTEREROnTokAzDkL+/vwYOHKi+fftazbuoWrWqFixYoKVLl+rXX3/VunXr5OzsLF9fXzVt2lQdO3a0Onbr1q01btw4hYaGauPGjfL29lanTp00dOhQy0eSb+fn56dZs2Zp9uzZ2rNnjw4fPqz69etrypQpOnDggE1okW7NsQkICNBPP/1kmStQq1YtDR482LLYXG66deumMmXKaM+ePTp9+rT27dun9PR0lS1bVq1atVKPHj1sxvbII4/o1Vdf1Zo1a7R06VJlZmaqWbNm6t69uySpU6dOqlChghYvXqxt27ZZVsQdNGiQ/vrXv951Ybnb63J2dtbEiRP1+uuvW4LLe++9p0ceeUT//ve/tWPHDqWkpKh8+fKqXr26XnvtNf35z3+WJFWuXFkvvviiDhw4oH379unGjRsqW7as6tevrz59+qhNmzZ5en2kW+f+rbfe0uzZs7Vy5UplZ2erefPmNiviuri4aPLkyZZVjY8fP26pq02bNvccMgr6ePcqMDBQCxcu1Pfff69du3bp999/l5ubm/z8/BQUFGT5qHSOnG/qPnDggHbs2KHs7GxVqlTJ8mm9wYMHq2nTplq+fLn279+vpKQk+fj4qEqVKnrhhRcs3xUG3Csn4/bP1AHAA+j2Zfzfe++9oi4HwB0wpwUAAJgCoQUAAJgCoQUAAJgCc1oAAIApcKUFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYAqEFAACYwv8DJST/w4yN9EsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(len(az_ang), show=True)\n", - "np.save('unpol_qs.npy', unpol_qs)\n", - "np.save('unpol_us.npy', unpol_us)" + "# unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(TOT_NUM_EVENTS, show=True)\n", + "# np.save('unpol_qs.npy', unpol_qs)\n", + "# np.save('unpol_us.npy', unpol_us)\n", + "\n", + "unpol_qs, unpol_us = np.load('unpol_qs.npy'), np.load('unpol_us.npy')" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "id": "da3b6513", "metadata": {}, + "outputs": [], + "source": [ + "# mu, mu_err = source_photons.calculate_average_mu(bins=20, show=True) \n", + "mu = 0.310\n", + "mu_err = 0.001" + ] + }, + { + "cell_type": "markdown", + "id": "b3417867", + "metadata": {}, + "source": [ + "Compute the expected MDP assuming a background rate" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "21faf1ee", + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "This task takes a couple of minutes to run... hold on...\n", + "Calculating the MDP...\n", + "Espoure: 12.999999999998863 s\n", + "Total number of events: 1305\n", + "Modulation factor: 0.31\n", + "Background rate: 22.0 ph/s\n", + "MDP_99%: 49.0599013039517 %\n", "\n", - "Creating the 100% polarized ASAD...\n", - "Creating the unpolarized ASAD...\n", - "A = 0.69, B = 0.64, C = 1.45\n", - "Rmax, Rmin: 1.3255857147752785 0.6913840315477051\n", - "Modulation mu = 0.3144329181851877\n", - "A = 0.69, B = 0.63, C = 1.19\n", - "Rmax, Rmin: 1.3213195967353855 0.6937372845666253\n", - "Modulation mu = 0.31144644996981596\n", - "A = 0.70, B = 0.61, C = 0.93\n", - "Rmax, Rmin: 1.3076701330552678 0.6963055633549808\n", - "Modulation mu = 0.30507584038840063\n", - "A = 0.69, B = 0.62, C = 0.65\n", - "Rmax, Rmin: 1.3069797694176002 0.6945917997702361\n", - "Modulation mu = 0.3059535712209624\n", - "A = 0.69, B = 0.62, C = 0.38\n", - "Rmax, Rmin: 1.3007442567023138 0.6875203963372963\n", - "Modulation mu = 0.30842164770546815\n", - "A = 0.68, B = 0.63, C = 3.27\n", - "Rmax, Rmin: 1.305323631848115 0.6799280138066874\n", - "Modulation mu = 0.3150208284225606\n", - "A = 1.31, B = -0.63, C = 1.44\n", - "Rmax, Rmin: 1.3072674636919108 0.6759601874055354\n", - "Modulation mu = 0.3183231516245918\n", - "A = 1.31, B = -0.63, C = 1.19\n", - "Rmax, Rmin: 1.3044063659899097 0.6815158154428891\n", - "Modulation mu = 0.31365305064351456\n", - "A = 1.30, B = -0.61, C = 0.92\n", - "Rmax, Rmin: 1.3022971538050376 0.6937024832386739\n", - "Modulation mu = 0.30490720502723007\n", - "A = 1.31, B = -0.62, C = 0.65\n", - "Rmax, Rmin: 1.3057403579080105 0.6927407978097677\n", - "Modulation mu = 0.30673271966784027\n", - "A = 1.32, B = -0.62, C = 0.38\n", - "Rmax, Rmin: 1.316294677150884 0.6952281357916913\n", - "Modulation mu = 0.3087544110179192\n", - "A = 0.69, B = 0.63, C = 1.70\n", - "Rmax, Rmin: 1.3229800864200185 0.6920318836053398\n", - "Modulation mu = 0.31312379886593844\n", - "mu: 0.31048713272678163 +/- 0.0012843969646897993\n" + " MDP: 49.0599013039517 %\n" ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyTklEQVR4nOy9d3xb5dn//5HkveSVxPGMHWeS4QwSkpAJJAFKoOzRlgCB0tKGtrSk8KNAmaXlAdLn6Zc2ZYRSKNAQQoCQQcgiITvOdqa3LVvy3pal8/vjyvGRE9s65+hoX+/XSy9L8hm3ZZ37XPc1PpdOEAQBDMMwDMMwPoTe2wNgGIZhGIa5GDZQGIZhGIbxOdhAYRiGYRjG52ADhWEYhmEYn4MNFIZhGIZhfA42UBiGYRiG8TnYQGEYhmEYxudgA4VhGIZhGJ+DDRSGYRiGYXwONlAYxsfZunUrdDodnn32WZePpdPpMGfOHJeP0x9ajjcQWLx4MXQ6HYqKimTvM2TIEAwZMsRtY2IYf4ANFIa5CJ1OB51OB71ej3PnzvW53dy5c7u3XblypecG6GWKioqg0+mwePFibw9FNqLR5PgICwtDeno6brvtNnz//fe97tfa2or4+HjodDrcfffdHh61+zlx4gRuv/12DBw4EBERERgxYgSeeeYZtLW1eXtoDIMQbw+AYXyRkJAQdHV14e2338ZLL710ye/PnDmDrVu3dm/HSEyZMgUnT55EcnKyt4dyCVlZWd2GVUtLC3bv3o1Vq1Zh9erVWLVqFX74wx/22P7jjz9GQ0MDdDodVq9ejZqaGiQlJbl9nJs3b3b7Ofbs2YN58+bBarXi1ltvRUZGBr799ls899xz2Lx5MzZv3ozw8HC3j4Nh+oI9KAzTC4MGDcLkyZPx7rvv9mqAvPXWWwCAG264wdND83mioqIwcuRInzRQhgwZgmeffRbPPvss/vKXv2DHjh14+umnYbfb8dhjj12y/YoVK6DX6/G73/0OHR0deO+99zwyzqFDh2Lo0KFuO77NZsN9992H1tZWrFq1Ch9++CFeeeUV7NmzB7fccgt27tyJ119/3W3nZxg5sIHCMH3w4IMPwmQy4csvv+zxvtVqxcqVKzF9+nSMHj26z/3PnDmDn/zkJ0hLS0NYWBhSU1Pxk5/8BGfOnOl1+6qqKjzwwAMYNGgQIiMjkZeX1+8Nsb88hWeffRY6nQ5bt251+ndWVFTgueeew4wZM5CSktI91rvvvhsnTpy45LjZ2dkAgPfee69HyEQMc/WXg6LkM3H8G1atWoUpU6YgKioKiYmJuPPOO1FeXu70b5PDI488AgAoLCyE2Wzufv/YsWPYvXs3rrrqKixbtgxhYWHdhqka7HY7XnvtNYwcORIRERFIT0/Hr3/9azQ2Nl6ybW//25UrV3Z/zlu2bMGcOXMQGxuLuLg4XH/99Th58qTssWzbtg0nT57ErFmzsGjRou739Xo9/vznPwMA/v73v4Ob3TPehA0UhumDu+66C9HR0ZfclNauXYvq6mo8+OCDfe67b98+TJ48Gf/+979x+eWX47e//S2uuOIK/Pvf/8bkyZOxb9++HttbLBZMnz4d77zzDoYPH45f/epXyMvLw8MPP+z2lez27dvxpz/9CfHx8bjlllvw61//GldccUW3UXD48OHubefMmYNHH30UADB+/Hg888wz3Y+8vLx+z6P0MxH5f//v/+FHP/oRhgwZgkceeQRjxozBxx9/jKuvvhodHR0u//2ON2GdTtf9fMWKFQAoyTUxMRE33HADTp48iR07dqg6z69//Ws8//zzmD17Nh599FEkJyfjjTfewLx589De3i77OF9++SXmz5+PuLg4PPzww5g5cybWrVuH2bNnw2KxyDrGt99+CwBYuHDhJb/LycnB8OHDUVxcjPPnz8seF8NojsAwTA8ACGlpaYIgCMIDDzwgGAwGobS0tPv3CxYsEOLi4oSWlhbh//v//j8BgPDuu+92/95utwsjR44UAAj//ve/exz7o48+EgAII0aMEGw2W/f7Dz74oABA+NWvftVj+3379gkhISECAOGZZ57p8busrCwhKyur17/hmWeeEQAIW7ZsueRvmz17do/3qqqqhMbGxkuOkZ+fL0RHRwsLFy7s8X5hYaEAQLj33nt7PfeWLVsuGa+az0T8G2JjY4UjR4702Oeuu+4SAAgff/xxr2Poa0wX/+2CIAh/+MMfBABCTk5O93ttbW1CQkKCYDQahdbWVkEQBOGLL74QAAg/+tGPZJ1T5N577xUACElJSUJRUVH3+zabTbj55psFAMJzzz3XY5/e/rfvvvuuAEAwGAzCN9980+N3v//97wUAwiuvvCJrTLfeeqsAQFi1alWvv7/++usFAMK6detkHY9h3AF7UBimHx588EHYbDa88847AIDi4mJs2rQJ99xzD6KionrdZ9euXSgoKMC0adNwzz339PjdHXfcgSuvvBKnTp3Cd999B4BCRh988AFiY2MvCYtMnjz5kmNozcCBAxEbG3vJ++PHj8e8efOwZcsWWK1Wl86h9DNxZOnSpRg7dmyP90Tv1d69exWNo6ioqDsH5Xe/+x1mzZqF559/Hnq9Hq+++mr3dv/9739RV1eHO+64A5GRkQDI25CSkoJVq1ahrq5O0XkB4NFHH0VWVlb3a71ej7/85S/Q6/Xd3y853Hnnnbjqqqt6vPfQQw8BkP95NDQ0AACMRmOvvxffr6+vlz0uhtEaNlAYph+mTp2KsWPH4p133oHdbsdbb70Fu93eb3jn4MGDAIB58+b1+nvx/UOHDgEACgoK0Nrairy8vF5vGO7WLQGAr776CjfccAMGDx6M0NDQ7rySL774Ah0dHbJDB32h9DNxZPLkyZe8l5GRAQCKDYXi4mL88Y9/xB//+Ee88cYbOHv2LG6++Wbs2LGjRwWPGN657777ut8LCQnBPffcg/b2drz//vuKzgsAs2fPvuS9nJwcZGRkoKioSLYxoOXnwTC+DJcZM4wTHnzwQSxduhRff/013n33XUyaNAkTJkzoc3txdTp48OBefy++L96QxO0HDRrU6/YpKSlqhy6L5cuX41e/+hUSEhJwzTXXIDMzE1FRUdDpdFizZg0OHz7scq6H0s/Ekfj4+EveCwmhqctmsykax+zZs50mDp88eRLfffcdRo4ciSuuuKLH7xYvXoz/+Z//wT//+U8sXbpU0bn7+/8WFxejoaGh17/1YrT4PERDWPy/XIz4vpzxMIy7YAOFYZzw4x//GMuWLcPDDz+M8vJyPP300/1uL07+JpOp199XVlb22E78WVVV1ev2fR1Hr9ejs7Oz19/JXY13dXXh2WefRUpKCg4ePHiJAdGXgJlSlH4m3kT0nhQUFPRImnXk2LFj2LVrF6ZPny77uFVVVRgxYsQl74ufiSf/dnEcp0+f7vX3YlXV8OHDPTYmhrkYDvEwjBPi4+Nx6623oqysDNHR0bjrrrv63V70rvS1Ut+yZQsAYOLEiQCAkSNHIioqCvn5+b2uaPs6TkJCAqqqqnrND9m/f3+/YxSxWCyor6/H9OnTLzFOmpubu0MzjhgMBgDKvBdKPxNv0dHRgffffx96vR73338/HnjggUseCxYsAAD885//VHTsbdu2XfLe+fPnUVpaiiFDhnjUWyGG1NavX9/rmE6fPo2srCzk5OR4bEwMczFsoDCMDF544QV89tln2LBhQ68JpY7MmDEDI0aMwHfffYdVq1b1+N2qVauwY8cODB8+HFdeeSUAIDQ0FPfccw+ampouSZLdv38/Pvjgg17PM2XKFHR1deHdd9/t8f7KlSuxc+dOWX/XwIEDERUVhQMHDqC5ubn7favVikcffbTX3JOEhATodDqUlJTIOgeg/DPxFp9++ilqamqwYMECvP3223jrrbcueXzyySeIjo7GJ5980meIpDeWL1+O4uLi7td2ux2/+93vYLfbe+S6eILZs2dj1KhR2L59O9auXdtjTMuWLQMAPPzww316kBjGE3CIh2FkkJmZiczMTFnb6nQ6vPfee7jmmmtwxx134MYbb8TIkSNx6tQprFmzBrGxsfjXv/4FvV5aH7z00kvYvHkz3njjDezfvx9XXnklKisr8fHHH+O6667rcRMR+eUvf4l3330XP/vZz7B582ZkZGQgPz8f33//PX7wgx9cIjDXG3q9HkuXLsWf/vQnjB07FjfeeCM6OzuxZcsW1NbWYu7cud3eDZGYmBhMnToVO3bswD333IPhw4fDYDBg0aJFGDdunGafiTcQwztLlizpc5u4uDjcdtttWLlyJf797393C705Y8aMGcjLy8Mdd9wBo9GIDRs24PDhw5g0aRIef/xxTcYvF4PBgHfffRfz5s3DrbfeiltvvRWZmZnYvHkz9u/fjxkzZuDXv/61R8fEMBfDHhSGcQNTp07Fvn37cPfdd+P777/HX/7yF+zatQt33XUX9u3bh6lTp/bYPjk5GTt37sR9992HgoICvPHGG8jPz8ebb77Z541i9OjR+OabbzBjxgx88cUXWLFiBcLDw/H9999j0qRJssf6/PPP43/+538QGRmJf/zjH1i9ejUmT56MvXv39mmUvf/++7j++uuxfv16/PGPf8Qf/vCHXsNBrnwmnub06dPYtm0bBg0a5LSFgVjFpSTM8/rrr+Opp57C1q1bsXz5cpjNZjz66KP49ttvERER4dLY1SD+P2688UZs3LgRr7/+OhoaGvD0009j06ZN3IeH8To6QWAtY4ZhGIZhfAv2oDAMwzAM43OwgcIwDMMwjM/BBgrDMAzDMD4HGygMwzAMw/gcbKAwDMMwDONzsIHCMAzDMIzP4ZcGSnt7O06dOoX29nZvD4VhGIZhGDfglwZKcXExHnzwwR6y0QzDMAzDBA5+aaAwDMMwDBPYsIHCMAzDMIzPwQYKwzAMwzA+BxsoDMMwDMP4HGygMAzDMAzjc7CBwjAMwzCMzxHi7QEwDMMw/oHNZoPVavX2MBgfJTQ0FAaDQbPjsYHCMAzD9IsgCDCZTGhoaIAgCN4eDuOj6HQ6GI1GpKSkQKfTuXw8NlAYhmGYfmloaEB9fT0GDBiA6OhoTW4+TGAhCAJaWlpgNpsRGRmJ+Ph4l4/JBgrDMAzTJ4IgoLq6GnFxcUhOTvb2cBgfJjIyEh0dHaiurobRaHTZkOUkWYZhGKZPbDYbbDYb4uLivD0Uxg+Ii4vr/s64ChsoDMMwTJ90dXUBAEJC2OHOOEf8nojfG1dgA4VhGIZxCuedMHLQ8nvCBgrDMAzDMD4HGygMwzAMw/gcbKAwDMMw3sdupwfDXIANFIZhGMa7CALQ2Ag0NAAaJFf6Ex0dHVi2bBlSU1MRGRmJqVOnYtOmTbL2PX78OG677Tbk5OQgKioKycnJmDVrFr744ose2zU3N+OZZ57BwoULkZiYCJ1Oh5UrV8o6x4svvgidTocxY8Yo/dNchg0UhmEYxru0tQHt7UBHBxkqQSSnv3jxYrz22mu45557sHz5chgMBlx33XX47rvvnO5bXFyMpqYm3HvvvVi+fDn+8Ic/AAAWLVqEFStWdG9nsVjw3HPP4eTJkxg/frzssZWVleGll15CdHS08j9MA3SCH+oWnzp1Cg8++CD++c9/YsSIEd4eDsMwTMDS3t6OwsJCZGdnIyIiQvsTWK1AfT09DwkhIyU0FIiNBcLCtD+fD7F3715MnToVf/nLX/Db3/4WAH3eY8aMwcCBA7Fr1y7Fx7TZbJg0aRLa29tRUFAAgLw0dXV1SElJwf79+3H55Zfj3XffxeLFi/s91p133gmz2QybzQaLxYJjx445Pb+W3xf2oDBMczNQVsbxb4bxNHY70NIC2GxklOh0QEQEhXkaGshY8QA5OTn40Y9+dMn7c+fOxezZs9123lWrVsFgMOChhx7qfi8iIgIPPPAAvv/+e5SWlio+psFgQEZGBupFow9AeHg4UlJSFB1n+/btWLVqFd544w3FY9AKVt5hgg9BAGprAZMJKC4GystpolywABgyxNujY5jgQQztXOwpCQ8HOjvJSImNJaPFTToszc3NKCoqws9+9rNLfnfkyBHcfffdve5ntVrR0NAg6xyJiYnQ6y/1Bxw6dAjDhw+/RKV3ypQpAID8/HxkZGQ4PX5LSwva2trQ0NCAtWvX4uuvv8Ydd9wha2y9YbPZ8Mtf/hJLlizB2LFjVR/HVdhAYYIDqxUwm4HKSuD8ecBioZVbWBgQH08Gy5EjQGYm0MtEwjCMxlitQGsrhXV6u+bCwmibxkZaQERFucVIOXbsGARBuCQ3o6ysDLW1tRg3blyv++3cuRNz586VdY7CwkIM6WXxU1lZicGDB1/yvvheRUWFrOM/9thj+Mc//gEA0Ov1uPnmm/F///d/svbtjb///e8oLi7GN998o/oYWsAGChO4tLYCVVVARQUZJXV1tCqLjiajJC1NmvAiIoDCQqCkhL0oDCOXyZPJE6kGMaTqzOgQ0yR1uv63TUkB9u9XPAwxr+JiA+Xw4cMA0KeBMn78eNnVNn2FV9ra2hAeHn7J+2LuRltbm6zj/+pXv8Ktt96KiooKfPLJJ7DZbOjs7JS178XU1NTg6aefxh/+8AcMGDBA1TG0gg0UJnAQBHIJm0xAaSkZGw0N9L7RCKSmkuu4NyIjabujR9mLwjByMZkoROrHHD16FIMGDcKgQYN6vH/kyBHo9fo+y2sTEhJw9dVXu3RusfvvxbS3t3f/Xg4jR47EyJEjAQA/+clPMH/+fNxwww3Ys2ePYun5p556ComJifjlL3+paD93wAYK49/YbBSuMZnIS1JVRUmvISFAQgKQkwMYDPKOlZoKnDvHXhSGkYvCxMtu5HpPHHHmSVE5lmPHjvVaepufn4+cnJw+S2w7OztRW1sr6xwDBgyAoZd5aPDgwSjvxcCrrKwEAKSmpso6/sXceuut+OlPf4rTp08rqnQ9c+YMVqxYgTfeeKNHeKm9vR1WqxVFRUWIi4tDYmKiqnEphQ0Uxv/o6CBDRMwnqamhZLuoKDJKUlPVxarF1cqxY+xFYRg5KA2p2O1UUmy19u3NdLZ/ZyftGxtLCxEXOXr06CUJpXa7Hd9++y1mzZrV5367du1yOQclLy8PW7ZsQWNjY49E2T179nT/Xg1iaEhuEq9IeXk57HY7li5diqVLl17y++zsbDz66KMeq+xhA4XxD5qayEtSVgYUFUmKk3FxwMCBknHhKqmpwNmzFCLKytLmmAzDEK2tkoGhBr2e9u3oII9KbCyVJ6ukuroaZrO522Mh8te//hUWi6XfChYtclBuvfVWvPrqq1ixYkW3DkpHRwfeffddTJ06tbuCp7W1FSUlJUhOTkZycnKP8Q8cOLDHMa1WK/71r38hMjISo0ePljU+kTFjxuCzzz675P2nnnoKTU1NWL58OYYOHaromK7ABgrj27S1AVu3ksHQ1EQTVHw8eThcmJj6RDR0jh4FMjLYi8IwWtHRIVXtuFKNo9NJRkpjo0uCbkePHgUAbNy4ET//+c8xcuRI7N69Gxs2bAAAHDhwAHv27MHUqVMv2VeLHJSpU6fitttuwxNPPIHq6mrk5ubivffeQ1FREd5+++3u7fbu3Yu5c+fimWeewbPPPtv9/k9/+lM0NjZi1qxZSEtLg8lkwgcffICCggL8z//8D2JiYrq3/b//+z/U19d3h26++OILlJWVAQB++ctfwmg0Ijk5GTfddNMl4xQ9Jr39zp2wgcL4NoWFwPHjFF8eNMgzBgN7URhGW0RBNkHQJCzTLejW0UHe1Lg4VV6Zo0ePwmAw4KOPPsLSpUvx7rvvYubMmdi2bRtuuukm5OfnI9QdCyEH/vWvf+EPf/gD3n//fdTV1WHcuHH48ssv+w0vidxxxx14++238eabb6KmpgaxsbGYNGkSXnnlFSxatKjHtq+++iqKi4u7X69evRqrV68GAPzoRz+C0WjU9g/TAJa6Z3wXux1Ys4ZyTTIzPXvuc+eA3FzguuvYi8IENS5LlwsCJa63tJARobWWiVhOq0LQbcmSJdi+fTtOnz6t7ZiCGJa6Z4KDykrKOfFGLf7gwWSkqJCaZhjGgc5OCtWKUvZaExZGx21spBCSgjX30aNHFedpMJ6DDRTGdzl3jrL9tUqAVUJUlKSLwj16GEYdNht5TwRBfrm/GkJD6fhNTVIoyQmCIODEiRNsoPgwbKAwvklzM3DmDJCU5L0xsBeFYdQjCOTRsFo905U4JIQMleZmMlScLCwKCwvR3NzMBooPw0myjG9SXEzS9MOGeW8Mjl4UruhhGGWIVTvuCu30hsFA5xJDPTExfXpucnJy4IcpmEEFz7iM72G3AydPUmjH20aB6EW5UI7HMIwMbDYKteh07g3t9IZeTx6btjbKS+nq8uz5Gc1gA4XxPSorqcHfRQJEXkH0ohw5wrkoDCMHQSDjxGp1j1aRHBwF3RobaSyM38EGCuN7nD1LE4qLJWqawV4UhpFPR4d7q3bkIgq6dXaSkaKyuy/jPdhAYXyLpibvJ8deDFf0MIw8xKodb4R2ekMUdOvqIkG3XjoHM74LGyiMb1FSQsmxCQneHklP2IvCBDlOE0rF0E5Xl2eqdpQQHk7ja2gA2tu9PZqARsvEYzZQGN/BZgNOnACio72fHHsxUVHkPWEvChNkhFyQpu9ylmza3k6hHV8zTkTCwqTSZ67ecRvi9yREg5YGPnYXYIIaMTnWG8qxcmAvChOEGAwGGAwGNDY29r1RVxd5T/R631tcOBIaSmPlyh630djY2P2dcRXWQWF8h3PnyIviK8mxFxMVReM7ehRIT/ftiZhhNEKn02HgwIGorKxEeHg4oqOjoXNMfhV77bS3S0mpvkxHB+W6RUV5eyQBhSAIaGlpQWNjIwYPHtzzO6ISxQZKa2srPvroI5w4cQInT55EU1MTnnjiCVx77bWKT/7nP/8ZX375JaZNm4ZXXnlF8f5MAOGLybG9kZoqeVE83cCQYbyE0WhEW1sbLBYLzGZzz19arRTaEUXSfB2bjRYXUVH+MV4/QqfTIT4+XrPOyIoNlIaGBqxcuRKDBg1Cbm4uDh06pOrEBQUF+PrrrxHmq/FKxrOIyrHDh3t7JP3DXhQmCNHpdBg8eDAGDhwIq6OmSF0d8O23dE34amj2Yjo6ALMZWLDAN7SWAojQ0FBNQjsiig2UpKQkfPbZZ0hKSkJBQQEeeughxScVBAHLly/HggULcPDgQcX7MwGGzUbKsTEx/nHDF70o5eUkgc8wQUKP3IKuLuDgQcodGz7cf/I6DAaq5jGZ2Avq4yi+G4SFhSHJRTf8hg0bUFhYiAcffNCl4zABQkUF3ez9ZQUmelFYXZYJZo4fp4VFVpb/hUri4iik7C9GVZDi8eVqa2sr/v73v+NHP/qRy4YOEyCIybHh4d4eiXwcvSgME2yYzcC+fUB8vO8mtfdHYiL9DSaTt0fC9IPHq3hWrlyJ8PBw3H777bL3sVgsqKmp6X5dXFzsjqEx3qCxkVYy/uI9Ebk4F8XfVpAMoxarFdi9m65db3Ybd4XwcPKelJbS9cv4JB41UEpLS7Fq1So8/fTTipJj165di5UrV7pvYIz3KC4G6ut9Pzm2N1JTqW9QWRnnojDBw7FjwKlTwJAh3h6Ja8TH0/U7aZLvissFOR41UP76179izJgxmDNnjqL9Fi1ahBkzZnS/Li4uxgsvvKDx6BiP09XlX8mxFxMVRX/DsWPsRWGCA5MJ2LuXQiT+FJLtjcREaq1RWUl5NIzP4TED5cCBA9izZw9eeOEFVFZWdr9vs9nQ0dGByspKxMXFITo6+pJ9k5OTkZyc7KmhMp6iooIe/uxiTUujENWYMexFYQKbzk4K7bS0+G9ox5HQUEpyLylhA8VH8ZiBUl1dDQB46qmnLvmd2WzGHXfcgV/84heKclMYP+fsWZog/HklJuaisBeFCXQOHyZjPCfH2yPRjvh4Sna//HL/TPYNcNxmoFgsFrS0tCAtLQ0hISGYOHEiXnzxxUu2+8tf/oKUlBT8+Mc/Rk4gffGZ/mloIAMlEDxjgwfTxD12rH97gximLyoqgAMHKJk9kPI1EhKAwkL6+/j+43OoMlA+/fRTNDc3d1fW7Ny5s9tDcssttyAmJgYrVqzA+vXr8fHHH2Pw4MEYNGgQBg0adMmx/vd//xcJCQmYOXOmC38G43eIybEjR3p7JK4THS1V9KSlsReFCTwOH6YuwGlp3h6JtoSE0PVaUsIGig+iykD5+OOPYXKoH9++fTu2b98OAJg/fz5iYmK0GR0TmHR1ASdOALGxgXMzZy8KE6g0N1OlWiB4O3sjIQE4fx6YMoUbCPoYqgyUTz75xOk2Tz75JJ588klNjsUEGOXlVA0QSEml7EVhAhWTiTRPhg719kjcg5iHUl4eGMm/AYQf1nYyfs+ZM5QcG0ixbIC8KGfPsrosE1iUlZEMgIZN4HwKg4H+vqIib4+EuQg2UBjPUl9Pq5VAdBdHR1P46uhRQBC8PRqGcZ32dkoijY/39kjcS1IS5cU1NXl7JIwDbKAwnqWoiNzFgTrhsReFCSSqqmhRYTR6eyTuxWikysKKCm+PhHGADRTGc1itpBwbSMmxFxMdTX8ne1GYQKCignKrQkO9PRL3otdTRc+5c94eCeMAGyiM5xCTY/2tMaBSxB49vBpj/JmuLrphB7r3RCQpiZoHNjR4eyTMBdhAYTzHmTPkVQi05NiLYS8KEwiYzUBtLZXhBgNxcRR+5vCsz8AGCuMZ6upIayDQvSciqalkkLEXhfFXKiqo/44/t6JQgk5Hcvdnz/LCwkdgA4XxDGJybLC4i0UvyrFjPNkx/ofdTguKXpq3BjRJSeRBqavz9kgYsIHCeAKrFSgoIBdqoCbH9oaoLsteFMbfqK2lEE+whHdEYmKo1JjDPD6Bx7oZM0FMWRlQWQkMGeLtkXiWmBj6u48do5BPMBlnjH9jMlHvHZVqz+dLdDhwVA+rVeNxXURoKDB5rB3ZmRp5KXU68hqdOQOMGcPXrJdhA4VxP2fO0IUe6KWKvSF6UcaMCbxGa0zgUljoUu7JgaN6NDR64ObeBuw/qkd2pk27YyYlkYFmsQRPzpyPwgYK415qa2myC9YLnb0ojL8hCpa5EN4RPSc6nYDICI3GdRFt7YAg6LT30kRHU7lxWVnwzls+AhsojHspKqIJb/Bgb4/Ee7AXhfEnTCbqYJyS4vKhIiOAu2/S0LvhwIdrDGhtc8uhaWFx9iwwfjyJuDFegT95xn10dpJyrNEY3J6DmBj6LLiih/EHSkqkBnrBSmIiyfxXV3t7JEFNEH8DGbdTVkYXOLtJpR49ZrO3R8IwfdPaSuGNQO2VJZeoKGqUyNU8XoUNFMZ9BHNy7MXExABtbbQqYxhfRWwOGOwGCkA9w06fpl5EjFdgA4VxDzU1wZ0c2xvh4dTSnWF8lbIyCkMaDN4eifdJSiKPp8nk7ZEELWygMO5BVI6Ni/P2SHyH+Hiq6Glu9vZIGOZSrFZaVLD3hAgPp9yxsjJvjyRoYQOF0R4xOZYnup7ExpLRxol3jC9SVUWyAHzdShiNFKp2t+Ic0ytsoDDaU1pKN+HkZG+PxLcwGCgnp7LS2yNhmEuprAS6urzTbVwQKCzsa1VuiYkk2MbXrFdgA4XRntOnqUSRk2MvJTaW3OhdXd4eCcNI2O3AuXP0/fQ0Nhvw4ovAffcBTz7pW436wsLoWi0t9fZIghI2UBhtsVgo/4STY3snPp4mYIvF2yNhGAmLhTwY3gjv/PvfwN699Pz4ceDXv6bmor5CQgJJBHR0eHskQQcbKIy2FBVREignx/ZORATpK3AeCuNLmExUBh8V5dnz7t4NfPppz/dqa8mTsm6db4R8EhLIeOMwj8dhA4XRjo4OWvn4Q5KdzUZj/fhj4A9/AP7yF89V10RFkSHHML6AIFB4JzLSs+etqACWL5de33knMHYsPe/qAv7+d+Cvf/W+50IMVbNEgMfhXjyMdojJsdnZXhtCn23eBQGxjeVIKc9HSkU+BpmOIKyzpccmp82x2D/9EdnnUt3q3WikFWtTk3di/gzjSH09VfC40BxQMR0dwCuvAC0XrsEZM4C77qJcmJUrgc8/p/c3bybD4Pe/BwYO9Nz4LiYhgYy4KVM8b8gFMWygMNogCMCpU5QcG+K9r5Vjm/fItjqkVuUj1ZSPtKp8xLT2LzOfe2o9jmb/AHXxQ+SdTG2r99hYuiFUVbGBwngfsTlgaqpnzicI5B0pLKTXaWnAL39JFW4GA/DAA8CwYcD//i8ZMmfPUl7K734H5OV5ZowXIxooFRXA0KHeGUMQwgYKow0WCzUZ8+Yqp70dyedPYmRJPlKr8pFUX9j3phFxqBqcB1NqHmIbyzH66KfQC3ZMP/IWtsx/zmlzQ5davev1dPyKCiA3V8UBGEZDiovJHeiphp6bNpFnBCAxtCeeuDT3ZdYsICMDePllydv47LPAj38M3Hyz55uPis0Ti4rYQPEgbKAw2lBYSKuw9HTPndNmo9VVfj5w+DBQUIC5fZXvhoUBl11G7dPHj0dEdjay9HpkAbRKe2QHUF2NweUHcXfGXmDy5H5P7XKrd6ORbgxWK5djM96jpYWUUj0V3jl3DvjHP6TXv/gFkJnZ+7bZ2cBrr9Fj/34K/7z3Hl3zS5cCiPHIkLtJTKR5rqUFiI727LmDFDZQGNfxVHKsIJDX4fBhMkqOHpVi2BdvCh10uUPJJTx+PDBqVN8CVOHhwL33UqIsALz9Nu3nzlCV0Uh/i8VCnY4ZxhuYTKRunJPj/nM1NZFHRHQ7Xn89MHt2//vExABPPQV89BE9AGDnTqCkBLFT/oDWMA8uiIxGMrDKy4Hhwz133iCGDRTGdUpKqKmWOya5xkbg0CHJS9KffkhKCs4YJ6B4wATUZ43DrXcoKJm88krgiy/I0CovB9avB37wA5eH3ydin4/qajZQGO8h9plxd3NAux14/XWpvH74cOD+++Xtq9cDd99N4dDXXgNaW4HSUiww/Qpbr/gtLMOmum/cjhgM9CgsZAPFQ7CBwriGmBwbEqK9x+H8eWDZsr7LDGNju0M2GD8eSEnBvjUGtLbpEBUuAFCQvKrTAUuWAL/9Lb3+z3+AOXNoBecuIiPpbxw/3n3nYJi+6OjwXHPAVasoTAPQdbtsmfLQ5pQpwP/8D/DSS0BpKcKsrZi/4zkcbboLWHQHGTLuJimJFmTcCNUjsA4K4xpms/uSYz/6qKdxEhZGoZd776XV2PvvA48/DixYAKSkuH6+4cPJKAHIHS26lN1FfDytKBsa3HsehumNqioqMXa3gZKfD3z4IT3X6WgRoFZpOi0NePVVKku+wNj8/wAvvOAZHaO4OLpey8vdfy6GDRTGRQoLyeWqtaehvBzYs4eeJyYCzz9Pk9xzzwG33EKZ9O5YMf3kJ1KuyldfubfVekwMGUKsKst4g4oKEkRzY5J2ZIuFDAq7nd646y5gwgQXDxoJPP44Dl1+P+y6C3PA/v3Ab34jlS67C72e5odz59x7HgYAGyiMK7S3uy85ds0aSeb6hhsoDOKJLqvJyVTGCFCV0MqV7juXXk+Pigr3nYNhesNmo5usG8MUepsVM799mcIhADBpEnD77docXKfDybG3YP2cF9AefuFvMJnIo7ptmzbn6IukJFpA+VJTwwCFDRRGPSYT9ahIStL2uHV1wLff0vPISGDhQm2P74ybbyavDUBNzPLz3Xeu+HjSVlAlqMIwKjGb6dp1Y3nxlPy3kWy+0PRv4EDycGjs9axIycP6G5dLekIdHZSn8vbb7usYHhtLnk9eWLgdTpJl1FNVRa5bmcmxfcrQX8S4A+sw5sJGJ4Zei/xN8ld5be2yN+2biAgK9bzxBr1++2167o5KB6ORwkjV1RRfZxhPUFFBVWQREW45fNb5bRhzei29CAmhpFg3qSa3xgwE/vQn4M03JQG4zz8nD9Hjj2vv4dXpaOF0+jQwerTnReOCCPagMOqw22nlr2DSEWXoW9v6fnQ2tiP35Fd0Cp0B+UNv6nf7ix+CQJOFy2H1OXOkVVlxMalfuoOwMPKeVFW55/gMczGCQNVj7hIbKynBlO/+Kr1+6CGSrncnYWEk3vazn0kLpmPHyGtz+rT250tMlDzIjNtgA4VRR309tUVXEMMWPSc6nYCoyN4fY0o3IqKTsvGLhs4BkpL63LavhzFOwOSxdtf+Pr2eyo5FPviAkoHdgdjd2BdayzOBT20thXjckTvW2gr86U8I7SJX5vncq6jKzhPodMC111IZshiitVio0eDGjdqeKyaGqoa4msetcIiHUUd1Nam4qghLREYAd9/Ui0aJzQZ8+Vn3y5ylNyJniMJGfFoyejSVM+7cSaWF//0vlThrTXw83TAaGjyjScEENyaT6mu3XwQB+Nvfuivfao1DsG/6z5Hj5hBIWzu1npC4DBHzl+PKLX/CwKrjlIvyf/+HsxvPYP+0n8FuUOZe7bNreXQ0cOYMMHasZzRYghD+VBl1VFSQK1XLyee776SS20mTgCFDtDu2Wu69V3IZf/45Te5aI67GuNyY8QSFhRQS0dpw+PJLYMcOAEBnaBS+mfn/wRbinhwXQArjCsKlod5aXRK+mPMyjg1f1L197ukNmPfl40BNjaKwcUOjDvuP9nKrTEqi0Ky5/y7pjHrYQGGU09lJ4mxaligKAvCZ5D3BD3+o3bFdISUFuPFGet7V5Z6yY52OVmDu1FxhGIBKfisqpBCIVhQUAO+80/1y98xfozHWvUnfk8faYYzrO9QbGW3AkSt/il2zHkOXIRwAMLDmNBbsfAFREXZZ4WKdjrwmvSb2R0VRSIvDPG6DQzyMcsRwhJadi48cocQ9gJJTx47V7tiuctttwDff0N+8axdw/DiAcdqew2gko6+jg/r0MIw7EJsDDhqk3THr64FXXqEQLQD88IcoS5gOuNLtWwbZmQKyM+WEgGcDN2cAL74ImM1IspzG3aNOACNHOt3Tadfy2FgK84wf7/5+RkEIe1AY5ZjNtKTQUjht9Wrp+c03+1bpXlQU8KMfSa/ffhsQXEzCvZj4eJro2V3MuJPSUgpZapUzYbOR7ohYzXLZZVSi72vk5FDDQRGtkmbFMA+HZ90CGyiMcoqKSAdAKwoLqWMxQCu7adO0O7ZWXH21lBNz9iyyz36r7fFDQymExOXGjLtoa6OSeS0Tsf/zH+oyDpDo2+OP+64n4corabEBUK6MFlV5EREU8i4tdf1YzCWwgcIoQ+wdYzRqd0zH3JMbb/TNCc5gAB54oPvl+AP/QkiXFqpwDkRHU5iLy40ZdyA2B9Tq2t23D/jkE3qu1wO/+51blWldJjwcmD2bnnd0ANu3a3PcuDgK87hLuTaIYQOFUUZ1NRkpWjUHNJuliSI2ljwVvsr48dTyHUBUaw3GnVyl7fHj40m3gXt8MO5ATOaUqfzcLyYT8Npr0ut77wXGjHH9uO5m/nzpuVZhnsREmsfcUeEX5LCBwihDvAi18nKsXSt1Or3+erdJb2vGffd1/+3jTn6KqGYNc0aio8ntzPFsRmusVvLOaVF519lJ0vItLfR62jTgpptcP64nGDpUUog+e1ZKzHeF8HDynnCYR3PYQGHkY7NR/olW5cXNzdIqJiyMDBRfJy2te5whtg6MP7BSu2PrdGT8cLkxozXV1aQgq0X+yYoV0o09NZUk5n0pqd0Z11wjPdfKixIfT2Gezk5tjscAYAOFUUJtLcWwtTJQ1q+nxD0AmDdP27wWd3LnnegIpx5E2ee2AqdOaXfs+HhaibVrnN/CBDeVleRFcbWEfdOmnouK3//efT193MXs2dLnsG0b5aO4SmIizY+Vla4fi+mGDRRGPtXVFIIQM+FdwWoFvviCnut0/uMiBoCYGBydcI/0+u23tUtsjYvjcmNGW+x28ni4mjd2/jzwj39Irx95xDfUnpUSFUUVPQCFqXbudP2YoaHkYS4udv1YTDdsoDDyKSvTTkRsyxYpGXTaNHIV+xFnRl6L+rgMelFQ0C3x7TLiRMcJd4xW1NSQwetKhU1zM+WdiCGMhQuBuXO1GZ83cEeybEICGXHs/dQMNlAYebS1URWAFuEdwQ6sWSO99hVZewUI+hDsnuDQ7fi997RxFQO00i0slJKHGcYVTCa6ftV6Pu124I03JKM5Nxd48EHNhucVRo4EMi4sME6c0CbvKyGBwjwVFa4fiwHABgojF1HeXoM8kbTSfdKEcNllwIgRLh/TG5SlXo6KtIn0wmymZoJaYDTSqpfLjRlXEQRa1bsirPjZZ8DevfQ8NpbyTkKVdQT2OXQ67b0oYvl2SYnrx2IAcC8eRi7V1RR60EBDYdTRT6UXN9/s8vG8yaEpS5D6+S9olblqFem4uNqILTqavFXV1SSlzTBqaWggz4dD9c75Eh0OHNX33gDvIkKsrbj5Px8hBIAAHbZO+y0qdw12ul+bP0Q55s4lz2dXF/Dtt8CPf+y64ZWYSAbhlCna5OoFOexBYZwjCBRy0CBbf4ClAAOrjtOLjAxg0iSXj+lNGhKyKB4PUOz53/92/aA6HU2UXG7MuIrJRMKKsbHdbx04qkdDow6tbc4fA8/sRkgXhS5P51yDc0mXy9pPEKjs2KcdLXFxUluNxkZgzx7XjxkfT55P7nCsCWygMM6pr6eQgwbhnR7qqzfdpF3TMm9y992S8bZ5M3DunOvHNBqp3LjNzS1hmcCmpIS8ng46JaLnRKcTEBXZ/2N46VbpUCOvdrq948MYJ2DyWB/Po9I6zGMw0JzG1TyawCEexjlmM2Xxu1hpE9tQjiFl39OLxERgzhzXx+YLxMUBt98OvPsueZvefptau7siXmU0kihedTWQlaXZUJkgoqWFjNw+qnciI4C7b7L1vX99PbDyQhPPAQNwzUPDAX0/2/sjY8cCKSnkacrPp58pKa4dMz6evJ+dndp2fA9CAmD5yridykpaFbioFjny2GfQ4YJeyA03+Lj/VyE/+IE0sR07Buze7drxQkK43JhxDVebA373nVRJNmtWYHg7L0av76ks+803rh8zLo5yf1jLyGUC8BvHaIrVSu5KV8M79fXIOUsXvzUkEliwQIPB+RChocD990uv330XsrIQ+yM2lrwoXG7MqKG0VGqfoAbHbr9iF+BA5KqrJOPrm29oYeAKYWGUeMsGisuwgcL0j8WiTYv2r76CwUY37LMjFmrXDdmXmDqVXMYAeT6+/NK144ndjWtrXR4aE2R0dpJxq7b3jslEAoQAhRj9UTFWLomJ3V3KUVsLHDjg+jEjIjgPRQPYQGH6x2wmATJXFGTb24F16wAAdp0Bpy67UaPB+Rg6HfDAA1Io7OOPydWrlqgoSpKtqtJmfEzwUFVF1SRqDZRg8Z6IaN1A0Gik/LGmJtePFcSwgcL0T0mJayJPALlNL1yo57JmozVmgAYD81FyckgLBaC+RR9+6NrxwsK4jTujnIoKClWoyfMSBGqiJzJzpnbj8lUmTgSSk+n5/v1UtegKMTFUusxhHpdgA4Xpm5YWcvW6Im9vs/WQtT868hbXx+Xr/OhHklG3YYNrrl6jkTQVWlu1GRsT+NhsrjUHLCqSjOJRo4BBgzQbms9iMEgLC7ud5AJcPZ5Ox95PF2EDhemb6mpaBbhioOzaRccBUJE2CbUJ2RoNzodJSABuuWCI2e3AO++o73ZsNFKY6MJnyDBOMZspd0mtovHWrdLzYAjviFx9tRSe3bTJ9eT0mBhOcncRxToora2t+Oijj3DixAmcPHkSTU1NeOKJJ3Dttdc63ffAgQPYtGkTjhw5ArPZjMTEREycOBEPPPAAkkX3GuM7VFXRjVVtFYAgAKtXd788OTYIvCciN95I3hOzGTh0iBLvJk9WfhyDgT5HkymwExUZ7TCZKG8sIkL5vna71JnbYACuvFLbsfkyAwcCeXl0vVZVAUeOAHBB6VrsqVVbK4WPGEUo9qA0NDRg5cqVKC4uRm5urqJ9//73v+PQoUOYOXMmHn30UVx11VXYsmULlixZghpXY36MttjtJG/vSrXNkSOSqurQoagaPE6bsfkD4eHA4sXS63feodJDNcTG0v/C1fJHJvARmwOq7QNz4gR5XwBgwgRtupf7E47yB64my0ZGUmiW81BUo9iDkpSUhM8++wxJSUkoKCjAQw89JHvfRx55BOPGjYPeQfBnypQpWLp0KVavXo0H/b2FdyBRW0tVAK40vvvsM+n5D38I1Lom9OZ3XHkl8MUXVK5ZVgasX0+CbkoxGummUVNDqzyG6Yu6Olr996Ee65Rgq965mMsvl8Kqu3cjPKMBrYhXdyydjgQXy8spl4dRjGIPSlhYGJJUdljNy8vrYZyI78XFxaGYa8Z9C7OZrH+1K7HCQuDgQXo+cCAwY4Z2Y/MXdDpgyRLp9X/+Qy0DlCKWG3MeCuMMk4mS29U09rRagZ076Xl4uKQNEkyEhgLz5tHzri5kn/vWteMZjZLsPaMYryfJtra2oq2tDUYNGtExGlJefkmTMUU4VO7gppvU57H4O8OHSz2HmprIi6KGsDAWfmKcU1RE3xU11+2hQ5Jux9SprssL+CsODQSHnlqvPsEdYNl7F/G6gfLf//4XVqsV80SrtRcsFgtOnTrV/WBvi5vp6KAyQ7VGo9ksuYpjY6XyvWDlzjul57t2qTtGfDz1RGpp0WRITADS1EQLC7XhHUftk2AM74ikpQGXXQYAMDaUYZDlhPpjhYWRZ4oNFFV4tZtxfn4+Vq5ciblz52LSpL6zpdeuXYuVK1d6bmDBjtlMVn9mprr9v/hCSui89lp11QSBRGoqMHQoJQyfPauuY2pcHCU/VlWRGBzDXIzJRNetmjyl1lZgzx56HhtLCbLBzPz5wPHjAIAR5zZgf+Zo9ceKjCTvZ16eNmMLIrxmoBQXF+Opp55CTk4Oli1b1u+2ixYtwgyHHIbi4mK88MIL7h5i8FJdTRUnalQom5upvBag/dUkhfoRbe3Ah2uch69Gx1+JPFBF08F/7kaBzJLr0FBg8lg7sjMvlBtXVrKBwvROaSmFUtV0Hd6zR8qTmDGDwrvBzPTpwIoVQEsLckp24HDHgwBUhrwcZe9jYzUdZqDjlRBPVVUVHnvsMURHR+OVV15BlJNEzOTkZIwYMaL7kZWV5aGRBiGCQNa+2uTYDRsooROgLqFqe4H4OKLtJgg6tLY5f5xOkQzs9PM7Ze3T2qZDQ6MO+49euEzj4ijHgMuNmYtpb6frlnvvaEN4ODB3LgAgxNaBIee3qj9WTAwZJxzmUYzHDZSGhgY89thjsFqtePXVV1mgzddoaiJrX03+idVK4R2AkvRuuknTofkSk8faYYwTEBUp79E1KA11F1R0B9acQrKtyuk+Oh0l51mtF04aH09lpKJOBcOIVFVR13E1Bkp9PSXIAsCAAVwSK+LQQHDoaRc0UcQCAZa9V4zb/HgWiwUtLS1IS0tDyAV3YVtbGx5//HFYLBYsX74cGRkZ7jo9oxbRFak0RwKgJLvaWnp+xRWUexGgZGcKyM5U6MlonwZ8WAgAuCn2O1Kb7YcP1xjQ2ubwRkSEVG4cDP1RGPmUl5O4oprQzM6dkhz7rFnqQkSBSHY2LMnDkWw5jcSaC/ljCsVJu4mOJu/n1Kn8+SpAlYHy6aeform5uVv9defOnai+oNFwyy23ICYmBitWrMD69evx8ccfY/DgwQCA559/HidPnsR1112H4uLiHtU4kZGRmBkMXTN9ncpKuoCUXkR2+6XCbExPZsyQuhvv2uXUQOkVMeFu7Fhtx8b4L11dlECtVvXVsXpn1ixtxhQgnBuxEMmW0/Ri40b1Bkp8PMveq0CVgfLxxx/DZDJ1v96+fTu2X4hhzp8/HzF9yKOfPXsWALBu3TqsW7eux+9SUlLYQPE2Nhvd/NQkch04IHVAHT0aGDlS27EFAhkZ9CgtBU6epAlLqeih0UhGJCfcMSLV1XTjU+OxNJlI6RgAsrKA7CBo5qmA4pyZmLhnBUK72smQu+8+dfowkZHk/TSb2UBRgCoD5ZNPPnG6zZNPPoknn3xS8X6MF7FYKB6tpkzRoSkge0/6YcYM4KOP6Pn33yuvcoqNpRtSdTUbKAxRWUkVOOHhyvd1TI5l78kldIVG4VzWbIw8dyH5f+dOdbpOOh3lorDsvSI4GMZImM10ESpdIZw61a0ZgPR06mfB9M706dJzNaJtBgNNdhUV2o2J8V/E5oBqpO0FgcM7Mjg1dKH0wpUGgnFxLHuvEDZQGInSUnWrMMfck5tu4iSw/sjKIqVKgIy6ujrlx4iNpVCc2u7ITOBQX0+hQhVVd/G1hVJYdtQoTrzuA3PicNQlDKEXBQVASYm6A4lNCLncWDZ8J2GItjZalSud6CoqKFQBkMT2Be0Apg90OsmLIgjA7t3Kj5GQQDkHXG7MmM3U/qCPvL/+6KHtwdonfaPT4dyIBdJrtV4Ulr1XDBsoDFFdTda90kqAzz+Xmmn94Afq1GeDDVfDPOHh5CZmXQVGrLpT2hxQsCPr/IX8E70+OLuNK6Bw6FxpbtuyRX2YRqzCY2TBBgpDVFUp11FoaAA2b6bnkZHUd4dxTk6OpDNz9Ch9jkqJjCRdBSZ4sVrpZqeivDjFfBzRLRdW8hMnqm8MqiUVFZSjIWqy+BDW8FhpYdHUJHmNlSLK3jc3aze4AIYNFEaSt1fqJv7qK2klMX++KjdzUOIY5rHbpSZtSjAayahsbNR2bIz/IFbdqTAuhhZvlV74QnKsmPQdG0tJ9754A1/gEObZtEndMUTZ+wu6YUz/sIHCSPLpSia6jg4yUAByES9a5J6xBSqOLvWdO5XvHxtLxglPdMGL2UzXocLEdr3NiuyS7+hFeDipm3oTi4W8QXPmkHjhpElkfPuaN+WyyyStmSNHKLymFMOFpp8cnpVFkLesZAAAZjPOlxlw4LBR6vvihKGntmNqUxMAoDB7Fr7f6Vwav63dlUFqjCBQYnBTE63WrFaqsFEjwqSG3Fzqe2I202SnVHhNVPstL1evbsn4N8XFqr6vg8sPIqKTrl1Mneq573xv1NfTY+5cYMQIem/uXJIr2L0bOH0ayMxU37xUS3Q66s/z3nv0euNG4N57lR8nJoZl72XCnw4DVFTgQOVANDTK67Db2qZD2jlp1X946E2y9hEESuTzSh6tzUYeh/JymvROn6byzPBwYNw4Wh2VlEgJv+7GMcxjswF79yo/htFINym5ViUTOLS00CpcRf5J1rmt0gtvVu80N9PfMG0aMH689L5eT8bKTTfR++XlFALy1LXZH/PmSc3/vv1WXam/2PRT7FvG9Al7UIIdqxUoKYFVIMl1nU5AZET/u4R2NCO16jAAoDlmIFrTchGlkzd5hIZSJ2C309FBE2BzM7Wi1+tp5ZKURJNecjKQmEiThcFAk4XJRBOmmkaJapgxg6qgAArzXHWVsv2NRpq4zeaAbszI9EJ1NRncOTnK9mtrQ3oJ5Tx1hMciPC9P+7HJob2dNFimTCFhx96qkIxGUm119KZkZVHTTG+RkECej127yMjYv58aoypBlL23WFj23glsoAQ7ZjNVkejoQomMAO6+yUmX3m17AYG2iZk7FXf/0MtxYkEAWlspTNLSQquasDAySLKzSRgtIYEMkpiY3ifDxESaeNavJ6PFE5Pg8OFkMNXUAPn5NHYliqBiuXF1NRsowUZVFX3vxdW8XPbsQYitAwBQkj0Tw7zhzrRagcJC8lxOn97/36DXU2+vlBQyUk6eJMNl4EDlpdVacc01kjzAxo3KDRRR9r6sjHuWOYENlGBHTLRTcrE7ltgpvTi1wGYjz0hTExkmAMWoY2MpH2PQIDI4EhKUJRCOHEmx4ZMnyXhw9wSo19ME/cUXZFTt3atc6C4ykib78eO9N2EznsVup/+5mqo5B2n7opzZGKbhsGRhswHnztH1NWsWLSTkkJhIlYLp6XSdnD1LuSlqlK9dJS9Pyh87eJB+Dhig7BiOsvdyP4MghA2UYKeoSFkCWmcnXZQAGQSjR7tlWD0QwzVNTfTcYKDJecAAmrDEcI3RqHxF6YjBQAZXZaXnQj2igQLQqkypgRIfL7n7fUHLgnE/tbUUXlDaCbuhATh0CADQHDUA5kGjAXgwr8NuJ+MkK4tyOZQmvoaEkNdl8GDyppw6Rde9UuPAVQwG8qJ8+CH9TZs3A3feqewYRiMZKGaz1PqCuQROkg1mmpvp5qYk0e7wYYofAxQ/dsUgkENjIyWCCgIwdCjFpG+5BbjrLuDWW8mgyM2liUqLsSQl0d/V0EDGkLsZOZI8PQAZfqJHSC6sqxB8mM30PVFafbNzZ3fZ7rmsOYDOw9N/URF5N+fNU5Xc282AAcDChXQcq5W8KZ5OFL/qKqkCZ9Mm8gwpgWXvZcEGSjAjrryVlLc69o7xRHinooJ0Ee65B7juOnKvZma6VxRu9GgyHDwhSW0wUBUDQBPW/v3K9tfrpTbuTHBQVkbeBKUhva1bu5+ey5qj6ZCcUlpK1+zcudokhoaGkgLujTcCQ4aQZ8aTVTEDBtD5ATIy8vOVH4Nl753CBkowYzLRT7meB8dy2PBwMhbcidildexYz8ZpQ0IoYTYuzjMrHFd78xiNtDrlNu6BT0cHGShKw3kmE3XiBVAfn4Xa+CHaj62/c+t0ZJxoHc5ISQGuv57KpVtbyVDxVJfv+fOl52qUZePiWPbeCWygBCt2O1nvSrwnBQVS35iJE92boGa308U7ZozyWLsWDBhA5Y+1te4P9Vx2mXTD2b9fCqHJhdu4Bw9i1Z1SA2XHju6nRUPneC6huqaGSmpnz1ZeEi2XsDAKyy5aRDlpZ8+S+Ju7mTxZCs/u2UN5QUqIjeXwrBPYQAlWamro5qtkovNkeKemhlzBY8a49zz9cdllVG1QUuLe84jJuQB5QQ4cULa/GM8WPWJM4FJdTR4CJeXBgtCjeqc4x0O9dxobaY6ZMQMYNcr950tLo47qM2bQuQsLleeGKCEkhPJgADrPt98q259l753CBkqwYjbTykZuJr0gSAaKwUDeBXdhs5GI0fjxriXTuUpoKIV6oqPd751wNcwTHU1hHl9Q22Tcg9jUU2n1S1GRZGSPHImWWA9Up7W2UjXc1KnAhAme89hERNC19IMfkFbK6dPubah5cZhH6fUnyt77Us8hH4INlGClvFzZKqyoSLL0x4xxb5JqdTVl+/uCiNGgQVKox505HmPHSuG2ffuUh5WMRjKiPOHaZryDGA5QGt7Zvl16PmeOpkPqlY4OMqQmTPBev5msLAr5XHEFeWNLStzjTRk8mEqfAUroP35c2f5GI4WGlIaHggQ2UIIRUWbaF8M7XV0UY58wQZmqqjsZO5ZKmd0Z6hETcwH6/1zQq5BNTAwp0XI8O3AREyqVLA7sdim8o9f37KLtDqxW4Px5Co9eeSV9r71FVBQwcyZ5U+LjyZvijoTUa66Rnm/YoGzfqCjyNnH+WK+wgRKMmM3k9lQSPnE0UNzZnt1kokS34cPddw6lhIaSURYZSasxd+F489i5s+/tekOnk7obM4FJZaX0f5bLyZMULgXI6HenmJ/NRsZJbi55aryh8noxOh0l5954I3lCq6q0z9WaNk3yfu7apcwI0unIiCsr03ZMAQIbKMFIdTVNJnJDPCYTJZwBwLBh7mtw1dlJq4kJE7zbEKw3UlJIj8Vsdp8o1Lhxktdo717obQrPEx9PXh5PCMwxnqWrS3nVHdAjORaz3JgcKwg0R6SlUeKor3g/RWJiyGiaO5c8tFqWIoeFSQrQVmsPvRlZOMreMz1gAyXYEATl8vZ79kjP3Rneqaig2PHQoe47hyuMH09jc1eoJzSUyiUBoK0NKeUKwzxGI+WgcJgn8Kipof9tfLz8faxWyRMXFubea7eoiNScr7pK2Rg9iU5HeW0pKdpfI47Jshs2KEuWFWUCRE8X0w0bKMGGeCEoCe94ojlgezutavLylCXvehJxkg8Pd59qpUOYJ7PoO2X7hobSZ8hli4GH2UzXiBLPYn4+JdYCFJZVKo0vl/JyOva8eVQ548uEh1OSf0ODtpUzmZlSUn9xMeW7yIVl7/uEDZRgw2ymSUtuol19fbcCJdLSgIwM94yrvJy8E9nZ7jm+VqSmkkhddbV7Qj15ed03kvSS3crDPNHR5GrncuPAoqREuZqyY3hn9mxtxyNiNlO4eM4c980NWpObS2FqrfPJXFGWjYwkLxTTAzZQgo3KSkqyk5tot3evtNJwl/ektZXGk5fn/uaDWpCXR4aUO0I9oiomgLDOFqRWHVa2f3w8eci4bDFwEDVFlCS4trVJodnYWMrr0pq6Okq2nzmTctP8hZgYqjKqqdHWkL/ySslLtWOHsgUMy973ChsowYSYaKckvOOJ/JPycprg/GUFFh5On0VYmHsMAQfRtuxShWGe6GguNw40RHl7pdetmCw9Y4b2YdPmZhrX9OlUhu9vDBtGn6eWukEREVLjz7Y24MgR+fuy7H2veLFInfE44sp68GB527e2Sl06ExPds0pqbKQb/vjxnlOb1IL0dPKk7NxJk4uWeg8TJ9Jk196OrLLvcdD+CACZn41Ytlha6htCd4zrVFeTF1PJd8xRnE3r6p22Nvp+TZ1K/Wj86boVSUwERoygthJiP51+aGsHPlzj3LubrpuOWSDJ+zMf7cG+0imyhhMaasDk5BhkV1e7r2eRH8IelGDCbKZSNrmJdocOSW5KdylCVlbSjVSu0eRLTJxIVUdah3rCw2niBxDR2YSBlUeV7R8fTzcQpU0HGd9DrLpTIs7W0AAcPEjPk5OB0aO1G09nJ40nL4+8J95QidWKESNoLuwnrCI6ngRBh9Y254/ziRPRZaBcobTiPWhtFWTt19Cow35TCuWPsex9N3787WIUU1KiTDzJ3eqxdXXkfRg3zj9XYRER9LmEhGgvMe8Q5sksUijaFhdHNyl2F/s/dXXk+VSSf7Jzp3STmzVLOyOiq4uE2EaNorwTX622k0tKCnkr+hFumzzWDmOcgKhIeY+w2HCY0ijfJ6q9DhnNp5zuo9NRHozVbmDZ+4vgEE+w0NKiLNHOagX276fn0dHadxUWu3hecQUwYIC2x/YkmZm0mty1i4wtrZJ8J01ClyEcIbYOZBTvAmwPyT92aChVVlRV0fgY/8Vspms3LU3+Pu6o3rHbyTgZMoQqdtxVsuxJdDryLp061WcJd3amgOxMhT18oqcA/0u5ewvCdwE39R8a/3CNAa1tF8Yjyt4nJSk7Z4DCHpRgQam8/bFjNDECFG7QerVUU0OxX39MsLuYiRPJENAy1BMZiYr0SQCAiPYG4MQJZfvHxrK7OBCorCTDVK6HsaqK5O0B+k4OGaLNOEpKqHHmVVcpV7P1ZdLT6XPSUv5+yhTJa7V3r7J9Q0JIsJIBwAZK8FBVRV4Luatwd4Z37HYymMaN813VSSVERlKOjk6naWv30iEu9OYxGrnc2N+xWqnqTkl45+LkWC1Cp52dFN6ZPp2SSwMJg4G8w1ardrpGRqOUoF5aqqw/VlwcGYMsew+ADZTgwG5Xlmhnt0vlxaGh5CHQkupqWo1pmbznbbKyqBKpvFyztu7lGVPQpb/gufr+e2XeELFLKqvK+i9iebErBopW40hJ8R8ZAKUMGUJJ+lrmbDk2VHWUanAGy973gA2UYKCujqTZ5YZ3zpyRpNwdlE01wWajhNLx45VVJvg6Oh01E8zI0KwzaVdYFMoHU5gHdXWSoq/c8YSGcpdUf0asupOrIFtURB4XQOo54yqCQF7BUaP8Pym2L8LCyIvS1KTZ4qKHgeLojZYzFpa974YNlGBATLST22HUneEdk4lWKyNGaHtcXyA6miYmu13qgeIihRkuhnnKyki3gvE/ioqULQ7ckRwrNij09RYUrpKTQ8n6Wsnfp6ZKHqdTp5SFWln2vhs2UIKBigpKvpIbjxYNFL1e6q6rBVYraQ5MnBgYVQC9kZ1N3qGyMk1WYyVpU2HTXyi2Uxrm4e7G/ouoKio3vGO3S+Edvb5H00mXsFiod42SMJM/Eh1NIWct5e/FxZ0gAPv2yd+PZe+7YQMl0OnspKQrmeGduPoSKalr1ChtJ6bKSsqYz83V7pi+hhjqSUtTlhzXB51hMTCl5tELi0VZl9SQELpxaVmhwHgGsepObhi0oEAKC0yYoE3yeUcHGTv+1GfHFYYPp89Nq8RytXkoouw9h3nYQAl4zGZaRcs0NNKLv5deaBne6eigx4QJyruy+hsxMTQ5dXVpsgoqHXKl9GLXLmU7x8aSfgWXG/sXolEpt+pu61bpuVbJsdXVZGinpmpzPF8nPp5yd7QyDHJzpaqn/Hz5oVaDQdKJCnLYQAl0zGa6Uco0CjKKHfJPHFcArlJeTuGPQI9liwwdSmXUpaUuGwdlWVdIN6pdu5S5oOPjKeFZ69byjPuw2ynZVa7eiNUq5SeFhWlz3drtlLc2erR/dBjXihEjqAJOixwyxxC51UqtQ+QSE8M6RmADJfBRkGgX1WpBkuVCCCE7W5sqAIDKXQGqCNKyqZ4vo9ORwF1qqsvCS53hF9oBALSqPXtW/s5RUbRy4zwU/6GmhoxKueHV/Hzphjp1Kv3PXaWujlb/WVmuH8ufGDiQFhdaeS8cvdBKy41Z9p4NlICmsVFRol1WmZvCOxUV5O4MtskuNpZuGB0dkiqvWhx68ygO84SFad/QkHEfZjMZlXINDXdU71gslJMRSFIActDpKPdOr9em+m3sWGmBuH+//MR5UccoyPNQ2EAJZMxmWlnJdBUPcYeB0txM+gnjx/t351O1DB1KGguuhnquuEL6/HbuVB7mKS933UhiPENZmXzNkbY2aWUeG0s5Xq7S2kpNRQM5mb0/0tNpMaVFcnloKCXNAzQXy21ZodOx7D3YQAlsTCb6osswDEI7mjC4+gi9GDRIux4e5eUU11XS7CyQEOPQAwe6NtkYjVLDRpOJ4tNyiYuTvGmMb9PeTgaK3PDO3r3koQOotFgLMbXqaqq2GzTI9WP5I3o9cNlllLunhfy9WtE2lr1nAyVgsdko/0Sm9yStdB/0woUV/hVXaNPDo6GB9AXGjdPmeP5KXBx9pm1trrmN1YZ5xKoALjf2fZQ29XQM72hRvWOzkcEzcmRwejxFRPl7LXJRJk2SEo337JHv/WTZewRJxmIQUlND5cXJybI217y8WBBI92TKlOBdiTkybBhNeqIWjBqmTQP+8Q/6bHfuBO65R77hJ3Y3njIluKoy/IzzO0pw4MgQWI86r7oL7WjCLQcOQQ+gJXoAPj8zFjjr3Khoa+/nlzU1pKiq9jsaKISG0sJq3Toy2ly5ZmJiKBclP5+8U0VF8qoZHWXvg6XU+yKC2EQOcEwmiiXLSbTr6EBq+QEAQHuEQydOV6itpdyHsWNdP1YgoNdTqKu1VX0uSkKC1GCxvFxZ4qtYFcDlxr6LIODAtno0tIejtU3n9DHg3H7oBUq6PJ8+A63tBln7CQIZtb1Gg2pr6foPVKVnJeTkUGhWi0RVtaJtkZFSf6UghA2UQEQQaLUstwogPx8hXRTHLsuc6voK226nlcLYsYHXnt0VMjLIyGhoUH+MGSp784hVAZyH4rs0NMDaQcarTicgKrL/R06lFOYzDZ3mdHvHhzFOwOSxFxnKzc0Ukg0WrSJnREZS3ld9vevy944tQ5QYKHFxFGYKUtl7DvEEIg0N5EGRK3ftkLhVljUNLufuWywUWhJX+wwRF0ersvx8MlTUMG0asGIFPd+1C7j7bvn7RkSQe1lMtmV8C7O5+0YYGQHcfVM/JakdHcAH5PWE0YhrHhwOGFzs/VRVRaHIAQNcO04gMWwYCazV1gJJSeqPM2AAVUWdPQucO0f/azmfc2wsbWs2B1/JN9iDEpiYTPLLi202qgQA0BkSCdPgPNfObbNRGCEvT36iXzCRk0N5I2qrA5KSpBBcSQmVL8vFaKTvBpcb+yZKqrzy86XqHS3yiqxW8nyOGBHcCe0XExdHuijeCvMEuew9GyiBSEmJ/O7FJ050q1CWDZ4Ee4iLfXKqqiihS4s8lkAkLY3i2q5k5juGeZRU84jlxkE62fk0XV103cqtnHEsV9Uiqd1ioe9lsCfH9oYoWNfY6Npx1OahBLHsPRsogUZLC010cnM/HCa64vRprp27q4uMnbw8beS2A5HQUDLeXMlDcbXcuLJS/bkZ92CxUBKznEWFg9cTEREkgugKgkDfx1GjAr+RpxrE8Iyrhn1WllTReOyY/LySIJa9ZwMl0DCZaLKRE14RhG4DxaYPQUnqFCc7OKGykjwEwdKeXS2ZmZSMqDbxbcAAWtUBtLJSEhqIi6M8FLmS24xnMJtJkEuh1xMTJ7puVDQ2UjiYk2P7ZtQo8kqLfcXUoNNJ3i6bjaTv5RDEsvdsoAQaZWV0IciJSZ8/3/2lrx48DtawaPXn7ewkEbIJE0gmm+mb5GQyUlyZcNR6UcTuxkEs/uSTFBfLv24cwzvTXPR6AvQ9zMnhirv+SE0lHSNXxQ7VhHmCWPaeDZRAorOTVscqqndKs1yc6MrL6QIeOtS14wQDOh15mTo71Xsy1BooERGUXMl5KL5DSwvd+OTI2zt4PWEwSH1e1CLKqIseOaZ3RPl7u9016flRo6TihYMH5SfLB6nsPRsogURVFcUpVRgo5ZlT+9nQCe3tdOHm5WnTCyQYyMigFavauHJKimQMnj2rbGUXERHU4k8+hxJ5ewevJ8aNc7301Gym71J6umvHCQaysiiE7YpxbzAAl19Oz9vagCNH5O0XpLL3bKAEEhUVlKgqx0ioqJBuUiNGoC3KhRr/8nK6WXIMWz5RUZR4V1ur/hiOXpTvv+97u4sRy43FPAbGu1RVkWdETlhWy+odQaDvwGWXUQiB6Z+QEBKfbG11LYfL8f8mN8zjKHsfRLCBEijYbLS6kqs94nhhuDLRtbSQ+3P8+OBuLqaGnBya9EQ9C6U4GihKVGVjY+nGxKqy3sdup7CsXE+Io4EyxcWk9vp68rZq1bk8GMjOpkocV66dvDwpsXnPHkCQWT4chLL3fEcJFMxmcv/JVSjVaiVWXk7iThkZ6o8RrAweTO51tauitDTp5nL6tPzjiCv1IEy68znq6siLJif/pLKyh9fTJWVTgL4vw4axoKISIiIk+Xu1uiQREWSkAEBdHZLMp+XtF4Sy92ygBAomE+WCREQ437auDigooOcZGXSjU0NTE51v3DhWn1SDwUCaKM3N6nt9qE2WFcuNu7rUnZfRBrOZvJBydIO0DO+0t5P3LtflxhbBR24uGYeuhGcdqnnSS3b3s6EDoucziMI8bKAEAoJA/R2iZZYJ790r3RBdmegsFkocS0lRf4xgJzOTjAW1+SBqVWXj48lQDaLJzicpL5ev+qylgVJdTQuT1FTXjhOMxMZSNY4rCauXX979P5dtoASh7D0bKIFAXR1NOJ4M79hsVPI2bBh7T1whIYGMPLWGQkaGFF47eZL6IMkhPJz+f5yH4j06O6mXkpwQi1ZeT4BCE21t1MyT88bUMXw4GSpqFaHj48nIAWCsL0VcY5m8/YJM9p6/nYFAZaXUKt0Zra3A4cP0PDlZvYu3vp5urlye6Dq5uWTwqQ23OHpRlFTzREZSmIfxDmYzXUdy8k+08noCFJpITCTDmFFHcjItzlwx8B3CPFnlMr0oQSZ7zwZKIFBURCtiOZ6MAwekG+HUqeq9H7W1VFosN6zE9E16Ok14amParqjKmkyuN0Fj1GE207UoR6pey/BOTQ0l2fK16xqjRpGkg9ru4A4GypAymQuLIJO9V2ygtLa24p133sFvf/tbXH/99Zg1axa+/vpr2fs3NTXhL3/5C2644QbMnz8fjz76KE6dOqV0GIxIUxNVY3gyvGO1kmHD5YnaEBFBNwy1qyJRQAoAjh+Xf5yYGPr+BFFM26coKiIvljMcvZ5JSa4ltra20vctJ0f9MRhi8GAqO1Yrf5+a2h2eHWgpQESbjOs2yGTvFRsoDQ0NWLlyJYqLi5Gr8EKx2+1YtmwZvvnmG9x88814+OGHUVdXh0cffRSlpaVKh8IA0gpYThzbapUaVMXEkECTGmpqqGEdJ9hpR1YWecHUNCPT6SQviiDID/Po9fQIksnOp2hspPCAnPCOVl5PgIzRjAxObNcCnY7mUEFQr2V0YZGog4DU0r3y9gki2XvF8oFJSUn47LPPkJSUhIKCAjz00EOy9926dSuOHTuG5557DnPmzAEAzJs3D3fffTfeffddPP3000qHw5SWSjcaZxw5QslxAGWRq1WPbGig0mJuza4dgwaRF6Sykip7HGhrBz5c07/KaELnTFyL/wIATJ9/j287b5B3XvtwhJ5sxOTQMmRP53wij2E2k/dq0CDn22rVHNBmo0XKyJGc2K4VYpJ6VdUl160spk4F/kvXbUbxbgBXO9/HaKSmsBZLwC8SFXtQwsLCkKRSIGjbtm1ITEzErFmzut+Lj4/H3Llz8d1336EzCCxCTWlvJzexJ8M7oouYE+y0Ra+nME9bW3eGvtixQBB0aG3r/1EeORSNMbQqHmg6Cntdo9N9Wtt0aO0woKElBPs/kSkWxWiDyURGgrOFhVZeT4BuaMnJfO1qSUgICbe1talLcs/NRWskdZFOqTgkLSD7I4hk7z2aJHv69GkMGzYM+osuylGjRqG9vb3PMI/FYsGpU6e6H8VBJvfbJyaT/CoAm02Stw8LAyZMUHfOmhpyDw8cqG5/pm8yMqSmYAAmj7XDGCcgKlLGIwooy6ZqHr1gx7Dq72Xtp9NRZYi1VWZXVcZ1bDZaWIhdbftDK68nQLlJI0fKE3Nk5JOdTXOimooevR7lWbRYNNiswKFD8vaLjKTWJmoFHv0Ej3aIqq2txfjx4y95X/TI1NTUYKjYodWBtWvXYuXKle4env9RXk5fUDmT1unTZMwAZJyomaQEgcqZZ85k/QR3EBdHyYtHjgAJCcjOFJCdqaAp2WXTgcc+BQBMbd2BqTc5dxd/uMaA1jbQTVMQ2PXvCWpq6FocMMD5tlpV7zQ1UdUOJ8dqT3g4eVE2biRDReHcWJY5FcMK1tGLPXt6VuX1RWIiLVBrasgrFqB41EDp6OhAWC95C+J7HX0kGi1atAgzHLQeiouL8cILL7hnkP5CVxcJ9sjto6HFRNfURCt81j5xH0OHkoFitcrrSu1Ibi7d9MxmOkZTk7xVOkAGSmOjPG8c4xpmM3lFnFXw2O3aeD0BWt0PHx7QNzOvkpsLHDwoFRAooGrweHSGRCKsq43CeTab887WMTGUh1JREdD/U48ug8PDw3vNMxHfCw8P73W/5ORkjBgxovuRxTFUmnBqa+XlnzhWduj15CpWg8VCYQi5OS+MctLSaIJTI6PtWM1js5G4l1yCTELbq5SWykswP3XKda8nQMau3U45Tuwhcw9ifpDFojjsYjeEoix1Mr1oagJOnJC3Y3Q0ecYDWFXWowZKYmIianqR4hbfU5t8G5RUVlJpWx9GXQ9KSqRa/csuU9e9VKwA4OZi7iU0lPIE1IqnOarK7typbF8uN3Y/bW30OcvxVGkV3rFYKGeMO467l2HD6P8qGpUKKEpzqM4SvWbOSEqiRYUrPYF8HI8aKMOGDcOZM2dgv8jiO3nyJCIiIpDBF5A87HZqDijXfa/FRFdfT3FPDu+4n6wsUoxU01Z9+HCauAAgP1++yqVeT4mbXEnnXsxmSoJ2tkjQyuspCHS+0aNZFsDdJCaSl0pFsmxZ6mTYdRfCOrt3y/PCiKqyZTL7+PghbjNQLBYLiouL0eVQejV79mzU1tZi+/bt3e/V19djy5YtmD59eq/5KUwv1NTQROfJ8uKaGsqPkNMWnnGN5GQyBNWUEer1Upinq0t+mEevIyM0CEoXvUpVFXkjnSS2G+uLXfd6ApKII6s+e4YRIyi3SOHiojMsBlWDx9GL6mr5PbJiY4EzZ+g7FYCoSpL99NNP0dzc3B2a2blzJ6ovWI233HILYmJisGLFCqxfvx4ff/wxBg8eDACYM2cOVq1ahZdffhlFRUUwGo1Ys2YN7HY77r//fo3+pCDAZCLLWY6xYDaTtwUgA0NhAhcAWlUbDFROx7gfnY48IadPy0uYu5jp04EvvqDnu3YBc+fKOSkZNCaTa51ymb4RBLrxyOiBk16sUXinuhoYO5ZW94z7SUmhSqlTpygvRQFlmVdgcMWFMuM9e+TNt0lJFO6vribp/QBDlYHy8ccfw+TQf2D79u3dXpH58+cjpo9/jMFgwJ///Gf8v//3//Dpp5+io6MDI0eOxBNPPIFMNSp8wcr58/J6eADaeU8GDAjIC8Bnycigm0p9vRSykcvIkeRdq6ujygK5xmx0NN1AJ07kZEp3UF9P11J8vNNNM4odmj46NJVTRGcnedSGD1e3P6McnY68KCdPksGvQLemPHMqLt/9Jr3Yswe4807nO0VE0P+5tDQg52dVBsonn3zidJsnn3wSTz755CXvx8bGYtmyZVi2bJmaUzMNDbTK9WR4p7GRblpKy14Z9URHU0Lyvn3KDRSDgSTR162TlEgd1Jv7xGgkj1t9PVdquQOzmXKCnMiTR7dUI7HGweupVhRRXFWzR8yzpKXRNVtXp8hj3RozgK75s2fJ6202y9s/Lo7CPBMnuibk54Ow2pa/YTJRKZoc92FjI3W3BWiiUuOlam0lbw0nMHue7GyacNQ0InMUe9q1q+/tHImJodi5GkVMxjkVFeTRcOKdGlLm0OxR7aLCbqf/5ejRAXfT8nnCw8nQUNOdfMoU6bncap7ERKrkUdtV2YdhA8XfKCmhCUeOWuG+fVKN/BVXqHPbWyxk3KjJXWFcIzWVYtpqElcvu0wqZd2/n/o2OUNs5V5ervx8TP9YrXTtyigvztLCQBG9YKwZ5R2ystQtLhz/33INlPBw+n710SrGn2EDxZ9obaVJzlPhHUGgcw4fztL23sBgoHySpiblPTcMBul/3tkJHDggbz+jESguVt8+nukdi4WMBifVOGHtjUgxH6MXar2e4vmGDVNf/cO4htivrBfdr37JypI6XB87Jr8ayGik0FCAyQTwXcefMJkoB0WOyFN7u9R4Kj6eEreUIpYosvaJ9xAbCDY1Kd9XTZhHbFbIYR5tqa6mm4cTYcW00r3QCy56PdvbKV+sl75mjIcICaE5V6ngok4nLSxsNvkLi6QkMoYqK5Wdz8dhA8WfEAV55JSdHjokWdNTp6rzgFgspJ8go+qAcROJibSqUhPmGTtWEvPbt0+eVyQ0lKoPWPZeW0pKZEnVpxdrEN6prqZETSfJuIybycig6jm5YokijlVbjl7w/ggNpXB+SYmyc/k4bKD4C52d1BxQbjM3V8M7Nhs9uPup98nNpf+Fg+ihLEJCpMnO0aPmjOho+q4FeCt3j9HcTN5PZ9duRwcGl9P/qC0yXp3X02YjOf1Rozgs622Sk8lIVBrmGTVKWlgcPEj5JXKIj6fqHzn5Zn4Cf4P9haoqygqXk3/S1UUrZoAqcMaNU34+sREhh3e8T3o6TXa1tcr3VdObJz6evGdqqhCYSzGb5XWWPngQITbycpVlXqHOwKitlbxujHcRBRdbW5UZ+waD1NqgrY06k8shIYH+/wHUU4sNFH+hooIMDzlaJMePS8lVkyer0y+pq6OVu1xBOMZ9RETQalqNwTBunKRcunevvNVYdDS5pTkPRRtMJrpBOQvNOng9yzKn9bNhP9TW0ndFhlot4wHS0ymPT2kuimOYR241j1hOHkBhHi6Q9wPO7yrHgZVmWDtHACed559cvut7DLvwfKdhGorXON+nzdEryNL2vkdWFnnF5KrCioSGkrbCli20GsvPd954Tiw3Li2lKiJGPXY7qfM60y1y8Hp2hkSiKnW88nO1tJAxy8mxvoPRSNduQYH88DwATJhAzR07O8lAefhheR61xERSGp8yJSD6prEHxQ848MkpNDQb0NoZgtY2Xb+P9uYuZJzfAQDoMoTjTPJUp/u0tukgCFQtEBoKqT17AEon+y2DBlHio5rW6mrDPKWlARXP9gq1tfRwlmju4PUsTb0cdoMKr2d1NZUli2WqjG8wdKiU0yeXiAggL4+e19WRUqwc4uNp+wAJ87CB4gdYW8ktr9MJiIrs/5FTexARnVSSWpY5FWFxEU73ER/GOAGTx9opXj5iBCtQ+hJ6Pf1P2tok8T255OVJobo9e+SFeUS3NId5XMNspv+Zs9WsQ3inOF1FeMdmo9X2yJHcR8nXSEuj/JD6emX7qanmMRjoUVio7Fw+Ct+BfB1BuGB56xAZAdx9kxMr/NUt3U+H3DMLQ6YobMPd0gLUsLS9TyJqojQ0KOuVExZGLt9t2+j/e+QIMGlS//uEhtL3zmRSLxbGkDSAM0NfELrzDGz6EJSmXg7F/hOLhdSe+X/le0RFkRdl/35lfbUuv5yMTUGg/LF775W3X2IiiS02NyvuqOxrsAfF16mrk+8abGuTEqpiYymOqZSaGiqNY2l73yMujsq+1YR51PbmKSxU7rFhiPp6+vwSE/vf7uzZ7v9pVWoerKEqcgfq6qg8VYbWCuMFhgwhz4bckmGAwjWjRtHz0lL5LSjERUwAtKxgA8XXESsA5LBnjyTGNWOG8uodu52MnOHD2U3sqwwdSv8bJRMdQJ1OxZvX7t3yNFWMRjJY1ZQ3M7SKbWhwnn/i4L4vzVIR3hGbh3JSu++SmkpSAUo1UdRU8+j15LU7f17ZuXwQNlB8naIiQK6tsH279HzWLOXnamigVTqHd3yXtDTybin1ooSHU8k5QDe0Y8ec7xMVRVVDnIeinK4u4MQJ8mQ6M/ZFA0WnQ3nm1P637Y3qalqhJycr35fxDKGhtPBraFC2nxoDBaBQUkmJ8vP5GGyg+DLNzeSm08n4NzU0kOogQBPV6NHKz1dbSxMdNxjzXUJDKRFSzcSjNMyj09H5xBYLjHzKykhc0VmotLxc6kI7ciTaIxXkFgFkCNls7PX0BzIzaaHQ1iZ/n9RUacFYUCBfC0lMcvfzMA8bKL6MyURfMjn17zt3SrkCs2YpV6EUJzrWUPB9srJIiEtup1ORSZMoYRYAvv9eXm5TfDzdbJVMqgyVhQqC9Hn3hastKerqaEGSlqZ8X8azDBxIXY7VhnkEQVIId4ZORyHdc+f8umUFGyi+TFmZfENj2zbp+ezZys9VV0duQZ7ofJ/kZFKoVNpAMDJSqt5paKAQhDPi4ijZk8M88qmro/i/nJCLo4EyVUV4R1R85uRY30eUCmhuVmY0OBquSsM85eV+3bKCDRRfpb2dKgDkdBKuqgJOnqTnmZkUplFKXR0wbBhPdP6A2OOjs1OZ+BPQM8wjR7QtJIQmU5NJ2XmCmaIiMgCdKYfW1ACnTtHzrCzl3Yc7Ouj/w313/If0dEpoVuL9zM2VKsEOH5YvnhgTQ/lmfhzmYQPFV6mqopWrHHnki5NjlcaieaLzPzIyaNJSKv50+eVSddf33wOCjBLimBjyCHC5sXOsVknW3Nl1uHev9FxNeKemhhWf/Y2EBLp2lSS56/WkYwTQokRuV3KdjhLdz5712zAPGyi+SkUFrY7llAq7Wr0jTnQpKcr3ZbxDdDStrJTGs6OiJH2cujoMqDrpfJ/4eEqgVnquYKSsjLxNSsM7agyUxkYKGThrQsj4DjodXbdWqzKDX42qLECLmMpKddpJPgAbKL5IVxclN8nxnhQVkd4CQNUdaoyMhgaWtvdHsrPp5iRq38jFoTdPRpGMMA+XG8tH7JniLDm2uZkUfQGq9MnJUXae5mYyUlk51v9IT6e5XYn3c9w4qV3F/v3yQ7sxMaQe7ae9edhA8UWqq2nFKkfO3NXkWFEOmbVP/I/UVHLvK10dXX55tzGaUbxTXpgnPFwyhJneqa2lvDE5KswHDkg3mSuuUB6WtVgooV2JdDrjG4iieko8kqGhUoJ7U5O8BHfH850+7ZchWjZQfJHKSoo1hof3v53dLoV39PqeXWvlIk50LPLkfxgM5PlqalIWY46J6e6UGt1iwYCa0873iY+nVVhLi6qhBgVicqwcHSFXwjt2OyVKsvaJ/yKq/spRdBZRK9qWmEg5jX7oAWUDxdew2ykhMTra+bYFBVKp6YQJ8ip+Lj5XRwdV7/BE559kZpJaaVOTsv0cqnmyS79zvj13N+4fq5Uq6eQkx3Z2SqKKsbHKRRXFZpHp6erGyngf0fulpI3EpElSvtHu3fIXJVFRZND6YTUPGyi+Rm0tGR1ywjtbt0rP1UrbG40c3vFnEhOp+kqpJsrUqd2TXXbpd84nO4OBy437o7RUnnIsQKWiovDdlCnKk1xrakhKIDZW8TAZHyE8nBaGSjRKYmKAMWPoeXU1eezkEhtLYR6lsgRehg0UX8NkooREZx4Uq1XSsQgLUyfyxBNdYDBsGE08StzFsbGUeAcgtqUaiTVn5e1TWOh3k5xHOHOGwqxyqu5cCe90dZGhqDSplvE9srLo++IJ0bbERFrEVFXJ38cHYAPF1ygslCeWlp8vufWnTiU3nhLEiY6l7f2f9HTKIVLaddghzJNRKCPMw+XGvVNTIz851maT9E/Cw7tzgWRTW8uKz4FCSgrJOyhJXhX1UABl5cYRERRaFPs++QlsoPgSDQ2UiCgnl8TV6h2e6AKHiAhKmFQqaX3FFbBfaESZWbTT+UouMpJi2ZyH0pOiIlosyPFEFhRIjR4nTnSeCH8x9fXkMVO6H+N7iEnuSjwoAwaQjgpAuYpKDA6jkTx9VquycXoRNlB8CZOJyn6dTXRtbZJ7LzZWEt5SgihtzxNdYDBkCP0vW1vl72M0ojplLAAgtqmSvADOCA9XFvsOdDo75SfHAq6Fd9rbKSSgppUF45tkZCgvUJgzR3q+caP8/RITqWrTj/LIWJnLlygpIavaWYPAvXslca4ZM+TFvR1pb6e8FZa2DxwGDSJdFJNJkXhXyZAZSKk8TC927XKe22A0SoZ0TIwLAw4QSkvJoyTHaBAEyUDR60mPRgkWC4UFBg1SPEzGR0lO7k6SbmsHPlzjPGE6rP0q/FC/EgZ7F9rXb8Ga+PtgNzi/B4SGRmJyUhSyS0r8pjCCPSi+QmsrTXZKwztqpe0HDWJp+0BCrycl4bY2RTHtsqxpEHBhBbdTRphH7G7sZ7Fst3H6tPzk2KIiKUlx7FjlBl5zM4XyWNo+cNDpEBpF3x1B0KG1zfmjXjCiMIM0ryI6GjHg7G5Z+zU06rC/KoV68yhVn/YSbKD4CmJzQGcGSkODpKGQnKxcQwHgiS5QycggD4eY4yCD9qhEmAZcRi/Ky8mL1x8GAyVkHz5M4Y1gxmIho0NOcizgWninqYkVnwOUyTfnwBhlRVS4DVGRgqxH0egF3fuPLlzvdHudjhYeViGEFqiVld76cxXBIR5foayMfjozGnbulFbIs2Y5DwddTFMT9/AIVOLiKERz+LA8HZ0LFGZeicHmY/Ri507nob+UFErQO3+evDbBSlERGftyBdMcDRSlsgAWC/1vExOV7cf4PNlzhyLbeo7k6+VWVdpHA4dSAJMJgyvycfcV5f16xD9cY0Brm8MbxcV+kcvEHhRfwGqlBEU5zQFdrd6xWGgVxhNdYCLmkCjI1C9Kl8qNsWuX8x1CQ9mL0tFBFTly1ZtNJikJedgwZa0l7Hb6f+bmsuJzoJKdTSXocjWG9Hpg/nzp9TffyD9XQgItLtrblY3RC7CB4gtUVVHZr5PJLrqpiioGADIylFrAPNEFPunppK2gQKukNSoZ5oGj6EVJibz8kpQU2u78eZUD9XPE5Fi5hoajqJbS8E59PS1eWNo+cElPJ8NBiVTAvHmSB/2bb+QbN+J5/ED6ng0UX6CigoTTnLRozzp/kfdEqZHBE13gExpKYRclrdxB1TzdsBelfwRBSo4NkRkldyX/pLaWPGNcNRW4REbSwlGJ2GJioiTcVlsL7N8vbz+Dge4dftCdnA0Ub2O3A+fOyRJ5GnJ+q/RCTfUOT3TBQWYmGQ/NzbJ3KVVqoADkRSkrCz4visVCk/vAgfK2b2iQPJ9pacoSXa1WMojE7rdM4DJkCBkPSgx+xzDPpk3y90tIoJCjj3cnZwPF21gsssI7CfWFiK+7YPGOHKm8RJgnuuBhwAC6CSpoINgaM5AquwCauCoqnO8UGkorv8OH/Uqd0mUKC+UJKors3Ssltiv1ntTUUBiJFZ8Dn8GDlbesmDBBCjPu3y8/tBsfT15WOde5F2EDxdtUVpIGipNeOrlFW6UXaqXteaILDnQ6MjasVmWN/Rx68+D77+XtI3pRzp1TNkZ/RWlyLOBaeKehgeTQnYR/mQAgNJSuWwUyATAYgKuvpud2u/xkWYOBHnLUo70IGyjeRBDIPe6s0Z9gR07xVnqu15N6rFLq6+nLzxNdcJCRQW5cJbkojgaK2CnbGaGh1AvoyJHg8KKUlJBnSm5ybFsbNfYEKGdg2DD552pro+uVJQGCh8xM5S0rrr5aykfctEm+UGNiIoUqGxuVj9NDsIHiTerrqYLHiWbFgKqTiG294K6fMEHZ6g3giS4YiY4mTQUl7uKUFEmH4exZ+a3ZBw+mqpZA96IIAnDqFCXGyk2OPXhQMtymTlWmW1RTQ58tS9sHDwMH0nWo5LodOFDqil1dTSFXOYiijj4c5mEDxZvI7GnicnKsONGxtH1wkZNDN0QlstbTFWqiAMHjRTGbyYMiNzkWcC2809xM4R2lYoyM/6LX0/+8uVlZl+MFkrKs7AaCej0tXM+eVTZGD8LffG9SXEyTe3/lwlYrMgt3AAC6DOHKFSgFQZK254kuuBBX3xaL/H3UGCjiuQK9oqewkFzvcqvgrFap9DM6GhgzRv65BIGScFkSIPhIT6f/fVOT/H0uv1wS+tyzR34eS1IS6aEolCXwFHzH8hbNzTShO5Mkz89HeAd9UcsypzrPV7mYpib6snMPj+AjJAQYNYq+A3JXY2lpkgDgqVPyK4FCQyl2HqgVPe3typNjjx2TyjgnT1bWddxuY8XnYCUxkYwUBWKLCA0l4TaANLW+/VbefrGxlIPio6JtbKB4C5OJrNy4uP63c5C2Lx46R/l5amp4ogtmMjOVr8bUVPMAge1FKSkhT1RSkvx9XAnvCCDhLiY4yc0lQ19BZ/IemigbN8pblOh0JBVw9qyykJKHYAPFW5SX05ejv+aAbW3dEtntYbGoTJuo7Bw2G4n+8EQXvCQmUvM/BZooParElIR5RC9KoOWiiMqxoaHyk2NtNknePjQUmKjw2tXrObwTzKSnU8hGSeglLU0KI5aXS+KAzkhKokRZJYm5HoINFG/Q0UHxbGfu4r17uxMcCzOvhN2gwEUM0Jc7IYEnumAnN5dWYl1d8rbPyJBCgidPKnM1ixU9geRFqa6mfLEBA+Tvs2ePNOFPmECrVCWEhFDeChOcxMRQkruSaw8ArrlGer5hg/xzNTf7ZJhH5nKA0ZTiYpq8nDX7cwjvnMuao/w8tbW0cuOJLrjJyKBVUl2d/JvsjBnARx+R92D3buD66+Xt5+hFyclRlnfhqxQWAm1tOF8biwPb9M6dQ4KA+V9+BlEpZUv8D1C5ph9PqQNtbRee9OdZZYKD7GzS0Onqku+5mz4dWLGCcp927gQefFBeUnd0NHDmDHlgfKiYwndGEiw0NpJnJCKi/8m7oYE0FAC0RA+AacBlys5jtVIISWnHYybwiIgggTAlLtxp06TnSsI8AHlRSkp8XqVSFm1tlCyckIADR/VoaNShta3/R2zJCSSbTwEAauKzcS5xktN9xIcAqugLjWZBxaAnNZUWFkqu2/BwYM4cet7ZCWzfLm+/pCTKi1RS8ecB2EDxJHY7GScVFc4l53fu7E6QKs6ZBegU/qssFlotp6aqHCwTUGRn0+TVvUR3wpAh0nfn+HFlbeBFXZRAqOhxSI4V/xSdTkBUZN+PiadXde9+atzNiIpCv9v3eIRaYUwwYPLtw730BzM+Q3g4LSyUXHtAz2TZDRvkJb9GRVEJfVmZsnO5GQ7xeJLTp4GjR6mywpkbzSG8U5QzR9l5BIE8MJMmsbQ9QwwaRJ6Nqip5isI6HbmLV60iQ3nPHmDhQvnnS0kBiorIizLcT2+2onJsaGiPkEtkBHD3TX30OCopAd7ZS8+TkzH9VzMwPURmP6TWVkpmvvVWFlVkiKwsYN8+ykUMD5e3T3Y2XXOnT9P1d+4cgBHO94uNpTDP+PE+E2JkD4qnqK+nST4y0nlOSFWVlIGdkYH6RIUdiBsbqXyZOxczIno9dcFubZVfuuhYzSO3N49IWJj/e1GqqijhV4ly7Jo10vNFi+TnDgCS4rOS8zGBTUoKfR9cSZaVqyybmEgJ4dXVys7lRthA8QRiyWF1NU1AztixQ3o+e3b/SrO9UV1NCYqsfcI4kplJlWNyVSZzcqQ+MEePKm8qlpJCN3h/zUU5f55CYnKTzGtqgK1b6Xl0dE9XuzMEgRIbWfGZccRgIOl7pdfezJm0QACAbdsQYpUR2o2MJE+ND1Xz8JXgCQoKKI4vJ7QD9AjvKO6909lJ51DSNZUJDuLiKLdEbiKcGOYByOviKDwmh7Aw/1WXFZNjlRj5X34plXIvXKhM9Vn0erIkAHMxGRlk8DY3y98nKkq6d7S1IbPwO3n7xcZSaEiuJIGbYQPF3dTWkvckJkbehFVURGXIALnklcaiRS8NT3RMb4iifXINBrWibSKiF6WoSPm+3qS4mDwicg2U1lZg/Xp6HhIC3HCDsvNZLLSAcdb6ggk+kpNpTlcqpOYQ5hl6er28fZKSKA9KbidzN8MGijvp6iKp8Npa+YaGo/dk9mxl57PbycoeNUpZ7JsJHtLSlMW0hw2jCRIgT4iSVRxAXpSwMP/yotjt5D0JD5efLLhhg9R3Z+5cZZ4Xm43mClZ8ZnpDp6PQX1ubMjn64cMpyRbAgOoCxDcUO98nPJyu09JSlYPVFjZQ3MmJExTeycqSl0dit0t163p9z9WrHETlWNY+YfoiLIxi2nIltHU66XvoKN+uBFEXxV+8KNXVypJju7qAL76QXt90k7Lz1dWRQeNMeoAJXtLTKQQoN38MoGt3wYLulyPOyVSWNRqpmscHFhRsoLgLs5k0T4xGKVnJGQUFUs+UvDxlnVMBWhXn5jpvQMgEN1lZFG6U6w1xbB6oJszj6EXxkdh2v5w7R92L5eaQ7Ngh5fVMmaK8c3htLV23SjuVM8GD0UgLT6XVPLNndwuCDivcDH1Xp/N9kpLoPJWVysepMWyguAOrlRIKGxqUlQy6Et5pb6ewDruJGWcMGEArMrnJsiNGSCGLQ4ekUIYS/EVdtrVVWXKsIACrV0uvb75Z2fk6OymMxF5Pxhk5OeTFtMnU1QEo6fXCAiOiswkZxTIWGKGhdI5iGSEhN8MGijs4dowmObmhHYBWlt9dyLQOCwOmTlV2zupqchGzcizjDJ2OjI5OGaspgMKNohelq4uEo5TiL16U4mIp5CKHgweliXzECMr/UkJNDRmMcuQHmOAmLY1C+C4oyw49LVMTJSFB8iR6ETZQtMZkotBOYqJ85T+AVqZNTfR86lRl7l6bjRKoRo1iDQVGHhkZFEKUK9rmapgH8H0vit1OYVYlybGffSY9/+EPlWsWNTSQYRMITRUZ9xIZSR5ypdU8Y8agMY4WrimVh+WFbhIS6DxeDvPw3UxLOjsptNPSoqw1O9CzqZPS8I644ruQsc0wTomOpslOroEyapSUE3XgAIVClBIWRjdiX/WimEzUi0TutXv2LHVtBshzqdTr2dpKCxGlOStM8DJkCBnPcr2fAKDT4dxwKVlWlrKsWAVaUqJoeFrDBoqWHD5M2c9KDYW2NkkEKyYGmDBB2f41NbQKk6t4yTAAxbTlYjBIHY6tVnVhHoBu5L7qRTl/npQ05XovHb0nN92kvH+JxUJeJaWLGSZ4GTyYyv4VelEKh10Fu+7C9/Pbb+UtECIjlVUNuQHFBkpnZyfefPNN/PCHP8TVV1+Nn/70p9gnc7Lav38/Hn30Udxwww247rrr8NBDD2HDBpmlT75ORQWtLAcMUN6gb+9emhgBKulU4u5tbaUv0tChys7JMIMHK7upOoZ5Vq1SlqwnInpRjh71LS9KSwspaCYlydveZJL6ExmNpH2iBEGga3fECA7LMvIJDSV9E4WGQ3tkAorTLnj46uqA/fvdMDjtUXxlvPzyy/jkk09wzTXXYOnSpdDr9Xj88cdxRHR19sF3332Hxx57DFarFYsXL8aSJUsQHh6OF198EZ988onqP8An6OggQbb2dvkTnCOuVO9UVZGLWOyZwjByCQlRJug3dqzUQqG4GNi0Sd15Bw+m/X1JF6W4mFalcpVcP/9cCo/94AfK8s0AusGwtD2jhsxMkq5QGGY9NdShG7ncBoJeRpHc6IkTJ7B582b87Gc/w1133QUAWLBgARYvXow333wTb775Zp/7rl69GklJSXjjjTcQdsHDsGjRIvz4xz/G119/jdtvv92FP8PLHDpE7mE1XozGRtofINfd6NHy97XZKBY5cqTy5DyGAYAQAwA72tqAD9c486YYMGDYg7jmzOMAgPZ3PsAXjXNgDXMeWgwNBSaPtSM7U6CbeUgI5W8MGeJ91WMxOTYyUpZHKay9EfjmG3oRHg5ce63yc9bU0LVuNCrflwluBg6kBanZrKiYojxlAlqiByC6xUzVZ2azz4cXFXlQtm3bBoPBgEWLFnW/Fx4ejuuvvx7Hjx9HVT/6/a2trYiNje02TgAgJCQERqMR4UpXH75EaSn9swcNUpeJ/913kqt85kxl7l6Lhb5gmZnKz8swAEKj6HoUoENrm/NHsXEMzmdcCQCIaG/A8AOfyNqvoVGH/Ucdvtu+5EWprFSUHDu84CspJHvNNcqFEW02MoqU5AAxjIheT4vSlhb5Se4ABL0B54ZfKDm224HNm900QO1QZKCcOXMG6enpiL4oGXPUhdr/s2fP9rlvXl4eCgsL8dZbb6GsrAzl5eV47733cOrUqW5vjN/R1kahnc5O9U2+HKt35sxRtm9dHVVXyFWqZZiLmHzbMBiTQxEVakVUpCDrcfSK+2AzkDE+5tQaDLBW9Lu9Tkf9Q3ooZ4ulvEeOeD8X5dw5GlxkpNNNDV0dGH7igqy9Xg84LNZkI4aSWNqeUUt2tqT4qoDzw66RvO2bNqnLI/MginyrNTU1SOolx0J8z9KPMuW9996LyspKvP/++/jXv/4FAIiIiMBzzz2HmTNn9ntei8WCGod/RLEPKNxBEMhzUlQkxeWVUl1N/XoAyiNRoibZ1EQVP9nZ6s7NMACypw5G9vgE4OOPabKS5UUYANgXAZ9+CoO9CzdWvAP85Pd9bv3hGgNa23r5RWqq5EXxlgJyczNV3snMHRtW+A0i2i8kKM6YobzbOEALiylTZBlEDNMrMTEUItyxQ1GYpjVmADBxIhV0mM1UeTpxohsH6hqKDJSOjg6E9hLGEMM2HaLbsxdCQ0ORkZGBOXPmYNasWbDZbPjiiy/wwgsv4LXXXsNll13W575r167FypUrlQzV/RQXU+5Iaqr6GPrF2idK8kiqq6kCQOw0yzBqiYggI3vXLvmT3W23UR5GQwPtd/w40M813CuOXhRv5aKIyrEyFhk6uw1jCxxKi5XK2gMUGmJpe0YLhg8nA6O+XlnftvnzyUABKFnWhw0URSGe8PBwWHvpcNh5QTSmv1ySN954A7t27cIzzzyDq666CvPnz8frr7+OpKQk/PWvf+33vIsWLcI///nP7sdTTz2lZNja09JCoR273bUkN8fqnVmz5O9ntdK5hw/n5FhGG4YMoRLgtt5cHb0QFQX86EfS67ffVhQP70b0onjDK2q3AydPkidDRu5XesluGJsr6MW4ceqS4mtqKF+Npe0ZV0lMpEVqdbWy/S6/XDJo9uyR39ncCygyUJKSknqEWkTE95L7WM1brVZ89dVXmDZtGvQOE0FISAimTp2KU6dO9Wr4iCQnJ2PEiBHdjyxvKqYKAtWQl5a6lpxaVCRNyiNHKnMVm800ybECJaMVKSlkLMhtIAgAV18teQLOngW2bFF+XtGLcviw5+PhlZWkXySnoacgYNTRT6XXarwnAFXtDR/u/colJjAYMYKuISUNPENCgKuuouc2Gwm3+SiKDJTc3FyUlZWh5aIP48SFPIrcPuLIDQ0NsNlssPUyAdlsNtjtdtjVrL68wfnzNJmmpSlXjnRErfdEEGiSGzVKuSAcw/SFY2WAIMjbx2AAHnhAev3+++qai6WmksHuqYoem430g06eJG+knCTzEyeQbD4FAKhLyFau9gxQvktUFFfdMdqRkkLVYCaTsv2uuUZ6vmmT/GvewygyUObMmQObzYa1a9d2v9fZ2Yl169Zh9OjRGHRBLKyqqqpHImtCQgJiYmKwY8eOHp6S1tZW7Ny5E5mZmf5RatzURJL0BoPy0kJH7HZKbgLoxnDllfL3FQWeODmW0ZqMDApZKnH5jh9PCZ8AVaesXq38vKIuiju9KO3tJLG/ezfwySfAf/9LOWRyQy0Of9fJsTerC63W1NDChvPGGK3Q6STtrH5yQC8hNZWEFwGgvJxyyHwQRX7G0aNHY+7cuVixYgXq6+uRlpaG9evXw2QyYdmyZd3bvfjii8jPz8f2C0mgBoMBd955J9566y08/PDDWLBgAex2O7766iuYzWbv55TIwW6n0E5FhfqqHZGCAilumJenLMHJYgHGjFFf1swwfWE0kuF77Jiy79d991HSnc1GN/L585XfhB0rerRq29DYKDUALC4mw8tuB2JjKawjt4qmpKS791Bz1AAU58zCdCe7XILdTvk9nDfGaE1GBnnlKiqU9YGbP59aTgCULDtmjHvG5wKKA6FPPvkkBg0ahA0bNqC5uRk5OTl45ZVXkJeX1+9+P/nJTzB48GCsWrUKK1euhNVqxdChQ/Hcc89hjlL9D29w9iyt8NLTXQvtAOql7QWBJrfhw107P8P0RW4uTVpWq3zhwbQ04PrrgbVrSRPoX/8CfvMbZee9uKJHzTVmt5OXwmQiQ6eigryeISFkfGVlqRNTXLOm++mxETdC0IcAUOjpaWighQhL2zNaYzBQBV1hobLrdto0KldubqZKvIceotc+hGIDJTw8HD//+c/x85//vM9t+qrKueaaa3CNY+zLX2hsJNdweLjr/8CuLlKPBSiHREmLdrudVpos8MS4i7Q08i7U1ChL3L7zTkqSbWoCtm6l/jRKDWnHXBS5XpTOTsonqayk/LCaGvJURESQQZCS4lozvpoa+nsAdIZF49TQhVBh4lD467LLXAsNM0xfZGfTd91sputIDmFh1OTyiy/oOhKvWx+C22g6w26nUqyqKvn/+P44dIgmcYCMEwW9FCAIlBzLFQCMuwgLU9UtFTExgKMi9FtvKU+8c/Si9JeL0tREHs1t24APPwQ+/ZQ0hRoaKLQ0YgR5S4xG1zsFf/llt9LtmZHXwRqq4HoV6epiaXvGvYSFUU5JY6Oycv/586XnGzf6XLIsGyjOOH2aYvKZma5Pdi0tNHGLKKneAej8LPDEuJshQyg/Q0npIgAsXCiFMAoKJE+hEkQviqMuit1OuVfHj5PB8NFH1E34wAH6XWYmGSWpqcoMfme0tgLr19PzkBCcGq1C1h4gIbikJPZ8Mu5l6FDl8vdZWXTtAHTdnTnjlqGphQ2U/qiro9BOVJTrE58gAMuXkysaoFj/5MnKjhESQgl+DONOBgwgQ8NsVrZfSAhw//3S6/feI9exEhx1UcrKKDH900+p8mbdOgrjRETQ9TNsGI1VTV6JHDZskIy0OXPQHpWo7ji1tTRe7pnFuJPoaEp0ralR5glxTLvYuFH7cbkAGyh9YbNRaMdi0Ub18bPPyNgByB2+bJn8REDxy8ahHcYTiInYHR3K1WEnTZI0QqqrydOhlNRUCuF8+inFxWtqSDVz5EiKtcfHu+7NdEZXF8XmRX74Q3XH6eggA4o9n4wnGDaM8pyUSAXMnClVtO3YIV9N2gPwHa8vCgrIpZyZ2W9Z4PkSHQ4c1aMfIVwMrDyCeev/1W0Nbp32W1R8Lz+fpU3UvnL3pMwwIpmZVGoshifkotORF+XRR8m4WbUKETfOR6tOwTHCw+n8ISHeEyPcsUNS1Z0yhUo5D6g4jsVCScdqmgoyjFISEsiQ37dPvlRAZCQZKRs3knGyY0fP3BQvwne83qipIe9JXJxTrYQDR/VoaNShta33B2pqMX3Ln6EXaCV68LK7cDZ5Sp/b9/YQQAZSaCTbk4yHiI6msITCdu4AKK4tTnBtbRh38H3lx4iK8p5xIgg9BefUek/sdkpaHDHCdWkChpHLiBF032pulr/PggXScx8K87CBcjFdXRSKqaujfjdOED0nOp2AqMiej+hwK67e/SdEtdcBACpTJ+DU5Xddsl2/j3AbosJtMKZEYfJtLgrEMYwSsrPpxqpEoVLknnu687aGnt6ExLpzGg/OjRw8KCXpjhghKXUqxWKhqqI+WoAwjFsYNIgSZpXI3+fmSurkp097ru2EE3hJfjEVFZTJnJWlSPExMgK4+6aLSiPffgeouiAhnJyMwX9+DHfFAYpEnk6dAqZPpwfDeJLUVJrsamqUl9gbjcAddwDvvgsdBFxx8J/YOvgl94xTaz77THr+wx+qU3612Sg5dt481j5hPIsof19QQC0e5CRn63SULLtiBb3euBG47jr3jlMG7EG5GJuNXLOu9gbauVNKEAwJoaRYpRNVSwu56lg/gfEGISEUz25oUKeP8IMfdOdepFYfQVrJbo0H6AbOniUdFoCS45UIKTpSVUXG3ahR2o2NYeSSnk6LbLFqVA5z5khh1S1blFfguQE2UNxBWRngqKa7ZIlUa66E6mr6kskINTGMW8jMpNJ2UVxQCaGhwOLF3S8n7nsH/WaT+wIXe0/U5I50ddHnNWGCtrosDCMXvZ5Kjq1W+ddcTAwwYwY9b2kB8vPdNjy5sIGiNe3twJ/+JJVqzZ4NXHut8uN0ddEXa8QIbi7GeI+kJDKSxYoWpUybhqoU6poa21hBWia+islEnk+AQlRz56o7TmUlibJxzyzGm2RlUWi2qkr+Po6aKOK14EXYQNESQQD+9jfqfgrQ6vORR9QZGBYLiVBlZGg7RoZRyrBhZDD3Jz/fFzodDk5Z0l2Jho8+osoWX+TzzyXdl+uvVxfm7eykxcmECa6HiRnGFUT5eyXVPJddJikenzkDlJe7Z2wy4SRZLfn6a6lTcWQk8Pvfq1ePrK8n7wurTzLeJj2dPCm1tWQ0K6QuORens6/GiMJN5Dr+8EPg4YfdMFAXaGwEvvmGnoeHq08QLC8nUTa5zQ4Zxp3k5JAOzwk7AAPa2oEP1/QfthyZugATy98BAJx4czNOl43DTS/O8MBgL4U9KBqRVF3Qs8/O0qXqW6s3NlI8kJNjGV8gMpK8KLW1qg+xf/y9sIZcMLbXr5e8jL7CunVSOfU116irvGlvJw9MXp775PcZRglRUcDo0QgF5aEIgnPdrRPpV8OmJ99F9unNaKtV2JNLQ9hA0YCI9gZcueXl7q6nuPFGKdlIDWYz1aQnJ2szQIZxlexschmrlMFui0zEiXG30Qu7HXj3XQ0H5yIdHcBXX9FzvR5YpLIpYHk5eU5Y1p7xJYYNw+TcFhiju2Rpb+kTjCjPpOq1yI56ZFsOeW3oHOJxEZ3dhjnf/xnRLReSCEePBu69V/0BrVbKZeEEO8aXSEmhsluzWXVeVMGYH2J8ydeUX3XgAD0mTdJ4oCr49lsqpQZoYaFGlr6lhYyb8eNZNZbxLeLjkT0zE9nhe+VXk2YvBFa3AosW4Yo//Na94+sH9qC4yJj8/yDddMHCjI8Hfvc715r6mc00QXJyLONL6PWkidLaqk4TBYAtJLyn8f7OO+oSb7XEZgPWrJFe33yzuuOUl9Pkz9ct44uMHEnhHrlyAePHAw8+CEyc6FWDmw0UV9i/H2Pz/wMAsOv0wOOPK2usdjGCQPknI0dyDJvxPTIzlXdKvZhZs6RVXGkpsGGDJkNTzZ49kpjVuHHqklsbGylPZ9w4lgRgfJOBA0nOXon8vQ/AIR61VFUBr73W/fLw5MWYMGaMa8esryf9BbEnAsP4EuJ389gx+Z1SHWhrBz78PARJwx7CglOPAQDa3/0QXzTNhTU8xuXhhYYCk8fakZ0p08NzcVNAtd6TykoKVQ0erG5/hvEEo0aR/H1bm9MmuL4Ce1DU0NkJvPJKd315Ufo0nByjcnJzxGKhFVx8vOvHYhh3IHoYFCjCis5AsYKgNHYUzmbNBgBEdDRixIGPFXX37uvR0KjD/qMKprQTJ6gxGkCJrRMmyN9XpK6OlHbHjlW+L8N4krQ0Em/zIy8KGyhq+Oc/qWcHgKa4VGyb+hvXXbsdHRTnH8YdixkfJj2dWi8o6PExeawdxrielQLHpi5Gl4H6flx2ei0GWsuVdfm+6KHTkddEkZK+o/dETVNAQSBP6pgxXHHH+D56PQmxiSrlfgCHeJSyebMUNw8Lw455T8IaFo1QqEsc7MZsJgtXVPFjGF8kLAy4/HLSDWluJr0eJ2RnCsjOvDgZNgnATcAnn8Bg78KisreBJ59UPawP1xjQqqQCuqQE2LePnicnAzNnKj+pxQIkJpKBwjD+QFYW3WOqqtTrdHkQ9qAoobAQePNN6fXPf476RA3yRex2KlMcNYpLFBnfJzeXbsplZZI0vBpuuYVu8ACwe7fURdjdNDWR5L7IokXKK+/sdjJQxo2j3ByG8QdCQ+nabWnxfgWdDNhAkUtzM/Dyy1IL6oULgXnztDl2XR3lnWRlaXM8hnEnOh15UVJSgIoK9ceJjAR+9CPp9dtvu2fS7OigzqzvvQf85jd0zu++o99FRwPz5ys/ZnU1hbpGj9Z0qAzjdnJyqGWF2eztkTiFQzxyEARg+XIpuSg3F1iyRLvj19TQhB8bq90xGcadxMUBU6dSqKelhW70apg3D/jyS+D8efJQfvttz46qarDZ6HiHD9PjxIm+Y+433kj6EEppaKBxqv27GcZbREZSUvc335CR7cOl8WygyGH1atJLAMiIWLaMYvFa0NpKbjduLsb4G7m5lHSXn0/Kx3oVDlm9nox9Mf/k3/8mNVclRoMgIKaxAplF+ci05AOfHO6/g2t2NglRTZxIP5Vis1Ebe7mqnAzja+TmAgcPUn8tV7S73AwbKM44ehR4/316rtORi3jQIO2OL0qHs4YC42/o9cCUKRTmMZnopq2GMWOAadOA77+ncOfq1T1DP71RX085Kxe8JIuqq/vctCV6ACrTJqAqNQ+mwePRERlPvyi68JBJW/uFJ4JAJcncaZzxV+LiKOdx1y42UPyWmhrgz3+WEgHvuEPb3iE2G3VAHTVK3eqTYbyN0Uihnq+/Jm+gmnAJACxeTFU1XV3AZ59RXsjAgdLv29uB48elsE1hYZ+Hag+LQeWg8SgflIeKlAlojBnc042trt9hN6HhBlqBMow/M3w4GfmNjeq6d3sANlD6oquLjBOxidiECWSgaInoXsvM1Pa4DONJhg8HiovJ2zh8uLqY9uDBwA03kHFitQIrV1J1jWiQFBRI3cIvJjQUbTmX4Ux8HioG5aEuMQeCXqqGI5PJRRkAABAEhMKKyddncSsKxv8ZMIAM7aNH2UDxO957Dzh5kp4nJwOPPaZ9CXBtLXDllepXnQzjCziGeior1Yd6br+ddIYaG6nKRqy0uRidjnK2xo8H8vKAkSMRGR6OcQDGdW/khmqg8+dJcfYH45xuyjB+wejRdJ9zxfvpRthA6Y3Dh4HPP6fnISHA73+vvYXZ3EzZ1Nx3hwkEEhIo1LN+vfpeH9HRwN13A3//+6W/GzxYMkjGjvV8xVtrK/3My2OtIiZwGDyYyo7PnaOfPgYbKBfxzfPbMfvDTyA6cPde/hDOnhgFnOh9++7EOaVUV9Mq0DHOzjD+zIgRFOo5flx9qGfBAgrnFBRQ24fx4+mhZWK6GsrLKVcsI8O742AYLdHryYty5gxpfGlVnaoRbKA40tyMyWueQWgXWR1nhszFkazrgTbnE62ikHRXFyXIjhjh0zXoDKMIg4G8KJWVJKWdkqLuGL/5jfZjc4WmJiA8nFRjOZmdCTQyM0n23mTyuXxIvtpEBAF46CHE1xUDAOoTsnBw5i8QFQWnjcqMcQImj1Ug+V1SQpO3j30ZGMZlEhMpH6WxkSpvAoGKCmDkSPW5NQzjy4SEUKl/W5vPyd+zB0WkvZ00GAAgPBzxL/0ed6SFQvNku7IyirXPmkWrMoYJNEaOpFDPyZPqQz2+Ql0dNUQcN86//w6G6Y/sbFo0V1f7lCYXe1BEIiOBr74CfvUr4M473dNVuKqKfs6d6xedJBlGFSEhFOqJj6cJz18RBHJ7jx5NJZkME6hERJAqdH29aw1ANYYNFEf0emDpUlotaU1tLfUsmTWLZe2ZwCc5mfpL1ddTsz5/pKaGQlZjx3p7JAzjfnJzSZerttbbI+mGDRRP0NhIk9306dz9lAkeLrtMquzxN+x2wGIh4yQhwdujYRj3ExtLlWoWi7dH0g0bKO6mtZWqGqZMIZl8jmMzwYIY6omL84vW7j2orqawDi8omGBixAgyVEQFdS/DBoo76eig1WNeHnDFFVyiyAQfAwcCkyeT27iz09ujkYfNRqGp8eM9LwjHMN4kKYkS28V8SS/Dd0x30dVF0tijR5OcfQgXTDFBypgxUr8ef8BkokqGkSO9PRKG8TwjR5JgW0uLt0fCBopbsNlIOjg3F5gzh9uyM8FNaCiFOKOjfSq+3StWK7WhmDBBnVw/w/g7ovx9Y6O3R8IGiuYIArWCT0ujcuKYGG+PiGG8T0oKhXosFjICfJXKShJQHDbM2yNhGO+g05Hn3weSw9lA0ZqiIipNnDfPJ/7BDOMzjB1LJfa+Gurp6KBHXp7P9SRhGI+SmekTfafYQNGS8nJyC8+d6/3mZgzja4SFUbJ4ZCSV3fsaFRXAkCE+2dWVYTyKwUBhzqQkrw6DDRStMJsp92TOHO6xwzB9kZoKTJxI14svhXpaW0n7ZMIETmhnGIC8nTNmeHUIbKBoQV0dJRTNnMmxa4Zxxvjx5KUoKfH2SCTKy+nazcry9kgYhrkAGyiu0txMiX/TprEkNsPIITycQj3h4VKDTm/S3EyVRuPHs1YRw/gQfDW6QlsbUFpKCrGTJ7NKLMPIJS2NwikmE2kGeZPyclLQdEeDUIZhVMMGilo6O6liJy+PeuwYDN4eEcP4F3l51Obdm6GehgbSZxk/nhcYDONjsIGiBlEldtQoyjsJDfX2iBjG/4iIoF49ISEkLe9pBIF0T0aP5qo7hvFB2EBRit1Oxkl2NlXssNokw6gnM5M8KZWVng/11NYCRiPnjjGMj8L1dEoQVWJTUkiIjRuJMYzrTJxIeSClpWT4uwtBoHLipibqM9LVRWWUiYnuOyfDMKphA0UJpaXUOn7ePJ7UGEYrIiMp1PPFF5QTYjRqc9yuLjJEmprIMAGAqChaWAwbRp2WWZSNYXwWNlDkUllJsfJ586iZEsMw2pGZCYwbB+zeTf2r1CSdd3SQMdLURCJwej0da+BAID2dVDETE4H4eC4nZhg/gA0UOVgsNPldcw1JYTMMoy06HZXri6EeZ9eZ3d4zXGOzka5KbCyVDKekkDGSmEhVOgzD+B1soDijoYEqDObOBUaO9PZoGCZwiY6mUM+XX5Iyc1yc9DurlQTVmpvJMNHpaHujka7LgQPJGElI4Ko6hgkQ2EDpj+ZmEpK68krSSWAYxr1kZ9O1tmePFLKxWim8GhNDvXzS0yXvSFwch2sYJkBhA6Uv2tvJ1TxlCnD55SzixDCeQAz1mExkoIwe3TNcw2X9DBM0sIHSG3Y7lROPG8cqsQzjaWJigBtvJK8JdxZmmKCFr/7eMBiA3Fxg1iwgLMzbo2GY4CMiwtsjYBjGy7CBcjFhYWSczJ5NmgkMwzAMw3gcNlAuJi2NYt4c1mEYhmEYr8Hp773BxgnDMAzDeBXFHpTOzk68/fbb2LhxI5qamjB06FAsWbIEl19+uaz9N2/ejFWrVuHcuXMICQlBVlYWlixZgkmTJikePMMwDMMwgYliA+Xll1/G1q1bcdtttyE9PR1ff/01Hn/8cSxfvhzjxo3rd9933nkH7733HubMmYOFCxeiq6sLhYWFsFgsqv8AhmEYhmECD0UGyokTJ7B582b87Gc/w1133QUAWLBgARYvXow333wTb775Zp/7Hj9+HO+99x4eeeQR3H777a6NmmEYhmGYgEZRDsq2bdtgMBiwaNGi7vfCw8Nx/fXX4/jx46iqqupz3//+979ITEzErbfeCkEQ0Cp2F2UYhmEYhrkIRQbKmTNnkJ6ejuiLmm+NGjUKAHD27Nk+9z1w4ABGjhyJVatWYdGiRVi4cCFuuukmfPrppyqGzTAMwzBMIKMoxFNTU4OkpKRL3hff6yuXpKmpCQ0NDTh27BgOHjyIxYsXY9CgQfj666+xfPlyhISE4MYbb+zzvBaLBTU1Nd2vi4uLlQybYRiGYRg/Q5GB0tHRgdBeOoWGXVBb7ejo6HU/MZzT0NCAZ555BldddRUAYM6cOVi8eDH+9a9/9WugrF27FitXrlQyVIZhGIZh/BhFBkp4eDisVusl73d2dnb/vq/9ACAkJARz5szpfl+v12PevHl45513UFVVhUGDBvW6/6JFizBjxozu18XFxXjhhReUDJ1hGIZhGD9CkYGSlJQEs9l8yfti+CU5ObnX/eLi4hAWFoaYmBgYLhJBS0hIAEBhoL4MlOTk5D6PzTAMwzBM4KEoSTY3NxdlZWVoaWnp8f6JEye6f9/rSfR6DBs2DA0NDZd4YMS8lfj4eCVDYRiGYRgmgFFkoMyZMwc2mw1r167tfq+zsxPr1q3D6NGjuz0gVVVVlySyzp07FzabDevXr+9+r6OjA5s2bcKQIUPYQ8IwDMMwTDeKQjyjR4/G3LlzsWLFCtTX1yMtLQ3r16+HyWTCsmXLurd78cUXkZ+fj+3bt3e/d+ONN+Krr77C66+/jtLSUgwaNAgbNmxAVVUVXn75Ze3+IoZhGIZh/B7FUvdPPvlkt3HR3NyMnJwcvPLKK8jLy+t3v/DwcLzxxht48803sW7dOrS3tyM3NxevvPIKpkyZonb8DMMwDMMEIDpBEARvD0IpR44cwS9+8Qs89dRTyMrK8vZwGIZhGIZRQFZWFiIiIvrdRrEHxRcwmUwAwKXGDMMwDOOH/POf/8SIESP63cYvPSj19fXYu3cvBg8e3C0S5yqitgp7ZeTBn5d8+LNSBn9eyuDPSxn8ecnHnZ9VwHpQ4uPjMX/+fLccOysry6lVx0jw5yUf/qyUwZ+XMvjzUgZ/XvLx1melqMyYYRiGYRjGE7CBwjAMwzCMz8EGygWSkpKwePHiXrs1M5fCn5d8+LNSBn9eyuDPSxn8ecnH25+VXybJMgzDMAwT2LAHhWEYhmEYn4MNFIZhGIZhfA42UBiGYRiG8TnYQGEYhmEYxufwS6E2d5Ofn4+PPvoIZ86cQUNDA2JiYpCbm4t7770XY8eO9fbwfI4DBw5g06ZNOHLkCMxmMxITEzFx4kQ88MADSE5O9vbwfA6LxYJVq1bh5MmTKCgoQFtbG5YvX44JEyZ4e2hepbOzE2+//TY2btyIpqYmDB06FEuWLMHll1/u7aH5JK2trfjoo49w4sQJnDx5Ek1NTXjiiSdw7bXXentoPsfJkyexfv16HDp0CCaTCXFxcbjsssuwZMkSZGRkeHt4PkVhYSHeffddnDp1CrW1tYiIiEBWVhbuuusuzJgxw6NjYQ9KL5SVlUGv1+PGG2/Er371K9xxxx2ora3FL3/5S+zZs8fbw/M5/v73v+PQoUOYOXMmHn30UVx11VXYsmULlixZgpqaGm8Pz+coLS3Fhx9+CLPZjJycHG8Px2d4+eWX8cknn+Caa67B0qVLodfr8fjjj+PIkSPeHppP0tDQgJUrV6K4uBi5ubneHo5P8+GHH2Lbtm2YNGkSli5dihtuuAGHDx/GkiVLcP78eW8Pz6cwmUxobW3FwoULsXTpUvzkJz8BADzxxBNYu3atZwcjMLJoa2sTbrzxRuGxxx7z9lB8jkOHDgk2m+2S92bOnCmsWLHCS6PyXVpaWoSGhgZBEARhy5YtwsyZM4WDBw96eVTe5fjx48LMmTOFDz/8sPu99vZ24c477xQefvhhL47Md+no6BAsFosgCIJw8uRJYebMmcK6deu8PCrf5MiRI0JnZ2eP90pKSoSrrrpKeO6557w0Kv+hq6tLuO+++4R77rnHo+dlD4pMIiIiYDQa0dzc7O2h+Bx5eXnQ6/WXvBcXF4fi4mIvjcp3iYqKQlxcnLeH4VNs27YNBoMBixYt6n4vPDwc119/PY4fP46qqiovjs43CQsLY7ExmYwdOxahoaE93svIyMCQIUN4jpKBwWDAwIEDPX7/4xyUfmhpaYHVakVDQwM2bNiAwsJC/PjHP/b2sPyC1tZWtLW1wWg0ensojB9w5swZpKenIzo6usf7o0aNAgCcPXsWgwYN8sbQmABFEATU1dVhyJAh3h6KT9LW1oaOjg60tLRg586d2LNnD+bOnevRMbCB0g/PPPMM9u7dCwAIDQ3FokWLuuNxTP/897//hdVqxbx587w9FMYPqKmp6dUbIL5nsVg8PSQmwNm0aRPMZjPuv/9+bw/FJ/nb3/7WnXOi1+sxa9Ys/PrXv/boGALeQLHb7bBarbK2DQsLg06n637905/+FHfccQeqq6uxfv16dHV1wWazuWuoPoErn5dIfn4+Vq5ciblz52LSpElaD9Gn0OLzYoCOjo5LXPAAfWbi7xlGK4qLi/H666/jsssuw8KFC709HJ/ktttuw5w5c2CxWLBlyxbYbDbZc51WBLyBcvjwYTz66KOytn3//feRlZXV/XrYsGHdz+fPn48lS5bg5ZdfxvPPP6/5OH0FVz4vgC78p556Cjk5OVi2bJk7huhTuPp5MUR4eHivk19nZ2f37xlGC2pqarBs2TJER0fj+eefh8Fg8PaQfJKsrKzu+WrhwoX4zW9+g9///vf4xz/+4bGFVsAbKJmZmXjiiSdkbdtfwlloaChmzJiBDz74AB0dHQE7YbryeVVVVeGxxx5DdHQ0XnnlFURFRbljiD6FVt+vYCcpKQlms/mS98UyddbTYbSgubkZjz/+OJqbm/F///d//L1SwJw5c/Dqq6+itLQUmZmZHjlnwBsoSUlJmgkXdXR0QBAEtLa2BqyBovbzamhowGOPPQar1YrXX389aC58Lb9fwUxubi4OHTqElpaWHomyJ06c6P49w7hCR0cHfv/736O0tBSvvfYaJ8cqRAyzerKSh8uMe6Guru6S95qamrBt2zYMHDgQCQkJXhiV79LW1obHH38cFosFf/7zn1mZkVHMnDlzYLPZeghBdXZ2Yt26dRg9ejRX8DAuYbPZ8Oyzz+L48eP44x//iDFjxnh7SD5Lb/e/rq4ubNiwAeHh4R417ALeg6KG3/3udxgwYABGjx6NhIQEVFVVYd26daipqcGzzz7r7eH5HM8//zxOnjyJ6667DsXFxT10BSIjIzFz5kwvjs43ee+99wAARUVFAIANGzZ0K6bee++93hqW1xg9ejTmzp2LFStWoL6+HmlpaVi/fj1MJlNQ5DKp5dNPP0Vzc3N3KGznzp2orq4GANxyyy2IiYnx5vB8hr/97W/YuXMnpk+fjqamJmzcuLHH7+fPn++lkfker776KlpaWjB+/HgMGDAANTU12LRpE0pKSvDII494NHSvEwRB8NjZ/ITVq1fj22+/RXFxMZqbmxEbG4vRo0fjrrvuwvjx4709PJ/j9ttvh8lk6vV3KSkp+OSTTzw8It9n1qxZff5u+/btHhyJ79DR0dHdi6e5uRk5OTlYsmQJpkyZ4u2h+Sz9XXsff/wxBg8e7OER+SZLly5Ffn5+n78P1muuNzZv3oyvvvoK58+fR0NDA6KiojBixAjcfPPNuPLKKz06FjZQGIZhGIbxOTgHhWEYhmEYn4MNFIZhGIZhfA42UBiGYRiG8TnYQGEYhmEYxudgA4VhGIZhGJ+DDRSGYRiGYXwONlAYhmEYhvE52EBhGIZhGMbnYAOFYTTm66+/xqxZs/D11197eyiyOHToEGbNmoV33nnHbeeYNWsWli5d6rbju5ulS5f2q/7rCuLnLz4efvhht5xHDu+88w5mzZqFQ4cOdb9XXFzcY3y3336718bHBBfci4cJev70pz9h3bp1iIuLw+rVqxEWFubtIWmOeFPhtgO+S15eHvLy8jBw4EBvD6UHRqMRixcvBgCsWrXKu4Nhggo2UJigprW1FVu2bIFOp0NjYyN27NiBq666yqVjzpw5E6NHj0ZSUpJGo2SCgby8PNx///3eHsYlxMfHd49r/fr1Xh4NE0xwiIcJar799lu0tbXhtttug16vx1dffeXyMWNiYpCVlcWdZBmGYVyAPShMUPPVV1/BYDDg7rvvxrlz53Dw4EGYTCakpKT02O6dd97BypUr+zyOY9fmr7/+Gi+//DKeeOIJXHvttd3bzJo1C3l5efjDH/6AN998E/v27UNnZyfGjx+PX/3qV0hNTUVRURFWrFiBw4cPo6urC1OmTMGvf/1rJCYmdh/n0KFDePTRR7F48eJLVtyVlZW44447sHDhQjz55JPdrx3HINLb/gUFBVixYgWOHz8OvV6PiRMn4he/+MUlXXG3b9+OLVu2oKCgABaLBSEhIRg6dChuvfVWzJkzp/8P3QnNzc34/PPPsXv3bpSVlaGhoQFGoxGTJ0/G4sWLkZaW1mN78X+zfPlyWCwW/Oc//0FJSQliYmIwd+5cPPzwwwgPD++xT1dXFz766CN8+eWXsFgsGDBgAK6//nrMmzcPd955Z/fnJ4cdO3bg008/xenTp9HZ2Ym0tDQsXLgQt99+OwwGg0ufBQC89NJLWL9+PT766CNs374dX331FSoqKnDVVVfhySefhMViwdq1a7F3715UVFSgpaUFSUlJuOKKK3DfffchISHhkmNWVVXh73//O/bu3Yuuri4MHz4cDzzwgMtjZRgtYQOFCVqKiopw/PhxXHHFFUhMTMSCBQtw4MABrFu37pIb94QJE3o9RnFxMbZs2XLJDbAvmpqa8MgjjyApKQkLFixAWVkZdu3ahd/85jd46aWX8Itf/AIjRozAddddh9OnT2Pbtm1obGzE8uXLVf2NMTExWLx4cXfuwK233trn31RQUID//Oc/mDBhAhYtWoQzZ85gx44dOH/+PFauXNnjb1yxYgVCQkIwduxYJCUlob6+Hjt37sTTTz+NRx99FLfccouq8QL0mb7zzjuYMGECZs6cicjISBQXF+Obb77B999/j7feeusSAxIAVq9ejb1792LGjBmYOHEi9uzZg08//RQNDQ14+umne2z7yiuvYMOGDUhNTcVNN90Eq9WKTz75BMeOHVM01n/84x/44IMPMGDAAMyaNQsxMTE4cuQI3nzzTZw8eRLPPfec6s/hYt544w2cOHEC06ZNw/Tp07sNj8OHD+Pjjz/GxIkTMWrUKISEhODMmTNYs2YN9u7di7feequHN89iseDnP/85zGYzpkyZguHDh6O4uBiPPfZYn99zhvEGbKAwQcuXX34JAFiwYAEA8i68/vrr+Prrr7F48WLo9VIEdMKECZdM3nV1dfjpT3+KsLAwPP7447LOee7cOdx+++34xS9+0f3ea6+9hjVr1uAXv/gF7rvvPtx2220AAEEQsGzZMuzevRunTp3CiBEjFP+NsbGxuP/++7tzB/rLcdi9ezeeeeaZHjk4L774IjZs2IDvvvuux/t//vOfkZqa2mP/1tZW/PznP8fbb7+N66+/HhEREYrHCwBZWVn47LPPEBcX1+P9gwcP4je/+Q3+9a9/9fp5HzhwAP/85z+RmZkJAHjwwQdx//3349tvv8XPf/5zJCcnd2+3YcMGDBs2DH/729+6x/njH/8YS5YskT3Offv24YMPPsCUKVPw/PPPIzIyEgD931577TV8/vnn2Lp1q8seJZFz587h7bffxqBBg3q8P3HiRHz22WeIiorq8f769evx0ksvYfXq1fjJT37S/f6KFStgNpuxZMmSHu+vXbsWr776qiZjZRgt4BwUJijp6urCxo0bER0djSuvvBIAEBUVhZkzZ6Kqqgr79+/vd/+Ojg48+eSTMJlM+P3vf4+xY8fKOm9kZOQlN0Hxxm80Gnt4OHQ6Xffvzp07J/tvU8v48eMvSRC+7rrrAAAnT57s8f7FxglAn9+1116L5uZmFBQUqB5HTEzMJcYJQDfiIUOG9Pm/ufXWW7uNEwAIDw/HVVddBbvdjlOnTnW/v3HjRgDAvffe28OISk5O7vH5O2P16tUAgN/97nfdxglA/7ef/vSn0Ol02Lx5s+zjOeOuu+66xDgBgISEhEuME4AM7+joaBw4cKD7PavVim+//RYJCQk9Qn8A8IMf/ADp6emajZdhXIU9KExQ8t1336G+vh7XX399j9DFggULsHHjRnz11VeYMmVKr/sKgoCXXnoJx48fx3333Yerr75a9nnT09Mv8SyI1T45OTnQ6XS9/s5iscg+h1p689AMGDAAAOWFOFJXV4cPPvgAu3fvRlVVFTo6Onr83tXxHjp0CP/9739x4sQJNDQ0wGazdf8uNDS0132GDx9+yXtiya7j+M+ePQsAGDdu3CXbjxkzRvYYT5w4gcjIyD4Tq8PDw1FSUiL7eM4YNWpUn7/btm0b1q5di9OnT6O5ubnH5+X4vyj5/9u7u5ik3jgO4F+JcCUhrghqs9y0phcoEerMYr1o16yXi66A0aKLrrpozXXRjVu1apMLvciVYW9szrUUoVdWU5IyKpgbpbUZYWFBE1AzA/4XDgZ/0FIS2fh9Ls85POcR3M73nN/zPOfTJ/z69QtisTihLMlgMCAUCvH58+d/1mdCUkEBhWSlyEUlUt6J2L59O3g8Hvr6+uDz+ZLeybe2tsJkMqGurg5KpXJB583Ly0vYFhlIOd++379/L+g8i5HsLjxy/lAoFN3m8/lw7NgxuN1uCIVCSCQSsNlsMBgMDA8Po7e3FzMzM4vuh8lkwtmzZ7Fq1SpUVVVBIBBEQ53RaMTXr1+Tfm6+7y+2/5OTk2AwGMjPz084PnYw8p/4fD4Eg8F5B09PTU39dXt/kmywKwDcuXMHzc3N4HK5qKysBI/Hi4aPjo6OuN9iYmJi3rbm2k7IcqCAQrKO2+3Gy5cvAWDe1U0fPHiQ8MjfYDCgvb0dQqEQp0+fXtJ+ziXylCX2LjkicgFaSnq9Hm63GyqVCnK5PG7fjRs30Nvbm1L7165dA4vFwpUrV1BYWBi378mTJym1DcwGsVAohPHxcXC53Lh9Xq/3r9vJy8tDTk4Ourq6Uu7T3/j/0zVgNrhqtVqsXbsWV69ejQsY4XAYt2/fjjs+EuJ+/PiR9BxzbSdkOVBAIVnHaDQiFAqhvLw84QIIzF74jUYj9Hp9XEB58+YNLl68iI0bN6KxsXHZVpxds2YNgORllKGhoaSfYTAYKT3ViOVyuQAgOnYnls1mS7n90dFRFBUVJfw2379/x+joaMrtl5SUYGhoCHa7Hbt27Yrbt5BZPGVlZbBYLHA6nUn/j9JhfHwcgUAAYrE44emHw+FIKL0VFhaCxWLh3bt3mJ6ejivzhEKhBc9iImQpUUAhWSUcDqOnpwc5OTloaGhIOtgTAJxOJwYHB+FwOFBaWgqn04kzZ84gNzcX586dS7jzTqdNmzZh9erVCWUor9cLrVab9DMcDgcfP35MuCgtRmSKr91uR3FxcXT7w4cP0d/fn1LbAMDn8+FyueD1eqMll+npaVy+fPmflLrq6+thMBjQ1taGqqqq6Pfh8XgWtJT7oUOHYLFYcP78eTQ2NiaUjDweD/x+P4qKilLu81wKCgqQm5uL9+/f4+fPn9FSmN/vTzo1ncViYc+ePbh//z50Ol3cLJ7u7m44nc4l6yshC0UBhWQVq9WKL1++QCQSzRlOgNnZK4ODg9Dr9SgtLYVGo4HP54NEIklaZmCz2Wl7idrKlStx8OBBtLe34+jRo6itrcXU1BT6+vogEomiTzhibdu2DQ6HA6dOnUJ5eTmYTCYqKiogEokWfP79+/fj1q1baGpqwuvXr8Hn8zE8PAyr1QqpVIpnz56l9PcdOHAATU1NUKlU2L17N4LBYLQkV1JSEh3kulgSiQR1dXV49OgRFAoFdu7ciZmZGZhMJpSVlcFsNsdNMZ9LdXU15HI5rl+/jiNHjqC6uhp8Ph8+nw8ulws2mw0qlWpJAwqDwYBMJoNOp4NSqURtbS0mJiZgsVjA5/OjU6tjqdVqWK1WtLa2wm63Y8uWLRgZGUF/fz8qKyuj3zUhy40CCskqkcGxsSu8JrN3715oNBo8fvwYJ06ciD4qHxgYSDrNVSAQpPUtryqVCkwmE3q9Hvfu3YNAIIBcLseOHTvw9OnThOPlcjkCgQDMZjNsNhuCwSAUCsWiAsr69euh0WjQ0tKCgYEBBINBbN26FZcuXcLY2Ng/CShMJhOdnZ3o6uoCm81GTU0N1Gp1woJri9XQ0IDNmzejp6cHnZ2d4PF4OHz4MMRiMcxmc9IBw8moVCpUVFSgo6MDr169QiAQAIfDwYYNG6BQKFBfX/9P+jsftVoNDocDg8GAu3fvoqCgAPv27YNSqYy+5C/WunXr0NzcjJaWFrx48QJv376N/n5Wq5UCCskYOeFwOLzcnSCEkEzQ3d2NCxcu4OTJk5DJZGk553yvLsg09FZskk60UBshJOt4PB78/97s27dv0Gq1WLFiBWpqatLep7a2NkilUhw/fjzt557PyMgIpFIppFLpnFO8CVkKVOIhhGSdmzdv4vnz56ioqACXy8XY2BjMZjMmJyehVCqTrti6VAQCQVwpJrK4XKbIz8+P6x+9pZukC5V4CCFZx2KxQKfT4cOHD/D7/WCxWCguLoZMJkvLuBFCyJ9RQCGEEEJIxqExKIQQQgjJOBRQCCGEEJJxKKAQQgghJONQQCGEEEJIxqGAQgghhJCMQwGFEEIIIRmHAgohhBBCMg4FFEIIIYRkHAoohBBCCMk4/wFzT/QoZTLh4AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuOUlEQVR4nOydd3wb9f3/X5L3nontJJ5x4ixn7x0CSYASKHsTChTaUmhLC4UvbSlllJZS6K8tbVhhFkJYgUwI2Xsvx87yjG0ND3nbsnS/P945S47X3elknaT38/HQI9JZd/eRovvc+/Mer7dOEAQBDMMwDMMwGkLv6QEwDMMwDMNcChsoDMMwDMNoDjZQGIZhGIbRHGygMAzDMAyjOdhAYRiGYRhGc7CBwjAMwzCM5mADhWEYhmEYzcEGCsMwDMMwmoMNFIZhGIZhNAcbKAyjcbZs2QKdTodnnnnG5WPpdDrMnz/f5eP0hprj9QWWLVsGnU6HoqIiyftkZGQgIyPDbWNiGG+ADRSGuQSdTgedTge9Xo9z5871+L4FCxZ0vHfFihX9N0APU1RUBJ1Oh2XLlnl6KJIRjSbnR3BwMIYMGYKbbroJu3fv7na/pqYmxMbGQqfT4fbbb+/nUbuXt956Cw8++CCmTZuG8PBw6HQ6PP30054eFsN0EOjpATCMFgkMDER7ezveeustvPDCC13+fubMGWzZsqXjfYyDqVOn4tSpU0hMTPT0ULqQnp7eYVg1NjZiz549WLVqFT7//HOsWrUKP/zhDzu9/5NPPoHFYoFOp8Pnn3+OqqoqJCQkuH2cmzZtcvs5HnvsMVgsFsTFxWHQoEG9GuMM4wnYg8Iw3ZCUlITJkyfjnXfe6dYAefPNNwEA11xzTX8PTfOEh4djxIgRmjRQMjIy8Mwzz+CZZ57BX//6V2zfvh2///3vYbfb8dhjj3V5//Lly6HX6/Gb3/wGra2tePfdd/tlnEOHDsXQoUPdeo6PP/4YRUVFqK6uZs8Jo0nYQGGYHnjggQdQWVmJb775ptN2q9WKFStWYObMmRg1alSP+585cwZ33303Bg8ejODgYAwaNAh33303zpw50+37DQYD7rvvPiQlJSEsLAzjx4/v9YbYW57CM888A51Ohy1btvT5OcvLy/Hss89i1qxZSE5O7hjr7bffjry8vC7HzczMBAC8++67nUImYpirtxwUOd+J82dYtWoVpk6divDwcMTHx+PWW2/FhQsX+vxsUvjZz34GACgsLITJZOrYfuLECezZswcLFy7EE088geDg4A7DVAl2ux2vvPIKRowYgdDQUAwZMgS//OUvUVdX1+W93f3frlixouN73rx5M+bPn4+oqChER0fj6quvxqlTp2SNZ8mSJUhPT1f8eRjG3XCIh2F64LbbbsOvfvUrvPnmm7juuus6tq9evRpGoxEvvfQSzp492+2++/fvx+WXX476+nosXboUo0aNQn5+Pj744AN89dVX+O677zBlypSO95vNZsycORPnz5/H7NmzMXv2bFRUVOChhx7CokWL3Po5t23bhj//+c9YsGABbrjhBkRGRuLMmTNYtWoVVq9ejZ07d2LcuHEAgPnz56O2thavvfYaxo0b1+l7GT9+fK/nkfudiPz73//G6tWrsXTpUsybNw979+7FJ598gqNHj+LIkSMICQlx6fMLgtDxXKfTdTxfvnw5AEpyjY+PxzXXXIPPPvsM27dvx5w5c2Sf55e//CW2bduGm2++Gddeey02bNiAV199Fdu3b8eOHTsQGhoq6TjffPMNvvrqK1x55ZV46KGHkJeXh7Vr12L//v3Iy8vTpOeKYRQhMAzTCQDC4MGDBUEQhPvuu08ICAgQSktLO/6+ePFiITo6WmhsbBT+7//+TwAgvPPOOx1/t9vtwogRIwQAwgcffNDp2B9//LEAQMjJyRFsNlvH9gceeEAAIPziF7/o9P79+/cLgYGBAgDhD3/4Q6e/paenC+np6d1+hj/84Q8CAGHz5s1dPtu8efM6bTMYDEJdXV2XYxw5ckSIiIgQlixZ0ml7YWGhAEC45557uj335s2bu4xXyXcifoaoqCjh2LFjnfa57bbbBADCJ5980u0YehrTpZ9dEAThd7/7nQBAyMrK6tjW3NwsxMXFCTExMUJTU5MgCILw9ddfCwCEO++8U9I5Re655x4BgJCQkCAUFRV1bLfZbML1118vABCeffbZTvt093/7zjvvCACEgIAA4bvvvuv0t9/+9rcCAOGll16SNbZLj/1///d/ivZnGHfAIR6G6YUHHngANpsNb7/9NgCguLgY3377Le644w6Eh4d3u8+uXbuQn5+PGTNm4I477uj0t1tuuQWzZ89GQUEBduzYAYBCRh9++CGioqK6hEUmT57c5RhqM3DgQERFRXXZPm7cOFx22WXYvHkzrFarS+eQ+50488gjjyA3N7fTtgceeAAAsG/fPlnjKCoq6shB+c1vfoO5c+fiT3/6E/R6PV5++eWO93366aeoqanBLbfcgrCwMAAUEklOTsaqVatQU1Mj67wA8Oijj3YKqej1evz1r3+FXq/v+H1J4dZbb8XChQs7bfvxj38MQP73wTBahg0UhumFadOmITc3F2+//TbsdjvefPNN2O32jhtkdxw6dAgAcNlll3X7d3H74cOHAQD5+floamrC+PHjERMT0+X97tYtAYA1a9bgmmuuQUpKCoKCgjrySr7++mu0trbCbDa7dHy534kzkydP7rItNTUVAGQbCsXFxfjjH/+IP/7xj3j11Vdx9uxZXH/99di+fXunCh4xvHPvvfd2bAsMDMQdd9yBlpYWvP/++7LOCwDz5s3rsi0rKwupqakoKipCbW2tpOOo+X0wjJbhHBSG6YMHHngAjzzyCNatW4d33nkHkyZNwoQJE3p8v8ViAQCkpKR0+3dxu3hDEt+flJTU7fuTk5OVDl0Sr732Gn7xi18gLi4OV1xxBdLS0jp0Mb788kscPXoUra2tLp1D7nfiTGxsbJdtgYE0ddlsNlnjmDdvXp+Jw6dOncKOHTswYsQITJ8+vdPfli1bhr/97W9444038Mgjj8g6d2//v8XFxbBYLN1+1ktR8/tgGC3DBgrD9MFdd92FJ554Ag899BAuXLiA3//+972+X/SCVFZWdvv3ioqKTu8T/zUYDN2+v6fj6PV6tLW1dfs3qavx9vZ2PPPMM0hOTsahQ4e6GBA9CZjJRe534klE70l+fn6npFlnTpw4gV27dmHmzJmSj2swGJCTk9Nlu/idaOGzM4yWYAOFYfogNjYWN954I95//31ERETgtttu6/X9onelp5X65s2bAQATJ04EAIwYMQLh4eE4cuQILBZLlxtVT8eJi4vDsWPHYLVaERQU1OlvBw4c6OtjAaDqodraWlx//fVdjJOGhoaO0IwzAQEBAOSt1uV+J56itbUV77//PvR6fYdE/aWUlZVhw4YNeOONN2QZKFu3bsXcuXM7bTt//jxKS0uRkZEhyXvCMP4E56AwjASee+45fPHFF9iwYUO3CaXOzJo1Czk5OdixYwdWrVrV6W+rVq3C9u3bMXz4cMyePRsAEBQUhDvuuAP19fVdkmQPHDiADz/8sNvzTJ06Fe3t7XjnnXc6bV+xYgV27twp6XMNHDgQ4eHhOHjwIBoaGjq2W61WPProo93mnsTFxUGn06GkpETSOQD534mn+Oyzz1BVVYXFixfjrbfewptvvtnlsXLlSkRERGDlypUdoSspvPbaayguLu54bbfb8Zvf/AZ2u71TrgvDMAR7UBhGAmlpaUhLS5P0Xp1Oh3fffRdXXHEFbrnlFlx77bUYMWIECgoK8OWXXyIqKgrvvfce9HrH+uCFF17Apk2b8Oqrr+LAgQMdOiiffPIJrrrqKqxevbrLeX7+85/jnXfewU9+8hNs2rQJqampOHLkCHbv3o0f/OAHXQTmukOv1+ORRx7Bn//8Z+Tm5uLaa69FW1sbNm/ejOrqaixYsKDDuyESGRmJadOmYfv27bjjjjswfPhwBAQEYOnSpRg7dqxq34knEMM7999/f4/viY6Oxk033YQVK1bggw8+6BB664tZs2Zh/PjxuOWWWxATE4MNGzbg6NGjmDRpEh5//HFVxi+HN998s6NqStTz+frrr1FWVgaAPHu//e1v+31cDNOBp+ucGUZrwEkHpS+600ERyc/PF+68804hOTlZCAwMFJKTk4U77rhDyM/P7/ZYFRUVwr333iskJiYKoaGhwrhx44R33nmnW10Rke3btwtz5swRwsLChKioKOGqq64Sjh49KksHxWq1Cn/729+EkSNHCqGhoUJSUpJw5513CkVFRR0aHoWFhZ32OXPmjPCDH/xAiI+PF3Q6XafvoLfxyvlOevoMgtC3Fsul9KaDIlJQUCAAEJKSkoS2trZej7dz504BgDBu3Lg+zy1+h+fOnRNefvllIScnRwgJCREGDRokPProo4LFYumyT286KN391gSh+/9bKePq6SHnWAzjDnSC4CSjyDAMwzAMowE4B4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM5vNJAaWlpQUFBAVpaWjw9FIZhGIZh3IBXGijFxcV44IEHOslGMwzDMAzjO3ilgcIwDMMwjG/DBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM5Aj09AIZhGMZ7sNlssFqtnh4Go0GCgoIQEBCg2vHYQGEYhmH6RBAEVFZWwmKxQBAETw+H0SA6nQ4xMTFITk6GTqdz+XhsoDAMwzB9YrFYUFtbiwEDBiAiIkKVGxDjOwiCgMbGRphMJoSFhSE2NtblY7KBwjAMw/SKIAgwGo2Ijo5GYmKip4fDaJSwsDC0trbCaDQiJibGZSOWk2QZhmGYXrHZbLDZbIiOjvb0UBiNEx0d3fF7cRU2UBiGYZheaW9vBwAEBrLTnekd8Tci/mZcgQ0UhmEYRhKcd8L0hZq/ETZQGIZhGIbRHGygMAzDMAyjOdhAYRiGYfwDu50ejFfABgrDMAzj+9hsQF0dPTRmpLS2tuKJJ57AoEGDEBYWhmnTpuHbb7+VtO/Jkydx0003ISsrC+Hh4UhMTMTcuXPx9ddfd3pfQ0MD/vCHP2DJkiWIj4+HTqfDihUruj2mnPe6EzZQGIZhGN9GNE5aWujR3OzpEXVi2bJleOWVV3DHHXfgtddeQ0BAAK666irs2LGjz32Li4tRX1+Pe+65B6+99hp+97vfAQCWLl2K5cuXd7zPbDbj2WefxalTpzBu3Lhejynnve6Ea8YYhmEY30U0TlpbgZAQet3YCAQG0msPs2/fPnz88cf461//il//+tcAgLvvvhtjxozB448/jl27dvW6/1VXXYWrrrqq07aHH34YkyZNwiuvvIIf//jHAICUlBRUVFQgOTkZBw4cwJQpU3o8ppz3uhP2oDAMwzC+SXt7Z+NEpyPDRBCAhgYyVi6SlZWFO++8s8shFixYgHnz5rltiKtWrUJAQECHIQEAoaGhuO+++7B7926UlpbKPmZAQABSU1NRW1vbsS0kJATJycmS9pfzXnfCHhSGAQCzGQgLAyIiPD0ShmHUQDRO2tocxolIcDAZLY2NQFQUGhobUVRUhJ/85CddDnPs2DHcfvvt3Z7CarXCYrFIGk58fDz0+q4+gcOHD2P48OFdVHqnTp0KADhy5AhSU1P7PH5jYyOam5thsViwevVqrFu3DrfccouksWkVNlAYpqICWLeOEudiYoAhQ4D4eCAuDoiNpcmMYRjvoTfjBKDXwcFAUxMQFIQTJ05AEIQu+RZlZWWorq7G2LFjuz3Nzp07sWDBAklDKiwsREZGRpftFRUVSElJ6bJd3FZeXi7p+I899hj++9//AgD0ej2uv/56/POf/5S0r1ZhA4Vh8vKA6mogKQmoqgJKS8kFHBwMREYCAwYAKSkOgyUmBggI8PSoGcbzTJ4MVFZ6ehQOkpOBPXt6N05E9Hq6jhsacOLoUQDoYqAcvbi9JwNl3LhxkqttegqZNDc3I6SbXJjQ0NCOv0vhF7/4BW688UaUl5dj5cqVsNlsaGtrk7SvVmEDhfFvjEbg9GkyQKKjyQARaW2lOHVxMVBQQNvCw8loSUkBBg6k98fF0TaWAWf8jcpK4MIFT4+iM1KME5GgIKClBccPHUJSUhKSkpI6/fnYsWPQ6/UYM2ZMt7vHxcXh8ssvd2m4YgfgS2lpaen4uxRGjBiBESNGAKAk20WLFuGaa67B3r17vbZFARsojH+Tl0dx6CFDuv4tJIQeCQn02m6nEsWGBtrv6FGaACMiyFBJSSFvi2i0XFwBMYzPooFEyk4kJko3TkRCQnAiLw/jxowhz6nTfkeOHEFWVhYieshNa2trQ3V1taTTDBgwAAHdeF5TUlJwoRsjr6KiAgAwaNAgSce/lBtvvBEPPvggTp8+jZycHEXH8DRsoDD+i9lMnpFLVk09oteTByU83LFNLFmsrQXKy+l1cDAZLQkJwKBBZKzExVFoKCjILR+FYTzCgQOeHgFhtZLnxGqVZ5wAgE6H4/n5uGXpUvKaXlxY2O12fP/995g7d26Pu+7atcvlHJTx48dj8+bNqKur65Qou3fv3o6/K0EMDUlN4tUibKAw/supUzSpKVyhAKAYdnQ0PUTa2shoqagAzp2jVVlYGCXeLllCxgrDMOrgbJwo8FoaTSaYzGZUGI0OfZTAQPzjH/+A2WxGbm5uj/uqkYNy44034uWXX8by5cs7dFBaW1vxzjvvYNq0aR0VPE1NTSgpKUFiYiISExMd4zcaMXDgwE7HtFqteO+99xAWFoZRo0ZJGp8WYQOF8U+qq8lAueTCVoXgYHqIhoggUGiouBg4exbwkOgRw/gconHS3q44pHo8Lw8AsHHrVvz0sccwYuRI7Dl6FBs2bAAAHDx4EHv37sW0adO67KtGDsq0adNw00034cknn4TRaER2djbeffddFBUV4a233up43759+7BgwQL84Q9/wDPPPNOx/cEHH0RdXR3mzp2LwYMHo7KyEh9++CHy8/Pxt7/9DZGRkR3v/ec//4na2tqOyqCvv/4aZWVlAICf//zniImJUfRed8EGCuOf5OcDFgvQH7FZnY48KLGxZBTl5nJ+CsO4SlsbGSc2m0uKsMfz8hAQEICP33wTj/z2t3jnk08wZ+ZMbN26Fddddx2OHDmCIDeHZt977z387ne/w/vvv4+amhqMHTsW33zzTa/hJZFbbrkFb731Fl5//XVUVVUhKioKkyZNwksvvYSlS5d2eu/LL7+M4uLijteff/45Pv/8cwDAnXfe2cnokPNed6ETBEFw+1lUpqCgAA888ADeeOMNr03+YTyIxQJ8+im5csUE2P6gvZ1CPkuXAsOH9995GcZFWlpaUFhYiMzMzI7yV4+iknECAPc/8gi27dqF02I+TXs7JcSzBpIi1PytsNQ9438UFAA1NZQT0p8EBtKEd+qU5rqpMozXoKJxApAHZZTzQrcHKXym/2EDhfEv6uuBEyfIc+IJbYCkJKCkRFviVgzjLahsnAiCgLyCgs4GCkALibY2Upr1viCDz8AGCuNfnD5NarH9GdpxJjycShnPnvXM+RnGW2ltVdU4AYDC4mI0NDR0NVB0OpIEaGqiBHfGI3CSLOM/NDaS9yQujjRNPEViIhlKEyYAUVGeGwfDeAuicWK3q2acAEBWRgaEmpru/xgQQOcTS49Zw6jfYQ8K4z+cOQMYDGQgeJK4OMqBKSry7DgYxhsQjRNBUNU4kURQECXNNjZy3pgHYAOF8Q+am4Fjxygz39ON/vR66t2Tl0eTH8Mw3eNsnHiqoiYkhMI8TU2eOb8fwwYK4x+cPUveE3cIsylh4EBSmr0ofMQwzCW0tHjeOAEoHyUwkAyUbpr6Me6DDRTG92lpocZ+0dGe956IBAfTxHv6tKdHwjDaQyvGiUjgxXRNLj3uV9hAYXyf8+e15T0RGTiQxlZV5emRMIwk+kXXUzROAG0YJyLBwSSt39DApce9oOZvhA0UxrdpayPvSXi4YxWkFaKjSZfl/HlPj4RheiXw4rXT7u6cqeZmMk50Om0ZJyLBwTTGi52Cma6Iv5FAFeZbNlAY3+b8eeDCBRJI0yJifx7WWmA0TEBAAAICAlAnejbcQUsLGeyiBokW0espTNzYSIsfpgt1dXUdvxdX0diSkmFUxGqlyp2wMO1OeImJ1J+npIT78zCaRafTYeDAgaioqEBISAgiIiKgU1OJWRCoR5bNRteq1m/+bW3UET062rOaShpCEAQ0Njairq4OKSkpqvw+2EBhfJeiIqqSycjw9Eh6xrk/T3Y2T3aMZomJiUFzczPMZjNMJpO6B7fZqEpGr/dMCwolWK1UgqyF5okaQafTITY2VrVOx7INlKamJnz88cfIy8vDqVOnUF9fjyeffBJXXnml7JP/5S9/wTfffIMZM2bgpZdekr0/w/RIezt5T4KDtes9EXHuzzNokKdHwzDdotPpkJKSgoEDB8Jqtap78JMngf37gawsdY/rThoaSHBxzhwgM9PTo9EEQUFBqoR2RGQbKBaLBStWrEBSUhKys7Nx+PBhRSfOz8/HunXrEKzFRCjG+ykupkdamqdH0jfO/XnYQGE0jlr5BR3Y7RTm1Ou9S7gwNJQ8P/v20SKjv7uj+wGy/ckJCQn44osv8Omnn+InP/mJopMKgoDXXnsNixcvRjz/pzJqY7MBx49T+KS/pbGVIvbnqa/39EgYpn8xGunhjfeCwYMBkwnYtYtCPoyqyDZQgoODkeBiJ9gNGzagsLAQDzzwgEvHYZhuKSmh/JOUFE+PRDrcn4fxVy5coAqe8HBPj0Q+Oh3luOXnA0eOeHo0Pke/Z+Q1NTXhP//5D+68806XDR2G6YLdTh2LAe9KXuP+PIw/YrOR59Cbu3qHhJAHdP9+WhwxqtHvVTwrVqxASEgIbr75Zsn7mM1mVDmpbRYXF7tjaIwvUFZG2ife5D0RGTgQKC3VfuURw6iFwUAhEm+8Xp1JSCCBuZ07KVQVGenpEfkE/WqglJaWYtWqVfj9738vKzl29erVWLFihfsGxvgGgkC5J3a7d7qLnfvzsIHC+ANlZZS74U3ezp5ISwPOnAH27AEuu4wlA1SgXw2Uf/zjHxgzZgzmz58va7+lS5di1qxZHa+Li4vx3HPPqTw6xuu5cMF7vScizv15OATK+DLt7XRD9+bwjjMBAWSkHDtG1XijRnl6RF5PvxkoBw8exN69e/Hcc8+hoqKiY7vNZkNraysqKioQHR2NiIiILvsmJiYiMTGxv4bKeCOCQFoKVivQzW/Ia4iOBsrLyUhhA4XxZSorAbOZKmF8hfBwUq4+eRIYMYK9KC7SbwaK0WgEADz99NNd/mYymXDLLbfg4YcflpWbwjAdVFaSjog3e09ExP48ubm+4fpmmO4oKyMvirdIAUglPp7KpquqgAEDPD0ar8ZtBorZbEZjYyMGDx6MwMBATJw4Ec8//3yX9/31r39FcnIy7rrrLmR5k4ogoy1OnqRSRV9ITuP+PIyvY7XSgiI62tMjUZ/wcOp2XFHBBoqLKDJQPvvsMzQ0NHRU1uzcubPDQ3LDDTcgMjISy5cvx/r16/HJJ58gJSUFSUlJSOqmo+z/+3//D3FxcZgzZ44LH4PxawwGimUnJ3t6JOrA/XkYX6eigsI7qameHol7CAujMG1urvf0FtIgigyUTz75BJWVlR2vt23bhm3btgEAFi1ahEhfWMUy3sOpU9T+fMgQT49EPcT+PAaDb4StGMaZ0lIK7/hqq5O4OAo719bSc0YRigyUlStX9vmep556Ck899ZQqx2KYHjGbScWxG++cVyP25zlzhg0UxrcQ+0758o07MpKqCisqfPtzuhn2HTPeTV4e9a+JjfX0SNSH+/MwvkhFBVBd7ds3bp2Okn+5dYVLsIHCeC/V1b7pPRHh/jyML1JSQmKKQUGeHol7iYsjLwovMBTDBgrjveTnAxaLb3pPAO7Pw/geLS2UPOrL3hOR6Gian5x0vxh5sIHCeCe1tXTjHjDAt7PkBw6kCa6szNMjYRjXKS/3/fCOiF5P6rLcQFAxbKAw3klBAU108fGeHol7ce7PwzDejnizDuz3PrWeIS6OPnNTk6dH4pWwgcJ4H3V1JMyWmOjb3hMR5/48DOOtNDfT79jXFxXOxMaSt9dJloORDhsojPdx5gyVF/tLr5roaEq0O3/e0yNhGOWUl1PSt6/mjHVHQAD9yyFaRbCBwngXjY3A8eO0CvMnhVWxP09Li6dHwjDKKCpy5GX4E7GxQGEh0Nbm6ZF4HX40wzM+wenTgMnkfz0uEhPpc3PCHeONNDaSgeIPybGXEhtLniMO88iGDRTGe2hqAo4dowven7wnACUVBgWRF8Vu9/RoGEYe/hjeEQkKAmw2+g4YWfjZLM94NefOURtzf/OeiDj352EYb6KwkIxsfwvviERHk7w/6xnJgg0UxjtoaQGOHqUL3V8nOef+PAzjLdTXk2HtT9U7lxIXR7IIRqOnR+JVsIHCeAfnzpHnwFdl7aXC/XkYb6O8nBRVY2I8PRLPERJCSbKsKisLNlAY7dPWRrkn4eH+6z0R4f48jLdx/jyFd/wtb+xSIiMpzMM5ZJLx818M4xWcP0+rMH/3ngDcn4fxLiwWoLTUv8M7InFxpN9kNnt6JF4DGyiMtrFayXsSGur73U+lwv15GG+hvJyUn6OjPT0SzxMeTpWIHOaRDBsojLYxGGiSS0729Ei0A/fnYbyFc+fo9+rv4R2R8HDyCAuCp0fiFfCvhtE2lZUUyggO9vRItAX352G0Tk0NcOGC/7SkkEJ8PM1pNTWeHolXwAYKo10EgfQTIiI8PRLtwf15GK1TXk6/0agoT49EO0REkKouh3kk4Sc9rxmvpKaGEsr8UX1SCmJ/ntxcytFhGK0gCFSxEhrqto7j50t0OHhcD6vVLYfvICgImJxrR2aaCmEZnY68wYWFwOjRrh/Px2EDhdEuRiOtNgYP9vRItEliInlQSkqA4cM9PRqGcVBTQx4UN1bvHDyuh6XOPcZPJ5qBA8f1yEyzqXO8+HhOHpYIGyiMdiktJf0EN63AvB7n/jzZ2ZyIyGiHCxeAhga3Li5Ez4lOJyCsLweiIGBowXpknv0e53KWoHDYQknnaG4BBEGnrpcmKoqS/ysq2EDpAzZQGG3S0kIGCod3eicpib4ngwFISfH0aBjGEd4JD++XxUVYKHD7db14N2w24I03gF1rAQADjXmYMSsYmDmzz2N/9GUAmprVGulF9HoSnCwpAXJyVD64b8FLLkabGI0k8sQrjN4JDydjjvvzMFqhqoq8A1oQZ2tqAp57Dli7tvP2v//dswnmcXFkoDQ2em4MXgAbKIw2MRho5cPibH3D/XkYLXHhAt14IyM9Ow6TCXjiCeDgQXodGAiMGEHPW1vJcPFUuW9MDFBbSyXHTI+wgcJoD7udstz7Y4ITBGDzZmDlSmDPHvLceJuIEvfnYbSC3U7ePE8bJ2fOAL/+NVBcTK8jI4E//pGMEjGh3GwGXniBen31NwEBFP5iNehe4RwURnvU1JCbOC7O/efatAn4xz86b4uIADIz6ZGRAWRlAamp2hWLc+7PM3IkrRQZxhOYzeT9TEz03Bj27AFeftlheCQnA7//PTBkCL3+v/8DHnuMxlpQAPzrX8AvftH/yfixsbQQmz6duh0zXeCZjNEe/VVe3NICfPBB1+2NjcCJE/QQ0evJSMnIcBgvmZnaSeIdOJCSZcvKaIwM4wnKyijvIzy8/88tCMCXXwIrVji8oKNGAU891TmXLS6OjJQnniAjZvNmIC0NuOGG/h1vbCx5eCorgfT0/j23l8AGCqM9Sksp98TdK5ovvwSqq+l5bi7FpwsL6XGphLzdTpNJcTGwdatje1xcZ4MlMxMYNIhcuP1JcDCN8fRpNlAYz2C3U/WOJ8I7Nhvw3/8C69c7ts2bBzzySPd5bEOHAr/8JfDSS/T6vfdoATJ1av+MF6Bx2e1k1LGB0i1soDDaormZLtiYGPeep7oa+Pxzeh4QAPz0p509NnV1DmNFfJSW0kToTE0NPQ4dcmwLDqYJxzlElJHh/lVlUhJVJlRXa6OCgvEvjEYK7yQl9YvKa3ML/RvU1gg8+yJw+LDjj7feCtx2W++LnFmzgNtvBz76iDwuf/sb8Je/9K+xEB1Nc8vUqVwQ0A1soDDaQiwvVugFkDoxTt3xP2S30AxXMPxKHNyfBux3fkfcxcdEIBNAJqC3WRFdW4K46kLEVRcivuY8EmoLEdB0SfVMWxsl6V1a+jt0KLmW3RWfj46m8k6DgQ0Upv+5cIGqY8LC+k3lNbLRgEXbnwFqLibDBgYCP/85sGCBtAPccguV++7YQYujP/2JDBV3L5BE4uLoezMaWTG7G9hAYbRFZSV5KRQmekqZGONqi5B15lsAQFtQOPaPuAMtzVIm02A0hGejPDwbuJhvFxNlx03TjQ4vy/nzVE1TUdG1GujcOeDDD4FHH5X/waQSGEgeqJEj3XcOhrkUm43CixcbA8pSeVVIgqkA8757FqHNtbQhKoryTeT0uNHp6HqsrKTwlNEIvPgiGSr94dEICaFu7eXlbKB0AxsojHaw2+nm7kL3UykT44ztb0Mv2AEAJ8fdDH1cNMIhr7S4QwK7XUcekcREYMoUpzc0U76KaLhs3Urbtmwh1/PAgQo+nQRiYykU1dLCDQSZ/sNgIN2RS9SM+1R5VcquXcAHrzgqdQYNokqdQYPkHyskxFHZU11N1XD/+Q/w8MPqjrknIiPJOJo4sf9z1zQOGyiMdqiuptI/FUIgPU6Mhw8DZQfo+YABmPDE1ZgQIn8CFSWwm1voeVciAYymxyAgNycOuUf+B9hsKPjblzg44yeSziO7k2p0NLmsTSZK+mOY/qC0lIwFdxvFgkC5Y+++69g2ejTw5JOuqU4nJJD35cknaZXz7bdU2YPrXR5yn8TFkefGbKY8MqYDFmpjtIPBQF4GdyWT2mzAO+84Xt91l2L9AdH7Kwg6NDX3/TiSdS2sgTR5Dz29EUJ1raT9LHU6HDgu4zINCiKXsdGo6HMxjGza28kD4O62FO3tpFnibJwsWAA8+6w65x4+nKp+RN55ByniYsadhIWRx7Oiwv3n8jLYQGG0Q2mpe8XQtmxxqK1mZwNz5yo+1ORcO2KiBYSHSXsExEbh7IgrAQCBtjaMP/dFn/vodOQ1kV0JERFBYSVvU8RlvJPKSlr9uzMxu6GBlGA3bnRsu/12ElhTM1dk3jzg5pvpud2OWZtfQkxdqXrH74nwcMpR42u2ExziYbRBUxNls7sre761FXj/fcfre+8l8TWFZKYJyEyTGRqasxR44GugvR2jz67B6Cev71UzQnEn1ZgYumFYLNoRkmN8l7IysqLdpYZaWUlJq6UXDYXAQEpsnTfPPee7/XYKk+7Zg2BrExZt/SO+vfYVAG6UCRDDPNXVFG5iALAHhdEKYnmxuwwUZ1G2qVNJmK2/SUgALr+cnjc3A2vWuOc8kZGkhsthHsbdWK0U3nHXdZufD/zmNw7jJCqK+um4yzgBaOHyy1+SjhGAmIZyzP7+RQoxuYuICPIScZinE2ygMNqgspKqeNyRxV5TA3z2GT3X64Fly9Q/h1Suv97huVm9mmLPaqPT0Tl4smPcTUWF+8I7O3YATz9NCxeAynBffpnk691NWBjwf/+H5tBYAEByxVHgjTfcdz6djhKMCwvddw4vhA0UxvOI3YvdlWT3v/85DIElSxxNwzxBcjIwZw49r68HNmxwz3liYqjM2Z1SngwjqiurmTsmCMCnn5Kqq1hGnJsL/PWvXcqY3crAgdi+8P9g01/MhFi3Dli71n3ni48nPRTRIGPYQGE0QFUVhV/c4SYuKXEk1oWFkQS2p7npJsfzL790jxERHQ3U1tLqlmHcQWsrhXfUzHOyWoH/9/8654stXAg884xHevyYk0ZhxxSnyp7ly4GjR91zsshIWrSw57MDNlAYz+PO8uIVK8hDAwA33qiNpNG0NGqxDpBx9v336p8jJIRWn5yHwriLigpaWMTFqXO8hgYyRL77zrHtzjt7bvjXT5zJuhx5uRc7Hdvt1GCwvFz9E+n1lABcUqL+sb0UNlAYz1NS4p7y4qNHgQMXdQwSE4GlS9U/h1JuvNHx/LPPujYhVIOwMEdZNcOoTUkJ3bDVMB4qK4HHHweOH6fXQUGUHHvzze7vai6Bo5PuASZPphcNDVRV1NCg/oni4+l7bWxU/9heCBsojGdpbKTViNqeDcGumiibWxg+HBg3jp5XVlJCoNrExJB3qr6+7/cyjBxaWki3Qw3viSBQ/5uyMnodEwM8/7wjV0sDCPoA4Ne/vqguC5JE+Otf1V9YREdTDgqHeQCwgcJ4GqMRqKtTPUE249wWatwHAFlZ7i1LVIpzLsqqVY5QlFpERdEqj8M8jNqUl1N1nBoGyqlTjuqV5GS68Y8Y4fpx1SY8nKqKxF5hhw8Db7+t7jkCAshjJBprfg4bKIxnKS+nFZSK5cUB7a0Yd9BJDttFUTa3kZsL5OTQ8+JiRzhKLcTPXFmp7nEZRsyTUNh1vBPO6rC33UZGilZJTqZ+PeJ89fXX6lfixcWRweYOCQIvQ4OzNuM32GyUI6Gy92RMwZeIaLxYvTJ5siOUojV0OoesNgCsXKm+1HVUFH3H7shxYfyTpibyTqqhfdLQ4AhvRkQAM2e6fkx3M2YM8BOnZp//+Q9w4oR6x4+NJe8ULyzYQGE8iNlMF6KK5cUhzbUYl7eSXnhalE0KkycDGRn0/PRp4NgxdY8fE0PfcVWVusdl/BcxvKNG3ti2bQ6tk/nztZUn1huLFgHXXEPPbTbKoVHLoBC9UhcuqHM8L4YNFMZzGI1UXhwWptohcw9/hOD2iw1sFi1yJLVpFZ2uc0XPqlXqHj8sjL5jzkNh1KKoiIx/NcKy337reL5okevH609+9CNgwgR6Xl9PEvxNTeocOzqavFR+LrTIBgrjOYqLSd5ZLcrKkF2wDgBgDQyjeLY3MGuWQyHz6FGgoEDd44eEsLYCow6NjWSgqBHeOXeOHgB1F7/Y+8ZrCAigUujBg+l1SQnwt7+pE06NiyOvp8Hg+rG8GDZQGM8gNsZSs7x4xQroBaqEyRt7o3oCUu4mIAC44QbHa7W9KLGx9F2rtbpj/BdRil2NsKw3e09EIiOB3/3OoXK7fz/w3nuuHzc4mJoT+nmYhw0UxjOI5cViyZ6rHD8O7NsHAGgMS0D+mOvUOW5/sWCBo8363r3kXVKLqCi6qZhM6h2T8U8KC8mgdjW809oKbN1Kz0NCgLlzXR+bpxg0iETmxKq5L75QRx06KorCPH6c4K5CjRjDKKC8nPIv1Ihj2zuLsh0YezdsgaEAvOjCDgoCfvhD4M036fWqVcDQx9U5dmAgfUeVlUB6ujrHZPyP+noynNUI7+za5VBLnT3bPW0uVKS5Bfjoy97mqkkYNu1BTNn9OgCg7d9v4IvqubAFSkv6DQoCJufakZnmVMUXH0/XrMmk7dJrN8IeFKb/aW+nOLZa3pNt26hpGYCa+EyczbhMneP2N4sWOUqut29HZJ2KapJiubHaYnCM/1BeTl5PNcI7ztohGg7viCr+gqBDU3Pvj6MZ1+B86mwAQHBbIxLP7etzH/FhqdPhwPFLbsehoeRpckffHy+BDRSm/xHLi9XIP2lt7dT59NCU+0iW2hsJDXX0C7LbMfK4irkoMTHU2K2mRr1jMv7F+fPkjXNV9LCsDMjLo+epqdpUjb3I5Fw7YqIFhIdJexSOvrJj3xEl30vaR6cjr0m3BTsREZRI7KcLCw7xMP2P0UgqiWpU8HzzjSO3YtIkGAZPAJpdP6zHuOoqah7Y3IysM99h/4jbgbAE148bHk43BpPJkevCMFKxWIDSUnV+O87JsVdcoYlmgD2RmSYgM01GqNg2CtifAFRVYXD5Qdy+oLpPj9NHXwagqac5Ky6Ortnqamp46mewB4XpfwoL1Yk5WyzAp5/Sc28QZZNCZCQZKQAC7O3Izf9CnePqdLT65R4fjBLE8I6rYVmr1ZFAGhhIyeG+RECAo++XzQZs3+7a8SIiKFfHT5sHsoHC9C/19VTbr0Yc++OPHaWzl1/uOwmg115LZYYARpxdi+CWOnWOGxNDq+DWVnWOx/gPhYX0m3Q1vLN/Py0sAGDaNFVVpDWDs9G1ebPrxwsLo/Ca2m0wvAA2UJj+xWAgI8XVlVhZGbB+PT0PDQVuv931sWmF2NiOxMEgWyty8r5S57gxMVxuzMinqYlW8Kx9Io30dIfo3Jkzrnst4+Komkc07PwINlCY/kUsL3Z1Jfbeew59gOuvV6f0UUv88Iew6yjZNyfva3VE1oKCqILKz9UpGZmYTBTecbWpp8kEHDpEzwcO1G4TTzWYP9/xfMsW144VFUWLOj8M87CBwvQfVivpKLg60Z04AezZQ8/j44HrrnN5aJpjwAAUZlO5dHBbI7BunTrHjYigcmM/dBczCjEaqYok0MWaiu++c/zuLr/c9UWKlpk3z/H5tmxxrQpHp6PwmprijV6CD/9CGM2hRnnxJaJsuOMOdfv5aIi8sTdCwMUKh6++Uid3JDqa/h/80F3MKEAQyKCNiHDtODYbGSgA3bgXLnR5aJomPt7hITIagVOnXDtebCzljzU0uDw0b4INFKb/MBqptborLdW3b6e4LkCx3su8VJRNAvUxQ1CYOote1NYCmza5ftDISHIXcx4KI4XaWjJoXc0/OXrU8ZubOBEYMMDloWke5zCPq8myMTEUZvOzMA8bKEz/UVhIGelKaWvrJMqGH/1IHal8DXNk9C2OF59/TjkkrqDX08OP1SkZGZhMlP/kqgdl40bH8yuucO1Y3sKMGQ7v7s6dNH8pRa+nua60VJ2xeQmyg4pNTU34+OOPkZeXh1OnTqG+vh5PPvkkrrzyyj73PXjwIL799lscO3YMJpMJ8fHxmDhxIu677z4k+qEIjV9RV0fJma6Ed775hrwwADBhAj18nOq4obgwZDIGlx2gz751q+vu8ZgYimdbrQ4tb4bpjooKujm6IqZWW9vRyBOxscCUKWqMTPuEhgLTp1MOSmMjcOAAMHOm8uPFxlK4rbnZtYWeFyHbg2KxWLBixQoUFxcjOztb1r7/+c9/cPjwYcyZMwePPvooFi5ciM2bN+P+++9HVVWV3KEw3oTBQPFTsS25XOrqOouy3XuvemPTOCfHOXlRVq1yvbtpTIzDdc8wPSEmtbsa3tm82eH5W7jQ9WRbb0JNTRTxuq2sdO04XoTsX0pCQgK++OILJCQkID8/Hz/+8Y8l7/uzn/0MY8eOhd4pe3vq1Kl45JFH8Pnnn+OBBx6QOxzGW3C1vPiTTxzdTxcuBDIyVBua1jEnjQJGjwZOngQuXAD27nVtJRYSQu5moxFISVFvoIxvYTbTDXHQIOXHEAT/DO+IjB1LCbPV1cDBg66Va4uGXWmpQ2fFx5F9twgODkaCwn4M48eP72SciNuio6NR7IclVH6D1UquSaXhnfJyYO1aeh4S4luibFK56SbH808/db1MOCwMKClx7RiMb2MyUeWYC0ntAwx5ZFQDwJgxrhk73khAADB3Lj1vbwd27HDteDExlMvnSj6LF+HxJNmmpiY0NzcjxhcljxnCZKKVmNL/Y2dRth/+0D+b3U2YAIgh1XPngMOHXTtedDS5iv2sbJGRQUmJy7kOQ09vcLzwN++JiHOYx1XRtrg4kmrwE7FFjxson376KaxWKy7rpVzUbDajoKCg48HeFi+jspK8KBf7y8giLw/YtYuex8WRgeKP6HTAjTc6Xov5OEqJiiJ3s5h0zDDONDbSdeuCqGJQWyPSCi96DCIiXAtLejOZmY4+Yfn5rlXQiWrQolfKx/FottKRI0ewYsUKLFiwAJMmTerxfatXr8aKFSv6b2CMeohCT0q6FwsC8Pbbjtd33OE32evdMn06MGQI9fY4eZKMt1GjlB1LLM+uqACystQbI+MbiPL2Lvw2hhZvQaDtorjgvHmu6R95O/PnA+++S8+3bHEtTB0dTV7UyZN9PuHYYx6U4uJiPP3008jKysITTzzR63uXLl2KN954o+Px9NNP99MoGZcRm9MpCe/s3w+cPk3P09N9X32yL/R6db0o0dFUpeFqVRDje1RWkmqzCzpDOeedwjuLF6swKC9m3jxHqfaWLa7lkMXHA1VVfiG26BEDxWAw4LHHHkNERAReeuklhPexuk5MTEROTk7HI110lzHax2hUXl68davj+Z13+rwomyTmzqVGawBVBZw7p/xY0dEUz66uVmdsjG9gt5Ph6kLH8biqcxhQfZZeZGf7TdVJjyQmUkUPQMZffr7yY4lVeH4gttjvBorFYsFjjz0Gq9WKl19+mQXafJ0LF8iwkFte3NpKHhSAJspeQoB+RWAgdW8WWbVK+bHCw0kllPNQGGdEo9WFwoWhBU7ek0WLVBiUD6Bmh+OICOD8eZ9v+uk2A8VsNqO4uBjtTtLczc3NePzxx2E2m/GXv/wFqamp7jo9owXa2pR3Lz50CGhpoefTp/t8rFUWl1/uKNnetYtyUpQSEuJ38tlMH5hMlCSrJG8MAFpbkXF+CwCgPTDEUWbr78yY4SgU2LGDCgeUEhNDYZ7aWlWGplUUzfqfffYZGhoaOtRfd+7cCePFVdgNN9yAyMhILF++HOvXr8cnn3yClItiUH/6059w6tQpXHXVVSguLu5UjRMWFoY5c+a4+nkYLSGWFysxRMXKHQCYNUu1IfkEwcHAddcBK1bQCuqzz4BHH1V2rJgYchX7kXw20wfl5bQgUCpvv2sXgttIVLE4cw6GKjV0fI3wcFpsbdtGDTsPHqTXSoiMpAR3k4mqG30URQbKJ598gkonud1t27Zh27ZtAIBFixYhsod8g7NnKSa5du1arBWFty6SnJzMBoqvUVlJJXFyy4vb2hy9OyIjHbFbxsGSJZQk29hI7uLbbnPkpsghOpqqrIxGRykk47+0tZH+iQvlxc7KseeGL8ZQFYblMyxYQAYKQNL3Sg0UUZW7ogIYPly98WkMRQbKypUr+3zPU089haeeekr2foyPIAikeOjUBfV8iQ4Hj+v79GwOLjmKec3NAIBzKTOw9xvp5YnNLYpG632EhwPXXAN8/DFV4XzxBfDgg/KPExhI+xsMbKAwJG9vsVA5uxIuXKASeAA10akwDxwJwK7e+Lyd8eMpPFtbSzl2DQ0AFOb6iFV4Ptz00+NCbYyPUlvbpbz44HE9LHU6NDX3/hh0dmfHPmcGze7z/c4PQSC3tI9er535wQ8c7dy//ZaSG5UQGUleFDvfSPweo1G5qCLQyXtSMHSxa12QfRE1pe/9oOknGyiMezAaKfzgFO4TPSc6nYDwsO4fkcFtSL+wBwDQFhyB2oxxPb63p0dMtIDJuX5ws42OduhLtLUBq1crO46fJNwxEiguVp6LZLUC338PALDpA3E2w891i3pCLel756afPgqXRjDuobS0x0S7sFDg9ut6EAfbfxCwNgEAgmdNxa036AGwkFiPXHcdsGYNrcbWrgVuuEG+5kxEBCVGGo0kAsX4J/X19BtQWl68fz+FhwCUpU1HS2gMwuHbZbCKyMqiwoHSUiAvDxGjK9EUqLCreGgo5QyNG6fuGDUCe1AY9WltpYtPyUS30xHe4eodCSQkUNkxQJU4lySfS0KnI9ezHwg/Mb0gytsrEVUEKMx4kXM5fq4c2xs6XSdNlMxzm5UfKybGp5t+soHCqI/RSCspuQaK1Qrs3UvPw8Kogy/TN9df7xDC++orh36MHKKjaSXW2qru2BjvQazMVKLYbDKRdhEADByIykHjVRuWT+JkoGSc/V654FpUlMPz5YOwgcKoj8FAIQe5marHjlHeCgBMneonma4qkJwMiCX69fXApk3yj+EHCXdML7gqb79pk+Mme/nlgI5vLb0yYACQmwsAiK4rx4CqAmXHCQig791gUHFw2oFzUBh1EcuLlbiJObzTLc0twEdf9r6qjY29AVeBehcZvtqFTdalko8fFARMzg1BZns7TXSDB7s0XsYLqaoieXslrUdsNkd4R6+npp47e9+FAXlRjh8HAGQXbcbR1Bxlx4mKoiq8adPktxTROL71aRjPU1NDq3C54Z32dg7vXILoQBKEvsury8OGojaKDIsBhpOw11gkl2Zb6nQ4cFxP2irFxT7f34PpBpOJcpiUqL4ePerorDtxInkHtIogaOf3PWtWRzl3VslW6OztfezQAzExZFxeVHb3JdhAYdRFLC92EmiTxPHjFJ4AgClTqITOz5mca0dMtMTy6nDgQuZMAIBesGOYcY+k/XQ6mqytVtBEZzRSoiTjX1y4oLzflZP2Ca64Qp3xuIOmJuD0aXq0KzQG1CQ8nLweAMJa6zCo7KDy4zQ3O4xEH4JDPIy69FJe3CvO4Z2ZM9Udk5eSmSYgM01GifXo6cBjnwIAprXsxLTrLu9zl4++DEBT88UXYn8PV0pNGe+jtZUaTooNKOVQW+toSxETQ4sLLSIm7o8dSxUv584BQ4d6vgnp/PnA9u0ALibLYrKy4wQFkZE5apRqQ9MC7EFh1KOlhQwUuROdzQbsIXE2hIQAkyapPjS/IDvbkUNw9Kgj4Vgqer2jvwfjP5hMdPNW0n9n82aHN2LhQs/f8C+lvZ2MkfZ2Gt/ChZTEm5FB220e1liaMAEtobQYGFK6V3m5cEwMzb1KKvg0DBsojHqIqxS5E92JE46wgifCO4JAMdy6OtdaoHsanY5augM0IR84IP8YYn8PLbjAmf7BaFRWdScInbRPsGiRuuNylYYG4MwZSvpeupTEzAIC6Dd++eVAWhpw9qxnjZTAQBRnkfR9gM3auYu7HKKjae71sTAPGyiMelRW0sUud6LzdHjHYCBvQ2MjrULEOHVhIXkTampoZaKV5LreEA0UANi9W/7+sbGORGfG9xEEMkiVJMeeOkWhIQAYMwYYNEjdsSlFEEh00GCgHI8f/ABIuUSpNTaWjJQhQ4Dz5z3ah6pw6GWOF0ql74OCaO71MT0UjfnjGK/FbqcbulwdBZvNcSMNDgYmK4zBKqW1lTwnixaR27ehwfGoqqIbdWMjvUcUMdPrSWI6LIweISHKxK3cwciR5O61WICDB2nMcjxSzv09kpPdN05GG7gib6/F5Ni2Niq5jYsD5s0DcnJ6zoeLj6dxb9zoyEnxQJludeIw1EYNQWx9GXmTjUZg4ED5B4qIoM8+caLPNGlkA4VRh5oauqHL7eVy8mRH/w5MnuzozttflJTQJDZyJMXPuzOwmps7Gy6ioJnFQqGh5mZatel0dIMXjZfQ0P4XmwsIoFXjxo1knBw+DEyfLu8YYn+PsWPdM0ZGOxiN9JuWa4w2Njo68UZEaCOxvbaWvLg5OTQeKZouYquIDRvIk5KV1f9Gik6HsxkLMPn4+/R6yxbg5pvlHycmxpFPpCThWYOwgcKog8FAZXxDhsjbzznm2t/ibCYTGSTTpvWe3Cd6Si7Vd7BaOxsu9fV0zOpqx/P2djJegoPpGAMHun8CnDHDsbrdvVu+gRIdTRO9knJxxruorCTDWu5vcts28lYA5KnwpCyA3U6hJrsdmD2bkuwv6otIYsAA8qBu3Ehe4KysfvdAnM24rLOBctNN8scgNv00mdhAYZhOlJWRt0DORWWzOQyU4OD+rd5payNDYuFC5cJSQUHkSo6L67zdbqebu7PhUl1NXomKCvcrtY4dSzkFTU1UAmq1yvPkREfTatJoBDIz3TdOxrPYbMrl7bWSHNvSQmGNlBTymmRlKTvOwIEOT0phIf3u+9FIaYhMgjFpNAYaTtJceu4cVeXJQazCKy8Hhg1zz0D7GU6SZVynuVmZjsKpU+SWBShuqiRRTyklJTQBjBmj/rH1epr0U1Joopg4kSa/6dPJYBFXnu4iKMihR9HYSHFtOYj9PcTmcYxvUlVFoVm5+SfnzlH1C0DXkFKjwFXMZjKwxowBrrnG9XEkJ1NOSkwMGT39nBRfmO2ULLtZYYfjmBia27y5GtEJNlAY1zEaydCQW17sqd471dUUbpk2rX9zRIYNo0n0wgX3n8vVah6xv4cHqxsYN2MykQciLEzefp72nths5OVoaQEuu8xhVKjBoEG0mIiMJOOnHynJmO2Yj7ZtU1b+HBPjyAf0AdhAYVynspJWG3JEmux2x43TecXvbtrbyaCaOLFr6aG7CQqiHkN2O4Vf3MnEiY44/J498ic7H+7vwVyktFRergZAiddbqSklQkKAuXPVH1dvNDaSBMDAgeQ1mThRfXG4IUPISAkLI29EP2ENiXTMgxYLJbjLxbkKzwdgA4VxDbud8hXkdi/Oz6cbIEA37f4K75SUUHzZUxUq6elUMeRuL0poKE3eAHm3CmS2c/fh/h4M6P+2vFy+13PXLodC8ezZ/RuWraykMU+aRMaJ3IR8OaSlkZESHEyGXH8xf77judIwj1iF5wOwgcK4htimXW7+iSfCO7W1tNqaNq3/y5lF9HpStAwLc+TfuAtXwzxBQQ4hLsa3MJlI20duaMQT2idWKynC6nTA4sXAggX9U12WkUFJ9AEB/ROWBcj4EpOW9+5V5ml1rsLzcthAYVzDaKSLSM5KSnAK7wQGAlOnumdszthsVEEzfjyQmur+8/VGcjIwerQjNOYupkxxCMjt3i3/XDExZKA0N/f9Xsa7EOXt5YRHLlwg3SKArqGRI90zNmfq6ighNyODvCajR/evTklWFhkpojqtuwkKAubMoedtbcoWFtHR9L35QJiHDRTGNUpKZGsgJJoKHFLq48f3z2qorIwm1QkT3H8uKYwbRyJR7gyhREY6QllGI4Xi5CBOdBzm8S0EgZJM5V53zsmxV1zh3jJcQaBr1mwmT+BVVwFJSe47X29kZ5ORYrP1T2Wbq2EesQrPYFBtSJ6CDRRGOU1NtKqSGd5JLezn8E59PeXKTJ/evzHz3oiJIeOsutq9zcpcCfMEBdEq2wcmOsYJi4VCs3LCO+3twKZN9DwwkMIs7qK1lRJhw8PJMJk923MhWZHhw+kzt7W5/3rIyXH0NTp+XFlfrMhIMkK9vAqPDRRGOQYDrbDlJNoJAtKKLkpki7Ls7sRuJyNq7FhyE2uJUaMo0a+iwn3nmDbNsdJV4i4W+3t4Q6NERhomE+nxyPGg7N/vaEkxbZp6Zb2XUlNDv7cRIyikM2yYdvrKjBxJ3g13J4/rdA4viiA4qqbkIDb9FAsRvBQ2UBjlVFTQBSSjUd6A6tOIaLx4cY8bJ7/6Ry7l5VROPGmSdiY6kdBQCjk1NTkaEapNXJwjV6C0VH5FQmwsreBqalQfGuMhyssdqqNScU6OdZf2SXk5eTvnzqVkWLl9vfqD0aNJ2r+hwb0dv+fNczzfvFn+AiEsjOYVLw/PsoHCKEMUS5JZpphZssPxwt3hncZGuvFPm6ZMzrs/yM6mLqrurBJwJcwTEUHfo5dPdMxF2tspb0zOdWsyAYcO0fOBA2lhoTZWK/3OFiygpPn+brIph9xcMqLq6tynE5SSQl4kgP6/Cgvl7a/TUSjOy6vw2EBhlGE2yy8vFgRkll40UPR694Z37Ha6sEePJgNAqwQGOtqjNzS45xzOzQL37JG3r07Xv2WWjHsxm6m8Xc51u2mTYwV/+eXuqaIxGBytIbSOTkdG2pw59F26y7vonOejJFk2NpYMFHd5Z/sBNlAYZRgMJDUtI3ktvuosohovJpiNGydfJEoOlZW02psypf/bp8slNZVWS+4qY0xKchhpZ8/KLz8U+3u4u4cQ435MJvp/lFp5JwjAd9/Rc72eqlnUxmYj43zsWG17TpzR6Sg8O2sWeVHcoWk0e7ajDFyJ9H10NOUNebH3U+MzN6NZCgtlV8SkFjqFd2bOVHlATjQ3k7t42jTvaDsuTnaRke5bjbkS5omJ8fqJjrlISYk8eftz5xwG7bhxyjt/94bJRIsJTzUdVIpOR7ltM2fSZxCTiNUiKgqYPJme19QAR4/K298HqvDYQGHkU1dHHgo5mfxO1Tt2nb7zDVNNBIEm4ZEjqTTQWxgwgLqyVla6pzTQFQMlOJgmOjZQvJumJkpsl3PdOocE3XHNCgJ5H8aMkd+0UAvo9eSlnT6dDLm6OnWP76omSkQENT300io8lbssMX6BwUDZ9snJ0vc5fx5R9SRyZEzORbK7wjtGI3lNpk6VVV2kCXJzSdLbaJT33UohNZVKmsvKgFOnaEUWFyd9/9BQ8pqNH6/uuJj+46K8/fmgbBzcFQCrte9drtq4F7EABOjwRfUMtHwp7ZpqbpE4pupq+h16Q+5JT+j1ZKAIAhn/Op16SflTppBntaGBjMXmZnmGXHS0w7vjDd7kS2APCiMfJWWKTr13SjLnuGFQoGSw2lq6qBMS3HMOdxIdTQZAbS15LNRGXAELAvX5kENsrHtWiEz/cdE7d/BkICx1OjQ19/4INJYjtrYYAGBMHIFqXUKf+4gPQaCS/j5TSkwm8na6Mx+tPxCNlKlTaX5UK+E9KIhyUQCa3+QmuYvGjZd6P9lAYeTR1kZCSjKrd0QDxa7Toyx9eh87KKSkhFQYR492z/H7g5EjydvhjoRZV8I84kTnA/09/BK7nVz9UVEdnhOdTkB4WM+PYQbHb6Q8c0av7+3uERMtYHJuL+HKujr6XXlTKLY3AgIoH2XyZNIbUius4kqYR68nj05/9BFyAxziYeRhMlF4QE7DvaKiDrXUygFj0BIWB0BleXezmeKtU6fKa4CmNUJCqOx4zRpaMcnsc9QrQ4dSrovJBBw7dnGVJzEfQZzoKipIu4XxLmprqdrEaWERFgrcfl0v1+GuXR1PJ9w3FRMGqXzNGgwU1nRH4q2nCAykZOKCAvXCKiNHUsi3spKu26oqeR7i6GhavMltDqkB2IPCyKOykn7ocioBnMI7hWmz1R+T1UoGyuTJnmsopiZDh9JDbZElnc7hRbHZSL5cDlFRtAp3R/iJcS8mE1W2SZW3r66mmywApKc7esOoRVMT3SxHjVL3uFogLo6MeLXCKs7S93Y7lRzLISaGDFR3Kt+6CTZQGOkIAnXEldPDwym8I0CHoiFuKC8uKaEbem6u+sf2BAEBVHYcGEjJyGriSphH7O/hLvVMxn1UVNDvSmq7h337HCEKdwgqVlRQWXFKivrH1gLDh9P33SI1W7gPnMM8W7bI2zc0lLyxXhieZQOFkU5NDVnhctyWJSUdKqTG5NFoDlO5v0ZNDYVBpk2T59XROkOGkGtX7djxiBGOMtNDhxBglTGBevFE59dYreT50kp5cWsreQJGjdK+iKJSBg+mMLha18qgQY5cncJCCpvLISSE5mIvw0d/HYxbMBrluYmBTuGd0gyVe++IIkQTJtCE4EuIctrR0ep6LAICHNL3bW1IuXBQ3v4hIXSzY7wHs5nyIaRWyjQ2Uq4DQPkhaguoGQx0805LU/e4WkKvpwVGc7N8BdiecEX6PiaGwvONjeqMpZ9gA4WRTmkphR3kdAV2p4FSWkrxcV/V5khMJPlvk0ld8TanFXFq8a5e3tgNXjrR+TVGozx5+wMHHHlG06er2wW8vZ1u2rm5XpewKZuMDDLw1FpgzJnj0HbaulWe4RMdTVVTXub9ZAOFkUZzMxkEcsM7paX0fORINIerqE1SV+doOCijH5DXMWYMyYCrKVedm9vhBRtcsg96mwTFLhFxovNi+Wy/o6REnriXs0aO2vknoghhRoa6x9UiYWHkRamuVud40dEkrQ/QMY8fl75vQADlFHnZdcsGCiMNo5EyweXEsZ3KFDFLRe+JzUZ5LWPH+rabGCCdiIkTKVlWivSnFIKCSMwOQLC1CYMMMnp8iBMddzf2DhoayOMlNbzT1gYcvBj2i4pSV1PIbifjdswY315UOJOVRdewWgKHzmEeucmykZGUu+KOVhpugg0URhoVFXRjkuOWdQrvqJpod+ECxbAnTVLX/axVcnLUF29z+v/IKFMQ5ikqUs9gYtyHyUTGrVTp9WPHyFsKkBGrZrsIUb/Dn3R0EhOpwlAtz8WUKY4cwN27KeFYKjEx5HlRy6PTD7CBwvSN3U6Z45GR0vcpK3MkU+bkqCfG1NBAceypU+Ul63ozwcHkRRHj92owcWJH1VN62W7o7DLi2XFxNMl5WTzbLzEYaGEh1dBwrt6ZrqLisyBQsu7o0fLmEV8gJ4fC0XKMiZ4IDnb8vzQ3y+twHB5O+jNeJHvPBgrTN2Yz3ZDk5J+4I7xjt5PhM3as97Vmd5WsLFp5qhVaCQnpiGeHtVqQaDwlfd/gYPKeXFQHZjSK3IWFzebIPwkOpuo4tRDDw97cFFApgwfTQy2DfqaTlpQcLSOdjjzgagtAuhE2UJi+MRrJ8g4Pl76Pc3hnpkribOXlpBTrL6EdZ/R6umEEB6sXz3au5imSGeaJjATOnfOqeLbfUVNDD6kLC1GeHSAPm5ptFoxG8iTEq6yD5A2IirlNTeqUHI8b50h63rdP3jFjYshAUcOb0w+wgcL0TVGRvKS28nJauQEkLjRwoOtjaGoiVcZp07y/86lSBg8mF3l5uTqNyCZPhk1POUWpxbvkHTMujjxrXiif7TcYjRQGkFrB467wTkMDjSEnR71jehsZGWScqZH/IYZ8AcovOnlS+r4xMWSEekmYhw0UpncaGsiVrzS8o4b3RBCoXHn0aP90ETszdiwZB2poK0RGwpAyDgAQ0WgCzp6Vvm94ON38vKxs0a+4cEG6vL0gOAwUvb6jyksVKispRJmcrN4xvY2ICFJxVitB1bnowNmw7IugIIfApRfg40o5jMsYDGSly0lyVTu8U1lJq48pU3xXGlsq8fFkpGzZQoaKi1UWpRkzMUhUk929W54BGBZGvZl8pQeSL9HWRq58qbIAxcV0nQH0/ym16qcvWlrIQBo1yv/CspeSnQ0cOdJjVVVzC/DRl9Ku58C2abhBH4gAezsaN+/BVwMe6vP7DQoCJufakRkeTv/fEydq/v/Ez2d7pk/E0lapN8LKSspNAOiCdHXV1NpKXpxp0+iGzJAnadAgVVZBZWnTIeDiJLV7t7wwT2ws/X/X1ro8DkZlTCb6f5EaDnVehaspzlZZSVpFQ4aod0xvZcAAIDOzS7JsUBD9Kwg6NDVLe9TZIlCeNB4AENFoRviFs33uY6nT4cBxPRmtJpN6uWxuhA0UpmesVso/kZPzobb3xGSiyc2f49eXEhFBCbMqiLe1hsWicsBFMa4LFxzKv1KIjKQxiCtvRjuYTOTKl9pA07kaRC0DxWolT86YMerqqXgrOh3NY3Y7fS8XmZxrR0y0gPAweY/yLMf8OqxyV6/v1elo4WG1wnHdeoFMAId4mJ4xm6kKYNAg6fuomX8iCHQhzZrl+3075DJ8OHDqFLnxMzNdOlRR6kykmE7Qi927pavz6vX0/1JaSvF1RjsUFUlPjjUYHEnt2dnqaRYZDDR3+IOsvVRSU4GUFDIOLnqVMtMEZKYpqO6pnQzs1gN2O0ZX7cTo6+7s8a0ffRmAJlFCSa+nR0WF5nP62IPC9IzBIK/JmMEAnDlDzzMz5Rk23WGxkDvS1+XslRAURDFku50qnFygaIhCXQWAwjwlJS6PgVERsSmc1PwTd1Tv2GwUms3Nle7F8QeCgsij1NDgeol+bKxjYSDX+xkVRXkoYlNIjcIGCtM9gkCrKjnaJ2qLs5nNZOjIqSDyJzIyyGXsovBSY8RAVCVeXEmdPy8vZBMbS4Ykh3m0g8lEN0Cpia7OzQHVMlDMZpIX8DdBRSlkZFA+XU2N68dyruaRs7iIjaUcJY3LBLCBwnSPxUIeETnNAZ3zT1w1UKxWMpL8qW+HXETxtvBwh8CWQkrTnbwocsoWxdwCL1Kn9HlEY1FKxZvFAuTl0fPBgykE4SqCQOW0o0bJW+D4C1FRtLBQwzhwNijlXLehoVSAoHE9FDZQmO4xGIDGRumrMJMJOH2anmdk0GTnClVVtALj7P/eSU6mG4HYzFEhpRkuhHm4eaB2sNnIdS/1ut2/3xFqmDZNnbLT6mryEAwf7vqxfJVhwyhHqLHRteMkJTm8VGfPyjM4goPlhYU8ABsoTPdcuEArMKkTltribLW1NMFx/Lpvxo0jfRQXVmT1MUMcq+f8fHmCUrGx9H4vEX/yaaqrKXSgpLxYzfDOiBHyvK/+RlISkJ6uzjWjVLQtNpZkJFw1ktwIGyhMV1pbaRUmJ/fDObwze7Zr529ooFJazv6XRmwsMH48eZ1c6fUhTnSC0DkvoS+CgynZjpsHeh6TiRR+JYRWAq3NwOHD9CI+Xh2PR10dXbssC9A7Oh0ZcTab655HpXko0dH0/6XhMA8bKExXjEZH91EpVFXRqhtQR5TJZKLVvFrljv7AqFFUNeWKkaB0ogMopHD+PDcP9DRlZQ7lrz5IuXDIcXOcOlUdlWaDgfLG1Oi/5eukpZEnxVUDITXVUTGZlyc9Hy0ggK5XDXs+2UBhulJRQZa9xIlO1fCOzUalzcOHa16GWVOEhVHZcXNzJxEoWWRlOW4sx4+TBo1UYmO5eaCnaWmRJW8/pNjJCFUjvNPURLo4I0e6fix/IDiYFhZ1da41/9TpHIsLu506HEslKoryxzS6sGADhemM3U7lxXJ6cagZ3qmuJnezGtUE/sawYZScrFQh0nmis9kogVIq4eF0g+JyY88hypdLyD/R2dsxuPTijSwiQp1+SpWVFJZ1Vf/In8jKIuPe1ZJjZwNTbphHzFvSIGygMJ2prqZVsNTwTnU1KZoCFNpx1bCoqaEbLZcnyicwkOLaDQ3KV2SuhHnCwynM48pqkFGO0SjZ8znIcAzBbReTIydPlu4t7Ym2NlrcjB7NDT3lEBND3mJXPY/DhtHCDqCGhFKFEyMiKElWo3ko/EtiOmMwUJggIkLa+50bzM2a5VpYpqWFJkoWd1JOaip5v+SEZ5wZMcLRlPHwYfotSCU2ln4/LmqyMAoQBEpsl2jYp19QufdOZSV579LTXT+Wv5GdTfOeK2rMer3Di9LeDhw6JG0/nY4WNhcuKD+3G5FtoDQ1NeHtt9/Gr3/9a1x99dWYO3cu1q1bJ3n/+vp6/PWvf8U111yDRYsW4dFHH0VBQYHcYTDuoqREXmmvms0BTSbqU+FqB2R/Jj6ebhJKV2R6veOG1dYmfaIDHIYRh3n6H7EaQ0p5sWBHetnFclSxZYIr2GxkyObmcs8sJaSkqFNy7Eo1T2kpVW9qDNkGisViwYoVK1BcXIxsmSqfdrsdTzzxBL777jtcf/31eOihh1BTU4NHH30UpRoXjPELGhvJkpZaXlxTA5w8Sc8HD3atLFgQ6PwjRnDnU1fJzqZVlNKSY6UTnbgaKylRdl5GOUYjhfYiI/t8a4L5DCKaq+jFuHGuh1ONRlpUuNi00m/R6ymx2Gp1rTfO6NGO//8DB6SXL8fEaFb2XraBkpCQgC+++AKffvopfvKTn8jad8uWLThx4gSefPJJ3Hvvvbj++uvxj3/8A3q9Hu+8847coTBqYzRKTrID0Dm8M3Oma+EdsayZGwO6zpAh5EmRI7bmTG6uI8S3f788nYa4OFqNaVj8ySepqKDrT0L+h6rVO3Y7XbujR5N8OqOM9HSqoHPFSAgMpHJxgDxaR49K20/UMVKaXO9GZBsowcHBSEhIUHSyrVu3Ij4+HnPnzu3YFhsbiwULFmDHjh1oU1oeyahDeTkZHFI9GGo2BzSbKfeE1SddJyyMEu+UZuYrnegA+v8T+zgx/UN7O3mtJFbeiQaKXad3/D8rpaoKSEjgnlmuEhJCJce1ta4lmSut5gkLo3JjjSW492vA8PTp0xg2bBj0l1j5I0eOxNdff43S0lIMHTq0P4fEXOT8rgs4uKIa1vbhQF7fBkpIcy1+ePwE9ADqo1Lw9dFs4FjvHpTmlh7+YLXS6o8nOfXIyAAOHqS4ckiI/P1nzAA2b6bnu3dTpYcUnJsHcrJz/1BVRTe2pKS+31tWhhgLNXY0DxyJga52Cq+qAubMkSdLwHRPVhaFZiwW5R3cJ0yg6721lfRQbDZpC87YWPKg1NdL96D3A/1axVNdXd2t90XcVlVV1e1+ZrMZBQUFHY/i4mK3jtMfObiyAJbGQDS1BqKpWdfnY+DZPdALJO5zfshsNLXo+9xHEMiA6VLRKLZmd7XBIOMgOZkeSssHxYkOINl7OfksMTGkpcMe0f7BZKIKOCkhFqdeLWXpM3p5owRqa+lmNmyYa8dhiLg4WqS5UvIbEgJMmkTPLRaHBERfREZSDpPGwjz96kFpbW1FcDcVIuK21h6yiFevXo0VK1a4c2h+j7WJ8gx0OgFhEua5YWXbOp6XD5uF8DBprsGgIGBy7iWqhRYLXVSuajEwDgICqB/Kxo3ktpWbHyROdLt2UV5SXp50Ma/YWMpDMRq5G3V/UFwsvfLOyUApTZsOl+p3jEaqAFIY8me6Yfhw4MQJ6QZnd0yf7gi/794NjBnT9z5iY9jKSk15svvVQAkJCek2z0TcFtKDK3rp0qWY5ZTjUFxcjOeee849g/RXbDYAOoSFArdf18dqubYWWHGcnicn48r7MgGdwoqR+nqy3lk/QX2cNVGUuG1nzOg80Uk1UMSku/JyNlDcTU0NhdOkGAlVVcDp0/Q0NhON0SkAFF63DQ1kxI4YoWx/pnsGD6brtqJCecHA5Mm0QLHZyCC9/35p+4my99Ona6ZcvF9DPPHx8d2GccRtPSXfJiYmIicnp+ORzjczdamrk+fC373b0bvBVXE2sTEgr8LUJz6eJjmllQFTpjgmKuf/cylERQHnzmm2x4fPcOECGaBSckCcOlQXD3ExvGMwUM4Eaxapi15PybLNzcplAiIjgbFj6bnJROrOUhDLjXtItfAE/WqgDBs2DGfOnIH9kknr1KlTCA0NRSr3X/EMBoO87G21eu+Irca5MaD7GDZMuSZKeDgwfjw9r6oCzp6Vvm9sLO2jUQltn0AQgDNnqAJDyvXjVNVR5IqBIobiR43i69YdpKdTJ3dXSo6VaBmFhZFhpKFr1m0GitlsRnFxMdqdhGfmzZuH6upqbNvmyF+ora3F5s2bMXPmzG7zU5h+QI7McU0NxUgBUkB0pVKjupo8J2yYug9XNVGUli2Gh9Nkx6qy7sNkojCaFO9jQ0PHddsQmYTqWBeu28pK8szxdesewsJIuM2VBn7TpjmMRznXbUiIpoQWFRkon332Gd59912sXbsWALBz5068++67ePfdd9HQ0AAAWL58Oe666y6YnKyx+fPnY/To0XjxxRexYsUKfPHFF3j00Udht9vxox/9SIWPw8imrY3ijlIbfDm7+mfPdm0FVV1N3pOwMOXHYHonLIy8KEonu2nTHL+NXbvkedq4eaB7KSuj/i1S+mbt39/hRStLn6H8urVayYMyZgwrPruTrCwK1dTVKds/Lo6S5AGgtBRRF0vL+yQmhvJfXOkLpCKKMmE++eQTVDqtjLZt29bhFVm0aBEie5BbDggIwF/+8hf8+9//xmeffYbW1laMGDECTz75JNJYQdQzGI0Ud9QPlPZ+tcI7zc1krbM8tvtxRRMlJoZUQo8fp4mrpER6QrPYPLC21tGAkFEHm43CO1L1R5zyT0pdKS82GoFBg1xra8H0TWIiMHQoeb2U6pLMmAHk5wMAUot2wTD8lr73iY4miQCTSROFC4oMlJUrV/b5nqeeegpPPfVUl+1RUVF44okn8MQTTyg5NaM2BoP0/g/O4R1XJymTiY7BSXbuR2zAaDIpq6qZMYMMFIA8aFInrqgoMmoqK9lAUZvKSrp2U1L6fm9rKxmoABAdDfPAkYCSvnA2GyXkzpolr6Eoo4ycHCrvd0Vs8WILmSHFu3FAioESGEge8spKTRgo/Zoky2gMQSAXvBQXMdDZxe9KeMduJxfiiBHSQ0uMckRNlIYGZeEWsbsxIL95YFCQpmLaPkNpKYVnpWhlHD3qSGydOhWCXmFopqqKkjdZIbh/GDyYHkrF05KTOxaRiebTCG+SmHQbGUnaOhqowOO7gz9TU0OZ4lJllXfscDx3pfeOxUIrag7r9R9paQ5NFLkMGEC5QgC5fysqpO/LzQPVp62NwjtS+1Y5G5UzFIZ3BIFyxkaNkr6gYVwjMJC+78ZGVTqTZ5RJXFzExDjaJ3gYNlD8GYOBfvxSJpyqKnI3AmTVuxLeERsDcv+O/sNVTRTnG5uTGmmfREeTQcrVPOpRXk7/j1Kqd2w26skCkLdl3Dhl56ypoYWMaKgy/UNGBv0/q1CFl162q5c3OhERQfcFDcjes4Hiz5SWkgteqoaCGuGdtjYK63BTyP7HFU0UpeXGAQH0WymTWEXA9E1xMV2LUlpDnDrl8JpNnKg8d8RkojChq80FGXlERFAoXKmBkpHRkeeXYjyO4BYJVUE6HV235eXKzqki2tCzZfqf5ma6aUh1EzuHd1yp3jGbqevqoEHKj8Eow1kTZcCATn9qbgE++rK33IQ0XBWXjtiaYiA/H198VIvmcInqv/bhCDpVh8mBpcicxdoZLtHcTAq9UpOOnY1JZyNTDi0tZNjwosIzZGcDR45IVwx2Rqcj7+cXX0Av2DG4dC+Ay/reLyaGcsfa2jyaEM0eFH9FLP+UYqBUVTm6YqamKs8dEQSq68/J4caAnqAbTRTxv0EQ+u5gfX6wI+9o4JndkrpeNzXr0NQaAEtjIA6sPNPfn9j3KCuj/z8pBoogOMqLAwKoR4sSzGZHd2ym/xkwgOQYlIZcnAzT1GIZeSgWi8dVZdlA8VcqKylLW0pTKOfqHVd673BjQM+TkUH/5xerOibn2hETLSA8rO9H5VBHHsqwsm2S9gkPE6DT0W/H2ty1USgjk8JCMjakiKSdP++4qeXm0rUnF0Gg6q/hw1mYzVPodLSos9vJoyGXnBw0h5FBm3zhMHnh+iI4mET5PGygcIjHH7HZaKKTKgCkVnhHjGNzY0DPcYkmSmaagMw0iTkpQhpwKBUoLcVAw0ncPrMCGNi3wN9HXwagqRlAu41+e3yjU0ZdHeWfxMdLe7+TOJvi8I64qGBZe8+SmkrXrtEoX8tIr0dZ+gwMy1+LQFsbcOiQtCrM0FBqgyL24/IA7EHxR6qq6CEl4c1sVie8095OK4DsbGX7M+rgiiaKTgfMnet4vX27vP3tdtcaoPk7ZWXkdldSXuysZSOHqiq67qUaRYx7CAqi9gINDYr0STqpB0utwgsIUF7erBJsoPgjBgMlvknpgaOWtD03BtQOrmiizJvneL51q7x9BYHLjZUiCNRNOiREmrhhRQV5WwAKzyjxWtpsFFIYNoy7FmuBjAzKPVLQV8uYnIvWoItyEvv3U/jGC2ADxR8pLpYunexsoLgizlZTQyt3KcqXjHtxRRMlOdnRhKyoyHETlIJOx80DlVJdTe52qYaG8ypZqTib2ENJSXsERn2ioujaU3Dd2gOCUDJ4Kr1oagKOHVN5cO6BDRR/o76eVldSwjsmU0ezKaSnKw/vNDWRYcINxrSDK5ooSr0oej1571xpI++vlJWRe19Bc0DF4Z3qagrJsnKsdhg2jDzfCpSZi4fMdLyQI7boQdhA8TeMRkq2kzLRqeU9MZtJfVZCQiXTTzhroshl1ixHmGHbNukxcZ2ObrIGg/xz+jN2O3D6tPQqnJqaznljSjwgoqAiLyq0RVISLRYVXENlKZPQHnBR02TvXo/nl0iBDRR/48IFh1JgX6iRfyI2BszJ4caAWqIbTRTJxMU5JNONRoeXTQpBQfLCQgx9xwaD9ETV/fsdYTRXkmMTE1lQUWvodKQsa7PJziNpDwxFxeBJ9KK2FigoUH98KsN3DH/CaqW8ASlVAEaj4weckaE8Di2KSnFjQO1xiSaKLObPdzzftk36fnFxFK7g5oHSKSsj7YrwcGnvVyP/hAUVtUtaGnlSFGiUlDlX88hpWeEh2EDxJ0wmMhikGChqVe9UVdFKXYlIFONeRE0UJcmy06Y5JLB37KB8FilER9PNj6t5pNHeTgsFqaXFTU0kiw5QQq0SefqmJvKw8aJCmwQHU5dji0V2wvmFtKkOT/aePZpPWGcDxZ+orCQvipQKHjXyT1pbKZSUmalsf8a9iJoo9fXyJ6rwcEf4oK7OcVOUck6AmwdKpaKCFhZSq3cOHXIYi9OmKQurms0U2rmkXxOjIdLTydiXKRXQFhJFqsIAhQ0LC90wOPVgA8VfEAT6MUpxExsMlJQHkHExeLCyc4o9PDiOrV1c0URxFm2TU80TG0u/RSWhJX+jpIQMDqkN21xtDigIFE4aPpxzxrSMK1IBMxSItnkI/gX6C7W1tBKTUl6shvdEbAw4YoS0fj+MZ3Blops40RG627uXxP+kEBtLoUau5umdlhYSZ5OaHGu1AgcO0POICFIelUttLa3MWftE+2Rn0/+53Goc58RpjeehsIHiLxiNVOIpJRdEjd47dXUUN+fGgNpn2DBlE11QkMOAbWnprL3R1342G4UvmJ4pL6ccLimdiwES3xIbwU2ZomxhUF1NXlOpOS+M5xClAuRW4iUkOMQWi4vpd6ZR2EDxF0pLacLqQ7I6oq6CVm0AkJWlPDxjNjukmRlt44omilLRtqgoUpX1Ai0Gj1FURP9KNTRcbQ4o9svKypK/L9P/hIeTF0XJdev8+9BwmIcNFH+gpYVi2RLCO2lFKnhPuDGgdyFqoiiZ6EaNIr0MADh8mDxnUoiLIyPWw+3cNUtjIxlwUpNj7XaHgRIcTOE3udTU0PmU5pwx/U9mJiWey83n8pI8FDZQ/AGjkUrSoqP7fGtaoZOBojT/xGymmxbHsb2HzEwKvcid6PR6YM4cem6zdc5f6o2wMDoXlxt3T1kZ5YNIyRkDKKlddPWPH6+s55Uobc/9sryHlBTSRKmqkrffoEGOMvL8fPn79xNsoPgDFRV08+hDdCmqvgIJVRfDO9nZ9ONXQm0txTilNiRkPI8rmihKwzzh4dw8sCfOnaPrVWoljXOyoxJxtpYW8rywtL13ERhIc61Uz6Uzzr8Tqflj/QwbKL6O3U4lnRJ672SWbne8UOo9aWykGw9PdN6FK5oomZnU8wUA8vLIYyeF2FhuHtgdNTWUMyaGzvpCEBxuer2eEmTlYjbTSjw5Wf6+jGdJS6PiB7lSAV6Qh8IGiq9TVUUPCa7irBIVDBSTiUI73BjQ+1CqiaLTdfaibN/e83udiYwkg5bDPJ25cIH+D6R2Li4tdVREjR4tKZTbhYYGMlCl9OhitEVCAs25cr2fWVmOefr4cfoNaAw2UHwdo5Gkq/sQaIuyXEBizTl6kZ2tbCVls1EX1JycPquFGA3iiiaKs2jbli3S9tHpKKwgVqsw5A05c4ZydKReQ87hHSXNAevryVgUvWCMd6HTUZJ7W5u8qjidzhHmsdmoyaTGYAPF1ykulpQLkqpG9U5tLVVn8ETnvSjVRElOJlE+gH5zUo2O2FjSYdDg6s0jmM30fUit3gFcLy82m+malSoIx2iP1FSae2tr5e3n/HvRoGgbGyi+TGMjTXYSwjvphSqEd6qqyPsSEaFsf8bzuKKJokT6PjqaKsw4zEOUlpLHU+o1ZDJ11i2SG1oVvZ7DhrHX05uJiFCmiTJihEOU79AhzbWfYAPFlzEYpJUXl5UhrpqaRpkTh1OynFxaWymjnEWevBtXNFFmz3ZUnWzfTgnafREQQDdGbh5IxsKZM9JzTwDXvSei15MlAbyfjAy6/trapO8TEOAIC7a1kZGiIbhJii8jJs71lfjmpF1RkjkHEmsHOmMyUamq0tJkRjtkZjpWU3JKxWNjSYPj0CHKfcrPJyE3KfsVFck/n69RWYnzeY04WJEK635p3ozL1u2BmC22pmkWLF/2neTa7NwyqbqaRN3Y6+n9iB2oq6rkzcMzZgAbN9LzPXuUlam7Cfag+Crt7VReLCWjv5OBoiD/RBAoh2DECK4C8AX6WxMlNpZW8v7ePLC0FAdL4mFp0KOpWdfnA1VVGFh5AgBgiUxBRWiGpP0EgYyfoECBVtyZmZ781IxaBAVRgYLFIm+/sWPJcwoA+/bRvUMjsIHiq1RW0uqor144ZWUdCY2GhBFoilRQHiyGkURlQsa7cUUTZdo0qswBqOmklMkuKIjep+GmZW6nrQ04cwZWkIGv0wkID+v9MaZkA/QChdFKsuchPBx97iM+YqIFTE6rIa0Vpf22GO2RlkYVm3KSzoOCHNo5jY1UcqwROMTjiwgC/cja2/t2mTt1Li5Mm6PsfGYztXaXKsvNaB9nTRQ5uhrh4WSkbN9O+x4+DEBCbkR0NKnKTpnin164igq6jvRUvRMWCtx+XS+VVDYb8NV6eq7XI/fnVyB3gMzKq/wKYPi8PhWmGS9iwADKJyotlda5XmT6dGDbNnq+Zw8wYYJ7xicT9qD4IqWllGwnpemXU3inMFVBeMdqpX+HDpW/L6Nd4uOpdNHVMI846fVFXBzFzv21eWBRkTxv1f79jv4pkyfTjUkOojZSerq8/RhtI2qitLRIS1IXmTTJYaju3StvXzfCBoqvYbcDx47Rv32Is6GkhDQrAJgGjkRjhMxJDqBJUrTaGd9CqSbKhAmO1duePQiwtvT+foAa1LW0+Ge5cXMz9d7pKxzrzPr1judXXin/nGYz5RrJNWwY7ZOaSt5sObkoYWEOr0l1NTWf1ABsoPgaxcWkiyAlruxqcixAyY0jRjjyDhjfQRTvktsrJyjIoaXT2oohJRL7fERE0I3a35oHlpXRdyzVQKmsvBg6A+mejB8v73yCQB6UnBzpzQgZ7yEqihKf5Xo/NSjaxr9OX8JmA44cITefmJXdG075JyUZCgyUhga6qbCb2DdxRRPFKcyTcX6LtH3i4qg82d+aBxYWUt6N1NybDRscRtzixfJzdiwWEudir6fvIupRiSF4KUyd6jBY9+zRxEKBDRRf4vx5imVLyT0pKaFcFQAYORLNEQrUT0wmSqaU2nWV8T4yM0mAT67C5KhRHb+LlLJDCGmV4G6OiPC/5oF1deT1lCozb7UC331HzwMCgMsvl3/OqioS9RIVRBnfY/Bg8q6JeUpSiI6mZpMAJW1roKqODRRfwWol70lQkDSxqx0u9t4RJbKHD2eJbF9GqSaKXt8hfa8XbMgq2dHHDvDP5oEXLjg8GlLYs8eRWzBjhry8FYAq+2w2Tmr3dYKDyfspVxPFWaTt6FF1x6QANlB8hXPnyCsiJfdEEBz5JzodMHOm/PNVV1OCHTcG9G1c0URxCvMMLd4ibZ/YWLpp19fLO5c3IgiULxYSIj0XxDk5dskS+eesuah9IsXLyng36emUfN7UJH0f527YR46oPiS5sIHiC7S2UtJcWJg0TYNLwjuyOqeKVFeT90RKrgvj3ThrosghI6PDgE02nUR4g7HvfaKjKezhD2Ge6mpKkJV6/ZWVOUS0Bg8GcnOVnTM7m25cjG8zcCAtWOV4PwcMIM8LQL83D6s7s1CbL3D2LK06pbptXQ3vNDXRBMcS2f6BqIly9qw80TadjrwoH3wAAMg4twXADb3vIzYPvHDBMVH6KmVllGguNVn1Uu+J3NBqSwu5/jMy5O3HeCd6PS0iz53r2NTcAnzUR7+mUdEzMR5nAACH3tyHkqJRuO55hR3uXYQ9KN5OczN5T6KiKJmxLwTBYaAoDe+YTI4kLMY/UKqJcjEPBQDSz8vozVNYSDdUX8VuJ60JqWqfra3Apk30PDgYuOwy+eesqqJO5cnJfb+X8Q1SU4GYGATp6boVhL57NZ1JdtwTBhXuRpNFZoK8irCB4u0UFFDGdVKStPcXFdHqFKCMbanVAyI2G904RoxgDQV/QqkmSnIyTANHAgDiaoqkJcDGxtJ5ysrkjtJ7MBrJfS71+tuxgyqcAPJ6RkXJP2ddHa2o/bGVgL8SEwNkZmJyigEx0dL6NFmThsASS6HZJFMe4gIaPTZ8DvF4M42NlGkdGyt90nESZ+sQ05JDbS1NqtwY0L8QNVH27ZNdVl6UNR8DjKfoxdatfYcYgoLIS7B/P8XQ+1JE9kbKysjQl/rZ1q1zPFeSHFtfT0YNX7f+R1YWMo8fR+aEBGledgConw58WgpdchKuvM1zasO8BPZm8vNpFSY11KJGeMdspiS7iAj5+zLejUJNlJLM2bDrLk4127dL6/MhNjwTFVN9ifZ28nxKzec5d84hPZ6ZSVVVcjGbHV4wxr8YMoQSseUILi5ZAjz1FPCf/3RWmO1n2EDxVurqyHuSkCA91FJY6BDfGTNGvoaCmGTHGgr+iUJNlNawWFxInkgvjEYyrPsiIIC8J0eOOCrOfIWKCsrjklq9s2GD47mS5FibjfKHsrNZs8gfCQmh0J6c8KzYX83Dvxc2ULyVU6co6U2Ou93V8I7JRDeplBT5+zLejwuaKOfS5ztebJWYLBsTQ96GPXt8K2G2pIQ+l5T+VU1Nju8rLKxzp2ip1NZSGJg1i/yX9HT6vTU3e3oksmADxRupqSE9hAEDpHtPnMM7en1nxUAp2O00WY4cycmx/kxaGlWeyNREKRoyA+0BFxWOd+ygG7QUUlMpsfbYMXnj1CotLVSuLTXUsnWr46Yyb56yfJzqavJ6cljWf0lOpoWlHOl7DcB3Gm8kL4+MFDnx5PPnybUMKAvvWCy0CuMkO/8mPp6SXE0mWbu1B4WhLO2iSmV9vfTckqAgMsQPHXL8fr2Z8nK6SUi5/gShs/bJ4sXyz2e1kpuetU/8G71euSK0B2EDxdswm4ETJ6isWE580FVxNjE5Vo5QF+Ob5OTQJCenUyqA4qHzHS+2bZO+Y0ICeRH27pV9Ts0hlllLqaYoKKC8MYByCJTkflVVkYHH0vbMRU0U1NV5eiSSYQPF2zhxgqxgOR4Q5947SsI7ra20n9jCm/FvUlPJZSzTi1IxeKJDv2PPHnnx8LQ0qmY5cULWOTVFYyN5MqUmxzp7T668Utk5a2vJuJHSAoPxbeLi6DqS2/jTg7CB4k0YDJQcK1cJ8tw5R2+T3Fz5bdbNZopfSmlEyPg+QUGUi1RXJ8tdbA8IciRnt7aSpopUgoNpgj1wQLZhpBnKyhwJq30Q3Frv8HpGRChvSREezmFZxkF2NlV1yVWE9hBsoHgLgkCJgo2N8g0M5/CO3OodQSCPzYgR0kV+GN8nM5N+h7W18vZzrkKRWs0jMmAAGUX79klPstUS586RcSchyTzz7CagrY1eXHYZlYrKRVxYcEsKRmTIEMojk6OJ4kHYQPEWKipIrEmuF8PV6h2LhfJO0tPl7cf4NjExtBqT6y4eOdJRGn/4sPx4eFoa5WYUFMjbz9PU1pKeixRZAEFAdr6LyrGCQB6U4cO56o5xEBYmXxPFg/Av1xsQBBJla22V34Pj7FkSxwKAsWOVhXeysiS5pRk/Y9gw0kaRo1Gi1zsaCNpsnb17UggNpWtg716vmWQBUHhHlJvvgxTjccRYLvYhGjNGmX6JxULXOmufMJeSnq5IEdoTsIHiDZSWAmfOKMvEd6V6x2ol4yg7W/55Gd9n0CD6TYoGsFRcCfMAVMFWXU29eqTI5nsaQaDrNyxMUuXdiLNrHS+UeE8Aqt7JyJC/IGF8H4WK0J6ADRStY7dT7ondLl+k6dLqHbk9FcxmuhkMGSJvP8Y/CAgARo2iUIKcpLuMDEfi5qlTlPwtB52OPAMnT9KNX+uYzaR/IqF6J7S5Bhllu+hFTIz8kCxA+Tk2G1fdMd0TEEBhHi8oN2YDResUF1OYRkkFzZkzjtXtuHHyNUwsFkqO5RJFpifS0+nGKyfcotM5wjwANRCUS3g4hXv27tX+RFtaSkacBCXXrNPfIsB+MQH48suVXXs1NfR/wgsLpifS0ijcKFMRur9hA0XL2GzULE2nI/ewXFwJ79TVkaQ5K1AyvRERQcJtciW0nQ0UJWEegIx2gwE4eFC76pg2Gy0UpOSO2e3ILiDtEwE6ZcqxABkow4aRAccw3REfT15IjYd52EDRMufPk/KkktwT5+qdgAD54R2TiYwTqaJSjP8ydCgZ0I2N0vdJTibvHEBeQlFhVQ56PXkJjh1zKK5qDYOBHlKuo8OHEdlA4a6KwRPl6x0BlPgYGMhVd0zv6HRkxLa1aVoThQ0UrWK1kvckKEiZBkJBgcM6Hj9eXvVPezvlvAwbJv+8jP+RlEQuY7nJsvPnO54r9aJERtINee9eeQZSfyAIZHi1tUnzZjgpx54ZoVA51mx2NIZjmN5ITSVPilwto36EDRStcu4ctWVXqt4qJscC8sXZzGbSa+ASRUYKOh15Q9rb5QmozZrl0OjYtk15Rc7gwVTGe+iQsv3dQXs7GU3790vTPjGb6b0AGsMSUJ46Vdl56+spATIgQNn+jP8QHk7eTw13OJYtDdrW1oa33noLGzduRH19PYYOHYr7778fU6ZM6XPfAwcO4P3338f58+dhs9kwZMgQ3HDDDVisNNbqq7S2kohVWJiyJDm73WGgBAbKD+9YLMCcOco8N4x/kpZGiqXiCl4KMTHAhAmUQ2IyAfn5VBUkl4AA8hgcO0ahDU9Luzc00PV3/Dh5l6RoCG3c2GGg5Q9dAkEfAECm672+njxKvLBgpJKZSfeatjZqJ6ExZHtQXnzxRaxcuRJXXHEFHnnkEej1ejz++OM4duxYr/vt2LEDjz32GKxWK5YtW4b7778fISEheP7557Fy5UrFH8AnOXsWuHBBuZv20vBOZKT0fQWBDKPMTGXnZvyTkBBSiXVF+n7LFuXnj4lxeC3kCMepjdEIrF1Lworp6dKME5uNDBQAdp0eBUMVLtjMZjJOOG+MkcqgQWREazRZVpaBkpeXh02bNuHHP/4xfvrTn2Lp0qV49dVXkZycjNdff73XfT///HMkJCTg1VdfxQ033IDrr78ef//73zF48GCsW7eu1339iuZmsmjF2LoSvvjC8VxueMduo4l1wABl52b8l4wMynWSU/Y7bZrDU7dzJ+VeKSUtjXI+jh5VfgxXOHMG+OYbWlwMHy69imb//o7eKBdSp6EpXEJI6FLsdvrusrMlicExDAC6x2hYE0XWHXDr1q0ICAjA0qVLO7aFhITg6quvxvLly2EwGJCUlNTtvk1NTYiKikKwkxspMDAQMax02JmCAuq745Sger5Eh4PH9ZLm7pSyA1iwZw8AoDksFl9Xz0b7l33Ho5vFRacAOjdPcoxcEhJIHOzkSemaO2FhZKRs20YhiiNHAAnh4m4JDKQw06FD5Enor+7bNhudc88eGsPQofKuH6cF2lmlybE1NeRFYu0TRi5paSQX0NAgz9veD8gyUM6cOYMhQ4Yg4hLBoZEjRwIAzp4926OBMn78eHz00Ud48803sWTJEuh0Onz33XcoKCjAM888o2z0vkZjI63+YmM7JbkdPK6Hpa7vCU9vs2Lirv92vN477j7UtUcAMvIWg4J1no/hM97L8OFAXl63Me3mFuCjbozlQcELMB/bAABFH27Drgsyc6YuEhQETM5NQGZbNYV6rr7a/XH1piby/Bw9Sl7H+Hh5+1dWkscUAJKSUDF4AqAkQlVdDUycqLkbDOMFJCaSYVtcrLnfjywDpaqqCgndxDfFbeZe4lj33HMPKioq8P777+O9994DAISGhuLZZ5/FnDlzej2v2WxGlVOmcXFxsZxhew/5+aSZkJPTabPoOdHpBIT14jUedfQzxDSUAwCMSaNRPnIBwnXSBayC7G2YPCdOmSgcwwA00aWkUC7GxdV8UBCAZkAQdGhq7rrL+fiJmB4chdC2egwu3oO2uha0Byn4DTYDB47rkXlFGlXBnThBN213YTaT5+fsWQqLym1FAQAbNjieL1kC6BQUVlqt5LFhUUVGCaImyunTFCrUUPdrWQZKa2srgrqpKhHDNq29dEcMCgpCamoq5s+fj7lz58Jms+Hrr7/Gc889h1deeQWjR4/ucd/Vq1djxYoVcoaqHIuFwiyDBtFE21/lenV1tApLSOjxBxIWCtx+XQ+Z/SYT8MHH9Fyvx8CnfozbM2WUbTY10TGumCZz4AzjRGAgJctu2NAx2U3OteNAryHKQJRmzcGw/LUIsrViuGk3ioYukHXa5hYygKxWkNckPh44cIBCPe7Ipzp/niT6zWaa3JXki1mtwLff0vPAQGDhQmCLgrFUVdFn7K+QFuN7pKaS5762Vr4X0I3IuqpCQkJg7WaWaWtr6/h7T7z66qvIy8vDm2++Cf3FG/Bll12Gu+++G//4xz/w3//+t8d9ly5dillOyZ7FxcV47rnn5AxdOtXVpMAaEEAX/IgRFPJwd67MqVM00Qwfrmz/t94itzoAXHWV/Cocs5n0JHoI0TGMZDIygLi4jskuM01AZlofJbPD5gBPUhffmY1bMPO6ub2//xI++jKgs3dmwABKWt27lzwTShPOL8Vup4XErosN/VzJ19q1y5GcOGOGtIqf7qipAcaO1WSZKOMlREZSgvWhQ5oyUGT5chISEjqFWkTEbYk9CBJZrVasWbMGM2bM6DBOAEqSnTZtGgoKCro1fEQSExORk5PT8UjvDxnnQYPopr1+PfDJJ8CmTVQh4EqVQU/U1JBmwoABytxrhw87JsyYGOD22+Xtb7dT9VBOjqbce4yXEh1NN245pYsjRzo8HYcOkSfTVdLSyBuan+/6sQAqX966Ffj+e0oqTEtzLZncSTkWV7qYHJudrXwcDAPQwkKnc889TiGy7kbZ2dkoKytD4yWS0nl5eR1/7w6LxQKbzQZbN5r/NpsNdrsddqUqku4iNJRi6Dk59PzYMSrfXbmSJlA11ffy8miiUWK5Wq3A8uWO18uWyU90qqmhFS/372DUIjubkk+au0k66Q693tFA0Flo0BVCQshY2revo4xXMdXVZFDs30+eRle1RkpKqNoJoHmmlxB3rxiN5OVl7RPGVQYPpkWChpRlZRko8+fPh81mw+rVqzu2tbW1Ye3atRg1alRHBY/BYOiUyBoXF4fIyEhs3769k6ekqakJO3fuRFpaWq/hIY+i09HNOzubVkwNDeRNWbmSygPPnnVNGMpspmS+pCRlq7HVq0l3AaCJaoG82D0A+kEOGyapHTzDSCIlheLacvrzqNHh+FKSksi42L9fuZR+cTGwZg1d69nZ6lwnXZJjFVz7dXWUmCs2XWQYVwgKohQDDfXmkRWYHTVqFBYsWIDly5ejtrYWgwcPxvr161FZWYknnnii433PP/88jhw5gm3bqHQwICAAt956K95880089NBDWLx4Mex2O9asWQOTyYSnn35a3U/lLoKDKfQzaBBNDgUF5P1ITKRJIiODdBjkTDYnTpD+g5IEN7OZwk8ArUAffFB+iKalhX6YWVnyz88wPaHXU9jm/HnSCZGSbJ6ZSV684mLKyTIYXM+J0unIUMrLo2PLuZnb7RR63bWLVGqHDVMnBNraSmEigOaUyy5TdpzKSso94bwxRi3EarSmJk+PBICCXjxPPfUUkpKSsGHDBjQ0NCArKwsvvfQSxo8f3+t+d999N1JSUrBq1SqsWLECVqsVQ4cOxbPPPov5zl1NvYXoaHq0t5MHYvt2qhoQw0KpqX2vtAwGmoiVtFUHgLffdnhvliwhgSi5mEy02uXup4zapKdT2LK6Wnolzdy5wPvv0/P164F77nF9HOHhVDq/dy8tBKSIyLW2kvDawYOUvKqmANr27Y7Oy3PmKNOeaGykEJbS0BDDdIdYDVZerol8RNkGSkhICH7605/ipz/9aY/v+cc//tHt9iuuuAJXXHGF3FNqm8BAWsEkJdGkUVJCruC4OFpxZWWRAXLpClIQKK+lsVHZ5Hf0KFUbATTh3nmn/GPY7XT+uXO5+ymjPmFh5EXZvl26gTJvHvDhh/Tb/OILYNIkYMwY18eSkkI6D/v3k8eiNy9nbS2N+dQpWmioLV6lRnJsRQV5g3hhwaiJXk9hnrNnlen6qD0cTw/Ap4iIoDCPKHW9bx/w2WfA559TKMe530FFBU2YSkI7lybG3n23sknUYqHVISvHMu4iK8shoy2FgQOBW2+l53Y78PLL6lT06PW0EDhxgsJOPVFWRvkmBQV0HattnJw7R9c9QN+NU0sLyTQ30+cZPZpbUjDqI2qiaKA/Dxso7iAggPJShg+nFY7JRAm1zuXKR4+SGzkqSv7xv/kGKC2l58OHA5dfrmycZjNNwlL7pjCMXAYMoFCPwSB9n5tuotwKgMJDr76qPMHVGbEB5549jhCLiCBQVc2aNQ7xNXfoijh7T5Qmx1ZUUL4O991h3EF0NC20pVbguRE2UNxNaChZpMOHU8z46FHgyy8paU+J96SqCvj4omKsTqcsMRYgUTe9XlneCsNIRaejUITYbVcKAQHAr37lEEc8eBD46it1xjN4MFW9HTxIRglA18KuXaTqqteTZ8Md8femJkd1UlhY56olqbS20nc5ZowmcgQYH2XoUPeLk0qAf+H9hV7vyEtJTSXPipJyxXfecVi2ixcrcxED5NVJSqIJm2HcSWoqhW7kCLfFx5ORInoY3ntPHcG1gAD6zR87RvlidXVkmOzaRd4epQnrUtiyxZHUPn++shh/ZSV5pFiziHEnoiaKh2EDxRMEBysK7QysOEbNyQDaX0liLEArx/p6SmBUSwKcYXoiOBgYNYpySQTpzSsxYQJw44303GajfBSpuSy9ER1NXoi9eymkk5dHIRN3hjoFgcK8IkuWyD+G1UoelDFjOKmdcS8hIVSN2k3vvf6EDRQvQWdvx+Td/3FsuOsu5RNqXR3ty6swpr8QDQC5Ca+3306GNECib//4hzwjpydSU4HCQsqNGTaMJmR3UlBA+i4Ahbzk9soCaKxDhijbl2HkMmYMLRI8CBsoXsLo018jtvbiBJedDbhSrm0y0SQXF6fO4BimL0Q1ZpNJ3n4BAcCvf+3wOO7ZQ14PVxG7Lg8d2j/eCFe9J+3tlNg7dqzHV7WMnxAR4d6QpwTYQPECQpuqMfH4B44NDz2kfFIVExW5uRjT34hKrK2t8vYbMAB49FHH67ffpnJdV+mvEt36eodmUWQk4NSZXTJGI90sWPGZ8SPYQPECJux/G8HtFxNjr7iCKoKUYjbThM8likx/M3gwPeR6UQBg6lTg2mvpeXs78Je/aEaOu0++/96xMFi4UH44yWajsOy4ce4PRTGMhmADReucPInMc5sBAG3BESTK5goWC7m23aHxwDC9ERBAybINDcp0Te6+2+H5q6gA/vUvdfJR3IkgdNY+WbxY/jFMJqqCYkkAxs9gA0XL2GzAf//b8fLopLtdq02vrycXMyfHMp5C7M9TUyN/36Ag4PHHHeW527dTibCWOX7c0W08N1e+59JuJ+n93FxNSI8zTH/CBoqWWbeOVGcBmOOG4myOwr4dIkYj3SASElwfG8MoITKSQpRyNFGcSU4GHn7Y8Xr5ckd1jBZxte9OVRVdr0r1jhjGi2EDRavU1FDTtIvsmvxTCHoXqg3a22k1NmwY9+9gPEt2NiksK80hmT3bcbNvawP+8hcEWFvUG59a1NQAu3fT85gYYNo0efsLAhlyo0cra4nBMF4OGyha5b33OvqFnBt2OYyJI107nrgSS01VYXAM4wJJSfQ7lNOf51Luu4/6hQBAaSkm7/lPr2/3CN99R2FagJLb5ZYH19RQeXZOjvpjYxgvgA0ULZKfT00FASAiAkcm3+v6MWtqSCAqNNT1YzGMK+j1lKjd1ua4gcslOJjyUS7+noee+RbZhd+rOEgXOXMG+Ppreq7TAYsWyT+GyUTfU2ysqkNjGG+BDRStYbMB/3FaDd5xB1rDYl07ZmMjJdiJK06G8TRpaVTurjQXBaCE05/8pOPlrAP/RJTlggqDcwGbjbqWP/44JbcCwOTJ8gWv7HbK1xkxQvUhMoy3wI1YtMaGDcD58/Q8I4Ni7V+7eEyjkY41cKCLB2IYlQgNJe/A1q0U8lHKggXU+G/TJgS1t2D25heB2/7qljL68yU6HDyu77Epc0R9JWZs/RsGGvM6tpkTh2N71sNo/lJa/lizmEpjt5Nxkpjo4qgZxnthA0VLWCzA++87XruiGCtis5ErPSeHk2MZbZGVBRw86OgNpZQHH4Tl4GnE1JYirrqQlGYfeki9cV7k4HE9LHXdXEOCgGGFmzDj4Osdgop2nR5HRt2Cw2Nug6APBJrlnSsoUGDvCeP3sIGiJZwSY7FgAYlauUp1NSfHMtokMZGMlFOnXDNQQkOxY8FvsXj1LxFoawPWriXdECWS8r0gek50OgFhF1O5glvrMWXnP5FetKPjfQ2RSdg179cwJ41CGABAnphckNCGydPCXPMsMYwPwAaKVigocIhOhYcDy5apc9yaGmD6dBZ5YrTJ8OHAyZN093ehCZ4lLgO7Jz2EOfv+QRv+3/8j5VU3NDsLCwVuv84GHD0KvPoqVciJLFyIyAcewKLwcAAKEoCbmigke/X17PFk/B5OknXm5Engz38GSkv7V0L7EsVY3HabOp2Gm5ooFs/t2RmtMmQIkJKirD/PJRRkLUZR1jx60dQE/PWv6DFhxAX0NiuFkX73O4dxEhkJPPEENTV0ZTFQUUFepUGD1Bksw3gxbKA488EHpEz56qsUw37/faCw0P3GyrffAmfP0vP0dOAHP1DnuGYzNWfzcMtshumRoCBKlq2rc/060+mwb+bDZPAAVOr73nuuj9GJuNoiLF79S+DLLx0bx40jj42rIaWWixmyY8aw94RhwCGeznz+ueN5RQXw6af0SE2lyWfOHPVzOerqOifGPvig64mxAFUBNDdTop2e7VBGw2RmktZHba3LnsP24HAq8f3Nb0g9+auvKB9l6lTXxmi3I+fkNxi3/x0E2i96ZQIDgXvuAa65Rp1rrKKCvgvOF2MYAOxB6czOncDzz5MUt/OEU1oKfPwx8LOfAT//ObByJVBers4533+fmvgBwLx5tHpSA6ORmrKlpalzPIZxFzEx1ILBFU0UZ4YOBX70I8fr115zLYRUVQX88Y+YtHe5wzhJTwdeeQW49lp1jJPWVgr1jhnDCwqGuQh7UJxJTMSX1TPQNHMMQifXIbVoF9ILt2Gg4aTjPcXF9PjgA1QnDEVx5lyUD5+DUTMHIDNNpov6zBlg40Z6HhamXmJsczMZPZdfTrFxhtE62dmkZ9LSoo7a8dVX0/H27KFr4eWXgRdekO+d3LUL+Ne/HIsIAPmjr8OIP96prtaKwUCeE+40zjAdsIFyCU0N7WiyBqFJl4DqzGtwNPMahDeZkVmyA1kl25BUld/x3viqc4ivOocJB95B1Xc5wDWzKRQkRVzJbqfEWDHufuut6nQZttuBkhJaiY0e7frxGKY/GDSI8qUqK9Xx+ul0wCOPkOih0UilzB99BNx1l7T9m5qAN9+kfjripvAEbJ36S9RkTcCIYIUS/d1htZIHJTeXwkYMwwBgA6UL4ZGB5IFwnijCElCYcC0KJ1yL8AYj0gu3I+38NiRUne14S4KxAHirAHjrLdIvmX3RWOkppv7dd8Dp0/Q8NZXi2GpQXk4S4tOnq5PLwjD9gdifp7CQQh1q/HYjI4Ff/xp48kk65qpVZLhPmND7fvn5FL6prHRsmzkTazN+jlohBuEydU36xGCgxF6utmOYTrCBcgnX/SwD+OILiol3SwKA6+hRXo4jb+xC6rntSKgtdLwlLw/Iy4P9jTdhTB6Dksy5KM2YidbQGAAk7vSDVe9BdGR/N+YnMH4T0uOYOuSv+6K+nlRjFy7kBmOM95GeTnlT1dVkZKvBiBHkNVmxgryVr7xCOSnx8V3fK/bRWbmSPJEAhV5//GPgssvQ9pV8Rdg+sdnIWzNvnlvk+RnGm2EDxRUGDcKZybfgwPBbEWspQWbJdmSVbENcXSkAQC/YkVxxDMkVxzB5979RnjQe59PmIsmch9DWOgDAubS5KIodL2ni61XHymYDysqoWqFH44phNExEBBkUu3apZ6AAwHXXAcePk6y+xUJGyh//2NlLU15O20WvJkBj+eUvHWXL7sBgIMXYrCz3nYNhvBQ2UFxkcq4dB47r0RaWioLk21Ew5TbE1BQjvXAb0gu3I6qOqn30gh1DKg9hSOWhjn2tgaE4NuM+hIf17TIOCqJz9UhJCcXup0xhDQXGexk6FDh8GGhoUC/BW68HfvELElGrrqbk2U8/pbwvQaBw6xtvOHRI9Hr62003uTdMarORzMD06eokBjOMj8EGiotkpgnITLs0YS4VwB2AcDsl6W3fDuzYQcl6TgTdcQt+eEMcFEliO1NTQxPpzJm0CmUYb2XgQAr1nD+vbgVaTAzlozz9NIVvPv6YDPqtW4Hdux3vS0kBfvUraq7pbsxm+rzZ2e4/F8N4IWyguBOdjlaEQ4eSoNPp02SoHDlCCXFLl7p+DquV3MRz57LmCeP96HRkHBQUkNCamlUtY8aQZ+Sjj8hI+fOfO/990SLgvvso78Td2O3kzVm4kBcVDNMDbKD0F+LEq/bKrKiIck76qkxgGG8hLY08GaWl6le23HQTcOIEhXlEoqJIgHH6dHXP1Rtil3HOF2OYHmHJQm/GaKTJdcYMrgBgfIeQECrTDwnpXOqrBgEBFMIZOJBeT5hAfXT60zgRBArvjB4NREf333kZxstgD4q30tJCvUsuv5yqABjGl0hLo9LbjRvJ29BdWbBS4uOBf/7T0Uyzv5PKa2ooJ6Y/8lwYxothA8UbsdtJbn/MGPV69zCM1sjJoWqerVvJQyghaba5BfjoSymVNxH0OCB9OJL1iPrCaCSPjYuNERnG12EDxRthtVjGH9DpgIkTgcZGYN8+ICOjx3LcoCAAzYAg6NCktphad+dSisVChtaIEaqNh2F8FTZQvI2GBurbwWqxjD+g11OOVXMzJbZmZ3drIYh6RFare4fTpx5RX1RWktGlphAdw/gobKB4E6Ja7JQpnP3P+A/BwcCcOSQJf/48/fb1nfP7u9cj0hj19VTCPGqUp0fCMF4BV/F4EyUlwJAhrBbL+B8REcCCBVR+XFjo6ALuTVRWkgeIk9oZRhJsoHgLolrsrFks7MT4J3FxwGWXUWn9hQueHo08mppIdG70aF5cMIxE2EDxBkS12MmTWS2W8W9SUsiTIgiAyeTp0UinooIaAg4a5OmRMIzXwAaKN1BURK7h8eM9PRKG8TxZWSTkVldHVTFaR2xCOGZMl9wZhmF6hpNktY6oFjtzJilrMgwD5OZS2GTHDiqtCQ/39Ih6pqKCGiCmpnp6JAzjVbA5r2VEtdipUzmxjmGc0eko5DlhAokWtrV5ekTd09ZGTQ9zc1mziGFkwgaKVhHVYkeNosQ6hmE6ExhISeOjRlH5sU2DZcYVFeQ5ycjw9EgYxutgA0WrOKvFqtlynmF8idBQ6tmTng6cO0eGvRZobQXOniWvyfjxfA0zjALYQNEiolos9+tgmL6JiqLy4wEDyOvoSex2WlyUlABDhwLXXsuiigyjEDZQtIbNBpSWAuPG8cTGMFJJTKTy49BQMhA8gcUCFBTQGJYsAa66isuKGcYF2EDRGiUlFLOeOpVLEhlGDqmpFO5pawOqqvrvvGI4x2Ihr+f111NeDId1GMYl+ArSEqJa7MyZrBbLMErIyaHux1u2UA+fqCj3nctuJ/n6hgbSKZo8GRg82H3nYxg/gw2U7hAEauwVGdl/stRWK2mezJ5NCX8Mwyhj/HgyUvbsoWspLEz9c9TVUShp4EC6ZnNy2GPCMCrDV9SlxMQAmZlkLJSX06QTGwtER3fb5l01iopIIXPCBPedg2H8Ab2eQi3NzcCRI+TdUOvabWujHLGgIGDaNLpe3emlYRg/hg2US4mPB374QxJIMxppMiotpeoAm40mo5gYUq5Uy7tiMpG3ZtYsVotlGDUICiLPRlMT5YdkZ7smlGa3Uz+sujpHOGfIEPXGyzBMF9hA6Q6djsp74+LIddvSQkZEZSW1ejebgbIyinHHxNBD6eTX0gJUVwOXX85qsQyjJuHhwPz55EkpLKSyXyWLCudwzpVXAsOHu9ebyjAMADZQpBEaShUCqanApEmUzGowkGelrIxULAWhs3dFCoJAnpnRo6mRGMMw6hIbS+XH69bR9SqnG7hzOGfqVArnREe7bagMw3SGDRS56PVAQgI9Ro0iF7LR2Nm70txMoZqYGJrQevKusFosw7if5GTypKxfTwuLvjyVdjtd0xYL5YVNmULhnP5KmGcYBgAbKK4THk59NjIyaCKrqqLJraiI+nCcO0cTW3Q0rebEHJOGBgrvLFjAarEM424yM4G5c4HvviMPaE/XnBjOGTCAxNZycjicwzAegg0UNQkIoDj1wIEUsmloIGPlwgUyWMrLSdQpPJzKIKdMYbVYhukvRo2ia3LHDsofc9YaslopnBMQQNflhAnkAWUYxmOwgeJOIiPpkZUFzJhBibZGI4WCbDZWi2WY/kSno+qb5mZg3z66LoODKewjhnMmT6ZcMw7nMIzHYQOlvwgMBFJS6DFuHNDeznknDNPfBATQYqGxETh5kgyRhARg0SJg5EgO5zCMhuA7pKdg44RhPENICPXssVopjDNhAuWHMQyjKfguyTCM/xEZCVxzjWvibQzDuBVOgGAYxj9h44RhNI1sD0pbWxveeustbNy4EfX19Rg6dCjuv/9+TJkyRdL+mzZtwqpVq3Du3DkEBgYiPT0d999/PyZNmiR78AzDMAzD+CayDZQXX3wRW7ZswU033YQhQ4Zg3bp1ePzxx/Haa69h7Nixve779ttv491338X8+fOxZMkStLe3o7CwEGazWfEHYBiGYRjG95BloOTl5WHTpk34yU9+gttuuw0AsHjxYixbtgyvv/46Xn/99R73PXnyJN5991387Gc/w8033+zaqBmGYRiG8Wlk5aBs3boVAQEBWLp0ace2kJAQXH311Th58iQMBkOP+3766aeIj4/HjTfeCEEQ0NTUpHzUDMMwDMP4NLI8KGfOnMGQIUMQ4azACGDkyJEAgLNnzyKphz4XBw8exJgxY7Bq1Sq8//77sFgsiI+Px1133YUbbrih1/OazWZUVVV1vC4uLpYzbIZhGIZhvAxZBkpVVRUSEhK6bBe39ZRLUl9fD4vFghMnTuDQoUNYtmwZkpKSsG7dOrz22msIDAzEtdde2+N5V69ejRUrVsgZKsMwDMMwXowsA6W1tRVB3SgtBgcHd/y9O8RwjsViwR/+8AcsXLgQADB//nwsW7YM7733Xq8GytKlSzFr1qyO18XFxXjuuefkDJ1hGIZhGC9CloESEhICq9XaZXtbW1vH33vaDwACAwMxf/78ju16vR6XXXYZ3n77bRgMhh7DQ4mJiUhMTJQzVIZhGIZhvBhZSbIJCQmdckFExG09GRHR0dEIDg5GdHQ0Ai4RR4q72Pa8vr5ezlAYhmEYhvFhZBko2dnZKCsrQ2NjY6fteXl5HX/v9iR6PYYNGwaLxdLFAyPmrcRyLwyGYRiGYS4iy0CZP38+bDYbVq9e3bGtra0Na9euxahRozpCNAaDoUulzYIFC2Cz2bB+/fqOba2trfj222+RkZHBIRyGYRiGYTqQlYMyatQoLFiwAMuXL0dtbS0GDx6M9evXo7KyEk888UTH+55//nkcOXIE27Zt69h27bXXYs2aNfj73/+O0tJSJCUlYcOGDTAYDHjxxRfV+0QMwzAMw3g9sqXun3rqqQ7joqGhAVlZWXjppZcwfvz4XvcLCQnBq6++itdffx1r165FS0sLsrOz8dJLL2Hq1KlKx88wDMMwjA+iEwRB8PQg5HLs2DE8/PDDePrpp5Genu7p4TAMwzAMI4P09HSEhob2+h7ZHhQtUFlZCQCshcIwDMMwXsgbb7yBnJycXt/jlR6U2tpa7Nu3DykpKR0ica4iir+xV0Ya/H1Jh78refD3JQ/+vuTB35d03Pld+awHJTY2FosWLXLLsdPT0/u06hgH/H1Jh78refD3JQ/+vuTB35d0PPVdySozZhiGYRiG6Q/YQGEYhmEYRnOwgXKRhIQELFu2rNtuzUxX+PuSDn9X8uDvSx78fcmDvy/pePq78sokWYZhGIZhfBv2oDAMwzAMoznYQGEYhmEYRnOwgcIwDMMwjOZgA4VhGIZhGM3hlUJt7ubIkSP4+OOPcebMGVgsFkRGRiI7Oxv33HMPcnNzPT08zXHw4EF8++23OHbsGEwmE+Lj4zFx4kTcd999SExM9PTwNIfZbMaqVatw6tQp5Ofno7m5Ga+99homTJjg6aF5lLa2Nrz11lvYuHEj6uvrMXToUNx///2YMmWKp4emSZqamvDxxx8jLy8Pp06dQn19PZ588klceeWVnh6a5jh16hTWr1+Pw4cPo7KyEtHR0Rg9ejTuv/9+pKamenp4mqKwsBDvvPMOCgoKUF1djdDQUKSnp+O2227DrFmz+nUs7EHphrKyMuj1elx77bX4xS9+gVtuuQXV1dX4+c9/jr1793p6eJrjP//5Dw4fPow5c+bg0UcfxcKFC7F582bcf//9qKqq8vTwNEdpaSk++ugjmEwmZGVleXo4muHFF1/EypUrccUVV+CRRx6BXq/H448/jmPHjnl6aJrEYrFgxYoVKC4uRnZ2tqeHo2k++ugjbN26FZMmTcIjjzyCa665BkePHsX999+P8+fPe3p4mqKyshJNTU1YsmQJHnnkEdx9990AgCeffBKrV6/u38EIjCSam5uFa6+9Vnjsscc8PRTNcfjwYcFms3XZNmfOHGH58uUeGpV2aWxsFCwWiyAIgrB582Zhzpw5wqFDhzw8Ks9y8uRJYc6cOcJHH33Usa2lpUW49dZbhYceesiDI9Mura2tgtlsFgRBEE6dOiXMmTNHWLt2rYdHpU2OHTsmtLW1ddpWUlIiLFy4UHj22Wc9NCrvob29Xbj33nuFO+64o1/Pyx4UiYSGhiImJgYNDQ2eHormGD9+PPR6fZdt0dHRKC4u9tCotEt4eDiio6M9PQxNsXXrVgQEBGDp0qUd20JCQnD11Vfj5MmTMBgMHhydNgkODmaxMYnk5uYiKCio07bU1FRkZGTwHCWBgIAADBw4sN/vf5yD0guNjY2wWq2wWCzYsGEDCgsLcdddd3l6WF5BU1MTmpubERMT4+mhMF7AmTNnMGTIEERERHTaPnLkSADA2bNnkZSU5ImhMT6KIAioqalBRkaGp4eiSZqbm9Ha2orGxkbs3LkTe/fuxYIFC/p1DGyg9MIf/vAH7Nu3DwAQFBSEpUuXdsTjmN759NNPYbVacdlll3l6KIwXUFVV1a03QNxmNpv7e0iMj/Ptt9/CZDLhRz/6kaeHokn+9a9/deSc6PV6zJ07F7/85S/7dQw+b6DY7XZYrVZJ7w0ODoZOp+t4/eCDD+KWW26B0WjE+vXr0d7eDpvN5q6hagJXvi+RI0eOYMWKFViwYAEmTZqk9hA1hRrfFwO0trZ2ccED9J2Jf2cYtSguLsbf//53jB49GkuWLPH0cDTJTTfdhPnz58NsNmPz5s2w2WyS5zq18HkD5ejRo3j00Uclvff9999Henp6x+thw4Z1PF+0aBHuv/9+vPjii/jTn/6k+ji1givfF0AX/tNPP42srCw88cQT7hiipnD1+2KIkJCQbie/tra2jr8zjBpUVVXhiSeeQEREBP70pz8hICDA00PSJOnp6R3z1ZIlS/CrX/0Kv/3tb/Hf//633xZaPm+gpKWl4cknn5T03t4SzoKCgjBr1ix8+OGHaG1t9dkJ05Xvy2Aw4LHHHkNERAReeuklhIeHu2OImkKt35e/k5CQAJPJ1GW7WKbOejqMGjQ0NODxxx9HQ0MD/vnPf/LvSgbz58/Hyy+/jNLSUqSlpfXLOX3eQElISFBNuKi1tRWCIKCpqclnDRSl35fFYsFjjz0Gq9WKv//9735z4av5+/JnsrOzcfjwYTQ2NnZKlM3Ly+v4O8O4QmtrK37729+itLQUr7zyCifHykQMs/ZnJQ+XGXdDTU1Nl2319fXYunUrBg4ciLi4OA+MSrs0Nzfj8ccfh9lsxl/+8hdWZmRkM3/+fNhstk5CUG1tbVi7di1GjRrFFTyMS9hsNjzzzDM4efIk/vjHP2LMmDGeHpJm6e7+197ejg0bNiAkJKRfDTuf96Ao4Te/+Q0GDBiAUaNGIS4uDgaDAWvXrkVVVRWeeeYZTw9Pc/zpT3/CqVOncNVVV6G4uLiTrkBYWBjmzJnjwdFpk3fffRcAUFRUBADYsGFDh2LqPffc46lheYxRo0ZhwYIFWL58OWprazF48GCsX78elZWVfpHLpJTPPvsMDQ0NHaGwnTt3wmg0AgBuuOEGREZGenJ4muFf//oXdu7ciZkzZ6K+vh4bN27s9PdFixZ5aGTa4+WXX0ZjYyPGjRuHAQMGoKqqCt9++y1KSkrws5/9rF9D9zpBEIR+O5uX8Pnnn+P7779HcXExGhoaEBUVhVGjRuG2227DuHHjPD08zXHzzTejsrKy278lJydj5cqV/Twi7TN37twe/7Zt27Z+HIl2aG1t7ejF09DQgKysLNx///2YOnWqp4emWXq79j755BOkpKT084i0ySOPPIIjR470+Hd/vea6Y9OmTVizZg3Onz8Pi8WC8PBw5OTk4Prrr8fs2bP7dSxsoDAMwzAMozk4B4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMAzDMIzmYAOFYVRm3bp1mDt3LtatW+fpoUji8OHDmDt3Lt5++223nWPu3Ll45JFH3HZ8d/PII4/0qv7rCuL3Lz4eeught5xHCm+//Tbmzp2Lw4cPd2wrLi7uNL6bb77ZY+Nj/AvuxcP4PX/+85+xdu1aREdH4/PPP0dwcLCnh6Q64k2F2w5ol/Hjx2P8+PEYOHCgp4fSiZiYGCxbtgwAsGrVKs8OhvEr2EBh/JqmpiZs3rwZOp0OdXV12L59OxYuXOjSMefMmYNRo0YhISFBpVEy/sD48ePxox/9yNPD6EJsbGzHuNavX+/h0TD+BId4GL/m+++/R3NzM2666Sbo9XqsWbPG5WNGRkYiPT2dO8kyDMO4AHtQGL9mzZo1CAgIwO23345z587h0KFDqKysRHJycqf3vf3221ixYkWPx3Hu2rxu3Tq8+OKLePLJJ3HllVd2vGfu3LkYP348fve73+H111/H/v370dbWhnHjxuEXv/gFBg0ahKKiIixfvhxHjx5Fe3s7pk6dil/+8peIj4/vOM7hw4fx6KOPYtmyZV1W3BUVFbjllluwZMkSPPXUUx2vnccg0t3++fn5WL58OU6ePAm9Xo+JEyfi4Ycf7tIVd9u2bdi8eTPy8/NhNpsRGBiIoUOH4sYbb8T8+fN7/9L7oKGhAV999RX27NmDsrIyWCwWxMTEYPLkyVi2bBkGDx7c6f3i/81rr70Gs9mM//3vfygpKUFkZCQWLFiAhx56CCEhIZ32aW9vx8cff4xvvvkGZrMZAwYMwNVXX43LLrsMt956a8f3J4Xt27fjs88+w+nTp9HW1obBgwdjyZIluPnmmxEQEODSdwEAL7zwAtavX4+PP/4Y27Ztw5o1a1BeXo6FCxfiqaeegtlsxurVq7Fv3z6Ul5ejsbERCQkJmD59Ou69917ExcV1OabBYMB//vMf7Nu3D+3t7Rg+fDjuu+8+l8fKMGrCBgrjtxQVFeHkyZOYPn064uPjsXjxYhw8eBBr167tcuOeMGFCt8coLi7G5s2bu9wAe6K+vh4/+9nPkJCQgMWLF6OsrAy7du3Cr371K7zwwgt4+OGHkZOTg6uuugqnT5/G1q1bUVdXh9dee03RZ4yMjMSyZcs6cgduvPHGHj9Tfn4+/ve//2HChAlYunQpzpw5g+3bt+P8+fNYsWJFp8+4fPlyBAYGIjc3FwkJCaitrcXOnTvx+9//Ho8++ihuuOEGReMF6Dt9++23MWHCBMyZMwdhYWEoLi7Gd999h927d+PNN9/sYkACwOeff459+/Zh1qxZmDhxIvbu3YvPPvsMFosFv//97zu996WXXsKGDRswaNAgXHfddbBarVi5ciVOnDgha6z//e9/8eGHH2LAgAGYO3cuIiMjcezYMbz++us4deoUnn32WcXfw6W8+uqryMvLw4wZMzBz5swOw+Po0aP45JNPMHHiRIwcORKBgYE4c+YMvvzyS+zbtw9vvvlmJ2+e2WzGT3/6U5hMJkydOhXDhw9HcXExHnvssR5/5wzjCdhAYfyWb775BgCwePFiAORd+Pvf/45169Zh2bJl0OsdEdAJEyZ0mbxramrw4IMPIjg4GI8//rikc547dw4333wzHn744Y5tr7zyCr788ks8/PDDuPfee3HTTTcBAARBwBNPPIE9e/agoKAAOTk5sj9jVFQUfvSjH3XkDvSW47Bnzx784Q9/6JSD8/zzz2PDhg3YsWNHp+1/+ctfMGjQoE77NzU14ac//SneeustXH311QgNDZU9XgBIT0/HF198gejo6E7bDx06hF/96ld47733uv2+Dx48iDfeeANpaWkAgAceeAA/+tGP8P333+OnP/0pEhMTO963YcMGDBs2DP/61786xnnXXXfh/vvvlzzO/fv348MPP8TUqVPxpz/9CWFhYQDo/+2VV17BV199hS1btrjsURI5d+4c3nrrLSQlJXXaPnHiRHzxxRcIDw/vtH39+vV44YUX8Pnnn+Puu+/u2L58+XKYTCbcf//9nbavXr0aL7/8sipjZRg14BwUxi9pb2/Hxo0bERERgdmzZwMAwsPDMWfOHBgMBhw4cKDX/VtbW/HUU0+hsrISv/3tb5GbmyvpvGFhYV1uguKNPyYmppOHQ6fTdfzt3Llzkj+bUsaNG9clQfiqq64CAJw6darT9kuNE4C+vyuvvBINDQ3Iz89XPI7IyMguxglAN+KMjIwe/29uvPHGDuMEAEJCQrBw4ULY7XYUFBR0bN+4cSMA4J577ulkRCUmJnb6/vvi888/BwD85je/6TBOAPp/e/DBB6HT6bBp0ybJx+uL2267rYtxAgBxcXFdjBOADO+IiAgcPHiwY5vVasX333+PuLi4TqE/APjBD36AIUOGqDZehnEV9qAwfsmOHTtQW1uLq6++ulPoYvHixdi4cSPWrFmDqVOndruvIAh44YUXcPLkSdx77724/PLLJZ93yJAhXTwLYrVPVlYWdDpdt38zm82Sz6GU7jw0AwYMAEB5Ic7U1NTgww8/xJ49e2AwGNDa2trp766O9/Dhw/j000+Rl5cHi8UCm83W8begoKBu9xk+fHiXbWLJrvP4z549CwAYO3Zsl/ePGTNG8hjz8vIQFhbWY2J1SEgISkpKJB+vL0aOHNnj37Zu3YrVq1fj9OnTaGho6PR9Of9flJSUoK2tDRMnTuwSltTr9cjNzUVZWZlqY2YYV2ADhfFLxJuKGN4RmTRpEgYMGICdO3eirq6u25X8m2++ic2bN+Pyyy/HvffeK+u8ERERXbaJiZS9/a29vV3WeZTQ3SpcPL/dbu/YVldXhx//+McwGAzIzc3F5MmTERkZCb1ej7Nnz2LHjh2wWq2Kx7F582Y888wzCAsLw9SpU5GcnNxh1K1fvx6VlZXd7tfb9+c8/qamJuj1esTExHR5v3Mycl/U1dXBZrP1mjzd3Nws+Xh90V2yKwB8/PHH+Pe//43Y2FhMmTIFAwYM6DA+Vq1a1en/orGxsddj9bSdYTwBGyiM32EwGLB//34A6FXddOPGjV1c/uvWrcP777+P3Nxc/Pa3v3XrOHtC9LI4r5JFxBuQO1mzZg0MBgPuu+8+3HPPPZ3+9sEHH2DHjh0uHf+dd95BcHAw3njjDaSmpnb62/fff+/SsQEyxOx2OywWC2JjYzv9rbq6WvJxIiIioNPp8PXXX7s8Jilc6l0DyHB97733kJCQgLfffruTgSEIAv73v/91er9oxNXU1HR7jp62M4wnYAOF8TvWr18Pu92OsWPHdrkBAnTjX79+PdasWdPJQDly5AhefvllDBo0CM8//7zHFGejoqIAdB9GOXPmTLf76PV6l7wazly4cAEAOnJ3nDl27JjLxy8vL0dGRkaX/xuz2Yzy8nKXj5+dnY0zZ87g+PHjmDNnTqe/yaniGTlyJPbu3YvS0tJuf0f9gcViQUNDAyZOnNjF+5Gfn98l9Jaamorg4GAUFBSgtbW1U5jHbrfLrmJiGHfCBgrjVwiCgLVr10Kn0+Gpp57qNtkTAEpLS3Hy5Enk5+djxIgRKC0txdNPP42QkBD8+c9/7rLy7k/S0tIQHh7eJQxVXV2N9957r9t9oqOjcf78+S43JSWIJb7Hjx/H0KFDO7Z/++232LNnj0vHBoCkpCRcuHAB1dXVHSGX1v/f3t2DpNqGcQD/vyerRayg0qaCPqglLSyx4qEvm6WPoUnlCWxoamhobygoyKGWhj4oEEKiNAmKKMgyzMgIImqQiMBwSfs4hHSGlyP1Zr3UKc8D/X+zcF8+Ln+f677u++dPjIyMfEqry2AwwO12Y3JyEtXV1fHnEQ6H33WUe3t7O7xeLwYHBzEwMPCiZRQOhxGJRFBQUPDHNb8mKysL6enpODk5wf39fbwVFolEEo6mp6WloaGhASsrK7Db7c+meJxOJ87Pz7+sVqL3YkChb8Xv9+Py8hIajebVcAL8O71ydHQEl8uF0tJS2Gw2XF9fQ6vVJmwzyOXypF2ilpqaira2NszMzKCrqwu1tbW4u7vD1tYWNBpN/A3HUxUVFTg+PkZfXx/Ky8shk8mgVquh0WjevX5LSwvm5uYwOjqK/f19KJVKnJ6ewu/3QxAEbG5u/tH3a21txejoKERRRH19PWKxWLwlV1RUFN/k+lFarRbNzc1YXV2F2WxGXV0dHh4esL6+jrKyMng8nmcj5q/R6XQwmUyYmppCZ2cndDodlEolrq+vcXFxgUAgAFEUvzSg/PjxA0ajEXa7HRaLBbW1tbi5uYHX64VSqYyPVj9ltVrh9/sxMTGBw8NDFBcXIxgMYmdnB1VVVfFnTfS3MaDQt/J7c+zTE14TaWxshM1mw9raGnp6euKvyn0+X8IxV5VKldRbXkVRhEwmg8vlwuLiIlQqFUwmE2pqarCxsfHi8yaTCdFoFB6PB4FAALFYDGaz+UMBJTc3FzabDePj4/D5fIjFYigpKcHw8DBCodCnBBSZTAaHw4GlpSXI5XLo9XpYrdYXB659VH9/P/Lz87G8vAyHw4GcnBx0dHSgsrISHo8n4YbhRERRhFqtxvz8PPb29hCNRqFQKJCXlwez2QyDwfAp9b7FarVCoVDA7XZjYWEBWVlZaGpqgsViiV/y91R2djbGxsYwPj6O3d1dHBwcxH8/v9/PgEKS8c/j4+Pj3y6CiEgKnE4nhoaG0NvbC6PRmJQ137q6QGp4KzYlEw9qI6JvJxwO47//za6urjA9PY2UlBTo9fqk1zQ5OQlBENDd3Z30td8SDAYhCAIEQXh1xJvoK7DFQ0TfzuzsLLa3t6FWq5GZmYlQKASPx4Pb21tYLJaEJ7Z+FZVK9awV8/twOanIyMh4Vh9v6aZkYYuHiL4dr9cLu92Os7MzRCIRpKWlobCwEEajMSn7Rojo/zGgEBERkeRwDwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSQ4DChEREUnOL36X5pm0Zo+iAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvPklEQVR4nOydd3wb9f3/X5K894rtxNtx4iRk7z0IJCFASNmrEGigFFoo5VtS+LWFUiilg9EBNIwEKJQRAgSyICE7ZO+9PGNbtrxt2bIs3e+Pd86S43V3Okkn+f18PPSwdNZ97mNZd/f+vMfrrRMEQQDDMAzDMIyG0Ht7AgzDMAzDMJfDBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMAzDMIzmYAOFYRiGYRjNwQYKw2iczZs3Q6fT4dlnn3V5LJ1Oh5kzZ7o8TneoOV9/YNGiRdDpdMjPz5e8T2ZmJjIzM902J4bxBdhAYZjL0Ol00Ol00Ov1OH/+fJfvmzVrVtt7ly9f7rkJepn8/HzodDosWrTI21ORjGg0OT+CgoKQmpqKW265BT/88EOn+5nNZsTExECn0+HOO+/08Kzdx8WLF/HPf/4T11xzDTIzMxEcHIz4+HhcffXVWLlypbenxzAAgABvT4BhtEhAQABaW1vxzjvv4E9/+lOH3589exabN29uex/jYPz48Th58iQSEhK8PZUOZGRktBlWjY2N2LVrF1asWIGVK1dixYoV+NGPftTu/Z988glqa2uh0+mwcuVKVFZWIj4+3u3z3Lhxo1vH/+c//4mXXnoJWVlZmDVrFpKTk1FQUICVK1diw4YNePzxx/Hyyy+7dQ4M0xPsQWGYTkhKSsLYsWOxbNmyTg2Qt99+GwBw/fXXe3pqmicsLAyDBg3SpIGSmZmJZ599Fs8++yz++te/Ytu2bfj9738Pu92OJ554osP7ly5dCr1ej1//+tewWCx47733PDLP/v37o3///m4bf/z48di8eTMuXLiAZcuW4cUXX8RHH32EgwcPIioqCq+88gr279/vtuMzjBTYQGGYLnjggQdQVlaGb775pt12q9WK5cuXY/LkyRgyZEiX+589exb33HMPUlJSEBQUhH79+uGee+7B2bNnO32/0WjET37yEyQlJSE0NBQjR47s9obYXZ7Cs88+C51Oh82bN/f4d5aUlOC5557DlClTkJyc3DbXO++8EydOnOgwblZWFgDgvffeaxcyEcNc3eWgyPlMnP+GFStWYPz48QgLC0NcXBxuv/12XLx4sce/TQqPPPIIACAvLw8VFRVt248dO4Zdu3Zh9uzZWLJkCYKCgtoMUyXY7Xa8/PLLGDRoEEJCQpCamorHH38cdXV1Hd7b2f92+fLlbZ/zpk2bMHPmTERGRiIqKgrXXnstTp48KXkuN954I2bMmNFh++DBg3HbbbcBgKTvDsO4Ew7xMEwX3HHHHfjVr36Ft99+GwsXLmzbvmrVKpSXl+Oll17CuXPnOt137969uOqqq1BfX48FCxZgyJAhOHXqFP773//iq6++woYNGzBu3Li295tMJkyePBkXLlzA1KlTMXXqVJSWluKhhx7CnDlz3Pp3bt26FX/+858xa9Ys3HTTTYiIiMDZs2exYsUKrFq1Cjt27MCIESMAADNnzkRNTQ1ee+01jBgxot3nMnLkyG6PI/czEXn99dexatUqLFiwADNmzMDu3bvxySef4PDhwzh06BCCg4Nd+vsFQWh7rtPp2p4vXboUACW5xsXF4frrr8fnn3+Obdu2Ydq0abKP8/jjj2Pr1q249dZbccMNN2D9+vV49dVXsW3bNmzfvh0hISGSxvnmm2/w1Vdf4ZprrsFDDz2EEydOYM2aNdi7dy9OnDjhsucqMDAQAIU5GcarCAzDtAOAkJKSIgiCIPzkJz8RDAaDUFRU1Pb7uXPnClFRUUJjY6Pw//7f/xMACMuWLWv7vd1uFwYNGiQAEP773/+2G/vjjz8WAAi5ubmCzWZr2/7AAw8IAIRf/vKX7d6/d+9eISAgQAAgPPPMM+1+l5GRIWRkZHT6NzzzzDMCAGHTpk0d/rYZM2a022Y0GoW6uroOYxw6dEgIDw8X5s2b1257Xl6eAEC49957Oz32pk2bOsxXyWci/g2RkZHCkSNH2u1zxx13CACETz75pNM5dDWny/92QRCE3/3udwIAITs7u21bU1OTEBsbK0RHRwtms1kQBEH4+uuvBQDC3XffLemYIvfee68AQIiPjxfy8/PbtttsNuHGG28UAAjPPfdcu306+98uW7ZMACAYDAZhw4YN7X73m9/8RgAgvPTSS7Lmdjm1tbVCUlKSoNPphBMnTrg0FsO4Cod4GKYbHnjgAdhsNrz77rsAgIKCAnz33Xe46667EBYW1uk+O3fuxKlTpzBp0iTcdddd7X532223YerUqTh9+jS2b98OgEJGH374ISIjIzuERcaOHdthDLVJTExEZGRkh+0jRozAlVdeiU2bNsFqtbp0DLmfiTOPPvoohg0b1m7bAw88AADYs2ePrHnk5+e35aD8+te/xvTp0/HHP/4Rer0ef/vb39re99lnn6G6uhq33XYbQkNDAQDz5s1DcnIyVqxYgerqalnHBYDHHnsMGRkZba/1ej3++te/Qq/Xt32/pHD77bdj9uzZ7bY9+OCDAOR/Hs4IgoDFixfDaDTiZz/7GQYPHqx4LIZRAzZQGKYbJkyYgGHDhuHdd9+F3W7H22+/Dbvd3naD7IwDBw4AAK688spOfy9uP3jwIADg1KlTMJvNGDlyJKKjozu83926JQCwevVqXH/99ejbty8CAwPb8kq+/vprWCwWmEwml8aX+5k4M3bs2A7b0tLSAEC2oVBQUIA//OEP+MMf/oBXX30V586dw4033oht27a1q+ARwzv33Xdf27aAgADcddddaG5uxgcffCDruAA6zfnIzs5GWloa8vPzUVNTI2kcNT8PZ5544gl89tlnmDZtGlfwMJqAg4wM0wMPPPAAHn30UaxduxbLli3DmDFjMGrUqC7fX1tbCwDo27dvp78Xt4s3JPH9SUlJnb4/OTlZ6dQl8dprr+GXv/wlYmNjcfXVVyM9PR1hYWHQ6XT48ssvcfjwYVgsFpeOIfczcSYmJqbDNjE/wmazyZrHjBkzekz+PHnyJLZv345BgwZh4sSJ7X63aNEi/P3vf8dbb72FRx99VNaxu/v/FhQUoLa2ttO/9XLU/DxEnnzySbzyyiuYPn06Vq9e7XJeD8OoARsoDNMDP/7xj7FkyRI89NBDuHjxIn7/+993+37RC1JWVtbp70tLS9u9T/xpNBo7fX9X4+j1erS0tHT6O6mr8dbWVjz77LNITk7GgQMHOhgQXQmYyUXuZ+JNRO/JqVOn2iXNOnPs2DHs3LkTkydPljyu0WhEbm5uh+3iZ+Ktv/3xxx/Hq6++ilmzZuGbb77pMnTJMJ6GDRSG6YGYmBjcfPPN+OCDDxAeHo477rij2/eL3pWuVuqbNm0CAIwePRoAMGjQIISFheHQoUOora3tcKPqapzY2FgcOXIEVqu1rfJCZN++fT39WQCoeqimpgY33nhjB+OkoaGhLTTjjMFgACBvtS73M/EWFosFH3zwAfR6fZtE/eUUFxdj/fr1eOutt2QZKFu2bMH06dPbbbtw4QKKioqQmZkpyXuiJoIg4Oc//zlef/11XH311fjqq6/a8m0YRgtwDgrDSOD555/HF198gfXr13eaUOrMlClTkJubi+3bt2PFihXtfrdixQps27YNAwcOxNSpUwFQWeddd92F+vr6Dkmy+/btw4cfftjpccaPH4/W1lYsW7as3fbly5djx44dkv6uxMREhIWFYf/+/WhoaGjbbrVa8dhjj3WaexIbGwudTofCwkJJxwDkfybe4vPPP0dlZSXmzp2Ld955B2+//XaHx6efforw8HB8+umnbaErKbz22msoKChoe2232/HrX/8adru9Xa6LJxAEAQ8++CBef/11XHPNNVi1ahUbJ4zmYA8Kw0ggPT0d6enpkt6r0+nw3nvv4eqrr8Ztt92GG264AYMGDcLp06fx5ZdfIjIyEu+//z70esf64E9/+hM2btyIV199Ffv27WvTQfnkk08wf/58rFq1qsNxfvGLX2DZsmX42c9+ho0bNyItLQ2HDh3CDz/8gOuuu66DwFxn6PV6PProo/jzn/+MYcOG4YYbbkBLSws2bdqEqqoqzJo1q827IRIREYEJEyZg27ZtuOuuuzBw4EAYDAYsWLAAw4cPV+0z8QZieGfx4sVdvicqKgq33HILli9fjv/+979tQm89MWXKFIwcORK33XYboqOjsX79ehw+fBhjxozBk08+qcr8pfLcc8/h7bffbhME/POf/9zhPSNHjmync8MwHsfLZc4MozngpIPSE53poIicOnVKuPvuu4Xk5GQhICBASE5OFu666y7h1KlTnY5VWloq3HfffUJCQoIQEhIijBgxQli2bFmnuiIi27ZtE6ZNmyaEhoYKkZGRwvz584XDhw/L0kGxWq3C3//+d2Hw4MFCSEiIkJSUJNx9991Cfn5+m4ZHXl5eu33Onj0rXHfddUJcXJyg0+nafQbdzVfOZ9LV3yAIPWuxXE53Oigip0+fFgAISUlJQktLS7fj7dixQwAgjBgxosdji5/h+fPnhb/97W9Cbm6uEBwcLPTr10947LHHhNra2g77dKeD0tl3TRA6/9/2NKfuHlI/W4ZxFzpBcJJRZBiGYRiG0QCcg8IwDMMwjOZgA4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcPmmgNDc34/Tp02hubvb2VBiGYRiGcQM+aaAUFBTggQceaCcbzTAMwzCM/+CTBgrDMAzDMP4NGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMAzDMIzmCPD2BBiGYRjfwWazwWq1ensajAYJDAyEwWBQbTw2UBiGYZgeEQQBZWVlqK2thSAI3p4Oo0F0Oh2io6ORnJwMnU7n8nhsoDAMwzA9Ultbi5qaGvTp0wfh4eGq3IAY/0EQBDQ2NqKiogKhoaGIiYlxeUw2UBiGYZhuEQQB5eXliIqKQkJCgrenw2iU0NBQWCwWlJeXIzo62mUjlpNkGYZhmG6x2Wyw2WyIiory9lQYjRMVFdX2fXEVNlAYhmGYbmltbQUABASw053pHvE7In5nXIENFIZhGEYSnHfC9ISa3xE2UBiGYRiG0RxsoDAMwzAMoznYQGEYT9HQALB+BMMwjCTYQGEYT2A0Al98AWzbBjQ1eXs2DMNoCIvFgiVLlqBfv34IDQ3FhAkT8N1330na9/jx47jllluQnZ2NsLAwJCQkYPr06fj6668VH2fz5s3Q6XSdPnbt2uXy3ysVTslmGHdjswF79wIlJUBZGVBeDkydCiQne3tmDMOoid0OtLQAOh0QHCx5t0WLFmHFihX45S9/iQEDBmD58uWYP38+Nm3ahKlTp3a7b0FBAerr63HvvfeiX79+MJvN+Pzzz7FgwQL85z//wYMPPqj4OI8++ijGjRvXbltOTo7kv8tVdIIPahafPn0aDzzwAN566y3k5uZ6ezoM0z0nTwJr1wJpaUBAAJCfD4SFARMnAkOHAir2rmAYd9Dc3Iy8vDxkZWUhJCTE29PRHnY7YLGQd7Slhc7z2FhJ5/aePXswYcIE/PWvf8X//d//AaDPe+jQoUhMTMTOnTtlT8dms2HMmDFobm7GqVOnZB9n8+bNmDVrFj777DPcfPPNso6t5neFQzwM407q68l7EhYGhITQhSsnh35u3EiPujpvz5Jhej3Z2dm4++67O2yfNWsWZsyY0flOdjtgNgPV1UBtLdDaCgQF0c/mZknHXbFiBQwGQztPR0hICH7yk5/ghx9+QFFRkey/xWAwIC0tDTU1NS4fp76+XhVNEyWwgcIw7uTAAQrr9O3bfntiIpCSAhw+DKxaBeTleWd+DMOgoaEB+fn5GDFiRIffHTlyBMOHD2+/0WYDzGZYjUaY8vJgqqiAqaEBpvp6mKqrYaqthamoCKayMphMJphMJtjt9k6PffDgQQwcOLCDSu/48eMBAIcOHZL0NzQ2NsJkMuH8+fN45ZVXsHbtWsyePdul49x3332IiopCSEgIZs2ahX379kmai1pwDgrDuIuiIuDYMTJE9J2sBcLCgIED6X2rVwNjxwKjR9MKjGEYj3Hs2DEIgtDBQCkuLkZVVZXDQGltdYRyWluxY/duzPrRjyQdIy8vD5mZmR22l5aWou/lCxigbVtJSYmk8Z944gn85z//AQDo9XrceOON+Ne//qXoOEFBQbjpppswf/58JCQk4MSJE/jb3/6GadOmYefOnRg1apSkObkKGygM4w5aWii009oKdNe/RK8HMjLIRbxtGyXQTp4McEM2xhcYO5Y8hFohORlQsMo/duwYAHQwUA4fPgwAGD5kCMkENDWR9yQgAAgJwYiRI/HdF190PqjdTu+NjAQCApDcRVJ8U1MTgjtJqBXzN5okVv398pe/xM0334ySkhJ8+umnsNlsaGlpUXScyZMnY/LkyW2vFyxYgJtvvhnDhw/HU089hXXr1kmak6uwgcIw7uDECeDCBSA7W9r7Y2OB8HDg7FnAZAImTQJyczv3vDCMVigrAy5e9PYsXObo0aNISkpCUlKSY6Mg4MjBg9Dr9RiakkIGyiXDRCQ2JgZXzZzZ9cDNzUBoKC1SupCAFzsAd9y1ue33Uhg0aBAGDRoEALjnnnswZ84cXH/99di9ezd0Op3Lx8nJycENN9yAlStXwmazweCB5H42UBhGbaqqaBUXGwsEBkrfLygIGDAAKC0F1q2ji//48WS4MIwW0VqpvML5HDt2zOE9EQTAagWam3Fo715kZ2QgPDKy04qclpYWVFVXdz2wzUaP6Gj0SUnp9Kbet29fXOzEyCstLQUA9OvXT9HfdPPNN+OnP/0pzpw5g9zcXFWOk5aWhpaWFjQ2NnqkszUbKAyjJnY7GSc1NZRfIhedDujXj1Zre/cCFRXAlCmUx8IwWsPDSZPu4ujRo7jt1lsd+SUWC+w2G77fsQPTJ0/uslx45549mHX99ZKOkXfhAjKzsjpsHzlyJDZt2oS6urp2N/3du3e3/V4JYsimtrZWteNcuHABISEhiIiIUDQnubCBwjBqkpdH4Z20tC5dupKIiCADp6CAqnwmTACGDycXM8MwqlFuNKKiogKlRUW0sACAwED84913YaqsxLAhQ7rcd8TQoV3noIhcykVJjo3t9Nc333wz/va3v2Hp0qVt+iQWiwXLli3DhAkTkJaWBgAwm80oLCxEQkICEpxy1MrLy5GYmNhuTKvVivfffx+hoaEYcmn+Uo8DABUVFejTp0+7MQ8fPoxVq1bhmmuugd5DoWe+2jGMWjQ1AXv2UFgnLMz18QwGymExmYDvvye5/EmTgJgY18dmmN7OJdXXo5cEyr79/ns8/NRTGJSbi11792L9998DAPYfOoTd+/ZhwtixHYboMQdFxGKh49ntHfLKJkyYgFtuuQVPPfUUysvLkZOTg/feew/5+fl455132t63Z88ezJo1C8888wyeffbZtu0//elPUVdXh+nTpyMlJQVlZWX48MMPcerUKfz9739v83ZIPQ4A3HbbbQgNDcXkyZORmJiIEydOYOnSpQgLC8Of//xnKZ+uKrCBwjBqceQIlQwrCe10R0ICeVSOH6cqnylTgP79XfPQMExvRVR9NZsBqxVHjx2DwWDAx++8g0d/8xss+9//MG3SJGz55hssvPtuHDp6FIFycsk6IyiIjmmxUNLsZbz//vv43e9+hw8++ADV1dUYPnw4vvnmG0yfPr3HoW+77Ta88847eOONN1BZWYnIyEiMGTMGL730EhYsWKDoOAsXLsSHH36Il19+GXV1dejTpw9uvPFGPPPMMyx13xMsdc9ojrIy4Msv6eITF+eeY9jtVDHR2kp6KWPHtqsoYBh34TdS9xYL5XdZreTJCAzE4scew9adO3HG3fk0LS3kFY2J8ev2Fix1zzBaorWVkgXNZvcZJwBdUNPSgPh44IcfgDVrKOzDMEzPCAKdo62t1MgvKAjQ6XD0xAkM8cRCNzCwrTqIkQYbKAzjKmfOAKdPA+npnjleVBSFePLzKYH22DHyrjAM0zVWK3kxAgPbwqOCIODE6dOeMVB0OvKciGJvTI+wgcIwrlBXR+XAERGy2qu7TGAgaaYAwLffUtPBhgbPHZ9hfI2WFvKiOCWp5hUUoKGhwTMGCkDnbWsrGSlMj3CSLMMoRRCAgwcpzOKtXKjkZPKoHDxI1T6TJ5N0PsMwDux2Cq1cVqafnZkJoTuhNXcQEEAGSnCwPCHHXgh7UBhGKUVFwNGjXTcD9BRi08GKClKgvaQMyTDMJVpayHOhheTUgAAK8TQ10SKH6RI2UBhGCS0tpHlis3XfDNBTGAxAVhZQX0/ibgzDEIJA3hOdTjul+YGBNCer1dsz0TRsoDCMEo4fJ9VYJ/VFTRATQ0m7Tl1MGaZX09pK54OWVJgNBgo7mc3sRekG2QaK2WzGu+++i//7v//Dtddei+nTp2Pt2rWKDv6Xv/wF06dPx5IlSxTtzzBeobIS2L+fyn21FkOOi6NcFD/oMMswqtDSQsaAFsI7zojibbyY6BLZBkptbS2WL1+OgoIClxTlTp06hbVr1yIoKEjxGAzjcZybATr1w9AMYgllXp63Z8L4IT6n6ykmx2rNOAEceWt+5kVR8zsi20CJj4/HF198gc8++ww/+9nPFB1UEAS89tprmDt3LuLcKWzFMGpz/jxw8qTrzQDdSWwscOEClx0zqhFwKTzS2trq5ZnIxGqlEI+WwjvOiF4UPxJvE78jASp85rINlKCgIMTHx7t00PXr1yMvLw8PPPCAS+MwjEcxm8l7olYzQHcRGwvU1gLFxd6eCeMnGAwGGAwG1NXVeXsq8rBY6KdWFxM6HXlSzGa/EVusq6tr+764isfNSrPZjDfffBN33323y4YOw3iUQ4fopi8KpGmVSz1GcO4c6bNo9eLM+Aw6nQ6JiYkoLS1FcHAwwsPDodP698pmIy+iTqftPA9Rgl+v77SRoK8gCAIaGxtRV1eHvn37qvL98LiBsnz5cgQHB+PWW2+VvI/JZEJlZWXb6wIuo2Q8TWkpcPgwkJSkzXj25cTHkzFVXe3e/kBMryE6OhpNTU0wmUyoqKjw9nR6pqWFtEa0lsjeGTYbGVJhYd7VVHIRnU6HmJgYREdHqzKeRw2UoqIirFixAr///e9lJceuWrUKy5cvd9/EGKY7WltJzr6pCUhN9fZspBEZCZSUkJHCBgqjAjqdDn379kViYiKsWtfvsNupBURVFdC3r7dn0zN2OyW2jxsHjBjh7dkoJjAwUJXQjohHDZR//OMfGDp0KGbOnClrvwULFmDKlCltrwsKCvD888+rPDuG6YLTp4GzZ31LQl6no/5Ap08DQ4f69KqM0RZq5Re4lZISoLCQWkH4SmJveDhw5AiFkHlRAcCDBsr+/fuxe/duPP/88yh1kuK22WywWCwoLS1FVFQUwsPDO+ybkJCABC2WdDL+T10dJcZ6uhmgGsTHA2Vl1CvIF1aRDKMWeXkU4vGlnI74eFpQHD0KzJjh7dloAo8ZKOXl5QCA3/72tx1+V1FRgdtuuw0///nPZeWmMIxbEQTgwAGgvJx63fgaoaFUvlhYyAYK03toaqIbva95IXQ6Ok9PnKDk9uRkb8/I67jNQDGZTGhsbERKSgoCAgIwevRovPDCCx3e99e//hXJycn48Y9/jOzsbHdNh2HkU1hILldvNwN0hZgYCk+NHu0byYIM4ypFRZQc3r+/t2cin+hoWhCJCflar5RyM4oMlM8//xwNDQ1tlTU7duxo85DcdNNNiIiIwNKlS7Fu3Tp88skn6Nu3L5KSkpCUlNRhrH/+85+IjY3FtGnTXPgzGEZlLBZqBghQwqmvEh9PzQNLSnwrh4ZhlCAI1IsqMNA3qu06o18/8gANGtTrz1lFBsonn3yCsrKyttdbt27F1q1bAQBz5sxBRESEOrNjGG9x/DiQn++bqzBnAgPpop2f3+svdkwvwGQiz2efPt6eiXLCw6mq59Ahqhr0VUNLBXSCzzVXAE6fPo0HHngAb731FnJzc709HcbfMJmAL76gC4MvX+hEKivpgnf77dpWwGUYV9m3D9i0ibwPvozFQqGq667TvjCkG/HRwDrDuAm7nToV19ZqsxmgEmJiKCbP0veMP2O1AqdOUR6HrxMcTH16Dh7Utgqum2EDhWGcOX+esui13AxQLgYDPc6f9/ZMGMZ9FBdTgqm/LCz69qVw1Zkz3p6J12ADhWFEGhspMTY42P9CIQkJdLGrrvb2TBjGPZw7Rz/9pVotMJAS9A8dol49vRA2UBhG5NAh4OJFyqL3N6KiSHSOwzyMP1JbS+Js/uI9EUlKoj5gJ096eyZegQ0UhgGoDPfIERJH8sesebER2dmzftPWnWHaKCwkIyUmxtszUReDgaQCDh0Camq8PRuPwwYKw4jNAJubgdhYb8/GfSQk0GrMFzrRMoxUbDZKjo2I8J+8MWcSEqgS79gxb8/E47CBwjDl5aQT4iudipUSFkYy4EVF3p4Jw6hHWRkZ3v4W3hHR6cize/x4r1tcsIHCMKWlVMoXEuLtmbifqChSqbRavT0ThlGHCxfo++zP529sLFBfTxL4viddphg2UJjejd1OF7jeon4cH0+rMKeO4gzjs5jNlFfla40BldCvH4WyLl709kw8BhsoTO+mqopu2P6ce+JMUBDF7PPzvT0ThnGdoiI6h3vD+RsZSZ6iQ4d6TaI7GyhM78ZopFVYeLi3Z+I5YmNJM6KpydszYRjlCAKFK4OC/LPyrjNSUujczcvz9kw8AhsoTO8mL48ucL2JuDgSbOtFrmLGD6moIA+KP/TLkkpoKKDXkwR+L8gjYwOF6b3U11MuRm9wDzsjSt9fuODtmTCMcvLzyfvZW/LHRFJSgIICh3KuH8MGCtN7KSsjcaeoKG/PxPPEx9MFvrbW2zNhGPm0tFCPGn8TZpNCUBBVLB0/7vcVPWygML2XixfJk6DvhadBdDRL3zO+i9gYMD7e2zPxDnFxFOLy895avfDKzDAALBbyIPhDa3Yl6HQUzz5zxu9XYYwfcu4cfYf9pTGgXMLDqbmp0ejtmbgVNlCY3onRSL0teqOLWCQ+nnoQ9TJ1SsbHqanxz8aActDpgIAAv/eAsoHC9E5KS6kHT29dgQG0CjObWfqe8S3ExoC91fspEhND564fywWwgcL0Pmw2qmDpjcmxlxMVRWGe1lZvz4RhekZsDBgZ6Z+NAeUQHU3eJD8O87CBwvQ+TCbqDtqbwzsi8fGUbFhW5u2ZMEzPlJbSozdpn3RFQADlj/lx2wo2UJjeR1kZuUVDQ709E+8THEzek4ICb8+EYXrmwgX6vgYHe3sm2iAykvJxbDZvz8QtsIHC9C4EgS5yYWHenol2EKXvm5u9PROG6ZrGRvqe9tbS4s6IiaFeRCaTt2fiFthAYXoXYsyWwzsOYmMp5MXS94yWKSoi3Q8+dx2EhtLCwk/zUNhAYXoXRiPQ0ECuUYYICKCEQ5a+Z7RKb2wMKJXQUL9tHsgGCtO7KCx03JAZB6L0fV2dt2fCMB0pLyfND06O7Uh0NC28/PDcZQOF6T2Imh+9rTmgFKKjSVuCwzyMFhEbA4aHe3sm2iMykhqf+mGYhw0UpvdgNLLAU1fo9VQZcfYsS98z2sJiofAO5550jl5PDz9cXAR4ewIM4zGKi+nm6+kYtt0OrFtHLthrrtGugZSQQBe5ysreLSPOaIviYqpSycz0+KEvFOqw/6geVqt7jxMYCIwdZkdWusLFQXQ0eZlaWihPx09gA4XpHVit3msO+MUXwHvv0fOvvwbuvx+48krt5cFERNDNoKiIDRRGO5w7Rx4CL7Sl2H9Uj9o66eep3mZFVEMJ6iL6wW6QMd8mYN9RPbLSFeqZxMRQfl15OZCaqmwMDcIGCtM7KC8nvYCUFM8e9/x54MMPHa/r64HXXgM2bQIefhjo18+z8+mJiAiSvh8+nKslGO9TXU0LCy8ZzKLnRKcTEBrS9fvCGiqQc3od+p9Zh9CmGhiTh+H7eS9A0Pd8DjU1A4Kgc81LExhIAnZlZWygMIzPUVZGVxtPKlBaLMDf/+7oc5OW5mjMd+QI8OijwK23Aj/6kXaaFiYkkHR2WZnnjTmGuZyCAgqN9u3r1WmEhgB3LrzMu2G3A4cPA2vXAnv20OtLJJUdxR2Gr4Abbuhx7I++NMCsRr+/iAiSChg9mjxOfgAbKIz/Y7fTievpCoBlyxzt0Pv3B/7yFzJM3niDPDotLcB//wts2wY88ggwaJBn59cZISE0r8JCNlAY79LaSsmxERHaCoc2NAAbN1Je2eWJqXq9w1D56CNgyhTPeX9iYihXp6rKb0K0/mFmMUx3VFUBFRWeLS/euxdYs4aeBwUBTzxBXpIxY4B//QtYuNCxyikoAJYsAd58k+S8vU1MDFXzWCzengnTm9FaY8Dz54F//hNYtAh45532xklcHHD77bR93jza1tQELF3qufmFhdExy8s9d0w3wx4Uxv8xGunGn5am2pDdZfcHN9Vg/hf/hNiKcM/YB3BuXwawT3xHOBD3AGKvm4XxO/6J+MpzVF20Zg3Mm3dj38SfojhjMqDTuZ7dr4S4ODKaSkqArCzPHZdhnLlwgbwRXmwMqG9tQU7edgw9/w3w7umObxg2DJg/H5gwgQQgAeCee4AffiBJg127KPwzfrz7J6vT0SKosBAYMsT9x/MAbKAw/k9eHoUuVKTL7H5BwNStryK0uQYAUNhvPI6kzweaOr7XHD4AX171Cq44swpjjn6AwNZmhJkrMf37PyE/ZSJ2jn0YtWEJrmX3KyEwkAymvDw2UBjv0NBA1Ttxcd45flkZsHYtFq7ZiBDLZQqtYWFUhTdvHpCe3nHfiAhg8WLKPwOA//yHks5VvgZ1SkwMhZUbG/1C1I4NFMa/qa8nN7HKIk9dZffnnFyN9JK9AICmkBjsnfEYwkIBoCsPiB4XRi1E2YDJGPfD60gpon0zL+5CP+Nh7BtxLwqGzVd17pKIj6cV7PjxdMFlGE8iNgYcMMBzx7TZgAMHKDR74AAgCGhnUmRmkrdkxgzqf9Md06dTnsqhQxRe/t//gPvuc9/cRaKi6Lw1GoHsbPcfz82wgcL4N2VlVAWQmOiW4dtl9xcXA/992/G7Jx/FTWMjAUjxfsQDd/0W2LGD4tY1NQhqbcLk/W9iYMH3wKhHPOvNiImhFWxxsTaSd5neg90OnDpFHgdPVKPU1gIbNlA1zmX5GzZ9APLSpuLC0Gsx58GB0pN1dTrgoYeAX/yCVjNffQXMnOn+c9hgIO9naSkbKAyjeYqLHVLQ7sRqJZduSwu9nj8fGDtW3hg6HTB1KjByJAm7rV8PAEgwnQEef5zKkW+/3TMxeVEY69w5IDdXW1UUjH9TXk75Tz0kx7qk8ioISKg4hQEnVyM9bxsM9tZ2v24M74Ozg+bjeMYcNAXHIixUAHQyw6z9+pGMwIcfktH1738DL73kfn2hqCgKzzrnxfgovj17hukOi4VEnjzRw+OjjyjLHyChJFfcuRERwCOP4DvDbIzd/k/E1hXRBe7zz4Ht20ngbdQodebdHfHxDle7t3IBmN5HQQFVo4SFdfs2uSqvABDQ2oz++Zsx+Ow3SKi50OH3RX3H4OSA61DUd2w7kTXFMkU33ghs2UILpTNnaNEx380h29hYMvAqKryuH+MqbKAw/ovYHLCzRDY1OXYMWLmSngcEUEmxCl6OiuQr8MW8f2Hsuc8w/MjHpAthNALPPENx8J/8xL3GV2QkXeiKithAYTyDxULhHQnfa6kqryIpBT9g0rZXENTSvpTfEhyJ8wOuxrlB16AhipSdKcOE8sbESjpFBAbSguLpp+n1Bx8Akya5V/IgOJg+R6ORDRSG0SwlJXRTd6NKa6ClAXj5ZUcH4LvuIlE2lbAbAnFs5B0Yvngy8PrrZAwBtCo7cIA8NbNnuycEo9M5pO+HDfMbdUpGwxQVUbNKGbkanaq8Xo7ZDNz/MtBidmwbMACYPx/BU6diSHAwqDDXDdVyQ4fSObpxI1XXvP028Otfq38cZ8LCKMwzYoRPh2f5isP4JzYbZbNHRbn1MON+eJ3UGwG6iS9c6J4DpaYCL7xASXdiVU19PfCPfwC//a37Wq3Hx1OisdHonvEZxpmzZ8kQVjt3YsMGMlIAMhj+/nd6zJ7tmZyu++4jjyRAytEHDrj3eDExlMtTW+ve47gZNlAY/6SiglZibnSl9s/fhMwLW+hFeDjwy1+6NwFOpwOuvpqS7aZPd2w/epT6+nzyCVTvCx8aCjQ3k/gTw7iTqirKP1FbOdZmoy7iIj/9qWfLlwFaKN1/v+P1m2+6V6k5IoK0ZHx8YcEhHsY/MRrpAuAmcaTweiOm7Pu3Y8PDD7tNkrupmRqKOUgAcpagb8hsjNv5OiIajGSYfPghatZsx/fzXkBzqHTDrEe1WlH6ftQoku1nGHdQWEheQbU7fO/Z47hRjxwJZGSoO75UrrySwjzHjpFX8tNPgR//2D3H0utpsVRcTFV4Pgp7UBj/QxAovNOTmJJSbDZM2vp3BFkvuYxnzQKmTVP9MGLqjCDoYG7q+DgfPw4rrnkDRwbdBLuOTuWY6gIM2fPfTt/f1aO2Tod9R7u5FMTHk0eqpET1v5FhADjO2fBw9XMmvvrK8VxCd2G3odPRQkYMX33xhXs9k9HRNH5zs/uO4WbYQGH8j5oaWjG5K7zz+edINB4HADREJJHL2A2MHWZHdJSAsNCuH0GRwTg2+X6sW/AqrIFkkOUUbEK0vr7b/cSHTkdek24jQ6L0fX6+W/5OhkFdHRnB0dHqjnvuHHDiBD1PTfVMeX53pKZS6TFACfyvvw4ICiuEeiI6mnJQfLh5IId4GP/DaKT4q9quYoBCHf/7HwDArtPjh+lP4Ooe9BqUkpUuyOjBkwlYZwFr1iCg1YJbwjYA11/f414ffWmAuUnC8HFxtMIdN84venwwGqOigsI7ycnqjuvsPVmwQBuVaLfcQomypaXAiRPIjtuAY2lz1T9OYCAZQaWl7pdacBMa+G8xjMoUFpIbVW1XcXMzlRTbyGg4POQWVCRfoe4xXMFZAGrNGkfpsxrExFASo7uqhZjeTUmJ+orPlZUkbAhQBc2sWeqN7QrBwcDPftb2ctTedxHS7KZqm8hIR1doH4QNFMa/MJtJS8Ed4Z133227QVcmDMSBoXepfwxXSE+nUmeA5nnkiHpjGwwO6XuGUZPWVlpUiGW4avHNN22LCVxzjWfKiaUyciSJLQIIttRj/KF33HMccWFRWeme8d0MGyiMf1FWRnFXtWPZu3cD69bR8+Bg7JzxfxD0GoyQXnON4/nateqOnZDgkL5nGLWorKS8MTVVkZub23pZISDA/fLySrj//rZw6cC8DUgsPaz+McLCqG2Aj5Ybs4HC+BdiCEJNPZLqauCf/3S8XrwY9dEp6o2vJhMnOrxHu3Y5ROTUIDKSkhmLi9Ubk2EqKsigUFMS4PvvKQ8NoAo7LbZqiI0F7r237eX4Hf9WX8cIIM+Rjya4s4HC+A9WK8k7q6keKwjAa6/RjRmgDqFz5qg3vtoEBABzLyXc2e3At9+qN7ZORyuyM2d8NqbNaJDCQnX1dez29sJsCxaoN7bazJmDisRBAICouovUEFRtYmIoUVY02HwINlAY/6G8nLwdauafrF7tkKWOjSWpea33tpg715FsuH49xfjVIiGBLnYVFeqNyfRezGb6PqkZkt2/3+FJHTpU1d5YqqPXY8/kX8Cuu+Tx/ewz9fWGIiOpQsoHwzxsoDD+Q1kZeVHUWo0VFgLLlzteP/aY23v7qEJ8PIV6ADLYdu1Sb+ywMHLH+7C2AqMhKiooZ0zN82rVKsdzbwqzSaQ2LhNHB/2IXlitwBtvqFuBJ4a7fbACjw0Uxj+w26mcTmyk5ypWKzUTa2mh19dfD4werc7YnsCdybLBwdybh1GHsjI6d9VqDpiXBxy+lGzaty/p9vgAB4feiYaIRHpx+DB1K1eT6GjKQ3FHjosbYQOF8Q+qqmg1plYlwH//Sxc7gMp377lHnXE9xfDhQMqlRN6jR9U1KKKjyS3f2KjemEzvw26n5oBqLSqA9t6T66/XhjCbBFoDQrBvkkMbBe+8Q2EZtYiOJm+qj3k+feO/xzA9UVZGN0w1VE4PHwa+/JKeBwQATzyhLQ0FKeh0HYXb1CIqyiFNzjBKqamhEmO18k+qqx2eh/BwYPZsdcb1ECVp44HJk+lFbS3w3nvqDR4cTN4TH8tDYQOF8Q/y89UpU2xoAF591REDvuceICvL9XG9waxZDsNq0yZKSFQDg4FWvz52sWM0RkWFeosKgEKZYkL4nDnuaxbqTh54wDHvb7919BFSg/BwCoOrmd/iZthAYXyfujrKfHe1ekcQqHmXqLo4YoS2SxR7IiKiTa0STU3qxrUjI8k9z+XGjFIuXiRjV42quJYWR66VXg9cd53rY3qD+Hjgxz92vH7jDfWq8GJiyCj0IaFFNlAY38dopHitq1LZmzY5endERFDVjo/EsLvEXf15oqIcCqAMI5eWFsqLUiu8s3kzhUUAYMoUoE8fdcb1BtdcA+Tk0POCgvYND10hPJw8Vj6Uh+LjV1+GAcmvu9porKwM+M9/HK8feYQ0P3yd7GxgEAlBoaAAOHlSnXHFix3noTBKMJnI86mGgSIIPlda3C0GA11/xOvZ//5H1ydX0ekop66oyPWxPAQbKIxv09xMN15XqndsNupS3NREr2fPplWYv+COZFmdji6kPqitwGiAigryoqigWZRccshRpTZoEDBwoMtjep3+/YFrr6XnLS20eFLD+xkTQwaKeK3TOGygML5NeTmFGVxZiX32GXDqFD1PTqZENX9iyhSHENbOnerFoKOj6cbgY9oKjAbIz1ctiXXQsS8cL3zde+LMXXdRTgpA6rg7drg+ZnQ0XS99JMGdDRTGtykpoUTNwEBl+xcUAB9/TM/1euBXvyK1VH8iMBC4+mp63toKfPedOuNyuTGjhPp6WlioEN6JqS1Ev4v76UViokNB2R8ICwMefNDx+u23XdceCgig62VpqWvjeAg2UBjfxWajsjlXkmO//dZRiXLLLY58DX9j3jxHtcS6dfTZuUpwMGCxsIHCyKOiggxbFQTarjjtlEB63XXqdjHXAhMnAuPH0/OqKhKQdJWoKBKhVOMa4GZU0hdmGC9QUUGVJMnJbZsuFOqw/6heUtRBZ7dh4YbtCAVg0wdgZcCNsH4p7QLX1Kxwzt4iKYlkv/fsoQTFvXvVWW2GhZEXasQI18diegfi6t1FYyK4uRYD8jfSi9BQh5fQn9DpyIty+DAtBtasAa68EhgwQPmYMTHkwTKZ6LqgYWQbKGazGR9//DFOnDiBkydPor6+Hk899RSuce790QX79+/Hd999hyNHjqCiogJxcXEYPXo0fvKTnyDBHyomGM9iNFKSrJNA2/6jetTWSdNV6Fd2DKFNlI9R1G8cau2RgMzcMaWRJa9wzTVkoACkGaGGgRIVRf+HhgZ1JcsZ/8RmI4PWVUkAADmn1iLAdqlX1lVXqSf4pjUSE4E77wSWLaNE2X//m/qEKTXwQkPpumk0at5AkR3iqa2txfLly1FQUIAcsVZbIm+++SYOHjyIadOm4bHHHsPs2bOxadMmLF68GJWiOBbDSEEQKLxz2UVJ9JzodALCQrt/DLy4uW2/ogEzenz/5Y/oKAFjh/mQUNmoUQ5v08GD6rR1F1u5+5C2AuNFqqooSdvV/BOrFQNOrgYA2HV66rvjz1x/PZCZSc8vXAC++ca18UJCKFFZ48j2oMTHx+OLL75AfHw8Tp06hQedk3h64JFHHsHw4cOhd9KrGD9+PB599FGsXLkSD/hb9QTjPsRM9C7Ki0NDgDsXdhNjtVqBTy5lxYeGYtrDY4Bg7cdkXUKvJy/KsmX0eu1aIF76+dspBgMZi0Yjaa4wTHeUl1OJq6uJ6Nu3I6ypCgBQnD4R6U5hXr8kIAB4+GFgyRI63z78kPr2KBWki4khbZW6OkeFnwaR7UEJCgpCvFj6JJORI0e2M07EbVFRUSgoKFA0JtNLcTWssH+/IyN+wgTfawaolNmzHdoTGzbA0KpCMk1EBK3GWPae6YmLF12PiwqCo5kngNNXLHRtPF9h0CBKdgcoRPPWW8rHEj2fGi839noVj9lsRlNTE6LVkjxmegeFhXShU9rHY9s2x3OxX01vICoKmDaNnjc2IuPCVtfHjIkht31VletjMf5LczNQXOx6eOfYMapCAVARNwAVSUNUmJyP8OMfO3qO7dqlPLSq19O1U+NCi143UD777DNYrVZceeWVXb7HZDLh9OnTbQ/2tvRyGhvJQFGqHtvUBOzeTc8jI3tfBYqTsuzAk9+4rlAZGkqdkrncmOmOigrql+NqSMGpN82x3IXqNBv0FSIiHAqzgKN3mBJiYsjz2dLi6qzchlfLjA8dOoTly5dj1qxZGDNmTJfvW7VqFZYvX+65iTHaxmik2KnSnIfdux0n5ZQpFN/tTQwYQM3Izp1DXOV59Kk6g8YwF+TBxR4fFy8CgwerN0/GvzAaqYrHlRBPSQmVyAMwh8XjQvo0qKNH632amoGPJMgcRDTPwAKQHkrlNzuwXn+LpPEDA4Gxw+zISr+0IImJoYVeeTmQmqp02m7Fa1fmgoIC/Pa3v0V2djaWLFnS7XsXLFiAKU69UQoKCvD888+7e4qMVhHdkkrL7LY6hTV6U3jHmfnzgX/8AwAw+Oxq7Et1sX9JdDT1+LBYek8+DyMdQaDVuqulwF9/3ebxOzP4Ogj6AAAqdej2EoGBAJoAQdDBLEHmwByYAlNsDhKqzyHedBaG8jLUR/bteccmYN9RPbLSbY4Dt7ZSsqxGDRSvhHiMRiOeeOIJhIeH46WXXkJYDxndCQkJyM3NbXtkZGR4aKaM5rBaKf6sNI5dV0cltgB1K+6tK/5p09oSjLMLtiC4uda18aKjyX1vMqkwOcbvqK0lUUVX8k8aGoCNl4TZgoNxblDP2lu+wNhhdkRHyZM4KOo/rW3/3NKtPb5fpyMjroOAZUQEXU81muDucQ9KbW0tnnjiCVitVrzyyiss0MbIo7yckjHT0pTtv3OnQ+J52jRHS/PeRnAwVfR89RUC7FZkn90AYKHy8cTVmNEIpKSoNUvGX6iooKoRV8qBv/2WEm0BYPZstATLF1bUIlnpgsOrIZWJk4B9JBcwsmorRi68qdu3f/SloXPvTHQ0LSqqqx2NCTWE267OJpMJBQUFaG1tbdvW1NSEJ598EiaTCX/5y1+QpvQmw/ReSkvpRqi0TbtzeGf6dHXm5Ks4qT8POLna9VVUaCiphDLM5ZSU0GJA6YKgtbW9OJm/C7P1RHIyMPBSWDYvT3k1Tng4FR1otNxYkQfl888/R0NDQ5v6644dO1B+qdzppptuQkREBJYuXYp169bhk08+Qd++FB/74x//iJMnT2L+/PkoKChoV40TGhqKadOmdTwYw4jY7aSiqFT7xGQCjh+n5ykpLCzWrx9KUkaj38UDiGgwUuirm2T1HhF7fGhc/InxMK2tlIzpyndi505H+HDcODp/96ozPZ9l6lTgzBl6vm0bcPvt8sfQ6WixV1gIDNFeubYiA+WTTz5BWVlZ2+utW7di66WV6Zw5cxDRxQ3k3LlzAIA1a9ZgzZo17X6XnJzMBgrTPZWV5CpWGhbcts1RUjtjRu8qT+yCs4OvRb+LB+jFmjWuGSgREZRwV1HBBgrjQAwh9OunbH9BAFatcrxesECdefk6U6YA775Lz3fsUGagALSwKC4mT4rG+hkpMlA+/fTTHt/z9NNP4+mnn5a9H8N0idHomkw2h3c6UJI6DvVhfRBprgD27XOtgZgo/lRWBvTvr+5EGd+lvJzK+pVWd5065fAUZGYCw4erNjWfpk8fUpc9dYpCq4WFQHq6/HGiosgzrcF2Fb00Q5DxSfLylF/kLl4Ezp+n5zk5yldzfoagN+BUziXhNkEA1q1zbcDISContfl5XyNGOoWFrpWeOwmz4YYb2PPpjHPUQalom9hPq7RUnTmpCBsojG9QV0cnkCjzLBf2nnTJmew5sOkvOVO/+841ZcmoKGrkyLL3DEBhg7Iy5eXFRiNJugMUiuBztz2TJzsMtu3blatCR0XRAtCpqEULsIHC+AaiemxkpPx9BcFhoOh07VcdDJpCY1GUOZVe1NVRPFspYWEUhlPaI4TxLyoqXEua/uYbR3XZ/PmuNxr0N+LjHcmtxcXkvVRCTAwtKjSmY8QGCuMbFBWRnLqSMsULFxxleFdcocl6f29zZrBTf4+1a10bLCiILpYMU1ZGCwQlqs9mM2mfAGSYXOMfwmyqo0aYJySEVKA1Vm7cy5qQMD5JczMlgSl1E3N4p0dMiYMpATE/n5Luzp9XnugaFUUGYXMzXfiYXseFXaXYv+IsrFX1gH0gcEK+gZJ7fCPGNJG62LmsK7FnU1y73zc1qzJV32fSJGDpUvI0bdsG3H23sjydsDBazA0frpk8H/agMNqnvJzyGpR0LxZPWoBWcZMnqzkz/0Gna9fl2CUvSlQUSZtzd+Ney/4VZ1Fb0ghzsx7mlgCYm3SyHk2Ndgw49nXbeIdyFnZ4jyDQTbTXR31iY4GhQ+l5WRkZGUoQdYxqXWx7oSJsoDDap6SEqkKUdB0+ccIRVx01ivU5umPGDFKDBYAtW6j3iRICA+n/xXkovRZrMyVb6iCvx4z4GFDxA6IaSWurNGU0WpLTO31fdJSAscO02UfGo0yd6nguLsjkEhFB57yGwjwc4mG0jc1G4QY1wju9tXOxVEJDgSuvBFavpnj0998rF8UKD6dw0ejRmnEXM54nNLAVdy5U8P//zZdtT/suvh53juGy9W6ZPBl4803yGG/fDtx7r/zzTmxFUFwM5Oa6Z54yYQ8Ko21MJsouVxLeaW11VKQEBQHjx6s6Nb/k8jCPK2WLJpOm3MWMBxG/NkqS2s+eJc8nQE1BR49WbVp+S1QUMGIEPS8vp89QCTExpFvTrI0EHzZQGG1TXk6reSXJlocOUQdVAJgwwRG+YLomLQ0YNoyeX7wIHDmibJyICPrsOQ+ldyKWBusVeE8ul7VnD5w01AjzREdTvp9GwrNsoDDapqBAuQolV+8ow9mLclnPLMmI7mINqlMyHqBNSVimcWEyOUplo6KAmTPVnJV/M2mSI09vxw5l3cnF/DGNnLdsoDDaxQUVSkNrs0OBMjyc3cRymDABiLtU0rl7t3LxpqgoMjA1pk7JeAClrQ5Wr3bsO2+eaxL5vY2ICGDkSHpuMgGnTysbJzKSVGWVGDgqwwYKo13KyxWrUKYU7nXEUadM8X4tos1GsV0x5KRlAgKAOXPoud0OrF+vbBzRXVxZqdrUGB+grk6ZgdLc7PiuBQS09+Qx0nAO8ygVbYuJoXNWA+ctGyiMdjEaFatQZlzY7HjhbWl7QSBtgshIajt/7hypZGqZuXMdCY7ffgtYrfLHENUpNRLPZjxERYWy5Orvv3eUtk+b5vDi+RJ2Oxnl3lqITJjQPsyjxFAMC6PrkwbKjdlAYbSJ3U5uRgW9d4JaGtCveB+9iItziBh5i+JiWpXMnQssXAgMHEihq7w8uoFrkfh4YOJEel5dTaEeJQQFUZsCpvegJH/Bbm+fHHvDDerNxxPU11NZ/dmz1IuqtJR+ehrncHZVFXDypLJxgoOV9/VRETZQGG1SWUknmIL8k8yinTDYL+U9TJ2qrA+IWlRW0mpyxgwgKQlISaGeIgsWAKmpFPYpKtJmnoYaybIxMXSx1rrHiFEHm43yjuRW7+zfT4KMAFWRZWerPze1MZtp8XHqFJXTZ2TQOXPLLbQoKijwTh6HGr15xPNWqVijSrCBwmiTigpagYSFyd61f8FmxwtvVu80NJCRNXly+742ej2QlUVGyrXXklT1+fN0QVCaXOgOhg0jIwoAjh0jY0oukZEse9+bqKykEIdO5q3FV7wnFgudp6dO0Xc6IYHytW69Fbj+euosHBtLFTV9+3rHezhuHHkuAeVhnqgoyiXycpiHDRRGmxQVOU4yGYSYq9C3/JJ2R3IyMGCAyhOTSEsL/Q1jxjgElC4nIIAUG2+8kcI/wcHAmTPKY/hqc3l/HiVelIAAWkVyHkrvQFxYyNEuqa526O0kJwNjx7pnbkppbaXv7+nT5DEJDyeP6M03AzfdROd3fHz7vzkqiry3Oh39fZ4kLIyuOwAtDo4dkz+GwUBzF7vAewk2UBjt0dREJ4aC6p30vO3QC5fcqtOne0fkyWajpNghQyiPoyc1zeBg8lbcfDMwaxYZJ6dPe/7C1hmzZjlKPTdtUhaqiYigeLYWjC7GvShZWOze7fhuTJumTH1WbWw28gadPUu5YgEB5BW56SbgtttIlTo5ufu5ZmaSsVVWRgsWT6JGmCc0lLxhXkQD3wSGuYyKCrL8leSfOFfveCu8k59PoZHp0+XpOISHk3v2ppvIsGlqIkPFm6XJ4eEOsaymJmDzZvljREeTLoMWDC7GfTQ1UR6J3PNW1CsCHInZ3kAQ6Lpz/jxV2tlspCuycCEZJVOmkNKynKalo0YBgwaRkeNJA33sWMe1Z+dO6OwazHGTABsojPYoK1PWvbisDAkVJE5UHZsFpKe7YXI9cPEieQxmzlTeOTkmhlZAN95IF0hvlya72p8nPJzmznko/o24sJDzvW9sdIR3EhKAnBz3zK07GhooofXMGZpPbi7lh91+OzXPzM5W1moDIG/SlCkUAhKTgD1BSIij91h9PZJLDnvu2CrCBgqjLex28kBERMjf10naPr+/FzoXV1WRXsiMGZQg5yp9+gCzZztKk0tLaSXmaXdxVhYweDA9LyhwNHKTik7Hsve9AaNR/sJi3z5HBdvEiZ4LyTY1OSpwqqsd1XW33UY/Bw4kw1oN4uMpUb652bPe0ClT2p6m5ynszeNlZC5RGcbNiMqjSroXOxkoBdkzMEq1SUmgsZHCGDNmqJuYq9PRxbNvX8ppOXiQjJTQUNom18vUBU3NwEdfdl2OnZF4HaZc0lTIX7oWO2cNlzV+oC4HY61lyJpi9b6qL6M+gkALC7k3dU+Hd2pryVAODqYckokTKRybkOBe40jUPtq9m64PKp233TJmDF0nmpqQVrAT+lE/h6/d8n1rtoz/U15O4YCUFHn75ee3lcEaEwbDHJEIwEMlu1YrHXvcOIo5uwOxNDktjWLkBw7Qz6go0ldRmFgYGAigCRAEHczd6EqdTpqK0cFLEWqpRVrBTghV1WgKlaP0GYB9p0KRZTKp411itEVNDRnochYWLS30PQaoHP2KK9wxMwdiE7wJE8hISEz0nEaSTkchl/JyulZ5IpQVHEzH3LIFQS2NSCk7iMqcce4/ropwiIfRFhcvOkrc5ODkPTmXMVPdOXWH3U4VO4MGUZa/uy94Kpcmjx1mR3SUgLDQ7h8hEQG4kDsXAGCwt+KKou963Ed86HQ0L6tNx3ko/oq4sJDjQTl82KG2On68+88do5GM43Hj6KenBRxDQ6n0OCzMc2X3Tr15sgp9L8zDHhRGO1gsVKYotwpAENoMFLtOj7z0aZ6zvPPz6WI3fbryRDoliKXJ2dmUE3L4MFX8JCWRUJREstIFZKVL9DRNvAp48FMAwMjaHRi58CZJu330pYG8Mzod5bAMlxceYnyA0lLy4slZWPzwg+P5pEnqz8mZ1lbK/5gyhQwFb9G3L4WVNmygPDsFQpSyGD2ajMbGRmRe/AEHWlsAeFFZWybsQWG0g8lErmK5Bsrp020rkrJ+I9EcEqP61DqlpIQuMDNnKsuZUQOxNPnmm+nCV1fnvi6kyckORdxz5+R7Q3Q6WsU2Nqo/N8Z7iCFOOeetzebo7xQSQtVq7qSsjMLG3hJudGboUFpcFBS4Xzk6MJBCWgCCrGb0vbjfvcdTGTZQGO1gNNJKR24S5WXJsR6hupo8PtOmyc+XcQdiafLYse5VonVOZJTbQFCvJwOKVWX9C3FhIae8+MQJR0XL6NGKVKMlY7VS+GnkSHm6RO7CYCCPUUqKZ6TwncI8GXkKRdu8BBsojDZQWgVgswHbLsVWAwNRlDFZ9al1wGymm+yECZQPoiUGDSJjparKPeM7GyjOLnqp2O1e7+/BqEx5OSW8yrn5O1fvuDu8U1pKyeXO/bC8TWQkGQ56vfsFDEeMgCWIZBtSCndrt4N6J7CBwmiDujpa+csVNztyhEoHAWDcOLQGuTmma7WSa3bECCrj84aUfnfExFA5sru8KOnpjiqc48fp/yaHyEgqk/ZGl1fGPRQWysu/EgSHgRIQ4N7eOy0tdEMeMcK9XholZGTQ3240utdoCAxEUSYt3AJbm6hztI/ABgqjDcrLyeUrV6DNKbzjdml7sWInJ4dWP57QMlDC4MFk6Lmjj4ZO5/Ci2O3A3r3y9o+OphUjy977Bw0NlN8hJ//k/HlH/tKwYeoJonVGSQkZ1dnZ7juGK4weTeerm3tVFWap0JvHC7CBwmiDkhJyd8rR82hpcYQZQkMdHTzdRUEBJYrOnOndSoCeiIuji567cj2cwzzOrnophIWx7L0/IS4sIiOl7+Op8I7FQjltI0dqVxwwMJBUZhMS3No52Nh3BJqCL3mn9+4lVVsfgA0UxvuIYRO51Tv79zv600ya5N4EuLIyGn/6dDIAtM7gweSNcocXJTfXUcp88KC8i51OR56n4mL158V4HqORVv5yNEXERYVO11Zh4hYuXiRxw6ws9x1DDeLiyEhpaZEfMpWIoDcgP+2S9L3FIt/z6SXYQGG8j9Ly4i1bHM/dGd6praXS2KlTvdOAUAl9+lDCrDsSUvV6x42lpYWMFDlERZGB4umeQoy6KOmbdfGio3Jl0CBZmj2yaGoiw2nECM8LsilhwABSob540dGbSGUupPlemIcNFMb7KKkCMJup0RhAhs2IEe6ZW1MTeU/Gj6fkU19i8GCK77tjVea88pUb5omOJqOPwzy+TVUVPeRoAHmq905JCeWKZWS47xhqotORnlF2NiWRu4GyxGFoCo2hF87eZw3DBgrjfQoK5Od07N7tWIFPmeKeVVJrK60Qhw2ji4fWKnZ6IimJVmZlZeqPPXy4QwVz7155q76gIHo/Gyi+TXk5GfBy1FA9oR5rNpOXb/hwxT2qvIIohR8R4RbPp6A3oCjzkiZKSwuwZ4/qx1AbH/rvMX5JfT2djFoL7wgCVexkZ9NFQ6tJdj1xxRVUAqp2m/fAQEd5aEMDlRzLISSEjD/Gd7l4UV4lW2Ul9Y0CgMxMSjh3ByUlZJinprpnfHcidliurXWLh6PAx6p52EBhvEtFBYUg5MSxa2uBQ4fouZhroTaFhZRZP3Ome8sg3U1ysvu8KK6ItkVHOypAGN/DYqE8Iq2FdxoayHj2Ne+JM1dcQfMvLFRdCr8iaYgjyf/AAfq8NIyP/gcZv6G0lEInckI0O3Y4hL6mT1f/QlRRQfOZMYOMFF9Gp6MLXmCg+j1wRo92rKB375an4xARQcYJh3l8k4oKWijIEVb0RHlxaSkwcCDQr597xvcEBgMZcKmpZKSoiU5PIXGAwqxy21V4GDZQGO9hs5GbX46GAuBecba6OrrwTplCbmh/oF8/ShgsLVV33LAwR5O3ykpqICgV0SBVe06MZ5DbN6u+Hjh6lJ4nJbnn3Kqrc3T59rV8scuJjHTk1qndtmKa74R52EBhvEdlJSmKysk/qaigRmMA9ddQ80JnsVD8etw46jjqL+h09PcYDOrHtV0J80RFeaajK6MugkD/NznJsXv3OryeEye6x4AoLaVwr9iKwddJT6fqwYoKdaXwBw50eIYPHdJ0mJUNFMZ7iFUAcip4xMaAAHlP1LrQ2WxU3jd0KJXQ+mr8uitSUijhV22Pxfjxjv+BXHdxVBQZqO5qbMi4B7FvlpyFhbvDO7W1lCs2bJj6Y3uTkSPJ6FJTCl+vd3Q4ttmUNf30EH52FWZ8isJC+eqvztU7zq5KVxArdjIyaExfrdjpDr3ecfFualJv3JgY0lsBSIBLjkJsWBjNhfNQfIvyckqulJrYbrFQQiZA3xd3dAAvKyOdosRE9cf2JqIUfp8+6krh+0iYhw0UxjuYzRROkVMFUFTkEDFSMxGupoZWXzNmyG9W6EukpbnHi+JKb57AQLf2IGHcgJjYLtXLeOCAQ7NowgT1NYuqqylnw5/Css64Qwo/J4dygYD2HeE1BhsojHcoL6eTTU4VgHNyrFreE4Ck9gcOdJyw/opeTxdxQVA3pu2KgRIdTYanjzQv6/W0tpLnU2lzQLXLiwWBEnaHDgXi49UdW0vk5Dik8K1W18fT6RxhHrtds2EeNlAY72A00okhdTUlCA4DxfnkchWLhW7cOTnqjKd1MjIo+a6kRL0xk5MdycpnzlDys1SioshQNZnUmw/jPsTEdomeT5291aFYGhZG+h5qIkrt+1obCrnodJTvlZOjnsCh8zXUObdPQ7CBwngeu51yPuSsws6dc4Qmhg1Tb7VUXk4JpL6smyAHg4FuEjabus36nFfGcpJlAwNpVe6OpoaM+pSXk1EfEiLp7UmlRx36O2PHqpvfJQg0n2HD3Nd0UEuEhFDpcWSkOsKL2dmOiqfjx8nw1BhsoDCep6pK1ioMgHu0T+x2ungOGeIbHU/VIjOT8lHUzEVxJcwTHk5lq2pVKTDuo6iIeilJJLVgp+OF2uEdk4kWKv7uPXEmKYmqoOrrXZcM0OkcoXK7Hdi5s/v3ewE2UBjPU1FBJ5dUHQWbzeGCDAighDE1qK6mBDRf6XiqFgEB5EWxWNSJZwNAVpajguLoUXkS2lFRjpYHjHYxm8molbqwEOxILbhkrAYGAmPGqDcXu50MlOHD5eWx+QNDhpDXqKjI9bE0HuZhA4XxPMXF8ly9J044tDJGj1av0kZMjvXnyp2uyMpS14ui0zn0LWw2EuaSCsve+waivL3E0GyfyjMIa7p03o4cKb9jeXeUl5NBLJa49yb0emDECPo8Xe2lk5FB1wEAOHlSXv6YB2ADhfEszc1k+csReXJH52KzmTRY+vdXZzxfQ2yo1tSknhdlwgTHczl5KHo9PVj2XtuUlZHnQmIH48xiN4V3bDbyfo4Y0TsXFwDpomRkuG7U63SO3jyCQH3ONAQbKIxnkdtkzGp1xEaDgymTXQ3Ky6kZl7tavvsC2dmUIKxWgurgwQ7Dc/9+eaXMkZEse69l7Hb6/0hNbBcEh4Gi16t33gJ07iYnu0fwzVfQ6cj729Li+jmjYdE2NlAYz2I00gklNcRz6JDDjTlxouTqgW6x2ejmOXiw/0nayyEoiLwojY1USeMqBoPjRmSxAIcPS983JoYE87jcWJvU1JD7X+LCIrqmENH1l0rZr7hCnse0O2w2ylUaMUJeLyB/JD2dPCmuhmXS0hx5eKdOaSrU2ouvzozHEQRSgg0Pl76PO8I7VVUOF2lvp39/Wo2Wl6szntLmgSEhLHuvZcrLyZCVeO6mFjj979UM75SVsfdEJCSEPgc1elk5J8tqyIvCBgrjOcQVstQqgOZmRy5DZCQl2qlBVRWd2Gom7fkqISG0Gq2vVye8IibvASTQJWfM4GB1KhMY9bl4kTxkEptzprmjvLi1lbypo0ap40n1B7KyyJMkas0oRaNhHjZQGM9RXk7JqVI9KHv3OvIYJk9WR+SpoYFuoNnZro/lL4h9OdTwogQFUaUVQEbPyZPS942OJoVbNZsZMq7T1ET5J1LF0IxGxFWeBwBUxueQt1INSkspZ6q3qD5LITGRQjSunrv9+jmuiWfPqiMEpwJsoDCeo6SEcj4krsLaZZSr1XunvJxCO2pdNP2B0FDSVaitVceLojTMI8rec5hHW5SWkvdTqufTSaivOGOSOnOwWslQGjVKfgd0f0anI2+wGsmyzmEejVTzsIHCeIaWFlqFSU2Ws1ioEgSgG9cVV7g+h9ZWeuTmSjeSegsDBtBqTA3jYOxYRynqrl3SFWIDAugiq1Y+DKMOYthNqtqyk4FSlKGSqGJpKSWF9lZZgO5ITydFXVdzUTQo2sYGCuMZxPJiqQbKwYOO8I5aLdpNJgplpKe7Ppa/ER5OXpTqaiopVWMsAKioQGzVBXn75uWx7L1WsFjo/yHVe1Jb2xbWq4lMQV1MmjpzsFgoB03NXj7+QmioOsmyycm0UAGoV5oGFgpsoDCeoaKC3LRS+3g4hwbUkravqaHSYnYRd87AgUBCgjqlvk5hnnb9WHoiOprKJmtqXJ8D4zplZfL6Zu3e3WbgFqROVsdTWVJC/aOyslwfy1/JzqbEYVf78zh7UUQPthdhA4VxP2J5sdSqGatV/RbtdXVUCZSZ6fpY/kpEBHk+Kitd96I4qcqmFcjIQ4mIoIoEzkPRBsXF9F2Q6rlwCu/kp6qQf9LcTGG/ESMkK9j2ShITKYHYVa8HGyhMr6O+nk4cqauwo04t2seNU8etW1FBq4z4eNfH8mdyc9WJZ8fFtWlVxFQXIEoU7eoJnY5l77WC1Uqufqmqz2YzCSsCMIfFoyJ+oOtzuHiRzlteWHSPXk/eYVeTZfv0AQYNouclJV4v+2cDhXE/5eVkpEjtm+Ec3pmkwiqspYW8OGJ8lemaqChg6FAy6FzNA3EK82QUy6zmKShQr0cQowyjkbxpcXHS3n/gQJsicXHGJEDn4u1FDFeMGKFODpq/k5ZGpeBqJst6uZqHDRTG/YjlxVJk5W02h5s4KEidFu0mEyWApaa6PlZvIDdXnQudk3HZrnFcT0RHO6TVGe9x8SIZHAryxorUKC8uKSHNE05ql0Z4uDrJslOmOHKHtm3zasI6B/UY99LaSqvhqChcKNRh/1F9twvjPmUncXVtLQCgsO9YbF8rr99GU/NlGwSB8k8mTOAKAKnExABDhlCTxrg45YmO/frRqq6oCImmUwgxVwGQUMUVHExer5KS3t3M0ZvYbPLCO1YrsG8fPY+IQHnyUEBGr8gONDaS12TEiN7dL0suWVmUO2I2K+9VFB9P4aITJygH6dgxR1Weh+H/PONeTKa2KoD9R/WordPB3NT1o+85h0vxfL8p3b63s4cg0M20zRapqaEVOVcAyGPwYLo5uVpNc8mLooOAlMLd0veLiADOnXM9WZdRRnk5hfmkqscePuxQAB43DoLexbVvSQl5A9jrKQ/RU+xqJd60aXQOzpvn1ZYgsr9FZrMZH3/8MU6cOIGTJ0+ivr4eTz31FK655hpJ+9fX1+PNN9/E1q1bYbFYMHjwYDz88MPI5eZP/kl5Oa2Gg4PbPCc6nYDQzlppCAKyLlIowKYPgKn/OIQFyXcvBgYCY4ddurGZTKSfoFY31d5CXBwZKbt3S79JdcbEicCnnwIA0gp3AZgjbb/YWPrulJezF8UblJTQeSu1541T9Q4mTQJcUUpvaCAv2rBhLKgoF72eklwvXCDjXqn36eqrKRctPd2rrQVkGyi1tbVYvnw5kpKSkJOTg4MHD0re1263Y8mSJTh//jxuv/12REdH48svv8Rjjz2Gt956C2lpKoj6MNqisLDDRS40BLhzYSeZ5mfPAsvI8jeMGoFbbg0B4EJGusVCJyj37lDGkCHk5pUjc345/fujMbwPwhsrkFRySLrrOSyMVuQXL7KB4mnsduD8eelJ7Tabo6lnUBDJ0a914fglJSQt0LevC4P0YjIyyMCvrlZetRgUpInEZNnmVXx8PL744gt89tln+NnPfiZr382bN+PYsWN46qmncN999+HGG2/EP/7xD+j1eixbtkzuVBit09BAQk9SvRc7nRIp1ajeKS8nbYCUFNfH6o0kJNBqzGhUPoZOh+IMquYx2FsdeQpSiIykMI8a/YEY6ZhM8sI7p06RgixAjSJdEUKsq3P0hmLviTLCw6liUQ3BRS8j24MSFBSEeIVW2ZYtWxAXF4fp06e3bYuJicGsWbPw3XffoaWlBUFSM8YZ7VNeThccKZ2DBcFhoOj17YS+FGG3U6Ld9OmaWAn4LIMHk3R5XZ30hMnLKE6fhNwTX9OL3bvpfyKFuDgyjioq2IviSUpL5SVZXh7ecfXYY8bw/9tV+vcnTZqmpnY5JE3NwEdfSrwe2lIBgwFhu3dg4QtT3DPPHvBokuyZM2cwYMAA6C+Liw0ePBjNzc0o8rIoDKMyYstuKQZCQYFDnOuKK1zPGamuphscCzy5RlISSeC70H69PHkomoMi6cW+fdL1TUJDKUx38aLiYzMyEQQK74SHS3+/WF5sMJCwolKqqymsNHSo8jEYom9fqqK7pMgsFg0Igoyig5YA+lnrSjmWa3jUQKmqqurU+yJuq+xC98BkMuH06dNtj4KCArfOk1EBmw3Iz/eeOFtlJbk5pR6f6ZohQyiPqL5e0e6C3oDClEsesaYmqviQSmQk5SZxmMczVFWR10pqeCcvzyGvPmyYa+dbeTl57Pr0UT4GQ4jKsmYzYLdj7DA7oqMEhIXKeAS10s9o7/Uu86gOisVi6TSEI26zWDq31FatWoXly5e7c2qM2lRV0YooIUHa+9U0UMxmSvLi5Fh1ELucHjtGBoMCClInYmDeBnqxaxcwdqy0HePiyHtTXs5Jk56gtJRyx6TmbTmHd5yUg2XT3EznLKs9q0d6eluybFZ6PLLSZRr5xcX0PVjgnfAO4GEDJTg4GC0tLR22i9uCu0iuWrBgAaZMcXxIBQUFeP75590zSUYdysulx7FLSsjbAjh6wbhCRQVpAXAcWx10Ogq7nTlDNy8Fq+Ti5NFoNQQjwGahPJSf/Uxa6C8kxBHmYQPFvQgClaeGhkpPUHVeWLiSN2Yy0f+Xz1n1iIwkg2/fPp/tQebREE9cXFynYRxxW1fJtwkJCcjNzW17ZGRkuHWejAoUFUnP5lfTe2Kz0Wps8GBWoFSTfv0o8U5hLootIASlqaPpRW0tcPq09J05zOMZamvJgyI1vFNSQrljgGsLC0Egwzc3l89Ztenfn7pAN18use0bePTbMGDAAJw9exb2y9QhT548iZCQENZB8RdE/Qqpia5qGihVVXSh5P4d6qLTUfKiweBo4iaT4nSn/61zaKAn4uLIK+ZqK3mme0pLKc9IahhPrfCOeExWjVWfy5JlfQ23GSgmkwkFBQVovdTdEgBmzJiBqqoqbN26tW1bTU0NNm3ahMmTJ3OJsb9QXk6rMSllqRUVFDoASI7eVTd+VRV5T5T2oWC6JiWFSsbFaiuZXEwf71gh79olvQlZSAipmnI1j3vJy6M8EKnhHbXKi00mWlBI7ZrMSMdgoOthY6NPto1QlIPy+eefo6GhoS00s2PHDpRfWt3cdNNNiIiIwNKlS7Fu3Tp88skn6HvppjNz5kysWLECL774IvLz89uUZO12O+6//36V/iTG65SV0ckQIOHrpaaGQkMDxc+574570OupUuPcuQ76ClJoCY4kL8yRI/Qdyc+X/r8SwzyjRrGujTuorycDUGp4p6qKBNoAMi769VN2XJuNys45OdZ9iMmyNTU+ZwQqMlA++eQTlDnFordu3drmFZkzZw4iukiiMxgM+Mtf/oLXX38dn3/+OSwWCwYNGoSnnnoK6eyS9w/sdopLS3UTO4d3Jk927djl5RRzTUx0bRyma9LS6IJXWqosjDZxIhkoACXLSjVQ4uLomEaj8psh0zWlpeT1lHruiNL2gGvhHVGviMM77iMqiioaDxzoHQbKp5eaf3XH008/jaeffrrD9sjISCxZsgRLlixRcmhG61RXkwaJlJVYTQ31egEofOBKDlJrK63GcnNZItud6PX0GV+4QCEauZ/1hAnA0qX0/IcfgNtvl7afGOYpLmYDxR0UFJDHU2qSqlqez6oqYPx4r3bM7RVkZ5OyrMXiWisCD8Mp04y6VFRQvFNKDsju3Y646KRJrhkWJhOt/tgT535SU2lVJvZfkUOfPg59mrw8eX1+IiNJ5dQpr41RgcZGauopNbzT0ODwgiUmSmtl0RkWC4XrWO3Z/aSkUH6fjyXLsoHCqEtxMa3EpBgbalbv1NRQYzsfWh34LNHRdFPpQvm5R5xDAnKqeeLjuZrHHZSV0fkjtepu3z5HyffEicoXFpWV1EqB9W3cj5gs29AgPTldA7CBwqiHxUL6J1IudM6rMOdVtRLq6mh1zcmxnqN/f/J+KfFmTFJYbhwc7AjzMOpRVERGhtTkY+eFhSv5J7W1FC6UkkzPuE5GBl2ba2q8PRPJsIHCqEdFBV10pBgoe/c6bm6uhncqKsg48VG1RJ8kJYU+76oq+fumpjqk1E+elBcqioqiKiIO86hDczOF2qSGdywWSrYE6DwfPFjZcRsaaFHBIVnPER1NCwuTydszkQwbKIx6GI104xBbZ3aHWuEdq5VW8gMHKh+DkU9ICHm9qqvl76vTOVbedjuwZ4/0fePi6AIrJ3eF6ZqyMvofxsRIe//Bg2SkAJTcqrTkW2xHwYsKz5KTQ4nQnbSc0SJsoDDqIAikayGhTbvB2uxYhcXEUO6IUioqKIbNZYqeJzOThL2UyGgrzUPhMI+6FBXRuSs1zKKGeqzd7tA+4Yo7z5KSQnk/PpIsywYKow61tbSylRDe6Xdxv8OCnzhR+SpMECj/ZPBgaV4bRl2Sk+mhxGU8YIBDk+HQIRJ+kwqHedShpYXCO1K9JzYbhWYBKgseMULZcaur6TrBrU08T0AAXS/r630iWZYNFEYdyssld7pNy9/heOFKeEesPOAyRe9gMFBoTUllgF7v6H5rtTo8alLgMI86GI2UQyQ1/+TYMbqxAcCYMeQ9U0JVFYUaJHhbGTeQmalcJsDDsIHCqENpKd10enDZ6m1WpBRdyjkIDyfpdKWYTJT0JXUFyKhPWhoZpeKNSw6uhHmsVg7zuMrFi9JzxgB1wjtWK10nuOLOe8TEkHaND4R52EBhXMdqJSVKKeEd4yEEWi+588ePV15iaLHQhY57eHiXuDgyUpRoogwd6lhF79tH3yOpREdTbx4O8yijtZVE76RqnwiCQ94+IAAYO1bZcU0mICGB1YC9jZj/o/FkWTZQGNepqKBwi4TuxVlFTuEdV3rvVFRQwpdYrsp4B52OLnYtLQ7xLqkEBjpudI2NFEKQSmws3eyceoIxMjAapbekACjnR8w1GjlSebfwujpKiuecMe+SkqI8f8yDsIHCuE5FBd2gelBx1dltyCi+5CYOCaELnRLsdrqhDR7MnW21QGoqeVKUCEA5hwqcS897IjiYvAAc5lFGaamkc7aNnTsdz5WGdxobKbmWtU+8T2AgGYp1dZpOlmUDhXGd/HxJzb4Sy44hpKWOXowZo1yWXtRtyMhQtj+jLuHhlAukJMwzerRjNb1nj6M3kxSio2llLyc0xJCn6+xZ6R3HAUf+iV5PoVklVFZSaKdPH2X7M+qSkUFe77o6b8+kS9hAYVyjro7cxRJi2WkFTqswV8I7lZVUPSLnAsu4l8xM8mbJjWmHhgKjRtHzqirgzBnp+3I1jzIqKuSFd4qKKKEWoFW3kqR0ux0wm7nbuJaIi6NkZQ0ny7KBwrhGRQVVcPRkLNjtSM0nA8VmCCQPihLMZlpx9++vbH/GPYgrYyVeFLHcGHAkYkohKIjDPEooLSVxPQleTwDqqD7X1pJhw4KK2iInh0I8GvVCsoHCuEZpKa2I9D18lc6cQVgT9W0p7TdKeZJdRQVVjXAHVG0RGEirYyXaCuPHO74/u3bJi4lzmEcedjt9XnI0SNQoL66spNW6hER6xoOkpWlaWZbbSDLKaW2l/BMpoRanVVhR5mQoWkfZbFRePHhwzwYR43nS08nwbGyUdwOMjgaGDKEqnosXKaQgNZEyLo7eX1bGyqRSqKzEhZON2F+cBuu+ns+hyNqLuP7cOQBAVVw21v0grTy4ybn7gdVKRmd2tpIZM+5ETJb9/ntNln6zgcIop7yc8gZ68mYIQlsVgF2nx8V0hauwqiq6IXEVgDbp04cuciUlnRooTc3AR192XnWVGz4JY0BlxoeW7cGJEVKFvEKB1mzg+HEERudh7C0DkDWBvWtdUlaG/XkxqLVIq34bfOr7tudn06+EuUle/khgIOi8TUjg8I5WycykRWZdneY8XGygMMo5e5aSIkNCun9fXl5bImNp4nC0BEcCkKmZAZCbeOpU5eEhxr3odJS8fO4chRIuebkCAwE0AYKgg7mLljtnEydjDN4CAKTk/YB9A2+XceBAwCoAjY3Y99lZNlC6QhCAc+dgFeiyr9MJCO3u1BXsGFBABopdp8fFQTMQFio9/BYYCIwdZqfy82nTlEvjM+4lPp6MlFOn2EBh/IS6OjJQEhJ6fq+ThkJ+2hRlx2toIMOE3cTaJi2NkiFra9uqRMYOs2PfUX23aSL20ERUxWUjruoC+lSdRYKtHOYIqeWoApqadBCgg7WZlWW7pLqaQmF68kCGhgB3LuxmoXDsGNBQDgDQjxqJG++MhuyFRVMTYAxmr6fWGTAAOHGCwnEaEtFjA4VRxoUL5LrNze35vZfyTwTokJ86CYqKDCsqyDhJTFSyN+MpoqJoNXbsWJuBkpUuICtdwo2teSLw0QUAwMKYncB110k+7EcrBJit2rmwapLSUsoPklrm+70jvINZs5Qd02SiEHBSkrL9Gc+QlkbX1spKUpjVCJxpyMinpQU4fpySG3tKVi0upiRGABWJg9EUGif/eK2t9GANBd+gf38KJ8jtk6O0eSDg+B5qVxTT++TlSQ+zWCzAjkttKcLClFXvCBR2Q24uJ7VrnaAgSpZVogbtRvhbw8insJBySqQoQjqFd4oyFYqziQ3G2E3sG6SkUFxbriZKRoZj9XbsmDyFS/EGKLcfUG+htpYqpOIkLhB27aLwDABMmaJM9VlMuuTqKt8gM1N5Z3I3wQYKIw9BoGQqg0FarNJpJVycodBAqamhMlSl0viMZwkOpmRZuasxnc6xUrfbqcOxXNhA6ZzSUsrjkqq+rFZ4JzNTmfIs43ni42mRUF7u7Zm0wQYKI4+yMtI+kRJTNhqpogMA+vdHY6SCOHRdHVn1mZny92W8R0YGuY2bm3t+rzPOoYQtW+Qft7VV8y3kvUJhIRAQIC3UUlkJHD5MzxMTaXEgF5uNjExWfPYdxCo8m01+eNZNsIFyOWVlwIYNvBLrirNn6aYjRYjLOY9AqUS2yUShHSnVQox2SEqi5Ei57dwHDXIkQh86JF/h0m6nc5hx0NBABorU3jtbtzqaNs6apSx/pKqKVuSsfeJbpKVR6F7ueesm2EC5nKYmOpkLC709E+1RV0fN3KQaC849PJQ0B7TZqOxtwAD5+zLexWCg1VhDgzzper0euOoqei4I7UMNUrmUlM1corSUclCkaFxc/pkrDe9UVVGfl540khhtERysqWRZNlA6o7KSqlTktH7vDYilxVJWYtXVwMmT9DwtTdlKSlyFcZKdb5KWRjkPcpPuZs92VGtt2CDvPNTrKazIYR4HhYVkMBokqMfm5QEFBfR80CBl8ucWC4X3OCzrm2RlkYe8ocHbM2EDpUsuXCDJboaQU1oMtG/6pjS8U11N3hOpXVcZbSG2JZDrLu7TBxg5kp4bjVTRIxW9ngzb0lJ5x/RXmprI4JCaqLppk+P5lVcqO2ZFBYX4NKSnwchArJiUU0XnJthA6QyDgZKETpyQ5572Z+SUFgPtyosVGSjNzVQllCW1JwujSXJy6FySm9MlhnkA4Lvv5O0rCByiFSktJXe9FAPFZgM2b6bnAQHUVkIugkAr79xcaR4bRnvodPT/04DsPRsoXZGcTK5iDZVceQ25pcX19cDRo/Q8KUmZPL3JRP8DXoX5NqmpFBKsrpa338SJjpLYH36Q526OiSEPqMUi75j+iJiPI8VYOHCAclUAYPx4qp6TS3097cdhWd9GVJb1MmygdEVkJGA20425tyOntBgA9uxx5A1MmiRf/ZVXYf5DWBiVmso1UAIDgRkz6HlLC1WWSCUmhsM8ABloeXmeDe9UVlJ4QKogHKNNQkIoB8nLfXnYQOmOxEQyUKqqvD0T7yKntBhwvXqnvp4VKP2JrCzKDZGbuHr11Y7nGzZI3y8wkAzk3l7NU1ZGhqEUA6WhAdi9m55HRQGjR8s/ns1G/+OcHG5J4Q8MHw6MHevVKbCB0h0xMY7S2t6K3NJisxk4eJCex8VRqalcKip4FeZP9O1Lxr7cZNmsLIfQ17lz5A2QSmwsh3mKi8lQk7IK3rEDbe2mZ8ygHBS51NTQOcsLC/8gNFR6zqGbYAOlO3Q6ujEfP66JjGavcOECrcKkijzt3++40E2cKF/kqbWVLqo5OfL2Y7RLYCCF65ScQ0q9KDExFG7orWEeq5XO3ehoae93Du+4on3Svz+F9RhGBdhA6Ym4ODrxRMn23kRLC1UyRUVJNzScwztKqneqq1n7xB9JS6Mbl1xthenTHR6AzZsdxm9PiPv01moeo5EMNCkLi9JSOs8B8lwqkadvaaFrBFfdMSrCBkpP6PW0Gjt6lMIXvYnCQopjS3XzWSyOBm+RkcDQofKPyQqU/kmfPlTRI7fDcUSEI4+pvt6RJyEFsZpHbj8gf+DiRfJGBgX1/F6xtBgg74mS/BGTiZLolQi7MUwXsIEihT59qNz4wgVvz8RzyC0tBqh3ingzmDBBfgVOUxNdUHkV5n/odCS619wsX6FZqSaKWN7c28I8Nhtw/rx0aXsxvKPTATNnKjtmXR3lmynJXWGYLmADRQoGA3kEjh7tPRLaRiMpUEotLQZcD+9UVlJCJWuf+CdpaeTVELU2pDJsmLIGggEBvVO0rbycPBpSwjsnTzqaK44YQeFVuTQ0UIVferr8fRmmG9hAkUpiIknfy6kk8GXOnCGPhtTS4tZW0j8BKPtblCqXiqh9MmiQsu6pjPaJjCTvmNxqnssbCG7cKH3f3hjmKSmhhZSUMKkajQFNJgrfccdxRmX4TiCVwEA64Y8epZuxPyO3tBigz0VMgBw3Tr7AT10da5/0BrKyKJQgNdlVxLmB4MaN0sNEvS3MY7dTeEeCCqyh1ULlxQAtKpR4Pe12yj0bMIC1TxjVYQNFDklJJP7k7y5juaXFgOvhHZOJbl5SVS8Z3yQlhcIIcsUPL28gKLZS6AkxJ8Lfz1kRk4lCYBLO3ZTCPUBjI72YPFlZYrrY54cXFowbYANFDsHB5G4+dkx+op+vYLVSXFpOabHNRt2LAUpyHTNG3jFF7RMl5Y2MbxEcTMmUNTXy91WqiSKKtvWGME9pKVUbStAiyTrvFCpTGt6prKReW0r69jBMD7CBIpfkZOpLU1zs7Zm4h8JCusjJURA8dcpxwxk9Wv5KrLKSVtWpqfL2Y3yTjAwyVJqa5O03YYKyBoIxMeQRLCmRdzxfQxAovCMhbyy0qRp9i/fTi4QEZZIAViuFdZQ0A2UYCbCBIpewMPIYnDxJFwR/QhDo79Lr5eWQuBreqakhpdHgYPn7Mr5HUhIZ+nKTZQMDHWWwchoIimEef+/NU1VF4S8J4Z3+BZuhFy55gWfNUpaYXllJCxnWPmHcBBsoSkhOJmVZo9HbM1EXsbRYTpmvIDgMFIOBEmTlYDaTYZKRIW8/xnfR68kgbWiQb+Q7a6LIDfOcPy/fa+NLlJY6Sn57ICdPhfBOTQ2F66SIwTGMAthAUUJEBMWzT5709kzU5exZeaXFABlqoi7F8OHyY9EmE63A5OitML5PWhr1iZHbnycry9GnSU4DwdhYuqH6azWPIFCeTWhoj9U0MVV5SKi5JDo5cKCy0KqY58LaJ4wbYQNFKYmJVIor102tVerqgNOn5WsZOId3RElyqQgCXehyc1n7pLcRG0s3NyXnjxIviqhq7K/VPLW1ZHxJCO9knlNJ+0TsUs0wboLvCkqJiXHc1P2B/Hz5pcXO4R29npIY5VBTQ6toLlHsneTkUD6XzSZvv+nTHWEFOQ0E4+LIy+CPYZ7SUupVJCYRd4XNhqzzJG1v0wcA06bJP5Yg0GfICwvGzfC3yxX69KEwj1zpbq1htQLHj9PFTc4Fp6iImpIBwJAh8jVMKivJZS+1JTzjX6SmkkEsVxMlIsKRjC2ngaA/V/Pk5ZHR1pNY2uHDCG2qBgCUpI2T1q/ncmpqaD+uumPcDBsorhAXRxfXM2e8PRPXEEuL5bprd+50PJdbvSOueln7pPcSGkpelOpq+fsqaSBoMNANvKBA/vG0TH09LRSkeD/FxoAA8nJmKzteVRUvLBiPwK0nXUGnIyPlxAnyIMhJLtUKl0qLL9REYf+3IbIUyK9Z9wPES+KXtVNg/rL77sVNzjpZlZWU78KrsN5NVhZw4ADJpcspMx82jBKrjUbg0CGEDSiH2SAh0ToujsKZEsXMfILSUvLi9rTAMJvbQrLNQZEoSR0r/1iiqCJrnzAegD0orpKQQBfJ8+e9PRNlXCot3l+WjNo6HcxN0h6G8jLEVlEFRXn8QJgMiT3uIwjkfg4MBF1QuUSR6duXDI3KSnn76fXUnwcABAHZ5yQ2EBTDPP5SzdPaStV3AQE9h2d37Gjrxn4+YwbsBpn9sgDynrCoIuMh2EBxFYOBXJ1HjtAq0Ne4VFpstdFXQacTEBba82NIsaN64mLWZEn7hIUKiI4SMDa3idz7rH3CBARQsqWSPC6nBoLZZ74DBAntJwwGupH7S5jnwAHKg0tJ6fm9TuGdc1kKwzvV1bSwYFFFxgNwiEcNEhPJg3LhAjB4sLdnI536+g6lxaEhwJ0Le6iqaGwEPllFzw0GjHpoKkYlyqjEKCwj7RMuUWQAquKKiCCRMTk6OmIDwYMHEdFgRF/jEdRmjeh5v9hY/wjzXLgA7N1Ln0NP7SWMRuohBqA2OhUVcQMh+y9vaiKPJy8sGA/BHhQ1CAggj8DRo/LbyHuTvDz5pcUAsHq1owvqzJnyDA27nW4MAwdyiSJDiLlISjRRnBoI5l74Vto+MTFUieLL1TxVVcC2bfQ8Lq7n92/e3PY0L2d2z9U+nVFZSSE5OUrTDOMCfIdQi+RkaiDoK65jpaXFZjPw1Vf0XK8HbrlF3nFra8kgYu0TRkSnAwYMoBCp3C7hTg0EM4t2INBS3/M+vl7NY7EA27eTgrOUXBBBcIR3dDrk958p/5iCQB4u1j5hPAh/09QiKIg8KceOyb/IegOlpcVr11JoCCDBLLmNwkTtEyX6C4z/kprq8GzIwamBYIDdiswLW6TtJ4Z5RE+gryAIFNY5fZrOIynGwunTDm/RsGEwRygIrdbX0znLCwvGg3AOymV8+e98mMv7A8e7L5l1JjAQGDvMjqy+femiV1Sk7TitIACnTsnvWtzcDHz5JT3X6YBbb5V3XDH8xSWKzOVERtL34vBhaSELZ666Cvj6awCXkmVxTc/7xMRQgvipU8Do0cpCHt7g9Glg/35aGEitgPv+Mml7CU6mDlRUkPdEbjiYYVyAPSjOlJdj8LrXMOqHpZLLbc1NOtTW6bDvqJ4S1QSBdFHkdmn1JEYjGVJyG/StX++otpg6VX6podieXUrFAdP7yMqi80ZuHldWFirjqYFgfKXEBoIGA30Xt29vSx7VPEYjlQqHhEj3QFqtjlyV4GD5goriGHY7heEYxoOwgSLS2gqMGYPc418h9/w6JDcXSCqb1enIEGm7piYnU0WPlnUWxK7FciomLBZg5UrHa7neE4Dc97m5rH3CdE5KChkNcjVRAFwY6EiWldxAMD6ezoGtW8mTomXMZjI0amspUVUqe/c6wliTJimrWqqooGNq2SvM+CUc4hEJCAAefhh4+mnoBTuuK1kO3Pf/etztoy8NMDv3HouIoHjvyZPy8zM8QX09SfPL7Vr83XcOSfLJk+VfrBob6eLIFzmmK4KCqLpr2zbZlSL52TMxas87CLC1UMXKokXSwpeJibSY2LSJ3q/F1gt2O/UbunCBvBhywlGXh3eUHLuuDpg4UV44mGFUgD0ozjz2mCNpdPduMjKUkJRERkBFhXpzU4u8PFqhyoklW63A5587XivxnphMFBLq00f+vkzvISODQhhms6zdrMERyE+dTC/kNBAEHB6J77/XZmXPsWPAwYNAejotpKRSW0v5KgB5i4YPl39sUYYgK0v+vgzjImygOBMWRkaKyHvvKcsliY6mkjytuY3F0uKoKHmlghs2ONzu48fLT3K12ynBduBA30lGZLxDYiJ5TxRoopzOnuN4IbWBoEhqKoUxN250dOjWAhcvUv+c6Gj5vb62bQNslwQUZ86kvBu5mEwUluWqO8YLsIFyObfc4ljlnzgB7NunbJw+fchAkVs26U4KC4GyMnmlxVYrsGKF4/Vtt8k/bk0NVU1wiSLTE3o93RDNZtmLg9Kk4WiIuJT4feiQfA9mejqFMzZsoIRUb1NfT/kxzc3KVJddDe80NJAAJSfHMl6CDZTLCQgA5s93vH7/fccqRA5xceQePXNGvbm5glharNPJiyVv2uS40I8Zo+xiVVkJ5OTIS8plei9pabRil9ufR6d3JMsKAnlDZO2vI+9gZWV7r6E3aG0Fdu5ULllQWAicO0fPc3LI+JKL0QhkZsqv9mMYlZBtoLS0tOCNN97Aj370I1x11VX46U9/ir1790rad9++fXjsscdw/fXXY/78+XjwwQexfv162ZN2O8OGUTgCoJj0FoniT87odJSIeuwYrUS8jZLS4tZW4LPPHK+VeE9aWmhVzDFsRioxMWQoKMjhuuAs475hg3zRRJ2OEmXLymh/b3lADx6k1hlZWcpCM06NARV5T6xWMvIGD+awLOM1ZBsoL774Ij799FNcffXVePTRR6HX6/Hkk0/iyJEj3e63fft2PPHEE7BarVi0aBEWL16M4OBgvPDCC/j0008V/wFuQacD7rnH8frDD9valMsiPp5WYeJKxpucOye/tHjLFoere+RIYNAg+cc1mSjcpcWKJka7DBpE3kyZybLmiET6rgJAeTnd5OWi15ORUlRERkq9EmUzF8jLA/bskdYEsDNsNkfvHYMBmDZN/hjl5ZQLxGFZxovIMlBOnDiBjRs34sEHH8TDDz+MBQsW4NVXX0VycjLeeOONbvdduXIl4uPj8eqrr+Kmm27CjTfeiFdeeQUpKSlYu3atS3+EWxg+nBQmAVrJKZmjXk+u6mPHKI7sLTrpWtwjNpvr3hOAYvqDBnGJIiOPlBQKbSjJBblagSbK5RgMZKTk5VGoyFOS+NXV8poAdsbRo47w1Jgx5JGSg91O14yhQ/m8ZbyKLANly5YtMBgMWLBgQdu24OBgXHvttTh+/DiM3VxMzGYzIiMjEeQk0hUQEIDo6GgEBwcrmLoHcPaifPqpsotUUhJdZC9cUG9ecsnPp+6nckqLt29v178DV1wh/7gNDVR5oCT+zfRu9Hr6zrW2yleWdWogiJ07lYdYAwLISDlzhkIm7l5ktLTQeVdeLl+l2Rnn8M6VV8rfv6qKjCMOyzJeRpaBcvbsWaSmpiL8snK3wYMHAwDOdRPKGDlyJPLy8vD222+juLgYFy9exHvvvYfTp0/jjjvu6Pa4JpMJp0+fbnsUeEqrIDsbmDGDntfXA198IX8Mg4HKl48elX+hVQOrlTw4ERHSS4vtdjLIRJR6T8Ruq3JF4RgGIA9K377yvShODQRhtVIljFICA+k6cOIEhTyVhHqlIDYBPHVKehPAzmhqIqMMoMXBuHHyx6isJK8nJ7UzXkaWkmxlZSXi4+M7bBe3mbrRLrj33ntRWlqKDz74AO+//z4AICQkBM899xym9RAjXbVqFZYvXy5nqupx113U/6K1FfjqK6rwket6TUoiL0Z+vudL9oqKKOFPjhdDrB4AKElu2DD5x7XZ6ObA2ieMUgID6bu3bh19n+Qkizo1EMSGDe0r8+QSHExGw5Ej5FWZPl390MeZMyRp0Leva60gfviB9FwAyj2RO0+xtDgnR/kcGEYlZBkoFosFgZ184cWwjUU8MTohMDAQaWlpmDlzJqZPnw6bzYavv/4azz//PF5++WVc0U0IYcGCBZgyZUrb64KCAjz//PNypq6c5GRg3jzgm2/oxP/kE+BnP5M3RmAgXdiOHqXVmJKsfCUIAqnh6nTSL3qCnf5GkdtvV2Zg1NRQSImT7BhXyM6mZFGTSV4FWlYW3WTPnaNHXp5rIYuQEDLyDxygc3nqVPXO4/JyRxPA6GjXxnLWPlES3jEaSYdGie4Kw6iMLD9icHAwrJ2EKVouuT27yyV59dVXsXPnTjzzzDOYPXs25syZg1deeQXx8fH4xz/+0e1xExISkJub2/bI8HQ/l1tvpVUFAHz7rSM3Qw59+5I2geiZ8ATl5bJLi1MLdzvkvgcOdFREyKWqiuL3ctUvGcaZsDDy4lVVyVd1vuoqx3OlybKXzyU1lUIxu3bJL2HujKYmSoqtqZHXBLAzKiocVUt9+5KhIYeWFvqMBw1iryejCWQZKPHx8ajsRLxI3JbQRa6B1WrF6tWrMWnSJOidYqsBAQGYMGECTp8+3anhoxliYoAbbqDnNhvw3//KH0MsFzx+XJl8vhLklhYLAoYe+p/j9W23KbtQWSysfcKox4ABdA7K1SSZPt3hOdy8WZ0csIgIuvnv3k0hGVfOZbudDJ3z5+lccdUo2LzZMZ9Zs+SPV15OcgDs9WQ0giwDJScnB8XFxWi8rJrlxIkTbb/vjNraWthsNtg6UWS12Wyw2+2wq7EacScLFzrcr9u3K9M26duXqnmUeGB6orWVEnmNRnJnHz9OCXed5Ax1RVrJHsRVnqcX/fsDY8cqm0tlJXltWPuEUYPYWPIGlJfL2y8iApg0iZ7LbSDYHVFRlPi9cydJ6is1UsQmgGlp8poAdoYguCbOZrdT/skVV7g+F4ZRCVkGysyZM2Gz2bBq1aq2bS0tLVizZg2GDBmCpEuhBKPR2K7SJjY2FhEREdi2bVs7T4nZbMaOHTuQnp6u3VJjkbCw9tUs772nbAyrlSoC5GKz0QVEDNucOEGdSjdupF45//0v8NFHlD+yciUlFjY2Sk/oFQSMOq6C9wQg7ZPcXL7QMeqRm0thVrklw85hHrkNBLsjNpa8Otu2KTufxSaAUVHqVMucOwcUF9PzoUPly9NXVtJihr2ejIaQdQcZMmQIZs2ahaVLl6KmpgYpKSlYt24dysrKsGTJkrb3vfDCCzh06BC2XirvMxgMuP322/H222/joYcewty5c2G327F69WpUVFTgt7/9rbp/lbuYO5cqeYxG4PBhWv1AppchKYkuJiNGtE9Es9koHGM2O36azeTWrq2lm77FQg/RyBMEcmEHB9MjMpJWdoGBso2LvhcPILHyUt+gzEzqWqyE+nq64LL2CaMmSUmUMHv6tLwb+rBhDi0isYGg2AzUVeLjyXO5eTMZ41JzPurrybBpaiJPpRq42hiwqgqYPJlzxhhNIXuJ+/TTTyMpKQnr169HQ0MDsrOz8dJLL2FkD8mU99xzD/r27YsVK1Zg+fLlsFqt6N+/P5577jnMFDULtE5gIHD33cDf/06v338fmD4agIxs/qgooLSUShbj4sj4qK6mi5ZogDhrLQQEtDdA4uPJKFEzia2z3BOlOgwmE91IZISWGKZHdDpKlj19ms4RqR5XvR6YPZu8i2IDwdtvV29eSUkUst20yaGZ0h3OTQDVkhxw1noJCgKcKh4lUV9Phgl3LWY0hmwDJTg4GA8//DAefvjhLt/TVVXO1VdfjaudZah9kWnTKISSlwecP4/0tO041XeGvDGSk6lcUa+ni5roBQkPJ6NFbQOkJ44cQZ/ykwCAmph0xIhxe7mI2icDBnAVAKM+aWn0KC2V1+F39mzgf/8jA2XDBqrKU2qAd0a/fmRwbNxIC4ruvIeHDlGlTUaGemXK+/c7+gVNnEihZDkYjcCQISyoyGgOFc/SXoJe304Cf8T+96Gzt8obIzqaVoO5ubTiSk0lt3NUFBkqnr65O+meHB/hgvekupq1Txj3YTBQEmdzM3kipNKnj+sNBHsiLY3mtWFD10nw+fmUqJuQ4JAtUANXwjsWC11vcnN5UcFoDjZQlDB6dJu6amR9KQadX+flCbnAsWP0AFATmYLCLAWdT0WqqkgcS+4KjmGkkpVFHki5FT1qNBDsiYwMyhXbsKHj/KqrqfpPENQNf9bVUbkzQIsDubpFYmmxK71/GMZNsIGiBJ0OuPfetpejjv0PAdYmL07IBZy8J4euuB2CXqHb2WIh9zZXATDuJDiYqlTq6uQJpanVQLA7dDr6/ldWUsWQqBnV0kJKsWVl6nsXt293eJNmzpQfNmps5NJiRrOwgaKUgQMp6x1AWHM1co9/5eUJKeDkSapGAlAfmYzzGTOVj2Uy0cqWtU8Yd9O/P+VqVVVJ30fNBoLdoddT2LasjHJSampIefbkSaqOUzP3xWZrXzqtRPskIYEXFYxmYQPFFe6+G3YdfYRDjq6gihxfol3uya3KvSeCQEl6ubme6zPE9F4iIymHq5vmpJ3iLk2Uy9HryYgqLATWr6ck1r59pVceSUEQgLfeIhVagIyMzEx5Y9jtlBzLIVlGo7BfzxVSU3F+4BwMOL0OgdYm4LPPgMWLvT0raZw9S5VEAJCYiPz+VwJKO8nX19NNg7VPGE8xcCCV6tfWSm+w59xA8Px5UnXuqSxYKQYDGSkXLtC5IXGOFwp12H9U36Mq/+AjKzBq3xoAgF1nwPeDHkD5l9IWB03Nl57odOrpsDCMG2APioscG3UnWg2XVkZr1lDJni/g3LH45pthN7jQPr6igowTqaq1DOMqCQlkbMg939RuINgdAQFkSMloArj/qB61dTqYm7p+JJ/cglH7lrXts3XCL5EfM7LbfZwfgkDVOoGhAVxazGgaNlBcpCksHsdyLzUSbG0lQSitc/48sGcPPU9IIJ0Ipdhs9GCRJ8bTDB5MuSVms/R9Lm8g2KLUbegeRM+JTicgLLTjI7PmMGbsfrnt/YdH/xglQ67s9L1dPkLsiA6xYOy1XLnDaBsO8ajAkcE3Y/C5NQhuaaCL3sKF2k48+/RTx/Mbb6SLvFKqqshzwmWKjKfp25fyLvLyAERK20dsILhlC1Xy7NzpSJ7VEKEhwJ0LL2uuWlgILHkeEHWX5s7FiIdvxghdxyas3VJYSG02rhmizmQZxk2wB0UFWoIicHzErfRCEIAPPvDuhLojP5+alAFkWMyZ49p4VVXkxlZTeIphpKDXU4ms3Q5ARkdhZ02U118ndVetU1kJPPsslQUD1Gn8oYfki6vZbCQod8UVnNDOaB42UFTizODrHfHcffvaxM80x2efOZ7/6EcOd7cSmptpf7nVAwyjFunpVNpuk6GJMnQoiS0C9B1+7jnypGgVs5nmKFYt5eQAv/61MgOjspJLixmfgQ0UlbAHBAF33unY8N575E3REkVFJOwEUFXBvHmujVdcTMZJcrLLU2MYRQQGksEh51zT64Gnn3Z07G5tBf7yF+Dbb90zR1dobQX+/OdLYSxQc8Lf/U65x7KyknJ32OPJ+ACcg6Ims2YBX3xBhsDp09R3Y+JEb8/KwaefOi7kCxe6pstQV0fek9Gj2VXMeJfsbEBPN/CmZuAjSeW2odAN+S0mVL2G7HMbKUz0r3/h4G4zTg67qcu9AgOBscPsyEr3wOJDEIB//csRgoqMBJ55hiTtlVBbS/2+uLSY8RHYg6ImBgPw4x87Xn/wAcV8tUBJCbBtGz2PjATmz1c+liDQeFdcAaSkqDM/hlFKaCgCwylUKQjSSm3NTTo0WgLw/djHcTR3YdtQo/a+iyE/LIfZjE73qa3TYd9RD102P/rI0QgwMBD4f//PtWT08nIyTtTsBcQwboQNFLWZMAEYNIieiy3YtcBnnzl6l9xwg2suXpOJEmxHjOAOqIwmGHtjf0SHWREWbJNXchumw9HJi3F4tGNhMfLkZ5hx8J8ID25t916djrwmPYmoqUH/0+sdWkU6HfDEE6T6qpTmZgpt5eaqM0GG8QAc4lEbnQ5YtAj4zW/o9f/+B8yYoa7MtVzKyoBNm+h5eDhw3XXKx2ptpTj27NnKXc0MozJZV/ZHVsBF0vdRchP+0S3AmnDgP/8BBAEDTq/DgIR64Fe/aivD/+hLA8we6AmaWrIX43b+y7HhJz9p6/ulmPJySihmjyfjQ7AHpTNcTW4dMgQYN46eV1YCq1e7PidXWLHC4T1ZsMC13hslJeRmdmU1xzDuIDeXPIP19cr2nz+fDBIxp2rHDuD558n74CFiTWcxe8eL0AtO3s4FC1wb1GYDmpronOV8McaHYAPlcqKiKEdDbiOyy7nnHkf447PP3NPeXQrl5Y44dlgYcP31ysdqbiblzbFjgZAQdebHMGqRmKhM/t6ZGTMo10Msvz94EPj975UbPXIoK8PM755FYOslg2jKFOC++1wft6IC6NOH5QAYn4MNlMuJj6fKFJPJtWBzRoaj/XljI/D55+rMTy6ff05hGYBCOxERyscqKiJJe3c1WGMYV9DpKP9Lp3PN6zF2LOmOhIfT61OngKefRoi5Sp15dkZ9PfCHPyC0qQYAUJ50BfD445Q34gqCAFRXk/eEFxWMj8EGSmcMG0ZCRkVFro1z553UMAwAvv6awj2epLLS0VY+JMQ1V3FtLY3BZcWMlklNpVyLsjLXxhkyBHjhBUcX4oICzPnm/xBZX+r6HC+npYVCSRcvAgBqIlOx9arfuSaiKCJ2e+bSYsYHYQOlM4KDKYfEYCC9D6UkJgLXXkvPW1ooYdaTrFzp8J7Mn0/hKyUIAlBaSmXF/fqpNz+GURuDgYTbWlpcL7fJzgZeeonOYwARDUZcv+H/EF2V7/o8Rex24OWXgZMnAQBNoTFYN/M5tARL7C3UExUVFPbiTuOMD8IGSlekp5Mn5eJFR4KpEm65xZGUumEDqa96gupqYP16eh4URMJsSikvp9DXyJFqzIxh3IuoblxR4fpY/fqRkZKWBgAIa67G1WuebDMoXGbZMofMfkgINl/9LBoiVFJmbmoiDy6XFjM+ChsoXaHTUTijXz+qXFFKVBR1DAbI0PFUI8EvvnC0kr/mGiAmRtk4ra1k7Iwe7XB3M4yWCQqixUVdnWuLC5H4eODFF2FKGEjDtzRS4uyBA66N+9VX9AAo1+TJJ1GdMMDFyTphNJJhxV5PxkdhHZTuiIykhLm1a2k10o24WXcS2wbdj7AgdDVCm6qBH37A+qVnUZk4SNZUupXYttmAmhpK7BUfa9c6dvzRj2Qdqx0XL1LC7+DBysdgGE+TnU2GRWUlVbC4SlQUvr/mBUz59gWkGA8BFgvljfzqV8DUqfLH27kTePddx+uHH6ZrjVoO1tZWmuOQIa4n2jKMl2ADpScGDqRGXceP0/PLlFMDAwE0iRLbXQ0Siv1X3Imp+/4NABi+ZzlWX/lnSSqsOnsrwpqqEGw2oey8CVlpRrromkz0s7ISqKrqeqU4d67y+LPZTBe60aO9KzTHMHKJiKCb87Zt6hgoAFoDw7B+xh9w1e6XkF6wk86Nv/6VJATkNN48cQL4+98deku33QbMmaPKHNswmSh3JiND3XEZxoOwgdITej0lzBYX00l/2cVu7DA79h3V95iPVzR0DurOfIGouhL0LT+K/pX7YOw3AqHmSoQ1muhhrkRYY8Wl15UIbTQhtKkaOigTjmsOicLa8FvQJKF5WlNnVZnFxXSR57JixhcZMAA4fJi8i0pDnJdhNwRix6zfIL34H5RTJgjA66+TkXLTTT0vOoqLqTpIvGBceWX7LuhqIJYWz57NpcWMT8MGihQSEoAxY0jwLCamTfoaALLSBWSlS2kIqAMS76a27gBmbfqjo8LGBZqCY9AYloDGsAQ0XPppDqWfprgcWPVhgAx57rY/rbqakntHjWIXMeObxMeTkXLwoGoGCgAIegPwi19QCPiLL2jj+++TlsmiRV0bKdXVwLPPOkTfRo4EHnlE/X5WNTWUL8YLC8bHYQNFKkOHAvn5QGGhck2BKVOo5O/cuZ6NE52Oet3Ex6MxLAEltj5oCE2AOSwe5vAEmMMT0BQWD7shsMshAgEEyvC+iHkusNtJR2LyZKqGYBhfJTeXwrNms2stHi5H7LkVGUnGCUDGSn09GR2XawU1NQF//CNVxAGks/Sb37Rb7KiGyUQLC+6Vxfg4bKBIJSiIQj2lpQ7xI7nodMDPf05xa4uFVngJCfQQn4s/Y2PbRN7CAXSd2y/FeyOTsnKKXw8frv7YDONJ+vUjY+DcOfXFynQ64OabKd/ljTcotLJhAylH/9//OYwPm43O+XPn6HVCAlUBqWkwiZjNdN0YOFD9sRnGw7CBIoe0NLpp//ADXZSUKKpmZ9PFTKtYrVSeefXVyoXdGEYr6HSUR3XmDJXdq6HOejnz5pEs/iuvkGf0hx9IKv+pp6jy7403gH376L3h4RTmiY9Xfx4AlRanpwN9+7pnfIbxIJxcIBc1tFG0THExXeAGySuDZhjNkp5OiwtXmgj2xLRpwG9/66h2O3yYvCTvvw98+y1tCwggoyU93T1zaG2lBQaXFjN+An+L5RIeDkyYQKsxs9nbs1EXs5nc1GPGuGelyTDeICCA2jQ0NVG4xV2MHk15JmKTwTNn2jcJfewx94ZNKyqApCQuLWb8BjZQlNC/PwmXFRU5tAz8geJi8pxwW3bG38jOJokANeTvu2PQIODFFzsmqN57LzBjhvuOKwhUvTNkCGsWMX4DGyhKELVRYmMdWfm+TnU15dVwWTHjj4SEUCVedbX7FxWZmdS/JyWFXt9wg6PdhbuoqaHrEXctZvwITpJVSlwchUI2bKALgy+HRMSy4qlT2zq3MozfkZND/XOqqlxKUu2urYWDFGDOmwg1V6EpPAH4SvrYiigvp0UT98ti/Ag2UFzhiitIGyUvjy5+vkpZGcWuuayY8WeiokgXZfduRQaKtLYWzhhg1veRJZTY7lhSMZsprDNAxUaDDKMB2EBxhcBAhzZKdbVvCiO1tJC41NSpFOJhGH8mNxc4doxK6WWW0Utta+EqbYKJUiktpRwbFlVk/Aw2UFwlJQUYMQLYsYMueEq0UbxJcTFd3FjYiekNJCZSnsbx47INFOltLTxIcTF5T4YP59wxxu/gb7QajBwJpKYCFy96eybyaGwkIavRo90juc0wWmTQILqZNymIvWiJoiL6O666iivvGL+EDRQ1CAsDxo8noaTGRm/PRjpiWTHrJjC9idRUEksrK/P2TJRTWEiLiquv5twTxm9hA0UtsrIoadZXtFEqK6nR2ahR6ndTZRgto9dTybHVCrcnlKiNIFBifnAwGSfcsZjxY9hAUQu9Hhg7lqoD3CmprQY2GwlWjRxJ4lUM09vIyCBPSl5ez53FtYJonISHA3PmcFiH8XvYQFGTmBgK9dTWUrdirVJWRs3Ehg719kwYxjsEBQFXXkmGytmz2m9bIQjAhQuU2Dtnjvv6+TCMhmADRW0GDaKKmMJCb8+kc1paKE9m9GhHzxCG6Y306QPMn0/nQnExhT21iN0OnD9PMgZz5pDnh2F6AWygqE1AAHlRwsJIsVJrFBVxWTHDiISFAbNm0aOxkRYWdhkaJO7GbifPSZ8+wNy51EmdYXoJbKC4g+RkSj4tL9dWfLuhgXRaxowhQ4phGDonRo8mb0pEBIV8tJA8a7MB586RdsucOSzExvQ62EBxF8OHU5y4uNjbMyEEgXRaBg8G0tK8PRuG0R5ZWcB111HbinPnyKD3FjYbhXX69SPPCffIYnohbKC4i9BQCvUIgncvdCKVldRIjMuKGaZr4uOBefPo3C0tpWo3TyN6TlJTyThJSPD8HBhGA7CB4k4yM4Fhwyjvw5txbZsNMJmorNiFLq4M0ysICQGmTwdmz6ZqvLw8z52/ra1knGRkUFgnLs4zx2UYDcIGijsRZeSTkryrWllaSq7iK67w3hwYxpfQ66nH1rXXkpFw9ixVwLkTq5WMk6wsMk58sfkow6gIGyjuJjqaOh43NADNzZ4/vsVCPUfGjKGKBYZhpJOeTnkpublUTVNX557jWK2Uc9K/PynERke75zgM40OwgeIJcnPp4Q1tlOJiSvrLyfH8sRnGH4iJIY/GhAmUk6K2N7SlhYyT3Fw6jswuywzjr7CB4gkMBkq6i4jwrBhUXR01FBs9msuKGcYVgoOBadPIuyGqutpsro9rsZBxMngw5bxERLg+JsP4CWygeIrERDIUPKWNYrMBJSXAkCFASor7j8cw/o5OR3lc115L5/PZs661tLBYyNC54gqS3WdlZ4ZpBy+rPcmwYdTsq6iIEuHkIgiODqydPWw2RwmxXk/JuSNHclkxw6hJSgoZKdu3A8ePU18ruTkjzc1UHTRsGDBzJskSMAzTDjZQPElICIV6Vq2i8IsYa25t7dzgaGlp70bW6ShUExhIj6AgGiMigh5hYXSM4GB6REVxPJth3EFUFIV7YmKAvXtJJl+qDL3ZDBQUUJXQjBl0zjIM0wE2UDxNejqpzO7e7Ui2MxjI2BANj4gIh+ERHk7GhrPhIb4OCiJPCcMwnicwEJg0icqQt2+nkE92Np3PXWE2U7L8qFGktRIc7Ln5MoyPwQaKp9HpqOw4Pp68IZ0ZH5zQyjC+gU5HHcxjYoCtW4EzZ0igsbOQTUMDVdWNHk3GSWCgp2fLMD4F3wm9QVgYMHSot2fBMIxaJCdTs8EdO4CjRymJ1lloraGBemGNGwdMmcLGCcNIgA0UhmEYNYiIoFLh2FgK4TY2UkJtfT2pOY8fD0yezB5ShpEInykMwzBqERBAhkhcHLBtG3D6NOWJTZoETJzYfX4KwzDtYAOFYRhGbXJyqPR42zYK/0ycyAntDCMTNlAYhmHcQZ8+wA03sNeEYRTCJj3DMIy7YOOEYRTDBgrDMAzDMJpDdoinpaUF77zzDr799lvU19ejf//+WLx4McaNGydp/40bN2LFihU4f/48AgICkJGRgcWLF2PMmDGyJ88wDMMwjH8i20B58cUXsXnzZtxyyy1ITU3F2rVr8eSTT+K1117D8OHDu9333XffxXvvvYeZM2di3rx5aG1tRV5eHkwmk+I/gGEYhmEY/0OWgXLixAls3LgRP/vZz3DHHXcAAObOnYtFixbhjTfewBtvvNHlvsePH8d7772HRx55BLfeeqtrs2YYhmEYxq+RlYOyZcsWGAwGLFiwoG1bcHAwrr32Whw/fhxGo7HLfT/77DPExcXh5ptvhiAIMJvNymfNMAzDMIxfI8tAOXv2LFJTUxEeHt5u++DBgwEA586d63Lf/fv3Y9CgQVixYgUWLFiAefPmYeHChfj8888VTJthGIZhGH9GVoinsrIS8fHxHbaL27rKJamvr0dtbS2OHTuGAwcOYNGiRUhKSsLatWvx2muvISAgADfccEOXxzWZTKisrGx7XVBQIGfaDMMwDMP4GLIMFIvFgsBOmlwFBQW1/b4zxHBObW0tnnnmGcyePRsAMHPmTCxatAjvv/9+twbKqlWrsHz5cjlTZRiGYRjGh5FloAQHB8NqtXbY3tLS0vb7rvYDgICAAMycObNtu16vx5VXXol3330XRqMRSUlJne6/YMECTJkype11QUEBnn/+eTlTZxiGYRjGh5BloMTHx6OioqLDdjH8kpCQ0Ol+UVFRCAoKQkREBAyXKSvGXmpJXl9f36WBkpCQ0OXYDMMwDMP4H7KSZHNyclBcXIzGxsZ220+cONH2+04PotdjwIABqK2t7eCBEfNWYmJi5EyFYRiGYRg/RpaBMnPmTNhsNqxataptW0tLC9asWYMhQ4a0eUCMRmOHRNZZs2bBZrNh3bp1bdssFgu+++47ZGZmsoeEYRiGYZg2ZIV4hgwZglmzZmHp0qWoqalBSkoK1q1bh7KyMixZsqTtfS+88AIOHTqErVu3tm274YYbsHr1arzyyisoKipCUlIS1q9fD6PRiBdffFG9v4hhGIZhGJ9HttT9008/3WZcNDQ0IDs7Gy+99BJGjhzZ7X7BwcF49dVX8cYbb2DNmjVobm5GTk4OXnrpJYwfP17WHMRqIS43ZhiGYRjfIyMjAyEhId2+RycIguCh+ajGt99+y1U8DMMwDOOjvPXWW8jNze32PT5poNTU1GDPnj3o27dvmwaLq4ily7/97W+RkZGhypj+DH9e0uHPSh78ecmDPy958OclHXd+VlI8KLJDPFogJiYGc+bMccvYGRkZPVp1jAP+vKTDn5U8+POSB39e8uDPSzre+qxkVfEwDMMwDMN4AjZQGIZhGIbRHGygXCI+Ph6LFi3qtBki0xH+vKTDn5U8+POSB39e8uDPSzre/qx8MkmWYRiGYRj/hj0oDMMwDMNoDjZQGIZhGIbRHGygMAzDMAyjOdhAYRiGYRhGc/ikUJu7OXToED7++GOcPXsWtbW1iIiIQE5ODu69914MGzbM29PTHPv378d3332HI0eOoKKiAnFxcRg9ejR+8pOfcJfqTjCZTFixYgVOnjyJU6dOoampCa+99hpGjRrl7al5lZaWFrzzzjv49ttvUV9fj/79+2Px4sUYN26ct6emScxmMz7++GOcOHECJ0+eRH19PZ566ilcc8013p6a5jh58iTWrVuHgwcPoqysDFFRUbjiiiuwePFipKWleXt6miIvLw/Lli3D6dOnUVVVhZCQEGRkZOCOO+7AlClTPDoX9qB0QnFxMfR6PW644Qb88pe/xG233Yaqqir84he/wO7du709Pc3x5ptv4uDBg5g2bRoee+wxzJ49G5s2bcLixYtRWVnp7elpjqKiInz00UeoqKhAdna2t6ejGV588UV8+umnuPrqq/Hoo49Cr9fjySefxJEjR7w9NU1SW1uL5cuXo6CgADk5Od6ejqb56KOPsGXLFowZMwaPPvoorr/+ehw+fBiLFy/GhQsXvD09TVFWVgaz2Yx58+bh0UcfxT333AMAeOqpp7Bq1SrPTkZgJNHU1CTccMMNwhNPPOHtqWiOgwcPCjabrcO2adOmCUuXLvXSrLRLY2OjUFtbKwiCIGzatEmYNm2acODAAS/PyrscP35cmDZtmvDRRx+1bWtubhZuv/124aGHHvLizLSLxWIRTCaTIAiCcPLkSWHatGnCmjVrvDwrbXLkyBGhpaWl3bbCwkJh9uzZwnPPPeelWfkOra2twn333SfcddddHj0ue1AkEhISgujoaDQ0NHh7Kppj5MiR0Ov1HbZFRUWhoKDAS7PSLmFhYYiKivL2NDTFli1bYDAYsGDBgrZtwcHBuPbaa3H8+HEYjUYvzk6bBAUFsdiYRIYNG4bAwMB229LS0pCZmcnXKAkYDAYkJiZ6/P7HOSjd0NjYCKvVitraWqxfvx55eXn48Y9/7O1p+QRmsxlNTU2Ijo729lQYH+Ds2bNITU1FeHh4u+2DBw8GAJw7dw5JSUnemBrjpwiCgOrqamRmZnp7KpqkqakJFosFjY2N2LFjB3bv3o1Zs2Z5dA5soHTDM888gz179gAAAgMDsWDBgrZ4HNM9n332GaxWK6688kpvT4XxASorKzv1BojbTCaTp6fE+DnfffcdKioqcP/993t7Kprk3//+d1vOiV6vx/Tp0/H44497dA5+b6DY7XZYrVZJ7w0KCoJOp2t7/dOf/hS33XYbysvLsW7dOrS2tsJms7lrqprAlc9L5NChQ1i+fDlmzZqFMWPGqD1FTaHG58UAFoulgwseoM9M/D3DqEVBQQFeeeUVXHHFFZg3b563p6NJbrnlFsycORMmkwmbNm2CzWaTfK1TC783UA4fPozHHntM0ns/+OADZGRktL0eMGBA2/M5c+Zg8eLFePHFF/HHP/5R9XlqBVc+L4BO/N/+9rfIzs7GkiVL3DFFTeHq58UQwcHBnV78Wlpa2n7PMGpQWVmJJUuWIDw8HH/84x9hMBi8PSVNkpGR0Xa9mjdvHn71q1/hN7/5Df7zn/94bKHl9wZKeno6nnrqKUnv7S7hLDAwEFOmTMGHH34Ii8XitxdMVz4vo9GIJ554AuHh4XjppZcQFhbmjilqCrW+X72d+Ph4VFRUdNgulqmzng6jBg0NDXjyySfR0NCAf/3rX/y9ksHMmTPxt7/9DUVFRUhPT/fIMf3eQImPj1dNuMhisUAQBJjNZr81UJR+XrW1tXjiiSdgtVrxyiuv9JoTX83vV28mJycHBw8eRGNjY7tE2RMnTrT9nmFcwWKx4De/+Q2Kiorw8ssvc3KsTMQwqycrebjMuBOqq6s7bKuvr8eWLVuQmJiI2NhYL8xKuzQ1NeHJJ5+EyWTCX/7yF1ZmZGQzc+ZM2Gy2dkJQLS0tWLNmDYYMGcIVPIxL2Gw2PPvsszh+/Dj+8Ic/YOjQod6ekmbp7P7X2tqK9evXIzg42KOGnd97UJTw61//Gn369MGQIUMQGxsLo9GINWvWoLKyEs8++6y3p6c5/vjHP+LkyZOYP38+CgoK2ukKhIaGYtq0aV6cnTZ57733AAD5+fkAgPXr17cppt57773empbXGDJkCGbNmoWlS5eipqYGKSkpWLduHcrKynpFLpNSPv/8czQ0NLSFwnbs2IHy8nIAwE033YSIiAhvTk8z/Pvf/8aOHTswefJk1NfX49tvv233+zlz5nhpZtrjb3/7GxobGzFixAj06dMHlZWV+O6771BYWIhHHnnEo6F7nSAIgseO5iOsXLkS33//PQoKCtDQ0IDIyEgMGTIEd9xxB0aMGOHt6WmOW2+9FWVlZZ3+Ljk5GZ9++qmHZ6R9pk+f3uXvtm7d6sGZaAeLxdLWi6ehoQHZ2dlYvHgxxo8f7+2paZbuzr1PPvkEffv29fCMtMmjjz6KQ4cOdfn73nrOdcbGjRuxevVqXLhwAbW1tQgLC0Nubi5uvPFGTJ061aNzYQOFYRiGYRjNwTkoDMMwDMNoDjZQGIZhGIbRHGygMAzDMAyjOdhAYRiGYRhGc7CBwjAMwzCM5mADhWEYhmEYzcEGCsMwDMMwmoMNFIZhGIZhNAcbKAyjMmvXrsX06dOxdu1ab09FEgcPHsT06dPx7rvvuu0Y06dPx6OPPuq28d3No48+2q36ryuIn7/4eOihh9xyHCm8++67mD59Og4ePNi2raCgoN38br31Vq/Nj+ldcC8eptfz5z//GWvWrEFUVBRWrlyJoKAgb09JdcSbCrcd0C4jR47EyJEjkZiY6O2ptCM6OhqLFi0CAKxYscK7k2F6FWygML0as9mMTZs2QafToa6uDtu2bcPs2bNdGnPatGkYMmQI4uPjVZol0xsYOXIk7r//fm9PowMxMTFt81q3bp2XZ8P0JjjEw/Rqvv/+ezQ1NeGWW26BXq/H6tWrXR4zIiICGRkZ3EmWYRjGBdiDwvRqVq9eDYPBgDvvvBPnz5/HgQMHUFZWhuTk5Hbve/fdd7F8+fIux3Hu2rx27Vq8+OKLeOqpp3DNNde0vWf69OkYOXIkfve73+GNN97A3r170dLSghEjRuCXv/wl+vXrh/z8fCxduhSHDx9Ga2srxo8fj8cffxxxcXFt4xw8eBCPPfYYFi1a1GHFXVpaittuuw3z5s3D008/3fbaeQ4ine1/6tQpLF26FMePH4der8fo0aPx85//vENX3K1bt2LTpk04deoUTCYTAgIC0L9/f9x8882YOXNm9x96DzQ0NOCrr77Crl27UFxcjNraWkRHR2Ps2LFYtGgRUlJS2r1f/N+89tprMJlM+N///ofCwkJERERg1qxZeOihhxAcHNxun9bWVnz88cf45ptvYDKZ0KdPH1x77bW48sorcfvtt7d9flLYtm0bPv/8c5w5cwYtLS1ISUnBvHnzcOutt8JgMLj0WQDAn/70J6xbtw4ff/wxtm7ditWrV6OkpASzZ8/G008/DZPJhFWrVmHPnj0oKSlBY2Mj4uPjMXHiRNx3332IjY3tMKbRaMSbb76JPXv2oLW1FQMHDsRPfvITl+fKMGrCBgrTa8nPz8fx48cxceJExMXFYe7cudi/fz/WrFnT4cY9atSoTscoKCjApk2bOtwAu6K+vh6PPPII4uPjMXfuXBQXF2Pnzp341a9+hT/96U/4+c9/jtzcXMyfPx9nzpzBli1bUFdXh9dee03R3xgREYFFixa15Q7cfPPNXf5Np06dwv/+9z+MGjUKCxYswNmzZ7Ft2zZcuHABy5cvb/c3Ll26FAEBARg2bBji4+NRU1ODHTt24Pe//z0ee+wx3HTTTYrmC9Bn+u6772LUqFGYNm0aQkNDUVBQgA0bNuCHH37A22+/3cGABICVK1diz549mDJlCkaPHo3du3fj888/R21tLX7/+9+3e+9LL72E9evXo1+/fli4cCGsVis+/fRTHDt2TNZc//Of/+DDDz9Enz59MH36dERERODIkSN44403cPLkSTz33HOKP4fLefXVV3HixAlMmjQJkydPbjM8Dh8+jE8++QSjR4/G4MGDERAQgLNnz+LLL7/Enj178Pbbb7fz5plMJjz88MOoqKjA+PHjMXDgQBQUFOCJJ57o8nvOMN6ADRSm1/LNN98AAObOnQuAvAuvvPIK1q5di0WLFkGvd0RAR40a1eHiXV1djZ/+9KcICgrCk08+KemY58+fx6233oqf//znbdtefvllfPnll/j5z3+O++67D7fccgsAQBAELFmyBLt27cLp06eRm5sr+2+MjIzE/fff35Y70F2Ow65du/DMM8+0y8F54YUXsH79emzfvr3d9r/85S/o169fu/3NZjMefvhhvPPOO7j22msREhIie74AkJGRgS+++AJRUVHtth84cAC/+tWv8P7773f6ee/fvx9vvfUW0tPTAQAPPPAA7r//fnz//fd4+OGHkZCQ0Pa+9evXY8CAAfj3v//dNs8f//jHWLx4seR57t27Fx9++CHGjx+PP/7xjwgNDQVA/7eXX34ZX331FTZv3uyyR0nk/PnzeOedd5CUlNRu++jRo/HFF18gLCys3fZ169bhT3/6E1auXIl77rmnbfvSpUtRUVGBxYsXt9u+atUq/O1vf1NlrgyjBpyDwvRKWltb8e233yI8PBxTp04FAISFhWHatGkwGo3Yt29ft/tbLBY8/fTTKCsrw29+8xsMGzZM0nFDQ0M73ATFG390dHQ7D4dOp2v73fnz5yX/bUoZMWJEhwTh+fPnAwBOnjzZbvvlxglAn98111yDhoYGnDp1SvE8IiIiOhgnAN2IMzMzu/zf3HzzzW3GCQAEBwdj9uzZsNvtOH36dNv2b7/9FgBw7733tjOiEhIS2n3+PbFy5UoAwK9//es24wSg/9tPf/pT6HQ6bNy4UfJ4PXHHHXd0ME4AIDY2toNxApDhHR4ejv3797dts1qt+P777xEbG9su9AcA1113HVJTU1WbL8O4CntQmF7J9u3bUVNTg2uvvbZd6GLu3Ln49ttvsXr1aowfP77TfQVBwJ/+9CccP34c9913H6666irJx01NTe3gWRCrfbKzs6HT6Tr9nclkknwMpXTmoenTpw8Aygtxprq6Gh9++CF27doFo9EIi8XS7veuzvfgwYP47LPPcOLECdTW1sJms7X9LjAwsNN9Bg4c2GGbWLLrPP9z584BAIYPH97h/UOHDpU8xxMnTiA0NLTLxOrg4GAUFhZKHq8nBg8e3OXvtmzZglWrVuHMmTNoaGho93k5/y8KCwvR0tKC0aNHdwhL6vV6DBs2DMXFxarNmWFcgQ0Uplci3lTE8I7ImDFj0KdPH+zYsQN1dXWdruTffvttbNq0CVdddRXuu+8+WccNDw/vsE1MpOzud62trbKOo4TOVuHi8e12e9u2uro6PPjggzAajRg2bBjGjh2LiIgI6PV6nDt3Dtu3///27i4myS+OA/hXIlxliCuD2iw3relFQs6XmcV6s2vWy0VXwGiji666aM110Y1btWqTC72olWFvbM61FKFXVyuSMiqYG2W1OaalBU1AzTngf9Fk8ActJZHN7+eS5+E8R3B7vpzfOed5jqmpqXn3o7u7G2fOnMGKFStQVVUFmUwWDXVWqxXfvn1L+r7ZPr/Y/o+Pj0MgECA3Nzfh/NjJyH/i9/sRCoVmnTw9MTHx1+39SbLJrgBw584dNDU1QSKRoLKyEvn5+dHw0dbWFvddjI2NzdrWTK8TLQYGFFpyhoeH8fr1awCYdXfTBw8eJAz5WywWtLa2YuvWrTh16tSC9nMm06Mssb+Sp03fgBaS2WzG8PAwdDod1Gp13LEbN27g+fPnKbV/7do1iEQiXL58GQUFBXHHnjx5klLbwO8gFg6HMTo6ColEEnfM5/P9dTurVq1CVlYWOjo6Uu7T3/j/6BrwO7gajUasWbMGV69ejQsYkUgEt2/fjjt/OsT9/Pkz6TVmep1oMTCg0JJjtVoRDodRVlaWcAMEft/4rVYrzGZzXEB59+4dLly4gA0bNqChoWHRdpxdvXo1gORllP7+/qTvEQgEKY1qxBocHASA6NydWE6nM+X2h4aGUFhYmPDd/PjxA0NDQym3X1xcjP7+frhcLuzcuTPu2FxW8ZSWlsJut8Pj8ST9P0qH0dFRBINBlJeXJ4x+uN3uhNJbQUEBRCIRPnz4gMnJybgyTzgcnvMqJqKFxIBCS0okEkFXVxeysrJQX1+fdLInAHg8HvT19cHtdqOkpAQejwenT59GdnY2zp49m/DLO502btyIlStXJpShfD4fjEZj0veIxWJ8+fIl4aY0H9NLfF0uF4qKiqKvP3z4ED09PSm1DQBSqRSDg4Pw+XzRksvk5CQuXbr0T0pddXV1sFgsaGlpQVVVVfTz8Hq9c9rK/dChQ7Db7Th37hwaGhoSSkZerxeBQACFhYUp93kmeXl5yM7OxsePH/Hr169oKSwQCCRdmi4SibB7927cv38fJpMpbhVPZ2cnPB7PgvWVaK4YUGhJcTgc+Pr1KxQKxYzhBPi9eqWvrw9msxklJSUwGAzw+/2oqKhIWmbIyclJ20PUli9fjoMHD6K1tRVHjx5FbW0tJiYm8OLFCygUiugIR6xt27bB7Xbj5MmTKCsrg1AohFwuh0KhmPP19+/fj1u3bqGxsRFv376FVCrFp0+f4HA4oFQq8ezZs5T+vgMHDqCxsRE6nQ67du1CKBSKluSKi4ujk1znq6KiAvv27cOjR4+g0WiwY8cOTE1Nobu7G6WlpbDZbHFLzGdSXV0NtVqN69ev48iRI6iuroZUKoXf78fg4CCcTid0Ot2CBhSBQACVSgWTyQStVova2lqMjY3BbrdDKpVGl1bH0uv1cDgcuHLlClwuFzZv3oyBgQH09PSgsrIy+lkTLTYGFFpSpifHxu7wmsyePXtgMBjw+PFjHD9+PDpU3tvbm3SZq0wmS+tTXnU6HYRCIcxmM+7duweZTAa1Wo3t27fj6dOnCeer1WoEg0HYbDY4nU6EQiFoNJp5BZR169bBYDCgubkZvb29CIVC2LJlCy5evIiRkZF/ElCEQiHa29vR0dGBnJwc1NTUQK/XJ2y4Nl/19fXYtGkTurq60N7ejvz8fBw+fBjl5eWw2WxJJwwno9PpIJfL0dbWhjdv3iAYDEIsFmP9+vXQaDSoq6v7J/2djV6vh1gshsViwd27d5GXl4e9e/dCq9VGH/IXa+3atWhqakJzczNevXqF9+/fR78/h8PBgEIZIysSiUQWuxNERJmgs7MT58+fx4kTJ6BSqdJyzdkeXZBp+FRsSidu1EZES47X68X/f5t9//4dRqMRy5YtQ01NTdr71NLSAqVSiWPHjqX92rMZGBiAUqmEUqmccYk30UJgiYeIlpybN2/i5cuXkMvlkEgkGBkZgc1mw/j4OLRabdIdWxeKTCaLK8VMby6XKXJzc+P6x6d0U7qwxENES47dbofJZMLnz58RCAQgEolQVFQElUqVlnkjRPRnDChERESUcTgHhYiIiDIOAwoRERFlHAYUIiIiyjgMKERERJRxGFCIiIgo4zCgEBERUcZhQCEiIqKMw4BCREREGYcBhYiIiDLOf86CoPZBQ12LAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACteklEQVR4nOydd3gbZfa2H0mWey9xr2mOSXF6bwQSIBBYetmlhs5Sll1Y+GBhKcuy7G8pW4BQEpalJCQBEtKA9IT0xOnFaW5xk3u3LM33x/FIclw0M+rSua/Ll6WxZuaVrHnnvKc8RyUIggCGYRiGYRg3Qu3qATAMwzAMw1wMGygMwzAMw7gdbKAwDMMwDON2sIHCMAzDMIzbwQYKwzAMwzBuBxsoDMMwDMO4HWygMAzDMAzjdrCBwjAMwzCM28EGCsMwDMMwbgcbKAzj5mzatAkqlQovv/yyzcdSqVSYMWOGzcfpC3uO1xu4++67oVKpcP78ecn7ZGRkICMjw2FjYhhPgA0UhrkIlUoFlUoFtVqNM2fO9Pq6mTNnml67aNEi5w3QxZw/fx4qlQp33323q4ciGdFosvzx9/dHSkoKbrrpJuzYsaPH/ZqbmxEZGQmVSoXbb7/dyaN2HPX19XjyyScxdepUJCUlITAwEP369cO4cePwzjvvoKmpydVDZBj4uXoADOOO+Pn5oaOjA5988gn+8pe/dPt7fn4+Nm3aZHodY2bcuHE4fvw4YmNjXT2UbqSnp5sMq6amJuzcuRNLly7F8uXLsXTpUvzqV7/q8vrFixejrq4OKpUKy5cvR1VVFWJiYhw+zvXr1zv0+NXV1ViwYAHGjRuHuXPnIi4uDnV1ddiwYQOeeuopfPTRR9ixYwfCw8MdOg6G6Qs2UBimB+Lj45GYmIiFCxfilVdegZ9f10vl448/BgBcc801+Pbbb10xRLclODgY2dnZrh5Gj2RkZHQLPb300kt45ZVX8PTTT3czUBYsWAC1Wo3f//73+Nvf/obPPvsMv/vd7xw+zv79+zv0+Kmpqairq4NWq+32t1//+tf44osv8MEHH+CZZ55x6DgYpi84xMMwvXD//fejrKwMP/zwQ5fter0eixYtwqRJk5CTk9Pr/vn5+bjzzjuRnJwMf39/JCUl4c4770R+fn6Pry8vL8d9992H+Ph4BAUFITc3F5999lmvx+8rT+Hll1+GSqXCpk2brL7PCxcu4JVXXsHkyZORkJBgGuvtt9+OY8eOdTtuZmYmAOCzzz7rEjIRw1x95aDI+Uws38PSpUsxbtw4BAcHIzo6GrfeeitKSkqsvjcpPProowCAc+fOobKy0rT9yJEj2LlzJ2bNmoVnn30W/v7+JsNUCUajEf/4xz+QnZ2NwMBApKSk4KmnnkJ9fX231/b0v120aJHpc964cSNmzJiBsLAwhIeHY+7cuTh+/LjksWg0mh6NEwC46aabAKDX7ynDOAv2oDBML9x222343e9+h48//hjXXXedafuKFStQUVGBN998E6dPn+5x3z179uCyyy5DQ0MD5s2bh5ycHJw4cQL/+9//8P333+Pnn3/G2LFjTa/X6XSYNGkSzp49iylTpmDKlCkoLS3FQw89hNmzZzv0fW7ZsgV//etfMXPmTNxwww0IDQ1Ffn4+li5dihUrVmD79u0YMWIEAGDGjBmora3Fu+++ixEjRnT5XHJzc/s8j9zPROQ///kPVqxYgXnz5mH69OnYtWsXFi9ejIMHDyIvLw8BAQE2vX9BEEyPVSqV6fGCBQsAUJJrdHQ0rrnmGixbtgxbt27F1KlTZZ/nqaeewpYtW3DzzTfj2muvxbp16/DOO+9g69at2LZtGwIDAyUd54cffsD333+PK6+8Eg899BCOHTuG1atXY8+ePTh27JjNobWVK1cCAIYPH27TcRjGZgSGYboAQEhOThYEQRDuu+8+QaPRCEVFRaa/z5kzRwgPDxeampqE//f//p8AQFi4cKHp70ajUcjOzhYACP/73/+6HPvrr78WAAiDBw8WDAaDafv9998vABCefPLJLq/fs2eP4OfnJwAQXnrppS5/S09PF9LT03t8Dy+99JIAQNi4cWO39zZ9+vQu28rLy4X6+vpux8jLyxNCQkKEK664osv2c+fOCQCEu+66q8dzb9y4sdt4lXwm4nsICwsTDh061GWf2267TQAgLF68uMcx9Dami9+7IAjCiy++KAAQsrKyTNtaWlqEqKgoISIiQmhubhYEQRBWrlwpABB+/etfSzqnyF133SUAEGJiYoTz58+bthsMBuH6668XAAivvPJKl316+t8uXLhQACBoNBrh559/7vK3P/7xjwIA4c0335Q1Nr1eL7z00kvCSy+9JPz2t78VcnNzBQDCzJkzhZaWFlnHYhh7wyEehumD+++/HwaDAZ9++ikAoKCgAD/99BPuuOMOBAcH97jPL7/8ghMnTmDixIm44447uvztlltuwZQpU3Dy5Els27YNAIWMvvjiC4SFhXULi4wZM6bbMexNv379EBYW1m37iBEjcOmll2Ljxo3Q6/U2nUPuZ2LJ448/jmHDhnXZdv/99wMAdu/eLWsc58+fx8svv4yXX34Zf/jDHzBt2jS8+uqrUKvV+Pvf/2563TfffIOamhrccsstCAoKAgBcccUVSEhIwNKlS1FTUyPrvADwxBNPID093fRcrVbjrbfeglqtNn2/pHDrrbdi1qxZXbY98MADAOR/Hh0dHfjzn/+MP//5z/jnP/+JvLw8/OY3v8GKFSske3QYxlGwgcIwfTB+/HgMGzYMn376KYxGIz7++GMYjUbTDbIn9u/fDwC49NJLe/y7uP3AgQMAgBMnTqC5uRm5ubmIiIjo9npH65YAwKpVq3DNNdcgMTERWq3WlFeycuVKtLW1QafT2XR8uZ+JJWPGjOm2LTU1FQBkGwoFBQWmG/I777yD06dP4/rrr8fWrVu7JMiK4Z177rnHtM3Pzw933HEHWltb8fnnn8s6LwBMnz6927asrCykpqbi/PnzqK2tlXQce34egYGBEAQBRqMRxcXFWLRoEX7++WeMGTNGlm4LwzgCNlAYxgr3338/CgoKsGbNGixcuBCjR4/GyJEje319XV0dACAxMbHHv4vbxRuS+Pr4+PgeX5+QkKB06JJ49913cfXVV2P79u2YNm0annzySfzpT3/CSy+9ZMo9aWtrs+kccj8TSyIjI7ttE6uqDAaDrHFMnz4dgiBAEATo9XpcuHABy5Ytw6RJk0yvOX78OLZt24bs7GxMmDChy/5iifJHH30k67yA9f+v+BlZw56fh4hKpUJycjLuuusuLF++HCdPnsRjjz2m6FgMYy84SZZhrPCb3/wGzz77LB566CGUlJTgT3/6U5+vF70gZWVlPf69tLS0y+vE3+Xl5T2+vrfjqNVqtLe39/g3qavxjo4OvPzyy0hISMD+/fu7GRC9CZjJRe5n4kpE78mJEye6JM1acuTIEfzyyy9dDBtrlJeXY/Dgwd22i5+JO7x3AJgwYQIiIyMlVYAxjCNhA4VhrBAZGYkbb7wRn3/+OUJCQnDbbbf1+XrRu9LbBL9x40YAwKhRowAA2dnZCA4ORl5eHurq6rrdqHo7TlRUFA4dOgS9Xt+tZHTv3r3W3hYAqh6qra3F9ddf3804aWxsNIVmLNFoNADkrdblfiauoq2tDZ9//jnUarVJov5iiouLsW7dOnz00UeyDJTNmzdj2rRpXbadPXsWRUVFyMjI6NEz4goaGhpQX1/fY14SwzgTDvEwjARee+01fPvtt1i3bp3ViXvy5MkYPHgwtm3bhqVLl3b529KlS7F161YMGjQIU6ZMAQBotVrccccdaGho6JYku3fvXnzxxRc9nmfcuHHo6OjAwoULu2xftGgRtm/fLul99evXD8HBwdi3bx8aGxtN2/V6PZ544okec0+ioqKgUqlQWFgo6RyA/M/EVSxbtgxVVVWYM2cOPvnkE3z88cfdfpYsWYKQkBAsWbJEclgGoFBaQUGB6bnRaMQf/vAHGI3GLrkuzuDw4cNobW3ttr29vR2PPfYYjEYj5s6d69QxMczFsAeFYSSQlpaGtLQ0Sa9VqVT47LPPcPnll+OWW27Btddei+zsbJw8eRLfffcdwsLC8N///hdqtXl98Je//AXr16/HO++8g71795p0UBYvXoyrrroKK1as6Hae3/72t1i4cCEefvhhrF+/HqmpqcjLy8OOHTtw9dVXdxOY6wm1Wo3HH38cf/3rXzFs2DBce+21aG9vx8aNG1FdXY2ZM2eavBsioaGhGD9+PLZu3Yo77rgDgwYNgkajwbx583rVzlDymbgCMbwzf/78Xl8THh6Om266CYsWLcL//vc/k9CbNSZPnozc3FzccsstiIiIwLp163Dw4EGMHj3a6Yqtn3zyCRYuXIjJkycjPT0dkZGRuHDhAn788UeUlZVh8ODBXaqaGMYVsAeFYRzA+PHjsWfPHtx+++3YsWMH3nrrLfzyyy+47bbbsGfPHowfP77L62NjY7F9+3bcc889OHHiBN555x3k5eXh/fffx1NPPdXjOXJycvDzzz9j8uTJWLlyJRYsWICAgADs2LEDo0ePljzWV199Ff/3f/+HoKAgfPjhh1i+fDnGjBmD3bt392qUff7555g7dy7Wrl2LP//5z3jxxRd7DAfZ8pk4m1OnTmHz5s2Ij4/HNddc0+drxSouOcmyb7/9Nl544QVs2rQJ7777LiorK/HEE09gw4YNTi/pvemmm3DTTTehoKAAX3/9Nd566y2sXLkS/fv3x1tvvdVjPhLDOBuVIFjIKDIMwzAMw7gB7EFhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt8MjDZTW1lacPHmyRyVEhmEYhmE8H480UAoKCkwdZhmGYRiG8T480kBhGIZhGMa7YQOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt8PP1QNgGIZhPAe9Xg+DweDqYTBuiFarhUajsdvx2EBhGIZhrFJfXw+dToe2tjZXD4VxU1QqFSIiIpCQkACVSmXz8dhAYRiGYfqkvr4eJSUlCA0NRWxsLLRarV1uQIz3IAgCmpqaUFlZiaCgIERGRtp8TDZQGIZhmD7R6XQIDQ1FSkoKGyZMrwQFBaGtrQ0VFRWIiIiw+bvCSbIMwzBMr+j1erS1tdnlhsN4P+Hh4TAYDHbJU2IDhWEYhukV8Uaj1WpdPBLGE/Dzo8BMR0eHzcdiA4VhGIaxCntPGCnY83vCBgrDMAzDMG4HGygMwzAMw7gdbKAwjDfR2AgIgqtHwTAMYzNsoDCMt3DhAvDdd0BenqtHwjCMDNra2vDss88iKSkJQUFBGD9+PH766SdJ+x49ehQ33XQTsrKyEBwcjNjYWEybNg0rV660+Tz79+/HvHnzEB0djeDgYAwdOhTvvfee4vcpFzZQGMYbqK8HNm8GiouB7duBkyddPSKGYSRy99134x//+AfuuOMOvPvuu9BoNLjqqquwbds2q/sWFBSgoaEBd911F9599128+OKLAIB58+ZhwYIFis/z448/YuLEiaioqMCLL76Id999F1dffTWKi4vt86YloBIEz/MHnzx5Evfffz8++ugjDB482NXDYRjXotcDP/0EHD0KDBwIlJfT9iuvBNLSXDs2xuNpbW3FuXPnkJmZicDAQFcPx+vYvXs3xo8fj7feegu///3vAdBnPnToUPTr1w+//PKL7GMaDAaMHj0ara2tOHHihOzz1NfXY9CgQZg0aRKWLl0KtVq6L8Oe3xf2oDCMJyMIwJ49ZJxkZgIaDZCUBLS3Axs3AhUVrh4hw3gEWVlZ+PWvf91t+8yZMzF9+nSHnXfp0qXQaDR44IEHTNsCAwNx3333YceOHSgqKpJ9TI1Gg9TUVNTW1io6z5dffony8nK8/vrrUKvVaGpqgtFoVPYGbYANFIbxZE6eJAMlMREICDBvT08HqquB9esBi0mKYZjuNDY24vz58xgxYkS3vx06dAjDhw/vcT+9Xg+dTifpp7cb/IEDBzBo0CCEh4d32T5u3DgAQJ7EnLKmpibodDqcOXMGb7/9NtasWYNZs2YpOs/PP/+M8PBwlJSUYPDgwQgNDUV4eDgefvhhtLa2ShqPPeBePAzjqZSWAtu2AYGBQERE17+pVORROX2aPClz5gDBwa4ZJ8O4OUeOHIEgCN0MlOLiYlRXV/dqoGzfvh0zZ86UdI5z584hIyOj2/bS0lIkJiZ22y5uu3DhgqTjP/300/jwww8BAGq1Gtdffz3+9a9/KTpPfn4+Ojo6cO211+K+++7DG2+8gU2bNuGf//wnamtr8dVXX0kak62wgcIwnkhDA7BlC5UV9+/f82s0GiArC8jPJyNm1izA39+542S8mzFjgLIyV4+CSEgA9u5VtOuRI0cAoJuBcvDgQQDo1UAZMWKE5GqbhISEHre3tLQgwNL72YmYv9HS3AwYDBTOtfzRaAA/8y38ySefxI033ogLFy5gyZIlMBgMaG9vl36elhbTtsbGRjQ3N+Ohhx4yVe1cf/31aG9vx4cffohXXnkFAwcOlPS+bYENFIbxNPR6qtQpLKSk2L7QaslIOXIECAoCpk6liY1h7EFZGVBS4upR2Mzhw4cRHx+P+Pj4LtsPHToEtVqNoUOH9rhfVFQULrvsMusnMBrJqOjo6GZoBAUGoq25GWhqom1GI2A0orXT8AsyGilcK9aziPv6+wNRUeQtBZCdnY3s7GwAwJ133onZs2fjmmuuwa5du6BSqUydhi9GDNkEBQWZtomPb7vtti6vvf322/Hhhx9ix44dbKAwDHMRggDs20cGR0aGNGMjIABISaHVZVAQMG6caVJjGJvoxSvgEmwYy5EjR3rMP8nLy0NWVhZCQkJ63K+9vR3V1dUXbwTa2kyGhmhQxMXEQCNWw4hGBoDE2FiUXLhAXlGArk2VCqWlpQCApIQEQNyv828QBFqotLd3zT2z4MYbb8SDDz6IU6dOYfDgwUhMTERJD8ak6TxJSaZtSUlJOHr0aDeDrV+/fgCAmpqaHs9pb9hAYRhPIj8f2L0biI+nsI1UQkNpnx07yEjpxWXNMLJQGFJxNw4fPoxbbrmlyzaj0YgNGzZg2rRpve73yy+/SM9B2b8fGWlpZiOjc5GQO3w4Nm7fjvr29i4JrLs6k1ZzR4zovhARFxgtLeRJ6WHBIYZs6urq6Di5udi4cSPq6+u7nmfXLtPfRUaPHo2ffvrJlCQrIuapxMXFSXrPtsJVPAzjKZSVAVu30oopMlL+/pGRQHg4HeP0aXuPjmE8koqKClRWVpo8CSLvvfcedDodhg0b1uu+Yg6K6Wf1avy0ZAl+WrYMP337bZefhMREMjTU6i4GxY3XXguDwYAFn31m2tbW1oaFX36J8WPGIDUlBQDQ3NyME6dOQVdVRS/SaoG2NlT04BXR6/X473//i6CgIOTk5NB5bryRzmMh3tbW1oaFCxdi/PjxSE1NNW2/+eabAQCffPJJl+N+/PHH8PPzw4wZM/r6SO0Ge1AYxhNobKSk2Pr63pNipRAXR2qzmzaRB6Zz8mMYX+Xw4cMASDn1kUceQXZ2Nnbu3Il169YBAPbt24ddu3Zh/Pjx3fbtloNSXw80N8vybo4fMwY3XXcdnnvlFVRUVmJAVhY+++ornC8sxCcWsvK79+/HzGuuwUvPPouX//hHMnQEAQ8+/DDqm5sxbdo0JCcno6ysDF988QVOnDiB//u//0NoaCidZ/x43HTTTXjuuedQUVGBAQMG4LPPPsP58+e7GSIjR47Evffei08//RQdHR2YPn06Nm3ahG+++QbPPfdcl3CQI2EDhWHcnY4OSoo9fx4YNMj2/JGUFODsWSo/vvJKIDbWLsNkGE/k8OHD0Gg0+Prrr/H4449j4cKFmDp1KjZv3ozrrrsOeXl50Gq11g/U0UG5J1JeexH/ff99vJiSgs+XLEFNbS2GX3IJfvj6a0ybPLnvHbVa3HL11fjkm2/w/vvvo6qqCmFhYRg9ejTefPNNzJs3r+t5/vtfvPjii/j8889RU1OD4cOH44cffugxjPXBBx8gLS0NCxcuxLfffov09HS8/fbbePLJJ2W/P6Ww1D3DuDOCQDknW7eSbL1Fpr1NGI3AmTNkrFxxBYV+GKYHvF3qfv78+diyZQtOnTpl24GamijR1dmfUWsr5Zh1ekpcDUvdM4yvcPo0sGsX0K+f/YwTgNzDWVlAQQGFeyw0EBjGlzh8+LApT0MxRiNdQ64o4ffzo3MbDM4/t4NhA4Vh3JWKCvKcaLWkd2BvNBrKZzl5ks6j19v/HAzjxgiCgGPHjtluoLS1UYjHzwVZE35+ZJz0oHHi6bCBwjDuSFMTsHkz9dFJTnbcebRa6ttz8CCVILugIRjDuIpz586hsbHRNgNFEMiDcVF1jlPRaGgMXnb9cpIsw7gbYlLsuXOkFOvoSS8oiIygPXvo8ZgxLOTG+ARZWVmwOQ2zvZ28jwqSY+2Gnx95UNra7BsKdjGyPSjNzc349NNP8fvf/x5z587FtGnTsGbNGkUn/9vf/oZp06bh2WefVbQ/w3glBw4Ahw6RZ8NZLuOwMCpB/uUX4Phx55yTYbwBsbuv2oUBCZWKzt/SYpbE9wJkf6J1dXVYtGgRCgoKMGDAAMUnPnHiBNasWQN/bl7GMGbOnKGk2Lg453cfjoqic27eTGXIDMP0jV5PXgtX5J5cjJ+fWf7eS5BtoMTExODbb7/FN998g4cffljRSQVBwLvvvos5c+YgOjpa0TEYxuuorCQxNo0GcNV1kZBAcexNm4CLlDUZhrkIseeOOzTgFD04XuRFkW2g+Pv7IyYmxqaTrlu3DufOncP9999v03EYxmtobibjpLrasUmxUkhNJUXM9etpPAzDdMdgoPCOO3hPRDrl772lIs/pn2xzczM++OAD/PrXv5Zs6Oh0OlSJ/QcAFBQUOGp4DON8DAbK/ThzxjlJsdZQqYDMTNJg2bCBhNzcRASKcR0eqOnpWNrbKaG9l27CLqFT/h6trdRE0AXY83vidANl0aJFCAgIMDUjksKKFSuwaNEixw2KYVxJXh6V+TozKdYaopBbfj6Fey67zPkKmYxboOkMX+j1egR5UYWITbhDaXFvaLVkoAQHu2Q+6ejoAAD42eHcTh19UVERli5dij/96U+ykmPnzZuHyRY9CQoKCvDaa685YogM41zOngV27gRiYpyfFGsNPz8Scjt2jIyTGTPcx4BinIZWq0VAQADq6uoQFhYGlbvdkF2BWFrsjkUeGg2NTZTAdzL19fXQaDQmw9YWnDrbvPfeexg6dKjsVs2xsbGI5YZmjLeh05GCK0AGijvi70+enbw80leYONG15ZSMS4iNjUVJSQmKi4sREREBrVbru4aKIFB3cb3e/bwnIoJAfYFUKqcl8AqCgKamJtTX1yMxMdEu3w+nGShiy+rXXnsNpRbVAQaDAW1tbSgtLUV4eDhCQkKcNSSGcR0tLZQUq9NR3ok7ExwMJCZS08KgIGDUKFePiHEy4Z3NJHU6HUpKSlw8GhdjMFBSuzuGdyzR6+l6daKXR6VSITIyEhEREXY5ntMMlIqKCgDACy+80O1vlZWVuOWWW/DYY4/Jyk1hGI9ETIo9fRoYMMC9JzmR8HCa8LZvJ4MlO9vVI2KcTHh4OMLDw6HX62HwwsZ0ktm/nzyKmZmuHknfVFSQgTJnjtMSebVarV1COyIOM1B0Oh2ampqQnJwMPz8/jBo1Cq+//nq317311ltISEjAb37zG2RlZTlqOAzjPhw8SBNcWppr5bHlEhNDsfctW0inpV8/V4+IcQFarRZaT/re2pPGRlJaDgqiCh53JjycKgNLSz12QaHIQFm2bBkaGxtNpb/bt283eUhuuOEGhIaGYsGCBVi7di0WL16MxMRExMfHIz4+vtux/vnPfyIqKgpTp0614W0wjIdw7hwlxUZHA54YzkxMBE6cAAoL2UBhfI+zZ0kbaNAgV4/EOn5+ZEgdPkyeWg9McFc04sWLF6OsrMz0fMuWLdiyZQsAYPbs2QhlzQSG6U51NXkfBAHw5KTv8HAqPx450j0UNBnGGej1wNGj1LfKUxLF4+OB4mKgqMj9Q1I9oMhAWbJkidXXPP/883j++eftciyG8Xg6Osg4qax0/6RYa0RHA2Vl9F4SElw9GoZxDoWFFC7JyHD1SKQj5p4cO0bj9oR8Nws8xAxkGA+nvBw4f54mCU9ZffVGYCDJaft6NQfjOwgC5Z6o1Z6VNwbQIuLcOY/sreXhMyXDeAjFxe4ni20LoaFUhWQ0unokDON4yspogeGJHsOQEFpQnDjh6pHIhg0UhnE0BgMl13VqSXgF0dEU4qmsdPVIGMbx5OeTMqsnJrYDlNCenw9Y9LTzBNhAYRhHU1FBN/KoKFePxH4EBdGEzWEextuprwdOngTi4lw9EuVERtL7yM939UhkwQYKwziaCxdIP8Tbmu2FhJDOAod5GG/mzBmgttbzFxgxMZQs29jo6pFIhg0UhnEkRiNNcN5Yeh8dTd4hnc7VI2EYx9DWRqXF4eEeVwHTjZgYCvGcPu3qkUiGDRSGcSQ6nfeFd0SCg6knCYd5GG+loICMcG8QJVSrydA6coQMLw+ADRSGcSSlpXQTDw529UgcA1fzMN6K0UghET8/j1Rh7ZF+/agi6dw5V49EEmygMIyjEAQK73hq5r8UxDCPh1UHMIxVSktJnK2HFi0eiyh/f+QIVRe6OWygMIyjqK4mgTZvDO+IiGGeCxdcPRKGsS+nTpF2kbd5Py3l790cNlAYxlGUllLGvDcmyFoSEkJhHkFw9UgYxj7U1JCB4sk9s3pDFIs8etTtr1k2UBjGEYjhnaAgV4/E8URHk6eIwzyMt3D2LOmGREa6eiSOIT6elHEtmv66I2ygMIwjqKuji9+bwzsiISEc5mG8h9ZW8i5ERnp+aXFvhIYCLS0kQOfGsIHCMI6gtBRoaKDW7L5AUBB5jNzcZcwwVjl/nhK/PVk5Vgr9+pGBUl3t6pH0ChsoDOMIzp0D/P29dwV2MdHR5DFy48mOYaxiMFBpcWAgoNG4ejSOJTKSPL1uLH/PBgrD2Jv6esqS94XwjkhoKCUEc5iH8WRKSryvtLg3VCpKAj561G3l79lAYRh7U1ZGRoo3dS+WQnAwV/Mwns3JkyTQ5m19s3pDlL8/e9bVI+kRNlAYxt4UFJAgktrHLq+oKDLOampcPRKGkU9VFeVReYOsvVRE+fvDh91S/t7HZlCGcTBNTWSgREe7eiTOh8M8jCdz+jQltkdEuHokzkWUvz9/3tUj6QYbKAxjT0pLKfHM18I7AMW0uZqH8USamyk51hcXFn5+JN529Kjbyd+zgcIw9qSoiNym3l4B0BvR0WSk1da6eiQMI51z5yjEExPj6pG4hoQESg52M/l7NlAYxl60ttJE50vVOxfDYR7G0+joIO9JcLDvLixE+fvjx93K+8kGCsPYC9Fz4GsxbEtUKprs3LQqgGG6UVxM5cW+lBzbE/HxdN2Wl7t6JCbYQGEYeyG6R/38XDsOVxMdTR4UDvMw7o4gACdO0G/Ri+CruKH8PRsoDGMP2tspvOOtzcXkEBZGOjAc5mHcncpK8hr4gjCbFPr1I4PNTRSh2UBhGHsg6n+wgcJhHsZzOH2apAF8pWeWNSIjaXHhJvL3bKAwjD0oLqZkO63W1SNxD2JiKK5fV+fqkTBMzzQ2krcgNtbVI3EfVCq6do8dI8PNxbCBwjC2oteTt8DVybE1NVQq6A6EhZHoFYd5GHdFLC32Re2TvnAj+Xs2UBjGVioq6IJ2ZXnxgQPA/PnAY48Bn33m+lJBlYq6OZ8759pxMExP6PXAkSOUGOprLSmsoVbT53L4MOXWuXIoLj07w3gDJSU04bmqCiA/H3jjDRoDACxb5h5GSnQ0hb7q6107Doa5mKIiyhvj5NiecRP5ex+vh2QYGzEYSNrdAUl2ZwtV2HdYbbI7eiKsrgSXr/ozAltbu/5h+XIcOwXkjb2XvBl9oNUCY4YZkZlmZ4MmLIw0FS5c8E3pf8Y9EQTKsVCpOGesN7Rakks4cwYYNMhlw2ADhWFsobKSfhIT7X7ofYfVqKvv3bgIbq7CjJ9fQGAreShK44biXNoUTNr3AQAg58hyGPQCdo2c37eR0gLsPaxGZpqd+3Co1TTJnT8PZGfb99gMo5Tycmroyd6TvtFq0efqyAmwgcIwtnDhAsVpAwPtfmhxblCpBARddHhtWyMu2/InhDVVAABqojKwbfaL0AeEQhOoxfjt/wQADDv5LbR+AvaP69lIaWkFBEHluHkoOprc6Q0NXMrJuAenTpEgWWio1ZdK8WLaA4d5MT0cNlAYRilGI7lAQ0IcepqgQOD26yy8G+3twEuvADWdCaj9+iHqzZdwU0wQAAOAy4EfBeDf/wYEAdlHv0N2loGSaC8yUr78ToPmFgcOPjyckogvXAAGD3bgiRhGAvX1ZKBILC225sW0Gy3A+u0aBO/vbqCojB3wb2+Ctr0Z2vYmaPVN0Bj00MVlQx9g3cgS8UQjiA0UhlGKTkc3X2fqKBgMwP/9H7VGB8gA+POfu3dhnT2bjJF//Yti7itX0u/777eak2JXxM7OBQVsoDCu5/x5UkmV+F3sy4spBbVBT4aFvgna9ib4WxgZ4mNVczP89U3Q6um3f+ff6HEz/AxtPR67OiId3815D0aNxDwaR4VyHQgbKAyjlNJSoLmZuqA6A0EAPvwQ2LGDngcGAn/6E5Cc3PPrL7+cjJF//pP2/eEH8vo8+KBzjZToaNJnaWyU5FZnGIdx9ix5PGWWFnfzYvbGnj3A//5HmkTNzQ4t042uK8DQ4h9xOvsqq691eCjXQbCBwjBKEASnhHe68PXXwNq19FijAf74R+sZ9pddRsbIe+/RmFevpu3ONFIiIqgU+sIFl1YEMD5OfT15PB0lqNjaSteZPdSTg4JobgkOph/xcUgIXfurVgEAxp34CuOemmFV4sDhoVwHwQYKwyihupqqAZwlzrZmDfDVV+bnTzwBjBolbd9Zs2jF+M47ZiNFEMhIgcYRo+2KWM1TUMAGCuM6KispWdtR1Ttr1piNk7Aw8hxaGhYXGxu9PQ4KIiOkL3Q6YNcumofWrgWuvdYx78nFsIHCMEooLaWQRW/hFTuScn47sPED84Z77wVmzJB3kJkz6fe771KYZ80aMlISH4VTjJToaDJQmpqc63ViGJELF8hr6Ajl2LY24Ntvzc/feANIS7P/eURuv50MFABYupRyzoKCHHc+F8FKsgyjhLNnaUJwcJgkoeIwJm9+y6wK+6tfAdddp+xgM2cCTz5pnqDXrsW47f8CBKM9hto34eG0uuTePIwr6OggA9lRpe7r1gG1tfR40iTHGicAkJkJTJ1Kj+vqKL/MC2EDhWHkUltLHhQHh3ciq85i9pY/Q2PozGybORO46y7bDjpjBvDUUyYjZcCpdZiy55+ON1I0GnM1D8M4m6oqSlyNjLT/sdvbgeXLzc9vucX+5+iJ224zLzaWLyePrpfBBgrDyKW01PHCY2VlmPnjn+Cvb6bno0cDv/2tfdzT06cDv/ud6VjZZ9Zh/Lb3KPTjSKKizGEehnEmlZUUhnGAoCJ++olyQQBgwgTybjiDlBRzqLepCVixwjnndSJsoDCMXM6do069jgrv1NUBL7+MoJYaAIAubjDw7LOUaGovpk0Dnn4aRhVNAf3zf6JyZIMDNRIiIui9lZY67hwM0xMFBXTN2hu9nppzijjLeyJy663mhNrvv/e6xpxsoDCMHBoaqHuxo8I7LS0kvNaZq1EbnopNl7/smJXf1KnYPuMZk5GC9esda6RoNGTUFRY65vgM0xNNTWQUOyK8s349VdQAwLhxQP/+9j9HXyQkkN4RQHOHZajJC2ADhWHkUFpKXgBHdOfV64G//hU4fRoA0BwcgzUzXkV7oOM6ARdlTsWGyX+EUdW5CtuwgbQcHGWkREWRmmdzs2OOzzAXU1lJngV7X7N6PfDNN+bnzvaeiNx8s7kr8w8/UK6Nl8Blxgwjh4ICCrXYu1TRaCTD4MABeh4Sgo2zX0FTYD8Ew7G9M86nTsGGKcCl296EWjAAGzfiXCGwc+pTENT2KUE29QFJjiSBu9JS5682Gd+kvJyuL2vaInLZuJGMH4ByxAYOtO/xpRIbC1x5JeWgtLdT2fH997tmLHaGPSgMI5WmJjJQ7B3eEQRg4UJg82Z67u8PvPgi6qIy7HueHhAXXudTpmD95OdMnpTMMxsxduM/0NJkRHOLyuafunoV9h5Wm8M8RUUOf28MA6ORJAHsndDe0eEe3hORG24wq8muWWM2nDwcNlAYRiplZeQqtrdU9rffUoIbQJ6Z3/8eyMmx7zl6YcwwIyLCBQQHCagcNBFbL30OBjU5VgcUbMKsPX9HSEAHgoMExT8qFXmATH1AoqPpptHigdrbjGdRXU0hD3tfs5s3k2cGAHJzgexs+x5fLlFRwNVX0+OODmDxYteOx05wiIdhpCKu+u3pKl6/Hli0yPz8kUeoVNFJZKYJF3U3HQdMeBZ4802gowMZZzcjI9lIZckK33e3PiCRkWSglJYCWVm2DJ9h+qaykvKdUlLsd0yDAViyxPz81lvtd2xbuP568p40NwM//0zPk5JcPSqbYA8Kw0ihtZVuqvYM7+zdS1UzIr/+NUlWu5rx46kRoVjWvHUr8H//Z7/EWdHQ4TAP42iKi+l7bE9JgC1bzKXyw4c7zdtplbAwc08eo9ErvChsoDCMFEpLSUHWXqWKJ06Ql0IUR5s7F7jpJvsc2x6MGwc895zZSNm2Dfj738l9bA+iosjga221z/EY5mJaW8kItmd5sbt6T0TmzTPn22za5PEl/WygMIwUiovptz3E0oqKgFdfJWVLAJgyBZg/3+F9fWQzdizw/PPm97x9u/2MlMhIc8sAhnEEjigv3r6ddJAA4JJLgKFD7XdsexASQqEdgJLvLTugeyBsoDCMNdrbabVvj5WYTge89BIJvgHkIn7qKfuXQNqLMWOA//f/zOU+v/wC/O1vthspfn40gXKYh3EUFRXk8RC/u7ZycdjE3bwnInPnmueq7dtp7vJQ2EBhGGuUlVE1gK0GSmMj8PLLZuXJrCzyUNhrAnUUo0d3NVJ27jRXHdmCmCwrepIYxl4IAgkCBgfb75g7dpgN6uxsWly4I4GBXcPFX37purHYCBsoDGONkhLbV2JtbcBrr5ljwgkJ5Emx5wTqSEaNAl54wRyGWreObgK2EBVFhh+HeRh7U1dHIR57lRcLPXhP3C0ka8mcOSTgBgC7dyOm4oRrx6MQNlAYpi/0elI+tWWiMxopd+PYMXoeEUH9dhzVz8dRjBxpXjWWlZnfj1I4zMM4iooKElYMDbXL4VIKd5FHBgAGDaJrwZ3x9ycJ/E6G7//chYNRDhsoDNMXFRVAVZVtxsTOncCuXfQ4KIjCPImJdhme05k1y/x4/XrbjydW87S3234shhEpLSXRQ3t4OQQBQ/Mskk1vucW9vScil11GnloAiRfykFh+yMUDkg8bKAzTFyUl5EURZaSVsGGD+fETT3h2D5qJE8nIAigBz9Yy4chICvOUldk8NIYBQNdrQYHdwjupF3YjuuoMPRkwgBLHPQE/vy6JvKMPf257WNbJsIHCML1hMFB4x5Y+HrW1wL599Dg2lkTQPJmAACqLBkiqfscO246n1VIIjMM8jL3Q6ei6s0d5sSBg5BEP9J6ITJ9uUtFNqDyKxJL9Lh6QPNhAYZjeqKykyS46Wvkxtm41K7BOn+6+5cRysAzzWHqHlBIZSYYgh3kYe1BRQUnptng9O0ks3od+1afoSWYmCRh6EhoNcPvtpqfD93uWF4UNFIbpjQsXKIQRGKj8GBs3mh/PnGn7mNyBIUNMsW0cOkQ3BFsQq3k4zMPYA3uVFwsChuVZlOh6mvdEZNIk1ERnAgBidPnmfDgPgA0UhukJo5FW9bZUARQVAadP0+P+/YG0NPuMzdWoVGYviiB0NcKUoNWSl0lU62UYpTQ0kMFsj/yTvDzEVp4EANRGpTu1iaddUatxaNRvzM+/+MLcYsPNYQOFYXqiqoomOlvCO97oPRG59FLzanLDBtvdxhERVM2j19s+NsZ3EeXtbS0vFgTg669NT4+MuI2qgjyUktRxqIgZRE8KCqi3lgfguZ84wziS0lJKAlXqKjYaqVkXQBPbtGl2G5pbEBdn1kQpLQWOH7fteFFRlO/DYR7GFkTRP1tzvQ4fNn2na8JTUZQxycaBuRiVCvuG3Wl+/tVX9utO7kDs0PmMYbwMQaDwjlhO2wNnC1XYd1jd64K/X+kRXNYpaV+SPBqbN8XIHkaLuzf6vfRS4OBBerxhg21t5/39qb9PSQmQmmqf8TG+hcFA+Sf2qN6xUI3Nu+RWCGoNAPe/ofdFScJIlCcMRXzZEbrONm3qmvDuhrAHhWEuRkzY7CO8s++wGnX1KjS39PyTdsJc3XIibVavr+vrRxAohOK2rXosNVG2brW9p05EBOXscJiHUUJVFZUX25p/cuQIeVAA1Icn42yal3g/VaquuShffeX21xobKAxzMWVl1NgvJKTXl4jXtUolIDio60+YtgWZRdsBAO3aYOj6j+v2Gqk/EeECxgxz04S2wEBg8mR6bA9NlOhoCvPYWhXE+CaVlfQ97MPzKQkL78mRXNF74h1UJgw1y/RXVAA//+zaAVlBdoinubkZX3/9NY4dO4bjx4+joaEBzz33HK688kqr++7btw8//fQTDh06hMrKSkRHR2PUqFG47777ECs2NmIYV3P2LE1yEkoKgwKB26+7yPW7+RegowUA4D9zCm650Q+e7h7ulVmzzJPc+vXAjBnKjyWGeYqLgeRkuwyP8SEKC+k7ZAvHj5vDlgkJKMiaDnhbs+1f/xo4cIAeL15MoVo7aMY4AtkelLq6OixatAgFBQUYMGCArH0/+OADHDhwAFOnTsUTTzyBWbNmYePGjZg/fz6qqqrkDoVh7E9tLemf2NJ7x1K8zJYbtieQk9NVE6Wy0rbjiWGejg7bx8b4Di0tdN3aGt6x7Fh8881e5T0xMXCgWdG6uhpYu9a14+kD2QZKTEwMvv32W3zzzTd4+OGHZe376KOP4quvvsLDDz+Mq6++Gg888AD++te/orq6GsuXL5c7FIaxP6WlpKWgVN6+utq8AuvXz7bEUU9ApaIVGGAfTZSoKMolKC+3fWyM71BRAdTV2ZYge+oUsL9TCr5fP+9eXFioy2LpUjLw3BDZBoq/vz9iYuRXJABAbm4u1BfVkufm5iI8PBwFBQWKjskwduXcOXITK1WM3LzZLII0Y4ZHaydIxlLjxVZNlIAAkrwvKbF9XIzvUFZG152fDYWpFronuOkm247l7mRmAlOn0uO6OuCHH1w7nl5w+ezZ3NyMlpYWRPThmtPpdDh58qTph40ZxiE0NNCN0ZbwjjeLs/VGfDwwbBg9vnABOHHCtuOFh1OZtwfoNDBugNFI4mO2NPU8fRrYu5cex8aavYLezG0W4nPLl1NhgJvhchPxm2++gV6vx6V9fCFWrFiBRYsWOW9QjG9SWkqriX79lO1/7hzpMADA4MG+leg5a5apNBPr11O/HqVER5OhU14OJCXZZ3yM91JbS2HByEjlx7DMPbnxRjeu7bcjKSnk5d2wAWhqAlas6Br6cQNc6kHJy8vDokWLMHPmTIwePbrX182bNw8fffSR6eeFF15w4igZn6GggNy6SsMyvug9EZk0yVzeuW2bbZooYpjH1oRbxjeoqKAbbB+yAH1y9qy5gV5MDHD55fYbm7tz661m1d3vv6c2AW6EywyUgoICvPDCC8jKysKzzz7b52tjY2MxePBg0096erqTRsn4DE1NVKaoNLxjMFD+CUBGzpQp9hubJxAYSEYKADQ3Azt32na8oCCzN4ph+qK4mK45pXljS5aYH99wg294T0QSEswGWUsLhXrcCJcYKOXl5Xj66acREhKCN998E8H2aI3NMLZQVmabCuXBg0BNDT0eM8Y+ctuehqVstmWptRIiImhl7IZxccaNaGsjA0XpdVtQAPzyCz2OjgZmz7bf2DyFm282G2U//ECViG6C0w2Uuro6PP3009Dr9fj73//OAm2Me1BURCswpU3GfDm8I5KTQwmzAJCXR6qwSgkNpaRlDvMwfaHT2bawsPSe/OpXtgu9eSKxsYAotNreTmXHboLDDBSdToeCggJ0WAgutbS04JlnnoFOp8Pf/vY3pHJTMMYdaG2lOLTS8E5zs1nmPSyMPCi+iFptP00UjYaOwXooTF+Ul1N4VUlYpqiI8qUAMnCuuMK+Y/MkbrjBrCa7dq3bLAwUVfEsW7YMjY2NJvXX7du3o6Kzf8YNN9yA0NBQLFiwAGvXrsXixYuRmJgIAHj11Vdx/PhxXHXVVSgoKOhSLhwUFISpYl02wziTykqq3lGa27RjB608AMo98aUY9sXMnElNyAAK89x4o/JjhYZSZdS4cb6hJ8PIQxAoRKO0986SJWbNnuuvd1u5d6cQFQVcfTWwbBmpOC9eDFx3natHpcxAWbx4McrKykzPt2zZgi1btgAAZs+ejdDQ0B73O336NABg9erVWL16dZe/JSQksIHCuIaKCuWrMIDDO5YkJJAmyuHDpClz8iSAS5QdKzKSykdraqi6gmEsqa+na1dJeKekhDpwA5Qv5sveE5HrrwfWrCGP8M8/U9K7i6USFBkoSyzjdr3w/PPP4/nnn5e9H8M4FUGgahGFJYrBjZVm/Y+kJNI/8XUuvdT8mWzYACQpNFCCgqiyoLKSDRSmO2IStdgLSg5LlpgVn6+7zvYOyN5AWBhw7bXkATUagdWrzZ2PXQT7TRnfpr6eEu0UVt1knNlodhPPmKG81NGbmDSJyo4BYOtWaDoUaqKIScsse8/0RGkpfUfkhv8uXDBLAoSFAVddZf+xeSrXXmtW5N2zh6QXXAgbKIxvI67CeglL9okgIPOMD3UulkpQkFkTpakJKYU2aKKEh1Myo5jjwzAA5UkUFChbWCxdavaeXHstwDIXZoKDKdQD0MJLzCdzEWygML6N0lUYgJia04ioLaInOTnKXM3eioUmSmb+z8qPExFBCcy2lCwz3odOR7lJcuXty8rMOWMhIcDcuXYfmsczd675c/3lF+DAAZcNhQ0Uxnfp6CAXpsImYwPPrTc/8YXmYnK45BJTT6OEC3kIblZoYPj7A3q925Q9Mm5CRQV51eRW3ixbZm5COW+ecnl8byYwkLo5A8DQocq1oewAGyiM71JVRSJPCpqMqYwd6F/QGcfWas0hDYaw0ERRC0YMOG+DJgrL3jMXU1hoznOSSmUlNbIEKJRxzTX2H5e3MGcO8MQTwOuvA8OHu2wYbKAwvktlJVWJyJ3oACQW70dQWx09GT9eWQ6Lt2PhVRp07mdzMrFcwsNZ9p4x09hIoRq5+SeixgdAmh98zfaOv79bVCSygcL4LkVFisWZMk9bhHd8XfukNxISKNQDILK+CDGVJ5UdJyyMZe8ZM5WVVH0nx0DR6825J0FBFN5h3B5FOigM4/G0tFCCrBKRp8ZGpBRRe/bWwAgEulgrwK2ZNQs4ehQAkHV6PYCB8o9hKXufmWnf8TGeR6dI6NkSP+w7rIZeb32XxKIDmNnSQvslT8LODdLaWrS0Kh4lYwfYQGF8E1HePiND/r7bt0NjoFmxIGs6BvvxZdQrkyah4z8fwq+jDelnNwPt9ypryMay9wxA5cHnzwOhodi3X426emm6Q4lnfzE9PpM4Ec0t8vSKvKV7RUsr8OV3EpNeDSmARoPgXdtx3euTHTuwXuCZlfFNRHl7JcaFhbT92QGXwvWR2k7q6ylsFRVFqrbuQHAwCjOmIOv0evi3NwG7d1O/Irmw7D0D0HeguhqIjTV5TlQqAUF9pJGpjAZklJAWT4dfAKozRyLYT3o+lFYLjBlmtGXULkerBdACCIIKzS1S9+qcG+sUCi3aATZQGN9DEGg1rqTEsKwMOHYMAFATnoaamAEA3GDyqqujEMjo0fTezp2j5odu4G04N2BWZ3gHVEWhxEAJCqIeISx779uIie0W4mpBgcDt1xl63+foUaCVEtr9xo7CLTdqAfTxei9kzDAj9koMh5kwGMiDEuG6JopsoDC+R10drcSU5J9s2mR6mJ95qXtI29fUkHDV5MkUAikpISnv06eBrCxlXiI7Up44DA3BcQhrriTRp6oq+UaGSkXv48IFIDvbMQNl3J/iYvkhwh07zI8nTLDveDyEzDQBmWkyjbLiYmoWOM814R2Aq3gYX6SykkoV5XpQBMEU3hGgwpl0N6jeEV3eU6ea8zNSU4ErryQPSn4+0OY6Fy0AQKVGfuZl9Nho7GLkySI8nPQvWPbeN2ltpZumnOodQQB2drZa0GiAsWMdMzbGIbCBwvgepaV0I5cb/jh5kvYFUJ44HE0hcQ4YnAwqKijvZPp0YMyYru8nJoZayA8bBpw963INEZOBAlCHYyWaKCx779tUVND/X47n8+xZ2g8gwTHWPvEoOMTD+Ba2NBmzSI49N8DF0vZlZeQZmTmT5Kh7CjWFhlKZb3AwsHcvGS0uyt9oCEtERfwl6Fd+lBJ5T58GBsosObaUvXeXJGDGeZSXy09stwzvTJxo/zHZgtFI70f8ffHj3p6Lxn1QEHlLvRg2UBjfQpS3l9vYT68Htm6lx/7+KMqYBHTYfXTSKCmhSWrWLGDIkL5f6+9P4Z/QUGD7djJqXHRzPzvwMjJQAEqWlWugAGbZ+xEj7Do2xs0RBFN5sSzE8I5KRYrPzqCxkeYZS6NCHIMlKhWFncQftbrr78BAun4DAsw//v70IwjAnj2UfxYlTdPFE2EDhfEtKivpJi1X3n7PHnOYZOJEdGiDXWOgFBXR5DVrlvQbvFpN1T2hocCWLS6r8CnMmIIJu9+nHJItW4B7FWiiWMres7vedxATweX0zSopoZwlgGTbnXEjNxjoGh0yhL6folHh59f7j0bT83ZrCfhtbbToCA93aUM/R8IGCuNbFBYqEwqzTOy89FKgwG4jkoYgUGgqKIjOn5Ul/xiDB1Ni8KZNLqnw6fAPpqaKmzaRgaFEEyUsjIzMyko2UHyJykqgqYmqSqQiek8A54V3SkvJQ3nppY7vlJybS4uN0lIgJcWx53IRnCTL+A7Nzcrk7evrKYcDAKKjnd/d01K3ZfZsZcaJSEqKayt8Zs0yP96wQf7+lrL3jO9QUkL/ezll/c7OP2lrI42W0aMdb5wAdI4xY+icrd6pyc8GCuM76HTym4wBwLZt5i6o06c7151qNAJnzpBre84cIC3N9mPGxJCRMmwYGT7OrPAZNgyIjaXH+/dTibRcRNl7oxsI5DGOp72dPJ9yFhZVVcCpU/Q4M1N+zpkSiovpXEpyq5QycCAwaBCFlbwQNlAY30FJFQDQdaU/Y4Zdh9QnBgMZJ3FxZJzIcW9bIySEvBnjxpFXqarKfsfuC7Wa3N8AGRibN8s/RkQE5STU1Nh3bIx7IvbNkmOgWIZ3nCHO1thozvVypjCiRkPnDAryyuuBDRTGNxCrAOS6XktKuq7EnNVNVzROEhPJOHHEClCs8Jk+HWhoIJVWZ3CpRYn2+vXyNVGCg82y94z3U1lJHkw5uWPOVo8tKQFyclxT9puYSGHnsjKv8yqygcL4BrW15CWQUwUAdNE+cZr3pKODklhTU8k4iXOgIJy46ps9mx6fPev4SS4pyVweXVhI71UOlrL3jPdz/ry8qrv6euDIEXqckKCsY7kcxLYZI0e6rvXFiBFkqHQKSXoLbKAwvoFYBSDHg2Ipy65Wk6fB0ej1dMPOzCSjITra8ecEqMLnyispP+X0aXPOjaOwTJZdv17+/ix77xvU11NoVs7CYs8es5E9caJjjQaDgcreR4xwbRPL0FBKmG1qcn1rCzvCBgrjG4jy9nImq2PHzDLZubmONxba280Kq5dfLt/bYytihU9GBo3DkRPd5Mlml/2WLZDXZhUse+8rKNG8cWb1TlkZeQQvucSx55HCoEFelzDLBgrj/SiVt7cM78x0cGPAtjbKOcnJIeNEiRS/PRB7+AwdSpUyDQ2OOU9IiPnm0dhIq145WMreM95LaSktKqSKCra0AHl59Dg6mm7YjqK9nTwWziortoaYMBsYSCFtL4ANFMb70enogpVTBSCqNAKUIe/IRLuWFsr9GDaMQh+unuwsK3zKyhxX4WNrmCcoiAxPxjsRFxZhYdL32b/fHPYTu3s7iqIi0iRyZlmxNZKSvCphlg0UxvuprKRJKyBA+j67d1OlCEDqp3L2lUNzM03CubnkpQkKcsx55CJW+MyY4bgKH0tNlH375JdJhodTfoKLOzUzDqKqir4TckKdzlKPdVVZsRRGjKDkYC9ImGUDhfF+CgvlGxjOCO80NtLYRo0iQ0BufyBHo1bT2ObMcUyFj0Zj/mwtE5KlEhZGxhOHebyTigp5fbP0enOoMCSEDGBH4cqyYmt4UcIsGyiMd6NE3r6mhlzFAK3whw61/7jq62mSGzcOmDZNWX8gZzFoEHDVVZSfkp9v3wofS02UDRvkaaKw7L13I3dhceiQ2es5bpzjPBtVVeS9y811XVmxNQYOpB8PT5hlA4Xxbior5cvbb9li9hTMmGH/OHZdHd1UJ0ygZnlarX2P7wiSk8lIycoiI8Ve5b3JyUB2Nj0uKCAvjRxY9t47aWqSv7BwhnqsZVmxGJ50R/z8yIsSEODRCbNsoDDeTXk53bzk9M+xDDXYO7xTU0NG06RJ9ONJbdKjoyncM2CAfXNSbEmWZdl770TuwsJgMBso/v4UmnQEYlmxI7yq9iYpicJcpaUea8CzgcJ4L4JAq3I5GgqFhVTuC9CN2J4x5qoqao43ZYrjKwwcRUgIaT60tdkv1DNlijnEtXmzPE0Ulr33TsQqFKkG/MmT5JkEyDhxRFK7u5UVS2HkSCA+nj5PD8QDZ0iGkUhtLZUYy3ETWybHWuZH2EpzMxkn06eT69UTjRORjAyqErCXURASYnbJNzTI00Rh2Xvvw2iksJ2c8mJniLMVF7tfWbE1QkOBsWMpId8DE2Y9eJZkGCtUVpJhIHW1YzCYwzsaDZXZ2ovycqB/f4pdu2tinVQCAqiCoa5OfqO/3rAM81h2j5YCy957F9XV8sqLBcFsoGg0dEO2N42NdN26Y1mxNQYN8tiEWTZQGO9Frrz94cNmUbLRo+V5Xvqio4PCFkOGeLbnxJKsLLqB2CsBb/hwcy+TvXvl5ZSw7L13IS4sgoMlvTyy+qy5JcWwYfJCulJx57Jia/j50Xzm728Og3kIXjJbMsxF6PWUf6I0vGPPzsU6HcWB09Ptd0xXExlJKzPxxmArF2uibNkifV+WvfcuiotleSlSC34xP3FE9Y4nlBVbIzmZFgEXLnhUwiwbKBej15OLkfFsRHl7qVUAra1mN3FICCWx2gNBoHEMGeI4NVpXMXAgvSdRe8JWLHN+fv5ZXviIZe+9g9ZWCkXIUI9NLei8blUq+xsonlJWLIXcXI9LmGUD5WIuXJBfScC4H5WVlBQm1SjYsYMmR6BrVYmt1NWRkZSVZZ/juROJiZQwa68JLyUFGDyYHsvVRGHZe+9AZnlxeEMJIms6DdPBg+3fcdyTyoqtERZGCfoelDDLBsrFGI10U7GX65pxDYWF8vraOEravrKSypWjoux3THdBpSLPkMFgP4PeMlnW8n9iDZa99w4qKuj7JFG8MKPIIrxj7+odTywrtsbgwZSs7yEJsx6WjuwkamvJck5OdvVIGCU0NdH/T2p4p6qKZLIBcoEOGWKfcbS2Um6FI1u+u5r0dPKkVFbSSrMPWlqBL7/rW9dC2zYNN6g+hFowoHHDLqyIeUBi3F8DrZCFMXFFyMzMlPEGGLdBEKi8WGJyLACkF1uUF9s7vOOJZcXW8POjKqeSElqI26sQwEGwB6Un9HpyL9urhJJxLnJVKDdvNieOzZxpv0S4igrK+rdy4/ZotFoSbqur6zX5TlwMC4IKzS19/9QZw1Haj5q8hTaWI7C0wOo+pn1bA7B3a71HJQEyFoiVWBJvmkFNOsRXnaAnoqFsLzy5rNgayckeozDrZZ+8HdHpqNTR3jFNxqGc3VmKfZ+fhL5xAHBUwtdbEHDV9xsR2fl0RccsNFpZ5QPkDegTg4E8KEOGeJacvRIyM6lEuKbGXCpswZhhRuw9rJYcBbqQORHJ5XkAgAHlv+BIUobVfVpayQDStwu9joNxcyoqyPsp0aBPKbTovWPv8E5JCSWVemJZsRRGjiRvlZhj46awgdITajVdKOXlbKB4GPuW5qOuxghAC0i4IUbXnDUl2ZXHDkGFNhlokX6+XkPlVVWU9Z+RIf1gnkpYGDX827GjR8MgM01AZppB+vEmjwE67z3D63di+HW3WN3ly+80aG4BeT0rK9lA8UQuXJClW5RS4CD1WG8oK7aGmDC7Zg3l2rhpN3UO8fSEKJ9dXOzqkTAy0TeTmqgKAoKDrP8MKt1m2rdg4ExJ+4g/EeECxgzrxUVaXU03bTmJup7MgAH0Xu1RRRMXR4l8APVFkpv4yrL3nkdbG3D+vPSciIYGxJdS3lhjaLz9FgLeVFZsjUGD6Lp144RZ9qD0RmQk/eNaWnznJuMNGMhgCAoCbr9Owqr9Z7OGwriHxmNclIyVfm/U15OapXiT9QX69aOEwpMn7aPkOX68uWnjrl3A1VdL20+tNsveu+mqkOmBigoqTkhLk/b6PXugFuhaL8qYhCH28nR4U1mxNbRa8qKUlMjL2XMi7EHpjYgIumDKy109EkYORhkGxoULdDMDqPzOXqXAFRVknHj7CswSlYo8RoJgn54448ebH+/aJX0/tYpl7z2R0lJqCSGxvBg7zfknRemT7DMGbywrtkZKChljJSVumTDLBkpv+PnRP6y01NUjYaSi1wMdMgwUyxuf5Q3RFtra6GbtzaXFvZGaShUC9tAQysigkm8AOHJERuhIxbL3nobc7sWtrcD+/QCA5sAo6Ppl22cc3lhWLIWRI+lac8PFOBsofREeTheOwQ5uf8bx6HSAIGMV4AgDRdQDSUmxz/E8CT8/KjluarL9mlGpzP8TgwHYt0/6vix771lUVdG1K1Xefv9+k5euIGUCoLLDbcyby4qtER5O77u+3u06grOB0heRkZTsyO5iz6CiApAqXVNbC5zo1FBISbGPQWE00kR3ySW+N8mJiCXH9uhnZSm8ZeHStwrL3nsW5eWyuhebemYBOJ9ip/BOSQlJAnhrWbE13FRhlg2UvggKIneiG7q+mB4oLJReFrhnjznmai/vSVUV3Zx9obS4N4KDqS19VZXtxxoyxOz2379fupw+y957FufPA4GB0l6r1wN79wIA2v1DUNpvuO3nF8uKR4703rJia2i1pDCr1ZInxU1gA8UagYEU5mHcG1G3RuoE44jwTlUVJYr6SoJdb/TvT5U8tk50Gg1VGQBUTSe2I5CynyDwwsITaGigZHWpCepHjtC1DqAkdSyMGolJtb1hMJAh6wtlxdYQE2YvXHCbhFk2UKwRGUkTnRtZlUwPVFTQ/0gt4Svd2grk5dHjqCj7JLQ2NpJhMmCA7cfydGJjyUixh4FgGeaRU80TGkoLCzeZaJleKCuj61ZqgqxFeMcu1TtlZSSR7wtlxVIYOZJ0iNzEuGcDxRphYXQBuck/jOmF8nLpN6MDB8zJYOPHSzNqpJw/I4MuboY8SWo1GYO2MHKkWc9k1y7p/+OICJK8r6mx7fyMYykpoe+JlGvQYDDnIvn7ozR5tG3nFsuKR41ir6dIeDh5Ld0kYZYNFGuIFw+rU7ovRiNVbUhdhVkmXNojvKPXU0ghO9t3Y9gXk5xMolu2lhwHBpLkOEDGRn6+tP2CgynxkvNQ3Jf2dso/kVq9c/IkJbcDwMiRMGgl5q30hlhW7IuSAH0xeDB9LvbII7MRNlCkEBlJ7mI3sCiZHqipoaoRKTLZBoMpyQ5BQcBwOyTZVVQACQm+WwHQExoNJcu2tNhecjxunPmx1DCP2K6CFxbuS3k5GRxSDZSddmwO6MtlxdYQE2b79XP1SNhAkYSoKmsPASrG/lRWkqtWSpnisWOUmAfQ5CRVubI3jEY63iWX2H4sbyMjgyY5W70Y48aZPVNy8lDCw82y94z7UVYmXT1WEMwGilpNN1Bb8PWyYmuICbMubhfBBooU/P3pQiorc/VImJ64cIFWQVLCK/YO79TUUKKtL5cW90ZgIBlutbV0g1FKZCSFzwDSaSgpkbZfRATL3rsrRiNw9qz0sOz58+b5d9gw6fv1BJcVW0elogR1S++lC2ADRSohIVwV4I60t9MqWUqjK0Ewr8A1GvKg2IpORzFsN2y05RZkZdFnI+YOKEVJbx5/f5a9d1fkqsdaVO/YFN7hsmLpBAYC0dEuHQIbKFKJjKQLiqsC3AudjlbJUvJPzp83h+mGDbO9625zM13Evta7Qw5iGbetRoLScmOWvXdPysspP0mBeqxNns/yci4r9iDYQJFKSIhZDIxxHyoraZUsJVZq7/BOeTlVqiQk2H4sb2bQIMozaG5WfoykJHO+wIkT0hcKLHvvnpw/DwQESHttaanZyBw8mNSalSAIVD47fDiXFXsIbKBIRaWiSdbNehX4PAUFtEqWguXK29bYql5PP0OGcBzbGomJQHq67ca9aFQKArUqkALL3rsfDQ1kdCip3rH0pMmlvp4M1rQ05cdgnAobKHKIjKTaeVtWgoz9aGykm56U/I+KCkrKA0jt1VZBNZ2OWpSnp9t2HF9AraaSY9GoU4ql12v3bmn7sOy9+yEqc0vN27JX/olOR9erVMOIcTlsoMhBrArgyc49qKyk1ZiUjH7LG5qt4R1BoO9BTo7Ly/A8hvR0Muhs8WQMHGhO2svLk65Sy7L37kVJCXkdpajHVlebu46np1OoTwkGA/30769sf8YlsIEiB42GfrP4k3tQXk7Ggvh/6Qt7uYkBqkiJiKAKFUYa/v6UmFhXp9xQUKvNobn2dmpZIAWWvXcf2tvJWHR2eKe6mozblBTlx2CcDhsocgkLowSvjg5Xj8S3MRppopNSidPQQF1QAUpotTUGLZYWs6tYHllZdJOwxVCw9H5Z3rz6gmXv3YeKCteox9bUUGhXar4a4xawgSKXyEiyxln8ybWIK2IpE93eveZV+/jxtiW1trSQKByXFssnPJwMO1uuneHDzTeZvXulyeiz7L37UFoqXT22sRE4fJge9+sHZGYqO2dbG3lZle7PuAzZBkpzczM+/fRT/P73v8fcuXMxbdo0rFmzRvL+DQ0NeOutt3DNNddg9uzZeOKJJ3Dy5Em5w3AdgYEU++Y8FNdSWUnGgpQVkWX1jq3hnfJyKndNTLTtOL7KoEH0P1Na9qvVUvdZgDxjx45J249l712PXPXYPXvMBujEicoXFlVVlP/EcgAeh2wDpa6uDosWLUJBQQEGDBgga1+j0Yhnn30WP//8M66//no89NBDqKmpwRNPPIEiTyrfDQ6m8ALjOoqLaVVkbdJqbwf276fH4eFmyXQlGAx0vJwcaQl+THfi46ktgC0GvhLRNpa9dz2uUo+tryf9FG4K6HHInmVjYmLw7bff4ptvvsHDDz8sa99NmzbhyJEjeO6553DPPffg+uuvx3vvvQe1Wo2FCxfKHYrriIykCbauztUj8U3a28lAkaIee/Cgudpj7FhpCbW9UVlJ8thcWqwclYq0YwRBuTdj9Gjz/3HXLml9flj23vXIUY9tazMvLCIiyMBQQmMj5amx9olHIttA8ff3R4xCJb/NmzcjOjoa06ZNM22LjIzEzJkzsW3bNrR7ivs1NJTcyxzmcQ2VlWQcStFRsFd4RxAo5yUnh8J8jHLEEJnS7uChoWap8vJySlqXAsveuxY56rH795sN2AkTlC8sdDogOVm5+izjUpzqpz516hQGDhwI9UXu8SFDhqC1tbXXMI9Op8PJkydNPwWunmTUarpgpHZVZexLZSUl2lnTIDEYzAaKvz+Qm6v8nPX1tJJjHQXb0WrJwGhsVF5yrKR5IMveuw5XqMcajeSJGTSI1Z49FKcG5aqrqzFixIhu20WPTFVVFfr3cANYsWIFFi1a5OjhySMiglZjbW3SVwWMfTh/XpoX49Qpcxhu1Cjb/k8VFdRg0MXdPb2GzExa1VZVKVP1HT8eWLCAHu/aBUy/w/o+YWFk3FZW2t4okpGHqB7br5/113Z0mIUVg4OpcksJYjkza594LE41UNra2uDfw6pX3NbW1tbjfvPmzcPkyZNNzwsKCvDaa685ZpBSiYykqoCKCnMTM8bxNDTQZy4l/8RezQHb2shrpjQOznQnJIQSlrdvV2agxMWRN+vMGeDMGQSPrkSzxsrNz1L2nktOnYsc9djDh6kxK0B5Y1JKknuiqoq8pmyMeixODfEEBAT0mGcibgvoZYUbGxuLwYMHm37S3SFJUaslS7+szNUj8S1EeXtrk44gmF3/ajVNdEopL6dVWHKy8mMw3Rk4kP6P9fXK9rcwOlMKJYq2sey982lvJ6+nkuodpeEdsecTqz17NE71oERHR6OqqqrbdnGb0uRblyFOdqNHc9mpsxANQitJc+F1RWZhrpwc6Y3JLsZgoMqDnBzbKoCY7sTF0Q3k2DFl/5/x44EvvwQAJBfuRF7mPOv7RESQ0GJNDSdOOpCzO0uxb2k+9K0ddA01R0kr8xWMuG7zbgQD6ND4Y/mFsej4rufrrqWvVkxVVRROUtq7h3ELnGqgDBw4EIcOHYLRaOySKHv8+HEEBgYi1dNCJZGRlCVeXU3lp4xjMRop70eC0FNKgZ3CO9XVdCPLyFB+DKZ3srOB48eV5XJlZNBNqKIC8aWH4d/eCASF9L1PcDCVqFdWsoHiQPYtzUfdhSaLLVpAQiPrfrpTCG6pBgCUJIxCfUcwYKWrSI8RoLo6yl3hZp4ejcOW/TqdDgUFBeiw6Fkzffp0VFdXY8uWLaZttbW12LhxIyZNmtRjfopbExJCPT643Ng5VFfTj4T8k5QCCzexLQZKVRXpdkjRbmDkI4bOlFxDKpXpf6sWDEi9sEfaPix773D0rTTvq1RAcKARwf4dCA4SrP4MKN1uOsaFrIlWXx8RLmDMsIvCdc3NlETvDqkAjE0o8qAsW7YMjY2NptDM9u3bUdGpaXDDDTcgNDQUCxYswNq1a7F48WIkdsqCz5gxA0uXLsUbb7yB8+fPIyIiAt999x2MRiPuvfdeO70l2/ju3+fRUp4J4ahEd75hELSnCzDmnmhkjmf5c4ciyttbMRaCm6sQqztFTzIylEtci7kuXFrsODQaKjlevZpCAXLDaBMmACtXAgDSS3aidMgM6/tYyt572qLIwwgK1+L2YafIW2XNyBcEYPUv9FitxsSHxmBimIReSxej05HOjpSKIcatUWSgLF68GGUWyaFbtmwxeUVmz56N0F4SGDUaDf72t7/hP//5D5YtW4a2tjZkZ2fjueeeQ5o7KP39738Y+82/EFhfiW+v+KfE2nkt0A7sXXySDRRHU1IiKY6dVmKnFu0VFeQ94fCdY8nIoM9YpyMpfDnk5FDIr6EBKRf2Qm3Qw6pjOCKCwjw6HecoOBqjkSpypITvCwrMOWZDh0rv2WOJIJAHZfBgzgv0AhQZKEuWLLH6mueffx7PP/98t+1hYWF49tln8eyzzyo5tWP58EMkF1LlR2LbedRFZVjdpaUVEAQV9M0SAqyMctragKIiSeGd9GI75J+0t9NkxyJPjicoiAzBzZtp1Svn89ZogDFjgI0b4d/RgvjSgwBG9r2Ppew9GyiOpaNDem6RPXrv1NeTh4y1T7wC7p5kyc03A9u2AQDm+m8BrrNu9X/5nQbNLZDW9p1Rjk5HiW9WPG1+7c1IqjhIT2JjlZcZVlTQzcvTErc9lQEDgAMH6H8stRxVZPx4YONGAGJytBUDBTDL3vcgHMnYEaMBiIqS9lp7qMfqdGTsyv0OMW4J+8AsueEG8+pt2zZpTchEDB20WmAcQ3k5fb5WRJuSivdCY+z8P0yYoMz7IbqlL7mEO6A6i+hoMlKUNPMbNQodGsolSS7cJU3jhGXvnYNRkBaqKSszd4gfNEhZhZXBQP97zhnzGthAsSQpySzoVVIivQkZQBcGd0p1HAUFtOq1gl2qd6qr6YbJpcXOZfBgMghbWuTtFxiI8qRcAKAS1dOnre/TmbeiuGEhIx0pic/2CO9UV5O3hsM7XgMbKBdz1VXmx9u39/66ixHA5caOor6ejD9r+Sd6PZKK9wIA2v1DyAOihKoqulmyRLZzEUNqCq6j4jSLkMBOCaqy4k1TziKEkY7ofJaaqGqP8E5NDXlfuNu418AGysVceaWyMI9KRS5KOWEhRhqivL01V/GRI/DXNwMASlLHKQvPNDaSp4bdxM5HrSajsr1ddri0JG0cBHRet1K7G8fEAGfPcpjHERg7c/LUEkKsOh2J9QGUY6akpURbG13vrH3iVbCBcjGi/DZAYk5iXNQaajW5i8XuuYz9EEsPra3GLFZhXVbUcigvp9CO3HJXxj6kp9NnLzNc2hoUhYrYbHpSVCRNiC0ykq7X4mL542T6xiDmAUkwUDoLEwAAU6YoO59ORxVgSjWPGLeEDZSeyM01P7a8ePpCpaKVGId57IvBQPkn1nq1GI2mFu0dai1KU0bJP5deT8fJzubSYlcREEDaJrW1sr2R51MschekeFHUakq6Pn2aPZ/2xGiU5wGzh4HS0EDXLSe1exVsoPTEsGHm1fr27dInL7WakmsZ+yH2OrJmoJw5Q7kjAC4k5KJDq0CavrKSVmDuIBroy/TvT8mOtbWyditIlpmHAlApelERfccY+1BdLb1bdFkZcKpT9TkzU1mCa2Mj5YuxJIDXwQZKT4SFmRMsS0spTi2FyEha7bf21WaTkUVBgSR5e8sbUkGygioAQSB3f06O1VJmxsFERJCRotPJ2q0+PAV1kZ03qRMnpBk4YWF0gysqkj9OpmfKy6Uv6iwLEaZOVXa+ykoybLj5o9fBBkpvWLoapYZ5IiJoUuTSRfvQ3k6rKymiS50ufQEqFCaPk3+umhoqLVYq7MbYl8xMCrPp5Sk0m3KPBAHYI6F5IECr71OnWGzRXhQUSEo9AQBYNI5VFN4xGuk7MnAgh2W9EDZQemPiRPlhHq2WJrnSUseOzVcoKSFjz9rK6MIFav4GQNcvGy1B0fLPpdPRJGctlMQ4h6QkMhhramTt1iU5Wmo1T2wshRo4f8x2GhvpelRJuLWUlJiLEAYOVJbgWlNDC0PWPvFK2EDpjchIykUBaPI6c0bafmFhpK0gNQbL9I74mVsLuVjciBRV7zQ3U3+WgQPl78s4hoAA+n/INFCq4gaZpdXz8qSFWwMDyVvXaeQyNlBeTrpFUvRPtm41P1Ya3qmuJgVi1izySthA6YvJk82PpYZ5IiNpNd6ZsMkopL6eVldSOglbGijpCvJPqqqoPTuXKLoX6elkOLa1Sd9HpQbGdYb42tupv48UIiMpzCPnXEx35BQJWM6plnOtVPR6Cuuw4rPXwgZKX1iGeaSKtgUH04qc81Bso6iI8nmsqcfW1ppFnlJS0BAhU+RJEKjvzqBB3J7d3UhIIG0Lucb+BAVhnuhoOo8U/RSmZ/R6WlRIyRkrKDB7rIYMIf0puVRV0X7ckdpr4Rm5LyIigOHD6XFFhbQeHwC5p1lCWzlGI3DyJBl71oyGPXvMhqOS3juiQi3HsN0PjYYMx/p6efsNH27u27Rnj7TkV62WvkdShRmZ7lRUmHNCrGGP8E5dHX0//P2V7c+4PWygWENpmKe0lCW0lVJRQStZmeEdRT08qqpIPyFaQWIt43hSU4GQEHnXklYLjBxJjxsazB42a7D0vW2UlpJAmzWDQRDMc6larSy809xMuUOsWeTVsIFiDSXVPOHhZN1zVYAyRC0Za9onra2UCAmQgSE3ydVopDyFAQMUDZNxArGx5MKXK6SmJMwTGUkhQ5a+l4/RSN4nKcmqZ8+aQ2mXXGJOapaDTkffi3795O/LeAxsoFgjPBwYMYIeV1QA+fnW99FoKHmL49nyaW+n8I4UN/GBA/R6gBIj5eaQ1NRwe3Z3R6Uiw7OlRZ4c/Zgx5u/Dzp3S9lWrafWfn8/S93KpribBNCn5J7aGdwSBPCicN+b18H9XCkrCPOHhlIciU2jK5ykuptWRFFVISzlzJfknNTUkCBYSIn9fxnmkpJi9klIJDTXLBJSXk1dOCrGx9B1k6Xt5lJeT0WDtWro4vDNpkvxz1dXR94EXFl4PGyhSmDCBvCKA9GqeyEi6AcrsyurznDlDq2Zr2icGA7B3Lz0OCjInM0tFr6f/Y2amsnEyziMigkpJ5VbzWBqtUnvzsPS9MgoKpCWrnjplrnAcMUKZMGJVFV23Urw1jEfDBooULMM8Oh2FIKwREEDhh7Iyx47NmxC1T6R4T44dowRIABg9Wn7/nOpqWi0nyyxLZlxDZiYZpXLk6C0NlM5O15Jg6Xt5iOqxUgwGSw+0kvBORwf9X7glhU/ABopULPtEWDa46ovgYArzcDxbGoWF5L6Vkn9ia3intpZLFD2JlBTKF5KjLBsXZ76RnT4t3ZvJ0vfyKC83h136wmg0Gyh+fsqq7mpqaAHD4R2fgA0UqUyYQBcVQAaKFCn7yEhyZ8psG++TGI20apWifSII5soMjYY8KHJobSXDhNuzew5BQVRtJTc3RIkXRZS+l5q34uuUlFBYVgyD98bx4+Yw3ciRyuTpa2ooaTowUP6+jMfBBopUQkO7hnlOnZK2T2Mjr8SkUFFBE50U7ZPz581x7GHD5E90VVVAfDxL23saGRl0ExQrt6SgpNwYYOl7qej1dD06Q5ytrY0Wienp8vdlPBI2UORgGeaRUs2jUtEFxQl31ikooAnImvYJ0DW8o8RN3NBA4R1rKz7GvUhMJANWjhclI8OslXH4sHQRNlH6Xk5vGV9EVI+1ln9iMJhD4/7+5n5JctDpaFGRmCh/X8YjYQNFDuPHKwvzFBVJ66rqq7S1UeKx1Kx8SwNF7kTX2EgeFw7veB5aLRmWcsqNVSpzmMdgAPbtk34ugKXvrVFWRl4Ua7lcR46Y/2+jR0tbiFwMLyx8DjZQ5BAaCuTm0uOqKuDECev7RESwqqw1Skqka59UVJhvGgMGSAsJWaLTUeWOlHMx7kdaGlXINTdL38cyD0VOmCcmhr5rLH3fM0YjqcJK0RGyNbzT0MALCx+EDRS5yK3m8fOjlRuXG/fO6dOUGCt6p/rClt47RiN5awYMoJU143n060dufjlhnksuMecp7dsnXTyRpe/7pqaGDH5rns+ODmDHDnocGEgqv3LR6cg44YWFT8EGilzGjesa5hEkhHnCwmilISUk5GvU1VGSndSJx5byYrGEmUsUPRe1Ghg8mLwaUsv3NRpg7Fh63NICHDok/Vwsfd87ZWVAU5N1D8rBg2bNorFj5VfgGAxkVPLCwudgA0UuoaHAqFH0uLoaceXHrO8TGUkrPp3OoUPzSIqKpGufNDQAR4/S44QE+Z1Mq6spaVKJeiXjPqSkkNEv3vSkoDTMI0rfy1Wx9QVE9VhrRoOt4Z3aWppDeWHhc7CBogSL3jxp5yVU8wQH08qN81C6YjRSHk9IiLSV0d69Zi/UhAnyVlMdHbQvK1B6PmKDRzlGw8iR5sTX3bulezNZ+r5nmpokqceqDXqzQRgcbF7cyaG6GujfX5luCuPRsIGiBIswT+q57VAZJUhiBwSw8NPFlJcDpaXSE11tCe/U1FDpKEvbez4qFbn79XrphkZQkFnHqLqa8p6kwtL33Skrk6Qem1iyj4wZgK5ZucrNej39vzMylI2T8WjYQFFCSIhpJRDcUo14ncQwT2mpPLe0tyNqnwQFWX9tWxtw4AA9Dg8HsrPlnaumhm5qrEDpHaSkUFhQjkqzUtG22FgypjnR3YxE9dj0s1vMT5SEd6qqqGUBLyx8EjZQlGJRzZNZuLWPF3YSHk7N8DjMQ7S2kvZJVJS01x86ZNaSGTdOnhZCWxu9nhUovYfQUArXyQnzjB1rDgtK7W4MsPT9xUhUj9V0tCK5sNMQtFTiloPYM0tuM1DGK2ADRSnjxpkumswiCWEetZomxwsXnDA4D6CkhG4u0dHSXm9LeEeUtmcFSu9CdPt3dEh7fVQUVQABlFMi51qMjKRqHpa+l6wem3phL7QdnYuKiRPlGxnNzZS3IjcZnvEa2EBRSnCwqUldcGsN4sqPWt8nIoJWHlJ1GLyZM2eka58YDOZGbwEBZrE8qdTX0ypMyrkYz0EU3JOjiWKLaBtL3xMS1WOzCm0M7+h0tKgQWxUwPgcbKLZgWc1zTkKYJzKSVh5ioztfpbaWFDqlJseePGmWyR45kowUqYirMFag9D4CAqizbU2N9H2UGiiicevr0veCIEk91k/fjLQLnYuKiAhq6in3PM3NtLCw1t2c8Vr4P28LY8eiQ0OriNTzv1jP8vf3p5WHryfbFRWRV0OqHonljURueEdchcmVxGc8g/R0Ch1IFVJLSTHraZw4IS/JNjaWDBRfTnQX9ZyshHeSC3fDz9DZdXrSJPn9c0RtJF5Y+DRsoNhCcDAupJBsc1BrrVlErC9CQmiS81VlSrnaJ4Jgzj9Rq82KoFIQBNKf4VWY95KQQCEAOSrNopFrNAJ79kjfT6wa8mXp+/JySeqx6efsUL2TkSFNwJHxWnjWtpGiTIvePNskiLZFRgKVlfLc0t5EWZk87ZOiIno9QD1V5KjA1teT0BYrUHovGg0lvsox+C29cFu29P66ixGl70+f9t0FRmGhdfXYxkYkFlPX6ObgGGDIEHnn6OggbzSLKvo8nDVoIyWp49Ch8Sd35o4dwIMP9u3ODAmhRLuKCukVLN7E+fNUsilF+wToGt4ZN07euXQ6unlZa2bGeDapqYCKkldbWoEvv7MSThCG4JqwRIQ1lAIHD2LlZ6VoiJBmxGo1WRhTW4XMiVW+FzZsaiLvkbXradcuaIxUWVWYMQXZcsM7NTX02fLCwudhD4qNdGiDUJTUGXaoqwOOHOl7B5WKEu58UTq7tZVKNaVqnwC25Z90dJA4G+PdxMZCG0BTmSCo0Nxi5adVg2P9rzLtnnFkjfV9On/qGjXYey7cN6/f8nJJ6rGWvXcKsxSEd6qrWVSRAcAGSs/IdN+eTbO4CKWEeaKjKRPe1xqQFReTV0Oq56iqiiTGAYpHJyRIP5fRyNL2voJKhTGX90NEQBuCgwRJP0U5l8GgIV2Owed+Qpi2xeo+KhXNC3rBzzel76Wox9bXU/diAA3BcdDFyVR8bm2lEBJL2zPgEE93goPJchfLUyVQlDQOHZoA+BnagF9+AR56qO+LOCqKQjx5ecCll/pOC/HTp+lzkapHYmnsWcqUS8FopAZjEv+HjGeTefkgZFbtpxCqpMTKEKBsKrBhA/zbm3BLxCbg8sv73OPL7zRobgHloojS975iAIvqsda8J7+YqxnPpU2TP7fpdCSqKGcxwngt7EG5mLg4ICmJElkl0uEXiJLUzjBPQwPJslsjKYmqWXxFWbamhqTCpcbtjUZg9Wrzc4vWApLhVZjvEBFBJcc6nfR9rjKHebB6tXTPqUrle9L3FRUUerGWf2KxqDiTPk3+eRobqepObt4K45WwgXIxajU1omttlVW6WJhpEebZvt36DmFh5gZ4ckokPRW52if795urd0aMkC93rVGTEcj4Dv370+pdauhl4EBzjtKZM5QfJZWoKN+SvhfVY/sSSaypMeXgNYQloipKZv5XQwP17GFpe6YTNlB6Ii2N8hdklAJfSB1jvnh37JDWHyQ1lSa5s2cVDtRDMBhIDTY0VLrLd+VK8+Orr5Z/Tj8/bjDmayQnk+EgVXxNpQKuvNL83NJjZ43oaN+Rvq+vJ8PDWujsl19Mi62CzKnKwjupqb5Z3cj0CBsoPRESQisrGUmsBr9As4hYQwNw+LD1nQID6Sa6fz+5jL0VudonxcXkWQJIhGvMGOnnEt30Gk6v8jmCg8mLIqc3z7RpZtGxrVvpZiwFPz+6AXv74gKgXLmKCus9cSyqdwqypss7h8FAc+DAgb6Tk8dYhWfx3sjKoptkW5v03i9TpphjsNu2Ud8YayQl0SR36hQwdKjy8bozndonZyuCsO+w2mqvxNE7VqOz5yz2p1+DEyv7bkpmSUtn81RWjvVRMjLoutXrpXnQAgKAyy4Dvv+e9lm/HvjVr6SdKyaGvtsNDRSy9UZKSsh7kpjY9zWl0wHHjtHj1FTURaUDrb2/vBvV1fR5cniHsYBn8d5ITKQfGcmyGD3aXLsvNcyj1dLktn8/CSF5Gy0tZHxFR2PfYTXq6vvWmdDXtyAzfz0AQK8JwJG02ZI1KppbVBBAqy9tENvePklSEnnq5JTwX3GF+fGaNdJzwrxd+r6jA9i3jxZp1sI7lnl3U6bI94JUV5OoolQBR8YnYAOlNzQakmhubJSe3R8QYA7zNDaa9ACsEh9PZYtSevl4GsXFNPlER5s8JypV71oTlxT9BP+OFgDA+QGXwi8iVLK2RXCgEcH+HYiID8SYmwa68E0zLkOrpTCB1FANQLkrubn0uKzMHF60hlpN13x+vndK3+fn04+Uhn0W4R3ZvXeam2lhl5kpbz/G6+FlZl+kpZlXSVLVT6dMMV+s27aRV8UaGg2t+g4epNwXb0oSE7VPLMoGgwKB26/rodLCaATWrDA9HfjbuRiYJkMM69w5Cs3NncFxbF8mLY3EvlpapK/Ir7qKci0A8qJIuW4Bum5LSshj403S901N5D0JCbEe4i4rMwsqZmaSRP1eGeeqqKB94uMVD5fxTtiD0hcREXTBydFWGDXKPCnu3AmrCRciMTFkCEnRUPEUqqtJKyIuTtrrDxwwlxYPHy4vHm000mc9YAAbJ76OKPQlJ8wzdqzZwNizhzyaUggNJW+pt0nfHzxI16IUwbSLwztyEJNjs7M5b4zpBn8jrCFmlUs1NAICzE3tmpqkGxwqFcXPjx71HvE2UftEagKhLaXFtbVkUHKDMUatJrEvOeFZjQaYM4ceCwKwbp3084WFeZf0fXk5zVvx8dIE02wJ79TUkHeak2OZHmADxRrJyVReJydZdvJk82MpvXlEwsO9R7xN1D4JC5Pm0SgpoURhgD5vMZdHKlVVFN4JDZU/Vsb7SEkxezekMnu2+Yb800/SFyWxsWbpe0/HaAT27qXFlZSwdkmJudR6wAD5EvVVVbQIFEu9GcYCNlCsodWS+7GuTvo+SsM8AE2s+flUvujJyNU+WbXK/HjuXHlS12K1FEvbMyLR0ZTcKSc8GxUFTJpEj+vqSHhMCgEB3iN9LyrqSkmMBWzznrS0UK5QVpa8/RifgQ0UKWRkkCegoUHa6/39u4Z5xOQ7KQQFkYt6/355ho27cfYsjV9Ky/TmZtKfAGiyt9K0rRuihoKvNG5jrKNS0Yq+vV2eN1Kpsqw3SN+3tJD3RKuVnlxs6SGWm39SWUkLssREefsxPgMbKFKIiaFGZBUV0vexvFjlhHkAumgLCsyZ8Z5GSwtV70itRtqwgfYBgBkz5IdpamrITSxVUI/xDZKTqbmdHO/nJZeY8yGOH6fKMCl4g/T94cMkCyDV0C8spB+AvMxSk+EBMhpbWkj7hJNjmV7gb4ZUBg6ki0qK+BpAKrLBwfR41y553hCtlm7SBw6Qd8HTKC6myVqKgWI0Aj/8YH4uNzm2rY08Vunp8vZjvJ+wMKrCk1PNo1J17XK8Zo20/Txd+l6nI09vXJz08KqtybGRkXzdMn3CBopUUlPJkyK1z4e/PzB+PD1ubpYu/iQSH085HJ4o3pafT0aWlInuwAFz1dKwYfInLJ2OkmrlJucxvkFmJlXlSF1YAOTFE0McmzZJV3i2lL73JIxG0jypr6f3IAVBMBsoKlXXwgApiMmxnNTO9AEbKFIJDCR3pIwOx13CPJZaAVLQaGiyOHhQ3jldTXU1uX2lJsdaek+uuUb++errqaRUTlIt4zskJdF1JOcaCg4Gpnc2u2ttBTZulLafp0rfnz8PnDghPTEWIE+RuLAYOlSeuGRrK3mc+veXNUzG92ADRQ4ZGbSykhp2yc01l8/t2iW/Y3FsLE2sniTeVlgovXlaSQmt3ABlpcWNjbQCkzOxMr5FYCAly8o18i2TZdeskaan4onS921tlBirVptD0lKwNTk2KYmTYxmrsIEih3796MKSqomi1ZqreZSEeVQquoiPHfMMjQW52ieWVRJXXSXfC1JVRQl93iQxztif9HRascupsMnMBHJy6HFREXX0lYKl9L0ncPQoJeTLETi0DO+o1ebSbCkYjRQyGzKEvZ6MVdhAkYNaTdnqra3SVSNtqeYByG0sGjfuLt5WWkqGlBSDobkZ+PlneuzvL7+0WKwCEJV+GaY3EhJocSHXaFBScuxJ0vfV1SRnEBNDBpxUTp0yVzSOGGG907EltbWUHMvKsYwE2ECRS1oaxVtra6W93jLMs3u3Mp2ElBTyTLi7ENS5c5SMKKXc9+LSYqly+CJ1dSxtz0jDz4/ylOR0OAbIMyDefHfuRFCzRAPHE6TvBYEWPTU18j2QtoR3qqoo5BYeLm8/xidhA0UuISF0gUldjWm1wIQJ9LilRX6YB6DYsFpN+7qreFtzM8XepSTLCcauyrFyS4sBWv1lZPBEx0gjNZWuI6kVOQBdu7Nn02ODAf1PSuzP4wnS94WFFN5JSZHngTQazQaKnx8wcaL0fdvaaB7j5FhGIrINlPb2drz//vv41a9+hcsuuwwPPvgg9uzZI2nfvXv34oknnsA111yDq666Cg888ADWyWnK5S5kZdHF2doq7fW2hnkAyrU4d44E0NyR4mJz4y8rJJYcMAtaDRsmX6LeYKAflshmpBIXR/ljcsM8c+aYhMQGnFwLlVFCubK7S9+3t1NirCDIL/M9ftz8Gebmytu/spJy6pKS5J2T8VlkGyhvvPEGlixZgssvvxyPP/441Go1nnnmGRyyUmmybds2PP3009Dr9bj77rsxf/58BAQE4PXXX8eSJUsUvwGXIF5kUvt8DB9uvpCVhnn8/WkFuH+/OTTiLggCubQlap8MOrbC/ESp9yQ6mqXtGemoVBTmaW6WV2HTrx8wZgwAILi5Cuklu6TtJ0rfS13EOJMTJ2ixo6T6Tak4myBQdd+QIfLyXRifRpaBcuzYMaxfvx4PPPAAHnnkEcybNw/vvPMOEhIS8P777/e57/LlyxETE4N33nkHN9xwA66//nq8/fbbSE5Oxhqpao3ugkZDybJSO6VahnlaW81de+WSmEjaA8ePK9vfUVRXU1KghFh2eEMJkov30pO4OHOVkxxqaijMJrVfCMMAZNCGh8vPRbFQlh2Sv6qPF1ogSt+LWiHuQl0deU8iImhekoPBYG6gqNWahSilwMmxjAJkGSibN2+GRqPBvHnzTNsCAgIwd+5cHD16FOXl5b3u29zcjLCwMPj7+5u2+fn5ISIiAgGe2EMlLY0ucqmVNfYI82g0NPHl5cnrL+JoCgvJWJOQ6JpzykKYTUlpcXs77cMS2YxcRGl1OR2OAQpldCoVJ5fnIaxOghCbKH1/5ozsYTqUvDwynPr1k7/vkSPm4oDRo+XpplRVUel2ZKT88zI+iywDJT8/HykpKQgRq1I6GTJkCADgdB/5Ebm5uTh37hw+/vhjFBcXo6SkBJ999hlOnjyJ2267TcHQXUxEBOVASDVQhg8338D37FHe9TQujibYgweV7W9vOjrIZSwhWdVP34xBZ3+kJ/7+5gREOVRV0WfAIk+MEvr3N+cwSUWt7lJyPPCExJJjd5O+Ly4mIyMpSVmDPqXhHVGgcuBA+edkfBpZwcCqqirE9NCrQdym62Nlctddd6G0tBSff/45/vvf/wIAAgMD8corr2CqlS+7TqdDlUVyW4G7JJ8NGABAosqrnx+FeX76icI8+/bJEzgSUaloNXf0KEnvx8fLP4Y9KS2ligUJ5b6Z+Rvg32FDaTFA7vlRo+S7pxkGoDBPVBR5AqT2nQGAWbPQ8d8v4GdoR1b+z0DrHaRS2xcRESQPsHs3hTKVfN/tRUcHhXb0emWVbx0dwI4d9DggQJ7qs05HcxbnjDEykWWgtLW1QdvDjUEM27T14RXQarVITU3FjBkzMG3aNBgMBqxcuRKvvfYa/vGPf+CSSy7pdd8VK1Zg0aJFcobqHJKTAc1RQA+0tAJfftd3uCJBPQ2X4icAQMHi7dheIX0VotUCY4YZkZkm0ARbWUnu2tmzXStUdu4crUathemMRgw6vtL8fO5c+edqbqa8E5a2Z5QSHExelH375Bko4eEoyJqG/vk/w7+9CdiyxboHUK2mUPD+/WTIjx9PixpXXK+nTlG4SWlo9OBBsydo3Djrxpkl9fW0Dy8qGJnIMlACAgKg70GHo73ThddXLsk777yDY8eO4eOPP4a607146aWX4s4778R7772HDz/8sNd9582bh8kW3TILCgrw2muvyRm6Y9BqoQ3WAq0GCIIKzVaKa85FjkCrfzgC2+uRVLgb+voW6LUS47gtwN7DamSmdbqmk5NpdZad7bp8jPJyKnuWMtEfPIiIzth9ecIwxGdmyj+fTkehnbg4+fsyjEhGBhkNer2sm2Z+9lz0z+9UP169mtSPrRkbISFUPVRSQvsMH05VQc70pjQ2kvckNFSaiGJPKBVnE4zkseGcMUYBsgKRMTExXUItIuK22F6qOPR6PVatWoWJEyeajBOAkmTHjx+PkydP9mj4iMTGxmLw4MGmn3Q3+rKPuS4TEUHtCA40IjhI6PMnKESDokwK62gNbRh3/Aur+wQHCVCpqCyyy0cUEkKle/v3y2slbw9qa2nC+u47qqiRkvi20uw9OZmjoGuxIJAHZeBAZfFzhhERjVyZmijVcYNQGd2ZR3H2LHklpKBWk9evXz8yFL7/nrwZzmooePAgLSY6E31lo9cDO3fS46AgSpCVisFIybFyuh0zTCeyPCgDBgzAgQMH0NTU1CVR9tixY6a/90RdXR0MBgMMPSSmGQwGGI1GGN29z0wvZF42EJnt+TRZSVFIHP8r4LcbgPZ2DDn+PYbMn2Z1vy+/0/TsnRHF286coXwUR9PURI0LDx2i0uL4eGmiSxcumLoWNwbHoSRtgvxzNzTQSoyl7Rlb8fcnQ3frVtk37WMD52L6rnfoyerV8q670FA6b0kJ8MMP1MdmzBj5YmlyKC2l6zU+Xrlhv3+/WYF3wgT6/OTQy32BYawh6xs7Y8YMGAwGrFhhFtpqb2/H6tWrkZOTg/jOhM3y8vIuiaxRUVEIDQ3F1q1bu3hKmpubsX37dqSlpXlmqbHIwIFUzSPFk5GYCNxyCz02GoF//1t5z46AAIoF79/vWEGotjbg8GFg2TJg40Zyaw8eLEk1FgBN5J2rxWMDr4agVtDFVKejVajUczJMX6Sl0Y1Wpujh2bRpaPPvNCi2bZOvqaLR0Lnj4ih51pHeFIOBFgYtLbZdN7b03tGoeVHBKEaWgZKTk4OZM2diwYIFeP/997FixQo8+eSTKCsrw0MPPWR63euvv47f/OY3pucajQa33norioqK8NBDD2HJkiX4+uuv8eCDD6KyshJ33nmn/d6RK0hNpTyM6mppr//Vr8wx2dOnaTWllMREKh90hHhbRwfluSxfDqxbRxPdoEE0uUpN9GtpMXUt7tD442T/OfLHYTCQm5lXYoy9iI+na6eyUtZuBr9AnB3Y2Xlbrzd35JZLWBhdS7W11JdqyxZ5fYKkcPo0eXZtSSovLAS2b6fHoaGkCSMHP618jwvDdCJbc/j5559HfHw81q1bh8bGRmRlZeHNN99ErpUv7p133onExEQsXboUixYtgl6vR//+/fHKK69gxowZCofvJgQGkkdh61ZpAkh+fsCjjwLPPksrpy++oJJjJcmffn60OjpwgEJF9mieZzRSH5EDB0jHITCQjq1EonrjRsodAXC+/wy0BYQjGDJXi7W1LG3P2Be1mvpA/fADGeIyvtuns6/EkKPf0pM1a4DrrlMWPhG9KQ0NwK5dFAodP55yNmyt9GlupnyXoKBuFTdnC1XYd1htte+oymjA7B/eRUynZ/ho5hU4uEpa9Y7JMeWnwFvKMJ3IvuMEBATgkUcewSOPPNLra957770et19++eW4/PLL5Z7SM8jIIHdqc7M0hcXsbOCKK2iCa20FPvgAeOEFZRNTXBx5Og4fBiyqnWQjCDRJ5uXR6kuloglUafjNaOziHTo1REFyLECeqVGjKDGYYexFVhYZvWVlssIQDRHJwMiRZMCXl9NvOYmjFyN6U4qLu+am2PJ9P3yYcl0GDer2p32H1airtz7PjDi6DDG6fABAbVgKdmffAUOLvPlJG8zeE0Y5XA5hL+LjabKT4zK+805zdvuePeY+F3JRqynZ78gR2S5rE5WVwIYNVJlz6hQdLzNTuXECUPVAcacs+CWXoDZGQfdhvZ4MJbkdjxnGGv7+VPbb1CQ/D8xCWRarJSrL9oXYviEmhrwpK1ZQAryS3JSKClpk9OvXYysJ0XOiUvVeOZjUchajjnwBADCq1Ng1/SkEhPlLqjoMDhIQrNUjIlaLMTexeiyjHG4raS/ExNEzZ2iyk9JjJiQEuP9+4M036flHH1GMV8nKKSrKPDFddpl0T0xdHRk2R46QqzkpyX4aDZa5NddcA1QoOIZYHsnhHcYR9O9P36/ycmkVaSJjx1JzTJ2OQinl5fZRdQ4Pp+u/qKirN0Vq3xujkZLmGxutvp+gQOD263owzDo6gKf/DzBSaEd9/a8w566BACQacWVltLC5ZY5tCxzG52EPij1JSzPLaEtl0iSzbHR1NdDZBkARycnUF6eoyPprm5poYl26lJLggoLIwLKXcVJaSscHaCKX0/lURK+ncebmsgol4xgCA4GhQ6kaR44XRaOhEC1AXo61a+03Jo2GPIbR0eRN+f57ygWT4k05e5bmAFsqZ775hrw3AM1pt98ub//aWgphs3HC2AgbKPYkJIQqTeQIQKlUwEMPmRPZ1q5VXpETGkqTbF5e75NtWxt5S5Yto5COSkWTib3Ldy1KixV1LQZoVZqcLE1fhmGUMnAghUPkhkcvv9ycXPvTT7CadSqX8HAaW2UleVO2bzclnPdIaystCrRaeZ2GLTlzBliyhB6r1cCTT8pbHDQ20jyoRCmaYS6CDRR7k5VFk5YcXZK4OOCOO+ixIJA2itLJLiWFJpmL27x3dFBuyXffkRGkpGRYKi0tNGEDyrsWd3SQ92TECC5TZBxLSAh5UWprpXcnB8ionziRHtfXm8tx7YlGQzf7yEjKUVu5kirseuLoUfKeyglVWaLXA++8Y17c3HST/NL+igryuvSiKs4wcmADxd4kJtIE0Udn5x65+mrzZFBYCHz7rbLzBwTQDX3/fvKWGI3kHl65klZhOh15JJKSlHk1pGBRWoxp05SVPpeVsfeEcR6DBlGCqkz5e1x1lfmxPZJleyMigsZYXm72pliKzFVVUTVRTIwyOQAAWLzYbPxkZAA33yxvf4OBFhaDB7u2gSnjNbCBYm80GgqZNDbKy8DXaEgbRdRTWLyYSn6VkJREK6l9+0hg7bvvyOhJS6MfpROYFASha3Ls1VfLP4boPRk+nOPYjHMICwMuuYQMeDnXbU6OWXTxxAnKAXEUojclIoIMlJUr6boWE2Nra5V7LvLzKR9NPI/c0A5ARlJsLHcbZ+wGGyiOIC2NJhE5ybIAeQuu6dQK0euB999XVmbo50cu4R07KJ8lMZFCT8642eflmUuLc3LovHIpK6Mxs3Is40yysykxVaoiNECeAsuS4zVr7D+ui4mIoNyUsjIyUtavp+s8OVmZ56K9nUI7YnjrlluUXbc1NeQ9CZQm5sYw1mADxRFERNAFLjfMA1DGvKgoe/AgsGmTsjEkJNDKbuBA5QlzSli1yvz4GgXCbB0dFB7KzWXvCeNcIiKAIUPkJ8vOmEFVcABdr/aWrO8JPz/ypoSHU2hHrVbedPDLL82Vf/37AzfeKP8YTU30GXByLGNH2EBxFAMG0GpGbrJrUBBV9Yh88gkCWuuUjcHZN/iyMhKcA8jVO0FB12JR94RzTxhXkJ1NN/2aGun7BAeTkQJQ3tfGjQ4ZWo9ERtKYxTCTXE6coBAwQEbPk08qCwFXVFBoR0qrD4aRCBsojiI5WVnpIkC6KKJkfX09cvd8at+xOYpVq8whqSuvlJ+E29FBuTsjRrCbmHENMTF0w6+QqSp4sbKsI7oT94bChFRNRyvw7rvm0M7ttyszdAwGChNxcixjZ9hAcRRaLbmL5bZjF7n/fpOibP/8n5FYlme/sTkCi67F0GqBOQq6FldUkPeEc08YVzJkCF17cq7djAzKuQIoB+vwYYcMzZ6M2Pc59esBqELoV79SdqDqajLs0tLsNziGARsojiU9neLCSoyU6GjgrrtMT6fs/RfUHe12HJydsYy9KyktNhhIaj83l70njGvp149u2GVl8vZzVsmxHYivOILBR7+nJ1ot8MQTymUHqqvp8xLzcBjGTrCB4khiYshIUdrAb/ZsWs0BiGi4gKEHF9txcHbEHqXFYu4Je08YdyAnhwzlxkbp+0ycSIm2ALBzp3xNFSeh0bdi2q63oUJnGOrXv1ZeGtzcTLluSqp+GMYKbKA4mkGDKMbb0SF/X7UaePRRGNSUtDbk8FLSPXA3Dh40VwHk5MhPcDUYyMvEuSeMu5CQQBVwpaXS97EMbRqNZjVlNyN370JENHa+r+xsYN485QerrCT1ans0SmSYi2ADxdGkpChTqBRJS8PxYTcAADTGDpLBlyPH7Qzs4T1h3RPGnVCpyNj28+u7/83FzJljFltcu1bZwsSRHDqEwcfpeu3QBFDVjtLQjsFALT2ys83vmWHsCH+rHE1gIF3AcsoWL+LoiFtQF9rZX+P4ceDHH+00ODtgWVocEyO/tFj0ngwfzjFsxr0QWy3I8aLExXXtTr57t2PGpoTmZuC990xP88bcrbxvD0BzWnQ0J8cyDoMNFGeQnk5aCQoFnAx+Adg+9jHzhs8+s8ngsSuWJZVXXilfQ0H0ngwcaP+xMYwtqFTURBDo2vfGGpbJss5QlpXKokWm8unSuKE4laPA22lJdTVdt53Vhgxjb9hAcQbx8RTqUZosC+BCQi7ODphFT5qagI8/ttPgbMCya7GS0mLRezJsGHtPGPckNZUSQOV4UUaMIKMboPwssfWDKzlwgEJOAPR+gdgy4SlAZcP039JC1zwnxzIOxIFd4xgTKhWJGJ0+TTdlhTHfA+PuQ1b5birH3boVmDkTGDPGLkM8W6jCvsNqWcK3A05swbhOr9CZjOnYtTG6z9e3tF60QdQ9GTRI5mgZxkmo1eRFOXOm01OoQksr8OV3fV3DGmSnzsWoUlpEVL/4f9g96TFUx0n7nmu1wJhhRmSm2UnsrakJ+Oc/TU8PjL0XDaGJCIYNx6+spPCQaIgxjANgD4qzSE0FoqLkNxC0oC0wArj3XvOGDz6gJDU7sO+wGnX1KjS3SPxpBgYeWWna/1DWPKv7CAKpTGq1IEOttpa9J4z7k54OpKdDq6KEV0Gwfn0cTbkcbVoKfURXncGclb/D6E3vwlhTZ3XfunoV9h6249T8ySfmvmAjRuB09pV9v94aRiPlswwZwsmxjEPhb5ezCAmhKhUlDQQtufRSSigFyAPx5Ze2jw3mlkEqlYDgoL5/4jpKMWP/e4iqp5Lnin45aEnub3W/4CABEeECxgwz0tjj49l7wrg/Gg0wbBjGJFYgIswo6XuuiQzFpjmvoDaSEkhVEDD47I+4edX9GHn2O4QEdPS4n0pFXg25Lbx6Ze9es8JzUBDw29/aFtoBKP8tKkp5/x+GkQiHeJxJVhbFgltblet9qFTAI4/QRKPXAytWANOn2625XlAgcPt1hp7/WFgILF0KbNnSpdS5391X4/YpvezTEwYDkF8HXH65czstM4xSMjKQOTwCmZXnZVStDATufYd6VH31FdDcDP/2JozetQCjS9cCDzxgXmx08uV3GjTLyMftk8ZG4F//Mj+/7z77NPOrrgZGj1bePZlhJMIeFGeSmEhxW1u9KElJwC230GOjkbRRDDIMBLmcOAG89hrw2GMkaS8aJ4GBpEIpNjaUSmWlWU6cYTwBrZaMiZYWee4NPz/g2muB998HZs0yby8sBF54AXjzTZuS5/vko4/ImACAkSNpQWArbW3kUeLkWMYJsIHiTDQa0kRpbLS92+mvfmVeyZ0+Tas0eyII5O35f/8PeOaZrnoOYWHU+fSTT4Cbb5bXwdRgIBfx8OHsPWE8i6ws0kYpL5e/b1QU9bt5662uJfXbtwMPPwwsXkwdge3Fzp3Axo30OCSkM7Rjh07DYnKsLfopDCMRNlCcTVoa9euwIVkWAK3oHnnE/Px//7PPSkwwAr/8Ajz9NPDSS127ssbEkJv444+BW28lQ0UulZWce8J4Jv7+ZFg3NSn3WA4eTEbKY4+Z+/a0twNffAE8+iiSC3bYvniprwf+8x/z8/nzgdhY244JkOe0oYEWWUrVZxlGBpyD4mwiImgldvgwrapsIScHuOIK0jdobQU+/JA8HgpWSipjBwae3YTcE98AdRfpNiQlAddfT2XNWq3y8RqNZJhddhmLOzGeSf/+VBpfXq7ci6BWUyPQSZMoN2XVKro2yssxvfw1ZCWMRt7kBwAoLOH98EPzAmjsWEqstwd1dZwcyzgV9qC4goEDaQXS0GD7se6802zo7N4N7Nghb/+2NuCHHzDvm/mYvuttRFgaJ5mZFN75979pQrXFOAGocodzTxhPJjCQdFHq623P+woNBe6/H3j3XSq37yS1bB+u+vZRYOFCeX2AAAoZbd1qPv4jj9gntANQ7lz//kB4uH2OxzBWYAPFFaSlkau4uNj2ZmLiJCeyYIE0Sf3GRmDJEnL/LliAkCaL8NAll1B45513gClT7OPOFb0nw4ax94TxbAYOJEPbXsmt6emUhP7MM2gKiQPQ2Rj022/JwNi4UVrYp7aWknFFHniAwrL2oK2NPD/c0JNxImyguAKVChg3jjwU58/bfrzJk82KstXVwOef9/7amhrq5XPffZS3Uldn+lNh0lj8OPct4I03qIzQXisvgCbzuDiKwTOMJxMSQl6U2lr7dRZXqYApU/DD9R/gwCW3wqDp9FZWVwNvvw388Y+kZtsbgkDCjfX19HzCBJIfsBc6HeWOcXIs40TYQHEVwcHknQgONjXwUoxKBTz0EBAQQM/XrKHSYEvKymh1NX8+sGyZufmZWg1MnYrV1/4TP07/M3TxObaNpSeMRppo2XvCeAuDBpF3oqrKroc1aAOxb/id+OFX79MiRuT4ceB3v6PkV9EIsWTrVkpuByh5/eGH7bfAaG0lj+vQofKbgTKMDbCB4koSE2mlU1srP9Z8Mf36AXfcQY8FgfJGOjpIb+Ef/yADZs0as4aDnx819/vPf4A//AG1MQ7UNWDvCeNthIVRKFSns73qpgeawhNJJ+Wll6i0GaDzrF1L1/Lq1eYcmJoaSowVefhh2xPwRQwG8vIOG0bS9gzjRNgcdjVDh1JFQF4ercpsyfe45hpg82ZyBRcUAE89Rb8tCQykyp9rr7VffLovjEaaQC+9lJUnGe9i8GCqxquudty1NHo05autXElaKS0t5M344ANg3TrKM/nuO3PC/ZQp9GMvzp+nnLnJk9l7wjgd/sa5Go0GmDiRvAxFRUBGRq8vldJFNeqS32LO2d9BLRi7GCdtAWE4mTMPp3KuQXtAGLC1+7Edgk5Hkzd7TxhvIzKSvAq//AJER9s3Z8sSrZbK/KdPp/yxTZto+7lzwHPPmV8XEUHeFXtRVkYh6KlTeXHBuAQO8bgDYWG06lGrzdLUFojVvVK6qJaEDMLRQfNM+zYFxWDnyPvx1TWLsDv7DtQaw613GrYXRiPF6IcP5wmO8U6ys6ns1lbhRSnExFAeyl//Sgn2F/PII/YrAW5oIE/N5MmcGMu4DPaguAvp6SSqtHkzJZKKCa8AxgwzYu9hteQWIEcm3oumuDQYNAEoypgMo0YLfwD+6DtWrtXSuexGVRUpWLL3hPFWYmLISNmzx355H9bIyaG8sh9/pEq8hgbSKZo40T7Hb28nCYQJEzjvhHEpbKC4EyNHUkXPiROUj9LpMs5ME5CZJlcU6jKLxw5sJNgbovdkxgxlkvgM4ykMGQIcO0bVNXbyYEgJ5wJXw++6SxHaUI7aqAzgO2khpj7DuUYjhY6ys4Hx48mryzAugg0Ud0KrJflrnQ4oKQFSUlw9IuVUVXHuCeMbiOrIeXk2GyhaLYAWMZwrZY8Q1AdlAQpyyHoM5xYXU8XdlCldvLgM4wrYQHE3oqPJSFmzxq4rMqdiNJKRNWOGZ46fYeSSk0Oez8ZGm/Kt5IZzldJjOFfUdJk2jeYhhnExbKC4IwMHUgb9zp1AUJCdM1edgOg9yc529UgYxjkkJJAM/NGjdP0qRFk41w40N9OiYubMnhNwGcYFcIDRHRGl8AcMsI8UvjMRvSdDh7L3hPEdVCoSbvPzs1100dkYDCRJMHw4kJvr6tEwjAk2UNyVwEAq8QsLI2+KpyB6Tzj7n/E1kpOp229pqatHIo9z50h/afJk+zQGZRg7wQaKOxMfT6WDDQ2esSoTBDJQ2HvC+CIqFX33AXOvK3entJQWQdOmcZ8sxu1gA8Xdyckh12thobn3hrtSVUVaEJx7wvgqqalAVpZneFHq62nhM2UK5dAwjJvBBoq7o1aTYFJKChkp7oogkFz/sGEkuc0wvohaTV4UoxFoa3P1aHqnvZ2kDMaOZSkAxm1hA8UTCA2lVY5Wa/f27najqopKE9l7wvg66en0465eFFGMLSeHDBRH9RBiGBthA8VTSE2lyUSnc7+VmSCYK3fYe8L4OhoNeRL1evJUuBuFhRTSmTIF8Pd39WgYplfYQPEkcnOpOub8eVoFuQvV1Zx7wjCWZGRQWNbdKvB0OiqFnjqVujEzjBvDBoon4edHpYBxcRQ/dgfE3JNLLuEJj2FEtFpKbm9pgcNlYaXS3AzU1FBOW3q6q0fDMFZhA8XTiIwk12xHB1BX5+rRkPckMpJ1TxjmYrKyyIty5gxVzLiSjg6zGNvw4a4dC8NIhA0UTyQrCxg9mpLwXLk6Y+8Jw/SOvz9w2WXUpby2FsjPp149zkYQKCk2K4v6fLEYG+MhcC8eT0SlAsaMASoqgLNnqfeHMzPxOzooll1bS+Em9p4wTM/ExgKzZpERf/gwGSmlpUBiok1NBWVRWkrJ69OmAcHBzjknw9gBNlA8lYAACvVUVVEiXmKi48/Z1ERGkV5Phsn06STtHRXl+HMzjKeiUtH1mZBAlW6WhkpSkmMVXOvqgNZW4IorgH79HHcehnEAbKB4MnFx5LJdu9bmNu+9YjBQnkl1NXVWzsigap20NOoXxDCMNFQqMkgSE8lQOXSIDBWDgbbb27vR1kZG0OTJwKBB9j02wzgBNlA8nexsoLwc2LOHJiF7xZdbWii/pLWVPCSTJlEMOz6ehZ0YxhZUKmosmJRkNlTOnCHpgMRE+xgqLMbGeAFsoHg6ajUwfjwZE+fPU8hFKUYjlSHqdJTgl5JC+SXp6Ry7Zhh7o1KRAGNyMlBcbDZUBIGMl6Ag5ccuKKBjiArUDOOBsIHiDQQHkxt35UoyVOLi5O3f1kb7NTaSt2TcODJ0EhPJAGIYxnGo1RQyTUkBiorMhgpAxovcUGplJS0wpk1jZWfGo2EDxVtITiZPyvr1lItibfUlCFSFo9PRBJmUROqS6enUfp1hGOeiVtP1l5pKHpDDh6lKT7w+AwKsH6Oxka7rWbPoOAzjwbCB4k0MG0ZVNocOUT5KT94PvZ5WWPX1tLoaMYLKlJOTWR+BYdwBtRrIzCSvSkEBcPAghW81mr4NFb2ePDBjx9JcwDAeDhso3oSfHzBxIhkgxcU0wYnU19N2MRFv/HiqyGGBNYZxTzQaSkxPTycD5eBBMlj8/MhQsWz0J4qxDRhAUvYcmmW8ADZQvI3wcMpHWbWKNFL0enL5hoZSwuugQRTr5sQ5hvEMNBrKCRMNlbw8MlT8/Wmx4e9PvbmioylMa0tyLcO4EWygeCOZmaQ0u3s3TVq5ubQSi4lx9cgYhlGKnx95SDIyKDfFMvSjVpOsvtwEeYZxY9hA8VZGjyY3cHy8tOQ6hmE8Az8/8oRmZpoNlfR0Ml4YxotgA8Vb0Wq75qAwDONdaLXA4MFkmKjVLMbGeB1soDAMw3gyXH3HeCmc6s0wDMMwjNvBBgrDMAzDMG6H7BBPe3s7PvnkE/z4449oaGhA//79MX/+fIwdO1bS/uvXr8fSpUtx5swZ+Pn5IT09HfPnz8fo0aNlD55hGIZhGO9EtoHyxhtvYNOmTbjpppuQkpKCNWvW4JlnnsG7776L4cOH97nvp59+is8++wwzZszAFVdcgY6ODpw7dw46nU7xG2AYhmEYxvuQZaAcO3YM69evx8MPP4zbbrsNADBnzhzcfffdeP/99/H+++/3uu/Ro0fx2Wef4dFHH8XNN99s26gZhmEYhvFqZOWgbN68GRqNBvPmzTNtCwgIwNy5c3H06FGUl5f3uu8333yD6Oho3HjjjRAEAc3NzcpHzTAMwzCMVyPLQMnPz0dKSgpCQkK6bB8yZAgA4PTp073uu2/fPmRnZ2Pp0qWYN28errjiClx33XVYtmyZgmEzDMMwDOPNyArxVFVVIaYHuXRxW2+5JA0NDairq8ORI0ewf/9+3H333YiPj8eaNWvw7rvvws/PD9dee22v59XpdKiqqjI9LygokDNshmEYhmE8DFkGSltbG7Q9NJnz7+yq2dbW1uN+Yjinrq4OL730EmbNmgUAmDFjBu6++27897//7dNAWbFiBRYtWiRnqAzDMAzDeDCyDJSAgADo9fpu29vb201/720/APDz88OMGTNM29VqNS699FJ8+umnKC8vR3x8fI/7z5s3D5MnTzY9LygowGuvvSZn6AzDMAzDeBCyDJSYmBhUVlZ22y6GX2JjY3vcLzw8HP7+/ggNDYXmIlnmqKgoABQG6s1AiY2N7fXYDMMwDMN4H7KSZAcMGIDi4mI0NTV12X7s2DHT33s8iVqNgQMHoq6urpsHRsxbiYyMlDMUhmEYhmG8GFkGyowZM2AwGLBixQrTtvb2dqxevRo5OTkmD0h5eXm3RNaZM2fCYDBg7dq1pm1tbW346aefkJGRwR4ShmEYhmFMyArx5OTkYObMmViwYAFqa2uRnJyMtWvXoqysDM8++6zpda+//jry8vKwZcsW07Zrr70Wq1atwttvv42ioiLEx8dj3bp1KC8vxxtvvCFr0GIyLlfzMAzDMIznkZ6ejsDAwD5fI1vq/vnnnzcZF42NjcjKysKbb76J3NzcPvcLCAjAO++8g/fffx+rV69Ga2srBgwYgDfffBPjxo2TNYaysjIA4ERZhmEYhvFAPvroIwwePLjP16gEQRCcNB67UVtbi927dyMxMdFU4mwrYmXQCy+8gPT0dLsc05vhz0s6/FnJgz8vefDnJQ/+vKTjyM/KIR4UdyAyMhKzZ892yLHT09OtWnWMGf68pMOflTz485IHf17y4M9LOq76rGQlyTIMwzAMwzgDNlAYhmEYhnE72EDpJCYmBnfffXePvYaY7vDnJR3+rOTBn5c8+POSB39e0nH1Z+WRSbIMwzAMw3g37EFhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxOzxSqM3R5OXl4euvv0Z+fj7q6uoQGhqKAQMG4K677sKwYcNcPTy3Y9++ffjpp59w6NAhVFZWIjo6GqNGjcJ9993HTSB7QKfTYenSpTh+/DhOnDiBlpYWvPvuuxg5cqSrh+ZS2tvb8cknn+DHH39EQ0MD+vfvj/nz52Ps2LGuHppb0tzcjK+//hrHjh3D8ePH0dDQgOeeew5XXnmlq4fmdhw/fhxr167FgQMHUFZWhvDwcFxyySWYP38+UlNTXT08t+LcuXNYuHAhTp48ierqagQGBiI9PR233XYbJk+e7NSxsAelB4qLi6FWq3HttdfiySefxC233ILq6mr89re/xa5du1w9PLfjgw8+wIEDBzB16lQ88cQTmDVrFjZu3Ij58+ejqqrK1cNzO4qKivDll1+isrISWVlZrh6O2/DGG29gyZIluPzyy/H4449DrVbjmWeewaFDh1w9NLekrq4OixYtQkFBAQYMGODq4bg1X375JTZv3ozRo0fj8ccfxzXXXIODBw9i/vz5OHv2rKuH51aUlZWhubkZV1xxBR5//HHceeedAIDnnnsOK1ascO5gBEYSLS0twrXXXis8/fTTrh6K23HgwAHBYDB02zZ16lRhwYIFLhqV+9LU1CTU1dUJgiAIGzduFKZOnSrs37/fxaNyLUePHhWmTp0qfPnll6Ztra2twq233io89NBDLhyZ+9LW1ibodDpBEATh+PHjwtSpU4XVq1e7eFTuyaFDh4T29vYu2woLC4VZs2YJr7zyiotG5Tl0dHQI99xzj3DHHXc49bzsQZFIYGAgIiIi0NjY6OqhuB25ublQq9XdtoWHh6OgoMBFo3JfgoODER4e7uphuBWbN2+GRqPBvHnzTNsCAgIwd+5cHD16FOXl5S4cnXvi7+/PYmMSGTZsGLRabZdtqampyMjI4DlKAhqNBv369XP6/Y9zUPqgqakJer0edXV1WLduHc6dO4ff/OY3rh6WR9Dc3IyWlhZERES4eiiMB5Cfn4+UlBSEhIR02T5kyBAAwOnTpxEfH++KoTFeiiAIqKmpQUZGhquH4pa0tLSgra0NTU1N2L59O3bt2oWZM2c6dQxsoPTBSy+9hN27dwMAtFot5s2bZ4rHMX3zzTffQK/X49JLL3X1UBgPoKqqqkdvgLhNp9M5e0iMl/PTTz+hsrIS9957r6uH4pb8+9//NuWcqNVqTJs2DU899ZRTx+D1BorRaIRer5f0Wn9/f6hUKtPzBx98ELfccgsqKiqwdu1adHR0wGAwOGqoboEtn5dIXl4eFi1ahJkzZ2L06NH2HqJbYY/PiwHa2tq6ueAB+szEvzOMvSgoKMDbb7+NSy65BFdccYWrh+OW3HTTTZgxYwZ0Oh02btwIg8Egea6zF15voBw8eBBPPPGEpNd+/vnnSE9PNz0fOHCg6fHs2bMxf/58vPHGG3j11VftPk53wZbPC6AL/4UXXkBWVhaeffZZRwzRrbD182KIgICAHie/9vZ2098Zxh5UVVXh2WefRUhICF599VVoNBpXD8ktSU9PN81XV1xxBX73u9/hj3/8Iz788EOnLbS83kBJS0vDc889J+m1fSWcabVaTJ48GV988QXa2tq8dsK05fMqLy/H008/jZCQELz55psIDg52xBDdCnt9v3ydmJgYVFZWdtsulqmzng5jDxobG/HMM8+gsbER//rXv/h7JYMZM2bg73//O4qKipCWluaUc3q9gRITE2M34aK2tjYIgoDm5mavNVCUfl51dXV4+umnodfr8fbbb/vMhW/P75cvM2DAABw4cABNTU1dEmWPHTtm+jvD2EJbWxv++Mc/oqioCP/4xz84OVYmYpjVmZU8XGbcAzU1Nd22NTQ0YPPmzejXrx+ioqJcMCr3paWlBc888wx0Oh3+9re/sTIjI5sZM2bAYDB0EYJqb2/H6tWrkZOTwxU8jE0YDAa8/PLLOHr0KP785z9j6NChrh6S29LT/a+jowPr1q1DQECAUw07r/egKOEPf/gD4uLikJOTg6ioKJSXl2P16tWoqqrCyy+/7OrhuR2vvvoqjh8/jquuugoFBQVddAWCgoIwdepUF47OPfnss88AAOfPnwcArFu3zqSYetddd7lqWC4jJycHM2fOxIIFC1BbW4vk5GSsXbsWZWVlPpHLpJRly5ahsbHRFArbvn07KioqAAA33HADQkNDXTk8t+Hf//43tm/fjkmTJqGhoQE//vhjl7/Pnj3bRSNzP/7+97+jqakJI0aMQFxcHKqqqvDTTz+hsLAQjz76qFND9ypBEASnnc1DWL58OTZs2ICCggI0NjYiLCwMOTk5uO222zBixAhXD8/tuPnmm1FWVtbj3xISErBkyRInj8j9mTZtWq9/27JlixNH4j60tbWZevE0NjYiKysL8+fPx7hx41w9NLelr2tv8eLFSExMdPKI3JPHH38ceXl5vf7dV6+5nli/fj1WrVqFs2fPoq6uDsHBwRg8eDCuv/56TJkyxaljYQOFYRiGYRi3g3NQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt4MNFIZhGIZh3A42UBiGYRiGcTvYQGEYhmEYxu1gA4VhGIZhGLeDDRSGYRiGYdwONlAYxs6sWbMG06ZNw5o1a1w9FEkcOHAA06ZNw6effuqwc0ybNg2PP/64w47vaB5//PE+1X9tQfz8xZ+HHnrIIeeRwqeffopp06bhwIEDpm0FBQVdxnfzzTe7bHyMb8G9eBif569//StWr16N8PBwLF++HP7+/q4ekt0RbyrcdsB9yc3NRW5uLvr16+fqoXQhIiICd999NwBg6dKlrh0M41OwgcL4NM3Nzdi4cSNUKhXq6+uxdetWzJo1y6ZjTp06FTk5OYiJibHTKBlfIDc3F/fee6+rh9GNyMhI07jWrl3r4tEwvgSHeBifZsOGDWhpacFNN90EtVqNVatW2XzM0NBQpKencydZhmEYG2APCuPTrFq1ChqNBrfffjvOnDmD/fv3o6ysDAkJCV1e9+mnn2LRokW9Hseya/OaNWvwxhtv4LnnnsOVV15pes20adOQm5uLF198Ee+//z727NmD9vZ2jBgxAk8++SSSkpJw/vx5LFiwAAcPHkRHRwfGjRuHp556CtHR0abjHDhwAE888QTuvvvubivu0tJS3HLLLbjiiivw/PPPm55bjkGkp/1PnDiBBQsW4OjRo1Cr1Rg1ahQee+yxbl1xt2zZgo0bN+LEiRPQ6XTw8/ND//79ceONN2LGjBl9f+hWaGxsxPfff4+dO3eiuLgYdXV1iIiIwJgxY3D33XcjOTm5y+vF/827774LnU6Hr776CoWFhQgNDcXMmTPx0EMPISAgoMs+HR0d+Prrr/HDDz9Ap9MhLi4Oc+fOxaWXXopbb73V9PlJYevWrVi2bBlOnTqF9vZ2JCcn44orrsDNN98MjUZj02cBAH/5y1+wdu1afP3119iyZQtWrVqFCxcuYNasWXj++eeh0+mwYsUK7N69GxcuXEBTUxNiYmIwYcIE3HPPPYiKiup2zPLycnzwwQfYvXs3Ojo6MGjQINx33302j5Vh7AkbKIzPcv78eRw9ehQTJkxAdHQ05syZg3379mH16tXdbtwjR47s8RgFBQXYuHFjtxtgbzQ0NODRRx9FTEwM5syZg+LiYvzyyy/43e9+h7/85S947LHHMHjwYFx11VU4deoUNm/ejPr6erz77ruK3mNoaCjuvvtuU+7AjTfe2Ot7OnHiBL766iuMHDkS8+bNQ35+PrZu3YqzZ89i0aJFXd7jggUL4Ofnh2HDhiEmJga1tbXYvn07/vSnP+GJJ57ADTfcoGi8AH2mn376KUaOHImpU6ciKCgIBQUF+Pnnn7Fjxw58/PHH3QxIAFi+fDl2796NyZMnY9SoUdi1axeWLVuGuro6/OlPf+ry2jfffBPr1q1DUlISrrvuOuj1eixZsgRHjhyRNdYPP/wQX3zxBeLi4jBt2jSEhobi0KFDeP/993H8+HG88sorij+Hi3nnnXdw7NgxTJw4EZMmTTIZHgcPHsTixYsxatQoDBkyBH5+fsjPz8d3332H3bt34+OPP+7izdPpdHjkkUdQWVmJcePGYdCgQSgoKMDTTz/d6/ecYVwBGyiMz/LDDz8AAObMmQOAvAtvv/021qxZg7vvvhtqtTkCOnLkyG6Td01NDR588EH4+/vjmWeekXTOM2fO4Oabb8Zjjz1m2vaPf/wD3333HR577DHcc889uOmmmwAAgiDg2Wefxc6dO3Hy5EkMHjxY9nsMCwvDvffea8od6CvHYefOnXjppZe65OC8/vrrWLduHbZt29Zl+9/+9jckJSV12b+5uRmPPPIIPvnkE8ydOxeBgYGyxwsA6enp+PbbbxEeHt5l+/79+/G73/0O//3vf3v8vPft24ePPvoIaWlpAID7778f9957LzZs2IBHHnkEsbGxptetW7cOAwcOxL///W/TOH/zm99g/vz5kse5Z88efPHFFxg3bhxeffVVBAUFAaD/2z/+8Q98//332LRpk80eJZEzZ87gk08+QXx8fJfto0aNwrfffovg4OAu29euXYu//OUvWL58Oe68807T9gULFqCyshLz58/vsn3FihX4+9//bpexMow94BwUxifp6OjAjz/+iJCQEEyZMgUAEBwcjKlTp6K8vBx79+7tc/+2tjY8//zzKCsrwx//+EcMGzZM0nmDgoK63QTFG39EREQXD4dKpTL97cyZM5Lfm1JGjBjRLUH4qquuAgAcP368y/aLjROAPr8rr7wSjY2NOHHihOJxhIaGdjNOALoRZ2Rk9Pq/ufHGG03GCQAEBARg1qxZMBqNOHnypGn7jz/+CAC46667uhhRsbGxXT5/ayxfvhwA8Ic//MFknAD0f3vwwQehUqmwfv16ycezxm233dbNOAGAqKiobsYJQIZ3SEgI9u3bZ9qm1+uxYcMGREVFdQn9AcDVV1+NlJQUu42XYWyFPSiMT7Jt2zbU1tZi7ty5XUIXc+bMwY8//ohVq1Zh3LhxPe4rCAL+8pe/4OjRo7jnnntw2WWXST5vSkpKN8+CWO2TlZUFlUrV4990Op3kcyilJw9NXFwcAMoLsaSmpgZffPEFdu7cifLycrS1tXX5u63jPXDgAL755hscO3YMdXV1MBgMpr9ptdoe9xk0aFC3bWLJruX4T58+DQAYPnx4t9cPHTpU8hiPHTuGoKCgXhOrAwICUFhYKPl41hgyZEivf9u8eTNWrFiBU6dOobGxscvnZfm/KCwsRHt7O0aNGtUtLKlWqzFs2DAUFxfbbcwMYwtsoDA+iXhTEcM7IqNHj0ZcXBy2b9+O+vr6HlfyH3/8MTZu3IjLLrsM99xzj6zzhoSEdNsmJlL29beOjg5Z51FCT6tw8fxGo9G0rb6+Hg888ADKy8sxbNgwjBkzBqGhoVCr1Th9+jS2bdsGvV6veBwbN27Eyy+/jKCgIIwbNw4JCQkmo27t2rUoKyvrcb++Pj/L8Tc3N0OtViMiIqLb6y2Tka1RX18Pg8HQZ/J0S0uL5ONZo6dkVwD4+uuv8Z///AeRkZEYO3Ys4uLiTMbH0qVLu/wvmpqa+jxWb9sZxhWwgcL4HOXl5dizZw8A9Klu+uOPP3Zz+a9Zswaff/45hg0bhj/+8Y8OHWdviF4Wy1WyiHgDciSrVq1CeXk57rvvPtx1111d/va///0P27Zts+n4CxcuhL+/Pz766COkpqZ2+duGDRtsOjZAhpjRaERdXR0iIyO7/K26ulrycUJCQqBSqbBy5UqbxySFi71rABmu//3vfxETE4NPP/20i4EhCAK++uqrLq8Xjbiampoez9HbdoZxBWygMD7H2rVrYTQaMXz48G43QIBu/GvXrsWqVau6GCh5eXn4+9//jqSkJLz++usuU5wNCwsD0HMYJT8/v8d91Gq1TV4NS0pKSgDAlLtjyaFDh2w+/oULF5CRkdHtf6PT6XDhwgWbjz9gwADk5+fj8OHDmDp1ape/yaniGTJkCHbt2oWioqIev0fOoK6uDo2NjRg1alQ378eJEye6hd5SU1Ph7++PkydPoq2trUuYx2g0yq5iYhhHwgYK41MIgoDVq1dDpVLh+eef7zHZEwCKiopw9OhRnDhxAtn/v737CWX/j+MA/vwxVtJYYXNB+RMXGw350/L/vPw5OG1rag5ODg5yVSjKDlwchqiVJH8TEmVMTEhJqKWlpjls8y8t38Mvi5/xy799P+X5OK5tn/fns8Oen8/r/Xq/MzNxfn6O9vZ2iMVidHZ2vrrzDqWkpCRERUW9KkNdXV1heHg46GckEgnOzs5e/Sl9xlOL78HBAVJTUwOvLy4uYnNz80vfDQAymQxOpxNXV1eBksv9/T16e3u/pdRVVVWF+fl5mM1m5OfnB66H2+3+0FLudXV1sNls6OrqQkdHx6uSkdvthtfrRUpKypfH/BapVAqxWIzj42Pc3d0FSmFerzdoa3pkZCTKysqwsLAAi8XyootnZmYG5+fnPzZWoo9iQKFfxW634+LiAkql8s1wAvzbvXJ4eIjZ2VlkZmbCZDLB4/FApVIFLTNER0eHbBO1iIgI1NbWYmRkBI2NjSguLsbt7S3W19ehVCoDTziey8nJwdHREVpbW5GdnQ2RSASFQgGlUvnh41dXV2NsbAx9fX3Y3d2FTCbDyckJ7HY71Go11tbWvnR+NTU16Ovrg8FgQGlpKfx+f6Akl5aWFpjk+lkqlQqVlZVYWlqCTqdDSUkJHh4esLKygqysLFit1hct5m8pKCiAVqvF0NAQGhoaUFBQAJlMBo/HA6fTif39fRgMhh8NKGFhYdBoNLBYLNDr9SguLsb19TVsNhtkMlmgtfo5o9EIu92OwcFBHBwcID09HQ6HA5ubm8jLywtca6K/jQGFfpWnybHPV3gNpry8HCaTCcvLy2hubg48Kt/e3g7a5iqXy0O6y6vBYIBIJMLs7CympqYgl8uh1WpRVFSE1dXVV+/XarXw+XywWq3Y39+H3++HTqf7VEBJSEiAyWTCwMAAtre34ff7kZGRgZ6eHrhcrm8JKCKRCBMTE5ienkZ0dDQKCwthNBpfLbj2WW1tbUhOTsbc3BwmJiYQHx+P+vp65Obmwmq1Bp0wHIzBYIBCocD4+Dh2dnbg8/kgkUiQmJgInU6Hqqqqbxnve4xGIyQSCebn5zE5OQmpVIqKigro9frAJn/PxcXFob+/HwMDA9ja2sLe3l7g97Pb7QwoJBj/PD4+Pv7tQRARCcHMzAy6u7vR0tICjUYTkmO+t3WB0HBXbAolLtRGRL+O2+3Gf+/NLi8vMTw8jPDwcBQWFoZ8TGazGWq1Gk1NTSE/9nscDgfUajXUavWbLd5EP4ElHiL6dUZHR7GxsQGFQoHY2Fi4XC5YrVbc3NxAr9cHXbH1p8jl8helmKfF5YQiJibmxfi4SzeFCks8RPTr2Gw2WCwWnJ6ewuv1IjIyEqmpqdBoNCGZN0JE/48BhYiIiASHc1CIiIhIcBhQiIiISHAYUIiIiEhwGFCIiIhIcBhQiIiISHAYUIiIiEhwGFCIiIhIcBhQiIiISHAYUIiIiEhw/gDgOIRxsPKpXAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7JUlEQVR4nOydd3hb5dn/v5Isb1t2bMd2vGLH2XsvsggJO6yGWUZLoEBbxgslP/LSQhmllJb1vi9pwwqFUgIJ0LASQsgiezl7OIl3vORty5Zl6fz+uH0sObGl52hLvj/XpSuScsYjWec593OP762SJEkCwzAMwzCMH6H29QAYhmEYhmEuhA0UhmEYhmH8DjZQGIZhGIbxO9hAYRiGYRjG72ADhWEYhmEYv4MNFIZhGIZh/A42UBiGYRiG8TvYQGEYhmEYxu9gA4VhGIZhGL+DDRSG8XM2b94MlUqFZ5991uVjqVQqzJ071+Xj2MOd4w0G7rnnHqhUKhQWFgrvM3DgQAwcONBjY2KYQIANFIa5AJVKBZVKBbVajbNnz/a63bx587q2XblypfcG6GMKCwuhUqlwzz33+HoowshGk+0jNDQU6enpWLx4MXbu3NnjfgaDAXFxcVCpVLj99tu9PGrv8sILL3R9Nz/88IOvh8MwCPH1ABjGHwkJCUFHRwfeffdd/OlPf7ro//Pz87F58+au7RgrU6ZMwYkTJ5CYmOjroVxEVlZWl2HV0tKCXbt2YfXq1fj888+xevVq3HDDDd22X7VqFRoaGqBSqfD555+jpqYGCQkJHh/nxo0bPX4OWw4cOIDnnnsO0dHRaG5u9uq5GaY32IPCMD2QnJyMSZMm4f333+/RAHnnnXcAANdee623h+b3REZGYtiwYX5poAwcOBDPPvssnn32WbzyyivYtm0b/vCHP8BiseDxxx+/aPsVK1ZArVbjd7/7HYxGIz744AOvjHPQoEEYNGiQV87V1taGO++8E5MnT77IQGMYX8IGCsP0wn333YeKigp8/fXX3d43mUxYuXIlZsyYgREjRvS6f35+Pu666y6kpaUhNDQUAwYMwF133YX8/Pwet6+srMS9996L5ORkREREYNy4cXZviPbyFJ599lmoVCps3rzZ4ec8f/48nnvuOcycORMpKSldY7399ttx/Pjxi46bnZ0NAPjggw+6hUzkMJe9HBQl34ntZ1i9ejWmTJmCyMhI9OvXD7feeivKysocfjYRfv3rXwMACgoKUF1d3fX+0aNHsWvXLsyfPx9Lly5FaGhol2HqDBaLBa+++iqGDRuG8PBwpKen47HHHkNjY+NF2/b0t125cmXX97xp0ybMnTsXMTExiI2NxdVXX40TJ044Na6nnnoKBQUFWLlyJdRqviUw/gOHeBimF2677Tb813/9F9555x1cf/31Xe+vXbsWVVVVePnll3HmzJke9927dy8uu+wyNDU1YdGiRRgxYgROnjyJjz76CP/5z3/www8/YPLkyV3b6/V6zJgxA+fOncMll1yCSy65BOXl5XjggQewcOFCj37OrVu34s9//jPmzZuHm266CdHR0cjPz8fq1auxdu1abN++HWPHjgUAzJ07F/X19XjjjTcwduzYbt/LuHHj7J5H6Xci89Zbb2Ht2rVYtGgR5syZg927d2PVqlU4dOgQ8vLyEBYW5tLnlySp67lKpep6vmLFCgCU5NqvXz9ce+21WLNmDbZt24ZZs2YpPs9jjz2GrVu34uabb8Z1112H9evX4/XXX8e2bdvw008/ITw8XOg4X3/9Nf7zn//gyiuvxAMPPIDjx4/j22+/xd69e3H8+HFFnqsff/wRb7zxBl577TUMHjxY8WdiGI8iMQzTDQBSWlqaJEmSdO+990oajUYqKSnp+v/LL79cio2NlVpaWqT//u//lgBI77//ftf/WywWadiwYRIA6aOPPup27E8++UQCIA0dOlQym81d7993330SAOnRRx/ttv3evXulkJAQCYD0zDPPdPu/rKwsKSsrq8fP8Mwzz0gApE2bNl302ebMmdPtvcrKSqmxsfGiY+Tl5UlRUVHSFVdc0e39goICCYB0991393juTZs2XTReZ74T+TPExMRIhw8f7rbPbbfdJgGQVq1a1eMYehvThZ9dkiTp97//vQRAysnJ6XqvtbVVio+Pl3Q6nWQwGCRJkqSvvvpKAiD9/Oc/FzqnzN133y0BkBISEqTCwsKu981ms3TjjTdKAKTnnnuu2z49/W3ff/99CYCk0WikH374odv//b//9/8kANLLL78sPK76+nopIyNDmj17tmSxWLqNdcOGDYo+I8N4AvbnMYwd7rvvPpjNZrz33nsAgKKiImzYsAF33HEHIiMje9xnx44dOHnyJKZPn4477rij2//dcsstuOSSS3Dq1Cn89NNPAChk9K9//QsxMTEXhUUmTZp00THcTf/+/RETE3PR+2PHjsWll16KTZs2wWQyuXQOpd+JLQ8//DBGjx7d7b377rsPALBnzx5F4ygsLOzKQfnd736H2bNn4/nnn4darcZf//rXru0+++wz1NXV4ZZbbkFERAQA4IorrkBKSgpWr16Nuro6RecFgEceeQRZWVldr9VqNV555RWo1equ35cIt956K+bPn9/tvfvvvx+Asu/jt7/9LWpra/H+++938xwxjL/ABgrD2GHq1KkYPXo03nvvPVgsFrzzzjuwWCxdN8ieOHDgAADg0ksv7fH/5fcPHjwIADh58iQMBgPGjRsHnU530fae1i0BgG+++QbXXnstUlNTodVqu/JKvvrqKxiNRuj1epeOr/Q7sWXSpEkXvZeRkQEAig2FoqIi/PGPf8Qf//hHvP766zhz5gxuvPFGbNu2rVuCqBze+cUvftH1XkhICO644w60tbXhww8/VHReAJgzZ85F7+Xk5CAjIwOFhYWor68XOo47vo81a9bgww8/xF/+8hfk5OQI7cMw3oZzUBjGAffddx8efvhhfPfdd3j//fcxceJEjB8/vtftGxoaAACpqak9/r/8vnxDkrdPTk7ucfuUlBRnhy7EG2+8gUcffRTx8fFYsGABMjMzERkZCZVKhS+//BKHDh2C0Wh06RxKvxNb4uLiLnovJISmLrPZrGgcc+bMcZg4fOLECfz0008YNmwYpk2b1u3/7rnnHvztb3/D22+/jYcffljRue39fYuKitDQ0NDjZ70QV7+P2tpaPPDAA5g/fz4efPBBh9szjK9gA4VhHHDnnXdi6dKleOCBB1BWVoY//OEPdreXvSAVFRU9/n95eXm37eR/Kysre9y+t+Oo1Wq0t7f3+H+iq/GOjg48++yzSElJwYEDBy4yIHoTMFOK0u/El8jek5MnT/Ya+jh69Ch27NiBGTNmCB+3srISQ4cOveh9+Tvx1mcvLi6GXq/Hxo0be63aWbBgAQDgtddew6OPPuqVcTHMhbCBwjAOiIuLw89+9jN8+OGHiIqKwm233WZ3e9m70ttKfdOmTQCACRMmAACGDRuGyMhI5OXloaGh4aIbVW/HiY+Px+HDh2EymaDVarv93759+xx9LABUPVRfX48bb7zxIuOkubm5KzRji0ajAaDMe6H0O/EVRqMRH374IdRqdZdE/YWUlpZi/fr1ePvttxUZKFu2bMHs2bO7vXfu3DmUlJRg4MCBQt4Td5CQkIB77723x//bunUr8vPzceWVV2LAgAEYNWqUV8bEMD3BBgrDCPDCCy/gxhtvRFJSUo8JpbbMnDkTQ4cOxU8//YTVq1fjZz/7Wdf/rV69Gtu2bcOQIUNwySWXAAC0Wi3uuOMOvP3223j22Wfx2muvdW2/b98+/Otf/+rxPFOmTMGBAwfw/vvvdyVJAqSXsX37dqHP1b9/f0RGRmL//v1obm5GdHQ0AErcfeSRR3rMPYmPj4dKpUJxcbHQOQDl34mvWLNmDWpqanDllVfi3Xff7XGbxsZGDBgwAJ9++ilef/11Yc/HG2+8gbvuuqsrUdZiseB3v/sdLBZLt1wXT5ORkdGrnss999yD/Px8/Nd//Rcuu+wyr42JYXqCDRSGESAzMxOZmZlC26pUKnzwwQdYsGABbrnlFlx33XUYNmwYTp06hS+//BIxMTH45z//2c29/qc//QkbN27E66+/jn379nXpoKxatQpXXXUV1q5de9F5fvvb3+L999/Hgw8+iI0bNyIjIwN5eXnYuXMnrrnmmosE5npCrVbj4Ycfxp///GeMHj0a1113Hdrb27Fp0ybU1tZi3rx5Xd4NmejoaEydOhXbtm3DHXfcgSFDhkCj0WDRokUYM2aM274TXyCHd5YsWdLrNrGxsVi8eDFWrlyJjz76qEvozREzZ87EuHHjcMstt0Cn02H9+vU4dOgQJk6ciCeffNIt42eYYIKreBjGA0ydOhV79+7F7bffjp07d+KVV17Bjh07cNttt2Hv3r2YOnVqt+0TExOxfft2/OIXv8DJkyfx+uuvIy8vD8uXL8djjz3W4zlGjBiBH374ATNnzsRXX32FFStWICwsDDt37sTEiROFx/r888/jb3/7GyIiIvCPf/wDn3/+OSZNmoQ9e/b0apR9+OGHuPrqq7Fu3Tr88Y9/xO9///sew0GufCfe5vTp09iyZQuSk5MdtjCQq7jefvtt4eO/9tprePrpp7F582a88cYbqK6uxiOPPIIff/xRWKSNYfoSKkmykVFkGIZhGIbxA9iDwjAMwzCM38EGCsMwDMMwfgcbKAzDMAzD+B1soDAMwzAM43ewgcIwDMMwjN/BBgrDMAzDMH5HQBoobW1tOHXqFNra2nw9FIZhGIZhPEBAGihFRUW47777UFRU5OuhMAzDMAzjAQLSQGEYhmEYJrhhA4VhGIZhGL+DDRSGYRiGYfwONlAYhmEYhvE72EBhGIZhGMbvYAOFYRiGYRi/I8TXA2AYhmECB5PJBLPZ7OthMH6IVquFRqNx2/HYQGEYhmEc0tjYCL1eD6PR6OuhMH6KSqWCTqdDSkoKVCqVy8djA4VhGIaxS2NjI8rKyhAdHY3ExERotVq33ICY4EGSJLS0tKC6uhoRERGIi4tz+ZhsoDAMwzB20ev1iI6ORnp6OhsmTK9ERETAaDSiqqoKOp3O5d8KJ8kyDMMwvWIymWA0Gt1yw2GCn9jYWJjNZrfkKbGBwjAMw/SKfKPRarU+HgkTCISEUGCmo6PD5WOxgcIwDMM4hL0njAju/J2wgcIwDMMwjN/BBgrDMAzDMH4HGygMwyijuRmQJF+PgmGYIIcNFIZhxJAk4ORJ4PPPgRMnfD0ahgkajEYjli5digEDBiAiIgJTp07Fhg0bhPY9duwYFi9ejJycHERGRiIxMRGzZ8/GV1995dJ58vPzceuttyI9PR2RkZEYNmwYnnvuORgMBpc+qxLYQGEYxjEdHcCePcD69UBlJbB3L9DQ4OtRMUxQcM899+DVV1/FHXfcgTfeeAMajQZXXXUVfvrpJ4f7FhUVoampCXfffTfeeOMN/P73vwcALFq0CCtWrHDqPCUlJZgyZQp27dqF3/zmN3j99dcxffp0PPPMM7jtttvc98EdIQUgJ0+elGbNmiWdPHnS10NhmOCnpUWS1q+XpFdekaQPPpCkL7+UpL/8RZJ++EGSLBZfj47xMK2trdLx48el1tZWXw8lKNm9e7cEQHrllVe63mttbZUGDRokTZ8+veedTCZJamuTJLO5x//u6OiQxo4dKw0dOtSp87z44osSAOno0aPd3r/rrrskAFJtbW2vn8edvxf2oDAM0zt6PfDdd0BeHpCZCcTHA2o1kJ4OHD0KnDvn6xEyjFvIycnBz3/+84venzdvHubMmeOx865evRoajQb3339/13vh4eG49957sXPnTpSUlHTfQZKAlhagro4eLS2AydQtL0yj0SAjIwP19fVOnaexsREAkJyc3O3UqampUKvVCA0NdcdHdwgbKAzD9ExhIfDNN0BRETB4MBARYf2/6GggJITCPl6MSTOMJ2hubkZhYSHGjh170f8dPnwYY8aM6XE/k8kEvV4v9LBYLD0e4+DBgxgyZAhiY2O7vT9lyhQAQF5e3oUnBYxGQKsFLBagqQmoq0NLeTn0paU4m5+P1157Dd999x3mz5/v1Hnmzp0LALj33nuRl5eHkpISrFq1CsuXL8fDDz+MqKioHj+Lu+FePAzDdMdiAY4cAXbsAMxmIDcX6El8KS0NOH0aOHgQmDnT++NkGDdx9OhRSJJ0kYFSWlqK2traXg2U7du3Y968eULnKCgowMCBAy96v7y8HKmpqRe9L793/vx565uSBLS20jUaGgpoNGSomM14/He/wz/++U8AgFqtxo3XX4///Z//ceo8V1xxBZ5//nn86U9/wtq1a7ve/+///m+88MILQp/XHbCBwjCMlfZ2YNcuYP9+QKcDkpJ631ajAVJSgEOHgIEDyWBh+haTJgEVFb4eBZGSAuzb59SuR48eBYCLDJRDhw4BQK8GytixY4WrbVJSUnp8v7W1FWFhYRe9Hx4e3vX/XZhMQFsbGSe2aDR49Ne/xs+uvx7ny8rw6X/+A3NbG9r1eiAyEggNVXYeAAMHDsTs2bNx0003ISEhAd988w3+9Kc/ISUlBb/5zW+EPrOrsIHCMAzR2Ahs2wYcO0Y5JjExjveJjwdqa4Hdu4Frrrl44mSCm4oKoKzM16NwmSNHjiA5OfminIvDhw9DrVZj1KhRPe4XHx+Pyy67zKVzyx2AL6Stra3r/wGQ90QOp6ovzs4YNmQIhg0ZAgC46+c/x8IbbsC1t9yC3d9+C5VWi4iwMBjb2ug4Nh7Ri84D4JNPPsH999+P06dPIz09HQBw4403wmKxYOnSpbjtttuQkJDg0ucWgQ0UhmHoRrN5M1BSAuTkAD2stHolM5OSZY8dA8aP99gQGT+kF6+AT3BhLEePHu0x/yQvLw85OTm95ly0t7ejtrZW6BxJSUnQaDQXvZ+amoqyHoy88vJyAMCAAQPkk1lzTwT42XXX4VePPYbTJSUYmp2N1KQkOk9DAxAeTosJtfri8wB46623MH78+C7jRGbRokVYuXIlDh486LJhJgIbKAzT18nPB7ZsoWS7wYMpdKMErRbo14/c6xkZQGKiZ8bJ+B9OhlT8jSNHjuCWW27p9p7FYsGPP/6I2bNn97rfjh07XM5BGTduHDZt2oTGxsZuCay7d+/u+v+u3BOgR+9JT7R2ekYampoArRbjxozBpu3b0ajXI1ZOcg8Px+4dO6zn6aSyshLx8fEXHdNkMgFwT6diEdhAYZi+itkMHDgA7NxJq6ncXOePlZQEnDpFAm4LFyo3chjGR1RVVaG6urrLkyDz5ptvQq/XY/To0b3u644clJ/97Gf461//ihUrVuCJJ54AQIqv77//PqZOnYqMjAzAaIShrg7FlZVITEpCok14paq6Gv0vyBUzmUz45yefICIiAiOGDqXzXHcd/vq//4sV//43nvjNb4CODhhraug8kyYhIymJkm/VagwZMgTff/89Tp8+jSGdYSMA+Pe//w21Wt1rTo67UWygGAwGfPLJJzh+/DhOnDiBpqYmPPXUU7jyyisVn/wvf/kLvv76a0yfPh0vv/yy4v0ZhnGS1laq0jl4kIyLfv1cP2ZWFkngDxwIDB/u+vEYxgscOXIEAPD999/joYcewrBhw7Br1y6sX78eALB//37s3r0bU6dOvWhfd+SgTJ06FYsXL8ZTTz2Fqqoq5Obm4oMPPkBhYSHefffdrtyTPQcPYt5NN+GZpUvx7P/7f137/+qxx9DY1ITZM2YgLTUVFVVV+Ndnn+Hk6dP42wsvIDo6ms4zaRIWX389nnruOVRVVyM3Jwcf/PvfKCwpwbuvvgrU13d5VX732GP47rvvMGvWLPzmN79BQkICvv76a3z33XdYsmRJt3CQJ1FsoDQ0NGDlypVITk5Gbm4uDh486NSJT548ie+++85rgi8Mw3RSW0shnfx8MioiI91z3PBwICqKtFHS0oAL9BYYxh85cuQINBoNPvnkEzz88MN4//33MWvWLGzZsgXXX3898vLyoBXM+3CWf/7zn/j973+PDz/8EHV1dRgzZgy+/vprCi+1tVH+SUjPt+tbbrgB7370EZa/9x5qamsREx2NiePG4eVnnsGiq67qfp7ly/H79HR8+OmnqKuvx5iRI/H1J59g9ty5ZAh1dADNzZg9ahR2rF+PZ195BW+99RZqamqQnZ2NF198EU8++aRHvwtbVJKkrC1pe3s7mpqakJCQgJMnT+L+++9X7EGRJAkPPfQQsrKycODAAWRnZyvyoJw6dQr33Xcf3n77bQztdF8xDCNAcTGwdSslxebkCCfcCWOxkDbKpEnA3Lk966cwAUVbWxsKCgqQnZ3dVZIaTCxZsgRbt27F6dOnfT2Ui5Ek8my0tytLXHcVi4USciMigLg4Rbu68/eiWEk2NDTU5fKi9evXo6CgAPfdd59Lx2EYRhBJoiqb774jD8rgwe43TgCrDP6RI0BBgfuPzzBu5siRIxgxYoSvh9EzRqOiyh23oVb7RR6Z16XuDQYD/v73v+PnP/+5V+qoGabPYzJRvsmGDTTpZGcLVwI4RXQ0HX/3bmvlAcP4IZIk4fjx4/5poFgspHuiVnv2evVjvF7Fs3LlSoSFheHmm28W3kev16OmpqbrdVFRkSeGxjDBR3Mzia8dPQoMGOC9vJD0dKsM/owZ3jknwyikoKAAzc3N/mmgtLd7P7TjZ3jVQCkpKcHq1avxhz/8QVFy7Nq1a7Fy5UrPDYxhgpGqKhJfKyqiyhpv5g9cKIPvpax/hlFCTk4OFKZhegdb70kfzuPyqoHy5ptvYtSoUV2dEkVZtGgRZto0IysqKvJqwyKGCTjOnqVKnfp658TX3EF8PFBTY5XB93YcnWECFaOxz3tPAC8aKHIt+QsvvNBNEMdsNsNoNKK8vByxsbE9SgonJiYikdUpGcYxFguQl0fia2p1752IvYWtDL6NUiXDML3A3pMuvGagVFVVAQCefvrpi/6vuroat9xyC37zm98oyk1hGMYGi4VKiPfvBxIS6OFrQkOpTFGWwfeHMTGMP2M0UmJ7H/eeAB40UPR6PVpaWpCWloaQkBBMmDABL7744kXbvfLKK0hJScGdd96JnJwcTw2HYYKf6mryVKSk+JdIWlISJczu2cMy+AxjD/aedMMpA2XNmjVobm7uqqzZvn17l4fkpptuQnR0NFasWIF169Zh1apVSE1N7bGVNQD8z//8D+Lj4zFr1iwXPgbDMCgtpcktM9PXI+mOSkVjOnGCSpyHDfP1iBgn8Mtk0mCjrS3gvSfu/J04ZaCsWrUKFRUVXa+3bt2KrVu3AgAWLlzYpf3PMIyXMJvJS+FPnhNbIiJIUn/3bu+WOzMuo+n0eJlMJkRERPh4NEGMxUK6QRpNQHtP5E7HIb1I8yvBqSN8+umnDrdZtmwZli1b5pZjMQzjgMpKCvGkpvp6JL2Tmkodjw8cAObMCehJuC+h1WoRFhaGhoYGxMTEQMV/N88QBN4TAGhsbIRGo+kybF3B60JtDMN4gJISKkv0514psgz+4cPUpDA729cjYgRJTExEWVkZSktLodPpoNVq2VBxJ2Yz0NhILSlMJl+PhpDH0dYmtLkkSWhpaUFjYyNSU1Pd8vtgA4VhAh2TiToT63S+HoljYmIAvZ4SZlNSKPTD+D2xnSE5vV6PsrIyH48mCGlvp/COP2kFmc0UblLQ7VylUiEuLg46N81FbKAwTKBTXk43/YwMX49EjIwM4MwZUpmdNs3Xo2EEiY2NRWxsLEwmE8xms6+HEzy0tADff08LjaQkX4/GSkUFkJwMXHqp8C5ardYtoR0ZNlAYJtApLqbVjoL2ET4lJATo35/69GRl+XfeDHMRWq0WWn9a6Qc6R49SBd6QIUBngqlf0NZG4/Fh2LhvtkhkmGDBaCRZ+/h4X49EGf360QS4e7f/xNwZxts0NVFOVr9+fbZjsT34G2GYQOb8eep3E2gGCkDaKGfOAMeP+3okDOMbTpyg8Cy3cukRNlAYJpApKqJyXTdoDngdWQZ/714yshimL9HQQN6TxET2nvQCfysME6gYDNSILxC9JzL9+1PH5X37SKiKYfoKJ04AtbXsPbEDGygME6iUlQF1deSFCFRUKqrqOX6cSqUZpi9QVwccOUIGOuvJ9AobKAwTqBQUkE5BoDffi4ykSoG9eylpkGGCnePHyXPYr5+vR+LXsIHCMIFIYyPlnwTLBDdgAOm5HDhAapoME6zU1lJpMXtPHMIGCsMEIufPU5JdIKjHiqBWk5Fy6BAZXgwTrBw9SguMQM4d8xJsoDBMIHLmDFXBBFP2v9zheM8e4f4fDBNQVFdTcmxyMntPBAii2Y1h+gh1dZQgm5Dg65G4n4wMoLCQPCkME2wcO0Z5Vuw9EYINFIYJNMrKaJKLifH1SNyPrQx+VZWvR8Mw7qOqirwnKSm+HknAwAYKwwQSkkTluBERwesiTkgAmpuBkhJfj4Rh3MeRI9QYMFjyxrwAGygME0jo9VTtEizVO70RFUUidFzRwwQDFRXAqVPcGFMhbKAwTCBx/jytwqKjfT0SzxIXR8ZYba2vR8IwriFJJGnf2mpNBGeEYAOFYQIFiwU4fTr4jROAPCjNzUBlpa9HwjCuUV5OYdkBA3w9koCDDRSGCRSqquiGHezhHYDya8LCqKKHYQIVSaLcE6Oxbyws3AwbKAwTKJSWkj5IZKSvR+Id4uIopNXc7OuRMIxzlJWR15NzT5yCDRSGCQQ6OshNHIylxb0RG0uKmxzmYQIRi4W8Jx0d7D1xEjZQGCYQqKykEE8wirP1htwEsbTUt+NgGGcoLeXcExdhA4VhAoGSEsBkoryMvkRcHOWhtLf7eiQMI47FQpU7FkvfCcl6ADZQGMbfaW+nlVhfFHjS6Ujan1VlmUCiuBg4e5a9Jy7CBgrD+Dvl5UBNTd8K78iEhlIMv6LC1yNhGDHMZvKeSBIpPjNOwwYKw/g7RUU06Wm1vh6Jb4iJodWoxeLrkTCMY4qLSQU5Lc3XIwl4QpTuYDAY8Mknn+D48eM4ceIEmpqa8NRTT+HKK690uG9eXh4++eQT5Ofno6GhAdHR0cjNzcXdd9+N0aNHO/UBGCaoaWujm3Nf7n4qq8rW1ABJSb4eDcPYp6CAjOnwcF+PJOBRbKA0NDRg5cqVSE5ORm5uLg4ePCi8b2lpKdRqNa677jr069cPTU1N2LBhA37729/i5ZdfxtSpU5UOh2GCm/PnKQcjO9sjhz9XrML+I2qYTB45fBdaLTBptAXZmU701omMBAwGqmRiA4XxZ9rbyYMSF+frkQQFig2UhIQEfPHFF0hISMDJkydx//33C+97zTXX4Jprrun23g033IBbb70Vn332GRsoDHMhspJqiOJLVYj9R9RoaPRCV+RWYN8RNbIzzc7tHx5OK9NRo9w7LoZxJ1VVQH09kJnp65EEBYpnvdDQUCS4MVkvPDwcOp0OzawWyTDdaWmhm7IHpe1lz4lKJSHCQx7p1jZAklSueWni4ylZuLGRG64x/ktlJSV199V8MTfjmWWZA1paWmAymdDQ0ID169ejoKAAd955py+GwjD+S1kZrcYGDfL4qSLCgduvd+DdMJmAtWspH+S224QNhY+/1MDQ6uIAY2Jo8q+sZAOF8U8kiZJjo6J8PZKgwScGyjPPPIM9e/YAALRaLRYtWoS77rqr1+31ej1qamq6XhcVFXl8jAzjc86dIzVVWVHVl5SWAq+8Qh4dgCqLnn/ee2NTq+lRWgoMHuydczKMEurryXjn/BO34RMD5Ve/+hVuueUWVFVVYd26dejo6IDZ3Pvqbe3atVi5cqX3BsgwvqaxkZLtfK19IknADz8AK1ZQR1aZo0eBNWuAm2/23lhkVVmjse8p6jL+T2UlhWUVlhcrTlSXLEioPo2W6P5oixQP/7qUqO4jfGKgDLZZAS1cuBBLlizBSy+9hOeff77H7RctWoSZM2d2vS4qKsILL7zg8XEyjM8oKyMjJTnZd2NoaQHeegvYts36XkoKJQJaLMDHHwNjxwJDh3pnPDodGW2VlZyEyPgfpaWUzK5SlnSuNFH9kj3/i2Fn10OCCueTx+Js1lwUZMyEKdRBaMnVRHUf4BMDxRatVouZM2fiX//6F4xGI8J6WBklJiYiMTHRB6NjGB8gSaR9EhpKYQ1fcPIk8Ne/dpeYX7gQuO8+YPVqYNUqMlL+9jfg9de9029Eq6UExPJyNlAY/8JopH5ZTrSjUJKonlRxDMPOrqftISGtMg9plXmYuf//UJY+GYWD5uJ8+mRYQkK77eeWRHUf4HMDBQCMRiMkSYLBYOjRQGGYPkVdHa3GfBHesViAzz8HPvrIqtwaFQX8+tfAJZfQ61tvBfLygFOnSIJ+xQrg0Ue9M76YGMrNmTTJP3JzGAYgQ76hwSXD2WGiusUCPP4P62udjs4JQGM2IbNoBzKLdtD1On06MGcOleVrNO5JVPcBHjNQ9Ho9WlpakJaWhpBODYe6ujrEX6CI2dTUhC1btqB///4X/R/D9EnKyoCmJu83GqutBV57DTh0yPresGHAE08A/ftb39NogMcfBx55BGhtBX78EZgwAZg92/NjjI+nm4Fe79vwF8PY4o3y4o0bybMKAAMH0rV65gywdSs9Oo0VtLRQ3tgPP5BEwaxZ6CfNgyEy8JLLnTJQ1qxZg+bm5q7Kmu3bt6Oq0xV80003ITo6GitWrMC6deuwatUqpKamAgB+97vfISkpCSNGjEB8fDwqKyvx7bffoqamBs8++6x7PhHDBDKSRJ2LIyMVx7JdYUDJXuDhVynvBaBzL15M5cQ9eSpSUoAHHqBJEgCWLydjxtaQ8QQREWQUVVaygcL4B5JE1W3R0Z47h8EA/POf1tdLltB1OXQoPX75S2pQuGULsHMnXSMALTr+8x9cgf+gPiYNxblzgSmzAqbLslMGyqpVq1Bh011069at2Lp1KwBKeo3u5Q911VVX4ccff8Snn36K5uZmxMTEYMSIEfjDH/6AsWPHOjMUhgku9HrKsfBSeEdtNmHqgZUYfepL65v9+gH/9V/AmDH2d543DzhwgCbFlhbKR/nTnzwfeomMpDDP6NFeNeIYpkfq6jxfXrxqldVDMmPGxdemRgOMH0+PBx8E9u6l63L/fvLsAIhrKkPcwX8BD/yLSvVnzwZmzfKoEKSrOGWgfPrppw63WbZsGZYtW9btvRtvvBE33nijM6dkmL5BaSnd7L2RBFpWhoVf/xX9as5a35syBXj4YXExtAceAE6coLDLiRPAZ59RjooniYsjD0pDA2tOML6nqsqp8mJhzp8HvvqKnmu1wD332N8+LIzyxS65BGhuBnbsQMWarUguPwIVOkuM8/Pp8f77ZOjPmUN5K34mMucXSbIMwwAwm2nSiInx7HkkifJG/vEP9Gtro1NrtNDc+wvg6quVeSWioigf5amnKInvk0+AceMo3OMpoqMpObeykg0UxveUlDhVXizMe+91eUFwww0UXhUlOhpYuBA/Gq4Eamow7PwWTKjZRB5IgK7ZQ4fosXw5MHkyeVYmTXL/53ACH9UwMgxzEVVVdNP1ZHjHYABefRV44w2g0zipj83A+mteBa65xrlJdvhw4JZb6LnFQuXJLS1uHPQFqNXk0i4u9tw5GEaEtjYyUDxlKB88CHSqrqNfP+Cmm5w+lCEyESdH30iyAP/3f3TN2ho7JhOwYwfw5z8Dd98NfPgh5bXYEVH1NGygMIy/UFJCegoREZ45/unTVA68ZUvXW2eGXI4vL38D9Qk5rh375pvJUAHI0Pr73107niPi4uj7ag3A2kkmeKiq8lwDy44O4J13rK/vvtt9c0NGBnDHHcA//kEtLK65pruGS0sLJdv+/vfAunXuOacTsIHCMP5ARweFdzwx0VksJEu/dCmFRgAKzTz5JPZc8jA6QtzQxlijocRaWbBtyxZg0ybXj9sbOh31Pqms9Nw5GMYRlZXkYfBEefG6dWSEA1SpM2eO+8+hUtGx778fWLkS+OMfKfldNoRiYoAFC9x/XkE4B4Vh/IGKCqC6GkhPd+9x6+qoFDgvz/re0KGkbZKcDHzpxnMlJ1MFwd/+Rq///vdOr4oHkgdDQiiX5vx50oRgGG9jsXiuvLixEfjXv6yv77vP86rStpVARiOwfj0ZXqGhjvf1EOxBYRh/oLiYvCjuVFLev58qcmTjRNY2eeklz2mIzJlDKzCAwi+vvgqVxUMx7NhYSvaTEwgZxpvI5cVOyNs75OOPrXlcl14KDBni/nPYIyyMxBevuMK7570A9qAwjK9pbydFyAsS7RR3Oe1EbTZh7L4PMPzYF13vGSL6YeecJ1AZMxb42rpta5sL4+6NX/2KSo4rKoCTJzEq/N/YPfxO958nPp48KNXVQKcYJMN4jaoqSjp3t9ezsNCa9xERAdx1l3uPH0CwgcIwvub8eaCmBsjK6va20i6nABDbVIZ5O15GUu2ZrveKB0zBlmmPwRimA3rJKXVrCD0ykkqPly4FLBaMPLQKhQnj0ZQ10o0nAa3y2tspD4ANFMbblJTQhePO8mJJAt5+29oHa/FivxZS8zRsoDCMrykqoonpAitBSZdTAMg6uxlTtv8vtB1khZjVITg45V6cHn4tNCoVImWRpgvQaoFJoy0ufYSLGDoUuP124KOPoJYsmLvzFaxL+V8Abq5QklVlx45lVVnGe7S2kqiiu8M7u3YBR47Q8+RkYNEitx6+tQ34+EtBpWdzOqDRIHL3dlz/4ky3jkMUNlAYxpe0tlIDMDuNMh12OQUoRPT+X8nQAYC0NGh+9ztMysnBJLjZ+BDlpptIx+HYMcQYqjFlx/8BNz/uXkNCVpWtq+vTK03Gy8jdi92YoK3uaCdRNplf/tJtCapaLYBWQJJUCroad5oHDUa3jMEZOEmWYXzJ+fN0c3W1k/d331mNk7lzqXInx0VtE1fpLD1uDyX57KyCraRg606ioymZkMuNGW9SUUHlxSHuW+MPO/al9Xc8ZgwwbZrbjj1ptAW6WAmREQoeoR30r86NifsKYQ/KhVRXk6DVjBnsMmY8z7lzVmVUZzEYgG3b6HlkJPDQQ0C4G7RN3EFSEnbP/C1mbfozvf7HP6j02F3dVFUqWh4WF1uF4hjGk8jlxW5sSRFpqMHIQ6vohVpN3YrdeP/JzpSQnamwmq60lPoLLfJNeAdgD8rFNDfTZCe3nWcYT9HcTPknrkrbb9vWJVuP2bP9xzjppCR7Fk5ld4o9tbWRToo7S4Pj4ylh0ZPy+gwjU1tLSe1ulLefdGgltB2d1/AVV7C2TydsoPREYyN5UhjGk5SVkRqqq4l2339vfb5woWvH8hA7Jz6AxthOr0l+PvDvf7vv4LGxdM1ymIfxBlVVlDsmqya7SELVSQwp3EgvoqMpuZwBwAZKzzQ1AeXlvh4FE+ycO0fhCVcUIgsK6IYPUM5Jbq57xuZmOrQR2DHnd9ZQ1urV1moFV5GPWVbmnuMxjD2Ki92nrmqxYOLuFdbXt9/umXYXAQobKD0hSfQj9GEXRybIaWig35ir4Z0A8J7I1CYNAX7+c3ohSZTI29TknoPHxpLAlVJVO4ZRgsFAhrC7you3bEFi9SkAQH1cps+VW/0NNlB6o76e4owM4wlKS+nm7MpqyWgENm+m56Ghnmkm5m5uuAEYPZqe6/XU9l3qWZ9FEfHxlBtQVeX6sRimN+TyYncYKK2twAcfdL08MPV+t1YFBQNsoPSEWk2WMuehMJ5Akki3JCzMtUz9HTusiaGXXEIdiv0dtRp47DFrg7UdO4ANG1w/bmgoeU/kbs0M4wkqKqiKx5WqO5k1a8ioBlCUNg0VaeNdP2aQwQZKT6hUNOFxTJvxBLW1pH/Sh8I73UhMBH7zG+vrt98mj5KrREVRXo/FR8J0THAjlxe7I0ekogL4gnplmdUh2D1+ievHDELYQOkNnY4mzTZPdFNj+jRlZVRi7IqOQlkZcOwYPU9PDzwNkBkzrEaV0Qi8+qrr+SPx8eT17FyVMoxbqamh35Y7wjsrV3b93k+NvA6NMW7SBQoy2EDpDbl0Ua/39UiYYMJiISFAV8Mxtt6TBQsCU1RwyRISggIo5PWvf7l2vKgoCs1yuTHjCdxVXnz4MIU2ASAuDkfH3ur62IIUNlB6Q6slMSme7Bh3Ul1NvylXwjsmk1UyPiQEuPRS94zN24SHA088YU0M/Pxz4NAh144ZGkrVPAzjboqKXC8vNpuBd96xvr7rLnSEukdPJRhhA8UekZFUCuqOKgOGAShsaDC4tgrbu5cqCQDq1+HujqreZNAg4M47ra9fe801Fee4OMrvaW52eWgM00VLC/2uXFWP/f57qwGdmxu4iwsvwQaKPXQ6cuu5S6uB6duYzSSq5mqS3fr11ucLFrh2LH/guuuAsWPpeW0t8D//4/yiQA7NcjUP406qquh35cq129wMfPSR9fV997km0tgH4G/HHtHR9KPicmPGHVRW0kTXr5/zx6iqAvLy6Hn//tYbeyCjVgOPPmpNGt69u7sRpgSNhvJxuAKPcScVFWQ0u1Je/O9/Wxe7c+YEXmK7D2ADxR5qNU12vBpj3EFJCdDe7lozvx9+sHoXFiwInhVYQgLw8MPW1++843zpcVwclYO2t7tlaEwfx2x2vby4uBj45ht6HhYG3H23e8YW5ATJ7OZBYmIoZsiy94wrmEwU3nElX8RsJgMFIMPkssvcMzZ/YepU4Mor6Xl7O7BqlXPHiYsjJWhOcGfcgavlxZIEvPuuVZ/npptIC4hxiGJdXYPBgE8++QTHjx/HiRMn0NTUhKeeegpXyhOLHfbv348NGzbg8OHDqK6uRr9+/TBhwgTce++9SPTXP1hsLJUa19YCSUm+Hg0TqMiT3AAX9A4OHrSWvU+a5LrQmz/yy18C27ZRaHXPHtJICQtTdgy5Aq+8HMjI8Mw4mb5DVRXpYUVEOLf/vn107QJ0D7nhBveNLchR7EFpaGjAypUrUVRUhFyFnVP//ve/4+DBg5g1axYeeeQRzJ8/H5s2bcKSJUtQ4699byIjqfad81AYV6iuJq+A0putLRdqnwQjYWFUmQTQdbd/v3PHiYkhtzyryjKuUljo/HVrMpH3ROYXv3BtDuhjKPagJCQk4IsvvkBCQgJOnjyJ+++/X3jfX//61xgzZgzUNnHzKVOm4OGHH8bnn3+O++67T+lwvINWS0l3I0b4eiRMoFJc7NrEVFdHHgWAkmwnTXLPuPyRWbOsoaxt20h1VilxceRtqqlhzyfjPC0tlIPobHjn66+pPBkARo4EZs5039j6AIo9KKGhoUhw0rU8bty4bsaJ/F5sbCyKioqcOqZX0OkowZFl7xlnMBhcm+QAYONGqzdg/nz3NCvzV8aMsSYk7t1LnhSlyJ5PTnBnXKGy0vny4ro6ax6VSkVlxYGo+OxDfN7b2WAwoLW1FTp/FpuKjaUVsF5PfU8YRgl6PU1yAwc6t78k9Y3wjoxGQ16TdesoLLZnD5VlKiU8nNzzo0e7fYhM3+DctmLsP5oD0zHlCrJTfvoYuQYDAODM4IXYc3gwcPji7Vp53dsrPjdQPvvsM5hMJlxqR1FPr9d3y1HxurdFTrqrqmIDhVFOVRVV4IQ4d7n1rzhs9QSMHQukpLhxcH7KrFlkoAAU5nHGQJFVZV0V2GL6JmYz9v/UjIY25aHZhNozGHSaFhXt2kjsGnk32lrte0+0WqdGGdT41EDJy8vDypUrMW/ePEycOLHX7dauXYuVK1d6b2A9ERlJvRgmTPDtOJjAQpIoWdOF5oC5p2xEy+QOwMHOiBGUa1NbCxw4QFU90dHKjhETQ4ZdRQUbKIxy9HqYTKQ5pFJJiBCVL5IkzMz7B1SgfY+Ovx3qeB0i0bs6slYLTBrNCd0X4jMDpaioCE8//TRycnKwdOlSu9suWrQIM22Si4qKivDCCy94eojdkWXveTXGKKGhwSUNhTBjIzIKt9OLmBhrhUsA0toGfPylaO6MBhNTLsHQ2rVARwd2Lt+LgsH2dV/kST47s/NGoFaT16q0FBgyxLXBM32PqqouUcSIcOD26wW1sLZtAyqP0fO0NExYeiUmaFlHyxl8YqBUVlbi8ccfR1RUFF5++WVEOmiclpiY6HudlOhoWolVV7OBwohTXU2rfyfDMrmFP0Jj6aAXl14akH5grRZAKyBJKhgU5LueGjAbQ4+vBQCkn9mKY+kOcm9agX1H1MjOtLkZ6HTk+Wxrc03Bl+l7FBYqT2o1GoH337e+vvfegLxm/QWvGygNDQ14/PHHYTKZ8Nprr/ne8BBFrj6qqKAOrAwjQnk5TXLOSNJLEoaeDfzwzqTRFuw7oobJpGy/5oyhaIlKQlRLNdIq8hCnakB7eM+Lg9Y2MoAuOodsoFRVAZmZzn0Apu/R1ERzvSpV2X5ffGEVU5w4MbjlALyAxwwUvV6PlpYWpKWlIaQzObC1tRVPPvkk9Ho93njjDWQEmspjbCxNdtOmBXeZJ+MezGaq/pKb4CkkofoU+jV0JoQPHx6wqqjZmVJ3r4YS6i8BvvgCasmMn8X/BFx+eY+bffylpmfvjFZL5dnnz7OBwogjh/PVaeL7mM3At9/Sc42GvCeMSzhloKxZswbNzc1dlTXbt29HVVUVAOCmm25CdHQ0VqxYgXXr1mHVqlVITSUr9Pnnn8eJEydw1VVXoaioqFs1TkREBGbNmuXq5/EsLHvPKKGmhnJQnPyt5J5aZ30RoN4Tl7mEDBQAFNvvxUCxS0wMcO4cMHkyLywYMc6fVx7eOXmSekAB5Dnhik+XccpAWbVqFSpsBJC2bt2KrVu3AgAWLlyI6F6y7c+cOQMA+Pbbb/GtbGl2kpKS4v8GSmQkxbKrq9lAYRxTXU1iYc708DAYkFVA11S7NhKhfVWBMjeX8ncqKoCjR0n8Kj5e2THi4635Y32hRJtxjY4O8pQrzTXcscP63Bn1Y+YinDJQPv30U4fbLFu2DMuWLVO8n9+j0bDsPSNGWZnzCXJbtyKkwwgAKBo0F4P7aoKnSkWaKJ99RqGaHTuAq69WdozwcFpYVFaygcI4RvaSK2nsKUnAzp30PCSEvHWMyziRudfHiYujskWj0dcjYfyZtjb6nTirkLxhQ9fTM0OcCGsEE7ae1W3bnDtGZCSFeaTetSgYBgAZskobe+bnW5Njx45VrtnD9AgbKEqJjaW8Au5uzNhDlrd3piS9oIAmPAD6+FzUJSrrGh50ZGVZE4SPH7feCJQQF0eJjw0Nbh0aE4QUFioPy9qGd6ZPd+tw+jJsoCjFVvaeYXqjqop+J86EeNZbS4tPDerj3hOAwjyXXGJ9vX278mPExFhLRxmmNxobyYOixPMpSVYDRa0OaDFFf4MNFGeIiKAkKobpjeJi55JjjUZgyxYAQIcmDGey5rp3XIGKq2EelYpyA0pK3DcmJvioqiJDVok0QGGh1fAdNYqFPN0IGyjOoNNRiKex0dcjYfyRpiaa6JzJP9mxA2hpAQAUZ18CU6jzPXyCivR0IDubnp8+7ZwnJC6ODJRWBXK2TN9CLi9WIqzI1Tsegw0UZ5Ddxc7Ewpngp7qafh/OJMp9/33X0zNDr3DjoIIAV8M8Oh3pVHCYh+kJk4k840oXFrKBolJxeMfNsIHiDLJ1XV7u23Ew/kllJf2rVBSstBQ41tlkLCMD+v7D3TuuQMc2zNOpu6SIkBDKFzh/3n1jYoIHvZ50dpQYKKWl1rDhsGHUgZtxG2ygOEtMDFnbFm6RzdhgsVBM2hnviU1pMRYsUK5kGeykpACDB9PzggLSmVFKbCzt29Hh3rExgU9VlfLyYg7veBQ2UJxFpyNru7bW1yNh/Im6OuWrMIDcyz/+SM9DQqhzsT9iMFAJdFOTb85vG+ZxJlk2Pp6uWZYJYC6koIDLi/0MNlCcJTKSku14omNsqa6mm3hkpLL99uyxanRMm+Z/lQBmM7myy8uBgQN9J1boqoESFkbj5vAsY4tcXhwXJ75PRQWJ/wHUkqF/f48MrS/DBoorhITQRM0wMufP0+9CaXjGJjnW7xoDNjRQ5YxORzLzV18NjB5NK06zk12KnSUpiTo7A2QwOVPuHx1NY2dVWUamshJoblYWmpWl7QHvh3fq6ymUXFcX1GkGbKC4gk7HsveMFZOJ9E+Uej8qK4G8PHqenAyMGeP2oTmFyUQrxIYGcl9ffz3lgISFkScjK8s3N3pXNVFkVdm6OrcNiQlwAqm8uL2d5oz0dLr35OcDZ85Qkq/J5L1xeAE2UFxBp6PJm8uNGcB5efsffrDe5BcsUDZJegq9Hjh7FkhLAxYtIqMgykaTJSYGmDOHrgFnklVdYeZM63e0bZtyAykqirRmuNyYAazlxUrCO3o9cOoUPc/KUtZY0FWKiiikdM01wK23AtddB4wbZ/2/U6fot93W5r0xeQinuhkznciy99XVNJEzfZvqauVVAGYzGSgA3XTnz/fM2EQxGmmSi44G5s2jUE5vnyc5GZg9m6T5a2qAhATvjDE+Hhg5EjhyhHJJzp0DMER8f5UKCA0lbxd3JWeqq8mblp4uvs+uXdbn3vSe1NSQgT1tGt1/tFpaLAwebO3Yff48XRPl5TQfRUWR8RUVFXCVgWyguEpEBMUCZQuW6bsUFwPh4cr2OXCAJh0AmDTJezf5C5EkWnU1NwNDhwJTpogl/eXmkhdx82b67FFeUr6dNYsMFIC8KHEKDBTA2pW8pcV7Y2b8k6oq8qKEhorv44vwjslExtS8eVRyfyHh4eTNycoCJk+mbWUDvrqaPJ2hoWTgx8b6h6fWAf4/Qn9Hp7P2b2D6LnLIQGl4x1b7xFfJsS0t5BYODQUuvxy44gplFQnjxgETJpCB5q0Y+IwZ1gn2p5+Uh3nkruSyqB7TN5EkyqNSUnVXX09dtQHynGdmemRoFyGHdkRy1EJCgNRUui5vugm4+WbgyiuBnBzytJw5Y81b8WNNIPaguEp0NE1y1dXKGkwxwYWcf5KTI75PbS2VFwOkQDlxomfG1htmM62qOjqA8ePJg6MkDi+j0VASbVMTVfsMHuz51VlsLDB2LHDwIFBVhYTqUzDEKFDelVV+y8uV/c2Y4KKhQXnfrF27rJUz06d7J2xSU0Pe+mnTlHl6ABpfQgI9Ro60dvWWq+AKC2ku0OnIu6IkRO1h2EC5gB+e34qwc1UoGTRMcA8NtNIgTOpfgmye6PouVVU0aSmRt9+40TrRXXaZcml8V6ivp5tzRgaFc7KzXTMqwsMpH6WpiSY8b1wLs2aRgQIgq2ArSsYobA0gq0FPm+bd757xH2Tvd08hk97wdnmxHNqZO5e8Iq4SE9N73sr585SHFh3tF0m2bKDYMm8eLtu8mdrc958Kc4hoPkEY9m1rQvYdloCI6zFuRpKUy9tbLN3DO5dd5vZh9YhcCq3VUjXMuHHuy8GIi6NJ9JtvaIWmZNJ3hmnTgLfeAjo6kFnwEzD6PgAKVrM6HXm+amtJX4Xpe5w/T8ap6Lzd1AQcPkzP+/cHBg3y3NhkioroPGPHuv/YveWtnD1L10aIb00ENlBsyc0FNm9GiNmInLqDKMt03JmytQ2QJBVM7RJNdImJXhgo41fU15MLVkn+yZEj1jLXsWM9fzMHaPKpqaHJbsoUZVULoqSlkWfj++/pe3EmZCRKdDTF2PfsQaShBinVx9CYNUp8f1s1aDZQ+h7t7bSwUBLe2bPHKk7ojfBOTQ0ZEc6EdpQi562kplLIt7bW5wtuNlBsue464J13AABzVLuA6yc73OXjLzUwtIJW0dXVbKD0RfR6qn5RooVg6z25/HL3j8mWtjargNz8+cCoUZ6d7IYNo9j+9u0Uz1ba30QJs2Z15fHkFG1FnhIDBSBPUlkZlxv3RaqryYjOyBDfx5vVO3JoZ84c7+qsANa8FR/D8Qhb5s+3Tqa2lrIo3hasYvyD8nJaaYiuphobrRNdTAwwdapnxmWxkAu7uJiMhuuvJ4+Dp1diKhUl3I4aRStUT1YJTJ7c9XmyS36CyqLwmtXpKFnQD+LtjJepqFBWXmwwdOU8oV8/Ksf3JMXFngvtBAhsoNgSEWGV0Zb7j4iiVpOuQnu7Z8bG+CcdHcrl7Tdtst60L72UVvHuprmZfr/h4VReeMUV3g1jhISQHH5ODiXfeUoOPzKSjCEAEcYG9C8/rGz/2FgyGFkNum/hTN7Y3r3W63baNM+GP2pryfs4dapfVdV4GzZQLsQ2WVEuARVBrSKjhrsb9y1qashNLBrHliTPap+YzZRUV1VF3pLrr6fwhS+qVKKiKGk2MZG8FJ7CpjdPVsFWZfvKatCsh9K3qK+nuVpJ/om3qndMJuv128cVytlAuZB586yu+t27FeyossreM30HvZ7CA6IKsqdOkccFoK68SuLfjujoIK9JQgJw7bXknVEyAXuCxEQqP1arPXdtTJoEU2fFXUbhDuVicZGR9Dfh7sZ9h6oqEigU9KBoOtqA/fvpRWws6Yl4iuJiKvtndXI2UC4iIQEYOJCel5YqyysJD3eu/TsTuJSWKsvp+P5763N3e0+qqymZbtEiCq34S9+N7GyqeKiv94ziclgYyjIpjyesvRk4dEjZ/rIadGOj+8fG+CdlZYryxlJL91u71ntSN6eujkI606b16dCODBsoPWFrHSsJ87Dsfd+irY0mOtH8E4OB+sYAtGqfOdN9Y7FYyAAYOdI/e8uMGUNKuWVl1onejRTlzLa+kL9jUaKj6Zpl72ffwGgkL4UC72JmoU31zvTpHhgUyANaUUElvp6QAAhA2EDpiVE2pYpKwjw80fUtqqtp1S1qoGzdar05z5mjvLGgPerqqLLAG8JRzqBW06pw+HDqfaK0Qs4B5WkTYdR2Gma7dilLVler6VFe7tYxMX6KXF4sqNGjNpswoKRzoRoVJdYLxxk4tHMRig0Ug8GA9957D0888QSuvvpqzJ49G999953Qvnq9Hn//+9/xyCOP4PLLL8fs2bNxUC7b8ieSkqwW7MmTlPwqgkZDcWxOuOsbVFXRqke0CseT4R29nm7+SpsVepOwMMpHSU+nCgo3YtFoUZTeubJtbaUu0UqQZe/dbDgxfkhlJf2dBa/btIqDCDUZ6MWUKZ6puquro+NOm+behUuAo9hAaWhowMqVK1FUVITc3FxF+5aUlODjjz9GdXU1cvy9b82UKfSvxQLs2ye+X3Q0Tb5yjxUmeCkuFu+Ceu4cdQ8FyMvhTk9HYyOt7IYMcd8xPUVsLFX2REeTRosbOZfpQphHp7MqAjPBiyTRtaige/HAku3WF54I78hVZOPHuzdpPghQbKAkJCTgiy++wGeffYYHH3xQ0b5Dhw7F119/jY8//hi33HKL0lN7F1vxLCVhnrg4soZra90+JMaPaGxU1gXVk96Tykpq0xAocu2pqeRJMRrpWnETZSnj0BbW6UHas0eZ+FpEBG3P4dngpq6OvI2C4R2VpQNZZbvoRXg4GRHupriYeuF44tgBjmIDJTQ0FAlOSuBGRkYi1p9d0LYMGWK9+Rw8KJ7YFxFByZAs/BTcVFeTGJpImaLRCGzZQs/lMIe7aG0lUbThCjv5+prBg8mdXVVF14sbkNQhKM3qXOEajco8nwBVY3lSr4XxPfLvTTCRvH/5EYS3dxY9TJrk/sqa+nq6fjm00yMBkSSr1+tx6tSprkeRN0p5NRqS0QZospM7WDpCpaIfXGmp58bG+B650Z+ImuTevaS5AJC6qjurbCoqaPXl7V4drqJSUVXPuHGU+6FUu6QXinLmWF9sVSjaFhtLYafWVreMhfFDSktpbhcsL84s8mDvnY4OSsweNw7IzHTvsYOEgGgWuHbtWqxcudL7J546FfjhB3q+e7fVYHFEbKxV9t7TfU8Y72OxkFs2JkZse9sQ4Zw5vW+nFJOJJrmRI33eddQpNBoqtW5spLyAwYNd/hxVKaPIfV9fT8JaBoN4voFOR8ZSdTXfMIIRo5E8ZKJhWbMZ6Z0GSocmFCETJ7p3PCUlpLk1YYJ7jxtEBISBsmjRIsy00YwoKirCCy+84PkTjxtHBkZ7O62CLRaxCVSnIwNFrw+8lS3jmNpaeoh0ru7osIYaoqK6l7C7SmUl5XNkZbnvmN4mIoKSZg0GMg6ys106nKTW0Er322/JgNu9m9ShRQgJob9XVRUbKMFIdTVVZIr+bU+eRERrPQCgPG0CMtzZlbuhgQz0adM82+07wAkIAyUxMRGJIjcDdxMWRkbKnj2UXJWfL9bBMjTU2iqbDZTgo7oa585rsf9IjMPIRP/yY7isM7xT2H8idnwtHsNutZfjaTZTDsysWZ4pe/Qm/fpRXs6335LRlZzs2vHkYwFUzSNqoABkRBYUUPjJX5R4GfdQWalMFmCHNbxTMnAm3FZf09FBocSZM9kQdkAA+oW9jFxuDCir5omIcLvWA+MnlJVhf3l/NDSqYGi1/0g+Z/3NFKRMdbi97UOS6AbZ43xaUwP070+S9sFAZibl5zQ3uy45P2wYtawAgLw8OqYoOh19t6LaR0xgIHcvFs3/kqSu5oBmdQjKMqY42EEBJSXk9eTQjkPYQHHE5MnONQ+MjSVXsZLJkfF/2tuB0lKYJHI+qlQSIiN6eYRbMPA8/WYsKjX0ORN737aXhy5WwqTRF2jqSBLdREeMUKTn4PeMHEnXm6ty+Go1GTsArVZtu9A6IiqKrlkuNw4u5E7zovkn+fldlZjnk8fCFCbWVFBoHLKqMod2HOKxEI9er0dLSwvS0tIQEhIQkaSeiY+nsM7Jk2T5nj8vFraJiaELorpauGMmEwDo9Z2TDGmORIQDt1/fi/poSQnwPsmnq0eNxOJbIgG4QalUlulWKJTo96hU5LFsbASOHqWkWWebss2aBfznP/R82zZgwQKx/WTZ+/Pn6fxMcCB3LxYNuduEdwoz3NQzy2ym39X06RzaEcQpy2HNmjVobm5GTafq4vbt21FVVQUAuOmmmxAdHY0VK1Zg3bp1WLVqFVJTU7v2/eCDDwAAhZ3hj/Xr1+NwZwnv3Xff7fQH8ShTp5KBAlA+yvXXO97HVvbexcQ/xo+oru7s8yKQn2DbaHKKG13EVVXkaYiPd98x/QWtloyL+noqwXS2adrgwZTLUllJEgENDeKr59hYqtLq6KDEWSbwOX9evHuxJHUZKBaVGkVp090TaiguJqVYzm8Sxqmrb9WqVaiQdSAAbN26FVs7NQcWLlyIaDseg3fffbfb62/lZDb4uYHSaVgJGygAeU4KCujmFIhloMzFFBeLu2ZtQ4LuMlCam+n8IsnagUp0NIV71q+nm4Uzk7lKRWGeNWuo+m7HDuDKK8X21elIX0avB1JSlJ+b8S/a26lCTNRALSzs0jmqShmFtnAdIiG5NobGRvpNTp8eXGFZD+OUgfLpp5863GbZsmVYtmzZRe9vVSqe5A+kpZFr8Px54Phx8Q62Oh2Vo9bVWZP2mMClpYVW5CJ/+/p64NQpep6ZSeXA7qCykowTVytd/J3MTPqeGxqEZckvYtYsMlAACvOIGijh4ZQDU13NBkowIHcvFvXG2VbvZLkhvGM2U17VtGmBLQngA3hZL4JKZe3No6R5YGQk6Ttwwl1wUF0tbpzu20erf0Bc4M8RcuLo8OHB7yKOi6MKJVdaRmRn0+ICAI4dU9YIMCyMvGVM4FNdTbIPoqKZNgZK6UA3NAcsKeHQjpOwgSKKbfNA29wCe8iy927u2sr4iMpKMjpEEjdtfyO2vx1Xz5+R0Xc6nubm0vftrAy+SkVeFKBbXoEQOh3lwLipTxDjIySJwuyiYZXSUms/pmHD0Brpoue7sZHGMG2ae1tc9BHYQBFl6FDryvnAgc5ESQHkhDvR7Rn/RJIoji1SkdXeTg0mAbrRuaMapKODuu2OHOl8ZUugkZ5OoSxXvChyuTFAYR5RYmPp5sLez8BGaddxWyPW1d47cmhn7FiStGcUwwaKKLbNA9vagCNHxPbT6egi4e7GgU1dHYUIRMI7hw9bwzGTJ7vHoKiqopt1X6oI02pJdK2+3vljZGZa4/4nT4obHBoNhXNtigGYAETWohKVerA1UKa7GN4pLSUje9IkDu04CRsoSrB11YuKtsm9fHglFtjo9eJt2t1dXmyxkJE7apT72737OwMHkqZQU5Pzx5DDPADw00/i+0VHk9dMcrGCg/Ed58+TcSBSRVlRQU0rAQovupKI3tRE1y2HdlyCDRQlyM0DAboJWSx2N+8iIoIT7gKd8nIxHQWLxWqghIbSb8ZVamupX82gQa4fK9BISCAPSKfOklM4G+aRZe/r6pw/N+M7TCaad0XDO7aKw654T8xm8p6MGdO3PJ4egA0UJYSHUzwRoJvG2bNi+8XGUoIjy94HJh0dNNGJhHfOnqXfBkC/lfBw18+v11PlTkyM68cKRIYMIcOvo8O5/QcMsBp3Z86IJ61HRXEVXiCj15Nx6e38k/Jyqh7j0I7LsIGiFGeaB8bEcMJdIKPXUx6EiIFiG95xR3lxQwOFGoYMcf1YgUpGBnlSlJQJX4gzYR6VinJRysudPy/jO6qqKLwuEhbV6626RVlZ1vJ0pUgS6SWNHcstTtwAGyhKmTJFefNAW9l7JvDQ6ynpVcQb4m4DpaqK4uGJia4fK1AJC3M9WdaVap6iIudLnRnfUVgorvq8a5f1uSvhHXkh01ekADwMGyhKiY+3rmaLihDVJJjlLyfcieatMP5DSYmYyFN1NWkuAFRa7Kp6sMFAOjrDh7t2nGBg4EC62bS0OLd///7W9gBFReI5YbKaLVfhBRZNTb4pL66tpbwT0fMydmEDxRlswjzpxbvsbGiDrew9Ezi0tpKLX2TCcXf1TkUF3ZhFO7AGM/3706rUlTCpM2GesDAKE7iSpMt4n6oqMlJE8rbq66mFCUDXmrNy9B0dtADti8nsHoINFGewKTdOKxYM87DsfWBSXU0raKX5J64aKO3tVA0wciQ3mgQorDpkCIXazGbnjjFzpjU8u22bePlweDhX4QUact6QyLWza5fVsz19uvOJrTU15DV1Nn+FuQie+ZwhI6OriVj/iqMIMwpoNMi1+Cx7H1hUV9MNMcRBX02DwSre17+/68qRVVU00WVmunacYCIzk8qtnfVCJiQAI0bQ87IyylEQQa7Ccza8xHiXjg7624pWvdmWF7sS3qmvpzBiX9Mq8iBsoDiDTfNAtWRBerlg80CdjlZinHAXGEgSTXQiQksHDljLYCdPdq280GymkvRRo0hNlSEiI+kG4K5qHtHO6rLsPYd5AgNZu0akC3ZzMyk/A7SwyM117pytrZSnxgsKt8IGirPYhHmySnfa2dAGeaLjhLvAQP5beTu8o9fTZJmT49pxgpHsbLoRtLY6t/+MGVa3/08/iYV5uAovsKiqEq+6273bGjJ0NbyTmtrlWWfcAxsozmIjnJVevh9qs4BXhBPuAovqarE+HmYzsK/TixYRQZ4PZ5EkSqYeOVK8RLIvkZJCoS9nc7ni4oDRo+l5ZSUJt4kQHU0VWlyF5/8UFYmHWdyhHitJNE8MG8b5Ym7GQWCd6RWNhpQCN21CaEcrkssPAxjneD854U5WpGX8l8pKsT4eJ05YVYInTnQtLFNXR6Xszrqagx21mm4E586RsXDB36a1Dfj4S/vNGXNi5mAaDgEATrz3Ew5OHeb4vFI6YLFAu2cLJt06DNlTU53+CIwHaWmh6jeRqjuDwdp1vF8/+l05Q2MjeVnT053bn+kVNvdcoVs1j2C5MSfcBQZms3iinTvDO9XVlGchEj/vq2RmkhFnI9wm24SSpIKh1f4jv/9MWFRkxKQV7YTBAIf7GNrUMLSHoKGyDfs+y/fBh2aEqKqyGgyO2LfPmg84bZrz3g+9npLi4+Od25/pFTZQXGH8eJg1NDOmF+8Wi2fLeShcbuzf1NaKydtLklVRWK0mD4qzNDdTWKcvy9qLEBNDHiabZNlJoy3QxUqIjHD80MRFoyqFwnCxzRVINRYK7acCXd+mNid7AjGep6JTOFNj34sGwD3ibGYzefI4X8wjcIjHFSIiUJE6Fmml+xBpqKFGcY5c87YJd66WojKeo7oaaGujyhE7xDaUWjUXRo50raFfRQW5mV1p895XyMkB8vIoGTIsDNmZErIzFeijhEwFVlCY5+qoncD1jqXJP/5cBYNRAwjKpzBexmymPCGRHjhGI7B/Pz2PjaVr1xlqa8lzwtL2HoE9KC5SljnN+sLW1W+P6GgKH3DCnf9SVia0Cusm1OdK7522Nsp3GTGCO6CKMGAAVU0464m0DcXtEgzPqjv/Lnzd+ieyUrdI/smBA2SkABTeEfG49ERdHXk83dG1nLkINlBcpCzTie7GcXEUt3RFz4HxHEYjUFoqNNF1M1BcyT+prKTcCk60EyMkhLxNzc3iirC29O9PJcsAVfIIXYudBoqzSraMZ6mqovJzB15PAN3DO85W7xiNlPzEnnCPwQaKi7RGJqCqX2fOQEGBmFaCLHtfIdhokPEuer2QvH14WwOSqk7Qi4wM53vmdHTQZDdypPMrub5IVpa1mZ8z2CS5Cy8uADZQ/JXiYrGmniYTsHcvPY+KAsaMce581dUUjmXtE4/BBoobKE63CfPIP3xHREZSqSTjf1RXk9HgYLLLOL+3K3HSJe9JVRVNcrwSU0ZcHOWiOCt8OM3mulVqoDQJtLdgvIfBQG1ERMI7hw7R9gBdt87IAsjaJ0OH8qLCg7CB4gaK0pyY6OLiyINiUyrJ+AlFRUIiaZllNrkLzhooFgt5AEaN4h4ezpCbSzcLZ9pHZGdTqAegPkqipf+SxFV4/kZVlXhTT3eEd5qaKJeQk2M9ChsobqBOl4Xm6M7Ki6NHraJd9oiJoR85h3n8i+ZmmuwcTHTqjnakVxygFzqd86XBNTVAYiK3aHeW9HRyszvjRVGprIZlRwclTooiV24x/kFlJRmOjpp6ms3WRWR4ODB+vHPnq6mxNq9kPAYbKD0hScoy9VUqlGZ1elHMZmv5moN9EBLCbdz9jepqMhwdlAsnlx+GtqONXkya5Lybt6aGKndESiOZi9FqKVnWm3koKhV52biaxz+wWMTLi48etYbnJk1yzmtpNpPHbvBgrrjzMIoNFIPBgPfeew9PPPEErr76asyePRvfffed8P5NTU145ZVXcO2112LhwoV45JFHcOrUKaXD8Bz9+tHNqbFR0W6lmTYTnWi5cXw8UFLCqrL+RGUlTXgODI70EjdU7zQ00G9t8GDn9meIrCy6OTmTFzJypLVb9f79YqEitZrKS7kKzz+oraWHiPqyO8TZ5HYUXHHncRQbKA0NDVi5ciWKioqQq7BfiMViwdKlS/HDDz/gxhtvxAMPPIC6ujo88sgjKCkpUToUz6DT0YSncPKpTh5lteBFJzqdjnJQuEuqf2Cx0MrYkdiaJHWVF5s1WmDcOOfOV1VFxklCgnP7M0RCAl2zzjThDAmhlTRAC4WjRx3vo1KRbg3nofgHVVWU9OqovNhisWrehIY6r/pcV0e5TyLlzIxLKDZQEhIS8MUXX+Czzz7Dgw8+qGjfzZs34+jRo3jqqafwi1/8AjfeeCPefPNNqNVqvP/++0qH4jlycsiNp6CcUFJrrBOdwSA20Wk0NNn5i3HW16mvp5WYo0S7s2dJORhARepY57oOGwzW8ATjGioVGXoWC+WSKMWZME9ICIn5Mb6nrEysEufkSTIuAMo9cea6NRrJg8YVd15BsdR9aGgoEpxc8W3ZsgX9+vXD7Nmzu96Li4vDvHnzsGHDBrS3tyNUpI7d0wwYYG1GpuSzTpkCbN5Mz/fsEUvAiosjVdnp08Vq+BnPUV1Nq+i0NPvb2YTwyjKnwcHWPVNeTquwVO6K6xYyMuharalR3ipgwgQyODo66G/7q185zi3Q6Whh0dbGKqI+4tyucuz/7DRMtUYAg4DD9tfbE3bvhLwc2BF2CQoddL0GqDt2N+Tfl7OaR4wivJoke/r0aQwePBjqC7pGDh8+HG1tbf4T5omKIi+KbG2LIk90AK3ERBQu4+LoPBzm8T3l5Vavlj1sDZQMJ+Tt29vptzFihPMdVJnuhIeTN8qZsv3ISGDsWHqu14vpE8lNP53VYGFcZv/qfDSUG2Awauhhrxu1AUgroPwTszoEZ5KmOu5g3aqCJNFc0OWgaWgg7RNH1UKMW/Dq7FhbW9uj90V+r6aXvA+9Xo9Tp051PYqKijw6TgAU0waUuYwjI4HRo+m56ESn1dI5zp9XPkbGfZhMVFHlKLxTXd31d63uNxitUYnKz1VZSV6azEwnBsr0ysCB5LZ3JuncNswj0ptHvm6dyXth3ILcVVoFx52o0wz5iDFQzlBl6hiE6KKEOlhHRkjQxUqYNNpCEgQxMax94kW8agYajcYeQzjye0a5edMFrF27FitXrvTk0C5mwACq6KmrA5KSxPebOhU4eJCe79kjpm8RG0s3PVfKVRnXqKmh1bcj162NUnBx2lQ7G/aC2Uz5J6NG8SrM3fTvT5UVxcXWyhxRbBs97t4N3HGH430iIympevx4Ljf1BZ0O6ohQM26/3sG2H27vejrgumm4/Qon2hUUVJMRnOjEooRxCq96UMLCwtDe3n7R+/J7Yb3UpC9atAhvv/121+Ppp5/26Dg7B0M5ArW1yvazLTkVTbiLjyePC1cF+I7qagq9ONJFsPmbFjljoFRXk8ErN6pj3IdKRe739nbl/XISEqxie4WFYgKKOh15UFj23jdInTo0ImHSnTvpX5Wqu7dMFIuFvKxDhrAx6kW8aqD069evxzCO/F5vybeJiYkYOnRo1yNLDr94msxMWuX2YFT1SmIiGTYAeUVEjI7wcMoOZ1VZ31FS4jhJ2WAgSXQALVFJqI3LUXYOSSIvzahRzlUQMI7JzCSDX2n+GND9xiWiZRQdbVUeZryPudNAcWQwlJRQd3IAGD6cfh9Kqasjg5S1T7yKVw2UwYMHIz8/H5YLFBhPnDiB8PBwZPhbbC81lVa7SgWZbL0ooqJtUVHA2bPOtY5nXMNgoARZR43GDh7sykkqy5yqfCUli0kp1A9iFBAZSSXHzoioKS03VqvpN8Cy975B1Esme08A53vv1NbSdcuKz17FYwaKXq9HUVEROmySTOfMmYPa2lps3bq16736+nps2rQJM2bM8I8SY1tCQmiyU6gq65SuQlwcrcSUhpQY1ykvJ8+GIwPFxtjsphwsil5PlSYiHVcZ58nJIW9Ya6uy/TIyrGXfx46JhW5iYigPRWlIiXENo1H8O7dNerbtYC2KyUTGKIdlvY5TWXpr1qxBc3NzV2hm+/btqOp0c950002Ijo7GihUrsG7dOqxatQqpnRf93LlzsXr1arz00ksoLCyETqfDl19+CYvFgl/+8pdu+khuJjOT8hJaW8Xd8gMHUsJeVRUJtrW0OE7ai4oiwaGKClYW9TZFRbQStpegbDYD+/bR84gIVKWMBhRE/tDSQr8fZ5sKMuKkplKyc2WlskopOT/hyy8p52DfPmDePPv7yHkoNTXWzsiM56mu7uyF5KCooLoaOHOGnufkKNfIAWhhkZjI2ic+wCkPyqpVq/Duu+/iyy+/BABs3boV7777Lt5991002Vl1aDQa/OUvf8Gll16KNWvWYPny5dDpdHj99deR6a8ll/37AykpylzGtolYol1SVSpa9RUUODdOxjkMBkqKdNSV9ORJ64p6/HhYNALKlbbU1NAExzcxz6NWU65Ba6vyhn5KvZ8RESx77wtEdaPcEd5pbCTPp4haLeNWnPKgfPrppw63WbZsGZYtW3bR+zExMVi6dCmWLl3qzKm9j1pNq16l2itTpgBffUXP9+wBZs1yvE98PIUbGhsd63Ew7qG8nBLgHJWD2+YSTZ0KKGmeK0lkCOXmcgWAt8jMpLBpfb1j49OWYcOsImwHDlCCvKPQc2goJWKOHOnKiBlRJIkWFSqBlADb8I4zBors+fTXBXSQwzKWIqSlUQimuVl8H9suqfv2iQm+xcaSUiFX83iPoiIyQh3pz8gGilqtvMlYUxPlKjiS0GfcR0wMGYRKk2U1GqsmSlsbcOiQ431iY0loUWnOC+McDQ3ksXJUXtzQABw/Ts/T0pwTWJM9n0q0sBi3wQaKCAkJFNdWksB6YZfUY8cc76NW037+Ivkf7MjhHUdlh6Wl1sZww4cr927V1FB5opKVPOM6OTl0TfUiANkrSsM8Op31psl4nqoqmlMdeSN377aG+KZNU+69tFjI6Bw6lD2fPoINFBHkbqmtrcrKgJ0pN46Lo1U9r8Y8z/nzFAKIi7O/nY16bLe/qQgWC4UJRBSFGfcyYAAtLJT2yxk/3hrW2bPHcR5LSAglUbMeinc4f15MnM3V8E5DA2uf+Bg2UERJSyO3sZKSY2eaB8qrMW4e6HlEqneA7qtopSqUcj4Rh3e8T0gI5ZQ0NSlbWISFWTuR19cDp0873icqihLcWcfIs7S3k9fTUam+wQDk5dFzW/FMJej15IXjfECfwQaKKHFxFMNUEtOOiiLVUIBWV4WFjvcJCaFJTg4pMJ5BNLzT2EgVPACtpJSWGtbUUNk5T3K+ISvLmvSqBGfCPDU1tLhgPEd1tdWzYQ/bvL+pU5V3DTeZaPHC2ic+hQ0UJQwaRD9cJaWLzoi2yc0DTSZl42PEEQ3v7Ntn/XvbNpQTwWymSZInOd8RF0erYKX5IZMnW29qItetnETPeSiepbqa5kVHlVWulhfX1JDnhcM7PoUNFCWkpVlLF0VxJg8lPp4Scjmm7TkKCym0I1q9AygP79TX09+SBZ58i+zeV2Lw63QUHgIoSVru5dIbajU9WPbec0gShdEiI+1v194O7N9Pz2NinCv/bmggeQl/UzfvY7CBooToaFoNK6nmSUqiFRxAioYiIaLQUFp582TnGVpaKP/EUXinvd0qshcTQ9n8Sqitpd+LIxVhxrOkp9N1qDRZVqn3MzaWflcikgKMchobadHmKLyTl0cl4gAtEB0tQi7EYKAGrt5qSsv0ChsoSsnOJkteySTkTJgnOpqaBypVwmQcI4d3HE10R45YJ7rJk5VNdPLvY+BAZ0bIuBOtlsrDleaHOJOHUl+v3BBixKiqojCao4Z9tuGdGTOUn0evp+ovVn32OWygKGXAANKzUNLO3dlyY72eJztPIBrecaW8uK6Oficc3vEPsrLoxibSAFBmwACruNepUwhvdXDNh4eT5grnoXiG8+cpcdVewqvZbJ1jIyKAsWOVnUOSrNonShNrGbfDfwGlhIdTsqySPJScHKsS4eHD5EJ0RGQkXSisKuteRMM7kmSd6EJCrGWnotTX0+8kPNypYTJuJiGB5MqVGg+yF0WSMKBEYHERFgYUFysfH2Mfk4m+V0dez6NHrUboxInKc0gaGiic64zqLON22EBxhqwssq7bBdvZqlTWFXhHB3DwoNh+EREU5mFtBfchGt45d87qvRozRryTNWBtz84xbP9BpaKkR7mySpRp07qeZhTtsrNhJzod5Y6JLEIYcfR68ko6um5dFWerqaEwvqPzMF7BqWaBfZ7UVCpBq60FQAJcrW3Ax1/2HjJI6ZiOS/ENAKBg9R7srJ7t+DzSQGCvBdjwI7SRWkxaPBjZU1Pd8AH6MIWF5BFRUr2jNLwjlyim8t/Kr8jIIE9Kba14fkFuLoXqamuRfD4PIR1tAMJ63z4mhipNqqvZQHUnVVW0IAyz891bLFYDJSREec+sjg46Bqs++w3sQXEGrZak7xsaujpwS5IKhtbeH4W60WjXUnlcasletLaY7W5vaFXB0KaGoT0Ehvp2NJxvwb7P8n34oYOA5mYK74j0xHHFQGlooBsbt2f3L8LDqXRYSf6YWt319w8xtyOt/ID97UNC6CbHStDupbDQsRczP99aJTlunONy5AuprSUDllWf/QY2UJwlIwMIDcWkYW3QxUqIjLD/CI8OQXk6NQ8Mb29GVuMxh/tERkiI1Jq6+lSZ2rh80SXKy8l4cKTqqtdTaA2g1VRiovg5jEaKe3MM2z8ZOJBudC0t4vvYVPNklQmEeaKjyRDm0Kx7aGoig8/T4Z36elp4ct6Y38AhHmdJTgaSk5FdV4XsqwUt7vjJwN+2AgAu0+4ErhcQEKqrx8eb+sFgVFjLz1yMM+JszoR3kpKAlBTFw2O8QP/+pItSXCyuTyPnILW2IrNsN/ZbzPa31+msORPcwdp15PLi5OTet5Eka3mxjddLmLY28niyLIBfwR4UZ9FoyNpWUrY4caL15ijaPDA2lrVQ3IGS8I4r5cWNjZSMqVQcivEOKhWVkLa3U8KsCFotNf4EEN7ehKTK4/a3j4qiJFkuN3YPsmClvbLfkhJKgAdIOVZpkqusfcILC7+CDRRXyMigOKeouzg62to8sLJSrHkg3+jcg2j1TmsrcOgQPU9MtKoAi2Aw0Eqb+3f4NxkZVGauJBfFJsyTXuwgzCNrdbAStOt0dNA8GRNjf7sdO6zPbSqvhJAkWsCw9onfwX8NV5ArNZR0OLaNjW7dKraPfNFwSNt55OodRxPQwYPWMtTJk9GVACRCbS25oWXNG8Y/iYoi76eSlhWTJsGiot9OWvEux95PnY48dtzw0zVqasiQdNTU01Y9VqmB0tREnmpeWPgdbKC4gqytYDCIJ8TNnGm9SW7bJrafvL2oS5rpTnMz5Rx4unqnuZl+D7wK839ycih0I7cycER0NKpSRgMAYpoqyPiwR2wsJWSzErRrVFVR4rmdxNWopgoq7QbI8FS6QKiuJhE/zhfyO3gmdZW0NJqMRHNRdDoqgQPo4jt5UvxcbKA4h2h4x2y25p9ERFBypChyjxAuUQwMUlPpoSBPpDTLZmXuqDdPWBjluXAeimsUFdnXPgGQUeSC98Rspofc8ZrxK9hAcZX4eLopKQnzzJljfb5li/h+SlUwGUI0vHPqlNXQHD9emY5JTQ31bklIcHqYjBdRqynnoKVF2PtZmqnAQAFo1e/I08L0TksLtfpwsLBItzVQlJYX19aS54TDO34JGyjuIDeXYs2i1TZTp1p7RGzfLm50WMy8IlNKU5N49Y7tTUdJeEduMJabqyxnhfEt6enk9WpuFtrcEN0f+rjOpOkzZxyHb2JjKRleieYKY6Wqiqri7OgWRbTWWquqMjKUGxq1tXTdKmllwXgNNlDcQVoaWfmi7dwjIykBE6B95KoRR0jgygClnD9P37FI2aEc3lGrgUmTxM8hT6Ic3gks4uPppqYgT6Qo3WaF7qgzeWws/TaqqpwcYB9HbpRqp5Ixq2wXVHL1gFLvidFIXtLsbCcHyHgaNlDcQUwM9d1QUhVgG+YRreZRqUjhlHVRxBEN75SVAaWl9HzYMMdqs7bU1tKNzlGlAeNfqFSkFNzeLnxNFaUrCPPIN9Zz55wcYB/GbKbE1+hou5tllbgQ3tHrSbiPtU/8FjZQ3EV2tjXhSoSJE61Klrt2kTXvCLWaQjxKDKG+TFOTd6p3TCZleimM/6DQ+1kbl4Pm6M5Gg0eOOA7fJCZSOKi+3rVx9jVqax12L9Yam5FWmUcv+vdXfg02NdFiJIQF1f0VNlDcRVqaMvEnrRaYMYOet7Z2Vy/tDZXKmjjGOOb8eXKxi4R3nDVQLBY6Pod3ApPYWJI3FzX6VSqUZXaKtnV0AAccNA+MiyPjRy6DZcSoqqJ50U7Dv7TSvVBLnQvCadOU5X81NZF3JjPTxYEynkSxgdLe3o7ly5fjhhtuwGWXXYZf/epX2CtycwWwceNG3Hvvvbjssstw7bXX4s9//jPqg2VlERFB7mIl6pSzZ1ufi4Z5wsPFFGgZuimIhHcaG4ETJ+h5WpqyRDuLhcJ7jpQuGf8lO5v+joLez9JMm1DCLgFVWZ0OOH6cRduUUFxsLSTohfRCG/VYZ8I7GRmsfeLnKDZQXnrpJXz66adYsGABHn74YajVajz55JM4fPiw3f2+/PJL/PGPf0RsbCx+/etf49prr8WPP/6Ixx57DEaR8EYgMHAgTUiiE9GoUeR1AYB9+8SqCeLjrZ4BpncaG6k/h8gEtH+/NQdBaXgH4CS7QCctjTwdgouLqpSR1vDs/v2Or/ekJPIIlJS4Ns6+gsFAc5y9nC6jEQNK9wMA2sJ1FKoRxWymvKPBg7nqzs9RZKAcP34cGzduxP3334+HHnoIixYtwuuvv46UlBQsX7681/1MJhNWrFiBsWPH4tVXX8UNN9yA+++/H88++yzOnj2Lr7/+2uUP4hekplLMWVQTRaMBZs2i5x0d3eWaeyMmhtyTXM1jH9mIE0l2dSX/RK3m8E6gExFBpaaCYR5JHWKt8jIYgKNH7e+g1dKN8NQpFwfaR6iqorCYPa/kwYMIMdPCtjRzmrKeZfX1rH0SICgyULZs2QKNRoNFixZ1vRcWFoarr74ax44dQ2VlZY/7nTt3Ds3Nzbj00kuhsrFYZ8yYgYiICGzcuNHJ4fsZoaFklYuWGwPKwzxqNV2MxcXKx9eXEK3eMZmseQQxMcpWYgCdgzUUAp+sLLquRL2fNs0DhUTbkpLoN8nS946prCRtIXvJqzaLuZKsGcqOX1ND4XjZC8b4LYrSl/Pz85Geno6oC/6ww4cPBwCcOXMGycnJF+1n6rzow3qQLA4LC0N+fj4sFgvUwdDDJCODDBWj0aFEMwAyaFJSKPH1yBGrsqE94uLIXWww2E0i64uc21WO/Z+egqnWBKgGAYft/6ZSSw9iXmsrAKCg/2Ts/Mp+3FumcxfuNh0sDBhg9X6KlJ1OmEA30I4O8sD96lf2wwWxseTVO3eOzsP0jMVC35G98mL5OwfQro1E5YCx4sdvb6drlsOyAYEii6CmpgYJPUh5y+/pe1kdpKenQ6VS4ciRI93eLy4uRn19PYxGI5rs9LLR6/U4depU16PIn+WjU1JotSQa5lGprJooFgvw00+O94mLIzdlLx6rvsz+1floqGiFoT0EBqMGhlaV3UfGqR+79j2bOt3h9vJDAt2MtFFiBg3j52i1yryfkZHA2M4bo15P+kSOiIuj3luiDQr7InJ5sb38E5vy7uIBU2DRKGhJIWufpKa6Nk7GKyjyoBiNRmh76E8S2plt3Vuya1xcHObNm4d169YhKysLs2fPRnV1Nd544w2EhISgo6PDbqLs2rVrsXLlSiVD9R0aDXW0/fFHWpWJMHs2sGoVPd+6FbAJofV6DoCExXgl0A1TG7UNUEFyGHnRGpsxsJRcxcawGOgHTUakRrArdUcHtNFhmHTzEFeGy/gTsvezrc1u99wupk6lJFmAwjyOGs4lJpJ3oKSEjCHmYqqqyDOckdH7NjbhncJ0heGdpibKH1LSZ4vxGYoMlLCwsK5wjS3t7e1d/98bTzzxBIxGI9566y289dZbAICFCxdiwIAB2Lp1KyLs3E0WLVqEmTNndr0uKirCCy+8oGTo3iU9nVZYoiGYjAwyNAoKgNOnyRXsyLjR6Wj7adP4YrPFQgZGRLgFt1/vwNhYtwUwd/52F8zBrTepAQiUmra3003mppuADF6JBQ3JyfSoqRFLfJbbVQBkoNxxh/3tQ0LoWj15kvs29UZZmf35zGLpyvnp0ISiNHUihH2YLS2UL2bP+GH8CkUGSkJCAqp7aFZX0xnOSLQTW42OjsZLL72EyspKlJeXIyUlBSkpKXjwwQcRFxeHGDsZ24mJiXaP7XckJVGop7JSPEdkzhyrmNO2bcAtt9jfXs5DqazkbHRbZC0LlYCx8cMP1ufz54ufo6bG+jdmggfZ+2n7u7BHQgJtf/o0JcBWVDj+TfTvTwnulZX8+7mQtjaa0+wJK5461VUOXpE2Hh3aCIRC0OspdxxPSnLDYBlvoCgHJTc3F6WlpWi5QN75+PHjXf/viOTkZIwbNw4pKSloamrC6dOnMUlJY7ZAQK0mF66CVu5d5cYAsGWL4/1CQylZ7Px558cZjJgFO0OXlNCNBSD9GiUy2Y2N9Pdlz1XwkZ5O1R2CHY4VV/NERVGGNffnuRi5e7E9A8VGGE9R9Y7FQt/7kCHsuQogFBkoc+fOhdlsxtq1a7vea29vx7fffosRI0Z0VfBUVlYKJbKuWLECZrMZixcvVjjsAEBhK3ckJQEjRtDz0lIxaeyYGErOE+3/E+w0NAAdgt/Fhd4T0UmrrY2MQ3YTByeJiZRAKSp9b2ugOOpuLNOvH4V5DAbl4wtmystp0dVbebEkWfNP1GprywER5I7mfN0GFIpCPCNGjMC8efOwYsUK1NfXIy0tDevWrUNFRQWWLl3atd2LL76IvLw8bLXR9fjoo49QUFCAESNGQKPRYNu2bdi7dy+WLFnSVaYcVMTHk5FSUCAugz5nDkliA+RFcbSqj4+nVYdeT7Hzvs7582IeK7MZ2LyZnms0wNy54ueoqaHvun9/Z0bI+DsqFa2yz56l35IjwzUjgwya8nLg2DExccB+/aiBYFEREIxznzO0tND3Jytr94QcRgOA0aPRHhYDtPa+eTdqa4GRI5V1KWd8jmLhkWXLlmHx4sVYv3493nzzTXR0dODll1/GuHHj7O43aNAglJaW4u2338Zbb70Fg8GAP/7xj7jrrrucHbt/o1JRIpzRKNzKHTNnWit0tm1zvF9EBLktuXkgce4cIOIIOXDAKms+ebJYM0GZpiYK77D+SfCSlkaLCpF2EioVJaoDdL3u2+d4H42Grt0TJ8TnhmAnP5+Mf3u5hrZK20p673R00PfMHccDDsV9psPCwvDQQw/hoYce6nWbN99886L3pk+fjulKGzoFOnKPj4YG+ysDmdhYYPx4muT0eprARo60v09kJN2Yx4zp27HVhgYKjakFqi9slYsvu0z8HC0t9H1zUnJwExdHXW5PnRIzXqdOBb74gp7v3g1ceqnjfZKS6PdaXs6tElpbgcOH6bu2J9Zpa6BMnQpsEzx+XR0lNPf17zkACQLpVj8mNpYktEXj2UB36fstWxxvHx9PHhQlXZSDkfPnybuhEuhcLOcK6HSkCCpKTY213xIT3AwaRCtvkfyuoUOthszBg1SG7oiICNruzBnXxhkMnDtHoWp7YdPz5ykkBtD33YNgaK/U1ZE3W0TbhvEr2EDxNNnZNMmJJrJOnWptM759O02S9oiOppV9Xw/znD3rsD07ABLCk7/TefPs9/uwRZLoex482HF/HybwSUsj47++3vG2Go21eWBbG3DokNg5EhMptGFHRTvoaW8n70lUlP2wqU31jqLwjtFI13hWlvNjZHwGz7SeRslEB9DKSq4MaGoC8vLsb69S0Y25sNCFQQY49fUk8CSyqrKt3lES3mluprwEdhP3DaKiKGdB1DMp56EAYuXGAM0LdXV9+9o9d468I46S/G3DO7bftSNqaljaPoBhA8XTREbSRKckzCP35gHEwjxxcXSRi5Y0BxtyeMdRtVRBgVV/YvBgyjMQpaaGck9EcomY4GDgQPrXkRcTAMaNs3rw9uwRS35Vq8kDeuKE2DmCjY4O6qsTHm5fU6imhvKBAPKEiLYQASikO3QoJ7UHKGygeAPZvSjayn38eGs3z927oelw0FxMp6Mk0fJy58cYyJw7RzcHR0nCzirHWizkKh40qG8nIvc1BgygkmCRxUVYGF23AHn0ZBFARyQlkYHdFwUXCwtJMNGRoq6tR0pJeKe5meZRJQsRxq9gA8UbDBhA4QdRd7FWC8zoVElsa0NasQMBKLWaHmVlro0zEBEN75hMVm+UVts9GdkRsrYFh3f6FmFhlFwpet0qVZWVz2GxiBs0wYLZTN6TkBDHuWPOlhfr9XTNKkmoZfwKNlC8gdKJDugW5hl4brPj7ePiKITR11q5i4Z39u2z6lpMm2b1UIlQU0OrMCV6KUxwkJVFBq2dbutdTJ5sTaC2Tep0RFISJXn3pUq8khKqynGUG9LURIYMQJ4WOezmCNnrOXgwez0DGDZQvEVWFq0WRCY6gGTv+/UDAKSW7keY0UGmf1wceRMqK10aZsBx7hwZgI4mIVvtEyXhHbOZYuUs8tQ3SUmhJMvOhqh20emAYcPoeVkZ6ZyIoNOR8dxXkmUtFlKNBRyX/trm80ybJm5sNDTQnMiaRQENGyjeQslEB1BSV2cDQY2lAwNLttvfPiSELuS+FOapq6PP22nI2d1OVvhMSADGjhU/hzzRcXinbxISQqtw0VJgZ8I8KhWFEI8fF89TC2TOnyePkUhljbPlxXo9STyIthlh/BI2ULxFSAj1+BCRz5axCfMMKtrsePvYWPIo9JWKANHwzubN1lXYvHnKMvpramiii4pyephMgJORQeX/In2enDFQAArzVFVR6COYkSQyxDo6qMLRHq2tJHwHUPXc0KFi55Dnv+xs58fJ+AVsoHiT9HSa6ES7mA4a1LVyT606gogWvf3t4+Op4qCqysWBBggi4R1Jcj68wxMdA5DxkJwsVjo8YIC1auTUKWWJ8SqVtZw2WKmsJHE6R5U7APXMklV5p04VF0iUe/qw1zPgYQPFm/TvTxOdqCaKStUV5lFBQlaBg+YTYWF0QfeFcmPR8M6ZM0BxMT0fPlzZpFVXR0afEt0FJvhQq8n7KeJBAaxeFEkC9u4VP09SEuWh6B0sRAKZEyfIMyISenE2vFNfT3+vsDDFw2P8CzZQvIk80SkRVLMph806u9nx9tHR5FkI9i6pouEdZ7VPADJQBg3iHh4MeT9FEzSdDfPExtLcIIsJBht6PXmIRLwnJpPVuIuKAkaPFjtHWxuVLbP2SVDABoq3SUsjI0LUSElPR01CLgAgoeaM4yTY+HgK8Ygm4wYikkRJdhER9m8a7e3UewegSeuSS8TPYTJRrgr38GAAuq5Ec5dyc62evUOHlJX+x8UBJ08Gp1zAiRO0qBAp1z982BoKnzJFvGeWXk8GkCPpfCYgYAPF2yQkUMhAgQFRlGMjfS/fcHsjMpIu7GBuHlhXRx4UR7Lzu3dTgz8AmDnTcVKeLTU19LfiHh4MQIaw6E1SraabKkBGspzoKUJiIlBdbQ1LBgt1dWR42etYbIsz4mySRAs/lrYPGgSvOMZtqFRUtnj6NIVhBBK/inJmY/ze96CCRAbKrbfa9xxERJBom6hbNNAoL6eJyFFuiCvhnYYG+v5EOiQzfQONBoAZra3Ax1/avwGmWqZjHtYBAApX7cCOSlHvnQZaKReTwk8hO5hExk6fptwQkUocs9kaGgsNtbYQcIQsbc/aJ0EDe1B8gdx0TrDDcWtUIsr7dxobZWWOY9Tx8XQTb2hwbZz+iCRR4mt4uN3JO6JFb+0E3b8/MGqU+DmMRqqqyMhwbaxMUKGNpIZ2ElQwtNp/FMSNQ1so5UdlFvwElV7vcB/50dAWin0HLMEjutjURMJsCQliBtfJk9a5a+JE8WRXvZ6uWUeJ80zAwAaKL4iNpTi1gmz9s1lzrS8cdTiOiaHVRDBW88jhHQeTUPaZjdaqi/nzxUsUAWuLdo5jMzZMWjwYukQtIrUmREZIdh/h0SHIH3ENAEAtmTH+7BcO94mMkKBS0W/W1KEKnmTZ/HxryFQEZ8I7ZjPljeXmBo/XieEQj88YNIhW+Eaj0AqhMGMmZux/CxpLB4V57r679zirSkX/V1Jild4OFs6fp7wSe+XCkoScfJvwzrx5ys7R1EQrN9GcA6ZPkD01Fdlj4oBPPiHjNynJ/g7zrgLuXQO0t2PY2XUY9t83O+wB9fGXGhhaQQb1yZPAuHHKcqf8DYOBeunExYktEiTJWl6s0QCTJomdp76ezsFez6CCPSi+YsAAuskKiqoZw2JQnjaBXtTWkhqjPfr1oxVYMCXLytU7DsI7yfrjiG3sbF8/erRYWaOMwUDH5zg20xMREbS4EAnP6nTAZZfR87Y24Ntvxc+jVtN1XlTk1DD9hrNnaY5zZMzJnDtnnRPHjBFv6llbS38XVnwOKthA8RUaDQmHtbQIa5YUDZprfeGomic+nm62O3YET8miYHhnyLkN1hfyDUKU2loK7YhWGzB9j4EDyYAQ6Ztz3XVWz8FXX1mVUUWIiKDS3EDVNDIaqcw6Nla8qsaZ8A5ACxbRTsdMwMAGii/JyiJDQlAOuzRjqjUctH274wkyK4sSSvfvF1fB9GfOn7dm6veCxtSG7OJOxd2ICGWTHEDHHzJEWc4K07dITaVyYBGpgNRUYMYMet7QAPz4o/h5kpKoI3Kg5pLJHlwlxr5soKhU3QXv7GEx03fFis9BB8/CviQmhkqOBTVRzNpwajkO0I3Ukb6CVksX7YEDVHYcyMjVO5GRdsM7GUU7ENrRSi8uuUSZCmxzM7mIuYcHYw+tlq5b0Sq5G26wPv/yS0roFCEighYhZ84oHqLPMZlIbC0yUjyXq7TU2ixx+HDHOkcyFon+HiwJEHSwgeJrBg2iC1g0DGMjfe+wmgegOLhaTaEeJZ2U/Y3aWlpJOpi0cvJtwjtKtU9qa2nFK1ptwPRdMjPphihy3Q4eTPkUAHkBlcjfJyRQFUygXbsFBSSJoCT/y7b3jrwQE0GlYsXnIIUNFF+TmkpeDtEOxOPHW/vP7NlDjbcckZ5ON/ddu8RXb/6GQHgHFRVIKT8MAGiMTaNVmCiSRDk7wSSOxXiO/v3p5isqFXDTTdbna9aIh1zlEHAgJcuazcDRo+Rp0mrF97PNP1FioKjVnDMWpLCB4ms0GmDECLo5iiTDhYSQbDtASWh79jjeR62mFd+RI46rf/wRwfCObXz/3ODLlBkaTU2UzMfhHUYEjYaMWdGeWuPGAdnZ9Dw/n4TLRFCrySg/cQLo6HBqqF6nqIgeStpEVFfT9wLQ96TE86LVcs5YkMJCD/6AbbKsSHhh9mxgHcloY8sWYM4c+9sDdHOPjSX3cqBVqdTWUrKdveodi6XLQLGo1CjIvRTjlJyjpgbIyRGPezNMejrlLDny7AFkLN94I/C3v9Hrzz8XVzeWk2XLyvw/lGGxAEeP4lxdDPafihQqdAKAIcf3QFY8ORw/E0cdtBIAbJzH3HcnaFFsoLS3t+Pdd9/F999/j6amJgwaNAhLlizB5MmTHe67b98+fPjhhzh37hzMZjPS09Nx00034fLLL3dq8EFDdDStxvbtEzNQRoygKgK9nhJlGxvJ+HBESgqtUrZvB666SlxC2tfI4R172iRHj3aFycqSx6M1KhGAYDjLYqHyz9xc18fK9B0SE8njVlIiptcxcybw4Yf0O923DygsFCuNDQuj3+jp0/5voJSWAgUF2F8xCA3N4h7MtLPbu56fTpkJQ6v4vnILAib4UOwXe+mll/Dpp59iwYIFePjhh6FWq/Hkk0/i8OHDdvf76aef8Pjjj8NkMuGee+7BkiVLEBYWhhdffBGffvqp0x8gaMjNJVelSNKdWg3MmkXPzWZKgBVl4EAKlxw44NQwvY5teMceGzd2Pc3PUah9UldHKpQc3mGUoFLRddvWJpZTEhJCuigyX3whfq6kJCrbFZQk8AmSRKEriwUmM91aVCrH8v5ZDUeQWn0UAOWOtSdnCLUFiNSaoEvUYtLiwb781IwHUeRBOX78ODZu3IgHH3wQt912GwDg8ssvxz333IPly5dj+fLlve77+eefIyEhAa+//jpCO8vBFi1ahDvvvBPfffcdbr75Zhc+RhAgJ8tWVlK+iCNmz7ZOcFu2AFdcIXYerZY8Kfv30zn9XdwoP59WqPaUKA0G8goBaA+NQlH6dCjyDen1pLkgJx8zjCjp6fS7aWykijlHLFhAUvlNTSS2+POfi6ms6nQU5iws9N8wZHk5KcempABkbyAiHLj9ejueTEkClr7f9TL27htx+wKBXLyaGvIq3XprYLcCYOyiyIOyZcsWaDQaLFq0qOu9sLAwXH311Th27Bgq7XTfNBgMiImJ6TJOACAkJAQ6nQ5hgRJq8CRqNVWdtLaKJcvm5FhDHseOUZKZKHFx9O/27TRR+iv5+eQZCQ2170L/6acuhc7CnLkwaxToITQ3k97EYF6FMU6g01HYRbSaJzycwqsAeT/XrhXbT6WiMO7x42IKtr7g+HG6DkXl6QHKiTt5kp5nZACXXiq2X00NSTSwcRLUKDJQ8vPzkZ6ejqgL+h0M7yznPGNHUGjcuHEoKCjAO++8g9LSUpSVleGDDz7AqVOnurwxfR4lyrIqVXdNlJ9+Unau9HTK7di1yz+ltPPzgR9+oM/pKPRiE945N1hheKeykrxI3LmYcZacHDI2REv4r7nGKiq2fr14JVBSEv1eZTEzf6Kqiq5ZJdeR2Uw5OTJ33imW8NreTtvJVVFM0KLIQKmpqUFCD0mc8nt6O6uIu+++G/PmzcOHH36I22+/Hbfddhv+9a9/4bnnnsMcB1Uoer0ep06d6noUBZImgBLkZFnR1ZhS0TZbNBpr6fGJE8r29TRKjJOyMuv4MzNRm6jAE9LeTsbZ8OGsfcI4T1oaeSVFGggCzjcRlMtpT51yZpSe5cQJ6ismkqwvs2mT1dgaNkxc2r6mhow1JWXMTECiKAfFaDRC24Pwjhy2MRqNve6r1WqRkZGBuXPnYvbs2TCbzfjqq6/wwgsv4NVXX8XIkSN73Xft2rVYuXKlkqEGLoMGAXl5FOqJiLC/7YABZNDk51MCXUmJsnbjkZEUP9+5k8qORTuOehIlxgnQzXuC+fOVGRpVVXQObtHOuEJUFF23Bw6IqxBfdx1JBVgs1ETw+uvFpNqTkigPRa+nKiJ/oLaWwjRKpAva24GPP7a+vvtu8Wu3sRGYMEGZCBwTkCjyoISFhcHUQ/yzvTP+by+X5PXXX8eOHTvwzDPPYP78+Vi4cCFee+01JCQk4M0337R73kWLFuHtt9/uejz99NNKhh1YpKZS+EU0p8TWi+Kow3FPJCdTT5Ht25V1WvUESo0Ts5lWYQCtLOfOFT+XxUKu9ZEjeaJjXEcu/xXND3G2iWBsLP1uz51TPkZPcfIkGQ1ybpsI33xj9RRPmkTXoQgGAy3ceFHRJ1BkoCQkJKCmh8Z28nuJvVj0JpMJ33zzDaZPnw61jeJfSEgIpk6dilOnTvVo+MgkJiZi6NChXY8sf9cCcAW1mtydosqys2ZZVx5btyrvWiy3Kc/Pd9x80JMoNU4AauUu/x4nTVJW3VBTQ6tdjmMz7mDAAPo9KSkDdraJYFwchVRE+3d5koYGSo5NShL3gDQ3A599Rs9VKuCuu8TPp9eTcecP3l7G4ygyUHJzc1FaWoqWlpZu7x/vlE/P7UXoqqGhAWazGeYeLkCz2QyLxQKLPyZq+oqsLJrsamsdb9uvHzB6ND0vL3eu82loKHlS9u3zTc8PZ4wT4OLwjhJqaij35IKEb4ZxirAwCrcqMVCcbSIoizQWFysfp7s5fZrmKXsqzxfy+efWxOC5c8WlDuR+WUOGsLR9H0HRX3nu3Lkwm81Ya1Ma197ejm+//RYjRoxAcmcGd2VlZbdE1vj4eERHR2Pbtm3dPCUGgwHbt29HZmYmlxrbEhVFk1cP3qoecSVZViY+3ir6JlpV4A6cNU6am63dT2NjyYMiSmMjJSSzcizjTjIzKVxoJxfvIm680fr888/FBd+0WgqtKPWYupOWFlJwTkgQ957U1FhLq0NCgNtvFz9fQwNd6xze6TMoMlBGjBiBefPmYcWKFVi+fDnWrl2LRx99FBUVFXjggQe6tnvxxRdx5513dr3WaDS49dZbUVJSggceeACffvopPvnkE/zqV79CdXU17lLi4usrDBpEng2DwfG2M2bQxQ4A27Y537E4M5Okqnfv9k7psbPGCUDhLNnYnTtXWR5JZSWVhrKbmHEnKSmUKCq6sACoO7kcZjx9Gv0rjort178/JcXb0Z7yOPn5lCunJFl31SprrttVVykrS66pIW+LiCAeExQo9pMtW7YMixcvxvr16/Hmm2+io6MDL7/8MsaNG2d3v7vuugu///3vERISgpUrV+Ldd99FVFQUnnvuOSxcuNDZ8QcvKSniybLR0cDEifS8ro5WNc6g0dDq5PBhz5cyumKcAM6Hd4xGa54Pw7iTkBAKPzQ2iu8jNxHsZPiR1WL7RUVRpd/ZswoH6SZaW2meiYsTD7eUlQHff0/PIyIAJerhZjMtmgYNUjxUJnBR3CwwLCwMDz30EB566KFet+mtKmfBggVYsGCB0lP2TWRlWdFs/TlzrDHsrVuBsWOdO29UFJUf79xJHgZPlDK6apwUF1tbs+fkKEt0raykc9prPMgwzpKeTtePwSCucmrTRDCtdB/i6wtgjBjoeL9+/WghMX689xVVz50j6X0lYdKPPrJ6Zm+4QZlmSm0thaG5X1afgjON/JnMTJqERMItkydbdVN27HBNDjs1lTwxrh6nJ1w1TgDaX+YyBcqxZjNVPowcyS3aGc+QlETeT1GxReCiJoKjT3wutl+/fnTj9nZie3s7eVmjosSvI7mLOkBeF9umiSLU1ZEx5Egbigkq2EDxZ6KigKFDxQyUsDBg2jR63tJCzQCdRS49PnXKvaXH7jBOOjqs2ichId0ThB0hi1txaTHjKdRqCvO0tChLYF2woKtZZW7RZkQ2C4R2NRq6YZ844d12FefOUdWRaP6IJAEffGB9fcstygwNo5E+q783NmXcDhso/k5OjniGvKuibbaEhlIi3r597un94Q7jBCC1zoYGej5liribWJJoFTZ8OK/CGM+Slka/SyWNOG2aCKolM4Yd+1Jsv6QkSmw/cYKk9j1tqHR0UHuM8HDxxPS8PPK4AORdUppzWFNDxhBL2/c52EDxd5KTxd2oY8dab9h79ohVANmjXz+akLZvpxWhs7jLOAG6h3eUJMfKJYpcWsx4mn79KBdFSTUPAFx9NTo6O3EPOrVOrNw/IoK8NuvXA598Avz738DmzdThvKzM9TngQgoLySBKSRHbXrJ0957ccYdy5ebGRvJKhShOmWQCHP6L+ztqdeeFaUZrG/Dxl/aMFQ0mDZiFIY3fAO3t2PHWXhTmCrYvB80bk0ZbkJ1p45rOzCQxpj17KBFXqUCSO42ThgZg71563q8f9eMQpbqaDDglglIM4yy5uRQitVjEr5m4OJwbfBmGnPwW2o7OJoIilS5ZWXQeg4GMmrw8WliEhFCFn5xc2q8fPY+Lc669g8VClTsajVjfIABZBdusif45OaR8rYTmZkoAzsxUOFgmGGADJQDQRoUBTQZIkgqGVvvbnkqfiyEnvwEAZORvwfE0BV6GVmDfETWyM210VOTS40OHyMWqpDzXncYJQCtDWeNl7lxxz1Jrq7UElGG8QVoa6XU0NChqwXBy1I3IPbUOaklhE0G1moyR6GjreyYTeT6rqsjzAVCuWnQ0hYYGDLAaLLGxjg2p4mI6juC1rDabMGb/h9Y37r5b+QKnpobmH39pjMh4FTZQAoBJtwzBvn8ehqnZ6NDN2ZQxDC1RSYhqqUZaxQEkmithiHbcZbS1DZAkVc9FO9HR5GbdsYMmNpGOre42TiSpu/aJkuqdykqa5LhEkfEWMTHk2Th6VJGB0hybisKMmcgp3mZtInjFFc6NQasl48O2iV9bm7XZ4MmTdH3KXc3T0uj6joujMduWLksShY0Ayj8RYOi59YhpKqcXY8YADrSyLsJiocXF4MHKupQzQQMbKAFA9tRUZGcCWLOGJhBHmgeNs4E1a6CWLLj+4J+Al15yuAr7+EuNfe9MaiqFenbuBC6/3L6L2N3GCUATqrwKHDpUXMeko4OqAEaM4P4djHfJyaHkUDncIsjhYTeRgQJQE8EFC9xXFh8eTg/ZIyEaGrJYSBROMFE1xNSK8Uf/bX3j7ruVGxkNDWQssWZRn4Vn7EAhOZku1Koqx9veeCNV4ABkLCxf7nrPDtvS40OHet/OE8YJ4LxybHU1JfRxiSLjbeSbu5IGggD0CUNQkdoptKikiaAzyKGhlBRSaR06lPI9wsJortm+nUJNP/xAxougINywY18isq3zc8+YQV4QpdTW0nWrRNCNCSrYQAkUZHl2o9Fxr52YGOC//9vqNdm4EfjmG9fHEBZG4Z29eymT/0I8ZZyYTNYmiKGh4ol2kkSrsBEjaOwM403Cw+ma1esVl/+eGH2T9YVoE0F3IYeG0tMpb2vIEFog5eSI7d/QgOFH1gAALCo1YNOXTZiODvrORM/JBCVsoAQSWVlkINTWOt42Oxt4+GHr63fecb5Hjy0JCaQkuWNH9xJGTxknAFUQyZoS06eTgJ0I9fU00fIkx/iKkSMpnKKw5Lg8bYLV63f6tDX/w1eEh4uHmT77DFoTxYvPDlno3HxQW0tzDeeN9WnYQAkkIiLIBStioAAk3HbDDfTcYgFeflms+aAjsrIoH2TPHlrZedI4AZwP71RV0erPNkmQYbxJbCyVt+v1yrqMX9BEEJ8Lyt/7mqoqKo8G0KEJw9Hxtzt3HFnaXjAhlwlO2EAJNHJyyFARFU676y5qJgZQuONPf6IwkStoNOT+zcujGLUnjZPaWlKPBWglOnq02H6SRGEdZ2LfDONOhg2jEIlI/pgtl1xizSXbt8+aJO7P/OtfFJ4BcHTIIrRGClT8XYjRSKFczhvr87CBEmgkJ1PJrOhkp9EATzxhVX48exb4v/9zPaYdE0MGwK5dnjNOAOq7I8fvL71U3M1sNpOnR1TxkmE8RVQUldg2NHTdvIW4oIkgvvjC7UNzK4WFpFUEwBgajcMjFjt3HL2e5jm+dvs8bKAEGioVhXna28VdxjExwLJl1kTRzZuBtWtdH0tammf1RS7UPlES3gG4tJjxH+TS+IoKZfvZNBHE1q3uCdF6ig8/7Fr4HBt7M9pDox3s0AtNTRSa5Y7jfR6evQORzEzSQ1GSeDdwIPDII9bX779vv1xYBFnkyVPs2mWtFho5UlmzMI2G5bEZ/yE8nLwoLS3oWQ3Rzn6dTQRhNrtnYeEJjh2ztqFITMTp4dc6d5zmZip7zshw39iYgIUNlEBEabKszCWXAD/7GT23WIC//IVUVv2RjRspqVdGiXIsQO5xwX4hDOMVcnMp7Hj+vLL9rr7a+lv+/nuxJoLeRJK6NwS87TZYQpy89qqrydMkolbNBD1soAQq2dnkvVDaZfiOO4CJE+l5U5N7kmbdiSRRV9Y33rDmnsyYQb13RJD34c6njL+h1ZIXxWRSds3FxVnDm62tXVUyfsPu3SSbD5Dn41LxBqXdsFgodJ2by9L2DAA2UAKX/v2VJcvKaDTA449bwyUFBcD//q93haB6w2ymBN6PP7a+d+21wO9+Jx6Plg0UNU9wjB+Sk0OLi56EDu1x3XXWfKqvvqIbuT9gNlPuicyddzqfOyLrFrG0PdMJGyiBikpF5YtKkmVloqNJaTYigl5v2YJhR31cIdDWBrz4IrmwZX7xC2DJEvEJr7mZV16Mf6PRWJvm2QodOmLAABIpBKxNBP2BTZuAkhJ6PmwYMHWq88fS68l4k5OCmT4P+8EDGdtk2f6OOxZftO8jjwB//jMAYNy+91ERnYP67HHuH2cn54pV2H9EfVGOYFhrPeZu+CMS9KcBAGZ1CHbNegxFqrnAfxScoCMKrR38k2b8nMxM0uc5fZrCGaLceCPpDgHubyLoDO3t3b2dd93l/AKhtpbKsUeOdM/YmKCAPSiBTHi4c8myMjNmADffDABQSxZcuv3PiGpSWAapgP1H1GhoVMHQan2EVJXjsq+e6DJO2rWRWDf3eZwYMK/bdkIPk7YrUqUNZ0OF8VPUalKX1WqVJbwOHgyMGUPPPd1EUIRvviGvBwBMmgSMGuXcccxmStYfN461T5husIES6MjJss5m9t9+O00uAMLbmzD7hxco3OIBZM+JSiUhMkJCRvNJLPrhceiaywEAhsgEbLj6FTQMHIPICEnZI7QDkeEWRMaHQTcgCpMWs4Is48ekpdHioqxM2X4Xyt/7KnesuRlYvZqeq1TONQSUKSujfDrZ+GKYTniZGej070+li+fOUW6JUtRq4L/+C40P/A6xjWWIrysA3nyTElM9lM8REQ7cnrYL+Ohla7JfZiYin3kGVyclAVCYU2OxkLv8yiudX8UxjDdRqeiGfOYM5ZTodGL7jR9PmkaFhdYmgr74zX/+ubWB59y5tFByBoOBVi6TJ3tWU4kJSNiDEuioVKS6aDIpk9G2JToaWy97Gu0hnUmzP/3k0eZkg05+RwmxsnEyejTlwiQlOXfAmhrSTXB2kmQYX5CcTGrH5eXinhB/aCJYU2MVjAsJIS+sM0gSJdiOGMEdx5keYQMlGMjMdKqluy2NcZnYPP0J6xv//Ke1SZ+7kCRMOPwhpu74X2s58KxZwLPPOuf9kampoUkuKsotw2QYrzFqFHlPlOSRXXKJ1Zj3RRPBVausi4srryRDyxn0eiornjiRW1IwPcK/imAgPJxK/OrqXDpMcfp0HBnXuRqSJOCVV5SrXvZGRwem/vQ6Jhz7t/W9G24gTRat1vnjNjaScTNokOtjZBhvk5BARkpVlbgXxZdNBMvKrFIAERFdSfaKMZloYTFxIqvGMr3CBkqwkJ1NHgQXZbCPjL8NmDKFXrS0kNJsa6trYzMYgOefx6D8HwAAElSkb/KLX7i+cqqsJOPE2fAQw/iakSPpJi1XxIiwcKFvmgh+9JHV+3nDDeK5MxdSUkJzFpcVM3ZQnCTb3t6Od999F99//z2ampowaNAgLFmyBJMnT7a7380334yKXjp5pqWl4d///neP/8cIkpREoZ6zZ10Ll6goaRZPPEFql8XFJDu/dKlzSbN1dcBzz9G4AHSotdg55wnMWjTd+THKGI1k4Awd6vqxGMZX6HRUdvzjjwCozLa1Dfj4S3saJ1EYPehqjM77BDCb0f7Ab1GXkIO6foNQl5CNun6D0BCfCUnd8xSv1QKTRluQnamgCig/36rDotN19+IooamJrtvJk7lfFmMXxQbKSy+9hM2bN2Px4sVIT0/Hd999hyeffBJvvPEGxtgpE/vtb3+L1gtW4hUVFXjnnXccGjeMACoV3ahPn6ZkWVd60URGAsuWkZFiMAA7dlBJ4eLFyo5TWkr5JZ1y/MbQaHw/6w9oyhoJxZU6PVFZSbLYLI3NBDrDhwPHjkF7ugOAFpKkgsGB4/JQ9iIMP/IFQsxGhJoMSK44iuSKo13/b1aHoE6XhZr4QZ2PHNTGZcOkjQRagX1H1MjOVHAd/vOf1ue33GJVolaCxUJhosmTuds44xBFd7Hjx49j48aNePDBB3HbbbcBAC6//HLcc889WL58OZYvX97rvrNmzbrovQ86O2AuWLBAyTCY3sjIoGRZvd51waP0dMoPeeEFio1/9BG5ZDs1Uxxy4gTtK5ciJiVhw6znUBmWhUi4QbvBbCa9lpEjfaumyTDuICoKGDcOk07twr6adJg6BLyVETpsvexpDD3+FeJqzyGqpXuISGPpQGLdWSTWne16T4IKjTGpqInLQWP/QUDKQKqgiY+3f66DB4FDh+h5Sgpw+eUKP2AnFRUkjTBhArelYByiyEDZsmULNBoNFi1a1PVeWFgYrr76aqxYsQKVlZVIVpDR/cMPPyA1NRWjR49WMgymN+Rk2S1b3KPIOHkycNttJGctScDf/kaPAQPs77dzJ20nZ/pnZwN/+AMat/UHXExn6UKvJ2Ns4EA3HZBhfMzQocgeeRTZjcUKvIJjOx8gPZVz56gB6Llz9Cgr65Z8q4IEXdN56JrOAyU/Afs7/yM+3trIMCeHHikpFIqxWIDOxSQA6ojuTGK70Ug5cpdcAsTGKt+f6XMoMlDy8/ORnp6OqAvKOYcPHw4AOHPmjLCBcvr0aRQVFeFOAQVCvV6PGpsS2qKiIgWj7mNkZwP795Pnwh1Nt26+mSa6XbsoafbFF6m6pzdRpW++AVassE6KY8cCTz3lXhEmSaKyzLlznXMzM4w/Eh5OQmzffktVLkqNAJ2O9h8/3vpeWxuVIdsYLh3nihBivqAbcl0dzRv791vfi4ig+USno/0BMlx68IYLUVJCcv2cM8YIoshAqampQUIPJWHye3oFWegbNmwAIBbeWbt2LVauXCl87D5NYiLFdvPz3WOgqNXAo4+SsmxJCT1efx34f/+vewWOxUJt19essb43bx7wm9+4VkbcE7LyppJGawwTCAweTMrQ5eXuydGQvarDhnW99dnngLaqDAOaz2BG/Bmrx+XCCsDWVuD48e7v3XWXc5V3dXU0lsmTXcuPY/oUin4pRqMR2h5uNqGdmdhGo1HoOBaLBT/++CMGDx6MgQIu+kWLFmHmzJldr4uKivDCCy+IDbqvISfLnjzperKsTGQk8N//TTkpLS3kTfn0U+DWW+n/TSaSx9+yxbrPz35G/Tk8EWeuqqLGYv36uf/YDONLtFr6bX/1FYVEwsLcfgpJrUG9LgvtKZmYcf2czjclKlWWQ0Oyx8W2fHnChO7eGVHMZso9ueQSIDXVPR+C6RMounuFhYXBJHd8s6G9M9cgTPBiysvLQ3V1NRYLVoUkJiYiMTFRfKB9nYwMKjt2R7KszIABVNXz3HM0mf373+TuHTmSZOrlBDq1Grj/fuCqq9xz3gtpbaVJnN3ETLCSnU2P4mLvScCrVJS82r8/MG2a9f3GRjJUGhspQd6ZBcf589Qccdw4tw2X6RsoMlASEhJQ3YMgkJwfImpEbNiwAWq1GpdddpmS0zOihIVR2eKmTSRDrWBSsa+/MAUjJtyFcfs/ACQJ7S+/CkN0EuLqKCeoQxOK7XOfRFn7dODLno/tMpWVZIA5StRlmEAlJIRu5sXFVObvoSZ6jrVWACC+8wFgvbJjA6DFjNFI4o/cDJBRiCIDJTc3FwcPHkRLS0u3RNnjnXHKXIGcgPb2dmzZsgXjxo1jr4gnGTSI4seFhUJN9LRaAK1wqL+wb/DNiK06i5ySnxBqMiC00zhpC43F93OeQVXicIeVOk6npHR0UGXQiBHcu4MJbrKyKMfq9Gm351qJXutuOZdkouuVW1EwTqBolp87dy7MZjPWyp0sQQbHt99+ixEjRnRV8FRWVvZaabNr1y40Nzez9omn6dePklQjIkgwzQGTRlugi5UQGeHgEQnsm/so6uOzuvZtjk7Ghmv/iuaMYQ7318VKmDTa4txnqq4mjxCXFjPBjlpNFXAhIS63r7gQ4WvdxYcusgOTcpu5GSDjNIo8KCNGjMC8efOwYsUK1NfXIy0tDevWrUNFRQWWLl3atd2LL76IvLw8bN269aJjbNiwAaGhoZgzZ47ro2fsk5kJXHopNfeqqLCbj5KdKSlQlQwFZv038I9/AFFRiL73XlwbHw+3qMP2hiQB9fUUB/dA4iDD+B1paZRrdeQIMGSI2w6r7Fp3EpOJ2ltceilVFjKMEygu8Vi2bBmSk5Oxfv16NDc3IycnBy+//DLGCSRAtbS0YOfOnZg2bRqiXekXw4gzaBAwZw7www9WcTN3kJICPPOMe44lQl0diUmxq5jpK6hUwJgxdKOXS+sDhdJS8nSOGuXrkTABjEqSRHt8+w+nTp3Cfffdh7fffhtDuZpDjLw8SppNSHAsa+2PnD5N3hP2vDF9jc2bgb17u2mZ+DVNTbQYWrSIw7GMS3BgsK8wdiwwYwblccj9cQIFg4HCOoMH+3okDON9Ro8mafjaWl+PxDGSRPL6o0dToi/DuAAbKH0FlYpUHCdPJl0Cg8HXIxKnooJWYizyxPRFEhIoVFJV1a2vjl9SWUlhZG4GyLgBNlD6Emo1eVHGjweKikifwN9payMlymHDeMJj+i6jRlFlnoJ2Il7HaKRcmcmTAytfhvFb2EDpa4SEkOT06NGkENmDMrDfUFdHhtSIEewuZvo2Oh0lzOr11PfKHykpIc0Wzgtk3AQbKH2RsDBKNh06lCoEOjp8PaLuSBJNdo2N1Dl1/nz3NxxkmEBjxAjSAaqq8vVILqa+nuaVyZP5WmXcBhsofZXISBJyy84mI8XsYV0EUUwmqtiJigKuvBKYOpUnPIYB6JoYO5aMAX+5XgEaS3k5jS0tzdejYYIINlD6MjEx5J1IS6Pupb52HTc1kbGUmwtccw1rnjDMhQwbRn2oyst9PRIr5eU0Jm4GyLgZNlD6OvHxZKQkJlJOiq+qBCoqyHU9ZQpwxRVUucAwTHfCwynJvaXFP/LHWlspkX3yZPLwMIwbYQOFoRbr8+eTR6WkxLvnNpuBM2fo+cKFlHMSHu7dMTBMIJGbS20s/MGLUlxMXh3WKGI8ABsoDJGWRkZKSAjppHgDgwHIz6dzX3MNdylmGBFCQ8mLYjT6VipAr6dFzaRJfN0yHoF/VYyVgQMpcbajgxRnPUlNDXlrxo4Frr6aRdgYRgnZ2fQoK/PN+Ts6yECZMAFISvLNGJighw0UpjtDhgCzZ1PCqiektS0W0jYxGKjT6fz5HLtmGKWEhFBSqiT5RhW6tJS0iUaP9v65mT4DGyjMxYwaBcycSV6Oxkb3HddopJBOXBxw1VW0+tJo3Hd8hulLZGVRPoq3QrIyzc200Jg8mfPFGI8S4usBMH6ISkXGg9EI7NxJ8eXoaNeO2dBASX3Dh5OSbVycW4bKMH0WtZq8KAUFtJiIjfW8ZpAkkfdkwgTuVMx4HDZQmJ5Rq4Fp06iUce9eWq1FRCg/jiSRYdLaSn2AJk+mJD+GYVwnLQ0YOZI8k8XFVBUnSaTqGhFhfbjLcKmsJAmAiRO5NxbjcdhAYXpHo6FQT3s7cOgQJeWFhYnv39FBqzudjlRhhwzhSY1h3IlKBcydS4Z/U5P1oddTontLCz3v6LAaLuHhpCSt1HBpbydP6MKF7AFlvAIbKIx9tFpKmm1vB44fp5i3yKTW0kIrupwc2r9/f8+PlWH6Imo1lfvGxHR/32KhBFrZaGlspFCQXn+x4RIaSgaLPcOlpITUnYcP987nYvo8bKAwjgkPp/Lj9naSxM/NtZ/cWl1N/UImTaIwUWSk14bKMEwncu5YdHT3Mv4LDZfmZqvHxWAgI8Zk6m64AGS0cDNAxouwgcKIERVFJcEdHdZ+OReKM5nN5DUJDaVtR49mASeG8Td6M1zkkmXbUFFNjTVUNGYMkJ7uu3EzfQ42UBhxdDoyPL77jnJLcnKsOSVGI72XlkZy9RkZvh0rwzDKUKloIRIVBaSkWN+XDRcl+WcM4wZ4ecsoIyEBuOwySpIrLKT36uro+ahRJFnPxgnDBA+y4RLC61nGu7CBwignJYU8KRERwIkTlNk/axYZLrGxvh4dwzAMEwSwScw4R0YGSdXv20eaCIMGcQkxwzAM4zbYQGGcZ9AgUpNkuXqGYRjGzXCIh3ENNk4YhmEYD8AGCsMwDMMwfgcbKAzDMAzD+B2Kc1Da29vx7rvv4vvvv0dTUxMGDRqEJUuWYPLkyUL7b9y4EatXr8bZs2cREhKCrKwsLFmyBBMnTlQ8eIZhGIZhghPFBspLL72EzZs3Y/HixUhPT8d3332HJ598Em+88QbGjBljd9/33nsPH3zwAebOnYsrrrgCHR0dKCgogF6vd/oDMAzDMAwTfCgyUI4fP46NGzfiwQcfxG233QYAuPzyy3HPPfdg+fLlWL58ea/7Hjt2DB988AF+/etf4+abb3Zt1AzDMAzDBDWKclC2bNkCjUaDRYsWdb0XFhaGq6++GseOHUNlZWWv+3722Wfo168ffvazn0GSJBgMBudHzTAMwzBMUKPIQMnPz0d6ejqioqK6vT+8s/32mTNnet13//79GDZsGFavXo1FixbhiiuuwPXXX481a9Y4MWyGYRiGYYIZRSGempoaJCQkXPS+/F5vuSRNTU1oaGjA0aNHceDAAdxzzz1ITk7Gd999hzfeeAMhISG47rrrej2vXq9HTU1N1+uioiIlw2YYhmEYJsBQZKAYjUZotdqL3g8NDe36/56QwzkNDQ145plnMH/+fADA3Llzcc899+Cf//ynXQNl7dq1WLlypZKhMgzDMAwTwCgyUMLCwmAymS56v729vev/e9sPAEJCQjB37tyu99VqNS699FK89957qKysRHJyco/7L1q0CDNnzux6XVRUhBdeeEHJ0BmGYRiGCSAUGSgJCQmorq6+6H05/JKYmNjjfrGxsQgNDUV0dDQ0F0ijx8fHA6AwUG8GSmJiYq/HZhiGYRgm+FCUJJubm4vS0lK0tLR0e//48eNd/9/jSdRqDB48GA0NDRd5YOS8lbi4OCVDYRiGYRgmiFFkoMydOxdmsxlr167teq+9vR3ffvstRowY0eUBqaysvCiRdd68eTCbzVi3bl3Xe0ajERs2bMDAgQPZQ8IwDMMwTBeKQjwjRozAvHnzsGLFCtTX1yMtLQ3r1q1DRUUFli5d2rXdiy++iLy8PGzdurXrveuuuw7ffPMNXnvtNZSUlCA5ORnr169HZWUlXnrpJUWDlpNxuZqHYRiGYQKPrKwshIeH291GsdT9smXLuoyL5uZm5OTk4OWXX8a4cePs7hcWFobXX38dy5cvx7fffou2tjbk5ubi5ZdfxpQpUxSNoaKiAgA4UZZhGIZhApC3334bQ4cOtbuNSpIkyUvjcRv19fXYs2cPUlNTu0qcXUWuDHr66aeRlZXllmMGM/x9icPflTL4+1IGf1/K4O9LHE9+Vx7xoPgDcXFxWLhwoUeOnZWV5dCqY6zw9yUOf1fK4O9LGfx9KYO/L3F89V0pSpJlGIZhGIbxBmygMAzDMAzjd7CB0klCQgLuueeeHnsNMRfD35c4/F0pg78vZfD3pQz+vsTx9XcVkEmyDMMwDMMEN+xBYRiGYRjG72ADhWEYhmEYv4MNFIZhGIZh/A42UBiGYRiG8TsCUqjN0+Tl5eGTTz5Bfn4+GhoaEB0djdzcXNx9990YPXq0r4fnd+zfvx8bNmzA4cOHUV1djX79+mHChAm49957uQlkD+j1eqxevRonTpzAyZMn0draijfeeAPjx4/39dB8Snt7O9599118//33aGpqwqBBg7BkyRJMnjzZ10PzSwwGAz755BMcP34cJ06cQFNTE5566ilceeWVvh6a33HixAmsW7cOBw8eREVFBWJjYzFy5EgsWbIEGRkZvh6eX1FQUID3338fp06dQm1tLcLDw5GVlYXbbrsNM2fO9OpY2IPSA6WlpVCr1bjuuuvw6KOP4pZbbkFtbS1++9vfYvfu3b4ent/x97//HQcPHsSsWbPwyCOPYP78+di0aROWLFmCmpoaXw/P7ygpKcHHH3+M6upq5OTk+Ho4fsNLL72ETz/9FAsWLMDDDz8MtVqNJ598EocPH/b10PyShoYGrFy5EkVFRcjNzfX1cPyajz/+GFu2bMHEiRPx8MMP49prr8WhQ4ewZMkSnDt3ztfD8ysqKipgMBhwxRVX4OGHH8Zdd90FAHjqqaewdu1a7w5GYoRobW2VrrvuOunxxx/39VD8joMHD0pms/mi92bNmiWtWLHCR6PyX1paWqSGhgZJkiRp06ZN0qxZs6QDBw74eFS+5dixY9KsWbOkjz/+uOu9trY26dZbb5UeeOABH47MfzEajZJer5ckSZJOnDghzZo1S/r22299PCr/5PDhw1J7e3u394qLi6X58+dLzz33nI9GFTh0dHRIv/jFL6Q77rjDq+dlD4og4eHh0Ol0aG5u9vVQ/I5x48ZBrVZf9F5sbCyKiop8NCr/JTIyErGxsb4ehl+xZcsWaDQaLFq0qOu9sLAwXH311Th27BgqKyt9ODr/JDQ0lMXGBBk9ejS0Wm239zIyMjBw4ECeowTQaDTo37+/1+9/nINih5aWFphMJjQ0NGD9+vUoKCjAnXfe6ethBQQGgwGtra3Q6XS+HgoTAOTn5yM9PR1RUVHd3h8+fDgA4MyZM0hOTvbF0JggRZIk1NXVYeDAgb4eil/S2toKo9GIlpYWbN++Hbt378a8efO8OgY2UOzwzDPPYM+ePQAArVaLRYsWdcXjGPt89tlnMJlMuPTSS309FCYAqKmp6dEbIL+n1+u9PSQmyNmwYQOqq6vxy1/+0tdD8Uv+7//+ryvnRK1WY/bs2Xjssce8OoagN1AsFgtMJpPQtqGhoVCpVF2vf/WrX+GWW25BVVUV1q1bh46ODpjNZk8N1S9w5fuSycvLw8qVKzFv3jxMnDjR3UP0K9zxfTGA0Wi8yAUP0Hcm/z/DuIuioiK89tprGDlyJK644gpfD8cvWbx4MebOnQu9Xo9NmzbBbDYLz3XuIugNlEOHDuGRRx4R2vbDDz9EVlZW1+vBgwd3PV+4cCGWLFmCl156Cc8//7zbx+kvuPJ9AXThP/3008jJycHSpUs9MUS/wtXviyHCwsJ6nPza29u7/p9h3EFNTQ2W/v/27jyoqvp94PgbRAi4gogIaonjgsmILBnlwh33tWkYt7KZAsTCUcZKRzOmxXK0dEzTSUlUcokUU1zyspWQCwio4BKKC46IGiiowAVDtt8fDvfH7V6QTbjf7vOa8Q8/55zPee45l3ue81nO+eQTrK2tWb58OR06dGjvkAySs7Oz5vdq4sSJLFy4kKVLl7J58+Y2u9H6zycovXr14tNPP23Uug0NOOvYsSPDhw8nIiKC8vLy/+wPZkuOV35+PosWLcLa2ppVq1ZhZWX1PEI0KK31/TJ29vb23L9/X6e8dpq6PE9HtAa1Ws2SJUtQq9X88MMP8r1qgpEjR7JmzRpyc3Pp1atXm+zzP5+g2Nvbt9qDi8rLy6mpqaGsrOw/m6A093gVFRWxaNEiKioqWLdundH84bfm98uY9evXj4yMDEpLS7UGyl66dEmzXIiWKC8vZ+nSpeTm5rJ27VoZHNtEtd2sbTmTR6YZ6/Hw4UOdspKSEo4dO0a3bt2ws7Nrh6gM1+PHj1myZAkFBQWsXr1answommzkyJFUVVVpPQjqyZMnREdH4+rqKjN4RItUVVWxbNkyMjMz+eqrrxg0aFB7h2Sw9F3/KisriYuLw8LCok0Tu/98C0pzLF68GAcHB1xdXbGzsyM/P5/o6GgKCwtZtmxZe4dncJYvX87ly5eZPHkyOTk5Ws8VsLS0xMfHpx2jM0w7duwA4ObNmwDExcVpnpjq5+fXXmG1G1dXV0aNGkVYWBiPHj2iZ8+exMbGkpeXZxRjmZpr//79qNVqTVdYUlIS9+7dA2DatGkoFIr2DM9gbNy4kaSkJIYNG0ZJSQnx8fFay8ePH99OkRmeNWvWUFpairu7Ow4ODhQWFvL7779z69Yt5s+f36Zd9yY1NTU1bba3/xFRUVEkJCSQk5ODWq2mU6dOuLq6MmvWLNzd3ds7PIMzc+ZM8vLy9C5zcnJi7969bRyR4VMqlfUuO378eBtGYjjKy8s17+JRq9X06dOHOXPm4O3t3d6hGayG/vYiIyPp3r17G0dkmBYsWMC5c+fqXW6sf3P6HD16FJVKxY0bNygqKsLKyooBAwYwdepURowY0aaxSIIihBBCCIMjY1CEEEIIYXAkQRFCCCGEwZEERQghhBAGRxIUIYQQQhgcSVCEEEIIYXAkQRFCCCGEwZEERQghhBAGRxIUIYQQQhgcSVCEaGUxMTEolUpiYmLaO5RGycjIQKlUEh4e/tz2oVQqWbBgwXOr/3lbsGBBg0//bYna41/7b+7cuc9lP40RHh6OUqkkIyNDU5aTk6MV38yZM9stPmFc5F08wuh9++23REdHY2NjQ1RUFObm5u0dUqurvajIawcMl4eHBx4eHnTr1q29Q9Fia2uLv78/APv27WvfYIRRkQRFGLWysjISExMxMTGhuLiYEydOMGbMmBbV6ePjg6urK/b29q0UpTAGHh4ezJ49u73D0NG5c2dNXLGxse0cjTAm0sUjjFpCQgKPHz9mxowZmJqaolKpWlynQqHA2dlZ3iQrhBAtIC0owqipVCo6dOjAO++8Q3Z2Nunp6eTl5eHk5KS1Xnh4ONu3b6+3nrpvbY6JieGbb77h008/ZdKkSZp1lEolHh4efP7554SGhnL69GmePHmCu7s7H330ET169ODmzZuEhYVx/vx5Kisr8fb25uOPP6ZLly6aejIyMvjwww/x9/fXueP++++/eeutt5g4cSIhISGa/9eNoZa+7bOysggLCyMzMxNTU1O8vLwIDg7WeSvu8ePHSUxMJCsri4KCAszMzOjbty/Tp09n5MiRDR/0Z1Cr1Rw6dIiUlBRu375NUVERtra2DBkyBH9/f3r27Km1fu25Wb9+PQUFBezevZtbt26hUCgYNWoUc+fOxcLCQmubyspK9uzZw5EjRygoKMDBwYEpU6YwevRo3n77bc3xa4wTJ06wf/9+rl69ypMnT+jZsycTJ05k5syZdOjQoUXHAmDlypXExsayZ88ejh8/jkql4u7du4wZM4aQkBAKCgo4fPgwaWlp3L17l9LSUuzt7Xn99dcJCAjAzs5Op878/Hx+/PFH0tLSqKysxMXFhcDAwBbHKkRrkgRFGK2bN2+SmZnJ66+/TpcuXZgwYQJnz54lOjpa58Lt6empt46cnBwSExN1LoD1KSkpYf78+djb2zNhwgRu375NcnIyCxcuZOXKlQQHBzNgwAAmT57M1atXOXbsGMXFxaxfv75Zn1GhUODv768ZOzB9+vR6P1NWVha7d+/G09OTN998k2vXrnHixAlu3LjB9u3btT5jWFgYZmZmuLm5YW9vz6NHj0hKSuKLL77gww8/ZNq0ac2KF54e0/DwcDw9PfHx8cHS0pKcnBz++OMPTp06xdatW3USSICoqCjS0tIYPnw4Xl5epKamsn//foqKivjiiy+01l21ahVxcXH06NEDX19fKioq2Lt3L3/99VeTYt28eTMRERE4ODigVCpRKBRcuHCB0NBQLl++zNdff93s4/Bv33//PZcuXWLo0KEMGzZMk3icP3+eyMhIvLy8GDhwIGZmZly7do2DBw+SlpbG1q1btVrzCgoKmDdvHvfv38fb2xsXFxdycnJYtGhRvd9zIdqDJCjCaB05cgSACRMmAE9bF9atW0dMTAz+/v6Ymv5/D6inp6fOj/fDhw8JCgrC3NycJUuWNGqf2dnZzJw5k+DgYE3Z2rVrOXjwIMHBwQQEBDBjxgwAampq+OSTT0hJSeHKlSsMGDCgyZ+xU6dOzJ49WzN2oKExDikpKXz55ZdaY3BWrFhBXFwcJ0+e1CpfvXo1PXr00Nq+rKyMefPmsW3bNqZMmcILL7zQ5HgBnJ2dOXDgADY2Nlrl6enpLFy4kJ07d+o93mfPnmXLli306tULgPfff5/Zs2eTkJDAvHnz6Nq1q2a9uLg4+vfvz8aNGzVxvvvuu8yZM6fRcZ4+fZqIiAi8vb1Zvnw5lpaWwNPztnbtWg4dOsSff/7Z4halWtnZ2Wzbtg1HR0etci8vLw4cOICVlZVWeWxsLCtXriQqKor33ntPUx4WFsb9+/eZM2eOVvnhw4dZs2ZNq8QqRGuQMSjCKFVWVhIfH4+1tTUjRowAwMrKCh8fH/Lz8zlz5kyD25eXlxMSEkJeXh5Lly7Fzc2tUfu1tLTUuQjWXvhtbW21WjhMTEw0y7Kzsxv92ZrL3d1dZ4Dw5MmTAbh8+bJW+b+TE3h6/CZNmoRarSYrK6vZcSgUCp3kBJ5eiHv37l3vuZk+fbomOQGwsLBgzJgxVFdXc+XKFU15fHw8AH5+flpJVNeuXbWO/7NERUUBsHjxYk1yAk/PW1BQECYmJhw9erTR9T3LrFmzdJITADs7O53kBJ4m3tbW1pw9e1ZTVlFRQUJCAnZ2dlpdfwBvvPEGL774YqvFK0RLSQuKMEonT57k0aNHTJkyRavrYsKECcTHx6NSqfD29ta7bU1NDStXriQzM5OAgADGjh3b6P2++OKLOi0LtbN9+vTpg4mJid5lBQUFjd5Hc+lroXFwcACejgup6+HDh0RERJCSkkJ+fj7l5eVay1sab0ZGBr/++iuXLl2iqKiIqqoqzbKOHTvq3cbFxUWnrHbKbt34r1+/DsDgwYN11h80aFCjY7x06RKWlpb1Dqy2sLDg1q1bja7vWQYOHFjvsmPHjnH48GGuXr2KWq3WOl51z8WtW7d48uQJXl5eOt2SpqamuLm5cfv27VaLWYiWkARFGKXai0pt906tV155BQcHB5KSkiguLtZ7J79161YSExMZO3YsAQEBTdqvtbW1TlntQMqGllVWVjZpP82h7y68dv/V1dWasuLiYj744APy8/Nxc3NjyJAhKBQKTE1NuX79OidPnqSioqLZcSQmJrJs2TIsLS3x9vbGyclJk9TFxsaSl5end7uGjl/d+MvKyjA1NcXW1lZn/bqDkZ+luLiYqqqqBgdPP378uNH1PYu+wa4Ae/bsYdOmTXTu3JlXX30VBwcHTfKxb98+rXNRWlraYF31lQvRHiRBEUYnPz+f06dPAzT4dNP4+HidJv+YmBh27dqFm5sbS5cufa5x1qe2laXuXXKt2gvQ86RSqcjPzycwMBA/Pz+tZT///DMnT55sUf0//fQT5ubmbNmyhZdeeklrWUJCQovqhqeJWHV1NUVFRXTu3Flr2YMHDxpdj7W1NSYmJvz2228tjqkx/t26Bk8T1507d2Jvb094eLhWglFTU8Pu3bu11q9N4h4+fKh3H/WVC9EeJEERRic2Npbq6moGDx6scwGEpxf+2NhYVCqVVoJy7tw51qxZQ48ePVixYkW7PXG2U6dOgP5ulGvXrundxtTUtEWtGnXduXMHQDN2p64LFy60uP67d+/Su3dvnXNTUFDA3bt3W1x/v379uHbtGhcvXsTHx0drWVNm8QwcOJDU1FRyc3P1fo/aQlFREWq1Gi8vL53Wj6ysLJ2ut5deeglzc3OuXLlCeXm5VjdPdXV1k2cxCfE8SYIijEpNTQ3R0dGYmJgQEhKid7AnQG5uLpmZmWRlZfHyyy+Tm5vLZ599hoWFBd9++63OnXdb6tWrF1ZWVjrdUA8ePGDnzp16t7GxseHGjRs6F6XmqJ3ie/HiRfr27asp//3330lJSWlR3QCOjo7cuXOHBw8eaLpcysvLWbt2bat0dY0bN46YmBi2b9+Ot7e35ngUFhY26VHu06dPJzU1lVWrVrFixQqdLqPCwkJKSkro3bt3i2Ouj52dHRYWFly9epV//vlH0xVWUlKid2q6ubk5o0aNIi4ujsjISK1ZPEeOHCE3N/e5xSpEU0mCIoxKeno6f//9Nx4eHvUmJ/B09kpmZiYqlYqXX36ZDRs2UFxczJAhQ/R2MygUijZ7iVrHjh2ZNm0au3btYs6cOQwfPpzHjx+TlJSEh4eHpoWjLk9PT7KysliyZAmDBw/GzMwMd3d3PDw8mrz/8ePH88svv7B+/XoyMjJwdHTk+vXrpKeno1QqOX78eIs+39SpU1m/fj2BgYGMHDmSqqoqTZdcv379NINcm2vIkCGMHTuWP/74A39/f0aMGEFFRQWJiYkMHDiQ5ORkrSnm9Xnttdfw8/Njx44dzJo1i9deew1HR0eKi4u5c+cOFy5cIDAw8LkmKKampvj6+hIZGUlAQADDhw+ntLSU1NRUHB0dNVOr6woKCiI9PZ2tW7dy8eJF+vfvT05ODikpKbz66quaYy1Ee5MERRiV2sGxdZ/wqs/o0aPZsGEDR48eJTg4WNNUfubMGb3TXJ2cnNr0La+BgYGYmZmhUqk4fPgwTk5O+Pn5MWzYMI4dO6azvp+fH2q1muTkZC5cuEBVVRX+/v7NSlC6devGhg0bCA0N5cyZM1RVVeHi4sJ3333HvXv3WiVBMTMzIyoqit9++w2FQsHQoUMJCgrSeeBac4WEhODs7Ex0dDRRUVE4ODgwY8YMvLy8SE5O1jtgWJ/AwEDc3d3Zt28fZ8+eRa1WY2NjQ/fu3fH392fcuHGtEm9DgoKCsLGxISYmhoMHD2JnZ8eYMWMICAjQvOSvrq5du7Jp0yZCQ0NJS0vj/PnzmvOXnp4uCYowGCY1NTU17R2EEEIYgiNHjrB69WoWLlyIr69vm+yzoVcXGBp5K7ZoS/KgNiGE0SksLOTf92b3799n586ddOjQgaFDh7Z5TNu3b0epVDJ37tw233dDcnJyUCqVKJXKeqd4C/E8SBePEMLoREREcOrUKdzd3encuTP37t0jOTmZsrIyAgIC9D6x9XlxcnLS6oqpfbicobC1tdWKT97SLdqKdPEIIYxOamoqkZGRZGdnU1JSgrm5OX379sXX17dNxo0IIZ5NEhQhhBBCGBwZgyKEEEIIgyMJihBCCCEMjiQoQgghhDA4kqAIIYQQwuBIgiKEEEIIgyMJihBCCCEMjiQoQgghhDA4kqAIIYQQwuBIgiKEEEIIg/N/NiDnYZHyGogAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyi0lEQVR4nOydd3xb5fX/P5K894pnbMfO3glZZCeEEUgJK+wCoQ2FtpRRKBS+baHQlkIp69eWNgUSSqEEEkaADAJkkb23nem9JO8py9L9/XFydeXEtu69utrn/XrpFUm547Gk+9zznPE5OkEQBDAMwzAMw/gQem8PgGEYhmEY5kLYQGEYhmEYxudgA4VhGIZhGJ+DDRSGYRiGYXwONlAYhmEYhvE52EBhGIZhGMbnYAOFYRiGYRifgw0UhmEYhmF8DjZQGIZhGIbxOdhAYRgfZ9OmTdDpdHj22WddPpZOp8OcOXNcPk5faDneQGDx4sXQ6XQoKiqSvc+AAQMwYMAAt42JYfwBNlAY5gJ0Oh10Oh30ej3OnDnT63Zz5861b7t8+XLPDdDLFBUVQafTYfHixd4eimxEo8nxERYWhv79++Pmm2/Gjh07etyvra0NCQkJ0Ol0uOOOOzw8avdy4efh+Lj00ku9PTyGQYi3B8AwvkhISAi6urrw9ttv409/+tNF/3/q1Cls2rTJvh0jMXnyZJw4cQIpKSneHspF5Obm2g2r1tZW7Ny5EytXrsQnn3yClStX4oYbbui2/YoVK9DY2AidTodPPvkEtbW1SE5Odvs4v/32W7efA+j+eTjSv39/j5yfYfqCDRSG6YG0tDRkZGRg2bJleO655xAS0v1SeeuttwAA1157LT799FNvDNFniYqKwrBhw7w9jB4ZMGDARaGnZ555Bs899xwee+yxiwyUpUuXQq/X4/HHH8dLL72Ed999F7/85S/dPs6BAwe6/RxAz58Hw/gKHOJhmF647777UFVVhS+//LLb+xaLBcuXL8e0adMwYsSIXvc/deoU7r77bmRlZSEsLAyZmZm4++67cerUqR63r66uxo9//GOkpaUhMjIS48aNw7vvvtvr8fvKU3j22Weh0+mwadMmp39nRUUFnnvuOUyfPh3p6en2sd5xxx04fvz4RcfNy8sDALz77rvdwgJimKuvHBQln4nj37By5UpMnjwZUVFRSEpKwm233Yby8nKnf5scfv7znwMAzp07B6PRaH//6NGj2LlzJ+bNm4cnn3wSYWFhdsNUDTabDa+88gqGDRuGiIgI9O/fH48++iiampou2ran73b58uX2z3njxo2YM2cOYmNjERcXhwULFuDEiROqx8Ywvgh7UBimF26//Xb88pe/xFtvvYXrr7/e/v7q1atRU1ODF198EadPn+5x3z179uDyyy9Hc3MzFi5ciBEjRqCgoAD//e9/8fnnn+Obb77BpEmT7NubTCZMmzYNZ8+exYwZMzBjxgxUVlbigQcewJVXXunWv3PLli3485//jLlz5+Kmm25CTEwMTp06hZUrV2L16tXYtm0bxo4dCwCYM2cOGhoa8Prrr2Ps2LHdPpdx48b1eR6ln4nIP/7xD6xevRoLFy7E7NmzsWvXLqxYsQKHDh3CwYMHER4e7tLfLwiC/blOp7M/X7p0KQBKck1KSsK1116LVatWYevWrZg5c6bi8zz66KPYsmULbrnlFlx33XVYv349XnvtNWzduhXff/89IiIiZB3nyy+/xOeff46rr74aDzzwAI4fP441a9Zgz549OH78uKLQWkNDA9555x1UVVUhPj4eEyZM4PwTxncQGIbpBgAhKytLEARB+PGPfywYDAahtLTU/v9XXXWVEBcXJ7S2tgr/93//JwAQli1bZv9/m80mDBs2TAAg/Pe//+127A8//FAAIAwdOlSwWq329++77z4BgPDII490237Pnj1CSEiIAEB45plnuv1fbm6ukJub2+Pf8MwzzwgAhI0bN170t82ePbvbe9XV1UJTU9NFxzh48KAQHR0tzJ8/v9v7586dEwAI99xzT4/n3rhx40XjVfOZiH9DbGyscPjw4W773H777QIAYcWKFT2OobcxXfi3C4Ig/Pa3vxUACPn5+fb32tvbhcTERCE+Pl5oa2sTBEEQvvjiCwGA8MMf/lDWOUXuueceAYCQnJwsFBUV2d+3Wq3CjTfeKAAQnnvuuW779PTdLlu2TAAgGAwG4Ztvvun2f7/+9a8FAMKLL74oe1wAenyMHTv2os+bYbwBh3gYpg/uu+8+WK1WvPPOOwCA4uJibNiwAXfeeSeioqJ63Gf79u0oKCjA1KlTceedd3b7v1tvvRUzZsxAYWEhvv/+ewAUMnr//fcRGxt7UVhk4sSJFx1Da1JTUxEbG3vR+2PHjsVll12GjRs3wmKxuHQOpZ+JIw899BBGjx7d7b377rsPALB7925F4ygqKsKzzz6LZ599Fr/61a8wa9YsPP/889Dr9Xj55Zft23388ceor6/HrbfeisjISADA/PnzkZ6ejpUrV6K+vl7ReQHg4YcfRm5urv21Xq/HX/7yF+j1evvvSw633XYb5s2b1+29n/zkJwCUfR6//OUvsW3bNhiNRjQ3N2PPnj1YtGgRDh06hMsuu0yzEBrDqIUNFIbpgylTpmD06NF45513YLPZ8NZbb8Fms9lvkD2xf/9+AMBll13W4/+L7x84cAAAUFBQgLa2NowbNw7x8fEXbe9u3RIA+Oqrr3DttdciIyMDoaGh9rySL774AmazGSaTyaXjK/1MHJk4ceJF72VnZwOAYkOhuLgYv//97/H73/8er732Gk6fPo0bb7wRW7du7ZYgK4Z37r33Xvt7ISEhuPPOO9HR0YH33ntP0XkBYPbs2Re9l5+fj+zsbBQVFaGhoUHWcbT6PP76179i2rRpSElJQUxMDCZOnIiPP/4YN910E0wmUzeDjWG8ARsoDOOE++67D8XFxVi7di2WLVuGCRMmYPz48b1u39jYCADIyMjo8f/F98Ubkrh9Wlpaj9unp6erHbosXn/9dfzgBz/Atm3bMGvWLDzyyCP43e9+h2eeecaee2I2m106h9LPxJGEhISL3hOrqqxWq6JxzJ49G4IgQBAEWCwWVFRUYNWqVZg2bZp9mxMnTuD777/HsGHDLsrHEEty//3vfys6L+D8+xU/I2do+Xn0xAMPPACAcpMYxptwkizDOOGuu+7Ck08+iQceeADl5eX43e9+1+f2ohekqqqqx/+vrKzstp34b3V1dY/b93YcvV6Pzs7OHv9P7mq8q6sLzz77LNLT07F///6LDIjeBMyUovQz8Sai96SgoKBb0qwjR48exfbt27sZNs6orq7G0KFDL3pf/Ex84W8HgH79+gEgnRiG8SZsoDCMExISErBo0SK89957iI6Oxu23397n9qJ3pbcS340bNwIALrnkEgDAsGHDEBUVhYMHD6KxsfGiG1Vvx0lMTMThw4dhsVgQGhra7f/27t3r7M8CQNVDDQ0NuPHGGy8yTlpaWuyhGUcMBgMAZat1pZ+JtzCbzXjvvfeg1+vtEvUXUlZWhvXr1+Pf//63IgNl8+bNmDVrVrf3zp49i9LSUgwYMKBHz4g32LlzJwAKPzGMN+EQD8PI4A9/+AM+/fRTrF+/vseEUkemT5+OoUOH4vvvv8fKlSu7/d/KlSuxdetWDBkyBDNmzAAAhIaG4s4770Rzc/NFSbJ79+7F+++/3+N5Jk+ejK6uLixbtqzb+8uXL8e2bdtk/V2pqamIiorCvn370NLSYn/fYrHg4Ycf7jH3JDExETqdDiUlJbLOASj/TLzFqlWrUFtbi6uuugpvv/023nrrrYseH330EaKjo/HRRx/JDssAFEorLi62v7bZbPjVr34Fm83WLdfFE4iGbU/v/9///R8A4Ic//KFHx8QwF8IeFIaRQU5ODnJycmRtq9Pp8O677+KKK67Arbfeiuuuuw7Dhg1DYWEhPvvsM8TGxuI///kP9HppffCnP/0J3377LV577TXs3bvXroOyYsUKXHPNNVi9evVF5/nFL36BZcuW4ac//Sm+/fZbZGdn4+DBg9ixYwd+8IMfXCQw1xN6vR4PPfQQ/vznP2P06NG47rrr0NnZiY0bN6Kurg5z5861ezdEYmJiMGXKFGzduhV33nknhgwZAoPBgIULF2LMmDGafSbeQAzvLFmypNdt4uLicPPNN2P58uX473//axd6c8b06dMxbtw43HrrrYiPj8f69etx6NAhTJgwAU888YQm45fLK6+8gi+++AIzZ85EdnY2wsPDUVBQgHXr1sFqteK+++5z6ilkGHfDHhSGcQNTpkzBnj17cMcdd2DHjh34y1/+gu3bt+P222/Hnj17MGXKlG7bp6SkYNu2bbj33ntRUFCA1157DQcPHsSbb76JRx99tMdzjBgxAt988w2mT5+OL774AkuXLkV4eDh27NiBCRMmyB7r888/j7/+9a+IjIzEv/71L3zyySeYOHEidu/e3atR9t5772HBggVYt24dfv/73+O3v/1tj+EgVz4TT3Py5Els3rwZaWlpuPbaa/vcVqziUpIs++qrr+I3v/kNNm3ahNdffx1GoxEPP/wwvvvuO9kibVpx/fXXY/bs2Th69CjeffddvPHGG9i3bx+uvvpqfP7551i6dGmv+TcM4yl0guAgo8gwDMMwDOMDsAeFYRiGYRifgw0UhmEYhmF8DjZQGIZhGIbxOdhAYRiGYRjG52ADhWEYhmEYn4MNFIZhGIZhfA6/NFA6OjpQWFiIjo4Obw+FYRiGYRg34JcGSnFxsb3DLMMwDMMwgYdfGigMwzAMwwQ2bKAwDMMwDONzsIHCMAzDMIzPwQYKwzAMwzA+BxsoDMMwDMP4HGygMAzDMAzjc4R4ewAMwzCM/2C1WmGxWLw9DMYHCQ0NhcFg0Ox4bKAwDMMwThEEAVVVVWhsbIQgCN4eDuOD6HQ6xMfHIz09HTqdzuXjsYHCMAzDOKWxsRENDQ3o168foqOjNbkBMYGDIAhobW2F0WhEZGQkEhISXD4mGygMwzBMnwiCgJqaGsTFxSElJcXbw2F8lMjISJjNZtTU1CA+Pt5lI5aTZBmGYZg+sVqtsFqtiIuL8/ZQGB8nLi7O/ntxFTZQGIZhmD7p6uoCAISEsNOd6RvxNyL+ZlyBDRSGYRhGFpx3wjhDy98IGygMwzAMw/gcbKAwDMMwDONzsIHCMAzDMEx3BAHQINHVFdhAYRiGYRgvYjab8eSTTyIzMxORkZGYMmUKNmzYIGvfY8eO4eabb0Z+fj6ioqKQkpKCWbNm4Ysvvui2XUtLC5555hnMnz8fSUlJ0Ol0WL58eY/H3LRpE3R6PXQhIdDpdN0eO3fudPXPlQ2nZDMMwzCMF1m8eDFWrlyJRx55BIMHD8by5ctxzTXXYOPGjZgxY0af+xYXF6O5uRn33HMPMjMz0dbWhlWrVmHhwoX417/+hZ/85CcAAJPJhOeeew45OTkYO3YsNm3a1PtBOzsBAA/dfz8mXXD+QYMGufS3KoENFIZhGIbxErt378aHH36Iv/zlL3j88ccBAHfffTdGjRqFJ554Atu3b+9z/2uuuQbXXHNNt/cefPBBTJgwAa+88ordQMnIyEBlZSXS09Oxd+9eTJo0qecDWq1AezsAYObUqVj0wx+6+Beqh0M8DMMwTNCTn5+PH/ZwM547dy5mz57ttvOuXLkSBoPBbkgAQEREBH784x9jx44dKC0tVXxMg8GA7OxsNDQ02N8LDw9Henp63zsKAtDa2i33pLm5WRNNEzWwgcIwjG/Q1QXU1ADHjgGbNgFGo7dHxAQJLS0tKCoqwtixYy/6v8OHD2PMmDE97mexWGAymWQ9bDZbj8c4cOAAhgwZcpFK7+TJkwEABw8elPU3tLa2wmQy4cyZM3j11Vexdu1azJs3T9a+dsxm8p6c70h874MPIi4uDhEREZg7dy727t2r7HguwiEehmG8g80G1NeTIVJdDZSUAI2NNEF2dpLBcvnl3h4lEwQcPXoUgiBcZKCUlZWhrq6uVwNl27ZtmDt3rqxznDt3DgMGDLjo/crKSmRkZFz0vvheRUWFrOM/9thj+Ne//gUA0Ov1uPHGG/G3v/1N1r4A6HpraQF0OoRFROCmH/wA11x1FVJycnD8+HG8/PLLmDlzJrZv347x48fLP64LsIHCMIxnEAQyQEwmMkiKi4GGBjJI9HogLg5ISwMiIoCmJuDUKWD0aHqP8U0mTgSqqrw9Con0dEDFKv/o0aMAcJGBcujQIQDo1UAZO3as7Gqb3sIr7e3tCA8Pv+j9iIgI+//L4ZFHHsGiRYtQUVGBjz76CFarFZ3nk12dIoZ2urqAiAhMmzIF08aPB8LCgIQELFy4EIsWLcKYMWPw1FNPYd26dfKO6yJsoDAM4z6am8kgqakhD0ltLa3S9HogJgZITgYiI4EL5bHj4oDKSuD4cTZQfJmqKqC83NujcJkjR44gLS0NaRf81g4fPgy9Xo9Ro0b1uF9iYiIud9HLJ3YAvpCOjg77/8th2LBhGDZsGABKsr3yyitx7bXXYteuXc7l59vb6REW1usmgwYNwnXXXYdPPvkEVqsVhvNhIHfCBgrDMNrR1kYGidFIBonRSAaJzUYGSVwckJFBBooz0tOBwkJg1CigXz/3j51RjrOkS0+jcjxHjx7tMf/k4MGDyM/PR3R0dI/7dXZ2oq6uTtY5+vXr1+NNPSMjA+U9GHmVlZUAgMzMTFnHv5BFixbh/vvvx8mTJzF06NDeN7RYyHtiMDi9LrOzs9HZ2YnW1laPdLZmA4VhGPWYzWSQmExAaSmtqJubySCJjCSDJDXVnnSniPh4Ot7x44AbqygYF/Bw0qS7OHLkCG699dZu79lsNnz33XeYNWtWr/tt377d5RyUcePGYePGjWhqaup209+1a5f9/9UghoYaGxt738hmowWE1UqhVSecPXsWERERiImJUTUmpbCBwjCMMurqgIoKepSXU17J+dg14uKAAQOAEI2mltRUoKCAvCjJydock2EcqKmpgdFotHssRN544w2YTCaMHj261321yEFZtGgRXn75ZSxdutSug2I2m7Fs2TJMmTIF2dnZAIC2tjaUlJQgJSUFKSkp3cafmpra7ZgWiwX/+c9/EBkZiREjRvQ+KIuFFhkX5MAYTSb0u8BDcujQIaxevRpXX3019HI8oBrABgrDMPJpbQW+/JKSXMPDySDJzu4zdu0SiYl0roICYPp095yDCWqOHDkCAPj666/xs5/9DMOGDcPOnTuxfv16AMC+ffuwa9cuTJky5aJ9tchBmTJlCm6++WY89dRTqKmpwaBBg/Duu++iqKgIb7/9tn273bt3Y+7cuXjmmWfw7LPP2t+///770dTUhFmzZiErKwtVVVV4//33UVBQgL/+9a/dvB1/+9vf0NDQYK8M+uKLL1BWVAQYDPjFffchPj4eAHDrj36EyPBwTJsyBam5uTh+/DiWLl2KqKgo/PnPf3bp71UCGygMw8inuJgSXgcPVhe2UUNqKoV5Rowgg4VhNOTIkSMwGAz48MMP8dBDD2HZsmWYOXMmNm/ejOuvvx4HDx5EaGioW8fwn//8B7/97W/x3nvvob6+HmPGjMGXX37ZZ3hJ5NZbb8Xbb7+NN998E7W1tYiNjcWECRPw4osvYuHChd22ffnll1FcXGx//clXX+GTr74CAPzwllvsBsr1Cxbg/RUr8Mo//oGm5mb069cPN954I5555hmPSt3rBEEQPHY2jSgsLMR9992Hf//7330n/zAMox02G/DZZ1Rdk5PjufMKAnlQZswApk3z3HkZOx0dHTh37hzy8vLs5a+BwpIlS7BlyxacPHnS20PxDIJAeSetreQF7a3Cp7PTXmasBC1/K6wkyzCMPCorgbIyz1fU6HSSF6WvhD+GUcGRI0f6ztMINDo7qdouNLR348RHYAOFYRh5nD5Nk5tMXQZNSUoi1dmCAs+fmwlYBEHA8ePHg8dAsVrtarEeC9G6gGIDpa2tDe+88w4ef/xxLFiwALNmzcLatWtVnfyll17CrFmz8OSTT6ran2EYD9HcTMquDtUDHkWnoyqeY8doLAyjAefOnUNLS0twGCiiWqzF4r6kdo1RbKA0NjZi+fLlKC4udilZpqCgAGvXrkWYn3xQDBPUFBeTB8ObSarJyaS3Eiy5Aozbyc/PhyAIPXYxDjg6Opyqxfoaig2U5ORkfPrpp/j444/x05/+VNVJBUHA66+/jquuugpJSUmqjsEwjIewWoETJ4DoaHkKsO5Cr6dQz+HD5KZmGEYeXV3kPdHrvXsNK0TxSMPCwpDsomDS+vXrce7cOdx3330uHYdhGA8gCrJdIAblFfr1Iy/KqVPeHgnD+Adi1U5XFyXG+hEeN6Xa2trwz3/+Ez/84Q9dNnQYhvEAp09TiXEPHVc9jl5PZY+HD1MlAsMwfdPeTuEdPwrtiHhcqG358uUIDw/HLbfcInsfk8mE2tpa+2tHoRmGYdxIYyMZKN5Kju2Jfv3Ig3LqFNBDgzeGYc4jNgIMCfGr0I6IRw2U0tJSrFy5Er/73e8UJceuXr0ay5cvd9/AGIbpmeJioKEB8CVBRIOBJPaPHAGGDPFO2XOQ4oe6nsGLwkaAWqHlb8SjBsobb7yBUaNGYc6cOYr2W7hwIaY79OEoLi7GH/7wB41Hdx6zGaitBVS2uGaYgKGri5JjY2J8T9ApLY08KGfOUCNBxq2EnG/+2NXV5eWRMLJpa+uxEaC7EX8jIRo0DPWYgSI2XPrDH/7QrWuk1WqF2WxGZWUl4uLiEB0dfdG+F3ZvdCuVldRCfMECXpkxwU15OV0P57up+hQGAxAbCxw6RH2BfCE/JoAxGAwwGAxoampCbGyst4fDOMNsJgMlJMTji4umpib778VVPGag1NTUAAB+85vfXPR/RqMRt956Kx588EFFuSluQRCkdvIDB3p3LAzjTU6epOvBV5Pr0tLIg3LmDDUSZNyGTqdDamoqKisrER4ejujoaOh8zavGEFYriRl2ddG129mp7jgWC/3b0SFrc0EQ0NraiqamJmRkZGjy+3CbgWIymdDa2oqsrCyEhITgkksuwR//+MeLtvvLX/6C9PR03HXXXcjPz3fXcJTR1ESxdzZQmGClvh44e9a3kmMvJCSEtFkOHQIGDfJdQypAiI+PR3t7O0wmE4xGo7eHw/RGRwd5UFwtKbZayVMZFSV7F51Oh4SEBHtXZFdRZaCsWrUKLS0t9sqabdu22T0kN910E2JiYrB06VKsW7cOK1asQEZGBtLS0pCWlnbRsf7f//t/SExMxMyZM134MzRGEIBz5yj7uYeQE8MEPEVFZKhnZHh7JH2TlkaG1NmzwLBh3h5NQKPT6ZCRkYHU1FRYxNU141sUFwN79pCgoav3rqoqur4uu0z2LqGhoZqEdkRUGSgrVqxAVVWV/fWWLVuwZcsWAMCVV16JmJgYbUbnLXQ6qlyoqKD4NsMEExYLJcfGxflecuyFhIZSrtjhw+Tx9DMhKn9Eq/wCRmOamsg46eqinCxXE5o7OugYHqwAuhBVBspHH33kdJunn34aTz/9tCbH8jiiHHBRERsoTPBRWkqrpwEDvD0SeWRkkMfz3DkqO2aYYMNmA3bupKT2ALoG/E+5xVMkJpK7jHt+MMHGqVNkoPuLNyI0lFaMhw+7vmpkGH/kxAng6FEgJ8cvBdl6I3D+Eq2Jj5fCPAwTLNTWkieiXz9vj0QZGRlASQl5PRkmmDCZyHsSE6MoodUfYAOlNwwGqhI4d87bI2EYzyEmx8bFeXskyggLo+v18GGqPmCYYMBiIeOkvh5IT/f2aDSHDZS+SEqiVVlTk7dHwjDux2wmV3FiordHoo7MTArLcq8uJlg4cgQoKKB8MV9PaFcBGyh9ER9PxgmHeZhgoLQUqKnxbe2TvggPp/j7kSOUNMgwgUxlJVXtJCcHrJIyGyh9odeT2/jsWW+PhGHciyAAhYXSb95fycyksGxJibdHwjDuo6MD2L6d5Oz9dUEhAzZQnJGcTCvLxkZvj4Rh3IfJRDf11FRvj8Q1RM2Go0fZi8IELqdOkSGem+vtkbgVNlCcERtLfQ04zMMEMmfPknJyIDSCy8igv6eszNsjYRjtEQTg9GkSKPQXKQCVsIHiDL2eKgTOnPH2SBjGPXR0UKJdQoK3R6INUVFUyXPkCE3mDBNINDQA1dX+m8yuADZQ5JCcTK3n6+u9PRKG0Z6SEgrxBFIsOyODFhXl5d4eCcNoS1UVCYj6e0sZGbCBIofYWK7mYQITQSDvSWgoaf8ECtHRpCp77Bh7UZjAoriYvPoBWFZ8IWygyEGno3jf6dM82TGBRXU1JYH7e3JsT2Rk0DVbWentkTCMNrS0UG5VoIRjncAGilySksiDwmEeJpA4exZob3e9NbsvEhND+TXsRWEChaoqqij1N6VnlbCBIpeYGLJeOabNBAptbaR9kpTk7ZG4j/R0Ksmsrvb2SBjGdcrLyaMfSOHYPmADRS46HVUHcJiHCRRKSqg5YCAbKHFxZIgdO+btkTCMa5jNpH0SJOEdgA0UZSQlUTy7ttbbI2EY17DZqO9ORETgr8bS04GTJ0nGn2H8lepqSjFgA4XpkZgYErPiMA/j71RVUbJdv37eHon7iY+n6/bECW+PhGHUU1FBC4sAF2dzhA0UpURHU0ybZbQZf+bMGXIZR0V5eySeITWVyqlNJm+PhGGU09VF12yQJMeKsIGilKQkcrXxRMf4K62tZGQnJ3t7JJ4jMZG0jNiLwvgjRiOlFgSBeqwjbKAoJTqaku44zMP4K8XFgZ8c2xOpqWSg1NV5eyQMo4zKSqCzEwgP9/ZIPAobKGqIiaFqHg7zMP6GzQYcP06hHX2QXf6JiaQhUVDg7ZEwjHwEgcI7gahV5IQgm6E0QgzzGI3eHgnDKKOigh6BqBzrDJ2OkoKPH6eGawzjD9TW0r0miKp3RNhAUUNUFKlvcjt3xt84cwawWKi8OBhJSqIQT2Ght0fCMPKorqa8sSBoDnghbKCoJTaWwjxWq7dHwjDyaGoKvuTYC9HpqGvz0aP0eTCMr3P2bNAuKNhAUUtyMlm2LP7E+AvFxST0FGSVABeRnMxeFMY/aGqikGyQXrNsoKglIoJ0JLiah/EHrFaqYImJCb7k2AvR6ynUc+QI9ddiGF+lqgpobiaPfRAS5DOVi8TFkcu8q8vbI2GYvikvp5VYMCjHyiElhbwoxcXeHgnD9E5JCRASErSLiuD8q7UiOZmyq7lTKuPriGXxQaaj0Ct6PRAWBpSWenskDNMz7e1koHireqegwOuNcdlAcYXwcBLP4WoexpdpaCADJSXF2yPxLeLjybPU3u7tkTDMxVRV0bXrDQNl82bgjTeAF1/0ajJ5iNfOHCjExdHkf8klQdXEifEjiotpohs27KL/Oluiw74jelgs7h1CaCgwcbQNeTneXZF1Iy6O2tfX1AC5ud4eDcN0p6yMPBie7jZ+7hzw//4fPd+xA/jiC+DOOz07hvOwgeIqSUn0Q6quBvr39/ZoGKY7FgsJk8XFUYntBew7okdj08Xva047sPeIHnk5PlSWHxJCYa+qKjZQGN/CYiFDIT7es+dtaQFeeIEiAwBw+eXAHXd4dgwOsIHiKuHhlCRbWsoGCuN7lJeT8Zyd3eN/i54TnU5ApJukFto7AEHQud1Lo4rYWNKZmDQpaBMRGR+kpoaSuHu5bt2CzQa88goZ7ACQkwPcf3+PCxtPwQaKFsTHU5hn4kQO8zC+xalTNPGEhfW5WWQEcMf17vFufPCZAW19pXlYLKRwe+IEPQoKyOh/8klg7Fi3jMlOQgJ1Jq+r4xwdxneoqKBrwMl1qykrVgB799Lz2Fjgvvs8e/4eYANFC5KSyINSWUlWJ8P4AnV15B3wtb47TU1khIgGyalT6NG98re/Af/4h3uNfrFtRU0NGyiMb2CzkcHuSe2TPXuADz+k53o98PjjPqE4zQaKFoSFSWEeNlAYX6GoiLr3ZmR4bwyCgNjGMvQvPYGs+mPA+uPOxQ11OkoOrK4G1qwBrrvOvWMMDaVrd8QI956HYeRgMlGDQE8ZzJWVFNoRS4p/+ENg/HifqE5lA0UrEhOlMA9rTTDeprOTvBPx8Z6NIXd20nUgekdOnMC1zc1975OeDgwfLj0sFuCxx2jCXLECmDfPvY3SHMuNIyPddx6GkUNVFdDWRt49d2M2U1Jsayu9vvRS4Kab3H9embCBohWJiVTOWVkJDBjg7dEwwY5YWebu32JDQzdjBGfO9K2sHBIC5Od3N0h66jMyZw6wcSNVFXz8MXDvve76C8hA4XJjxhcQBLqGNDZOepQTEARM2/x3DCgqAgA0xvfH+kGPoevz82aBtT9gMCBq1zZc/8fpmo5HLmygaEVoKMUOS0rYQGG8T2EhxZK1zt+oraV4tZhDUlnZ9/axsShPGI7ypBFozBqOK+7Nl+dh/OEPge+/J2/KF18AV19NnhZ3wOXGjK/Q0EALC42bA/YkJzCycDUGnN0EAOgMicSG6b9BkzUasCe0nzcPGs2ajkUJbKBoSWIiJSVOnhy07bEZH8BkovwTrfvu1NYCDz4ouYN7IiuLBOFE70hWFjavDkVbuw5RkQIQLrNSqF8/YOFCYNUq8sj897+UuOcuuNyY8QWqqshrmJmp6WEvlBPoV3UMUw68Zf//XbMeRWd6NqLgIKRotZIHJd57KQtsoGhJYiK5iisrgbw8b4+GCVbOnaNJTmtdntWruxsnISHA4MHdDRIthaUWLQI2bKCqny1bKFl28GDtju8IlxszvkBxMXk93ZQ3FhkB3DGzBvjlC4BwfrFw442YufhSABcsHsrKaMGx0DvhHYANFG0JOf9xlpSwgcJ4B7OZwi9a9+9obQXWraPnoaHAs8+SYeLOEuDoaOC224ClS+n1smXAH//onsmby40Zb9PSQkaBxuEdR/RWC/XXqa+nN8aMAe66y23ncxX2ZWpNYiIlOXEDMsYblJS45ya7fr30m77sMmD0aM+IEl51lVQmffQo5b+4C7HcmGG8QVUVyQLExbntFON3v0ULGIDmiF/9yvO9fhTAHhStEfNQKiqAgQO9PRommBAESo4NCZG8eVpgsVB4ByDvxfXXqzpMewepyirDgOzh92Jm5Z8AAI3/bznW3DAZgv7i47jckJDLjRlvUl5O15ebDIZB577F0BNf0ouQEOCppzzf60ch7EHRGvHHVVzs3XEwwUdjI01yWntPNm+m3AwAmDKF4tIKEB0tgqBDW7vyR2HqdFSnDAcAxDeWIfvo+h63a2zSYe8RF6a0+HiqoqipUX8MhlGD2Uy5Y1qHZs+TUHsGM/b8P+mNBx5wXz6XhrCB4g6SkqiKoq9qB4bRGqMRaG7WVtTMZgM+/VR6feONig8xcbQN8XECoiJVPqKAQ5f+2H68CUffR1xIa7dtdDrymrjUkNCx3JhhPEl1NeWFuMNAaW7GrG//iBDr+Q7FV15JDz+AQzzuICGB8lAqKvzCSmUChMpKKpHVskx23z4pL2PECEqMVUhejoC8HFcbEQ4B6qYB27cjsqMBt3SuBG6+0/6/ThsSyiU2lhYXXG7MeJKKCjKOtc7rslqBv/4VMS3VAIDalCFIvv9+bc/hRvgKdAcGAz3OK/QxjNvp6qKwotYJdqtWSc9VeE805e67pdyaTz8lXRatiY+n44ohLYZxN11dtKB1R3Lshx8C+/cDANrD47H1sqc9k9yuEWyguAtR+r6lxdsjYYIBk4nyJ7RMeisoAI4fp+fZ2dRnyptkZpKiLEA9f95/X/tzREdTaJbzUBhPYTSSUax1efHu3dTLCoBNp8d3055EW4zG4o1uhg2UC2lvd95tVQ5iwl1FhevHYhhnGI2UaKelgrFj7sn11/tGyOPWW8mIAIBvv3WPlzIsjMuNGc9RWUnXrpZNZisqgFdftb88NHExKtPHaXd8D+EDM46PIAjAL35BVQpvvUWxO1cwGMgdfe6cNuNjmL4oKdF2gisvB3bupOdJSdS8zxeIiyOFWYCu2eXLtT+HY7kxw7gTsTmglontHR3dOxRPm4YTo7wcnlUJJ8mK6HS0ajofktn0j0OoyJ4ka9de9ReSkujG0dTkVvEdJshpa6NVmJbhnc8/p8kTAK691rfi1tdeC6xZQ16j/fuBgwcBTNDu+NzdmPEUtbX0O9YqvCMIwP/7f5LMRXY28NBDwNfukc53N+xBceRHP7I/zT3xtWydhl71F+LjyTjhMA/jToxGbY3g+noKnwAkWDZ/vjbH1YqwMOp2LLJsGXQ2V6uEHOByY8ZTVFeTp0MrD8rq1cDWrfQ8MpLE2KKitDm2F2ADxZFrrkFHdBIAILd8FxJR71SjoU/9Bb2eJruzZz34RzBBR1UV3VC1UqD86ivpBz1/vpTz4UvMni0pNZ87hwFnNmp7fLHc2GbT9rgM48jZs9rljR09Sv2qRB55RPuGoR6GQzyOhIQg4oc3A//6F/SCFTdFfutU1tup/kJyMoWOGht9XlaY8UNsNnLnxsZqc7z2dgqfAGTwXHutNsfVGr0eWLwY+O1vAQBj9r+HgvRZAMK0Ob5juTE3D2Tcgehd1yK8U1tLTQBFg3rRImDqVNeP62XYg3IhN98sPd+wQYrDqyU2ltQ9OczDuIOGBpqctArvbNgglcbPnu3bN+exY+2lz9GtJowq/Ey7Y0dHU24Plxsz7qKqiu4Nri4uLBbgz3+mRTAAjBsH3Hlnn7v4C2ygXEh+PpCXR89LS6n5mivo9RQzP3PG9bExzIUYjRTD1iIM09VFybEiN9zg+jHdzeLF9vLnscc/Qnh7o3bHDg0Fysq0Ox7DOFJSQikArpbvv/WWdJ9KTQUef9ynOxQrgQ2Unpg8WXr+zTeuHy85mcoW6+tdPxbDOFJeTpORToMs/e+/J4MHIM+EP1Sw5OQAl18OAAjraseogx9od+z4eDJQuNyY0Zr2djJQXO298+23wNq19Dw0lJJiA6hilHNQemLsWMqGbm+njOglS1xLZIqNpTJQreKNDAOQmmpJiTa5TYLgclNAr3HHHbB8twWhXR0YXLAWKF+guONyj8THU6IslxszWlNVReHZ/HycLdFh3xG94kaXiabTuOKrN+038R2X/hznjgwBjly8bXuHqwP2DuxB6YnwcGDmTHre3g5s2+ba8XQ6MnDOnHE9p4VhREwmzZKv0ysOSKKCQ4YAI0e6fEyPkZSEE6NvAgDoBSvw7rvaHDckhAQbudyY0ZqyMroXGAzYd0SPxiZ5khbiw9rQjBkOHYpPDLoGx/pf2ev2gkAeVl+SM5IDGyi9cd5tDIASB10lKYnDPIy2GI2UIBfmeuXKiMMrpRc33KBNyMiDFIy6AW0R572TO3dKPYRchcuNGa2xWGgxcH5hIXpOdLq+JS3ER3R4Fy7f9RJiWymB29RvKA5N/4nT/eLjBEwc7V+/Yw7x9MbQoaTCV1pKk11ZmWs15TExZKCUl5OxwjCuUlREYkwuklx3GumVh+hFejpw6aUuH9PTdIVGYt/ouzBzzxv0xrJlwEsvuW5ocbkxozU1NfR7ys7u9nZkBHDH9TIEBz/6CCinDsWIj0fKi0/ithQ9AA3FCn0E9qD0hk4HXHGF9FpU1nTleFFRwOnTHOZhXKe5mSY6DRLixpxYJb244Qa/rQA4mX8FGhJy6EVhoeuhWYDLjRntqaigijk1nk+rFfjyS3qu1wNPPBHQhjMbKH0xZ440WX/3nesNBJOSKJ5dW+vy0JggR5S3d1FDIbq5Cnml56Wx4+OByy7TYHDeQdAbcHDSvdIb//lPLxLPCuFyY0YrbDbKRVR73R4+TMm1AHk6R4/WbGi+CBsofZGQIJUc19cDe/e6dryYGBLBKi93eWhMkCMmbrro7Rh27DPohfNx6QULtO2I7AUq+k8CxoyhF1VVkiquK3C5MaMVJhMtUNWWF2/ZIj2fNUuTIfkybKA4wzHMo0WybHQ0cOoUJ90x6tFK3r6pCQMLvwYAdIWEA9dco8HgvIxOB9zr4EX56CNJGVct8fFULcVhHsZVqqooZKimgZ/ZDGzfTs+jouwqyoEMGyjOGD+ehNYA8qC4WoWTlEQdLE0m18fGBCdi0qar5cVr1iDEagYAnBlyZeAIPA0cSOFZgHJ1Pv7YteNxuTGjBYJA4R213YX37ZO8eFOnalK95+soNlDa2trwzjvv4PHHH8eCBQswa9YsrBWV7Jywb98+/PnPf8Ydd9yBK664ArfeeitefPFFmHz5Zm0wSHF5m41yUVxBTLrj3jyMWoxGmqhcaaNuNtuT7Ww6PQpG+oGsvRJ++ENJ9OHLL2lR4Apcbsy4SkMD/Q7VinVu3iw9nz1bkyH5OooNlMbGRixfvhzFxcUYNGiQon3/+c9/4sCBA5g5cyYefvhhzJs3Dxs3bsSSJUtQ68uJo46aKN9843oVTkwMh3kY9ZSX06reFb79lpJsAZzNmYnW2DQNBuZDpKZKnZgtFuC//3XteI7lxgyjhqoqCjfGxCjft6VFyoFMSAj45FgRxbNccnIyPv30UyQnJ6OgoAA/+clPZO/785//HGPGjIHeoTnS5MmT8dBDD+GTTz7Bfffdp3Q4niEjg34QR47QzeHECWDECPXHS0igEE9DA2uiMMro6CBtHld6eFitwGef2V8eGbbI5WH5JIsWUd5YczOtPhcuBAYPVnesqChKlK2pCeiyTsaNFBeTV0+NNs/OnVJF2syZfisFoBTFHpSwsDAkizkZChk3blw340R8Ly4uDsXFxaqO6TG0VJaNjqYOtGJjNoaRi8lEng9X8kV27rTnU1RmjkNt0kCNBudjxMQAt90mvV6+XL33U6fjcmNGPS0t9Nvh8I4ivJ4k29bWhvb2dsRr0fDMnUybJsX8t22jPBK16HTkoq+s1GZsTPBQXU0iT2qbaggC8Mkn9pcnRgeo90Rk/nzygALkAXVFKoDLjRm1VFVRJZiahUVdHf12AVJ6VusF9EO8bqB8/PHHsFgsuKwPgSiTyYTCwkL7wyvelvBwqe68o4Na07tCXBx1otVCSIoJDgSB3MSuJMcePUr5TwCQl4eqzHGaDM1nCQ0F7r5ber18uXrBRS43ZtRSXk4LUzWhme+/l/IVZ8/2uz5ZruDVXjwHDx7E8uXLMXfuXEyYMKHX7VavXo3ly5d7bmC9ccUVwLp19HzDBuDKK9UfKy6OKnlMJmmFxzB90dREYUFXvI2ffio9v/FGoD4IJrtp04Bhw4CCAsrf2bCBPCtKcSw3zs3VfpxMYGI2U3NAFmdTjNc8KMXFxfjNb36D/Px8PPnkk31uu3DhQvz73/+2P37zm994aJQXMGgQMGAAPS8sJA+IWsLDgc5OzkNh5GM0UsKnmioAgMpkxRBHaiowfbpmQ/NpLhRv++AD9SFaLjdmlFJdTfpZagyUigrg5El6np9/UYPBQMcrBkp1dTUee+wxREdH48UXX0SUE5d1SkoKhg4dan/kemv1otNdXHLsCuHhrhk5THBRWUkNwvQqL1tH78nCha6XKvsTw4eTJwWg6jmHKiZFcLkxo5SKCjJo1eSNOXpPgig5VsTjM1RjYyMee+wxWCwWvPrqq0jxt5K9OXMojt3VBWzcCP31iwGoVPSLjyd3cWsrVfYwTG90dbkmb28ySZNdTEz3Fg4BRHsH8MFnPcf5YzMWY4FuF/SCFV0rP8UXuAbtUcoqEkND4zAxuQl5XG7MyKGri9Rj1STHCoJUvaPTUXlxkOE2D4rJZEJxcTG6urrs77W3t+OJJ56AyWTCSy+9hGx/dFfFxVEXSQBobERm6W71x4qNpbwCX1bSZXyD2lpa+auNY69eLSWHXnMNEBmp1ch8AnFxKgg6tLX3/KgO648TgxcAAEK6zBi+5/1et+3t0dikw97KVC43ZuRhNKpvDnj2rNRYduTIoDSIVXlQVq1ahZaWFrv667Zt21BzPrP9pptuQkxMDJYuXYp169ZhxYoVyDifBPr888/jxIkTuOaaa1BcXNytGicyMhIz/cVCvPxyexXPwFMbcDJthrrjhISQ66+mhpPumL4xGql6LCJC+b4tLcD69fQ8NJS6FgcYE0fbsPeI3mlRXMHE2zD43DcIs7RhyNkNODNmIRoTB8g6R3sHGUAWIUQqNw4wQ4/RmMpKSpJVc906ap8EWXKsiCoDZcWKFahyaJy1ZcsWbDnvPr7yyisR00sS3+nTpwEAa9aswZoL2qCnp6f7j4EydixZsyYTMsr2IarNBESqE69DTAwl3U2cGFTlY4xCSkrUNwdbv17S7pg3T71YlA+TlyMgL0dO+XAMEHoz8O670As2LKj7CLj3MVnn+OAzA9raQTlAjY1kNObkuDRuJoARmwOqSWq3WqWQbEiIlD8VZKgyUD766COn2zz99NN4+umnFe/nFxgM5EX58EPoBRsGn/sWp5JvUXesuDjJfR+ANw5GA9raaCWmprzYYqHwDkAG8PXXazo0v+QHPwBWrqTcrz176DNSmsBotdJ3wgYK0xu1tWTEqpnXjx+XErEvuSRwOo0rxOtCbX7LvHn2p0POfg0IKssOY2LIBc/lxkxvGI3q5e03bqQSR4BypzIztR2bPxIeDkyeTM/b2oBDh5Qfg8uNGWdUV5MRrMaDwuEdAGygqCctjUI9AOJbKpFadUzdcXQ6chmz7D3TGzU1dCNUWhZss3Uvp73xRk2H5ddMnSo9375d+f5cbsw44+xZdbknFov0m4yIkIzpIIQNFFdw0EQZePJr9ccRZe8dKp4YBgDFsYuK1JWh79kjVZuMHAkMHarp0Pya8eOlm8euXcrl76OiyPvCsvdMTzQ1kf6JmvDO/v3kVQeAKVPUGTkBAhsorjB1Ksxh5L7LLtpG7jw1xMdTDgqXGzMXIv4u1OSfODQFZO/JBYSHU2I6QOq8R48q25+7GzN9UVVFvys1ukVBLs7mCBsorhAWhqKBcwAAIVZz9x+WEiIiqBSNDRTmQmpqaKWu1INy4gQ9AJLH7qPXVdDiWBmhNszD3Y2ZnigpoZCsUtXntjby6AFk3Iwbp/nQ/Ak2UFzk7BCHhoGuSN+HhbHsPXMxory90hL0C5sCqpXHD2QmTJCqd3buVJ7wKnY35gR3xpH2dprL1Yiz7dpFPdoAYMaM4GpH0QM8a7lIffJAmBIH0otTpyhfQA2i7D2vxhgRi4UmOqXhnbIyaRWWlBTUVQB9EhlJuSgAVToVFCjbX+xuzAnujCNVVepVnzm80w02UDSgMN/Bi7Jhg7qDxMVRYhWvxhgRk4kmOqXlxZ99Rsm1ADUFVNOkLFhwDPPs2KF8fy43Zi6kooKuP0PPPaF6I7y9EThwgF706wcMG+aGwfkXbKBowJkBc2A1nL8JbNoEp3rbPRESQlU8XBXAiNTUkLs3PFz+PvX1wHff0fOoKOCqq9wztkBh8mTpRrJjh2TYyUUsNxa1Zpjgxmajpp4qNItyirZKhu6sWRyWBRsomtAZFovS3PMrseZmyb2ulOhoWo0pnSSZwKSkRHmJ4RdfSOXqV13FXbKdERMDjBlDz2tqgPPtOGTD5caMI6KxqsJAyT3jQ+JsVitVpXq51xQbKBpxZohGYZ7aWkq8Y4KblhaKZSuZ6NragLVr6XlICIV3GOe4Us2j09FnzeXGDEAh+vZ2MlwVENNSjdSa4/QiJwcYMED7sclFEEhkLitLKsX3EsGdIqwh1RljgNRUWkkdPEg/1H79lB0kJoYS7oxGdQlWTOBgNOJsMbDPmAxLl7wKnqFHv8GE81o8Z/LmYtfWVKf7tHe4NMrAYMoU4M03yb2+Ywdw993KqqYSEoDSUvXdppnAobxcVc5XfskF3hNvNo4tKgKSk32isSh7ULRCp5eUZQUB+PZb5cfQ6+nh0CmaCVKqq7Gvoh8am/Voa9c5fbS3WjH06Of23Q8MvknWfoJAE6HX82itVvIaVVfT6q2wkBKEPUFCAjBiBD2vqFBe7i+WG3OYJ7jp6CBDVYWo4qCiTdILb4Z3ysrI+zNvHi24vQwbKFoyb55k+X7zjbrM/thYSrJSKr3NBA42G3DuHCw2St7U6QRERfb9GFS7FzFtVAFWnj0ZnenZTvcRH/FxAiaO9mAVimiMVFWRMXLyJP3b2EgeiJEjqYNrVZXn2j+4EubhcmMGoKo7FU094+uKkNRYRC+GDQPS07UfmxzEhfHcuUD//t4ZwwVwiEdL+vUj5b8DB2g1deSIvaGgbOLjKcRTW+sTFizjBerqKNFOTxNdZARwx/VODNY3pJtq1j1X4o7JPmLgWq2UG9PaSv9aLOQljIoiYzwvj37n8fHkyYiNpf/v6KAJv7SUtnE3U6cCS5fS8+3bgdtvV7a/WG48aRJXXwQr1dVkUCt0Rw446wPJsbW1lDtz+eXAwIHeGUMPsIGiNVdcIdWyb9ig3ECJjKSJ3GhkAyVYMRrpNyA3Dm21Art30/OICOW/Oa1wNEZaW+m1TkeVRDExQH4+GfEJCWSQiMZIT0RE0M3+iy/U9zRRQnIyNVMsLCQPZkUFkJkpf3/HcuPkZPeNk/FNBIFCgwqTYyEIyD27CQBg0+mhnz5d+7E5o7GRfrezZwPDh3v+/H3ABorWTJlCk2lzMyXctbTQ5KyEsDBKtho50j1jZHyb8nJlEtcFBeRaBig0okQ3RS3OjJGBA4GUFHnGSG8MGEAlwHv2AEOGuN8zMW0aGSgAeVEWLZK/b1QUxe9rathACUaam+m7V5p/UlCAmBbKXarKHIdMTyeliqHWadPI++/N5NweYANFa0JDgTlzaOVnsQCbNwMLFig7htiEjKsCgg+zWXmi3c6d0vMpU7QfkyNWK+WLAGSMxMaSMdKvnxSmiYnRxpjQ6ahfTmkpeTTcHRefOhVYtoye79ihzEBxLDf2sVUo4wFqashIUZo/slkK7xTnz4ECn53rdHTQ73XSJJo3fDA06XsjCgSuuEJ6rkYThWXvgxeTiVyucg0UQZCEAfV6mmzcSXU1GSM33UR5GrfdBlx2GTB6NOk3xMVpO9HFxtLf1NFBHht3kp4u5bucOqX8+nMsN2aCC7Gpp5LfflcXsG0bPTWEoTR3qpsG1wOdncC5c+ShnDZNsSy/p2ADxR0MGAAMHkzPz54FzpxRtn9oKMveBytKE+1KSqTs+1GjlIcTldDVRavE8eOB3FztjZHeGDKEyoBLS92vsuxKNQ+XGwcnVivlLSnNkzp0yC7KWZI5GV1hCvNX1NLVRfel4cMpKTcszDPnVQEbKO5C1EQB1HlRoqLo5sOy98FFcbEyeWnH8M6ll2o/HkcqK0ldUjS+PYVeT4qWCQnuv/m70jxQLDeurtZ2TIxvU1tLmj1K808cOhefGTBH0yH1is1GC+a8PEpF8LKUvTPYQHEXjpbp5s3kUlNCfLwU12SCg6Ym+s6VqAg79n1yZ/5JZyeFLsaP90wS7oUkJ5OR0tCg/FpSQnY2PQDgxAnlTQBjYsh1zt2Ngwejka4NJTd7s9m+uOgMi0ZphptDs4AkYZ+ZSWFZd1fGaQAbKO4iOhoQS8ZaW5WvxmJiKMOa81CCB6NRWdWX0Sg1txMTVd1FRQXlmHhTI2HkSGDQIOVKr0qZej4XQBCUX7fc3Tj4KCtTHibZs4d0RwCUDJgOm8EDUs5FRUBSEgmKJiW5/3wawAaKO3EM83zzjbJ9xdg+y94HD5WVVA0iN6/DU96Tjg6KW48f711N/NBQYPJkqmyrq3PfeaY6JCsqNVCio2lBwnkowUF7O8kCKO1efEH1jtspLycPz9y5QFqa+8+nEWyguJNRo6Sys0OHlBsbcXEsex8sqEm0czRQ3Jl/Ul5OnhNvdlgVycwkQ6mmxn0y+Pn50iR+5IikMSMH7m4cXBiN9PtQkn/S0gLs20fPk5JQkz7KPWMTqamhkOOcOeQF9SPYQHEnOl13L8p33ynbPy6OXMXuXC0yvoHSRLuWFrp5AmQE5+a6Z1xtbeTRGTfOd0oRx46lv7e01D3H1+mkZFmbTVLplQuXGwcPoqGsRFhx+3bJuJ45E4LejddVXR3NFbNmeT65XQPYQHE38+ZJLvtvvlHmDYmKIhci56EEPkYjfddyE+327JESMadMcZ8CZHk5TWxi4qgvEBkp6b24K4ncMczD5cZMTwgCJURHRyvbzyG849beO01NtPCZPt1vVcnZQLkQcaLXKqySnEzy4wCJcB06pGz/kBC6STCBTWmpskQ7T4R3mpupYmfsWJ+TwLbL4JeXu6diZsgQSbL+4EFlInFcbhwcNDaSAaAkvFNbCxw9Ss8zMynp2x20tVFO25QpdP/xtetXJmygXEhqKk1MtbXaHdMVTRRR9t5s1m48jG/R3k5VMnIT7To7gf376XlcHLVodwcVFXTsjAz3HN8VRBn89HQap9bo9ZLh19VFHislcLlx4CNW3SnxoGzdKmlbzZrlHsPBbKZ8tvHjfVbCXi7+O3J3ERVFCnu1tdqJpE2aJFnZu3YpS7qLiyNL3WTSZiyM76E00e7QISm/YdIk9+SG1NfTTXbMGN9dfblbBt8V0TYuNw581MjbO4izuSW8Y7GQ1sno0cCMGcpyY3wQNlB6YvBgmmAaGrQ5XmgolXcBtBrbtEn+vmFh5C7mPJTARWminbvDO4JAFWcjR7pXW0ULhgyhBYU7ZPBHjJCMxn37YOhSkPTK5caBTVcXeSmUlBeXlUm6RYMGad/80molldghQ4DZs70jqKgxbKD0RGIiMHSotkbBhWEeJZNpRARdDEzgoTTRzmqVDJTwcKqu0ZraWhJyGuXm8kctEBskukMG32CQ9GXMZmSU7ZO/L5cbBzYmk3J5e3d6T2w28pzk5pJKbJSH+vq4Gf/2/7iTIUMomam1VdbNo70D+OCzvlztebiy3zCkGAuA4mKse+ss6voNkTcWIRehB2yYGH8OeXPy5O3D+AcNDcoS7QoL7Q3G3CI7b7ORYT57Nhnq/oAog//NNzRmLZufTZsGfP01ACCnaDtOps2Qv69juXFEhHZjYryP0Ui5HnK/V0GQDBSdDpg5U7uxiIuc1FSqGlUqGufDsAelNzIyqFLAibiaKKwpCDq0tff9OJF3pX2/3BMbnG5vf3QY0NgWir2fnnXjH8x4BaWJdu4O7xiNNNGNGKH9sd2Ju2TwR4+2fzeZpbuht1rk7xsXJ/VXYgKLkhJlhvDp01Iy96hRUoWYVmOJjyfjRMvj+gBsoPSGTkeTtM3WZ3OyiaNtiI8TEBXp/FE5dCa6QmjFO7B4E2JD22Xtp9NROMjSpmByZPwDJYl2jr1hxA6/WmK1UlLn2LF+0UisG44y+FomporHBRBmaUNm9UFl+3Z1cblxoCGW8Cpp6ukY3pk9W7uxVFTQ7+yyy3yz2s5FOMTTFzk5lMhUU9NrQlNejoC8HLmaKeFAxQzg228RZmnDrVl7uwtC9cIHnxnQ1g66gdhsfl02xjhgsUirHzmUlkoevZEjtXflVlfTJOeusmV3I8rgb91KBpZWFQxTpwIbNwIA8kq3oW6gAsMwNpbc7xMm8HUbKIhVd3kyw+1WK/0mAfpNOlaHuTqOri7giivcpyTtZfiK6YuQELoRtLZqJ9wmdjgGlEto22xcthhIiGWocg2U8+3ZAWgf3rFYSJht/HhlbeN9DXfI4I8fb881yC3bCZ1NwVwQH08JlXzdBg7V1TQXyzWAjx6V2pVMmCC/W3lfNDaSkTRzJuVLBihsoDgjL49KLbXSIRkzRkqs2rNHmeEjCFxuHEjU1FD4UG6iq6OBonX34spKkrN3l7Klp3CHDH54uD2cFtHZhNSqI/L3jYqikACHeQIDQaCKSiVGhjvCO5WVZOyMHq3N8XwUNlCcERVFuSh1ddroLISFSdL3TU1AQYGy/d2hmsl4h5IS+caJ0ShpKOTnUyKrVnR2UqXJuHEBoZ1gl8EvK9NOydXBLZ9dtE3+fjod5QhwuXFg0NBAi1W5Xk+LRerl5Gg8u0JLC92XhgzxXRFFjWADRQ6DBlFClFbCbeeT7gAoC/Po9XRT6yNpl/ETWlspn0TuROf4O9Hae1JeTp7CgQO1Pa630OloEaClDP4ll8BqoJK97OIdygwfsV1Fe7s2Y2G8h9FIHjG5VXf79tG1DlBYVosFgNFIYUwtFyk+ChsockhMJGtVq3LBiROlhLldu+R7ZvQ68rqw7L3/IybayU10dVd5cUcH3WzHjfN7WexuxMXRQqCjQxvDICoKlVnk+Yxsr1fm+RRVqbnc2P+pqKC5W67nQuvOxV1d5JUZOjTgvScAGyjyGTqUckdEa9gV4uJInhugH7xs96+OvCech+L/VFeTYSqjj06ouQU4cj7vITWVQhhaUV5OHkItj+kriDL4JSWahGdLcx0S3JX05gkJISPQiaYS4+Morbpra5OaTMbHa6P6XFtLOZHZ2a4fyw9gA0Uu6enkBtdqknF00ysJ80REaC9GxXgWmw0oKpKdaJdZtldKpr70Uu1WTq2ttBocMyYwS2AdZfA1MOrLcibDpjtvUO7YoczoiY0lKXLubuy/iPL2cr2eO3dK4fgZM7Rp6llfTzIAQaJMHICzkpvQ6Wg1Jgja5IA4GiiO7ntnxMXR6lsLTw7jHerrKela5kTXv9hhta5leKe8nDyDgbwaE2Xw6+tdvm4t4bEoTxtHL2pqpKRlOSQk0HdeW+vSGBgvYjQqq7pzDO9oUb3T3EyLGrn6KwEAGyhKyMkBsrK0KRnMyJBuDIWF8nUSRPlsDvP4L0aj7B5PBmsnMsUmdbGxUmjQVZqaqKpgzJjAj2VrKINflO0Q5hGrM+QQFUW5MJyH4r+UlMj3XNTXA4cO0fPUVFoIuEpNDSXHpqS4fiw/gQ0UJYjCbW1t2gi3iV4UQZBilc4wGGh71lXwXyoq6LckwzDIqD6E0K7zSZ6TJ2vjJgZIR2H48ICUx74IDWXwi/tfCpvu/LSpNMwTFqatgBzjOcSqO7nhnW3bpHDe7NmuLwIsFjpekCTHirCBopT8fO2E29TmocTEUA4Dx7P9j85OWonJnOgGlDmEd7QqL66vJ29MgIs8dUOUwa+upkoIlXREJMCYNpJeVFQo88rEx1NYra1N9fkZL6G06k5rcbbaWvLEBHI4tgfYQFFKZCQJt9XXu14ZMHiw1NL+4EEqiZRDXBzFs7XSZWE8h9FIMtUyKgF0Nityy86rx4aF0Q3WVUTv26hRQeUqBkAy+Dk5LnsxSgc49FJREuaJj6fvnsM8/ocoby/Hg1lVJZWhDxhAvzlXaWggj6eSDsoBABsoahg0SNI2cAWxygCglfXBg/L2i46mVRjnofgfRiO5a2VMNMnGQkSaG+jFJZdoI/JkMpFRPHKk68fyNyIjJZFEF2TwS3NVGihieJbLjf0LsepObodvrb0nTU107kCUAnBCACkzeZDERIoF7t0reUDUMmUK8PXX9HzXLnlVGjodGTeVldokXzGeo6hIdjO+/iUa996x2chAmTNHWav4QEKUwd+9m64dFeXV7dEptG9hIfVlqaigEJIcxO7GkyZpl0/EuI2zOyuxb0UBLPVRgD7Gef6HIOCaL7cg4fzLz9rnoO2zvr/ndmeOc6ORvCfJyXKHHTCwB0UtQ4ZoI9w2Zoy0Mt67V37ybXw8xb8tFtfOz3iO5mZy78sRehIEe3mxTafXpodHTQ2QlkYhymDFUQa/slL9caZOlZ4rEW2Lj+dyYz9i38pTaKzuQFtnCNo69Ghr1/X5iKgsRkID5SVV9RsJkyHN6T6CQEZPaGgPAxCTYwO4Y3FfsIGilvR0Wo256q4ND5dyCxobaVUmh7g4CjHxROc/1NRIWgbOKCtDXBP1kTGmjZSfnNcbViv9XsaO1abduz8jyuC3t6uXwZ+mMszD5cZ+haWDEqp1EBAV6fwxtHyjfd+SQbNl7RMVKSA+TsDE0T0UPRiNVGnXv7+n/mSfgkM8ahGF206epPwRV5KXpkwh1UGAwjxyVrjh4XTemhoylhjfRzRm5bj2d0rhnbLcS5GmxbkzMjgkKDJkCAmtnT2rTvhKVJY+dw44dYpuJP36yds3LIxCQ6NGKT8v41nO10FEhttwx/VOiiIEAfhqKz3X6zH5Z1MxOd4FOQpBoPyTyZN7ca8EPuxBcQWthNsmTZJi4UrKjcPDWVfBX7Ba6aakojlgWY6L6rEWC7VoHz9edv5LwKPXk5FisajXNFLrRUlIoPASq0H7PqKUg16G9khRkXQvGD1afs+e3mhspPkiCJNjRdhAcYWQEFoFuSrcFhdH/RUA0kmQ2zwwPp4mOtZV8H1MJvny9rW15JkDUJuQj9ZYFz1klZVkTA8e7NpxAo3+/SnJXa14m6OBoiQPRVSD5jCP72Of12UYKFp3HDeZSHfL1UIMP4YNFFfJyyPXrqslv2p688TGsuy9v1BdTTo3UVHOt3X4/ov7uzjRmc30GDcu6DQUnBIVRZIBdXXq9s/OloSzTpyQb+iI5cYVFerOy3gOJQtPx3lbLGdXi9lMaQRBmhwrwgaKq0RGkqZEQ4Nrwm1qVGXFNu68EvNtBAE4c0Z+eMVhoivqP7WPDWVQUUEu4vx8144TqOTlkcFgNqvbX6zmEYRueUNOiYujkIAWLTMY99DSAthkfj9GI13jABm9cvOR+jpeRgalEAQxbKBogRbCbZmZ0mqsoED+saKjaaJzVdWWcR+ieqgc7ZGWFuDwYXoak4q6BBcMi/Z2MmDHjydjlrmYjAwqvVZbDedYbqxUVba+XpuWGYx7qKkBbDLnVS29J4JA88Dw4UF/3bKBogUJCVQd4aonQ/xhK2keGB9PkyvL3vsuVVVUXixHiXLfPvuquixnqmuNwcrLyXjOzVV/jEAnJISu3aYmdfvn55OBAwBHjsg/TmQklxv7OkqKH7TMP2looHtKECfHirCBohVDhtCk09Ki/hhqwjwxMXROXon5LiUlsrsXd6veyXVhomtpoXOOG6dKLTWoyMmh60iN/L1OJyXL2mzKqvAiIqiyi/E9RHl7OddsSwsZpwAZq64uCIxGSmh3VfsoAOCZSytE4TZXSo6HDJFK0w4ckBcXF2XvOeHON2lro1JwOZn4Fgt5UAAgNlbqmquGigryDAR5DFsWyckUXlVr5KsN84jlxq4sahj3UFdHDznG/d69UjnypZe65vU0m2lhMXCg+mMEEGygaIVORwJrgqA+4U6vl8I8nZ3AoUPy9ouLo1W6C23kGTdRVSW7ezEOH5aUTSdOhKBX2aulsZEqVMaMcW2yDBZ0OgqFdXaqS1odMgRISqLnBw/KL/sXq/A4zON7GI10Lcq5fnZq2DOrpobyEeX2dgpw2EDRkuxs0lZwZcJRU24sJuiy7L3vUV5O/8pRj9Uqjl1VRQl2rDAsn+xsMjLU5HLp9ZIXpatLfv6YwUA3QPZ++h5lZfISVDs7ydsNkME5fLj6c9psJN43YgQ3kjwPGyhaEhJCJcft7erLB8eOlfQqdu+Wd5yICPLasB6Kb2GxkBS6HO+JzSYZKGFhUn8mpdTV0UQ5erS6/YOV6Ghyq6s18tWKtsXGUq4Dez99B7OZDBSlXs/Jk10zLOrryUjmpHY7bKBoTV4ekJKi3li4sHngqVPy9gsLk69Ay3iGmhoyGOSUF588KQl9jRtHRqdSBIHOOWpUULZmdxlRE6WzU/m+I0ZIN7R9++SHeRMSuNzY1zCZ5IdlHb2eroZ3amspOTbYm3k6wAaK1kRG0g2ivl69NonaME9FhfrurIz2VFaSB0yOgqsW4Z2mJspHcsXNHMxkZACpqeqMBYNBum7NZinZ2RkREaQwzHkovkN1NXm0nDXo08rrCdC8HRrKybEXoNhAaWtrwzvvvIPHH38cCxYswKxZs7B27VrZ+zc3N+Mvf/kLrr32Wlx55ZV4+OGHUVhYqHQYvs3AgVS1oVabZNIkKTlLroESF0dWP4d5fAObjZQlo6PlbS8m2un19P2robaWSmbFhE1GGaGhrmmiqA3zREVRKJDxDYqL5bWkOHlSmuPHjyfvt1qMRspfzMhQf4wARLGB0tjYiOXLl6O4uBiDBg1StK/NZsOTTz6Jb775BjfeeCMeeOAB1NfX4+GHH0ZpIHXlTUigzH61q6L4eKl5YFkZYhvLne8TEkKrdV6J+Qa1tbQSl1NeXFYmJdMOH66uC6rVSqs+XoG5Rk4OGZVqSn9Hj5YM0j17KAdJDvHxtGpXaxgx2iFWVXkyvGO1kgdl+HDWLLoAxZ9GcnIyPv30U3z88cf46U9/qmjfTZs24ejRo3jqqadw77334sYbb8Qbb7wBvV6PZcuWKR2KbzN0qGvCbQ4/+KwSmT0+oqPJ+mfZe+9TVUXlpnJWYo5limrDOw0NZAz1769uf4ZISaHPUE2YJzRUkgloa5MvExAbSyJxvLjwPkYjzdly8kC08HoClKeWlETGMdMNxQZKWFgYklUm4G3evBlJSUmYNWuW/b2EhATMnTsX33//PTrVJKf5Kmlprgm3ORgo/UsUhHlMJl6J+QLnzslvDqiFjkJdHXlP5BhETO/odJSoaDZL4ltKUCPaptdzubGvUFUliV/2haPXc9gwdV5Pkbo6WtDKDQcHER71J508eRKDBw+G/oIvf/jw4ejo6AisMI+rwm1ZWXYV0JSaE4joaHS+jyjXzXko3qWxkRJk5YR3amsplg1QeaEa7RKLhX5vXJ6oDdnZFKZVk0M2frxUgbVrl3y5gbg48n7KDQsx2mO1Usm3nJ5ZWmkWtbXR74W7jfeIRw2Uurq6Hr0v4nu1vWgQmEwmFBYW2h/F/tK/QhRuc9GLohdsyK6Q0eNDr6dHZaW68zHaUFUl303s2LtF7URXW0uhCVaf1IaYGFKWVaOJEh4OTJxIz5ubgaNH5e3H5cbep66OjFI5PXC0Uo+tqaH7hNhwkumGR3s5m81mhPVQcim+Z+7F07B69WosX77cnUNzDyEhVHK8Zg1Z50pFfKZMAT75BACQW74T5SMvd75PbCzJ3qs5H6MNpaX02ctJeNNiJdbYSLL2csqZGXnk5ZFsvcXivNz0QqZOBb7/np7v2EHii84IDyf9lZoaruTwFjU18vLG6uq6ez3Vfl9WK3nXhw3j5Nhe8KiBEh4e3mOeifheeC9lWgsXLsT06dPtr4uLi/GHP/zBPYPUmgEDJOE2pe57sXlgYyOyKvfD0GWG068sPp7OVVtLmg6MZ2lvJwNRjjhbWxspUQL0G1Hj5u3oIMOEE+y0JTOTvhOT6aIbUHsH8MFnvRv/IZbJuMkQCoPVgraNO/FZ2k8BnYwbkHUocKIcoYmNmHjzYORNYUPFo5SVySsV3r1bKkRwxXtSWwv068fXbh941GxLSkrqMYwjvtdb8m1KSgqGDh1qf+T6U6zdFeE2g8GeHR5qNSOtQkZVQGQk3SQ5D8U7VFeTm1hO0ty+fZLEudouqCYTGb7sItaW0FBa2TY2dnsLAARBh7b23h9NXdEoS58AAIhqr0NsaUGf29sfnSFoa9ehsaIVez+WqSDNaENHByW9ygnvOIZlXTFQ6uulak+mRzxqoAwePBinTp2C7YLs+BMnTiAiIgLZ2dmeHI7nEIXbRClzJXSr5pFZbhwaKmWYM55F/NzlNBrTIo7d0kKTHLuItScnh9z9ra0AgImjbYiPExAV6fxRkS+Jtg2u3CZrn6hIATrQIsbSwb15PIrRSMaoMwOlrY1CfwC1k1CoBWanpYUMk7w8dfsHCW4L8ZhMJrS2tiIrKwsh5yfr2bNnY9OmTdiyZQvmzJkDAGhoaMDGjRsxbdq0HvNTAgJRuG3PHuUqn+PGocsQjhCrGVmluwHbT53fjOLjyV3Z0aGupwujDrE5oJwqAIsF2LuXnsfEUJNJpTQ3076sfeIe+vWjUE95ORAdjbwcAXk5MqtyWiYC2w2A1YphNdsw7Lp7ZXnIPlgpoM2iMOeFcZ2aGsoJcZZvdOCA5PWcMkWd1xMggyg/n8PwTlBloKxatQotLS320My2bdtQc15k6KabbkJMTAyWLl2KdevWYcWKFcg4H8OdM2cOVq5ciRdeeAFFRUWIj4/HZ599BpvNhh/96Eca/Uk+ytChlNEvt7pDJDwcVVnj0L9kFyLb6yk5S1SZ7Y24OMqDMJn45uVJjEZKoJNTTXPkiNQ3adIkeR6XC6mtpSQ9lrZ3DzodXbdnzpAmihIvVUwMJS4fOEC/i9OnSV/FGeI5WGvRcwgClRfL0SHRwuvZ1UWPoUPVGzhBgioDZcWKFaiqqrK/3rJlC7Zs2QIAuPLKKxHTyw3YYDDgpZdewj/+8Q+sWrUKZrMZw4YNw1NPPYWcQE8USksjd97Jk4q7VZblXCqJte3e7dxACQ2lC6Cmhg0UT1JZSZUYchLtXJ3obDaqABg8mCc5dyJqojQ2ytO1cWT6dDJQABJtk2WgnP8u1YjEMepoaqLFnLPwTleX5PWMiqLcQjWYTJSAHagpDRqiykD56KOPnG7z9NNP4+mnn77o/djYWDz55JN48skn1Zzaf9HpqNfCyZN0Y1HQWKoiexIE6Cg+vWsXcPfdzneKiiLhp0sucWHQjGxsNuDsWXmrMJtNSrQLC1P3HYnt4NkAdS+xsbSwOHxYuYEyZQrwj3/Q971tG123To3J8/8vV+CNcZ2aGvJsO6uyPHbMno+EiROVl5+LNDQAs2dz+F0GnFnnSbKzSR1WoXBbR2QialLOe01KS+VJYosNyNQk5jLKqasjV76cm9ipU7Q9QBoZaiaqujoqYZeT78K4Rn4+hQGUqrzGx0ur7KoqCiPIxWrlnlqeorJSnry9Fj2zxLwxTo6VBRsonkQUbmtvV7xCKs5yuCAcy9x6IzaWVgVczeMZqqtpdeWJOHZXF63KWR7bM2RlUTKjGmXZaVI1D7Ztk7+f1dqtxJlxE11dlK/nLLwjCJKoYkiIes90TY2kjcU4hQ0UT5OXR5OdQp2S4v4OBoqj+mhv6HRUxnbqFK/EPMG5c/I9IeL3p9NJ3W+VUF9PibHnezUxbiYsjKrw1PTmcdS32bFD/n6CwN2NPUFtLV1PTnSLEmvPSG0IxoxR15TTYqGFxZAhnDcmEzZQPE1EBJWUNjQoMhwa47LRFHf+hnTihLyOxUlJ5L5Us/Jj5NPURGE3OeqxZWX0ACgnSc4+F1JXRwmXHMP2HLm5dFNqa1O2X1ISfc8AhWdLSuTvy92N3Y/RSDmBTq6l/iUOxqXa6h2TiRannBwrGzZQvEFeHoVgmpsV7VaWc/7CsNmkbPK+iImhCZXDPO6lupq+SzkqlI7eLzUTndlMLuZAr3rzNfr1I8l7Nc38HMM827fL20evp5yVHlqDMBpSWiqrh1X/YofrVo3XUxAoZDd8OPfMUgAbKN4gKYmqLxR6NspzFIZ5AMqJOHmSyxbdSWmp1EnaGa4aKLW1VLLODeU8i15PuhXt7cqvpalTpeeyDRQdeVm5ZYX7aG8nL5WT8E5MSxUS68/RiyFDSEFWKU1NtIDh5FhFsIHiLQYNkmKSMjGlDpNW6QcOyFtdJSXRCp/j2e6ho4PKueWEaurqgMJCep6bK0/Q7UKammiSVCPsxrhGdra9eaci+vWj7wwgr4is0I2OEjgd9KYYjTEaJcOhD3LLNBBnMxrJOGFRRUWwgeItsrIUT3aCXmoeiI4OqRNuX0RF0UqBwzzuQWwOKMdAcbULqtgKnmPY3iEujiowXK3mketFiY4mg4aT3N2DKG/vxNgfUO6Qf6KmvFhcSMoR6mO6wQaKt4iNpVW00snO8cYmN8wTF0dhHhZ/0p6KClmTHIDu35eaic5kotAOlyh6j4ED1WmiqDFQ4uNp5a2meojpG0GgyjsnsgBhHU1IMx6jF5mZ6oQRxY7jLKqoGDZQvEl+PoV4xOZTchg3Tkqy2rNHXogoOZkmOnYXa0tXF6nHOolhAyDvx6FD9DwlhW50ShAE8oQNGcKdi71JVhZ9f6LQnlzS0yXdmtOn5Yk1xsSQlhGHZ7WnoYEWh06u3azS3dAL5+dYNc0BBYHCSMOHq1eeDWJ4pvMmWVkUk1Si9hoRQeqjAE2Sp0873yc8nNyMYnkrow1GI01ycsI7+/dLhujkyconuqYm8rrxKsy7hIdTsqwar4ajF0WOJopOR545Ds9qj9FIwopO+qL1L3Yx/6ShgYygAQOU78uwgeJVIiJoJa1Ujl5NmCc+nkTblLqmmd6pqiLDT44eiasy2bW1VFqsRjeF0ZbcXPrOlWqiqA3zFBdTeTmjHZWV5Insa6FgNiOjfD8AoD0igQxTpZhMNMfzdasKNlC8zYABdKEo0TuYNEm6sOTI3gPkqTGZ6MJkXEcQ5DcHtFgk3ZroaHVdULu6lIeFGPeQmqpOE6V/fzJuAKCgQF7+mZhIz2Ee7bBYyOhzplt08CBCrGQYludMAQwGZecxm2luHzRI5UAZNlC8TUYGlSEqiWknJkpli8XF8nJLwsIombO0VN04me7U19NNQ87K6MgRabU9caLyEmGbjb5zDu/4BqImSlub8gobR00UOWGe0FAyThU2GGX6oLZWCr30hYN3uixHhdfTaKTEWm5JoRoWU/A2oaFUfrZli/N2345MmSJpauzaBVx3nfN9EhMpZ2XiRIqlM6o5+90Z7NudAYveuSrklK3fQ/R9bDVMR+ln8lZi7R3nn9hs5D1R0/+DcQ+OmihK3PfTpwMffkjPt28HfvAD5/tER1PFyYQJ3MNFC4xG8lj3NQdarXbvtCUkAtWZY5Wdw2ajHJcZM1izyAXYg+IL5OTQxdLeLn8fxzwUuWGehARaPXCPD5fZ940RjeZwtLXr+nyYWyzILqJ8g86QSJxOnuR0H/EhCHQzCjXYpNAA4xuIiY9KZQJycqQV9fHj8vLPEhIonKQ0V43pmZIS5wu0ggJ7v7Oy9EtgDVG4oBO1kfi6dQk2UHyB1FTyniiZ7Pr3l+TOjx2T19dHLHMrLlY+RkaipQUWM5Ue6nQCoiJ7fww07UGYhcI7ZQOmITw2rM/tL3zER1kwcXinOtVZxr0MHKhcJkCnk5JlbTZ5Se7R0bQa5zwU12ltpTw8BeGd4v5T+9iwF2prKfdETn8uplfY9+QLGAwU5lFiOOh05EX57DOpeeDcuc73S0qi5M7JkzlkoJaqqvP6MwZERgB3XN+HAN6Lm+xP8++cgfwJCsXyCk8CM2dygzFfJCuLNIbq6miRIZdp04CPP6bn27cD8+f3vb1YblxaCgwbpn68jCRvL2rS9IQg2KvubDo9SjMnQ1F6bEcHzemc1O4y7EHxFfr3p5VSS4v8fdSUGyckkPuRwzzqkatL0dZGYnoAraTGKoxjd3SQYcKdi32TiAhKVlcaesnPp4aPALWrOB9K6JOEBDJQOjqcbsr0QUUFLS76qsgpLbUXHtSkj4I5PFbZOcTkWPZ6ugwbKL5CSgr9oJWEeYYNI/EugJoHytE4MRioCuHcOXXjDHbMZvrs5HYuFsvHp09XniwnSmSLNzPG98jNJSNSSf7YhWEeOTlkcXFkyHCYRz3t7dTyw1nDPgfNorIcheEdQaAw0rBhysuSmYtgA8VX0OkozNPRIb900eDQPLC9XV7zQIAu0OJiZd4ahqiuphWzHANl61bp+axZys/V0kLlrCxt77ukp1MumNJkWaWibVxu7DqlpWT0OzNQHMuLcxWWFzc3kzHJkgCawDOfL5GVRR4ROS5fkcmTpedKVGUbGlhCWw2VlfKaLjY1kVcLIO/Y8OHKztPcTDLcPNH5Nno9rZZbWpRpogweLDV9PHiQVt3OiI0l752c/ltMdwSBZBnCwvr2bJhMpLgNAHl5aItRkFsk7p+dTZIOjMuwgeJLJCRQvoEShcrx46XqnN275U1eej3tc/asqmEGLVYrfWaxMmLS27dLhsyMGcq9ILW1Uq8mxrfp318KwchFr5dE27q65IV54uO53FgtRiOVF/fr1/d2jt+D0t47ViuF2Tk5VjPYQPE1Bg6kCUvOKh0AIiO7Nw88c0befsnJdME2NqobZzBiMpHhIGd15Ep4x2ajXJfBg1mYyx9ITCRNFKXS90qbB0ZFUeI1h3mUc+4cfXZOmgN280Ir7ZnV0MCKzxrDBoqvkZVFP3Il3VLVhHnEFR+HeeRTVUW5PpGRfW9XWwscPUrPMzOVr6gaG2m1zBOd/6BGE2XYMMnY3b/feaKtTkeeT+5KroyODhJec7awaG2lthQAlY3n5Sk7T10dVWjJ6c/FyIINFF8jOpouDCVuXDUGik5HZZKnTyvvJxKMiM0B5WjHfP+99JnOmqXcC1JbSytyOaEkxjfo35+8kkquW4NBWqV3dgL79jnfJz6eDBQlVUPBTmkpXVPJyX1vt2+fZGBOmaLsuhUrKAcMUDVEpmfYQPFF8vLoBid3NZaUpLx5IEAXbHm5skaFwUpDA7nW5YR3tmyRns+cqew8XV303fclJMX4HhERpByq9FpyDPNs2+Z8ezHBncuN5SEIVFqs1zsv83dc3CnNP6mrk6QiGM1gA8UXycyUFCrl4uhFkdubJyaGqg84zOOcqir6rJzFsCsru1UBIDtb2Xnq68ng5A6o/seAAVQlokRMbdQoyVO2bx8MXU72DQmhUJLcRUiwU1tLuXbOlH4tFlLjBugaHzlS2XkaGylnjJuwagobKL5IeDitxpS4ix0TupSEeaKiKMzDpYt9U1pK8X9nbl9XtU/q6miii4hQvi/jXdLT6aEkWdZgkKp5OjqQUbbf+T6xsRRu5GvWOUVFtLBwFi49ckQKm02apExkzWymuYEVnzWHDRRfJTeXVktms7zts7NpcgSoeaBcEbbkZFr1K61ACCZaW2kV5u7wjtlM3zlPdP6JwUDCeko1UaZKaqXZxTLCPAkJZMgqFYcLNjo7KTk2IcH5tg7qsYrDOyaT1PCV0RQ2UHyV9HT60cudhMTmgYDUPFAOYqdUrgzonepqcuE660xaVESGDEAVGkoayAH0XaelSV2qGf8jO5t+J3K6i4uMGWOv/Mgq2Q291UnLiqgoWu1zHkrflJbSZ+QsOdax3UBoKGlLKaG5mXIAWdpec9hA8VVCQuhHr2SiU9M8ECD35+nT8rVXgo2yMjIAnU1Ajt4TNeGdpib6zpX27GF8h6Qk8oAZjfL3CQ2155CFWdqQVXXA+T5hYXQDZnrn1ClJlLIvTp+W8v3GjXMuI+BISwsZl0pzzRhZsIHiy/TvT7kIct3Fw4dLsdb9++U1DwRohVFdzSuynujsJJGn+Pi+txMEKf9Er6fmgEpoa6OVMU90/s+gQWTsKzH4HX4veaXfO98+Pp6S29vaVAwwCKirI4+mM+VYwPXqnYwMqW0BoylsoPgyqank8pebDGcwABMn0vP2dkl0yBmRkZT/wCuyi6mpoWRlZ3Hskyclhc8xY5T34jCZeKILFPr3J0+Kkio8h5V7TvlO6GxOJAbi4ynsyIuKnikqIu+zHC0hMf9Ep5Oar8pBEGieHTKEFZ/dBBsovoxeT0l3ShLuHFcAcsuNAYqbnzqlTAkzGKiooM8kLKzv7VxJjnWc6Lhzsf8TGUmVWEqq8MLC7DfHiM4WpFU66UxuMNDvhsuNL8ZiAU6coDnNmeFQUSEtzIYOVbawEPPSWPHZbfBs6OtkZSmzzsePl3IYdu+Wb9wkJdEqnic8CZuNwjvOVmFWK6nHAvTZO1RlyKKpic7BE13gMGCAsio8oJtoW3aRjGoesbsx5451p6yMvJlKwztKe+/U1lK1pbPwL6MazsbzdZKS7MmZ7R3AB585yxSPwZz0ccgs2wuYTFj/79OoTR0m40RRCLXlYmLSGeTdxTdKAGSwmUzOwy5Hj0qr5QkTnIu5XUhtLXlP5JRDMv5BRoakiSJXdG/CBHSFhCOky4zs4h2A9f6+E7PF7sa1tcorxgKZ06elvkXOcCwvVmKgiDlGrPjsVtiD4uvodAiNovCCIOjQ1u78cTpzhn33nBPfyNqnrV2HRnM49m5posRQhrxJYvJqX7gizma1UgiJW7QHFgaDVIUn14sZHo6K/pRDFtHRCBw/3vf2XG58MfX1JGInJ5eroYF0UgBKTlciUy92LmbFZ7fCBoofMPHGfMRHWRAVbkVUpOD0UTV0BiwhlHA3qHgT4kLanO6j09EkaukUSLiNIfe5E+NEb7UA27fTi4iI7i0H5MAt2gOXnBzypimQCigd4FD9Jac3T1gY9d9iiOJiqRu4MxxD4GqqdwYOlNc8lFENh3j8gLy5+ciznKYVlayVdhhQPRP4+muEdrXjloTNwBVX9LnHB58Z0CY2SC0upthqMNPQQB4UJ2GXjPL9kmrvlCnKe3HU1VFYiCe6wEPURDl92rnI33nKsyehSx+KEJuFwg8/+UnfidMJCbSgaG21i70FLV1d8pNjAfXlxRYLfSfcudjtsAfFX8jPV6atcOWV0vOvv5Z/Hr0eOHNGWcOzQKS6WlZzwNyzLoizWSw0kQa7MRio6HRUzWOxyL5uu0KjUJ4xgV7U1UkhiN6Ii6Mka7HEPZgpL5efHNveDhw8SM+Tkuh7kkttLYWQWPHZ7bCB4i9kZVEoQG7p4uDBkoVfWCjfDazX0zkqKlQNM2AoKaE8gj5Wr4auDmSVnE+yi4khLQsl1NbSZMot2gMXURNFQcnxuWyHMM+OHX1vbDCQIVRYqEyOIBARm546kwQAgAMHJCHLyZOVlfeLnYvlnIdxCTZQ/IXISArvyBV/0unUe1EAEjoKVtraSBvBSXgnt3wXQrvOe5qmTZNXNeAIT3SBT1QUfccKRNtKsibDqj8ffd++3bnhkZFBGkbB3E+rsVF+ciygPrzT3k7XKys+ewQ2UPyJAQPI0pcrYT9njnTT3LRJfnVOUhIliLa2qhhkAFBdTTkoTgyU/OLN0gul4mziRMediwOfvDxFmiidYbGozhhLL4xG8gz0RXQ05V8cPixfdTrQKCmRdc0CoHCb2Ew1MpKUn+VSW0vl42lpakbJKIQNFH9ClEKX2+E4JkYSf2pudu4uFklICO4wT3k5rVr70KAINbcgu/L8JJeUBIwapewcPNEFD46aKDIpyVNYzZOVRbljwehFsVopOTYmRl5y7PHjUmXVhAnKPJ8tLaQ4y52LPQIbKP5EWBi5ixsb5e9z1VXSc7lhHoOBVnznzikbXyBgschqDphdvB0GsV/K9OnKJyxxomNp+8DHYKDvWoEmSnnOpdJvQ06YJyqKbtRHjgSfF6Wigh5ykmOB7uJsSsI7YtI8a594DJ4d/Y3sbDJU5FbZjBwpJWEeOSLfK5KURIm1TU3qxumv1NRQvoCz/JOzDuEdpdU7zc000bH2SfCQk0PS9DI1UcwR8cDo0fSiqkreYiEzMzi9KGfOkHEmp8RfEKT8E4OBPChyEVWBk5PVjZNRDBso/kZ6Oslayw3z6HTdNVA2bJC3n9gttbxc+Rj9maoq8qL0NdnV19ububXEpJFiqBJqa6XqDiY4EDVRFIR5uvV0EsUA+yIqirwnwZSL0txMOTpyk2OLiiTl3dGjlbWlMJuBQYO4c7EHYQPF33CU0JbLZZdJIYhvv5XXsVivJ0/NmTPqxumP2GxUCeBs0tq2DXqBbgDF+bOVTVg2G090wcrgwXTtydUymjpV+o3IMVAAync5c0bq0BvolJRQvpzcPlZqe+/YbLRoY6+nR2EDxR/p359WS3KrbBITJQn2hgYpg90ZycnkQVHSNt6fqa2l1ZWzlutbJHG2ovzZys4hynDzRBd8iF4zuSXHiYnA8OH0vKyMbsbOiIqiMEYweFFsNkqOjYqSn8vlWF6spC2FzUZVlDIVgRltYAPFHxHFveSGeQB1mihizDxYwjzV1VT+25fsfE2NXd2zLj4XjUkDlJ2jtpYmuthY1cNk/JTISPJ+KjH4pztU88j1omRmkidQjkHjz1RWUk6d3E7ONTX0uQDkwZQbFhLJy1O2PeMybKD4I6KEdlubfPXIceOkLPf9+0lfQc55IiNJBCoYVCrPnXOeaOfQufhsrkLvSVcXfY7coj14GTCAylrlJrkrzUMB6JoNBi/KmTOk7RQRIW97teJsAHlouHrH47CB4q9kZZG7UW4uisEAXH45PbfZKBdFDklJlDiqxFvjjzQ10YpMQXjnTI5CA6W+nj5PnuiCl/R0ZZooKSlUogxQgqfcKrysLPIWBGqn49ZWWjgp8YI46kApyT8BSHYhMlLZPozLsIHiryQmUsmxEsPh8sulpLsNG+Ql68XEUP1/oId5qqrISOkr9FJaai/3NKUMQXOswmZhdXXk+ZK74mMCD1ETpaVFvldSFFsE5HtRxN/Y4cPyk3L9ieJiMvidLSgctz96lJ5nZipQcD7/HbEwm1cI8fYAGBcYOJBUEW02eUli/foBl1wC7NtHIZ5Dh+i1M2JigJMnqSwvUIXFSkudNgd0DO8U5yvUPjGbaRXG0vZMdrbk/ZSTdDl1KrBsGT3fvh1YtEjeebKyyKAuLg6ssKLNBhQU4GxrCvatDZXV+WPK1tUYeP753uxrcfJzebe+9vbzT9hA8QoBercJErKyqLyuoUH+PmqSZZOSKMFMTt6KP9LaSpN4X6sxQZDCOzodSpQaKEYjrdy4czEjaqLIvZ7S02kxApDmR3W1vP0iIshjGmhelOpqoLwc+8pT0NikQ1t73w+hrh4DzmwEAJhDo3E0+0qn+9j3BXmcQyN5Le8N2EDxZ2JiKLNcQadUTJokaQbs2iXPuImKooTcQFWo3L+fcgL60lI4c0aK/48ahfYoBWqSgkAu/eHDeSXGEIMGkSdAruGgJswDkEFcVBRYuShnzwJmMyxWun3pdAKiInt/jD33pb0txZlh8xEWF9Hn9vZHhA1RYV2ITw3HxJsHe/MvDlrYLPR38vIoVNPVRSEEZ4SEAPPmAatW0eT43XfAjTc63y8ujsI848YF1k22uJg+v8zMvv8uh+RYzJwJyCzCACB1Wc3NVTlIJuDIzpY0UeT0kJk2DXjvPXq+Ywdwww3yzhMRQWHLQ4fo9+fv125bG1BY2E2FOTICuOP6Xgw9sxn4+Ct6bjBgxKMLMCJFplFYWkolzDcuCNzQto/Dn7q/k5lJF6sSbYULpe/lJOslJZFLWq572R9obycvkqgS2Rs2G/D99/TcYOi+mpWDyUQrZhZ5YkQiIihhWq73MytLMnALCpRJ5otelKIipaP0PUpK6DOT2ybiu++kSscZM+RX/QgChX6HDGHjxIvwJ+/vRERQfFqJgZKZKTUiKy8Hjh2Td57OzsCS0D5wgCbt7Oy+tzt+XLohjB+vzNAwm2mCE3MIGEZkwABljT8dDWNHyXZnhIeTYS16Wv0VQSDvifj3OMNmA1avll5ff738czU3U0UfKz57FTZQAgHRddvZKX8fNcmy8fGkPSAnbd7XKS0lAyU93XlozKF6R3HnYjE5lrVPmAtJT6feOXK9IY6qstu2KTtXZiaFM/3Zi1JdTXlwckJiALBnjySPMHq0skWC2NBTbhkz4xbYQAkEMjLIdalEE2XqVKkp3vbtCDXLEHxLSqLJtLJS3Th9hY4OCu10dTmfgLq6pJtBWJjy/h2cHMv0hqiJ0twsL8yanS0ZusePK/Oail6Hw4f914tSVEQ5KNHR8rb//HPpuRLvic1GizBu6Ol12EAJBEJDKVba1CR/n7AwYO5cet7Zibwzm+Tt09Xl/2GeQ4dIH8JZaEfcVvxcJ03qu0/PhTQ2cnIs0zfZ2eSZlHPt6nSSF0UQlIV5ACkX5bzYoF/R0XFRcmyfnD4tCbNlZQETJsg/V0MDfSfs9fQ6bKAECtnZtEqyKwvJwCHMM7BwvbxVXGIiXfxms4pB+gAVFVRWnJpKhp0zHKt3lIZ3ODmWcUZiIuWiyA3zqOnNIxIeTr95f8xFKSmhzyhZZnm/o/fkuuuUJbrW1lJ1JDf09DpsoAQKaWkU01YS5snNtff5SKw/h5S6U873SUykc8jtCeJLdHbSqtNslrcSM5ulVWpUlLJVGCfHMnIZOJBK/uUYDfn5dJ0DwJEjyrymAHlRSkr8y4siCCRxEBoqL1RqNEp5Y3FxkqdYDuJ3wJ2LfQI2UAIFvZ7CPC0tyvZzKDkedmad8+1Fr4M/tnI/dIgE1+TKze/bJ3mkpk6lEJdcODmWkUv//pRDJqfkWKeTvCg2W/cOvXIIC6PHwYP+k+xuNNJ8Izc59ssvpS7O11zjvEO5I/X15KVhxWefQLGB0tnZiTfffBM33HADLr/8ctx///3Ys2ePrH337t2Lhx9+GNdeey2uueYa/OQnP8H69esVD5rphawsqbmfXGbOtHfpzC/ejBCLjBBRYiLd6JWEk7xNVRWFdvr1kxfaAdSHdzg5llGCqIkiN+nVsZpHaZgHoKR6h8aXPo+YHCsm9fdFWxsg3lNCQ4Grr1Z2rvp6CstyQ0+fQLGB8sILL+Cjjz7CFVdcgYceegh6vR5PPPEEDh8+3Od+33//PR577DFYLBYsXrwYS5YsQXh4OP74xz/io48+Uv0HMA6Ilr+SME9kJBkpAMK62pFzbouTHUAGSn29/3Q4tlgoVNPaKj+G3dYG7N1Lz+PjgTFj5J+Pk2MZpYiaKHLywAYPlgTHDh1S7jUNCyOvwqFDvu9FMZtJmK4vIUVHNmygaxcA5sxRViYsNvTk69ZnUGSgHD9+HN9++y1+8pOf4Gc/+xkWLlyI1157Denp6XjzzTf73PeTTz5BcnIyXnvtNdx000248cYb8eqrryIrKwtr16516Y9gzqPT0eTV3i65OOVw1VX2p4MKZXi0DAZ6+MsK7OhRSuxVMvHs2iXpykyfrswTYjLR98DJsYxcRE0UOdetTieJtnV1kd6HUkQvytmzyvf1JKWlFOKRowBrtQJffCG9vu46ZeeqraXkeTHHh/E6igyUzZs3w2AwYOHChfb3wsPDsWDBAhw7dgzVfcigt7W1ITY2FmEOcfyQkBDEx8cjXEmMkOmbrCz5ZYsigwahPomSwlKMhfLEnBITSfhJ6erN09TU0ASelKQsh0RteEdMjg2k9vaM+9HrgWHD5HlQAPXNA0VCQ33fiyImxxoM8vqM7dhB1zsAXHKJ/FwzkeZmyuOTcy7GIygyUE6dOoX+/fsj+gKhnOHDhwMATp8+3eu+48aNw7lz5/DWW2+hrKwM5eXlePfdd1FYWIjbb79dxdCZHomPJ0+BkjCPToczQyQvCjZscL5PQgLpBfhymMdiIU9Ic7P8BDuAjLuDB+l5SgrdOOTCybGMWrKz5QuDDRsmVaLt3y+FNZQgelHOnFG+ryeoraVFUGqq820FAfjsM+m1EmE2gD6/yEh52kiMx1BkoNTW1iK5hxi++J6pj1r+e+65B3PnzsV7772HO+64A7fffjvef/99PPfcc5g9e3af5zWZTCgsLLQ/igOpdbg7yM8n16/cVu4Azg2cgy7DeQ/Dxo3OZfP1elqF+bKL+PhxEndSGlPetk367GbOlK+hwMmxjCskJMhfvev1wKWX0nOLhSrOlBIaSsmghw4pa5PhKUQPrRw9koIC8rYAlM8zdqyyc5lMkiI34zMo8mWZzWaE9lABIYZtzH2Id4WGhiI7Oxtz5szBrFmzYLVa8cUXX+APf/gDXnnlFYwcObLXfVevXo3ly5crGWpwk5VFq6uGBtlJoZbwWJzLno7BRRtpUtixA3BiOCIlhXrzZGRQEqkvdf00mSi0k5CgrMwQUB/e4eRYxlVCQgB0ob0d+OCzvo3cVGEGLscaAED5/zZic+0c2acJDQUmjrYhLyODFhlnzyrzFLqbzk7gxAn5ybGO3pPrrlMmUS8IlLfHnYt9DkUGSnh4OCw9xCs7z1vffeWSvPbaazh+/Djeeust6M//CC677DLcfffdeOONN/Cvf/2r130XLlyI6Q6ldcXFxfjDH/6gZOjBRVQUeVH275dftQKgcOB8MlAAaiDozECJi6Oci40bqUJm8mT5JbzupKuLQjsNDTTpKMFkIs8LQIaeklwSo5HE3Dg5llFJaHQY0NQFATq0OaniL44bjdbIZES31yKrbC/iiw6jMk2m56Ad2HtEj7ycUJovDhyg37qSPC13UlZG+SQDBjjdNKapUhJUTEpSrvjc1EReGg7L+hyKzMXk5GTU9pDbIL6X0ot7zGKx4KuvvsLUqVPtxglASbJTpkxBYWFhj4aPSEpKCoYOHWp/5PIK1Tm5ubSKUOC6reo3Ck1x5y/SI0fkqcX260cx4h07yFDxBW2UggJ6iJ+BEr7/XkpUnDVL/v5mM4V1WDmWcYGJtwxBfKIeUaEWREUKfT4io/U4PPEu+77TDixFdHiX0/10Ovp926fc9HTKJfOlXJRTp6QwshOGHv9cumavuUb5Iqm2lhJquXOxz6HIgzJo0CAcOHAAra2t3RJlj59fcQ4aNKjH/RobG2G1WmHtISfCarXCZrPBpqQslnFO//6UrFlTQ8/loNPhzNCrMH7PO/R6wwbgnnuc7xcXR5PCwYOUbDZnDoU6vEFdHbB7N41JjdiSY3jnvD6MLMTkWFagZFwgb0oG8nIArFxJhr+z5pS2OUDll8Dp00isP4fbo9YB8+f3ucsHnxm6e2dCQ6lD8MGD5EXxdlVlXR1VEsrIBwnrbEb+yfNJ/eHhyoXZrFay1Hhh4ZMo8qDMmTMHVqsVq1evtr/X2dmJNWvWYMSIEUhLSwMAVFdXd0tkTUxMRExMDLZu3drNU9LW1oZt27YhJyeHS421JjQUGDWKQi8KkmXPDponJXh++638pmKRkaTAePo0sHYtKbd6GquVQjt1ddSbSCkVFTR+gCZquYYdJ8cyWpKWRnldcirx9HpgyRLp9fvv0zWvFF/yohQVUdhFRqh02Ol1CO3qoBfz5ilv8NfQQJ4TDu/4JIoMlBEjRmDu3LlYunQp3nzzTaxevRqPPPIIqqqq8MADD9i3++Mf/4i77pJcjwaDAbfddhtKS0vxwAMP4KOPPsKHH36I+++/H0ajEXfffbd2fxEjkZ9PIRijUfYu5sgEYMoUetHQoEwEKjSUjJSqKmDNGs9X+BQWUmJdTo7y0A6gPjlWnOQ49MhogaiJ0toqTxdlxAhgxgx63tgIqFHmDgkhL8qhQ97tVG6x0HUcF+f0GtZbLRh58vxiWacDHPS5ZFNXR96TC6QzGN9Accry008/jZtvvhnr16/HG2+8ga6uLrz44osYN25cn/vdfffd+O1vf4uQkBAsX74cb7/9NqKjo/Hcc8/hyiuvVDt+pi8iI8mL0tAgXwAKABy/j6+/VnZOMQ+jvZ16Yhw5ouzcamlooNBOdLS9t5AiBEHqgAooC++YTGSYcXIsoxXZ2VTB0tgob/vFi6Xciy++UNdtPD29uxfRG5SX0wJHRngn59xWRLef9zJNmaI8vCp683lh4bMolswLDw/Hz372M/zsZz/rdZs33nijx/evuOIKXOHQPZfxAIMGUYZ+XZ38ip5x4yj+XVNDlUBGozKhM52OvBg1NRQmam0FJk50n0KjzUbGidEIDB2q7hhFRSRaBdCKVO7fKwicHMtoT3w8kJcHHDsmL58rNRW44QbynnR1AcuWAf/3f8rOGRJCOS8HD9Lv2RsN806domvKWTWRIGDY0U+l10qF2QCaE1NSOLzjw3DRd6ATH0837T5E9C5Crwcuv5yeCwLwzTfqzp2aSkbR998DmzcDHR3qjuOMU6doIlcb2gFc61yclcXJsYz2DBxIvy+5eWA33SSpy+7aReEapaSnA5WV3slFaWigsLCcxcHhw0iqoxBybcoQyv9Sc74hQ3yntJq5CDZQgoGhQyn00dwsf5958yTRog0bFCXadiMhgdzV+/bRcZT0CJJDUxNpIERGOq946A3H8I5e373PiZx9hw3j5FhGe7KyaIUvt21FZCTgkPuHt95Sft2GhAAxMeR1ddeC4kJsNvK2Hj1K17MccbbPP7c/PTHqBuULk44OMkxY2t6nYQMlGEhNpdVYH80cL6JfP2q4BZD3RexNo4aoKDp/QQGwbp2ipN0+EUM7NTVU9aCWwkKpydjYscpKpPV6jmEz7iE8nBYXDQ3y95k7l8K6AEnFy+mrdSGiF8WduSiCQIbX4cPAp58CH39MWkppac6NjdJSYO9eAEBzVD+UDpje9/Y9UVtL5+LOxT4NGyjBwvDhdDNVIqTmSrLshYSFAYMHk0LkmjU0ebrKmTO06srOdk2iWm14BwBCDJwcy7iP3FzKBZHbDPDCsuP//ld5x3HD+d/0wYPae1EaG0mp+YsvKF9m/XpaOIlNOeWIpTl4T44NvQ6CXoX3srmZ5iP2fPo0bKAEC1lZNNkp0SeZOFGaMHbvBurrXRuDwUCru6Ym8qQcP66+wqe5meLsYWGulQharZQjA1AVhNiAzRniuA3cmp1xI6mplN+kJIdsxAipCq2pSV3ZcVoaeVFOnVK+74W0tJCXcu1a4MMPga++ogWKmB+XnS0/PNvYSIrVACyhkSgc2LcoXa/jiY7m8I4fwLNrsKDXAyNHUhKaxSJPDjokBLjsMmDVKrqRf/cdJeK5gk5H/TWqqsj93NJC/WuUrGQEgVy8FRUXVe2cLdFh3xE9+uic0I2cs9sw47wLvTRzIrZukOcNaRcXlrwCY9yJXk+/8bNnKaQp11O4eDEZ8J2dwJdfkrqskkRu0Yty6BAtKpSW7re30/V57hxVyDU00JyTnEzhWLXJ7GvW2MuDTw+ZD0toFEKhcJFTW0sijNy52OdhD0owMWAATQ5KclEcy8I3bNBO0yQ9nbwzW7fSQ4k41NmzFLvuIbSz74gejU06tLU7f+hNNZi07e/2fU/kXC5rv7Z2HQTQBBsayTY+42aUaqIAlEN2ww30vKsLeOcd5ecVvSgnT8rbvrOTPCObNwP/+x91GD5yRBJwzM+nv0OtcWI2k4ECAHo9CkeqEGaz2ch4GjxY/TgYj8GzazARGgqMHk2uVqtV3uo/M5P2EZsHHj1Kr7UgMZHGtHs3aaXMnk0VBH3R2kpVO2K1wQWInhOdTkBkHzIOOlsXLv/mRYRbKD5fMmA6TIOmIEonwwA73zcqNDEGE28e7Hx7hnGFuDhaXBw9qqyh3Y030qJC7E918CBpHMnFYCCD4vBhuqH3FIbp6iJvaGkphYNqa+n6SEqixHgtPYybN0tG2vTpaItJBZT2JhWrhOS2sWC8ChsowUZ+PsW1TSb5/WquvJIMFICSZbUyUAAyMvLzKR+lvZ0aDfbmenUM7Qzu2zCIjADuuL6PEstlywFjAT1PS0POCw/ijmiZDStPnqSw1Jw58rZnGFcZOJAMFLnhWYDCMvfcA7z6Kr1++23gtdcAKDAaUlPJ8Dh5UjJuxLLgsjJ632ikcSUkUJ6b0m7CcrDZuiXH4vrrgWMqjmMyUY6OnFJmxutwiCfYiIqiC7S+Xn64ZupUqQnX9u3K9FTkEB5OLuCSEkqeFRVdL6SoiGLimZmurcz27KHSRoA8MU88IT/R1mxm5VjG84g5E3I1UURmzyYxMoDCL+vXK9tf9KIcOkQy9AcOUE7axx9TsmpzMyXgDx1KCx53GCcAnddR6dnJAqVH2tro71Ej6sZ4BTZQgpHBg2m1I7cqJyxM8hZYLMCmTdqPKSSEbvp1dRSCKizs/v9tbRTa0elcK+s1mc6vIs+zeLGyyc5oZOVYxvOEhZGhoSQPBeix23GoWWHZcWoq5a19/jmpSove12HD6DrwRCf6zz6TnquRtQfI8zpoEId3/Ag2UIKRhARa8SgRTLtQE8UdDQD1euo/Igh0jv377fke2L+fVlCulAZarcDLL0seoClTgGuvlb+/zUZVR8OHc/UO43lycylsI1cTRWTYMEnfp7kZow/+T9n+BgOdOzGRjtW/v7qGnGo5e1aS7c/IACZNUn6MlhZaBI0Z45pmEuNR+JsKVoYOpXCP3HBNbq5U0ltcLD+zXw2ZmRRS2rSJNErOnNEmtPPBB5TrAlCVw0MPKcvkb2igSTonR/0YGEYtqal0g1aiiSJyzz32njNDjn+BuKYyZftHRTlPYHcXjrkn112nbg6oqCAPFDcG9CvYQAlWRPl7JcJtjl4UNRLaSkhOplLkXbuoDNlqdS2x7cABYOVKem4wAL/6lZRXIxeTiVzErBzLeANRE6WtTfIsyqVfP6rqAaAXrLj0wFtuGKAbqK2V+mTFxJAuk1Kam0mNd8wYLi32M9hACVZ0Okn+Xq6c9YwZkmt3yxblrmalxMZSeWVrq2uhnbo64JVXpLDUXXeRq1oJZrOUJ8Mw3iI7m0K0SnNRADJQkpMBADkVu5Fevl/bsbmDL7+UujlffTUZGkoRBR25747fwQZKMNO/vzL5+8hIKZbd0SGtbNxJRASFVEJUVsRbrcBf/ypN6BMnqkuyMxopxMTJsYw3iYujsnyl1TwAXUt3321/eckuFd2OPUl7O1X1AXT9L1ig/BiNjVShN3o0e0/8EDZQghm9Hhg1ihQg5eLJMI8WfPSRpOGSnAw88ojyJDlOjmV8ifx88gbK7efgyOzZMPWjXLKEBhVlx57k22/JewrQwigpSfkxqqroupWr+cT4FCzUFuzk5pJX4IgVQAjaO4APPuvjJiwMxfykfCTVnQVOnsSad0rQkJQn+3ShocDE0Tbk5bihCuhCDh+m5mQAGSWPP64uf0RMjs3N1XR4DKOKrCzKIautVR620Ouxb8pPcNWXj9Hr99+nm7+3EmB7w2oFVq+WXl93nfJj1NdTmHjUKO3GxXgU9qAEO2FhwKhRCNVRnFcQnPSh6dDjRN5V9t1zj38tu39NW7sOjU067D3i/p9deHtD97yTO+6gZolqMJlIK0VpUi3DuAO1mijnqU0dhtO5c+lFczP1zfE1du+WQs/jxpH8gBIEgbRbhg/npoB+DBsoDJCfj4lD2xEfZUFUpOD0UTFsDroMVLI4uOhbxBtaZO2nO9/nRo1nWhGCDdO2/JWSYwGa4BYtUncsMTk2P1+z4TGMy4iaKGIIRCF7xi5Gl+G8wNqaNSRb70s4CrOp8Z7U1VHVH3tP/BoO8TBAdDTyLhuEPP0mqm5xmkwWCVRMBzZuRFhnK27+9mHg1792usr54DMD2pQ291LB2OMfI0OsUEhMBB59VL04U00NJ8cyvkdqKv0my8vlt2lwoDW6H46PWYQxB96ncMo77wC/+50bBqqCwkLgxAl6np0NXHKJsv0FgZLap09Xl7fC+AzsQWEIUf6+oUHe9jffLE2MlZWkK+IuhVkF9Ks6hglH3qMXOh3wy18q6wDriM1GK1ROjmV8DZ2OSmc7OpRropznxOgbpfDH3r3Avn0aDtAFLhRmU1p9U1tL17zakC7jM7CBwhCJiTTh1dTI275/f+qSOmgQve7sBP72N+D11+XrqmhNUxOmb3oReuH8hH3rrcDYseqPx8mxjC8jaqLIXVRcgDUkghRmRd55R9Ic8RbV1dSQFKAQjdKO4TYbeU9Gj+aOxQEAGyiMxNChFNdukdlMLD0d+POfSUBJ5LvvqFrG0zFtmw147TVEtZE+RHX6aDJQXKG2lpNjGd8lNla9JorIrFlSC4vSUkl3xFt8+aXkEVqwwC7PLxuTibxCI0ZoPzbG47CBwkikpdGEp0T+PiwM+OlPgccek1QeS0ro9ZYt7hlnT3z+ObmpAbSHx2P7nF+5Fpbp6KD9OTmW8WXy8ykEojbzXKfr3u34f/+T359La1pbKUwM0LziuPCRg81GxtrYsbyoCBDYQGEkdDpaeeh0ysM0s2eTYqvYSK+9nToHv/mm+8t2CgqA//zH/nLT1F+hPSrZtWOycizjD2RlUZ8dJZ3JL2ToUCmU0twsaQd5mq+/pnkDoJ47SkM0NTW0yFLaxoLxWdhAYbrTvz8ZGdXVyvfNziajZO5c6b21a4Enn1TmlVFCSwud87xk97Ext6A8Q2HW/4XYbNRniJNjGV8nNJSa4DU3U0m8Wu6+Gwg/X3b81VcU7vEkXV3AF19IrxcuVLa/1Uq5OGPHqqpqYnwTNlCY7hgMlP1uNqvzfEREkJz8gw/S5AkAp08Djz6KrJKdmg4VggC88YaU2Dt8OA5f8kPXj9vQQMmHnBzL+AMjRpDXoKRE/TFSUoCbbqLnNhslzHqSbdsofwQAJk2ihZISqquBjAwSsGMCBjZQmIvJy6MEWLVuY52Oevb85S+SFHdrK2Z/8zwmH3gbOptGlQJffgnsPG/0xMYCjz8OQa+Bx4OTYxl/IiQEmDKFfq+uhHpuuEEqO963z71lx4JAXpqVK0mi4JVXpP9T08yzqYm8J1FRmg2R8T5soDAXExZGZXpNTao1FgBQAt+rrwLTptnfGlOwCvPWPu1a5QEAnDoFLFsmvX7kEYrFu4qYHDtwoOvHYhhP0a8feR7q6tSHesLDu5cdv/22tmXHVitw7Bh5Zx54APj5zyl3rLBQ0k8aMkS5+qvVSrligwdrN1bGJ2ADhemZgQOp+6+rhkR0NOWgLFkCm468G6nVx8igOHhQ3TFbW8k7I06e119Pk7MWiMmxGRnaHI9hPMXIkXSDdyXUM2uWlGRaVkY5ZK7Q0QHs2EH6SPfcAzz1FMnYV1Z23y43F7jlFuD//k+5MJsgAOPHS1WETMDAUvdMz0RH04S3ZQu5fZVOGo7odMDChdhQNRzTv/szYtqM1OjsmWeA226jiUluMqogAH//u5R0O2QIcNdd6sfmCCfHMv5MaCiFeiorydBW41HU6YD77iOZAIDKjmfPVtYFvL4exvV7YPl+N1LLDyLE2nnRJjadHsa0kSjLvRRl2VPQGnd+QbBZ/mnaxUJDg0ESjGQCCjZQmN4ZPJi8HKKiqovUpg7Dp/PfwLzdf0Vm2V4yNv73P+q78dhj8soK160Dvv+enkdHU/xaTMZ1lfp6To5l/Ju0NPImfvcdXU9Khc4Auu7nzgU2bqQquf/9D7j//t63FwTytuzaRV2ICwvRr4eWF5aQCJRlTEBx1qUozZwEc7iD0eNCj67QmHB1fyfj87CBwvROUhJpJOzdq4mBAgDm8HhsuuIZ3GFZAXzwAXktDh6kkM+vftW3AuS5c8Bbb0mvH36YJmStqKsDJkzg5FjGvxk9msI8Z8+qz8u4+26SnDebKcxz9dWSxhFAeR8FBWSQ7NoFVFT0eJjWyCRU5ExBWc6lqM4YA1sIGRIGAFFwsW+X1YrQMD0m3sa6J4EKGyhM3wwdSoltLS1ATIw2x9TpKawzbBhpmDQ0UK7L009TnPr66y8OKbW1AS+9JJU+X3stcOml2owH4ORYJnAIDaVro7qarqtkFaKFycnAokXA++/TIuLttyl/5OBBMkj27KEk+p7IzcXRhEtxOm0q2rIG4o4bBEhmklXd33QhZjMZYddeCwxWWJLM+A1soDB9k54ODBhAVTNaGSgiY8YAr71GRsrRozQRLlsGHD9O3hHxfIJAirTl5fR60CBg8WJtx8LJsUwgkZ4OXHIJsGkT5Y+oCYNefz2puxqNwIEDwJ139qyNpNeT53PKFHqkp+PwZwa0tesQpROgmVHiSEUFzUt5edofm/EZuIqH6RudTmpb7opSZW8kJQHPPw/cfLP03q5dwKOPksAbAHzzDbD5fPZcZKS2eScAJ8cygcnYseQRLC5Wt394ePeFgKNxEhFB8gGPPkqlwn/6E3DddZLukTvp6KAQ09ixpAHDBCz87TLOyc4mZcfq6u5xaK0wGKgSZ/hw0k1pbqZzPfEEqVt++qm07S9+ob2Xo7hY8hQxTKAQFuZ6qGfGDGDrVhJETEoCJk8mL8no0d5LTC0vJ40lvl4DHjZQGOcYDCSeVFRE2iPuWrVMnEgGyksvASdP0rlWrJD+f/58mjC1pKKCvDJz5mgfwmIYb5OZSYnfmzdfFOpp7wA++My5x1A37GmED2hER2QC5Y+Vgh59YC8B1pr2dvLqjh3L3s4ggA0URh6i/H1NjcsdfvueGDOgn/oSxoe8g6HHV9vfrU/Mw9epP4HVyYSqaGKsrQU6O0mWX2nvD4bxF8aOJVn5khJg4ECyUdoBQdChTVZ5bwhadcmACqNDy0gsAFpQDBrkHk8u43OwgcLIIzycvCgbNpCholeeviR/YgzD1rEPoDRxFKbu/ye6QiKwYdpTaLZEADL7FzqdGJubqax4zhyqVGKYQCU8nEI9NTVAfT0mjk7C3iN6Vb1AlRAaCkwc7UKrjAtpa6N5Z8wYVfMP43+wgcLIZ9AgYP9+8jyoUKmcONqmaGKsGTodnw+ZBp1gg6A3yNZNcDoxdnRQHHvyZGDcOHmDYRh/JiuL5OC3bkXeoFjk5fjh1F9eTnlq2dneHgnjIfzwV8p4jZgYKifculWVgZKXIyAvR23JoUalil1dlEszahQwdSqvxJjgYdw4UnwtKaEkU3+ipYWScseMca3tBuNX8OzMKGPwYEq2a2jw9kiUY7MBZ87Q5DxrFstjM8FFRARV4ISEUFsHf6KykvpuuZj/xvgXbKAwykhOJiOlpsbbI1FOURHlz8ydS318GCbYyM6mUE9VldQN3NdpaqI8GvaeBB1soDDKGTaMvA+trd4eiXwqKsgomTuX9BwYJlgZP540REqd1Ar7CpWVNOd4QgSO8SnYQGGUk5FBZcdVVd4eiTxqa0kFc9YsShZkmGAmMpKqegwGoLHR26Ppm8ZGWliMHu3tkTBegA0URjk6HSXLCoJ75O+1RCwnnjaNYtgMw5COyLhx5J2wuqFXjlZUVdFck5rq7ZEwXoANFEYdOTmS/L2vIpYTT5zI5cQMcyHjx1NOSkmJt0fSM/X1QGwsVdwxQQkbKIw6QkLI7dreTl4KX8NiAc6dozFyOTHDXExUFIV6dDpKRPUlBIES8UeMUNdDiAkIeNZm1JOfT94Jk4ka7vmKq9hmA86eJWG5mTPdoLfNMAFCbi5J4VdU+M71C1BYNj6evSdBDhsojHrCwoDZs4Ef/IBWOSdP+sZKTCwnnjOHy4kZpi90Omom2L8/ibj5AqL3ZPRoIDHR26NhvAgbKIxr6HTkSVm4kNzFtbVkIHhrNVZezuXEDKOE6GgScLPZfGOBYTLRgmf4cG+PhPEybKAw2hAdTeGUa68FUlLIm+LpEkaTiQyj2bO5nJhhlJCX5xuhHpuNFjmjR1OIhwlq2EBhtEOno4nuuuuorLehgRJVPaFY2dREWf/TppHSLcMw8tHpKJ8sK4u8kN7CaGTvCWOHDRRGe6KigBkzyJuSng6cOuXe3j0dHbTymzSJVoEMwyhHDPV0dXmnMs9qpUXGuHFUXswEPWygMO4jN5eMlOnTycNx9qz23hSxnHjMGMqB4XJihlFPfj4Z+eXlng31mM10ztRUYOhQz52X8WlCvD0AJsCJjCQDJScH2LmTvCnp6dpk53M5McNoi1jVU1ZGXsnsbPecp6uLFi1NTWSchIVRzsnkyVx5x9hhA4XxDNnZQL9+wMGDwP79pHOQk+OaUXHuHPUFmjuXwkoMw7hObCyFer76CmhpAWJiXD+mzUbHamqiJqMGAxAXBwwcKM0Nycm8yGC6wQYK4zkiIigM078/eVNOnyaXrhqlyLIymjjnzmWtBIbRmkGDqJJm/37qYaU0dCoIpDLd2Cjls8TEAGlpFPrt148ekZHaj50JGNhAYTxP//6UmyJ6U06fpklL7urJaKQV2Zw5QGamO0fKMMGJTkdJ5xUV9Ojf3/k+ZrMUtunqIq9mYiIwciSFdfv1I++MTuf+8TMBARsojHcIDyc3cnY2eVPOnJHcvH3R1ESrsrlzaZXHMIx7iIuja3TNGgrLXJgbIlb7NDZ2zyMZM4YWDikpJJbIieuMSthAYbxLZiZJ5R86JHlTcnJosruQ9nZazU2dSpMgwzDuZdAg6odz4ADpC7W2XpxHkp9P12xKCj04j4TRCDZQGO8TFkbuZNGbcvo0rbz69ZO2sVhIQn/cOFrV8aqMYdyPXk/XZnk5XZexsZQ3NmAAXZ8pKZygzrgNNlAY3yE9HbjmGuDoUWDPHipJzs0FQkKonHjwYBKA4xUaw3iO+HjgiivIg8l5JIwHYQOF8S3CwoBLLiHJ7V27qKePzUZJenPm8GqNYbwBJ6MzXkCxgdLZ2Ym3334bX3/9NZqbmzFw4EAsWbIEkyZNkrX/t99+i5UrV+LMmTMICQlBbm4ulixZggkTJigePBPApKUBV19Nse2CAmoAyOXEDMMwQYNiA+WFF17Apk2bcPPNN6N///5Yu3YtnnjiCbz++usY4yRx8Z133sG7776LOXPmYP78+ejq6sK5c+dgMplU/wFMABMaSjkno0dTQh7DMAwTNCgyUI4fP45vv/0WP/3pT3H77bcDAK666iosXrwYb775Jt58881e9z127Bjeffdd/PznP8ctt9zi2qiZ4IKNE4ZhmKBDUSnE5s2bYTAYsHDhQvt74eHhWLBgAY4dO4bq6upe9/3444+RlJSERYsWQRAEtLW1qR81wzAMwzABjSID5dSpU+jfvz+iLxDsGT58OADg9OnTve67b98+DBs2DCtXrsTChQsxf/58XH/99Vi1apWKYTMMwzAME8goCvHU1tYiuQelT/G93nJJmpub0djYiKNHj2L//v1YvHgx0tLSsHbtWrz++usICQnBdddd1+t5TSYTamtr7a+Li4uVDJthGIZhGD9DkYFiNpsR2oMGRdh51U+z2dzjfmI4p7GxEc888wzmzZsHAJgzZw4WL16M//znP30aKKtXr8by5cuVDJVhGIZhGD9GkYESHh4Oi8Vy0fudnZ32/+9tPwAICQnBnDlz7O/r9XpcdtlleOedd1BdXY20tLQe91+4cCGmT59uf11cXIw//OEPSobOMAzDMIwfochASU5OhtFovOh9MfySkpLS435xcXEICwtDTEwMDBdUZCSe17Zobm7u1UBJSUnp9dgMwzAMwwQeipJkBw0ahLKyMrS2tnZ7//jx4/b/7/Ekej0GDx6MxsbGizwwYt5KQkKCkqEwDMMwDBPAKDJQ5syZA6vVitWrV9vf6+zsxJo1azBixAi7B6S6uvqiRNa5c+fCarVi3bp19vfMZjM2bNiAAQMGsIeEYRiGYRg7ikI8I0aMwNy5c7F06VI0NDQgKysL69atQ1VVFZ588kn7dn/84x9x8OBBbNmyxf7eddddh6+++gqvvvoqSktLkZaWhvXr16O6uhovvPCCdn8RwzAMwzB+j2Kp+6efftpuXLS0tCA/Px8vvvgixo0b1+d+4eHheO211/Dmm29izZo16OjowKBBg/Diiy9i8uTJasfPMAzDMEwAohMEQfD2IJRSWFiI++67D//+978xdOhQbw+HYRiGYRiNUZSDwjAMwzAM4wnYQGEYhmEYxudQnIPiC4iKtSx5zzAMwzD+R25uLiIiIvrcxi8NlKqqKgBgNVmGYRiG8UPk5JD6ZZJsQ0MDdu/ejYyMDHsfIFcR5fN/85vfIDc3V5NjBjL8ecmHPytl8OelDP68lMGfl3zc+VkFrAclISEBV155pVuOnZuby5VBCuDPSz78WSmDPy9l8OelDP685OOtz4qTZBmGYRiG8TnYQGEYhmEYxudgA+U8ycnJWLx4MZKTk709FL+APy/58GelDP68lMGflzL485KPtz8rv0ySZRiGYRgmsGEPCsMwDMMwPgcbKAzDMAzD+BxsoDAMwzAM43OwgcIwDMMwjM/hl0Jt7ubgwYP48MMPcerUKTQ2NiImJgaDBg3CPffcg9GjR3t7eD7Hvn37sGHDBhw+fBhGoxFJSUm45JJL8OMf/xgpKSneHp7PYTKZsHLlSpw4cQIFBQVob2/H66+/jvHjx3t7aF6ls7MTb7/9Nr7++ms0Nzdj4MCBWLJkCSZNmuTtofkkbW1t+PDDD3H8+HGcOHECzc3NeOqpp3D11Vd7e2g+x4kTJ7Bu3TocOHAAVVVViIuLw8iRI7FkyRJkZ2d7e3g+xblz57Bs2TIUFhairq4OERERyM3Nxe23347p06d7dCzsQemBsrIy6PV6XHfddXjkkUdw6623oq6uDr/4xS+wa9cubw/P5/jnP/+JAwcOYObMmXj44Ycxb948bNy4EUuWLEFtba23h+dzlJaW4oMPPoDRaER+fr63h+MzvPDCC/joo49wxRVX4KGHHoJer8cTTzyBw4cPe3toPkljYyOWL1+O4uJiDBo0yNvD8Wk++OADbN68GRMmTMBDDz2Ea6+9FocOHcKSJUtw9uxZbw/Pp6iqqkJbWxvmz5+Phx56CHfffTcA4KmnnsLq1as9OxiBkUV7e7tw3XXXCY899pi3h+JzHDhwQLBarRe9N3PmTGHp0qVeGpXv0traKjQ2NgqCIAgbN24UZs6cKezfv9/Lo/Iux44dE2bOnCl88MEH9vc6OjqE2267TXjggQe8ODLfxWw2CyaTSRAEQThx4oQwc+ZMYc2aNV4elW9y+PBhobOzs9t7JSUlwrx584TnnnvOS6PyH7q6uoR7771XuPPOOz16XvagyCQiIgLx8fFoaWnx9lB8jnHjxkGv11/0XlxcHIqLi700Kt8lKioKcXFx3h6GT7F582YYDAYsXLjQ/l54eDgWLFiAY8eOobq62ouj803CwsJYbEwmo0ePRmhoaLf3srOzMWDAAJ6jZGAwGJCamurx+x/noPRBa2srLBYLGhsbsX79epw7dw533XWXt4flF7S1taG9vR3x8fHeHgrjB5w6dQr9+/dHdHR0t/eHDx8OADh9+jTS0tK8MTQmQBEEAfX19RgwYIC3h+KTtLe3w2w2o7W1Fdu2bcOuXbswd+5cj46BDZQ+eOaZZ7B7924AQGhoKBYuXGiPxzF98/HHH8NiseCyyy7z9lAYP6C2trZHb4D4nslk8vSQmABnw4YNMBqN+NGPfuTtofgkf//73+05J3q9HrNmzcKjjz7q0TEEvIFis9lgsVhkbRsWFgadTmd/ff/99+PWW29FTU0N1q1bh66uLlitVncN1Sdw5fMSOXjwIJYvX465c+diwoQJWg/Rp9Di82IAs9l8kQseoM9M/H+G0Yri4mK8+uqrGDlyJObPn+/t4fgkN998M+bMmQOTyYSNGzfCarXKnuu0IuANlEOHDuHhhx+Wte17772H3Nxc++vBgwfbn1955ZVYsmQJXnjhBTz//POaj9NXcOXzAujC/81vfoP8/Hw8+eST7hiiT+Hq58UQ4eHhPU5+nZ2d9v9nGC2ora3Fk08+iejoaDz//PMwGAzeHpJPkpuba5+v5s+fj1/+8pf49a9/jX/9618eW2gFvIGSk5ODp556Sta2fSWchYaGYvr06Xj//fdhNpsDdsJ05fOqrq7GY489hujoaLz44ouIiopyxxB9Cq1+X8FOcnIyjEbjRe+LZeqsp8NoQUtLC5544gm0tLTgb3/7G/+uFDBnzhy8/PLLKC0tRU5OjkfOGfAGSnJysmbCRWazGYIgoK2tLWANFLWfV2NjIx577DFYLBa8+uqrQXPha/n7CmYGDRqEAwcOoLW1tVui7PHjx+3/zzCuYDab8etf/xqlpaV45ZVXODlWIWKY1ZOVPFxm3AP19fUXvdfc3IzNmzcjNTUViYmJXhiV79Le3o4nnngCJpMJL730EiszMoqZM2cOrFZrNyGozs5OrFmzBiNGjOAKHsYlrFYrnn32WRw7dgy///3vMWrUKG8PyWfp6f7X1dWF9evXIzw83KOGXcB7UNTwq1/9Cv369cOIESOQmJiI6upqrFmzBrW1tXj22We9PTyf4/nnn8eJEydwzTXXoLi4uJuuQGRkJGbOnOnF0fkm7777LgCgqKgIALB+/Xq7Yuo999zjrWF5jREjRmDu3LlYunQpGhoakJWVhXXr1qGqqioocpnUsmrVKrS0tNhDYdu2bUNNTQ0A4KabbkJMTIw3h+cz/P3vf8e2bdswbdo0NDc34+uvv+72/1deeaWXRuZ7vPzyy2htbcXYsWPRr18/1NbWYsOGDSgpKcHPf/5zj4budYIgCB47m5/wySef4LvvvkNxcTFaWloQGxuLESNG4Pbbb8fYsWO9PTyf45ZbbkFVVVWP/5eeno6PPvrIwyPyfWbNmtXr/23ZssWDI/EdzGazvRdPS0sL8vPzsWTJEkyePNnbQ/NZ+rr2VqxYgYyMDA+PyDd56KGHcPDgwV7/P1ivuZ749ttv8dVXX+Hs2bNobGxEVFQUhg4dihtvvBEzZszw6FjYQGEYhmEYxufgHBSGYRiGYXwONlAYhmEYhvE52EBhGIZhGMbnYAOFYRiGYRifgw0UhmEYhmF8DjZQGIZhGIbxOdhAYRiGYRjG52ADhWEYhmEYn4MNFIbRmLVr12LWrFlYu3att4ciiwMHDmDWrFl455133HaOWbNm4aGHHnLb8d3NQw891Kf6ryuIn7/4eOCBB9xyHjm88847mDVrFg4cOGB/r7i4uNv4brnlFq+NjwkuuBcPE/T8+c9/xpo1axAXF4dPPvkEYWFh3h6S5og3FW474LuMGzcO48aNQ2pqqreH0o34+HgsXrwYALBy5UrvDoYJKthAYYKatrY2bNy4ETqdDk1NTdi6dSvmzZvn0jFnzpyJESNGIDk5WaNRMsHAuHHj8KMf/cjbw7iIhIQE+7jWrVvn5dEwwQSHeJig5rvvvkN7eztuvvlm6PV6fPXVVy4fMyYmBrm5udxJlmEYxgXYg8IENV999RUMBgPuuOMOnDlzBvv370dVVRXS09O7bffOO+9g+fLlvR7HsWvz2rVr8cILL+Cpp57C1Vdfbd9m1qxZGDduHH7729/izTffxJ49e9DZ2YmxY8fikUceQWZmJoqKirB06VIcOnQIXV1dmDx5Mh599FEkJSXZj3PgwAE8/PDDWLx48UUr7srKStx6662YP38+nn76aftrxzGI9LR/QUEBli5dimPHjkGv1+OSSy7Bgw8+eFFX3C1btmDjxo0oKCiAyWRCSEgIBg4ciEWLFmHOnDl9f+hOaGlpweeff46dO3eirKwMjY2NiI+Px8SJE7F48WJkZWV12178bl5//XWYTCb873//Q0lJCWJiYjB37lw88MADCA8P77ZPV1cXPvzwQ3z55ZcwmUzo168fFixYgMsuuwy33Xab/fOTw9atW7Fq1SqcPHkSnZ2dyMrKwvz583HLLbfAYDC49FkAwJ/+9CesW7cOH374IbZs2YKvvvoKFRUVmDdvHp5++mmYTCasXr0au3fvRkVFBVpbW5GcnIxLL70U9957LxITEy86ZnV1Nf75z39i9+7d6OrqwpAhQ/DjH//Y5bEyjJawgcIELUVFRTh27BguvfRSJCUl4aqrrsK+ffuwZs2ai27c48eP7/EYxcXF2Lhx40U3wN5obm7Gz3/+cyQnJ+Oqq65CWVkZtm/fjl/+8pf405/+hAcffBBDhw7FNddcg5MnT2Lz5s1oamrC66+/rupvjImJweLFi+25A4sWLer1byooKMD//vc/jB8/HgsXLsSpU6ewdetWnD17FsuXL+/2Ny5duhQhISEYPXo0kpOT0dDQgG3btuF3v/sdHn74Ydx0002qxgvQZ/rOO+9g/PjxmDlzJiIjI1FcXIxvvvkGO3bswFtvvXWRAQkAn3zyCXbv3o3p06fjkksuwa5du7Bq1So0Njbid7/7XbdtX3zxRaxfvx6ZmZm4/vrrYbFY8NFHH+Ho0aOKxvqvf/0L77//Pvr164dZs2YhJiYGhw8fxptvvokTJ07gueeeU/05XMhrr72G48ePY+rUqZg2bZrd8Dh06BBWrFiBSy65BMOHD0dISAhOnTqFzz77DLt378Zbb73VzZtnMpnws5/9DEajEZMnT8aQIUNQXFyMxx57rNffOcN4AzZQmKDlyy+/BABcddVVAMi78Oqrr2Lt2rVYvHgx9HopAjp+/PiLJu/6+nrcf//9CAsLwxNPPCHrnGfOnMEtt9yCBx980P7eK6+8gs8++wwPPvgg7r33Xtx8880AAEEQ8OSTT2Lnzp0oLCzE0KFDFf+NsbGx+NGPfmTPHegrx2Hnzp145plnuuXg/PGPf8T69evx/fffd3v/pZdeQmZmZrf929ra8LOf/Qxvv/02FixYgIiICMXjBYDc3Fx8+umniIuL6/b+/v378ctf/hL/+c9/evy89+3bh3//+9/IyckBANx333340Y9+hO+++w4/+9nPkJKSYt9u/fr1GDx4MP7+97/bx3nXXXdhyZIlsse5Z88evP/++5g8eTKef/55REZGAqDv7ZVXXsHnn3+OTZs2uexREjlz5gzefvttpKWldXv/kksuwaeffoqoqKhu769btw5/+tOf8Mknn+Duu++2v7906VIYjUYsWbKk2/urV6/Gyy+/rMlYGUYLOAeFCUq6urrw9ddfIzo6GjNmzAAAREVFYebMmaiursbevXv73N9sNuPpp59GVVUVfv3rX2P06NGyzhsZGXnRTVC88cfHx3fzcOh0Ovv/nTlzRvbfppaxY8delCB8zTXXAABOnDjR7f0LjROAPr+rr74aLS0tKCgoUD2OmJiYi4wTgG7EAwYM6PW7WbRokd04AYDw8HDMmzcPNpsNhYWF9ve//vprAMA999zTzYhKSUnp9vk745NPPgEA/OpXv7IbJwB9b/fffz90Oh2+/fZb2cdzxu23336RcQIAiYmJFxknABne0dHR2Ldvn/09i8WC7777DomJid1CfwDwgx/8AP3799dsvAzjKuxBYYKS77//Hg0NDViwYEG30MVVV12Fr7/+Gl999RUmT57c476CIOBPf/oTjh07hv/f3t3FJPnFcQD/QoozTXFFUMtyaU62FCNfZhbrRbtmvVx0hYwWXXTVRWuui27cqlWbXOhFrgyzYjnXVNRenU0JyrB0OlNrU9LCBAeiZgb8LxwM/jyaSiKbv8/lcx7OOT6P2/N7zu+c88jlchQUFCy53R07dgSMLHhW++zevRssFouxbHx8fMltrBTTCA2PxwMwPy/E18TEBKqrq6HX62E2mzE7O+tXHmx/Ozs78eTJE/T29sJms8HpdHrLIiMjGX+TmpoacMyzZNe3/4ODgwCAjIyMgPP37t275D729vYiOjp6wYnVUVFRGB4eXnJ9fyMUChcsa21tRV1dHfr7++FwOPyul++9GB4exu/fvyEWiwPSkmw2G+np6fj27ds/6zMhwaAAhaxLnoeKJ73jsX//fvB4PLS3t8NutzO+yVdUVKClpQUFBQWQy+XLajcmJibgmGci5WJlf/78WVY7K8H0Fu5p3+VyeY/Z7XacO3cOZrMZ6enpyMrKQmxsLNhsNgYHB9HW1oa5ubkV96OlpQVXr15FdHQ0cnJyIBAIvEFdc3Mzfvz4wfi7xa6fb/+np6fBZrMRHx8fcL7vZOS/sdvtcDqdi06enpmZWXJ9f8M02RUAHj9+jLKyMnC5XGRnZ4PH43mDj5qaGr97MTU1tWhdCx0nZC1QgELWHbPZjPfv3wPAorubPn/+PGDIv6mpCVVVVUhPT8fly5dXtZ8L8Yyy+L4le3geQKtJq9XCbDZDoVBAJpP5lT148ABtbW1B1X/v3j1wOBzcuXMHiYmJfmWvX78Oqm5gPhBzuVyw2Wzgcrl+ZVardcn1xMTEgMViob6+Pug+LcX/R9eA+cBVrVZj8+bNuHv3rl+A4Xa78ejRI7/zPUHcxMQEYxsLHSdkLVCAQtad5uZmuFwuZGRkBDwAgfkHf3NzM7RarV+A8vHjR9y8eRPbt29HSUnJmu04u2nTJgDMaZSBgQHG37DZ7KBGNXyNjIwAgHfujq+urq6g6x8dHUVSUlLAvRkfH8fo6GjQ9aekpGBgYADd3d04dOiQX9lyVvEIhUIYDAaYTCbG/6NQsNlscDgcEIvFAaMffX19Aam3xMREcDgcfP78GbOzs35pHpfLtexVTISsJgpQyLridrvR2NgIFouF4uJixsmeAGAymdDT04O+vj6kpaXBZDLhypUriIqKwrVr1wLevENp586d2LhxY0Aaymq1Qq1WM/4mLi4OX79+DXgorYRniW93dzeSk5O9x1+8eAG9Xh9U3QDA5/MxMjICq9XqTbnMzs7i9u3b/yTVVVhYiKamJlRWViInJ8d7PSwWy7K2cj916hQMBgOuX7+OkpKSgJSRxWLB5OQkkpKSgu7zQhISEhAVFYX+/n78+vXLmwqbnJxkXJrO4XBw5MgRPHv2DBqNxm8VT0NDA0wm06r1lZDlogCFrCtGoxHfv39HZmbmgsEJML96paenB1qtFmlpaVCpVLDb7cjKymJMM8TGxobsI2qRkZE4efIkqqqqcPbsWeTn52NmZgbt7e3IzMz0jnD42rdvH/r6+nDp0iVkZGQgIiICIpEImZmZy27/+PHjePjwIUpLS9HZ2Qk+n4/BwUEYjUZIJBK8efMmqL/vxIkTKC0thUKhwOHDh+F0Or0puZSUFO8k15XKyspCQUEBXr58iaKiIhw8eBBzc3NoaWmBUCiETqfzW2K+kNzcXMhkMty/fx9nzpxBbm4u+Hw+7HY7RkZG0NXVBYVCsaoBCpvNhlQqhUajgVwuR35+PqampmAwGMDn871Lq30plUoYjUZUVFSgu7sbe/bswdDQEPR6PbKzs73XmpC1RgEKWVc8k2N9d3hlcvToUahUKrx69QoXLlzwDpV3dHQwLnMVCAQh/cqrQqFAREQEtFot6urqIBAIIJPJcODAAbS2tgacL5PJ4HA4oNPp0NXVBafTiaKiohUFKFu3boVKpUJ5eTk6OjrgdDqRmpqKW7duYWxs7J8EKBEREaitrUV9fT1iY2ORl5cHpVIZsOHaShUXF2PXrl1obGxEbW0teDweTp8+DbFYDJ1OxzhhmIlCoYBIJEJNTQ0+fPgAh8OBuLg4bNu2DUVFRSgsLPwn/V2MUqlEXFwcmpqa8PTpUyQkJODYsWOQy+Xej/z52rJlC8rKylBeXo53797h06dP3vtnNBopQCFhg+V2u91r3QlCCAkHDQ0NuHHjBi5evAipVBqSNhf7dEG4oa9ik1CijdoIIeuOxWLB/9/Nfv78CbVajQ0bNiAvLy/kfaqsrIREIsH58+dD3vZihoaGIJFIIJFIFlziTchqoBQPIWTdqa6uxtu3byESicDlcjE2NgadTofp6WnI5XLGHVtXi0Ag8EvFeDaXCxfx8fF+/aOvdJNQoRQPIWTdMRgM0Gg0+PLlCyYnJ8HhcJCcnAypVBqSeSOEkL+jAIUQQgghYYfmoBBCCCEk7FCAQgghhJCwQwEKIYQQQsIOBSiEEEIICTsUoBBCCCEk7FCAQgghhJCwQwEKIYQQQsIOBSiEEEIICTsUoBBCCCEk7PwHQC2U673MzvAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACz50lEQVR4nOydd3gc5dX2791V7703y733jruxKbHpPQEDhpDAC0lIcCAkECAQCEkg3/uGxDRT4lBsbAzYGDDuxr3bsixbxZLV26pLq935/jgazcqWtDOzs/38rmsv766mPLveeeY8p9xHJwiCAIZhGIZhGDdC7+oBMAzDMAzDXAobKAzDMAzDuB1soDAMwzAM43awgcIwDMMwjNvBBgrDMAzDMG4HGygMwzAMw7gdbKAwDMMwDON2sIHCMAzDMIzbwQYKwzAMwzBuBxsoDOPmbNu2DTqdDs8++6zdx9LpdJg7d67dx+kPLcfrDSxbtgw6nQ6FhYWy98nKykJWVpbDxsQwngAbKAxzCTqdDjqdDnq9HufPn+9zu3nz5nVvu2rVKucN0MUUFhZCp9Nh2bJlrh6KbESjyfoREBCAtLQ03HLLLfjhhx963a+lpQVRUVHQ6XS48847nTxq57BmzRosXrwYcXFxCAoKQkZGBq677jrs3bvX1UNjfBw/Vw+AYdwRPz8/dHZ24u2338aLL7542d/z8vKwbdu27u0YiSlTpiAnJwdxcXGuHsplZGZmdhtWzc3N2Lt3L9asWYPPPvsMa9aswQ033NBj+48//hhGoxE6nQ6fffYZampqEBsb6/BxbtmyxeHn6OzsxD333IPVq1dj8ODBuO222xAZGYny8nL88MMPOHToEKZNm+bwcTBMX7CBwjC9kJiYiOTkZLz77rt47rnn4OfX81J56623AABLlizBunXrXDFEtyUkJATDhg1z9TB6JSsr67LQ0zPPPIPnnnsOjz/++GUGysqVK6HX6/HrX/8ar7zyCt577z386le/cvg4Bw4c6PBzPPPMM1i9ejV+97vf4bnnnoNe39OhbjKZHD4GhukPDvEwTB888MADKC8vx5dfftnjfZPJhFWrVmHGjBkYMWJEn/vn5eXh7rvvRmpqKgICApCSkoK7774beXl5vW5fUVGB+++/H4mJiQgODsa4cePw3nvv9Xn8/vIUnn32Weh0Omzbts3m5ywtLcVzzz2HmTNnIikpqXusd955J06fPn3ZcQcMGAAAeO+993qETMQwV385KEq+E+vPsGbNGkyZMgUhISGIiYnB7bffjosXL9r8bHJ4+OGHAQAFBQWoqqrqfv/kyZPYu3cvFixYgBUrViAgIKDbMFWDxWLB3/72NwwbNgxBQUFIS0vDL3/5SzQ0NFy2bW//t6tWrer+nrdu3Yq5c+ciPDwcERERuPbaa5GTkyN7LOXl5Xj11Vcxbdo0vPDCC5cZJwDg7++v+DMyjJawB4Vh+uCOO+7Ar371K7z11lu4/vrru9/fsGEDKisr8fLLL+PcuXO97nvgwAEsXLgQjY2NWLp0KUaMGIEzZ87gww8/xOeff47vvvsOkydP7t6+uroaM2bMQH5+Pq644gpcccUVKCsrw0MPPYRFixY59HPu2LEDf/7znzFv3jzcdNNNCAsLQ15eHtasWYMNGzZg9+7dGDt2LABg7ty5qK+vx+uvv46xY8f2+F7GjRvX73mUfici//znP7FhwwYsXboUc+bMwb59+/Dxxx/j2LFjOHr0KAIDA+36/IIgdD/X6XTdz1euXAmAklxjYmKwZMkSrF27Fjt37sSsWbMUn+eXv/wlduzYgVtvvRXXXXcdNm/ejNdeew07d+7Erl27EBQUJOs4X375JT7//HNcffXVeOihh3D69Gls3LgRBw4cwOnTp2WF1tasWYOOjg7cfvvtaG1txVdffYVz584hPDwcV1xxRff/N8O4FIFhmB4AEFJTUwVBEIT7779fMBgMQnFxcfffFy9eLERERAjNzc3C7373OwGA8O6773b/3WKxCMOGDRMACB9++GGPY3/00UcCAGHo0KGC2Wzufv+BBx4QAAi/+MUvemx/4MABwc/PTwAgPPPMMz3+lpmZKWRmZvb6GZ555hkBgLB169bLPtucOXN6vFdRUSE0NDRcdoyjR48KoaGhwlVXXdXj/YKCAgGAcM899/R67q1bt142XjXfifgZwsPDhePHj/fY54477hAACB9//HGvY+hrTJd+dkEQhN///vcCACE7O7v7vdbWViE6OlqIjIwUWlpaBEEQhC+++EIAIPz4xz+WdU6Re+65RwAgxMbGCoWFhd3vm81m4cYbbxQACM8991yPfXr7v3333XcFAILBYBC+++67Hn/77W9/KwAQXn75ZVljuvvuuwUAwosvvihkZGQIAHo8brrpJqG5uVnR52QYreEQD8P0wwMPPACz2Yx33nkHAFBUVIRvv/0Wd911F0JCQnrdZ8+ePThz5gymT5+Ou+66q8ffbrvtNlxxxRXIzc3Frl27AFDI6D//+Q/Cw8MvC4tMmjTpsmNoTUJCAsLDwy97f+zYsZg/fz62bt1qdz6C0u/EmkcffRSjR4/u8d4DDzwAANi/f7+icRQWFuLZZ5/Fs88+i9/85jeYPXs2nn/+eej1erz66qvd23366aeoq6vDbbfdhuDgYADAVVddhaSkJKxZswZ1dXWKzgsAjz32GDIzM7tf6/V6/OUvf4Fer+/+fcnh9ttvx4IFC3q89+CDDwKQ/31UVlYCAH7/+98jKysLhw8fRlNTE/bu3YtJkyZh7dq1+PnPfy57TAzjCNhAYZh+mDp1KkaPHo133nkHFosFb731FiwWS/cNsjcOHz4MAJg/f36vfxffP3LkCADgzJkzaGlpwbhx4xAZGXnZ9o7WLQGAr776CkuWLEFycjL8/f2780q++OILtLe3o7q62q7jK/1OrJk0adJl76WnpwOAYkOhqKgIf/zjH/HHP/4Rr732Gs6dO4cbb7wRO3fu7JEgK4Z37r333u73/Pz8cNddd6GtrQ0ffPCBovMCwJw5cy57Lzs7G+np6SgsLER9fb2s42jxfVgsFgBATEwMvvjiC4wfPx6hoaGYOnUqNmzYgLCwMHzwwQea5fkwjBrYQGEYGzzwwAMoKirCpk2b8O6772LixIkYP358n9sbjUYAQHJycq9/F98Xb0ji9omJib1un5SUpHbosnj99dfxox/9CLt378bs2bPxi1/8An/4wx/wzDPPdOcitLe323UOpd+JNVFRUZe9J1ZVmc1mReOYM2cOBEGAIAgwmUwoLS3F2rVrMWPGjO5tcnJysGvXLgwbNuyyMluxRPnNN99UdF7A9v+v+B3ZQovvQzzGggULEBER0eNvycnJmDp1KiwWCw4ePCjreAzjCDhJlmFs8JOf/AQrVqzAQw89hIsXL+IPf/hDv9uLXpDy8vJe/15WVtZjO/HfioqKXrfv6zh6vR4dHR29/k3uaryzsxPPPvsskpKScPjw4csMiL4EzJSi9DtxJaL35MyZMz2SZq05efIk9uzZ08OwsUVFRQWGDh162fvid+LMzy6OozdjBwCio6MBAK2trc4aEsNcBhsoDGODqKgo3Hzzzfjggw8QGhqKO+64o9/tRe9KXyW+W7duBQBMmDABADBs2DCEhITg6NGjMBqNl92o+jpOdHQ0jh8/DpPJdFlJqNyVb3V1Nerr63HjjTdeZpw0NTV1h2asMRgMAJR5L5R+J66ivb0dH3zwAfR6fbdE/aWUlJRg8+bNePPNNxUZKNu3b8fs2bN7vJefn4/i4mJkZWX1aSw4goULF+L555/HyZMne/37qVOnAKC7pJxhXAGHeBhGBi+88ALWrVuHzZs395pQas3MmTMxdOhQ7Nq1C2vWrOnxtzVr1mDnzp0YMmQIrrjiCgCkN3HXXXehsbHxsiTZgwcP4j//+U+v55kyZQo6Ozvx7rvv9nh/1apV2L17t6zPlZCQgJCQEBw6dAhNTU3d75tMJjz22GO95p5ER0dDp9PhwoULss4BKP9OXMXatWtRU1ODxYsX4+2338Zbb7112eOTTz5BaGgoPvnkE9lhGYBCaUVFRd2vLRYLfvOb38BisfTIdXEGs2bNwrhx47Br167LhAbffPNN5OTkYNCgQb3muzCMs2APCsPIICMjAxkZGbK21el0eO+993DllVfitttuw3XXXYdhw4YhNzcX69evR3h4ON5///0e4lgvvvgitmzZgtdeew0HDx7s1kH5+OOPcc0112DDhg2Xned//ud/8O677+JnP/sZtmzZgvT0dBw9ehQ//PADfvSjH10mMNcber0ejz76KP785z9j9OjRuO6669DR0YGtW7eitrYW8+bN6/ZuiISFhWHq1KnYuXMn7rrrLgwZMgQGgwFLly7FmDFjNPtOXIEY3lm+fHmf20REROCWW27BqlWr8OGHH3YLvdli5syZGDduXLek/ObNm3Hs2DFMnDgRTzzxhCbjl4v4/zFnzhzcdNNNWLJkCYYMGYJTp05h06ZNCA0NxXvvvdftLWMYV8AeFIZxAFOnTsWBAwdw55134ocffsBf/vIX7NmzB3fccQcOHDiAqVOn9tg+Li4Ou3fvxr333oszZ87gtddew9GjR/HGG2/gl7/8Za/nGDFiBL777jvMnDkTX3zxBVauXInAwED88MMPmDhxouyxPv/88/jrX/+K4OBg/Pvf/8Znn32GSZMmYf/+/X0aZR988AGuvfZafP311/jjH/+I3//+972Gg+z5TpzN2bNnsX37diQmJmLJkiX9bitWcSlJlv373/+Op59+Gtu2bcPrr7+OqqoqPPbYY/j+++9li7RpyZgxY3D48GHcfffdOHDgAF577TUcOXIEd911Fw4dOqQofMUwjkAnCFYyigzDMAzDMG4Ae1AYhmEYhnE72EBhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7fBIA6WtrQ25ubloa2tz9VAYhmEYhnEAHmmgFBUVdXeYZRiGYRjG+1BsoLS0tOCdd97Br3/9a1x77bWYPXs2Nm3apOrkr7zyCmbPno0VK1ao2p9hGIZhGO9EsYFiNBqxatUqFBUVYdCgQapPfObMGWzatAkBAQGqj8EwDMMwjHei2ECJjY3FunXr8Omnn+JnP/uZqpMKgoDXX38dixcvRkxMjKpjMAzDMAzjvSg2UAICAhAbG2vXSTdv3oyCgoLuhlsMwzAMwzDW+Dn7hC0tLfjXv/6FH//4x7INnerqatTU1HS/5uRYhmEYhvFunG6grFq1CoGBgbj11ltl77NhwwasWrXKcYNiGIZhGMatcKqBUlxcjDVr1uAPf/iDouTYpUuXYubMmd2vi4qK8MILLzhiiAzDMEw/mEwmmM1mVw+DcUP8/f1hMBg0O55TDZR//OMfGDVqFObOnatov7i4OMTFxTlmUAzDMIxNGhoaUF1djfb2dlcPhXFTdDodIiMjkZSUBJ1OZ/fxnGagHDp0CPv27cMLL7yAsrKy7vfNZjPa29tRVlaGiIgIhIaGOmtIDMMwjAwaGhpw8eJFhIWFIS4uDv7+/prcgBjvQRAENDc3o6qqCsHBwYiKirL7mE4zUCorKwEATz/99GV/q6qqwm233YZHHnlEUW4KwzAM43iqq6sRFhaGtLQ0NkyYPgkODkZ7ezsqKysRGRlp92/FYQZKdXU1mpubkZqaCj8/P0yYMAF/+tOfLtvuL3/5C5KSkvCTn/wE2dnZjhoOwzAMowKTyYT29nbExcWxccLYJCIiAg0NDTCbzfDzs8/EULX32rVr0dTU1F36u3v37m4PyU033YSwsDCsXLkSX3/9NT7++GMkJycjMTERiYmJlx3r//2//4fo6GjMmjXLjo/BMAzDOAIxIdbf39/FI2E8AdEo6ezsdI2B8vHHH6O8vLz79Y4dO7Bjxw4AwKJFixAWFmbXoBiGYRj3gr0njBy0/J2oMlA++eQTm9s89dRTeOqppzQ5FsMwDMMwvoViqXuGYRiGYRhHwwbKpVgsQHOzq0fBMAzDMD4NGyiXUlICbNwIdCX9MgzDMIwjaW9vx4oVK5CSkoLg4GBMnToV3377rax9T506hVtuuQXZ2dkICQlBXFwcZs+ejS+++KLHdk1NTXjmmWdw1VVXISYmBjqdrt8WMnl5ebj99tuRlpaGkJAQDBs2DM899xxaWlrs+aiKYAPlUsxmoKgI2LIFqK939WgYhmEYL2fZsmX429/+hrvuuguvv/46DAYDrrnmGuzatcvmvkVFRWhsbMQ999yD119/Hb///e8BUIuYlStXdm9XXV2N5557Djk5ORg7dmy/xywuLsaUKVOwd+9ePPLII3jttdcwffp0PPPMM7jjjjvs+7AKcHqzQI9ApwMuXgS+/x5YvBhgdVuGcS4dHYDBQA+G8WL279+Pjz76CH/5y1/w61//GgBw9913Y9SoUXjiiSewZ8+efve/5pprcM011/R475FHHsHEiRPxt7/9DQ8++CAAIDk5GWVlZUhKSsLBgwcxefLkPo/5wQcfoL6+Hrt27cLIkSMBAA8++CAsFgvef/991NXVITo62p6PLQv2oPSGTgdkZwPnzwM7dgDce4JhnEdLC/D558Dq1bRIOHmSFgxOdC0zvkd2djZ+/OMfX/b+vHnzMGfOHIedd82aNTAYDN2GBAAEBQXh/vvvxw8//IDi4mLFxzQYDEhPT0e9VRQgMDAQSUlJsvZvaGgAgMu0y5KTk6HX6xU1+7UH9qD0hb8/MGAAcOIEEBQEzJoF2Ck6wzCMDI4cAQoKgJgY4PhxCrsaDEBYGBAbC6Sk0L/R0UBUFHtZGLtpampCYWEhfvazn132t+PHj+POO+/sdT+TyQSj0SjrHDExMdDrL/cJHDlyBEOGDEFERESP96dMmQIAOHr0KNLT020ev7m5Ga2trTAajdiwYQM2bdqE2267TdbYLmXu3Ll4+eWXcf/99+OPf/wjYmNjsWfPHrzxxht49NFHndYzj++4/REYCGRkAIcO0fNp04BefmAMw2hEcTFw9CgZIZGRgLiCM5mApiagvBzIz6f3goOB8HAgOZm2i46mB4dkGYWcPHkSgiBclptRUlKC2tpajBkzptf9du/ejXnz5sk6R0FBAbKysi57v6ysDMnJyZe9L75XWloq6/iPP/44/v3vfwMA9Ho9brzxRvzv//6vrH0v5aqrrsLzzz+PF198ERs2bOh+/3e/+x1eeOEFVcdUAxsotggNBZKSgL17aUIcP97VI2IY76S9Hdi3D+jsJOPEGn9/yQABAEEAWlvJaDl1Cjh2TPKyREcDqak9vSzs/XQMkyaR0egOJCUBBw+q2vXkyZMAcJmBcuzYMQDo00AZO3as7GqbvsIrra2tCAwMvOz9oKCg7r/L4Re/+AVuvvlmlJaW4pNPPoHZbEZHR4esfXsjKysLs2fPxk033YTY2Fh89dVXePHFF5GUlIRHHnlE9XGVwFetHCIjadLctYuMlGHDXD0ihvE+jh2j0M7Agba31emAkBB6JCTQe52dZLBUVgKFhfReUBAZLSkpl3tZWLrdfsrLKT/Iwzlx4kSv/eKOHz8OvV6PUaNG9bpfdHQ0Fi5caNe5xQ7Al9LW1tb9dzkMGzYMw7ruTXfffTcWLVqEJUuWYN++fYrl5z/66CM8+OCDOHv2LNLS0gAAN954IywWC1asWIE77rgDsbGxio6pBjZQ5BIbS5UF27eTkZKZ6eoRMYz3UF5OuSfx8eQtUYOfH3lLoqLotehlaW4GcnLIANLrKSwUFQWkpQEjRwKXxP4ZBchMunQKdozl5MmTvZbeHj16FNnZ2X3mXHR0dKC2tlbWOeLj42HoJV8qOTkZF3sx8srKygAAKSkpso5/KTfffDN++tOf4uzZsxg6dKiiff/5z39i/Pjx3caJyNKlS7Fq1SocOXLEbsNMDmygKCE5mTRSvv8euPpq97o4GcZTMZmA/fvJkFA5GfeKtZclPp7e6+yk89TUUJVeWxsgM4eA6QWVIRV348SJE5cllFosFnz//feYPXt2n/vt2bPH7hyUcePGYevWrWhoaOiRKLtv377uv6tBDA3JTeK1pqKiotcyYpPJBIA6FTsDNlCUkpFBE9uWLWSkxMS4ekQM49mcOgWcPUtVc47Gz49CtpGR5EnJyQGGD+fFhg9TWVmJqqqqbo+FyD/+8Q9UV1dj9OjRfe6rRQ7KzTffjFdffRUrV67s1kFpb2/Hu+++i6lTp3ZX8LS0tODChQuIi4tDXFxcj/EniGHOLkwmE95//30EBwdjxIgRssZnzZAhQ/DNN9/g7NmzGDJkSPf7//3vf6HX6/vMydEaNlCUImqk5OWRJ+WqqyjGzTCMcmpqaBUeFQU4SVuhm4gIoKKCSpkTEzknxUc5ceIEAOCbb77Bz3/+cwwbNgx79+7F5s2bAQCHDh3Cvn37MHXq1Mv21SIHZerUqbjlllvw5JNPorKyEoMGDcJ7772HwsJCvP32293b7d+/H/PmzcMzzzyDZ599tvv9n/70p2hoaMDs2bORmpqK8vJy/Oc//8GZM2fw17/+FWFW96f//d//RX19fXdl0BdffIGSkhIAwP/8z/8gsis5/Te/+Q02bdqEWbNm4ZFHHkFsbCy+/PJLbNq0CcuXL1cddlIKGyhq0Ospke/cOWDbNmDhQkrGYxhGPmYzhXbq6wGrVZpTSU4GcnOBESMoJ4XxOU6cOAGDwYCPPvoIjz76KN59913MmjUL27dvx/XXX4+jR4/CX21elEzef/99/P73v8cHH3yAuro6jBkzBl9++WW/4SWR2267DW+//TbeeOMN1NTUIDw8HBMnTsTLL7+MpUuX9tj21VdfRVFRUffrzz77DJ999hkA4Mc//nG3gTJ79mzs2bMHzz77LP75z3+ipqYGAwYMwJ/+9Cc88cQTGn7y/tEJgiA47WwakZubiwceeABvvvmm4uQfmxQUAOvWAYMH2962o4PCPRMmAHPncikjwyghJwfYtIkMA5mVCg7h3DkykK6+mnWOeqGtrQ0FBQUYMGBAd+mrN7F8+XLs2LEDZ8+edfVQvAItfy98NdpDQABV8xw9SjopFourR8QwnoHRSN6T0FDXGicAJeaeO0cJ8IzPceLECVV5GozjYQPFXkJCyE28fz+VSXqeQ4phnIvFAhw4QHol7pCcGhJC/x49SmEnxmcQBAGnT59mA8VNYQNFCyIiqJpn925yWzMM0zf5+dQAMC3NfUIqqakk7ibK6DM+QUFBAZqamthAcVM4aUIrYmNJz2H7dkqYzc529YgYxv1obiY5e39/96p+CwykMR09CmRlqReLYzyK7OxseGAapnPo7CSPYi8y/M7CTZYvXkJSEoV4tm4FZDZ4YhifQRCo8WZpKXks3I2UFMpDOXfO1SNhGNfT0kJKzC6EDRStSUsDGhtJI6WmxtWjYRj34cIFkptPSaHGfu6Gvz8l7R49SgqzDOOrdHZS804XwwaK1uh0pIhZWUlGSkODq0fEMK6nrY1CO4Lg3r1vkpKo+V1enqtHwjCuo62NUhZcDBsojkCvpxyUwkIScnOxm4xhXM6xY3Q9dMl2uy1+fiSBf/QoubgZxtcwm93Gg8gGiqMwGMhIyc0Fdu50C2uUYVxCaSlw+DDJyXuCmGFiIlBWBpw54+qRuBWcTOojtLdTiEfltarl74QNFEdiLeS2Zw8LuTG+R0cHhXba2jynsabBQGM9epTyyXwcQ1e+kIkXWd6PxUIefzvK/8VOx34aLEbYQLmU9etJ7l4rgoPJrX3wID14FcL4EqdOUTuIjAxXj0QZ8fFAdTVw+rSrR+Jy/P39ERgYCKPRyF4Ub6ejg7z9dpTZNzQ0wGAwdBu29uAB/lYn0dEB/PKXwD//SUl8kycD0dHaHDssjCa8H34gg6Wf9t0M4zVUVZFRHhPj/E7F9qLX0zV74gT16dFqLvBQ4uLicPHiRZSUlCAyMhL+/v7Qcfdn70IQqKijs5N+/6LHTGY+iiAIaG5uRkNDA5KTkzX5fbCBIqLXSyqwDQ3Aq68Czz2nXTlkdDT9h+/cSUbKoEHaHJdh3JHOTmr/0NDguk7F9hIbS3koJ08Cs2a5ejQuJaKr8qq6uhoXL1508WgYh9DZSYnhBgNVo5rN9FxsBSEDnU6HqKio7q7I9sIGioifH/Df/6J14EgEN9cAJ07g1DOrcWzSMpu7+vsDk0ZbMCDDhvszIQEoKaHKnqAgbu/OeC+5ufTwtNCONTodlR2fPg0MG0YeFR8mIiICERERMJlMMHPPIu9j1y4qr8/Kotfl5ZQwPn++7EP4+/trEtoRYQPFmsRE7Fz4NBZu+DX0ghkjj3+Ki5HDcSFtWv/7tQIHT+gxIEPGRZuWRv0+duwAbrrJpTLCDOMQ6uooMTYsjAxxpezfT56LQYOAUaNcq5sSHU2aRidPAvPmuW4cboS/vz/8uRWAd1FVRcZJRAR5UgAK7XR2qruGNYINlEtoGTQWRyYuw8SDbwMA5u77K75OfB1NEcm9bt/aBgiCTlkVcUYGGSnFxRzqYbwLsVNxTQ0wdKjy/c+cAV54oed7AwZQ3tbo0cDIkb328Mm/oMOhE3rHVPMLw4GTTcAn38E/NACTbhmMAVN7nw8YxiM5exZoanI7rz4bKJdw/cNZQPJwIHAmsHs3AjqasfTQn4BXXunV27F6vQEtSnXY/PzokZsLDBxIrmSG8QbOnaPKnYwM5b9rQQDeeefy9wsK6LFhgySCOHo0MGYMMHw4EBKCQyf0MDY46jrSAdADHSbAaMLBT/PYQGG8h4YGyr90wxAmGyi9odMB//M/pHx58SJNjv/6F/Doo9oZEwkJ1JisutotfxgMo5jGRgrPBAUpSqzrZvduSRwtNRWYMoWqaM6fl8rzLRYygs6dA9atI4Nl8GCMCByLCzFjUJEwHAFhDnBJCwJa23QQoIOprVP74zOMqzh/HqitVefxdDBsoPRFSAjw5JPAr39NsbgtW2i1tmiRNscPCyPjJz+fDRTG8xE7FZeVqavaMZmA996TXt93H5X6A+R6PnmSjJUTJ2jhIGKxALm5GIlcjMQnMOv9YBg2hLwro0fTpKtRifPqNQJaTP4AS4Ew3kJbG3k8o6LsEmdzFGyg9EdGBvDww8Bf/0qv//1vci9rlTcSFUUrxrFjXZqIxDB2U1gIHD9Ong81E92XXwIVFfR8zBhg0iTpb2FhwLRp9AAAo7GnwVJc3L2pwdJJVTenTwMffUTGybBhUg7L4MHqRagMBsAEKr9kGG+gsJCqdQYOdPVIeoUNFFvMmUNGxFdf0Srvz38G/v53aihmL3Fx5F67cMFztSIYprWVqnZ0OnXXRUMD8Mkn9FynI+9Jf6HUyEhg5kx6AEBtLXa/ewqxJSeQWnUc4Q2l0rYdHWQ4HT9OrwMDgREjyFgZP17ZxCyOyWSSNCIYxlMxm8nQDw522x5Z7ufTcUfuu08yICoryUDRoq+OwUCruTNnWAKf8VwOHyYjW22n4o8/Bpqb6fn8+eSlVEJMDIoGzsWuKY/ii5vfBN5+m1ShFyygXC9r2tuBI0eA99+nbT7/XPl4OzspNMswnkxxMelyJSa6eiR9wgaKHPz9gRUrJD2GgweBTz/V5tgJCfRDqazU5ngM40xKSoBjx0jQTI1H4eJFYONGeh4YCPz4x/aPKT6eNEseewx46y1g5UpKep879/KGhWvWkNGiBJ2OGgly8zzGUxEESTndjbW42ECRS3w8JcyKbt7Vq2klZi+hoeQi5xUZ42m0t1Nop6NDfa+a996TcjpuuIHk5bUmKQm48krgV78C3n0XeOMNKcfFaAS+/17Z8QwGqsA7d077sTKMM6iooHuOG3tPAM5BUca4ccBddwEffkgW6KuvIuTq/4cWQ4LNXfslJobCPOPGUTyQYTwBsQTYRtJ4XyJq8eUnceXevQCA1uBofOF/MzrXq8vraJXXz4wWGKmpdB0fPEjvrV9P1XlKPEChoeRFGTCAE9wZzyM3lxbGvYgeuhPsQVHKzTdLq6/GRlyx9SXozXa6emNiSHmzqMj+8TGMM6iooLLi+HibVTGiiFpLq9WjRcC4vW91b3Ng9N1o6AzpuY2ChyCQZ1N2gc7AgVQtBFBp9P79yj5/UhKFt/LylO3HMK6mvp6UYy/Nz3JD2EBRil5PruKu/9y4qlxMPfKWjZ1sYDBQHPDMGW2SbxnGkXR2UminqYkq0Wwgek50OgEhwfQYUbYN8bV0c6+LHoCLIxZ0/03tIzJCwKTRCq6fG26Qnq9bp+QboKqHiAgK87a0KNuXYVzJ+fNkpERFuXokNuEQjxrCwkjE7YknAJMJI/O+QH3KMAB2tGQXOx1XVADJLKPNuDGnT9MKTOx6KpPgIODO682Uu/KzVd3vR/9iGe4YDwBO1heZMAHIzCTP5Zkz9LlGjJC/f2IieVDOnKFjMYy709pKpcVRUR7RYoU9KGoZOBD46U+7X07d/Q8qtVRLSAip+nGyLOPOtLRQWXFkpPrs/w0bqMUDAEycSHokrkCns8+LYjBQcvDRoyTzzzDuTn4+dS72EPVyNlDsYdEinB98JQDAr7MdeOkl+9y9sbGUvCRqQjCMu1FSYl//qPp6Ku0FKFx6772aDU0Vs2ZJlUP799PnU0J8PH0fp09rPzaG0RKTiWTtQ0M9RmSQDRQ7OTj9Z6iJ6hKWungR+Mc/1IuuRUdT0yZ7PDEM40jy8igTVe0Et3o1uZkBqpzJyNBubGrw9weWLKHngqBcuE2vp/Ds8eNAXZ3242MYrSgupnuUnOTYtja3yK1iA8VOzH6B+O6K36EjIJTe2LOHXNhqMBiozDgnh5NlGfejtpYmORmJsb0RUXcB+OYbehEcDNxxh4aDs4PFi6Xy/u+/V25oxMSQZ+jkSc2HxjCaIAjk5dPp5DXP/P57yrP8+9/Jq+8i2EDRgMbwZPww+1fSG+++S640NcTHk5u5rEybwTGMVly4QLkWKvtQjT/wtmR433STenE3rQkNBa66ip6bTNR3Swk6HSXMnj5N8X2GcTdKS4GCAvkFGN9+S9fCtm3KlZY1hA0UjbiYMY00UgCahP/yF3Uu3+Bg+mGcP6/tABnGHsxmWkmFh6vK/k8pP4LUki5htLg44LrrNB6gnSxZIoWtNm0iF7cSoqPJeDtxQvuxMYy95ObSfSUkxPa2589L95/BgyW9IBfABoqW3HWX9J9ZWwu8+qq61uyxsRTrb2rSdnwMo5ayMmrLriK8o7OYe2oF/eQn7tf/Iy4OmD2bnjc2At99p/wYyckUnmXvJ+NO1NbS/URuYvu330rPFy50zJhkwjooWmIwUL+eX/yCfhQnTpAs/j33KDtOdDTpTBQVASNHOmSoDKOIggJagakwLAac24LY+gJ6MWgQMGeOxoPTiOuvB7Zupeeffw5cfbWyZOCICDLijh8npVkP0JlgfIC8POQXAYdqY232tzR0tuOG77YjAECnIQDrGufB/3e7cf2fZjplqJfCHhStiYqizsfixLZ2LdDVb0Q2ej3FxU+fVueBYRgtaW2lFdilnYBl7jvm0AfS6/vuo9+3OzJggKTJUlEB/PCD8mOkppI7XWm5MsM4guZm4NQpHKpMubzdRC+PhLwfENBBMhf5GbNhNIehxcg5KN7F8OE99R1ee42SlJQQH0/7sLuYcTXFxeQRVGOgrFuHkNZaOkzGdGDUKI0HpzE33ig9/+wz5ZIBoaG0qDh2jCvxGNeTnw/U1sIk0ILZut1Eb4/hhZu7dy0a2tV+ItJ14VgO8fSGINDDHhftkiUkgb1rF9WT//nPlDgr10UeFEQT3blzQFqa+nEwjL2o1T6pqelWZ7XoDDg6+V6kO2B4mjJmDHlSCgro2jt1SrlRlZpK+xYV0bEYxhV0dFDpu1XH4u52E71RVga8c5yep6biyiURQFonsNQ14R2APSiXEx1ND3s9Fzod8MgjknFRWAj885/KVmSxsTTRNTTYNxaGUYs92icffthdonh68LVojEzVeHAOQKe73IuilOBgOs7Ro9RYkWFcQVEReeHldi22TgxfuNAtcqjYQLmUqChg2jSK3dmrpBcSAvz2t+QNASgBb/Pm/ve5dCx1dfRDYxhXoFb7JD+fxJ4AdASE4sioOx0wOAcxc6ZU8XDwoDpl59RU8sIUFGg7NoaRg8VC3j9/f3rYwmwGtmyh5wYDMH++Y8cnEzZQemPYMHLrFhfbH0fOyCBPisjKleQyl4NeT+65nBxeiTHOR9Q+CQtTtpoSBBIr7PIWnhx7O9oDIxw0SAfg5wcsXSq9VtpEEKBQbkAAeVFslU4wjNZcvEgL26QkedsfPkzeUgCYPNltRBQ5B6U39Hpg6lQK85SWysoBaW0DVq/vK0Y/DxNHnMXQ0xuAzk40PfMyvl76OjqCZEzaQgZgNsN/93ZMunMEBkyVqQTIMPYiap+kKgzNHDxISaIAkJSEsyOWAB0Kz11SQiu5yEh54lJac+WVwEcfkSd1+3bSboHCBokpKeRByc8Hhg51yDAZpldycmiBIbZwsIW19smVVzpmTCpgD0pfREYC06dTDL0fwTTReyYI/Zdv7R51PyrihgMAwpoqMXXrX9HSAptlXy1terSY/GGs6sDBT2V6XhhGC9Ron5jNwKpV0uu774bFIMPFbE19Pf0bFkadgnNzaSx1dc4ruw8JkeTvOzuBL75QfgzRvS7XY8owWlBVRUqwiYnytq+ro07eAFXqTZjguLEphA2U/hg0CBg7llZzfUyMk0ZbEBnRf+lWSLCAoDA/7FnwW7QFRQIA0ssOIst43OZ+IcECdCBXuamFXcWMk2htpQRtpaXFmzdTaBSgUOlMFRUAFRVUqn/bbcCtt5KhMHAgVSXk55OIYXm5cjl6pSxZQuEeAPj6a/iZVOSkxcbS/CG6zxnG0Zw9S4vqCJlh1e+/l1IZFixQ36ncAXCIpz/0emDSJArzXLzYa2v4ARkCBmTIXdVFAyn3UYdIAAvNW4HrbSvFrl5vQEsrOA+FcR7iTXXgQPn7tLQA//2v9Pq++5RXAhiNpCUyYgRNlPHx9Bg1isItFRUUeiosJCOlvZ2S0CMjKZFXy8k1JgaYO5eqG5qbMTB3M44MvNHmbj0ID6f5o6REnY4MwyihoYHCO3Jl7QXh8uodN4I9KLYID6dQj9msTbnv9OlSVc+ePcoS6Do7OeGOcQ55eeQ9UHLD//RTMjAAYNYs8qAopbyc9uutNDI0FMjOJq/M7beTd2XxYiAzk7wp+fk07ooK7TqwXn9999Nhpz6HzqJwkaDT0bjPnmXhNsbxnD9PCwu5Sa6nT9PiGwBGj5bf7dhJsIEihwEDKNRTWmp/DDwoiBJwAXLDHTkif1+zWfoxMYyjqK2l0lol2ieVlcCGDfTcz68rqVQhDQ2S98QWBgPF2EePplDM7bdTh+TJkylnprSUhBIvXKDjqjUOMjLIiwogtLkK2Rd2Kj9GbCwZXpWV6sbAMHJob6fS4qgo+e0k3DQ5VoQNFDnodDTxpaer00S4FLFrKkAVAkrghDvG0ajRPvngA8m7t2SJ/PJGa8rLgSFD5Cf3WRMeTuGoWbOAO+4AbrkFWLSIKpCamiifJi+PEgg7FJYUWQm3jc5Zq1z+PiSEPDxazB0M0xcFBeQ9lBveaW4mpXOAFgbTpztubCpRnIPS0tKCjz76CKdPn0ZOTg4aGxvx5JNP4uqrr7a576FDh/Dtt9/i+PHjqKqqQkxMDCZMmID7778fcWqUKp1JSAj9B375JVUZREWpP9b48TShNjYC+/ZRQqKccjCDntzYdXVuU6fOeBlqtE/y8iRDOzycjAOlNDaSd1GL7t1+fuSqTk4mz2dDA03cpaWUu1JSQsZUSAgZUraErEaOBAYPBvLyEFefj8TSowDGKBtTZCSFecaPlyecxTBKMJtJ1j4oSErstsXOnZKxPmeOqk7ljkaxB8VoNGLVqlUoKirCoEGDFO37r3/9C0eOHMGsWbPw2GOPYcGCBdi6dSuWL1+OmpoapUNxPpmZNMGUl9uXsOrnJ1U3dHRIJV620Olpsi0sVH9uhukPUftE7oJBEIC335Ze33FHj94fsrHHe2KLiAgyMObMAe68kwyo+fMpaVVO12GdDrjhhu6XI06qkL+PiaGSaW7+yTiC4mL6LSu5fr75Rnq+aJH2Y9IAxR6U2NhYrFu3DrGxsThz5gwefPBB2fs+/PDDGDNmDPRW8bEpU6bg0UcfxWeffYYHHnhA6XCcz4QJtBIrKlJW4XApc+YAX39Nz7dvp9dyiIigxKZRo3glxmhPUREZ32Iity327qXfI0DhFFE7RAmNjbR6GzXK8f0//P1JQC0lhQypL76gz2tr1Tl9OprCEhHWVIHki4fJna6kEWBAAK1yCwt7rQZkGNUIAlXuAPK9IGIzTIDuY9nZjhmbnSj2oAQEBCA2NlbVycaNG9fDOBHfi4iIQJGn9JsJCqJQT2CgfdoGw4dLq9QjR+RXCMXHk7ta1JpgGK1obaUwhNzwocnUU5Rt2TL57mVrysvJw6Emb8UeMjLoGpTjvTUYcGaU5EXB+vXKzxcTQzeF1lbl+zJMX1RUUOhfiffEzZNjRVyeJNvS0oLW1lZERka6eijySU0FJk6krHy1Zb96PSX0AbSy2r1b3n7+/rQvJ8syWiNqn8jV69i0SQpZjB4NTJmi/JxNTeRdGDnS+d1Tg4KopFlUrrXB+cFXoi2gK3F4xw5KuFVCdDTlj3ElHqMlublk9MoNrXZ0ANu20fOAgJ5FG26Gyw2UTz/9FCaTCfP76Z5YXV2N3Nzc7odbeFvGjSOlWXvGYh3W2bFD/n7x8eSi84S8HcZzOHeOynflaJ80NQEff0zPdTp1omwAGTiDB1PIxRUMGEDJsv20sxAx+wfh9OAfdb0wK5e/F7/b/HwVA2WYXqivJ6+n3ModgMKy4u99xgx1OWNOwqVKskePHsWqVaswb948TJw4sc/tNmzYgFXWrmR3ICCAQj2VlbSSUvIDERkwgBoRlpRQ/brc40RE0CqssJA0FhjGXmprydiW+zv++GPKHQFIbVVNPlZzM3kEXeE9EYmPp1DP+fOyJuqcwT/C2DNrYDCbSNb/ttuoRFMusbF03RqNVNnDMPZw/jwZKUqaUVqHd9w0OVbEZR6UoqIiPP3008jOzsaKFSv63Xbp0qV48803ux9PP/20k0Zpg6QkcmvX1qpTrtTperrXdioQgYqKosQopZoODNMbxcWUByVH+6SsDPjqK3oeEKBOlE08zqBByrsla4lOR5N7Z6esyrzW4GjkD1rQ9aKVjBQlREaScSKneohh+qO1lUqLo6JkG/ihjeVSp/HkZG3K+h2ISzwoFRUVePzxxxEaGoqXX34ZITbaqcfFxbmvTsqoUTTZnD1LrmqlK8HZs4HVq+n5jh09RKH6JS6OVmLFxfZVEzE+Tf7eMhxakwdTbSNgGQ7k2g7vXPH9+8joupmfHH4jju/qPzmvtbeefi0tFO5wRuWOLTIyyJNSXS0rUffMqBsx+Oxmqp744gsSppNbUafTkebR2bOkmOvqz854Lvn55HVXIPcx8OwlybFu/vtzugfFaDTi8ccfh8lkwquvvuq+hodc/P2BadNoZaRGyjolhfQfAPrBya3OEZNlc3OVK1syTBeH1uTBWNqMljY9Wjr80NKq6/cRfuE0MgopobslKBqHBt9scx9BoEmwxz28tJQMa1d6T0QCAxUlyzZGpkrtKmpqlOWPARTmKSsjg4hh1NDZSWkBISGy+2XpLGZk53UZKHo9aQG5OQ4zUKqrq1FUVIROK7dpa2srnnjiCVRXV+OVV15Benq6o07vXOLjKdRjNKprAS9W8wDKJruEBMob4ImOUYmpja5PHQSEBNt4BFkw/dhb3fuemPhj+EcE294vWEBkhIBJo7v64Yjek9Gj5fcMcTQDBlAOiphXYwurJoJYv17ZIiEsjPJvWCqAUcuFC5SHqKC0OLX8MEJaugorJk3yiO7aqkI8a9euRVNTU7f66+7du1HZ5T246aabEBYWhpUrV+Lrr7/Gxx9/jOSuDonPP/88cnJycM0116CoqKhHNU5wcDBmWd+oPY2RI+kHc+oUeUSUuM5mzQLeeYcmue3bSe1Szv7h4XTOggJ1SboM03VjDQ604M7rbdxkT54EqnLpeWYmpv56PqYaVDTPFHNP0tKU7+so4uIo1JOXJy8PZ8QI8rqcOUOLhMOHSXpALhERFOYZO1ZZx2iGASg5VqejHDCZDD1vlS/lxton1qgyUD7++GOUl5d3v96xYwd2dK38Fy1ahLA+suHPdSnXbdy4ERs3buzxt6SkJM82UAwGcvuWldFDSdlkTAwwZgwlL5WXU7nn4MHy9o2KoklyzBj56p8MIyJ259brAdgwNvbskZ7fdJO6G2trK02s7uQ9AaRk2dxc0jaSk1Nyww3ASy/R83XrlBkosbEU5iovd48wF+M5NDZS/qECD0hgaz0yL+6jF9HR3R263R1VBsonn3xic5unnnoKTz31lOL9PJqYGCo93rSJ3Ng2kn97MGuWlF29fbt8AyUujjwoxcXy92EYkU6ZHhCLRTJQ/PzUibIBUu6JO4Z309MpbFpTI0/VdsoUWoiUlgLHj9OqVm7CemAgVeAVFbGBwiijpITSCRTM9wPObYFe6LrW58+Xt7hoaXF5U1o3WsJ4CUOHUmXChQs0qctlxgxJJnznTmllaws/P/qxcbIso5TaWvlNL8+elVo7jB+vzPgWEfOz3M17IqIwWRYGA3DdddLrzxQ2EYyOppCSGokCxjcRBDKEAwLkX0OCgIFnrRoDygnvmEx0fBf3jXLDWcLD0esp1JOQQCsruYSFSW63ujqK98tFTJZVKr3N+DbFxfKNWuvwzowZ6s538SI1JXPnZnlZWXQtyu2NNX++JLi2ezf1RZFLdDQZfUrmCca3qauj61ZJ9WtODiKNpLtTkTRaXvpBXR2FIbvyR10FGyiOIDKSQj3t7bIktLuxFm1TUs0TFkbuuIIC+fswvo3ZTF43OcnYgiAZKAaDuvCOu3tPROLiyEiRa+wHBgLXXkvPLRZgwwb55/L3p++Wr1tGLiUldE9RIk9vpRx7fohM5dj6egpXKkjCdQRuPFN4OIMGUYZ+cbH8cM3kySTiBNANQUkjwpgYSpblTqmMHMrL6SHHWMjPlzR+Ro+WV+VyKWVldON3Z++JyJAhZGzIvf6uuUaayL/9VtmiJDaWvl8l+zC+icVCodbQUPlVoi0twK5dAIB2/1AUZ8nwfnZ00ELEDa5VNlAchV5PBkdqqvzupYGBJPoGkE7CoUPyzxcbS3ooFy4oHyvjexQW0kQkZ6KzN7zT3k5G+pgxnlFSKybLytUXiogAFi6k521twCUViv0SFcXS94w8qqpoUaGk/9rOnd05Tucz58LsJ6PSs7aWPIlyEsUdDBsojiQsjEI9ZrP8mLbaMI/BQC5jTpZlbNHaSisxOWWK1uEdnU5SUFVCaSmQmUkPTyAgABg+XH6yLEDJsqI36ssv5Xtf9Hq6brskGBimT4qLyQBWkqBuFd7JHSgzvCNWCMlt3+BA2EBxNAMGAOPG0SQtJ9QzdiytyABg/35y0cklIYF+xEoS9Rjfo6SEVklyDJTiYskDOGKE8rJD0XviaYJkWVl0HcpdWCQnS97P+npg61b554qNlf5PGKY3OjvliwiKFBXRQgRAbUw2aqJl9OxpbyfDxE1EFNlAcTQ6HVXnpKfLC7/4+QFXXEHPOzqAffvknys0lFbH+fnqxsr4BufOkbEgx2CwN7xTVuZZ3hOR2FhaXCipjLNu9Ll+vXyZgfBwEt/iMA/TF+XltPBUEt6x8p7kD1kkL5xbU0MLXQUS+o6EDRRnEBJCoR6DQZ7bWG2YB5CSZZV4Xhjfoa6ODGW5rRGsDZTp05Wdq6ODQh2jR0saP57E4MEU4pIbrhkyRGpfX1ICHDwobz+djsLBubnKtJMY36GoiDyRgYHytjeZJC+evz8KBs6Vt19jI/3u3eR6ZQPFWWRmksBVebltcaxhw8iKBYAjRxDYapR/npgY6SbEMJdSXExhCzmu4tJSSqYFSIBQaefxsjKqBBgwQPEw3QIxWVaJF+WGG6Tn69bJ3y8mhlbIajqiM95Nezt5PaOi5O+zb5/U+HLGDJgCZVzvra1kALmRsrF7mEm+woQJNOkXFfUvia3Xk/T92rWAxYKMwp2oy1oi7xwGA/3IcnJoRefOmhOMczGbybsWFub46p2ODnqMGeM2qzHF+PtTsux33/UQrGptA1av7yM8JkzFtZFpJIx16hQ2v3kONfFDZZwsHOgMBo4fg3/EWUy6ZTAGTHWtSBbjJpSWUuhFiaH/jZVy7MKFgBypndpaMsjFxbEbwHcvZxIURG7ywED6wfWHVZgn8/x2ZeeJjycXs1VDR4bp1j6R6wmxJ7xTXk4eCE/1nohkZZHwYkNDd1GDIOjQ0trHo82AY0Nv6t598NHP+t720ofJHy1NFhhLm3Hw0zzXfF7G/RCF/OQa+hUVUl+3pCQKscpBDO+4UTI7GyjOJjWVup5WVvYfb7YStUqoPI2wZgWVOSEh5BY8f96+sTLehah9IqfrdWWlVPqana1ME8Fkot/fmDFuUapoFzEx3cmyk0ZbEBkhICS4/0fp8HloDY4CAGSV7EGCqdTmPvSwQAeSCDC1yeyRxHg3zc1koCjoXIwtWySpiYUL5XnRxea2bhTeATjE4xqGDycLt6Gh77iiTkdelA8/BABkF+3Aubib5Z8jNpbK0iZOVNfYjfEu2tro9yB3ovvhB+m50vBOWRmVKWZnK9vPXRk8GDh5EgOSOzAgQ47BpQfMPwI+/BB6wYKlbeuBux+UdarVawS0mDzcqGO04+JFyikcJKNEGKAw7nff0XO9HliwQN5+YnhHbvK8k2APiisID6eGTXV1/W9nFeYZWLRN2Tmio+n4clVsGe+muFi+9gmgPv/EZCJjyBu8JyJpaeRBUpIsay1/v3u3/OoccbXLYosMQF5wf3/5YZdjxyQF5AkT5JclNza6Zc6ie43Gl8jKIjd4fxNRUhJVTwCIrS9AZF2R/OOLOhcc5mEACtfo9fImutpaSqYFKI9EiWhTeTm5ib3FewJIybINDfINh7AwEmgEaKHQJZhlE/EGIbd/F+O91NdTNaYS7RPr5NhFMpVjxeaDcrocOxk2UFxFcjL9KJqb+99uzpzup5n5CpNl4+KoYkiJZDfjfSjVPtm7V7oRK/WetLSQaqyLu6Bqjqgsa1RQ8m/dFkCJ4CIAdLKB4vNcvEhGsagsbgujkdTHAUodmDRJ3n61tXQ/Uioj4ATYQHEV0dEU87NlPMycCYuO/puyzm9T5voVpbpZodK3UaJ9AqgP71RUeJ/3RCQ6mj6XkjDPlCmSR0SxgdKpzBhivAtBIK9bSIj8zsVbt0oaW/Pmyav6EQRaJA8aJP88ToQNFFeh09GEZ8uDEh2NiuSxAICwpgpSm1RyjpAQ+qGzQqVvYjbTb0au9onRCJw8Sc+TkshzIIfOTvotjx0rX+3S0xg8mL7Djg5520dGkugiQIsEJQsFQeCFhS9TXU3J5nJzxgShh7Q9rrxS3n5NTbRwcbPqHRE2UFxJcjK5wtva+t2scKAU5sHOncrOERtLP3S5reMZ76K8nP7/5bpv9+2TjNmZM+WvqioqKIbdnwChp5OaqjxZVmwgCCjzouh0tLDgZFnfpKSEDP6wMHnb5+aSpxSgpp5y88Zqa+m6VdoE1EmwgeJK4uPJgLBRzVOSOQOd+q6KiJ07lSXQiQ0ExR8v41so0T4B1IV3OjtpJebN3hNASpZtbJRvOFjnoezdK/9cej0vLHwVs5mMUyWdi9V4TwSBFsduGt4B2EBxLQYDrThttHQ3BYSiOGUyvaivB44fV3ae8HD6wdvqAcR4F21tVL0j103c1CT9tuLj5WsvVFaSZ8GbvSciYrKs3MTz5GSpk3NuLq1Y5aDT0QqaFxa+R0WFss7FLS2SZz04mDyfcmhsdOvwDsAGiutJSaFkJhsdU89nzZVeKO1wHBtLNxGWvvctSkqopYJcA+XAAcmInT5d3qrKbCYDe9w4+V4aTyYqigwxJZ4Nay+KWGUhh4gIMmq45Ni3KC5W5vXctUtKE5gzR/5+NTVknChpQuhk2EBxNYmJ9AOxsSIrTp6MDv8uRdgffpCfqAeQ272zk0qOGd9BifYJoC68U1FBXgK53hZvYPBg+l7b2+VtrzYPJTaW8l14YeE7mEyk+BwZKX8fUTkWkB/esVjoHuLm1y0bKK4mMJB6fdgwUMx+gSjJ7GrY1tICHDyo7DzR0XTDspGQy3gJdXVkkMrUPvEztQJHjtCL6Gip+qQ/RO/JmDG+4T0RUZosO3CglKR87Bhdv3IIDKSbCC8sfIfSUvLOyQ3vXLggiSpmZso3OER9FTcUZ7OGDRR3IC2NEpZsuHILB86VXigN80RHk0uvtFT5+BjPQ6H2SUrxQckrN22aPMlrMfdk8GA7BuqB+PlRpYTcZFmdTgrzdHYChw/LP1d0NK2o5XprGM+mqIjuA3LbRFgnxy5aJD/ZtaaGmtHKFYFzEWyguANJSd0t3fujInms5Po7cED+SgygSVWnk1p3M96LUu0TAOlFu6UXcsI7ZjNppoweTYl5vkZmpqzQbDfWYR4l1TwxMXQz4Z5a3k9rq7KkdpOJxNkAmt+tVMf7xWIhQ9kDBBXZQHEHQkPJi2JjshP0BuCKK+iFydSz46wcYmPJQGlsVDdOxjNQqH1i6GxHSvEBehEeDowaZXunqipSQh4yxI6BejCRkeROl5ssO3IkXecAhWdtJMV3I6qBFhYqHiLjYVy8SPcAuZok+/dLi9rp05VJ4kdFuX14B2ADxX3IzLTdPBDoaSUrDfNERtKPk1dj3o1C7ZO08kPw7+zKTZo2zXZSrdlMOS5jxpBSsa8yaJD8ZFk/P2Byl1RAS4uk1iuH2FggP5/KwBnvpaBAWVK7Gu0TgErdMzPli8C5EBli/YxTSEqiH4woPdwXQ4fSyrWykhLu6urkW9x6PcU2z52j47ipOA9jB0q1TwBkFSsM71RVUfWZr3pPRFJS6FFVJU+5c9o0YNs2er53LzB+vLzzREXR/2lJibzkZcajyN9bhkOf5MJU1wZgEHDCtt8gpKkS1x0+Ah2AprBEbCgYDxT2vV+rdW2E2UyFGR4Ae1DchagoMlJsqMpCp5O8KBYLsHt3/9tfSlwcJVDaOg/jmYjaJzKNVr3ZhIyLXdocoaHkFekPQaDfzujRUsjCV/HzI2XZpiZ5va7Gj5eSH/fvl98fy3phwXgdh9bkwVjeipZ2P7S0G9DSqrP5SM/ZAh3I235mwJVoaet/P0Ggxai/3kxzgweEdwA2UNwHsXmgnMTX2bOl50rDPGFhpFDJjci8E1H7RE4nUwCJpccQaOpqWDl5su3qgaYminV7yArM4YjJsnI6DwcHUzsAgIzI8+flnyc2lq5ZuUq0jMdgaiVxRB0EhATLeASZMbTgGwCAAB1Khi+UtV9khIBJieWkhuwhoVkO8bgTSUk0ibW29l8ZkZlJj6IiqoEvL6d95aDT0co3N5eSIeWUkzKegah9IrcxIFRU7xiNFGJ0Y/VJpxIRQWXWhw7J81pNmyZpGO3dK79EOzycJAJKShSF7xgPQCBPWnCQgDuvl+FVO3IEaKoEAOgmTsD1P44BIENtuLMTKGiU36HcDeC7kzshs3kggJ7Jsmo6HJeXUx4L4z2I2idys/nNZqQVUcmryS9IXk5EczNNcJy/JDFwICU2ykmWnTxZ+u6UlBvrdOT9zM2VHxpiPANR/0ruNaVGORaQ8hU9JLwDsIHiXuj1NNnJKQOeNUt6rjTMExxMkykrVHoPKrRPcPIkgtqpTLE0bZLtTsQmE4WO5HrrfIWUFFKXlaMsa63SW1ysrKIuJoZaC/DCwnuwWACTgiauJpPkgQsPlyrD5FBfT2kEHqT6zAaKuyE2D7TVaycxUZroioqU6yRERpJCpVw9Bsa9Uah9AqCHjk5xlowOqPX1FNqRKZ/vMxgMypJl1fbmCQmhKq0LF5SPkXFPKiuVecSOH6cUAACYNEm+4qw4z4udtT0ENlDcjYQEWmXJUai0DvNs367sPLGxJDLF0vfegULtE1gs3SGGTr0/StMn2d6noYHksQMC1I/TW8nMlH/dWnc3VhLmAWhhcfYsLyy8hZISee0SRKwNWuvfkS3q6mjOT06Wv48bwAaKuxEQQBUScqoCZs6Uklx37lT2Q/f3p7AAK1R6Piq0T3DmTHdFyMXkiej0t5HVL/aKkqP34YuEh1PCa02N7W1TUoD0dHqem6us5D8mhhYWZWXqxsm4D52dZGzKDckKApWnAzR/y9XRAchwHjTIdhjXzWADxR0RbwI2mgciKkoqW6yslLpayiUmhkodlfT0YdyP4mK6MSoxUPbs6X5akC4jvNPURNVfCQkqBugjiMmycjqGi2EeQaC+WnIJCOCFhbcgFirIraQ8d04qMx87Vn4PrI4O+l2KRrEHwQaKOyI2D5TjRbEnzBMdTas3lr73bETtE7kS2YLQnX9i1vvhQqoMV7HRSLknYrNK5nKSkyVlWVuobR4IkCF67pyUi8B4JmLnYrkeFOvwzpQp8s9TW0u5aR4W3gHYQHFPQkIo1i/H9TttmpQTsHu3ba+LNQYDPfLz1Y2TcT11dZQ0qSRx9dy57ptoRfJYdATI6MnR3EyhRy4v7huDARgxgr4rW4mPAwdSTgBALSuUeDHFhQWLLXou7e10HSrRExLDO4AyA8VopPCO3IRaN4INFHclPZ1ilLbySkJCKJsboB/isWPKzhMbS5a8HG8N436I2if99W+6FKvwjqzqnY4OqixLTFQxQB9DTJa1tbjQ66UkR5OJxLfkwgsLz+fiRWVh2fJyKaw3ZIj8/drbyTDx0NwxNlDclaQkuunI0USxJ8wTGUk3OF6NeR5mM+UdKdE+EQTJQNHrUZIxrf/tAak9O5cX2yYsTH6yrD3VPLyw8GxEY0NmSwrV3hMxvOOh2kVsoLgrYvNAOWWLEydKjdv27pWnaCmi01Gy1dmzyqqAGNdTXk4PJdonhYVSBcjIkWgPlpFTYjSSeiyXF8tDdKfbSpYdNUq6bg8eJI+pXHhh4bk0NwMFBcqS2q3zT6bJWFSINDSQwSzXEHIz2EBxZ7Kz5SXCBQRIP9rWVklpUC4xMXTTqq5WPkbGdSjVPgF6iLPJ6r0jCJRP4UHy2C4nOZmUZW0pvvr7S+HZ5mbg5En55+CFhedSUkIhQLn5J01NwKlT9DwpSX41Tlsb3Rs8NLwDsIHi3ojNA+VMQPaEecQOx8XFyvZjXEdrK92clDaOs8o/kbUSa2qi3weXF8tHryeV59ZW28my1mEeJaqyAC8sPJX8fDJO5VbdHTwo/Y6mTpUfzq2tpbCsB+eOsYHizsTGkvtejhTy6NGSRX7wIN1YlBARQaJRSqqAGNdRUkITkBIDpaREkkkfNkyqIumP+nouL1aD3GTZCRMk9/u+fcq8Ibyw8Dzq6+kalHPtiahVj21ooIRauYaQG8IGijsjNg+UM2kZDFIDwc5OdUl3VVWU08C4P+fOSdUccrH2nsyUUb0DUPkrdy9Wjtxk2ZAQSWyxuhrRNeeUnYcXFp7FxYvKOo6bTMDhw/Q8PJx6PsmhpYW876mp6sbpJrCB4u4oEdeZPVt6rjTMExhI+Qzc4dj9qa2l/yelVTXWBsr06ba37+ggV7QHu4hdysCB9P3ZyiOzWhWnF6lYWFRW8sLCExAECsuGhMg3+E+c6NkcUO6CpLaWrlsPD82ygeLuJCTIl0IeMkQqJztxQpJFlkt0NHU4VlIFxDgfNdon5eWSbsagQfImLi4vtg8xWdZWjohVXkHahR/63/ZSAgNplc2aKO6P2ENJbfWOkvBOUxNd53LvHW6KZ4/eF/D3l18iptNJXhSLBdi1S9m5oqPJqOEOx+6LqH0SHq4s7KK0egcgAyUzk8uL1aLXk/quLZXY6Ghg6FAAQFRdESIaFV5/sbG0sGhuVjlQxikUF9P/UZgM5WZAfXPA5mby0nhw9Y4IGyiegJI8A+swz44dys7j708XRUGBsv0Y5yFqn9gT3pFjoFgsZAxxebF9JCTQAsNk6n87q9VxZomK3jxi2I9xT8xmMiKVeD3Pn5dymJQ0B6ypIe+dEn0kN4UNFE/A0PXfJKeaJyODVm0AxTuVtmWPjSV3sdIqIMY5FBTQzU5J2/TqakqkBMgjIsfoaGqiydTDY9guR6yAsqX4amWgZFxUGObR6+nmdeaMvDmCcT4VFfRQW72jRD22pYXCO16Q2M4Giicg/tDkTj7WXhSl1TxRUTSZskKl+9HaSqswpdon1r8BJeGdhAQuL7aXwEBytdsyUNLSul3yidU5CGytV3ae+Hi6ZpUuSBjnUFysXFTR2kCZPFnePqJukYdX74h4pv6tj9Jq8sPq9ba3C2+aiSV4DwBQuXE/vtPdLOv4/v7ApNE6DPD3pzLWYcPsGC2jOaL2ycCByvZTGt4BaBWWmekVqzCXk5ZGTTwFof/vc+pUoKQEesGC1OL9ABbIP0dwMN0Az5/3mpuT12Ay0cJCibFfUdGzOaBcz0tNDSnNKl3EuCnsQfEA/IPIjhSgQ0ur7UdFQBrqIkgOOb7iNCx1Rln7GRt0OHhCTxeDeDNk3Ie8PMpnUJKTVF8PnD5Nz1NTKQRoCy4v1pb4eEpatFVubKXsm1akMMwDUM5BXh6HZ92N0lIKsyoJ76hpDigIJG/vJeEdgA0Uj2DSLYMRmRKKkGABIQGd9K+NR2kWTXY6CBhUtc/m9jodicGZTJC6KHOYx32orSUFSqWJb3v3SqHB6dPlTVxieTHnn2hDTAxV6thq/Dl4MFqCaeWbXHpEXh8ua8QqPE6WdS8KCylJ1t9f/j5qyosbG2nu9qLEdg7xeAADpiZjwNRkaia2aZO80MvwKcBvPgUATOv4AdOu799dvHq9AS3ifKjTUZfVs2ep46qH19J7BRcu0ASkdPJRox5rNJIEu5IJlekbvZ7UeK3/L/rY7mLmNAw+sxEGswk4ckR+SE48T0gIkJNDiqN83bqe1lYKuykJuTQ1SY0jk5LkeT0BCu9kZ5Oh6iXwL9iTSEoiw0GO3sHgwdJFcUTFaiw2lspZbXVkZRyP2UxVOEq1TxobSbAPIG9Idrbtfbi82DEkJtL/nQ1J+pIMqwaOSpsHAvT/XFrKWkbuwsWL5DlTYjQcOqS8OaDFQqFZpflpbg4bKJ5ETAzFs201IANo9STGLk1dqzEliDFzsbkc4zrKyshYVBre2b9fuiHOmCFvouPyYseQkCCFTvuhInkMOvxD6MWBA8p77AQF0fV+/rzKgTKaUlBAc7GSvDE15cWNjdTfx8sWFmygeBJi80C5ipH2tHIHKOs8L8+2yBTjWNRonwDqqnfE8mK5zcwYeYSFkQe0oaHfzSwGfxQnT6IXTU3AqVPKzyUqy9owhhgH09BA+SdKwjsmE3lQADJoR4yQt59YveNlsgBsoHgayckkPS6nX86YMZL6oJrVmNjhmLUVXIda7ZOWFslrFhNDpYpyzzdggNdUAbgVGRm2Ze8BFKVZNXJUs7AQE3I5Wda1XLxIBr8So+HkSeXNAS0W6mAvJ4TrYbCB4mnEx9MNR06Yx9+ffuSAutVYQAD9+MV6fMb5FBfT/7VSA+XAAZq0AKrekZMw2d5OZcwc3nEM8fHkBbOxuChOngSzvqt+Ye9eKh9VgnWyrNJFCaMNgkBhtoAAZcnKaqp3RCPIy8I7ABsonoefH1nKtpQpRewN80RF0YWmNMmWsR9BUKd9AqhrDtjQwN2LHYkoe28jzGMKCEVF8hh6UVWlrlMxJ8u6ltpaWlwoyRuzbg7o5weMGyf/XJmZyvr8eAhsoHgiqalklYsr5P6YOFHqhrxvn/LVmOituXhR+TgZ+1CrfdLeLsWxIyPlx7Hr66kclsuLHYO/P91IZCwuSjLtDPMEBtL8wMmyruHiRUl2XibRNedI0A2g5oAhIbZ3Mpvp/zkrS9043RzFBkpLSwveeecd/PrXv8a1116L2bNnY9OmTbL3b2xsxF/+8hcsWbIEixYtwmOPPYZcsZEZI4/ERHnCTwCVJY8eTc8rK5V3KjYYyBhSs4pj7EPUPlG6Mjp0SAojTJ0q3/tisXilm9itSE6mm4qNhcLFDCvPp9J+WiJxcdSywobHhtEYi4VkAcLCFOVypV1QEd4RS5i99LpVbKAYjUasWrUKRUVFGDRokKJ9LRYLVqxYge+++w433ngjHnroIdTV1eGxxx5DcXGx0qH4LkFBZDHLMVCAnj92NZNdTAwl3PFE5zw6O6k7bUSE8oRVNeJsgsDlxc4gPl6WllFrSKyU2FxYSGXmSomKIu8nJ8s6l8pK6qWjMG8s7YLV3Cy3OWBdHSW1h4YqOpenoNhAiY2Nxbp16/Dpp5/iZz/7maJ9t23bhpMnT+LJJ5/EvffeixtvvBH/+Mc/oNfr8e677yodim+TlkYrMTkdjrUoN+YOx86lvJwmOaXhHZOJEmQBWsGJ3jNbWCzcvdgZREdTdZycHDJ7r1u9nn4DnCzrXIqKqCeOnBBNF2FNFYiu7fJuDx4sr2+POP9nZqocqPuj2EAJCAhArJKmR1Zs374dMTExmD17dvd7UVFRmDdvHnbt2oWOjg5Vx/VJkpJkJdwBoB/74MH0vKCAbnxK0OvJa5OXpzyHhVFHfj5NQEq1T44elRKap0yR8o9sIQi0EmMci05HNxQ5Df2m2akqC5DHprSUc8icRXMzVUsq9J5kXrTynsgN79TVeXV4B3BykuzZs2cxePBg6C8puxo+fDja2to4zKOE8HBKlpVTbgzYvxqLjZW6cjKOpaWFcgfUtExXI84GADpweMdZJCWR0W/Lq5GWRtc4QB2p1YRYAwNplX3unPJ9GeXk51Nyu8JFfMZFFfkndXUk3ClqXXkhTjVQamtre/W+iO/V1NT0ul91dTVyc3O7H0UcUyWysigZUo5Xw97VWFgYrfo4zON4SkpoklPa9KuzU/q/DQ6WX6YIADo9lxc7C5nlxtDppJuVxSKF7pQSF0fVPHKlCRh1dHRQ76uwMEXaJ/7tTUiu7OqZlZgorzmgWMEpt5Ggh+LUbsbt7e0ICAi47H3xvfY+BIw2bNiAVatWOXJonklSEl0Mzc22y9nS08kVWFpKLsiGBuVy5uHh1OF4zBjluhyMPASBvuOAAOXf8YkTUuhg0iQ6hlz8/Li82FmEhFA1z/nzto3QadOAzz6j53v3Agv670reK1FRVFVSVETXLuMYxGRmhSW/KSUHoRe6vGlymwPW1ZGXxovDO4CTDZTAwMBe80zE9wL7iLcvXboUM62qEYqKivDCCy84ZpCeRHQ0ueUrKmwbKOJqbN06Wo0dPAjMn6/sfLGxUuM60fXMaIuVwFP+BR0OndDLboU0efdedGUaYaffFSheb9vAaW3remJgSSSnkp5OYRtbDBlCBkZ9PbUuaG9Xnpek00nJsiNGyM9LYuRjsdDCz99fsaGvurx44kTlvwUPw6mzUkxMTK9hHPG9vpJv4+LiMHTo0O5HphdnLStCp1PfPFBNuXFQELkxOVfIcVy40N1R+NAJPYwNOrS02n60NluQVkjqsZ2GQJyPmyxrP0Gg1Zp/iAJvC2M/oux9W1v/2+n10nXb0aG8K7n1+crKOFnWUZSUkIcqKUnZfiYTkksOAgDaA8LkiSpaLD6jWeRUA2Xw4MHIy8uD5ZLS2JycHAQFBSE9Pd2Zw/EOkpLIcLA10QHA0KFSGenhw/IaDl5KVBSFILjiSnustU8gNZHW6QSEBPf/yGg8jeD2egBAWdoEBIQH2twnJFhASEAnIsMtmHTbUBd9aB8lLo6uJTl5IVpU83CyrOMQBPJOWSw0Fyvh5EkEmKiBZGn6ZHlhXTGk7wM5Yw7z9VVXV6O5uRmpqanw63IpzpkzB9u2bcOOHTswd+5cAEB9fT22bt2KGTNm9JqfwtggPp4mu7o6imv3h8FAq7FvviED4+hR+S5FkZgYirVevMhlqVpTVkbhurS0Hm8HBwF3Xm+j4mPlzu6n6TdNx51zZepe5OYCCxcC42z8dhht8fOjcuODBykxsj/EruStrdSrxWxWlwMmJstOnEjGEaMNlZX0vSr1ngA9DM6SjGmQNaMajfR/6QOaRao8KGvXrsV7772HjRs3AgB2796N9957D++99x6aupL0Vq5ciZ/85Ceoqqrq3m/u3LkYOXIkXnrpJaxatQrr1q3DY489BovFgvvuu0+Dj+ODGAzUPFBuCaK95cZifJUrqbSnoECd9onFIjUH9PMj/RM5tLdTIq2tGyTjGJKTJXd9f/j7AxMm0PPGRlqtq0H02HB3cm3JzSVpAKUtKayaA5r1fihLmyBvv+ZmWhwqVZj2QFR5UD7++GOUW0kv79ixAzt27AAALFq0CGF9JGwaDAa88sor+Oc//4m1a9eivb0dw4YNw5NPPokMLy+XcijJyWSomEy2E7TGjJFCQmpXYzExtGKYPNlrJZadjj3aJ2fPAmJu17hx8hUsjUa6aSlVq2W0IT6ebmrNzbZvbtOmAbt30/O9e4FRo5SfT6ej8+TkACNHctWWFhiNZKCoCbfk53frSpUmjkWnfwgAG57Pzk6ar31Es0iVgfLJJ5/Y3Oapp57CU089ddn74eHhWLFiBVasWKHm1ExvWDcPtHWhBAbSamzPHvK6nDlDk5USoqLoZlpSQnktjP0UF1MFj8L+VgDU9d4BaHKdOJFvVK4iMpKMw8pK2wbKxIl0YzKbyUC5/351K+j4ePqtXbzotR1wncq5cxReHzZM+b5WHuyi1Gn9bGiFKA/hI4sKri30BgIDyeXnrOaBBgPd1LiVuzYIArURUKN9IgiSgWIwyA/v+FAlgNui05GR0NJie1vrvkqVlerDNAEB9P+el6duf0aitRU4eZIWh2qMRSsD5UKqzFxAo5E85gr6/HgybKB4C2JipZymYJMmSUqH+/ap668TF0crMblS+0zf1NR0a58oJj+fblgA3cDkxsG7Spk5/8TFJCTQtShH7Ma6mkfNwkIkPp5+N3zt2kd+PlBVpS68U1lJOWcAauIGoyVE5rXf0UEaOj4CGyjeQlISuf7kJMuGh0sx7PJy0t5QSng4nYul7+3nwgVKflSaZAdIeQmAst479fVknChVE2a0Ra7sPdDTO6a23BiQzsfJsuoxmUiYLTRUXUVVV3IsQNU7smhrIw+YD5QXi7CB4i2EhpIXRe6qyN7VmE5Hbsa8PNtVCEzfdHZSkp2akkFBkKp39Pqe/6e2aGnhMnF3ICiIrls5BkpcnJSjZO05U4pOR4bpmTPyPDfM5Vy4QHk8apNVLykvlkVDA4WTfCT/BGADxbvIzKQJR07Ixt5yY0BKuGNlWfWUlpL2icLupwCkSRIgBUq52haiXLqPVAK4Pamp8oUPtRBtAyRlWfaAKkeUtdfrlfW7EmlqotwVAEhMhDFapjJ6QwM1B/ShVgVsoHgTYvNAsWFcf8THk34KAJw7h5Cmqv63743gYDKGjh2Tl/vCXE5BAU14anpq2BPe8bGVmFuTkEDXkpxkWa3yUPz9yZPCybLKKSuj8JgaYTYAOHRImi+nTJGXYCsINE/YEuP0MthA8SaioiivQEWYJ/WCytVYaiq5mzmerZzmZqqEUqN9AkjhHQCYPl3+fg0N5G3j8mL3ICaGrl05YZ70dOkmJXYlV0t8PBnItbXqj+GLiKExtZU0VvknspW8m5vpfD6UfwKwgeJd6HTkFZGzEgN6XBxpF37oZ8N+CAoiV+exY5RPwcinpIRuDmpkx8XmZABpMMgNEVkstBrj8mL3wWCgcuPGRtvb6nTSwkLsSq6WiAhWllVKdTV5ndRWv5lM5EEByNstpzkgIMnb+1iLAjZQvI3kZPnu4qys7gstsewEAjpkhIZ6IzWVJrn8fHX7+yL2aJ8APcXZlIR3xGohzj9xL5SEC+zVMRLR6Sg5OyeHk2XlcvYsXUNq++CcPCnNzRMnys8naWqi/BMfkLe3hg0UbyMujlbTckTbdLruyU4vmJFeekDdOQMCKIfi6FHuciwXe7RPAPXhHaORy4vdkfh4WlELMirirLuSHzmiriu59XkrKznRXQ5iHyR7cresE5vlhnfMZvJS+6BmERso3oZeDwwcKM9dDPTIQ8ksURnmAchzU1zM7dzlYo/2SXm5pOI7aJCyiaulhSXO3ZGICPJqWWRU4IldyQEyTo4dU39eTpaVz/nzFJJVmzNm1RwQfn5SA0hbiPL2PpZ/ArCB4p2kpNAFIMebMXx4900yrewQ9J0qPSD+/pTEdewYCQoxfWOP9gnQ03uiJLzD5cXuTVaWfFVnrcI8gJQsKzacZC6nvZ3CMxERkgq3UqyaA2LMGPlJtg0NFAL0wcasbKB4I9bNA21h1b8loLMVSWV2rMaSkkiXg1dj/SNqn6h1FavNPxHLi31wJeYRKPl/EbuSA1JXcrWICtScLNs3BQV0zdpj3FuHd+T2zAKo509GhvrzejBsoHgj/v6kEmo0ytveajWWesGO1ZifH3ljjh2TX0nkixQU0A1FjchTdTV5XwBacSupxhHLi31I6MmjiI+XvzoXu5IDUldye4iKovwKziG7HLOZvCdBQfZdO2ryT0Svp48uKthA8VaUNA8cPx6dBhIKS7uw1z7p+sREEjISb6JMT5qbKU9HjXIsoD68w+XF7o/Sii4twzxxcZws2xfFxVTWb0+SalVVd3NADBok//pvaKBQsI+KKrKB4q2IlRpyhJwCA1GWOh4AENxaT6V0ajEYaDV27Jg8RVtfo7iYQi1q9Qy4vNi7UWKgTJ4sbb9nj30LC39/8t7Yc+17I4JAniVAndqziNrwjtFI4R0fFVVkX6+3EhpKOSGFhZR3YIOSzGlIF8M7e/eS+JdaEhLIg3L6tLKL0dsRBLoB+Pur0z6pq6PvFCAPmZK260Yj7cPlxe6NQQ/AjNZWYPV6W7+RSMxNHo+UkoNAVRW+eTMP1YnyhL/8/YFJoy0YkGGVlBsfT/NFdbXPrtgvo6KCklvtLfFVE94RBPKA+5i8vTXsQfFmMjJkV9SUpk+BRdf1c7CnCRlAK7G4OODECfl5ML5AdTW5itXGk/fulao8ZsxQJtrU2srlxR6AfwjlJQnQoaXV9uNs2pzufdPObpO1T0urDsYGHQ6euGT6j4ggrycny0rk5tK1Exam/hjWzQETEuRfh83NtND0Ya8nGyjeTHw8xbVlCDm1B0WiIq5r9XXxov1dTuPiSDPg1Cn7juNNXLhAk47ayc46vKNEnK29nX4HPij05GlMumUwIqP1CPE3ISRYsPmoHDwNnQYyarKLdyE0sNPmPjodGbm9isdGRVHCrT3ib95CXR0ZKPYaCIcPS7mAU6fKX1g0NEh9mnwUDvF4M2LvhoYGWav2orTpSK7qsvT37gVuvln9uXU6OuepUxQuUitu5C10dNBkpzbE0tBAHimAQndiJ2o5cPdij2HA1GQMSGgD1q2j/2ObocBAIH8ysHs3gtqMuCPrsE0BsNXrDWhp7eOPcXEU0igupmROXyYvj64de8LdgPr8k8ZGYOxY9borXoDvfnJfwN+fykplhlmK0jRq5S4SE0MXuOje9GWOHyfPlNrwzr59UhLk9OnKwjsNDeRW5vJizyAhQX6COwDMni09377dvnP7+ZFRlJsrXzTOG2lupnyv2Fj7+t9YNwcMDQVGjpS3nw/L21vDBoq3k5wslZjaoDEsGXXRWfTi7Fn727DrdHSBnT5NZXa+SkUFTVJxceqz8bm82HcQE9zlGigTJ0qqpHv32h+eSUigcKSoeuqLFBTQnKVWDkDk1ClJE2rSJPmLBLHqzkf1T0TYQPF24uNp8mpulrV5SaaVF0XsG2EP0dE9k8R8DZOJvB/NzapDLP7tTdSIEaBjDBkif2cuL/ZMFCS4IyBAyklqbZVW7GoJD6drVtTt8DVMJgqnhoWpq7azRk31DkDGaWKifcm5XgAbKN5OVBTd1GSGeUoyrJIvtQjzAOTFycmhJne+xqlT5I2yQ6o6tXg/9e8BlId3jEZajatpSsi4DgUJ7gB6hnl27LD//L6cLFtYSGKT9oZXBEEyUJQ0BwTI0MzMtO/8XgAbKN6OTkf5BzJF0+piB0or/ePHtZGsj4ig1eDx474V166qAg4eJC+SHSJP6YW7pRdKwjsAdy/2VKwT3OUwZozUfPLAAdke037PX11NoR5fwmKhRYWfn/3iaNbNAUePlt8csKODzu3j4R2ADRTfICGBEq7EVXh/6HSSK7Kzk0rktCA5mTwJFy9qczx3p7OTQmT19XZNNH6mViRf7Po/iI5WVlHQ1sbdiz0Vf3/yusnVETIYgFmz6LnJZL/301eTZS9eBIqKyOtoL9YhciXhHaPRp+XtrWEDxReIj6cffGOjvO2naVzNA1As1WQiCXx7JLk9hTNn6JGZaVcVQHrZAfiZuxq4TZumLCZeX0+VVDzReSYpKbIT3AFoH+YRk2V9KcE9J4cqaIKD7T+W2vLihgZSfVbTTNTLYAPFFwgJIQ9Gfb287UeOpEoCgEIUvSo6qSAlhRrleXtDstpaWj1FRFAHVDsYcGGX9EJpeKexkbsXezIKE9wxdKjkLTt2TP713hdhYXRuX0mWrawEzp/XprS3qopCPADpychdJAgCeV9TU+0fgxfABoqvkJEhv5W6nx81IgMoh0GrCpyQELoAjx2T12XZE7FYKAegttbuic7Q2Y70soP0IjwcGDVK/s5mM5cXezoKE9yh00lhHosF2L27/+3lEB1NnkC5FUWeTF4eGWRa9KuyDu8o8Z60ttI8yfknANhA8R3i4ykfQe5EYx0ztbc3jzWpqbSy8NZ+H2fPUpJderp9Ak8Aki8ehn9n1/+X0vBOYyNNtJx/4rmICe5KEl7nSL15NAnz+EqybEMDhXe0CoeqLS82Gsko9HXl7S7YQPEVYmPphy93NTZ+vJTFbq1iai9BQZSwe+yYvKRdT8JopO8qNFR+xn4/pBfaEd7h8mLvIDFRfoI7QAaNWNKek0NhC3swGGgeOHvWu5Nlz50jr6cWhkFzs7rmgAAtLLKyfFre3hr+FnwFPz+auOSWLYaEUB8IAKipodisVqSkkAdFjNF6AxYLuXUrK7WpADCZkHqB3MQdAaFURqqEtjbWUfAG4uOVyd4DPZNld+7UZgxFRfYbO+5KWxsZFNHRdns9AZBQnmhQKmkOKOLj8vbWsIHiS4iy93K9IdbVPFqGeQID6XH0qPy8GHfn/HkptKPF6ufYMQSYSIPmYvpUZZoMXF7sPQQHk0Ev1/MJaF/NExZGuRFHj2qXMO9OFBSQ8aVV3ofa/BPBwvL2l8AGii+RkCDJWMth8mTJ+teq3FgkOZni2lp6ZlxFYyMZcIGBUvWTvVglOF4YMFPZvty92LtIT1dmyCclSe0QCgq0yR/JzKSw7A8/eJdMQGcnydoHB9svay8eT01zQACwCNIczQBgA8W3iIigm5Zcd3F0NJUuAjTJlZZqNxZ/f7qAjx717AoBQaAJqaxMu4oZUeQNQIdfMMpSFEhkA1Icm8uLvYP4eMrdUnKdaO1FCQoibY4DB0i80VvyUS5cAEpKtAnLAhQqEpOalTQHBOg75bBsD9hA8SXUVAU4KswD0KRw8SKV93kqBQW0skxN1S6x7eTJblG94pTJsPgpEGwSy4uTk7UZC+N6YmOp5FiJrskVV0i/xx07tDEowsNpgbNnD5UeezqCQJ3W9XrtRNHUVu+IcFi2B7zE8jUSEsiVaTLJy2uYNg1YtYqe79sH3HCDdmPx86NJ79gxYOBATSpfnEpzM30n4ufQij17up8WpF+hbF+xvJgT7bwHMcH94EH5K/2YGOr/cuwYNek8dw4YPNj+scTEULhpxw66Xj15xV9aSguMfoz5/As6HDqhl5V6o7OYcf33exAMwKz3w9rSyehcbzts1Co6xvR6DsteAntQfA1R9l5umCclhWLgAJUt2qtOeSmJiRQeyc3V9riORgztFBdrq/poNlOcH0CnIRAlKZOU7S+WF/t4m3avIyWFfnNK8j9E0TYA2L5du7EkJdECZ+tWoKJCu+M6mzNnyNjqZ2F06IQexgYdWlptP2LPH0Bwax0A4ELKFDSYQ2XtJwiU5+cfZLCrqag3wgaKryHGkpVUBYiuSkHomaGuBQYDua+PH5efvOsOXLhAY05N1Sa5TiQnp/v/pixtAjr9FErlc3mxdxIfT0ankmtkxgwpB2LXLm3VmzMygLo64PvvtV+0OIOaGvIq2QipiJ4TnU5ASHD/j5GFm7v3Kxy+2Ob21o/IwHZMWsjek0vhEI8vkppKN1e5TJsGrFlDz/ftAxYt0nY8CQnkQcnJkST23ZnWVkm8TgtZbGuswjsXshSGd7i82HuJiCAjpaJC/m8uLAyYOJF+q7W1VAavVE+nL3Q6YMAAuslv20ZzgieFaPPyyIssM7E9OAi48/p+DLyaGmBVV1uKuDjM+/kYwCDTIGxpIbXe2Qqr9XwA9qD4IgkJVFbX0iJv+0GDJIXFo0fpBq0lYuz1+HFlnh1XceQICc2JoS+tsFi6wzvw88PFdAUaCoBUXsw6Ct6HTkeeMSUJ7oD21TzWGAxAdjapzO7c6TkaKU1NlBwbG6vdMbdskcJvCxcq86o2NJAXmeXtL4MNFF8kJoYuCLl5KHq9JDhkMtENWmvi4mgVcvq09sfWkpISMtKSkrQv4z17lr4DABg3Dp0BClekDQ20qtUy5MS4D4mJ9JtTYghMmSJ11N6zR3sjwt+ffnOepJFy/jx5LLQyUCwW4Ntv6blOByxYoGx/URaAr9vLYAPFFzEY6ILoKmWVhSPLjQG6sBMSqMS2tlb742tBezsJ1nV0kKdCa6zCO5ip0N0r5hdwebH3EhenXPY+MFDKIWtqcsziwpM0UtrbaY6JjNROFuDECSlZeNw4ZRV0Fgt9X1rpsHgZbKD4KklJyqoCRo+WYswHDjim0V9MDIUpxEZb7saxY1SWKDZj0xJBkAwUg0GZRDZAN63ISM4/8WaCgiisqDQMah3m0bKaxxprjRR3rcgTBPJSlpdrGwb95hvp+ZVXKtu3qYlyhTgs2ytsoPgq8fE0qcj1ovj7U8IdIMVwtUano9VHTg5QVaX98e2hrIxWh/HxyvriyOX8eakZ2+jRynVVuLzYN0hNVR6mGTdO+j3t3w+DyUHKzTExlNu2fTs1F3QnmpspB2frVvJCaXUNNzRIeWMREcrF2YxGlrfvBzZQfJWICLow1JQbA44J8wAUOmlsdC8vislEn7e1VdvEOmuswzszZijfv72dy4t9gfh4ZQnuAN2MxZBhezvSLmjcV8saa40Ud+h+LAiU0L5hA13DcXHahlO2bZO8yfPnKzd8WlrII6tFF2UvhA0UXyYzU1lFzsSJUmLo3r2OizUnJ5MXpbzcMcdXyokTVE7piNAO0DO8o9f3zPeRQ2sruf85vOP9xMaSEW9HmCcz30FhHhFRI2XLFtdW5bW20nX1xReUFDtkiLaeCkGQkmMB5eEdk4nmU75u+4QNFF8mIUFZVUBoKIUfAArB5Oc7ZlwRETS5HD/u+oS7ykqSGI+J0a5fx6UUFUmNGEeMoAorJRiN3L3YV9DraWGhJMEdoN9Vl/cv+eJhBLYr3F8JokbKxYvkSVHi7dGK4mIyTHbvpmvDEVUyZ89Koazhw5XLDjQ0SPo2TK+wgeLLxMVRYqWSVY6jq3lEUlJoAtCyg7JSOjvpMzY2OnYSsTe809DAZYq+hFippUQZVq+nBoIADJZOZBXvdsDArHCVRopYaffFF+SBHTyY5jhHYO09USNe2dBAOUVBCtWifQg2UHyZwEDlVQHW1SWONFDCwmhSO3bMddoKp05RRYKjczvEJDsAmD5d2b5mM61YZSpiMl5AfDytvJW2hpgzp/vpwKJt2o6pN5ytkVJaCnz5JRlEYWF0bq21ikRaWiThu+Bg5bIAAMkVpKVpOy4vgw0UXyc1VVnJcGwsxXIBKrl1ZJ5ISgrlfhQXO+4cfVFTQ+XUkZGObeBVUiK5iYcNU56EK7qJOY7tO4SHK09wB6hjeJchm1x5AsHN1Q4Y3CU4QyOlo4PCsBs2UI+sgQMdo1Nkza5d1FoCIMNPqRdEzBvj8E6/cC8eXyc+nvRNBAGADq1twGobLcJHhE/HOJwFABx6+wByR14v+3T+/sCk0RYMyJAxUYWE0Krr2DHaMTbWOd0+zWZqilhfLxljjsLe8E59PbUiCA3VbEiMB5CZSf1klKDTUbLsRx9BBwEZBTsBLHXI8HoQHk7e0D17yLMxbJh2x66oIO9MXh7NZVp2Fu8Pe7RPADIuo6IcVxXoJbCB4uvExADR0fDXmwHoIQg6tNgo7DmXOB3j8B4AILlgH45k3yD/fK3AwRN6DMiQGT9PS6M4dmEhTW7JyTQJxcbSwxHx29xc0nnJzHR8+Z894R2AVo+Oqi5i3JeEBDLaOzqUJW93GSgAkJW/A04xUACaZzo6SCMlONj+sGlnJ0kR7N9Poa7sbMclsV9KYSHNSQCFkQYNUn6MxkZg6FDOG7MBGyi+jl4PDBiASUnHcbA6TVYuW0dQGhoiUhDRUIqkqpOI0hnREWS7w2prGyAIOmX5coGBdCF3dNBFnZdHuSF+flJoIy1NMljs7ahaV0e5NWFhjk9eKy8ngTaAJjklEtkAxcGDgzm844tYJ7grCROkpaE2diBias4jtrorCd1Z+UtJSRTO3LoVuOYa9b/b6mpKhD1zhgyfwYO1HactLi0tVrqIEeXtuS2FTdhAYYDERAyIacKASR3yLfr6qcC6ddALFtwc/B1w3XU2d1m93mDTO9MnAQGSEQKQy7ixkVYzublkaImx+bQ0msBjY5WFPiwWipVXV5NR5GisvSdqwjtieTG7iX2PgADynB0/rjiPoSh7DmJqugzjHTuA2293wAD7ICODjPItW8hIUVJhYzaTZ3PfPvrtZ2U5J+RrTUcHibMB5MGaO1f5MZqbWd5eJpwkyyiXvQd6duzcsEFZyaMW+PvT6ikzk/JEsrJo0i4uphXamjXA6tXAunWUQFdYSJ+vvyS9vDxyGztL2dHe/JPGRu5e7MukpFCoQ2HiadEAq948O3Y4V2tIrUZKbS3lfXz7LY138GDnGycAeW7EeXLGDHWtJYxGyQPG9At7UBi6yJKSKANerkhYRgYwaRLd/KuqSBDJuimZs/HzI2+CmL1vNtNEUlZGgnI6HX3O2FgqrRY9LBER9LeGBpp8goPtDxPJobpaaqqWlaXczS6WF7Ob2HeJjycPYUuLIk9hS1g8yuJHIrnqFFWRFRRQDoezsNZICQ7uXyLeYqHrZO9eqqzLzHStboi92icAeVCckd/mBbCBwhAZGRTTVcL115OBAgDr1wOzZrnPRWcwkLElGlxmM00MlZXkTQHIYImJIYOloYH+5uiqHRF7wztcXsxER0sdwBVWceVnziUDBSAvijMNFKCnRkpwMInI6S9x6BuNFM45dYoWDUOGuHZ+KS+n8QK0MBg1SvkxOjtpbuLrVhYc4mGIhARymba3y99n9GjSHABIr+TUKceMTQsMBrqhp6XRRDdoEIW1amvJ+3PkCP3t0knSUey2UvJUW16cmuocbw/jnuj15H1TKtgGoCD9Clh0Xb/1nTtdI4bYl0aKxULelfXrySBISaGHqxc/330nPVeTHAuwvL1C2EBhCDEm2tAgfx+djrwoIuvWaT4shyEm1aakkMEyYoS6eLIa6uqoGSJAE7TSHh4AGZJcXswkJtJ1qDAHrC0oEuWpE+hFVZVy76lWhIfT3LNnD4VyGhspN2XjRgpdDRniFka4zmKWDBS9vmcOnhKMRppzgoO1G5wXwwYKQ/j70w1PqTrlzJlSk7oDB1yj+uppWHeCnjFD+UqspYUmbXYTM6LsvZKFRReF2ZL0fbdsuyuIiaEb9vbtwOefA4cOkeHlTI+mDZJLDpG3FaB2H2qVajs61C1IfBT3+N9n3IOUFFqJKcnq9/MDllqJPX3+ufbj8jasq3fUiLPV19OkzuXFTGgoJbgrXVgAKMmcJomb7d7t/Eo8a5KS6N/GRvKaOMubKZOBZzdLL9QoxwIkjR8YyF3HFcAGCiMhVgU0Nyvbb9EiyQ27dSuFMJjeaWgATpyg50lJ6pITm5oowdBNVpeMi8nKkvrCKKDTPwSYPJleGI1SAqirSEkhr4mblc0Ht9YitXg/vYiNBSZMUHcgUd6eDRTZ8AzHSIiiX0rdxSEhwOLF9Nxkovgx0zv79kkJidOnKw/vdHbSPuKKk2GSktQtLICe0gDbt2s3Ji9iSP630Atd1+yCBeoNqIYGCqM7qsOyF8IGCiOh01F9vhLBNpEf/Ui6cDduVFYN5EvYK87W0EDJzJx/wojExJD3U43ncuJEyfu5dy9ft5ciWDAk36ox4MKFKo8j0MKEdYsUodhA6ejowBtvvIEbbrgBCxcuxE9/+lMcOHBA1r4HDx7EY489hiVLluCaa67Bgw8+iM2bN9vekXEeSUkUOlAaj46PJy0DgAycLVu0H5un09QkudHj4tRprhiNXF7M9ESvp1ChGg9KQICUB9XaSgmqTDcJ5ScQ2VRGL8aOVe+5bG4mLxeXFytCsYHy0ksv4ZNPPsGVV16JRx99FHq9Hk888QSOHz/e7367du3C448/DpPJhGXLlmH58uUIDAzEn/70J3zyySeqPwCjMXZUBfQoOf78c9cm3bkjBw5QiAZQF94BuHsx0zvJyWRsqPGAcJinTwblWnlP1CrHApK8vVylbgaAQgPl9OnT2LJlCx588EH8/Oc/x9KlS/Haa68hKSkJb7zxRr/7fvbZZ4iNjcVrr72Gm266CTfeeCP+/ve/IzU1FZs2bbLrQzAaEhJCk52KqgAMHEirDIAk5vfv13Zsno694R3uXsz0RUIChXrUhHnGjJH6whw8qM4T4400NiK9iAQV2wPDgWnT1B+rqYmSmV0tNudhKDJQtm/fDoPBgKVWZaWBgYG49tprcerUKVRUVPS5b0tLC8LDwxEglrUB8PPzQ2RkJAJd0fSJ6ZuMDPWxaGsvyvr1WozGO2htJbVagJKRhw1Tfoz6elqFxcRoOjTGC/Dzo8ouNZ5Pg0EKz5pMlIvCANu3w2A2AQAKBvXTL8gWZjOF4XhhoRhF6cR5eXlIS0tD6CV9H4YPHw4AOHfuHBITE3vdd9y4cVi9ejXeeustXHXVVdDpdPjuu++Qm5uLZ599Vt3oGccQH0/1+m1tyhtzTZhABs6FC6SWeuaMupuxm5N/QYdDJ/QwmeRtn5F/BFd0dAAAziZOx8EvAmzsAbReWjna2AiMG8flxUzvpKbSCr2zU3mlyJw5wFdf0fMdO9QrpXoLggBY5UeeH7IIqmcxlrdXjaJfcU1NDWJ7EYcS36uuru5z33vuuQdlZWX44IMP8P777wMAgoKC8Nxzz2HWrFn9nre6uho1NTXdr4uKipQMm1GKGCs1GpUbKKL8/T/+Qa/Xrwd++1uNB+h6Dp3Qw9gg312bcn5X9/NzyVegpVX+vv7+kJqMcXkx0xdJSdJ1q1TEb+hQWuFXVlIid329b+dLnDsHdN1nKmKHwRidBUBlTp3RSN4tTmxXjCIDpb29Hf69uLnEsE17P2EBf39/pKenY+7cuZg9ezbMZjO++OILvPDCC/jb3/6GkSNH9rnvhg0bsGrVKiVDZezBz4+8IKLktFLmzAE++IDi4Xv3Uj6Kl5XXiZ4TnU5AsA0bztDZhvQy6vrcFhgBY+YohOjlqfX6+wOTRltokuPyYqY/goJIJuDECeUGik5H3cjXrqVy2N27gWuvdcw4PYFvpOTY3IGL7TsW981SjSIDJTAwEKZefNodXa7r/nJJXnvtNZw+fRpvvfUW9F0u6vnz5+Puu+/GP/7xD/z73//uc9+lS5di5syZ3a+LiorwwgsvKBk6o5SUFKo6sViUhxT8/Wly+/BD2n/DBuCnP3XMOF1McBBw5/U2Vlabvwc6KV4TNHsq7rgRULwayzcCw4dzkzGmf9LTKddJzXU7Zw4ZKACFeXzVQGlt7e5NZPILRn7GbNgOyPZBeztVV3F4RxWKfsGxsbE9Qi0i4ntxfUj4mkwmfPXVV5g+fXq3cQJQkuzUqVORm5vbq+EjEhcXh6FDh3Y/MjMzlQybUUN8PPXDUJvRf/XVlMcCUBdQNeJv3kBLC/Cf/0iv1Qg9CQK5bNLStBsX450kJVG+g5rrLStLWunn5FC4xxfZvZuMFABF2bPR6W/HoqChgeXt7UCRgTJo0CCUlJSg+ZKb1unTp7v/3htGoxFmsxnmXnQxzGYzLBYLLKL8N+MeREbSRaWm3BigNupiU632dsBXS8nXrKF4PkClxV0J5YoQuxerCbcxvkVEBHk/1fbDstZE2blTmzF5GlbhnfND7QzvGI1k9KmtAPJxFBkoc+fOhdlsxoYNG7rf6+jowMaNGzFixIjuCp6KiooeiazR0dEICwvDzp07e3hKWlpasHv3bmRkZHCpsbuh09GKyh5NhKVLJTfzl19Cb5ZZ8uItVFRI3Z39/IB77lF3HFHkSW2Ld8a3UNk8EEBPA6UrzOFTXLhAlYcAkJmJmjgVas8igkAlxl6Wf+dMFOWgjBgxAvPmzcPKlStRX1+P1NRUfP311ygvL8eKFSu6t/vTn/6Eo0ePYkfXD9xgMOD222/HW2+9hYceegiLFy+GxWLBV199haqqKjz99NPafipGGxISqHJETdkiQO7madNIoKy+Hlnnt+Jkup0rEk/i/felbNolS9RPVI2NVL7N5cWMHKybB14iCSFr3yFDgLNngYICumH7UoLnt99KzxctAsx2CKuxvL3dKL7rPPXUU0hMTMTmzZvR1NSE7OxsvPzyyxg3bly/+919991ITk7GmjVrsGrVKphMJgwcOBDPPfcc5s6dq3L4jENJSKBQj5qyRZEbbuhWUB12ch1OptkhF+1J5ORILvKICODWW9Udx2Qi45DDO4xcxOaB1dXKDRSAvChnz9LzHTuAH/9Y2/G5KyYT8P339NzfH5g7F7CnpVhDA/1f+HK5tp0oNlACAwPx85//HD//+c/73OYfogbGJVx55ZW4UsxLYNyfoCASf8rNVW+gDB1KeRc5OYiqv4C0soOoHThJ23G6GxYL8Pbb0us771R3owAkkScuL2bkIjYPVKsXdcUVwDvv0O94xw7grrt8Q6J93z4puXj6dMqjswcWVrQb/uaY/klLowZ19nDDDd1PR5/5zM4BeQA7d0or0IwMYLEdYa36eiodVSqYx/g29jQPjIkBRo+m5+XlQF6etmNzV6ySY2HvQprl7TWBDRSmf+Lj6ebYVXanismTqbIAQGrFMUTXnNdocG5Iezvw3nvS6/vuozweNQgC5f9weTGjFHuaBwIk2ibiC8my5eXA0aP0PClJMtDUwp5PTWADhemf2FiqHlFbbgzQDdqqweSwk17sRVm/nmL/ADBxIiW3qkVMsuP8E0Yp9jQPBKgkXkyM37WLPALezBarZJOFC+0PyzQ20nWrNrTLAGADhbGFwUDy2fYKrS1YgLbACABAZv4OoKpKg8G5GTU1khKnXg/ce699x+PyYsYerJsHKiUsjAxsAKitBU6d0nZs7oTZTGKSAF23WjRKbGnxreonB8EGCmOb5GQKN9gjphcYiLzhJJ2tFyzAF19oNDg34sMPJf2Jq66yf4JqaqJVsC8kKDLaY908UA2+ooly5AgtLgBg0iT1BQEiHR0sb68RbKAwthFl75ua7DrM2eE/Qqe+S1Fx82b7RODcjfPnpRLF0FCq3LEHLi9m7EVsHigqGStlyhQpOXvPHknTx9vQMjkWkBp7sry93bCBwtgmPJySvezJQwHQHhyFcwO63KetrT0nBk9GEKisWOjqUHzrrZQgZw8NDTTJ8SqMsYf0dArxqPF+BgYCU6fS86Ym8jR4G3V11BQVoKTiSRpIIIjy9gGqWwwyXbCBwthGp6OVmD2VPF2cGCaVHOOLL9TFx92NffuAkyfpeVIS8KMf2X9MLi9mtMCe5oFAzzDP5s2SEe4tfP+9lAA8f776ijsRs5m+I84/0QQ2UBh5iLL3drp5jRHpKEmfQi+qq6lzqAejN5uAd9+V3rj3Xvsbg4k9PLi8mLEXe5sHjh9PnjyAPA3e4vUE6DqzlrbXIrxTX095P12yCox9qGiwwvgk8fE0UTU02J1EdmbUjUgr3k8v1q2jVZqHJoIOyfkSKCujF6NGUe8he2lupu7FrKHAaEFWFrVeuITWNmD1elseAwMyxv8MV2z7MwDA/K+V2FwyFPWxA22e1t8fmDTaggEZbup1OXUKKC2l52PGaNPUr7aWpAVCQuw/FsMeFEYmgYG0olebcGdFZdIoYNAgepGfDxw/bvcxXUFguxGjjv6XXuh0wP33a2No1ddzeTGjHdbNAyE5+ARBh5ZW248zybNxajCFLQ1mE2Zu+TNMxhab+xkbdDh4wo1vMVp7Tzo7pXA4owlu/Oth3I60NG1yRnS6HvL3WL/e/mO6gAkn/oOAjq5KpPnzgYG2V5WyaGnh8mJGO8TmgV1hnkmjLYiMEBASLP9xYsZy1MTSoiKyqRTzDr2GkCBLn9vrdOQ1cdvCn6YmKbwcFka9d+ylro6+aw7vaAaHeBj5xMcDwcF0A7XXhTljBoUwKiuBQ4c8rq17RN0FDD+3kV4EBWnX8dVkolyfpCRtjscwlzQPHJAhYECGUmVYPTDzCeCXvwSam5FRuBt3+m/oMyF89XoDWuzPqXcc27dLPcbmzdOm4qa+ntp6BAbafywGAHtQGCXExNDDznJjAHQTXrJEeu1hXpQJB94mwTkAuPFG+8WdRIxGSrLj8mJGS+xpHiiSlAQ89pj0+p13pKaYnoQg9Ez2XbjQ/mOaTGQIcnhHU9hAYeSj11PCnb2y9yJXXin1qti2TX2lgbM5fBgpJQcBAM2hcT3DVfYiaijwKozREnubB4pMmwZcfz097+wEXnlFu/nAWZw/DxQU0PMhQyicai81NbRI0SLRlumGDRRGGaKyqRbNw0JCgMWL6XlnJ/DVV/Yf09GYzbRy7OLYpGXaGRNieXFqqjbHYxgRe5sHWnP33cCwYfS8shJ47TX72mA4G62VYwFaWAwebL/EANMDNlAYZSQk2Cf8dClLlkjiSBs3Sr1s3JVvvqF8GQCVsUNQmD1Hu2M3NZFHicuLGUdgT/NAa/z8gN/8hhSmAdJH8ZQQbVub1FcoKAiYNcv+Y7a3k2HCukWawwYKo4ywMLqBarESA8gtKqpVNjVJXUXdkeZmYPXq7pd7xz8I6DS8hIxGyj2JitLumAwjYm/zQGvi44Ff/UqqNHv/feD0afuP62h276YkfwC44gpt9Epqa+n74MR2zWEDhVFOVpYmsvfdiDFtANiwQZvwkSP45JPuyb1owGxUxo/Q9vjNzfTdcnkx4wjsbR54KRMnArfcQs8tFspH0cL4cSTW2ieLFmlzzIYG0nXy46JYrWEDhVFOfDy5NMUyPXsZMAAYN46el5dTbxt3o7ycegcBgL8/jk5apu3xOzpoguNVGONI7Gke2Bt33AGMHk3Pa2uBv/3NfRcYJSWSlyc9HRg61P5jtrVRdVR6uv3HYi6DDRRGOXFxJHuv5WrJuhJm3TrtjqsVq1ZJsfulS9Ecnqjt8bm8mHEG9jYPvBSDAfj1r6Ww5JEjwKefanNsrfnyS+n5okXaeCpraqhwgPPGHAIbKIxyAgKoFFarPBSAPCiihkBubq+9Q1zGyZPAnj30PDJScmtrSUMDfX5u0c44EnubB/ZGdDQZKfqu28l//4vE0qPaHd9eTCbg//6PkvAB8lTOm6fNsRsbqXrH3i7ITK9w0IxRR0oKrZYEQZuViE5HuSivv06v160Dhg+3/7j2YrH0KCvGj3+sfSMwLi9mnMmAAdovAMaMAe68E/jwQ0AQMGPbX1B+1f8CwY7rJ5V/QYdDJ/T9yumHNFXhiu9fRFy1JCh3fMztOPm9vHG19ldUKCpqc/WOw2APCqOOhAS6OLsakGnC7NkkJgVQHorYadSVbNsGnDtHz7OytFGdvJSmJqk6imEcTWJij+aBmnHzzcD48QCA4LZ6zN/zMnQWx+WjHDqhh7Gh72aFkQXHsPjzx7qNk05DALZNexz7h94pq0liS6sOgkCLr17lTWpr6buMi3PYZ/R12EBh1BEVRcaElmEef39J/l4QgM8/1+7Yamhro/JJkfvvd4wrt76eck8iI7U/NsNcyiXNAzVDrwcef7y77UNy5QmMPvyhtuewQvSc6HSXNCsMsmDiuTW4etvTCG6nPLmmsER8+6NXUTpivqImiSHBAiIjBEwa3UtScVMThXf0fBt1FBziYdQhyt7v2qXtcRcvBj7+mIyDLVuAu+6iuLkr+OwzWiUBwJQpwNixjjlPSwuXFzPO45LmgZoSEQE88QQsv30KesGMUcc/AQ4Np5JkBxEcBNx5fZenpqUF+Mc/gAN7pA0mTEDY44/j6vBwABp5dESvJ4dlHQqbfox6EhO1Uaa0JixMkp/u6JAS25xNdTUZKAB5TZYtc8x5OjrIc5SocVUQw/SHFs0D+2L48J5l+H/7G1BVpf15LqWkhJJ191gZJ7fdBvz+95LqrVbU1lJFlFZNQpleYQ8Kox7xAq2tVZQ/0dpG7dj7IjToBizRfQW9YEHrZxvxud8tsPjJr27x9wcmjbZgQIYge5/L+OADSeflmmsclwjH5cWMK7BuHugA7Z0zo25ATOkpZF3cS5Uur7wCvPii43rV7NlDCfaigGRoKPDLX5LnU2sEgc4zeDB7PR0Me1AY9QQFUdMwmbFscW4ShP4T06r8klCYPhMAJdulntkqO6mtpVUHY4MOB0/Y8dPOywO2bqXnYWHA7berP5YtjEYuL2acj5bNA3tDp8OOab9EU1iXZzA3t2c+l1ansZgx7sA7wJ//LBknmZnAX//qGOMEIIMrPJzDO06ADRTGPrKygOBgWRUBk0ZbEBkhLzHt7Ngbu/cbk/sZolEnaz+djrwm/ZUe9osgAG+/Lb2+/Xbt3cMiFguXFzOuQ6vmgX3QERCOXfOflCTgP/8c+OEHzY4f2GrEVduexogTa6U358wB/vIXkkFwFDU19N1FO66EmiE4xMPYR0ICyTwXFtKKrB8GZAgYkCE3SW0gkD8SOHUKkcYS3PTfu6jfxYQJ9Bg6tNeKmtXrDWixp03Qnj2SHHZqKoV3HEVTExk/XF7MuALr5oEOyqWojRsMLF8O/Otf9MY//kGLmuRk+w589iyu2vAyQpu7clsMBuC++4Af/cixYReLhUK/Awc67hxMN+xBYexDp6Mwj8mkfQ+OW2/t+frcOWrY99vfkmDayy9T86+aGm3O19FBkvYi997r2AZgRiMZJ66qUmJ8m6AgMha0ah7YF1dfDcyaRc+bmykfxZ4+Xps3A7/9bbdx0hocDfzpTyRR4OickIYGul7Z6+kU2IPC2E96OokV1dRo6w0YP55iyXv2AIcPAwUF0t+am6l1+u7d9DorC5gwAQmtk3AhfCRU/bS/+AKoqKDnY8cCkyfb+wn6p6WFvE6caMe4irQ0urYsFsfpeeh0wMMPA/n5wMWLwPnzFEb92c+UHaejA/j3v3t0JC6PG4E9C5/EjSOcpCFUU0MLMl5UOAU2UBj7CQ6mkMvOndqHKwYPpsc999DkcPQoTahHjlCIRKSwECgsxEJ8hg6/YFSkjAUCx1M4SE4Jb309eWcAmlDvu8+xhkN7OyXGcniHcSXWzQMdKRQYEgI88QTwm9+QobFpEzBiBOWMyKGykhJhRVVnALkjlmD3qOUICvGDZvom/WGxUL5Odrbjz8UAYAOF0YoBA4BDh8izERrqmHPExgILFtDDbKZqm8OH6bznzlGCK4CAzlakX9gLvLEXAGCMTENZ2kSUpk1CZeKoXkuWJ+/+LwZ3VQGcG7wI+48NAo71PZR+e3TIgcuLGXdAbB5YUOB4JeMBA4Cf/hT4f/+PXv/f/1Euh60S/qNHKfFV7MAcEAA8/DAOGRfC0qoDYIecgBLEa9aRCbhMD9hAYbRBQbKsJhgM5GodNoyalBmNwNGjKNxwBIkXDnVLXANApLEEkcYSDDv1OToNgShLGI3ilEkoSZ6IhrAURBsLMfDsZgBAh18w9o34CVpb5XlPVMs6GI2krukoXQiGkYsjmgf2xcKFwKlTwPffk1r0yy8Dr74KBAZevq0gAGvXUgNCS5fUfFIS8OSTNOb1zhlyN7W1wKhRJD3AOAU2UBht0OkozHP2LHk3nN1+PDISmDMHwoC5+PI4EFZ+Hiklh5BccghxVWegF2iC8zO3I73sINLLDgIAGsOTIOgM3X8/PfZW6GKiESJjVSYKwinGYqHJl1dijDtg3TzQUd5PEZ0OeOgh8nheuEBy+//6F/DYYz23a2kBXnsN2LtXem/SJOBXv3KNgWA203WbleX8c/swbKAw2pGRISnLuih0QaXMAJDd9biFclWOHaNQ0OHDUn8dAOGN5dLOCQkY9+QSjAtwcDxb7OPB8vaMOyA2D6yudryBAlD10IoV1FhQ7Lk1cqTUKfzCBeCllyihFiCj5o47qKrPVY356us5vOMC2EBhtCM4mEIuu3e7V25FWBgwcyY9BIFWbWLuSk6OJFR1333OUXStr6cyRa4EYNwBRzYP7Iv0dKrs+etf6fW//kU6RyUlpJXS1pXkFRpKhsykSc4bW2/U1lLCfUiIa8fhY7CBwmjLgAF083eGu1gNOh25abOygBtvJFdyTg6Nddgw54yhtdU5eToMIxfr5oG95YM4gjlzKB/l66+psud3v5MSYQG6Rp580iG9ghTR2UnzRmama8fhg7BQG6MtiYmUle+M7qVaEBJCyarOMk64vJhxR6ybBzqT5cslY93aOJk3jwTdXG2cAPSdxMRweMcFsIHCaIuYLNverr2yrDdQX089POLiXD0ShpFwdPPAvggIIGVoMXRiMFAp8i9+4TxPji3q66kc2l3G40NwiIfRnsxMlyfLui0NDRRP5/Jixt2wbh7oyBYPl5KcTOXG27ZRntigQc47ty1MJsrRychw9Uh8EvagMNojKstaVcsw4PJixr2xbh7obDIzSS3anYwTgNSrY2Ptb27IqIINFMYxZGdTOWFLi6tH4j40NnL3YsZ9cVbzQE+ioYFabbDH0yWwgcI4BlFZtrLS1SNxH4xGSiLm8mLGXUlLoxCPRYUAobfR3k6hLltS/IzDYAOFcQx6PSfLXkprKytRMu6NdfNAX0fMoXOHSiIfhQ0UxnFkZFB5HueiUKgrKIjVYxn3Rmwe6OxyY3ekoYFyYpyZMMz0gA0UxnGEhHCyrEhpKZVxcv4J4+4MGCApufoqbW1UVpye7uqR+DRsGjKOJTsbOHKEPAi+KhPd0kL6DqNHu66XCMPIRcPmga1twOr1jmkc2upIG6qmhhYTvKBwKWygMI4lMZH0FS5e9F2p6LIyqgTgZDvGE9CgeaC/P4BWQBB0aGnVdni9nktrGhuBKVOc35Wd6QEbKIxj0euB4cOB/HxKlvW1C76lhb4D9p4wnoIGzQMnjbbg4Ak9TCYNx9UL/v50Lk0Rvb28oHA5bKAwjicjg+TdfVFZlr0njCdiZ/PAARkCBmR4aPVeTQ15frkdhcvhJR3jeHw1WZa9J4yn4qrmge5AczMwZAhfs24A/w8wziE7m1ZivqQsW1ZGTcbYe8J4Gq5qHuhqmpqAsDBuR+EmsIHCOIfERLpRV1W5eiTOgb0njKdj3TzQV6itpfBWbKyrR8KADRTGWej1wLBhvqMsy94TxtNxZfNAVyAIpPY8aBAZZozLYQOFcR5isqy3x7XZe8J4A77WPFBs5pma6uqRMF3w7Mk4j9BQSj6rqXH1SBwLe08YbyE93XeaB9bUkHESHe3qkTBdsIHCOBdvT5Zl7wnjTYjdt729eaDFAphMtLBg3AaeQRnnkpREq5TqalePxDGUlZERxt4TxhvwleaBDQ0c3nFD2EBhnIuoLNva6n1u45YWSq4bM4a9J4z34AvNA2tqKEcuIsLVI2Gs4FmUcT4ZGd4pAsW5J4w3Yt080BuxWCjPJjvb1SNhLoENFMb5hIaS/Ls3Jcuy94TxVsTmgd6qBF1fT+XULM7mdvBMyriGgQOp01erg1udOgv2njDeil4PjBxJYR5vuV6tqaujcuqwMFePhLkENlAY15CU5D3KsqL3hCt3GG9l6FBgxAjgwgUSNPMWzGYK8WRluXokTC8o7mbc0dGBt99+G9988w0aGxsxcOBALF++HJMnT5a1/5YtW7BmzRqcP38efn5+yMzMxPLlyzFx4kTFg2c8GFFZNj+fJghPvrGXlZH6ZHq6q0fCMI7BYACmTAFKS4HycpKD9wY4vOPWKL4rvPTSS/jkk09w5ZVX4tFHH4Ver8cTTzyB48eP29z3nXfewXPPPYeEhAQ8/PDDuP/++zFw4EBUe2vJKdM/mZmeryzL3hPGV4iJAaZOpYZ63hLqqa2l5NiQEFePhOkFRR6U06dPY8uWLfjZz36GO+64AwCwePFiLFu2DG+88QbeeOONPvc9deoU3nvvPTz88MO49dZb7Rs14x2IybL793tucy72njC+xLBhQHExcPIkqUJ7cs+azk4af2amq0fC9IGiJd/27dthMBiwdOnS7vcCAwNx7bXX4tSpU6ioqOhz308//RQxMTG4+eabIQgCWrxVSZRRxsCBQECAZ67I2HvC+BoGA3lRYmPJOPdk6urIK8ThHbdF0ayal5eHtLQ0hIaG9nh/+PDhAIBz5871ue+hQ4cwbNgwrFmzBkuXLsVVV12F66+/HmvXrrV53urqauTm5nY/ioqKlAybcWeSk0m90ROTZcXKHfaeML5EdDQZKc3NnrmwEKmro+s3MNDVI2H6QFGIp6amBrG9uOLF9/rKJWlsbITRaMTJkydx+PBhLFu2DImJidi0aRNef/11+Pn54brrruvzvBs2bMCqVauUDJXxFMRk2YICz0qWbW1l7wnjuwwdSqGeEyc8M9RjMpE3KCPD1SNh+kGRgdLe3g5/f//L3g8ICOj+e2+I4Ryj0YhnnnkGCxYsAADMnTsXy5Ytw/vvv9+vgbJ06VLMnDmz+3VRURFeeOEFJUNn3BnrZFlPyUUpLeXcE8Z3sa7qKSvzvDBJTQ3NNd5SjeSlKFr6BQYGwmQyXfZ+R0dH99/72g8A/Pz8MHfuXOnkej3mz5+PqqqqfvNX4uLiMHTo0O5HJic1eRdhYZ6lLMveE4bpGerxtJzChgaac3pZcDPug6LZNTY2FjW93ETE9+Li4nrdLyIiAgEBAYiIiIDBYOjxt+joaAAUBmJ8GFFZ1hOakpWWcu4JwwAUnh05ksI9niLg1t4O+Pmx6rMHoMhAGTRoEEpKStB8SdOo06dPd/+915Po9Rg8eDCMRuNlHhgxbyUqKkrJUBhvIzmZ3MSVla4eSf+ISYHsPWEYugamTgXi4jynqqe2lnoLJSW5eiSMDRTNsHPnzoXZbMaGDRu63+vo6MDGjRsxYsQIJCYmAgAqKiouq7SZN28ezGYzvv766+732tvb8e233yIrK6tP7wvjI+j1wPDh5Cq2WFw9mr7h3BOG6UlUlGeFesTwjp9iIXXGySj6HxoxYgTmzZuHlStXor6+Hqmpqfj6669RXl6OFStWdG/3pz/9CUePHsWOHTu637vuuuvw1Vdf4e9//zuKi4uRmJiIzZs3o6KiAi+99JJ2n4jxXNw9WZa9JwzTO2JVz7FjVNXjrtdHWxuVFXN4xyNQbEI+9dRT3cZFU1MTsrOz8fLLL2PcuHH97hcYGIjXXnsNb7zxBjZu3Ii2tjYMGjQIL7/8MqZMmaJ2/Iw3ISbLHjzongYKe08Ypnf0eqrqKSujXj3uWtVTXQ0kJNCDcXt0guApmU0Subm5eOCBB/Dmm29i6NChrh4OoyUlJcBnn1FOSlCQq0cj0dpKBsoNN7A0NsP0xZkzwKZNZKC4W3+b8nK6jhcsoMRexu1xUz8c47MkJ9PD3ZRluXKHYWwzZAjd/C9ccJ9cMkGQxnPllWyceBBsoDDuhcEAjBjhXsmynHvCMPIQQz0JCeSxcDUWC5CfDwQHA4sWUSI+4zHwbMu4HxkZVBlQX+/qkRCi94RlsRnGNmJVT0uLa6t6OjuBvDwqKb76amDAANeNhVEFGyiM+xEe7j7KsqwayzDKEUM9xcWu8YR2dADnzgFZWWScsKS9R8IzLuOeDBxI4Z4++js5jdJSIDubvScMowRRwC0+3vkCbi0twPnzFM656iogJsa552c0gw0Uxj0RlWVdmSzL3hOGUU9kJBkpra3OC/U0NJDXZsIEYOFCki5gPBaedRn3xGCgFVBTk+uSZUtLKW7N3hOGUceQIcCoUc6p6qmpASoqgGnTgDlz3EumgFEFGyiM+5KRQcqyrkiWFb0nY8aw94Rh1GJd1VNa6rjzlJeT92TOHGDGDO5S7CXwzMu4LxERpNza1VDSqZSVsfeEYbQgMpK8Gm1t2od6RI0Ts5lCOhMm8ILCi+D/Sca9GTiQXLXnz5ML12x2/DlF3RP2njCMNgwerH2ox1rjZPFi0k/S6bQ5NuMW8OzLuDdpaZSJP2aMNCHl5VHyrMnkmHOy94RhtEWs6tEq1NPZSWXEcXGsceLFcL9pxr3R6ciLMnAgeTbKyqhfT36+5NqNiKBSwoAA+8/X1kZuY/aeMIy2RERQqGfTJqC5GQgNVXecjg66/gcMAObNc8/GoowmsIHCeA7BwaRJkp1Nq7GKCslYKSkhj0p4OBkrajP4WfeEYRzH4MFUBnzkCFX4KF0EtLTQwmT4cEqIDQ93zDgZt4ANFMYzCQwkIyIjA5g8GaisBC5epFyV8nISeAsNJWNFbldV9p4wjGMRq3pKS+mRliZ/38ZG2mfcOGDWLC4j9gHYQGE8H39/IDWVHhMnUn5KaSkZK5WVFBoKDiZjJTS070Q69p4wjOMRQz0bN8oP9dTWUpL81Km0L5cR+wRsoDDehcEAJCXRY9w4mtTKyiTPysWL5H2JiSGVSdFTInpPWDWWYRzPoEF0rR0+bDvUU15Oi4zZs7mM2MdgA4XxXvR66gUSH0+TYV0dGSsFBWSolJXRSiw6mlZo2dlAZqarR80w3o9eT6HZ/kI9gkD5Kno9aZwMH85lxD4GGyiMb6DTkdckJoa6rBqNZKAUFlKCbVAQe08YxplERFDIZuNGamlh3TfHYqGFRHg4VepkZ7tunIzLYAOF8U0iI+kxbBhNjnV1lMPCMIzz6C3UYzZTSDYxEZg/n5qGMj4JGygMExbGXU8ZxhWIoZ6yMgr1JCSQbEBWFhknrHHi07A/m2EYhnEdYqinvZ08J8OGkXo0Gyc+D3tQGIZhGNcyaBBV3ZlMrHHCdMMGCsMwDONadDoqI9bpuFKH6YYNFIZhGMb1cAUdcwn8i2AYhmEYxu1gA4VhGIZhGLeDDRSGYRiGYdwONlAYhmEYhnE72EBhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt4MNFIZhGIZh3A42UBiGYRiGcTvYQGEYhmEYxu3wyG7G7e3tAICioiIXj4RhGIZhGKVkZmYiKCio32080kApLy8HALzwwgsuHgnDMAzDMEp58803MXTo0H630QmCIDhpPJpRX1+P/fv3Izk5GQEBAZocs6ioCC+88AKefvppZGZmanJMb4a/L/nwd6UM/r6Uwd+XMvj7ko8jvyuv9aBERUVh0aJFDjl2ZmamTauOkeDvSz78XSmDvy9l8PelDP6+5OOq74qTZBmGYRiGcTvYQGEYhmEYxu1gA6WL2NhYLFu2DLGxsa4eikfA35d8+LtSBn9fyuDvSxn8fcnH1d+VRybJMgzDMAzj3bAHhWEYhmEYt4MNFIZhGIZh3A42UBiGYRiGcTvYQGEYhmEYxu3wSKE2R3P06FF89NFHyMvLg9FoRFhYGAYNGoR77rkHo0ePdvXw3I5Dhw7h22+/xfHjx1FVVYWYmBhMmDAB999/P+Li4lw9PLejuroaa9asQU5ODs6cOYPW1la8/vrrGD9+vKuH5lI6Ojrw9ttv45tvvkFjYyMGDhyI5cuXY/Lkya4emlvS0tKCjz76CKdPn0ZOTg4aGxvx5JNP4uqrr3b10NyOnJwcfP311zhy5AjKy8sRERGBkSNHYvny5UhPT3f18NyKgoICvPvuu8jNzUVtbS2CgoKQmZmJO+64AzNnznTqWNiD0gslJSXQ6/W47rrr8Itf/AK33XYbamtr8T//8z/Yt2+fq4fndvzrX//CkSNHMGvWLDz22GNYsGABtm7diuXLl6OmpsbVw3M7iouLsXr1alRVVSE7O9vVw3EbXnrpJXzyySe48sor8eijj0Kv1+OJJ57A8ePHXT00t8RoNGLVqlUoKirCoEGDXD0ct2b16tXYvn07Jk6ciEcffRRLlizBsWPHsHz5cuTn57t6eG5FeXk5WlpacNVVV+HRRx/F3XffDQB48sknsWHDBucORmBk0draKlx33XXC448/7uqhuB1HjhwRzGbzZe/NmjVLWLlypYtG5b40NzcLRqNREARB2Lp1qzBr1izh8OHDLh6Vazl16pQwa9YsYfXq1d3vtbW1Cbfffrvw0EMPuXBk7kt7e7tQXV0tCIIg5OTkCLNmzRI2btzo4lG5J8ePHxc6Ojp6vHfhwgVhwYIFwnPPPeeiUXkOnZ2dwr333ivcddddTj0ve1BkEhQUhMjISDQ1Nbl6KG7HuHHjoNfrL3svIiICRUVFLhqV+xISEoKIiAhXD8Ot2L59OwwGA5YuXdr9XmBgIK699lqcOnUKFRUVLhydexIQEMBiYzIZPXo0/P39e7yXnp6OrKwsnqNkYDAYkJCQ4PT7H+eg9ENzczNMJhOMRiM2b96MgoIC/OQnP3H1sDyClpYWtLa2IjIy0tVDYTyAvLw8pKWlITQ0tMf7w4cPBwCcO3cOiYmJrhga46UIgoC6ujpkZWW5eihuSWtrK9rb29Hc3Izdu3dj3759mDdvnlPHwAZKPzzzzDPYv38/AMDf3x9Lly7tjscx/fPpp5/CZDJh/vz5rh4K4wHU1NT06g0Q36uurnb2kBgv59tvv0VVVRXuu+8+Vw/FLfm///u/7pwTvV6P2bNn45e//KVTx+D1BorFYoHJZJK1bUBAAHQ6Xffrn/70p7jttttQWVmJr7/+Gp2dnTCbzY4aqltgz/clcvToUaxatQrz5s3DxIkTtR6iW6HF98UA7e3tl7ngAfrOxL8zjFYUFRXh73//O0aOHImrrrrK1cNxS2655RbMnTsX1dXV2Lp1K8xms+y5Tiu83kA5duwYHnvsMVnbfvDBB8jMzOx+PXjw4O7nixYtwvLly/HSSy/h+eef13yc7oI93xdAF/7TTz+N7OxsrFixwhFDdCvs/b4YIjAwsNfJr6Ojo/vvDKMFNTU1WLFiBUJDQ/H888/DYDC4ekhuSWZmZvd8ddVVV+FXv/oVfvvb3+Lf//630xZaXm+gZGRk4Mknn5S1bX8JZ/7+/pg5cyb+85//oL293WsnTHu+r4qKCjz++OMIDQ3Fyy+/jJCQEEcM0a3Q6vfl68TGxqKqquqy98UyddbTYbSgqakJTzzxBJqamvC///u//LtSwNy5c/Hqq6+iuLgYGRkZTjmn1xsosbGxmgkXtbe3QxAEtLS0eK2Bovb7MhqNePzxx2EymfD3v//dZy58LX9fvsygQYNw5MgRNDc390iUPX36dPffGcYe2tvb8dvf/hbFxcX429/+xsmxChHDrM6s5OEy416oq6u77L3GxkZs374dCQkJiI6OdsGo3JfW1lY88cQTqK6uxiuvvMLKjIxi5s6dC7PZ3EMIqqOjAxs3bsSIESO4goexC7PZjGeffRanTp3CH//4R4waNcrVQ3Jberv/dXZ2YvPmzQgMDHSqYef1HhQ1/OY3v0F8fDxGjBiB6OhoVFRUYOPGjaipqcGzzz7r6uG5Hc8//zxycnJwzTXXoKioqIeuQHBwMGbNmuXC0bkn7733HgCgsLAQALB58+ZuxdR77rnHVcNyGSNGjMC8efOwcuVK1NfXIzU1FV9//TXKy8t9IpdJLWvXrkVTU1N3KGz37t2orKwEANx0000ICwtz5fDchv/7v//D7t27MWPGDDQ2NuKbb77p8fdFixa5aGTux6uvvorm5maMHTsW8fHxqKmpwbfffosLFy7g4YcfdmroXicIguC0s3kIn332Gb7//nsUFRWhqakJ4eHhGDFiBO644w6MHTvW1cNzO2699VaUl5f3+rekpCR88sknTh6R+zN79uw+/7Zjxw4njsR9aG9v7+7F09TUhOzsbCxfvhxTpkxx9dDclv6uvY8//hjJyclOHpF78uijj+Lo0aN9/t1Xr7ne2LJlC7766ivk5+fDaDQiJCQEQ4cOxY033ogrrrjCqWNhA4VhGIZhGLeDc1AYhmEYhnE72EBhGIZhGMbtYAOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt4MNFIZhGIZh3A42UBhGYzZt2oTZs2dj06ZNrh6KLI4cOYLZs2fjnXfecdg5Zs+ejUcffdRhx3c0jz76aL/qv/Ygfv/i46GHHnLIeeTwzjvvYPbs2Thy5Ej3e0VFRT3Gd+utt7psfIxvwb14GJ/nz3/+MzZu3IiIiAh89tlnCAgIcPWQNEe8qXDbAfdl3LhxGDduHBISElw9lB5ERkZi2bJlAIA1a9a4djCMT8EGCuPTtLS0YOvWrdDpdGhoaMDOnTuxYMECu445a9YsjBgxArGxsRqNkvEFxo0bh/vuu8/Vw7iMqKio7nF9/fXXLh4N40twiIfxab7//nu0trbilltugV6vx1dffWX3McPCwpCZmcmdZBmGYeyAPSiMT/PVV1/BYDDgzjvvxPnz53H48GGUl5cjKSmpx3bvvPMOVq1a1edxrLs2b9q0CS+99BKefPJJXH311d3bzJ49G+PGjcPvf/97vPHGGzhw4AA6OjowduxY/OIXv0BKSgoKCwuxcuVKHDt2DJ2dnZgyZQp++ctfIiYmpvs4R44cwWOPPYZly5ZdtuIuKyvDbbfdhquuugpPPfVU92vrMYj0tv+ZM2ewcuVKnDp1Cnq9HhMmTMAjjzxyWVfcHTt2YOvWrThz5gyqq6vh5+eHgQMH4uabb8bcuXP7/9Jt0NTUhM8//xx79+5FSUkJjEYjIiMjMWnSJCxbtgypqak9thf/b15//XVUV1fjv//9Ly5cuICwsDDMmzcPDz30EAIDA3vs09nZiY8++ghffvklqqurER8fj2uvvRbz58/H7bff3v39yWHnzp1Yu3Ytzp49i46ODqSmpuKqq67CrbfeCoPBYNd3AQAvvvgivv76a3z00UfYsWMHvvrqK5SWlmLBggV46qmnUF1djQ0bNmD//v0oLS1Fc3MzYmNjMW3aNNx7772Ijo6+7JgVFRX417/+hf3796OzsxNDhgzB/fffb/dYGUZL2EBhfJbCwkKcOnUK06ZNQ0xMDBYvXoxDhw5h48aNl924x48f3+sxioqKsHXr1stugH3R2NiIhx9+GLGxsVi8eDFKSkqwZ88e/OpXv8KLL76IRx55BEOHDsU111yDs2fPYvv27WhoaMDrr7+u6jOGhYVh2bJl3bkDN998c5+f6cyZM/jvf/+L8ePHY+nSpcjLy8POnTuRn5+PVatW9fiMK1euhJ+fH0aPHo3Y2FjU19dj9+7d+MMf/oDHHnsMN910k6rxAvSdvvPOOxg/fjxmzZqF4OBgFBUV4bvvvsMPP/yAt9566zIDEgA+++wz7N+/HzNnzsSECROwb98+rF27FkajEX/4wx96bPvyyy9j8+bNSElJwfXXXw+TyYRPPvkEJ0+eVDTWf//73/jPf/6D+Ph4zJ49G2FhYTh+/DjeeOMN5OTk4LnnnlP9PVzKa6+9htOnT2P69OmYMWNGt+Fx7NgxfPzxx5gwYQKGDx8OPz8/5OXlYf369di/fz/eeuutHt686upq/PznP0dVVRWmTJmCIUOGoKioCI8//nifv3OGcQVsoDA+y5dffgkAWLx4MQDyLvz973/Hpk2bsGzZMuj1UgR0/Pjxl03edXV1+OlPf4qAgAA88cQTss55/vx53HrrrXjkkUe63/vb3/6G9evX45FHHsG9996LW265BQAgCAJWrFiBvXv3Ijc3F0OHDlX8GcPDw3Hfffd15w70l+Owd+9ePPPMMz1ycP70pz9h8+bN2LVrV4/3X3nlFaSkpPTYv+X/t3dvMU3dcQDHv60IchmXCCtbvJB5iSRyGUOMU8k2ccbpA3HuwYet1LKxmD2ZbDFkDyZGsxk1kURNJmwOxzYyA4pWEBXmggwmFIWAqLBEGc6q4CgVx7DtHkhPOLYgUMAm/D6P//85//+Pc0jOr//LOX19bNu2jby8PDZs2MCsWbPGHC/A/PnzKS4uJjQ0VFVuNpvZvn07+fn5Hq93fX09R48eZd68eQB8/PHHbN26lYqKCrZt20ZkZKRy3Llz51i0aBGHDh1S4vzwww/JzMwcdZxXrlyhoKCAlJQUdu3aRWBgIDB43w4cOMCpU6f49ddfvR5RcmlvbycvLw+dTqcqT0pKori4mKCgIFV5WVkZe/bsoaioiI8++kgp/+abb3jw4AGZmZmq8pKSEvbt2zchsQoxEWQNipiWnj59Snl5OcHBwaxatQqAoKAgVq9ejcVioa6ubsTz+/v7yc7O5t69e+zYsYO4uLhR9RsYGOj2EHQ9+MPCwlQjHBqNRqlrb28f9d82XgkJCW4LhN977z0Arl+/rip/NjmBweu3fv16bDYbra2t444jJCTELTmBwQdxTEzMsPdm8+bNSnICEBAQwJo1a3A4HNy4cUMpLy8vB0Cv16uSqMjISNX1f56ioiIAPv/8cyU5gcH7lpWVhUaj4eLFi6Nu73m2bNnilpwAREREuCUnMJh4BwcHU19fr5QNDAxQUVFBRESEauoPYOPGjcyZM2fC4hXCWzKCIqalqqoq/vnnHzZs2KCauli3bh3l5eWYTCZSUlI8nut0OtmzZw/Nzc0YDAbS0tJG3e+cOXPcRhZcu31ee+01NBqNx7qHDx+Ouo/x8jRCExUVBQyuCxnq0aNHFBQUUFNTg8Viob+/X1XvbbwNDQ388ssvtLS00NPTg91uV+pmzpzp8ZzFixe7lbm27A6Nv62tDYD4+Hi345cuXTrqGFtaWggMDBx2YXVAQAB37twZdXvPExsbO2zdpUuXKCkp4ebNm9hsNtX1Gnov7ty5w3///UdSUpLbtKRWqyUuLo6//vprwmIWwhuSoIhpyfVQcU3vuLzxxhtERUVx+fJlrFarx1/yubm5VFZWkpaWhsFgGFO/wcHBbmWuhZQj1T19+nRM/YyHp1/hrv4dDodSZrVa+eSTT7BYLMTFxZGcnExISAharZa2tjaqqqoYGBgYdxyVlZXs3LmTwMBAUlJSiI6OVpK6srIy7t275/G8ka7f0Pj7+vrQarWEhYW5HT90MfLzWK1W7Hb7iIunnzx5Mur2nsfTYleAn3/+mcOHDxMeHs6yZcuIiopSko8TJ06o7sXjx49HbGu4ciFeBElQxLRjsVi4cuUKwIhvNy0vL3cb8i8tLeX48ePExcWxY8eOSY1zOK5RlqG/kl1cD6DJZDKZsFgsGI1G9Hq9qu6HH36gqqrKq/a/++47/P39OXr0KHPnzlXVVVRUeNU2DCZiDoeDnp4ewsPDVXXd3d2jbic4OBiNRsPp06e9jmk0nh1dg8HENT8/n9mzZ/Ptt9+qEgyn08lPP/2kOt6VxD169MhjH8OVC/EiSIIipp2ysjIcDgfx8fFuD0AYfPCXlZVhMplUCcrVq1fZt28fr776Krt3735hb5x96aWXAM/TKLdu3fJ4jlar9WpUY6jOzk4AZe3OUI2NjV63f/fuXWJiYtzuzcOHD7l7967X7S9cuJBbt27R1NTE6tWrVXVj2cUTGxtLbW0tHR0dHv+PpkJPTw82m42kpCS30Y/W1la3qbe5c+fi7+/PjRs36O/vV03zOByOMe9iEmIySYIiphWn08nZs2fRaDRkZ2d7XOwJ0NHRQXNzM62trSxZsoSOjg6+/PJLAgIC+Oqrr9x+eU+lefPmERQU5DYN1d3dTX5+vsdzQkND+fPPP90eSuPh2uLb1NTEggULlPLz589TU1PjVdsAOp2Ozs5Ouru7lSmX/v5+Dhw4MCFTXWvXrqW0tJRjx46RkpKiXI+urq4xvcp98+bN1NbW8vXXX7N79263KaOuri56e3uJiYnxOubhREREEBAQwM2bN/n333+VqbDe3l6PW9P9/f15++23OXfuHIWFhapdPGfOnKGjo2PSYhVirCRBEdOK2Wzm77//JjExcdjkBAZ3rzQ3N2MymViyZAk5OTlYrVaSk5M9TjOEhIRM2UfUZs6cyfvvv8/x48fJzMxk5cqVPHnyhMuXL5OYmKiMcAz1+uuv09rayhdffEF8fDx+fn4kJCSQmJg45v7fffddfvzxRw4ePEhDQwM6nY62tjbMZjOpqan89ttvXv19mzZt4uDBgxiNRt566y3sdrsyJbdw4UJlket4JScnk5aWxoULF8jIyGDVqlUMDAxQWVlJbGws1dXVqi3mw1m+fDl6vZ7vv/+eLVu2sHz5cnQ6HVarlc7OThobGzEajZOaoGi1WtLT0yksLMRgMLBy5UoeP35MbW0tOp1O2Vo9VFZWFmazmdzcXJqamli0aBG3b9+mpqaGZcuWKddaiBdNEhQxrbgWxw59w6sn77zzDjk5OVy8eJHPPvtMGSqvq6vzuM01Ojp6Sr/yajQa8fPzw2QyUVJSQnR0NHq9njfffJNLly65Ha/X67HZbFRXV9PY2IjdbicjI2NcCcrLL79MTk4OR44coa6uDrvdzuLFi9m/fz/379+fkATFz8+PoqIiTp8+TUhICCtWrCArK8vthWvjlZ2dzfz58zl79ixFRUVERUXxwQcfkJSURHV1tccFw54YjUYSEhI4ceIE9fX12Gw2QkNDeeWVV8jIyGDt2rUTEu9IsrKyCA0NpbS0lJMnTxIREcGaNWswGAzKR/6GioyM5PDhwxw5coQ//viDa9euKffPbDZLgiJ8hsbpdDpfdBBCCOELzpw5w969e9m+fTvp6elT0udIny7wNfJVbDGV5EVtQohpp6uri2d/mz148ID8/HxmzJjBihUrpjymY8eOkZqayqeffjrlfY/k9u3bpKamkpqaOuwWbyEmg0zxCCGmnYKCAn7//XcSEhIIDw/n/v37VFdX09fXh8Fg8PjG1skSHR2tmopxvVzOV4SFhanik690i6kiUzxCiGmntraWwsJC2tvb6e3txd/fnwULFpCenj4l60aEEM8nCYoQQgghfI6sQRFCCCGEz5EERQghhBA+RxIUIYQQQvgcSVCEEEII4XMkQRFCCCGEz5EERQghhBA+RxIUIYQQQvgcSVCEEEII4XMkQRFCCCGEz/kfJ8qhjYXmekcAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACw40lEQVR4nOydd5wU9f3/X7t7vfdeuKMcvTdpgihY0diIHSNGowmYaDT61Wis0Zio+eb7M0ERrFFEUFSKiEjvHa4A14/j+t1eb7vz++N9c7vHtZnZ2dvZ3ffz8dgHu8OUz87tzLw/7/J66wRBEMAwDMMwDKMh9I4eAMMwDMMwzKWwgcIwDMMwjOZgA4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMBrn559/hk6nwwsvvGDzvnQ6HebOnWvzfvpCzfG6AkuWLIFOp0NeXp7kbQYNGoRBgwbZbUwM4wywgcIwl6DT6aDT6aDX65Gdnd3revPmzetcd/Xq1QM3QAeTl5cHnU6HJUuWOHookhGNJuuXl5cXEhIScNttt2Hfvn09btfY2IiQkBDodDrceeedAzxq+/HCCy90Ox+XvgYPHuzoYTJujoejB8AwWsTDwwPt7e1YuXIlXn311W7/f+7cOfz888+d6zEWpk6dioyMDERERDh6KN1ITk7uNKwaGhqwf/9+rF27FuvWrcPatWvxi1/8osv6X3zxBYxGI3Q6HdatW4fKykqEh4fbfZzbtm2z6/778qJ9++23OHr0KK655hq7joFh+oMNFIbpgejoaMTGxmLVqlV48cUX4eHR9VJ5//33AQA33HAD1q9f74ghahY/Pz8MHz7c0cPokUGDBnULPT3//PN48cUX8fjjj3czUFasWAG9Xo8nnngCb7zxBj788EP84Q9/sPs47e29mDt3bo9GislkwsqVKwEAv/71r+06BobpDw7xMEwvPPjggygpKcF3333XZXlbWxtWr16NGTNmYOTIkb1uf+7cOdx7772Ij4+Hl5cX4uLicO+99+LcuXM9rl9aWooHHngA0dHR8PX1xfjx4/Hhhx/2uv++8hREF/7PP//c7/csLi7Giy++iJkzZyImJqZzrHfeeSfS09O77TclJQUA8OGHH3YJCYhhrr5yUOScE+vvsHbtWkydOhV+fn4ICwvDL3/5S1y4cKHf7yaFRx99FACQm5uL8vLyzuWnT5/G/v37MX/+fDz11FPw8vLqNEyVYDab8Y9//APDhw+Hj48PEhIS8Pvf/x61tbXd1u3pb7t69erO87x9+3bMnTsXgYGBCAoKwnXXXYeMjAzFYxPZuHEjioqKMH36dIwdO9bm/TGMLbAHhWF64Y477sAf/vAHvP/++7jppps6l2/YsAFlZWV4/fXXcf78+R63PXToEK688krU1dVh0aJFGDlyJDIzM/HJJ5/gm2++wY8//ogpU6Z0rl9RUYEZM2YgJycHs2bNwqxZs3Dx4kU8/PDDWLBggV2/586dO/HXv/4V8+bNwy233IKAgACcO3cOa9euxYYNG7Bnzx6MGzcOAM28a2pq8M4772DcuHFdzsv48eP7PI7ccyLy//7f/8OGDRuwaNEiXH755Thw4AC++OILnDhxAsePH4e3t7dN318QhM73Op2u8/2KFSsAUJJrWFgYbrjhBnz11VfYtWsXZs+eLfs4v//977Fz507cfvvtuPHGG7Flyxa8/fbb2LVrF3bv3g0fHx9J+/nuu+/wzTff4JprrsHDDz+M9PR0bNy4EYcOHUJ6erpNoTXxO7P3hNEEAsMwXQAgxMfHC4IgCA888IBgMBiEwsLCzv9fuHChEBQUJDQ0NAj/8z//IwAQVq1a1fn/ZrNZGD58uABA+OSTT7rs+/PPPxcACGlpaYLJZOpc/uCDDwoAhMcee6zL+ocOHRI8PDwEAMLzzz/f5f+Sk5OF5OTkHr/D888/LwAQtm/f3u27XX755V2WlZaWCrW1td32cfz4ccHf31+4+uqruyzPzc0VAAj33Xdfj8fevn17t/EqOSfidwgMDBROnjzZZZs77rhDACB88cUXPY6htzFd+t0FQRCee+45AYCQmprauaypqUkIDQ0VgoODhcbGRkEQBOHbb78VAAh33323pGOK3HfffQIAITw8XMjLy+tcbjKZhJtvvlkAILz44otdtunpb7tq1SoBgGAwGIQff/yxy//96U9/EgAIr7/+uqyxWVNYWCgYDAYhODhYaGhoULwfhlELDvEwTB88+OCDMJlM+OCDDwAA+fn52Lp1K+666y74+fn1uM3evXuRmZmJyy67DHfddVeX/1u8eDFmzZqFrKws7N69GwCFjD799FMEBgZ2C4tMnjy52z7UJioqCoGBgd2Wjxs3DldccQW2b9+OtrY2m44h95xYs2zZMowZM6bLsgcffBAAcPDgQVnjyMvLwwsvvIAXXngBf/zjHzFnzhy89NJL0Ov1ePPNNzvX+/LLL1FdXY3FixfD19cXAHD11VcjJiYGa9euRXV1tazjAsDy5cuRnJzc+Vmv1+Nvf/sb9Hp95+9LCr/85S8xf/78LstEj4fc82HNypUrYTKZcPfdd/f622aYgYQNFIbpg2nTpmHMmDH44IMPYDab8f7778NsNnc+IHvi6NGjAIArrriix/8Xlx87dgwAkJmZicbGRowfPx7BwcHd1re3bgkAfP/997jhhhsQGxsLT0/PzrySb7/9Fi0tLaioqLBp/3LPiTWTJ0/utiwxMREAZBsK+fn5+Mtf/oK//OUvePvtt3H+/HncfPPN2LVrV5cEWTHUcf/993cu8/DwwF133YXm5mZ8/PHHso4LAJdffnm3ZampqUhMTEReXh5qamok7UfN8yFiNps7k2MfeughRftgGLXhHBSG6YcHH3wQy5Ytw6ZNm7Bq1SpMmjQJEyZM6HV9o9EIAIiNje3x/8Xl4gNJXD86OrrH9WNiYpQOXRLvvPMOHnvsMYSGhuKqq65CUlIS/Pz8oNPp8PXXX+PEiRNoaWmx6Rhyz4k1ISEh3ZaJVVUmk0nWOC6//PJ+E4czMjKwe/duDB8+HNOnT+/yf0uWLMHf//53vPfee1i2bJmsY/f1983Pz4fRaOzxu16KmudDZNOmTSgsLMT06dO7easYxlGwgcIw/XDPPffgqaeewsMPP4wLFy7gz3/+c5/ri16QkpKSHv//4sWLXdYT/y0tLe1x/d72o9fr0dra2uP/SZ2Nt7e344UXXkBMTAyOHj3azYDoTcBMLnLPiSMRvSeZmZldkmatOX36NPbu3YsZM2ZI3m9paSnS0tK6LRfPiSO/u/id2XvCaAk2UBimH0JCQnDrrbfi448/hr+/P+64444+1xe9K73N1Ldv3w4AmDhxIgBg+PDh8PPzw/Hjx2E0Grs9qHrbT2hoKE6ePIm2tjZ4enp2+b/Dhw/397UAUPVQTU0Nbr755m7GSX19fWdoxhqDwQBA3mxd7jlxFC0tLfj444+h1+s7JeovpaioCFu2bMF7770ny0DZsWMH5syZ02VZTk4OCgsLMWjQIEneE3tQXFyM77//HsHBwVi8eLFDxsAwPcE5KAwjgZdffhnr16/Hli1bekwotWbmzJlIS0vD7t27sXbt2i7/t3btWuzatQvDhg3DrFmzAACenp646667UFdX1y1J9vDhw/j00097PM7UqVPR3t6OVatWdVm+evVq7NmzR9L3ioqKgp+fH44cOYL6+vrO5W1tbVi+fHmPuSehoaHQ6XQoKCiQdAxA/jlxFF999RUqKyuxcOFCrFy5Eu+//36315o1a+Dv7481a9Z0hq6k8M477yA/P7/zs9lsxh//+EeYzeYuuS4DjZgce88993QmBDOMFmAPCsNIICkpCUlJSZLW1el0+PDDD3HVVVdh8eLFuPHGGzF8+HBkZWXh66+/RmBgID766CPo9Zb5wauvvopt27bh7bffxuHDhzt1UL744gtce+212LBhQ7fj/O53v8OqVavwm9/8Btu2bUNiYiKOHz+Offv24frrr+8mMNcTer0ey5Ytw1//+leMGTMGN954I1pbW7F9+3ZUVVVh3rx5nd4NkYCAAEybNg27du3CXXfdhWHDhsFgMGDRokW9inspOSeOQAx1LF26tNd1goKCcNttt2H16tX45JNPOoXe+mPmzJkYP348Fi9ejODgYGzZsgUnTpzApEmT8OSTT6oyfrlYJ8ey9gmjNdiDwjB2YNq0aTh06BDuvPNO7Nu3D3/729+wd+9e3HHHHTh06BCmTZvWZf2IiAjs2bMH999/PzIzM/H222/j+PHjePfdd/H73/++x2OMHDkSP/74I2bOnIlvv/0WK1asgLe3N/bt24dJkyZJHutLL72Ev//97/D19cV//vMfrFu3DpMnT8bBgwd7Nco+/vhjXHfdddi8eTP+8pe/4LnnnusxHGTLORlozp49ix07diA6Oho33HBDn+uKVVzvvfee5P2/9dZbePbZZ/Hzzz/jnXfeQXl5OZYvX46ffvpJskib2mzZsgX5+fmcHMtoEp0gWMkoMgzDMAzDaAD2oDAMwzAMoznYQGEYhmEYRnOwgcIwDMMwjOZgA4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTSHUxoozc3NyMrKQnNzs6OHwjAMwzCMHXBKAyU/Px8PPvhgF9lohmEYhmFcB9kGSmNjIz744AM88cQTuO666zBnzhxs2rRJ0cHfeOMNzJkzB0899ZSi7RmGYRiGcU1kGyhGoxGrV69Gfn4+hgwZovjAmZmZ2LRpE7y8vBTvg2EYhmEY10S2gRIeHo7169fjyy+/xG9+8xtFBxUEAe+88w4WLlyIsLAwRftgGIZhGMZ1kW2geHl5ITw83KaDbtmyBbm5uZ0NtxiGYRiGYawZ8CTZxsZG/Pvf/8bdd99ts6HDMAzDMIxr4jHQB1y9ejW8vb1x++23S96moqIClZWVnZ+5eodhGIZhXJsBNVAKCwuxdu1a/PnPf5aVHLthwwasXr3afgNjGIZh+sVkMqGtrc3Rw2A0iqenJwwGg2r7G1AD5Z///CdGjx6NuXPnytpu0aJFmDlzZufn/Px8vPzyyyqPjmEYhukJQRBQUlICo9EIQRAcPRxGo+h0OgQHByMmJgY6nc7m/Q2YgXLkyBEcOHAAL7/8Mi5evNi53GQyoaWlBRcvXkRQUBD8/f27bRsREYGIiIiBGirDMAxjhdFoRE1NDSIjI+Hv76/Kw4dxLQRBQENDA8rLy+Hr64uQkBCb9zlgBkpZWRkA4Nlnn+32f+Xl5Vi8eDF++9vfyspNYRiGYeyLIAgoKytDUFAQTxSZPvH19UVLSwvKysoQHBxssyFrNwOloqICDQ0NiI+Ph4eHByZOnIhXXnml23p/+9vfEBMTg3vuuQepqan2Gg7DMAyjAJPJBJPJhKCgIEcPhXECgoKCUFtbC5PJBA8P20wMRVt/9dVXqK+v76ys2bNnT6eH5JZbbkFAQABWrFiBzZs344svvkBsbCyio6MRHR3dbV//+7//i9DQUMyePduGr8EwDMPYg/b2dgCw+WHDuAfi76S9vd0xBsoXX3yBkpKSzs87d+7Ezp07AQALFixAQECATYNiGIZhtAXnnTBSUPN3oshAWbNmTb/rPPPMM3jmmWdU2RfDMAzDMO7FgCvJMgzDMAzD9AcbKAzDuCcNDUBHfgXDMNqDDRSGYdyPykrgm2+AjRuB4mJHj4ZxY1paWvDUU08hLi4Ovr6+mDZtGrZu3Spp2zNnzuC2225Damoq/Pz8EBERgTlz5uDbb7/tsl59fT2ef/55XH311QgLC4NOp5Oszv7KK69Ap9Nh9OjRcr+azbCB4ghMJqCpydGjYBj3pL4e2L6dDJOcHODrr4E9e8ijwjADzJIlS/CPf/wDd911F9555x0YDAZce+212L17d7/b5ufno66uDvfddx/eeecdPPfccwBIfX3FihWd61VUVODFF19ERkYGxo0bJ3lsRUVFePXVV3sUUB0IdIIT6hZnZWXhwQcfxHvvvYe0tDRHD0caDQ1AaSlw8SKQlwfodMC11wIqqO0xDCOR1lbgxx+B06eBoUMBDw+gpoauy7g4YMoUYMgQQMV+Is5Oc3MzcnNzkZKSAh8fH0cPx6U4ePAgpk2bhr/97W944oknAND5Hj16NKKiorB3717Z+zSZTJg0aRKam5uRmZkJgLw01dXViImJweHDhzFlyhSsWrUKS5Ys6XNfv/zlL1FeXg6TyYSKigqcPn263+Or+XthD4q9MJuB8nLgzBlyI//3vzRT278faGwELlwADhwgbwrDMPbHZAL27qVrMjWVjBOAJgnDhgF1dcD33wObNwMduk6Me5Camoq777672/J58+bh8ssvt9tx165dC4PBgF//+tedy3x8fPDAAw9g3759KCwslL1Pg8GAxMRE1NTUdC7z9vZGTEyMrP3s3LkTa9euxdtvvy17DGrByjtq0txMXpKSEnIdV1WRMeLtTTfB1FTLzCwoiGZxCQnAqFEOHTbDuDyCABw9Sq+EBLomrTEYaHlzM5CVBRQVAePHA2PHAr6+DhkyMzDU19cjLy8Pv/nNb7r938mTJ3HnnXf2uF1bWxuMRqOkY4SFhUGv7+4POHbsGIYNG9ZNpXfq1KkAgOPHjyMxMbHf/Tc0NKCpqQlGoxEbNmzApk2bsHjxYklj6wmTyYTf/e53WLp0KcaMGaN4P7bCBootCAJQXU2zrcJCehmNNFMLDAQiIgA/v5639fMjI2XfPiAqCoiMHNixM4w7kZlJ11pEBNCXkKSPD4V+KiuBnTtpojFlCk0uenjAMM7P6dOnIQhCt9yMoqIiVFVVYezYsT1ut2fPHsybN0/SMXJzczFo0KBuyy9evIjY2Nhuy8VlxRITuB9//HH85z//AQDo9XrcfPPN+Ne//iVp257497//jfz8fPz444+K96EGbKDIpbWVDJLSUrp5VVRQfomHB3lJBg2yuI77IzoaOHeOwj5XXw14etpz5AzjnhQUkLHh6wuEhkrbJjycrucLF4DvvgNGjgQmTaLljIXJk8ljrAViYoDDh2VvJuZVXGqgnDhxAgB6NVDGjRsnudqmt/BKU1MTvC/15gGduRtNEospHnvsMdx6660oLi7GmjVrYDKZ0NraKmnbS6msrMSf//xnPPfcc4h08MSZDZT+EASgtpYMkuJiSnCtqSEviZ8f3cTi4ynpVS46HZCcTC7luDi6ATIMox7l5VSx09pKkwc5GAxAUhKFaU+eJENn4kQKyfbwUHFLSkrIiHNiTp061WOvuJMnT0Kv1/daXhsaGoorr7zSpmOL3X8vpbm5ufP/pTB8+HAMHz4cAHDvvfdiwYIFuOGGG3DgwAHZ0vPPPvsswsLC8Lvf/U7WdvaADZSeaGsjz0hpKZCbSx6Tujq6YQUH001LLW+HtzfNyg4dAmJjyVBhGMZ26urIOKmspMocpfj5URJtRQWwbRuQnU1hn+RkZRMTV0Jm4qVdUTiW06dP91h6e/z4caSmpvZaYtva2oqqqipJx4iMjIShh8qw2NhYXOjBwLt48SIAIE7h8+DWW2/FQw89hLNnz8qqdD137hxWrFiBt99+u0t4qbm5GW1tbcjLy0NQUBDCwsIUjUsubKBcSlkZlSFWVNCsy9eXvCQxMfaLQUdEAOfPU4z8uusoDs4wjHKam4EdO4D8fMopsdWQ0OkoTywkhBJoN2wAxowBJkxwb6kABSEVrXHq1KluCaVmsxk//fQT5syZ0+t2e/futTkHZfz48di+fTtqa2u7JMoeOHCg8/+VIIaGpCbxily4cAFmsxnLli3DsmXLuv1/SkoKli9fPmCVPWygXEpDA2kiJCcPrBs3OZmMlCNHgJkzB+64DONqmEwkvJaeDgwerK6miacnkJJCYm+HD5OHdfJkYMQIziFzQsrKylBeXt7psRD55z//iYqKij4rWNTIQbn11lvx5ptvYsWKFZ06KC0tLVi1ahWmTZvWWcHT2NiIgoICREREICIiosv4o6Kiuuyzra0NH330EXx9fTFy5EhJ4xMZPXo01q9f3235s88+i7q6OrzzzjsYPHiwrH3aAhsoPaHTDXyM2dOTQjzHj1NOi9x4OcMwlDN26BBw7BgZ/V5e9jlOQACQlkZh4B9+sIR9EhLsczzGLpw6dQoA8MMPP+CRRx7B8OHDsX//fmzZsgUAcOTIERw4cADTpk3rtq0aOSjTpk3DbbfdhqeffhplZWUYMmQIPvzwQ+Tl5WHlypWd6x08eBDz5s3D888/jxdeeKFz+UMPPYTa2lrMmTMH8fHxKCkpwaefforMzEz8/e9/R4BVxdq//vUv1NTUdIZuvv32WxQVFQEAfve73yE4OBgRERG46aabuo1T9Jj09H/2hA0ULRESQmXL+/aRO9lB8sIM47ScOUNVcdHRvZf4q4VOR6HfsDAKJRUXW8I+gYH2PTajCqdOnYLBYMDnn3+OZcuWYdWqVZg9ezZ27NiBm266CcePH4ennT1jH330EZ577jl8/PHHqK6uxtixY/Hdd9/1GV4SWbx4MVauXIl3330XlZWVCAwMxKRJk/D6669j0aJFXdZ98803kZ+f3/l53bp1WLduHQDg7rvvRnBwsLpfTAVY6v5ScnOB9espbu0ITCbg7Fmajc2dy0l4DCOV3FxSgfX0JANloDEayUiJiaHrd9gwl5DMd2Wp+6VLl2Lnzp04e/aso4fiMrDUvStjMACJicCJE6SRwjBM/5SWAj//TC0mHGGcAFThl5ZGjUA3bgQ2bdKORgjTI6dOnZKdp8EMHGygaJGAAMqB2bePNFcYhukdoxH46ScKj0qQBbcrej1JBSQnkyf0m28o+Z3RHIIgID09nQ0UDcMGilaJi6OSZ24oyDC909REWicXLpAcvVZCot7eFCZuaaHE9/Z2R4+IuYTc3FzU19ezgaJhOElWq+j1JAh3+jRV9fSiZsgwbkt7O7BrF4VC1S4nVou4OOrRVVBABhSjGVJTU+GEKZhuBXtQtIzYUHD/fpLsZhiGMJvJu3jypLrKzmrj7U2TjdOnacwMw0iGDRStEx1NMfb9+0mCn2EYMkwOHiTtIHuXE9tKTAz18OrQnGAYRhpsoGgd64aCJ086ejQM43jOnyel2OBg8jBqHT8/yiNLTychOYZhJMEGijNg3VDQqoETw7gdxcVUTqzXk5ihsxATQ2qzXHbMMJJhA8VZiIigioV9+6gRGsO4G9XVVLFTX+98kvIBAXTdpqc7eiSK4YRSRgpq/k7YQHEmkpNpFnbkiKNHwjADS0MDGScXL1KzPmckOpq0UZws4d3Dg4o927lUmpGA+DsRfze2wGXGzoTYUPDYMW4oyLgPbW3A7t2UezJkCIV3LiGnQIcjp/R2zyP39AQmjzEjJUnBLDE4mAyszEynCk8ZDAYYDAbU1tYikHsMMf1QW1vb+ZuxFTZQnA1uKMi4E2Yz/dZPniTPSS/lxEdO6WGsHQCRtibg8Ck9UpIUiidGRZGBMmYMXctOgE6nQ1RUFC5evAhvb2/4+/tDpxVBPEYzCIKAhoYG1NbWIjY2VpXfCBsozkhSErmKDx7khoKMa3P8OHD4MHkM+2g8JnpOdDoBvv31JxMEjDz5JaJKTiNr1CJcTJgsaShNzYAg6Gzz0oSGkoGSlQVMm2bDjgaW4OBgNDU1oaKiAuVOFqJiBg6dToeQkBDVOiOzgeKMWDcUjI+nrqkM42pkZVE5cVgYIDG04OsD3HlTP96N778HjnwIAIi7cAS4/npgyRLAy6vPzT772oDGJknD6B2djhLez5wBRo2i5FknQKfTITY2FlFRUWhjPSamFzw9PVUJ7YiwgTLQ1NQAp05RFYItyX4BAbSvffvIbewk7mKGkURREbBzJxkN4eHq7TcnB1i5suuy776ja/Lxxwcmrys8nIyvc+eACRPsfzwVUSu3gGGkwFU8A0FtLbBlC/DcczRT+9vfgCeeAHJzbdsvNxRkXJHWVjJOGhvpN64WTU107YnVKGPGWLwm+flkoGzYYH9Jer2eQj2nTtGYGIbpEfag2Iv6epKn372bQjGXGhBtbcB//gO89pryHBJuKMi4IoWFJGimpjdDEIB336WuxwBVA73wAlXVvPkmSdG3tQHvv09l/MuXU2jJXkRGkgclO5uvW4bpBfagqEljI2k1vPQScO+9wD//CRw92tU4iYmx3PjS02mmaAvcUJBxJQSBwh96vboNAH/6iRRoAcDXF/jjH2n/SUlkoNx4o2XdY8eAZcvIM2kvDAYK0546RR4jhmG6wR4UG8k914LSjYcQf24X4i4chsHUPYGswT8S+SmzUZA6B1XhQxBbdATztj4PAGj8f6vwXdl0tHv23fCsT/2F6Giaje3fD1x9tXY7uzJMf1RUULglKkq9fRYWAv/+t+Xzo4+SnpCIlxfwwAPAxInA229TGX9tLfDKK3Q9PfAAtZtQm+hoCvPm5gJpaervn2GcHDZQlNDSQm7gXbuQeOAwUtpbuq3S4BuOnKTZyEmag/LwNEsYpxnIjpiC1PjpSL6wH35NVRh+6HMcnPBA38fsS3/BuqFgXBwwaZIKX5JhHEBODqnGqiVl39ICvPEG/QsACxYAc+b0vO6ECcD//i+9RO/J5s0UQn38cQAqV8t5elLp9MmTwODBgArKmwzjSvAVIZXWVgrX7N5N+iMd/XCsT2CTbwgKBs1CQcpslEePBHQUQSPfSFfPx/HLliJh/REYTG0YdfYbFIy8CrUhiT0eWpL+gnVDwdhYdZMLGWYgaG4mjRA1K9JWriSPDEDhnAcf7Hv9oCDgmWcoqf399+m6LyoC/vhHDJ9wL44OvhmAirpD0dHk4cnPJyOFYZhO2EDpi7Y2EoravZtmVI2N3VZp9glCbsJMXBg6G1f+egTSDAaQs1YA0FdlTRTgcQvw+ecwmNtxfc6/gb/8pceEWcn6CxERJAe+dy9pO/QhbMUwmiM/n0I8aj2od+8mDwhAYZwnn5QWqtHpKLQzejTlp+TkAO3tmHjoA0QXHMHBuX8AEKrOGL29Kd/mzBmSHehBxp9h3BU2UC6lrY1CJZs2UU5HfX33dQICgMsuA2bNwvrcCWho8YCfrwAYZJb63nILJe+VlZEhtH8/7dcWrBsKzpxp274YZqAwm8l74ulJCaS2UlIC/Otfls+//jV5UOSQkEBlyZ9+CqxfDwgC4ktP4NqvfwukPArMmGH7OAHyeObmkqdG7hgZxoVhA8Waxx4DPvqIkuQuxc8PmD4dmD0bGDu2MxFVyLfhZurtTQl4r71Gn1eupEQ9WxLyPD2pUogbCjLORGkphTqio23fV1sbGRaix/Pyy4GrrlK2L09P0i6aMAGNr70Nv8ZKeLfUAX/9K+1z6VKqCrIFX18y0M6cIYVobl3BMADYQOlKfn4X46TNwxdFydNQkDIbF+MnwWzwBApBrw6amm085vTplJx37Bh5Ur76CrjzTtv2KTYU3L+fclH6kfBmGIeTnU05KH59V7NJ4uOPqaoNIO/Eb35j+0N/3Dhs/MX/YdLO/0VK4R5atnUrGRWPPw4MHWrb/mNi6BxcvMj5YwzTAQc8rVm8GO0e3shJmo0fZ/0PPvnFZ9g29Umci7wM9a1eaGzSdXsJAt34FFf26nSUuCe6tb/6itzTtpKQABQXk9uYYbRMQwM1v1RB0j6u8CDw9df0wcOD8k7UMHoAtHoHYtvMZ7B/1mOW/K7iYjrGl1/apuYcEEAJuRkZqoyVYVwBNlCs+cUvsOmRddg/9wmUDZsB70Av+PkK/b6CgwRMHmODPHZCArBoEb0X1SxtxdOTEu7On7d9XwxjT/LygKoqm5Vb/RorMH3nW5YF99+vfmWMToecYVeRXorYpNNkIq/Ns8/aJpYYHU2GGgsuMgwADvF0xdsbNzw2ghLibHXZymXxYmDHDrpRHzxILeYnS2sD3ysREZR8V11NvT8YRmuYTOQ18PW1qYJFZzZh7t7X4dNSSwumTaNKNnsRF0d5KJ9/Dqxda8khWbYMeOQRylWTS1AQhXgyMkgKn2HcHPagaAU/P5rxibz3HvoWPpFAUBApYoo6EAyjNYqLqT+Ojcqxo49/htjyM/QhMpIMBXsnm3p4AHffTYqzokHR0EAJum+91aMsQb9ERlI1U0+J+gzjZrCBoiXmzAFGjqT3Fy9aYulK0emAwEC64YkdXBlGS5w/T79NWzR7TpzA6ONfAADMOj11Cg8MVGmAEhg1Cnjnna4Ktdu3U1VgZqa8fYWGAkYjhXoYxs3hEI+W0OmAhx4Cfv97chmvWQPMnQsgRvk+IyIoUba4mDUWGG1hNJKBYks4o6YG+Mc/oOtQaj458R6MHzFCnfH1QlMziSd2JRgY8hQG6aZiyt7/g2dbE1BSAvNTf8KeuU+hMGWW5P176oZjcns2UkaOHFhDi2E0BntQtEZKCnDttfS+pQVYtcq2/Xl7U5w/J8f2sTGMmuTlUShDqbS92UyhlI5wSFHMBKSPvVW14V2KWKknCN2r+cRXetwV+Orq/0NpBBlJesGMcYdWobFR6HWbS1/GRg8cPutrKZVmGDeFDRQtcuedQHAwvd+9G9HFJ2zbnyiBX1dn+9gYRg3a2oD0dMqTUporsn496QcBaPINxY7pT3T2v7IHk8eYERzUf1WfOTIaP13/OkpjxgAAgupLkFp9TFJFoE5HnqA2eACnTinLY2EYF4FDPFokIAC4917qqgpg0v5/I2/hvwAoVK0NCaGYdkEBxcsZxtEUFZHej9KwY2YmlfYCgE6HvZc/gSbfUPhd0pRTTVKShJ67ifdGzHXAX08BAK6o3Qg8Oq7fTTr7bukNJNyYk0M9gRjGDWEPilaZP79TZyGkpgCjzn6rfF96PVUJZWWRW5xhHI0YvlCiclxfT5Uy4m/5tttQGjdetaGpxtSpFm2XAweAykp52wcGAidOUKiXYdwQNlC0il5PCbMd7u+Jpz6BT2OV8v1FRFA5pxoqtQxjC5WV5BlQkhwrCMA//2kRMxs5ErjjDnXHpxYeHsCVV9J7sxn48Ud520dHUzVfbq76Y2MYJ4ANFC0zdGhnkzOv9iaMP7xa+b78/Ggmxjc7xtHk5ZE+T1CQ/G2//556TAHkYXjiCXW6H9uLhQstAnRbtsiTw/fwIAG7U6dYJoBxS9hA0Tr33osWrwAAQOr5bZRYqJSwMMpFaWpSaXAMI5OWFlJKDQ2VnxybnQ188IHl8/Ll5BnUMpGR1KEcACoqgKNH5W0fE0NdnvPyVB8aw2gdNlC0TlAQTk66x/L5P/9R3pQsLIyk9AsK1Bkbw8iloAAoLZVvWDQ2Ut6J6ElYtIhyPJyBa66xvN+yRd62Xl7kSTl9mvPHGLeDDRQn4HzaNagISaUPubnyb3IiBgOJOZw7R7F8hhlIBIEStT086CVnu3ffJbFBABgyBLjvPvuM0R5MnGgxyA4flt8MMDaWPCiFhaoPjWG0DBsoToCgN2Df5N9YFnzyCcXwlRAZSbPYigp1BscwUikro75QcvvubNtGjTQBysn44x8tqmnOgMEALFhA781mYOtWeduLbQBOn+aJBeNWsIHiJJRGjkLu4CvoQ329RQNCLgEB1NCMY9rMQJObS/lPAQHStykspLCmyG9/Sx4FWxG7KOfmDkzo5KqrLMmyP/wgP0wbE0OVT6IXiWHcADZQnIhjU+6nGSRAN7nz55XtKCSEXO2traqNjWH6pLGRDAJRF0QKLS3AG29YdEAWLABmz1ZnPIWFQGIiEB5OIU97Xwvh4Zacmaoq4NAhedv7+9MYbUmSZxg5mEwOL6hgA8URKPzDN/uFWTQfBIFmlkpmf+Hh5G4vKpK/LcMooaCA9E/kGCjvv08hIQBITgYefFCdsdTV0fUzfTpw3XUkiJidTZ5Je3L11Zb3mzbJ3z4mhiYlZWXqjYlheiM9Hdizx6FDYANlIKmrIzdtdjbdeJVYp9dfTzM/gLwg27fL34enJ7mblXpgGEYOZjN5T3x8pGuW7N5tSQb38qK8E29vdcZSVASMGwcMGkTexAULyLtx8aJ9c7PGjyfxNQA4fly+aGJQEIVnMzLUHhnDdMVspnYSDu4FxQaKvWlroxtfZia1lx88mEokR4xQFk/28AB+/WvL59Wrlc38IiIo/t7RCZZh7EZJCYVUpCrHlpQA//qX5fNDDynv2XMpxcVAXBwwaZJFh8XHB5gzB5g3jyYNBQX2SUbV60m4DaD9K6nGi4qie0mVDarSDNMfJSX03HIwbKDYA0GgB/+5c+Qp8fcHrrgCuO02cikPHQqMHUs3LCUW6rhxwIwZ9N5oBP77X/n7CAqiSiDRhc4w9uL8ecqf8PPrf12TifROxOvi8sstcvG20tBA+SzTpnVP1NXrgQkTSLMkIIDGbA/11vnzLV6kH3+kCYwcQkLouj17VvWhMUwnBQWaMILZQFGT5mZyH2dl0fsxY4CbbgJuv51mbBERlllbQgIZKhcuKDvWAw9YGq19/738qhydjqTCMzJYRpuxH3V19DCVKsx24oSlkWBcHPCb38hXnO0JQSAvzqhR5MXsjZQUmkQkJ9M41HZxh4ZS7gtAk4sDB+Rtr9PRuTxzRrnUAMP0RUsLXbNqXHc2wgaKrZhMFLfOyiL3cUQEJcMtXkylhSkpPWs26PXkRfHyUhaiiYwkwwegeOGKFfLd0hERpOrJpYuMvcjPJ29iaKi09UW9EwC4915pXhcpXLxI18yUKZZy396IiCBPyoQJZNSoHQa1TpbdvFn+9mFhlHAsGnIMoyYXLtAzTeo1a0dkyDkSjY2N+Pzzz5Geno6MjAzU1dXh6aefxjXWcs69cOTIEWzduhUnT55EeXk5wsLCMHHiRDzwwAOI0HpPjUtpaCBFyNZW+kNOnQqkppJGg9REwLg4qiA4dYr+lctNN5GbuKSERJx27aJYulS8vcm4yclRL8bPMCImE1UC+Pv3bxQANHMTGwH6+QGTJ6szjuZmmgTMnk0hEin4+VFOSnAwjamxka5XNWaVY8fSvoqLgZMn6YEQHy99e72e7jmnT1Mum1pGHMMA9DzQ6TQhhijbg2I0GrF69Wrk5+djyJAhsrb997//jWPHjmH27NlYvnw55s+fj+3bt2Pp0qWorKyUO5SBp72djIHMTJrBJCWRO3jxYjIMEhLkdVbV6ehm5eurzF3r5dW19PKDD+RXBoWHU7y9rk7+8RmmLy5coIewVOXYw4ctv9/LLrOEMG1BEMiLM3IkkJYmb1sPD/K4XH013ayzs5X3wbJGp7MkywLKkmUjI6ncODvb9vEwjEhtLRVPhIc7eiQAFHhQwsPDsX79eoSHhyMzMxO/tq4o6YdHH30UY8eOhd5qNjV16lQsW7YM69atw4Nq6RyoiSDQw7u8nLwNERFkjAwaRDdeW2dUMTE0CzpyRFn7+SlT6HXoECU1rVkjr09JSAjFGwsKKD7PMGpx7hxdM1LLg63DO5dfrs4YysvpNz5lirzJg4hOR97NoCAa37lzFLa1teR5/nxSg25vJyn/u++WZ5AZDDSmEydofGqUYDNMURHlRg0dSlECByPbg+Ll5YVwhdbV+PHjuxgn4rKgoCDka62apLWVZn9ZWWSgpKVRefDixVQFEB2tXhLR6NFUOaA01r10qaX52jffyBNg0+vJRZyVxd1SGfWoqaHZvdTQbX09eVAAMijGjLF9DK2tdE1Nniy/e/KlxMQA115LRnxuru0JqkFBwMyZ9L6uDti7V/4+oqLIo5uTY9tYGAawNPP08ZEWkh0AHD6KxsZGNDU1ITg42NFDsSBm/AcFUYnj7bdT0tyQIfaZqURGkgu6tFSZ/kJsLHDzzfS+vR147z15+4mMJKNGrnAUw/RGbi7NxKTmfOzbZ6kmmz1bmbfjUvLzybuglmcwMJAS32fMIM+MrdeLrcmyHh4UHj51Sn65MsNcSnm5pdBDI8gO8ajNl19+iba2NlxxxRW9rlNRUdElR8Wu3paQEIp/JyRQIpuctvC2MHq0RYBJiYfqtttIVba8HDh2jMoXxXLG/vD1pdlmbi59Z4axhbY2Kl8PCpLuZdy50/JejfBOZSUl506dqm6yn6cnGSghIaR2m5tLJclKZpwjR5IqdGEhJRMXFABIkbePmBgyxPLzaQLFMEopLKQcMH9/R4+kE4caKMePH8fq1asxb948TJo0qdf1NmzYgNWrVw/MoEJDLSJoA0lYGBkpe/bQ+x5u7E3NwGdf9zaz9EPimAcx+6dXAQD1/3wf3xdNhslDosfHPByeWVWYbM5HyuxkhV+CYUA3upISytMCkFOgw5FT+l4n+T6NVfjFiZPQAagLjMW3Z4YD6fLCp03NVh/a2shQnzuXHuBqo9ORV+bSvBS5Sb06HXlR3nuPPm/ZAkQ+LG8fXl5kHJ07xwYKo5y2NgrvBAY6eiRdcJiBkp+fj2effRapqal46qmn+lx30aJFmCnGazu2ffnll+09xIFn1CiaSVVUdJEF9/QE0AQIgg6NfRTpZEXNRGr0eMSXHkdAfRmGHl2Lo2PulnhwA9ACHP7yHBsojG2cPUsPzQ7PxZFTehhrezc4UrJ2QQcKSZ5LmovGZuWRZ09PkCciJYUq5OxJYiJV8e3aRd7PxMTuCrX9MW8e8OGH5MH86ScYblkCwFfePiIi6DvX1EgPqTGMNRcvUlWY2OdNIzjEQCktLcXjjz8Of39/vP766/Drp44/IiLC+XRSlBAcTDfVHTsozNPhNp48xozDfcxArTk28yHErv8t9IIJ4zK+RP6ohWjy7//cNTWTAdTW0Er5KxpQEWSckIoKCntYGdji71anE+Dr032TYYU/d74vTpsDP19lfXA8PYHJqXX0Zvr0galsCQ2lZoNBQcDRo/RZzr0qIIBybrZtAxoakJS7C2cSFsgbQ1AQPWAKC9lAYZSRl0cl9GqU9qvIgBsoRqMRjz/+ONra2vDWW2+5h+EhhxEjSICpvLyz82lKkoCUJKn6C/GA6Xrgm29gMLXhF34/Azf9ot+tPvvaQN4Zk4mOLVW7gmGsycmhipyEhG7/5esD3HnTJb/j4mLgg46+MqmpuH5JPACFWiMmE3CuABg/o8fj2w2x2WBwMCX7FhTQTFSqkb9wIRkoAIZmbpZvoOh0VIl39ix5YTVSgcE4CY2NpIWlEe0Ta+z2S66oqEB+fj7arfq8NDU14cknn0RFRQXeeOMNJGrMnaQJAgOpLXt1tXJRKGsRqD175G0rCPL7+jAMQIqtmZnyZvHWybFyVJB7orCQDJOJE23bjxIubTZ47pz0HldpaZ35OhHlmQirVlA2HBFhcdMzjByKiuh5o0HvmyIPyldffYX6+vrOypo9e/agrOPCuOWWWxAQEIAVK1Zg8+bN+OKLLxAbGwsAeOmll5CRkYFrr70W+fn5XapxfH19MXv2bFu/j2uQlkalg2VlVEIsl4QEuuHl5dGsqqxMukdEr6Ntxo1j8SdGHgUF5H1LTZW2viB0FWez5fqvq6P9TZ9OVWmOIiWFJhli8mxycv9S9GKy7L//DQAYfn4Tjsc9Iu+4fn5UgVFQYJ/EYMZ1OX+eqlXVKO1XGUUGyhdffIESKw2AnTt3YmfHTGjBggUI6CVR7Pz58wCAjRs3YuPGjV3+LyYmhg0UEX9/8qL88AMZFkp+ODNnWjwhe/YAv+g/zAMA0BvIoCkq6rvrK8NYI4o8eXpKL83PybF08x41qkveiizMZvq9TpvW6YlwKGKzwd27qddOXFz/1RFz5wKrVwPNzRiS9xNOX3Y/AJn5AKIq9IQJmuijwjgBVVVk1Go01UKRgbJmzZp+13nmmWfwzDPPyN6O6UD0opSUyGskJjJzJvDpp/RejoECkLv6/Hk2UBjplJbSjU5O7pJa0vbFxWQETJqkneRuPz/giivIUDh2rH8Dxc+PQlw//ACv9iYk5+wAcJW8Y4aFUZiruJg8NwzTH0VF5H3UqP4VZ1NpFR8fmgnV10uPZVsjhnkAS5hHKhER5H2pqpJ/XMY9yc6WJ/JkMlnyTwwG5dpDjY3UBXnaNPklvvbGw4PCXTqdNKVXK2XZIZmb5B/Py4u8SZxDxkjBbCavZ0CAdgz7S2ADRcsMGULek4sXlW0/a5blvZxk2aAg6jVSUKDsuIx70dBAN7qwMOnbpKdbDOCJE5U1yhQES5NLrXr7YmPJ4JfSrX3IEFRGDAUAhFeepxwWuYSFkbGogUZvjMYpKaFni0bDOwAbKNrG25u8KE1NynptWInbyTJQdDpySWdkKPPeMO5Ffj4ZG3IMFDWqdy5epLyVKVO0W1rr5UWdYY1GSaufT7vG8mHLFvnHCwmhv4WY28MwvVFQQAKBPj2IE2kEjV7VTCeDBwNJSRRXlkt8vG1hntJSZcdl3AezmUqLfX2lJ3O3tVkMZm9vCs/IpbmZwp9Tp2qyPLILiYlkqLS09LtqfuoctHp0VCHt2CHfE2IwUN5LR0ECw/RISwt5PTV+7bCBonU8Pamip7VV0g2uG0rDPN7e9PDhVu5MX1y8SIl2cipwjh0j4wKgsmC5MzhBIK/NyJGUTK51YmLo/EgI87R7+uJ8Skfj1JaWronEUhGl7zmHjOmNCxfo96hBcTZr2EBxBlJSyBOixJuhNMwD0I/3/HnK8maYnjh/njwicrRHrB+6SsI75eU085syRZPaDd0wGMiQqq2VtHrm4GstHzZtIoNMDoGBdM0WFcnbjnEfsrMplC9VEsBBsIHiDHh4kBfFbCbXthzi48nAASjMU1oqfduQEFIY5GRZpidqaymRU84srKkJOHCA3gcGUo6VHFpb6Tc5ebKmk/u6kZBApcQSQjZVoSkojxpOH/LzyRUvB52OqqmysuiewTDW1NZSpZfGvScAGyjOw6BBVLKoJPnN2ouyd6/07fR6uqlmZPCNjumOmBwbGip9mwMHyMgA6HcpdwaXnw8MG0aVO85EZCRV9Eip5sElybKbN8s/Xng4VWnImZAw7kFREXW+Dg529Ej6hQ0UZ0GvJ/l5nY60H+RgS5gnMpJCS1bKwQyD9nYqFQ4MlFdBY129I1ecrbKSPANTpzqfUqpOR4ZVY6OkkE1BymyLpszu3ZacHan4+ZG3lb2fjDWi4rOvr3Yr36zQ/ggZC4mJpI0iNxfFljCPry/NeHNz5R2TcW0uXLCU+UrEu8kIHD1KHyIiqHO3VNraKPdk4kTn7TUTH096LxJyukwe3qREC9D199NP8o8XEkIhONFjxTDl5fT8cJLwKBsozoToRfHwkD+jUhrmAUjfIitLvueGcV3OnqXZmIyGkol5uy2hwjlz5M3gCgrIyB47VuZANURoKBkpEsM81sqy2LxZfrJseDhJC7BUACNSWEj3camKzw6GDRRnIz6eKgLk3nRsCfOEhVGuQWGhvO0Y16SqisrPZc7CBuUo7L1TU0MhnenTnb/D9pAh5A2SktOVmGjJtSkqAs6ckXcsMQzG0vcMQL+7zExlqs0OQts1Rkx3dDpgzBhy3dbWSv+xiWGe3FxLmCc6Wtq2BgMJTWVlURxdo30bmAEiL4+UUWNjJW8S0FCKqNKOB2xiovSuwyYT5T/NmEGVMM5OQgIlJxqN0pKLr77aYphs3gyMHi3veGFhVAo+ebL2ehUxA0bO/os48t90tNUEAh4hACTcw00JgMEAvwN7cNMrM/tf3w6wB8UZiY0Fhg+X36PHljBPZCR5UMrL5W3HuBZtbVTVFRwsy1BNzb8kOVbqtoWF9FCXW46sVQICqNOwVBG1GTMsk5C9eyVrqXQSEkLGEGuiuDVH1p6DsbwVjW2eaGzSo7FJ1/+r1YP+NSoQCFUJNlCclTFjKI5YUyN9G1vCPAEBpGHB7mL35sIFymuQoxwLYHD+z5YPUsXZ6uoo72L6dKpKcRVSUynEYzL1v66nJzB/Pr1vbwe2bZN3LGvpe7k5LIzL0NZEvdx0EODnK/Hl1U7/BjsurMohHmclKoqkvg8elN5PwZYwD0Cz5qwsStR19lwARhl5efSgk1HmG1ydh/CajiqwtDRpVThmM836p06VHg5yFuLjKbxTVSXN0Fu4EFi/nt5v3gzceKO8BOOICPJEVVU5hTgXYwfayRj29QXuvEmCYZyeTh67hQuBRx6x8+B6hz0ozszo0eT+ldNzw5YwT3g4hXjYXeye1NfTTFxO12IAydkKkmOLi4G4OGDSJNfLefLxoSagUr2fcXE0KQAorHvqlLzjBQTQ346vW/dFblf6H38ENmwAHn0U2LrVPmOSABsozkx4OBkpZWXS3bfWzQN375Z3PE9Pmrlxp1T3pLBQenKniCB0Vu+YdfquBnJvtLdTKeSUKSQE54oMGkTXUlubtPUXLrS837RJ3rF0OjJSsrKkhZUY16KqSt7f3WQizzxAxrT1M2OAYQPF2Rk1ih4YUrUV4uIsom3nzsmXwo6IIDc/d0p1LwSBfi+ikSqVrCwE1NNvrDR2nDTjRjSCkpIUDtYJiI2la0nqdTttmiWUe+AA9SOSQ0QES9+7K4WF8vKPMjIsydgTJshrBKoybKA4OyEhlDBbXi69X44tYZ6gIPrx5ufL245xbioqKEQgMznWWto+b7DE8E5NDRknDrwx2h1PT2DoUDLGpK5/5ZX03mSS73b38SFFWZa+dy9MJso3lBMm3bfP8n76dPXHJAM2UFyBESNohlRRIW19W8I8Oh0ZKZmZ8uOajPNSUEB5DHK0NEwmYNcuAEC73hNFyTP638Zspt+VK3tPRBITSV9IaofyBQssD5offpDfwDMkhB5WLY4rG2UGmNJSyluS6vUUBGD/fnqv15N+jgNhA8UVCAoiCfDKSmk3LTXCPKWlLKHtLrS304NNbvfTkyc7PQSF8VPR5iVBXruujvJO5FSXOSvR0fSSGuaJibHowZSVAceOyTteWBhNYpR0RGeck7w88pxJ9aDk5Fi0rtLSHC7uxwaKqzBiBN3sysqkrW+LJoqXFxlCnCzrHhQXk0Eqt0R1h6V6Jzt5rrRtamrIgHaCVvA2YzCQMrOE5oGdXNqfRw5iaTg3/nQPWlpoAionqV30ngCWyjEHwgaKq+DvTz+o6mppGdvWYR65BgpAXpScHPnKlozzkZdHvyk52jctLZ2x7FZPPxTGTZG2XVOTxbvnDiQk0LXb0CBt/SlTLGXehw5JD+uKhIeTgSLHKGKckwsXyDsnRxbA2kDRQGNONlBcibQ0mn1KCdlcEubxr5MZ5gkOptkuNxB0bRobFWmf4PBhMjYAFA6aCZPBq/9tGhpIMdYdwjsiERFU0SM1zGMwUC4KQF5MucmyISF03bImiuuTnU2hHQ+JeqzFxZbih7Q06QKgdoSVZF0JX19g/Hhy/ba39//DnDmz092blLcb5UNulX4svZ6Ol5FB4SU5paeM81BURF65wYPlbWcV3slLlVG9ExnpXmqnOh2FebKzu5SCNjUDn31t6HETP/PVWKRbA71gRsOGrdjgfQcEfc/rdscAmIbB83wuJi8JQcp06Q0fGSeitpY8n3KuJWvviYOrd0T4qeJqDB1KUtolJf2vaxXmScqVWc0D0MOkuFjasRjnQ9Q+8fCgmbtU6uvJgwIAISEoi5XoKq6vJ0PI3Yzd+HhKDK6r60wTEYTem7hVGKI6Q2b+DRUIzz4srflbZxM4TxhrdTj8RaYDvzRjVwoLyeCXk8tlbaBcdpnqQ1KCm90J3ABvb/KiNDT0r1JpFeYJrziLgHqZhoavL2WIc9Kda1JVReXFERHyttu3z1KCPnu2tNl9SwslcUrp0+NqhIRQyXFlJSaPMSM4qP9Gbrkjr+ncfFTuRukN4HwF6HTkqWlraHXQF2bsiiBQ1Z2fn3Rjv6qKpCMAKvGPi7Pf+GTAIR5XZMgQ+pFdvNi/nsSsWZ0GRkrhbmRH3iLvWGFhdDFMnOjawlruSGEheTXi4+VtZyXOhssvB9IlbFNTQ7+lqCh5x3IVBg8G0tORMtSElCQJqp+mccDxSKC8HPEXjuDOy4ol5+589rUBjU0gI9JkkucdY7RPeTl5tuWEdw4csLzXSHgHYA+Ka+LpSV6U5ub+xdSsyo1TChSEecLCyPrmpDvXwmSi3i0BAfJUKKuqSP8EIG/I0KHStjMagdRUWV2SXYr4eEsCqxSsk2UFQVlDN7OJw7OuSEEBJbf7S9AdEtFgeAdgA8V1SUqi+vf+pLStwjxRVWfhXyfzhmUwUI7C2bPy+j0w2kbs2yI3vLNrl+V3cPnl0oyb9nZaTyNuZYcQEEDXoZweV1ddZXHh79wp//oTQImUjOvQ1kYTCzm5J/X1lklFVBRNFDQCGyiuio8PxbWlzMisk2XzFGiiREaS1c4NBF0HUYHSx0fedtbhnTlzpG1jNJL3wB3zT6xJSSEjQ2oLibAw6sMFkEEp19gQO5NLldpntM/FixTikRPeOXzYop01bZo8j6mdYQPFlUlMpJtdfzMrqzCPomqewECywrmBoGvQ3EzVO3K1T4qLaTuAZmGJidK2q6mhdd09hykujs65nE7F1vkC1nkEUtDrSX+FW1a4Drm5ZGx4SdAdEtFoeAdgA8W1iYqSplIZF4eqcNK5CK84qywuHRRErsX+KocY7VNURA8uORLZQPfkWCmYzXRDdYfmgP3h40PJsnIMlKlTLe+tHzRS0elIg4Vxfhoa6G8px3vS0gIcPUrvg4JI00pDsIHiyoSGUg6BhDBPwSAr6fu9e+UfixsIug7Z2ZbcIqkIgkWcTacDZs+Wtl1dHeVfuHt4RyQ5mc59q8QS4MhIqtoDqPWE1F5cIuHhFBrilhXOT1ERhdnlKMCeOGEJ8U2ZormKLjZQXBmdjlztEvp8FKRYGSi7FYR5xAaCrIni3FRX0wNLbnJsTo6lS+6oUdK3d6fmgFKIjaVzJyefy5YwT3Aw5QBxFZ7zc+4c3YflGBkd/bIAaC68A7CB4vrExNBMuJ8ZWX1QHCpCO+TMz59XFuYJD6dtuRGZ81JURLPpoCB52ylJjgWoX8+gQfKO5cp4epL0fX/Vd9ZYGyhywzx6PYWWzp3jKjxnpqqKdIvkhHdMJuDgQXrv40PSFBqDDRRXJzKSXH4Sbni5iTaGeUQdB24g6JyYzaQm6e8vL5PfbLYYKB4ewIwZ0rZrbCS1Sw7vdCUxkRShO5otSlo/tqOnzpkz8sM14eHk/ZLbGZnRDqKoYmCg9G3S0y2TyYkT5SXWDhBsoLg6Xl40Q5VioCRZ5Q0oCfOIDQQzM+mhxTgXpaXkOZMb3klPt3TjnTBBuvelutr9mgNKITqajDapHY51OosXxWy29EGSSkAAhYF5YuGcKBVV1HD1jggbKO5AfDz9iPsxGmoDLdU8isM8ERGUKCs3WY9xPPn5lNUvt9zXqnOxrPBOfT3lSLlbc8D+0OtJgbe+Xvo206ZZ3iup5hGr8KRqsDDaoaRE/sRCECy/Ew8PYPJk+4zNRvjO4A5ER1u0SvqhSzXPHgWibX5+lBXOCpXORUsLqQHLqQAAqKxc/J14e3d9UPZ3PE9PS2iC6UpCAs2IpRopaWmWROOjR+n8yiE83OJBY5yL/Hz5oorZ2SToBpDYnxxZ/AGEDRR3ICiIjBQp5cYpNhooAD3ksrJYodKZEHMQ5IqzHTtmeYhOny79JunuzQH7IzycqpukhnkMBotx2NpKfxc5eHuT94TFFp0LUVRRrmaRE4R3ADZQ3IeUFElJd/VBcZZeDLZU81RUcOmiM5GdTfFruc36lIZ3jEb6Tbprc8D+0OlI36S5WXp1jS3lxoClMzlPLJyHCxfIiJU7sRANFJ1OutfTAbCB4i5ER1PCrJSbzywbvSgeHjSjE2XPGW1TW0shObnJqk1NlgdhYCAlyEpBbA4YHy/veO5GQgKdV6lVOWPHWvKHDh609FeRCncmdz5ycihnSY6oYnEx9U4DKDQo1/sygLCB4i5ERNANSErzQKvePIrDPNxA0HkoLKTfhVyxtAMHLPo6M2dKv0lyc0BpBAdTCwCpYR4vLyoXBah8NCND3vEMBnrl5MjbjnEMtbUkjCnXe2ItzmbtddMgbKC4Cx4e5FKXMhuLjbU9zBMYSA8i0VJntInZTPlCfn7yq2mU9N4BuDmgHAYPpkRkqd4QW0TbAIv0vRyhOMYxFBbS30nuxML6d8EGCqMZYmPJtS7lZmdrmEeno+TczEwuXdQy5eXUol2u9onRaGkyFhEhvckYNweUR3w8ueCleD4BYNIki9T5/v3y1WGDg2kSw2EebSMIlC8kc2Lh21hJExKA+j7FxdlpgOrABoo7ER1NRoMUL4oaYZ6ICPK+XLyobHvG/uTnWxRd5bBnj0VXZ84c6TfJ+npuDigHf3/yfEoNlQYEUNkoQFpEcsv9dTrybJ09y9L3WqasjHJJZOaNxec7j/cEYAPFvfD3J4tZymwsNpbcy4DyMI+3Nz3EOKatTdralGmfAMrDO9XV9Nvi5oDSEXsVSfVEqhHmKS626GQw2iMvj5LUZeqXJOY7T/4JwAaK+5GcLF3ESQ0vSlgYGTgSOiozA8yFC/QQklu9U15O8vYA5ZLIafbX1EQeAUY68fH0N6qulra+raqy/v7kVWPpe23S1EShc5kTC6/WOkRfPEkfoqIseYYahg0UdyMqitz5jY39r6uGgSI2EORkWe2Rm0tufLlaJJd6T6T2/xAEbg6oBG9v0kSRGuYJD6eOyAD9jZV4Pzl/TLvk59MkQWbeWNKFQ9ALHfmH06fL69vjINhAcTfCw6WXG6sR5jEYqPyRY9raor6exNmUNOqzNlDkiLOZzdwcUClJSVSJJ5Z194e1F0WJaFtEBD0Ei4vlb8vYD7OZvJc+PpZkaIkkF1l1qHeC8A7ABor7odeTa09ss90fammiFBVxA0EtIWqfyM0/KSigWTlAIk9yvCGCwM0BlRIbS9eRVE0UW1VlvbzoYcg9tbRFcTHdS2W2iDC0tyDh4hH6EBwsverOwfCdwh2JjSXrW4r7Vg0DRYxpc58PbSAIpPLr7T1w2ici3BxQGR4eZBBK1SdJSLAo9aanS1ejtSY0lDynElpkMAPE+fOU3C5TQyim+Bg8TR25h1Onyva+OAo2UNyRqCiyoqXc7NQI8wCWBoJSXdSM/RD7JMnVPhEES+8dvb6r8SoFvZ6bA9pCQgI9mKTkj1n3WDGbgUOH5B8vNJQSc1kTRRvU1FCoPDJS9qYJSqp3zGaHezvZQHFHfHyo+kKq+JMaXpTwcIpp883O8RQUUFVVQIC87c6dA0pL6f24cfJ7eHh4cHNAW4iKIi0jqcmytpYbi9L32dnyt2XUJzdXWVjWZEJ8wUEAQJuHL127Umhqot+bA5HRYYhxKRITgRMnaFbcXzb3zJnARx/R+z17gFtukX88T0+yxs+fd4ryNpelvZ1mYUFBAICcAh2OnNKjra3/Tccd2o9RHe/3+89GztfS3MSdEQIncStrFr2eqnOk5oUMG2apojt2jOQFvL3lHTMigkKzSh6MjHq0tgJnzpDnW271zZkz8GmhEF9xwiQke3n1v017O12vDjZQ2IPirkRFUW6IFH0StcI84eGWWQDjGIqLyQvSEd45ckoPY60OjU39vBqBhDyqAjDr9DgfeVn/23S8BNAN1dNfwo2R6ZuEBPJ81df3v65ebwnztLaSkSIXUXmaPZ+OpaCAigwUhHesvWdFyZdJ20bs8aPkeCrCBoq7EhpKPz6pxoKtvXkAS58P1kRxHLm5FFvumEWJnhOdToCfb++v2JZ8BNdRyWl59CjoQ4P6XL/Ly7MNwcHA5NuHOepbuw5hYZT8qqSax7qLrVR0OtKuOXvW0tqAGVgEgTRpDAb5IVJB6DRQTHoPFCdOkbZdbS2pjju4oSeHeNwVnY4UPaW6i2fOBD78kN4rDfPodDT7y8wERo1il/9A09hI+QQ95I74+gB33tRHE8nPd3e+jb5hOu68QWJ3XbOZvG7XXw+kcQWPzeh0JNqWlSUtiXHsWHrINDVRoqzJBEDmdRcRYZG+d7DL3y0pLaUwm5IE8/PnKSkeQHH0OLR5+QOQcO22tFAagINhD4o7ExMjXfwpJkadMI/YQFDp9oxyCgspwVJuciugvEU7NwdUn/h4izeyPzw9gcmT6X19PeUxyMXPjwwcUf+GGViys+n8y01qB7pct3kJM6RtIzYPdXB4B2ADxb2JiqKHlVRtBTXCPD4+FFfgBoIDi6h94uUl33NVUmL5ew0ZIu/GVV1Nxgk3B1SP4GDqqSU1zGOrqixA+WPp6dJyXxj1qK8nb5lS9eUOA0WADgXxEicWtbWUEK0BxWc2UNwZT09q9DaQ5cYAxdHPnZOm58CoQ1UVeVCU3HSsH2qXSUyyE2lq4qote5CaSpUWJgnu+kmTyFMK0ANLScuJ8HAyiLjkeGDJy6PzHhYmf9uios6Gj+VRI9DkK9FzWldHzwUNhODZQHF34uKk37BiYmgGDdgW5gkNtTwwmYGhoIBmY4GB8re1Tq6UY6CIrmIO76hPfLz0nlr+/sCYMfS+vByhVQq8l3o9VfScOiW9GzpjG+3t5LUKCFAmmGY1sZBcvSMmQmvkmmUDxd2JjqYLQJCYoa+GF0VsIHjuHDcQHAhMJqrCCAiQr6FQXQ1kZND7xEQqc5WzbUSEJlzFLoefH3lRFIi2dVEVlUNUFE1KuD/PwHDhAiUnK80FsZpYSDZQ6uroPqGB/BNAgYHS2NiIDz74AE888QSuu+46zJkzB5s2bZK8fV1dHf72t7/hhhtuwIIFC7B8+XJkZWXJHQajFkFBZC2bJRoK1gbK7t29r9cfkZHkQenIMGfsyMWL9GBRctM5cMBiRMoN79TXU2I1Nwe0D8nJ9K8Ulb2pUzvfJuQrUJUFKEzk60teFCmhJcY2xEotueJ6AIWFzp6l98nJqA+SWEFnNJIh2iHk6Ghk3zmMRiNWr16N/Px8DBHd/RIxm8146qmn8OOPP+Lmm2/Gww8/jOrqaixfvhyF7O53HCkpysI82dnKwzyi2BRrotif/Hx6iCm50e1T0MMDoMowT09uDmhP4uLIO1Vd3f+64eGkLAsgtDoXgfUXlR0zOrpLbgNjJyorKTFdaVm30ryx5mbKP9EIsg2U8PBwrF+/Hl9++SV+85vfyNr2559/xunTp/H000/j/vvvx80334x//vOf0Ov1WLVqldyhMGoRFSXP9a9WsmxwMGmiSJkBMspoaqKZlJIku/p6mi0D5H0Ry8ylUF1NuUbcHNB+eHsDQ4dKM1CALg+q5CKFXhTRyD1zhsOz9iQ7m8ItSj0ZSiYWra3kJdNIeAdQYKB4eXkhXGFMeceOHQgLC8OcOXM6l4WEhGDevHnYvXs3WrnTrWOIiAD0Cg0UW8I8EREk33zhgvJ9MH1TVEQPMCUGyuHDlKgH0E1OjhFrNJJnjpsD2pekJDrHUhJXrcqNk4v2Kj9mdDRporCWkX1obqa8L6W9j+rrgdOn6X1UFF2HUtCIvL01AxocPnv2LIYOHQr9JTHpESNGoLm5mcM8jsLDAzDIEBW+NMxzUaG7WHx4cemi/cjOphwQJSWD1uJsctzEJhMZM3ISahllxMTQQ0iKJkpCQuffJLoiA95NNcqOGRBAD1HOHbQP+fmk2qvUUOhUDAZdt1InFrW1lAgvpZngADGgBkpVVVWP3hdxWWUvF1lFRQWysrI6X/n5+XYdp1si9wFm7UXZa8NsLDycYq1SVDEZeVRX082uozGgLFpagCNH6H1wMDBihPRtxc63LItufzw8qJpHqoBahxdFL5gRX3hQ+XGjo8lAkVpFxEjDbKbSYm9v5TokSsI7gkDe0vh4Zce0EwPai6elpQVePVhn4rKWXtyUGzZswOrVq+05NKbDq9XUBHz2df8XRkDDbCwC9eap/H4fthhul3QYT09g8hgzUpI64tfBwVRuXFAAjB6tbOxMzxQVkdtWSaLqsWOWsMG0afJuljU11GvJz0/+cRn5REfTLNlk6v/vNH068NVXAMRy4/nKjhkcTCGec+e6KtUytnHxIiUgKzXuW1qAo0fpfXAwMHy4tO0aGkgvR0PhHWCADRRvb+8e80zEZd69VBksWrQIM61m7Pn5+Xj55ZftM0g3xdPPE6hphQAdGpv6X7/RMw4VoYMRUZ2N8Iqz0FeUod5fwkXVBBw+pUdKUocLUq+n0sXMTGDkSC5JVQuzmc6pEu0TQHn1jtlMD8qkJPnHZJQRGUnJlLW1/fdZGjoUjb5h8GuqQmzxMZqRKOlYq9OR9/PMGTJGlfSJYbpz/jwVDSg17o8ds/RWkzOxqK2lPDUlfbrsyIA+DcLCwnoM44jLeku+jYiIQFpaWucrWaz/Z1Rj8m1DERzuAT/PNvj5CpJeRakWo3FYyZ5+19fpyGvSrWgnMtKi1cGoQ0kJnVMl4Z32dopjA/TwGjdO+rZic0AO7wwc/v6UiyIlTKrX40IyGZwGUxs90JQSHk46RpxDpg5GI1Xc2eLFUNrUU5S319gEcUA9KEOHDsXJkydhNpu7JMpmZGTAx8cHiRpo7+yupEyLRcpgT+CLL+ihJsWCn3IZcOQjAMDE2t2YeNOiPlf/7GtDz94ZX19yTeblkbYDYzsFBTSTUjI7Pn3aktMwebK8SpyaGkrEVFqBwCgjKYk8ZhIoSpqOoZkb6cOBA8AMiV1uL0WvpzDC6dMUSlCis8NYyM2l6yctTdn2JpOyiYXJRH9LDU4q7GYuVVRUID8/H+1imSKAyy+/HFVVVdi5c2fnspqaGmzfvh0zZszoMT+FGUDCwsg4kdo8MD7eomaZmWmbKmxYGM0emiTEl5i+aWmhBEalRoLS6h2AmwM6iqgoqr6QUG5cGjsWrZ4dE5BDhyyl5EqPe/Eiy9/bSlsbhcuCgpSFZAEyFOvq6L2ciUVtLR1XY/kngEID5auvvsKHH36IjRvJCt+zZw8+/PBDfPjhh6jvmHmtWLEC99xzD8rLyzu3mzt3LkaNGoXXXnsNq1evxvr167F8+XKYzWb86le/UuHrMDah15ObT/yRS8G6msc6b0EuYWFUKllUpHwfDHHhAp1LJXpFZrPFQPH0pE64UmlspJmbRhqNuRXh4WSQSgjzmA2eKIibQh/q6+nBqBQPD8DHhx6OLH+vnIICoLRUvfCOnMRlMZHe31/5se2EIgPliy++wMqVK/H1118DAHbu3ImVK1di5cqVqOvj4WYwGPDGG2/giiuuwFdffYV3330XwcHBePvtt5HESXXaIDaWEqukqrtau4dtUZU1GOhmd/YsK1TaSnY2zcI8FERwz561lI5OmCAvRMTNAR2Hpyd5M41GSavnJ1h5xvYrVJUViYmhyhPWsVKGIJAHWq9XLmwoCBZ5ew8P8qBIpaVFs0ntinJQ1qxZ0+86zzzzDJ555pluywMDA/HUU0/hqaeeUnJoxt5ERVFcubZW2oMmKYnEfQoLSf2wqkqZailAD7eCAtoHP+SUUVtLsWyl58/aC6akOeDkyZpLtHMbYmPJAyYI/YYJimInw6T3gMHcTg+2X/9aeWhBzD1JTycjSel+3JWyMgqR2ZIDcv68JcQ+bpz0KqDmZvr7aTC8AwxwFQ/jBPj4kNEhNQ8FsHhRBMG2ME9QED3kWIhPOYWFZKQEB8vf1vrvp9cDU6ZI31bs48HNAR1HZCQ9mBoa+l21zdMPpXHj6YMalTgsf6+c7GwKj9pSqq1UFsBopNCgkmq/AYANFKY7CQmUOCc11GId5rFFVRYgIyUry7bEPXfFbKZz5+urzIuRn295wIweLa9Rmdjvh5sDOg7xQSMxzFOYZPUgszXMExBACdIsfy+PhgYK79jqMRb/fjodMHWq9O1qa8nrpSQcPACwgcJ0JzqaEqakymcPGmQpDz5zRnp31Z6IiKBkseJi5ftwV/LyKESm1F2rdBYGcHNALaDT0bUo8bq9kDTNEo4R8xdsISqK5e/lkpdnW1gcoMICsbhgxAjpYmtiOFDDXk82UJjuhITQzUbiTAw6ncWLYjbbdrPz8qJ95OQo34c70tZGEteiMq8SlIo8ic0BNdbHwy2JiqLfgAQPZLNfmEVzIz/f9klBSAjdM86ds20/7oLJRHk7fn7K++4AyicWoqiihr2ebKAw3dHpaDYsIZbdiXW5sS3VPAC5O8+fl1fu7O6cO0cPGYUdhP1rL1IOAQAMGyYvJl1TQzkvXF7seCIj6W8h9dqxLke11Yui09Hv5swZefcOd+XCBXrZaiBY/93kGCi1tZY2CRqFDRSmZ6KjyV3fQ++kHklNtWShnzplW3fikBB66HHZojQaG8l74u+vOMSSmG9D9U5NDSVWc3NAx+PnRy57qd5P6weaGmGe8HDS4GH5+/7JyqIQiy0KvJWVJA0A0KRSziShoUHzVVdsoDA9ExVlcdlK4dIwjy1Jd2KYIiuL9sX0zZkz5J63wYORmG+V3Cy3OWB7O5WaM9ogMVGSoiwACsuJf7uMDHnVez2h19OM/NQp6WNwR6qqKIxta3mv0rBsWxslxmo4vAOwgcL0hqcnJdzJuWFZh3lsreaJiCD3Z1mZbftxdaqrgRMn6HwpjGP7NlUhoqyjj0tSkrxckvp6IDCQwztaIjKSZuXNzdLWFx9sggAcPGj78aOiqBqM5e97JyeHJn+2hleUGigalre3hg0Upnfi42mGLNWLMXSoJXfhxAnpVUA94edHZYt8k+ubkyctCq4KSS7aBx06SsqVhHdiYpTprjD2ISJCnvdzuorlxgDNzL29ybPH8vfdaW6m5NjQUNvCK3V15KkCKLw+aJD0bWtqyHPm46P8+AMAGyhM70RFkZUtNeFOp7N4UUwm22PaoaEU5pE6E3Q3SkroRhcba9ONblCRDeXFjY0U+9ZwHNvt8PCg3AKpeWCDB1t0OE6coL+prcTEUMk755F1Jz+fPMO2iqMdOmSZPE6fLu8abG93iqo7NlCY3gkKohuN1JkYoK5om5hwxw0Eu2M2A8eO0cPEBu+FZ0sd4kpP0IeoKHmdiBsbydPF4R3tIcreS/F+6vWWap62Nvpd2YqY+JmRwb21rDGb6Zx4edkujqa067jY1FPj4R2ADRSmPwYNolCLVNLSLKJDx47ZVm7o4UE3z/Pnle/DVcnPJ++SwrJikfjCQ9ALHW74yy6TNwurqaFZoEZlst2ayEjSuJB6/VmXG6sR5gEo7JCTw/L31pSUkFfJlr47ACUgHz1K74ODLXo2UqipoXu0E/Q706a+LaMdoqMtCXdS4pV6PXlRvvuO3IiHDgFz5yo/fmQk6XNcvKhpxcMBRZzl6nQ2l/Z2qd6Rm39SVwdMnMjNAbVIcDA9gCoqKIm5P0aPpjL1hgbg8GG6dm2d4QcEUKJ7VhZfuyLnzpFxYXXd5hTocOSUXnIDeQBIyDuOOR0SEOejp+Pgt159rt9kHSWvrwfGjnWK61b7I2QcS0QEWdtKmgcC6vTmaWoiQ0fOFezKnD9PRpuN3hO0tCC2iGZhTT4h8mZh3BxQ28gVW/T0pE7UAG1z+rQ642D5ewu1tWSgXBJaOXJKD2OtDo1N0l+xOZa8sfOxM/pdXxDIM+rp0dHp2lYPzgDBBgrTNwYD3ejkqLqOGEFVBABw5IjtSXfJySRGdOaMbftxBZqayLXr50dxbFs4ehQeJtKqKEqeLq9MWXQTO8mNzi2JiiIjUmrjTbWreQC6D4gPZncnJ4cMNfHe2IE479LpBPj59v/y925DUjGVg7d5+qJm0DhJ2wUHCZg8uEMWQOP6JyIc4mH6R5wlm0zSHmIGA4ULNm2iq+/IEWD2bOXH9/Kiip7Dh8lr4M45DxkZJMo2dKjt+7Lq4VGUfBlk7dFopBk3NwfULqKMeW2ttGZ0EybQ37OtjSrwHnrI9uosnY5CTWfOWMJI7khbG127QUG9hlZ8fYA7b5JQln3iJNBKEg6e0yfjl7foAUgs584vB2KSKfzmBLAHhemf6GjLjU4q1mEeW3vzAHSzNRop1OOu2gpGI3D8OD1sbGkuBtAN89AhAECrpx9KY8dJ31Y8/7aGmBj74utLXcalVuH5+QHjOn4HlZXqJaez/D0lxpaUqOO5sG4OKDdvrLmZxBidBDZQmP7x86OHkZw8lNGjLSqJR47YrmWi09GFlZFBMW135ORJSnpUozzw9OnO/ISCuKkwG2R4QoxGbg7oLCQmSu+nBdgnzGMtfy9nLK6CINA9S6ez3eNoMlkmfB4elKQulZYW8kY7SXgHYAOFkUpSkrybi8FgudlZl8TZgo8PuYgPHZKnzeIKlJaSURETo44omtUsLC9xRh8r9kB1NTcHdBYiI+m6kTpBmDLF8vtSy0ARx1FSYumY7U6Ul9P3VsMwOH7ccu+bOlXeNVhbS/kvThQiZwOFkUZUFF0McnRNrHvzqBHmAegBXVbWVUXR1REEujE1NlIujq2YzZ0qv+0GLxTFTpY3Fm4O6DyEh1u6g0shNBQYPpzeFxZSmbAaeHq6r/x9Tg5du1LKvfvj558t7+XKNxiNNLFworwxNlAYaYjCPnI8F2PGWJKxDh+GoV2F7qZ6PT0cT5+mC98dKCggF7Fa0tRZWeQFAXAxfiLaPWT046ivp78pV+84BwYDVcHJqcKzDvPY2q7CGlH+3p2UoRsbqR2FlCRlKfsSPZ+BgcCkSdK3FQSamDiZLAAbKIw09Hr55cYeHhaFyqYmxFxQIcwDUJjH05NunrYo1ToD7e0kyiYI6lVAdKnekRneMRots3LGOYiNtTygpGAPVVnAIn+fnu4+8vd5eVRarIaBcuCAJcw+c6Y8T0hDA3nAnSj/BGADhZFDTAzNyOQIps2a1fk2KU+lMA9A3oTiYkrAdeWbXXY2eYrU8p4IguWho9fjQtJUeds3NHBzQGdDlL2X2l08Ls5S6WHlbVMFUf6+tFS9fWoVk4mMMV9f26vuANvCO2JbCiebWLCBwkgnOlpeG3eAJJU7Zv7xBQegN6mkBmsw0I305ElyG7sizc2UXOzjY5l92kpenqU3ypgxaPWWERdva6Pz7mSzMLcnKIiMFDkyAWKYRxCAgwfVG0tAAP2u3aES78IFCmepcb1UVVGnaYDuwyNGyNu+oYH6qjnZxIINFEY63t6U/yHHQPH0pGxzAF5tjYgvUaFTqkhQkCXh09YyZi2SmUk3ODXjxrZoKNTWUnkxGyjOhU5HeShyFJ3tlYcCkLGUmen68vdnz9L9SUoPs/7YudMSops7V56h0d5OEwsnzBtjA4WRR2Ii/eDlhFWsqnlSCnerP568PMvswlWorSXvSUiI7U3brLE2UKxzDaRgNJIejho3XGZgiYqSF54dPNhSjipWkKmFO8jfV1VReFYNzSKga3jn8svlbSvqFqk1lgGEDRRGHlFR8uLZADB+PMVhASQX7VcvzAPQwzs6mh7mxcXq7dfRnDpFomxqeiuKi4H8fHqflia/3XpbG6vHOivWsvdS0OksBmx7uzo6Rtb7FuXvXTXJPTfX4nG0lYICS8Xi0KHyr8HaWgqHd9yDnQk2UBh5hITQQ1OOqqyXV2eYx7utHtEXT6o7prAwCvFYZ7k7M+XlVEYdHa1uS3Trigy54Z3GRrrBOeEsjAF5vRISlOWhAOpW8wAW+XtXlApoaSHF65AQdXI+tm+3vJ83T/72ra1Oq1vEBgojD52Okq3kunytevMkqlnNI5KURC5VZ+94LIqy1dWpU5pojXV4x/rhIwWj0aKFwzgn8fHyDPhRoyyl7YcPy6ve6w9R/v7kSdeYVFgjVimpodhqNgM7dtB7vb5LVaQkmpqcemLBBgojn5gYSn5tkSG8NnEi2joEwRLy96mvJunlRQ/Qw4fJA+GsFBVRAqFaZcUilZWWyonkZHL5yqGujgxTNT06zMASFUUPK6n5Yx4eJH0P0ITk9Gl1xyPK3+flqbtfR5KXB+zeTYadGrlj6ekU6gWo747cMmGjkbZx0okF320Y+URGkiS2nGoeb28UJ9LNzqelVv2bnTiu2loqi3RGOW2TiUTZTCb126FbV2LIDe+YTOQ54+aAzk1YGD2sBBktIqw9bdYeODUQ5e9Pn3bO6/VSCguBH38kj5BaEwxbkmMBy8RCDR0WB8AGCiMfT0/60cts2FcwyA69eS4lKYk8EJmZ9tm/PcnJoTCVPRJRbS0vFrU0GOfFYKDr1iyjAm/CBPJOAsDeveqGeQDKs3IF+fsLF8g4aWy0iNzZSmur5T7p6ys/LGs2k7fMiScWbKAwyoiLkyefDeBiwmS0GzoEx/bZIcwDUDJgYCB5UeQk8joaseOzl5d6omwidXVUFQTQzWrQIHnb19bSg0Rtrw4z8Mh9WPn6Wqp5RO+kmvj40H3EmeXvS0rIOKmtlX9t9cWhQ5Yqp8suk39fqKuje6ETTyxUFFhg3IroaPrx19VJLqVr9/RFYewkpBTtJe9Lejo1FFSbmBjKtzh4ELjySufIm8jMJBfx4MHq79u68/P06fIrC5qbKW+FcX4iIzv//k3NwGdf9+/6j/a/GvOxCwBQ/MlW/Fw+R9KhPD2ByWPMSEnqx/CIibEkljrbbL+8nIyTqiq6dtVUarVF2h6ge2x8PHk/nRQnuHMzmiQwkBROZXopchOtstDtFebR6cjNmp4OnD9vn2OoSV0dVe4EB6sryiZiS3inpYW8Oqwe6xoEBsLTm277gqBDY1P/r9yQcaj1J8Mh9sIx6CvKJG1nrNXh8CkJj5iAAKo2cTb5+8pKYOtWoKwMSE1V1zipraU+YwDlDimZyDU3q+vRcQBsoDDKGTSIbiwyKIyfCpOhowvnvn2yQkSy8PMjl+jBg/JE5RzBmTM0e7SHEdDcTIm3ACU2p6XJ276mhrZz0ioA5hJ0OkyeG4pgnxb4+QrSXn465KZdRZtDwMjCH/vdRqcjr4nklJWoKPIiqtmY0J5UV5NxUlJCnhO1vbS7d5NAHkDJsXKTXFtbabLjxOEdgEM8jC2IZYtirb0E2jz9cDF+IhIKDtBFnpkJjBxpn/HFxdGs7MgRYM4cbTbKqqggLYioKPuEoo4etehMTJsm/xi1tcCkSfJauzOaJmV2ElJKD5KXUerfdfYVwAOfAmYzxhb9gLF/vrXPh+ZnXxvQKGfuEhJCRvqhQ6SZpOV8J6ORwjpFRcCQIfa5btUI7zipvL017EFhlBMRIb/cGEDBoAEI8wB044iPpz49WtRaEAQaW22t/TwUtoR3zGZ6ydVMYbRNZCQ9vOSoyoaHkw4HQHkXave+EsOyJ04A335L+VhapK4O2LaNWkYMGWKf8t2SEksVYnKysjBNbS2px4oVWE4KGyiMcsSyRTk3OgAXEqdaci3sGeYBLAliBw/KDkfZneJiuhHZywBoa6MZKUDCUaNHy9u+vp5yjTj/xLXw9qZSdpkTCyxYYHn/ww/qjgmgsOzQoZTT8d135P0TwxxaoKGBjJPsbArr2Etb5FLviVzPryDQeVNb7NEBsIHC2EZcHF1AMkqG27wDqIEgQCGOs2ftMzaRpCSa8Rw/bt/jyEEUZWtpISPAHpw8aWlJMGWK/DBNba2lyRzjWsTHy3/4T55sUTI9eFC+gSMFg4ESTn19gZ9+ojwPexxHLo2NNJ6zZ8k4sUcyO0DGhWig6HQUmpZLQwNNSJw8vAOwgcLYSlSUvC6pIla9ebB3r7pjuhSDgcoXjx8nQSUtkJtL7ebt2cTLluaAAN3okpO1mbvD2EZkJGmQyOmp5eEBXHEFvW9v79rETm3Cw+m3d/o0hXwc2VSwuZm+a0YGGSf2zMc6d87SlX30aGVGRm0tVf6Ehqo7NgfABgpjG/7+isqNMW2axUW6d6/9RZpCQ8lboYWOx62t5L729KSHhD0wmSwGipeXJX9AKm1t9ECKjlZ/bIzjCQ9XlD+Gq66yvN+61b7XrY8PMGwYjXHjRvo9D/S129JCzfrOnCHPjr1zOmxNjgUoNOsifbOc/xswjic5WV7jQIDCGmPH0vuysoHRKxE7Houqqo7i7FmS97Zn8mlWluXhM3GifBVKF6kCYHpBr6frtq5O3nbx8Zaqu8JC+2uX6PV03QYFAbt2AZs3k/7IQNDaCuzcSaHSlBT1FZ4vQWdup+8IkCFk7WWWitg3y0UmFmygMLYTFUUJbnLcxcDAhnkA8liEh1PZcVmZ/Y/XEw0N5D0JDLSvq9iW6h2ADJSEBLvflBkHEhtL/8ptOWHvZNmeCA0lD8bZsxTyOXvWvt6btjbSIjl+nAwke3k6rYi9cNQyqZg6lbzTcnGxvllsoDC2o9RdPH26xQ25Z8/A9OKIjKRZ48GDjqkQEEXZ7DnDEQSLgWIwUIKs3O3b2+3TtJDRDpGRZCjLFTKcOZMmJADN+OVOTJTi5UUhn6YmYNMmOnZzs/rHaW+nCdPRo2SciN/Vzgw6b5XTozS8YzSS4anEuNEgbKAwtmMwkAtUrrs4ONhS+lpSQomjA0FyMrmmB7rjcVUV6TxERNi3/XlOjsVDNHasfNGrxka6KXN5sWsjlpDLnVh4e1uqS1paLGGJgUCnI8M5IoJyUjZuJINfLUwmMu4PHaJw1gAZJ55tjUgo6MgZCwykLtJKaGlRr5uyBmADhVGHmBjZ5cYABj7MA9ANNiiIvChVVfY/XlubxTipqbG/bLx19Y7cFu0APbBErxjj2ihoVwGga5hn61bVhiOZoCASSsvLo5DPmTO26ymZzZREf/Ag5YcNoJrtoMI98DB1JADPnq0s/NvcTPc2FwnvAGygMGoRHa2s3PiyyyxlrAMV5gFovFVVXTv92kpzM+m65OZSIu7OncC6dcAnnwBffAEcPmzRjbEnYnhHp6NqKbm4UBUA0w+RkVStJbc6ZvBg8poClA/iCKVmT08SdhMEyoX5+WfK8VKCINC9YP9+S6f2AWRInkrhnZAQ8i65CNyLh1EHPz96+J4/L2/mHRpKVQFnzpBGSUEBhWDsjU5HGiQZGfQwltpETxBoxllfTyGt+nrqKVReTp+bmsjNKgj0gPfxIdGpsDA6P/Z+6IvnEKDvFBYmb3sXqwJg+iEykh5qtbXyHmw6HZUcr1hBn7duBR580C5D7JeYGLoODx+mCcLMmfJUVAWB8k327KFzEBxsv7H2gG9DBeJKO1oHxMTIb+gpUltLYnr2EpFzAK7zTRjHk5xMhoZcZs60bLdnz8AYKEDXjsdxcV1nTYJAszHREKmrI49LeTktFw0RnY7ySXx96RUVRft0lLiZreJsYhUA55+4B15elNNx+rT8mffcucCqVRTC/PlnYMkSxzWVDAigBNq8PJLJnzYNGDOm/1wvsR/Wrl0OEzcblLMDOnR4jpVI2wPkBRYES2WWi8AGCqMe1uXGcpLLLrvMMhPbuxe48077jK8nxI7HYlJcbS3pLFRWkiHS3GzpGe/pSUaIjw/NOr28tKeyamt5cU0NxfYHKDmQ0QBiQ01BkPd7DgigHLIdO8iA37+f8icchcFAoafycuqZU1pK10BfrRpOn6ZQbHCw/XPDekGV6p36evp7uNjEgg0URj3Cw2kWUlMj7wEXHg4MH05VNQUFJABlTwl4a/R6OtahQ9QbByDDw9eXSvUiIhw3K5SLdV+jlBRyF8ultXXgzj2jDSIj6ffe1CTfMF2wgAwUgPJAHGmgiERG0sP65Em6JmbN6tkrm5FBYxevc0eQm4vQaqperIgcjgil4o21tZY8QBeCs+AY9dDrlZUbAxTmERmoah6RgABgxAhyEQ8bRjkp4sXuLMYJYHv1jlgF4GKzMKYfxNCG3HYVAMkEiIbwiRMkF6AFfH0pgbaqikI+Bw9aPKEAGfLbtzv+9y4adwByB89Tvh8X7ZvFHhRGXWJiyFBpb5eXrDVjBrByJb3fuxdYvNg+4+sNDV7YOQU6HDml73Jf7YsrNh2A6DP5vmkWjF/3r7XSZK1zVVNDDyoHuboZByFOLPbskb+tmCz78cf0eds24K671B2fUgwGmmxUVVEYp6yMJkJVVdSZWGwi6ihMpk4DxawzoCB1NmRKKhJi3ywXnFiwgcKoS1QUxXPFjppSiYwk78XZs1SmW1xs3141TsCRU3oYa6UZTt4tRkSVUI8hY0AcLvoMApqkG12eniDP1/DhLlUFwEgkOtqiYyRXRPCKK4BPP6VEzR9/BH75SwB2FCKUS1gYhXEyMym3TKyyk1PpYw9On+7sK1QYNxktPsEAZOpIAS4nb28Nh3gYdfHzowtfrjol4BjRNg0jek50OgF+vn2/xuRvgl4gPZcLKZfBzw/9biO+goMETB7d7pJVAIxERNl7JeHZ8HAqbwXogSvmcmkJb28K+TQ10e9cC20crDoXnx9kQ3inpobyxgagX9BAw1MlRn2Skmh2IJcZM4DVq+n93r3ArbeqOixnxdcHuPOmPmZWLS3AV9/Qe70eI3+7ACNjZc7EauuAeterAmAkEhBA4Y6CAqpQk8tVV1GeB0CaKCMUCATaG73e8V4TkZaWzklYq6cfCuKmQXFbzvZ27XwvlWEPCqM+UVGUpCa3iVhMDJUJAiT4ppWEO62zdavFYzVrljIvSE0N/d1crAqAkUFSkjLZe4A8KGJI9+BB+DRVqzcuV+Tgwc5zXThoJkweCs2Txka617pgeAdgDwpjD8LCyO3bS7lxUzPwWS8JnCNDZmE8sgEAR9/bj8wxt8g+vKcnMHmMGSlJAySb70ja24H16y2fb5F/vgDQzVKULmfck8hIKrFvbaV/5WAwAPPmAV99BZhMSDn/E6qGsAe0V6zCO7lDbAjvGI2W+60Lwh4URn16KTcWK3YFQYfGpp5fZ2Ms5cYJOXt6Xa+vl7FWh8On3OSnvWMHCVMBNItVYmS0ttIfx0VnYYxEIiLIg6YkfwygME8HqWd/GLi+Ws6G0UjS+gAQEYGymDHK91VX59J9s1zzWzGOx7rcuIPJY8wIDuo7YbM9Oh7VofSQjarMQoSpVHKyp5+vAJ2ObopSS3OdGrOZZqwit92mbD9GI1VesYHi3nh5UZhHbsNPkbg4kpcHEGwsQnRFuoqDcyF277Z0fZ8zB9ApfAy7Qd8sDvEw9iEqipLtjMZO92NKkoCUJAnJm82XAZ+RuuJNgbuBG2+UfNjPvjagUWEY3enYvx8oKqL3o0aR2JwSjEZg3Dj5bn3G9YiLoyocubL3IldeSZ28AaRlb8HhpJEqD9AF2G4lbT9vHqC06KmujiqvXDixnT0ojH3w9aVSPiXuYkeqyjoLggCsXWv5rNR7Igg0E3NzzRmmA+t+WkqYMYM0RwCkFuyCZ2uDioNzAYqLu7ajsKUxam0teaoDAtQZmwZhA4WxHwkJFGuRG4tOTLT0g8nI6BQzYqw4fpwqnQAgNRWYMEHZfhoa6IHiwrMwRgYhIZR0qTQPxdsbuPxyAICHqQXJOTvVG5srYJUcq7gxoEhTE4XkXBg2UBj7ER2tfDZm7UWx7tDLENbek1tvVS7VbzRScqQD2swzGkSvp6TL+nrl+7BKlh18dovtY3IVBMFioOh0lH+ilJYWCsm6+MRCtoHS2tqKd999F7/4xS9w5ZVX4qGHHsKhQ4ckbXv48GEsX74cN9xwA6699lr8+te/xpYt/AN2WcS+Lqwqqy6ZmZ1xfsTHU0t5pTQ00ANJg72IGAdhLXuvhMGDURVOekbhFeeodQUDZGVZtJ3GjrWtNLi2lrxdjurCPEDINlBee+01rFmzBldddRWWLVsGvV6PJ598EidPnuxzu927d+Pxxx9HW1sblixZgqVLl8Lb2xuvvPIK1qxZo/gLMBrGlu7GyckWdcQzZ4BqFn7qxNp7cvPN8nuniLS309/IhasAGAVERlK5sdJqHgDnhy20fNi6VYVBuQBqhndqauge6Uzd1hUgy0BJT0/Htm3b8Otf/xqPPPIIFi1ahLfffhsxMTF49913+9x23bp1CA8Px9tvv41bbrkFN998M9566y3Ex8dj06ZNNn0JRsPExNAD1KrcWBI6ncWLIgjUMp0B8vMtkuIREbbd6GprubyY6Y6/P123Nhgo+amXo93QoY66fTuFJNyZtjZg1y567+Vlm9fTZNJOPyE7I8tA2bFjBwwGAxYtWtS5zNvbG9dddx3OnDmD0tLSXrdtbGxEYGAgvKxKGT08PBAcHAxvb8VdCBitI3Y3VhLmueoqS2fdb74BKirUHZszYu09uekm22ZQRiNV7/j62jwsxsVISgKamxVv3uYdgNzEjjyyhgYqiXdnjh61eJKnTetRYVsy4sQiJkadsWkYWQbKuXPnkJCQAP+OMjKRER36C+fFqoIeGD9+PHJzc/H++++jqKgIFy5cwIcffoisrCzccccdCobOOAU+PlSRU1Mjf9uYGOC66+h9ayvwySeqDs3pKCmxzMICA4EFC2zbX0uLpVqKYawRZe9t8HxkDbYK8/zwgwqDcmKswzvzbJC2B4CqKjIgL3kOuyKyhNoqKysR3kNij7isoo8Z7n333YeLFy/i448/xkcffQQA8PHxwYsvvojZs2f3edyKigpUWpWa5ufnyxk242gSEqgsVon40+23Az/+SLOw7dtJtM1de8asW0fqsQCwaJFt7dUbG2kWx+EdpiciIigJs7ZW8W+kJHI0aoPiEFRbTEndFy8qa2Tp7DQ0WMKywcHA+PHK92U2U4jHxcuLRWQZKC0tLfDswaUshm1a+rC2PT09kZiYiLlz52LOnDkwmUz49ttv8fLLL+Mf//gHRo0a1eu2GzZswOrVq+UMldESUVEkJtTQIF9UKDCQjJRVq8jA+eAD4MUX3a/qpKoK2LaN3vv6WjxLShGrAFy0yRhjI56e9BA8fly5EavTIXvYAkw4vJo+//gjcM89ao3Qedi719J7Y/ZsS9haCXV1dA91E0NPVojH29sbbT00OWltbe38/954++23sXfvXjz//POYP38+FixYgLfeegvh4eH45z//2edxFy1ahPfee6/z9eyzz8oZNuNoQkNpRqZU/On66y31/idOWBptuRPffGO5yV1zje3qkbW1VF6stAKIcX1iYy0JmQrJHTLf0shu2zblpcvOjJrhnepqqm4MDrZtP06CLAMlPDy8S6hFRFwW0UtNdltbG77//ntcdtll0Ft1XfTw8MC0adOQlZXVo+EjEhERgbS0tM5Xsi3ywMzAY6v4k6cncO+9ls+rV7vVjc6zpQ7YvLnjg6es3kQ9Ip47N5mFMQqJjKQwYINyufpmvzBg6lT6UFXlfpOL8vKumkVDhijflyBQTtCgQaoMzRmQZaAMGTIERUVFaLjkB5uent75/z1hNBphMplg6uGhYjKZYDabYRZj64xrIpYbK20zPHs2MHQovc/PB376Sb2xaZy0jO9I1hoA5s+3XfW1ro50Ljj/hOkLW4QWrbFSlnW7ZNmdVlL/l19uW2habEvhRhMLWQbK3LlzYTKZsGHDhs5lra2t2LhxI0aOHInoDsGn0tLSLomsoaGhCAgIwK5du7p4ShobG7Fnzx4kJSVxqbGrExlJbkml2go6HXD//ZbPn35qUxmks+DR3oxhZzquN72ehNlspbaWQmaBgbbvi3FddDoSA7NF9h4AJk6k/j4AcOgQeVLcAUHo2rnYVnG26mq6bsVz6QbIMlBGjhyJefPmYcWKFXj33XexYcMGPPbYYygpKcHDDz/cud4rr7yCe6ySoQwGA375y1+isLAQDz/8MNasWYPPP/8cDz30EMrLy3GvtfuecU18fCjpTkm5scjo0aQhANBN7uuv1RiZpknL3gyflg6jbvZsdbQPGhvdyk3M2EBMDBnGtoRUDQbgyivpvdnc9aHtyuTmAgUF9H7ECNuv3cZGYPBgtyoQkC11/8wzz+C2227Dli1b8M9//hPt7e14/fXXMb6f0ql7770Xzz33HDw8PLB69WqsXLkS/v7+ePHFF7HAVj0HxjlISCBFWRuS7nDffZaku3XrXFoCX29qw5jMdZYFt95q+05bWqjjrIs3GWNUQgXZewAWAwWgMI8t9wBnQe3OxT4+biHOZo3seidvb2888sgjeOSRR3pdp7eqnKuuugpXWccjGfciKopiqErKjUUSEoCFC4FNmyjE89//An38Fp2ZQdnbEdDYoS00dSq5223FTZqMMSrh50c5Dzk5tuU+xcRQg7yTJ0kP5cwZ8oi6KiaTJf/Ew6Nrd3YlVFdTPpCb5Y3J9qAwjGLEcmNbwjwAcMcdFnn2H36wuFFdCZMJI09+afmshvcEoIRHN2gyxqhIUpI6vXTcKVn21ClLrs2kSeSFsoW6OqoAcjNZADZQmIFDpyMVWBvKFgGQB+CWW+i92Qx8+KHNQ9Mc+/aRAieAktixwPDhtu9TEOh8uVEVAKMCKsjeA6AGeaLndO9e25NvtYx1no2t2ietrTShiIuzbT9OCBsozMASE0MuT6XlxiI33mhRQT10yKI14AoIQpemgOljb1dnv/X1FGJzMzcxYyMREeT9tLXc2MvLkovR2tq1BNeVaG62NEf09wcmT7Ztf9XVVLnjhnljbKAwA4tYbmzrzc7bG7j7bsvnVassfWqcnaNHKeYPoDxsKErixquzX6ORjLqQEHX2x7gHHh4U5rH1mgXcI8xz4IBFt2jmTDLMbMFoBFJT3TIsywYKM7B4e1MOhBo3u7lzLeWy58+7zozMyntyYuTt6pUVNjRQiM2NyhQZlUhKot9Ne7tt+0lJsQgu5uQA2dm2j01rqFm9095O5z0+3rb9OClsoDADT3y87eXGACWMWYu3ffwx9O2ttu3T0aSnU4UDAGNwAvISLlNnv21tdL46xBQZRhaxsRTmUaOs39qLsnWr7fvTEtXVwLFj9D4yEhg50rb91dTQeXez8mIRNlCYgUcsN1YjSW7CBHoBQHk50jK+tX2fjqRL7sltgE6lS7S2lkJrnH/CKMHHh8IMahgoc+aQJxUAduxQp0JIK+zebQk1X365RbNJKdXV5HXy8bF9bE6IDX2fGUYhISFkpJSVqSO3fv/91OXYbMaoE1/gdOICwNcJZdxzc4HDh+l9ZCTyBs8F1Lp3G400m3PTGx2jAsnJwJEj5I2zJR/Czw+YNYu6Gzc0UEWPrZUudiKnQIcjp/SScvp9mqqxcMN6+Hd8/s40H7Vf918W3NRbxw6xk3RCguTxuhrsQWEGHp2OckdsLTcWGTQIuOIKAIBXawMmnP6vOvsdaKy8J/jFLyDoVZw/tLW5bRybUYnYWEqydqMwz5FTehhrdWhs6vvVXN+OmVtfgX8DCSteiB6HEp/kfrdrbNJBECgnrJvNJ3o93VgWgA0UxjFER6tTbixy112d2fIjz32HgA4NEaehuBjYs4feBwd3vYHbSmMjCdu5YZkioyJeXtQLRg0DZcQIi8F8+jRw4YLt+7QD4u1JpxPg59vLy8eMy4/9C9EVGQCABv8IHJj3RO/r9/AKDhIwecwlVYhVVZSc7O8Pd4VDPIxjiIqiUE9NjTp5EeHhwC9+AXzxBfSCCeMPrwbufcr2/Q4U69ZZYteLFlli9GpQU0M6Cm7UBZWxE4mJpDvU2mpb+axOByxYQPIAAPDjj9RnS6P4+gB33tRLw8RvvgHOdXiBvLzg/9IzuHlIMAAbGiwKAhUSJCUp34cLwB4UxjF4edHFZ2sTMmt+8Qs0+YQAAJLy9gCZmert255UVgI//UTv/fyAa69Vd//19ZRoZ2vCHsPExpJwmyjjbgvz5lmk23/6yfYSZkdw9KjFyAKA5ctJkt5W6uooP89Nq3dE+I7FOI6EBEsimBr4+eHUxLssnz/4wDm6pn79teXmfM016rp0TSaarXJ5MaMGnp70AFZjYhESQk0wAQobiQnizkJREfC3v1k8n7ffDsyerc6+q6tJ2t7NRRXZQGEch5rlxh1kD1uImqBE+pCZCezbp9q+7UJtLbBlC7338qLwjtr7Dwri/BNGPRISKH9MjfLgBQss7zWcLNuN+nrglVcsif7TpwN33qne/puayOvp5rCBwjiO4GB6cKqhKtuBoDfg4PhfWRZ8+KF6ibj24PvvqXcHAFx5pW0t7XuitpbcxG6caMeoTEyMemGe8eNpXwCVMFdW2r5Pe2MykedETOxNTgZ+/3v1Qqj19dRU0c3DOwAbKIwjUbvcuIOCuKkojRlDHy5eBDZvVnX/qtHUBHzbISxnMAA336z+MZqb3T7RjlEZDw/1wjwGAzB/Pr03m0kbReusWmVRiw0KAp59lqrk1EIsHBCboboxbKAwjiU6muLarSpK1Ot0ODr1Acvnzz/XZmv3LVss45ozR/0wTEsLhY04vMOoTWIi/baae1MZk8GVV1r6Q33+OanLapWtW4ENG+i9wQD86U/q53fV11M5N/fMYgOFcTCRkZQIpmKYBwCqI4aS1DRAGfFffaXq/m2mrY2SY0VuuUX9Y4h9PEQXOsOoRXQ0XbtqhHmioy1N9drbgb//HfjiC+0luKenA+++a/n88MPA6NHqHqOpidSe3ViczRo2UBjH4uWlXnfjS7n7bos844YNJK2vFX76yXJznz7dPmGY2lo6tx4sd8SojMFAXYnr6tTZ3+9+11Wc8NNPgXfe0Uz+mF99GfDaa5Zqu+uvBxYuVP9A1dU0oeCeWQDYQGG0QFwcJZ6Zzf2vK4foaLqRAHSj++QTdfevFJOpq0fnttvUP4bZTDNQnokx9iIhgQQFm5ps35eHB/Db33YVa/vpJ+CFF9QzghTi0d6My3980TKJGjcOeOCBvjdSSl0dNWU09N/Dxx1gA4VxPNHRJEpkjzyR226zNCT8+Wfg/Hn1jyGXPXuAkhJ6P24czUTVRqwE4PwTxl5ERdFLjTAPQDkXt9wCPPWURaX21CngyScp2d0RCGZcvv/vCK3Kpc+xsTQeexgQra1kqHHPrE7YQGEcj6jTYY8wT0AAsHix5fOqVY6NbQtC16aAt95qn+MYjeQmDgqyz/4ZRq9XN8wjMnMm8PLLJEMAUDnvH/9IOSADzOjjnyOlsKNHlp8fVeyo0YG9J6qrqXKHRRU7YQOFcTw6HYkSNTbaZ//XXGPRFDh1yrGKlYcPA3l59H7YMGDsWPscp7GRSri5EoCxJ/Hx9OBW+9odPpy0RhI7RBdra4HnngN27lT3OH2xdy/GHvsUACBABzzxhGU89qC2lsI73doauy+cPcdog6goujBbWtRtlAfQfu+7D3j9dfq8ejUwcaJNbtqcAh2OnNLLy+ETBFz1/VqI6W87Em/HhW96vwSblFZwtrWRq5jDO4y9iYyk31lFBRkqahITQ9fs668DJ07Q7/rNNyk8ettt9jW+c3KAt97q/Hh8yv2YMHmy/Y4nJt9yeKcL7EFhtEFkJJXE2iPMAwAzZtCsDAAKC22W1T5ySg9jrQ6NTdJfQQVnEFlGLdmrg5JwLnJ6n+sLAt2AZU+ojEZyj3MlAGNv9HryBNpLZyggAHj++a4VPp98Yt8Kn+pqCjF1SPmfG3QFMkbbQUTRmpoakltg9dgusIHCaANPT/uVGwM027r/fsvnzz6zqfpAvDfqdAL8fKW9Jmau6dw+Y/xt8PPT9btNcJCAyWNkVjcZjeSKVtsTxTA9ERdHrRRUVoTuRKzwufdeyzKxwkdtw6itjcqJKyoAABWRw7F76jL7h0praijM7eNj3+M4GRziYbRDXBzlaJjN6vW1sGbECPKk7N1LN4T1621u8OXrA9x5k6n/FbOzgQ+O0PuoKMz4/SzMMEjYTi6CQO7ihAT1980wPRERQTP/ixe79XxqagY++1qlihePxUicF4fLdv4DHqZW4NQp1D7yJIzL/4zESSp4HgSBhNgyM+lzeDh2zv8fmHReAOyYWC9KLNgzv8VJYQ8Kox2io8mla09Z+nvvteSerF8/MM3JLq3cuflm++kcNDbSQ4LDO8xAodNRbx6rRFkxLCkI8sKg/b2yYubg+yv+iiZvqvAJqilC1OtPABkZtn+PDRuAH3+k915ewDPPoNkvzPb99kdtLYVkObzTDTZQGO0QFERGSk2N/Y4RFwdcey29b2kB/vtfdfdvMgEFBdRPZNUqqjy45x7SPgEoziw2R7MHRiMQFqZ+V2SG6Yv4+C6Ti8ljzAgOkh7+lPNqSEzDD4v+geog8jh4N9dS+a8tFT5Hj9L1KrJ8uX30iXqiupo8ngEBA3M8J4JDPIy2SEmxv5ja4sXUNbWxkWZMN9xA+S8y8WhvRnhZLrDpPGX95+ZSCXFfjQ9vusm+uSF1ddTC3h4hMobpjbAwEjG7cAEICEBKkoCUJDuEMDuJxJdeb2LGj68ivtTGCp8LF6ikWVSyvv12YPZs+wz7UsSQ7KBBA3M8J4MNFEZbREWRe9Ue5cYiQUF0E/vwQ7oprV5NlQJ9UVNjMUJycnDdyVwEGS9AJyU2HRxM+gajRwOLFqnxDXqmvZ0MExZ6YgYaMcxz/jw9dAdAf6fNOwBbLn8Rlx/7Fwaf66jK++QTyoV55BFp5W/19VSxIyb4Tp9uc16aLOrqyHPC4Z0eYQOF0RYRERSeqKmx74P2+uuBjRuB8nLgyBHg+HHyPJjNNAuzMkaQm9tNzju4t/3GxpIxkpJC/6am0vcZCMG08nIy8Lj/DuMI4uLoYVtXN2AKxmaDJw7MWo7Bl8UCH31EC7dto8agTz/dd9jEZCLPyYUL9Dk5Gfj97wfW+1hdTcmxwb3eUdwaNlAYbSGWGx8+bF8Dxdubuh2LYkz/+hfJTOflSSo/Nuk9UBUyCMaIVAyZO4gMkUGD1BerkoogUP7JpElcXsw4htBQykXJyxvYFgs6HbWMiImh67mtzdLD589/7t07sXo1cOwYvQ8KAv7nfwBf3wEbNgC616SmsuJzL7CBwmiPuDh64NpQbiypvFG4AleHb0BYZTbNuMrKelyt1csfVeGDUROWiqrwwagOS0WpTwLMOk/4+QoYcr09Y+0Sqa2lm2xqqqNHwrgrOh0weDCV6Q5QmKcLs2aRB/aVV8hYLyoiefr/+R+SGLBm61bgm2/ovcEA/OlPAx9maWigijv2ePYKGyiM9oiKooZcdXWyXZ+engCaxPLG/tY2YM/4h3Dt9mdgMJPUdJ1/FCpDUlEZOhiVoamoCk1FvV9UrzdbzbTNKC+nHBeu3mEcSVwcGcpi6exAI/bwefFFMlBqOyp8HnvMkviank56JyIPPUTXzkBTXU1yAGEDUMrspLCBwmgPsdy4qEj2TW7yGDMOy+iRU5c8Cht/8f/g01QNY2gyWr27dyqloE33ZFhPT8hXebUHLS1kQKWlOXokjLsTEkIls9nZjsuriIkB3ngD+OtfgZMnKeTzt79R8uy8eaQUK/a+ue464OqrHTPOhgZg2jSuuOsDNlAYbTJoEHDunOzNlJU3xnS8AEAD4Rq5lJdT7J8bjTFaYPBgEk6zlyK0FMQePu++axFf++QTEmcUK3bGjgUeeMAx42tuplyxuDjHHN9JYNON0SbR0ZZyY6Z3zGYqlRw50n7qtAwjh7g48p7U1jp2HJ6ewO9+R0KJIqJxEhMDPPUU9flxBFVVlC/Dis99wgYKo02sy42Z3qmuphi2AqE5hrELQUFUOjsQbST6Q6cjzaMnn7QkjPn6Ul5KYPdw7oBRV0cJ7Typ6BMO8TDaxMODwjyHDrHwWF9UVFAcm2WyGS2RkgKcPu3YMI81s2ZRCHT3bmDOHCApyXFjaW2l+xuHd/qFDRRGu4gXsMnEM42eaGyk9uxDhjh6JAzTlfh4Spg1GrVTWZaSQi9HU1NDXk9Wj+0XNlAY7WJdbhwS4ujRaI/SUvIy8Y2O0RoBARR2PHPG7gaKJM0jG/atOjU15PXUjEaBdmEDhdEugYH08M3PZwPlUtrbqXxy+HBWoWS0yaBBVOZrJw+oPM0jFY6lBu3tdL1yxZ0k2EBhtE1yMpCV5ehRaI+KCqoAcGQsnWH6Ii6OJhY1NdRGQmXkah4pRVW9I6ORzgl7PSXBBgqjbaKiKM+isdFxfW60SE0NMHcunRuG0SL+/hYvih0MFGWaRw6muhoYN27ge/44KRpIr2aYPoiKopvcxYuOHol2qK2l8Bf33WG0zqBBVMljcjJDwh6YTPRKTHT0SJwGNlAYbaPXA6NG0ftme2SsOSFlZWSc2GFWyjCqEhfHekYitbUU3uHmgJJhA4XRPklJ7EURaW2lJLthwxw9EobpH19fMqarqhw9EsdTU0PJsaxZJBk2UBjtYzAAY8aQe9Tdpe/LymgGlpDg6JEwjDTERG6xQZ87Igg0uRg0yNEjcSrYQGGcg+Rkit2WlDh6JI7Duu+Oo3qIMIxc4uJImKy62tEjcRx1dRbZBEYybKAwzoGHB3UfbWmB3esKtUp1NcXzeRbGOBM+PhTmcWcDpaaGjBPWc5IFGyiM85CSQl4Ud81Fqaig3BNHNjljGCUkJVHCu7tOLhobyUhjUUVZsIHCOA+enuRFaWpyvxtdYyPg5cV9dxjnJDbWfcM8DQ2k4cThHdmwgcI4F6mplAlfWurokQwsZWXkPeKbHOOMeHuTce2O5cbV1aTnxLIAsmEDhXEuvLzIi9LQ4D5VAWL10siR2mhdzzBKSEykijx3837W1wODB/O1qwA+Y4zzMXgweRLKyhw9koGhspL67iQnO3okDKOc2FjyIlRWOnokA0dzM3mPWJxNEWygMM6Hjw/1s6itdQ8J7aoq6lrMfXcYZ8bTk8I8RqOjRzJwVFcDEREU4mFkwwYK45wMHkwXfXm5o0diX+rqSHmS++4wrkBiIkkGuIvgYl0d3asMBkePxClhA4VxTvz8KBelpoYEzFyVsjIqr46MdPRIGMZ2oqPpt+wO1TxtbWSYxMU5eiROCxsojPMybBi5TysqHD0S+9DWRhLZ3HeHcRXcKcwjCitGRzt6JE4LGyiM8+LvTz16Kitd04tSXk7JwNyenXElEhKoGs/VwzxGI3k/vbwcPRKnhQ0UxrkZNsw1KwMEgW5wI0bQrJNhXAUxzONq16w1ogQCTy5sgg0UxrkJCgJGj6YwjyA4ejTqUVND7mFOjmVcDQ8PYOhQqsJzVYxG6rvDwoo2wQYK4/ykpdHDvKrK0SNRj4oKuokHBTl6JAyjPvHxVDbf3OzokdiHmhrSLfL1dfRInBo2UBjnJySEVFbLy13Di9LcTLNM7rvDuCpRUfRyxTCP2Uz6TElJjh6J0+Mhd4PW1lasXLkSP/zwA+rq6jB48GAsXboUU6ZMkbT9tm3bsHbtWmRnZ8PDwwPJyclYunQpJk2aJHvwDNPJiBHA6dOW0IgzU1ZGiYRcnsi4KgYDGeDbtzt6JOpjNJLnk8M7NiPbg/Laa69hzZo1uOqqq7Bs2TLo9Xo8+eSTOHnyZL/bfvDBB3jxxRcRFRWFRx99FA888AAGDx6MClctE2UGjrAwMlKcXf7eZCIPyogR3LuDcW0SEigE0tjo6JGoS0UFfbfAQEePxOmR5UFJT0/Htm3b8Jvf/AZ33HEHAGDhwoVYsmQJ3n33Xbz77ru9bnvmzBl8+OGHePTRR3H77bfbNmqG6YkRI4AzZ2gGExzs6NEoo6qKjC3uu8O4OpGRFOapqCDhRVegvJzkD8aPd/RIXAJZU7QdO3bAYDBg0aJFncu8vb1x3XXX4cyZMygtLe112y+//BJhYWG49dZbIQgCGl3NamYcT2Qk9azp43eoeaqqyNBylRs2w/SGXk+J4PX1jh6JOjQ1kTjbtGncHFAlZHlQzp07h4SEBPj7+3dZPmLECADA+fPnEd2Lat6RI0cwevRorF27Fh9//DGMRiPCwsJwzz334JZbbunzuBUVFai0SqbKz8+XM2zGnRgxAsjIoBJGZ6uAqa8nw4RLixl3IT6efvMNDeR5cFbMZiA/n9pvjBnj6NG4DLIMlMrKSoSHh3dbLi7rLZekrq4ORqMRp0+fxtGjR7FkyRJER0dj06ZNeOedd+Dh4YEbb7yx1+Nu2LABq1evljNUxl2JjqZZ2cmTzmeglJbS2LnvDuMuhIeTt6GkxLkNlKIi+h7Tp3NjQBWRZaC0tLTAswdVS68OKd+WXqSLxXCO0WjE888/j/nz5wMA5s6diyVLluCjjz7q00BZtGgRZs6c2fk5Pz8fL7/8spyhM+6CTgeMGgVkZZFHIiDA0SOSRlsbzcKGD6fvwDDugF5P1Tw5OY4eiXLEhqUzZjhv7ptGkZWD4u3tjba2tm7LW1tbO/+/t+0AwMPDA3PnzrUcXK/HFVdcgfLy8j7zVyIiIpCWltb5SuYEQqYvYmPJE1FS4uiRSKe8nLw/LI3NuBtxceQ9ccZclLY2us9MnEh9dxhVkWWghIeHd8kFERGXRURE9LhdUFAQvLy8EBQUBMMl7q/QDs2Kuro6OUNhmN7R6Ui4zWBwjhJGQaCcmZEjubEY436Eh5NmiLMpQQsCkJdHHqDJk9nzaQdkGShDhgxBUVERGhoauixPT0/v/P8eD6LXY+jQoTAajd08MGLeSkhIiJyhMEzfxMcDgwcDFy86eiT9U1NDrmGegTHuiE5HHs/GRudSgi4tpTy3mTOBXqIHjG3IMlDmzp0Lk8mEDRs2dC5rbW3Fxo0bMXLkyM4KntLS0m6VNvPmzYPJZMLmzZs7l7W0tGDr1q0YNGhQr94XhlGEXk9NBAEq/9MyFRU0C2MjnXFX4uJI2MxZwjyNjUBdHXDZZaTlwtgFWUmyI0eOxLx587BixQrU1NQgPj4emzdvRklJCZ566qnO9V555RUcP34cO3fu7Fx244034vvvv8dbb72FwsJCREdHY8uWLSgtLcVrr72m3jdiGJHERCrZzc3VbuluS4tFD4Jh3JXQUDJSsrMpsV3L4RKTCSgoACZMIFkDxm7I7sXzzDPPdBoX9fX1SE1Nxeuvv47x/SjneXt74+2338a7776LjRs3orm5GUOGDMHrr7+OqVOnKh0/w/SO6EXJziZDQItu2NJSCkdx3x3GndHpKNG0vJzyOgYN0q6RUlBAUvbTp3M7CjujEwRnCvoRWVlZePDBB/Hee+8hLS3N0cNhtIzJBHzzDXDhAt30tITJBJw7B1x7LZVGM4y7U1gIbN1K4ZOUFO0ZKVVVFIa6/npuRzEAsPnHuDYGAyk7trUBHeXwmqG6mioYtGY4MYyjSEwEFiygpPHcXG0lzba0UDPSKVPYOBkg2EBhXJ+UFLrxaU0XpbISSEtzbgVNhlGbhATgqqsoaTwnRxtGilhSPHw45Z4wAwIbKIzr4+FBPTKam8mTogXq66nV/ODBjh4Jw2iP+HjypISGUg6Z2ezY8Vy8SF3GZ8wAelBTZ+wDGyiMe5CSQjc9rXQ6Li8nN3EvzTUZxu2JjQUWLqTeVDk5jjNS6utJqmDGDArJMgMGGyiMe+DlRV6Uhgagvd2xY2lvJ09OWpr2kgAZRkvExFC4JzLSMZ6U9nZK3B0/Hhg2bGCPzbCBwrgRgwfTrMzRXpSKCvKcJCU5dhwM4wxER5MnJTqajBSTaeCOnZ9PSexTp3JJsQPgM864D97ewLhxVMI4kDc5awSBpO1HjNCmLgvDaJHISDJSYmMHzkipqAB8fEjK3s/P/sdjusEGCuNeiF6UsjLHHL+2lvp3cN8dhpFHRAQlzsbFAefP29dIaW6mKrupUyl3jXEIbKAw7oWvL6nLGo2O8aKUl5PsfljYwB+bYZyd8HDypCQl2c9IMZsptDNyJOWtMQ6DDRTG/Rg6lBp8lZcP7HFbWigplpPtGEY5YWGUOCsaKWonvRcXU0hpxgySKGAcBhsojPvh70/qsjU1A1sVUF5O7ml2GTOMbYSGUrhn0CDKSVHLSKmtpQq7GTO4u7gGYAOFcU+GDiV3cWWlfY8jCNSavbyc9BRGjuRZGcOoQUgIeVJSUsiTYqsIY1sb9eyaMAEYMkSVITK2wQYK454EBlIuSmWlulLabW3UY6eoCMjKAs6epWoAvZ5ufKmp6h2LYdyd4GAyUgYPJk+KLUZKfj7tZ8oU1ifSCDyVY9yXtDTg5EnqUKpEIdJkIu9IQwN5R0wmksH29yeBqbg4ipeHhtJsjz0nDKM+QUFkpOh01B18yBD5cvRlZXTdzpxJpcWMJuA7JuO+BAdTyGXPHjIk+ps1NTeTIVJfTwmvej3pIwQFUeJrRAQZI6GhVC3EMMzAEBhIRopeT57LwYNJPVoKjY2Uj3bllTSxYDQDGyiMezNiBHD6NIVlrEt/29osnpGmJgoDeXsDAQEWLRXRGAkMZJVJhnE0AQFkZOh0QGamNCPFbAYKCkjAcfTogRknIxk2UBj3JjSUjJR9+4DWVjJKTCbAYKAbXkQEtX8PD7eEaribKcNoE39/YP58mjBkZFACbV+KzYWFNNmYPp2ueUZTsIHCMCNHAnl5NPMaPJg0UkRjxN/f0aNjGEYO/v7AFVfQ9XzmDCWm92SkVFfTvzNnUpiW0RxsoDBMeDhwyy2UHMehGoZxfvz8yEjR64FTp8iTYp382tpKTUNnzeK2ExqGDRSGAbgZGMO4Gr6+wLx55Ek5edJipAgCeUyHDgUmTnT0KJk+YAOFYRiGcU18fIC5cy1GSnIyVeyEhFBohzuKaxo2UBiGYRjXxdpIOX6cktwXLqR+O4ymYQOFYRiGcW28vclIMRjIUBk+3NEjYiTABgrDMAzj+nh5UeKsIHAyvJPABgrDMAzjHuh03GfHiWAzkmEYhmEYzcEGCsMwDMMwmoMNFIZhGIZhNAcbKAzDMAzDaA42UBiGYRiG0RxsoDAMwzAMoznYQGEYhmEYRnOwgcIwDMMwjOZgA4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcTtnNuKWlBQCQn5/v4JEwDMMwDCOX5ORk+Pj49LmOUxooJSUlAICXX37ZwSNhGIZhGEYu7733HtLS0vpcRycIgjBA41GNmpoaHDx4ELGxsfDy8lJln/n5+Xj55Zfx7LPPIjk5WZV9ujJ8vqTD50oefL7kwedLHny+pGPPc+WyHpSQkBAsWLDALvtOTk7u16pjLPD5kg6fK3nw+ZIHny958PmSjqPOFSfJMgzDMAyjOdhAYRiGYRhGc7CB0kF4eDiWLFmC8PBwRw/FKeDzJR0+V/Lg8yUPPl/y4PMlHUefK6dMkmUYhmEYxrVhDwrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcTinUZm+OHz+Ozz//HOfOnYPRaERAQACGDBmC++67D2PGjHH08DTHkSNHsHXrVpw8eRLl5eUICwvDxIkT8cADDyAiIsLRw9McFRUVWLt2LTIyMpCZmYmmpia88847mDBhgqOH5lBaW1uxcuVK/PDDD6irq8PgwYOxdOlSTJkyxdFD0ySNjY34/PPPkZ6ejoyMDNTV1eHpp5/GNddc4+ihaY6MjAxs3rwZx44dQ0lJCYKCgjBq1CgsXboUiYmJjh6epsjNzcWqVauQlZWFqqoq+Pj4IDk5GXfccQdmzpw5oGNhD0oPFBUVQa/X48Ybb8Rjjz2GxYsXo6qqCr/73e9w4MABRw9Pc/z73//GsWPHMHv2bCxfvhzz58/H9u3bsXTpUlRWVjp6eJqjsLAQn332GcrLy5Gamuro4WiG1157DWvWrMFVV12FZcuWQa/X48knn8TJkycdPTRNYjQasXr1auTn52PIkCGOHo6m+eyzz7Bjxw5MmjQJy5Ytww033IATJ05g6dKlyMnJcfTwNEVJSQkaGxtx9dVXY9myZbj33nsBAE8//TQ2bNgwsIMRGEk0NTUJN954o/D44487eiia49ixY4LJZOq2bPbs2cKKFSscNCrt0tDQIBiNRkEQBGH79u3C7NmzhaNHjzp4VI7lzJkzwuzZs4XPPvusc1lzc7Pwy1/+Unj44YcdODLt0tLSIlRUVAiCIAgZGRnC7NmzhY0bNzp4VNrk5MmTQmtra5dlBQUFwvz584UXX3zRQaNyHtrb24X7779fuOuuuwb0uOxBkYiPjw+Cg4NRX1/v6KFojvHjx0Ov13dbFhQUhPz8fAeNSrv4+fkhKCjI0cPQFDt27IDBYMCiRYs6l3l7e+O6667DmTNnUFpa6sDRaRMvLy8WG5PImDFj4Onp2WVZYmIiBg0axPcoCRgMBkRFRQ34849zUPqgoaEBbW1tMBqN2LJlC3Jzc3HPPfc4elhOQWNjI5qamhAcHOzooTBOwLlz55CQkAB/f/8uy0eMGAEAOH/+PKKjox0xNMZFEQQB1dXVGDRokKOHokmamprQ0tKChoYG7NmzBwcOHMC8efMGdAxsoPTB888/j4MHDwIAPD09sWjRos54HNM3X375Jdra2nDFFVc4eiiME1BZWdmjN0BcVlFRMdBDYlycrVu3ory8HL/61a8cPRRN8n//93+dOSd6vR5z5szB73//+wEdg8sbKGazGW1tbZLW9fLygk6n6/z80EMPYfHixSgrK8PmzZvR3t4Ok8lkr6FqAlvOl8jx48exevVqzJs3D5MmTVJ7iJpCjfPFAC0tLd1c8ACdM/H/GUYt8vPz8dZbb2HUqFG4+uqrHT0cTXLbbbdh7ty5qKiowPbt22EymSTf69TC5Q2UEydOYPny5ZLW/fjjj5GcnNz5eejQoZ3vFyxYgKVLl+K1117DSy+9pPo4tYIt5wugC//ZZ59FamoqnnrqKXsMUVPYer4Ywtvbu8ebX2tra+f/M4waVFZW4qmnnoK/vz9eeuklGAwGRw9JkyQnJ3fer66++mr84Q9/wJ/+9Cf85z//GbCJlssbKElJSXj66aclrdtXwpmnpydmzpyJTz/9FC0tLS57w7TlfJWWluLxxx+Hv78/Xn/9dfj5+dljiJpCrd+XuxMeHo7y8vJuy8UyddbTYdSgvr4eTz75JOrr6/Gvf/2Lf1cymDt3Lt58800UFhYiKSlpQI7p8gZKeHi4asJFLS0tEAQBjY2NLmugKD1fRqMRjz/+ONra2vDWW2+5zYWv5u/LnRkyZAiOHTuGhoaGLomy6enpnf/PMLbQ0tKCP/3pTygsLMQ//vEPTo6ViRhmHchKHi4z7oHq6upuy+rq6rBjxw5ERUUhNDTUAaPSLk1NTXjyySdRUVGBN954g5UZGdnMnTsXJpOpixBUa2srNm7ciJEjR3IFD2MTJpMJL7zwAs6cOYO//OUvGD16tKOHpFl6ev61t7djy5Yt8Pb2HlDDzuU9KEr44x//iMjISIwcORKhoaEoLS3Fxo0bUVlZiRdeeMHRw9McL730EjIyMnDttdciPz+/i66Ar68vZs+e7cDRaZMPP/wQAJCXlwcA2LJlS6di6n333eeoYTmMkSNHYt68eVixYgVqamoQHx+PzZs3o6SkxC1ymZTy1Vdfob6+vjMUtmfPHpSVlQEAbrnlFgQEBDhyeJrh//7v/7Bnzx7MmDEDdXV1+OGHH7r8/4IFCxw0Mu3x5ptvoqGhAePGjUNkZCQqKyuxdetWFBQU4NFHHx3Q0L1OEARhwI7mJKxbtw4//fQT8vPzUV9fj8DAQIwcORJ33HEHxo0b5+jhaY7bb78dJSUlPf5fTEwM1qxZM8Aj0j5z5szp9f927tw5gCPRDi0tLZ29eOrr65GamoqlS5di6tSpjh6aZunr2vviiy8QGxs7wCPSJsuWLcPx48d7/X93veZ6Ytu2bfj++++Rk5MDo9EIPz8/pKWl4eabb8asWbMGdCxsoDAMwzAMozk4B4VhGIZhGM3BBgrDMAzDMJqDDRSGYRiGYTQHGygMwzAMw2gONlAYhmEYhtEcbKAwDMMwDKM52EBhGIZhGEZzsIHCMAzDMIzmYAOFYVRm06ZNmDNnDjZt2uTooUji2LFjmDNnDj744AO7HWPOnDlYtmyZ3fZvb5YtW9an+q8tiOdffD388MN2OY4UPvjgA8yZMwfHjh3rXJafn99lfLfffrvDxse4F9yLh3F7/vrXv2Ljxo0ICgrCunXr4OXl5eghqY74UOG2A9pl/PjxGD9+PKKiohw9lC4EBwdjyZIlAIC1a9c6djCMW8EGCuPWNDY2Yvv27dDpdKitrcWuXbswf/58m/Y5e/ZsjBw5EuHh4SqNknEHxo8fj1/96leOHkY3QkJCOse1efNmB4+GcSc4xMO4NT/99BOamppw2223Qa/X4/vvv7d5nwEBAUhOTuZOsgzDMDbAHhTGrfn+++9hMBhw5513Ijs7G0ePHkVJSQliYmK6rPfBBx9g9erVve7Humvzpk2b8Nprr+Hpp5/GNddc07nOnDlzMH78eDz33HN49913cejQIbS2tmLcuHF47LHHEBcXh7y8PKxYsQInTpxAe3s7pk6dit///vcICwvr3M+xY8ewfPlyLFmypNuM++LFi1i8eDGuvvpqPPPMM52frccg0tP2mZmZWLFiBc6cOQO9Xo+JEyfit7/9bbeuuDt37sT27duRmZmJiooKeHh4YPDgwbj11lsxd+7cvk96P9TX1+Obb77B/v37UVRUBKPRiODgYEyePBlLlixBfHx8l/XFv80777yDiooK/Pe//0VBQQECAgIwb948PPzww/D29u6yTXt7Oz7//HN89913qKioQGRkJK677jpcccUV+OUvf9l5/qSwa9cufPXVVzh79ixaW1sRHx+Pq6++GrfffjsMBoNN5wIAXn31VWzevBmff/45du7cie+//x7FxcWYP38+nnnmGVRUVGDDhg04ePAgiouL0dDQgPDwcEyfPh33338/QkNDu+2ztLQU//73v3Hw4EG0t7dj2LBheOCBB2weK8OoCRsojNuSl5eHM2fOYPr06QgLC8PChQtx5MgRbNy4sduDe8KECT3uIz8/H9u3b+/2AOyNuro6PProowgPD8fChQtRVFSEvXv34g9/+ANeffVV/Pa3v0VaWhquvfZanD17Fjt27EBtbS3eeecdRd8xICAAS5Ys6cwduPXWW3v9TpmZmfjvf/+LCRMmYNGiRTh37hx27dqFnJwcrF69ust3XLFiBTw8PDBmzBiEh4ejpqYGe/bswZ///GcsX74ct9xyi6LxAnROP/jgA0yYMAGzZ8+Gr68v8vPz8eOPP2Lfvn14//33uxmQALBu3TocPHgQM2fOxMSJE3HgwAF89dVXMBqN+POf/9xl3ddffx1btmxBXFwcbrrpJrS1tWHNmjU4ffq0rLH+5z//waefforIyEjMmTMHAQEBOHnyJN59911kZGTgxRdfVHweLuXtt99Geno6LrvsMsyYMaPT8Dhx4gS++OILTJw4ESNGjICHhwfOnTuHr7/+GgcPHsT777/fxZtXUVGBRx55BOXl5Zg6dSqGDRuG/Px8PP74473+zhnGEbCBwrgt3333HQBg4cKFAMi78NZbb2HTpk1YsmQJ9HpLBHTChAndbt7V1dV46KGH4OXlhSeffFLSMbOzs3H77bfjt7/9beeyf/zjH/j666/x29/+Fvfffz9uu+02AIAgCHjqqaewf/9+ZGVlIS0tTfZ3DAwMxK9+9avO3IG+chz279+P559/vksOziuvvIItW7Zg9+7dXZa/8cYbiIuL67J9Y2MjHnnkEaxcuRLXXXcdfHx8ZI8XAJKTk7F+/XoEBQV1WX706FH84Q9/wEcffdTj+T5y5Ajee+89JCUlAQAefPBB/OpXv8JPP/2ERx55BBEREZ3rbdmyBUOHDsX//d//dY7znnvuwdKlSyWP89ChQ/j0008xdepUvPTSS/D19QVAf7d//OMf+Oabb/Dzzz/b7FESyc7OxsqVKxEdHd1l+cSJE7F+/Xr4+fl1Wb5582a8+uqrWLduHe69997O5StWrEB5eTmWLl3aZfmGDRvw5ptvqjJWhlEDzkFh3JL29nb88MMP8Pf3x6xZswAAfn5+mD17NkpLS3H48OE+t29pacEzzzyDkpIS/OlPf8KYMWMkHdfX17fbQ1B88AcHB3fxcOh0us7/y87OlvzdlDJu3LhuCcLXXnstACAjI6PL8kuNE4DO3zXXXIP6+npkZmYqHkdAQEA34wSgB/GgQYN6/dvceuutncYJAHh7e2P+/Pkwm83IysrqXP7DDz8AAO67774uRlRERESX898f69atAwD88Y9/7DROAPq7PfTQQ9DpdNi2bZvk/fXHHXfc0c04AYDQ0NBuxglAhre/vz+OHDnSuaytrQ0//fQTQkNDu4T+AOD6669HQkKCauNlGFthDwrjluzevRs1NTW47rrruoQuFi5ciB9++AHff/89pk6d2uO2giDg1VdfxZkzZ3D//ffjyiuvlHzchISEbp4FsdonNTUVOp2ux/+rqKiQfAyl9OShiYyMBEB5IdZUV1fj008/xf79+1FaWoqWlpYu/2/reI8dO4Yvv/wS6enpMBqNMJlMnf/n6enZ4zbDhg3rtkws2bUe//nz5wEAY8eO7bb+6NGjJY8xPT0dvr6+vSZWe3t7o6CgQPL++mPEiBG9/t+OHTuwYcMGnD17FvX19V3Ol/XfoqCgAK2trZg4cWK3sKRer8eYMf+/vbuLSeqN4wD+lQhXEuKKoDbLTWt6oZChzizWi3bNernoChgtuuiqi9ZcF924Vas2udCLXBn2xuZcSxF6ZTUlKaOCuVFamyMsLGgCas6A/4WDwZ+jpSSy8ftcnnN4nkdwO9/zvJ1yfPny5Z+1mZBUUEAhWSl6U4kO70Tt3LkTAoEA/f398Pv9jE/ybW1tMJvNqK+vh0qlWlS9eXl5SceiEykXOvf79+9F1bMUTE/h0frD4XDsmN/vx4kTJ+DxeFBeXg6pVAoulwsWi4WRkRH09fVhdnZ2ye0wm804f/481qxZg+rqaohEolioM5lM+PbtG+PnFvr+4ts/NTUFFouF/Pz8pOvjJyP/id/vRygUWnDy9PT09F+X9ydMk10B4N69e2hpaQGfz0dVVRUEAkEsfHR2dib8FpOTkwuWNd9xQlYCBRSSdTweD16/fg0AC+5u+ujRo6Quf6PRiI6ODpSXl+Ps2bPL2s75RHtZ4p+So6I3oOVkMBjg8XigVquhUCgSzt26dQt9fX0plX/jxg1wOBxcu3YNhYWFCeeePXuWUtnAXBALh8OYmJgAn89POOfz+f66nLy8POTk5KC7uzvlNv2N//euAXPBVafTYf369bh+/XpCwIhEIrh7927C9dEQ9/PnT8Y65jtOyEqggEKyjslkQjgcRkVFRdINEJi78ZtMJhgMhoSA8u7dO1y+fBmbN29GU1PTiu04u27dOgDMwyjDw8OMn2GxWCn1asRzu90AEJu7E89ut6dc/tjYGIqKipJ+mx8/fmBsbCzl8ktKSjA8PAyHw4E9e/YknFvMKp6ysjJYrVa4XC7G/6N0mJiYQDAYRGVlZVLvh9PpTBp6KywsBIfDwYcPHzAzM5MwzBMOhxe9iomQ5UQBhWSVSCSC3t5e5OTkoLGxkXGyJwC4XC4MDQ3B6XSitLQULpcL586dQ25uLi5cuJD05J1OW7Zswdq1a5OGoXw+H3Q6HeNneDwePn/+nHRTWoroEl+Hw4Hi4uLY8cePH2NgYCClsgFAKBTC7XbD5/PFhlxmZmZw9erVfzLU1dDQAKPRiPb2dlRXV8e+D6/Xu6it3I8cOQKr1YqLFy+iqakpacjI6/UiEAigqKgo5TbPp6CgALm5ufj48SN+/foVGwoLBAKMS9M5HA727duHhw8fQq/XJ6zi6enpgcvlWra2ErJYFFBIVrHZbPj69SskEsm84QSYW70yNDQEg8GA0tJSaLVa+P1+SKVSxmEGLpebtpeorV69GocPH0ZHRweOHz+Ouro6TE9Po7+/HxKJJNbDEW/Hjh1wOp04c+YMKioqwGazIRaLIZFIFl3/wYMHcefOHTQ3N+Pt27cQCoUYGRmBzWaDTCbDixcvUvr7Dh06hObmZqjVauzduxehUCg2JFdSUhKb5LpUUqkU9fX1ePLkCZRKJXbv3o3Z2VmYzWaUlZXBYrEkLDGfT01NDRQKBW7evIljx46hpqYGQqEQfr8fbrcbdrsdarV6WQMKi8WCXC6HXq+HSqVCXV0dJicnYbVaIRQKY0ur42k0GthsNrS1tcHhcGDbtm0YHR3FwMAAqqqqYt81ISuNAgrJKtHJsfE7vDLZv38/tFotnj59ilOnTsW6ygcHBxmXuYpEorS+5VWtVoPNZsNgMODBgwcQiURQKBTYtWsXnj9/nnS9QqFAMBiExWKB3W5HKBSCUqlcUkDZuHEjtFotWltbMTg4iFAohO3bt+PKlSsYHx//JwGFzWajq6sL3d3d4HK5qK2thUajSdpwbakaGxuxdetW9Pb2oqurCwKBAEePHkVlZSUsFgvjhGEmarUaYrEYnZ2dePPmDYLBIHg8HjZt2gSlUomGhoZ/0t6FaDQa8Hg8GI1G3L9/HwUFBThw4ABUKlXsJX/xNmzYgJaWFrS2tuLVq1d4//597Pez2WwUUEjGyIlEIpGVbgQhhGSCnp4eXLp0CadPn4ZcLk9LnQu9uiDT0FuxSTrRRm2EkKzj9Xrx/2ez79+/Q6fTYdWqVaitrU17m9rb2yGTyXDy5Mm0172Q0dFRyGQyyGSyeZd4E7IcaIiHEJJ1bt++jZcvX0IsFoPP52N8fBwWiwVTU1NQqVSMO7YuF5FIlDAUE91cLlPk5+cntI/e0k3ShYZ4CCFZx2q1Qq/X49OnTwgEAuBwOCguLoZcLk/LvBFCyJ9RQCGEEEJIxqE5KIQQQgjJOBRQCCGEEJJxKKAQQgghJONQQCGEEEJIxqGAQgghhJCMQwGFEEIIIRmHAgohhBBCMg4FFEIIIYRkHAoohBBCCMk4/wGFRYNjj0vGFwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwwklEQVR4nOy9d3gc5dX+f++uVr33ZjUXuXdscDcGbJpNTDEloUMoeQ0JCQZ+hBJICIGX9n0TiGkGAsHGGDDgBrZx77bcVCxbVrPVZa16253fH8ejWdkqM7Ozu7PS+VzXXppd7cw8Wu08c55T7mMQBEEAwzAMwzCMjjC6ewAMwzAMwzAXwgYKwzAMwzC6gw0UhmEYhmF0BxsoDMMwDMPoDjZQGIZhGIbRHWygMAzDMAyjO9hAYRiGYRhGd7CBwjAMwzCM7mADhWEYhmEY3cEGCsPonF9++QUGgwEvvPCCw8cyGAyYNWuWw8fpCS3H2xe4++67YTAYkJ+fL3uflJQUpKSkOG1MDOMJsIHCMBdgMBhgMBhgNBpx6tSpbt83e/bsjvcuW7bMdQN0M/n5+TAYDLj77rvdPRTZiEaT/cPb2xuJiYm4+eabsWvXri73a2xsRGhoKAwGA26//XYXj9q5WK1WfP7555g+fTpiY2Ph7++PIUOG4J577sHx48fdPTyGgZe7B8AwesTLywvt7e348MMP8be//e2i3+fm5uKXX37peB8jMWnSJGRlZSEyMtLdQ7mI5OTkDsOqoaEBu3fvxsqVK7Fq1SqsXLkSv/rVrzq9f/ny5bBYLDAYDFi1ahWqqqoQERHh9HFu3LjR6ee4/fbbsWLFCiQmJmLhwoUICgrC0aNH8cknn+CLL77A2rVrcfnllzt9HAzTHexBYZguiImJwcSJE/Hxxx93aYB88MEHAIDrr7/e1UPTPf7+/hg6dKguDZSUlBS88MILeOGFF/Daa69h27ZteO6552Cz2fDEE09c9P6lS5fCaDTiT3/6E1paWvDJJ5+4ZJwDBw7EwIEDnXb8ffv2YcWKFRgxYgRycnLwr3/9C6+++irWrFmDDz/8EK2trXj55Zeddn6GkQMbKAzTDQ888ABKS0vxww8/dHq9ra0Ny5Ytw5QpUzB8+PBu98/NzcWdd96JhIQEeHt7Iz4+HnfeeSdyc3O7fH9ZWRnuu+8+xMTEwM/PD2PHju3xhthTnsILL7wAg8GAX375pde/8+zZs/jLX/6CqVOnIjY2tmOst99+OzIzMy86bmpqKgDgk08+6RQyEcNcPeWgKPlM7P+GlStXYtKkSfD390d4eDhuvfVWnDlzpte/TQ6PPvooAOD06dOoqKjoeP3YsWPYvXs35syZgyVLlsDb27vDMFWDzWbDG2+8gaFDh8LX1xeJiYn4/e9/j9ra2ove29X/dtmyZR2f8+bNmzFr1iwEBQUhODgY1157LbKysmSPJS8vDwAwZ84c+Pv7d/rdggULAKDTZ8Ew7oBDPAzTDbfddhv+8Ic/4IMPPsANN9zQ8frq1atRXl6OV199FSdPnuxy33379uGKK65AXV0d5s+fj+HDhyM7Oxv/+c9/8N133+Hnn3/GJZdc0vH+yspKTJkyBXl5eZg2bRqmTZuGkpISPPTQQ7jqqquc+ndu3boVf//73zF79mzceOONCAwMRG5uLlauXInVq1djx44dGDNmDABg1qxZqKmpwdtvv40xY8Z0+lzGjh3b43mUfiYi//rXv7B69WrMnz8fM2fOxJ49e7B8+XIcPnwYGRkZ8PHxcejvFwShY9tgMHRsL126FAAluYaHh+P666/H119/jW3btmH69OmKz/P73/8eW7duxS233IIFCxZg/fr1eOutt7Bt2zZs374dvr6+so7zww8/4LvvvsPVV1+Nhx56CJmZmVizZg327duHzMxMWZ6rESNGAAA2bdqEpqYm+Pn5dTo+AFxxxRWK/0aG0RSBYZhOABASEhIEQRCE++67TzCZTEJRUVHH7+fOnSsEBwcLDQ0Nwv/3//1/AgDh448/7vi9zWYThg4dKgAQ/vOf/3Q69pdffikAENLT0wWr1drx+gMPPCAAEB5//PFO79+3b5/g5eUlABCef/75Tr9LTk4WkpOTu/wbnn/+eQGAsHnz5ov+tpkzZ3Z6raysTKitrb3oGBkZGUJAQIAwb968Tq+fPn1aACDcddddXZ578+bNF41XzWci/g1BQUHCkSNHOu1z2223CQCE5cuXdzmG7sZ04d8uCILw5z//WQAgpKWldbzW1NQkhIWFCSEhIUJjY6MgCILw/fffCwCEX//617LOKXLXXXcJAISIiAghPz+/43Wr1SosXLhQACD85S9/6bRPV//bjz/+WAAgmEwm4eeff+70u6eeekoAILz66quyx/X73/9eACAkJSUJjzzyiLBkyRLhuuuuE7y8vIRbb71VqK+vV/R3MozWcIiHYXrggQcegNVqxUcffQQAKCgowE8//YQ77rjjIte4yM6dO5GdnY3LLrsMd9xxR6ffLVq0CNOmTUNOTg62b98OgEJGn3/+OYKCgi4Ki0ycOPGiY2hNdHQ0goKCLnp9zJgxuPzyy7F582a0tbU5dA6ln4k9ixcvxqhRozq99sADDwAA9u7dq2gc+fn5HTkof/rTnzBjxgy89NJLMBqNeP311zve99VXX+HcuXNYtGhRh3dh3rx5iI2NxcqVK3Hu3DlF5wWAxx57DMnJyR3PjUYjXnvtNRiNxo7vlxxuvfVWzJkzp9NrDz74IABln8cbb7yB9957DxUVFR05KD/88APGjBmDu+66CwEBAbKPxTDOgA0UhumByZMnY9SoUfjoo49gs9nwwQcfwGazddwgu+LgwYMA0G0FhPj6oUOHAADZ2dlobGzE2LFjERISctH7na1bAgA//vgjrr/+esTFxcFsNnfklXz//fdoaWlBZWWlQ8dX+pnYM3HixIteGzBgAAAoNhQKCgrw4osv4sUXX8Rbb72FkydPYuHChdi2bVunCh4xvHPPPfd0vObl5YU77rgDzc3N+OyzzxSdFwBmzpx50WtpaWkYMGAA8vPzUVNTI+s4WnwegiBg8eLFePTRR/Hcc8+hqKgIdXV12LZtGwwGA66++mr885//lHUshnEWbKAwTC888MADKCgowNq1a/Hxxx9jwoQJGDduXLfvt1gsAIC4uLgufy++Lt6QxPfHxMR0+f7Y2Fi1Q5fF22+/jeuuuw47duzAjBkz8Pjjj+O5557D888/35F70tLS4tA5lH4m9oSGhl70mpcXpc9ZrVZF45g5cyYEQYAgCGhra8PZs2fx9ddfY8qUKR3vycrKwvbt2zF06FBceumlnfYXS5Tff/99RecFev//ip9Rb2jxeXzyySf4f//v/2Hx4sV46qmnkJiYiMDAQEybNg3ff/89/Pz88NRTT6G+vl7W8RjGGXCSLMP0wm9+8xssWbIEDz30EM6cOYPnnnuux/eLXpDS0tIuf19SUtLpfeLPsrKyLt/f3XGMRiNaW1u7/J3c1Xh7ezteeOEFxMbG4uDBgxcZEN0JmClF6WfiTkTvSXZ2dqekWXuOHTuGnTt3djJseqOsrAzp6ekXvS5+Jq7828VE2NmzZ1/0u9jYWAwdOhSHDh1CTk4OJkyY4LJxMYw9bKAwTC+EhobipptuwmeffYaAgADcdtttPb5f9K50V+K7efNmAMD48eMBAEOHDoW/vz8yMjJgsVguulF1d5ywsDAcOXIEbW1tMJvNnX63f//+3v4sAFQ9VFNTg4ULF15knNTX13eEZuwxmUwAlHkvlH4m7qKlpQWfffYZjEZjh0T9hRQXF2P9+vV4//33FRkoW7ZswYwZMzq9lpeXh6KiIqSkpHTpGXEWokesu1Ji8XVvb2+XjYlhLoRDPAwjg5dffhnffPMN1q9f32VCqT1Tp05Feno6tm/fjpUrV3b63cqVK7Ft2zYMGTIE06ZNAwCYzWbccccdqKuruyhJdv/+/fj888+7PM+kSZPQ3t6Ojz/+uNPry5Ytw44dO2T9XdHR0fD398eBAwc6ufPb2trw2GOPdZl7EhYWBoPBgMLCQlnnAJR/Ju7i66+/RlVVFebOnYsPP/wQH3zwwUWPFStWICAgACtWrJAdlgEolFZQUNDx3Gaz4U9/+hNsNlunXBdXIJZJv/HGGxf9De+99x6Ki4sRGxvbo84Pwzgb9qAwjAySkpKQlJQk670GgwGffPIJrrzySixatAgLFizA0KFDkZOTg2+//RZBQUH49NNPYTRK64O//e1v2LhxI9566y3s37+/Qwdl+fLluOaaa7B69eqLzvM///M/+Pjjj/Hwww9j48aNGDBgADIyMrBr1y5cd911FwnMdYXRaMTixYvx97//HaNGjcKCBQvQ2tqKzZs3o7q6GrNnz+7wbogEBgZi8uTJ2LZtG+644w4MGTIEJpMJ8+fPx+jRozX7TNyBGN65//77u31PcHAwbr75Zixbtgz/+c9/OoTeemPq1KkYO3YsFi1ahJCQEKxfvx6HDx/GhAkT8OSTT2oyfrk88sgj+Pzzz3HkyBEMGTIE8+fPR2hoKA4ePIhNmzbBZDLhn//8Z4e3jGHcAXtQGMYJTJ48Gfv27cPtt9+OXbt24bXXXsPOnTtx2223Yd++fZg8eXKn90dGRmLHjh245557kJ2djbfeegsZGRl499138fvf/77LcwwfPhw///wzpk6diu+//x5Lly6Fj48Pdu3apShv4KWXXsL//u//ws/PD//+97+xatUqTJw4EXv37u3WKPvss89w7bXXYt26dXjxxRfx5z//uctwkCOfias5ceIEtmzZgpiYmF5bGIhVXEqSZd988008++yz+OWXX/D222+joqICjz32GDZt2iRbpE0rAgMDsWPHDrz44ouIi4vDF198gbfeegtZWVm4+eabsXPnTixcuNClY2KYCzEIgp2MIsMwDMMwjA5gDwrDMAzDMLqDDRSGYRiGYXQHGygMwzAMw+gONlAYhmEYhtEdbKAwDMMwDKM72EBhGIZhGEZ3eKSB0tzcjJycHDQ3N7t7KAzDMAzDOAHFBkpjYyM++ugj/PGPf8S1116LGTNmYO3atapO/o9//AMzZszAkiVLFO1XUFDQ0WGWYRiGYZi+h2IDxWKxYNmyZSgoKMCgQYNUnzg7Oxtr167lZlQMwzAMw1yEYgMlIiIC33zzDb766is8/PDDqk4qCALefvttzJ07F+Hh4aqOwTAMwzBM30WxgeLt7Y2IiAiHTrp+/XqcPn26o58FwzAMwzCMPS5Pkm1sbMR7772HX//61w4bOgzDMAzD9E28XH3CZcuWwcfHB7fccovsfSorK1FVVdXxnJNjGYZhGKZv41IDpaioCCtXrsRzzz2nKDl29erVWLZsmfMGxjAMwzCMrnCpgfLOO+9g5MiRmDVrlqL95s+fj6lTp3Y8LygowMsvv6zx6BiGYZjesFqtaGtrc/cwGB1iNpthMpk0O57LDJQDBw5gz549ePnll1FSUtLxutVqRUtLC0pKShAcHIyAgICL9o2MjERkZKSrhsowDMNcgCAIKC0thcVigSAI7h4Oo0MMBgNCQkIQGxsLg8Hg8PFcZqCUl5cDAJ599tmLfldRUYFFixbhd7/7naLcFIZhGMY1WCwW1NTUICoqCgEBAZrcgJi+gyAIaGhoQEVFBfz8/BAaGurwMZ1moFRWVqKhoQEJCQnw8vLC+PHj8de//vWi97322muIjY3Fb37zG6SlpTlrOAzDMIxKBEFAeXk5goOD2ZvNdIufnx9aWlpQXl6OkJAQh41YVQbK119/jfr6+o7Kmh07dnR4SG688UYEBgZi6dKlWLduHZYvX464uDjExMQgJibmomP9v//3/xAWFobp06c78GcwDMMwzsJqtcJqtSI4ONjdQ2F0TnBwMGpra2G1WuHl5ZgPRNXey5cvR2lpacfzrVu3YuvWrQCAq666CoGBgQ4NimEYhtEP7e3tAODwDYfp+4jfkfb2dvcYKCtWrOj1Pc888wyeeeYZTY7FMAzDuB/OO2F6Q8vviMuVZBmGYRiGYXqDDRSGYRiGYXQHGygMwzDOoqEBOJ+/wTCMMthAYRiGcQb5+cCqVcCmTUBLi7tHw+iYlpYWLFmyBPHx8fDz88PkyZPx008/ydr3+PHjuPnmm5GWlgZ/f39ERkZixowZ+P7771Wf55dffoHBYOjysXv3bof/XrlwSjbDMIyW2GzAkSPArl1AWxtQUkKvzZwJ+Pm5e3SMDrn77ruxcuVKPP744xg8eDCWLVuGa665Bps3b8a0adN63LegoAB1dXW46667EB8fj8bGRnz99deYP38+/v3vf+PBBx9UfZ7Fixfjkksu6fTaoEGDtPmjZWAQPFCzOCcnBw888ADef/99pKenu3s4DMMwRHMzGSaHDgGhoUBUFHlPTp8Ghg0DZs8GumjnoXeam5tx+vRppKamwtfX193D6VPs3bsXkydPxmuvvYY//vGPAOjzHjlyJKKjo7Fz507Fx7RarZgwYQKam5uRnZ2t+Dy//PILZs+eja+++go33XSTonNr+V3hEA/DMIwWVFcD69YB+/YBcXFknACAjw+QmgpkZgIbNwJ1de4dJ9MlaWlp+PWvf33R67Nnz8bMmTOddt6VK1fCZDJ18nT4+vrivvvuw65du1BUVKT4mCaTCQMGDEBNTY3D56mrq+vQwXE1HOJxBw0NwKlTgMlEk5e3t/QQn5vN7h4lwzByyc8Htm4FysuBQYMuvn59fOj1nBxKmr3iCoBVWXVDfX098vPz8fDDD1/0uyNHjuD222/vcr+2tjZYLBZZ5wgPD4fReLFP4NChQxgyZMhFKr2TJk0CAGRkZGDAgAG9Hr+hoQFNTU2wWCxYvXo11q5di0WLFjl0nnvuuQf19fUwmUyYPn06XnvtNUycOFHW36sFbKC4GkGgFdaePYCosmcw0Lb4MJvp4e9P7uCAAIpd2xswFxo03t50HIZhXId9vonVCgweDHRxEwJA1/SgQbQ4Wb+ejJSwMNeOl+mSY8eOQRAEjBkzptPrxcXFqK6uxujRo7vcb8eOHZg9e7asc5w+fRopKSkXvV5SUoK4uLiLXhdfO3v2rKzjP/HEE/j3v/8NADAajVi4cCH+7//+T9V5vL29ceONN+Kaa65BZGQkMjMz8frrr2P69OnYuXMnxo0bJ2tMjsIGiqspKKAJbcAAICiIXhMEWlW1tUk/m5uB+nrpuc0mHUMQJEPG/qefn2TU+PvTCi09nQ0XhnEGzc3A7t3AwYNSvklveHmRkXLyJBkpV14JREQ4fahOY+JEwK7tiduJjQX271e827FjxwDgIgPl8OHDANCtgTJmzBjZ1TaxsbFdvt7U1AQfH5+LXhfzN5qammQd//HHH8dNN92Es2fPYsWKFbBarWhtbVV1nilTpmDKlCkdz+fPn4+bbroJo0ePxtNPP41169bJGpOjsIHiSpqbgb17aVs0TgAyIESviVza26WHaNhUV5OLua2NVnNmM+DrC3RhtTMM4wDV1RTSOXGCFhtK+o+ZTJInZd06MlKio503VmdSWgqcOePuUTjM0aNHu2xoe+TIERiNRowcObLL/cLCwnDFFVc4dG6xA/CFNDc3d/xeDkOHDsXQoUMBAHfeeSeuuuoqXH/99dizZw8MBoPD5xk0aBAWLFiAVatWwWq1wmQyyRqXI7CB4kqOHiUPihZlWmI4qCfy8oADB4CEBM5pYRitKCgg46SsrOt8EzmIRkpenhTu6cL9rnu68Qq4DZXjOXbs2EXeE4DyMtLS0hDQTeVVa2srqqurZZ0jKiqqy5t6XFwcznRh5JWUlAAA4uPjZR3/Qm666Sb89re/xYkTJ5Cenq7JeQYMGIDW1lY0NDS4pLM1GyiuoqyMXMFRUb0bFloxYABNgDk5QDcrAIZhZKIk30QORiOQlkYlyKKRkpio3XhdgYpwih45evRop4RSALDZbNi0aRNmzJjR7X47d+50OAdl7Nix2Lx5M2prazvd9Pfs2dPxezWIIRsxiVeL8+Tl5cHX1xeBSjyGDsAGiiuwWikxtr4eUGkNq8JspjyUAweA5OTOYSWGYeSjJt9EDqKRkp8vGSnJydocm5FFeXk5KioqOjwJIu+88w4qKysxatSobvfVIgflpptuwuuvv46lS5d26JO0tLTg448/xuTJkzsqaxobG1FYWIjIyEhERkZ2Gn/0BSHCtrY2fPrpp/Dz88Pw4cMVnQcAKioqEHXBd/zw4cNYvXo1rr766i6rkZwBGyiuICeHHklJrj93TAyd+/BhoBdFQoZhusCRfBM5GAyUJ1ZYCGzYAMyZQ0YL4xKOHj0KANiwYQMeeeQRDB06FLt378b69esBAAcOHMCePXswefLki/bVIgdl8uTJuPnmm/H000+jvLwcgwYNwieffIL8/Hx8+OGHHe/bu3cvZs+ejeeffx4vvPBCx+u//e1vUVtbixkzZiAhIQGlpaX4/PPPkZ2djf/93//t8HbIPQ8ALFq0CH5+fpgyZQqio6ORmZmJpUuXwt/fH3//+98d+nuVwEJtzqa2lrwngYGUsOpqjEaKyx49qq9se4bxBAoKgDVrqOpm0CDtjRMRg4E8J+3tZKScOOGc8zAXcfToUZhMJnz55ZfYsGEDlixZgsrKSmzZsgUDBw5ERkYGzE7O4fv000/x+OOP47PPPsPixYvR1taGH374ocfwksiiRYtgNBrx7rvv4uGHH8Ybb7yBxMREfPfdd/jDH/6g6jw33HADKisr8cYbb+CRRx7B8uXLsXDhQuzfvx/Dhg3T9G/vCZa6dyaCAPzyCxko6emOxasdJTeXxnD11e4dB8N4Avb5Ju3t5P101XVz9iyFhWfNAs67591NX5a6v//++7F161acYKNQE1jq3lPIzyfPRWKi+42CxERalZ065d5xMIzeaW6mkM6mTSSEmJLi2us3Pp7yxzZuJCPJ89aQHsXRo0c78jQYfcEGirNobibPCaCP5FRRiXb/fhobwzAXI/bT2bu3cz8dVxMbS4KLmzcDGRlspDgJQRCQmZnJBopOYQPFWRw5Qh4UGT0UXEZ8PFBcTE3LGIbpjKvyTeQSFQWEhABbttDCwl5NmtGE06dPo76+ng0UncJVPM6gtJTarUdHu07zRA5eXiSrffAgdVflPiAMQzf+o0eBnTsp38RRfRMtiYigsWzbRnkpkybpZ2x9gLS0NHhgGma/gb/pWtPeTqGdhgZ99tiIjATOnWO3McMAUr7Jxo3uyTeRQ1gYLXZ27KBHe7u7R8QwLkFHy/s+Qk4OJaPqVWzJYCDp++PHyY2tpxAUw7iSc+fIM5Gd7Rx9Ey0JCSHDac8e8vhMmcLtK5g+j86WCh6OxULek6AgWo3plaAgWoUdOMCrMaZ/0tZGXpMTJ/SRbyKHoCBaXOzdS14fu061DNMXYQNFKwSBEtkqKki9Ve8kJlLJcW6uu0fCMK6nsBAoKqJcLE/yRAQGkibLwYOkscQVeUwfhg0UrTh9Gjh2TB+aJ3Lw8aEyxgMHKF+GYfoLNhtVshmNVHrvafj7U65MRgaVIZ9vCucKOKGU6Q0tvyMecCf1AJqayO1qMnmGq1gkNpZUK8/3omCYfkFJCS0oumne5hH4+lK/nqNHKVTl5EWG1/lqxHYOCTO9IH5HvDSoYGUDRQsOHyaXcUKCu0eiDJOJqgMOH6bQFMP0B7KzKQfF39/dI3EMHx9g4EDyBh0+7NRTmUwmmEwm1NbWOvU8jOdTW1vb8X1xFK7icRRR8yQmRl+aJ3KJiKDKo4MHgSuv9IzwFMOopbKS8q5U5InlFRpw4KgRbW1OGJcdZjMwcZQNqUkyXOXe3iQdkJ0NjB7tNA+uwWBAdHQ0SkpK4OPjg4CAABgMBqeci/FMBEFAQ0MDamtrERcXp8n3wwPvqDqivZ1CO01NlHviqQwYQBPc4MHc5p3p25w4AdTVqfJ2HjhqhKVWwaQrCPBtqUWzb4iyEzUB+48akZpklff+iAgyuk6fBkaNUnYuBYSEhKCpqQmVlZWoYI8r0wUGgwGhoaEICVH4ne8GNlAcITubJryUFHePxDH8/Ukf5cABMrQ8MXGQYXqjro6u2chIVbuLnhODQYBfL01a/evLMfOnvyCkpgBZo27E4Ql30TXWC03NgCAYlHlpjEZKeD92DBg61GlVSQaDAXFxcYiOjkabs91IjEdiNps1Ce2IsIGilpoa8p6EhOhb80QuiYlAXh6QlQWMGePu0TCM9pw6BVRVAUOGOHQYP1/g9ht68G6cOQP8+c/AuUoAwIgjX2HEhEDghl/1euwvvjWhUU1RTkwM9RIqKnK6F1Sr/AKG6Q1OOFCDqHlSVeUZmidyMJvJ2DpwgATnGKYv0dJCHobgYOfmWZ0+DTz1FOW62PPxx9T0z1mYzeShycriFhZMn4ENFDXk5ZFU/IABsty2HkN0NBldGRnuHgnDaMvp00BZGX3HnUV2NvDMM5KBn5wM3HCD9Pu333ZutU1MDHVQLytz3jkYxoWwgaKUxkYK7Xh5Udy3L2E0AnFxZHydPevu0TCMNlit9J329XVepV1GBoV1RD2S9HTglVeAe+4B5s6l19rbgb/9jRY4ziAwkBL2T5xwzvEZxsVwDopSMjIozns+jq209NC36RzG7/kAXu1NaPILQ7NfGJr8w+mnuO0bCptX50RVRaWHjhASQpooBw/SioxjzYynU1RED2dV2u3aBbz2mtTXaswY8qT4+dHzhx6ixoRixd+LLwKvvuocobjISDJQxo6lcBbDeDBsoCjh7Fly0cbGdty4lZYeTtn2T6QU7+r1fS3mQDT6haHJN+z8z3DUZoQBU0KA0FAgPJzasAcGah9TT0ykSW7wYFoJMoynIgiUlwE4J5l90ybgnXdIPh8AJk8G/vSnzpVwJhO99uc/Uxjo3DnJSNHaiAgLI12jvDwyUhjGg2EDRS5tbbQCam7utBJTUnoYWZ4lyzgBAJ+2evi01SOstqjzL/Zc8EYvLzJYQkNpcrJ/jBxJjcWU4utLjwMHaH9xJcgwnkZZGd2snZHM/sMPwNKl0vNZs4DFi7sOI/n4AM8+Swm0xcVU6fPSS8DLL2trOBmN5AU9dgwYPpwlAxiPhg0UuWRlASdPUvfTLui19FAQgGc+lp7fcw8pP547d/Gjpgaorqbtlpaex9XeThUDF1YNABQXevNNdUZKfDyJPx07BlxyifL9GUYP5ORQWEVLhVVBAFasAP7zH+m1a64BHnywZ29mcDDwwgvAk0/S9Z2TQ6Ghp5/WNpQaFUXJsgUF5AVlGA+FDRQ5nDtHZcUhIepXJAcOUKIeQDf/66+Xl7DX1ITvV1iAmhr4t1QjpP0c/BrPwbfpHPyazsG3sRp+Tefg02yBUbB13retDQX/uwI7Zi+RNcROeS4mE8WzMzJIVyEiQtnfyzDu5tw5MgK0rNwRBIzd/zFw9GvptZtvBn79a3kVfdHRwHPPkVEiNhl9913g0Ue1qwg0m2luycykXj3cvoLxUNhA6Q2bDdi3j1Y8agWebDbg00+l57/+tfxqAj8/NEcGwuLdc4KfwWaFb4sFfs3n4N9UjZm734RfSw2STm/DvmG3oyZEhhflQontiAjKRTl0CJgzp2+VVDN9n9xc8kYOHarJ4Qw2K6buexfDTq2VXrzrLuDGG5UdKC2NkmhffJE8oBs20GLg1ls1GScASbitpMTzmpgyzHnYtO6NvDxaiTiiebJ1K7lcAWDQIGDqVEW7TxxlQ0iwAH+/7h9+AUYYwsPQHJ+G6oETkTV6IQDAAAETs7/scV9/PwEGA1UHdapGMhhocsvMpG7NDOMpNDZSWDYiQhvDur0dl215XTJODAbgkUeUGyciY8YAjz8uPf/iCzJUtMLfny7m3FztjskwLoY9KD3R2EjeE7NZfWv2tjbg88+l53fJ68lhT2qSIL9xmMi8ecD9K4HaWqTkb0XKxFt6LLPsVmI7MBAoL6cQVXy80/p8MIym5OXR91aLHIyWFuDVV5Fyej8AwGYwwfiHx4GZMx077owZ5Jn96CN6/q9/If7yCJyMmuzYcUWioijENWYMJc0zjIfBHpSeOHSI9BMccZGuXy8pO44Z47o+N76+wK/O9/6w2YCvvlJ/LLFPDwtAMZ5AWxtw9CgZ144mnzY2UihmPxkn7UYzts551nHjROSGG4AFC2jbZsO0zX9HVGW2NscODQVqa50nDMcwToYNlO44cwY4cqST5oliGhuB5cul53fdpc3Y5HL11UBQEG1v2aJeHdbbm46zfz91hGUYPZOfT7kXjpYW19ZSafCxYwCANi8/rJ/1Es4mTXJ8jPbccw8wfToAwMvagrlbXkCQ5YzjxzUYyEg5fpzkERjGw2ADpSvsNU8ccY2uXi315Zg2jfJPXIm/f6fVmUNelNhYcpkfOaLN2BjGGdhslDPl5eVYOLKqiiptTp6k50FB2HT1X1ESM1qbcdpjNFI+yqhRAADf1lrMXv9nqkJylKgoum7FHDiG8SDYQOmK48epNbsa/RARiwX45hvaNhqpcscdXHedpAGxeTOtLNVgNNKK9MgRoLRUu/ExjJacOUPVK47IyJeWkqBa0XmRxPBw4G9/Q1WUE1WVzWbgmWdwLox0lgLryyi01Njo2HFNJgr3ZmZSTyKG8SDYQLmQc+coITQ01DEVxhUrSOcAAK66ihJM3YG/PzB/Pm076kUJC6MJ89AhSdqbYfREVhaV7qpVPy4sJONEzBuLjqamf8nJ2o2xOwIC8MvcF1HnH0XP8/Lo3HIbfXVHTAz9XWc0CBsxjAthA+VCamro4Yi4U1kZsPZ8OaK3N7BokRYjU8/110udlzdvdswDkpgo9fpgGD1RUUGeT7W5J7m5FNaprqbnAwZQv5y4OO3G2AtN/hFYP+sltHif93oePty5148afH1p/5wcbQbJMC6CDZSuMBgc00744gups+n8+e5XYQ0IICMFIDfvypXqj+XvT/H9Awc48Y7RFydOAPX16hrwHTtGCbFiEvigQeS9cMO1WxOShC1XPi95cLds6Sz0qIboaDLeumqJwTA6hQ0UrcnPB375hbYDA4GFC905Gon58yUtl40bKXFOLQkJ5DIWu8QyjLupraXvY1SU8n3376ceOWJIdvhwauSndadhBVTGDAf++EdJpn7VKuD779UfMCSEjK9Tp7QZIMO4ABZq05rPPqNmYgBw003aNilzhMBA8qIsXy55UR55RN2xvLwocfDgQWqeGBqq6VAZRil5Px7DgR0RaDMq6wyclLcVU7a8DqNACaRnEydi28SnYf3p4tbkTa52GF56KfDQQ8C//kXPP/iA8sCmTVN3vPBwSpYdNUq98CTDuBD2oGhJZiYpzwLUW+Paa907nguZP19KHvz5Z4rZqyUqimL1GRmSQcYw7qC5GQc2VcHS4ovGJoPsx4Cj6zH1l390GCd5SdOxbsqfUdfm1+X7BYHCvi4VU543D7jlFtoWBOCNNzp0WRQTEUEhntOntRsfwzgRNlC0QhCAZcuk57feCvgoW805naAgKjsGKEfm6697fn9PGAxUmZSVRZoRDOMuTp9GWysZyQZDzz2nxMe4vG8xfd87MID2OzlkLvZc/if4Bnr1uF9IsICJo1xcwXbHHcAVV9B2ezvw17+q0zUxmSgf7fhxKUeOYXQMh3g0IqFoL5B9XqI6MZG6/+qRBQsolt3cTM3Jbr5ZfSJgcDCp0xYWkseIYVxNezt5FAwUkvHzBW6/oRe9j9JSYNkH0vMFCzDo3nsxyAAAOtQKERsT1tRQvkxDA2mk/OMfynNuoqOB4mLSeElNdcpwGUYr2IOiAQabFWP2fyK98JvfON4DxFkEB0uhJ0e9KOLxcnIc12pgGDUUFtIN16hgKvv5Z6ls9/rrgXvv1abjsTPx8gKefFJqflhVRYm9SltPiF7d7GwOzTK6hw0UDRiUvxmhNQX0ZMgQSm7TMzfcIE1U69dLug9qiIwk3Re1CrUMoxZBoBCjElkAqxXYtIm2jUbgxhv1b5yI+PoCzz0n6bIUFVG4p7VV2XGioykPxZEcNIZxAWygOIixvRXjj34mvXDXXfqf8EJCgGuuoe22NiphVIu3N036LNzGuJqSErrRKpG1z8iQtEAmTKDKFk8iJITCOyEh9DwzE/jf/1UmYx8URGGi3FznjJFhNIINFAcZnLMGQY3nVyLjx3c0/NI9N9wgCUGtWwffRge8KBERpK9QX6/J0BhGFjk5QEuLpJIsh59/lrbFxFNPIzYWeP55qSJv167OXdPlEBlJYR6+Zhkdw0myjtDYiBGH7SaGO+9031iUEhYGXH018N13QGsrhh1bhR2jHlB/rNxccjkPG6btOBmmK6qrSTlWSUuK2lpgzx7aDgkBLrnEOWMTEQTqfxMUJHk8ZNLUDHzxbU95bOmInfEMZm14AUbBipZvfsQ3PrfCZpJXA232isHEiCKk5uUBo53QoZlhNIA9KI7wzTfwba4FAOSnzQTS0tw8IIUsXNjhRRmctQa+zTXqjmM0Uk7LiROceMe4htxcMjiU3Ph/+UUqr509mxJPnUl+Pl0XpaWSSm0viBorgtC7jkte+ATkJc0AAPi01CHy1D7ZGjCWOgP2l8VRyTEnuDM6hQ0UtZw7R94HADaDCUfG/8bNA1JBWBgwdy4AwMvaglHZDuSiREZSNQUn3jHOpqGBbqwREfLzvQQB+Okn6bmzwztFRaTWevnl5KHIz5eVJzJxlA0hwfK0XPz9BBQOvbxj36GFP8vax2CgRUQbvCiPp7DQWZ8CwzgEh3jUsmJFR7O8rEFXoz44DrrUUOiNhQuBdeuAtjYMz/0BJ8ctBKBCnj8wkAyU/HzHOkEzTG+cOkVltkOGyN/n5Emg4HylXXo6kJTknLEBpA1kNJJxkpJCxntNDV0bAwf2uGtqkoDUJAXziHUksD8CqKpC4pn9uH12da9epS++NaFRdOgYjVQJlZam/+R+pt/BHhQ1lJZSeS6ANi9fZIy4zc0DcoCICOCqqwAA5vZmDD32jfpjhYZSmEdp2SPDyKW1lYTZgoOVa5+IONN7UlFBYaTZs6WQb2AgMH06JfOWlmp7PpMJmDWLtq1WYOtWZfvHxpLhpPW4GEYD2EBRw+efd8Syc0bcgCa/MDcPyEFuvBFWIznThmT+QLF9NUREUJfkM2c0HBzD2CHeTJUoqLa0SDduHx8yFpxBVRVdO9Onk5fGnrg4YOpUCk8pFVfrjdmzpW1R40UuAQHkCT5xQtsxMYwGsIGilLw8YMsW2g4KQuaoG5Ufo62NJtmqKpqsWlokZUt3EBmJU0NEL0oTsHq1uuOIGX6sicI4A5uNvCdms7KOfbt2kWEAkJHgjE6+FgvlpU2b1r3UwLBhJEVQXKytlzEpCRg0iLZPnZJCWXKJiiIDxWLRbkwMowGKc1AaGxvx5ZdfIjMzE1lZWairq8PTTz+Nq6++utd9Dxw4gJ9++glHjhxBRUUFwsPDMX78eNx3332I9JReLp9+Km3fcgvaBX9AXoK+hFh6CJAOQWsrPcQKGIOBJmBv784Ps9lpEvqZo2/GwBMbYLK1U6+eG24g17RSIiPJQLnkEnLDM4xWFBdTQmdCgrL97MM7V16p7ZgAuoZLS8n4GT+++1wOgwGYPJnyUU6cINl6JWGqnrj8csqzAciLcs898vcNCyNNmbw8YNw4bcbDMBqg2ECxWCxYtmwZYmJiMGjQIBw6dEj2vu+99x5qa2sxa9YsDBgwAGfPnsWqVauwa9cufPjhh4hQ27TOVRw9Chw8SNtRUaQjskbhMdrayBiZMoVi1M3NVILY3CxtNzaSq7i2lia/xkaa1FpbO3taLjRixOcqyicbA6NxIvVKDDu1lsawejVw++2Kj4OQEEkTZcQI5fszTFeIsvY2G0m+y6W0FDhyhLbj4oDhw7UdV2MjGU6TJtGjN4PDx4e8LDU1tJ9WybozZgAffUSh5y1bSJNJ7mLGYKDFxPHj9PnorQs7029RfCeLiIjAN998g4iICGRnZ+PBBx+Uve+jjz6K0aNHw2h3EU+aNAmLFy/GqlWr8MADKoXCXIEgAJ/YNQS8/XZJiVUJZWVAfDxl93t5kZeiJ0+F1drZeBF/NjVReMhiISOmuZkMmtZWqZzRbAaSk2Wv0g4PvwXpeRtgFKzkRZk/X7kXxWgkhcucHHJpa7VCZPo35eUUvlAiaw8AGzdK21dcoW2lSksLeXTGjaMFh1yDIDyc8lTWrKEwrxYLs+BgYOJEYPduErE7fJi8OXKJjiYPSkGBsuoohnEiig0Ub29v1Z6OsWPHdvlacHAwCpTGTV3N7t1SIllSkpQ5rwSrlWLhM2bIN25MJkpk60nO22ajyfJCA2bPHpqsZIbP6gNjkDf4Cgw6sZ7G+cMPwK23yhunPZGRVGpZViY1NmMYR8jJIW/FgAHy97FaJQNFLPvVitZWuqGPGkXGhpKcGABITaWmops3k0GvRV7M7Nk0TwEU5lFioHh50d+QmUn5LLywYHSA27+FjY2NaGpqQohCKWiXYrUCn9k1BPzNb9TlglRU0EpFa8VZ0WsRHk7emYEDgZEjgaFDaYWmgOOjb5Ymp+++k5ILleDvT4aS3o1OxjOwWMhAUVK5A5AXQWwMOH68Np4KgMIoeXl0fc2cqT4kMmYMibgVFipr9tcdEydKuW27d5NBp4SYGBrL2bOOj4VhNMDtBspXX32FtrY2XN7D6qayshI5OTkdD5d7WzZtongxQJPSpEnKj2GzUZb/yJFSky9nM2gQnUtBQ7CG4DipbFH0oqghNFRq5sYwjnDyJF07YQrL+Z2RHGu1UqgpLY2uE0c8H15elFibnExdmR3FbCbvLEAenu3ble3v7085clxyzOgEtxooGRkZWLZsGWbPno0JEyZ0+77Vq1fjgQce6Hi8/PLLrhtkSwvw3/9Kz++6S10cu6qKQh+DB2s3tt4QvTVlZcr2u/kCL4rSlRhAq9WqKsmwYxg1NDVRaXFYmLLrrrZWCneEhJB3wVFsNjJOEhOBOXMkb4UjBARQiCgwkGTnHcV+obd5s/L9o6Mpyb3age7mDKMRbjNQCgoK8OyzzyItLQ1Llizp8b3z58/H+++/3/F49tlnXTRKUCKb6CaeOFFdZYog0DGGD9dmUpOLwUCCUYKgTHchPp5c1wB5X378Ufm5vbzIyBFLHxlGDXl5FBpVGt7ZskVqDDhrlvIckQsRBPJyxMRQsm1oqGPHsycujip7xOo9Rxg0SMrTOX5cuUJsSAiF1E6dcmwcDKMBbjFQysrK8MQTTyAgIACvvvoq/Htxk0ZGRiI9Pb3jkZyc7JqB1tcDX31F2wYDle6poaaGLnx3ZMcnJZHBUV6ubL9bbpG8KN9+K7sbayciI0n589w55fsyTFsb3WQDApTlfF3YGFCL8E5+Phklc+bITjpXxNChwIQJlP/hiIibwdBZWVapF8VgIG9VZqa6a55hNMTlBorFYsETTzyBtrY2vP766/oWaPvmGyl/Y9YsKg1WQ3k5TUDh4VqNTD5eXuT1qa9XplabkCBJgtfVkSdJKcHBtBorKlK+L8MUFpKoodLmk6dOkUEB0KLAUa2R4mLK5br8cudVpRkMlNuWnk6eGkeUpWfNksJhmzdLApByiYoir5X4GTKMm3CagVJZWYmCggK0i25WAE1NTXjyySdRWVmJf/zjHxigpGTQ1VRXU/4FQDd5NaJlAN3c/f3JQHEXqalSTogSFi2SJrpvv+3o3iwbg4FCWjk52lQpMP0Hm41W8Uajcr0hLZNjxbyQyy93bgdkQOoTFBPjWO5WZCRVCAEU4snKUra/yUQG2fHjfN0ybkW55CiAr7/+GvX19ag6f8PbsWMHys+HEG688UYEBgZi6dKlWLduHZYvX46486uOl156CVlZWbjmmmtQUFDQqRrHz88P053VxEsNX34puVqvvpomDTWUllLljtJVoJYEBJCBtGOHslh+YiLFxrdtI0/I2rXAr36l7NyRkTTJl5Yqlyhn+i8lJeRJUCjMZmpvkXpleXs71hiwooLmgCuuoNJ9VxAWRtecoyJus2cDGRm0vWmTcgVd0Ug6c8b5hhnDdIMqA2X58uUotUu+2rp1K7ae7xZ61VVXIbAb9dGT5xMm16xZgzUXhAxiY2P1Y6BUVAAbNtC2nx9VtaihsZG8L8OGaatgqYbBg0kXoq5OWaLuokVUrigIwKpVwDXXKNN98PWlST4/nw0URj7Z2ZSDorCMN7FAo8aA1dWUsDp7tuu9n1qIuF12GfDee5RHsn078MADyq5bHx+65rOz2UBh3IYqA2XFihW9vueZZ57BM888o3g/XbB2rRQDvuEG9Rn7JSW08tLDjTkykkqOMzOVGShJSTTRb99OXpR164AFC5SdOzyctBXGj3edBgzjuYhVJCq8jgNPbJCeqA3v1NaS92L6dBJScwdjx9IYMjIoj0apMKSvL8nvb9xIC6U9eySNFLlER9P/obLSOYnBDNMLbhdq0x1Hj5KnAaDKG6U3Y5GWFlqBjBihD9loseTYYFAunnbLLdL2qlXK9w8Pp8mWk2UZORQVkZGiUF06sL4UsSXnr924OHWSAPX1tLCYPJmqatzl+TSZaGGQkqJexM1RTZTgYPJGsVQA4yZ0cOfUGa+9Jm3fcot6F3FZGekR6Mk9mpioruQ4JYVWYwCVDG/Y0OPbL8JkIh2K3FzlFQVM/8JmI2+bv79i42DIabvkWDWNARsbyTiaOJFCLO5eWAQEkNcjKEidiNuIEZIX6tAhdeJr4eHkdVXT8oJhHIQNFHs2bpTkoaOjgXnz1B2nrY0qXkaNohwUvSCWHDc0KM/OX7RI2v76a+VaDZGRVDbKCpVMT5SXkxaIwpCCwWbFkLzz2idqGgO2tFDvqHHjyHOhpteWM4iNpfGoEXEzGqWmpjablDyshPBwuma55JhxA2ygiAgC8NRT0vM77lCvPlleTp6K1FRtxqYlqak0+Ss1FMTEPYD2tRfCkkNwMLnPCwuV7cf0LwoKyLhX6LmMKTmMwMYKeqK0MWBbGynWjhyprjOxsxk6lLw6akTc7A21TZuUezDFburHj0vKvAzjIthAEbFaqUtxRATFr0WpdzXHqaujyU6pfoMr8PenkkOlmijAxV6UtjZl+wcHU1UAT3RMV7S2UhhQRWfzTsmxV1whf8f2dsqxSE8nb4Ovr+JzOx2DAbjkEjJUlIq4xcdLVUgFBWSIKSU6msqNOYeMcTE6ij+4GS8vYPFi/HByIFBYgNrV8lZRTRdql1VU0AXtKt0ENQwcCBw8SC7j4GBl+02aBOzdS5n9P/9MGjFyiYggbYWzZ/WVm8PogzNnyPuoVLG5tpbKiwE0+4bA95JL5O1n35n48ssd60zsbHx8SB9FVGZW0u7j8stpYQCQFyVKYcsNb28yknJz9ekVZvos7EG5gNpWb5T6p6KxySDrIQiUiGc2g1Y2586R90TPk11kJBkbSrscA529KCtXKvOi+PjQTUGL1vJM3+P0aboRKg2xbN0Kk428cqcHXi5/f1GbR6vOxM5GFHEzGpV5QKdNkz6TrVthsKnwYEZE0OdlsSjfl2FUwgbKBfgHesHf3AZ/P0H2IyRYwMRR542T8HASRdM76ek00SktGR48WGpdX1FBKzIlRESQS52rAhh76uoo/KC0X9UFjQHzhsgM7zQ30/d/2jS68XsKKSmUC1ZVRYmzcggMJM8nAFgsiC8+oPy8YpdjDvMwLoRDPBdww6Mp1CRQjZGRXUEZ90rCJu4iMZEeZWXKwy233grs30/bX31FK1C51UqhoeRWLypyb38iRl8UF1PXb6XXXV5eh0euPGIILGEpAGRUqFVXU9uH+HilI3U/Y8aQgXLoEH1ecq69yy+nVhcAUk9uRG7UpcrOaTCQV/jECcphc3cJNtMv4G+ZVtTUkGGSnu7ukcjDZKKS4+Zm5SXHQ4ZQpQRAOQN79yo7r9lMEx1rojAAfQ9ycykEqPTGZ+c9yUmbK3+/ujq6ueulnFgJJhPpEqWmyi//HT++I/k4oXAPfFrqlJ83MpLyx5TqKDGMStiDohVlZaQ8qba5lztISaFJp7ISAK0km5qBL77tfdKOi7wBs3EQAJC/Yhd2lsvro2Q2AxMHxyO1uJjOq6R5IdM3qawkD4pSOfUWqTFgu8kHeUkzICv7pLmZEj/10IJCLQEBVBL9ww9kNPTmCTKZqErpu+9gsrUjrXArCkKvUXZOf3/67AoKFDdxZBg1sAdFC+rrqceMp4Us/PyokeG5cx05dIIgLzn4dOgYtJipKWR84V4017fL2s9Sa8D+XH/KQbHrZs30YwoL6fvQTZPRbtm9uyOXqTB1Gtq8A+TtJ4Z33NlhXAtiYymHpqlJnoibnSbKoNMb1Z0zJIS8n0r1WBhGBWygaEFpKVXFeOKqYuBAICgIEwfWIyRYfmKwb6AXziRPBgB4tzchrfpgr/sYDBTSaWsDTXRix1qm/9LeTjc8NXlbP0vS9nmDFTQGrK313PDOhaSnU2NBORV5qakdJdwxVdkIshQrP19EBHm8zpxRvi/DKIRDPI7S1ERx8+HD3ddYzBEiIoCBA5F69ChSr1WYoBh3KfBXWonNErYDN0zo8e1ffGtCY9P5J5GR5EE5c0a57gXTdzh7VupbpYSyMqmpZ1wcymNHAhdqEnVFczPlunhyeMceg4E0UQ4eJGOvt4TZyy8HPvoIAJB6chOAO5Sdz2ymnKG8PNZEYZwOe1AcpbSULtTERHePRD3p6bSabJYzw9sxdqykvLl3rzKFWPuJjum/iMqoSlWXN9qFKObMkb846CvhHXvi4qg6To5GycyZsBlo2k89uUmZKq1IZCRdt0p7AzGMQthAcYTWVqqAGTHCs8vuEhJoBatUuM3HR9JEqasDjh1Ttr840dWpqChgPJ/GRio5V6pDYrVK4R2jkQwUudTVURVaXwjviPj6khqunP5aYWEoSaAKvICGCuDoUeXnEzVRilWEiBhGAR58V9UBpaXkOVEiO61HTCYKUakpOZ4yRdretUvZviEhJG7HDQT7J8XF9P9XaqAcOXK+8gzKGgOK4R1P1D7pDdGDK+P6PT3ITsxu82bl5zIaySjKyWGpAMapsIGilvZ2yj8ZOVK+SJmeSUkh13dFhbL9xo+XZLR371bmMjYaJfEnNa5mxrPJzaVrR6k3wy45VlFjwOpq8tr1pfCOSFyc5NnoheKkyWgxn6942rmT5jGliJooSucLhlEAGyhqKS+nqp20NHePRBt8fcmLcu6cslWRvz8wbhxtnzsnNSWTS2Sk1CSO6T9UV5OasFLtk7o6yVMXHExdfpXs29fCOyIBAaQIfe5cr2+1eXkjL2kGPWluVu75FM/X1MTeT8apsIGiBquVEsRGjyaXcV9h4EDZq7BOOBLmsRd/YvoPRUVkMCht0rdli5SMPXu2/MaATU19q3qnK5KT6bOR4Y3MTbXL21ET5gHIQGSpAMaJsIGihqoqCocMHOjukWhLeDgwaJByb8akSdKqdNcu5XHpkBCKZyttXMh4JlYr/b8DA5WX5ttJ2ysK75w7R6GdvqxcLIZ5ZFTXlEcOQ13w+VycI0fUhWoiI2m/s2eV78swMmADRSmCQAbKiBHk5uxrpKfTqlRJXDowkLxJABk3J08qO6cot89VAf2D0lJ6KA3vnDrV0RgQQ4YoS06vqyPjuy+Gd0SCgihZVkaYBwYDTg86rywrCMAvvyg/nygVIP5PGEZj2EBRSnU1VR0MGeLukTiH+Hh1JceXXSZtKw3zeHlRwuypU8r2YzyT/Hwq0Rc1dOSi1nvSH8I7Iikp9NnK8GKeHihJ32PTJnUVOeHhtCCpr1e+L8P0AhsoSqmooP415zuD9jlEVdyWFmXCa5deKrnr1YR5IiJoJVZTo2w/xrNobqYbWni4sv1aWzsaA8LbmxrlyaW6msI7fbF650Li4siTIkNbqCEohqoQAUpUP3FC+fnCwlgThXEabKAowWKhcEZ6urtH4lySk6lCSdSakENoKBk2AE12SrP7xdh5UZGy/RjPQuxirVT7ZNeujsaAmDpVWXhVDO94spiiXEJDyQsqR7QN6NRAULUmitlMxg1rojAa0w+uWA0pK6PQTl9OtAPI9X6+y7GiSceRah6DgW462dmsidKXycujPBCl2kFqtU8aG6lrd38I74ikpZEHVM61O2WK1GZg61Z1FTlRUZLhyTAawgaKXOrrKY49bJi7R+IaBg6k1ZiSkMull0rbO3cqP2dUFFBSQg+m71FTQ2E8ucqvImVlVGkCkGdPDEvIQaze6Q/hHZHYWDL2RY9TT/j7S/lj9fXAvn3KzxcYSOdiTRRGY9hAkUtpKa1M4uLcPRLXEBpK3iIl5YdRUVLycH6+8vJDX1/KNcjPV7Yf4xkUF1MYT2n+1saNkjfgiiuUlSbX1/ef8I5IeDgZKWrCPJs2qTtncDCFeZTkrTFML/Sjq9YBmptpUhwxQrlugyczeDDFlxsb5e/jSDUPQJNrbq46+W1Gv9hsdAPz91d2DdlsUudio7HzzbQ3GhvJ6O1P4R2APt+BA+Vft6NHS16tAweUCzUCVDJeVsaaKIymsIEih5ISShwVG3L1F+Li6O9WUnKshYFSVcVVAX2N8nK6eSnVPjl8WPLijRunbH+xeqev54x1RVwcGYNyjBSTCZg1i7atVspFUYq3NxmTrInCaAgbKL3R1kZuy5Ej+7bIU1cYjZRz094u33UbH09aDACtmJUqVJpM9FAq9sbom4IC8kT6+yvbT21yLNA/wzsiERFknMkN88yeLW2rDfOEh5OWkZzcF4aRQT+8chVSWkouYvGm299ITqaJTon8vX01z+7dys8ZFUU3NLmTK6NvWlspbKc096SuTvr+BAdTSwW5NDaSMdTfwjsiRiOFeeQaC0lJZMwBZGSo6Y0VGkrXLHs/GY1gA6UnrFbKhRg1Sn5Tsr6Gjw/l3tTWyi85tjdQ1FTziEJT3ECwbyB2q1ZavbNli1T2OmuWsmuwP4d3ROLjKQdHbj6Xo8myJhOFenJzWROlL1BX5/acIjZQeqK8HIiJoeqd/kxaGq2O5PT4AEgqX1y5ZmbK30/EYCAjJSeHqwL6Anl59D9VauTbh3euvFLZvv05vCMSFUVGodzrb8YMSZ9myxZaoCklMpLEFtn76fkcOQJkZLh1CP346u0Fm42y2UeOVN4zpK8REkLlw3KFmAwGKVlWEIA9e5SfMzKSwmusieLZ1NVR4qRSaftTp8iwAaiaTEljwP4e3hExmeizkyF7D4DCaBMn0nZ1NSUoK0X0frImimfT2KiLBSIbKN1RVUWrDzEu298ZPJjCPXJLFx1RlQXoXFYrVwV4OsXFJNAWGqpsP0eSY8XwjtKKob5IXByFXVpa5L1fS00UNR4YRh8UFiovcHACbKB0hSCQt2DECFJJZEj4KSlJfsnxwIGSeueRI+q6nYqdUrkqwDMRBLpR+fgoC7Vc2Bhwxgxl5+XwjkRMjLIwz4QJ5AUBKEFZzbXH3k/PxmajliM6mHf5Cu4Km01SUmUI+5JjOf067MM8Viuwd6/yc4aF0WqYGwh6JpWVlCCr1JOxe7dk0E6ZoqwxoCBweMceLy9aLMgVXzObJYOwtRXYsUP5OX18aI5g76dnUl5Onk+lVXdOgA2UrjCZgKFDlXdc7eskJ9OKTK7rz160TU01j1gVcPIkVwV4IoWFtApT6oV0JDnWZuPwzoUkJJCh0toq7/1ahHlE7ycrQnseeXnqNIucABsoXRETQwYK0xlvbwp7WSzyOg7bG3mHDsGrTYFkvkhUlG7ioYwC2tooyS44WNl+lZVScmZsLH3flCAIlC/F4R2JmBgyGOQ2/hw0iCrxAKrCKy1Vfs7wcNZE8UTE5FilSe1Ogq/iC4mIAMaO7V/dT5WQlkZfXjkxbaNR6nDc1ob4ogPKzyd2SmV3sWdRUkKuYjXhHdFbNmuWckPDYCD9D0bC21tZmMdg6OxF2bxZ+TlZEdozKSykAhGdGChe7h6A7ggOVr5q608EB1Nuzt698oS3pkwB1q4FAAwo2IHsOIUJjwBdLNnZ1NTMz0/5/ozrOX2aco+8vZFXaMCBo0ZZqUuXr92N2PPbPzZPh+Vbee0lmprPbxiNHN7pioQEMjza2wHI+ExnzgQ+/ZSMxc2bgVtvVd4oVfR+Vlfr5obH9IAgkPfEx0c3bV3Yg8IoZ8gQMhTkVOaMHNlRFRBftA+mdpnljvZERFCIh7UVPIPGRtIxOW/AHjhqhKXWgMamnh/WmjpElx4DAFgC41Dim9LrPuJDEOjmafb35vBOV8TGUrhVbjVPZCQwZgxtl5YCWVnKzxkURArUHObxDMrK6H+lo+gBX8mMcmJi5Hc5Npk6eqiY25uRUHpI+flMJrLqs7Pl5b4w7kVUEj2vfSJ6TgwGAf5+3T8GVeyBUaD/79mUS+Hvjx7f3+nha0OIXysmLkhy0x+tc3x9gdRU+XkogOMNBA0GCtHm5LAmiieQl0dJzTpIjhXhEA+jHIOBSo5PnKC7T28S5lOmABs3AgBSinagcvBk5eeMjqYbX1kZiU8x+kQQKO/AbL7ITeznC9x+Qw83qr9KlV7Dfj0Zw4YruKkVF1NIYc5gpSPuPwwYABxQkAd22WXAe+/RTWv7duCBB2ihoITISMpHEpuuMvqkqUlXybEi7EFh1JGURIaCnC7HY8d25I4kn9kDo1VGMsKF+PtT6Rsn3emb6moKxSnNA2luBg6d966Fhiqvoquv5+qd3oiNpc9WrhfS11dShG5sVNeywteXypu58ae+0VlyrAhfzYw6zGapy3FvE57ZDFxyCQDAp60eMSVH1J0zMpI6papRpWVcQ1ER/X9ENVK5HDwo6XRMnqzM0GhoIAOWq3d6xt+fQrNKwqSOVvMAlPuSm0tGKKM/BIHC5zpKjhXhEA+jnuRkUhusr+9d72LKFGDrVgBAYsFOAGOVn0+c6AoKuNJKj1itFPYLDFRe8bF7t7QtlqbLpbqavANyqsr6O0lJACjhtakZ+KK3KilhNBYERCGgoQLWQ4exakUz2rzlKfuazcDEUTakxodTfsOZM1TuzOgLHSbHirAHhVFPSAh9qeXoK4wfj3YTxa8TC3arS5ozGilUlJnJSXd6pLSUHkrDO+3twL59tO3vT+XkSmho4N47comL60gZEwQZFVLNJpxOoDCPydaOyFP7ZFdWWWoN2H/USCq2JhNVdjH6Iz9fd8mxInxFM46Rmiqvw7GvL0oSxwMA/Jpr1JUtAmQQnT1LD0Zf5OdTmMbXV9l+x45JjckmTOg96dqehgbq1cPhHXkEBmLiJB+E+LbIrpAqHSi1rBhYslPWPgYDie11aN9ERJA2jpIqIsb56DQ5VoRDPIxjREXRDaW1lRQre6AoZSoGFOyiJ7t2kUaKUnx9acV98qQkx824HzGBWc1EZx/ese/fJAcxvMPibLJJnZGM1Lof5XudrOnAjmCgthZJJftx+9WNvVbzfPGtCY32bXhCQsi7VlzcUX7O6IDCQmovodPQG3tQGMeIiqLJR0aY58yASbAaz9vEu3ap1zSJiqKboVzpbsb5FBfTRKe0wabNJhkoZjMwfryy/cXwjtKcl/5MfDwlMdfVyXu/nZYRWlqAjAzl5zQYyNPFWkb6QVSO7UISQC+wgcI4hrc3JcvW1vb61jbvAJyNGUtPKisp4VUNoaGkiJmfr25/RntOnaJJzkuhUzY3l7wgACmXKomD19dzeEcNwcH0mYmfuxzsPVv2Hi8lRESQJoocgUfG+ZSXU9WdDpNjRdhAYRwnPp6SVsUmbz1wesBU6cmuXerOZzDQJJuZCVkNXhjnUlNDxqKaKhqu3nEPaWkUlpVxzQIg41Hsg7V3r7okdX9/8sBwywp9cPo05aAEyKvKcgdsoDCOEx1NX3IZ+iQFiZfCZjj/tdu5U/4EeSFRUVJMm3EvxcUULggJUbafIEgGitFI+idKaGri8I5a4uKoHFyuppC3NyUwA/S/PnZM3XlDQyms0KKiJxejHTpPjhVhA4VxnNBQWsXKyAlp8QlBeez55NjSUvVhGjEhV22YiNEGm40mOj8/5YZCcTFpYwCkHKvEwKmvZ3E2RwgNJSNFbvNAoLOHS22YJzycwrvi/51xD0VF9H9gA4Xp8xgMVG4slor2QlGyBmEegDw3eXkk0cy4h/JyyitQU0Vj/79XU70TF8fhHbUYDBTmkSMRIDJxopRjtHu3umRXs5nOzZoo7kNUjtVxcqwIGyiMNsTE0OQlIyekOMXuZrRzZ/dv7I1gKn3kZFk3UlBAJcZqRJ4cyT9pbOTwjqMoDfP4+1NfLYAWBWr7YkVE0DUrI7GecQIekBwrwgYKow1RUZLB0AtN/hFSM7jCQsfySMLCSPSNY9qup7WVpO2V5p4AQEWFdINLTSUDVy719XRj5a7WjhERQTcptWEetd7PkBBKrC4qUrc/4xgekBwrwgYKow2+viScJlcp0t6l70iYJzKSyha5MsD1nDlDhoaaMIt9Z1y14mwc3nEMg4G8UDJDswBID0UUd1Obh2I0kjfmxAnWRHE1zc2UM6ZUr8hNsIHCaEdiIqm8yqnM0cpA8fKiR06O+oogRh15efRTiTS9iP3/nMM77iMujowFubkooaHAsGG0feaMei9IZCS1q6ioULc/o47CQvWLCjfABgqjHdHR8ie72FhJXvnkScfEm6KjKReivFz9MRhl1NWRq1hNcmxtLXD8OG3HxpLQn1zE8A5X72hDZCSFZ10d5hHniYICdfszyhEE8lp5e+s+OVaEDRRGO8LCZJcbA9BGnRKgG1ZTE90wGddQVEQ3NTX5J/v2Sa79Sy9V5gkRwzs6L4/0GIxGWijITZQFtCk3Bsgbc+IEiy26iooKMgijotw9EtmwgcJoh9EIpKTI7/ExZYq07Ug1D0A3rOxsMlQY5yIIpD/j6yuv2dyFqK3eEQQO7ziD+HhaVTc3y3t/TAyVKAPk/VQbpomIoH1ZE8U1iMmxgYHuHols2EBhtCU2lm5a7e29vzcxUepInJ2trDfIhYgCUOwydj4VFVR5pSa809wMHDpE26GhUjWXHBoaOLzjDKKjaVXt6t48ZjMZnWIuE+M8mptpjvWQ5FgRNlAYbRG7G8vVOBAnOnvZczWYTLSiz8riygBnU1REngw1K7GDB6k8GSBpeyUeGA7vOAeTiTwicj2fgHZJ7hERZKAoCTExyhGVYz0kOVZEsYHS2NiIjz76CH/84x9x7bXXYsaMGVi7dq3s/evq6vDaa6/h+uuvx1VXXYXHHnsMOTk5SofB6BV/fyAhQX4ein2Yx5GJDiDjqLiYJPQZ59DaSiux4GB1+zsa3hk8mMM7ziAhgTwaovHYGwMGSJ6szEz51/uFhIayJoqzEQSqcvQA5dgLUWygWCwWLFu2DAUFBRg0aJCifW02G5YsWYKff/4ZCxcuxEMPPYRz587hscceQxF/QfsOAwbIn+hSU2lVDABHjzqmLil2S1WrcMn0zqlTJG2vItHOYGunBFmA/lejR8vfmat3nEtMDK2u5YZ5DAbJwLTZqMOxGoxGwMeHkmVZJsA5eGByrIhiAyUiIgLffPMNvvrqKzz88MOK9v3ll19w7NgxPP3007jnnnuwcOFCvPPOOzAajfj444+VDoXRK9HR1DxOTrmxwSC5ix2Z6EQiIymBU4m7mpFHWxtw5AgZFyq0T6JLjkqiYBMmKDvGuXNknHhYDN1jMJupmkeJJ0SrKrzISPJ8VlaqPwbTPadPqw/JuhnFBoq3tzciVMaxtmzZgvDwcMyYMaPjtdDQUMyePRvbt29Hq9xVN6NvwsPpRqI0DwVwvJonLIxWgZwsqz15eVRxIXq8FDKgQGVzQDG8M3Agh3ecSUKC7H5aACjcJuYDZWQoazxojygTwGrQ2uOhybEiLk2SPXHiBAYPHgzjBYlxw4YNQ3NzM4d5+gomE4Vu5HoxhgyRkrccmegAchkHBFCyrNWq/jhMZ0TviY+POuVYwYbEwvOrbLMZGD9e/r4c3nENMTF0I5PbrsJolMI8bW2UAK2WoCC6kbImirZ4aHKsiEsNlOrq6i69L+JrVVVVXe5XWVmJnJycjkcBr471j9j8TY6RYD/RtdvlKaglOppW+qyvoB35+TTZqfSeRFWdgH/j+et7zBhl3Y+rqzm84wp8fGhhIddAAbRRlQUozFNRQflNjDbYJ8d6ebl7NKpw6ahbWlrg7e190eviay3ddKRdvXo1li1b5syhMVoTHU2VHnV1lKnfG1OmAD/+SNu7dgEzZ6o/t48P5bPk5gJJSeqPwxDt7cDhwzTRdXH9yiGlWGXvHUEgNzWLs7mGAQOA/fvpfy7npjZyJHm36utpv7Y2dR42b2+6ZrOzaQz8v3acykoKm3lgcqyISw0UHx+fLvNMxNd8fHy63G/+/PmYOnVqx/OCggK8/PLLzhkkow2BgbTazs+XZ6AMH076KRYLcOAAVeN0832QRWQkVZxMmCDv/Ez3iN4TUVRPBcmigWI0kv6JXMTwTlyc6nMzCoiLk0p/5QjxeXkBl1wCbN5MeSRHjtA1p/bcJ04AI0ZQPgzjGGJyrAPXrbtxaYgnPDy8yzCO+Fp3ybeRkZFIT0/veCQraS7GuI+kJPny2SaTdONqaXEsng3QJGuxcH8eR7Fa6aZjMqk2GINrChFaV0xPhg5V1r+nuppuXBzecQ2+viTapqR5oFaibYGBJE9w5AiXHDtKczPl4Xn44sylHpTBgwfjyJEjsNlsnRJls7Ky4OvriwEebOkxXRAdTTe15maa+HrjssuADRtoe+dOZZUeF2IwUIgpO5vc0GrczgxVQxUUOLQKS3SkeofDO64nMZEWCFarPGGvceMoRNPaCuzZAzz8MACVgmDx8RSaHTnSo1f+bqeoCKiqopwiAHmFBhw4alSWg2xNBEwm+O/ZgRv+OrX39zsBp3lQKisrUVBQgHa7niwzZ85EdXU1tm7d2vFaTU0NNm/ejClTpnSZn8J4MJGRkidDDqNHUwUOQImyjmb0R0VR0h1Xh6lD9J6IYloq6VRerCT/pK6OwzvuIC5OCrfKwcdHqsqyWGhRoJaAAPreHT7MLSvUIibHmkwdeUQHjhphqTWgsUnBo9WLflq6zg11Bao8KF9//TXq6+s7QjM7duxAeXk5AODGG29EYGAgli5dinXr1mH58uWIOz/BzJo1CytXrsQrr7yC/Px8hISE4Ntvv4XNZsO9996r0Z/E6AYvLyA5mZLnxKoeAE3NwBffdrXCMuGy2ElIPbUZaGzE5veOoWTARMWnNZuBiaNsSE0y0801N1fqvsrIp7CQ8k8cyQeoqEBEZS4AoDo8DeF234NeOXeOwoQc3nEtAQH0uR8/Lr/v0WWXSWJtu3cDEQpUgi8kIYHyxwoLqTs6owwxOTY6uuMlca1nMAjwk+HMBtDhQfMPcSAX0EFUGSjLly9HqV2/k61bt3Z4Ra666ioEdqNYZzKZ8I9//AP/+te/8PXXX6OlpQVDhw7F008/jSSutuibxMeTRW+zwWw2AU2AIBjQ2NT120/GTyUDBUD8qR04FXmJ8nM2AfuPGpGaZCUvSl4eXbRquu/2V2w2aj0AyAvPdceePR2bxcmXQXabP0GgpEsWZ3MPycmSF0NOQ8dLLqEVu9VKeSjXPgBA5f/Nz4/+/4cPU5jHw/rHuJ0ekmP9fIHbb5Ah/XDwIIXb584FnnnGCYOUhyoDZcWKFb2+55lnnsEzXfxhQUFBWLJkCZYsWaLm1IynER3dUYY4cVQI9vcSB61OHY/2XT7wam9B8pndOOjTDsEof4JqaiYDqOMcwcHA2bN00bKBIp+iIjLsHBVHs5NAL0qeAtnr6ro6Eu9icTb3IIZ5amvlJVoGBgKjRpHQYnk5wqrz0OivrFdbJxIS6PuXn09GKiOPlhYKsSlJRO+KjRspD3DnTmDSJGDePG3GpxDPVG9hPIfgYArvnDmD1KRg8mr0iBdwcgKwcyd8W2px28DDJOwlky++NV3snQkNpYz2UaMc8wb0F2w24Ngx2vbzU3+c2tqO41gC42AJSwYgM6+guprc+xzecQ9BQZQsm5srvxLk0kvJQAGQWLATZ4Y5YKD4+pLn5PBh8uZ4qNCYyykqIsE7R0LaLS2SWGZQEDBnjjZjU4FLy4yZfkpKCrnr5TJlirTtSNmiSGQkhXg4WVYeZ85QDoCjyan79nUkOhYkXiY/VCMINEly3pB7SUmhyhy5Jb+XXtrxP+6UGK2WhATyoLBUgDzE5FgvL8cMun37JHmISy91awUkGyiM84mOpi+53GaQEydKF8Xu3Y5n84sXbE4O6yv0hiCQ16O9XZkcfVfYhXcKEhWUFzc20rlVyuozGhEXRytouT21wsOB9HQAQOi5AgTXOdhqwtubKoQyMrhHjxy0Uo7dvl3anjbNsWM5CBsojPOJilJWbuzvT9oKALn6c3K0GUNBAXC+2ozphjNngJMnHc/9aG4GDh0CADT5haIscpj8fS0Wam7G4R33EhpK34Pqavn72JWRpxQ52JkcICOpsJA8ekzPnD5NystBQeqP0dhIVZeAlFfkRthAYZyP2UxxZLkGCqCdOqWI2NKdJ7ruEQQqLW1rk/Ro1HLwYIfHrDjpUsCgYKqpq6Pvi5zqEca5pKVRuE1JmOc8ycUaXLdmM+VBHTpE42C6RkyOdVQ5dt8+ydM9bpzbK6h4BmBcQ3w8hWrkTnSTJkkXx86d2oRmwsPJG9PY6Pix+iIlJZQUqYUw2gXlxbKxWskwUaKXwjiPuDgyVhsa5L0/Pp6MSwAxVdnwa7y4tYmqMYiePaZrxORYRysVt22TttX2VNIQNlAY1xAdTRNdfb289wcFSe7F8nIqOXSU8HByVxcUOH6svoaYe9LSQt4mR2hvB/bupW1/f5TFya/CQm0tVX7ZiUwxbiQsjHKBlIR57LyfiVoky3p50XcyI0N+b6/+hCBQk0U75VhV1NdLPdDCw6nFhJthA4VxDSEhlAeiJMxjX81jb9mrxWSi8sWsLJbRvpCyMu28J8eOSSvuCRNgMymoAqitpRuioyEmRhsMBtIhUeJ1tAvzaGKgAPSdKCnRJh+tr1FVRYsuR436PXtocQEAU6fqIsTq/hEw/QODgcoWlUx0U6ZIYZ5t27QxKqKigOJimuwYiePHaXXqSIKdiF31juKGj01NJLPO6Ie4OEpcl3vtpqaiPpBCdDElR+V7TXvCZCLP2uHDHKK9EC2SYwFdVe+IsIHCuI6YGJpo5JYMBgcDY8fSdkWFY03IRPz8KAmM49kSZWXkItairNdmkwwUs1lqIieHlhYqK3W0TJLRlogIWp3LDfMYDChKJu+nUbBKol+OEh0NlJayF8Welhb6PBxNjq2t7RDZQ2RkR7m4u2EDhXEdUVGSfLZcZsyQtu26YDtEZCSFM+TqO/R1MjMpJBMc7PixcnOlG9mYMcq0VCwWmmi5JYG+MBqpmkduoiwuSIzWogoPoMVNWBh5UbTwyvQFioooR8/Ra2b3bkpQB8h7ooPwDsAGCuNKfHyogVVNjfx9Jk8mwSaAXJBijNQRwsKoU25+vuPH8nREz5RWomj24R27XARZ1NZSBYgblSuZboiOpgRMmd7PyuihaPIJpScHD2pXIhwdTTfkrCxtjufJiMmxRqPjrQDsc/ymT3fsWBrCBgrjWhITyciQWzbs70+dUgG6gR0+7PgYjEaqCsjK0sbg8WRE74mjzcVERAPFaCTjUi7nO15rkqTLaE9UFHnYZHo/BaMJBYnnDdTWVqk6xFGMRvIWHD2qzBPbF9EqObamRupcHhuri+odETZQGNcSFaVMVwFwTpgnKoq6HJ9xUI7bk6msJO+JViW9RUXS5zlsmDKjp6GBjFHOP9Envr6KvZ/5iXZVePaeNUeJiKDvbn/3ouTna5Mcu3OnVIAwdar8nlkugA0UxrWEhdEEo2T1M2GCVHa6e7c27mIfH7ooc3MdP5ankplJ/wetJOXtcw2UhncsFloZO5rsxziPhARFHsezMWPQaj6fg7R3r3beSqORjOqjRylU2x9pbdVGORboXL2jo/AOwAYK42qMRsozUJKg6u0t3fCamqReEY4SFUXS9/1xkquuphWoloqtjuSf1NdTGbqOVm/MBURFURWczDJfm8mMswPOh2cbGqQwghaEh9N1m5mp3TE9CbGvWESEY8epqiKJAYAM0NRUx8emIWygMK4nNpYy8pWsqJwR5hErivpjO/esLPrbtfJYVFRIpdupqcoMn/Z2+j6wvL2+iYggw0CB2GKRfTWPlmEeg4G8KMeO0U22P2GxkKiaj4/jCeX2bUSmT9fdAoENFMb1REcrLzcePVq6me7fryyHpTsMBkr8y8rqX+3cxZVnVJR2E5Jd7x3F4myivD3nn+gbo5G8XAq8nyWJE6Wb6J492io4h4fTd+fYMe2OqXfa28moKCmhggNHsa/e0Yk4mz1soDCux8+P3IlKZO9NJukCamvTbjUWFUWu0qIibY7nCeTkULJjeLh2x3QkvGOxUJM5Pz/txsM4h5gYMmpFzYxeaDf7UVdcgMKKJ05oO57YWDK2y8u1Pa5eOXyYQjIpKY5rldiLXyYn61LBmQ0Uxj0kJkptveViH+bZskWbcZjNNOHm5GjTMVnvWCy04tTSe2K/io2N7ehmK5uWFqoQYfRPdDRVjSjJIbM3WLUSbRMJDdU+v0WvFBVRsnFkJFVVOYoOpe0vhA0Uxj1ERytKuANA8stinsKRI9olt0ZHU7fk/tDlODubVrJaek/27ZNc95deqszwaW6m7wGHdzyDwEAyQpWEZydNklb7u3drvxCIi6MFRmmptsfVE/X1ZFC0tTmeGCuiU3E2e9hAYdyDioQ7GAzShWSzATt2aDOWoCCaNLds6dsJd6KnIzJS22Q4R8I7NTW0CtZq0mWcT1ISVdPJJTgYGDGCtktKgMJCbccTHEyG7pEjfdMLarWS56moSLswTEmJlNSelkYhVh3CBgrjHlQk3AEAZs6UtrWq5gHowq+sBH75pe92S83JIe+JlsZAczNw6BBth4YCQ4cq27+ujkJCjkp1M64jOppK/5XoEV3mhN489sTFUX7L2bPaH9vdHD9OxldystTd3VF0rH1iDxsojPuIjVWUcAeALlIxxyE7mzrxaoHBQCuJvDztev7oifp6itOHh2vbCOzgQSmXaPJkZce22Vje3hMRBfWUhHns2x44w0AJDKTvYV/zopSU0OcVGqqs8WZv2BsoU6dqd1yNYQOFcR/R0Yr6e3Rgb/Hbx1EdxcuLPClHjgAHDvStiS4nhzxEWncKti8vViPOFhTE+SeehtlM14mS8GxUlNTj5fRp5+SLJCSQMnRfqchrbCRDorFRu3YUAFBcLGk/DRmiXaNQJ8AGCuM+AgLo4lAy0QHOqeYR8fenRNzdu+mm3hcQqxy09p60t1NVAUCf2+jRyvavrZWa0DGeRVwceb+UGPH2YR57w1Yr/P1pTEeOaKu34g5sNrq2Tp+mULiWeED1jggbKIx7SU5W3lsnNpYqegCqvNG6+iY0lCpLtm3rG80ET5wgzQOtPRXHjkmCeRMmKFe1bGig/7/O1CsZGURHk0GgRDDR2XkoACV7njqlfSKuq8nJodyuAQO0z8+y9zrrOLwDsIHCuJvoaJJsbm5Wtp8zpO/tiYsj1+qWLYo6uOqOxkZaUYaGaus9ATpX7yhVj21ro4mX5e09k9BQChcquTYSEyX106ws5/TA8vMjr05GhrLcNj1RUUEVigEBlFujISHn8qUQ2LBhug+vsoHCuJeICOqmq9QImDZNuuFu2+acfJGUFKoK2LpVuQGlF3JzSWVT64nIZpMMFLMZGD9e2f6ivL3WOTGMazAY6PpQ2nJCzFMSBCk8qDWJiRQayc93zvGdSXMzzWe1tU7JDUnO07/2iT1soDDuxctLeXdjgIyaUaNou7RUewltgAyg1FSqFtq1y/NWZE1NlHsSHKxdeaJIbi6VLAPAmDHKKwwsFnJfa6GIybiHmBjlTT/tPW1aNg+0x8eHxnX4sGdV4wkC9Rk7dco5nb0FAUmnz3ubDQZgyhRtj+8E2EBh3E98PF2cShPbnKWJYo+3N91IDx4kt7EncfIklSk6I4ziiDgbQDeOhATtxsO4nqgo5U0/Bw2SvGaHD2vT9LMrEhLIg5KX55zjO4OTJ6l6MD7e8S7FXRBxLg/Bted1YkaO1FZN2kmwgcK4n6go5f09ALoxiglk27c7z8MRGEihqN27JfVFvdPcTDcAZ3hPAMlAMRo7a1zIobGRPCc6j38zveDnRzdTpWrQokHb3k4eA2fg7U2elIwMz+hUXl1NeSfe3k6raksrtFvE6bx6R4QNFMb9BAfTKl9puXFgIDBxIm2fO+fctusREXQz3rpVO3E4Z3LqFIW+tNRPECkqkqqbhg2jVbQSLBZavbG8veczYIDypp/2HjdnhXkASnQvKqJrQc+0tpJxUlnpPK+iIEgGitHoEeEdgA0URi+kpCjr7yHiTE2UC0lIoJvrli3KvT2upKWFKncCApwjIW9fIqomvCPK22tdVcS4nqgo8qQouXZHjCCPKUAhDaUGjlzMZsqNOnRIuZSBKzl0iPLcnJF3cp6IyhMIaji/sBo9Wvmiwk3wDMHog6go5f09AOCSS2iCBIBdu2C0OtGdazBQ0mx+PmXaO2tidZS8PPJwOEsh0pH8EzEMp2P1SkYBERFUcqzE+2kyUYdjgEKRzsztio2la0GvodnTp6kbeEwMhaScRJJ99Y6HhHcANlAYvRAVpby/B0AXtZgD0dCA+GInxbRFTCbq2XP8OJVJ6k2xsrWVJnxneU8qKqTJPjVVeQJufT2F9Dj/pG9gMqmrwnOFaBtA10BgIHkp9CYVYLFQaMdgoKpEZ2GzISmfDBSbwaRcs8iNsIHC6AOzmSY6pXkoQKdqnuQ8J4d5ADKK4uNp5ePMvBc15OWRdouzBNDsJcrVTHQWC+XFiC5+xvOJi1NehTd2rFRivnevc0v4Y2MpH0tPrSva24GdO6nKThSvcxbZ2QhoqAQAlCSM86hrjw0URj/Ex9NEpdQrMWZMx0WXULgX5rZGJwzuAoKD6bFjh/ZS+2qw2UjeOyODJn4nlCkCcLy8uKlJ+94ijHtRU4Xn7U3tEQDaLzPTOWMDyMsTHExVbY0umBvkcPgweWFTUpyfi2XXe6cwdUYPb9QfbKAw+kGc6JRqI3h5dfSU8LK2ILnYiZUB9kRH00rol1+AqirXnPNCBIFi7OvXA99+SyvF+HjnnKu2VvIYxcaSx0sRAhlOHN7pW4ghO6XeT3sD15lhHoCu1dJSSkZ1N0VF5DWKjHS+UKHVSosoAO1GM4qTVSwq3AgbKIx+CAmhi9bBME9aoQvCPCJJSVQeuGWL61dnZWXAzz+TYZKVRWGdgQOdk3sCAJs2Sd6tyy5TXnFgE6T/MdO3UFOFN3Gi9F3dvds57SpETCYqbT9yhPKg3EV9PXk02tpcU2Z//HhHz6Pi+Ilo8w5w/jk1hA0URj+o7e8BkB7H+RtfYslB+DSrMHLUIMrhnzpFE48rpLWrqsggWrWKXMVhYcDgwcrl5pVgswFr1kjPr7xS3TGSksi9z/QtoqPJ2FBS2RYQQCWvABn5zq60iYqivlQ7d1L1jKur8KxW8hQVFdF14Arswjt5SZ4V3gHYQGH0RkwMTXRK1R+Nxo7mV0bBigH5O5wwuG4wm2nCOXKEdB2ctRKsqSF37cqV5CIOCgLS012T9HboELnIAcr5UZvY56zwE+NexCo8pd5PV/TmETEaSVju+HHgm2+AL7+kc54965pqvGPHaI5ITnaOuvOFWK1kjAFoN/mgMH6S88+pMWygMPpC7O+hJsxjJ9rmkmoee/z9aRW5e7f21QJ1dWSQrFxJBoqvLzB0qGvFluy9J9dco+4YBoNzlG0Z9yP2rFIqEzBpkhQqdHYeCkAlx4MGkae2tZU8DCtXAl9/Td5IsQGm1pSU0NwQGupcT6c9R450/D/ODLgE7WY/15xXQ5wUrGYYlfj40ER37JjyXIW0NFhCEhFiKUZM6THS7HBlQmZYGMXht20jr4ajstWNjWTsHD5MrunISDJMnKQ22S2lpVLPlMhISWRLKUYjTdBM3yQhgTxtSjyIYWEUns3MBIqL6eHssluAvJ4xMfRoaqIQU34+XbeJiRQyTUykMJSjNDaSIdTYSMaRq9gmibMVpnleeAdgA4XRI4mJVC4rCMpuxgYDCtJmYvShz+n59u3Ar37llCF2S3w8aZFs2UKeBjU35JYW4MQJMkxKSugY6elOKUfMKzTgwFFjjxG1Mfs2YMT5m87hpKtx/HtlOSRNoj6Wl4nl7fsyUVF0Q29sBKCg4d2ll0plxrt2ATff7JThdYufH805gkDeyrw8qvYJC6Ok85QUuq7V5E7ZbOT9PH2ajB5X0dYmeaT8/HA2cSLgAT0TL4RnC0Z/REfTRKciWbYgTarmwdat3b/RmaSkUFx761Zl6pVtbVSNs2oVlQ03NNCkFhvrtBv7gaNGWGoNaGzq+tFS34aBORsAAFajF44lzev2vd09BIGMTLOfk7RZGH0QFkaVMo6UG2/f7txqnp4wGKhkOjWVPB0mE3DwIOWrrFhBIoWlpcryVXJyyKs0YIDzquu6IiNDmj8nTYLVy3ky+s6EPSiM/ggLo1BCVRXFjBVQF5KAivBBiKo+SZU1rnIZ2yNW9mRn04Q3Y0bPBkZ7O62wMjJIbM3f37nlwnaInhODQYBfF5IMqblb4dtKceyilGkwhIfCHwpvIDYbzCYbJt44zMHRMrrGaCTj3K5yRBaxsWSI5+bSdZCZSQ0F3YnJRGXAERF0kVRVUchk715Szh0yhIyOniTqy8spZywgQPE85jD2/4Np04AS155eK9hAYfSHWG5cWKhq91PJs8hAAciLcfvt2o1NLmLS4IEDZKSMH3/xe2w2UqHNyKD4t9lMho2zVGB7wM8XuP2GLuTG//hDx2bKb69GyjAVkuT5+fR3zUhRPT7GQ4iJUZcjdd11wJtv0vZ337nfQLHHbCYjKjaWwlfl5RQGCgmha3zQIFoE2Se/NjeTkVBb69q8E4CSf8WKqIAAmnt+VHEcm831+W4XwCEeRp/ExNCKTIWuSF7SDAg4f2Ft2+Y+l3FgIK3Adu0ib46IIJDxtWYNTcaFhTTRJSe7xTjpltxcyoUByMAYOlTdcVpaXKf7wLiXqCgyyJWW7U6bRuEhQAql6BF/f7pWhw6l6zs3F/j+eypZ3rKFFhytrZRUfuoULbRcfZM/eFASzZs8Wf2c0tTk9q7j7EFh9Il9ubFCxcVG/0iUx45ETOlRkoE/dcr1qxiRiAi60LdsoQnNagWOHqXYtM1GyXd+Oi3/u7C0WM1E29JC3iQuL+4fBATQTU3posBspu/Yf/5D+/7wA3D//c4ZoxaI+SrBwXRN19SQUXLoEF3z1dV0bbtjwWFXvSNqQymmrY1CzG42UNiDwugTMbNejR4KgHw9JMuKJCTQ37FhAyXcHT9ON+yBA/VrnNTWShNdQECnVgKKsFioCskVst6MPkhOVue1nDdPqpT56Sf9NPbrDTFfRcxLaW6WjBdX09JCXdYBKpkeM0bdcWpq6Lp188KCDRRGvyQmKleUPU9RylRJrXHbNtcoRXaHwUAhktpauugHD9ZGX8GZbNwoSYHPmaO+qZnFor/QFeNcoqLUeduCg4HZs2m7qYmMFE/D25u8Du7qN7Vvn1Q5eNll6hPtLRYKT/m4t/qHDRRGv0RFkYdBxUqq1dcuMbWqyrnt3OVgMlEehjtWVUqx2YC1a6XnapVjBYGOFRenzbgYzyAyUn3exfXXS9vff0/hE0Y+F1bvqMFmo4ejQpMawAYKo18iIihxrqZG3f520vduD/N4EgcPSkmK48ap759TX095N5x/0r/w8lK/ck9Kou8cQNUye/ZoN66+TmOjpPgcEgKMGqXuOHV1FB6KidFubCphA4XRL6KeiNr26JMmSTHtHTtUh4v6HfbJsVdfrf44YoKzK3sGMfrA5MCtZcECafu77xwfS39h3z4pLDtlivqGhBYLGSc68PaygcLom9hYchercfX6+VGZHUCrgowMTYfWJyktJe0WgEJsl1yi/lgNDWRgullLgXEDxvM3RzXJsuPGUbIpQMrKubnajasvo0X1DkCemNRUx8ejAWygMPomOposeaVdUkU4zKOMtWulm8q8eepXYe3ttC+Hd/onolGqJjndYADmz5eer16tzZj6MvX1FJoFKCw+TKVqc1MTLex0EN4BWAeF0Tv+/hSXzsrqWVa6O8aPl/r67NlDZXhuzkzXLS0twM8/07aXF3DVVeqPZbFQaMeV3aQZ/XDePmlqNeGLb5XvbmqfgwW+n8G3uRa2rdvxXey9aAq4uDLGbAYmjrIhNclNYox6Yc8eSdRy6lT1C4uaGjJw3FWFdAHsQWH0T1IS5Y+ocRebzXTBAlR+t3evtmPrS2zfTqEwgCoAHMkdqa3Vtwgd41TMvrT2FaCssaT4qGvzRdZAqh4zClakHvmhy/dZag3Yf5RvY5pU7wB03aalqTdwNIb/s4z+iYmhahC1ybL28dgtW7QZU1/kR7uGHWpLi0VaW6U8AqbfMfHmwQiJ84e/j5UefoLix+lR18JqJENn2Km1CPJq6vR7g4EWLP0+9722Vsqvi4wE0tPVHae9nQoT3Kweaw+HeBj9ExpKRkpJCZW/KWXkSHJbVldTnFYsf2U6iKjIAU6eb7CYlqZ+kgMoju3ry+Gdfkzq5DikTo4jsbXMTPpOKSYEKJsObN4Mn9Z6LAr4qZPh/MW3JjQ2aTdmj2XXLqmIYPr0njun94So+qyT/BOAPSiMJ2Aw0ATX0KBuf5NJcnu2twM7d2o3tj7C4KwLvCeOVN6wvD0jkpCgquFnB/bJst9/715FaL2iVXinpoa8njoKy7KBwngGMTG0KhdlnJXC1Tzd4tNiQfLp859JYKD6vjsidXUkk62TODbjRqKi6LpV21dn4EDygALU+FMsgWeIc+eo+ShAoRm1TVEFgQxJnYVl2UBhPIOoKMdUZQcPlmKrR49SuIcBAKSf2gCT9Xwgf84cx6qcbDaa7HQUx2bciKgGrbLpJwAuOe6JXbskr9K0aeo9n2LYW0fhHYANFMZTMJloNaVWD8VgkLwogtBZ1KgfY7BZMeykRsqxAMvbM50xGsmbpjbBHSCxQNHgPXwYyM/XYmR9A63E2SwWumZDQx0ekpawgcJ4DvHxNOGpTdu3D/OwgQIAiCs+gKCGMnoyfrz6vjsi4kSnJpmZ6ZuIq3K1jf9MJvaidIV9E9SEBDIE1dLYSPvrTPVZsYHS2tqKd999F7/61a9wxRVX4Le//S327dsna9/9+/fjsccew/XXX49rrrkGDz74INavX6940Ew/RbTw1bqLk5IkCecTJ6gqqJ8zJOsH6YmjpcUAJTInJ+tuomPciGiwiho7apgzhwQXAZIKUBvq7Uvs2CFpQ02frv6aa2khvSgdhmUVGyivvPIKVqxYgSuvvBKLFy+G0WjEk08+iSNHjvS43/bt2/HEE0+gra0Nd999N+6//374+Pjgr3/9K1asWKH6D2D6Eb6+dPNzJJ7NybISJSWIP0NJh/WB0cCECY4dr62NJjoO7zD2BAbSzU9teBagyhJR2bitjVoy9He0rN4JC9OlLIAiAyUzMxMbN27Egw8+iEceeQTz58/HW2+9hdjYWLz77rs97rtq1SpERETgrbfewo033oiFCxfizTffREJCAtbyl42Ry4ABlG2uttzQPk67das6ddq+gt11lzv0GserbljenumOpCT1lTwi110naXysWQNje6vj4/JUKiqA7GzaTk6mz1cttbUU3jGbNRmaligyULZs2QKTyYT5dvFAHx8fXHvttTh+/DjKysq63bexsRFBQUHw9vbueM3LywshISHw4d4ojFzENuBq3cXR0VIjraKi/ptwZ9d3p91oRt4QB/ruiFgsQGIi9zpiLiYqir4XLS2OHWPKFNq2WJCS149VobXynlittEhLSHB8TE5AkZJsbm4uEhMTESDGAs8z7PyEf/LkScR0U6Y0duxYfPHFF/jggw8wb948GAwG/Pzzz8jJycELL7ygbvRM/yM4GIiLI8NCba+YGTOo+SBAXhSdtBZ3KVu3dlRW5CXNQItvCACVSYwi7e1koDDMhURF0fVaW+uYh23+/I6bc/rxb3Es8UqNBug+8goNOHDUqCj3f+732yHKIH7fPBN13/bs/WzqTj6qtpb+LzorLxZRZKBUVVUhogt1SPG1ysrKbve96667UFJSgs8++wyffvopAMDX1xd/+ctfML2X8qjKykpUVVV1PC8oKFAybKavkZoquTfVMHUq8P77FCbatg34zW/Uy0N7IoIArJFKi7OGXOf4MRsbKU+AwztMV5jNFIo4dMix78jQocCQIcCJEwg7l4/4ssOoSR2j3TjdwIGjRlhq5Se4BtWVIKIyFwBQGTYQZd6JgEzJ/4uiODU1JO52gdNBLygyUFpaWmDuIk4lhm1aenDfmc1mDBgwALNmzcKMGTNgtVrx/fff4+WXX8Ybb7yBESNGdLvv6tWrsWzZMiVDZfoyMTGAvz/dFP39le8fGgqMGUOTZXk5GTvDh2s+TN2SkwOcOgUAqIoYhIrwIVDxKXbGYiFBrvBwh4fH9FHi4kgJVhAcq/JasAB47TUAwMicb7Hdww0U0XNiMAjw8+39/eknpOT+ooHT4e8nL4/ObAYmjrogd6+1lQxHnaLIQPHx8UFbF36o1tbWjt93x1tvvYXMzEx88MEHMJ5frV5++eW488478c477+Df//53t/vOnz8fU6dO7XheUFCAl19+WcnQmb5ERAStwqqr1RkoAIV5Dh2i7a1b+5eBYp8cO+y68zcLB5OF6+qAUaP6lyeKUUZUFF2vDQ2ONeucMoW69lZWIunsXgRZzgDQX4msUvx8gdtv6CXMWl8PfCPpwIx7cArGxaoMzTY00P9Dp+EdQGGSbERERKdQi4j4WmRkZJf7tbW14ccff8Rll13WYZwAlCQ7efJk5OTkdGn4iERGRiI9Pb3jkaxji49xAUajY80DAeCyyyR/544d6kWkPA2LRRKpCwpCQdqMnt8vB6uVjBwdT3SMDggLI8PCEZkAgKrNrpPCkunHv3NwYB7EZ59R/x0AmDzZMe2Smhr6f+jY66nIQBk0aBCKi4vRcMGNIfO8mt2gbhoVWSwWWK1WWLu4CVitVthsNti4SyWjhLg4mqhaVZYa+vuThDZAE+bhw9qNTc/89JPUXfaKK2D10qDipq6OhLhY/4TpCYPBcdl7kauuQpsXxUPSTv7smAicp5CdDaxbR9u+vsCDDzp2vPp6yufTsddT0chmzZoFq9WK1XZSw62trVizZg2GDx/eUcFTVlbWKZE1LCwMgYGB2LZtWydPSWNjI3bs2IGkpCQuNWaUER3tWPNAoP+Jtlmt0gRnMDjed0ektpa8J4647Zn+QUwMLSxEI1ktgYHIG3wFAMCrvQXYsEGDwemY9nbgn/+UdJvuuMOxZOO2NsDLS5fqsfYoykEZPnw4Zs+ejaVLl6KmpgYJCQlYt24dSktLsWTJko73/fWvf0VGRga2np/0TSYTbr31VnzwwQd46KGHMHfuXNhsNvz444+oqKjAs88+q+1fxfR9zGZaje3f3+XKvakZ+KKX0jtT+yT8yuwP77ZGtG3bhVWJv1PkURCTzlKTPETsbf9+SgoGSDVWq8mpsVHXiXaMjoiKIqmA2lqHQws5IxZgSNaPMEAAfviBkme9FN3SPIdvvgHERf/AgZ1CXKqoqaFiAZ17PRX/N5955hnExMRg/fr1qK+vR1paGl599VWMHTu2x/3uvPNOxMXFYeXKlVi2bBna2towcOBA/OUvf8GsWbNUDp/p1yQmAvv2kWfgvAqq2QygCRAEAxp7Lb3zRX7iFAw5/TPMbU1IyNqE7EEK+tE0AfuPGpGa5CH5K2s07Fos0tJCAlxcXszIwc+PRMFOnHDYQKkPjkdhwmQkn9lNjfN27ABmztRooDqipARYvpy2jUbgd7/TRvV53DjdiyoqNlB8fHzwyCOP4JFHHun2Pe+8806Xr1955ZW48krPF9ZhdEJMjCT+FBYGgDwa+xWIHhUOvQJDTpOi6uRDH6IqeSwaguN63a+pmYwgtY2VXc7Zs1LVUkwMdS7WAlHoiQ0URi6JicCxY5oc6lj6AjJQAOpyPGNG32pUKQjAu+9KuXbXX08eFEew2eihU/VYe/qoP4zpFwQEUG+e7OwOAyU1SVDo0RgOtM4BNm6Eub0JC469DrzySq8rlC++Ncnw0OgI+35XV1/t+ApMxGIBxo7VZR8PRqdER1OSZ1MTeVQcoCR6NM6FpyKs+jSQm0tzgdjKoi+wZQuQkUHbUVHA7bc7fsy6OsoX84CqO/2m7zKMHJKSKOHLkaZ/Dzwg5WNkZwMrV2ozNr1g13cH3t7AFVdoc1xBoPBafLw2x2P6BxERtKBwtNwYAAwGZI+4QXr+XR8qOa6rAz78UHr+0EMOG3QA6HOPjaVcIJ3DBgrj2cTEkCfFkdJFf3/g97+Xyu2+/JJWY32FLVskzZjp07WbmBoa6LPn8A6jBJOJkqo1Kg0uSJtJCZ8AsHs30EPTWo/i448lI27KFEkWwVGamjym/xgbKIxnExZGRooj5cYAuYVvuom2rVbgjTeA5u46bHkQggD8+KP0/BoFScC9UVtLq2Hx5sAwcomNpe+mBvpXNpNZ+l7bbFTR4+kcOyZ5Pf39ycurBU1NFF7zgPAOwAYK4+kYDI6ryorceis1zgKAM2doBePpZGcDp0/T9uDB9NCKujpaCetY6InRKdHRlAehhWgbQHlVYh7UTz9R6bun0tZGmicid95JCwEtqKmh6qluVN/1Bs8sjOcTG0vlco56PLy8gCeekErv1q6lMmZPxr60WEvvidVKhonOhZ4YnRIcTEaKo55PkZAQYPZs2m5slLwPnsjKlbRAAoD0dGDePO2OXVtLCzqtkuSdDBsojOcTFUUrDC0mu4QE4N57pefvvKPdJOpqampIGwIgKfrp07U7dm0t3WQ4/4RRS0oKhRy0Yv58afv77z2zv1ZxMfDVV7RtMgGPPqqdh7K93eMWFWygMJ6PyUTaAFpUBQC0Ypk4kbYtFuD//s+xKiF3sWGDJCl+5ZVUwaMVFgv1Q1LbTZphoqPJa6m2n9aFJCWR+BhAibJ792pzXFchCMC//iVdszfcQEacVlgslC/mIfknABsoTF9BbB7oaI8PgPJa/ud/yG0M0ETnab0+Luy7o6WbGKDS5aQkbY/J9C8iI+mGWVur3THtvSh2PeM8gbTcnyUBu5gYyonTkpoa0o3SolTZRbCBwvQNRFVZrbwoYWFkpIh88AGpsXoK+/YBlZW0PXGitm7d5maWt2ccx8eHVGW1umYB8qAkJtL28ePAqVPaHduJ+DZbMG6fnebJI49oK0MvahYNGKDdMV0AGyhM38DXl9yhWuaLTJoEzJ1L2y0tVHqshYfGFTgrORaQXMUeUgnA6JjERLqmtAqhGo2dvSgeItw2+dBS+LSc14WZOVMKVWlFfT1pFnlQeAdgA4XpS4iTnQbaCh3cey+FjwBqcLZihXbHdhZnzkjy2LGx2k92tbVUXtxXO8cyriMqim6cWpYFz55NSeEAsG0bNRLUMbFnDmFw/mZ6EhgI3Hef9iexWCjnx8M0i9hAYfoOsbE0MWmkUAmA4rV/+IOUSb9iBWmL6JkLuxZrqVMiNhqL672hIsP0SlgY6XJoGebx8ZFyrqzWzteD3mhpwSU77TRP7r7bOUZEYyN5mD2skSIbKEzfITiY+sJoXRacni4lrNlswBtvwKtNp50Cm5uBTZtoW8u+OyJieMeDShUZHWM0kjdOK8E2kWuukTx869ZRiFaPrFiBoLoSAEB5zAjtr1eA/naz2SOvWTZQmL5Faqq22goiN99MhgoAlJZi/J73tT+HFvzyi6SqO2OG5OrWispKWolpfVym/xIbSyt7LXVLIiKAadNou64O2LxZu2NrRUEBsGoVAMBq9MLeqb9zjipzTQ15qjwwqZ0NFKZvERND2hxaS12bTNRQ0NcXADDoxHokFe/S9hyOIgid3dnXXqvt8cUE4bQ0bY/L9G+iosj7qWW5MQAsWCBtr16tbW6ao9hsJGd/3ig7PPwW1IY6qWy/tpYWFWIrAA+Cs9yYvkVEBFWX1NRoLyIWHw/cfz8JtwGYvvdtrE0YAiBE2/OcJ6/QgANHjWhrk/f+yLJMXJWfDwCojErHhqNDgKM979OkpDtAdTV9vgkJCnZimF4ICCAvyunTtNLXioEDgREjqNy4uBg4dAiYMEG74zvChg0duWy1wQk4PPwWaFhULGG10sLFQ69Z9qAwfQujkSYmLRNl7bnySuDSSwEAfi21uHT7205TmT1w1AhLrQGNTfIeacekLq7HBl4nax9BoKQ5WYurc+eo2aCW+gwMA5DonzPyRPQo3FZdDXzyScfTvVMfhdWkocqzPbW1pA/lYeXFImygMH2P2FhtJbTtMRiARx9Fk18oACC+eD81FXQCoufEYBDg79fDw9eGEcU/I7WI+u40+wajdMi0nvexe4QEC5g4qhf3d3MzJd0mJzvlb2X6OdHR9P1ytOHnhUyaJCWHHjoEFBZqe3w1fPCBlCc2Zw7K48Y471w1NeT5DQhw3jmcCId4mL5HTAy5imtqaOLTmpAQ7J72e8z+6Xl6/tFHwOjRkoKlxvj5Arff0E0CYVER8O67kkQ2AN/r5+LWm0wANEw6rKqiz9UDKwEYDyAykq5Zi6Ujz0sTTCbguuvIKADIi/K732l3fKXs3w9s307bwcHAPfcAm5x4vtZWj15UsAeF6XuYzVTNo6W2wgWUDJiIzMHnk1BbW12vMtvSAnz6KfDYY52ME0yfDixapP356uqAIUM8pk0742F4edGNVOtEWYBKd8V8tM2bnTov9EhzM/Dee9Lz++4jI8VZNDTQ3+2h4R2ADRSmr5KYKPWfcBJ7xt4HS8h5r8nJk8CXXzrtXJ3Yt4/asK9cKRlFsbHACy8Af/qTtl2LAdKoCAz0uD4ejIeRnEw5ZFqHZv39KXcMoLjpV1+5p2XFf/8LlJfT9pgxwKxZzj1fTQ15psLDnXseJ8IhHqZvIjYPrK3VtjLADquXL3bO/COu/vEJMoRWrgTGjweGD3fK+VBZCbz/PrDLrrzZywu48Ubgppucl7xaWUk3j4gI5xyfYQDKlYiJoe9bfLzs3ZqagS++7dmzF+C9ANcbvodRsAGrV6Px5x3IHXoNTqbPQ8v5fLLuMJuBiaNsSE1yIBk+L0/qC2Q2Aw8/7HxV1/p6qlpyhraKi/DckTNMTwQEkBdFa1XZCzgXORi47TZ6YrMBb76puQaLwWYFvv2WvCb2xsno0cA77wB33OE848Rmo3DS4MEeJ5PNeBhmM4khygzziJVngtB7tVqFVyyODl3Ysa9/YxXGHPwMNyy/CxM3vwm/Mye73ddSa8D+ow7cKq1WkiYQdVgWLVJkgKmirY0WLx6eM8YeFKbvkpwMHD1KoR5n3lxvvBE4cADIygLKysjL8dhjmhw6ujIL0w/8H1B9WnoxJITi1zNnOt9oEKXtnZQAzDCdSE6mcGJtba/5GRNH2bBfgU7Q8UvvRkXKeKRnfo+Ewj0wCjaYbO0YcvpnDDn9Myqih+HE8OtRmDIVgpFujU3NZADJPUeXrFlDIWCAyql/9SsHDiaTmhq6bp1RJOBC2EBh+i4xMTTZNTTQT2chqsw+9hjJ7G/cCFxyCTBlivpj1tXhkh2fYXDOOuk1g4GaoP3mN879e+yprCRPDUvbM64gIoKMlNzcXg2U1CQBqUlKc8xG0qOsjAyHn37q6AMUVZ6FqPIsTA0Ppyabc+fii18i0OhI54yKCuA//5GeP/KIaxRdLRbqYu7hmkUc4mH6LmFhZKScO+f8c8XGAg8+KD3/5z/VtXkXBGr298gjnY2TtDTgtdcodu0q44Sl7Rl3MHgwffecmOCOmBgq8f34Ywqd2pfiVlcDn38O3HsvLt36BiKrTqg/z/vvS73B5s1zXn6aPTYbfXYeqh5rD3tQmL6LwUA317w8p52iU4KecCWmpexHUv4OoK4OJc/+P2y+6kXAIG8dEFxTiEt2/gsxpZI+fauXH45O+A0mPHW160t8WdqecQcDBlD1SXW18xvc+fgAc+cCV11F5frffw/s3Us3+fZ2pJ3ciLSTG1ERPRQIu5a8onI9ILt30wOgcMuddzrtz+hEXR15PD24vFiEDRSmbxMbKylUaigAZTYDaBIT9MRXDdgy/n+wsCwLAU3ViDtzEClHfkTmkPk9HAkwtTdj3PEvMSp7FUw2qfwxb8A07B7/IMyxEZhgcuJqsjvOnaMJ2cPdxIyH4etLXpSdO13XgddgAEaNokd5uRT+Od8yI6o8G/jfbPK4zJtHRk1P1YGNjcC//y09f+AB13k+LRbKGXOmxoqL4BAP07eJjCQvgMbVPBNH2RASfLFsvCk0CHtm/L7jfZMyPkJcc363MvODKvfg5rUPY2zmig7jpC4oFpuvehG7r3wa5tiI3mXonQFL2zPuJDWVDGOtu5LLIToauPtu4KOPsGfqYlSFpkq/q64GvviCktTfeINyZbriP/+RQrwTJgDTpjl92B00NdHn1wdgDwrTt/HyojDPzp2altz1nKA3BvC+Hvj+e3hZW3FtxmvA6693dg33oGkSdNNNmO3jA02l6pXC0vaMO4mJodBiSQlVvrgDHx+cSp+LowPmIsVyFFfUfAfs2dMR/sEvv9AjPZ3k9MXwT24u8OOPHcfAQw+5rkS/qYk8UH0gvAOwgcL0B+LjaYJobycjwBXceSeQkUG9ck6fplXXXXdR8tr335OqZJNdecDo0TSR6aWct64OmDyZpe0Z92A00o3/1CkyCNwpNmYwoDxuFPDwcAr/rF0LbNggdUzPyaHHRx9R+Gf3bqnD+e23u9ZYqKkh5djISNed04mwgcL0fWJiKEnNYnGdGqqPD/DEE8Af/0iG0apVdO6ffiKDRcSVmiZyYWl7Rg8kJUkNBJ2kBq2Y6GhaaNx6K7BlC/DDD0B+Pv3u3DlaeIikpgLXX+/a8dXWUh5NH1lYcA4K0/fx9aVcCleUG9uTlgb8+te0LQjA0qWScWIwkNbCu+9STw69GCcAhZ8SEljannEvQUF0DVVWunskF+PjQ5U/b78N/O1vFN6x9/IYDFS+7CqPLUALIaMRiItz3TmdDHtQmP7BgAHAoUOudxcvWEAt1u07DqelkWDTkCGuG4dcWNqe0RMDBwJHjlADQa2bYGqBwQCMHEmPigqq/jl6lJoTuvr6FlWf+0j+CcAGCtNfiI2lFVldHYVVXIWoMvviizSB3HwzcO21+nXBsrQ9oyfi4ymsorCBoFuIiqLwj7uoqQFGjAD8/Nw3Bo1hA4XpHwQH0wRXUOBaAwWgieudd2i1pXevRFUVxbBZ2p7RA2YzMHQotY/Qu4HiTgSBEvD7WN4YGyhM/yElhbLt3YEntDxvb6eJjqXtGT2RlERJ26JCqhvopBjthGM7TH09dXDvQ+EdgA0Upj8RG0vuz8ZGwN/f3aPRHyxtz+iRiAgyUk6edLmB0rVitBPPpRaLRapW7EOwgcL0HyIiSB+gpoYNlK5gaXtGjxgMlHCanU1hDBfmb00cZcP+o0a0tTn3PGYzHFOMbmggD7HeQ8gKYQOF6T8YjRS+2LLF3SPRHyxtz+iZAQNogeGKBoJ29KwYrRNaWuja7YOqzx4QGGcYDYmLI22C1lZ3j0RfsLQ9o2d8fcmLUl3t7pHoj5oaErJzoeHmKthAYfoX0dGSOiUjUVdHNwC9lj8zTEoKhR+bnJwM4mnU1tJn41ASiz5hA4XpX3h7kwS1xt2NPRqWtmc8gdhYKjWuqHD3SPSD1UqVd300sZ0NFKb/kZAg6QYwLG3PeAZGI2miNDWR4jFD3pOQkD5XXizCBgrT/4iNpYu6ttbdI3E/LG3PeBIDBtC1yyFaoqaGvEoBAe4eiVNgA4XpfwQEkJQ7h3lY2p7xLIKDqT+PHhsIuoPW1j5deccGCtM/SUqii1sQ3D0S91JVRQl2LG3PeAppaeTt6++VeA0NpOfUR8M7ABsoTH8lNpY8KQ0N7h6J+2Bpe8YTSUiQGgj2ZywWEp4MD3f3SJwGGyhM/yQsjCa5/hzmYWl7xhMRGwj29zyUujqqSPSEPl8q6bt/GcP0hMFAnoP+7EE5d46SY1nanvE0kpMpLFlX5+6RuIe2NhKc7OPCimygMP2X2FjSRWnWop2oh8HS9ownExFBFT39NcxTU0PJ7dHR7h6JU2EDhem/REVR/LY/hnlY2p7xZMQGgq2t/U/PSBAoPJuW1ue9n2ygMP0XLy+6yPujHgpL2zOejn0Dwf5EdTVpwYwY4e6ROB02UJj+TXw8rcba2909EtfB0vZMX8DPr/81ELTZSOp/9Oh+ofzMBgrTv4mNpVhuf6oIYGl7pq+Qmkq5VP2lgWB5OeWd9APvCcAGCtPf8fUl0bb+kofC0vZMX0JsINgfkmXb22meGjuWPKD9ADZQGCYpiRLt+kMDMpa2Z/oSYgPBhoa+f/2WlNB1m57u7pG4DDZQGEZsHlhV5e6ROB+Wtmf6GklJfT9M29JC0gDjx5PXt5/ABgrDBAcDY8aQm7gvJ8uytD3TFwkOpu90X15gnDlD+TYDB7p7JC6FDRSGAYBRo8izUFzs7pE4D5a2Z/oq4o27rc2943AGjY2ULzZ+PEkj9CPYQGEYgNymEydSHLu+3t2jcQ4sbc/0VfpyA8EzZyjvpB/KArCBwjAiqalUvldcTKGQvkRLC0vbM32XvtpA0GIhvZcxY/p0U8Du6H9/McN0h8EATJhAYZCyMnePRlsqK1nanunbJCdT+W1faSAoCFS5M3x4v71u2UBhGHvCwijWa7FQn4++AkvbM32dvtZAsKqK5qPRo909ErfBBgrDXMjw4VQVUFTk7pFoA0vbM/0BsYFgW5vnNxC02cjQGj2ajJR+iuKU4NbWVnz44YfYsGED6urqMHDgQNx///245JJLZO2/ceNGrFy5EqdOnYKXlxeSk5Nx//33Y8KECYoHzzBOwdsbuOQScq/W1lIZoydTWUnub5a2Z/o6AwZQh/LqaupW7qmUlvYrSfvuUOxBeeWVV7BixQpceeWVWLx4MYxGI5588kkcOXKk130/+ugj/OUvf0F0dDQeffRR3HfffRg4cCAq+4pLjuk7JCYCI0cCZ896tkKlzUYCTyxtz/QH+kIDwbY2CsmOHw8EBLh7NG5FkQclMzMTGzduxMMPP4zbbrsNADB37lzcfffdePfdd/Huu+92u+/x48fxySef4NFHH8Utt9zi2KgZxtmIugP5+bSaiY9394jUYbGQi5il7Zn+QmoqcOAAGeaeqLpaUkKeoCFD3D0St6PIg7JlyxaYTCbMnz+/4zUfHx9ce+21OH78OMp6qHz46quvEB4ejptuugmCIKCxsVH9qBnGFQQFUainvp7KdD0RlrZn+huxsUBcHFBR4e6RKKelhZLzx49nvSIoNFByc3ORmJiIgAvcTsOGDQMAnDx5stt9Dxw4gKFDh2LlypWYP38+5s2bhxtuuAFff/21imEzjIsYMoQehYXuHolyWNqe6Y8YjcCwYdRA0NP0jIqLSRWXr1kACkM8VVVViOgi0U58rbtckrq6OlgsFhw7dgwHDx7E3XffjZiYGKxduxZvv/02vLy8sGDBgm7PW1lZiSq7PgsFBQVKhs0w6vHyIoXZ4mJSYvWkjHqWtmf6K2IDwZoaz7lm6+vJuBo7luUAzqPIQGlpaYHZbL7odW9v747fd4UYzrFYLHj++ecxZ84cAMCsWbNw991349NPP+3RQFm9ejWWLVumZKgMox1xcaTkuH07VfR4yuRx7hwwZQq7ipn+R3Aw5aIcOeI5BsqZM1RWzHIAHSgyUHx8fNDWRTOm1vOCVj7dTITi615eXpg1a1bH60ajEZdffjk++ugjlJWVISYmpsv958+fj6lTp3Y8LygowMsvv6xk6AzjGGPHAqdPU1WPJ0wgLG3P9HcGDSIDpa2NpPD1TE0NVeyMGcPVdnYoMlAiIiJQ0UXikRh+iYyM7HK/4OBgeHt7IzAwEKYLVp9h563burq6bg2UyMjIbo/NMC7B3x+YNAn44QfqLurv7+4R9QxL2zP9HfsGgnFx7h5N9wgCVQpOnkzXLNOBoiTZQYMGobi4GA0NDZ1ez8zM7Ph9lycxGjF48GBYLJaLPDBi3kpoaKiSoTCM6xk4kJLvPEFhlqXtmf6O2UzXq94bCFZWkrhcP5a07w5FBsqsWbNgtVqxevXqjtdaW1uxZs0aDB8+vMMDUlZWdlEi6+zZs2G1WrFu3bqO11paWvDTTz8hJSWFPSSM/jEaqZlgSIi+SxhZ2p5hiKQkuhbq6909kq6xWkkKYMwYSuplOqEoxDN8+HDMnj0bS5cuRU1NDRISErBu3TqUlpZiyZIlHe/761//ioyMDGzdurXjtQULFuDHH3/Em2++iaKiIsTExGD9+vUoKyvDK6+8ot1fxDDOJCoKGDcO2LyZku+8FHeLcD4sbc8wRGQkGep5eWSo6I2yMgo/DR/u7pHoEsWz6zPPPNNhXNTX1yMtLQ2vvvoqxo4d2+N+Pj4+eOutt/Duu+9izZo1aG5uxqBBg/Dqq69i0qRJasfPMK5n5Eia8IqKqFJAT7C0PcNIGAx0LWRnk7dCTyFPUdJ+2jT957S5CYMgeJqSDZCTk4MHHngA77//PtLT0909HKY/cvo08P335FHR08rs3Dmq4Ln1VlaPZRgAaGoC/vtf2tZTA8GCAkqKXbCAKu6Yi1DcLJBhGJB8/IgRJOCmJxu/qoq8OmycMAzh5wekp5Pxrheam8mDMm4cGyc9wAYKw6hBbCYYEUFxZD1QVUXjYplshulMSgpV9TQ3u3skRHExhZ70FiLWGWygMIxawsKoqsdioQZf7sJqpZyYpiZSjmVxNobpTFwcPbppx+JS6uvJWGJJ+15hA4VhHGH4cPJYuEsbpa4OOHGCJt/rriMxOZ70GKYzRiMwdCgZB+4OyZ45QyEn7pHVKzqskWQYD8JsBi65BCgpIU9KSIhrzmuzkex+aysZJZMmcSUAw/REUhJdn+5sIHjuHOWHjR3LVXYyYA8KwzjKgAFUenz2LBkOzqa5GcjNJYPk6quBmTPZOGGY3ggJoZyPkhIyFFztSREEylcbOVJf1UQ6hj0oDKMF48cD+fnUUyM+3nnnqagAqqupgujSSz2nUyvD6IHJkwFfXyAri0KjkZEkM+8Kb0ZFBSXVjxzp/HP1EdiDwjBaEBREoZ76etIh0Zq2NuDkSfp5xRXAlVeyccIwSgkOBqZPB266CbjsMrqesrOpAs6ZHhWrlRYWY8e6LgzcB2APCsNoxZAhVE1z4gSVEGqFxUJu6bQ0YOpU7lDMMI4SHk7X0vDhZKAcP04/o6LIy6G1R6WkhBLZhw3T9rh9HDZQGEYrvLyAiROpoqe6miZBR7DZ6FiCQOXDEyaQe5phGG0ICyNPimioHDtGPyMjyVAxahBkaG0FGhqAWbNINI6RDRsoDKMlsbGkDrl1K7ly1Zb8NjYChYW06poyhZL7OOufYZxDSAjlpwwbJhkqOTlkpERGOmaonDlDQnGDBmk23P4CGygMozWjR1Oo58wZKm1UgpjpX1dH8erJkyluzjCM8wkOppL9YcMoVHvkCBkqYWFAdLRyQ6WpiTyh48eTJAGjCE6SZRit8fenhNm2NvKEyKW1lcqHjUZg7lxgzhw2ThjGHQQFUUj15pspKd3bmwyW0lJKeJXLmTOUj5aS4rSh9mXYg8IwzmDgQFqFHT1KybO9hWeqq4HyclKYvOwy1klgGD0QGEjej/R0WjwcPkw/Q0LIo9JTCLeujgybsWO1yWXph7CBwjDOwGikFVhhIfX/6M7gsFqp7bq3NwmujR3L3U0ZRm8EBNC1OWQIGShHj9LP4GAgJqZrQ+XsWcpHc6YuUh+HDRSGcRaRkbT62rQJCA29OAZdX09VOsnJlAg7YIBbhskwjEz8/YExY8hQOXmSPConT5KnJSaGKvkA8ogGBdF7ObldNWygMIwzGTkSOHWK2quLrdUFgWLTLS2UkHfJJbRCYxjGM/DzA0aNovySU6eAjAz6GRBAhkp5OemsREa6e6QeDRsoDONMfHzIAPn+e/KYeHlRSCcqipJgBw/mFRbDeCq+vtR2YtAgMlBEj0p0NBkwjEOwgcIwziYlhSaxffvIQBk+nBJhWaqeYfoGPj50XQ8aRBIDZjOFeBiHYAOFYZyNwUAJs9XVNIGNGiXFqhmG6Tt4ewNDh7p7FH0GniUZxhWEhgILF6pXlmUYhulncHE2w7gKNk4YhmFkwwYKwzAMwzC6gw0UhmEYhmF0BxsoDMMwDMPoDjZQGIZhGIbRHWygMAzDMAyjO9hAYRiGYRhGd7CBwjAMwzCM7mADhWEYhmEY3cEGCsMwDMMwuoMNFIZhGIZhdAcbKAzDMAzD6A42UBiGYRiG0R1soDAMwzAMozu83D0ANbS0tAAACgoK3DwShmEYhmGUkpycDF9f3x7f45EGSmlpKQDg5ZdfdvNIGIZhGIZRyvvvv4/09PQe32MQBEFw0Xg0o6amBnv37kVcXBy8vb01OWZBQQFefvllPPvss0hOTtbkmH0Z/rzkw5+VMvjzUgZ/Xsrgz0s+zvys+qwHJTQ0FFdddZVTjp2cnNyrVcdI8OclH/6slMGflzL481IGf17ycddnxUmyDMMwDMPoDjZQGIZhGIbRHWygnCciIgJ33303IiIi3D0Uj4A/L/nwZ6UM/ryUwZ+XMvjzko+7PyuPTJJlGIZhGKZvwx4UhmEYhmF0BxsoDMMwDMPoDjZQGIZhGIbRHWygMAzDMAyjOzxSqM3ZZGRk4Msvv0Rubi4sFgsCAwMxaNAg3HXXXRg1apS7h6c7Dhw4gJ9++glHjhxBRUUFwsPDMX78eNx3332IjIx09/B0R2VlJVauXImsrCxkZ2ejqakJb7/9NsaNG+fuobmV1tZWfPjhh9iwYQPq6uowcOBA3H///bjkkkvcPTRd0tjYiC+//BKZmZnIyspCXV0dnn76aVx99dXuHpruyMrKwrp163Do0CGUlpYiODgYI0aMwP33348BAwa4e3i64vTp0/j444+Rk5OD6upq+Pr6Ijk5GbfddhumTp3q0rGwB6ULiouLYTQasWDBAjz++ONYtGgRqqur8T//8z/Ys2ePu4enO9577z0cOnQI06dPx2OPPYY5c+Zg8+bNuP/++1FVVeXu4emOoqIifPHFF6ioqEBaWpq7h6MbXnnlFaxYsQJXXnklFi9eDKPRiCeffBJHjhxx99B0icViwbJly1BQUIBBgwa5ezi65osvvsCWLVswYcIELF68GNdffz0OHz6M+++/H3l5ee4enq4oLS1FY2Mj5s2bh8WLF+POO+8EADz99NNYvXq1awcjMLJoamoSFixYIDzxxBPuHoruOHTokGC1Wi96bfr06cLSpUvdNCr90tDQIFgsFkEQBGHz5s3C9OnThYMHD7p5VO7l+PHjwvTp04Uvvvii47Xm5mbh1ltvFR566CE3jky/tLS0CJWVlYIgCEJWVpYwffp0Yc2aNW4elT45cuSI0Nra2um1wsJCYc6cOcJf/vIXN43Kc2hvbxfuuece4Y477nDpedmDIhNfX1+EhISgvr7e3UPRHWPHjoXRaLzoteDgYBQUFLhpVPrF398fwcHB7h6GrtiyZQtMJhPmz5/f8ZqPjw+uvfZaHD9+HGVlZW4cnT7x9vZmsTGZjBo1CmazudNrAwYMQEpKCs9RMjCZTIiOjnb5/Y9zUHqgoaEBbW1tsFgsWL9+PU6fPo3f/OY37h6WR9DY2IimpiaEhIS4eyiMB5Cbm4vExEQEBAR0en3YsGEAgJMnTyImJsYdQ2P6KIIg4Ny5c0hJSXH3UHRJU1MTWlpa0NDQgB07dmDPnj2YPXu2S8fABkoPPP/889i7dy8AwGw2Y/78+R3xOKZnvvrqK7S1teHyyy9391AYD6CqqqpLb4D4WmVlpauHxPRxfvrpJ1RUVODee+9191B0yT//+c+OnBOj0YgZM2bg97//vUvH0OcNFJvNhra2Nlnv9fb2hsFg6Hj+29/+FosWLUJ5eTnWrVuH9vZ2WK1WZw1VFzjyeYlkZGRg2bJlmD17NiZMmKD1EHWFFp8XA7S0tFzkggfoMxN/zzBaUVBQgDfffBMjRozAvHnz3D0cXXLzzTdj1qxZqKysxObNm2G1WmXPdVrR5w2Uw4cP47HHHpP13s8++wzJyckdzwcPHtyxfdVVV+H+++/HK6+8gpdeeknzceoFRz4vgC78Z599FmlpaViyZIkzhqgrHP28GMLHx6fLya+1tbXj9wyjBVVVVViyZAkCAgLw0ksvwWQyuXtIuiQ5Obljvpo3bx7+8Ic/4KmnnsK///1vly20+ryBkpSUhKefflrWe3tKODObzZg6dSo+//xztLS09NkJ05HPq6ysDE888QQCAgLw6quvwt/f3xlD1BVafb/6OxEREaioqLjodbFMnfV0GC2or6/Hk08+ifr6evzf//0ff68UMGvWLLz++usoKipCUlKSS87Z5w2UiIgIzYSLWlpaIAgCGhsb+6yBovbzslgseOKJJ9DW1oY333yz31z4Wn6/+jODBg3CoUOH0NDQ0ClRNjMzs+P3DOMILS0teOqpp1BUVIQ33niDk2MVIoZZXVnJw2XGXXDu3LmLXqurq8OWLVsQHR2NsLAwN4xKvzQ1NeHJJ59EZWUl/vGPf7AyI6OYWbNmwWq1dhKCam1txZo1azB8+HCu4GEcwmq14oUXXsDx48fx4osvYuTIke4ekm7p6v7X3t6O9evXw8fHx6WGXZ/3oKjhT3/6E6KiojB8+HCEhYWhrKwMa9asQVVVFV544QV3D093vPTSS8jKysI111yDgoKCTroCfn5+mD59uhtHp08++eQTAEB+fj4AYP369R2KqXfddZe7huU2hg8fjtmzZ2Pp0qWoqalBQkIC1q1bh9LS0n6Ry6SWr7/+GvX19R2hsB07dqC8vBwAcOONNyIwMNCdw9MN//znP7Fjxw5MmTIFdXV12LBhQ6ffX3XVVW4amf54/fXX0dDQgDFjxiAqKgpVVVX46aefUFhYiEcffdSloXuDIAiCy87mIaxatQqbNm1CQUEB6uvrERQUhOHDh+O2227DmDFj3D083XHLLbegtLS0y9/FxsZixYoVLh6R/pkxY0a3v9u6dasLR6IfWlpaOnrx1NfXIy0tDffffz8mTZrk7qHplp6uveXLlyMuLs7FI9InixcvRkZGRre/76/XXFds3LgRP/74I/Ly8mCxWODv74/09HQsXLgQ06ZNc+lY2EBhGIZhGEZ3cA4KwzAMwzC6gw0UhmEYhmF0BxsoDMMwDMPoDjZQGIZhGIbRHWygMAzDMAyjO9hAYRiGYRhGd7CBwjAMwzCM7mADhWEYhmEY3cEGCsNozNq1azFjxgysXbvW3UORxaFDhzBjxgx89NFHTjvHjBkzsHjxYqcd39ksXry4R/VfRxA/f/Hx0EMPOeU8cvjoo48wY8YMHDp0qOO1goKCTuO75ZZb3DY+pn/BvXiYfs/f//53rFmzBsHBwVi1ahW8vb3dPSTNEW8q3HZAv4wdOxZjx45FdHS0u4fSiZCQENx9990AgJUrV7p3MEy/gg0Upl/T2NiIzZs3w2AwoLa2Ftu2bcOcOXMcOub06dMxfPhwREREaDRKpj8wduxY3Hvvve4exkWEhoZ2jGvdunVuHg3Tn+AQD9Ov2bRpE5qamnDzzTfDaDTixx9/dPiYgYGBSE5O5k6yDMMwDsAeFKZf8+OPP8JkMuH222/HqVOncPDgQZSWliI2NrbT+z766CMsW7as2+PYd21eu3YtXnnlFTz99NO4+uqrO94zY8YMjB07Fn/+85/x7rvvYt++fWhtbcWYMWPw+OOPIz4+Hvn5+Vi6dCkOHz6M9vZ2TJo0Cb///e8RHh7ecZxDhw7hsccew913333RirukpASLFi3CvHnz8Mwzz3Q8tx+DSFf7Z2dnY+nSpTh+/DiMRiPGjx+P3/3udxd1xd26dSs2b96M7OxsVFZWwsvLCwMHDsRNN92EWbNm9fyh90J9fT2+++477N69G8XFxbBYLAgJCcHEiRNx9913IyEhodP7xf/N22+/jcrKSvz3v/9FYWEhAgMDMXv2bDz00EPw8fHptE97ezu+/PJL/PDDD6isrERUVBSuvfZaXH755bj11ls7Pj85bNu2DV9//TVOnDiB1tZWJCQkYN68ebjllltgMpkc+iwA4G9/+xvWrVuHL7/8Elu3bsWPP/6Is2fPYs6cOXjmmWdQWVmJ1atXY+/evTh79iwaGhoQERGBSy+9FPfccw/CwsIuOmZZWRnee+897N27F+3t7RgyZAjuu+8+h8fKMFrCBgrTb8nPz8fx48dx6aWXIjw8HHPnzsWBAwewZs2ai27c48aN6/IYBQUF2Lx580U3wO6oq6vDo48+ioiICMydOxfFxcXYuXMn/vCHP+Bvf/sbfve73yE9PR3XXHMNTpw4gS1btqC2thZvv/22qr8xMDAQd999d0fuwE033dTt35SdnY3//ve/GDduHObPn4/c3Fxs27YNeXl5WLZsWae/cenSpfDy8sKoUaMQERGBmpoa7NixA8899xwee+wx3HjjjarGC9Bn+tFHH2HcuHGYPn06/Pz8UFBQgJ9//hm7du3CBx98cJEBCQCrVq3C3r17MXXqVIwfPx579uzB119/DYvFgueee67Te1999VWsX78e8fHxuOGGG9DW1oYVK1bg2LFjisb673//G59//jmioqIwY8YMBAYG4siRI3j33XeRlZWFv/zlL6o/hwt56623kJmZicsuuwxTpkzpMDwOHz6M5cuXY/z48Rg2bBi8vLyQm5uLb7/9Fnv37sUHH3zQyZtXWVmJRx55BBUVFZg0aRKGDBmCgoICPPHEE91+zxnGHbCBwvRbfvjhBwDA3LlzAZB34c0338TatWtx9913w2iUIqDjxo27aPI+d+4cfvvb38Lb2xtPPvmkrHOeOnUKt9xyC373u991vPbGG2/g22+/xe9+9zvcc889uPnmmwEAgiBgyZIl2L17N3JycpCenq74bwwKCsK9997bkTvQU47D7t278fzzz3fKwfnrX/+K9evXY/v27Z1e/8c//oH4+PhO+zc2NuKRRx7Bhx9+iGuvvRa+vr6KxwsAycnJ+OabbxAcHNzp9YMHD+IPf/gDPv300y4/7wMHDuD9999HUlISAOCBBx7Avffei02bNuGRRx5BZGRkx/vWr1+PwYMH45///GfHOH/zm9/g/vvvlz3Offv24fPPP8ekSZPw0ksvwc/PDwD939544w189913+OWXXxz2KImcOnUKH374IWJiYjq9Pn78eHzzzTfw9/fv9Pq6devwt7/9DatWrcKdd97Z8frSpUtRUVGB+++/v9Prq1evxuuvv67JWBlGCzgHhemXtLe3Y8OGDQgICMC0adMAAP7+/pg+fTrKysqwf//+HvdvaWnBM888g9LSUjz11FMYNWqUrPP6+flddBMUb/whISGdPBwGg6Hjd6dOnZL9t6llzJgxFyUIX3PNNQCArKysTq9faJwA9PldffXVqK+vR3Z2tupxBAYGXmScAHQjTklJ6fZ/c9NNN3UYJwDg4+ODOXPmwGazIScnp+P1DRs2AADuuuuuTkZUZGRkp8+/N1atWgUA+NOf/tRhnAD0f/v/27uXmCaeOA7g31YoQRBotLYaUCJIIJGHyCOINj5AD3ogPg6c2qbGevDkwRjiwQtGjZrAAQ4SRRCVSIgBCogCwUClCkVLIAhoAhW0yENKARHb/g+kTfvf5VmoTfr7HHd2Z4Ytyf52fjOzCoUCHA4H9fX1K65vOZmZmYzgBAD4fD4jOAEWAm8/Pz+0t7fbjs3Pz6OhoQF8Pt8h9QcAp0+fRnBw8Lr1lxBn0QgK8UjNzc349esXTp065ZC6OHnyJOrq6qBUKpGUlMR6rcViwc2bN9HV1QWZTIa0tLQVtxscHMwYWbCu9tmzZw84HA5r2ejo6IrbWCu2ERqBQABgYV6IvYmJCZSUlKC1tRV6vR5zc3MO5c72t6OjAy9evEB3dzcmJydhMplsZd7e3qzXREREMI5Zl+za97+/vx8AEBMTwzh/3759K+5jd3c3fH19F51Y7ePjg8HBwRXXt5yoqKhFy5qamlBRUYHe3l4YjUaH+2X/WwwODuLPnz+Ij49npCW5XC6io6Px7du3deszIc6gAIV4JOtDxZresTpw4AAEAgFaWlpgMBhY3+QLCgrQ2NiItLQ0yGSyVbXr5+fHOGadSLlU2d+/f1fVzlqwvYVb2zebzbZjBoMBFy9ehF6vR3R0NBISEuDv7w8ul4v+/n40Nzdjfn5+zf1obGzEjRs34Ovri6SkJIhEIltQV1tbix8/frBet9T9s+//zMwMuFwuAgMDGefbT0ZejsFggMlkWnLy9Ozs7IrrWw7bZFcAeP78OfLy8hAUFITExEQIBAJb8FFWVubwW0xPTy9Z12LHCfkXKEAhHkev1+PDhw8AsOTupnV1dYwh/5qaGhQXFyM6OhrXrl3b0H4uxjrKYv+WbGV9AG0kpVIJvV4PuVwOiUTiUPbkyRM0Nzc7Vf+jR4/A4/Hw4MEDhISEOJQ1NDQ4VTewEIiZzWZMTk4iKCjIoWx8fHzF9fj5+YHD4aCystLpPq3E/0fXgIXAtaioCFu3bsXDhw8dAgyLxYJnz545nG8N4iYmJljbWOw4If8CBSjE49TW1sJsNiMmJobxAAQWHvy1tbVQKpUOAcrHjx9x9+5d7Ny5E9nZ2f9sx9ktW7YAYE+j9PX1sV7D5XKdGtWwNzQ0BAC2uTv2tFqt0/UPDw8jNDSU8duMjo5ieHjY6frDw8PR19eHzs5OHD582KFsNat4oqKioFarodPpWP+PXGFychJGoxHx8fGM0Y+enh5G6i0kJAQ8Hg+fP3/G3NycQ5rHbDavehUTIRuJAhTiUSwWC6qrq8HhcJCVlcU62RMAdDodurq60NPTg8jISOh0Oly/fh0+Pj64desW483blXbt2oXNmzcz0lDj4+MoKipivSYgIABfv35lPJTWwrrEt7OzE2FhYbbjr1+/Rmtrq1N1A4BQKMTQ0BDGx8dtKZe5uTncv39/XVJd6enpqKmpQWFhIZKSkmz3Y2xsbFVbuZ87dw5qtRq3b99GdnY2I2U0NjaGqakphIaGOt3nxfD5fPj4+KC3txe/f/+2pcKmpqZYl6bzeDwcPXoUr169QmlpqcMqnqqqKuh0ug3rKyGrRQEK8SgajQbfv39HXFzcosEJsLB6paurC0qlEpGRkcjNzYXBYEBCQgJrmsHf399lH1Hz9vbG2bNnUVxcjAsXLiA1NRWzs7NoaWlBXFycbYTD3v79+9HT04OrV68iJiYGXl5eiI2NRVxc3KrbP3HiBJ4+fYqcnBx0dHRAKBSiv78fGo0GYrEYb9++dervO3PmDHJyciCXy3HkyBGYTCZbSi48PNw2yXWtEhISkJaWhjdv3kAqleLQoUOYn59HY2MjoqKioFKpHJaYLyY5ORkSiQSPHz9GZmYmkpOTIRQKYTAYMDQ0BK1WC7lcvqEBCpfLRUZGBkpLSyGTyZCamorp6Wmo1WoIhULb0mp7CoUCGo0GBQUF6OzsxN69ezEwMIDW1lYkJiba7jUh/xoFKMSjWCfH2u/wyubYsWPIzc1FfX09Ll++bBsqb2trY13mKhKJXPqVV7lcDi8vLyiVSlRUVEAkEkEikeDgwYNoampinC+RSGA0GqFSqaDVamEymSCVStcUoGzfvh25ubnIz89HW1sbTCYTIiIicO/ePYyMjKxLgOLl5YXy8nJUVlbC398fKSkpUCgUjA3X1iorKwu7d+9GdXU1ysvLIRAIcP78ecTHx0OlUrFOGGYjl8sRGxuLsrIytLe3w2g0IiAgADt27IBUKkV6evq69HcpCoUCAQEBqKmpwcuXL8Hn83H8+HHIZDLbR/7sbdu2DXl5ecjPz8f79+/x6dMn2++n0WgoQCFug2OxWCz/uhOEEOIOqqqqcOfOHVy5cgUZGRkuaXOpTxe4G/oqNnEl2qiNEOJxxsbG8P93s58/f6KoqAibNm1CSkqKy/tUWFgIsViMS5cuubztpQwMDEAsFkMsFi+6xJuQjUApHkKIxykpKcG7d+8QGxuLoKAgjIyMQKVSYWZmBjKZjHXH1o0iEokcUjHWzeXcRWBgoEP/6CvdxFUoxUMI8ThqtRqlpaX48uULpqamwOPxEBYWhoyMDJfMGyGELI8CFEIIIYS4HZqDQgghhBC3QwEKIYQQQtwOBSiEEEIIcTsUoBBCCCHE7VCAQgghhBC3QwEKIYQQQtwOBSiEEEIIcTsUoBBCCCHE7VCAQgghhBC38x+vJaDlwfrXYgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACu30lEQVR4nOydd3hb5dn/v5K8ty3PeDvOJjskZDkJgQQIBMoeLYQSynyBlpYUSgtllFL6FuivNCWsAIWXhIQRyISQvfey4xHHey95yJZl6fz+uHMs2Zbtc7Ql35/r0hVJPuORovOc+7nH91YIgiCAYRiGYRjGjVC6egAMwzAMwzC9YQOFYRiGYRi3gw0UhmEYhmHcDjZQGIZhGIZxO9hAYRiGYRjG7WADhWEYhmEYt4MNFIZhGIZh3A42UBiGYRiGcTvYQGEYhmEYxu1gA4Vh3JydO3dCoVDgxRdftPlYCoUC8+fPt/k4A2HP8XoDy5Ytg0KhQFFRkeR90tLSkJaW5rAxMYwnwAYKw/RCoVBAoVBAqVTiwoUL/W63YMGC7m1Xr17tvAG6mKKiIigUCixbtszVQ5GMaDSZP/z8/JCUlITbbrsNBw4csLifVqtFREQEFAoF7r77bieP2rF0dnbib3/7GyZOnIigoCCEhYVhzpw5WLt2rauHxjAAAB9XD4Bh3BEfHx90dXXhgw8+wF/+8pc+f8/Pz8fOnTu7t2NMTJ8+HTk5OYiOjnb1UPqQmprabVi1tbXh4MGDWLduHb766iusW7cOP/vZz3psv2bNGmg0GigUCnz11Veor6+HWq12+Di3b9/u0ON3dnZi8eLF2LlzJ9LS0nD//ffDaDRi06ZNuOOOO3D27Fm89NJLDh0DwwwGe1AYxgJxcXGYNm0aPvroI4sGyPvvvw8AuOGGG5w9NLcnKCgIo0ePdksDJS0tDS+++CJefPFFvPHGG9izZw/+9Kc/wWg04umnn+6z/apVq6BUKvG73/0OOp0OH3/8sVPGOXz4cAwfPtxhx3/nnXewc+dOzJw5E2fPnsU777yDlStX4ty5c5g6dSpeeeUVHD161GHnZxgpsIHCMP3w4IMPoqqqCt9//32P9/V6PVavXo1Zs2Zh7Nix/e6fn5+Pe++9F4mJifDz88OwYcNw7733Ij8/3+L21dXVeOCBBxAXF4fAwEBMmjRpwBviQHkKL774IhQKBXbu3Dno56yoqMBLL72E2bNnIz4+vnusd999N7Kzs/scNz09HQDw8ccf9wiZiGGugXJQ5Hwn5p9h3bp1mD59OoKCghAVFYU777wT5eXlg342KTz22GMAgIsXL6K2trb7/bNnz+LgwYNYuHAhVqxYAT8/v27D1BqMRiP+8Y9/YPTo0QgICEBSUhJ+/etfo7m5uc+2lv5vV69e3f0979ixA/Pnz0doaCjCwsKwZMkS5OTkSB7L119/DQD4wx/+gODg4O73Q0JC8Pzzz0MQBPz73/+27oMyjJ3gEA/D9MNdd92F3/zmN3j//fdx0003db+/YcMG1NTU4PXXX0dBQYHFfY8cOYKrrroKLS0tWLp0KcaOHYvz58/jv//9L7799lv8+OOPuPzyy7u3r6urw6xZs1BYWIg5c+Zgzpw5qKysxMMPP4xFixY59HPu3r0bf/3rX7FgwQLccsstCAkJQX5+PtatW4cNGzZg3759mDhxIgBg/vz5aGpqwttvv42JEyf2+F4mTZo04Hnkfici//73v7FhwwYsXboU8+bNw6FDh7BmzRqcOnUKJ0+ehL+/v02fXxCE7ucKhaL7+apVqwBQkmtUVBRuuOEGrF+/Hnv27MHcuXNln+fXv/41du/ejdtvvx033ngjtm7dirfeegt79uzB3r17ERAQIOk433//Pb799ltce+21ePjhh5GdnY1NmzbhyJEjyM7OluS5qqqqAgBkZGT0+Zv4nqPDTAwzKALDMD0AICQmJgqCIAgPPPCAoFKphNLS0u6/L168WAgLCxPa2tqEP/zhDwIA4aOPPur+u9FoFEaPHi0AEP773//2OPYXX3whABBGjRolGAyG7vcffPBBAYDw1FNP9dj+yJEjgo+PjwBAeOGFF3r8LTU1VUhNTbX4GV544QUBgLBjx44+n23evHk93quurhaam5v7HOPkyZNCcHCwcM011/R4/+LFiwIA4b777rN47h07dvQZrzXfifgZQkNDhdOnT/fY56677hIACGvWrLE4hv7G1PuzC4Ig/PGPfxQACBkZGd3vtbe3C5GRkUJ4eLig1WoFQRCE7777TgAg/PznP5d0TpH77rtPACCo1WqhqKio+32DwSDcfPPNAgDhpZde6rGPpf/bjz76SAAgqFQq4ccff+zxt9///vcCAOH111+XNKaZM2cKAISNGzf2+dvXX38tABAAdH92hnEFHOJhmAF48MEHYTAY8OGHHwIAiouL8cMPP+Cee+5BUFCQxX3279+P8+fPY+bMmbjnnnt6/O2OO+7AnDlzkJubi7179wKgkNFnn32G0NDQPmGRadOm9TmGvYmNjUVoaGif9ydOnIgrr7wSO3bsgF6vt+kccr8Tc5544gmMHz++x3sPPvggAODw4cOyxlFUVNSdg/K73/0OWVlZePnll6FUKvH3v/+9e7svv/wSjY2NuOOOOxAYGAgAuOaaaxAfH49169ahsbFR1nkB4Mknn0Rqamr3a6VSiTfeeANKpbL79yWFO++8EwsXLuzx3q9+9SsA0r+PJUuWAABeffVVtLe3d7/f1tbWIym8qalJ8rgYxt6wgcIwAzBjxgyMHz8eH374IYxGI95//30YjcbuG6Qljh8/DgC48sorLf5dfP/EiRMAgPPnz0Or1WLSpEkIDw/vs72jdUsAYOPGjbjhhhuQkJAAX1/f7ryS7777DjqdDnV1dTYdX+53Ys60adP6vJecnAwAsg2F4uJi/PnPf8af//xnvPXWWygoKMDNN9+MPXv29KjgEcM7999/f/d7Pj4+uOeee9DR0YFPP/1U1nkBYN68eX3ey8jIQHJyMoqKiiQbA/b4Pp588klMnDgR+/fvx7hx4/D444/jsccew7hx41BbW9v9O1Qq+RbBuA7+9THMIDz44IMoLi7G5s2b8dFHH2Hq1KmYPHlyv9trNBoAQEJCgsW/i++LNyRx+7i4OIvbx8fHWzt0Sbz99tu4/vrrsW/fPmRlZeGpp57Cn/70J7zwwgvduSc6nc6mc8j9TsyJiIjo856PD6XPGQwGWeOYN28eBEGAIAjQ6/WoqKjA+vXrMWvWrO5tcnJysHfvXowePRpXXHFFj/3FEuX33ntP1nmBwf9/xe9oMOzxfYSEhGDv3r149tln4ePjg/feew9r1qxBVlYW9u7dC4PBAB8fH0RFRUk6HsM4Ak6SZZhB+MUvfoEVK1bg4YcfRnl5Of70pz8NuL24+hQTEXtTWVnZYzvx3+rqaovb93ccpVKJzs5Oi3+Tuhrv6urCiy++iPj4eBw/fryPAdGfgJlc5H4nrkT0npw/f75H0qw5Z8+exf79+3sYNoNRXV2NUaNG9Xlf/E6c/dlDQkLwl7/8pY/OT2FhIVpbWzF16lT4+vo6dUwMYw4bKAwzCBEREbj11lvx6aefIjg4GHfdddeA24velf5KfHfs2AEAmDJlCgBg9OjRCAoKwsmTJ6HRaPrcqPo7TmRkJE6fPg29Xt/nRiJVw6Kurg5NTU24+eab+xgnra2t3aEZc1QqFQB53gu534mr0Ol0+PTTT6FUKrsl6ntTVlaGrVu34r333pNloOzatQtZWVk93issLERpaSnS0tIsekZcwSeffAIAXqecy3geHOJhGAm88sor+Prrr7F161aLCaXmzJ49G6NGjcLevXuxbt26Hn9bt24d9uzZg5EjR2LOnDkAAF9fX9xzzz1oaWnpkyR79OhRfPbZZxbPM336dHR1deGjjz7q8f7q1auxb98+SZ8rNjYWQUFBOHbsGFpbW7vf1+v1ePLJJy3mnkRGRkKhUKCkpETSOQD534mrWL9+Perr67F48WJ88MEHeP/99/s81q5di+DgYKxdu1ZyWAagUFpxcXH3a6PRiN/97ncwGo09cl2chSX9lR9++AGvv/46hg8fjoceesjpY2IYc9iDwjASSElJQUpKiqRtFQoFPv74Y1x99dW44447cOONN2L06NHIzc3FN998g9DQUHzyySc9EhD/8pe/YPv27Xjrrbdw9OjRbh2UNWvW4LrrrsOGDRv6nOd//ud/8NFHH+GRRx7B9u3bkZycjJMnT+LAgQO4/vrr+wjMWUKpVOKJJ57AX//6V4wfPx433ngjOjs7sWPHDjQ0NGDBggXd3g2RkJAQzJgxA3v27ME999yDkSNHQqVSYenSpZgwYYLdvhNXIIZ3li9f3u82YWFhuO2227B69Wr897//7RZ6G4zZs2dj0qRJuOOOOxAeHo6tW7fi1KlTmDp1Kp555hm7jF8Oo0ePxoQJE7qF444fP44ff/wR8fHx+Pbbb3sIuDGMK2APCsM4gBkzZuDIkSO4++67ceDAAbzxxhvYv38/7rrrLhw5cgQzZszosX10dDT27duH+++/H+fPn8dbb72FkydPYuXKlfj1r39t8Rxjx47Fjz/+iNmzZ+O7777DqlWr4O/vjwMHDmDq1KmSx/ryyy/jf//3fxEYGIh3330XX331FaZNm4bDhw/3a5R9+umnWLJkCbZs2YI///nP+OMf/2gxHGTLd+Js8vLysGvXLsTFxQ3awkCs4pKTLPvmm2/i+eefx86dO/H222+jtrYWTz75JH766SfJIm325J577kF5eTk+/PBDvP322ygpKcEzzzyDs2fPYty4cU4fD8P0RiEIZjKKDMMwDMMwbgB7UBiGYRiGcTvYQGEYhmEYxu1gA4VhGIZhGLeDDRSGYRiGYdwONlAYhmEYhnE72EBhGIZhGMbt8EgDpaOjA7m5uejo6HD1UBiGYRiGcQCyDRStVosPP/wQv/3tb7FkyRJkZWVh8+bNVp38b3/7G7KysrBixQpZ+xUXF3d3mGUYhmEYxvuQbaBoNBqsXr0axcXFyMzMtPrE58+fx+bNm+Hn52f1MRiGYRiG8U5kGyhqtRpff/01vvzySzzyyCNWnVQQBLz99ttYvHgxoqKirDoGwzAMwzDei2wDxc/PD2q12qaTbt26FRcvXuzuZ8EwDMMwDGOO05NktVot/vOf/+DnP/+5zYYOwzAMwzDeiY+zT7h69Wr4+/vj9ttvl7xPXV0d6uvru19zcizDMAzDeDdONVBKS0uxbt06/OlPf5KVHLthwwasXr3acQNjGIZhGMatcKqB8s9//hOXXXYZ5s+fL2u/pUuXYvbs2d2vi4uL8corr9h5dAzDMMxgGAwG6PV6Vw+DcUN8fX2hUqnsdjynGSjHjh3DoUOH8Morr6CysrL7fYPBAJ1Oh8rKSoSFhSE4OLjPvtHR0YiOjnbWUBmGYZheCIKAqqoqaDQaCILg6uEwbohCoUB4eDji4+OhUChsPp7TDJSamhoAwPPPP9/nb7W1tbjjjjvw+OOPy8pNYRiGYZyDRqNBU1MTYmJiEBwcbJcbEOM9CIKAtrY21NbWIjAwEBERETYf02EGSl1dHdra2pCYmAgfHx9MmTIFr776ap/t3njjDcTHx+MXv/gFMjIyHDUchmEYxkoEQUBNTQ3CwsLYm830S2BgIHQ6HWpqahAeHm6zEWuVgbJ+/Xq0trZ2V9bs27ev20Nyyy23ICQkBKtWrcKWLVuwZs0aJCQkIC4uDnFxcX2O9f/+3/9DZGQk5s6da8PHYBiGYRyFwWCAwWBAWFiYq4fCuDlhYWFobm6GwWCAj49tPhCr9l6zZg2qqqq6X+/evRu7d+8GACxatAghISE2DYphGIZxH7q6ugDA5hsO4/2Iv5Guri7XGChr164ddJvnnnsOzz33nF2OxTAMw7gezjthBsOevxGnK8kyDMMwDMMMBhsoDMMwDMO4HWygMAzDeDJtbQALpzFeCBso3kpzM3DsGFBRARiNrh4NwzD2prkZOHwYWLMG2LuXr3MPRqfTYcWKFRg2bBgCAwMxY8YM/PDDD5L2PXfuHG677TZkZGQgKCgI0dHRyMrKwnfffWf1eZYtWwaFQtHvo7y83ObPLAVOyfZGurqAffuAkyeBkBAgJQUYPRpITQUCAlw9OoZhbKG5GTh/HjhzBqivB8LDgRMngKgoYOJEV4+OsYJly5Zh3bp1eOqppzBixAisXr0a1113HXbs2IE5c+YMuG9xcTFaWlpw3333YdiwYdBqtVi/fj2WLl2Kd999F7/61a9kn+ehhx7CVVdd1eM8giDg4YcfRlpaGhITE+37BfSDQvBAzeLc3Fw8+OCDeO+99zBq1ChXD8f9OHYM2LGDDBKjEaiuBjo7gdhYMlSGDwfUalePkmEYOTQ3Azk5wNmzZJhER9N1rFQCtbV0jS9ZAiQn2/3UHR0duHjxItLT0xHAixy7cvjwYcyYMQNvvPEGfvvb3wKg7/uyyy5DbGws9u/fL/uYBoMBU6dORUdHB86fP2+X8+zduxdz587Fq6++OmCFrj1/Kxzi8TZKS8ntGx1N3pKgICA9HcjMBHQ6YNcu4MsvgW3bgKIi8rYwDOO+aDTAoUN03e7eDSgUwKhRQEwMGScAPe/spL83N7t2vB5KRkYGfv7zn/d5f8GCBZg3b57Dzrtu3TqoVKoeno6AgAA88MADOHDgAEpLS2UfU6VSITk5GU1NTXY7z+effw6FQoG7775b9nishUM83kRrK8WiOzuBpKSef1OpgPh4ejQ3A+fOAdnZQEICMHYskJYGhIa6ZNgMw1hAo6FQztmzQEMDeUtGjSIDxRIpKUB+PrBnD7BoEeDr69zxejCtra0oKirCI4880udvp0+f7vemrNfrodFoJJ0jKioKSmVfn8CJEycwcuTIPiq906dPBwCcPHkSyRK8Ym1tbWhvb4dGo8GGDRuwefNm3HHHHXY5j16vx9q1azFr1iykpaUNOhZ7wQaKt2A0AgcOkAdl5MiBtw0Lo0dnJ1BTA2zdCkREACNG0CM+3rQyYxjGuYiGyZkzZJjExAxsmIioVOQtzc4mY2bGjMH3YQAAZ8+ehSAImNgrh6esrAwNDQ2YMGGCxf327duHBQsWSDrHxYsXLd7cKysrkZCQ0Od98b2KigpJx3/66afx7rvvAgCUSiVuvvlm/Otf/7LLebZu3Yr6+nrcc889ksZiL9hA8RbOnqUJLTWVJiop+PmRp8VoBBobgaNHgdOnKYY9Zgwn1TKMM9FoTDkmomEyerQ8I8PfnxYYhw+TkTJihOPGCwDTpgFmbU9cTnw8zWMyOXv2LAD0MVBOnToFAP0aKBMnTpRcbRMfH2/x/fb2dvj7+/d5X8zfaG9vl3T8p556CrfeeisqKiqwdu1aGAwGdHZ22uU8n3/+OXx9fXH77bdLGou9YAPFG6isBA4eJK9IUJD8/ZVKmszUakCrJS/MhQuUxzJmDJCRQc8ZhrE/9jBMzImIoHDvnj30PCbGnqPtSVUV4KSSU0dy5swZiw1tT58+DaVSicsuu8zifpGRkX2qXeQidgDuTUdHR/ffpTB69GiMHj0aAHDvvfdi0aJFuOGGG3Do0CEoFAqrz9Pa2opvv/0WixcvhtrJxRVsoHg6Wi3lnbS1USKsrQQFUT6KwQDU1VFS7bFjZKSMHEkeF45tM4ztNDX1zDGx1TAxJzERKCggI+XaawGJNznZ9OMVcBlWjufs2bN9vCcA5WVkZGQgODjY4n6dnZ1oaGiQdI6YmBioLHi3ExISLOqKVFZWAgCGDRsm6fi9ufXWW/HQQw8hLy8Po0aNsvo833zzDbRardPDOwAbKJ6N0Uiu3IsX7e/KVamAuDh6iOWN2dk0AYwbR0YMt15nGPmYGyaNjfY1TEQUCrpGCwrIuzpvnmPyyqwIp7gjZ86c6ZFQCgBGoxE//fQTsrKy+t1v//79NuegTJo0CTt27EBzc3OPBNZDhw51/90axJCNmMRr7Xk+++wzhISEYOnSpVaNwxbYQPFkcnNJjC05GXBkG3TzpNraWkqqjYwko2jkSKoEYhhmYJqayNA/d85kmEhJfrUWX1+q7GERtwGpqalBbW1ttydB5J///Cfq6uowfvz4fve1Rw7Krbfeir///e9YtWpVtz6JTqfDRx99hBkzZnRX1mi1WpSUlCA6OhrRZiH3mpoaxMbG9jimXq/HJ598gsDAQIwdO1bWecypra3Fjz/+iLvuugtB1qQP2AgbKJ5KbS2wfz+5bkNCnHNOPz9yHRuNNNkeOUK5KkuXco4Kw/RHY6PJA+kMw8Sc4GDKQzlwgIwUB4i4eTpnzpwBAGzbtg2PPvooRo8ejYMHD2Lr1q0AgGPHjuHQoUOYMWNGn33tkYMyY8YM3HbbbXj22WdRU1ODzMxMfPzxxygqKsIHH3zQvd3hw4exYMECvPDCC3jxxRe733/ooYfQ3NyMrKwsJCYmoqqqCp999hnOnz+P//3f/0XIpfuD1POYs2bNGnR1dbkkvAOwUJtnotORlH1Tk2u8F0olTXajRpGi5blzzh8Dw3gCx48D69ZRnpiPD10zarVzy39ZxG1Azpw5A5VKhS+++ALbtm3DihUrUFdXh127dmH48OE4efIkfB2cd/fJJ5/gqaeewqeffoonnngCer0e33///YDhJZE77rgDSqUSK1euxCOPPIJ//OMfSEpKwrfffovf/OY3Np3ns88+Q2xsrM1GmLWw1L2nIQjkOdm/nyTrXZ2w2tgItLcDt9zCXhSGMaehgdRflUrK5XKlJonRCOTlkSijFSJu3ix1v3z5cuzevRt5eXmuHopXwFL3Q5kLF6iqJiHB9cYJQLkoLS3kvmYYxkRODnksXG2cAGQkiSJux47RQocBQB4UMU+DcS/YQPEkGhootOPrSx1M3YXYWJqM6+tdPRKGcQ/EhNiYGNcbJyLmIm4FBa4ejVsgCAKys7PZQHFT2EDxFPR6CuvU1gJW1sU7jMhIWimyF4VhiNxcWlBERbl6JD2JiKAFzp49NJcMcS5evIjW1lY2UNwUruLxFI4fJ+2EtDT37JMTF0crxnHj3G9SZhhnIjbjjI52H++JOaKI2+7dwHXXOU7EzQPIyMiAB6ZhDhnc8E7H9KGoiASRYmPJTeuORESQZDd7UZihTn4+qTA7WRZcMgoF5aMUFpKIm9Ho6hExjEXYQHF3mpupRNFopFCKu6JQkAGVnU2ubYYZirS1UdPOqCj39HSK+PiQJsqJEzRehnFD3PgKYtDVRQJLlZWkCOnuREaaGp8xzFAkL49yOxzZoM9emIu4lZa6ejQM0wc2UNyZM2fokZrq3qsxEYWCJmZRMZNhhhLt7XS9RkR4xvUKsIgb49Z4yFU0BCkrAw4dIlexJyWxRUVRiSXnojBDjYICoLraM7wn5qSmAhUVVNmj1w+4KSeUMoNhz98IGyjuSFsb5Z3odJ432bEXhRmKdHQAp05RU02VytWjkYe5iNvRoxZF3HwuNSPt6upy9ugYD0P8jfjYoYEtlxm7G0YjZdaXlFCnYE8kKop0IM6fB2bOdPVoGMbxFBaS9yQjw7bDlChw7IxyMEeGzfj6AtPGG5GecskYEUXcjhyh6qNec49KpYJKpUJzczNCQ0MdOzjGo2lubu7+vdgKGyjuRnY2rcRSUjxvJSYielHOnQPGjKGYPMN4K52ddM0GBVF1jA0cO6OEplm6doqvXovQ1ko0RGTI01xpB46eUSI9xWB6LyLC5L2NjOzhvVUoFIiNjUVlZSX8/f0RHBwMhTtqvDAuQxAEtLW1obm5GQkJCXb5fbCB4k5UVVFGfWgoZdhbS3s7NSnz9wcWL3aNgWDuRbniCuefn2GcRWEh5XCkp9t8KNFzolAICBygz5rC2IUR5zdh/PHP4N/ZioKRi3F4zhOSztHeAQiCwrKXZtiwfkXcwsPD0d7ejrq6OtSyCi1jAYVCgYiICITbqRULGyjuQns7rVxaW4HMzB5/kuv2nbVzJdIKdwIAur5Yh4JR1yBn/M1oDx6423Aft68tiF6Us2eB0aPZi8J4J3o9Ve4EBNi1eWdgAHD3TQbLfzxxAnj//R6lwZl5W5F5yxRJIdXPv1FB297PH0URt/x8WizNn99dkaRQKJCQkIDY2FjoHR2DYjwSX19fu4R2RNhAcQcEgRp4XbzYxzgB5Ll9kyqOdhsnAOBj0GF09rcYcX4j8jKuxqkxt6E1JN7yzpbcvrYQFUUeFPaiMN5KUREZCqmpjj9XRQXw4Yc0V1ji3/+mVhNhYbadx8eHQswnT9I1PGlSjz/bK7+AYQaDq3jcgdxcWhUlJlqMYZu7fYMC+3+E+rRjzrF3uvcrT74cXSqSxlcZuzCmYDNu/345rjzyv4jXlfTYV6EQepzLLph7UTQaOx6YYdwAg4G8J76+gJ+f486j1QKrVwOPP97TOBk5Evj734EZM+i1RgO8+659zskibowbwB4UV1NXR12KAwMp92QABnT7AsCHnwKt1fR8/HgkvvI8TVobNgAbNwLt7VAKRmQUbEfGhZ+AWbOA224DMjIGdvvaglpt8qKIEynDeAPFxfRITnbM8Y1GYMcO4JNPepbsR0UB990HzJtH4ZdHH6Xk+pYW0jKZNQuYPdv288fEkFd3927g+usBO+UVMIxU2IPiSnQ6YN8+mnwSEmw71oULZIgAtKJ77DHyYEREAPfeC3zwAXD33SYjSBDo3E89Bbz8MtQ15207f38oFNTV9exZVqpkvAejkbwnSqVDGnhG1+QAv/0t8PbbJuPE1xe4/XZg5UpgwQKTWm1kJPCrX5l2/s9/7OexFEXc9u61s3uVYQaHDRRXIQjAsWMU3klLs60tu8EA/Otfpq6kd9xB2fjmhIQAd94JvPcesGxZz9XQkSNY/P3TuPan5xBbedqiUJNNREdTA0Hu0cN4CyUllH/S+zqzkcC2Oszf/wYWff9bqqYRmTkTeOcd4Oc/t6wsnZVlyvPSaMhIsQfmIm7nztnnmAwjEQ7xuIrCQlJtTEiwPX69YQN5UABa8dx8c//bBgXR35csAX74AfjqKwozAUisPonEzSeBojG0UpsyxTbDSUShoFDP2bOki2JrEh/DuBKjkX7LgkDVO/ZApwO++QY3rF8Hny6d6f3UVGD5cmDixIH3VyiARx4hI6Klhbyje/cCc+bYPjZ/f7pmc3IoCdeO1UoMMxDsQXEFzc00gahUtpffVlUBn39OzxUKCu1IEYvy96e48rvvAo8/jpZQsxBTTg7w5z8Dv/kNJcmJnhlbUKuB+nrKRWEYT6a8nBYYtoZlAVOo9bHHgM8+6zZOdP6hwMMPA2+9NbhxIhIZSUaKyMqV9ms3ER1Nc015uX2OxzASYAPFFRQU0MWelGTbcQSBXLm6Syuu664jzRE5+PoCixbh+1vexY6Zv4Mmwizh78IF4LXXgCeeAHbtolCStSiVnIvCeD6CQL9hg4G8kbZw8SLw/PPA668DNTUAAKNCibMjl+K7W9+j61luOe+cOZQkC5AnZeVK+4Rs/fzoOPn5th+LYSTCBoqz0esp7yQ83PaW7Lt3A8eP03O1GvjFL6w+lKBU4ULaAmz82b+B3/++Z0+RkhLgf/+XqgW2bbM+WU70ouTmWj1OhnEplZVkuMf3oyUkBY2GNEt+/WtKtBWZNAmbbnoHB6c+jE5/G/rdPPKIKcfs4EGaJ+xBTAx5jpqa7HM8hhkENlCcTXk5eU+iB1Z1HZTmZlKTFHn4YdtXdACgUNIK7M03gT/9qadHprKSknEfeojKlnW6/o9jCaWSjJQzZ2h1xzCehCBQjodOR0nncunqonyxhx8GtmwxhU7j44E//AH485/RHJli+zjDw+kcIqtW2SfUEx5O805xse3HYhgJsIHibMTMfFsTYz/6yFRKOGuW/TVGFApg2jRyP7/yCjBhgulvdXWUu/Lgg+RRkYNaTftzLgrjaVRXU4jDmtyT48cpVPr++9SQD6BqnPvuo+qcGTPsk5AuMns2MHcuPW9pIY+NraEehYJkCrKzydhiGAfDVTzORKMhF6labdtxTp0Ctm+n58HBZCg4CoWCjJMJE8ioWLuWqo8AcvX+61/0eaZOlXY8cy/K6NGDitMxjLtQuPEsjh0ZBr1S+uIiVFOOKYffR2JpT3n6CyOuxqmp96JDFQVsNL3f3mGv0YI8nadP07xz6BDlkc2fb9sxo6OBsjLSRkmxg7eHYQaADRRnUlJCk4Ut8WudjlZDIvfdZ7vBI5XRoynsc+ECsGYNxbcBcltLNVAAmuTy8ughZz+GcRW1tTi2XwuNTroo27jz32D6qQ+hMpq8DdXRY3BgykOoU4+kN/pRb7ZLJW9YGOWNvfYavV61Chg/HkCs9cf096fQVEEBGyiMw+EQj7MwGMgDERJimyt37VrKBQFIU2TRIvuMTw7DhwMrVpgMrRMnaFUlFaWSSiJPn6buzQzj7uTkQH/JzhisJ1ZQoIC4zlLMPLGq2zjRBqmxb97vsP2GN6BNGjHgvuFhAqaNt0NpP0ACb/Pm0fPWVvuEeqKjaZHC1XiMg2EPirOorCS3qA3Kk+ENRcB3X9ELHx/STrC1EqgX7R3Ujn1wVBidcj2mVFGibt7/24SjMx8ZZB9aGU4bb0R6UgxV8+TmsheFcW9EFWRlIgAJPbEA4L3vTc+vvhpBDz6I2QEBmA07GR5yePBBCgs3NQFHjiA94CecS7rK+uNFRNB1W1x8ySPDMI6BPSjOorCQEsusVJ5UGA2Yse+fJi2SW2+1q4tVdCkLggLadmmPs8mLoL/ULTktfzv0Gu2g+2iaFTh6RkmGVVQU5aKISYMM447k5FCiqdTFQEeHKUfMz49aS9hLcdYaxFDPJaYeehdB2jrrj6dQkCc4J8c2bSSGGQQ2UJxBWxtl/9uQKzKmYBOiay/phyQmUhdiOzJtvBHhYYO7rs0fPuHBKBqxEADg19WOy8p+GHB7hYJcy90yKjExQG0t66Iw7ktTE92I5cgC7NoFaLX0fO5c90gEv+KK7gRZv842zDny/2wL9cTEkEe4osI+42MYC3CIxxmUlJAOwYgRVu0e1FqLaadWm9547DG798NITxGQnmLFamjKdcDjmwAAU0u+w9Rnr+t3pfn5NypozZMClUpyF585A4waRRVJDONO5OZSiEeqQrMgAJs2mV4vWeKYcVnDgw9S3ldDA1IqjiAj/0cAV1p3LDFZtrAQSE4efHuGsQL2oDgao5GSYwMCrMsXEQRMO7gSfl2X7uyLFgGXXWbfMdpCSoqpV0hlJSXMyiE2lmS+8/LsPzaGsYWWFhJmi46Wnth+/jxJ2APAyJFAZqbjxieX0FBa3FxiyqFV5MG0lqgo8gyz6CLjINhAcTQ1NaQeGxNj3f4HDiCp5BAAoD0wkuLZ7ob5KvG77+TtK3pRTp/mXBTGvcjLI1FBOaFZc+/JddfZf0y2cvnlKMy8FJbVa0nHyNpQT2QkeYZLSuw4QIYxwQaKoykspKQ5a2ToW1tJu+ASR694yDqJbUdz+eXkCQFIMVNux9OYGPaiMO5FWxuFHqOipHs+m5qoMzFA3oo5cxw2PFs4NuNXaAu8ZHSdOAH88IN1B1IqaV7LybFPx3OG6QUbKI6kvZ1coFFR1u3/yScU/wZQMmw6StPcc8KDStXTi7JxY//b9re/6EURkwsZxpXk55PRLMfz+cMPJgn4q6+2vZ2Fg9D7h2DP9CdMb3zwgfWhnthYSpQVtZkYxo6wgeJISkvJRWyNgZKdTQ3FAOh9ArFv2mP27dVhb66+mhLnACqxlGtosBeFcRfa28lYjoyU7j0xGLqvVygUwDXXOG58dqBs2OW4MOJqetHeDvzzn9aFegICgM5OEm5jGDvDBoqjEAS62fr6kodADno9NRC7xKmp96It2MocFmcREmLq89HeDvz0k7z92YvCuAsFBfK9J0ePmrwQU6fa1s7CSRyf8aCpfPrUKWDrVusOFB1NHifOIWPsDBsojqKujjwo1iTHrltH+wLAyJHIH+NGpYoDcf31pucbN8qPS7MXhXE1HR1kJIeGyltYuHtyrAX0fsHA44+b3vjoI+rYLBcxWba42H6DYxiwgeI4iospyVVuUmtpKfDll/RcpQIeewyCUqYHxlWkppqkr8vL5Zccq1Skenn6NHlhGMbZFBZSPkWsjIZ6FRWm33pcHDB5smPG5gimTDH182pvB/7f/5O/sFAqgcBAKrHmZFnGjrCB4gg6O+lijYiQt5/RSKEdMdHuppuA9HTrx6HTWb+vtfT2osglNpZWcexFYZxNZyeFOoKDqdeVVDZvNj2/9lr5IV1b0GrpWrElSfWXvzSFek6fNuXSyCE6mhYlVVXWj4NhesEGiiMoK6NQhVxp+x9+oORYgGLYd95p/RiqqsiLk5/v3JyO6dNNq8+jR+VLYYtelDNn2IvCOJfCQvq9xsVJ30enA378kZ77+gJX2dCETw5GI80z5eUkCNfaSuEpawgKAv7nf0yvV6+Wb2gEBdF3IYrUMYwdYAPFERQUkNtTjhx9QwNNDCKPPmqqipFLVxeg0QCzZpGEfGUlTRydndYdTw4qFa0iRazxosTF0ZgLCuw3LoYZCL2ejOKAAHnX7e7dpuTQuXPJuHY0bW3kNQkKovL+a64hI0XMW7OGyZNNlUcdHdaFeqKiqDUAJ7kzdoINFHvT2EjGgJzmYgDw3numie7KK4FJk6wfQ0UFSdBPmULGwtKlwLBhNK6yMsd3IF20yKQBYU3JsehFOXXK+lUhw8ihqIhu8HKqb3r33XF0cqzoNamqIoPiZz+jBYivL13rgYEkFmcty5aZvJ9nzvT8bFKIimJlWcausIFib4qLyXshZyV1+LBJgTIsjGLC1tLRQZ6SyZPJA6NUAhkZwI030gQaGkqrr5oa27qZDkRoqKnkWKsFduyQfwzRi5Kfb9ehMUwfDAa6Ifv6yhNXy8sz6X9kZpIXw1G0tpJ3IjSUvCZXXtlzjhk2jHp0VVZan6jaO9Tz8cfycltUKvr+cnMdN7cwQwo2UOxJVxfJPoeFSRdV02qB//zH9PqBB2xzE5eV0WSZkdHzfV9fYOxY4JZbKE6uUFAib2Oj9ecaiN7KsnInTfaiMM6iuJgeCQny9nOG98RgII9ETQ21lLjxRuqKbklAbtIkMuxtSVSdONH0WXQ64O235V27sbHkibKmXJlhesEGij2pqKALU05457PPSDMFIK+H6HmwhpYWMkQmT+6/kiAwkNzBt9wCzJxJBlJuLq3Q7El6uqnrclkZGRpy4VwUxtEYjcDZs3TDl5Pz1dwM7NlDz0NCKP/E3rS0kJcmIoKq4+bPJw9Kf4SGkkhca6tt+Wb33WdKFM7OBr7/Xvq+QUG0oOBkWcYOyKilYwaloIAmPKkTXV6e6eL38wMeecQ2OfuKCjJOEhMH3zY8nCbVUaOAkyfJm1JdDSQlWZ+c25vrr6fJH6DPOX6avP1FL8rJk7RqtNe4GEaktJSqd6RcM+aY99256ir7/jYNBjLqjUZgxgwyOqTqKY0aRfNKSQkwfPiAm7Z3AJ9/Y2khE4LYKU/hqs3PAgC6PvoUmxunoyVc4ndkHA2cq4fvul2YdvtIpM+Q6ZlimEuwB8VeNDfTRCfVe9LVRZnyYqz27rttk8eur6eb+cSJ8oyc2Fjqo3PTTRQWKimhhzj52sKMGabv4+hRhDRbodUQG0vubbkdkhlmMIxGyj0BqHpHIgqjoa/2ib1obiYDQ60mAz8rS57Yo68vMG0aGfctLf1uAgCCoIC23fKjKGIizo24AQDgY9Dh8l1vob3N2O/2PR46FbQ6FTSVWhz9knPIGOthA8VelJRQPkd4uLTtv/nGJA2dnk6xZWsxGqkPyIQJ8quHADJoUlIob+SGG+gYFy7YlnAH0CQpxrMFASNzZLiKRXx8aHzsMmbsTXk5LSpk5p4klB8joxmgcKnc3BVLGAz0G29oAK64girvMjKs86gmJ1N4tbzcYrLqtPFGhIcJCAoc+HH2imVoCaVFU3xdNiYVbRh0H/GhAJ1X326HhQ4zZJEd4tFqtfjiiy+QnZ2NnJwctLS04Nlnn8W1ElYRx44dww8//IDTp0+jtrYWUVFRmDJlCh544AFEW3NjdReMRgqRBAdL635aUQF88QU9VyqpH4Yt6pPV1eRpEHM+rEWlolBKSgrlpZw4Qf/GxlIJoTWT5aJF9Fk7O5GR/wMOjvkFECh9tQqAVpMXL9KKcKAYPMPIITubDIOgIFm7jcwx0/axR3JsUxMtBlJTyeuYmmpbqFehoITZwkJauPSS7U9PEZCeIkVqwBcY8wTw3HMAgKn56zH12SWS5rjPv1ZC26Fg6XvGJmR7UDQaDVavXo3i4mJkZmbK2vc///kPTpw4gblz5+LJJ5/EwoULsWPHDixfvhz19fVyh+I+VFaS0SGlMaAgACtXmpLYbriBjAJr0evpxj1livy+P/3h70/emFtuAebNo3Pk5pL7WS5hYeSmBuDX2YYRRTK7HAPklWpq4jAPYz8aG0n7RE7PHQChLZVIKDtGL2JjKT/EWrq6yIhobgZmzyavSVqabcaJSGQkzQkNDbaFay+7jNShATqWqHQ9GOJnMLAHhbEe2R4UtVqNr7/+Gmq1GufPn8evfvUryfs+9thjmDBhApRmFvj06dPxxBNP4KuvvsKDDz4odzjuQWEh3cSlxLF37zZVtMTGUu6JLVRUkEt31CjbjmOJkBBa0Y0YQT06zp0jb01iorxV5/XXd8uBj83bgOLxMmP2SiUlEefn0+e0xwTODG3KysgwkBmeGVOwqTt8gWuusd7z2dhI11JqKoV0UlKsO85AjB1L10xZGRk+1jJnDmk1AcDevfI8tfouquqRkePDMCKyPSh+fn5Qy+0xc4lJkyb1ME7E98LCwlDsqa2629poEoiKkrb9tm2m5w89RGW/1tLRQYbRlCnyBKbkEhVFJY6icqVc6fyMDJosAUQ2lyKu4qT8MURH00Tb0CB/X4Yxx2g0ScXLMHZVXTqMLLx0/fr4UHK5XPR6yu9qbTV5TRxhnADkCZ02jT6vLfLz06eb5pd9++QpURuNtknwM0MalyfJarVatLe3I1xqcqm7UVpKq6HIyMG3bWwkLwRAyo/TZJbd9qasjLwbvUXZHMWwYSbp/MREcpFLbQZo1uV4VM538s8dGkqTelmZ/H0ZxpzaWhIzk5n3lnJxNwI6L1XGzJkjPSFepKGBjJOkJLqGZs1yvGchLQ0YPdo2IyEoyBTK0mhMlU9SyctjZVnGKlxuoHz55ZfQ6/W48sor+92mrq4Oubm53Q+38bYIAuVm+PlJc/Xu329KGpszx7ZQRXMznXfyZGmJufZClM5fupRc3AaDtNyUK65AWzDdEBJLDlundhkSQt+3o3sJMd5NaSl1ypadHGulcqxeTxpJWi3lY11/PRkpzkCpJA9raChJEViLuRDd3r3S91OpqMJRFKNkGBm4VKjt5MmTWL16NRYsWICpAySbbdiwAavNO/26CzU1KDzZiGPl6dCfHNxIWLhpH8RG7ps6s9BkUSSpL+29ld4FgcIsU6eSV8MV+PoC48bR5JObO7g8v48P8kdfh0nHPqEY/qZN8nsORUfT566udt3nZjwbMeFbbjuJ/Hyo6/IAAA3q4YiSmvMl5poMH065Jq743cbEUFXPrl2kSmtN3szll5O3p6MDOHAAePhhCnMNhkJBSfxFRdKKCBjGDJcZKMXFxXj++eeRkZGBFStWDLjt0qVLMXv27B77vvLKK44e4uAUFeFYUQQ0usEv+CBtPWKrKLzTFJqEioB0oF2eB6W7C3xDA7mX5YqyOYLMTFO55iAT34WR1+CyE/8HH6OelDjvvlueizsggPJeSkrYQGGso7KSQjzJyfL2M+u7kzdmCa6Qct0ZDKSXMneu4/PEBmP8ePLiiEn1cvH3JyNlzx4yOE6dkl7BFBlJRuHEia79DhiPwyUhnurqajz99NMIDg7G66+/jqBBXK3R0dEYNWpU9yM1NdVJIx2Ajg7g/HnoL9l4CsXAwkUjq/d2Z/+XDp+DoCBIFj0KChQQHiZg2ngjTXqiKJvUxFxHkpRE45CQvKoLDEdh6jx60dYG7Nwp/3wREZSUbEuvEWboUlRE15CcG6VZ3x2dbwiKM+ZJ26+xka4Nd7gxBwVRzptOZ33zTfMwz+7d0vdTq8lQ42RZRiZO96BoNBo8/fTT0Ov1ePPNNz1XoK20lGK6SnJbBgYAd980QG7EwT3dT8c/MBvjU63Mo6iopkZetoqy2YvAQGozf+CAJBfuuZFLMfIilRzj+++BxYvleYGiokzJubaUTjJDj/Z2SlKVktBuzvbt3QZxXsZVMPgEAJBw/TY2klFgS6WePcnMpKT6vDzrtJemTiVDR6sFDh2i70SK4eXrS7kweXmD9gdiGHMc5kGpq6tDcXExusxEgtrb2/HMM8+grq4Of/vb35BsjavRHRAEWsVLTU6trzcJHCUnW19WaC7KFhxs3TEcQVoaTVQSVmb1UZmoiaWSY5SUkL6KHMQ4V1GRvP0Yprzc5NWQitHYo+9OTqbE5NjOTpof3MmIVqnIyAgMpO9BLr6+pIsEkJFy/Lj0fWNi6Jr1ZEFOxulY5UFZv349Wltbu9Vf9+3bh5pLvSluueUWhISEYNWqVdiyZQvWrFmDhEtiSC+//DJycnJw3XXXobi4uEc1TmBgIOY6omW5I6ivpz46UlUozbPebaneKS8nYaeRI63b31HEx9Ojrk5SdULe2BsQW3PJYNu4kVzgcoiKopXw5Ze7l6HGuDeFhWQ0yEkSPXGiu+KscthkNIclIQgSSmbr6uim7G65UgkJlI+yfz/lscmtAJw7F9ixg57v3UuJv1IIC6P5q6iIQj4MIwGrDJQ1a9agyqxMdPfu3dh9KSa5aNEihPQjuV5QUAAA2LRpEzaZJZ0BQHx8vOcYKMXF5MmQWiq4b5/puVmyryza2yl27upkO0uoVCTgtm0beZcGMcBK02aZ8lYOH6Yqh7i4AffpQUQEJfyVlTlGQZfxPpqbrbs59kqOlXW+adOkVbo4m4kTycCvqpJvQE2cSCXLLS107ep0lEArhfBwICeH8ue6M/4Zpn+sunrWrl076DbPPfccnrvUZErOfm6PXk+NASMipG1fW0vbA+T9sDa8I96M09Ot29/RJCfTKqmlZdASTkHpQ4Jvn31GLvRNm4D775d+LpWKjLSCAjZQGGmUlZHImBxDuLoaOHqUnkdHoyJ5OqCTsF9bG+VquGsIOzSUjKfNm6XnkYj4+gIzZ9JipKMDOHKEvMJSiImhxV1pqfPEJRmPxuVCbR5HWRlNXFKTe+3hPWluplWKs0XZ5BAVRcZXba207RcvNq0uf/iBVmJyUKtpomPpe2YwxJyxwEB518+WLSYF1GuugaCUGBqqryfPhDvrfowcSQmr1lTWmBskckTbRK/JJU86wwyGm97t3JiCAgphSHVR9s4/kYsgUMXKuHHuF8/uTWYmhaGkKL1GRJjKFltb5Zcci25mlr5nBqOujvIf5IR3OjvJcAbk9d0RBArHjhzpeo2igfD1pYRZHx+6juQwfrxJ5v/oUXl9fmJiqI8XLywYCbCBIoemJrq4pHpPqquptA6gbH5r5K3r66kscsIE+fs6GxmaKAB69OfB99/L69ehUFCCbF6eqX0Aw1iitJSM4H5y4yyyb5+phcPs2dJLkzUaCnE6S8reFpKTaeFTXi7v2lOpTN7gzk5Tp2MphIXR9+ou7UoYt4YNFDmUlJCRIrVJ2P79pufWeE/cTZRtMERNFKkGyogR1MgMoAnr7Fl551OrKdHvUgUZw/TBYCAVU7mN/cyT+K+9Vvp+9fW0GPGE5qcKBYWNRSE1OVgb5lEoyEg5f57y+RhmANhAkUpXF11UoaHSXbe2hnfEnjPjxsnf11XI0EQBACwxq4z4/nt55woKovOUlMjbjxk6VFWRkS8nvHPhAhk1ACWljxkjbb+uLjKIPCkBNCKCjJTGRnkGw9ixpkXT8ePkoZJKdDT9v5SXyxoqM/RgA0UqlZWUCyI18a2qihLzAJqw5OaPiKJskyd7ltaHuSaKFGbNMk10hw7JX8mFh1OYh1djjCWKiykMIbUUFujrPZG6IBFF4DwhvGPO2LFUYSgnn0upNC26urqAgwel7ytWDYnzI8P0AxsoUikspFwHqROdefWONd6TsjLyRribKNtgqFQUtmltlRbX9vUFrrmGnvdS7ZSEWk3GUEWF/LEy3o1ORzdBOdL2ra3U9RcgD908iX13AAptjhwprwGmO+DvT2XHRiOVSEvFfF7bs6f/7SyhVlM+X1OTvP2YIQUbKFJoaaGJTk4eiHl4R255sVZLk8WUKZ4paGSuiSIF85LjbdvklRz7+pJbnaXvmd6Ul1NOiJzr1qzvDhYulN5HR6ej37A7NDK1hrQ08qTI8aKMGmVS0z51ypRULIWICDJOOFmWGQA2UKQgJsdKXYlVVFAcG6DS20tS/5IpL6eVmDv18ZBDZKQ8TZTISNNqrKXFtIKVilpN37ecckfG+7l4kf6Vquba24MnNzk2Lo7Cm56IUkkLorAw6f1yFArT4sto7FkUIGXf0FDK6zPr18Yw5rCBMhhGIyXMyRF5skWcTaMhF7E7i7JJITOTvjspmihAz5LjjRvllT1GRJB7nZPuGJHWVjJQ5CTHnjplChVOnCgvl6S5mTwK7ihtL5XoaGDSJFpYSL1us7JMz+WGeWJiTLl9DGMBD74DOgkx21yq9glgfXhHEOiCHTdOvtfF3UhOlqeJMnKkKd/m4kXg3Dnp51Kp6MYgeq0YRpS2l9qSArC+tLi1lRLZ3VXaXg7jxwOJidKNhowM01x17py8Lsn+/rSIYWVZph882Nx3EhcvUkw6KEja9uXlJtfyiBHyXL51dZ4jyjYYAQH0+Q8c6FP51N4BfP5NX9nwtISlmJX3dwBAyaqN2HuljC7HQiZwUg9s2A7fIF9Mu20E0md4uJHHWIcg0E3P11e6F7K2lvrKAOR1mTFD+vnq68k4kbOIcVcCAylhduNGKuEfLOFXoSBF6LVrydjYt6+nN3QwoqNpYTFt2qA9vJihB3tQBqK9nUpY5VQBWFu9YzDQRDdxorzzuTO9NFHEfF9BUEDb3vdxPm4utAH02ZOKD0BRV2dxO4uPDhW0nT7QNnVCU9GGo19yCeOQpbGR1GPlGAxbtpgUiRcvJq+cFIxG+n2PGOHe0vZyGD6cvJlS+/SYd6GXI9oGkEwAJ8sy/cAGykCUlFCIQk4VgHkcVk54p6qKXKWeJMo2GPHx9JkuaaJMG29EeJiAoEDLj4AQH1wYTa51pWDEhKKN/W5r8eHXBQUod0XfwYl3Qxa50vZ6PVWPAWSYLF4s/VwaDd1kPU37ZCBUKurTExgoLWSTmmoKb2VnS0+OB8jDFRJCybJS816YIQOHePpD7IDq6yt9NVVaaloJmJfgDUZnJ02oWVnSQ0megEpF38PFi4AgID0FSE8ZZBLKWgQ8sAYwGDDu4maM++Nt0rVntFp8vjkI2k7+WQ9ZjEbyeoaESPdo7N9PhgZAwoFyPJj19cBll3lfeCI+nkLN+/aRATZYqGzuXODzz+n5vn0AbpF+ruhoynmpqPCOPB7GbrAHpT9qa8mDIqdlurXhnfJyktQeMUL6Pp5CcjJNcFI1EqKiepYcy6kMCAqSV/3DeB/V1eSNlFO9Y54ce9110vfr6qLf2/Dh0vfxJCZOpNLpqqrBt7W2Nw9AeS5dXSSGyTBmsIHSH0VFpKshpwOq+YU5a5a0fbRamuQ8VZRtMCIjyQUsVfoe6NufR26XYwBgO2VoUlJComlSBdYuXgRycuh5aiqJlUmloYEMocRE+eP0BEJCKHm1tXVw8cSkJFpkAUBeHoKbK+WdS60mj7VUcUdmSMAGiiV0OtkdUMMbi01N60aPlu55KSujhDRPVaCUgqiJIlWQadQokzepsNB0A5GC6tJPmuPZQw+9nm5ycjoJW9t3B6D8jBEj5PX58TRGjiQPkRSFWbNk2dSLMjVRIiPp++TGn4wZbKBYoqyMQjwyqgBSLlrRuVijobCEp4uyDUZSEq2QpGokKBQ9SxVldTm+dINhA2XoUVFBnjqp4Z22NmDnTnoeGAjMny/9XB0dVKHmzQsLgLy6U6eSztBgYVqzeS9FroGiVNJcmJtrqqZihjxefFe0gfx8umCkqkIKAlKKLl2Q5vLPg+yDykpyKXuqPLZUAgLIiyJVtA2gyU5cCe/fLy9EBJC35lJ5MzNEKCqim5vUUOlPP5lCFwsWyEtQ93RpezkkJdE8VV098Hbx8d1ii1ENhQhvltHXB6AFYWWlvCogxqthA6U3DQ000clIjo3UFCO86ZJmwJgx0lZwdXWUEDpRhhiZJ9NLE2VQenc5liujbTTKa3zGeDZaLQl+SZUEEATrk2MBypUYOVJ6hZ8no1CQp0gQBvdMmnlRMkp2yztPUBD9P7ImCnMJNlB6o9GQ6zc0VPIuPS5EKeEdg4EMlEmT5ElxezIJCT00USRh7nI/dEj+ObkqYOhQXk4hRKnX0+nTpt5N48dTc0upCAIlkA6lkti4OGnVeGbe44ximQYKQP9/eXmUT8QMeVgwwhIKhfRkOUFAeolZeEdK9U5dHV3wY8ZYP0ZPQ6nsoYki6ftNTCT3clkZJco2NUm/ASmVtBJrbvY+jQqmD4XbC3Ds3HDos/0kbT9n+2aIJsme6OtRaqH1Qm/aReef0WDKqxoqhIQAw4ZRC4GBdGJiYmhey8lBZHMJwhuLAMgw5NRqum7Lyz23mztjN9iDYiMRDRcR0XJpJTZunDQXc3Mz5WR4kyibFORqogCmniiCABw+LH0/pZIMGg7zeD9NTTh2VA9Nh7+ktghCQxOSSg4CANoC1ciLnSltP4GMal+F0buk7aWSmkqikoNhXs1TKDM06+tL13pRkbz9GK+EDRQb6ZGtLjW8A3h+t2JrsEYT5YorTM/lhnkCAynhmcXbvJuysu6IgEIxeEuEzNqDUApUKVI0YiECg1WS2ymEB3dh2ohW75K2l0pcHC2q2toG3m72bBgVdGtJvbhb/vUXFUWemtZWKwfKeAsc4rEFQUBqEZUXGxVKKGfOHHwfMeQQF+fgwbkpmZnUlr2rS1qV1IgRNGE1NAAnT1IDR6kiXGo1uYrr6uQpAjOegyhtr6DKncAA4O6bBknkfOlA99Nx983AuBEyStLz8yl3TI6Ao7cQFUWVNg0NQHBw/9tFRqIm/jLEV55GaHMF5YLJUduNjCQDpayMNKWYIQt7UGyhsJAuQAA18eOl9fBoaqJY7kAXuDeTlESTnFRNFKUSmD6dnuv1wIkT0s8VEkKrPaldWRnPo66OSlOl6gi1twOnTtFztVrejVN004iKqUMNpRLIyJDk2ShOzzK9kFuBp1RSqCcvj72fQxw2UGzBTNq+JH3uABua0dnp/eJOAxEQQF4ROZooYh4KID/MExZG4k8s3OadlJZSaarUfJATJ0yGxvTp8gQSGxrIuPZWaXspxMeT53OQXJSytFndYR7s3Svf0IiJIe9nfb2VA2W8ATZQrEUQug0Uo0KJ0lQJ1TttbRTDHarhHRG5migTJpjCOkeOSJfMB2iVXFMjreEZ41l0dZHxKadK6+BB03Pz/CYpNDWR9omftEohryQ2ljzFYvfnftAFhKM8bjK9qKmh/yc5hISQ1gxL3w9p2ECxloKCbmXFytgJ0AVK6P/R1EQrMKliUt5KfLw8TRRfX2paBpB7OTtb+rn8/WnFzFUB3kdlJd38pJb7dnUBR4/S86Ag4LLLpJ+rvZ0MEzl6Kd6Inx8tMJqaBt20MNXMqyy3wzFAFX+5ufIWJIxXwQaKtZhdcIUpWQNsaEZrK8VwvbnvjhRETZSWFumuX1vCPGLSHUvfexdFRRS6k9qs79w5U/7E1KnyuofX15NRPRSk7QdDDHENEjYtTpoFg/JSIvzevfJ77KjVtAislNkZmfEahvid0koEAdi3DwCFd4qSJVTv6PUUu+UJjkhJkaeJIjYsA8hNLyemHRVFN5iKCvnjZNyTjg6StpeSmC5irqNjbvAOhiCQYTNyJC8uAJrDQkMHvXY7/UJQmTiFXjQ0yPN8AmR4dnWx93MIw1ebNeTnk2sZQPWwSdD5SwzvRERQDJeh7yItTXqYJziYJMkBaiYmR8bex4eSKC9elDtKxl0REyilGiiCYMo/8fEhg1cqLS10Qx5K0vYDERJC3iQJYZ6SDDPvsjVhnqgomm/b2+Xvy3g8bKBYg9mFVpwuQZwNoKQyMTmUIYYPJzex1BizLWEetZoMlJYWefsx7klhITXqk9pxvLDQ1CV3/Hh5Zf719VQeP9Rzx8xJTzd1gh6AspQZpjlv3z751XRRUSRJwIrQQxI2UORiVr0DlQplUqp3jEa6MIdyeaIlRE0UqSXHthgo4eEsfe8tNDeT21+OwWD+e5ET3jEYqKR2xAjp+wwF4uLIyBtEVbbLN8iU4K7RAGfPyjuPSkWPggIrB8p4MmygyCU31xSWmDQJnf4Suh63tpKLeKiXF/dG1ESRKtqmVptuFBcvyisdVippJVdQwOJPnk5ZGd3swiWEVkWsNVCamiiMNBSl7QdCVJWVEObp0QJErmgbQOcpKZE+TzBeAxsocjGPo0rpvQPQRRwfz111LSGGvaTGmG3xokRH081Njkgc414IAuUk+PtLT1itrjblH40YIa8LcUMDhSKHqvJzf8hQlcXll9NiBAAOHJBfNhwWRgYpK0IPOdhAkYPR2F29Ax8f6Sux9vahK489GKImilTFSHNxLTndjQHyYrW2cpjHkxGrsaKjpe9jrfdEr6fk6rQ06fsMJSSqysLf39SuoqXF1GpAKgoFXbu5ufJLlRmPhg0UOZw/b7qRSm0Y1tFBqwcO71hGqaSGYK2t0kIvycnUywggXQupZcoiISEsfe/JlJbSb0VOsz5zA0WOemx9PUmuc+6YZSSqygKwPcyjVpMeCitCDynYQJGD6D0B5IV3IiPlrfiGGsnJ5MaVYmwoFKZVsNFI0vdyiI6mSe6SCjDjQRgM1EAuVELel0hzMxmyAHnq5JQKazQUEpIj6DaUkKEqi6lTSb0XoHLvwbwuvQkMpH1Y+n5IwQaKVKwN7zQ3U6xWpXLc2DydiAgKgUnVRLElDyUggCc6T6W6mh5yckiOHjWFBa64QnpTQa2WfitDubGnFBITyfM5WOjF19d03Wq1wPHj8s8VEUHeTwnlzYx3wAaKVHJyTMmVU6ZIS5rr6qIJMSHBsWPzBuRooowaZargOH5c/oQVEUErcbmrOMa1lJTQ/5mYcCkFa/NP6uspx4KFFQcmLk669zPLRtE2tZr+X8rL5e/LeCRsoEjFmuodjYZuhpx/MjiJidI1UVQq082msxM4eVLeuaKiyFvDE53n0NlJRmVEhPR9dDrTSj08nAxbKQgC6XuMGsXS9oMRGipZVRYTJ5rCc4cPy19YiIrQFy7IHibjmfDVJwWDAdi/n577+poy0gdDoyH9hMBAx43NW5CriWK+GhYlzKUi5hQUF8vbj3Ed5eVkVMoRZzt92nQTvPxy6WHWlhbyCrD2iTTS0qQZGz4+wMxLfcs6OuTnjwHkRSkqkp8cz3gkbKBIITvbdOM0T/YaCEGgMkXu3yEdOZooEyeaXP2HD1snoX3hwqBKmIybcPEirZ7lJKyaG65yqndqa6mZpZxGhEOZuDhahGm1g287d67puTVhHlERmjVRhgRsoEjB/EKaPVvaPm1tlKfC4R3piJooUpJl/fwoFwigFW9OjrxzRURwjw9Poa2NDBQ53hODwaST4+9PBq3U/bq6KCeKkYZaLV1V9rLLTPljR49KM2rMUSppgZiXx4rQQwA2UAbDPLzj50euYik0NZGGAq/CpCNqorS1SZt8bKnmUalM0veMe1NWRsaknPyT3FyTPsfkyWSkSKGxkQwhDu9IR1SVldKIU6UyLfI6O+WLLQJkEFVUdHeUZ7wXNlAG4+xZ00QnNbwD0E02PV16WSNDiJooUsSfLr/clMR46JD8FZVaTa5ilr53bwoKyJiUk7BqrTibKG0v9TpnCFFVVq8ffFvzIgNrwjzBweR54TCP18MGymCYi7OZx08HorOTYuXx8Y4ZkzcjaqJIkb4PCSGXMUDia3KTXkNDadXHYR73paGBbkRytE8EwZR/olSauukORmcnrfC5LYV84uLo2pUS5hk71hSuO35cWj+f3oSHk5dMikHEeCxsoAxE7/CO1IlOVI9lDQXrGD6chJ+kaKKYr47lVvMoFLQa4x4f7ktZGRmRctRjS0tJFh0Axo2T3qRTlLZn3SL5+PmRYSfFQFEqTV6Uri754VmADNbaWgr1MF4LGygDceaMqZzNvCPnYGg0VJHCEtnWkZhIE5CU0It5Hoq18ezqao5nuyNGIyVDBgfLC5Wa3/CkSgIAdK2PGsXXrbUMGyZNVRboGebZvVv+ufz86Dxil2rGK2EDZSCsEWczGOgi5QZj1hMQQDcKKZooMTGmiouCAgS11so7V1AQaTKw9L37UVNDoTs54R3AOvVYrZZKZVkWwHri46Wryo4aZfIwnzplna4JSwV4PWyg9EdXF3DgAD3395ce3hFFnji8YxupqdI1UcxuQkklMsM8AMWz8/I4nu1ulJSQ8SgjYTVQW0//lwB5MaXmgdXVUWgnJkb+OBlCjqqsQmFa9BmNplC6HMScF06W9VrYQOmP06dNZXPTp0svU2xqootUTsyc6UtcHLmMpWiimBsoxQfkn0uMZ/NE5z7o9WRoiJoZEkkssaJ6RxDIgzJyJEvb24pUVVmgZ9HBnj3yz6VSUTiuoIA1UbwUvhr7wxpxNoBWfGlpdh/OkEOpJDewFE2UtLRuQbzYqrPw65Sgx2COry+t6M6f54nOXaislC9tj14GqtTwjkZDXk8O79iOqCor5TrKyDAlJJ87J73NhTnR0SwV4MWwgWKJri5TRUhgIOmfSEGrJXc0q8faB6maKApF92pZKRiQXHFU/rni4ijhjpNl3YOiIsrn8vOTvIuvXou4ytP0IiaGboBSqK8nI1emt4axgKgqKyVRVqEweVGMxp6SDlIJDaUyZc4h80rYQLFEfr6pNl9ueCcqSn5SH2MZOZooZqvl1DIrwjwhIZTvwsqyrqe1la5BmddRcsURqIyXStNnzJBW+WMw0IOl7e2DUknXrFRPpK29eQAyUvLy5PfjYtweNlAsceqU6bmc8E5LC63aOI5tP6RqoowZ0533k1x5FMquTvnnUqtJE8Ua4SjGfhQWksteZpuIlHKzBGmp4Z2GBlpUcNWd/ZCjI5OaagqtZWdTLphcoqOp2kvUvmG8Br6T9qazk/RPAArviA3ppKBSsciTvRk2jDwpg4V5VKpuzQvfrg7EV54aeHtLREWRt6aoSP6+jH3Q6ykfITRUlqGvNOiRUnGEXgQHk0CbFBobgcxMutYZ+xAbK2+RZu5FsSbM4+9PCxi5StKM28MGSm/27KFEV4BWYVJj4EYjxbC5vNi+BAaSkSJFJ8HWah6lkkI9585JU7Fl7E9JCa2EZV5HsVVn4ae/1Bl32jTqCzMYOh0ZtpzUbl/8/QEflfTtbe3NA5C3LS9PmiwB4zGwgdKbTZtMz6WKswFkoKSkSFebZaSTnEyercGYPBldKsoXSiw5ZF1MOjaW5LO55Nj5CAKQk2MqH5VBD4NUanlxfT0lR7PX0/6oZBgoSUmm/kd5edKkBXoTFUXeMO6r5VWwgWJORwfwww/0PCiI2rTLgcsUHUNMDBl+g62O/P1RmUj/Z4EdTSbBLjn4+VFyZW4ulxw7m6oqCq/JbbIpCN0CfQalj/TrtqWFtE+keFsYeSgvGSiCxB5XM2eansvtqQWQQaRUkrIs4zWwgWLOtm2mBMkZM+St4hQKLi92FGq1tDwUAGWpNjQPFImNpZJja1ZyjPXk5VHYRYZyLABqcaClSq+qYZOk7a/TkTE6bJj8cTKDo7xUQWWUaOSbGygHrAjPApQsW1wsTcmW8Qh46WDO2rXdT3f6zEPFN4O7KdsvpatApWIdBUehUlG2/5Ejg66uK5Knw6hQQikYqSfLsmXyGs0BlKBZXk6rMZY+dw4aDRko0dHy9zXrvVOWOhOS6nGam8noteZ8jHQEAYCE6y8lhUJtlZWUA9bcLL0LtUhYGO1fWkr/t4zHwx4Uczo7YVSqoPMNQWHkZGjbFYM+BIEuPt9AH/k3QkY6CQmU5zOIAJQuIBzVMZcqOCoqrI9Jq9VU9siNyJzDhQuUQyCztBhAt4EiQIHyZIndizUaMnq5c7FjUShIwFLKdqIXxWi0rjO5QkEVXLm50oTiGLeHDRRz1q7F5ofXYfeVzyEgxAdBgcLgjwAjwgM6Me16zj9xKDExJtXIQShOtEOYh0uOnYdOR8ZgRIR8I7+ysru8tCZ6NDqCJEjjCwLdwDg51vEoldJDLvYI86jV9JuorrZuf8at4BBPL5b8diLwdSEwQmIFSFUVlcJeNcKxAxvqhIWRkVJdPajrtzjpClxx4j16cegQcNtt8s+nUtFqLDubegJxIqXjKC6m/1ep0vTmmIV3ehimA9HWRnkqHN5xPD4qU9PVwRgxghYGDQ3AyZOm1iFyCAoig7ekhA1QL0C2B0Wr1eLDDz/Eb3/7WyxZsgRZWVnYvHmz5P1bWlrwxhtv4IYbbsCiRYvw5JNPIjc3V+4w3IfmZiqR4xuYY1EoyCUvIeTSEpKAxkizskUpUvmWiI2lXJTycuv2ZwbHaKScAz8/664hMw9ZcdLMATY0Q6OhlbY14SRGHkoV/b/q9RK2VZpKxPV64Phx684ZHk5hHinSBIxbI9tA0Wg0WL16NYqLi5GZmSlrX6PRiBUrVuDHH3/EzTffjIcffhiNjY148sknUeqJuhMGA9042VJ3DrGxkie7HtU81sSzARKcMhppsmMcg6g5Y00FnEZDHagBaMKToAlLkrZfaysZu5wz5nhUKgrdOTvMU1/PCwsvQLaBolar8fXXX+PLL7/EI488ImvfnTt34uzZs3j22Wdx//334+abb8Y///lPKJVKfPTRR3KH4nrETHMuL3YOMTH0fUtQlS1LsUMeCkD/txcucMmxo8jNJdVea6TmjxzpTobs8f89EAYDrdTlaq0w1qEAKfVKkAgAQC0KLvXUwtGj1nlBfH0pz6iwUP6+jFsh26fq5+cHtZXdenft2oWoqChkZWV1vxcREYEFCxbghx9+QGdnJ/xktFd3OU1NFDcNDnb1SIYGAQGkOpmTM2in20b1cMoxqKuj3kptbdb9P4WF0Sr/wgXOWbA3DQ3UPdraUm4zw7MsVWJ4R1xUcPm4U2hv1OHzL1RA+3DgrBR1WRWuiJuOjJbtQHs7dr57BhUDVGb5+gLTxhuRntJLbyU6mrSMWlpMBg/jcTi1iicvLw8jRoyAslcjqTFjxqCjo6PfME9dXR1yc3O7H8Xu0hSqs5Pq9xnnkZgoLZ6tUJji2V1d1sezAUrcO3+e+3zYm4ICMhis0Q/S6SiREgAiI1EfM1LafhoNhWTlJl8ysvANoLWvIADaZgO0el9Jsg3adgUKEkwd5BMuHBhwW02zAkfPWLiNhYfTAtITUweYbpya2dnQ0ICJEyf2eV/0yNTX12P48OF9/r5hwwasXr3a0cOTh1gJwOEd5xIbS+EAKRn+M2YA339Pzw8e7Nk1VQ5qNXlQioqAMWOsOwbTk/Z28oRFRlqXC3LihMn9P306oJC41tLpeFHhBKbdNgJHv8yHvuNS0832DgqvSejR05g+CfoDAfDt6kBqxUEc9++CoOy7X3sHIAgKy+sVpZI8rnl5dM1yvpFH4lQDRafTWQzhiO/pdDqL+y1duhSzZ5us6uLiYrzyyiuOGaRUmprIjRglQXeBsR9RUZR019w8uIEybhx1J25tpXi2Xm+dMJdKRZPduXPUu0VOIzTGMmIrAQsLEkmYlRdjxgxAih6fKG/P4R2Hkz4jAekzzIoHzpwBtm6lkv1B8QEKpgD79yOgoxl3jTwLXHZZn60+/0YF7UBOTbWaEmVra7nLvIfi1BCPv78/Oi0kPYnv+fv7W9wvOjoao0aN6n6kpqY6dJySaG0l3QYla905FZWKku6kaCv4+ADTptHz9naaJK0lLo5UabkywHYMBjL2AgKsM/YMBlNlVmAgMGGCtP00GjJurcyhY2wgLs7k+ZSCPap5QkLouucwj8fi1LtrVFQU6i1oUojvWZt863T0err5cSWAa4iPN6mBDsYVZtUd5qtuuXDJsf0QDT1rw6M5OSYDdfJk8opIobmZ5e1dhehtllpuPG2aSRfnwAHrO4uHhtI1KyVvjXE7nGqgjBgxAvn5+TD2urHk5OQgICAAyckeIhff1EQrMXYbuoaYGFPoZjAmTzbdkA4dsq1HR2wslS42NFh/jKGOIFDCsSCQ0WcN5obmFRLLi1ne3rUoleRxlqoqGxwMiPmKdXWUUG0N0dFATQ3J3zMeh8MMlLq6OhQXF6Orq6v7vXnz5qGhoQG7d+/ufq+pqQk7duzArFmzPKfEWKOhMIOnjNfbCAsjY0GKtkJgIDBpEj0Xy1ptOW9zMyXMMtZRV0dGnrXeE0EwlRerVKYQ3mCISe2cf+I6EhKkq8oC9gnz+PlRSPDiRev2Z1yKVUmy69evR2tra3doZt++faipqQEA3HLLLQgJCcGqVauwZcsWrFmzBgmXVi3z58/HunXr8Nprr6GoqAjh4eH45ptvYDQa8ctf/tJOH8nBGI30g0+U1NSdcRSpqdINhRkzSNQLoJvbSIklqb1RKMhzlp0NjB9PORSMPPLzyVhIkqj62huxbw9AiZMhIdL202hoNR0RYd15GduJi6PyX/H/YjCmTyfPi9FI1+2991p3XrEKb9o01qzyMKwyUNasWYOqqqru17t37+72iixatAgh/UwaKpUKf/vb3/Dvf/8b69evh06nw+jRo/Hss88ixVNK/0ThHy4vdi3msveD5RRcfjkZF4JA4QFrJzqAVuAFBVRyPHq09ccZirS2UnjHlso3c1XgGTPknXvKFC43dSX+/rSwOH1amoESEUElwufOUd5SaSlgTRpARARds2VlEquIGHfBKgNl7dq1g27z3HPP4bnnnuvzfmhoKFasWIEVK1ZYc2rXo9HQ6m+QjrqMg4mJodVYc/PgVRmRkWRM5OTQJFdebr0HTCw5zs4mTwxXcUnn4kUKs42wofO3eV8lqQaKKG/PiwrXk5REoolGo7Rr54oryEABKMxjjYGiUlGop6CArlk2Uj0Gnl3l0t5O3YsZ1+LvT5Od1KoAe1XzAKaS44oK244zlNDrgbNnycVurVFXW2vKIRo+XHo+Ccvbuw/x8eSBlpLgDvTMQ7Glp5ZaDZSUcIK7h8EGihza22n1zCsx9yAxkWTspWC+2rZlogPoN6DXk0olI42SEqCqyrZrp7c4m1RY3t59CAsjI0XqwiI2FsjMpOcFBVSRYw2iUVQmRdGPcRfYQJGDRkPhAm4a5x7ExEgXfxo2zOQezs0FGhttP3d+vu3HGQoIAoXXFArbNEisNVBY3t69SE+XLtgG9PR+Wru4UCgooTo3l0J+jEfABoocmpuplp+lzt0DtZoMRqmt3MWJThBMVT3WIsrtc0v3wamupuobW4QNW1spRATQqjotTdp+LG/vfsTHkzdLavNNe5QbA7SwrKqiB+MRsIEila4ussJZ6Ml9UCqpKkCq+JM9VmIiYslxTg7dBJn+ycujm5EtJZ7HjplWvldcIT3RkeXt3Q9RVVaq9zE52ZTUnp0tPTzUm4AAajBpixYS41TYQJGKONFx/ol7IRqMUty2w4ebblSnTslzM1siOtrkHWAs09xMBoqtYVFzg1Kqeqx4fpa3dy/kqsoCJi+KIPSs5JJLfDxVBXGCu0fABopUmprIkg8MdPVIGHNiYqRXBSiVJP4EUJLriRO2ndvHh2582dm2Seh7Mxcu0ErZFu0TvZ5KUwH6vx4zRtp+LG/vvrhCVRYgaYKODvo9cS7KwHR2Sg+fOwg2UKQgCBTisVb9knEcoaHSZe8B+5YbA+RRKynhXh+W0OlotRoWZpv2xOnTpnyFyy+XngPG8vbuS2ysSVVWCpmZJi/cqVP0f2stycmU4M75YwNz8KBtxqAdYANFCm1tFD/n8I57kpYmPeHusstM5aZHjkgvU+6PoCBaBebn23Ycb6S4mMpCbW2qaa16LMvbuy8BARR6k2qgKBQmL0pXF3D0qG3n9vOjY3R0WH8cb6a8nJLSOztdOgw2UKTQ1ESrsMhIV4+EsURMDLmLpVxMvr6mBnNtbSaVSlvPn5/vcneoW2E0UujLx4cethxHzDnw86Pu1FJpbSXjlZVD3ZOkJDI2pIZHzb2ftq7shw0jTZTsbNuO4410dVFSuhtUO7GBIoW2Nqrd54nOPYmONsneS8Geom0ArdAbG9llbE5lJYW+bPU65uWZqj0mTZLeoLGri3KObPXeMI4jLk6equzYsaYWI8ePQ9VlQ/Wcjw/lRZ04wVpGvcnLo0onW/LG7AQbKIPR2Umrbls0HBjH4u9PcWWpHoypU02r+kOHKMfIFhQKMpDOnXO5S9RtyM2l0Jet6q3WirO1tLC8vbsTHi5PVValMiW5d3QgvsLGJPeYGJK+P3XK9jnAW2htpdBXcDDNqy6GDZTBaGqi0A6vxNwbObL3QUHAhAn0vK7OPp6PmBguORZpaKCQlz2uGdFAMa/AkgLL23sG6enS88eAHtU8ScU2hnkUCgr1nDtHORcMcPIkzWNusiBnA2UwNBqKY7OOgnsTE0M3I6krIXuKtgH0+/D1JeG2ob4au3CBrpvwcNuOU1Zm6p0yerS847G8vWcQF0dhO6lGysSJ3VIPSSWHoDDamOQeFkZeTy47Jm2YM2fIOHGTLu3uMQp3xWCgm42oYsi4L1FR5OmSmnB3+eWm5/YwUABTybEbJJe5jPZ2SjyMjLQ9Z8uW3jssb+8ZREeTeKLUMI+fX3eSu7+uBQk1Z20fQ3Iy5VwMZYVZMTG2o8Otqt7YQBkIMY7N5cXuj1JJni6p3gu1Ghg5kp4XF9vHqAgKogt8KJccFxUBtbX2MQ5s6V7MTT09A5WKwjzWqMoCSC3bb/sY/P3JK3P0qLxwkzeRn0/JsWJDVTeBDZSBaGqiOHZIiKtHwkhBriFpb9E2gG6KeXnSK4q8CYOB4vmBgbY31GxspERbgEI1w4ZJ37e5mfaxpbyZcR4JCbTAkJpDNmVKd8g9rewAINhBxTkhwaT9MdRobSXviZskxprDBspAdHRI75rKuJ7YWEApI6xg7zwUgFbuDQ1Ds+RYzBmxh8fx8GGTN0yO9wRgeXtPIy5OnqpsUBCVnAMIbq+HujbP9jGoVLS4OHWKrt+hxKlTlH/iJomx5vASoz+0WroQOLzjOYSEAEpaubd3AJ9/M9gqPhXXhyUirLkcxuwcfP1/rdAFSk/E9PUFpo03Ij3FLKykVNJkm51Nug1+flZ8EA8lN5eMCnuswsw9WnKaAwoCy9t7GgEB5PE6e1Z61+mZM0kJGkBy8X4AI2wfh+j9PHECuPLKoaF7VVlJrSTi4233ejoA9qD0R1MTJV5ym3aPwjeQXL+CoIC2ffDHxUSKZysFI2IvHJS0j/jQNCtw9IyFSygmhnJaSkqc+dFdS20tVe/Yo7S4vZ1WdQBdf8OHS9/XaGR5e08kOZlChFKT3KdPh1FB115y8QH7VM6JZcfZ2UBpqe3Hc3cMBgrttLe7rUo6Gyj90dJCLcHdpNyKkca0JYkID9AhKNCIoEBh0Edl5uzufUeW7JC0T1CgAIWCJkSLzVh9fel3c/780Ck5vnCBYtmi0qctnDhh+mKnT5d3DQoCy9t7IvHx5AGVqiobFoaa+MsAAKHNFfZbDISG0o37+HHb+3S5O26aGGsOh3gsYTSSu4vj2B5H+sJMpFcfpv9DKW5+IQM4ngiUlyOu6gzunlkhKaz3+TcqaAdK+I+Lo+ogNxI9chhtbbTqtJe30TwfSE54R4RFFT2P8HC6ZsrLJRu5ZakzEV95ml4cOEDNB+1BUhLlkOXnA2PG2OeY7kZbG1UtBQZKbx/hAtg9YAlBoAuGJzrPw8+P4tlSq2gUCmDBAtPrnTvtM46QEHKdDoWS44sXgfp6+xgo5p1qg4Ko+7QclErOP/FUZKrKlqWYyo1tbh5ojr8//faOHaMbuTciJsa6+SKcPSj9kZLi1pYlMwDDhpGLVhCkufoXLAD++196vmMHcPvt9gkRiEl3kyaR69gb0euptDgkpN9QTGGJAsfOKC2Hw3oxrPQ45l9y8xfHTcO+jdKuwfaOS09USpa391RiY2mBodNJSrTWhsSgRj0SsfV5ZCRXVdnPWxkfT4uLs2flV5G5O1VVZKC4aWKsOexBsURIiFvH5ZhBEGXvtVrp248fT88rKkz6G7YilhxfvGif47kjpaXklh/A23jsjBKaZmmJxynnf+zeLzdpvuSEZUEgg1JMkmY8EDG5WYaGUFHSLNMLe3pRVCqaF06don5d3oIHJMaawwaKJSIiuLzYk4mMpIdUXQWAygpFduywzziUSvKcnDvXTzathyMI1HtIqRywnFr86ArFwInHEcpmpJZT/klHQDjqh0+VnLQcFGBEeGAnpl2f5IxPzjgCX1/KI5Fx3fYwUOylZSSiVpOxdOKE9yS7FxTQAsxDFuAc4ulNaChdJLY2OmNch1JJ8ex9+6TvM3MmsHIlNQ7bswdYvtw+DSJjYylZtrSUqsK8iepqkraXaMwHBgB33zRAQ7ZNO4FLzd8CFs/HXTcrAEhs4FZTQ0bSQjvoYTCuY9gw0jcxGiVVbzWHJaEpIgURTSVUNdfYaF/PQGIiGeEjRni+aGdbG323bp4Yaw57UHoTHQ3MmsVlip5OXBz9H0rtUBoUZOrx0draLQJlM76+NA5RxMybyM8nV7G9WkH89JPpublHSwoaDcvbewMxMbRIlJGcWpZ6yYsiCPZrWSESEkLHPX7c872gZ854RGKsOWygMN5JbCyVK8ppQuaIMA9AxtLFi7TK9xaam8nosldDvpISSigGyNOUni59X0FgeXtvITycflMywjylaQ7KQxERy47z7CCp7yqqq4GTJ2kucvPEWHPYQGG8k+Bguhjl5KFMmEDqwQCVutqr4V9ICCXselM798JCSgC2lzvdFu9Jayt9x1xe7PkoFBRKkeFBaYzKMCVpnz4tXexNKn5+5NU5etT+x3YGRiONva3NNL95CGygMN5LSgo1fJSKSgXMm0fPDQZg9277jUWtJo9DY6P9jukqOjsp8Tc83D5KywaDSX/G/P9AKs3N9P2yvL13EBdHoTqpIRWFwhSeNRjsF541Jz6evBCnT9v/2I6moMDtFWP7gw0Uxnsx11WQivnq3V6ibQCtXBoagG3bSNTMkykuJi0Fe3ksTp40dZC9/HL5CeptbSxv703ExNBvQI4H01xx2BFhHqWSDKczZzwrVKvVksHm70/JsR4GGyiM9xIdLX+iS001Vdvk5QFlZfYZi1IJZGbS8bZsodWYJ9LRQd4TX1/7VDkBtoV3urpMNw/GO/D3p9V+U5P0fUaPNhm2x4/LW5RIJSqKctpOnJDe1NDVnDlDOkXDhrl6JFbBBgrjvfj6UphHTh4K0FP63p7JsioVGSk1NWSkVFTY79jOQKMhD1Benv0mvNZWk35FWBgwdaq8/VtaaD97Jesy7kFiIoVrpFa+qVQmL0pnJxkpjiA5mcqZi4occ3x7UlND3snYWI9KjDWHDRTGuxk2TN5EBwBZWabcih077LtaUiqB4cNpdbhli/26sDqa6mpg82YyTjIzJUmRS2LPHlOuwbx58r0yTU1UvcPy9t5FbKw8NWjA8WEegMakUJAaa2enY85hD4xGGmNrq/2aeLoANlAY7yYmhip65DT9iowEpkyh53V11I/DnigUVEbb1gZs3QpcuGDf49uboiIyTioryTixV2gHALZvNz1fuFD+/p2d5CVjvIvISAqpyK3CEw3VI0ccp1uSlER5WPZqieEILlwgT48HJsaawwYK491ERNBEJ7dk2FFhHhGxnLKrC/jhB/ec7ASB8k02byZjavhw+7qKy8pM2hLp6fKVdjs6yJPD4R3vQ6mk60NOWa+vLyVZA/R7tffCwvw84eEURrKXFIE9aW+nsmI/P49MjDWHDRTGu7FmogOA6dNNq7H9++WVK8shKYmMlR9/pAnVXdRmDQbg8GEal5jLY+8qGXPvidzkWIBW1xERbKB4K/Hx9Jvr6pK+j1huDDguzANQCMpdy47PnKHWGomJrh6JzbCBwng/cmXvAVqZz5lDz9vb7d+IzJxhw+h8P/1ESW2uNlJ0OtKA2bOHXO2OqJAxGEyeKWu0TwBavbK8vfcilhvLUYOeMsXUuPLgQXnXvByUSjKgzpyhknt3obaWqow8ODHWHDZQGO8nJoYqPdwtzGNOXBypVe7aZWqW5gpaWijkdPQoeXcc1ZL91CmT9snUqfJF1kR5ew8tn2QkEBRECdByyo0DAoDJk+l5U5NjQ6eRkZTE6y5lx6JibEuLRyfGmsMGCuP9BAfTakeugTJmjMl7cOqU4wXWoqMpX2bvXseu/vqjtpbyTXJyKB8kONhx57I1OZbl7YcGKSnyNU3MwzyO9HwCZMTn5lLrB1dTWEhj8fDEWHPYQGGGBikpFKqRg1Jp8qIYjeTdcDRiSGX/fjJUnNVBtaQE2LSJEldHjDC5yR1Ba6up62xoKDBtmvxjaDS0SpSrOst4FrGxlOgp59q9/HKTTMCBA44NmQYFUYjRUeJwUmlvJ8+rr69XldyzgcIMDWJiKM9D7iQyf77p+U8/OSc/JCyMEtyOHKFcEEfqLQgClSNu3kw3/cxMx8eu9+41fSZrtE8AqtJIT2d5e29HrSajXU65cWgoMH48Pa+udryoWmIilR3n5Dj2PAPhRYmx5rCBwgwNoqMpz0FumGfYMJLRBsjL4CxXbkgIuWqPH6f8F0dUEYliTtu2mbRZnHHDN5e2tya809VFRpTYwZbxXlQqqsKTkygLOK+aByAPSkQEXatyVavtQW0tJdfHxHhFYqw5bKAwQwNrZe8BxzUQHIygIJqcT52inA05qpqD0dlJVTq7dlGYJCHBfsceiLIy8tgAPfseyaG5mbxMnH8yNIiPJ0+fnJysGTNMzx1toAAUlq2vJ0PBmRiNJj0WLyy3ZwOFGToMG0YXtNwwzZw5plLWnTudm7waEEA38XPnqLpG7krSEm1tZPAcOkTfSVSU7ceUink11MKF1nlsNBoyqDxchIqRSGwsGaRytIzUapPns7jY8X2vFAr6TZ4759weW4WFFFryosRYc9hAYYYOMTHklZAjew9QuGX6dHqu0VBZoTPx96fckLw8CsfIKbvsTUMD9QA6c4YMn5AQuw1zMBRGM+0TpdI67ROA5e2HGqGhZKTI9X46ozePOeHhFIo9ftw5i5iODspT8/HxqsRYc9hAYYYOouqoNWEeZ2qiWMLXl4yUixfJSLGm5Lm8nCp1Ll6kSh17NfyTSFzlaeptBJD2iTUaK6K8PYd3hhZpafKr8MwNFEeXG4skJwP5+RTquXCBEnRLS8mrUlND121TE3lCtVoytq01Zs6coZCplyXGmsMSjMzQQaGgvIfiYvn7TpliEns7eBC+Ka0AQu0+xAHx8SEj5cIF8oJcfbX0RNH8fMo3aWsj40Tp/LVJRv6PphfWJMcCJnl7LxGiYiQSG0ul7zqddMN62DDT9Z6bS8aBo383AQHklTTPVVMo6HpTKimJ1dJzpZIWIeLDz48e4nNfX9pefAgCGUFqtVcrKXvvJ2MYS8TF0WTQ1SXvwvb1BbKygO+/B/R6pBTtw5mUaxw3zv5QqchIKSwkI+WqqwZWUzUaKcl23z76vNYkpdoB3842JBVfcrOHhpqausmluZl0U7x4UmYsYF6FJ8d7NnOmaUFy6BBw3XUOGV4P4uPpIWI09n0YDD1fd3WR8dXfNpby5nx8qPLOi+GrnBlaiLL3LS3yQwwLFpCBAiC9YLtrDBSADKyMDHIfi0aKpZwMvZ4m5SNHXN5UL6N0D3wMlzRosrKs0z4RJ2tnVRwx7oOvL3lDjh+Xb6B88QU9P3DAOQZKb0QPCSMb/taYoYXY38OaPJTMzO5s+djqcwhtrbTz4GSgVNLqqa0N2Lq1rz6LVkt6IwcOkHvcxSWIIwrNwjvWdC4G6LOyvP3QJSHB5FWQSlqayZtx5ox8HSTGpbCBwgw9rOnvAVAs2SxZNrPIBcmy5igUNAHr9ZQ4KzZGa2oio+XUKVp1hoW5cpQI1ZQjvi6bXqSkkKFnDSxvP7SJjSUDVU4VnkJhEm0zGsmbyHgMbKAwQ4+YGEo8s0addd68bu2OzIvbnSN9PxjJyTSmH3+kbqabN1MibWamW2iFpBf0agxorVoty9sPbcLD6dp193Jjxm5wDgoz9IiOpvyT5mbKupdDTAwwYQJw6hTCWysRXZMDYJRDhimLYcOo78iOHaaSZHeQvTYakV5A0vZGhRJKa7VPWN6eET2GcnvrjBpF13tjI1W+tLe7heHuTApLFDh2Rimv96ghCVCpEHRoH256dbbDxjYQ7EFhhh4+PtbL3gM9wjzizdctiIuj5NmMDPcwTgDgzBkEt9UCACoTp1ivWsvy9gxAv3GVSl6Xb6XS5EXp7KRE2yHGsTNKaJoV0LbLeHT60L8a13VpZgOFGZokJFgnew8AM2eiy4e0GFIvOrjbsFz8/NwrBLLdFN4pHHGV9cfRaMhLNMRWvkwvYmIo1CM32XWIh3lEe06hEBAUKPHh10X/hjtX0NEcDvEwQ5OYGEq4a20lXQ45BAaiNHUW0i/sgF9nG+V9zJrlmHF6MlotsH8/AKDDLwTlyTMG2WEAOju9tt8IIwN/fyApiXregMJ97R3A598M7DFUGCfhFr9g+HW2oWvfIWxIbEZHoDSZAV9fYNp4I9JT3CDfzEYCA4C7b5KoXCuq1C51TXgHYA8KM1QR1UitDPNczDRTQv3JjcI87sS+fd3epcLUeTD6+Fl3HJa3Z8xJSgK6urqldARh8HBFm84XuelXAwB8DDpknvhKcqhD06zA0TND7FYpCNYVEdiZIfatM8wlxIQ7uY0DL1GdMAFtgZdks48dsz6fxZsxC+/kXbo5WIVGQ0mOLG/PAJQoHRSEaSO1CA+THrLIn3wLulRkJI8t2IhINA66j0JBXhNZyaXewPHjwB//CHz1FXlCXQSHeJihi5hwJ1f2HoCgVKEgbQEm5qwj8ag9e4Drr3fQQD2Qigogm7RPNBHJqIsaAav7rTY3AyNHsrw9Q1wyVtOb6pG+RE5+RDjQthj47jv4dOlwi249cNeyAff4/BsVtDJ7FHo8ggB89hkt3j7+GLjhBuCWW1wyFPagMEMXUfbeSnXJgjQzRVQO8/TErONzYeZV1ifusrw90xulkryfra3y9735ZlObhU2bWFnWEocOAQUF9Dw9HfjZz1w2FDZQmKFLYCBVhlgZnmmMSEODeji9KCgASkrsODgPxmg0GWxKJYoyFwy8/UCwvD1jibg4MnoNEhM+RdRq6gIOUI7F11/bf2yejNFI3hORu+92aR8hNlCYoU1ysnWy95fokSy7w8XS9+7C2bNALWmfYPJktAfZkDvC8vaMJWJjrfd+3nqrKVzIXpSe7Ntn6v6clmZ913E7wQYKM7SJiSE1WSsz1osy5plWGLt2yV/ReSNmybFWNwYUYXl7xhJBQeT9bGqSv290tMmL0t4OfPutXYfmsRgMwOefm17fcIPLrzs2UJihjVpNSXdWhnl0gRHA1Kn0oq6OvAdDGTPtEwQHAzNs0D5heXtmIFJSrBdJNPeifP890NJiv3F5Kjt3AuXl9HzcOGD0aJcOB7DCQOns7MTKlSvxs5/9DFdddRUeeughHJHYIfLo0aN48sknccMNN+C6667Dr371K2zdulX2oBnGboiy97a4ec2k74d8suz+/aaQ2dy5pGxrLc3NpgZxDNOb2FjyfrZbUWYTEwNcdUnZuL0d2LDBvmPzNLq6gC++ML2+5x6Xe08AKwyU1157DWvXrsXVV1+NJ554AkqlEs888wxOnz494H579+7F008/Db1ej2XLlmH58uXw9/fHq6++irVr11r9ARjGZkTZe6PRuv2nTydvAUAy2tZMmN6CuYG2cGH/20lBo6H/G5a3Zyxho/cTt95q6ln13XfWVQV5Cz/+SM1GAWDSJOCyy1w6HBFZBkp2dja2b9+OX/3qV3j00UexdOlSvPXWW4iPj8fKlSsH3Perr76CWq3GW2+9hVtuuQU333wz3nzzTSQmJmLz5s02fQiGsYmYGJK7t3aC8vMD5syh5x0dwMGD9hubJ1FVZQpxJSaSdokt6HQsb8/0j0pFiZzWhmdiY01GtFY7dL0onZ2AuZPgnntcN5ZeyDJQdu3aBZVKhaVLl3a/5+/vjyVLluDcuXOoFi0wC2i1WoSGhsLPzOXr4+OD8PBw+Pu7rhkRwyA8HIiPp3bs1sJhnr7eE1tcxB0d5Dnh8A4zEPHx9K+1yensRQG2bqX8OYC8waNGuXY8ZsgyUPLz85GUlIRg0Z19iTFjxgAACkRxFwtMmjQJFy9exPvvv4+ysjKUl5fj448/Rm5uLu666y4rhs4wdkKhAIYPp9CMNd2NAWDMGNJmAIDTp4H6evuNzxPopX3Sw2CzBo3G1C+JYfojNtbU9NMa4uNNv9W2NkqYHUrodMCXX5pe332368ZiAVna0fX19VBbmDDE9+pEK8wC9913HyorK/Hpp5/ik08+AQAEBATgpZdewty5cwc8b11dHerNJvxisU6bYexFQgJNdKIwmFwUCprovviCjJydO10mD+0SsrOBmhp6PnGi7YYFy9szUggNpYVBWZn1Wjm3307GtdFIYZ6lS6mMeSiwcaOpVHv2bCAjw6XD6Y2sq1+n08FXlAk2Qwzb6AYQvPL19UVycjLmz5+PrKwsGAwGfPfdd3jllVfwj3/8A+PGjet33w0bNmD16tVyhsow8oiKoomuqso6AwUwGSgATXg33+wWmfBOwVz7xNbkWJa3Z+SQlgbk51u/v+hF2b6dPDHff09Gi7ej1QLr19NzhQJww0iGLAPF398fegttHTsv1aIPlEvy1ltvITs7G++//z6Ul4StrrzyStx777345z//iXfffbfffZcuXYrZs2d3vy4uLsYrr7wiZ+gMMzBimKew0PpjJCRQqCcnBygtpWMNH26/Mbor7e2kQAnYrn0CUHhHzAtimMGIiaFEdZ0OsDaf8bbbSAnaaCThtuuv934vyoYNpgTjefNIbsHNkJWDolare4RaRMT3oqOjLe6n1+uxceNGzJw5s9s4AShJdsaMGcjNzbVo+IhER0dj1KhR3Y/U1FQ5w2YYaYglrba0Fx+KybL795uUeOfMsf4mIdLYSNU7oaG2j43xfmJiKF/JFi2jYcPoJg3QTXvjRrsMzW1paQG++YaeK5XAnXe6dDj9IctAyczMRFlZGdra2nq8n32prXpmZqbF/TQaDQwGAwwWMq0NBgOMRiOM1mpQMIy9iI6mpLuGBuuPMWeOqVvq7t0kgOTt2FP7xGik7yw93bbjMEMHX18gNdV6PRSR2283ta345hvv1jP65hvTQuyqq8hAc0NkGSjz58+HwWDABrN68c7OTmzatAljx45F3KUqhurq6h6JrJGRkQgJCcGePXt6eEq0Wi327duHlJQULjVmXI9SSSEZW0oNQ0KoVA+gCfPECfuMzV2prgbOnKHniYm2lyg2N5PnhPNPGDmIYovWVuEB9PsVCzZaWqiRoDei0VBJNUBJ6Hfc4drxDIAsA2Xs2LFYsGABVq1ahZUrV2LDhg146qmnUFVVhYcffrh7u1dffRW/+MUvul+rVCrceeedKC0txcMPP4y1a9fiiy++wEMPPYTa2lrce++99vtEDGMLw4bZ1DwQQM8Ged4e5jHv4Lxgge1JwY2NQFISdaplGKnExlL+k606JnfcYfoNf/MNVHob5gF3Zf160/y2aJFbaw3JruF77rnnEBcXh61bt6K1tRUZGRl4/fXXMWnSpAH3u/fee5GQkIB169Zh9erV0Ov1GD58OF566SXMnz/fyuEzjJ2JiaFQT0OD9W7PyZMpyVOjAQ4fpknT2sogd8ZoNFXviGXWth6vs9PtSh0ZD0Ds2VRTY1vuUlISeVF27wY0Gow4vxHHM2+13zhdTKC23uQZ8vOj5GA3RraB4u/vj0cffRSPPvpov9v885//tPj+1VdfjavFNtcM446oVBTm2b3b+mP4+ABZWeRG1euBvXuBa66x3xjdhexsU/+OiRNtX4m1tHB4h7EOhYLKjYuKbD/W7bcDe/YAgoAxZ77CqbTrAXhHCsK4U2tNHaCvu87thRBlNwtkGK8nMZES7wbQ9RkU8zCPeRjEm7BncixAXqvEROsFt5ihTWwsLTAGqAiVREoKiZYBCOxowpgC78hFCWmrxvDcLfQiIMAjhCTZQGGY3sTF0crClt48GRmmRnc5OUBlpX3G5i50dJi0T4KCgCuusO14gkAG4VDQjWEcQ0wM5S7ZUm4sYpY4OiFnPVRdNixW3ITJZ/8PKuOlqsKlSz1iIcA60gzTGx8fIDOTQjODiIW1dwCff6Oy+LcxcQsxuXQ1AODMyl04M0V+l1BfX2DaeCPSU2yoTnAEBw6YyjDtoX3S0kI3Fw7vMNYSEECLgnPnbA9dpKYCs2YB+/cjqKMRmblbAFxvl2G6gpDmCoy4+CO9CA4GbrrJpeORCntQGMYSw4aRodKPu1iUOhEEBbTtlh85iVdCAFUEpBb8BK0W/W7b30PTrMDRM254mZpL25uHs6xFDO9ERNh+LGbokpREOjq2lBuLmImXjTm9zpS74YGMP/E5lMIlrbEbb/SYpH03nPkYxg2IjwciI/sN80wbb0R4mICgwP4fUKtRNWwiACCstQopLdkDbt/7oVDQJGtrSN3u1NRQx2bAJO9vC2J4h8XZGFuJjaWQoy1q0CJpaShJnQUACGpvALZts/2YrqCkBGkXdgIAOvzDKLzjIXCIh2Es4edHeSSHD9Ok14v0FAHpKX2VkfsQvgB48yQAYFHXj8BN0oXMPv9GBa07ilmaJ/0uXGi79olYhu2mapaMBxEZSeGdpiYKZdjI2Ul3IqV4P71Yt450Qy41x/UYPv8cCtBiJ2fCrZjsQT2G2IPCMP2RnEw3X1vk6q+4gmLjAOW0eLCbGAB5O+ypfQJQeCchgcM7jO0olVRubKtg2yWa1MNRlHgpAbyhAfjxR7sc12kUFlKvLADagEjkjVni4gHJgw0UhumPQcI8kggMBGbOpOdtbZ7fhCwnB6iqoucTJtiufSIIlGw7fLjtnhiGAagKT6EALPR+s4YTl91terFunRvGXAfg88+7n54cdwcMPgEuHIx82EBhmP4ICKAwT1OTbccxFydcvZo8KZ6KvZNj29o4vMPYl9hY+5UbA6iPykRZ8qX+WnV1nuNFyc2lEDWAtuBo5A73PLFINlAYZiCSkmiVb8tq7LLLgFsvyWULAvCPf3hmE8GmJpNxZe4ZsoWGBpOnimHsQVAQGby2LizMODPZA70on33W/fTsxDthUHlY7gzYQGGYgRFzI2yd7H7xC0qwAyin5bXXgPx8W0fnPJqagD/+saf2SYAd3MVaLWnOcHiHsScpKXbN92qMHgFMm0Yvamt7ehLdkbNngZMn6Xl8PApHemaLGTZQGGYggoJItMmWPBSAbsCPPGJSXO3oAF58ESgrs3mIDkc0ToqL6XV0dA+NCKvh6h3GUcTE2N6VvDfmv3l39qIIAvDf/5pe33knBKVnFuyygcIwg5GaSp12jUbbjqNSAb/9LYV8AFJP/dOfKK7trlgyTl55xT4t2hsaKKExKsr2YzGMOdHR9vF8mjNyJDBlCj2vqXHfHlsnT1IjT4BC1PPmuXQ4tsAGCsMMRkIC9a3QaGw/lp8f8Ic/mETJ6uqAF16wW0KfXdFoLBsn9vJ4cHiHcRQqFV1jLS32Pa65F+XLL22TIHAEgtAj9wR3303fhYfCBgrDDEZICK1EbA3ziAQHU3hH7PNTWgq8/LJ93dG2otEAzz9vMk7UavsaJ21t9D1w7x3GUYjXl62eT3NGjwYmT6bn1dXAzp32O7Y9OHIEyMuj52lp1E/Ig/HMwBTDOJu0NEo8MxpJDMpWIiOBl14CVqwgwyc3F/jrX8ko8HHeZVlYosCxM8oe4XT/dg0WbnkeEY1knGiD1PhxwV/Retg646Tdkt3V2GjqGs0wjiA2lhYXLS327dx7552mKry1a0ms0B28FEZjX++JPeYqF+LZo2cYZ5GQAISG2tdlHB9PnhRRkvv4ceDtt+274huEY2eU0DSbmhMaG5uxYNOz3cZJW6Aa31/5Omp8E2U3OhQfgkAhHLHBIgBKkM3M9PgJlHFjQkPJCLZHaNacMWOAidRjC1VV7uNF2b8fuHiRnmdmAjNmuHY8doBnB4aRQng4ddttaLDvcdPTyWsi9vfYtQv44AP7dGOVgOg5USgERKIJS3Y+iyiNyXOyfclf0RWbIKvJoaVHeJiAaeMvGV5aLVVHcXiHcTRpaabSeHvSOxfFTqq1VmMwAP/3f6bXP/+5V+R2cYiHYaSSkQGcP0/Ggz0v/nHjgN/9jrRRjEbgu+/IIPK7y37nGIQIQYNb9j8LNJpyToJefRVLh8UBsPPk29BA7vfoaPsel2F6ExNDxr9OB/j72++448YB48cDZ84AFRXA7t326UtlLbt3Uy4bAIwda8qT8XDYg8IwUomPp5i2nRqR9WDGDOB//sf0+r//xfDcLfY/jwUCOjS4cstzPRNiX33VcfokHN5hnEVMDBn7jqiSu8tsAbF2reu8KF1dPb0n99zjFd4TgA0UhpFOZCQZKfaq5unNwoXAsmXdLy/f/w7SSvc55lyX8O/Q4LqfnkVkYxG94WjjRAzvsDgb4wx8fUnHyN55KADpGYmaRuXlruux9dNPpgaeEyeSZ8dLYAOFYaSiUFDXXa3Wcee4+WbgZz8DACgFIxbsfx2xlaccc67mZly5+TlEaYrotaONE4CMu5gY+wi9MYwUhg2j0Kkj8rrMc1HWrHG+F0WvB774wvT6nnuce34HwwYKw8ghIYGqbhwR5hFZtoy8KQBUxi7M+/Fl4MIF+56juRn4wx+6PSfaICcYJwCHdxjnExPjuGt2/HjK+QCobcX+/fY/x0Bs3WpSop42jXRavAieJRhGDmo1lS7aU0K7NwoF8PjjKL/U4t1X307lyBUV9jn+JeNEzDlpC1Rj+7WvOd44aW+nREUO7zDOJCKCErIdEeZRKPp6UZwlE6DTUQWRiJd5TwA2UBhGHgoFeQAc6UEBAJUKexesQFXMOHqt0VDfnvp6247b3NxDIVYbpMbGhX9FS3iijQOWQGMjVe9weIdxJgoFlfO3tTnm+BMnmjwXJSXO86Js2mTKh5s1i8LPXgYbKAwjl/h4SvR0ZC4KAINPALZlvYDGyDR6o6aGPCnWGkeicVJURK+jorD92tfQHOoE40Q8f2ame6huMkOL2FhSaHZEB2KFomdFjzO8KFotsH696fx33+3Y87kI1kFhGLnExJDLuLGRDBUH0ukXgh2LX8bNPz1NBkpxMfXteekleboOFowTvPoqWo4kAg7QsepDRweHdxjXERMDhIXRdeCI9gqTJgGjRlHLiuJiYONGqvAJDAQCAuhfPz+L5b+W2k0MxriTGzHxUul0Ufo87D+eDhzvf3uL7SY8ADZQGEYuSiV5ApzUbr0jKMrUt0ejAXJygL/9DXj2WWl9e5qbqStxL+MEiYnAEYcO3URDA90kYmOddEKGMSMgAEhOBs6dc4yBIuai/PnP9Pq99/puo1SajBXx38BABDQHYjIC0eUTCL1PIPS+l/71CUCXTyA6fS/97dL7gkKJ0We+BgAYFUocHnM3tO3SdE96tJvwANhAYRhrGDaMVkQdHTTZOON8L74IPPccJZseOQL861/Ak08OLMokGidijw5z48SZtLQAU6dyeIdxHUlJwKlT9leCFpkyhXJRzp+3/HejkUIzvULDtvgUL2YuRFdcIoIweAm1ry9M7SY8BDZQGMYaRKn2xkbn9ZQZPpyqb158kdQjf/qJVDLvv9/y9u5inOh0ZMxxeIdxJTExFJJtb3dMaFahIK/mjz/StdfeTo+ODnqIr83fsyVXxccHw5+5HcPjXNwHyIGwgcIw1qBSkcGwZ49zm95NmAD89rcU4jEaga+/JiPl5pt7bucuxglA4Z3oaA7vMK4lKorUoJuaZBso7R3A599I8f5FA753AlKiSIIAlUGHrtYO+Og7EKrU4rqZbZaNmt4GjsFAvX/i4mR9Dk+DDRSGsZbERMoB6ew0dSN2BrNmAY88ArzzDr1evZoSAK+6il67k3EijmfiRGn5MgzjKJRKavi5Z4/kXXx9AbQDgqCA1u7J5AoAgYB/IOAPKMMEYKz3ekOsgWcMhrGWuDjyDDQ0UOmxM1m8mBJm//tfev2vfwGhocCYMe5lnOh0NMsnJbnm/AxjTloacOwYleqHhAy6+bTxRhyVWWFjDZ6YH+IM2EBhGGvx9aUV2f79zjdQAOC228hI+e47Cve88QaFUcrK6O9RUcArr7jOOAEoR0dU32UYVxMbS6JtubmSDJT0FAHpKezVcBUs1MYwtpCU5DgBqMFQKIAHHgDmzaPXnZ19jRNXey40GirJ5vAO4w4oFCbVV53OtWNhBoVnDYaxhbg4U+KdgyTcB07QU0GR/hvMu9CGYWVHAQDawChsX/AaWo4mAUcHP7bD6Owkw8TVRhLDmJOcTBVlNTX0nLFMa6tjNGNkwAYKw9iCvz+5jI8etbuBIj1BzxfbZj6H6Sc+QFB7PQ5P+iWa/ZJkKcQ6RMBJrN7h8A7jTvj4AOPGUS8bg4G1eSzR3EwhsJEjXToMNlAYxlaSk8lA6eqyayhDXoKeP05mPdr9Sopwk4jDEvSam0nu29PkKxnvJz2dFhT19Vz+bonqarp2XdzYkw0UhrGVhARq6a7R2NUl6tEJeno9rUw5vMO4I0FBVPG2ezcbKL1pb6eF1pgxrh4JJ8kyjM0EBNCKrKHB1SNxHxoaKFHXFdVNDCOFzEwqzddoXD0S96KqCkhNdW313yXYQGEYeyAm2xk81ONhbzQaUtrl8A7jrqjV9ButqXH1SNwHvZ5C1ePGkbCdi3H9CBjGG0hIIDVXXo2ZwjtcIcG4O6NH02+1w5HlbB5EdTXNZamprh4JADZQGMY+BAfTRd3Y6OqRuJ7GRiq95vAO4+4kJpIhXV3t6pG4HoOBSovHj3cbzycbKAxjL1JTyT1qS4dSb6CpiRR2ndmfiGGsQamkcEZHB127Q5m6OkoYzshw9Ui6YQOFYexFQgJ1Fm5udvVIXIdeT5M+h3cYTyE1lbx9dXWuHonrEATyfI4dK7vTsyNhA4Vh7EVoKLmMh3KYp6mJwjsJCa4eCcNIIyCAbsxNTXSjHoo0NZFUwogRrh5JD9hAYRh7kp5OEu9DeaLLyCCFXYbxFDIy6Abd1OTqkbiGmhpSjY2IcPVIesAGCsPYk4QE8qS0tLh6JM6nq4uasXF4h/E0IiLoBj0US45bW4HAQGDUKFePpA9soDCMPYmIoEZkQ1G0rbGRPj+HdxhPZMQICvdota4eiXOpqiIPkhv2zGIDhWHsTUYGtXIfamEeMbwTEODqkTCMfBISgLQ0umEPFTo6yOs5diz962awgcIw9iYhgXRR2tpcPRLnIZZocniH8VQUChJuMxggsUOn51NVBaSkuG3PLDZQGMbeiCJlQynMo9FweIfxfFJT6Tc8FHJR9HpK6L/sMlLTdUPYQGEYe6NQUI+PoRTLbmig8E5goKtHwjDW4+tLwm0tLd4vuFhbSwuptDRXj6Rf2EBhGEeQkECCR0MhzGMwUL4Nh3cYbyA9nTpxe7MH1GgkQcnx491a8ZkNFIZxBGo1yUYPBdE2FmdjvInQUMpF8WZl2fp6UzdnN4YNFIZxBEolkJk5NDwojY3kJnYjiWyGsYkRIyjR3Rv1jASBDJRx4+gzujFsoDCMo0hIoJLb9nZXj8RxGAzkLk5JcfVIGMZ+xMRQqMcbuxxrNEBYmNvJ2luCDRSGcRQxMeRG9eYwD1fvMN6IQgGMGUP/6nSuHo19qakh1dioKFePZFDYQGEYR6FS0SrFG93EIg0N5D1xc1cxw8gmKYmaf3pTyXFbG/XJckNZe0uwgcIwjmTYMMqS97ZVGEDhHYPBrcsUGcZqfHwoT0Orpd+5N1BVRaGr+HhXj0QSbKAwjCOJjfXeME9zM4d3GO8mLY1CtfX1rh6J7YiLJDeVtbcEGygM40h8fKiUT6Nx9UjsjxjeCQlx9UgYxjEEBVEuSkOD5/fWqq6mkJUH6RWxgcIwjiYxkQyVzk5Xj8R+GI3Uf4fDO4y3M3w4Vb00N7t6JNbT1UXVhOPH01zkIbCBwjCOJj6eMua9Kcyj0QDh4RzeYbwftZo0jTw5WdYDZO0twQYKwzgaX1/vC/M0NJCrODTU1SNhGMczciR5HjxR08hoJLXnceNIl8mDYAOFYZxBUhKpy3pDG3ejkaoa0tNdPRKGcQ5i7oYnCrc1NJi8QB4GGygM4wzi46nkuKTE1SOxneZm8pxweIcZKiiVVP3S2Un5HJ5EXR0l+nqgt1N2tkxnZyc++OADbNu2DS0tLRg+fDiWL1+Oyy+/XNL+27dvx7p163DhwgX4+PggNTUVy5cvx9SpU2UPnmE8Bn9/ICsL2LgRqKggY8VTaWyk1VhYmKtHwjDOIy0NiIujfA5PMc41GjJMRo509UisQrYH5bXXXsPatWtx9dVX44knnoBSqcQzzzyD06dPD7rvhx9+iJdeegmxsbF47LHH8MADD2D48OGo8+aukQwjkpAAzJkDdHRQTNgT0etpFZmR4eqRMIxz8fcnL0pTk+eUHFdX02IiOtrVI7EKWR6U7OxsbN++HY888gjuuusuAMDixYuxbNkyrFy5EitXrux333PnzuHjjz/GY489httvv922UTOMpzJqFE1we/dSwponJa0ZDEBhISX8pqa6ejQM43yGDweOHSMvorv3stFqKUF/zBhXj8RqZHlQdu3aBZVKhaVLl3a/5+/vjyVLluDcuXOoHiCB6Msvv0RUVBRuvfVWCIIArVZr/agZxlNRKICpUymjvqjIcyS0BQG4eJGSBRcsAAIDXT0ihnE+4eEULqmtdfVIBqeqisJSnhKOsoAsAyU/Px9JSUkI7tUYbMwlC62goKDffY8dO4bRo0dj3bp1WLp0Ka655hrcdNNNWL9+vRXDZhgPxtcXmDuXvBAXL7p6NNIoKQEiI4ErryR5e4YZqowcSZ7PtjZXj6R/Ojup2m7cOErw9VBkhXjq6+uhVqv7vC++118uSUtLCzQaDc6ePYvjx49j2bJliIuLw+bNm/H222/Dx8cHN954Y7/nraurQ71ZL4Ti4mI5w2YY9yMkhJJmv//e/ZNmq6rIqJo/n5IEGWYoIwqeFRRQyMcdEWXtU1JcPRKbkGWg6HQ6+Pr69nnfz8+v+++WEMM5Go0GL7zwAhYuXAgAmD9/PpYtW4ZPPvlkQANlw4YNWL16tZyhMoz7Ex9PRsqWLRTTjox09Yj60tBA4lRXX+1xKpQM4xAUCsrryMujpHEL90SXYjBQ/slll7nf2GQiy0Dx9/eH3oLQVOelHiP+/v797gcAPj4+mD9/fvf7SqUSV155JT788ENUV1cjrp/V2dKlSzF79uzu18XFxXjllVfkDJ1h3JMRI8g42bOH3MbulNvR0kJdXLOygNGjXT0ahnEfUlIot6O6mkQY3YnaWurA7AVCirIMFLVajVoLyUFi+CW6n1KmsLAw+Pn5ISQkBCqVqsffIi+tGltaWvo1UKKjo/s9NsN4NGLSbFMTcOoUxbd7XSMuob0dKC8HZswApkzxmPbsDOMUfH3JQ7FlC+V6uEuehyDQXHLlle612LESWd9qZmYmysrK0NYrOSg7O7v77xZPolRixIgR0Gg0fTwwYt5KBCfeMUMVHx/SR0lLo6RZV2ss6PVUYTRhAjBzpvtMvgzjTqSnk4S8WX6ky2looFCxB8raW0LWzDN//nwYDAZs2LCh+73Ozk5s2rQJY8eO7faAVFdX90lkXbBgAQwGA7Zs2dL9nk6nww8//IC0tDT2kDBDm+BgYN48KmMsL3fdOEStk5EjKbTj4TFshnEYISEU+mxocPVITNTVkdZSeLirR2IXZIV4xo4diwULFmDVqlVoampCYmIitmzZgqqqKqxYsaJ7u1dffRUnT57E7t27u9+78cYbsXHjRrz55psoLS1FXFwctm7diurqarz22mv2+0QM46nExVH58ebNrkmaFQQyTpKSWOuEYaSQmUmh2ZYW1/e6aWmhhc6oUa4dhx2R3Yvnueee6zYuWltbkZGRgddffx2TJk0acD9/f3+89dZbWLlyJTZt2oSOjg5kZmbi9ddfx/Tp060dP8N4F2LS7O7dJK0dFOS8cxcXk8v6yiu9ZgXGMA4lJobaPmRnu95Aqa4m3ZPYWNeOw44oBMHVAW/55Obm4sEHH8R7772HUV5kLTIMAOqW+tNPwMmTZLD4yF5HyKeigv699lqP105gGKdSVAR88w15HvupZHU47e1AZSXws5951fXL2W8M4274+ACzZ9PKzBlJs/X1pDw5b55XTW4M4xSSk0kUbYBWLw6nqoqUqd2t5NlG2EBhGHdETJqNjHRs0mxzMyX5zZ7NWicMYw0qFYVWOjpc01tLryevq4fL2lvCuz4Nw3gTMTGUNGswOKZSQKslt/D06cAgOWQMwwxAejoQHU1VNM6muppE47xQ6ZkNFIZxZzIzSSyttpYMCnvR2UlJsRMm0PG9bOXFME4lMJDk7xsanKtjZDAAra3A+PFeKQnAsxLDuDtTpgATJ5JB0dVl+/FErZPRo8lD44UTG8M4ncxMqn7TaJx3zvp6UyWRF8IGCsO4OyoV5YgMH06GhS0rNFHrJDWVuhOz1gnD2IeoKDJSamqccz5BIANl7FjnyhE4ETZQGMYTCAqipFm1Gigrs/44RUV0jAULgLAwuw2PYRiQSJqvL5X9OpqmJiAigqQIvBQnCCwwDGMXoqNJfn7zZlo5qdXy9q+ooI7JV15JbmGGYezLsGFUdpybS8JtSiV5QAd7WNOMs6YGuPxy5ytOOxE2UBjGk8jIAK64Ati5k8IzUl27dXVUjrhoEU2gDMPYH6WSrs+ICCo77uwEdDp6GAymf41GyicTn/cO2wpCX+NGqSSNJJWK9gsM9CpZe0uwgcIwnsakSeTePX6c8lIGS3JtbqbtFyygJoAMwziOhAR6mCMIZFR0ddFD1C7p/dz8tWjcdHTQv52dPbVWMjOpf5cXwwYKw3gaKhUwaxZVC1y8SDHo/lzEotbJzJlUUswwjPNRKMj7YY+2FQYDGTE+PtaFhjwITpJlGE8kMJCSZqOjgdJSy9uIWieTJrHWCcN4CyoV5ZI5o0eXi+EZi2E8FbWakmYVir4KlqLWydixwJw5Q2IyYxjGu2ADhWE8mfR0Ct80NABtbfSe0QhcuEDS1/Pm0WqLYRjGw2ADhWE8nYkTSW22tJRi00VFlDy3YAGVOjIMw3gg7PdlGE9HqSQvikYDnD0LxMeTcRId7eqRMQzDWA0bKAzjDQQEUD6KwUDVOomJrh4RwzCMTbCBwjDeQlQU8LOfcbUOwzBeAc9kDONNsHHCMIyXwLMZwzAMwzBuBxsoDMMwDMO4HWygMAzDMAzjdrCBwjAMwzCM28EGCsMwDMMwbgcbKAzDMAzDuB1soDAMwzAM43awgcIwDMMwjNvBBgrDMAzDMG4HGygMwzAMw7gdbKAwDMMwDON2sIHCMAzDMIzbwQYKwzAMwzBuh4+rB2ANOp0OAFBcXOzikTAMwzAMI5fU1FQEBAQMuI1HGihVVVUAgFdeecXFI2EYhmEYRi7vvfceRo0aNeA2CkEQBCeNx240NTXh8OHDSEhIgJ+fn12OWVxcjFdeeQXPP/88UlNT7XJMb4a/L+nwdyUP/r7kwd+XPPj7ko4jvyuv9aBERERg0aJFDjl2amrqoFYdY4K/L+nwdyUP/r7kwd+XPPj7ko6rvitOkmUYhmEYxu1gA4VhGIZhGLeDDZRLqNVqLFu2DGq12tVD8Qj4+5IOf1fy4O9LHvx9yYO/L+m4+rvyyCRZhmEYhmG8G/agMAzDMAzjdrCBwjAMwzCM28EGCsMwDMMwbgcbKAzDMAzDuB0eKdTmaE6ePIkvvvgC+fn50Gg0CAkJQWZmJu677z6MHz/e1cNzO44dO4YffvgBp0+fRm1tLaKiojBlyhQ88MADiI6OdvXw3I66ujqsW7cOOTk5OH/+PNrb2/H2229j8uTJrh6aS+ns7MQHH3yAbdu2oaWlBcOHD8fy5ctx+eWXu3pobolWq8UXX3yB7Oxs5OTkoKWlBc8++yyuvfZaVw/N7cjJycGWLVtw4sQJVFVVISwsDOPGjcPy5cuRnJzs6uG5FRcvXsRHH32E3NxcNDQ0ICAgAKmpqbjrrrswe/Zsp46FPSgWKCsrg1KpxI033oinnnoKd9xxBxoaGvA///M/OHTokKuH53b85z//wYkTJzB37lw8+eSTWLhwIXbs2IHly5ejvr7e1cNzO0pLS/H555+jtrYWGRkZrh6O2/Daa69h7dq1uPrqq/HEE09AqVTimWeewenTp109NLdEo9Fg9erVKC4uRmZmpquH49Z8/vnn2LVrF6ZOnYonnngCN9xwA06dOoXly5ejsLDQ1cNzK6qqqqDVanHNNdfgiSeewL333gsAePbZZ7FhwwbnDkZgJNHe3i7ceOONwtNPP+3qobgdJ06cEAwGQ5/35s6dK6xatcpFo3Jf2traBI1GIwiCIOzYsUOYO3eucPz4cRePyrWcO3dOmDt3rvD55593v9fR0SHceeedwsMPP+zCkbkvOp1OqKurEwRBEHJycoS5c+cKmzZtcvGo3JPTp08LnZ2dPd4rKSkRFi5cKLz00ksuGpXn0NXVJdx///3CPffc49TzsgdFIgEBAQgPD0dra6urh+J2TJo0CUqlss97YWFhKC4udtGo3JegoCCEhYW5ehhuxa5du6BSqbB06dLu9/z9/bFkyRKcO3cO1dXVLhyde+Ln58diYxIZP348fH19e7yXnJyMtLQ0nqMkoFKpEBsb6/T7H+egDEBbWxv0ej00Gg22bt2Kixcv4he/+IWrh+URaLVatLe3Izw83NVDYTyA/Px8JCUlITg4uMf7Y8aMAQAUFBQgLi7OFUNjvBRBENDY2Ii0tDRXD8UtaW9vh06nQ1tbG/bt24dDhw5hwYIFTh0DGygD8MILL+Dw4cMAAF9fXyxdurQ7HscMzJdffgm9Xo8rr7zS1UNhPID6+nqL3gDxvbq6OmcPifFyfvjhB9TW1uKXv/ylq4filrzzzjvdOSdKpRJZWVn49a9/7dQxeL2BYjQaodfrJW3r5+cHhULR/fqhhx7CHXfcgZqaGmzZsgVdXV0wGAyOGqpbYMv3JXLy5EmsXr0aCxYswNSpU+09RLfCHt8XA+h0uj4ueIC+M/HvDGMviouL8eabb2LcuHG45pprXD0ct+S2227D/PnzUVdXhx07dsBgMEie6+yF1xsop06dwpNPPilp208//RSpqandr0eMGNH9fNGiRVi+fDlee+01vPzyy3Yfp7tgy/cF0IX//PPPIyMjAytWrHDEEN0KW78vhvD397c4+XV2dnb/nWHsQX19PVasWIHg4GC8/PLLUKlUrh6SW5Kamto9X11zzTX4zW9+g9///vd49913nbbQ8noDJSUlBc8++6ykbQdKOPP19cXs2bPx2WefQafTee2Eacv3VV1djaeffhrBwcF4/fXXERQU5IghuhX2+n0NddRqNWpra/u8L5aps54OYw9aW1vxzDPPoLW1Ff/617/4dyWD+fPn4+9//ztKS0uRkpLilHN6vYGiVqvtJlyk0+kgCAK0Wq3XGijWfl8ajQZPP/009Ho93nzzzSFz4dvz9zWUyczMxIkTJ9DW1tYjUTY7O7v77wxjCzqdDr///e9RWlqKf/zjH5wcKxMxzOrMSh4uM7ZAY2Njn/daWlqwa9cuxMbGIjIy0gWjcl/a29vxzDPPoK6uDn/7299YmZGRzfz582EwGHoIQXV2dmLTpk0YO3YsV/AwNmEwGPDiiy/i3Llz+POf/4zLLrvM1UNyWyzd/7q6urB161b4+/s71bDzeg+KNfzud79DTEwMxo4di8jISFRXV2PTpk2or6/Hiy++6OrhuR0vv/wycnJycN1116G4uLiHrkBgYCDmzp3rwtG5Jx9//DEAoKioCACwdevWbsXU++67z1XDchljx47FggULsGrVKjQ1NSExMRFbtmxBVVXVkMhlspb169ejtbW1OxS2b98+1NTUAABuueUWhISEuHJ4bsM777yDffv2YdasWWhpacG2bdt6/H3RokUuGpn78fe//x1tbW2YOHEiYmJiUF9fjx9++AElJSV47LHHnBq6VwiCIDjtbB7CV199hZ9++gnFxcVobW1FaGgoxo4di7vuugsTJ0509fDcjttvvx1VVVUW/xYfH4+1a9c6eUTuT1ZWVr9/2717txNH4j7odLruXjytra3IyMjA8uXLMX36dFcPzW0Z6Npbs2YNEhISnDwi9+SJJ57AyZMn+/37UL3mLLF9+3Zs3LgRhYWF0Gg0CAoKwqhRo3DzzTdjzpw5Th0LGygMwzAMw7gdnIPCMAzDMIzbwQYKwzAMwzBuBxsoDMMwDMO4HWygMAzDMAzjdrCBwjAMwzCM28EGCsMwDMMwbgcbKAzDMAzDuB1soDAMwzAM43awgcIwdmbz5s3IysrC5s2bXT0USZw4cQJZWVn48MMPHXaOrKwsPPHEEw47vqN54oknBlT/tQXx+xcfDz/8sEPOI4UPP/wQWVlZOHHiRPd7xcXFPcZ3++23u2x8zNCCe/EwQ56//vWv2LRpE8LCwvDVV1/Bz8/P1UOyO+JNhdsOuC+TJk3CpEmTEBsb6+qh9CA8PBzLli0DAKxbt861g2GGFGygMEMarVaLHTt2QKFQoLm5GXv27MHChQttOubcuXMxduxYqNVqO42SGQpMmjQJv/zlL109jD5ERER0j2vLli0uHg0zlOAQDzOk+emnn9De3o7bbrsNSqUSGzdutPmYISEhSE1N5U6yDMMwNsAeFGZIs3HjRqhUKtx99924cOECjh8/jqqqKsTHx/fY7sMPP8Tq1av7PY551+bNmzfjtddew7PPPotrr722e5usrCxMmjQJf/zjH7Fy5UocOXIEnZ2dmDhxIp566ikMGzYMRUVFWLVqFU6dOoWuri5Mnz4dv/71rxEVFdV9nBMnTuDJJ5/EsmXL+qy4Kysrcccdd+Caa67Bc8891/3afAwilvY/f/48Vq1ahXPnzkGpVGLKlCl4/PHH+3TF3b17N3bs2IHz58+jrq4OPj4+GD58OG699VbMnz9/4C99EFpbW/Htt9/i4MGDKCsrg0ajQXh4OKZNm4Zly5YhMTGxx/bi/83bb7+Nuro6/N///R9KSkoQEhKCBQsW4OGHH4a/v3+Pfbq6uvDFF1/g+++/R11dHWJiYrBkyRJceeWVuPPOO7u/Pyns2bMH69evR15eHjo7O5GYmIhrrrkGt99+O1QqlU3fBQD85S9/wZYtW/DFF19g9+7d2LhxIyoqKrBw4UI899xzqKurw4YNG3D48GFUVFSgra0NarUaV1xxBe6//35ERkb2OWZ1dTX+85//4PDhw+jq6sLIkSPxwAMP2DxWhrEnbKAwQ5aioiKcO3cOV1xxBaKiorB48WIcO3YMmzZt6nPjnjx5ssVjFBcXY8eOHX1ugP3R0tKCxx57DGq1GosXL0ZZWRn279+P3/zmN/jLX/6Cxx9/HKNGjcJ1112HvLw87Nq1C83NzXj77bet+owhISFYtmxZd+7Arbfe2u9nOn/+PP7v//4PkydPxtKlS5Gfn489e/agsLAQq1ev7vEZV61aBR8fH4wfPx5qtRpNTU3Yt28f/vSnP+HJJ5/ELbfcYtV4AfpOP/zwQ0yePBlz585FYGAgiouL8eOPP+LAgQN4//33+xiQAPDVV1/h8OHDmD17NqZMmYJDhw5h/fr10Gg0+NOf/tRj29dffx1bt27FsGHDcNNNN0Gv12Pt2rU4e/asrLG+++67+OyzzxATE4OsrCyEhITg9OnTWLlyJXJycvDSSy9Z/T305q233kJ2djZmzpyJWbNmdRsep06dwpo1azBlyhSMGTMGPj4+yM/PxzfffIPDhw/j/fff7+HNq6urw6OPPora2lpMnz4dI0eORHFxMZ5++ul+f+cM4wrYQGGGLN9//z0AYPHixQDIu/Dmm29i8+bNWLZsGZRKUwR08uTJfSbvxsZGPPTQQ/Dz88Mzzzwj6ZwXLlzA7bffjscff7z7vX/84x/45ptv8Pjjj+P+++/HbbfdBgAQBAErVqzAwYMHkZubi1GjRsn+jKGhofjlL3/ZnTswUI7DwYMH8cILL/TIwXn11VexdetW7N27t8f7f/vb3zBs2LAe+2u1Wjz66KP44IMPsGTJEgQEBMgeLwCkpqbi66+/RlhYWI/3jx8/jt/85jf45JNPLH7fx44dw3vvvYeUlBQAwIMPPohf/vKX+Omnn/Doo48iOjq6e7utW7dixIgReOedd7rH+Ytf/ALLly+XPM4jR47gs88+w/Tp0/Hyyy8jMDAQAP2//eMf/8C3336LnTt32uxRErlw4QI++OADxMXF9Xh/ypQp+PrrrxEUFNTj/S1btuAvf/kLvvrqK9x7773d769atQq1tbVYvnx5j/c3bNiAv//973YZK8PYA85BYYYkXV1d2LZtG4KDgzFnzhwAQFBQEObOnYvq6mocPXp0wP11Oh2ee+45VFVV4fe//z3Gjx8v6byBgYF9boLijT88PLyHh0OhUHT/7cKFC5I/m7VMnDixT4LwddddBwDIycnp8X5v4wSg7+/aa69Fa2srzp8/b/U4QkJC+hgnAN2I09LS+v2/ufXWW7uNEwDw9/fHwoULYTQakZub2/3+tm3bAAD33XdfDyMqOjq6x/c/GF999RUA4He/+123cQLQ/9tDDz0EhUKB7du3Sz7eYNx11119jBMAiIyM7GOcAGR4BwcH49ixY93v6fV6/PTTT4iMjOwR+gOA66+/HklJSXYbL8PYCntQmCHJ3r170dTUhCVLlvQIXSxevBjbtm3Dxo0bMX36dIv7CoKAv/zlLzh37hzuv/9+XHXVVZLPm5SU1MezIFb7ZGRkQKFQWPxbXV2d5HNYiyUPTUxMDADKCzGnsbERn332GQ4ePIjq6mrodLoef7d1vCdOnMCXX36J7OxsaDQaGAyG7r/5+vpa3GfkyJF93hNLds3HX1BQAACYMGFCn+0vu+wyyWPMzs5GYGBgv4nV/v7+KCkpkXy8wRgzZky/f9u1axc2bNiAvLw8tLa29vi+zP8vSkpK0NnZiSlTpvQJSyqVSowfPx5lZWV2GzPD2AIbKMyQRLypiOEdkalTpyImJgb79u1Dc3OzxZX8+++/jx07duCqq67C/fffL+u8wcHBfd4TEykH+ltXV5es81iDpVW4eH6j0dj9XnNzM371q1+huroa48ePx7Rp0xASEgKlUomCggLs3bsXer3e6nHs2LEDL774IgIDAzF9+nTEx8d3G3VbtmxBVVWVxf0G+v7Mx6/VaqFUKhEeHt5ne/Nk5MFobm6GwWAYMHm6vb1d8vEGw1KyKwB88cUX+Pe//42IiAhcfvnliImJ6TY+1q1b1+P/oq2tbcBj9fc+w7gCNlCYIUd1dTWOHDkCAAOqm27btq2Py3/z5s349NNPMX78/2/v7kKaeuM4gH9na0LZUnrZCixBC73ILbHErNGbXY9eLrraxhHWRVddREi3QkUF7iIvirL1xiAk0qnRG0UtFzZrQ1hagYwZWVvo1ovEtv+F7LC1Y/90bR7Y93O5s53zuAnne57f87IJJ06cyGk7Z5PsZUl9Sk5K3oByyel04tOnTxAEASaTKe3Y9evX8ezZs6zOf+XKFahUKly8eBHl5eVpxx49epTVuYGZIBaPxzE5OYnS0tK0Y+Fw+K/Ps3TpUigUCnR3d2fdpr/xe+8aMBNc7XY7VqxYgcuXL6cFjEQigVu3bqW9Pxnivn79KnmN2V4nWggMKFRw+vv7EY/HUVtbm3EDBGZu/P39/XA6nWkB5fXr1zh79izWrl2Ltra2BVtxdtmyZQCkyyijo6OSnykqKsqqVyNVMBgEAHHsTiqv15v1+cfHx1FRUZHx23z58gXj4+NZn7+qqgqjo6Pw+XzYsWNH2rG5zOKpqamB2+1GIBCQ/D/Kh8nJSUSjUdTV1WX0fvj9/ozSW3l5OVQqFd6+fYvp6em0Mk88Hp/zLCaiXGJAoYKSSCTQ29sLhUKB1tZWycGeABAIBDA8PAy/34/q6moEAgGcPHkSxcXFOHXqVMaTdz6tW7cOS5YsyShDhcNh2O12yc+o1Wp8+PAh46Y0H8kpvj6fD5WVleLr9+/fx8DAQFbnBgCNRoNgMIhwOCyWXKanp3H+/Pl/Uupqbm5GX18fOjs7sXXrVvH7CIVCc1rK/eDBg3C73Th9+jTa2toySkahUAiRSAQVFRVZt3k2ZWVlKC4uxsjICH7+/CmWwiKRiOTUdJVKhV27duHevXtwOBxps3h6enoQCARy1laiuWJAoYLi8Xjw8eNH6PX6WcMJMDN7ZXh4GE6nE9XV1bDZbJiamkJ9fb1kmaGkpCRvm6gtXrwYBw4cwLVr19DS0oKmpib8+PEDz58/h16vF3s4Um3evBl+vx/Hjx9HbW0tlEoldDod9Hr9nK+/b98+3Lx5E+3t7RgaGoJGo8G7d+/g8XhgMBjw9OnTrP6+/fv3o729HYIgYOfOnYjFYmJJrqqqShzkOl/19fXYu3cvHjx4ALPZjO3bt+PXr194/Pgxampq4HK50qaYz6ahoQEmkwlXr17F4cOH0dDQAI1Gg6mpKQSDQXi9XgiCkNOAUlRUBKPRCIfDAYvFgqamJnz79g1utxsajUacWp3KarXC4/Hg0qVL8Pl82LBhA8bGxjAwMIAtW7aI3zXRQmNAoYKSHBybusKrlN27d8Nms+Hhw4c4evSo2FU+ODgoOc1Vq9XmdZdXQRCgVCrhdDpx9+5daLVamEwmbNu2DU+ePMl4v8lkQjQahcvlgtfrRSwWg9lsnldAWb16NWw2Gzo6OjA4OIhYLIaNGzfi3LlzmJiY+CcBRalUoqurC93d3SgpKUFjYyOsVmvGgmvz1draivXr16O3txddXV1YtWoVDh06hLq6OrhcLskBw1IEQYBOp8Pt27fx6tUrRKNRqNVqrFmzBmazGc3Nzf+kvX9itVqhVqvR19eHO3fuoKysDHv27IHFYhE3+Uu1cuVKXLhwAR0dHXj58iXevHkj/n4ej4cBhWRDkUgkEgvdCCIiOejp6cGZM2dw7NgxGI3GvFzzT1sXyA13xaZ84kJtRFRwQqEQfn82+/z5M+x2OxYtWoTGxsa8t6mzsxMGgwFHjhzJ+7X/ZGxsDAaDAQaDYdYp3kS5wBIPERWcGzdu4MWLF9DpdCgtLcXExARcLhe+f/8Oi8UiuWJrrmi12rRSTHJxOblYvnx5Wvu4SzflC0s8RFRw3G43HA4H3r9/j0gkApVKhcrKShiNxryMGyGi/8eAQkRERLLDMShEREQkOwwoREREJDsMKERERCQ7DChEREQkOwwoREREJDsMKERERCQ7DChEREQkOwwoREREJDsMKERERCQ7/wGt1A4wl0keIwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyjklEQVR4nOydd5xU5fX/PzOzvbK9N9oCgrSVzlJUxIaKBVsUI9YYNcFINIkaozFGk6i/5GuCIqjRiKIiFkBEpPfeYdm+bGV3Z9vs7uzM/f1xuHNnYXfn3jt95rxfr3kxM3vLM8Pc557nlM/RCIIggGEYhmEYxoPQunsADMMwDMMwF8IGCsMwDMMwHgcbKAzDMAzDeBxsoDAMwzAM43GwgcIwDMMwjMfBBgrDMAzDMB4HGygMwzAMw3gcbKAwDMMwDONxsIHCMAzDMIzHwQYKw3gAP/30EzQaDV544QW7j6XRaDB9+nS7j9MXjhyvLzB//nxoNBoUFxfL3ic7OxvZ2dlOGxPDeDtsoDB+iUajgUajgVarxZkzZ3rdbsaMGZZtly1b5roBupni4mJoNBrMnz/f3UORjWg0WT+CgoKQnp6OW2+9Fdu3b+9xv7a2NvTr1w8ajQZ33nmni0ftXJYsWYKHHnoI48ePR1hYGDQaDX7/+9/b3O+bb77B9OnTER0djYiICIwfPx7vv/++C0bMMBIB7h4Aw7iLgIAAdHV1YcmSJfjzn/980d9Pnz6Nn376ybIdIzFu3DgcP34c8fHx7h7KRWRlZVkMq9bWVuzYsQMrVqzAF198gRUrVuCmm27qtv3y5cuh1+uh0WjwxRdf4Ny5c4iLi3P6ONevX+/0cyxcuBB6vR4xMTFITU3t0xgX+ec//4lf/vKXiIuLw913342goCCsWLEC8+fPx+HDh/H66687fdwMA7AHhfFjkpKSkJeXh6VLl/ZogLz77rsAgOuvv97VQ/N4wsLCMGTIEI80ULKzs/HCCy/ghRdewGuvvYbNmzfjueeeg9lsxsKFCy/afvHixdBqtfjNb36Djo4Ol3kKBgwYgAEDBjj1HJ988gmKi4tRX18vy3NSXFyMp556CrGxsdizZw/+9a9/4R//+AcOHTqEAQMG4G9/+1uvniiGcTRsoDB+zQMPPICqqip888033d43Go1YtmwZJk2ahGHDhvW6/+nTp3HPPfcgLS0NQUFBSE1NxT333IPTp0/3uH11dTXuv/9+JCUlITQ0FKNGjerzhthXnsILL7wAjUaDn376yebnPHv2LF588UVMnjwZycnJlrHeeeedOHbs2EXHzcnJAQC8//773UImYpirrxwUJd+J9WdYsWIFxo0bh7CwMMTGxuL2229HRUWFzc8mh1/84hcAgKKiItTW1lreP3LkCHbs2IHLL78cixYtQlBQkMUwVYPZbMbf//53DBkyBCEhIUhPT8evfvUrNDU1XbRtT/+3y5Yts3zPGzZswPTp0xEZGYmoqChce+21OH78uKLxzJ49G1lZWbK3f++999DR0YHHHnus29hiYmLw7LPPAgD+/e9/KxoDw6iFQzyMX3PHHXfg17/+Nd59913ceOONlvdXrVqFmpoavPrqqygoKOhx3927d+OKK65Ac3Mz5syZg2HDhuHEiRP473//i6+++go//PADLrvsMsv2dXV1mDRpEgoLCzFlyhRMmTIFlZWVePjhhzFr1iynfs5NmzbhL3/5C2bMmIGbb74ZEREROH36NFasWIFVq1Zh69atGDlyJABg+vTpaGxsxJtvvomRI0d2+15GjRrV53mUfici//d//4dVq1Zhzpw5mDZtGnbu3Inly5fj4MGDOHDgAIKDg+36/IIgWJ5rNBrL88WLFwOgJNfY2Fhcf/31+Pzzz7F582ZMnTpV8Xl+9atfYdOmTbjttttwww03YO3atXjjjTewefNmbNmyBSEhIbKO88033+Crr77C1VdfjYcffhjHjh3Dd999h927d+PYsWNO81z9+OOPAMiwuZCrr7662zYM43QEhvFDAAhpaWmCIAjC/fffL+h0OqGsrMzy96uuukqIiooSWltbhd/97ncCAGHp0qWWv5vNZmHIkCECAOG///1vt2N/8sknAgAhNzdXMJlMlvcfeOABAYDw5JNPdtt+9+7dQkBAgABAeP7557v9LSsrS8jKyurxMzz//PMCAGHDhg0XfbZp06Z1e6+6ulpoamq66BgHDhwQwsPDhdmzZ3d7v6ioSAAg3HvvvT2ee8OGDReNV813In6GyMhI4dChQ932ueOOOwQAwvLly3scQ29juvCzC4Ig/OEPfxAACP3797e8ZzAYhJiYGCE6Olpoa2sTBEEQvv76awGAcPfdd8s6p8i9994rABDi4uKE4uJiy/smk0mYO3euAEB48cUXu+3T0//t0qVLBQCCTqcTfvjhh25/++1vfysAEF599VVFY7vw2L/73e963SY+Pl4AINTV1fX49/DwcAGA0NraqmoMDKMEDvEwfs8DDzwAk8mE9957DwBQUlKCdevW4a677kJYWFiP+2zbtg0nTpzAxIkTcdddd3X727x58zBlyhScPHkSW7ZsAUAho48++giRkZEXhUXy8vIuOoajSUxMRGRk5EXvjxw5EjNnzsSGDRtgNBrtOofS78Saxx9/HCNGjOj23gMPPAAA2LVrl6JxFBcXW3JQfvOb3yA/Px9/+tOfoNVquyV4fvbZZ2hoaMC8efMQGhoKgDwHycnJWLFiBRoaGhSdFwCeeOKJbiEVrVaL1157DVqt1vL7ksPtt9+Oyy+/vNt7Dz74IADl34cS9Ho9ACA6OrrHv4vvi9sxjDNhA4Xxe8aPH48RI0bgvffeg9lsxrvvvguz2Wy5QfbEvn37AAAzZ87s8e/i+/v37wcAnDhxAm1tbRg1alSPk7+zdUsA4Ntvv8X111+PlJQUBAYGWvJKvv76a3R0dKCurs6u4yv9TqzJy8u76L2MjAwAUGwolJSU4I9//CP++Mc/4o033kBBQQHmzp2LzZs3d6vgEcM79913n+W9gIAA3HXXXWhvb8eHH36o6LwAMG3atIve69+/PzIyMlBcXIzGxkZZx3Hk98Ew3gobKAwDWq2XlJRg9erVWLp0KcaOHYvRo0f3ur24gkxJSenx7+L74g1J3D4pKanH7ZOTk9UOXRZvvvkmrrvuOmzduhX5+fl48skn8dxzz+H555+35J50dHTYdQ6l34k1/fr1u+i9gABKkTOZTIrGMW3aNAiCAEEQYDQacfbsWXz++eeYNGmSZZvjx49jy5YtGDJkCCZMmNBtf7FE+Z133lF0XsD2/69cz4Mjvw8l2PKQ2PKwMIwj4SRZhgHws5/9DIsWLcLDDz+MiooKPPfcc31uL07QVVVVPf69srKy23biv9XV1T1u39txtFotOjs7e/yb3NV4V1cXXnjhBSQnJ2Pfvn0XGRCOKhtV+p24E9F7cuLEiW5Js9YcOXIE27Zt62bY2KK6uhq5ubkXvS9+J57w2fsiNzcXdXV1OHXqFCZOnNjtb5WVlWhtbUV6enqvoU+GcSRsoDAMaMV6yy234MMPP0R4eDjuuOOOPrcXvSu9lfhu2LABADBmzBgAwJAhQxAWFoYDBw5Ar9dfdKPq7TgxMTE4dOgQjEYjAgMDu/1tz549tj4WAKoeamxsxNy5cy8yTlpaWiyhGWt0Oh0AZat1pd+Ju+jo6MCHH34IrVZrkai/kPLycqxduxbvvPOOIgNl48aNyM/P7/ZeYWEhysrKkJ2d3aNnxJOYOXMmtm7dijVr1lxkoKxevdqyDcO4Ag7xMMx5XnrpJXz55ZdYu3Ztjwml1kyePBm5ubnYsmULVqxY0e1vK1aswObNmzF48GBMmTIFABAYGIi77roLzc3NFyXJ7tmzBx999FGP5xk3bhy6urqwdOnSbu8vW7YMW7dulfW5EhMTERYWhr1796KlpcXyvtFoxBNPPNFj7klMTAw0Gg1KS0tlnQNQ/p24i88//xznzp3DVVddhSVLluDdd9+96PHpp58iPDwcn376qaKE0DfffBMlJSWW12azGb/5zW9gNpu75bp4Kvfddx+Cg4Pxz3/+s1tfoYaGBova8sMPP+ym0TH+BntQGOY8mZmZyMzMlLWtRqPB+++/jyuvvBLz5s3DDTfcgCFDhuDkyZNYuXIlIiMj8cEHH0CrldYAf/7zn7F+/Xq88cYb2LNnj0UHZfny5bjmmmuwatWqi87zy1/+EkuXLsUjjzyC9evXIyMjAwcOHMD27dtx3XXXXSQw1xNarRaPP/44/vKXv2DEiBG44YYb0NnZiQ0bNqC+vh4zZsyweDdExP4rmzdvxl133YXBgwdDp9Nhzpw5uPTSSx32nbgDMbyzYMGCXreJiorCrbfeimXLluG///2vRejNFpMnT8aoUaMwb948REdHY+3atTh48CDGjh2Lp59+2iHjV8K7775rqZoS9Xy+/vprlJeXAyDP3m9/+1vL9jk5OXjttdfw+OOPIy8vD/PmzbNI3ZeXl2PhwoUXeVYYxmm4u86ZYdwBrHRQbNGTDorIiRMnhLvvvltITk4WAgIChOTkZOGuu+4STpw40eOxKisrhfvuu0+Ij48XQkJChJEjRwpLly7tUVdEZPPmzcLUqVOF0NBQITIyUrjmmmuEgwcPKtJBMRqNwt/+9jdh6NChQkhIiJCUlCTcfffdQnFxsUXDo6ioqNs+p0+fFq677johNjZW0Gg03b6Dvsar5Dvp7TMIgm0tlgvpSwdF5OTJkwIAISkpSejs7OzzeFu3bhUACCNHjrR5bvE7PHPmjPD6668Lubm5QnBwsJCamio88cQTgl6vv2ifvnRQevqtCULP/7dyxtXbo7djrVq1SsjPzxciIiKEsLAwIS8vT1i2bJns8zKMI9AIgpXEIsMwDMMwjAfAOSgMwzAMw3gcbKAwDMMwDONxsIHCMAzDMIzHwQYKwzAMwzAeBxsoDMMwDMN4HGygMAzDMAzjcXilgdLe3o6TJ0+ivb3d3UNhGIZhGMYJeKWBUlJSYuk+yzAMwzCM7+GVBgrDMAzDML4NGygMwzAMw3gcig2UtrY2vPfee3jqqadw7bXXIj8/39KGWyl//etfkZ+fj0WLFqnan2EYhmEY30SxgaLX67Fs2TKUlJRg4MCBqk984sQJrF69GkFBQaqPwTAMwzCMb6LYQImLi8OXX36Jzz77DI888oiqkwqCgDfffBNXXXUVYmNjVR2DYRiGYRjfRbGBEhQUhLi4OLtOunbtWhQVFeGBBx6w6zgMwzAMw/gmAa4+YVtbG/7973/j7rvvttvQkYvJZILRaHTJuRjvIjAwEDqdzt3DYBiGYS7A5QbKsmXLEBwcjNtuu032PnV1dTh37pzltVz9E0EQUFVVBb1eD0EQFI+V8X00Gg2io6ORnJwMjUbj7uEwDMMw53GpgVJWVoYVK1bgueeeU5Qcu2rVKixbtkzx+fR6PRobG5GQkIDw8HC+ATHdEAQBra2tqK2tRWhoKPr16+fuITEMwzDncamB8tZbb2H48OGYPn26ov3mzJmDyZMnW16XlJTgpZde6nMfQRBQU1ODqKgoxMfHqxku4weEhoaio6MDNTU1iI6OZiOWYRjGQ3CZgbJ3717s3LkTL730EiorKy3vm0wmdHR0oLKyElFRUQgPD79o3/j4eMVGhslkgslkQlRUlN1jZ3ybqKgoNDU1wWQyISDA5VFPhmEYpgdcNhvX1NQAAH7/+99f9Lfa2lrMmzcPjz32mKLclL7o6uoCAL7hMDYRfyNdXV38e2EYhvEQnDYb19XVobW1FWlpaQgICMCYMWPw8ssvX7Tda6+9huTkZPzsZz9D//79HT4OdtkztuDfCMMwjOehykD5/PPP0dLSYqms2bp1q8VDcvPNNyMiIgKLFy/GmjVrsHz5cqSkpCApKQlJSUkXHev//b//h5iYGEydOtWOj8EwDMMwjC+hykBZvnw5qqqqLK83bdqETZs2AQBmzZqFiIgIx4yOYRiGYRi/RJWB8umnn9rc5tlnn8Wzzz7rkGMxHoogAGYzwEJnDMMwjINRLHXPMADQ0dGBRQsXIjUtDaGhoRg/fjzWrVsna9+jR4/i1ltvRf/+/REWFob4+Hjk5+fj66+/7vk8ixYhNTXV5nn27t2L2bNnIyoqCpGRkZg1axYOHDhgz8dkGIZh3AQbKIwq5v/sZ/j7//t/uGvuXLz54ovQAbjmmmuwZcsWm/uWlJSgubkZ9957L95880384Q9/AEB6N4sXL+5+nvnz8fe//x133XUX3nzzTeh0uh7Ps2/fPkyZMgWFhYV4/vnn8dxzz+H06dOYNm0aTp486bDPzTAMw7gIwQs5ceKEMHXqVOHEiRO9bmMwGIRjx44JBoPBhSPzD3Zu2iQAEF57/nlBaGgQhHPnBENRkTAgJ0eYOGGCqmN2dXUJI0eOFHJzc6Xz7NxJ53ntNct7BoNBGDBggDBx4sRu+19zzTVCTEyMUFdXZ3nv7NmzQkREhDB37tw+z82/FYZhGM+DPSheTP/+/XH33Xdf9P6MGTMwbdo055y0owMrli+HTqfDgz//Ob2n1SIkOhr333EHtu/YgbLTpyk/RQE6nQ4ZGRlobGy0vLdixQo6z4MPWt4LCQnB/fffj+3bt6OsrMzy/ubNm3HFFVd0a0CZkpKCadOm4ZtvvkFLS4u6z8sw/ozZDDQ3A2fPAq2t7h4N42ewKpWX0tLSguLiYjzyyCMX/e3QoUO48847e9zPaDRCr9fLOkdsbCy0WisbtrMTaG7G/sOHMXjgwO4qvRoNxo0bBwA4sGMHMpKTgfBwQNu7Ddza2gqDwQC9Xo9Vq1Zh9erVmDdvnuXv+/fvx+DBgy9SA7ac58ABZGRkAKBcldDQ0IvOERYWhs7OThw5cgQTJkyQ9bkZxu8wmYCWFno0NwNNTUBdHXDuHNDWBhgMwNChwJVX9nlNM4wjYQPFSzly5AgEQcDIkSO7vV9eXo76+npceumlPe63detWzJgxQ9Y5ioqKkJ2dTS+MRpq0TCZU1tQgpQdNG/G9szU1tNrq6gIiIoDAwB6Pv3DhQvznP/8BAGi1WsydOxf//Oc/LX+vrKxESkrKxec5/97Zs2ct7+Xm5mLHjh0wmUzQna8q6uzsxM6dOwEAFRUVsj4zw/g0XV2SESIaIrW1QH09GSHt7WSsAEBICD0iI+lx7BiQkwMMHuzez8D4Df5noOTlAVYaLm4nORnYs0fxbkeOHAGAiwyUgwcPAkCvBsrIkSNlV9skJyfTk64ui3GC4GAY2tsR3EM36pCQEACAobMTCA4GOjpon4gIen2BYuuTTz6JW265BWfPnsWnn34Kk8mEzs5Oy98NBgOCg4N7P4/BYHnv0UcfxSOPPIL7778fTz/9NMxmc7e+T9bbMozPYzSSASIaI3o9UFMDNDaSIWIwUBhWo6FrMzQUiI4GkpKA3to9NDYCu3cDaWnkHWUYJ+N/BkpVFeADq+nDhw/3qM576NAhaLVaDB8+vMf9YmJicMUVV8g/kclExonRSKspAKEhIeiwMiRE2tvbLX+HRkPbd3bS5BgeDoSFdXMPDxkyBEOGDAEA3HPPPZg1axauv/567Ny5ExqNxtJpuNfzWIV0Hn74YZSVleG1117D+++/DwDIy8vD008/jZdffpnFAxnfpbWVvCDNzWRE1NbSNSd6RERDJDSUHjExQEqKcv2i1FTg1CngwAHAqrs8wzgL/zNQRK+Ap6ByPEeOHLnIewJQXkb//v177AoNUNijvr5e1jkSYmOha20lI8PKk5GSnIwKq47UIpXV1QCAVOvPFBQkxbfFkE8vK7RbbrkFDz30EE6dOoXc3FykpKT0GJoRvSKpqand3n/55Zfx1FNP4ejRo4iOjsaIESMsYoGD2S3N+CJGI7B2LVBcTIaIVksLg9BQIC6OnjsqZ0Sno/nq4EEgO5s8KQzjRPzPQFERTvFEDh8+3C2hFADMZjN+/PFH5Ofn97rftm3b5OegHDyI7MTEi8Izo4YPx4bNm9HU1NQtgXXn+e921IgR3Q+k09Ek2d5ORkpkZDeDR0QMw4hJvKNGjcKGDRsuPs/5vJJRo0ZddIyYmBhMmTLF8vqHH35Aenq6xVPDMD7FmTNAUREZDD2EXR1OTAwlzu7eDSQm9ppfxjCOwP8MFB+gpqYGtbW1Fk+CyFtvvYW6ujqMuNBAsEJWDorZDBgMSI6KoknvgtyRW264Aa//859Y/P77eOqXvwRAVTRLP/4Y4/PykJGeDgBoa2tDaXk54uPiEC+u5jo7UVNQgMTsbAr5nD+20WjEBx98gNDQUAwbNozOc8steP3117F48WI89dRT0nmWLsX48eMtFTy9sXz5cuzevRuvv/5692okhvEFOjqA/fvJW+IK40QkMxMoKKCk2R68uAzjKNhA8UIOHz4MAPj+++/x6KOPYsiQIdixYwfWrl0LgCTfd+7cifHjx1+0r80cFEGgWHZbG016PdzYx+fl4dYbb8QzL76ImtpaDOzfH+//738oLi3Fkrfesmy3a98+zLj+ejy/aBFe+O1v6c2gIDz09NNoampC/pQpSMvJQVVNDT766COcOHECf/vb3yz5IuPHj8ett96KZ555BjU1NRg4cCDef/99FBcXY8mSJd3GtGnTJrz44ouYNWsW4uLisGPHDixduhSzZ8/GE088oej7ZRiv4NQpyqcbMMC15w0KooTavXvJWImJce35Gb+BDRQv5PDhw9DpdPjkk0/w+OOPY+nSpZg6dSo2btyIG2+8EQcOHECgGterIFCuSB/GicgHb7+NP6Sn48NPP0VDYyMuveQSfPPJJ8iXkTw3b+5cLPnwQ7y9ZAnONTQgMjISY8eOxauvvoo5c+Z0P88HH+APf/gDPvzwQzQ0NODSSy/FN998c1EYKy0tDTqdDq+99hqam5uRk5ODl156Cb/+9a8R0FtVAsN4K62t5D2JjOy96saZJCUBJ09SyPyKKy7ysjKMI9AIgkLJTw/g5MmTeOCBB/DOO+8gNze3x23a29tRVFSEnJwcS1mqr7BgwQJs2rQJp06dctxBBYEmvZYWiiu7okOxIFACrkZDybOhoW6Z6Hz5t8L4KHv3AuvXkyaJu7qJt7RQ6fJ117nei8P4BRyY90IOHz5sydNwCIJAXpPWVtcZJ4CkwaDVUilzc7MkEsUwTM/o9VRJEx/vPuMEoEWFTgfs2kUlzQzjYNhA8TIEQcCxY8cca6C0t9NqSKdzz4QXEEAhpbY2mnyNRtePgWG8hSNHqJImPt7dIwHS04GyMuDQIXePhPFB2EDxMoqKitDS0uI4A6W9nTwXWq17YtkiWi15U4xGSe3S+6KPDONc6urIQElM9Iy8D52OxrJ/v2cpdDM+AWcPehn9+/eHw9KGOjrIONFoPEPPQAz5iH1/urpsNhxkGL/i8GG6Zi8QKXQrcXHA6dOkjXL11e5d6DA+Bc/8/kpnJxkBguAZxok1gYE0ybW2csiHYUQqK4Hjx0mm3tPIzKSy55Mn3T0SxodgA8UfET0UZrNrBZ6UoNNJDQfFRoUM468IAuV5GAyAlaqyxxAcTEmze/bQ9cowDoANFH/jgs7EHo3YcNBoJEOFYfyVsjLyTnhy/5vkZCo73ruX88cYh8AGij8hGidGo+cbJ9bodLRyNJvdPRKGcT0mE3UQNpspJ8tT0WrJgDp8GCgpcfdoGB/A5w0UL9Shcw4mEyXXXdCZ2CsICCCjqrPTKYfn3wjj0RQVUVNAT/aeiERG0r+7drHXk7EbnzVQRHnzrq4uN4/EAzCbyTjp6LioM7FXoNHQw0mlx+JvhCXxGY/DaKQS3oAACnd6A+np5EE53zOMYdTiszOyTqeDTqdDU1MTIkWr3h8RjZP2dscaJ2LfHq3WNW7nwEDyoBiNDk/sbWpqsvxeGMajKCigm33//g47ZGGpBnsPa51YHKcDzEMRePIs8uadRM6VPbcjYRhb+KyBotFokJiYiMrKSgQHByM8PBwab/Mc2IvZTOqsBgPd4B05I507R2XAABkosbHO98yIpdHnux3biyAIaG1tRVNTE1JSUvzv98F4Nu3t5D0JD3eoFMDew1rom5z9W9cB0GHP52eQM3OgeyX5Ga/FZw0UAIiOjobBYEBdXR1qa2vdPRzXIggU0unoIPewI2++ovqsSF0daTRERTnXSDGb6XOFhTlswtNoNOjXrx+io6MdcjyGcRgnTgAVFcCgQQ49rLhO0WgEhDopamRoBwRBA6Ohi0TchgxxzokYn8anDRSNRoOUlBQkJibC6G9iX2VlwObNpPLoyBBMQQHw5ptUEQSQoSBqlGRmAo8+CjjzZl9YCOTlASNHOuRwgYGBHNphPI+WFmoI2K+f07wPoSHAnTc6R1/o45U6tBlAC5Y9eygvxUGeT8Z/8GkDRcQv8wsKCii0ExwsGRP2UlcHPPcc9coBgOuvByZOBF5+mcI9JSWk1fDCCzQhOYPQUODYMWDECPKkMIwvcuwYUF0N5HpA/oYg0CJETRK5TgecPQvs2wfk5zt+bIxP47NVPH5NXR1QXAwkJDjumB0dwJ//LBknl14K/PznwPDhwKuvSueqqQGefpomWGcQG0v5L0VFzjk+w7ibxkZSjY2Pd30fqq4uurZ+/BFYsgT43e+Au+4Cbr4Z+OILdcdMTaWKnrIyx46V8Xn8woPidxQVUY6IAi9Gn5n9goCJm95GzpkCAEBLRBLWDv8tOr4Wq2lyEHr53zDt+xcQW18ItLTA9Ls/YFv+UyjLmdLtUIGBQN4IM3IyVZYL63QUsjp6lFaXXBrM+BqHDwMNDU73ngR2tgJHCmi+KCykf0tLe/e4/ve/wKRJpBirhOhoWjTt3g0kJXluew3G4+DZ3dfo6KCGYjExinbrK7N/+ImVyDnzIwDAqAvG91OeQ4PQDzBI27Rp4vH1zL9i5pZXkFG1FzqTEVM2/AU7GxfgyJCbpA0NwJ7DWuRk2hH7TkykibS01KHllwzjdmpryfhOSnKsJEBdncUQmbK1GP3OFSKqpUre/qGhFC7u6gI++ghYuFD5GDIzyQg6ehQYPVr5/oxfwgaKr1FaSpNRTo6i3XrL7E+q2I9xB5ZYXu/I/xXaU7MRhh48IKGh2DL7OYzb+k8MOL0OGgiYsP8d9Ouswb5xC2Do0FJmv735ykFBNHkfP06fk8uDGV9AECgxtqVFvWpsVxdV/hQWSl4R0aN6nsze9hWl6nNy6NG/P/0bGAg8+CAdY+NG4MYbgQEDlI0rMJAWTXv3krESF6fu8zF+BRsovoQgUJKqTqc69NEts7+qClj4KiCc74Fz662Y+rNJAPryfmiAmx4D/hcHfPIJAGDI0a8wJLoWnwz8DVqMDpLZT0qiPJvqauUuZ4bxRM6epes3NVX+Pg0NwNatkiFSUiJL78ioC4Y+NgfxeVbGSFZW720wbruNclIA4IMPgD/+Uf4YRRISgFOnqKrnyitdn1/DeB1soPgStbU0QSUm2n8sg4Gqc8SVV14eJcvJQaMB7ryTkvz+7/9Iv2TbNsws+B3WTnkOCHWAsm9EBK0UT51iA4Xxfsxm4OBBFFYGYe/hfrK8jFqTEdd+sQiRzX2Hagyh/dAQOwANcf3RENsfVRH9oQ9PRWi4Vn6Z8TXXAF9/TUnw+/eTp0dpqb9GA2RkkOezf3+H67swvgcbKL5EYSEZFvbqDQgCaZ2IHUnT0ijurHTFM2sWuXJffRVob0dizTFcv+4pbJz9RwAOqDCKjycDZeRI52qvMIyzKS0FTp3C3pqB0LfIC1kOPrOhm3EiQAN9ZBrOxfTHuZj+qO9H/xpCY3vcPzBQQaJ6YCAtUP7xD3r9/vvA668rnxPCwuhYu3aRp8iTuzMzbocNFF/BYCD3sMLk2B757DNg2zZ6HhZGpYZqJ5KxY4FXXiGXcGMj+jWXY9Y3C4GJzwEDB9o3zthY+syFhZx4x3gvXV3klQBgNNEN36bKq2DGyJOfW15unvFbnE2/DKbA7jtpgB7zxcRqOkVMmwasXEmhpIICmiOmTLG520WkpdHC4sABYPJk5fszfgMbKL5CaSmFeOy86aeW7gLWf0QvNBrynNgrujZgAPDaa9A/9UdE68sRamgEnn0WWLSIDBi1aDTkOTl6FBg2rPf4OcN4MmL+SGYmcL4BsE2V1+3bAX05Pb/kEkz91aTzf3COMiwA8pbcc4+Uf/LBB8CECcrz3XQ6CsseOkT5L0pybhi/grOUfAGzmfp2BAfbJYsd3VSGyRv/SiEegFy6l13mmDEmJWHdda+jKuESet3eDvzpT8D339t33IQESpQtLrZ7iAzjcjo7yXsSHCzfwBYE4HPJe4Kbb3bO2HpizBhScQYoiV7t9RsTQ3PArl2ObWLK+BRsoPgC1dWk0mhHcmxgRwuu3PQiAo3nxU0mTwZuvdVBAyQ6gyOxesbLKM0+79Y1m4F//hP4+GPJKFJKQACVHR87RsdjGG/i9GnyfqakyN/n6FEKkQBUeWOPF1IpGg0wf770+n//o/CyGjIyKFR0/LhDhsb4Hmyg+AKFhbQaUdubxmTCpI2voV9zBb3OzgaeeMIp+iImXRC2zPgtcMMN0puffAK89Zb6nkHJyTTJV1Q4ZpAM4woMBvKeRERQUohcrL0nc+e6Xgdo0CApd0SvB776St1xgoMpRLtnj9RCg2GsYAPF22ltpURRe4SPPvoIaeV7AADtwVGUHxLipD7sAKDRAvffTw9xcl2/nkI+bW3KjxcSQs3MTpxw7DgZxpmcOAFUViorky8qIrEzgMKbU6c6Z2y2+NnPpAqeL79Ub2AkJZGw5J496r2ojM/CBoq3U1IC1Nerr97ZsgVYsQIAYNZosXXGb12nK3LDDdRYUFw97t8PPPMMNQNUSmIicOaMun0ZxtU0N9PvPSZGWd7Yl19Kz2+80X29qFJTgauuoucGA/Dpp+qOI2qjHD3KDUCZi+AqHm9GTI4NDVWXHFtURHon59k5egGqU0fCqZUAAAztwMcrxfHmI+HKOOT/8CKCO1uAoiK0PvY0Nsx6EU0xvYpy90As0BUF7NuNwKgw5N06CDnjFcT1GcaVHD1KngMlDQFraoBNm+h5ZCSpsbqT22+nrscdHcCaNcD11yvLpRGJiJCaCaamOtd7y3gV7EHxZiorgfJycvUqpamJlGI7OgAAhQMvx9HBN9jYyT5ER4kgaNBmkB4l0cOx6sq/oTk8CQAQ3lqLK7/5DaJKjnTbzubDGIi2FgH6s63Y89lpp34WhlFNfT11LE5MVCZ09tVXUiL4tde6/0YeE0NeHEBqJKiW9HTyBh875pChMb4BGyjeTEEBleiFhirbr6uL1F1rauj1oEHYNekxpyfb5Y0wIzpKQFjoxQ9jUjrWXf866uOoCVmwsQVXb/gdhlRu7HH73h6a86JUxnaVCbcM42wOH6acjdieFV57pKlJKukNCgKuu84pQ1PMTTcBUVH0fNMmCrOqISCAEmZPnlSfLM/4HBzi8Vaam6lEUU1y7NKlNEkCQL9+wDPPwLwlCHCyHEFOpoCczL7CR9HATX8G/vpXYO9e6MxdmPLTq0BODU2EMvj4c6CtMwA9NVtmGLdTXU1eguRkZQuCb7+1eDsxa5ZkFLibsDBg3jzgnXfo9fvvAy++qO5Y8fEkl3D2LInWMX4Pe1C8lZISWoUpTY5dv56afgG0annmGZoYPIXQUOD3v6dJWGTpUpLFloPu/E/a5Nw8GoZRjCBQk73WVloYyKW9HfjmG3qu1XYv0fcEZs+mahyArtPzsv2KCQqiEBaLLjLnYQPFGzGZSNwoPFxZDPvUKeouLPLQQ8DQoY4fn73odMAvfkEt3kXWrJG58/lVqdHIZYuMZ1FRQSGMtDRl+/3wg9RVfOpUyRjwFAIDgbvvll5/8AEgqBRNjImh0LUauQHG52ADxRupqKCHkuTY+nrgz3+WZKWvvloqE/RENBqqEhBXmrt2URxeLiYTudMZxhMwm8m70NWlrNt4Vxc16BOZO9fRI3MMU6dSXx0AOHMGWUWb1R0nJgZoaKDkf8bvYQPFGykooAlPbu8OoxH4y1/ISAGosd6CBc4bn6MICABmzKDnXV3ATz/J31cQJDlwhnE3xcV03Sr1nmzZIiWzjx0rGQGehlbbTQL/0r0fQGtSkdSm09F1X1DguLExXgsbKN6GXk+Z8nLzRgQB+M9/JJXV+Hjgt79VJq3dGyYTrXacGUq5/HLp+Q8/yD+XVkvudL3eOeNiGLl0dZH3RKtVVnEnCMAXX0ivXdkUUA2jRgEjRwIAIpurMOSM3LDsBcTHU+sKcUHF+C1soHgbxcVkFMhNslu9unt54rPPKkvQ64vSUoqNFxU5z0jJzAQGD6bnxcXUd0gOWi19T2rLHhnGUZw5Q9eIUu/Jvn1SwujgwcAllzh8aA5FowHuucfycvSRjxFgVJFLEhlJ80pZmQMHx3gjbKB4E0YjlShGRckrUTxyRCr/A4Bf/hIYONAxY2loIHfsxImkX1BY6Dwj5YorpOc//CB/v3796Ptqb3f4kBhGFh0dZGiEhtICQQnWTQFvvtn1TQHVMGiQpT9QaIceQw9/aWOHHtBoKE/n1CmuxvNzWAfFCyjcUYm9K07D2NIBGMKBgChgd9+TVVhLDWavehUh5y/wY8Pn4kDDTGBlz9sblNzDOzspATU/HxgzhqoK1q0jI6V/f8dPpFOnAu++S+fduBG47z55k31CAo2ppESZpDjDOIpTpyihfcAARbvF1ZygBQZAnpdx45wwOCdx110wb9kGrWDCkCNfAA1XKZdDiI8npezqapK/Z/wS9qB4AXtXnIb+bCvamrpIzt2g7VPyvaO5A1PWvYSQdsq/KE8eg+2X3NfnPoJARoXN1BRBILdzbi4wejS9l5ZGfUH69XNOuCc8nDw1ANDSQhU9cggIoETio0cliXCGcRVdXSSIGBGhuKnfsMMrpBc33aSu15a7SE1FQe5sAEBgV7u6RoIhIbQgYU0Uv4YNFC9AlG3XQEBYiMmm3Pvowq8Q30C5F82RKdh++dMIDdfa3C86SkDeCBs38spKWg1NmtTdi+FsI0VtmCcpiWLZXLbIuJrKSqrAUSiEGN1UjvSSHfQiNlaqZHMXRiOFdEUlWxkcGXU7jAHnewWtWUPfhVJiYkgtW8F5Gd+CQzxeRGhgF+68EYCmj5u/IABrpRt45MvP4NbsMDikQ3FrKwkozZ7d86QrGinr1pGRkpPjuHDPiBHUXK2mhpQq6+rkTfwhIRTHPnmS5bMZ11JSQl4UuXIA57n0+ApLTylcf71jKu7kYjLRNd7SQte7yUTnDw+na09mqLQ9LBaHh8zFmCMf0zH++1/gN79RNpbYWJpHyssVh8gY34A9KN6AaI9oNLZv+IWFFPMGgOHDgexsx4zBZKKqnUsv7XuSSk2VPCmOTJzVaoGZM+m5IFCbd7kkJZGuQl2dY8bCMLZob6ffnJKGgABC285hYPH533ZYGC0GnIUgkDFSW0uGwMmTdM02N1MlzZgxwDXXALfeSqKO4eGKxBIPD5mL9pBoerF5s3Jtk4AAmu/kVu4xPgcbKN6AmMkuJw69caP0PD/fcWMoLQUyMoDx423L64tGSkyMY40Ua02U9evlHzcqilaDLP7EuIqKCtLxUJgcmnv0K+jM57v5Xn01GQWOoqODxlRaSsbIqVPAuXNkCAwdStfsLbcAd9xBKs7TppGoY2oqXfuDBilSZzYGhuHIqNulN95/X/mY4+IoD0WJijTjM3CIxxuQ237cZKKW5wBNOpMnO+b8DQ3S8eTKdItGiiOre5KSyINz6BDFtI8dk68NERtL248Y4dhJn2F6orCQfu9KkmNbWjDoxHcAAJM2ALrrr1d/fpOJjHIxVCMIFKqJiADS0+n6jI0lT2d0tLxxDhtGhk1Li+x5oCD3auQVrSTD5uBBCs+KyfVyiI6mPJSyMs/XgWEcDntQPJ26OvkGytGjkvrimDHkprUXsaQ4L095DoczPCkXKsvKJS6OVotFRfaPgWH6ormZ8k/i4pTtt3YtAo0GAEDRwMvlh4fMZjJCqqvpOjt5kn7nra107Y0bB1x7LTXfvPNO6oZ82WWU1xEXJ9+ISkmhhUZVleyPZNZd0Ejw/feVVdSJ6runTnElnh/CBoqno6QiRvSeAOSetZeeSoqVkpoKzJrlOCNl0iSKzQPA1q2AwSBvP62WVn1HjkgNExnGGZSXA42NtPqXS2cnsGoVAECABsdHKJC1LyggL2dwMHkZrrqKQjV33kn5I1OmAEOGAMnJlDSuFo2G8tp0OmXdhqdOJcMGoDlgs8JGgvHxwNmzlCvD+BVsoHgyHR3A8eOAVkZoxGikGzZAk5AjhJ2sS4rtqSRISXGckRIcbFGqRHu79JnlkJREn6m0VP35GaYvBIGk7YOCbOdqWbNhAxkZAIozJqE5WqYsfnMzGezXXQfcdReV448YQTkjERGOF01MS6PqPAVeFGi1wL33Sq//+19li4SwMFqI8HXrd7CB4smUltKqQSsjOXbvXnLpAsCECYpLGy+itZUeEycq1nHoEUcaKWo1UQIDacI+fty5DQ4Z/6W+nvIllFwzJhPwpSQJf3DorfL3rakBsrIor0SJQaQWrZa8KIKgTJ9k9GhLI0FUVwNr1yo7b1QUha7Y++lXsIHiqQgCXZBy48PW1Tv2hnfEkuKRIx0rEe8oI2XwYFohApT4evas/H2Tkyk/QMkKkGHkUl6uKIkUALBzp+U3XJVyKeriBsvbz2ikvIzcXNf26cnMpIdS8TVrL8onnygLE8XFUT6ekmud8XrYQPFUamvpRpqYaHvbtjZg9256Hh0trVTUoqSkWCmOMFI0motLjuUSHk6hoVOnlJ+XYfrCbKbflZLQiiB0awp4fMQt8s9XW0vzg2isuwqdjsJIRiPlzshl4EApPNvUBKxcKX/foCD6fln63q9QfPdpa2vDe++9h6eeegrXXnst8vPzsXr1aln77t27F3/5y19w55134sorr8S8efPw6quvoo4FtC6mqIgMDzkrse3bpYli8mTFfT+6UV+vvKRYKSkplMhnj5EyY4ZkPP34o7KupwkJdCNpbFR+Xobpjepq8swpqd45fJjKaAEgJweVaWPk7ScIgF5Ppb9KuyQ7guxsCisp9UTefbek57RypSXvRhaxsZQQLIayGZ9HsYGi1+uxbNkylJSUYODAgYr2/fe//439+/dj6tSpeOKJJ3D55Zdjw4YNWLBgAc6dO6d0KL6LwQCcOCG/zNC6emf6dPXn7eykmLaakmKlJCfbZ6TExNA4ASofPnBA/r79+pFxcuaMsnMyTF+UllJeRmio/H2svCeYO1e+50WvJ29pTo6yMTqKwEDSJGpvly+DANDiRFTHbW8Hli+Xv6943ZaVKRkp48UoNlDi4uLw5Zdf4rPPPsMjjzyiaN9f/OIX+N///odHHnkE1113HR588EH85S9/QX19Pb744gulQ/FdxORYOSuxhgYSQALI3as2Z8QRJcVKEY2U2FgyUpTqHKhNltVoaLI7dowmSYaxF6ORPCFKSosLC0m4DKAKsylT5O9bW0uluwqVah1KTg4ZHArUZQEA8+ZJRtzatfLzSnQ6MowKCjjJ3U9QbKAEBQUhTqkA0XlGjRoF7QU5DaNGjUJUVBRKSkpUHdPnMJvJexIUJE/afssW6cY+bZr6ZDlHlRQrJTmZclLUGCl5edINYedOKrmUS3w8eYs4ps04gspKSuJU0nvHelF2443yrneAvDRaLSWLu5PgYPKiNDcrC7H260efF5AaCcolPp48KKIgJePTuD1Jtq2tDQaDAdFKVh6+TE0NXYBJSfK2d0T1TksL5bs4qqRYKaKREh+vzEgJCJBCWl1d3b8LOfsGB5MXRcnkyjA9UVxMvyO5+SBVVbS4AKiE1tobaIvaWhJATJOpleJMBgyguUqpiNoNN0iLiy1bpDwcW0RGkkHEmih+gdsNlM8++wxGoxEzxU61PVBXV4eTJ09aHj7tbTlzhsIOolpqX1RWStUoOTnq8kZMJjKIHF1SrJTkZJLFV2qkqA3zADSxlpZK3Z8ZRg0Gg/LOxStXSr/x666Tr1tkNtOCYtgw+5LhHUVoKFX0NDYq836GhVFDQpFly5Q1/zx1ihcWfoBbf+EHDhzAsmXLMGPGDIwdO7bX7VatWoVly5a5bmDuorWVtE/kTnSO6FzszJJipYhGinWDQVtjysqi8sWCAqCwEP1GnEFbmMzk7ZAQmhRPnHB+UjDju4jS9qKcuy30esmYDgmhPjlyaWigUGxWluJhOo1BgyhJva5OniyCyKxZwFdfkTfp8GHKxxkjo4opPp4WFVVVnuFFYpyG2+5IJSUl+P3vf4/+/ftj0aJFfW47Z84cvPPOO5bH73//exeN0sWUllJsVY6BIgj2GyjWJcWe0uFXDPckJMj3pFh5UQacVuhFSUwkrxX3+WDUUlhIhrTcHJJvvpFkAWbNUtbUs66Ock8c0QjUUUREkLrsuXPKklcDA4Gf/Ux6LbeRYHAwJSVz/pjP4xYDpbq6GgsXLkR4eDheffVVhNkIZ8THxyM3N9fyyPKk1YOjMJtJgj00VN5EV1gohSYuuYRu6EpwZUmxUpKSyJMi10jJz7ck9mad+QlakwI57KgocplzyTGjBr1eWedigwH49lt6rtNRLoZc2toox2XAAOXjdDaDB9PCSmny6uTJ5AEFSPvJWjKhL2JjKW+Fq/B8GpcbKHq9HgsXLoTRaMTrr7+OeHckZXoilZXkKpZraNjTudgdJcVKsTZSzpzpe2UWEUEJvgBCOpqQeXansnPFxVGyLAtAMUqpqCAjJSpK3vbff08GMUCGtZKFRW0thWNTUpSP09lER1NeTG2tMi/KhY0EP/tM3n6xseSxKS9XNk7Gq3CagVJXV4eSkhJ0WYn4GAwGPP3006irq8Nf//pXZLhaotmTOXOGvBpyRJ5MJslACQig0mAluKukWClJSRS+CQ+nm0BfWEnfDy5cp+w84sqPJztGCYJAq/jQUHn5W11dlHMhMneu/HOZTOQtGDrU/blivTFkCBlqShWaR46kfQFK2JcjxKbT0YM9nz6NqiTZzz//HC0tLRb1161bt6KmpgYAcPPNNyMiIgKLFy/GmjVrsHz5cqSct/j/9Kc/4fjx47jmmmtQUlLSrRonNDQUU8U+Df5GczNlpcv1Jh07RqsHgJLK5K7eAKmkePZs95QUKyU5mUJQp06RfkJvXHopfZ66OqRX7kVo2zkAfWxvjSgAVVjo3komxruoqyMPitzwzqZNtA9AoVUloer6ejqPp4VjrYmNJUNj924ACueWyZMpWR2g1h1yFq/x8eQJbmzse25gvBZVBsry5ctRZdWDYdOmTdh0fkU/a9YsRPTSw6WgoAAA8N133+G7777r9rfk5GT/NVBKSig7X67wktrkWLGkOC/Pu27E/fuTUWY297561OnIi7J8ObSCGTmn1wO4Wf454uIoSZknO0Yu5eUUFpRzMzWbuwuz3azgtwmQgTJlijz5AXcydChdq4IAQIFo5MSJwJIl9Hz7duC222zvExVFlTzl5XzN+iiqDJRPP/3U5jbPPvssnn32WcX7+R0mEyXHhofLc90ajcDWrfQ8JITKg+XiSSXFSkhNpclIr+9b2vu8gQIA/U//AAgKepuIk11FBU92jG1MJvLqya2m2btXEhcbMoTyNeTS0kJhJLllzO4kMZEWWjtaoSiDIDFRkgs4c4bk822JVWo09L2cPEnfpzfNaYwsPEDpx885e5Zuiunp8rbfu1dK5pwwQb7AkyeWFMslMpIMqxMn+jZQkpNRnTwCSVWHEdVUQdsPHSrvHBoNGXwFBTTZqW0ZwPgHVVV0E5WbsKq2KSBA1XYDBiiv1HMXw4YBmj0AAEM78PFKeeXXw6InYRTIy773nZ04Ofwmm/sE6rKQV1uLnMk1FA5mfAo2Od1NQQG5f+UaGmqqdzo6PLekWC45OZRkaKPkuHDQldILpcqycXFkMHJnbcYWZWWU1B4SYnvbEyco7AGQoT1unPzzdHXRY8gQ7zGak5MRGEprX0HQoM0g73E6ebLlEGlF22Xto2/RYU9JDIXJGZ+DDRR3oteTgSIzWTWgsw3YtYteREdT9rstxJLiIUM8t6RYDqmp9JltVPOUZk9GZ8D5SqgtW5TpJEREkDudpe+ZvujstJ20bY219+Smm5SFIurqKNThTRWPGg3yrstAdEgnwkLMCAsVZD2MSenQ96PPmVR7DLHCuT6312ionNkIHVVTieJ3jM/AIR53IibHiiV2Nsgo2S5dhJMny+vFUVlJ2fUTJ3p2SbEtIiOp6uHYsT7DPKbAEBRm5WPImbUkirVtG9BHn6eLiIigm8+IERzTZnrm7FkyHLKzbW9bVkadtgHy0CnRLBIEmh/GjJHvYfUQcq4ehhyhGDhToCx3pmUi8GkZNBAwN3Y7VRv2wscrdWgzANDqyEN89qy8/xPGa+AZ2F10dQFHj1JypkzXbVbhT9ILOROdu7sUO5rsbFlhnlM5doZ5qqpowmOYnhAl1uUY/NaVO3PmKFskNDXR/JCTo2h4HoFWSwrXgkAhZrmcF1wEQNU8ctFoSCaA8SnYQHEX5eWUZCcz8S3U0IDkswfoRWKiba+Lp3QpdiSpqeRWtxHmqYkfCn30+aTjI0fIiySX0FCaULmdO9MTra10I5TTL6uuTpIECA8HrrpK2blqasj7oKRLsieRmUlez7Nn5e/Tv7/UcPDQIUl11xaxsfT/Ind7xitgA8VdnD5NnoCgIFmb55RthlY47zmYNs2210WMXXtbSXFfRETQhGer34dGg8JBUgNBrF+v7DxRUfT/Y1TQ04fxDyoqKOwiJ/9k1Sry+AHANdco1DAR6BqXq43kieh0FCrt6pKfH6LRSF4Uk0nKubNFv36kYSRHhZbxGnzkzuVlNDSQta+gbHBA8U/SCznhnaYm0hXwtpJiW4hhHpOpz82KB86UDLMff7S5fTfi4qiniJUYIcMAII2OgADbDT07OoC1a+l5YCBw3XXKzmMyU9msXPkBTyUrixJ8lVxLasI8Wi3l6Zw+rawXEOPRsIHiDsrKyICIjpa1eURTJZLOnZeBzsmxXSosrtrS0uwYpIciM8xjCIuj5EKAvEmHDsk/R1AQfYcc5mGsaWyk34Qcafv9+ylJGyC15770e3pCECiHQ04ivCcTGEheFINBmpdsMWSI9H1Zf4+2iI+n0LnYToDxerz81++FmM1UJRIeriA5VqG0vV5PN3FbSozeSHg4rcqOHrUdm7/iCmAPCUbhhx+UlVnHxlIJeF6e11VQMM6hcN0p7N2RBKPWdlh2wqadEGtXftJOxVmZYmUGsSpeq/GdipT+/WmxVF0tb9Gk1VJoes0aCg3t20dVi7aIiJCaDXqLqB3TJ+xBcTU1NeTulNtgTBCQfWaD9FqOgdLYSJObnM7I3kh2NoVsbIVtLrtMaqS4Y4eyBLqYGMp1YU0UBgDMZuz9oRb6jmCb4mGGVjNSS3cDADoDQlEUM0q2WJkg0KIlMDRQWRNQTyYoiJp5trTID7WqreaJjibpe7neGsajYQPF1ZSXk3iY3IS5wkJE68sBANXJw22vDMxmmgS8SdhJKTLDPAgMlPJ1jMbuKry2EF3rrFDJAEBdHYwdlKSu0fQtOJbVdBQhnU0AgMr0sQiOCJQtVhYWYkZ0SCfyrvOx67d/f8qpkVu+P2IEeUQA6o4sN2E9Lo48NUoq9xiPhUM8rqSri6x7uQ3GgG431ZL+02EzaCNqJ/hyXwoxzHPkiLwwz9df0/MffqBqCrnExFAy87hxvpdszCijrMySfBkaAtx5Yx+egHe3WZ5m3TweWdMUJGiXltK1O1tmDylvITQUGD4cWLeOQs+2KgsDAui6+/FHykE5cIA8orYIDqYFWnGxby/S/AT2oLiSykqqDpEb3jGbLQaKWaNDabaMOGxDA8V5lRhB3ojcME9ODjVaAyinRBTZkoNYushhHv+mq4vyxuTkjAkChRMBqvQZO1b+eUwmuhkPHeo70gDWDBpEiaxyk1jVhnliY6maR25yLeOx+OBV4MGUltJkJzfp8uhRS+O68pSx6AyxEZMWBEoq85Xkur4QwzyNjba3vfxy6bkSTRSdjh6sUOnfiMrCcoyG4mIpjDF8uBSmkEN9Pd1cs7JUDdPjCQ+n76S+Xl4p8KhRUjPGnTvl56/ExNBCrbxc9VAZz4ANFFfR3k4reCWqkBul6p2C7Bm2t29tpUnAl8M7ImFh5B1paLC97bRpUk7JTz8pE2CLiyPD0la+C+O7lJTQwkKOB0XsuwMAEyYoO099Pak++3I4MTdXSkC3RXCw5IFqbqYFmxzEhUVBgfpxMh4BGyiu4uxZ8obI1UMwGqnRHQBjQAhK08bb3qehgeK7SjUXvJWsLCkpuC8iI6WbhV4vlR7LISqK9uEwj38iLizkXlNieAegHAq5tLZSnoYYjvRVoqJI36W2Vp4XRW2YJyGBFhZyFjCMx8IGiqsoKqJ/5Qov7d1rKYstz5qAroAQ2/u0tdEEJ1NfxetJSaEbhzPDPFotuZlZodI/UbKwqKmRwoEDByrT4qipoaROX9QuupDcXDJU5Fy3eXnSnLljh81GoRYiI6lggKXvvRo2UFxBSwsZKHKTY4Fu1TvF/WWEdwwGupH6Q3hHJCyM8m3kuItHjZK+/z17lK2s4uPpRiXnPIxvoWRhYR3eGS/D4ynS1UUe0yFD/GNxERtLicBySo7DwiSBxXPnaKEgB42G8n9OnpRv1DAeBxsorqCiglYLchqMAeQJEZtkRUWhKm2U7X0aGugGHB+vcpBeipgQbCvMo9MBM2fSc7MZ2LCh7+2tiYggI5OT7vwLpQsLtfkndXXkbbHVwsKXGDqUcm2ammxvax3m2bat9+0uJC6OKierq5WPj/EI2EBxBQUFJBomt3Rwxw6p++eUKRC0MlZvzc0U3rHVxMzXSElRX82jJGQTEUGlprwa8x/Ky6W2EbZobiZdHoC8mEqMjcZGumGHyAjj+goJCdSpWU4TwXHjpLlz+3b5121oKM2jLLbotbCB4mzEcjclng2r6h1ZnYs7O8kFnZqqfHzeTmgoqVTKCdmkpgLDhtHzsjJy/8olNpZWYnKVMBnvRhCULSz27JGM1wkT5IdqmprI+M3JUT9Wb2XYMDLKbLWgiIqi8mSADBqlWkanTlF3acbrYAPF2VRU0CQkVzitoQE4eJCeJyZSXNoWjY10A/WHBLueyMykG4qc/htXXCE9V5IsGxZGFR0c5vEPxIWF3PCOdfWOkvyT2loysP0tNAuQp2ngQHleFLXVPHFxFELjKjyvhA0UZyJ2Lg4Lk7+i2rpVWonl58vbT6+nSS4wUP1YvRklom2TJ0uu9M2bla2sIiPp/5Mbkfk+5eUUtpGzsOjoAPbvp+dRUfIWFQAlxprNpLDqj2g05EXR6Sjvri+sc3qUGCgBAXSeM2fUjZFxK2ygOJO6OkrSUlK9Yx3emT7d9vZicqicNua+SkgI5d/ICfOEhkqt29valCfd1dbKW/Ex3ou4sAgPl7dAOHSIvGsA5UvIzQOrraUcKn/uGZOWRosrW8394uKoPBmgnJKzZ+WfIy6OwkJyEnIZj4INFGdSVkY3QbnKkFVVUl5Edra8RDuxOsifyot7QklS4pVXSs+VhHmCg2nVW1oqfx/G+6ipoWtRTXhHbvWOINANc+hQ//V8ApTfI+aX2PJmTpokPVfiRYmOJi8zh2e9DjZQnIXJRKuwKBv9c6xRmhwLkIGSmUmeAX9GFG2TU2UzdKiUUHzokDKPSEwMaTFw0p3vUlpKukJhYba3NZkkSYDgYGDkSHnnaGykG6c/JsdeSEYGqULb8oqoDfOIYosnT7LYopfBBoqzqKpS1rlYELobKPn5tvcxmykfwp/0E3ojJIRcxXIMFI1G0kQBqKW7XGJiSDBKiYuZ8R6MRjJAo6PlbX/ypNSnafRo+Y1A6+ooQVTueXwZnQ4YMYLmMlFeoSdSUiSD7tQphLXUyj+HKLZYq2Afxu2wgeIsSkvpYpM7YRUVSS7IYcPkyWQ3N5OHxt/DOyJKDLWZM6Xy0R9/lK9vIrrjWVvBN6msVLawUCPO1tFBvz1/TY7tiexs8qTY8mZaVfOklyrwooSHU7idpe+9CpmNYRhFdHbSKkyuciygLrzT0EArCiVhJF8mNRXQUsdTQzvw8cq+khWTMD1lNFIr9gI1NVj/76OoTh0l7zzmwcDhFgSu2oi8eYORMz7F7qEzHkJxMYVtgoJsbysIUqhBq6W+MXKoqaHkUH/ULeqNgACqfrJl+E+cCHz8MQAgo3gbDuTcIP8cUVHAiRPApZf6d96PF8EeFGdw9iy5cGNj5W1vNku9d3Q6qcqkLwSBVmIcw5YIDkZgKNncgqBBm6Hvx/HsWZZds47/YHN7y6NDh7YOHfRVbdjzmczeIIznYzBQOarczsVlZdKK/5JL5C0UzGbqXCyW1zISiYkUqhUronoiM9Ni2CVUH0VIu17+8ePjyTtmq2KI8RjYQHEGotKhXCv92DHKawCAMWPkTXStreS25PBON/KuTkV0SAfCQgWbj9qB49ERTDoX2eVbEa1tlrVfWKgADSjZztjOmig+Q0UFNYSUu7BQI87W0EDHz8pSPj5fJz7edndyjcYS5tEKZmRW7Oh92wsJCiLvmNgAkvF4OMTjaFpbqeW63EkOAH76SXouJzkWoIs4MVHZefyAnFm5yKnfTxORzTweLVCXD3z7LQJMnbg1ZjMwa5aNfYiPvyBPCsxcFeAzFBWRV0OuZ0NN9+K6Oto2IkL5+HwdnY5yUXbs6HvhNXEi8PnnAIDs8m0oHy7vmgVAuUVnzlA4Tq78A+M22IPiaMRVmNz8E6NREgsLCZE/0bW0kDiZP7RnV0JwsPzePEB3MTyxXFQOYoKtrS7KjHfQ1ESeT7kGf10d5ZkBFGaV02airY1+nwMHqh6mz5NyPp+rr+tq0CBLa4C0qv0I7GyVf/x+/Whu4GRZr4ANFEdTWEgJX3JXYfv2Sc2yxo+X19HUYKDtOLzTM5mZZEAYjba3HTRIyjk4cEC5vklXF2sr+AJi52K5Zb/Wxqzc6p3qavpt+mvPLDkkJFCIu7m5922swjw6cxdSy3bLP75OR6H306f5uvUC2EBxJHo9ZaGrlbZXUr0THy+vFNkfSUmhlbAcL4pWC1x2GT3v7JR6qsjFZJLvrWE8E7FzcXCwvM7FgHL1WJOJDOYhQ+Sfwx+JjKSFl95G8qtVuXFGiYJ2FQDNm+Xl5AVjPBq+UhyJ2GBM7iqsrU1aiUVFAaNGyduvpYXCGFwF0DNBQeRGl9M8EOgeVlMS5gHo5sYS2t7NuXMUmpXZUTiwowU4fJheJCZS3oQt6uro+Jwca5usrL4reQBg6FC0h9A8m1q+R5nnMyKC5lBuWeHxsIHiKMRVWEiI/LyQnTsl5cQpUyg0ZAujkQwT1lDom4wM+p7khHkuvVQS1Nu9W1leiUZDLQ3kCr0xnkdZGd2wZCauppbvkX4j48fLu94bG8l7IieE6+8kJtIioy8jRadDeSZ5rgK6OpR7PqOi6LqVMz8wboMNFEdRV0erMCXhHbXVOzExHMe2RXKy/DBPcDDJlAPkWj51Sv55tFrKLWAJbe/EZKJ8BAVVNemlCsM7zc1UMdK/v4oB+iHx8XTt2gjzlGWpbB4onqO6mjVRPBw2UBxFeTmVGMud6BoagIMH6XliIjWwk0NjI1UNyFG69GeCgqjKSW5+iNowj0ZDoToO83gn1dUktiYzvKM1GZFatodeREaS4JotamoobCHzHH5PQAB9X01NfW5WnToSnYHnGzru2qXMGxIURF5P1kTxaNhAcQQqVmHYulUKC+TnKysXTk9XNj5/JSODJjs5E1denpS8qDQPRXQXd7Fom9dRVkZhVpmhl9TqAwjsMtCLvDzbeWBGI13nubksCaCElBQKm/cROjXrAlGaen5h0doq5QXJJTaWwvKtCsqUGZfCBoojULgKA6Cuesdspjp+Li+WR0oKhdzq621vGx1NOQIA3bSUdCuOi6NVcnW1unEy7qGzkwxLBR2FsyoUhndqaykcm5GhYoB+TGIieaj6KjcGUJxhR5hHVK1lTRSPhQ0UR6BwFYaqKmrTDlAFgNzMfrOZJrqwMFXD9DsCAynMY6tkUWTcOOm5tUqoLYKDaaXMVQHehdgzS27emGBGVvl5AyUoSMpb6oumJgrfckhWGVFRZNjZuHbLU8aiS3c+wX3HDmUJ7lotzRGnTrEmiofCBoq9GI0U3lGwCrM0BgTke09EMjOVbe/viNU8YrVUX1gbKErDPP360e9AznkYz6CkhG5MMntmxdWeQlj7+ZymUaNsL0ja22kbrrhTR3Y25Xf1QVdACCrTx9ALvZ66FSuBNVE8GjZQ7EXxKkzoHt6ZOlX+uTQaSQqakUdyMoXe5IR50tOBtDR6fvy4zSS9bsTGkp6GktAQ4z5aWij/QEEvq/QSqxCCnJYUej0Zrpwcq47ERPJO2tA4sauaJyKCclDY++mRsIFiLyUl5FaU27m4qEiKeQ4bRhehXHQ6eZ2OGYnAQBJtUxrmMZuBPXuUnUcQ6PfAeD6lpVThJbY5kIFYXmzWaLt723qjqYnCt3L0jZiLiY8nA8/GtVuRMU5KVt6+XXm4JiqKPC+sieJxsIFiDwaD4lUYNm+WnisN7/BEp470dPru5IRf7FGVjYmhTqkGg7L9GNdiNtMNKTRUvux8eTmi9VRKXpc41HZI12ymB3s81RMYSAaeDQPFGBxBYosAJSWfOaPsPPHxtB97Pz0ONlDsoaJCEk6Ti9jDQ6sFJk3qe1sRcUXAPTzUkZQkP8yTmyt5qfbtU5ZTIlYFVFSoGibjIqqqKO9ASS8rq6Tp8qyJfWx4npYWqkLhfln2kZpqs9wYQLfePJbu8HJhTRSPhe949lBYSEaD3J445eXSzWvIEPmJteLFyQaKOsQwj5ycEp1Oah7Y3q5MW0Gno/8jnug8m8JCMjxDQ+XvY9UcUJRY75OmJjKKlSTPMxeTmCj1zumLCRMknRk1YZ7YWPK82DoP41L4jqeWpibKN1AS3rEuXZXboh2QLjbWeVKPGOaR01RMbbkxQL+H4mJlCbaM62htpbJSJddtfb1FFqA+OgstUTLCNq2tVIXC4mz2ER1NRoqtxp/9+kmqvhUVyrVNWBPFI2EDRS1ieEfJCsn6ZienCgCgVTxPcvYjVvPIkb4fPVpKet61S1kjwOhoiplzPNszKSuj34ASA8UqF6kkXUZ4R2zoqSQBnumdnBx5eV3WYR6l1TxaLYV6Tp9mTRQPgg0UNYidi4OD5YddGhokcbbMTPnJcw0NHNpxBAEB8qt5QkKAkSPpeX29sqQ7caIrKFA3TsZ5iMmxQUHyw7JAt4VFsRwDpamJDFXOP3EMiYm0YLCVD2aPgQLQAoY1UTwKLgtRQ309/ZDj41FYqsHew1qbFWoDTu7F+POW+ZF+E3BopcwJsisZhi42UBxCejpNdB0dZFz2xbhxUpnxzp3AoEHyzxMXR7+P+nplK3XGudTU0P+LEs9GW5ulqWdreDzOxQyETR1nvZ7UY+UqSzN9k5AglRv3ZfQlJNAipKCA8oyqqpS1BYmIIM94aSkblx4C3/nUUF5OPSIiIrD3sBb6Jg3aDH0/UoqkJLszyRNtbm95GAMtHsfAELYn7UJJNY89qrJiDxGu5vEsioooZKqkVcS+fZYmkBWZE+SFW41GSfCPsR+Z5cYA7PeisCaKR8EGilLMZkqyi4wENBrL71ijERAW2vMjMsCA1OoDAIC20Fi0pg3sddtuj2ATPWKCEZ0ajrxbFazimYsJCCBPiJwE1thYYPBgel5crKwRoEZDN8HTp5XlrzDOw2CgEKtSj5ZVeKdMTvVOWxtVB3H+iWNJTSVBTCXlxmoMlLg41kTxIHhJrhSxa+0FLsDQEODOG3tpVLV9D2Ci+GnYtHG48yYBgIymVqdPA2PHKhd0Y3onPZ1yEOSGeU6doue7dgHXXy//PPHxQGUlxbP5ZuV+SkupFcGAAfL3MRqlMF94OGpSRgC2isCamigcwaE9xyJ2N25tpX97Iz2dcvxKS8kTojTMaq2JIreJK+M02IOilNJSWo0pcROrqd4Ru3Jym3bHkphIxuW5c7a3tUdVNiyMVtPl5cr2YxyPIJCxHxioLDn2yBG6IQJAXh4ErYz1XFMTlRcrOQ9jm+hoMvqVhnms9GtkExdHeSysieJ22EBRgprOxSYTsHs3PQ8NlSSZbaHX03mSkpSPk+mdgABaRTc32942M1P6/o8cUT5hRUVRWEFJC3jG8dTWkmaR0sRHpbpF4v+zksRMRh4aDZUbiwZjX9gb5unXjzVRPAQ2UJRQVUWTndzOxQB1xRVvhmPGyG8q2NBAN8jwcOXjZPpGDPO0t/e9nUYjeVFMJmDvXmXniY2l30tVlbpxMo6hqIi8WRER8vcRBMlACQggbRxbiPL2HNJzDklJ8npq5eRIC4vDh+UtRqzRaqkC69Qp1kRxM2ygKEHsXBwUJH8fNeEds5nOk5mpbHyMPJKSaDXt7GqekBCaTHkl5j7a2ykXQUm/LIBc/GIYcNQoeSFdvV7KlWAcj3W5cV9oNJIXxWxWft0CkiZKba3yfRmHwQaKXNrbadJSMtFZr8K0WiAvT95+LS202mNXsXPQ6aiaR87KatgwyYu1b5/y8sPoaAoLKmk6yDiOsjIyNJR4PQH1qs/Z2crOw8gnKIgWba4oNw4PJ69baanyfRmHwQaKXM6epRW3EgOltFRy7w8fLt/F3NBASrPcaMx5pKXJC/MEBEiGZWsrcPSosvPExdENsrJS3TgZ9QgCuel1Ovp/VIKYXKnRdPei9UZnJ52DBb6cS1oaeZdthV5yc6W5ev9+MjaUEh3Nmihuhg0UuRQV0WSlZKJTswoD6KbZv7/87RnliNU8csI89lTzBAbShFpSomw/xn7q6tSpgp49K62crW90fSEmtbOB4lwSE8m7YSthXauVEpuNRvJ+KiU+nkI8LLjoNthAkUNLCxkodog8yTZQWlsp3s3hHeei05EQm5wwz5gxkmG6a5fyxLmYGOrnI6fhGeM4SkqkxFUlqLlum5pIEkBJfhqjnH795JcbT5okPVcT5gkMpGu9sFD5voxDYANFDuXldEH06yd/n3PnKPcAoKxyuZn9DQ20CmOhJ+eTlkZibbYMh7AwYMQIel5TQ8qySoiNJU8Nq1O6js5Ocs8ruWZFlJYXCwLJ4bO8vfPRaMi7LCdkc8klknG6Z4+6PLC4ODJQlFYCMQ6BDRQ5FBSQNa2kq7B1KEBJeKe1lXQ6uIOx80lMpIfSah7rG5gcdDr6/+SVmOsoKyNjUmlybGMjSQMA5BGRY3S0tVHYgcM7riExUZ4QXkCAdN0aDJamj4pgTRS3wndBW4idi5VOdNYKhnINlI4OchGnpCg7F6MOrZa6n8pZHdlTbgzQ76ekhFdirqKggP5/5eoOiViH8OQkxwLkXY2NVV7KzKgjMZHyfeT0ubKu5tm2Tfm5RE2UkydZE8UNKDZQ2tra8N577+Gpp57Ctddei/z8fKxevVr2/s3NzXjttddw/fXXY9asWXjiiSdw8uRJpcNwHRUVdFNREsduayOBIIBWVXITXhsa6EbGKzHXkZZGCr+2XMbW/48FBQhtrVN2nuhoMnbPnFE3TkY+585Rzpia60hpeAeg+SE7m72eriI4mLxbcgyUUaPIwADI+DzfmVoR8fEUnmVNFJej+IrS6/VYtmwZSkpKMHDgQEX7ms1mLFq0CD/88APmzp2Lhx9+GA0NDXjiiSdQ5okuNLOZ8kjCwuS1WRexatGOcePk79vUROEdpSWRjHrEME9Dg+1trVbUaWUKvShaLRkpR46Qp4xxHqKnKipK2X4GA3DgAD2PjSWtHFuYTPR/yy0pXEt6urztgoIkmYDmZuUyAQCF7wwG5blnjN0oNlDi4uLw5Zdf4rPPPsMjjzyiaN+ffvoJR44cwTPPPIP77rsPc+fOxVtvvQWtVoulS5cqHYrzqa0l/Yr4eGX7qakCMBoprpqaquxcjH2IYR45fXas/i/TS1Q0IUtMJF2coiLl+zLyMBoph0SpcQKQXoaoeTFunDyPSFMTnYu9nq4lMVH+ws9e0TaAFhenTrHgootRbKAEBQUhTmk+xnk2btyI2NhY5OfnW97r168fZsyYgS1btqDT0/7zy8uVdy7u6urWoh3Dh8vbr7GRErJ4JeZ60tLIDWwrzNO/v8VYTao8iECjQvGngAAKJx05wg0EnUV5OVBd7brwjl5PkgDcM8u1xMTID6mNHSvlIu3YIS80dCFxcbRg5Uo8l+LSoOmpU6cwaNAgaC/4YQ0dOhTt7e2eFebp6iKLWamGwtGjUsfNsWPlh2saG6kcOThY2fkY+xHLupua+t7OSlVUZ+5CWpUK8aekJLqJsoS2czh9mv6flCbHdnV17zoulpXboqODe2a5AyWimWFhUrPH+nqa15Ui/p64Es+luNRAqa+v79H7Ir53TmzOdQF1dXU4efKk5VHiClXOqip1ZYpqwjvialpuXJVxLFotkJUlr8LG6v80q1xFmEc0QI8d46oAR9PQoD459tgxKcyXlyfPwBGr7rh7sXtQkpTsiDAPa6K4HJdmY3Z0dCCoB6VF8b2OXpIHV61ahWXLljlzaBdTWkrxaCUejQtbtI8dK28/MY7N6rHuIzmZ/v/M5r4nvuHDaYVtMCDj7G7sMasI1SQn0420spJzjhxJSQmFXNSU6atZWIjijSpD3oyd6HQAumAwAB+v7FsXJah9AuZq/h+0ghkt67ZhVb/7ZeewBAYCeSPMyEk/3/izrIyaiDJOx6UGSnBwcI95JuJ7wb0YA3PmzMHkyZMtr0tKSvDSSy85Z5AArYxOn1aua1BUJJWijRghP3eloQEYOpTj2O4kIYGaOba09J1gGRhI0vdbtyKksxnxNccBDFV2rvBwKl8/cYINFEfR1SUlxyqpuAPIMBV1i5QsLPT67vkNjEsJDA0AGjogQIM2G2LQbYhGZeKlSKs+gIiWaoSeLcK52AHyTmQA9hzWIidToMXJyZPAkCFcVu4CXGqgxMbG9hjGEd/rLfk2Pj4e8Uoraezh7FnSUlDaOl2NOJsgkKeG49juJTKSXPWVlbYrQMaPB7ZuBSBW8yg0UAA61+nTwMiRvAJ3BBUVlBybkaF838LC7gsLOQsF0dvGoopuI+/WQdjz36MwNrXJykepGDAZadUHAACDKjfDkGZbn8rQDgiCRmpobK2JwgUNTselBsqgQYNw6NAhmM3mbomyx48fR0hICDLUTC7OQMxxUboyUuMmFkXgOLzjXjQaMhLlCKmNHQuzRgutYEZ66Q5AmK981d6vH+U5nT7NBoojKCggg0FNsz41121LC3ncuLzYbeSMT0HOwCBg+XJKcrdlWDaMA7b/HyAIGH5uK4bfcJfN6/bjlbru3pmwMKr2KylhA8UFOM1HVVdXh5KSEnRZKfdNmzYN9fX12LRpk+W9xsZGbNiwAZMmTeoxP8XltLbSTUphs76wlhpJ32LgQPk3ncZGMk6io5WNk3E8Yo8Py3KpFyIjUZt0CT1trqSqHDXExVFyJifd2YdeT14QtV5WtfkncXHqmhEyjiMmhv4f5HQ3jomRckcqKtRX0vXrx5ooLkKVB+Xzzz9HS0uLJTSzdetW1NTUAABuvvlmREREYPHixVizZg2WL1+OlPNu0OnTp2PFihV45ZVXUFxcjOjoaKxcuRJmsxk///nPHfSR7KSujn7scuXpz5NeqiK8A5DOSv/+ylfgjONJSCBDsanJpoFZnjUBSVXn2xns3KkutBAXRxPdmTMkyc2oo6SEDP3cXOX7WgvnDR4sf2HR2gpcdhlft+5Gq6VQ/ObN8rafPFlSk922jar3lBIXR6qyFRUkDcE4DVUelOXLl2PJkiVYuXIlAGDTpk1YsmQJlixZguY+VoM6nQ5//etfMXPmTHz++ed4++23ER0djTfeeAOZnpKDIYr4yOmWaUU3ZVG5BkpbGyVdcXjHMwgJIdE2W3ooACoyrP6P1TQPBGhyjYoi4bb2dnXH8HdMJko2johQZyxYe0/kNgcEaH7g8mLPIDmZriU5fXbsbR4IsCaKC1HlQfn0009tbvPss8/i2Wefvej9yMhILFq0CIsWLVJzao8kqLMFiVVH6EVSknyrvKGBVu2cg+A5pKdLjR77oCUqBfXRWYjVl1BWf0ODum62iYnkQSkupsoARhlnz9JDrYaQGvVYs5k8bZx/4hkkJlLYpanJdmg+Lo6usxMnyPNWXq7utxMfTwbKZZepa6vAyILrpBxAxtnd0Arn9TDGj5e/kmtpoeaAXK7mOcTHkydFhkejNO38DU0QJBVSpYjy94cPq+u06u+cOUNeFDUKzE1NlAMEULm33DCdYKbtQ0OVn5NxPKGh5PmUk4cCOMaLEh1NYUVPUj/3QfjO6ACyKlSEd0QVSi5T9CzExEcZk11JmgPCPADL36uluZmqd9Qmx+7eLYV0lSwsBKjLOWKcR0aG/KTVSZOk52oNFK2WKnpOnVLX24eRBRsodqI1GZF+9nxzwMhI+QqDDQ3kjuQ4tmcREEDlxjLyUGrjBsMQej6sc+AAGZ1qCA6mmyPL3ytDTI5VW0mjJrwD0P8Vh3c8i4QE8qTYavgJ0IJg4EB6XlhIidJqEDVRzheIMI6HDRQ7Sao8iKCu84XyeXnyk2ubmii8I7fhFeM6UlJoVWRrZaTRoiLjfGJlZycZKfacs6iIu6XKxWwm5diwMHUh0o4OYN/5Zo/R0VTBIxetlvPGPI24OFrwNTbK294RXpSwMKrCdEVvOD+FDRQ7SS9VoaFgNNIkxzLnnokoey92pe6D8kyrlbc9YZ6wMPpdnDih/hj+RGUlPdR6Mvbvl0IC48crq9rT6RRX+TFORqulkl+5mkKOMFAAMm5ZE8Vp8PLdHsxmpJ03UEy6QOjElt62EJuMsRKhZxIdTSuyujoK2/VBdepICtF0dJCBYjKpv3lZy9+7srWDN3LmDN0UQkIAAIWlGuw9rLWpsScyfvNuiJ1YfhIm4qyNZnMAyZ4DYOPEUxHLjeVcg6mppJ9SXEwGRm2tOmM3Lo48KKyJ4hTYg2IPZ84grI3E6qpSR8nP6tfrKanr/OTKeBgaDU1eMjwopoBgQDRM9XoyMNQSHU0rwFOn1B/DH2hpoe/Zyojbe1gLfZMGbQbbD0OrGannFxbGgBAUxYyWtZ8gUBJtYBg3B/RIEhOp5FdG/hgAx3hRAgMpb0xOiwxGMWyg2INVkl03V39fCAKVk6alOWlQjENITJQv/mQt8GWdeKmG+HjKrWD5+94pLb1Id0b0nGg0AsJC+35k6w8htINuYpXpYxEcEWhzn7BQAWFBXYiONCPvNhWKtYzzCQsjz4iaPJTt29WfNz6e8sfkGkaMbDjEYw/nb0YCNFKypC0MBrqQuArAsxFl75ubbQuwiZLngkBhnnvvVX/e2FgSfisokDwzjITZTHk6oaE9JseGhgB33mjq+xj/3Gh5mnnbZNw5xcb2IidPAjNnAmNYGsBjycqStG1skZlJnuyyMloU1Ncr7sEGgOaJ06fpOJdconx/plfYg6KWqipL9nZNXC7aw2T+sPV6uuGpuRAY1xEWRjFtOeJP0dGSCmxZmX2VOFot5ScdPcry9z1RVUXxfrU5Okaj5M4PCaHKO7n7BQSwLICnk5gov9wYkETbBAHYsaPvbXtDq6VznjzJmigOhg0UtVi58kvSFWgotLRQfgOrx3o+mZnytU2swzz2VPMANMlaN7FjJIqK6P8kLEzd/gcP0jUI0P+Z3DwwvZ7l7b2B2FhaAMpVlZ08WXq+dav687ImilPgu6RauhkoE/vY0ArTeVcyV+94BwkJpPYrx0ixLjG3Nw9Fp6MV2ZEjLH9vTVsbrVLt8T5ad72dOlX+fno99WxRI6nPuA6dTlm5cXa2pOZ99Kh8w+ZCwsLI48maKA6FDRQ1WPXwaIpKgz5Kpux1SwuVrfIqzDsQZe/lJL+lp0uJz8eP258wl5xM4SKWv5cQk2PVGigdHZIbPzwcGDNG3n5iYrvahoSMa0lOppwwk4zcIo1GSpY1m9WHeQBJE0WtojRzEWygqMGqh0d5loLwjl5P7nsb2hqMhxAYSGEeuasqMcxjNgN79th37qAgCgMeO8ZxbYCMhJMn6XtRq0Oydy8lqQMkbR8os1yYE9u9C3eUGwOSdlJFhfpjMN1gA0UNasqLAZrosrKcMCDGaaSk0EpMTo+c8Q5qHmh97sJCUkz1d6qrqaGiPUmq1uGd/Hz5+zU2cmK7NxEeTteO3IXFwIHS7+rQIfUl/qLBy5ooDoMNFKV0dJBMNgBER+NcgkxNhM5O+gHzKsy7SEigCU+GaBtycyXv2L599stfi/L3cssmfZniYsmToYa2NvJ8ArS6vvRS+ftyYrv3oSTBXaORqnlMJvsWF3Fx9FtlTRSHwFecUg4dkn74l10GQSvT3cxVAN5Jv360cpYz4eh0pIkCUMLc4cP2nz8piTRRamvtP5a3YjBQeMeWHk1f7N4tGYyTJ8sPE5lMdANLTlZ/bsb1JCZShZYY0rOFI3vzNDZy7piDYANFKdYVGnKbAwJ0g8vIoBg64z1otbR6luv2dWQ1D0ATXkuLf8vfl5WRgWZPB2G11TvNzZzY7o3ExysrN87NlUJ4+/fL85j2hFZLjUYPHGA1aAfABooSzGbJ/RcUBIwaJW8/lrf3bkTZezlVAaNGSbHoXbvk5a7YIiHBMZVB3oggkHFmT3JsSwuF3AC6CQ0bJn9fvZ68JxER6s7NuAedjhYWcq8ZrVbyonR1SeFANaSkUN7Ynj2Ouf79GDZQlHDqlNTnYfRo+ZoIXAXg3YiVV3JWRKGh1I0YIOnsggL7zx8TQ+W1jjiWt1FbS9oS9lw727dLejJTpijLJWlvp3wGxvsQ9U3kLCwAx4V5dDoqST90iBNm7YQNFCVYu+wnKKjeEasA7ImhM+4jPJxW0XJXY45UlQUk+fsjR/xP/r6oiBJc7fFgbNkiPVcS3unoIM8Ny9t7J2K5sdxQy9ChFFIFyOMmN3+lJyIiyJO6YweHeuyADRQliCI+Wq2UDCmHlhZSN+QqAO8lM1P+hGX923CEgQKQB6G2lsqO/YWODkqO7ddP/TEaG0neHqAb1uDB8vdtaqIbltq+P4x7iYiQ308LIM+HWM3T2Um6OfaQlkahnl27WMtIJXzHlEt5uSTAM2QIWeZyEKsAWN7eu0lIoBWRnNLhuDhg0CB6XlREGh72Yi1/bzTafzxvQEyOtcdA2LZNujlMnUrXolz0etItkivoxngeWVnKvI6OCvMAtCBNT6dqPg71qIINFLmord7hKgDfID6eVtNyV2PWvxF7Eu6sSUoiI9kfShhF5VidjroIq0WtOJsgkGEj5jEw3kliIoXp5Bopw4dLWkZ79kDXZadsfUQE5Sru3OmfSe52wgaKXOwpL05K4ioAbycoiFZDavJQHFFuLI5Bq6WmZr7uMj53jgwxe/I/6uokkbv0dKrqkEtrKye2+wLx8VS5JXdhERAgze/t7Uip2Gf/GFJTKdRj1SKFkQcbKHJoaKDVHEBaJqmp8vdleXvfIS2NqkHklA5mZUlhvSNHKA/JESQnk1Ll2bOOOZ6nUlwsNddUy9at0v+VmvCOqKXBeC8BAXQtKvFeWIV5Moq39LGhTLRaum8cPuyflXh2wAaKHHbvliY6Jd4Tlrf3LRISKA9ETrKsRiN5UUwmSYfDXsLCyEg6ftwxx/NE6upoMrcnORZQL84GSPL2SowaxjNJTZVCdnIYOZIq9wCkle6C1uSAnK/wcAr17NjBoR4FsIEiB+tKDCUGiihvz1UAvkFsrDJ3saPLjUV8Wf6+tRXYuJG8lvYklldVSeq7OTkU4pFLVxeterm82DdQomME0KLy/LUbZGxDWtV+x4wjNZUS5rmqRzZsoNiivZ1kiwG6OYnVGXJoaqLyVJa39w2Uyt5fcollJYa9eyWxMHuJivJN+XujkTRLzpwho8Ie74Xa5FhAKi9mz6dvEBlJxq7chQUglRsDyC7b6phxiKGeI0eA06cdc0wfhw0UW+zfL5WWjhsnX8tElLdXkq/CeD5KVvUBAUBeHj1vbaXkVkchyt8rmXQ9GUGgUOrhw2QE2lO5A3Q3UCZPVravXk/VO2o7JzOeR3Y2Cf7JZfRoCucCyKrYDo3ZQYsL61CPr1y7TsTOWcAPUFu909ZGP0ZehfkW8fG0IhPMAHQwtAMfr+y9R0ymZgKmYCMA4OT/dmFv0RhFpwsMBPJGmJGTeUFibmwscOIEhXrGjlX6KTyPY8fI9Z2cbLkxqKasjJJsARJmU9qJuLOT5e19jcREMgw6OuS1KAkOpsXF5s0I6WxBUuVhAJc6ZiypqeT93LULuPxyFvDsA/5m+sJkkjQsQkOBSxX8QPV6lrf3RaKigIQEBGqov4cgaNBm6P1xJi4PJi2tA1JLdqKtDX1uf+FD36TBnsM9XKYaDf22jhyxT5LbEygtpdBOeLgkNW4P9iTHtrfTzYkXFr5FfDwlXSvxWji6mkdEqyUD+MgR3wvTOhg2UPri+HEp32D0aGWKkmIVAFvHvkdWFvKSqxEdJSAstO9HYHQYapJHAAAiW2uQ2l5kcx/xodGQ16RX4VhfkL+vrwc2baKVrVJPR08IgmSgaDTUHFAJYt+suDj7x8J4DoGBNB8rMVDGjkWXjrwtGSXb5TcdlENYGC16d+7kUE8fcIinL9SGd1je3rdJTEROQhtyxrbLM1oDLgMWUyXANYEbgRvlhQ8+XqlDW1/OEZ2OvA5HjlAow9sk2dvagJ9+ooobJcnnfdCvvlBqSXHJJcoNjeZmIDfX/hwYxvNISZHKjeUsHENCcDZ9LDJLtiGkXU9hyBEjHDueU6foPnPFFbyY7QH+RnpDECQDRauVkh3lwPL2vk18PIV65OoZTJ4sTT7r1zt2JZaYSDfkkhLHHdMVdHWRkFpBAdC/v8Mm56zCTdILpeEds5mue5a3901ERW8Fooll2VYJ1lsdVM0jIoZ6jh7lUE8vsIHSG2VltLIDaCWmRNGyqYnc1Sxv75uEhFC5oFzXbEyMpIlSX++43jwAlbAHBHiX/L0gUNn1wYOObcYnCMgqOm+gaLXdG7/JoaWFrlnWP/FNoqLo/7axUfYuFRnjLDlk2LHD8ddYWBg9du5UNC5/gQ2U3tixQ3quJLwDUNIiVwH4NqmpyroKX3WV9Pz77x07lqQk8qCIoQ1P58QJYPt2GrcDS3kTzp1EREsNvRg5UnnCbVMTeT3ldipnvI+cHEVJ5V1BYShPOV8lV19Pv11Hk5wM1NSwgFsPsIHSG2rVYzs7aVXL4R3fRonsPQCMGiX9Jvbtc6wKrDfJ35eXUxJrWJj9UvYXMKBko/RCqTgbQFo1WVksb+/LiN2NO+R3KS5OtwrzbN/u+DFZV/WIPd8YAGyg9Ixe310mW0myq15vKUVlfJi4OGVlizodJcIBtEr64QfHjicpiRRYa2oce1xH0tBASbEGg8PzPDRmE3LKzlfvWHeklYvRSPtxeMe3SUhQXG5ckj4eZs15rSPrBpSOJCyMEt537qTrhAHABkrPWCt+Kp3oRHl7b6uoYJSh09FqW67sPdA9U3/dOscmy0ZFkQfAU1dgBgP12KmqonJPB5NQfRThhnp6MXas8vyvpiZeWPgDKsqNO4MiUZU6kl7U1TlPpj4lhY7PoR4LbKD0hFoDRRDopsPy9v5BcjJNJHInk4QEYMx5Jdm6Omqj4Eji4ylGXlbm2OPai8kEbNtGXkkHVuxYk1VkJc6mVPsEoBtWRgYlQDO+TWqqsusWQFm21W9q2zYnDAoUWszIoPuPM3JdvBA2UC6kpUWykOPjaUKVS1sbuep4FeYfJCRQdZeCskXMmiU9d3SybGwseVG+/ppc0a2tjj2+GsSKnf37HVuxY01Xl0Xps0sX3L2LtIJjIC3NwQNjPJLERPKWKfB+lmdNkAzrbducE+YBpFDPjh0c6gEbKBezaZPkeh83TlnCnF5PNwmWt/cPoqLIiJWrhwIAl11GvxGAXLn19Y4bj0YDDBhARtPWrcDKlWRsu9NdfOoUTbaJic5rvnfoEELa6f+gInOc8l4+bW3kOeGFhX8QFaW4u3FHSDQwfDi9qKoCioqcNDhQqKe+nvJRHBkG9kLYQLmQdeuk50rzT5qbaZXIioD+gUZD/99KPBUXJsuuX+/4cfXrR8qyjY3At99SQq4jDSG5nD1LBn9wsHONdqveOyU5Kqp3xL5ZLG/vPygsNwbQXVfHWWEegOaVzExSrvXzUA/fSa0xGoENG+h5WJhkMctFq2V5e38jMZGMji4F7dhFAwWgMI8zPBw6HU1yKSnAoUPAl1+SMJoS7RZ7aGykip3WVufmZBmNltLPzoBQnE1XoPgswgsL/0MsN25vl7/PxImSR91Z1TwioaGU6L1zp3sWFx4CX5HWbN4suevz8pTFy81mSamQ8R8SEkgQTEmYJzmZdFEAoLqaDAhnERZG3hSzmbyD335Lng1n0t5OnpOzZ2ml6kz27qUQDYDi9EkwBwQp2190obO8vX8RH0+hViXqrTExwNCh9LyiwvnJ6MnJfh/q4Y5Y1nz1leXpFu1ElK7U2dzFIBrggkDek/BwJw2O8UhCQ+nmdvq0lFsih6uuAg4coOfffy8ZLM5Ao6HJLjaWYueVlaS0OmqU4/NCTCbyaJw4AQwc6HyvhFV4pzBLRXinpYXLi/2RgAAqN961S1kX7UmTKPQCkBfFmYrhYgj52DE6zyWXOO9c1phMJCRZXU1eJtEocwPsQbFmIylRmrQBOBN/GdoMGpsPQSCXX6DGxPL2/kpGBikIK2HcOEmKfccO17RcDwoioyE8HNiyhQzyM2cc66rev5+Ucl2hBdTeblF87giOREXyaOXH0OvJ66mk1xbjG6SmStIQcpk4UXruzDwUkZAQMqCdHerp6ABKS2kuWr4c+OwzqgZ0luaLTNiDYs3u3dhy51sILj2FwKhQBELexB0YICAvuR5IVJhUy/gG8fGUCNreLl9HIzAQmDmTckO6uoAffwRuusm54xSJiaFJr6IC+OYbWpnl5dkvPX/6NHlP4uNd40ncvdsiWV6aPRmCNgCQec1aMBholcr4H9blxnJ/+wkJQG4uCSKK/a+cXZ6elETVcDt3kkyBzrZnXxbNzVSRVFFBnlW9nuaiqCjyKgW43zxw/wg8icBATPnrXODLL3HZIAVWdW0t/Wji4503NsZziY+nCa6pSZnQ16xZZKAAFOa58UbX9YERk2hbWsjjUVpKXp0hQ9RNTFVV5IEMDFQW6rIH6+qd/irCO52dNF7OG/NPIiIoPFtcrMw4nzRJUmzetg249VZnjE5CDPUcP07eWqXFGyKCQF6Yqir6zGfPklGi09Hn90AFdA7xOAK93iP/cxkXERBA//9KwzRpacCIEfS8oqK7grGriIggo6SrC1izBvjuO5rAlNDURNVvLS2uEztrbaUEWQCIiUFtkopJW6+nMBsvLPyXrCxllTyA68M8AC18IiPJi3LunPz9urrIENm7F1ixgsI3q1dTaDckBBg0iMK+8fEeef9iD4q9sLw9A9BKTBDoocQLMmsWcPgwPV+7Vv3qyB40Ghp/bCxQUEAT2ujRwKWX2hY96+igip3ycprsXMXOnVLJ9JQpELQq3N56PSULByms/GF8h6QkulEbDPIF/pKTSRDxzBl6VFUpS7RVixjq2bGDkux783QaDJTgKoZu6uvJWxgeTtd4Robzx+og2INiL62t9B/PVQD+TUICVcQolZefOFFK0Ny2TVnzQUcTHExGRkgIhWtWraIJrrckWrOZck6OH6eWEI6Kjcths529d3hhwQAkzhcTo9z7aS3adl6Hx+mIoZ4TJ6RKIhG9nsJOP/wA/O9/wBdfkBFvMNBvPDcXSE/3uipTNlDspamJrFJ7EwwZ76ZfP3KTKp3ogoKAGTPoudFI4mbuJi6ODJWaGsrk/+mnnj/XgQPkOk5Pd60XoqlJKtEWkxaV0tJC4S0WVvRvdDrS6lG6MLA2ULZudeyY+kKs6tm1CygsJO/rV18Bn3xCCe9HjlBpf04OXcPJybTw8FLYQLGXlhaqp2cVSv9GlKdW0jhQ5MIGgs5UqJSLqBORkEDVMitX0qpNLMk8c4ZWjnFxdKN3Jdu2SeOYMkXdtdfQQMYJLywYUaRPSblxWppU/XXqFBVKuIqkJBKY++47CguXl9M1OHAghZ7i4jyiAscR8F3VHkwmujHxKowB6Heg1SpXfczMpERVgEoXxQoBTyAigjwU7e2UXLd6NY1v40b6rO7oX2Md3slXUb0DkOu7f3/XVU0xnotYbqxEDRoAJk+WnrsqzAPQb3bgQBp3bi7NH1FRPrlI9r1P5EqamliFkpFISFA30QGU9Caydq3jxuQItFqKY2dmknGybh2FfFxVsWNNfT25sQEaU//+yo9hMJDbmxcWDEB5GampymTvAdc1D+wJnU55124vhA0Ue2hqohiflyUeMU4iPJx+D2oMlClTpN/Rli2W/jIeRUgI9fWJjXWf98G6SdvUqerG0NhInh9eWDAiWVnK1aAzMij/CqBEcT9u6ucs2ECxh/Z2lrdnupOZqVxXAaAV/bRp9Lyjw9J2wSOJjHSfO9k6vDN1qrpjNDe7vuqI8WwSE8kjoWRhoNFIXhRBoPJfxqGwgaKWjg6qXOBVGGNNQgL9Ls5LsCvCOlnW08I8nkBNDZVYArTiVbM4MBqlkBXDiMTFKe9uDLg3zOMHsIGilqYmVqFkLiY+Xn0eSv/+lPwGAIWFiKlzb6Muj2PLFum5Wu+JXk+VOyxvz1ij1dL1p7QKLydHEmk7csQ1TT/9CDZQ1KLX0yrOA+WBGTcSGKhO9l7EKll24En2onTDEeEd8bpV0jOJ8Q+Skyls09Ulfx/rMI/ZTOJojMNgA0UNogqlWD/PMNakptLvQ42eydSplptn9pmfEGA0OHhwXkpFBWmvACRApebaM5vp5uNFUt+MC0lMJK+4PeXGrhRt8wPYQFEDy9szfSHK3qupxAkLs2h7BHYZ0L90k4MH56XYK20PUHJsVBSXFzM9ExpKVTlK81AGDpTuBYcOqRNrZHqEDRQ1NDVRUhWrUDI9EROjrr+HiFWYZ8iZNQ4alBcjCI4xUBobyfMSFeWQYTE+SEaG1IRSLtZhHpOJwzwOhA0UNTQ3UxzbB5X7GAcg9sJQu5IaOJD2B5B47iT61Rc5cHBeSEkJUFZGz4cNU++5NBgs3yvD9EhSkvqmnyJczeMw+A6rFJOJbkDsJmb6IjGRVlZKZe8B2s+q5HjAST/3ojgiObatjW48fN0yfRETQ95xpd7PIUOoTBkA9u/3TKFFL0SxgdLZ2Ym3334bN910E6644go89NBD2L17t6x99+zZgyeeeALXX389rrnmGjz44INY6216Dyxvz8ghIYEEzdR6UaZNQ5eOupDmnNmgTlfFF7AO72i13XUnlNDQQCXg7ugdxHgPar2fWi0wYQI97+qiBpuM3Sg2UF555RV8+umnuPLKK/H4449Dq9Xi6aefxqFDh/rcb8uWLVi4cCGMRiPmz5+PBQsWIDg4GC+//DI+/fRT1R/A5bC8PSOHyEjyoqjNQ4mIQGkO5VoEdbb6r9u4oACoqqLnI0bQClcNLS3U6ZXDsowtkpNJZVhpLop1NY+/Xq8ORtHVeuzYMaxfvx4PPvggHn30UcyZMwdvvPEGkpOT8fbbb/e57xdffIG4uDi88cYbuPnmmzF37lz84x//QFpaGlavXm3Xh3ApLG/PyCUrS53s/XkKcmdLL7zN0+goNllVMakN73R2Uvt5UVCLYfpCbXfjYcOoTBkgD0pFhePH5mcEKNl448aN0Ol0mDNnjuW94OBgXHvttVi8eDGqq6uR1EuMt62tDZGRkQgKCpJOHhCAaPE/1BtgeXtGCQkJ0kpMhaBfXeJQNERlIKapDDh2jBJF/UnDw2yWdCUCAronIiqhsZHyA1g9lpFDSAhdZ0ePAqDfjKEd+Hilrd5NOozIuQYjDvwP6OpCxctLsHHWH2WdMjAQyBthRk6mCu0kH0aRB+X06dNIT09H+AXhjaFDhwIACgoKet131KhRKCoqwrvvvovy8nJUVFTg/fffx8mTJ3HHHXeoGLobaGqi0mKWt2fkEB9PKyq1YR6NBicHWHlRvv/eMePyFk6cAOrq6Pno0RQ2U4NeD2Rn0+KCYeSQkQF0dVnWFYKgQZvB9mPvoFvREkb3h7TyPYg9s0fWfvomDfYc5vDjhSjyoJw7dw5xPSSZie/ViZNJD9x7772orKzEhx9+iA8++AAAEBISghdffBFTbbhu6+rqcO7cOcvrkpISJcN2HHo9TZQsb8/IITiYhJ+OHlVt1J7OuRyXHVwKnbkL+PFH4J57/Of354jwjqjom5bmmDEx/kFiIhAejrxBbdhzOkxBOkowDl52HyZvfA0AMGn/YnyXPRJmXe/XrKGdDCClKS/+gCIDpaOjA4E9TI5i2Kajj0qDwMBAZGRkYPr06cjPz4fJZMLXX3+Nl156CX//+99xySWX9LrvqlWrsGzZMiVDdTyCQC5nlrdnlJCWRuqSKukIjkJZ9mRkF24k/Z3t2y1Ksz6NySSFd4KCgHHj1B1HbOrJ+SeMEmJigPh45NTVIufadGX7ClOA2m+BY8cQ1VSB27VfATfe1OvmH6/UoY07WvSIIgMlODgYxh7MvM7OTsvfe+ONN97AsWPH8O6770J7PpN+5syZuOeee/DWW2/hP//5T6/7zpkzB5OtMqRLSkrw0ksvKRm6/bS2ko4C558wSkhIoJi2qMOhgoLcq8hAASjM42UGSmGpBnsPaxWtEJMqDuHy86Gx0tTLsOX7vsM7ht5ykRsbgcGDueqOUYZGQ92N1XjrNRrggQeAX/+aFraffAJMn66+As2PUWSgxMXFoba29qL3xfBLfC9ubKPRiG+//RZ33nmnxTgBKEl2/Pjx+PLLL2E0Gnv0zojH7e3YLkOvJw0F/pExSoiNpd9MU5NqA6Um+VLy3FVWkjemstKrPHl7D2uhb9Io2if9tBTeOZU2DW0Geft3m0IEgSp4uOqOUUNSEiVnq0lyHzAAuPJKWlAYDMAHHwBPPOGccfowirJyBg4ciPLycrReIAN87Ngxy997Qq/Xw2QywdSDqqbJZILZbIbZbFYyFNfT0kJloxplEy3j5+h09LtpblZ/jAuUZb0tWVb0nGg0AsJCbT8igjqRU07hHWNAKM4NGCtrv+goAXkjrOYRsaknh3cYNSQkUFGE2iT3n/1M8tytXw+cPu2wofkLijwo06dPxyeffIJVq1ZZKm86Ozvx3XffYdiwYZYS4+rqarS3tyMrKwsAEBMTg4iICGzevBn333+/xVPS1taGrVu3IjMzs8/wkNsR5e15omPUkJws5TCpFQqbORP473/pt7h+PXDXXbS68yJCQ4A7b5Qh/b97L9BJi6DAyeMw75ZAACpaBjQ2UrIjez0ZNQQHk/ft4EF1Se7R0cDttwNLltDrxYuBV19lsUAFKPqmhg0bhhkzZmDx4sV4++23sWrVKjz55JOoqqrCww8/bNnu5Zdfxs9+9jPLa51Oh9tvvx1lZWV4+OGH8emnn+KTTz7BQw89hNraWtxzzz2O+0TOgOXtGXtISAAiIuxrwx4TA4wfT88bG4FduxwyNI/EunrHnnyb1laSLWevJ6OWtDRaWAgq9UmuvVbSLjp5Eti40XFj8wMUm3LPPvssbr31VqxduxZvvfUWurq68Oqrr2LUqFF97nfPPffgD3/4AwICArBs2TIsWbIE4eHhePHFFzHL2n3tiej1FPNXmUPA+DmRkWSkqHUVi1x1lfTcy8I8smlpkYyv8HDAxrzSK6Koohfl6jAeSFIS/Q7VLi4CAoAFC6TX77/PjQQVoNhHHBwcjEcffRSPPvpor9u89dZbPb5/5ZVX4sorr1R6SvfT0cGJdox6NBrKQykstO84I0dSyKKmhjqm1tT4ljqqIAD/93+UVAhQbxO1mi8NDZSgzF5Pxh6io+k3VFOjXihw9Ggqk9+1C6ivBz77DLj3XseO00fhYJgtWN6ecQSJieoakFmj1VJlAEA383XrHDM2T2H9emDLFnoeHg7Mm6f+WE1NFN7xsjwdxsPQaOh3dEFhiGLuv1/6LX71FXD2rP1j8wPYQLGFXk+Z3NymnbEHsSKgsdG+41xxhZRk98MPlDTrC1RUUBKhyGOPqV8UdHXRjYXVYxlHkJREnrzzel+qSEkBbriBnnd1Ae+955ix+ThsoNiiqYnc8/4iL844h5AQEn5qaLDvOHFxQF4ePT93Dti3z/6xuRujEfjb36TOz7NmdW9drxRxUdFL41KGUURion3lxiK33kphR4DCPfv32z00X4cNlL5geXvGkWRnk/fD3qYb1smya9fadyxP4L//BcRGo2lp3ZMK1dDYSJUToaF2D41hEBhI1669BkpYWPfck3ffJW8K0ytsoPQFy9szjiQlhTwg9fX2HWfMGCnkuGcPeVK8lf37gS+/pOcBAcBTT5G3SS1mM4W9OKmdcSSpqfS7sldQdNo0IDeXnpeVAd9+a//YfBg2UPpCryeBnn793D0SxhcICgIGDbI/D0Wnk5JlzWbKRfFG9HrgjTek1/feSxLh9tDSQpozLKrIOJLERKrisUfLCCAP6oMPSq8/+QTBBjs9Mz4MGyh9wfL2jKPJyCCXcR+dv2VxxRXS73LdOvtXdq5GEIA335RyckaPBq6/3v7jNjaScRIdbf+xGEYkOppymuxdXAC0SLn8cnre2oqRe9+3/5g+ChsovdHVRdYuJ9oxjiQ5mVZj9oZlEhPppg6QRsOBA3YPzaV8+y2FpwCa/J980jES4AYDlYUyjKPJyZE0euzlnnssOVIDTn2PuPoCxxzXx2ADpTeam1nennE8AQG0grKneaCItzYQLCoCli6VXj/5pGP65bS10aTP4R3GGSQmUpjWXu8nQL/3228HAGggYOLef6uX0/dh2EDpDZa3Z5xFejolgtoreT1unJQftXOn/SXMrqCjA3j9damSac4cYOxYxxy7sZHKONU0dmMYW8THk2FhbzWPyHXXWbR6kuuOIauQ+/RcCBsovcHy9oyzSEyk0KG91TwBAVIs22QCfvzR/rE5m/feo+oFgFzmjpT8bmkhrRnuFss4g8BAykl0lIESGEgKs+cZvfs9SQuIAcAGSs+YTCxvzzgPrRYYPNj+igDg4jCPB7uJ00q2A6tX04ugICopdpQAotFI1U2pqY45HsP0RFqapI/lCPLyUJFOwothbeeAFSscc1wfgQ2U3oiJYVcx4zzS0qgc1l4jJSWFmggCQGUlcPiw/WNzAmFtdZiw5U3pjQULpDb0jqCxkcJdvtQ8kfE8xHJjR+SQnWff+Adh0p7v0/Pll0BVlcOO7e2wgdITGg2Fd7jRGOMs4uJotW9vmAfw+GRZjdmE6dtfR3DH+Ul94sTuariOoLGR1D6Dgx17XIaxJjKSkrAdFeYB0BydhqODz/fpMRq7J5D7OWyg9ER4OMvbM85FowEGDqREWXvDMhMmSK3gt22j/lEexNDDnyO15hC9iI+nRoCO1BYym+k7TE933DEZpjeys+1PcL+A/cPvgCG0H73Yvh04eNChx/dW2EXQE9HRnH/COJ+0NCplF0va1RIYCMycSW3cu7qAl14CFi70DA2fU6dw6b7/AgAEaKD59a8lY8pRNDXR9+cJn5fxfRITqQqvvd2+tgxWGAPDcHDsfEzY8ga98e67pLKs0znk+IWlGuw9rFXWBsyUDuh0CNu5FTe+bEfzTjtgD8qFhIbSRMfy9oyz6deP8jAc0Uvnmmuk8MaJE6Qtsnmz/ce1h7Y24PXXoRVMAICjI28Dhg93/HkaGihc5mjDh2F6Qiw3doSqrBWFgy4njSQAKCmREsodwN7DWuibNGgzKHh0BtC/egfovqiEDZQLSU6m0k2Wt2dcQf/+FHe2tyogJYU8J6IXobUVeO01kpN3lPqlUv7zH0vCX3XcEBwefadzztPZSW53hnEFAQFUIu/ARFkAgEYLPPCA9Prjjx0WrhU9JxqNgLBQmY+gLvo32n15XRziYRh3kp5OIUW9vlc1VUM78PFKOa7eYQi88v/hsm3/h+zCn+it9evRtPsEtk5/Gg3xA3vcKzAQyBthRk6mA0uUN24ENmwAABgDQ/HTpN9A0AYAMDnuHIDUcZzDO4wrSUmhvCeTyWFhGADAkCHAjBl07bS0AB99BDzyiMMOHxoC3HmjzGuwvJzC0HPcE94B2IPCMO4lIoLEn3qo5hElQgRBvltWb4rAD+N+g58mLERnAPX6iGqqwKxvFmLAvi/R1iZcvE+TBnsOO3AqqKoC/u//LC93TXoMzRFOSjpvaKB8sdhY5xyfYXoiKYkWFs5ISL/nHim3Ze1aag3hp7CBwjDuJieHVmKm7iubvBFmREcpcMmKjzDg7LCZWHPjWzgXPxgAoDN3YfyBd3Ht5ucQK5yzbKvRkNdEUfJcX3R1AX/7mxRWmjEDJQOmO+jgPdDayuqxjOsJD3d4ubGFuDjgttvoudkMvPOORwswOhMO8TCMu0lLo/BOQ0M3ccCcTAE5mfaERJKAO16hWPYXXwCCgJSKfZi7+jHgiSeAvDx8vFKHNkemqHzyCXDyJD1PTgYeeghwljRLRwe5mbg5IOMOsrMpId0Z3HADaRpVVQFHjgBbtwJTpjjnXBciCPS5vvuOEu/nzHHNeXuAlx0M425CQ4EBA5zT7C8wkPrdvPiiFAbR6+n1O+9Aa3KU6wQ0kX72GT3X6UjK3pnNNsXmgKwey7gDsdzYGUnoF/TpwdKljumi3BclJcAHH1Ci7qJFlEf2448Or1ZSAhsoDOMJZGVR5ZjDYi0XMHIkVfRcdpn03tdf46qvf4V++lL7j9/cDPz975Ir+q67qN+QM9HrKTzmqH4+DKOEuDgykJ0R5gGoW/no0fS8tpa8oI6mupr6//zyl/RYsQKoqZH+rtUCe/c6/rwyYQOFYTyB1FSa8Bwhfd8b0dHA738PPPig5aYeU1+EG9c+gQEn16iPcwsC8M9/AnV19HrECOCmmxw06F4wmcig4+aAjLvQ6chAdpZys0ZDPavEKqHPPydDxV70egrfLFpE3pIPPiDviYhWS4bRPfcA778vdUx3A5yDwjCeQFAQSd9v2+bcklmNBrjuOuCSS4DXXwfKyhBg6sD4rf8PeHUvydBHRCg75vffkzw3QGJpv/61Y0sve0KvJ4OL808Yd5KSQteUo8uNRTIygGuvBVatIr2fpUuBp59WfJgAYxsGFu3E4PKfgGX7etZdGjIEyM8HJk+mnLjycueGaGXABgrDeAqZmcDu3RRrdnbTu5wc4O9/x+k/LMWgE9/Re9u2AadOkUz+JZfIO055OVUZiPzyl+QJcjYNDcCwYW6fQBk/JzGR2iw0NfWqY2Q3t99O+SB6PbBlC6lGy1FkNhqBffuATZswd9suBJh6yGHJyACmTSPDxAONfTZQGMZTSE4mTY9z51wTuggOxu5Jv0Bx/Bjk736Tug3X1QG/+x2VOc6b1/eq0GgktdrOTnp99dXUuNDZCAKVM2dmOv9cDNMXYWFUhXf6tPMMlIgI4O67gX/9i16/8w7le/V0bZrNwLFjZNBs3Upib7jgRp+QQAZJfj5VInmwajobKAzjKQQEUGLphg0uza0oyZiE79IG4aajr1EljtlM5cIHDvTddPCDDyQRqYwM4Oc/d82AW1po0mb1WMYTyMwEjh517jmuuIJ68xQW0jW3bh0wezb9TRDo/U2b6NFDb6/24CgUZkxFxeBpuPLBwV6jG8QGCsN4EunpUuliaKjLTmsIjwf+9CdKxPv4YzJSxKaDjz4KTJ3afYe9e6l7MkAJt7/5jfPDUiJic0Bu6Ml4AomJdK22tTkv5KjTUXL7b39Lrz/8kKQJ9u4lo6S8/OJ9QkKA8eOBadPwZelYtHYEIixUALQObjfhRNhAYRhPIjGRQj11dWSsuBKdjkI7l15KCbQ1NVLTwX37aIIMDSUD4Y03pP3uu8+1zfoMBlKP9WDXNONHiOXGjY3OzYkaNozCMps2UVn/woUXb6PTAWPH0nbjxlkk84VyJyetOwk2UBjGk9BqKcxTXOy+MQwZQpopb79NkyEArF9PHpVf/5oamInaD5ddRlUGrqK9nTw1HN5hPAWtlgzmLVucf67584GdOy8WbRs+nIySSZMoaddHYAOFYTyN1FTq9SHmWriD8HBaoY0eDfznP2QYVFSQOqyolxITAzz+uGs9GQ0NtGJNSHDdORnGFsnJdB10dVEumQrkdS1PQs64X2Dsjn+jJTIZxQOmozQnH20RCUA7gB97P7Y3wgYKw3ga8fGkr3D2rPsMFIAm3MsvB4YOpZBPQUF3MbcnnyQtElfS3EwhKGfrrDCMEhITKSdKr1dcZh8YCMAgdi23vf3R9Ctw9JYrur8pU23f20SX2UBhGE9DowEGDQLOnCGDwN25FqmpwKuvUmhHlNu++WZJhttVGI3kTk9Jce15GcYWoaFUyXbsmGIDJW+EGXsOa53W5UIkMJDO5U2wgcIwnkhaGqmyNjd7Rkw5MJDi3zNnkhz/yJGuH4NeT6tUzj9hPJH0dODgQcWLCvu7lvsu3lEMzTD+RkwMTXg9aBq4lcxMYNQo93h19Hpqqni+MoFhPIrERMrdamtz90h8BjZQGMZTGTCAwho99c3wN8xmSkB0dek1w8glJobCO42N7h6Jz8AhHobxVNLSKAlVr3eejPZ55FUQqD+23YihLg/sF8IwACg/KicHKC1190h8BjZQGMZTiYykkMbRo04zUJRWENh9LrU0NtJ34Qn5OAzTG8nJVGFmNHpfyYwHwgYKw3gyOTnA4cNOa+fuNRUEBgN9FwzjySQkkNezqck1Xb19HDZQGMaTEXvONDY6ZcLzigoCsccJV+8wnk5ICCWSHznCBooD4CRZhvFkwsIoWba+3t0jcR+NjSRexxM+4w3k5FCp8YVy9Ixi2EBhGE8nK4v+dXYcxlNpbiYjzUtaxDN+TnY2Pc6edfdIvB6+4hnG00lJIe9BQ4O7R+J6OjuptwlX7zDegk5HQoZmM/WwYlTDBgrDeDrBwcDAgf6pryCWWCcmunskDCOfrCzqcMxeFLtgA4VhvIGsLFqZ+Vtcu7GRYvpBQe4eCcPIR6ejppaCwMqydsAGCsN4A8nJVMLoT8myJhNN8Glp7h4JwygnM5M8n+xFUQ0bKAzjDQQEUIfjpiZ3j8R1NDWRpgTnnzDeiFZLXhSdjr0oKmEDhWG8hYwMykcxOFny1VNobKTeO+Hh7h4Jw6gjI4MWFhUV7h6JV8IGCsN4C0lJ9PC0DsfOQBCogicz090jYRj1aDTkRQkKAlpa3D0ar4MNFIbxFrRaWo35w0TX2kqeEw7vMN5OaioweDDnoqiADRSG8SbEkIevGymNjVRa7OQuzgzjdDQaYMQIksH3pxwyB8AGCsN4E/HxJNzm69U8ra1UXqzRuHskDGM/ycnAkCFAZaW7R+JVsIHCMN6ERkNhnrY2ytPwRerqgMhISjBkGF9AowGGDyfvp17v7tF4DWygMIy3kZYGREVRjxpfw2gkA2XMGNJ9YRhfISkJGDoUqKpy90i8BjZQGMbbiIkhI8UXq3nKyii0c+ml7h4JwzieSy4h76A/9tVSARsoDOONDBxIZbhms7tH4jj0ehKkGzeO9F4YxtdISCAvSnW174ZoHQgbKAzjjaSlkcqqr8SzTSYqw7z0UtY+YXyb4cPp2mUvik3YQGEYbyQyEsjO9p1qnooKMrrGjHH3SBjGucTGUqinpoa9KDZgA4VhvJXsbPI8mEzuHol9tLZScuy4cSxrz/gHl1xCuWS+ssBwEmygMIy3kpZGk1xjo7tHoh5BoMTYSy4BBgxw92gYxjX060fibTU1vpVH5mDYQGEYbyUsDOjf37tXYVVVJD532WUk5c8w/sLQoUBcnG9W4zkInhEYxpvJyqJ/jUb3jkMNHR0k2T9uHK0oGcafiIqipPC6Ovai9AIbKAzjzaSm0irMGysCSkupiVpurrtHwjDuYehQKj2urXX3SDwSNlAYxpsJDiZNFG8zUOrqKCF23DjSPmEYfyQiAhg5kq5fb092dwJsoDCMt5OZSTf5zk53j0Qeopx9Xh51LGYYfyY3l64D9qJchOKlS2dnJ5YsWYLvv/8ezc3NGDBgABYsWIDLLrtM1v7r16/HihUrcObMGQQEBCArKwsLFizA2LFjFQ+eYRhQp9SEBEq2S0lx92hsU1pKyb3Dh7t7JAzjfsLDyYuybh1dxzqdu0fkMSj2oLzyyiv49NNPceWVV+Lxxx+HVqvF008/jUOHDtnc97333sOLL76IxMRE/OIXv8D999+PAQMGoK6uTtXgGYYBEBhIHY6bmtw9Etvo9TRelrNnGIncXFpcVFe7eyQehSIPyrFjx7B+/Xo88sgjuOOOOwAAV111FebPn4+3334bb7/9dq/7Hj16FO+//z5+8Ytf4LbbbrNv1AzDdCcjAwgKAtrbgZAQd4+mZ0wmoLISmDiRxsswDBEaSl6UNWso3MN5WQAUelA2btwInU6HOXPmWN4LDg7Gtddei6NHj6K6D+vvs88+Q2xsLG655RYIgoC2tjb1o2YYpjuJiRTq8WRNBVHOfvRod4+EYTyPQYOoKq+qyt0j8RgUGSinT59Geno6wi+Qox46dCgAoKCgoNd99+7diyFDhmDFihWYM2cOZs+ejRtvvBGff/65imEzDNMNnc6zwzwtLUBXF8vZM0xvhISQ8S62fmCUhXjOnTuHuLi4i94X3+stl6S5uRl6vR5HjhzBvn37MH/+fCQlJWH16tV48803ERAQgBtuuKHX89bV1eGc1cqwpKREybAZxj9IT6ebf2OjZwmfmc1AeTlNvixnzzC9M3AgeRmrqjgMCoUGSkdHBwIDAy96PygoyPL3nhDDOXq9Hs8//zwuv/xyAMD06dMxf/58fPDBB30aKKtWrcKyZcuUDJVh/I/4eGDUKGDXLlJpTUpy94iIqiqqTrjsMkCjcfdoGMZzCQoiQ/7bb8mL0sP91p9QZKAEBwfD2IPrqfO8/kJwL1n54vsBAQGYPn265X2tVouZM2fivffeQ3V1NZJ6mVDnzJmDyZMnW16XlJTgpZdeUjJ0hvF9NBpg0iSS0N66FSgqIil8d/a4aW+n8M6UKUB0tPvGwTDewoABpG1UWUn/+jGKDJS4uDjU9iAmI4Zf4uPje9wvKioKQUFBiIiIgO6CGu+YmBgAFAbqzUCJj4/v9dgMw1ih0VCX1OhoYNMm4PRp0hxx10qstBQYMoQeDMPYJjCQKnq++YbEF89HKPwRRUurgQMHory8HK2trd3eP3bsmOXvPZ5Eq8WgQYOg1+sv8sCIeSv9PClmzjDeTmYmcM01tBorKADcUTVXWwtERlJiLItPMYx8+vcn72dFhbtH4lYUGSjTp0+HyWTCqlWrLO91dnbiu+++w7BhwywekOrq6osSWWfMmAGTyYQ1a9ZY3uvo6MC6deuQnZ3NHhKGcTSxscDs2cDYsZSkWl/vunMbjVTyPHYs5Z8wDCOfgADyonR1UT6Zn6IoxDNs2DDMmDEDixcvRmNjI9LS0rBmzRpUVVVh0aJFlu1efvllHDhwAJs2bbK8d8MNN+Dbb7/FP/7xD5SVlSEpKQlr165FdXU1XnnlFcd9IoZhJEJDgenTKeSzYwd5UtLSnJ+sWlpK3psRI5x7HobxVXJy6CG2hvBDFMvVPfvssxbjoqWlBf3798err76KUaNG9blfcHAw3njjDbz99tv47rvv0N7ejoEDB+LVV1/FuHHj1I6fYRhb6HTUmK9fP8pLOXOGJj5nhV0aGyU5ez+OnzOMXeh05EUpKfFshWgnohEEQXD3IJRy8uRJPPDAA3jnnXeQm5vr7uEwjPdQXQ1s3AgUF9OqzNH9cEwm4NQpYPJkejAMox6zmZJlCwtdpyFkNtMio7KSGnped51rztsDbqw/ZBjG5SQlAVdfTaGXoiLHK89WVJDAFMvZM4z9aLXkRdFonJ/o3t4OlJVR5Z/RCEyYQJ5XN8IdiRjG34iMBK64gvRSdu+miS852f7jWsvZh4XZfzyGYcjgHziQPJO9VMqqxmwGGhoooT0ggHoBDR1KFUSRkY49lwrYQGEYfyQwkETd+vUDtmyxX9RNlLMfM8ZvE/oYxilotcCll1LuWGurY3pZtbcDNTW0OImJIU/JgAFASopHSQKwgcIw/opGA1xyCXlSNm60T9Stqoo6KuflsZw9wzia9HRg8GDg2DFqCqoG0VtSV0fJ66K3JDPTI7wlPcEGCsP4OxkZwLXXSkZKRoayVZooZz91KsvZM4wzEBWiCwroWouIkL+vwUCiiQYDeUvGjZO8Je5sgyEDNlAYhqGJa/Zs8qbs3w/ExdFDDqKcPVfUMYzzSE0lL8rhw/RvX5hMUm5JUBB5YIYMIW+JEuPGzbCBwjAMERICTJsmiboZDLZF3WpryahhOXuGcS4aDeWiFBRQ9V1U1MXbtLVRCMdgICXp8ePJW5Kc7PHekp5gA4VhGAmdjuTpxWaDBQWUl9KT8SHK2V9+OcvZM4wrSE4mT+X+/ZKBYjJRG4v6etI1svaWOCKh1o2wgcIwzMUMHEgT4E8/UV5KdvbFSpainP3w4e4YIcP4JyNGUMlxdTXlf3V0UIh24kRaTCQleaW3pCfYQGEYpmcSE6kj8ubNwJEjlFQnJsE2NFBsm+XsGca1JCZS9c3RoxSCFStxfFB7iA0UhmF6JyKiu6ibwUDhnOpq0lFJT3f3CBnG/xg/ngyThASf8Zb0BBsoDMP0jSjqFhND3pSjR8mVzHL2DOMeQkPp4eOwgcIwjG00GmDYMPKkbN9Ogmw+6FJmGMZzYAOFYRj5pKcDN9/s025lhmE8A55lGIZRBhsnDMO4AJ5pGIZhGIbxONhAYRiGYRjG42ADhWEYhmEYj4MNFIZhGIZhPA42UBiGYRiG8TjYQGEYhmEYxuNgA4VhGIZhGI+DDRSGYRiGYTwONlAYhmEYhvE42EBhGIZhGMbjYAOFYRiGYRiPgw0UhmEYhmE8DjZQGIZhGIbxOALcPQA1dHR0AABKSkrcPBKGYRiGYZSSlZWFkJCQPrfxSgOlqqoKAPDSSy+5eSQMwzAMwyjlnXfeQW5ubp/baARBEFw0HofR2NiIXbt2ISUlBUFBQQ45ZklJCV566SX8/ve/R1ZWlkOO6cvw9yUf/q6Uwd+XMvj7UgZ/X/Jx5nflsx6Ufv36YdasWU45dlZWlk2rjpHg70s+/F0pg78vZfD3pQz+vuTjru+Kk2QZhmEYhvE42EBhGIZhGMbjYAPlPHFxcZg/fz7i4uLcPRSvgL8v+fB3pQz+vpTB35cy+PuSj7u/K69MkmUYhmEYxrdhDwrDMAzDMB4HGygMwzAMw3gcbKAwDMMwDONxsIHCMAzDMIzH4ZVCbc7mwIED+OSTT3D69Gno9XpERERg4MCBuPfeezFixAh3D8/j2Lt3L9atW4dDhw6htrYWsbGxGDNmDO6//37Ex8e7e3geR11dHVasWIHjx4/jxIkTMBgMePPNNzF69Gh3D82tdHZ2YsmSJfj+++/R3NyMAQMGYMGCBbjsssvcPTSPpK2tDZ988gmOHTuG48ePo7m5Gc888wyuvvpqdw/N4zh+/DjWrFmD/fv3o6qqClFRUbjkkkuwYMECZGRkuHt4HkVRURGWLl2KkydPor6+HiEhIcjKysIdd9yByZMnu3Qs7EHpgfLycmi1Wtxwww148sknMW/ePNTX1+OXv/wldu7c6e7heRz//ve/sX//fkydOhVPPPEELr/8cmzYsAELFizAuXPn3D08j6OsrAwff/wxamtr0b9/f3cPx2N45ZVX8Omnn+LKK6/E448/Dq1Wi6effhqHDh1y99A8Er1ej2XLlqGkpAQDBw5093A8mo8//hgbN27E2LFj8fjjj+P666/HwYMHsWDBAhQWFrp7eB5FVVUV2traMHv2bDz++OO45557AADPPPMMVq1a5drBCIwsDAaDcMMNNwgLFy5091A8jv379wsmk+mi96ZOnSosXrzYTaPyXFpbWwW9Xi8IgiBs2LBBmDp1qrBv3z43j8q9HD16VJg6darw8ccfW95rb28Xbr/9duHhhx9248g8l46ODqGurk4QBEE4fvy4MHXqVOG7775z86g8k0OHDgmdnZ3d3istLRUuv/xy4cUXX3TTqLyHrq4u4b777hPuuusul56XPSgyCQkJQXR0NFpaWtw9FI9j1KhR0Gq1F70XFRWFkpISN43KcwkLC0NUVJS7h+FRbNy4ETqdDnPmzLG8FxwcjGuvvRZHjx5FdXW1G0fnmQQFBbHYmExGjBiBwMDAbu9lZGQgOzub5ygZ6HQ6JCYmuvz+xzkofdDa2gqj0Qi9Xo+1a9eiqKgIP/vZz9w9LK+gra0NBoMB0dHR7h4K4wWcPn0a6enpCA8P7/b+0KFDAQAFBQVISkpyx9AYH0UQBDQ0NCA7O9vdQ/FIDAYDOjo60Nraiq1bt2Lnzp2YMWOGS8fABkofPP/889i1axcAIDAwEHPmzLHE45i++eyzz2A0GjFz5kx3D4XxAs6dO9ejN0B8r66uztVDYnycdevWoba2Fj//+c/dPRSP5F//+pcl50Sr1SI/Px+/+tWvXDoGnzdQzGYzjEajrG2DgoKg0Wgsrx966CHMmzcPNTU1WLNmDbq6umAymZw1VI/Anu9L5MCBA1i2bBlmzJiBsWPHOnqIHoUjvi8G6OjouMgFD9B3Jv6dYRxFSUkJ/vGPf+CSSy7B7Nmz3T0cj+TWW2/F9OnTUVdXhw0bNsBkMsme6xyFzxsoBw8exBNPPCFr2w8//BBZWVmW14MGDbI8nzVrFhYsWIBXXnkFf/rTnxw+Tk/Bnu8LoAv/97//Pfr3749FixY5Y4gehb3fF0MEBwf3OPl1dnZa/s4wjuDcuXNYtGgRwsPD8ac//Qk6nc7dQ/JIsrKyLPPV7Nmz8etf/xq//e1v8Z///MdlCy2fN1AyMzPxzDPPyNq2r4SzwMBATJ48GR999BE6Ojp8dsK05/uqrq7GwoULER4ejldffRVhYWHOGKJH4ajfl78TFxeH2trai94Xy9RZT4dxBC0tLXj66afR0tKCf/7zn/y7UsD06dPx+uuvo6ysDJmZmS45p88bKHFxcQ4TLuro6IAgCGhra/NZA0Xt96XX67Fw4UIYjUb84x//8JsL35G/L39m4MCB2L9/P1pbW7slyh47dszyd4axh46ODvz2t79FWVkZ/v73v3NyrELEMKsrK3m4zLgHGhoaLnqvubkZGzduRGJiImJiYtwwKs/FYDDg6aefRl1dHf7617+yMiOjmOnTp8NkMnUTgurs7MR3332HYcOGcQUPYxcmkwkvvPACjh49ij/+8Y8YPny4u4fksfR0/+vq6sLatWsRHBzsUsPO5z0oavjNb36DhIQEDBs2DDExMaiursZ3332Hc+fO4YUXXnD38DyOP/3pTzh+/DiuueYalJSUdNMVCA0NxdSpU904Os/k/fffBwAUFxcDANauXWtRTL333nvdNSy3MWzYMMyYMQOLFy9GY2Mj0tLSsGbNGlRVVflFLpNaPv/8c7S0tFhCYVu3bkVNTQ0A4Oabb0ZERIQ7h+cx/Otf/8LWrVsxadIkNDc34/vvv+/291mzZrlpZJ7H66+/jtbWVowcORIJCQk4d+4c1q1bh9LSUvziF79waeheIwiC4LKzeQlffPEFfvzxR5SUlKClpQWRkZEYNmwY7rjjDowcOdLdw/M4brvtNlRVVfX4t+TkZHz66acuHpHnk5+f3+vfNm3a5MKReA4dHR2WXjwtLS3o378/FixYgHHjxrl7aB5LX9fe8uXLkZKS4uIReSaPP/44Dhw40Ovf/fWa64n169fj22+/RWFhIfR6PcLCwpCbm4u5c+diypQpLh0LGygMwzAMw3gcnIPCMAzDMIzHwQYKwzAMwzAeBxsoDMMwDMN4HGygMAzDMAzjcbCBwjAMwzCMx8EGCsMwDMMwHgcbKAzDMAzDeBxsoDAMwzAM43GwgcIwDmb16tXIz8/H6tWr3T0UWezfvx/5+fl47733nHaO/Px8PP744047vrN5/PHH+1T/tQfx+xcfDz/8sFPOI4f33nsP+fn52L9/v+W9kpKSbuO77bbb3DY+xr/gXjyM3/OXv/wF3333HaKiovDFF18gKCjI3UNyOOJNhdsOeC6jRo3CqFGjkJiY6O6hdCM6Ohrz588HAKxYscK9g2H8CjZQGL+mra0NGzZsgEajQVNTEzZv3ozLL7/crmNOnToVw4YNQ1xcnINGyfgDo0aNws9//nN3D+Mi+vXrZxnXmjVr3Dwaxp/gEA/j1/z4448wGAy49dZbodVq8e2339p9zIiICGRlZXEnWYZhGDtgDwrj13z77bfQ6XS48847cebMGezbtw9VVVVITk7utt17772HZcuW9Xoc667Nq1evxiuvvIJnnnkGV199tWWb/Px8jBo1Cn/4wx/w9ttvY/fu3ejs7MTIkSPx5JNPIjU1FcXFxVi8eDEOHjyIrq4ujBs3Dr/61a8QGxtrOc7+/fvxxBNPYP78+RetuCsrKzFv3jzMnj0bzz77rOW19RhEetr/xIkTWLx4MY4ePQqtVosxY8bgscceu6gr7qZNm7BhwwacOHECdXV1CAgIwIABA3DLLbdg+vTpfX/pNmhpacFXX32FHTt2oLy8HHq9HtHR0cjLy8P8+fORlpbWbXvx/+bNN99EXV0d/ve//6G0tBQRERGYMWMGHn74YQQHB3fbp6urC5988gm++eYb1NXVISEhAddeey1mzpyJ22+/3fL9yWHz5s34/PPPcerUKXR2diItLQ2zZ8/GbbfdBp1OZ9d3AQB//vOfsWbNGnzyySfYtGkTvv32W5w9exaXX345nn32WdTV1WHVqlXYtWsXzp49i9bWVsTFxWHChAm47777EBMTc9Exq6ur8e9//xu7du1CV1cXBg8ejPvvv9/usTKMI2EDhfFbiouLcfToUUyYMAGxsbG46qqrsHfvXnz33XcX3bhHjx7d4zFKSkqwYcOGi26AvdHc3Ixf/OIXiIuLw1VXXYXy8nJs27YNv/71r/HnP/8Zjz32GHJzc3HNNdfg1KlT2LhxI5qamvDmm2+q+owRERGYP3++JXfglltu6fUznThxAv/73/8wevRozJkzB6dPn8bmzZtRWFiIZcuWdfuMixcvRkBAAEaMGIG4uDg0NjZi69ateO655/DEE0/g5ptvVjVegL7T9957D6NHj8bUqVMRGhqKkpIS/PDDD9i+fTvefffdiwxIAPjiiy+wa9cuTJ48GWPGjMHOnTvx+eefQ6/X47nnnuu27auvvoq1a9ciNTUVN954I4xGIz799FMcOXJE0Vj/85//4KOPPkJCQgLy8/MRERGBQ4cO4e2338bx48fx4osvqv4eLuSNN97AsWPHMHHiREyaNMlieBw8eBDLly/HmDFjMHToUAQEBOD06dNYuXIldu3ahXfffbebN6+urg6PPvooamtrMW7cOAwePBglJSVYuHBhr79zhnEHbKAwfss333wDALjqqqsAkHfhH//4B1avXo358+dDq5UioKNHj75o8m5oaMBDDz2EoKAgPP3007LOeebMGdx222147LHHLO/9/e9/x8qVK/HYY4/hvvvuw6233goAEAQBixYtwo4dO3Dy5Enk5uYq/oyRkZH4+c9/bskd6CvHYceOHXj++ee75eC8/PLLWLt2LbZs2dLt/b/+9a9ITU3ttn9bWxseffRRLFmyBNdeey1CQkIUjxcAsrL+f3v3FtPUHQdw/NuKEC7jEmFlixcyL5FELmOIcSpxEzVeHojTBx9cqWXDGJ9MXAzZw5JF44yaSKIm002HY5NoQNEK4gQ1yEChOggOFUwUcVYFR6k6xLZ7ID3h2IJAAZvw+zz+/+f8/z/OITm//i/nTKGwsJDQ0FBVudlsZvPmzeTm5nq83rW1tRw8eJDJkycD8NVXX7F+/XrKysrYuHEjkZGRynHnzp1j+vTp7Nu3T4lz3bp1ZGZmDjjOa9eukZeXR0pKCt9//z2BgYFAz33bs2cPp06d4uLFi16PKLk0Nzfz008/odPpVOVJSUkUFhYSFBSkKi8pKWH79u0UFBTw5ZdfKuU//vgjT548ITMzU1VeVFTErl27hiVWIYaDrEERY9Lr168pLS0lODiY+fPnAxAUFMSCBQuwWCzU1NT0e35XVxfZ2dk8evSIrVu3EhcXN6B+AwMD3R6Crgd/WFiYaoRDo9Eodc3NzQP+24YqISHBbYHw8uXLAfj7779V5W8mJ9Bz/ZYtW4bNZqOxsXHIcYSEhLglJ9DzII6Jienz3qxevVpJTgACAgJYtGgRDoeDW7duKeWlpaUA6PV6VRIVGRmpuv5vU1BQAMCWLVuU5AR67ltWVhYajYYLFy4MuL23Wbt2rVtyAhAREeGWnEBP4h0cHExtba1S1t3dTVlZGREREaqpP4CVK1cyceLEYYtXCG/JCIoYkyoqKvj3339ZsWKFaupi6dKllJaWYjKZSElJ8Xiu0+lk+/btNDQ0YDAYSEtLG3C/EydOdBtZcO32+eijj9BoNB7rnj59OuA+hsrTCE1UVBTQsy6kt2fPnpGXl0dVVRUWi4Wuri5VvbfxXr9+nePHj3Pz5k06Ojqw2+1K3fjx4z2eM2PGDLcy15bd3vE3NTUBEB8f73b8rFmzBhzjzZs3CQwM7HNhdUBAAPfv3x9we28TGxvbZ92lS5coKiri9u3b2Gw21fXqfS/u37/Pq1evSEpKcpuW1Gq1xMXF8eDBg2GLWQhvSIIixiTXQ8U1vePyySefEBUVxZUrV7BarR5/yR86dIjy8nLS0tIwGAyD6jc4ONitzLWQsr+6169fD6qfofD0K9zVv8PhUMqsVitff/01FouFuLg4kpOTCQkJQavV0tTUREVFBd3d3UOOo7y8nO+++47AwEBSUlKIjo5WkrqSkhIePXrk8bz+rl/v+F+8eIFWqyUsLMzt+N6Lkd/GarVit9v7XTz98uXLAbf3Np4WuwIcO3aM/fv3Ex4ezuzZs4mKilKSjxMnTqjuxfPnz/ttq69yId4FSVDEmGOxWLh27RpAv283LS0tdRvyLy4u5ujRo8TFxbF169YRjbMvrlGW3r+SXVwPoJFkMpmwWCwYjUb0er2q7tdff6WiosKr9g8fPoy/vz8HDx5k0qRJqrqysjKv2oaeRMzhcNDR0UF4eLiqrr29fcDtBAcHo9FoOH36tNcxDcSbo2vQk7jm5uYyYcIEfv75Z1WC4XQ6+f3331XHu5K4Z8+eeeyjr3Ih3gVJUMSYU1JSgsPhID4+3u0BCD0P/pKSEkwmkypBuXHjBrt27eLDDz9k27Zt7+yNs++99x7geRrlzp07Hs/RarVejWr01traCqCs3emtrq7O6/YfPnxITEyM2715+vQpDx8+9Lr9adOmcefOHerr61mwYIGqbjC7eGJjY6murqalpcXj/9Fo6OjowGazkZSU5Db60djY6Db1NmnSJPz9/bl16xZdXV2qaR6HwzHoXUxCjCRJUMSY4nQ6OXv2LBqNhuzsbI+LPQFaWlpoaGigsbGRmTNn0tLSwrfffktAQAA7duxw++U9miZPnkxQUJDbNFR7ezu5ubkezwkNDeXu3btuD6WhcG3xra+vZ+rUqUr5+fPnqaqq8qptAJ1OR2trK+3t7cqUS1dXF3v27BmWqa7FixdTXFzMkSNHSElJUa5HW1vboF7lvnr1aqqrq/nhhx/Ytm2b25RRW1sbnZ2dxMTEeB1zXyIiIggICOD27dv8999/ylRYZ2enx63p/v7+fPbZZ5w7d478/HzVLp4zZ87Q0tIyYrEKMViSoIgxxWw2888//5CYmNhncgI9u1caGhowmUzMnDmTnJwcrFYrycnJHqcZQkJCRu0jauPHj+eLL77g6NGjZGZmMm/ePF6+fMmVK1dITExURjh6+/jjj2lsbOSbb74hPj4ePz8/EhISSExMHHT/S5Ys4bfffmPv3r1cv34dnU5HU1MTZrOZ1NRULl++7NXft2rVKvbu3YvRaGThwoXY7XZlSm7atGnKItehSk5OJi0tjT/++IOMjAzmz59Pd3c35eXlxMbGUllZqdpi3pc5c+ag1+v55ZdfWLt2LXPmzEGn02G1WmltbaWurg6j0TiiCYpWqyU9PZ38/HwMBgPz5s3j+fPnVFdXo9PplK3VvWVlZWE2mzl06BD19fVMnz6de/fuUVVVxezZs5VrLcS7JgmKGFNci2N7v+HVk88//5ycnBwuXLjApk2blKHympoaj9tco6OjR/Urr0ajET8/P0wmE0VFRURHR6PX6/n000+5dOmS2/F6vR6bzUZlZSV1dXXY7XYyMjKGlKC8//775OTkcODAAWpqarDb7cyYMYPdu3fz+PHjYUlQ/Pz8KCgo4PTp04SEhDB37lyysrLcXrg2VNnZ2UyZMoWzZ89SUFBAVFQUa9asISkpicrKSo8Lhj0xGo0kJCRw4sQJamtrsdlshIaG8sEHH5CRkcHixYuHJd7+ZGVlERoaSnFxMSdPniQiIoJFixZhMBiUj/z1FhkZyf79+zlw4ABXr17lr7/+Uu6f2WyWBEX4DI3T6XS+6yCEEMIXnDlzhp07d7J582bS09NHpc/+Pl3ga+Sr2GI0yYvahBBjTltbG2/+Nnvy5Am5ubmMGzeOuXPnjnpMR44cITU1lQ0bNox63/25d+8eqamppKam9rnFW4iRIFM8QogxJy8vjz///JOEhATCw8N5/PgxlZWVvHjxAoPB4PGNrSMlOjpaNRXjermcrwgLC1PFJ1/pFqNFpniEEGNOdXU1+fn5NDc309nZib+/P1OnTiU9PX1U1o0IId5OEhQhhBBC+BxZgyKEEEIInyMJihBCCCF8jiQoQgghhPA5kqAIIYQQwudIgiKEEEIInyMJihBCCCF8jiQoQgghhPA5kqAIIYQQwudIgiKEEEIIn/M/xpsrTOjJ5LwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyP0lEQVR4nOydd3gc5dX2793VqlerW9WSbNlyrzLuxhTTTO/NgCkpL5CQQOBNIQkJIRACeZOPxAFsIBCKAWOKG8Yd914kd/W66l2r3fn+OB7Nypa0M7Oz/fyuay/Prndmnl3tPHOeU+6jEwRBAMMwDMMwjAehd/cAGIZhGIZhLoQNFIZhGIZhPA42UBiGYRiG8TjYQGEYhmEYxuNgA4VhGIZhGI+DDRSGYRiGYTwONlAYhmEYhvE42EBhGIZhGMbjYAOFYRiGYRiPgw0UhvEQNm3aBJ1Oh+eff97hY+l0OsybN8/h4wyGluP1BRYvXgydToeioiLZ+2RmZiIzM9NpY2IYb4YNFMZv0el00Ol00Ov1OHPmzIDvmz9/fu97ly9f7roBupmioiLodDosXrzY3UORjWg02T4CAwORmpqKW2+9FTt27Oh3v/b2dkRHR0On0+Guu+5y8aidy1tvvYVHH30U+fn5CA0NhU6nwy9/+csB39/Y2IiXX34Zd999N/Ly8hAQEACdTodvv/3WhaNmGCDA3QNgGHcSEBCAnp4evPXWW/jjH/940f+fOnUKmzZt6n0fIzFt2jQUFBQgLi7O3UO5iIyMjF7Dqq2tDTt37sSKFSvw2WefYcWKFbjxxhv7vP+jjz5CU1MTdDodPvvsM9TV1SE2Ntbp49ywYYPTz/HUU0+hqakJMTExGDp06KDGOECG6dNPPw0ASE1NRVxcHKqrq50+Toa5EPagMH5NYmIipkyZgmXLlvVrgLz55psAgOuuu87VQ/N4QkNDMXLkSI80UDIzM/H888/j+eefx8svv4ytW7fi17/+NaxWK5566qmL3r906VLo9Xr8/Oc/R1dXF9555x2XjDM7OxvZ2dlOPceHH36IoqIi1NfXD+o5EcnIyMC3336Luro6lJaWYuHChU4dH8MMBBsojN/z8MMPo6qqCl999VWf181mM5YvX44ZM2YgLy9vwP1PnTqF++67DykpKQgMDMTQoUNx33334dSpU/2+v7q6Gg899BASExMREhKCCRMmDHpDHCxP4fnnn4dOp8OmTZvsfs6Kigr87ne/w8yZM5GUlNQ71rvuugvHjx+/6LjDhg0DALzzzjt9QiZimGuwHBQl34ntZ1ixYgWmTZuG0NBQDBkyBHfccQfKy8vtfjY5/OhHPwIAnDt3DrW1tb2vHz16FDt37sSCBQvwzDPPIDAwsNcwVYPVasWrr76KkSNHIjg4GKmpqfjJT36C5ubmi97b3992+fLlvd/zxo0bMW/ePERERCAyMhLXXHMNCgoKFI1n4cKFyMjIkP3+mJgYLFiwAEOGDFF0HobRGg7xMH7PnXfeiZ/+9Kd48803ccMNN/S+vmrVKtTU1OCll17C6dOn+913z549uOyyy9DS0oJFixYhLy8PhYWF+M9//oMvvvgC3377LaZOndr7fpPJhBkzZuDs2bOYNWsWZs2ahcrKSjz22GO44oornPo5t2zZgj/96U+YP38+br75ZoSHh+PUqVNYsWIFVq1ahe3bt2P8+PEAgHnz5qGxsRGvv/46xo8f3+d7mTBhwqDnUfqdiPy///f/sGrVKixatAhz587Frl278NFHH+HQoUM4ePAggoKCHPr8giD0but0ut7tpUuXAqAk1yFDhuC6667Dp59+iq1bt2L27NmKz/OTn/wEW7ZswW233Ybrr78ea9euxWuvvYatW7di27ZtCA4OlnWcr776Cl988QWuuuoqPPbYYzh+/Di++eYb7NmzB8ePH/dIzxXDaIrAMH4KACElJUUQBEF46KGHBIPBIJSWlvb+/5VXXilERkYKbW1twv/+7/8KAIRly5b1/r/VahVGjhwpABD+85//9Dn2hx9+KAAQcnNzBYvF0vv6ww8/LAAQnnzyyT7v37NnjxAQECAAEH7zm9/0+b+MjAwhIyOj38/wm9/8RgAgbNy48aLPNnfu3D6vVVdXC83NzRcd4+DBg0JYWJiwcOHCPq+fO3dOACDcf//9/Z5748aNF41XzXcifoaIiAjh8OHDffa58847BQDCRx991O8YBhrThZ9dEAThV7/6lQBAyMrK6n2to6NDiImJEaKiooT29nZBEAThyy+/FAAI99xzj6xzitx///0CACE2NlYoKirqfd1isQg33XSTAED43e9+12ef/v62y5YtEwAIBoNB+Pbbb/v83y9+8QsBgPDSSy8pGtuFx/7f//1f2fuIn2v9+vWqzskwauEQD8OAwjwWiwVvv/02AKC4uBjr16/H3XffjdDQ0H73+f7771FYWIhLLrkEd999d5//u/322zFr1iycOHEC27ZtA0Aho/fffx8REREXhUWmTJly0TG0JiEhARERERe9Pn78eFx66aXYuHEjzGazQ+dQ+p3Y8vjjj2Ps2LF9Xnv44YcBALt371Y0jqKiot4clJ///OeYM2cOfv/730Ov1+OVV17pfd8nn3yChoYG3H777QgJCQFAIZGkpCSsWLECDQ0Nis4LAE888USfkIper8fLL78MvV7f+/uSwx133IEFCxb0ee2RRx4BoPz7YBhvhA0UhgGQn5+PsWPH4u2334bVasWbb74Jq9Xae4Psj/379wMALr300n7/X3z9wIEDAIDCwkK0t7djwoQJiIqKuuj9ztYtAYCvv/4a1113HZKTk2E0GnvzSr788kt0dXXBZDI5dHyl34ktU6ZMuei1tLQ0AFBsKBQXF+O3v/0tfvvb3+K1117D6dOncdNNN2Hr1q19KnjE8M4DDzzQ+1pAQADuvvtudHZ24r333lN0XgCYO3fuRa9lZWUhLS0NRUVFaGxslHUcLb8PhvFGOAeFYc7z8MMP4/HHH8fq1auxbNkyTJ48GRMnThzw/U1NTQCA5OTkfv9ffF28IYnvT0xM7Pf9SUlJaocui9dffx1PPvkkYmJicPnllyM9Pb1XF2PlypU4dOgQurq6HDqH0u/Elujo6IteCwigKcpisSgax9y5c+0mDhcUFGDbtm0YOXIkpk+f3uf/Fi9ejL/85S/497//jccff1zRuQf7+xYXF6Opqanfz3ohWn4fDOONsIHCMOe599578cwzz+Cxxx5DeXk5fv3rXw/6ftELUlVV1e//V1ZW9nmf+O9AmhIDHUev16O7u7vf/5O7Gu/p6cHzzz+PpKQk7N+//yIDYiABM6Uo/U7cieg9KSws7JM0a8vRo0fx/fffY8aMGbKPW11djdzc3IteF78TT/jsDOMNsIHCMOeJjo7GLbfcgvfeew9hYWG48847B32/6F0ZaKW+ceNGAMCkSZMAACNHjkRoaCgOHjyIpqami25UAx0nJiYGhw8fhtlshtFo7PN/e/futfexAFD1UGNjI2666aaLjJPW1tbe0IwtBoMBgLLVutLvxF10dXXhvffeg16v75Wov5CysjKsXbsW//73vxUZKJs3b8acOXP6vHb27FmUlpYiMzNTlveEYRjOQWGYPrzwwgv4/PPPsXbt2n4TSm2ZOXMmcnNzsW3bNqxYsaLP/61YsQJbt27FiBEjMGvWLACA0WjE3XffjZaWlouSZPfu3Yv333+/3/NMmzYNPT09WLZsWZ/Xly9fju3bt8v6XAkJCQgNDcW+ffvQ2tra+7rZbMYTTzzRb+5JTEwMdDodSkpKZJ0DUP6duItPP/0UdXV1uPLKK/HWW2/hzTffvOjx8ccfIywsDB9//HFv6EoOr7/+OoqLi3ufW61W/PznP4fVau2T68IwzOCwB4VhbEhPT0d6erqs9+p0Orzzzju4/PLLcfvtt+P666/HyJEjceLECaxcuRIRERF49913oddL64A//vGP2LBhA1577TXs3bu3Vwflo48+wtVXX41Vq1ZddJ7/+Z//wbJly/CDH/wAGzZsQFpaGg4ePIgdO3bg2muvvUhgrj/0ej0ef/xx/OlPf8LYsWNx/fXXo7u7Gxs3bkR9fT3mz5/f690QCQ8PR35+PrZu3Yq7774bI0aMgMFgwKJFizBu3DjNvhN3IIZ3lixZMuB7IiMjceutt2L58uX4z3/+0yv0Zo+ZM2diwoQJuP322xEVFYW1a9fi0KFDmDx5cq+EvCt58803e6umRD2fL7/8EmVlZQDIs/eLX/yizz4/+9nPeo1Wcd+XX34Z//nPfwAAN9xwQx9tHIZxCu6uc2YYdwEbHRR79KeDIlJYWCjcc889QlJSkhAQECAkJSUJd999t1BYWNjvsSorK4UHHnhAiIuLE4KDg4Xx48cLy5Yt61dXRGTr1q3C7NmzhZCQECEiIkK4+uqrhUOHDinSQTGbzcJf/vIXYdSoUUJwcLCQmJgo3HPPPUJRUVGv1sW5c+f67HPq1Cnh2muvFYYMGSLodLo+38Fg41XynQz0GQTBvhbLhQymgyJy4sQJAYCQmJgodHd3D3q87du3CwCE8ePH2z23+B2eOXNGeOWVV4Tc3FwhKChIGDp0qPDEE08ITU1NF+0zmA5Kf781Qej/bytnXAM9+jtWRkbGoPv09zdnGK3RCYKNvCLDMAzDMIwHwDkoDMMwDMN4HGygMAzDMAzjcbCBwjAMwzCMx8EGCsMwDMMwHgcbKAzDMAzDeBxsoDAMwzAM43F4pYHS2dmJEydOoLOz091DYRiGYRjGCXilgVJcXIyHH364j5w0wzAMwzC+g1caKAzDMAzD+DZsoDAMwzAM43GwgcIwDMMwjMfBBgrDMAzDMB4HGygMwzAMw3gcbKAwDMMwDONxBLh7AAzDMIz3YDabYbFY3D0MxgMxGo0wGAyaHY8NFIZhGMYuzc3NMJlM6OrqcvdQGA9Fp9MhKioKSUlJ0Ol0Dh+PDRSGYRhmUJqbm1FeXo7w8HDExcXBaDRqcgNifAdBENDW1oba2lqEhIQgOjra4WOygcIwDMMMislkQnh4OFJTU9kwYQYkJCQEXV1dqKmpQVRUlMO/FU6SZRiGYQbEbDajq6tLkxsO4/tERkbCYrFokqfEBgrDMAwzIOKNxmg0unkkjDcQEECBmZ6eHoePxQYKwzAMYxf2njBy0PJ3wgYKwzAMwzAeBxsoDMMwDMN4HGygMJ6NIACtre4eBcMwDONi2EBhPBerFdi3D/j8c6CszN2jYRiGcQpdXV145plnMHToUISEhCA/Px/r16+Xte+xY8dw6623IisrC6GhoYiLi8OcOXPw5Zdf9nlfa2srfvOb32DhwoUYMmQIdDodli9f7tAxnQ0bKIxnYjYD27cDW7YAFRXAzp1AZ6e7R8UwDKM5ixcvxquvvoq7774br7/+OgwGA66++mps27bN7r7FxcVoaWnB/fffj9dffx2/+tWvAACLFi3C0qVLe99nMpnwu9/9DgUFBRg/frwmx3Q2OkEQBJedTSNOnDiBhx9+GP/+97+Rm5vr7uEwWtPZSYbJoUNASgoQHAycOQPMng1Mn+7u0TGMX9HZ2Ylz585h2LBhCA4OdvdwfI7du3cjPz8fL7/8Mn72s58BoO98zJgxSEhIwPfff6/4mBaLBZMnT0ZnZycKCwsBkJemoaEBSUlJ2Lt3L6ZOnYply5Zh8eLFqo/ZH1r+XtiDwngWLS3A+vXAwYNAejoQEQEYjUBiIrB/P4d6GMYd9PQAXV2ADzcJzMrKwj333HPR6/Pnz8fcuXOddt4VK1bAYDDgkUce6X0tODgYDz30EHbs2IHS0lLFxzQYDEhLS0NjY2Pva0FBQUhKSlI9zv6O6WxY6p7xHEwmYONGoKgIyM4GAgOl/4uJAerrKdRz7bXkVWEYxvl0dZFXs7kZ6O6m6zIwkBYOAb5xC2ltbUVRURF+8IMfXPR/hw8fxl133dXvfmazGU1NTbLOMWTIEOj1F/sEDhw4gBEjRiAyMrLP69OmTQMAHDx4EGlpaXaP39bWho6ODjQ1NWHVqlVYvXo1br/9dlljc+UxleAbvy7G+ykvJ+OkuhoYPhzor2V3RgZw6hR5VzjUwzCuobiYPCeBgYBeT8ZKRwddo0YjEBRE/xoMgJeKuR09ehSCIFyUm1FWVob6+nqMGzeu3/22b9+O+fPnyzrHuXPnkJmZedHrlZWVSE5Ovuh18bWKigpZx3/qqafwr3/9CwCg1+tx00034e9//7usfV15TCWwgcK4nzNnyDhpawNycmgS7I+AACApiUI9KSmAjFUFwzAO0NEBFBYCmZlkfBgM0uLBYgHmzQNqaqT363TuM1KSkoC9e1XtevToUQC4yEA5dOgQAAxooIwfP152tc1A4ZWOjg4EBQVd9LqYv9HR0SHr+E8++SRuueUWVFRU4OOPP4bFYkF3d7esfV15TCWwgcK4D0EAjh2jhFidDsjKsr9PTAzQ0EChnvh4DvUwjDM5fZpCr9nZF/+fwQDU1gKVla4fl8YcOXIEiYmJSExM7PP64cOHodfrMWbMmH73i4mJwWWXXebQucUOwBfSeb5qMSQkRNZxRo4ciZEjRwIA7rvvPlxxxRW47rrrsGvXLtXy8844phLYQGHcg8VCGic7dgBhYZQEK5f0dJo49+8HZsxw3hgZxp/p6KBKurCwgd+TkHDxa/0VhrrCs+JAAujRo0f7Lb09ePAgsrKyEDbAd9Dd3Y36+npZ54iPj4ehn9B1cnIyysvLL3q98rzhN3ToUFnHv5BbbrkFjz76KE6ePKlZtaszjjkYbKAwrqe7mwyTffuAuDjyiighIIAMmgMHKMzDoR6G0Z7Tp4GqKuD8CrpfNm4c/BhWKy1GLBYyUAICKGclMJC2BwrnupgjR45clPxptVrx3XffYc6cOQPu9/333zucgzJhwgRs3LgRzc3NfRJld+3a1fv/ahBDQ3KTeN11zMFgA4VxLe3twNatwOHDQGoqEB6u7jhiqGfHDg71MIzWiN6TiIj+E9blotfTw2iUjJXWVimfRTRWjEa3GSs1NTWora3t9ViI/O1vf4PJZMLYsWMH3FeLHJRbbrkFr7zyCpYuXdqrg9LV1YVly5YhPz+/t4Knvb0dJSUliIuLQ1xcXJ/xJ1zgyTKbzXj33XcREhKCvLw8WeOzxRnHVAMbKIzraGqiFdfJk8CwYY4bFenpVNWzbx8wc6Y2Y2QYRvKe5ORod0xbY0UQSFulrY0eomclOJj+34UcOXIEALBu3Tr88Ic/xMiRI7Fz506sXbsWALBv3z7s2rUL+fn5F+2rRQ5Kfn4+br31Vjz77LOoqalBTk4O3nnnHRQVFeGtt97qfd/u3bsxf/58/OY3v8Hzzz/f+/qjjz6K5uZmzJkzBykpKaiqqsL777+PwsJC/OUvf0G4zSLw73//OxobG3srg7788kuUndeW+p//+R9ERUUpPqYzYQOFcQ21tcB33wGlpTTpaTEJBQQAyclUdpyWRgYLwzCOoZX3ZDB0OpoDRGNF9KxYLEBUlEsrgY4cOQKDwYAPP/wQjz/+OJYtW4bZs2dj8+bNuOGGG3Dw4EEYnWw0vfvuu/jVr36F9957Dw0NDRg3bhy++uqrQcNLIrfffjveeustvPHGG6irq0NERAQmT56Ml156CYsWLerz3ldeeQXFxcW9zz/77DN89tlnAIB77rmn10BRckxnwlL3jPMpLSXjpK6OKnW0nvTOniVD5brrAJkZ7wzDDMCRI8CaNb16RJ0BATiXkIBhaWkIthVP1BoxVyUmxqVelCVLlmDLli04efKky87py7DUPeM9nDpFk11TE3lOnLEiS08n9dn9+7U/NsP4E6L3JDLSed6TgTAYKE/FhTobAHlQXJVTwSiDDRTGOQgCTXTr1tGqaNgw57ltbUM9JSXOOQfD+AOnT5OuiZKyfy0xGMhIslpdcjpBEHD8+HE2UDwUNlAY7bFYgF27KCE2JIRUX51NdDSdd+dOmuAYhlGGO70nIgEBlDzrIi/KuXPn0NraygaKh8JJsoy2dHUB339PlTWJiWQ4uIq0NAop7d/PVT0Mo5RTp8h7Mny4+8YgCrp1dlJVj5OTZbOysuCFaZh+A3tQGO1oa6Nk2L17SePElcYJQKuvoUNJwM0mU51hGDt0dJA2kTu9JyIBAeRB6elx7zgYt8MGCqMNjY3A2rVUATBs2ODy2M4kKori1zt3kigcwzD2Eb0n7so9scVNybKM58EGCuM41dXA6tVU7puTQ65Zd5KeTh6U/fv77wvCMIyEJ3lPRFycLMt4JmygMI5RXExlxKLqpItVIPvFYKBQz8GDHOphGHt4kvdExMXJsoxnwgYKox6TCfj2W6C5mdqxe8rqC+BQD8PIQY735LwX0qW+SNtkWfaCehVaJh2zgcKop6SE1GEzM10qTS2b9HQa4759PMkxTH+cPGnXe2IQBEAQYHZ10iony3olPef/XgEBjhcJKzZQ2tvb8fbbb+NnP/sZrrnmGsyZMwerV69WdfI///nPmDNnDp555hlV+zNuxGolUaeICHePZGAMBtJg4VAPw1xMRwcltdvJPTFarQjq6kJTW5trS3I5WdYraW5uhsFggEEDj7piE6epqQnLly9HYmIicnJycODAAVUnLiwsxOrVqxHozN4OjPOorqaHJ8Wt+yMyEqivB3bsABISgNBQd4+IYTwD0XsiQ/ckrq0N5U1NKAMQFRYGY0AAXOIztVophKzTUSdkxmMRBAFtbW1obm5GcnIydBp41RUbKLGxsfj8888RGxuLwsJCPPLII4pPKggCXn/9dVx55ZXYz/1TvJOyMooPe0NzPlHAbe9eYPZszwxHMYwrEb0nUVGycsciu7qA+nqYurpQ7gIBtT709NA84wkJ+Myg6HQ6REdH93ZFdhTFBkpgYCBiY2MdOunatWtx7tw5vPDCC/jBD37g0LEYN9DTQzf8yEh3j0QeYlXPoUNkrAwb5u4RMYx7UeA9EYns6kJkVxfMej0sYhKrKygpoTy3OXN4ceHhGI1GTUI7Ii6Xum9vb8c///lP3HPPPQ4bOoybqKoCamtd02NHK8RQz86dFOpxl5Acw7gbhd6TCzFarXCpLyMigjSWJk8G4uJceWbGzbjcQFm+fDmCgoJw2223yd7HZDKhrq6u93kxJzy6l7IywGx2vyCbUtLSaOW4bx+Hehj/RYX3xK1ERADl5cC5c2yg+BkuNVBKS0uxYsUK/PrXv1aUHLtq1SosX77ceQNj5NPdTeEdjWKMLsW2qodDPYw/InYsVuk9cRvR0UBhITBunPctjBjVuNRA+dvf/oYxY8Zg3rx5ivZbtGgRZtp0py0uLsYLL7yg8egYWVRVkfZJerq7R6KOyEigoYFDPYx/cvIkVd95i/dEJC6OPCilpaRYzfgFLjNQ9u3bh127duGFF15AZWVl7+sWiwVdXV2orKxEZGQkwvq5YcTFxSGOXXueQXExYLF4d0Z9aipN1Hv3cuId4z94q/cEINE2vZ6u2+xsvmb9BJcZKDU1NQCAX/7ylxf9X21tLW6//Xb8+Mc/VpSbwriYzk7gzBkgJsbdI3EMMdQjVvVkZbl7RAzjfLzVeyKSkEALpLo6zkXxE5xmoJhMJrS1tSElJQUBAQGYNGkS/vCHP1z0vpdffhlJSUm49957kcU3Cs+mooIqYXwhd8M21JOYyKEexrdpb/de74mImCxbVMQGip+gykD59NNP0dra2ltZs3379l4Pyc0334zw8HAsXboUa9aswUcffYTk5GQkJiYisR/V0f/7v/9DTEwMZs+e7cDHYFxCSQn9q0GPBY+AQz2Mv+Dt3hMRMVl27FhOlvUDVN1pPvroI1RVVfU+37JlC7Zs2QIAuOKKKxAeHq7N6BjPob2dtAiGDHH3SLTDYCAjhUM9jC/T3k4di73ZeyISG0selLIyykVhfBpVBsrHH39s9z3PPfccnnvuOU2OxXgAFRUUEvG1SSEiQgr1JCd7h3Q/wyjh5EmgpsY3ql+Mxr7JsoxPw92XGHmcO0erL29fgfVHSgoJV9lUlzGMTyB6T+x0LPYq4uPJi2IyuXskjJNhA4WxT0sLZc/7UnjHFoOB8k/Kytw9EobRFtF7kpDg7pFoR2Qk0NpKcxLj07CBwtinogJoavJO9Vi5REeTl6i7290jYRht8EXviUh0NFBQwNerj8MGCmOfs2cloSRfJTqaclHOV6MxjNcjVu74kvdEJDaWrtXSUnePhHEiPnzHYTShqYnKi32987TRCPT0kLeIYbwdX6rc6Q/bZFnGZ2EDhRmc8nKguZncxL5ORAQp5Vqt7h4JwziGL3tPRMRkWZtO94xvwQYKMzCCAJw+DQQH+4eIWXQ0TXa1te4eCcOoR/SeREf7pvdEJDKSEviLitw9EsZJsIHCDExDA3lQfD28IxIaSg3VbEQIGcbrEL0n8fHuHonz4WRZn4YNFGZgysupnM+flIFDQykpWBDcPRKGUY7Yc8fXvScicXGcLOvDsIHC9I8gAKdO0Q3bH8I7IjExtPpsbHT3SBhGOaLuiT94TwBOlvVx2EBh+sdkImVVfwnviISHk9eIwzyMt+Fv3hOR+HgSbeNkWZ+DDRSmf8rKaMILC3P3SFyLTkerMrFzM8N4C/7mPRGJjKRKQ06W9TnYQGEuxmql6h1/yj2xJSaGYtptbe4eCcPIw1+9JyKcLOuTsIHCXExNDeVh+GrvHXtERpJAHYd5GG/BX70nImKyLPfT8inYQGEupqwM6OykBFl/hJsHMt6Ev3tPAClZ9tQpd4+E0RA2UJi+WCx0kUdEuHsk7iU6mmLa7DJmPB1/956IxMdTw09OlvUZ2EBh+lJVRUqq/la9cyFi88DqanePhGEGxmoFTpygBYW/ek9EWFnW52ADhelLWRl5DYKC3D0S98LNAxlvoL6ePAYxMe4eiWcQFQUUFrLn00cIcPcAGA/CbKbwTlSUu0fiGUREkKrslCm8OmU8k5oaykFJS5O9y9kSHfYd0cNsduK4QDb+lLFWDEt3oSpzXBxpopSVAVlZrjsv4xTYQGEkKitJoE3BZOfTxMTQDcBkAhIT3T0ahrmYkhIgMFDRLvuO6NHU7AJ16A5g7xE9hqVbnH8uEaOREtxPnWIDxQdgA4WRKC2lJFmFE55T6emhMbkj5BQSIjUPZAOF8TTa26lflkKPp+g50ekEhAQ7YVwAOjoBQdA53UvTL2KybH29/0ol+AhsoDBEVxeJs0VHu3skEhs2AG++CQQHA7/+NTBsmOvHIDYPHDfOv3oSMZ5PTQ3p9ai8LkKCgbtucI5344OVBrR3OOXQ9omIoNyxoiI2ULwcTpJliIoKz0m2M5uB//f/gNdfJzXXujrgpZdoxehqxOaBDQ2uPzfDDEZVFVXxBPA6sw86HVX0FBTAPS4cRivYQGEIsfeM0ejecdTWAr/4BbBmTd/XKyqA//s/6rLsSsTmgVxuzHgSViuFMfxdr2gg4uPJw1Ra6u6RMA7ApjdDeRZnzjjde2KveiCx/ABmbvozgruaAQA9hkAcmXg3Rh/+GIHdbcD27dj74jc4mbdo0PNoWj0gNg8sLgZGjXL8eAyjBXV1lGMRF+f8c338MbBuHZCRAUyaBEyeDCQlOf+8jsDJsj4BGygMeScaGoDsbKeeZsDqAcGK8cc/weQj70EvWAEAzWFJ+Hb2/6I+Jhu1Iam4YuvvAQATd7+F8siRqI3NHfhEWlcPxMRQ2WJbm/91d2Y8k5oaWlg4ux3FiRPAf/4jnXPPHtpOSSFjZdIkYMwYz9RNio+nPBROlvVa2EBhyFWs1ztd66O/6gFjVysu2foqUkt29b6vPHUKvp/7M5iDIhAKAabh01HQcCNGHf0cBmsPFnz/ItZc/zd0B13s3nZK9UBkJCXKVlU53YhjGFkUFzu/2k4QgLfe6v//ysvp8eWXNI4xYyTvytChzh2XXDhZ1uthA8XfaW11+QXcWz1QVAS8+CLprwDkkr3zTqTcdhtu1esB2HhArr0XeK4AKCxEeGsNbjn5F+B//5cMKxucUj0gGm5lZWygMO6nrY1uvM6uuNu6lVRZAdJG+slPgAMHgH376HUreTvR3Q3s30+PN98EkpIwJXoyziVMQWPGOABuymuzTZYdO9b9+XWMYthA8XcqKoDGRiAnx7Xn3bQJ+PvfJUnq8HDgqadoBdYfAQHA008DTz4JNDeTq/nzz4Gbb3bNeKOjydM0fbpnurMZ/6Gmhq4BZ+ZWdHUBy5dLzx98kOaInBzg1lvJSDp0iIySffv6NuirqsKIqq8xovBrWPQBqNwwBpWpU1CRMhnN0WmaluvbzTcTwzylpZyL4oWwgeLvnD1LN38XSbnrLWZM3vFvoOAr6cXsbOCZZ+wn3sXFkRHz/PPkfn7vPSA3l9zLziY6mtzq1dVAerrzz8cwA1FVRb9/Z16zK1eSgjIghW5sCQsDZsyghyBQFeC+fWSwHD9OAosADNYeJFccRHLFQUzCm2gJjUdZ8hSUDZ2MisQJMBsdzKGxl29mNJKX9fRpNlC8EDZQ/JnmZppYXNS5OKTNhAXf/QmJpgLpxcsuAx57TH48feJE4LbbgI8+IhfzK68Af/2r8/VbjEZStK2sZAOFcR8WC3nyIiOdd466OuDTT2lbryfvyWDodFThk5EB3HQT0N6O6u+OoHXbASSW7EV4a03vWyPaazHqzGqMOrMaVp0BtYl5qEidgsrUyWiMyVTkXZGdbxYXx8qyXgobKP5MeTkZKa6QcT9yBAu/eBkhnY30PCCADJMrrlB+rDvuoLjy4cM06bz6KnlVnO0FEpNluXkg4y7E8uKEBOed4z//ATo7afuqq5Qb5KGhSLw2H4nX5pN3pbxc8q4cPdqbLa8XLEisOoLEqiOYuHcZLZQeegiYNUvWaWTnm0VGcrKsl8JCbf7MmTPkudA78WcgCJQr8qtf9RonbWHxpAyrxjgByDh46ilpsjl0iDwqziYmhtzetbXOPxfD9Ed1NRkPISHOOf7p08B339F2WBhw552OHU+nA1JTgeuvB377W+D994Ff/Qq45pqLQ7p1dcA//kHl01qi01G/osJCVpb1MthA8Vfq66kqxZnhnfZ2MkSWLevN+C9LmoQ1178ODB/u2LFjYoCf/Uwyrj76iCoMnElwMN0cqqqcex6GGYjiYuclaQsCVeGIas133KF9KCk4GJg6FXj0UWDpUuCf/wQeeUTqJ9TWBnz7rbbnBChZtrqa5jzGa2ADxV+pqABaWpwnlV1SQl6O77/vfeno+Duwdu5v0RWsrPvqgIwZA9xzD20LAvCXvyCkzaTNsQciLIzCPK6W3GeY1lYyjhV2L5bNjh2U4AqQlsnVVzvnPLYMHQpcey3NFSJffEG5NloilhifOqXtcRmnwgaKPyIIdKGGhjqnQ++2beTdKC+n52FhwC9/icOT74Wg1zh346abaEUGAM3NmLnxJeisPdqew5boaG4eyLgHsXuxMxJku7vJ0yny4IOu1Q1JT5cqhWpqyFjSmvh4KVmW8QrYQPFH6uqoGkXrhLGeHlKe/POfpSS7zEzgL38Bpk3T9lwiej1po8THAwASao5j6qF3nHMugPRa2to4zMO4HlHQ0BkJ2l9+KTXEHD9eMvpdyQ03SNuff669lzIykooCiou1PS7jNNhA8UfKy+kmGx6u3TEbGoBf/pLcsyLz5wMvv+x86euICNJROd92flzhp0gpdsIKDCCPU2AgVQQwjKvo6XFeeXFDAzUEBKSyYmd4Vu0xbpykVXLqFHDsmLbH1+lozjt3jkO0XgIbKP6G1QqcPKmtcXL8OHkxxPi1WEL85JOuU10dMaKPXsMlW//qPC9HdDTl8LS2Ouf4DHMhJhMZEs6Qt3//faly5oorpIRVV6PTATfeKD1fuVL7c0RGUhVec7P2x2Y0hw0Uf6O2lly5WoR3BAFYtYp64og5GbGxwB//SAl2rl6FXXMNijNJQyGwu41CTc4oK4yMpFwADvMwrqKmhuTng4O1Pe65c1LVTGgocNdd2h5fKTNnkrAaAOzerX3VTXg4LSxYKsArYAPF3ygr06ZNe08Pqbi++aaUcT9uHKm6jhzp+DjVoNNh16wn0BR+PqR0+vTA3VgdwWAg44tLFhlXUVysvXEidisWm/7ddpvzGxDaIyAAWLRIeq61F0Wvp2u3okLb4zJOgQ0Uf8JiofCOFnHsL7+kbqciN99MQkxunuB6AkOxYdZz6DGcl87/5htgyxbtTxQdTXkoXV3aH5thbGlpIW+dxtdWSukuUmMGSDTtuus0Pb5qrrhCWkBt3Kh9xVxEBMkg9Dix2o/RBDZQ/InqanJtOhreEQRg9Wrp+S9+Adx/v8fIv9fHZGHvJY9JL/zjH9p7O6KjqQu0WPnAMM6ipkZzzSK9xYxJu228i4sXu7aseDBCQ4Err6Rtsxn4+mttjy9eu7YdmBmPhHvx+BOlpaR30I+r+GyJDvuO6GWlbCRUHsZl5/MvqpLH47ua2cBK+/t1dCocrwOcHX4FphuP0Aqso4MUbV95RbukXaORVmAVFdw8kHEuYjhCw5YUeae+QkTz+eOOGQNccolmx9aE666j/DaLhRZDt9yiXYhLVISurXVNHzJGNexB8RfMZirdG0CFct8RPZqadWjvsP/IPL62d7/jwxbK2qe9QwdBoKRZlyzUdDrgBz+QjIfiYpLV1hKxeaDWqpcMI9LTQ6FEDcuLgzqbMPHoB/REp6MGfe4oKx6MuDhgzhzabmkBNmzQ9viBgRTmYTwaNlD8haoqKlUcILwjek50OgGhIQM/ovXNGFa2HQDQFRSBmpzpg77/wkdUpIApY62u+czBwaSPIq68NmzQts9HTAy5ibkigHEWtbWalxePPfABgsxt9GTBAiA7W7Nja4qtcJvW8vdRUSR8196u3TEZzeEQj79QUkIXeGDgoG8LCQbuumGQieDLDYCFrJmgK+fjjlsMADzYg5CWBvzoR6RmC5AXJTtbG60H2+aBF3ZmZRgtqKmhsKxWocmSEuQUfgMAMAcEwyj2svJEhg0DJkwADh6ka2zXLmDGDG2OHRlJnqnaWiAjQ5tjMprDHhR/oLubSm4dXYUJArBunfT8iiscO56rmDsXWLiQtru7KR9Fq5VTWBhw5gwrUzLOoagICAnR7nhvvQW9QB7MY+Nv077dhdbYCrd99pl211lAAJVX19RoczzGKbCB4g9UVFCDrJgYx45z8qTUx2LkSO9KDl2yRHJlV1QAf/+7NpNdTAxNctw8kNGa5mZtuxfv2wccOAAAaAmNx4nRN2hzXGcyYQL18wJo/iko0O7YYWFkAPLiwmNhA8UfKC6mi9DR7NT166Xtyy937FiuJjCQ8lHCwuj5tm2kkeIoYWHcPJBxDtXV2pUXi408z7NnwoOwBLioDYUjOFP+PiqK8vIaG7U7JqMpbKD4Op2dVGniaHinvV0SPAsJAWbNcnhoLicpCXjiCen5W29RZZMjcPNAxllUVFBpsRblxWvW9GoB1SaMwtn0OY4f01XMmkUtNADKQykv1+a4YWE0r3GYx2NhA8XXKS+n8IOj4Z1t28jYAaj8T8u4uCuZPh24/nra7umhfJSWFseOGR1N37Ojx2EYEbOZPJ9ahHdaW4H//rf36f78hz2vrHgwjEZJ5VYQ+nZMdwSdjoy/ykptjsdoDhsovo6YMxLgYMGWNybHDsT990v9gmpqgNdek/qRqCEqipsHMtpSW0uhBy0MlA8/lIzn+fNRF5/r+DFdzZVXSoui776j600LoqKowtEZTUUZh2EDxZdpa6NupY5m6p87RwlqAJX+5eQ4PjZ3EhAA/PznUmx/zx7g88/VH090w2vlemYYrcqLy8okqfjAQODeex0fmzsIC5MWRt3d2uSPAVRu3NhIuSiMx8EGii9TUUEXn6P5J7bJsVdc4V3u4YGIjweeekr6LO+9R+XCaomOJkOu04V6/oxvIgj0W3K04zgALF8uCZzdfDMptHorixZJ+Thffw1DjwaNOoOCyOBhsUWPhIXafJlz56iBnyNN/Lq6qJ8NQCuwuXO1GZuT6egEPlhp73NPxbhxt2PMoQ8BqxWn/rkOe2b+WPY5jEZgylgrhqULZKAUF1PlBQs/MY7Q3EweFEfDOwcOALt303ZsbN9qGG8kPh6YPRvYvBlobsaw09/hcMbVjh83OJiu3XHjHD8WoynsQfFVmpvponM0vLNjB4WKAGDmTCA83PGxORGxkloQ5PUH2jv8VvQYyI2edm4bOlt7ZPcWamrWYe8RvXRiq1Vq7MYwahG7FztyrVkswNtvS8/vu0+7ZnvuxEb+fuTRzwBBg7YZkZG0sBDnOcZjYAPFV6muJiPF0VWYl2mfTBlrRVSk/N5AgZHBKEvPBwAEd7cgq2G/rP10OhJ36pNbJzYP7OlxwydnfIbycvJ6OlJevH69lCA/YoTXeD7tkp3d6+mIbK5Aevkux48ZGSl5rRiPgkM8vkplpVRGp5aKCuDIEdpOSQFGj9ZmbE5kWLqAYekKewMlzwb+QBov87o3ATdMtrvLBysNaO+44MXoaPrea2uB5GRlY2AYgPIhioocW1i0tQHvvy89f+ghbbRUPIUbbwQOHwYAjCv8DN8Nn+7Y8QwGyvuprtamRxejGT70q2V66emh0jlHFSgv9J74QnJsf0yaJLnTd+1Sn+gaHEw3GNZVYNRSW0sltI4YKB9/LJXhzp4NjBqlzdg8hUmTqAkogKTaY4itKXT8mOHhlLPniNwAozlsoPgi9fWOayj09AAbNtB2QABw6aWaDM0jMRqlLqmdnVJioRrCwijMw/09GDVUV1Pc0E7X8QGprAS+/JK2AwNJ88fXuED+ftTRzxw/ZlQUCVpyTy2Pgg0UX6S2lm60jqi97tkj9aiYNs3xUmVPZ46N9Lco6a+G6Gj6/uvrHR4S42eI5cVivyg1LF8u5UDdcAOQkKDFyDyPuXPREULq2KnFOxz3WoaGAh0dnIfiYbCB4ouUlalfgYn4knKsHEaPliqe9u9XL1vPzQMZtTQ2knGr1vN55AhV3QHU2uLmmzUbmsdhNOJE3iIAgF6wAqtWOXY8nY5yUVhs0aNgA8XX6OykiywyUv0xamvpJg3QCmzCBE2G5tEYDBSvB2gFKk70ShGbB547p93YGP+gpoaMWzXlxRZLn27FuPde7+2XJZPTI6+COeB86fS331IljiNERdHirksDAThGE9hA8TXEJDtHDJRvv5VyKC67zLcqAAbDNsyzebP648TEkMuZmwcySigvp2tNTTL6d99R7hMAZGX5ds7YebqDInAi67x3t6uLOjY7QlQUy957GIrLjNvb2/Hhhx/i+PHjKCgoQEtLC5599llcddVVdvfdt28f1q9fj8OHD6O2thZDhgzBpEmT8NBDDyHOmyWYPYmaGlpNiYplCtFZLWSgADRZLlig4eA8nJwcKg+urASOHgXq6qQ270oQhZ+qqhyvpGL8g64uqrxTE95pb6dWDSJLlvjNouJo7g3IO/UVhXm++orybtSGt41G8p7W1JCsAuN2FP+Km5qasHz5chQXFyNHYdO4f/7znzhw4ABmz56NJ554AgsWLMDGjRuxZMkS1NXVKR0KcyGCQBoKDiTZJVUckPpSTJpE8tL+gk4nCVoJArBtm7rj6PUUMiot1W5sjG8jdi9Wk4z+6adSQvuMGcCYMRoOzLNpDU9CaeZMetLYCGza5NgBQ0JoDmU8AsUelNjYWHz++eeIjY1FYWEhHnnkEdn7/uhHP8K4ceOgt7Hup02bhscffxyfffYZHn74YaXDYWxpbib3pAPhneyTfpYceyFz5lB7eoDCPNdfr+44Ym+ezk7fkBhnnEt1tTrPZ3U1sHIlbQcEAIsXaz0yj6dgzE3IOLeVnqxc6VhYWqzCa252LEzOaILiv2JgYCBi1bi9AUyYMKGPcSK+FhkZiWJRlplRT22tQz08QjoakFq8k55ERwNTpmg3Nm8hNZVi+ABw+rT63jrR0bSiq67WamSMryIIlD+ipnvxu+9K/RYWLQKSkrQdmxdQHz9CUrkuKwP27VN/sPBwoLWVuxt7CG6Xum9vb0dHRweiHO0Zw1DOg16vevWQU7QBeuG8TPyCBbQi80fmzpUSDrdsAe64Q/kxAgJoRVxRwd2NmcFpaCDPZ3Q0zpbosO+Ivm+PpwEIaa/DDVu3QQegMzgKq0LvRI/dDt7U6dvnuPFG4Ngx2v78c2DqVHXHEefOqirq+8O4FbdnUn3yyScwm824dJCsc5PJhBMnTvQ+2NvSDxYLhRTUJmUKAnLPrJWee0FjQKcxa5a0vXmzelXYqCjgzBluHsgMTk0NJbqGhWHfET2amuV10044tQM60G/zePbVaLaEydpPEKhKSGUevWcyZYqU2Hr0KHDqlPpjRURQHopFYU8vRnPcukQ+ePAgli9fjvnz52Py5IEbtK1atQrLly933cC8kbo6CimoTGqNrz6G6JbzIkVjxwJDh2o3Nm8jPp5cxseOUenn2bPqVlMxMeRB4eaBzGCUlVFStU7X6znR6QSE2Eldyq7Y3rtdOXwWQkPkG9JGI3X+9hn0eqrg+cc/6PnKlcDPf67uWFFRdM3W1fmuEq+X4DYDpbi4GL/85S+RlZWFZ555ZtD3Llq0CDNnzuyz7wsvvODsIXoXtbUk1axSnCnnhI2GgD8mx17I3LmSy3jLFnUGSlCQ1DyQDRSmPzo7qdrrguqdkGDgrhsGWcE3NgLLj9L20KG45oFUQOfnK/7584H//Id0oLZvB+67D0hMVH6ckBCaS2tr2UBxM24J8VRXV+Opp55CWFgYXnrpJYTaSQ6Li4tDbm5u7yODY/oXU16u3mfb2oq0IlqNdQWGA5dcouHAvJQZM2hVCwBbt6rvchoWRmEe7pLK9IdYXqy0YmTnTuk3NWOG73YaV0JgIHDttbRtdVD+PjCQPFuMW3G5gdLU1ISnnnoKZrMZr7zyCgu0aUFnJ11MahONN21CgKUbAFCUc6njfXx8gchIYOJE2jaZgOPH1R2Hmwcyg1FVpa682LYVg4132e+56ipp/lq/nipy1BAZSYu+Tl/MKPYenGagmEwmFBcXo8cmQbCjowNPP/00TCYT/vznPyMtLc1Zp/cvTCb1dfuC0Kcx4OkRV2o4MC9HFG0D1Hc4DgujBEguN2YuxGqlnk1KZQGam4FDh2g7IUEqi2doDrzsMtru7FQvfx8VRaEi7m7sVlTloHz66adobW3tVX/dvn07as7/IW+++WaEh4dj6dKlWLNmDT766CMkn4+///73v0dBQQGuvvpqFBcX96nGCQkJwWyxWRujjOpqqhRRE+I5fbpXObEmNhdNQzIB+HksW2TaNFqNdXdTTPvhh5V/x7bNA0WtBoYBqLy4rk65euzu3VJ4Z+ZMDu9cyPXXA6tX0+Lrq6/oudLrVpQJqKkB0tOdM07GLqoMlI8++ghVNu3kt2zZgi3nV5hXXHEFwgdYEZw+fRoA8M033+Cbb77p839JSUlsoKhBEKiHhxqRJ6CP96Qwe6FGg/IRQkKA/HzKQWlpAQ4eVKevIFbzsDolY4vYvVhp35fvv5e2Z8zQdky+QHIy5dF9/z2FVrdsUddTLCyMFm+TJ7MR6CZUGSgff/yx3fc899xzeO655xTvxyikpYUmOjX5Jx0dvaELc0AIzqbPAWefXMCcOWSgAPRdqTFQbJsHsoHCiJSV0Updyc2vrY0MZQCIiwOGD3fK0LyeG26QDLnPP6fuzkqNjKgo8nA1NanrkcQ4jNuF2hgHqa2lRDA18vbbtpGRAqA4aw56jOpKlH2aSZOk73bXLuo6qxS9nm5E3DyQERmgvNguu3dLwn+XXOI3XYsVM3IkMGoUbZeUAPv3Kz9GWBgtAFn23m3wr9vbqaqilYGaicomvHMml5Nj+8VolNzonZ10g1CDbfNAhqmpoZW5Us8nV+/I58YbpW2xoaISxLYhavtxMQ7DBoo344i8fXExcOIEbWdmoi5uhLZj8yXmzJG2N29WdwyuCmBsqayk61dJv6v2dqkRXkwMeQmYgZk6VVLEPnSI9IiUEhlJHhhuV+EW2EDxZurrqRJATV6DjfcEV1zhuUlgHR3kCnfnBDF6NDBkCG3v309uX6WIVQFcbsxYrZR8qXRhsW+f1LmYwzv2MRiogkdEjRdF7EpuMmk0KEYJ/Av3ZkR5e6UVPN3dwKZNtG00AvPmaT0yxxEECl+VltJE7k41VoMBECvMenr6utmVIFYFqG0+yPgG9fXqyou5ekc5l14qLeC2blWeTxIURHlnnIfiFthA8WbKy5W5iEV27JC8ADNmqEuwdSadncDJk2QYLFxIj+Rk0hJx181dqzCPyUQrMsZ/EbsXK1lYdHUBe/fSdmQka+rIJSgIuPpq2rZagS+/VHeMkhJtx8XIgg0Ub6Wri8oU1ZS/rV8vbV/pQcmxotekpATIyyP37OjR1F1YXAm5qz9GTo4Uzz56FCHtdcqPER5ONyZejfk3paXK20ns2ydVkE2fLvWJchVFRZSzVlZGej4WLxJzvPpq6fteu5ZKtZUQFUU5Q0r3YxzGbd2MGQcxmSjpUqnKYWUlcPgwbQ8d6jkrsa4uStyNigIuv5zGZTsJJydTKGrtWsrjUNOl1BF0OvKifPghIAhIP7sFddk3KT+GWBUwgpOS/ZL2dnV9s9xZvVNXRzf4SZPot1tfT9eg1Uphy4gIMr5dbTSdp6MT+GDlYOeOxdRhCzD8xGqgowP7X12PwrE3yz6+MSAWU+IrMKy2lj4v4zLYQPFWamrUydvbek8uv9wzkmNraijZd+RIWh0O1EAyK4uMhG+/pffHxLh2nKKBAiDz7GYcUGqgAFJVgNmsvvs0472I5cXDhsnfp7tbKm8PDwfGjnXO2PrDbKYxz59PVTGCQOHhujpaJJWV0b81NWSwhISQwRIRoS78rACjEUAHIAg6tHcM/t6DOTci58Qa6CBg+PGvsD/7ZgVznw57u+MxrLoayMx0cNSMEthA8VaKi2kyUEJPD7BhA20bDBQ2cSei10Rs8DVmjP1JLS+PXK1bt9IM5cr8mdRUMpLOnkWs6RQiW8rREzJU2TGiomgVajKRV4jxL6qq6Cav5OZ98GCvoCLy851+4+9DSQmFN8ePp+c6HV2vkZFkZE2dSkKRosFSWkr/ivliwcGSh0Vjg3zKWCv2HtH3FjYNhjkkBVUpE5Fcvh8RbTVIaT+Nhrgcu/t1dJIBZBYMNFdNncrVUy6EDRRvRK28/d695HkAqBGeqz0QttTWkqt4xAgqmYyPl7efTke9MTo6SNl12DCaBF3F3LnA2bMAgOzizTiRcKey/W2rAthA8S/Udi92V/VOfT39XqdPHzxnJjycHhkZdG22tZHBUldHHpaaGklLJCiIDJbISIcNlmHpAoalK8iFCZ4O/D9SlL0q5HvgBvterA9WGsg7o9fT52lslCQHGKfDpqA3UltLRorSie5C7RN30N0NnDpFruMFC4CrrpJvnIgYDGTUjB1LE76cJZRWzJ7d6xrOLtqkrqooJIRWY4x/UVdHN30lie1mMxniAFX9TJjgjJH1f96aGso7GarQSxgWRrlxEycC110H3HUXcMstFFLOyiJDraSEkm7PnaPvRU0LCaVMmyZt79ypbF+djvKHWGjRpbAHxRsRO0krSUozmaR+FPHxrpvobBHdwDk5ZGA4kugaGEg5IR0d5NHIyXFNkl5cHIWZjh1DdEsZYurPAshUdgyxeaDaHkqMd6KmvPjwYal6ZOpU1+UtlZSQd1IM7ThCSAiFR1NT6XidnZKHpbKSQp4VFbR4GTJE+YJFLkOGALm5ZBgVF9O5lXgxxQR3VvB1GexB8TasVnXy9t9+KwmdXXaZazPuzWbg9GlaJc2bR2V/WlThhIVRHk1KChkprtJImTu3dzPjzCbl+0dGUqkmlxv7F8XFFOJQgjuqdxoayBCaPt054dPgYLpmx40jmYO77gJuvZW8k/X1zvWITp8ubYueKblERZHh1t2t7ZiYAWEDxduor6eHkvwTq5UMFIBclZdd5pyx9UddHanAZmQAixYBU6Yo14AYjOhoMlJiYlwnpjRjBqw6MvAyzm1RrnBrMJAxxbL3/kNbG62+lYR3LBbJQAkOppCJs+npIQ/txInk8XAFQUHkyZg4kUJDlZXOO1d+vrStNMwTFUULC5a9dxlsoHgbauTtDx2SYqeTJjnPhWqL2UyGSUcHeRyuvdZ5SaGJiVQGGRAghb+cSWQkKlMnAQDC2kzA8ePKjxEeTvF3d8n3M66lpoZubkr6Zh09Kik+T5mi3PuihtJSKqWdNMn557qQwEAKPXd1OS8nRQw1AUBBgTJV58BA8p6w59NlsIHibaiRt7dNjr38cm3H0x8NDWScpKWR12TaNG29Jv2RmUmGUEcHeW2cTFHWPOnJli3KDxAVRd9Tfb1mY2I8GLG8WElodft2adsV1TtNTZRn4azQjhyysuharqhw3jlEL4ogSPoycgkJIVVdxiWwgeJNdHcrV6FsapJirVFRfTPZtaanh3JBWlspgfXaaynW7CpGjqSJvL5eXcdhBZSn56PHcH5Fu3278rh5aCjL3vsLFgt5yxTkjemsFikEERhI5bvOxGIho2DCBOXq1FoSEEBjsFol7RetcTQPpabG6fMLQ7CB4k3U1pJLUomb+LvvyHAAqKzXWSJPjY2UCDt0KHlN8vNd45K2Racj1/SUKeRpctYEB6DHGILilPMTXUsLiWkpQaejv0V5ueZjYzwMFeXFcTU24YdJk5SLMiqltJQ8nu4I7VxIZiaQne08L8rw4ZKWia0InhzCw+l654WFS2ADxZuorSVjQ264RBCcr33S00Orw+ZmqjK47jrXJdf1h15PJczjx5Mr1okVAWcy50lP1IZ5SktdowHBuI+aGiqtVWBkpBdtk544u3qnuZnmiunTleW2OQu9nq5fvd45Dfr0esmTbDYDBw7I31cM0XGCu0tgA8WbUCpvX1AgrdDHjFEuuGSPri4SXUtKIsNkxgz3xa5tMRqpZHHkSMqFcVLn1bKkSegKPK9jsmuXckMjKopCcFwV4NsUFSnzJgpWpBWdV48NCCD9E2dhsdAcMX68Z/WZSUsjT4ezvCiXXCJtK63mCQ+nvyknuDsdNlC8BTXy9mvXStvO8J5UVNAkct117o1b90dICGmupKc7TSPFajCiNPP86razU3nCndFIHihejfkura2UIKvguk2oO4HQ9vOJ3hMnOterUV5OHs8pUzyjcaiITkdGU1CQc/I9xoyRvtc9e6QwuByioihk54JkfH+HDRRvQam8fWurVAUQFtZ3xaAFZjNd1GPGOD8+rpbISNJIiY11WuZ9UbYk2obNm5UfIDSUPGOuEpljXIuK8uJhJTbhHWdW77S00DWcn09zhKeRnEzKr87wohiNZJQBFEY6dkz+vqGhtCDhPBSnwwaKt1BdraxMccsWSfFw/nztE1arq2kC8SS3cH/Ex5OREhzslImuNnGMlHC3f7/y1R5XBfg2lZXKrltBQGbZ+YWFwdBXWExLbEM7WVnOOYej6HTUbyssTJleiVxsq3mUhnk4wd0lsIHiDVit5AFQ0rfFmdonFgt5aMaOdV1vEEdISyONlO5uzfM9BL2B8l0AWo3aSpPLITycvktuQuZ7iAnkCrwnQ+pOI6Lt/G9h3Djn9WqqqKAFxuTJnhXauZDEROp9JerIaMmkSVJV465dyo4fFUWSD52d2o6J6QMbKN5AQwM95MaxT5+mvAsAGDGCmn5pickEJCR47sqrP3JzgVmzaCXW3KztsefMkbaVhnn0erpBuEIBl3EtdXV03SooL04754LqndZWMtbz85X39HIHY8ZIwoZaEhoqNUM0mSihXi6RkZzg7gLYQPEGamuVdUHdtEna1tp7Igg0UeTleUZJohLGj6fywspK+j61IidHqpA6elR58lxEBOWhOKnaiHET1dVU2SW3sk0QkF5M1TtWnd454R2rlUrbx44lrRFvIDYWGD2avIxae1HU9ubhBHeX4CTVLkZLzm4rxb7jOTAXyPhzCQIWfbcL4QCsOgM+bZwD80r78e8OuZ5KcUU4fLjMHTwI/flJv6OD8kWys7WR4NfpyIvy4Yc0gW7bBlx/vfz9xTyUujryTDG+QXGxsrL7oiJENFOeVE3SWCQpqdiTS0UFhU2mTqXrwVsYMwYoLCSPhZa9xPLzgTfeoOt21y7gnnvk7xsWRn/jSZM8O0zmxXjRL9RP6e7Gvl2daOoMQnuHzu4jqKoY4a1k1VcmjEWTNULWfoJAF5jdlJLaWgqXKOnK6kkEBFCoJy+PwmBaeS0cCfOEhHBVgK/R0qK4vNi2905JphPCO+3t9DubPl2ZGrUnEBVFXh+TSVv9kZgYms8AMjaUJNJHRtI1q3XImOmFDRRPx2SCuZvcmjqdgNCQwR851ZKbsnLYdLvvt31ERQqYMnaQi7+lhcI64gXtrQQHU9JsZibFnbWY8FJTJZf56dPKK4YCA8n1zvgGYnmxkhyP8wnWAnQoy9BYFsBqBUpKKFTijd5PgBYVCQnaJ5TbhnmU9OZh2XunwyEeT8fmxx8SDNx1g50V/xapimTKw1MxJV7DvIaqKprgfCEMERFB5cerV1OlhRbx+DlzpES7LVuAO+6Qv29kJBk1HR2eqyvDyKeyktz+csuLS0p6DdSq+Dx0hg4BoPG1m5BAOVjeFNqxJTyc8si+/ZbCPEo6Qw/G9OnAO+/Q9q5dwI03yttPr6dHZSXloTGa46W/VD+ipER+fLOujlbvAFXYaBmr7eyki3HUKN+Jt8bGkkZMeDiVDDrK7NnSd7N5s/KyxaYmXo35Aj09JAugxHvy/fe9m0Vps7QdT3s7iZFNm+a9oVmR3Fwqj9YyOTUlhaQIAGoPokRzRUxwV6JEy8iGDRRPRpTJlmsQ2Lonta4AqKwEMjLc2wjQGaSkkCS+2ey4WFpcHLmhARJxEku95RAQQPkwXBXg/ZhMisuLbQ2Uc2ka5p8IAnlmRo/2/tAsQCHmCRMkFVytEOdLQVDWsiI6mgwalr13CmygeDKivL1cl6yzDBSzmR5jxnive3gwcnIoLq9FbHuujfS90g7HYWG08mbZe+9G7F4st4KnvLy3FYMpfiTaQ+O0G0tVFSkde3No50KGD6eFhZbaQbaqskryUIKDKSzLnk+n4CO/WB+lulp+Amd7O3DkCG0nJGgrzlZTQzofGRnaHdPTGDGCvmuz2bHjzJghxca3blWWgBsVRSsxZ8h6M66juFiZRpCN90TT6p3OTlrg5OdTtYqvEBRETRTb2x2/XkVycqSWFQcPktGhZDyc4O4U2EDxVKxWmujkxrH37ZNcntOmaZcnYrHQJDd2rDaaIZ5KWhoZdo4qQ0ZG0uQJ0LGOH5e/b3g45Qrwasx7aWmhcKiS8mKb9gilmRo1BxQEmj/y8oCRI7U5pieRnU2dyrXqr6W3EcYzm4EDB+TvGxUlJbgzmsIGiqfS2EgtveXqFTgrvFNXR8m23iRrr4bAQJrMm5ocD7GoDfPodFJVAOOdiI0f5S4sqqqkxPacHLRFJGkzjupqyo+YNk27ahdPwmikXBSzmdR6tUBt88DISCop54WF5rCB4qnU1JALU04b9J4e8qAA9P7Ro7UZgyCQgTJ6tPfJ2qshM5NuLI4KL02bJnmbtm9X5oaOjKSVr1aua8a1lJdLhqYcbJtLztDIe9LVRYb2tGlUqearZGXRNatVV+ExY6R5bs8e+Um4nODuNNhA8VQqKqRGcvY4epRCAwAwZYrUodNRGhtpFeYvNf5DhtCk5+hKKCRE8mK1tFBMWy5RUfS9cxMy76Onh4xLJSqtNvknmhkoxcUU1hErynwVg4G8KIKgTXjFaKT5E6D59Ngx+fuGh3OCuxNgA8UTMZsp6UpuHNtZ4Z2aGipN9KUEO3uIKpvd3Y4dR22YJyiIVsDsLvY+amuVlRfX1gInTtB2ZqbUcNIRamrIQMrP126h4slkZNACSisvitowT1QULSo4wV1T2EDxREwmctHKWYmJTa4AmpAmTdJmDC0t5AnwBe0EJaSmAklJjnswJk6kVRVAfx8lcfKQEFoFM95FTQ0ZtkFB8t6vdXinq4sMpKlTtRVp9GT0elKXNRgkL7IjTJokGXa7dsn3iISFUUieFxaawgaKJ1JbK3+iO3tWupmOHatdrkh1Na1MEhO1OZ63YDSSWq6jybJGo3TT6exUJv4UGUnfvxYTLuM6ioqUtSnQOrxTUkLl8lrloHkLqam0kNLCixIaSgYPAJhMiKk7LW8/TnB3CmygeCIlJfJFnpwR3unspAvOl2TtlZCZKUnPO4JtmEdJh2OxKkDrpmiM82huJqNSbli2vp5k1QEqcU9Pd+z8tbW0is/Pl9GS3MfQ6YBx42jO1KKzsM08mlasMMzDCe6awgaKp9HWRqWH7iwvrqryTVl7uURHk86Co+7avDxJ/Gn/fvlS+gYD6eBwVYD3oLS8eOdOyUPnqPeku5sMnqlT/c/jKZKURInBWngw8vN7F2apxTvsvNmGyEhOcNcYNlA8jdpaWgXIMVBqaqgTL0DhGC1KCs1mmvBGj/YdaWw1DB9On98RjQWDgRoIAlThsUPBZBcRQX9bJUq0jPuoqFBWXqxleKesjAzqsWMdO443o9PR5w8PdzxRNSamN/cuurEYkS0yQ0dBQTR3ch6KZvjxHchDqa6mlZUccSXbvAatvCeirH1mpjbH81ZSUqhrqqOTzZw50raSME9UFCU8NjQ4dn7G+ZjNysqLm5pIGgCg35gj11p3N80Xkyb5X2jnQhISyGtZVeV4ua/NfJpRpiDMExzMCe4a4gd1aF6EKG8vVn/YQ+vwjihrP3Omb8vayyEggHJw1q6lyW6AXJyOTuCDlYMYk0Iuro0cisjmCghHjmLlB43oCJXj6YoEekJhLDiAKfeMxrD8ZHWfg3E+YvdiuWXCO3dKnrEZMxzL8zKZKKyjRYmyLzBmDFBYSCEvRzzKl1wCvPMOACCjbAfOTLpJ3n62Ce5yRDaZQWEPiichtu2WsxJrbZVWYYmJ2jTy8xdZe7lkZkrt1C9AXKwKgg7tHYM8OvU4nT4PAKCDgKST2wZ/v+3DbERTnRl7Pznlqk/MqKGmhkKBcsuLtQzvNDVR5Y6/e09EhgwhI6WmxjEvytChlLwMINFUgOAOmZ5MTnDXFDZQPInaWvny9vv2kccD6JPUpRpR1j4vjy1/kchIykXpJ8wzZawVUZECQkPsPyqGz+7dL6tih6x9QkME6EATrLlDpuQ24x7OnZNf3t/SAhw+TNsJCY6pNItJub7cZVwNo0eT98TRZNXzom06CEgpkSkTYDDQXMoJ7prAIR5PorJSvry91uEdUdZeVFJliOxskqq/YIU8LF3AsHSLvGMIQ4HdKUB5ORJrjuGuSxtkeck+WGlAewc4UdaTEcuL5arH7t4tLSy0CO9kZfl2vx01REVR2fHGjfTdqE32nz4d+OQTAEBqyQ4Al8nbLyKC9KmmTvXNRo0uhD0onoLZTPoncnQUzGapOWBEhDY9N/xR1l4OQ4dSwqwjLludTjIirVZqRKYEi0xDiHE91dUUbpWbN7Z9u7TtSHjHYqEE2eHD/VOryB55eRT6duS6zc5G+/l8saSKg+TdlkNMDHmjuZrHYdhA8RTq6siLISf/5MgRqTnWlCmOW+mtrf4pay8Hg4GSZdvbHfNkqO3xAbCB4skoKS9ua5MaR8bGUu6IWhoaKN/ifJ4EcwFhYaQI29io/vrR61GWTtetwWIGDhyQt19wMHlcq6rUnZfphQ0UT0FJHw+twztVVeQq9leRJ3tkZJAL35GS3xEjpDDAgQPK9FUsFm0UMhltEcuL5arH7tlDejgAeU8c0Rmqr6f8Fa1aW/giublUxu1APkhZxiXSEyULi7Aw4MwZ7m7sIGygeAqlpfKME0GQ9E+MRmpK5wiirH1eHruKByIiglzpdXXqj6HXS8Zkdzcpy8pFENhd7InU1tIKXa6BYlu9c8klA7/PHl1d5NkbNkz9MfyBkBCaH1taVMvP1ySNQZfxfNHA3r2SgWmP6GhadNbXqzovQ7CB4gm0t1OCrJyJ7vRp6UY5fryy5mT9UVVFfUD8VdZeLjk5ZBCKoTU1OBLm4SZknocSr2dHh2SURkdT2FAtJhN5Blj7xD45OZRDpjLcYjUYUTp0Kj1pa5OkHewRFia1LWFUwwaKJyDK28vp42Eb3pk2zbHzms30GDOGs83tkZxMRpwjnoxx4ySDcs8e+bFxvY5CCZyL4jkIApUXy10g7NtHxgxA3hO115sgkEcgN5evWTkEBZEXpbNT+v4VUpyqIsyj05HYpdiKhFEFGyieQE0NJWAGyKj61tJAqalxXGrbX9DrqRlZR4d6Q8FopKRmgBKTjx2Tt59OL4n4MZ6BKMYlt7xYq+odUfvE0e7H/kR2Nn1fFRWqdi9LngyL/vzcvGuX/LySmBjyfMptEspcBBso7kYQgKIiWWWKYS1VUp+HESOkTrlqEGXtx4xhWXu5ZGTQd+5IsqxtUrOtsTkYOh0ZRpyH4jmI3YvllBd3dfWVBRgzRv15a2vpZuvIte9vGI3AhAnkLVbR/NNsDEXV0An0pK6OwuxyEFVlOcyjGjZQ3I3YnltG/klqiY170dHqnbo6IC6OZe2VEBZGhqEjnozJkyVP2c6d8ldjgYGUSM14BhUV5FWTU4mzfz+FGADHwjsWCz1YTFE5w4bRXFdWpmr3PtU8chcWej39rfm6VQ0bKO5Ggbx9arFGBoooaz96NMvaKyU7m+LackWbLiQsjNrCA/S3P3tW3n6RkXRTdCRJl9EGs5m8nnLDO1pV79TXk+eEE9qVYzCQFwVQde2Wp02TqhyVJLhHR9NvRTRQGUWwgeJuKivph2+nxDeoqwXx1edzFpKTHRNoYll79SQm0g3CEYXKS1Qk3UVFUWM4DvO4n5oa+eXFZrMkCxAWRonSaqmvJw+eo5V7/kp6Os15KiriOkOHSEKWJSXy81mioui3wmEeVbCB4k56emTL26dV7IZeOK9k6mhzQJa1V49eTyWiXV3qk2Vtk5vlGigBAXQ+7pLqfqqryfCQk7t18KDk9crPV991uLOTzscJ7eoRr12rVb6eiS22MgFywzwBAeSxLi9Xfj6GDRS3YjLJXolllGsU3mFZe8dJTyepcrUiTENsVmPFxfJXdGFhVLbI6pTuQ0xql6vgqlX1jqh9kpSk/hgMaceovXbV6hhFRtJ1q1Iszp9hA8Wd1NZe1CW3P/Q93UitPF8FEBlJ5a5qYVl7xwkNJQPDEZVINauxqCipZxPjHsQwm9zwjvi3DQmRciCUIgi0sGDtE8cJDibxNjWVeEOHSqH1wkL5x4iJobmCw7OKYQPFnZSWynITJ1UegrHnfJKVIy28WdZeO7Ky6KbT1qZuf1svmNzVWHg4nY8nOvehpLz4yBHp9zFtmvpy/uZmWpiw9ok2ZGRQqE1FyXHvwkIQ5HclDwoikThWg1aMYgOlvb0db7/9Nn72s5/hmmuuwZw5c7B69WrZ+7e0tODll1/GddddhyuuuAJPPPEETpw4oXQY3o8CefsUrcqLWdZeOxITaTWlNickNVX6OxQUyPOKiF1zeaJzHxUVtECQU16sVfWOyURlsnKrhpjBSU4GEhLUyQWoDfOEh1PzQEc6ovshig2UpqYmLF++HMXFxcjJyVG0r9VqxTPPPINvv/0WN910Ex577DE0NDTgiSeeQKm/1YqbTNLKaDCsVqSWkJu4xxCo3k1sNpMVz7L22qDTUaitu1t9sqztakys9LBHZCTlrXA82/V0d1P+iZzwjsUi3cCCgkj/Rg09PXRTy85Wtz9zMQYDhcvUdAjPzqYcFgA4dEh+yXJMDHk+WQ1aEYoNlNjYWHz++ef45JNP8IMf/EDRvps2bcLRo0fx7LPP4oEHHsBNN92Ev/3tb9Dr9Vi2bJnSoXg3NTU0idmTtz91CiEdFOusGjqBYqhqqK1lWXutSU8H4uPJ2FSD2jwUUdyPcS1KuhcfPSrdACdPltdQsD/q6uiGyF5PbUlLo6Tz1lZl+9l2JTebgQMH5O0XGkrGDJcbK0KxgRIYGIhY0YJUyObNmzFkyBDMmTOn97Xo6GjMnz8f27ZtQ7fKZk5eh9hoTI5Ims2Nqyxj+iBvHASrlSbLsWNZ1l5LgoPJi6JW+j4nR5Isty1HHYygIIqdcx6K66mqIo+GnGtoxw5pe+ZM9edsbKTVvloDh+mfuDhasKnxaKjJHwMoZ02uMCMDAJDRnU47Tp48ieHDh0N/Qfx21KhR+PLLL1FaWopsf3BlNjXRhSFnJXbeQBGgQ0WayuaA4iqMZe21JyuL+qy0tspLnLRFXI2tXi2txuSUooaEkH6OI6JfjDIEAWe3lWJfwXCYC+yESAUrbty4AyEALAYjPq2ahp6V8sKqHbaCo+3tZJhkZKgeNjMAOh2J3p0+TQs4OTlFImPG0OKyrQ3Yu5eMVjmNXmNiyMhtapI39zOureKpr6/v1/sivlY3gDVrMplw4sSJ3kex2DDPW6mqohuaPQ9KRUVvH4eauJHoDFEhrMay9s4lLo5uIGqTZdUk3UVG0m9IbQURo5ymJuw7rEdTRyDaO3SDPiJKC3vDsqVJk9HcE2Z3H/EhCFRdZzSCwnhDh7IkgLNIS5MUmpVg25W8rY3CeXKIiKB5n5PcZeNSD0pXVxcC+3GPiq91DVD2tWrVKixfvtyZQ3MtZ8+Sm9ie1W4T3ilOURneaWykG9qIEer2ZwZHpyMXfGGh/JWULbarsT175B0jMpJ+QzU1VN3BOJ/qapjPi4/qdAJCBkkFG16xrXe7InsmQkOUCesZjcCUMT3kQRk5UtnqnpFPZCTl5B0/rlxVOz8f2LyZtnfulFe8oNNJzQMd0bLyI1xqoAQFBfWbZyK+FjRAnHXRokWYaRPHLS4uxgsvvOCcQTqbpib6gcppl25roKSqLFOsqSHtFJa1dx5paVS2aDIpV/oUV2ObN0urMXuTncFAbunqajZQXIWNVHlIMHDXDQNUbgkCsOq8emxAAGY8NhkzwlVUeTU0AkHRjvXcYuyTlUV6NRaLsurGSZPo2hXF+B55RJ4hGRND4dn2dvlqxH6MS03zIUOG9BvGEV8bKPk2Li4Oubm5vY8Mb47JlpfLKy9ubqZVOYCmqFQ0RarI4mdZe9cQFEQrIrUKr2qS7iIiKNGadRWcT3c33VTk3IBOnZIqrMaPV56XJGIy0ere3jzBOEZKCi0WlapCh4bS3xegEPqZM/L2E0NKXM0jC5caKMOHD8epU6dgvWBSLSgoQHBwMNJ8fbUgCPRDDg62r+S6Z0/vzac8XaU4W3U1y9q7imHD6GakRlth0iQprLNrl7xeO1FRVD2ktoKIkY/YvViOgWLbe0etOJuocaNQZ4pRQUiIeul7NfljopemrEz5+fwQpxkoJpMJxcXF6LHpGjl37lzU19djy5Ytva81NjZi48aNmDFjRr/5KT5FQwN5UOSUaduWF6eryD8R83lY1t41xMXRildN+W9oqBTWqaujygI5+7S3c7mxK6iultf9VhCk8mK9vu8NTAl1dRQyTElRtz+jjMxMMhyUylxMnSrNrUrKjaOjyfvpL7IaDqAqB+XTTz9Fa2trb2hm+/btqDlfxXDzzTcjPDwcS5cuxZo1a/DRRx8hOTkZADBv3jysWLECL774IoqKihAVFYWVK1fCarXiwQcf1OgjeTAVFdTHY+jQwd/X1SUJAEVFoS4+F1DaNqK2liY4FnhyHbm5JFtvNp8vw1BAfj6VLAJknA4fPvj7dTryupSVccKdM1GiWXT2rOS6HztWfXimsZHCB76+YPMUkpMlwUV7c7MtMTF07RUUUF5hebk8ozI6mkKG1dWcY2QHVR6Ujz76CG+99RZWrlwJANiyZQveeustvPXWW2hpaRlwP4PBgD//+c+49NJL8emnn+KNN95AVFQUXnvtNaT7eiMsQaD4dGiofY/GoUOSB2TaNAh6FdL0ra1UucOy9q4jNZVWvmq8GtOmSb8LW5GvwYiKIgNFTdMzRh6iaq8c3Qrbv5scPZv+aGujOcKb8+y8jYAA9dL3atSgjUbyyFVUKD+fn6HKg/Lxxx/bfc9zzz2H55577qLXIyIi8Mwzz+CZZ55Rc2rvpa6O6t8VVu8gPx9Q+jsWu62yi9i1BAZSSG3DBlqVKQmt9bcagx2jPTKS3msy8d/aWdTUkLFvb2UtCFL+iU6nPrwj/i0TEtTtz6gjLU0KmyqprsnPB8Q2LTt3AjfdJG+/iAjyuE2ZwovIQeACe1dRXk6rI3tZ/RaL1DguKEjKFFdCXR1NcipbEjAOIFZeuGI1FhhIKzG1InGMfcrKaIVtz9jsNSoBjBqlrqzfaqV2B7m5nDfmauLjaVGhtMfV0KHUkwsATpyQn2wbE0PzNPfUGhQ2UFyB1UrhHTklhydPSsqGEycq78FhtZLLPyeHJzl3MGQIVfSoCfOoKTcOCaEOu4z2dHVRroCc8M7330vbanvvNDbSjcvXw92eiF5PIfH2dnlVdLao6UoeEkLGKJcbDwobKK7AZKKEKDXhHaWIfR44OdZ9iAmuSrP0L1iNBbfL0GaIjiZjSI3Hhhmc2lr5fVNsDRS15cV1dbSwUKudwjhGaqo676ftPC03DwWgxOuzZ5UbRH4EGyiuoKxMfmxT/IHr9VTGppT6ekqwY4En95GaSoqyaty3NquxlFIZq7HwcMo54nJj7RG7F9uryKqokLxYublUcq6U7m665lkZ2H1ER9MCQel1m5MjhdMPHqS5Xu75qqpYy2gQ2EBxNmJ4JyLC/nvLyvrGsZUaGRYLnY+7FrsXo5H+fs3NyldHNquxtGIZ1Tx6PYXy2FWsLUrKi229J2qrd0wmyoNQUubKaE92NhmlFgXtCXQ66brt6QH275e3X3g45SXytTsgbKA4m5oaergivNPQQFY5V3S4n8xMCg0olb/PyeldgSdWHITRLGM1FhFBK3glkyozOA0NZDRER9t/rxbhneZmquJSqp/DaEtqKs3VSq9bNeXGOh0lunMO2YCwgeJsysqAzk5KirKHowZKfT3d4OSci3Eu0dG0GlPqLrZZjRmsPUit3Gt/H9EQ6qfPFaOSmhpy1dvzoFRXS8q/2dnKm0UCVMYcFsbJsZ5AaCj9HZX25hG7kgMkuCi2K7BHdDSFCFtblZ3PT2ADxZn09FB4R06opqGBytQAmqjOq+/KxmymevrMTMXDZJxETg6FYJQKqdmsxjLKZIR5xIoAzkPRjrIyup7sVcLZirOp9Z7U1tLKXU3uCqM9mZl03co1MgAqRZ8yhbbFruRyiIzk5oGDwAaKM6mupslHjh7Jnj1SvoIa70ldHU1wSg0bxnmkpNDfQ6nhMHp072osvWIP9BYZE2VgIGlxMI7T2UnfpSvKiy0WSpAdMYJlATyFoUNpLlXqkVQT5jEYyBji5oH9wgaKMykro8lHjpaJo+GdxkYqb+UYtucQEEDKsq2tvZ2pZe93voIr0NyOhKoj9veJjCRXcUeHysEyvcgtL66rAwoLaTsjQ13uV2Mj5TxwTxbPwWikuVTUo5LLxInS/Ltzp/xrXmwe2Nmp7Hx+gCqpe0YGZjOFd+Sswjo7qf8OQJOV0jbrHR1kBHEM2/PIyKAJqKlJmbro9OnApk0AxGoeO4rCUVFAcTHdXPl34Bhi92J7xr4W4Z36emDyZHnVQozryMgg0TVBAKBDRyfwwUp7kvQRmJM0Eamlu4H6enz7r0LUJI+VcbJEGIVuTIk/hWHXynm//8AeFGdRVUUJknKqdw4ckES9pk0jl58S6uoolJCYqHycjHOJjKTVmNIwz6RJ6DFQN9uUYhmrsYAAlr3XArG8WI5YmqPhna4uutZZFsDzSEgAkpJg1PUAAARBh/YO+4+TafN7D5FycrOsfdo7dGjqDMLe1dw88ELYQHEWJSUUX5bTMt3R8I7YuVipYcO4huxsMiCUuHCDg1E1dAIAILSjnrxx9ggLo5srK1OqRywvtuf5bGgAjh+n7ZQUdV4rk4kWFZw35nno9UBuLqYkViEqUkBoiLxHbfY0mAOCAQBZpVsRHthtdx+djq5Xc0cPLTKYXjjE4wy6u4EzZ+RpKFgslCALUDXGuHHKztXayp2LPZ2hQ+lRW6so16As4xJyFwMU087NHXyHqCjypok9XRjl1NRQFYa962nXLsmrNWOGugTX5mZakATwNOyRpKZiWLqAYaMbFIhmGoGSfGDzZgR1t+KO1D12F50frDSgvQOA1UJzBBusvfCS2xlUVtKNQs5NoqCApMqBvklWchHbs3PnYs/FYKBk2bY2Rcmy5Wn5sOrOX6JyqgJE2XuuCFBPaam87sWOqsc2N5PAHucLeS5DhlD5t9Jqnrlzpe0tW+TvJ4DuHUwvbKA4g+JiuhHJMTYcCe9w52LvISODDFYFfTe6QqJQHTeKnpSV2Tc8dDoyUgoK2FWsBrG82I7nM7CzGTh8mJ4kJKjLITGZyDjhhYVnM3w4ecSVqDRPmCC1Ntm1S35vHp2OPO9KKv58HDZQtKazkzpUyvGeCELf5oCi0I9cuHOx9xAeTjcyhY3BilNtqkN27rS/Q3w8lRtXcMKdYmpq6Jqy485PLbEJ78ycqXxxYLFQlZ/Y9ZrxXFJTyWBVIn0fEADMmkXb3d3yNVH0egrxKFWx9WHYQNGaigr6gckxUEpLJQXB0aPlNRS0hTsXexfDhpFRqkChUrGBEhQkNahklFFdTcaDHc9nWvF26Yma8uL6etY+8RbCwmhhodRoUBPm0em4eeAFsIGiNSUl9EOTk/hme8NRGt7hzsXeR0oKKVQqmOxawpPREDOMnpw8KS8eHhdHrmKlQlP+jNUqq7zY2N2GpPID9CQujqrnlNLQQPtxzyzvYNj560+J9P3IkeTNBEhGQu61GBzMzQNtYANFS9rb5Yd3ABICElFqoHDnYu8jMJBuTAo7pZZl2Eho2/5mBkJ0SfNEJ5+GBjL+7JQXp1fshsF6Pr/nkkuUl/Z3dpKHRrzpMZ6PioUF9HpgzhzatlqB7dsHf79ITAx54ZublY/TB2EDRUsqKujGIKe8uK6OVsQANadSKrLGnYu9k/R0MlQUaKKUZSgM8+h0FPY7fpyTZeUilhfbUXQdVrpNeqImvGMyUcdjNV2PGfegcmHRa6AAwObN8vaJiKBKPA7zAGADRVvOnSPL2WBPEhmS9gmg3Hsidi7OyFC2H+N+EhPp5mQyyd6lYUiW5C4+coRupPaIj6ecCi45lkdZmd3y4gBzB1Ir99GT6Ghg1Chl5xAE0i0aOVLeHMF4DioWFsjMlMrICwroerSHeP8oKVE1TF+DDRStaG2l8mK54R1HyovFzsVDhyrbj3E/BgOtxlpb5e+j00mdUnt6gL177e8TGEg3RE6WtY/M8uLksr0IsJxvSTF9unIjo7mZPFucHOt9qFhYQKfr60XZulXeftHRZKBw4082UDRDDO/IaQ7Y3i41B4yLIyl0JTQ1cedibyY1VRJVk4uaVu5xcZQTpbC02e8Qy4vt5Z8U2eQRqOm9YzJJejiMd2Ew0Jyr5JoF1IV5xBwyDvOwgaIZ586Ri1jOqurAASk3YNo0ZToKHR20OmYFSu8lNpaMFCWrsbw8qQx93z55FQVRUXTj5WTZwamspKq4wSrvurowtJTCsp1BkcCYMcrO0dND51DaqZzxHNLSpBwRuSQlUUgPIA+7nGvRYCDvZ3m5qmH6EmygaEFzM7nk5KpCOhreSUrizsXejE5HN6rubvmqkQYDMHUqbXd0SEqm9s4TFQUUFiorkfQnrFa6adjTIDpwAMYeyj8oT89XHt6pryePFosqei+xsVTR44j0vVwvSlQULXr9/LplA0ULKipkKVAC6JtDEBqqfCXGnYt9A1GhUolWiW2YR041D0DJspWVnCw7EPX1ssqLbXvvlGTOUn6ehgYKEQQHK9+X8Qx0OvobdnUpk6OfOVOar7dulbdvTAz9Lmtq1I3VR+C7nBacPk1hFzlGw/HjUoLk5MnK8kgEgXIXeBXm/UREUJa/ktXYxIn0OwPICyenP4jRSBMrJ8v2T00N5YSFhg78HrO5t+quyxiG6qHjlZ1DDMtmZqofJ+MZqFlYREdTfx6Afm+Fhfb3CQykxayfNw9kA8VRGhspVig3vGPbBXXaNGXnslqpcocbjPkGWVlkdMrVKgkKIiMFoN+dqKNjj/h4chdzj4+LKSuTjLiBOHSot7S7JGUarAYVHceHDmXtE18gIoISnV3R4Tgiwu+bB7KB4ijl5ZQ0JaePTleXFIMMDFTeHFAQyMXInYt9g5QUMjaVGA5qwjyRkZQnxcmyfenoIANFQXjnXJrC8I4gkHEzciSHZX2F7GxlCwuAcg1F7+e2bfL2jY4m41ZJMr2PIaNhDDMggoCzG89gX8FwmAvsf5WZZ3ZhxvmV2Nn02di5Xl6Tvw5RG0in4/COLxEURAbn998DCQny9pk6lW50VisZKIsX2zdYbZVlx4yRJkp/p6aGPFGDyc739PQmtZsDglGeNAlBSs4hSg+w9onvIHqxGxokAUV7hIaSx3zbNlosHDpEIX57+3R0ULmx3PnBx2CT3hEaGrDvgICmjkC0d+jsPjIL1vXueixzoax92jt0EAS6ARlDArhzsa+RkUEhhq4uee+PjKTO1wDFp0tL5e0XH083ZE6WlaiqIkNvsPLio0d7y0or0qbBEqDIPKFQwLBh8vSRGO8gOJiq8JSGTNVoooSEUJhHEJSdy0dgA8URysth7iHjQacTEBoy8COxuwxDa6g0tCkqFS1powZ9/4WPqOAuTFnIMWyfIymJVkdK3Li2pelywzxGI3le5Oat+DpdXTTx2wvN9qnemaHsHGYz3ViUCjEyno/ShQVAHhOx19POnfL2jYkhiXylfYB8BA7xqEWUEddRwlxIMHDXDYNUVbyztncz6sbLcNeNChKfTCY63xVXqh0t46kYDEBuLrBhg/x98vOBN9+k7Z07gdtuk7efmCxbV8eJ1mfPkjzAYMaDxQLs2EHbgYGoTJ0CKOm9KLak4I7jvoe4sKirk99yxGikkuN166i9wu7dwOzZg+8THk6/0+pqv1QgZg+KWkwmchHLSXyzWIDvvqNtgwGYP1/ZuerraSLlzsW+SVoarazk9udJTJTyJk6fBmpr5e0XGUnnOHdO3Th9he5u4OBB+s4HC+8UFEjlpJMmoceo8PpraiLjM0hhWIjxfAIC6G/b3KxsP6VhHp2ODBs/TXBnA0UtFRWUnS+nombvXqkfyrRpyixhsXMxayj4LuIqW0np4iWXSNu7d8vfLzqadBiUuKZ9jbNnqfrOnhqzrSTADIXhnfZ2ylXgjuO+S1oaJbIqafw5ejQwZAht798vTzY/JoZyx+R0Mfcx2EBRg9VKsfzwcHnvX79e2r78cmXn4s7Fvo+oUNnZKV/zQE0eCkC/pZoa+cm1vobZTBUUoaGDiyRarVJ4JyBAajMgF1H7xE+rL/wCcV5WsrAwGKSwTk9PXyN4IESZAD9sHsgGihpqa2mSFy3hwairk6TtY2MloS25cOdi/yA1VWruJ4fMTMkDcPSo/FVcQICULOuPlQFnz9Jq1J5o2smT0o1nwgQpuVEOVit5UHJzWfvEl9HpqO1IR4cyMbV586RtOWEese+TH1bg8dWjhrIy+lEOJo8t8t130o/3ssuUNRnjzsX+Q2QkGR1ySxd1Okm0zWKRjGA5JCRQZ1V/E4ASvSfBwfYNfkfCO01NFEpj7RPfR1xYKMlFycqSEqePHUNoq4wcsuhoyh3zs9AsGyhKsVgoMVGOcqzVKoV3dDoyUJTAnYv9i6ws+n3JVahUG+aJiPDPZNlz5yi0lZw8+PsEQTJQDAblHcdNJvpbsmaR7xMVpbynlk4nSd8LAtLPyZC+j46mUuPqahWD9F7YQFFKTQ39SOSEd44eleKG48YpNzRaWrhzsT8hSt+LCdX2GDVKugnu369sdSUmy3Z22n2rT6DEe3LmjNRFduxYeYsR2/MAZKAw/kFWFi1G5TTvFLGp5sk8KyPMYzTSwqWiQsUAvRe+8ymltJTKFOW0TbdNjr3iCmXnaW2liZGl7f2H4GDKN5Ib5jEYpIaTnZ3A4cPyzxUXRyt9f0mWLSqizyqnYZ8j4Z26OgqhsfaJ/5CSQpU2SpRlhw6lax3AkLoziG4qsb9PZCTlUCkxhLwcNlCU0NND4R05rtvWVmmii4jo2+RNDmIVgL8Lavkb6emUyCrXG6KmeSBA5zAYgBMnfD9ZtqeHvCeBgfb7ENmGd/R65ddtYyN5Pbnfkf8QEkI6VXI9nyI2XpSsYhlelJgYMoDl6h75AGygKKG6mn4ccsI7mzZJ7t5585RV4VitdIPizsX+R3IyhQLlxrTHj5eEwHbvVra6SkgASkp8f8ITvSf2ck8ASh4W3eh5eRQKk0tbGyXOs/aJ/5GZSQZ/d7f8fWbP7p3fs4s32V8oBAfTfaGyUvUwvQ02UJRQWkqrMXvKkILgmPZJUxN5aTi8438EBNAKXG5VQFAQMGkSbTc1kUdELuHhdFP15WTZnh4KfRkM8rwajoR3WPvEf0lOplYSSpJlhwyh3EQAUa2ViDXJ6JMVFkZhHl/3ep6HDRS5mM3ywztnzkiT/ogRylVg6+tpH64C8E9EhUq5k5BtGEIUF5NLTIxvJ8sWF9NDrtChrYFiq9ZrD6uVZAFyc9nr6Y8YjQ5L32eckRHmiY6mBG6lnZS9FDZQ5FJZSSskOeGddeukbaXJsRYLPcReK4z/ER9PN1S54k9TpkiVXrt2KVtdxcVRiKdERpKet2GxSN4TOf1wysqk72HkSGX5X42NZOyx9on/kpZG+Sjt7fL3ueQSWPTUDyrj3Gb7IdqwMPJ6+omqLBsociktpR+PPTdxZyew5Xxde3AwMGuWsvM0NNBEx+Ed/0VUqJRraEREUDksQBNXcbH8c4mhj8JC33MbFxdT/oka74ma6p2sLGUlyYxvER9PoR4lAojh4ahIozYKIR2NwJEjg79fp6Pr1ZfDsjawgSKHri4K78hJmNu+XbKgZ82SpzZrC3cuZgAyUJWECmzFxOTIZ9uSkEAGuKj94Qso9Z4A6sM7ZjP9rVj7xL/R62lh0d6uyNgvyponPZFz7cbEkEdfTqNBL4cNFDlUVtIKSU4XYke0T7hzMSMSFUUJs3KZMUN6/5o1ytzMYWGUP3H2rLIxejIlJeQ9kVO5A5DnSfz8OTnKRBVNJlo9s/YJk5IiNfeTSUXaVHQbzy9kd+ywXwnkR80DFcyAfozoMrdXKlxWBhw/TttpaZQ0pQTuXMzYEmAAYEFHJ/DBSns9nOKRP2wesk99C7S1Yd9fN+DE6BtkncZoBKZkDMWwwkJqjOft3jurVXKVyxFUBBzvvTNpEjf0ZGgRm55O1XRRUbJ2sQQEoSh1Bkac+5YWFnv3Dv4b1OtpIXv2LHnbfVhp3Hc/mVZ0dtIPQan35PLLlWfzc+dixgZjGIUmBEGH9g77jwPDb+7dd8SRlehos8jar6lZh71FUWQgK8lf8VRKSuiaVeLRUGugtLZSGJcbejIiOTlkJMvtqQXgTMY86YmcME9yMi2GT8ooTfZi2ECxR0UFJa7ayT/RWXuoczFArvb585Wdp7OTOxczfZhy2whEResQajQjNESw++hOSkf5+YS7iPZajKraYncfnY5i5eYeHeVqFBYqax3vaajxntTWShN9ZqYyD6bJRPlC8fGKhsn4MOnpUisJmVQkjkdHSDQ92buXDN/BCA2lx86dyhVsvQgO8dijqIj+tZMPkFKymzwgACUsynTv9WIycedipg/D8pMxLNkMfPYZhQzlCI3l3Ag8twcAMKPkU8z46exBPXkfrDSgveP8k4QEClNWV8vP3fA0SkvJe6LEyLDVjlHiPREVn0eMYO0TRiIoiBp5btokr/cTAEFvQMmwOcg9vopyEXfuBC67bPCdkpPJsN65k/IdDfbCwN4He1AGo72dDBQZ2ifZJ9dKT5QqxwKUkT18uE/HExkVKFWoHD26twkZzp0DDh6Uf67QUCmk6Y2I3hNBUJZHoza8I0oCsPYJcyHDhpFSs4Jk2aKsudITOWEenY68NQUF9PBB+G44GOXlssI7YW21SC7fT0/i46k/ihLEzsU80TEXolShUqcDbrxRev7558rON2QIJfgpqQLyFMrKyLhS4v1paJAm99RUZSFWURIgPFzZOBnfJy6OwoUK+lzVxedKHpcjR+SpxYaE0L1j505l+iteAhsog1FURG4zO66z4efWQy+cj9tfdplyV1tdHXcuZgZGqULlJZdIE93Bg9R6QS5DhtBN29uSZUXvicWiTHtoxw5Js0KJ96S7m7ydrH3CDERuLv22xKax9tDpJOl7qxXYtk3efomJlF6wc6f8c3kJbKAMREsLTdL2wjuCFblnz1fv6HT244YXIvbw4M7FzEAoVag0GIAbbpCer1wp/1yisJm3JcuWl5MhprREX23+iclENwZvzdVhnE9aGuV1KekWPtcmzCMqkttDp6MO2oWFwNGjysbo4bCBMhAVFdRfw06ya2LFIUS0VdOTCROUZ/M3N9M5WNqeGQg1CpULFkjNJrduVaYSGx9PyabeIgQlCDQxK/WeNDdLFT9JScr6XzU309+EJQGYgTAaKVm2uVn+dZuWJv0OT56k+5AcgoJoMb17t/dctzJgA2Ugzp6lH5idpNWckw40BgQovMOdixl7pKYqU6gMCgKuuYa2rVbgiy/knys0lEIYSkJD7qS8nFpRKPVm7NwpeYlmzJDvwRQEyjthSQDGHsOGKVaWVeVFAWhh0d5OSd9dXfL382DYQOmP5mZaQdoL7zQ3I7WYKgA6gyOBadOUnYc7FzNyiY6mG6KSRLhrrpFKk9evt6+tYEtcHHDqFHVO9WQEATh2jGLvYWHK9lVdXmyhlW5cnLLzMf5HTAzlKSkJ88yeLW1v3qysiWdGBi0slFTveTBsoPRHeTnloNjzamzaBIOV1ALP5SxQ7u7lzsWMEnJySJ3SXkt2kchIKSeqsxP45hv554qJoSoCT0+WraggQ0qp96S1FTh0iLbj4qTSbDkIoL8F54wxchB1cuz12BGJjye5AIDuRUrK/o1GynvZv5+q2rwcNlD648wZ++EdQegjbX9mhIrwDncuZpSQkkJevcZG+ftcf730O/7qK/mTpF5Pv8uCAs9NlhVzT7q7lZf67tkjSZErCe8A9N2wJAAjl5QUMqCV5IHNVaiJYsuQIRTi2bGDCjC8GDZQLqShgaxWeyW/J0/2ri6r40ahOVphPJo7FzNKCQ0lg1auaBtAE+Mll9B2YyOwcaP8fePj6VqorFQ0TJdRWaku9wQAtm+XtpU2BwwIUB5OYvyXgABKlm1tlR+use1OvmWLfK+pSEYGCTXu369sPw+DDZQLaWyUhNMGw8Z7Uph9pfLzcOdiRg2ZmWTYyvWEAMBNN0nbK1fK94iEhJAhffq0khG6BjH3pLNTufekqQk4cIC2hwwBRo6Uf07AJyXFGSeTmUl5ZHK9n5GR1CEbIE/78ePKzhcQQPeWAwekdi1eiGIDpbu7G2+88QZuvPFGXHbZZXj00UexZ88eWfvu3bsXTzzxBK677jpcffXVeOSRR7B27Vr7O7oanW5wl29HB5VuAjAbQ3AubfbA7x0I7lzMqGHoUDJs5ahMigwfDowZQ9vl5VSKKJfYWMrxaGlRNk5nU1VFXkw13pP//lcStJo5U357CdGwYwOFUUpkJF2HSpJlRdE2QHmYByD5CkGgUI+nJ7sPgGID5cUXX8THH3+Myy+/HI8//jj0ej2efvppHD58eND9tm3bhqeeegpmsxmLFy/GkiVLEBQUhD/84Q/4+OOPVX8At7BtW29sr3jYHPQYFeaQiJ2LOY7NKMVopKQ7sTGlXGy9KErk72NiKOxZUqLsfM7m6FG6jux5Oi+ktBRYs4a2Q0KAW26Rv6/oQeHcWEYN2dnk2ejslPf+adOkjtzff69OJTYtjZJl9+xRVg3kISgyUI4fP44NGzbgkUcewQ9/+EMsWrQIr732GpKSkvDGG28Muu9nn32G2NhYvPbaa7j55ptx00034a9//StSUlKwevVqhz6Ey7FNjs1VEd6pqaGVH3cuZtSQnk4Tl5J+OZMnS7odSpqL6fWUb3H8uPI4uLOoqiKvjsxOsX1YtkzyhNx8Mxlgcmhp4aodxjGGDqWHXC9KcDCQn0/bra3q8kkMBkrSPXTIe3SNbFBkoGzevBkGgwGLFi3qfS0oKAjXXHMNjh07hurq6gH3bW9vR0REBAJtWsYHBAQgKioKQUFBKobuJkpKSFIYADIyUBc3Qtn+PT3kfRkzhl3FjDoSEujmrCRZ1pEmgvHxVM4rV9XS2Rw7RsaZUnHDgweBvXtpOy6OKpzkYjLx9co4hsEA5OVRuEVuHpha0TZbIiLI87pzpzLBOA8gQMmbT506hdTUVIRdkME+atQoAMDp06eROIBXYMKECfjggw/w5ptvYuHChdDpdPj2229x4sQJPP/88+pG7w5svCe4/HLAqnBVVVurXFabYWzR66kR2blz5LaVu7KfMwd47z3KX9m167xOQob9/YKDybA+c8b9Ycnq6n5zT86W6LDviH5AL7jOasHCL5ZB9Jd8n3c/ilYrkMXvyURHD3tQGAfJyJAacsppDjthAhkYLS10zba3K2vnIJKSQl3Kd+2iNhhy867cjCIDpa6uDrH9fKnia6ZBVC7vv/9+VFZW4r333sO7774LAAgODsbvfvc7zJ49eJKpyWRCnc1qsdhd4lFms1SmGRAAzJsHfKdgf6uVcgemTpViiwyjhpQUaeKS60kwGoFFi4Dly8mwWbkSSH1C3r5xcVTNM2mSe9syHD9OK9ALxA33HdGjqXlgA2LEme8Q03AOAFA7JAfHh84HOpQYHFIyuzFY0bTJMBLh4ZRDtnu3PAMlIACYNQtYvZoq93btAubPV35evZ6Mo6NHaZEht3LNzSi60rq6umDsp+pEDNt0DaL/bzQakZaWhnnz5mHOnDmwWCz48ssv8cILL+DVV1/FaFE5rx9WrVqF5cuXKxmqc9i1S3KRXXKJ8olaVI7NztZ+bIx/MWQI5ZScOqXsd3jllcBHH1GYceNGBN9yH9php6UDQCWSovbP2LGqh+0QtbUUXu0n90T0nOh0AkIusP0DzB2YcuTd3ucHpz+M0FAdSBJWBj09lNQeFAhjcACm3KpAdZZhLiQ7m8KNcr0hc+eSgQJQmEeNgQLQuUJDKdSTmCg//8qNKDJQgoKCYO7Hh9p9XpNhsFyS1157DcePH8ebb74J/Xn30qWXXor77rsPf/vb3/Cvf/1rwH0XLVqEmTNn9j4vLi7GCy+8oGTo2mAb3lHTGLC2lgR4uDEgowXZ2VLyqtz8iLAwYOFCykExmzHi+JfYmXe//f30elr9FRRQHN0d+RjHjvXrPbElJBi464YLknk/WAF0nC/Lnj4dlz82CoDMhN+uLirNvvlmbknBaENSEv2WysvJq2GPkSMpD6y2lnRNmpqohFgNycm00Ni5k+5hHp5XpSgQFRsb2yfUIiK+FjdA8yyz2Yyvv/4al1xySa9xAlCSbH5+Pk6cONGv4SMSFxeH3Nzc3keGnD+q1tTUSA2YEhOVryKbmyX3HsNoQWoqrYKUSN8DwHXX9apUDi/4GgFmmXLYYrJsebmy82mB6D1RWvlWVwd89hltGwzA4sXKz5uUpE5vhWH6Q68nZdmuLnmVcXq9pIlitZLMhVp0OvK8FhQoF39zA4oMlJycHJSVlaHtAtGX4+c/aE5OTr/7NTU1wWKxwNLPH8NiscBqtcLqqf0+RL79Vqojv+wy5UlG1dXUYCw+XvuxMf5JWBh5UZSItgGUT3J+wgvqbkXuWZliiUFBNEG6Q1n2+HEqtYyOVrbff/4jqe5efbUy5WZBoHPm5nr8SpPxMtLTKUwr99p1pDfPhYSEUP7arl3KhOPcgKK77Lx582CxWLBq1are17q7u/HNN98gLy+vt4Knurq6TyJrTEwMwsPDsXXr1j6ekvb2dmzfvh3p6emeXWpssQAbNtC2Xk9Z0Ero6KAVq5ckJjFeRGYmrYqUijjZlByPObESOqvMkIeYLHvqlOvUKevqyHuSkKBsvzNngO/OZ7GHhwN33KFs/5YWmshF/RiG0YrQUDJ85RoomZlSOKiwkLSAHCExkUJFO3eqE4BzEYoMlLy8PMyfPx9Lly7FG2+8gVWrVuHJJ59EVVUVHnvssd73/eEPf8C9997b+9xgMOCOO+5AaWkpHnvsMXz88cf48MMP8eijj6K2thb33Xefdp/IGRw6JFmakybRJK2Eqir6caWkaD82xr8Rpe+VaKIA9HucMgUAENFWg/RzW+XtFx1NBveXX5Jk/FdfUWVATY3zhNyOH6cQqZKkPkEA3n5b8nrefrty1dnaWmmlyzBaI3ayl6vwait9v1Xm9ToQOh3NASdOAEeOOHYsJ6K4Xu65555DYmIi1q5di9bWVmRlZeGll17ChAkTBt3vvvvuQ3JyMlasWIHly5fDbDYjOzsbv/vd7zBv3jyVw3cR69ZJ25dfrmxfs5mqAPLyvKb2nPEiAgMpr2nrVuXKqjfe2CtcNurIp4Awy76mik4HZGWRMdLcTFoshYVUNh8TQys9USVZi46/YqM0pbknu3dLE29SEoV3lGCx0GM4V+wwTiIhgQzgPRbI8hXMnk06RgBV89x6q2PnDwoi43vPHlroqFFmdjKKDZSgoCD88Ic/xA9/+MMB3/O3v/2t39cvv/xyXK70Bu9umpqk5mpRUaRhooTqapqwMzM1HxrDAKBJLjCQPBshCvpCjRmDurjhiDWdwpD6s+QptLPQ6MVgIINE9Gp0dEguY52OKtWSkuh3n5BAmg9q8jgKCsgQUpI70tNDWi8iixcrb8pZX0+TN1fuMM5Cp6Mwj1Ao7/1JSZQmUFhI5f5FRY7fV+LjKWT7/ffANdeQ0eJB8JLeHhs30oQHUO5JgAKbzmKhJLuxY7lrMeM8EhPJCFYa5tHpUDDmZum5Evn7CwkJoQl0xAjysAQGkndlzRrg44+BDz8Etm8Hzp6Vn7tSX0+lxUpzT9askSqN8vJIs0gp9fX0WZQYfAyjlPR0ZZ51LZNlRTIyKF9LrFL1INhAGQxB6Kt9ctllyvavqyMLNStL23ExjC16Pd1MW1sVdywtzZyB5vDzrt0DB8iocBTRu5KZSSvEhAQSpdq5k9Rr//tf4Ouv7eeuFBaSV0ZB7omxq5WOL/LQQ8qb/IndxtnryTib4GBli9eZMyWDZtMmZQ1DB8JopGt0//7z7S88BzZQBqOwkNqzA7QSU+LuFQQyUPLy1PVOYBglpKZSpUprq6LdBL0BR3JtmgiKmiFa0p935ezZwb0rjY3kPYmPV2RgjD70EVXfALTaVJNDYjLReD0wJs/4IGLoU87iIjqaOpMDdH95/XXFi5J+GTKEdFm+/57CtR4CGyiDYZscq1Q5trGRfkycZMe4giFDqMfGIP2wBuJk1uXoDDqvbrx1q3O1EeR6V/bsodYQCipoIlorkXv8vARCYCCgpjpQ1D4ZOZK1TxjXIHpE5FbBPfywlIC+Y4djoVlbMjIor2X/fm2MHg1gA2Ug2tslxb7QUHKtKaGmhiZgL+h3wPgAOh0JAZrN8lu5n8cSEIxTo66lJ1YrYKNz5HQG8q4cOECvK/CeTD24DAbr+Xyx669XJ4rY3EwJvu7u2sz4D7Y/cTmaJElJwE9/Kj1/911tSoUDAigZ/cABSsL1ALgt50Bs3UouL4Dqz5VkN7e20sSbm+ucsTFMf6Smkteuvl6xVs/JUddi7PEVpLq6bh3phoSHO2ecA3FhZZAC4qqPI6v0/IIiKop656jBZCLvCS8sGBfTYQ7AB6t0Mj130zFu/B0Yc+hDwGpFx+9fxprrX0dH2MDXvdEITBlrxbD0QbwjUVHkudyxgwx8LaQCHIA9KAPhSGPA6mpaDSrVbmAYRwgPB8aMoRCNQi9KV0iUpJDc0SF1T/UGBAGTdr8pPb/7bnV5Xz095GYfoGUHwzgDYzD5CQTo0N4dgPYOnazHrpF3oyxpEgAgpLMRMzb8CZ2tPQO+v6lZh71HZNzy09Io93LPHreHethA6Y/KSur4CADDhpHin1xEr8uoUcqrBxjGUfLyyHuiJo/k+uul3+xXX3m0BHYftm5FXO0JAEBjdIZyMUUR0fPE2ieMC5ly63BEDQ1DaLQRoYE9CA22IDREsPsICdNj16U/Q1sYhTITTQWYcfTtft+r05GhIeuSNhjoGjh40D19t2zgEE9/7NolbV9xhTJDo7qa/rgcw2bcQUQEMHEiNbeMi1OW6Dl0KGmGfP89uXk3blTuPXQ13d0Ugz/PgWkPYr7a5NaGBmDGDCr9ZBgXMSw/GcPyz3fLXreOqtdke/HCgcm/AJ55BujpwcjjX2Dk1cP7yuID+GClAe1KinMiIijcefKkWws92INyIV1dwL59tG009hXGsUdPD2kojBnDFQCM+8jNJeG26mrl+950k7T9+eeKQ0Uu58svKSEdQFnSJFSmTlF3nI4O1j5h3M+IEfSv2IFbDsOHA488Ij3/+9+BkhLHx2I0Oq+/lkzYQLmQdesk8ZsZM5QlCtbUUN7JsGHOGRvDyCE0lCTrW1slFWS5jBgBjB5N2+XlFIf2VJqagE8+AQBYdXrsmviQ+mOZTGTUsfYJ405SU+k3qDREe+WVwKWX0nZnJ/Dii9qIuLkZDvFcQM1f3oEorP1t6ELUrBzcE9LRafOkqQnIz/e4fgaMHzJ8OCm1VlYqDzfedBO5mQHyouTnaz8+Lfjvf3sn4bPDL0dD9DCEQkVSnyCQQNzs2dzQk3EvAQGUv7huHYVc5aYX6HTAD35AStDnztHi4m9/o9CPF+dC8tVoy7lzSCjZDwBoCh+KoqhxdjOpBYH++Ea9hRqiKUmoZRhnERREuSgdHcrcxQApVYpGzfHjpKjsaZSWkhItAISE4PCke9Qfq6mJtU8Yz2HYMCpzb2xUtl9QEPCLX0ilwd9/T+KHXgwbKLa8/Xbv5rncyxEaClnZ1FGRAqbEV5DlGxHhxg/AMDZkZdFkJzbOk4teD9zoZPl7R1m2TMqPuflmdIbKV5y9iLo6+p6iozUZGsM4RFQULXRVqEIjORn4yU+k5++8Q55UL4VDPCKCAHzwAW3r9Zjw43mYECszQaipCWixSglODOMJGI2Ui1JSQnFpJdUpc+cC//kPld7u2kVGTkqK04aqiIMHgb17aTsujsqj1cq29PSQocOeT8aTyMkBDh+mog2lKQPTpgG33kr5WVYr8Oc/I2Th39CuUybe6AmwB0VEpwN27wZ+9Stg1iwK18ilpoZ+UArVOxnG6WRm0s1XqRfFaASuu462BQH44gvNh6YKi6WPpxP33utYzlddHV3rrH3CeBIpKfRQ2xfrrruA8eNpu7ERM7/7E3RWhQnzHgAbKLbExgIPPEArMrm0t0uJTQzjaej1NFHp9VKnYLksXEgtGwBgwwbSCXE3331HDc0AWhQokQHoj8ZGKsvmxHbGkzAY6J7S1qau1N9gAH72s95Fc0LNcUw7+LadnTwPNlAcpaqKVqlDh7p7JAzTP2lpdBOuqFC2X1gYlS8CJEH59dfaj00JHR0UdhJ58EHHqm7a28kwychwfGwMozUZGZQXpXZhEBVFVTwBlMkx9sRKpJ/dqt34XAAbKI7Q3U0u57w8Lk9kPBedDhg3jm7Gzc3K9l20SBIdXL2aclncxeefS5P19OkkiOgIJhMtLLhnFuOJRERQXqOaZFmR3FxgyZLep/nbXqMKOC+Bk2QdoaaG4oS8AmM8neRk6tJ74ACV1MolLo5kszduBFpaSEL/2msVnfpsiQ77jugdau0T0mbCdSs+RwAAq86Ar1MeRIuNRlGHUrupp4c8KLm5vLhgPJfsbEoK7+iQwq1KueoqnFt/EsPOfAdjz3kRt1deUddQ08XwlakWi4WUOseMoYRChvF0xo2jVZlSl7FtyfHKlYrlr/cd0aOpWV6H1oEeo3e/hwALNeI8NuI6VAem9q9HJPdSLC2lhQV3LmY8meRkSuBWmywLADodds/8Eeqizyucl5UB//d/bu9ULAc2UNRiMgEJCSxrz3gP8fEUjqyuVjY5ZWaSeBtAXsPt2xWdVvSc6HT2NYX6e6S0n8bwcxsAAF2B4Tgx5Y6B9YjGykgobGoir0l+PjcGZDwbvZ6SZTs6HOqLYwkIxoZZ/4vuwPMibtu3A6tWaTRI58EhHjUIAulDzJ/vFW4yhull7FjgxAkqr1VSFn/jjVITzc8/J1l4hRLaIcHAXTconGQFAfjlv4HzEvZB996OW64PBaBysrZYKFl4+nQgPV3dMRjGlWRkAEOG0D0nPl71YZojhmLHnJ9i7re/pxeWLSMPoth7ywNhD4oaGhpIitiNbagZRhXR0RTqMZmUlS+OHSuFQ86cAf78Z+oXUlHhXFfx7t3AkSO0nZwMXH21Y8crLyeX+eTJXt2jhPEjQkMpV6q+3uFDladPB265hZ6cF3HT4rjOgg0UNdTW0g+GpbEZbyQvj1ZiNTXy99Hp+uaibN9Obd0fewx46CHg1VeB9eup7F4rg6WnB1i+XHp+//2O5XuJ3Z3z86V+JQzjDWRnU5KsUi2j/rj7bknEraGBjBSlXc9dBBsoSmltpR8Ky9oz3kp4OE1QSpuRzZhBuigX5m2YTMCmTZR498gjVNb4179SxU91tfpxrlkjKeDm5QGXXKL+WFYrJQeOG0c9ihjGm0hMJD0jJYuKgbhAxA3Hj1PPHg+Ec1CUUlVF5ZqsncB4MyNHAseOAccskD0NGAzAj34EPPoocPo09Qo5epQmONuOybW1VJa8cSMAYFF4Airix6EudSxQO0ZeHL21Ffjvf6XnDz3kWEimooKS2jm0w3gjOh1dsydPUh6VwWB/n8EQRdyefZa8J198QVGBWbO0Ga9GsIGihM5O+qHk5fEkx3g3ISHAxInA+jPK9w0IoMly5EjgttuoTOfUKTJWjhwBCgr6GCzhrTUY0fotcO5bYCvIuB8zhrwZYwYwWD75hHRXAJKzdyTfq72drt1LL1WmAcMwnkR6Ol0rJpM2C2RRxO2f/6Tn//d/lJCblub4sTWCDRQlVFfTj4QbizG+wPDhgKEIcEBADQDlheTl0UM0WE6eJGPlyBFYjhfCYLE5SXU1PTZQ6TCSkigJV3yYzcCXX9L/BQYC992nfmyCQJonY8dyUjvj3QQH06JgyxbVBkpHJ/CBjcAhhGtxSfYJDDuzEejoQNP//glrr/sreowhgCUVMBgQums7bvjDTI0+hDLYQJFLTw+1vh492nH3GsN4AoGBZFx0WiCW8WqC0UjXyejRwB134JMVFoSXn0R6/WGM6zkMFBaij6xsVRU91q+n5yEhUtLe9dc7VFqJ6moq0Zw6lRVjGe8nK4vK/VtbKZdMJkYjgA5AEHRo77D9Hx02TfofRJnOYUhTEaIaSzF589+wccYzgO68edDUpeUnUAQbKHKpqaGVXmamu0fCMNoREADAgo4OXd+VlYZ09BjQmjAWzRljMO6G2yn8c+JEr4cFJ070rSLoOD+DRkUBN9+s/sRdXdR76MoryUhhGG8nLo7CMKdOKTJQpoy1Yu+A7SaCsP2y53DlqicRaG5HdskWNCaPxImR15IHJcp9nb7ZQJGD1Urqk/n53Jad8SmMIQFAQxcEXLiycsK5xArhwEApnAOQIVFYKOWwnDxJ19yjjzomhFhcTHH2kSMdHjvDeAQ6Hf2mT5wgL6TMsvth6QKGpQ8mbpgE5D4J/PGPAIDJe9/C5FkR1IdrkXvCOwAbKPIQVTe5bwfjY0y5dTj2fnIK5obzGiEBzpkSjEYMLEMfFERlz6I2Q1cXVSo4YpzU1lJCbH6+0z4Tw7iF9HSqSKurI6++VkyfTh7LTz+l6+/NN6VFhJvgK1cOdXUk7a3ApcYw3sCw/GQMy0+mRNLPP6d8D3f/zh31UnZ3kzrmggWO5a8wjCcSGEj9eTZsIEVzLb3699wjJbg3NVHX47vvdpuRz1lj9mhqog6wXAHA+DKpqeQ6rqx090gcp6SEvJ1jxrh7JAzjHMaMoST0s2cxQGKJOgwG4Oc/B2Jj6fnRo8C772p3fIWwgWKPmhoyTsQ/GMP4IjodhViCgymx1Fupr6fPkJ/vmCw+w3gyQUHAvHlkiJ8961Cn44uIjiYRN6ORPCqLF2t3bIWwgTIY7e30R+IkO8YfSEoi17G3elF6emhBMWkSNRZkGF8mLIzEB1NSyEjRsmnnyJHAb38L3HqrW8vz2UAZjMpKYNgwnuwY/2HsWAppNjS4eyTKKSkhGQAx2ZZhfJ3oaMq1io0Fioq0P7abYQNlILq7qdQxL48Fnhj/IS6O4ttadiV2BU1NlMiXn39xM0OG8WUSEshICQmhhpg+BN95B6K6mhIH09PdPRKGcS2jR5Owmcnk7pHIw2KhZoDjx/P1yvgnqanA/Pm0qNCi47GHwAZKf1itlH8yZgxrKDD+R3Q0NfIzmeha8HTKyqjB2aRJ7h4Jw7iPnBwSVmtt9c4QbT+wgdIfgkD6CcOGuXskDOMe8vKoIZmnr8ZaWsiIys93TNiNYXyB0aOBGTNIqFDsBu7FsIHSH0FB5D0JCXH3SBjGPYSHU8iksVHbEkYtsVrJezJuHC8mGAYguYDJk6k5ZkUFRQK8GDZQ+iMpiWXtGSY3lyrYqqrcPZL+qagAhg6lCVmnc/doGMYz0OuBSy6hBUZxMbWO8FLYQLmQ5GT640ZFuXskDONeQkIor6O1VVu1Si1obwc6O4Fp06gsmmEYCaOR2rPk5QHnzvXtFu5FsIFyIcHBlHDHMAx5EtPTPUu8TRBI82T0aPZ0MsxABAeT2mx2NnDmjOeGageBDRSGYQYmMBCYMIHcxJ7iKq6qIr2WadNYo4hhBiM8nMqPU1LIk+JN2kZgA4VhGHtkZZFCa0WFu0dCYZ2WFjJOPEDpkmE8npgYksQfMkR7tVknwwYKwzCDExAATJxIVTMdHe4bhyBQ0t/Ikdwfi2GUkJhIRkpICFBe7u7RyIYNFIZh7JORQfke7pzcamvJa5KfT23hGYaRT1oa5aRYLHQteQFsoDAMYx+9nnJRAgKoqsfVdHeTOuaUKZR/wjCMcoYPp+qe5mavUJtlA4VhGHmkpJA2ijtyUYqLaXIdPdr152YYX2LsWK9Rm2UDhWEYeeh0pNoaFgacOkWlxy0tzi9frKsjGfv8fNJ3YBhGPTodeSKnTqWQrQerzXInPIZh5JOUBFx2GXlRysvJVVxVRQmsgYFU1hgeThoMWmA200pv3jw6N8MwjiOqzXZ1AQcPUqVeYKC7R3URbKAwDKOMnBx6CAJ5UBoa6FFZCVRXU4PBzk5aqYWGksESFqauM3hpKfXZGTdO+8/BMP6MqDbb1QUUFNA1reYadSKeNRqGYbwHnQ6IjKRHRgYl0ZrN1GCwoYFCM2Vl9NxkolBQQIBksISGDt5Dp7GR3j99OjXwZBhGW0S12a4uUpsdPtyjxA/ZQGEYRjuMRiA+nh4ibW2Sl6W6mjwtDQ1SyXJwsBQaEt3MFguFjmbMAFJTXf85GMZfCA8njZQ1a4CzZ0ka30Oab7KBwjCMcwkLo0dqKlUQWCxAUxMZKfX1lM9SV0cGS3c3reCsVnr/pEnuHj3D+D6i2uzq1VQxl5np7hEBYAOFYRhXYzCQ7PaQIbRaAyhnpaGBwjq1tZTHMnUqKV8yDON8RLXZNWs8o60F2EBhGMYTCA4GkpPpMWqUu0fDMP5JejrlpKxfT4uFlBS3DsdzsmEYhmEYhnEvI0YAs2ZRWNbNsAeFYRiGYRiJceOosscdbS1sYAOFYRiGYRgJnQ6YNo2S1d0Ih3gYhmEYhrkYN2uisIHCMAzDMIzHoTjE093djbfeegvr1q1DS0sLsrOzsWTJEkydOlXW/hs2bMCKFStw5swZBAQEICMjA0uWLMHkyZMVD55hGIZhGN9EsYHy4osvYtOmTbj11luRmpqK1atX4+mnn8brr7+OcXb6Zbz99tt45513MG/ePCxcuBA9PT04d+4cTCaT6g/AMAzDMIzvochAOX78ODZs2IAf/OAHuPPOOwEAV155JRYvXow33ngDb7zxxoD7Hjt2DO+88w5+9KMf4bbbbnNs1AzDMAzD+DSKclA2b94Mg8GARYsW9b4WFBSEa665BseOHUN1dfWA+37yyScYMmQIbrnlFgiCgPb2dvWjZhiGYRjGp1FkoJw6dQqpqakIu0DAZdR55cfTp08PuO++ffswcuRIrFixAosWLcLChQtxww034NNPP1UxbIZhGIZhfBlFIZ66ujrExsZe9Lr42kC5JC0tLWhqasLRo0exf/9+LF68GImJiVi9ejVef/11BAQE4Prrrx/wvCaTCXV1db3Pi4uLlQybYRiGYRgvQ5GB0tXVBaPReNHrgedbpHd1dfW7nxjOaWpqwm9+8xssWLAAADBv3jwsXrwY77777qAGyqpVq7B8+XIlQ2UYhmEYxotRZKAEBQXBbDZf9Hp3d3fv/w+0HwAEBARg3rx5va/r9XpceumlePvtt1FdXY3ExMR+91+0aBFmzpzZ+7y4uBgvvPCCkqEzDMMwDONFKDJQYmNjUVtbe9HrYvglLi6u3/0iIyMRGBiI8PBwGAyGPv8XExMDgMJAAxkocXFxAx6bYRiGYRjfQ1GSbE5ODsrKytDW1tbn9ePHj/f+f78n0esxfPhwNDU1XeSBEfNWoqOjlQyFYRiGYRgfRpGBMm/ePFgsFqxatar3te7ubnzzzTfIy8vr9YBUV1dflMg6f/58WCwWrFmzpve1rq4urF+/HpmZmewhYRiGYRimF0Uhnry8PMyfPx9Lly5FY2MjUlJSsGbNGlRVVeGZZ57pfd8f/vAHHDx4EFu2bOl97frrr8fXX3+Nv/71rygtLUViYiLWrl2L6upqvPjii9p9IoZhGIZhvB7FUvfPPfdcr3HR2tqKrKwsvPTSS5gwYcKg+wUFBeG1117DG2+8gW+++QadnZ3IycnBSy+9hGnTpikag1gtxOXGDMMwDON9ZGRkIDg4eND36ARBEFw0Hs1Yt24dV/EwDMMwjJfy73//G7m5uYO+xysNlMbGRuzevRvJycm9GiyOIpYu//KXv0RGRoYmx/Rl+PuSD39XyuDvSxn8fSmDvy/5OPO7kuNBURzi8QSio6NxxRVXOOXYGRkZdq06RoK/L/nwd6UM/r6Uwd+XMvj7ko+7vitFVTwMwzAMwzCugA0UhmEYhmE8DjZQzhMbG4vFixf32wyRuRj+vuTD35Uy+PtSBn9fyuDvSz7u/q68MkmWYRiGYRjfhj0oDMMwDMN4HGygMAzDMAzjcbCBwjAMwzCMx8EGCsMwDMMwHodXCrU5m4MHD+LDDz/EqVOn0NTUhPDwcOTk5OD+++/H2LFj3T08j2Pfvn1Yv349Dh8+jNraWgwZMgSTJk3CQw89xF2q+8FkMmHFihUoKChAYWEhOjo68Prrr2PixInuHppb6e7uxltvvYV169ahpaUF2dnZWLJkCaZOneruoXkk7e3t+PDDD3H8+HEUFBSgpaUFzz77LK666ip3D83jKCgowJo1a3DgwAFUVVUhMjISo0ePxpIlS5CWlubu4XkU586dw7Jly3DixAnU19cjODgYGRkZuPPOOzFz5kyXjoU9KP1QVlYGvV6P66+/Hk8++SRuv/121NfX43/+53+wa9cudw/P4/jnP/+JAwcOYPbs2XjiiSewYMECbNy4EUuWLEFdXZ27h+dxlJaW4oMPPkBtbS2ysrLcPRyP4cUXX8THH3+Myy+/HI8//jj0ej2efvppHD582N1D80iampqwfPlyFBcXIycnx93D8Wg++OADbN68GZMnT8bjjz+O6667DocOHcKSJUtw9uxZdw/Po6iqqkJ7ezsWLlyIxx9/HPfddx8A4Nlnn8WqVatcOxiBkUVHR4dw/fXXC0899ZS7h+JxHDhwQLBYLBe9Nnv2bGHp0qVuGpXn0tbWJjQ1NQmCIAgbN24UZs+eLezfv9/No3Ivx44dE2bPni188MEHva91dnYKd9xxh/DYY4+5cWSeS1dXl2AymQRBEISCggJh9uzZwjfffOPmUXkmhw8fFrq7u/u8VlJSIixYsED43e9+56ZReQ89PT3CAw88INx9990uPS97UGQSHByMqKgotLa2unsoHseECROg1+svei0yMhLFxcVuGpXnEhoaisjISHcPw6PYvHkzDAYDFi1a1PtaUFAQrrnmGhw7dgzV1dVuHJ1nEhgYyGJjMhk7diyMRmOf19LS0pCZmclzlAwMBgMSEhJcfv/jHJRBaGtrg9lsRlNTE9auXYtz587h3nvvdfewvIL29nZ0dHQgKirK3UNhvIBTp04hNTUVYWFhfV4fNWoUAOD06dNITEx0x9AYH0UQBDQ0NCAzM9PdQ/FIOjo60NXVhba2Nmzfvh27du3C/PnzXToGNlAG4Te/+Q12794NADAajVi0aFFvPI4ZnE8++QRmsxmXXnqpu4fCeAF1dXX9egPE10wmk6uHxPg469evR21tLR588EF3D8Uj+cc//tGbc6LX6zFnzhz85Cc/cekYfN5AsVqtMJvNst4bGBgInU7X+/zRRx/F7bffjpqaGqxZswY9PT2wWCzOGqpH4Mj3JXLw4EEsX74c8+fPx+TJk7UeokehxffFAF1dXRe54AH6zsT/ZxitKC4uxl//+leMHj0aCxcudPdwPJJbb70V8+bNg8lkwsaNG2GxWGTPdVrh8wbKoUOH8MQTT8h673vvvYeMjIze58OHD+/dvuKKK7BkyRK8+OKL+P3vf6/5OD0FR74vgC78X/7yl8jKysIzzzzjjCF6FI5+XwwRFBTU7+TX3d3d+/8MowV1dXV45plnEBYWht///vcwGAzuHpJHkpGR0TtfLVy4ED/96U/xi1/8Av/6179cttDyeQMlPT0dzz77rKz3DpZwZjQaMXPmTLz//vvo6ury2QnTke+ruroaTz31FMLCwvDSSy8hNDTUGUP0KLT6ffk7sbGxqK2tveh1sUyd9XQYLWhtbcXTTz+N1tZW/P3vf+fflQLmzZuHV155BaWlpUhPT3fJOX3eQImNjdVMuKirqwuCIKC9vd1nDRS131dTUxOeeuopmM1m/PWvf/WbC1/L35c/k5OTgwMHDqCtra1Pouzx48d7/59hHKGrqwu/+MUvUFpaildffZWTYxUihlldWcnDZcb90NDQcNFrLS0t2Lx5MxISEhATE+OGUXkuHR0dePrpp2EymfDnP/+ZlRkZxcybNw8Wi6WPEFR3dze++eYb5OXlcQUP4xAWiwXPP/88jh07ht/+9rcYM2aMu4fksfR3/+vp6cHatWsRFBTkUsPO5z0oavj5z3+O+Ph45OXlISYmBtXV1fjmm29QV1eH559/3t3D8zh+//vfo6CgAFdffTWKi4v76AqEhIRg9uzZbhydZ/LOO+8AAIqKigAAa9eu7VVMvf/++901LLeRl5eH+fPnY+nSpWhsbERKSgrWrFmDqqoqv8hlUsunn36K1tbW3lDY9u3bUVNTAwC4+eabER4e7s7heQz/+Mc/sH37dsyYMQMtLS1Yt25dn/+/4oor3DQyz+OVV15BW1sbxo8fj/j4eNTV1WH9+vUoKSnBj370I5eG7nWCIAguO5uX8Nlnn+G7775DcXExWltbERERgby8PNx5550YP368u4fncdx2222oqqrq9/+SkpLw8ccfu3hEns+cOXMG/L8tW7a4cCSeQ1dXV28vntbWVmRlZWHJkiWYNm2au4fmsQx27X300UdITk528Yg8k8cffxwHDx4c8P/99Zrrjw0bNuDrr7/G2bNn0dTUhNDQUOTm5uKmm27CrFmzXDoWNlAYhmEYhvE4OAeFYRiGYRiPgw0UhmEYhmE8DjZQGIZhGIbxONhAYRiGYRjG42ADhWEYhmEYj4MNFIZhGIZhPA42UBiGYRiG8TjYQGEYhmEYxuNgA4VhNGb16tWYM2cOVq9e7e6hyOLAgQOYM2cO3n77baedY86cOXj88ceddnxn8/jjjw+q/usI4vcvPh577DGnnEcOb7/9NubMmYMDBw70vlZcXNxnfLfddpvbxsf4F9yLh/F7/vSnP+Gbb75BZGQkPvvsMwQGBrp7SJoj3lS47YDnMmHCBEyYMAEJCQnuHkofoqKisHjxYgDAihUr3DsYxq9gA4Xxa9rb27Fx40bodDo0Nzdj69atWLBggUPHnD17NvLy8hAbG6vRKBl/YMKECXjwwQfdPYyLiI6O7h3XmjVr3Dwaxp/gEA/j13z33Xfo6OjArbfeCr1ej6+//trhY4aHhyMjI4M7yTIMwzgAe1AYv+brr7+GwWDAXXfdhTNnzmD//v2oqqpCUlJSn/e9/fbbWL58+YDHse3avHr1arz44ot49tlncdVVV/W+Z86cOZgwYQJ+9atf4Y033sCePXvQ3d2N8ePH48knn8TQoUNRVFSEpUuX4tChQ+jp6cG0adPwk5/8BEOGDOk9zoEDB/DEE09g8eLFF624Kysrcfvtt2PhwoV47rnnep/bjkGkv/0LCwuxdOlSHDt2DHq9HpMmTcKPf/zji7ribtmyBRs3bkRhYSFMJhMCAgKQnZ2NW265BfPmzRv8S7dDa2srvvjiC+zcuRNlZWVoampCVFQUpkyZgsWLFyMlJaXP+8W/zeuvvw6TyYT//ve/KCkpQXh4OObPn4/HHnsMQUFBffbp6enBhx9+iK+++gomkwnx8fG45pprcOmll+KOO+7o/f7ksHXrVnz66ac4efIkuru7kZKSgoULF+K2226DwWBw6LsAgD/+8Y9Ys2YNPvzwQ2zZsgVff/01KioqsGDBAjz33HMwmUxYtWoVdu/ejYqKCrS1tSE2NhbTp0/HAw88gJiYmIuOWV1djX/+85/YvXs3enp6MGLECDz00EMOj5VhtIQNFMZvKSoqwrFjxzB9+nQMGTIEV155Jfbt24dvvvnmohv3xIkT+z1GcXExNm7ceNENcCBaWlrwox/9CLGxsbjyyitRVlaG77//Hj/96U/xxz/+ET/+8Y+Rm5uLq6++GidPnsTmzZvR3NyM119/XdVnDA8Px+LFi3tzB2655ZYBP1NhYSH++9//YuLEiVi0aBFOnTqFrVu34uzZs1i+fHmfz7h06VIEBARg7NixiI2NRWNjI7Zv345f//rXeOKJJ3DzzTerGi9A3+nbb7+NiRMnYvbs2QgJCUFxcTG+/fZb7NixA2+++eZFBiQAfPbZZ9i9ezdmzpyJSZMmYdeuXfj000/R1NSEX//6133e+9JLL2Ht2rUYOnQobrjhBpjNZnz88cc4evSoorH+61//wvvvv4/4+HjMmTMH4eHhOHz4MN544w0UFBTgd7/7nerv4UJee+01HD9+HJdccglmzJjRa3gcOnQIH330ESZNmoRRo0YhICAAp06dwsqVK7F79268+eabfbx5JpMJP/zhD1FbW4tp06ZhxIgRKC4uxlNPPTXg75xh3AEbKIzf8tVXXwEArrzySgDkXfjrX/+K1atXY/HixdDrpQjoxIkTL5q8Gxoa8OijjyIwMBBPP/20rHOeOXMGt912G3784x/3vvbqq69i5cqV+PGPf4wHHngAt956KwBAEAQ888wz2LlzJ06cOIHc3FzFnzEiIgIPPvhgb+7AYDkOO3fuxG9+85s+OTh/+MMfsHbtWmzbtq3P63/+858xdOjQPvu3t7fjhz/8Id566y1cc801CA4OVjxeAMjIyMDnn3+OyMjIPq/v378fP/3pT/Huu+/2+33v27cP//73v5Geng4AePjhh/Hggw/iu+++ww9/+EPExcX1vm/t2rUYPnw4/vGPf/SO895778WSJUtkj3PPnj14//33MW3aNPz+979HSEgIAPq7vfrqq/jiiy+wadMmhz1KImfOnMFbb72FxMTEPq9PmjQJn3/+OUJDQ/u8vmbNGvzxj3/EZ599hvvuu6/39aVLl6K2thZLlizp8/qqVavwyiuvaDJWhtECzkFh/JKenh6sW7cOYWFhmDVrFgAgNDQUs2fPRnV1Nfbu3Tvo/l1dXXjuuedQVVWFX/ziFxg7dqys84aEhFx0ExRv/FFRUX08HDqdrvf/zpw5I/uzqWX8+PEXJQhfffXVAICCgoI+r19onAD0/V111VVobW1FYWGh6nGEh4dfZJwAdCPOzMwc8G9zyy239BonABAUFIQFCxbAarXixIkTva+vW7cOAHD//ff3MaLi4uL6fP/2+OyzzwAAP//5z3uNE4D+bo8++ih0Oh02bNgg+3j2uPPOOy8yTgAgJibmIuMEIMM7LCwM+/bt633NbDbju+++Q0xMTJ/QHwBce+21SE1N1Wy8DOMo7EFh/JJt27ahsbER11xzTZ/QxZVXXol169bh66+/xrRp0/rdVxAE/PGPf8SxY8fwwAMP4LLLLpN93tTU1Is8C2K1T1ZWFnQ6Xb//ZzKZZJ9DLf15aOLj4wFQXogtDQ0NeP/997Fz505UV1ejq6urz/87Ot4DBw7gk08+wfHjx9HU1ASLxdL7f0ajsd99RowYcdFrYsmu7fhPnz4N4P+3d3cxSb1xHMC/ksFMQ1wR1Ga5aU22BCPUmcV60a5ZLxddAaNFF1110Zrrohu3atUmF3qRK8Pe3JxrKkqvzKYkZVQwm6m1KWlhYRNQMwP+Fw4Gf8BUEtn4fS7POTzP4zlu53ee3/MCCIXCsOt37ty56DZ++PABaWlpUQdWs1gsjIyMLLq8vxEIBFHPdXZ2oqWlBQMDA3C73SH3K/hZjIyM4Pfv3xCLxWFpSQaDgYKCAnz58uWftZmQWFCAQpKS/6XiT+/47d69G1wuF93d3XA6nRG/5Ovq6mAwGFBeXg6lUrmketPT08OO+QdSLnTuz58/S6pnOSJ9hfvr93q9gWNOpxOnTp2C3W5HQUEBJBIJMjIywGAwMDQ0hK6uLszNzS27HQaDARcvXkRaWhqKi4vB5/MDQZ1er8e3b98i/m6h+xfc/unpaTAYDGRmZoZdHzwY+W+cTic8Hs+Cg6dnZmYWXd7fRBrsCgAPHjxATU0NOBwOioqKwOVyA8FHU1NTyLOYmppasKxoxwlZDRSgkKRjt9vx+vVrAFhwddPHjx+Hdfl3dHSgoaEBBQUFOH/+/Iq2Mxp/L0vwV7Kf/wW0knQ6Hex2O1QqFeRyeci5O3fuoKurK6byb926BSaTiRs3biA7Ozvk3PPnz2MqG5gPxLxeLyYnJ8HhcELOTUxMLLqc9PR0pKSkoLW1NeY2Lcb/e9eA+cBVq9Viw4YNuHnzZkiA4fP5cP/+/ZDr/UHcz58/I9YR7Tghq4ECFJJ09Ho9vF4vhEJh2AsQmH/x6/V66HS6kADl3bt3uHr1KrZs2YKqqqpVW3F2/fr1ACKnUQYHByP+hsFgxNSrEWx0dBQAAmN3glkslpjLHxsbQ05OTtiz+fHjB8bGxmIuPy8vD4ODg7Bardi3b1/IuaXM4hEIBDCZTLDZbBH/j+JhcnISbrcbYrE4rPejv78/LPWWnZ0NJpOJjx8/YnZ2NiTN4/V6lzyLiZCVRAEKSSo+nw/t7e1ISUlBZWVlxMGeAGCz2dDX14f+/n7k5+fDZrPhwoULYLFYuHTpUtiXdzxt3boV69atC0tDTUxMQKvVRvwNm83G58+fw15Ky+Gf4mu1WpGbmxs4/uTJE/T09MRUNgDweDyMjo5iYmIikHKZnZ3F9evX/0mqq6KiAh0dHaivr0dxcXHgfjgcjiUt5X7s2DGYTCZcvnwZVVVVYSkjh8MBl8uFnJycmNscTVZWFlgsFgYGBvDr169AKszlckWcms5kMnHgwAE8evQIjY2NIbN42traYLPZVqythCwVBSgkqZjNZnz9+hWFhYVRgxNgfvZKX18fdDod8vPzodFo4HQ6IZFIIqYZMjIy4raJ2tq1a3H06FE0NDTg5MmTKCsrw8zMDLq7u1FYWBjo4Qi2a9cu9Pf349y5cxAKhUhNTYVIJEJhYeGS6z98+DDu3buH6upqvH37FjweD0NDQzCbzZBKpXjx4kVMf9+RI0dQXV0NlUqF/fv3w+PxBFJyeXl5gUGuyyWRSFBeXo6nT59CoVBg7969mJubg8FggEAggNFoDJliHk1JSQnkcjlu376NEydOoKSkBDweD06nE6Ojo7BYLFCpVCsaoDAYDMhkMjQ2NkKpVKKsrAxTU1MwmUzg8XiBqdXB1Go1zGYz6urqYLVasX37dgwPD6OnpwdFRUWBe03IaqMAhSQV/+DY4BVeIzl48CA0Gg2ePXuGM2fOBLrKe3t7I05z5fP5cd3lVaVSITU1FTqdDi0tLeDz+ZDL5dizZw86OzvDrpfL5XC73TAajbBYLPB4PFAoFMsKUDZt2gSNRoPa2lr09vbC4/Fgx44duHbtGsbHx/9JgJKamorm5ma0trYiIyMDpaWlUKvVYQuuLVdlZSW2bduG9vZ2NDc3g8vl4vjx4xCLxTAajREHDEeiUqkgEonQ1NSEN2/ewO12g81mY/PmzVAoFKioqPgn7V2IWq0Gm81GR0cHHj58iKysLBw6dAhKpTKwyV+wjRs3oqamBrW1tXj16hXev38feH5ms5kCFJIwUnw+n2+1G0EIIYmgra0NV65cwdmzZyGTyeJS50JbFyQa2hWbxBMt1EYISToOhwP//zb7/v07tFot1qxZg9LS0ri3qb6+HlKpFKdPn4573QsZHh6GVCqFVCqNOsWbkJVAKR5CSNK5e/cuXr58CZFIBA6Hg/HxcRiNRkxPT0OpVEZcsXWl8Pn8kFSMf3G5RJGZmRnSPtqlm8QLpXgIIUnHZDKhsbERnz59gsvlApPJRG5uLmQyWVzGjRBC/o4CFEIIIYQkHBqDQgghhJCEQwEKIYQQQhIOBSiEEEIISTgUoBBCCCEk4VCAQgghhJCEQwEKIYQQQhIOBSiEEEIISTgUoBBCCCEk4VCAQgghhJCE8x/7gA0By6pBwwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG5CAYAAACnaMHWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABomElEQVR4nO3deXhU5fk//vfMJJns+0LIRjZCAmELQRbZQdQIaMHWBREpFEGLdako9ltri1L9VFv92VIXClqrVquySNhEILJD2EICISE7Wci+TTKTzJzfH0NOMlknYZIzM3m/rovrynnmPGfuGSYn9zyrTBAEAURERER0W+RSB0BERERkDZhUEREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVQOosbER6enpaGxslDoUIiIiMjEmVQMoNzcXq1atQm5urtShEBERkYkxqSIiIiIyASZVRERERCbApIqIiIjIBJhUEREREZmAjdQBEBERDRStVoumpiapwyAzZWtrC4VC0ef6TKqIiGhQqKurQ0FBAQRBkDoUMlMymQyBgYFwdnbuU30mVUREZPW0Wi0KCgrg6OgIHx8fyGQyqUMiMyMIAkpLS1FQUIDIyMg+tVgxqSIiIqvX1NQEQRDg4+MDBwcHqcMhM+Xj44OcnBw0NTX1KaniQHUiIho02EJF3bndzweTKiIiIiITYFJFREREZAJMqoiIiIhMgAPViYhocJo8uX+ue+JE/1y3lzIyMvD444+jrKwMbm5u2LZtG0aOHNnpuXfddReKi4shl8vh4uKC9957D+PGjQMArFu3Djt37kRubi7Onz+PsWPH3nZs//vf/3Dw4EFs3rzZZK+hu3N7c53bItCAuXr1qjBt2jTh6tWrUodCRDSoNDQ0CGlpaUJDQ0NrIdA//8zErFmzhK1btwqCIAhff/21MGHChC7PraysFH/+9ttvhdGjR4vHR44cEfLz84WQkBDh/PnzRj33jBkzhOzs7C4ff+SRR4S9e/f2eJ3evIbuzjX2Op1+TnqB3X9EREQSWbFiBT766CPxeMOGDXjjjTdu+7o3b97E2bNnsXTpUgDA4sWLkZ+fj8zMzE7Pd3d3F3+urq42mAU3ffp0BAYG3nZMLZqamnDs2DHMnj272/N68xq6O7e378XtYPcfERGRRM6ePYt169YZHL/wwgsdzvvFL36B9PT0Tq+xa9cuBAUFGZTl5+fD398fNjb6P/MymQzBwcHIy8tDREREp9dZtmwZDh06BABITEzs0+sxxqFDhzBlyhTY2tp2e15vXkN357q5ufX6vegrJlVERCaQsjsbmoZm2DnYIDYhVOpwyAI0NDQgOzsbo0aNEsuSk5MRFxfX4dz//ve//R7Pp59+CgD45JNPsH79+l4nVsuWLcOlS5cAAJmZmbj33nthZ2cHANi+fTuGDRsm/vzAAw+YLnAzwqSKiMgEUvZkQ1WhhqOnkkmVpZg0SdKnP3/+PEaOHCm2oKSnp8PFxQVeXl4dzu1tS1VQUBCKiorQ3NwMGxsbCIKAvLw8BAcH9xjX448/jieffBLl5eWdxtKVlqQMAGbOnIlt27aJiVQLQRCwb98+vPXWW/j000/xzjvvAACeeeYZPPHEE31+Dd2d6+rq2uf3oreYVBER0eAk8Sy9s2fPQq1WQ6fTQavVYuPGjV3OrOttS5Wvry/Gjx+Pzz77DMuXL8c333yDwMDATru7qqqqoFKpMHToUAD6liQvLy94enr2+jX15PTp04iOjoazszOWLVuGZcuWmeQ19HSusde5XRyoTkREJIGzZ88iNDQUY8eOxbRp0xAUFITTp0/j4sWLJrn+Bx98gA8++ADDhw/Hn//8Z2zdulV8bOXKldi5cycA/cD0+++/H7GxsRgzZgzef/99fP/99+Jg9dWrVyMwMBAFBQWYP3/+bSUj3333He6//36Tv4aezu3uMVOSCYIg9MuVqYP09HSsWrUKH330EaKioqQOh4hM6POnfxS7/x55v/tZTTTwGhsbkZ2djdDQUNjb20sdDgAgJiYGX331lcGYKms3cuRIHDp0CL6+vlKH0qnb/Zyw+4+IiGiA1dXV4caNG4iJiZE6lAGVmpoqdQj9ikkVERHRAHN2dkZ1dbXUYZCJcUwVERERkQkwqSIiIiIyASZVREQ0aHBuFnXndj8fTKqIiMjqKRQKAIBGo5E4EjJnLZ+Pls9Lb3GgOhERWT0bGxs4OjqitLQUtra2kMvZpkCGdDodSktL4ejoKK5y31tMqoiIyOrJZDL4+/sjOzsbubm5UodDZkoulyM4OFhc+LS3mFQREdGgYGdnh8jISHYBUpfs7OxuqxWTSRUREQ0acrncbFZUJ+vDTmUiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEyASRURERGRCTCpIiIiIjIBJlVEREREJsCkioiIiMgEmFQRERERmQCTKiIiIiITYFJFREREZAJMqoiIiIhMgEkVERERkQkwqSIiIiIyASZVRERERCbApIqIiIjIBJhUEREREZkAkyoiIiIiE2BSRURERGQCNlIH0BmNRoMtW7Zg//79qK2tRXh4OFauXIn4+Phu6yUlJWHHjh3IyspCTU0N3N3dERMTgyeeeAJhYWHiedXV1UhMTMSxY8eQm5sLrVaL4OBgPPjgg5gzZ47J4iEiIqLBwyxbqjZt2oSvvvoK8+bNw7p16yCXy/Hiiy/i0qVL3dbLysqCi4sLlixZgmeffRaLFi1CRkYGVq9ejczMTPG81NRUfPTRR3B1dcWyZcuwcuVKKJVKvPbaa/jXv/5lsniIiIho8JAJgiBIHURbaWlpePLJJ7FmzRo8/PDDAAC1Wo3ly5fD3d0dmzdv7tX1KioqsHjxYiQkJOCFF14AABQWFkIul2PIkCHieYIg4Nlnn8Xly5exa9cuODg4mDye9PR0rFq1Ch999BGioqJ69TqIyLx9/vSPUFWo4eipxCPvz5Y6HCKSgNm1VB05cgQKhQILFy4Uy5RKJRISEpCamoqSkpJeXc/DwwP29vaoq6sTy4YOHWqQUAGATCbDtGnToNFoUFhY2G/xEBERkXUyuzFVGRkZCAwMhJOTk0F5dHQ0ACAzMxN+fn7dXqO2thZarRbl5eX4+uuvUV9fj7i4uB6fu6KiAgDg5uZmknjKyspQXl4uHufm5vYYAxEREVkms0uqysvL4eXl1aG8paysrKzHa6xZswZ5eXkAAAcHByxbtgwJCQnd1qmpqcH333+P0aNHw9vb2yTx7Ny5E9u2besxXiIiIrJ8ZpdUqdVq2Nradii3s7MTH+/JSy+9BJVKhcLCQiQmJkKtVkOn00Eu77y3U6fT4U9/+hPq6urwm9/8xmTxLFy4EFOnThWPc3NzsXHjxh7jJyIiIstjdkmVUqlEU1NTh3KNRiM+3pNRo0aJP8+ZMwePPfYYAOCpp57q9Py//e1vOHXqFF555RVERESYLB5vb2+DVi8iIiKyXmY3UN3Ly8tgHFKLlrLeJikuLi4YP348Dhw40OnjW7duxfbt27F69WrMnz+/3+MhIiIi62R2SVVERAQKCgpQX19vUJ6WliY+3ltqtbrD9QDg22+/xdatW/Hggw/i0UcfHbB4iIiIyPqYXVI1c+ZMaLVa7Ny5UyzTaDRITExETEyMONOupKSkw2y6ysrKDtcrKipCcnJyh3WhDh48iPfeew/z5s3D008/fdvxEBER0eBmdmOqYmJiMGvWLHz44YeoqqpCQEAA9u7di+LiYqxfv1487/XXX8eFCxeQlJQkli1fvhxxcXGIiIiAi4sLCgoKsHv3bjQ3N2P16tXieWlpaXjjjTfg6uqKuLi4Dl2Do0aNwtChQ3sVDxEREQ1uZpdUAcCGDRvg5+eHffv2oa6uDmFhYXjzzTcxduzYbustWrQIJ0+exKlTp6BSqeDh4YH4+HgsXboU4eHh4nm5ubloampCVVUV/vznP3e4zssvvywmVbcTDxEREQ0eZrdNjTXjNjVE1ovb1BCR2Y2pIiIiIrJETKqIiIiITIBJFREREZEJmOVAdSIiun0pu7OhaWiGnYMNYhNCpQ6HyOoxqSIislIpe7LFwfNMqoj6H7v/iIiIiEyASRURERGRCTCpIiIiIjIBJlVEREREJsCkioiIiMgEmFQRERERmQCTKiIiIiITYFJFREREZAJMqoiIblNtqQrquiYAgCAIEkdDRFJhUkVEdBs0qibs/fNZaDU6AIC2SSdxREQkFSZVRER9pNMJOPT3i6guqhfLmlRaaJuZWBENRkyqiIj6KPnrDOSfLzUoE3QC0vblShQREUmJSRURUR9cP1GEizuuAwBkchlsHRTiY+e/y0RDjVqq0IhIIkyqiIh6qTynBkkfXBKP73h0BGwdbMRjjaoZyV9nSBEaEUmISRURUS801Khx4J1z4sD0yOkBGHl3SIfz0n/MR3lezUCHR0QSYlJFRGQkXbMOB9+9gLqyBgCAT7gbpq4YCZlMJp7T0g0oCMDJT69wiQWiQYRJFRGRkU5+dhXFVyoAAI7uSsx9bjxs7BQG59jYK+Di6wAAKEqrQO7ZmwMeJxFJg0kVEVmUlN3ZSP5fBlJ2Zw/o8149lI+0/fpZfXIbGeY+Ow5OHvYdzpPJZLjj0RHi8enPr0LbpB2wOIlIOkyqiMiipOzJxvlvM5GyZ+CSqpJrlTj+r1Tx+M4Vo+Ab6dHl+SET/OAf4wkAqClR4fJeLrFANBgwqSIi6kZ9eQN++Os56LT6sVEj54dg+MzAbuvIZDJMeiwaLUOtLmzPhKqaSywQWTsmVUREXWjWaPHDX8+joVoDAPCP8TTo2uuOV4gromYFAQCaGrQ4+99r/RYnEZkHJlVERJ0QBAFHP76M0qxqAICzjwPmrBsHuY3xt824ByPF9auuHSlAWU51v8RKROaBSZUVkGrgLpE1u7wnB5lHCwEANkoF5j0/Hvaudr26hoObEuN+FqE/4BILRFaPSZUVkGLgLpE1K0gpw+n/XBWPp6+OhVewa5+uNXJ+CFz9HAEAxVcrkXO62CQxEpH5YVJFRNRGTUk9Dr13AS0NSmPvD0fYJP8+X09hI8cdS1vHYZ36PB3NGi6xQGSNmFQREd2iaWjGgbfPQV3fBAAIHu+LuCWRt33d4PG+GDrKCwBQV9qAy4k5t31NIjI/TKqIiAAIOgFHNl9CZUEdAMA9wAkz146GTC7roWbPOiyxsOM66isbb/u6RGRemFQREQE4/10mcs+WAADsHG0w77k42Dnamuz6nkEuGDE3GADQrOYSC0TWiEkVEQ16OWeKce6bTACATAbM+vVYuPk7mfx54hZHws5Rv8RCRtINcbkGIrIOTKqIaFCryK/Fkc2XxOP4h6IQNManX57L3tUO4xdHiMdcYoHIujCpIqJBq7FOgwNvJ6OpUT8bL3yKP2LvC+3X54yZFyK2gpVcq0TWiaJ+fT4iGjhMqohoUNJpdfjxvQuovdkAAPAa5oppq2Ihk93+wPTuyG3kmNRmiYXTX6SjWc0lFoisAZMqIhqUTn+RjsLL5QD03XLznhsPG6ViQJ47aJwvAsd4AwDqyxu5GwKRlWBSRUSDTkbSDXGtKJlChrm/GQdnb4cBjeGOpdHicg0Xd2WhvoJLLBBZOiZVRDSolF6vwtEtl8XjKctjMGSE54DH4RHgjOh5rUssnPkyfcBjICLTYlJFRIOGqrIRB945B22TDgAwYk4QoucESxbP+MURUDrr18LKPFqImxmVksVCRLePSRURDQraJi1++Nt5qCrVAAC/KA9MfjxG0pjsne0wfnHrNjgn/n0Fgo5LLBBZKiZVRGT1BEHAsa1puJlRBQBw8rLHnN+Mg8JG+ltg9NwguAc4AwBKM6tx/XihxBERUV9Jf0chIupnVw7k4drhAgCAwlaOec+Oh6ObUuKo9OQKOSY91maJhS/T0dTYLGFERNRXTKqIyKoVppXjxL+viMfTfhUL7zA3CSPqKHC0D4LG6VdxV1Wocel7LrFAZImYVBGR1aotVeHHd89D0OrHKY1eEIqIqUMljqpzdzw6AjKFfomFS7uyUFfWIHFERNRbTKqIyCo1NTbjwDvn0FjbBAAIHOONCb+IkjiqrrkPdcbIu0IAANomHU5/wSUWiCwNkyoisjqCICDpwxRU5NYCAFyHOGLWU2Mhl/fvFjS3a9zPImDvol9iIetEEYrTucQCmaeU3dlI/l8GdwNoh0kVEVmdizuzkH2yGABg66DAvOfjxPWgzJnSyRZxDw4Xj09yiQUyUyl7snH+20yk7GFS1RaTKiKyKnnnb+LsV9f0BzJg5tox8Li1ZIEliJoVCI8gfbxlWdXIOHpD4oiIyFhMqojIalTdqMOh9y8Ctxp34h6MREicn7RB9ZJ+iYVo8fjsl9e4xAKRhWBSRURWQV3fhAPvnENTgz4BCZ04BGMXhUscVd8EjPJGSJwvAEBVpcaFHVkSR0RExmBSRUQWT6cTcPjvF1FdVA8A8Ax2wfQnYyGTmffA9O5MfHQE5LeWWLicmI3amyqJIyKinjCpIiKLl/zVNeRfKAUAKJ1tMe+58bC1t5E4qtvjNsQJI+8ZBoBLLBBZCiZVRGTRrh8vxMWd+u4xmVyGOc+Mg4uvo8RRmca4+8Nh72oHAMg+VYyiKxUSR0RE3WFSRUQWqyynGkkfpojHkx4bgaEjvSSMyLTsHG0x4eeGSyzouMQCkdkyy/ZxjUaDLVu2YP/+/aitrUV4eDhWrlyJ+Pj4buslJSVhx44dyMrKQk1NDdzd3RETE4MnnngCYWFhBucePHgQx48fR1paGm7cuIGxY8fivffe63DN8+fP45lnnun0+TZv3oyRI0f2/YUSUZ8JOgE/vHMOWo0OADB8RgBibq1Ibk2GzwxE2oFcVOTWojynBhlHChA1K0jqsIioE2aZVG3atAmHDx/Ggw8+iMDAQOzZswcvvvgi3n33XYwePbrLellZWXBxccGSJUvg5uaGiooKJCYmYvXq1di8eTMiIiLEc3fs2IH09HSMGDECNTU1Pca0ePFiREdHG5QFBAT0/UUS0W1R1zVB16xvtfGNcMfUFSMtemB6V+RyGSY9Fo3EjacBAGf+ew2hdwyBnaP5L2ZKNNiYXVKVlpaGgwcPYs2aNXj44YcBAPPnz8fy5cuxefNmbN68ucu6y5cv71B23333YfHixdi+fTteeOEFsfyVV16Bj48P5HI5Hn/88R7jGjNmDGbOnNnr10NE/aMloXL0UGLus+OgsFVIHFH/GRrjhWHxfsg5U4LGGg0u7MjCxIfNdx9DosHK7MZUHTlyBAqFAgsXLhTLlEolEhISkJqaipKSkl5dz8PDA/b29qirqzMo9/Pzg1zeu5evUqnQ3MxF+Iik1NyoFX+W28gw99nxcPSwlzCigTHxkRGQ29xaYmFPNmpK6iWOiIjaM7uWqoyMDAQGBsLJycmgvKXrLTMzE35+3a+QXFtbC61Wi/Lycnz99deor69HXFzcbcW1adMmNDQ0QKFQYPTo0VizZg1GjBjRbZ2ysjKUl5eLx7m5ubcVA9FgV1fWAI2q9YvNnStHwTfCXbqABpCrnyNi7w3FxZ1Z0DULOPV5OuY9O17qsIioDbNLqsrLy+Hl1XH2TktZWVlZj9dYs2YN8vLyAAAODg5YtmwZEhIS+hSPjY0NZsyYgUmTJsHNzQ05OTn473//i6effhr/+Mc/MHz48C7r7ty5E9u2bevT8xJRR1d/zBd/tlHKMXx6oITRDLwxi8JxLekGGqrUyD1TgsLUcqua7Uhk6cwuqVKr1bC17TgA087OTny8Jy+99BJUKhUKCwuRmJgItVoNnU7X6+4+AIiNjUVsbKx4fOedd2LmzJl44okn8OGHH+Ivf/lLl3UXLlyIqVOnise5ubnYuHFjr2MgIkDXrEP6odakytbB7G5f/c7OwQbxPx8uLiNx8t9XcP8bUyGXW98AfSJLZHZ3JaVSiaampg7lGo1GfLwno0aNEn+eM2cOHnvsMQDAU089ZZIYAwMDceeddyIpKQlarRYKRecDZL29veHt7W2S5yQa7HKTS9BQrRGPZYM0kYicHoDU/bkoz6lBRV4t0g/lI3pOsNRhERHMcKC6l5eXwTikFi1lvU1SXFxcMH78eBw4cMAk8bXw9fVFU1MTGhsbTXpdIurclYP5PZ80CMjkMkxe1rq8S/JX16BRdfwiSkQDz+ySqoiICBQUFKC+3nBmS1pamvh4b6nV6g7Xu12FhYWws7ODg4ODSa9rTVJ2ZyP5fxlI2Z0tdShk4aqL6lF4Wf/FarC2ULU1ZIQnQicNAQA01jbh/HfXJY6IiAAzTKpmzpwJrVaLnTt3imUajQaJiYmIiYkRZ/6VlJR0mE1XWVnZ4XpFRUVITk5GVFTf1nSpqqrqUJaZmYljx44hPj6+T+O0BouUPdk4/20mUvYwqaLb036AOgETHx4Bha3+vUjdm4PqIi6xQCQ1sxtTFRMTg1mzZuHDDz9EVVUVAgICsHfvXhQXF2P9+vXiea+//jouXLiApKQksWz58uWIi4tDREQEXFxcUFBQgN27d6O5uRmrV682eJ4LFy7g4sWLAPSJU0NDAz755BMA+oU+x44dCwB49dVXoVQqMWrUKHh4eCAnJwe7du2Cvb19h2tKRbi1F5ggcE8wsj7NGi2uHSkAoF+XykapQFODtoda1s/FxwGxCaG4sP06dFoBp/5zFXe9cHtLxxDR7TG7pAoANmzYAD8/P+zbtw91dXUICwvDm2++KSY6XVm0aBFOnjyJU6dOQaVSwcPDA/Hx8Vi6dCnCw8MNzj137lyH5Q62bNkCQJ+ctTzXtGnTcODAAXz11Veor6+Hu7s7pk+fjuXLlyMwUPrp3LWlDWis0Y+n4B8askY5p4uhrtN/xkMnDkHR1QqJIzIfYxaG4drhAqiq1Mg7dxMFKWUIjOXkGCKpmGVSpVQqsXbtWqxdu7bLczrb/HjFihVYsWKFUc9h7LlLlizBkiVLjLqmFCoLasWWquZGLVISsxF7b6jEURGZTtsB6tFzg5lUtWFrb4P4h6Jw5J+XAACn/n0FQzdNhVzBLlIiKfA3z8IFj/OFnWNrbnzqs6u4frxQwoiITKcivxYl6fqxku4BzvCL8pA4IvMTcedQ+IS7AQAqC+oMxp8R0cBiUmUFbOwN18k6svkSblzueeV5InN31aCVKggyGWf+tSeTyzDpsTZLLHydIXaXEtHAYlJlRRS3ZkXptAJ++Os5lOfUSBwRUd81NTYj46cbAACFnRwRdwZIHJH58hvugfAp/gAAdV0Tzn2bIXFERIMTkyorYudog+A4XwD6Qet73zqL2psqiaMi6pusk0VoatBvnhw+ZSiUTh23r6JW8Q9HQWGnv6WnHchD1Y06iSMiGnyYVFkRmUyG2U+PhW+kOwCgoUqNvW+eRWONpvuKRGbo6g9tuv7mBEkYiWVw9nLA6PvCAADCrSUWiGhgMamyMjZKBe56IQ5uQ50A6Fei3veXs2hqbJY4MiLjlWVVozSrGgDgNcwV3mFuEkdkGcYsCIOTpz0AIP9CKbQancQREQ0uTKqskL2LHe5eHw9HD/3m06WZ1fjx/7sAnZY3WLIMBssozOEAdWPZKBWIf7h19wiNil+miAYSkyor5eLjgPnrJ8DWQb/cQv75UhzdkspV18nsaVRN4rIgtg4KhE0ZKnFEliV8ij98I9wBtO62QEQDg0mVFfMKdsW858dDbqP/ln/tcAGSv+asIDJvmccK0azW7w4QMTUAdg5muUax2ZLJZJi0LNqgjMkV0cBgUmXlhsZ4YebaMcCt3pML268j7UBu95WIJCIIAq60GaA+ggPU+8Q3wh0Rd7a28HELK6KBwaRqEAib5G+wOODxbWnIPl0sYUREnbuZUYXK/FoAgG+kO7xCXCWOyHLFP9Q6tqpZo2VrFdEAYFI1SIy6exhGL9BPt4YAHP77RRRzDzUyM1d+yBN/jp4TLGEkls/J0x4K21u3eAHibEoi6j9MqgaR+IeGI3KaflVqbZMO+/+SjMqCWomjItJrrNMg+5S+BVXpZIvQSUMkjsjytSwGCgC5yTcljIRocGBSNYjIZDJMWzUKgaO9AeinW+/981nUlTdIHBkRkJF0A9om/bIfkdMDYGOn6KEG9URsqQKQd65EwkiIBgcmVYOM3EaOOb8ZJy6mWF/RiH1vnuUGrCQpQRAMNk8eMdvyBqjH3hOKcT+LQOw9oVKHIpLJW9f3qsyvQ00Jt60i6k9MqgYhW3sbzP9tHFz9HAEAlQV1OPBOMpo1nCFE0ihKq0B1UT0AwD/GE+4BzhJH1HuxCaGIWxKJ2ATzSaraY2uV5UnZnY3k/2UgZXe21KEY0Gk58aEzTKoGKQc3Je5+aQLsXe0AAMVXK3H47xeh4wwhksCVg60D1EdwgHq/4bgqy5OyJxvnv81Eyh7zSapyz5agsVq/pywXlDbEpGoQc/VzwvwXJ8BGqR+7knOmBCc+SeMvCQ0oVbUaOWf0LSj2rnYYFu8ncUTWp6UbsPhqJRrruME69V1TYzNOfJomHreMgyQ9JlWDnE+YG+b+ZhxkCv1N98qBPFzYcV3iqGgwuXa4AMKtroSomYFQ2PC2ZGotswAFnYCCC6USR0OW7Px3magraxSP206GICZVBCBwjA+m/ypWPE7+KgPXDhdIGBENFjqdgKs/3hqgLgOiZlneAHVL0PYPH7sAqa8q8muRkphjUMbNzg0xqSIAQOS0AIPd7X/6+DLyzvPmS/3rxqUy1JXql/QIHO0tTp4g05LbyKB0tgUAFFwqhbaJk1KodwRBwPGtqWKrso09lzzpDJMqEo2+LxQj7w4BoO8m+PG9C7iZWSVtUGTV2g5Q5wrq/UcmkyF4nC8A/T6ARWncTYF6JyPpBoqvVgIAXP0cYevApKozTKpIJJPJMGlptLiSdbNai31vnRWnuhOZUn15A/LP6VtDHT2VCBrnI3FE1i04zlf8OfccW6HJeI21Gpz+/Kp4POWJGHb7dYFJFRmQyWWYuWY0/GM8AQDquibs+fMZqCobe6hJ1DtXDxWgZaJp1MwgyBW8HfWngFhvyG30fwjzkm9yli8Z7cyX19BYq18gOnTSEASO5hegrvAuRh0obBWY99x4eAa7AADqShuw762z0Ki46jqZhk6rQ/oh/QB1mQwYMStQ4oisn52DDYaO1G9RVV/RiPKcGokjIktQcq1S/F21dVBg0mPREkdk3phUUafsHG0xf/0EOHvbAwDKc2vxw1/PQ9vMNUno9uWdK4WqUg0ACB7vCycvB4kjGhxC2nYBchYg9UCn1eHY1lTxOG7JcDh52EsYkfljUkVdcvKwx93r48VZQ4Wp5Uj65yUIXHWdbtPVtiuoz+UA9YESPL41qcpL5pY11L20/bmoyK0FAHiFuCDmLv6u9oRJFXXLPcAZd70QJy4eeP14EU61GbBI1Fs1JSoUXCoDADj7OCAw1lviiAYPJ097cTP18txa1JU1SBwRmav6ikYkf52hP5ABU1eM5LhHI/Adoh75DffA7F+PRctkj8uJObhkZpt7kuUQF/sEED0nSNxChQZGSNvWKs4CpC6c/PcVNDXq1zMbMSsIvpEeEkdkGZhUkVFC4vwwdeUo8fj0f64i81ihhBGRJdI2aXHtiH61frlChsgZHKA+0IIntB1XxS5A6qjgYimyTxUD0O/HOeGh4RJHZDlspA6ALMeIWUFQVTbi3P8yAQBJ/7wEB1c7BLD7hoyUc6YEjTX6DX2HxQ+Bo5uy19eIvScUmoZm2Dnw9tUXnkEucPZ2QF1ZA4rSKqBRNcHO0VbqsMhMNGu0OL6tdcPkiY9Ewd7ZTsKILAtbqqhXxj0QgRGz9fuz6bQCfvjrOZTlVEscFVmKtl1/I+b2bZ+/2IRQxC2JRGxCqKnCGlRkMpk4C1CnFZB/sUziiMicXNyZhZoSFQBgyAgPRE4LkDgiy8KkinpFJpNhyhMx4k25qVGLfW+eFX8JibpSdaNO3B7Fzd8J/tGeEkc0eLVdXZ2zAKlFdVE9Lu68DgCQKWSYumIkV07vJSZV1GtyhRyzfj0WvsPdAQAN1RrsffMMGmrU0gZGZs2glWpOEG/WEvIf4Qk7R333af6FUui4/tygJwgCjm1Nha5Zv2RO7L2h8Ah0kTgqy8OkivrExk6Bu16Ig3uAEwCgpliF/W8lo6mxWeLIyBw1a1oHqCts5Yiczi4FKclt5Agaq99qRKNqRnF6pcQRkdSyThSh8HI5AMDZ2wHjHgiXOCLLxKSK+sze2Q53r4+Ho4d+sHFpVjUOvnuB33qpg6yTRdCo9Al32CR/Dnw1A20XAuUswMFNo2rCyc9a1x+c/Hg0bO05EaQv+K5ZiVFXv8Xoa9uB7T3Mpho/Hti507Bs4ULg3Lmen+S55/T/WtTWwnlsNO52DMD3Y1+ExsYRBRdL8dNdv8f0a9twf5Uagk7Qr0P0xF4gLq617vffA08+2fNzOjsDV9stNvrb3wJffNFz3YQE4IMPDMsmTACKi3uu+9ZbwCOPtB6npwNz5vRcDwDOnAH8/VuPP/wQ+OMfe643fDjw44+GZY8+Chw50nPdVauAV181LAs0crmCzz4DZs5sPT58GFi61Li6BQWGx6+9Bnz0UYfTro59CXDVf/Md8d7TwNEg4D//MTxp9mzg2rWen/P3vwd+9avW46IiID7euHgPHgSiolqPP/8cePHFnusNGQKcPWtYtno1sHt3z3Uffhj4v/8zLBsxAqir67nuP/8J3Hdf63FyMrBoUc/1AODKFcPjd97R/7slUOEA2eR3IMhtkLs9GZM23AUZYPJ7BKKN3Ctuxw7eIzphcB9Ni+2Xe0Ry+C/QEDAXABBcdgEhi1YZntfJPeL+bb9ojau7vztG3iM6mDGjb/eI9p/BAcakykrYNangWF8G1PdwYlAnM65KS4EbN3p+kpp2G7AKAnDjBjxxA/Oq/oA9s16HTmGLjCFT4Viej/gbn7aeq9EY1m1oMO45XTrp06+sNK5uRUXHsuJi4+qq2g28b242rh4AaLWGx3V1xtV1c+tYVlZmXN3qTmZgGhuvWt3x2Ni6ncXRrm65exhu3kqoPCuz4Hv1JyD4ro51S0qMe972yYhWa3y8ze26p1Wqvr/Wigrj6lZ20rVWWKhPOHrS0G7Fc43G+HiFdttJ1dQY1FUC8A9PQeGQcaiz90ZlnS08q3P65R5hFN4jOj3Vse1BSSctird5jyjzCEea/ywAgKK5EZOP/w2ob7cobCf3CMf6NrNGe/q70z4OY+It62RWqjH3iPafwQHGpMpKaGwdoXLyhqN7Dy1VPj6dlwUYMcbF1dXwWCYT6/mjErPSP8bB6NWATI6LIx+CrVaNyKwfIJPL4GjXrrvHwcG453R27ljm4WFcXc9OZpcNGdJzPQBwdDQ8trEx7jkBQKEwPHZ2Nq6un1/HMm9v4+p2lpAZG69S2fHY2LqdxdGu7pWIJeLPI8qOQxYQoH9d7fn5dX7jb6/9Z0KhMD5em3a3PEdH4+p29rnx9DSurkcnK1EPHWpcS5VDu42m7eyMf63tJwK4unaoG1J3FYUYBwDIjZ4Hz/zEfrtH9MgM7hEpu7MRpvSAnZcWtvaKLirdMkD3CFWblipHE98jdAGBODb2WQhyfTzj83fDxd0WcG93vU7uESon79a4evq70z4OY+Lt6z2i/WdwgMkEof3Xma599dVXGD58OCIiIuDc2QcZQHNzM2za37gIAJCeno5Vq1bho48+QlTbLojb9PnTP0JVoYajpxKPvD/bZNfti9R9OTjxiWG3gznERdLQNDTji6d+RFOjFjZKBR75+ywuNDmAero31JY24L/PHAYA+IS5YdHGKQMcoXkxp3tpi/6M6coPeTj2r1QA+n1eH9g0FQob44Zam+N7ZQ56lf38/e9/F6dBDxkyBJGRkQb/vL298c4770Cj0eB3v/tdvwRM5m3k/GFQVapxcWeWWKbTGp23k5XJOl4o7h8WMXUoEyoz4+LjAM8QF1Tk1qI0qxr1lY1w8rCXOiwaAKpqNc58mS4eT10RY3RCRV3rVVK1adMmXLt2TfyXlJSEpKQkMdFycXFBXV0dlO2bCmlQmfCL4VBVqpHxk77vu7lR20MNskaCIODKwdtfQZ36V8h4X1Tk6sd35Z27ieg5wRJHRAPh9H+uijNyI6cFwD/aS+KIrEOvkqopU6ZgypTW5uGqqipcu3YNly9fxpEjR5CTkwO5XI6pU6eaPFDqmrnthSaTyXDHYyNakyqNFk2NzZyiO8iUXq9GeY5+0KhPmBu8h3Uy7oskFxLnh/Pf6VfRzktmUjUYFKaVI/NoIQBA6WSLiY+YbjjKYHdbf+Xc3d0xceJETJw4EU888QS2bNmCgwcP4kljpsGSyZjjHmj2znZQKOXQqnWAAGQeLUT0XN6sB5OrB/PEn9lKZb68Ql3h6KmEqkKNwtRyfgGyctpmHY5vTRWPJzw0HA592NicOmeyDlSZTIaVK1fC0dER77//vqkuSxbMVtk6wyXtQC56MSeCLJy6rgnXTxQBAOwcbRA2yb+HGiQVmUyGkPH6WWXaJh0KLnGDZWuWsjsbVTf0ayD4RLhhxCx+4TElk49KGzlyJM6cOWPqy5IFkrcZ9FiZX4fiq52sCUNWKePoDWg1+pX1I6YFsOXDzBlssHzuZjdnkiWrvanC+e8yAehXu5i6YqR+8U4ymV4lVWfOnEF1D2tEaNov4EZ0S9q+vJ5PIosnCIJB11/0HH4TNndDYzzFdZnyzt2ETsutpqyNIAg4/kma+GUnZn4Ixzn2g159fXzhhRcgk8ng4+OD4cOHY/jw4YiMjMTw4cPh7e2NlJQUHDlyBPPmzeuveMkSyQAIQM7ZEtRXNMLJk1O2rVnx1Uqxe2HICA/udG8BFLYKBI72QfbpYqjrmnAzowpDRnSyeC5ZrLzkm8g/XwoAcHRXIm5JpMQRWadeJVUrVqxARkYGMjIycPToURw9elRcTkEmk0EQBLi7u2PkyJHIz89HUGfbHdCgY6NUoLlRC0Gnb8GIe3C41CFRPzIYoM6ZZBYjOM4X2af1e97lJt9kUmVFmhqbceLTNPH4jseiuWZcP+lVUvX444+LP9fW1iIzM1NMsq5du4a8vDxUVlZi06ZNAAClUomwsDBERkbiOQk3OCRp2dgroNXo9EnVj/kY+0AEF5mzECm7s8XlOoyZZdpQo0b2Kf0fZnsXW4RO7GRbDTJLQeN8IJPLIOgE5CaXYOIjUeKXZrJs57/LRF1ZIwAgINYLYZOM3K6Leq3Po0ddXFwwbtw4jBs3TixTq9XIysoSE62MjAxcv34dV65cYVI1iMnlMgyL90P2qWI0VGuQc7oY4VOGSh0WGSFlT7a4FYUxSVXGkRviCvqRMwKhsO1h/zQyG/bOdvCL8kDxlQrUFKtQXVgP94DOtyMjy1GRX4uUxBwAgMJWjinLRzJZ7kcmnZKjVCoRHR2N6OhosUyn0yEvjwOUB7uYu4LFFozU/blMqqxQS0tkixGz2f1vaULG+6L4in6Wbm5yCZMqCycIAo5vTYVw64vO6AVhcPN3kjgq69bv85zlcjmGDRvW309DkydLHUEHd2VXQ9ssQGEjg1eyGzwCVqPSzg83r1WhbMYD8NYUSx0i9aDt/yGSu58pdMM+DDX+SwEAQxuy4PbAHwciROpGb/7/ACDExgOngn4NAMjddhBjNi3t7xDNSm/fr4FwOzFlOI9Bsc8iAIBrUznGvPM68LZptg0zx/cKAHDihKRPz8VjrMXJk1JH0IF324MSICbCE8finwYApDWGYPrp7VKERb3Q/v+wO1fvnCP+HH32C6DA/D6Tg01v/v8AwBWA+70LUeUWgpvKADScvwIHdffL6FiT3r5fA6GvMTXaueB0wjPi8ZSj78Cm+LzkcVk7jhamAROR8yNsNfqp9tdDZqLRjl0L1qLewRO5AZMAAA4NFQi5wYTKUoW0JMMyOfICJkobDPXZmTHL0Wivb0EKzU1CoAkTKuoakyoaMLbNjRiefQAAoLVR4loY1zOzFtfC5kOQ6welR13fB7lgmi4GGnhtE+K8W4kyWZYSrxFIj7gHAGDbpMKk8x9KHNHgYZbdfxqNBlu2bMH+/ftRW1uL8PBwrFy5EvHx8d3WS0pKwo4dO5CVlYWamhq4u7sjJiYGTzzxBMLCwgzOPXjwII4fP460tDTcuHEDY8eOxXvvvWfSeKijmIzdSI26HwBwJeI+xF7dDhm4J6Al08nkuBp+NwBAptNixPW9EkdEt8On/BocGirQ4OCJgiHj0KxQwkarljosMpJOJsex+KfE47hL/4ZTA7cIGyhmmVRt2rQJhw8fxoMPPojAwEDs2bMHL774It59912MHj26y3pZWVlwcXHBkiVL4ObmhoqKCiQmJmL16tXYvHkzIiIixHN37NiB9PR0jBgxAjU1Nf0Sz4CaZH7fKMvaDGT0DtU3Q7sBCFBdxw3HcNS6+KNg1qMIasiUNlDqUmf/h+3lOwxHvZMPACCw8TqcR4cDCB/AKKkrxvz/tScDENycg3R4QmtjjxvTf4GQhmuSxzUQzDGu3saU6noHKjz0v39e6iLEeN7sl78P5vhemQOZIAhm1UyQlpaGJ598EmvWrMHDDz8MQL/+1fLly+Hu7o7Nmzf36noVFRVYvHgxEhIS8MILL4jlJSUl8PHxgVwux+OPPw43N7dOW6pMGU96ejpWrVqFjz76CFFRUb16HZbo86d/FNc4euT92WJ5bnIJDrx9DgAQOMYHd6+fIFWI1IOu/g/b2vfWWeRf0G9/cddv4xA8zrfT82jgGfP/15m2v6NRswIxbVWsWcTV38wxrt7EVF/RiP+9kISmRi0gAxa+Nhm+Ee79EldvFwYeLMxuTNWRI0egUCiwcOFCsUypVCIhIQGpqakoKendNAMPDw/Y29ujrq7OoNzPzw9yec8v39TxEBA0zhfO3g4AgIKLpagurpc4Iuqr2tIG5F/UJ1TO3vYIHOMjcURkCgGx3lDY6e+PeeduQtCZ1Xdv6sLJf1/RJ1QARswK6reECgBiE0IRtySSCVU7ZpdUZWRkIDAwEE5OhguUtSwompnZc1dRbW0tqqqqcP36dbz55puor69HXFzcgMdTVlaG9PR08V9ubm6fYrA2crkM0fNa94S78gMXh7VU6Yfy0TIkLmpWEORyrtRsDWzsFAiM1U+ab6jWoPR6lbQBUY8KLpa2bhHlaocJD3GPVSmY3Ziq8vJyeHl5dShvKSsrK+vxGmvWrBFXcXdwcMCyZcuQkJAw4PHs3LkT27Zt69PzWruoGYE4978MaJt0uHa4AHFLImFrb3YfR+qGrlmnT6oAyOQyRM0MlDgiMqXgOF/kJt8EoN9g2TfSQ+KIqCvNGi2Ob2vdMHniI1Gwd7aTMKLBy+z+iqnVatjadtw9287OTny8Jy+99BJUKhUKCwuRmJgItVoNnU5nVHefKeNZuHAhpk6dKh7n5uZi48aNvY7BGtm72iFssj8ykm5Ao2rG9eNF3NbEwuQml6ChWgMACJngC0cPe4kjIlMKHuerH7Uu6JOq+Iesfxyopbq4Mws1JSoAwJARHoicFiBxRIOX2SVVSqUSTU1NHco1Go34eE9GjRol/jxnzhw89thjAICnnnqqqyr9Eo+3tze8vb27fHywG3lXCDKSbgAA0g7kImpWIDf6tCBXfmjd5y96TnA3Z5IlcnBTwjfSHTevVaHqRh2qi+vhNoT7xpmb6qJ6XNx5HQAgU8gwdQU3TJaS2Y2p8vLyQnl5eYfylrLeJikuLi4YP348Dhw4YBbxUCvvMDf4ROin4lbk1qIkvVLiiMhY1UX1KEzV/w64+jli6MiOXeRk+ULi/MSf8251BZL5EAQBx7amQtesH9gYe28oPAJdJI5qcDO7pCoiIgIFBQWorzecEZaWliY+3ltqtbrD9aSMh1rF3BUi/px2gAPWLcXVH1tbqUbMCYKMA9StUsj41uUxcs8xqTI3WSeKUHhZ/+XG2dsB4x7g+nBSM7ukaubMmdBqtdi5c6dYptFokJiYiJiYGPj56b85lZSUdJhNV1nZsaWjqKgIycnJfV4Xyth4qG/C7hgCe1f9+LTs08VQVTZKHBH1pFmjxbUjBQAAuY0Mw6dzgLq1chvqBNchjgCAkqsVaKzVSBwRtdComnDys6vi8eTHoznZxwyY3f9ATEwMZs2ahQ8//BBVVVUICAjA3r17UVxcjPXr14vnvf7667hw4QKSkpLEsuXLlyMuLg4RERFwcXFBQUEBdu/ejebmZqxevdrgeS5cuICLFy8CAKqqqtDQ0IBPPvkEADBmzBiMHTu2V/FQ3yhsFYiaFYSLO65D0Aq4+mM+xi+OlDos6kb26WKo6/TjDEPv8BeTYrI+MpkMIXF+SNmdDUEA8i+UchC0mTj7dQYaqvQTpYLjfA26akk6ZpdUAcCGDRvg5+eHffv2oa6uDmFhYXjzzTfFRKcrixYtwsmTJ3Hq1CmoVCp4eHggPj4eS5cuRXi4YbPouXPnOix3sGXLFgD65Kztc/U1HjJO9NwgXNp5HYIAXD2Yj7GLwiG3MbtGVLrl6sG2A9Q5Y9PahcT5ImV3NgD9jE8mVdIry67Glf36nhobpQKTl8VIHBG1MMukSqlUYu3atVi7dm2X53S2pcyKFSuwYsUKo56jN+caEw/1nbOXA4In+CH3TAlUVWrknC1B2CR/qcOiTlTkt04ocA9whl8U1y6ydr7DPaB0toW6rgkFF8vQrNHCxk4hdViDlk4n4NiWVLRsMDfugXC4+DhIGxSJ2BxAZmFk2wHr+7nyvLkyaKWaG8Sp24OAXC5D8K0B681qLYquVEgc0eCW/mM+SrOqAei/2Iy6l9vEmBMmVWQW/GM84R6gXwOn+GolyvNqJI6I2mtqbEbGT/p1xRR2ckTcyW6gwSK47SzAs9zvVCqqajXOfJkuHk9dEQMFh0qYFbPs/qM+eOcd/b+ejB8PtJnJCABYuBA4d67nus89p//XorYWuLUHYmfur1JD0An66fZP7AXa7r/4/ffAk0+KhzIAMf4zcTzyUQDAlcffwJ0ZnwHOzsDVq4YX/u1vgS++6DnehATggw8MyyZMAIqLe6771lvAI4+0HqenA3Pm9FwPAM6cAfzbdF9++CHwxz/2XG/4cODHHw3LHn0UOHKk57qrVgGvvmpYFmjkrLzPPgNmzmw9PnwYWLoUgOH/YdbJOWga/jgAIDwvCcqoXwIFBYbXeu014KOPen7OGTOA//zHsGz2bODatZ7r/v73wK9+1XpcVATEx/dcDwAOHgTazgT+/HPgxRd7rjdkCHD2rGHZ6tXA7t091334YeD//s+wbMQIoN0m75365z+B++5rPU5OBhYt6rkeAFy5Ynh8G/eIwI1roXBcDq3cFnmJlyC8ejc6baM08h5hcG/YfmsB5R07ur1HdMnE94hF+9bBSV3VGldXBuge0fa9On1jPTQOIwEAkdMC4B/tJfk9okcDfY9o/xkcYEyqrEVNDXDjRs/nBXUysLi01Li6Ne1ajwSh23qObQ807aZiNzR0qBtR8i3ODHsATbaOyPS5A/HH3oey/XMCQGWlcfFWdNJNUVxsXF2VyvC4udm4egCg1Roe19UZV9fNrWNZWZlxdaurO5YZG2/7rZbUarFu2//DK16TxZ+jL34NVHRy/epq4563sz0zS0qMq9s+GdFqjX+tzc2GxyqV8XXbq6gwrm4nS72gsFCfcPSkocHwWKMxPt6WQTctbuMeYVtahKF255EfMBEqpQfKGhzhU5HRsa6R9wiDe0PLEoBG3CM65dLJYpe3cY9wbKiEY0N5a1xdGaB7RMt7Vegbi8xbCZXSyRYTH7n15UDie0Sv9fc9orO/GQOISZW1cHUFAozojvHx6bzMmLqurobHMlm39VRtvmE52rWbdu/g0KGuHYDImyeRFjAbzTb2yBi3GKOqT3W8sIeHcfF6enYsGzKk53oA4OhoeGxjY9xzAoCi3SBeZ2fj6na25pm3t3F1O0vIjI23/VZLSqVYt+X/sMIjDGVe+l3vvWpz4e2g6vz6bm7GPW9nOxH4+XV+42/P2dnwWKEw/rXatLvlOToaV7ezz42np3F1PToZzD90qHEtVQ7tBiDb2Rn/WtuPd7vNe0RI4VXkYyIAIG/EXPjkqjqeZ+Q9wuDe4H7r82fEPaJT7T8PwG3dI1QOHoZxdWWA7hGqKjWaBTmOTlwnlk14aDgc3G7FJ/E9otf6+x7R/jM4wGSC0P7rDPWX9PR0rFq1Ch999FGfFyO1JJ8//SNUFWo4eirxyPuzjapTeaMO3/z2JwD67U8efHs6V+uWUMv/oUIph1atAwDcuXIUN7+2EH35HexKfWUjvnjqEADAM8QFP9t0p1nEZUrmGFdLTC18Ityw8A+TeV80UxzhRmbFI8BZ3EeupkSFGymdNAHTgGtJqGwdFAifwuUuBiMnD3v4hLXu1Vlb2klLFZmcTtva7iGTQb9hMhMqs8WkisxOzF3B4s+pXF7BrETcGcCtMAax4AmtswDzuBdgvxMEARpV6zjAmPkh8B7WSTcemQ0mVWR2gsf7wsnLHoB+W4zam9b/jThldzaS/5chrlxtLtqPDhjBFdQHtZDxreP+cs8yqepPGlUTDv1/F6Fr0rcSy2RA3BJu4WXumFSR2ZEr5Iiee6u1SgDSfsiTNqABkLInG+e/zUTKHvNKqnTNrUmVb6Q7vIKlHQRK0vIIchZX7y66WgF1fZPEEVmn8twabP/dcWSdLBLLbJ1sYOdoK2FUZAwmVWSWomYFQm6jHzdw7XABmjXaHmpQf2hWt77v0XOCuzmTBgOZTIbgOH0XoKAVUHCxVOKIrIsg6DeV3/n7E6gpvtVCf2v4FLcGsgxMqsgsObgqxf3/1HVNyDpe1EMNMrXGWg20Gn3XA2RA6CQjl6MgqxYS16YLMJldgKbS1NiMw/+4hKMfX4b2Vpefd6gr7F3teqhJ5oRJFZmtmDb7Aabuz+0wvof6V/qh1n3+bOwU/KZMAIAhUR6wc9RPVii4WApts07iiCxfRX4ttv/uOK4fKxTLYu4KwYI/TIJcwZl+loRJFZktn3A3eN+awl2eU4ObGVXSBjSIXDtcgLP/bd0OwsaetwrSk9vIETRWv0CoRtWMYm6wfFuuHSnAjv93HNWF+iXcbR0UmL1uLKYsj4HCll9kLA3vlGS2ZDKZwfIKaQesf8C6Obi0KwtJH6YY7HIiV/BWQa1CJrTpAuTSCn3SrNbiyD8vIemDFLGb3SvEBfdvnCoOfSDLwzslmbWwSf5QOutnvGSfLIKqWt1DDeorQRBw+ourOP1Fulhmo+Q3ZeoocLS32C2Vl3yTXfO9VHmjDjv+33FkJLXuYzdiThAWvDYZbv5OEkZGt4tJFZk1GzsFombp10bSaQWDcT59Ya7rQUlNp9Xhp48u49Ku1vcl7ueRsHVkUkUd2Tnawj9Gv29eXVkDKvKM2ByaAAAZR29gx++Oo7JAv/ejjVKBmU+NwZ2/HMVxi1aASyNTv4m9JxSahmbYOdzexyx6bhBSvs+CIABXfsjDmAVhfe6OStmTLe7tFZsQeltxWYtmjRaH/n4RuWdK9AUyYOoTIxE9NxhXBsEaYdbMVL+DnQmJ88ONlHIA+tYqrxCuYdadZo0WJz65YvDF0CPIGXPWjYN7QCebQpNFYlJF/cZUSYuLjyOCxvsiL/kmVBVq5CbfROhETu83BY2qCQfeOYeiNP1gY7lChplPjeGYDivRn18cgsf74vi2NABAbnIJxv0sot+ey9JVF9Xj4HvnUZHb2qI3fGYgpjwewy52K8PuP7IIbZdXSON+gCbRUKNG4uunxYTKRqnAXS9OYEJFRnH2doDXMH3rVFl2DerLGySOyDxlnSzC9t8dExMqhZ0c05+MxfRfxTKhskJMqsgiBIz0EgdwFqVVoLKAYzhuR11ZA75/7RTKsmsAAEpnW9z7ykQExnpLHBlZkuDxbTZYPs/V1dtq1mhxbGsqfnzvApoa9DsTuAc44f6NUzB8eqDE0VF/YVJFFkEmlyF6HpdXMIXKG3XY9YeTqC7Sr4vj6KnEfb+/A74R7tIGRhYnJK41qcpNLpEwEvNSU1KPXX84iStt7lMRdw7Foj9NgUegi4SRUX9jUkUWY/j0ALG5PCPpBjQqbubaWzczq/D9aydRX9EIAHDzd8KCVyfzRk994jXMFU6e9gCAwtRyaBqaJY5Ietmni/HdhuMoz9G3Aits5bhz1SjMWDMatvYcxmztmFSRxbBztEXEnUMB6BfOy/jpRg81qK0bKWVIfP001HX6ZNRrmCvu+/0dcPFxkDgyslRtN1jWNQu4cWnwdgFqm3U48WkaDv7tPJpuJZeuQxyx8E+TMWJWEGQybjczGDCpIotiOGA9j4sOGin7VBH2vXUWzWr92A7/GE8k/G4iHNyUEkdGls6wC3Bwrq5eW6rC96+dROre1kk0YZP9cf/rU+EVzKUmBhO2RZJF8QxygX+MJ4rSKlBdVI/Cy+UI4ODqbl09mIej/0oFbuWfIRP8MOvpMVxokEzCP9oTtg4KNDVokX+hFDqtblBta5SbXIIjmy9Bo9K3TsltZJj0WDSi5wazdWoQGjyffLIaMW0HrHN5hS4JgoALO67j6JbWhGr4jADMeWYsEyoyGYWtAoGj9Rssq+uaUHKtUuKIBoauWYdT/7mKA2+fExMqF18HLHxtMmLmhTChGqSYVJHFCYnzg6Onvtsq79xN1JZyfZz2BJ2AU59dxdn/XhPLYu8LxbRfxQ6qVgQaGIOtC7CuvAHf/+mUwXZXwyb64YE3psI71E3CyEhqvLuSxZHbyBE9W99aJQj67i1qpdPqkPRhCi7vyRHL4h+Owh2PjOC3Z+oXgWN9IJMPjg2W8y+U4ruXj+FmRhUA/S4Ekx+PxpxnxsHO0Vba4EhyTKrIIkXNDoJcob+Jpx/KR7NGK3FE5qFZo8UPfzuPjCT9zEiZDJi2ahTGLAiTODKyZvbOdhgywgMAUFOiQtWNOokjMj2dVoczX6Zj31tnxRm0zt4OuO/VSRg5fxi/sBAAJlVkoRzdlQi9Q7//X2NtE7JPFksckfQ0qibs/fMZ5N3qfpHbyDD7mXGImhUkcWQ0GLTtAsw7Z11dgPWVjUh8/TQu7swSy4LjfPHAG1O5aC4ZYFJFFov7AbZSVaux+0+nUHxVP0jY1l6Bu9fHc+NpGjDB4/3En3PPWk9SVZBShu9ePib+bskUMkx8dATmPTceSmd295EhLqlAFss30h1ew1xRnlOD0qxq3MysGpTfGmtvqrBn0xnUlKgAAPYutpi/Ph4+YRwwSwPH1c8RHkHOqMyvw83rVVBVqeHobrnroOl0As5/k4Hz26+Ls2edPO0xe91Y+A33kDY4MltsqSKLJZPJEHNX6/IKVwbhfoAV+bXY9YeTYkLl5GWP+16dxISKJCG2VglA3nnLba0SdAL2vHEa579rTagCx/jggTemMqGibjGpIosWPnkolE76JvjrJwrRUKOWOKKBU3KtErv/eAqqKv1rdhvqhAV/mAT3oc4SR0aDlcG4KgteWqGhWoOitAoA+s3c4x8ajvm/jYO9q53EkZG5Y1JFFs1GqcDwmYEA9HuPXTtcIHFEAyP/Yin2bDoDdb1+FpJPmBsW/H4SnL24jx9JxyfMDQ63uvxupJSJ2yJZAkEniHv2tbROOborce8rEzFmYbi4ZARRd5hUkcWLnhsM3LrfXfkhDzqd9a6RAwDXjxdi/1+SxT9YQ0d54Z5XJvJbNElOJpcheJy+tUrbpMONlDKJIzJObWkDEt84jaaG1iQwINYLD2yaCv9oTwkjI0vDpIosnqufI4LG6rfJqCtrRL6VTeduK+1ALg79/SIErT5xDJ04BPN/Gwc7B845IfMQMqHN6upm/rsoCALSD+fj25d+Erv7AMDWQT97lhuOU28xqSKr0HZ5hVQrXF5BEASc+zYDx7emiV0TI2YHYda6sVDYch8/Mh9DR3rBRqn/TOadu2m2Lceqykbs/0syfvrwsthCJbv1F9HWwYbdfdQnTKrIKgTGesPVzxEAUHi53KpWdBZ0Ak58egXn/pcplo1ZFI6pvxwJOW/8ZGZs7BQIGO0NAGis0aA0s0ragDqRdbII36w/ivzzpWLZ8BkB7EKn28akiqyCTC5D9LzW5RXSfrCO5RV0zToc/sdFpO1rbX2749ERiP/FcG6LQWYrZLx5brDcWKvBj+9dwI/vXRC3mnFws8O858dj+urRbJ2i28akiqzG8OmBUNjpP9IZSQXQtMzksVDNai32v30O148XAdAnjjOeHI3YhFCJIyPqXtA4H7Tk/LnJJdIGc0ve+Zv4Zv1RZJ0sEstC7xiCxW9OQ0icXzc1iYzHpIqshtLZFhFTAwAATQ1aZB69IXFEfaeua8KeTWdQcFHfPaGwlWPus+MQOT1A4siIeubgqoTvrUUyqwvrUV1UL1ksGlUTkj5Mwf7/S0bDrTXdlE62mPX0GMxeN5ZdfmRSTKrIqrRdYT1tfx4EwTwHyXZHVdmI7/90CiXXbu3j52CDu1+awG/TZFEMuwClaa0qTC3Hty8dM1i/LnCMD3721p0InzKUXehkckyqyKp4hbjCL0r/DbnqRp3BNGlLoNMK2PWHk6jMrwUA2LvaIeH/TYR/tJfEkRH1TsiE1i8BeQO8tEKzWosTn6Qh8fXTqCtrAKDfZPzOVaMw/8U4OHnYD2g8NHhwcRuyOjF3haAkXd/Kk3YgF0NHWk5C0lijQeOtxjVnHwfc81I83PydpA2KqA/c/J3g5u+E6qJ6lKRXorFGMyBdbTczKnHknykGXY7+MZ6YvjoWLj6O/f78NLixpYqszrB4Pzje2ioj9+xN1JU3SBxRz7RNOv0PtxIqj0BnLPjDJCZUZNGCb+0FKAhA3oX+ba3SNmlx5r/XsOsPJ8WESmErx6THonHvholMqGhAMKkiq6OwkSNqdhAA/RpPVw/mSxxR5+rKGpCSmI2dfzgBdW2TWO4b4Y6E39/BLgqyeG3HAfbnBsvluTXY8f9O4OKO62gZRukT7oYH3piKUfcM41IJNGDY/UdWacScIFzYcR2CVsDVH/Mx7oFws1h5vKZEhZzTxcg+XYzS69UdHpfbynDPhnjY2pvHr2bsPaHQNDRzGxzqE99Id9i72KKxtgkFl8rQrNHCxs50v4c6rQ6XdmXj3DcZ0N3aukmukGH84kiMXhAKuYLtBjSweKckq+TkYY9h8X7IPlmMxhoNsk8VI+JOaZYjqC6qR/YpfSJVnlPT6TkyhQyCVoDS2dZsEioAXBOLbotcLkPQOF9kJN1As1qLotRyBI3z7bmiEaoK63Dkn5dQmtn65cQjyAUz146GV4irSZ6DqLfM5+5NZGIj7wpB9sliAEDagbwBTaoqC2qRfboY2adKxJl87XmFuGDYHUMQGj8EiZtOQ1Wh5hRvsjohcX7ISNKvGZd77uZtJ1WCTkDq/lyc+TIdWo1+LKJMBoxeEIbxiyPMokWaBi8mVWS1/KI84Bnsgoq8WtzMqEJZVsfuNlMRBAEV+bXIudUiVXWj88UOfcLcMGyiH4ZNHAK3IRyETtYvINYLCls5tE065CXfhPBE39eOqy1VIemDFIOlUtz8nTDjyVj4RnqYIlyi28KkiqyWTCZDzLxgHN2SCkC/vIIpCYKA8uyaWy1SxagpUXV6nm+kO0InDsGwiX6cgUSDjq29DYaO8kL++VKoqtQoy+79lxtBEHDtcAFOfnYFTQ1asXzk/BDEPxQFGyVbp8g8MKkiqxY+dShOf5EOjaoZ148Xwc7p9j7ygiCg9Hq1OEaqrrST5RpkwJAoDwybOASh8X5w8nK4recksnQhcX7IP6/fcqm3GyyrKhvx08eXxfoA4Oxtj+mrR1vUGnQ0ODCpIqtma2+D4TMCcXlPDrRNOjSrtT1XakfQCSi5VomcMyXIPl2M+vLGDufIZMCQaE+E3jEEwyb4wZHLIRCJgsf5iD/3Jqm6frwQx7emQV3fuuTI8JmBmLR0BOwcbU0aI5EpMKkiqxc9NxiX9+QAgNFJlU4noPhqBXJOFSPnTAlUtzZibUsml2HoSC+E3jEEIXG+cHBTmjJsIqvh6GEPnwg3lGZWozK/FvZu3a+s3lijwbFtqeJEEwBwcFdi2spRCB5vmtmDRP3BLJMqjUaDLVu2YP/+/aitrUV4eDhWrlyJ+Pj4buslJSVhx44dyMrKQk1NDdzd3RETE4MnnngCYWFhHc4/evQotm7ditzcXLi7u+Pee+/FsmXLYGPT+rbs2bMHmzZt6vT5vvvuO3h5sfnZ3Ln5OyFwjDcKLpZB0HV9nq5Zh6IrFcg+rU+kGms0Hc6RK2QIiPVG6MQhCI7zhb0Ld7gnMkbIeD9x+QNtU9dfbvLO3cRPH6Wgobr19y9skj+mPBHD3zcye2aZVG3atAmHDx/Ggw8+iMDAQOzZswcvvvgi3n33XYwePbrLellZWXBxccGSJUvg5uaGiooKJCYmYvXq1di8eTMiIiLEc0+ePIlXXnkFY8eOxTPPPIOsrCx8+umnqKysxPPPP9/h2r/85S/h7+9vUObs7Gy6F039KmZeCAoulnUo1zbrUHi5HNmni5F7tgTquqYO5yhs5QgYfSuRGu8LpRO7HYh6K2SCL85+dQ0AxKUQ2tKomnDys6u4drhALFM622LKEyMRPtm/w/lE5sjskqq0tDQcPHgQa9aswcMPPwwAmD9/PpYvX47Nmzdj8+bNXdZdvnx5h7L77rsPixcvxvbt2/HCCy+I5f/4xz8QHh6Ot99+W2yZcnR0xGeffYYlS5YgJCTE4Dp33HEHRowYYYJXSFIIHOsDFx8H1N4aWN7cqMWRzZeQm1wCjaq5w/kKOzmCxvogdOIQBI3z5YriRLfJPcAZLr4OqL3ZAF2z4bIKhanlSPrgEurKWscrBo3zwbSVozg+kSyK2a3hf+TIESgUCixcuFAsUyqVSEhIQGpqKkpKSnp1PQ8PD9jb26Ourk4sy8nJQU5ODhYsWGDQ1ffAAw9AEAQcPny402upVCpotb0f6EzSk8tliJ4XLB5rVM3I+OmGQUJlo1QgbJI/5jwzFkv/OQdzfzMe4VOGMqEiMgGZTGawFyCgn017/JM0JL5+WkyobB0UmParUbjrhTgmVGRxzO6vRUZGBgIDA+HkZLgwYnR0NAAgMzMTfn5+nVUV1dbWQqvVory8HF9//TXq6+sRFxcnPn7tmr4JOioqyqCet7c3fHx8kJGR0eGazzzzDBoaGmBra4v4+Hg89dRTCAoK6tNrJGkMnxmI05+nG5TZOigQPN4PoROHIHCMt0n3JSMiQ8FxvuKkEQBorG5C2r7W9eP8YzwxffVouPhwGRKyTGaXVJWXl3c6+LulrKys47iY9tasWYO8vDwAgIODA5YtW4aEhASD52h7zfbP0/I4oG8lu+eeezBu3Dg4OTkhPT0dX331FdauXYuPP/642wSvrKzM4Fq5uaZdfJJ6x97ZDnZONtDUN0NhJ8ecdeNurfbMRIpoIAyJ8oDSyVZcIkHQ6bsBFXZyTHw4CjHzQiCTc6smslxml1Sp1WrY2nYcCGxnZyc+3pOXXnoJKpUKhYWFSExMhFqthk6ng1yu7+3UaDQG12z/PCpV68rYs2fPxuzZs8XjadOmYeLEifj1r3+Nf//73wbjtNrbuXMntm3b1mO8NHBslApo6puhdLbl1GyiASZXyBE0zgeZRwvFMp8IN8xcMwZu/ty2iSyf2SVVSqUSTU0dZ2C1JEJKZc9rAY0aNUr8ec6cOXjssccAAE899RSA1mSq5Zrtn6en5xg9ejRiYmKQnJzc7XkLFy7E1KlTxePc3Fxs3Lixx/iJiKzViNlBYlJl66DAglcnQa4wu+G9RH1idp/k9t1vLVrKvL29e3U9FxcXjB8/HgcOHDB4jrbXbP88xqw95evri5qamm7P8fb2RlRUlPiv/YxCIqLBZsgIT3HxT1sHGyZUZFXM7tMcERGBgoIC1NfXG5SnpaWJj/eWWq02uF5kZCQAID3dcNByWVkZSktLxce7U1hYCHd3917HQkQ02MkVHDdF1snskqqZM2dCq9Vi586dYplGo0FiYiJiYmLEgeElJSUdBn5XVlZ2uF5RURGSk5MNZvqFhoYiODgYu3btMlgiYfv27ZDJZJgxY4ZYVlVV1eGaJ06cQHp6OiZOnNjn10lERETWxezGVMXExGDWrFn48MMPUVVVhYCAAOzduxfFxcVYv369eN7rr7+OCxcuICkpSSxbvnw54uLiEBERARcXFxQUFGD37t1obm7G6tWrDZ5n7dq1ePnll/H8889jzpw5yMrKwnfffYf77rsPw4YNE89bs2YNhg8fjqioKDg5OeHatWtITEyEr6+vOFaLiIiIyOySKgDYsGED/Pz8sG/fPtTV1SEsLAxvvvkmxo4d2229RYsW4eTJkzh16hRUKhU8PDwQHx+PpUuXIjw83ODcKVOmYOPGjdi2bRveffdduLm5YenSpR1WZZ89ezZOnjyJM2fOoLGxEV5eXliwYAGWL18OT09PE79yIiIislRmmVQplUqsXbsWa9eu7fKc9957r0PZihUrsGLFCqOfZ9q0aZg2bVq356xatQqrVq0y+ppEREQ0OJndmCoiIiIiS8SkioiIiMgEmFQRERERmYBZjqkiIiIiIPaeUGgammHnwD/XloD/S0RERGYqNiFU6hCoF9j9R0RERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEyASRURERGRCTCpIiIiIjIBJlVEREREJmAjdQBEBMTeEwpNQzPsHPgrSURkqXgHJzIDsQmhUodARES3id1/RERERCbApIqIiIjIBJhUEREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEyASRURERGRCdhIHQDRQIq9JxSahmbYOfCjT0REpsW/LDSoxCaESh0CERFZKSZVREREYEs23T5+coiIiMCWbLp9HKhOREREZAJMqoiIiIhMgEkVERERkQkwqSIiIiIyASZVRERERCbApIqIiIjIBJhUEREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEzARuoAOqPRaLBlyxbs378ftbW1CA8Px8qVKxEfH99tvaSkJOzYsQNZWVmoqamBu7s7YmJi8MQTTyAsLKzD+UePHsXWrVuRm5sLd3d33HvvvVi2bBlsbAzfltraWvzzn/9EUlIS1Go1oqOjsXbtWkRFRZn0dRMREZHlMsuWqk2bNuGrr77CvHnzsG7dOsjlcrz44ou4dOlSt/WysrLg4uKCJUuW4Nlnn8WiRYuQkZGB1atXIzMz0+DckydP4pVXXoGzszOeeeYZTJs2DZ9++ineffddg/N0Oh3Wr1+PH374AT/72c/w5JNPorKyEs888wzy8/NN/tqJiIjIMpldS1VaWhoOHjyINWvW4OGHHwYAzJ8/H8uXL8fmzZuxefPmLusuX768Q9l9992HxYsXY/v27XjhhRfE8n/84x8IDw/H22+/LbZMOTo64rPPPsOSJUsQEhICADh8+DAuX76MP/7xj5g5cyYAYPbs2XjkkUewdetW/P73vzfRKyciIiJLZnYtVUeOHIFCocDChQvFMqVSiYSEBKSmpqKkpKRX1/Pw8IC9vT3q6urEspycHOTk5GDBggUGXX0PPPAABEHA4cOHDeLx9PTE9OnTxTJ3d3fMmjULR48ehUaj6cOrJCIiImtjdi1VGRkZCAwMhJOTk0F5dHQ0ACAzMxN+fn7dXqO2thZarRbl5eX4+uuvUV9fj7i4OPHxa9euAUCHMVHe3t7w8fFBRkaGwbmRkZGQyw3zz+joaOzatQv5+fkIDw/vNI6ysjKUl5eLx7m5ud3GTURERJbL7JKq8vJyeHl5dShvKSsrK+vxGmvWrEFeXh4AwMHBAcuWLUNCQoLBc7S9ZvvnaZsIVVRUYMyYMV3GU15e3mVStXPnTmzbtq3HeImIiMjymV1SpVarYWtr26Hczs5OfLwnL730ElQqFQoLC5GYmAi1Wg2dTie2NrV02bVcs/3zqFQqg3i6Oq+neBYuXIipU6eKx7m5udi4cWOP8RMREZHlMbukSqlUoqmpqUN5SyKkVCp7vMaoUaPEn+fMmYPHHnsMAPDUU08BaE2IOhsPpdFoDJ5DqVR2eV5P8Xh7e8Pb27vHeImIiMjymd1A9fbdby1aynqbpLi4uGD8+PE4cOCAwXO0vWb752nbLejp6dltPJ11IRIREdHgY3ZJVUREBAoKClBfX29QnpaWJj7eW2q12uB6kZGRAID09HSD88rKylBaWio+3nJuRkYGdDqdwblXrlyBvb09goKCeh0PERERWR+zS6pmzpwJrVaLnTt3imUajQaJiYmIiYkRZ/6VlJR0mE1XWVnZ4XpFRUVITk42mOkXGhqK4OBg7Nq1C1qtVizfvn07ZDIZZsyYIZbNmDEDFRUVSEpKEsuqqqpw6NAhTJkypdPxVkRERDT4mN2YqpiYGMyaNQsffvghqqqqEBAQgL1796K4uBjr168Xz3v99ddx4cIFg2Rn+fLliIuLQ0REBFxcXFBQUIDdu3ejubkZq1evNnietWvX4uWXX8bzzz+POXPmICsrC9999x3uu+8+DBs2TDxv5syZ+N///odNmzYhJycHbm5u2L59O3Q6HVasWNHv7wcRERFZBrNLqgBgw4YN8PPzw759+1BXV4ewsDC8+eabGDt2bLf1Fi1ahJMnT+LUqVNQqVTw8PBAfHw8li5d2mHZgylTpmDjxo3Ytm0b3n33Xbi5uWHp0qUdVmVXKBR466238I9//APffPMN1Go1RowYgZdffhnBwcEmfuVERERkqWSCIAhSBzFYpKenY9WqVfjoo4+4GTMRDVqfP/0jVBVqOHoq8cj7s6UOh8hkzLKlioiIrFfsPaHQNDTDzoF/gsi68BNNREQDKjYhVOoQiPqF2c3+IyIiIrJETKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIiIiIhNgUkVERERkAkyqiIiIiEyASRURERGRCTCpIiIiIjIBJlVEREREJsCkioiIiMgEbKQOYDBRq9UAgNzcXIkjISIiot4KCQmBvb19l48zqRpAxcXFAICNGzdKHAkRERH11kcffYSoqKguH5cJgiAMYDyDWlVVFU6fPg1/f3/Y2dmZ7Lq5ubnYuHEjfve73yEkJMRk17VGfK96h++X8fheGY/vlfH4XhlvIN4rtlSZEXd3d9x11139dv2QkJBuM2hqxfeqd/h+GY/vlfH4XhmP75XxpHyvOFCdiIiIyASYVBERERGZAJMqK+Dl5YXly5fDy8tL6lDMHt+r3uH7ZTy+V8bje2U8vlfGM4f3igPViYiIiEyALVVEREREJsCkioiIiMgEmFQRERERmQCTKiIiIiIT4OKfFkyj0WDLli3Yv38/amtrER4ejpUrVyI+Pl7q0MzKlStXsHfvXpw/fx7FxcVwdXXFyJEjsXLlSgQFBUkdntn79NNP8fHHHyM0NBSffPKJ1OGYpfT0dGzduhUpKSnQaDQYOnQoFixYgCVLlkgdmlnJz8/Hli1bkJKSgpqaGvj5+WHu3Ll46KGHul2l2pqpVCp8+eWXSEtLw5UrV1BbW4uXX34Z99xzT4dzc3Jy8P777yMlJQU2NjaYPHkynn76abi7uw984BIw5r3S6XTYt28fjhw5goyMDNTW1sLf3x+zZ8/GQw89BKVS2a8xMqmyYJs2bcLhw4fx4IMPIjAwEHv27MGLL76Id999F6NHj5Y6PLPx+eefIyUlBbNmzUJ4eDjKy8vx3XffYeXKldi8eTPCwsKkDtFs3bx5E5999hkcHBykDsVsnT59Gi+//DIiIyPx+OOPw8HBATdu3EBpaanUoZmVkpISrF69Gs7OznjggQfg6uqK1NRU/Otf/0J6ejo2bdokdYiSqK6uxrZt2+Dn54eIiAicP3++0/Nu3ryJX//613B2dsaqVavQ0NCAL7/8EllZWfjggw9ga2s7wJEPPGPeq8bGRmzatAkjR47EokWL4OHhgdTUVGzduhXnzp3D3/72N8hksv4LUiCLlJqaKkybNk34/PPPxbLGxkbhoYceEp588kkJIzM/ly5dEjQajUFZXl6eMGfOHOGPf/yjRFFZhldffVV45plnhF//+tfCsmXLpA7H7NTV1QmLFi0SNmzYIGi1WqnDMWuffvqpMG3aNCErK8ugfOPGjcK0adOEmpoaiSKTllqtFsrKygRBEIQrV64I06ZNExITEzuc9/bbbwtz584ViouLxbIzZ84I06ZNE3bs2DFg8UrJmPdKo9EIly5d6lB369atwrRp04QzZ870a4wcU2Whjhw5AoVCgYULF4plSqUSCQkJSE1NRUlJiYTRmZfY2NgO3+KCgoIwbNgw5ObmShSV+btw4QKOHDmCX//611KHYrZ++OEHVFRUYNWqVZDL5WhoaIBOp5M6LLNUX18PAPDw8DAo9/Lyglwuh43N4Ow4sbOzM2qxyiNHjmDKlCnw8/MTyyZMmICgoCAcOnSoP0M0G8a8V7a2toiNje1QPm3aNADo93s+kyoLlZGRgcDAQDg5ORmUR0dHAwAyMzOlCMtiCIKAyspKuLm5SR2KWdJqtXj33XeRkJCA8PBwqcMxW2fPnoWTkxPKysrw6KOPYv78+bjnnnvw9ttvQ61WSx2eWRk3bhwA4M0330RGRgZKSkpw8OBB7NixA4sXL2YXczdKS0tRWVnZ6SbB0dHRyMjIkCAqy1JRUQEA/X7PH5xfDaxAeXl5pxl7S1lZWdlAh2RRDhw4gNLSUqxYsULqUMzSjh07UFJSgr/+9a9Sh2LWCgoKoNVqsWHDBiQkJOBXv/oVLly4gG+++QZ1dXV49dVXpQ7RbNxxxx345S9/ic8++wzHjh0Tyx977DGsWrVKwsjMX3l5OQB0ec+vqamBRqOBnZ3dQIdmMb744gs4OTnhjjvu6NfnYVJlodRqdacDE1t+qfgtuWu5ubn461//ipEjR+Luu++WOhyzU11djX/9619YtmzZoJlV1FcNDQ1obGzEokWL8MwzzwAAZsyYgaamJuzcuRMrVqzgDNM2/P39MWbMGMyYMQOurq44ceIEPvvsM3h6emLx4sVSh2e2Wu7nPd3zmVR17t///jfOnj2L5557Di4uLv36XEyqLJRSqURTU1OHco1GIz5OHZWXl2P9+vVwcnLCn/70JygUCqlDMjsff/wxXFxc+EfOCC2/Z3PmzDEonzt3Lnbu3InU1FQmVbccPHgQ//d//4f//Oc/8PX1BaBPQAVBwAcffIC5c+eyO74LLZ8z3vN77+DBg/j444+RkJCA+++/v9+fj2OqLJSXl5fYJNxWS5m3t/dAh2T26urq8OKLL6Kurg5/+ctf+B51Ij8/H7t27cKSJUtQVlaGoqIiFBUVQaPRoLm5GUVFRaipqZE6TLPR0h3j6elpUN4yGLu2tnbAYzJX3333HSIjI8WEqsXUqVPR2NjIcUHdaPmcdXXPd3V1ZStVJ86cOYM33ngDkydPxvPPPz8gz8mWKgvVskZHfX29wWD1tLQ08XFqpVar8dJLLyE/Px/vvPMOhg0bJnVIZqmsrAw6nQ7vvvsu3n333Q6P/+IXv8CSJUuwbt06CaIzP1FRUTh79ixKS0sRHBwslreMaWT3aavKyspOu16am5sB6CdHUOd8fHzg7u6O9PT0Do9duXKF9/tOpKWl4Xe/+x2ioqLw2muvDdjsUiZVFmrmzJn48ssvsXPnTjz88MMA9M3AiYmJiImJMZh2O9hptVr84Q9/QGpqKt544w2MGjVK6pDMVmhoKF5//fUO5R9//DFUKhXWrVuHoUOHShCZeZo1axb+85//YPfu3YiLixPLd+/eDYVCIc54I/0yJmfOnEF+fr5Bl+jBgwchl8s5y7QHM2bMwN69e1FSUiLe35OTk5Gfn4+f//znEkdnXnJycrB+/XoMGTIEb7755oB2jTKpslAxMTGYNWsWPvzwQ1RVVSEgIAB79+5FcXEx1q9fL3V4ZuXvf/87jh07hilTpqC2thb79+83ePyuu+6SKDLz4+7uLq7n0tbXX38NAJ0+NpgNHz4c9957LxITE6HVajF27FhcuHABhw4dwtKlS9nF3MZDDz2EU6dO4emnn8bPfvYzuLq64vjx4zh16hTuu+++Qf1etcwWbeneO3bsGG7evAkAWLx4MZydnbF06VIcPnwYv/nNb7BkyRI0NDTgiy++QFhYWKdb2lirnt4ruVyOF154AbW1tXjooYdw4sQJg/pDhw7t1y/WMkEQhH67OvUrtVot7v1XV1eHsLAwrFy5EhMnTpQ6NLOybt06XLhwocvHk5KSBi4YC7Vu3TpUV1dz779ONDc349///jf27NmDsrIy+Pn54YEHHmDrQSfS0tKwdetWZGRkoKamBv7+/rj77rvx8MMPD9rFPwHg5z//OYqLizt97L///S/8/f0BANnZ2R32/nvqqac6jOmzZj29V4B+mEJX7r77bmzYsKFfYgOYVBERERGZBGf/EREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJMKkiIiIiMgEmVUREREQmwKSKiIiIyASYVBERERGZAJMqIqJ2zp8/j+nTp+Nf//qXUeevW7cO06dP7+eoiMjcMakiIiIiMoHBu4MlEZGJvPLKK2hsbJQ6DCKSGJMqIqLb5OfnJ3UIRGQGmFQREXXj0qVL+Pjjj5Geng6FQoHx48fjySefRGBgoHjOunXrcOHCBSQlJYlle/bswaZNm/Dyyy/Dy8sLW7duRWZmJpRKJSZPnoynn34abm5uUrwkIuonHFNFRNSFtLQ0PPvss3BycsLixYsxZswY/PTTT1i7di0KCwuNusbRo0fx8ssvw9vbG/fffz+GDh2Kffv2YcOGDf0cPRENNLZUERF14fTp03j++eexaNEisWzHjh14++238d577+HPf/5zj9c4fvw43nvvPcTGxgIAtFotnnvuOZw/fx6pqakYOXJkv8VPRAOLLVVERF0ICgrCggULDMoWLFiAwMBAnDhxAlVVVT1eY+7cuWJCBQAKhQJ33303AODq1asmjZeIpMWkioioC7GxsZDLDW+TcrkcsbGxEAQBmZmZPV4jKiqqQ5mPjw8AoK6uzjSBEpFZYFJFRNQFDw+PbsuNSYqcnJw6lCkUCgD6rkAish5MqoiIulBZWdltubOz80CGQ0RmjkkVEVEXUlJSoNPpDMp0Oh0uX74MmUyGiIgIiSIjInPEpIqIqAv5+fnYtWuXQdmuXbuQn5+PyZMnw93dXZrAiMgscUkFIqIuTJw4Ee+99x5OnjyJ0NBQZGdn4/jx43Bzc8O6deukDo+IzAxbqoiIuhATE4O//vWvqK+vxzfffIMLFy7gzjvvxObNmzF06FCpwyMiMyMTBEGQOggiIiIiS8eWKiIiIiITYFJFREREZAJMqoiIiIhMgEkVERERkQkwqSIiIiIyASZVRERERCbApIqIiIjIBJhUEREREZkAkyoiIiIiE2BSRURERGQCTKqIiIiITIBJFREREZEJ/P/5kHpjaPKCygAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ - "mu, mu_err = source_photons.calculate_mu(bins=20, show=True)\n" - ] - }, - { - "cell_type": "markdown", - "id": "b3417867", - "metadata": {}, - "source": [ - "Create an azimuthal scattering angle distribution (ASAD) each for the data and background simulation" + "# Compute the MDP for this observation, assuming a bkg rate\n", + "\n", + "mdp = source_photons.calculate_mdp(TOT_NUM_EVENTS, mu, bkg_rate=22.0)\n", + "print('\\n MDP:', mdp*100, '%')" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 15, "id": "f19a7f75", "metadata": {}, "outputs": [ @@ -666,45 +499,26 @@ "name": "stdout", "output_type": "stream", "text": [ - "modularion factor: 0.31048713272678163 +/- 0.0012843969646897993\n", - "------- Q/I, U/I -0.28751326582102654 0.8931376011806802\n", - "PD: 0.9382742950043191 +/- 0.12342890897514582\n", - "PA 76.82040325366 +/- 3.8511941530269103\n" + "modularion factor: 0.31 +/- 0.001\n", + "------- Q/I, U/I -0.5680315857794365 0.37067849501243155\n", + "PD: 67.83 +/- 0.12 %\n", + "PA: 79.64 +/- 5.34 deg\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAJvCAYAAAAtNjaIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hc5ZX/v9NnNJJGo957712jZtmWC2BsijFgegsBstnsbgpLSPLbkGQJ2WSzZDfAQihLh1ANGHdLtmyNeu+9916mz/39cZnBxpKtMpo75f08jx7Zo5n7nhmN5n7vec/5HhZFURQIBAKBQCAQCFYBm+kACAQCgUAgEAhrh4g3AoFAIBAIBCuCiDcCgUAgEAgEK4KINwKBQCAQCAQrgog3AoFAIBAIBCuCiDcCgUAgEAgEK4KINwKBQCAQCAQrgog3AoFAIBAIBCuCiDcCgUAgEAgEK4KINwKBQCAQCAQrgst0AKZieXkZ77//Ppqbm9HS0oKFhQU89dRTuP7669f0+IWFBbz00ks4d+4cVCoVYmJi8MQTTyAqKuqK+5aUlOD1119HX18fXFxccMMNN+C+++4Dl2szLyeBQCAQCAQLxWYyb3Nzc3jjjTfQ19eH8PDwdT1Wr9fjySefxKlTp3Drrbfisccew8zMDH70ox9hYGDgsvvK5XI8/fTTcHR0xI9+9CPk5+fjzTffxPPPP2/Kp0MgEAgEAoGwIjaTKnJzc8Onn34KNzc3tLa24tFHH13zY4uKitDY2IhnnnkG27dvBwDs3LkTd911F15//XX86le/Mt73hRdeQFhYGP70pz8ZM20ODg54++23cdtttyEoKMikz4tAIBAIBALhUmwm88bn8+Hm5rahxxYXF8PV1RXbtm0z3ubi4oIdO3agpKQEarUaANDb24ve3l7s37//si3SW265BRRFoaioaFPPgUAgEAgEAuFa2EzmbTO0t7cjIiICbPblWjYmJgZffPEFBgYGEBYWhvb2dgC4og7O3d0dHh4e6OjoWHWNyclJTE1NGf+/sLCAvr4+REZGgs/nm/DZEAgEAoFAMCdqtRojIyPIzMyEi4vLlq9HxBuA6elpJCUlXXG7IZM3NTWFsLAwo/haKcPn5uZ2mTj7LkeOHMEbb7xhmoAJBAKBQCBYHL/4xS+wZ8+eLV+HiDcAKpVqxeyX4TaVSgUAxu3T1e67vLy86hoHDhxAbm6u8f+dnZ147rnnsG/fPuTk5MDT03NTz4GwAm+9Bbz0EnD2LMBUdvOHPwQWF4HXX2dm/dU4ehR49lnAzY3+HhPDXCx//zvwn/8JBAXRsYSEbPqQOp0Oc3NzmJmZwczMDObm5rC0tITFxUUsLy9Dr9cb78tisSAWi6/4EgqFEM3PI+DxxzH/wx9Cf+AAeDwe+Hw+eDzepmNcCb1eD7VaDY1GY/zOPX8e7r//PTr/9CfMOztjaWnpsi+lUnnZMfh8vvE5ODk5wcXFBVKpFC4uLnB0dNySuAkEe4SiKDQ2NmJhYQGurq7405/+BG9vb7OsTcQbAIFAYBRml2K4TSAQAPhWtK12X8P9VsLd3R3u7u5X3B4bGwsHB4cVLUkIm0QuBzIzgYQEZtYfGABOnQJefhmwlN+vRgN873vA//0fcN99wP/8D+DkxGxMv/gFcNNNwJ13ArfcArzyCnDPPWt6qFqtxsTEBCYnJzExMWH8mpmZAUVRAABHR0e4u7vDx8cHzs7OcHZ2hpOTk/HfYrEYLBZr9UXefpu+APjd70zxbNdPSgrw618jSq8HDh++4scajQYLCwuYn583fjd8zczMoLW1FVqtFgD9WWYo8/Dw8DD+28XF5YqyEQKBsDoURaGqqgoikQg7duzA5OQkAFxVB5gSIt4AuLq6rrjl+d1t0ku3Ub28vK64b8wGsheRkZGIjIwEQF91kw9QE7G0BJw/D/zHfzAXw5tvAkIhcPvtzMVwKVotcNddwOef07Hdey/TEX1LQgJQUQE88QQtKvV6+vslLC0tYXBwEIODgxgZGcHExATm5uaMP5dIJPDw8EBUVNRlwkQkEm0utgcfBO64A2hpWXeGcm5uDufOncO2bdsgkUg2tr6zM5CTAxw/Djz++BU/5vF4cHV1haur64oP1+v1mJubu0zcTkxMoKWlxbirwOVyja+Xv78//P394eXlRbwrCYRVWFxcxOTkJNLS0uDm5mYUb+aC/GUCiIiIQH19/RXiqaWlBUKhEAEBAcb7AUBbWxtiY2ON9zNc9R84cGBD67NYLMzOzqKqqgoZGRlwdnbexLMhAAAuXADUamD3bmbWpyh6q/S22+iTL9PodLRY++wz4KOP6EyXpeHgALz2GsDjgXrgAUzPzaEzM9Mo2GZmZgDQmTRfX18kJCRclkHassafAwcAqRR44w3guee2Zo1rsWcPvbZeD6zzAo/NZkMqlUIqlRovFAE6c7CwsHCZoBsbG0NzczN0Oh04HA58fHyMYs7f3x8SieTqWUoCwU5wcnJCYWHhlpVQXAu7E2+Tk5NYWlqCn5+f8aqyoKAARUVFOHfunNHnbXZ2FmfPnkVOTo7xpBASEoLAwEB88cUXOHDgADgcDgDgs88+A4vFQkFBwYbjEovF4HK5KCsrQ25uLhwcHDb3RO2dmhrA0ZG57crz54GuLuBvf2Nm/e/yL/8CfPgh/WVhwo2iKMzNzRlF2mBGBjIqKxH/T/+EzvvugzIvD9HR0fDz82NGQAiFwN1309nK3/0OYCIblZ4OLCwA3d3AOk3IV4PFYhm3jsPCwoy3a7VajI2NGX8fbW1tkMvlAGjh7O/vb/xd+Pn5kW55gl3R3d2N2dlZpKSkMCbcABsTbx9//DEWFxeN250XLlzA+Pg4AODgwYNwdHTEyy+/jGPHjuGDDz6Aj48PAGD79u346KOP8Oyzz6K3txcSiQSfffYZ9Ho9HnroocvWeOKJJ/DUU0/hxz/+MQoLC9Hd3Y1PP/0UN954I4KDgzccO4/Hg0wmw4ULFyCXy5Gbm2u2vXObpK4OSExcd5bCZLz3Hl2Af4l3IGP8938Df/kL8MILwMGDTEcDAFAoFOjp6UFXVxe6urowOzsLgC5h8PPzg/J//geap5/GXZ9+CtZPfwpckulmhAceoOsDz55lJptr6IavqzOZeFsNLpcLPz8/+Pn5ISsrCwC9ZT00NGQUdCUlJVCpVGCz2fD390dYWBjCwsLg6+tLSj8INsvg4CCampoQHh7OeAbapsTbBx98gNHRUeP/z507h3PnzgEA9uzZs2qnFYfDwR/+8Ae88MIL+Pjjj6FSqRAdHY2nnnoKgYGBl903JycHv/3tb/HGG2/g+eefh0QiwT333IMHHnhg0/ELBAKjgKuurkZ2dvamj2m31NUBm8iEbgqKAo4dA268kTnxaKC4GPinf6IzbyvUS5kLnU6HoaEho1gbGhoCRVHw8PBAdHQ0QkJC4O/vD7FY/O2DjhwB8vLo17G+ns6kMkVqKuDjQ9edMSHevL0BT0/6fc2AABeLxVfU505OTqK/vx9dXV0oLS3F2bNnIRKJEBISYhRz5vC7IhDMwdjYGGpraxEYGLih+nZTw6IMLVkEs9LW1obvfe97eOWVV67oNF1YWABA76kTNoBSSZ/o//pX4PvfN//67e30du0XX9DCgynUajpj4+oKnDsHfLPNbw4oisLMzIxRrPX09EClUkEkEhlP7KGhodcu4u/qAuLjacuVP/zBPMGvxoMPApWVQEPDmh+i1+uhUCggEok2n5HaswcQieiGEwtDr9dfJs4HBwdBURTc3NyMv+/g4GCym0CwShYWFnDu3Dl4enoiPT19xazb1c7pW4FNZd5sBYNo0+l06OnpQVhYGOMpWquiqYku0F/BeNksHDsG8HjAN/WTjPHHPwIdHUB1tVmEG0VRGBwcRHNzM1pbWzEzMwM2m43AwEDk5eUhLCwM3t7e6xMxYWHA008Dv/413X0aH791T+Ba7N1LNy0MDgL+/mt6CJvNvjybuBmSkmhPPAuEzWYjICAAAQEB2L59O5RKpXFbvKOjA+Xl5cb3QmxsLGJiYsjFKcFqcHR0RGxsLIKCgizmXEzEmwUzNzeH1tZWLC4uIjk5melwrIf6eoDFYs7f7fhxID+f2W2+nh7gN7+ht0wTE7dsGYqiMDAwgObmZjQ3N2N+fh6Ojo6IiYlBeHi4abItP/0p7bX2+ON0BpGpD8/du+m1T5wAvlMLuxrLy8tobW1FdHT05puQkpJoQT43B2zUdsRMCIVCxMTEGLeXpqen0dXVhba2Nhw7dgxff/21UcjFxsYSIUewSJaXl7G0tAQPDw+EmMA83JQQ8WbBuLq6IiUlBdXV1eDz+ZfZkxCugqGo21QZj/WgVNJF7f/2b+Zf2wBFAf/4j4C7+5bEodfrLxNsCwsLcHJyMp6IAwICTFu0LhDQzRaFhbS5sAnqSzeEmxuQkUFnVtco3jQaDYaGhi7r5twwhkxyfT19cWBFGHzoMjIyoFAo0NraiubmZpw4cQLHjh1DQECA8f1DrJIIloBKpYJcLgebzUZBQYHFZNwMEPFm4fj5+UGlUqGpqQl8Ph/hW9xpZhPU1TG3ZVpaCigU9BYbU3z+OfDll8DHH5ss+6fX69Hf328UbIuLi3B2dkZcXJxRsG3ph9vOnbTB8E9/CuzfTwspJrjuOrp7l6LMnwGMjqbHvNXVWZ14uxSRSISUlBSkpKRAoVCgra0Nzc3NOHny5BVCbsPGxgTCJtBoNJDL5dDpdJDJZBYn3AAi3qyC0NBQqNXqy+YxElaBouiT27/8CzPrV1XRGT+mtmwB4Le/BXbtokdNbZKpqSnU1NSgtrbWKNji4+MRFxcHf39/836o/elPQGgoPW7sqafMt+6lyGTAM88Avb0mmcG6Lng82jKlrs68624hIpEIycnJSE5OhlKpNAq5U6dO4fjx4wgKCkJKSgri4uIY9dQi2A86nQ7l5eVQKBQW7blKxJuVEB0dbfy3SqUiXVurMTUFzMwwN2i9tpYWbkxZhNTX0wLy0083nBnSaDRoaWlBdXU1ent7IRQKkZiYiMTERPj5+TF3FertTdtkvP468K//ykztmyGjW1trfvEG0OKtvd3865oBoVCIpKQkJCUlQaVSoa2tDbW1tfjss8/w9ddfIyEhAampqfDx8bHITAjBNlCr1dBoNMjMzLToWkwi3qyMiYkJVFRUICsryzhrlXAJY2P0928MmM1OXR2Qm8vM2gAtbDw8gH371v3QkZERVFdXo6GhAUqlEiEhITh48CCio6MtJ+vx4IN088KFC7QHnLnx8aFrCevq1pTZFAgEiIyMNN3Flrc3Lc5tHIFAYLxgmJmZQU1NDWpqalBZWQlvb2+kpqYiISFh83NrCYRvoCgKer0eIpHIImvcvgsRb1aGm5sbXF1dUV5ejpycHFIT8l0MJs1eXuZfW6UCWlvp4epMoFbTwua+++gttjWgVCrR0NCA6upqjIyMwMnJCRkZGUhJSVl10DmjbN8OBAfTIpUJ8cZi0dm3NW5dCoVC03o+eXt/+x63E6RSKXbu3Int27ejs7MT1dXVOHbsGE6cOIHY2FikpqZalIUDwTppaWnB1NQUcnNzrWJKCBFvVgabzUZ6ejpKS0uNc1BN5iNlCxgyb0yIt+ZmQKtlrlniq6+AyUk6O3UNBgcHUVFRgaamJuj1ekRERGD79u2IiIiw7A8uNpvuNv3jH4Hnn2fGjiUpid6WXgNarRYzMzOQSqXGWcqbwsuLtgpRKumZq3YEm802TnlYXFxEXV0dqqurUV9fD1dXV6SmpiI1NdVia5QIlktnZye6uroQHx9v2Z9/l0DEmxXC5XKRlZWFCxcuoKmpCZmZmUyHZDmMjtINA0yc1A3ZGKaaFV57jbayWMXIVq/Xo62tDaWlpejv74dUKkVBQQGSk5MturbjCh54gDbt/egjZmxDkpKA//xPYH4euIatxdLSEuRyObZt22aaLLnhomRsjJ6da6c4OjoiNzcXOTk56O/vR3V1NYqKilBcXIzk5GRkZ2dbZuaYYHH09/ejpaUFkZGRFufldjWIeLNS+Hw+srOzwTHjyCOrYGyMmawbQE8zCAgAmBBCKhXtP/bHP17xI41Gg9raWpSWlmJ6ehqBgYG48847ERUVZZ1bTUFB9Jbp558zI94MzTCdnfTMU3Pi7U1/t3PxZoDFYiEoKAhBQUHYs2cPKioqUFFRgcrKSkRHRyMnJwcBAQFMh0mwUJaWllBfX4+goCCzjLQyJUS8WTHCb7ZNDF5JCQkJRMwxKd7Gxr49uZobw5ZtRobxpsXFRZSXl6OiogJKpRKxsbE4ePAg/Pz8mInRlGRkrHnr0uRcKqDMzaWZN8JliMVibN++Hbm5uaivr0dpaSleffVV+Pv7IycnB9HR0VazJUYwD2KxGDKZzCqb/4h4swFUKhWGh4ehUqmQkZFh3x9Qo6PMCSgmheMlW7YTExMoLS1FXV0dOBwOUlNTkZWVBalUykxsW8E6ti5Njqcn/Z0JAeXhQdf92VnTwnrg8XhIS0tDamoqOjo6cPHiRXz44YeQSqWQyWRISUkBn89nOkwCg8zNzWFqagqhoaFwd3dnOpwNQcSbDeDi4oKMjAyUl5ejtrYWKSkp1rkdZgrGxmgjVSYYHQWYmkFbVwdNUBA+PHIEHR0dcHJyws6dO5GWlmbM0NoUl46KMnfXqUAASKVrElCGwfQmu6DicGirEpJ5uyYsFsvY4DA8PIzS0lIcP34cRUVFSEtLQ3Z2Nmn2skMMdagODg4IDg622mQHEW82goeHB1JSUlBVVQWBQIC4uDimQ2KG0VFmt00ZWHtgYADc48cx4+CA+fl53HLLLYiPj7ftLfSYGNoOpa6OGcsQL681CSiDiDb52iTzti58fX1x8OBB7Nq1C3K5HBUVFSgrK0NWVhZyc3OJX5ydoFQqUVpaCj6fj6ysLKsVbgARbzaFr68vNBqNfW8JzM8DLi7mX5eizF7zNjw8jLNnz6KjvR3/2t8P7kMP4bHHHrOPrCufz+yoKG9v5rJfUiltF0JYNxKJBHv37sW2bdtw8eJFlJWVoaKiAtnZ2ZDJZLaZpSYA+HZeKQDIZDKrP08S8WZjBF3SgWbwl7IrtNo1G9SalLk52iTXUA+1hYyNjaGoqAgtLS1wd3fHnQUFED7zDISFheYdGdXRQduT9PbSxrkPPQRERJhv/aQkoKHBfOtdyhozb/Pz8ygtLUV2djacTVWbx+UCOp1pjmWniEQiFBYWQiaToaSkBCUlJUbfzMzMTKs/sROuhMViwdHREdHR0TaRaSXizUYZHh5GVVUV0tLS4Ovry3Q45kOrpU9u5kahoL9vYQ3N5OQkioqK0NTUBBcXF9xyyy1ISEgAu6WFvoMZhKOR118HHnmEFosURX//wx+AV181n32HhwdQVmaetb6Lg8O3v/OrQFEU1Go1KIoy3docDv0+J2wasViMvXv3IicnB+fPn8fZs2dRWlqKvLw8pKenW85YOMKG0ev1UKlUEIlESE9PZzock0HEm43i4+MDPz8/1NTUgMfjwcPDg+mQth6KAvR6ZsSb4WS6BWvPzMyguLgYdXV1cHJywo033ojk5ORva9qUSvq7ubZ8Ojpo4abXX/mzhx+ma9DCw7c+DqHw2+dubrhc5gQUk2vbKE5OTrjhhhuQk5ODc+fO4eTJk7h48SK2bduG1NRU264ftWEoikJtbS2mp6exc+dOq65x+y5EvNkoLBYLycnJ0Gg0qKioQE5ODlyYqAUzJ4atJBsRb8vLyzh79iyqqqrg4OCA6667DmlpaVeOWTK3eHvttdW3Z1ksOvv27LNbHwcRbwQT4+LiggMHDiAvLw9FRUU4evQoLly4gJ07dyIhIcE+6kltiKamJgwNDSE9Pd2mhBtAxJtNc+kc1N7eXiQzZWNhLky5NcXg2jqdDhUVFSgqKgIAFBYWIjMzc/UtHMPa5jqx9Pau/nwpiv65OWCxVs7+2cPapOZtS3F1dcWtt96K/Px8nDlzBp988gkqKipw/fXX21cZihXT3t6Onp4eJCYmwsfHh+lwTA4RbzYOh8NBVlaWaYZiWzqGrQ0mTmyG13eTa3d1deHYsWOYnJxEWloaduzYcW0vKkPGTaXa1NprJjj46pm34GDzxKFSAUwVHq+xMUYsFiMvL8+0fmJaLd1tS9hyPDw8cMcdd6Cnpwdff/01XnnlFaSkpGDnzp1wZGJ+MmFNKJVKdHZ2Ijo6+rImPlvCDs7oBEPGZmZmxjjI3ia7qdhsWjwwsaVkEG8bXHt6ehrHjx9HW1sbgoKC8P3vfx/ea7UdEQjo7+baQnzoIbo5YSUoiq57MwdK5bfP3dyssTGGy+WavuNbq6UbJghmIyQkBI899hgqKytx9uxZNDU1oaCgAFlZWaQezgIRCoXYvn07HGz474SINzuCz+djaWkJZWVlyM7Ots1sHFP1QBsUUCqVCufPn0dpaSkcHR1x2223IS4ubn21NU5O9PfZ2XWtvWEiIui6tocfvrzblKLo283RrADQz5ep7IdKtSbhqFQq0dXVhbCwMNN5iDHVUW3nsNlsZGZmIj4+HkVFRTh58iSqq6uxd+9eRJjTIoewKhMTExgaGkJiYqJNCzeAiDe7wjCE9+LFi6isrERmZqbNFXEyJt6kUnrbdmJiTXenKAr19fU4deoUFAoF8vPzkZubuzFrgoAAOhPT2Ajs3bv+x2+EBx6gu0pfffVbn7eHHzafcAPo5xsba771LmV8nLYquQYqlQrd3d3w9/c3nXjT6Yh4YxAHBwfccMMNSEtLw7Fjx/DOO+8gIiIC1113nVUOOLcVZmZmUFFRYTe/A/IJYGdIJBJkZmZCLpejoaEBSYYZkbaCWAwsLJh/XTabPpmvYWzR8PAwjh49isHBQcTFxWH37t2b6wTmcICEBKC2duPH2Ajh4ebpKl0JvZ6ea3rLLcysPzoKREYys/bCAtk2tQC8vLxw3333obW1FcePH8cLL7yArKwsbN++3TbLUiyYhYUFlJWVQSKR2GRn6UoQ8WaHuLm5IT093SZcpq9gjc73W8I1RiZpNBoUFRXh4sWL8PT0xAMPPIBgUxX3JyUBpaWmOZY10NUFLC19O6De3Jh5FJrFrE24DBaLhZiYGISHh6O0tBTnz59Hc3Mz9u/fj7CwMKbDswtUKhXkcjlEIhEyMzPtpgaRiDc7xeubAeo6nQ6jo6Pw8/NjOCITwaR4u8rA8L6+Phw5cgRzc3MoLCxEdna2aT9kkpJo/7U11mJZPYaZpkyIN62W3h7/5m/IrOj19PubibUJq8Lj8bBt2zYkJCTgyJEjeOutt5CSkoI9e/bY5kWyBcHn8xEYGIigoCC7mohBxJudMzo6iurqaqjVaoSEhDAdzubx9gYGB5lZ28sL6Oy87CaVSoVTp06hoqICgYGBOHz4MNzd3U2/dlISLSpaWgBb9/MDaPHm5cWMiJmcpJsz1rA2n89HcHCw6bbRZmbo3zPJvFkkUqkU9913H2pqanD8+HF0dHRg3759iImJYTo0m0Or1WJ+fh6urq6IiopiOhyzQ8SbnePn54e5uTk0NjaCz+dbfwbOywuoqmJu7ZIS4387Ojrw5ZdfQqFQ4Prrr0dmZubWObQnJtLfa2rsQ7zV1DC7ZQqsSbyJRCIkJCQwsjaBGVgsFlJTUxEeHo6vvvoKH3zwAeLi4nD99dcTbzgTodfrUVFRgfn5eRQWFtqmc8I1sP2qPsI1iY2NRUBAAGpqajA+Ps50OJuDyW3TkBCgvx/LMzP49NNP8c4778Dd3R1PPPEEsrKytna0jpMTIJMBf//71q1hKczMAKdOAbt2MbN+Rwf9fQ31ijqdDnNzc9CZyjjasC1PxJvF4+zsjDvvvBO33XYbenp68Ne//hV1dXWgmJwEYwNQFIXq6mpMT08jPT3dLoUbQMQb4RuSkpLg5eWFWXN5hW0V3t60/5e5pg1cApWQAGi1+Pszz6CtrQ033XQT7rnnHvPNlH3wQeD4cWBoyDzrMcV779Fbh/fey8z669iyXVxcxLlz57C4uGiatQ0XJmTb1CpgsViIj4/HD37wA4SHh+PTTz/Fu+++i7m5OaZDs1oaGhowOjqKtLQ0u7EFWQki3ggA6A+Z9PR0RH5jf2CyTIG5MZxQzZx9W1pawiff1LtFKZX4wQ9+gJSUFPMOsr7jDrpZ4c03zbcmE7z2GnDDDcwJmLo6ZrdsHRyYMycmbAixWIyDBw/i8OHDGB0dxV//+ldUVlaSLNw6UalUmJiYQFJS0ton0NgoRLwRjBiExsjICM6cOYPl5WWGI9oAhj9oM4q37u5uvPTSS+gaH4fa3x9ZQiGcDFMPzIlEAhw8CLz++uqD462dhga6pvGhh5iLgUnxNjpKsm5WTFRUFH7wgx8gPj4eX375JT788EMoFAqmw7IKKIqCQCDA9u3bERAQwHQ4jEPEG+EKXF1dweFwIJfLoWJg+3FTGDJvazDL3Sw6nQ6nTp3CW2+9BXd3dzz++OPgZ2aCVV+/5WuvyoMP0jVZFy8yF8NW8vrrtBnyvn3MrD8zA/T3M9cUQmxCrB6hUIgDBw4YB96/+OKL6OvrYzosi2ZwcBAlJSXQarV24+N2LYh4I1yBQCCATCaDTqeDXC6HRqNhOqS14+lJbysZisq3iJmZGbz22mu4ePEiCgsLce+999LZtqQkOjPDVOZr+3a6kP7ll5lZfytRKIC33qJr3ZjyczII8zVm3lgsFrhcrum2z9vb6cYYgtUTExODxx9/HFKpFG+88QaKioqg1+uZDsviGBsbQ21tLZydne22OWEliHgjrIiDgwOysrKgUCjQ3NzMdDhrh8MB4uO/NXHdAhoaGvDSSy9heXkZDz30EPLy8r4dx5KcDExN0fM+mYDNBv7pn2iRU1nJTAxbxe9+B8zPA48/zlwMlZWAUAis0VfK2dkZ119/PZydnTe/tmEkmK2NtLNjJBIJ7r//fhQUFKC4uBhvvPGG9TeNmZDp6WlUVlbCy8sLiQY7JAIAIt4IV8HZ2Rkymcz6DCYN2S8To1ar8dlnn+Hjjz9GZGQkvv/978Pf3//yO23bRgvIkydNvv6a+cEP6Fmnjz1GDzG3BVpbgT/8AfjXf6VnqjLFiRP075iJDEBPD7C4SMSbjcFms7F9+3Y8+OCDmJubw0svvWRdF8xbhFqtRnl5OaRSKdLS0szb/GUFEPFGuCouLi7g8/lQKBRoa2tjOpy1kZQENDcDarXJDjk8PIz//d//RXNzM26++WbceuutEAqFV97RxYX2Wzt2zGRrrxsuF3jxRbqw/6WXmIvDVFAU8MQTQEAALd6YYnkZKC4GrrtuzQ9ZWFhAUVERFhYWNr8+kyPBCFtOYGAgHnvsMYSGhuLDDz/EF198YV0lKyaGz+cjKSkJGRkZdjFofr2QV4SwJmZmZtDe3o6WlhamQ7k2SUmARkNnazYJRVEoLS3Fq6++Cj6fj+9///tITk6++lXg3r3A6dN0DEyRkwM88gjw85+bpXljS3n3XeDsWeCvfwWYnBN57hztH7h375ofotfrsbCwYJpapro6uqaTdJvaLCKRCIcOHcL+/ftRX1+Pl19+GWNMmY4zhEqlQn9/PwDAx8fHruaVrgci3ghrwtfXF3Fxcejs7ERXVxfT4VwdwziiTW6dqlQqfPjhhzh+/DiysrLwyCOPrM0U8rrr6NosuXxT62+a3/8e4POBH/+Y2Tg2w+ws8C//Atx227oyXlvCsWN09o+pMgImLUoIZoPFYiEtLQ2PPvoo2Gw2XnnlFdQz2cFuRjQaDeRyOdra2uw667gWiHgjrJnQ0FBERESgubnZeGVkkUgkdMflJsTb9PQ0/va3v6G7uxt33nkn9uzZs/YW9dRUwM2NnnbAJG5uwH/8B525euMNZmPZCDod8MAD9Hblf/0X09HQv8+9ewGmam/q6r6dYUuweTw8PPDII48gLi4On3zyCU6cOGHT3ag6nQ4VFRVQKBSQyWQk43YNiHgjrIvo6GiEhIRY/h/WJpoWOjs78fLLL0Ov1+ORRx5BdHT0+g7A4QB79gBffbWh9U3K/ffT26ePPkpvPVoTP/sZ8MUX9DgsPz9mY+nuprfh17FlalLm5ugOZpJ5syt4PB5uvvlmXHfddZDL5Xj77bet0zz9Ghjmlc7OziIrK4sZk3Mrg4g3wrqJj4+Hj48PAFjuB8kG/NYoisKFCxfwzjvvICAgAN/73vfg4eGxsfVvuw2orQUaGzf2eFPBYgEvvAAUFAC33vqtT5ml8/zzwH/+J/39xhuZjoa2XhGL17116+DggIyMDDg4OGxu/XX6yxFsBxaLBZlMhnvvvRejo6N45ZVXbK4OTqfTQavVIj09HVKplOlwrAIi3ggbpre3F8XFxZY5ZDk5GZiYWPOQdrVajY8//hgnT55Efn4+Dh8+vHI36Vq58UbA3Z2eCMA0PB7w0Ue0uWthIdDUxHREV+fFF2mvup/+FPiHf2A6Gtpf7Y036Nmx65wpyuPx4O3tvflMdU0N/XtcbxaYYDOEhITg0UcfhUAgwN/+9jebsRNRq9XgcrnIzs6Gp6cn0+FYDUS8ETaMv78/HB0dUVZWhqWlJabDuZy8PDrrdPr0Ne86OzuL1157De3t7bj99tuxc+fOzbem8/nAPffQGRtLKLyVSGjvOV9fYOdOOitoaVAU8D//Q9uC/OhHwHPPMR0RTXExvWX54IPrfqhKpUJHR8fmx8ydOkV3EPP5mzsOwapxcXHBww8/jKioKHz44Yc4ffq0VdfBdXZ2oqioCGoT2jrZC0S8ETYMl8tFVlYWeDwe5HI5lEol0yF9i4cHkJZ2Tb+1np4evPzyy1CpVHj44YcRGxtruhgeeojO/llC7RtANzCcOkXXj8lktFCylAH2s7PA4cPAD39IZ93+/GfmGgO+y2uvARERQG7uuh+qVCrR2tq6ub8NtRo4c4b5bluCRcDj8XDw4EHs3r0bJSUleP/99y3rs3eN9Pf3o6WlBUFBQeCTi5J1Q8QbYVPw+XzIZDLo9XrLsxC57jo627TClAGKoiCXy/HWW2/Bx8cHjz76KLxMPfA7IYEWkJawdWrAw4MeWv/oo7RQuukmYHKS2ZguXqS3ub/+Gnj/fcsSbnNzwMcf01k3pmK6cAFYWiLijWCExWIhNzcXd999N/r7+/HKK69gYmKC6bDWzOjoKOrr6xEcHIyoNY6aI1wOEW+ETSMSiZCXl2d5Y7T27qXnjFZVXXazXq/H0aNHcezYMchkMtx9990QbZX560MP0Zm34eGtOf5GEAqBv/wFOHKEFk5JSXRmx9zodPS80m3b6O3cujq6rsySeO892pj3vvuYi+HYMcDLi9iEEK4gPDwcjz76KDgcDl599VX0MjVTeR1otVrU1tbCx8cH8fHxTIdjtRDxRjAJIpEIbDYb09PTqK6utow6DJmMrvW6xG9No9Hgww8/RFVVFQ4cOIA9e/Zs7eiVu++mi9z/+MetW2Oj7N9PC6aoKGDXLtpWpKFh69fV6YBPPgGys4Ff/hJ46il6ekFw8NavvR60Wton79ZbmbUqMfjLkRFBhBVwdXXFww8/DF9fX7z11ltosvCGJC6Xi5ycHKSkpJB5pZuAfBoQTIpOp8PIyAhqa2tBMV1PxeXS3ZXf1L0pFAq8+eab6Orqwp133onU1NStj0EioYvvX3oJGB/f+vXWi58fvbX8/PO0D1xiIi0UTpwwfT3c0hJdZxcVBRw8SI+6KioCfvMbZga9X4t336X93X7xiw0fgsfjbW7Ez/AwLbCZ8pcjWAUCgQB33303YmNj8dFHH0HO9HSXFVhaWkJTUxP0ej2cnZ3JvNJNQl49gknx8PBASkoKhoaGLKOV/brrALkcc729ePXVVzE1NYX7778fkZGR5ovhRz+ixcmf/mS+NdcDh0PXv3V1Ae+8Q9fA7d1Lb6e+8grQ2blxIadWA+XlwNNP06Ol/umfgPR0+rbiYnrL1BIxbOnedNOmvNUcHByQnp6+cZ+3EyfoWrvduzccA8E+4HA4uPXWW5GTk4Njx47hxIkTzF9Af4NSqURpaSnGx8ehW6EGmbB+LPByl2Dt+Pr6Qq1Wo6GhAUKhEGFhYcwFs3cvoNej+Fe/gi4tDQ8//PDa5pOaEldX2q/sL3+hvcvc3c27/lrh8YC77qK7PouKaLH56KP0z9zc6G3orCz6e2IivR0sEtHbeRoNoFDQwq+igp7rWlYGVFfTNWOOjvSkhx/9yPK2R1fiww+B9nY6+7YJ9Ho91Go1+Hz+xjINx4/TYnejZtEEu4LFYmH37t1wcnLC8ePHsbCwgJtvvnnto/22AMO8UgBk7JUJIeKNsCUEBwdDr9fDnWGh0qPTwcnDAxHd3dj5wgtwXKfJqsn453+mtyb/67+A3/6WmRjWCosF7NhBf01N0VmysjJakP3nf9K2HpfC4VzZ0RsSQou8O++kvyclAQKB2Z7CptDr6d/R9dfT3cKbYGFhAefOncO2bdsgkUjW92Cdjs68PfHEpmIg2B8ymQxOTk745JNPsLS0hDvuuAMCBv7+dDodysrKoFKpkJubu3WNYXaITYk3tVqNV199FSdOnMDCwgLCwsLwyCOPICMj46qPu/322zE6Orriz/z8/PDee+8Z/79tlW2eRx99FPfcc8/Gg7dBQkNDAdDZh9nZWbi6upp1/YaGBnz22We4NTMTsaWlYDF5xefhQZ+E//IXOgvn7c1cLOvBzY0WMddfT/9frwc6OoCWFnpgvEJBb42KRPSXRAKkpgLW7JT+7rtAczPwt78xG8fp08D0NN1YQiCsk7i4OIjFYrz//vt4/fXXcffdd5t9ZiibzYZUKkV8fDxzF842ik2Jt2effRZFRUU4dOgQ/P398fXXX+NnP/sZnn/+eSRepc3+hz/8IRQKxWW3jY6O4m9/+9uKwi89PR3XfcdzKSIiwjRPwgbp6upCe3s7MjMzNz4rdB1QFIXS0lKcOHECSUlJiL7lFrASEugh57fdtuXrr8pTT9Fjln78Y7q2zBphs+mGA1v1ZpqdBX7yE+DQIboblklefx2IiQGucfFJIKxGcHAwHnroIbz99tt49dVXcc8995hlN4SiKCwsLMDZ2RlxcXFbvp49YjPirbm5GadPn8bjjz+Ow4cPAwD27t2LBx54AC+++CJefPHFVR+bn59/xW3/93//BwDYvUKhcEBAAPbs2WOiyG2fsLAwTE9Po6KiAjk5OXBxcdmytSiKwsmTJ3Hx4kXk5+dj586ddDt6VhbtlM+keHN1pa0nHnyQ9n8rLGQuFsLK/OIXdFfsn//MbBwzM8Cnn9KduMROgbAJPD098fDDD+Odd94xCji/Lba+aWpqQn9/PwoLCxnZrrUHbKbbtLi4GBwOBwcOHDDeJhAIsG/fPjQ1NWFsbGxdxzt16hR8fHyQkJCw4s9VKtXm5xXaCWw2G+np6XB2dkZZWRkWFxe3ZB2KovD111/j4sWLuP7661FYWPitj9BDD9HF32scVL9l3H8/kJ9Pb6GS949lUVkJvPACLZiY9HUDaHNgrRa4915m4yDYBBKJBA8++CDc3d3x5ptvYmBgYMvWam9vR09PD+Li4ohw20JsRrx1dHTA398fYrH4stsNrv+dnZ1rPlZ7ezv6+vqwa9euFX9+7Ngx7NmzB7t378a9996LkydPXvOYk5OTaGtrM3719fWtOR5bgMPhICsrCwKBYN1Cei1QFIWjR4+ivLwc+/fvR1ZW1uV3uOMOumD+rbdMvva6YLFogdDdTWfhCJaBTgc89hjdRfsP/7DiXTQaDZaXlzE/P4/p6WnjRYhKpUJXVxfa2trQ1NSExsZGo02Os7MzwsPD0dvbi4aGBjQ0NKCxsRHz8/MAgPn5eQwMDGBkZAQTExOYnZ2lSzhefx244QbrqY0kWDwikQj33HMPvL298dZbb6G/v9/ka/T29qKtrQ3R0dEICgoy+fEJ32Iz26ZTU1MrWkAYbptcx/xGgxhbacs0Pj4eO3bsgI+PD6ampvDJJ5/gN7/5DZaWlnDzzTeveswjR47gjTfeWHMMtgiPx0N+fr6xbZ2iKJM4bFMUhS+//BLV1dW46aabkJKScuWdJBLaGPa114Ann2R2Kyo+nu4+/d3v6G7M8HDmYiHQvPgiUFWFySNHMN/fD6VSCaVSicjISDg6OqKpqQnd3d2XPSQoKAiJiYlQqVRob28Hl8sFl8sFm80G9xvTYRaLheXlZSwtLQGg36sURcHHxwcAMDY2htbW1suOG7q8jLjKSqg/+ABnjh2DUCiESCSCUCiEUChEZGQkWCwWFAoFuFwusV4grBmDme+7776Lt99+G3fffbfJRJZOp0NnZydCQ0NJDbgZsBnxplKpVvwQ4/P5xp+vBb1ejzNnziAiIgLBK/hRvfDCC5f9/4YbbsAjjzyCl19+Gddff/2qaeIDBw4gNzfX+P++vj781tItI7YAg3AbHBxEb28vZDKZ8US3ESiKwpEjR1BbW4ubbroJycnJq9/5wQeBt9+m53le8rtghP/3/+iB54cPAyUl1mOjYcVQFIWlpSUsLCxgYWEBi4uLUKvVkInFwE9/isEDB1ADgN3SYhRLBkNRf39/uLq6GsUSl8s1frY4OzvjekM37ndYWlqCSqVCWlraFbsCAN3oFBYWBp1OB41GA61WC9HTT9Pdyfv2IXxkBEqlEgqFAvPz85iamjIO8i4vL8f8/DwEAgGcnJzg6OiI4OBgODk5Qa/XEwd7worw+XzcfffdeO+994wCbqVz3XrhcDjIz883/l0QthabEW8CgQAajeaK29VqtfHna6G2thYTExM4dOjQmu7P4/Fw66234k9/+hPa2tpW7Wp1d3dn3PPMknBycsLCwgIqKyuRmZm5oRONXq/HkSNHUFdXh1tuueWqHcUAgO3baYPY115jXryJxbQRbE4Obdz7l78wG4+NodFoMDs7i5mZGQgEAgQFBWFpaQlnz54FQJ/AHB0dIWGzQR06BFZkJKSvvorrJJIVLwIlEsn6fdpAD+GempqCVqtd9T5sNhtsNpteV60G3n8fuPde8MVihF8lK5uUlISlpSUsLi5icXERU1NT8Pf3B0CXfvT29hpFnYuLC9zd3VcUkAT7g8fj4fDhw3j//ffxzjvv4PDhw0Zrp/UyMzOD1tZWpKenkxo3M2Iz4s3NzQ0TExNX3D41NQUAaxZOJ0+eBJvNXrXebSU8v/G0MtSxEK6NRCJBZmYm5HI5ampqkJqauq4tVL1ej88++wyNjY04ePAg4uPjr/0gNht44AF6SPzzz9Ou/0ySlkZPMfjhD4GCAnpbl7BuKIqCXq8Hh8PB2NgYmpubjfVoPB4PAQEBAACxWIycnBw4OTnR2QGKAu65h25iqaqC2BIurr76ip5S8dBD17yri4vLqp3bXl5e4HA4WFhYwOzsLAYGBhAWFoaYmBgsLi5iYGAAUqkUUqmUnHDtlEsF3LvvvovDhw+vexrO4uIiysrK4OTkRDK9ZsZmxFt4eDhqamqwtLR02dWloXD4alewBtRqNYqLi5GcnLyuLNnw8DAAbKkFhi3i5uaGtLQ0VFZWoqOjY83zRvV6PT755BM0Nzfj4MGD6/MReuABupvw1VfpUU1M84MfAOfO0Sfr5GSAyVFiVoLB9Hl8fBzT09OYnZ1FREQEIiIiIBAI4ObmhvDwcEilUojFYuNFAYvFurwu9pVXaEPe994DzDnrdjUoip5gkZVF10VuAoMwM6DT6aDX6wEAy8vLGBwcNDZxiUQi+Pj4ED8uO4TL5eLOO+/Ehx9+iPfeew933HHHmuvVFAoFSktLIRKJkJmZyegILnvEZqTy9u3bodPpcOTIEeNtarUaR48eRWxsLLy8vADQBcKrdXrK5XIsLi6u2KgAALPfHQsE+oPwo48+gkQiMdaiENaOt7c30tPT11xzodPp8PHHH6O5uRmHDh1a/wknKIjOtjz3HKBUrj9gU8Ni0SLCwwO4/XbLiMkCWVpaMpZFNDc348KFC+jr6wOfz0dUVBS8v+nKdHFxQWJiIgICAuDo6Lh6Nre2FvjHf6Q7TO+800zP4hoUF9P1j08/bfJDczgc43awp6cndu/ejV27diE9PR2+vr7G7JtSqcSZM2fQ0NCA0dHRq273EmwDLpeL22+/HeHh4Xj//ffR3t5+zcfo9XrI5XKw2WxkZWWRphkGsJnMW2xsLHbs2IGXX34Zs7Oz8PPzw7FjxzA6Ooonn3zSeL/f/e53qK2txblz5644xsmTJ8Hn81FQULDiGp988glKSkqQk5MDLy8vTE1N4ejRoxgbG8PTTz9N3sAbxHDiVSqVmJycNNbtfBe9Xo+PP/4YbW1tuP322xEdHb2xBX/+c9oy5LXXLGNupEQC/P3vdP3bvfcCH3xAb/HaMVqtFhMTE8av5eVlJCUlITAwEMHBwfD394dEItlYt/LAAHDjjUBc3Jab8YpEIiQlJa1tpuNvfkNnX2+8cUtjMiASiYxZNwMURcHd3R3j4+Po7e0Fi8WCp6cnMjMzzRITgRm4XC4OHTqEjz76CB988AFuv/32qyYj2Gw2wsPD4erqCqFQaMZICQZsRrwBwM9//nN4eXnh+PHjWFxcRGhoKJ577rmrdyB+w9LSEkpLSyGTyVadwZaQkIDGxkZ8+eWXmJ+fh1AoRExMDJ588kmkbXKANQEYGBhAa2srWCzWFQ7gFEXh888/R2trK+64447NZTkjI+lsy7PPAg8/bBmdnikpdKH6rbcC//IvtKiwM2d9jUYDDocDNpuN2tpajIyMwNHREV5eXvDw8DBueW5qRuLsLD2nlcsFvvwS2OITD5/PR2Bg4LXvWFICnDlDdyAz+HsXiUTGxp+lpSVMTEwYs286nQ7FxcXw8vKCj48PpFKpSax+CJYBh8PBbbfdho8++gh///vfcffddyMkJOSy++j1eoyNjcHHx8dYS0pgBhZFURTTQdgjbW1t+N73vodXXnmFbLdeQm1tLQYHB5GZmWlsBKEoCseOHUN5efnamxOuRXMzXVf00kvAo49u/nim4qWXgMcfB/793+lZqDaORqPB6Oio0aQ2LS0N3t7eWFxcBIfDWVvGaq0sLwPXXQc0NQEXLgAbzdyuA7VajdHRUXh7e1/dQmHvXmB4GKirs9isq0qlQkdHB0a+sS8RCoXw9fUltXI2hlarxXvvvYeBgQHcf//9xgtpiqJQVVWFsbEx7Ny507R/mzaAuc/plvkpQbBbkpKS4OXlhcrKSkxPTwOgR5+VlZVh3759phFuABAbSw8ff/ZZYAWLGcZ47DHg3/6N3tr97/9mOpotpbm5GSdOnEBtbS00Gg1iY2ONRfaOjo6mPTmoVMAttwDV1XTGzQzCDaCLuuvq6uipCatRVgacOAH88pcWK9wA2m4pPj4eu3btQm5uLnx8fIz+mRRFoaWlxfg3S7BeuFwu7rjjDnh5eeHtt982ujgY6iDT0tKIcLMAbGrblGD9sFgspKamoqKiAiqVCnK5HEVFRcbiapPyi1/Q45Defps28LUUfvUrYGGBLqjn84Hvf5/piEzC9PQ0+vv7ERISAolEAqlUaqy52tK6GaWSHo9WXAwcPQpkZ2/dWhvhN7+hxaSVWMWwWCy4urrC1dXVeJtCoTB2sIrFYgQGBiIgIIDYkFgpfD4fd911F9544w28+eabyMvLw/j4OJKTk401ygRmsdzLPILdwuFwIJPJMD4+jmPHjkEmkyEvL8/0CyUk0NmYf/93egi4pcBi0XNPf/jDbzNxVlrdYJj7efbsWVy4cAFTU1PGbI2Pjw9CQkK2VrjNzAB79tCZrU8+AXbu3Lq1NkJ1Ne3t9otfAFZsteDg4IBdu3YhJycHUqkUbW1tKC0tNf6cVOdYHyKRCPfeey84HA7ee+89BAUFkTo3C4Jk3ggWSUdHBz7//HN4e3uDx+NBpVJtzVX8L38JpKYC77wD3H+/6Y+/UVgs2kjYx4feQh0cpOvhNjFKzFxcaprb3d2N7u5u+Pj4ICEhAW5ubuYrcu/vp5sTRkfpZgBLy7gBtDCPiKAzg1aOwUfPzc0N8fHxWF5eBkAbuZaWliIgIACBgYFwcHBgOFLCWnFwcMADDzyAV155BaWlpYiKiiLZVAuBZN4IFsfg4CA+/PBDRERE4J577oFOp0NZWdmK4882TUoKXfv25JN0J6IlwWLRTQtvvAH83/8BN98MfDPg3BLRaDTo6urC6dOnjUPcw8LCsGfPHqSmpsLd3d18wq2hgbZeWVqiZ9kyJNy4XC7c3NxWnt979CjwxRf0tqkViPL1wOPxjOPE2Gw2vL290dPTg9OnT6OsrMw4+YZguYyNjeHMmTMQCAS47777MDMzgw8++IB4/1kIRLwRLIrJyUm8++678PHxwW233QZHR0fIZDIsLy+joqLC6BJvUv78Z/ok/4tfmP7YpuD+++mTfFERve03MsJ0RJehVCrR3NyMU6dOobW1FW5ubkZTbD6fb37/w1OngLw82vi4tBRgsJvbMJLripmiy8vAP/wDsGsXbc5swzg4OCAhIQF79uxBcnIylEqlcSqNXq/fmr9pwqaYnp5GVVUVJBIJhEIhvLy8cOedd6K/vx+fffYZ2Qa3AIh4I1gM8/PzeOutt+Do6IjDhw8bT/rOzs7IzMzEzMwMurq6TL+wnx/wzDPACy8AVVWmP74puO46uuB+YIBusvjqK6Yjgk6nA0Bvi/X39yM4OBiFhYVISUmBs7Oz+QPSaOgt5j17AJmMfr0uMaBlAsMW8hUnu2efpWeq/vWvduPnx+FwEBAQgIKCAsTGxgIAent7cfr0aXR2dm5NZp2wbubn51FeXg4XFxekpaUZs+XBwcE4ePAgmpqacOzYMSLgGIaIN4JFoFar8e677wIA7rnnnita0V1dXZGbm7vuwclr5oc/pBsYHnsM+EaUWBxpabQPWFYW7cL/T/9EW2CYEYqiMDY2hosXL6KsrAwA4O7ujl27diEmJoY5t/XubiA/n270ePZZ4OuvASYE5HeYn5/HV199hfn5+W9vbGujx7M9+aRlzFRlAMMcTE9PT3h6eqKtrQ2nTp1CU1PT1W1VCFuKXq9HRUUFHBwckJmZecWw+ZiYGOzbtw9lZWWQy+UMRUkAiHgjWAAUReGTTz7B9PQ07rrrrlWzNi4uLmCz2ZiZmVnT/L11weUCL74IVFYC//u/pj22KfHwoLdQ//IXOt6sLKC11SxLj42N4dy5cygvL4der79sHu2KNV3m4r336LFS4+P0pIInn7RcvzSKokeyBQTYhQnztXB0dERSUhJ27dqFkJAQDAwMYG5ujumw7BY2m42UlBRkZWWt+jednp6OvLw8nDhxAh0dHWaOkGDAQj/hCPbEmTNn0NbWhttuu81YK3U1Zmdn0dbWZvot1Jwc4JFH6K230VHTHtuUsFh0prC8nM68paXRmZwtzMJptVrU1NSAx+MhJycHeXl58PX13bL11sTAAD3m7K67gP376WHzWVnMxnQt3nuP7nz9618BYnRqRCAQIDo6Grt37zZ+BlRUVKCxsRFKpZLh6GwfjUaD9vZ2UBQFV1fXa3aUFhYWIjIyEh999BHGx8fNFCXhUoh4IzBKfX09zp8/j127diFyjVtIISEhiIiIQHNzMwYGBkwb0O9/T2fhfvIT0x53K0hKojOFjz4KPP00Pe7riy9M5gk3NTWFsrIyqNVqcLlcFBQUICcnxzhjlDEUCrpGMSqKbuJ4+236ywK2Sa/K7Cw9t/a22+gaRsIVcDgcsFgsUBQFFxcXDA4O4syZM2huboZarWY6PJtEp9OhoqIC3d3dRnuXa8FisXDrrbfCxcUF77333pofRzAdRLwRGGNwcBBHjhxBcnIycnJy1vXY6OhoBAUFoa6uDqOmzJK5uQF/+APt+3b6tOmOu1WIxXS3bH09EBICHDhAC4OWlg0fcmZmBnK5HBcvXoRKpTKa6jI+EoeigI8+AmJigN/+lu7WbG8H7r7bOor+n36a7mr+85+ZjsTiYbFYiIiIQGFhIcLCwtDX14eioiLSmWpiKIpCdXU1ZmdnkZmZeWVX9FUQCAQ4fPgw1Go1PvjgA2MDE8E8EPFGYIS5uTm8//778PX1xY033rgh/6+EhAQEBgaaXlQ88ACwfTtw333AN3P9LJ7YWOD4ceCzz4DOTrr54vvfp8XNOmhra0NJSQmUSiXS09Oxbds2ODk5bU3Ma4Wi6AaEggLaky8hAWhspEW2hWfbnJycsHv3bjgVFdHdzL/7HeDvz3RYVgOPx0NUVBQKCwuRnJwMNpsNrVaLnp4eIuRMQF1dHcbGxpCenn7ZuLO14uLigjvuuAODg4P46quvSAeqGSHijWB21Go13nvvPeMA5I0Wu7NYLCQmJkIikUCv12PJVAa2bDa9DafRAPfeC1jLSYLFAm66CWhupkd+ff45PTPz5puB8+dX3U7VarXG187HxwepqakoKCiAD8M2G1CpgNdeo7eDb7iBnlFqMLa1ki5NNpsN4dgY2A8+SGdFf/hDpkOySvh8Pjw9PQHQXpBNTU0oKirC2NgYw5FZLxRFGRsUDK/tRggMDMT+/ftRXV1t7EAnbD1EvBHMCkVR+PTTTzE9PY3Dhw+vK01/NZqbm3HhwgXTCTg/P1rAnThB18FZEwIB8LOfAb29wCuvAB0dwLZttPfZBx/QIgj072JwcBBnz55FTU0NANpTz8/Pz3yTEFZidJTOUAUF0Q0kERHAuXNAWRk97sqKWJ6dReW+fVh2dKQnZVjD9q6F4+3tjW3btkEkEqG8vBxlZWWm+7u3E5RKpfHi18/Pb9PHM5S+HD9+nHSgmgki3ghm5ezZs2htbcXBgwfX1Fm6ViIjI8Hj8SCXy03XnbZnD12n9Mtf0oav1oZQCDz8MD0q6uhRwNGR7s709IT60CG0PPss6uRyuLq6Ii0tjdlYR0aA//kferva15euabvlFtoG5bPPaA83KxQ+mqefxkhrKzRvvAFIpUyHYzM4OzsjOzsb6enpWFxcJN5w66C/vx+nT5/GwsKCSY+7a9cuRERE4KOPPsKEtZSbWDFEvBHMRkNDA86dO4fCwkJEmXhkEZ/Ph0wmg16vh1wuN51b+7/9G521OnwYsNYtGjabzlidPg20tED/k59AVVWF2Kefxg0PPIC0P/4Roi++AAYHzReTTkc3WfzlL/Tr6+cH/PM/Aw4OwN/+Rk8fePFFq9keXZHPPqPr3B58kLZzIZgcHx8f7NixA+7u7gCAyspK9Pf3k9qrVRgdHUV9fT0CAwNNXsvKZrNx8OBBSCQS0oFqBoh4I5iF0dFRfP7550hKSkJubu6WrCESiZCdnX3Z7MRNw+EA775Li4177rHc6QtroL+/H8rgYLB/9SuwGxpAtbSA9dRTdGfqHXfQxrH+/sDBg/SkgnPngMXFzS9MUcDwMF2D99RT9HxWFxfa6uQnPwGcnOjatvFxOkP40EPABoqnLYqeHrrx5cYbaQ86wpZhmAKg0+nAZrNRV1eHixcvYtEU710bYmpqClVVVfDx8UF8fPyWrGHoQFUqlfjoo49IU8kWwqAtOsFeUKlU+Pvf/w53d3fs379/S+upHB0dsX37dtOOafLxoQXc7t10I8Avf2m6Y5uB5eVl1NXVYXJyEgkJCQgODqZrDaOj6W3hp5+mty3LygC5nP76t3+jh6cDtNDy96ezY/7+9JenJ8Dn0554HA6g1dINHgoFLdQGB+mvoSH6u8FA2MeHrr375S/p72lptN2JLaFW02LY1ZXeCq6vZzoiu4DD4SA1NdVoIVRcXIyYmBiEhoYyHRrjUBSF+vp6uLm5ISUlZUs/g6VSKW677Ta89dZbOH/+PAoKCrZsLXuGiDfClkJRFL744gssLi7i+9//vlnGKBmE2+DgICYnJ5GUlLT5D6vCQuBXv6JFTUaGVZisUhSFnp4etLa2GreVPTw8Vr6zjw/dlXrzzfT/tVqgqYmulzMIsKEhWogcPUpbqGi1Vx5HKKRr1gxiLyuL/ndAAJCeTv/bCmvX1gxFAf/4j/QM2gsXIPT2RrRazdzMVzvEzc0NBQUFaG9vZ7bxxoJgsViQyWTg8XhXzCvdCkJDQ1FQUICioiIEBgYiJCRky9e0N4h4I2wpVVVVaGxsxKFDhzbkI7QZ2Gw2BgYGwOPxEBcXt/kD/vKXQFUV7ZBfXGzxdUxLS0toaWlBUFAQoqOj1yecuVx6WzMpafX7UBQt4HQ6gMejM3D2zu9/T8/G/dvfgPR0CABEREQwHZXdweFwEBMTY/x/U1MTOBwOIiMjzSJeLAWlUommpiYkJiaa3WR727Zt6O/vx8cff4zHHnsMjo6OZl3f1rGfdzHB7IyMjODYsWPIzMw0jXhaJ76+vkhISEB3d7dp2tc5HOD994G4ONp3rLt788c0MXq93mhg6ujoiMLCQsTHx29NxpPFokWbUEiEGwC8+SY9F/f//T+6yxf0zMjR0VHTNdAQNgSfz0dXVxeKi4sxPT3NdDhmQaPRQC6XY2ZmBtqVsuRbDJvNxq233goA+Pjjj0n9m4kh4o2wJSiVSvz973+Hh4cH9uzZw1gcwcHBiIqKQmtrKwZN0U0pFgNffkk7+193HTA5ufljmoilpSWUlJSgqakJU1NTAEC268zFyZO0YHv4YVq8fcPy8jIqKipI5x3DREREYNu2beByubhw4QJaNjE+zhrQ6XQoKyuDSqWCTCZjbLSdo6MjDh48iN7eXpw7d46RGGwVIt4IJsdQ57a0tIRDhw6Zpc7takRGRiIuLm71eq/14uEBHDsGzM3RFhzz86Y57iYYGBhAcXExtFot8vPzTfdcCdemtJT2pNuzB3jpJduu6bNinJyckJeXh5iYGEYyUeaCoihUVlZifn4eWVlZjG9XhoSEYPv27SguLka3Be5WWCtEvBFMTkVFBZqamnDTTTeZvc5tNUJDQyEQCKBUKk2zbRIWRs8S7eyk7SAYzKxMT0+jtrYWvr6+2LZtGyQSCWOx2B21tbSAT00F/v53ulaQYLGwWCyEh4cjISEBADA0NIShoSGGozItLBYLXl5eyMjIgIuLC9PhAADy8/MRGhqKjz/+2OTmwPYKEW8EkzI8PIzjx48jKysLsbGxTIdzBW1tbZDL5Zidnd38wZKT6YHp1dV05sVgh2EmDCOBXF1dkZeXh+TkZMaznHZFSwudbYuIoLfSHRyYjoiwTqamplBdXY3a2lqbyMYZLkyDg4MtKvtuqH9js9mk/s1EEPFGMBmGOjdvb2/s3r2b6XBWJD4+Hs7OzigrKzONiadMRg9KP3cOOHSI9jnbYiiKQkdHB86ePWsczC0lo5fMS0sLsGsX4OVFb6E7O694NzabDScnJ7vqcLQmEhMTkZKSguHhYZw7dw5zc3NMh7Rh2tvbceHCBYt9DmKxGAcPHkRfXx+KioqYDsfqIZ8oBJNAURSOHDkChUKB2267zWIzQBwOB1lZWRAIBJDL5aaZibhjB/Dpp8CpU/QJfQu72VQqFeRyOVpbWxEeHm5RV9d2Q0kJkJtLm/CePAm4ua16VycnJ2zfvt3ko4gIpsPf3x8FBQXgcrlobGxkOpwN0dvbi7a2NkRHR1t02URwcDB27tyJ8+fPk/q3TULEG8Ek1NfXo7m5GQcOHLD4LBCPx4NMJgObzTbdVep11wFnzwLt7fSJva/PNMe9hKWlJZw7dw6Li4vIzs5GdHQ0yeiYm08/pSdtJCUB588D3t5MR0QwAWKxGHl5eUhPTwdA/63prGQU3vDwMBoaGhAaGmoVnoJ5eXkICQnBZ599BqVSyXQ4Vgv55Cdsmvn5eXz99ddITEy0yDq3lRAKhdi+fTu8vzn5mqQGIysLuHCBrn3LzqZd9k2ISCSCt7c38vPzjYO4CWbkhRfoua8HDtBbpWsoBjf8bcxbQEcy4eqw2WwIBAJQFIWKigqUlJRYhcVLb28v/P39reazl8Vi4aabboJKpcLXX3/NdDhWCxFvhE1BURQ+//xz8Hg8XH/99UyHsy4MWavW1laUl5ebRsBFRtLWET4+QH4+cObMpg6n1+vR1NSEubk5sNlsJCQkEO82c0NRtPnuD34A/OhHwHvvAQLBGh9KQavVgqKoLQ6SYCpYLBZSU1Oh1Wpx/vx5TFqQl+NKZGVlmWYEoBmRSCS4/vrrUVdXh9bWVqbDsUqIeCNsiqqqKnR1deGmm25izAhys7i7u2Nqago1NTWmOcl6eQFFRUBODr2d+t57GzqMWq2GXC5HT08Paa9nCo0GeOAB4NlngT/+EfjznwGyVW3zODs7Iz8/HxKJBHK5HP39/UyHdBmLi4soLi7G0tISOByOVZZPJCUlISoqyugJSlgf1vcbJ1gMMzMzOHHiBNLS0hAeHs50OBvG3d0daWlpGBkZQUNDg2kO6uREd6EePgzcdRfwhz/QGZw1Mjc3Z6xvy8nJgb+/v2niIqyd2Vlg/35afL/7LvDjHzMdEcGM8Pl8ZGVlITQ0FA4WZAOjUChQWloKgI7RWmGxWNi/fz8oisJXX31FstPrhIg3woagKAqfffYZHBwcGB1/ZSq8vb2RmJiIvr4+DAwMmOagPB7wxhvA008DTz5J10pNTFzzYXq9HhUVFeDz+cjPz7cYo2O74uJF2sdPLqfr2w4fZjoiAgOwWCzExsbC3d0dFEWhpaWF0SJ7QzaezWYjKysLPB6PsVhMgaOjI/bt24fm5mar7fRlCiLeCBvCsJVw8803Q7DG+h9LJzAwEBkZGfDz8zPdQVks4Le/pU1c5XK6S/H06VXvrtfrjR/Mubm5VrsVbbXodMBvfgNs2wb4+9NNJzt3bvhwjo6O2LZtG+MjigibR6lUYnBwECUlJabxiNwAFRUV0Gg0kMlkNlP7GhcXh/j4eBw9epSUh6wDIt4I62ZiYgKnT5+GTCZDcHAw0+GYFG9vb7DZbMzOzmJ4eNh0B963D6ivB2JjaauJp56i66m+gaIoNDY2ory8HBRFwcnJCRwOx3TrE67N4CBQWAj827/R2dKiIiAoaFOH5HA4kEgk5HdpA4hEIuTn54PL5aKkpMQ0Y/bWSXR0NLKysiAWi82+9layb98+cDgcHDlyhGyfrhEi3gjrQq/X49NPP4WLiwt2biIjYekMDAyguroa4+Pjpjuojw9w4sS3xe95eUB3N/R6PaqqqtDb2wsfHx+r6hqzGT77jM6KdnXRfn2//rVJ5pQqFAo0NDSYxgyawDhCoRC5ublwdnZGaWmpWTJFFEWhr68PFEXBzc3Nok14N4pIJMKBAwfQ0dGBmpoapsOxCoh4I6yLkpISjIyM4JZbbrH6eourER8fDy8vL1RWVmJmZsZ0B2az6fq3CxeAyUlQycnofOYZjI2NIT09HUGbzPQQ1olCATzxBD2btqCA3ibdts1kh1er1ejt7YVarTbZMQnMYjD5jo+PN8vkjIaGBjQ0NJhmHrMFExkZidTUVBw7dszmn6spIOKNsGbGxsZQVFSE/Px809aFWSAGrycXFxeUlZWZ/go7MxOoqcFyYSEif/1r7H7hBXhbgSGoTXH0KN2U8PrrwEsvAR9/TI+8IhCuAZvNNl5ojY6ObplXWWtrK/r6+pCUlGTxk2tMwd69eyESifD555+T7dNrQMQbYU0Y2rldXV2xzYSZCUuGw+EgIyMDLi4upjHwvQSNRgM4O0P86afQvP02+IZ6uKefBhgqhrYb2troGsR9+wA/P6CqCvj+9+nmEgJhnSgUCuN2nyk/J7q7u9HR0YHY2FgEBASY7LiWjEAgwP79+9HT02M62yYbhYg3wpqora1Ff38/9u3bZ7FD57cCwxaJRCKBXq83yfbX7OwsTp8+jbGxMXqNu+8GWluBn/0M+M//BKKigLffXpcvHGENzM0BP/kJEB8PNDfTmbbTp2nRTCBskJCQEKSmpmJ4eBiVlZUmE3ALCwsIDw9HWFiYSY5nLYSHhyMuLg7Hjx8ns0+vAhFvhGuyvLyMkydPIjExESEhIUyHwxi1tbWQy+XQarUbPsbMzAzkcjkcHR0v928Ti4FnngFaWui5qPfeSw+4r6w0QeR2jl4PvPoqPbrsxRfpbtKWFuDWW7c82yYQCBAaGmozdjqElfHz80NGRgYmJiY27Vdm+HxJSkpCTEyMKcKzOvbu3QuNRoPTV7FVsneIeCNck1OnTkGv19uEGe9mCA8Px/Ly8obnoE5PT0Mul8PJyQkymWzlho/gYOCjj+iZqIuLdG3cQw8BpjIOticoirb7yMwEHnkE2LWL3jJ9+mnATB5ZQqEQcXFxNuPJRVgdT09PZGVlISIiYsPHmJ6exqlTp0zbJGWFODs7Y+fOnaisrMTQ0BDT4VgkRLwRrorBMqOwsNDujUadnZ2RmZmJmZkZVFVVrbugtqWlBRKJBFlZWdfeet6xA6iuBv7nf4DPPwdCQ4G776ZvI1wdrRb48EMgK4t+HSkKKCkB3nmHNt41ayhazMzMbCpbS7Ae3N3dIRKJoNFo0NjYCJ1Ot+bHzs/Po7y8HM7OzjZpB7JeMjMz4eXlha+++srkNce2ABFvhFXR6/X48ssv4evri7S0NKbDsQhcXV2Rnp6OsbExjIyMrOkxBpGXkZGxNuFmgMulbSx6e2lfuIsXgbQ02vH/6FF6O5DwLQsLwH/9FxAeDtxxBz1f9uhRoKKC3oJmgKWlJZSUlJDB23bG4uIi+vv7UV5eviYBt7y8DLlcDgcHB2RmZlrloHlTw2azsW/fPmMtIeFyyDuEsCplZWUYHx/HjTfeSD5MLsHLywsFBQXw9fW95n0nJydx7tw5KJVK8Pn8jTntOzkBP/oR0NEBfPABvZ26bx9deP/qq4C9F/UODdHeeQEBwE9/SpsfV1fTzQjXX0976xEIZkQqlUImk2F2dhZlZWXXzLzW1taCy+Wu7+LODggICEBaWhpOnz7N2EgyS4V8qhFWZH5+HmfPnkVGRsaaRIq9YTDnHBwcRHd394r3mZycRHl5OQQCgWkMjblc4PbbgbIy4Nw5ugD/e9+jRzj98pdAQ4P9dKiq1fTA+HvvpesEX3qJfi26u+lO3ZQUpiMk2Dmurq7IysrC3NyccezdaiQnJ0Mmk5HGlhXYtWsXOBwOjh8/znQoFgURb4QVOXbsGPh8vk2PwDIFi4uLaGpqwsB3Ggqmp6dRXl4OV1dXZGRkmHa2JYsF5OfTI51aW+muyf/+byAxEYiJAX7xC3pSgK0JObWa3gZ98EHA25vOqsnlwHPP0Q0d//EfdPaNQLAQXF1dIZPJ4O/vf8XYO51Oh6amJmg0Gjg4OMDBwYGhKC0bkUiEPXv2oKGhYdULZXuEiDfCFXR0dKC5uRl79+4lXXLXIDo6GkFBQairq8Po6CgAuki9oqICLi4uphdu38VgfzE2Bnz5JW0z8te/0pMDoqKAn/8cqKmxXiGnUgFffAHcfz/g6UlvF1+8SNcC1tYC7e3Av/wL4OzMdKQrwmKxwOfzybxaO0YqlSIwMBAAPY1Br9eDoihUV1ejr6+P1EOugaSkJAQFBeGrr74izT/fQDbXCZeh1Wpx9OhRhIaGIj4+nulwrIKEhASo1WpUVVUhOzsbrq6uSE1NhVQq3VrhdikCwbdTA/73f2mrkb//nf73s88CYWFAYSEgk9FfUVGWWQumUND1anI5UFoKnDwJzM8D0dHAP/4jcOgQXetnJWLI2dkZe/fuZToMggWwtLSEqqoqYxnK2NgYMjMz4eLiwmxgVgCLxcK+ffvw0ksvobS0FPn5+UyHxDhEvBEuo6KiAnNzc7jrrrtItmCNGOag1tTUYGRkBK6urvDw8GAuID4fuO46+uull4CzZ4FPPqHtMl55hc7CSSS0/5lBzGVlAW5u5o2TooDOTrqGTy6nv+rqaKsPkQhITwf++Z9pwRYXZ97YCAQTIxaLkZKSgk8//RQUReGWW26Bp6cn02FZDZ6ensjMzERJSQlSU1MhFouZDolRiHgjGFEoFDh37hxSU1OZFR9WiE6nw8LCAmZmZhAYGAg2m20ZHy48HrBnD/0F0COiKiq+FUwvvgj85jf0z8LCaJsNf3965qe//+X/lkrXl/HS6YDRUbobdHDw2y/D/5uagKkp+r6RkbSIfPhh+nt8PB27lbOwsICKigpkZGQYm1wI9ouvry+SkpLQ0tKC5eVlpsOxOrZt24ba2loUFRVh3759TIfDKES8EYycP38eOp0O27dvZzoUq0Kn06G8vBwqlQq5ubloamrC4uIicnNzLa9mUCKhJw3s2kX/n6KAnh5ayFVUAH19QH093RgwOnp5rZxIRAs5sZgWVjwe3QHL4dDZMo3m2+/T08DICC3gDAgEl4vCHTtooZaZCVw6KsyG0Ov1WFpaIiajBCwtLUEsFiMvLw+enp6YmJhAWFgYsWFaBw4ODsjPz8fp06eRlZUFd3d3pkNiDCLeCABg9CPatm2b3U9SWA+GwuO5uTlkZ2fD0dERiYmJKCkpQVlZGXJyckxjE7JVsFj09IbQUOCuuy7/mUZzZeZsaAhYXv5WpGk0tEAzCDmDqJNKvxVqhu9ublZTq0YgmJLR0VFUVlYiMzMTnp6eiIyMRHh4ONhsNvR6PRFw6yArKwvl5eU4ffo07rjjDqbDYQybEm9qtRqvvvoqTpw4gYWFBYSFheGRRx5BRkbGVR/32muv4Y033rjidj6fj1OnTl1x+5dffon3338fo6Oj8PDwwG233YaDBw+a6mkwwunTpyESiZCdnc10KFYFRVFgs9lIT0+HVCoFAOPrWFJSgvLycshkMvM1LpgSHo+23iD2GwTChpmamkJVVRV8fHwuK0dhs9lYWlqCXC5HWloaaVxYI1wuF4WFhfjkk0/Q399v7OS1N2xKvD377LMoKirCoUOH4O/vj6+//ho/+9nP8PzzzyMxMfGaj//xj38MkUhk/P9KV0Off/45/vSnP6GgoAB33HEH6uvr8fzzz0OpVOLuu+826fMxF8PDw2hoaMD+/fvB5/OZDsdq0Gq14HK5K44Oc3R0RFZWFsrKyjA9PU1qCAkEO8Rg0Ovm5oaUlJQrmsCEQiH4fD4qKiqQn59veWUWFkpCQgJKS0tx4sQJPPzww3bZXGcz4q25uRmnT5/G448/jsOHDwMA9u7diwceeAAvvvgiXnzxxWseo6Cg4KpXPyqVCn/729+QnZ2N33xT5L1//37o9Xq8+eabOHDggNUVJVMUhRMnTsDDwwMpxJV+zUxOTqKqqgo5OTmr/s6lUikKCwste9uUsKWIxWLIZDLLaF4hmJ22tjY4OjoiPT19xWQAh8NBRkYGzp8/j4qKCuTk5Fhnlt7MsFgs7NmzB//3f/+HlpYWxMbGMh2S2bGZjfbi4mJwOBwcOHDAeJtAIMC+ffvQ1NSEsbGxNR1naWlp1TEmhtqmm2+++bLbb7nlFigUCpSWlm44fqbo6OhAb28vdu/eTeou1sjS0hIqKyshkUiuWR9oEG7Nzc1oamoyR3gEC4LL5cLDw4PMq7RTUlNTrzmvVCgUIjMzEwsLC6ivrzdjdNZNSEgIIiIicOrUKegubYyyE2zmE6WjowP+/v5XXOHGxMQAADo7O+Hl5XXVY9xxxx1QKBQQiUTIy8vDD37wA7he0gXX0dEBgHbVv5SoqCiw2Wy0t7djj8GS4TtMTk5iymCLAKCvr2/tT26L0Ov1OHnyJIKDgxEREcF0OFaBRqNBeXk5+Hw+0tLS1pyud3BwQENDA/h8PnmtbQRDBymbzcbCwgKmpqZAUZTRQV8kEsHNzQ09PT3QarUQCoVgs9lgsVhgsVgIDAwEh8OBUqkkkxhsCI1Gg+rqasTFxa25+UsikSA1NZXMNl0nu3fvxosvvojKykpkZWUxHY5ZsRnxNjU1BbcVTEYNt01OTq76WCcnJ9x6662Ii4sDj8dDfX09Pv30U7S0tOCVV14xCsKpqSlwOBxjYboBHo8HZ2fny8TZdzly5MiKTRFMUltbi4mJCdxyyy3kpLFG6uvroVKpkJ+fv67t0ODgYKjVarS2toLP5yMoKGgLoyRsFp1OB4VCAYVCYaxX7OzsxPT0NJRKJRQKBdRqNZKTkxEQEICZmRk0NjZeJs7c3d3h6OiItrY2AHQjC0VRRoHn6+sLDoeD+vp6jI2Ngc1mQygUQigUIiwsDN7e3lheXsbc3ByEQiFEIhEEAgH5W7VgdDodysrKNjTyytvbGwB9UTA/P08aGNaAp6cnUlJSUFxcjKSkJLuqGbQZ8aZSqVY8mRoK8FUq1aqPPXTo0GX/3759O2JiYvCb3/wGn376Ke655x7jMVZLf/P5/KuuceDAAeTm5hr/39fXh9/+9rerP6EtRq1W4+zZs0hISDCOayFcm6ioKAQHB2+ohikyMhJqtRr19fUQi8V27VFkiRgGhc/MzGBhYcFYPrFnzx4IBALj37eLiwt8fHwgFAqNmfmAgIAVu97m5ubA4XCwbds2SCSSFdeNiYlBYGAgFAoFlEollEqlse5pYmLisq00Ho8HPz8/JCQkAKCzPKSm0jLQ6/WorKzE/Pw8cnJyNmy51N3djfb2duTm5q76niF8y/bt29HQ0ICSkhLsMvhX2gE2I94EAgE0Gs0Vt6vVauPP18Pu3bvx17/+FVVVVUbxJhAIVh2Kq1arr7qGu7u7RZ2sKyoqsLy8jJ07dzIdilUwMTEBV1dXODo6bsoHLy4uDmKx+LLteIJ5UavVmJ2dxczMDGZmZgDAaOdiyHgEBwfD0dHR2A0I0L+71dhMNszJyWnVppegoCD4+voas4Dz8/NGsba8vIzTp09DLBZDKpUav8gJnxnq6+sxOTm56XmlISEhGBkZQXl5ObZt20a2Uq+Bs7MzsrOzUVpaiuzsbLtpDrKZCnU3N7cVty0Nt21EOHl6emJ+fv6yNXQ6nfED34BGo8H8/PyK27aWiEajwcWLF5GcnHzFFjDhSgzt/t3d3Zs+FovFQkhICNhsNmZnZzE7O7v5AAlXRaVSYXFxEQAwMzOD48ePo6ysDL29vWCz2Zd9NuTl5SEpKQlBQUFwc3ODWCxmfJvSUJbh5eWFiIgIBAcHG29PTU2Fp6cnFhcX0djYCLlcbnxcV1cXJiYmVm3AIpgWf39/k4wWNHSgGgzAye/v2mRnZ4PFYuHixYtMh2I2bCbzFh4ejpqaGuMIEgPNzc3Gn68HiqIwOjp6WXG54d+tra2Xmdm2trZCr9dbTSF6VVUVFAoF8vLymA7F4tFoNKiqqoKTkxPCwsJMeuzW1lbMzc0hNzeXTLUwMSqVCiMjIxgZGcHU1BTc3d0hk8ng7OyM1NRUuLi4mOUK3bDNuRVbm4Zj+/n5Afi2Tg+gt/B6enqgUCjA5/Ph7e0NX19fuLu7My5GbY3x8XF4eHiYdGdFKBQiNTUVcrkco6Oj8PHxMdmxbRGRSGT01czNzYWDgwPTIW05NpN52759O3Q6HY4cOWK8Ta1W4+jRo4iNjTV2mo6NjV3R6blS9uOzzz7D7OzsZR0sqampcHZ2xueff37ZfT///HMIhUKrmE6g0WhQUlKCxMREknVbA3V1dVCpVEhLSzO5lUpaWhoEAgHkcrnxpEvYOIYMxcTEBE6cOIHGxkawWCwkJiYiNTUVAJ3V8PPzM9vWioODA1JTU81yMuFwOMaLADabjV27dmHbtm0IDAzE1NQUKioqjB2yc3NzZN6qCejt7UVZWRlGR0dNfmx3d3fk5+cT4bZGZDIZKIq6LPtsy9hM5i02NhY7duzAyy+/jNnZWfj5+eHYsWMYHR3Fk08+abzf7373O9TW1uLcuXPG2w4dOoSdO3ciNDQUfD4fDQ0NOH36NCIiIq7wjXv44Yfx5z//Gb/61a+QmZmJuro6nDhxAt/73vfg7Oxs1ue8EQzZyfz8fKZDsXimp6cxMjKC9PT0LTnZ83g8yGQylJSUQC6XIzc3l0y4WCdKpRIjIyMYHh6GWCxGcnIyXFxckJSUBG9vb8ZfT71eb7QfYsJHUSKRQCKRICYmBgqFAhwOBzqdDhcuXACbzYa3t7dxbBPxeVwfhsk0ISEhWyawDPWLIyMjkEqldtVNuV7EYjEyMjJQVlaG7Ozsy6Yl2SI2I94A4Oc//zm8vLxw/PhxLC4uIjQ0FM899xySk5Ov+rjdu3ejsbERxcXFUKvV8PLywuHDh3Hfffdd8cdyyy23gMvl4oMPPsCFCxfg6emJf/iHf7iiY9US0Wq1KCkpQUJCgtXU5zGJq6srCgoKtlSUGzK2FRUVUCqVjIsNa2FmZgbNzc2Ynp421q15enoCoEWxpcw7XFhYwLlz567abWouDCczDoeDvLw8DA8PY2RkBAMDA+DxeNi1axcxE14jExMTqKmpgZ+f31UbWUyBVqtFY2MjxGKxsbaLsDI5OTkoLy9HWVkZtm/fznQ4W4pN/aUKBAI88cQTeOKJJ1a9z1/+8pcrbvvZz362rnX279+P/fv3rzs+pqmtrcXCwgLJul0DjUaDkZERBAYGmiWbKhaLUVBQABaLdZnxK+Fy1Go1FhcX4erqCpFIBB6Ph5SUFHh5eRG7jHXi7OwMZ2dnREdHY2FhATMzM+ByuaAoCjU1NfD19YWXlxcRCqswOjoKd3d3JCcnb/lrxOVykZqaitLSUrS3tyMqKmpL17NmDKPI5HI5srOzbbpT16bEG2F1dDodSkpKEBsbS4akX4O6ujpMTk7C09PTbNsUhhNAVVUV2Gw2UlNTyYnzGxYXF9Hd3Y2BgQGIRCLs2LHDOFKIsHkutSpRqVRQKBSoqKiAWCxGWFgY/P39ybzNb6AoCiwWC/Hx8aAoymwXWW5uboiKikJraytcXV3JZ/hVyMnJQUVFBcrLy206UUEu7+2E+vp6zM7OYtu2bUyHYtH09vZiZGQEycnJjNSXBAQEYGRkBI2NjWZf29LQarWoqKjA2bNnMTo6isjISOTl5RFRu4UIhULk5uYiLy8Pzs7OaGhosMqZzVuBQqHA2bNnMTk5CRaLZfbseHh4ODw8PNDZ2WnWda0NQ0d5aWmp0efVFiGZNztAr9fj/PnziImJueZ8V3tmaWkJzc3NCA4ONo6qMTfe3t5ITExEXV0d+Hy+3W2RUBSFyclJ4zB3NpuNpKQk+Pv7k61kMyKVSpGeno7l5WUolUoAdAa0q6sLYWFhdmdto1arIZfLQVEUY8+dxWIhLS2NZEHXQF5eHqqrq1FRUXHZZCNbgog3O6ChoQHT09NW0VTBJD09PRAKhYiNjWU0jsDAQKjVarS0tMDd3d0umkv0ej36+vrQ1dUFhUKBHTt2wNHREWlpaUyHtikkEolV1scacHBwMNqcLC8vY3x8HP39/fDy8kJkZKRdzN/UarUoKyuDRqNBbm4uox2fhtrO+fl5KBQKcjG+ChKJBMnJybh48SIyMzNtsiaWXMraOBRF4fz584iKiiJ+QdcgLi4O2dnZFnFlGx4ejuzsbLsQbhMTEyguLkZTUxNcXV2xbds2u8vsWAOenp4oLCxEcnIylpeXcf78+Ss8M22R+vp6LC4uIisry2JGL3V3d6O6upr4Q16FvLw8KBQKVFVVMR3KlkDEm43T3t6OyclJMk3hKiwsLGBqagosFsuivIEMju1DQ0MYHx9nOJqtY2pqCgKBANu2bUNqairjlhqmZHFxESUlJcbxXNYOm81GQEAACgoKkJCQYLRnWVhYsFnT3+joaGRlZVnU+zIuLg5cLhd1dXVMh2KxSKVSJCQkQC6X2+R7k4g3G6esrAx+fn4ICAhgOhSLRK/Xo6amBg0NDRY7Q3B4eBiVlZVXzNS1VrRaLVpaWoyF15GRkcjJybEKk+v1YpiFrNPpmA7FpLBYLAQHB0MkEoGiKJSVlaGoqAhjY2NMh2Yyuru7odFo4ODgAFdXV6bDuQwej4fk5GRMTEygt7eX6XAslqysLMzOzqKtrY3pUEwOEW82zPj4OLq7uyGTyZgOxWLp6OjA/Pw8UlJSLLaL0TCLs6ysDAsLC0yHs2EoisLAwADOnDmDnp4e4+2kEcG6YbFYyMrKgkgkMhqkWnumsbW1FU1NTZicnGQ6lFXx8PBAUFAQOjo6bDKzZAp8fX0RGBhokyOzyKemDVNWVgYnJyfGC/Atlbm5OXR0dCAyMtKitkS+C4fDQUZGBkQiEeRyOZaXl5kOad0YpnvU1tbCzc0NO3bsQHh4ONNhEUyEk5MTsrOzkZGRgcXFRVRXVzMd0obp7u5GR0cHYmNjLb5OODY2Fvn5+eQC6CrIZDL09fVtyfxZJiG/cRtleXkZdXV1yMjIsIgCfEukpaUFzs7OViEiDHNQXVxcrOqD2uCzxOVy4erqipycHKSlpVlUbSHBdHh7e2PHjh1IT08HQHdF9vf3W2xJwncZHBxEU1MTwsLCEBYWxnQ414TL5UIoFEKj0dh0XexmiI6OhkQisbnsm/WcBQjrwtBhY+1WC1tJWloaMjIyrEYMCQQCZGRkQCgUQqVSQavVMh3SVRkdHcWZM2eMdVBxcXF20T17KQ4ODkhJSTHabdgDbDbb+HzHx8dRV1eHsrIyqFQqhiO7NhqNBoGBgVa3W9HV1YXKykrSfboCbDYbmZmZaGhosPrt/EuxjrMWYV3odDpUVFQgISHBYlrbLQmlUgmlUgkej2e1GaDy8nKUl5dbZK2LTqdDQ0MDKioq4ObmBqlUynRIjMHj8eDv72+TPlNrITw8HDKZDPPz8yguLrbY7JAhQxwSEoKkpCSGo1k/4eHh4PF4aGpqYjoUiyQ1NRVsNtumbEOIeLNBWlpaMD8/TxoVVqG+vt7qU+hxcXGYnZ1FVVWVRW1JKRQKlJSUoL+/HwkJCcjIyACfz2c6LMZQq9Xo7e216TE918LDwwMFBQWQSCSorq6GRqNhOqTLmJ+fx5kzZzA0NMR0KBuGy+UiNjYWIyMjFiuQmUQkEiEpKQkVFRU20/lNxJsNUlZWhuDgYOK+vQKjo6MYGxtDdHQ006FsCldXV6SlpWFsbAz19fVMh2NEIBDA0dER+fn5CA4OZjocxlEoFGhoaLD77SyBQIDMzEzk5+eDx+NBo9FgaWmJ6bCwvLyMsrIyiEQio2edteLn5wcPDw80NjZa1AWdpZCVlYXFxUWbyU4S8WZjDA0NYWBggGTdVkCr1aKhoQFeXl6MzS41JV5eXkhOTsbAwADm5uYYi0Oj0aC6uhoLCwtgs9lIS0uzSc82wuZgsVjGMo729nYUFxdjYGCAsXhUKhXkcjk4HA5kMplNbG0nJCRYtO0Rk3h4eCAsLMw4o9baIeLNxigrK4NUKkVkZCTToVgc7e3t0Gg0iI+PZzoUk+Hv74+dO3cyZnUyPT1trGUyDDAnEK5FVFQUfH19UVtby9hWaktLC3Q6HWQyGQQCgdnX3wrEYjGkUikoirLrrfrVkMlkGB4exuDgINOhbBoymN6GWFhYQGNjI3bv3m01HZTmJCAgABKJxOY6/wzPp6WlBY6OjmaZpkFRFDo6OtDe3g6pVIrU1FSrbf4gmB8ul4vk5GR4eHigvr4es7OzKCgoMKutUXx8PFQqlc19HgBAdXU11Go1srOzmQ7FoggPD4ebmxvkcrnVTx0iZ3gboq6uDmw2GykpKUyHYnHo9Xo4OTnBz8+P6VC2DI1Gg7q6OrOYUapUKvT09BhHWxHhtjJcLhceHh7gcsl18kr4+fmhoKAA4eHhZhFuFEUZLSO4XK7NduMHBgZicnLSqpswtgIWi4WMjAy0trZaRM3lZiDizUagKAo1NTWIjY2FUChkOhyLYnh4GEVFRRbvi7ZZEhIS4O3tjaqqKkxNTW3JGgqFAlqtFkKhEIWFhYiMjCT1NVdBLBZDJpPZrEgwBQ4ODggMDAQAdHZ2oqWlZctqkurq6tDX12eVU0rWg4eHB3x8fNDc3Gwz3ZWmIjExEQDQ0NDAcCSbg4g3G2FgYABTU1Mk6/Yd9Hq9cTvR1rMfLBYLqampcHV1RXl5uckNKefn51FSUmLs1rL119MUUBQFrVZrEwXS5oDNZqOzsxO1tbUm9zBsbm7GwMAAUlJSrL6zdC3ExMRArVaju7ub6VAsCgcHB0RFRaGmpsaq/y6JeLMRampq4OLiQuwZvkNvby8UCgViYmKYDsUssNlsZGRkICQkxKS1PJOTk7hw4QIEAoHV26yYk/n5eXz99deYn59nOhSrIDQ0FGlpaRgeHkZ5ebnJsuVdXV3o6upCfHy8TZdOXIpYLEZkZCTZiVmB5ORkjI2NYWRkhOlQNgwRbzaAWq1GU1MTkpOTyRbWJWg0GrS3tyMgIABOTk5Mh2M2uFwuoqOjwWazMT8/v+ku0KGhIWMXc05Ojs105hEsE19fX2RlZWFmZgatra0mOaazszOio6MREhJikuNZCxEREVZfmL8VhIeHw8nJCbW1tUyHsmGIeLMBmpuboVarkZyczHQoFsXy8jKEQiGioqKYDoURKIpCdXU1ysrKNmXFoFAo4Ovri8zMTLJVSjAL7u7uyMvLM2Z5N7q9NT8/D4qi4OHhgYiICFOGaDUYGpmsvUDflLDZbCQlJaG+vt5qa6GJeLMBampqEBISAhcXF6ZDsSgkEgm2b99ut9sGLBYL6enpUCgUKC8vX1fhMkVRxqaH8PBwpKSkEPsZgllxcnICl8vF0tISioqKMDMzs67HT01N4fz58+jt7d2aAK0ENpuNiYkJtLS0MB2KRZGcnAylUmmy7K65IZ/GVs709DT6+vpIo8J36O3tJVeaABwdHZGVlYW5uTlUVVWtqQhcr9ejpqYGpaWl5DUkMA6fzwefz8fFixfXbIMzNzeH8vJyuLm5ISgoaIsjtGw4HA6io6MxMjKC6elppsOxGNzd3REQEICamhqmQ9kQRLxZObW1tRAIBHZTkL8W5ubm0NDQgMnJSaZDsQikUikyMjIwOzt7TYsEjUaDsrIyjIyMIC0tjVhcbBInJyfs3bvXrmouTQ2Px0N2dja8vLxQWVmJvr6+q95/aWkJcrkcjo6OSE9PJxlj0H56zs7OaG5uZjoUiyIlJQXd3d2MjhfcKORdbcXo9XrU1tYiISHBJubymQqDNYjBO4pA+z4VFhbC0dFx1fohnU6H8vJyzM3NITs7Gz4+PmaO0vZgs9ng8/lEQGwSw8zc4OBgNDc3X7UJp6+vD3w+H1lZWaRG8xtYLBZiY2MxOzuL2dlZpsOxGOLi4sDlclFXV8d0KOuGfKJYMd3d3ZifnyeNCpcwPT2NiYkJREdHk87b78DhcEBRFMrLy9HR0XHFz/V6PdhsNmQyGVxdXRmI0PZYWlpCeXk52X42ASwWC/Hx8SgoKLhqHWtMTAxyc3PB5/PNGJ3lY7iAI7XR3yIQCBAXF4fa2lqr83wj4s2Kqa2thYeHh934Fq2Fjo4OODk5wdvbm+lQLBIWiwWpVIrW1lbj9pNer4dKpTJuT5EPd9Oh1WoxNjZmtR1tloiDgwP0ej2qq6uNNXA6nQ5yuRwTExNgsVhEuK2CSCSCXq+HQqFgOhSLITk5GdPT0+jv72c6lHVBxJuVolKp0NraSrzdvkNCQgKSkpLIa3IVIiMjERISgvr6egwPD6O2thYXLlwwuaM9gbBVsFgsUBSFqqoqjI2NobKyEtPT06R8ZA3U1taisrKS6TAshqCgIEilUqvbOiXizUrp6OiAVqtFXFwc06FYDBRFwcHBAVKplOlQLJ64uDj4+fnh448/RldXF2JiYkhdFsFqYLFYSElJgbu7Oz744AP09PQgIyODZI3XQEBAAGZnZzE+Ps50KBYBi8VCXFwcWltbreoClnxaWynNzc3w9fUlH1bfMDc3h9OnT5PaojXCYrEgEong6OgImUxGmhMIVgebzYazszOUSiV0Oh0cHR2ZDskq8PDwgFQqRXt7O9OhWAyxsbFYXl6+ZiezJUHEmxWiVqvR0dGB2NhYpkOxGNrb28Fms006z9OWWV5eRnd3N/Lz8xEQEICRkRGTD7InAEKhEHFxcXZrFL3VBAYG4tChQ5DJZOQ1XgeRkZGYmZnBxMQE06FYBD4+PnBxcbEqKxUi3qyQjo4OaDQaIt6+YX5+HqOjowgPDye1bmvEwcEBBQUFCA8PB0VRaG9vh1wuJ4XMJkYgECA0NJTMgzUxo6Oj0Gg0EIvFCAkJQVhYGFgsFqampjY1Cs5e8PT0JI1ul2CwUmlpabGarVMi3qyQ5uZm+Pj4EDuHb+jo6IBIJIK/vz/ToVg8MzMzaGpqAkVRxm0mFouFrKwsAIBcLodarWYyRJtCo9FgeHiYCAoTMjw8jIqKiiu6A7VaLSorK1FZWWk1J2AmSU1NhYeHB9NhWAyxsbFYXFy0mq5TIt6sDI1GQ7ZML0Gn02FhYQERERGk4P4aLC8vo7y8HLOzs1ec3IRCIbKzs6FWq1FWVkasLUzE8vIyqqqqrjnZgrA2JiYmUFNTAz8/P4SGhl72My6Xi/T0dExPT1td5yBTLCwsoKuri+kwLAI/Pz9IJBKr2TolZzsro7OzE2q1moi3b+BwONi+fTuZpnAN9Ho9qqqqwOVykZGRAQ6Hc8V9xGIxZDIZ2Gw2EW8Ei2N2dhYVFRVwd3df1SLJzc0NycnJGBwctKric6aYm5tDc3MzFhYWmA6FcVgsFmJiYtDS0mIVhr1EvFkZzc3N8PLygpubG9OhMI5Wq8X8/DwAkFq3a9DS0oL5+XmkpaVd1cBUIpEgNzcXQqEQGo3GKj7ECPbB7OwsJBLJNeeV+vn5ISgoCN3d3WT79Br4+vpCIBCgp6eH6VAsgtjYWCwsLGBgYIDpUK4JEW9WhFarRXt7O8m6fUN/fz/Onz9ParSuAUVR0Gq1iI2NXbO1jF6vx4ULF9DY2Li1wREI10Cn0wEAgoODkZOTs2LW+LvEx8cjLy+PlFJcAzabjeDgYAwODpK6TNAeeE5OTlaxdUre2VZEV1cXVCoVEW+gBUlPTw98fHzIKJxrwGKxkJSUhJCQkDU/hs1mIzQ0FL29vWhra9vC6GwbDocDiUSyJsFBuBK1Wo1z584Zt0DXmmFns9ng8XhQKBTEz+waBAUFgaIoss2Mb7tOm5ubLX7XgYg3K6K5uRmenp6kQwjA2NgYlpeXryhaJnyLXq/HxYsXjfMf10tgYCBiYmLQ3t5OtlU2iKOjI7Zt20YMZDeAVqtFWVkZNBoN3N3dN3SM2dlZtLW1obe317TB2RACgQDJycnw9fVlOhSLIDY2FvPz8xgaGmI6lKtCxJuVoNPp0NbWRrJu39DT0wOpVEomTFyFpqYmzMzMQCQSbfgY4eHhCAsLQ1NTE+mYJJgNvV6PyspKLC4uIisrC2KxeEPH8fHxQXBwMJqamjA3N2fiKG0HPz8/YnD+DQEBAXB0dLT4rVMi3qyEgYEBKJVKREZGMh0K41AUBWdnZ4SHhzMdisUyPDyM3t5exMXFQSKRbOpYsbGxyMvLIx/uG2Bubg5fffUVEQ7rpL29HVNTU8jMzNz0+zcuLg5OTk6oqqoidV1XYXh4GNXV1UyHwThsNhuRkZHo6OhgOpSrQsSbldDZ2QmxWExmUOLbQcLe3t5Mh2KRLC0toa6uDr6+vggODjbJMQ0Zzra2NkxPT5vkmPYC6XhcP+Hh4ZDJZCbpqmez2UhLS4NWqyUi+iqwWCwMDQ2R1whAWFgYJiYmLPq1IOLNSujq6jKOgLFnNBoNuru7yRX0VWCxWPD09ERSUpJJj6vX6zE1NYXy8nLiC0XYErq7u7G0tAQul2tSOySxWIzCwsIN187ZA97e3nBwcCD1rQBCQ0PBYrEs2sCYiDcrYHFxESMjI2SbEMDQ0BCam5tJNmMV9Ho9HBwckJaWBi6Xa9Jjs9lsZGRkQCQSQS6Xkxo4gknp6elBU1MTxsfHt+T4HA4Her0ejY2NmJ2d3ZI1rBkWi4XAwEAMDw/bvUm3YdxiZ2cn06GsChFvVoBB/YeFhTEcCfP09/fDy8uLDPpegcnJSRQVFW2p7x2Px4NMJgOHwyFzUAkmY2hoCI2NjQgLC1uXpc1GmJ6eRm1tLbkAXAF/f3/odLoNd6jbEuHh4RZt9EzEmxXQ2dkJHx+fDXdc2Qrz8/OYm5tDQEAA06FYHHq9HvX19RAIBFvueycQCIz1SKbO7tkajo6O2L59O7EKuQrj4+OoqalBQEDAlnfTs9lsJCUlYXFxkWwProBIJEJBQQH8/PyYDoVxwsLCoFQqMTg4yHQoK0LEm4VDURS6urrIlinojluBQABPT0+mQ7E4urq6sLy8jMTERLOs5+DggKSkJLDZbCwuLlrs1SnTcDgcODk5EZPeq8BiseDr62vyGs3VkEgkCAkJQVtbGxQKhVnWtCacnZ3BYrEs3qR2q/H19YVIJLLYujci3iyckZERLC8vE/EGwNPTE7GxsWTkzXdYXl5Ge3s7wsLC4OTkZNa1dTodLl68iKqqKrv/sF8JhUKBuro6IhJWQKlUgqIoeHh4IDU11azNWFFRUeDxeBgbGzPbmtZERUWF3U9WYbPZCAsLs9i6N3IWtHA6OzshEAjg7+/PdCiM4+HhQV6HFVAqlXBxcWHEA5DD4SApKQljY2Oor683+/qWjlqtRn9/P6kN/A7Ly8s4f/48Y6OruFwutm/fbjIrHVtDKBRiYGDA7i/IwsPDMTw8bJHNWUS8WTidnZ0ICQmx+22X9vZ2TE5OMh2GReLq6orc3FzG3iNeXl5ITk5Gf38/WlpaGImBYD2oVCrI5XJwOBxGxROPxwNFURgcHIROp2MsDkskICAASqUSExMTTIfCKGFhYcbSJUuDiDcLxlAsae9bpkqlEu3t7VhaWmI6FItCq9Wirq4OSqWS6VDg7++PuLg49PX1WUQ8BMtEo9FALpdDp9NBJpMx3jVu2Na2dDd9c+Pi4gJnZ2f09/czHQqjODk5wcvLyyK3Tol4s2B6enqg1+vtXrwNDQ0Zi5oJ39Le3o6hoSGLaRYIDQ3Fjh07IBQKmQ6FYKH09fVBoVAgKyvLIsatOTg4IDw8HF1dXVhcXGQ6HIsiICAAk5OTdp+VNLw/LG0L2ab6/NVqNV599VWcOHECCwsLCAsLwyOPPIKMjIyrPq64uBhnzpxBa2srpqen4enpiezsbNx///1XFIDffvvtK3rgHDhwAD/5yU9M+ny6urrg5uZm98PXh4aG4OXlBR6Px3QoFsP8/Dy6u7sRFRVlESdBAwKBAHq9HlVVVQgICLD7EWYCgQDh4eGMZ5gshbCwMIuzPYqIiMDQ0BDq6+uRk5PDdDgWQ1BQEIKCguy+ZCcsLAwXLlzA+Pg4vLy8mA7HiE2Jt2effRZFRUU4dOgQ/P398fXXX+NnP/sZnn/++ataKPzxj3+Em5sb9uzZAy8vL3R1deHTTz+FXC7Hq6++esUHb0REBO64447LbtuKQvr+/n4EBQWZ/LjWxPLyMubm5uw++3gpFEWhoaEBYrHYIo2bWSwWWCwWqqqqTDaf0loRCoWIiYlhOgzGaWxshJeXFzw8PCxKuAF0V2FCQgLkcjlGR0ft/oLDgEG06fV6u+7wDwgIAJvNNhrEWwo2I96am5tx+vRpPP744zh8+DAAYO/evXjggQfw4osv4sUXX1z1sc888wxSUlIuuy0qKgr//u//jpMnT+LGG2+87Gfu7u7Ys2eP6Z/EJRiKRe39SpDH4yExMZF4u13CwsICZmdnIZPJLPJDlcViITU1FWVlZSgvL0dOTg4kEgnTYTGCYRi6RCKxW0Pj5uZm9PT0WPQOgoeHB7KysuDh4cF0KBbF2NgYqqursWvXLrvd+eDxePDx8cHAwMA1d/HMieV98m+Q4uJicDgcHDhwwHibQCDAvn370NTUdFU/n+8KNwDYtm0bAKC3t3fFx2g0mi31bjK0adv7NAEej4egoCC7PfGthLOzM3bt2mXRGS3DHFSxWIyysjKoVCqmQ2KEpaUlXLx40W6bbbq6utDV1YW4uDiLt/nx9PQEi8WCRqNhOhSLQSKRQKvV2v24rICAAItr3rCZM2JHRwf8/f2vSMkbtiw6OzvXlfKcmpoCgBWvFqurq7Fnzx7odDp4e3vj0KFDOHTo0FWPNzk5aTwmQBfuXo3+/n6IxWK4urquOWZbQ6FQoKOjA5GRkaQI/hvm5ubg6OhoFTVUXC4XMpkMg4ODVhHvZtFoNFheXoZSqYRarQZFUcYiZ6VSibm5OXA4HAgEAohEIgiFQpuuJxocHERzczMiIiIQGhrKdDhrwlD7VlhYuOVj5qwBoVAIV1dXjIyM2HUiITAwEHK5HPPz83B2dmY6HAA2JN6mpqZWzEQYbluvR9i7774LDoeDgoKCy24PDQ1FYmIiAgICMD8/j6+//hr//d//jcnJSTz++OOrHu/IkSN444031rz+wMAAAgMDzeo6bmmMjIxgYGBgy+cdWgt6vR7l5eXw9vZGQkIC0+GsCT6fbzxxj4+PQyqVWvX2C0VRWFxcxMzMDGZmZrC4uIiUlBQ4ODigqakJAwMDl93fUD+1uLiI5ubmy34mEomwa9cuAEBNTQ1EIhGkUimkUqlNCAepVIrIyEhERUUxHcqa8fDwAEVR6O7uRnR0NNPhWAQ+Pj5oaWmBRqOx6r/dzRAYGAiAPi/HxcUxHA2NzYg3lUq14hvL8CG4nm2bkydP4quvvsLhw4evuNr4/e9/f9n/b7jhBvz0pz/Fhx9+iIMHD65am3XgwAHk5uYa/9/X14ff/va3K95Xp9NhaGgIO3bsWHPMtsjIyAg8PDzIluk39Pf3Q6VSWU0W41K0Wi1qamrg6OgImUxmNRkniqKwsLBgvNo+c+YMlpeXwWKx4OTkdFk3elhYGIKDgyEUCsHn88FmszE3N4fR0VG4u7vjxhtvhF6vh1KphFKpvMyCQavVor+/3+g35uDggOzsbDg4OFhdwfjs7CwcHR0hFoutSrgB9PkiODgYPT09CAsLs1uxcik+Pj5obm7G7Oys3dYEOjo6QiqVor+/n4g3UyMQCFasVTCMpVnrtk1dXR2ee+45ZGZm4nvf+941789isXD77bejvLwctbW1qzYyuLu7w93dfU0xjI6OQqPRGNW+PaJUKjE9Pb1iPaI9otfr0dHRAV9fX4vr1lsLXC4XmZmZKC0tRVVVFdLT0y1WkFAUhcnJSYyMjGBkZARarRZ79uwBj8dDdHQ0BAIBXFxcrrioWGmuLIvFglAoNHbgcjgciMXiK36HhkLo5eVlzMzMYHZ21lgqYDC19fHxga+vr0VZw3yXubk5lJaWIjAw0GJOcuslLCwMPT096OnpYWTknKUhEomwd+9euxeygYGBV2TWmcRmxJubm9uKozwMdWZrEU6dnZ146qmnEBoaimeeeWbNGR9Dtm1+fn4dEa9Of38/uFwufHx8THI8a2RkZARsNtuiWrOZZGBgAEql0qpPJlKpFBkZGSgvL0ddXR2Sk5MtrixAr9fj1KlTUKlUcHBwQEBAAHx9fY0nLj8/v3Udz9nZGbt3717z/R0cHODg4HDZOsHBwRgeHkZ7eztaWlogkUiQmpoKR0fHdcWy1SwtLaGsrAyOjo5Wl3G7FIFAgNDQULs3p70UwygxiqIs9qJrqwkICEBDQwPUarVFlDXYjHgLDw9HTU0NlpaWLruqNdSZXMsnbGhoCD/5yU8glUrxhz/8YV1Xt8PDwwBWbm7YCAMDA/Dz87OaraWtwNPTE3w+3+6v9gyIxWJERkZa3Al7vXh4eCAlJQXt7e3QaDSMfwhSFIXR0VEMDg4iLS0NbDYb0dHRkEgkFmNv4uvrC19fX2i1WoyPj2N0dNSYlRsaGoKLiwvj2VilUgm5XA4ej4esrCyrL3Ug3nyXo9FocPbsWSQkJNhtUiEwMBB6vR5DQ0MICQlhOhzbsQrZvn07dDodjhw5YrxNrVbj6NGjiI2NNWZwxsbGruj0nJqawo9//GOw2Wz88Y9/XFWEzc/PX3E1ptVq8c4774DH45lki4+iKPT399t1Zw9Ai5X1ZjlsGXd3d6vOZlyKr68vtm3bBj6fz9hoL51Oh97eXpw9exaVlZXQaDTGutjAwECTCbf5+XmcPHnSJFl5LpcLX19fpKamgsvlQq/Xo6WlBWfOnEFFRQWmp6dNEPHGmJiYAEVRkMlkjAtyU2F4j2i1WqZDYRwejwcul2vXg+o9PDwgFAotxjLEui+PLiE2NhY7duzAyy+/jNnZWfj5+eHYsWMYHR3Fk08+abzf7373O9TW1uLcuXPG2376059ieHgYhw8fRkNDAxoaGow/M2z1AMCFCxfw5ptvoqCgAD4+PlhYWMDJkyfR09ODRx991CS+W7Ozs1hcXLTrerfp6WlMTEwgIiLCblP0BiiKQn19PUJDQ1esqbJW2Gw2NBoNSkpKEBoaavZJInK5HDMzM/Dx8UFqauqWGchSFAWlUrklcxHZbDZ27tyJwcFBdHV14cKFC3BzczOreTNFUWCxWAgICICPj4/VZ9wuRa1Wo6mpCTqdziInmZgbT09Pu/Z7M7zPLaXuzXb+0gD8/Oc/h5eXF44fP47FxUWEhobiueeeQ3Jy8lUf19nZCQB47733rvhZcnKyUbwZTjInT57E7OwsuFwuIiIi8Otf/9pknaEGVW/Pmbfh4WGMjo7aTKZpMwwNDaG/vx/BwcFMh2JyeDwePDw80NDQAD6fv+XbMZOTkxAKhXB0dER8fDx4PJ5FF/+vBTabjcDAQAQEBGB8fBwzMzNgs9mgKGrLt6X1ej0qKyvh4eGBkJAQmxJuAF2o7+/vj66uLgQHB9t1GQtAi7eenh4sLi5affnGRgkMDERJSYlFdIDb1F+bQCDAE088gSeeeGLV+/zlL3+54rZLs3BXIyoq6gqrEFMzODgIDw8PiESiLV3HkhkfHyfjsEBnNTo6OuDl5WUx9VemJi4uDmq1GtXV1cjKylpzR/Z6WF5eRlNTE0ZHRxEWFobY2Fibez1ZLBa8vLyM5SFDQ0NobGxEZGQkgoODTX6ioSgKtbW1mJiYsIj6n60iIiICAwMD6Ovrs0qLHlPi5uYGNpuN6elpuxVvAQEBUKlUmJycZPwcZd97UhaIvQ9GXl5extLSEuN/GJbA8PAwFhcXrbrD9FqwWCwkJyfDzc3NWHtmKgzi9+zZs5idnUVqaqrdGD57enrC19cXzc3NKC4uxtzcnEmP39zcjKGhIaSkpNi095eDgwP8/f3R2dnJWH2mpcDhcFBYWGjXJT2Gc7MlbB/bVObN2qEoCmNjY3bt7D0+Pg4Wi2XRczvNRV9fH9zd3S16oLcpMMxBnZ6eNml3sVKpRFdXF0JDQxEZGcnItpdYLEZOTo7Zu0H5fD4SExMRHByM2tpalJSUICcnB1KpdNPH7u/vR3d3NxITE+Hr62uCaC2byMhIeHt7W5ytDRPY+5hCoVAIFxeXq85KNxdEvFkQMzMzUKvVdu1tJpVKERcXRyxCAKSnpxtNpm0dDodjzOB0dXXB19d3w6UD4+PjcHV1hUgkws6dOxntfuRyuYxeiDg7OyMvLw/9/f3Gi4DN1uv4+PiAzWZb/KB5U2Hw3iPQTRwXL15EXFycTWdcr4aXl5dFZN7ItqkFYVDz9rxtKpFIbLqGZj3w+Xy7qy3RaDTo6emBXC5ft3DV6/VobGxEWVmZsSOMadsKpVKJlpYWKJVKxmJgs9kIDg4Gi8XC9PQ0Tp8+jfHx8XUfZ2xsDEtLS+DxeHYj3AwoFApUVFRAoVAwHQqj8Pl8aDSaDb1/bAVvb2+LyLwR8WZBjI6OQiwW290J28D8/Dx6enrsvraEoigUFxcbzZ/tCR6Ph+zsbKjVapSVla3ZY0utVuPChQvo6+tDQkKCxVwAqFQqdHZ2rmu28lYiFovh7OyMsrIyY5f9WpiYmEBlZSV6enq2MDrLhcfjYWJiwmJsIpjE09PTrv3evLy8sLi4iMXFRUbjIOLNghgbG7PrrNvY2Bja2trsvrZkYmIC8/PzdrtVIxaLIZPJsLi4iMrKymuKeZ1Oh5KSEigUCuTl5dmkrYqpEAgEyMzMREREBFpaWtDY2HhND7rZ2VlUVFTA3d3dbho+vguXy4Wfnx8GBga2xLPPmnBzc8PCwoJJm4usCcM5munsGxFvFsTo6Khd17tNT09DKpXavXjr7++Hk5OTzTcqXA2JRIKMjAzjTMWrweFwEBYWhry8PJuzANkKWCwWoqOjkZiYiPHx8auehBcXF1FWVgZnZ2ekp6cz7m3FJAEBAVheXjbOy7ZXXF1dAYDRiR5MIpVKwefzGa97Iw0LFoJSqcTs7KzdZt4oisLMzIzdO5mr1WqMjY2R2YqgR4IZfN+USuUVnW7j4+NYXl5GcHCw2Sc02AJBQUEICAgAm82GSqUCm82+olFIoVDAwcEBWVlZdm9S6+rqCrFYjIGBgS3xI7QWHBwckJ+fD2dnZ6ZDYQSDpyLTmTci3iwEwxvBXjNvhjS8KawMrBnDjEh7Kwi/Gmq1GkVFRQgJCTFO3RgeHkZ1dTW8vLwQFBRksdlaPp+PwMBAxhsnVsOQSaupqYFSqUROTg74fD60Wq2xA9jd3d1iX19zk5qaarflDJdiz7sCAH2eZnrGqf3mwC2MsbExcDgcu72iY7PZCAgIsHvx5ufnh127dlnsyZ4J+Hw+wsPD0d7ejp6eHoyNjaG6uhp+fn5IT0+3aGEhEomQlJRk8RNT4uPjoVarUVpaCoVCgdLSUjQ3NwOARb++5sbFxYX8bYK2tZLL5XbbXObt7Y3Jyck1N1RtBUS8WQijo6Pw8PCw260JR0dHJCcn2+3zB+jCe4AYYa5EeHg4wsLCUFpaimPHjsHb2xvJyckWLyx0Oh0WFhaMv1tLxdHRETKZDEtLS3jzzTcxNzdHsr+r0NfXh/LycqbDYBQWi4WJiQmTT+6wFry8vKDX6xntuiXizUIgnaZjdmNIuxotLS0oLS1lOgyLJTY2FhEREVCr1UhMTLR44QbQBf9FRUWM2wqsBScnJzg4OGBsbAxhYWGk+WMVeDwexsbGrOJ3ulU4OzuDw+HYbdOCl5cXWCwWo3VvRLxZABRFYXx83G7r3ZRKJcrLy+26i0uv12NwcNDua0lWQ6FQQKFQID09HXfddRfZutoCBgYGsLi4iAceeIA0zFwFb29v8Hg8xmuemITNZkMqldqteOPz+ZBKpUS82TuGYn17nec5MzMDAHZd7zYxMQGNRkO2qlZAp9OhrKwM1dXVYLFYEIvF0Ol0qKmpwcLCAtPh2QwBAQHIyckxDh5vb29HV1cXw1FZHobRYENDQ0yHwij2LN4A2u+OyedPxJsFYHgD2Kt4mZmZgYODg13Xeo2Pj8PBwQFOTk5Mh2JxNDQ0YHl5GYmJicbb9Ho95ufnIZfLsby8zGB01k9vby8mJibAYrGMHl4ALZpbWlrs+gS9Gl5eXlAqlXa9derv74+kpCS7NS1mWrwS8WYBzMzMgMVi2a14m5ubs1vPIANzc3Pw9PRkOgyLY2BgAAMDA0hMTLxM2PJ4PMhkMrDZbMjlcosZP7USlmxsOzQ0hIaGhhVLFqKjoyGVSlFVVWX39ajfxc3NDTt3/n/23ju6kfNK834KORBgAHMAc84ZDGp2VKstS5ZsyZZljSSPnMbjWZ/ZMDre8XrP5/HaM94zO+udsRw0tjROsoKV5ZbU6sQOBHMzNnPOGSRyqPr+oAE3RbKbZBOoAur9naNz1AhVD8BC1a373vvc47wdZQhsNrlER0f7Re2pNwgLC8Pq6iprwSt3zyo8YmVlBWq1GiIRP233pFIpb5eM3dTU1JA6o4/hdDrR09MDrVa743KyVCpFVVUVnE4nGhsbOdnRGRwcjPvvv5+Txf8LCwtob29HQkICsrKytj1PURRKS0tB0zTa29t5m2HZCYFAAKVSybYM1pmcnGR90gBbhIWFwel0sla6QYI3DrC6usrbrBuwaXyZkpLCtgzWYBgGFEXxNnjfDZFIhOrqauTl5e36GoVCAZ1Oh+joaF7bzOyXlZUVtLS0ICoqCoWFhbu+TiaToaSkBEKhkLeeXruxvLyM+vp6Tt40+Irp6WlMTk6yLYMV3Ndsd822ryHBGwdYWVnZUmvCJ5xOJ69PfgDQ0tKCrq4utmVwipmZGdA07bEkuB1qtRoZGRkANn9LXMoQGY1G1NfXc642SiKRIDo6GiUlJXdc9oqIiEBZWRkJjj+GVCqFwWDgdZe8Wq3G+vo62zJYwT2Hm626NxK8cQA+Z97GxsZw7tw5tmWwhtvokesO/L5keXkZra2tmJ2d3df7rFYrGhoa0NnZ6SVl+8flcsFgMHDmBsViscDpdCIoKMiTUdsrCwsL0Ov1nAqO2SQoKAhyuRwLCwtsS2ENtVoNs9kMh8PBthSfIxKJoFKpSOaNr9hsNlgsFt5m3tbX13ndYbmysgKXy0WaFf4ETdPo6upCaGgoYmNj9/VemUyGwsJCTExM4ObNm15S6L/YbLa7Cm4lEgkWFxcxOjp6yMr8l4iICFZd9tnG3WjGV8uesLAwknnjK+6UM18zb3zvNF1cXIRUKuX1d3ArIyMjMBqNB56gEB8fj9zcXAwNDRGPsltwOByepo6dmhP2QkhICJKSktDf3w+r1XrICv2TyMhIGI1G3trVBAUFQavV8rZel027EBK8sYw7eONj5s3lcsFkMvE6cFlaWkJERATbMjiBzWbDwMAAkpOT7+qYSElJQXp6OiYmJjizXMkmNE2jubkZZrMZlZWVUCgUB95WVlYWhEIhenp6DlGh/xIREYGamhrelj0IBAIUFhby9hzutgthA36GyxxifX0dcrmclwa1JpMJAHj7wweA6upqOJ1OtmVwAqlUitLS0kOxjcnKykJaWhqEQqGnm5cNFAoFSktL7ypgulvm5+extrYGnU531781sVjsyWw6nU7eZlzciEQiXt5434rNZsPGxgbCw8PZluJzQkNDPaP7fA3JvLHM+vo6b3/8arUaZ86c4fU8T6FQCKlUyrYM1nEHsFFRUYcWEIhEIthsNly5coW1jkCxWIzY2FiIxWJW9g8AMTExOH78+KGdZ+Li4nDkyBHeB25uVlZW0NjYyFsrlampKTQ1NbEtgxXcvyk2sm8keGOZ9fV13ta7AZvBC18dujs6OtDb28u2DE7Q3NzsFbsUsVgMsViMpqYmViwNbDYbRkZGWJkAcfPmTU9zwWFn9imKwtraGhmdhc2lw4WFBdaWz9jGPWuYy1NOvIU7eGPjd0CCN5bhc81XT08Pr2tnFhYWeBu43srKygqWlpa8suwiEAhQXl4OpVIJvV7vWar3FVarFT09PT4v8B8eHsbQ0JBX99HX10f8CbE5RUMkEvE2kHWXBPj6t8UFZDIZxGIxK922JHhjGYvFwtv5eKurq7z0BwI2u/+sVitvA/dbGRgYgEqlQnR0tFe2LxKJoNPpIBKJeLG8NTk5id7eXqSnpyM5Odlr+0lPT8f6+jpvxyO5oSiK12a17jFhfO64ZSNwJcEbyzgcDt4GbyaTidVCbjYxGAwA+N2sAQBra2tYXFxERkaGV7OQEokEVVVVyMnJ4fSg+LtlcXERHR0dSExMPLAlyF7RaDTQaDQYGBjw6n78geDgYN4Gb0KhEMHBwQF/U7QbQUFBrExQCdyzmB/BxwHHTqcTdrudl58d2Kx1FAgEvA3c3ZhMJoSGhiImJsbr+5LL5Z7sXqDaiISEhCAjIwP5+fk+2V9GRgYMBgOvpwwAQEJCArKzs9mWwRpHjhyBVqtlWwYrKJVKVoI30i7EAfh4AXenmfkavMXFxUGtVvO+5i0uLg5xcXE+3afZbEZ3dzfm5uZQVlbm1UycSCQ61A7a3VhfX4dIJIJCofDMefUF4eHhKCgo4H0GOTg4GMHBwWzLYBU2LXnYJCgoCNPT0z7fL8m8cQA+Bm8KhQLl5eW8/OzApqcZH32RbmVlZYWVDjX3sedeYvTmrE6lUomKigqv3qSYTCbo9XrWmn8SExN56VP5ccbGxnjbtDA6OsrbGdVk2ZTH8NGdWywWIzo6mpdeUTRNo6Ojg7c1MsDmXXprayv6+/tZ2X9ERASKioowNTXlVbsWmqZht9u9Vg9ktVqh1+shFotRWFjolX3shcHBQYyNjbG2fy4wOjqKmZkZtmWwgkQigc1m46XhuFKpJA0LfEQulwd0AfVuTE9Ps5Jq5gImkwkTExO87bQFNseCWa1WVutk4uLikJ+fD5PJ5LXgamNjAx988IFXrAQcDgf0ej1omoZOp4NEIjn0fewVk8mE4eFhr2YxuY5arfY0IvENPtuFBAUFgaZpn9sB8S9q4Bh87bacnJzk7V2qO+PG5zqhiYkJqFQq1qdrJCUloby8HAKBwO+yBuvr63A4HKiqqmI9e5+QkACz2czbZUNg8/fMht8XF3Bfx9gYE8U27tIfX392EryxDNsnXbaw2Wy8rZMxGAyQy+WsjkxiE4fDgbm5OSQkJLAtBcCmT5fJZML58+cxOzvLtpw74s5uaTQanDhxghN1oxqNBkqlEpOTk2xLYY3g4GA4HA5e+p1JJBJQFMXLKQts+dyR4I1l+By88XWm5/r6Oq870+x2O2JiYhAfH8+2FA8KhQIRERFoa2vD0tIS23J2hWEYtLe3o7OzEwA4VXIRHx+P2dlZ3vp9BQcHc+aGxNdQFIWjR4/6vHOcC7CVeeNftTjH4OOyKcMwsNvtvA3e4uLieJt1AzbvVEtKStiWsQWKolBUVAS73Y7m5mZUVVWxvqS7E729vZienkZpaSnbUrah1WoRERHBS7sIYLODvKioiG0ZrMGFDDAbSCQSSCQSsmzKN/iYeaNpGgkJCbyt+UpISPDaKCiuwzAMZmdnOVlf5p6DqlKp0NbWdijF92q1GmfOnDmUY31wcBAjIyMoKChAbGzsXW/vsJHJZAgNDeVt8AZsdv+ura2xLYMVRkdHvT5Pl6solUqybMo3+Fj3JRQKUVhYiNDQULal+Byr1YrZ2dmAdPffC6urq2hpaeFsYbdQKERlZSXKysoOJQihKAoikeiut7WwsIC+vj5kZWUhMTHxrnV5i/n5eXR0dLAtgzWGhoZw48YNtmWwwtraGubn59mWwQoKhcLn9X4keGMZPi6fORwObGxs8NJWYGVlBS0tLbytC1pcXIRYLObkkqQbsVgMtVoNmqbR09MDu91+4G25DXTv1kIhIiICpaWlSE9Pv6vteBun04mJiQleFq4Dm0un5LPzD4lE4nPrJxK8sQwfg7f5+XlcunSJlwGMzWaDQCDg5d8d2Aze/KUuymq1YmpqCo2NjQde5nU6nVhcXDzw+xcXF7G0tASKoji5VPpx3FNDFhcXWVbCDlKp1KumzFyGBG8keOMVfJwwYLPZIBKJIBQK2Zbic/jcZetwOLC6uoqIiAi2pewJhUIBnU4Ho9HISrZ0bW0Nzc3NGB0d9el+7wapVIrg4GDeDqp3/7bvJlvrr0ilUjidTl6WhJDgjYfwMQPD5wCGz5/d4XAgIiICGo2GbSl7Jjg4GOXl5VheXkZ7e7vPlvqNRiMaGxuhVqs515l7J8LCwng7aUAmk0Emk3GyIcfbhISEIDs7m5flMBKJxOd/c/6lfTgGH4M3u93O6igfNpFKpZyu9/Im7kyWvxEeHo6SkhIYDAafLPdaLBY0NDRAKpWisrLS7zLUCQkJnuVTvhEcHIxTp06xLYMVgoKCkJaWxrYMVmAj80aCN5bh47IpAN4Gb1lZWWxLYA2LxQKJROJ3wQgAxMTEICYmBsBmVmyvnlZyuRz5+fn7sgRyuVxQKBQoLS31y5u74OBgXptQ8xWXy4XFxUWEhobybnVBLBb7PPNGlk1Zxh9PzndLUVERKioq2JbBCnwsZHbT3NyM7u5utmXcFevr67h06dKe69AkEgmSkpL2dLPirhcKCgpCTU2NX9sIjY+P83bO6eXLlzEyMsK2DJ/jcDjQ3NzMS587UvPGQ/iaeeMrZ8+exfj4ONsyfA5N09jY2PB7Y2a1Wo3k5GR0d3djenr6jq93OByYmpq644mdpmm0tLSgubn5sKSyysjIyJ6+n0CEpmleDmh3X8tIw4JvIMEby/iDZcJh09zcjMHBQbZl+ByHwwGapnmZbTUajaBp2u+DNwDIyclBfHw82tvb79hVaTab0d7eflv3dfe80uXlZc77uO0VtVqN9fV1tmWwAl8tM9zlEHxs1pBIJD5fVSHBG8HnbGxs+PwuhQu4T+h8qwcB4DGpValULCu5eyiKQmFhISIjI9HX13fX3XVdXV2YnZ1FaWmpX3Xi3g6VSgWj0ci2DFbga/BGURSEQiFvM2++hqzZEXyOy+Xyy6L1u4XPwZvD4YBQKAyYRhWBQIDS0lK4XK67yp4vLy9jfHwchYWFATXvViaTwW63g2EY3q0uSKVSzo5/8zbBwcG8PLeT4I3AC1wuFy9r/fgcvGm1WiQkJLAt41ARCoUQCoWwWq24ceMGCgoKoFAo9rUNjUaDurq6gFhOvhW1Wo2EhARe/taTk5Oh1WrZlsEKNTU1bEtgBTZKYfb9q/pv/+2/7XsnFEXhhz/84b7fRwhMnE4n707oABAdHY3jx4/zsuYNCNz6ToqiPDNMa2pqtgTnQqEQoaGh27IR09PTcDgcSEpKCrjADdg0bC0qKmJbBisolUq2JRB8jF9k3pqamva9k0A9aRMORnl5eUDUPu0XgUDA2xN7Z2cnRCIRcnJy2JZy6EilUuh0Oly7dg2NjY2orq723JwEBQWhtrZ2y+sXFhbQ3t6O+Ph4NuT6BIZhYDabIZFIeHezYjAYMDU1hezsbAgE/Cor1+v1UCgUKCgoYFuKT2Hj77zv4O3ll1/2ho5DwW634xe/+AU+/PBDbGxsIDU1FV/60pdQXl5+x/cuLi7i3/7t39Dc3AyaplFcXIy/+Zu/2XEY9Lvvvovf//73mJubQ0REBB555BF85jOf8cZHCkiioqLYlsAKc3NzmJ+fR2FhIdtSfI7BYAjIDJMbpVIJnU6H69evo7m5GVVVVTu+bmVlBS0tLYiKigro44BhGFy4cAFFRUUBt1x+J0wmE0ZGRpCZmcm74I1hGF52m7KRoNp38Mblotof/OAHuHTpEh599FHEx8fj7Nmz+Lu/+zv86Ec/uu2dgNlsxje/+U2YTCY88cQTEIlEeOWVV/A3f/M3+OUvf7nFLfytt97CP//zP6Ourg6f+9zn0NnZiR/96EewWq34whe+4IuP6de4XC6MjIwgNjaWd1mojY0NzM3NBfRFezf4MNNVrVajoqICVqvV85jBYEB9fT2OHDkCgUCApqYmhISEoKSkJKBXJAQCAcRiMW+7LgHwcsYnRVG8/dy+Zt/B21e+8hUcOXIENTU1SE5O9oamA9Hb24vz58/jr/7qr/D5z38eAHD69Gk8/fTT+MlPfoKf/OQnu773zTffxNTUFH72s58hOzsbAFBZWYmnn34aL7/8Mr7yla8A2LwA/fu//zuqqqrwD//wDwCABx54ADRN41e/+hUefPBBXi4H7geXy4W+vj6oVCreBW8Mw/DuTtwNX+ocw8LCPP8/Pz+/ZUqCTCZDbGwssrOzedGRJxKJeJ2F4WMQA/Dzc7MRvO37SmKz2fD888/ji1/8Ij7/+c/jxz/+MTo6Olj/g12+fBlCoRAPPvig5zGpVIr7778fPT09mJ+f3/W9ly5dQlZWlidwA4DExESUlJTg4sWLnsfa2tpgMBjw0EMPbXn/ww8/7BkmTbg97uMkkLMOu8FH2wQ3fPvsa2traGpqQn9/PxwOB8xmM8RiMQoKCnhTA8b3LAyfPzvf8IvM23/8x39gZmYGV65cwbVr1/Daa6/h1VdfhVqtRnV1NWpqalBRUeHzJZLBwUHEx8dvy+a4A7KhoaEda61omsbIyAg+8YlPbHsuOzsbzc3NMJvNUCgUnqkAHx8u7q5tGBgYwL333rujvqWlJSwvL3v+7R6RZDQaYTAYPI+LxWIoFArPOKGP417CNRqN28wQFQoFxGIx7Hb7tvEsIpEISqUSDMPs6HyuUqkgEAhgMpm23S3LZDJIpVLPRehWhEKhZ0j3rZ/DTVBQEIRCISwWC+x2O6xWK0wmE9bX1xEcHAyZTAan0+kxcXVDUZSnRmp9fX3biVCpVEIkEsFqtW5bmpFIJJDL5XC5XDsahe7lO7TZbFuWv4A/f4e7/W3UarWn8/Dj36FcLgfDMHC5XNu+pzt9h+6/jdls3mZuLJVKd/0OBQKBJxN8mN/hrX+bjY2Nbc7iO32H6enpkMvlnt/SQb9DiURyV8f3Tt/h7Y7vO32HHz++b/2O0tLS0NbWhtbWVtA0jVOnTu35O7zd38ZfzhEWiwVGoxFGo3Ff54hbud3xzdVzhEKhgFarxcbGxrbn93J8H+Q8y5VzREJCAiiKwvr6+r7PEW7udHxz8RzhF8EbAMTGxuJzn/scPve5z8FgMOD69eu4evUqLl68iLNnz0IqlaK0tBT33HMPqqurERIScsiyt7O8vLyjO7n7saWlpR3ft76+Drvdfsf3arVaLC8ve1r/b0UsFkOtVm8Jzj7O22+/jRdffHHb4+3t7ZiZmfH8Oy4uDiUlJbBYLKivr9/2+gceeAAAcOPGDayurm55rri4GPHx8ZiZmUFXV9eW5yIiIqDT6eByuXbc7unTpyGRSHbMUubm5iIlJQWLi4tobW3d8lxwcDCOHDkCALh69eq2H+nRo0ehUqkwMDCAiYkJ2O129PT0wOFwwOl0Ijs723MM3YpMJvNc7BobG7f9wKurq6HRaDA6OoqhoaEtz2m1WhQWFsJsNm/7rAKBAPfffz+AP2dSb6W0tBSxsbGYnp5GT0/PlueioqJQUVEBp9O543d45swZiEQidHV1YXFxcctz+fn5CA8Px+rq6rb3hoaGejoSd9ru8ePHoVQq0dfXt21eZEZGBjIzM7G6ugq9Xr/lOaVSiePHjwMAGhoatl0Ya2trERoaiuHh4W2DtJOSkpCfnw+j0bhNk0gkwpkzZwAAra2t206w5eXliI6OxsTEBPr6+rY8FxMTg7KyMtjt9h0/6/333w+KotDR0bHt91RYWAitVou5uTl0dHRseU6j0aC6uhoMw+y43VOnTkEmk6G3txezs7NbnsvKykJ6ejqWl5e3zRZVqVQ4evQoAODatWvbLhZHjhxBcHAwhoaGMDY2tuW5pKQkWCwWTExMIDY2dosuiUSC06dPA9gcF/fxi6pOp0NERATGx8cxMDCw5Tl/OkfMzc3BYrHs6xxxK2lpaX55jsjOzsYHH3yAj3Onc0RSUhLm5+fR3t6+5TlyjvgzXDxHsNFdSzGHmNu12Wxobm7G1atXodfrsbq6CoFAgNzcXNTW1qKmpsZrnUePPfYYEhIS8L//9//e8vjMzAwee+wxfOMb38BnP/vZbe+bn5/Ho48+iq997Wt4/PHHtzz33nvv4Z/+6Z/wi1/8Aunp6fjHf/xHnD9/HufOndu2nUceeQQZGRn4/ve/v6O+nTJv3/ve9/Av//IvSEtL8zzuL3fVbvabeXM4HOjp6UFycjIiIyP97q76bjJv/n5X7eYgmbexsTGEhIQgIiLC7+6qD5J5YxgG3d3dWFtbg0AggEQi2dL1zofMm5v9niNuxR8zbxKJxLPNj9e4Bvo5YmxsDAKBAImJibzKvNntdnz/+99Hc3Mznn/+eWRmZm7b/mFzqBXEUqkUtbW1qK2t9Zy83MurP/nJT/DTn/4Uly5dOsxdbtn3TvMy3SeD3ZZx3Y/v5b1SqXTXAly73X7bpeLw8HCEh4dvezwoKGhLN6sbgUCw4+O3vm83JBLJrqaBFEXddru3ayIQi8W3fe/tnpPL5ZDL5QCAurq6Lc+JRKLbvvd2FhMymWxLUfitCIXCA3+HUql017/nnf42u32HJpMJZrMZERERu773dtu9nXs/W9/h7Rp0bv0OZ2dnERQU5PkMB/0Ogbs7vm/3Hd7p+L7dd3jr8Q1sXmA3NjZQXl6OyMhIT7PKTrV/t/sOb/e34fo5oqmpCZGRkUhKSvI8v9dzxMfxp3PE/Pw8mpqacO+99+56DvHWeZbtc4TFYoFIJNqyrb2eIz6OP50jdlvZ8yZea/+iKAr5+fnIz8/H17/+dYyNjeHatWve2h00Gs22NDQAT7Zrp8AJ2DxgJRLJjkueH3+vRqOBy+XC6urqlqVTh8OB9fX1gBkq7U0YhoHVaoVEIuFFx92tTE9PY2xsbNe6yECGoqhtd9+BTHBwME6cOAGn04n29nZkZWXB6XSiubkZ5eXlAe1558ZgMNz2Ihmo8LkpC+Dn52ajOWXfwds//uM/3vZ5iqKgVCqRmpqKI0eOeKLjpKSkLXdgh01aWhra29thMpm2ROS9vb2e53dCIBAgJSVl27q7+72xsbGeSDw9PR0A0NfXt8WEs6+vDzRNe54n7I7T6cRHH32EsrIyxMTEsC3Hp/C1+w7YvGPdKbsdaAwPD8NoNKKwsBASiQQWiwXT09NITU2FUqmEWCz2jNEKdKsch8PBm87aW3HfpJAghj/4RfB29uzZPb2Ooij867/+K5599tlty2Te4OjRo/j973+Pt99+2+PzZrfb8cc//hE5OTmeTtP5+XlYrVYkJiZ63ltXV4ef/exn6Ovr83SSTkxMoL29HZ/73Oc8ryspKYFarcZbb721JXh76623IJPJdnVVJ2yHjz9y97IZH5FKpQFv2Do5OYne3t5db+JEIhF0Op2nJrimpmbXpSh/x+l0wuVyBbwx8064f+N89HTkmyUQm+w7ePvRj3502+dpmobBYEB3dzfee+89/MM//APi4uJ2zXwdFjk5OTh27Bh+/vOfY21tDXFxcXj//fcxNzeHZ5991vO6//W//hdu3Lixpdvk4Ycfxrvvvotnn30Wjz32GIRCIV555RWEhobiscce87xOKpXimWeewb/8y7/gO9/5DioqKtDR0YEPP/wQX/7yl3mxFHK3uJdKP14EzAf4nHmLjIwM6IuZu7stMTFxm5XQrUgkElRVVeHq1atobW1FTU2ND1X6DnegzsfgjaIoiEQiXgYxsbGxvMy2+kXmraioaE+vO3bsGD7xiU/gq1/9Kl5++WX8/d///X53tW/++3//74iKisIHH3wAo9GIlJQU/NM//dMdNSsUCvzoRz/Cv/3bv+FXv/qVZ7bpN77xjW02Jw8//DBEIhFefvllXLt2DZGRkfjGN76BRx991HsfLIAQCAQQCAS8dF6XSqUBv1S2G4FcUrC+vo7W1lZER0cjPz//jq+Xy+XQ6XQBXQMolUp5U9v3cWJjY3ecic0HvFkaxWXYSEZ4dV5NamoqampqtvmteAupVIqvf/3r+PrXv77ra/7f//t/Oz4eGRmJ7373u3vazwMPPODxUiLsH6FQyMvMW1xcHOLi4tiWwQoulwtWqzUgg1eVSoXs7GwkJSVty7ZIpVJkZGRsy0C5O/DcJuEpKSkBlZkUiUScnoNN8A6rq6uQy+UBWw6wGx+3uPEFXj9bxMfHY2Vlxdu7IfgR9957r9eX0QncYmpqChcvXgyoZWOTyYTl5WVQFLVr8CWTyZCZmbnrxcxgMKC/v58TIwYPk5WVlW2mrnzh5s2b28zM+UJjYyOmpqbYluFzAjJ4s9vtvBhITdg7gZRh2A9WqxVnz57d0dIm0JHJZB6bmEDAarVCr9eju7v7tkGX0+nE4uLirmUCoaGhKCoqwtTUlKczPhCYn5/nbfBmNBp5WRYCbGbY+WYBBQRo8NbR0cHbpSLCznR1dXnmxPIJsVgMp9MZ8F2XO3Gri7u/43A4oNfrQdM0KioqbluYbjKZoNfrtznb30pcXBzy8/MxMjISML+L9fX125qzBjI2m42XjRo0TYOmaV4mawIqeKNpGi+88AIGBgZwzz33eGs3fk8gFy3vhtFo3HHsSaAjFAohEol4Gby5x+H4e/DmcrnQ1NQEm82GqqqqXScC7JekpCRkZGQEjBferYPJ+QZfgzd3HTNfgzdff+5DN+mlaRrr6+vo6+vD2toa4uPjd5wpStiEj+l1vjYsAPzwO9sNtVrt95/darXCbrejsrLytqOTDsKt8xDtdvuu4324jt1uh9VqJcEbz6BpGjKZjJfBm8Ph4H7wtleTXrFYjFOnTuGv//qvbzsrjO8Eyp32fuBr9gngd/BWVVXlt95XDMOApmkolUocPXrUq59jeXkZjY2NqKio2HWsH5ehaRparXbLCEE+UVFREZBd1XdCKpXi1KlTbMtgBbvd7nN/u0M36aUoCkFBQUhISPDbO0dfwsfgTSgU8jLjCGz6JPKxoBfw73FBPT09MBgMqK6u3tfnEAgEUCqV+2rSCQ0NRVhYGJqbm1FVVbXNa5LryGQyFBYWsi2DNfwx4CbcHX6xbLpXk17C3uBjEKPValkp8OQCfLwjd2MymXD9+nWUlZX5VVZmcHAQo6OjyM/P33cAqlKpcPz48X29RyAQoLy8HA0NDWhsbERNTc2hL9F6E4PBAIlEcmj1gP6EyWTC5OQkUlNTeTdpYHFxER0dHThy5AjvEjdsZN746dnAIfiYeQsNDfXMmuUbi4uL6OzsZFsGK8jlcjgcDiwvL7MtZc+Mj4+jr68PmZmZPnWPFwqFqKiogFQqRVdXl8/2exg0NzdjeHiYbRmssL6+jsHBwYDy7NsrFosFFouFlzVvJHjjIXwM3iwWC0ZHR3nZtGA2mzExMcHLk7tAIEB4eLjf+NwZjUZ0dXUhOTkZGRkZB9rG+vo6PvjggwN12UokEuh0OpSUlBxo32xgNBphsVgQGRnJthRWsNlsoCiKd1k3YPOzSyQSXvp4kuCNh/Bx2dRsNqO7uxsWi4VtKT5HKpWCYRjeLhtHRERgZWXFL477oKAgVFZWIjc398DbcP+tDxqsy2QySKVSWK1WdHR0cP57W1hYgEAggEajYVsKK7g7Tf25vvOg8LXLFthMwpDgjWfw8SLu/oHzsevSPSYpUCYN7JfIyEjQNM3pkXlra2sYHx8HsBlscuFCbLPZMDMzg5aWFk57Qy4uLkKj0fC2KcdqtfI2gOFz8Gaz2Xy+XEyCN5bha/YJ4Gfw5i4893ez2oOiVCpx7Ngxzi6rGY1Gz3xGLi1tBwcHo7y8HMvLy7hx4wantN2KWCzm9UD6kJAQxMfHsy2DFbKysu4qS+3PmEymXecXewv+VRZyDD5mYMRiMQQCAS+DN5FIhOzsbN4amALgbOekxWKBXq+HVCq949grNggPD0dJSQlaW1shkUiQl5fHtqRt+FN9njdITExkWwJr8LWTnmEYmEwmn/vZkswby5jNZrYlsEJMTAxvU+xpaWkIDg5mWwZrmEwmXL58mVPZR7vdDr1eDwDQ6XSHVr+iVCpRW1t7aBe2mJgYFBQUcNJqZW1tjdNLut7GbrdjZWWFt99Bb28vp8shvIXVaoXL5SLBG9/ga/BWUlKC2NhYtmWwgtVqxeTkJNsyWEMul3PuO3Cbi1dVVR3q8odIJEJoaOih1sNotVrExcUB2PRU4wIulwt6vR6Dg4NsS2GNpaUlXLt2jfNNJd6ApmkMDw/DZDKxLcXnGI1GAPC5ryEJ3liGjzVvwOaPnY9LxsBmhuLGjRu8/dsLBALEx8djamqK9SyF+zgUi8UoLy8/9KUfq9WKnp4erxzrc3NzqK+vx/T09KFv+yBaHA4Hb+u9gM06VplMxjuDWuDP9ct8XE0hwRtP4esFvLe3Fw0NDWzLYAX3kimXlg19jXvKxsLCAmsaGIZBe3s7rl+/7rUg0mazYWRkxCv1nVFRUYiPj0d7ezvr3nmTk5PQaDS8rXsCNrOgfK1ldWfc+DjHnK3PToI3lrHZbLxMsyuVSpjNZs52zXkTuVwOsVjM6+BNpVIhJCQEs7OzrGno6urC7OwscnJy/NJYlKIoFBYWIjIyEs3NzVhdXWVFh8ViweLiIhISEljZP1dYX1/nbS2ru/yHj8Gb0WiEWCwmPm98hI91AgqFgtdLp2q1mtfBGwCUlZWxNiu5v78f4+PjKCgo8GtrC4FAgNLSUgQHB2NkZIQVDXa7HeHh4YiJiWFl/1zA5XJBIpHwNnhTKpVIS0vzy5ugu8VoNLKScSZWIRzAZDLx7kfvPtjNZjMvB1hHRkby0qD5Vtx/d1+7k5vNZgwNDSE7OxtardZn+/UWQqEQlZWVrF04g4ODUVVVxcq+uYJQKERdXR3bMlhDo9HwdqqGyWRixf6If2EyB3EXPPIJhUIBiqJ4W/OXlpaGnJwctmWwzuTkJC5cuODT0gGFQoGjR48iLS3N6/uSSCRISkryehG7SCSCQCCAwWDAtWvXfHZjsLi4iLW1NZ/si8vwcU7zrSwvL/N2FcVoNJLgja/wMXgTCAQ4c+YMr7vTbDYbHA4H2zJYJSIiAk6nE6Ojo17f18LCArq6usAwjM+WOeRyOfLz832WXRaJRDCZTNDr9V4PiGmaRmdnJ4aHh726H3+gs7OTtw1YANDU1ISpqSm2ZbACW8umJHhjGZlMxsuaNwC8nX8IbF74zp07h5mZGbalsIpMJoNWq8XIyIhXg42VlRW0tLT4PDvgcrlgMBh8lplRKpXQ6XQwm81obm72qhXL9PQ0zGYz0tPTvbYPf2F9fZ2XxfrAZs2j0+nk7ecny6Y8RS6X8zLzBgAjIyNobm5mWwYrCAQCBAUFccZklU3S0tLgdDo9w+APm42NDTQ1NSEkJAQlJSU+HXtlNBpRX1/v09+4Wq1GRUUFVlZW0NHR4ZV9MAyDwcFBREdH89Yew43L5YLRaORd3bIbd/KBjzYx7tFYbARvpGGBZfh8AadpGsvLy2zLYI3w8HDMz8+zLYN15HI5EhMTvbKEbLVaodfrIZfLUV5ezptsb1hYGMrLy71Wazc9PQ2TyYTS0lKvbN+fWF5eBk3TCA8PZ1sKK7htQvgYvBmNRrhcLlZuYEjmjWXUajUv58EBmz92h8PB267LiIgImM1m3i6b30peXh6ysrIOfbtSqRQJCQmHOq/UX4iMjERISAhomj70KQwREREoLCzkbbbpVlZXVyGXy1nJvnABhmGgVqsPdQScv+C+doeFhfl83yR4Yxm1Wo3V1VVemtWqVCoA/J00oNFoIJFIeLts/nEYhsHIyMihBLNOpxNra2ugKApZWVm8HNvjZn5+Hm1tbYfmA0fTNKRSaUDYrBwGmZmZOHLkCNsyWCM+Pp63NiluY+yQkBCf75sEbyyjVqvhcDh4eQFXKpUQCoW8Dd5EIhHuvfdeREVFsS2FE9A0jdHRUXR1dd31dpqamtDc3My6hQNFURCJRD6ts/s4MTExSE9PR09Pz113BBqNRpw7d47Yg3wMPs4zdcP2fGI2WVlZgVqtZiWrT4I3lnGvlfNx6ZSiKJSVlfHamZ2iKLhcLl5mXj+OUChEXl4eFhcXD9yFyzAMWltbsba2htLSUtZr3NRqNc6cOcN6UX9WVha0Wi1u3LhxV3WWnZ2dEIvFrH8erjAxMYHLly/z9vfrdDrxxz/+kdUxd2yysrKC0NBQVvZNgjeWcS8dsjWXkG0iIyN5OWHBjdlsxvvvv8/rxo1biYqKQnR0NHp6eg5kHdLZ2Yn5+XmUlpayUofCZdyjwA56ozg1NYXl5WXk5+fzcgzSTiwsLLCeWWWT9fV1MAzDW5uQ1dVV1s4z5BfIMiKRCCqVipeZN2DTxqGrq4u3qXeFQgGJRIKFhQW2pXCGvLw8OByOfRfZW61WLCwsoKioiDNL0RsbG7h06RI2NjbYlgKKolBaWors7GwA+5sKYLfb0dvbi9jYWERERHhLol9B0zQWFxd5/X2sr6+DoihPEoJvkMwbzwkLC+Nt5s3hcGBsbIyXNX9uIiIisLi4yLYMziCXy1FbW4vExMQ9v4dhGMhkMhw7doxTUztomsbGxgZnbk7cGaL5+XlcuHBhz80hLpcLwcHByM3N9aY8v2JtbQ1OpxORkZFsS2GN9fV1qFQqXmZirVYrLBYLybzxmbCwMN5m3ty1M3xtWgA2l47X19d5OxtwJ9zHxfz8/B0DjMnJSVy/fh0ul4uXdgUHITQ0FEKhEHq9/o7HHcMwkMvlqKyshEwm85FC7rO4uAiJRMJru5T19XXe1j+yaRMCkOCNE4SGhvI28yYSiaBQKHgdvIWHh0MgEJAOvo9B0zR6enrQ2tq6a+Zqbm4OHR0dUKlUrDcn+BMSiQRVVVWgaRqNjY27GiQvLy/j0qVL5MZiB9LT01FbW8vbejcAqKqqQk5ODtsyWMF9zSbLpjwmLCwMZrOZtydItVrN6+BNIpHg9OnTiI6OZlsKpxAIBCgtLcXGxgZ6enq2Pb+8vIzW1lZER0cjPz+fBYX+jVwuh06ng8ViQXd397bnbTYbWltbIZVKee2TtxsCgYCXUwVuRSgU8vbYWFlZgVwuZ63hjgRvHMAdufN16TQuLo7XdiHAZgaSYRjeWg7shrvOamxsbEsDg81mQ1NTE8LCwnw+r3Q/KBQKlJeXc7YbT6VSoaqqytPE4IZhGLS1tQEAp79ftpiZmUFDQwNnahnZYG5uDnq9nrffAZvNCgAJ3jiBe82cr0unsbGx+ypOD0TMZjM+/PBDYhmyA0lJSYiLi8Pw8LAnuJVKpSgoKEB5eTmni6XFYjGio6M5PZorODgYMpkMNpsNAwMDYBgGXV1dWF5eRklJCalz24GZmRk4HA5OH3veZnFxEWazmbffAZs2IQAZTM8J5HI5FAoFlpaW2JbCGktLSxCLxbwt/nVbhkxMTPB2wPXtKCoqgsvlgs1mw9LSEuLj4xEXF8e2rDtis9kwMTEBrVbL+eWl1dVV9Pf3w+FwICYmBhqNhhyLO2C32zE/P8/bWi83KysrvPZSXFpaYjXpwM+QmYNERUVhbm6ObRms0dvbi9HRUbZlsEpCQgJmZ2d3LR7nM+67+/r6erz++uuc8E3bC1arFX19fX5RzxodHY34+HgMDw9jbW3NL4JjNnCPGOPz9+N0OrGxscHb4M1oNMJoNLLqJ0mCN44QHR19V2Nr/B0+26W4iY+PB8MwBx4NFci4XC40NTXBarUiJSUFzc3NfhEQ+ROTk5OYmppCaGgo+vr6MDExwbYkTjIzM4OoqChezzNdXV0FwzC8Dd7c12o2m8xI8MYRoqKisLKyApvNxrYUVggLC4PJZOLt5wcAmUyGyMhI3tY+7gZN02hpaYHBYMA999yD48ePw+Vy7cmjjLA3pqam0NHRAa1Wi3vuuQcpKSm8rWW6EzqdjvdmxSEhISgrK+Ntt+3c3BwkEglpWCD8OYLn65gk9x0c37NvpaWlKCoqYlsGp3C5XHA6nSgvL0doaCgUCgWqqqrgdDpx/fp13na7HRZDQ0Nob29HQkICCgoKAAC5ubmeSRUWi4VNeZyCYRiIRCJez2MGNhtxYmJieNuFPD8/j6ioKFY/PwneOILbqJWvdW8ymQzR0dG8v9t3G82SjNImDocDYrEYNTU1W2ZIBgUFoba2Frm5uZw+ZtwXOS53m66vryMjIwOFhYXbLkYTExO4dOkSMZDGZgb4o48+4n1ZA8Mw6Ojo4LU359zcHOvzk7l71uMZIpEIERERvK57Ky8vZ/0HwQUGBwdRX1/P+4zS4OAgLl++vGsDh0wm8xwvvb29mJ2d9aW8PaFQKFBWVsY5nzeXy+UJyIqLi5GZmbnj6+Li4qBSqdDY2Mjr+cMAMDs7C6vVyttxUG7W19cxMTEBp9PJthRWcDqdWFpaYt1UnQRvHILvHacMw2B9fZ33QUtUVBRsNhtvl9ABYHx8HH19fdBqtXfMWjEMA6vVipaWFoyMjPhI4d6gaRpWq5VTx7TNZoNer0djYyOcTudtl36EQiEqKyshlUp5X2M4OTmJsLAwBAUFsS2FVVZWViAQCBASEsK2FFZYXFwETdOsJxpI8MYhoqOjsbCwwFuXfaPRiMuXL/PeqFatViM4OBiTk5NsS2GF2dlZdHZ2Ijk5GRkZGXd8PUVRKC4uRmpqKnp6etDU1AS73e4DpXdmY2MD586d44y1ycLCAi5fvgyTyYSKigqIRHe2+hSLxdDpdACAgYEBb0vkJBaLBYuLi0hISGBbCussLS0hNDSU0+UK3mR+fh4URZHgjfBnoqKiYLfbeVu0r1KpIJPJeJ1xcpOQkID5+Xnedd86HA7cuHEDcXFx++rooygKOTk5qKiowOrqKucycFxgbGwMjY2NCA4ORl1d3b465WQyGWpqapCXl+dFhdxleXkZIpEIsbGxbEthFZqmsbS0tKX+lG/Mzc0hNDSUdasYMmGBQ7jX0Ofn56HRaFhWww6RkZFYXFxkWwbruM1SjUYj5535DxOxWIyqqiqo1eoDdXJFRUWhrq7Oc2JdXV1FcHAwb7MEwOayMkVRiIyMRG5uLpKTkw/03bo7LA0GA4aHh1FUVMSb7zU+Ph5RUVF7ylQGMgzDIDs7m9fB2/z8POv1bgDJvHEKpVKJoKAgXte9RUZGYmNjg/f2BGKxGCdPnuRNEG80GnHz5k0wDIOQkJC7CgpkMhkEAgEcDgf0ej2uXbvGS+88mqYxPDyM+vp6OJ1OKBQKpKSk3LW9gcPhwOzsLG7cuMGLEg+bzQaGYTjdMewrhEIhkpKSeOvvxjAMJzpNARK8cQ6+T1oIDw+HUqnkffDmxmq1wmAwsC3Dq1gsFuj1eszPzx9qB5u7VoumaVy9ehXt7e28KbhfWFjApUuXcPPmzUO/AQgPD0dJSQlmZmbQ3d19qNvmIq2trWhra2NbBicYHh7mtUWIO7FAMm+EbURHR2NmZoYXd7Q7IRaLcfz4cd6OXfk4nZ2daG9vD9jjwW63Q6/XA9h0rj/s7EZoaCiOHDmCgoICLCwsoKen51C3fyfUajXuv/9+n9pLdHV1obGxEXK5HHV1dcjLyzv05b6YmBgUFBRgbGwMg4ODh7ptLrG8vIzl5WWPYTGfsdls6O3t5XXw5vb440Lwxu8FfA6SkJCAq1evYm1tjdXRG2xjtVohlUp56+DtJi0tDdeuXcPc3BxiYmLYlnOouFwuNDY2wm63o7a2FjKZzCv7oSgKiYmJiI2NhcvlArDZ7m+xWBAfH+/Vui2KonxyDJtMJgCbpRfR0dEIDw/3+vGi1WrhdDoD+kZrYGAAarWaE8tkbOOuReZzvdvExITHDYBtSOaNY7hb0flqEwFsmkCeO3eOl3VKHycsLAzh4eEBadFAURRCQkKg0+l8UkMjFos9AeLCwgI6Ojrw0UcfYWBgwGvWIiaTCdevX/cEV4fN6uoqWlpacOHCBc8xEhER4bNAPyUlBSEhIaBpOuC65FdWVrC0tLQnuxo+sLCwgODgYF41UH2cyclJaLVatmUACKDM28bGBn7605+ivr4eNpsN2dnZ+PrXv76rc7gbmqbxwQcf4PLlyxgcHMTGxgZiYmJw/PhxPPbYY9sO1CNHjuy4na985St44okn7vpzKBQKhIeHY2JiwjNnkG+oVCqIxWIsLi4G9F39XsnIyMD169cxNzfHiXT93cIwDIxGI1QqFfLz81nRkJubi6SkJIyMjGBwcBBDQ0Ooqqo69Gy30+nE8vLyobvRb2xsoLOzEysrK1AqlSgoKGB1aW9sbAy9vb2oqKhAZGQkazoOE5fLhaioqID4zd0tDMNgcXERiYmJbEthDafTiZmZGc7Y5QRE8EbTNJ599lkMDw/jscceQ3BwMN58801885vfxPPPP39bY0Wr1Yof/OAHyM3Nxac+9SmEhoaip6cHL7zwAtra2vB//+//3bbsUVZWhvvuu2/LY+np6Yf2ebRaLa8zb25bg/n5+TsG33xAo9EgPT09YDq8uru7MTU1hRMnTrDqlaRUKpGfn4/MzExMTEx4lkJ6e3shFosRGxvLme/c7a/lcDgQFxcHiUQCgUDgGSnHdnlBUlISlpaW0NLS4pUgmA0iIiJ4vUR4KzRNIykpideB7MzMDFwuF8m8HSaXLl1Cd3c3vvvd7+Lo0aMAgOPHj+Pxxx/HCy+8gO985zu7vlcsFuPHP/7xlgzAAw88gOjoaPzyl79Ea2srysrKtrwnISEB9957r1c+C7AZvLk747xVB8R1oqOj0draCrPZzLm5kGyQlZXFtoRDob+/H2NjYygsLGTd5NKNRCJBWlqa5992ux1jY2Po6+uDWq1GTEwMkpOTfW4V4XK5sLS0hNnZWczNzcHhcECj0SAuLg5SqRRVVVU+1XM7BAIBSktLPWO3ampqoFKp2JZ1YEZGRhAVFcWZ4J1thEIh72+kJyYmIJFIOFP/GBA1b5cvX0ZYWNiWJc2QkBAcO3YMV69evW09i1gs3nHp5p577gGwOWNxJ2w2m9fc7xMSEsAwDKampryyfX8gMjISUqmUM2OFuMDS0hJu3LjBtowDMzo6ioGBAWRnZ3Pm7nUnioqKcPr0aZSXl0OlUmF4eNjT7TswMICbN296hpQfFgzDwGAwYHx8HNPT0wAAs9mMpqYmrK6uIjk5GXV1daiurj60fR42QqEQFRUVkMvlmJ2dZVvOgTEYDOjp6SE1t7cwMjLCe/umyclJrzc47YeAyLwNDAwgPT1925eanZ2Nd955B5OTk0hNTd3XNt3Ftzt1lbz//vt48803wTAMEhMT8eSTT+LUqVO33d7S0tKWmZ27BYXAZpG6UqnExMTElowAnxCJRDh16hTry0FcgqZpTE5OIi4uzu+Wc5xOJ4aGhpCamuoXx7RQKER0dDSio6NB07Tn3GK32zE7O4uhoSEAm1m74uJiREZGYmlpCSsrK5DL5Z5lTYFAgJSUFBiNRthsNrhcLlitVmg0GqjVaszNzaG3txcWiwU0TYOiKMTHxyMuLg5BQUE4fvy4X2V/xGIxampqPNYk7ukO/sTAwACUSiXi4uLYlsIJ3MGsSqXyTNngGwzDYGJiApWVlWxL8RAQwdvKygoKCwu3Pe42p1xeXt538PbSSy9BqVRu+2Pl5eXh2LFjiImJwfLyMl5//XX8wz/8A0wmEx566KFdt/f222/jxRdf3NO+KYpCQkICJiYm9qU50KAoylPozfexNMBmNjIkJAQDAwN+F7yJRCIcOXKEM0ul++HWm8K8vDzk5eXBarVidXUVRqPRE1ytr69jbGxsS0Y+Pj4edrt9y6xVgUCAvLw8qNVqyGQyREdHQy6XIzg4GMHBwRAKhQA2j39/CtzcuH+rs7OzGB4ehk6n85vf7/r6Oubm5lBUVOR3Qae3mJmZgUQiQXh4ONtSWGNpaQkWi+W29fO+hnO/KJqm4XA49vRaiUQCiqJgs9l2vCi4H9vv8uavf/1rtLS04D//5/+8rW7jueee2/LvT3ziE/jSl76En//85zhz5syubdQPPvggampqPP8eHx/H9773vV01aLVaXLx4ES6Xy3My5xs0TeOjjz5CRkYGUlJS2JbDCTIyMtDU1ITl5WW/GJ21srKCwcFBlJaWBpTFgEwm22bHkZKSgpSUFM85jKZpuFwuzMzMICsrC1KpFAKBYMu5KiQkBCEhIT5W7xuUSiWMRiOam5tRWVnJmeWm2zE4OAiFQkGybrcwOzuL6OhoXgezk5OTnqw4V+Bc8NbR0YFvfvObe3rtr3/9ayQmJkIqle5Y1+Z+bD8XjfPnz+Pf//3fcf/99982k+ZGLBbj05/+NP75n/8Z/f39u9p7hIeH7+vOJSEhAQ6HA3Nzc7w9kQgEAmg0GszMzJDg7U9ERUUhODgYo6OjnA/eNjY20NTUBJVKxasTv0Ag8JxzDAYD+vv7ERUVxbvmI7VajYqKCjQ0NKCtrQ2lpaWcPw6ysrJgtVr9ItD0Bevr6zCZTKxZ+nCFiYkJREVFceoGlHPBm1arxbe+9a09vdZ98QoLC9tST+bG/dheL3LNzc34/ve/j6qqKvyX//Jf9qgYHl+jwxwbEhMTA5FI5Klx4isxMTG877z9OGVlZZw6ieyE2WyGXq+HXC5HRUUFb7PHfCcsLAxlZWVobm5Gf38/Z7umGYYBTdNQKpV+uVTtLYRCIZKTkzl/o+htDlI37204F7xpNBqcOXNmX+9JT09HZ2fnlsJiALh58yZkMtme1ql7e3vx7W9/G5mZmfj//r//b181Gu55Z4e5/CESiRAbG4uJiQnodLpD266/ERUVBYFAgNnZWSQnJ7MthxO4rVNMJhNEIhHnAjmXywW9Xg+hUOiVeaUE/yIqKgplZWWcXh4eHR3F6Ogojh49Sm40bkGpVHLGlJYtTCYTlpeXPTZkXCEgcsN1dXVYWVlBfX2957G1tTVcvHgR1dXVW2pMpqenPa34bsbGxvDss88iOjoa//RP/7TrxXBtbW3bY2azGa+99hqCg4MP3QcnMTERY2NjATuUfC+IxWJERkbCbDazLYVT0DSN69ev+3zQ+l4QCoVITU2FTqfjXGBJYIfo6GjIZDLYbDbOWSBZrVb09/cjMjKSBG63YDKZMD4+7pkHzFfGxsYAgHPTJTiXeTsIR48exWuvvYYf/OAHGBsb80xYoGkaf/mXf7nltX/7t38LAHjllVcAbAZf//W//ldsbGzgscceQ0NDw5bXx8bGeu48Xn/9dVy9ehXV1dWIiorC8vIy/vjHP2J+fh5///d/f+gZhrS0NFy5cgWzs7OIjY091G37E2VlZZyvlfE1AoEAWVlZuHHjBrRaLSc6wWiaxuLiIqKiojh3omMLkUgEjUbjN92W3mZqagq9vb1gGIYznXvd3d0QCoWcXdJli/HxcUxOTnLm78QWQ0NDiIyMhFqtZlvKFgLijCIUCvHDH/4Qzz33HP7whz/AZrMhKysL3/rWt+5oBmowGLCwsAAA+NnPfrbt+fvuu88TvOXn56O7uxvvvvsu1tfXIZPJkJ2djWeffRalpaWH/rni4+MhlUoxNDTE6+CNoigwDAOz2UzqUW4hPj4eExMT6OrqQl1dHatF1gzDoLW1FYuLizh+/DipT/wTSqWS08a6viY1NRVGoxEdHR2ccKtfWFjA7OwsSkpKyPL+LdA0jampKU6Z0rIBwzAYGhri5NJxQARvwOYw82effRbPPvvsbV/nzri5iYmJ2bLcejvKy8tRXl5+YI37xV0sOjQ0tGV6BB+5efMmZmZmcOLECZKF+xMURSE/Px/19fUYHh4+1Pm6+6WzsxPz8/MoLy8ngdstMAzjMaolx+0mBQUFcDgcaGlpgU6nY7UYXigUQqvV8ropbCcWFhZgs9l4n3VbWFjAxsYGJ43F+RtS+wlpaWmYmpo61FE8/khMTAwsFguWlpbYlsIp1Go1ioqKWPUfunnzJiYmJlBUVMR6JoVrrK+v47333jvUTnR/h6IolJSUQKPRsD5ySaPR7GjwzncmJycRHBzMuaVCXzM8PAyxWMzJMhASvHGc1NRU0DSN0dFRtqWwSmhoKFQqFSYnJ9mWwjni4+Mhl8tZKSx2D0/Pzc3llIElgdsIBALodDrPMbNXY/bDwmQyobGxkfc3xbsRHx/P+0H0wGa9W1JSEidrVknwxnFCQ0Oh0Wg8sxT5TEJCAmZnZ31+ovcHbDYbLly44NOB4DRNQygUoqamhpgoEw7MyMgI6uvrfRpIdXV1wWg0kjq3XYiJieF9Ft1ut2N8fJxz/m5uSPDmB6SlpWFoaIjXliHA5t1gUFAQ60stXEQqlSI4OBjd3d2eebDeZG5uDpcuXSJu9IS7JiYmBjRNo7Gx0Sc3ZtPT01hcXER+fj6xBtmBnp4eGAwGtmWwztjYGFwuFyfr3QASvPkFaWlpMBgMO06R4BNSqRR1dXW8r8PYjby8PDgcDq97vy0vL6O1tRVqtZr4uBHuGrlcDp1OB4vFgqamJq8u/1utVnR3dyMmJsYzGYfwZ9bW1jAyMrLveeCByPDwMEJCQjg7XYIEb36Ae82dLJ1usrGxQbJvO6BQKJCfn4+JiQmvGaEaDAY0NTUhLCwMJSUlpIPyDqhUKpw6dQoqlYptKZxGpVKhsrISBoPBq+c5g8EAsVi86wxqvjMxMQGZTIaIiAi2pbDO0NAQ0tLSOHuOI8GbH+DudiHB26b1QkNDAwYHB9mWwkkSEhKQlpbmFT88mqbR3NwMpVKJ8vJysly6BwQCAWQyGfmu9kBoaCiqq6u9ankTFRWFo0ePbpm6Q9jE4XBgenoaWq2WswGLr1hdXcXy8jJnl0wBErz5DampqRgbG+N9sT5FUUhKSsLU1BTvv4vdyM7ORmhoKBiGOdQlKIFAgOLiYuh0Ok52X3ERs9mMlpYWMt5tj4SEhEAgEMBgMGBgYODQtruwsLDj/GvCn5mcnITL5eKkLYavGRoagkAg4PQ8bXIU+wlpaWlwOp0YHx9nWwrrJCYmgmEY8l3cgaamJnR1dd31dhwOh6dhRqPRkKzFPnA4HKRD+gCsra2hv7//UDLsFosFbW1tsFqtvM8o3Y74+HiUlZURk21sBm8JCQmcruklwZufEBERgZCQEPT19bEthXWkUini4uIwNjbG+w7c2xEXF4fJycm78sZzuVxoamrC0NAQ8cQi+IzExERkZGSgr68PExMTB94OTdNobW2FSCRCUVERCd5ug0QiQXR0NNsyWMdut2N4eBgZGRlsS7ktJHjzEyiKQk5ODm7evAmaptmWwzopKSmIjo5mxZjWX4iPj4dWq0VXVxc2Njb2/X73hc9gMKCyshJyudwLKgmEncnMzERSUhI6OzsP7F/Y19eHtbU1lJaWkozxbWhpaSErGX9icHAQTqcTOTk5bEu5LSR48yNyc3NhMpnu6k40UFCr1cjLyyO1V3cgLy8PCoUCLS0t+wp0GYZBR0cHFhcXUV5ejtDQUC+qJBB2Ji8vD1qt9sBLeS6Xy1MDStiZ9fV1zM7OknPpn+jt7UVsbCznjxkSvPkRsbGxCA4O9rqPl79A0zSGh4fJ3MjbIBQKUVZWhtTU1H0ZkrqXo4uLi4ltwF0gk8mQlZVF6ogOCEVRKCgoQGhoKGiahslk2tf78/PzOeuQzxVGR0chk8kQExPDthTWcTgcGBgY4HzWDSDBm19Blk63QlEURkdHMTw8zLYUThMUFAStVgsAe/LHc09NKC4uRmxsrLflBTRSqRTp6emcLnz2F/r7+3H16lUYjcbbvo6maTQ0NGBmZsZHyvwXu92OqakpJCUlkS5cbDYqOBwOZGdnsy3ljpC/lp+Rk5MDo9FIBrRjM3hLTk7GzMwMcQTfA9PT07hw4QLW1tZ2fc34+DguXLiw7wwHYWccDgfm5uZIt+khkJqaColEAr1ef9vmmZ6eHqysrEChUPhQnX8yNzcHAMQe5E/09PQgOjqas1MVboUEb35GfHw81Go1ent72ZbCCbRaLQQCAcm+7YHo6GgEBwejsbFxx+BsdnYWnZ2d0Gq1XjH55SNmsxnNzc3E5+0QkEgkqKqqAgDo9XrY7fZtrxkaGsLY2Bjy8vIQEhLiY4X+h1arxfHjx0kzB/xryRQgwZvfQVEUsrOz0dvbS2wysDl9Ijk5mRgY7wGhUIiKigqIxWI0NjZuufgtLS2hra0NcXFxyM3NZVElgbA7MpkMOp0ONptt2wi42dlZ3Lx5E+np6SSTtAfcJRSki3yT4eFh2O12ErwRvEdOTg42Nja8Nr/S30hJSUFpaSnEYjHbUjiPRCKBTqeD0+lEf38/gM3mhM7OTmg0GuKFReA8QUFBqKurQ0pKypbHQ0NDkZWVhaysLJaU+Q80TePq1auHOsXC3+nt7UVkZCTCw8PZlrInSG+wH5KQkICgoCD09vYiISGBbTmsI5FIEBUVBWAzECHBx+1RKBSorq723HFTFAWdTgepVEqKlgl+gbt7d2ZmBiMjI57JAN6cixpITExMwGazIS4ujm0pnMB9M+telvcHyJnaDxEIBGTpdAeam5vJneQeCQoKgt1ux5UrV9DZ2Qm5XL4vKxHC3hAIBFCpVCQo9hIWiwUXLlzAm2++ybYUv4GmaQwODiIuLo7Utv6JkZER2Gw2v1kyBUjw5rfk5OTAYDBgenqabSmcQaFQYHR0lNS+7QG73Q69Xo/p6WkMDg4S70AvoVKpcPToUahUKralBBwWiwWjo6NIT0+HRCIhN257ZHJyElarlWQpb6G3txfh4eF+5WlJgjc/JTExEUqlEt3d3WxL4QypqalwuVwYGxtjWwqncTqdnoaFBx54AGVlZRgdHSVzcwl+g81mQ0NDAwDgoYceQn5+Pvr7+4mF0h6gKApJSUkICgpiWwoncDgc6OvrQ25url+V3JDgzU8RCAQoKChAZ2cnme/5J2QyGbRaLYaHh+F0OtmWw0kYhkFLSwuMRiN0Oh2USiUSExORm5uLwcFBDA0NsS0xoFhfX8fZs2fJFJBDZnV1FTRNo6qqCnK5HOnp6cjJyfGrzAlbaLVa5Ofnsy2DM/T19cFqtaKwsJBtKfuCBG9+THFxMcxmM1kuuIW0tDQAgMFgYFkJN6EoCpGRkSgvL0dwcLDn8ZSUFDID0gswDAOn00lqUw8J92SZ6OhoHDt2bEvNVmpqKmQyGex2O5aXl9mSyFlomsbAwAAxNP8Y7e3tSExMRFhYGNtS9gUJ3vyYyMhIxMXFob29nW0pnEEul+Pee+/1C4dsX7O6ugpgM1DbqR0+LS0NGo0GDMOQWkoC57DZbFvsLXZrsBkYGEBjY6PneCdsMjExgf7+fhK83cLa2hpGR0dRXFzMtpR9Q4I3P6eoqAiDg4PY2NhgWwpnEAgEcDgcWFhYYFsKZ3DPhdzLcbKwsIC2tjZ0dnaSjBGBExiNRly9ehU2mw3R0dG3fW12drZnkgg5L27itsJISEiAWq1mWw5n6OjogFgs9qsuUzckePNz8vLyIBQK0dnZybYUTjE+Pk7GEv2J0dFRDAwMIDs7e09dj1FRUSgqKsLExARaWlpITSWBVVZXV3Ht2jUIBALU1tbeMfhwTxKRy+XQ6/WeSQJ8ZmhoCC6XixgY3wLDMGhvb0dubq5fjgcjwZufI5fLkZ2djfb2dpIluYXk5GRIJBLed1BOT0+ju7sbqampnnrAvZCQkICKigosLi6ioaGBBHAHJCgoCEeOHCGdfXfB6OgogoKCUFtbu+dRTmKxGJWVlRAKhbxfPnU4HBgZGUFKSorH3JgAjI2NYW1tzS+XTAESvAUERUVFWFpaIuOybkEoFCIzMxPT09NYW1tjWw4rMAyD0dFRJCQkHGhZIDIyEtXV1dBoNMTA94AIhUIEBweT7+8AuGuzCgsLodPp9j3+TiaT4ejRo4iNjQXw52YHviEWi1FTU7Ovmzc+0N7eDo1G47dTikjwFgAkJycjODgYN27cYFsKp0hISIBKpUJvby/bUljBPfbqblrgQ0JCkJ2dDQCYm5sjXbz7xGKxoKuriyzd7ZP+/n5cvHgRVqsVQqHwwMGve7LF4OAgGhsbeRfA2e12MAyD4OBgiERkGqYbq9WKmzdv+vUsZxK8BQACgQBFRUXo7u6G3W5nWw5noCgKBQUFyMzMZFuKT9nY2EB9fT3MZjNEItGhnZyGh4dx/fp1LC4uHsr2+IDdbsfY2Bj5Xe4RhmHQ0dGBgYEBpKWlHdoyX1hYGFZWVtDW1sar8pL29na0trayLYNz9PT0wOl0+p23262Q4C1AKCoqgs1mw82bN9mWwinCwsI8tiF8OGmbzWbo9XowDLPvZaY7UVlZibCwMDQ2NhIrEcKh43K50NTUhMnJSRQXFx/qMp9Go0FZWRnm5uZ409y1uLiIhYUFMnx+B9rb25GWlubXnbckeAsQQkNDkZSURDzfdoCmaVy7di3gx2bZbDbo9XoIhcID1QjdCZFIhPLycsTHx6OtrY2MIiIcKhaLBevr66isrER8fPyhb//WLurx8fFD3z6XoGkavb29CAsLQ0xMDNtyOMXi4iKmpqZQVFTEtpS7ggRvAURxcTHGxsawsrLCthROIRAIoFKpPGNQAhGGYdDc3Ayn0wmdTgepVOqV/biX6LOzsz1Gv3zIaBK8x+zsLJxOJ4KCgnDixAmvjriKj4/33IAEMmNjY9jY2EBeXh7bUjhHe3s75HK535fTkOAtgMjJyYFCoUBTUxPbUjhHdnY2BAJBwDYvUBSFjIwM6HQ6KBQKr+8vLS0NcrkcDocDV65cwezsrNf36Y9IpVKkpKR4LZj2Z5xOJ27cuIGWlhbPMry7wcCbREdHQygUYn19PWCX/6VSKdLT07eMwCNs1qC2tbWhuLjY7xs4SPAWQIjFYpSWlqK9vZ2MQPkYbhft6enpgCq4ZxgGk5OTYBgGkZGRrNRwKBQKtLS0oLOzk/jBfQyZTIbc3Fzir/UxDAYD6uvrMTMzg6KiIiQmJvpcw+TkJNrb2zE/P+/zfXubuLg4v88seYOOjg7YbDZUVFSwLeWuIcFbgFFeXg6Hw0FsQ3YgISEB0dHRAdX519nZiY6ODqyvr7Oyf7FYjLKyMhQWFmJqagr19fWsaeEiTqcTq6urcDqdbEvhDBaLBVevXoVIJEJdXR1rPls5OTmIiopCS0tLwJSaLCwsoL29ndxE7QDDMGhsbER2djZCQkLYlnPXkOAtwFCr1cjJyeGlp9FeKC8vD5juq5s3b2JiYgJFRUWsL49otVrcc889EAgEARUc3y0mkwlXr16FyWRiWwrruI8LuVyOsrIy1NbWQqlUsqaHoiiUlpYiLCwMTU1Nfn/T4XK50NXV5fHGI2xleHgYS0tLqKysZFvKoUCCtwBEp9NhZWUFg4ODbEvhJE6nE11dXX59QR0eHsbQ0BByc3M5U3ytUqlw5MgRhIeHg2EYDAwMkECOAGCzw+/SpUueju+oqCif1LfdCYFAgPLycoSEhPh9dnRwcBBWqxUFBQVsS+Eker0eMTEx0Gq1bEs5FNj/9RAOnfj4eMTFxaGxsZFtKZyEoijMz8+ju7ubbSkHxmAwID09HSkpKWxL2YLbENhsNmN0dBSXL18OqBpDwv5wuVzo7e2FXq+HWq3mpG2FSCSCTqdDWFgYaJr2yxsOo9GI4eFhpKWlsZrN5CpLS0sYGhpCZWWl305U+DgkeAtQdDodRkZGsLCwwLYUziEUCpGXl4eFhQXMzMywLWdfuGtZiouLkZWVxbKa3VEqlairq0NQUBD0ej1aWlpgNpvZlkXwIRaLBRcvXsTo6Chyc3NRWVnJ+a7brq4uNDQ0wOFwsC1lX6ysrEAul5P5pbvQ2NgIpVIZUNYpJHgLUHJycqBSqUj2bReio6MRExODrq4uv+nMXV5exkcffQSDweAXd48ymQxVVVUoKSnB6uoqLzNwFEVBIpH4xd/rsHDPcZXL5YiLi8PRo0eRkpLiF99BSkoKLBYLmpqa/KroX6vV4ujRo6TWbQesVis6OjpQVlbm9/Ygt0KCtwBFKBSivLwcHR0dJOOxCwUFBaAoyi+yk+vr62hqaoJarYZKpWJbzr6Ii4vD8ePHPbUmfX19Aeuv9XHUajVOnz7t12N49ordbkdnZyfOnz+P1dVVAJv+iv60jKdSqVBZWQmDwYDW1lbON32ZTCYMDQ2BYRhO1BBykba2NrhcLpSXl7Mt5VAhf+0AprS0FMDmwUvYjkQiwbFjx1izKtgrJpMJer0eQUFBKC8v98uTtFAoBEVRYBgGRqMRbW1tuHbtGgwGA9vSCHcJTdMYGRnBhQsXMDMzg5ycHNa7n++G0NBQlJWVcb6sgmEYtLe3Y2JigvNBJlvQNI2mpibk5eUhKCiIbTmHiv9dBQh7RqlUIj8/3++WAHyJWCwGwzAYHR31LPdwjfb2dojFYlRWVvp92p+iKJSVlaGqqgoOhwP19fUBPSh8Y2MDFy5cwMbGBttSvMbw8DB6enoQGxuL48ePIyUlxS9vMG4lMjISR44c4Uwn904MDw9jdXUVRUVFZLl0F/r7+7G2thYw9iC34t9XAsId0el0aG9vR29vL/Lz89mWw0mcTieGhoYwPz8PnU7HtpxtFBcXQyAQQCKRsC3l0AgPD0ddXR3Gx8c9QTPDMAG3/EPTNEwmU8BlRkwmEzY2NhAdHY2kpCRERkb6dbZtJ9xL3bOzszCbzUhNTWVZ0Z/Z2NhAf38/UlNTERYWxrYcztLQ0ACtVovY2Fi2pRw6gXOWJOxIVFQU0tLScOXKFTJAfBfEYjGKioqwuLiI8fFxtuUA+LPFgtPphFKphFwuZ1vSoUNRFJKSkpCdnQ0AGB8fx/nz5zE0NOR33X58YW1tDa2trbh48SL6+vrAMAzEYnHABW63srGxgd7eXkxMTLAtxcPExASUSiWnO87ZZmxsDBMTE6ipqWFbilcgmTceUFdXh1/84he4efMmcnJy2JbDSSIiIpCYmIienh6Eh4ezWmRN0zRaW1uxtLSEuLi4gL4w3kp4eDgMBgP6+/sxMDAArVaL1NTUgAxc/Q2Xy4XGxkYsLy9DoVAgNzcXWq3WLzpI75aMjAzYbDZ0dnZCLBZzwqsuNzcXdrs9oLLUh83ly5cRHR2NjIwMtqV4BfKX5wEJCQlISUlBfX09yb7dhpycHEilUlbvsBmGQUdHBxYXF1FeXs6bwA0AgoKCUFhYiJMnTyI1NRXT09NYW1sDAFKzyQIul8vTFSwUCqFWq1FWVobjx48jOTmZV3VWeXl5iImJQVtbG5aXl1nTsba25umOD6QyisNmYmICo6OjqKurC9gbDJJ54wlHjhzBiy++iIGBAWRmZrIth5OIRCJUV1dDJpOxpqG3txdTU1MoLS1FREQEazrYRCqVIjMzE2lpaZ7MQltbG+x2O1JTUxEVFeU3J2SlUgmdTudXdhl2ux2jo6MYGxuD3W6HSqWCWq0OKIPT/UJRFIqLi9HT0wOFQsGKBofDgdbWVkgkEkRERPjNb4AN6uvrERkZGdDLyiR44wlJSUlITEzE5cuXkZGRQX74u+BeoltaWgLDMD4PoKRSKfLz8wOywHa/3JrZSUhIwPDwMJqbm6FUKpGSkoKEhATOZ39EIpFfBeF9fX0YHh4GRVHQarVITk72q8DTmwgEAk/Tl91uh8Ph8Ol3c+PGDTgcDlRVVZHz922Ynp7G0NAQHnnkkYD+nsiyKY+oq6vDzMwMhoaG2JbCeUZGRtDW1gar1eqT/ZlMJgBAWloakpKSfLJPfyI6Oho1NTWora1FcHCwp5kD2JzzytVlVavViv7+fp8dR/vFbDZjeHjYc/zJZDJkZGTg1KlTyMvLI4HbLnR2dqKhocFnf9eRkRHMzc2hqKiItcyfv3D58mWEh4cHfH03Cd54RHJyMhISEnD58mVS+3YHioqKIBAIfOKyPjs7i4sXL2Jpacmr+wkEQkNDUVpailOnTkEqlYKmaTQ0NOCDDz5Aa2srZmdnORXI2Ww2DAwMcGoEm9lsxtDQEOrr63H+/Hn09fV5zJKTkpKQnp4OsVjMskpu415C1uv1Xh9kT9M0JiYmkJqaiujoaK/uy9+ZnZ3FwMAAjhw5EvDNHIH96QhboCgKR44cwdTUFEZHR9mWw2kkEglKS0uxurqK/v5+r+1naWkJbW1tiI2NhUaj8dp+Ag13cCEQCHDPPfcgPT0dRqMRLS0t+OCDDzwXVHKTsonJZPLYrwwNDWFgYAAKhQKlpaU4ffo0WabfJzKZDDqdDjabzesm6AKBALW1tQFdv3VY1NfXIywsjBf1maTmjWekpaUhNjYWly9fRkpKCttyOE1YWBiys7MxPj6O9PT0Q59usLa2hubmZoSHh6OoqCig6zO8iVKpRHp6OtLT02EymbC8vOzpxKuvr4dSqURsbCzCw8N506HnHkM2NzeHmZkZrK+vo7CwEFqtFpmZmcjJyfH7aR1sExQUhMrKSuj1eiwtLSEqKurQ99Hb24vExESyfL0H5ufncfPmTXzqU58K+KwbEEDB28bGBn7605+ivr4eNpsN2dnZ+PrXv76nzsrvf//7eP/997c9rtVq8Zvf/GbLYzRN4/e//z3efPNNrKysID4+Hk888QROnjx5aJ/Fm1AUhbq6Orz00ksYGxsj9VV3ICUlBYmJiV650PX19UGlUqGsrIwXJxtfoFQqPRc6mqYRFxeH2dlZtLa2ep6vqamBVCqF1WqFRCIJiO/ebrdjbW0NoaGhEIvF6OjowOTkJIRCIaKiopCRkYHIyEgAm00xhMMhJCQEx48f98pNwfDwMIaHh6HRaEjwtgfq6+sREhKCgoICtqX4hIAI3miaxrPPPovh4WE89thjCA4OxptvvolvfvObeP755/c0eFwikeDv/u7vtjy20w/m+eefx29/+1s88MADyMrKwtWrV/Hd734XFEXhxIkTh/aZvElGRgaio6Nx+fJlErzdAYqiIBKJYLFYMDg4iLy8vEO72JeWlgIA5zsm/RWBQIC0tDSkpaXBYrFgZWUFa2trngttc3Mz1tfXERISgtDQUISGhiI8PPxQ673EYjHi4uK8UkM2MTGB5eVlrK6uehoOKioqEBUVhaSkJMTFxSEsLIwcX17GfTy5axsPYwzh8vIybt68ibS0NK9k9AKNxcVF9Pb24pOf/CRvjveACN4uXbqE7u5ufPe738XRo0cBAMePH8fjjz+OF154Ad/5znfuuA2hUIh77733tq9ZXFzEyy+/jIcffhh/+7d/CwD45Cc/ib/5m7/Bc889h6NHj/rFgePOvr388ssYHR1FcnIy25I4j81mw+TkJJxOJ0pKSg68Hbvdjhs3biA3N5fcTfsQuVyOuLg4xMXFeR7Ly8vD6uoqVldXMTMzg+HhYVRXV0Oj0WB2dhYGgwEymQwymQxyuRwKhWLfQZhCoTjw8ULTNFZXV2G1WmGxWGC1WrG+vg6dTgeBQICZmRk4HA5ERkZ6gk93J2JISMiB9kk4OFKpFP39/ZBKpXfl6m8ymdDc3AyNRkM8OffIpUuXoFKpUFhYyLYUnxEQwdvly5cRFhaGI0eOeB4LCQnBsWPHcO7cOdjt9j2ltV0uF6xW664X1atXr8LpdOLhhx/2PEZRFB566CF897vfRU9Pj9+kbLOyshAXF4dz587hy1/+Mqm3ugMhISEoLi5Ga2srVCoV0tPT970Np9OJxsZGmM1mLygk7Bd3wOPGZrN5gjODwYCpqSlYrVZP00NaWhqys7OxtraGnp6ebYGduxPQPRVCIBCAYRhYLBbIZDJQFAWapsEwDBQKBWQyGTY2NjA3N+cJziwWC4KCglBaWgqGYXD9+nUAmxk8mUwGlUoFp9MJiUQCnU7nw2+LcCcSExNht9vR19cHiURy4FUNs9kMhUJByin2yNTUFHp6evDQQw/xqo4zID7pwMAA0tPTtx3o2dnZeOeddzA5OYnU1NTbbsNqteLMmTOwWq1QqVQ4ceIEvva1r23x1BkcHIRcLkdiYuK2/bif3y14W1pa2jJWhe0B6BRF4d5778ULL7yA7u7uQ0n1BzqxsbHY2Njw1Krtp22fpmm0tLTAaDSiurqaZN04yK21YFlZWcjKygLDMLDb7bBarVs6XBUKBaxWKwwGA6xW65bgraGhweNBZzKZ0NPTsy3Tmpubi5SUFBiNRoyOjnoCwbCwMKjVagCbqwHHjh2DTCbj1UXJn0lPT4fdbkdXVxeUSuW+DJoZhgFFUYiIiEB4eDi5od4DDMPgww8/RFRUlN8kTg6LgDgjrKys7JgudVsvLC8v3zZ402g0+PznP4+MjAwwDIPGxka8+eabGB4exo9+9CPPiXN5eRmhoaHbflTu/dzOp+vtt9/Giy++uN+P5lUSExORmZmJ8+fPIzs7m1wg9kBGRgbMZvO+rQFu3LiB5eVlVFZW8mpeqb9DURSkUumWwE6tVqO4uHjL6249Hmpra8EwDGiahsFgAE3TqKqqQkhICCiKgkAg8GwvJibmtoPOg4KCDvkTEbxNTk4OFAoFwsLC9vW+3t5eOBwO0nm+D/r7+zExMYEnnniCd1lKzl2taZr2+BHdCYlEAoqiYLPZdlwWdT92J4PMr371q1v+feLECSQkJOD555/H5cuXPY0Ity6r7Hc/Dz74IGpqajz/Hh8fx/e+973b6vIFp06dwnPPPYempiZUV1ezLYfzuGccunG5XHuqc4yLi/PYVRACj1uPAZVK5fl/iqKgUqkQEhJCgnaeQFGUp454fX0dLpdry/L8TkxMTGBkZIQX/mSHhcvlwrlz55Camoq0tDS25fgczgVvHR0d+OY3v7mn1/76179GYmIipFLpji7X7scO0hr/2c9+Fr/4xS/Q0tLiCd6kUumOgeVe9hMeHs7JC3d4eDhKSkpQX1+P4uJiz2xPwp3p6+vD0tISqqurd73rW1xcRHh4OOkYIxB4SF9fH1ZWVlBTU7MlqL+V5eVldHV1ITExkTSP7YO2tjasrKzg0UcfZVsKK3AueNNqtfjWt761p9e6lyvDwsK21JO5cT92EOd6qVQKtVqN9fX1Lftrb2/31CZ8fD9cDM72wtGjR9HZ2YkrV67cseOW8Geio6MxPDyMjo6ObctoADA6Ooru7m6PfQOBQOAXxcXFuH79OvR6PWpra7fdHFutVrS0tPBmKsBhYbPZcOnSJRQWFvJ2ZBjngjeNRoMzZ87s6z3p6eno7OwETdNbMiA3b96ETCbbk8/bxzGbzTAYDFta7tPS0vDuu+9ifHx8SydRb2+v53l/JCgoCDU1Naivr0d5efkdU/yETUJCQlBUVIS2tjbI5fIt42ump6fR3d2N1NRUErjxmODgYDzwwANsyyCwhFgsRmVlJa5du4aGhgbU1tZuKfGRSqVITk5GUlIS72q27oZr167BZrPh2LFjbEthjYA4Wurq6rCysoL6+nrPY2tra7h48SKqq6u3/Fimp6cxPT3t+bfNZtvRuuE//uM/wDAMKisrPY/V1tZCJBLhjTfe8DzGMAzeeustRERE+PWdU1VVFRQKBS5cuMC2FL8iLi4OOTk5GBwcxNzcHABgYWEB7e3tSEhIQE5ODssKCQQCm7jnoFIU5bnWOJ1OrKysgKIoZGRk8GZs22GwsbGBhoYG6HQ6XteRci7zdhCOHj2K1157DT/4wQ8wNjbmmbBA0zT+8i//cstr3ea6r7zyCoDNTtVnnnkGJ0+ehFarBQA0NTVBr9ejsrIStbW1nvdGRkbi0UcfxUsvvQSn04ns7GxcuXIFnZ2d+B//43/4hUHvbkgkEhw7dgxvv/02qqqqyKDqfZCamgq5XO4ZPzQzM4OoqCheGUYSdsZoNOLGjRsoKioinaM8RqlU4ujRo6AoCi6XC01NTdjY2MCJEydIl/8+uXjxIsRi8ZZrMx8JiKNGKBTihz/8IZ577jn84Q9/gM1mQ1ZWFr71rW95ArLdCAoKQnV1NZqbm/H+++975iF+5StfwWOPPbYtlf3Vr34VKpUKb7/9Nt5//33Ex8fj29/+Nk6dOuXNj+gTioqKoNfr8eGHH+Kpp54i7er7IDY2FgzDYHV1FXFxcdBoNOT7I8DlcmF1dXXf1jKEwIOiKDAMg9///vdYXFzEF77wBRK47RP3qsZ9990HmUzGthxWCZgjR6VS4dlnn8Wzzz5729e5M263vu/b3/72nvcjEAjwxBNP4IknnjiQTi4jEAhw6tQp/Pa3v8XAwAAZzbIPzGYzGhsbQdM0bDYbqqqqSO0ggUDYQnd3N2iaRmhoKGZmZvZl4st33Ia8oaGhKCsrY1sO6wREzRvh8HAP8j579uye/fb4js1mg16vB8MwqKqqQnBwMBobG7d0KhMIBH5jt9uxsLCAuro6HD9+HBMTE+jr62Nblt/Q19eHoaEh3HvvvX5donRYkOCNsAWKovCJT3wCRqNxSwMIYWfc80qdTid0Oh0UCgUqKiqgUCig1+thMpnYlkggEFiGpmlIJBIcPXoUWq3W08w0ODiIxcVFtuVxHrvdjrNnzyIzM3NLVz+fIcEbYRthYWGora3F9evXyYnlDty4cQNms9kTuAF/tgdQKpWk1onnKBQKFBcXb5mRTOAXIyMjuHbt2rZpLKmpqdDpdGTpdA9cunQJFotl3zZigQwJ3gg7Ultbi+DgYLz33ntgGIZtOZwlKysLFRUVnmHibqRSKWpqaqBWq+FyuXa0oyEEPmKxGPHx8TuO1SMEPsPDw+jp6UFERMSOS33uwG1ubg7z8/O+lucXzM/PQ6/X48iRI1t8V/kOCd4IOyISiXD//fdjbGwMXV1dbMvhHKOjo3A6nQgKCrrjAOre3l5cvXoVRqPRR+oIXMFut2NsbGzH8X2EwGZwcBC9vb3IyMi441Lf9PQ0WlpasLKy4iN1/gHDMHj33Xeh0WjI7O2PQYI3wq6kpqYiNzcXH3zwAaxWK9tyOMPNmzfR3d2940i2nXCbcF6/fh0bGxteVkfgEhaLBV1dXbBYLGxLIfgQg8GAvr4+ZGZm7qlrv7i4GGFhYWhqaiKNTrdw48YNTE5O4v777ydNCh+DBG+E23LffffB6XTi/PnzbEvhBMPDwxgaGkJubu6ex15JpVJUV1dDKpXi+vXr5ORMIAQ4wcHBuOeee5CRkbGn1wsEApSXl3sanUiZxab90rlz51BYWLhlHCVhExK8EW6LSqXCsWPH0NLSsmWsGB+ZnJxEb28v0tPTkZKSsq/3SiQSVFVVQSaTYWFhwUsKCQQCm/T19WF4eBgA9l2fJRKJUFlZiZCQEGLwDeCjjz4CTdMBYYDvDUjwRrgjFRUViIqKwnvvvQeaptmWwxo2mw2JiYkHblWXSCSora1FWloaAJA6KAIhgLh58yYGBwfvahtSqRQVFRWQy+VwOBy89dqcmJhAW1sbTpw4QcbK7QIJ3gh3RCAQ4JOf/CRmZ2fR0tLCthyf4w6y0tLSUFBQcFfbctdtLCws4Pz588SKJcARiUSIiIggY5ACGJqmcePGDU85RWpq6qFst6mpCU1NTbyzG3K5XHjvvfcQFxeH0tJStuVwFhK8EfZEfHw8SkpKcP78eV4V3a+vr+PChQuYnZ091O1qNBqEhYWhsbERU1NTh7ptAndQKpXQ6XRQKpVsSyF4icHBQUxPT6OkpGTf5RS3IycnBwaDAa2trbyya2psbMTCwgI++clPbpstTvgz5Jsh7JmTJ09CLBbj7bff5sXJxGQyQa/XQ6lUHrqRplAoREVFBRISEtDe3o6hoaFD3T6BGzAMA6fTyYvfC19JSUlBVVUV4uLiDnW77hmeCwsL6Ojo4MUxtLi4iAsXLqCyshIxMTFsy+E0JHgj7Bm5XI4HH3wQg4ODaG9vZ1uOV7FardDr9Z5pCd5Y9qIoCoWFhcjIyMD09DTvlkf4wPr6Os6ePUs6jAMMk8mEq1evwmQyQSwW39Hr8aBERkaiuLgYU1NTWF1d9co+uAJN03jzzTcREhKCEydOsC2H85BCDMK+yMjIQHFxMd5//32kpKQErON1b28vaJpGdXU1JBKJV/eVmZmJtLQ0CIVCWK1WiMVi4mlEIHCUtbU1NDY2QiKR+KQrNC4uDiEhIQG/9H716lXMzMzgmWeeIRNJ9gDJvBH2zX333Qe5XI633norYFP5+fn5qK6uhlwu98n+hEIhGIZBY2Mj9Ho9b7vMCAQus7CwgOvXr0OpVKKmpsZnM2vdgdvAwAAmJiZ8sk9fMjc3h8uXL6O2thbx8fFsy/ELSPBG2DdSqRSf+tSnMDo6iqamJrblHBo0TaOrqwtmsxlisdjnd7oURaGgoABGoxFXrlwh47QIBA7hcDjQ1taGiIgIVFVVeT0jvxM2mw2dnZ2H3kDFJk6nE2+88QbCw8NRV1fHthy/gQRvhAORkpKCiooKfPTRR3seE8VlGIZBR0cHJiYmYDKZWNMRGhqK2tpaCAQCXLlyhQyrJhBYxuVyweVyQSwWo7q6GmVlZayVNeTl5SEmJgZtbW1YWlpiRcNhc/nyZSwtLeHhhx8mljr7gARvhANz8uRJqFQqvPHGG35v3tvb24upqSkUFxcfemfpflEqlaitrWVdB+HuUalUOH36NFQqFdtSCAfAYrHg2rVr6O7uBgCo1WpWpx9QFIXi4mJoNBo0Nzf7fSPM1NQUrl69irq6OkRHR7Mtx68gwRvhwEgkEjz88MOYnp7G9evX2ZZzYAYHBzEyMoL8/HzExsayLQfAprlrWVmZZ37qyMgInE4ny6oI+0UgEEAikRC/Kj9kZWUF9fX1sNvtnJqtKRAIUFZWhqSkJL9uYnA4HHjjjTcQGxuL2tpatuX4HeSMQrgrEhISUFNTg4sXL/rtEp9arUZWVhanTtC3YjKZ0N/f77EmIPgPJpMJTU1N5O/mZ4yNjeH69etQqVQ4cuQIgoOD2Za0BZFIhOzsbAiFQmxsbMBqtbItad+cP38eBoMBDz/8MLm5OQDkGyPcNUePHoVGo8Ebb7zhV15l7iWHqKgopKens6xmd5RKJe655x7QNI0rV66QwfZ+hNPpxPz8PMma+hkmkwnJycnQ6XSsNCbsh7a2Nr/rUB8dHYVer8fJkycRHh7Othy/hARvhLtGJBLh4YcfxsLCAi5evMi2nD2xtLSEK1eu+E3bfVBQEO655x7PSK1AaBIhELiEyWTCzMwMACA3Nxe5ubl+kREqLS2FzWZDY2OjX9w8WywWvPXWW0hKSkJlZSXbcvwW7h+ZBL8gJiYGx48fx9WrVzk/6mltbQ3Nzc3QaDR+5SkkFotRXl6OkpISj6M7yegQCHfP5OQkLl++jMHBQb/zrgwKCkJlZSU2NjbQ3NzM6eYxhmHw1ltvwWq14qGHHmK1+cPfIcEb4dCoqalBeno6Xn/9dc52QRmNRjQ2NkKlUqG8vNwv7qxvhaIoxMXFgaIorKys4KOPPsL09DTbsggEv8Tt3Xbjxg3ExsaipqbGLwOKkJAQlJeXw2AwcNofsrGxEX19fXj44YcDdjqPr/CvKxeB01AU5fHqee211zh5Bzg2NgapVIrKykq/H0GlVqsRGRnpufiQLBz3kMlkyM3NhUwmY1sKYQd6enowPz+PkpISFBUV+bXPWHh4OE6ePAm1Ws3J7OHU1BQ+/PBDVFVVITMzk205fg8J3giHikKhwCOPPIKpqSlcuHCBbTnbyM3NRXV1dUDMzhOJRCgpKUFxcTFmZmZQX1/P6btuPiKVSpGSkgKpVMq2FMKfYBgGZrMZAJCVlYW6ujrExcWxrOpwcI/Za2lpwcDAANtyPFgsFrz66quIjY3FyZMn2ZYTEJDgjXDoaLVanDhxAlevXsXg4CDbcuB0OqHX67G8vAyKojjfPbZf4uPjUVdXB5VKRYIEjuFwODAzM+NXnYCBjNlshl6vx/Xr10HTNGQymc/mk/oKiqIQEhKC/v5+jI2NsS0HDMPgzTffhN1ux6OPPur3Kx5cgQRvBK9QXV2NjIwMvP766zAYDKzpoGkaLS0tWF1d9eslkTuhVCpRXl4OsVgMi8WChoYGztYd8gmz2YzW1lZPpofADgzDYHR0FJcuXYLRaERRUZHf1bvuh/T0dKSkpKCrq4v1mtiGhgb09/fj4Ycf5pxfnj8TuEcvgVUoisJDDz0EiUSC1157jZUWdoZh0N7ejuXlZZSXl/PmxOF0OmGz2VBfX4/+/n5O1h4SCL6ko6MD3d3dSEhIwLFjx3jhLZaTk4P4+HjcuHGDtRu5yclJfPTRR6ipqUFGRgYrGgIVErwRvIZCocCjjz6K6elpVurf+vr6MDs7i5KSEl6crN24XeHT09MxODiI+vp6koUj8A6GYWCz2QAAiYmJqK6uRn5+fkBn4G+FoigUFhaioKAAarXa5/s3m8147bXXEBcXh+PHj/t8/4EOCd4IXiU+Ph6nTp3CtWvXfF5AGx8fj+LiYsTExPh0v1xAIBAgMzMTR44cgVgsDuglIgLh46yvr+PKlStobW0FAISGhkKj0bCsyvcIBAIkJCQAAObn57GxseGT/brr3BwOBx555BFS5+YFyBmd4HV0Oh0yMzPxZrINdAAARvdJREFUxhtvYG1tzev7m5ubg8vlgkqlCpgusoOiVqtRU1ODoKAg0DSNpqYmLC4usi2LNwiFQgQHB5OLl49wuVzo6+tDfX09GIZBTk4O25I4AcMw6O/vh16vh8Vi8fr+3DfrpM7Ne5DgjeB13PVvMpkML730Eux2u9f2NT09jebmZr8Ze+VL7Ha7p/O2ubmZFNH7gKCgIBw5cgRBQUFsSwl4GIbBlStXMDw8jIyMDNxzzz3ECPZPUBSFiooKCAQCNDQ0ePUcPDg4iPPnz+Oee+7h9Mxof4cEbwSfIJfL8fnPfx5ra2t4/fXXvWIiubCwgPb2diQkJCApKenQt+/vyGQyVFdXo6SkBGtra7h48SJGRkbYlkUg3BUGgwEOhwMURSErKwtHjx5FRkYGKRX4GDKZDDqdznMD5w1T74WFBbz22mvIyMjAsWPHDn37hD9Djm6Cz4iMjMRnPvMZ9Pf34/z584e67dXVVbS0tCAyMhKFhYV+OeLGV7gLiNPS0jweVw6Hg5Ou7P6OwWDAe++9x6pdTqBit9vR2dmJ+vp6j59ZdHQ0lEolu8I4jFKphE6nA0VRh+49aDab8dJLLyEkJASf/vSnSfDsZfjRdkPgDBkZGTh16hQ+/PBDREREoLCw8FC2u7KyguDgYJSWlpLAbQ8IhcItI2ra29tht9uRl5dHlpoOGWLVcrjQNI2xsTFPA1ReXh7JtO8DtVqNe+65B8DmTZtIJLrrc6bL5cLLL78Mu92Op556ipiF+wASvBF8TlVVFRYXF/H2228jLCzM0w11EGiahkAgQGpqKpKTk8nd3gFJSUlBT08Prly5gvj4eGRkZJAMBoGTrK+vo7e3F1qtFllZWQE3McVXMAyDhoYGBAcH39VNNMMweO+99zA1NYWnnnqK3Pz5CHKlI/gciqJw//33Iy4uDr///e8PvKRks9lw+fJlTE1NAQAJ3O6C8PBwHDlyBAUFBVhaWkJ9fT0ZdE/gDPPz82hrawPDMAgJCcGJEydQUFBAAre7gKIoJCcnY2JiAn19fQfeTmNjI9ra2vDAAw9Aq9UeokLC7SBXOwIriEQifO5zn4NYLD5QB6rT6URjYyMcDgfCwsK8pJJfUBSFxMREHD9+HBUVFRCJRHA6nejt7YXVamVbHoGHLC4u4sqVK2hqaoLVavXUacnlcpaVBQYJCQnIycnB4ODggZqXhoaG8MEHH6C6uhpFRUWHL5CwKyR4I7CGUqnE448/jpWVlX11oLr9ysxmM3Q6XcANlmYboVDoMTTd2NjAxMQEzp8/j97eXq9aDAQiQUFBOHr0KLEKOQCtra3Q6/WgKApVVVWorq4mmTYvkJqairS0NPT29sJkMu35fYuLi3j11VeRnp6OkydPelEhYSdI8EZglcjISDzyyCPo7+/f8witvr4+rK6uoqKigpWxL3wiNDQUJ06cQFpaGsbHx/HRRx8RD719IBQKoVKpiEnvHlleXvZkeWNjY1FZWYna2lpejbdjg+zsbNTU1Oy5ztXdWRocHIzPfOYzpGSFBUjDAoF1MjIycPLkSZw7dw4REREoKCi47evT09MRFRVFlkt9hFgsRmZmJpKTkzE8PAyZTAZgs3CcoiioVCqWFXIXi8WCgYEBZGRkkKW+XaBpGrOzsxgeHobBYEBmZiYyMjJ4OdaOTUJDQwFsmuxqNJpdz68ulwuvvvoqrFYrvvzlL5POUpYgwRuBE1RXV2NpaQlvvfUWlEolUlNTt71mZGQEMTExkMvlvJxTyDYSiQTZ2dmefw8NDWF6ehqRkZFITU0l2ZEdsNvtmJiYQFJSEgnedmBxcREdHR2wWCyIiIiATqdDREQE27J4C03TWFxcxPDwMKqrq7etbLhnlk5MTODJJ5/0BHwE30NynQROQFEUPvnJTyIlJQUvv/wyZmZmtjw/PDyMnp4eLCwssKSQ8HGKiopQXFwMq9WKhoYGXL582WeDrwn+i8ViwerqKoBN13+NRoO6ujoSuHEAgUCAiooKKBQK6PX6LSP0GIbBBx98gO7ubnzmM59BYmIii0oJJHgjcAahUIhHH30UkZGR+O1vf4uVlRUAwOTkJHp7e5Genk5OGBxCIBAgPj7ec+FVKBSeJdWFhQXSoUrwwDAMlpaW0NbWhvPnz6OnpwcAoFKpUFxcTGpXOYRIJEJlZSVEIhH0ej1sNhsA4Pr169Dr9fjEJz6BnJwcllUSyLIpgVNIJBI8/vjj+OUvf4lf//rXeOCBB7YYchK4SUREhCdrwjAMOjo6YLPZEBERAa1Wi6ioKFLUzFNMJpMnixMUFIScnBziB8ZxpFIpqqqq0N/fD5FIhBs3buDcuXOoq6tDeXk52/IIIJk3AgdRKBR44okn4HQ68dprr0Gj0dyxiYHAHSiKwrFjx1BQUACHw4GWlhZ89NFHhz5L0R+QSqVIS0vjVVE3TdOYm5vzjK9SKBSIiopCTU0Njh07hpSUFIhEJG/AdeRyOYqKijA8PIzXXnsNRUVFOHr0KNuyCH+C/IIInEQmk+GJJ57ACy+8gL6+PpSVlUEsFrMti7BHRCIRtFottFot1tfXsbS05Pn7tbW1ISIiAtHR0QH/N5XJZFuaPAKZjY0NTE1NYXJyEjabDaGhoUhLS4NAIEBeXh7b8ggHYGxsDL///e/BMAzp/uUYJPNG4Bwmkwn19fXY2NjAF77wBczMzOCVV16By+ViWxrhAKjVaqSkpADYHIRtt9tx48YNfPjhh2hqasLk5OSeDZr9DafTieXl5YAdNeaua3Q6naivr8f4+DhiY2NRV1eH2tpaslTux8zMzOCll15CUlIS/vqv/9rTGRyov1V/g2TeCJzCarVCr9d7MjcSiQSPPfYYfve73+GNN97Apz/9aXJB8GPEYjF0Oh2sVitmZ2cxMzODgYEBJCQkAADm5uag0WgCJiNnMplw/fp1HDlyBMHBwWzLORTW19cxMzODmZkZ2Gw2nD59GiKRCDU1NVCr1eT3GQAsLS3hN7/5DSIiIvDYY49BIpGAYRi0tbVBIpGQhgUOQII3AmdwOBxobGwETdOora31jMJJTU3FI488gldeeQUymQz3338/KIpiWS3hbpDJZEhOTkZycrIno2qz2dDS0gIACA8PR0xMDCIiIsj4M47gcrlw+fJlmEwmiMViREdHIzY21vNbDAkJYVcg4VBYW1vDr371KwQFBeELX/iC5zwcFxcHu92Ovr4+JCcnE99CliHBG4EzjIyMwGKxoKamZtuJITs7Gw8++CDeeustiMVi3HvvvSSACxDco6OkUilOnTrlych1dXVBKBTivvvuA0VRWFlZgVqtJsXuPsBkMmFxcRGLi4swGo04duwYhEIhEhISEBwcjPDwcJJhC0AMBgN+9atfQSgU4i/+4i+2nYeTk5MRExPjsQQisAc5CxI4Q0ZGBuLj43edr1dcXAyn04n33nsPDMPg9OnTJIALMKRSKZKSkpCUlASHwwGj0QiKouByudDQ0ACGYRAaGorIyEhEREQgODiYHAOHAMMwoCgKNpsNV69ehdlshkAgQGhoKOLj40HTNAQCAdLT09mWSvASBoMBL774IhiGwdNPP73r2DuZTAaaptHe3o7Y2FjSyMASJHgjsArDMOju7kZsbCw0Gs0dByOXl5eDoii8++67oGkaZ86cIRfvAEUsFnvG7wiFQhw9etSTDRoaGkJ/fz9Onz4NsViMqakpiEQihIaGcsqWg6IoyGQyTh2jDMNgY2MDa2trWF1dxerqKgQCAY4cOQKpVIq4uDiEhoZCo9GQLCdPWFtbw4svvgiKovD000/fcQncfTy3tbWhsrKSjMZjgYD5ZW5sbOCnP/0p6uvrYbPZkJ2dja9//evIzMy843uPHDmy63NlZWX4P//n/wAAZmdn8bnPfW7H1/3P//k/ceLEiYOJ5zG9vb0YGxvb15D5srIyCAQCvPPOO6BpmtTA8QSlUgmlUomkpCTQNA2j0ehpbBgeHsb6+jqATV+x0NBQZGRkICgoiE3JUKvVOHXqFKsabDYbVldXIRKJEB4ejtXVVVy7dg0URUGlUiEsLGzLjEpihs0vVldX8eKLL0IoFOKpp57aU2MNRVEoLi5GU1MTmpubUV1dHTANOf5CQARvNE3j2WefxfDwMB577DEEBwfjzTffxDe/+U08//zznk623fj2t7+97bG+vj689tprO7pJnzx5Ejqdbstjubm5d/cheMjg4CBGRkaQn5+PuLi4fb23pKQEFEXh7bffBk3TeOCBB0gAxyMEAsGWkUp1dXWemZmrq6tYW1vz1GR1dnZiaWkJKpUKQUFBnoAl0BohrFYrhEIhxGIx5ubmMDw8DKPRCLvdDgCIjY1FeHg4QkJCPBdbklnjNysrK3jxxRchFovx1FNP7WtMmUAgQFlZGfR6PfR6Perq6kgtnA8JiF/upUuX0N3dje9+97seB+jjx4/j8ccfxwsvvIDvfOc7t33/vffeu+2x9vZ2UBS1YzYtPT19x/cQ9s7ExAT6+vqQmZmJpKSkA22juLgYAoEAb775JmiaxoMPPkiKqHmMXC6HXC5HbGzslsejoqIgFAphNBoxPT0Ni8WC3NxcpKSkYGlpCcPDw1AqlZDJZJDL5VAqlYfWObm+vo7GxkZUVlbe9fxOh8MBi8UClUoFiqIwMTGBlZUVbGxswGg0wul0oqCgAImJiRAKhZDL5YiIiIBKpUJISIin+FwgEECj0RzGxyP4McvLy3jxxRchlUrx1FNP7VrjdjtEIhEqKiowOTnJqXIFPhAQwdvly5cRFha2ZfkzJCQEx44dw7lz52C32z3tznvBbrfj8uXLKCoqQmRk5I6vsVgsEIlEAeNH5Wvcy1oZGRl3tZ3CwkIIBAK8/vrrYBgGn/rUp0gAR9hCVFQUoqKiPP++1TCXoigIBAIsLS3BarXC4XAgIiICOp0OLpcLH330kSeok0qlEIvFyMzMhFAoxNLSEux2O8RiMUQiEUQiEWQyGcRiMWiahtPphN1uh9FohM1m8wz4ZhjG83qr1QqDwQCn0wmHwwGn0wmJRAKtVguapqHX62G1WmGxWEDTNIDNzL9cLofBYIDRaIRKpUJMTIwnSAO2zpolED7O0tISXnzxRcjlcjz11FN3VV4gkUiQmpoKAFhcXERISAi5LvqAgAjeBgYGkJ6evu2inZ2djXfeeQeTk5Oeg2sv6PV6GI3GXWtVXnzxRfzkJz8BRVHIzMzEl770JVRUVNx2m0tLS1heXvb8e3x8fM96AgmDweBZutpLPeJeyM/PB0VReP3110HTNB5++GESwBF25dalQo1GsyUL5XQ6Pb5zDMMgJSXFEzytr6/D6XR6jtvBwUEsLS1t2XZ+fj6SkpIwMzOD9vZ2mEwm9PT0wGazbWnGycvLQ3JyMpaXl9HW1gZgM5AUiUQICwuDVquFQCCAQqFASEiIJ4CUyWSeDEd+fr53viBCQLOwsIBf/epXUCgUeOqpp+7YJLZXXC4Xbty4AblcjqqqKo8FEME7BETwtrKygsLCwm2Pu0/Ky8vL+wrezp07B4lEgrq6ui2PCwQClJeX48iRIwgPD/eMbfq7v/s7/OAHP0BVVdWu23z77bfx4osv7llDILK2toaGhgYkJSUd+rzHvLw8CAQCvPbaa6BpGp/+9KfJyYOwb9wZMff/384aQ6fTwel0bvnPvTSp0WhQXl4Og8EAm82GkpISqNVqUBQFiqI8mY7o6Gjce++9EIlEOx6vRUVFh/8hCbxlfn7eY8D75JNPHlrgBmx2hJeXl6OhoQEtLS0oLy8nN9FehHPBG03TcDgce3qtRCLxeBPttCzqfsy9XLEXTCYTGhoaUFlZua0GICoqCv/8z/+85bHTp0/jySefxI9//OPbBm8PPvggampqPP8eHx/H9773vT3r8neMRiMaGxuhUqnueql0N3JycvDoo4/i1VdfxauvvorPfOYzJH1P8BoURUEsFu94jLnr7+RyOcLCwhAVFbVjN55QKCQ3GQSfMD09jd/+9rdQq9V48sknvdKwExISgvLycjQ2NuLGjRsoLi4mjWRegnPBW0dHB775zW/u6bW//vWvkZiYCKlU6umouhX3Y/sppLx8+TLsdvue2/vVajXOnDmD3/72t1hYWNi1Ri48PJy3XjjueaVSqRSVlZVevVhlZ2fjsccew6uvvopf/epXePzxx8kYFwJrKJVKVFdXH2qGg0DYLwMDA3j11VcRHR3t9XNieHg4SkpKcPPmTdjtdtLI4CU4F7xptVp861vf2tNr3cuiYWFhW+rJ3Lgf209n1blz5xAUFITq6uo9v8cdsG1sbOwavPGZubk5AJvLTL7IhGVkZOCpp57C7373O/ziF7/AE088QeYuElhBJBKRzk4Cq7S1teHdd99FRkaGz1YjYmJiEBUVBYFA4JnOQThcOBe8aTQanDlzZl/vSU9PR2dn57aD5ObNm5DJZHf0eXOztLSE9vZ23HffffvqTp2ZmQEAYlK4C0lJSYiLi/PpEmZ8fDyeeeYZ/OY3v8EvfvELfOELX0B0dLTP9k8gAJtZ59HRUSQnJxMPLIJPYRgG9fX1uHjxIsrLy3HmzBmfBlECgQBOpxPXrl1DYmLigS2hCDsTEOFwXV0dVlZWUF9f73lsbW0NFy9eRHV19ZZAbHp6GtPT0ztu58KFC6Bpetcl07W1tW2PLS4u4o9//CNSU1N5uyy6EzRNo7GxERMTEwDASu2ZRqPBM888g6CgILzwwgsYGRnxuQYCv7HZbBgaGtpX3S2BcLfQNI13330XFy9exIkTJ/CJT3yCleyXe6pHV1fXrtddwsHgXObtIBw9ehSvvfYafvCDH2BsbMwzYYGmafzlX/7lltf+7d/+LQDglVde2badc+fOITw8HMXFxTvu5yc/+Qmmp6dRWlqK8PBwzM3N4e2334bVasV/+k//6fA/mJ/CMAza29uxtLS0ry5fbxAUFISnn34ar776Kn7729/ioYceIhYLBAIhYHE4HHjttdcwODiIhx56iPWO5ZycHNjtdty4cQMSiYT4Dx4SARG8CYVC/PCHP8Rzzz2HP/zhD7DZbMjKysK3vvUtaLXaPW1jYmIC/f39+OxnP7vrHUp5eTlmZmbwxhtvYGNjA0FBQSgoKMCTTz55aJ5lgUB3dzdmZ2c9QS7bSKVSfP7zn8c777yDP/zhD9jY2EBVVRXpgiIQCAGF2WzG7373OywsLODxxx9HWloa25JAURQKCwvhcDjQ0tKC48ePkyaGQyAggjcAUKlUePbZZ/Hss8/e9nU7ZdyAzUaJW5ddd+LkyZM4efLkgTXygdHRUYyNjaGwsBAxMTFsy/EgFArxqU99CiqVCh9++CHW19dx+vRpEsARCISAYHV1Fb/5zW9gtVrx9NNPbxsTxyYCgQClpaVYWloigdshETDBG4EbuBsT4uPj2ZayDfesWrVajT/+8Y/Y2NjAQw89RLzgCF7DPepqPw1QBMJ+mZmZwe9+9ztIJBI888wzCAsLY1vSNoRCoWdM3ejoKKKjo4mN010QEA0LBPaZm5uDxWKBRCLhZOB2K+Xl5fjsZz+L/v5+vPDCCzAYDGxLIgQocrkchYWF5CJF8BqdnZ345S9/ieDgYM4GbrfidDoxMjICvV6/oz8rYW+Q4I1w1ywsLKClpQWjo6NsS9kz2dnZeOaZZ2AymfDzn/+ct7NmCd7F5XJhY2PDMy+VQDgsaJrGhx9+iNdffx25ubl4+umn/cIMWiQSQafTweFwoLGxEU6nk21JfgkJ3gh3xerqKlpaWhAZGYmsrCy25eyLmJgYfOUrX0FERAT+4z/+Ay0tLWAYhm1ZhADCaDTi0qVLMBqNbEshBBBmsxm/+c1voNfrcd999/ld+YdSqYROp4PRaERzczNommZbkt9BgjfCgdnY2EBjYyOCg4NRWlrqly7aSqUSf/EXf4Hy8nK8++67ePfdd8mdIIFA4Czz8/N4/vnnMTc3h7/4i7+ATqfzy8YrtVqNiooKCIVCErwdANKwQDgwZrMZSqXS8wP0V4RCIc6cOYPo6Gi8++67WFhYwGc/+1moVCq2pREIBIKH3t5evPHGG9BoNHjqqaf8fuyfRqPxjI+zWq1kCsk+8L9UCYF13JmpqKgo1NbW+lW6/nYUFxfji1/8ItbW1vDzn/8cU1NTbEsiEAgE0DSN8+fP45VXXkFmZiaeeeYZvw/cbsXhcODy5cvo6+tjW4rfQII3wr5wOp24fv2650fmj+n62xEfH4+vfOUrCAkJwQsvvID29na2JRH8HH8sJyBwB6vVipdeeglXr17FqVOnfDZc3peIxWKkpaVhcHCQjDHcI2TZlLBnaJpGc3MzzGYzpwwgDxuVSoWnnnoKZ8+exVtvvYWZmRmcPn0aIhH5uRD2R3BwMO6//362ZRD8lIWFBbz88sswmUz4whe+wImJCd4iNTUVdrsdPT09fmE5xTbkakTYEwzDoK2tDSsrK6iqqoJarWZbklcRiUR44IEHEBMTg7Nnz2JqagqPPPKIpz6DQCAQvAXDMGhtbcX777+PsLAwfOUrX+G8f9thkJ2dDbvdju7ubkRFRQVchvEwIfl8wp4YHx/H3NwcysrKeHEScVNWVoYvfelLsNvt+NnPfoYbN24QOxHCnjEajaivrydWIYQ9Y7FY8Morr+Ddd99FUVERvvzlL/PqnFtQUBBQtdTegmTeCHsiMTERarWaVycRNzExMfjqV7+Ks2fP4s0338TQ0BA++clPks4owh1xuVwwGAzEpJewJ8bHx/GHP/wBDocDn/vc55Cdnc22JJ9DURSCgoJA0zS6urqQnJwc8Cs9B4Fk3gi3ZXR0FCsrK6AoipeBmxuJRIJPfepTeOSRRzA4OIif/vSnpBuVQCAcCjRN49KlS3jxxRcRGhqKr33ta7wM3G6FpmkYDAbo9XqYzWa25XAOErwRdmVychLd3d1YXFxkWwpnyMvLw9e+9jUEBQXhl7/8Ja5cuUIMJgkEwoFZW1vDiy++iMuXL+Po0aN46qmnEBwczLYs1hGJRKisrIRIJEJDQwNsNhvbkjgFCd4IOzI/P4+Ojg5otVpkZmayLYdThIaG4otf/CJqa2tx4cIF/PrXv8b6+jrbsggEgp/R29uLn/70pzAYDPjiF7+Iuro6Yi1zC1KpFDqdDjRNQ6/Xk+k3t0COEsI2VlZW0NLSgujoaBQUFLAth5MIhUIcP34cTz75JJaWlvDTn/4U/f39bMsicAyFQoHS0lIoFAq2pRA4hMPhwDvvvINXXnkFKSkp+NrXvgatVsu2LE6iUCig0+kQFRXl15N8DhvSsEDYhkgkQkxMDIqKigLOhPewSU5Oxl/91V/hrbfewksvvYTi4mKcPn2aNDMQAGyajwayJyJh/4yPj+Ptt9/G+vo6HnjgAZSUlJDz7B1QqVTIysoCsLnMHBwczPvvjARvBA8WiwUSiQRqtRolJSVsy/EbFAoFHnvsMbS1teHDDz/E0NAQ7r//fs/JhsBfbDYbpqenERcXB6lUyrYcAovYbDZ89NFHaG5uRkJCAj7/+c8jPDycbVl+hc1mw/Xr1xEbG4vCwkJeB3AkeCMA2BzBcv36dWg0GhQVFbEtx++gKAqlpaVIT0/Hu+++i9///vfIzc3FJz7xCSiVSrblEVjCarWip6cHGo2GBG88ZmhoCO+88w7MZjPOnDmD8vJyUtt2AKRSKQoLC9HW1gaJRIKcnBy2JbEGCd4IcDgcaGxsBE3TpDnhLlGr1fj85z+P7u5unD17Fj/+8Y9x3333IT8/n9d3iQQCH7FYLPjggw9w48YNpKSk4Omnn0ZoaCjbsvyauLg4zxQGiUQS0CPDbgcJ3niOy+VCU1MTLBYLampqIJfL2Zbk91AUhfz8fKSkpODs2bN4/fXX0d3djfvvv59YABAIPKG3txd//OMf4XQ68alPfYrUEB8iycnJsNvtGB8fR1JSEi/nTvPvExO2MDc3B4PBgKqqKqhUKrblBBRKpRKPPPII8vPz8e677+K5557DqVOnUFpaSk7iBEKAYjQa8cc//hG9vb3IysrC/fffT86tXiAzMxMpKSm8DNwAErzxnri4OISFhZGMmxfJzMxEYmIiPvzwQ7z77rvo7u7Ggw8+yOuJFXxBJBIhKiqKtxcYPsEwDDo6OvDBBx9AIBDg0UcfRU5ODrlR8yJisRh2ux1NTU3IysriVQMIOaPwlN7eXgQFBUGr1ZLAzQfIZDI8+OCDyMvLwzvvvIMf//jHqK6uxj333AOJRMK2PIKXUCqVqKioYFsGwcvMzs7i7NmzmJiYQEFBAe677z7i7ecjRCIRRCIRmpubUV1dzZvSFNLuwkMGBwcxPDxMxjqxQEpKCr7+9a+jtrYWDQ0N+Nd//Vd0dHSAYRi2pRG8AE3TsNvt5LcWoJhMJrzzzjv4+c9/DqvViieffBKf/vSnSeDmQwQCAcrKyhAUFAS9Xg+TycS2JJ9AgjeeMTExgb6+PmRkZCApKYltObxELBbj2LFj+MY3vgGtVos33ngDv/jFLzA9Pc22NMIhs7GxgQ8++AAbGxtsSyEcIi6Xy3Pz1dPTg/vuuw9f+9rXkJKSwrY0XuKegyqRSKDX6+FyudiW5HXIsimPWFhYQGdnJ5KSkoglCAcICQnBo48+ivLycpw9exbPP/88ioqKcPLkSQQFBbEtj0Ag7MDQ0BDef/99LC8vo6ysDMeOHSOZNg4gkUig0+mwsrLCizFaJHjjESEhIUhPT0dGRgbbUgi3kJSUhK9+9atoa2vDhQsXcPPmTRw5cgSVlZWk0J1A4AjLy8v48MMP0d/fj6SkJDzyyCOIjo5mWxbhFuRyOeLi4gAAU1NTiImJCdhAjlwZeIDBYIBUKoVMJiMZN47irtvIzc3FpUuXcP78ebS2tuK+++5Deno66VgjEFjCZrOhvr4eer0eQUFB+OxnP4vs7Gzym+QwVqsVXV1dmJ6eDthpFiR4C3CMRiP0ej3+//buPKypK/8f+DsJBFCJsgREVkFkFwVFoSLgQsVtqlbF1m1qazudWp+prY5Tp99pbWvtU+3wTNtptVqX0aq1RZRxKVUBsaAgIIJEcUEFBFlkDWQh9/eHv9wxBjALEBI+r+fheeDk3OR8cnMvn9xz7jl2dnYYO3asoZtDnsHKygpxcXEIDQ3FqVOncODAAQwfPhyTJ0+Gq6uroZtHSL8hl8uRk5ODjIwMSCQSTJo0CRERETA3Nzd008gzWFpaYuzYsbh06RLy8/MxZswYk0u2KXkzYW1tbcjKygKfz8eoUaMM3RyiBQcHByxduhQ3btzAmTNnsHPnTnh7eyMmJgbDhg0zdPOIhgQCAeLi4ky268YUtbe3Iy8vD+np6WhubkZwcDCio6P7zRQUpkIoFCIkJAQ5OTng8/kIDAw0dJO6FSVvJkoqlSIrKwsAEB4eTnOJGSEOhwMfHx+MHDkSRUVFSE1Nxfbt2+Hn54fo6Gg4OjoauonkGTgcDo1bNBIKhQIFBQVITU1FQ0MDAgMDER0dDTs7O0M3jejIyckJo0aNQkVFBRQKhUl1n9JZxUQ1NDRAJpMhIiIClpaWhm4O0QOHw0FgYCD8/f1RUFCAtLQ0fPvttwgICEB0dHS/mlXc2LS0tODq1asICgrCwIEDDd0c0gGGYVBYWIjU1FTU1tbC398fL730EhwcHAzdNNIN3N3d4ebmBg6HA7lcbjJfpkwjCsJiGAYcDgdCoRCTJ0+m7hoTwuVyMXr0aAQFBSE/Px9paWn4+uuvERwcjKioKNjY2Bi6ieQpcrkc1dXVkMvlhm4KeQrDMBCJRDh37hwePnyIkSNH4sUXX4STk5Ohm0a6GYfDQWtrK86fP4/AwECTGHpCyZsJYRgGeXl5sLCwQEBAACVuJorH4yE0NBTBwcG4fPkyzp8/j4KCAoSEhCAyMpLG5hDSBYZhUFJSgnPnzuHBgwfw9PTEnDlz4OLiYuimkR5kaWkJoVCIvLw8mJubQygUGrpJeqHkzYQUFhaioqICoaGhhm4K6QXKWcVDQkJw6dIlXLhwAbm5uQgICEB4eLhJfLskpLvI5XJcvXoVv//+O6qrq+Hm5oYVK1bQSjP9BIfDQXBwMGQyGbKzsxEeHm7UvRWUvJmIGzduoLS0FMHBwXTZv58xNzfHc889h3HjxiEvLw9ZWVnYvn07PDw8EBERQfPEkX5NLBYjJycHly5dQnNzM3x8fDBz5ky4u7vTcdHPcLlchIaGIisrC5cvX8bkyZON9iYGSt5MQFVVFa5fvw5fX1+4ubkZujnEQPh8PsaPH49x48ahuLgYmZmZOHDgAOzt7REeHo7g4GCTGaxrLKysrBAUFAQrKytDN6XfqaurQ2ZmJvLz88EwDIKDgxEeHk43+PRzPB4PYWFhEIvFRpu4AZS8mQTlfDbKZUFI/8blchEQEAB/f3/cv38fv//+O5KTk3H27FmEhYVh3LhxtBZjL+Hz+dQt18uUn3mRSAQrKyv2qjTd7UuUzM3NMXjwYCgUCly/fh1eXl5GN50WJW9GrLq6GjweD7a2tpS4ETUcDgdubm5wc3NDbW0tsrKykJGRgfPnz2P06NGYMGECXYXoYTKZDFVVVXB0dKSZ+XuQQqGASCTC77//jrKyMtjb22PWrFkYNWoUve+kUxKJBPfv30dNTQ3Cw8ONqmfCeFpKVDx69AjZ2dlwdHSEra2toZtD+jg7OzvMnDkTMTExyMnJwcWLF5GTkwN3d3eEhITA39+f/sn1ALFYjLy8PEyaNInuAu4BdXV1yMvLQ35+PpqamuDh4YGXXnqJxnkSjVhZWWHChAm4cOECsrOzMX78eKPpSqXkzQg1NTXh4sWLGDx4MEaPHm3o5hAjMmDAAHaNxuLiYuTm5iIxMREnT55EUFAQQkJC6IYX0qfJZDIUFxcjLy8Pd+7cgaWlJUaNGoWQkBAMHTrU0M0jRkYgECAsLAxZWVnIzc1FaGioUST+lLwZmdbWVmRlZcHKygphYWE0lxvRiZmZGYKCghAUFKRy9SI7OxtOTk4ICQlBUFAQrc5B+ozKykrk5uaioKAAbW1t8PDwwLx58+Dn50dXjYle7OzsEBoaitraWkM3RWOUvBkZmUyGAQMGYOzYsXTCIt3C1tYWU6ZMQUxMDEpKSpCbm4uTJ0/i9OnTCAgIwJgxY2haBWIQbW1tKCwsRG5uLioqKjBo0CCMHTsWY8aMoTVHSbcaOnQoe+W2paWlz9/gQsmbkZDL5eByuRAIBHjuuecM3RxigrhcLnx8fODj44OmpiZcuXIFubm5uHLlCuzs7BAUFAR/f39a81ELPB4PNjY2dIVcC3K5HLdu3UJRURGKi4shl8vh7e2N+Ph4eHt703tJelRzczPS0tLg5+cHT09PQzenU5S8GQGFQoHs7GyYmZlh3Lhxhm4O6Qesra0xceJEPPfcc7h79y7y8vKQmZmJ1NRUCIVC+Pv7s4kcXZHr3KBBgzBx4kRDN6PPk8lkbMJ248YNSCQSCIVCREZGYvTo0RAIBIZuIuknBg0aBE9PTxQVFYHP5/fZZdMoeevjGIZBbm4u6urqEB4ebujmkH6Gw+HAw8MDHh4ekMvluH37NoqKinDx4kWkpaXB3t6eTeQcHR0pkSMak8lkuHnzJpuwSaVSODg4ICIiAv7+/ka/9iQxXn5+fpBKpcjPz4e5uTkcHR0N3SQ1lLz1cQUFBaisrMS4ceNoShBiUGZmZhg5ciRGjhwJuVyOO3fuoKioCJcuXUJ6ejrs7OzYRG7o0KGUyAFoaGhAeno6TRXy/8lkMpSUlKCoqAglJSWQSqVwdHTExIkT4e/vT/MOkj5j1KhRkEqluHbtWp/sYaDkrQ+rrq7GvXv3MGbMmD6Z+ZP+y8zMDN7e3vD29kZ7ezubyOXk5OD8+fOwsbHBiBEj4OXlheHDh8PCwsLQTSYGwDAM6urqcOvWLdy6dQu3b9+GTCbD0KFDERkZCX9/f7rxgPRJHA4HoaGhkEqlfS5xAyh569OEQiF9Yyd9Ho/Hw4gRIzBixAjMmjULpaWlEIlEuHXrFrKzs8HlcuHq6govLy94eXnBycnJaCbCJNprbW3FnTt32IStvr4ePB4Prq6uiIqKgr+/P/UiEKPA5XJhaWnJdqEGBgb2maUFKXnrg8rKyqBQKODm5kaJGzEqPB6PTdKAxzPg3759G7du3cKFCxdw9uxZWFlZwdPTk61Hn3Hj1t7ejvLycjZZKy8vB8MwsLe3h4+PD7y8vODh4WF0a0cSosQwDJqbm5GZmYmJEyf2iZ4ESt76mKqqKuTn58PV1RVubm6Gbg4herG1tYWtrS3Gjh0LhUKh8k/++PHj7D/54cOHw9XVFS4uLrCxsemT3RTkMZlMhgcPHqCsrAz37t3DnTt3IJFI2KQ8JCSEknJiUiwsLNhltLKyshAREWHweVYpeetD6urqkJOTg6FDh2LUqFGGbg4h3UrZferq6oro6Gi0tbWx3Wu3b99GdnY2gMdLeDk7O8PFxQUuLi5wdnY22pUerK2tMXnyZFhZWRm6KTpRjlkrKytDeXk5ysrKUFlZCYVCAXNzczg7O+O5556j7nBi8gYMGKCyDmp4eLhBv2RS8tZHNDY24tKlS7C1tUVISAhdeSAmz9LSEn5+fvDz8wPweKyUMkEoKytDVlYWWltbATwe//lkQufg4GAUiQKXy+3zM7U/SbkPntwPyn1gb28PFxcXhISEwNnZGY6OjkaxDwjpLtbW1ggLC0NLS4vB/0ebRPJWU1ODI0eOoLi4GCKRCK2trUhISMCYMWM0fo7q6mp89dVXyM7OhkKhwJgxY7B69WoMGzZMrW5ycjIOHjyIyspKCIVCvPjii5g/f75eMVhaWsLJyQkBAQF0QiT9kpWVFXvjA/D4qk9tba1KIlFQUACFQgEzMzPY29tDKBRCKBSyv9va2vapGfjFYjFEIhF8fX37zEBn4HGSVlNTg+rqapWfhoYGAI/3hbOzM8aPH89e/TTWq4eEdCflUBAAePjwocFWnDGJ5O3+/fs4cOAAXFxc2JmRtSEWi7FmzRq0tLRgyZIlMDMzw+HDh7F69Wrs2rVLZexGUlIStm7diqioKCxatAgFBQVISEhAW1sbXn75Za3bLpPJ0NbWBktLSwQHB2u9PSGmisPhwN7eHvb29uyxIZPJUFFRgQcPHrAJx82bN9mrQ1wuF3Z2dioJnVAohJ2dnUHGqMhkMpSXl7M3cPQmhmHQ0tLSYZLW3NwM4PF7bGNjA6FQiKCgIAiFQri4uMDW1tbgVxYI6csaGxtx8eJFeHl5wd/fv9df3ySSNx8fHyQnJ0MgECA1NRUffPCBVtsfPXoUZWVl+O6779gunPHjx2PFihU4dOgQVq1aBQCQSCT4/vvvER4ejk2bNgEAZs+eDYVCgb1792LOnDmwtrbW6rWvXr2KhoYGWq+UEA2Ym5vD3d0d7u7ubBnDMBCLxSrJSU1NDfLy8tDU1MTWGzhwIAQCAQQCAaytrdnfnyzrC3eRaUKZmDU2Nqr8NDU1qfwtk8kAPL4L2NbWFkKhEKGhoSpJrZmZSfwbIKRXCQQCBAYGorCw0CB3UpvEUatvd0Rqaip8fX3ZxA0A3N3dERISgnPnzrHJW25uLhoaGvDCCy+obD937lykpKQgMzMTsbGxWr22RCKhmxMI0QOHw8HAgQMxcOBAeHh4qDzW1taG6upq1NbWqiQ1ZWVlaGxshFgsVqlvYWHBJnIDBgyAhYUF+Hw+LCwsnvljZmYGLpfLXrHq6MoVwzDsj0KhgFQqhUQi6fTn6cebm5vZJE2hULDPy+PxVBJSJycnWFtbY8iQIRAKhbCxselT3cmEmILhw4dDKpWiuLi419ffNYnkTR8KhQK3b9/GjBkz1B7z8/NDdnY2xGIxBgwYgJKSEgCAr6+vSj0fHx9wuVzcuHGj0+StpqYGtbW17N83b94EAAwZMgQVFRXdFQ4hpANWVlawsrJSW6mkvb0dYrEYLS0taG5uRktLC3tFq6amBlKpFDKZDFKpFFKpFHK5XKvXVU6rkZKSolW3LYfDAZ/Ph7m5Ofh8Pvu7paUlhEIhPDw82IR14MCBXY5Hq62tVTn3EEK6F5fLZYdrSSSSXnnNfp+8NTY2QiqVdrhEi7KspqYGbm5uqK2tBY/Hg42NjUo9c3NzCASCLk+Qx44dw+7du9XKt23bpl8AhJA+r6qqytBNIIT0gpKSkl7pTetzyZtCoWDHaTwLn8/Xe1CtMkvu6Fuxsh9bWUcikXQ6PoTP53eZcc+ZM0dlXFtxcTG2bduG9evXs3fX9Rd3797Fxx9/jI0bN6qMXTJ1/TVuoP/G3l/jBvpv7P01bqB/x37z5k1s2bKl1+Luc8nblStXsGbNGo3q7tu3T+83SjlAuaOEUSqVqtSxsLDotNtEKpV2OdhZedfc00aMGAEfHx+t220K3N3d+2Xs/TVuoP/G3l/jBvpv7P01bqB/x67tTYu66nPJm5ubGzZs2KBR3Y66OrUlEAjA5/M77PJUlimTLjs7O7S3t+PRo0cqXacymQyNjY3d0h5CCCGEkK70ueTNzs4OcXFxvfZ6XC4Xnp6eEIlEao9du3YNw4YNY+9m9fb2BgCIRCKEh4ez9UQiERQKBfs4IYQQQkhP6XdT+VdVVeHu3bsqZVFRURCJRCoJ3L1795CXl4fo6Gi2LCQkBAKBAElJSSrbJyUlwdLSUiWhexY7OzusWLGiX16t66+x99e4gf4be3+NG+i/sffXuAGKvTdj5zAMw/TKK/WwPXv2AABKS0tx5swZzJgxA05OTgCA5cuXs/Xefvtt5OfnIz09nS0Ti8VYuXIlxGIx4uPjwePxcPjwYSgUCuzatQtDhgxh6yYmJuLLL79EdHQ0wsLCcOXKFZw+fRqvvfYali5d2jvBEkIIIaTfMpnkbdKkSZ0+9mSi1lHyBjxeo+zptU3feustuLi4qD3f8ePHcejQITx48AAODg6YO3cuFixYQMvJEEIIIaTHmUzyRgghhBDSH/S7MW+EEEIIIcaMkjdCCCGEECPS56YKMXY1NTU4cuQIiouLIRKJ0NraioSEBIwZM0bj56iurlYbf7d69WoMGzZMrW5ycjIOHjyIyspKCIVCvPjii5g/f353hqSVpqYmfPvtt0hPT4dEIoGfnx/efPNNjSZs7Grc4tixY9mlxB48eIBFixZ1WO///u//MGXKFN0aryd9Yv/0009x6tQptXI3Nzf85z//USlTKBQ4ePAgjh49irq6Ori4uGDJkiWYOnVqt8WiDV3jVigUOH36NNLS0lBSUoKmpiY4OTlh8uTJiI+PV5v0urPPx6pVq7BkyZJui+dpUqkUO3fuxK+//oqmpiZ4eXnh1Vdfxbhx4565rTEfy4DusaelpeHs2bMQiUSoq6uDg4MDwsPDsXz5crVJTBcuXIjKykq155gzZw7efffdbo1HU7rGvWvXrg6XQeTz+fjtt9/Uyk1pn3e2HwHA2dkZP/74I/u3oY7lrojFYhw8eBDXrl1DcXExmpqasGHDBo2nLtPmPJiRkYEffvgBd+/exZAhQzBjxgwsW7as0xWcOkLJWze7f/8+Dhw4ABcXF3h6erKL1WpKLBZjzZo1aGlpwZIlS2BmZobDhw9j9erV2LVrFwYPHszWTUpKwtatWxEVFYVFixahoKAACQkJaGtrw8svv9zdoT2TQqHA+vXrcevWLcTHx2Pw4ME4evQo1qxZgx07dsDV1bXL7Tdu3KhWJhKJcOTIkQ5PHFOnTsWECRNUygICAvQLQkf6xg48PsGvW7dOpWzgwIFq9Xbs2IH9+/dj9uzZ8PX1RUZGBj766CNwOJxeT1z1ibutrQ2bN29GQEAA/vCHP8DGxgZFRUX44YcfkJubi3/+859qNwGNHTsW06dPVynr6fkVN2/ejNTUVCxYsAAuLi44efIk1q1bh4SEhC7XMDTmY1lJ19i/+OIL2NnZITY2Fo6Ojrh16xYSExORlZWFnTt3qiXm3t7eal/IOrpZrLfoGrfS2rVrYWVlxf7N5ap3cpnaPl+9ejVaW1tVyiorK/H99993eP42xLHclYaGBuzevRuOjo4YMWIE8vLyNN5Wm/NgVlYW3n//fYwePRpr1qzB7du3sXfvXjx69Ahr167VvMEM6VYtLS1MQ0MDwzAMc+7cOSYyMpLJzc3VePv9+/czkZGRzLVr19iy0tJSJjo6mvnuu+/Ysra2NmbWrFnMunXrVLb/6KOPmNjYWKaxsVHPSLR35swZJjIykjl37hxb9ujRIyYuLo758MMPdXrOzz77jJk0aRJTVVXFllVUVDCRkZHMgQMH9G1yt9E39k8++YSJjY19Zr2HDx8yMTExzLZt29gyhULB/PnPf2bmzZvHyOVyndqvK33ilkqlTEFBgVr5Dz/8wERGRjLZ2dkq5ZGRkSpx94aioiK1z1pbWxsTHx/PvPHGG11ua8zHMsPoF3tH57yTJ08ykZGRzPHjx1XKFyxYoBa7IekT986dO5nIyEjm0aNHXdYzxX3ekd27dzORkZFqx7khjuVnkUgkTE1NDcMwDFNcXMxERkYyJ06c0Ghbbc6DS5cuZf74xz8yMpmMLdu+fTszadIkprS0VOP20pi3bjZgwAAIBAKdt09NTYWvry/8/PzYMnd3d4SEhODcuXNsWW5uLhoaGvDCCy+obD937ly0trYiMzNT5zboKi0tDba2tiqXxIcMGYKYmBhkZGSwa8VqSiqVIi0tDaNHj4aDg0OHdVpbWztcl7a3dVfs7e3taGlp6fTxjIwMyOVyzJ07ly3jcDh44YUXUF1drfWVXn3pE7e5uTmCgoLUyiMjIwFAbTJtJYlEAolEomfLNZOWlgYej4c5c+awZRYWFpg5cyaKiopQVVXV6bbGfCwD+sXe0TAR5WektLS0w21kMpnalRtD0CfuJ7W0tIDpZDIHU9znHfntt9/g5OTU4XEO9O6x/Cx8Pl/nCXY1PQ+WlpaitLQUs2fPVukinTt3LhiGQWpqqsavSclbH6JQKHD79m34+vqqPebn54fy8nKIxWIAQElJCQCo1fXx8QGXy8WNGzd6vsFPuXHjBry9vdW6CPz8/NDW1ob79+9r9XxZWVlobm7GtGnTOnx89+7deP755zF16lSsWrUKly5d0rnt+uqO2Nva2hAXF4e4uDjMnDkT27ZtY/e3UklJCaysrODu7q72OsrHe1N373MAqKurAwCVbkWlU6dOITY2FtOmTcPSpUuRkpKiW8M1VFJSAhcXF7Xua+X7ffPmzQ63M/ZjGdA99s4o14p+ctJzpdzcXMTGxuL555/HwoUL8dNPP+nW6G7QHXEvWrQIcXFxmD59OjZt2sR+pp98DcC09/mNGzdw9+7dTsfi9vax3JM0PQ8q9+vT4+Ds7e0hFAq1On/TmLc+pLGxEVKptMPsX1lWU1MDNzc31NbWgsfjwcbGRqWeubk5BAIBe6LsTXV1dQgODlYrV7a9trYWXl5eGj9fSkoK+Hw+oqKiVMq5XC7GjRuHSZMmwd7eHhUVFTh8+DDWrVuHzZs3a7VMWXfRN3Y7OzssXrwYI0eOBMMwuHjxIo4ePYpbt24hISGB/ZZWW1sLGxsbtbFgT34+elN373MA+PHHHzFw4ECMHz9epTwwMBAxMTFwcnJCbW0tfvnlF2zatAktLS1qVzC6S21t7TOPx44Y+7EM6B57Zw4cOAAej6d2PHt6emLUqFFwdXVFY2MjTp48iX/961+oqanBn/70J90D0JE+cVtbW2PevHkICAiAubk5CgoKkJiYiOLiYuzYsYNNivrDPlcmYx19+TbEsdyTND0PKvdrZ++xNvudkrcuKBQKjbvk+Hy+3issKC8fm5ubd/j8T9aRSCSd3pnC5/P1vhStS+wSiYRt59OPA9CqTS0tLcjMzMT48ePV7k5zdHTE1q1bVcqef/55LFu2DF9//bXeyZshYn/99ddV/p4yZQpcXV2xY8cOpKWlsTciSCQSjT4fujD0PgeAffv2IScnB++8847afv/mm29U/p4xYwZeffVVbN++HXFxcWqD4LuDru93XzqWddWdn7WUlBT897//xeLFi9VuYvnss89U/p4xYwbee+89HD58GPPnz+90yERP0SfuBQsWqPwdHR0NPz8/bNq0CYmJieydlKa+zxUKBc6ePQtvb294eHioPW6IY7knaXoeVHafdlb36Z6WrlDy1oUrV65gzZo1GtXdt2+fWleWtpQf2I7+gSp3urKOhYUF5HJ5h88jlUr1/vDrEruFhUWHY5yebrsm0tLSIJVKO+0yfZpAIEBcXBz279+Phw8f6nXCN3TsSgsXLsTOnTuRk5PDJm8WFhYafT50Yei4z5w5g++//x4zZ87U6Nu3ubk55s2bh61bt+L69esa3QWoLV3f7750LOuquz5rV65cwZYtWxAWFobXXnvtmfU5HA4WLlyIS5cuIT8/H7Gxsdo1XE/dfYxNmzYNX3/9NS5fvswmb6a+z/Pz81FdXa2WzHamN47lnqTpeVCZtHVWV5v9TslbF9zc3LBhwwaN6uo60PFJAoEAfD6/w0unyjJ7e3v29drb2/Ho0SOVS+8ymQyNjY16t0eX2G1tbbtsuzZtSklJwaBBgxAREaHxNsqErampSa/kzdCxK1lYWEAgEKCxsVHl9fLy8sAwjMqV3qc/H7owZNzZ2dn49NNPER4ertXt8sr9/OR71J3s7OxQXV2tVv6s97svHcu60jX2J928eRMbNmyAp6cnPvroI43nserp/dqV7oj7aQ4ODmrHsanuc+Dx+ZvL5Wo196Qh97m+ND0PPtmN6ujoqFb3yZubnoWSty7Y2dlpPEFfd+ByufD09IRIJFJ77Nq1axg2bBgGDBgA4H/z4YhEIpVuQpFIBIVCofd8ObrE7u3tjYKCAigUCpWBm8XFxbC0tNRorjPg8biKvLw8TJ8+vcPLy52pqKgA0PFAd20YMvYnicViNDQ0qAzwHjFiBJKTk3H37l2V7ohr166xj+vKUHFfu3YNGzduhI+PDz788EOtJqpU7vOOBsF3B+V8Ty0tLSqDuJ/1fvelY1lXusauVF5ejnfffRc2Njb4/PPP2Xg10dP7tSv6xv00hmFQWVmpsh9NdZ8DqrMEaJPoGnKf60vT86Byv16/fh3+/v5svZqaGlRXV6vc5fssdLepAVVVValNhxAVFQWRSKRy0r937x7y8vIQHR3NloWEhEAgECApKUll+6SkJFhaWhpk0H5UVBTq6uqQnp7OltXX1+PcuXOIiIhQScTKy8tRXl7e4fOcPXsWCoWi0y7T+vp6tbLq6mqcOHECXl5eel190pU+sUskkg7HOuzZswcMw6gM3J84cSLMzMyQmJjIljEMg6SkJAiFQgQGBnZ3aF3Sd5+XlpZi/fr1GDp0KLZs2dJpt0FH+1wsFuPIkSMYPHiwRqtY6CI6Ohrt7e04duwYWyaVSnHixAn4+/uz355N7VgG9Iu9trYWa9euBZfLxRdffNHpP+TGxka0t7erlMnlcuzfvx/m5uZarUzTXfSJu6PP6dGjR1FfX69yHJviPld61iwBhjqWu0tNTQ3u3r2r0u2t6Xlw+PDhcHNzw/Hjx1U+90ePHgWHw1G7macrdOWtB+zZswfA/+YzOn36NAoKCgAAy5cvZ+t98sknyM/PV9nhc+fORXJyMtavX4/4+HjweDwcPnwYNjY2iI+PZ+tZWFhg5cqV+PLLL/HBBx8gLCwMV65cwa+//orXXntNr7nmdBUdHY0jR45g8+bNKC0tZWeZVigUeOWVV1Tq/uUvfwEAHD58WO15UlJSYG9v3+mJ+9///jfKy8sRGhoKe3t7VFZW4tixY2hra8Pbb7/d/YFpQJ/Y6+rqsHLlSkydOhVubm4AgEuXLiErKwvjx4/HxIkT2W0dHBywYMEC/Pjjj5DL5fDz88P58+dRUFCAv//97+DxeL0U8WP6xC0Wi/Huu++iqakJ8fHxanNbDRs2jE1Gf/nlF2RkZCAiIgKOjo6ora3FiRMnUFVVhffff7/DQdbdwd/fHzExMdi+fTvq6+vh7OyMU6dOobKyEuvXr2frmdqxDOgX+3vvvYeKigosXrwYV69exdWrV9nHbGxs2Bn3L1y4gL179yIqKgpOTk5oampCSkoK7ty5g1WrVhmk+1CfuBcsWIDJkyfD09MTfD4fV69exZkzZ+Dt7a02d5qp7XOlzmYJUDLUsayJn3/+Gc3NzWx354ULF/Dw4UMAwPz58zFo0CBs374dp06dwqFDh+Dk5ARAu/Pgm2++iQ0bNmDt2rWYMmUKbt++jcTERMyaNavDmzs6Q8lbD9i5c6fK3ydOnGB/fzJ568iAAQOQkJCAr776Cnv37mXXQ3zrrbfUvr3OnTsXZmZmOHToEC5cuAAHBwe89dZbGg8S7W48Hg+ff/45vvnmG/z888+QSCTw9fXFhg0b2KTkWe7du4fr169j4cKFHS4pAwDjxo1DRUUFEhMT0dTUhEGDBmHUqFFYtmyZwb616RO7cmxfdnY2Tp06BYVCAWdnZ6xatQrx8fFq78Prr78Oa2trHDt2DKdOnYKLiws2btyo8c0d3UmfuBsaGtgT43fffaf2+PTp09nkLSgoCIWFhUhOTkZjYyMsLS3h5+eH9evXIzQ0tPsDe8Lf/vY3ODo64vTp02huboanpye2bNmC0aNHd7mdMR/LSrrGrpwP7Mn1LJVGjx7NJm+enp5wd3dHSkoK6uvrYWZmBm9vb3z44YeIiYnp9ng0pWvc06ZNQ2FhIXvDlaOjIxYvXoxly5bB0tJSpa6p7XPgf7METJgwAYMGDeqwjiGP5Wc5dOiQyvqs6enpbIIaGxvbaUzanAcjIiLw8ccfY/fu3UhISMDgwYOxZMkSrFixQqu2cpjOpoAmhBBCCCF9Do15I4QQQggxIpS8EUIIIYQYEUreCCGEEEKMCCVvhBBCCCFGhJI3QgghhBAjQskbIYQQQogRoeSNEEIIIcSIUPJGCCGEEGJEKHkjhBBCCDEilLwRQgghhBgRWtuUEEJ0lJubi6SkJBQWFqK+vh5WVlbw8PBATEwM5syZ0+Ui28uXLwefz8eOHTvw4MEDLFq0CGFhYfjiiy96MQJCiDGi5I0QQrQkl8vx5Zdf4vjx47CyssL48ePh7OyMlpYWZGdnIyEhAceOHcPnn38OR0dHte3Ly8tx584drFy50gCtJ4QYO0reCCFES9u3b8fx48fh6+uLTz75BEKhkH2svb0de/bswe7du7Fu3Tps374dFhYWKttnZGQAACZOnNir7SaEmAYa80YIIVq4f/8+Dh8+DIFAgM8++0wlcQMAHo+HV155BVOnTsWdO3fw008/qT1HRkYGnJyc4OXl1VvNJoSYEEreCCFEC6dOnYJCocDs2bNha2vbab3ly5cDAJKTk1XK6+vrUVhYSFfdCCE6o+SNEEK0UFhYCAAIDQ3tsp67uzvs7e1RUVGB2tpatjwzMxPt7e2IjIzs0XYSQkwXJW+EEKIFZSLm4ODwzLrKOjU1NWxZRkYGBg8ejKCgoJ5pICHE5FHyRgghPUyhUAAAJBIJsrOzMWHCBPB4PAO3ihBirCh5I4QQLdjZ2QEAHj58+My6yjrKmxqys7PR1tZG490IIXqh5I0QQrQQGBgIALh8+XKX9e7evYuamhpYW1uzNzZkZGSAz+cjLCysx9tJCDFdlLwRQogWpk+fDi6Xi+TkZNTX13dab9++fQCA2NhYcLlcKBQKZGZmYuzYsbCysuql1hJCTBElb4QQogVXV1csXLgQDQ0N+Otf/6pyMwLweHzbnj178Ouvv2LQoEFYsGABAKCoqAiPHj2iLlNCiN5ohQVCCNHSqlWr0NLSguPHj+Pll1/GhAkTVJbHKisrA5/Pxz/+8Q8MGzYMAHD+/HlwuVxEREQYuPWEEGNHyRshhGjJzMwM7733HiZPnoxjx47h6tWrSE9PR3t7OwAgICAAGzduhLOzM7tNRkYG/P39u5zYlxBCNEHJGyGE6Cg0NFRlst779+/jjTfewIMHD8AwDFteWlqKsrIyzJo1q8PncXJyQnp6eo+3lxBiGmjMGyGEdBNXV1ds2rQJjY2NeOedd1BdXQ2AFqInhHQvDvPk10NCCCF6u3DhAq5fvw53d3dMmTLF0M0hhJgYSt4IIYQQQowIdZsSQgghhBgRSt4IIYQQQowIJW+EEEIIIUaEkjdCCCGEECNCyRshhBBCiBGh5I0QQgghxIhQ8kYIIYQQYkQoeSOEEEIIMSKUvBFCCCGEGJH/B2RfLfKUR65BAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAJvCAYAAAAtNjaIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1hc55X/PzMww9BF7yCqKJLoVd2SJduy5Sq3uMhxiUt2/ds4idM3Gydx4t1s4k1c4m7HiZvc5aJqNSQ6ooMA0UXvHYaZ3x/XjIWFJMoMwwzv53l4JIZbzlDu/d7znvM9Mq1Wq0UgEAgEAoFAYBLIjR2AQCAQCAQCgWDmCPEmEAgEAoFAYEII8SYQCAQCgUBgQgjxJhAIBAKBQGBCCPEmEAgEAoFAYEII8SYQCAQCgUBgQgjxJhAIBAKBQGBCCPEmEAgEAoFAYEII8SYQCAQCgUBgQgjxJhAIBAKBQGBCWBo7AH0xNDTE22+/TWlpKWVlZfT39/PTn/6UK6+8ckb79/f38/zzz3P06FFGR0eJiIjg4YcfZsWKFedte/z4cV599VXq6upYtmwZV111FXfddReWlmbz7RQIBAKBQLBIMZvMW29vL6+99hp1dXWEhITMal+NRsPjjz/OgQMHuOGGG3jwwQfp7u7m0UcfpaGhYcq2GRkZ/PznP8fOzo5HH32UdevW8cYbb/D000/r8+0IBAKBQCAQTIvZpIpcXFz48MMPcXFxoby8nAceeGDG+x4+fJji4mJ+85vfsHHjRgAuu+wybr/9dl599VV+9atf6bZ99tlnCQ4O5k9/+pMu02ZjY8Obb77JTTfdREBAgF7fl0AgEAgEAsG5mE3mTalU4uLiMqd9jxw5grOzM+vXr9e9tmzZMjZt2sTx48cZGxsDoLa2ltraWq655popS6TXX389Wq2Ww4cPz+s9CAQCgUAgEFwKs8m8zYfTp08TGhqKXD5Vy0ZERPDpp5/S0NBAcHAwp0+fBjivDs7V1RU3NzcqKysveI6Ojg46Ozt1n/f391NXV0dYWBhKpVKP70YgEAgEAoE+GRsbo7m5maSkJJYtW2bscIR4A+jq6iI6Ovq81yczeZ2dnQQHB+vE13QZPhcXlyni7Nt88sknvPbaa/oJWCAQCAQCwYLzi1/8gq1btxo7DCHeAEZHR6fNfk2+Njo6CqBbPr3QtkNDQxc8x44dO1izZo3u86qqKv74xz+yfft21q5di6ur67zeg0Cw1BkZGaGnp4fu7m66u7vp6+tjcHCQwcFBRkZGpmxrZWWFra0ttra22NnZYWtri7W1NUqlEqVSiUKhOO//MplM7zFPTEwwPj7O+Pg4Y2Njun8nP4aGhnTvYWBggIGBAdRq9ZRjWFtb696Ho6MjTk5OODk5sWzZMhQKhd5jFgiWEvX19dTV1WFnZ8ezzz6Lp6ensUMChHgDpAv5pDA7l8nXrKysgG9E24W2ndxuOlxdXacVaOHh4fT09LBixQoh4ASCGTA4OEh7e/uUj7a2NgYHBwGQy+U4Ozvj5uZGSEgIDg4OUz7s7e1NulRhZGSEvr6+aT86Ozs5c+aMbltHR0fc3Nxwc3PD3d0dNzc3XF1dUalURnwHAoFpUFdXx8jICBs2bECj0QBc9D6/kAjxBjg7O0+75PntZdJzl1E9PDzO2zYiImLW516xYgU9PT1kZ2ezbt067OzsZn0MgcAc0Wq19Pb20tjYSENDAy0tLbS3t+sy3BYWFri4uODm5kZiYqJOpLi4uGBhYWGUmHt7ezl69Cjr16/H0dHRIOdQqVSoVCrc3d2n/frY2BgdHR1TxG1FRQUZGRlotVoAHBwccHNzw8vLCz8/P3x9fbG1tTVIvAKBKaLRaKiuriYwMJDQ0FAqKiqMHdIUhHgDQkNDKSwsRKPRTGlaKCsrQ6VS4efnp9sOoKKigsjISN12kxfKHTt2zPrcMpmMhIQEqqursbGxmec7EQhMl/Hxcc6ePasTa42NjQwMDADSA5a3tzdBQUE6kebs7Gw0kbaYUSqVeHt74+3tPeX18fFxOjs7p2QrCwoKOH78OABOTk74+vrqxJyHh4f4/gqWLHK5nHXr1i1a8/3FGZUB6ejoYHBwEB8fH90PZcOGDRw+fJijR4/qfN56enr46quvSEtL0y2xBAYG4u/vz6effsqOHTt0F7aPPvoImUzGhg0b5hSTpaWlroO1t7cXlUq1aFKzAoEh0Gq19PT06ERaY2MjLS0taDQalEolPj4+xMbG4uvrK7JCekKhUODp6TmlZker1dLX1zfl51BaWsrExAQKhQJvb2/dz8DX1xd7e3sjvgOBwPD09fVRXFxMfHz8or4Pm5V4e//99xkYGNAtd6anp9PW1gbAjTfeiJ2dHS+88AJffvkl77zzDl5eXgBs3LiR3bt38+STT1JbW4ujoyMfffQRGo2G7373u1PO8fDDD/PTn/6Uxx57jM2bN3PmzBk+/PBDrr76apYvXz6v+LVaLbm5uVhaWpKWlrZoFb9AMBdGRkY4c+YMVVVVVFdX09vbC0jlCH5+fsTFxeHr64u7u/t5tj0CwyCTyXB0dMTR0ZGVK1cCoFaraW5u1om5oqIi0tPTAXR1hMHBwQQEBIiGCIFZMTQ0REZGBiqVatFnnc1KHbzzzju0tLToPj969ChHjx4FYOvWrResJ7OwsOCpp57i2Wef5f3332d0dJTw8HB++tOf4u/vP2XbtLQ0fvvb3/Laa6/x9NNP4+joyB133MGuXbvmHf/kEmp6ejo5OTkkJSWJm5jAZNFoNJw9e5bq6mqqqqpobGxEq9Xi6upKREQEQUFB+Pr6inKBRYalpSV+fn66chGQshH19fWcOXOGkpISTp48iaWlJQEBATox5+bmZpCOXIFgIRgbGyMjIwNLS0uSk5MXffJEpp2sYBUsKBUVFdx///28+OKL55n+dnZ2kpGRgZeXF7GxseKCKDAZ+vr6dGLtzJkzDA8Po1KpCAoKIjg4mJCQEIMV8i8GNBoNw8PDWFtbm+2Dl1arpaOjg6qqKqqqqqirq0OtVuPg4KD7GQcFBWFtbW3sUAWCGaHVaklPT2doaIg1a9ZMW6ZxsXu2MVjc0nKJ4uLiQlxcHEVFRQwPD4vMhGBR097eTklJCaWlpbS1tSGTyfD29iYpKYng4GB8fX3NVsh8G7lcbvb1eTKZTNc0kpqayvj4OHV1dTrRnp+fj0wmw9fXl8jISCIjI81asAtMH5lMRmBgoM7z0RQQ4m2R4uXlhZubG5aWlmi1WpF9EywqOjo6KCkpoaSkhLa2NqysrAgPD2f9+vUEBQUt2QeOoaEhysvLCQ8PXzLfA4VCQUhICCEhIWzbto3e3l6qq6upqKjgwIED7N27Fz8/P6KiooiMjMTBwcHYIQsEgJRxa2trw8PDAx8fH2OHMyuEeFvEWFpaotFoyMrKwsfHZ0oNikCw0HR2duoEW2trK1ZWVqxYsYLNmzcTHBy86GtEFoLx8XGampoIDg42dihGw9HRkbi4OOLi4hgZGaGiooKSkhL279/Pl19+ib+/v07Iie5VgTEpKyujurraoL6MhkJcbRc5crkca2trCgoKUCqV55kDCwSGpKurSyfYWlpaUCqVrFixgk2bNhESEiIEm+CiqFQqoqOjiY6OZmRkhPLyckpLS9m3b995Qk4YlAsWkurqaqqrq1m5cqXJCTcQ4s0kWL16NWNjY+Tm5pKamoqTk5OxQxKYMaOjoxQXF5OXl0dTUxNKpZKwsDA2bNhASEiIsIcQzAmVSkVMTAwxMTEMDw/rMnJffvklX3zxBcHBwcTFxbFixYpFb9MgMG0m/QxDQ0MJDAw0djhzQog3E0AmkxEXF0dGRgaZmZls2rRpUZsHCkwPrVZLc3Mzubm5FBUVMT4+TkhICDfffDOhoaFCsAn0irW19RQhV1ZWRl5eHu+++y52dnbExMQQFxeHs7OzsUMVmCFNTU34+/sTHh5u7FDmjBBvJoKFhQVJSUk0NzcL4SbQGyMjIxQVFZGbm0tLSwsODg6kpaURGxtrkksJxsbKyoqwsDDxNzoLrK2tdTVyra2t5OXlkZOTw/HjxwkMDCQ+Pp7w8HCxRC+YN5PNf4mJiSbfBCj+GkwIhUKhMw1uaWnBxcVFZEQEs0ar1dLY2Ehubi4lJSVMTEwQFhbGZZddRkhIyJKx9TAEKpVqUXhAmSoeHh5ceeWVbNmyhdLSUvLy8ti9ezc2NjZER0cTHx+Pq6urscMUmCADAwNkZ2cTHx9vFh3PQryZIOPj4xQUFGBnZ0dKSoqoDxHMiLGxMfLz88nNzaWtrY1ly5axbt06YmNjRdefnlCr1XR3d+Pk5CQyRfNAoVDoGh3a29vJy8ujoKCAkydPEhAQQEJCApGRkeLaJ5gRIyMjZGRkYGFhYTbm0eLqYoIoFAqSkpI4efIkeXl5JCQkmHwKWGA4BgYGyMzMJCcnRzf6bdu2bQQFBYnfGz0zODhIRkaGSVoPLFbc3NzYtm0bmzdvpry8nNzcXN5//30OHDhASkoKcXFxYplacEHGx8fJzMxEq9WSkpJiNqtVQryZKE5OTiQkJJCVlUVhYSHR0dHGDkmwyOjo6ODEiRMUFBRgYWFBfHw8KSkpQlQITBJLS0tWrlzJypUraW1t5cSJE+zfv58jR46QmJhIcnKysBsRnEd+fj7Dw8OsWbPGbLJuIMSbSePu7k5MTAzV1dWMj4+bzROFYH7U19dz4sQJysvLsbOzY9OmTSQkJKBSqYwdmkCgFzw8PLj++uu57LLLyMzMJDMzkxMnThAdHU1aWpqoixPoCAsLQ6PRmF1piBBvJo6vry/e3t7I5XI0Go0oNl+iaLVaysvLOXHiBA0NDbi5uXHttdeyatUqUXslMFscHR3ZunUr69evJycnh8zMTPLy8lixYgVr1qzBz89PlAYsURoaGvDx8WHZsmXGDsUgiKu6GSCXyxkdHSU9PZ2IiAi8vLyMHZJggZiYmODUqVOcOHGCzs5OAgICuP322wkNDRU3LSMwOZhePEQtLCqVirVr15KSkkJRUREnTpzglVdewdfXl7Vr17JixQrx97CEOH36NBUVFWY9lUiINzNBqVSybNky8vLySE5OFssGZo5Go6GoqIivvvqK3t5eIiIiuP766/H19TV2aEsae3t7LrvsMmOHsWSxtLQkNjaWmJgYKisrSU9P5+2338bb25vNmzeLJp0lQF1dHRUVFYSHh5utcAMh3swGmUxGTEwMY2NjZGdns2bNGrPwshFMRavVUlZWxldffUV7ezsRERHcfvvtuLu7Gzs0gWDRIJPJCAsLIywsjNraWg4ePMg//vEPli9fzmWXXabzyxSYF83NzRQVFREYGEhoaKixwzEoQryZEXK5nISEBE6cOEFmZiaXXXaZ8EEyE7RaLdXV1Rw6dIizZ88SHBzMddddh4+Pj7FDE5xDX18fJ0+eJDU1VTw8LRKWL1/Od7/7XSorKzl06BCvvPIKoaGhXHbZZaLExMzo6enBy8uLqKgoY4dicIR4MzMsLS1JTk6mr69PCDczob6+noMHD1JXV4e/vz+7du1i+fLlxg5LMA1arZaxsTG0Wq2xQxGcw2QmLjQ0lNLSUg4dOsTf//53oqKi2LRpkygzMXEmm/UiIiJ0I7DMHSHezBArKyvc3NzQarXU1tbi5+cnOg5NkObmZg4dOkRlZSWenp585zvfISQkZElcmAQCQyCTyYiKiiIiIoKCggIOHz7MM888Q0xMDBs2bDDbzkRzZmhoiBMnTrBq1So8PDyWzPVR3NHNmOHhYcrLy2ltbSUpKUl0wJkIPT097N+/n5KSElxdXdm5cyeRkZFL5qIkEBgauVxObGwsq1atIjc3l6NHj1JYWEhiYiIbN24UnogmwtjYGBkZGchksiUnvIV4M2NsbGxITEwkMzOTU6dOERsbKwTAImZ8fJz09HSOHz+OtbU11157LdHR0UJ0CwQGYrLMJDY2lszMTI4dO0ZhYSFbtmwR18tFzsTEBJmZmajVatasWbPkRqQJ8WbmuLq6EhcXR05ODlZWVkuikNPUmDTY3bt3L/39/aSmprJ+/XqUSqWxQxPMEltbW9auXYutra2xQxHMAqVSybp164iJieHAgQN88skn5ObmcuWVVwr7nUVKcXExAwMDpKWlLcm/NyHelgBeXl6sWrWKjo6OJVPMaSp0dHTwxRdfUF1dTWhoKHfeeScuLi7GDkswRywtLXFycjJ2GII5Ym9vz/XXX098fDxffPEFL730ErGxsWzevFnMTV1khIeH4+fnt2RnNQvxtkRYvny5rkNRrVaLBgYjMzo6ypEjR8jIyMDR0ZHbbruNsLAwIaxNnJGREaqrqwkODhZ1UyaMv78/999/P3l5eRw8eJDS0lI2bdpEYmKi6OI3MjU1NXh7e2NlZbXklkrPRdzBlxj9/f2kp6cTFxcnjF2NgFarpbCwkP379zM6OsrGjRtJS0sTYtpMGB0d5cyZM/j6+grxZuJM+mZGRUVx6NAh9u7dS25uLldddRWBgYHGDm9JUl1dTWlpKRYWFkveaFncMZYYdnZ2uLi4kJOTQ2pqqljiWUBaWlr47LPPaGhoICoqiq1bty7ZlL9AYCpYW1uzfft24uPj+fzzz3n99deJjIzkiiuuEEbMC0hjYyOlpaWEhoYueeEGINrYlhgymYy4uDgcHR3JzMxkYGDA2CGZPRMTE3z11Ve88MILjI6Ocvfdd7Nz504h3AQCE8LT05N77rmHG264gYaGBp555hny8vKEIfMC0N7ezqlTp/Dz8yM8PNzY4SwKROZtCWJhYUFSUhLp6enk5eWxfv16Y4dktpw9e5aPP/6Y9vZ21q9fz7p160TNjEBgoshkMlavXk1YWBh79+7lk08+oaSkhB07doiHMQMyOjqKh4cH0dHRxg5l0SDE2xJFoVCQkpKCWq02dihmiVqt5siRI6Snp+Ph4cEDDzyAp6enscMSGBilUsny5cuFzYuZo1KpuPbaa4mKiuKTTz7hmWeeYevWrcTHx4umIz0yPj6OQqHA19dXWLZ8CyHeljCTBdVqtZrKykrCwsJEVkgPNDY28vHHH9PV1cXGjRtZs2aN+L4uEaytrVm1apWxwxAsECEhITzyyCPs27ePPXv26LJwopZ4/oyMjHD8+HGCgoIICgoydjiLDlHzJmBwcJCamhpRvzFPxsfH2b9/Py+//DIKhYLvfe97rF+/Xgi3JcTExAS9vb1MTEwYOxTBAmFlZcU111zDXXfdRXd3N8899xxZWVniWjoPxsfHyczMRKvV4uXlZexwFiVCvAlwdHQkPj6e1tZWCgsLjR2OSdLQ0MDzzz9PRkYGmzdv5r777hNWLEuQgYEBjh49KhqBliBBQUE89NBDREdH8/nnn/Paa6/R1dVl7LBMDo1GQ3Z2NsPDw6SkpGBtbW3skBYlQrwJAHTFoPX19VRUVBg7HJNBrVazd+9eXnnlFaytrXnwwQdZu3atmEcqECxBrKys2L59O3fffTd9fX0899xzugySYGZUV1fT3d1NUlIS9vb2xg5n0SJq3gQ6/Pz8GB0dFReaGdLZ2cnu3btpa2tjy5YtpKamCtEmEAgIDAzkoYce4sCBA3zxxRecOXOGa6+9FhsbG2OHtugJDg7G1dVV1A1eAnGnEUwhJCSE0NBQQCoYFUxPYWEhf//73xkdHeW+++5jzZo1QrgJBAIdSqWSq666ittvv536+nqef/556urqjB3WouXMmTP09vYil8uFcJsB4m4jmJa2tjYOHjxIZ2ensUNZVIyNjfHRRx/xwQcfEB4ezve+9z1RUCvQIZPJsLS0FHYRAh1hYWE89NBDODk58dprr3HkyBE0Go2xw1pU1NXVUVJSQnt7u7FDMRnEsqlgWlxdXXFxcSErK4s1a9aIMTBAa2sr7733Hr29vVx33XVER0eLm7RgCg4ODlx55ZXGDkOwyHBwcODuu+/myJEjHD58mNraWm644QZR04U0NrCoqIjAwEBCQkKMHY7JIDJvgmmZHMpsa2tLRkYGQ0NDxg7JaGi1WnJycnjxxRexsLDggQceICYmRgg3gUAwY+RyOZs2beKuu+6io6OD559/nqqqKmOHZVQ6OzvJzc3Fy8uLqKgoY4djUgjxJrgglpaWJCcnY2lpSUlJibHDMQojIyO899577Nmzh9jYWO677z7c3NyMHZZgkdLf38/hw4fp7+83diiCRUpgYCAPPvgg3t7evPnmm+zfv3/J+gLK5XI8PT2JjY0VD8OzRCybCi6KlZUVKSkpKBQKY4ey4DQ2NrJ7925GRka4+eabiYyMNHZIgkWORqOhv79f1DQJLoqtrS233347J0+e5MCBA9TV1XHjjTcumUL90dFRFAoFTk5OxMfHGzsck0Rk3gSXxMbGBoVCwdDQEIWFhUvixpSbm8urr76KnZ0dDz74oBBuAoFAr8hkMtLS0vjud7/LwMAAL7zwAmfOnDF2WAZnbGyMEydOUFRUZOxQTBoh3gQzZnh4mIaGBk6dOmW2XnATExN8/vnnfPrpp8TGxnLPPfewbNkyY4clEAjMFF9fX773ve/h4+PDm2++adamvhMTE2RmZjI2NiaaE+aJEG+CGePi4kJsbCxNTU2UlpYaOxy9MzQ0xJtvvklOTg5XX301V199tZhLKhAIDI61tTW33347KSkpfPHFF3z66aeo1Wpjh6VXNBoNOTk5DAwMkJKSgq2trbFDMmlEzZtgVnh7ezM6OkpxcTEqlYrg4GBjh6QX2traeOuttxgdHeWuu+5i+fLlxg5JYILY2NiQmJgonPQFs0Yul7N161Y8PDz45JNPaG9v55ZbbsHOzs7YoemFs2fP0tHRQVJSEo6OjsYOx+QR4k0wawIDAxkfHzebJ6fy8nI++OADnJycuPvuu8UyqWDOKBQKPD09jR2GwISJjo7GxcWFt99+mxdeeIHbbrvNLIzAfX19cXR0FN52ekIsmwrmRFhYmO4mNTAwYORo5oZWq+Xo0aO8/fbbhISEcO+99wrhJpgXo6OjVFZWMjo6auxQBCaMr68vDzzwAPb29rzyyisUFxcbO6Q5c+bMGZqamgCEcNMjQrwJ5kVtbS1Hjx6lu7vb2KHMirGxMXbv3s2hQ4fYuHEjO3fuRKlUGjssgYkzMjJCeXm5mAssmDcODg7s2rWLiIgIdu/ezcGDB02ukaGpqYmSkhL6+vqMHYrZIZZNBfPCz8+PpqYm3RgtU6jP6O3t5a233qKrq4tbbrmFiIgIY4ckEAgE56FQKLj++uvx8PDgwIEDtLW1ccMNN2BlZWXs0C5Je3s7+fn5+Pn5iWusARCZN8G8sLCwICkpCSsrKzIyMhZ9xqGlpYUXX3yRkZER7r33XnFREQgEixqZTMaaNWu4/fbbqa2t5dVXX130pSo9PT1kZ2fj7u5OdHS0scMxS4R4E8wbhUJBSkoKwKI2mZy88Nnb23Pffffh4eFh7JAEAoFgRoSGhnLvvfcyODjIyy+/TFdXl7FDuiAqlQofHx/i4+PF2CsDIcSbQC+oVCrWrFmzaDNZZWVlvPnmm/j4+LBr1y6TWN4VmB4KhQIvL68lOU5OYHjc3d259957sbCw4OWXX+bs2bPGDmkKIyMjjI2NoVKpiI6OFj6ZBkSIN4HesLa2RiaT0dnZSX5+/qIprs3JyeHdd98lPDyc22+/3STqRQSmiY2NDQkJCcLnTWAwli1bxne/+12cnJx47bXXqK6uNnZIAIyPj5OZmUlubq6xQ1kSCPEm0DtqtZqmpiajz67TarUcPnyYPXv2kJSUxI033oilpejRERgOjUbDyMjIkpj/KzAeNjY23HXXXQQEBPCvf/3L6FYiGo2G7OxshoeHWblypVFjWSoI8SbQOx4eHkRHR1NXV0dFRYVRYtBoNHz22WccPnyYzZs3c8UVV4jaC4HB6e/vZ//+/fT39xs7FIGZo1QqufXWW1m5ciW7d+8mIyPDKHFotVry8vLo7u4mKSlJeLktEGaVhhgbG+Pll19m37599Pf3ExwczH333UdiYuJF97v55ptpaWmZ9ms+Pj689dZbus/Xr18/7XYPPPAAd9xxx9yDNzP8/PwYHR2lrKwMa2tr/P39F+zcarWa999/n/Lycq699lpiY2MX7NwCgUCwUFhYWHDddddhZ2fHl19+ycDAAJs3b17QB9Xu7m5aW1uJj4/H2dl5wc671DEr8fbkk09y+PBhdu7cia+vL1988QU//vGPefrpp1m9evUF9/u3f/s3hoeHp7zW0tLCSy+9NK3wS0hI4IorrpjyWmhoqH7ehBkREhKCRqPByclpwc45MjLC22+/TWNjI7feeisrVqxYsHMLBALBQiOTybj88suxs7Nj7969DA4Ocs011yCXL8zCmrOzM5s3b0alUi3I+QQSZiPeSktLOXjwIA899BC33XYbANu2bWPXrl0899xzPPfccxfcd926dee99vrrrwNw+eWXn/c1Pz8/tm7dqqfIzZuwsDAAJiYmGBgYMOhA4sHBQd544w36+vq46667FjTbJxAIBMYkNTUVW1tbPvroI4aGhti5c6dBa3zr6uoYGhoiIiJCCDcjYDY1b0eOHMHCwoIdO3boXrOysmL79u2UlJTQ2to6q+MdOHAALy8vVq1aNe3XR0dHxfzCWVBRUcGJEycMNiZlcHCQ119/ncHBQe655x4h3AQCwZJj9erV3H777VRXV/POO++gVqsNcp6WlhaKiooMdnzBpTGbzFtlZSW+vr7Y2tpOeX3Sd6yqqmrGpqynT5+mrq6OO++8c9qvf/nll3z00UdotVoCAgK46667ps3QnUtHRwednZ26z+vq6mYUi7kQFhZGR0cHGRkZrF27Vq9WCpPCbWhoiF27duHq6qq3YwsEIyMjDA8Po1arUavVjI+PY2tri4uLC8PDw1RXV6PVatFqtWg0Gvz9/XFwcADQDamXy+UoFAosLS3x8PDAxsaGkZERRkZGsLS0xNLSEqVSuWBLXQLzJSQkhNtuu4233nqLd955h1tuuUWvGbiuri5yc3Px8vISnaVGxGzEW2dnJy4uLue9PvlaR0fHjI+1f/9+YPol05UrV7Jp0ya8vLzo7Ozkgw8+4IknnmBwcJDrrrvugsf85JNPeO2112Ycg7lhaWlJcnIy6enpOgGnj0HwehNuw8PQ1ASNjdDfD2o1jI9L/05MgIUFKBRgaSn96+AAvr7g4wPCN87kUKvVjI6O6h72qqurGRgYYHh4WCeqkpKScHZ2pqamhqqqqin7BwQE4OLigkaj0T2UyWQyZDIZFhYWuoLx3t5eBgYG0Gg0OuFnbW2NjY0NDQ0NlJeXTzmuj48PcXFxjI+P65p9rK2tUalUuv1E17TgUgQHBxtEwA0MDJCVlYWzszOxsbHid9GImI14Gx0dndbVfFIgzHSJU6PRcOjQIUJDQ1m+fPl5X3/22WenfH7VVVdx33338cILL3DllVde0AB2x44drFmzRvd5XV0dv/3tb2cUk7lgZWWlE3AtLS3zXtqclXAbGoK8PKiulgTa5EdDg/TvOVnRWePuLgm5b3+EhkJsrBB3RkSj0SCXyxkZGaG6upr+/n76+/sZGRlBoVDoGo/a2tpQq9WoVCpcXV11YgkgMDAQHx8fXebM0tJSd9OytbVlw4YNuvMNDg5SUFDA4OAgtra2JCQkXDC2gIAAPDw8dBm90dFR3fVjfHyc7u5umpubGRsbAyRxuH37dkCaGAJgb2+PnZ0ddnZ2wsNQMAVDCDgbGxsCAgIIDQ0VWWIjYzZ/7VZWVoyPj5/3+uSFb6au+qdOnaK9vZ2dO3fOaHuFQsENN9zAn/70JyoqKi7Y1erq6iqW85Budhs3bpx31u2iwk2rhTNnICMDTp6U/i0okLJoAG5u3wistLSpgsvHBxwdpezaZKbN0vKbTNzkR0/PVBE4+XH8uPTv5NxBpRLi4iAlBVJTpX/9/EA8seqdkZEROjs76enpoa+vj/7+flxdXYmLiwMkgWZnZ4efnx/29vY6cQZSsfeFUKlUMy7IVqvVdHZ2zqgWSKlUXvDvwMbGRicKJyYmdGOHJkXj8PAwXV1dU7rkU1NTcXV1pauri7GxMZycnMQ0kSWOvgTc2NgYIyMjODg4LNoRiEsNsxFvLi4utLe3n/f65JLGTIXT/v37kcvlbNmyZcbndnd3BzBYMb65MXnDqquro6uri5iYmFml388VbnfffTeuzs6SQPvqq2/E2uTvQliYJJruu08STuHhMJfOqG/fZL284GIXsaEhKC39RkB+/DH85S/S17y9vxFzl10mZeeEmJsVExMT9PT00N3djbOzM87OzrS2tlJYWIitrS0ODg4EBATofKdUKhWbNm0yctRzw8LCAltb2yn1vJOCVK1WMzAwQH9/v67OrrGxUVdTa2Njg5OTE35+fri5uS188AKjc66Ae/fdd7n55ptnJeAmJibIyspibGyMTZs2iaXSRYLZiLeQkBDy8/N1yxWTlJaW6r5+KcbGxjhy5AgxMTGzypJNDgdetmzZ7IJe4igUChobG7GysiIyMnJG++iE2+Ag965ahdMf/gDvvSctf9rbQ3IyPPigJI6Sk2GaOsgFwcYGEhKkj+9/X3qttVUSc5OC7j//E370IwgOhptvlj6io4WQuwg1NTU0NDTQ19eHVqvF0tKSyMhInJ2d8fb2xsvLSy+1lKaCpaUly5Ytm3LtWb16NaGhoXR3d+s+RkZGAKlLsLq6GmdnZ9zc3HB2dhbLX0uAuQo4jUZDTk4O/f39pKWlCeG2iDAb8bZx40befvttPvnkE53P29jYGJ9//jmRkZG6TtPW1lZGRkYICAg47xgZGRkMDAxcsHO0p6fnPIE2NDTE7t27cXR0FIaws8Tb25vR0VGKi4uxsrIiODj4otsPDgzwxRNPkJiZSdyZM1g0NICHB9x0kyR81qyRGgsWKx4ecO210gdIy69ffQXvvgvPPw9PPinVyU0KuVWrlqyQ02q19PX10d7eTltbG5GRkSxbtgy5XK7Lqjk5OWFvb6+7oUxX87pUmWx08Pb2nvK6QqFApVLR0NBAVVUVlpaWBAUFiWvXEmAuAq6wsJCOjg6SkpIM6tEpmD1mI94iIyPZtGkTL7zwAj09Pfj4+PDll1/S0tLC448/rtvud7/7HadOneLo0aPnHWP//v0olcopBcjn8sEHH3D8+HHS0tLw8PCgs7OTzz//nNbWVn7+85+Lm8ccCAwMZHR0lNLSUmxsbPDy8jp/o6oqxp99lok33uCmzk40rq7Ib7oJbrkF1q1b3ILtYigUsHWr9PHcc3DwoCTknnkGfvc7WLFCEnH33y/VyS0RysvLqa+vZ3R0FAsLiylZ8ICAgGkfvBYL1tbWREdHT6mnW0y4uLjg4uKiE8dtbW06256uri7y8/Nxd3fHzc0NNzc3LEz1b0swLd8WcLfccssFf8ZDQ0O0trYSExMjltwXIWYj3gB+9rOf4eHhwd69exkYGCAoKIg//vGPxMTEXHLfwcFBTp48SUpKCnZ2dtNus2rVKoqLi9mzZw99fX2oVCoiIiJ4/PHHiY+P1/O7WTqEh4ejUCjOX6rOzISnnkL74YdM2NhwJiqK5X//O8uuvVZqIjAnFAq44grp4/nn4cABScg9/bSUkbv1VmmJ9SJj3kyRsbExWlpaOHv2LKtXr8bGxgalUqmr0TK1ZT2lUmkSBtEymQxHR8cp2RSlUom7uzvt7e3U1tZiYWFBQEAAUVFRRoxUoG+Cg4O59dZbeeutt/joo4+44YYbpl0OtbGx4bLLLhNJiUWKTKvVao0dxFKkoqKC+++/nxdffFEsWZzD8OAgY59+iuOzz8KxY2hDQ8lcu5ajAQHccf/95y0DmT39/fDSS/DnP0t1fdu2wY9/DJs2mfSSalNTEw0NDTr/RRcXF6KionRF96bKpBj19PQ06dq7wcFBmpubUSgUBAQEMDg4SEVFBd7e3iIjZyaUlJSwe/dukpKSuOKKK3QCrqmpiaamJhISEkzqwcnQLLZ7tpmlLwQmy+go/POflD7xBB21taxJSsJm924+UKspO32aO+64Y+kJN5CaMP7jP6Smh3ffhf/+b9i8WbIf+dGPpHo/E8hCqtVqmpub8fT0RKFQ0N7ejkajYeXKlXh5eZmNpcXw8DAFBQU4OjqatHiztbWd0uQ1OjpKf38/2dnZuikRvr6+uk57gekRFRXF8PAwe/bswdbWlvXr19Pe3k5+fj6+vr5CuC1yFv9VX2DejI9LNV5PPQUtLay++mrSf/ADToaHMzAwQEl5OTfffDOBgYHGjtS4KBTwne/A7bdLS6r//d9w223w05/Cz38O99yzKGv/enp6qKur4+zZs6jVapKTk3F3dyc6Olp0rpkQzs7ObNiwgcHBQc6ePcvZs2dpbm7G3d39vGkVAtMhISGBoaEhDh06hFqtZmRkBDc3twv6lQoWD0JaC4zHgQOSNcZjj8FVV0FZGYpPPiH5vvsoKCjg448/5oorrhCmkOcik8Hll8O+fZCfL1mi3H+/ZIuSkWHs6KZQWFjIsWPHaGtrIygoiC1btugyNUK4mSa2traEhoayYcMGVq1aBUhWSYcOHeLkyZM0NTWh0WiMHKVgNqxbt464uDheffVVOjs7xXKpiSB+QoKFp7YWbrxREiGurtLYqpdekrorkUb/dHZ2snr16kvahyxpYmLgrbcgPV2aKpGaCrt2QUuLUcLp6uri1KlTOmNsHx8fkpOT2bJlCytWrFi0HZiCuTF5g/fx8SE2NhatVkteXh779+/XmQQLFj8ymYxrrrmG1NRUqquraWxsNHZIghkgxJtg4Rgehv/6L2kyQUYG/OtfcOSIlH37mtOnT7Nnzx7Wrl3Lv//7v+s6UEVfzUVIS4OsLPj732HPHkkE/+//SkvSBkaj0dDY2MiRI0dIT0+ns7NTN6bOxcUFd3f3JZVls7S0xMXFZUnNGbWwsMDX15e0tDQ2bdqEn5+froZx0o5EsDgZHx+nra0NmUzGAw88QGBgIG+99Zb4mZkAQrwJDI9WCx9+CJGRkn/Z//t/UFEh1Wydc2NvbGzkvffeIywsjCuvvFJ3AywqKqKoqMhIwZsIFhbwwANw+jTceafUzBAdLS1NG5Camhry8/NRqVSkpKRw2WWX4enpadBzLmZsbW1JS0tbsvVfdnZ2REZG6n4HGhsbyczM5PDhwzQ0NIgl1UWERqMhOzub/Px8xsfHsbS05JZbbsHR0ZE333xTjHtc5AjxJjAsHR1w3XVwww1Sxq24WPIt+5aXXmdnJ//617/w9PTkxhtvnFJzsWzZMurq6qioqFjg4E0QZ2f429+kpWhXV2lp+s47JcsRPTAyMkJZWRmVlZUA+Pv7s3HjRpKTk3Fzc1tSWbbp0Gq1aDQakSn+msjISNLS0rCxseHUqVMcPHiQrq4uY4e15Jlc4u7u7iYxMVHn5aZSqbjjjjuQyWS8+eaburFqgsWHEG8Cw3H0qFSXlZ4uZd4++0waFP8thoeH+ec//4mNjQ233XbbeaaQfn5+REREcPr0aVFLM1Oio6Ul6ddfh48+gvh4qcFhjvT39+tuvrW1tbrXFQoF9vb284/XTOjr6+Ozzz4TWYtzcHFxISkpiY0bN+Lu7q4zQW9vbxfiwEgUFxfT0tJCfHw8zs7OU75mb2/PHXfcQX9/P++++67Ili5ShHgT6J+JCfjNbyQj2ZAQKCiQsm/TZGU0Gg3vvfcew8PD3H777bpRPd8mJCSEwMBACgsLxZP7TJHJ4K67JNFmby91pv7f/0nL2LNgYGCAw4cP097eTnh4OJdffjmhoaEGClpgrtjb2xMdHY1SqUSr1VJYWMjBgwcpKSlhdHTU2OEtGcbHx3UNYRcqcXBzc+Pmm2+mtraWffv2LXCEgpmwdKpqBQvD2bOSH9nRo/DLX0ofF/Ef27dvH7W1tdx5553nPQF+m0kHficnJ31Hbd6EhMCJE/D44/Doo3DoELzyirTEegGGh4dpbGwkNDQUOzs7kpKScHNzExYCAr0gk8nYsGEDNTU1VFdXU1dXR1BQEGFhYeJ3zIBotVoUCgXr16+/5Pc5MDCQK6+8ks8++wwPDw9iY2MXKErBTBDiTaA/vvhCyvQoldKQ9Y0bL7p5fn4+GRkZXHXVVTMy4ZXJZLq5kV1dXVhaWpr8OKUFw8oK/vIXuOwyydA3Jkbq9l27dspmo6OjVFZWUldXh6WlJT4+PtjY2ODh4WGUsAXmi6WlJaGhoSxfvpyqqip6e3t1gmJiYkKM4NIzLS0tlJeXk5aWNuPpHwkJCbS2trJnzx5cXFxMYm7vUkE84gjmj1otdTdedRUkJcGpU5cUbvX19ezZs4f4+HgSExNnfcqysjIyMjIYGhqaW8xLlR07pJ9PQID0M/r973XLqFVVVRw8eJDGxkbCwsLYvHnzBZexBQJ9oVAoiIiIIDk5GYCOjg4OHjxITU2NqLfSE11dXeTm5mJnZzerQfMymYwrr7wSX19f3nnnHXp7ew0YpWA2CPEmmB9DQ3D99VJW509/gk8/BTe3i+7S29vLO++8g6+vL1ddddWcOhQTEhKwtLQkIyODsbGxOQa/RPHzg6++0o3W0tx9N3xtFRAUFMTmzZsJDQ1dUl5l+sLe3p7LL79cNHHMA1tbW9zd3SkpKeHQoUOcPXvW2CGZNP39/WRlZeHs7ExcXNysr7cWFhbcfPPNKBQK3n77bZ2Po8C4CPEmmDtdXbBliyQEPv0UfvADuEQdxfj4OG+//TaWlpbcfPPNc14asbKyIjk5GbVaTWZmJmq1ek7HWbJYWtLx6KOU/vKX0pSGa69luZsb4eHhs3oyF0xFLpejUqlE3dY8sLa2JiYmho0bN+Lo6Ehubq7oMp8jGo2GzMxMrK2t5zX2ytbWlltvvZWOjg4++ugjYYWzCBBXGMHcaGiQ6qUqK6UC+CuuuOQuWq2Wjz/+mI6ODm677bZ5G5na2trqBJzoVps5w8PD5OTkcPLkSbq3bWN49244dgw2b5Z8+QRzZmhoiJycHLGcrwfs7OxITEwkJSUFX19fQLIXEZmfmSOXy1m1ahUpKSnzfijz9PTk+uuvp6SkhGPHjukpQsFcEeJNMHtKS6WRTENDcPy4VOc2A44fP05xcTHXX3+93lz4HR0d2bhxI7a2tsIcdQaMjo7y1Vdf0d3dTVxcHGvWrMH22mvh8GE4c0YS5CLLMWfGx8dpbm4WAkOPuLm5YWFhwcTEBHl5eRw6dIj6+nrxt34RJiYmdNlKDw8P3biy+RIZGcnGjRs5dOgQ5eXlejmmYG4I8SaYHSdPSjd4JyfJfuLrYfKXoqKigkOHDrFhwwYiIyP1GpJMJkOr1ZKRkUFZWZlej20udHR0oNVqsbKyIiYmhk2bNuHj4/PNBvHxkpny2JgkzIuLjResQDANFhYWbNiwATc3NwoKCjh+/Dg9PT3GDmvRodFoyMnJobS01CAZ4A0bNhAREcEHH3wgZqAaESHeBDNnzx5paW3VKsnHzdt7Rrt1dnbywQcfEB4ezsZLdKHOFZlMhpeXF9XV1VRXVxvkHKbI6Oiobol08kLr7e09fTNCaKgkyN3dYd06aSlVIFhEqFQqXcZYo9GIkXnTUFhYSEdHBwkJCQbpFpfJZFx//fU4OTnx9ttvi5IVIyHEm2BmfPCBNCXhiitg715YtmxGu6nVanbv3o2trS3XXXedQWdfBgYGEhoaSmlpKY2NjQY7j6nQ1NTEV199RWdnJwkJCTPzavP0lMZqxcbC1q1SM4pAsMhwdnZm/fr1xMXFAVJmubOz08hRGZ+ysjIaGhqIiYnB7RJd//NBqVRyyy23MDg4yKeffiqWsI2AEG+CS7NvH9x6K+zcCe+9ByrVjHfdv38/bW1t7Ny5U291FxcjPDwcf39/Tp06xeDgoMHPt1hpaWkhLy8Pd3d3Nm3ahJeX18x3dnCQDJfXr5d84bKyDBeomaFSqQgPD0c1i78RwdyQyWS6Ivy6ujpOnDhBUVHRku0812q1DAwMEBUVNbUkwkA4OztzzTXXUFxcTP485iYL5oYwchJcnBMnJB+3yy+HN9646Kirb1NeXk5mZiZXXXXV7MTDPJmc2TffblZTpLu7GycnJzw8PEhNTcXV1XVuB7KykrKtW7fClVdK2biVK/UbrBliZWUl5r4agbi4OJydnSkrK6OtrY3o6Oi5/+6bIJMTKRISEgy6uvFtVq5cSU1NDZ9//jm+vr64u7sv2LmXOiLzJrgwhYWwfbtUzP7eezCLVvOenh4++ugjIiIi5jRBYT7IZDLdEmF9fT0DAwMLen5jMDIyQmZmJsePH2dgYACZTDb/m5etrVTn6OsribgzZ/QTrBkzPj5OS0uL6DZdYGQyGYGBgWzYsAFra2sKCwuXzHSG9vZ2Dhw4QH9//4IKt0muuOIKnJ2dee+994Rh+gIixJtgehoapIxLYKBkwDuLwteJiQl2796NSqVix44dRrmggNR1debMGTIyMhgZGTFKDAtBc3Mzhw8fpq+vj6SkJOzs7PR3cCcnadnc1lb6fRB1RRdlaGiI7Oxs4fNmJGxtbUlNTSUtLQ25XM7Q0BDd3d3GDstg9PT0kJ2dzbJly4y20qBQKNi5cyc9PT188cUXRolhKSLEm+B8enulOaUKBXz+OTg6zmr3yZE2N910E9bW1gYK8tLI5XKSk5PRarVkZmaaZTakoaGBnJwc3Nzc2Lhxo2EGyHt4SDVwXV1w7bVgxkJYYPrIZDJdzWF1dTXp6elUVVWZXVH94OAgmZmZODg4zGt6gj5wc3Nj+/bt5OfnU1hYaLQ4lhJCvAmmMjYGN94IjY3SDXuWZrpVVVWkp6ezefNmnSu6MbG2tiYlJYXh4WGys7PNZill8n14eXkRGxtLfHy8YcdahYRIGdjcXLjrLjCT76PAvImKiiI4OJiysjIyMzPNytYiNzcXpVJJUlLSnMcM6pPo6Giio6PZs2eP6PxdAETDgmAqDz8s+Xvt3w8REbPatb+/nw8++IDQ0FDS0tIMFODssbe3JykpiYqKCiYmJi78hKrVSuOhGhuhpUUSsuPjMDEhNWooFFIhv5eXVAfm7AxGWBKur6+noqKCNWvWYGNjs3AiOSUF/vUvSdz/4hfw+98vzHkFgjkil8uJiIjA1dWV/Px80tPT2bhxo1nMno2NjcXS0hKlUmnsUAAp47l9+3YaGxt57733uO+++6b3kxToBfGdFXzDP/4BL78Mr74q2UTMAo1Gw/vvv4+FhYXB/dzmgrOzM6mpqQCM9faiLCqCjAzIz5fE2uTHbApuVSpJxPn6gp8fxMVBaqrkkWaAC6paraawsJCmpib8/f0XxHrlPK6/Hp58En7yE8nI98orFz6GRYxcLsfe3t4sxIE54ebmxoYNG+jr60Mul6PRaJDJZIvuOnUpNBoNlZWVhISEYG9vb+xwzkOpVLJz505eeukl9u3bx1VXXWXskMwWId4EEhUV8NBDcPfdsGvXrHc/duwYdXV13H333YvPoqO7WzIWPnEC9YkTHM3Px1+jIczGBmJiYPlyKavk5/eNGPP0lLJsCoWUdVOrpY/hYWhunir4Ghvh9Gl4910YHZX2mxRyaWlSp+Y8L7R9fX3k5OQwOjpKXFzcgvg4XZAf/UiyDrnrLigomPGkjaWAvb29waaICOaHlZWVzri2uLiY/v5+4uPjTcaTT6vVkpeXR2trKx4eHiyboVH6QuPp6cm2bdv47LPPCAwMJGKWKziCmSHEm0ASJDffLImWv/1t1rs3Nzdz5MgR1q9fz/Lly/Uf31zo6YFPPpEE1b590vJnSAiWqakEXH015cuWYXXNNQQEB8/+2P7+kJx8/utjY3DqlDT/NSMD3n8f/vd/pQzdVVdJ3+Pt22EO3aByuRxra2uSk5ONL47lcnj9dUn43n47HDw4K/8/gcDY+Pr6kpuby9GjR0lMTMTJycnYIV2S4uJiWlpaSEhIWLTCbZKEhATOnDnDnj178Pf3N/41ywwRuX0BPPaYlHl7991ZC4uJiQk++ugj3N3dWT/LpVa9MzYGb70lTQXw8JCyiL298Kc/QVMTVFbCG28Q+utfE7hlC0VlZTQ3N+vv/EolJCXBo49KcdTWQk0NPPGEZL1y663S3NCdO+HDD6Vauoug1WqpqalhYmICOzs7UlNTF89F0M1Nqn87dkx6fwJAypB+8cUX9PX1GTsUwUWYHK9la2vLiRMnaGhoMHZIF6WyspLa2lqdAfliZ7L+TavV8vnnnxs7HLNEiLelznvvwXPPwV/+AqtXz3r3I0eO0N7eznXXXWe8jqe+Pvif/4GgICkT1NkJTz0lLWceOwb/9m/nLe1FRUXh5eXFqVOnDGshsnw5/PCH0oipM2fg17+W/r3hBlixAp59FqbxBFOr1eTk5FBcXEx7e7vh4psPGzbAf/4n/OY3Ygbq12i1WtRqtdnZUpgjVlZWpKam4uvrS29vr7HDuSgajYYVK1bg7+9v7FBmjJ2dHdu3b6ekpISSkhJjh2N2CPG2lDlzBu67T8oEfe97s9797NmzHD9+nA0bNhjnafDsWXj8calW7Wc/k0Z4FRdDerqU/bpIXZhMJiM2NpbU1FTDWmycS2Ag/PjHkt1GdrY0ueLf/g0CAuC//kvqdEXybzp+/DgdHR0kJSUt7iftn/8cNm6E73wH2tqMHY1AMCvkcjnR0dFERUUB0NbWtqj8ICetTVasWEFYWJiRo5k9UVFRREZG8tlnny3pWdOGQIi3pcrYmLSM5+ICL744a8sLtVrNRx99hIeHB2vXrjVQkBegq0sSPcuXw/PPw4MPSsuTr74KX1+EZ4JcLmfZsmVotVrKy8sX1hU/IQHeeUdayr31VvjjH8Hfn4kf/5gT+/ah0WhYt26dYUx39YmFBfzzn1Izh/B/E5goMpmMiYkJTp06xbFjxxbFSL2uri4OHjy4eDPvM2T79u0AfPbZZyIjrUeEeFuqPPGEVFz/zjuznqAA0nJpZ2fnwi6XTkzACy9AWJhUMP+b30i1ZH/840WzbJdifHycs2fPkpGRsfCz+YKC4K9/hfp6eOwxLP76VzY9/DDrm5qwWyz1bZfCy0uymdm7d04NLwLBYsDCwoI1a9Ygl8s5duwYbUbMJPf395OVlcWyZctwcXExWhz6wNbWlu3bt1NaWiqWT/WIEG9LkdOnpZqwn/wE5jA0vqmpSbdcumCZoZMnpQ7P730Prr5aeg8/+Qk4OMz70EqlkuTkZNRqNZmZmajVaj0EPDvK2tup+e53oawMy9RULO+6S1qONJVRM9u2ST+bX/5SslJZotjZ2bF+/Xr9zpcVLBi2trasXbsWFxcXsrKyaGlpWfAYhoeHycjIwNramsTERLPwDIyKiiIqKorPPvtsUWQ1zQHT/60QzA6t9psC/p/+dNa7Ty6Xenl5sWbNGgME+C0GBqS6vLQ0KfYTJ+C112Y9tutS2NrakpyczMDAADk5OQs2Rkur1XLq1KlvZi8uXw4ffCDZm7S1SYa/P/iB5B+32Pn97yVfvB//2NiRGA0LCwscHR0XxbgiwdywtLQkMTGRkJAQo1hyFBcX6+YyL1g97gKwfft25HI5e/bsEcunekCIt6XG++9LwuD//g/mMDT+8OHDdHV1LcxyaX6+ZHb79ttSbVtWlmR8ayAcHR1JTEzEeg7fl7kwMTFBdnY2jY2NxMXFERQU9M0XL79cMsD9wx/gmWek93369ILENWecnaUl7DfflEx8lyDDw8MUFRUxPDxs7FAE80AmkxEeHo5KpWJ0dJTKysoFExzR0dGkpKSYjHnwTLGxseHqq6+mvLyc4uJiY4dj8gjxtpQYGID/+A+45hrpY5Y0NjbqZgO6u7sbIMCv0WqlOrCUFMl3Li9PWpJbgGyGq6sr0dHRyOVygzcwlJeX09HRQXJy8vQTE5RKaZpBZiYMDkpC9s03DRrTvLnnHunn9sgjkjHyEmNsbIza2tqFr50UGIzOzk7Ky8vJz883WEZeo9FQXFzM8PAwSqVy8fg56pmIiAhWrVrF559/Tn9/v7HDMWmEeFtK/Pa3kh3F00/PeteJiQk+/vhjvL29Dbtc2tUleaD9+79LXaQnT0oNCgvM0NAQhw8fprq62mDnCAsLY82aNbqRPRckJkayF7nhBrjzTml82WKtG5HLJe+6sjJJgAsEJo63tzcJCQk0NzeTlZVlkJrYwsJCamtrl4SdxpVXXomFhYUw750nQrwtFcrKpEkDP/uZ5Dc2SzIyMujs7GTHjh2GK6A9fVqy0DhyBD76SBKZxhi+jpTiDwoKorS0lMbGRr0dt7+/n2PHjjE0NIRCocBxpp2+dnbwxhtSl+3u3dIyalOT3uLSK7Gx8PDDkoHvYo1RIJgFXl5eJCcn093dTUZGhl6XUMvKymhoaCA2NhZXV1e9HXexYmNjw5VXXklZWRmVlZXGDsdkEeJtKaDVwve/L5nB/uhHs969t7eXI0eOkJSUZLju0uxsWLNGmgOanw/XXmuY88yC8PBw/P39OXXqlF5sA/r6+khPT0ej0cxdAN91l1T719srNXGUl887LoPwxBNgYyNNlxAIzABXV1fS0tIIDAxENktfzAtx5swZqqqqiIqKmr50wkyJjIwkKCiIL774wijd/eaAEG9Lgd274dAhyYNrDkWwe/fuRalUsmnTJgMEh+QPtmkThIRI46wCAgxznjmwevVq3N3dKS4unle9S19fHydOnMDW1pa0tLT5FSNHRkpdt/b2kuDNyJj7sQzFsmXw3/8tNZssodFZVlZWBAUFYWWkjLHAsDg6OupE1pkzZ3QTEOaKtbU1oaGhU5uVlgAymYyrrrqK3t5e0tPTjR2OSSLEm7mj0UjLV1deCVdcMevdq6urKS0tZdu2bYa5If3zn5Jv28aNcPCgNPFhESGTyYiPjyc1NXXO2TKNRkNmZia2trakpKTop/3f11cSuhERcNllsBjrR+68U/IR/PWvjR3JgqFSqYiKijK7TkHBVMbGxqiurubEiRNzEnCTtW1eXl6Eh4frOzyTwNXVldTUVI4dO0Z3d7exwzE5hHgzdz78UKp3++UvZ72rWq3m888/Z/ny5axcuVL/sT37LNxxhzQX88MPpWW2RYiFhQXW1taMj4+Tl5fHyMjIrPaXy+XEx8frT7hN4uQE+/dLtiI7dkhZrsWETAa/+AUcPSp9LAHUajXd3d1iKcjMUSqVpKWloVarZy3genp6OHr0KLW1tYYL0ERYv349tra2fPHFF8YOxeQQ4s2c0WqlDtPNm+fkj3by5Em6u7vZvn273mo8dLzxhmQn8eij0kxSEzCjVKvVdHZ2kpmZOaPh1X19fZSUlKDVanF2djaM4aa1teTdd/vtUqbrs8/0f475cPXVsHo1/O53xo5kQRgcHOT48eNLomtwqTNZAjEbATc4OEhmZib29vb4+fktQJSLG6VSyRVXXMHp06epqKgwdjgmhRBv5sznn0vzS3/+81nvOvl0mJqaemkri9ny8cfw3e/CvffCn/8sZWhMAGtra1JSUhgeHiY7O/uiNXB9fX2cPHmSzs5OJiYmDBuYpSW88ooklG66aXEZ5MrlUofzvn1SU4pAYEZMCjgnJ6dLPpyNjo6SkZGBUqkkKSlJTOH4mvDwcEJCQvjiiy9m9FAskBDizVyZzLqlpUn1ZLPkyy+/xNramvXr1+s3rhMn4NZb4frr4e9/NxnhNom9vT1JSUn09PSQl5c3rWXApHCztrYmNTUVS0tLwwdmaQlvvSX9vK+9FhbTAOibbpK8+pZI9k2wtLC1tSUmJga5XE5fX98FM3DV1dVoNBpSUlJQKpULHOXiRSaTceWVV9Lf38/x48eNHY7JIMSbufLVV1IX4s9/PmuBVFlZSXl5uf6bFCorpdqsxET4xz8WZGKCIXB2diY+Ph5nZ+fzlpOHh4enCLcFnU2oUkm1gwEBcNVVi2dAvIWFNEf344+hqMjY0QgEBkGr1ZKfn09GRsa0GaTw8HDWrFmzYOP3TAkXFxfWrFnD8ePH6ezsNHY4JoEQb+bKb38rmaVeeeWsdptsUggKCiIyMlJ/8fT1wfbt4OoqGfCaeDeeh4eHrr2/r69P97pKpSIgIED/zQkzxcFBqnubmJCE8mIZaP+d70ii8ve/N3YkBkUmk6FUKvVfIypY9MhkMuLi4hgeHiYrK4uJiQm0Wi0FBQV0dXUhl8uxWaRNWYuBdevWYW9vzxdffCEG188AId7MkRMnpMzbL34x66zbiRMn6Ovr46qrrtLfDUirlUZdtbTAnj3SAHMzoauriyNHjlBVVUV3d7duoLVRl0V8feGTT6CwEB5/3HhxnItCAT/5CbzzjjRJw0xxcHBg27ZtODg4GDsUgRGwt7cnOTmZ3t5ecnNzKSwspKGhQcy6nQEKhYIrrriCqqoq0bwwA4R4M0f+8AfJyPW662a122SnXHJysn7HtLzyilSP9cILkhGvGeHs7Iy/vz8ffPAB+/btM9jg6lkTFwf/8z/SiLFPPjF2NBK7doGnp2TeKxCYKU5OTiQmJlJcXExFRQWrV6/G09PT2GGZBCtWrCA4OJgDBw4snmvpIkWIN3OjuVlaNvv+96VOv1lw5MgR5HI569at0188xcXwb/8G998vNSqYGVqtltHRUV1t4KIym/z+9yUBv2sX1NcbOxppqfzBByUhPzBg7GgMQn9/P4cOHaK/v9/YoQiMyMjICM7OzsTExAhLkFkgk8nYsmULHR0d5OfnGzucRY0Qb+bGm29KS1SzFEpdXV3k5OSwbt06/RXUDg7CLbdAcDD85S/6OeYio6ioiLa2Nm655Rb8/f0X16BlmQxeflkao3XbbbAY2vDvukv6vfjgA2NHYhA0Gg2Dg4Mia7DEcXR01Flg5OTkCEPeWeDl5cXq1av56quvxHLzRRDizZzQauG116Rsi5PTrHY9ePAgdnZ2JCUl6S+eH/wAamulOiczLNQdHR2ltbVVtyySmJhIQkKCscOairOzNHkhMxN+8xtjRwPLl0tzbF97zdiRCAR6p6+vj4mJCRwcHAgPD9c1KRQVFdHS0mLs8EyGTZs2MTw8TMZinNu8SFgAA6qFY2xsjJdffpl9+/bR399PcHAw9913H4mJiRfd75VXXuG1aW4mSqWSAwcOnPf6nj17ePvtt2lpacHNzY2bbrqJG2+8UV9vY+7k5kJpKfzpT7ParampiZKSEq699lr9dUieOCHVuD3zjFR/Z4ZYWVmxadMmnY/b5L8DAwMUFxcTFxe3OPycUlOl5pXf/17q+jT2LMVdu+DuuyVhv3y5cWMRCPREf38/J06cwN/ff0qnfmRkJCMjI+Tm5rJmzRqWLVtmvCBNhMm6wfT0dOLj47G1tTV2SIsOs8q8Pfnkk7z77rtcfvnl/Pu//ztyuZwf//jHFBYWzmj/xx57jF/84he6j5/85CfnbfPxxx/z1FNPERgYyKOPPsrKlSt5+umn+ec//6nvtzN7XnsNvL2lWZczRKvVcuDAAdzd3YmOjtZPHGq1NPoqIQG+9z39HHMR0dvbq/Nyms6AVyaT0dfXR2ZmpuGnK8yUn/wE/P2lOjhjt+HfeCPY2Ukj0gQCM2AyS2RtbU1oaOiUr8lkMmJjY3FwcCA7O1ssBc6QSYP4Y8eOGTmSxYnZZN5KS0s5ePAgDz30ELfddhsA27ZtY9euXTz33HM899xzlzzGhg0bLvpUNDo6yksvvURqaipPPPEEANdccw0ajYY33niDHTt2YG9vr5f3M2tGR+Ff/4IHHpiV+W11dTU1NTXcdtttyGfZ4HBBnn8eCgqkpToTNeK9EKOjo2RlZaFSqS443sbW1pbk5GROnDhBTk4OiYmJ+vvezhWVCv76V8m897334OabjReLrS3s3Ck9bPziF7NurFnM2NrakpKSIjIFS4ixsTEyMjKQy+UkJydPu3ohl8tJTEykqanJOP6PJoiNjQ1r167l8OHDJCcn4zTLUiBzx2yumkeOHMHCwoIdO3boXrOysmL79u2UlJTQ2to6o+MMDg5e0CAwLy+P3t5ervuWBcf111+vc9Y3Gp9+Ct3d0nLUDNFoNOzfv5+AgADCwsL0E0drq3RDvv9+aZKCGaHRaMj+ej7npQSZo6MjCQkJdHR0ULRYpgpceaVUD/kf/wHG7obctQtqasDMxuFYWlri5ua2MCPRBIuC5uZmxsbGSElJQXUR83GVSkVwcLAuMy+4NCkpKdjY2HDo0CFjh7LoMJsrTGVlJb6+vuc98UZERABQVVWFh4fHRY9xyy23MDw8jLW1NWvXruWRRx7B+RxD2clOwvBv1QytWLECuVzO6dOn2bp167TH7ujomDL2o66ubuZvbia89hokJ8PX73cmFBUV0drayr333qs/Q94f/1ias2mGTvqFhYX09vayZs2ai16kJ3FzcyM2NnZxPWn/5S/S78hvfmNcv7W1ayEoSPq91ff8XAMxaQszMjLC8PAwY2NjyOVynRXEmTNnGBgYoKmpCR8fH6ytrfH19cXa2pquri76+/tRqVSoVCqsra0XRz2kYN4EBATg6ek541GCAwMDHD16lMjISN2UFsH0KBQKNm7cyKeffkpaWhpeXl7GDmnRYDbirbOzExcXl/Nen3yto6Pjgvva29tzww03EBUVhUKhoLCwkA8//JCysjJefPFFnSDs7OzEwsLivPStQqHAwcHhojPZPvnkk2mbIvRCSwt8+SX87W8z3kWtVnPo0CEiIiL050N06pRUx/TCCzDNz8JkGByEsjLJi2x4GMbGwMoKj54evBwdWTaL0V7e3t6AdOPv7OzUr/nxXAgIkObd/vrXUv1bQIBx4pDLpSzxU09Jy7mLZJlxYGCAvr4+nUAbGRnBzc0Nf39/Ojs7p2TXZTIZNjY2ur+fhoYGuru7KSoqYnR0FBsbG1xdXbG2tqa1tZWqqqop5woICGD16tUMDQ1RXl6OtbW1TthZW1vj6Oi4oO9dMDsKCgpwcnLC399/VjOg7ezsCAoKorS0FHt7e9zc3AwYpekTGxvLyZMnOXDgAHfeeaexw1k0mI14Gx0dnTbDMfl0O3qRGY87d+6c8vnGjRuJiIjgiSee4MMPP+SOO+7QHeNCyyFKpfKi59ixYwdr1qzRfV5XV8dvf/vbC7+h2fDFF6DRwE03zXiXrKws+vv72bx5s35iAPjd76Rsyj336O+YhkarhepqOHkSMjKkfwsLpdmg30L3zKdQSHNjU1KkTs6UFEkEXSR7efbsWfLy8oiLi8PHx8cw72Wm/L//J2XgnnpK6gY2FrfcAv/5n3D4sDT3dgEZHx+np6eH7u5uurq6iIqKwt7enrq6Os6cOYOFhYVOSE3i6OhIUlKSTmR9O3O2YcMGent7sbCwYP369VPEV0REBOHh4brM3cjIiC57q1arGRkZobu7m5GRETQaDSqVisu/bjwqLi5GpVLh7OyMo6PjBWstBQtHWVkZ9fX1c34Yi4iIoL+/n9zcXNatWydqJC+CXC5ny5YtvP3221RXVxMcHGzskBYFZiPerKysGJ/GhHSys2c2T0YAl19+Oc888wy5ubk68WZlZYVarZ52+7GxsYuew9XV1XBZl337pM7OGR5/bGyM48ePExsbq7+YSkvh/felrJsp1Pu0tEgZn5degrY26bXwcEmIPfigNF5q2TKGtFpO5uYSERSEt5MTdHVBTo4k9D77DP7v/6R9fX2l/R56aNrZrT4+PrS3t5Ofn49SqTTu07atrVT39pvfSFm4r7ODC05YmCR69+0zqHjTarUMDg5iZ2cHQGZmJm1f/8wVCgVOTk46U93Q0FDCwsKmfRBUKBSXLL24GDKZTLdsei4ODg6kpaXpPh8dHdVdy7RaLf39/dTX1zMxMYFMJsPBwYHExESsra1Rq9Wivm6BOXPmDFVVVURFRc35QWxyiP3x48cpKSnRr7+mGbJixQr8/Pz46quvCAoK0l+ZjwljNn/1Li4utLe3n/f65FLmXESKu7v7lMJSFxcXJiYm6O7unrJ0Oj4+Tl9f37TLtgZnYgL275eEwwzJy8tjZGREv2OwnnwSfHwkB/3FTEWFNPPzH/+QMmjf/a5UyJ+UdJ7o0mg05Bw/jszdHbfYWGl7kGoLH3lE+n9bm9RVu2cPPPGE9H247z5JHH1rSTI6OpqxsTGys7NJS0szrt/TI49Imbc//WnWvoB6QyaDrVth7169H7qnp4fW1la6u7vp7u5GrVazbds2lEolXl5eeHt74+zsfF7GYzHUoVlZWekeBGUyGampqToRN/l+Jr+enZ1Nf38/Tk5OODk54eXlJbI4BqSlpYWSkhKCg4PnXa+mUCgu2J0qmIpMJmPDhg28+eab1NbWEhgYaOyQjI7ZdJuGhITQ2NjI4ODglNdLS0t1X58NWq2WlpaWKTfYSf+e8vLyKduWl5ej0WjO8/dZEPLzobMTtm2b0eZqtZr09HRWr16tP/FQXS3Nq/zxj2ER3PymJTdX6rSMiJCE1q9/Lc37fPppuOKKabNlZWVl9Pf3Ex8ff+ELrLs7XHMN/P3v0vF+8ANJGAYHw+23S7VzXyOTyYiPj8fBwYHGxkbDvM+Z4ugozZx9/nm4SD2owdm6VRLUemjgGRoaAiTRffLkSWpqapDL5YSEhJCamqrLUPn7++Pn52cQkaNQKPDx8dH7DXky4xYQEEBMTIyu0zkkJAR/f3/UajWnT5/m0KFDuqyiGNGlf5ydnQkPD9c1ws0XGxsbFAoFQ0NDYgLDJQgODsbb25ujR48aO5RFgdmIt40bNzIxMcEnn3yie21sbIzPP/+cyMhI3XJHa2vreZ2ePT095x3vo48+oqenh+TkZN1rcXFxODg48PHHH0/Z9uOPP0alUpGamqrHdzRD9u6VZlempMxo81OnTjEwMMDatWv1F8Mf/yg1KNx3n/6OqS80GvjDH6RsWUUFvPii5Oz/k59cdIRYe3s7Z86cITIycuaF4+7u0lJkfT38+c9S/VxcnCTsvrafsbCwICUlhaioKD28uXny6KNS9suYc2c3b5aaF/bvn9Puvb29lJWVcfDgQb766ivUajVyuZy1a9eybds2kpKSCA0NxdXVdUG89mxsbIiLi8NmgcbBubm5ER4eTmpqKtu2bSMxMVG3ApCfn8/Ro0epqqo676FWMDsmm1iUSiWhoaF6X7arqakhLy+PfmNb+CxiZDIZ69ato6amhoaGBmOHY3TMZtk0MjKSTZs28cILL9DT04OPjw9ffvklLS0tPP7447rtfve733Hq1Kkp6n3nzp1cdtllBAUFoVQqKSoq4uDBg4SGhp7nG3fvvffy5z//mV/96lckJSVRUFDAvn37uP/++3FwcFjQ9wxI9UKXXfbNkt5FmJiY4Pjx40RFRemv1q27W+ow/fWvQV8D7fVFayvceSccOCCJtf/6rxl9n0B6wl61ahXL5zK+ydZWymrddx889pi0pH3woFQPuGyZLgPU3t5ORUWF8ZZOXF0lU+fnnoNf/hJmWReqF5ycpCXrvXtnJf41Gg1HjhxhYGAAhUKhWwqdLOY3llm2RqPR2Q0ttDGzhYUFnp6eus99fX1pbGzk9OnTlJWV4ejoSHR0tOhinSWDg4NkZGTg7OxssNnF4eHhtLe36xoYRFPK9ISHh+Pu7s7Ro0f5zne+Y+xwjIrZiDeAn/3sZ3h4eLB3714GBgYICgrij3/8IzExMRfd7/LLL6e4uJgjR44wNjaGh4cHt912G3fdddd5xcXXX389lpaWvPPOO6Snp+Pu7s73v//98zpWF4S+PmmG6NNPz2jzoqIienp6dBMo9MLbb0vjsHbt0t8x9cGBA3DHHVLGa+/eGY8Mm7z52trazk24nYu1NTz7rCSu77tP6lB9+20pC4hk2jkwMEB2djYpKSnGmcJw331SlnDPHmlslTHYtk36HZ6YuOBEjrGxMWpra2lvbyctLQ25XI6/vz8ODg64uLgYf4LF1/T393P06NHzuk2NgYeHBx4eHkxMTNDa2srZs2d1tXI1NTXIZDL8/PyEULgIo6OjZGRkoFAoWL16tcHOY2FhQXx8PMeOHaO4uFh/owrNjMns2/vvv09zc/OS9n2TaS80TkBgUCoqKrj//vt58cUXWbFixdwO8skncO21UFUl1VhdBI1GwzPPPIOrq6t+xVtysrRc+Omn+jvmfNBqJcuSX/1KWpL7xz/gnGzEpSgrK6Ouro7NmzfrNxtWUwO33SbV3j39NDz8MABdXV2cPHkSDw8P4uPjjdNFZeyf4YkTsGaN1MF7TpkCSFmPM2fO6JZJvL29dX6Mi5He3t5FI94uRmFhIfX19SgUCpYvX05gYOCiaNZYTEzWB4+NjbF27doptjGGoqGhgaKiIjZu3LhgS++mhkaj4W9/+xseHh7ccsstC3Zevdyz9cjieFwVzI19+yRftRn43pSVldHZ2akb9qsXysogK2txZd2eeEJaAvzVr6SM2yyEW3t7O1VVVYSEhOhfHAQGwrFjkpXII49IGTmk5dn4+HhaWlrOa4RZMHbtkrwCZzhCTu8kJUkNFNN0nebk5HD27FlCQkLYsmULMTExi1a4mRKrV6/msssuw8fHh+rqag4cOMDw8LCxw1pU9PT0MDo6SnJy8oIINwA/Pz8uu+wyIdwuwmRNa1lZma45ZykixJspc+jQjJYDtVotR48eJTg4WL8Gsa+/LnVpXn21/o45H556SjJ9/f3vpRq8WSyljY6OkpeXh7u7u+FMIBUKKev26KOSgHvlFQA8PT2Ji4vD39/fMOe9FLfeKi1X/vOfxjm/pSVs2oT2q69obW3lxIkTOoue+Ph4tmzZQlhYmMgM6RkbGxtWrlzJli1bWLlypU6glJWVTdvEtVSYXIxydXVl8+bNC17LrFKpmJiYoLKyUnQMX4DJ2s3jZjYbeTYI8WaqDA9L3ZMzKKA9ffo0ra2t+s26TUxIS5K3326cQvdv889/wuOPS1m3n/501ruXlJQAEBMTY9ilS5lMqjH73vfg/vulsWZIy4G2traMj48vvGWAk5Nko/Lqq7qu2IVEo9HQExqKOieHrMxMNBoNE19PuLCzsxM1WQZGqVTqHhxGR0dpbm7m2LFjnDhxgtbWVpZaZU1JSQnFxcUARvvdGxwcpKKiQjdPWzAVCwsL1qxZQ1FREV1dXcYOxygI8WaqlJRINhiXKKKdzLr5+/sToM85lkePwtmzi8OUNz1dMtvdtUvqKJ0D4eHhJCQkzHoSx5yQyaSxVFdeCTffDF/fKEAam5aTk7PwAu6uu6Q4vvZFXEhOnz7NaSsrFAMDrAsMZO3atefNDzYVHB0dueaaaxZ1vdvFsLKyYtOmTSQmJqLRaMjKyiIjI8PYYS0YlZWV1NTUGK1beRIHBwdCQ0OprKycYhQv+IbY2FhsbW2XbPZNiDdTpbBQEgErV150s5qaGpqamvSbdQOpPsnDA+Lj9Xvc2dLWBtdfL/nc/f3vF50vOh1jY2Oo1WpsbGwWdkKGhYVkbBwYKJn8DgwAkhGll5cXubm5uukgC8Jll4FKZZBpB9PR2tpKU1MTAMuXLyfq9tsBWFZfvyDnF1wYmUyGp6cna9euZc2aNbqu67GxMXp7e40bnAGpr6+nvLycFStW6PdBd46EhoZib29Pfn6+WD6dBoVCQVpaGgUFBWb9e3khhHgzVQoKIDQULlHYevLkSTw9PfVfx7Vvn1RvZ2yLhscfl5Zwd++e03SHgoICTp48aYDAZoC9PXz4oTRn9YknAOnGGRsbi7OzM9nZ2Qv31G1tDevXSz9XAzI4OEhWVhZZWVk0NzcDUo2PbXg4LFsm/V6bMAMDAxw/fpyBr8W4qePs7KyzY6ipqeHo0aMUFhbqZkabC11dXRQWFrJ8+XLCwsKMHQ4gFebHxsYyMDCwpAvzL0ZCQgIKhYLs7Gxjh7LgCPFmqhQWXnLJtLOzk8rKSpKTk/Vbx9XaKo3lmuFILoORng6vvSZNUJjDoPempiZaWlqMM9ZskqAgaTj8//6vbslSLpeTmJiIjY0N3d3dCxfLtm1w5IhUT6lnNBoN5eXlHD58mL6+PhISEqYanspk0u9zYaHez72QTM4+nqzZMyfCwsJYuXIlZ8+e5dChQ9TW1ppNPdyyZctYuXIlKy+xkrHQODg4sGnTpinmy4JvUCqVxMbGkpuby/j4uLHDWVCEeDNFtNoZibfs7GxdR5leOXBA+neGxrcGQa2WvNKSkuDee2e9+8jICEVFRfj4+Bj/wvjDH8Ly5VIH6tc3Q0tLS9auXatbvlmQZZOtW2FkBAxQQyKTyeju7iYkJIRNmzZNb65pBuLNnJHJZAQGBup+fsXFxSY/zqm/v5/u7m7kcjnLly83js/iJZi0DWlqahLLp9OQmJjIyMiIrslkqSDEmyly9ix0dcFFXLhHR0fJz8+/+FD1ubJ3L8TESDVv82Tb7m38/PjPZ7/jM89AUZHklzaHpduioiL2D+7n7qK7Z39ufaNSwV//CocP0/TW86x6fRUfVX2kmxpQW1vLiRMnDJ/NiYoCb2+91b319fVx4sQJOjs7kclkpKSksGLFigt38K1eLXVQj4zo5fwCw2BlZUV0dLTORkOr1VJeXs6Iif3choeHycjI0HWaL2YGBwc5deoUp0+fNnYoiw5nZ2dCQ0PJzMw0m0zwTBDizRSZrAu6SOatoKCA8fFx/c/i02qlIeIzyLqd7j7NDw7/gK27txL/j3g2v7uZ+/fdzz/L5ukn1twsWYI8+OCcGyYCAwPnlXF7u/xtPqr6aM77n8cVV8ANN8Bvf3fel5ycnOjv7ycnJ8ewT94ymZR9m+OQ+EnGx8cpLi7m6NGjjI6O6rIZl8xqREdLHdQmcDMVoPOFGxwcpL6+nkOHDlFVVWUS2aHx8XEyMjKQy+UGm1eqT2xtbQkNDaWqqmpJFudfiuTkZFpaWqhfQg1PQryZIoWFUrH7BTqitFotWVlZhIeH69+yoLlZKrBPS7voZqfaTnHrnlup6KrgxtAb+Vnyz7gh7AbkMvkU8fbp9Z/y67Rfzy6GP/9ZMnb93flC51JM3lhcXV2xtbWd9f6TvFPxDh9XfTzn/aflz3+GnvNr3BwdHUlISKCjo4MCQxf0p6ZKliFzzKL09/dz5MgRGhoaiIiIYMOGDTg7O89s56goSUCa8NKpjY0NsbGxS8oh387Ojk2bNhEQEEB5eTnp6ekMDQ0ZO6wLMjExQWZmJmNjY6SkpJw3v3qxEhISgr29PYWFhUsqwzQTgoKCcHV1JTMz09ihLBhmNZh+yVBRAZGRF7TFOHPmDB0dHVxzzTX6P/fkjfUSg5NfKHwBe6U9b139Fg7KqQ7lncPfWGAoLWbZIapWS+bAd9whmcvOktLSUoaGhkhKSpr1vgbH31/KfFEF37o2u7m5ERMTQ15eHo6OjgQFBRkmhsnsV2kpxMXNeneVSoWzszMRERGzHylkayvV/hlrTJgeUCgU+Pr6GjuMBUehUBAVFYWPjw+5ubl0dHQYb2LIJRgeHmZsbIzk5OR5PcAtNHK5nFWrVpGenk5zczPe3t7GDmnRIJPJSEpK4ssvv6S3t9dkfRZng8i8mSItLTBdwffXZGZm4unpaZiLZ0HBRbN+kzT0NxC8LPg84QbgYv2Nn9q3a94+qvqIVa+vIq81jyczn2T92+tJ+1ca/3XyvxifGKfvy4/52TUWpCVmkvZWGv+b879TnkKzW7JZ9foqslumto43DTSx6vVVvF/+/kX93D6s/JB7997Lhnc2EPePOK796FreKX9nyjbbdm+jqqeKnNYcVr2+ilWvr+KeL+/Rfb1vrI8/Zv2RLe9tIe4fcVz1wVW8XPQyGu3U5aS+sT5+fvznpP4rlbR/pfHz4z+n/4avR43V1p4Xm4+PDwkJCYa9KU5mv2aR4RsdHSU3N5fh4WEUCgVxcXFznwXp5WW8Gat6YGxsjNraWrOz0pgpy5YtY+PGjbrf0aampkXVeavRaHSZwmXLlhk7nFnj7OxMSkrK9A0/S5zo6GgUCgU5OTnGDmVBEJk3U6S1VeqynIauri4qKyu55pprDNM5VVgIq1ZdsknA286bgvYCKrsrCXWavRXHk1lP4mLtwsMxD1PYXsju07uxV9pTUPk2ns5OPJr4HxxrOs6rJa8S4hTCjuAdFz3epMCzUlkRGBh4we3erXiX4GXBbPTbiIXMgiONR/ht5m/RoOG28NsA+HHSj3ky80lsFDbcv+p+4BtBOqwe5p4v76FtqI2dYTvxtPWkoL2Ap/OepmO4g8eTHtfF8++H/p38tnx2hu0kyDGIQ/WH+Lm2TAok/Thc/v/Oi2/yoj04OEhfX5/+L+J2dhAcPOOly/b2dvLz8wGpg3feA7w9PExavA0PD1NUVISTk9OSncU62ZAyPDxMQUEBlZWVxMfHG31qQXl5Od3d3aSkpCzKrtKZ4va1LdLw8PD8/97MCCsrK51tyPr16/XfqLfIEOLNFGltvWCnZ3Z2NiqVilWrVhnm3IWFsHbtJTe7O+puHj7wMDs/3clK15XEecSR4plColciCvml/6hcVC48t/k5ZDIZt4bfSn1/Pa8Vv8bOwm5+ueo/IPxWbgrbybb3t/Fh5YeXFG8tzdK4KV9fX10X53S8esWrqCy/qYG5PeJ2Htz/IG+UvKETb5v9N/O3/L+xzGoZ1wRPXZp+o+QNGvobeO+a9whwkLKTN6+4GTdrN14reY27o+7G09aTrxq+Irc1lx/E/4B7VkpZu1tW3MJ3935XOlBGBoyOXnBubG1tLTU1NSQnJ+su5npjBpYdWq1WN3vRzc2N2NhY/YwW8/CAJVS3Ys5YW1uzbt06cnNzOXbsGCtXrjTaUmpNTQ2VlZVERUWZtHCbpLOzk5MnT7J27VqTzCAaiqSkJDIzMykuLiY2NtbY4RgUsWxqamg00kioacTb2NiY4exBQBIT5eWXrHcDSPNO482r3mSj30ZOd5/m1eJX+d6B77HlvS18Vf/VJfe/PvT6KRfZVa6r0KLlhqPd8J3vAGAhtyDKJYrGgcZLHm8y82ZnZ3fR7c4Vbv1j/XSPdJPgmUDjQCP9Y5f2tNpXt484jzgclA50j3TrPlK8U5jQTpDTKqX0jzUdw1JmyS0rbtHtayG34PYIaUwUg4OwZ88FzxMREYG7uzvZ2dn09PRcMq5ZER0tLZtepCh6aGiImpoaIiIiSE5O1t9MWBPPvAmmYm9vz7p16/Dx8aGgoICGhoYFj6GpqYni4mKCg4MNVyu6wDg7O+Pg4CCaF76Fs7MzISEhZGVlmf33RWTeTI3ubqlofxrxVlhYyOjoKImJiYY5d3W1dO7IyBltvtJ1JX/Z9BfGJ8ap6K7gYP1B/lH6D35w5AfsvmY3wcsuPLLLy3bqcqC9Ulpy8Vi9Zsp7t1Pa0Td66RFS3j4zK+7Nb8vnmVPPUNheyLB66qSBgbEBXRwXor6vntPdp1n/zvSzZLuGuwBoHmjG1cYVG8XUrsTlDsul/wQsh/fegxtvnPY4crmc+Ph4Tp48SWZmJmvXrtVf8XVkJHR2Sh+urlO+1N7ejrOzM7a2tmzZskX/DwkeHtLDiUZj/NFrAr1gYWFBdHQ0np6euizx+Pj4gixrTfqj+fr6EhERYfDzLRQymYxVq1Zx/Phx6urqdPNnBZJtyJtvvklDQ8OibZrRB0K8mRqTWYlpxFteXh5hYWGG67RpkZYemWWXk8JCwUrXlax0XUmAQwC/TP8l+2r38VDMQxfcx0L2LSPXr5+iLBLPr/XTfrs18xx6e3tpaGjAzvfiGTeAhr4G7tt7H4GOgfww4Yd42nqikCs41nSMf5T+Aw2X9q/SaDWkeqXqlkK/jU6cXYrQEHjr1EU3sbCw0C0TDA8P60+8TdbRtbToxNukEWtVVRWrV68mICDAMDdfDw/pAaG7Gy7SWLJYsbS0xM3NDUtLcWn9Nh5fX7Mm579GRkYa/OZqa2tLXFwcHh4eZrFcei5OTk74+/tTXl6Ot7f3kq2x/DbBwcE4OzuTl5cnxJtgEXEB8dba2srZs2e59dZbF/zcsyHKJQqA9uH22e04OYYnKuqim012t/aNSdm4kpISxsbGGHC+9KDww42HGdOM8dfL/oqX3TeZv293rl4MP3s/htRDpHqnXnQ7LzsvMpszGRofmpJ9q+2rlf7j6weVH8DQEFzEM0ypVLJ27VpkMhlarRaNRnPhCQYzZfLn29oKK1ei0WgoKCigsbGRqKgo3cgug3DuuU1QvNna2pKSkmLsMBY1NjY2eHt7U1BQwOjoqEFmCw8ODtLT04OPj49Zd2ZGRESIB4VvIZPJiI6OJj09nauuuspsRa1YlzA1LiCgCgoKsLGxMeyQ9dZWsLaWOhIvQVbz9DUHx5qOAbPIQE0ymfW7xJKtt503FjILcltzaW1tpbOzk8jISN49/e4lTyGXSX8O52by+sf6p52kYGNpM20N3Lbl2yhoLyC9Kf28r/WN9aHWqAFY57MOtVbNOxXf2JBMaCb4V9m/pE/8fGc8bWAyo1BcXExmZub8He7PEVAajYasrCzOnj1LfHy84WuGJs89+fM2MbRaLWq12uzrbeaDXC5n9erVrFixgvLycoqLi/X6/RodHSUjI4PTp0+bxLSH+aBUKomKijJbgTJXoqOjGRsbo7S01NihGAwh2U2N1lZpFuY5bfcajYbCwkJWr149/6zLpc7t4XFBc+BzeTLrSYbVw2z230ygYyDjmnFOtZ1ib+1efOx8uC70utmdu60V7IFLGKDaK+3ZGrCVt8reorGhES9rLz4v/Jyuka5LniLNOw2FXMH3D32fnWE7GRof4v3K93FWOZ+XKYxwieDdinf5e8Hf8Xfwx1nlTLJXMrtW7uKrhq/4/sHvc23ItUS6RDKsHuZ092n21+1n7417cVI5sdFvI7Husfwl7y80DTQRvCyYg3UHGRj/OkPo6/vNtIEZ1jD6+Phw8uRJ8vLyiI+Pn/sykZ2dJNJbW5HL5Tg5OREcHKz/rtbpODfzZoL09fVx9OhR1q9fvySMQudDWFgYVlZWnD59mpCQEL1MOlCr1boHmLS0tIt2lpsTjY2NdHd3G85lwMRYtmwZgYGBFBQUEBMTY+xwDIIQb6ZGV5e0nHTOjbmqqoqBgQHD/5JexKLk2zyW8Bj7avdxrOkYu0/vZlwzjpetF7esuIUHVj8wrXnvJc9tz3nCsaKrgnHN+JTXfpr8UwZHBjnechzViIorAq/gsfjHuP6T6y96ikDHQP534//y1/y/8qecP+Fq7crNK27GycqJX534Ff8s/Sd2SjsejnmYB6MfpHmwmVdLXmVwfJAEjwSSvZKxtrTmtSte48WiF9lXu49Pqj/BTmFHgEMAj8Q8gp1SylrKZXL+etlf+WPWH/nszGfIkLHRbyM/TPwhOz/dCUolhIbOalSUs7Mz8fHx5OTkUFxcPPcLuUyGxt2doepq7IAVK1bM7Thzwc4OFArp91xg9gQEBODj44OlpSVqtZSVnusyoEajITs7m6GhIdLS0paUB5pGo6G2thY/Pz9hHfI1MTExfPjhh/T09Jjl90SIN1NDrZZu7Odw6tQpPD095zVofUbMQryt9VnLWp9L+8HtvWnvlM+vC7mO60KuO2+7hz9o5eFNm+DuqSOxtgRsoeJUBc8XPM+D0Q8C4KRy4pltzzA4ODiliL/o7qKpx4x5mIdjHp7y2ka/jWz02yh9UlkJr7wCtbUE2Pjwy5aXuOaKHwDgau3KM5ufmfY92ShseDTuUR6Ne/Si793RypHfr/v9ea/r4lz9z1lNOgDw9PRk9erVFBQU4OrqOqd6n76+PjTW1gxXVWGj0Sxs9kImk36/v76RC8yfSbGWn5/P8PDwnK1n1Go1Go2GxMREHBxm+XBo4vj5+XHmzBlKS0tJu8Tc6aVCREQEn332GQUFBWzYsMHY4egdId5MDbUazlkaHRoaoqKigssvv9zw5+7vv+RYLINx9qw0+/NbTAq2Z049o/t8YGAAW1vb+XVfvvoq3HeflIXSaliNlk+RIfdQwaVt7vRDQMCchrT7+/tjbW2N67dsPmZCZ2cn2dnZJNnb425jY5xlJwsLId6WICtWrCAzM5Pjx4+TkpIyq7/f8fFxlEola9asMWCEixeZTEZERARZWVm0tbXh7u5u7JCMzmQ94KlTp1i/fr3ZdRsvjYIAc0KthnOWFSaLfRek1mFiYsq5F5TRUanWbxoejH6QR2Ie4ZlTz/Bs3rMcP36cqqqquZ+rslISbhoNTEwg12ix1IBco4V774X5HHs2qFTS+54Dbm5uyGQy2tvbaZlh8X97ezsZGRk4OjqyzNUVC2MV3VtaCvG2BHFwcGDNmjXIZDLS09Pp7e2d0X6VlZUcPXpUt+y6VPHw8MDZ2ZmmpiZjh7JoiImJobu7m/r6emOHoneEeDM1viXeTp06RVhYmP48vmZx7gVDq4WRkQuKN/hGwD1X9Bz7B/bPz9/nlVcu3JQhk8HLL8/92LPBykp63/OgoaGB3NxcumZQQ+bg4MDy5ctJTk5GrlAYT0CZsHizt7dn27ZtRp/jaarY2Niwdu1arK2t6ezsvOT29fX1lJeX4+fnJywzgMTERLMfCzUb/P39cXJy4tSpU8YORe8I8WZqTEzonOfb2to4e/bswnXTnHPuBUWjkQTcJUxhd63YxeU2l7NvcB+vlr869/PV1qLRXsBiQKuF2tq5H3s2KBQwPn7p7S5CTEwMzs7OZGVl0dc3/SSK5uZmRkZGsLKyIioqSloqlculn7cxMOa554lcLkepVC6ZLkdDMLn8OWlLMzY2Nu12ra2tFBYWEhAQQFhY2EKGuGiZtAzp6ekxe5uUmSCTyYiJidH5fZoT4gpjalha6m5sp06dMry32wXOvaBYWEgfl/jjq6qqYqv9Vh5a/RDPnHqG5wuen9Pp8my60VxoaoNMBgs1imZs7IKD6WeKXC4nISEBa2tr3SSGc2lubiY3N/f8ZQVjLpEb89zzZHBwkKysLAYHB40dikkzKX6bm5s5dOjQeUuo4+Pj5OXl4enpKewxvsXQ0BDHjh2jsfHSM5+XApOeb2VlZcYORa8I8WZqfL2ktGDebudiYWG8jMgMlhAdHBwIDw/n4diHdTVwsxVwzxc8zy/DziDnAsum2q/r3haCkZF5izcAhUJBSkoKdnZ2U57G29vbycvLw9vb+/wHgG81xiwoxlqe1wNqtZrW1tYlX3+lL9zc3LCzsyMjI4OBgW+mpCgUCpKTk4mLizO7QvT5YmNjg5eXF1VVVcIsmm8838xt6VSIN1Pj6+xXTU0NAwMDrF69emHPPc9lvDmjUkmjoi6Cv7+/bkDzuU0MMxVwzxc8zzOnnuGaK36A/OVXpOU7C4up/778MoSEzPfdzIzh4YvW+c0GKysrUlNTsbW1Ra1W097eTnZ2Nm5ubsTExJx/AxwfF5k3gdGxtLTUWYecPHmSrq4uTp8+jVarxdnZWSxPX4DQ0FAGBwc5e/assUNZFERHR1NTU0N///lTcUwVcYU0Nb7OvJWVleHk5LSwc/ucnKSB4cYgMPCCXZ7j4+OUl5frHNsnmc5G5EJMCrdHYh6RtosG1q6VxFptrbRUeu+9CyfcQOp6DQzU+2GzsrLo6urSmfpOewPs7jbIuWeECWfeBPpnMnN85MgR3n33XUJCQli+fLkYCXURHB0dcXd3p7KyEm9v7yWfnVyxYgVyuZyysjKSkpKMHY5eEFdIU0OpRDsyQllZGdHR0Qv7R+nhAbm5C3e+c1m9+oKGtTU1NTQ0NExbtDwTAXeecJskJASefFIPwc+RwkK4/Xa9HlKtVhMaGkpWVhbW1tYXXnKfhSGzXtFqJXuUSzSnCJYWCoUCS0tL/Pz8SE1NFcJtBoSFhdHS0oJGo1m40ppFirW1NYGBgWYl3kTO2dRwdYWODoYGBoi8xJB2vePhYbyB4atXS0Pav1VLpFarOXPmDP7+/hd0Zb/YEuoFhZux6e6GhgbpfeuJ8fFxjh8/Tk9PDzExMTQ2Nk5fxKvVQlubccRbd7e0bLoQc1QNgEqlIioqSi9zOgUSWq2W3NxcRkdHdSa8+h5mb444OTkRERGx5IXbJJGRkdTW1ppNM5EQb6aGhwcytRo3S0t8fHwW/Ny0tUk394Vm9WqpgP9bS6e1tbVMTEwQconlzOkE3KIVbvDNZAU9iTeNRkNOTg4jIyN4enri4+NDVFQUVVVV9PT0TN24p0fqdDWGeJscSG+Mc+sBKysrgoKC5jTeSTA9Wq0WhUJBYmIiy5YtY3BwkNraWoqLi40d2qJHq9VSWVlJR0eHsUMxOuHh4QBUVFQYORL9IJZNTQytuzsyYJW7+8LXMXh4SIXs3d3g7Lyw554UMYWF8PUfoVarpaamBj8/vxllOs5dQn2h8AXGNeOLU7iB9D6VStDTUPiCggK6urpISUnRGcgGBQXh4uKCo6Pj1I2NKaBMXLyNj4/T3t6Om5sbCrH0O29GRkZQqVRTjGfd3d1ZtWoVhYWF2NjYEBwcbMQIFzcymYzW1lba2trmNC7PnLC1tSUgIIDS0lLi4uKMHc68EZk3E+PrWxuhxhi8PHlDnbzBLiSuruDtPaXuTSaTkZqaOiuDzgejH0QhVzCuGUchVyxO4QbS+4yM1EvtV319PY2NjcTExODi4jLla5PC7cyZM7S3t0svCvE2Z4aGhsjNzWXoEp3RgktTU1PDoUOHpv1eBgQEEBoaSmlp6YzHvy1VQkND6erqmtGUFXMnIiKCmpoaRuY5uWYxIMSbiVH69cgYd2MsXU52thrL/DEhAb76SvepVqvFzs5uVvVFzxc8rxNu45rxORv5GhStFg4flt6vHvD19SU5OfmCy+xarVZnHdLT0/PNz3chO5knaW2VvO2M8XAiWDScPXuW4uJili9fjo2NzbTbrFixYn5j8JYI7u7u2NnZcebMGWOHYnQiIiKYmJgwi6VTId5MCK1WS1FtLRMKBfLJLMlCEhgI1tZgrFqT22+Hkyfh9Gna29s5dOgQo7MY3H5ujVvenXlzNvI1OOnpUF09707T0dFRent7kcvluLu7X3A7mUxGQkICDg4OZGZmMpiXB76+xhFQk12uS9zaYCnT3t5Ofn4+vr6+REREXHA7mUxGdHQ0np6eAKKB4QLIZDICAwNpaWkxi4zTfHBwcMDX19cspi0I8WZCtLa20t3Tg8bNzThLlxYWsHLlBS07DM6114KjI7z+OjU1NVhaWs64MHy65oS5GPkuCK+9BgEBsGHDnA+h1WrJz88nOzt7RjMOLSwsSEpKQqlUknHsGCMrV8753PPCWBYlgkWBRqOhqKgIV1fXWVkh5efnm8UN2VD4+vqSmpoquqCRuk6rqqpMftapEG8mRGlpKSqVCktvb+OIN5AaByY7IRcalQpuuw3N66/TevYsgTM0kb1YV+miE3CDg/Duu3D33dJEhzlSXV1Ne3s70dHRM3ahVyqVpKSk4FRbi8VCTu44FxMXbxYWFjg6Ogp7hjkil8tJTk6+sHn0BXB0dKS6uppWY10XFzmWlpbn1bsuVSIiIlCr1VRWVho7lHkhxJsJUVZWxooVK5B5ehpXvE3jt7Zg7NqFvKkJr7KyGVmlzMQOZFEJuA8/hP5+uOuuOR+iq6uL8vJyQkNDcZulX5r10BBx7e0oYmMZHh6eUdZOr5i4eLOzs2P9+vXY2dkZOxSTYnR0lIKCAtRqNba2tljOcsJGUFAQHh4enDp1askvDV4IjUZDeno6DQ0Nxg7FqExOJjL1TK0QbyZCR0cH7e3tkjGvlxc0NRknkOhoyQPs9GnjnD8piSF/f0LT0y+Z3ZiNj9uiEXCvvQbr18M87A9KSkpwcnJixVxsRoqKANCsWkV6ejp5eXkLW0vU1GScRgmB0VCr1WRmZtLW1sb4PGYnx8TEIJfLyc3NFfVv0yCXy7G0tKSmpsbYoRidiIgITp8+jdpYSQg9IMSbiVBZWYmlpSVBQUEQFQVlZcbJfq1aJf1rrLo3mQzrRx7BYf9+qaj/AszFgNfoAi4nBw4dgnvumddhEhMTiY+Pn5sPYEEBWFkhX7GClStX0tLSsnBmqF1dcPas9PttovT29vLZZ5/R29tr7FBMAo1GQ3Z2NkNDQyQnJ2NtbT3nYymVSuLj48Xy4EUIDAykt7d3yduGrFixgrGxMerr640dypwR4s1EqK6uJiAgQDL+XL1amv9ojDV7Z2cIDYWjRxf+3MDg4CCyRx6Rlo7//d+nnfYwn8kJRhNwGg08/LDUEHLHHXM6RGtrK2NjY6hUqrkXJh89CvHxYGmJp6cnq1evpra2dmHqQ77O+ulzJJgxWPClZhNlsqmmq6uLxMREHPTQ3ezs7Ex4eDgymYyJiQk9RGleuLm5YWtru+Szb5P2KdUXSQAsdoR4MwHUajV1dXXfOImfO23AGGzdCvv2LfhpOzo6OHToEH0TE/CXv8Dnn8Onn07ZRh8jr4wi4F5+GbKz4ZlnYJb1PgA9PT3k5OTM76KsVsPBg7Btm+4lf39/wsPDqaysNHwt0ddZP2ZhuiwwXWQyGY6OjsTFxek9W9bc3DxrK6GlwKRtSEdHx5IWtzKZjODgYCHeBIalvr6e8fHxb8Sbiwv4+Bhv6XLbNjhz5qLLloagoaEBW1tb6Qn9uuvgiiuk7NvXDuz6nFW6oAKuowN+8hOpSWHdulnvrlarycvLw8HBgdDQ0LnHkZ0Nvb1TxBtIDu0bN240vM1AYaG0ZDoH8SowLfr7+wEICQnBywA1js7OzrrMnqh/m4q/vz9btmxZ8h3RwcHBtLS0MDAwYOxQ5oQQbyZAdXU1dnZ2U41WjWnZsXGjdIPdu3fBTqlWq2lubsbPz096QSaDv/4VmpvhyScNMmR+wQTcz34GExPw1FNz2r2srIzR0VHi4uJmZa9wHnv3wrJl0052sLGxQaPR6GakGoSCApNfMhVcmvr6eg4fPmzQuisrKytiY2Npb2836bomQ2BhYYGFhcW8mkPMgclkiKlOnhDizQSoqqoiODh4agF6dLTxxJu9PaSlLejSaXNzMxMTE/j6+n7zYkgIPP44z5e8pHfhNonBBdzx4/DSS/Db387JImNkZIT6+npWrFiBra3t/GLZtw+2bJHMmC/A0NAQWVlZusyJ3piYkCZ3REfr97gLjJ2dHRs3bhRWIRegtbWVwsJCAgICcHZ2Nui53Nzc8PPzo6yszOQNWfVNX18f+/btk8bhLVFsbW3x8vKiqqrK2KHMCSHeFjn9/f20trYSEhIy9QurV0NDA3R3GyewbdukzsgFenobHx/Hy8vrvG6053e488y1rjzy1RgP+txkkHMbTMDV1cGNN0pC+KGH5nQIlUrFunXrWL58+fxi6emBzMzzlkzPRS6Xk5CQgLW1NRkZGQwPD8/vnOdSVQUjIyafebOwsMDe3n7JL0lNR1dXFzk5OXh6erJqsmvdwERERODp6SmWTr+Fvb09SqVyyXu+BQcHc+bMGZP8/RDibZEzmdINCgqa+gVjNy1ceaVkJnvo0IKcLigoiIRplvM0lnIeWf4dHvyiB66/XurCNQCTAk6j1VMnYV8fXH012NpKxrxzuNn39/ej1WpxcHCY33IpwJ49UsfrRcQbgEKhIDk5GblcTkZGhv6WXibrNxfopm4ohoeHKSgo0K+wNRMqKipwcnIiLi5ubjY2c8DKyoqYmJgZj9FbKshkMnx9fWlqalrS3dHBwcEMDAyY5GQOId4WOdXV1Xh5eZ2/JBYWBkql8cRbTAxERsLrrxv8VL29vRcUCQ/HPMyDG34CH38sFdzfdpvBsoEPRj/IwzEPz/9AQ0PSnNb6ekk0zXIKAkiZyBMnTlBeXj7/eEAyB964ESZrCi+CSqUiJSUFLy+vWTvhX5DCQsmcdw7fi8XEpHeUWKY7n4SEBBITE+f/oDEH2trayMrKMskMi6Hw8/NjfHzcJIWLvvDz80OhUJhk16kQb4sYrVZLdXX1N12m5zLp95aRsfCBgdQwcPfdUtbIgHUTWq2W7OzsS48ySUmB3bsl65C77pJqqBYjIyNShjArCz77TBLAc6CsrAyNRnN+RnYu1NVJGdS7757xLra2tjo/rZ6envk/vWdmQlzc/I4hWHSMj4+TlZXF4OAgCoVC8qk0AgqFgtbWVurq6oxy/sWInZ0dzs7O+q9fNSEsLS1Zvny5EG8C/dLS0sLg4OD04g2k4vL9+6XlLmNwxx3SqKx33zXYKTo7OxkeHp7aqHAhrr4a3n4b3nsPbrrJoKJyTrS2wvbtkhHup5/C2rVzOkxPTw91dXWEh4frZznoH/8AGxvpezZLxsbGOHHiBIXzyQAPDcGxY9Lvs8BsmJiYICsri+7ubqNnvJycnPD396e8vFx4v51DamoqYUvcVzEkJIS6ujqTy5YL8baIqa6uRqlUfmOP8W22bYP2duP5vXl7SzG89prBTtHY2Iitre3MO9NuvBE++AC++kpa2jVWZvLb7N8vdVKWlMAXX8Bll83pMFqtlqKiIhwcHObfpCAdUPr53XQTzKFDUqlUEh0dTUNDw9wHPR89KtUqXqLeTmA6aLVacnNz6e3tJTk5eVF030ZERACY/EByfSKXy9FoNEu6RjM4OJiJiQmTy8qalRvm2NgYL7/8Mvv27aO/v5/g4GDuu+8+EhMTL7rfkSNHOHToEOXl5XR1deHu7k5qaip333039vb2U7a9+eabaWlpOe8YO3bs4Ic//KFe38+ZM2cICAi4cF1RWppU8L5vH8TG6vXcM2bXLrjlFqiogLkMQr8IGo2GlpYWAgMDZ7fjjh1w6pRU/7ZuHfzud/DDH4IRam0YH4f//E/4wx+kzNI//jEnS5BJZDIZQUFB2NjY6KfoOz1dMlt+6aU5H8LHx4fR0VFKSkqwsrKa/VLuvn3g6wvh4XOOYbFgZWVFSEjIki+QLyoqoq2tjaSkJJYtW2bscADpQSMiIoKamhomJiZER/DXnDp1iqGhIdbOcSXA1HFxccHR0ZEzZ87Mz+R8gTEr8fbkk09y+PBhdu7cia+vL1988QU//vGPefrpp1l9EQuC//mf/8HFxYWtW7fi4eFBdXU1H374IRkZGbz88svnXYhDQ0O55ZZbprw2o2W9WaDRaGhsbGT9+vUX3kiphE2bJHPVxx/X6/lnzI4d4OQEzz8Pf/6zXg89NjaGk5PT3BzYly+XMjq//KX0vTl0SMoweXrqNcaLUlsL3/mOVM/1+9/Dj388LwGp1WqRyWT4+PjoL8bnn5e+Vxf7PZsBQUFBjI6OUlNTQ0BAwOxujPv2SSPXFqgD0ZCoVCpdhmcp4+npiYuLy1Rj8UWAv78/fn5+RmmaWKy4u7uTn5/PyMiI4aeoLEJkMhn+/v4mZ5tiNuKttLSUgwcP8tBDD3HbbbcBsG3bNnbt2sVzzz3Hc889d8F9f/Ob3xD7rczVihUr+P3vf8/+/fu5+uqrp3zN1dWVrVu36v9NnENbWxtjY2MXXjKdZOtWeOwxGByUsnALjUoF3/8+/OlP0qQAPXYLqlQqkpOT534AhULKeG3aBHfeCYGBcM898IMfSAa/hqK4GP7nf+Bf/5I6KI8dg9TUeR+2sLAQmUx20QeRWVFdDW+9BU8/rZesZEREBMHBwbMTbo2N0lLyr3417/MvBtRqNb29vTg6OuqvE9eE6OrqwsnJadGJtklkMhkymYy+vj4GBwcNMprL1PDw8EAul9Pc3Dz7VQ4zwc/Pj9LSUsbHx43WVDNbzObx48iRI1hYWLBjxw7da1ZWVmzfvp2SkpKLtkN/W7gBuoxXbW3ttPuMj48btE6goaEBCwsLvL29L77h1q3S0tzhwwaL5ZI8+qiUNfnLX/R2SK1WS3t7u348iLZtg7IySVzu3i0t7+7cKXV86gutVvoZbN8ueZUdPAhPPikJOT0It/7+furr66W5rvriD3+QxPa99+rtkEqlkrGxMU6ePDkz9/b9+6Xfnc2b9RaDMRkcHOTEiRMMDg4aO5QF5+zZs6Snp3P27Fljh3JJamtrKSgoQK1WGzsUo6NQKHB1daW5udnYoRgNf39/JiYmTOp7YDbirbKyEl9f3/P80CaXMGY7AqOzsxNg2nqNvLw8tm7dyrZt27j55pt57733Lnm8jo4OKioqdB+XKo6sr6/Hy8vr0k8BYWEQELCgo6rOw8VFmhDwt7/prcOzs7OTjIwM+vr69HI8XFykJdS6OnjmGakmLjn5m5q4gwcl0+HZ0N0tLVn/+teQmChl+Boa4I03pKzWY49Jo8T0QGVlJdbW1vj7++vleDQ0SB59jz0G35paMV8sLCyYmJggMzPz0iJm3z5plqqLi15jWAjGx8fp7++nra2NhoYGnRDo7e2lvr6e+vp6Ghsb6ejoYGRkxMjRGpaOjg7y8/Px9fW99APnIiAsLIyJiYkLPpwvNby8vFCr1UvWsNfd3R2lUmlSc3DNJq/f2dmJyzQ3gMnXOjo6ZnW8f/3rX1hYWLBhw4YprwcFBbF69Wr8/Pzo6+vjiy++4K9//SsdHR08dJERR5988gmvzaIrs6GhYWa1MzKZlH1bwCHx0/LYY9Kg+L/9DX7xi3kfrrm5GWtra/0XO1tbw4MPwv33S8a+L74I//3f0NsrLR1GRUmZsrg4aUi7tTVYWUn+bMPDkmDLzpa6WCe71lxcYM0aaT7ptm16r90aHBzk7NmzrFy5Un+1Ov/935KwfFC/s2BBEm9JSUmkp6eTkZHB2rVrpy/gn5iQMm9zHA22UIyMjNDd3c34+Dj+/v5otVq+/PLL87I2kx3RXV1dlJaWYmNjo/taWFgYK1asoLOzk+LiYqytrXF0dMTJyQknJyeTWaqZjt7eXrKzs3F1dSU6OnrBpifMB5VKhZ+fH9XV1QQGBi755gV/f3/9PRiaIHK5HF9fX5OqezMb8TY6OjrtBVCpVOq+PlP279/PZ599xm233XZezdkf/vCHKZ9fddVV/OhHP+Ldd9/lxhtvvGCtx44dO1izZo3u87q6On77299Ou21/fz89PT2XrnebZNs2SYTU1Eh1XcbA01MSRH/+M/y//zcn24lJtFotLS0thn2Ct7CAG26QPjQaKC+HkyclUZaeLn0/p/Omksslc+SNG+EnP5GEXkiIQYvte3p6sLa2nvnvw6VoaZHe389+prfM4LdRKpWkpKRw/PhxMjIyWLdu3fnCMzcXOjulh49FxuDgIOXl5XR3d+vKIxwdHfH390cmkxEREYFSqUSlUmFtbY2VlRVyuZze3l4CAwNZv349jo6OTExMMDIyoqt/UygUuLi4MDg4SG1tLadPn8bR0VFXptHQ0IC7u7tJdavW19djZ2dHfHy8STUChISEUF9fT11dnX7Mrs2AoaGhKQ8dSwk/Pz+ys7N1jWGLHbMRb1ZWVtOOUJo03pvpxbCgoIA//vGPJCUlcf/9919ye5lMxs0330xWVhanTp26YCODq6srrq6uM4phUv3P+Ga9datksvqvf8HPfz6zfQzBj34EL7wAf/wjPPHEnA/T3d3NyMjIwhUTy+XSpIPIyG/qv9RqKdM2NCR5kKlU0vfY2npOc0jng4+PD15eXvq7Mf7611I28fvf18/xLoC1tTXJycn09vZOH/s//ynZpuihJnC+DA0NcfbsWeRyOUFBQcjlckZGRvD29tZlx87txLuQx55MJkOlUuku/hYWFlNKORwcHFi5cqXu88HBQd11a3IuKkgrBt7e3nh6ei56Ibdy5UrUarXJNWjY2NgQGxs74+uyudPQ0EBBQQHbtm0z6UzwXPHz8+PIkSN0dXVNu4q32DCdx6RL4OLioqtTO5fJ12byB1pVVcVPf/pTgoKC+M1vfjPji9Fktk1f9VkNDQ0sW7bsPI+5C2JvL5msvvba9NmihcLfX7LDeOopqKyc82E0Gg1ubm44OTnpMbhZYmkpfV89PKT35e4uZRMXWLh1dHQwMTGhP+GWnS0J7CeekCxeDIyDg4PuIaS1tfUbp/2xMUm83Xmn9L02AuPj41RXV3Ps2DEOHjzI6dOndTV61tbWrFmzhsjISLy8vGZsoeDg4MDll18+48YSW1tbXWmAtbU1W7duZfXq1chkMoqKijh27JhuW2NPKTgXtVrNiRMn6OjoQCaTmezN3sfHZ9GL44XCzc1Nt+qxFPH19UUmk5nM0qnZiLeQkBAaGxvPK5AuLS3Vff1iNDU18cMf/hAnJyeeeuqpWaWOJ7ur9FWf1dDQMPslsl27oKoKTpzQSwxz5qc/lewx/u3f5iwkXV1dSUlJMYnUtSEZHR0lMzOTmpoa/RxwYgIeflha9l3gOrOBgQGys7MpLi6WXvjsM2nJdBbzVPXFZFH20NAQ5eXlWFtbEx8fz7Zt21i1atWCx3MuSqUSf39/UlJS2Lp1K/Hx8YCUlTtw4ACVlZXTrjAsJBqNhuzsbHp7e3VlKaZMS0sLx48fX1Ti2BioVCqcnJyW7KB6lUqFm5ubEG8LzcaNG5mYmOCTTz7RvTY2Nsbnn39OZGQkHl+72k83nLizs5PHHnsMuVzO//zP/1xQhPX19THxrYHnarWaf/7znygUimktR2bL+Pg4zc3NsxdvGzZIXacGHFU1I2xsJN+wvXvho49mvfvY2Bi9vb1L/kIK0ng0uVxOQECAfg740kuQkwPPPrvg2S47OztWr15NbW0tlZWV0u9pQgKcs4RoaPr6+sjLy9NlsxwdHdm6dSsJCQl4e3vrpWi9r6+P/fv36yULr1QqddlnmUyGh4cHp0+fZv/+/ZSUlBhlpJFWqyU/P5+uri6SkpL0a11jJGxsbOju7qapqcnYoRgdd3d3Ojo6luz115TMek2rSOEiREZGsmnTJl544QV6enrw8fHhyy+/pKWlhcfPmT7wu9/9jlOnTnH06FHdaz/60Y84e/Yst912G0VFRRQVFem+5uTkpBuvlZ6ezhtvvMGGDRvw8vKiv7+f/fv3U1NTwwMPPKCXdfLm5mYmJiZmL97kcrjrLslr7emnJRFlLHbskPzOHn1UqsebhXlwc3MzRUVFS7buYpKxsTFqa2sJCgrSz/ehvV3Kit5zjzRWzQj4+/szMjJCeUYGVnv24P9//7cg5x0aGqKkpISWlhasra0JDg5Go9Egl8v1/jum1WoZGRnR+81PpVKxevVqVqxYQU1NDbW1tYyOjhIXF6fX81yKiooKzp49S0JCgknUBc0EBwcHPDw8qKysxMfHZ0ln/N3c3Kirq2N4eHhJNi74+fmRk5NjEtMmzEa8AfzsZz/Dw8ODvXv3MvD/2Xvv+Dbu+/7/ddgEQIAgAO4l7ilS3CIpatiybKt27DSOR/xr0qZN8nWTr9u0iZs033yb0ay23zQdWc5OGjuOEzte8pA1KFLinuLeewIkAWKP+/1xBiKKFCeAO+Du+XjoYRPj7g3c4XPve4/Xe2MDqamp+OY3v4mioqId3+fRgHvuuee2PFdUVOR13lJTU5GcnIx33nkHa2trEAgEyMjIwJe+9CWcPn3aJ59hamoKIpHIGyncFx/+MFXL9NJL1FgmuiAIyoHMy6OK4//lX/b81uXl5aCXTvAFnlSpz7rgPvMZKo19W7d0oMnMzITt2Wcxy+Mh8dFH4e/LJEmSuHHjBtxuN44dOxb0F2exWIzs7GxkZGR4pUoWFhZgs9m8nbD+JCEhAXK5POQmE2RkZKC+vh4LCwsh99n2g0qlwtmzZ+k2gzY8QZPp6WnGzzkNKedNLBbjqaeewlNPPXXH1/zHNnf7t0bhdiIrK2uLVIivmZ2dRXx8/MEK1NPSKNHZn/2MXufNY8uXvkRFe86e3ZMcBEmSWFlZ4dr2QS2iHjmKQ/PrX1OCvD/5CdV4QTP5b70F8n3vA6HR+K0tf35+HhEREQgLC0NZWRlkMllIaXnx+Xzv51ldXcXIyAgmJyeRn5/v1ZvzJUtLS4iMjIRcLof8EDJATEWlUkGj0WBxcZHVzpuHYBoT5UtUKhVkMhlmZmYY77yFTM1bqLCwsICYwwxP/8hHqGkBTMjbf+YzlOP2//1/wB7GjqytrcHhcEDrw/mowUpUVJRv5gwODwMf/zjwxBPUuUE3nZ0genrA+/M/x8bGBq5cuQLjfidb7IDVakVjYyNaW1u9jUQKhSKkHLfbycnJQU1NDQiCQENDA7q6urbU5h6GxcVFNDc3h/w0gtLS0l2zNGxgfn4eb731Fu2NMXRAEARiYmKCommDc94YhM1mw+rq6sFSph4eeYTSIvv5z31n2EHh8ahRUTwe8OSTVLfjDtjtdiiVSt9PVQgiSJJEV1eXb2RnbDbg0UcpAeXvf9+vQsJ75qc/peRXzp3zCts2Njb6pPh+aWkJV69ehdFoREVFBdLS0nxg8P6QyWSoqqraMqbP36hUKtTU1ODo0aPY2NjwWTRTr9ejra0N0dHRtHyfgcQTaWLjXNpbUSqV3iwIG4mOjuacN479sbS0BACHc97Cw4HHH6fmd9LQjbaF6GhKz+vyZWpQ+44vjUZtbW1Q1yQdFp1Oh6mpKd9ETj7zGaC3F3jhBb9NUtgXOh2Vuv3oRwGBAEKhEBUVFV4HziOofRCsVitaWloQERGBkydP3nHSib8RCARQq9W0CNYSBIHk5GRUV1eDx+PBaDQeKlpmNBrR3NyMiIgIlJSUsOJ3OTs7i8uXL4f8LNqdkEqlkMlkWF5eptsUWoiOjsbq6uq+pjLRAee8MYjFxUXweLzDpw2feQZYWqIulEzgzBlqKPz//b/AlSvbvsQzRojtTE9PQyaTHV6g+He/o2bN/r//B/hAwsYn/Md/UNHXv/kb70MSiQSVlZWw2+1oa2vb9ybNZjPcbjckEglqampQXl5Oq/aY1WpFf38/I87lxcVF9PT0oLW19UApMJ1O560ZDKaxV4chKioKBEGwXjYkKiqK1c4b8MdgClNhxy8ySFhcXIRGozn8XXtGBpUu+9a3KCV7JvDFL1LzQN//fmqO6G0sLS3hnXfeYcRFjy6cTufBNP5up7mZqjN85BFKlJcJGAyU8/bxjwO33ZzIZDJUVFQgKytrX5vU6/Woq6vzdosrlUrao0M2mw0jIyOMuGtPT09HWVkZVlZWcO3aNZjN5j29zyNzkpKSghMnTrCqcF0oFCI2NjZotL78hVarhc1mY+V6rNFowOPxGJ865Zw3BrG4uHi4lOmtfP7zwNQU8Ktf+WZ7h4XPp6JBsbHAffcBt/0w9Ho9pFIp47V1/Mnc3NzBNP5uZWwM+JM/AYqKqLpHpqS6vvtdak7s3//9tk9HREQgMjISbrcbU1NTu25uYWEBN27cgEKh8E1jR4gSExPjHXrf1NS0q/6cy+XC9evXvULmbIm43UpiYiKMRiPW1tboNoU2tFot7r33XlauxwKBABqNhvFjwtj3y2QoJEn61nnLzwcefpiqM/Nh59mhiIgALlygCunvuw9YX/c+tbq6Su8sUwYQHR2NkpKSgy+YCwvAuXOAUgm88grVuMIEzGYqffvnfw7Ex+/4Ur1ej66uLvT399/xNVNTU2htbUV0dDQqKytZFRk6CFKpFDU1NSgqKtoxMkmSJNra2rC+vh4SkxMOikajQUREBCujTh54PB4rHXcPwdC0wN6jwzDW1tZgs9l857wBwD/+IzXv9IUXfLfNw5KUBLz5JjA+TkWIzGa4XC6sr6/7RZ8qmBCLxYiLizvYm1dXKS09kwl4+21Ao/GtcYfh2WcBvZ6qxdwFjUaDvLw8jIyMYGxsbNvXrK6uIjk5GSUlJay+wOwHz6gtj4PmkVG5le7ubiwtLaG0tJTVN1IEQeDEiROHk2wKAUZHR72j5NhGdHQ0lpaWGD0mjFv5GILHy/ep81ZSAtx7L/DP/wy8N4ybERw9CrzxBtDeDjz8MMzLy+Dz+ay+YIyNjWFwcPBgb9brqUjm7CzwzjsAk9KINhtVe/mhD+3ZrtTUVKSnp6O3t3dT4bhHwuHo0aMoKCigvb5tOzyD5Zk6sN0jitzW1rYpPT0+Po6pqSkUFRXR1qnLNKxWKzY2Nug2gzbEYrFXe5NtxMTEwGazMTp1zjlvDGFxcRFSqRThvpZ0+MIXKLmIV17x7XYPy/HjwKuvAg0NCH/oIZwrKWFtqoYkSYyNjR0sTTM9TU3VGBkB3nqLGknGJH7+c0qg+XOf29fbcnJykJCQgNXVVQDA0NAQrly5AovFwkinzUNYWBgKCwsRxpSU9W3weDwcO3YMycnJ6O7uxvx74tkJCQkoLi5GQkICzRYyh7a2NvT19dFtBm14bqY9v0E24QmiMDl1yjlvDMFT7+bzC1N1NXDyJPDlLzOn9s3DmTPAlSsgx8ZAnDgBYg+F6qGITqeDxWLZf6NCfz81ZH5jA2hoAEpL/WPgQbFaqZrLD3wAyM7e99uLioqQn5+P8fFx9Pf3IzMzk7FOkQeXywWj0ejTCQe+hiAIFBQUIC4uDu+++y4WFhYgFAoRv0s9IttISEjA0tISa2vfZDIZRCIR9Ho93aYEHLlcDqlUyjlvHLvj02aF2/na14CODuDHP/bP9g9DaSmuf+tbcJjNlCNy8ybdFgUcj7bbvmr+btwAamqoJpDr14F9ymwEhH/9V2BmhppxewAIgsD8/DwaGhqwsrJy8HrAAOIZ+cX0dBtBEEhISIDT6WStkv5uxMXFsV7zLTIykpWRN4IgEB0dzeiOU855YwAOhwN6vd5/tSZVVdRcy899DmDYQm0ymaBXq7H+xhuU/teJE8ClS3SbFTAOpO328svAXXdRKdJr13bt4KSF8XGq1vLTnwZycg60Cbfbjf7+fmRkZODIkSNobGxkhH5aKLC+vo62tjZkZ2cjNzcXS0tLPhlRFkpwmm9AXl4eSkpK6DaDFjxNC0yFc94YwNraGkiShFqt9t9OvvlNKm26z9ojf+MJySuzsoCrV6nU3913U9MYnE6arfM/AoEANTU1SEpK2v3FNhvw9NOUBMz581SNG1PnwP7N3wBqNTVZ44DweDxUVVWhrKwMx48fh9vtRmNjI5wsOC/8idlsRlNTE+RyOUrfS7XfvHkTzc3NjE730kFSUhLCw8NZe85JpVLGNt/4m8jISKytrcHNpGa/W+CcNwbgCUv7tdsyKoqKhPzoR0Bjo//2s09WV1cRHh5OaXUplZSMyJe+BHz1q1R0aWaGbhP9jkKhgFgs3vlFw8NUk8f3v0+NvXrhBebouN3Oa69RDTLf/jYgl+/77SRJoq+vDzabDRKJBDweD2FhYaioqIDFYkFPT48fjGYPJpMJYrEYFRUVEAgE4PF4KCsrw8bGBnp7e+k2j1FoNBqUlJTQMquWKXR0dLAydaxSqeByuWAwGOg2ZVs4540B6PV6CAQC33ea3s4nPkHNufzrv2ZM84LRaNzcZcrnU9GaK1eA0VFqUsBrr9Flnt9pamraPTT/P/8DFBdTjQmNjcAnP8mcyQm3Y7EA//t/A2fPUo0KB2BwcBBjY2NeaRAPCoUCFRUVyD5A80MgYar2nCeqptVqUVtbuymiEh4ejoKCAkxOTm6rAcdmPGUtbMVgMECn09FtRsDx1CAzteaPmasMy/BMF/C7BAKfT40pam8HfvAD/+5rj1RUVCA3N3frEydOAF1dVL3eAw8AH/sY4+r1DovBYMDS0tKdL/azs8DjjwNPPgk89BDQ1sacIfN34pvfpKKl//mfB3IwV1ZWMDw8jKysrG0bOFQqFcLCwmC32+8o4ksnSqUS58+fh1KppNuUTbjdbrS0tODmew1B2601SUlJiIuLw8jICKPFSQPN9PQ0bty4wdqUskKhYGz0yZ9ERESAIAjOeeO4MwEdDVVZCfzlX1LTFxhQjCkQCO48DkqtBv7wB+C//5tKE2ZmUv8fIvUny++JE29xUmw24BvfoDpIL10CfvlL6p+/I7OHZXSUsvsznzlQ96vNZkN7ezu0Wi3S09N3fO3y8jJ6e3sxPDx8UGtZA0mS6OzshE6nQ2xs7I6vLSwsRFVVFaO19AKNVquF2+1mbfTN47yxzaHn8/lQKBSMPe6c88YA9Hp9YKcLfP3rAI9HXWRpZHl5efciaYIAnnoKGBoC3v9+4FOfopoaQmBsy/LyMtRq9ebI2xtvAAUFlLjyX/0V9bmffJI+I/cKSVLHJjoa+PznD7SJ1dVVr4jsbs5DfHw8srKyMDAwsKdB9oFiY2MDdXV1jJIK8UyqKC4u3rUpSiAQQCAQwGw2e4fTs53w8HBIJBJGdx76E4VCAZfLBbPZTLcpAYfJUimc88YA1tbWAjvXU6OhRhb94hfAiy8Gbr+3sbq6itXVVfD5/N1fHBVFNVs0NQFiMVBbC3zwg1QKOAhxuVzQ6XTQarXUAw0NwP33U12kiYlUyvjb36aaOIKB738fuHCBSpfKZAfaRExMDM6cObN788Z7ZGZmIiUlBd3d3YzRY/LM6WVKim1+fh7j4+MoKCjYNep2K3Nzc+jp6YHRaPSjdcFDVFQUlpeX6TaDFiIiIlBYWMjKrlOVSsU5bxzbYzKZ4HQ6Az/X8y/+AnjkEeCjHwVoqh0yGAz7H4lVVkYJ1P7kJ0BrKzW/9e67KdmMIArr83g8VJSWIqGlharrq6kBJiaA3/4WuHiReWOudqKzE/jbv6UaYR58cN9vdzqdGB4ehsvl2nexf35+PmJjY2G32/e9XzYQExOD8vJypKSk7Ot9qampkMlkXGfve0RFRUEsFjNWNsKfCIVCJCUlUYoALINz3jjuiKcQNODOG0EAzz5L1ZU99hhAw8XvQM4bQKV8//zPqZTib34DrK0B995Ldab+8pfUWCYmYzKBePZZaE6cgOixxwCBgJrzevMm1aEZTPVGRiPw6KOUEO+//uuBNjE8PIzh4eEDCfASBIGSkhKvTh4bh2hvx9LSElZWVrxK8fuFx+MhPz8fOp0OMyyQ69mN2NhYHD9+nLGdxP5mZWWFlWLFkZGRsFgsjBSwZueZyCBoc94AKiX3m99QkZMD1ikdFKfTCZPJdLhh9AIBlTptaaEK++PjgT/7M6ru6s/+jJIYYYoiv9kM/O53lKMTFQXyE5+ALSuLkv6oqwP+5E8opzSYIEmqHnF2ljqP7tR4sgNGoxGjo6PIyMiAVCo9lDkTExPe4fVsZnV1Fa2trYeuWdNqtYiLi8Pg4CDritW3w+12b5GvYQuLi4usbA7yXJeZGH0LsqtF6OGJPtEmAllWRsk7/Nu/BVRPjSAIFBcXQ6PR+GJjwOnTVLF/fz81kqm1lZIYiY6mRoO99hoVoQskOh3w+99Tch9RUVRUbXgYjn/4B7z7gx9A94MfABUVgbXJl/z858CvfkXJzmRmHmgTN2/ehFQqRVpa2qHNiYmJAY/HQ2NjI21pVKlUipKSkkM7ogdlY2MDTU1NUCqVKCoqOvT28vLyuO7T9xgeHkZ9fT0rHVmFQuEt8WETnPPGcUeMRiM9Ubdb+Zu/oSI/H/5wwCYa8Pl8xMfHI8zXUwKys6nRWn19VBry6aep6NYDDwCRkVQt2Uc/SjU/3LwJ+KqGxekEOjqA732PivplZlKNIX/6p5RD+fnPU2ne9nYsfOQjsMTE+MZxpYu+PqrG7S/+AvjQhw60Cb1ej5WVFeTn5/skHSWRSFBZWQm73U7bqCehUIi4uDha6oOsVisaGxsRFhaG8vLyvTUC7YJEIkFYWBhcLhfr6wo1Gg3sdjvW19fpNiXgeDIkTOqiDgRhYWEICwtjpPPG3pkfDMFgMOyrC8wvEATws59RNWNPPEGlIP0cCVxaWoLD4UC8P4eq5+VRo7b+6Z+o8VI3blD/Ghupz+t2A1Ip1d2ZkPDH/yYkADExVFerUEiJGzud1D+rFZibo5zcW/9NT1PPCQTU93juHLXf48eBI0c2mbW8vIyIiIjg7d4ym6n0b0oK8B//ceDNREZGora21qeCtjKZDBUVFbh+/TqGh4cDPo3BZrNhdnYW8fHxe+6a9RVOpxNhYWEoKSnxufNYX1/v7TpkKyqVCgKBwPv7ZROeSLLZbGbdZ1epVNDr9X9UBmAInPNGM2az+XB1X75CrQaeew44dYrSGPvGN/y6u5mZGVitVv86bx4IgoqEZWZS0UWAKrRvbaWiZdPTlAM2MEB1es7P7zw+TCCg6us8jl5xMeX4FRdT3a+7pMz0en1gPrc/IElqPNfICFVreEBZEIfDAaFQ6JdJBBEREaiqqvL/uLltsFqt6O3thVqtDpjz5okwyuVyVFdX+2Uf8fHxGBwcRFZW1p1FtUMcHo+HyMhIxoq2+hOhUIiEhITgveE8BOHh4YyUzOGcN5oxm82QHfAC6HNqaqj6t7//eyA9nZrE4CcO3axwWMLDqTq506e3PudyUfVqdjvgcFARN4GAisKJxZSje4g0X05ODuQHGNjOCL7+deCnP6Xq3fLzD7yZ1tZWSKVSv0VyPNEBzwiy3SY2BCskSaK9vR1OpxPHjx/3235SUlIwMjKCkZER5B/iuAc7SqWSkSm0QHCM6aP5/IRcLsf8/DzdZmyBc95oxu12M+tC/ulPU7pvn/gEFVW6916/7MZsNiMmJsYv2z40fD7VYOAngjbq9j//Q41V+6d/our6Doin1q2srMx3tt0BnU6H/v5+8Hg8pKam+n1/gaa7uxuLi4soLy/3634EAgFSU1MxMjKCjIyMgKeEmUKg0/BMwm63w2az0RLRphOZTMbIWj+uYYEBMCbyBlApxu98h1L7f+QRKq3oYxwOB+x2O20deXQStLpZly9T2nof+QjwxS8ealPDw8MIDw8/kP7Yfjly5AjS0tK8I6JCCc9osKKiIkT58WbDw5EjR6BSqQ6kxxdqsLHjdGxsDE1NTXSbEXDkcjkjJWI4540BMCryBlApwueeozo377+fqm/yIW63GwkJCcyo9QswMzMzGKNposWB6ewEHn6Yqof84Q8PJSJsMpm8acxAyU/k5OQgISEBnZ2dfh9xJBAIEB0d7Xfpn7W1NQwPDyM3NxcJCQl+3ZcHoVCI48ePs/J3eyvvvvsuJiYm6DYj4EilUlgsFtZNmZDJZHC5XIy7aeGcNwbAqMibB5kMeP11QKEAzp6lhFh9hFgsxrFjx1gXfgcOMVWCLoaGgHvuATIyqDm4h+xiNJvNkMvlAe2wJggChYWFiI2N9btCvkwmQ3l5ud9/0xEREaipqfGJPt5+0el0WAu0ZiKDEAqFXnF1NuHJlLBNBNsTXGHa5+acN5rh8XjM7d6KigLeeYcq4L/nHmBlxSebZeq4EX9DkiSMRmPwOG9TU9TcWK2WGjrvA7u1Wi1Onz7tEw2y/cDj8VBcXAy1Wg2SJGH10wg1t9sNu93ut+jEysqKN+pDlz5kf38/hoaGaNk3E1AoFKx03jw3JExMIfoTz+dm2jWLc95oJiwsjNnq5UlJlHzG8jJw332ADzqthoeH0dLS4gPjgguz2QyXyxUcEcf5eSriyucDb79NCQ4fErPZ7DenaT/09fWhoaHBL2kQo9GIt956yy/SAuvr62hpacHCwgKtNVeJiYlYWlpixLGkA4VCAaPRyLq6N4lEAqFQyLr5wVzkjWNbfD5hwB9kZlIX8LExoLb20ClUi8USHJ/bx5Akibi4OL9om/mUoSGgqgowmajIq4+6YwcHB3Hjxg2fbOswpKamwu12o7GxMWjG/ZjNZjQ1NUEul6O0tJTWG764uDgQBBFyDSB7RaFQwOVysS4CRRAE7r333uDtlj8gYrEYfD4fZrOZblM2wTlvNBM0TkxREVBfD6yvUxf2gYEDb8pms7FSakAul6OkpITZQpctLUB1NRAWBly/Tun9+QCn04n5+fmAFdfvRFhYGCoqKmCxWNDS0sL4AmybzYbGxkYIBAJUVFTQNwf5PYRCIWJjYzE9PU2rHXShUqlw5swZZtYqc/gcgiAgl8u5yBvHZoJKLiMnh7qgh4dTgr4HbBtnq/NmMBiYPR/y7bcp0eL0dODaNSpl7iMWFxfhcrkY4bwBVPSkrKwMer2e8dItPB4PCoUClZWVjHH8U1JSEBcXx3jH1x/w+XzIZDJml7v4id7eXrS3t9NtRsCRyWSc88axmaCJvHlISKAu7NnZwJkzVCH7PnG73ax03lpaWjDiY9kVn/HrXwPnz1NyIBcvUlMkfMjy8jIUCgWjzne1Wo3a2lok+dBJ9SVutxtWqxVCoRClpaWMutGLjIxEZmam37t3mcr4+Dj6+vroNiPguFwuRo6K8jec88axBSZdzPaMSkVFae66C3jgAeAXv9jX28+dO4eUlBT/2MZQHA4Hc+bY3s6//zvwoQ9R/1566cDzSneCz+cHVB5kr3iaRxYWFjA6Onro7SkUCtx3332HPs4kSaKzsxMNDQ2MjW5tbGywtu7NarVibm6ObjMCjlgsZnb2wE/I5XKu5o1jM4yVCdkNqRT4/e+pQe8f/jDwL/9CDS3n2BZPcTOjBJlJEviHfwD+9m+BZ56hZpYeUsftThQUFCAzM9Mv2/YFBoMBfX19mJqaOtR2CIKAQCA4dEqtr68Ps7OzyM3NZWx0a2lpCZ2dnXC5XHSbEnA8NVBMdaz9hVgshs1mY12nrVQq5UR6OTYj9NPFMiAIBMCPfgR8/vPAZz8LPPkksEtIXa/X4/Lly6yTGfD88BnjrK+sUFHTb34T+Pa3gW9841CTE3bCbDYzvqszMzMTKSkp6O7uxsLCwoG3YzKZ0NjYeKhOxJGREYyNjaGgoICR0UoPWq0Wbrcber2eblMCjqfsg2kXdH8jFotBkiTr5EJEIhHj1jDOeaMZujvHDg1BAP/8z9TQ8ldeAYqLgba2O77cYrFgY2Mj+D/3PnG73RCJRMwoOL96FSgspBpOXnsN+Ju/8evuuru70bbDOcEU8vPzERMTg7a2tgM7JE6nE8vLywde6K1WK4aGhrzOJJMJDw+HRCLx+8gxJsJW502tVqOqqop16zcT9e04541mgjryditPPEENsVcogOPHqeH224TWbTYbeDwe6378sbGxOHfuHL0pMJcL+NKXqEaTzExqZun5837dpdvthk6ng1ar9et+fAFBECguLkZCQgJttagSiQQnT55EVlYWLfvfL1qtlpXOm1QqRUFBAXMi6QFCJBJBrVYzNpXvL0QiEee8cWwmZJw3gJKYuH4d+Ou/pqI573sfoNNteondbmdlpyntzM5SDSZf/jLwf/8v1VEaALFNo9EIt9tN2yin/cLj8VBYWIiwsDA4HI6ApfdXV1fR09MDkiSDSj8sJiYGah93JgcDQqEQKSkprHPeSJLEwMAA62bbMiJjchuc80YzIReBEoupGqpXXgEaGihx32vXvE/b7XZG/hD8TVdXFzo6OujZ+RtvUMdheBi4dAn44hepsVcBwDMDMihGgt1GR0cHbty44ffuuo2NDTQ1NcFgMARdAXxMTAzy8/PpNoMWFhYWWOfEEASB0dFR1n1uJl6zOOeNZkIq8nYrDzwAdHUBR45Q2mH/5/8AFguOHDnCysXebDYH/sJsMABPP02lRisqqONx8mRATbDb7QgPDw/Km5S8vDzY7XY0NzfvuaMyLCwMBQUFe067Wq1WNDY2QiKRoLy8HPwAOdW+xGQyMU5GIRAMDAwwXuDZH/D5fMYV7/sbJl6nOeeNZph4UviMhIQ/Rnq++U0gJwfhFy8iMkhSaL4koFMl3G5Key8zk+oG/va3gVdf9clw+f2SlpaGU6dOBXy/vkAmk6GiogIGgwFtbW17kkcQiURISUnZ0526w+FAY2MjAKCysjJo14KmpiaMj4/TbUbA8chmsA2BQMA6eRgu8saxhWCMSOwLgYCqsertBfLygPe/H7ZTpw41GzUYCZjz1t5OjS778IepiOfAAFV/yMJRPr4gIiICZWVlWF5ehu62+s3tcDgcmJmZ2VNxs0AgQFRUFCorK4O6dkqhUHjT42xCJBKx0nljY+SNc9442EtGBvD66+j9xjeA8XGgoAD4+7+nUnshDkmS/m/UWFkBPv5xoLSU0tq7fBl4/nkgMdF/+9wFq9WKCxcu7MnpYTJarRZ33XUXNHuIXJrNZnR0dOyYRiRJEgaDAQRBIDc3l1nCzQeArc4bWyNv8fHxiIiIoNuMgMI5bxysZ6WyEiMvvURJVnzve0BWFpXiC7JC7f1SU1OD6Oho32/Y6QT++7+pFOkLL1ASLR0dVNSNZkwmE5xOZ0h0F3siY0NDQ4dOEXZ3d6OhoSFkxgzJ5XLY7faQ+Tx7RalUMnPcnZ/JzMxEfAA61ZkEE0saOOeNI6A4nU7wpFJqKsPAAFVA/+EPUxGj55+nnJEQgyAIqFQq3zoxNhvwk58AR48Cn/oU8Kd/CgwNUf/PkFS8R2YjmFOCt+N0OnHz5s0Dz/QcHBzE1NQUCgoKGHk3fxDCwsIgkUhYl0pLTExESUkJ3WYEHIvFcqgJIsEIE3+rnPPGEVBcLtcf6/wSEymH7epVqpj+8cep9Op//icQQouDZ26mTy5ua2tU88eRI8Bf/iUVcWtuBp59FmCYEG4oCjLn5OQgISEBnZ2d+xannZiYwNDQkHcboYJKpcLZs2chlUrpNiXgOJ1O1s357OvrQ3d3N91mBBQmRt72vap+5jOf2fdOCILAt771rX2/jyP0iImJ2ZpqqK0F3n6bSvf9679Sg9L/6Z+Ap56iIklRUbTY6isMBgNGR0cPp5o/PQ38+78DP/wh4HAAf/ZnwN/9HZV2ZiihKMhMEAQKCwtht9vR2tqK6urqTeczn8+HSqXaIvnhcrkwMjKC1NRUpKenB9rsgGMymdDR0QG73Q6hUIiioqItWn8rKyvo7++H0+kEQRCIiopCTk4OCIKA2WzGpUuXNr2ntLSUUQLGa2truHbtGk6ePOk9B/byuXU6HRobGzfVOtbU1HjPmampKYyMjIAkSWg0GhQUFDBqooFAIIDFYvH+vZfPPD09jbGxMe/fVqsVkZGRKCsrC4pjTRDElpvQmzdvYmFhARaLZdM5cDs7Hc/DHOt9O2/Nzc37fQsIrtON4z2OHj165yePHaNmpH7ta5Sj8u1vA//yL1Ra9dOfZrSjshMefbcDaXh1dVEO7fPPA3I58L//N+XQxsT42Erfc+TIEcTFxdFths/h8XgoLS3F0NDQlguMXC5HTU3Nlvfw+XycOHGCkekXX3Dp0iWkpqZ657F2d3cjOTkZiYmJmJ+fR2dnJ06cOLHpPUKhECUlJZBKpXC73bhx4wZmZmaQ+F6TjUAgwMkA6xLuB89F9lb9xr18boA6T7b7bGazGYODg6itrYVYLEZzczOmpqYYNef29m7TvXzmxMRE73EFgCtXrmyKPjP9WANb/ZjY2Fikp6ejvr7+ju/Z6Xge9ljv23n7zW9+s9+3BAy73Y4f//jHePvtt2E0GpGWloa//Mu/RFlZ2a7vXV5exn/913+hpaUFbrcbx44dw6c+9altLz6vvfYann/+eSwsLECr1eIDH/gA/vRP/9QfHymkIEkSZrMZYrF451RacjLluH3xi1RTw3/8BxVxKi0FPvhB4JFHAAYtZrtBkuT+bmAGB4Hf/pZqQOjpAZKSKCf2ox8FgmhSgVgsDrnImwc+n4+cnBwA1AgwkUi07WddX1/HwMAAiouLQ/a7ACgHxlPjaLPZsLa2hsrKSgDURa6npwcmk2mTs6tUKr3/z+PxoFAogkrs1/Ob9jhve/3cOzE/P4/o6GjvuZKSkoLh4WHGOW+H+cyrq6uw2Wz+aeDyI7ev4XsZC7fT8Tzssd638xbD4Dv+r3/967hy5QoeeeQRJCQk4MKFC/jsZz+L73znOztGfMxmM55++mmYTCY8+eSTEAgEeOGFF/CpT30KP/nJTzYtMn/4wx/wb//2bzh58iQeffRRdHd34zvf+Q6sVis+9KEPBeJjBi1utxuXLl1CcXHx3rqVVCqqseHTnwb+8AfKofniF4HPfhYoL/+jI5eU5H/jD8GenLfhYcpZe+EFoLubirI9+CDwla8A998PMLDmYjcGBwcRHh4ektE3DyRJoq2tDTweD1VVVTCZTKirq0NtbS2EQiGampogkUhCPvtwq2yG1WqFWCze9JnDwsJgsVjueEG32WyYn59HeXm59zGn04lr166BJEnExMQgIyODUd+jJ/LmqXnbz+c2m82oq6sDQRBITEz0XrAtFsum6Rye9zMJHo/n/ewHOdZTU1NISEjYlB5k+rEGDpZB3Ol4HvZY79t5+9jHPoba2lpUV1fjyJEj+3273+jr68O7776L//W//hcef/xxAMC5c+fwkY98BN/73vfwve99747vffnllzEzM4Mf/OAH3rvpiooKfOQjH8FvfvMbfOxjHwNALTA/+tGPcPz4cXzlK18BADzwwANwu934xS9+gQcffDAoZzgGCs8it+8fgUQCPPoo9W9jA3jtNcrJ+cd/pLTiKispR+7++6kCfob96MPDw5GcnLz5Qbcb6OujJh+88ALQ2QnIZJTD9qUvAefOAXscscRU5ubmEBUVFdLOG0EQKC4uxvXr19HS0oLs7GwA1FrR1tYGgUCAioqKkGra2A6hUHjghhyn04nm5makp6d79cMkEgnOnj0LsVgMh8OBtrY2jI6OMqpe0LOO7bdhQalU4u6774ZQKITVakVTUxNEIlHQ/E6ysrIOXL/rcrkwNze3qbQgGI41wLzyr31XQdpsNjz77LP48z//czz++OP47//+b3R1ddHecXP16lXw+Xw8+OCD3sfEYjHOnz+P3t5eLC4u3vG9V65cQXZ2ttdxA4Dk5GQUFxfj8uXL3sfa29uxvr6Ohx56aNP7H374YVgsFty4ccN3HygE8ck5IpcDjz0G/P73wPIyVSMXHQ38wz8A2dlU1+r581TE6uJFRogAq9Vq5MfFARcuUJHDe+6hoooFBcBXv0rV8v3ud8DSEvDrXwMPPRT0jhtwgHRxkKJQKFBWVga9Xo/u7m64XC60trbC6XSisrIypNOlHgiC8P6+JRIJbDbbpt/77VEGD06nE42NjYiJiUFqaqr3cR6P5/3ehEIhEhMTodfr/fwp9kdYWBjuueceREZGAtj75xYIBN7uRYlEgri4OO9nuz36cqfvjSns51gD1A1deHj4piBHMBzrg7LT8Tzssd737eDPf/5zzM3N4dq1a2hoaMCLL76I3/72t1AoFKiqqkJ1dTXKy8sDvmANDw8jISFhS6jW45CNjIxsm2N3u90YGxvD/fffv+W5nJwctLS0wGw2QyqVYnh4GAC8d9cesrKywOPxMDQ0hHvuuWdb+1ZWVjYpzU9OTgIANjY2sL6+7n1cKBR6C3iNRuOW7XhSuBsbG1vmy0mlUgiFQtjt9i3hV4FAAJlM5lV3v53w8HDweDyvsOqtSCQS713R7TUpfD7f2zV16+fwIJfLwefzvdpAJpMJRqMR6+vrEIvFXn2o23WDCILwdu8YDIYtjp9MJoMgPBzW978ftvPnKSettRVoboaorQ1h/+//wbW2hg0AyMkBysqof5mZUObkALGx2LBa7/gd2mw2bw3P7d/hnY6NQqEA4XDANDIC59QUpWPX0gJ3UxNko6MQAXCo1TCXlVED48vKgNJS8MPDd/wOPcfGbDZvGbu003fI4/G8i+Qdv0OBAFardYtSvEgkQlhYGFwuFzY2NjY9d+uxMRqNmwq2b/8OTSbTvs5vhUIBgiC2PQ/DwsIgEokOdX5v9x3udH7v9h16zm+pVIqMjAw0NjbC7XYjMzMT6enpkEqlu57f232HOx0bJq4RaWlpkEgkcDgcsFqt4PP56OvrQ0JCApaXlyGRSCCTyTadC06nE62trUhKSkJGRgYsFotX6Ndms0EoFHqP+fT0NAQCwab372mNOMD5vZ/v0Gq1blonRCIRZmZmEB8fj+HhYTidTjidTq/dCoUCNpsNTqcTLpcLTqcTY2NjiI+Ph91uR2xsLK5evYqYmBiIxWLcvHkTarUaGxsbjFkjJicnsbi4iJqaGoSFhUEul3uP9cLCgvezebj1/O7r60N8fDwcDod3jVhfX4dQKASPx4Pb7cb4+Di0Wi3j1oiD3IjGxsaioaHBOx5xYmLCG2Hd6bm9cKBYflxcHB599FE8+uijWF9fx/Xr11FfX4/Lly/jwoULEIvFKCkpwYkTJ1BVVRWQURo6nW7bAkLPYysrK9u+z2AwwG637/repKQk6HQ6rxTArQiFQigUih3HAL3yyiv42c9+tuXxjo4OzM3Nef+Oj49HcXExLBYL6urqtrz+gQceAAB0dnZidXV103PHjh1DQkIC5ubm0NPTs+k5rVaLyspKuFyubbd77tw5iESibaOUeXl5SE1NxfLyMtra2jY9p1QqUVtbCwCor6/fchE6deoUwsPDMTQ0hLGxMfT29sJmsyEyMhLp6enIycnxnkO34gmlA9Tg69sdqaqqKqjVaoyPj2NkZIR6UCAAqqqQ9NhjKCwogLmjA3W/+AXVAHD1KvCLX4AH4DwA8HhoV6mwHhlJRevUakCrRUlpKeJSUjC7soLe6Wlqmzwe4HIhWqFAeXo6nJ5js7IC6HTe/95nNEKwtIQeksTye/tASgo2EhMRcddduO+zn8WiSISOzs4/fpDWVqhUKm8aYbtjc+bMGchkMgwMDGwRh83MzERWVhZWV1e9Q849yGQynDlzBgBw48aNLQr4NTU1UKlUGB0d3dTGD1DFswUFBdjY2Nhik0AgwH333QcAaGtr27LAlpWVISYmBouLi5iYmMDCwoL3udjYWJSWlsJut2/7Wc+fPw+CINDV1bXl91RYWIikpCQsLCygq6tr03NqtRpVVVUgSXLb7Z49exYSiQR9fX2Yn5/f9Fx2djYyMjKg0+nQ0tKy6bnw8HCcem9aRUNDw5aLRW1tLZRKJUZGRjA+Pg6TyYS5uTlIJBIolUpERUXBaDRu6UgTiUQ4d+4cAKClpWXLRbWyshJarRaTk5MYGhra9BxT1wiNRoO5uTm0tbXBYrGgo6MDDocDSqUSH/7whwEAv/jFL6BUKqFSqTA3N4fZ2Vm43W4sLS1hZGQETqfTG4manZ1FQkICkpKSIBAIsLi4uOnYHWiNeI+kpCQUFhZ6a89uhcfj4fz58wD+mG25lZKSEsTFxWFiYgKvv/46YmNjvY5VeHg4Jicn0dfXh/b2dqSmpqKurg7j4+OIiIjAE088gfn5eVy4cAHr6+sgSRIqlQp2ux1yuRwpKSmIjIzED3/4QwCUo5KcnAyj0ciYNWJ2dhZLS0uIiYlBQUEBUlNT8atf/QoOhwN8Ph+pqaloaGhAXFwcoqOjMTAwAKPRCIvFgr6+PhQVFUGj0SAmJgZTU1O4fv06ZmdnvdHb1NRUVFVVMW6NuN156+7uxuLiImw2GxobGyEQCHDmzBl0dXUhOjoaMTExkEqlyMrK8v7+NRqNt4Rmp+f2AkH6MN9ps9nQ0tKC+vp6NDY2YnV1FTweD3l5eaipqUF1dfWmdmFf8thjjyExMRH/8i//sunxubk5PPbYY/jkJz+JD37wg1vet7i4iEceeQSf+MQn8MQTT2x67vXXX8c3v/lN/PjHP0ZGRga+8Y1v4N1338U777yzZTsf+MAHkJmZia997Wvb2rdd5O2rX/0qvv3tb2/K7TPxrtpXkbfbF4ZDR972e1dtNALT01CurwMzM9gYHYVrZgaYnQXm5oC5OUiNRggB2ABsvhRQdzoyAG4ARgBQKoG4OCA+HoiPh+LIERCJiTBpNHBGR1ONFFIpxsfHMT09jQceeOBA32GwRt56e3shFouhvUU8OFQjbxaLBV1dXZiYmMCxY8e8jkdmZiYrIm9LS0uQSCSIiYkJ7jXiPfbyHa6vr+PChQsoLS31nuN7is7vcn4zfY0YHh7GzMwMzp0755Po/O1ON1PXiK985Suoq6vDs88+ezjNTh/h0ypasViMmpoa1NTUgCRJ3Lx505te/d73vofvf//7uHLlii93uWnft3/hALyLwZ3SuJ7H9/JesVh8x6Lc3QRJNRrNtoOt5XL5pm5WDzweb9vHb33fnRCJRHfUkyIIYsft7tTSLhQKd3zvTs+FhYXdMZ8vEAh2fO9O8wMlEskdxy/x+fzN21UqgVu0hbb9Bg0GYGMDYocDYoeDGtfldFIROKEQEArBEwigVCio+rttuP0bVCgU3oL1w3yHOynYB+w7vI2dGnTy8vLu+Nxu5/dO5+Fhzu+dvsPdjs1O3+Hs7CyWl5dRWVmJlJQU2Gw2DA0NQalUIjo6+sDf4U7HhklrRH9/PwQCARITE4N7jbiNnb5DoVAImUwGpVK5ZRuHOb+ZvkbI5XLI5XLvsTrMGrGTnBDT1gi66/pvx28tUARBoKCgAAUFBXjqqacwMTGBhoYGf+0OarV623E1nmjXdo4TQJ2wIpFo25Tn7e9Vq9VwuVxYXV3dlDp1OBwwGAx70n1hMy6XCzdu3EBWVtamaAyjUCiofz7k1mJuNmEwGMDj8Xa8AIYC09PT6O/vR2ZmJqKiotDe3o6srCzvFIbjx497i9pDFbY0p9yK5zfNpOkHgYJtx5qJ7Nt5+8Y3vrHj8wRBQCaTIS0tDbW1tV7vOCUlxa9Cg+np6ejo6NgiDtjX1+d9fjt4PB5SU1MxMDCw5bm+vj7ExcV5PfGMjAwAwMDAAI4fP+593cDAANxut/d5jjuzurq6JTUS6vD5/INNVwhyenp6IJVKcezYMbpN8RskSWJqagpJSUnIysrC+vo6ZmdnkZaWhuLiYjQ2NqK5uRknT55kdNfgYfHUbLGJA0sfBTnx8fGsDFQw7QZ8387bhQsX9vQ6giDwn//5n3jmmWcCMvbi1KlTeP755/HKK694dd7sdjveeOMN5ObmejtNFxcXYbVaNxUGnjx5Ej/4wQ8wMDDg7SSdmppCR0cHHn30Ue/riouLoVAo8Ic//GGT8/aHP/wBEolk02McWzmoLlKwk5SUhCSGCwn7g1uFW0MVgiBQWVm5bfSFx+OhrKwM09PTIe24AaE5x3Y3RCIRcnNzd0xVhiK3S32wBaZdt/btvH3nO9/Z8Xm324319XXcvHkTr7/+Or7yla8gPj7e74J7ubm5OH36NH74wx9ibW0N8fHxePPNN7GwsIBnnnnG+7p//ud/Rmdn56Zuk4cffhivvfYannnmGTz22GPg8/l44YUXoFKp8Nhjj3lfJxaL8dGPfhTf/va38cUvfhHl5eXo6urC22+/jb/6q7/asWaAg7qYEQSxpQCYIzQRi8VbCqRDhY2NDbS1te06QFsoFHr1y5aXlxEREeHV+Aol4uPjQz41fDsikQhpaWl0mxFwlpaWYLfbN80mZQNB77wVFRXt6XWnT5/G/fffj49//OP4zW9+g3/8x3/c7672zec//3lER0fjrbfewsbGBlJTU/HNb35zV5ulUim+853v4L/+67/wi1/8wjvb9JOf/OQWmZOHH34YAoEAv/nNb9DQ0ICoqCh88pOfxCOPPOK/DxZC3D7UmA0sLy+jp6cHtbW1Ia+0fyuhGnmzWq1eaYC9Dpp3uVzo6OiATCZDZWVlyKXRc3Nz6TYh4FitVqyuriIqKirkjudOzM3NwWQysc55u71jlm78eiVJS0tDdXX1Fr0VfyEWi/HUU0/hqaeeuuNr/uM//mPbx6OiovDlL395T/t54IEHvFpKHPujsLCQdSF3T1u7zWZjlfMWFhYWcp/X4XB4tbIqKyu3RNHEYjEyMzO3pBD5fD7Ky8tx/fp1tLW1oaysLGRqpZxOJ4xGI5RKJauK91dXV9Ha2opz586xynlzOp2s+rwA5bgxLWPk919aQkJCyIy64Dg8cXFxrHPePBfyUIxC7URiYqJXADRUaGtrg9VqRWVl5bbyExKJBFlZWds+FxERgdLSUiwtLaG7uzsQ5gaEtbU11NfXM26Aur+x2WwgCCIk0+A74XK5Qu6mbDe2kxKjG78fAbvdzroDzXFn5ufnIRAImCsV4gfY6ryFIhkZGTvKnzidTq+U0HbrXlRUFIqKijA8PAy73b7ntCuT8Thtd9JSC1U8Y41CJYK6V5xOZ0ict/uBiQoJfo+8dXV1IT4+3t+74QgSxsbGMDMzQ7cZAUUoFIIgCNY5b263G++8805IHO/Z2VmQJAm1Wr1lPN6tmEwmNDY27tiokZCQgJMnT0IkEjGuCPogGI1GSKVS1qXSbDYb65wYALv+BkIRVjlvbrcbP/3pTzE0NIQTJ074azdBTygs3vuBz+czrnbA3xAEgfLycq9cDVvg8Xjg8XjbjqIJJgYHB9He3n7H+cgHgcfjweFwoK6ubtNs42DEYDCwstNeLBazzokBqDmf/tRsZSJMdN58LtLrdrthMBgwMDCAtbU1JCQkbDtTlIOCibl0fyIQCFjXbQpQ6TI2olAogtp5m5iYwNDQEHJycnye6hcIBFAoFOjo6IBQKAzaUgKSJLd05bMBJsy3pAOLxQKhUMiqcigmXqf9JtIrFApx9uxZ/PVf/zXrRAz3A9scGT6fz7r0IUDV+jmdTiQmJtJtSkBRKBSYnJyk24wDMT8/j56eHqSmpvpFp5IgCBQWFsJms6G1tRVVVVU7zlxkKmwVJ3e73azqrvVw5coVZGZmskrjLiQib7uJ9BIEAblcjsTERFbWA+wXJnr0/kSpVLLyvFhcXMTGxgYrnTebzeYt7g4mlpeXER8fvy8NMx6PB5lMtueLOo/HQ2lpKW7cuIGmpiacOXMmqCIabJxp6uGtt95CdnY2jhw5QrcpAYMkSVZ2m4aE87ZXkV6OvcE2582jNs82xGIxdDod3WYEHK1WizNnzgSVw+6JqBw9ehRut3tfzkl4ePi+5VEEAgEqKiqg1+uD7qI4NjaG8fFx3H333XSbElBcLhecTifrZEIcDgdIkgyq37MvYKLzxr6YL8NgW9qUJEnYbDbWNWqE6rSB3RAIBJDJZEETnTGbzbh8+bK3OSFQaTGRSISYmBgA1FzlYFkXdDodK8tiPL/lYIsmHxa2fm673c64FDmzrGEhwbJI+4qFhQW8/fbbrIs4isViuFwu1nXaAsDMzAza29vpNmNXbDYbGhsbQRDEgYWkDQYD3nrrrQM3aVitVvT19aGlpYVx43hux+12Q6fTBW2jxWFgsxMDsO9zOxwOxkVZOeeNZtjoxADsE6wNDw9HUlIS4y/I/oAkSczOzjIy9eDB6XSiubkZTqcTlZWVB744kSQJu91+4MiyRCJBWVkZ9Ho9Ojo6GB2hXl1dhdPpZGUnNVudN7VajfPnz7Mu2srEYQOc80YzTL6g+QO2Om8KhQKFhYWMu3sLBJ7IjC910nxNT08PNjY2UFlZSfuFSa1Wo7i4GPPz8+jt7aXVlp1YXV2FSCRipcZbVFRU0NVy+goejxc0ZRC+wm63M27tZpYryUKsVivdJgQUtjpvAKW+TxAE7c5BoJFIJAgPD8fS0hLi4uLoNmdbsrKykJyczBhHJDY2FgUFBZifn2esJEV6ejoSExNZdyEH/thVzDbGxsawtraG4uJiuk0JKCaTiXHj35i3IrAMs9lMtwkBRSAQsFbrraWlBSMjI3SbQQtarRbLy8t0m7GFiYkJOBwOSKVSREZG0m3OJpKTk1FRUQEej8fYWkm2pQ09dHd3Y2pqim4zAo7BYGDdNQsANjY2EBYWRrcZm+CcN5phW+QNAM6ePctKyRCFQgGj0Ui3GbSQkpKC0tJSus3YxMjICHp6erC4uOizbcpkMtTU1PgsKkMQBEwmE959912f2nlYpqamcPXqVcY6lf4kGGo4/UUw6jX6ApPJxLiMCee80Qwb72KYVjsQKDyjophchO4vZDIZo+ZATk9Po7+/HxkZGUhISPDZdgUCAVQqlU+Lm6VSKVQqFdra2qDX63223cMwPT0NsVjMumH0ADUeyul0MibFHkhsNhsr6/y4yBvHFiwWC90mBJzh4WHcvHmTbjMCjkKhgNPpZOUxB6gC98bGRto7bhcXF9HV1YWkpCRkZ2f7dNtWqxW9vb0+jagTBIGSkhJERESgubmZ9uityWSCXq9n3bQQDx4ZGLY6b0yr/fI3brcbZrOZc944NsPGyJvdbmdk/ZO/USgUkEgkrEyVA1TEdXl5mfb0n8ViQXR0NI4ePerzbdtsNoyNjfm8ppPH46GsrAxhYWFoa2ujNXo7MzMDgUDgFRVmGwaDASKRiHVODAAUFBQgNjaWbjMCitlsBkmSjHPeuG5TmrFarYztJvMXUqnU+4NgU6eaRCLB2bNn6TaDNuRyOVQqFaanp2m5ADidTggEAqSkpCAlJSXg+z8sQqEQFRUVsNlstP5ulpeXERcXx8qUKQDExMRALpfTbQYtsNFhN5lMAMDVvHFshW3RN5lMBrfbzdoIFBtr3jwkJiZiaWkp4MfearXiypUrmJycDOh+fY1EIoFSqYTb7cbg4CAtDQPV1dXIzc0N+H6ZgkKhYKzkjT8xGo0YHR2lvewh0GxsbAAA4yJvnPPGADyePVvw3MGwzWkFqHq/y5cv020GbcTFxYEgCMzOzgZsnw6HA42NjQCA6OjogO3Xn2xsbGB0dDTgKVRP1I+tTUculwvDw8OsrFtdWVnBwMAAq7IlwB+vz5zzxrEFj2fPFqRSKYqKilgpcimRSGAymVg309aDUChEVVUVjhw5EpD9uVwuNDc3w2q1orKy0u91SiKRCCkpKX7vyFMoFCgtLcXS0hK6u7v9ui8PGxsbuHjxIqMnZfgbg8GAgYEBVsqEmM1mSKVS1jlvGxsbEIlE3Hgsjq2wLfLG4/GQmJjIyoJfT4ca3R2DdKJSqQImPDs8PIz19XVUVFQEpE4pLCwMBQUFAblLj4qKQlFREaampjAwMOD3/Q0PD0MkEjFOzDiQGAwGEASB8PBwuk0JOEzUOgsEJpOJkTWOnPNGMwKBgHWRNwBYWloKaOqMKYSHh4MgCK/cAFuZmprCpUuX/O7Apaeno7KyMmAacy6XC+vr6wGrRUtISEBubq7f65DMZjNmZ2eRnp7Oquaq2zEYDJDJZKz8DsxmMyuzJRsbG4z83Ow7AxmGVCplpfM2Pz+PsbExus0IODweD3K5nPXOm1qths1mw/T0tF+2PzY2ho2NDQgEgoBGijY2NlBXVxfQ33RaWpq3gcBf6byRkREIhUIkJSX5ZfvBwvr6Oiv13QBAo9FArVbTbUbA4SJvHNsik8lYeSGXSqWsSxd7KCsrQ15eHt1m0IpMJkNcXBxGRkZ8HjWamJhAb28vlpaWfLpdpqPT6fxWk0YQBNLT01krD+JBrVazstMUAPLz81mn8QYw12HnnDeaUSgUjBl5E0hkMhkcDgccDgfdpgQctqZdbicjIwNWqxUTExM+2+b8/Dx6enqQmprKuvm5KpUKkZGRaGlpwfr6uk+3XVBQgLS0NJ9uMxjJyclhpQNjt9uxsbHBOpkjkiSxurrKqNF+HrgrCM0oFAqsrq7SbUbA8RT8sjHqSJIkmpubMTU1RbcptBIeHo6UlBSfab7pdDq0t7cjPj6elTpkPB4PpaWlkMvlaGpq8klkW6/XY2JignUX7e3Q6XSszRbMzs7i6tWrrDsPjEYjnE4nI5t0OOeNZhQKBSwWC+t0g+RyOWtV2gmCgNPppH1MFBPIz8/3maNFkiSio6NRVFREm5wBQRAQCAS07V8gEKCiogICgQA9PT2H2hZJkujp6fFbXWKw0dnZyco6XYC6yZbL5azLGHgCK0yMvDFLuISFeHLpq6urjBMB9CeeYdtsRavVeuu92LYg3g5JkpicnER4ePiBCqJtNhtEIhE0Gg00Go0fLNw7CoUC9913H602iEQiVFZWHvrGaGJiAgaDASdOnGCdttftmEwmmM1maLVauk2hBYPBwMi6L3/jcd4iIiIYV97E7qsGA7jVeWMbDocDa2trdJtBC1qtFk6nk7Wf/3ZmZ2fR3d297+YFm82GhoYG9PX1+cmy4EQqlUIsFsNqteLmzZsH+l4HBgaQnJyMiIgI/xgZRCwvL4MgCNpvDuiAJEkYjUZWOm96vR7h4eGMnCjCOW80IxaLIZFIWOm8TU9P4/r166yrowAApVIJkUjEuo7I7SAIAgUFBTCZTBgdHd3z+5xOJ5qbm+F0OgM2sWE3jEYjrly5whgRZrPZjMnJSXR0dOzrdzY1NQUej4ecnBw/Whc8LC8vIzIyknEq+4HAZrNBKBSy0nlbXV1lZL0bwKVNGYFKpWKl86ZQKOByuVgp/kgQBMrLyxmpH0QHCoUC6enpGBwchEaj2bXGxO12o7W1FRsbG6iqqmKM8rvb7YbRaGTM8O7IyEgUFxejtbUVYrEY+fn5e3pfeno6YmJiGBlxoAOJRMLalKlEIsHZs2fpNoMWVldXGRtt5SJvDEClUjEunx4IPHdyvpY1CBZUKhV3cbyFzMxMqFQqTE5O7vramZkZ6HQ6lJWVQalUBsC64CU2NhZHjx7F+Pg4RkZGdnyt0WjEysoKa0dA3YmCggKkpKTQbQYtsDEz4oGpMiEAF3ljBJGRkbh58ybdZgQckUgEsVgMg8HASuFLt9uNrq4uxMXFITo6mm5zaIfH46G8vHxPqamkpCRERESwMpVzEJKTk2Gz2XZsinK5XGhrawNBEKitrWV9k4IHo9EIsVgMkUhEtym00NraCqFQiKKiIrpNCSg2mw0mk4mxzhsXeWMAKpUqoPMQmYRKpWLl5wYoZ2V9fR0LCwt0m8IYhEIhCIKATqfbVqJibGzMK7HCOW77IzMzE/Hx8QCwrV7ZzZs3YTabUVxczDlut9DZ2cnKm2sPBoOBlY6rp5SJqTVvnPPGAFQqFUiSZGX6kO2jorRaLde0sA0LCwvo7u7e1I07MzOD3t5eRteHSqVSlJWVMaYGbzump6dx9erVTd/j7OwspqamkJ+fz6VLb8Fut2NtbY219W4OhwNms5mVpQlM1ngDOOeNEXg8ezbWvQFUTQVTCrwDTVRUFKxWKycZchs5OTlQKpVobm6GxWLB0tISOjs7kZSUhOzsbLrNuyNCoZDxhf7x8fFQKpVoamqC0WgESZIYHh5GQkIC6wfP344nKs5W581zTWKqA+NP9Ho9RCIRY2/EOOeNASgUCggEAr8MlGY6TqcTb775Jubn5+k2hRY0Gg0kEgmnYn8bPB4PZWVl4PP5uHjxIhobGxEdHY2jR4/SbdqO2Gw2DA8Pw2az0W3KHfHUFoaFhaGxsRE2mw1VVVUoLCyk2zTGMT09Da1WC4lEQrcptLC6ugqxWMxYB8af6HQ6qNVqxpYQcM4bA+DxeNBqtawclyQQCCAWixmdCvMnBEGguLgYGRkZdJvCOMRiMSorK73TE4KhFstqtWJgYMBn81r9hVAoRGFhIYaGhtDb2wuRSMT6SR+343a7IRQKWR2NzMzMRHV1Nd1m0MLi4iKjG8m4blOGEB0dzUrnDWCvVIqHg4yEYgNWqxUikQj33HMPCIKAy+Xixon5CLvdjo6ODqSkpDA6DU0nngglm+HxeKzT4AQox31paWnPuoh0wK2CDCEmJgZLS0usrP2KjIyEwWBgbdcpAExOTqKrq4tuMxiDw+FAY2MjOjo6vNG2pqYmtLW1sfI34kvsdjsaGxvhcDhw6tQpyGQyrK2tobOzk9WaXrdCkiSWlpZY/X0YDAbcuHGD8VFkf6DX6+FwOBgdeeOcN4YQHR0Np9PJyghUZGQka7ttb2V6epqVC+XtuFwuNDc3w2q1Ijc31/t4WloalpaW0NTUBIfDQaOFwYvb7UZDQwOsVisqKyu9URW73Y6ZmRl0d3fTbCEz0Ol0aGpqYm05B0B9B56ifbbhyYJxzhvHrnhOEjamTuVyOc6ePctYPZ1AEBcXB4IgMDs7S7cptEKSJNrb27G+vo6KiopN48Oio6Nx/PhxrK+v4/r164xsChAKhYiNjWVstymPx0NWVhaqq6s36eRFRUWhqKgIU1NTGBgYoNFCZjA9PQ2ZTMbqNUmv1yMiIoKVZQqLi4sIDw9ndMqYfUeFoUilUoSHh7PSeSMIgrXdXB48EhNs7zrV6XRYWlpCSUnJtvIEkZGRqK6uht1uZ+RvRSqVorS0lHHdeTqdDkNDQwCoG4XtLkoJCQnIzc3F8PAwJiYmAmwhc3A6nZifn0diYiLdptCKXq9npUQIwPxmBYBz3hhFdHQ0a9X2FxYWUFdXx+oak8TERBiNRhgMBrpNoQ2NRoPTp0/vuHCGh4fj1KlT3i5As9kcKPN2xe12w2q1Mqoub3Z2Fo2NjdDpdLvalZaWhqysLERERATGOAYyPz8Pl8uFhIQEuk2hDYvFAqvVytrII+e8cewLNnecCoVCrK+vs9px0Wq1OHHiBCvHPk1MTGB4eBgA9hS18qQll5aWcOnSJYyMjDDC8TcajXjnnXdgNBrpNgUulwvd3d1ob29HbGwsKioq9pQCy8zMREREBNxuNyt/jwKBACkpKTvOgQ11RCIRysrKWNkJ7xFN55w3jj0THR2N9fV1Vhatq1QqCAQCLC8v020KbRAEwcqIx/z8PHp6eg5Uw6bRaJCWlob+/n40NTUxsg6OLkZHRzE9PY3CwkIUFxfvu3ZpaGgIDQ0NrGskio2NRUFBAd1m0Aqfz2f8pBB/4RlXyDlvHHsmJiYGADubFng8HtRqNevnfDqdTtTV1bFm4oROp0N7ezvi4uIONOOWx+MhJycHlZWVMBgMuHr1KiOiXnTiGTqflpaG2traA4vMpqenQy6Xo6mpadtB9qHI0tISK6ONt0KSJDo7O1k7sm9hYQF8Ph8ajYZuU3aEc94YhFqtBp/PZ6XzBlBpw9XVVTidTrpNoQ2BQAAej4fJyUm6TfE7RqMRzc3NUKvVOHbs2KGmJ2i1Wpw8eXJTMT6T6s4CgcViQUtLC65evQqr1Qo+n3+oIfMCgQDl5eUQCASsiGq63W50dXVhfHycblNoxWAwYHp6mrW6m4uLi9BqteDz+XSbsiOc88Yg+Hw+a8dkAdTA7BMnTkAgYPfgj9TUVCwvL4f8nW9YWBiSkpJQWlrqEzkCsViM/Px88Hg8GI1GvPvuu5iammJELZw/cbvdGBoawuXLl7G2toaioiKfdW97RpQ5nc6Ql7GZmZmB1WpFamoq3abQytLSEgQCAddpynDYfZVkIDExMZibm6PbDFoQiUSsFIS8ndjYWMjlcgwPD6OsrIxuc3yO3W6Hw+GATCY7UKp0LwiFQqjVanR1dWFychIFBQUBqSdUKBQ4f/58QGew9vT0YGZmBqmpqcjIyPD5zY9UKsXJkychFot9ul0mQZIkRkZGEBsbe6hoZSiwvLwMtVrNSn03l8uFxcVFv61LvoR9R4fhJCYmYnFxEXa7nW5TaGFhYQGtra10m0ErBEEgPT0dq6urITdJwOl0oqmpCS0tLX6NiEkkEhQXF6O6uhputxvXrl3DzMyM3/bngSAI8Hg8vztvOp0OKysrAICMjAycPHkSOTk5fotaexy32dlZdHR0hFw0c25uDiaTCRkZGXSbQitOpxOrq6uIioqi2xRaWFxchMPhCAqNPy7yxjASExPhdrsxOzuLI0eO0G1OwCFJEvPz8zCbzYwTOg0kCQkJiIuLY3zdxX5wu91obW3FxsYGqqqqAhKdioyMRG1tLaampryaVQsLCxAIBH4pSDaZTOjq6kJhYaHP1dk9v43R0VGsra0hLi4OGo0moL8THo+HmZkZiESioIhO7JXIyEjk5+dDqVTSbQqtEASBgoICaLVauk2hhenpaQgEAm/zIJMJGefNaDTi+9//Purq6mCz2ZCTk4OnnnoKWVlZO77P7XbjrbfewtWrVzE8PAyj0YjY2FicOXMGjz322JZUQW1t7bbb+djHPoYnn3zy0J9Dq9VCLBZjenqalc6bRqMBQRBYWVk5cJdcKEAQBPh8vlc2JtgnUHg62HQ6HSoqKgJ6kSQIAsnJyd6/JycnsbS0BKVSifT0dMTExPgsReR0OqHT6XzedLOxsYGmpiaYzWZoNBpUVlbScoGNjY3F0aNH0d3dDbFYjPT09IDb4A/CwsJYud7eDp/PZ/W6OzU1hbi4uKCou2a+hXvA7XbjmWeewejoKB577DEolUq8/PLLePrpp/Hss8/uGAK1Wq34+te/jry8PLzvfe+DSqVCb28vfvrTn6K9vR3//u//viVCUFpainvvvXfTY74KtxMEgcTERNaOSRIKhVCpVFhcXGT1IgJQDk9DQwPUajWKioroNudQmEwmLC4u4tixY7S34FdUVGB5eRkjIyNoa2uDUChEbW0toyK9TqcTS0tL3lSeVCqFVqtFcnIy7dGh5ORkWK1W9Pf3IywsDPHx8bTac1haWlqQmJgYFNEWfzMwMIC4uDhWCoUDVOQtWDT+QsJ5u3LlCm7evIkvf/nLOHXqFADgzJkzeOKJJ/DTn/4UX/ziF+/4XqFQiP/+7//edMAeeOABxMTE4Cc/+Qna2tpQWlq66T2JiYm45557/PJZPNu/ceMGSJIMaOEzU4iOjsbQ0BBcLldIpQ33C0EQOHLkCPr6+pCZmcko52K/yOVy3HXXXYxpSNFqtdBqtTAajVhcXPR+t83NzRCLxYiNjUVkZGRA78DdbjcWFhYwNzeHpaUluFwuREZGIj09HTweD0ePHg2YLbuRlZUVFFpYu7G0tISFhQUu6gZKImR4eBiRkZGsdN48E36Cod4NCJGGhatXr3prWzxERETg9OnTqK+v37H4XygUbutpnzhxAgDuqLdls9n8pnuUmJgIq9XqLUhmGwkJCSgrK2Nlt9PtJCcnQygUYnR0lG5TDsTMzAza29vhdrsZ47jdSnh4uDf1R5IkFAoFdDodmpqacOHCBVy5csUrUOtwOHxWqO92u7G+vo7x8XGMjY15H2tvb4fZbEZmZibuuusuVFdXM/YGLj09HWKxGDabLWinMAwPD0OlUgW9E+oL5ufnIRQKWftdeLJdweK8hUTkbWhoCBkZGVsu9jk5OXj11VcxPT2NtLS0fW1Tr9cDwLYpijfffBMvv/wySJJEcnIy/uzP/gxnz57dcXsrKyvQ6XTev3cSYY2PjwdBEJienmZl4ahEIgn6Gi9fwefzkZqa6j3Hg+l7WVpaQmdnJxITE4PCEScIAtnZ2cjOzsbGxgZWV1exurrq/c7b29uh0+kQFhaGsLAwSCQSJCUlITIyEhaLBUajEU6nE4mJidjY2IDNZvMOqg8PD4darYZer0dnZycsFgvcbjd4PB60Wi1SU1MhEAhw9uzZoJPk6Ovrw+LiImpqaiCXy+k2Z8/odDro9XqUl5fTbQojmJ+fR3R0dFD8Vv3B9PQ0IiMjfd5o5C9CwnnT6/UoLCzc8rhnqK5Op9u38/bcc89BJpOhoqJi0+P5+fk4ffo0YmNjodPp8Pvf/x5f+cpXYDKZ8NBDD91xe6+88gp+9rOf7WnfYrEY0dHRmJ6eRnFx8b7sDhXW19cxNDSEkpIS1i4mHlJSUrCxsRFUEwNWV1fR2tqKqKgoRqX79opcLodcLt90F56RkQGNRgOr1QqLxYKNjQ2vlMvi4iJ6enq8r721ZpXH4yE9PR1qtRoSiQQxMTEICwtDREQElErlpvM72Bw3gFoT19fX0djYiJqamqC5wZidnYVCoQgKQVZ/s7GxAaPRiOzsbLpNoY3p6emgiboBDHTe3G73nrWtRCIRCIKAzWbbNiXjeWy/6c1f/vKXaG1txac//ektgo3f/e53N/19//334y//8i/xwx/+EPfdd98dF98HH3wQ1dXV3r8nJyfx1a9+9Y42JCYmetMpbITH42FhYQHLy8usX1yFQiGOHTtGtxl7xmq1orm5GUqlEiUlJYxN++2XyMhIr9zI7XgK3q1WKxYWFhATEwOJRAIejwehUOj9DqRSKXJzcwNptt8RCoWorKxEfX09GhsbUV1dHRQDzQsKCkJ+5NdeEQqFyM7OZmWmB6CEwxcWFoIqWMI4562rqwtPP/30nl77y1/+EsnJyRCLxdvWtXke28/d7Lvvvosf/ehHOH/+/I6RNA9CoRDvf//78W//9m8YHBy8Y5RBo9Hsq5YgKSkJLS0trNU7Cw8Ph1wu94byOSh9MoPBgMzMTLpN2RGxWIy0tDQkJyezpuGEz+eDz+fDZrNheHgYsbGxQROB8gUSiQSVlZW4fv069Ho943+zBoMBCoWCVcdoJ8RiMasFimdnZ+F2u4NK4YBxzltSUhI+97nP7em1nrRoZGTkpnoyD57HPK/bjZaWFnzta1/D8ePH8Xd/93d7tBheNWqDwbDn9+yGJ3w7PT29q1ZdqBIbG4uJiQlvbRDbMZvNGBwcRHR0NO1yEdvhcDhgMBigVqtDRv+LY+/I5XKcOXPG26HL1G75mZkZdHR04NSpU6wfhQUAFosFU1NTSE1NDYqIqT+Ynp6GWCwOqsgj45w3tVqN++67b1/vycjIQHd395aLfH9/PyQSyZ7y2H19ffjCF76ArKwsfOlLX9qXRIBnFqkvZycqlUqEh4ez3nkbHh6GTqcLqh+Vvzhy5Aimp6fR09PDuC5El8uF5uZmmEwm3HXXXayJuHFsxrNu9vf3w263b1uLTCcOhwN9fX2Ii4vjHLf3mJubw8jIyL7rwkMJT70bk9bU3QiJcMbJkyeh1+tRV1fnfWxtbQ2XL19GVVXVpnq42dlZzM7Obnr/xMQEnnnmGcTExOCb3/zmHdOsa2trWx4zm8148cUXoVQqfepkEQSBpKQkTExM+GybwYZSqURpaSlUKhXdpjACz+ia1dVVRok4kySJ9vZ2rK+vo6ysjHPcOBAeHo6pqSkMDAzQbcomBgcH4XK5Qmq012GZn59HVFRUUEwV8AculwtTU1NBlTIFGBh5OwinTp3Ciy++iK9//euYmJjwTlhwu934i7/4i02v/du//VsAwAsvvACAcr7+/u//HkajEY899hhu3Lix6fVxcXHIz88HAPz+979HfX09qqqqEB0dDZ1OhzfeeAOLi4v4x3/8R5+HnNPS0vDqq6/CYrEgLCzMp9sOFmJjY+k2gVFERkYiISEB09PTjFlsenp6sLi4iLKyMtY72gKBAGq1mrUXQg8JCQmw2Wzo6+uDWCxmhAiuwWDAxMQEcnJyuFq39zCZTFhdXQ2qQn1fMzs7C5vNFnSRx5BYYfh8Pr71rW/hu9/9Ln73u9/BZrMhOzsbn/vc53a9wK2vr2NpaQkA8IMf/GDL8/fee6/XeSsoKMDNmzfx2muvwWAwQCKRICcnB8888wxKSkp8/rnS0tJAkiTGx8dDrkNtr7jdbnR1dSE2NpYbX/Me+fn5jIlu2e12LC8vo7CwkPFF6oFAJpOhqqqKbjMYQVpaGqxWK27evInw8HDaxV/DwsKQmZnJCEeSKUxPT0MoFLJ6bR0dHUVYWFjQBQpCwnkDqDD9M888g2eeeWbH13kibh5iY2M3pVt3oqysDGVlZQe2cb8olUpoNBqMjIyw1nnj8XgwmUyYnJxk9QJzK54Ir0f7ja5RNiRJQiQS4dSpU4xxJumGJElvoX4w1c/4i9zcXMhksjtKrAQKkiQhFAoZ36kdaGJiYiCXy1n9+x0dHUVqamrQNcUFl7UsJD09HaOjoz4byxOMJCYmYnl5GVarlW5TGEVnZyc6OztpOTfm5+dRX18Ph8PB6oX/dgwGA15//XWfdp4HMwRBICUlBTweD+vr67SM0XI4HLh8+bI3w8LxRyIiIpCQkEC3GbRhsVgwOzsblN3xnPPGcNLS0rC+vr6tFApbiIuLA0EQWxpN2E5eXh7W19cxNTUV0P3qdDq0t7dDKpWyvraLY+/09fWhqakJZrM5oPsdGBiAzWZj5bD1nRgeHsb8/DzdZtDK2NgYSJJEamoq3absG855YzgeodNgHUzuC4RCIWJjYxnVYckEVCoVkpKSvLIMgcBgMKC5uRmRkZE4duwYlxrk2DPFxcUQCARobGwM2GSD9fV1TExMICsri2tSuAWn04nh4WFsbGzQbQqtjI6OQqvVMlI3czc4543hiEQiJCUlsdp5A4CsrKwtc2Y5gJycHAAIiCSD0+lEU1MTZDIZysrKgq5GhINexGIxKisrveeR0+n06/5IkkR3dzcUCgXXpHAbc3NzcLlcQTXL09eQJInR0dGg6zL1wK2+QUBaWhrGx8f9vtgxGZlMxlq5lJ0QiUQoKSkJSCG2QCBAXl4eKioquHQpx4GQSqWorKyEw+Hwe/rU6XSCx+OhoKCAixDfxvT0NLRaLaujkTqdDuvr65zzxuE/0tPT4XA4WJ82XF5extWrV+F2u+k2hVF4FmG73e6Xpg6n04mZmRkAVP3hfmYFs43w8HCcPXuWU+/fAYVCgTNnzkChUMDtdvut4UYoFKK6upr2TlemYTKZoNfrWR11A6iUKZ/PR0pKCt2mHAjOeQsCoqOjIZPJWJ86lUqlMBgM3nFkHJtpbm5Ge3u7Ty+Gbrcbra2t6Onp4bp99wCPx4NEIuFSyrtAEARIkkRLSwv6+vp8um2Hw4Hr169zHb93ICwsDMXFxayXXhoZGUFycnLQznPlVpgggCAIpKWlsd55k8lk0Gq1GBsbo9sURpKbmwu9Xo+hoSGfbI8kSXR1dUGn06GsrIzVKZa9Yjab0draGvCOymCEIAhER0djbGwMIyMjPttuZ2cnDAZD0F6U/Q2Px0N8fDyrJX6cTicmJiaCNmUKcM5b0JCWlob5+XnWdwcdOXIE6+vrWF1dpdsUxhEZGYmsrCwMDQ1hZWXl0Nvr7+/HzMwMjh07Rrs6frDgcDgwPz8Ph8NBtylBQUpKCjIzM9Hf3++TspDx8XEsLCygqKiIq5HdhqmpKbS1tbFaNxSgav4cDgfnvHH4n/T0dBAEgcHBQbpNoZWoqCjIZDLW6xPdifT0dGg0GnR0dByqNtDtdmN9fR35+fmIi4vzoYUcHJvJyspCUlISurq6YDQaD7yd9fV19PX1ITU1lfUpwTsxNjYGt9vN+gaOgYEBKBSKoB7px7WMBQkymQzJycno7+/3yxzVYIEgCFRXV3NF83eAIAgUFxfDZDIduO7K5XKBz+ejsrKS9Ys8R2A4evQotFrtoRo9XC4XtFqtVz6HYzMrKyswGo3eWd1shSRJ9Pf3IycnJ6jXNy7yFkTk5uZibGwMFouFblNoxeO4BUqYNtgQi8WIjIwESZLQ6/X7eu/S0hIuXboEk8kU1AsbR3BBEIQ3wjs3N7fv8hCSJBEZGYny8nKuWeQOjI+PIzw8nPUlELOzszAYDEE/L5w7y4OI7OxsuN1unxWkBzOjo6O4cuUKJxuyA9PT07h+/fqeHbi1tTW0trZCqVRCKpX62brQRCKRIDs7m2vuOCButxvDw8NobGzcc3fz1NQUmpqauLVgBxwOB5aWljixYlBj2mQyWdBLpXDOWxChUCiQmJiI/v5+uk2hnejoaNhsNk42ZAcSExOhUqnQ3t6+awH9xsYGmpqaoFQqUVJSwkXdDohYLEZGRgaX1j8gPB7PO0mlsbFx1/PWaDTi5s2bkEqlXMRtB4RCIe6++25WD6EH/pgyzc7ODvrzJbitZyE5OTkYGRlhfcpQLpdDq9VifHycblMYi6f+zel07qj/RpIkWltbIRaLUV5ezmoJgcPicDiwsLDAdZseAolEgsrKSlitVjQ3N8Plcm37OofDgdbWVkilUuTl5QXYyuDB7XbD7XZDLBaz/re9sLCA1dXVoE+ZApzzFnTk5OR4hwqzndTUVKytrUGn09FtCmMJCwtDSUkJlpeX7xilJAgCRUVFqKio4LSxDonZbEZLSwun83ZI5HI5KioqQJLktmMBPTccNpsNpaWlrHdKdmJychLvvvsuq8creujv70dYWFjQTlW4Fc55CzJUKhViY2N9rkoejERFRUGtVrO+gWM3tFotTpw4gfj4+E2Pe+qL3G43IiIiOF0sDkahUqlQU1MDsVi8JZLpEfgtLy+HXC6nyULm43a7MTIyAo1Gw80jBlXvlpWVFRLOPue8BSG5ubkYHh7mUjMAqqqqWF/HsReUSiUAYH5+HrOzsyBJEm1tbRgeHma98DMHs3G5XLh27ZpX49Iz9io1NZWbW7oLMzMzsFqtyMjIoNsU2lleXsbKykrISMlwzlsQkpOTA7vdzvpxWR4cDod3cDrHziwuLqKzsxPXrl3D4uIiSkpKoFAo6DaLg+OO8Pl8JCUlYWhoCA0NDbh69So3YWUPkCSJ4eFhxMbGctFJUFE3kUgU1FMVboVz3oIQjUaDqKgoruv0PRYXF9HR0YH19XW6TWE8R48excbGBi5duoQjR44EtcI4E+HxeAgPDw/6TjamkZ6eDoVCgbfeegsymQwqlYpukxiP1WqFSCRCZmYm3aYwgv7+fmRmZoZM+phbYYKUnJwcDA4O3rETi03Ex8dDKpVyTRx7gMfjITMzE5mZmZidnYXJZKLbpJAiPDwcp06dOtSkAI6teKYDZGZmwmKxwGaz0W0S4wkLC8OJEye4yDoAvV6PhYWFkOgy9cA5b0FKbm4urFYrlzoFVbycnp6O+fl5rn5rBzw1kseOHcMHPvABqFSqkCjc5Qh9hoeHodFo8Nhjj+H48eOcjt4u6PV6LrV8C729vRAKhUhPT6fbFJ/BOW9BSnR0NGJiYtDZ2Um3KYwgMTEREomEi77dAZ1Oh4sXL3qnLYhEIpSVlUEikcBut7NeN9BXGAwGXLhwwVtUz+EbysrKUFZWBoFA4G1SGB4e5iRZ7sDNmzcxMDBAtxmMgCRJdHZ2IicnByKRiG5zfAbnvAUxRUVFGBwc5BYwUOnAgoICJCcn020K4zAYDGhpaUFERAQiIiK2PN/W1rYnNXuO3fHokt1JEJlj75jNZtTX18NkMkEgEGyKEjscDkxPT6OxsZFLod7G4uIi1tfXuQ7T95iZmYFOp0NRURHdpvgUznkLYgoKCkCSJG7evEm3KYwgJiaGkw64DbPZjKamJkilUpSVlW1bSJ+Xlwez2YwbN25wF0IORmAwGNDQ0AC73b5tgblQKERlZSWcTieampo4Adr3IEkSAwMDiIyMZP0Aeg+dnZ1QKpUhN9eVc96CGJlMhszMTC51egtWqxX19fVc5+l7dHd3g8/no6Ki4o5dVgqFAlVVVbDZbN5IBwcHXej1ely/fh0ikQjV1dV3rG+TSqWorKyEyWRCa2srN5gewOzsLAwGQ0gV5h8Gh8OB3t5eFBYWhty8Zs55C3KKioowNzeHpaUluk1hBB41dk5GhaKoqAiVlZW7FngrFApUV1eDx+Nxji8HbTgcDjQ3N0OpVO7ouHlQKBQoLy8PqVqmwxAdHY2ioiJOSuU9BgcHYbVaQy5lCnDOW9CTkZEBqVTKRd/egyAI5OTkYHl5GcvLy3SbQwtutxt9fX2w2WyQSCSQSqV7ep9UKsXJkycRFxcHAFzn7gGQy+Wora3lRFEPiFAoREVFxY6R4ttRq9UoLi4Gj8eD1Wr1s4XMhSRJCIVCJCYm0m0KY+js7ERSUlJIltNwzluQw+fzUVBQgO7ubi5t8B6e2re+vj7WFY6TJImuri6Mj48fyPny1MTNzs7i6tWrdxxmz7E9fD4fSqWSk2DZJ0NDQ+jq6gJAzTQ9iMix1WrF5cuXMTIy4mvzGI/D4cClS5dYe8O6HQaDAaOjoyEZdQM45y0kKCoqwsbGBisXrTuRk5MDq9XKuk7c/v5+zMzM4NixY1Cr1QfeTmxsLOLi4tDW1obx8XEfWhjaWCwW9PT0wGKx0G1KUECSJHp6ejA4OLjnCPGdkEgkSE1NRX9/P6anp31kYXAwMjICm83GiUPfQnd3NwQCQcjW/3HOWwgQExOD6OhoLnV6C5GRkbj77rshk8noNiVgjI6OYnR0FPn5+d7U50Hh8XgoKipCamoqpxm1D+x2OyYmJjjdvD3gdrvR1taGyclJFBYW+kTaIisrC0lJSejq6mJNHbDFYsHY2BhSU1MhkUjoNocR3KrtFqrfCee8hQAEQXg137g7/j/C5/Nhs9mwsrJCtykBQSQSISMjw2ct8QRBIC8vD7m5uVhbW+PS8hw+ZWJiAouLiygtLUVSUpLPtnv06FFER0ejq6uLFefs0NAQBAJBSE0POCyzs7NYWVkJ2ZQpwDlvIcPRo0c5zbdtGBoaQmtra0hHQjwOe2JiIrKzs32+/bS0NFRUVIDH42FtbS2kv0sO/+PRZDty5AhOnDiBmJgYn26fIAgUFxejqqrqQLVzwQRJkjCbzSE1cN0XeLTdUlJS6DbFb4T2mc0iZDIZMjIy0N7ezroi/Z3IzMwEgJCVDllbW8Ply5f9XuNDEIQ3FXH16lXvmC0Ojv0wMzODixcvYm1tDQRB+G1oOp/Ph0wmg8vlQldXV8h2oRIEgePHj4e0k7Jf7HY7bt68iaNHj4a08x66n4yFlJaWYn5+HjMzM3SbwhjEYjGys7MxNTUVcoOaTSYTmpqaoFAoDl3jthcIgkBlZSWkUimuX7+OoaEh7kbhNsRiMVJTU7nB6bfhcrnQ2dmJjo4OREdHB0xKxeFwYHl5OSTHvy0sLHhLQkJNgPYw9PT0wGazoaSkhG5T/ArnvIUQ6enpiIyMRHNzM92mMIrk5GQolcqQSilbrVbcuHEDIpEI5eXlAZOmkEgkqKqqQkZGBgYHB9Hd3R2Q/QYLEokEeXl5IVskfRA2NjZQV1eHubk5FBUV4dixYwFL8UkkElRWVsJqtaK5uRkulysg+/U3DocDXV1dmJqaotsURkGSJJqampCVlbXtHOdQgnPeQgiCIFBeXo7e3l4YjUa6zWEMnoaOwsJCuk3xGZ6oV2VlZcDV5QmCQFZW1qZ0DRsKw/eC0+nE6uoqN2vzFoRCIcLCwlBbW0uLgKxcLkdFRQXW19dDpqxkYGAAbrcbeXl5dJvCKCYmJrC0tISKigq6TfE7nPMWYhQVFUEgEKC1tZVuUxiFQqGAQqGA2+0OiQtrfn4+qqurERYWRpsNGo0GSqUSbrcb169fR19fH+udOJPJxM2HBRUZ6u7uhs1mg1gsRmVlJa1TJ1QqFUpLS6FUKoM+xbi2toaJiQlkZWVx6fnbaG5uRlRUFCtqADnnLcSQSCQoKipCa2trSDgpvqaxsTFo06ckSaK7uxsGgwE8Hu/Qoqa+giAIxMbGYmxsDNevX2edMDLHZlZXV71pUiaNWIuKivI2MAVzZmJ4eBgKhcJnkkChwtraGgYGBlBeXh70Dvpe4Jy3EKS8vBwmkwl9fX10m8I44uPjMT09HZTdkj09PZiammKclh9BEEhLS0N1dTVsNhvq6uqwsLBAt1kcAYYkSYyMjKChoQFisRi1tbWHmvLhL9bX13HlyhVMTEzQbcqBOHbsGEpLS1nhoOyHlpYWiMViHD16lG5TAgLnvIUgGo0GaWlpaGpqotsUxpGUlISIiAj09PQEVYpvaGgIk5OTXgFSJqJSqVBbWwutVstpwbEQk8mEwcFBpKWloaqqijGR4dtRKpVITU1FT08P5ufn6TZnz9hsNpjNZggEAlZNjtkLDocD7e3tKC4uDngNMF1wzluIUlFRgdnZWU425DYIgsDRo0dhNBqDZhbs1NQUBgcHkZ2d7VMlen8gFApRUlLitbOrqwu9vb0hJ9NwJwiCgEgkYk1UxGKxoLe3F263G3K5HHfddRdycnIYr6+Vm5uL+Ph4tLe3Q6fT0W3Onujp6cGNGzdCouHC1/T09MBqtaKsrIxuUwIGs39hHAcmPT0dKpWKi75tg1KpRE5ODq0F1PshPDwcGRkZPpn9GGhkMhkmJye9QsKhfuFRKBQ4d+6c38RnmYLb7cbw8DAuX76M2dlZb4NGsEikeDrQ1Wp1UAh4z87OYn5+Hjk5Oay5MdgrHnmQzMxMqFQqus0JGNw8jRCFx+OhvLwcFy9exD333IPw8HC6TWIUaWlp3v8nSZKRC6LRaIRMJoNKpQraRSk9PR0JCQno6+tDZ2cnpqamUFVVxcjvm2NvLC8vo7u7GxaLBampqUE7monH46G0tJTxNxQ2mw09PT2Ii4sLiBh3sDE5OYnFxUWcO3eOblMCChd5C2GOHTsGHo+HtrY2uk1hLO3t7RgaGqLbjC0YDAY0NDRgeHiYblMOjUQi8c6ajI2NBUEQcLvdIVkXZzQacenSpaDuZtwNh8MBmUyGU6dOITc3NygdNw8CgQBCoRAWiwXNzc2MPCd7e3vB4/FQUFBAtymMpKmpCVqtlnXdt5zzFsJwsiG7I5fLMTw8jPX1dbpN8WKxWNDU1ISwsLBNEcJgR61WIzU1FQAlpnnp0iWMj48zPvKxH9xuN0wmU1A1w+yG0+lEf38/2tvbAQBxcXG067b5GpIksba2hqamJsatlVlZWawqxN8PHnmQiooK1kXzOectxKmsrITJZEJHRwfdpjCS9PR0hIeHo7OzkxEXXLvdjsbGRvB4PFRWVgZ1VGMnEhISEBcXh5s3b+Ldd9/F2NgY4y6abMdms2FgYAAXL17E2NgY5HJ5SDnatyKVSlFRUYGNjQ20trYyZi1wuVyQyWTQaDR0m8NI6uvrIZVKWSMPciuc8xbiqNVq5Ofno76+PmTm+vkSHo+HY8eOwWg0MiJ9OjMzA4fDgcrKypBWTxeJRDh69ChOnjwJtVqNvr4+75BtDvpxuVy4fPkyxsbGkJiYiDNnziAzMzOkoxtKpRJlZWXQ6XTo6uqi2xx0dnaisbGRbjMYi9FoREdHB44fP87KqGRo3tZzbOLEiRP47ne/i+7ubhw7doxucxiHQqFAVlYWI+62U1NTERcXFzRde4dFoVDg2LFjyM7O9n7mlpYWiEQipKWlhVRqjuno9XpMTEzg6NGjEAgEKCkpQUREBIRCId2mBQyNRoPi4mLandTp6WksLi6ySvpiv1y/fh1CoZC13xHnvLGAqKgoZGdno76+HoWFhYzXYKIDOmU4PGOvtFotqxy3W7l1RqtKpcLY2BimpqYQExODtLQ0REZG0mjd3pHJZKisrAwaEVWSJLG4uIjR0VHo9XrI5XJYLBaEh4dDq9XSbR4txMbGev9fr9cH/Nzb2NhAT08PEhISEBMTE9B9Bwsmkwmtra2oqqoK6QzFTnBXcZZQW1sLnU7HjczahfHxcW9hdqDo7+/H1NRUyNYT7Zf09HTcfffdKCwsxMbGBhobG4NG5FcgEECr1QZNrWJnZydaWloAAGVlZTh16hQnK/QeCwsLaGhoCKjQOUmSaGtrQ1hYGNddugONjY0gCAIVFRV0m0IbwbHCcByauLg4pKeno66uDnl5ebSnBZiKRCLB7Ows1Go1kpOT/b6/sbExjI6OIj8/H/Hx8X7fX7DA4/GQlJSExMREbGxsQCgUwul0oq6uDlFRUYiLi4NKpWLceWy1WjE5OYnk5GTGRVDdbjdWVlYwNzeH+Ph4aLVapKSkICUlJWh1BP1JTEwMkpKS0NnZCZFIhKioKL/vkyAI5OTkQCKRBM0NQKCxWq1obm5GWVkZY0ewBQIu8sYiamtrsbS0hMHBQbpNYSyxsbFISUnBzZs3YTAY/Lqvubk59Pb2Ij09nXUaRXuFIAhvJMjtdiM6Ohrz8/NoaGjAxYsXGRdJttlsGBoags1mo9sUL6urq+jq6sLbb7+NpqYmrK6uepuXglkAOhB4Zgm3trZidXXVr/vyTKmIiooK+Qkdh6G5uRkulwvHjx+n2xRa4Zw3FpGUlITk5GTU1dVxKbodyMvLg1wuR1tbm1/lKyIjI5GVlYWcnBy/7SOUEIlEyMvLw913343q6mrExsbCarUCoNJNAwMDfr/ABgMkSWJ5ednrDOh0Ouh0OqSkpODkyZM4ffo0V0u1RwiCQHFxMZRKJSYnJ/22H7PZjLq6OoyOjvptH6GA3W7Hqdt56gAAXj9JREFUjRs3UFxczPpmJi4uyzJqa2vxy1/+EmNjYyElAOtLeDweSkpKMDg46Bcn12AwQCKRQCKRIDMz0+fbD3UIgkBkZOSmQnKz2YypqSkMDw8jLCzMO0ooIiKCPkMDiMvlgl6vx/z8PObn52G325GdnY2MjAykpqYiPT2dbhODFj6fj4qKCvD5fL9s3+12o62tDSKRCElJSX7ZR6jQ2toKu92O6upquk2hnZBx3oxGI77//e+jrq4ONpsNOTk5eOqpp5CVlbXre7/2ta/hzTff3PJ4UlISfvWrX216zO124/nnn8fLL78MvV6PhIQEPPnkk7j77rt99ln8SWpqKuLj41FXV8c5bzsgl8tRUlICwLezT00mE27cuIGoqChOtsWHyGQynD17Fnq9HnNzc5iensbS0hJOnToFABgcHIRSqURERATjatEOgtlsxurqKlQqFaRSKYaHhzE8PAypVIqkpCTExcVBqVQCANdd7gM89Wd6vR79/f0oLy/3mYRKf38/DAYDqqurWSXLsl8cDgeuX7+OwsJC77nNZkLCeXO73XjmmWcwOjqKxx57DEqlEi+//DKefvppPPvss0hMTNx1GyKRCJ/97Gc3PbZdu/+zzz6L//mf/8EDDzzgld/48pe/DIIgcNddd/nsM/kLgiBQW1uL5557zltYzXFnDAYDWlpaUFZWdug6FKvVisbGRm/6j8O3EAQBtVrtFaa2WCwAqEV/amrKm2INCwtDZGSkV8/MlwiFQsTHx/vlIjw1NYXFxUWsrq56a+qKioo2OWxcrZR/EYlEMBqNaG5uRmVl5aGjcXq9HmNjY8jLy2NNlPigdHR0wGQyoaamhm5TGEFIOG9XrlzBzZs38eUvf9l7p33mzBk88cQT+OlPf4ovfvGLu26Dz+fjnnvu2fE1y8vL+M1vfoOHH34Yf/u3fwsA+JM/+RN86lOfwne/+12cOnXKb6F1X5KZmYno6GhcvnwZH/7whxnXscckZDIZhEIhmpubUVtbe2Alb4fDgaamJrjdblRVVbFSETyQEATh7UQTCoU4e/YsrFYrVldXodfrsbGx4XXcGhoaAFAK+2FhYZBIJNBqtQc6RlKpFMXFxQe2W6fTwWKxeP+trq6ioqICEokEBoMBTqcTSUlJ3kYDj41s7roLJHK5HBUVFbhx4wba29tRWlp6qPVTpVKhuLiY6zTfBYfDgfr6euTn5weN5qO/CQnn7erVq4iMjERtba33sYiICJw+fRrvvPMO7Hb7nhZil8sFq9V6R4HN+vp6OJ1OPPzww97HCILAQw89hC9/+cvo7e0Nihlrnijhr3/9a4yMjNAqUMt0+Hw+ysrKcO3aNbS2tqKysvJAaSi9Xg+r1YqqqqpNgrQcgUMikSA2NnaTCCsAxMfHQ6fTYWVlBRaLBU6nE9XV1YiMjER/fz+mp6chkUi8jl1UVBSio6PhcDhgMBhAEAR4PB4IggBBEHA4HODz+SAIAiRJwu12QyKRQCqVwmKxYHp6GlarFRaLBVarFXw+3xtN8NT0iEQiSCQSKJVK7+SP/Pz8gH9nHFtRqVQoKSlBS0sL+vr6DhRFt9vtMBgM0Gg0nOO2B5qbm7GxsYHTp0/TbQpjCAnnbWhoCBkZGVsuqjk5OXj11VcxPT29a32X1WrFfffdB6vVivDwcNx11134xCc+semO1lMMfXuq0dMtODw8fEfnbWVlBTqdzvu3PzuX9kJGRgaSk5Nx8eJFpKWlcXUxOxAWFobS0lLcuHEDfX19B7qIRkdH48yZM1xNCwPxaJ15cDqd3t9DVFQU+Hy+19HS6/WQSCSIjo6G0WjE9evXN23L6XRienoaUVFRm24CU1NTkZeXB5vNhomJCa8zGBkZuel1nuhuMETw2Ux0dDSOHTt2IEFjt9uN1tZWmEwmnDlzhjvWu2CxWHDt2jWUlpZyUbdbCAnnTa/Xo7CwcMvjarUaAJWK2Ml5U6vVePzxx5GZmQmSJNHU1ISXX34Zo6Oj+M53vuNNr+h0um2FQT372Wmw9iuvvIKf/exn+/1ofoMgCJw9exY/+tGP0NPTs+33x/FHIiMjUVRUtO/29O7ubohEImRnZ3OOW5Bwax2cp4ZuO5RKJc6cOQO32w2SJEGSJNbX1+FyuVBWVoaIiAhvVM4T+Y+IiNixPIOLygYPnoiZy+WCTqfbs4hvb28vVldXcfz4cc5x2wPXrl2D2+3GyZMn6TaFUTDOeXO73XsehSMSiUAQBGw227ZpUc9juwlmfvzjH9/091133YXExEQ8++yzuHr1qrcRwWazbXsB3st+HnzwwU3tzZOTk/jqV7+6o13+JiEhAbm5ubh06RLy8vI4Re9d8CzWbrcbJpNp17vuoaEhTE5Oco5xiMLn87ctsRCLxYiIiOA64ljC1NQUbt68idLS0i0p+duZnJzExMQECgsLuSjSHlhfX0dzczNqamqCZl5woGDc1bqrqwtPP/30nl77y1/+EsnJyRCLxbDb7Vue9zx2kMG1H/zgB/HjH/8Yra2tXudNLBZv61juZT8ajQYajWbfdvibM2fO4Lvf/S6am5tRVVVFtzlBQX9/P2ZmZnDixIk7FopPTk5icHAQ2dnZnHYTB0cIk5KSgtXVVbS3t6OysvKOkVq3242xsTEcOXKEWxP2yOXLlyEWi7lr0zYwznlLSkrC5z73uT291vMjiYyM3FRP5sHz2J1+TDshFouhUCg2jUhSq9Xo6OjYovvl2Q8TnbPd0Gg0KC4uxrVr11BcXBwSGlj+JiMjAwsLC2hpaUF1dfWWiOXKygp6enqQkpLCNYNwcIQ4BEGgqKgIdrsdzc3NqK6u3layhcfjoaamhkuV7pHFxUV0dXXh/vvv57rzt4FxzptarcZ99923r/dkZGSgu7sbbrd7U+F9f38/JBLJnnTebsdsNmN9fX2T9k56ejpee+01TE5Obipw9sxXDFYV81OnTqGrqwv19fVBIzZMJyKRCOXl5aivr0drayvKy8s3nXcqlQq5ubncvFIWolQq8cADD9BtBkeA4fF4KC0txfXr17G8vLzJebPb7ejp6UFeXh53c7wPLl68iMjIyENJ74QyIdFiePLkSej1etTV1XkfW1tbw+XLl7doas3OzmJ2dtb7t81mg9ls3rLNn//85yBJEhUVFd7HampqIBAI8NJLL3kfI0kSf/jDH6DVaoO2lV8ul6OqqgqNjY1+H8YeKoSHh6OsrAw6nQ6Li4sAqCkfBoMBfD4fqampnH4eBweLEAgEqKmp8TbHkSQJl8uF5uZmrKyswOVy0Wxh8DA+Po7h4WHcddddXKTyDjAu8nYQTp06hRdffBFf//rXMTEx4Z2w4Ha78Rd/8RebXusR133hhRcAUJ2qH/3oR3H33Xd76xCam5vR2NiIioqKTWrOUVFReOSRR/Dcc8/B6XQiJycH165dQ3d3N/7P//k/QX2SVVVVobW1FZcvX8b73vc+us0JCjQaDU6dOgWZTAaLxYLGxkbI5XIcP36cbtM4aGJjYwOdnZ0H6kzmCH48Efjp6WlMTExAIBDAYDCgqqqKK7jfIyRJ4uLFi4iPj/fKcHFsJSScNz6fj29961v47ne/i9/97new2WzIzs7G5z73uV0LQz1Rp5aWFrz55ptwu92Ij4/Hxz72MTz22GNb9M8+/vGPIzw8HK+88grefPNNJCQk4Atf+ALOnj3rz4/od8RiMWpra/Hmm2/i+PHje257ZzsymQx2ux1/+MMf4HK5NglFc7APl8uF1dVVLsrCchQKBXp6emA2m/GhD32IG321D/r6+jA7O4uPfOQjXPZiB0LCeQOoNNYzzzyDZ555ZsfXeSJut77vC1/4wp73w+Px8OSTT+LJJ588kJ1MprS0FE1NTbh48SKeeOIJus0JCjxpEYPBAJVKhZWVFU4xnYOD5SiVSpw4cQKtra2Yn59HTEwM54jsAafTiXfffRcZGRmb6so5thISNW8cvoHP5+Puu+/G0NAQhoaG6DYnKDCZTLBarfjgBz+I9PR0dHR0YHl5mW6zODg4aGJtbQ0AUFBQgHPnzmF2dhajo6P0GhUk3LhxA2tra0GfyQoEnPPGsYmcnBykpaXhwoULexZLZiskSUKhUODMmTOIiIhAYWEhoqKi0NLS4l3AOTg42MPMzAyuXbvmbWKKi4tDSUkJp+u2B9bW1lBXV4fKykqubGcPcM4bxyYIgsD9998Pg8GAhoYGus1hLP39/WhtbQVJkt66SB6Ph5KSEiQkJNxRvJcjtJFKpTh27Bh3/FnI3NwcOjs7kZiYiOjoaO/jcXFxEIlEsFgsWFhYoNFCZvPWW29BIpFwY7D2COe8cWxBrVajuroa9fX10Ov1dJvDOMbGxjAyMgK1Wr2ljoXP5+Po0aPexXp9fZ0mKznoQCgUIiEhgZtjyzLm5ubQ3t6OuLi4O47Dm5iYQGtrK5aWlgJsHfMZHh5Gf38/zp07d6CJSGyEc944tuXEiROQy+W4cOECSJKk2xzGMDs7i97eXqSnpyM1NXXH1/b393trODjYgd1ux8TExLbj+jhCl5mZGcTFxeHYsWN3bEzIzs5GdHQ0Wltbsbq6GmALmYvT6cSFCxeQmpqKvLw8us0JGjjnjWNbhEIh7r33XgwPD2NwcJBucxiB0WhER0cHEhMT96Q/dPToUcjlcjQ2NnIOHEuwWCzo6emBxWKh2xSOAOB0OgFQnfo7OW4AVZJSXFwMpVKJ5uZmbGxsBMpMRtPQ0ID19XXcf//9XEfuPuCcN447kpWVhYyMDK554T3Cw8NRVFSEo0eP7un1AoEAlZWVnAPHwRGCzM/P49KlSzCZTODxeHtyPPh8PsrLyxEWFgaTyRQAK5nN6uoqrl27huPHjwflbHA64Zw3jjtCEATuu+8+mEymTaPH2IbJZPIWGickJGwRbt4JjwOnUChgtVr9ZSIHB0cAmZ+fR1tbGzQazb6bU4RCIU6cOOFtamCzoPObb74JmUzGiZsfAM5549iRyMhI1NTU4Pr169DpdHSbE3CsVisaGxsxMDAAt9t9oG0IBAJUVVUhJiYGALadpcvBwREczM3Noa2tbdcat53wvKe/vx+NjY2sdOAGBwcxODiIc+fObZo/zrE3OOeNY1eqq6uhUCjwxhtvsKp5weFwoKmpCW63GxUVFfuKuN2J8fFxXLlyhRPyDVEEAgG0Wi0EgpAZXsNxCw6HA93d3YiPjz+w43YrMTExWF9fR3t7O+vW1jfffBPp6enc/NIDwjlvHLsiFApx3333YXR0FH19fXSbExDcbjdaWlpgsVhQWVmJsLAwn2w3KSkJGo0GTU1NmJ2d9ck2OZiDTCZDZWUlN4Q8BHG73d6UZ1FRkU+K61UqFUpKSrC4uIienh4fWBkc1NfXw2Aw4L777uOaFA4I57xx7InMzEzk5OTgjTfeYEWhrcPhgNPpRHl5OcLDw322XT6fj9LSUiQkJKC9vR1jY2M+2zYH/ZAkCafTyaooSqhDkiS6u7vR1tYGgHLQfelwREdHo7CwEJOTk6y4oVtYWMC1a9dQU1MDtVpNtzlBC+e8ceyZ8+fPgyRJvPHGG3Sb4lecTifEYjFOnDiByMhIn2+fx+OhqKgI6enp0Ov13IU+hDAYDLhw4QIMBgPdpnD4AJfLhdbWVkxNTXlrVv1BYmIiysvLERsb67d9MAGXy4WXXnoJUVFRXJPCIeGcN449I5fLcf/996O3txe9vb10m+MXhoaGcO3aNbhcLr+H83NyclBSUgKCIGAwGA7cEMHBweF7HA4HGhsbsby8jLKyMiQmJvp1f9HR0eDxeNDr9SE7Rquurg7Ly8t46KGHwOfz6TYnqOGcN459kZeXh9zcXLz++ushlz6dnJzE4OAgEhISArawEAQBp9OJGzduoKWlhZVdZxwcTGRmZgZGoxHHjx/fNKvU30xNTaGtrS3kuvvn5+dx7do11NbW+jWKyRY4541jXxAEgfPnzwMAXn/99ZBJ+S0sLKCnpwcpKSnIyMgI6L4FAgGKi4uh0+nQ0NDAqfNzcNCIZ7TZkSNHcOrUKahUqoDu/+jRo1Cr1Whubg6Z9LvT6cTLL7+MqKgonDhxgm5zQgLOeePYNzKZDOfPn0dfX19IpE/tdjva29sRGxuL/Px8WmzQarWoqamB3W7HtWvXuNmHHBw0MDs7i4sXL3qjXhKJJOA28Hg8lJaWQiaTobGxMSR0Ievq6rCyssKlS30I57xxHIi8vDzk5eXhjTfeCPoZfSKRCOXl5T7RbToMCoUCJ06cQEREBIRCIW12cByc8PBwnDt3zqcdyhz+hyRJ9Pf3e2/iAh1tux2BQICKigrIZDLv/NRgZW5uDvX19Vy61MdwzhvHgfEMEg7W9KnFYsHo6CgAQKPR+ESE97CIxWKUl5dDLpfD6XRiZGQkKL9btsLj8SASiRhxLnHsDafTiZaWFoyOjiI3NxfHjh1jxPETi8VegXSXyxWUTpwnXRodHY2amhq6zQkp6D9DOYIWT/q0v78fN2/epNucfWG329HY2IiJiQk4HA66zdkWvV6PgYEBNDU1MdZGjs2YTCY0NzeHXDNPKEOSJGw2G8rLy5GWlka3OdvS1taG1tbWoOtIv3r1KnQ6HZcu9QOc88ZxKHJzc5Gfnx9U6VOXy4Xm5mbY7XZUVlYyNkUZFRWFyspKrK+v49q1azAajXSbxLELTqcTi4uLQRklYRvLy8swm83eqQlRUVF0m3RHUlNTodPp0NXVFTSR+NnZWdTX1+PUqVMB7dZlC5zzxnFo7r//fvB4PLzyyiuMX1jcbjdaW1thNBqDYoyRRqPBiRMnwOPxUF9fD5vNRrdJHBxBDUmSGBoaQlNTE8bHx+k2Z09oNBocO3YMMzMz6O/vp9ucXbHb7XjppZcQGxuL6upqus0JSTjnjePQSKVSvO997/MuiEyGJEnviCqlUkm3OXtCKpWipqYGhYWFEIvFAMDpwXFwHACr1YobN25gaGgImZmZyM3NpdukPRMXF4f8/HyMjo4yXgPuwoULWF9fx8MPP8yI+sFQREC3ARyhQWZmJo4fP4533nkHiYmJiI+Pp9ukLdhsNojFYpSWltJtyr4RCASIi4sDAIyPj2NiYgIlJSVQKBQ0W8bBERy43W40NDTA7Xbj+PHjQTlX88iRI4iIiKC9G3Ynuru70dHRgYceegharZZuc0IWziXm8Bl33303YmJi8OKLL8JqtdJtzibGxsZw+fJlxtl1ELRaLXg8Hq5du4aJiQm6zeG4BYlEgry8PFr0wTi2x+12w+Vygcfj4ejRozh58mRQOm4ePI7b1NQUlpaWaLZmMzqdDq+99hoKCwtRVFREtzkhDee8cfgMPp+PD3zgAzCbzXj11VcZU/82OzuL3t5eJCcnh8RFVS6X48SJE0hOTkZPTw83VotBiMVipKametPbHPRiNpvR0NDg7YbXarUQiUQ0W+UbFhcX0drayhhBb6fTid/+9rcIDw/3TuHh8B+c88bhU1QqFR588EH09vaira2NbnOwvLyMzs5OJCYmIicnh25zfAaPx0N+fj7KysrA4/G4uhKG4HA4MDc3x0m7MIDZ2VlcvXoVdrsdycnJdJvjc4qLi6FUKtHc3MyITv+3334bKysreOSRR0LGQWYy3IrP4XPy8vJQVlaGN998E4uLi7TZ4Xa70dnZCY1Gg6NHj9Jmhz+JiYlBSUkJCILAysoKenp6OJkKGjGbzWhrawuJkUbBCkmSaGlpQXt7O6Kjo1FbW4uIiAi6zfI5fD4f5eXlEIvFaGxspLUkpK+vD83NzTh37hw3RSFAcM4bh184d+4c1Go1fvvb33oHPQcaHo+H48ePo7S0lBWRKavViunpaVy9ehUrKyt0m8PBEXBIkgRBEFAoFCgrK0NxcTFjdRx9gVAoREVFBZRKJW1r3OrqKl555RXk5uYGZTNYsBL6VzQOWhAIBHjkkUdgMBjwxhtvBHTfNpsNPT09cLlckMvlrFH2TkhIwMmTJxEWFoYbN26gu7ubi8JxsAKr1YqmpiZvA09WVhZrIkBhYWEoKyuDSCSC1WoN6BQGl8uFF198EWFhYXjwwQdpnQ3NNjjnjcNvaDQanD9/Hp2dnejq6grIPh0OBxobG7GwsMDKuiOZTIbjx4+joKAAer2ebnM4OPzO1NQULl++DIPBwHjRbX9CkiRu3LiB9vb2gDWLvfvuu5ifn8cHPvCBkGgGCyY4543Dr3haxl9//XUsLy/7dV9utxstLS2wWCyorKxk7WJCEARSUlJw8uRJCAQCmM1m9PT00Ja+ZhN8Ph9KpZI10V46cTqdaGxsRFdXF2JjY3Hq1ClGj7jyNwRBIDc3FwsLC+jp6fH7/oaGhnD9+nWcPXuWkbqeoQ7nvHH4nfvvvx9KpRLPP/88LBaLX/ZBkiTa29uxurqK8vJyhIeH+2U/wYQnhbGxsYGZmRlcunQJk5OTjJFwCUXkcjlqa2shl8vpNiVk8aQFBQIBRCIRKioqUFRUFNK1bXslOjoahYWFmJycxNDQkN/2s7Kygt/97nfIyspCZWWl3/bDcWc4543D74hEIjz++OMwm8343e9+55eaDIIgIJfLUVJSgsjISJ9vP5iJiorCmTNnEBMTg+7ubtTV1cFgMNBtFgfHvpmbm8OlS5e846GKi4tZHW3bjsTERGRnZ2N4eNgvXc9WqxXPPfccFAoF3v/+93N1bjTBOW8cASEyMhKPPPIIxsbGcPHiRZ9u22QyAQCys7NZU6S8X8RiMYqKilBTUwOBQOBN63FRON+yvr6O119/Hevr63SbElIYjUbcuHEDbW1tUCgUCAsLo9skRpORkYGTJ09CKpX6dLtutxsvvvgizGYzHn/8cU6MmkY4540jYKSmpuLcuXO4fv06Ojs7fbJNT7Eyd7HcGyqVCtXV1ZDJZHC5XKirq8Po6GhAO9RCHe679C0LCwu4evUqLBYLKioqUF5e7nOnJBSRy+UgSRK9vb0+G2R/8eJFjI2N4ZFHHuEyHDTDOW8cAaW8vBzFxcV49dVXMTMzc6htLSwsoLu7G8nJyVAqlT6ykD2QJAm1Wo3+/n5cuXIF8/PzXCSOgxG43W7v2CeNRoPc3FzWNyQcBJIkYTAY0NzcfOhSia6uLly/fh333HMPUlNTfWQhx0HhnDeOgEIQBO6//37Ex8fj+eefP/CCotfr0dbWhpiYGOTn5/vYSnYgEAiQn5+P2tpaSKVStLa2oqOjg26zOFgMSZKYnp7GpUuX0NjYCJfLBYFAgNTUVFYIbfsaHo+HsrIyyGQyNDY2HrgGbmZmBq+88gqOHTuGiooKH1vJcRC4XwNHwBEIBPjgBz8IPp+P559//kB6bH19fYiMjERxcTFXMHtIFAoFKisrUVVV5Z0BubGx4bNUCwfHXpibm8OVK1fQ2dmJiIgInDhxgpNc8QECgQAVFRXg8/lobGzct2SQwWDA888/j7i4OJw/f55bbxkC57xx0IJcLsdjjz2G5eVlvPLKK/tO15WXl7Nm7FWgUKvVUKvVAIDJyUlcv34dTU1NXD3hPpDL5Th16hQnFXIApqamIJVKUVtbi9LSUu479CFisRiVlZWIioqCQCDY8/scDgeef/558Hg8PProo/t6L4d/4a58HLQRGxuLhx56CD09PWhoaNj19Xa7Ha2trbBarRCJRJyukx/Jzc1FSUkJzGYz6urq0Nra6jeNvlCCz+cjPDycixjtgeXlZTQ0NGBxcREAUFZW5p3TyeF7ZDIZ8vPzwePxYDAYdm2sIUkSr776KpaXl/H4449zzjTD4NxoDlrJy8vD4uIi3n33XWi1WmRlZW37OpfLhebmZphMJrhcrgBbyT4IgkBcXBxiY2MxMzODkZERb7rEbDZz3X53wGKxYGhoCJmZmZycxTa43W7Mzc1hdHQUBoMBSqXSexPGObyBweFw4Pr164iOjkZRUdEd06ANDQ3o7u7GBz7wAcTGxgbYSo7d4CJvHLRz+vRpZGVl4cUXX8Ts7OyW591uN1pbW2EwGFBRUcHq+YWBhiAIJCYm4vTp05BIJHC5XLh27RquXr2KmZkZThbjNux2O6amprhRZHdgenoaHR0dkEgkOH78OGpraznJiQAjFApx9OhRzMzMoL+/f9vX3Lx5ExcvXkRtbS3XEMZQOOeNg3YIgsCf/umfIiYmBr/+9a+3DFTv6enBysoKysrKEBERQY+RHACo6EhJSQkkEgk6Ojpw6dIljI2NcRIjHNtitVrR39/vdRLi4+Nx8uRJVFRUQKPR0Gwde4mLi0N+fj5GR0cxOjq66bnx8XG89NJLKCwsxOnTp2mykGM3OOeNgxEIhUI8/vjjkEgk+NWvfuWdmgAAWq0WRUVF0Gq1NFrI4UGj0aCiogInT56EWq3G/Py8N/Vy63HjYC+rq6vo7OzEu+++i4mJCe/5IRAIoFAoaLaOAwCOHDmCjIwMjI6Oejv+FxcX8fzzzyMlJQUPPvgg11nKYLiaNw7GIJVK8eSTT+LHP/4xfv3rX+PBBx9EdHQ04uLi6DaNYxsUCgWOHTvmjbqtrq6ivr4ekZGRSE5ORmxsLFfHxCJIkgRBEDCbzaivr4dUKkVWVhaSk5O55iKGkp2djSNHjkAoFGJ9fR2/+tWvEBkZ6ZVy4mAuXOSNg1GoVCp86EMfwsjICL71rW9tWwPHwSw8d+dKpRIlJSXg8Xjo6OjAO++8g6GhIZqtCyxisRjp6emsmvmo0+nQ3t6OK1eugCRJSKVSnDhxAmfOnEF6ejrnuDEcsVgMo9GIr371q7DZbPjQhz7EqvM3WOEibxyMQyAQICMjA+3t7WhqasLDDz/Mhe+DAB6Ph7i4OMTFxcFkMmFqasp79261WrG0tITY2NiQvphLJBLk5OTQbYbfcbvdGB8fx+TkJEwmE2QyGZKSkrzRN642NXiw2+147rnnsLGxgbKyMrrN4dgjnPPGwSjW1tbQ2tqKgoIClJeX46WXXoJUKsW5c+c4By6IkMlkm5yYlZUVdHV1oaenB1qtFnFxcYiOjg45R87pdGJ9fR1KpTLkBE2tVit0Oh3i4+PB4/EwNTWFiIgIFBYWesWdOYILl8uFF154ASsrK/iHf/gHjI2NobGxETU1NZBIJHSbx7EDobW6cAQ94+PjCA8PR2lpKfh8Pmw2G15//XWv8jpHcJKQkACNRoP5+XnMzc2ho6MDiYmJKCoqgsvlAkmSIeHsmEwmXL9+HbW1tSEhNmuz2bzHTKfTgcfjQaPRQCwW49SpU9wNVRBDkiReeukljI+P48knn0RycjKioqJQX1+PpqYm1NTUcHVvDCb4V0uOkKKwsBAul8u7aJSVlcFsNuPSpUuQSqUoLS2l2UKOgyKRSHDkyBEcOXIEVqvVqxE3Pz+Prq4uREVFISYmBlqtlrvrpxGr1QqJRAKSJHH58mU4nU5vx3dMTIw3Wso5bsELSZK4cOECent78cgjj+DIkSMAgLCwMFRWVmJlZYVz3BgO57xx0I7T6URLSwuys7OhUqm2zCutra2F2WzG66+/DpFIhKNHj9JkKYevuNU502g0yMnJwdzcHDo7OwFQMgb5+fleB4+bYes/nE4nVlZWsLy8jKWlJVgsFtx7770QCAQoKyuDQqEIufQ2myFJEpcuXfr/27vzsKbOfA/g3ySQEAhh3xGQRdlEZAdFwIWijrRO3Tra2tZq25np+Mx0pl7v9M7caWem0z5drs+dtlOt1tZqW6tV1LqhVSjIDoKyKKAssoZ9TwI59w9vMqYBDGu23+d5fB55c074vZyck9953/e8L3Jzc7F27Vr4+/srvW5ubg5zc3MAD4Y72NjYUKKuhSh5Ixolk8mQl5eH7u7uMbvNWCwWkpKSIJFIcPLkSQCgBE6PmJiYwNPTE56enpBIJBCJRIqn3dra2pCfnw9bW1vY2dnB3t6eVtiYIoZhMDg4CFNTU8hkMly6dAkjIyMwMzODvb097OzsFMkyjWXTL/LW1B9//BGJiYkIDQ0dc9uBgQFkZ2fDzc2NrrdaiJI3ojEMw6CwsBAdHR2Ijo5W3O2NhsViITk5GQAogdNjXC4XLi4uip/Nzc0xb948iEQilJWV4datW3B0dER4eDgYhkFnZycsLCy0pouHxWLBxMREq1oqRkZG0NHRgY6ODnR2dqKrqwsA8Nhjj4HNZmPRokUQCoWUFOs5eeKWnp6OxMRExMTEjLu9qakpFi5ciBs3bsDExATz5s2bpUiJOvQmeevt7cW//vUvpKenQywWw8/PD7/85S/HXOj8YeMNhA8LC8P7778P4MHYnE2bNo263Z///GcsX758csEbqPLycjQ3NyMsLEyt9Q0pgTM8fD4f3t7e8Pb2xvDwsGLQPAD09PQgMzMTLBYLQqEQ1tbWsLKyUkr+ZptQKMTKlSs19vsZhkFfXx86OzsBAG5ubpBKpcjOzoaxsTGsrKzg5eWldL7RouP6b6KJm9ycOXMwNDSEiooK8Hg8uLu7z3CkRF16kbzJZDLs3r0b1dXV2Lx5MywsLHDq1Cns2rUL+/fvx5w5c8bd//XXX1cpq6iowPHjx0ed92bFihWIiopSKgsICJhaJQyQi4sLhEIhHB0d1d7npwkci8XCggULZipEokWMjIzg4OCg+FkoFCIuLg6dnZ3o6OhAa2srRCKRInnLyckBj8eDubk5BAIBzM3NwefztapVbLJkMhkGBgbA4XDA5/PR1taG0tJS9PX1QSaTgcViwdHREW5ubjAxMcGyZcuoZc1ATTZxk/Px8YFYLEZdXR3c3Nz04vzRB3qRvF27dg23bt3CG2+8gfj4eADAsmXL8Itf/AKfffYZ/vSnP427f2JiokpZUVERWCzWqK1pPj4+o+5D1CMSiWBjYwMLC4tJTacgT+AYhsF3330HAJTAGSB5i5tQKFS0CIyMjAB48IUlnzm+qakJw8PDAKBIYurq6jAwMAA+nw8+nw8TExOYmppOebqSnp4e5OTkIDIyckpreDIMA4lEgqGhIQgEAnA4HDQ2NqKpqQm9vb3o7++HTCaDt7c3/Pz8wOPxYGVlBTc3NwiFQpV55ihxM0xTTdzkAgICFDcFRDvoRfKWlpYGa2trpe5PS0tLJCQkIDU1FRKJBFwuV+33k0gkSEtLQ3BwMOzt7UfdZnBwEEZGRvQU1gQ1NzcjPz8f/v7+8PT0nPT7PNwCRwkckZOPfWOxWAgODlaUDw4Oore3F6ampgAeTAbd0tICsVisWJs1MDAQc+fORWtrK6qrq2FiYgIulwsjIyMIBAJFi15rayuMjIwU/9hsNng8HlgsFqRSKfr6+iAWiyEWiwE8+ALlcDgwNjaGVCpFR0cHhoeHMTw8DKlUChaLBS8vLwAPWgv7+vqUplJZvHgxrK2tMTg4CLFYDBsbG3h4eCg9FWhubk5DCIiShxO3lStXTjpxAx6cTxwOBwMDA8jLy1OMkySaoxfJ2507d+Dj46MynYCfnx/OnDmD+vp6xcVRHdnZ2ejr6xtz7MqhQ4fw8ccfg8ViYf78+XjhhRcQEREx7nu2tbWhvb1d8XNtba3a8eiLjo4OFBQUwNHRUTGv0FSw2WxK4Iha5C1scvJEh2EYiMViDA4OKl7ncDjgcrkYGBhAd3c3hoeHYWFhARcXF4yMjCAnJ0fl/VeuXAkTExOUlJSgsLAQYrFYqbXLy8sL/v7+6O3tRW5uLoAHX4hGRkYwNTVVXJ/kLYny1kA+nw+BQKB4j4lcx4jh+mnitnjx4ml5Xy6XCxaLhZycHCxevFhxM0Rmn14kbx0dHVi4cKFKufwx9/b29gld9FJTU8HlchEXF6dUzmazER4ejqVLl8LW1haNjY04duwYXnvtNbz11luIjo4e8z1Pnz6NQ4cOqR2DvpF/aVlZWSEkJGTamt8pgSNTIX869OF552xsbMacIoPNZmPlypVKLWcMwyha9j09PVFXV4eQkBAIhUKwWCywWCzFl5ylpSUSExNhZGQ06hOyhrAuKplZM5W4AQ/GnUZGRiIzM1OxjNZEerXI9NG65E0mk0Eqlaq1rfwuQCwWj/oBkpfJuy/U0d/fj6ysLERGRqpMXeHg4ID33ntPqeyxxx7DM888gw8//HDc5C05OVnpJKqtrcVf//pXtePSdS0tLeDz+QgPD5/2CVd/msANDw9j0aJF0/o7CAH+neyNxdLSEtbW1nBwcBh1PKe8i5WQmcAwDC5fvozMzMxpT9zkeDyeIoHLy8ubkd9BHk3rkrfi4mLs2rVLrW0PHz4Md3d38Hg8SCQSldflZRO5WKalpUEikaj9uL9QKMSqVatw5MgRtLa2jjlGztbWFra2tmrHoS8YhgGLxYK3tzfmzp07Y/NxyRM4IyMjpKSkoK+vD0uWLKEBtmRWmZmZISYmhh4QILNuZGQEp0+fRnFxMZKSklRmRJhOZmZmiIyMHPV7l8wOrUve3NzcsGfPHrW2lXdtWFtbK40nk5OXTWSW8NTUVAgEggkN7pQnbL29vWMmb4ZoZGQE2dnZ8PDwgIuLy4xPpMpms7FmzRoIBAJcuXIFfX19SEpKogSOzBojIyNalYDMOolEgm+//RZ3797Fk08+OStDR+QtywzDoLGxEc7OznStnUVal7zZ2Nhg1apVE9rHx8cHJSUlkMlkSl1y5eXlMDExeeQ8b3JtbW0oKipCUlLShPrxGxsbAWBS017oK5lMhoKCAnR3d89qKwSLxUJ8fDwEAgG+//579Pf344knnpjyFBCEqGNoaAj37t3D3Llzx+1eJWS6DAwM4OjRo2htbcUvfvGLWX+opbOzE4WFheju7lZZJ5XMHL1Y7TkuLg4dHR1IT09XlHV1deHq1auIiYlRSsQaGhrQ0NAw6vv88MMPkMlkY3aZypeVeZhIJMK5c+fg5eVlkN2iYykpKUFrayvCw8NhaWk5678/LCwMGzZsQHl5OY4ePTqhcY+ETJZYLEZVVRV93sis6O7uxsGDB9HZ2Ylnn31WI08jW1tbIzAwENXV1aiurp7132+o9KI5Ij4+HsePH8dbb72FmpoaxQoLMpkMzz//vNK2v/3tbwEAx44dU3mf1NRU2NrajjnY/eOPP0ZDQwNCQ0Nha2uL5uZmnD59GkNDQ/jNb34z/RXTUdXV1aivr0dISAjs7Ow0Foe/vz9MTU3x1Vdf4dChQ9iyZYti2gVCCNFlra2tOHz4MIyMjPD8889rtLt+7ty5EIvFKCsrA4/Hg6urq8ZiMRR6kbxxOBy88847+Oijj3DixAmIxWL4+vpiz549cHNzU+s96urqcPv2bWzcuHHMpyHDw8PR2NiIkydPore3FwKBAEFBQXjmmWfUWkPVULi6usLExESja0zKeXh44LnnnsOXX36JgwcP4umnn4aVlZWmwyKEkEmrq6vD0aNHYWlpiS1btqjMjKAJvr6+GBoaQltbGyVvs4DFyKcXJ7Pq9u3b2LFjB/bv3683iV9LSwssLCy0cqxPZ2cnDh8+DIlEgi1bttBi3GRGdHd3Iz09HUuXLqUxsGRG3L59G99++y1cXV2xefNmrbreytMJFoulMgZd12nbd7b+/GWJRolEIuTn5+Pu3buaDmVUVlZW2L59O4RCIQ4dOqS1cRLdxuVy4ebmRhOXkhlRUFCAr7/+GvPmzcPWrVu1KnEDoJiUuqOjA1evXkV/f7+mQ9JblLyRKevu7kZ+fj5sbW3h6+ur6XDGZGZmhm3btsHV1RVffvkl8vLyQA3PZDrx+XwsXLhQaSkuQqZKJpPhwoULOHPmDMLCwrB+/XqtfoJeIBCAzWYjKysLQ0NDmg5HL1HyRqakv78f2dnZMDc3R1hYmNY3k/N4PGzZsgXh4eH4/vvvcfbsWYyMjGg6LKInRkZG0NvbS58pMm0GBwdx5MgR5ObmYvXq1Vi9erXWX2e5XC6ioqLAMAxycnLUXjWJqE+7PwFE6/X29sLExAQREREzPgnvdGGz2Vi1ahWSk5Nx48YNfPHFF9S8T6ZFX18frl27hr6+Pk2HQvSASCTC/v370djYiKeffhoRERE6MxEun89HVFQUBgcHUVxcrOlw9I72trsSrSYfjOro6AgHBweduaA8LCQkBLa2tvjmm2+wb98+PPXUU3B0dNR0WIQQgjt37uDEiROwsLDAzp07dfIpeXNzc0RGRtIY0BlALW9kwmQyGXJyclBRUQEAOpm4ybm5uWHnzp0wNTXFgQMHUFZWpumQCCEGjGEYZGRk4KuvvsLcuXOxfft2nUzc5KysrGBmZobh4WHcu3dP0+HoDUreyIQwDIOioiJ0dHRodALe6WRhYYHnn38e8+bNw7Fjx3D16lV6kIEQMuukUim+++47XL58GbGxsdi0aRN4PJ6mw5oWIpEIt27dwp07dzQdil6gblMyIbdu3UJTUxPCwsL0agFuY2NjrF+/Ho6Ojrhy5QpaW1uxbt06au4nE6btg8mJdurp6cHXX38NkUiEDRs2ICAgQNMhTSsnJyf4+vqioqICPB4P7u7umg5Jp1HyRtTW0NCAmpoaBAUF6eXYMBaLhdjYWNjb2+PEiRP49NNPsXnzZlhbW2s6NKIjLCwssGbNGk2HQXRMXV0djh07Bg6Hg+eff15vJxH38fGBWCzGzZs3weVy9baes4FuEYnanJycEB4ervd3TPPnz8cLL7yA4eFhfPLJJ7h165amQyKE6CH5+LZDhw7B2toaO3bs0PuEJiAgAE5OThgcHNR0KDqNWt7II7W0tIDL5cLKykovW9xGY29vjxdffBFnzpzB8ePHce/ePSQlJcHY2FjToREt1tfXh8LCQoSEhEAgEGg6HKLF+vr6cPLkSdy9exdLlixBQkKCQXS5s1gshIaGKn4eHh7W6gmHtRX9xci4Ojo6kJ+fD2dnZ51+4mkyeDwennzySXh6euL8+fOor6/H+vXrYW9vr+nQiJYaGRlBd3c3TdJLxlVdXY2TJ08CAJ5++ml4enpqOCLNuH//PsrLy7F48WKYmppqOhydov9pPpm03t5e5ObmwsrKCgsXLtR0OBrBYrEQEhKCHTt2AAD279+PgoICehqVEDJhMpkMV65cwZdffgkHBwe89NJLBpu4AYCdnR3YbDays7MhkUg0HY5OoeSNjGpwcBDZ2dng8/kIDw83iOb88djb22PHjh0ICgrCmTNncOLECVqzjxCitu7ubnz22WfIzMzE8uXLsXXrVoPvWufxeIiKioJUKkVOTg61WE+AYX8jkzFJpVLw+XxERkbSOK//Z2xsjLVr12L9+vWorKzEJ598goaGBk2HRQjRchUVFfj444/R09OD5557DkuWLNHpyc2nk5mZGaKiotDX16eY+J08Go15I0pGRkbAYrEgFAqxZMkSTYejlQIDA+Hi4oJvv/0WBw8exIoVKxAVFUUXYwJTU1OEhobS+B0C4MFg/EuXLiE3Nxd+fn5ITk4Gn8/XdFhax8LCAlFRUTA3N9d0KDqDkjeiwDAMCgoKwGKxEB4erulwtJqVlRW2b9+Oy5cv4+LFi6isrERycjIsLS01HRrRIGNjYzg7O2s6DKIFGhsbcerUKbS3t2P16tUIDw+nG7xxyB+I6+/vR3NzM7y8vDQckXajblOiUFxcjNbWVnh4eGg6FJ3A4XDw2GOPYevWrWhra8NHH32EvLw8epjBgInFYty9exdisVjToRANGR4exuXLl/Hpp5+Cw+Fg586diIiIoMRNTW1tbSgrK8Pdu3c1HYpWo5Y3AuDBmIz6+nqEhITozZqls8Xb2xu/+tWvcOnSJXz//fcoLS3F448/bnBTqxBgaGgIpaWlsLGx0Zs1KYn67t+/j5SUFHR0dCA+Ph6LFy8Gh8PRdFg6xd3dHQMDAygtLQWPx4OLi4umQ9JKlLwRdHR0oLKyEgEBAXSiTBKPx8PatWsREBCA06dP46OPPsKKFSvojpsQAyCVSnH16lVkZWXB2dkZL774Is0HOQV+fn4Qi8UoKioCl8ulBoVRUPJGYG1tjZiYGL1aaF5TPD098fLLL+Py5cs4f/48ysrKkJycTH9bQvRUXV0dUlJS0N3djRUrViA6Otrgp1aaDgsXLsTIyAgNQxkDJW8GTCQSQSwWw9XVlZKLacTj8bBmzRoEBAQgJSUF//rXv7Bs2TJERkbSRZ0QPSGVSnHlyhXk5OTAxcUFTz31FGxtbTUdlt54eBkthmEgkUhoKMJDKHkzUN3d3cjPz4e1tTVcXV01HY5e8vDwwMsvv4wffvgBly5dQllZGR5//HG6wOsxIyMjODg40FqNeq62thYpKSno6elBYmIi3ZjNsNu3b6OhoQGLFy+GiYmJpsPRCvRpM0D9/f3IycmBQCBAWFiYpsPRa1wuF0lJSXjuuecwMDCAjz/+GJcvX6alYPSUmZkZIiIiYGZmpulQyAzo7e3Fd999h88++wwCgQAvv/wydZPOAnd3d8hkMuTk5EAqlWo6HK1At4cGRiwWIzs7G8bGxoiMjKQnoWaJm5sbXnrpJVy/fh0//vgjiouLkZiYiMDAQHqgQY/IZDIMDw/DyMiIvtD1yMjICLKzs5GWlgZjY2MkJydj0aJFdO7OEj6fj6ioKGRmZiIvLw9RUVEGf35R8maAzM3NERgYCC6Xq+lQDIqxsTHi4uKwcOFCXLp0CSdOnEB+fj5WrVoFR0dHTYdHpkFvby/S09OxdOlSWFhYaDocMg2qqqpw4cIFdHR0IDw8HAkJCdR1pwHm5uaIiIhAVlYWampq4OnpqemQNIqSNwMhk8kglUrB4/EQERGh6XAMmqWlJTZu3Ii7d+/i/Pnz+OSTTxAWFoZly5bR0jmEaInOzk5cvHgRFRUV8PDwwIYNG+Dg4KDpsAyatbU1YmNjaRktUPJmEBiGQVFREXp7exEXF0dN/VrC09MTL730EnJzc3Ht2jWUlpZi2bJlCAkJMfguAUI0RSqVIiMjA5mZmTA1NcX69esREBBA100tIRQKATyYLaG7uxve3t4ajkgzKHkzAKWlpWhqakJYWBhdgLQMh8NBdHQ0FixYgMuXL+Ps2bMoKCjA6tWrMWfOHE2HR4jBYBgG5eXluHjxIvr6+hATE4PY2FgaXqKlurq6UFFRAWNjY7i7u2s6nFlHyZueq6ysxL179xAUFETjqrSYQCDAE088gbCwMJw7dw4HDhxAQEAAEhISaGoRQmZYXV0drly5gtraWsybNw/btm2DtbW1psMi4/Dx8YFYLMbNmzfB4/EM7vuNkjc9NjAwgDt37mD+/PkGeWeii1xdXbFjxw7cuHED165dw4cffojg4GDExcXB0tJS0+GRRxAKhVi1ahU9xa0jmpqa8MMPP6CyshKOjo7YsmULfHx8NB0WUVNAQADEYjEKCgoQHR1tUAk3JW96zNTUFEuXLqXBnTqGxWJh0aJFWLBgAQoKCpCeno6SkhKEhYUhNjYWAoFA0yGSMbBYLJqgVwe0tbXh6tWrKC0thY2NDTZs2AB/f38aVqJj5NfKkpISg+vepquMHuro6EBLSwt8fX0pcdNhRkZGiIyMxKJFi5CTk4PMzEwUFhYiMjISixcvpidTtVB/fz9u3ryJBQsW0ES9WqirqwtpaWm4ceMGhEIhHn/8cSxcuJAeENJhbDYbwcHBAIDh4WEMDw8bxFQulLzpmd7eXuTm5kIoFIJhGLqT1ANcLhexsbEICwvD9evXkZ2djfz8fMTExCAqKsrg7ji12fDwMEQiEYaHhzUdCnlIX18f0tPTUVBQABMTEyQlJSE0NJRaSfVMcXExenp6sHjxYr2/LtInV48MDg4iOzsbfD4f4eHhdDepZ/h8PpYvX47IyEhkZGQgLS0NOTk5iI2NRWhoKIyNjTUdIiFaZWBgANevX0dOTg44HA4SEhIQERGh91/shsrX1xcZGRnIzc1FdHS0Xo89peRNT0ilUmRnZ4PNZiMyMpK+yPWYQCBAUlISoqOjkZaWhkuXLiE9PR0RERGIiIiAqamppkMkRKM6OzuRlZWFoqIisFgsREdHIyYmxiC60wyZmZkZoqKicP36deTn5+t1IwYlb3qCw+HAxsYGXl5edIEyEBYWFkhOTkZsbCyysrKQmZmJzMxMLFq0CNHR0bCystJ0iITMqsbGRmRmZqKsrAx8Ph+LFy+mGxoDY2FhgbCwMOTm5kIkEuntqhiUvOk4hmHQ398PgUCAoKAgTYdDNMDKygqrV69GfHw88vLykJOTg7y8PPj7+yMmJgYuLi6aDtFg8Pl8LFiwgB4mmUUMw6CqqgqZmZmoqamBtbU1Vq9ejeDgYOqBMFB2dnZISEjQ66SdkjcdV1xcjObmZixfvpwuVAbO1NQUcXFxiImJQXFxMa5fv479+/fDw8MDixcvhre3Nz3AMsO4XC48PDw0HYZBGBkZwc2bN3H9+nW0trbCxcUFGzduhK+vr952lRH1yRO3u3fvAoDeLWRPyZsOq6ioQH19PUJCQihxIwrGxsYICwtDSEgIKioqcP36dRw5cgT29vaIiYlBYGAgPWU3Q6RSKVpaWuDg4EDn5AwZGhpCYWEhsrOz0dPTg3nz5mHNmjVwc3OjmxOiQiwWo6qqCjweT696IegKrqPu3buHyspK+Pv769UHkkwfNpsNf39/+Pn5oa6uDtevX8epU6dw6dIlLFy4ECEhIbCzs9N0mHplYGAARUVFWLp0KSwsLDQdjt5gGAb3799HQUEBSktLIZPJEBQUhJiYGPoMk3H5+flBLBajqKgIXC5Xbz4vlLzpIKlUisrKSnh5ecHLy0vT4RAtx2Kx4O7uDnd3d7S1taGwsBA3btxAVlYW3NzcEBoaCn9/f2opIlpnYGAAJSUlKCgogEgkgpWVFZYuXYrg4GCagJyoLSgoCGKxGHl5eVi8eLFe3FhR8qaDjI2NsXTpUvB4PE2HQnSMra0tEhMTsWzZMlRUVKCwsBAnT57E+fPnERQUhNDQUL19OovoBoZhUFtbi4KCApSXl4NhGPj6+iIpKQmenp7UNUomjM1mIywsDBUVFXrzEAMlbzqku7sblZWVCA4OpulAyJQYGRkhMDAQgYGB6OjoQFFREYqKipCbmwsXFxeEhoYiMDCQJjMls6a/vx83btxAYWEh2tvbYWNjg4SEBAQHB9NSY2TKOBwOAgICADxo0WWz2Tr9PUrJm47o7+9HTk4O+Hw+3XmSaWVtbY3ly5cjPj4ed+7cQWFhIc6cOYMLFy4gICAAgYGB8PDw0OvZyqcLh8OBlZUV/a3UJJFIUFlZiVu3buHOnTtgsVjw9/fH2rVr4e7uTtc6MiMKCgogk8kQExOjs8NFKHnTAWKxGNnZ2TA2NkZkZCR9MZAZweFw4OfnBz8/P3R1daGoqAg3b95EUVERTE1N4efnh4CAAHh4eNBUDGMQCARYsmSJpsPQavIxu6Wlpbhz5w6kUimcnZ2xcuVKLFy4kObIIzMuODgYmZmZyMvLQ1RUlE5ezyh503IymQw5OTmKuwTqxiKzwdLSEgkJCYiPj0dzczNKS0tRWlqKgoICmJqawt/fHwEBAXB3d9fJCx+ZXVKpFFVVVYqETSKRwMnJCXFxcfD394e1tbWmQyQGxNzcHBEREcjKykJhYSFCQ0N1rpWXkjctx2az4eLiAjs7O7ojJbOOxWLByckJTk5OWL58OZqamhSJXH5+PszMzBSJnJubm8Enct3d3UhPT6epQgAMDw8rErbbt29DIpHA0dERsbGx8Pf3h42NjaZDJAbM2toaoaGhKCoqQm9vL4RCoaZDmhBK3rQUwzDo6OhQrFdKiKaxWCw4OzvD2dkZK1asQGNjoyKRy8vLg0AggLe3N7y9veHp6ak3T3UR9XV3d6OqqgrV1dWorq6GWCyGg4MDlixZAn9/f9ja2mo6REIUHB0dsXz5cp3s0aLkTUuVlpaipqYGy5Ytoy9BonVYLBZcXFzg4uKClStXoqGhAWVlZaiqqsKNGzcUiZ63tze8vLzg6upq8K1y+kgqlaK2tlaRsIlEIrBYLLi6uiImJgb+/v56Mykq0U9cLhcMw6C4uBjW1tZwc3PTdEhqoeRNC1VWVuLevXsICgqixI1oPfmXtaurKxITE9HT06NoecnNzUVaWhpMTEwwd+5cRTJnaWmp6bDJJDAMA5FIhOrqalRVVaG2thbDw8MQCoXw9vZGQkIC5s6dS0M8iE5hsVjgcDgoKSkBl8uFo6OjpkN6JEretExdXR0qKiowb948uLu7azocQiZMKBRi0aJFWLRoEWQyGZqamlBVVYWqqiqcPXsWDMPA1tYWnp6emDNnDlxdXWFpaalzA4YNgTxZu3//Purr61FdXY2enh4YGRnBw8MDy5cvh7e3N2xtben4EZ0WGBgIsViMgoICREdHa/1DNJS8aRGGYVBTUwN3d3fMnz9f0+EQMmXyB25cXFwQFxeHoaEh3L17V9Fyk5ubC+DBFBvy1jtXV1c4Ozvr5DgUc3NzLFu2TGdbngYHB3H//n2lf2KxGCwWC/b29ggICICXlxfc3d11dn4sQkbDYrEQEhKCnJwc5ObmYunSpVrd80XJmxZhsViIiYmhedyI3jIxMYG/vz/8/f0BPJjpXJ4k1NfXIz09HRKJBGw2Gw4ODopkbs6cObCystL61h02m60zqwHIZDKIRCLU19crjkFbWxsAwNTUFK6urliyZIkimabl+Ii+ky+jVVtbq/U3YHqRvLW1teH48eMoLy9HRUUFBgcHsXfvXixatEjt9xCJRPjnP/+JvLw8yGQyLFq0CK+88gqcnZ1Vtj179iy+/vprNDc3w87ODuvXr8eTTz456fh7e3tx48YNhIaGanWmT8h0MzU1xbx58zBv3jwAqgnFvXv3kJeXB+BB4mdnZ6fyTygUak1SNzAwgIqKCvj6+mrNuSyTydDV1YXW1laIRCLFv7a2NkilUkWiPHfuXMTGxupMokzITDA2Noa3tzcAoKOjAwKBQCt7AfQieauvr8fRo0fh6uoKT09PlJaWTmj/gYEB7Nq1C/39/di6dSuMjIxw7NgxvPLKKzh48KDSfE0pKSl47733EBcXh02bNqGkpAR79+7F0NAQtmzZMuHY5asncLlc6oYgBk+eSDg4OCAsLAzAv7vympubIRKJ0NTUhJs3b0IqlQIAeDzeqEmdhYXFrCcgUqkUDQ0NGpneRyaTobOzc9QkbXh4GMC/E2AnJycEBQXByclJZ7uoCZlJMpkMBQUF4PP5iI6O1nQ4KvQieZs/fz7Onj0LoVCIa9eu4U9/+tOE9j916hTu37+PTz75BH5+fgCAyMhIPPvss/jmm2+wc+dOAA8SrU8//RTR0dF48803AQBr166FTCbDF198geTkZJibm0/od9+8eRMODg6IjIyk5I2QUfD5fPj4+MDHx0dRJpPJ0N3drZSktLS0oLS0FBKJBMCD5b6EQuG4/8zMzHRiCpORkRH09fWhp6cH3d3d6OnpUfnX19cHmUwG4MHfzM7ODi4uLggODoadnR3s7e0hEAioRY0QNbDZbISHh+P69evIz8/Xukm39SJ5m2r3xLVr1+Dr66tI3ADA3d0dISEhuHr1qiJ5KywsRHd3N5544gml/detW4fU1FRkZWUhMTFxQr9bKpUiOjoaJiYmU6oDIYaEzWbDysoKVlZWii5X4MFDP/KkrrOzUym5aWhoQE9Pj6IVSv4+5ubmEAqFEAgE4PF4av/jcrlgsVhK/36KYRjFP5lMBolEArFYrNa/oaEhRcLW19cHhmEU78vlchUJqPzJXaFQCBsbG9jZ2cHMzIySNEKmyNLSEuHh4cjNzUVra6umw1GiF8nbVMhkMty9exerV69Wec3Pzw95eXkYGBiAqakpKisrAQC+vr5K282fPx9sNht37twZM3lra2tDe3u74ueqqioADz4c9+/fn67qEEL+n4WFxah3y0NDQ+jv70dfXx/6+/sV/29qaoJEIoFEIoFUKlX8fyKkUimampqQmpo6oZZ0FosFHo8HY2NjxRAKY2NjmJmZwcnJCWZmZhAIBDAzM4OZmdmY3ZwSiQQNDQ0TipkQMj4LCwvF2FuxWKzhaB4w+OStp6cHEolk1HX25GVtbW1wc3NDe3s7OBwOrKyslLYzNjaGUChUSs5+6vTp0zh06JBK+fvvvz+1ChBCtE5LS4umQyCEzIDKykoEBQVpOgztS95kMpliIPKjyLstpkKeRY92lyy/u5VvIxaLYWQ0+p+My+WOm5EnJydj8eLFip/Ly8vx/vvvY/fu3YonWwxBbW0t/vrXv+L11183mEmIDbHOgGHW2xDrDFC9Danehlhn4EFv2dtvv601dda65K24uBi7du1Sa9vDhw9P+Q8pn7totIRR3mUi34bH4ymNl/nptuPNg2Rrazvqosze3t4GOSGvIU5EbIh1Bgyz3oZYZ4DqbUgMsc4AJvxQ4kzRuuTNzc0Ne/bsUWvb0bo6J0ooFILL5Y7a5SkvkyddNjY2GBkZQWdnp1LXqVQqRU9Pz7TEQwghhBAyHq1L3mxsbLBq1apZ+31sNhuenp6oqKhQea2srAzOzs6Kp1nlUxVUVFQozftSUVEBmUymNJUBIYQQQshM0P4JjqZZS0sLamtrlcri4uJQUVGhlMDV1dWhqKgI8fHxirKQkBAIhUKkpKQo7Z+SkgITE5MJTeRnY2ODZ5991uBa6wyx3oZYZ8Aw622IdQao3oZUb0OsM6B99WYxD08epMM+//xzAEBNTQ2uXLmC1atXw8nJCQCwbds2xXa/+c1vcOPGDaSnpyvKBgYGsH37dgwMDGDz5s3gcDg4duwYZDIZDh48CEtLS8W2J0+exAcffID4+HhERESguLgYFy9exI4dO/D000/PTmUJIYQQYrD0JnlbunTpmK89nKiNlrwBQGtrq8rapr/+9a/h6uqq8n5nzpzBN998g6amJtjb22PdunXYsGEDTYpJCCGEkBmnN8kbIYQQQoghMLgxb4QQQgghuoySN0IIIYQQHaJ1U4Xoura2Nhw/fhzl5eWoqKjA4OAg9u7di0WLFqn9HiKRSGX83SuvvAJnZ2eVbc+ePYuvv/4azc3NsLOzw/r16/Hkk09OZ5XU1tvbi3/9619IT0+HWCyGn58ffvnLX6o1keN4YxbDwsIUy4g1NTVh06ZNo2735z//GcuXL59c8FMwlXr//e9/x4ULF1TK3dzc8OWXXyqVyWQyfP311zh16hQ6Ojrg6uqKrVu3YsWKFdNWF3VNts4ymQwXL15EWloaKisr0dvbCycnJyxbtgybN29Wmeh6rM/Fzp07sXXr1mmrz8MkEgkOHDiAS5cuobe3F15eXnjhhRcQHh7+yH119dwFJl/vtLQ0/PDDD6ioqEBHRwfs7e0RHR2Nbdu2qUxounHjRjQ3N6u8R3JyMn7/+99Pa33UMdk6Hzx4cNTlDrlcLi5fvqxSri/HeqzjBwAuLi746quvFD9r4twdz8DAAL7++muUlZWhvLwcvb292LNnj9pTk03kmpeRkYHPPvsMtbW1sLS0xOrVq/HMM8+MuULTZFDyNs3q6+tx9OhRuLq6wtPTE6WlpRPaf2BgALt27UJ/fz+2bt0KIyMjHDt2DK+88goOHjyotNB2SkoK3nvvPcTFxWHTpk0oKSnB3r17MTQ0hC1btkx31cYlk8mwe/duVFdXY/PmzbCwsMCpU6ewa9cu7N+/H3PmzBl3/9dff12lrKKiAsePHx/1grJixQpERUUplQUEBEytEpMw1XoDDy74r732mlKZmZmZynb79+/HkSNHsHbtWvj6+iIjIwNvvPEGWCzWrCatU6nz0NAQ3nrrLQQEBODxxx+HlZUVSktL8dlnn6GwsBD/8z//o/LgT1hYGJKSkpTKZnJOxbfeegvXrl3Dhg0b4OrqivPnz+O1117D3r17x13TUFfPXbnJ1vvdd9+FjY0NEhMT4eDggOrqapw8eRLZ2dk4cOCASkLu4+OjcgM22oNhs2GydZZ79dVXwefzFT+z2aqdWfp0rF955RUMDg4qlTU3N+PTTz8d9To92+fueLq7u3Ho0CE4ODjA29sbRUVFau87kWtednY2/vjHPyI4OBi7du3C3bt38cUXX6CzsxOvvvrq9FWIIdOqv7+f6e7uZhiGYa5evcrExsYyhYWFau9/5MgRJjY2likrK1OU1dTUMPHx8cwnn3yiKBsaGmJ+9rOfMa+99prS/m+88QaTmJjI9PT0TLEmE3PlyhUmNjaWuXr1qqKss7OTWbVqFfOXv/xlUu/5j3/8g1m6dCnT0tKiKGtsbGRiY2OZo0ePTjXkaTHVev/tb39jEhMTH7lda2srk5CQwLz//vuKMplMxvzqV79ifv7znzPDw8OTin8yplJniUTClJSUqJR/9tlnTGxsLJOXl6dUHhsbq1TnmVZaWqry+RoaGmI2b97MvPTSS+Puq6vnLsNMrd6jXd/Onz/PxMbGMmfOnFEq37Bhg0q9NWUqdT5w4AATGxvLdHZ2jrudvh3r0Rw6dIiJjY1VOa9n+9x9FLFYzLS1tTEMwzDl5eVMbGwsc+7cObX2ncg17+mnn2aee+45RiqVKsr27dvHLF26lKmpqZl6Rf4fjXmbZqamphAKhZPe/9q1a/D19YWfn5+izN3dHSEhIbh69aqirLCwEN3d3XjiiSeU9l+3bh0GBweRlZU16RgmIy0tDdbW1kpN5ZaWlkhISEBGRoZinVh1SSQSpKWlITg4GPb29qNuMzg4OOqatLNpuuo9MjKC/v7+MV/PyMjA8PAw1q1bpyhjsVh44oknIBKJJtzCOxVTqbOxsTEWLFigUh4bGwsAKhNoy4nFYojF4ilG/mhpaWngcDhITk5WlPF4PKxZswalpaVoaWkZc19dPXeBqdV7tCEh8s9GTU3NqPtIpVKVFpzZNpU6P6y/vx/MGJM26NuxHs3ly5fh5OQ06nkNzN65+yhcLnfSE+yqe82rqalBTU0N1q5dq9RFum7dOjAMg2vXrk2pDg+j5E2LyGQy3L17F76+viqv+fn5oaGhAQMDAwCAyspKAFDZdv78+WCz2bhz587MB/yQO3fuwMfHR6XbwM/PD0NDQ6ivr5/Q+2VnZ6Ovrw8rV64c9fVDhw7hsccew4oVK7Bz507k5uZOOvapmI56Dw0NYdWqVVi1ahXWrFmD999/X3Gc5SorK8Hn8+Hu7q7ye+Svz5bpPtYA0NHRAQBKXYtyFy5cQGJiIlauXImnn34aqampkwtcDZWVlXB1dVXptpb/nauqqkbdT5fPXXlMk6n3WOTrQj88wblcYWEhEhMT8dhjj2Hjxo349ttvJxf0FE1HnTdt2oRVq1YhKSkJb775puJz/PDvAPT3WN+5cwe1tbVjjrudzXN3Jql7zZMfz5+Og7O1tYWdnd20XqdpzJsW6enpgUQiGfXuQF7W1tYGNzc3tLe3g8PhwMrKSmk7Y2NjCIVCxcVztnR0dGDhwoUq5fK429vb4eXlpfb7paamgsvlIi4uTqmczWYjPDwcS5cuha2tLRobG3Hs2DG89tpreOuttya0RNl0mGq9bWxs8NRTT2HevHlgGAY5OTk4deoUqqursXfvXsXdW3t7O6ysrFTGgz38uZgt032sAeCrr76CmZkZIiMjlcoDAwORkJAAJycntLe347vvvsObb76J/v5+ldaM6dDe3v7I8280unzuApOv91iOHj0KDoejcv56enoiKCgIc+bMQU9PD86fP4///d//RVtbG15++eXJV2ASplJnc3Nz/PznP0dAQACMjY1RUlKCkydPory8HPv371ckRvp+rOXJ2Gg32bN97s4kda958uM51t93Oo83JW/jkMlkanfLcbncKa+wIG9aNjY2HvX9H95GLBaP+eQKl8udUjP1ZOotFosVMf70dXm86urv70dWVhYiIyNVnlZzcHDAe++9p1T22GOP4ZlnnsGHH344peRNE/V+8cUXlX5evnw55syZg/379yMtLU3xIIJYLFbrczFRmj7WAHD48GHk5+fjd7/7ncrx/uijj5R+Xr16NV544QXs27cPq1atUhkMP1WT/Ttry7k7WdP5+UpNTcX333+Pp556SuXhlX/84x9KP69evRp/+MMfcOzYMTz55JNjDpGYCVOp84YNG5R+jo+Ph5+fH958802cPHlS8TSlPh9rmUyGH374AT4+PvDw8FB5fbbP3Zmk7jVP3n061rY/7VGZCkrexlFcXIxdu3apte3hw4dVurQmSv5hHu3LVP6hkG/D4/EwPDw86vtIJJIpnRiTqTePxxt1rNNP41ZHWloaJBLJmF2mPyUUCrFq1SocOXIEra2tk/4C0HS95TZu3IgDBw4gPz9fkbzxeDy1PhcTpek6X7lyBZ9++inWrFmj1t24sbExfv7zn+O9997D7du31XoicCIm+3fWlnN3sqbr81VcXIy3334bERER2LFjxyO3Z7FY2LhxI3Jzc3Hjxg0kJiZOLPApmO5zauXKlfjwww9RUFCgSN70+VjfuHEDIpFIJZEdy0yfuzNJ3WuePGkba9vpPN6UvI3Dzc0Ne/bsUWvbyQ6EfJhQKASXyx21aVVeZmtrq/h9IyMj6OzsVGqSl0ql6OnpmVI8k6m3tbX1uHFPJJ7U1FQIBALExMSovY88Yevt7Z108qbpesvxeDwIhUL09PQo/b6ioiIwDKPUwvvTz8VEabLOeXl5+Pvf/47o6OgJPUIvP74P/32mi42NDUQikUr5o/7O2nLuTtZk6/2wqqoq7NmzB56ennjjjTfUntNqJo/neKajzj9lb2+vct7q47EGHlyn2Wz2hOaZ1NSxnip1r3kPd6M6ODiobPvww0xTRcnbOGxsbNSewG86sNlseHp6oqKiQuW1srIyODs7w9TUFMC/58qpqKhQ6iqsqKiATCab0lw6k6m3j48PSkpKIJPJlAZ1lpeXw8TERK35zoAH4y2KioqQlJQ0atPzWBobGwGMPuBdXZqs98MGBgbQ3d2tNNjb29sbZ8+eRW1trVIXRVlZmeL1ydBUncvKyvD6669j/vz5+Mtf/jKhySvlx3q0wfBTJZ//qb+/X2lA96P+ztpy7k7WZOst19DQgN///vewsrLCO++8o6irOmbyeI5nqnX+KYZh0NzcrHT89PFYA8qzAUwkydXUsZ4qda958uN5+/Zt+Pv7K7Zra2uDSCRSesJ3quhpUw1qaWlRmRohLi4OFRUVSl8CdXV1KCoqQnx8vKIsJCQEQqEQKSkpSvunpKTAxMRk1gfux8XFoaOjA+np6Yqyrq4uXL16FTExMUqJWENDAxoaGkZ9nx9++AEymWzMLtOuri6VMpFIhHPnzsHLy2vSLVCTNZV6i8XiUcdAfP7552AYRmnw/pIlS2BkZISTJ08qyhiGQUpKCuzs7BAYGDjdVRvTVI91TU0Ndu/eDUdHR7z99ttjdiWMdqwHBgZw/PhxWFhYqLWCxUTFx8djZGQEp0+fVpRJJBKcO3cO/v7+irtpfTp3ganVu729Ha+++irYbDbefffdMb+Ye3p6MDIyolQ2PDyMI0eOwNjYeEKr0EyHqdR5tM/mqVOn0NXVpXTe6tuxlnvUbACaOHenS1tbG2pra5W6u9W95s2dOxdubm44c+aM0mf91KlTYLFYKg/wTAW1vM2Azz//HMC/5zi6ePEiSkpKAADbtm1TbPe3v/0NN27cUPpArFu3DmfPnsXu3buxefNmcDgcHDt2DFZWVti8ebNiOx6Ph+3bt+ODDz7An/70J0RERKC4uBiXLl3Cjh07pjTX3GTEx8fj+PHjeOutt1BTU6OYgVomk+H5559X2va3v/0tAODYsWMq75OamgpbW9sxL+Qff/wxGhoaEBoaCltbWzQ3N+P06dMYGhrCb37zm+mv2CNMpd4dHR3Yvn07VqxYATc3NwBAbm4usrOzERkZiSVLlij2tbe3x4YNG/DVV19heHgYfn5++PHHH1FSUoL/+q//AofDmaUaT63OAwMD+P3vf4/e3l5s3rxZZZ4rZ2dnRSL63XffISMjAzExMXBwcEB7ezvOnTuHlpYW/PGPfxx10PVU+fv7IyEhAfv27UNXVxdcXFxw4cIFNDc3Y/fu3Yrt9OncBaZW7z/84Q9obGzEU089hZs3b+LmzZuK16ysrBQz72dmZuKLL75AXFwcnJyc0Nvbi9TUVNy7dw87d+6c9S7EqdR5w4YNWLZsGTw9PcHlcnHz5k1cuXIFPj4+KvOn6dOxlhtrNgA5TZy76jhx4gT6+voU3Z2ZmZlobW0FADz55JMQCATYt28fLly4gG+++QZOTk4AJnbN++Uvf4k9e/bg1VdfxfLly3H37l2cPHkSP/vZz0Z9sGOyKHmbAQcOHFD6+dy5c4r/P5y8jcbU1BR79+7FP//5T3zxxReK9RF//etfq9zRrlu3DkZGRvjmm2+QmZkJe3t7/PrXv1Z7AOl04nA4eOedd/DRRx/hxIkTEIvF8PX1xZ49exSJyaPU1dXh9u3b2Lhx46jLzABAeHg4GhsbcfLkSfT29kIgECAoKAjPPPOMRu7mplJv+bi+vLw8XLhwATKZDC4uLti5cyc2b96s8jd48cUXYW5ujtOnT+PChQtwdXXF66+/rvaDHdNlKnXu7u5WXCw/+eQTldeTkpIUyduCBQtw69YtnD17Fj09PTAxMYGfnx92796N0NDQ6a/Y//vP//xPODg44OLFi+jr64OnpyfefvttBAcHj7ufrp67cpOtt3xesIfXtZQLDg5WJG+enp5wd3dHamoqurq6YGRkBB8fH/zlL39BQkLCtNdHHZOt88qVK3Hr1i3Fw1UODg546qmn8Mwzz8DExERpW3061sC/ZwOIioqCQCAYdRtNnbuP8s033yitzZqenq5IThMTE8esz0SueTExMfjrX/+KQ4cOYe/evbCwsMDWrVvx7LPPTmtdWMxYU0MTQgghhBCtQ2PeCCGEEEJ0CCVvhBBCCCE6hJI3QgghhBAdQskbIYQQQogOoeSNEEIIIUSHUPJGCCGEEKJDKHkjhBBCCNEhlLwRQgghhOgQSt4IIYQQQnQIJW+EEEIIITqE1jYlhBA1FRYWIiUlBbdu3UJXVxf4fD48PDyQkJCA5OTkcRfc3rZtG7hcLvbv34+mpiZs2rQJERERePfdd2exBoQQfUDJGyGEPMLw8DA++OADnDlzBnw+H5GRkXBxcUF/fz/y8vKwd+9enD59Gu+88w4cHBxU9m9oaMC9e/ewfft2DURPCNE3lLwRQsgj7Nu3D2fOnIGvry/+9re/wc7OTvHayMgIPv/8cxw6dAivvfYa9u3bBx6Pp7R/RkYGAGDJkiWzGjchRD/RmDdCCBlHfX09jh07BqFQiH/84x9KiRsAcDgcPP/881ixYgXu3buHb7/9VuU9MjIy4OTkBC8vr9kKmxCixyh5I4SQcVy4cAEymQxr166FtbX1mNtt27YNAHD27Fml8q6uLty6dYta3Qgh04aSN0IIGcetW7cAAKGhoeNu5+7uDltbWzQ2NqK9vV1RnpWVhZGREcTGxs5onIQQw0HJGyGEjEOeiNnb2z9yW/k2bW1tirKMjAxYWFhgwYIFMxMgIcTgUPJGCCHTTCaTAQDEYjHy8vIQFRUFDoej4agIIfqCkjdCCBmHjY0NAKC1tfWR28q3kT/UkJeXh6GhIRrvRgiZVpS8EULIOAIDAwEABQUF425XW1uLtrY2mJubKx5syMjIAJfLRURExIzHSQgxHJS8EULIOJKSksBms3H27Fl0dXWNud3hw4cBAImJiWCz2ZDJZMjKykJYWBj4fP4sRUsIMQSUvBFCyDjmzJmDjRs3oru7G//xH/+h9DAC8GB82+eff45Lly5BIBBgw4YNAIDS0lJ0dnZSlykhZNrRCguEEPIIO3fuRH9/P86cOYMtW7YgKipKaXms+/fvg8vl4r//+7/h7OwMAPjxxx/BZrMRExOj4egJIfqGkjdCCHkEIyMj/OEPf8CyZctw+vRp3Lx5E+np6RgZGQEABAQE4PXXX4eLi4tin4yMDPj7+487sS8hhEwGJW+EEKKm0NBQpcl66+vr8dJLL6GpqQkMwyjKa2pqcP/+ffzsZz8b9X2cnJyQnp4+4/ESQvQTjXkjhJBJmjNnDt5880309PTgd7/7HUQiEQBaiJ4QMrNYzMO3i4QQQiYsMzMTt2/fhru7O5YvX67pcAgheo6SN0IIIYQQHULdpoQQQgghOoSSN0IIIYQQHULJGyGEEEKIDqHkjRBCCCFEh1DyRgghhBCiQyh5I4QQQgjRIZS8EUIIIYToEEreCCGEEEJ0CCVvhBBCCCE65P8ATnTpzzdcok4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "loading files...\n", - "Simulated PD, PA: 70%, 83 degrees E of N\n", - "Simulated Q/I, U/I: -0.2, 0.7\n", - "0.9382742950043191 0.12342890897514582 1.34077 rad 3.8511941530269103\n" - ] } ], "source": [ "print('modularion factor:', mu, '+/-', mu_err)\n", - "PD, PD_err, PA, PA_err = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu, show=True)\n", - "\n", - "print('loading files...')\n", - "print('Simulated PD, PA: 70%, 83 degrees E of N')\n", - "sim_pd, sim_pa = 0.7, np.radians(83)\n", - "sim_u = sim_pd / np.sqrt((np.tan(2*sim_pa))**2 + 1)\n", - "sim_q = sim_pd / np.sqrt((np.tan(2*sim_pa))**2 + 1) * np.tan(2*sim_pa)\n", - "print('Simulated Q/I, U/I: %.1f, %.1f'%(sim_q, sim_u))\n", - "\n", - "print(PD, PD_err, PA, PA_err)\n" + "polarization = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu, show=True, ref_pdpa=(0.7, 83), ref_label='Simulated')" ] }, { @@ -717,10 +531,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "id": "7e456b61", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'polarization' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[17], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mRelativeX:\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;28mround\u001b[39m(\u001b[43mpolarization\u001b[49m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mangle\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mtransform_to(MEGAlibRelativeX(attitude\u001b[38;5;241m=\u001b[39mattitude))\u001b[38;5;241m.\u001b[39mangle\u001b[38;5;241m.\u001b[39mdegree, \u001b[38;5;241m3\u001b[39m), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegrees\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mRelativeY:\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;28mround\u001b[39m(polarization[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mangle\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mtransform_to(MEGAlibRelativeY(attitude\u001b[38;5;241m=\u001b[39mattitude))\u001b[38;5;241m.\u001b[39mangle\u001b[38;5;241m.\u001b[39mdegree, \u001b[38;5;241m3\u001b[39m), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegrees\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mRelativeZ:\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;28mround\u001b[39m(polarization[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mangle\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mtransform_to(MEGAlibRelativeZ(attitude\u001b[38;5;241m=\u001b[39mattitude))\u001b[38;5;241m.\u001b[39mangle\u001b[38;5;241m.\u001b[39mdegree, \u001b[38;5;241m3\u001b[39m), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegrees\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'polarization' is not defined" + ] + } + ], "source": [ "print('RelativeX:', round(polarization['angle'].transform_to(MEGAlibRelativeX(attitude=attitude)).angle.degree, 3), 'degrees')\n", "print('RelativeY:', round(polarization['angle'].transform_to(MEGAlibRelativeY(attitude=attitude)).angle.degree, 3), 'degrees')\n", @@ -763,7 +589,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "test_cosipy_env", "language": "python", "name": "python3" }, From 0c0dd201eeac36df5fac80e98cddf82dd553d7df Mon Sep 17 00:00:00 2001 From: nmik Date: Thu, 2 Jan 2025 14:26:52 -0600 Subject: [PATCH 10/31] finished draft, to be checked --- cosipy/polarization/polarization_stokes.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 23809604..51ea0de4 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -546,7 +546,7 @@ def calculate_mdp(self, total_num_events, mu, bkg_rate=22.0): return MDP99 - def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref_qu=(None, None), ref_pdpa=(None, None), ref_label=None): + def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref_qu=(None, None), ref_pdpa=(None, None), ref_label=None, mdp=None): """ Calculate the polarization degree (PD), polarization angle (PA), and their associated 1-sigma uncertainties given Q and U measurements @@ -629,6 +629,9 @@ def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref ref_u = ref_pdpa[0] * np.sin(2*ref_pdpa[1]) plt.plot(ref_q, ref_u, 'x', markersize=20, color='tab:green') plt.annotate(ref_label, (ref_q, ref_u), textcoords="offset points", xytext=(0,10), ha='center', color='tab:green', fontsize=12) + if mdp != None: + c_mdp = plt.Circle((0, 0), radius=mdp, facecolor='tab:red', alpha=0.3, linewidth=1, linestyle='--', label='MDP') + plt.gca().add_artist(c_mdp) plt.plot(Q, U, 'o', markersize=5, color='red',label='Measured') pol_c = plt.Circle((Q, U), radius=polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1, label='Polarized source') From 36870ddbe4de74bd144c430ecc3122c87f63f10d Mon Sep 17 00:00:00 2001 From: nmik Date: Thu, 2 Jan 2025 14:37:45 -0600 Subject: [PATCH 11/31] finished draft, to be checked --- cosipy/polarization/polarization_stokes.py | 11 +++-------- 1 file changed, 3 insertions(+), 8 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 51ea0de4..a045c4bc 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -630,11 +630,11 @@ def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref plt.plot(ref_q, ref_u, 'x', markersize=20, color='tab:green') plt.annotate(ref_label, (ref_q, ref_u), textcoords="offset points", xytext=(0,10), ha='center', color='tab:green', fontsize=12) if mdp != None: - c_mdp = plt.Circle((0, 0), radius=mdp, facecolor='tab:red', alpha=0.3, linewidth=1, linestyle='--', label='MDP') + c_mdp = plt.Circle((0, 0), radius=mdp, facecolor='tab:red', alpha=0.3, linewidth=1, linestyle='--', label=r'MDP$_{99}$') plt.gca().add_artist(c_mdp) plt.plot(Q, U, 'o', markersize=5, color='red',label='Measured') - pol_c = plt.Circle((Q, U), radius=polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1, label='Polarized source') + pol_c = plt.Circle((Q, U), radius=polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) pol_c2 = plt.Circle((Q, U), radius=2*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) pol_c3 = plt.Circle((Q, U), radius=3*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) plt.gca().add_artist(pol_c) @@ -645,12 +645,7 @@ def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref plt.xlabel('Q/I') plt.ylabel('U/I') plt.tight_layout() - - plt.xlim(-1, 1) - plt.ylim(-1, 1) - plt.xlabel('Q/I') - plt.ylabel('U/I') - plt.tight_layout() + plt.legend(fontsize=15) plt.show() From 409cc18a8f1e166825e3c8da1ff3a5db1e8fb55d Mon Sep 17 00:00:00 2001 From: nmik Date: Thu, 2 Jan 2025 14:37:57 -0600 Subject: [PATCH 12/31] finished draft, to be checked --- .../polarization/Stokes_method.ipynb | 115 +++++++++++------- 1 file changed, 70 insertions(+), 45 deletions(-) diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 2b4e1988..7c717765 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -31,12 +31,12 @@ { "data": { "text/html": [ - "
13:44:38 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "
14:35:27 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:44:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370358;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=107476;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m14:35:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402146;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=335664;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -51,7 +51,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=378263;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=256363;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=434982;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=453344;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -66,7 +66,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=690627;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=209244;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=650234;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=830898;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -76,11 +76,11 @@ { "data": { "text/html": [ - "
13:44:39 INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
14:35:28 INFO      Starting 3ML!                                                                     __init__.py:39\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:44:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=943246;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=339507;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m14:35:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=772736;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243163;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -93,7 +93,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=273500;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=598006;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=972732;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=89323;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -106,7 +106,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891273;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=607490;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=277069;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=642439;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -119,7 +119,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105087;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=663583;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=204851;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=187390;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -128,11 +128,11 @@ { "data": { "text/html": [ - "
13:44:39 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
14:35:28 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:44:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=924500;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=313168;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m14:35:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370761;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=827232;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -145,7 +145,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942000;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=917679;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=888769;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=817867;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -158,7 +158,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=533574;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=181138;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=201562;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=597981;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -172,7 +172,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=954214;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967596;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=126549;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938664;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -187,7 +187,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=19618;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62916;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=349329;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=936162;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -202,7 +202,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=314192;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=707597;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=216163;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933859;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -216,7 +216,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=75715;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=261323;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=732135;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=653951;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -230,7 +230,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=260171;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=675966;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=805219;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=317888;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -245,7 +245,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=318233;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=542346;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=500123;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=227499;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -260,7 +260,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=223049;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=226135;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=85068;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=304169;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -434,11 +434,9 @@ "metadata": {}, "outputs": [], "source": [ - "# unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(TOT_NUM_EVENTS, show=True)\n", - "# np.save('unpol_qs.npy', unpol_qs)\n", - "# np.save('unpol_us.npy', unpol_us)\n", - "\n", - "unpol_qs, unpol_us = np.load('unpol_qs.npy'), np.load('unpol_us.npy')" + "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(TOT_NUM_EVENTS, show=True)\n", + "np.save('unpol_qs.npy', unpol_qs)\n", + "np.save('unpol_us.npy', unpol_us)" ] }, { @@ -448,9 +446,7 @@ "metadata": {}, "outputs": [], "source": [ - "# mu, mu_err = source_photons.calculate_average_mu(bins=20, show=True) \n", - "mu = 0.310\n", - "mu_err = 0.001" + "mu, mu_err = source_photons.calculate_average_mu(bins=20, show=True) " ] }, { @@ -478,7 +474,7 @@ "Background rate: 22.0 ph/s\n", "MDP_99%: 49.0599013039517 %\n", "\n", - " MDP: 49.0599013039517 %\n" + "MDP: 49.0599013039517 %\n" ] } ], @@ -486,12 +482,12 @@ "# Compute the MDP for this observation, assuming a bkg rate\n", "\n", "mdp = source_photons.calculate_mdp(TOT_NUM_EVENTS, mu, bkg_rate=22.0)\n", - "print('\\n MDP:', mdp*100, '%')" + "print('\\nMDP:', mdp*100, '%')" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 10, "id": "f19a7f75", "metadata": {}, "outputs": [ @@ -500,25 +496,31 @@ "output_type": "stream", "text": [ "modularion factor: 0.31 +/- 0.001\n", - "------- Q/I, U/I -0.5680315857794365 0.37067849501243155\n", - "PD: 67.83 +/- 0.12 %\n", - "PA: 79.64 +/- 5.34 deg\n" + "------- Q/I, U/I -0.5680315857794365 0.37067849501243155\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAJvCAYAAAAtNjaIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1hc55X/PzMww9BF7yCqKJLoVd2SJduy5Sq3uMhxiUt2/ds4idM3Gydx4t1s4k1c4m7HiZvc5aJqNSQ6ooMA0UXvHYaZ3x/XjIWFJMoMwwzv53l4JIZbzlDu/d7znvM9Mq1Wq0UgEAgEAoFAYBLIjR2AQCAQCAQCgWDmCPEmEAgEAoFAYEII8SYQCAQCgUBgQgjxJhAIBAKBQGBCCPEmEAgEAoFAYEII8SYQCAQCgUBgQgjxJhAIBAKBQGBCCPEmEAgEAoFAYEII8SYQCAQCgUBgQgjxJhAIBAKBQGBCWBo7AH0xNDTE22+/TWlpKWVlZfT39/PTn/6UK6+8ckb79/f38/zzz3P06FFGR0eJiIjg4YcfZsWKFedte/z4cV599VXq6upYtmwZV111FXfddReWlmbz7RQIBAKBQLBIMZvMW29vL6+99hp1dXWEhITMal+NRsPjjz/OgQMHuOGGG3jwwQfp7u7m0UcfpaGhYcq2GRkZ/PznP8fOzo5HH32UdevW8cYbb/D000/r8+0IBAKBQCAQTIvZpIpcXFz48MMPcXFxoby8nAceeGDG+x4+fJji4mJ+85vfsHHjRgAuu+wybr/9dl599VV+9atf6bZ99tlnCQ4O5k9/+pMu02ZjY8Obb77JTTfdREBAgF7fl0AgEAgEAsG5mE3mTalU4uLiMqd9jxw5grOzM+vXr9e9tmzZMjZt2sTx48cZGxsDoLa2ltraWq655popS6TXX389Wq2Ww4cPz+s9CAQCgUAgEFwKs8m8zYfTp08TGhqKXD5Vy0ZERPDpp5/S0NBAcHAwp0+fBjivDs7V1RU3NzcqKysveI6Ojg46Ozt1n/f391NXV0dYWBhKpVKP70YgEAgEAoE+GRsbo7m5maSkJJYtW2bscIR4A+jq6iI6Ovq81yczeZ2dnQQHB+vE13QZPhcXlyni7Nt88sknvPbaa/oJWCAQCAQCwYLzi1/8gq1btxo7DCHeAEZHR6fNfk2+Njo6CqBbPr3QtkNDQxc8x44dO1izZo3u86qqKv74xz+yfft21q5di6ur67zeg0Cw1BkZGaGnp4fu7m66u7vp6+tjcHCQwcFBRkZGpmxrZWWFra0ttra22NnZYWtri7W1NUqlEqVSiUKhOO//MplM7zFPTEwwPj7O+Pg4Y2Njun8nP4aGhnTvYWBggIGBAdRq9ZRjWFtb696Ho6MjTk5OODk5sWzZMhQKhd5jFgiWEvX19dTV1WFnZ8ezzz6Lp6ensUMChHgDpAv5pDA7l8nXrKysgG9E24W2ndxuOlxdXacVaOHh4fT09LBixQoh4ASCGTA4OEh7e/uUj7a2NgYHBwGQy+U4Ozvj5uZGSEgIDg4OUz7s7e1NulRhZGSEvr6+aT86Ozs5c+aMbltHR0fc3Nxwc3PD3d0dNzc3XF1dUalURnwHAoFpUFdXx8jICBs2bECj0QBc9D6/kAjxBjg7O0+75PntZdJzl1E9PDzO2zYiImLW516xYgU9PT1kZ2ezbt067OzsZn0MgcAc0Wq19Pb20tjYSENDAy0tLbS3t+sy3BYWFri4uODm5kZiYqJOpLi4uGBhYWGUmHt7ezl69Cjr16/H0dHRIOdQqVSoVCrc3d2n/frY2BgdHR1TxG1FRQUZGRlotVoAHBwccHNzw8vLCz8/P3x9fbG1tTVIvAKBKaLRaKiuriYwMJDQ0FAqKiqMHdIUhHgDQkNDKSwsRKPRTGlaKCsrQ6VS4efnp9sOoKKigsjISN12kxfKHTt2zPrcMpmMhIQEqqursbGxmec7EQhMl/Hxcc6ePasTa42NjQwMDADSA5a3tzdBQUE6kebs7Gw0kbaYUSqVeHt74+3tPeX18fFxOjs7p2QrCwoKOH78OABOTk74+vrqxJyHh4f4/gqWLHK5nHXr1i1a8/3FGZUB6ejoYHBwEB8fH90PZcOGDRw+fJijR4/qfN56enr46quvSEtL0y2xBAYG4u/vz6effsqOHTt0F7aPPvoImUzGhg0b5hSTpaWlroO1t7cXlUq1aFKzAoEh0Gq19PT06ERaY2MjLS0taDQalEolPj4+xMbG4uvrK7JCekKhUODp6TmlZker1dLX1zfl51BaWsrExAQKhQJvb2/dz8DX1xd7e3sjvgOBwPD09fVRXFxMfHz8or4Pm5V4e//99xkYGNAtd6anp9PW1gbAjTfeiJ2dHS+88AJffvkl77zzDl5eXgBs3LiR3bt38+STT1JbW4ujoyMfffQRGo2G7373u1PO8fDDD/PTn/6Uxx57jM2bN3PmzBk+/PBDrr76apYvXz6v+LVaLbm5uVhaWpKWlrZoFb9AMBdGRkY4c+YMVVVVVFdX09vbC0jlCH5+fsTFxeHr64u7u/t5tj0CwyCTyXB0dMTR0ZGVK1cCoFaraW5u1om5oqIi0tPTAXR1hMHBwQQEBIiGCIFZMTQ0REZGBiqVatFnnc1KHbzzzju0tLToPj969ChHjx4FYOvWrResJ7OwsOCpp57i2Wef5f3332d0dJTw8HB++tOf4u/vP2XbtLQ0fvvb3/Laa6/x9NNP4+joyB133MGuXbvmHf/kEmp6ejo5OTkkJSWJm5jAZNFoNJw9e5bq6mqqqqpobGxEq9Xi6upKREQEQUFB+Pr6inKBRYalpSV+fn66chGQshH19fWcOXOGkpISTp48iaWlJQEBATox5+bmZpCOXIFgIRgbGyMjIwNLS0uSk5MXffJEpp2sYBUsKBUVFdx///28+OKL55n+dnZ2kpGRgZeXF7GxseKCKDAZ+vr6dGLtzJkzDA8Po1KpCAoKIjg4mJCQEIMV8i8GNBoNw8PDWFtbm+2Dl1arpaOjg6qqKqqqqqirq0OtVuPg4KD7GQcFBWFtbW3sUAWCGaHVaklPT2doaIg1a9ZMW6ZxsXu2MVjc0nKJ4uLiQlxcHEVFRQwPD4vMhGBR097eTklJCaWlpbS1tSGTyfD29iYpKYng4GB8fX3NVsh8G7lcbvb1eTKZTNc0kpqayvj4OHV1dTrRnp+fj0wmw9fXl8jISCIjI81asAtMH5lMRmBgoM7z0RQQ4m2R4uXlhZubG5aWlmi1WpF9EywqOjo6KCkpoaSkhLa2NqysrAgPD2f9+vUEBQUt2QeOoaEhysvLCQ8PXzLfA4VCQUhICCEhIWzbto3e3l6qq6upqKjgwIED7N27Fz8/P6KiooiMjMTBwcHYIQsEgJRxa2trw8PDAx8fH2OHMyuEeFvEWFpaotFoyMrKwsfHZ0oNikCw0HR2duoEW2trK1ZWVqxYsYLNmzcTHBy86GtEFoLx8XGampoIDg42dihGw9HRkbi4OOLi4hgZGaGiooKSkhL279/Pl19+ib+/v07Iie5VgTEpKyujurraoL6MhkJcbRc5crkca2trCgoKUCqV55kDCwSGpKurSyfYWlpaUCqVrFixgk2bNhESEiIEm+CiqFQqoqOjiY6OZmRkhPLyckpLS9m3b995Qk4YlAsWkurqaqqrq1m5cqXJCTcQ4s0kWL16NWNjY+Tm5pKamoqTk5OxQxKYMaOjoxQXF5OXl0dTUxNKpZKwsDA2bNhASEiIsIcQzAmVSkVMTAwxMTEMDw/rMnJffvklX3zxBcHBwcTFxbFixYpFb9MgMG0m/QxDQ0MJDAw0djhzQog3E0AmkxEXF0dGRgaZmZls2rRpUZsHCkwPrVZLc3Mzubm5FBUVMT4+TkhICDfffDOhoaFCsAn0irW19RQhV1ZWRl5eHu+++y52dnbExMQQFxeHs7OzsUMVmCFNTU34+/sTHh5u7FDmjBBvJoKFhQVJSUk0NzcL4SbQGyMjIxQVFZGbm0tLSwsODg6kpaURGxtrkksJxsbKyoqwsDDxNzoLrK2tdTVyra2t5OXlkZOTw/HjxwkMDCQ+Pp7w8HCxRC+YN5PNf4mJiSbfBCj+GkwIhUKhMw1uaWnBxcVFZEQEs0ar1dLY2Ehubi4lJSVMTEwQFhbGZZddRkhIyJKx9TAEKpVqUXhAmSoeHh5ceeWVbNmyhdLSUvLy8ti9ezc2NjZER0cTHx+Pq6urscMUmCADAwNkZ2cTHx9vFh3PQryZIOPj4xQUFGBnZ0dKSoqoDxHMiLGxMfLz88nNzaWtrY1ly5axbt06YmNjRdefnlCr1XR3d+Pk5CQyRfNAoVDoGh3a29vJy8ujoKCAkydPEhAQQEJCApGRkeLaJ5gRIyMjZGRkYGFhYTbm0eLqYoIoFAqSkpI4efIkeXl5JCQkmHwKWGA4BgYGyMzMJCcnRzf6bdu2bQQFBYnfGz0zODhIRkaGSVoPLFbc3NzYtm0bmzdvpry8nNzcXN5//30OHDhASkoKcXFxYplacEHGx8fJzMxEq9WSkpJiNqtVQryZKE5OTiQkJJCVlUVhYSHR0dHGDkmwyOjo6ODEiRMUFBRgYWFBfHw8KSkpQlQITBJLS0tWrlzJypUraW1t5cSJE+zfv58jR46QmJhIcnKysBsRnEd+fj7Dw8OsWbPGbLJuIMSbSePu7k5MTAzV1dWMj4+bzROFYH7U19dz4sQJysvLsbOzY9OmTSQkJKBSqYwdmkCgFzw8PLj++uu57LLLyMzMJDMzkxMnThAdHU1aWpqoixPoCAsLQ6PRmF1piBBvJo6vry/e3t7I5XI0Go0oNl+iaLVaysvLOXHiBA0NDbi5uXHttdeyatUqUXslMFscHR3ZunUr69evJycnh8zMTPLy8lixYgVr1qzBz89PlAYsURoaGvDx8WHZsmXGDsUgiKu6GSCXyxkdHSU9PZ2IiAi8vLyMHZJggZiYmODUqVOcOHGCzs5OAgICuP322wkNDRU3LSMwOZhePEQtLCqVirVr15KSkkJRUREnTpzglVdewdfXl7Vr17JixQrx97CEOH36NBUVFWY9lUiINzNBqVSybNky8vLySE5OFssGZo5Go6GoqIivvvqK3t5eIiIiuP766/H19TV2aEsae3t7LrvsMmOHsWSxtLQkNjaWmJgYKisrSU9P5+2338bb25vNmzeLJp0lQF1dHRUVFYSHh5utcAMh3swGmUxGTEwMY2NjZGdns2bNGrPwshFMRavVUlZWxldffUV7ezsRERHcfvvtuLu7Gzs0gWDRIJPJCAsLIywsjNraWg4ePMg//vEPli9fzmWXXabzyxSYF83NzRQVFREYGEhoaKixwzEoQryZEXK5nISEBE6cOEFmZiaXXXaZ8EEyE7RaLdXV1Rw6dIizZ88SHBzMddddh4+Pj7FDE5xDX18fJ0+eJDU1VTw8LRKWL1/Od7/7XSorKzl06BCvvPIKoaGhXHbZZaLExMzo6enBy8uLqKgoY4dicIR4MzMsLS1JTk6mr69PCDczob6+noMHD1JXV4e/vz+7du1i+fLlxg5LMA1arZaxsTG0Wq2xQxGcw2QmLjQ0lNLSUg4dOsTf//53oqKi2LRpkygzMXEmm/UiIiJ0I7DMHSHezBArKyvc3NzQarXU1tbi5+cnOg5NkObmZg4dOkRlZSWenp585zvfISQkZElcmAQCQyCTyYiKiiIiIoKCggIOHz7MM888Q0xMDBs2bDDbzkRzZmhoiBMnTrBq1So8PDyWzPVR3NHNmOHhYcrLy2ltbSUpKUl0wJkIPT097N+/n5KSElxdXdm5cyeRkZFL5qIkEBgauVxObGwsq1atIjc3l6NHj1JYWEhiYiIbN24UnogmwtjYGBkZGchksiUnvIV4M2NsbGxITEwkMzOTU6dOERsbKwTAImZ8fJz09HSOHz+OtbU11157LdHR0UJ0CwQGYrLMJDY2lszMTI4dO0ZhYSFbtmwR18tFzsTEBJmZmajVatasWbPkRqQJ8WbmuLq6EhcXR05ODlZWVkuikNPUmDTY3bt3L/39/aSmprJ+/XqUSqWxQxPMEltbW9auXYutra2xQxHMAqVSybp164iJieHAgQN88skn5ObmcuWVVwr7nUVKcXExAwMDpKWlLcm/NyHelgBeXl6sWrWKjo6OJVPMaSp0dHTwxRdfUF1dTWhoKHfeeScuLi7GDkswRywtLXFycjJ2GII5Ym9vz/XXX098fDxffPEFL730ErGxsWzevFnMTV1khIeH4+fnt2RnNQvxtkRYvny5rkNRrVaLBgYjMzo6ypEjR8jIyMDR0ZHbbruNsLAwIaxNnJGREaqrqwkODhZ1UyaMv78/999/P3l5eRw8eJDS0lI2bdpEYmKi6OI3MjU1NXh7e2NlZbXklkrPRdzBlxj9/f2kp6cTFxcnjF2NgFarpbCwkP379zM6OsrGjRtJS0sTYtpMGB0d5cyZM/j6+grxZuJM+mZGRUVx6NAh9u7dS25uLldddRWBgYHGDm9JUl1dTWlpKRYWFkveaFncMZYYdnZ2uLi4kJOTQ2pqqljiWUBaWlr47LPPaGhoICoqiq1bty7ZlL9AYCpYW1uzfft24uPj+fzzz3n99deJjIzkiiuuEEbMC0hjYyOlpaWEhoYueeEGINrYlhgymYy4uDgcHR3JzMxkYGDA2CGZPRMTE3z11Ve88MILjI6Ocvfdd7Nz504h3AQCE8LT05N77rmHG264gYaGBp555hny8vKEIfMC0N7ezqlTp/Dz8yM8PNzY4SwKROZtCWJhYUFSUhLp6enk5eWxfv16Y4dktpw9e5aPP/6Y9vZ21q9fz7p160TNjEBgoshkMlavXk1YWBh79+7lk08+oaSkhB07doiHMQMyOjqKh4cH0dHRxg5l0SDE2xJFoVCQkpKCWq02dihmiVqt5siRI6Snp+Ph4cEDDzyAp6enscMSGBilUsny5cuFzYuZo1KpuPbaa4mKiuKTTz7hmWeeYevWrcTHx4umIz0yPj6OQqHA19dXWLZ8CyHeljCTBdVqtZrKykrCwsJEVkgPNDY28vHHH9PV1cXGjRtZs2aN+L4uEaytrVm1apWxwxAsECEhITzyyCPs27ePPXv26LJwopZ4/oyMjHD8+HGCgoIICgoydjiLDlHzJmBwcJCamhpRvzFPxsfH2b9/Py+//DIKhYLvfe97rF+/Xgi3JcTExAS9vb1MTEwYOxTBAmFlZcU111zDXXfdRXd3N8899xxZWVniWjoPxsfHyczMRKvV4uXlZexwFiVCvAlwdHQkPj6e1tZWCgsLjR2OSdLQ0MDzzz9PRkYGmzdv5r777hNWLEuQgYEBjh49KhqBliBBQUE89NBDREdH8/nnn/Paa6/R1dVl7LBMDo1GQ3Z2NsPDw6SkpGBtbW3skBYlQrwJAHTFoPX19VRUVBg7HJNBrVazd+9eXnnlFaytrXnwwQdZu3atmEcqECxBrKys2L59O3fffTd9fX0899xzugySYGZUV1fT3d1NUlIS9vb2xg5n0SJq3gQ6/Pz8GB0dFReaGdLZ2cnu3btpa2tjy5YtpKamCtEmEAgIDAzkoYce4sCBA3zxxRecOXOGa6+9FhsbG2OHtugJDg7G1dVV1A1eAnGnEUwhJCSE0NBQQCoYFUxPYWEhf//73xkdHeW+++5jzZo1QrgJBAIdSqWSq666ittvv536+nqef/556urqjB3WouXMmTP09vYil8uFcJsB4m4jmJa2tjYOHjxIZ2ensUNZVIyNjfHRRx/xwQcfEB4ezve+9z1RUCvQIZPJsLS0FHYRAh1hYWE89NBDODk58dprr3HkyBE0Go2xw1pU1NXVUVJSQnt7u7FDMRnEsqlgWlxdXXFxcSErK4s1a9aIMTBAa2sr7733Hr29vVx33XVER0eLm7RgCg4ODlx55ZXGDkOwyHBwcODuu+/myJEjHD58mNraWm644QZR04U0NrCoqIjAwEBCQkKMHY7JIDJvgmmZHMpsa2tLRkYGQ0NDxg7JaGi1WnJycnjxxRexsLDggQceICYmRgg3gUAwY+RyOZs2beKuu+6io6OD559/nqqqKmOHZVQ6OzvJzc3Fy8uLqKgoY4djUgjxJrgglpaWJCcnY2lpSUlJibHDMQojIyO899577Nmzh9jYWO677z7c3NyMHZZgkdLf38/hw4fp7+83diiCRUpgYCAPPvgg3t7evPnmm+zfv3/J+gLK5XI8PT2JjY0VD8OzRCybCi6KlZUVKSkpKBQKY4ey4DQ2NrJ7925GRka4+eabiYyMNHZIgkWORqOhv79f1DQJLoqtrS233347J0+e5MCBA9TV1XHjjTcumUL90dFRFAoFTk5OxMfHGzsck0Rk3gSXxMbGBoVCwdDQEIWFhUvixpSbm8urr76KnZ0dDz74oBBuAoFAr8hkMtLS0vjud7/LwMAAL7zwAmfOnDF2WAZnbGyMEydOUFRUZOxQTBoh3gQzZnh4mIaGBk6dOmW2XnATExN8/vnnfPrpp8TGxnLPPfewbNkyY4clEAjMFF9fX773ve/h4+PDm2++adamvhMTE2RmZjI2NiaaE+aJEG+CGePi4kJsbCxNTU2UlpYaOxy9MzQ0xJtvvklOTg5XX301V199tZhLKhAIDI61tTW33347KSkpfPHFF3z66aeo1Wpjh6VXNBoNOTk5DAwMkJKSgq2trbFDMmlEzZtgVnh7ezM6OkpxcTEqlYrg4GBjh6QX2traeOuttxgdHeWuu+5i+fLlxg5JYILY2NiQmJgonPQFs0Yul7N161Y8PDz45JNPaG9v55ZbbsHOzs7YoemFs2fP0tHRQVJSEo6OjsYOx+QR4k0wawIDAxkfHzebJ6fy8nI++OADnJycuPvuu8UyqWDOKBQKPD09jR2GwISJjo7GxcWFt99+mxdeeIHbbrvNLIzAfX19cXR0FN52ekIsmwrmRFhYmO4mNTAwYORo5oZWq+Xo0aO8/fbbhISEcO+99wrhJpgXo6OjVFZWMjo6auxQBCaMr68vDzzwAPb29rzyyisUFxcbO6Q5c+bMGZqamgCEcNMjQrwJ5kVtbS1Hjx6lu7vb2KHMirGxMXbv3s2hQ4fYuHEjO3fuRKlUGjssgYkzMjJCeXm5mAssmDcODg7s2rWLiIgIdu/ezcGDB02ukaGpqYmSkhL6+vqMHYrZIZZNBfPCz8+PpqYm3RgtU6jP6O3t5a233qKrq4tbbrmFiIgIY4ckEAgE56FQKLj++uvx8PDgwIEDtLW1ccMNN2BlZWXs0C5Je3s7+fn5+Pn5iWusARCZN8G8sLCwICkpCSsrKzIyMhZ9xqGlpYUXX3yRkZER7r33XnFREQgEixqZTMaaNWu4/fbbqa2t5dVXX130pSo9PT1kZ2fj7u5OdHS0scMxS4R4E8wbhUJBSkoKwKI2mZy88Nnb23Pffffh4eFh7JAEAoFgRoSGhnLvvfcyODjIyy+/TFdXl7FDuiAqlQofHx/i4+PF2CsDIcSbQC+oVCrWrFmzaDNZZWVlvPnmm/j4+LBr1y6TWN4VmB4KhQIvL68lOU5OYHjc3d259957sbCw4OWXX+bs2bPGDmkKIyMjjI2NoVKpiI6OFj6ZBkSIN4HesLa2RiaT0dnZSX5+/qIprs3JyeHdd98lPDyc22+/3STqRQSmiY2NDQkJCcLnTWAwli1bxne/+12cnJx47bXXqK6uNnZIAIyPj5OZmUlubq6xQ1kSCPEm0DtqtZqmpiajz67TarUcPnyYPXv2kJSUxI033oilpejRERgOjUbDyMjIkpj/KzAeNjY23HXXXQQEBPCvf/3L6FYiGo2G7OxshoeHWblypVFjWSoI8SbQOx4eHkRHR1NXV0dFRYVRYtBoNHz22WccPnyYzZs3c8UVV4jaC4HB6e/vZ//+/fT39xs7FIGZo1QqufXWW1m5ciW7d+8mIyPDKHFotVry8vLo7u4mKSlJeLktEGaVhhgbG+Pll19m37599Pf3ExwczH333UdiYuJF97v55ptpaWmZ9ms+Pj689dZbus/Xr18/7XYPPPAAd9xxx9yDNzP8/PwYHR2lrKwMa2tr/P39F+zcarWa999/n/Lycq699lpiY2MX7NwCgUCwUFhYWHDddddhZ2fHl19+ycDAAJs3b17QB9Xu7m5aW1uJj4/H2dl5wc671DEr8fbkk09y+PBhdu7cia+vL1988QU//vGPefrpp1m9evUF9/u3f/s3hoeHp7zW0tLCSy+9NK3wS0hI4IorrpjyWmhoqH7ehBkREhKCRqPByclpwc45MjLC22+/TWNjI7feeisrVqxYsHMLBALBQiOTybj88suxs7Nj7969DA4Ocs011yCXL8zCmrOzM5s3b0alUi3I+QQSZiPeSktLOXjwIA899BC33XYbANu2bWPXrl0899xzPPfccxfcd926dee99vrrrwNw+eWXn/c1Pz8/tm7dqqfIzZuwsDAAJiYmGBgYMOhA4sHBQd544w36+vq46667FjTbJxAIBMYkNTUVW1tbPvroI4aGhti5c6dBa3zr6uoYGhoiIiJCCDcjYDY1b0eOHMHCwoIdO3boXrOysmL79u2UlJTQ2to6q+MdOHAALy8vVq1aNe3XR0dHxfzCWVBRUcGJEycMNiZlcHCQ119/ncHBQe655x4h3AQCwZJj9erV3H777VRXV/POO++gVqsNcp6WlhaKiooMdnzBpTGbzFtlZSW+vr7Y2tpOeX3Sd6yqqmrGpqynT5+mrq6OO++8c9qvf/nll3z00UdotVoCAgK46667ps3QnUtHRwednZ26z+vq6mYUi7kQFhZGR0cHGRkZrF27Vq9WCpPCbWhoiF27duHq6qq3YwsEIyMjDA8Po1arUavVjI+PY2tri4uLC8PDw1RXV6PVatFqtWg0Gvz9/XFwcADQDamXy+UoFAosLS3x8PDAxsaGkZERRkZGsLS0xNLSEqVSuWBLXQLzJSQkhNtuu4233nqLd955h1tuuUWvGbiuri5yc3Px8vISnaVGxGzEW2dnJy4uLue9PvlaR0fHjI+1f/9+YPol05UrV7Jp0ya8vLzo7Ozkgw8+4IknnmBwcJDrrrvugsf85JNPeO2112Ycg7lhaWlJcnIy6enpOgGnj0HwehNuw8PQ1ASNjdDfD2o1jI9L/05MgIUFKBRgaSn96+AAvr7g4wPCN87kUKvVjI6O6h72qqurGRgYYHh4WCeqkpKScHZ2pqamhqqqqin7BwQE4OLigkaj0T2UyWQyZDIZFhYWuoLx3t5eBgYG0Gg0OuFnbW2NjY0NDQ0NlJeXTzmuj48PcXFxjI+P65p9rK2tUalUuv1E17TgUgQHBxtEwA0MDJCVlYWzszOxsbHid9GImI14Gx0dndbVfFIgzHSJU6PRcOjQIUJDQ1m+fPl5X3/22WenfH7VVVdx33338cILL3DllVde0AB2x44drFmzRvd5XV0dv/3tb2cUk7lgZWWlE3AtLS3zXtqclXAbGoK8PKiulgTa5EdDg/TvOVnRWePuLgm5b3+EhkJsrBB3RkSj0SCXyxkZGaG6upr+/n76+/sZGRlBoVDoGo/a2tpQq9WoVCpcXV11YgkgMDAQHx8fXebM0tJSd9OytbVlw4YNuvMNDg5SUFDA4OAgtra2JCQkXDC2gIAAPDw8dBm90dFR3fVjfHyc7u5umpubGRsbAyRxuH37dkCaGAJgb2+PnZ0ddnZ2wsNQMAVDCDgbGxsCAgIIDQ0VWWIjYzZ/7VZWVoyPj5/3+uSFb6au+qdOnaK9vZ2dO3fOaHuFQsENN9zAn/70JyoqKi7Y1erq6iqW85Budhs3bpx31u2iwk2rhTNnICMDTp6U/i0okLJoAG5u3wistLSpgsvHBxwdpezaZKbN0vKbTNzkR0/PVBE4+XH8uPTv5NxBpRLi4iAlBVJTpX/9/EA8seqdkZEROjs76enpoa+vj/7+flxdXYmLiwMkgWZnZ4efnx/29vY6cQZSsfeFUKlUMy7IVqvVdHZ2zqgWSKlUXvDvwMbGRicKJyYmdGOHJkXj8PAwXV1dU7rkU1NTcXV1pauri7GxMZycnMQ0kSWOvgTc2NgYIyMjODg4LNoRiEsNsxFvLi4utLe3n/f65JLGTIXT/v37kcvlbNmyZcbndnd3BzBYMb65MXnDqquro6uri5iYmFml388VbnfffTeuzs6SQPvqq2/E2uTvQliYJJruu08STuHhMJfOqG/fZL284GIXsaEhKC39RkB+/DH85S/S17y9vxFzl10mZeeEmJsVExMT9PT00N3djbOzM87OzrS2tlJYWIitrS0ODg4EBATofKdUKhWbNm0yctRzw8LCAltb2yn1vJOCVK1WMzAwQH9/v67OrrGxUVdTa2Njg5OTE35+fri5uS188AKjc66Ae/fdd7n55ptnJeAmJibIyspibGyMTZs2iaXSRYLZiLeQkBDy8/N1yxWTlJaW6r5+KcbGxjhy5AgxMTGzypJNDgdetmzZ7IJe4igUChobG7GysiIyMnJG++iE2+Ag965ahdMf/gDvvSctf9rbQ3IyPPigJI6Sk2GaOsgFwcYGEhKkj+9/X3qttVUSc5OC7j//E370IwgOhptvlj6io4WQuwg1NTU0NDTQ19eHVqvF0tKSyMhInJ2d8fb2xsvLSy+1lKaCpaUly5Ytm3LtWb16NaGhoXR3d+s+RkZGAKlLsLq6GmdnZ9zc3HB2dhbLX0uAuQo4jUZDTk4O/f39pKWlCeG2iDAb8bZx40befvttPvnkE53P29jYGJ9//jmRkZG6TtPW1lZGRkYICAg47xgZGRkMDAxcsHO0p6fnPIE2NDTE7t27cXR0FIaws8Tb25vR0VGKi4uxsrIiODj4otsPDgzwxRNPkJiZSdyZM1g0NICHB9x0kyR81qyRGgsWKx4ecO210gdIy69ffQXvvgvPPw9PPinVyU0KuVWrlqyQ02q19PX10d7eTltbG5GRkSxbtgy5XK7Lqjk5OWFvb6+7oUxX87pUmWx08Pb2nvK6QqFApVLR0NBAVVUVlpaWBAUFiWvXEmAuAq6wsJCOjg6SkpIM6tEpmD1mI94iIyPZtGkTL7zwAj09Pfj4+PDll1/S0tLC448/rtvud7/7HadOneLo0aPnHWP//v0olcopBcjn8sEHH3D8+HHS0tLw8PCgs7OTzz//nNbWVn7+85+Lm8ccCAwMZHR0lNLSUmxsbPDy8jp/o6oqxp99lok33uCmzk40rq7Ib7oJbrkF1q1b3ILtYigUsHWr9PHcc3DwoCTknnkGfvc7WLFCEnH33y/VyS0RysvLqa+vZ3R0FAsLiylZ8ICAgGkfvBYL1tbWREdHT6mnW0y4uLjg4uKiE8dtbW06256uri7y8/Nxd3fHzc0NNzc3LEz1b0swLd8WcLfccssFf8ZDQ0O0trYSExMjltwXIWYj3gB+9rOf4eHhwd69exkYGCAoKIg//vGPxMTEXHLfwcFBTp48SUpKCnZ2dtNus2rVKoqLi9mzZw99fX2oVCoiIiJ4/PHHiY+P1/O7WTqEh4ejUCjOX6rOzISnnkL74YdM2NhwJiqK5X//O8uuvVZqIjAnFAq44grp4/nn4cABScg9/bSUkbv1VmmJ9SJj3kyRsbExWlpaOHv2LKtXr8bGxgalUqmr0TK1ZT2lUmkSBtEymQxHR8cp2RSlUom7uzvt7e3U1tZiYWFBQEAAUVFRRoxUoG+Cg4O59dZbeeutt/joo4+44YYbpl0OtbGx4bLLLhNJiUWKTKvVao0dxFKkoqKC+++/nxdffFEsWZzD8OAgY59+iuOzz8KxY2hDQ8lcu5ajAQHccf/95y0DmT39/fDSS/DnP0t1fdu2wY9/DJs2mfSSalNTEw0NDTr/RRcXF6KionRF96bKpBj19PQ06dq7wcFBmpubUSgUBAQEMDg4SEVFBd7e3iIjZyaUlJSwe/dukpKSuOKKK3QCrqmpiaamJhISEkzqwcnQLLZ7tpmlLwQmy+go/POflD7xBB21taxJSsJm924+UKspO32aO+64Y+kJN5CaMP7jP6Smh3ffhf/+b9i8WbIf+dGPpHo/E8hCqtVqmpub8fT0RKFQ0N7ejkajYeXKlXh5eZmNpcXw8DAFBQU4OjqatHiztbWd0uQ1OjpKf38/2dnZuikRvr6+uk57gekRFRXF8PAwe/bswdbWlvXr19Pe3k5+fj6+vr5CuC1yFv9VX2DejI9LNV5PPQUtLay++mrSf/ADToaHMzAwQEl5OTfffDOBgYHGjtS4KBTwne/A7bdLS6r//d9w223w05/Cz38O99yzKGv/enp6qKur4+zZs6jVapKTk3F3dyc6Olp0rpkQzs7ObNiwgcHBQc6ePcvZs2dpbm7G3d39vGkVAtMhISGBoaEhDh06hFqtZmRkBDc3twv6lQoWD0JaC4zHgQOSNcZjj8FVV0FZGYpPPiH5vvsoKCjg448/5oorrhCmkOcik8Hll8O+fZCfL1mi3H+/ZIuSkWHs6KZQWFjIsWPHaGtrIygoiC1btugyNUK4mSa2traEhoayYcMGVq1aBUhWSYcOHeLkyZM0NTWh0WiMHKVgNqxbt464uDheffVVOjs7xXKpiSB+QoKFp7YWbrxREiGurtLYqpdekrorkUb/dHZ2snr16kvahyxpYmLgrbcgPV2aKpGaCrt2QUuLUcLp6uri1KlTOmNsHx8fkpOT2bJlCytWrFi0HZiCuTF5g/fx8SE2NhatVkteXh779+/XmQQLFj8ymYxrrrmG1NRUqquraWxsNHZIghkgxJtg4Rgehv/6L2kyQUYG/OtfcOSIlH37mtOnT7Nnzx7Wrl3Lv//7v+s6UEVfzUVIS4OsLPj732HPHkkE/+//SkvSBkaj0dDY2MiRI0dIT0+ns7NTN6bOxcUFd3f3JZVls7S0xMXFZUnNGbWwsMDX15e0tDQ2bdqEn5+froZx0o5EsDgZHx+nra0NmUzGAw88QGBgIG+99Zb4mZkAQrwJDI9WCx9+CJGRkn/Z//t/UFEh1Wydc2NvbGzkvffeIywsjCuvvFJ3AywqKqKoqMhIwZsIFhbwwANw+jTceafUzBAdLS1NG5Camhry8/NRqVSkpKRw2WWX4enpadBzLmZsbW1JS0tbsvVfdnZ2REZG6n4HGhsbyczM5PDhwzQ0NIgl1UWERqMhOzub/Px8xsfHsbS05JZbbsHR0ZE333xTjHtc5AjxJjAsHR1w3XVwww1Sxq24WPIt+5aXXmdnJ//617/w9PTkxhtvnFJzsWzZMurq6qioqFjg4E0QZ2f429+kpWhXV2lp+s47JcsRPTAyMkJZWRmVlZUA+Pv7s3HjRpKTk3Fzc1tSWbbp0Gq1aDQakSn+msjISNLS0rCxseHUqVMcPHiQrq4uY4e15Jlc4u7u7iYxMVHn5aZSqbjjjjuQyWS8+eaburFqgsWHEG8Cw3H0qFSXlZ4uZd4++0waFP8thoeH+ec//4mNjQ233XbbeaaQfn5+REREcPr0aVFLM1Oio6Ul6ddfh48+gvh4qcFhjvT39+tuvrW1tbrXFQoF9vb284/XTOjr6+Ozzz4TWYtzcHFxISkpiY0bN+Lu7q4zQW9vbxfiwEgUFxfT0tJCfHw8zs7OU75mb2/PHXfcQX9/P++++67Ili5ShHgT6J+JCfjNbyQj2ZAQKCiQsm/TZGU0Gg3vvfcew8PD3H777bpRPd8mJCSEwMBACgsLxZP7TJHJ4K67JNFmby91pv7f/0nL2LNgYGCAw4cP097eTnh4OJdffjmhoaEGClpgrtjb2xMdHY1SqUSr1VJYWMjBgwcpKSlhdHTU2OEtGcbHx3UNYRcqcXBzc+Pmm2+mtraWffv2LXCEgpmwdKpqBQvD2bOSH9nRo/DLX0ofF/Ef27dvH7W1tdx5553nPQF+m0kHficnJ31Hbd6EhMCJE/D44/Doo3DoELzyirTEegGGh4dpbGwkNDQUOzs7kpKScHNzExYCAr0gk8nYsGEDNTU1VFdXU1dXR1BQEGFhYeJ3zIBotVoUCgXr16+/5Pc5MDCQK6+8ks8++wwPDw9iY2MXKErBTBDiTaA/vvhCyvQoldKQ9Y0bL7p5fn4+GRkZXHXVVTMy4ZXJZLq5kV1dXVhaWpr8OKUFw8oK/vIXuOwyydA3Jkbq9l27dspmo6OjVFZWUldXh6WlJT4+PtjY2ODh4WGUsAXmi6WlJaGhoSxfvpyqqip6e3t1gmJiYkKM4NIzLS0tlJeXk5aWNuPpHwkJCbS2trJnzx5cXFxMYm7vUkE84gjmj1otdTdedRUkJcGpU5cUbvX19ezZs4f4+HgSExNnfcqysjIyMjIYGhqaW8xLlR07pJ9PQID0M/r973XLqFVVVRw8eJDGxkbCwsLYvHnzBZexBQJ9oVAoiIiIIDk5GYCOjg4OHjxITU2NqLfSE11dXeTm5mJnZzerQfMymYwrr7wSX19f3nnnHXp7ew0YpWA2CPEmmB9DQ3D99VJW509/gk8/BTe3i+7S29vLO++8g6+vL1ddddWcOhQTEhKwtLQkIyODsbGxOQa/RPHzg6++0o3W0tx9N3xtFRAUFMTmzZsJDQ1dUl5l+sLe3p7LL79cNHHMA1tbW9zd3SkpKeHQoUOcPXvW2CGZNP39/WRlZeHs7ExcXNysr7cWFhbcfPPNKBQK3n77bZ2Po8C4CPEmmDtdXbBliyQEPv0UfvADuEQdxfj4OG+//TaWlpbcfPPNc14asbKyIjk5GbVaTWZmJmq1ek7HWbJYWtLx6KOU/vKX0pSGa69luZsb4eHhs3oyF0xFLpejUqlE3dY8sLa2JiYmho0bN+Lo6Ehubq7oMp8jGo2GzMxMrK2t5zX2ytbWlltvvZWOjg4++ugjYYWzCBBXGMHcaGiQ6qUqK6UC+CuuuOQuWq2Wjz/+mI6ODm677bZ5G5na2trqBJzoVps5w8PD5OTkcPLkSbq3bWN49244dgw2b5Z8+QRzZmhoiJycHLGcrwfs7OxITEwkJSUFX19fQLIXEZmfmSOXy1m1ahUpKSnzfijz9PTk+uuvp6SkhGPHjukpQsFcEeJNMHtKS6WRTENDcPy4VOc2A44fP05xcTHXX3+93lz4HR0d2bhxI7a2tsIcdQaMjo7y1Vdf0d3dTVxcHGvWrMH22mvh8GE4c0YS5CLLMWfGx8dpbm4WAkOPuLm5YWFhwcTEBHl5eRw6dIj6+nrxt34RJiYmdNlKDw8P3biy+RIZGcnGjRs5dOgQ5eXlejmmYG4I8SaYHSdPSjd4JyfJfuLrYfKXoqKigkOHDrFhwwYiIyP1GpJMJkOr1ZKRkUFZWZlej20udHR0oNVqsbKyIiYmhk2bNuHj4/PNBvHxkpny2JgkzIuLjResQDANFhYWbNiwATc3NwoKCjh+/Dg9PT3GDmvRodFoyMnJobS01CAZ4A0bNhAREcEHH3wgZqAaESHeBDNnzx5paW3VKsnHzdt7Rrt1dnbywQcfEB4ezsZLdKHOFZlMhpeXF9XV1VRXVxvkHKbI6Oiobol08kLr7e09fTNCaKgkyN3dYd06aSlVIFhEqFQqXcZYo9GIkXnTUFhYSEdHBwkJCQbpFpfJZFx//fU4OTnx9ttvi5IVIyHEm2BmfPCBNCXhiitg715YtmxGu6nVanbv3o2trS3XXXedQWdfBgYGEhoaSmlpKY2NjQY7j6nQ1NTEV199RWdnJwkJCTPzavP0lMZqxcbC1q1SM4pAsMhwdnZm/fr1xMXFAVJmubOz08hRGZ+ysjIaGhqIiYnB7RJd//NBqVRyyy23MDg4yKeffiqWsI2AEG+CS7NvH9x6K+zcCe+9ByrVjHfdv38/bW1t7Ny5U291FxcjPDwcf39/Tp06xeDgoMHPt1hpaWkhLy8Pd3d3Nm3ahJeX18x3dnCQDJfXr5d84bKyDBeomaFSqQgPD0c1i78RwdyQyWS6Ivy6ujpOnDhBUVHRku0812q1DAwMEBUVNbUkwkA4OztzzTXXUFxcTP485iYL5oYwchJcnBMnJB+3yy+HN9646Kirb1NeXk5mZiZXXXXV7MTDPJmc2TffblZTpLu7GycnJzw8PEhNTcXV1XVuB7KykrKtW7fClVdK2biVK/UbrBliZWUl5r4agbi4OJydnSkrK6OtrY3o6Oi5/+6bIJMTKRISEgy6uvFtVq5cSU1NDZ9//jm+vr64u7sv2LmXOiLzJrgwhYWwfbtUzP7eezCLVvOenh4++ugjIiIi5jRBYT7IZDLdEmF9fT0DAwMLen5jMDIyQmZmJsePH2dgYACZTDb/m5etrVTn6OsribgzZ/QTrBkzPj5OS0uL6DZdYGQyGYGBgWzYsAFra2sKCwuXzHSG9vZ2Dhw4QH9//4IKt0muuOIKnJ2dee+994Rh+gIixJtgehoapIxLYKBkwDuLwteJiQl2796NSqVix44dRrmggNR1debMGTIyMhgZGTFKDAtBc3Mzhw8fpq+vj6SkJOzs7PR3cCcnadnc1lb6fRB1RRdlaGiI7Oxs4fNmJGxtbUlNTSUtLQ25XM7Q0BDd3d3GDstg9PT0kJ2dzbJly4y20qBQKNi5cyc9PT188cUXRolhKSLEm+B8enulOaUKBXz+OTg6zmr3yZE2N910E9bW1gYK8tLI5XKSk5PRarVkZmaaZTakoaGBnJwc3Nzc2Lhxo2EGyHt4SDVwXV1w7bVgxkJYYPrIZDJdzWF1dTXp6elUVVWZXVH94OAgmZmZODg4zGt6gj5wc3Nj+/bt5OfnU1hYaLQ4lhJCvAmmMjYGN94IjY3SDXuWZrpVVVWkp6ezefNmnSu6MbG2tiYlJYXh4WGys7PNZill8n14eXkRGxtLfHy8YcdahYRIGdjcXLjrLjCT76PAvImKiiI4OJiysjIyMzPNytYiNzcXpVJJUlLSnMcM6pPo6Giio6PZs2eP6PxdAETDgmAqDz8s+Xvt3w8REbPatb+/nw8++IDQ0FDS0tIMFODssbe3JykpiYqKCiYmJi78hKrVSuOhGhuhpUUSsuPjMDEhNWooFFIhv5eXVAfm7AxGWBKur6+noqKCNWvWYGNjs3AiOSUF/vUvSdz/4hfw+98vzHkFgjkil8uJiIjA1dWV/Px80tPT2bhxo1nMno2NjcXS0hKlUmnsUAAp47l9+3YaGxt57733uO+++6b3kxToBfGdFXzDP/4BL78Mr74q2UTMAo1Gw/vvv4+FhYXB/dzmgrOzM6mpqQCM9faiLCqCjAzIz5fE2uTHbApuVSpJxPn6gp8fxMVBaqrkkWaAC6paraawsJCmpib8/f0XxHrlPK6/Hp58En7yE8nI98orFz6GRYxcLsfe3t4sxIE54ebmxoYNG+jr60Mul6PRaJDJZIvuOnUpNBoNlZWVhISEYG9vb+xwzkOpVLJz505eeukl9u3bx1VXXWXskMwWId4EEhUV8NBDcPfdsGvXrHc/duwYdXV13H333YvPoqO7WzIWPnEC9YkTHM3Px1+jIczGBmJiYPlyKavk5/eNGPP0lLJsCoWUdVOrpY/hYWhunir4Ghvh9Gl4910YHZX2mxRyaWlSp+Y8L7R9fX3k5OQwOjpKXFzcgvg4XZAf/UiyDrnrLigomPGkjaWAvb29waaICOaHlZWVzri2uLiY/v5+4uPjTcaTT6vVkpeXR2trKx4eHiyboVH6QuPp6cm2bdv47LPPCAwMJGKWKziCmSHEm0ASJDffLImWv/1t1rs3Nzdz5MgR1q9fz/Lly/Uf31zo6YFPPpEE1b590vJnSAiWqakEXH015cuWYXXNNQQEB8/+2P7+kJx8/utjY3DqlDT/NSMD3n8f/vd/pQzdVVdJ3+Pt22EO3aByuRxra2uSk5ONL47lcnj9dUn43n47HDw4K/8/gcDY+Pr6kpuby9GjR0lMTMTJycnYIV2S4uJiWlpaSEhIWLTCbZKEhATOnDnDnj178Pf3N/41ywwRuX0BPPaYlHl7991ZC4uJiQk++ugj3N3dWT/LpVa9MzYGb70lTQXw8JCyiL298Kc/QVMTVFbCG28Q+utfE7hlC0VlZTQ3N+vv/EolJCXBo49KcdTWQk0NPPGEZL1y663S3NCdO+HDD6Vauoug1WqpqalhYmICOzs7UlNTF89F0M1Nqn87dkx6fwJAypB+8cUX9PX1GTsUwUWYHK9la2vLiRMnaGhoMHZIF6WyspLa2lqdAfliZ7L+TavV8vnnnxs7HLNEiLelznvvwXPPwV/+AqtXz3r3I0eO0N7eznXXXWe8jqe+Pvif/4GgICkT1NkJTz0lLWceOwb/9m/nLe1FRUXh5eXFqVOnDGshsnw5/PCH0oipM2fg17+W/r3hBlixAp59FqbxBFOr1eTk5FBcXEx7e7vh4psPGzbAf/4n/OY3Ygbq12i1WtRqtdnZUpgjVlZWpKam4uvrS29vr7HDuSgajYYVK1bg7+9v7FBmjJ2dHdu3b6ekpISSkhJjh2N2CPG2lDlzBu67T8oEfe97s9797NmzHD9+nA0bNhjnafDsWXj8calW7Wc/k0Z4FRdDerqU/bpIXZhMJiM2NpbU1FTDWmycS2Ag/PjHkt1GdrY0ueLf/g0CAuC//kvqdEXybzp+/DgdHR0kJSUt7iftn/8cNm6E73wH2tqMHY1AMCvkcjnR0dFERUUB0NbWtqj8ICetTVasWEFYWJiRo5k9UVFRREZG8tlnny3pWdOGQIi3pcrYmLSM5+ICL744a8sLtVrNRx99hIeHB2vXrjVQkBegq0sSPcuXw/PPw4MPSsuTr74KX1+EZ4JcLmfZsmVotVrKy8sX1hU/IQHeeUdayr31VvjjH8Hfn4kf/5gT+/ah0WhYt26dYUx39YmFBfzzn1Izh/B/E5goMpmMiYkJTp06xbFjxxbFSL2uri4OHjy4eDPvM2T79u0AfPbZZyIjrUeEeFuqPPGEVFz/zjuznqAA0nJpZ2fnwi6XTkzACy9AWJhUMP+b30i1ZH/840WzbJdifHycs2fPkpGRsfCz+YKC4K9/hfp6eOwxLP76VzY9/DDrm5qwWyz1bZfCy0uymdm7d04NLwLBYsDCwoI1a9Ygl8s5duwYbUbMJPf395OVlcWyZctwcXExWhz6wNbWlu3bt1NaWiqWT/WIEG9LkdOnpZqwn/wE5jA0vqmpSbdcumCZoZMnpQ7P730Prr5aeg8/+Qk4OMz70EqlkuTkZNRqNZmZmajVaj0EPDvK2tup+e53oawMy9RULO+6S1qONJVRM9u2ST+bX/5SslJZotjZ2bF+/Xr9zpcVLBi2trasXbsWFxcXsrKyaGlpWfAYhoeHycjIwNramsTERLPwDIyKiiIqKorPPvtsUWQ1zQHT/60QzA6t9psC/p/+dNa7Ty6Xenl5sWbNGgME+C0GBqS6vLQ0KfYTJ+C112Y9tutS2NrakpyczMDAADk5OQs2Rkur1XLq1KlvZi8uXw4ffCDZm7S1SYa/P/iB5B+32Pn97yVfvB//2NiRGA0LCwscHR0XxbgiwdywtLQkMTGRkJAQo1hyFBcX6+YyL1g97gKwfft25HI5e/bsEcunekCIt6XG++9LwuD//g/mMDT+8OHDdHV1LcxyaX6+ZHb79ttSbVtWlmR8ayAcHR1JTEzEeg7fl7kwMTFBdnY2jY2NxMXFERQU9M0XL79cMsD9wx/gmWek93369ILENWecnaUl7DfflEx8lyDDw8MUFRUxPDxs7FAE80AmkxEeHo5KpWJ0dJTKysoFExzR0dGkpKSYjHnwTLGxseHqq6+mvLyc4uJiY4dj8gjxtpQYGID/+A+45hrpY5Y0NjbqZgO6u7sbIMCv0WqlOrCUFMl3Li9PWpJbgGyGq6sr0dHRyOVygzcwlJeX09HRQXJy8vQTE5RKaZpBZiYMDkpC9s03DRrTvLnnHunn9sgjkjHyEmNsbIza2tqFr50UGIzOzk7Ky8vJz883WEZeo9FQXFzM8PAwSqVy8fg56pmIiAhWrVrF559/Tn9/v7HDMWmEeFtK/Pa3kh3F00/PeteJiQk+/vhjvL29Dbtc2tUleaD9+79LXaQnT0oNCgvM0NAQhw8fprq62mDnCAsLY82aNbqRPRckJkayF7nhBrjzTml82WKtG5HLJe+6sjJJgAsEJo63tzcJCQk0NzeTlZVlkJrYwsJCamtrl4SdxpVXXomFhYUw750nQrwtFcrKpEkDP/uZ5Dc2SzIyMujs7GTHjh2GK6A9fVqy0DhyBD76SBKZxhi+jpTiDwoKorS0lMbGRr0dt7+/n2PHjjE0NIRCocBxpp2+dnbwxhtSl+3u3dIyalOT3uLSK7Gx8PDDkoHvYo1RIJgFXl5eJCcn093dTUZGhl6XUMvKymhoaCA2NhZXV1e9HXexYmNjw5VXXklZWRmVlZXGDsdkEeJtKaDVwve/L5nB/uhHs969t7eXI0eOkJSUZLju0uxsWLNGmgOanw/XXmuY88yC8PBw/P39OXXqlF5sA/r6+khPT0ej0cxdAN91l1T719srNXGUl887LoPwxBNgYyNNlxAIzABXV1fS0tIIDAxENktfzAtx5swZqqqqiIqKmr50wkyJjIwkKCiIL774wijd/eaAEG9Lgd274dAhyYNrDkWwe/fuRalUsmnTJgMEh+QPtmkThIRI46wCAgxznjmwevVq3N3dKS4unle9S19fHydOnMDW1pa0tLT5FSNHRkpdt/b2kuDNyJj7sQzFsmXw3/8tNZssodFZVlZWBAUFYWWkjLHAsDg6OupE1pkzZ3QTEOaKtbU1oaGhU5uVlgAymYyrrrqK3t5e0tPTjR2OSSLEm7mj0UjLV1deCVdcMevdq6urKS0tZdu2bYa5If3zn5Jv28aNcPCgNPFhESGTyYiPjyc1NXXO2TKNRkNmZia2trakpKTop/3f11cSuhERcNllsBjrR+68U/IR/PWvjR3JgqFSqYiKijK7TkHBVMbGxqiurubEiRNzEnCTtW1eXl6Eh4frOzyTwNXVldTUVI4dO0Z3d7exwzE5hHgzdz78UKp3++UvZ72rWq3m888/Z/ny5axcuVL/sT37LNxxhzQX88MPpWW2RYiFhQXW1taMj4+Tl5fHyMjIrPaXy+XEx8frT7hN4uQE+/dLtiI7dkhZrsWETAa/+AUcPSp9LAHUajXd3d1iKcjMUSqVpKWloVarZy3genp6OHr0KLW1tYYL0ERYv349tra2fPHFF8YOxeQQ4s2c0WqlDtPNm+fkj3by5Em6u7vZvn273mo8dLzxhmQn8eij0kxSEzCjVKvVdHZ2kpmZOaPh1X19fZSUlKDVanF2djaM4aa1teTdd/vtUqbrs8/0f475cPXVsHo1/O53xo5kQRgcHOT48eNLomtwqTNZAjEbATc4OEhmZib29vb4+fktQJSLG6VSyRVXXMHp06epqKgwdjgmhRBv5sznn0vzS3/+81nvOvl0mJqaemkri9ny8cfw3e/CvffCn/8sZWhMAGtra1JSUhgeHiY7O/uiNXB9fX2cPHmSzs5OJiYmDBuYpSW88ooklG66aXEZ5MrlUofzvn1SU4pAYEZMCjgnJ6dLPpyNjo6SkZGBUqkkKSlJTOH4mvDwcEJCQvjiiy9m9FAskBDizVyZzLqlpUn1ZLPkyy+/xNramvXr1+s3rhMn4NZb4frr4e9/NxnhNom9vT1JSUn09PSQl5c3rWXApHCztrYmNTUVS0tLwwdmaQlvvSX9vK+9FhbTAOibbpK8+pZI9k2wtLC1tSUmJga5XE5fX98FM3DV1dVoNBpSUlJQKpULHOXiRSaTceWVV9Lf38/x48eNHY7JIMSbufLVV1IX4s9/PmuBVFlZSXl5uf6bFCorpdqsxET4xz8WZGKCIXB2diY+Ph5nZ+fzlpOHh4enCLcFnU2oUkm1gwEBcNVVi2dAvIWFNEf344+hqMjY0QgEBkGr1ZKfn09GRsa0GaTw8HDWrFmzYOP3TAkXFxfWrFnD8ePH6ezsNHY4JoEQb+bKb38rmaVeeeWsdptsUggKCiIyMlJ/8fT1wfbt4OoqGfCaeDeeh4eHrr2/r69P97pKpSIgIED/zQkzxcFBqnubmJCE8mIZaP+d70ii8ve/N3YkBkUmk6FUKvVfIypY9MhkMuLi4hgeHiYrK4uJiQm0Wi0FBQV0dXUhl8uxWaRNWYuBdevWYW9vzxdffCEG188AId7MkRMnpMzbL34x66zbiRMn6Ovr46qrrtLfDUirlUZdtbTAnj3SAHMzoauriyNHjlBVVUV3d7duoLVRl0V8feGTT6CwEB5/3HhxnItCAT/5CbzzjjRJw0xxcHBg27ZtODg4GDsUgRGwt7cnOTmZ3t5ecnNzKSwspKGhQcy6nQEKhYIrrriCqqoq0bwwA4R4M0f+8AfJyPW662a122SnXHJysn7HtLzyilSP9cILkhGvGeHs7Iy/vz8ffPAB+/btM9jg6lkTFwf/8z/SiLFPPjF2NBK7doGnp2TeKxCYKU5OTiQmJlJcXExFRQWrV6/G09PT2GGZBCtWrCA4OJgDBw4snmvpIkWIN3OjuVlaNvv+96VOv1lw5MgR5HI569at0188xcXwb/8G998vNSqYGVqtltHRUV1t4KIym/z+9yUBv2sX1NcbOxppqfzBByUhPzBg7GgMQn9/P4cOHaK/v9/YoQiMyMjICM7OzsTExAhLkFkgk8nYsmULHR0d5OfnGzucRY0Qb+bGm29KS1SzFEpdXV3k5OSwbt06/RXUDg7CLbdAcDD85S/6OeYio6ioiLa2Nm655Rb8/f0X16BlmQxeflkao3XbbbAY2vDvukv6vfjgA2NHYhA0Gg2Dg4Mia7DEcXR01Flg5OTkCEPeWeDl5cXq1av56quvxHLzRRDizZzQauG116Rsi5PTrHY9ePAgdnZ2JCUl6S+eH/wAamulOiczLNQdHR2ltbVVtyySmJhIQkKCscOairOzNHkhMxN+8xtjRwPLl0tzbF97zdiRCAR6p6+vj4mJCRwcHAgPD9c1KRQVFdHS0mLs8EyGTZs2MTw8TMZinNu8SFgAA6qFY2xsjJdffpl9+/bR399PcHAw9913H4mJiRfd75VXXuG1aW4mSqWSAwcOnPf6nj17ePvtt2lpacHNzY2bbrqJG2+8UV9vY+7k5kJpKfzpT7ParampiZKSEq699lr9dUieOCHVuD3zjFR/Z4ZYWVmxadMmnY/b5L8DAwMUFxcTFxe3OPycUlOl5pXf/17q+jT2LMVdu+DuuyVhv3y5cWMRCPREf38/J06cwN/ff0qnfmRkJCMjI+Tm5rJmzRqWLVtmvCBNhMm6wfT0dOLj47G1tTV2SIsOs8q8Pfnkk7z77rtcfvnl/Pu//ztyuZwf//jHFBYWzmj/xx57jF/84he6j5/85CfnbfPxxx/z1FNPERgYyKOPPsrKlSt5+umn+ec//6nvtzN7XnsNvL2lWZczRKvVcuDAAdzd3YmOjtZPHGq1NPoqIQG+9z39HHMR0dvbq/Nyms6AVyaT0dfXR2ZmpuGnK8yUn/wE/P2lOjhjt+HfeCPY2Ukj0gQCM2AyS2RtbU1oaOiUr8lkMmJjY3FwcCA7O1ssBc6QSYP4Y8eOGTmSxYnZZN5KS0s5ePAgDz30ELfddhsA27ZtY9euXTz33HM899xzlzzGhg0bLvpUNDo6yksvvURqaipPPPEEANdccw0ajYY33niDHTt2YG9vr5f3M2tGR+Ff/4IHHpiV+W11dTU1NTXcdtttyGfZ4HBBnn8eCgqkpToTNeK9EKOjo2RlZaFSqS443sbW1pbk5GROnDhBTk4OiYmJ+vvezhWVCv76V8m897334OabjReLrS3s3Ck9bPziF7NurFnM2NrakpKSIjIFS4ixsTEyMjKQy+UkJydPu3ohl8tJTEykqanJOP6PJoiNjQ1r167l8OHDJCcn4zTLUiBzx2yumkeOHMHCwoIdO3boXrOysmL79u2UlJTQ2to6o+MMDg5e0CAwLy+P3t5ervuWBcf111+vc9Y3Gp9+Ct3d0nLUDNFoNOzfv5+AgADCwsL0E0drq3RDvv9+aZKCGaHRaMj+ej7npQSZo6MjCQkJdHR0ULRYpgpceaVUD/kf/wHG7obctQtqasDMxuFYWlri5ua2MCPRBIuC5uZmxsbGSElJQXUR83GVSkVwcLAuMy+4NCkpKdjY2HDo0CFjh7LoMJsrTGVlJb6+vuc98UZERABQVVWFh4fHRY9xyy23MDw8jLW1NWvXruWRRx7B+RxD2clOwvBv1QytWLECuVzO6dOn2bp167TH7ujomDL2o66ubuZvbia89hokJ8PX73cmFBUV0drayr333qs/Q94f/1ias2mGTvqFhYX09vayZs2ai16kJ3FzcyM2NnZxPWn/5S/S78hvfmNcv7W1ayEoSPq91ff8XAMxaQszMjLC8PAwY2NjyOVynRXEmTNnGBgYoKmpCR8fH6ytrfH19cXa2pquri76+/tRqVSoVCqsra0XRz2kYN4EBATg6ek541GCAwMDHD16lMjISN2UFsH0KBQKNm7cyKeffkpaWhpeXl7GDmnRYDbirbOzExcXl/Nen3yto6Pjgvva29tzww03EBUVhUKhoLCwkA8//JCysjJefPFFnSDs7OzEwsLivPStQqHAwcHhojPZPvnkk2mbIvRCSwt8+SX87W8z3kWtVnPo0CEiIiL050N06pRUx/TCCzDNz8JkGByEsjLJi2x4GMbGwMoKj54evBwdWTaL0V7e3t6AdOPv7OzUr/nxXAgIkObd/vrXUv1bQIBx4pDLpSzxU09Jy7mLZJlxYGCAvr4+nUAbGRnBzc0Nf39/Ojs7p2TXZTIZNjY2ur+fhoYGuru7KSoqYnR0FBsbG1xdXbG2tqa1tZWqqqop5woICGD16tUMDQ1RXl6OtbW1TthZW1vj6Oi4oO9dMDsKCgpwcnLC399/VjOg7ezsCAoKorS0FHt7e9zc3AwYpekTGxvLyZMnOXDgAHfeeaexw1k0mI14Gx0dnTbDMfl0O3qRGY87d+6c8vnGjRuJiIjgiSee4MMPP+SOO+7QHeNCyyFKpfKi59ixYwdr1qzRfV5XV8dvf/vbC7+h2fDFF6DRwE03zXiXrKws+vv72bx5s35iAPjd76Rsyj336O+YhkarhepqOHkSMjKkfwsLpdmg30L3zKdQSHNjU1KkTs6UFEkEXSR7efbsWfLy8oiLi8PHx8cw72Wm/L//J2XgnnpK6gY2FrfcAv/5n3D4sDT3dgEZHx+np6eH7u5uurq6iIqKwt7enrq6Os6cOYOFhYVOSE3i6OhIUlKSTmR9O3O2YcMGent7sbCwYP369VPEV0REBOHh4brM3cjIiC57q1arGRkZobu7m5GRETQaDSqVisu/bjwqLi5GpVLh7OyMo6PjBWstBQtHWVkZ9fX1c34Yi4iIoL+/n9zcXNatWydqJC+CXC5ny5YtvP3221RXVxMcHGzskBYFZiPerKysGJ/GhHSys2c2T0YAl19+Oc888wy5ubk68WZlZYVarZ52+7GxsYuew9XV1XBZl337pM7OGR5/bGyM48ePExsbq7+YSkvh/felrJsp1Pu0tEgZn5degrY26bXwcEmIPfigNF5q2TKGtFpO5uYSERSEt5MTdHVBTo4k9D77DP7v/6R9fX2l/R56aNrZrT4+PrS3t5Ofn49SqTTu07atrVT39pvfSFm4r7ODC05YmCR69+0zqHjTarUMDg5iZ2cHQGZmJm1f/8wVCgVOTk46U93Q0FDCwsKmfRBUKBSXLL24GDKZTLdsei4ODg6kpaXpPh8dHdVdy7RaLf39/dTX1zMxMYFMJsPBwYHExESsra1Rq9Wivm6BOXPmDFVVVURFRc35QWxyiP3x48cpKSnRr7+mGbJixQr8/Pz46quvCAoK0l+ZjwljNn/1Li4utLe3n/f65FLmXESKu7v7lMJSFxcXJiYm6O7unrJ0Oj4+Tl9f37TLtgZnYgL275eEwwzJy8tjZGREv2OwnnwSfHwkB/3FTEWFNPPzH/+QMmjf/a5UyJ+UdJ7o0mg05Bw/jszdHbfYWGl7kGoLH3lE+n9bm9RVu2cPPPGE9H247z5JHH1rSTI6OpqxsTGys7NJS0szrt/TI49Imbc//WnWvoB6QyaDrVth7169H7qnp4fW1la6u7vp7u5GrVazbds2lEolXl5eeHt74+zsfF7GYzHUoVlZWekeBGUyGampqToRN/l+Jr+enZ1Nf38/Tk5OODk54eXlJbI4BqSlpYWSkhKCg4PnXa+mUCgu2J0qmIpMJmPDhg28+eab1NbWEhgYaOyQjI7ZdJuGhITQ2NjI4ODglNdLS0t1X58NWq2WlpaWKTfYSf+e8vLyKduWl5ej0WjO8/dZEPLzobMTtm2b0eZqtZr09HRWr16tP/FQXS3Nq/zxj2ER3PymJTdX6rSMiJCE1q9/Lc37fPppuOKKabNlZWVl9Pf3Ex8ff+ELrLs7XHMN/P3v0vF+8ANJGAYHw+23S7VzXyOTyYiPj8fBwYHGxkbDvM+Z4ugozZx9/nm4SD2owdm6VRLUemjgGRoaAiTRffLkSWpqapDL5YSEhJCamqrLUPn7++Pn52cQkaNQKPDx8dH7DXky4xYQEEBMTIyu0zkkJAR/f3/UajWnT5/m0KFDuqyiGNGlf5ydnQkPD9c1ws0XGxsbFAoFQ0NDYgLDJQgODsbb25ujR48aO5RFgdmIt40bNzIxMcEnn3yie21sbIzPP/+cyMhI3XJHa2vreZ2ePT095x3vo48+oqenh+TkZN1rcXFxODg48PHHH0/Z9uOPP0alUpGamqrHdzRD9u6VZlempMxo81OnTjEwMMDatWv1F8Mf/yg1KNx3n/6OqS80GvjDH6RsWUUFvPii5Oz/k59cdIRYe3s7Z86cITIycuaF4+7u0lJkfT38+c9S/VxcnCTsvrafsbCwICUlhaioKD28uXny6KNS9suYc2c3b5aaF/bvn9Puvb29lJWVcfDgQb766ivUajVyuZy1a9eybds2kpKSCA0NxdXVdUG89mxsbIiLi8NmgcbBubm5ER4eTmpqKtu2bSMxMVG3ApCfn8/Ro0epqqo676FWMDsmm1iUSiWhoaF6X7arqakhLy+PfmNb+CxiZDIZ69ato6amhoaGBmOHY3TMZtk0MjKSTZs28cILL9DT04OPjw9ffvklLS0tPP7447rtfve733Hq1Kkp6n3nzp1cdtllBAUFoVQqKSoq4uDBg4SGhp7nG3fvvffy5z//mV/96lckJSVRUFDAvn37uP/++3FwcFjQ9wxI9UKXXfbNkt5FmJiY4Pjx40RFRemv1q27W+ow/fWvQV8D7fVFayvceSccOCCJtf/6rxl9n0B6wl61ahXL5zK+ydZWymrddx889pi0pH3woFQPuGyZLgPU3t5ORUWF8ZZOXF0lU+fnnoNf/hJmWReqF5ycpCXrvXtnJf41Gg1HjhxhYGAAhUKhWwqdLOY3llm2RqPR2Q0ttDGzhYUFnp6eus99fX1pbGzk9OnTlJWV4ejoSHR0tOhinSWDg4NkZGTg7OxssNnF4eHhtLe36xoYRFPK9ISHh+Pu7s7Ro0f5zne+Y+xwjIrZiDeAn/3sZ3h4eLB3714GBgYICgrij3/8IzExMRfd7/LLL6e4uJgjR44wNjaGh4cHt912G3fdddd5xcXXX389lpaWvPPOO6Snp+Pu7s73v//98zpWF4S+PmmG6NNPz2jzoqIienp6dBMo9MLbb0vjsHbt0t8x9cGBA3DHHVLGa+/eGY8Mm7z52trazk24nYu1NTz7rCSu77tP6lB9+20pC4hk2jkwMEB2djYpKSnGmcJw331SlnDPHmlslTHYtk36HZ6YuOBEjrGxMWpra2lvbyctLQ25XI6/vz8ODg64uLgYf4LF1/T393P06NHzuk2NgYeHBx4eHkxMTNDa2srZs2d1tXI1NTXIZDL8/PyEULgIo6OjZGRkoFAoWL16tcHOY2FhQXx8PMeOHaO4uFh/owrNjMns2/vvv09zc/OS9n2TaS80TkBgUCoqKrj//vt58cUXWbFixdwO8skncO21UFUl1VhdBI1GwzPPPIOrq6t+xVtysrRc+Omn+jvmfNBqJcuSX/1KWpL7xz/gnGzEpSgrK6Ouro7NmzfrNxtWUwO33SbV3j39NDz8MABdXV2cPHkSDw8P4uPjjdNFZeyf4YkTsGaN1MF7TpkCSFmPM2fO6JZJvL29dX6Mi5He3t5FI94uRmFhIfX19SgUCpYvX05gYOCiaNZYTEzWB4+NjbF27doptjGGoqGhgaKiIjZu3LhgS++mhkaj4W9/+xseHh7ccsstC3Zevdyz9cjieFwVzI19+yRftRn43pSVldHZ2akb9qsXysogK2txZd2eeEJaAvzVr6SM2yyEW3t7O1VVVYSEhOhfHAQGwrFjkpXII49IGTmk5dn4+HhaWlrOa4RZMHbtkrwCZzhCTu8kJUkNFNN0nebk5HD27FlCQkLYsmULMTExi1a4mRKrV6/msssuw8fHh+rqag4cOMDw8LCxw1pU9PT0MDo6SnJy8oIINwA/Pz8uu+wyIdwuwmRNa1lZma45ZykixJspc+jQjJYDtVotR48eJTg4WL8Gsa+/LnVpXn21/o45H556SjJ9/f3vpRq8WSyljY6OkpeXh7u7u+FMIBUKKev26KOSgHvlFQA8PT2Ji4vD39/fMOe9FLfeKi1X/vOfxjm/pSVs2oT2q69obW3lxIkTOoue+Ph4tmzZQlhYmMgM6RkbGxtWrlzJli1bWLlypU6glJWVTdvEtVSYXIxydXVl8+bNC17LrFKpmJiYoLKyUnQMX4DJ2s3jZjYbeTYI8WaqDA9L3ZMzKKA9ffo0ra2t+s26TUxIS5K3326cQvdv889/wuOPS1m3n/501ruXlJQAEBMTY9ilS5lMqjH73vfg/vulsWZIy4G2traMj48vvGWAk5Nko/Lqq7qu2IVEo9HQExqKOieHrMxMNBoNE19PuLCzsxM1WQZGqVTqHhxGR0dpbm7m2LFjnDhxgtbWVpZaZU1JSQnFxcUARvvdGxwcpKKiQjdPWzAVCwsL1qxZQ1FREV1dXcYOxygI8WaqlJRINhiXKKKdzLr5+/sToM85lkePwtmzi8OUNz1dMtvdtUvqKJ0D4eHhJCQkzHoSx5yQyaSxVFdeCTffDF/fKEAam5aTk7PwAu6uu6Q4vvZFXEhOnz7NaSsrFAMDrAsMZO3atefNDzYVHB0dueaaaxZ1vdvFsLKyYtOmTSQmJqLRaMjKyiIjI8PYYS0YlZWV1NTUGK1beRIHBwdCQ0OprKycYhQv+IbY2FhsbW2XbPZNiDdTpbBQEgErV150s5qaGpqamvSbdQOpPsnDA+Lj9Xvc2dLWBtdfL/nc/f3vF50vOh1jY2Oo1WpsbGwWdkKGhYVkbBwYKJn8DgwAkhGll5cXubm5uukgC8Jll4FKZZBpB9PR2tpKU1MTAMuXLyfq9tsBWFZfvyDnF1wYmUyGp6cna9euZc2aNbqu67GxMXp7e40bnAGpr6+nvLycFStW6PdBd46EhoZib29Pfn6+WD6dBoVCQVpaGgUFBWb9e3khhHgzVQoKIDQULlHYevLkSTw9PfVfx7Vvn1RvZ2yLhscfl5Zwd++e03SHgoICTp48aYDAZoC9PXz4oTRn9YknAOnGGRsbi7OzM9nZ2Qv31G1tDevXSz9XAzI4OEhWVhZZWVk0NzcDUo2PbXg4LFsm/V6bMAMDAxw/fpyBr8W4qePs7KyzY6ipqeHo0aMUFhbqZkabC11dXRQWFrJ8+XLCwsKMHQ4gFebHxsYyMDCwpAvzL0ZCQgIKhYLs7Gxjh7LgCPFmqhQWXnLJtLOzk8rKSpKTk/Vbx9XaKo3lmuFILoORng6vvSZNUJjDoPempiZaWlqMM9ZskqAgaTj8//6vbslSLpeTmJiIjY0N3d3dCxfLtm1w5IhUT6lnNBoN5eXlHD58mL6+PhISEqYanspk0u9zYaHez72QTM4+nqzZMyfCwsJYuXIlZ8+e5dChQ9TW1ppNPdyyZctYuXIlKy+xkrHQODg4sGnTpinmy4JvUCqVxMbGkpuby/j4uLHDWVCEeDNFtNoZibfs7GxdR5leOXBA+neGxrcGQa2WvNKSkuDee2e9+8jICEVFRfj4+Bj/wvjDH8Ly5VIH6tc3Q0tLS9auXatbvlmQZZOtW2FkBAxQQyKTyeju7iYkJIRNmzZNb65pBuLNnJHJZAQGBup+fsXFxSY/zqm/v5/u7m7kcjnLly83js/iJZi0DWlqahLLp9OQmJjIyMiIrslkqSDEmyly9ix0dcFFXLhHR0fJz8+/+FD1ubJ3L8TESDVv82Tb7m38/PjPZ7/jM89AUZHklzaHpduioiL2D+7n7qK7Z39ufaNSwV//CocP0/TW86x6fRUfVX2kmxpQW1vLiRMnDJ/NiYoCb2+91b319fVx4sQJOjs7kclkpKSksGLFigt38K1eLXVQj4zo5fwCw2BlZUV0dLTORkOr1VJeXs6Iif3choeHycjI0HWaL2YGBwc5deoUp0+fNnYoiw5nZ2dCQ0PJzMw0m0zwTBDizRSZrAu6SOatoKCA8fFx/c/i02qlIeIzyLqd7j7NDw7/gK27txL/j3g2v7uZ+/fdzz/L5ukn1twsWYI8+OCcGyYCAwPnlXF7u/xtPqr6aM77n8cVV8ANN8Bvf3fel5ycnOjv7ycnJ8ewT94ymZR9m+OQ+EnGx8cpLi7m6NGjjI6O6rIZl8xqREdLHdQmcDMVoPOFGxwcpL6+nkOHDlFVVWUS2aHx8XEyMjKQy+UGm1eqT2xtbQkNDaWqqmpJFudfiuTkZFpaWqhfQg1PQryZIoWFUrH7BTqitFotWVlZhIeH69+yoLlZKrBPS7voZqfaTnHrnlup6KrgxtAb+Vnyz7gh7AbkMvkU8fbp9Z/y67Rfzy6GP/9ZMnb93flC51JM3lhcXV2xtbWd9f6TvFPxDh9XfTzn/aflz3+GnvNr3BwdHUlISKCjo4MCQxf0p6ZKliFzzKL09/dz5MgRGhoaiIiIYMOGDTg7O89s56goSUCa8NKpjY0NsbGxS8oh387Ojk2bNhEQEEB5eTnp6ekMDQ0ZO6wLMjExQWZmJmNjY6SkpJw3v3qxEhISgr29PYWFhUsqwzQTgoKCcHV1JTMz09ihLBhmNZh+yVBRAZGRF7TFOHPmDB0dHVxzzTX6P/fkjfUSg5NfKHwBe6U9b139Fg7KqQ7lncPfWGAoLWbZIapWS+bAd9whmcvOktLSUoaGhkhKSpr1vgbH31/KfFEF37o2u7m5ERMTQ15eHo6OjgQFBRkmhsnsV2kpxMXNeneVSoWzszMRERGzHylkayvV/hlrTJgeUCgU+Pr6GjuMBUehUBAVFYWPjw+5ubl0dHQYb2LIJRgeHmZsbIzk5OR5PcAtNHK5nFWrVpGenk5zczPe3t7GDmnRIJPJSEpK4ssvv6S3t9dkfRZng8i8mSItLTBdwffXZGZm4unpaZiLZ0HBRbN+kzT0NxC8LPg84QbgYv2Nn9q3a94+qvqIVa+vIq81jyczn2T92+tJ+1ca/3XyvxifGKfvy4/52TUWpCVmkvZWGv+b879TnkKzW7JZ9foqslumto43DTSx6vVVvF/+/kX93D6s/JB7997Lhnc2EPePOK796FreKX9nyjbbdm+jqqeKnNYcVr2+ilWvr+KeL+/Rfb1vrI8/Zv2RLe9tIe4fcVz1wVW8XPQyGu3U5aS+sT5+fvznpP4rlbR/pfHz4z+n/4avR43V1p4Xm4+PDwkJCYa9KU5mv2aR4RsdHSU3N5fh4WEUCgVxcXFznwXp5WW8Gat6YGxsjNraWrOz0pgpy5YtY+PGjbrf0aampkXVeavRaHSZwmXLlhk7nFnj7OxMSkrK9A0/S5zo6GgUCgU5OTnGDmVBEJk3U6S1VeqynIauri4qKyu55pprDNM5VVgIq1ZdsknA286bgvYCKrsrCXWavRXHk1lP4mLtwsMxD1PYXsju07uxV9pTUPk2ns5OPJr4HxxrOs6rJa8S4hTCjuAdFz3epMCzUlkRGBh4we3erXiX4GXBbPTbiIXMgiONR/ht5m/RoOG28NsA+HHSj3ky80lsFDbcv+p+4BtBOqwe5p4v76FtqI2dYTvxtPWkoL2Ap/OepmO4g8eTHtfF8++H/p38tnx2hu0kyDGIQ/WH+Lm2TAok/Thc/v/Oi2/yoj04OEhfX5/+L+J2dhAcPOOly/b2dvLz8wGpg3feA7w9PExavA0PD1NUVISTk9OSncU62ZAyPDxMQUEBlZWVxMfHG31qQXl5Od3d3aSkpCzKrtKZ4va1LdLw8PD8/97MCCsrK51tyPr16/XfqLfIEOLNFGltvWCnZ3Z2NiqVilWrVhnm3IWFsHbtJTe7O+puHj7wMDs/3clK15XEecSR4plColciCvml/6hcVC48t/k5ZDIZt4bfSn1/Pa8Vv8bOwm5+ueo/IPxWbgrbybb3t/Fh5YeXFG8tzdK4KV9fX10X53S8esWrqCy/qYG5PeJ2Htz/IG+UvKETb5v9N/O3/L+xzGoZ1wRPXZp+o+QNGvobeO+a9whwkLKTN6+4GTdrN14reY27o+7G09aTrxq+Irc1lx/E/4B7VkpZu1tW3MJ3935XOlBGBoyOXnBubG1tLTU1NSQnJ+su5npjBpYdWq1WN3vRzc2N2NhY/YwW8/CAJVS3Ys5YW1uzbt06cnNzOXbsGCtXrjTaUmpNTQ2VlZVERUWZtHCbpLOzk5MnT7J27VqTzCAaiqSkJDIzMykuLiY2NtbY4RgUsWxqamg00kioacTb2NiY4exBQBIT5eWXrHcDSPNO482r3mSj30ZOd5/m1eJX+d6B77HlvS18Vf/VJfe/PvT6KRfZVa6r0KLlhqPd8J3vAGAhtyDKJYrGgcZLHm8y82ZnZ3fR7c4Vbv1j/XSPdJPgmUDjQCP9Y5f2tNpXt484jzgclA50j3TrPlK8U5jQTpDTKqX0jzUdw1JmyS0rbtHtayG34PYIaUwUg4OwZ88FzxMREYG7uzvZ2dn09PRcMq5ZER0tLZtepCh6aGiImpoaIiIiSE5O1t9MWBPPvAmmYm9vz7p16/Dx8aGgoICGhoYFj6GpqYni4mKCg4MNVyu6wDg7O+Pg4CCaF76Fs7MzISEhZGVlmf33RWTeTI3ubqlofxrxVlhYyOjoKImJiYY5d3W1dO7IyBltvtJ1JX/Z9BfGJ8ap6K7gYP1B/lH6D35w5AfsvmY3wcsuPLLLy3bqcqC9Ulpy8Vi9Zsp7t1Pa0Td66RFS3j4zK+7Nb8vnmVPPUNheyLB66qSBgbEBXRwXor6vntPdp1n/zvSzZLuGuwBoHmjG1cYVG8XUrsTlDsul/wQsh/fegxtvnPY4crmc+Ph4Tp48SWZmJmvXrtVf8XVkJHR2Sh+urlO+1N7ejrOzM7a2tmzZskX/DwkeHtLDiUZj/NFrAr1gYWFBdHQ0np6euizx+Pj4gixrTfqj+fr6EhERYfDzLRQymYxVq1Zx/Phx6urqdPNnBZJtyJtvvklDQ8OibZrRB0K8mRqTWYlpxFteXh5hYWGG67RpkZYemWWXk8JCwUrXlax0XUmAQwC/TP8l+2r38VDMQxfcx0L2LSPXr5+iLBLPr/XTfrs18xx6e3tpaGjAzvfiGTeAhr4G7tt7H4GOgfww4Yd42nqikCs41nSMf5T+Aw2X9q/SaDWkeqXqlkK/jU6cXYrQEHjr1EU3sbCw0C0TDA8P60+8TdbRtbToxNukEWtVVRWrV68mICDAMDdfDw/pAaG7Gy7SWLJYsbS0xM3NDUtLcWn9Nh5fX7Mm579GRkYa/OZqa2tLXFwcHh4eZrFcei5OTk74+/tTXl6Ot7f3kq2x/DbBwcE4OzuTl5cnxJtgEXEB8dba2srZs2e59dZbF/zcsyHKJQqA9uH22e04OYYnKuqim012t/aNSdm4kpISxsbGGHC+9KDww42HGdOM8dfL/oqX3TeZv293rl4MP3s/htRDpHqnXnQ7LzsvMpszGRofmpJ9q+2rlf7j6weVH8DQEFzEM0ypVLJ27VpkMhlarRaNRnPhCQYzZfLn29oKK1ei0WgoKCigsbGRqKgo3cgug3DuuU1QvNna2pKSkmLsMBY1NjY2eHt7U1BQwOjoqEFmCw8ODtLT04OPj49Zd2ZGRESIB4VvIZPJiI6OJj09nauuuspsRa1YlzA1LiCgCgoKsLGxMeyQ9dZWsLaWOhIvQVbz9DUHx5qOAbPIQE0ymfW7xJKtt503FjILcltzaW1tpbOzk8jISN49/e4lTyGXSX8O52by+sf6p52kYGNpM20N3Lbl2yhoLyC9Kf28r/WN9aHWqAFY57MOtVbNOxXf2JBMaCb4V9m/pE/8fGc8bWAyo1BcXExmZub8He7PEVAajYasrCzOnj1LfHy84WuGJs89+fM2MbRaLWq12uzrbeaDXC5n9erVrFixgvLycoqLi/X6/RodHSUjI4PTp0+bxLSH+aBUKomKijJbgTJXoqOjGRsbo7S01NihGAwh2U2N1lZpFuY5bfcajYbCwkJWr149/6zLpc7t4XFBc+BzeTLrSYbVw2z230ygYyDjmnFOtZ1ib+1efOx8uC70utmdu60V7IFLGKDaK+3ZGrCVt8reorGhES9rLz4v/Jyuka5LniLNOw2FXMH3D32fnWE7GRof4v3K93FWOZ+XKYxwieDdinf5e8Hf8Xfwx1nlTLJXMrtW7uKrhq/4/sHvc23ItUS6RDKsHuZ092n21+1n7417cVI5sdFvI7Husfwl7y80DTQRvCyYg3UHGRj/OkPo6/vNtIEZ1jD6+Phw8uRJ8vLyiI+Pn/sykZ2dJNJbW5HL5Tg5OREcHKz/rtbpODfzZoL09fVx9OhR1q9fvySMQudDWFgYVlZWnD59mpCQEL1MOlCr1boHmLS0tIt2lpsTjY2NdHd3G85lwMRYtmwZgYGBFBQUEBMTY+xwDIIQb6ZGV5e0nHTOjbmqqoqBgQHD/5JexKLk2zyW8Bj7avdxrOkYu0/vZlwzjpetF7esuIUHVj8wrXnvJc9tz3nCsaKrgnHN+JTXfpr8UwZHBjnechzViIorAq/gsfjHuP6T6y96ikDHQP534//y1/y/8qecP+Fq7crNK27GycqJX534Ff8s/Sd2SjsejnmYB6MfpHmwmVdLXmVwfJAEjwSSvZKxtrTmtSte48WiF9lXu49Pqj/BTmFHgEMAj8Q8gp1SylrKZXL+etlf+WPWH/nszGfIkLHRbyM/TPwhOz/dCUolhIbOalSUs7Mz8fHx5OTkUFxcPPcLuUyGxt2doepq7IAVK1bM7Thzwc4OFArp91xg9gQEBODj44OlpSVqtZSVnusyoEajITs7m6GhIdLS0paUB5pGo6G2thY/Pz9hHfI1MTExfPjhh/T09Jjl90SIN1NDrZZu7Odw6tQpPD095zVofUbMQryt9VnLWp9L+8HtvWnvlM+vC7mO60KuO2+7hz9o5eFNm+DuqSOxtgRsoeJUBc8XPM+D0Q8C4KRy4pltzzA4ODiliL/o7qKpx4x5mIdjHp7y2ka/jWz02yh9UlkJr7wCtbUE2Pjwy5aXuOaKHwDgau3KM5ufmfY92ShseDTuUR6Ne/Si793RypHfr/v9ea/r4lz9z1lNOgDw9PRk9erVFBQU4OrqOqd6n76+PjTW1gxXVWGj0Sxs9kImk36/v76RC8yfSbGWn5/P8PDwnK1n1Go1Go2GxMREHBxm+XBo4vj5+XHmzBlKS0tJu8Tc6aVCREQEn332GQUFBWzYsMHY4egdId5MDbUazlkaHRoaoqKigssvv9zw5+7vv+RYLINx9qw0+/NbTAq2Z049o/t8YGAAW1vb+XVfvvoq3HeflIXSaliNlk+RIfdQwaVt7vRDQMCchrT7+/tjbW2N67dsPmZCZ2cn2dnZJNnb425jY5xlJwsLId6WICtWrCAzM5Pjx4+TkpIyq7/f8fFxlEola9asMWCEixeZTEZERARZWVm0tbXh7u5u7JCMzmQ94KlTp1i/fr3ZdRsvjYIAc0KthnOWFSaLfRek1mFiYsq5F5TRUanWbxoejH6QR2Ie4ZlTz/Bs3rMcP36cqqqquZ+rslISbhoNTEwg12ix1IBco4V774X5HHs2qFTS+54Dbm5uyGQy2tvbaZlh8X97ezsZGRk4OjqyzNUVC2MV3VtaCvG2BHFwcGDNmjXIZDLS09Pp7e2d0X6VlZUcPXpUt+y6VPHw8MDZ2ZmmpiZjh7JoiImJobu7m/r6emOHoneEeDM1viXeTp06RVhYmP48vmZx7gVDq4WRkQuKN/hGwD1X9Bz7B/bPz9/nlVcu3JQhk8HLL8/92LPBykp63/OgoaGB3NxcumZQQ+bg4MDy5ctJTk5GrlAYT0CZsHizt7dn27ZtRp/jaarY2Niwdu1arK2t6ezsvOT29fX1lJeX4+fnJywzgMTERLMfCzUb/P39cXJy4tSpU8YORe8I8WZqTEzonOfb2to4e/bswnXTnHPuBUWjkQTcJUxhd63YxeU2l7NvcB+vlr869/PV1qLRXsBiQKuF2tq5H3s2KBQwPn7p7S5CTEwMzs7OZGVl0dc3/SSK5uZmRkZGsLKyIioqSloqlculn7cxMOa554lcLkepVC6ZLkdDMLn8OWlLMzY2Nu12ra2tFBYWEhAQQFhY2EKGuGiZtAzp6ekxe5uUmSCTyYiJidH5fZoT4gpjalha6m5sp06dMry32wXOvaBYWEgfl/jjq6qqYqv9Vh5a/RDPnHqG5wuen9Pp8my60VxoaoNMBgs1imZs7IKD6WeKXC4nISEBa2tr3SSGc2lubiY3N/f8ZQVjLpEb89zzZHBwkKysLAYHB40dikkzKX6bm5s5dOjQeUuo4+Pj5OXl4enpKewxvsXQ0BDHjh2jsfHSM5+XApOeb2VlZcYORa8I8WZqfL2ktGDebudiYWG8jMgMlhAdHBwIDw/n4diHdTVwsxVwzxc8zy/DziDnAsum2q/r3haCkZF5izcAhUJBSkoKdnZ2U57G29vbycvLw9vb+/wHgG81xiwoxlqe1wNqtZrW1tYlX3+lL9zc3LCzsyMjI4OBgW+mpCgUCpKTk4mLizO7QvT5YmNjg5eXF1VVVcIsmm8838xt6VSIN1Pj6+xXTU0NAwMDrF69emHPPc9lvDmjUkmjoi6Cv7+/bkDzuU0MMxVwzxc8zzOnnuGaK36A/OVXpOU7C4up/778MoSEzPfdzIzh4YvW+c0GKysrUlNTsbW1Ra1W097eTnZ2Nm5ubsTExJx/AxwfF5k3gdGxtLTUWYecPHmSrq4uTp8+jVarxdnZWSxPX4DQ0FAGBwc5e/assUNZFERHR1NTU0N///lTcUwVcYU0Nb7OvJWVleHk5LSwc/ucnKSB4cYgMPCCXZ7j4+OUl5frHNsnmc5G5EJMCrdHYh6RtosG1q6VxFptrbRUeu+9CyfcQOp6DQzU+2GzsrLo6urSmfpOewPs7jbIuWeECWfeBPpnMnN85MgR3n33XUJCQli+fLkYCXURHB0dcXd3p7KyEm9v7yWfnVyxYgVyuZyysjKSkpKMHY5eEFdIU0OpRDsyQllZGdHR0Qv7R+nhAbm5C3e+c1m9+oKGtTU1NTQ0NExbtDwTAXeecJskJASefFIPwc+RwkK4/Xa9HlKtVhMaGkpWVhbW1tYXXnKfhSGzXtFqJXuUSzSnCJYWCoUCS0tL/Pz8SE1NFcJtBoSFhdHS0oJGo1m40ppFirW1NYGBgWYl3kTO2dRwdYWODoYGBoi8xJB2vePhYbyB4atXS0Pav1VLpFarOXPmDP7+/hd0Zb/YEuoFhZux6e6GhgbpfeuJ8fFxjh8/Tk9PDzExMTQ2Nk5fxKvVQlubccRbd7e0bLoQc1QNgEqlIioqSi9zOgUSWq2W3NxcRkdHdSa8+h5mb444OTkRERGx5IXbJJGRkdTW1ppNM5EQb6aGhwcytRo3S0t8fHwW/Ny0tUk394Vm9WqpgP9bS6e1tbVMTEwQconlzOkE3KIVbvDNZAU9iTeNRkNOTg4jIyN4enri4+NDVFQUVVVV9PT0TN24p0fqdDWGeJscSG+Mc+sBKysrgoKC5jTeSTA9Wq0WhUJBYmIiy5YtY3BwkNraWoqLi40d2qJHq9VSWVlJR0eHsUMxOuHh4QBUVFQYORL9IJZNTQytuzsyYJW7+8LXMXh4SIXs3d3g7Lyw554UMYWF8PUfoVarpaamBj8/vxllOs5dQn2h8AXGNeOLU7iB9D6VStDTUPiCggK6urpISUnRGcgGBQXh4uKCo6Pj1I2NKaBMXLyNj4/T3t6Om5sbCrH0O29GRkZQqVRTjGfd3d1ZtWoVhYWF2NjYEBwcbMQIFzcymYzW1lba2trmNC7PnLC1tSUgIIDS0lLi4uKMHc68EZk3E+PrWxuhxhi8PHlDnbzBLiSuruDtPaXuTSaTkZqaOiuDzgejH0QhVzCuGUchVyxO4QbS+4yM1EvtV319PY2NjcTExODi4jLla5PC7cyZM7S3t0svCvE2Z4aGhsjNzWXoEp3RgktTU1PDoUOHpv1eBgQEEBoaSmlp6YzHvy1VQkND6erqmtGUFXMnIiKCmpoaRuY5uWYxIMSbiVH69cgYd2MsXU52thrL/DEhAb76SvepVqvFzs5uVvVFzxc8rxNu45rxORv5GhStFg4flt6vHvD19SU5OfmCy+xarVZnHdLT0/PNz3chO5knaW2VvO2M8XAiWDScPXuW4uJili9fjo2NzbTbrFixYn5j8JYI7u7u2NnZcebMGWOHYnQiIiKYmJgwi6VTId5MCK1WS1FtLRMKBfLJLMlCEhgI1tZgrFqT22+Hkyfh9Gna29s5dOgQo7MY3H5ujVvenXlzNvI1OOnpUF09707T0dFRent7kcvluLu7X3A7mUxGQkICDg4OZGZmMpiXB76+xhFQk12uS9zaYCnT3t5Ofn4+vr6+REREXHA7mUxGdHQ0np6eAKKB4QLIZDICAwNpaWkxi4zTfHBwcMDX19cspi0I8WZCtLa20t3Tg8bNzThLlxYWsHLlBS07DM6114KjI7z+OjU1NVhaWs64MHy65oS5GPkuCK+9BgEBsGHDnA+h1WrJz88nOzt7RjMOLSwsSEpKQqlUknHsGCMrV8753PPCWBYlgkWBRqOhqKgIV1fXWVkh5efnm8UN2VD4+vqSmpoquqCRuk6rqqpMftapEG8mRGlpKSqVCktvb+OIN5AaByY7IRcalQpuuw3N66/TevYsgTM0kb1YV+miE3CDg/Duu3D33dJEhzlSXV1Ne3s70dHRM3ahVyqVpKSk4FRbi8VCTu44FxMXbxYWFjg6Ogp7hjkil8tJTk6+sHn0BXB0dKS6uppWY10XFzmWlpbn1bsuVSIiIlCr1VRWVho7lHkhxJsJUVZWxooVK5B5ehpXvE3jt7Zg7NqFvKkJr7KyGVmlzMQOZFEJuA8/hP5+uOuuOR+iq6uL8vJyQkNDcZulX5r10BBx7e0oYmMZHh6eUdZOr5i4eLOzs2P9+vXY2dkZOxSTYnR0lIKCAtRqNba2tljOcsJGUFAQHh4enDp1askvDV4IjUZDeno6DQ0Nxg7FqExOJjL1TK0QbyZCR0cH7e3tkjGvlxc0NRknkOhoyQPs9GnjnD8piSF/f0LT0y+Z3ZiNj9uiEXCvvQbr18M87A9KSkpwcnJixVxsRoqKANCsWkV6ejp5eXkLW0vU1GScRgmB0VCr1WRmZtLW1sb4PGYnx8TEIJfLyc3NFfVv0yCXy7G0tKSmpsbYoRidiIgITp8+jdpYSQg9IMSbiVBZWYmlpSVBQUEQFQVlZcbJfq1aJf1rrLo3mQzrRx7BYf9+qaj/AszFgNfoAi4nBw4dgnvumddhEhMTiY+Pn5sPYEEBWFkhX7GClStX0tLSsnBmqF1dcPas9PttovT29vLZZ5/R29tr7FBMAo1GQ3Z2NkNDQyQnJ2NtbT3nYymVSuLj48Xy4EUIDAykt7d3yduGrFixgrGxMerr640dypwR4s1EqK6uJiAgQDL+XL1amv9ojDV7Z2cIDYWjRxf+3MDg4CCyRx6Rlo7//d+nnfYwn8kJRhNwGg08/LDUEHLHHXM6RGtrK2NjY6hUqrkXJh89CvHxYGmJp6cnq1evpra2dmHqQ77O+ulzJJgxWPClZhNlsqmmq6uLxMREHPTQ3ezs7Ex4eDgymYyJiQk9RGleuLm5YWtru+Szb5P2KdUXSQAsdoR4MwHUajV1dXXfOImfO23AGGzdCvv2LfhpOzo6OHToEH0TE/CXv8Dnn8Onn07ZRh8jr4wi4F5+GbKz4ZlnYJb1PgA9PT3k5OTM76KsVsPBg7Btm+4lf39/wsPDqaysNHwt0ddZP2ZhuiwwXWQyGY6OjsTFxek9W9bc3DxrK6GlwKRtSEdHx5IWtzKZjODgYCHeBIalvr6e8fHxb8Sbiwv4+Bhv6XLbNjhz5qLLloagoaEBW1tb6Qn9uuvgiiuk7NvXDuz6nFW6oAKuowN+8hOpSWHdulnvrlarycvLw8HBgdDQ0LnHkZ0Nvb1TxBtIDu0bN240vM1AYaG0ZDoH8SowLfr7+wEICQnBywA1js7OzrrMnqh/m4q/vz9btmxZ8h3RwcHBtLS0MDAwYOxQ5oQQbyZAdXU1dnZ2U41WjWnZsXGjdIPdu3fBTqlWq2lubsbPz096QSaDv/4VmpvhyScNMmR+wQTcz34GExPw1FNz2r2srIzR0VHi4uJmZa9wHnv3wrJl0052sLGxQaPR6GakGoSCApNfMhVcmvr6eg4fPmzQuisrKytiY2Npb2836bomQ2BhYYGFhcW8mkPMgclkiKlOnhDizQSoqqoiODh4agF6dLTxxJu9PaSlLejSaXNzMxMTE/j6+n7zYkgIPP44z5e8pHfhNonBBdzx4/DSS/Db387JImNkZIT6+npWrFiBra3t/GLZtw+2bJHMmC/A0NAQWVlZusyJ3piYkCZ3REfr97gLjJ2dHRs3bhRWIRegtbWVwsJCAgICcHZ2Nui53Nzc8PPzo6yszOQNWfVNX18f+/btk8bhLVFsbW3x8vKiqqrK2KHMCSHeFjn9/f20trYSEhIy9QurV0NDA3R3GyewbdukzsgFenobHx/Hy8vrvG6053e488y1rjzy1RgP+txkkHMbTMDV1cGNN0pC+KGH5nQIlUrFunXrWL58+fxi6emBzMzzlkzPRS6Xk5CQgLW1NRkZGQwPD8/vnOdSVQUjIyafebOwsMDe3n7JL0lNR1dXFzk5OXh6erJqsmvdwERERODp6SmWTr+Fvb09SqVyyXu+BQcHc+bMGZP8/RDibZEzmdINCgqa+gVjNy1ceaVkJnvo0IKcLigoiIRplvM0lnIeWf4dHvyiB66/XurCNQCTAk6j1VMnYV8fXH012NpKxrxzuNn39/ej1WpxcHCY33IpwJ49UsfrRcQbgEKhIDk5GblcTkZGhv6WXibrNxfopm4ohoeHKSgo0K+wNRMqKipwcnIiLi5ubjY2c8DKyoqYmJgZj9FbKshkMnx9fWlqalrS3dHBwcEMDAyY5GQOId4WOdXV1Xh5eZ2/JBYWBkql8cRbTAxERsLrrxv8VL29vRcUCQ/HPMyDG34CH38sFdzfdpvBsoEPRj/IwzEPz/9AQ0PSnNb6ekk0zXIKAkiZyBMnTlBeXj7/eEAyB964ESZrCi+CSqUiJSUFLy+vWTvhX5DCQsmcdw7fi8XEpHeUWKY7n4SEBBITE+f/oDEH2trayMrKMskMi6Hw8/NjfHzcJIWLvvDz80OhUJhk16kQb4sYrVZLdXX1N12m5zLp95aRsfCBgdQwcPfdUtbIgHUTWq2W7OzsS48ySUmB3bsl65C77pJqqBYjIyNShjArCz77TBLAc6CsrAyNRnN+RnYu1NVJGdS7757xLra2tjo/rZ6envk/vWdmQlzc/I4hWHSMj4+TlZXF4OAgCoVC8qk0AgqFgtbWVurq6oxy/sWInZ0dzs7O+q9fNSEsLS1Zvny5EG8C/dLS0sLg4OD04g2k4vL9+6XlLmNwxx3SqKx33zXYKTo7OxkeHp7aqHAhrr4a3n4b3nsPbrrJoKJyTrS2wvbtkhHup5/C2rVzOkxPTw91dXWEh4frZznoH/8AGxvpezZLxsbGOHHiBIXzyQAPDcGxY9Lvs8BsmJiYICsri+7ubqNnvJycnPD396e8vFx4v51DamoqYUvcVzEkJIS6ujqTy5YL8baIqa6uRqlUfmOP8W22bYP2duP5vXl7SzG89prBTtHY2Iitre3MO9NuvBE++AC++kpa2jVWZvLb7N8vdVKWlMAXX8Bll83pMFqtlqKiIhwcHObfpCAdUPr53XQTzKFDUqlUEh0dTUNDw9wHPR89KtUqXqLeTmA6aLVacnNz6e3tJTk5eVF030ZERACY/EByfSKXy9FoNEu6RjM4OJiJiQmTy8qalRvm2NgYL7/8Mvv27aO/v5/g4GDuu+8+EhMTL7rfkSNHOHToEOXl5XR1deHu7k5qaip333039vb2U7a9+eabaWlpOe8YO3bs4Ic//KFe38+ZM2cICAi4cF1RWppU8L5vH8TG6vXcM2bXLrjlFqiogLkMQr8IGo2GlpYWAgMDZ7fjjh1w6pRU/7ZuHfzud/DDH4IRam0YH4f//E/4wx+kzNI//jEnS5BJZDIZQUFB2NjY6KfoOz1dMlt+6aU5H8LHx4fR0VFKSkqwsrKa/VLuvn3g6wvh4XOOYbFgZWVFSEjIki+QLyoqoq2tjaSkJJYtW2bscADpQSMiIoKamhomJiZER/DXnDp1iqGhIdbOcSXA1HFxccHR0ZEzZ87Mz+R8gTEr8fbkk09y+PBhdu7cia+vL1988QU//vGPefrpp1l9EQuC//mf/8HFxYWtW7fi4eFBdXU1H374IRkZGbz88svnXYhDQ0O55ZZbprw2o2W9WaDRaGhsbGT9+vUX3kiphE2bJHPVxx/X6/lnzI4d4OQEzz8Pf/6zXg89NjaGk5PT3BzYly+XMjq//KX0vTl0SMoweXrqNcaLUlsL3/mOVM/1+9/Dj388LwGp1WqRyWT4+PjoL8bnn5e+Vxf7PZsBQUFBjI6OUlNTQ0BAwOxujPv2SSPXFqgD0ZCoVCpdhmcp4+npiYuLy1Rj8UWAv78/fn5+RmmaWKy4u7uTn5/PyMiI4aeoLEJkMhn+/v4mZ5tiNuKttLSUgwcP8tBDD3HbbbcBsG3bNnbt2sVzzz3Hc889d8F9f/Ob3xD7rczVihUr+P3vf8/+/fu5+uqrp3zN1dWVrVu36v9NnENbWxtjY2MXXjKdZOtWeOwxGByUsnALjUoF3/8+/OlP0qQAPXYLqlQqkpOT534AhULKeG3aBHfeCYGBcM898IMfSAa/hqK4GP7nf+Bf/5I6KI8dg9TUeR+2sLAQmUx20QeRWVFdDW+9BU8/rZesZEREBMHBwbMTbo2N0lLyr3417/MvBtRqNb29vTg6OuqvE9eE6OrqwsnJadGJtklkMhkymYy+vj4GBwcNMprL1PDw8EAul9Pc3Dz7VQ4zwc/Pj9LSUsbHx43WVDNbzObx48iRI1hYWLBjxw7da1ZWVmzfvp2SkpKLtkN/W7gBuoxXbW3ttPuMj48btE6goaEBCwsLvL29L77h1q3S0tzhwwaL5ZI8+qiUNfnLX/R2SK1WS3t7u348iLZtg7IySVzu3i0t7+7cKXV86gutVvoZbN8ueZUdPAhPPikJOT0It/7+furr66W5rvriD3+QxPa99+rtkEqlkrGxMU6ePDkz9/b9+6Xfnc2b9RaDMRkcHOTEiRMMDg4aO5QF5+zZs6Snp3P27Fljh3JJamtrKSgoQK1WGzsUo6NQKHB1daW5udnYoRgNf39/JiYmTOp7YDbirbKyEl9f3/P80CaXMGY7AqOzsxNg2nqNvLw8tm7dyrZt27j55pt57733Lnm8jo4OKioqdB+XKo6sr6/Hy8vr0k8BYWEQELCgo6rOw8VFmhDwt7/prcOzs7OTjIwM+vr69HI8XFykJdS6OnjmGakmLjn5m5q4gwcl0+HZ0N0tLVn/+teQmChl+Boa4I03pKzWY49Jo8T0QGVlJdbW1vj7++vleDQ0SB59jz0G35paMV8sLCyYmJggMzPz0iJm3z5plqqLi15jWAjGx8fp7++nra2NhoYGnRDo7e2lvr6e+vp6Ghsb6ejoYGRkxMjRGpaOjg7y8/Px9fW99APnIiAsLIyJiYkLPpwvNby8vFCr1UvWsNfd3R2lUmlSc3DNJq/f2dmJyzQ3gMnXOjo6ZnW8f/3rX1hYWLBhw4YprwcFBbF69Wr8/Pzo6+vjiy++4K9//SsdHR08dJERR5988gmvzaIrs6GhYWa1MzKZlH1bwCHx0/LYY9Kg+L/9DX7xi3kfrrm5GWtra/0XO1tbw4MPwv33S8a+L74I//3f0NsrLR1GRUmZsrg4aUi7tTVYWUn+bMPDkmDLzpa6WCe71lxcYM0aaT7ptm16r90aHBzk7NmzrFy5Un+1Ov/935KwfFC/s2BBEm9JSUmkp6eTkZHB2rVrpy/gn5iQMm9zHA22UIyMjNDd3c34+Dj+/v5otVq+/PLL87I2kx3RXV1dlJaWYmNjo/taWFgYK1asoLOzk+LiYqytrXF0dMTJyQknJyeTWaqZjt7eXrKzs3F1dSU6OnrBpifMB5VKhZ+fH9XV1QQGBi755gV/f3/9PRiaIHK5HF9fX5OqezMb8TY6OjrtBVCpVOq+PlP279/PZ599xm233XZezdkf/vCHKZ9fddVV/OhHP+Ldd9/lxhtvvGCtx44dO1izZo3u87q6On77299Ou21/fz89PT2XrnebZNs2SYTU1Eh1XcbA01MSRH/+M/y//zcn24lJtFotLS0thn2Ct7CAG26QPjQaKC+HkyclUZaeLn0/p/Omksslc+SNG+EnP5GEXkiIQYvte3p6sLa2nvnvw6VoaZHe389+prfM4LdRKpWkpKRw/PhxMjIyWLdu3fnCMzcXOjulh49FxuDgIOXl5XR3d+vKIxwdHfH390cmkxEREYFSqUSlUmFtbY2VlRVyuZze3l4CAwNZv349jo6OTExMMDIyoqt/UygUuLi4MDg4SG1tLadPn8bR0VFXptHQ0IC7u7tJdavW19djZ2dHfHy8STUChISEUF9fT11dnX7Mrs2AoaGhKQ8dSwk/Pz+ys7N1jWGLHbMRb1ZWVtOOUJo03pvpxbCgoIA//vGPJCUlcf/9919ye5lMxs0330xWVhanTp26YCODq6srrq6uM4phUv3P+Ga9datksvqvf8HPfz6zfQzBj34EL7wAf/wjPPHEnA/T3d3NyMjIwhUTy+XSpIPIyG/qv9RqKdM2NCR5kKlU0vfY2npOc0jng4+PD15eXvq7Mf7611I28fvf18/xLoC1tTXJycn09vZOH/s//ynZpuihJnC+DA0NcfbsWeRyOUFBQcjlckZGRvD29tZlx87txLuQx55MJkOlUuku/hYWFlNKORwcHFi5cqXu88HBQd11a3IuKkgrBt7e3nh6ei56Ibdy5UrUarXJNWjY2NgQGxs74+uyudPQ0EBBQQHbtm0z6UzwXPHz8+PIkSN0dXVNu4q32DCdx6RL4OLioqtTO5fJ12byB1pVVcVPf/pTgoKC+M1vfjPji9Fktk1f9VkNDQ0sW7bsPI+5C2JvL5msvvba9NmihcLfX7LDeOopqKyc82E0Gg1ubm44OTnpMbhZYmkpfV89PKT35e4uZRMXWLh1dHQwMTGhP+GWnS0J7CeekCxeDIyDg4PuIaS1tfUbp/2xMUm83Xmn9L02AuPj41RXV3Ps2DEOHjzI6dOndTV61tbWrFmzhsjISLy8vGZsoeDg4MDll18+48YSW1tbXWmAtbU1W7duZfXq1chkMoqKijh27JhuW2NPKTgXtVrNiRMn6OjoQCaTmezN3sfHZ9GL44XCzc1Nt+qxFPH19UUmk5nM0qnZiLeQkBAaGxvPK5AuLS3Vff1iNDU18cMf/hAnJyeeeuqpWaWOJ7ur9FWf1dDQMPslsl27oKoKTpzQSwxz5qc/lewx/u3f5iwkXV1dSUlJMYnUtSEZHR0lMzOTmpoa/RxwYgIeflha9l3gOrOBgQGys7MpLi6WXvjsM2nJdBbzVPXFZFH20NAQ5eXlWFtbEx8fz7Zt21i1atWCx3MuSqUSf39/UlJS2Lp1K/Hx8YCUlTtw4ACVlZXTrjAsJBqNhuzsbHp7e3VlKaZMS0sLx48fX1Ti2BioVCqcnJyW7KB6lUqFm5ubEG8LzcaNG5mYmOCTTz7RvTY2Nsbnn39OZGQkHl+72k83nLizs5PHHnsMuVzO//zP/1xQhPX19THxrYHnarWaf/7znygUimktR2bL+Pg4zc3NsxdvGzZIXacGHFU1I2xsJN+wvXvho49mvfvY2Bi9vb1L/kIK0ng0uVxOQECAfg740kuQkwPPPrvg2S47OztWr15NbW0tlZWV0u9pQgKcs4RoaPr6+sjLy9NlsxwdHdm6dSsJCQl4e3vrpWi9r6+P/fv36yULr1QqddlnmUyGh4cHp0+fZv/+/ZSUlBhlpJFWqyU/P5+uri6SkpL0a11jJGxsbOju7qapqcnYoRgdd3d3Ojo6luz115TMek2rSOEiREZGsmnTJl544QV6enrw8fHhyy+/pKWlhcfPmT7wu9/9jlOnTnH06FHdaz/60Y84e/Yst912G0VFRRQVFem+5uTkpBuvlZ6ezhtvvMGGDRvw8vKiv7+f/fv3U1NTwwMPPKCXdfLm5mYmJiZmL97kcrjrLslr7emnJRFlLHbskPzOHn1UqsebhXlwc3MzRUVFS7buYpKxsTFqa2sJCgrSz/ehvV3Kit5zjzRWzQj4+/szMjJCeUYGVnv24P9//7cg5x0aGqKkpISWlhasra0JDg5Go9Egl8v1/jum1WoZGRnR+81PpVKxevVqVqxYQU1NDbW1tYyOjhIXF6fX81yKiooKzp49S0JCgknUBc0EBwcHPDw8qKysxMfHZ0ln/N3c3Kirq2N4eHhJNi74+fmRk5NjEtMmzEa8AfzsZz/Dw8ODvXv3MvD/2Xvv+Dbu+/7/ddgEQIAgAO4l7ilS3CIpatiybKt27DSOR/xr0qZN8nWTr9u0iZs033yb0ay23zQdWc5OGjuOEzte8pA1KFLinuLeewIkAWKP+/1xBiKKFCeAO+Du+XjoYRPj7g3c4XPve4/Xe2MDqamp+OY3v4mioqId3+fRgHvuuee2PFdUVOR13lJTU5GcnIx33nkHa2trEAgEyMjIwJe+9CWcPn3aJ59hamoKIpHIGyncFx/+MFXL9NJL1FgmuiAIyoHMy6OK4//lX/b81uXl5aCXTvAFnlSpz7rgPvMZKo19W7d0oMnMzITt2Wcxy+Mh8dFH4e/LJEmSuHHjBtxuN44dOxb0F2exWIzs7GxkZGR4pUoWFhZgs9m8nbD+JCEhAXK5POQmE2RkZKC+vh4LCwsh99n2g0qlwtmzZ+k2gzY8QZPp6WnGzzkNKedNLBbjqaeewlNPPXXH1/zHNnf7t0bhdiIrK2uLVIivmZ2dRXx8/MEK1NPSKNHZn/2MXufNY8uXvkRFe86e3ZMcBEmSWFlZ4dr2QS2iHjmKQ/PrX1OCvD/5CdV4QTP5b70F8n3vA6HR+K0tf35+HhEREQgLC0NZWRlkMllIaXnx+Xzv51ldXcXIyAgmJyeRn5/v1ZvzJUtLS4iMjIRcLof8EDJATEWlUkGj0WBxcZHVzpuHYBoT5UtUKhVkMhlmZmYY77yFTM1bqLCwsICYwwxP/8hHqGkBTMjbf+YzlOP2//1/wB7GjqytrcHhcEDrw/mowUpUVJRv5gwODwMf/zjwxBPUuUE3nZ0genrA+/M/x8bGBq5cuQLjfidb7IDVakVjYyNaW1u9jUQKhSKkHLfbycnJQU1NDQiCQENDA7q6urbU5h6GxcVFNDc3h/w0gtLS0l2zNGxgfn4eb731Fu2NMXRAEARiYmKCommDc94YhM1mw+rq6sFSph4eeYTSIvv5z31n2EHh8ahRUTwe8OSTVLfjDtjtdiiVSt9PVQgiSJJEV1eXb2RnbDbg0UcpAeXvf9+vQsJ75qc/peRXzp3zCts2Njb6pPh+aWkJV69ehdFoREVFBdLS0nxg8P6QyWSoqqraMqbP36hUKtTU1ODo0aPY2NjwWTRTr9ejra0N0dHRtHyfgcQTaWLjXNpbUSqV3iwIG4mOjuacN479sbS0BACHc97Cw4HHH6fmd9LQjbaF6GhKz+vyZWpQ+44vjUZtbW1Q1yQdFp1Oh6mpKd9ETj7zGaC3F3jhBb9NUtgXOh2Vuv3oRwGBAEKhEBUVFV4HziOofRCsVitaWloQERGBkydP3nHSib8RCARQq9W0CNYSBIHk5GRUV1eDx+PBaDQeKlpmNBrR3NyMiIgIlJSUsOJ3OTs7i8uXL4f8LNqdkEqlkMlkWF5eptsUWoiOjsbq6uq+pjLRAee8MYjFxUXweLzDpw2feQZYWqIulEzgzBlqKPz//b/AlSvbvsQzRojtTE9PQyaTHV6g+He/o2bN/r//B/hAwsYn/Md/UNHXv/kb70MSiQSVlZWw2+1oa2vb9ybNZjPcbjckEglqampQXl5Oq/aY1WpFf38/I87lxcVF9PT0oLW19UApMJ1O560ZDKaxV4chKioKBEGwXjYkKiqK1c4b8MdgClNhxy8ySFhcXIRGozn8XXtGBpUu+9a3KCV7JvDFL1LzQN//fmqO6G0sLS3hnXfeYcRFjy6cTufBNP5up7mZqjN85BFKlJcJGAyU8/bxjwO33ZzIZDJUVFQgKytrX5vU6/Woq6vzdosrlUrao0M2mw0jIyOMuGtPT09HWVkZVlZWcO3aNZjN5j29zyNzkpKSghMnTrCqcF0oFCI2NjZotL78hVarhc1mY+V6rNFowOPxGJ865Zw3BrG4uHi4lOmtfP7zwNQU8Ktf+WZ7h4XPp6JBsbHAffcBt/0w9Ho9pFIp47V1/Mnc3NzBNP5uZWwM+JM/AYqKqLpHpqS6vvtdak7s3//9tk9HREQgMjISbrcbU1NTu25uYWEBN27cgEKh8E1jR4gSExPjHXrf1NS0q/6cy+XC9evXvULmbIm43UpiYiKMRiPW1tboNoU2tFot7r33XlauxwKBABqNhvFjwtj3y2QoJEn61nnLzwcefpiqM/Nh59mhiIgALlygCunvuw9YX/c+tbq6Su8sUwYQHR2NkpKSgy+YCwvAuXOAUgm88grVuMIEzGYqffvnfw7Ex+/4Ur1ej66uLvT399/xNVNTU2htbUV0dDQqKytZFRk6CFKpFDU1NSgqKtoxMkmSJNra2rC+vh4SkxMOikajQUREBCujTh54PB4rHXcPwdC0wN6jwzDW1tZgs9l857wBwD/+IzXv9IUXfLfNw5KUBLz5JjA+TkWIzGa4XC6sr6/7RZ8qmBCLxYiLizvYm1dXKS09kwl4+21Ao/GtcYfh2WcBvZ6qxdwFjUaDvLw8jIyMYGxsbNvXrK6uIjk5GSUlJay+wOwHz6gtj4PmkVG5le7ubiwtLaG0tJTVN1IEQeDEiROHk2wKAUZHR72j5NhGdHQ0lpaWGD0mjFv5GILHy/ep81ZSAtx7L/DP/wy8N4ybERw9CrzxBtDeDjz8MMzLy+Dz+ay+YIyNjWFwcPBgb9brqUjm7CzwzjsAk9KINhtVe/mhD+3ZrtTUVKSnp6O3t3dT4bhHwuHo0aMoKCigvb5tOzyD5Zk6sN0jitzW1rYpPT0+Po6pqSkUFRXR1qnLNKxWKzY2Nug2gzbEYrFXe5NtxMTEwGazMTp1zjlvDGFxcRFSqRThvpZ0+MIXKLmIV17x7XYPy/HjwKuvAg0NCH/oIZwrKWFtqoYkSYyNjR0sTTM9TU3VGBkB3nqLGknGJH7+c0qg+XOf29fbcnJykJCQgNXVVQDA0NAQrly5AovFwkinzUNYWBgKCwsRxpSU9W3weDwcO3YMycnJ6O7uxvx74tkJCQkoLi5GQkICzRYyh7a2NvT19dFtBm14bqY9v0E24QmiMDl1yjlvDMFT7+bzC1N1NXDyJPDlLzOn9s3DmTPAlSsgx8ZAnDgBYg+F6qGITqeDxWLZf6NCfz81ZH5jA2hoAEpL/WPgQbFaqZrLD3wAyM7e99uLioqQn5+P8fFx9Pf3IzMzk7FOkQeXywWj0ejTCQe+hiAIFBQUIC4uDu+++y4WFhYgFAoRv0s9IttISEjA0tISa2vfZDIZRCIR9Ho93aYEHLlcDqlUyjlvHLvj02aF2/na14CODuDHP/bP9g9DaSmuf+tbcJjNlCNy8ybdFgUcj7bbvmr+btwAamqoJpDr14F9ymwEhH/9V2BmhppxewAIgsD8/DwaGhqwsrJy8HrAAOIZ+cX0dBtBEEhISIDT6WStkv5uxMXFsV7zLTIykpWRN4IgEB0dzeiOU855YwAOhwN6vd5/tSZVVdRcy899DmDYQm0ymaBXq7H+xhuU/teJE8ClS3SbFTAOpO328svAXXdRKdJr13bt4KSF8XGq1vLTnwZycg60Cbfbjf7+fmRkZODIkSNobGxkhH5aKLC+vo62tjZkZ2cjNzcXS0tLPhlRFkpwmm9AXl4eSkpK6DaDFjxNC0yFc94YwNraGkiShFqt9t9OvvlNKm26z9ojf+MJySuzsoCrV6nU3913U9MYnE6arfM/AoEANTU1SEpK2v3FNhvw9NOUBMz581SNG1PnwP7N3wBqNTVZ44DweDxUVVWhrKwMx48fh9vtRmNjI5wsOC/8idlsRlNTE+RyOUrfS7XfvHkTzc3NjE730kFSUhLCw8NZe85JpVLGNt/4m8jISKytrcHNpGa/W+CcNwbgCUv7tdsyKoqKhPzoR0Bjo//2s09WV1cRHh5OaXUplZSMyJe+BHz1q1R0aWaGbhP9jkKhgFgs3vlFw8NUk8f3v0+NvXrhBebouN3Oa69RDTLf/jYgl+/77SRJoq+vDzabDRKJBDweD2FhYaioqIDFYkFPT48fjGYPJpMJYrEYFRUVEAgE4PF4KCsrw8bGBnp7e+k2j1FoNBqUlJTQMquWKXR0dLAydaxSqeByuWAwGOg2ZVs4540B6PV6CAQC33ea3s4nPkHNufzrv2ZM84LRaNzcZcrnU9GaK1eA0VFqUsBrr9Flnt9pamraPTT/P/8DFBdTjQmNjcAnP8mcyQm3Y7EA//t/A2fPUo0KB2BwcBBjY2NeaRAPCoUCFRUVyD5A80MgYar2nCeqptVqUVtbuymiEh4ejoKCAkxOTm6rAcdmPGUtbMVgMECn09FtRsDx1CAzteaPmasMy/BMF/C7BAKfT40pam8HfvAD/+5rj1RUVCA3N3frEydOAF1dVL3eAw8AH/sY4+r1DovBYMDS0tKdL/azs8DjjwNPPgk89BDQ1sacIfN34pvfpKKl//mfB3IwV1ZWMDw8jKysrG0bOFQqFcLCwmC32+8o4ksnSqUS58+fh1KppNuUTbjdbrS0tODmew1B2601SUlJiIuLw8jICKPFSQPN9PQ0bty4wdqUskKhYGz0yZ9ERESAIAjOeeO4MwEdDVVZCfzlX1LTFxhQjCkQCO48DkqtBv7wB+C//5tKE2ZmUv8fIvUny++JE29xUmw24BvfoDpIL10CfvlL6p+/I7OHZXSUsvsznzlQ96vNZkN7ezu0Wi3S09N3fO3y8jJ6e3sxPDx8UGtZA0mS6OzshE6nQ2xs7I6vLSwsRFVVFaO19AKNVquF2+1mbfTN47yxzaHn8/lQKBSMPe6c88YA9Hp9YKcLfP3rAI9HXWRpZHl5efciaYIAnnoKGBoC3v9+4FOfopoaQmBsy/LyMtRq9ebI2xtvAAUFlLjyX/0V9bmffJI+I/cKSVLHJjoa+PznD7SJ1dVVr4jsbs5DfHw8srKyMDAwsKdB9oFiY2MDdXV1jJIK8UyqKC4u3rUpSiAQQCAQwGw2e4fTs53w8HBIJBJGdx76E4VCAZfLBbPZTLcpAYfJUimc88YA1tbWAjvXU6OhRhb94hfAiy8Gbr+3sbq6itXVVfD5/N1fHBVFNVs0NQFiMVBbC3zwg1QKOAhxuVzQ6XTQarXUAw0NwP33U12kiYlUyvjb36aaOIKB738fuHCBSpfKZAfaRExMDM6cObN788Z7ZGZmIiUlBd3d3YzRY/LM6WVKim1+fh7j4+MoKCjYNep2K3Nzc+jp6YHRaPSjdcFDVFQUlpeX6TaDFiIiIlBYWMjKrlOVSsU5bxzbYzKZ4HQ6Az/X8y/+AnjkEeCjHwVoqh0yGAz7H4lVVkYJ1P7kJ0BrKzW/9e67KdmMIArr83g8VJSWIqGlharrq6kBJiaA3/4WuHiReWOudqKzE/jbv6UaYR58cN9vdzqdGB4ehsvl2nexf35+PmJjY2G32/e9XzYQExOD8vJypKSk7Ot9qampkMlkXGfve0RFRUEsFjNWNsKfCIVCJCUlUYoALINz3jjuiKcQNODOG0EAzz5L1ZU99hhAw8XvQM4bQKV8//zPqZTib34DrK0B995Ldab+8pfUWCYmYzKBePZZaE6cgOixxwCBgJrzevMm1aEZTPVGRiPw6KOUEO+//uuBNjE8PIzh4eEDCfASBIGSkhKvTh4bh2hvx9LSElZWVrxK8fuFx+MhPz8fOp0OMyyQ69mN2NhYHD9+nLGdxP5mZWWFlWLFkZGRsFgsjBSwZueZyCBoc94AKiX3m99QkZMD1ikdFKfTCZPJdLhh9AIBlTptaaEK++PjgT/7M6ru6s/+jJIYYYoiv9kM/O53lKMTFQXyE5+ALSuLkv6oqwP+5E8opzSYIEmqHnF2ljqP7tR4sgNGoxGjo6PIyMiAVCo9lDkTExPe4fVsZnV1Fa2trYeuWdNqtYiLi8Pg4CDritW3w+12b5GvYQuLi4usbA7yXJeZGH0LsqtF6OGJPtEmAllWRsk7/Nu/BVRPjSAIFBcXQ6PR+GJjwOnTVLF/fz81kqm1lZIYiY6mRoO99hoVoQskOh3w+99Tch9RUVRUbXgYjn/4B7z7gx9A94MfABUVgbXJl/z858CvfkXJzmRmHmgTN2/ehFQqRVpa2qHNiYmJAY/HQ2NjI21pVKlUipKSkkM7ogdlY2MDTU1NUCqVKCoqOvT28vLyuO7T9xgeHkZ9fT0rHVmFQuEt8WETnPPGcUeMRiM9Ubdb+Zu/oSI/H/5wwCYa8Pl8xMfHI8zXUwKys6nRWn19VBry6aep6NYDDwCRkVQt2Uc/SjU/3LwJ+KqGxekEOjqA732PivplZlKNIX/6p5RD+fnPU2ne9nYsfOQjsMTE+MZxpYu+PqrG7S/+AvjQhw60Cb1ej5WVFeTn5/skHSWRSFBZWQm73U7bqCehUIi4uDha6oOsVisaGxsRFhaG8vLyvTUC7YJEIkFYWBhcLhfr6wo1Gg3sdjvW19fpNiXgeDIkTOqiDgRhYWEICwtjpPPG3pkfDMFgMOyrC8wvEATws59RNWNPPEGlIP0cCVxaWoLD4UC8P4eq5+VRo7b+6Z+o8VI3blD/Ghupz+t2A1Ip1d2ZkPDH/yYkADExVFerUEiJGzud1D+rFZibo5zcW/9NT1PPCQTU93juHLXf48eBI0c2mbW8vIyIiIjg7d4ym6n0b0oK8B//ceDNREZGora21qeCtjKZDBUVFbh+/TqGh4cDPo3BZrNhdnYW8fHxe+6a9RVOpxNhYWEoKSnxufNYX1/v7TpkKyqVCgKBwPv7ZROeSLLZbGbdZ1epVNDr9X9UBmAInPNGM2az+XB1X75CrQaeew44dYrSGPvGN/y6u5mZGVitVv86bx4IgoqEZWZS0UWAKrRvbaWiZdPTlAM2MEB1es7P7zw+TCCg6us8jl5xMeX4FRdT3a+7pMz0en1gPrc/IElqPNfICFVreEBZEIfDAaFQ6JdJBBEREaiqqvL/uLltsFqt6O3thVqtDpjz5okwyuVyVFdX+2Uf8fHxGBwcRFZW1p1FtUMcHo+HyMhIxoq2+hOhUIiEhITgveE8BOHh4YyUzOGcN5oxm82QHfAC6HNqaqj6t7//eyA9nZrE4CcO3axwWMLDqTq506e3PudyUfVqdjvgcFARN4GAisKJxZSje4g0X05ODuQHGNjOCL7+deCnP6Xq3fLzD7yZ1tZWSKVSv0VyPNEBzwiy3SY2BCskSaK9vR1OpxPHjx/3235SUlIwMjKCkZER5B/iuAc7SqWSkSm0QHCM6aP5/IRcLsf8/DzdZmyBc95oxu12M+tC/ulPU7pvn/gEFVW6916/7MZsNiMmJsYv2z40fD7VYOAngjbq9j//Q41V+6d/our6Doin1q2srMx3tt0BnU6H/v5+8Hg8pKam+n1/gaa7uxuLi4soLy/3634EAgFSU1MxMjKCjIyMgKeEmUKg0/BMwm63w2az0RLRphOZTMbIWj+uYYEBMCbyBlApxu98h1L7f+QRKq3oYxwOB+x2O20deXQStLpZly9T2nof+QjwxS8ealPDw8MIDw8/kP7Yfjly5AjS0tK8I6JCCc9osKKiIkT58WbDw5EjR6BSqQ6kxxdqsLHjdGxsDE1NTXSbEXDkcjkjJWI4540BMCryBlApwueeozo377+fqm/yIW63GwkJCcyo9QswMzMzGKNposWB6ewEHn6Yqof84Q8PJSJsMpm8acxAyU/k5OQgISEBnZ2dfh9xJBAIEB0d7Xfpn7W1NQwPDyM3NxcJCQl+3ZcHoVCI48ePs/J3eyvvvvsuJiYm6DYj4EilUlgsFtZNmZDJZHC5XIy7aeGcNwbAqMibB5kMeP11QKEAzp6lhFh9hFgsxrFjx1gXfgcOMVWCLoaGgHvuATIyqDm4h+xiNJvNkMvlAe2wJggChYWFiI2N9btCvkwmQ3l5ud9/0xEREaipqfGJPt5+0el0WAu0ZiKDEAqFXnF1NuHJlLBNBNsTXGHa5+acN5rh8XjM7d6KigLeeYcq4L/nHmBlxSebZeq4EX9DkiSMRmPwOG9TU9TcWK2WGjrvA7u1Wi1Onz7tEw2y/cDj8VBcXAy1Wg2SJGH10wg1t9sNu93ut+jEysqKN+pDlz5kf38/hoaGaNk3E1AoFKx03jw3JExMIfoTz+dm2jWLc95oJiwsjNnq5UlJlHzG8jJw332ADzqthoeH0dLS4gPjgguz2QyXyxUcEcf5eSriyucDb79NCQ4fErPZ7DenaT/09fWhoaHBL2kQo9GIt956yy/SAuvr62hpacHCwgKtNVeJiYlYWlpixLGkA4VCAaPRyLq6N4lEAqFQyLr5wVzkjWNbfD5hwB9kZlIX8LExoLb20ClUi8USHJ/bx5Akibi4OL9om/mUoSGgqgowmajIq4+6YwcHB3Hjxg2fbOswpKamwu12o7GxMWjG/ZjNZjQ1NUEul6O0tJTWG764uDgQBBFyDSB7RaFQwOVysS4CRRAE7r333uDtlj8gYrEYfD4fZrOZblM2wTlvNBM0TkxREVBfD6yvUxf2gYEDb8pms7FSakAul6OkpITZQpctLUB1NRAWBly/Tun9+QCn04n5+fmAFdfvRFhYGCoqKmCxWNDS0sL4AmybzYbGxkYIBAJUVFTQNwf5PYRCIWJjYzE9PU2rHXShUqlw5swZZtYqc/gcgiAgl8u5yBvHZoJKLiMnh7qgh4dTgr4HbBtnq/NmMBiYPR/y7bcp0eL0dODaNSpl7iMWFxfhcrkY4bwBVPSkrKwMer2e8dItPB4PCoUClZWVjHH8U1JSEBcXx3jH1x/w+XzIZDJml7v4id7eXrS3t9NtRsCRyWSc88axmaCJvHlISKAu7NnZwJkzVCH7PnG73ax03lpaWjDiY9kVn/HrXwPnz1NyIBcvUlMkfMjy8jIUCgWjzne1Wo3a2lok+dBJ9SVutxtWqxVCoRClpaWMutGLjIxEZmam37t3mcr4+Dj6+vroNiPguFwuRo6K8jec88axBSZdzPaMSkVFae66C3jgAeAXv9jX28+dO4eUlBT/2MZQHA4Hc+bY3s6//zvwoQ9R/1566cDzSneCz+cHVB5kr3iaRxYWFjA6Onro7SkUCtx3332HPs4kSaKzsxMNDQ2MjW5tbGywtu7NarVibm6ObjMCjlgsZnb2wE/I5XKu5o1jM4yVCdkNqRT4/e+pQe8f/jDwL/9CDS3n2BZPcTOjBJlJEviHfwD+9m+BZ56hZpYeUsftThQUFCAzM9Mv2/YFBoMBfX19mJqaOtR2CIKAQCA4dEqtr68Ps7OzyM3NZWx0a2lpCZ2dnXC5XHSbEnA8NVBMdaz9hVgshs1mY12nrVQq5UR6OTYj9NPFMiAIBMCPfgR8/vPAZz8LPPkksEtIXa/X4/Lly6yTGfD88BnjrK+sUFHTb34T+Pa3gW9841CTE3bCbDYzvqszMzMTKSkp6O7uxsLCwoG3YzKZ0NjYeKhOxJGREYyNjaGgoICR0UoPWq0Wbrcber2eblMCjqfsg2kXdH8jFotBkiTr5EJEIhHj1jDOeaMZujvHDg1BAP/8z9TQ8ldeAYqLgba2O77cYrFgY2Mj+D/3PnG73RCJRMwoOL96FSgspBpOXnsN+Ju/8evuuru70bbDOcEU8vPzERMTg7a2tgM7JE6nE8vLywde6K1WK4aGhrzOJJMJDw+HRCLx+8gxJsJW502tVqOqqop16zcT9e04541mgjryditPPEENsVcogOPHqeH224TWbTYbeDwe6378sbGxOHfuHL0pMJcL+NKXqEaTzExqZun5837dpdvthk6ng1ar9et+fAFBECguLkZCQgJttagSiQQnT55EVlYWLfvfL1qtlpXOm1QqRUFBAXMi6QFCJBJBrVYzNpXvL0QiEee8cWwmZJw3gJKYuH4d+Ou/pqI573sfoNNteondbmdlpyntzM5SDSZf/jLwf/8v1VEaALFNo9EIt9tN2yin/cLj8VBYWIiwsDA4HI6ApfdXV1fR09MDkiSDSj8sJiYGah93JgcDQqEQKSkprHPeSJLEwMAA62bbMiJjchuc80YzIReBEoupGqpXXgEaGihx32vXvE/b7XZG/hD8TVdXFzo6OujZ+RtvUMdheBi4dAn44hepsVcBwDMDMihGgt1GR0cHbty44ffuuo2NDTQ1NcFgMARdAXxMTAzy8/PpNoMWFhYWWOfEEASB0dFR1n1uJl6zOOeNZkIq8nYrDzwAdHUBR45Q2mH/5/8AFguOHDnCysXebDYH/sJsMABPP02lRisqqONx8mRATbDb7QgPDw/Km5S8vDzY7XY0NzfvuaMyLCwMBQUFe067Wq1WNDY2QiKRoLy8HPwAOdW+xGQyMU5GIRAMDAwwXuDZH/D5fMYV7/sbJl6nOeeNZph4UviMhIQ/Rnq++U0gJwfhFy8iMkhSaL4koFMl3G5Key8zk+oG/va3gVdf9clw+f2SlpaGU6dOBXy/vkAmk6GiogIGgwFtbW17kkcQiURISUnZ0526w+FAY2MjAKCysjJo14KmpiaMj4/TbUbA8chmsA2BQMA6eRgu8saxhWCMSOwLgYCqsertBfLygPe/H7ZTpw41GzUYCZjz1t5OjS778IepiOfAAFV/yMJRPr4gIiICZWVlWF5ehu62+s3tcDgcmJmZ2VNxs0AgQFRUFCorK4O6dkqhUHjT42xCJBKx0nljY+SNc9442EtGBvD66+j9xjeA8XGgoAD4+7+nUnshDkmS/m/UWFkBPv5xoLSU0tq7fBl4/nkgMdF/+9wFq9WKCxcu7MnpYTJarRZ33XUXNHuIXJrNZnR0dOyYRiRJEgaDAQRBIDc3l1nCzQeArc4bWyNv8fHxiIiIoNuMgMI5bxysZ6WyEiMvvURJVnzve0BWFpXiC7JC7f1SU1OD6Oho32/Y6QT++7+pFOkLL1ASLR0dVNSNZkwmE5xOZ0h0F3siY0NDQ4dOEXZ3d6OhoSFkxgzJ5XLY7faQ+Tx7RalUMnPcnZ/JzMxEfAA61ZkEE0saOOeNI6A4nU7wpFJqKsPAAFVA/+EPUxGj55+nnJEQgyAIqFQq3zoxNhvwk58AR48Cn/oU8Kd/CgwNUf/PkFS8R2YjmFOCt+N0OnHz5s0Dz/QcHBzE1NQUCgoKGHk3fxDCwsIgkUhYl0pLTExESUkJ3WYEHIvFcqgJIsEIE3+rnPPGEVBcLtcf6/wSEymH7epVqpj+8cep9Op//icQQouDZ26mTy5ua2tU88eRI8Bf/iUVcWtuBp59FmCYEG4oCjLn5OQgISEBnZ2d+xannZiYwNDQkHcboYJKpcLZs2chlUrpNiXgOJ1O1s357OvrQ3d3N91mBBQmRt72vap+5jOf2fdOCILAt771rX2/jyP0iImJ2ZpqqK0F3n6bSvf9679Sg9L/6Z+Ap56iIklRUbTY6isMBgNGR0cPp5o/PQ38+78DP/wh4HAAf/ZnwN/9HZV2ZiihKMhMEAQKCwtht9vR2tqK6urqTeczn8+HSqXaIvnhcrkwMjKC1NRUpKenB9rsgGMymdDR0QG73Q6hUIiioqItWn8rKyvo7++H0+kEQRCIiopCTk4OCIKA2WzGpUuXNr2ntLSUUQLGa2truHbtGk6ePOk9B/byuXU6HRobGzfVOtbU1HjPmampKYyMjIAkSWg0GhQUFDBqooFAIIDFYvH+vZfPPD09jbGxMe/fVqsVkZGRKCsrC4pjTRDElpvQmzdvYmFhARaLZdM5cDs7Hc/DHOt9O2/Nzc37fQsIrtON4z2OHj165yePHaNmpH7ta5Sj8u1vA//yL1Ra9dOfZrSjshMefbcDaXh1dVEO7fPPA3I58L//N+XQxsT42Erfc+TIEcTFxdFths/h8XgoLS3F0NDQlguMXC5HTU3Nlvfw+XycOHGCkekXX3Dp0iWkpqZ657F2d3cjOTkZiYmJmJ+fR2dnJ06cOLHpPUKhECUlJZBKpXC73bhx4wZmZmaQ+F6TjUAgwMkA6xLuB89F9lb9xr18boA6T7b7bGazGYODg6itrYVYLEZzczOmpqYYNef29m7TvXzmxMRE73EFgCtXrmyKPjP9WANb/ZjY2Fikp6ejvr7+ju/Z6Xge9ljv23n7zW9+s9+3BAy73Y4f//jHePvtt2E0GpGWloa//Mu/RFlZ2a7vXV5exn/913+hpaUFbrcbx44dw6c+9altLz6vvfYann/+eSwsLECr1eIDH/gA/vRP/9QfHymkIEkSZrMZYrF451RacjLluH3xi1RTw3/8BxVxKi0FPvhB4JFHAAYtZrtBkuT+bmAGB4Hf/pZqQOjpAZKSKCf2ox8FgmhSgVgsDrnImwc+n4+cnBwA1AgwkUi07WddX1/HwMAAiouLQ/a7ACgHxlPjaLPZsLa2hsrKSgDURa6npwcmk2mTs6tUKr3/z+PxoFAogkrs1/Ob9jhve/3cOzE/P4/o6GjvuZKSkoLh4WHGOW+H+cyrq6uw2Wz+aeDyI7ev4XsZC7fT8Tzssd638xbD4Dv+r3/967hy5QoeeeQRJCQk4MKFC/jsZz+L73znOztGfMxmM55++mmYTCY8+eSTEAgEeOGFF/CpT30KP/nJTzYtMn/4wx/wb//2bzh58iQeffRRdHd34zvf+Q6sVis+9KEPBeJjBi1utxuXLl1CcXHx3rqVVCqqseHTnwb+8AfKofniF4HPfhYoL/+jI5eU5H/jD8GenLfhYcpZe+EFoLubirI9+CDwla8A998PMLDmYjcGBwcRHh4ektE3DyRJoq2tDTweD1VVVTCZTKirq0NtbS2EQiGampogkUhCPvtwq2yG1WqFWCze9JnDwsJgsVjueEG32WyYn59HeXm59zGn04lr166BJEnExMQgIyODUd+jJ/LmqXnbz+c2m82oq6sDQRBITEz0XrAtFsum6Rye9zMJHo/n/ewHOdZTU1NISEjYlB5k+rEGDpZB3Ol4HvZY79t5+9jHPoba2lpUV1fjyJEj+3273+jr68O7776L//W//hcef/xxAMC5c+fwkY98BN/73vfwve99747vffnllzEzM4Mf/OAH3rvpiooKfOQjH8FvfvMbfOxjHwNALTA/+tGPcPz4cXzlK18BADzwwANwu934xS9+gQcffDAoZzgGCs8it+8fgUQCPPoo9W9jA3jtNcrJ+cd/pLTiKispR+7++6kCfob96MPDw5GcnLz5Qbcb6OujJh+88ALQ2QnIZJTD9qUvAefOAXscscRU5ubmEBUVFdLOG0EQKC4uxvXr19HS0oLs7GwA1FrR1tYGgUCAioqKkGra2A6hUHjghhyn04nm5makp6d79cMkEgnOnj0LsVgMh8OBtrY2jI6OMqpe0LOO7bdhQalU4u6774ZQKITVakVTUxNEIlHQ/E6ysrIOXL/rcrkwNze3qbQgGI41wLzyr31XQdpsNjz77LP48z//czz++OP47//+b3R1ddHecXP16lXw+Xw8+OCD3sfEYjHOnz+P3t5eLC4u3vG9V65cQXZ2ttdxA4Dk5GQUFxfj8uXL3sfa29uxvr6Ohx56aNP7H374YVgsFty4ccN3HygE8ck5IpcDjz0G/P73wPIyVSMXHQ38wz8A2dlU1+r581TE6uJFRogAq9Vq5MfFARcuUJHDe+6hoooFBcBXv0rV8v3ud8DSEvDrXwMPPRT0jhtwgHRxkKJQKFBWVga9Xo/u7m64XC60trbC6XSisrIypNOlHgiC8P6+JRIJbDbbpt/77VEGD06nE42NjYiJiUFqaqr3cR6P5/3ehEIhEhMTodfr/fwp9kdYWBjuueceREZGAtj75xYIBN7uRYlEgri4OO9nuz36cqfvjSns51gD1A1deHj4piBHMBzrg7LT8Tzssd737eDPf/5zzM3N4dq1a2hoaMCLL76I3/72t1AoFKiqqkJ1dTXKy8sDvmANDw8jISFhS6jW45CNjIxsm2N3u90YGxvD/fffv+W5nJwctLS0wGw2QyqVYnh4GAC8d9cesrKywOPxMDQ0hHvuuWdb+1ZWVjYpzU9OTgIANjY2sL6+7n1cKBR6C3iNRuOW7XhSuBsbG1vmy0mlUgiFQtjt9i3hV4FAAJlM5lV3v53w8HDweDyvsOqtSCQS713R7TUpfD7f2zV16+fwIJfLwefzvdpAJpMJRqMR6+vrEIvFXn2o23WDCILwdu8YDIYtjp9MJoMgPBzW978ftvPnKSettRVoboaorQ1h/+//wbW2hg0AyMkBysqof5mZUObkALGx2LBa7/gd2mw2bw3P7d/hnY6NQqEA4XDANDIC59QUpWPX0gJ3UxNko6MQAXCo1TCXlVED48vKgNJS8MPDd/wOPcfGbDZvGbu003fI4/G8i+Qdv0OBAFardYtSvEgkQlhYGFwuFzY2NjY9d+uxMRqNmwq2b/8OTSbTvs5vhUIBgiC2PQ/DwsIgEokOdX5v9x3udH7v9h16zm+pVIqMjAw0NjbC7XYjMzMT6enpkEqlu57f232HOx0bJq4RaWlpkEgkcDgcsFqt4PP56OvrQ0JCApaXlyGRSCCTyTadC06nE62trUhKSkJGRgYsFotX6Ndms0EoFHqP+fT0NAQCwab372mNOMD5vZ/v0Gq1blonRCIRZmZmEB8fj+HhYTidTjidTq/dCoUCNpsNTqcTLpcLTqcTY2NjiI+Ph91uR2xsLK5evYqYmBiIxWLcvHkTarUaGxsbjFkjJicnsbi4iJqaGoSFhUEul3uP9cLCgvezebj1/O7r60N8fDwcDod3jVhfX4dQKASPx4Pb7cb4+Di0Wi3j1oiD3IjGxsaioaHBOx5xYmLCG2Hd6bm9cKBYflxcHB599FE8+uijWF9fx/Xr11FfX4/Lly/jwoULEIvFKCkpwYkTJ1BVVRWQURo6nW7bAkLPYysrK9u+z2AwwG637/repKQk6HQ6rxTArQiFQigUih3HAL3yyiv42c9+tuXxjo4OzM3Nef+Oj49HcXExLBYL6urqtrz+gQceAAB0dnZidXV103PHjh1DQkIC5ubm0NPTs+k5rVaLyspKuFyubbd77tw5iESibaOUeXl5SE1NxfLyMtra2jY9p1QqUVtbCwCor6/fchE6deoUwsPDMTQ0hLGxMfT29sJmsyEyMhLp6enIycnxnkO34gmlA9Tg69sdqaqqKqjVaoyPj2NkZIR6UCAAqqqQ9NhjKCwogLmjA3W/+AXVAHD1KvCLX4AH4DwA8HhoV6mwHhlJRevUakCrRUlpKeJSUjC7soLe6Wlqmzwe4HIhWqFAeXo6nJ5js7IC6HTe/95nNEKwtIQeksTye/tASgo2EhMRcddduO+zn8WiSISOzs4/fpDWVqhUKm8aYbtjc+bMGchkMgwMDGwRh83MzERWVhZWV1e9Q849yGQynDlzBgBw48aNLQr4NTU1UKlUGB0d3dTGD1DFswUFBdjY2Nhik0AgwH333QcAaGtr27LAlpWVISYmBouLi5iYmMDCwoL3udjYWJSWlsJut2/7Wc+fPw+CINDV1bXl91RYWIikpCQsLCygq6tr03NqtRpVVVUgSXLb7Z49exYSiQR9fX2Yn5/f9Fx2djYyMjKg0+nQ0tKy6bnw8HCcem9aRUNDw5aLRW1tLZRKJUZGRjA+Pg6TyYS5uTlIJBIolUpERUXBaDRu6UgTiUQ4d+4cAKClpWXLRbWyshJarRaTk5MYGhra9BxT1wiNRoO5uTm0tbXBYrGgo6MDDocDSqUSH/7whwEAv/jFL6BUKqFSqTA3N4fZ2Vm43W4sLS1hZGQETqfTG4manZ1FQkICkpKSIBAIsLi4uOnYHWiNeI+kpCQUFhZ6a89uhcfj4fz58wD+mG25lZKSEsTFxWFiYgKvv/46YmNjvY5VeHg4Jicn0dfXh/b2dqSmpqKurg7j4+OIiIjAE088gfn5eVy4cAHr6+sgSRIqlQp2ux1yuRwpKSmIjIzED3/4QwCUo5KcnAyj0ciYNWJ2dhZLS0uIiYlBQUEBUlNT8atf/QoOhwN8Ph+pqaloaGhAXFwcoqOjMTAwAKPRCIvFgr6+PhQVFUGj0SAmJgZTU1O4fv06ZmdnvdHb1NRUVFVVMW6NuN156+7uxuLiImw2GxobGyEQCHDmzBl0dXUhOjoaMTExkEqlyMrK8v7+NRqNt4Rmp+f2AkH6MN9ps9nQ0tKC+vp6NDY2YnV1FTweD3l5eaipqUF1dfWmdmFf8thjjyExMRH/8i//sunxubk5PPbYY/jkJz+JD37wg1vet7i4iEceeQSf+MQn8MQTT2x67vXXX8c3v/lN/PjHP0ZGRga+8Y1v4N1338U777yzZTsf+MAHkJmZia997Wvb2rdd5O2rX/0qvv3tb2/K7TPxrtpXkbfbF4ZDR972e1dtNALT01CurwMzM9gYHYVrZgaYnQXm5oC5OUiNRggB2ABsvhRQdzoyAG4ARgBQKoG4OCA+HoiPh+LIERCJiTBpNHBGR1ONFFIpxsfHMT09jQceeOBA32GwRt56e3shFouhvUU8OFQjbxaLBV1dXZiYmMCxY8e8jkdmZiYrIm9LS0uQSCSIiYkJ7jXiPfbyHa6vr+PChQsoLS31nuN7is7vcn4zfY0YHh7GzMwMzp0755Po/O1ON1PXiK985Suoq6vDs88+ezjNTh/h0ypasViMmpoa1NTUgCRJ3Lx505te/d73vofvf//7uHLlii93uWnft3/hALyLwZ3SuJ7H9/JesVh8x6Lc3QRJNRrNtoOt5XL5pm5WDzweb9vHb33fnRCJRHfUkyIIYsft7tTSLhQKd3zvTs+FhYXdMZ8vEAh2fO9O8wMlEskdxy/x+fzN21UqgVu0hbb9Bg0GYGMDYocDYoeDGtfldFIROKEQEArBEwigVCio+rttuP0bVCgU3oL1w3yHOynYB+w7vI2dGnTy8vLu+Nxu5/dO5+Fhzu+dvsPdjs1O3+Hs7CyWl5dRWVmJlJQU2Gw2DA0NQalUIjo6+sDf4U7HhklrRH9/PwQCARITE4N7jbiNnb5DoVAImUwGpVK5ZRuHOb+ZvkbI5XLI5XLvsTrMGrGTnBDT1gi66/pvx28tUARBoKCgAAUFBXjqqacwMTGBhoYGf+0OarV623E1nmjXdo4TQJ2wIpFo25Tn7e9Vq9VwuVxYXV3dlDp1OBwwGAx70n1hMy6XCzdu3EBWVtamaAyjUCiofz7k1mJuNmEwGMDj8Xa8AIYC09PT6O/vR2ZmJqKiotDe3o6srCzvFIbjx497i9pDFbY0p9yK5zfNpOkHgYJtx5qJ7Nt5+8Y3vrHj8wRBQCaTIS0tDbW1tV7vOCUlxa9Cg+np6ejo6NgiDtjX1+d9fjt4PB5SU1MxMDCw5bm+vj7ExcV5PfGMjAwAwMDAAI4fP+593cDAANxut/d5jjuzurq6JTUS6vD5/INNVwhyenp6IJVKcezYMbpN8RskSWJqagpJSUnIysrC+vo6ZmdnkZaWhuLiYjQ2NqK5uRknT55kdNfgYfHUbLGJA0sfBTnx8fGsDFQw7QZ8387bhQsX9vQ6giDwn//5n3jmmWcCMvbi1KlTeP755/HKK694dd7sdjveeOMN5ObmejtNFxcXYbVaNxUGnjx5Ej/4wQ8wMDDg7SSdmppCR0cHHn30Ue/riouLoVAo8Ic//GGT8/aHP/wBEolk02McWzmoLlKwk5SUhCSGCwn7g1uFW0MVgiBQWVm5bfSFx+OhrKwM09PTIe24AaE5x3Y3RCIRcnNzd0xVhiK3S32wBaZdt/btvH3nO9/Z8Xm324319XXcvHkTr7/+Or7yla8gPj7e74J7ubm5OH36NH74wx9ibW0N8fHxePPNN7GwsIBnnnnG+7p//ud/Rmdn56Zuk4cffhivvfYannnmGTz22GPg8/l44YUXoFKp8Nhjj3lfJxaL8dGPfhTf/va38cUvfhHl5eXo6urC22+/jb/6q7/asWaAg7qYEQSxpQCYIzQRi8VbCqRDhY2NDbS1te06QFsoFHr1y5aXlxEREeHV+Aol4uPjQz41fDsikQhpaWl0mxFwlpaWYLfbN80mZQNB77wVFRXt6XWnT5/G/fffj49//OP4zW9+g3/8x3/c7672zec//3lER0fjrbfewsbGBlJTU/HNb35zV5ulUim+853v4L/+67/wi1/8wjvb9JOf/OQWmZOHH34YAoEAv/nNb9DQ0ICoqCh88pOfxCOPPOK/DxZC3D7UmA0sLy+jp6cHtbW1Ia+0fyuhGnmzWq1eaYC9Dpp3uVzo6OiATCZDZWVlyKXRc3Nz6TYh4FitVqyuriIqKirkjudOzM3NwWQysc55u71jlm78eiVJS0tDdXX1Fr0VfyEWi/HUU0/hqaeeuuNr/uM//mPbx6OiovDlL395T/t54IEHvFpKHPujsLCQdSF3T1u7zWZjlfMWFhYWcp/X4XB4tbIqKyu3RNHEYjEyMzO3pBD5fD7Ky8tx/fp1tLW1oaysLGRqpZxOJ4xGI5RKJauK91dXV9Ha2opz586xynlzOp2s+rwA5bgxLWPk919aQkJCyIy64Dg8cXFxrHPePBfyUIxC7URiYqJXADRUaGtrg9VqRWVl5bbyExKJBFlZWds+FxERgdLSUiwtLaG7uzsQ5gaEtbU11NfXM26Aur+x2WwgCCIk0+A74XK5Qu6mbDe2kxKjG78fAbvdzroDzXFn5ufnIRAImCsV4gfY6ryFIhkZGTvKnzidTq+U0HbrXlRUFIqKijA8PAy73b7ntCuT8Thtd9JSC1U8Y41CJYK6V5xOZ0ict/uBiQoJfo+8dXV1IT4+3t+74QgSxsbGMDMzQ7cZAUUoFIIgCNY5b263G++8805IHO/Z2VmQJAm1Wr1lPN6tmEwmNDY27tiokZCQgJMnT0IkEjGuCPogGI1GSKVS1qXSbDYb65wYALv+BkIRVjlvbrcbP/3pTzE0NIQTJ074azdBTygs3vuBz+czrnbA3xAEgfLycq9cDVvg8Xjg8XjbjqIJJgYHB9He3n7H+cgHgcfjweFwoK6ubtNs42DEYDCwstNeLBazzokBqDmf/tRsZSJMdN58LtLrdrthMBgwMDCAtbU1JCQkbDtTlIOCibl0fyIQCFjXbQpQ6TI2olAogtp5m5iYwNDQEHJycnye6hcIBFAoFOjo6IBQKAzaUgKSJLd05bMBJsy3pAOLxQKhUMiqcigmXqf9JtIrFApx9uxZ/PVf/zXrRAz3A9scGT6fz7r0IUDV+jmdTiQmJtJtSkBRKBSYnJyk24wDMT8/j56eHqSmpvpFp5IgCBQWFsJms6G1tRVVVVU7zlxkKmwVJ3e73azqrvVw5coVZGZmskrjLiQib7uJ9BIEAblcjsTERFbWA+wXJnr0/kSpVLLyvFhcXMTGxgYrnTebzeYt7g4mlpeXER8fvy8NMx6PB5lMtueLOo/HQ2lpKW7cuIGmpiacOXMmqCIabJxp6uGtt95CdnY2jhw5QrcpAYMkSVZ2m4aE87ZXkV6OvcE2582jNs82xGIxdDod3WYEHK1WizNnzgSVw+6JqBw9ehRut3tfzkl4ePi+5VEEAgEqKiqg1+uD7qI4NjaG8fFx3H333XSbElBcLhecTifrZEIcDgdIkgyq37MvYKLzxr6YL8NgW9qUJEnYbDbWNWqE6rSB3RAIBJDJZEETnTGbzbh8+bK3OSFQaTGRSISYmBgA1FzlYFkXdDodK8tiPL/lYIsmHxa2fm673c64FDmzrGEhwbJI+4qFhQW8/fbbrIs4isViuFwu1nXaAsDMzAza29vpNmNXbDYbGhsbQRDEgYWkDQYD3nrrrQM3aVitVvT19aGlpYVx43hux+12Q6fTBW2jxWFgsxMDsO9zOxwOxkVZOeeNZtjoxADsE6wNDw9HUlIS4y/I/oAkSczOzjIy9eDB6XSiubkZTqcTlZWVB744kSQJu91+4MiyRCJBWVkZ9Ho9Ojo6GB2hXl1dhdPpZGUnNVudN7VajfPnz7Mu2srEYQOc80YzTL6g+QO2Om8KhQKFhYWMu3sLBJ7IjC910nxNT08PNjY2UFlZSfuFSa1Wo7i4GPPz8+jt7aXVlp1YXV2FSCRipcZbVFRU0NVy+goejxc0ZRC+wm63M27tZpYryUKsVivdJgQUtjpvAKW+TxAE7c5BoJFIJAgPD8fS0hLi4uLoNmdbsrKykJyczBhHJDY2FgUFBZifn2esJEV6ejoSExNZdyEH/thVzDbGxsawtraG4uJiuk0JKCaTiXHj35i3IrAMs9lMtwkBRSAQsFbrraWlBSMjI3SbQQtarRbLy8t0m7GFiYkJOBwOSKVSREZG0m3OJpKTk1FRUQEej8fYWkm2pQ09dHd3Y2pqim4zAo7BYGDdNQsANjY2EBYWRrcZm+CcN5phW+QNAM6ePctKyRCFQgGj0Ui3GbSQkpKC0tJSus3YxMjICHp6erC4uOizbcpkMtTU1PgsKkMQBEwmE959912f2nlYpqamcPXqVcY6lf4kGGo4/UUw6jX6ApPJxLiMCee80Qwb72KYVjsQKDyjophchO4vZDIZo+ZATk9Po7+/HxkZGUhISPDZdgUCAVQqlU+Lm6VSKVQqFdra2qDX63223cMwPT0NsVjMumH0ADUeyul0MibFHkhsNhsr6/y4yBvHFiwWC90mBJzh4WHcvHmTbjMCjkKhgNPpZOUxB6gC98bGRto7bhcXF9HV1YWkpCRkZ2f7dNtWqxW9vb0+jagTBIGSkhJERESgubmZ9uityWSCXq9n3bQQDx4ZGLY6b0yr/fI3brcbZrOZc944NsPGyJvdbmdk/ZO/USgUkEgkrEyVA1TEdXl5mfb0n8ViQXR0NI4ePerzbdtsNoyNjfm8ppPH46GsrAxhYWFoa2ujNXo7MzMDgUDgFRVmGwaDASKRiHVODAAUFBQgNjaWbjMCitlsBkmSjHPeuG5TmrFarYztJvMXUqnU+4NgU6eaRCLB2bNn6TaDNuRyOVQqFaanp2m5ADidTggEAqSkpCAlJSXg+z8sQqEQFRUVsNlstP5ulpeXERcXx8qUKQDExMRALpfTbQYtsNFhN5lMAMDVvHFshW3RN5lMBrfbzdoIFBtr3jwkJiZiaWkp4MfearXiypUrmJycDOh+fY1EIoFSqYTb7cbg4CAtDQPV1dXIzc0N+H6ZgkKhYKzkjT8xGo0YHR2lvewh0GxsbAAA4yJvnPPGADyePVvw3MGwzWkFqHq/y5cv020GbcTFxYEgCMzOzgZsnw6HA42NjQCA6OjogO3Xn2xsbGB0dDTgKVRP1I+tTUculwvDw8OsrFtdWVnBwMAAq7IlwB+vz5zzxrEFj2fPFqRSKYqKilgpcimRSGAymVg309aDUChEVVUVjhw5EpD9uVwuNDc3w2q1orKy0u91SiKRCCkpKX7vyFMoFCgtLcXS0hK6u7v9ui8PGxsbuHjxIqMnZfgbg8GAgYEBVsqEmM1mSKVS1jlvGxsbEIlE3Hgsjq2wLfLG4/GQmJjIyoJfT4ca3R2DdKJSqQImPDs8PIz19XVUVFQEpE4pLCwMBQUFAblLj4qKQlFREaampjAwMOD3/Q0PD0MkEjFOzDiQGAwGEASB8PBwuk0JOEzUOgsEJpOJkTWOnPNGMwKBgHWRNwBYWloKaOqMKYSHh4MgCK/cAFuZmprCpUuX/O7Apaeno7KyMmAacy6XC+vr6wGrRUtISEBubq7f65DMZjNmZ2eRnp7Oquaq2zEYDJDJZKz8DsxmMyuzJRsbG4z83Ow7AxmGVCplpfM2Pz+PsbExus0IODweD3K5nPXOm1qths1mw/T0tF+2PzY2ho2NDQgEgoBGijY2NlBXVxfQ33RaWpq3gcBf6byRkREIhUIkJSX5ZfvBwvr6Oiv13QBAo9FArVbTbUbA4SJvHNsik8lYeSGXSqWsSxd7KCsrQ15eHt1m0IpMJkNcXBxGRkZ8HjWamJhAb28vlpaWfLpdpqPT6fxWk0YQBNLT01krD+JBrVazstMUAPLz81mn8QYw12HnnDeaUSgUjBl5E0hkMhkcDgccDgfdpgQctqZdbicjIwNWqxUTExM+2+b8/Dx6enqQmprKuvm5KpUKkZGRaGlpwfr6uk+3XVBQgLS0NJ9uMxjJyclhpQNjt9uxsbHBOpkjkiSxurrKqNF+HrgrCM0oFAqsrq7SbUbA8RT8sjHqSJIkmpubMTU1RbcptBIeHo6UlBSfab7pdDq0t7cjPj6elTpkPB4PpaWlkMvlaGpq8klkW6/XY2JignUX7e3Q6XSszRbMzs7i6tWrrDsPjEYjnE4nI5t0OOeNZhQKBSwWC+t0g+RyOWtV2gmCgNPppH1MFBPIz8/3maNFkiSio6NRVFREm5wBQRAQCAS07V8gEKCiogICgQA9PT2H2hZJkujp6fFbXWKw0dnZyco6XYC6yZbL5azLGHgCK0yMvDFLuISFeHLpq6urjBMB9CeeYdtsRavVeuu92LYg3g5JkpicnER4ePiBCqJtNhtEIhE0Gg00Go0fLNw7CoUC9913H602iEQiVFZWHvrGaGJiAgaDASdOnGCdttftmEwmmM1maLVauk2hBYPBwMi6L3/jcd4iIiIYV97E7qsGA7jVeWMbDocDa2trdJtBC1qtFk6nk7Wf/3ZmZ2fR3d297+YFm82GhoYG9PX1+cmy4EQqlUIsFsNqteLmzZsH+l4HBgaQnJyMiIgI/xgZRCwvL4MgCNpvDuiAJEkYjUZWOm96vR7h4eGMnCjCOW80IxaLIZFIWOm8TU9P4/r166yrowAApVIJkUjEuo7I7SAIAgUFBTCZTBgdHd3z+5xOJ5qbm+F0OgM2sWE3jEYjrly5whgRZrPZjMnJSXR0dOzrdzY1NQUej4ecnBw/Whc8LC8vIzIyknEq+4HAZrNBKBSy0nlbXV1lZL0bwKVNGYFKpWKl86ZQKOByuVgp/kgQBMrLyxmpH0QHCoUC6enpGBwchEaj2bXGxO12o7W1FRsbG6iqqmKM8rvb7YbRaGTM8O7IyEgUFxejtbUVYrEY+fn5e3pfeno6YmJiGBlxoAOJRMLalKlEIsHZs2fpNoMWVldXGRtt5SJvDEClUjEunx4IPHdyvpY1CBZUKhV3cbyFzMxMqFQqTE5O7vramZkZ6HQ6lJWVQalUBsC64CU2NhZHjx7F+Pg4RkZGdnyt0WjEysoKa0dA3YmCggKkpKTQbQYtsDEz4oGpMiEAF3ljBJGRkbh58ybdZgQckUgEsVgMg8HASuFLt9uNrq4uxMXFITo6mm5zaIfH46G8vHxPqamkpCRERESwMpVzEJKTk2Gz2XZsinK5XGhrawNBEKitrWV9k4IHo9EIsVgMkUhEtym00NraCqFQiKKiIrpNCSg2mw0mk4mxzhsXeWMAKpUqoPMQmYRKpWLl5wYoZ2V9fR0LCwt0m8IYhEIhCIKATqfbVqJibGzMK7HCOW77IzMzE/Hx8QCwrV7ZzZs3YTabUVxczDlut9DZ2cnKm2sPBoOBlY6rp5SJqTVvnPPGAFQqFUiSZGX6kO2jorRaLde0sA0LCwvo7u7e1I07MzOD3t5eRteHSqVSlJWVMaYGbzump6dx9erVTd/j7OwspqamkJ+fz6VLb8Fut2NtbY219W4OhwNms5mVpQlM1ngDOOeNEXg8ezbWvQFUTQVTCrwDTVRUFKxWKycZchs5OTlQKpVobm6GxWLB0tISOjs7kZSUhOzsbLrNuyNCoZDxhf7x8fFQKpVoamqC0WgESZIYHh5GQkIC6wfP344nKs5W581zTWKqA+NP9Ho9RCIRY2/EOOeNASgUCggEAr8MlGY6TqcTb775Jubn5+k2hRY0Gg0kEgmnYn8bPB4PZWVl4PP5uHjxIhobGxEdHY2jR4/SbdqO2Gw2DA8Pw2az0W3KHfHUFoaFhaGxsRE2mw1VVVUoLCyk2zTGMT09Da1WC4lEQrcptLC6ugqxWMxYB8af6HQ6qNVqxpYQcM4bA+DxeNBqtawclyQQCCAWixmdCvMnBEGguLgYGRkZdJvCOMRiMSorK73TE4KhFstqtWJgYMBn81r9hVAoRGFhIYaGhtDb2wuRSMT6SR+343a7IRQKWR2NzMzMRHV1Nd1m0MLi4iKjG8m4blOGEB0dzUrnDWCvVIqHg4yEYgNWqxUikQj33HMPCIKAy+Xixon5CLvdjo6ODqSkpDA6DU0nngglm+HxeKzT4AQox31paWnPuoh0wK2CDCEmJgZLS0usrP2KjIyEwWBgbdcpAExOTqKrq4tuMxiDw+FAY2MjOjo6vNG2pqYmtLW1sfI34kvsdjsaGxvhcDhw6tQpyGQyrK2tobOzk9WaXrdCkiSWlpZY/X0YDAbcuHGD8VFkf6DX6+FwOBgdeeOcN4YQHR0Np9PJyghUZGQka7ttb2V6epqVC+XtuFwuNDc3w2q1Ijc31/t4WloalpaW0NTUBIfDQaOFwYvb7UZDQwOsVisqKyu9URW73Y6ZmRl0d3fTbCEz0Ol0aGpqYm05B0B9B56ifbbhyYJxzhvHrnhOEjamTuVyOc6ePctYPZ1AEBcXB4IgMDs7S7cptEKSJNrb27G+vo6KiopN48Oio6Nx/PhxrK+v4/r164xsChAKhYiNjWVstymPx0NWVhaqq6s36eRFRUWhqKgIU1NTGBgYoNFCZjA9PQ2ZTMbqNUmv1yMiIoKVZQqLi4sIDw9ndMqYfUeFoUilUoSHh7PSeSMIgrXdXB48EhNs7zrV6XRYWlpCSUnJtvIEkZGRqK6uht1uZ+RvRSqVorS0lHHdeTqdDkNDQwCoG4XtLkoJCQnIzc3F8PAwJiYmAmwhc3A6nZifn0diYiLdptCKXq9npUQIwPxmBYBz3hhFdHQ0a9X2FxYWUFdXx+oak8TERBiNRhgMBrpNoQ2NRoPTp0/vuHCGh4fj1KlT3i5As9kcKPN2xe12w2q1Mqoub3Z2Fo2NjdDpdLvalZaWhqysLERERATGOAYyPz8Pl8uFhIQEuk2hDYvFAqvVytrII+e8cewLNnecCoVCrK+vs9px0Wq1OHHiBCvHPk1MTGB4eBgA9hS18qQll5aWcOnSJYyMjDDC8TcajXjnnXdgNBrpNgUulwvd3d1ob29HbGwsKioq9pQCy8zMREREBNxuNyt/jwKBACkpKTvOgQ11RCIRysrKWNkJ7xFN55w3jj0THR2N9fV1Vhatq1QqCAQCLC8v020KbRAEwcqIx/z8PHp6eg5Uw6bRaJCWlob+/n40NTUxsg6OLkZHRzE9PY3CwkIUFxfvu3ZpaGgIDQ0NrGskio2NRUFBAd1m0Aqfz2f8pBB/4RlXyDlvHHsmJiYGADubFng8HtRqNevnfDqdTtTV1bFm4oROp0N7ezvi4uIONOOWx+MhJycHlZWVMBgMuHr1KiOiXnTiGTqflpaG2traA4vMpqenQy6Xo6mpadtB9qHI0tISK6ONt0KSJDo7O1k7sm9hYQF8Ph8ajYZuU3aEc94YhFqtBp/PZ6XzBlBpw9XVVTidTrpNoQ2BQAAej4fJyUm6TfE7RqMRzc3NUKvVOHbs2KGmJ2i1Wpw8eXJTMT6T6s4CgcViQUtLC65evQqr1Qo+n3+oIfMCgQDl5eUQCASsiGq63W50dXVhfHycblNoxWAwYHp6mrW6m4uLi9BqteDz+XSbsiOc88Yg+Hw+a8dkAdTA7BMnTkAgYPfgj9TUVCwvL4f8nW9YWBiSkpJQWlrqEzkCsViM/Px88Hg8GI1GvPvuu5iammJELZw/cbvdGBoawuXLl7G2toaioiKfdW97RpQ5nc6Ql7GZmZmB1WpFamoq3abQytLSEgQCAddpynDYfZVkIDExMZibm6PbDFoQiUSsFIS8ndjYWMjlcgwPD6OsrIxuc3yO3W6Hw+GATCY7UKp0LwiFQqjVanR1dWFychIFBQUBqSdUKBQ4f/58QGew9vT0YGZmBqmpqcjIyPD5zY9UKsXJkychFot9ul0mQZIkRkZGEBsbe6hoZSiwvLwMtVrNSn03l8uFxcVFv61LvoR9R4fhJCYmYnFxEXa7nW5TaGFhYQGtra10m0ErBEEgPT0dq6urITdJwOl0oqmpCS0tLX6NiEkkEhQXF6O6uhputxvXrl3DzMyM3/bngSAI8Hg8vztvOp0OKysrAICMjAycPHkSOTk5fotaexy32dlZdHR0hFw0c25uDiaTCRkZGXSbQitOpxOrq6uIioqi2xRaWFxchMPhCAqNPy7yxjASExPhdrsxOzuLI0eO0G1OwCFJEvPz8zCbzYwTOg0kCQkJiIuLY3zdxX5wu91obW3FxsYGqqqqAhKdioyMRG1tLaampryaVQsLCxAIBH4pSDaZTOjq6kJhYaHP1dk9v43R0VGsra0hLi4OGo0moL8THo+HmZkZiESioIhO7JXIyEjk5+dDqVTSbQqtEASBgoICaLVauk2hhenpaQgEAm/zIJMJGefNaDTi+9//Purq6mCz2ZCTk4OnnnoKWVlZO77P7XbjrbfewtWrVzE8PAyj0YjY2FicOXMGjz322JZUQW1t7bbb+djHPoYnn3zy0J9Dq9VCLBZjenqalc6bRqMBQRBYWVk5cJdcKEAQBPh8vlc2JtgnUHg62HQ6HSoqKgJ6kSQIAsnJyd6/JycnsbS0BKVSifT0dMTExPgsReR0OqHT6XzedLOxsYGmpiaYzWZoNBpUVlbScoGNjY3F0aNH0d3dDbFYjPT09IDb4A/CwsJYud7eDp/PZ/W6OzU1hbi4uKCou2a+hXvA7XbjmWeewejoKB577DEolUq8/PLLePrpp/Hss8/uGAK1Wq34+te/jry8PLzvfe+DSqVCb28vfvrTn6K9vR3//u//viVCUFpainvvvXfTY74KtxMEgcTERNaOSRIKhVCpVFhcXGT1IgJQDk9DQwPUajWKioroNudQmEwmLC4u4tixY7S34FdUVGB5eRkjIyNoa2uDUChEbW0toyK9TqcTS0tL3lSeVCqFVqtFcnIy7dGh5ORkWK1W9Pf3IywsDPHx8bTac1haWlqQmJgYFNEWfzMwMIC4uDhWCoUDVOQtWDT+QsJ5u3LlCm7evIkvf/nLOHXqFADgzJkzeOKJJ/DTn/4UX/ziF+/4XqFQiP/+7//edMAeeOABxMTE4Cc/+Qna2tpQWlq66T2JiYm45557/PJZPNu/ceMGSJIMaOEzU4iOjsbQ0BBcLldIpQ33C0EQOHLkCPr6+pCZmcko52K/yOVy3HXXXYxpSNFqtdBqtTAajVhcXPR+t83NzRCLxYiNjUVkZGRA78DdbjcWFhYwNzeHpaUluFwuREZGIj09HTweD0ePHg2YLbuRlZUVFFpYu7G0tISFhQUu6gZKImR4eBiRkZGsdN48E36Cod4NCJGGhatXr3prWzxERETg9OnTqK+v37H4XygUbutpnzhxAgDuqLdls9n8pnuUmJgIq9XqLUhmGwkJCSgrK2Nlt9PtJCcnQygUYnR0lG5TDsTMzAza29vhdrsZ47jdSnh4uDf1R5IkFAoFdDodmpqacOHCBVy5csUrUOtwOHxWqO92u7G+vo7x8XGMjY15H2tvb4fZbEZmZibuuusuVFdXM/YGLj09HWKxGDabLWinMAwPD0OlUgW9E+oL5ufnIRQKWftdeLJdweK8hUTkbWhoCBkZGVsu9jk5OXj11VcxPT2NtLS0fW1Tr9cDwLYpijfffBMvv/wySJJEcnIy/uzP/gxnz57dcXsrKyvQ6XTev3cSYY2PjwdBEJienmZl4ahEIgn6Gi9fwefzkZqa6j3Hg+l7WVpaQmdnJxITE4PCEScIAtnZ2cjOzsbGxgZWV1exurrq/c7b29uh0+kQFhaGsLAwSCQSJCUlITIyEhaLBUajEU6nE4mJidjY2IDNZvMOqg8PD4darYZer0dnZycsFgvcbjd4PB60Wi1SU1MhEAhw9uzZoJPk6Ovrw+LiImpqaiCXy+k2Z8/odDro9XqUl5fTbQojmJ+fR3R0dFD8Vv3B9PQ0IiMjfd5o5C9CwnnT6/UoLCzc8rhnqK5Op9u38/bcc89BJpOhoqJi0+P5+fk4ffo0YmNjodPp8Pvf/x5f+cpXYDKZ8NBDD91xe6+88gp+9rOf7WnfYrEY0dHRmJ6eRnFx8b7sDhXW19cxNDSEkpIS1i4mHlJSUrCxsRFUEwNWV1fR2tqKqKgoRqX79opcLodcLt90F56RkQGNRgOr1QqLxYKNjQ2vlMvi4iJ6enq8r721ZpXH4yE9PR1qtRoSiQQxMTEICwtDREQElErlpvM72Bw3gFoT19fX0djYiJqamqC5wZidnYVCoQgKQVZ/s7GxAaPRiOzsbLpNoY3p6emgiboBDHTe3G73nrWtRCIRCIKAzWbbNiXjeWy/6c1f/vKXaG1txac//ektgo3f/e53N/19//334y//8i/xwx/+EPfdd98dF98HH3wQ1dXV3r8nJyfx1a9+9Y42JCYmetMpbITH42FhYQHLy8usX1yFQiGOHTtGtxl7xmq1orm5GUqlEiUlJYxN++2XyMhIr9zI7XgK3q1WKxYWFhATEwOJRAIejwehUOj9DqRSKXJzcwNptt8RCoWorKxEfX09GhsbUV1dHRQDzQsKCkJ+5NdeEQqFyM7OZmWmB6CEwxcWFoIqWMI4562rqwtPP/30nl77y1/+EsnJyRCLxdvWtXke28/d7Lvvvosf/ehHOH/+/I6RNA9CoRDvf//78W//9m8YHBy8Y5RBo9Hsq5YgKSkJLS0trNU7Cw8Ph1wu94byOSh9MoPBgMzMTLpN2RGxWIy0tDQkJyezpuGEz+eDz+fDZrNheHgYsbGxQROB8gUSiQSVlZW4fv069Ho943+zBoMBCoWCVcdoJ8RiMasFimdnZ+F2u4NK4YBxzltSUhI+97nP7em1nrRoZGTkpnoyD57HPK/bjZaWFnzta1/D8ePH8Xd/93d7tBheNWqDwbDn9+yGJ3w7PT29q1ZdqBIbG4uJiQlvbRDbMZvNGBwcRHR0NO1yEdvhcDhgMBigVqtDRv+LY+/I5XKcOXPG26HL1G75mZkZdHR04NSpU6wfhQUAFosFU1NTSE1NDYqIqT+Ynp6GWCwOqsgj45w3tVqN++67b1/vycjIQHd395aLfH9/PyQSyZ7y2H19ffjCF76ArKwsfOlLX9qXRIBnFqkvZycqlUqEh4ez3nkbHh6GTqcLqh+Vvzhy5Aimp6fR09PDuC5El8uF5uZmmEwm3HXXXayJuHFsxrNu9vf3w263b1uLTCcOhwN9fX2Ii4vjHLf3mJubw8jIyL7rwkMJT70bk9bU3QiJcMbJkyeh1+tRV1fnfWxtbQ2XL19GVVXVpnq42dlZzM7Obnr/xMQEnnnmGcTExOCb3/zmHdOsa2trWx4zm8148cUXoVQqfepkEQSBpKQkTExM+GybwYZSqURpaSlUKhXdpjACz+ia1dVVRok4kySJ9vZ2rK+vo6ysjHPcOBAeHo6pqSkMDAzQbcomBgcH4XK5Qmq012GZn59HVFRUUEwV8AculwtTU1NBlTIFGBh5OwinTp3Ciy++iK9//euYmJjwTlhwu934i7/4i02v/du//VsAwAsvvACAcr7+/u//HkajEY899hhu3Lix6fVxcXHIz88HAPz+979HfX09qqqqEB0dDZ1OhzfeeAOLi4v4x3/8R5+HnNPS0vDqq6/CYrEgLCzMp9sOFmJjY+k2gVFERkYiISEB09PTjFlsenp6sLi4iLKyMtY72gKBAGq1mrUXQg8JCQmw2Wzo6+uDWCxmhAiuwWDAxMQEcnJyuFq39zCZTFhdXQ2qQn1fMzs7C5vNFnSRx5BYYfh8Pr71rW/hu9/9Ln73u9/BZrMhOzsbn/vc53a9wK2vr2NpaQkA8IMf/GDL8/fee6/XeSsoKMDNmzfx2muvwWAwQCKRICcnB8888wxKSkp8/rnS0tJAkiTGx8dDrkNtr7jdbnR1dSE2NpYbX/Me+fn5jIlu2e12LC8vo7CwkPFF6oFAJpOhqqqKbjMYQVpaGqxWK27evInw8HDaxV/DwsKQmZnJCEeSKUxPT0MoFLJ6bR0dHUVYWFjQBQpCwnkDqDD9M888g2eeeWbH13kibh5iY2M3pVt3oqysDGVlZQe2cb8olUpoNBqMjIyw1nnj8XgwmUyYnJxk9QJzK54Ir0f7ja5RNiRJQiQS4dSpU4xxJumGJElvoX4w1c/4i9zcXMhksjtKrAQKkiQhFAoZ36kdaGJiYiCXy1n9+x0dHUVqamrQNcUFl7UsJD09HaOjoz4byxOMJCYmYnl5GVarlW5TGEVnZyc6OztpOTfm5+dRX18Ph8PB6oX/dgwGA15//XWfdp4HMwRBICUlBTweD+vr67SM0XI4HLh8+bI3w8LxRyIiIpCQkEC3GbRhsVgwOzsblN3xnPPGcNLS0rC+vr6tFApbiIuLA0EQWxpN2E5eXh7W19cxNTUV0P3qdDq0t7dDKpWyvraLY+/09fWhqakJZrM5oPsdGBiAzWZj5bD1nRgeHsb8/DzdZtDK2NgYSJJEamoq3absG855YzgeodNgHUzuC4RCIWJjYxnVYckEVCoVkpKSvLIMgcBgMKC5uRmRkZE4duwYlxrk2DPFxcUQCARobGwM2GSD9fV1TExMICsri2tSuAWn04nh4WFsbGzQbQqtjI6OQqvVMlI3czc4543hiEQiJCUlsdp5A4CsrKwtc2Y5gJycHAAIiCSD0+lEU1MTZDIZysrKgq5GhINexGIxKisrveeR0+n06/5IkkR3dzcUCgXXpHAbc3NzcLlcQTXL09eQJInR0dGg6zL1wK2+QUBaWhrGx8f9vtgxGZlMxlq5lJ0QiUQoKSkJSCG2QCBAXl4eKioquHQpx4GQSqWorKyEw+Hwe/rU6XSCx+OhoKCAixDfxvT0NLRaLaujkTqdDuvr65zzxuE/0tPT4XA4WJ82XF5extWrV+F2u+k2hVF4FmG73e6Xpg6n04mZmRkAVP3hfmYFs43w8HCcPXuWU+/fAYVCgTNnzkChUMDtdvut4UYoFKK6upr2TlemYTKZoNfrWR11A6iUKZ/PR0pKCt2mHAjOeQsCoqOjIZPJWJ86lUqlMBgM3nFkHJtpbm5Ge3u7Ty+Gbrcbra2t6Onp4bp99wCPx4NEIuFSyrtAEARIkkRLSwv6+vp8um2Hw4Hr169zHb93ICwsDMXFxayXXhoZGUFycnLQznPlVpgggCAIpKWlsd55k8lk0Gq1GBsbo9sURpKbmwu9Xo+hoSGfbI8kSXR1dUGn06GsrIzVKZa9Yjab0draGvCOymCEIAhER0djbGwMIyMjPttuZ2cnDAZD0F6U/Q2Px0N8fDyrJX6cTicmJiaCNmUKcM5b0JCWlob5+XnWdwcdOXIE6+vrWF1dpdsUxhEZGYmsrCwMDQ1hZWXl0Nvr7+/HzMwMjh07Rrs6frDgcDgwPz8Ph8NBtylBQUpKCjIzM9Hf3++TspDx8XEsLCygqKiIq5HdhqmpKbS1tbFaNxSgav4cDgfnvHH4n/T0dBAEgcHBQbpNoZWoqCjIZDLW6xPdifT0dGg0GnR0dByqNtDtdmN9fR35+fmIi4vzoYUcHJvJyspCUlISurq6YDQaD7yd9fV19PX1ITU1lfUpwTsxNjYGt9vN+gaOgYEBKBSKoB7px7WMBQkymQzJycno7+/3yxzVYIEgCFRXV3NF83eAIAgUFxfDZDIduO7K5XKBz+ejsrKS9Ys8R2A4evQotFrtoRo9XC4XtFqtVz6HYzMrKyswGo3eWd1shSRJ9Pf3IycnJ6jXNy7yFkTk5uZibGwMFouFblNoxeO4BUqYNtgQi8WIjIwESZLQ6/X7eu/S0hIuXboEk8kU1AsbR3BBEIQ3wjs3N7fv8hCSJBEZGYny8nKuWeQOjI+PIzw8nPUlELOzszAYDEE/L5w7y4OI7OxsuN1unxWkBzOjo6O4cuUKJxuyA9PT07h+/fqeHbi1tTW0trZCqVRCKpX62brQRCKRIDs7m2vuOCButxvDw8NobGzcc3fz1NQUmpqauLVgBxwOB5aWljixYlBj2mQyWdBLpXDOWxChUCiQmJiI/v5+uk2hnejoaNhsNk42ZAcSExOhUqnQ3t6+awH9xsYGmpqaoFQqUVJSwkXdDohYLEZGRgaX1j8gPB7PO0mlsbFx1/PWaDTi5s2bkEqlXMRtB4RCIe6++25WD6EH/pgyzc7ODvrzJbitZyE5OTkYGRlhfcpQLpdDq9VifHycblMYi6f+zel07qj/RpIkWltbIRaLUV5ezmoJgcPicDiwsLDAdZseAolEgsrKSlitVjQ3N8Plcm37OofDgdbWVkilUuTl5QXYyuDB7XbD7XZDLBaz/re9sLCA1dXVoE+ZApzzFnTk5OR4hwqzndTUVKytrUGn09FtCmMJCwtDSUkJlpeX7xilJAgCRUVFqKio4LSxDonZbEZLSwun83ZI5HI5KioqQJLktmMBPTccNpsNpaWlrHdKdmJychLvvvsuq8creujv70dYWFjQTlW4Fc55CzJUKhViY2N9rkoejERFRUGtVrO+gWM3tFotTpw4gfj4+E2Pe+qL3G43IiIiOF0sDkahUqlQU1MDsVi8JZLpEfgtLy+HXC6nyULm43a7MTIyAo1Gw80jBlXvlpWVFRLOPue8BSG5ubkYHh7mUjMAqqqqWF/HsReUSiUAYH5+HrOzsyBJEm1tbRgeHma98DMHs3G5XLh27ZpX49Iz9io1NZWbW7oLMzMzsFqtyMjIoNsU2lleXsbKykrISMlwzlsQkpOTA7vdzvpxWR4cDod3cDrHziwuLqKzsxPXrl3D4uIiSkpKoFAo6DaLg+OO8Pl8JCUlYWhoCA0NDbh69So3YWUPkCSJ4eFhxMbGctFJUFE3kUgU1FMVboVz3oIQjUaDqKgoruv0PRYXF9HR0YH19XW6TWE8R48excbGBi5duoQjR44EtcI4E+HxeAgPDw/6TjamkZ6eDoVCgbfeegsymQwqlYpukxiP1WqFSCRCZmYm3aYwgv7+fmRmZoZM+phbYYKUnJwcDA4O3rETi03Ex8dDKpVyTRx7gMfjITMzE5mZmZidnYXJZKLbpJAiPDwcp06dOtSkAI6teKYDZGZmwmKxwGaz0W0S4wkLC8OJEye4yDoAvV6PhYWFkOgy9cA5b0FKbm4urFYrlzoFVbycnp6O+fl5rn5rBzw1kseOHcMHPvABqFSqkCjc5Qh9hoeHodFo8Nhjj+H48eOcjt4u6PV6LrV8C729vRAKhUhPT6fbFJ/BOW9BSnR0NGJiYtDZ2Um3KYwgMTEREomEi77dAZ1Oh4sXL3qnLYhEIpSVlUEikcBut7NeN9BXGAwGXLhwwVtUz+EbysrKUFZWBoFA4G1SGB4e5iRZ7sDNmzcxMDBAtxmMgCRJdHZ2IicnByKRiG5zfAbnvAUxRUVFGBwc5BYwUOnAgoICJCcn020K4zAYDGhpaUFERAQiIiK2PN/W1rYnNXuO3fHokt1JEJlj75jNZtTX18NkMkEgEGyKEjscDkxPT6OxsZFLod7G4uIi1tfXuQ7T95iZmYFOp0NRURHdpvgUznkLYgoKCkCSJG7evEm3KYwgJiaGkw64DbPZjKamJkilUpSVlW1bSJ+Xlwez2YwbN25wF0IORmAwGNDQ0AC73b5tgblQKERlZSWcTieampo4Adr3IEkSAwMDiIyMZP0Aeg+dnZ1QKpUhN9eVc96CGJlMhszMTC51egtWqxX19fVc5+l7dHd3g8/no6Ki4o5dVgqFAlVVVbDZbN5IBwcHXej1ely/fh0ikQjV1dV3rG+TSqWorKyEyWRCa2srN5gewOzsLAwGQ0gV5h8Gh8OB3t5eFBYWhty8Zs55C3KKioowNzeHpaUluk1hBB41dk5GhaKoqAiVlZW7FngrFApUV1eDx+Nxji8HbTgcDjQ3N0OpVO7ouHlQKBQoLy8PqVqmwxAdHY2ioiJOSuU9BgcHYbVaQy5lCnDOW9CTkZEBqVTKRd/egyAI5OTkYHl5GcvLy3SbQwtutxt9fX2w2WyQSCSQSqV7ep9UKsXJkycRFxcHAFzn7gGQy+Wora3lRFEPiFAoREVFxY6R4ttRq9UoLi4Gj8eD1Wr1s4XMhSRJCIVCJCYm0m0KY+js7ERSUlJIltNwzluQw+fzUVBQgO7ubi5t8B6e2re+vj7WFY6TJImuri6Mj48fyPny1MTNzs7i6tWrdxxmz7E9fD4fSqWSk2DZJ0NDQ+jq6gJAzTQ9iMix1WrF5cuXMTIy4mvzGI/D4cClS5dYe8O6HQaDAaOjoyEZdQM45y0kKCoqwsbGBisXrTuRk5MDq9XKuk7c/v5+zMzM4NixY1Cr1QfeTmxsLOLi4tDW1obx8XEfWhjaWCwW9PT0wGKx0G1KUECSJHp6ejA4OLjnCPGdkEgkSE1NRX9/P6anp31kYXAwMjICm83GiUPfQnd3NwQCQcjW/3HOWwgQExOD6OhoLnV6C5GRkbj77rshk8noNiVgjI6OYnR0FPn5+d7U50Hh8XgoKipCamoqpxm1D+x2OyYmJjjdvD3gdrvR1taGyclJFBYW+kTaIisrC0lJSejq6mJNHbDFYsHY2BhSU1MhkUjoNocR3KrtFqrfCee8hQAEQXg137g7/j/C5/Nhs9mwsrJCtykBQSQSISMjw2ct8QRBIC8vD7m5uVhbW+PS8hw+ZWJiAouLiygtLUVSUpLPtnv06FFER0ejq6uLFefs0NAQBAJBSE0POCyzs7NYWVkJ2ZQpwDlvIcPRo0c5zbdtGBoaQmtra0hHQjwOe2JiIrKzs32+/bS0NFRUVIDH42FtbS2kv0sO/+PRZDty5AhOnDiBmJgYn26fIAgUFxejqqrqQLVzwQRJkjCbzSE1cN0XeLTdUlJS6DbFb4T2mc0iZDIZMjIy0N7ezroi/Z3IzMwEgJCVDllbW8Ply5f9XuNDEIQ3FXH16lXvmC0Ojv0wMzODixcvYm1tDQRB+G1oOp/Ph0wmg8vlQldXV8h2oRIEgePHj4e0k7Jf7HY7bt68iaNHj4a08x66n4yFlJaWYn5+HjMzM3SbwhjEYjGys7MxNTUVcoOaTSYTmpqaoFAoDl3jthcIgkBlZSWkUimuX7+OoaEh7kbhNsRiMVJTU7nB6bfhcrnQ2dmJjo4OREdHB0xKxeFwYHl5OSTHvy0sLHhLQkJNgPYw9PT0wGazoaSkhG5T/ArnvIUQ6enpiIyMRHNzM92mMIrk5GQolcqQSilbrVbcuHEDIpEI5eXlAZOmkEgkqKqqQkZGBgYHB9Hd3R2Q/QYLEokEeXl5IVskfRA2NjZQV1eHubk5FBUV4dixYwFL8UkkElRWVsJqtaK5uRkulysg+/U3DocDXV1dmJqaotsURkGSJJqampCVlbXtHOdQgnPeQgiCIFBeXo7e3l4YjUa6zWEMnoaOwsJCuk3xGZ6oV2VlZcDV5QmCQFZW1qZ0DRsKw/eC0+nE6uoqN2vzFoRCIcLCwlBbW0uLgKxcLkdFRQXW19dDpqxkYGAAbrcbeXl5dJvCKCYmJrC0tISKigq6TfE7nPMWYhQVFUEgEKC1tZVuUxiFQqGAQqGA2+0OiQtrfn4+qqurERYWRpsNGo0GSqUSbrcb169fR19fH+udOJPJxM2HBRUZ6u7uhs1mg1gsRmVlJa1TJ1QqFUpLS6FUKoM+xbi2toaJiQlkZWVx6fnbaG5uRlRUFCtqADnnLcSQSCQoKipCa2trSDgpvqaxsTFo06ckSaK7uxsGgwE8Hu/Qoqa+giAIxMbGYmxsDNevX2edMDLHZlZXV71pUiaNWIuKivI2MAVzZmJ4eBgKhcJnkkChwtraGgYGBlBeXh70Dvpe4Jy3EKS8vBwmkwl9fX10m8I44uPjMT09HZTdkj09PZiammKclh9BEEhLS0N1dTVsNhvq6uqwsLBAt1kcAYYkSYyMjKChoQFisRi1tbWHmvLhL9bX13HlyhVMTEzQbcqBOHbsGEpLS1nhoOyHlpYWiMViHD16lG5TAgLnvIUgGo0GaWlpaGpqotsUxpGUlISIiAj09PQEVYpvaGgIk5OTXgFSJqJSqVBbWwutVstpwbEQk8mEwcFBpKWloaqqijGR4dtRKpVITU1FT08P5ufn6TZnz9hsNpjNZggEAlZNjtkLDocD7e3tKC4uDngNMF1wzluIUlFRgdnZWU425DYIgsDRo0dhNBqDZhbs1NQUBgcHkZ2d7VMlen8gFApRUlLitbOrqwu9vb0hJ9NwJwiCgEgkYk1UxGKxoLe3F263G3K5HHfddRdycnIYr6+Vm5uL+Ph4tLe3Q6fT0W3Onujp6cGNGzdCouHC1/T09MBqtaKsrIxuUwIGs39hHAcmPT0dKpWKi75tg1KpRE5ODq0F1PshPDwcGRkZPpn9GGhkMhkmJye9QsKhfuFRKBQ4d+6c38RnmYLb7cbw8DAuX76M2dlZb4NGsEikeDrQ1Wp1UAh4z87OYn5+Hjk5Oay5MdgrHnmQzMxMqFQqus0JGNw8jRCFx+OhvLwcFy9exD333IPw8HC6TWIUaWlp3v8nSZKRC6LRaIRMJoNKpQraRSk9PR0JCQno6+tDZ2cnpqamUFVVxcjvm2NvLC8vo7u7GxaLBampqUE7monH46G0tJTxNxQ2mw09PT2Ii4sLiBh3sDE5OYnFxUWcO3eOblMCChd5C2GOHTsGHo+HtrY2uk1hLO3t7RgaGqLbjC0YDAY0NDRgeHiYblMOjUQi8c6ajI2NBUEQcLvdIVkXZzQacenSpaDuZtwNh8MBmUyGU6dOITc3NygdNw8CgQBCoRAWiwXNzc2MPCd7e3vB4/FQUFBAtymMpKmpCVqtlnXdt5zzFsJwsiG7I5fLMTw8jPX1dbpN8WKxWNDU1ISwsLBNEcJgR61WIzU1FQAlpnnp0iWMj48zPvKxH9xuN0wmU1A1w+yG0+lEf38/2tvbAQBxcXG067b5GpIksba2hqamJsatlVlZWawqxN8PHnmQiooK1kXzOectxKmsrITJZEJHRwfdpjCS9PR0hIeHo7OzkxEXXLvdjsbGRvB4PFRWVgZ1VGMnEhISEBcXh5s3b+Ldd9/F2NgY4y6abMdms2FgYAAXL17E2NgY5HJ5SDnatyKVSlFRUYGNjQ20trYyZi1wuVyQyWTQaDR0m8NI6uvrIZVKWSMPciuc8xbiqNVq5Ofno76+PmTm+vkSHo+HY8eOwWg0MiJ9OjMzA4fDgcrKypBWTxeJRDh69ChOnjwJtVqNvr4+75BtDvpxuVy4fPkyxsbGkJiYiDNnziAzMzOkoxtKpRJlZWXQ6XTo6uqi2xx0dnaisbGRbjMYi9FoREdHB44fP87KqGRo3tZzbOLEiRP47ne/i+7ubhw7doxucxiHQqFAVlYWI+62U1NTERcXFzRde4dFoVDg2LFjyM7O9n7mlpYWiEQipKWlhVRqjuno9XpMTEzg6NGjEAgEKCkpQUREBIRCId2mBQyNRoPi4mLandTp6WksLi6ySvpiv1y/fh1CoZC13xHnvLGAqKgoZGdno76+HoWFhYzXYKIDOmU4PGOvtFotqxy3W7l1RqtKpcLY2BimpqYQExODtLQ0REZG0mjd3pHJZKisrAwaEVWSJLG4uIjR0VHo9XrI5XJYLBaEh4dDq9XSbR4txMbGev9fr9cH/Nzb2NhAT08PEhISEBMTE9B9Bwsmkwmtra2oqqoK6QzFTnBXcZZQW1sLnU7HjczahfHxcW9hdqDo7+/H1NRUyNYT7Zf09HTcfffdKCwsxMbGBhobG4NG5FcgEECr1QZNrWJnZydaWloAAGVlZTh16hQnK/QeCwsLaGhoCKjQOUmSaGtrQ1hYGNddugONjY0gCAIVFRV0m0IbwbHCcByauLg4pKeno66uDnl5ebSnBZiKRCLB7Ows1Go1kpOT/b6/sbExjI6OIj8/H/Hx8X7fX7DA4/GQlJSExMREbGxsQCgUwul0oq6uDlFRUYiLi4NKpWLceWy1WjE5OYnk5GTGRVDdbjdWVlYwNzeH+Ph4aLVapKSkICUlJWh1BP1JTEwMkpKS0NnZCZFIhKioKL/vkyAI5OTkQCKRBM0NQKCxWq1obm5GWVkZY0ewBQIu8sYiamtrsbS0hMHBQbpNYSyxsbFISUnBzZs3YTAY/Lqvubk59Pb2Ij09nXUaRXuFIAhvJMjtdiM6Ohrz8/NoaGjAxYsXGRdJttlsGBoags1mo9sUL6urq+jq6sLbb7+NpqYmrK6uepuXglkAOhB4Zgm3trZidXXVr/vyTKmIiooK+Qkdh6G5uRkulwvHjx+n2xRa4Zw3FpGUlITk5GTU1dVxKbodyMvLg1wuR1tbm1/lKyIjI5GVlYWcnBy/7SOUEIlEyMvLw913343q6mrExsbCarUCoNJNAwMDfr/ABgMkSWJ5ednrDOh0Ouh0OqSkpODkyZM4ffo0V0u1RwiCQHFxMZRKJSYnJ/22H7PZjLq6OoyOjvptH6GA3W7Hqdt56gAAXj9JREFUjRs3UFxczPpmJi4uyzJqa2vxy1/+EmNjYyElAOtLeDweSkpKMDg46Bcn12AwQCKRQCKRIDMz0+fbD3UIgkBkZOSmQnKz2YypqSkMDw8jLCzMO0ooIiKCPkMDiMvlgl6vx/z8PObn52G325GdnY2MjAykpqYiPT2dbhODFj6fj4qKCvD5fL9s3+12o62tDSKRCElJSX7ZR6jQ2toKu92O6upquk2hnZBx3oxGI77//e+jrq4ONpsNOTk5eOqpp5CVlbXre7/2ta/hzTff3PJ4UlISfvWrX216zO124/nnn8fLL78MvV6PhIQEPPnkk7j77rt99ln8SWpqKuLj41FXV8c5bzsgl8tRUlICwLezT00mE27cuIGoqChOtsWHyGQynD17Fnq9HnNzc5iensbS0hJOnToFABgcHIRSqURERATjatEOgtlsxurqKlQqFaRSKYaHhzE8PAypVIqkpCTExcVBqVQCANdd7gM89Wd6vR79/f0oLy/3mYRKf38/DAYDqqurWSXLsl8cDgeuX7+OwsJC77nNZkLCeXO73XjmmWcwOjqKxx57DEqlEi+//DKefvppPPvss0hMTNx1GyKRCJ/97Gc3PbZdu/+zzz6L//mf/8EDDzzgld/48pe/DIIgcNddd/nsM/kLgiBQW1uL5557zltYzXFnDAYDWlpaUFZWdug6FKvVisbGRm/6j8O3EAQBtVrtFaa2WCwAqEV/amrKm2INCwtDZGSkV8/MlwiFQsTHx/vlIjw1NYXFxUWsrq56a+qKioo2OWxcrZR/EYlEMBqNaG5uRmVl5aGjcXq9HmNjY8jLy2NNlPigdHR0wGQyoaamhm5TGEFIOG9XrlzBzZs38eUvf9l7p33mzBk88cQT+OlPf4ovfvGLu26Dz+fjnnvu2fE1y8vL+M1vfoOHH34Yf/u3fwsA+JM/+RN86lOfwne/+12cOnXKb6F1X5KZmYno6GhcvnwZH/7whxnXscckZDIZhEIhmpubUVtbe2Alb4fDgaamJrjdblRVVbFSETyQEATh7UQTCoU4e/YsrFYrVldXodfrsbGx4XXcGhoaAFAK+2FhYZBIJNBqtQc6RlKpFMXFxQe2W6fTwWKxeP+trq6ioqICEokEBoMBTqcTSUlJ3kYDj41s7roLJHK5HBUVFbhx4wba29tRWlp6qPVTpVKhuLiY6zTfBYfDgfr6euTn5weN5qO/CQnn7erVq4iMjERtba33sYiICJw+fRrvvPMO7Hb7nhZil8sFq9V6R4HN+vp6OJ1OPPzww97HCILAQw89hC9/+cvo7e0Nihlrnijhr3/9a4yMjNAqUMt0+Hw+ysrKcO3aNbS2tqKysvJAaSi9Xg+r1YqqqqpNgrQcgUMikSA2NnaTCCsAxMfHQ6fTYWVlBRaLBU6nE9XV1YiMjER/fz+mp6chkUi8jl1UVBSio6PhcDhgMBhAEAR4PB4IggBBEHA4HODz+SAIAiRJwu12QyKRQCqVwmKxYHp6GlarFRaLBVarFXw+3xtN8NT0iEQiSCQSKJVK7+SP/Pz8gH9nHFtRqVQoKSlBS0sL+vr6DhRFt9vtMBgM0Gg0nOO2B5qbm7GxsYHTp0/TbQpjCAnnbWhoCBkZGVsuqjk5OXj11VcxPT29a32X1WrFfffdB6vVivDwcNx11134xCc+semO1lMMfXuq0dMtODw8fEfnbWVlBTqdzvu3PzuX9kJGRgaSk5Nx8eJFpKWlcXUxOxAWFobS0lLcuHEDfX19B7qIRkdH48yZM1xNCwPxaJ15cDqd3t9DVFQU+Hy+19HS6/WQSCSIjo6G0WjE9evXN23L6XRienoaUVFRm24CU1NTkZeXB5vNhomJCa8zGBkZuel1nuhuMETw2Ux0dDSOHTt2IEFjt9uN1tZWmEwmnDlzhjvWu2CxWHDt2jWUlpZyUbdbCAnnTa/Xo7CwcMvjarUaAJWK2Ml5U6vVePzxx5GZmQmSJNHU1ISXX34Zo6Oj+M53vuNNr+h0um2FQT372Wmw9iuvvIKf/exn+/1ofoMgCJw9exY/+tGP0NPTs+33x/FHIiMjUVRUtO/29O7ubohEImRnZ3OOW5Bwax2cp4ZuO5RKJc6cOQO32w2SJEGSJNbX1+FyuVBWVoaIiAhvVM4T+Y+IiNixPIOLygYPnoiZy+WCTqfbs4hvb28vVldXcfz4cc5x2wPXrl2D2+3GyZMn6TaFUTDOeXO73XsehSMSiUAQBGw227ZpUc9juwlmfvzjH9/091133YXExEQ8++yzuHr1qrcRwWazbXsB3st+HnzwwU3tzZOTk/jqV7+6o13+JiEhAbm5ubh06RLy8vI4Re9d8CzWbrcbJpNp17vuoaEhTE5Oco5xiMLn87ctsRCLxYiIiOA64ljC1NQUbt68idLS0i0p+duZnJzExMQECgsLuSjSHlhfX0dzczNqamqCZl5woGDc1bqrqwtPP/30nl77y1/+EsnJyRCLxbDb7Vue9zx2kMG1H/zgB/HjH/8Yra2tXudNLBZv61juZT8ajQYajWbfdvibM2fO4Lvf/S6am5tRVVVFtzlBQX9/P2ZmZnDixIk7FopPTk5icHAQ2dnZnHYTB0cIk5KSgtXVVbS3t6OysvKOkVq3242xsTEcOXKEWxP2yOXLlyEWi7lr0zYwznlLSkrC5z73uT291vMjiYyM3FRP5sHz2J1+TDshFouhUCg2jUhSq9Xo6OjYovvl2Q8TnbPd0Gg0KC4uxrVr11BcXBwSGlj+JiMjAwsLC2hpaUF1dfWWiOXKygp6enqQkpLCNYNwcIQ4BEGgqKgIdrsdzc3NqK6u3layhcfjoaamhkuV7pHFxUV0dXXh/vvv57rzt4FxzptarcZ99923r/dkZGSgu7sbbrd7U+F9f38/JBLJnnTebsdsNmN9fX2T9k56ejpee+01TE5Obipw9sxXDFYV81OnTqGrqwv19fVBIzZMJyKRCOXl5aivr0drayvKy8s3nXcqlQq5ubncvFIWolQq8cADD9BtBkeA4fF4KC0txfXr17G8vLzJebPb7ejp6UFeXh53c7wPLl68iMjIyENJ74QyIdFiePLkSej1etTV1XkfW1tbw+XLl7doas3OzmJ2dtb7t81mg9ls3rLNn//85yBJEhUVFd7HampqIBAI8NJLL3kfI0kSf/jDH6DVaoO2lV8ul6OqqgqNjY1+H8YeKoSHh6OsrAw6nQ6Li4sAqCkfBoMBfD4fqampnH4eBweLEAgEqKmp8TbHkSQJl8uF5uZmrKyswOVy0Wxh8DA+Po7h4WHcddddXKTyDjAu8nYQTp06hRdffBFf//rXMTEx4Z2w4Ha78Rd/8RebXusR133hhRcAUJ2qH/3oR3H33Xd76xCam5vR2NiIioqKTWrOUVFReOSRR/Dcc8/B6XQiJycH165dQ3d3N/7P//k/QX2SVVVVobW1FZcvX8b73vc+us0JCjQaDU6dOgWZTAaLxYLGxkbI5XIcP36cbtM4aGJjYwOdnZ0H6kzmCH48Efjp6WlMTExAIBDAYDCgqqqKK7jfIyRJ4uLFi4iPj/fKcHFsJSScNz6fj29961v47ne/i9/97new2WzIzs7G5z73uV0LQz1Rp5aWFrz55ptwu92Ij4/Hxz72MTz22GNb9M8+/vGPIzw8HK+88grefPNNJCQk4Atf+ALOnj3rz4/od8RiMWpra/Hmm2/i+PHje257ZzsymQx2ux1/+MMf4HK5NglFc7APl8uF1dVVLsrCchQKBXp6emA2m/GhD32IG321D/r6+jA7O4uPfOQjXPZiB0LCeQOoNNYzzzyDZ555ZsfXeSJut77vC1/4wp73w+Px8OSTT+LJJ588kJ1MprS0FE1NTbh48SKeeOIJus0JCjxpEYPBAJVKhZWVFU4xnYOD5SiVSpw4cQKtra2Yn59HTEwM54jsAafTiXfffRcZGRmb6so5thISNW8cvoHP5+Puu+/G0NAQhoaG6DYnKDCZTLBarfjgBz+I9PR0dHR0YHl5mW6zODg4aGJtbQ0AUFBQgHPnzmF2dhajo6P0GhUk3LhxA2tra0GfyQoEnPPGsYmcnBykpaXhwoULexZLZiskSUKhUODMmTOIiIhAYWEhoqKi0NLS4l3AOTg42MPMzAyuXbvmbWKKi4tDSUkJp+u2B9bW1lBXV4fKykqubGcPcM4bxyYIgsD9998Pg8GAhoYGus1hLP39/WhtbQVJkt66SB6Ph5KSEiQkJNxRvJcjtJFKpTh27Bh3/FnI3NwcOjs7kZiYiOjoaO/jcXFxEIlEsFgsWFhYoNFCZvPWW29BIpFwY7D2COe8cWxBrVajuroa9fX10Ov1dJvDOMbGxjAyMgK1Wr2ljoXP5+Po0aPexXp9fZ0mKznoQCgUIiEhgZtjyzLm5ubQ3t6OuLi4O47Dm5iYQGtrK5aWlgJsHfMZHh5Gf38/zp07d6CJSGyEc944tuXEiROQy+W4cOECSJKk2xzGMDs7i97eXqSnpyM1NXXH1/b393trODjYgd1ux8TExLbj+jhCl5mZGcTFxeHYsWN3bEzIzs5GdHQ0Wltbsbq6GmALmYvT6cSFCxeQmpqKvLw8us0JGjjnjWNbhEIh7r33XgwPD2NwcJBucxiB0WhER0cHEhMT96Q/dPToUcjlcjQ2NnIOHEuwWCzo6emBxWKh2xSOAOB0OgFQnfo7OW4AVZJSXFwMpVKJ5uZmbGxsBMpMRtPQ0ID19XXcf//9XEfuPuCcN447kpWVhYyMDK554T3Cw8NRVFSEo0eP7un1AoEAlZWVnAPHwRGCzM/P49KlSzCZTODxeHtyPPh8PsrLyxEWFgaTyRQAK5nN6uoqrl27huPHjwflbHA64Zw3jjtCEATuu+8+mEymTaPH2IbJZPIWGickJGwRbt4JjwOnUChgtVr9ZSIHB0cAmZ+fR1tbGzQazb6bU4RCIU6cOOFtamCzoPObb74JmUzGiZsfAM5549iRyMhI1NTU4Pr169DpdHSbE3CsVisaGxsxMDAAt9t9oG0IBAJUVVUhJiYGALadpcvBwREczM3Noa2tbdcat53wvKe/vx+NjY2sdOAGBwcxODiIc+fObZo/zrE3OOeNY1eqq6uhUCjwxhtvsKp5weFwoKmpCW63GxUVFfuKuN2J8fFxXLlyhRPyDVEEAgG0Wi0EgpAZXsNxCw6HA93d3YiPjz+w43YrMTExWF9fR3t7O+vW1jfffBPp6enc/NIDwjlvHLsiFApx3333YXR0FH19fXSbExDcbjdaWlpgsVhQWVmJsLAwn2w3KSkJGo0GTU1NmJ2d9ck2OZiDTCZDZWUlN4Q8BHG73d6UZ1FRkU+K61UqFUpKSrC4uIienh4fWBkc1NfXw2Aw4L777uOaFA4I57xx7InMzEzk5OTgjTfeYEWhrcPhgNPpRHl5OcLDw322XT6fj9LSUiQkJKC9vR1jY2M+2zYH/ZAkCafTyaooSqhDkiS6u7vR1tYGgHLQfelwREdHo7CwEJOTk6y4oVtYWMC1a9dQU1MDtVpNtzlBC+e8ceyZ8+fPgyRJvPHGG3Sb4lecTifEYjFOnDiByMhIn2+fx+OhqKgI6enp0Ov13IU+hDAYDLhw4QIMBgPdpnD4AJfLhdbWVkxNTXlrVv1BYmIiysvLERsb67d9MAGXy4WXXnoJUVFRXJPCIeGcN449I5fLcf/996O3txe9vb10m+MXhoaGcO3aNbhcLr+H83NyclBSUgKCIGAwGA7cEMHBweF7HA4HGhsbsby8jLKyMiQmJvp1f9HR0eDxeNDr9SE7Rquurg7Ly8t46KGHwOfz6TYnqOGcN459kZeXh9zcXLz++ushlz6dnJzE4OAgEhISArawEAQBp9OJGzduoKWlhZVdZxwcTGRmZgZGoxHHjx/fNKvU30xNTaGtrS3kuvvn5+dx7do11NbW+jWKyRY4541jXxAEgfPnzwMAXn/99ZBJ+S0sLKCnpwcpKSnIyMgI6L4FAgGKi4uh0+nQ0NDAqfNzcNCIZ7TZkSNHcOrUKahUqoDu/+jRo1Cr1Whubg6Z9LvT6cTLL7+MqKgonDhxgm5zQgLOeePYNzKZDOfPn0dfX19IpE/tdjva29sRGxuL/Px8WmzQarWoqamB3W7HtWvXuNmHHBw0MDs7i4sXL3qjXhKJJOA28Hg8lJaWQiaTobGxMSR0Ievq6rCyssKlS30I57xxHIi8vDzk5eXhjTfeCPoZfSKRCOXl5T7RbToMCoUCJ06cQEREBIRCIW12cByc8PBwnDt3zqcdyhz+hyRJ9Pf3e2/iAh1tux2BQICKigrIZDLv/NRgZW5uDvX19Vy61MdwzhvHgfEMEg7W9KnFYsHo6CgAQKPR+ESE97CIxWKUl5dDLpfD6XRiZGQkKL9btsLj8SASiRhxLnHsDafTiZaWFoyOjiI3NxfHjh1jxPETi8VegXSXyxWUTpwnXRodHY2amhq6zQkp6D9DOYIWT/q0v78fN2/epNucfWG329HY2IiJiQk4HA66zdkWvV6PgYEBNDU1MdZGjs2YTCY0NzeHXDNPKEOSJGw2G8rLy5GWlka3OdvS1taG1tbWoOtIv3r1KnQ6HZcu9QOc88ZxKHJzc5Gfnx9U6VOXy4Xm5mbY7XZUVlYyNkUZFRWFyspKrK+v49q1azAajXSbxLELTqcTi4uLQRklYRvLy8swm83eqQlRUVF0m3RHUlNTodPp0NXVFTSR+NnZWdTX1+PUqVMB7dZlC5zzxnFo7r//fvB4PLzyyiuMX1jcbjdaW1thNBqDYoyRRqPBiRMnwOPxUF9fD5vNRrdJHBxBDUmSGBoaQlNTE8bHx+k2Z09oNBocO3YMMzMz6O/vp9ucXbHb7XjppZcQGxuL6upqus0JSTjnjePQSKVSvO997/MuiEyGJEnviCqlUkm3OXtCKpWipqYGhYWFEIvFAMDpwXFwHACr1YobN25gaGgImZmZyM3NpdukPRMXF4f8/HyMjo4yXgPuwoULWF9fx8MPP8yI+sFQREC3ARyhQWZmJo4fP4533nkHiYmJiI+Pp9ukLdhsNojFYpSWltJtyr4RCASIi4sDAIyPj2NiYgIlJSVQKBQ0W8bBERy43W40NDTA7Xbj+PHjQTlX88iRI4iIiKC9G3Ynuru70dHRgYceegharZZuc0IWziXm8Bl33303YmJi8OKLL8JqtdJtzibGxsZw+fJlxtl1ELRaLXg8Hq5du4aJiQm6zeG4BYlEgry8PFr0wTi2x+12w+Vygcfj4ejRozh58mRQOm4ePI7b1NQUlpaWaLZmMzqdDq+99hoKCwtRVFREtzkhDee8cfgMPp+PD3zgAzCbzXj11VcZU/82OzuL3t5eJCcnh8RFVS6X48SJE0hOTkZPTw83VotBiMVipKametPbHPRiNpvR0NDg7YbXarUQiUQ0W+UbFhcX0drayhhBb6fTid/+9rcIDw/3TuHh8B+c88bhU1QqFR588EH09vaira2NbnOwvLyMzs5OJCYmIicnh25zfAaPx0N+fj7KysrA4/G4uhKG4HA4MDc3x0m7MIDZ2VlcvXoVdrsdycnJdJvjc4qLi6FUKtHc3MyITv+3334bKysreOSRR0LGQWYy3IrP4XPy8vJQVlaGN998E4uLi7TZ4Xa70dnZCY1Gg6NHj9Jmhz+JiYlBSUkJCILAysoKenp6OJkKGjGbzWhrawuJkUbBCkmSaGlpQXt7O6Kjo1FbW4uIiAi6zfI5fD4f5eXlEIvFaGxspLUkpK+vD83NzTh37hw3RSFAcM4bh184d+4c1Go1fvvb33oHPQcaHo+H48ePo7S0lBWRKavViunpaVy9ehUrKyt0m8PBEXBIkgRBEFAoFCgrK0NxcTFjdRx9gVAoREVFBZRKJW1r3OrqKl555RXk5uYGZTNYsBL6VzQOWhAIBHjkkUdgMBjwxhtvBHTfNpsNPT09cLlckMvlrFH2TkhIwMmTJxEWFoYbN26gu7ubi8JxsAKr1YqmpiZvA09WVhZrIkBhYWEoKyuDSCSC1WoN6BQGl8uFF198EWFhYXjwwQdpnQ3NNjjnjcNvaDQanD9/Hp2dnejq6grIPh0OBxobG7GwsMDKuiOZTIbjx4+joKAAer2ebnM4OPzO1NQULl++DIPBwHjRbX9CkiRu3LiB9vb2gDWLvfvuu5ifn8cHPvCBkGgGCyY4543Dr3haxl9//XUsLy/7dV9utxstLS2wWCyorKxk7WJCEARSUlJw8uRJCAQCmM1m9PT00Ja+ZhN8Ph9KpZI10V46cTqdaGxsRFdXF2JjY3Hq1ClGj7jyNwRBIDc3FwsLC+jp6fH7/oaGhnD9+nWcPXuWkbqeoQ7nvHH4nfvvvx9KpRLPP/88LBaLX/ZBkiTa29uxurqK8vJyhIeH+2U/wYQnhbGxsYGZmRlcunQJk5OTjJFwCUXkcjlqa2shl8vpNiVk8aQFBQIBRCIRKioqUFRUFNK1bXslOjoahYWFmJycxNDQkN/2s7Kygt/97nfIyspCZWWl3/bDcWc4543D74hEIjz++OMwm8343e9+55eaDIIgIJfLUVJSgsjISJ9vP5iJiorCmTNnEBMTg+7ubtTV1cFgMNBtFgfHvpmbm8OlS5e846GKi4tZHW3bjsTERGRnZ2N4eNgvXc9WqxXPPfccFAoF3v/+93N1bjTBOW8cASEyMhKPPPIIxsbGcPHiRZ9u22QyAQCys7NZU6S8X8RiMYqKilBTUwOBQOBN63FRON+yvr6O119/Hevr63SbElIYjUbcuHEDbW1tUCgUCAsLo9skRpORkYGTJ09CKpX6dLtutxsvvvgizGYzHn/8cU6MmkY4540jYKSmpuLcuXO4fv06Ojs7fbJNT7Eyd7HcGyqVCtXV1ZDJZHC5XKirq8Po6GhAO9RCHe679C0LCwu4evUqLBYLKioqUF5e7nOnJBSRy+UgSRK9vb0+G2R/8eJFjI2N4ZFHHuEyHDTDOW8cAaW8vBzFxcV49dVXMTMzc6htLSwsoLu7G8nJyVAqlT6ykD2QJAm1Wo3+/n5cuXIF8/PzXCSOgxG43W7v2CeNRoPc3FzWNyQcBJIkYTAY0NzcfOhSia6uLly/fh333HMPUlNTfWQhx0HhnDeOgEIQBO6//37Ex8fj+eefP/CCotfr0dbWhpiYGOTn5/vYSnYgEAiQn5+P2tpaSKVStLa2oqOjg26zOFgMSZKYnp7GpUuX0NjYCJfLBYFAgNTUVFYIbfsaHo+HsrIyyGQyNDY2HrgGbmZmBq+88gqOHTuGiooKH1vJcRC4XwNHwBEIBPjgBz8IPp+P559//kB6bH19fYiMjERxcTFXMHtIFAoFKisrUVVV5Z0BubGx4bNUCwfHXpibm8OVK1fQ2dmJiIgInDhxgpNc8QECgQAVFRXg8/lobGzct2SQwWDA888/j7i4OJw/f55bbxkC57xx0IJcLsdjjz2G5eVlvPLKK/tO15WXl7Nm7FWgUKvVUKvVAIDJyUlcv34dTU1NXD3hPpDL5Th16hQnFXIApqamIJVKUVtbi9LSUu479CFisRiVlZWIioqCQCDY8/scDgeef/558Hg8PProo/t6L4d/4a58HLQRGxuLhx56CD09PWhoaNj19Xa7Ha2trbBarRCJRJyukx/Jzc1FSUkJzGYz6urq0Nra6jeNvlCCz+cjPDycixjtgeXlZTQ0NGBxcREAUFZW5p3TyeF7ZDIZ8vPzwePxYDAYdm2sIUkSr776KpaXl/H4449zzjTD4NxoDlrJy8vD4uIi3n33XWi1WmRlZW37OpfLhebmZphMJrhcrgBbyT4IgkBcXBxiY2MxMzODkZERb7rEbDZz3X53wGKxYGhoCJmZmZycxTa43W7Mzc1hdHQUBoMBSqXSexPGObyBweFw4Pr164iOjkZRUdEd06ANDQ3o7u7GBz7wAcTGxgbYSo7d4CJvHLRz+vRpZGVl4cUXX8Ts7OyW591uN1pbW2EwGFBRUcHq+YWBhiAIJCYm4vTp05BIJHC5XLh27RquXr2KmZkZThbjNux2O6amprhRZHdgenoaHR0dkEgkOH78OGpraznJiQAjFApx9OhRzMzMoL+/f9vX3Lx5ExcvXkRtbS3XEMZQOOeNg3YIgsCf/umfIiYmBr/+9a+3DFTv6enBysoKysrKEBERQY+RHACo6EhJSQkkEgk6Ojpw6dIljI2NcRIjHNtitVrR39/vdRLi4+Nx8uRJVFRUQKPR0Gwde4mLi0N+fj5GR0cxOjq66bnx8XG89NJLKCwsxOnTp2mykGM3OOeNgxEIhUI8/vjjkEgk+NWvfuWdmgAAWq0WRUVF0Gq1NFrI4UGj0aCiogInT56EWq3G/Py8N/Vy63HjYC+rq6vo7OzEu+++i4mJCe/5IRAIoFAoaLaOAwCOHDmCjIwMjI6Oejv+FxcX8fzzzyMlJQUPPvgg11nKYLiaNw7GIJVK8eSTT+LHP/4xfv3rX+PBBx9EdHQ04uLi6DaNYxsUCgWOHTvmjbqtrq6ivr4ekZGRSE5ORmxsLFfHxCJIkgRBEDCbzaivr4dUKkVWVhaSk5O55iKGkp2djSNHjkAoFGJ9fR2/+tWvEBkZ6ZVy4mAuXOSNg1GoVCp86EMfwsjICL71rW9tWwPHwSw8d+dKpRIlJSXg8Xjo6OjAO++8g6GhIZqtCyxisRjp6emsmvmo0+nQ3t6OK1eugCRJSKVSnDhxAmfOnEF6ejrnuDEcsVgMo9GIr371q7DZbPjQhz7EqvM3WOEibxyMQyAQICMjA+3t7WhqasLDDz/Mhe+DAB6Ph7i4OMTFxcFkMmFqasp79261WrG0tITY2NiQvphLJBLk5OTQbYbfcbvdGB8fx+TkJEwmE2QyGZKSkrzRN642NXiw2+147rnnsLGxgbKyMrrN4dgjnPPGwSjW1tbQ2tqKgoIClJeX46WXXoJUKsW5c+c4By6IkMlkm5yYlZUVdHV1oaenB1qtFnFxcYiOjg45R87pdGJ9fR1KpTLkBE2tVit0Oh3i4+PB4/EwNTWFiIgIFBYWesWdOYILl8uFF154ASsrK/iHf/gHjI2NobGxETU1NZBIJHSbx7EDobW6cAQ94+PjCA8PR2lpKfh8Pmw2G15//XWv8jpHcJKQkACNRoP5+XnMzc2ho6MDiYmJKCoqgsvlAkmSIeHsmEwmXL9+HbW1tSEhNmuz2bzHTKfTgcfjQaPRQCwW49SpU9wNVRBDkiReeukljI+P48knn0RycjKioqJQX1+PpqYm1NTUcHVvDCb4V0uOkKKwsBAul8u7aJSVlcFsNuPSpUuQSqUoLS2l2UKOgyKRSHDkyBEcOXIEVqvVqxE3Pz+Prq4uREVFISYmBlqtlrvrpxGr1QqJRAKSJHH58mU4nU5vx3dMTIw3Wso5bsELSZK4cOECent78cgjj+DIkSMAgLCwMFRWVmJlZYVz3BgO57xx0I7T6URLSwuys7OhUqm2zCutra2F2WzG66+/DpFIhKNHj9JkKYevuNU502g0yMnJwdzcHDo7OwFQMgb5+fleB4+bYes/nE4nVlZWsLy8jKWlJVgsFtx7770QCAQoKyuDQqEIufQ2myFJEpcuXfr/27vzsKbOfA/g3ySQEAhh3xGQRdlEZAdFwIWijrRO3Tra2tZq25np+Mx0pl7v9M7caWem0z5drs+dtlOt1tZqW6tV1LqhVSjIDoKyKKAssoZ9TwI59w9vMqYBDGu23+d5fB55c074vZyck9953/e8L3Jzc7F27Vr4+/srvW5ubg5zc3MAD4Y72NjYUKKuhSh5Ixolk8mQl5eH7u7uMbvNWCwWkpKSIJFIcPLkSQCgBE6PmJiYwNPTE56enpBIJBCJRIqn3dra2pCfnw9bW1vY2dnB3t6eVtiYIoZhMDg4CFNTU8hkMly6dAkjIyMwMzODvb097OzsFMkyjWXTL/LW1B9//BGJiYkIDQ0dc9uBgQFkZ2fDzc2NrrdaiJI3ojEMw6CwsBAdHR2Ijo5W3O2NhsViITk5GQAogdNjXC4XLi4uip/Nzc0xb948iEQilJWV4datW3B0dER4eDgYhkFnZycsLCy0pouHxWLBxMREq1oqRkZG0NHRgY6ODnR2dqKrqwsA8Nhjj4HNZmPRokUQCoWUFOs5eeKWnp6OxMRExMTEjLu9qakpFi5ciBs3bsDExATz5s2bpUiJOvQmeevt7cW//vUvpKenQywWw8/PD7/85S/HXOj8YeMNhA8LC8P7778P4MHYnE2bNo263Z///GcsX758csEbqPLycjQ3NyMsLEyt9Q0pgTM8fD4f3t7e8Pb2xvDwsGLQPAD09PQgMzMTLBYLQqEQ1tbWsLKyUkr+ZptQKMTKlSs19vsZhkFfXx86OzsBAG5ubpBKpcjOzoaxsTGsrKzg5eWldL7RouP6b6KJm9ycOXMwNDSEiooK8Hg8uLu7z3CkRF16kbzJZDLs3r0b1dXV2Lx5MywsLHDq1Cns2rUL+/fvx5w5c8bd//XXX1cpq6iowPHjx0ed92bFihWIiopSKgsICJhaJQyQi4sLhEIhHB0d1d7npwkci8XCggULZipEokWMjIzg4OCg+FkoFCIuLg6dnZ3o6OhAa2srRCKRInnLyckBj8eDubk5BAIBzM3NwefztapVbLJkMhkGBgbA4XDA5/PR1taG0tJS9PX1QSaTgcViwdHREW5ubjAxMcGyZcuoZc1ATTZxk/Px8YFYLEZdXR3c3Nz04vzRB3qRvF27dg23bt3CG2+8gfj4eADAsmXL8Itf/AKfffYZ/vSnP427f2JiokpZUVERWCzWqK1pPj4+o+5D1CMSiWBjYwMLC4tJTacgT+AYhsF3330HAJTAGSB5i5tQKFS0CIyMjAB48IUlnzm+qakJw8PDAKBIYurq6jAwMAA+nw8+nw8TExOYmppOebqSnp4e5OTkIDIyckpreDIMA4lEgqGhIQgEAnA4HDQ2NqKpqQm9vb3o7++HTCaDt7c3/Pz8wOPxYGVlBTc3NwiFQpV55ihxM0xTTdzkAgICFDcFRDvoRfKWlpYGa2trpe5PS0tLJCQkIDU1FRKJBFwuV+33k0gkSEtLQ3BwMOzt7UfdZnBwEEZGRvQU1gQ1NzcjPz8f/v7+8PT0nPT7PNwCRwkckZOPfWOxWAgODlaUDw4Oore3F6ampgAeTAbd0tICsVisWJs1MDAQc+fORWtrK6qrq2FiYgIulwsjIyMIBAJFi15rayuMjIwU/9hsNng8HlgsFqRSKfr6+iAWiyEWiwE8+ALlcDgwNjaGVCpFR0cHhoeHMTw8DKlUChaLBS8vLwAPWgv7+vqUplJZvHgxrK2tMTg4CLFYDBsbG3h4eCg9FWhubk5DCIiShxO3lStXTjpxAx6cTxwOBwMDA8jLy1OMkySaoxfJ2507d+Dj46MynYCfnx/OnDmD+vp6xcVRHdnZ2ejr6xtz7MqhQ4fw8ccfg8ViYf78+XjhhRcQEREx7nu2tbWhvb1d8XNtba3a8eiLjo4OFBQUwNHRUTGv0FSw2WxK4Iha5C1scvJEh2EYiMViDA4OKl7ncDjgcrkYGBhAd3c3hoeHYWFhARcXF4yMjCAnJ0fl/VeuXAkTExOUlJSgsLAQYrFYqbXLy8sL/v7+6O3tRW5uLoAHX4hGRkYwNTVVXJ/kLYny1kA+nw+BQKB4j4lcx4jh+mnitnjx4ml5Xy6XCxaLhZycHCxevFhxM0Rmn14kbx0dHVi4cKFKufwx9/b29gld9FJTU8HlchEXF6dUzmazER4ejqVLl8LW1haNjY04duwYXnvtNbz11luIjo4e8z1Pnz6NQ4cOqR2DvpF/aVlZWSEkJGTamt8pgSNTIX869OF552xsbMacIoPNZmPlypVKLWcMwyha9j09PVFXV4eQkBAIhUKwWCywWCzFl5ylpSUSExNhZGQ06hOyhrAuKplZM5W4AQ/GnUZGRiIzM1OxjNZEerXI9NG65E0mk0Eqlaq1rfwuQCwWj/oBkpfJuy/U0d/fj6ysLERGRqpMXeHg4ID33ntPqeyxxx7DM888gw8//HDc5C05OVnpJKqtrcVf//pXtePSdS0tLeDz+QgPD5/2CVd/msANDw9j0aJF0/o7CAH+neyNxdLSEtbW1nBwcBh1PKe8i5WQmcAwDC5fvozMzMxpT9zkeDyeIoHLy8ubkd9BHk3rkrfi4mLs2rVLrW0PHz4Md3d38Hg8SCQSldflZRO5WKalpUEikaj9uL9QKMSqVatw5MgRtLa2jjlGztbWFra2tmrHoS8YhgGLxYK3tzfmzp07Y/NxyRM4IyMjpKSkoK+vD0uWLKEBtmRWmZmZISYmhh4QILNuZGQEp0+fRnFxMZKSklRmRJhOZmZmiIyMHPV7l8wOrUve3NzcsGfPHrW2lXdtWFtbK40nk5OXTWSW8NTUVAgEggkN7pQnbL29vWMmb4ZoZGQE2dnZ8PDwgIuLy4xPpMpms7FmzRoIBAJcuXIFfX19SEpKogSOzBojIyNalYDMOolEgm+//RZ3797Fk08+OStDR+QtywzDoLGxEc7OznStnUVal7zZ2Nhg1apVE9rHx8cHJSUlkMlkSl1y5eXlMDExeeQ8b3JtbW0oKipCUlLShPrxGxsbAWBS017oK5lMhoKCAnR3d89qKwSLxUJ8fDwEAgG+//579Pf344knnpjyFBCEqGNoaAj37t3D3Llzx+1eJWS6DAwM4OjRo2htbcUvfvGLWX+opbOzE4WFheju7lZZJ5XMHL1Y7TkuLg4dHR1IT09XlHV1deHq1auIiYlRSsQaGhrQ0NAw6vv88MMPkMlkY3aZypeVeZhIJMK5c+fg5eVlkN2iYykpKUFrayvCw8NhaWk5678/LCwMGzZsQHl5OY4ePTqhcY+ETJZYLEZVVRV93sis6O7uxsGDB9HZ2Ylnn31WI08jW1tbIzAwENXV1aiurp7132+o9KI5Ij4+HsePH8dbb72FmpoaxQoLMpkMzz//vNK2v/3tbwEAx44dU3mf1NRU2NrajjnY/eOPP0ZDQwNCQ0Nha2uL5uZmnD59GkNDQ/jNb34z/RXTUdXV1aivr0dISAjs7Ow0Foe/vz9MTU3x1Vdf4dChQ9iyZYti2gVCCNFlra2tOHz4MIyMjPD8889rtLt+7ty5EIvFKCsrA4/Hg6urq8ZiMRR6kbxxOBy88847+Oijj3DixAmIxWL4+vpiz549cHNzU+s96urqcPv2bWzcuHHMpyHDw8PR2NiIkydPore3FwKBAEFBQXjmmWfUWkPVULi6usLExESja0zKeXh44LnnnsOXX36JgwcP4umnn4aVlZWmwyKEkEmrq6vD0aNHYWlpiS1btqjMjKAJvr6+GBoaQltbGyVvs4DFyKcXJ7Pq9u3b2LFjB/bv3683iV9LSwssLCy0cqxPZ2cnDh8+DIlEgi1bttBi3GRGdHd3Iz09HUuXLqUxsGRG3L59G99++y1cXV2xefNmrbreytMJFoulMgZd12nbd7b+/GWJRolEIuTn5+Pu3buaDmVUVlZW2L59O4RCIQ4dOqS1cRLdxuVy4ebmRhOXkhlRUFCAr7/+GvPmzcPWrVu1KnEDoJiUuqOjA1evXkV/f7+mQ9JblLyRKevu7kZ+fj5sbW3h6+ur6XDGZGZmhm3btsHV1RVffvkl8vLyQA3PZDrx+XwsXLhQaSkuQqZKJpPhwoULOHPmDMLCwrB+/XqtfoJeIBCAzWYjKysLQ0NDmg5HL1HyRqakv78f2dnZMDc3R1hYmNY3k/N4PGzZsgXh4eH4/vvvcfbsWYyMjGg6LKInRkZG0NvbS58pMm0GBwdx5MgR5ObmYvXq1Vi9erXWX2e5XC6ioqLAMAxycnLUXjWJqE+7PwFE6/X29sLExAQREREzPgnvdGGz2Vi1ahWSk5Nx48YNfPHFF9S8T6ZFX18frl27hr6+Pk2HQvSASCTC/v370djYiKeffhoRERE6MxEun89HVFQUBgcHUVxcrOlw9I72trsSrSYfjOro6AgHBweduaA8LCQkBLa2tvjmm2+wb98+PPXUU3B0dNR0WIQQgjt37uDEiROwsLDAzp07dfIpeXNzc0RGRtIY0BlALW9kwmQyGXJyclBRUQEAOpm4ybm5uWHnzp0wNTXFgQMHUFZWpumQCCEGjGEYZGRk4KuvvsLcuXOxfft2nUzc5KysrGBmZobh4WHcu3dP0+HoDUreyIQwDIOioiJ0dHRodALe6WRhYYHnn38e8+bNw7Fjx3D16lV6kIEQMuukUim+++47XL58GbGxsdi0aRN4PJ6mw5oWIpEIt27dwp07dzQdil6gblMyIbdu3UJTUxPCwsL0agFuY2NjrF+/Ho6Ojrhy5QpaW1uxbt06au4nE6btg8mJdurp6cHXX38NkUiEDRs2ICAgQNMhTSsnJyf4+vqioqICPB4P7u7umg5Jp1HyRtTW0NCAmpoaBAUF6eXYMBaLhdjYWNjb2+PEiRP49NNPsXnzZlhbW2s6NKIjLCwssGbNGk2HQXRMXV0djh07Bg6Hg+eff15vJxH38fGBWCzGzZs3weVy9baes4FuEYnanJycEB4ervd3TPPnz8cLL7yA4eFhfPLJJ7h165amQyKE6CH5+LZDhw7B2toaO3bs0PuEJiAgAE5OThgcHNR0KDqNWt7II7W0tIDL5cLKykovW9xGY29vjxdffBFnzpzB8ePHce/ePSQlJcHY2FjToREt1tfXh8LCQoSEhEAgEGg6HKLF+vr6cPLkSdy9exdLlixBQkKCQXS5s1gshIaGKn4eHh7W6gmHtRX9xci4Ojo6kJ+fD2dnZ51+4mkyeDwennzySXh6euL8+fOor6/H+vXrYW9vr+nQiJYaGRlBd3c3TdJLxlVdXY2TJ08CAJ5++ml4enpqOCLNuH//PsrLy7F48WKYmppqOhydov9pPpm03t5e5ObmwsrKCgsXLtR0OBrBYrEQEhKCHTt2AAD279+PgoICehqVEDJhMpkMV65cwZdffgkHBwe89NJLBpu4AYCdnR3YbDays7MhkUg0HY5OoeSNjGpwcBDZ2dng8/kIDw83iOb88djb22PHjh0ICgrCmTNncOLECVqzjxCitu7ubnz22WfIzMzE8uXLsXXrVoPvWufxeIiKioJUKkVOTg61WE+AYX8jkzFJpVLw+XxERkbSOK//Z2xsjLVr12L9+vWorKzEJ598goaGBk2HRQjRchUVFfj444/R09OD5557DkuWLNHpyc2nk5mZGaKiotDX16eY+J08Go15I0pGRkbAYrEgFAqxZMkSTYejlQIDA+Hi4oJvv/0WBw8exIoVKxAVFUUXYwJTU1OEhobS+B0C4MFg/EuXLiE3Nxd+fn5ITk4Gn8/XdFhax8LCAlFRUTA3N9d0KDqDkjeiwDAMCgoKwGKxEB4erulwtJqVlRW2b9+Oy5cv4+LFi6isrERycjIsLS01HRrRIGNjYzg7O2s6DKIFGhsbcerUKbS3t2P16tUIDw+nG7xxyB+I6+/vR3NzM7y8vDQckXajblOiUFxcjNbWVnh4eGg6FJ3A4XDw2GOPYevWrWhra8NHH32EvLw8epjBgInFYty9exdisVjToRANGR4exuXLl/Hpp5+Cw+Fg586diIiIoMRNTW1tbSgrK8Pdu3c1HYpWo5Y3AuDBmIz6+nqEhITozZqls8Xb2xu/+tWvcOnSJXz//fcoLS3F448/bnBTqxBgaGgIpaWlsLGx0Zs1KYn67t+/j5SUFHR0dCA+Ph6LFy8Gh8PRdFg6xd3dHQMDAygtLQWPx4OLi4umQ9JKlLwRdHR0oLKyEgEBAXSiTBKPx8PatWsREBCA06dP46OPPsKKFSvojpsQAyCVSnH16lVkZWXB2dkZL774Is0HOQV+fn4Qi8UoKioCl8ulBoVRUPJGYG1tjZiYGL1aaF5TPD098fLLL+Py5cs4f/48ysrKkJycTH9bQvRUXV0dUlJS0N3djRUrViA6Otrgp1aaDgsXLsTIyAgNQxkDJW8GTCQSQSwWw9XVlZKLacTj8bBmzRoEBAQgJSUF//rXv7Bs2TJERkbSRZ0QPSGVSnHlyhXk5OTAxcUFTz31FGxtbTUdlt54eBkthmEgkUhoKMJDKHkzUN3d3cjPz4e1tTVcXV01HY5e8vDwwMsvv4wffvgBly5dQllZGR5//HG6wOsxIyMjODg40FqNeq62thYpKSno6elBYmIi3ZjNsNu3b6OhoQGLFy+GiYmJpsPRCvRpM0D9/f3IycmBQCBAWFiYpsPRa1wuF0lJSXjuuecwMDCAjz/+GJcvX6alYPSUmZkZIiIiYGZmpulQyAzo7e3Fd999h88++wwCgQAvv/wydZPOAnd3d8hkMuTk5EAqlWo6HK1At4cGRiwWIzs7G8bGxoiMjKQnoWaJm5sbXnrpJVy/fh0//vgjiouLkZiYiMDAQHqgQY/IZDIMDw/DyMiIvtD1yMjICLKzs5GWlgZjY2MkJydj0aJFdO7OEj6fj6ioKGRmZiIvLw9RUVEGf35R8maAzM3NERgYCC6Xq+lQDIqxsTHi4uKwcOFCXLp0CSdOnEB+fj5WrVoFR0dHTYdHpkFvby/S09OxdOlSWFhYaDocMg2qqqpw4cIFdHR0IDw8HAkJCdR1pwHm5uaIiIhAVlYWampq4OnpqemQNIqSNwMhk8kglUrB4/EQERGh6XAMmqWlJTZu3Ii7d+/i/Pnz+OSTTxAWFoZly5bR0jmEaInOzk5cvHgRFRUV8PDwwIYNG+Dg4KDpsAyatbU1YmNjaRktUPJmEBiGQVFREXp7exEXF0dN/VrC09MTL730EnJzc3Ht2jWUlpZi2bJlCAkJMfguAUI0RSqVIiMjA5mZmTA1NcX69esREBBA100tIRQKATyYLaG7uxve3t4ajkgzKHkzAKWlpWhqakJYWBhdgLQMh8NBdHQ0FixYgMuXL+Ps2bMoKCjA6tWrMWfOHE2HR4jBYBgG5eXluHjxIvr6+hATE4PY2FgaXqKlurq6UFFRAWNjY7i7u2s6nFlHyZueq6ysxL179xAUFETjqrSYQCDAE088gbCwMJw7dw4HDhxAQEAAEhISaGoRQmZYXV0drly5gtraWsybNw/btm2DtbW1psMi4/Dx8YFYLMbNmzfB4/EM7vuNkjc9NjAwgDt37mD+/PkGeWeii1xdXbFjxw7cuHED165dw4cffojg4GDExcXB0tJS0+GRRxAKhVi1ahU9xa0jmpqa8MMPP6CyshKOjo7YsmULfHx8NB0WUVNAQADEYjEKCgoQHR1tUAk3JW96zNTUFEuXLqXBnTqGxWJh0aJFWLBgAQoKCpCeno6SkhKEhYUhNjYWAoFA0yGSMbBYLJqgVwe0tbXh6tWrKC0thY2NDTZs2AB/f38aVqJj5NfKkpISg+vepquMHuro6EBLSwt8fX0pcdNhRkZGiIyMxKJFi5CTk4PMzEwUFhYiMjISixcvpidTtVB/fz9u3ryJBQsW0ES9WqirqwtpaWm4ceMGhEIhHn/8cSxcuJAeENJhbDYbwcHBAIDh4WEMDw8bxFQulLzpmd7eXuTm5kIoFIJhGLqT1ANcLhexsbEICwvD9evXkZ2djfz8fMTExCAqKsrg7ji12fDwMEQiEYaHhzUdCnlIX18f0tPTUVBQABMTEyQlJSE0NJRaSfVMcXExenp6sHjxYr2/LtInV48MDg4iOzsbfD4f4eHhdDepZ/h8PpYvX47IyEhkZGQgLS0NOTk5iI2NRWhoKIyNjTUdIiFaZWBgANevX0dOTg44HA4SEhIQERGh91/shsrX1xcZGRnIzc1FdHS0Xo89peRNT0ilUmRnZ4PNZiMyMpK+yPWYQCBAUlISoqOjkZaWhkuXLiE9PR0RERGIiIiAqamppkMkRKM6OzuRlZWFoqIisFgsREdHIyYmxiC60wyZmZkZoqKicP36deTn5+t1IwYlb3qCw+HAxsYGXl5edIEyEBYWFkhOTkZsbCyysrKQmZmJzMxMLFq0CNHR0bCystJ0iITMqsbGRmRmZqKsrAx8Ph+LFy+mGxoDY2FhgbCwMOTm5kIkEuntqhiUvOk4hmHQ398PgUCAoKAgTYdDNMDKygqrV69GfHw88vLykJOTg7y8PPj7+yMmJgYuLi6aDtFg8Pl8LFiwgB4mmUUMw6CqqgqZmZmoqamBtbU1Vq9ejeDgYOqBMFB2dnZISEjQ66SdkjcdV1xcjObmZixfvpwuVAbO1NQUcXFxiImJQXFxMa5fv479+/fDw8MDixcvhre3Nz3AMsO4XC48PDw0HYZBGBkZwc2bN3H9+nW0trbCxcUFGzduhK+vr952lRH1yRO3u3fvAoDeLWRPyZsOq6ioQH19PUJCQihxIwrGxsYICwtDSEgIKioqcP36dRw5cgT29vaIiYlBYGAgPWU3Q6RSKVpaWuDg4EDn5AwZGhpCYWEhsrOz0dPTg3nz5mHNmjVwc3OjmxOiQiwWo6qqCjweT696IegKrqPu3buHyspK+Pv769UHkkwfNpsNf39/+Pn5oa6uDtevX8epU6dw6dIlLFy4ECEhIbCzs9N0mHplYGAARUVFWLp0KSwsLDQdjt5gGAb3799HQUEBSktLIZPJEBQUhJiYGPoMk3H5+flBLBajqKgIXC5Xbz4vlLzpIKlUisrKSnh5ecHLy0vT4RAtx2Kx4O7uDnd3d7S1taGwsBA3btxAVlYW3NzcEBoaCn9/f2opIlpnYGAAJSUlKCgogEgkgpWVFZYuXYrg4GCagJyoLSgoCGKxGHl5eVi8eLFe3FhR8qaDjI2NsXTpUvB4PE2HQnSMra0tEhMTsWzZMlRUVKCwsBAnT57E+fPnERQUhNDQUL19OovoBoZhUFtbi4KCApSXl4NhGPj6+iIpKQmenp7UNUomjM1mIywsDBUVFXrzEAMlbzqku7sblZWVCA4OpulAyJQYGRkhMDAQgYGB6OjoQFFREYqKipCbmwsXFxeEhoYiMDCQJjMls6a/vx83btxAYWEh2tvbYWNjg4SEBAQHB9NSY2TKOBwOAgICADxo0WWz2Tr9PUrJm47o7+9HTk4O+Hw+3XmSaWVtbY3ly5cjPj4ed+7cQWFhIc6cOYMLFy4gICAAgYGB8PDw0OvZyqcLh8OBlZUV/a3UJJFIUFlZiVu3buHOnTtgsVjw9/fH2rVr4e7uTtc6MiMKCgogk8kQExOjs8NFKHnTAWKxGNnZ2TA2NkZkZCR9MZAZweFw4OfnBz8/P3R1daGoqAg3b95EUVERTE1N4efnh4CAAHh4eNBUDGMQCARYsmSJpsPQavIxu6Wlpbhz5w6kUimcnZ2xcuVKLFy4kObIIzMuODgYmZmZyMvLQ1RUlE5ezyh503IymQw5OTmKuwTqxiKzwdLSEgkJCYiPj0dzczNKS0tRWlqKgoICmJqawt/fHwEBAXB3d9fJCx+ZXVKpFFVVVYqETSKRwMnJCXFxcfD394e1tbWmQyQGxNzcHBEREcjKykJhYSFCQ0N1rpWXkjctx2az4eLiAjs7O7ojJbOOxWLByckJTk5OWL58OZqamhSJXH5+PszMzBSJnJubm8Enct3d3UhPT6epQgAMDw8rErbbt29DIpHA0dERsbGx8Pf3h42NjaZDJAbM2toaoaGhKCoqQm9vL4RCoaZDmhBK3rQUwzDo6OhQrFdKiKaxWCw4OzvD2dkZK1asQGNjoyKRy8vLg0AggLe3N7y9veHp6ak3T3UR9XV3d6OqqgrV1dWorq6GWCyGg4MDlixZAn9/f9ja2mo6REIUHB0dsXz5cp3s0aLkTUuVlpaipqYGy5Ytoy9BonVYLBZcXFzg4uKClStXoqGhAWVlZaiqqsKNGzcUiZ63tze8vLzg6upq8K1y+kgqlaK2tlaRsIlEIrBYLLi6uiImJgb+/v56Mykq0U9cLhcMw6C4uBjW1tZwc3PTdEhqoeRNC1VWVuLevXsICgqixI1oPfmXtaurKxITE9HT06NoecnNzUVaWhpMTEwwd+5cRTJnaWmp6bDJJDAMA5FIhOrqalRVVaG2thbDw8MQCoXw9vZGQkIC5s6dS0M8iE5hsVjgcDgoKSkBl8uFo6OjpkN6JEretExdXR0qKiowb948uLu7azocQiZMKBRi0aJFWLRoEWQyGZqamlBVVYWqqiqcPXsWDMPA1tYWnp6emDNnDlxdXWFpaalzA4YNgTxZu3//Purr61FdXY2enh4YGRnBw8MDy5cvh7e3N2xtben4EZ0WGBgIsViMgoICREdHa/1DNJS8aRGGYVBTUwN3d3fMnz9f0+EQMmXyB25cXFwQFxeHoaEh3L17V9Fyk5ubC+DBFBvy1jtXV1c4Ozvr5DgUc3NzLFu2TGdbngYHB3H//n2lf2KxGCwWC/b29ggICICXlxfc3d11dn4sQkbDYrEQEhKCnJwc5ObmYunSpVrd80XJmxZhsViIiYmhedyI3jIxMYG/vz/8/f0BPJjpXJ4k1NfXIz09HRKJBGw2Gw4ODopkbs6cObCystL61h02m60zqwHIZDKIRCLU19crjkFbWxsAwNTUFK6urliyZIkimabl+Ii+ky+jVVtbq/U3YHqRvLW1teH48eMoLy9HRUUFBgcHsXfvXixatEjt9xCJRPjnP/+JvLw8yGQyLFq0CK+88gqcnZ1Vtj179iy+/vprNDc3w87ODuvXr8eTTz456fh7e3tx48YNhIaGanWmT8h0MzU1xbx58zBv3jwAqgnFvXv3kJeXB+BB4mdnZ6fyTygUak1SNzAwgIqKCvj6+mrNuSyTydDV1YXW1laIRCLFv7a2NkilUkWiPHfuXMTGxupMokzITDA2Noa3tzcAoKOjAwKBQCt7AfQieauvr8fRo0fh6uoKT09PlJaWTmj/gYEB7Nq1C/39/di6dSuMjIxw7NgxvPLKKzh48KDSfE0pKSl47733EBcXh02bNqGkpAR79+7F0NAQtmzZMuHY5asncLlc6oYgBk+eSDg4OCAsLAzAv7vympubIRKJ0NTUhJs3b0IqlQIAeDzeqEmdhYXFrCcgUqkUDQ0NGpneRyaTobOzc9QkbXh4GMC/E2AnJycEBQXByclJZ7uoCZlJMpkMBQUF4PP5iI6O1nQ4KvQieZs/fz7Onj0LoVCIa9eu4U9/+tOE9j916hTu37+PTz75BH5+fgCAyMhIPPvss/jmm2+wc+dOAA8SrU8//RTR0dF48803AQBr166FTCbDF198geTkZJibm0/od9+8eRMODg6IjIyk5I2QUfD5fPj4+MDHx0dRJpPJ0N3drZSktLS0oLS0FBKJBMCD5b6EQuG4/8zMzHRiCpORkRH09fWhp6cH3d3d6OnpUfnX19cHmUwG4MHfzM7ODi4uLggODoadnR3s7e0hEAioRY0QNbDZbISHh+P69evIz8/Xukm39SJ5m2r3xLVr1+Dr66tI3ADA3d0dISEhuHr1qiJ5KywsRHd3N5544gml/detW4fU1FRkZWUhMTFxQr9bKpUiOjoaJiYmU6oDIYaEzWbDysoKVlZWii5X4MFDP/KkrrOzUym5aWhoQE9Pj6IVSv4+5ubmEAqFEAgE4PF4av/jcrlgsVhK/36KYRjFP5lMBolEArFYrNa/oaEhRcLW19cHhmEU78vlchUJqPzJXaFQCBsbG9jZ2cHMzIySNEKmyNLSEuHh4cjNzUVra6umw1GiF8nbVMhkMty9exerV69Wec3Pzw95eXkYGBiAqakpKisrAQC+vr5K282fPx9sNht37twZM3lra2tDe3u74ueqqioADz4c9+/fn67qEEL+n4WFxah3y0NDQ+jv70dfXx/6+/sV/29qaoJEIoFEIoFUKlX8fyKkUimampqQmpo6oZZ0FosFHo8HY2NjxRAKY2NjmJmZwcnJCWZmZhAIBDAzM4OZmdmY3ZwSiQQNDQ0TipkQMj4LCwvF2FuxWKzhaB4w+OStp6cHEolk1HX25GVtbW1wc3NDe3s7OBwOrKyslLYzNjaGUChUSs5+6vTp0zh06JBK+fvvvz+1ChBCtE5LS4umQyCEzIDKykoEBQVpOgztS95kMpliIPKjyLstpkKeRY92lyy/u5VvIxaLYWQ0+p+My+WOm5EnJydj8eLFip/Ly8vx/vvvY/fu3YonWwxBbW0t/vrXv+L11183mEmIDbHOgGHW2xDrDFC9Danehlhn4EFv2dtvv601dda65K24uBi7du1Sa9vDhw9P+Q8pn7totIRR3mUi34bH4ymNl/nptuPNg2Rrazvqosze3t4GOSGvIU5EbIh1Bgyz3oZYZ4DqbUgMsc4AJvxQ4kzRuuTNzc0Ne/bsUWvb0bo6J0ooFILL5Y7a5SkvkyddNjY2GBkZQWdnp1LXqVQqRU9Pz7TEQwghhBAyHq1L3mxsbLBq1apZ+31sNhuenp6oqKhQea2srAzOzs6Kp1nlUxVUVFQozftSUVEBmUymNJUBIYQQQshM0P4JjqZZS0sLamtrlcri4uJQUVGhlMDV1dWhqKgI8fHxirKQkBAIhUKkpKQo7Z+SkgITE5MJTeRnY2ODZ5991uBa6wyx3oZYZ8Aw622IdQao3oZUb0OsM6B99WYxD08epMM+//xzAEBNTQ2uXLmC1atXw8nJCQCwbds2xXa/+c1vcOPGDaSnpyvKBgYGsH37dgwMDGDz5s3gcDg4duwYZDIZDh48CEtLS8W2J0+exAcffID4+HhERESguLgYFy9exI4dO/D000/PTmUJIYQQYrD0JnlbunTpmK89nKiNlrwBQGtrq8rapr/+9a/h6uqq8n5nzpzBN998g6amJtjb22PdunXYsGEDTYpJCCGEkBmnN8kbIYQQQoghMLgxb4QQQgghuoySN0IIIYQQHaJ1U4Xoura2Nhw/fhzl5eWoqKjA4OAg9u7di0WLFqn9HiKRSGX83SuvvAJnZ2eVbc+ePYuvv/4azc3NsLOzw/r16/Hkk09OZ5XU1tvbi3/9619IT0+HWCyGn58ffvnLX6o1keN4YxbDwsIUy4g1NTVh06ZNo2735z//GcuXL59c8FMwlXr//e9/x4ULF1TK3dzc8OWXXyqVyWQyfP311zh16hQ6Ojrg6uqKrVu3YsWKFdNWF3VNts4ymQwXL15EWloaKisr0dvbCycnJyxbtgybN29Wmeh6rM/Fzp07sXXr1mmrz8MkEgkOHDiAS5cuobe3F15eXnjhhRcQHh7+yH119dwFJl/vtLQ0/PDDD6ioqEBHRwfs7e0RHR2Nbdu2qUxounHjRjQ3N6u8R3JyMn7/+99Pa33UMdk6Hzx4cNTlDrlcLi5fvqxSri/HeqzjBwAuLi746quvFD9r4twdz8DAAL7++muUlZWhvLwcvb292LNnj9pTk03kmpeRkYHPPvsMtbW1sLS0xOrVq/HMM8+MuULTZFDyNs3q6+tx9OhRuLq6wtPTE6WlpRPaf2BgALt27UJ/fz+2bt0KIyMjHDt2DK+88goOHjyotNB2SkoK3nvvPcTFxWHTpk0oKSnB3r17MTQ0hC1btkx31cYlk8mwe/duVFdXY/PmzbCwsMCpU6ewa9cu7N+/H3PmzBl3/9dff12lrKKiAsePHx/1grJixQpERUUplQUEBEytEpMw1XoDDy74r732mlKZmZmZynb79+/HkSNHsHbtWvj6+iIjIwNvvPEGWCzWrCatU6nz0NAQ3nrrLQQEBODxxx+HlZUVSktL8dlnn6GwsBD/8z//o/LgT1hYGJKSkpTKZnJOxbfeegvXrl3Dhg0b4OrqivPnz+O1117D3r17x13TUFfPXbnJ1vvdd9+FjY0NEhMT4eDggOrqapw8eRLZ2dk4cOCASkLu4+OjcgM22oNhs2GydZZ79dVXwefzFT+z2aqdWfp0rF955RUMDg4qlTU3N+PTTz8d9To92+fueLq7u3Ho0CE4ODjA29sbRUVFau87kWtednY2/vjHPyI4OBi7du3C3bt38cUXX6CzsxOvvvrq9FWIIdOqv7+f6e7uZhiGYa5evcrExsYyhYWFau9/5MgRJjY2likrK1OU1dTUMPHx8cwnn3yiKBsaGmJ+9rOfMa+99prS/m+88QaTmJjI9PT0TLEmE3PlyhUmNjaWuXr1qqKss7OTWbVqFfOXv/xlUu/5j3/8g1m6dCnT0tKiKGtsbGRiY2OZo0ePTjXkaTHVev/tb39jEhMTH7lda2srk5CQwLz//vuKMplMxvzqV79ifv7znzPDw8OTin8yplJniUTClJSUqJR/9tlnTGxsLJOXl6dUHhsbq1TnmVZaWqry+RoaGmI2b97MvPTSS+Puq6vnLsNMrd6jXd/Onz/PxMbGMmfOnFEq37Bhg0q9NWUqdT5w4AATGxvLdHZ2jrudvh3r0Rw6dIiJjY1VOa9n+9x9FLFYzLS1tTEMwzDl5eVMbGwsc+7cObX2ncg17+mnn2aee+45RiqVKsr27dvHLF26lKmpqZl6Rf4fjXmbZqamphAKhZPe/9q1a/D19YWfn5+izN3dHSEhIbh69aqirLCwEN3d3XjiiSeU9l+3bh0GBweRlZU16RgmIy0tDdbW1kpN5ZaWlkhISEBGRoZinVh1SSQSpKWlITg4GPb29qNuMzg4OOqatLNpuuo9MjKC/v7+MV/PyMjA8PAw1q1bpyhjsVh44oknIBKJJtzCOxVTqbOxsTEWLFigUh4bGwsAKhNoy4nFYojF4ilG/mhpaWngcDhITk5WlPF4PKxZswalpaVoaWkZc19dPXeBqdV7tCEh8s9GTU3NqPtIpVKVFpzZNpU6P6y/vx/MGJM26NuxHs3ly5fh5OQ06nkNzN65+yhcLnfSE+yqe82rqalBTU0N1q5dq9RFum7dOjAMg2vXrk2pDg+j5E2LyGQy3L17F76+viqv+fn5oaGhAQMDAwCAyspKAFDZdv78+WCz2bhz587MB/yQO3fuwMfHR6XbwM/PD0NDQ6ivr5/Q+2VnZ6Ovrw8rV64c9fVDhw7hsccew4oVK7Bz507k5uZOOvapmI56Dw0NYdWqVVi1ahXWrFmD999/X3Gc5SorK8Hn8+Hu7q7ye+Svz5bpPtYA0NHRAQBKXYtyFy5cQGJiIlauXImnn34aqampkwtcDZWVlXB1dVXptpb/nauqqkbdT5fPXXlMk6n3WOTrQj88wblcYWEhEhMT8dhjj2Hjxo349ttvJxf0FE1HnTdt2oRVq1YhKSkJb775puJz/PDvAPT3WN+5cwe1tbVjjrudzXN3Jql7zZMfz5+Og7O1tYWdnd20XqdpzJsW6enpgUQiGfXuQF7W1tYGNzc3tLe3g8PhwMrKSmk7Y2NjCIVCxcVztnR0dGDhwoUq5fK429vb4eXlpfb7paamgsvlIi4uTqmczWYjPDwcS5cuha2tLRobG3Hs2DG89tpreOuttya0RNl0mGq9bWxs8NRTT2HevHlgGAY5OTk4deoUqqursXfvXsXdW3t7O6ysrFTGgz38uZgt032sAeCrr76CmZkZIiMjlcoDAwORkJAAJycntLe347vvvsObb76J/v5+ldaM6dDe3v7I8280unzuApOv91iOHj0KDoejcv56enoiKCgIc+bMQU9PD86fP4///d//RVtbG15++eXJV2ASplJnc3Nz/PznP0dAQACMjY1RUlKCkydPory8HPv371ckRvp+rOXJ2Gg32bN97s4kda958uM51t93Oo83JW/jkMlkanfLcbncKa+wIG9aNjY2HvX9H95GLBaP+eQKl8udUjP1ZOotFosVMf70dXm86urv70dWVhYiIyNVnlZzcHDAe++9p1T22GOP4ZlnnsGHH344peRNE/V+8cUXlX5evnw55syZg/379yMtLU3xIIJYLFbrczFRmj7WAHD48GHk5+fjd7/7ncrx/uijj5R+Xr16NV544QXs27cPq1atUhkMP1WT/Ttry7k7WdP5+UpNTcX333+Pp556SuXhlX/84x9KP69evRp/+MMfcOzYMTz55JNjDpGYCVOp84YNG5R+jo+Ph5+fH958802cPHlS8TSlPh9rmUyGH374AT4+PvDw8FB5fbbP3Zmk7jVP3n061rY/7VGZCkrexlFcXIxdu3apte3hw4dVurQmSv5hHu3LVP6hkG/D4/EwPDw86vtIJJIpnRiTqTePxxt1rNNP41ZHWloaJBLJmF2mPyUUCrFq1SocOXIEra2tk/4C0HS95TZu3IgDBw4gPz9fkbzxeDy1PhcTpek6X7lyBZ9++inWrFmj1t24sbExfv7zn+O9997D7du31XoicCIm+3fWlnN3sqbr81VcXIy3334bERER2LFjxyO3Z7FY2LhxI3Jzc3Hjxg0kJiZOLPApmO5zauXKlfjwww9RUFCgSN70+VjfuHEDIpFIJZEdy0yfuzNJ3WuePGkba9vpPN6UvI3Dzc0Ne/bsUWvbyQ6EfJhQKASXyx21aVVeZmtrq/h9IyMj6OzsVGqSl0ql6OnpmVI8k6m3tbX1uHFPJJ7U1FQIBALExMSovY88Yevt7Z108qbpesvxeDwIhUL09PQo/b6ioiIwDKPUwvvTz8VEabLOeXl5+Pvf/47o6OgJPUIvP74P/32mi42NDUQikUr5o/7O2nLuTtZk6/2wqqoq7NmzB56ennjjjTfUntNqJo/neKajzj9lb2+vct7q47EGHlyn2Wz2hOaZ1NSxnip1r3kPd6M6ODiobPvww0xTRcnbOGxsbNSewG86sNlseHp6oqKiQuW1srIyODs7w9TUFMC/58qpqKhQ6iqsqKiATCab0lw6k6m3j48PSkpKIJPJlAZ1lpeXw8TERK35zoAH4y2KioqQlJQ0atPzWBobGwGMPuBdXZqs98MGBgbQ3d2tNNjb29sbZ8+eRW1trVIXRVlZmeL1ydBUncvKyvD6669j/vz5+Mtf/jKhySvlx3q0wfBTJZ//qb+/X2lA96P+ztpy7k7WZOst19DQgN///vewsrLCO++8o6irOmbyeI5nqnX+KYZh0NzcrHT89PFYA8qzAUwkydXUsZ4qda958uN5+/Zt+Pv7K7Zra2uDSCRSesJ3quhpUw1qaWlRmRohLi4OFRUVSl8CdXV1KCoqQnx8vKIsJCQEQqEQKSkpSvunpKTAxMRk1gfux8XFoaOjA+np6Yqyrq4uXL16FTExMUqJWENDAxoaGkZ9nx9++AEymWzMLtOuri6VMpFIhHPnzsHLy2vSLVCTNZV6i8XiUcdAfP7552AYRmnw/pIlS2BkZISTJ08qyhiGQUpKCuzs7BAYGDjdVRvTVI91TU0Ndu/eDUdHR7z99ttjdiWMdqwHBgZw/PhxWFhYqLWCxUTFx8djZGQEp0+fVpRJJBKcO3cO/v7+irtpfTp3ganVu729Ha+++irYbDbefffdMb+Ye3p6MDIyolQ2PDyMI0eOwNjYeEKr0EyHqdR5tM/mqVOn0NXVpXTe6tuxlnvUbACaOHenS1tbG2pra5W6u9W95s2dOxdubm44c+aM0mf91KlTYLFYKg/wTAW1vM2Azz//HMC/5zi6ePEiSkpKAADbtm1TbPe3v/0NN27cUPpArFu3DmfPnsXu3buxefNmcDgcHDt2DFZWVti8ebNiOx6Ph+3bt+ODDz7An/70J0RERKC4uBiXLl3Cjh07pjTX3GTEx8fj+PHjeOutt1BTU6OYgVomk+H5559X2va3v/0tAODYsWMq75OamgpbW9sxL+Qff/wxGhoaEBoaCltbWzQ3N+P06dMYGhrCb37zm+mv2CNMpd4dHR3Yvn07VqxYATc3NwBAbm4usrOzERkZiSVLlij2tbe3x4YNG/DVV19heHgYfn5++PHHH1FSUoL/+q//AofDmaUaT63OAwMD+P3vf4/e3l5s3rxZZZ4rZ2dnRSL63XffISMjAzExMXBwcEB7ezvOnTuHlpYW/PGPfxx10PVU+fv7IyEhAfv27UNXVxdcXFxw4cIFNDc3Y/fu3Yrt9OncBaZW7z/84Q9obGzEU089hZs3b+LmzZuK16ysrBQz72dmZuKLL75AXFwcnJyc0Nvbi9TUVNy7dw87d+6c9S7EqdR5w4YNWLZsGTw9PcHlcnHz5k1cuXIFPj4+KvOn6dOxlhtrNgA5TZy76jhx4gT6+voU3Z2ZmZlobW0FADz55JMQCATYt28fLly4gG+++QZOTk4AJnbN++Uvf4k9e/bg1VdfxfLly3H37l2cPHkSP/vZz0Z9sGOyKHmbAQcOHFD6+dy5c4r/P5y8jcbU1BR79+7FP//5T3zxxReK9RF//etfq9zRrlu3DkZGRvjmm2+QmZkJe3t7/PrXv1Z7AOl04nA4eOedd/DRRx/hxIkTEIvF8PX1xZ49exSJyaPU1dXh9u3b2Lhx46jLzABAeHg4GhsbcfLkSfT29kIgECAoKAjPPPOMRu7mplJv+bi+vLw8XLhwATKZDC4uLti5cyc2b96s8jd48cUXYW5ujtOnT+PChQtwdXXF66+/rvaDHdNlKnXu7u5WXCw/+eQTldeTkpIUyduCBQtw69YtnD17Fj09PTAxMYGfnx92796N0NDQ6a/Y//vP//xPODg44OLFi+jr64OnpyfefvttBAcHj7ufrp67cpOtt3xesIfXtZQLDg5WJG+enp5wd3dHamoqurq6YGRkBB8fH/zlL39BQkLCtNdHHZOt88qVK3Hr1i3Fw1UODg546qmn8Mwzz8DExERpW3061sC/ZwOIioqCQCAYdRtNnbuP8s033yitzZqenq5IThMTE8esz0SueTExMfjrX/+KQ4cOYe/evbCwsMDWrVvx7LPPTmtdWMxYU0MTQgghhBCtQ2PeCCGEEEJ0CCVvhBBCCCE6hJI3QgghhBAdQskbIYQQQogOoeSNEEIIIUSHUPJGCCGEEKJDKHkjhBBCCNEhlLwRQgghhOgQSt4IIYQQQnQIJW+EEEIIITqE1jYlhBA1FRYWIiUlBbdu3UJXVxf4fD48PDyQkJCA5OTkcRfc3rZtG7hcLvbv34+mpiZs2rQJERERePfdd2exBoQQfUDJGyGEPMLw8DA++OADnDlzBnw+H5GRkXBxcUF/fz/y8vKwd+9enD59Gu+88w4cHBxU9m9oaMC9e/ewfft2DURPCNE3lLwRQsgj7Nu3D2fOnIGvry/+9re/wc7OTvHayMgIPv/8cxw6dAivvfYa9u3bBx6Pp7R/RkYGAGDJkiWzGjchRD/RmDdCCBlHfX09jh07BqFQiH/84x9KiRsAcDgcPP/881ixYgXu3buHb7/9VuU9MjIy4OTkBC8vr9kKmxCixyh5I4SQcVy4cAEymQxr166FtbX1mNtt27YNAHD27Fml8q6uLty6dYta3Qgh04aSN0IIGcetW7cAAKGhoeNu5+7uDltbWzQ2NqK9vV1RnpWVhZGREcTGxs5onIQQw0HJGyGEjEOeiNnb2z9yW/k2bW1tirKMjAxYWFhgwYIFMxMgIcTgUPJGCCHTTCaTAQDEYjHy8vIQFRUFDoej4agIIfqCkjdCCBmHjY0NAKC1tfWR28q3kT/UkJeXh6GhIRrvRgiZVpS8EULIOAIDAwEABQUF425XW1uLtrY2mJubKx5syMjIAJfLRURExIzHSQgxHJS8EULIOJKSksBms3H27Fl0dXWNud3hw4cBAImJiWCz2ZDJZMjKykJYWBj4fP4sRUsIMQSUvBFCyDjmzJmDjRs3oru7G//xH/+h9DAC8GB82+eff45Lly5BIBBgw4YNAIDS0lJ0dnZSlykhZNrRCguEEPIIO3fuRH9/P86cOYMtW7YgKipKaXms+/fvg8vl4r//+7/h7OwMAPjxxx/BZrMRExOj4egJIfqGkjdCCHkEIyMj/OEPf8CyZctw+vRp3Lx5E+np6RgZGQEABAQE4PXXX4eLi4tin4yMDPj7+487sS8hhEwGJW+EEKKm0NBQpcl66+vr8dJLL6GpqQkMwyjKa2pqcP/+ffzsZz8b9X2cnJyQnp4+4/ESQvQTjXkjhJBJmjNnDt5880309PTgd7/7HUQiEQBaiJ4QMrNYzMO3i4QQQiYsMzMTt2/fhru7O5YvX67pcAgheo6SN0IIIYQQHULdpoQQQgghOoSSN0IIIYQQHULJGyGEEEKIDqHkjRBCCCFEh1DyRgghhBCiQyh5I4QQQgjRIZS8EUIIIYToEEreCCGEEEJ0CCVvhBBCCCE65P8ATnTpzzdcok4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAJvCAYAAAAtNjaIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXhUhb3//5p9JpN93yBkA8KWACEJO4iKQpW64L5Qxb2t31t7u9n29qqtbe/P1rZqF2tdqhURUREXQJCdBAgkIRtkhQTIvk9mn/P745CRSAJZJpnM5LyeZ54kZ87yOZOZM+/zWWWCIAhISEhISEhISEh4BHJ3GyAhISEhISEhITFwJPEmISEhISEhIeFBSOJNQkJCQkJCQsKDkMSbhISEhISEhIQHIYk3CQkJCQkJCQkPQhJvEhISEhISEhIehCTeJCQkJCQkJCQ8CEm8SUhISEhISEh4EJJ4k5CQkJCQkJDwICTxJiEhISEhISHhQSjdbYCr6O7uZsOGDRQXF1NSUkJnZyc//elPuf766we0fWdnJ3/729/Yu3cvZrOZlJQUHn/8caZMmXLJuvv37+f111/n9OnTBAYGsmrVKu677z6USq95OSUkJCQkJCTGKF7jeWtvb+eNN97g9OnTJCUlDWpbh8PBj3/8Y7788ktuvvlmHn30UVpbW3nyySepqanptW52djZPP/00vr6+PPnkkyxevJi33nqLP/3pT648HQkJCQkJCQmJPvEaV1FISAgffvghISEhlJaW8vDDDw942927d1NYWMgzzzzDsmXLALjqqqu46667eP311/nlL3/pXPeVV14hMTGRF154welp8/Hx4e233+bWW28lLi7OpeclISEhISEhIXExXuN5U6vVhISEDGnbPXv2EBwczJIlS5zLAgMDWb58Ofv378disQBQXV1NdXU1N9xwQ68Q6U033YQgCOzevXtY5yAhISEhISEhcSW8xvM2HE6dOkVycjJyeW8tm5KSwieffEJNTQ2JiYmcOnUK4JI8uNDQUMLCwigrK+v3GE1NTTQ3Nzv/7uzs5PTp00yePBm1Wu3Cs5GQkJCQkJBwJRaLhfPnz5ORkUFgYKC7zZHEG0BLSwupqamXLO/x5DU3N5OYmOgUX315+EJCQnqJs2+yZcsW3njjDdcYLCEhISEhITHq/PznP+faa691txmSeAMwm819er96lpnNZgBn+LS/dbu7u/s9xo033sjChQudf5eXl/O73/2O1atXs2jRIkJDQ4d1DhIS4x2TyURbWxutra20trbS0dGBwWDAYDBgMpl6ravRaNDr9ej1enx9fdHr9eh0OtRqNWq1GpVKdcnvMpnM5Tbb7XasVitWqxWLxeL82fPo7u52nkNXVxddXV3YbLZe+9DpdM7zCAgIICgoiKCgIAIDA1GpVC63WUJiPHHmzBlOnz6Nr68vr7zyCpGRke42CZDEGyBeyHuE2cX0LNNoNMDXoq2/dXvW64vQ0NA+BdrUqVNpa2tjypQpkoCTkBgABoOBxsbGXo+GhgYMBgMAcrmc4OBgwsLCSEpKwt/fv9fDz8/Po1MVTCYTHR0dfT6am5uprKx0rhsQEEBYWBhhYWGEh4cTFhZGaGgoWq3WjWcgIeEZnD59GpPJxNKlS3E4HACX/Z4fTSTxBgQHB/cZ8vxmmPTiMGpERMQl66akpAz62FOmTKGtrY0jR46wePFifH19B70PCQlvRBAE2tvbqa2tpaamhrq6OhobG50eboVCQUhICGFhYcybN88pUkJCQlAoFG6xub29nb1797JkyRICAgJG5BharRatVkt4eHifz1ssFpqamnqJ25MnT5KdnY0gCAD4+/sTFhZGVFQUEyZMIDY2Fr1ePyL2Skh4Ig6Hg4qKCuLj40lOTubkyZPuNqkXkngDkpOTKSgowOFw9CpaKCkpQavVMmHCBOd6ACdPnmTatGnO9XoulDfeeOOgjy2TyUhPT6eiogIfH59hnomEhOditVo5d+6cU6zV1tbS1dUFiDdY0dHRJCQkOEVacHCw20TaWEatVhMdHU10dHSv5Varlebm5l7eyvz8fPbv3w9AUFAQsbGxTjEXEREhvb4S4xa5XM7ixYvHbPP9sWnVCNLU1ITBYCAmJsb5T1m6dCm7d+9m7969zj5vbW1tfPXVVyxYsMAZYomPj2fixIl88skn3Hjjjc4L20cffYRMJmPp0qVDskmpVDorWNvb29FqtWPGNSshMRIIgkBbW5tTpNXW1lJXV4fD4UCtVhMTE8Ps2bOJjY2VvEIuQqVSERkZ2StnRxAEOjo6ev0fiouLsdvtqFQqoqOjnf+D2NhY/Pz83HgGEhIjT0dHB4WFhcydO3dMfw97lXj74IMP6OrqcoY7Dxw4QENDAwC33HILvr6+/OMf/+CLL77gvffeIyoqCoBly5axadMmnn/+eaqrqwkICOCjjz7C4XDwwAMP9DrG448/zk9/+lOeeuopVqxYQWVlJR9++CHf+ta3mDRp0rDsFwSB3NxclEolCxYsGLOKX0JiKJhMJiorKykvL6eiooL29nZATEeYMGECc+bMITY2lvDw8Eva9kiMDDKZjICAAAICApgxYwYANpuN8+fPO8XciRMnOHDgAIAzjzAxMZG4uDipIELCq+ju7iY7OxutVjvmvc5epQ7ee+896urqnH/v3buXvXv3AnDttdf2m0+mUCj4/e9/zyuvvMIHH3yA2Wxm6tSp/PSnP2XixIm91l2wYAHPPfccb7zxBn/6058ICAjgnnvuYd26dcO2vyeEeuDAAY4ePUpGRob0JSbhsTgcDs6dO0dFRQXl5eXU1tYiCAKhoaGkpKSQkJBAbGyslC4wxlAqlUyYMMGZLgKiN+LMmTNUVlZSVFTEoUOHUCqVxMXFOcVcWFjYiFTkSkiMBhaLhezsbJRKJZmZmWPeeSITejJYJUaVkydP8tBDD/Hqq69e0vS3ubmZ7OxsoqKimD17tnRBlPAYOjo6nGKtsrISo9GIVqslISGBxMREkpKSRiyRfyzgcDgwGo3odDqvvfESBIGmpibKy8spLy/n9OnT2Gw2/P39nf/jhIQEdDqdu02VkBgQgiBw4MABuru7WbhwYZ9pGpf7znYHY1tajlNCQkKYM2cOJ06cwGg0Sp4JiTFNY2MjRUVFFBcX09DQgEwmIzo6moyMDBITE4mNjfVaIfNN5HK51+fnyWQyZ9HI/PnzsVqtnD59moqKCqqrqzl16hQymYzIyEinmJNy5STGEkqlspdnTSaTER8f7+z56AlI4m2MEhUVRVhYGEqlEkEQJO+bxJiiqamJoqIiioqKaGhoQKPRMHXqVJYsWUJCQsK4veHo7u6mtLSUqVOnjpvXoKewQa1WM3HiRBwOBzabzdl8uLy8HKVSiUqlQqVSjRshLzG20ev1hISE0NXVRUREBDExMe42aVBI4m0Mo1QqcTgcHD58mJiYmF45KBISo01zc7NTsNXX16PRaJgyZQorVqwgMTFxzOeIjAZWq5WzZ8+SmJjoblNGDYvFQk1NDSqViqioKDQajfNm0+FwYDabMZlMWK1WAOfECk9ICpfwPgRBwGw209LSQllZGWfPnmXRokUel84hXW3HOHK5HJ1OR35+Pmq1+pLmwBISI0lLS4tTsNXV1aFWq5kyZQrLly8nKSlJEmwSNDQ0oFAoiIuL61OM9XggHQ4HJpMJo9GI2Wx2jiXU6XSSkJMYVXQ6HSqVCqPRyKRJkzxOuIEk3jyCWbNmYbFYyM3NZf78+QQFBbnbJAkvxmw2U1hYyLFjxzh79ixqtZrJkyezdOlSkpKSpPYQEk4EQaC7u5ugoKArii+5XI6Pjw8+Pj69hFx7ezvt7e1oNBp8fHzQarVSmojEiNIzRzgoKIiuri6PTE2SxJsHIJPJmDNnDtnZ2eTk5LB8+fIx3TxQwvMQBIHz58+Tm5vLiRMnsFqtJCUlcdttt5GcnCwJNok+sVqt2O32QVeWflPIGY1Guru7aW1t7fWc5NmVGAksFgtqtRqlUkl7eztWq9Xj5h1LnwwPQaFQkJGRwfnz5yXhJuEyTCYTJ06cIDc3l7q6Ovz9/VmwYAGzZ8/2yFCCu9FoNEyePHncfEZ7hnUPJ+TZU6Gr1+uxWq10d3djMBjo6upCrVaj1+slb5yES+jxsPVUlJpMJuDr97EnIYk3D0KlUjmbBtfV1RESEiJ5RCQGjSAI1NbWkpubS1FREXa7ncmTJ3PVVVeRlJQkVQMOA61WOyZ6QI02rhJWKpWKgIAA/Pz8MJlMvbxxOp0OHx8f6ZonMSTsdjsGgwG9Xu+82fDkGwJJvHkgVquV/Px8fH19ycrKkhJ9JQaExWLh+PHj5Obm0tDQQGBgIIsXL2b27NlSHy4XYbPZaG1tJSgoSAr5DYOLQ6c93jij0YjBYECtVuPj44NOp/PoL1+J0cPhcGAwGADPFmwXI11dPBCVSkVGRgaHDh3i2LFjpKene80bUsL1dHV1kZOTw9GjR52j31auXElCQoL0vnExBoOB7OxslixZIoWdXUSPN87f3x+TyYTBYKCtrY3Ozk70ej0+Pj6St1iiXy4Wbr6+vl7zXpHEm4cSFBREeno6hw8fpqCggNTUVHebJDHGaGpq4uDBg+Tn56NQKJg7dy5ZWVmSqJDwSGQyGTqdDp1Oh9Vqpauri46ODqeIuzgcJiHRg9FoxOFweJVwA0m8eTTh4eGkpaVRUVGB1WqVckEkADhz5gwHDx6ktLQUX19fli9fTnp6Olqt1t2mSUi4BJVKRVBQEH5+fhgMBmeBg4+PD3q9XroWSjjRaDRoNBqvE/aSePNwYmNjiY6ORi6X43A4vOrOQmLgCIJAaWkpBw8epKamhrCwMNasWcPMmTOl3CsJr0WpVDoLHHpEXHd3NxqNBl9fX9RqtVtSAy4+5sGDB5k/f36f623cuJHbb78dgLi4OKqrq/vdD3x9vlFRUcydO5cbbriBNWvW9PsZ/+b2MpkMf39/Zs6cyf3338+DDz7otakTFosFlUrltdc/7zyrcYZcLsdsNnPgwAFSUlKIiopyt0kSo4TdbicvL4+DBw/S3NxMXFwcd911F8nJyV57UR7L9LS9kG6ivqZz11ejdiwfBCxmC0aTkS67HYVSiU6rRaVWI+Pynwe/q5aPiE3vvPNOv+Lt7bffHtA+7r//fkDM32pvb+fUqVO89dZbvPnmmyQlJfHOO++QkZFxxe3tdjsVFRUcOHCA/fv3s3PnTt59991BntHYx2QyYTKZvNoLK4k3L0GtVhMYGMixY8fIzMwkNDTU3SZJjCAOh4MTJ07w1Vdf0d7eTkpKCjfddBOxsbHuNm1c4+fnx1VXXeVuM8YtMmRoNBrUGjU2qxWj0URXVxcKpRIfnQ6lSnVFEecqFAoF06ZN47333uPFF1+8xAPU3NzMF198wZw5czh27Nhl9/XGG29csqyiooKf/exnbNy4keXLl3PgwAHS0tIGtP2OHTtYtWoVGzZs4O677+Zb3/rWYE5tTNMzS1er1XqtcAOQbg+9BJlMRlpaGiEhIRw5coSOjg53myQxAgiCQHFxMX/961/58MMPiYqK4rHHHuO2226ThJuExAVkyFCp1Pj7++Pn5w9AZ2cnnR2dWK3WUbPj7rvvpqmpiW3btl3y3HvvvYfVauWee+4Z0r4TExN57733ePDBB+nu7uaBBx4Y8LbXXHMN9957LwAfffTRkI4/FrFYLBiNRjQajdfn+ErizYuQy+Wkp6ej1+vJycnBbre72yQJFyEIAuXl5bz66qts3LgRf39/HnroIW6//XbCw8PdbZ7EBTo6Oti2bZt08zSGUKlUF0ScH4LgoLOzg87ODmy2kRdxd911FzKZrM/w6Ntvv42vry9r1qwZ1jFeeOEF9Ho9x48fZ//+/QPebvbs2QDU1NQM6/hjCbvdjkql8nrhBlLY1OtQKpVkZmbS0dHhddU145UzZ86wc+dOTp8+zcSJE1m3bh2TJk1yt1kSfSAIAhaLBUEQ3G2KxEU4PXEBKqwWC93dRjo6OlCr1eh0OhSKkfkqnDBhAkuWLGHLli10dXXh6+sLQGVlJYcOHeLee+/Fx8dnWMcICAjg+uuvZ9OmTXz11VcsWrRoQNt1dnYCeMUot56xVzqdziOHzA8FyfPmhWg0GsLCwhAEgaqqKmw2m7tNkhgC58+f55133uFf//oXZrOZu+++m+985zuScJOQGCIyZKjVGgICA9DrfbHZ7LS3t2MwdI3YdfKee+6hu7ubzZs3O5e98847zudcQU+uW0lJyYDWFwSBrVu3AjBr1iyX2OAu7HY7nZ1fh8PHg3ADSbx5NUajkdLSUo4ePeqRg3fHK21tbbz//vv8/e9/p7W1lbVr1/LII49IFaQSEi6ip7AhIDAAHx8fLFYrDQ0NtLe3u/xaeeutt6LRaJyCDUTxFhUVxYoVK1xyjJ4CtdbW1suuZ7fbKSsr44EHHuDQoUNoNBq+853vOJ9/5ZVXSExMRKvVkpqa6hR432Sg6400F09PGG+RJkm8eTE+Pj7MmzeP5uZm8vLypFDOGMdqtbJ7925eeuklzpw5w5o1a3j88ceZPn26JNokJEYAGTK0Wh2BF3rFdXd309DQgMFgcNn1MjAwkNWrV7Nz507q6uo4cuQIJ0+e5I477nCZ4Oixtb/rhEwmQyaToVQqmTx5Mm+88QZ+fn68++67JCYmAmIO3ve+9z3uvvtutmzZwpw5c7jpppvIzs7uta+BrjfSCILg/D+Nx/Y8Us6blxMaGsqcOXM4evQoGo2G6dOnu9skiW/Q02B327ZtdHZ2Mn/+fJYsWYJarXa3aRKDRK/Xs2jRIvR6vbtNkRgEMpkcPz8/fHx86OjooL29ne7ubgICAlzyObznnnvYvHkzGzZsoKqqyrnMVTQ1NQEQHBzc5/M9fd7kcrmzSe/NN99MUFCQc51nnnmGBx54gGeeeQaAa6+9lqKiIp555hk+++yzQa830vSMvRqvY9Ek8TYOiIqKYubMmTQ1NY2bZE5Poampic8//5yKigqSk5O59957CQkJcbdZEkNEqVT2+kKU8CwUCgVBQUFOEdfU1ISPjw9+fn7DEgirVq0iMDCQt956i3PnzpGSksKcOXNcZvfx48cBmDZtWp/P99Un7mK6u7spLy/nueee67V8xYoV/OEPf8BsNqPRaAa83mig1WpRq9VeO0HhSowvP+M4ZtKkSaSnpyOTyaQChjGA2Wxm+/btvPLKK7S0tHDnnXdy1113ScLNwzGZTBQVFWEymdxtisQw0Gg0hIaGEhAQgNFopKGhga6uriGHUjUaDWvXruX48ePU19e71OvW3t7u7CO3fPnQpkSYTCYEQbjEy6jRaLBYLE5v4UDXG0nMZrNzFOR4FW4gibdxR2dnJ19++SUNDQ3uNmVcIggC+fn5/OUvf+HIkSMsW7aMJ554gilTpkgeUS/AbDZTWVmJ2Wx2tykSw0Qmk6HX64mIiECn09HR0UFjY+OQ/7c9XvXQ0FDuvvtul9n51FNPYTAYmDdvXr9juK5EcHAwQUFBHDlypNfynr9bWloGtd5IYTKZMBqNo9poeawyfmXrOMXX15eQkBCOHj3K/PnzpRDPKFJXV8enn35KTU0N06dP59prryUgIMDdZklISFwGuVxOYGAger2e9vZ2mpub0Wq1BAQEDCqUunjxYmdumiuorKzkpz/9KRs3bkSv1/Paa68Na3+PPPIIL730EvPnz2fhwoVs2LCB7du3A/QqBhjoeq7GYrFgMpnQaDRe0ZtuuEjibZwhk8mYM2cO2dnZ5OTksGjRImfjSImRwW63s3fvXvbt20doaCj3338/8fHx7jZLQkJiEKhUKkJCQjAaxQa/DQ0N+Pv74+PjM+Je83Xr1gFia4yOjg5OnTpFaWkpgiCQnJzMf/7zH2bOnDmsY/z85z+npKSEG264AYCYmBiefvpp/vd//5fIyMhBr+dKrFYr3d3dzqbKEpJ4G5coFAoyMjI4cOAAx44dY8mSJe42yWs5d+4cH3/8MY2NjSxZsoTFixePy8ooCQlvQCaT4ePjg1ardValmkwmAgICRjT/6s033wTEghh/f3+io6O57777WLNmDTfeeKNLril6vZ6PPvqI8+fP09LSwuTJk/nzn/9MeHh4r8bgA13PlQiCgEqlkoTbRUjibZyiUqnIysqSihdGCJvNxp49ezhw4AARERE8/PDDI3ZXKjF2UKvVTJo0SWrzchF+Vw0tiX4s0xNK1Wq1tLW10djY2MsLN5jChsjIyH7XH26vuaFsHxUVRVRUFGazmddff93p9RvqesOhpzBBrVZLn6lvIIm3cUzP8F6bzUZZWRmTJ0+WvEIuoLa2lo8//piWlhaWLVvGwoULpdd1nKDT6YYdvpLwHLRaLeHh4U4vnNFoJDAw0COrILds2cK5c+eYMmUK586d48UXX8Rms/Gzn/1sSOsNF4fDQVdXl5Tj1g+e9w6TcDkGg4Gqqiq6urqc7UQkBk/PhISDBw8SFRXFI488Qnh4uLvNkhhF7Ha7cwC5JNjHBz1eOJ1O16cXzlNQKBS89NJLVFRU4Ovryw033MBvf/vbS4qqBrrecLh47JVKpXLZfr0JSbxJEBAQwNy5czly5AgFBQWkpqa62ySPo6amho8++oi2tjZWrFjBggULxt24Fgno6upi7969LFmyRKokHmdoNBrCwsI81gu3evVqVq9e7bL1hoogCHR3d+NwOPD19ZWuo/3gGe8qiREnIiKC1NRU8vLy0Gq1TJkyxd0meQQ2m42dO3eSnZ1NTEwMd9xxB2FhYe42S0JCwg305YXz8/NDr9d7lBfOnZjNZmw2m+S9vgKSeJNwMmHCBMxmszTAfoA0NzezadMmGhoauPrqq5k/f750lyghIeH0wnV2dtLR0YHZbCYwMFASIwNAo9GgVCo9xmPpLqRXR6IXSUlJzt9NJpOzqEGiNwUFBWzduhVfX1/Wr19PVFSUu02SkJAYQ8jlcgICAtBoNLS2ttLY2EhQUJCUfN8PZrMZhUIhCbcBIr1CEn3S0NDAkSNHyMrKkuZtXoTFYuGzzz4jLy+PWbNmsXr1auliLOFEJpOhVCqlEJmEk56K1NbWVpqbm/Hz88PX11d6j1yE2WzGaDSi1Wol4TZApFdJok9CQ0MJCQnh8OHDLFy4EH9/f3eb5Hbq6+t5//33aW9v59vf/japqanSBViiF/7+/lx//fXuNkNijKFQKAgJCaGzs5POzk7MZjNBQUFSGBWxSt9oNKLRaKRIzyCQEnQk+kQul5Oeno5eryc7O5vu7m53m+Q2BEHg6NGjvPrqqygUCh5++GHS0tIk4SYhITFgZDIZ/v7+hISEYLPZaGxsxGQyudsst2Kz2TAYDKhUKkm4DRJJvEn0i1KpJDMzE6VSSVFRkbvNcQsmk4n333+frVu3Mnv2bNavXy9Vk0r0S2dnJ7t376azs9PdpkiMUXqKGVQqFS0tLXR0dIzrIjGVSuVxPfHGAlLYVOKyaDQasrKyxmWjxNraWjZt2oTJZOK2225j2rRp7jZJYozjcDjo7OzE4XC42xSJMYxCoSA4OBiDweCsRg0KCho3+V4Oh8OZHzpeztnVSJ43iSvi4+ODSqWiu7ubgoKCcfHFlJuby+uvv46vry+PPvqoJNwkJCRcikwmw9fXl9DQUBwOB42NjZjNZnebNeL0jL0yGo3uNsWjkSSvxIAxGo3U1NRgs9mYPXu2V7q57XY727Zt4/Dhw6Snp3P99ddLScUSEhIjhlqtJiwszFmN6u/v77VNfQVBwGAwIAiCVKU/TCTxJjFgQkJCmD17Nrm5uWg0GqZPn+5uk1xKd3c377//PqdPn+Zb3/oW6enp7jZJQkJiHCCXywkODqajo4OOjg5sNhsBAQFeJeB6hJvD4UCv10s3xcNEEm8SgyI6Ohqz2UxhYSFarZbExER3m+QSGhoaePfddzGbzdx3331MmjTJ3SZJeCA+Pj7MmzcPHx8fd5si4WHIZDICAgJQqVS0tbVhtVoJDg72GpFjtVqx2Wzo9Xopz80FSK+gxKCJj4/HarWi1+vdbYpLKC0tZfPmzQQFBXH//fcTGBjobpMkPBSVSkVkZKS7zZDwYHx8fFAqlbS0tNDY2EhwcDBqtdrdZg0btVqNQqHwGjHqbqSCBYkhMXnyZOeXVFdXl5utGRqCILB37142bNhAUlISDz74oCTcJIaF2WymrKxsXCSeS/SNTCZzPg4dOtTvehs3bnSu901Pf08enEKhoLm52aOT+81mMxaLBWBUhFtfr6c3Iok3iWFRXV3N3r17aW1tdbcpg8JisbBp0yZ27drFsmXLWLt2rVfc3Uq4F5PJRGlp6bhvvioh8s477/T73Ntvv33ZbXumMmi1WlpbWz2yH5zFYsFoNGK3291titchiTeJYTFhwgQCAgI4fPiwx3jg2tvb+de//kVZWRm33347y5Yt86rEYAkJCfeiUCiYOXMm7733Hjab7ZLnm5ub+eKLL5gzZ85l9yOXywkMDMTf35+uri5aWlo8plWT1Wqlu7sbtVqNTqdztzlehyTeJIaFQqEgIyMDjUZDdnb2mPc41NXV8eqrr2IymXjwwQdJSUlxt0kSEhIDpawMfvpTuPNO8WdZmbst6pe7776bpqYmtm3bdslz7733HlarlXvuueeK++npBxccHIzFYqGpqWnMe7JsNhvd3d2oVCpJuI0QkniTGDYqlYqsrCwAKisr3WxN/1RXV/P666/j5+fH+vXriYiIcLdJEhISA+X112HqVPi//4ONG8WfU6fCG2+427I+ueuuu5DJZH2GR99++218fX1Zs2bNZfdRUlLCunXrnBGOtLQ0Hn74Yfbv33+JR89kMvHaa6+xZs0aEhIS0Ol0BAYGsmTJEjZs2NDn/i0WC6+88grz5s0jJCQEHx8fJk2axLe+9a1Ltpk0aVK/EYrdu3cjk8lYt24dIHoMVSoVTzzxBHK5nN27d7Nt2zaWL19OYGAgMpmMtrY25/ZffPEFq1evJiwsDI1GQ0JCAj/4wQ9obm7u83gtLS1897vfJTo6Gq1Wy7Rp0/jTn/7kcWHl4SBVm0q4BK1Wy8KFC8fscOGSkhI++OADJk6cyO233y41iJQYEVQqFVFRUeNynNyIUlYG69dDXyHDBx+ERYsgKWn07boMEyZMYMmSJWzZsoWuri58fX0B8Qb30KFD3HvvvZdtKfPRRx9xxx13YDabSUtLIysri5qaGrZs2cL27dt55513WL16tTNXt7q6mvXr1xMdHc2UKVPIyMigrq6OgwcPsm/fPkpLS/nVr37V6xh33303mzZtws/Pj8WLF+Pv78/Zs2fZv38/XV1d3HHHHYM6Z0EQcDgcyOXyXuf2n//8h3/+85/OxucVFRVOIfiTn/yE3/3ud6jVaubNm0dUVBT5+fn88Y9/ZMuWLRw4cKDXjXZrayuLFi2ipKSEyMhI1qxZQ0tLCz/84Q8pLy8flL0ejSDhFkpLS4XFixcLpaWl7jbF5TQ1NQnHjh0THA6Hu00RBEEQjhw5IvzqV78S3n//fcFqtbrbHAkJr8FoNArFxcWC0Wgc2QP95CeCoFAIAlz6UCjE58cIgKBQKARBEIRXX31VAIQ333zT+fwzzzwjAMK2bduE8+fPC4AQFxfXax9VVVWCXq8XfH19hR07dvR67vPPPxdUKpUQExMjVFdXO1/7pqYmYceOHZdcdysrK4VJkyYJcrlcqKqq6rW859hNTU29tjEajcLBgwd7LYuLixP6kwxfffWVAAh33XWX0NnZ6Vx+//33C4AACBs2bLhku40bNwqAMGPGDKGsrMy53OFwCL/85S8FQLj99tt7bfPoo48KgHDdddcJBoPBuTwnJ0fw9fXt8/Xsj8G8f8fad7YUNpVwOTabjbNnz3LixAm32iEIArt372br1q1kZGRwyy23SM0hJUYUh8OByWTymKRyj6G6WpRqfSEI4vNjkFtvvRWNRtOr6vSdd94hKiqKFStW9Lvdiy++iMFg4Pnnn+fqq6/u9dx1113HY489xtmzZ9mzZw8tLS0YjUZCQkK4+uqrLwltxsfH8/TTT+NwOPjkk0+cyxsbGwGYPXs2ISEhvbbRarXMnz9/wOcpXPjfCILQZ47b6tWruf322y9Z/utf/xqAd999l6SLPKcymYxf/epXpKWlsWnTJpqamgAwGAy8+eabyOVyXnrppV7evYyMDJ544okB2+zpSOJNwuVERESQmprK6dOnOXnypFtscDgcfPrpp+zevZsVK1Zw3XXXSRWlEiNOZ2cnO3bsoLOz092meBeTJkF/n1+ZTHx+DBIYGMjq1avZuXMndXV1HDlyhJMnT3LHHXdctufZ9u3bAbj55pv7fH7x4sUAFBcXo9PpaG1tdVb779+/n+eee47HHnuM73znO6xbt473338fgLKLCjymTp2KXq/n008/5f/+7/84d+7ckM5REARnoZpSqezzvG688cZLljU0NJCfn09ycjIzZsy45HmZTMbChQux2+3k5uYCkJubi9FoJD09vc/pPnfeeeeQzsET8So3hMVi4bXXXmP79u10dnaSmJjI+vXrmTdv3mW3u+2226irq+vzuZiYGN59913n30uWLOlzvYcffnhAlUPjhQkTJmA2mykpKUGn0zFx4sRRO7bNZuODDz6gtLSUNWvWMHv27FE7toSExAjwwAPw+9/3/ZwgiHlvY5R77rmHzZs3s2HDBqqqqpzLLkf1BU9iTEzMZddrbm4mMDAQhUJBbW0tjzzyCHv37u13/YtvKvz9/Xn11Vd5+OGH+dGPfsSPfvQjJk+ezPLly7n33ntZuHDhgM7Pbrc7q1/l8r79QX1d/3vOsays7Io31j2etx6BGRcX1+d646E5bw9eJd6ef/55du/ezdq1a4mNjeXzzz/nRz/6EX/605+YNWtWv9t973vfu6SDdV1dHf/85z/7FH7p6elcd911vZYlJye75iS8iKSkJBwOB0FBQaN2TJPJxIYNG6itreWOO+5gypQpo3ZsCQmJESI5GV57TRRpMpko2Hp+vvbamCtWuJhVq1YRGBjIW2+9xblz50hJSblif7eesPv9999/2fUyMzORyWT4+/vzX//1X+zdu5eFCxfy3HPPMXPmTKew2759OytXrrykGvPOO+/k6quv5uOPP2b79u3s2bOHv//97/z973/nBz/4AS+88MIVz0+pVF6xUK2v53vOMTIykpUrV152+/7E2njGa8RbcXExO3fu5LHHHnO6TleuXMm6dev461//yl//+td+t+1xQV/Mm2++CcA111xzyXMTJkzg2muvdZHl3s3kyZMB8e6sq6uLgICAETuWwWDgrbfeoqOjg/vuu29UvX0SEhIjzLp1YlXpa6+JOW6TJolibgwLNwCNRsPatWt59dVXAfj+979/xW1iY2OpqKjghRdeuCQfrT+2bt2KQqHgtddeIzQ0lODgYKdH63ItnMLCwli/fj3r169HEAS2bdvG7bffzh/+8AceeOABpk+fDuCsau2pnDWbzTgcDnQ6HWfPnh2Qjd88R4DQ0FDeGGC7l6ioKABOnz7d5/P9LfdGvCbnbc+ePSgUil6xdY1Gw+rVqykqKqK+vn5Q+/vyyy+Jiopi5syZfT5vNpul+YWD4OTJkxw8eJCOjo4R2X9PIqvBYOA73/mOJNwkJLyRpCR4/nl4913x5xgXbj3ce++9hISEEBoayt13333F9XucBh9++OGAj9Ha2oq/vz9xcXGYzWZaWlqcnraNGzcOaB8ymYzrrruO1atXA1BUVOR8rkc4nTp1CqvVitFodO5/x44dA7azh9jYWKZOnUpxcTGnTp0a0DZz585Fp9ORm5vbpyDtr5+dN+I14q2srIzY2Fj0en2v5T0d9AfT/+XUqVOcPn36kiqfHr744guuvfZarrnmGu69994BvXGbmpo4efKk8zGe7hBA9MDp9Xqys7Pp7u526b57hFt3dzfr1q0jPDzcpfuXGN+YTCZaW1tpbGzk/PnznDlzxtk81Gg0UlhYyIkTJygoKKCqqoqJEyfi7+8PiNelwsJCiouLKSsro6qqyvn+N5lMtLW10dXVJVWoejmLFy+mqamJxsbGAYUAn3rqKXQ6HT/84Q/ZvHnzJc+bzWY2bdpEbW2tc9nkyZNpbW3l448/Jjg42Cng/vCHP/DVV19dso/jx4+zefNm59D4HlpaWsjJyQHEKFMPS5cuBeA3v/kNHR0dzukJ7777bq+88MHwi1/8AofDwS233EJeXt4lzzc3Nzs9lgC+vr7ce++92O32S9Kdjh49yksvvTQkOzwRrwmbNjc39+le7lnWk/A4EHrEWF8h0xkzZrB8+XKioqJobm5m8+bNPPvssxgMBr797W/3u88tW7YM2DXsjSiVSjIzMzlw4ADZ2dksWrTIJYPgvyncQkNDh7YjoxHOnoXaWujsBJsNrFbxp90OCgWoVKBUij/9/SE2FmJiQGr463HYbDbMZrPzZq+iooKuri6MRiMmkwmTyURGRgbBwcFUVVVdcvMXFxdHSEgIDofDKeRkMhkymQyFQuEMV7W3t9PV1YXD4cBms2G1WtHpdPj4+FBTU0NpaWmv/cbExDBnzhysVquz2Een06HVap3bSVXT3k9SUhLvvvsud911F7fccgtJSUmkpKSg1+s5e/Ysx44dw2AwcPz4cWf48ac//Sn33HMPd9xxB4sXLyYqKoq8vDzKy8v5f//v//Hiiy/2Osbp06e55ZZbCAgIID09ncjISNra2ti7dy+dnZ3ccMMNvdqFPPHEE/ztb3/jgw8+ID8/n7S0NOfNyZNPPskf//jHQZ/nXXfdRVFREb/5zW+YO3cuaWlpJCYmIggCFRUVFBQU4Ovry0MPPeTc5vnnn2fPnj189tlnJCYmsmTJElpbW9m1axePPPIIL7/88tBedA/Da8Sb2Wzus6t5j0AYaIjT4XCwa9cukpOT+6xceeWVV3r9vWrVKtavX88//vEPrr/++n4799944429qndOnz7Nc889NyCbvAWNRuMUcHV1dcMObQ5KuHV3w7FjUFEhCrSeR02N+LOfMSwDIjxcFHLffCQnw+zZkrhzIz3d3k0mExUVFXR2dtLZ2YnJZEKlUjkLjxoaGrDZbGi1WkJDQ51iCcQ+WTExMahUKpRKJUql0img9Hq90yMB4nsyPz8fg8GAXq8nPT29X9vi4uKIiIjAZrM5xWTP9cNqtdLa2sr58+ednhGZTOYMZ5WUlADg5+eHr68vvr6+Ug9DL2PNmjUUFBTwhz/8gR07drBjxw5UKhXR0dHccMMN3HzzzUybNs25/t13301QUBDPPvsseXl5nDhxgjlz5vCb3/wGpVJ5iXjLysriueeeY9euXZw8eZJ9+/YRFBTErFmzePDBBy+piI2IiGDPnj089dRT7N+/n88//5y5c+eyY8cOZDLZkMQbiL3eVq5cyUsvvcSBAwc4ceIE/v7+xMTE8Nhjj7F27dpe6wcHB3PgwAF+8Ytf8OGHH/LRRx8RHx/Pb3/7W37wgx9I4s3T0Gg0WK3WS5b3XPgGOg4pLy+PxsbGS94w/aFSqbj55pt54YUXOHnyZL9VraGhoUP3CnkRer2eZcuWDdvrdlnhJghQWQnZ2XDokPgzP1/0ogGEhX0tsBYs6C24YmIgIED0rvV42pTKrz1xPY+2tt4isOexf7/4s6VFPJZaDXPmQFYWzJ8v/pwwof+eVRJDxmQy0dzcTFtbGx0dHXR2dhIaGuqs7GtoaMDX15cJEybg5+fXq5no5RqSarXaAY99s9lsNDc3XzJ3si/UanW/nwMfHx+nKLTb7ZhMJiwWi1M0Go1GZ3PWi88hNDSUlpYWLBYLQUFB0hg4N/DNis7LERkZedn1ExMTByVGVq1axapVq3otM5lMtLS00NTURHBwcK9jP/300zz99NNX3K/D4UAQBFJSUvjss8/6XKev83jjjTcGFHFasmRJv224+iIkJIRXXnnlEmdKf3Z4I14j3kJCQpwdoy+mJ6QxUOG0Y8cO5HJ5v/lufdGTYzVSyfjeRs8X1unTp2lpaSEtLW1QoaCLhdv9999PaHCwKNC++uprsdbzXpg8WRRN69eLwmnqVBjK/NVvfslGRcGFfMo+6e6G4uKvBeTHH0PPnW909Ndi7qqrRO+cJOYGhd1up62tjdbWVoKDgwkODqa+vp6CggL0er0zcbvny0qr1bJ8+XI3Wz00FAoFer2+Vz5vjyC12Wx0dXXR2dnpzLOrra115tT6+PgQFBTEhAkTCAsLG33jJdyOVqslODiYlpYWWlpaelWhDgRBEDAYDAiCgJ+fnxS2HyN4jXhLSkri+PHjznBFD8XFxc7nr4TFYmHPnj2kpaUNykvW0zgwMDBwcEaPc1QqFbW1tWg0ml7u/8vhFG4GAw/OnEnQb38L778vhj/9/CAzEx59VBRHmZkwwDJ7l+PjA+np4uO73xWX1deLYq5H0P3P/8B//zckJsJtt4mP1FRJyF2Gqqoqampq6OjoQBAElEol06ZNIzg4mOjoaKKiolySS+kpKJVKAgMDe117Zs2aRXJyMq2trc5HTwf8uro6KioqCA4OJiwsjODg4H4bq0p4D0MVcD3CzeFwoNfrJeE2hvAa8bZs2TI2bNjAli1bnH3eLBYLn332GdOmTSMiIgKA+vp6TCZTnxU/2dnZdHV19VmoANDW1naJQOvu7mbTpk0EBARIDWEHSXR0NGazmcLCQjQaTZ/jTi7G0NXF588+y7ycHOZUVqKoqYGICLj1VlH4LFwoFhaMVSIiYM0a8QFi+PWrr2DjRvjb38TWB8nJXwu5mTPHrZATBIGOjg4aGxtpaGhg2rRpBAYGIpfLnV61oKCgXp6AvnJexys9hQ7R0dG9lqtUKrRaLTU1NZSXl6NUKklISJCuXeOAoQg4o9GIzWZDr9dLOZVjDK/5b0ybNo3ly5fzj3/8g7a2NmJiYvjiiy+oq6vjxz/+sXO9X//61+Tl5fU5QmTHjh2o1epeCcgXs3nzZvbv38+CBQuIiIigubmZzz77jPr6ep5++mnpy2MIxMfHYzabKS4uxsfHx9lLqBfl5VhfeQX7W29xa3MzjtBQ5LfeCrffDosXj23BdjlUKrj2WvHx17/Czp2ikHv5Zfj1r2HKFFHEPfSQmCc3TigtLeXMmTOYzWYUCkUvL3hcXNyY7rau0+lITU3tczj3WCAkJISQkBCnOG5oaHAO925paeH48eOEh4cTFhZGWFjYZedvSngegxFwdrsdq9WKj4+P9N02BvEa8Qbws5/9jIiICLZt20ZXVxcJCQn87ne/Iy0t7YrbGgwGDh06RFZWFr6+vn2uM3PmTAoLC9m6dSsdHR1otVpSUlL48Y9/zNy5c118NuOHqVOnolKpLg1V5+TA73+P8OGH2H18qJw+nUl//zuBa9aIRQTehEoF110nPv72N/jyS1HI/elPokfujjvEEOtlxrx5IhaLhbq6Os6dO8esWbPw8fFBrVY7c7Q8LaynVqs9okG0TCYjICCg18QTtVpNeHg4jY2NVFdXo1AoiIuLc3bYl/AOLhZwPdGkvgScQqHAz8/Poz5/4wmZMF5KM8YYJ0+e5KGHHuLVV1+VQhYXYTQYsHzyCQGvvAL79iEkJ5OzaBF74+K456GHLgkDeT2dnfDPf8If/yjm9a1cCT/6ESxf7tEh1bNnz1JTU+PsvxgSEsL06dOdSfeeSo8YjYyM9OjcO4PBwPnz51GpVMTFxWEwGDh58iTR0dG9PHImk4mqqiri4+MHXJErMTYwGo20trY6C3x6BJzFYnF63Lw9x20w79+x9p3tZe4LCY/FbIZ33qH42Wdpqq5mYUYGPps2sdlmo+TUKe65557xJ9xALML4r/8Six42boT/+z9YsUJsP/Lf/y3m+3mAF9Jms3H+/HkiIyNRqVQ0NjbicDiYMWMGUVFRXtPSwmg0kp+fT0BAgEeLN71e36vIy2w209nZyZEjR1AqlURERBAbG+sU25IPwPPQ6XQ4HA7a29uRy+X4+flhtVrp7u5GrVZ7vXADz37fSv5QCfditYotNOLjYf16Zs2ciebPf+bQc8/xsVxOUWkpt956K/Hx8e621L2oVHD33XD8OGzfLlbR3nmnWODwz3+KUyDGIG1tbeTn57Njxw7y8vJobW0FIDU1lQULFjBp0iSvEW7eTHBwMEuXLuWqq64iKSmJzs5Ozp8/j0KhQBAEac6zh6LX6/Hz86Ozs5OOjg66u7tRKpVjNmfT1fT0hvXE3E5JvEm4jy+/FFtjPPUUrFoFJSWotmwhc/168vPz+fjjj7nuuuuc82klEEOl11wjCrjjx8WWKA89JLZFyc52t3W9KCgoYN++fTQ0NJCQkMDVV1/t7Ik4Hu7qvRG9Xk9ycjJLly5l5syZqFQqHA4HjY2NdHZ2YrFYPNqbMR7x9fXFx8eHpqYmZ2XpePh8CoJAe3s7Go3GIwsyxn68RcL7qK4WBdvmzWK16LvviiLuAiUlJTQ3NzNr1qwrtg8Z16Slia/d974nPubPh/vvh9/+FiIjR92clpYWzpw5w4QJEwgJCSEmJobIyEjCwsLGxZfBeKMnkT02NpaamhoaGhrQ6XSoVCo0Go1Hh43HGxqNBo1Gg8FgQKVSefX/ThAErFarc+5wTEyMu00aEpJ4kxg9jEb4/e9FcREcDP/5j1hFedEX+6lTp9i6dSuLFi1i5cqVzt5CgiBIAqA/FiyAw4fhtdfgZz+DDz8UGwB/73tiuHUEcTgcnDt3joqKCjo6OvDx8SHygnAMcVeDZDeiVCoJCQkZVz2xevrvNTU10drait1uRy6Xo1AonGOVPDEsNR4QBAGHw+EMfxsMBs6dO4evr6/X/880Gg0xMTEeWyQ1fq4wEu5DEOCjj+AHP4CzZ0Wv29NPwzdastTW1vL+++8zefJkrr/+eued/YkTJxAEod+5sRKIve4eflgsYPjlL8Vihn/+E/78ZxjEqLfBUlVVRXFxMeHh4UybNo3Q0NBxLbL1ej0LFixwtxmjjr+/P/7+/litVuwX5V+Wl5dTU1ODXq9nwoQJRERESK0nxggOh4P8/HwMBgOZmZmoVCrMZjObN2/GZDKxdu3afttmeToKhcIjQ6UXI4k3iZGlqQkefBC2bIHrr4dt28R5o9+gubmZ//znP0RGRnLLLbf0usAHBgaSl5eHRqMZEyXaY5rgYHjpJTEP7nvfE/Pj7rkHXnlFrFwdJj2l9UqlkuTkZCZOnEh4eDh+Lti3NyAIgtNLPB5FrEql6vWl2FNNXFFRQWFhIeXl5cydO7fXgHSJ0UcQBHJzc2lpaWH+/PnOz69Wq+XWW2/ln//8Jxs3buSBBx6QWsCMUaRbIImRY+9eMS/rwAExlPfpp30KN6PRyDvvvIOPjw933nnnJXdEEyZMICUlhVOnTjkHbktcgdRU2LMH3nxT9HrOnSsWOAyRzs5O8vLy2LlzJ9XV1c7lKpVKEm4X0dHRwaeffkpHR4e7TRkzhISEkJGRwbJlywgPD3d6cxobG50zVyVGl8LCQurq6voU0n5+ftxzzz10dnayceNGHA6Hm6yUuBySeJNwPXY7PPOM2Eg2KQny8+Hb3+6zqazD4eD999/HaDRy1113OUf1fJOkpCTi4+MpKCigpaVlhE/AS5DJ4L77RNHm5ydWpv75z2IYexB0dXWxe/duGhsbmTp1Ktdccw3JyckjZLSEt+Ln50dqaipqtRpBECgoKGDnzp0UFRVJrUZGEavV6iwIi+ynsCksLIzbbruN6upqtm/fPsoWSgwEKWwq4VrOnRP7ke3dC7/4hfi4TOLr9u3bqa6u5t57771iKKWnA39QUJCrrfZukpLg4EH48Y/hySdh1y7417/EEGs/GI1GamtrSU5OxtfXl4yMDMLCwqR8JQmXIJPJWLp0KVVVVVRUVHD69GkSEhKYPHmy9B4bQQRBQKVSsWTJkiu+zvHx8Vx//fV8+umnREREMHv27FGyUmIgSOJNwnV8/rno6VGrxSHry5ZddvXjx4+TnZ3NqlWrBtSEVyaTOedGtrS0oFQqPbZSaNTRaMRmyFddBd/5jhjO/s9/YNGiXquZzWbKyso4ffo0SqWSmJgYfHx8iIiIcIvZEt5LT97kpEmTKC8vd3b6B3EourdXO442dXV1lJaWsmDBggG3AklPT6e+vp6tW7cSEhLiEXN7xwvSLY7E8LHZxOrGVasgIwPy8q4o3M6cOcPWrVuZO3cu8+bNG/QhS0pKyM7Opru7e2g2j1duvFH8/8TFif+j3/zGGUYtLy9n586d1NbWMnnyZFasWNFvGFtCwlWoVCpSUlLIzMwEoKmpiZ07d1JVVSXlW7mIlpYWcnNz8fX1HVSVpUwm4/rrryc2Npb33nuP9vb2EbRSYjBI4k1ieHR3w003iV6dF16ATz6BsLDLbtLe3s57771HbGwsq1atGlJVXnp6OkqlkuzsbCwWyxCNH6dMmABffQU//Sk8/TSO++8HqxWlUklCQgIrVqwgOTl5XPUqcxV+fn5cc801UhHHMNDr9YSHh1NUVMSuXbs4d+6cu03yaDo7Ozl8+DDBwcHMmTNn0NdbhULBbbfdhkqlYsOGDc6RUhLuRRJvEkOnpUXsIfbVV6Jo+8EP4Ap5FFarlQ0bNqBUKrntttuGHBrRaDRkZmZis9nIycnBZrMNaT/jFqWSpiefpPgXvxCnNKxZw6SwMKZOnerx/Y/ciVwuR6vVSnlbw0Cn05GWlsayZcsICAggNzdXqjIfIg6Hg5ycHHQ6Henp6UN+X+r1eu644w6ampr46KOPpBFoYwDpCiMxNGpqxHypsjIxAf666664iSAIfPzxxzQ1NXHnnXei1+uHZYJer3cKOKlabeAYjUaOHj3KoUOHaF25EuOmTbBvH6xYIfblkxgy3d3dHD16VArnuwBfX1/mzZtHVlYWsbGxgNheRPL8DBy5XM7MmTPJysoa9k1ZZGQkN910E0VFRezbt89FFkoMFUm8SQye4mJxJFN3N+zfL+a5DYD9+/dTWFjITTfd1G+J+mAJCAhg2bJl6PV65ygeif4xm8189dVXtLa2MmfOHBYuXIh+zRrYvRsqK0VBLnk5hozVauX8+fOSwHAhYWFhKBQK7HY7x44dY9euXZw5c0b6rF8Gu93u9FZGRESg0Whcst9p06axbNkydu3aRWlpqUv2KTE0JPEmMTgOHRK/4IOCxPYTA5x4cPLkSXbt2sXSpUuZNm2aS02SyWQIgkB2djYlJSUu3be30NTUhCAIaDQa0tLSWL58ee+BzHPnis2ULRZRmBcWus9YCYk+UCgULF26lLCwMPLz89m/fz9tbW3uNmvM4XA4OHr0KMXFxSPiAV66dCkpKSls3ryZhoYGl+9fYmBI4k1i4GzdKobWZs4U+7hFRw9os+bmZjZv3szUqVNZdoUq1KEik8mcY3gqKipG5BieiNlsdoZIey600dHRfRcjJCeLgjw8HBYvFkOpEhJjCK1W6/QYOxwOTp486W6TxhwFBQU0NTWRnp4+ItXiMpmMm266iaCgIDZs2CClrLgJSbxJDIzNm8UpCdddJ84nDQwc0GY2m41Nmzah1+v59re/PaLzHuPj40lOTqa4uJja2toRO46ncPbsWb766iuam5tJT08fWK+2yEhxrNbs2XDttWIxioTEGCM4OJglS5YwZ84cQPQsNzc3u9kq91NSUkJNTQ1paWmEXaHqfzio1Wpuv/12DAYDn3zyiRTCdgOSeJO4Mtu3wx13wNq18P77MIhBxTt27KChoYG1a9e6LO/ickydOpWJEyeSl5eHwWAY8eONVerq6jh27Bjh4eEsX76cqKiogW/s7y82XF6yROwLd/jwyBnqZWi1WqZOnSoN8x4FZDKZMwn/9OnTHDx4kBMnTozbynNBEOjq6mL69Om9UyJGiODgYG644QYKCws5Poy5yRJDQ2rkJHF5Dh4U+7hdcw289dZlR119k9LSUnJycli1atXgxMMw6ZnZN9xqVk+ktbWVoKAgIiIimD9/PqGhoUPbkUYjeluvvRauv170xs2Y4VpjvRCNRiPNfXUDc+bMITg4mJKSEhoaGkhNTR36e98D6ZlIkZ6ePqLRjW8yY8YMqqqq+Oyzz4iNjSU8PHzUjj3ekTxvEv1TUACrV4vJ7O+/D4MoNW9ra+Ojjz4iJSVlSBMUhoNMJnOGCM+cOUNXV9eoHt8dmEwmcnJy2L9/P11dXchksuF/een1Yp5jbKwo4iorXWOsF2O1Wqmrq5OqTUcZmUxGfHw8S5cuRafTUVBQMG6mMzQ2NvLll1/S2dk5qsKth+uuu47g4GDef/99qWH6KCKJN4m+qakRPS7x8WID3kEkvtrtdjZt2oRWq+XGG290ywUFxKqryspKsrOzMZlMbrFhNDh//jy7d++mo6ODjIwMfH19XbfzoCAxbK7Xi+8HKa/osnR3d3PkyBGpz5ub0Ov1zJ8/nwULFiCXy+nu7qa1tdXdZo0YbW1tHDlyhMDAQLdFGlQqFWvXrqWtrY3PP//cLTaMRyTxJnEp7e3inFKVCj77DAICBrV5z0ibW2+9FZ1ON0JGXhm5XE5mZiaCIJCTk+OV3pCamhqOHj1KWFgYy5YtG5kB8hERYg5cSwusWQNeLIQlPB+ZTObMOayoqODAgQOUl5d7XVK9wWAgJycHf3//YU1PcAVhYWGsXr2a48ePU1BQ4DY7xhOSeJPojcUCt9wCtbXiF/Ygm+mWl5dz4MABVqxY4eyK7k50Oh1ZWVkYjUaOHDniNaGUnvOIiopi9uzZzJ07d2THWiUliR7Y3Fy47z7wktdRwruZPn06iYmJlJSUkJOT41VtLXJzc1Gr1WRkZAx5zKArSU1NJTU1la1bt0qVv6OAVLAg0ZvHHxf7e+3YASkpg9q0s7OTzZs3k5yczIIFC0bIwMHj5+dHRkYGJ0+exG6393+HKgjieKjaWqirE4Ws1Qp2u1iooVKJifxRUWIeWHAwuCEkfObMGU6ePMnChQvx8fEZPZGclQX/+Y8o7n/+c/jNb0bnuBISQ0Qul5OSkkJoaCjHjx/nwIEDLFu2zCtmz86ePRulUolarXa3KYDo8Vy9ejW1tbW8//77rF+/vu9+khIuQXplJb7m3/+G116D118X20QMAofDwQcffIBCoRjxfm5DITg4mPnz5wNgaW9HfeIEZGfD8eOiWOt5DCbhVqsVRVxsLEyYAHPmwPz5Yo+0Ebig2mw2CgoKOHv2LBMnThyV1iuXcNNN8Pzz8JOfiI18r79+9G0Yw8jlcvz8/LxCHHgTYWFhLF26lI6ODuRyOQ6HA5lMNuauU1fC4XBQVlZGUlISfn5+7jbnEtRqNWvXruWf//wn27dvZ9WqVe42yWuRxJuEyMmT8NhjcP/9sG7doDfft28fp0+f5v777x97LTpaW8XGwgcPYjt4kL3HjzPR4WCyjw+kpcGkSaJXacKEr8VYZKToZVOpRK+bzSY+jEY4f7634KuthVOnYONGMJvF7XqE3IIFYqXmMC+0HR0dHD16FLPZzJw5c0alj1O//Pd/i61D7rsP8vMHPGljPODn5zdiU0QkhodGo3E2ri0sLKSzs5O5c+d6TE8+QRA4duwY9fX1REREEDjARumjTWRkJCtXruTTTz8lPj6elEFGcCQGhiTeJERBctttomh56aVBb37+/Hn27NnDkiVLmDRpkuvtGwptbbBliyiotm8Xw59JSSjnzyfuW9+iNDAQzQ03EJeYOPh9T5wImZmXLrdYIC9PnP+anQ0ffAB/+IPooVu1SnyNV6+GIVSDyuVydDodmZmZ7hfHcjm8+aYofO+6C3buHFT/PwkJdxMbG0tubi579+5l3rx5BAUFudukK1JYWEhdXR3p6eljVrj1kJ6eTmVlJVu3bmXixInuv2Z5IZJvXwKeekr0vG3cOGhhYbfb+eijjwgPD2fJIEOtLsdigXffFacCRESIXsT2dnjhBTh7FsrK4K23SP7Vr4i/+mpOlJRw/vx51x1frYaMDHjySdGO6mqoqoJnnxVbr9xxhzg3dO1a+PBDMZfuMgiCQFVVFXa7HV9fX+bPnz92LoJhYWL+27594vlJAKKH9PPPP6ejo8Pdpkhchp7xWnq9noMHD1JTU+Nuky5LWVkZ1dXVzgbkY52e/DdBEPjss8/cbY5XIom38c7778Nf/wovvgizZg168z179tDY2Mi3v/1t91U8dXTA//f/QUKC6Alqbobf/14MZ+7bB9/73iWhvenTpxMVFUVeXt7IthCZNAl++ENxxFRlJfzqV+LPm2+GKVPglVegj55gNpuNo0ePUlhYSGNj48jZNxyWLoX/+R945hlpBuoFBEHAZrN5XVsKb0Sj0TB//nxiY2Npb293tzmXxeFwMGXKFCZOnOhuUwaMr68vq1evpqioiKKiIneb43VI4m08U1kJ69eLnqBHHhn05ufOnWP//v0sXbrUPXeD587Bj38s5qr97GfiCK/CQjhwQPR+XSYvTCaTMXv2bObPnz+yLTYuJj4efvQjsd3GkSPi5IrvfQ/i4uB//1esdEXs37R//36amprIyMgY23faTz8Ny5bB3XdDQ4O7rZGQGBRyuZzU1FSmT58OQENDw5jqB9nT2mTKlClMnjzZzdYMnunTpzNt2jQ+/fTTcT1reiSQxNt4xWIRw3ghIfDqq4NueWGz2fjoo4+IiIhg0aJFI2RkP7S0iKJn0iT429/g0UfF8OTrr8OFi/BAkMvlBAYGIggCpaWlo9sVPz0d3ntPDOXecQf87ncwcSL2H/2Ig9u343A4WLx48cg03XUlCgW8845YzCH1f5PwUGQyGXa7nby8PPbt2zcmRuq1tLSwc+fOset5HyCrV68G4NNPP5U80i5EEm/jlWefFZPr33tv0BMUQAyXNjc3j2641G6Hf/wDJk8WE+afeUbMJfvd7y7rZbsSVquVc+fOkZ2dPfqz+RIS4C9/gTNn4KmnUPzlLyx//HGWnD2L71jJb7sSUVFim5lt24ZU8CIhMRZQKBQsXLgQuVzOvn37aHCjJ7mzs5PDhw8TGBhISEiI2+xwBXq9ntWrV1NcXCyFT12IJN7GI6dOiTlhP/kJDGFo/NmzZ53h0lHzDB06JFZ4PvIIfOtb4jn85Cfg7z/sXavVajIzM7HZbOTk5GCz2Vxg8OAoaWyk6oEHoKQE5fz5KO+7TwxHesqomZUrxf/NL34htlIZp/j6+rJkyRLXzpeVGDX0ej2LFi0iJCSEw4cPU1dXN+o2GI1GsrOz0el0zJs3zyt6Bk6fPp3p06fz6aefjgmvpjfg+e8KicEhCF8n8P/0p4PevCdcGhUVxcKFC0fAwG/Q1SXm5S1YINp+8CC88cagx3ZdCb1eT2ZmJl1dXRw9enTUxmgJgkBeXt7XsxcnTYLNm8X2Jg0NYsPfH/xA7B831vnNb8S+eD/6kbstcRsKhYKAgIAxMa5IYmgolUrmzZtHUlKSW1pyFBYWOucyj1o+7iiwevVq5HI5W7dulcKnLkASb+ONDz4QhcGf/wxDGBq/e/duWlpaRidcevy42Ox2wwYxt+3wYbHx7QgREBDAvHnz0A3hdRkKdrudI0eOUFtby5w5c0hISPj6yWuuERvg/va38PLL4nmfOjUqdg2Z4GAxhP3222IT33GI0WjkxIkTGI1Gd5siMQxkMhlTp05Fq9ViNpspKysbNcGRmppKVlaWxzQPHig+Pj5861vforS0lMLCQneb4/FI4m080dUF//VfcMMN4mOQ1NbWOmcDhoeHj4CBFxAEMQ8sK0vsO3fsmBiSGwVvRmhoKKmpqcjl8hEvYCgtLaWpqYnMzMy+Jyao1eI0g5wcMBhEIfv22yNq07D5znfE/9sTT4iNkccZFouF6urq0c+dlBgxmpubKS0t5fjx4yPmkXc4HBQWFmI0GlGr1WOnn6OLSUlJYebMmXz22Wd0dna62xyPRhJv44nnnhPbUfzpT4Pe1G638/HHHxMdHT2y4dKWFrEH2ve/L1aRHjokFiiMMt3d3ezevZuKiooRO8bkyZNZuHChc2RPv6Slie1Fbr4Z7r1XHF82VvNG5HKxd11JiSjAJSQ8nOjoaNLT0zl//jyHDx8ekZzYgoICqqurx0U7jeuvvx6FQiE17x0mkngbL5SUiJMGfvYzsd/YIMnOzqa5uZkbb7xx5BJoT50SW2js2QMffSSKTHcMX0d08SckJFBcXExtba3L9tvZ2cm+ffvo7u5GpVIRMNBKX19feOstscp20yYxjHr2rMvscimzZ8Pjj4sNfMeqjRISgyAqKorMzExaW1vJzs52aQi1pKSEmpoaZs+eTWhoqMv2O1bx8fHh+uuvp6SkhLKyMneb47FI4m08IAjw3e+KzWD/+78HvXl7ezt79uwhIyNj5KpLjxyBhQvFOaDHj8OaNSNznEEwdepUJk6cSF5enkvaBnR0dHDgwAEcDsfQBfB994m5f+3tYhFHaemw7RoRnn0WfHzE6RISEl5AaGgoCxYsID4+Htkg+2L2R2VlJeXl5UyfPr3v1AkvZdq0aSQkJPD555+7pbrfG5DE23hg0ybYtUvswTWEJNht27ahVqtZvnz5CBiH2B9s+XJIShLHWcXFjcxxhsCsWbMIDw+nsLBwWPkuHR0dHDx4EL1ez4IFC4aXjDxtmlh16+cnCt7s7KHva6QIDIT/+z+x2GQcjc7SaDQkJCSgcZPHWGJkCQgIcIqsyspK5wSEoaLT6UhOTu5drDQOkMlkrFq1ivb2dg4cOOBuczwSSbx5Ow6HGL66/nq47rpBb15RUUFxcTErV64cmS+kd94R+7YtWwY7d4oTH8YQMpmMuXPnMn/+/CF7yxwOBzk5Oej1erKyslxT/h8bKwrdlBS46ioYi/kj994r9hH81a/cbcmoodVqmT59utdVCkr0xmKxUFFRwcGDB4ck4Hpy26Kiopg6daqrzfMIQkNDmT9/Pvv27aO1tdXd5ngcknjzdj78UMx3+8UvBr2pzWbjs88+Y9KkScyYMcP1tr3yCtxzjzgX88MPxTDbGEShUKDT6bBarRw7dgyTyTSo7eVyOXPnznWdcOshKAh27BDbitx4o+jlGkvIZPDzn8PeveJjHGCz2WhtbZVCQV6OWq1mwYIF2Gy2QQu4trY29u7dS3V19cgZ6CEsWbIEvV7P559/7m5TPA5JvHkzgiBWmK5YMaT+aIcOHaK1tZXVq1e7LMfDyVtvie0knnxSnEnqAc0obTYbzc3N5OTkDGh4dUdHB0VFRQiCQHBw8Mg03NTpxN59d90lero+/dT1xxgO3/oWzJoFv/61uy0ZFQwGA/v37x8XVYPjnZ4UiMEIOIPBQE5ODn5+fkyYMGEUrBzbqNVqrrvuOk6dOsXJkyfdbY5HIYk3b+azz8T5pU8/PehNe+4O58+ff+VWFoPl44/hgQfgwQfhj38UPTQegE6nIysrC6PRyJEjRy6bA9fR0cGhQ4dobm7GbrePrGFKJfzrX6JQuvXWsdUgVy4XK5y3bxeLUiQkvIgeARcUFHTFmzOz2Ux2djZqtZqMjAxpCscFpk6dSlJSEp9//vmAboolRCTx5q30eN0WLBDzyQbJF198gU6nY8mSJa616+BBuOMOuOkm+PvfPUa49eDn50dGRgZtbW0cO3asz5YBPcJNp9Mxf/58lErlyBumVMK774r/7zVrYCwNgL71VrFX3zjxvkmML/R6PWlpacjlcjo6Ovr1wFVUVOBwOMjKykKtVo+ylWMXmUzG9ddfT2dnJ/v373e3OR6DJN68la++EqsQn3560AKprKyM0tJS1xcplJWJuVnz5sG//z0qExNGguDgYObOnUtwcPAl4WSj0dhLuI3qbEKtVswdjIuDVavGzoB4hUKco/vxx3DihLutkZAYEQRB4Pjx42RnZ/fpQZo6dSoLFy4ctfF7nkRISAgLFy5k//79NDc3u9scj0ASb97Kc8+JzVKvv35Qm/UUKSQkJDBt2jTX2dPRAatXQ2io2IDXw6vxIiIinOX9HR0dzuVarZa4uDjXFycMFH9/Me/NbheF8lgZaH/33aKo/M1v3G3JiCKTyVCr1a7PEZUY88hkMubMmYPRaOTw4cPY7XYEQSA/P5+Wlhbkcjk+Y7QoayywePFi/Pz8+Pzzz6XB9QNAEm/eyMGDouft5z8ftNft4MGDdHR0sGrVKtd9AQmCOOqqrg62bhUHmHsJLS0t7Nmzh/LyclpbW50Drd0aFomNhS1boKAAfvxj99lxMSoV/OQn8N574iQNL8Xf35+VK1fi7+/vblMk3ICfnx+ZmZm0t7eTm5tLQUEBNTU10qzbAaBSqbjuuusoLy+XihcGgCTevJHf/lZs5Prtbw9qs55KuczMTNeOafnXv8R8rH/8Q2zE60UEBwczceJENm/ezPbt20dscPWgmTMH/r//TxwxtmWLu60RWbcOIiPF5r0SEl5KUFAQ8+bNo7CwkJMnTzJr1iwiIyPdbZZHMGXKFBITE/nyyy/HzrV0jCKJN2/j/HkxbPbd74qVfoNgz549yOVyFi9e7Dp7Cgvhe9+Dhx4SCxW8DEEQMJvNztzAMdVs8rvfFQX8unVw5oy7rRFD5Y8+Kgr5ri53WzMidHZ2smvXLjo7O91tioQbMZlMBAcHk5aWJrUEGQQymYyrr76apqYmjh8/7m5zxjSSePM23n5bDFENUii1tLRw9OhRFi9e7LqEWoMBbr8dEhPhxRdds88xxokTJ2hoaOD2229n4sSJY2vQskwGr70mjtG6804YC2X4990nvi82b3a3JSOCw+HAYDBIXoNxTkBAgLMFxtGjR6WGvIMgKiqKWbNm8dVXX0nh5ssgiTdvQhDgjTdEb0tQ0KA23blzJ76+vmRkZLjOnh/8AKqrxTwnL0zUNZvN1NfXO8Mi8+bNIz093d1m9SY4WJy8kJMDzzzjbmtg0iRxju0bb7jbEgkJl9PR0YHdbsff35+pU6c6ixROnDhBXV2du83zGJYvX47RaCR7LM5tHiOMQgOq0cNisfDaa6+xfft2Ojs7SUxMZP369cybN++y2/3rX//ijT6+TNRqNV9++eUly7du3cqGDRuoq6sjLCyMW2+9lVtuucVVpzF0cnOhuBheeGFQm509e5aioiLWrFnjugrJgwfFHLeXXxbz77wQjUbD8uXLnX3cen52dXVRWFjInDlzxkY/p/nzxeKV3/xGrPp09yzFdevg/vtFYT9pknttkZBwEZ2dnRw8eJCJEyf2qtSfNm0aJpOJ3NxcFi5cSGBgoPuM9BB68gYPHDjA3Llz0ev17jZpzOFVnrfnn3+ejRs3cs011/D9738fuVzOj370IwoKCga0/VNPPcXPf/5z5+MnP/nJJet8/PHH/P73vyc+Pp4nn3ySGTNm8Kc//Yl33nnH1aczeN54A6KjxVmXA0QQBL788kvCw8NJTU11jR02mzj6Kj0dHnnENfscQ7S3tzt7OfXVgFcmk9HR0UFOTs7IT1cYKD/5CUycKObBubsM/5ZbwNdXHJEmIeEF9HiJdDodycnJvZ6TyWTMnj0bf39/jhw5IoUCB0hPg/h9+/a52ZKxidd43oqLi9m5cyePPfYYd955JwArV65k3bp1/PWvf+Wvf/3rFfexdOnSy94Vmc1m/vnPfzJ//nyeffZZAG644QYcDgdvvfUWN954I35+fi45n0FjNsN//gMPPzyo5rcVFRVUVVVx5513Ih9kgUO//O1vkJ8vhuo8tBFvf5jNZg4fPoxWq+13vI1eryczM5ODBw9y9OhR5s2b57rXdqhotfCXv4jNe99/H267zX226PWwdq14s/Hznw+6sGYso9frycrKkjwF4wiLxUJ2djZyuZzMzMw+oxdyuZx58+Zx9uxZ9/R/9EB8fHxYtGgRu3fvJjMzk6BBpgJ5O15z1dyzZw8KhYIbb7zRuUyj0bB69WqKioqor68f0H4MBkO/DQKPHTtGe3s73/5GC46bbrrJ2VnfbXzyCbS2iuGoAeJwONixYwdxcXFMnjzZNXbU14tfyA89JE5S8CIcDgdHLsznvJIgCwgIID09naamJk6MlakC118v5kP+13+Bu6sh162DqirwsnE4SqWSsLCw0RmJJjEmOH/+PBaLhaysLLSXaT6u1WpJTEx0euYlrkxWVhY+Pj7s2rXL3aaMObzmClNWVkZsbOwld7wpKSkAlJeXExERcdl93H777RiNRnQ6HYsWLeKJJ54g+KKGsj2VhFO/kTM0ZcoU5HI5p06d4tprr+1z301NTb3Gfpw+fXrgJzcQ3ngDMjPhwvkOhBMnTlBfX8+DDz7ouoa8P/qROGfTCzvpFxQU0N7ezsKFCy97ke4hLCyM2bNnj6077RdfFN8jzzzj3n5rixZBQoL4vnX1/NwRoqctjMlkwmg0YrFYkMvlzlYQlZWVdHV1cfbsWWJiYtDpdMTGxqLT6WhpaaGzsxOtVotWq0Wn042NfEiJYRMXF0dkZOSARwl2dXWxd+9epk2b5pzSItE3KpWKZcuW8cknn7BgwQKioqLcbdKYwWvEW3NzMyEhIZcs71nW1NTU77Z+fn7cfPPNTJ8+HZVKRUFBAR9++CElJSW8+uqrTkHY3NyMQqG4xH2rUqnw9/e/7Ey2LVu29FkU4RLq6uCLL+Cllwa8ic1mY9euXaSkpLiuD1FenpjH9I9/QB//C4/BYICSErEXmdEIFgtoNES0tREVEEDgIEZ7RUdHA+IXf3Nzs2ubHw+FuDhx3u2vfiXmv8XFuccOuVz0Ev/+92I4d4yEGbu6uujo6HAKNJPJRFhYGBMnTqS5ubmXd10mk+Hj4+P8/NTU1NDa2sqJEycwm834+PgQGhqKTqejvr6e8vLyXseKi4tj1qxZdHd3U1paik6ncwo7nU5HQEDAqJ67xODIz88nKCiIiRMnDmoGtK+vLwkJCRQXF+Pn50dYWNgIWun5zJ49m0OHDvHll19y7733utucMYPXiDez2dynh6Pn7tZ8mRmPa9eu7fX3smXLSElJ4dlnn+XDDz/knnvuce6jv3CIWq2+7DFuvPFGFi5c6Pz79OnTPPfcc/2f0GD4/HNwOODWWwe8yeHDh+ns7GTFihWusQHg178WvSnf+Y7r9jnSCAJUVMChQ5CdLf4sKBBng34D5z2fSiXOjc3KEis5s7JEEXQZ7+W5c+c4duwYc+bMISYmZmTOZaD8v/8neuB+/3uxGthd3H47/M//wO7d4tzbUcRqtdLW1kZraystLS1Mnz4dPz8/Tp8+TWVlJQqFwimkeggICCAjI8Mpsr7pOVu6dCnt7e0oFAqWLFnSS3ylpKQwdepUp+fOZDI5vbc2mw2TyURraysmkwmHw4FWq+WaC4VHhYWFaLVagoODCQgI6DfXUmL0KCkp4cyZM0O+GUtJSaGzs5Pc3FwWL14s5UheBrlcztVXX82GDRuoqKggMTHR3SaNCbxGvGk0Gqx9NCHtqewZzJ0RwDXXXMPLL79Mbm6uU7xpNBpsNluf61sslsseIzQ0dOS8Ltu3i5WdA9y/xWJh//79zJ4923U2FRfDBx+IXjdPyPepqxM9Pv/8JzQ0iMumThWF2KOPiuOlAgPpFgQO5eaSkpBAdFAQtLTA0aOi0Pv0U/jzn8VtY2PF7R57rM/ZrTExMTQ2NnL8+HHUarV777b1ejHv7ZlnRC/cBe/gqDN5sih6t28fUfEmCAIGgwFfX18AcnJyaLjwP1epVAQFBTmb6iYnJzN58uQ+bwRVKpUz9UKw2XB0dyM4BEAQb54EAVtbG/auLuxtbdhBFPRyOSBDppCj0WguCbn7+/uzYMEC599ms9l5LRMEgc7OTs6cOYPdbkcmk+Hv78+8efPQ6XTYbDYpv26UqayspLy8nOnTpw/5RqxniP3+/fspKipybX9NL2TKlClMmDCBr776ioSEBNel+XgwXvOpDwkJobGx8ZLlPaHMoYiU8PDwXomlISEh2O12Wltbe4VOrVYrHR0dfYZtRxy7HXbsEIXDADl27Bgmk8m1Y7Cefx5iYsQO+mOZkyfFmZ///rfoQXvgATGRPyPjEtHlcDg4un8/svBwwmbPFtcHMbfwiSfE3xsaxKrarVvh2WfF12H9elEcfSMkmZqaisVi4ciRIyxYsMC9/Z6eeEL0vL3wwqD7AroMmQyuvRa2bXP5rtva2qivr6e1tZXW1lZsNhsrV65ErVYTFRVFdHQ0wcHBl3g81Go1gtWKvcuAYDYhmM04TGYEixnBZMJhtojLbX23gDF2dWGpqKRb74vqgli85LRVKmQaNXKtFplGg1yjQabRINNqkavVqLVa542gTCZj/vz5ThHXcz49zx85coTOzk6CgoIICgoiKipK8uKMIHV1dRQVFZGYmDjsfDWVStVvdapEb2QyGUuXLuXtt9+murqa+Ph4d5vkdrxGvCUlJXH8+HEMBkOvi1dxcbHz+cEgCAJ1dXW9evb0/F5aWsr8+fOdy0tLS3E4HJf09xkVjh+H5mZYuXJAq9tsNg4cOMCsWbNcJx4qKsR5lX/8I4zVJOzcXFFcbdkCERFiztcjj1x2EkVJSQmdnZ0sWrSo/wtseDjccIP4ePZZMe/w5ZfFn7fdBr/4hbOIRCaTMXfuXA4dOkRtba17xVtAgDhz9g9/gJ/+dMBeW5dz7bXw6qtw+vSw8++6u7vx8fHB4XBw6NAhZDIZwcHBJCUlERQU5PRQTZw4ERA/4/auLhwdHdjb27F3dF5WmA0ElVJJVGgoqst4wwSrFcFqxdFl6HcdmUqJXKdD7uePIjAAhZ8f/v7++Pv7E3fR65SUlERzczOtra2cOnWKkpISMjMzCQ8Px+FwuL9FjZcRHBzsHHvlCnwuTJ7p7u6mo6NDGmB/GRITE4mOjmbv3r2SeMOLxNuyZcvYsGEDW7ZscfZ5s1gsfPbZZ0ybNs0Z7qivr8dkMvW6ALa1tV3yRfrRRx/R1tZGZmamc9mcOXPw9/fn448/7iXePv74Y7Raba9lo8a2beLsyqysAa2el5dHV1cXixYtcp0Nv/udWKCwfr3r9ukqHA7Rw/Tzn0NysigU7rkHrhBGb2xspLKykhkzZgw8cTw8XAxF/vjH8K9/icJozhwxv+zhh0EmQ6FQkJWVNTbylp58UhTcL74Irsq/HCwrVohhxR07hvT+aW9v59y5c5w7dw6TycTKlStRKpUsWrQIX1/fXuEVwWrF1toqCrX2dhydncMSan3ho9WS5oK2O4LVht3aib2jE+vZswDI1GoU/n4o/P2RBwSg8PcnLCzMGYK32+00NjY6IwA9N7PR0dGSR26YdHR0oFar0Wq1I3KTXlVVxenTp1m8eLH7eoWOcWQyGYsXL+a9996jpqbGdYV2HorXiLdp06axfPly/vGPf9DW1kZMTAxffPEFdXV1/PjHP3au9+tf/5q8vDz27t3rXLZ27VquuuoqEhISUKvVnDhxgp07d5KcnHxJ37gHH3yQP/7xj/zyl78kIyOD/Px8tm/fzkMPPYS/v/+onjMg5gtdddXXIb3LYLfb2b9/P9OnT3ddrltrq1hh+qtfgasG2ruK+nq491748ktxwsD//u+AXicQ77BnzpzJpKGMb9LrRa/W+vXw1FNiSHvnTjEfMDDQ6QFqbGzk5MmT7gudhIaKovKvfxU9hIPMC3UJQUFiyHrbtkGJN4fDwZ49e+jq6kKlUjlDoT2i2M/PD4fRiK2l5YJXrQNHt3GkzqKXXUazGZ1G43Kvl2CxYGtqxtZ0oapdBnK9HkVAgPgIDu7luYmNjaW2ttbpkQsICCA1NVWqYh0kBoOB7OxsgoODR2x28dSpU2lsbHQWMIyJm7sxyNSpUwkPD2fv3r3cfffd7jbHrXiNeAP42c9+RkREBNu2baOrq4uEhAR+97vfkZaWdtntrrnmGgoLC9mzZw8Wi4WIiAjuvPNO7rvvvkuSi2+66SaUSiXvvfceBw4cIDw8nO9+97uXVKyOCh0d4gzRP/1pQKufOHGCtrY2p2fSJWzYII7DWrfOdft0BV9+KXrYBEEUBgMcGeZwODAajej1+qEJt4vR6eCVV0RxvX69WKG6YYOYM4fYtLOrq4sjR46QlZXlnhDX+vWi923rVnFslTtYuVJ8D9vt/U7ksFgsVFdX09jYyIIFC5DL5UycOBF/f39CQkKcr53DaMTa0ICtoQF7Z9dongUAnd3dHCwoYMGsWQT0k/PmMgRwdBlwdBmwnj0HMlAEBqIKD0cZFkZERAQRERHY7Xbq6+s5d+6cM1euqqoKmUzGhAkTJKFwGcxmM9nZ2ahUKmbNmjVix1EoFMydO5d9+/ZRWFjoulGFXkaP9+2DDz7g/Pnz47rvm0zob5yAxIhy8uRJHnroIV599VWmTJkytJ1s2QJr1kB5OVyhfNrhcPDyyy8TGhrqWvGWmSmGCz/5xHX7HA6CILYs+eUvxZDcv/8Ng8gjKSkp4fTp06xYscK13rCqKrjzTjH37k9/gscfB6ClpYVDhw4RERHB3Llz3VNF5e7/4cGDsHChWMF7UZoCiF6PyspKampqALFvXk8/xh4cJhO2HsHW4d7JEe1dXaMn3i7HN4Sc7Bu5qAUFBZw5cwaVSsWkSZOIj4+XmgZ/g578YIvFwqJFi3q1jRkpampqOHHiBMuWLXPmw0n0xuFw8NJLLxEREcHtt98+asd1yXe2C/Eqz9u4Y/t2sa/aAPrelJSU0NzczM033+y645eUwOHDsGmT6/Y5XJ59Vuwd9j//Iwq4QXizGhsbKS8vJyUlxfVhzPh42LdPDKP2VKo+/jjBwcHMnTuXo0ePUlpa6pwIMqqsWyeGeevrxWKO0SYjQyyg2LbtEvF29OhRTCYTSUlJTJo0ySkwxpJgG5MIYG9tw97aBqdOoQwKQtkj5C54kZKSkqisrKSiooKKigqWL18+KgLFU2hra8NsNpOVlTVqr8uECRMICwsb0ASX8YpcLmfRokVs2bKFhoYGwsPD3W2SW5BKkTyZXbsGFA4UBIG9e/eSmJjo2gaxb74pttf41rdct8/h8Pvfi6LtN78Rc/AGIdzMZjPHjh0jPDx85JpAqlSi1+3JJ0UB969/ARAZGcmcOXOcVZCjzh13iOHKd95xz/GVSli+HOGrr6ivr+fgwYPOFj1z587l6quvFnuvKRRYas/SnZuL4eAhzOUVknAbCALYWloxlZ6k68ABjHl5WOsb0Ol0zJgxg6uvvpoZM2Y4BUpJSQltbW3utdmN9ASjQkNDWbFixajnMmu1Wux2O2VlZc7+gxK96cnd3O9ls5EHgyTePBWjUexZNoAE2lOnTlFfX88SV86QtNvFkORdd7kn0f2bvPOOWOX5i1+IrS8GSVFREQBpaWkjG7qUycQcs0cegYceEseaIYYD9Xo9VquVurq6kTt+XwQFiQPrX39dDDuPMg6Hg7bkZGxHj3I4JweHw4H9woQLX19f5HY75soqUbCdOoW9XRrqPWQcgijkiorozs7GUluLSqFw3jiYzWbOnz/Pvn37OHjwIPX19Yy3zJqioiIKCwsB3JYPaDAYOHnypHOetkRvFAoFCxcu5MSJE7S0tLjbHLcgiTdPpahIbINxhSTaHq/bxIkTe7VHGTZ798K5c2OjKe+BA2Kz3XXrxIrSITB16lTS09MHPYljSMhkYi+4668Xe8Fd+KIAcWza0aNHR1/A3XefaMeFvoijyalTpzil0aDq6mJxfDyLFi0Spx50d2M6eRLDoUNYqqsR+pigMtYI8PXl+gUL3JvvNkAcRhPmU2WiKK6swnFhSszy5cuZN28eDoeDw4cPk52d7W5TR42ysjKqqqrc3q7D39+f5ORkysrKejWKl/ia2bNno9frx633TRJvnkpBgSgCZsy47GpVVVWcPXvWtV43EPOTIiJg7lzX7newNDTATTeJfe7+/vfLzhftC4vFgs1mw8fHZ3QnZCgUYmPj+HixwW+XWBmZmJhIVFQUubm5zukgo8JVV4FWOyLTDvqivr6esxf6l02aNInpd90FQOCZM9jb2zGeKMSQk4P17DkEuxQ6GkkEqxVLdTWGgwcxnTyJYDQSGRnJokWLWLhwobPq2mKx0N7e7l5jR5AzZ85QWlrKlClTXHujO0SSk5Px8/Pj+PHjUvi0D1QqFQsWLCA/P9+r35f9IYk3TyU/X2w6e4WKpEOHDhEZGen6PK7t28V8O3d3cP/xj8UQ7qZNQ5rukJ+fz6FDh0bAsAHg5wcffijOWX32WUAshZ89ezbBwcEcOXJk9O66dTpYskT8v44gBoOBw4cPc/jwYc6fPw+IOT76qVMRAgKwfP453bnHsDU2ggdG67qMRg6dOEGXceR7yrkch4D17DkMOTkYT5zA3t5OcHCwsx1DVVUVe/fupaCgwDkz2ltoaWmhoKCASZMmMdkFTZZdgVwuZ/bs2XR1dTln8Ur0Jj09HZVKxZEjR9xtyqgjiTdPpaDgiiHT5uZmysrKyMzMdG0eV329OJZrgCO5RowDB+CNN+C3v4UhDHo/e/bsJSPQRp2EBHE4/B/+4AxZyuVy5s2bh4+PD62traNny8qVsGePmE/pYhwOB6WlpezevZuOjg7S09OdDU+t9fUYcg5jj4tDVjT6YVtXYrfbaevsdObseSQC2Bqb6M49RvexY9guvAcnT57MjBkzOHfuHLt27aK6utpr8uECAwOZMWMGM64QyRht/P39Wb58uTQ2qx/UajWzZ88mNzcXqwekVbgSSbx5IoIwIPF25MgRfHx8XH9B+vJL8ecAG9+OCDab2CstIwMefHDQm5tMJk6cOEFMTIz7L4w//CFMmiRWoF74MuwZ8dQTvhmVsMm114LJBCOQQyKTyWhtbSUpKYnly5cTFRWFvauL7mPHMBUV4+juxpGQgLyy0uXHlhg69rZ2jMfzMBYWIVgsxMfHO/9/hYWFdHZ6drVvZ2cnra2tyOVyJk2a5J4+i1egp9/b2bNnpfBpH8ybNw+TyeQsMhkvSOLNEzl3Dlpa4DJduM1mM8ePH2fu3Lmu71m2bRukpbmkJ9jKTSt5ev/Tg9/w5ZfhxAlxgsEQQrcnTpxgh2EH95+4f/DHdjVaLfzlL7B7N2ff/Rsz35zJR+UfOacGVFdXc/DgwZH35kyfDtHRLst76+jo4ODBgzQ3NyOTycjKymLKlCnIHQ5MJ0/RfeQI9ravc1UcCQnIa2vAy0Jy3oCtoUGsTq2uRq1SkZqa6myjIQgCpaWlmEwmd5s5KIxGI9nZ2c5K87GMwWAgLy+PU6dOuduUMUdwcDDJycnk5OR4jSd4IEjizRPJzxd/Xsbzlp+fj9Vqdf0sPkEQh4gPwOt2qvUUP9j9A67ddC1z/z2XFRtX8ND2h3inZJj9xM6fF1uCPProkAsm4uPjh+Vx21C6gY/KPxry9pdw3XVw883w3K8veSooKIjOzk6OHj06snfeMpnofduxY1i7sVqtFBYWsnfvXsxmcy9vhvXsWQzZOeKw9W9cZ+2JicgcDuTV1cM6vsTIINgdmCur6D58GFtTk7MvnMFg4MyZM+zatYvy8nKP8A5ZrVays7ORy+UjNq/Ulej1epKTkykvLx+XyflXIjMzk7q6Os6cOeNuU0YNSbx5IgUFYrJ7PxVRgiBw+PBhpk6d6voh1OfPiwn2CxZcdrW8hjzu2HoHJ1tOckvyLfws82fcPPlm5DJ5L/H2yU2f8KsFvxqcDX/8o9jY9deXCp0r0fPFEhoail6vH/T2Pbx38j0+Lv94yNv3yR//CG2X5rgFBASQnp5OU1MT+T3CfaSYP19sGTJEL0pnZyd79uyhpqaGlJQUli5dSnBwMPa2NoxHj2I6earflh+OuEkIMhnyyorhnIFb8dFqmZWcjI8Xd8h3dBsxFpzAWFCAo7sbX19fli9fTlxcHKWlpRw4cIDu7m53m9kvdrudnJwcLBYLWVlZHjPNICkpCT8/PwoKCsaVh2kgJCQkEBoaSk5OjrtNGTWk8VieyMmTMG1av20xKisraWpq4oYbbnD9sQsKxJ9XGJz8j4J/4Kf2491vvYu/uneH8mbj1y0w1IpBVojabGJz4HvuEZvLDpLi4mK6u7vJyMgY9LYjzsSJoueL8ku8UmFhYaSlpXHs2DECAgJISEgYGRtSU8X+gcXFMGfOoDfXarUEBweTkpKCTqfDYbFgKi/HWld/5Y11OoTISORnaoZg+NhApVQSM4TiGU/E1tSMraUF9cSJqOPimD59OjExMeTm5tLU1OS+iSFXwGg0YrFYyMzMHNYN3Ggjl8uZOXMmBw4c4Pz580RHR7vbpDGDTCYjIyODL774gvb2dtc7LcYgkufNE6mrgwvl+32Rk5NDZGTkyFw88/Mv6/XroaazhsTAxEuEG0CI7ut+at/Mefuo/CNmvjmTY/XHeD7neZZsWMKC/yzgfw/9L1a7lY4vPuZnNyhYMC+HBe8u4A9H/9DrLvRI3RFmvjmTI3W9S8fPdp1l5psz+aD0g8v2c/uw7EMe3PYgS99bypx/z2HNR2t4r/S9Xuus3LSS8rZyjtYfZeabM5n55ky+88V3nM93WDr43eHfcfX7VzPn33NYtXkVr514DYfQO5zUYeng6f1PM/8/81nwnwU8vf9pOm++MGqsj9BhTEwM6enpI/ulOH26eFMwCA+f2WwmNzcXo9GISqVizpw5aLVaLDU1dGdnD0y4XUAIDkY+mhW2LsZitXK6rg7LeKl8cwhYqk9jyM7G2tBAYGAgy5Ytc75Hz549O6Yqbx0Oh9NTGBgY6G5zBk1wcDBZWVnO9i0SX5OamopKpeLo0aPuNmVUkDxvnkh9vVhl2QctLS2UlZVxww03jEzlVEEBzJx5xSKBaN9o8hvzKWstIzlo8K04nj/8PCG6EB5Pe5yCxgI2ndqEn9qP/LINRAYH8eS8/2Lf2f28XvQ6SUFJ3Jh442X31yPwNFoN8fHx/a638eRGEgMTWTZhGQqZgj21e3gu5zkcOLhz6p0A/CjjRzyf8zw+Kh8emvkQ8LUgNdqMfOeL79DQ3cDayWuJ1EeS35jPn479iSZjEz/O+LHTnu/v+j7HG46zdvJaEgIS2HVmF08LJaIhB/bDNf/vEvt6LtoGg4GOjg7XX8R9fSEx8WsP6xVobGzk+PHjgFjB2+NtMxcXY2sZvAhzBAUh82DxZjSbKa6sJNDXF7WrC4XGMILZgqmwCHt0C5oLrXeMRiP5+fmUlZUxd+5ct08tKC0tpbW1laysrDFZVTpQwi54do1GozPvUAI0Go2zbciSJUtcX6g3xpDEmydSX99vpeeRI0fQarXMnDlzZI5dUACLFl1xtfun38/jXz7O2k/WMiN0BnMi5pAVmcW8qHmo5Ff+UIVoQ/jrir8ik8m4Y+odnOk8wxuFb7C2oJVfzPwvmHoHt05ey8oPVvJh2YdXFG9158VxU7Gxsc4qzr54/brX0Sq/zoG5K+UuHt3xKG8VveUUbysmruCl4y8RqAnkhsTeoem3it6iprOG9294nzh/0Tt525TbCNOF8UbRG9w//X4i9ZF8VfMVufW5/GDuD/jODNFrd/uU23lg2wPijrKzwWzud25sdXU1VVVVZGZmOi/mLmPWrCuKN0EQnLMXw8LCmD17NhqNBltLC6biEoQhVowKQUHIS0qGtK2E+7GeO4+9vQPt9OnofPUsXryY3Nxc9u3bx4wZM9wWSq2qqqKsrIzp06d7tHDrobm5mUOHDrFo0SKP9CCOFBkZGeTk5FBYWMjs2bPdbc6IIoVNPQ2HQxwJ1Yd4s1gsI9ceBEQxUVp6xXw3gAXRC3h71dssm7CMU62neL3wdR758hGufv9qvjrz1RW3vyn5pl4X2ZmhMxEQuHlvK9x9NwAKuYLpIdOp7aq94v56PG++V5g5ebFw67R00mpqJT0yndquWjotV+5ptf30duZEzMFf7U+rqdX5yIrOwi7YOVovuvT3nd2HUqbk9im3O7dVyBXclSKOicJggK1b+z1OSkoK4eHhHDlyhLa2tivaNShSU8Ww6WWSoru7u6mqqiIlJYXMzEzUajXmigqMeflDFm4gijdP9rxJgMNgwJh7FOvZs/j5+bF48WJiYmLIz8+npmb08xnPnj1LYWEhiYmJI5crOsoEBwfj7+8vFS98g+DgYJKSkjh8+LDXvy6S583TaG0Vk/b7EG8FBQWYzWbmzZs3MseuqBCPPW3agFafETqDF5e/iNVu5WTrSXae2cm/i//ND/b8gE03bCIxsP+RXVH63uFAP7UYcomYtbDXufuqfekwX3mEVHTMwJJ7jzcc5+W8lyloLMBo6z1poMvS5bSjP850nOFU6ymWvNf3LNkWYwsA57vOE+oTio+q93izSf6TxF/iJsH778Mtt/S5H7lczty5czl06BA5OTksWrTIdcnX06ZBc7P4CA3t9VRjYyPBwcHo9XquvvpqVCoVDpMJU1ER9vbhj/ISgoKQtbWJNynuHr0mMWQEu9jLz9bahnbKZFJTU4mMjHR6ia1W66iEtXr6o8XGxpKSkjLixxstZDIZM2fOZP/+/Zw+fdo5f1ZCbBvy9ttvU1NTM2aLZlyBJN48jfoLyd99iLdjx44xefLkkau0qRNDjwyyykmlUDEjdAYzQmcQ5x/HLw78gu3V23ks7bF+t1HIFL0XXLiLUsy7NNdPuMwQzPb2dmpqavCNvbzHDaCmo4b129YTHxDPD9N/SKQ+EpVcxb6z+/h38b9xcOX+VQ7Bwfyo+c5Q6DdxirMrkZwE7+ZddhWFQuEMExiNRteJt548uro6p3jracRaXl7OrFmziIuLQ6VSYWtsxFRaimC1ueTQQlAQMrsdOjvBAyvGlAoFIYGBKBWKK688DrA1NNDdKYZRIy5cs7q6uti/fz/Tpk0b8S9XvV7PnDlziIiI8Ipw6cUEBQUxceJESktLiY6ORj2E2c7eSGJiIsHBwRw7dkwSbxJjiH7EW319PefOneOOO+4Y9WMPhukh0wFoNDYObsOeMTzTp192tZ7q1g6L6AUqKirCYrHQFdx1xUPsrt2NxWHhL1f9hSjfrz1/36xcvRwT/CbQbetmfvT8y64X5RtFzvkcuq3dvbxv1R3V4i+xE6BsM3R3g49P3ztBnO23aNEiZDIZgiDgcDhQDFc49Px/6+thxgwcDgf5+fnU1tYyffp04uLiEBwOzGXlYrNdFyIEBQMgb23F4YHiTa/TkTFAz/R4wWE00X3sGJqEBNQTJ+Lj40N0dDT5+fmYzeYRmS1sMBhoa2sjJibGqyszU1JSUCqlr/GLkclkpKamcuDAAVatWuW1olaKS3ga/Qio/Px8fHx8RnbIen096HRiReIVOHy+75yDfWf3AYPwQPXQ4/W7whdjtG80CpmC3Ppc6uvraW5uZtq0aWw8tfGKh5DLxI/DxZ68Tktnn5MUfJQ+febArZy0kvzGfA6cPXDJcx2WDmwO0UO1OGYxNsHGeye/bkNid9j5T8l/xD8mxIqhwwGM7unxKBQWFpKTkzP8DvcXiTeHw8Hhw4c5d+4cc+fOJSEhAYfBQPfRoy4XbiBWmwLIWltcvu/RQBAEbHa71+fbDBqHgLm8AmN+PjKbjVmzZjFlyhRKS0spLCx06etlNpvJzs7m1KlTHjHtYTio1WqmT5/utQJlqKSmpmKxWCguLna3KSOGJNk9jfp6cRbmRWX3DoeDgoICZs2aNXyvy5WOHRHRb3Pgi3n+8PMYbUZWTFxBfEA8VoeVvIY8tlVvI8Y3hm8nf3twx26oBz8gNvayq/mp/bg27lreLXmX2ppaonRRfFbwGS2mK4uBBdELUMlVfHfXd1k7eS3d1m4+KPuAYG3wJZ7ClJAUNp7cyN/z/85E/4kEa4PJjMpk3Yx1fFXzFd/d+V3WJK1hWsg0jDYjp1pPseP0Drbdso0gbRDLJixjdvhsXjz2Ime7zpIYmMjO0zvpsl7wEMbGiq9zQQEMMIcxJiaGQ4cOcezYMebOnTv0MJGvryjS6+uRy+UEBQWRmJhIWFiYOCnhxAmXhUm/ieAUb55ZtNBhMHCwoIAFs2YRMICbnPGGrbmF7mPH0M2axeTJk9FoNJw6dYqkpCSXTDqw2WzOG5gFCxZctrLcm6itraW1tXXkugx4GIGBgcTHx5Ofn09aWpq7zRkRJPHmabS0QEhILwFVXl5OV1fXyL9JL9Oi5Js8lf4U26u3s+/sPjad2oTVYSVKH8XtU27n4VkP99m894rH9uMS4Xiy5SRWR++GqD/N/CkGk4H9dfvRmrRcF38dT819ipu23HTZQ8QHxPOHZX/gL8f/wgtHXyBUF8ptU24jSBPELw/+kneK38FX7cvjaY/zaOqjnDec5/Wi1zFYDaRHpJMZlYlOqeON697g1ROvsr16O1sqtuCr8iXOP44n0p7AVy1+octlcv5y1V/43eHf8Wnlp8iQsWzCMn4474es/WQtqNWQnDzgfmsgVlrNnTuXo0ePUlhYOPQLuUyGIzyc7ooKfIEpU6YAYGtsxFhUBI4R9CrpdAhKJbKOK1f2Sngmjm4j3ceOo0sVcydjYmJQKpXYbOINwVDDgA6HgyNHjtDd3c2CBQvGVQ80h8NBdXU1EyZMkFqHXCAtLY0PP/yQtrY2r3xNJPHmadhs4hf7ReTl5REZGTmsQesDYhDibVHMIhbFXLkf3LZbt/X6+9tJ3+bbSd++ZL3HN9fz+PLlcH/vkVhXx13NybyT/C3/bzya+igAQdogXl75MgaDoVcS/4n7T/TeZ9rjPJ72eK9lyyYsY9mEZeIfZWXwr39BdTVxPjH8ou6f3HDdDwAI1YXy8oqX+zwnH5UPT855kifnPHnZcw/QBPCbxb+5ZLnTzlnvDGrSAUBkZCSzZs0iPz+f0NDQIeX7dHR04NDpMJaX4+NwIJfLsZ49i+nUqUvGdrkcmUycWzuGuvJLuB7BYsF4/DjamTNRXvC2Hj9+HKPRSGZmJpp++hteDpvNhsPhYN68efj7D/Lm0MOZMGEClZWVFBcXs+AKc6fHCykpKXz66afk5+ezdOlSd5vjciTx5mnYbHBRaLS7u5uTJ09yzTXXjPyxOzuvOBZrxDh3Tpz9+Q16BNvLeS87/+7q6kKv1w+v+vL112H9etELJTiYhcAnyJBHaOHKbe5cQ1zcoDxvPUycOBGdTkfoN9p8DITm5maOHDlChp8f4T4+yOVyzFVVWKqqB72vIaNQSOJtHCDY7Bjz89GmTEMVEc6UKVPIyclh//79ZGVlDerza7VaUavVLFy4cAQtHrvIZDJSUlI4fPgwDQ0NhIeHu9skt9OTD5iXl8eSJUu8rtp4fCQEeBM2m+iZuEBPsu+o5DrY7b2OPaqYzWKuXx88mvooT6Q9wct5L/PKsVfYv38/5eXlQz9WWZko3BwOsNuROwSUDpA7BHjwQRjOvgeDViue9xAICwtDJpPR2NhIXU+xxxVobGwkOzubgIAAAkNDkQsCppOnRle4AcgVYrsQCe/HIWAqLsJSW4u/vz8LFy5EJpNx4MAB2tvbB7SLsrIy9u7d6wy7jlciIiIIDg7m7AgUEnkqaWlptLa2cubMGXeb4nIk8eZpfEO85eXlMXnyZNf1+BrEsUcNQQCTqV/xBl8LuL+e+Cs7unYMr7/Pv/7Vf1GGTAavvTb0fQ8GjUY872FQU1NDbm4uLS1XLtjw9/dn0qRJZGZmIlMqcbS0jkhF6ZUQFApweKZ48/PxYcW8efhdpr2LxDcQwHyqDHNlJT4+PixatAidTkdzc/MVNz1z5gylpaVMmDBBapkBzJs3z+vHQg2GiRMnEhQURF5enrtNcTmSePM07HZn5/mGhgbOnTs3etU0Fx17VHE4RAF3hY7s66as4xqfa9hu2M7rpa8P/XjV1TiEfloMCAJUVw9934NBpQKr9crrXYa0tDSCg4M5fPgwHR19T0A4f/48JpMJjUYjzn50OLB3dSGYjH2uP+LIZWD3zBYPcrkctUo1bqocXYml+jSm0lJUKhULFy50jrKy9DNurb6+noKCAuLi4pg8efJomjpm6WkZ0tbW5vVtUgaCTCYjLS3N2e/Tm5CuMJ7GRcnceXl5I9/brZ9jjyoKhfi4woevvLyca/2u5bFZj/Fy3sv8Lf9vQzrcMZ9WHP1l5stkMFqjaCyWfgfTDxS5XE56ejo6nc45ieFizp8/T25urjOs4LBY6D52TPT4uWtKgMPhvmMPE4PRyNHSEgxGNwlfD8d67jymwkJkF/q+nT9/nl27dl0SQrVarRw7dozIyEipPcY36O7uZt++fdTWXnnm83igp+dbSUmJu01xKZJ48zSUSrhQVTUqvd0uxp2J5AMIIfr7+zN16lQen/24MwdusALub/l/4xeTK5HTT9hUuJD3NhqYTMMWbwAqlYqsrCx8fX173Y03NjZy7NgxoqOjSU5OxmE2Yzx2DEeXAex2BDd5j2R2u8eKN5vdTmNLKzYpZ2/I2BqbMOYXINjthIWF4evrS3Z2Nl1dX09JUalUZGZmMmfOHK9LRB8uPj4+REVFUV5eLjWL5uueb94WOpXEm6dxwftVVVVFV1cXs2bNGt1jDzOMN2S0WnFU1GWYOHGic0DzxUUMAxVwf8v/Gy/nvcwN1/0A+Wv/EkPECkXvn6+9BklJwz2bgWE0XjbPbzBoNBrmz5+PXq/HZrPR2NjIkSNHCAsLE8PuNhvGvHwc3Rc8RjY3CiiHQ8x7kxi32NvaMBUWopDLna1DDh06REtLC6dOnUIQBIKDg6XwdD8kJydjMBg4d+6cu00ZE6SmplJVVUVnp/f0j5QyPD2NC563kpISgoKCRnduX1AQuKvzfXx8v1WeVquV0tJSZ8f2HvpqI9IfPcLtibQnxPVSgUWLRLFWXS2GSh98cPSEG4hVr/HxLt/t4cOHaWlpcTb1lTkcGPPzcRgMznVkXZ04oka4b2B/eLDnTcJ12JpbMJWUoJ02jaysLPbs2cPGjRtJSkpi0qRJ0kioyxAQEEB4eDhlZWVER0ePe+/klClTkMvllJSUkJGR4W5zXIIk3jwNtRrBZKKkpITU1NTR/VBGREBu7ugd72Jmzeq3YW1VVRU1NTV9Ji0PRMBdItx6SEqC5593gfFDpKAA7rrLpbu02WwkJydz+PBhdDodcpkMY0EB9m9MNJC1tjpHVY0qgiDm+ikl8SYBtvoGzEolqqQklEolEyZMYP78+ZJwGwCTJ0+mrq4Oh8Mxeqk1YxSdTkd8fLwk3iTcSGgoNDXR3dXFtCsMaXc5ERFfD4gfbWbNgnffvaRdic1mo7KykokTJ/bblf1yAq5f4eZuWluhpkY8bxdhtVo5cOAAMTExpKWlkZubC2fOkOT3jW70goCsrc094q2zE5nDgRAQOPrHdgFatZqpkyahlcSFy7DUnuVoURFmrdbZhLewsFCsjB7nHqXLERQURJA7PsNjlGnTprF169ZLJu94KlLCgKcREYHMZiNMqSQmJmbUj01Dg+gdGW1mzRIT+L8ROq2ursZut5N0hXBmXzlwY1a4wdeTFVwk3hwOB0ePHsVkMhEZGUlMTAzJOh1lJwppuygRHICuLmRWq1vEm/xCWN4twtEFaNRq4qOj0UjizWUIggCNTaTGxBAYGIjBYKC6uprCwkJ3mzbmEQSBsrIympqa3G2K25k6dSoAJ0+edLMlrkHyvHkYQng4MmBmePjo33VGRIgFC62tEBw8usfuETEFBXDhQygIAlVVVUyYMAHtABL7L/bA/aPgH1gd1rEp3EA8T7UaLgyFHy75+fm0tLSQlZWFn58flupqYhVK/GbNIsDXt9e67hRQsgvHdnioeLPabDS1tREaGIhKaho7bEwWC1q1mtTkZGhpwdbYSHh4ODNnzqSgoAAfHx8SExPdbeaYRSaTUV9fT0NDw5DG5XkTer2euLg4iouLmTNnjrvNGTaS583DqL/wM9kdg5d7htLX119+vZEgNBSio3vlvclkMubPnz+oBp2Ppj6KSq7C6rCikqvGpnAD8TynTbtiY+KBcObMGWpra0lLSyMkJARrfT3myioAp3CrOneOprY2wL0CSubhnrduk4m8U6foHuZkDAmoPn+ePcePff1aCmAqLsbe3k5cXBzJyckUFxcPePzbeCU5OZmWlpYBTVnxdlJSUqiqqsLkBZ9PSbx5GMUXRsaEuyN02VPZ6q7mj+np8NVXzj8FQcDX13dAXrce/pb/N6dwszqsQ27kO6IIAuzeLZ6vC4iNjSUzM5OYmBhsra2YvtGsUhAEmtrbyT1ZSltXF7LGRnF5cIhLjj8YZK2tCCoVeEFOisTQOd/URElVFXERkfhc9PkW7A6MBSdwdHczZcqU4Y3BGyeEh4fj6+tLZWWlu01xOykpKdjtdq8InUrizYMQBIET1dXYVSrkF75gR5X4eNDpwF25JnfdBYcOwalTNDY2smvXLsyDGNx+cY7bsXuPDbmR74hz4ABUVAy70tRsNtPe3o5cLic8PByHwYCpsBAcvYW/TCZjzuTJ+PvoOVpSgrG8DEdYmFsElLPKVUpEH7c0tbWRX15OdFgYU+LiLnlesFoxFhSAzUZqaiqRkWJLG6khbd/IZDLi4+Opq6vzCo/TcPD39yc2NtYrpi1I4s2DqK+vp7WtTfxidUfoUqGAGTP6bdkx4qxZAwEB8OabVFVVoVQq+60w/SZ9FScMpZHvqPDGGxAXB0uXDnkXgiBw/Phxjhw5gsPhQLDbMRYWIVhtfa6vUCiYO3UqaqWSowUFdE9yfX+5geC2FiUSYwKHw0FRVSUhAQHMTEzsN6/X0W3EVFrq/Pv48eNe8YU8UsTGxjJ//vxBRSm8lWnTplFeXu7xs04l8eZBFBcXo9VqUUZHu0e8gVg40FMJOdpotXDnnTjefJP6c+eIH2AD28tVlY45AWcwwMaNcP/94kSHIVJRUUFjYyOpqanI5XLMZWW9mvD2hVqlYt60aQTX18OFoeCjjby1xaPFm0KhwN9XP+77ag0VuVxO+tQUZk+efMXpCbbGJiwXUjgCAgKoqKig3l3XxTGOUqkkJGT00yDGIikpKdhsNsrKytxtyrCQxJsHUVJSwpQpU5BFRrpXvBUVif3W3MG6dcjPniWqpGRArVIG0g5kTAm4Dz+Ezk64774h76KlpYXS0lKSk5MJCwvDWl+P9dz5AW2rM5lIb2tDkZSE0WzuNQt1NJC1tuIIGuVKZhfiq9OxcFYqvjqdu03xKMwWCycqKrDZ7eh1OpQDFL/m8nLsnZ0kJCQQERFBXl7euA8N9ofD4eDAgQPU1NS42xS30jOZyNM9tZJ48xCamppobGwUG/NGRcHZs+4xJDVV7IB/6pR7jp+RQffEiSQfOHBF78Zg+riNGQH3xhuwZAkMo/1BUVERQUFBTJkyBUd3N+ZBJOcqqsQqVFt8PNmFheSVlY1qLpGsqQkhxHPFm8TgsdntHC0tobG1FetgbwodAqaiIgSbjbS0NORyObm5uVL+Wx/I5XKUSiVVFz7j45mUlBROnTqFzV1OCBcgiTcPoaysDKVSSUJCAkyfDiUl7vF+zZwp/nRX3ptMhu6JJ/DfsUNM6u+HoTTgdbuAO3oUdu2C73xnWLuZN28ec+fOBaHni80+4G3lFRVitefEiUyLj6e+pYXi0brYd3Qgb27GETdpdI43ArR3dfFFdjbt32x8LNEnDoeD3NJSuk1m0lNS0A0wh7XXPrqNmE6eRK1WM3fuXCk8eBni4+Npb28f921DpkyZgsVi4cyZM+42ZchI4s1DqKioIC4uDpVKJYYuzWZxcPloExwMycmwd+/oHxswGAzInnhCDB1///t9TnsYzuQEtwk4hwMef1wsCLnnniHtor6+HovFglarRavVXggpDU5EKE4U4Jg8GRQKIoKDmZGQwJm6OspHoT1Mj9fP4aZ8O1chjHKo2VMRBIH88nJaOzuZM2UK/sOobrbVN2A9d47g4GCmTp2KTCbDbh/4Tct4ISwsDL1eP+69bz3tUyou4wAY60jizQOw2WycPn36607iF08bcAfXXgvbt4/6YZuamti1axcddju8+CJ89hl88kmvdVwx8sotAu611+DIEXj55V6zWwdKW1sbR48edV6UbY2NWGsHGVq321EeO4YtfZ5z0YSICJInTqTibC2mEa7O6vH6OSZMGNHjSIwNZDIZ/no9acnJhAQEDHt/5rIy7F1iUc758+cH3UpoPNDTNqSpqWlci1uZTEZiYqIk3iRGljNnzmC1Wr8WbyEhEBPjvtDlypVQWXnZsOVIUFNTg16vx9/fH779bbjuOtH71t0NuHZW6agKuKYm+MlPxCKFxYsHvbnt/2fvveMjOcj7//fM9qKVVm3VpVOXrun6+c4d22eKnVAMhhAg3xBCDPxIaKYkJKGb8iWU0CGUb0IJgVCMsY17u/P1pi6deq+72l7m98dq16d6KltmNft+ve5la3dn5pnZnZlnnvJ5AgHOnDmDxWKhpqaGkMezQEZhrYitrQhOJ4EDBxa8Xl1Swg27m+I+bF3s7iZUURGWpEmzpXHMn7NVxcUUxCjNKQVDeC5dQgoGyc7OjsrlpOvfFlJWVsZtt92m+I7oqqoqRkZGmEvREoe085YCdHV1YTabyc/Pf+nFZEp23HxzODr08MMJ22QgEGB4eJjSSFRGEOBrX4PhYfjsZ+MyZD5hDtxHPwrBIHz+8xtavKWlBa/Xy969exEEIVzntoKe22qoT51EMpvDadNFGPV6QqEQF7u6mLLbN2TntVB1d6V8yjTNtekfHeXZc+fi8jsKuVx429vR6XTs2bOH8fHxlK5rigcqlQqVSoXf70+2KUklEgxJ1ckTaectBejs7KRqsWDl7t3Jc94yMuDIkYSmToeHhwkGg5SUlLz0YnU13H8/37r8vZg7bhHi7sA9+yx873vwqU+9NDt2HXg8Hvr6+qirq8NkMuHr7iY4u7GbovrUKQJ7964a+XJ5PJxubY1GTmJGMIh45QrBFB8ybjYYuL6pKS0VsgJjU1Nc6u6m1GYjO07zmf3DI/hHR8nLy6O0tJSWlpaUF2SNNXa7nUceeYSZ+XnGSsRkMlFYWEhnZ2eyTdkQaedN5jgcDkZHR6murl74xq5d0N8P84O8E86xY+HOyAQ9vfn9fgoLCzEsuil+6+58/v3PcnnXEz7eWfy6uGw7bg5cby+89rVhR/jv/m5Dq9Dr9dxwww1UVFQQdDjwbTTKMDeH2NpKcP+BFT8iiiJ76+ow6HScbG7GHcN6ImFoEMHnS/nIm0qlIsNoVHxKajmm7HbOtLdjy85me5y/Z297O5LPR0NDAwUFBenU6SIyMjLQarWK13yrqqqiu7s7JX8faedN5kRCupWLL3bJblp4+cvDYrKPP56QzVVWVrJ/mUHtIbXIuyr+gnc+NAOvfnW4CzcORBy4kBSjTkK7HV71qvD80F//ekN1Xg6HA0mSsFgs4SkK7e2wwWuQ+oUXEEKhJfVui9Go1exvaEAURU42N69fl2sFVF3h33loW2o7b26vl4tdXTF1bLcKHf39WDPMNNXUrDj2KlZI/gDe7m50Oh1NTU1rHqOnFARBoKSkhMHBwYQLccuJqqoq5ubmUnIyR9p5kzldXV0UFhZiWtxGX1sLWm3ynLemJmhshB/9KO6bmp2dXbE+476m+3jnTR+G3/wm3K35xjfGLRr4zt3v5L6m+za/IpcrPKe1rw9+/3vIy1v3Kvx+P88//zyt840J/qGhDadLATSPPExgdxPS1XWVK6DXajnQ0EBBTs6alfCvhdjdRSgnBykrKybrSxY+v5+B0VF8Cq8nWo69dXXsrau/5tirWOEfGiY4OwvA2NgYL774YkpGWOJFaWkpfr8/JR2XWFFaWopGo0nJrtO08yZjJEmiq6vrpS7Tq4novR0/nnjDINww8Na3hqNGcaybkCSJkydPXnuUyeHD8MtfhqVD3vKWcAOAHPF4whHCF1+EBx8MO8AboKWlhVAoRGVlJZLfj7dr40W3wugIqrNn8d9xx5qXMRkM1JaVIQgCM3Nzm356V7W0Eqqu2dQ60sgPfyDAqdYWnG43GrUazQZkcDaDt70dSZLQaDSMjo7S29ub0O3LGbPZTHZ2Ng6HI9mmJA21Wk1FRUXaeUsTW0ZGRnA6ncs7bwC33QaPPhoWeE0Gb35zeFTWL34Rt01MTk7idrsXNiqsxKteBT/7Gfz3f8PrXhdXp3JDjI7CK18ZFjj+3e/g+us3tJqZmRl6e3upr69Hp9Ph7e5G2kSkR/Poo6DTEbjppnUv6/P7OXH5Epc207Hl8aC6eIHAvr0bX0ca2REMBjnd2sqMY26j2fzN2+CYwz84iNVqpaysjNbW1rT221Vcd9111C7TXa4kqqur6e3tTbmmlrTzJmO6urrQarUvyWMs5tgxGB9Pnt5bUVHYhh/+MG6bGBgYwGQykZ29xnmXr30t/OpX8MQT4dRusiKTi3n00XCH8OXL8NBDcOutG1qNJElcvHgRi8USblKw2/EPDW3cLklC8/DDBG68CTbQIanVaNhZWcXg2BhtG4xqqC5cQPD7V22WSJNaSJLE2Y52Zp1z7G9oSGr3re/KFULzzQtAyg8kjyWiKBIKhXC73ck2JWlUVVURDAZTLiqb2Bh2nPH5fHz/+9/nkUceweFwUFVVxdvf/nYOXKMI+6mnnuLxxx+ntbWVqakp8vPzue6663jrW99KRkbGgs++/vWvZ2RkZMk67r77bj7wgQ/EdH+6u7spLy9HvVKq4ciRcMH7I4/Anj0x3faaedvb4A1vgLY2qKuL6apDoRAjIyNs27ZtfQvefTecOxeuf7vhBvj0p+EDH4AE1doswO+Hf/5n+NznwpHSn/xkQ5IgEQRBoLKyEqPRCBAeOr+JsIbq0iXEoSE879/4b7coLw+v309rTw9ajYZtRUXrWl596hShvDxCZWUbtkEu6LRaKouL0cVZ0FjuXO7uZnx6hv319WSZzUm1RfIH8HV2om9spKGhgStXrhAMBtMdwfOcO3cOl8vF9RvMBKQ6OTk5ZGZm0t3dTU1N6pRubCnn7bOf/SxPPvkk99xzDyUlJTz00EN86EMf4itf+Qq7It2Zy/DFL36RnJwc7rjjDmw2G11dXfz617/m+PHjfP/731/SqVRTU8Mb3vCGBa+tKa23DkKhEAMDA9x4440rf0irhVtuCYvl3n9/TLe/Zu6+G6xW+Na34MtfjumqfT4fVquVwsLC9S9cURFOT/7TP4WPzeOPhyOEBQUxtXFVenrgL/4CTpyAz3wGPvShTTmQkiQhCALFxcUA+AYG1z27dDGa3/2OUEEBwVXOj7WwragIn99P78gIZTbbum6MqtOnCOzbH66jTHH0Wi115eXJNiPp2LKzybZYyLNak20KAP6RUTRFRZSVlVFaWpqwpolUID8/n7Nnz+LxeNDr9ck2J+EIgkBZWVnKyaZsGeetubmZxx57jL/7u7/jjW98IwDHjh3jbW97G9/85jf55je/ueKyn/jEJ9izKHJVV1fHZz7zGR599FFe9apXLXgvNzeXO9ZR3L0RxsbG8Pl8K6dMI9xxB7z//eB0hqNwiUavh3e/G770pfCkgA10Tq68aj2HDh3a+Ao0mnDE65Zb4C//ErZtg7/6K3jf+8ICv/Hi0iX44hfhv/4LCgvhmWfguus2vdoLFy4gCAK7du1C8vnwXdmcMrgwNIj6icfxvutdMYlK1pWXs62oaF2OmzA+jqqnB99fvmXT25cDgWCQ2bk5Ms3mmHXiphJTdjvWjAzZOG1X42lvx3jgAKIoYrfbcTqdG3sw3GLYbDZEUWR4eHj9WY4tQmlpKc3Nzfj9fjQaTbLNWRNb5vHjqaeeQqVScffdd0df0+l0vPKVr+Ty5curtkMvdtyAaMSrp6dn2WX8fn9c6wT6+/tRqVQUXSsFdccd4dTck0/GzZZr8t73hqMm//ZvMVulJEmMj4/HRoPo2DFoaQk7l7/8ZTi9e8894Y7PWCFJ4e/gla+EnTvhscfgs58NO3IxcNwcDgd9fX3hua4w36SwOY017U9/ipSZif/lr9i0fdF1ajTzTQyXmVnDzEDV6VNIgkAgWWn/GON0u3nx8mWcCqwhGp6Y4MSlSwxPTCTblGUJzTnxDwwA4ev6+fPnCcRIpzCV0Wg05ObmMjw8nGxTkkZZWRnBYDCljsGWcd46OjooKSlZoocWKVJd7wiMyclJALKW0Z06c+YMd9xxB8eOHeP1r389//3f/33N9U1MTNDW1hb9d63iyL6+PgoLC6/9FFBbC+XlCR1VtYScnPCEgK9/PWYdnpOTkxw/fhx7rOYf5uSEU6i9vfDv/x6uiTt06KWauMceC4sOr4fp6XDK+l/+BQ4cCEf4+vvhxz+Grq5wRHRRzeRG6ejowGAwhC8ys7P4hzZ3kRHGxtA88gi+e+6BGAuYquaLoE+1tFzTiVGfOhWepZqZGVMbEkEwGMDtdjM7O8PExDjBUFiexul2MTE5wfj4OJOTE9jtdvz+1OpkWy+Ts7Oc7+ykKC+PwtzcZJuzIpHmhdraWoLB4IoP50qjsLCQQCCgWMHe/Px8tFptSs3B3TJp08nJSXJycpa8HnltYp1Pg//1X/+FSqXipkXyCZWVlezatYvS0lLsdjsPPfQQX/va15iYmODvVhlx9Nvf/pYfrqMrs7+/P+p4rooghKNvCRwSvyzvf394UPzXvw7/+I+bXt3w8DAGg2FZ53lTGAzwznfC3/xNWNj3u9+FL3wBZmfDqcPt28ORsr17ISsr/HmdLqzP5naHHbaTJ8NdrJGutZwcOHo0PJ/02LGY1245nU6GhobYsWMHoijivnJl0+vU/uLnYDDiv+vua394nahUKvbV13P80iVOtrRw3Y4dyxfwB4OoTp/Gf3fsbYglfr+Pubk5AoEgeXl5SEicOX0m6qxF2DXvqEeipKar6oeKi4ooLi7B4bDT29uHVqfFZDRiNpsxm82oVKl7KZ6dm+N0ays5mZnsXDyDWWZIgSD+3l70NTWUlpbS1dXFtm3bFN+8UFZWRtkWaBjaKKIoUlJSklJ1b6l7xViE1+tdNkqlnb9prEfb59FHH+XBBx/kjW9845Kas8997nML/n7FK17BBz/4QX7xi1/w2te+lvwVFOrvvvtujh49Gv27t7eXT33qU8t+1uFwMDMzc+16twjHjoWdkCtXwnVdyaCgIOwQffnL8Pd/D5voMJMkiZGRkWunjDeDSgWveU34XygEra3wwgthp+y558LHczk1dlEMiyPffDN8+MNhR6+6Oq7F9jMzMxgMBkpLSwna7QSmNjfPVpiaQvPgg/je9Bcw37Uaa7QaDQcaG3nh4kVOtrRwZOfOJUXiYkc7ot1OcN/SsWfJxuP1MDgwwNzcHN55/SeT0UheXh4CAqWlJajVarRaLVqtFo1GgyCIeP1zFOTb2LtrF5lmM6FQCJ/fh0oMOwcqtZoMSwZej4exsTEGh4YwGY1s374DgImJcTIzs1Km7gZgYGwMs8HAntralGgE8A8NoS0vp7q6mr6+Pnp7e5eOH1QoLpcr2smuNEpLSzl58mS0MUzubBnnTafTLTtCKSK8t9bZdufPn+eBBx7g4MGD/M3f/M01Py8IAq9//et58cUXOXfu3IqNDLm5ueSuMZ0Q8f7X7LzdcUf4Jvxf/wUf+9jalokHH/wgfOc78MAD8MlPbng109PTeDyexBUTi2J40kFjI/z1X4dfCwTCkTaXKzwvVa8PH2ODYUNzSDdDcXExhYWF4ahbDNI82h/9CDQafH/+55te12oYdDr2NzRgdzqXvalr/vQYIauV4PbtcbVjLXi9XqamphBEgQJbAaIg4PP5yM7OjkbHNJqXoof5+cvLvQiCgE6rjV78RVFEr3spAmc0GCkve6kb1eP1EJyvu/L5vFy50gNAhiWD7OxsrFlW2Ttyjdu2EQgGU6ZBQwqG8A0MYKysZM+ePWu+Lm91+vv7OX/+PMeOHZP9by4elJaW8tRTTzE1NbVsFk9uyP8xaY3k5ORE69SuJvLaWk7Qzs5OPvKRj1BZWcknPvGJlfXVFhGJtsWqPqu/v5+srKwlGnMrkpERnijwwx8uHy1KFGVlYTmMz38eOjo2vJpQKEReXh7WZHasqdXh42qzhfcrPz8cTUzwDWpiYoJgMIgoigTn5ghMLP2NrwextRXNg7/H+1d/FbN6vNWwmEyUzJ8fY1NTL82W9PtRP/YnArffnvBjGiEYDDAyMkxz82XOXzjP4NAgXo8HAK1WR0NDI6WlZVit2Qsct9WwmEzcun8/ljV2fut1ekwmc3Sbe/Y0UVFRgYBAb08vzc2Xo5+VkjanYCmBYJATly8xOTuLIAgJH3u1WfyDg0h+P8XFxemh9fPk5eVFsx5KpKSkBEEQUiZ1umWct+rqagYGBnA6nQteb25ujr6/GoODg3zgAx/AarXy+c9/fl2h46F5hftY1Wf19/evPeoW4W1vg85OeP75mNiwYT7ykbA8xnves2FHMjc3l8OHD6dE6DqeeL1eTpw4wZX5GjdfzyYVwINB9F/9CqHKSvx3/1kMLFw7c243p9vaaJ7fF/WJ44h2O/47jiXUDgBJChdle71eBgYG0Gq1VFdVsXfPXsrLKxJuz9Wo1Rry8vKoq6tjz54mqqrC1y2fz8v5c+cYGh4iGExuh2QoFOJ0ayuzc86Uc9oiSP4A/sFBIDyG8Nlnn1X80Hq9Xo/ValXsoHq9Xk9eXl7aeUs0N998M8FgkN/+9rfR13w+H3/4wx9obGzENq9qv9xw4snJSd7//vcjiiJf/OIXV3TC7HY7wUUDzwOBAP/5n/+JRqNZVnJkvfj9foaHh9fvvN10U7jrNI6jqtaE0Qhf+Uq4geJ//3fdi/t8PmZnZxV/IYXweDRRFCkvLyfkdBIYH9vU+jR/+AOqtjY8731vwqNdZoOBHZWV9I2M0DkwgPrhhwnW1RFKYI2my+2iq6uLy5fDD3RGo4k9e/ZQXV1DdnZOTOq17E4nj586hX3RQ+RGUKs1mOdrRwVBICvLytDgIGfPnaOvrw+fL/EzOiVJ4nxnJ9MOB/vq69ccYZQjvv4BpGAQo9HI9PQ0g/POnJLJz89nYmJCsdffVBLrTc3HpmVobGzklltu4Tvf+Q4zMzMUFxfzxz/+kZGREe6/avrApz/9ac6dO8fTTz8dfe2DH/wgQ0NDvPGNb+TixYtcvHgx+p7Vao2O13ruuef48Y9/zE033URhYSEOh4NHH32UK1eu8I53vCMmefLh4WGCweD6nTdRhLe8Jay19pWvxK0QfU3cfXdY7+y97w3X463jAj88PMzFixcVW3cRwefz0dPTQ2VlJRqNBk9n56bGYAkzM+i+/z38d95JaL44PtGU2mx4fD46mpvJfuEFbO9+T0K26/V66evrY3pmGp1WS0FBIZIUQhDEmHd5SpKE1+eL+c1Po9FSUVFBcXExo6OjjI2N4vf7qaqqiul2rkVHfz8jExPsqasjJwXlXa5G8vvxDw5iKSvDZrPR0dFBcXGxoiP+eXl59Pb24na7Fdm4UFpayqlTp1Ji2sSWcd4APvrRj2Kz2Xj44YeZm5ujsrKSBx54gKamplWXi2jA/fSnP13yXlNTU9R5q6yspLy8nEcffZSZmRnUajU1NTX867/+K7fccktM9qGvrw+tVhuNFK6Lt7413Cjw61+HxzIlC0EIO5Dbt4c10L7whTUvOj4+jtUq/yLteBNJlVZWVhJyu/Fvsg5F9+1vgyThffu1m3DiSU1pKaE/PMigKGK9+WbifZuUkGhta0UKhaiqrCQ7Jwch7luNHxqNhpKSEoqKiqJZgOmZafx+f7QTNp4U5eVhMhgoSIGC7rXg6+9HU1JCTU0Nzz77LCMjI4qeumC1Wrn99tuTbUbSiARN+vv7ZT/ndEs5bzqdjvvuu4/77rtvxc989atfXfLa1VG41airq1siFRJrBgcHKS4u3lgKp6oqLDr7wx8m13mL2PKv/xqugbv99nAE7hpIksTExES6bZ/wRbShoQGtVotnk8Pn1Y89huaRh3F/8INIMhhb1HTyJMEjR/BlZcWtLX96egqTyYRWq6Ompga9Tp8SMhZrRRTF6P445+YYGh5mfGyM8vJyzObYN6KMT09jtVgwGwyYDYaYrz9ZSF4f/qFhrCXF5ObmMjo6qmjnLUIqjYmKJVarFZPJxMDAgOydt61zNdsijIyMULCZ4elve1t4WoAc8vYf/GDYcfvLv4Q1jB2ZmZmJRhCUTn5+Ptu2bSPk9eLfxMgWYWAA/Zf/L/6XvYzAsTtjaOHGEDs7UV+5QvDOlzPndvPMuXM4XK6Yrd/v99HW1kZHZydTU1NAWJ5jKzluiykpKaWxoRFBEGhuaeFKz5WYKuWPTU1xqrWV3i3ahejv60UKhdi/f/81szRKYHh4mIcffnhZ6a2tjiAIFBQUpETTxta9oqUgXq+X6enpjaVMI9xzT1iL7Ec/ip1hG0UUw6OiRBHe/GZY1OyxGJ/PR2ZmZuynKqQQkiRx/vz5qOyMv68PQhsMu/l8GD75CaTsbDx//w9xFRJeK5o//jGs7XbgADqNBlEUOdncjHsdItorMTs7w6VLl3C7XdTV1lJQkPgIislg4OD27ZgSHJ0ym800NDZSUVGBx+2O2Vc9ZbdztqOdfKuVyniKZieRkMdLYHQ0GmlarFigNDIzM6NZECVis9nSzlua9TE2Fu4m3JTzlpEBb3xjeH6nHIZj22zwn/8JTzwRHtS+6kdt3HjjjYouGJ6cnKSvr49gMIgUCOCfl6HZCLrvfBuxtxf3P308uQ0sEWZn0fzxIfwvfwWoVGjUavY3NEQdON8mnvT9fh8dHR2YTCZ27NhBZmZW7OxeB2qVipzMzKQI1goI5Ofl09DQiCCIuN1uxsY2fhNyuFycbm0ly2xmT23tlj4vfX3hTMXg4CBPPPEEnnm9PyViNBoxmUyMj48n25SkYLPZmJ6eXtdUpmSQdt5kxOjoKKIobj5teP/9MDYGP/hBbAzbLLfeGh4K/8//DE8+uexHgsGgoi+YEfr7+zGZTFitVgJjY0jBjaW/1E8/jfbXv8b7zr8jJJPaDe2vfw2hEP7Xvjb6ml6r5UBDA75AgLPt7etep9frRZJCaDRaGhsbqamtRa1OXq2Ox+ejrbcXjy/5g+hnZmbo6e2ls7NjQ9pwU3Y7Bp2OvXX1WzrtDBByOgna7eTn5yMIguJlQ/Lz8xXtvMFLwRS5srXPyBRjdHSU3NzcNU92WJGaGnjDG8KTDmRwEwHg4x8PzwN9zWvCc0QXMTY2xqOPPqpoBy4QCCzQ+Ntoh6nY2oL+c5/Ff9NN+P8ssWK8K+J0ov31r/C/6lVIi9LiJoOB/Q0N1KxTHmduzsHly5cYnq8JNBpNSe8k9fp8dA8ORuehJpPCwkJqamqw2+1cvty85khCROakvKCAIzt3pqwQ73rxD4+g0WgoLCxMGa2veJGXl4fX61Xk9Tg3NxdRFGWfOk07bzJidHR0cynTq/noR6GvD/7f/4vN+jaLSgX/8z/h6QsvfzksOjGmpqYwGo2y19aJJ0NDQ1GNv5DLRXBmdt3rEIaGMHzsY4SqqvDc/2FZ1LkBaH/7G/B68d3z+mXfzzKbybZYCIVC9K/hojk9M01raytGozF258wWxJpljQ69b29vu+aIrWAwyInLl+kbDT84bPWI29UExkaRQiFKS0txOBzMzMwk26SkkZeXx5133qnI67FarSY3N1f2Y8KUc2bKHEmSYuu87dgBr351uM7sGo0CCSMrCx56KDzo/eUvh9mXnJPp6enkzjKVATabjX379qHX6zcUdROmpjB++H4wmXB/6tMgl5mNHg+aX/4S/7E7ka5REjDtcHCpq4u23pVHgY2Pj9PZ0UlWVhZ1dXUxF9rdauh0OhobG9i2rXLVyKQkSZztaGfWOUeGMXUnJ2wUyR8gMD5Bbm4uWVlZiow6RbhaikaJpELTgnK/HZkxMzOD1+uNbRThYx8Lzzv9xS9it87NUlYGf/wjXLkCr3oVuFwEg0FmZ2fJzs5OtnVJRafTUTTf0RdYr/PmcGD40IfA48H1wOeRZKR+r3nwQQS7Hd+9917zszmZmdRXVNA9OMiVFZo15pxz5OfnUVVdjSCkL2FrITJqS0Kiq6uTqanJJZ+51N3N+PQMe2vrsGbEXisuFQiMDCMIAjfccMPmJJu2AF1dXTzzzDPJNiMp2Gw2xsbGZD0mLH3lkwkRLz+mztu+fXDnnfDpT0MMdZ82za5d8Ic/wJkz8OpX4xofR6VSKTry1t3dTVtbGwCB6WlCnnV0OtntGD/yYcSJCdyf/zySnERGfT60P/8ZgZfdtma7thUVUVlcTGtPD0NXFU17vOFISEVFBeXlFUmvb1sOrUZDic2GVq4Cp5IECHR2dS0oSO8ZHmZgdJRd1dXkKfg8DExNEZqvDfR4PMzNzSXZouSh0+mi2ptKo6CgAK/XK+vUedp5kwmjo6MYjUYyYv3E+4//CJcvw29/G9v1bpbrroPf/Q6ee46MP/9zju3bh8ViSbZVSUGSJLq7u6NpmsA6RHmFsTGMf/9ehMFBXA88QKgicYPe14LmkUcQpqbwvelN61qurrycorw8ZuZvnkNDg1y6eBGfzytLpy2CQadjZ1UVBrmkrBchCCKVVZXk5+XT09PD9HRYyLg4L4/dNTUUK10gW3op6n369Gmam5uTbFDyiDxMT09PJ9mSxBMJosg5dZp23mRCpN4t5lpKR4/CTTfBJz4hn9q3CLfeCk8+idTdjXDDDQh9fcm2KClMTk7idrspLS1FCgQIrLFFX+ztxfj/vQfB7cb11a8SqquLs6XrxOdD+9P/InDjjYTKyta9+K7qahq3bWN0dJS+/n6KiovRauXpFEUIBoM45ksB5IqAQHlFOdnZ2Zw8d46J6Sk0ajVFSnfc5vGPhG/YJSUljI2NKbb2LTxeThudVKIkzGYzRqMx7byluTYxbVZYzGc+A2fPwve/H5/1b4b9+3n+85/H73LBkSNw6VKyLUo4EW237OzsNWu7iZcvY3zve5HMZlxf/RpS6fqdo3ij/cXPEcbH8b31bRtaXhAEpqenON98mb7paTKz5J/Om3O7efbcOebkIJC9CgICmTnZzPj9jG2gq3krE9F8KyoqUrzmW3Z2tiIjb4IgYLPZZN1xmnbeZIDf72dqaor8/Pz4bODIkfDM0498BGQ28sTpdDKVk8PsH/4AeXlwww3w+OPJNithbETbTf3ssxg/+AGCFeW4/u0r1+zgTAbC8DDa//xPfK+7h1B5+YbWIUkh+vsHKCsqxmazcbKlRRb6aVuB2bk5zrS1U1FSSn15ObOzM/h88laUTyRpzbcw27dvZ9++fck2IylEmhbkStp5kwEzMzNIkkROTk78NvLAA+G06Uc+Er9tbIBISD6zrg6eegr274fbbgtPYwisXxU+1VCr1Vx//fWUlZVdW9vN50P39a9j+OePEzh0CPcDnwezOXHGrgPdN/4dyWLB95d/ueF1CIJIQ0M9dbU1HGzcTigU4mRLCwEZpyRTAZfHw6nWFswGA3vr6hAE6O3to729I6YD7VOZiOZbWVkZGRkZBBRwLVoOo9GIVqtNthlJITs7m5mZGdmeE2nnTQZEwtJx7bbMzw93nX7ve3D8ePy2s06mp6fJyMgID4XOzAzLiPzrv8KnPgUvexkMDCTbxLhjsVjQ6XQEVnnKEwYGML7n3Wh+/zs873kPno//s3x03BaheuEFNM8/j/e++2ADA9olJPr7+/D7/Wg0WgRBxKDTsb+hAbfXy+Xu7jhYrRxcHg86jZb9DQ2oVSoEQaSmpgaPx02fQutOFyP5AwQnJ8nNzWXfvn2bn3qTwpw9e1aRqWOr1UowGMRutyfblGVJO28yYGpqCrVaHftO08W8852wZw+8612yaV5wOBwLu0xVqvAc1CefhK4uaGqC3/8+WebFnRMnTkRD84EVCoPVf/oTpnf+LYLbg+trX8f/56+WzeSEJXi96P/96wT27SNw400bWsXgwCAjI6N4vQsLxS0mE/sbGqjdQPNDIhFkKm4aaaLIzcri6K5dC+RMDAYD5eUVjI2PLasBp0Qi52OkrEWp2O12JieV95uI6I7KteZPnlcZhRGZLhDzTtPFqFTwjW+E9dW+/e34bmuNHDp0iMbGxqVv3HADnD8frte76y54xztkV6+3Wex2O2NjY4iiiBQIEJxdmDIVxsfRf+qTGD77GQJHj+L81rdkM2R+JbQ/+ynC+Die97xnQw6m3W5naHiI4pJizOalDzPWjAwMOh0+v39FEd9kkmk2c+fhw2TKLJ0dCoU43dZG85UrAMtea/Ly8sjJzmZ4ePiaY7SUQHDeYevv7+eFF16QdQdxPLFYLLKNPsWTrKys+aaptPOWZgUSOhrq8GF4+9vD0xdkUIypVqtXnp+XkwO/+Q38+7+Hp0TU1ob/f4vUn4zPixNnZ2cTnJ4mer+cl9gwve2tqM6ew/3hj+D5yEfBaEyqvddCGBpE+9Of4nv9GzbU/er3++nq6iLTkknhNQR9J2ZmaO3poVMBafXNIkkSFzo7mbLbsV1jiknFtm3UNzTIWksvUYTcHkIuF3l5eYRCIcVG3yLOm5ynDcQDlUqFxWKR7feedt5kwNTUVGKnC3z2syCK8MEPJm6byzA+Ps6LL764+hOtIMB990F7O7zmNfCe94SbGrbA2Jbx8XFycnIQRTGaolGdOI7p7W9H+4Mf4H/lK3H+6EcEbr89yZauAUlC/7WvIVmt6xbkjTDnnEMUBSorV5/BCVCUl0d1aSkdfX1rGmSfKObcbp67cF5WUiEtPT0MT0zQVFNDzjXGpqlEFSpRhdfrZWw8+Q93ySYwFa7J1ev1su48jCcWi4VgMIjL5Uq2KQlHzlIpaedNBszMzCR2rmduLnz+8/DjH8Mvf5m47S5ienqa6elpVCrVtT+cnx9utjhxIlyof+ON8PrXh1PAKUgwGGRycpK8eZkP6cknMXzkwxg/+lFC+Xm4vvtdvPe9S7bdpIvR/O63qF98MZwu3UCTAoA1y8quXbvCzStroKa0lLKCAi51dzMqk6fjYDCIfc4pmxTbyOQkvcPDNFZWUrCObvapqSl6e3pxy8gJTQbB+QkU+fn5C8aJKYmsrCx2796tyK5Tq9Wadt7SLI/T6SQQCCR+ruf/+T9wzz3w138NSeres9vt6x+JdeAAvPAC/OAHcOpUeH7rbbfBww/Pz21MDURR5ND+/ZScPIl0+DCGd74TYWQU98f/GfcXvii7MVerIXZ2ovvGN/D92Z8RPHJ03csHQ0GGhocIhULrHjTfuG0bBTk5+BQ4f3Et2LKz2VdfT/k6h6wXFNjQ63X09vbEx7AUITg9jSRJ5Ofno9PpZCsbEU80Gg1lZWVrfqjaSqSdtzQrEikETbjzJgjw3e+G68ruvReSIH66IecNwinfv/qrcCr15z+HmRm4885wZ+pPfgJyH2fjdCJ897vk3nAD2nvvRZLA9alP4/r+9wncdJN8O0mXw+XC8MlPECovx/vOv9vQKoaHhhgaGtrQAGxBENhTW0vp/HQS/xaph9ws49PTTM7OIggC+RuI6guCSFl5OXaHg8nJrdUotB6kQJDQ7CyFhYVcd911iDLtJI43ExMTihQrzs7Oxu12yzICrcxfooxImvMGYV21n/8czp2Dj340oZsOBAI4nc7NDaNXq8Op05Mnw1MZiovhLW8Bmy3839//HrwyUY13ueB//gfe8AbIz0d65zvx1tXB8eN4v/ddgtddF3ZKUwlJQv+Vf0OYmMD9j/8EG0iruN1uhodHKCoqQrdJ3brekRGeOXcOt1y+8yQx7XBwpr2Nvk3WAmZaMsnJzmZgcFDR3aeRetRQKITT6UyyNclhdHSUjo6OZJuRcCL3ZTlG31LsbrH1iESfkiYCeeBAePrCl76UUD01QRDYu3cvubm5sVgZ3HIL/OEP0NIC73tfOKV6111hR+5tbwvv28zM5re1HiYn4Ve/gje+MVyz97rXQUcH/g9/mMe+/W0mv/1tpIMHw52mKYj64YfR/OlPeP7hfUjz473WS29fLzqdjsJ1pvWWw5adjSiKnGxuTloa1ajX01Rbi3GlDuo4M+d2c6qlhUyTmV1VVZteX1lZGQ319YruPo1IhnR0dPDss88qrusSwk0LkRIfJZF23tKsiMPhSE7U7Wr+/u/hVa+Ct741YRMNVCoVxcXFGDZY3L4i9fXh0VrNzeEh9+99b3iixF13QXY2bN8ervP73vfC78eqhiUQgLNn4ZvfDEf9amvDjSGvfW3YofzoR8Np3jNnGHnb23AXFJCbm0todhYpII/i9vUg9vSg/9pX8d35cgK33bahdczNObDb7ZSXl6271m059FotBxoa8AUCnG5tTUrTgEatpjA3F00SHsY8Ph8nm5sx6HTsq69fWyPQNdBotGi14VqvQECZdYVBhwPJ7yc3Nxefz8fs7Coj7LYokQzJ3Nxcki1JLAaDAYPBIEvnTbkzP2SC3W6/pqZV3BEE+OEPwzVjb3pTOAUZ55vP2NgYfr+f4uLi+G1k+/bwqK1/+Rfo6Ag3OrzwQtiZ++EPw46b0QilpVBS8tJ/S0qgoCDc1arRhMWNA4HwP48HhobCTu7V//r7w++p1eHjeOxYeLvXXQfbFjYfjI+Pk5WVhVarxZuKOmUeD/pPfZKQzYb33e/e8GrM5gx2bN+O0WiKmWkmg4H9DQ2cuHyJrsHBhE9j8Pp8DE1MUJSbiy7B3XmBYBCDTkdTbW3Mncfm5mZMZhPbUqiRJmZIYckQa14uarU6ev4qCeO8xqTL5VLcvlutVqampqLKAHIh7bwlGZfLtbm6r1iRkwM//SncfDP84z/C5z4X180NDAzg8Xji67xFEIRwJKy2NhxdBHA4wqnVs2fDjtfAALS2wp/+BMPDq48PU6vD9XURR2/v3rDjt3dvuPv1GmK6U1NT0f0OykTiYs1IEvqvfRVxcBDXN765YVmQYDCASqWOqeMWIcts5tD2HWTEOqq7Bjw+H609PWRbLAlz3iIRRrPBwOEdO+KyjZycHAYHBygpLkajUZ5kRHB6Co0tn+zsbNmKtsYTjUZDSUmJIuVCMjIycDgcyTZjCWnnLcm4XC5MptjfwDbE9deH698+8AGorg5PYogTm25W2CwZGeE6uVtuWfpeMBiuV/P5wO8PR9zU6nAUTqcLO7qbaC5oaGjAbDYjhUIEUywNof2v/0Lzxz/ivv/DhLZtPArT0dmJTqeLWyQna14fz+50Mj4zQ1UiHhKSgCRJnOvoIBAMcmj79rhtJ9+Wz/DwEEPDw5SXlcdtO3IlON9YlpmZKcsUWiLYs2dPsk1ICmazmeHh4WSbsYS085ZkQqEQZjkJsb7vfWHdt3e+MxxVuvPOuGzG5XJREIMi9bigUoUbDOJENOo2Nweh1Cl+Vv/pT+h+8H28b30rgTvu2PB6IrVuNQmY0zplt9Pe24soCGwrKor79hLNpe5uxqan2V9fH9ftqEQVBQUFDA0PU1RYpDjNr5DLhRQKUR/n4yxnfD4fXq+XjIylM4e3MiaTSZa1fumGBRkgm8gbhFOMX/kKvOIVYRHfs2djvgm/34/P54vWUSiJyclJBubr3EIpJDugOnsW/Rc+j//YMXx/+ZZNrWtoaAiDwZCQ2pmKwkK2FRXR2tPD0BZTyG/v62NgdJRd1dXkJaDpyWazYTab8SuxcSEkEbpqPJQSO067u7s5ceJEss1IOGazWZYSMWnnTQbIKvIG4RThT38a7tx8xSugszOmqw+FQpSUlMij1i/BDAwM0D0/0SIkwzqK5RA7OzH888cJ7t6N533v35SIsMfrYWZ2lqLCwoTJT9SVl1OUl8eFri4m4iwXo1apyMu2oo5Bp+dqzMzN0TUwQF1FOcUJKqRWqdTU19VjNCjvoQsgNB99eeyxx+jp6UmuMUnAaDTidrsVN2XCZDIRDAbxykw/Mu28yQBZRd4imEzw4INgscDtt8PgYMxWrdPp2LNnj+LC77BwqkRIhqH4xQj9/Rju/xChkhLc//wvm+5C9nq9GPR6rNbEzfIVBIGdVVUUZGcjxHl6hclgYH99A6Y4N0tkmc0c3rmTyqLE1/I5HHacTvn/dmNN5HzVaDRRcXUlEcmUyHHaQDyJBFfktt9p5y3JiKKIPkmCntckPx8efTRcwH/HHTARmzE5ch03Em8kScLhcESdt+Cc/ELxVyOMjmL80AeRMjNxf/ZzYYd+k2RaMtm5c1fCxwyJokhTbS05mZlIkoQnTuPgQqEQPr8/btGJydlZekdGALAm6eGnv3+AwaGhpGw7mUScN4vFokjnLRJkkGMKMZ5E9ltu96y085ZkDAZD3KMBm6KsLCyfMT4OL385xKDTqqOjg5MnT8bAuNTC5XIRDAbJyMhA8vmQkjBPdq0Ik5MYP/RBEEXcD3weKTNz0+v0er34/cnf59beHo5fuoQ3Dsff4XLx2MmTOK6qj4oVs3NznG5tZXRqKqk1V7l5uczOzMriu0wkkYcti8WCw+FQXN2bXq9Ho9FsaAZxKpOOvKVZlphPGIgHtbXwyCPhLtQbb9x0CtXtdqfGfscYSZIoKioiMzOToIyfXoX+foz/33vA48H1+S8gxaimanBwgNbW1pisazNUFBYRCoU42dJCIAlTGDaCy+PhVGsLZoOBvXV1SX3gy8nORhDCzTdKQvL5CPl8WCwWgsGg4iJQgiBw5513JkabU0bodDpUKhWuODyQbYa085ZkUsaJaWqCZ5+F2Vk4ciQsaLtBvF7vpoeQpyJms5l9+/ah1WplW+8mtrZifO//h6TV4frq15BidKEOhoJMTU+TE4tZtpvEoNOxv6EBt9fL6dZW2Rdge30+TrY0o1ap2N/QEPdmiGuhUqmxWrMZj1EZRSoRmpvDarVy6623yrNWOU3MEQQBs9mcjrylWUhKyWU0NMDzz4cFbq+/HjbYNq5U581ut+ObT9XJ0XlTnTqJ8f3vQyoqxvVv/4Zks8Vs3TPTM4RCIXJzcmK2zs1gMZnYW1fHtMPBoMwlRERRJMNo4kBDI1qZ6KvZbPnkZGcjSfJ2fGNNyOlEpVJhMpnkXe4SJy5fvsyZM2eSbUbCMZlMaectzUJSJvIWoaQEnnkmLCNy663w0EPrXkUoFFKk83by5Ek652VX5Oa8qR97DMNHP0pwdxOuL3wBYlDjdjV2+yxGgxGtVj7fe05mJkd37aI0hk5qLAmFQnh8PjRqNXvr6jDKqLHJbM6gqKgYQVDWLSRy3l65coXm5uYkW5N4gsGgLEdFxZu085ZmCSnnvAFYreEauJe9DO66C37843UtfuzYMSoqKuJjm0zx+/3RObaSJMmq5k3zP7/E8JlPE3jZbbg/8YkNzytdDVEUyc6Ov5DsesmYj3yPTk3RPbR5ORyLycTthw5h2WRKTZIkLnR2cvzSJdmmdT0et+Lq3oLzjovH42FIgR23Op0umj1QEmazWXY1b+nxWElGtjIh18JohF/9Cv72b8PD3kdHwzNRFZhKWAuR4maz2YzkcsljLJYkof3ed9H97Gd4770X39v/Jm7fX3l5RVzWGyvsTied/f1oVOpNReIEQYhJTVprbw/DExPsqatLuKzKWpmZnWWgvx+r1SpbG2NNyOVCkqRoDVQoFFLMvkPYefN6vUiSpKi0sdFoTIv0pllISs8IVKvhe9+Dj34UPvQhePOb4Roh9ampKZ544gk8Hk+CjJQHkRNfr9cTksFFQJidxfCxj6H72c/w3Hcfvr95R9wcN6/XSzAk767OmtJSygoKuNTdzejU1IbX43S7ebG5GecmUixdg4P0DA3TWFlJgUxqBJcj05JJSJJwzCkojRaSkPz+aNmH3G7o8Uan0yFJkuLkQrRaLYFAINlmLCDtvCUZ9SYV65OOIMCnPw3/+Z/w29/C3r1w+vSKH3e73czNzaX+fq+TUCiEVqtFq9UiJfnCpzp/HuPfvB2xtQXXpz+D/7Wvi+v2enp66IrxiLV40LhtG7bsbM62tzO1QRHWQDDI5MzMhiVIPD4fnQP9VJeWUF5QsKF1JAqDwYBWo8E+O5tsUxKK5PMp1nnLycnhyJEjirt+y1HfLu28JZmUjrxdzZveFB5ib7HAddeFh9svI2Lp9XoRRVFxJ39hYSHHjh1DFMXkifMGg2h//CMMH3g/oZJSXN/+DsHDh+O6SUkK4XDYscS4ASIeCIJAU00NxXl5GJLUUKPXarl+125qSsuSsv31kpmZyeyssqYNSD4fRqORnTt3pm7ZywbRarXk5OQoKlUM4f1OO29pFrBlnDeA6uqwlMi73gV///fwZ38GiwqafVc9tSqVZDhvwvg4hg9+AO1PfoLvL9+C+wuxE99dDbfbTUiSMJvMcd9WLBBFkZ1VVRh0OvyBQNzGaC1m2uHgcnc3kiTFfS5qLMmyWsmwKGtGseT3o9FoqKioUJzzJkkSra2tzMzMJNuUhKLVapNtwhLSzluS2XIRKJ0OvvzlcAr1uefC4r7PPBN92+fzyfJEiDfnz5/n7NmzQOKdN9WJ4xj/9h2IAwO4v/glfG95CyRI6DXSoWUwpo5DEuF8ZwcvXr6ML85P3HNuN6daWnC4XLLtLF0Ja5aV8rLyZJuRUKT5VOnIyIjinBhBEOjq6lLcfsvxnpV23pLMloq8Xc1dd8H587BtG9x8M/zTP4HbzbZt29ixY0eyrUs4rqtuzAlz3pxOdF//OsaPfpRQfQOu736P4O7didn2PIFAAIPBgEpM7lSAjdBQXoEvEOB0ayvBNdawGXQ6Gisr15x29fh8nGxuRq/Vsq++HlWSpydsBI/Xo6jar8j529raysDAQJKtSTwqlUp2xfvxRo736bTzlmTk+KOIGSUl8Pjj8PGPwwMPQEMDGX/6E9lW+el9xZurp0rE3XkLhVA/8gimt74FzUN/wHPffbg//emYDJdfLwUFhezcsTPh240FJoOB/Q0N2F1Ozna0r2kQuVajobygYE2TEPyBACfnhV4PNDaiSdEofHtbO6Ojo8k2I2FEzt+IbIbSUKvVa36Y2SqkI29plrDl0qaLUavhn/8ZLl+G7dvhNa/Be/PNm5qNmopc7byF4ui8ie3tGN/7/2F44HMEdzfh/I8fhrtJFaTJFEuyzGb21dUzMTO7pg5UfyDA4Pg4/jVEJtQqFXlZWRxobEQvw5vDWjEaDbjc8hIwjScR502r1SrSeVNi5C3tvKVRLjU18OCDXP7c5+DKFdi5Myzqu0FJhlRCkqQFjRrxiLwJs7Po/u//xXjf34HbjetL/xfPP/0TUn5+zLe1Vvx+H6dPn8bhSO3vODcri5v37iVnDZFLl8fDhY4OXKvoGEqShN3pRBAE6isqMKdQg8JyGI1G3DJTn48nIYVH3oqLi8nKykq2GQlFjs7bFg/7pJEbE4cPw223sf3hh1/Sh3vggbDA7xZuP7/++usxGo1hxy2WwxWCQTS/+x26H/4HSBLed70L/91/lrCGhNXweDwEQ8EtURoQiYx19PejUaupKCzc8LoudXczPDHBzXv3ymbQ/GbQ6/X4AwECAT9qdervz7WI6DRmZmYq0nmrra1NtgkJR47XsK17t0wjSwKBAKLRGJ7K0NoKN90UHq+1fz/87GewBcPxgiBgtVrR6XSEfDHqXPT5UD/0EMa3vx3d17+G/4YbcP7ox/hf/RpZOG4Avvl91cjwqXWjBINBWq5cYWh8fEPLd/T3MTA6yvbKyi3huAFotTq0Gg3BYGp1ym6USOS8tLSUffv2JdmaxON2u6Pj/pSCHCNvaectTUIJBoMv1fmVloYdtqeegtxceOMbw+nVr30NttDFwW6309zcTCAQQPJvMmU6N4f2pz/F9Oa/QP+lLxIqKcH179/A+/4PIMksleEP+BEFISU7TVeirrycorw8LnR1MbFOuYTekRE6+weoLS+nOAEae4nCbDbT1LRHOfqN0ksOXCAQWFMjy1aiubmZCxcuJNuMhCLHyNu606Yf/OAH170RQRD4/Oc/v+7l0mw9CgoKsFgsC1+88UZ45JHwhIYvfhH+4R/gX/4F7rsP3vMeSGLdViyw2+10dXVRV1e34cibMDaG9n/+B82Dv4dAAP8dd+C75x4kGSvxB/wBWV70NoMgCOysqsIXCHCmrY3DO3ZgMZmi76tUKrIyMpZIfgSDQboHB6koKqSquDjRZiccp9vNhc5OfAE/GpWandXVZBiNCz4zOTtLW28vgWAQQRDIy8qirrwcQRBweTw8dfbsgmX21NbKRsA45PPjcLl45plnuOmmm6LXNKfTydmzZ/H5fGg0GpqamsjIWChiPDk5yfHjxzGbXxKuvv7666O/mb6+Pjo7O5EkidzcXHbu3CmriQZqtRr3VbN717LP/f39dHd3R//2eDxkZ2dz4MABXC4Xjz/++IJl9u/fj+mq8yrZCIKwpLnw0qVLjIyM4Ha7F/wGFrPa97mZ73rdztuLL7643kUQ0p1uaebZtWvXym/u2ROugfvMZ+Df/i0s9vuFL4TTqu97H9TVJczOWBLRd1OpVITWOaBd7OpC+4ufo37iCTAY8L36Nfhf/Wqk7Ox4mBpTbDYb2Tnyt3O9iKLI3tpaOgcGMC1S2DcbDFy3c6k0ikql4sjOnVsmVbqYCxcuUFBgIz/fBoTr+kptNkry8xmZnORiZydHFp37apWKptpajHo9oVCIF5ubGRwfp2T+YU2tUnF9gnUJ14wUit5krxZWvnDhAuXl5ZSWljI8PMy5c+e44YYblixuNpu56aablrzucrloa2vjxhtvRKfT8eKLL9LX10dFRUXcdmW9LO42Xcs+l5aWUlpaGv37ySefpKSkJPq3Wq1e9njIicV+TGFhIdXV1Tz77LMrLrPa97nZ73rdztvPf/7z9S6SMHw+H9///vd55JFHcDgcVFVV8fa3v50DBw5cc9nx8XG+/vWvc/LkSUKhEHv27OE973kPRUVFSz77+9//np/97GeMjIyQl5fH6173Ol772tfGY5e2FJIk4XK50Ol0q0uklJeHHbePfxy++U346lfhO98J18W9/vVwzz0go4vZtZAk6aUTfw0pFqG/D81TT6F+8ilUV7oJ5efj/du/xf/yV8Ci6IWc0Wg0Wy7yFkGlUlFXHp4s4HC50KrV6Japi5mdm6O9v5+mmppl398qSFIoWuPo9fmYnZvjYGMjAAU5OVy+0o3T7V4QOcu8KvIkiiIZRiNu78pdurIiFEJY5Lx5vV5mZmY4PD8vuLCwkIsXL+J0OtccRRoeHsZms0VT0BUVFXR0dMjOedvMPk9PT+P1erHZbAmzORYsdt5ycnKuucxq3+dmv+t1O28FBQXrXSRhfPazn+XJJ5/knnvuoaSkhIceeogPfehDfOUrX1k14uNyuXjve9+L0+nkzW9+M2q1ml/84he85z3v4Qc/+AGZV0kE/OY3v+FLX/oSN910E294wxu4cOECX/nKV/B4PPzFX/xFInYzZQmFQjz++OPs3buX4rWkjqzWcGPD+94Hv/kN/Pd/hx26D30IDh58yZErk2/qENbmvAkDA2ieehL1k0+i6u5GMhgIHDmC76/+isChQ2G9vBRjcHAAg8FAdva1L3KpiiRJnGtvRxQFDm3fgdPt5vkLFziyaxcatZpTrS3otdotn33QaDT4A2HnzePzodNqFuyzQavD4/OtmPb0+nyMTE2yr74h+logGOT5CxeQkMi3ZlNdUiKf4yhJ0chbpObN4/Gg0+kW7rfBgNvtXuLIuFwunn76aQRBoLS0NHrDdrvdGK46RpHl5YQoitF9X88+R+jr66OkpGRBejAQCPDMM88gSRIFBQXU1NTI57ueZyP2rPZ9bva7Xvcd4R3veAc33ngjR48eZdu2betdPG40Nzfz2GOP8Xd/93e88Y1vBODYsWO87W1v45vf/Cbf/OY3V1z2f//3fxkYGODb3/42DQ3hi8ehQ4d429vexs9//nPe8Y53AOGnjO9973tcd911fPKTnwTgrrvuIhQK8eMf/5i77757Sa4/zUtELnLrPgn0enjDG8L/5ubg97+HX/wCPvaxsFbc4cNhR+4Vr4DaWtkJ0mZkZFA+H6WJFjeHQoi9vahfeAH1U0+i6uxE0uvDDttb30bgwIHwnNgUZmpqiszMrC3tvAmCwO6aGk5cvszp1lZq51NDXr+fcx3tqFUq9tc3oJZJB3C8UKnUhDaouh8IBjnd2kplUTFZ89E4vVbLrfv2odNq8QcCnG1vp3toSDb1glc/kK23YSEzM5PbbrsNjUaDx+PhxIkTaLXaZbM8cqSuro66DZawBINBhoaGuP7666Ov6fV6br/9dnQ6HX6/n9OnT9PV1UV1dXWsTI4JcnMm1+28eb1evvvd7/K9732PwsJCrr/+eq6//np27dqV1J176qmnUKlU3H333dHXdDodr3zlK/nOd77D6OjoimHaJ598kvr6+qjjBlBeXs7evXt54oknos7bmTNnmJ2d5c///M8XLP/qV7+aRx99lBdeeIE77rgj9ju3RYhJV5bZDPfeG/7ncMDvfhd25D784XCELjs77MwdPgzXXReO0K1QSJoocnJyyBEEeOghVA8/jOHZZ1G1tiI4nWGH7fB1+N78ZgIHDoYd1S2CJMnOj44LFpOJvXV1nGxp4VJ3N8FgkLPtbahVKq7bsXNLp0sjCMJL57deq8Xr8y9wcNw+77JTJALBICebm8nPzmbbVc6LKIrR46ZRqynJy2NocgKQh/MG4UjJHXfcES0N0Ov1eL3ehfu9KLoCC6fq6PV6ioqKmJqaoqioCIPBsECGY7nl5cRa9znC0NAQGRkZC4IcoihGU4cajYbS0lIGBwfjb3wCWO373Ox3vW7n7Uc/+hFDQ0M888wzPPfcc/zyl7/kv//7v7FYLBw5coSjR49y8ODBhLeNd3R0UFJSsiRUG3HIOjs7l3XeQqEQ3d3dvOIVr1jyXkNDAydPnsTlcmE0Guno6ACgvr5+wefq6uoQRZH29vYVnbeJiQkmJyejf/f29gIwNzfH7Oxs9HWNRoPRaCQUCuFwOJasJ5LCnZubWzJfzmg0otFo8Pl8S8KvarUak8kUVndfZqpBRkYGoijidDqXjD7R6/XRpyLXIiV1lUoV7Zq6ej8imM1mVCpVVBvI6XTicDiYnZ1Fp9Oh1+sJBAJLdIMEQYh279jt9iWOn8lkQp2Rgec1r8H7yleGJzWcOgUvvoj29GkM//f/EpyZYQ6goQEOHAj/q60ls6EBCguZ83hWPIZerxfPIpX8yDFc6buxWCwIfj/Ozk4CfX1hHbuTJwmdOIGpqwstELRacVRXE3z1awjW1RGsq0NlNEZV9mfn5pZ+N0Yjoiji8niWjF3SabXotVoCwSDORd95pI4IwO50Lj2GBgNqlQqPz4d30dQHrUaDQacjGAwyt2i9giBEOywdLteCgm0Ao16PRq3GG/Az5/Ys2CeNWh0tUHcso8pvMZkQBAGn201g0Xdj0IX1xHx+P+5F4qhqlQqTwRCdXrCY1Y6hXquNRngWT0a41jE0GwyoVCqMej1VxcWcbGkmFJKosZZQWVyMUa9f9ru51jFc7bu51jGM1JLNud1Lf9/z381mjuFy301+QSF6rQZ/IIDH50MlirT29FCUl8fE7Cx6rRaTwbDgtxCYd3JL821Ul5Tg9nrxzQvgev1+NCoVBr0erVrN4MQ4KkFcsPzVxzCWv++1HEPD/NQUj8ez4Dqh1WoZGBiguLiYjo4OAoEAgUAgem20WCx4vV4CgQDBYJBAIEB3dzfFxcX4fD4KCwt56qmnKCgoQKfTcenSJXJycpibm1v1Ohu5frtcLvz+hR3tq11nRVGMOlIrXmfVajweT1SQuLe3l9HRUa6//noMBgNms5nm5mZKSkoYGRmJ7lsEh8MR/X03NzdTXFyM3++PXmdnZ2fRaDSIokgoFOLKlSvk5eWtfp0VhGXvVQaDAa1Wu6l74HLHUK/Xbyg4VVhYyHPPPRcdj9jT0xONsK723lrYUCFNUVERb3jDG3jDG97A7Owszz//PM8++yxPPPEEDz30EDqdjn379nHDDTdw5MiRhIzSmJycXLaAMPLaxMTEssvZ7XZ8Pt81ly0rK2NychKVSoV10WB1jUaDxWJZ4Jwt5re//S0//OEPl7x+9uxZhoaGon8XFxezd+9e3G43Tz/99JLP33XXXQCcO3eO6enpBe/t2bOHkpIShoaGuHjx4oL38vLyOHz4MMFgcNn1Hjt2DK1Wy+XLl5cMmd6+fTuVlZWMj49z+vTpBe9lZmZy4403AvDss88uuQndfPPNZGRk0N7eTnd3N5cvX8br9ZKdnU11dTUNDQ3R39DVRELpACdOnFjiSB05coScnByuXLlCZ2dn+EW1Go4coezee9m9cyeus2d5+sc/hra2sJbcj3+MCLwSQBQ5Y7Uym50d1pjLyYG8PPbt309RRQWDExNc7u8Pr1MUIRjEZrFwsLqaQOS7mZiAycnof1/ucKAeG+OiJDE+vw0qKpgrLSXrZS/j5R/6EANjY5x67PGXdqStjayMjGiH4vPL6CfduGcPJoOB9r4+hhf9jqtLS6gpLWPG4YgOOY9gNOi5ac9eAF5sbl5yQTq8cyfWjAyuDA3SMzS84L2yggK2V1YyN1/DdTUqlYo7Dh0C4Fx7O3OLHIi99fXYsrMZnZqidXCI3KtstuXksLeuDl8gsOy+Hjt8GEEQuNTdxdTswgvsjqoqSm02RqemuNTVteC97EwLh7bvQJKkZdd7y/796LVaWnt7GV10ntaUlVFdUsKU3c6ZRTN3zUYjNzQ1AXD80qUlN/Iju3aRaTbTPThI7/AwLpebkakpDFotFrOJPKsVh8vF8UXno0aj4bb5Rqozba243At/3wcaG8nNyqJ/NKwNdzWFubk01dbi9nqX3deXHzkCwMXOTmYW3fx21dRQnJfH8OQkzVdJNwDkZGVxsLGRYCi07HpfduAAWlGkpbeH8amF1576igq2FRUxPDHBufZ2PF4vFzo7CASDZJhMvOmOYwD89NFHyTQaycrIYHhygqGJCUKNEuMzM3QPDhIIBijMyWXa4WBoYpyivDxK822oRJExu53RqanoNnVaLbfu3w/AqZaWJQ7awe3bycnMpHd4mO5FkZwSm42dVVW4ljmGgihy53wB/vmOduxzCx2eptpaLJJET08PDz74IIWFhVHHKiMjg97eXpqbmzlz5gyVlZU8/fTTXLlyhaysLN70pjcxPDzMQw89xOzsLJIkYbVa8fl8mM1mKioqyM7O5jvf+Q4QdlTKy8txOBzRVONy1+9bb70Vk8lEa2vrkqhVbW0tdXV1TE9Pc/z48QXvmUwmbr31VgBeeOEFfIuO4fXXX4/VaqWrqysq9TE4OMjY2BgFBQXs3LmTyspK/t//+3/4/X5UKhWVlZU899xzFBUVYbPZaG1txeFw4Ha7aW5upqmpidzcXAoKCujr6+P5559ncHAQQRCQJInKykqOHDmCz+dbdl9f+cpXIggC58+fX3LP3b17N2VlZYyMjHD+/PkF7+Xk5HDkyBEkSVp2vbfffjt6vZ7m5maGhxdeD+vr65c4bxcuXGB0dBSv18vx48dRq9XceuutnD9/HpvNRkFBAUajkbq6umhHam5ubrSEZrX31oIgxVBh0Ov1cvLkSZ599lmOHz/O9PQ0oiiyfft2rr/+eo4ePbqgXTiW3HvvvZSWlvKFL3xhwetDQ0Pce++9vPvd7+b1r3/9kuVGR0e55557eOc738mb3vSmBe89+OCDPPDAA3z/+9+npqaGz33uczz22GM8+uijS9bzute9jtraWj7zmc8sa99ykbdPfepTfPnLX16Q29/KkbfFF4ZNR94WPRFG0Gq1GAyG8FP11ZEshwP6+8mcnYWBAea6uggODMDgIAwNwdAQRocDDeAFFve9qQETEAIcAJmZUFQExcVQXIxl2zaE0lKcubkEbLZwI4XRyJUrV+jv7+euu+7C2dXF9OWFTpZKpdqSkbeevl5UajUWy0sNP1s18ub2ernY1UXf8DC7amoYnpigOD+f6pISRUTeHHY7eq2GzCzrkmN4rd/31cfQtzhqtMrvO5mRN8v+fThVKh566CH2799P3rzo8pqi89eIGm3kOpvIyFtHRwcDAwMcO3Zs+essC6/fV0feosdwlQzHte6ByYq8ffKTn+Tpp5/mu9/97oZr/mJJTFvYdDpdtAZOkiQuXboUTa9+85vf5Fvf+hZPPvlkLDe5YNuLDzgQdRhWSuNGXl/LsjqdbsmP5erPrpYqzs3NJTc3d8nrZrN5QTdrBFEUl3396uVWQqvVrjjOQxCEVde7Wku7RqNZddnV3jMYDCvm89Vq9arLriR+COGTSr9CnZhKpVq43sxMuEpbaNkjaLfD3Bw6vx+d3x8e1xUIhCNwGg1oNIhqNZkWS7j+bhkWH0GLxRKtc9FotQskEhaz2nvGVerh1CrVqstaVvle9fM3yOVQXWO9i4VXr6aibOWnSFEUV13vamKsWo1mRb00QRA2fAw1avWGj+HQxASTMzMc2L6d8oICfH4/Hf39WIxG8rOzN3wMV/turnUMVxt4v5ljuNx3MzI4iEclkpubt+Hft0Gnw7DCNTRZv+8Vj6EgoNFoMJlMZGZmLrl+Xev6Ha/rrHGV31KsrrNmsxmz2Ry9ni+5zi5itSY+nU634n1zM8dwM/fAlY6h3CZpxE1/QBAEdu7cyc6dO7nvvvvo6enhueeei9fmyMnJYXyZeYORaNdyjhOEf7BarXbZlOfiZXNycggGg0xPTy9Infr9fux2+5p0X5RMMBjkhRdeoK6uLvqkKjsslpg3OETSAeE/5KOUHm9cbheiIKDXy7fgOhYMjI3R3ttLdWkJeVlZnGtvp6a0NDyFob2dg42NZCe5aSbeSEgbqglKZSLntJymHyQKpX3XcmTdztvnPve5Vd8XBAGTyURVVRU33nhj1DuuqKiIq9BgdXU1Z8+eXSIO2DxfB7RS27EoilRWVtK6qNYlsmxRUVHUE6+pqQGgtbWV6667Lvq51tZWQqFQ9P00KzM9Pb0kfbrVUalU0dE3Srrm9fb0oNPpqKysSrYpcUOSJAbGxiix2agpLWN2bo7hiQm2FRXRVFPDyZZmTre2cv3u3StGlbYCAX8AwxbqlL4WVz+QKc2RKS4uVmSgIuUjbw899NCaPicIAl/72te4//77EzL24uabb+ZnP/sZv/3tb6M6bz6fjz/84Q80NjZGO01HR0fxeDwLCgNvuukmvv3tb9Pa2hrtJO3r6+Ps2bO84Q1viH5u7969WCwWfvOb3yxw3n7zm9+g1+sXvJZmKRvVRUp1ysrKKIsICSvoQq/RaPD7ly8z2CoIgsCBhoZloy+iKLK3rp6BsbEt7bgBBAL+LTtNY1lEEa1WS2Nj46qpyq3IYqkPpSC3+9a6nbevfOUrq74fCoWYnZ3l0qVLPPjgg3zyk5+kuLg47oJ7jY2N3HLLLXznO99hZmaG4uJi/vjHPzIyMsL9998f/dynP/1pzp07t6Db5NWvfjW///3vuf/++7n33ntRqVT84he/wGq1cu+990Y/p9Pp+Ou//mu+/OUv8/GPf5yDBw9y/vx5HnnkEf7mb/5m1ZqBNOGbmSAISwqAFYWCUixhEdKlBepbgTm3m3Pt7dcclq5Rq6P6ZRMzM2SazWhScFrGtcjJycFsVtANXRDQarVUVW3dqPJKjI2N4fP5FswmVQIp77w1zbfNX4tbbrmFV7ziFfzt3/4tP//5z/nYxz623k2tm49+9KPYbDYefvhh5ubmqKys5IEHHrimzUajka985St8/etf58c//nF0tum73/3uJTInr371q1Gr1fz85z/nueeeIz8/n3e/+93cc8898duxLcTiocZKYHx8nIsXL3LjjTcibHGl/asJR96WNgKlOh6fj5PNzahVqjUPmg8Gg5zv7MCkN3CgoSGaRt8qlJbKe0RdrBFUKjweD9PT0+Tn52+573M1hoaGcDqdinPeFnfMJpu4PgJWVVVx9OjRJXor8UKn03Hfffdx3333rfiZr371q8u+np+fzyc+8Yk1beeuu+6K6q2lWR+7d+9WXMg90tbu9XrRKyi1pNVqt9xNzR8IRPX0DjQ2Lomi6bRaqktLlkxVUKlU7Ktv4MTlS5ztaGdf3VLdqFQlGAridrkxmYwICmnIEbRapsfHOXXqFMeOHdtyv/PVCAQCitpfCDtucssYxf1MKykpYeoqYcU0yqaoqEhxzlukFd7r9SIoYFRShNzcPHbt2pVsM2LK2fZ2PD4fBxobl5Wf0Gu11JSWLfteltnM3to6xqdnuLRIIDeVcc45aW5pXqKltlURVCKCWh0+n+clQ5REMBhcMOJLCcgxgxB3583n8ynui06zMsPDw8tKumxllOq8bUWqiovZ39Cwov5XIBhkYmZmiYhthDyrlV3V1Uzb7UsEaVMVny8s3qrVKOO3HTmHI2ONtkoEda0oMfImR4WEuDtv58+fp7hYPsOE0ySX7u5uBgYGrv3BLYRGo0EQhLDzplYjqJSRWpKkEOfOnWVycvnRdKnE0Pg4kiSRk5mJdZXIsdPt5mRz85JpAFdTnJfH9bt3o9VoZFcEvRHcbjc6nU4xemdXO28rCcFuZXJycpaMiNzqKMp5C4VC/Md//Aft7e3ccMMN8dpMyrMVLt7rQaVSya52IN4IgsDBgwejcjVKib4JgogwP24mleno7+N8RweTy4wl2iiiKOIPBHjuwoUl82pTDZfLjdGgHLmMyPmr0+kU58RAeM5nPDVb5YgcnbeYi/SGQiHsdjutra3MzMxQUlKy7EzRNGHkmEuPJ2q1WnHdphBuiIkgaLXgXjw5dWtiNBhxuVaOQsmd3pHwYPja8nJyF3Webxa1SkWG0cj5zk40anXM158oJCRM5pVHFW01hPkaNznMt0wGbrcbjUajqHIoOd6n4ybSq9FouP3223nXu96lOBHD9aA0R0alUi0ZJK8EhoeHCQQClJaWKibyBmA0GhgbS80ax5HJSZq7u6koKqQqDqUfgiCws6oKr9/PmbY2Dm3fvuqcTblSX1efbBMSSuT8DYVCikkVX82TTz5JbW2tojTutkTk7VoivYIgYDabKS0tVWQ9wHqRo0cfTzIzMxX5uxgdHWVubi7svCmoO81oNOIP+PH7U0+Bf2JmhsLcXOrLK9a8jCiKGA36Nd/Uw1MY6njx8mVOtbZw0569qFOoGFxCQkBZBfsR5+3hhx+mvr6ebdu2JdmixCFJkiK7TbeE87ZWkd40a0NpzltlZWWyTUgKOp2OyclJQDk1bwCWzEx27dqFWpM6F/tIRGVHVRWhUGhd3YQZRiM37dm7ru2pVSr2NzQw7XCklOMGMDoywujoKLt3NyXblIQhaLQEg0ECgUDKPZBsFr/fjyRJinsAl6PzpryYr8xQWtpUkiS8Xq/iGjV0Ol00Xawk500lqtDr9CkTnXF5PDx97ly0OSFRaTGtRoMtOxuA/tHRFaVG5Ibd4YhK4SgFQauJnstK23el7rfP55Ndilxe1igQpTlvIyMjPPLII4qLOOp0OoLBIMFgEEEhelgRJicn6OrqSrYZ18Tr83GypRlBYEUdt2thdzr508mT2J3ODS3v8flo7e3ldGur7MbxLEaSQjjsDiyZmck2JaGIWq2inRhQ3n7Lsewj7bwlGSU6MYDimhYyMjIoKysLp+G08roIxBtJkpicmiQQkO9vPRAMcrq1lUAwyIGGxiXjrdaKJEnR1NJG0Gu17K2rY9rh4Hxnp6wj1HNzcwRDQbIU5rwJCnbecnJyeOUrX6m4JkQ5DhtIO29JRo659HiiVOfNYrGwe/duNBoN4gajOqlK5vzN3W63J9mSlbnc3c2c282BhkaMen1SbcnJzKSppoaRyUlaenqSastqzM050ajVGBR0Ixc0agSNhvz8fG699VbF1X5BuJRAaVMlfD5fOvKWZiEejzL0viIo1XkDcDqduFwuRL0eIYUK+DeLRqPFYDAwG0OR21hTU1rK/oYGLCZ56JUV5OSwvXIbc263bNOnhYWF7NixM2XqGWOBOP/7EEURk8mkOCemu7ubM2fOJNuMhON0OtEn+aFuMWnnLcmkuvr8elGr1YrVejt58iSdnZ0AiKbU0/PaDJmWTFk6b70jI/gDAYx6PdkWS7LNWUCZrYADDQ2IoijbqSRyi0bEG3Feh+/ChQv09fUl2ZrEY7fbFXfPgnCJgEFmGZO085ZklBZ5A7j99tsVKRlisVhwOBwAiApSpAfIt+VTXV2TbDMW0DU4SHN3N2PT0zFbp8lg4PDOnZhidKEXBAGn282TZ88wNjUVk3XGgvHxcS5duiTbqGC8UJnNSJLE4OCg4kpeIJwxUVqdH4Qjb3Kr80s7b0lGiU8xSntaj2CxWLDb7UiShCoFlfQ3g16nxyyjfR4YG6O9t5eqkhKK8/Jitl61SoU1IyOmem1GvZ4scwZnO9qZkknd4MTEeLh+U2byCfFGNJlwu90EAgEsMovUJgKv16vIOr905C3NEtzu1J37uFE6Ojq4dOlSss1IOBaLhUAggNvtjqZflMTc3BxtbW1IUnKjNWNTU1zs6qLEZqO2rCym6/b4fLT0XMETw6iMIAjsqa0ly2zmdGsrjiQ/8Hm8Hhxzc+Tm5ibVjoQjhNOmkcYbpTpvcqv9ijehUAiXy5V23tIsRImRN5/Px/h4as673AwWiwW9Xo/H4wkXPiur1hm1WsWsfZaZmZmk2uH2+ci3WtkRh9S91+ejZ2gYb4xTauExWvUYdDrOtbcnVUJkcmIClajCarUmzYZkIBoMCCoVdrsdrVarOCcGYOfOnRQWFibbjITicrmQJEl2zptyWt5kisfjUdyAY6PRGD0hlNStpdfruf3226N/iwYDIZdyIq96vQGzycz4xARWa3bCtx8IBlGrVJQXFFBeUJDw7W8WjVrN/oYGvD5fUs+b2Vk72TnZirpmwUtNRgUFBbIqAUgkBSl43mwW57zgdrrmLc0SlBZ9M5lMhEIhRTZrANGoidI6TgFy83KZnZnF709ssbfH5+OZc+foGx1J6HZjjV6rJdNsJhQK0dHfl5Qu1IbGBspKSxO+3WQTaTKyWCwUFRUl2ZrE43A46OrqUlyTytzcHIDsIm9p500GODc4SidViTzBKM1phXC93xNPPAEor+MUICc7G0GAycnJhG3THwhwsrkZgPwkRPziwZzbTffQEGc7EptC9fv9CAioVMpL2qjMZoLBIB0dHYqsVZ6YmKC1tVVR2RJ46f6cdt7SLCHi2SsFo9FIU1MTJpkIoiYSvV6P0+kkEAgoruMUQKVSU1/fgM1mS8j2gvNjrzw+HwcaG9HHuVNOq9FQVlCANs4d1RaTib21dYxPz3Cpuzuu24rg8bg5f/6crCdlxJNIs0Jra6siZUJcLhdGo1Fxztvc3BxarTY9HivNUpQWeRNFkdLSUkUW/EY61BwOhyI7TgHMZjOCICYk/dI1OMisc479DQ0bHja/Hgw6HdsrKzEkQAsrz2plV3U1A6OjtCdAMHZoaAi1Wk1GhvJ+t4JahWgwYLfbEQSBjIyMZJuUcOSodZYInE6nLGsc085bklGr1YqLvAGMjY0xODiYbDMSTkZGBoIgYLfbw91rChqTdTXj4+NcuHA+7g5cZXExBxoasSboZhsMBpmdm0tYLVpxXh51FeVxP45er5fJySkKC4sQBOXdNiIPWna7HZPJpLhmDQhH3pSYLZmbm5PlfivvFygzjEajIp234eFhuhOU7pEToihivkorSqVArSiADEsGfn+AiYn4SMZcGRpizu1GrVIldOzVnNvN8xcuMJfAmqjKomLqKyoA8Pn9cdnG8PAwarWKvBgKGqcSqsxMAGZnZxWp7waQm5tLTk5Oss1IOOnIW5plMZlMiqwhMRqNiksXRzhw4ADbt28HQJW9NQro14tepyc7O5vh4eGYi/b2jozQ2tPDeAzHXqUCk7OzPHHmNJNxmCErCOFB9EqMOMFL52lOTo4iO00BduzYoTiNN5Cvw67MM1FGWCwWpmQ0szBRmEwm/H4//jhFCuTM1WkXtUKdN4CioiJ8Pj+jY2MxW+fI5CTN3d1UFBWyTWE3WWtGBtYMC6dbW5mNcTS/vLyCggLl3bgBBJUYjbw1NDQo0oHx+XzMzc0lVRw6GUiSxPT0tCwFqdPOW5KxWCxMKyxCAEQLfpUYdZQkiRdffJG+vj5EkwlRr7xBzxBuvc+35eOPUefe5Ows5zo6KMzNpb68IibrTCXCUxjqMBsMnGptwRmD1O3cnIOxsVEklHXTvhpVVhaCKDI5OanYbMHg4CBPPfWU4pw3h8NBIBAgW4YP2WnnLclYLBbcbrfidIPMZjNFRUWoYjjAO1UQBIFAIMDo6Cig3NQpQHlZOaWlsZsvmj/fgZksOQNBEFCpVEnbvlqlYn9DA2qVistXrmxqXRISPT29TExMxMi61CRyfp47d06RdboQfsg2m82KS5tHAityjLwps9VNRkRy6dPT07ITAYwngiCwb9++ZJuRNPLy8ujs7CQUCqGyZuMfGk62SUlDQmJ8bAyDwUBGxvprS7w+H1qNhpzMTHLm01vJwmIyccehQ0m1QavRcKChEdUmb7Rjo2O43C62NzYiKG0Q71Wos7NxOp24XC7FNmzY7XZZ1n3Fm4jzlpWVJbvyJmW50TLkaudNafj9/qQPKU8WeXl5BAIBZmZmUGdbFTekfjGTk5P09PSsu3nB6/Nx/PIlWnt74mNYimLU69FptXh8PpqvXFm3lIjf72dgYID8vHxMChzjFkHU6xBNJsbHxxEEgdzc3GSblHAkScLhcCjSeZuamiIjIwNNnEW3N0LaeUsyOp0OvV6vSOetv7+f559/XnF1FACZmZlotVrGxsYQNBpUChT9jCAgUF5RgcfjZXhk7bNHA/PTEwLBIOUyKaZ3uFw8c+4cDpmMfnN5PPSNjnK+s3Nd59n4xDiiKFBaWhJH6+RPJGU6Pj5Odna27FT2E4HX60Wj0SjSeZuenpZlvRuknTdZYLVaFem8WSwWgsGgImecCoLAwYMHqaqqApRd9wZgNBgpLCxkcGBwTbqHoVCIM21tzLnd7K9vwCiTaR2hUIg5l0s2w7uzLRaaamoYmZigpadnzcsVFhZSX9+gyBmmV6Oan4Wr1+sVKxGi1+u5/fbbFZkylmunKaSdN1lgtVpll09PBJEnudk46FKlAlarNRqOV7JkSITi4iLMZhPj49eWDhkcH2fKbmdffT2ZMhTQlBMFOTlsr6qkd3iYrmtMNXG73eERUAiKqsFdFoFwSQOwc+dOKuaFkJWGEjMjEeTsvCn7sUomZGdnc+nSpWSbkXC0Wi06nQ673a7Ip9pQKMT58+cpKioiPz8fQa1CCiRmrJIcEQSR2tpaxDV0IJfabGSazVhkOLZGjpTZCvD6/Bi02hU/EwqF6OzqREBg+47tim5SAFBlZCBoNDgcDnQ6HdpVjt1W5tSpU2g0GpqampJtSkLxer04nU7ZOm/pyJsMsFqtzM7OJmweopywWq2K3G8I63LNzs4yMjISlpiQ6UUikahUagQEHA77sqOzrgwNMTYfpU47buujprSUovnU13IacL19vXi9XqqqqhTvuMFCiRAlPlxHsNvtinRcI6VM6Zq3NCtitVqRJEmR6cOrR0Upkby8PMbmJwyoFTg3cCWmp2fo6enB6Xyp/m1wfJzWnh5mZDwL2KjXs7e+XjY1eMsxMDbGsxfOM+1wRF+bnJxkfHyc8rLydLp0HnVODj6fj5mZGUXWe0G469jlcpGZZAmeZCBnjTdIO2+yIOLZK7HuDcI1FXIp8E40+fn5eDyesGRIXh6I6YgHQGlpCUajifb2Dnw+L+PT01zo7KTEZqO2LHaivrFGo1Zjy85GI+OuxKLcXDJNZk61tOBwuZCQGBoeIjcnR7FOymJEowFVZiYj893PSj0ukXuSXB2YeDI1NYVWq8VoNCbblGVJO28ywGKxoFarFalkHggE+OMf/8jwsDJFanNzc9Hr9fT39yNoNKhzlXmTWIwgiNTU1CCqRE6dPcup1hbyrVZ2VFYm27RV8fp8dA4M4I3RyK94IIoi++rrMeh0nGxuxuvz01Bfz7Zt25JtmmzQFBQAYTmjvLw89DKOpMaT6elpdDqdbB2YeDI5OUlOTk7SpqVci7TzJgNEUSQvLy86LklJqNVqdDqdIqVSICwZsnfvXmpqagDQFBYk2SL5oNFoqKurQ6vRkpuZSVNNjWwvpBE8Ph8dfX14ZOy8QThCuLu6iqGhIdp6elCrNQhC+nYAhLtMCwoIhUJoNBrKZBzpjTe1tbUcPXo02WYkhdHRUWw2W7LNWBH5xvYVhs1mU6TzBsqVSomQc1Wtmyo7G0GnRfLK++afCDw+HyqVmn179yAgEAqFkKRQ2smIAYGAn57ubmoLC6grK022ObJCbbUizkfaDh48mGRrkosoipgU2BgUCoUYGxtjx44dyTZlRdJXQZlQUFDA2NiYImu/srOzsdvtiu06Bejt7eX8+fMIghBN2SgZfyDAyeZmznd2RDsf29vb6OzsWvcIrTQLCQT8tLW1EQgE2bVrF3q9gZm5OS6scwrDVkVdWIgkSYyNjSn6eNjtdl544QU8Hk+yTUk4U1NT+P1+WUfe0s6bTLDZbAQCAUVGoLKzsxXbbXs1/f39eDwexTtvwfmxVx6fj/ryiujrBQWFzM7O0NbeTjAYSJ6BKYwkhWhpacHn81NXX4deF44w+f1+BsfHudTdnWQLk4ugVqHOzWVycpITJ04otpwDwjVfkaJ9pRHJgqWdtzTXJPIjUWLq1Gw2c/vtt8tWTycRFBUVIQgCg4ODiCYTKosyZ51KksS5jg5mnXPsb2jAfJVsRVZWFvX19bicTlpaWvH7/Um0dHk0ajW2nBzZdpsKgkhxcTENjQ0YDS8VoedZreyqrmZgdJT2vr4kWphc1Pn5CCoV/f39mEwmRV+TpqamyMrKQhSV5yaMjo6SkZEh65Sx8r4VmWI0GsnIyFCk8yYIgmK7uSJoNBoKCgro7+8HQC2TQeuJZspuZ3xmhj01tVgzljqwZnMGDQ2NBAJ+ZmZmEm/gNTDq9eytq5OdzpvDYWdoKDwaKzs7Jxpxu5rivDzqKsrpGhigd14iQ2loCgoIBAIMDw9TWqrsWsCpqSlFSoSA/JsVIO28yQqbzRbVFVIaIyMjPP3004quMSktLcXhcGC329HY8hWp+ZaTmcmNTU3krxLxMBgM7Ny5M6q95fV6E2XeNQmFQnh8PlnVrk5OTtLW1obd4bhmvWBlUTHVpaWKnBcrGg2osrIYHh4mGAxSUlKSbJOShtvtxuPxKDbymHbe0qwLJXecajQaZmdnsdvtyTYlaeTl5XHDDTdgsVgUp/nWOzJC58AAwJqiVipVOC05OzvDhQsXGB4eRiL5jr/D5eKJU6dwuFzJNoVQKERPTw9d3V1YrdnU1dauqVO3prSULLOZUCiE3elMgKXyIFJrqlarqaioUPSkCa1Wy4EDBxZ0wiuFiGh62nlLs2ZsNhuzs7OK7O6xWq2o1WrGx5fOs1QKgiCQlZUV/Vspmm8jk5M0d3fj20ANm8ViobCwgP6Bftrb2mVZB5csRkaGmZgYZ1vFtvC80nVKrHQODHD80iVmZTyOLGbMa7sBFBYWsnPnziQblFxUKhUFBQVoNJpkm5JwIuMK085bmjVTMH/xUGL0TRRFcnJyoieOUgkEAjz99NMMDw+jys5G1OuSbVJcmZyd5VxHBwW5uTRUVKx7eUEQKSkppa6uDpfLxaVLl3AvM3RdSXi84Ye/goJCtm/fseHRTpXFxZgNBk61tiw7yH4roc7ORtTrGRsbU3T0H+abhs6dk2VNaSIYGRlBpVKRm5ubbFNWJe28yYicnBxUKpUinTcIpw2np6cJBJQrA6FWqxFFkd7e3rDm2xZWd3e4XJxubSXbYmF3dfWmpidkWjLZsWMH2TnZ6OcdXqXpwfl8Xjo6Orh06RJ+vw9RFDeV+lOrVOyrr0etUnGqtUXWI782i6asjFAoxPnz57ly5UqyzUkqdrud/v5+xepujo6OkpeXh0qlSrYpq5J23mSESqVS7JgsgOLiYm644QbUMpVZSBSVlZWMj48zMzODpqgIYYvqLBl0Okpt+eytq4uJHIFGo6G8rBxBEHG73Zw/f57x8XFZ1MLFE0kKMTQ0yIWLF3E656jctg2NJja/GZ1Wy4GGRgLBIENbdPayKisTtdXKwMAAHo+HSpnPz403Y2NjqNXqdKepzEk7bzKjoKCAoaGhZJuRFLRaLRaLJdlmJJ3CwkLMZjMdHR0Iooh2i40v8vn9ON1u1CoVDRXbUMfhCVetVpGRYeFKzxVamptxOhNTt2UxmTh2+DCWBOpD9fT2MjQ0RIHNxs5du8jOjm2RuVGv5/pdu9lWVBTT9coFbXk5kiTR2dlJYWEhGctI1CiJ8fFxcnJyFKnvFgwGGR0djZYwyRnlfTsyp7S0lNHRUXxbOEWxGiMjI5w6dSrZZiQVQRCorq5menoav98fjr5ptkY0MhAMcqqlhTNtbXGVhdFotFRVVdHY0EAoJHG5uZnJyfhHjgRBQBTFTaWA14LDYY/WZhUVFrFjxw5KSkpRifFJ9ejmo79D4+Oc7+jYMpI+KksG6pwchoaGcDqd1NTUJNukpBIIBJieniY/Pz/ZpiSF0dFR/H5/Smj8pZ03mVFaWkooFGJwcDDZpiQFSZIYHh7GJQOphWRSUlLCy172MjQaDYJajWYLaE6FQiHOtLUx53aza5M1bmvFbM5g+47tVFRUYDaHIyrTM9NxK0p3ut2cuHwpLgX+EhJTU5M0N1+mpbWV8fFwc49Op0OvT4yshSiKDI2P09rbk5DtxRtteTkQHtG3Y8cOMjMzk2xRchEEgZ07d6ZE2jAe9Pf3o1arUyLytjUe5wGHw8G3vvUtnn76abxeLw0NDdx3333U1dWtulwoFOLhhx/mqaeeoqOjA4fDQWFhIbfeeiv33nsvOt3Cbr8bb7xx2fW84x3v4M1vfvOm9yMvLw+dTkd/fz/btm3b9PpSjdzcXARBYGJigrItXKx/LQRBQKVSRWVjdCUl+Pv7kQKpWUQsSRIXOjuZsts50NCQUBFYAYH8vJciCeNjY8zMzmIyGiksLMRqta5bRmMlAsEgU7N2AjEu9vZ43LS1t+P1erFYLNTV1ZFpSbyjUZCTw/aqSi53daPVaKkqLk64DbFCNJlQz3fiGgwGRV5vF6NSqRR93e3r66OoqCgl6q7lb+EaCIVC3H///XR1dXHvvfeSmZnJ//7v//Le976X7373u6uGQD0eD5/97GfZvn07f/Znf4bVauXy5cv8x3/8B2fOnOHf/u3flkQI9u/fz5133rngtViF2wVBoLS0NDomSWloNBqsViujo6OKvohA2OF57rnnyMnJoampCU1xMb7e1Jw76fR4GJueZnd1NTlJjm7U1tYxa59leHiYzq4u1CoV27fvWPKglkyCoSCzMzN4vF6KCovQ6XRkWjLJz8/DaEzuvMUyWwFen4/23l4MWi1FG5QiSTbainDU7eTJk5SWlqZEtCXetLa2UlRUpNja4/7+/pTR+NsSztuTTz7JpUuX+MQnPsHNN98MwK233sqb3vQm/uM//oOPf/zjKy6r0Wj493//9wVf2F133UVBQQE/+MEPOH36NPv371+wTGlpKXfccUdc9iWy/hdeeAFJkhKSWpIbNpuN9vZ2gsGg7Nu144kgCGzbto3m5mZqa2sxlJbiHxhACqaeBIbZYODmvXvRykT0M9OSSaYlE7fbzczMTNRxa+9oR6PRkG21Ys7IiFsN2XJIUojp6WmmpqaYmZ0lFAqRYTZTWFiIIIhUbEAHL17UlJYhiqqkO+IbRTQaUOfnMzY2xsjISDrqRlgipKOjg+zsbEU6b5EJP6lQ7wZbpObtqaeeIjs7e0FKMysri1tuuYVnn3121eJ/jUazrKd9ww03ANDb27vscl6vN24zFUtLS/F4PExs0db8a1FSUsKBAwcU2e20mPLycjQaDV1dXQhaLZoU6/gbHB/nXHs7oVBINo7b1RgMBgoLC4FwTZnRYMRhd9DW3s7p06e5eOliVPQ2GAzETHZEkkK4XE5GR0cZGQ3PMw5JEl1d3Xi9XoqLitm9azcNDY0IyPMBrqq4GJ1Wi9fnS7kpDNqyMgRBoKOjA6vVKntB1kQwPDyMRqNR7LGIZLtSxXnbEpG39vZ2ampqltzsGxoa+N3vfkd/fz9VVVXrWufU1BTAsgWsf/zjH/nf//1fJEmivLyct7zlLdx+++2rrm9iYoLJycno3ys5hRDWOxMEgf7+/g2ro6cyer0e/RrmWyoBlUpFZWVl9DeuLSvDNzgIIfl3+41PT3Ohs5OS/PyUcMQFBEpKSigpKcHjcTM3N8fcnBPtvGZaV1cXdocDnVaLVqtDq9WQl5eH2ZyBz+fF7XbjDwSpsNnweT3MBgOEJAm/z4fBYCAjw8LcnIPu7iv4fF5CkoQoCFgyMymwFaASVeH0uAyd3NVo7e1lbHqa63buxJwC80BFvQ51QQGTk5NMTU1x8ODBZJskC4aHh7HZbClxrsaD/v5+srOzMSVQ5mczbAnnbWpqit27dy95PTJUd3Jyct3O209/+lNMJhOHDh1a8PqOHTu45ZZbKCwsZHJykl/96ld88pOfxOl08ud//ucrru+3v/0tP/zhD9e0bZ1Oh81mo7+/n717967L7q3C7Ows7e3t7Nu3T7EXkwgVFRXMzc0RCoUQjUY0hYX4B+WtBTjtcHCmvY08axY7UlD0VK83oNcbyM196eGpqKgIy9wcPp9/3lnzEJhvIJmZmaHnqgcyx9RLD2qiIMzrh1nQaLRYrVlotTpMJhMmk3FBs0SqOW4Ajdu2YXc6OdnczHU7d6KXuai0pqwcQRQZHBzEYrEotrPyaubm5nA4HNTX1yfblKTR39+fMlE3kKHzFgqF1jxcWqvVIggCXq8X7TIXjMhr601v/uQnP+HUqVO8733vWyLY+I1vfGPB3694xSt4+9vfzne+8x1e/vKXr1j0fPfdd3P06NHo3729vXzqU59a0YbS0lK6u7vXZfdWQhRFRkZGGB8fV/zFVaPRsGfPnujf2ooKAqOjsu089fh8nG5tJdNkZk9N7Zap2zSbM6JyI4vJzc3DarXi8foYnZ7CZs1Grwtfn1RqdTT1qdPpKC3dWo04GrWaA42NvHDxIiebmzm8YwcamXbriUYDmqJwmnznzp1xK31JNTQaDfX19YrM9AD4fD5GRkZSKlgiuzPs/PnzvPe9713TZ3/yk59QXl6OTqdbtq4t8tp6usgee+wxvve97/HKV75y1UhaBI1Gw2te8xq+9KUv0dbWxq5du5b9XG5u7rpqCcrKyjh58iQulwuj0bjm5bYKGRkZmM3maCg/TVjA2G63U1tbi7aiAm9nV7JNWhadRsO2oiLKbDbFNJyIoogoanF5fXT0D5BnzY7ZiKpUQK/VcqCxkROXLzFtt5OfnZ1sk5ZFV1uLIIrY7XYsFku6PGMenU6naIHiwcFBQqFQSikcyM55Kysr4yMf+ciaPhtJi2ZnZy+oJ4sQeS3yuWtx8uRJPvOZz3Ddddfx/ve/f40WE1WjjqXwZyR829/ff02tuq1KYWEhPT094XShwlOnAC6Xi7a2Nmw2G5bSUvzDI4SczmSbFcUfCGB3OsnJzExpGYpvEAAAf4FJREFU/a80G8NsMHDTnr3RcWdy65ZX5+Whzs5mYGCAs2fPcvPNNyt+FBaA2+2mr6+PysrKlEzbx4L+/n50Ol1KRR5l57zl5OTw8pe/fF3L1NTUcOHChSU3+ZaWFvR6/Zry2M3NzfzjP/4jdXV1/Ou//uu6RPois0izsrLWZfdqZGZmkpGRoXjnraOjg8nJyZQ6qeLFtm3b6O/v5+LFixw9ehRdbQ3us+eSbRYQngl4urUVp8fNzXv2KibilmYhEcetrbcXXyDAznXWGscLQa1CV1uD3++nubmZoqKitOM2z9DQEJ2dneuuC99KROrd5PSwcS22RDjjpptuYmpqiqeffjr62szMDE888QRHjhxZUA83ODi4ZPRUT08P999/PwUFBTzwwAMrpllnZmaWvOZyufjlL39JZmZmTJ0sQRAoKyujp6cnZutMNTIzM9m/fz9WqzXZpsiCyOia6enp8BgXqxVNQfJTypIkca6jg1nnHHvr6tOOWxrMRiMDo6O098lDVFpbXo6o09HW1kYwGGT79u3JNkk2DA8Pk5+fnxJTBeJBMBikr68vpVKmIMPI20a4+eab+eUvf8lnP/tZenp6ohMWQqEQ/+f//J8Fn/2Hf/gHAH7xi18AYefrAx/4AA6Hg3vvvZcXXnhhweeLisJDnwF+9atf8eyzz3LkyBFsNhuTk5P84Q9/YHR0lI997GMxDzlXVVXxu9/9DrfbjSEFWvDjQUSDK02Y7OxsSkpK6O/vp6ysDG11NYHJSSR/IGk2Xe7uZmx6mn11dVgVHs1Qq1RkZ1qiESilUpyXh9fvo62nF61GQ0USz2PRZEJTWordbqenp4eGhoZ0rds8TqeT6enplCrUjzWDg4N4vd6UizxuCedNpVLx+c9/nm984xv8z//8D16vl/r6ej7ykY9c05uenZ1lbCw84Pnb3/72kvfvvPPOqPO2c+dOLl26xO9//3vsdjt6vZ6Ghgbuv/9+9u3bF/P9qqqqQpIkrly5QmNjY8zXnwqEQiHOnz9PYWFhenzNPDt27IhGt0StNty80NGZFFt8fj8Ts7PsrKqSbZF6IjEZDBzaviPZZsiCyqJivD4fLVeukGE0Jm0ag662BkEUMRgM1NbWpqcpXEV/fz8ajUbR19aurq4FYt2pwpZw3iDcnXj//fdz//33r/q5SMQtQmFh4YJ062ocOHCAAwcObNjG9ZKZmUlubi6dnZ2Kdd5EUcTpdNLb26voC8zVRCK8Ee23jJIS/MPDhOYS27wgSRJajYYbdu9Op0rnkSQpWqifSvUz8aK+vAKj3pC0iKzalo/aakWSJDQaDbW1tUmxQ64UFBRgNpsVff52dXVRWVmZck1xqWWtAqmurqarqwtJkr+ifrwoLS1lfHwcj8eTbFNkxblz5zh37hwA+gTflEYmJ3nh4kX8gYCiL/yLsTudPHz8OHYZdQEnE0EQKC8oQBRFZufmEjpGS1Cr0FVX4/f7eeKJJ6IZljQvkZWVRUlJSbLNSBput5vBwUGqq6uTbcq6STtvMqeqqorZ2dllpVCUQlFREYIgLGk0UTrbt29ndnaWvr4+VFlZaAoTE5mcnJ3lXEcHBr1e8bVdadZOa28vp1pbcCXoIUy7bRuiTkdrayter1eRw9ZXo6Ojg+Hh4WSbkVS6u7uRJInKFJwCk3beZE55eTkqlYquLnkKsiYCjUZDYWFhdHBwmjBWq5WysjJaWlrw+XzoqqoQNPGthLA7nZxubcWakcHu6up0ajDNmmmqqUGtUnGypRnvMqLqsUQ0m9CUlDA7O0tPTw91dXXpJoWrCAQCdHR0MJfASKgc6erqIi8vb9kZ5nIn7bzJHK1WS1lZmaKdN4C6urolc2bTQENDAwCtra0IWi262vhpAgaCQU61tGAy6NlXX59yNSJpkotOq+VAQ2P4d9TaQiAYp/FuooB+vkb4woULWCyWdJPCIoaGhggGgyk1yzPWSJJEV1dXynWZRkhffVOAqqoqrly5QiCQPDmIZGMymRQrl7IaWq2Wffv2RQuxNbZ8NMVFcdmWWqWioaKC/fUN6XRpmg1h1Os50NCIPxCMW/pUV12DymwmEAggiiI7d+5MR4gX0d/fT15enqKjkZOTk8zOzqadtzTxo3q+6FbpacPx8XGeeuopQqFQsk2RFZGLsM/nw+PxoKupQTSbYrb+QDDI4Pg4AIW5uei0ypnZuV4yjEZu2b+fDAXOI14rFpOJm/bswWIyEQqFYtqMpc7LQ1sSHs2m0Wg4evQo2WkJmwU4nU6mpqYUHXWDcMpUpVJRUVGRbFM2RNp5SwFsNhsmk0nxqVOj0Yjdbo+OI0uzkBdffJEzZ86AIGDYvh1BtfnTOxQKcaatjcvd3XjiXKe0FRBFEb1Wm04pXwNBEJAkidNtbbT29sRknaJBj76+Dr/fz/PPPx/TWdNbCYPBwN69exUvvdTZ2Ul5eXnKznNNX2FSAEEQqKqqUrzzZjKZyMvLo7u7O9mmyJLGxkampqZob29HNJnQbXJcmyRJXOzqYspuZ199Pfp0xO2auDwezrS1JayjMpURBIF8q5WeoWG6NttJLgrot29H0Gg4d+4cdrs9ZW/K8UYURYqLixUt8RMIBOjp6UnZlCmknbeUoaqqiuHhYcV3B23bto3Z2Vmmp6eTbYrsyM7Opq6ujvb2diYmJtAUFGxKPqStt5eh8XF2V1cnTR0/1fAHAoxOTuJXcH3qeigvKKC6tIT23l4GNqHDpqusRGWxcOXKFUZGRmhqakrXyC5DX18fp0+fVrRuKIRr/vx+f9p5SxN/qudlGdra2pJtSlLJz8/HZDIpXp9oJaqrq8nNzeXs2bOEQiF0tbWIG6i/CoVCzDqdNGzbRmFubhwsTZMmTE1pGSU2Gxe7unC4XOteXp2bg7asjNnZWZqbm6msrFR8SnAluru7CYVCim/gaG1txWKxYLPZkm3Khtky47G2OiaTifLyclpaWuIyRzVVEASBo0ePotPpkm2KLBEEgb179+J0OqN1V/od23GdOgWhtT1tB4NBVCoVBxsbFX+RT5MYdlRWkpuZue5GD0GnRV9fD4R/t3l5eVH5nDQLmZiYwOFwRGd1KxVJkmhpaaGhoSGlr2/pyFsK0djYSHd3N263O9mmJJWI4+ZLF9Avi06nIzs7G0mSmJqaQmU2o6+pWdOy49PTPHX2LE63O6UvbGlSC0EQohHe4YkJ5tZyjRMIN+ZotUiSRHZ2NgcPHkw3i6zAlStXyMjIIFfhkfTBwUHsdnvKzwtP/8pTiPr6ekKhEO3t7ck2Jel0dXXx5JNPpmVDVqG/v5/nn3+eqakpNMXFqPPzV/38zNwcZ9rbsJhNGBWs/7QZ9FotNWVl6eaODRIKhegaHORkc/M1u5t127ahysqir6+PEydOpK8Fq+D3+xkbG0uLFQPNzc2YTKaUl0pJO28phMViobS0lJaWlmSbknRsNhterzctG7IKpaWlWK1Wzpw5g9/vR19ft6L+25zbzamWFjJNZvbU1KajbhtEp9VSXVKS1sLbIKIosn8+7XmyuXnFxg91Xh6a8nIcDgeXLl3CaDSmI26roNFouO222xQ9hB5eSpnWb4EJMaltvQJpaGigs7NT8SlDs9lMXl4eV65cSbYpsiVS/xYIBML6byoVht27EfUL6wUlSeJsWxs6jYZ99fWKlhDYLP5AgNGpqXS36SbQa7UcaGzE4/NxurWV4KIxWqpMC/rGBgKBAKdOncJoNLJ9+/YkWSt/QqFQuHlJp1P8uT0yMsL09HTKp0wh7bylHA0NDdGhwkqnsrKSmZkZJicnk22KbDEYDOzbt4/x8XGGhoYQdTr0u3YvGGAvCAI7q6vZ39CARp3uYdoMLo+HM62taZ23TWI2GNjf0IAkSQtmoIpGA4adO0EUOXXqFF6vl/379yveKVmN3t5eHnvsMUWPV4zQ0tKCwWBI2akKV5N23lIMq9VKYWEhzc3NyTYl6eTn55OTk6P4Bo5rkZeXxw033EBxcXhskMpsQr9jByEkOgcGCIVCZJnNGNIdvGlkhDUjg+t27kSn1eIPBBA0Ggy7diFotQiCgM1m4+DBg5jN5mSbKltCoRCdnZ3k5uaiTj+Y0dzcTF1d3ZZw9tPOWwrS2NhIR0cHfr8/2aYknSNHjii+jmMtZM6L7A4PDzM4OIgqK4tmn4+uwYG1dfalSZMkgsEgL1y+RJ9Bjzg/Ig/Ckff03NLVGRgYwOPxULPGbvOtzPj4OBMTE1tGSibtvKUgDQ0N+Hw+xY/LiuD3+xkYGEi2GSnB6Ogo586d45lnnmEyEODQsWNYTLEbYp8mTaxRadRUXX89XcPDPPfcczz11FPpCStrQJIkOjo6KCwsTEcnCUfdtFptSk9VuJq085aC5Obmkp+fn+46nWd0dJSzZ88yOzubbFNkz65du5ibm+Pxxx9n27ZtlO7di7aiPNlmbRlEUcSc7nyMHQLoGxqoP3AAi8XCww8/jMlkwmq1Jtsy2ePxeNBqtdTW1ibbFFnQ0tJCbW3tlkkfp68wKUpDQwNtbW1LOrGUSHFxMUajMd3EsQZEUaS2tpba2loGBwdxOp3oKivRlBQn27QtQYbRyA1NTeueFJBmefS1tWhstuh0gNraWtxuN16vN9mmyR6DwcANN9yAxWJJtilJZ2pqipGRkS3RZRoh7bylKI2NjXg8nnTqlHC3ZHV1NcPDw8zNzSXbHNkSqZHcs2cPr3vd67BardHCXX1tLZqC1J3zl2broauqRDPfZNPR0UFubi733nsv1113XXo83jWYmppKp5av4vLly2g0Gqqrq5NtSsxIO28pis1mo6CggHPnziXbFFlQWlqKXq9PR99WYHJykj/96U9MTU0BoNVqOXDgAHq9Hp/Ph8/nQ9fQcM0pDGlWx+508siJE9idzmSbktJoKyrQlr+Uzj9w4AAHDhxArVZHmxQ6OjpwbWCQvRK4dOkSra2tyTZDFkiSxLlz52hoaEC7hcSz085bCtPU1ERbW1v6AkY4Hbhz507Ky9P1W4ux2+2cPHmSrKwssrKylrx/+vRpjh8/TiAQQL+9MRrtSLN+JEkiGAwiSVKyTUlNBNDV1qCr3IbL5eLZZ5/F6XSiVqsXyDv4/X76+/s5fvx4OoW6iNHRUWZnZ9MdpvMMDAwwOTlJU1NTsk2JKWnnLYXZuXMnkiRx6dKlZJsiCwoKCtLSAYtwuVycOHECo9HIgQMHli2k3759Oy6XixdeeAGfz4e+rhbttorEG5tG2YgC+sbtaEtKsNvtPPfcc/h8vmULzDUaDYcPHyYQCHDixIm0AO08kiTR2tpKdna24gfQRzh37hyZmZlbbq5r2nlLYUwmE7W1tenU6VV4PB6effbZdOfpPBcuXEClUnHo0KEVu6wsFgtHjhzB6/VGIx26bdvQ19VCesRpmgQgqMOj2zS2fKampnj++efRarUcPXp0xfo2o9HI4cOHcTqdnDp1Kj2YHhgcHMRut2+pwvzN4Pf7uXz5Mrt3795y85rTzluK09TUxNDQEGNjY8k2RRbodDr8fn9aRmWepqYmDh8+fM0Cb4vFwtGjRxFFMer4aoqLMezYAeLWuuilkReCVothzx7UVit+v58XX3yRzMzMVR23CBaLhYMHD26pWqbNYLPZaGpqSkupzNPW1obH49lyKVNIO28pT01NDUajMR19m0cQBBoaGhgfH2d8fDzZ5iSFUChEc3MzXq8XvV6PcY2yFUajkZtuuomioiIA5ubmUOflYWxqWjALNc3KmA0GjuzahdlgSLYpKYFoNGDcuwdVRgYQToceOnRo1UjxYnJycti7dy+iKOJR8ExZSZLQaDSUlpYm2xTZcO7cOcrKyrZkOU3aeUtxVCoVO3fu5MKFC+m0wTyR2rfm5mbFFY5LksT58+e5cuXKhmRTIjVxg4ODPPXUUwwNDaHKysKwZw+CLh3duBYqlYpMs3lLzE6MN6oMM4a9exGNRtrb2zl//jwQnt+8EZFjj8fDE088QWdnZ6xNlT1+v5/HH39csQ+sy2G32+nq6tqSUTdIO29bgqamJubm5hR50VqJhoYGPB6P4jpxW1paGBgYYM+ePeTk5Gx4PYWFhRQVFXH69GmuXLmCymzGuG8fYlp8dlXcXi+Xu7txpzsgV0VlnX8g0Gi4ePEibW1ta44Qr4Rer6eyspKWlhb6+/tjZGlq0NnZidfrJWM+gpkmXO+rVqu3bP1f2nnbAhQUFGCz2dKp06vIzs7mtttuw6SguZ1dXV10dXWxY8eOaOpzo4iiSFNTE5WVlVHNKFGvD6e4MtOK7Svh8/vpGxnBNy+InGYp6vx8DLt3I4kip0+fpre3l927d8dE2qKuro6ysjLOnz+vmDpgt9tNd3c3lZWV6PX6ZJsjC67WdtuqxyTtvG0BBEGIar653e5kmyMbVCoVXq+XiYmJZJuSELRaLTU1NTFriRcEge3bt9PY2MjMzAyhUChaXK4tLYnJNtIoCFFAV1uDYcd2BFGkp6eH0dFR9u/fT1lZWcw2s2vXLmw2G+fPn1dEKUl7eztqtXpLTQ/YLIODg0xMTGzZlCmknbctw65du9Kab8vQ3t7OqVOn8Pl8yTYlbkQc9tLSUurr62O+/qqqKg4dOoQoiszMzOAPBNDV1GDYtRNBo4n59tJsPUSjAeO+fWhLSqKabNu2beOGG26goKAgptsSBIG9e/dy5MiRDdXOpRKSJOFyubbUwPVYENF2q6ioSLYpcWNr/7IVhMlkoqamhjNnziiuSH81amtrAbasdMjMzAxPPPFE3Gt8BEGIpiKeeuoppqamUOfmYjx4AFVWZly3nSa1UdvyMe7fjyojg4GBAf70pz8xMzODIAhxG5quUqkwmUwEg0HOnz+/ZbtQBUHguuuu29JOynrx+XxcunSJXbt2bWnnfevumQLZv38/w8PDDAwMJNsU2aDT6aivr6evr2/LDWp2Op2cOHECi8Wy6Rq3tSAIAocPH8ZoNPL888/T3t7+Uhq1oiIt6AvotFoqigrRpXXHEFQi+oZ6DNu3ExIEzp07x9mzZ7HZbJjN5oTY4Pf7GR8f5/jx4/i3WB3iyMhItCRkqwnQboaLFy/i9XrZt29fsk2JK2nnbQtRXV1NdnY2L774YrJNkRXl5eVkZmZuqZSyx+PhhRdeQKvVcvDgwYRJU+j1eo4cOUJNTQ1tbW1cuHABQRDQVW7D0NSkeDkRvVZLQ8U29Ap33kSzCeP+/WgKC5mbm+Ppp59maGiIpqYm9uzZk7AUn16v5/Dhw3g8Hl588UWCwWBCthtv/H4/58+fp6+vL9mmyApJkjhx4gR1dXXLznHeSqSdty2EIAgcPHiQy5cv43A4km2ObIg0dOzevTvZpsSM9vZ2JEni8OHDCVeXFwSBurq6BemaUCiE2mrFdOAA6pytJ4i5VgLBINMOB4Et4iRsBE1xEcb9+xHnO701Gg0Gg4Ebb7wxKQKyZrOZQ4cOMTs7u2XKSlpbWwmFQmzfvj3ZpsiKnp4exsbGOHToULJNiTtp522L0dTUhFqt5tSpU8k2RVZYLBYsFguhUGhLDLHesWMHR48exZBEJf/c3FwyMzMJhUI8//zzYVFktRrD7t3oqqsUOVbL6XZz/OJFnArs+hY0avQ7tqOvqyMQDHLhwgW8Xi86nY7Dhw8nLFW6HFarlf3795OZmZnyKcaZmRl6enqoq6u75vgwpfHiiy+Sn5+viBrAtPO2xdDr9TQ1NXHq1Kkt4aTEmuPHj6ds+lSSJC5cuIDdbkcUxU2LmsYKQRAoLCyku7ub559/HpfLhbasLFyknm5mUARqWz7GgwfR5OczPT0dTZNuZMpHvMjPz482MKVyZqKjowOLxRIzSaCtwszMDK2trRw8eDDlHfS1kHbetiAHDx7E6XTS3NycbFNkR3FxMf39/UxNTSXblHVz8eJF+vr6ZKflJwgCVVVVHD16FK/Xy9NPP83IyEh4KsPevei3Nyq+Fm6rIppNGPY0Ydi+HUGrpbOzk+eeew6dTseNN964qSkf8WJ2dpYnn3ySnp6eZJuyIfbs2cP+/fsV4aCsh5MnT6LT6di1a1eyTUkIaedtC5Kbm0tVVRUnTpxItimyo6ysjKysLC5evJhSAp7t7e309vZGBUjliNVq5cYbbyQvL2+Brp7GZsN06BDa8jJFplK3IoJGja62BuOBA6itViDc/dzW1kZVVRVHjhyRTWR4MZmZmVRWVnLx4kWGh4eTbc6a8Xq9uFwu1Gq1oibHrAW/38+ZM2fYu3dvwmuAk0XaeduiHDp0iMHBwbRsyCIEQWDXrl04HI6UmQXb19dHW1sb9fX1MVWijwcajYZ9+/ZF7Tx//jyXL18mIEnoqqowHTy4pRsaBEFAo9Fs3aiIAJqiwrAzXlKCx+Ph8uXLhEIhzGYzL3vZy2hoaJC9vlZjYyPFxcWcOXOGycnJZJuzJi5evMgLL7ywJRouYs3FixfxeDwcOHAg2aYkDHmfYWk2THV1NVarNR19W4bMzEwaGhqSWkC9HjIyMqipqYnJ7MdEYzKZ6O3tjQoJCwYDht27MezaiWhMXrNFvLCYTNx24ACWLRgZUWVaMO7bh76+HkmtpqOjgyeeeILBwUGcTidAysyRjHSg5+TkpISA9+DgIMPDwzQ0NGzdB4MNEpEHqa2txTofBVYC6XkaWxRRFDl48CB/+tOfuOOOO8jIyEi2SbKiqqoq+v+SJMnyguhwODCZTFit1pS9KFVXV1NSUkJzczPnzp2jr6+PI0eOoM7NRZWdjb+vD19vL1IwdVLYSkPQatFVVaIpLARgfHycCxcu4Ha7qaysTNnRTKIosn//ftlHsrze/7+9+46O6r72Bf6dopmRNBr1XhESqKHeUaO3GJvYYIixndhxSW4cr9wk9vW7vrk3TnHilfK83o0TGxccN4xxqAZMl5BQ76ggIaGCekMjaTT1nPcHmQmyCupnyv6sxVro6MzM/mlmzuz5lf1Tobq6Gl5eXstSjNvUtLa2oqenB1u2bOE6lGVFPW9mLCYmBnw+H6WlpVyHYrTKysrQ0NDAdRiTyOVy5OXlobGxketQFkwikRj2mvT09ASPxwPDMNBotRAFBMAmORkiXx/wBKZ/ORpRKJBdXoYRhYLrUBaMJxJBHLgCtkmJhsQNuDu/yNbWFllZWQgLCzPJxE1PKBTCysoK4+PjKCoqMso9kGtqasDn87FmzRquQzFKhYWFcHV1tbjVt6Z/tSTTorIh9yeVStHY2Ijh4WGuQzEYHx9HYWEhrK2tJ/QQmjpnZ2cEBgYCuFtM89KlS7h169bdJCE4GLapqRAHrgDPhCccMwwDxbjSpBbDfBPfxhqS1atgm5oCUUAAdDwe6urqUFZWBgDw8vLivG7bYmNZFnfu3EFhYaHRXStXr15tURPx50JfHiQpKckoR0+WEiVvZi45ORljY2MoLy/nOhSjFBQUBDs7O1RUVBjFB65arUZBQQH4fD6Sk5NNuldjJj4+PvDy8sL169dx8eJFNDc3Q8fjQRQQANvUFEhCVoNvpKsVzZXAwR7WayJgk5QEK29vqDUa1NfX48KFC2huboZUKjX6Icb5srGxQVJSEkZHR1FSUmI01wKdTgdbW1u4uLhwHY5Rys3NhY2NjcWUB7kXJW9mztnZGREREcjNzTWbff0WE5/PR0xMDEZGRoxi+PT27dvQaDRITk426+rpIpEIkZGRyMzMhLOzM2pra/+1yTafDysvL9gmJ8F6TQQV+l1iQlcX2MTGwCY2FkJXV/B4POh0Oly+fBnNzc3w9fXF+vXrsWrVKrPu3bC3t0dCQgIGBgZQWVnJdTioqKhAQUEB12EYrZGREZSXlyMlJcUieyXN82s9mSA9PR1vvfUWqqqqEBMTw3U4Rkcmk2H16tVG8W07MDAQXl5eJrNqb6FkMhliYmIQEhJiaHNxcTFEIhFWrlwJqasrhK6u0A0PQ93WBm1/P2CenT/Li8+DlYcHRL6+hj1IBwcH0dLSgsjISAiFQsTFxcHBwQFWVlYcB7t8XFxcEBsby3mS2t7ejp6eHosqfTFX165dg5WVlcX+jSh5swBubm4ICQlBbm4uoqKijL4GExe4LMOh3/bK1dXVohK3e927R6ujoyOam5vR1tYGDw8PrFy5Ek5OTrBeswaMQgFNTw+0vX1g/lmewpjYWlsjISwMthzuOTsTgb0MQjc3CN3dwReJwLIsuru70dTUhMHBQUilUoyPj8POzg6urq5ch8sJz3sWZwwODsLJaXnrEo6OjqK6uho+Pj7w8PBY1sc2FWNjYygpKUFqaqpZj1DMhD7FLURGRgYGBgZoy6z7uHXrlmFi9nKpq6tDW1ub2c4nmqugoCBs3LgRUVFRGB0dRUFBATQaDQCAb2MD8Yq7KyBtEhMhCggwqrlxQoEALg4OEAoEXIdiILCXQRwcBNvUFNjExd3tbfvnMFNFRQWKi4sBAAkJCcjKyqKyQv/U3d2NvLy8ZS10zrIsSktLYW1tTatLZ1BQUAAej4ekpCSuQ+EM9bxZCC8vLwQFBSEnJwfh4eGcDwsYK4lEgo6ODjg7O8Pf33/JH6+5uRlNTU2IiIiAt7f3kj+eqeDz+fDz84Ovry9GR0dhZWUFrVaLnJwcuLm5wcvLC46OjhAHroA4cAV0o6PQ9vZC29sLRsHd3q9KtRrtPd3wdfeAhMN5OAKZ3d0eNjc38P/Zk8swDHp7e9HZ2Qlvb2+4uroiICAAAQEBJltHcCl5eHjAz88PFRUVEIlEcHNzW/LH5PF4CA0NhUQiMdvFSgulVCpRVFSEhIQEo92CbTnQq8OCZGRk4P333zdstUQm8/T0REBAAK5fvw5HR0fIZLIle6zOzk7U1NQgKCjI4moUzRaPxzP0BDEMA3d3d3R2duLWrVuQSCTw9vZGWFgYBFIpBFIpxIGBnCZyKrUaN9tvw83RadmTN4Gd9F8J2z3DtkNDQ2hra0NXVxc0Gg2kUqlhOI6StplFRkZCrVajpKQEKSkpS/r3Ghsbg62t7bIkiaasqKgIOp0OKSkpXIfCKUreLIifnx/8/f2Rk5OD1atXU+/bNMLDwzE4OIjS0lKkp6cv2TdgJycnrF69GqtWrVqS+zc3IpEI4eHhCAsLw9DQEDo7O6FUKgHcHW66ceMG3N3d4ejoaEjkmPFx6ORy6IaHwcjl0I2OAozpD0/zBHzw7WQQ2MsgkMnAt7c3DIWyLIu+vj7Y2NjA1tYWAwMDGBgYQEBAALy8vJb0C4m54fF4iI2NRUFBAVpbW5cseVMoFMjJycGqVavMqrbjYlOr1cjPz0dsbKxZ1RmcD0reLExGRgY++ugjNDc300ViGnw+H3Fxcbhx48aSzEOTy+WQSCSQSCSUuM0Dj8eDk5PThInkCoUCbW1taGxshLW1tWErIQcHB/CtrWHl7g4AYBnmbhInl0M3LIdOPgxWZXxV9b+Jb2N9N0mT2UNgLwNfKp3w5Uun06Gvrw9dXV3o6uqCWq1GSEgIgoODERgYiKCgIA6jN20CgQBJSUkQLNE8RoZhUFpaCpFIBD8/vyV5DHNRUlICtVqNtWvXch0K58wmeRsZGcHf/vY35OTkQKVSITQ0FD/84Q+xevXq+972t7/9Lc6ePTvpuJ+fHz7++OMJxxiGwaFDh3Ds2DEMDg7Cx8cH+/fvx8aNGxetLUspMDAQ3t7eyMnJoeRtBlKpFHFxcQAWd+/TsbEx5Ofnw83Njcq2LCJbW1ts2rQJg4OD6OzsRHt7O3p7e5GVlQUAuHHjBuzt7eHg4ACJgwMEDg6G2zJKJXTDcjAjcjDjSrBqFRilEqxavbxlSfg88MVi8P75j299N2ETyGSTdp1QKBQYGhqCo6MjbGxs0NjYiMbGRtjY2MDPzw9eXl6wt79bH49Wly+cvvd9cHAQdXV1SExMXLQSKnV1dZDL5Vi7dq1FlWWZK41Gg2vXriEqKsrw2rZkZpG8MQyDl19+GU1NTdi7dy/s7e1x7NgxvPjiizhw4AB8fX3vex8ikQgvvfTShGO2/6x/dK8DBw7gk08+wQMPPGAov/Haa6+Bx+Nhw4YNi9ampcLj8ZCRkYHPPvsMra2tyzIp35TJ5XIUFxcjISFhwcNNSqUSBQUFhuE/srh4PB6cnZ0NhanHx+/Od9NoNGhrazMMsVpbW8PJyclQz4wvkdyd1O8+ca4Ry7Jg1WqwSiUYpQqsWnX3/yr13f+rVGAZ5m6CxzIAy0IkFsHTzRUisQg8KyEAHsDjgcfnAXw+eCIxeGIR+BLJ3QRNn6xJJIZhz+m0tbWhp6cHQ0NDUKlUAIDo6OgJCRsNiS4tkUiEkZERFBUVITk5ecG9cYODg2hubkZ4eDgc7vlCQSYrLy/H2NgY0tLSuA7FKJhF8nblyhVcv34dr732muGb9vr16/Gd73wHH3zwAX7xi1/c9z4EAgE2b9484zl9fX34/PPPsWvXLvzkJz8BAHzrW9/CCy+8gLfeegtZWVlL1rW+mFatWgV3d3dcvnwZTz75JM19m4GtrS2srKxQVFSEjIyMeVfy1mg0KCwsBMMwSE1NtciK4MuJx+MZVqJZWVlh06ZNUCqVGBoawuDgIEZHRw29KXl5eQDuVti3traGRCKBq6srRCIReGIxIBZDMMsv+lIAC5luPjAwgPHxccO/oaEhJCUlQSKRQC6XQ6vVws/PD46OjnB0dDS8jix51d1ykkqlSEpKQn5+PsrKyhAfH7+g66ejoyNiY2Nppfl9aDQa5ObmIiIiYtnr7hkrs0jesrOz4eTkhIyMDMMxBwcHrFu3DufPn4darZ7Vh6VOp4NSqZyyxw24u4+aVqvFrl27DMd4PB4eeughvPbaa6ipqTGJPdb0vYSffvopbt68yWmBWmMnEAiQkJCAq1evoqSkBMnJyfMahhocHIRSqURqauqEgrRk+UgkEnh6ek4owgoA3t7eGBgYQH9/P8bHx6HVarF27Vo4OTmhrq4O7e3tkEgkhsTOzc0N7u7u0Gg0kMvl4PF44PP54PF44PF40Gg0EAgE4PF4YFkWDMNAIpHAxsYG4+PjaG9vh1KpxPj4OJRKJQQCgaE3QT+nRyQSQSKRwN7e3rDzR0RExLL/zchkjo6OiIuLQ3FxMWpra+fVi65WqyGXy+Hi4kKJ2ywUFRVhdHQU69at4zoUo2EWyVtDQwOCg4MnfaiGhobi5MmTaG9vv+/8LqVSiW3btkGpVMLOzg4bNmzA888/P+EbrX4y9DeHGkNDQw2/ny556+/vx8DAgOHn1tbWObVxsQUHB8Pf3x8XLlzAypUraV7MDKytrREfH4/8/HzU1tbO60PU3d0d69evpzktRkhf60xPq9Ua3g9ubm4QCASGRGtwcBASiQTu7u4YGRnBtWvXJtyXVqtFe3s73NzcJnwJDAwMRHh4OFQqFVpaWgzJoJOT04Tz9L27ptCDb8nc3d0RExMzr4LGDMOgpKQEY2NjWL9+PT3X9zE+Po6rV68iPj6eet3uYRbJ2+DgIKKioiYdd3Z2BnB3KGKm5M3Z2Rn79u3DqlWrwLIsCgsLcezYMTQ1NeHNN980DK8MDAzA0dFxUje5/nH0G2tP5cSJEzh48OBcm7ZkeDweNm3ahHfffRfV1dVT/v3Ivzg5OSE6OnrOy9OrqqogEokQEhJCiZuJuLc0jH4O3VTs7e2xfv16MAxzd34cy2J4eBg6nQ4JCQlwcHAw9Mrpe/4dHBxmnJ5BvbKmQ99jptPpMDAwMOv6bDU1NRgaGkJKSgolbrNw9epVMAyDzMxMrkMxKkaXvDEMY9gK535EIhF4PB5UKtWUw6L6Y/rJvdN57rnnJvy8YcMG+Pr64sCBA8jOzjYsRFCpVFN+AM/mcXbu3DlheXNrayt+/etfzxjXUvPx8UFYWBguXbqE8PBwquh9H/qLNcMwGBsbu++37oaGBrS2tlJibKYEAsGUUyzEYjEcHBxoRZyFaGtrw/Xr1xEfHz9pSP6bWltb0dLSgqioKOpFmoXh4WEUFRUhLS1t2ulMlsroPq0rKyvx4osvzurcjz76CP7+/hCLxVCrJ9dq0h+bz8a1e/bswXvvvYeSkhJD8iYWi6dMLGfzOC4uLnBxcZlzHEtt/fr1eOutt1BUVITU1FSuwzEJdXV1uH37NtLT06edKN7a2mrYyYJqNxFivgICAjA0NISysjIkJydP21PLMAyam5uxYsUKuibM0uXLlyEWi+mzaQpGl7z5+fnhlVdemdW5+jeJk5PThPlkevpj072ZZiIWiyGTySCXyyc8Xnl5+aS6X/rHMcbk7H5cXFwQGxuLq1evIjY2FpJ/7oNIphccHIzu7m4UFxdj7dq1k3os+/v7UV1djYCAAFoMQoiZ4/F4iI6OhlqtRlFREdauXTtlyRY+n4+0tDQaKp2lnp4eVFZWYvv27bQ6fwpGl7w5Oztj27Ztc7pNcHAwqqqqwDDMhIn3dXV1kEgks6rz9k0KhQLDw8MTau8EBQXh1KlTaG1tnTDBuba21vB7U5SVlYXKykrk5uaaTLFhLolEIiQmJiI3NxclJSVITEyc8LpzdHREWFgY7Vdqgezt7fHAAw9wHQZZZnw+H/Hx8bh27Rr6+vomJG9qtRrV1dUIDw+nL8dzcOHCBTg5OSE2NpbrUIySWSwxzMzMxODgIHJycgzH7ty5g8uXL0+qqdXR0YGOjg7DzyqVCgqFYtJ9fvjhh2BZFklJSYZjaWlpEAqFOHr0qOEYy7I4fvw4XF1dTXYpv1QqRWpqKgoKCib0NJLp2dnZISEhAQMDA+jp6QFwd5cPuVwOgUCAwMBAqp9HiAURCoVIS0szLI5jWRY6nQ5FRUXo7++HTqfjOELTcevWLTQ2NmLDhg3UUzkNo+t5m4+srCwcOXIEr7/+OlpaWgw7LDAMg6eeemrCufriuocPHwZwd6Xq008/jY0bNxrmIRQVFaGgoABJSUkTqjm7ublh9+7d+Oyzz6DVahEaGoqrV6+iqqoK//Vf/2XSL7LU1FSUlJTg8uXLePDBB7kOxyS4uLggKysLtra2GB8fR0FBAaRSKVJSUrgOjXBkdHQUFRUV81qZTEyfvge+vb0dLS0tEAqFkMvlSE1NpQn3s8SyLC5cuABvb29DGS4ymVkkbwKBAG+88QbeeustfPnll1CpVAgJCcErr7xy34mh+l6n4uJinD17FgzDwNvbG88++yz27t07qf7Zc889Bzs7O5w4cQJnz56Fj48PXn31VWzatGkpm7jkxGIxMjIycPbsWaSkpMx62buls7W1hVqtxvHjx6HT6SYUiiaWR6fTYWhoiHpZLJxMJkN1dTUUCgUee+wx2vpqDmpra9HR0YHvfve7NHoxA7NI3oC7w1gvv/wyXn755RnP0/e43Xu7V199ddaPw+fzsX//fuzfv39ecRqz+Ph4FBYW4sKFC/jOd77DdTgmQT8sIpfL4ejoiP7+fqqYToiFs7e3R3p6OkpKStDV1QUPDw9KRGZBq9Xi4sWLCA4OnjCvnExmFnPeyOIQCATYuHEjGhoa0NDQwHU4JmFsbAxKpRJ79uxBUFAQysvL0dfXx3VYhBCO3LlzBwCwZs0abNmyBR0dHWhqauI2KBORn5+PO3fumPxI1nKg5I1MEBoaipUrV+LMmTOzLpZsqViWhUwmw/r16+Hg4ICoqCi4ubmhuLjYcAEnhFiO27dv4+rVq4ZFTF5eXoiLi6O6brNw584d5OTkIDk5mabtzAIlb2QCHo+H7du3Qy6XIy8vj+twjFZdXR1KSkrAsqxhXiSfz0dcXBx8fHymLd5LzJuNjQ1iYmLo+bdAnZ2dqKiogK+vL9zd3Q3Hvby8IBKJMD4+ju7ubg4jNG5ff/01JBIJbYM1S5S8kUmcnZ2xdu1a5ObmYnBwkOtwjE5zczNu3rwJZ2fnSfNYBAIBIiMjDRfr4eFhjqIkXLCysoKPjw/tY2thOjs7UVZWBi8vr2m3w2tpaUFJSQl6e3uXOTrj19jYiLq6OmzZsmVeOyJZIkreyJTS09MhlUpx5swZsCzLdThGo6OjAzU1NQgKCkJgYOCM59bV1RnmcBDLoFar0dLSMuV2fcR83b59G15eXoiJiZl2YUJISAjc3d1RUlKCoaGhZY7QeGm1Wpw5cwaBgYEIDw/nOhyTQckbmZKVlRW2bt2KxsZG3Lhxg+twjMLIyAjKy8vh6+s7q/pDkZGRkEqlKCgooATOQoyPj6O6uhrj4+Nch0KWgVarBXB3pf5MiRtwd0pKbGws7O3tUVRUhNHR0eUK06jl5eVheHgY27dvpxW5c0DJG5nW6tWrERwcTIsX/snOzg7R0dGIjIyc1flCoRDJycmUwBFihrq6unDp0iWMjY2Bz+fPKvEQCARITEyEtbU1xsbGliFK4zY0NISrV68iJSXFJPcG5xIlb2RaPB4P27Ztw9jY2IStxyzN2NiYYaKxj4/PpMLNM9EncDKZDEqlcqlCJIQso66uLpSWlsLFxWXOi1OsrKyQnp5uWNRgyQWdz549C1tbWypuPg+UvJEZOTk5IS0tDdeuXcPAwADX4Sw7pVKJgoIC1NfXg2GYed2HUChEamoqPDw8AGDKvXQJIaahs7MTpaWl953jNhP9berq6lBQUGCRCdyNGzdw48YNbNmyZcL+42R2KHkj97V27VrIZDKcPn3aohYvaDQaFBYWgmEYJCUlzanHbTq3bt3ClStXqJCvmRIKhXB1dYVQaDab15B7aDQaVFVVwdvbe96J2708PDwwPDyMsrIyi7u2nj17FkFBQbR/6TxR8kbuy8rKCtu2bUNTUxNqa2u5DmdZMAyD4uJijI+PIzk5GdbW1otyv35+fnBxcUFhYSE6OjoW5T6J8bC1tUVycjJtQm6GGIYxDHlGR0cvyuR6R0dHxMXFoaenB9XV1YsQpWnIzc2FXC7Htm3baJHCPFHyRmZl1apVCA0NxenTpy1ioq1Go4FWq0ViYiLs7OwW7X4FAgHi4+Ph4+ODsrIyNDc3L9p9E+6xLAutVmtRvSjmjmVZVFVVobS0FMDdBH0xEw53d3dERUWhtbXVIr7QdXd34+rVq0hLS4OzszPX4ZgsSt7IrO3YsQMsy+L06dNch7KktFotxGIx0tPT4eTktOj3z+fzER0djaCgIAwODtIHvRmRy+U4c+YM5HI516GQRaDT6VBSUoK2tjbDnNWl4Ovri8TERHh6ei7ZYxgDnU6Ho0ePws3NjRYpLBAlb2TWpFIptm/fjpqaGtTU1HAdzpJoaGjA1atXodPplrw7PzQ0FHFxceDxeJDL5fNeEEEIWXwajQYFBQXo6+tDQkICfH19l/Tx3N3dwefzMTg4aLbbaOXk5KCvrw8PPfQQBAIB1+GYNEreyJyEh4cjLCwMX331ldkNn7a2tuLGjRvw8fFZtgsLj8eDVqtFfn4+iouLLXLVGSHG6Pbt2xgZGUFKSsqEvUqXWltbG0pLS81udX9XVxeuXr2KjIyMJe3FtBSUvJE54fF42LFjBwDgq6++Mpshv+7ublRXVyMgIADBwcHL+thCoRCxsbEYGBhAXl4eVecnhEP6rc1WrFiBrKwsODo6LuvjR0ZGwtnZGUVFRWYz/K7VanHs2DG4ubkhPT2d63DMAiVvZM5sbW2xY8cO1NbWmsXwqVqtRllZGTw9PREREcFJDK6urkhLS4NarcbVq1dp70NCONDR0YELFy4Yer0kEsmyx8Dn8xEfHw9bW1sUFBSYRV3InJwc9Pf303DpIqLkjcxLeHg4wsPDcfr0aZPfo08kEiExMXFR6jYthEwmQ3p6OhwcHGBlZcVZHGT+7OzssGXLlkVdoUyWHsuyqKurM3yJW+7etm8SCoVISkqCra2tYf9UU9XZ2Ync3FwaLl1klLyRedNvJGyqw6fj4+NoamoCALi4uCxKEd6FEovFSExMhFQqhVarxc2bN03yb2up+Hw+RCKRUbyWyOxotVoUFxejqakJYWFhiImJMYrnTywWGwqk63Q6k0zi9MOl7u7uSEtL4zocs8L9K5SYLP3waV1dHa5fv851OHOiVqtRUFCAlpYWaDQarsOZ0uDgIOrr61FYWGi0MZKJxsbGUFRUZHaLecwZy7JQqVRITEzEypUruQ5nSqWlpSgpKTG5FenZ2dkYGBig4dIlQMkbWZCwsDBERESY1PCpTqdDUVER1Go1kpOTjXaI0s3NDcnJyRgeHsbVq1cxMjLCdUjkPrRaLXp6ekyyl8TS9PX1QaFQGHZNcHNz4zqkaQUGBmJgYACVlZUm0xPf0dGB3NxcZGVlLetqXUtByRtZsO3bt4PP5+PEiRNGf2FhGAYlJSUYGRkxiW2MXFxckJ6eDj6fj9zcXKhUKq5DIsSksSyLhoYGFBYW4tatW1yHMysuLi6IiYnB7du3UVdXx3U496VWq3H06FF4enpi7dq1XIdjlih5IwtmY2ODBx980HBBNGYsyxq2qLK3t+c6nFmxsbFBWloaoqKiIBaLAYDqwREyD0qlEvn5+WhoaMCqVasQFhbGdUiz5uXlhYiICDQ1NRl9DbgzZ85geHgYu3btMor5g+ZIyHUAxDysWrUKKSkpOH/+PHx9feHt7c11SJOoVCqIxWLEx8dzHcqcCYVCeHl5AQBu3bqFlpYWxMXFQSaTcRwZIaaBYRjk5eWBYRikpKSY5L6aK1asgIODA+erYWdSVVWF8vJyPPTQQ3B1deU6HLNFKTFZNBs3boSHhweOHDkCpVLJdTgTNDc34/Lly0YX13y4urqCz+fj6tWraGlp4Toccg+JRILw8HBO6oORqTEMA51OBz6fj8jISGRmZppk4qanT9za2trQ29vLcTQTDQwM4NSpU4iKikJ0dDTX4Zg1St7IohEIBHjkkUegUChw8uRJo5n/1tHRgZqaGvj7+5vFh6pUKkV6ejr8/f1RXV1N22oZEbFYjMDAQMPwNuGWQqFAXl6eYTW8q6srRCIRx1Etjp6eHpSUlBhNQW+tVosvvvgCdnZ2hl14yNKh5I0sKkdHR+zcuRM1NTUoLS3lOhz09fWhoqICvr6+CA0N5TqcRcPn8xEREYGEhATw+XyaV2IkNBoNOjs7qbSLEejo6EB2djbUajX8/f25DmfRxcbGwt7eHkVFRUax0v/cuXPo7+/H7t27zSZBNmZ0xSeLLjw8HAkJCTh79ix6eno4i4NhGFRUVMDFxQWRkZGcxbGUPDw8EBcXBx6Ph/7+flRXV1OZCg4pFAqUlpaaxZZGpoplWRQXF6OsrAzu7u7IyMiAg4MD12EtOoFAgMTERIjFYhQUFHA6JaS2thZFRUXYsmUL7aKwTCh5I0tiy5YtcHZ2xhdffGHY6Hm58fl8pKSkID4+3iJ6ppRKJdrb25GdnY3+/n6uwyFk2bEsCx6PB5lMhoSEBMTGxhptHcfFYGVlhaSkJNjb23N2jRsaGsKJEycQFhZmkovBTJX5f6IRTgiFQuzevRtyuRynT59e1sdWqVSorq6GTqeDVCq1mMrePj4+yMzMhLW1NfLz81FVVUW9cMQiKJVKFBYWGhbwrF692mJ6gKytrZGQkACRSASlUrmsuzDodDocOXIE1tbW2LlzJ6d7Q1saSt7IknFxccGOHTtQUVGBysrKZXlMjUaDgoICdHd3W+S8I1tbW6SkpGDNmjUYHBzkOhxCllxbWxsuX74MuVxu9EW3lxLLssjPz0dZWdmyLRa7ePEiurq68Mgjj5jFYjBTQskbWVL6JeNfffUV+vr6lvSxGIZBcXExxsfHkZycbLEXEx6Ph4CAAGRmZkIoFEKhUKC6upqz4WtLIhAIYG9vbzG9vVzSarUoKChAZWUlPD09kZWVZdRbXC01Ho+HsLAwdHd3o7q6eskfr6GhAdeuXcOmTZuMsq6nuaPkjSy57du3w97eHocOHcL4+PiSPAbLsigrK8PQ0BASExNhZ2e3JI9jSvRDGKOjo7h9+zYuXbqE1tZWoynhYo6kUikyMjIglUq5DsVs6YcFhUIhRCIRkpKSEB0dbdZz22bL3d0dUVFRaG1tRUNDw5I9Tn9/P7788kusXr0aycnJS/Y4ZHqUvJElJxKJsG/fPigUCnz55ZdLMieDx+NBKpUiLi4OTk5Oi37/pszNzQ3r16+Hh4cHqqqqkJOTA7lcznVYhMxZZ2cnLl26ZNgeKjY21qJ726bi6+uLkJAQNDY2LsmqZ6VSic8++wwymQzf/va3aZ4bRyh5I8vCyckJu3fvRnNzMy5cuLCo9z02NgYACAkJsZhJynMlFosRHR2NtLQ0CIVCw7Ae9cItruHhYXz11VcYHh7mOhSzMjIygvz8fJSWlkImk8Ha2prrkIxacHAwMjMzYWNjs6j3yzAMjhw5AoVCgX379lExag5R8kaWTWBgILZs2YJr166hoqJiUe5TP1mZPixnx9HREWvXroWtrS10Oh1ycnLQ1NS0rCvUzB39LRdXd3c3srOzMT4+jqSkJCQmJi56UmKOpFIpWJZFTU3Nom1kf+HCBTQ3N2P37t00wsExSt7IskpMTERsbCxOnjyJ27dvL+i+uru7UVVVBX9/f9jb2y9ShJaDZVk4Ozujrq4OV65cQVdXF/XEEaPAMIxh2ycXFxeEhYVZ/IKE+WBZFnK5HEVFRQueKlFZWYlr165h8+bNCAwMXKQIyXxR8kaWFY/Hw/bt2+Ht7Y1Dhw7N+4IyODiI0tJSeHh4ICIiYpGjtAxCoRARERHIyMiAjY0NSkpKUF5eznVYxIKxLIv29nZcunQJBQUF0Ol0EAqFCAwMtIhC24uNz+cjISEBtra2KCgomPccuNu3b+PEiROIiYlBUlLSIkdJ5oPeDWTZCYVC7NmzBwKBAIcOHZpXPbba2lo4OTkhNjaWJswukEwmQ3JyMlJTUw17QI6Oji7aUAshs9HZ2YkrV66goqICDg4OSE9Pp5Iri0AoFCIpKQkCgQAFBQVzLhkkl8tx6NAheHl5YceOHXS9NRKUvBFOSKVS7N27F319fThx4sSch+sSExMtZtur5eLs7AxnZ2cAQGtrK65du4bCwkKaTzgHUqkUWVlZVCpkHtra2mBjY4OMjAzEx8fT33ARicViJCcnw83NDUKhcNa302g0OHToEPh8Ph599NE53ZYsLfrkI5zx9PTEQw89hOrqauTl5d33fLVajZKSEiiVSohEIqrrtITCwsIQFxcHhUKBnJwclJSULFmNPnMiEAhgZ2dHPUaz0NfXh7y8PPT09AAAEhISDPt0ksVna2uLiIgI8Pl8yOXy+y6sYVkWJ0+eRF9fH/bt20fJtJGhNJpwKjw8HD09Pbh48SJcXV2xevXqKc/T6XQoKirC2NgYdDrdMkdpeXg8Hry8vODp6Ynbt2/j5s2bhuEShUJBq/2mMT4+joaGBqxatYrKWUyBYRh0dnaiqakJcrkc9vb2hi9hlPAuD41Gg2vXrsHd3R3R0dHTDoPm5eWhqqoKjzzyCDw9PZc5SnI/1PNGOLdu3TqsXr0aR44cQUdHx6TfMwyDkpISyOVyJCUlWfT+hcuNx+PB19cX69atg0QigU6nw9WrV5GdnY3bt29TWYxvUKvVaGtro63IptHe3o7y8nJIJBKkpKQgIyODSk4sMysrK0RGRuL27duoq6ub8pzr16/jwoULyMjIoAVhRoqSN8I5Ho+Hhx9+GB4eHvj0008nbaheXV2N/v5+JCQkwMHBgZsgCYC7vSNxcXGQSCQoLy/HpUuX0NzcTCVGyJSUSiXq6uoMSYK3tzcyMzORlJQEFxcXjqOzXF5eXoiIiEBTUxOampom/O7WrVs4evQooqKisG7dOo4iJPdDyRsxClZWVti3bx8kEgk+/vhjw64JAODq6oro6Gi4urpyGCHRc3FxQVJSEjIzM+Hs7Iyuri7D0Mu9zxuxXENDQ6ioqMDFixfR0tJieH0IhULIZDKOoyMAsGLFCgQHB6Opqcmw4r+npweHDh1CQEAAdu7cSStLjRjNeSNGw8bGBvv378d7772HTz/9FDt37oS7uzu8vLy4Do1MQSaTISYmxtDrNjQ0hNzcXDg5OcHf3x+enp40j8mCsCwLHo8HhUKB3Nxc2NjYYPXq1fD396fFRUYqJCQEK1asgJWVFYaHh/Hxxx/DycnJUMqJGC/qeSNGxdHREY899hhu3ryJN954Y8o5cMS46L+d29vbIy4uDnw+H+Xl5Th//jwaGho4jm55icViBAUFWdSejwMDAygrK8OVK1fAsixsbGyQnp6O9evXIygoiBI3IycWizEyMoJf//rXUKlUeOyxxyzq9WuqqOeNGB2hUIjg4GCUlZWhsLAQu3btou57E8Dn8+Hl5QUvLy+MjY2hra3N8O1dqVSit7cXnp6eZv1hLpFIEBoaynUYS45hGNy6dQutra0YGxuDra0t/Pz8DL1vNDfVdKjVanz22WcYHR1FQkIC1+GQWaLkjRiVO3fuoKSkBGvWrEFiYiKOHj0KGxsbbNmyhRI4E2Jrazshienv70dlZSWqq6vh6uoKLy8vuLu7m10ip9VqMTw8DHt7e7MraKpUKjEwMABvb2/w+Xy0tbXBwcEBUVFRhuLOxLTodDocPnwY/f39+I//+A80NzejoKAAaWlpkEgkXIdHZmBeVxdi8m7dugU7OzvEx8dDIBBApVLhq6++MlReJ6bJx8cHLi4u6OrqQmdnJ8rLy+Hr64vo6GjodDqwLGsWyc7Y2BiuXbuGjIwMsyg2q1KpDM/ZwMAA+Hw+XFxcIBaLkZWVRV+oTBjLsjh69Chu3bqF/fv3w9/fH25ubsjNzUVhYSHS0tJo3psRM/2rJTErUVFR0Ol0hotGQkICFAoFLl26BBsbG8THx3McIZkviUSCFStWYMWKFVAqlYYacV1dXaisrISbmxs8PDzg6upK3/o5pFQqIZFIwLIsLl++DK1Wa1jx7eHhYegtpcTNdLEsizNnzqCmpga7d+/GihUrAADW1tZITk5Gf38/JW5GjpI3wjmtVovi4mKEhITA0dFx0n6lGRkZUCgU+OqrryASiRAZGclRpGSx3Jucubi4IDQ0FJ2dnaioqABwt4xBRESEIcGjPWyXjlarRX9/P/r6+tDb24vx8XFs3boVQqEQCQkJkMlkZje8bclYlsWlS5dQVFSEBx54AGFhYRN+b2dnBzs7OwB3pzs4OztTom6EKHkjnGIYBsXFxRgeHp522IzH42Hr1q1Qq9U4evQoAFACZ0YkEgkCAwMRGBgItVqNvr4+w2q3/v5+lJSUwMXFBa6urnBzc6MdNhaIZVmMj4/DxsYGDMPg3Llz0Ol0sLW1hZubG1xdXQ3JMs1lMy/63tSrV69i8+bNiIuLm/ZchUKBgoIC+Pn50fXWCFHyRjjDsizKysowODiIlJQUw7e9qfB4POzcuRMAKIEzYyKRCN7e3oaf7ezssGrVKvT19aG2thbXr1+Hh4cHEhISwLIshoaGYG9vbzRDPDweDxKJxKh6KnQ6HQYHBzE4OIihoSHcuXMHALBlyxbw+XzExMRAJpNRUmzm9IlbTk4ONm/ejNTU1BnPt7GxQVRUFCoqKiCRSLBq1aplipTMhtkkbyMjI/jb3/6GnJwcqFQqhIaG4oc//OG0G53fa6aJ8PHx8fjTn/4E4O7cnEcffXTK8/77v/8bGzZsmF/wFqqurg7d3d2Ij4+f1f6GlMBZHmtrawQFBSEoKAhardYwaR4A5HI58vLywOPxIJPJ4OTkBEdHxwnJ33KTyWTYtGkTZ4/PsixGR0cxNDQEAPDz84NGo0FBQQGsrKzg6OiIlStXTni/0abj5m+uiZuer68vlEol6uvrIRaL4e/vv8SRktkyi+SNYRi8/PLLaGpqwt69e2Fvb49jx47hxRdfxIEDB+Dr6zvj7V999dVJx+rr63HkyJEp695s3LgRycnJE46Fh4cvrBEWyNvbGzKZDB4eHrO+zTcTOB6PhzVr1ixViMSICIVCuLu7G36WyWTIzMzE0NAQBgcH0dvbi76+PkPyVlhYCLFYDDs7O0ilUtjZ2cHa2tqoesXmi2EYKBQKCAQCWFtbo7+/HzU1NRgdHQXDMODxePDw8ICfnx8kEgnWr19PPWsWar6Jm15wcDBUKhXa2trg5+dnFu8fc2AWyduVK1dw/fp1vPbaa8jKygIArF+/Ht/5znfwwQcf4Be/+MWMt9+8efOkY+Xl5eDxeFP2pgUHB095GzI7fX19cHZ2hr29/bzKKegTOJZl8Y9//AMAKIGzQPoeN5lMZugR0Ol0AO5+YOkrx3d1dUGr1QKAIYlpa2uDQqGAtbU1rK2tIZFIYGNjs+ByJXK5HIWFhUhKSlrQHp4sy0KtVkOpVEIqlUIgEKCzsxNdXV0YGRnB2NgYGIZBUFAQQkNDIRaL4ejoCD8/P8hkskl15ihxs0wLTdz0wsPDDV8KiHEwi+QtOzsbTk5OE4Y/HRwcsG7dOpw/fx5qtRoikWjW96dWq5GdnY3o6Gi4ublNec74+DiEQiGtwpqj7u5ulJSUICwsDIGBgfO+n3t74CiBI3r6uW88Hg/R0dGG4+Pj4xgZGYGNjQ2Au8Wge3p6oFKpDHuzRkREYMWKFejt7UVTUxMkEglEIhGEQiGkUqmhR6+3txdCodDwj8/nQywWg8fjQaPRYHR0FCqVCiqVCsDdD1CBQAArKytoNBoMDg5Cq9VCq9VCo9GAx+Nh5cqVAO72Fo6Ojk4opbJ27Vo4OTlhfHwcKpUKzs7OCAgImLAq0M7OjqYQkAnuTdw2bdo078QNuPt+EggEUCgUKC4uNsyTJNwxi+StoaEBwcHBk8oJhIaG4uTJk2hvbzdcHGejoKAAo6Oj085dOXjwIP7617+Cx+Nh9erV+P73v4/ExMQZ77O/vx8DAwOGn1tbW2cdj7kYHBxEaWkpPDw8DHWFFoLP51MCR2ZF38Omp090WJaFSqXC+Pi44fcCgQAikQgKhQLDw8PQarWwt7eHt7c3dDodCgsLJ93/pk2bIJFIUFVVhbKyMqhUqgm9XStXrkRYWBhGRkZQVFQE4O4HolAohI2NjeH6pO9J1PcGWltbQyqVGu5jLtcxYrm+mbitXbt2Ue5XJBKBx+OhsLAQa9euNXwZIsvPLJK3wcFBREVFTTquX+Y+MDAwp4ve+fPnIRKJkJmZOeE4n89HQkICMjIy4OLigs7OThw+fBgvvfQSXn/9daSkpEx7nydOnMDBgwdnHYO50X9oOTo6IjY2dtG63ymBIwuhXx16b905Z2fnaUtk8Pl8bNq0aULPGcuyhp79wMBAtLW1ITY2FjKZDDweDzwez/Ah5+DggM2bN0MoFE65QtYS9kUlS2upEjfg7rzTpKQk5OXlGbbRmsuoFlk8Rpe8MQwDjUYzq3P13wJUKtWULyD9Mf3wxWyMjY0hPz8fSUlJk0pXuLu7449//OOEY1u2bMETTzyBv/zlLzMmbzt37pzwJmptbcWvf/3rWcdl6np6emBtbY2EhIRFL7j6zQROq9UiJiZmUR+DEOBfyd50HBwc4OTkBHd39ynnc+qHWAlZCizL4sKFC8jLy1v0xE1PLBYbErji4uIleQxyf0aXvFVWVuLFF1+c1bkfffQR/P39IRaLoVarJ/1ef2wuF8vs7Gyo1epZL/eXyWTYtm0bPvnkE/T29k47R87FxQUuLi6zjsNcsCwLHo+HoKAgrFixYsnqcekTOKFQiOPHj2N0dBRpaWk0wZYsK1tbW6SmptICAbLsdDodTpw4gcrKSmzdunVSRYTFZGtri6SkpCk/d8nyMLrkzc/PD6+88sqsztUPbTg5OU2YT6anPzaXKuHnz5+HVCqd0+ROfcI2MjIybfJmiXQ6HQoKChAQEABvb+8lL6TK5/OxY8cOSKVSXLx4EaOjo9i6dSslcGTZCIVC2pWALDu1Wo0vvvgCzc3NePjhh5dl6oi+Z5llWXR2dsLLy4uutcvI6JI3Z2dnbNu2bU63CQ4ORlVVFRiGmTAkV1dXB4lEct86b3r9/f0oLy/H1q1b5zSO39nZCQDzKnthrhiGQWlpKYaHh5e1F4LH4yErKwtSqRRfffUVxsbG8NBDDy24BAQhs6FUKnHr1i2sWLFixuFVQhaLQqHAp59+it7eXnznO99Z9kUtQ0NDKCsrw/Dw8KR9UsnSMYvdnjMzMzE4OIicnBzDsTt37uDy5ctITU2dkIh1dHSgo6Njyvu5dOkSGIaZdshUv63Mvfr6+nD69GmsXLnSIodFp1NVVYXe3l4kJCTAwcFh2R8/Pj4eu3fvRl1dHT799NM5zXskZL5UKhVu3rxJrzeyLIaHh/H+++9jaGgI3/3udzlZjezk5ISIiAg0NTWhqalp2R/fUplFd0RWVhaOHDmC119/HS0tLYYdFhiGwVNPPTXh3J/85CcAgMOHD0+6n/Pnz8PFxWXaye5//etf0dHRgbi4OLi4uKC7uxsnTpyAUqnEj3/848VvmIlqampCe3s7YmNj4erqylkcYWFhsLGxwWeffYaDBw/iscceM5RdIIQQU9bb24uPPvoIQqEQTz31FKfD9StWrIBKpUJtbS3EYjF8fHw4i8VSmEXyJhAI8MYbb+Ctt97Cl19+CZVKhZCQELzyyivw8/Ob1X20tbXhxo0b2LNnz7SrIRMSEtDZ2YmjR49iZGQEUqkUkZGReOKJJ2a1h6ql8PHxgUQi4XSPSb2AgAB873vfw8cff4z3338fjz/+OBwdHbkOixBC5q2trQ2ffvopHBwc8Nhjj02qjMCFkJAQKJVK9Pf3U/K2DHisvrw4WVY3btzAM888gwMHDphN4tfT0wN7e3ujnOszNDSEjz76CGq1Go899hhtxk2WxPDwMHJycpCRkUFzYMmSuHHjBr744gv4+Phg7969RnW91acTPB5v0hx0U2dsn9nm85clnOrr60NJSQmam5u5DmVKjo6OePrppyGTyXDw4EGjjZOYNpFIBD8/PypcSpZEaWkpDh06hFWrVmH//v1GlbgBMBSlHhwcxOXLlzE2NsZ1SGaLkjeyYMPDwygpKYGLiwtCQkK4Dmdatra2ePLJJ+Hj44OPP/4YxcXFoI5nspisra0RFRU1YSsuQhaKYRicPXsWJ0+eRHx8PB555BGjXkEvlUrB5/ORn58PpVLJdThmiZI3siBjY2MoKCiAnZ0d4uPjjb6bXCwW47HHHkNCQgK++uornDp1CjqdjuuwiJnQ6XQYGRmh1xRZNOPj4/jkk09QVFSE7du3Y/v27UZ/nRWJREhOTgbLsigsLJz1rklk9oz7FUCM3sjICCQSCRITE5e8CO9i4fP52LZtG3bu3ImKigr8/e9/p+59sihGR0dx5coVjI6Och0KMQN9fX04cOAAOjs78fjjjyMxMdFkCuFaW1sjOTkZ4+PjqKys5Docs2O8/a7EqOkno3p4eMDd3d1kLij3io2NhYuLCz7//HO888472LdvHzw8PLgOixBC0NDQgC+//BL29vZ49tlnTXKVvJ2dHZKSkmgO6BKgnjcyZwzDoLCwEPX19QBgkombnp+fH5599lnY2NjgvffeQ21tLdchEUIsGMuyyM3NxWeffYYVK1bg6aefNsnETc/R0RG2trbQarW4desW1+GYDUreyJywLIvy8nIMDg5yWoB3Mdnb2+Opp57CqlWrcPjwYVy+fJkWMhBClp1Go8E//vEPXLhwAenp6Xj00UchFou5DmtR9PX14fr162hoaOA6FLNAw6ZkTq5fv46uri7Ex8eb1QbcVlZWeOSRR+Dh4YGLFy+it7cXu3btou5+MmfGPpmcGCe5XI5Dhw6hr68Pu3fvRnh4ONchLSpPT0+EhISgvr4eYrEY/v7+XIdk0ih5I7PW0dGBlpYWREZGmuXcMB6Ph/T0dLi5ueHLL7/Eu+++i71798LJyYnr0IiJsLe3x44dO7gOg5iYtrY2HD58GAKBAE899ZTZFhEPDg6GSqVCdXU1RCKR2bZzOdBXRDJrnp6eSEhIMPtvTKtXr8b3v/99aLVavP3227h+/TrXIRFCzJB+ftvBgwfh5OSEZ555xuwTmvDwcHh6emJ8fJzrUEwa9byR++rp6YFIJIKjo6NZ9rhNxc3NDc899xxOnjyJI0eO4NatW9i6dSusrKy4Do0YsdHRUZSVlSE2NhZSqZTrcIgRGx0dxdGjR9Hc3Iy0tDSsW7fOIobceTwe4uLiDD9rtVqjLjhsrOgvRmY0ODiIkpISeHl5mfSKp/kQi8V4+OGHERgYiDNnzqC9vR2PPPII3NzcuA6NGCmdTofh4WEq0ktm1NTUhKNHjwIAHn/8cQQGBnIcETdu376Nuro6rF27FjY2NlyHY1LMP80n8zYyMoKioiI4OjoiKiqK63A4wePxEBsbi2eeeQYAcODAAZSWltJqVELInDEMg4sXL+Ljjz+Gu7s7nn/+eYtN3ADA1dUVfD4fBQUFUKvVXIdjUih5I1MaHx9HQUEBrK2tkZCQYBHd+TNxc3PDM888g8jISJw8eRJffvkl7dlHCJm14eFhfPDBB8jLy8OGDRuwf/9+ix9aF4vFSE5OhkajQWFhIfVYz4FlfyKTaWk0GlhbWyMpKYnmef2TlZUVHnjgATzyyCNobGzE22+/jY6ODq7DIoQYufr6evz1r3+FXC7H9773PaSlpZl0cfPFZGtri+TkZIyOjhoKv5P7ozlvZAKdTgcejweZTIa0tDSuwzFKERER8Pb2xhdffIH3338fGzduRHJyMl2MCWxsbBAXF0fzdwiAu5Pxz507h6KiIoSGhmLnzp2wtrbmOiyjY29vj+TkZNjZ2XEdismg5I0YsCyL0tJS8Hg8JCQkcB2OUXN0dMTTTz+NCxcu4Ouvv0ZjYyN27twJBwcHrkMjHLKysoKXlxfXYRAj0NnZiWPHjmFgYADbt29HQkICfcGbgX5B3NjYGLq7u7Fy5UqOIzJuNGxKDCorK9Hb24uAgACuQzEJAoEAW7Zswf79+9Hf34+33noLxcXFtJjBgqlUKjQ3N0OlUnEdCuGIVqvFhQsX8O6770IgEODZZ59FYmIiJW6z1N/fj9raWjQ3N3MdilGjnjcC4O6cjPb2dsTGxprNnqXLJSgoCP/2b/+Gc+fO4auvvkJNTQ0efPBBiyutQgClUomamho4OzubzZ6UZPZu376N48ePY3BwEFlZWVi7di0EAgHXYZkUf39/KBQK1NTUQCwWw9vbm+uQjBIlbwSDg4NobGxEeHg4vVHmSSwW44EHHkB4eDhOnDiBt956Cxs3bqRv3IRYAI1Gg8uXLyM/Px9eXl547rnnqB7kAoSGhkKlUqG8vBwikYg6FKZAyRuBk5MTUlNTzWqjea4EBgbiBz/4AS5cuIAzZ86gtrYWO3fupL8tIWaqra0Nx48fx/DwMDZu3IiUlBSLL620GKKioqDT6WgayjQoebNgfX19UKlU8PHxoeRiEYnFYuzYsQPh4eE4fvw4/va3v2H9+vVISkqiizohZkKj0eDixYsoLCyEt7c39u3bBxcXF67DMhv3bqPFsizUajVNRbgHJW8Wanh4GCUlJXBycoKPjw/X4ZilgIAA/OAHP8ClS5dw7tw51NbW4sEHH6QLvBkTCoVwd3envRrNXGtrK44fPw65XI7NmzfTF7MlduPGDXR0dGDt2rWQSCRch2MU6NVmgcbGxlBYWAipVIr4+HiuwzFrIpEIW7duxfe+9z0oFAr89a9/xYULF2grGDNla2uLxMRE2Nrach0KWQIjIyP4xz/+gQ8++ABSqRQ/+MEPaJh0Gfj7+4NhGBQWFkKj0XAdjlGgr4cWRqVSoaCgAFZWVkhKSqKVUMvEz88Pzz//PK5du4arV6+isrISmzdvRkREBC1oMCMMw0Cr1UIoFNIHuhnR6XQoKChAdnY2rKyssHPnTsTExNB7d5lYW1sjOTkZeXl5KC4uRnJyssW/vyh5s0B2dnaIiIiASCTiOhSLYmVlhczMTERFReHcuXP48ssvUVJSgm3btsHDw4Pr8MgiGBkZQU5ODjIyMmBvb891OGQR3Lx5E2fPnsXg4CASEhKwbt06GrrjgJ2dHRITE5Gfn4+WlhYEBgZyHRKnKHmzEAzDQKPRQCwWIzExketwLJqDgwP27NmD5uZmnDlzBm+//Tbi4+Oxfv162jqHECMxNDSEr7/+GvX19QgICMDu3bvh7u7OdVgWzcnJCenp6bSNFih5swgsy6K8vBwjIyPIzMykrn4jERgYiOeffx5FRUW4cuUKampqsH79esTGxlr8kAAhXNFoNMjNzUVeXh5sbGzwyCOPIDw8nK6bRkImkwG4Wy1heHgYQUFBHEfEDUreLEBNTQ26uroQHx9PFyAjIxAIkJKSgjVr1uDChQs4deoUSktLsX37dvj6+nIdHiEWg2VZ1NXV4euvv8bo6ChSU1ORnp5O00uM1J07d1BfXw8rKyv4+/tzHc6yo+TNzDU2NuLWrVuIjIykeVVGTCqV4qGHHkJ8fDxOnz6N9957D+Hh4Vi3bh2VFiFkibW1teHixYtobW3FqlWr8OSTT8LJyYnrsMgMgoODoVKpUF1dDbFYbHGfb5S8mTGFQoGGhgasXr3aIr+ZmCIfHx8888wzqKiowJUrV/CXv/wF0dHRyMzMhIODA9fhkfuQyWTYtm0breI2EV1dXbh06RIaGxvh4eGBxx57DMHBwVyHRWYpPDwcKpUKpaWlSElJsaiEm5I3M2ZjY4OMjAya3GlieDweYmJisGbNGpSWliInJwdVVVWIj49Heno6pFIp1yGSafB4PCrQawL6+/tx+fJl1NTUwNnZGbt370ZYWBhNKzEx+mtlVVWVxQ1v01XGDA0ODqKnpwchISGUuJkwoVCIpKQkxMTEoLCwEHl5eSgrK0NSUhLWrl1LK1ON0NjYGKqrq7FmzRoq1GuE7ty5g+zsbFRUVEAmk+HBBx9EVFQULRAyYXw+H9HR0QAArVYLrVZrEaVcKHkzMyMjIygqKoJMJgPLsvRN0gyIRCKkp6cjPj4e165dQ0FBAUpKSpCamork5GSL+8ZpzLRaLfr6+qDVarkOhdxjdHQUOTk5KC0thUQiwdatWxEXF0e9pGamsrIScrkca9euNfvrIr1yzcj4+DgKCgpgbW2NhIQE+jZpZqytrbFhwwYkJSUhNzcX2dnZKCwsRHp6OuLi4mBlZcV1iIQYFYVCgWvXrqGwsBACgQDr1q1DYmKi2X+wW6qQkBDk5uaiqKgIKSkpZj33lJI3M6HRaFBQUAA+n4+kpCT6IDdjUqkUW7duRUpKCrKzs3Hu3Dnk5OQgMTERiYmJsLGx4TpEQjg1NDSE/Px8lJeXg8fjISUlBampqRYxnGbJbG1tkZycjGvXrqGkpMSsOzEoeTMTAoEAzs7OWLlyJV2gLIS9vT127tyJ9PR05OfnIy8vD3l5eYiJiUFKSgocHR25DpGQZdXZ2Ym8vDzU1tbC2toaa9eupS80Fsbe3h7x8fEoKipCX1+f2e6KQcmbiWNZFmNjY5BKpYiMjOQ6HMIBR0dHbN++HVlZWSguLkZhYSGKi4sRFhaG1NRUeHt7cx2ixbC2tsaaNWtoMckyYlkWN2/eRF5eHlpaWuDk5ITt27cjOjqaRiAslKurK9atW2fWSTslbyausrIS3d3d2LBhA12oLJyNjQ0yMzORmpqKyspKXLt2DQcOHEBAQADWrl2LoKAgWsCyxEQiEQICArgOwyLodDpUV1fj2rVr6O3thbe3N/bs2YOQkBCzHSojs6dP3JqbmwHA7Dayp+TNhNXX16O9vR2xsbGUuBEDKysrxMfHIzY2FvX19bh27Ro++eQTuLm5ITU1FREREbTKboloNBr09PTA3d2d3pNLRKlUoqysDAUFBZDL5Vi1ahV27NgBPz8/+nJCJlGpVLh58ybEYrFZjULQFdxE3bp1C42NjQgLCzOrFyRZPHw+H2FhYQgNDUVbWxuuXbuGY8eO4dy5c4iKikJsbCxcXV25DtOsKBQKlJeXIyMjA/b29lyHYzZYlsXt27dRWlqKmpoaMAyDyMhIpKam0muYzCg0NBQqlQrl5eUQiURm83qh5M0EaTQaNDY2YuXKlVi5ciXX4RAjx+Px4O/vD39/f/T396OsrAwVFRXIz8+Hn58f4uLiEBYWRj1FxOgoFApUVVWhtLQUfX19cHR0REZGBqKjo6kAOZm1yMhIqFQqFBcXY+3atWbxxYqSNxNkZWWFjIwMiMVirkMhJsbFxQWbN2/G+vXrUV9fj7KyMhw9ehRnzpxBZGQk4uLizHZ1FjENLMuitbUVpaWlqKurA8uyCAkJwdatWxEYGEhDo2TO+Hw+4uPjUV9fbzaLGCh5MyHDw8NobGxEdHQ0lQMhCyIUChEREYGIiAgMDg6ivLwc5eXlKCoqgre3N+Li4hAREUHFTMmyGRsbQ0VFBcrKyjAwMABnZ2esW7cO0dHRtNUYWTCBQIDw8HAAd3t0+Xy+SX+OUvJmIsbGxlBYWAhra2v65kkWlZOTEzZs2ICsrCw0NDSgrKwMJ0+exNmzZxEeHo6IiAgEBASYdbXyxSIQCODo6Eh/q1lSq9VobGzE9evX0dDQAB6Ph7CwMDzwwAPw9/enax1ZEqWlpWAYBqmpqSY7XYSSNxOgUqlQUFAAKysrJCUl0QcDWRICgQChoaEIDQ3FnTt3UF5ejurqapSXl8PGxgahoaEIDw9HQEAAlWKYhlQqRVpaGtdhGDX9nN2amho0NDRAo9HAy8sLmzZtQlRUFNXII0suOjoaeXl5KC4uRnJysklezyh5M3IMw6CwsNDwLYGGschycHBwwLp165CVlYXu7m7U1NSgpqYGpaWlsLGxQVhYGMLDw+Hv72+SFz6yvDQaDW7evGlI2NRqNTw9PZGZmYmwsDA4OTlxHSKxIHZ2dkhMTER+fj7KysoQFxdncr28lLwZOT6fD29vb7i6utI3UrLseDwePD094enpiQ0bNqCrq8uQyJWUlMDW1taQyPn5+Vl8Ijc8PIycnBwqFQJAq9UaErYbN25ArVbDw8MD6enpCAsLg7OzM9chEgvm5OSEuLg4lJeXY2RkBDKZjOuQ5oSSNyPFsiwGBwcN+5USwjUejwcvLy94eXlh48aN6OzsNCRyxcXFkEqlCAoKQlBQEAIDA81mVReZveHhYdy8eRNNTU1oamqCSqWCu7s70tLSEBYWBhcXF65DJMTAw8MDGzZsMMkRLUrejFRNTQ1aWlqwfv16+hAkRofH48Hb2xve3t7YtGkTOjo6UFtbi5s3b6KiosKQ6AUFBWHlypXw8fGx+F45c6TRaNDa2mpI2Pr6+sDj8eDj44PU1FSEhYWZTVFUYp5EIhFYlkVlZSWcnJzg5+fHdUizQsmbEWpsbMStW7cQGRlJiRsxevoPax8fH2zevBlyudzQ81JUVITs7GxIJBKsWLHCkMw5ODhwHTaZB5Zl0dfXh6amJty8eROtra3QarWQyWQICgrCunXrsGLFCpriQUwKj8eDQCBAVVUVRCIRPDw8uA7pvih5MzJtbW2or6/HqlWr4O/vz3U4hMyZTCZDTEwMYmJiwDAMurq6cPPmTdy8eROnTp0Cy7JwcXFBYGAgfH194ePjAwcHB5ObMGwJ9Mna7du30d7ejqamJsjlcgiFQgQEBGDDhg0ICgqCi4sLPX/EpEVEREClUqG0tBQpKSlGv4iGkjcjwrIsWlpa4O/vj9WrV3MdDiELpl9w4+3tjczMTCiVSjQ3Nxt6boqKigDcLbGh773z8fGBl5eXSc5DsbOzw/r1602252l8fBy3b9+e8E+lUoHH48HNzQ3h4eFYuXIl/P39TbY+FiFT4fF4iI2NRWFhIYqKipCRkWHUI1+UvBkRHo+H1NRUquNGzJZEIkFYWBjCwsIA3K10rk8S2tvbkZOTA7VaDT6fD3d3d0My5+vrC0dHR6Pv3eHz+SazGwDDMOjr60N7e7vhOejv7wcA2NjYwMfHB2lpaYZkmrbjI+ZOv41Wa2ur0X8BM4vkrb+/H0eOHEFdXR3q6+sxPj6ON998EzExMbO+j76+Pvzv//4viouLwTAMYmJi8MILL8DLy2vSuadOncKhQ4fQ3d0NV1dXPPLII3j44YfnHf/IyAgqKioQFxdn1Jk+IYvNxsYGq1atwqpVqwBMTihu3bqF4uJiAHcTP1dX10n/ZDKZ0SR1CoUC9fX1CAkJMZr3MsMwuHPnDnp7e9HX12f419/fD41GY0iUV6xYgfT0dJNJlAlZClZWVggKCgIADA4OQiqVGuUogFkkb+3t7fj000/h4+ODwMBA1NTUzOn2CoUCL774IsbGxrB//34IhUIcPnwYL7zwAt5///0J9ZqOHz+OP/7xj8jMzMSjjz6KqqoqvPnmm1AqlXjsscfmHLt+9wSRSETDEMTi6RMJd3d3xMfHA/jXUF53dzf6+vrQ1dWF6upqaDQaAIBYLJ4yqbO3t1/2BESj0aCjo4OT8j4Mw2BoaGjKJE2r1QL4VwLs6emJyMhIeHp6muwQNSFLiWEYlJaWwtraGikpKVyHM4lZJG+rV6/GqVOnIJPJcOXKFfziF7+Y0+2PHTuG27dv4+2330ZoaCgAICkpCd/97nfx+eef49lnnwVwN9F69913kZKSgl/96lcAgAceeAAMw+Dvf/87du7cCTs7uzk9dnV1Ndzd3ZGUlETJGyFTsLa2RnBwMIKDgw3HGIbB8PDwhCSlp6cHNTU1UKvVAO5u9yWTyWb8Z2traxIlTHQ6HUZHRyGXyzE8PAy5XD7p3+joKBiGAXD3b+bq6gpvb29ER0fD1dUVbm5ukEql1KNGyCzw+XwkJCTg2rVrKCkpMbqi22aRvC10eOLKlSsICQkxJG4A4O/vj9jYWFy+fNmQvJWVlWF4eBgPPfTQhNvv2rUL58+fR35+PjZv3jynx9ZoNEhJSYFEIllQGwixJHw+H46OjnB0dDQMuQJ3F/3ok7qhoaEJyU1HRwfkcrmhF0p/P3Z2dpDJZJBKpRCLxbP+JxKJwOPxJvz7JpZlDf8YhoFarYZKpZrVP6VSaUjYRkdHwbKs4X5FIpEhAdWv3JXJZHB2doarqytsbW0pSSNkgRwcHJCQkICioiL09vZyHc4EZpG8LQTDMGhubsb27dsn/S40NBTFxcVQKBSwsbFBY2MjACAkJGTCeatXrwafz0dDQ8O0yVt/fz8GBgYMP9+8eRPA3RfH7du3F6s5hJB/sre3n/LbslKpxNjYGEZHRzE2Nmb4f1dXF9RqNdRqNTQajeH/c6HRaNDV1YXz58/PqSedx+NBLBbDysrKMIXCysoKtra28PT0hK2tLaRSKWxtbWFrazvtMKdarUZHR8ecYiaEzMze3t4w91alUnEczV0Wn7zJ5XKo1eop99nTH+vv74efnx8GBgYgEAjg6Og44TwrKyvIZLIJydk3nThxAgcPHpx0/E9/+tPCGkAIMTo9PT1ch0AIWQKNjY2IjIzkOgzjS94YhjFMRL4f/bDFQuiz6Km+Jeu/3erPUalUEAqn/pOJRKIZM/KdO3di7dq1hp/r6urwpz/9CS+//LJhZYslaG1txa9//Wu8+uqrFlOE2BLbDFhmuy2xzQC125LabYltBu6Olv3+9783mjYbXfJWWVmJF198cVbnfvTRRwv+Q+prF02VMOqHTPTniMXiCfNlvnnuTHWQXFxcptyUOSgoyCIL8lpiIWJLbDNgme22xDYD1G5LYoltBjDnRYlLxeiSNz8/P7zyyiuzOneqoc65kslkEIlEUw556o/pky5nZ2fodDoMDQ1NGDrVaDSQy+WLEg8hhBBCyEyMLnlzdnbGtm3blu3x+Hw+AgMDUV9fP+l3tbW18PLyMqxm1ZcqqK+vn1D3pb6+HgzDTChlQAghhBCyFIy/wNEi6+npQWtr64RjmZmZqK+vn5DAtbW1oby8HFlZWYZjsbGxkMlkOH78+ITbHz9+HBKJZE6F/JydnfHd737X4nrrLLHdlthmwDLbbYltBqjdltRuS2wzYHzt5rH3Fg8yYR9++CEAoKWlBRcvXsT27dvh6ekJAHjyyScN5/34xz9GRUUFcnJyDMcUCgWefvppKBQK7N27FwKBAIcPHwbDMHj//ffh4OBgOPfo0aP485//jKysLCQmJqKyshJff/01nnnmGTz++OPL01hCCCGEWCyzSd4yMjKm/d29idpUyRsA9Pb2Ttrb9Ec/+hF8fHwm3d/Jkyfx+eefo6urC25ubti1axd2795NRTEJIYQQsuTMJnkjhBBCCLEEFjfnjRBCCCHElFHyRgghhBBiQoyuVIip6+/vx5EjR1BXV4f6+nqMj4/jzTffRExMzKzvo6+vb9L8uxdeeAFeXl6Tzj116hQOHTqE7u5uuLq64pFHHsHDDz+8mE2atZGREfztb39DTk4OVCoVQkND8cMf/nBWhRxnmrMYHx9v2Easq6sLjz766JTn/fd//zc2bNgwv+AXYCHt/u1vf4uzZ89OOu7n54ePP/54wjGGYXDo0CEcO3YMg4OD8PHxwf79+7Fx48ZFa8tszbfNDMPg66+/RnZ2NhobGzEyMgJPT0+sX78ee/funVToerrXxbPPPov9+/cvWnvupVar8d577+HcuXMYGRnBypUr8f3vfx8JCQn3va2pvneB+bc7Ozsbly5dQn19PQYHB+Hm5oaUlBQ8+eSTkwqa7tmzB93d3ZPuY+fOnfjZz362qO2Zjfm2+f33359yu0ORSIQLFy5MOm4uz/V0zx8AeHt747PPPjP8zMV7dyYKhQKHDh1CbW0t6urqMDIygldeeWXWpcnmcs3Lzc3FBx98gNbWVjg4OGD79u144oknpt2haT4oeVtk7e3t+PTTT+Hj44PAwEDU1NTM6fYKhQIvvvgixsbGsH//fgiFQhw+fBgvvPAC3n///QkbbR8/fhx//OMfkZmZiUcffRRVVVV48803oVQq8dhjjy1202bEMAxefvllNDU1Ye/evbC3t8exY8fw4osv4sCBA/D19Z3x9q+++uqkY/X19Thy5MiUF5SNGzciOTl5wrHw8PCFNWIeFtpu4O4F/6WXXppwzNbWdtJ5Bw4cwCeffIIHHngAISEhyM3NxWuvvQYej7esSetC2qxUKvH6668jPDwcDz74IBwdHVFTU4MPPvgAZWVl+L//9/9OWvgTHx+PrVu3Tji2lDUVX3/9dVy5cgW7d++Gj48Pzpw5g5deeglvvvnmjHsamup7V2++7f7DH/4AZ2dnbN68Ge7u7mhqasLRo0dRUFCA9957b1JCHhwcPOkL2FQLw5bDfNus99Of/hTW1taGn/n8yYNZ5vRcv/DCCxgfH59wrLu7G+++++6U1+nlfu/OZHh4GAcPHoS7uzuCgoJQXl4+69vO5ZpXUFCA//zP/0R0dDRefPFFNDc34+9//zuGhobw05/+dPEaxJJFNTY2xg4PD7Msy7KXL19m09PT2bKyslnf/pNPPmHT09PZ2tpaw7GWlhY2KyuLffvttw3HlEol+61vfYt96aWXJtz+tddeYzdv3szK5fIFtmRuLl68yKanp7OXL182HBsaGmK3bdvG/vKXv5zXff7ud79jMzIy2J6eHsOxzs5ONj09nf30008XGvKiWGi7f/Ob37CbN2++73m9vb3sunXr2D/96U+GYwzDsP/2b//Gfvvb32a1Wu284p+PhbRZrVazVVVVk45/8MEHbHp6OltcXDzheHp6+oQ2L7WamppJry+lUsnu3buXff7552e8ram+d1l2Ye2e6vp25swZNj09nT158uSE47t3757Ubq4spM3vvfcem56ezg4NDc14nrk911M5ePAgm56ePul9vdzv3ftRqVRsf38/y7IsW1dXx6anp7OnT5+e1W3ncs17/PHH2e9973usRqMxHHvnnXfYjIwMtqWlZeEN+Sea87bIbGxsIJPJ5n37K1euICQkBKGhoYZj/v7+iI2NxeXLlw3HysrKMDw8jIceemjC7Xft2oXx8XHk5+fPO4b5yM7OhpOT04SucgcHB6xbtw65ubmGfWJnS61WIzs7G9HR0XBzc5vynPHx8Sn3pF1Oi9VunU6HsbGxaX+fm5sLrVaLXbt2GY7xeDw89NBD6Ovrm3MP70IspM1WVlZYs2bNpOPp6ekAMKmAtp5KpYJKpVpg5PeXnZ0NgUCAnTt3Go6JxWLs2LEDNTU16Onpmfa2pvreBRbW7qmmhOhfGy0tLVPeRqPRTOrBWW4LafO9xsbGwE5TtMHcnuupXLhwAZ6enlO+r4Hle+/ej0gkmneB3dle81paWtDS0oIHHnhgwhDprl27wLIsrly5sqA23IuSNyPCMAyam5sREhIy6XehoaHo6OiAQqEAADQ2NgLApHNXr14NPp+PhoaGpQ/4Hg0NDQgODp40bBAaGgqlUon29vY53V9BQQFGR0exadOmKX9/8OBBbNmyBRs3bsSzzz6LoqKiece+EIvRbqVSiW3btmHbtm3YsWMH/vSnPxmeZ73GxkZYW1vD399/0uPof79cFvu5BoDBwUEAmDC0qHf27Fls3rwZmzZtwuOPP47z58/PL/BZaGxshI+Pz6Rha/3f+ebNm1PezpTfu/qY5tPu6ej3hb63wLleWVkZNm/ejC1btmDPnj344osv5hf0Ai1Gmx999FFs27YNW7duxa9+9SvD6/jexwDM97luaGhAa2vrtPNul/O9u5Rme83TP5/fnAfn4uICV1fXRb1O05w3IyKXy6FWq6f8dqA/1t/fDz8/PwwMDEAgEMDR0XHCeVZWVpDJZIaL53IZHBxEVFTUpOP6uAcGBrBy5cpZ39/58+chEomQmZk54Tifz0dCQgIyMjLg4uKCzs5OHD58GC+99BJef/31OW1RthgW2m5nZ2fs27cPq1atAsuyKCwsxLFjx9DU1IQ333zT8O1tYGAAjo6Ok+aD3fu6WC6L/VwDwGeffQZbW1skJSVNOB4REYF169bB09MTAwMD+Mc//oFf/epXGBsbm9SbsRgGBgbu+/6biim/d4H5t3s6n376KQQCwaT3b2BgICIjI+Hr6wu5XI4zZ87g//2//4f+/n784Ac/mH8D5mEhbbazs8O3v/1thIeHw8rKClVVVTh69Cjq6upw4MABQ2Jk7s+1Phmb6kv2cr93l9Jsr3n653O6v+9iPt+UvM2AYZhZD8uJRKIF77Cg71q2srKa8v7vPUelUk27ckUkEi2om3o+7VapVIYYv/l7fbyzNTY2hvz8fCQlJU1arebu7o4//vGPE45t2bIFTzzxBP7yl78sKHnjot3PPffchJ83bNgAX19fHDhwANnZ2YaFCCqValavi7ni+rkGgI8++gglJSX493//90nP91tvvTXh5+3bt+P73/8+3nnnHWzbtm3SZPiFmu/f2Vjeu/O1mK+v8+fP46uvvsK+ffsmLV753e9+N+Hn7du34+c//zkOHz6Mhx9+eNopEkthIW3evXv3hJ+zsrIQGhqKX/3qVzh69KhhNaU5P9cMw+DSpUsIDg5GQEDApN8v93t3Kc32mqcfPp3u3G+OqCwEJW8zqKysxIsvvjircz/66KNJQ1pzpX8xT/Vhqn9R6M8Ri8XQarVT3o9arV7QG2M+7RaLxVPOdfpm3LORnZ0NtVo97ZDpN8lkMmzbtg2ffPIJent75/0BwHW79fbs2YP33nsPJSUlhuRNLBbP6nUxV1y3+eLFi3j33XexY8eOWX0bt7Kywre//W388Y9/xI0bN2a1InAu5vt3Npb37nwt1uursrISv//975GYmIhnnnnmvufzeDzs2bMHRUVFqKiowObNm+cW+AIs9ntq06ZN+Mtf/oLS0lJD8mbOz3VFRQX6+vomJbLTWer37lKa7TVPn7RNd+5iPt+UvM3Az88Pr7zyyqzOne9EyHvJZDKIRKIpu1b1x1xcXAyPp9PpMDQ0NKFLXqPRQC6XLyie+bTbyclpxrjnEs/58+chlUqRmpo669voE7aRkZF5J29ct1tPLBZDJpNBLpdPeLzy8nKwLDuhh/ebr4u54rLNxcXF+O1vf4uUlJQ5LaHXP7/3/n0Wi7OzM/r6+iYdv9/f2Vjeu/M133bf6+bNm3jllVcQGBiI1157bdY1rZby+ZzJYrT5m9zc3Ca9b83xuQbuXqf5fP6c6kxy9Vwv1GyvefcOo7q7u086997FTAtFydsMnJ2dZ13AbzHw+XwEBgaivr5+0u9qa2vh5eUFGxsbAP+qlVNfXz9hqLC+vh4Mwyyols582h0cHIyqqiowDDNhUmddXR0kEsms6p0Bd+dblJeXY+vWrVN2PU+ns7MTwNQT3meLy3bfS6FQYHh4eMJk76CgIJw6dQqtra0Thihqa2sNv58PrtpcW1uLV199FatXr8Yvf/nLORWv1D/XU02GXyh9/aexsbEJE7rv93c2lvfufM233XodHR342c9+BkdHR7zxxhuGts7GUj6fM1lom7+JZVl0d3dPeP7M8bkGJlYDmEuSy9VzvVCzvebpn88bN24gLCzMcF5/fz/6+vomrPBdKFptyqGenp5JpREyMzNRX18/4UOgra0N5eXlyMrKMhyLjY2FTCbD8ePHJ9z++PHjkEgkyz5xPzMzE4ODg8jJyTEcu3PnDi5fvozU1NQJiVhHRwc6OjqmvJ9Lly6BYZhph0zv3Lkz6VhfXx9Onz6NlStXzrsHar4W0m6VSjXlHIgPP/wQLMtOmLyflpYGoVCIo0ePGo6xLIvjx4/D1dUVERERi920aS30uW5pacHLL78MDw8P/P73v592KGGq51qhUODIkSOwt7ef1Q4Wc5WVlQWdTocTJ04YjqnVapw+fRphYWGGb9Pm9N4FFtbugYEB/PSnPwWfz8cf/vCHaT+Y5XI5dDrdhGNarRaffPIJrKys5rQLzWJYSJunem0eO3YMd+7cmfC+NbfnWu9+1QC4eO8ulv7+frS2tk4Y7p7tNW/FihXw8/PDyZMnJ7zWjx07Bh6PN2kBz0JQz9sS+PDDDwH8q8bR119/jaqqKgDAk08+aTjvN7/5DSoqKia8IHbt2oVTp07h5Zdfxt69eyEQCHD48GE4Ojpi7969hvPEYjGefvpp/PnPf8YvfvELJCYmorKyEufOncMzzzyzoFpz85GVlYUjR47g9ddfR0tLi6ECNcMweOqppyac+5Of/AQAcPjw4Un3c/78ebi4uEx7If/rX/+Kjo4OxMXFwcXFBd3d3Thx4gSUSiV+/OMfL37D7mMh7R4cHMTTTz+NjRs3ws/PDwBQVFSEgoICJCUlIS0tzXBbNzc37N69G5999hm0Wi1CQ0Nx9epVVFVV4b/+678gEAiWqcULa7NCocDPfvYzjIyMYO/evZPqXHl5eRkS0X/84x/Izc1Famoq3N3dMTAwgNOnT6Onpwf/+Z//OeWk64UKCwvDunXr8M477+DOnTvw9vbG2bNn0d3djZdfftlwnjm9d4GFtfvnP/85Ojs7sW/fPlRXV6O6utrwO0dHR0Pl/by8PPz9739HZmYmPD09MTIygvPnz+PWrVt49tlnl30IcSFt3r17N9avX4/AwECIRCJUV1fj4sWLCA4OnlQ/zZyea73pqgHocfHenY0vv/wSo6OjhuHOvLw89Pb2AgAefvhhSKVSvPPOOzh79iw+//xzeHp6ApjbNe+HP/whXnnlFfz0pz/Fhg0b0NzcjKNHj+Jb3/rWlAs75ouStyXw3nvvTfj59OnThv/fm7xNxcbGBm+++Sb+93//F3//+98N+yP+6Ec/mvSNdteuXRAKhfj888+Rl5cHNzc3/OhHP5r1BNLFJBAI8MYbb+Ctt97Cl19+CZVKhZCQELzyyiuGxOR+2tracOPGDezZs2fKbWYAICEhAZ2dnTh69ChGRkYglUoRGRmJJ554gpNvcwtpt35eX3FxMc6ePQuGYeDt7Y1nn30We/funfQ3eO6552BnZ4cTJ07g7Nmz8PHxwauvvjrrhR2LZSFtHh4eNlws33777Um/37p1qyF5W7NmDa5fv45Tp05BLpdDIpEgNDQUL7/8MuLi4ha/Yf/0f/7P/4G7uzu+/vprjI6OIjAwEL///e8RHR094+1M9b2rN9926+uC3buvpV50dLQheQsMDIS/vz/Onz+PO3fuQCgUIjg4GL/85S+xbt26RW/PbMy3zZs2bcL169cNi6vc3d2xb98+PPHEE5BIJBPONafnGvhXNYDk5GRIpdIpz+HqvXs/n3/++YS9WXNycgzJ6ebNm6dtz1yueampqfj1r3+NgwcP4s0334S9vT3279+P7373u4vaFh47XWloQgghhBBidGjOGyGEEEKICaHkjRBCCCHEhFDyRgghhBBiQih5I4QQQggxIZS8EUIIIYSYEEreCCGEEEJMCCVvhBBCCCEmhJI3QgghhBATQskbIYQQQogJoeSNEEIIIcSE0N6mhBAyS2VlZTh+/DiuX7+OO3fuwNraGgEBAVi3bh127tw544bbTz75JEQiEQ4cOICuri48+uijSExMxB/+8IdlbAEhxBxQ8kYIIfeh1Wrx5z//GSdPnoS1tTWSkpLg7e2NsbExFBcX480338SJEyfwxhtvwN3dfdLtOzo6cOvWLTz99NMcRE8IMTeUvBFCyH288847OHnyJEJCQvCb3/wGrq6uht/pdDp8+OGHOHjwIF566SW88847EIvFE26fm5sLAEhLS1vWuAkh5onmvBFCyAza29tx+PBhyGQy/O53v5uQuAGAQCDAU089hY0bN+LWrVv44osvJt1Hbm4uPD09sXLlyuUKmxBixih5I4SQGZw9exYMw+CBBx6Ak5PTtOc9+eSTAIBTp05NOH7nzh1cv36det0IIYuGkjdCCJnB9evXAQBxcXEznufv7w8XFxd0dnZiYGDAcDw/Px86nQ7p6elLGichxHJQ8kYIITPQJ2Jubm73PVd/Tn9/v+FYbm4u7O3tsWbNmqUJkBBicSh5I4SQRcYwDABApVKhuLgYycnJEAgEHEdFCDEXlLwRQsgMnJ2dAQC9vb33PVd/jn5RQ3FxMZRKJc13I4QsKkreCCFkBhEREQCA0tLSGc9rbW1Ff38/7OzsDAsbcnNzIRKJkJiYuORxEkIsByVvhBAyg61bt4LP5+PUqVO4c+fOtOd99NFHAIDNmzeDz+eDYRjk5+cjPj4e1tbWyxQtIcQSUPJGCCEz8PX1xZ49ezA8PIz/+I//mLAYAbg7v+3DDz/EuXPnIJVKsXv3bgBATU0NhoaGaMiUELLoaIcFQgi5j2effRZjY2M4efIkHnvsMSQnJ0/YHuv27dsQiUT4n//5H3h5eQEArl69Cj6fj9TUVI6jJ4SYG0reCCHkPoRCIX7+859j/fr1OHHiBKqrq5GTkwOdTgcACA8Px6uvvgpvb2/DbXJzcxEWFjZjYV9CCJkPSt4IIWSW4uLiJhTrbW9vx/PPP4+uri6wLGs43tLSgtu3b+Nb3/rWlPfj6emJnJycJY+XEGKeaM4bIYTMk6+vL371q19BLpfj3//939HX1weANqInhCwtHnvv10VCCCFzlpeXhxs3bsDf3x8bNmzgOhxCiJmj5I0QQgghxITQsCkhhBBCiAmh5I0QQgghxIRQ8kYIIYQQYkIoeSOEEEIIMSGUvBFCCCGEmBBK3gghhBBCTAglb4QQQgghJoSSN0IIIYQQE0LJGyGEEEKICfn/9RXFTxJEpJcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PD: 67.83 +/- 12.49 %\n", + "PA: 79.641 +/- 5.336\n" + ] } ], "source": [ "print('modularion factor:', mu, '+/-', mu_err)\n", - "polarization = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu, show=True, ref_pdpa=(0.7, 83), ref_label='Simulated')" + "polarization = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu, show=True, ref_pdpa=(0.7, 83), ref_label='Simulated', mdp=mdp)" ] }, { @@ -531,19 +533,18 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 11, "id": "7e456b61", "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'polarization' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[17], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mRelativeX:\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;28mround\u001b[39m(\u001b[43mpolarization\u001b[49m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mangle\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mtransform_to(MEGAlibRelativeX(attitude\u001b[38;5;241m=\u001b[39mattitude))\u001b[38;5;241m.\u001b[39mangle\u001b[38;5;241m.\u001b[39mdegree, \u001b[38;5;241m3\u001b[39m), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegrees\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mRelativeY:\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;28mround\u001b[39m(polarization[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mangle\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mtransform_to(MEGAlibRelativeY(attitude\u001b[38;5;241m=\u001b[39mattitude))\u001b[38;5;241m.\u001b[39mangle\u001b[38;5;241m.\u001b[39mdegree, \u001b[38;5;241m3\u001b[39m), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegrees\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mRelativeZ:\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;28mround\u001b[39m(polarization[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mangle\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mtransform_to(MEGAlibRelativeZ(attitude\u001b[38;5;241m=\u001b[39mattitude))\u001b[38;5;241m.\u001b[39mangle\u001b[38;5;241m.\u001b[39mdegree, \u001b[38;5;241m3\u001b[39m), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegrees\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "\u001b[0;31mNameError\u001b[0m: name 'polarization' is not defined" + "name": "stdout", + "output_type": "stream", + "text": [ + "RelativeX: 106.626 degrees\n", + "RelativeY: 16.626 degrees\n", + "RelativeZ: 106.626 degrees\n", + "IAU: 79.641 degrees\n" ] } ], @@ -562,6 +563,14 @@ "outputs": [], "source": [] }, + { + "cell_type": "code", + "execution_count": null, + "id": "606b6e92", + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -585,6 +594,22 @@ "metadata": {}, "outputs": [], "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "093d1d3e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bc5136dd", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From f42c76ed841ffbf6c66d31453b1a44b7ca30c364 Mon Sep 17 00:00:00 2001 From: nmik Date: Thu, 2 Jan 2025 18:00:37 -0600 Subject: [PATCH 13/31] finished draft, to be checked --- cosipy/polarization/polarization_stokes.py | 67 +++++++++++++--------- 1 file changed, 40 insertions(+), 27 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index a045c4bc..cccb66e5 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -37,19 +37,16 @@ def constant(x, a): return a -def rotate_points_to_x_axis(x_, y_, angle_): +def rotate_points_to_x_axis(newPD, newPA): """ Rotate arrays of points (x_, y_) in the QN-UN plane by an angle """ # Create a matrix of rotation matrices for each point - cos_vals = np.cos(2*angle_) - sin_vals = np.sin(2*angle_) + rotated_Q = newPD * np.cos(2 * np.radians(newPA)) + rotated_U = newPD * np.sin(2 * np.radians(newPA)) + print('rotated_Q, rotated_U:', rotated_Q, rotated_U) - # Apply the rotation to each point - rotated_x = x_ * cos_vals - y_ * sin_vals - rotated_y = x_ * sin_vals + y_ * cos_vals - - return rotated_x, rotated_y + return rotated_Q, rotated_U def polar_chart_backbone(ax): """ Preparing canvas for Stokes chart @@ -476,9 +473,9 @@ def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False be, unpolarized_asad = self.create_unpolarized_asad(bins=bins) be = be.value # I would like to radomly extract an azimutal angle for each photon based on the unpolarized response. - # There might be an energy dependence here, so we should thing carfully + # There might be an energy dependence here, so we should think carfully - # Create teh spline from the unpol azimutal angle distrib + # Create the spline from the unpol azimutal angle distrib spline_unpol = interpolate.interp1d(be[:-1], unpolarized_asad) # Create fine bins and normalize to the area to get a probability density function (PDF) # also, avoiding edges that wouls break the spline @@ -495,22 +492,26 @@ def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False inv_cdf = interpolate.interp1d(cdf, fine_bins) #Generate random samples from a uniform distribution and map them to azimuthal angles - random_values = np.random.uniform(low=np.min(cdf), high=np.max(cdf), size=total_num_events) - print('random_values', random_values) - unpol_azimuthal_angles = inv_cdf(random_values) * u.rad - print('unpol_azimuthal_angles', unpol_azimuthal_angles) - qs_unpol, us_unpol = self.compute_pseudo_stokes(unpol_azimuthal_angles) + qs_unpol_, us_unpol_ = [], [] + for i in range(0,100): + random_values = np.random.uniform(low=np.min(cdf), high=np.max(cdf), size=total_num_events) + unpol_azimuthal_angles = inv_cdf(random_values) * u.rad + qs_unpol, us_unpol = self.compute_pseudo_stokes(unpol_azimuthal_angles) + qs_unpol_.append(qs_unpol) + us_unpol_.append(us_unpol) + qs_unpol_ = np.array(qs_unpol_) + us_unpol_ = np.array(us_unpol_) if show: plt.figure() plt.title('Unpolarized') - plt.hist(qs_unpol, bins=50, alpha=0.5, label='q$_s$') - plt.hist(us_unpol, bins=50, alpha=0.5, label='u$_s$') + for i in range(0,100): + plt.hist(qs_unpol_[i], bins=50, alpha=0.1) + plt.hist(us_unpol_[i], bins=50, alpha=0.1) plt.xlabel('Pseudo Stokes parameter') - plt.legend() plt.show() - return qs_unpol, us_unpol + return qs_unpol_, us_unpol_ def calculate_mdp(self, total_num_events, mu, bkg_rate=22.0): """ @@ -536,7 +537,7 @@ def calculate_mdp(self, total_num_events, mu, bkg_rate=22.0): """ print('Calculating the MDP...') - print('Espoure:', self._exposure, 's') + print('Exposure:', self._exposure, 's') print('Total number of events:', total_num_events) print('Modulation factor:', mu) print('Background rate:', bkg_rate, 'ph/s') @@ -546,7 +547,7 @@ def calculate_mdp(self, total_num_events, mu, bkg_rate=22.0): return MDP99 - def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref_qu=(None, None), ref_pdpa=(None, None), ref_label=None, mdp=None): + def calculate_polarization(self, qs, us, qs_unpol_, us_unpol_, mu, show=False, ref_qu=(None, None), ref_pdpa=(None, None), ref_label=None, mdp=None): """ Calculate the polarization degree (PD), polarization angle (PA), and their associated 1-sigma uncertainties given Q and U measurements @@ -592,21 +593,34 @@ def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref pol_I = len(qs) pol_Q = np.sum(qs) / mu pol_U = np.sum(us) / mu - unpol_I = len(qs_unpol) - unpol_Q = np.sum(qs_unpol) / mu - unpol_U = np.sum(us_unpol) / mu + unpol_I = len(qs_unpol_[0]) + unpol_Q_, unpol_U_ = [], [] + for i in range(len(qs_unpol_)): + qs_unpol = qs_unpol_[i] + us_unpol = us_unpol_[i] + unpol_Q = np.sum(qs_unpol) / mu + unpol_U = np.sum(us_unpol) / mu + unpol_Q_.append(unpol_Q) + unpol_U_.append(unpol_U) + unpol_Q = np.array(unpol_Q_).mean() + unpol_U = np.array(unpol_U_).mean() + + print('Q, U, unsubtracted:', pol_Q/pol_I, pol_U/pol_I) Q = pol_Q/pol_I - unpol_Q/unpol_I U = pol_U/pol_I - unpol_U/unpol_I + print('Q, U, subtracted:', Q, U) polarization_fraction = np.sqrt(Q**2. + U**2.) pol_PD = polarization_fraction * 100 pol_PA = 90 - 0.5 * np.degrees(np.arctan2(U, Q)) + print('PD: %.2f'%(pol_PD), '%') + print('PA: %.2f'%pol_PA, 'deg') ###################### ###################### Need to understand why I need this rotation ###################### - Q, U = rotate_points_to_x_axis( Q, U, pol_PA) + Q, U = rotate_points_to_x_axis(polarization_fraction, pol_PA) print('------- Q/I, U/I', Q, U) pol_modulation = mu * polarization_fraction @@ -654,10 +668,9 @@ def calculate_polarization(self, qs, us, qs_unpol, us_unpol, mu, show=False, ref polarization_angle_uncertainty = Angle(pol_1sigmaPA, unit=u.deg) - print('PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') print('PA:', round(polarization_angle.angle.degree, 3), '+/-', round(polarization_angle_uncertainty.degree, 3)) - polarization = {'fraction': pol_PD, 'angle': polarization_angle, 'fraction uncertainty': polarization_fraction_uncertainty, 'angle uncertainty': polarization_angle_uncertainty, 'Q/I': Q, 'U/I': U, 'Stokes uncertainty': pol_sQ} + polarization = {'fraction': polarization_fraction, 'angle': polarization_angle, 'fraction uncertainty': polarization_fraction_uncertainty, 'angle uncertainty': polarization_angle_uncertainty, 'Q/I': Q, 'U/I': U, 'Stokes uncertainty': pol_sQ} return polarization From cea32cb603cdf4e07004b2d4cf4a3bf236117946 Mon Sep 17 00:00:00 2001 From: nmik Date: Thu, 2 Jan 2025 18:00:40 -0600 Subject: [PATCH 14/31] finished draft, to be checked --- .../polarization/Stokes_method.ipynb | 134 ++++++++++++------ 1 file changed, 89 insertions(+), 45 deletions(-) diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 7c717765..1d69b70c 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -31,12 +31,12 @@ { "data": { "text/html": [ - "
14:35:27 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "
17:50:26 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m14:35:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402146;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=335664;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m17:50:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=386416;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=180497;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -51,7 +51,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=434982;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=453344;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=832278;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282139;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -61,12 +61,12 @@ { "data": { "text/html": [ - "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
+       "
17:50:27 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=650234;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=830898;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m17:50:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=449988;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=56715;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -76,11 +76,11 @@ { "data": { "text/html": [ - "
14:35:28 INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m14:35:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=772736;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243163;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635725;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=447279;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -93,7 +93,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=972732;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=89323;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=244207;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451513;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -106,7 +106,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=277069;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=642439;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=526327;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=325556;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -119,7 +119,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=204851;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=187390;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=290416;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=918982;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -128,11 +128,11 @@ { "data": { "text/html": [ - "
14:35:28 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
17:50:27 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m14:35:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370761;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=827232;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m17:50:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=469875;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=181080;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -145,7 +145,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=888769;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=817867;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=424528;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=772738;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -158,7 +158,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=201562;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=597981;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752082;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=322307;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -172,7 +172,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=126549;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938664;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844829;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=593752;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -187,7 +187,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=349329;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=936162;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=428747;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=287611;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -202,7 +202,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=216163;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933859;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=686076;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654851;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -216,7 +216,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=732135;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=653951;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=127096;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=599266;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -230,7 +230,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=805219;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=317888;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258193;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=293971;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -245,7 +245,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=500123;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=227499;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=582073;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=759145;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -260,7 +260,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=85068;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=304169;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=805421;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448983;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -272,7 +272,6 @@ "from cosipy import UnBinnedData\n", "from cosipy.spacecraftfile import SpacecraftFile\n", "from cosipy.polarization.conventions import MEGAlibRelativeX, MEGAlibRelativeY, MEGAlibRelativeZ, IAUPolarizationConvention\n", - "from cosipy.polarization.polarization_asad import PolarizationASAD, calculate_uncertainties\n", "from cosipy.polarization.polarization_stokes import PolarizationStokes\n", "\n", "from cosipy.threeml.custom_functions import Band_Eflux\n", @@ -280,8 +279,7 @@ "import numpy as np\n", "from astropy.coordinates import Angle, SkyCoord\n", "from astropy import units as u\n", - "from scoords import SpacecraftFrame\n", - "from scipy.optimize import curve_fit" + "from scoords import SpacecraftFrame\n" ] }, { @@ -384,7 +382,8 @@ "output_type": "stream", "text": [ "This class loading takes around 30 seconds... \n", - "\n" + "\n", + "1305\n" ] } ], @@ -393,7 +392,8 @@ "source_photons = PolarizationStokes(source_direction, spectrum, response_file, sc_orientation)\n", "az_ang = source_photons.calculate_azimuthal_scattering_angles(grb_data)\n", "\n", - "TOT_NUM_EVENTS = len(az_ang)" + "TOT_NUM_EVENTS = len(az_ang)\n", + "print(TOT_NUM_EVENTS)" ] }, { @@ -423,8 +423,8 @@ ], "source": [ "qs, us = source_photons.compute_pseudo_stokes(az_ang, show=True)\n", - "np.save('qs.npy', qs)\n", - "np.save('us.npy', us)" + "# np.save('qs.npy', qs)\n", + "# np.save('us.npy', us)" ] }, { @@ -432,11 +432,31 @@ "execution_count": 7, "id": "c69dae6c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "this task takes around 25 seconds...\n", + "\n", + "Creating the unpolarized ASAD...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkJUlEQVR4nO3deXhTVf4/8HeSNulOSwtllbVAQUEYFgXKUnbRjgyL6K+OG8goVFxBHHUUQUYddVBEEMEqoIAgUpVFxQoCyiabtEARKWv3vU2z3t8ffJshJvQcStL0lvfreXi09557c25u0n7u52waRVEUEBEREdVxWl9XgIiIiEgGgxYiIiJSBQYtREREpAoMWoiIiEgVGLQQERGRKjBoISIiIlVg0EJERESqwKCFiIiIVIFBCxEREakCgxYiqlMGDRoEjUbj9dd56aWXoNFo8OOPP3r9tWS0bt0arVu39nU1iOo0Bi1EKvfjjz9Co9Fg0KBBVyxz+vRpaDQa/lEkIlVj0EJE16Vp06YhPT0dvXv39nVViEiSn68rQETkC1FRUYiKivJ1NYjoKjDTQnSdurxPx9q1a9G7d28EBQWhYcOGmDhxIs6fP+9yTFV/E5PJhOeffx5t2rSBwWBAu3bt8PLLL8NsNrt9ra1bt2LkyJFo2LAhDAYDOnTogGeffRbFxcVSdTWbzViwYAFuu+02tGrVCgaDAQ0bNsTQoUOxadMmt8dU9REpKSnBk08+idatW8Pf3x8vvfSSy/X/+fqu9O/PTXBWqxULFy7ELbfcgrCwMAQFBaF79+5YsGAB7Ha7S50URcGCBQvQpUsXBAQEoHnz5pg2bZr0+0B0vWOmheg6t3DhQqSkpCAhIQEDBw7E7t27sXr1ahw6dAgHDx6EwWBwOWbChAnYu3cvxo0bB39/f2zYsAEvvfQS9u3bh5SUFKeOtIsXL8YjjzyC4OBgjB8/Ho0bN8aPP/6I1157DV999RV27tyJ8PDwautYUFCA6dOno2/fvhg2bBgaNWqEixcv4quvvsJtt92GJUuWYNKkSS7Hmc1mxMfHo6CgAMOHD0dYWBjatGlzxde5//773fYN+umnn/DDDz8gKCjIsc1iseCOO+7Ali1b0LFjR9xzzz0ICAhAamoqkpKSsHv3bixfvtzpPI8//jjeeecdNG3aFA8//LDjvdu9ezfMZjP0en217wPRdU8hIlVLTU1VACgDBw68Ypk//vhDAaC0atXKse1f//qXAkAJDQ1VDh8+7FT+7rvvVgAoq1evdto+cOBABYASExOjFBQUOLYbjUbllltuUQAon3zyiWP76dOnFb1er4SGhirp6elO53rkkUcUAMrkyZPdvsblKisrlbNnz7pcV1FRkdKlSxclIiJCqaiocNrXqlUrBYAyZMgQpayszOXYqutPTU112Xe5Q4cOKaGhoUpUVJRy8uRJl+OnTZumWK1Wx3ar1ao8+OCDCgDlyy+/dGzfuXOnAkBp166dkp+f79h++Xt3+f0hIldsHiK6zj322GO46aabnLZNnjwZALBnzx63x7zwwguIiIhw/BwQEIB58+YBAJYtW+bYvmLFCpjNZkybNg2dOnVyOsfcuXMRGhqK5cuXw2QyVVtHg8GAFi1auGxv0KABHnzwQRQWFmLv3r1uj33zzTcRHBxc7fmv5MKFCxg9ejQsFgs2bNiAdu3aAQDsdjveffddNGnSBG+//TZ0Op3jGJ1OhzfffBMajQYrV650bP/oo48AAP/85z/RsGFDx/bL3zsiqh6bh4iucz179nTZ1rJlSwBAYWGh22MGDhzosq1///7Q6XQ4cOCAY9uvv/4KAIiPj3cpHxERge7du2P79u04duwYunXrVm09jx49ijfeeAPbt2/HxYsXUVlZ6bTfXR+cgIAAdO3atdrzXklZWRluv/12nD9/Hp999hn69u3r2HfixAkUFBQgJiYGc+bMcXt8YGAg0tPTHT9XvRfVvXdEVD0GLUQqp9VeSpi66/hZpWpfVdnLuetP4ud36VeDzWZze77o6Gi3x0RFRSEnJ8exraqDadOmTd2ep2p7UVHRFesOAL/88gvi4+NhtVoxZMgQJCQkICwsDFqtFgcPHsSGDRvcZmsaN25co4nqbDYb7rrrLhw4cADz5s3DXXfd5bQ/Pz8fAJCRkYGXX375iucpKytz/H/Ve1Hde0dE1WPQQqRyDRo0APC/P6Tu5OXlAXAfoNREdnY2brjhBqdtVqsVeXl5CAsLc6lbVlYWunTp4nKeixcvOpW7kjlz5sBoNCI1NdWlo+y8efOwYcMGt8fVdGbdpKQkbNy4EZMnT8azzz7rsr+qvmPGjMEXX3whdc6qY7Kzs9G2bVunfVXvnbsmMCL6H/ZpIVK5jh07wmAw4MSJE1cMXH7++WcAEDbByNq2bZvLth07dsBms6F79+6ObVX/726q/KKiIhw8eBABAQGIjY2t9vVOnjyJhg0buh3Z464u1+LNN9/E+++/j+HDh2PhwoVuy3Tq1Anh4eH45ZdfYLFYpM7bo0cPANW/d0RUPQYtRCoXEBCAiRMnwmq14plnnoGiKE77z507hzfeeAPApSG9nvDKK6849XeprKzErFmzAAAPPPCAY3tiYiL8/f3x7rvv4uTJk07neOGFF1BSUoLExES3w6ov17p1axQUFODw4cNO25cuXYotW7Zc6+U4fPHFF5gxYwZuuukmfP75545msj/z8/NDUlISLl68iMceewxGo9GlzMWLF5GWlub4ueq9nzt3LgoKChzbL3/viKh6bB4iqgfefPNN7N27Fx999BF+/vlnDBs2DGFhYcjMzMSGDRtQWlqKmTNnuu0EWhOxsbHo0qWL0zwtv//+O0aPHo17773XUa5169b473//i6lTp6JHjx6YMGECGjVqhG3btuHnn39Gp06d8Nprrwlf7/HHH8eWLVvQv39/TJgwAQ0aNMC+ffuwY8cOjBs3DmvXrvXIdSUmJsJut6NXr1546623XPa3bt3aEXy88MILOHToEBYtWoSvvvoK8fHxaN68OXJycpCRkYGdO3di7ty56Ny5MwCgX79+SEpKwrvvvosbb7zR6b2LiIi4Yr8fIrqMr8dcE5FnlJaWKnPnzlV69uyphIaGKn5+fkp0dLRy++23K998841L+ermKama1+W+++5z2l41h0plZaXyz3/+U2ndurWi1+uVNm3aKC+99JJSWVnptm5btmxRhg0bpoSHhyt6vV5p166d8swzzyiFhYUuZd3N06IoivLVV18pffr0UUJCQpQGDRoow4YNU7Zt26Z89NFHCgDlo48+cirfqlWrauc9cXf9AKr99+e5cOx2u/LJJ58o8fHxSkREhOLv7680a9ZM6devnzJ37lzlzJkzLuXfffddpVOnToper1eaNm2qPProo0pRUZGwvkSkKBpF+VMumYjoCgYNGoRt27a5NEEREdUG9mkhIiIiVWDQQkRERKrAoIWIiIhUgX1aiIiISBWYaSEiIiJVYNBCREREqlBvgpbKykocP37cZeVXIiIiqh/qTdCSmZmJyZMnIzMz09dVISIiIi+oN0ELERER1W8MWoiIiEgVGLQQERGRKjBoISIiIlVg0EJERESqwKCFiIiIVIFBCxEREakCgxYiIiJSBQYtREREpAoMWoiIiEgVGLQQERGRKvhd7QEVFRVYtWoV0tLSkJ6ejtLSUsyaNQujRo1yKWu325GSkoKUlBScOXMGAQEBaNeuHZKSktC+fXuncqtWrcKXX36JgoICtGjRAomJiRg6dOi1XR0RERHVG1cdtBQXFyM5ORnR0dFo3749Dhw4cMWy//73v/Hdd99hxIgR+Nvf/gaj0YiMjAwUFhY6lVuyZAlWrlyJO+64A506dcKOHTswe/ZsaDQaDBky5OqvioiIiOqdqw5aIiMjsX79ekRGRuLYsWN4+OGH3Zb74YcfsHnzZsyZMwcDBgy44vlyc3OxevVqjBkzBk888QQA4Pbbb0dSUhIWLlyIQYMGQafTXW01iYiIqJ656j4ter0ekZGRwnJr1qxBbGwsBgwYALvdDqPR6Lbcjh07YLVaMWbMGMc2jUaDO++8E7m5uTh69OjVVpGIiIjqIa90xC0vL0d6ejo6deqEDz74AKNGjcKIESNw11134YcffnAqm5GRgcDAQLRq1cppe2xsrGM/ERER0VU3D8k4f/48FEXBDz/8AJ1Oh0ceeQTBwcFYu3YtXn75ZQQHB6NPnz4AgPz8fERERECj0Tidoyqbk5eX5/Y18vLykJ+f7/g5MzPTG5dCREREdYRXgpaqpqDi4mIsWrQInTt3BgD069cPd911Fz755BNH0GIymeDv7+9yDr1e79jvTkpKCpKTk71QeyIiouvPwazzwjI3N2leCzW5Mq8ELQaDAQDQtGlTR8ACAEFBQejXrx++/fZbWK1W+Pn5wWAwwGKxuJzDbDY7nevPEhIS0K9fP8fPmZmZmDNnjicvg4iIiOoQrwQtUVFRAICGDRu67AsPD4fVakVlZSVCQkIQGRmJAwcOQFEUpyaiqqafqnO5e40r7fOGY7mVwjKdGgXUQk2IiIiuT17piBsVFYWGDRsiNzfXZV9+fj70ej2CgoIAAO3bt0dlZaVLn5S0tDTHfiIiIiKvTeMfHx+PnJwc7N2717GtqKgIO3bsQI8ePaDVXnrp/v37w8/PD+vXr3eUUxQFGzZsQKNGjXDjjTd6q4pXpcBaJvxHRERE3lOj5qF169ahrKzM0YSzc+dO5OTkAADGjh2LkJAQJCYmIjU1FS+88AImTJiAkJAQbNiwAVar1WlCusaNG2P8+PH47LPPYLVaERsbi59++gmHDx/GCy+8wInliIiICEANg5bVq1cjKyvL8fP27duxfft2AMDw4cMREhKChg0b4r333sN7772Hzz//HFarFV26dMHzzz/v0uQzZcoUhIaGIiUlBZs3b0aLFi3w/PPPY9iwYddwaZ5VXGn3dRWIiIiuazUKWtasWSNVrlmzZpg7d66wnFarRWJiIhITE2tSHSIiIroOeK1PCxEREZEneWXIc31UwuYhIiKqx4qsFb6ughAzLURERKQKzLRIslnMvq4CERGR1+RWFvq6CkLMtBAREZEqMGghIiIiVWDQQkRERKrAoIWIiIhUgUELERERqQJHD0nKK82XKHWD1+tBRETkDVnlBb6ughAzLURERKQKDFqIiIhIFdg8JOlchdHXVSAiIrquMdNCREREqsBMiySN1ebrKhAREXlNgb3E11UQYqaFiIiIVIGZFkk2k93XVSAiIvKaEkulr6sgxEwLERERqQIzLZJMNsZ3REREvsS/xERERKQKzLRIstosvq4CERGR11RU1v2QgJkWIiIiUgUGLURERKQKdT8XVEdYFV/XgIiIyHvMitXXVRBipoWIiIhUgZkWSZU6LphIRET1Wd2fRJWZFiIiIlIFZlpkaZhpISKi+suCuj+1BzMtREREpArMtEgy2jh8iIiI6i+NCv7OXXXQUlFRgVWrViEtLQ3p6ekoLS3FrFmzMGrUqCseY7Va8cADDyAzMxOPPPII7r77bqf9drsdq1atwpdffomCggK0aNECiYmJGDp06NVfEREREdVLVx20FBcXIzk5GdHR0Wjfvj0OHDggPGbdunXIycm54v4lS5Zg5cqVuOOOO9CpUyfs2LEDs2fPhkajwZAhQ662ikRERHSVrOa63/hy1X1aIiMjsX79enz++ed45JFHhOULCwvx8ccf45577nG7Pzc3F6tXr8aYMWPwzDPP4I477sC///1vdO3aFQsXLoTNZrvaKhIREVE9dNVBi16vR2RkpHT5xYsXo2XLlhg2bJjb/Tt27IDVasWYMWMc2zQaDe68807k5ubi6NGjV1tFIiIiqoe8OnooLS0NmzdvRlJSEjQajdsyGRkZCAwMRKtWrZy2x8bGOvbXBYrEPyIiIrWy2sT/fM1rDViKomD+/PmIj4/HjTfeiIsXL7otl5+fj4iICJegpiqbk5eX5/a4vLw85OfnO37OzMz0UM2JiIioLvJa0LJp0yacOnUKs2fPrracyWSCv7+/y3a9Xu/Y705KSgqSk5OvuZ6ytMylEBFRPWaz1/2p27wStJSXl+ODDz7A3Xffjejo6GrLGgwGWCyus/CZzWbHfncSEhLQr18/x8+ZmZmYM2fONdSaiIiI6jKvBC2rVq2CxWJBfHy8o1koNzcXAFBWVoaLFy8iKioK/v7+iIyMxIEDB6AoilMTUVXTT1RUlNvXiIqKuuI+b7Az0UJERPWY1e6+72ld4pWgJTs7G6Wlpfj73//usm/58uVYvnw5li5dipiYGLRv3x5ff/01MjMz0bp1a0e5tLQ0AED79u29UUUiIiJSGa8ELWPHjkVcXJzTtsLCQvznP//BqFGj0L9/fzRt2hQA0L9/fyxYsADr16/HE088AeBSJ94NGzagUaNGuPHGG71Rxatm1bjvW0NERFQfGK31tE/LunXrUFZW5mjC2blzp2PG27Fjx6Jjx47o2LGj0zFVzUStW7d2CmgaN26M8ePH47PPPoPVakVsbCx++uknHD58GC+88AJ0Ol2NLoyIiIjqlxoFLatXr0ZWVpbj5+3bt2P79u0AgOHDhyMkJOSqzjdlyhSEhoYiJSUFmzdvRosWLfD8889fcUI6n9DYfV0DIiIir1FsriN565oaBS1r1qy56mOaNm3qCGz+TKvVIjExEYmJiTWpDhEREV0H6n4DFhERERG8OLlcfWPW1oH5i4mIiLzErtT9PqTMtBAREZEqMNNCRERE8FfBeBNmWoiIiEgVmGmRpFdBBEpERFRTehUsV8NMCxEREakCMy3SGN8REVE9pqn7o2T5l5iIiIhUgZkWSVatxddVICIiuq4x00JERESqwKCFiIiIVIHNQ0RERAQ1zOzBTAsRERGpAjMtREREBI2vKyCBmRYiIiJSBWZapKkhBiUiIqoZRWf1dRWEmGkhIiIiVWCmRZLC+I6IiMin+JeYiIiIVIGZFkl2qGDNbiIionqMmRYiIiJSBQYtREREpApsHpKkcMgzERHVY1ad2ddVEGKmhYiIiFSBQQsRERGpAoMWIiIiUgX2aZGkcMgzERGRTzHTQkRERKrATIskf19XgIiI6Dp31UFLRUUFVq1ahbS0NKSnp6O0tBSzZs3CqFGjHGXsdju2bNmCbdu2ISMjA6WlpWjatCni4+MxceJEGAwGl/N+/fXXWLVqFbKystCoUSOMGzcOY8eOvbarIyIionrjqpuHiouLkZycjMzMTLRv395tmcrKSsybNw/FxcX461//iqSkJMTGxuKjjz7CjBkzoCjO/UM2bNiA119/HW3atMH06dNx4403Yv78+Vi5cmXNrsor7BL/iIiI1Ekr8c/XrjrTEhkZifXr1yMyMhLHjh3Dww8/7FLG398f7733Hm666SbHtjvuuANNmjTBsmXLsH//fvTs2RMAYDKZ8OGHH+LWW2/FK6+84ihrt9vxySefICEhAaGhoTW9PiIiIqonrjpw0uv1iIyMrLaMv7+/U8BSJS4uDgCQmZnp2Pbrr7+iuLgYd955p1PZMWPGwGg04ueff77aKhIREVE9VKvZnoKCAgBAgwYNHNsyMjIAAJ06dXIq27FjR2i1Wpw4caL2KlgNf6td+I+IiIi8p1ZHD3322WcIDg5Gnz59HNvy8/Oh0+kQERHhVNbf3x9hYWHIz893e668vDynfZdnb4iIiKj+qbWgZfny5di3bx+efPJJpz4qJpMJfn7uq6HX62EymdzuS0lJQXJysjeq6pZOsdXaaxEREZGrWglatm7dig8//BCjR4926btiMBhgtVrdHmc2m90OjwaAhIQE9OvXz/FzZmYm5syZ47E6ExERUd3i9aBl7969ePXVV3HrrbfiqaeectkfGRkJm82GwsJCpyYii8WCkpKSK3b6jYqKQlRUlNfq/Wc2hfPwERER+ZJXO+KmpaXh+eefR8eOHfHyyy+7bQaKiYkBABw7dsxp+7Fjx2C32x37iYiI6PrmtaDl9OnTmDlzJpo0aYLXXnvtis08PXr0QFhYGDZs2OC0fcOGDQgICMCtt97qrSpeFZ3NLvxHRESkWorEPx+rUZvHunXrUFZW5hi9s3PnTuTk5AAAxo4dC61Wi6effhqlpaWYOHGiy1wrzZo1w4033gjgUp+Whx56CG+//TZefPFF9O7dG4cOHcK3336LyZMnIyws7Fquj4iIiOqJGgUtq1evRlZWluPn7du3Y/v27QCA4cOHA4AjiFm8eLHL8SNHjnQELcClieT8/PywevVq7Ny5E40bN8a0adMwfvz4mlSPiIiIrpbG1xUQq1HQsmbNGmGZqiBG1h133IE77rijJtUhIiKi60BdWP+IiIiISIhBCxEREakCgxYiIiJSBc6YJsla5n45ASIiIqodzLQQERGRKjDTIkkFI8GIiIjqNWZaiIiISBUYtBAREZEqMGghIiIiVWDQQkRERKrAoIWIiIhUgUELERERqQKHPEvikGciIiLfYqaFiIiIVIFBCxEREakCgxYiIiJSBfZpkaX4ugJERETXN2ZaiIiISBUYtBAREZEqMGghIiIiVWCfFkl+lYzviIio/tJYdb6ughD/EhMREZEqMGghIiIiVWDzkCQNhzwTERH5FDMtREREpArMtEjSKVwykYiIyJeYaSEiIiJVYNBCREREqsCghYiIiFSBQQsRERGpwlV3xK2oqMCqVauQlpaG9PR0lJaWYtasWRg1apRL2dOnT2PBggU4cuQI/Pz8cOutt2LatGkIDw93Kme327Fq1Sp8+eWXKCgoQIsWLZCYmIihQ4fW+MKIiIiofrnqoKW4uBjJycmIjo5G+/btceDAAbflcnJykJSUhJCQEEyePBlGoxGrVq3CqVOnsHjxYvj7+zvKLlmyBCtXrsQdd9yBTp06YceOHZg9ezY0Gg2GDBlS86vzIK3N5usqEBEReZHd1xUQuuqgJTIyEuvXr0dkZCSOHTuGhx9+2G25FStWoLKyEh9++CGio6MBALGxsXjyySexadMmJCQkAAByc3OxevVqjBkzBk888QQA4Pbbb0dSUhIWLlyIQYMGQaer++shEBERkXdddZ8WvV6PyMhIYblt27ahb9++joAFAHr27ImWLVsiNTXVsW3Hjh2wWq0YM2aMY5tGo8Gdd96J3NxcHD169GqrSERERPWQVzri5ubmorCwEB07dnTZFxsbi4yMDMfPGRkZCAwMRKtWrVzKVe0nIiIi8sqMuPn5+QDgNiMTGRmJkpISmM1m6PV65OfnIyIiAhqNxqUcAOTl5bl9jby8PMfrAEBmZqanqk9ERER1kFeCFpPJBABOnW2r6PV6Rxm9Xg+TySQs505KSgqSk5M9VGMiIiKq67wStBgMBgCAxWJx2Wc2m53KGAwGqXJ/lpCQgH79+jl+zszMxJw5c66t4kRERFRneSVoqWraubz5pkp+fj7CwsIcmZTIyEgcOHAAiqI4NRFVHRsVFeX2NaKioq64zxv0VtfAioiIiGqPVzriNmrUCOHh4Th+/LjLvvT0dLRv397xc/v27VFZWenSJyUtLc2xn4iIiMhr0/gPHDgQu3btQnZ2tmPb/v37cfbsWQwePNixrX///vDz88P69esd2xRFwYYNG9CoUSPceOON3qoiERERqUiNmofWrVuHsrIyRxPOzp07kZOTAwAYO3YsQkJCkJiYiB9//BGPP/44xo0bB6PRiM8++wxt27Z1mvK/cePGGD9+PD777DNYrVbExsbip59+wuHDh/HCCy9wYjkiIiICUMOgZfXq1cjKynL8vH37dmzfvh0AMHz4cISEhCA6OhrvvPMOFixYgMWLFzvWHpo6daqjP0uVKVOmIDQ0FCkpKdi8eTNatGiB559/HsOGDbuGSyMiIiJZWkXxdRWEahS0rFmzRqpcmzZt8OabbwrLabVaJCYmIjExsSbVISIiouuA1/q0EBEREXmSV4Y810cahfEdERGRL/EvMREREakCMy1EREQEfaVGXMjHmGkhIiIiVWCmRVKgxezrKhAREXmNGrIYaqgjERERETMtREREBPhbrb6ughAzLURERKQKzLRIq/vTGxMREdWUCmbxZ6aFiIiI1IFBCxEREakCm4eIiIgIdhs74hIRERF5BDMtkjTw93UViIiIvEZfWfdDAmZaiIiISBUYtBAREZEqMGghIiIiVaj7DVhERETkdQGWSl9XQYiZFiIiIlIFZlqIiIgIsPm6AmLMtBAREZEqMGghIiIiVWDQQkRERKrAoIWIiIhUgUELERERqQKDFiIiIlIFDnkmIiIi6G1mX1dBiJkWIiIiUgUGLURERKQKXm0eOnv2LJYuXYojR46gpKQE0dHRGDp0KCZOnIiAgABHuSNHjmDRokU4ceIEgoODMXjwYEyePBlBQUHerB4RERGpiNeCluzsbEyZMgUhISEYM2YMwsLCcPToUSxbtgzHjx/HvHnzAAAZGRl44okn0KpVK0ybNg05OTlYvXo1zp07hzfeeMNb1SMiIiKV8VrQ8u2336KsrAzvvfce2rRpAwBISEiA3W7Hli1bUFpaitDQUHzwwQcIDQ3FO++8g+DgYABA06ZN8frrr2PPnj3o3bu3t6pIREREKuK1Pi3l5eUAgIiICKftkZGR0Gq18PPzQ3l5Ofbt24fhw4c7AhYAGDFiBAIDA5Gamuqt6hEREZHKeC1o6d69OwDgtddeQ0ZGBrKzs7F161Zs2LABY8eORWBgIE6dOgWbzYaOHTs6Hevv74+YmBhkZGR4q3pERESkMl5rHurTpw8eeughrFixAjt37nRsv/feezF58mQAQH5+PoBL2Zc/i4yMxKFDh654/ry8PMfxAJCZmempqhMREVEd5NXRQ02bNkW3bt0wcOBAhIWF4eeff8aKFSvQsGFDjB07FiaTCcClzMqf6fV6mM1XnugmJSUFycnJ3qo6ERHRdUUNc6B4LWjZunUr3njjDaxcuRKNGzcGAAwcOBCKomDx4sUYOnQoDAYDAMBisbgcbzabodfrr3j+hIQE9OvXz/FzZmYm5syZ4+GrICIiorrCa0HL+vXrERMT4whYqvTr1w+bNm1CRkaGo1no8maeKvn5+YiKirri+aOioqrdT0RERFdB8XUFxLyWDSosLITdbnfZbrVaAQA2mw1t2rSBTqfD8ePHncpYLBZkZGSgffv23qoeERERqYzXgpaWLVsiIyMDZ8+eddq+detWaLVatGvXDiEhIejZsye+/fZbVFRUOMps2bIFRqMRgwcP9lb1iIiISGW81jw0ceJE7N69G9OmTcPf/vY3hIWFYdeuXdi9ezduv/12R9POpEmTMHXqVCQlJSEhIcExI26vXr3Qp08fb1WPiIiIVMZrQcvNN9+M9957Dx999BHWr1+PkpISNG3aFJMnT8bdd9/tKNexY0e89dZbWLRoEd59910EBQVh9OjRmDJlireqRkRERH+iUUGfFq8Oee7cubPU+kFdu3bFwoULvVkVIiIiUjk1DMsmIiIiYtBCRERE6sCghYiIiFSBQQsRERGpAoMWIiIiUgUGLURERKQKDFqIiIhIFbw6TwsRERH5XvllS+WoGTMtREREpArMtHhQjrlYWKaxvkEt1ISIiOh/8itsvq6CRzDTQkRERKrAoIWIiIhUgc1DHlRhNIoLsXmIiIjqpLq/zDMzLURERKQKzLR4kLGyUlyIiRYiIqIaYaaFiIiIVIFBCxEREakCgxYiIiJSBfZpISIiqucyskuEZTTQ1EJNrg0zLURERKQKzLR40MWKAmGZWLT2fkWIiIjqIWZaiIiISBUYtBAREZEqsHnIgwrzxas8o43360FERHQ5q8UkLmPjNP5EREREHsFMiwcVmyt8XQUiIiIXZ4vzfF0Fj2CmhYiIiFSBmRYPyreKJ+8hIiLypByzuD9lhclaCzXxPmZaiIiISBWYafGgYpvF11UgIiJycdFY6usqeITXg5bjx4/jo48+wpEjR2A2m9GsWTPccccdGDdunKPMkSNHsGjRIpw4cQLBwcEYPHgwJk+ejKCgIG9Xj4iIiFTCq0HLnj17MGvWLMTExOC+++5DYGAgzp8/j9zcXEeZjIwMPPHEE2jVqhWmTZuGnJwcrF69GufOncMbb7zhzep5nKaszNdVICIiqre8FrSUl5fj1VdfxS233IJXXnkFWq377jMffPABQkND8c477yA4OBgA0LRpU7z++uvYs2cPevfu7a0qEhERkYp4rSPu999/j4KCAkyePBlarRZGoxF2u92pTHl5Ofbt24fhw4c7AhYAGDFiBAIDA5Gamuqt6hEREZHKeC3Tsm/fPgQHByMvLw///Oc/cfbsWQQGBmL48OGYNm0aDAYDTp06BZvNho4dOzod6+/vj5iYGGRkZHirel6RZ/R1DYiIiFzlWW3CMoZaqMe18lrQcu7cOdhsNjz33HMYPXo0Hn74YRw8eBDr1q1DWVkZ/vWvfyE/Px8AEBkZ6XJ8ZGQkDh06dMXz5+XlOY4HgMzMTM9fBBEREdUZXgtajEYjKisr8de//hXTp08HAAwcOBAWiwUpKSl48MEHYTJdWsDJ39/f5Xi9Xg+z2XzF86ekpCA5Odkrda8pa4VdXIiIiKiWWSWm5LiuMy0Gw6XLHzJkiNP2oUOHIiUlBUePHkVAQAAAwGJxfTPNZjP0ev0Vz5+QkIB+/fo5fs7MzMScOXM8UXUiIiKqg7wWtERGRuKPP/5Aw4YNnbZHREQAAEpLS9G8eXMAcGrmqZKfn4+oqKgrnj8qKqra/T4hbjIkIiLyqIySImEZrf3KLRdq4rXRQ1Wday+fkwW41BcFAMLDw9GmTRvodDocP37cqYzFYkFGRgbat2/vreoRERGRyngtaBk8eDAA4JtvvnHa/s0330Cn06F79+4ICQlBz5498e2336KiosJRZsuWLTAajY5zqIXWYhX+IyIi8qS8siLhvxLYhf/UwGvNQx06dMBtt92GjRs3wmaz4eabb8bBgweRmpqKxMRER9POpEmTMHXqVCQlJSEhIcExI26vXr3Qp08fb1WPiIiIVMar0/g//fTTiI6OxqZNm/DTTz8hOjoa06ZNw4QJExxlOnbsiLfeeguLFi3Cu+++i6CgIIwePRpTpkzxZtW8wqgRZ1Jyy8VlGgVzHUsiIvIcs71+/F3x6lX4+fnhgQcewAMPPFBtua5du2LhwoXerAoRERGpnNf6tBARERF5Uv3IF9URFn+OeSYiotpVWqkRltFqTbVQE+9jpoWIiIhUgZkWDwoqZ6aFiIhqV7ZRnEXRQKmFmngfMy1ERESkCsy0eJKiExapMBrF5wkO9UBliIjoelBQIS5jlpiSQw2YaSEiIiJVYKbFg8x2cZvhxfxCYZlWUcy0EBERUF4hTqMYLeIMvs2u90R1fI6ZFiIiIlIFZlo8SFHEmZY9FX8Iy/TKDxKW0UVGSdWJiIjqN5PVIixj85foT6kCzLQQERGRKjBoISIiIlVg85AHKRIxYEHFRYkzdbn2yhAR0XXBYhNPLqfYxVNyqAEzLURERKQKzLR4knjNKhQp5cIyMhPQcVA0EVH9l1EinibDYpaYxt/EBROJiIiIag0zLbWs3FI/ol0iIqobSo3iNL+/TFOACjDTQkRERKrATIsHBdjFZWx2m7BMvrVUWIZ9WoiI6r/iSvGkpeWaSmGZ+vLHnpkWIiIiUoX6EnzVDRZxqqU0T9yn5XDjXGGZ1jL1ISKiOiu33CoscyLPLD6RRJZfqowKMNNCREREqsCghYiIiFSBzUO1zF4hfsvLJLKBRESkbnmWYmGZzMrz4hMp4s66evEYEFVgpoWIiIhUgZkWT5KIdo068QQ/py7me6I2KK+oEJYJDgryyGsREZHnWYwWYRlFZuI4ib9PasBMCxEREakCMy0epNjFkWxkeZmwjBklnqgOKorEw6uZaSEiqruMFnEnR7tJPJ45pFI8AZ0aMNNCREREqsBMiwf5WcVvp8Yq7mdSKZ5viIiIfMRT/QVzcsQTiZoUcZ8WrVR3FfZpuWqffPIJBgwYgPvuu89l35EjRzB16lQMGzYMd955J+bPn48KiQ8GERERXR9qLdOSk5ODFStWIDAw0GVfRkYGnnjiCbRq1QrTpk1DTk4OVq9ejXPnzuGNN96orSrWCpvdX1jGXCluw8wxi8f3V9aTNkwiIrWRycaUmcV9Uawl4n6QMjRK/egNUmtBy8KFC9G5c2fY7XYUFzv/wf3ggw8QGhqKd955B8HBwQCApk2b4vXXX8eePXvQu3fv2qomERER1VG1EnodPHgQ27ZtQ1JSksu+8vJy7Nu3D8OHD3cELAAwYsQIBAYGIjU1tTaqSERERHWc1zMtNpsN8+fPx+jRo9GuXTuX/adOnYLNZkPHjh2dtvv7+yMmJgYZGRnerqLH+Et0oC3VBAjLBBaLhyr/nntOWMZyQdw8FNmkgbAMh0UTUX2Qm18oLNMoMsIjr3WuNE9Y5rRJ3BFXhkZiuo36wutBy4YNG5CdnY23337b7f78/Euzv0ZGRrrsi4yMxKFDh9wel5eX5zgWADIzMz1QWyIiIqqrvBq0FBcXY9myZfj73/+O8PBwt2VMpktZBX9/1w6qer0eZrP7TqkpKSlITk72VFU9QqPVCcsoGonplsV9s5CZlS0s06BCLz4RERE5nDkv7vgaGeGZnhWVleJVDMut4iyK2WAUv1i5TI3qPq8GLR9++CFCQ0MxduzYK5YxGAwAAIvFdSy62WyGXu/+D29CQgL69evn+DkzMxNz5sy5xhoTERFRXeW1oOXs2bP46quvkJSUhLy8/7Xtmc1mWK1WXLx4EcHBwY5mocubeqrk5+cjKirK7fmjoqKuuK8uM0iUUST6xuSVioc8262uw8v/LL9QfB4Z7PdCRPQ/xRKzhJolMi2wiDMtGvFMGvCrlMjyq4DXgpa8vDzY7XbMnz8f8+fPd9l/1113Ydy4cXjwwQeh0+lw/PhxxMfHO/ZbLBZkZGRg8ODB3qoiERERqYjXgpY2bdpg7ty5Lts//PBDVFRU4LHHHkOzZs0QEhKCnj174ttvv8V9992HoP97Yt+yZQuMRmO9C1o0doloVyduUy00icsUZ4sj9Fib+DxKRYiwTIWx9nrlExH50tnTOcIyeVrx78S8CvEU/XZ/8WhSxXL9rP3itaAlPDwccXFxLts///xzAHDaN2nSJEydOhVJSUlISEhwzIjbq1cv9OnTx1tVJCIiIhWpEwsmduzYEW+99RYWLVqEd999F0FBQRg9ejSmTJni66pdFZmR8jabuFdLpa5UWMZ4sURYJtgoXg7g3MUsYZmG7ZoIy8j0jWGm5dqVF4rn3gmOEM8FRHQ9qpCYA6vIKJ5+P6tA/Ds6o1ycjTHbxKN+QhRxfUoh0amlnqj1oOWdd95xu71r165YuHBhLdeGiIiI1KJ+rKBERERE9V6daB66nhg14o5X4inqAKNJ3PEqS2KK6Myz4rg1wipuboiKbiQsY8sXT2uti1TfMHYicq82p82XYS8qEpYpLRc3/ZTniJvnESwuYjKJm4e0WvHveq3EmGc/W/2Y6p+ZFiIiIlIFZlpqmcbqmaFpOps4YxNgFnc6y1PETwwFEhMgRRQXCcvkQnyeJhKZlmMnTwvLdGrfWliGiK4vxRK/y9KLXCc6/bOyQnHn2HybRIf4SvFgiQq767p8f6bViOfo15nEfw/UgJkWIiIiUgVmWmpZgDhBAjPEEXp2kLgttGGRuA0zq1Qct1aYLgrLmP1uEJZBA3ERmTZwU4n4TfTU0OC61iZP6iPzGWookYW8nvt75ZjFUypUZIj7opjyxcOQbZXi35slliLxa5WIl1EpkPgL7OcnMQGdWbzKrkZmJV4V5DHqfg2JiIiIwExLnWSWWFbRJhFummR6i5vEY5UKrOJ21yNpmcIyTZuHi+sjIe9ikbBM+zYtPfJapC4yWQ3Ac9kxmRFxcuMBa4+nspAy51EKxf1DIHEvlAKJ80AvLJFXKPH5KBVfl71QnLGpbNZUWMaqE2c/7BJlgivF2RhFkcnG1P08Rt2vIRERERGYaamTZNoebRrx05vGLO7hXmYQZ2NyLogXVcwJF4+KMp7LFpYx1eJTac7Jk8IylmJxWzoi/+KB2pBI1snfhWV0EQ1roSaeV1EszmaGigeR1FtKkThDknFSPBKysqBIWOaPYvHvXz+deCSOXSv+XRYkMZqpVCfuvygzib+mnvy5Z6aFiIiIVIFBCxEREalC/cgXqYifohGWUSTWizbYxOlkm0RTS6hR3HlNXyZOzV6QmEfpwMHTwjLNyiQ6D2vEda4oEqdvC4vFQyRDxLXxGJmOjbX5Wp5aLbo+L9+QX1gkLKOJELfr2CSmlweaSZQRsxeK74fNLnHvteJvh8x3rOLoOfFLSUwomZ8j/t1qKRE3dfsZxc1DRp34T2eRViInoIibhzQSvxL9rOJCMpP4i99B32OmhYiIiFSBmZY6yCoRE1slOuJa/MXD4Kwa8RO3+FkAKCoWdxbLNoqHCUZKDBMshUyn3yxhGVNJgbBMcFDdevaQySBV2MX3IkgrnvjKU06ePiss00Liqd0oMalgUUkuAsPEmbi6NpmbUlLkkfP8vP+wsMyNEp2VS387JixjueEmYRlbibhzrK1A/DuoME98nlJ/cXaoAuLMT4lEFsUmMXzYLDHlhF6ijEYrXnlRA4kFHOsJZlqIiIhIFZhpqW0SDYs6u7hQmFH81FmhFZ8nxC7OJNgVcTtw0xLx031hpXhg3tk/xJPUVQaJn6gKKsVDle0S7ckFDcV1biEsITnpWYn4GaLwvPheRIQFSdRIrDaXMMgvlBhaLqHk/DmYisX3zIZoYZnazLRc/OO0sIwmLNwjr2UvFmcYy09fEJaxhXcUlin4Q5xlsxlaC8uUFogzJBf8xRnY4CLxnzyNvzhTB4j7FMr8cbVrxL9/Q8rFU1dIdVipJ5hpISIiIlVgpsWDZHo/BElMia/VSDwpmsRZAqufuEYaiQUci2zi/g9WP/HTgNYk0XadJe6LYgxvJCxz/EKGsExAgDhL0FJiWfjU1V8JywRL3NOwmM7CMpZycVt6eaa475BRJ+7XENhCom1fYmSQqUxihES5eOJBu8QottLf0mBsEFptGSUwEAVh4s+09qA466fYxHWSGT2kKRK/j9lH0oVl0qLEWYI2GnH/oQqbuO+UcjFXWKYoX1ymVBHfC12FOBOXLzHdvVER9wXU6sTf1WCZ32USGXOLRVznUKs4g2SpWytFeBUzLURERKQKzLTUOs+MRvGziUNrP4k+G6EmcapF4y9ewFGxip+WTCbxE4NiEWeidBbxE0yxSfy0pJF4yjHmSSyId4P4yTW3sFxYpujQPmGZpk17CMtkHxX3R9A1En8OG4c2EJbJt4v7GpjLxZ/DAIkJcUwV4vtltQCKqfrPh6Kxo1Ii+6PLFmc2CoPFn7OCiweFZQJLxJmm8IbNhWUsBeI+T0Xl4uzHmTyJTEuZOJt5Jk+cOQ23iX+/VBaK62xrLs5oVfpJ9EWRGNFjDBY/79utMuMuJf4eSGRsNFqJrLpEbdSAmRYiIiJSBQYtREREpApsHqplnlppU1MpHvar85OYOK5SHLf6SXRwM0l0cCvRiK9dqRCfJ6JU3PxRZhNPttQ4Styht7xQnFT1v0FYBBcLxR02g0zi1HWkv/g8J86K0/axjcRNDWXHxOcps4mHz2orxUOwj58Vdx4OyhHfdxkWkw3FOeLmD9tFcZOeySauU2GguNnCVCFupjVnSyxN4S/uEH/43HlhGZ3ElAq2CvGkZ8ZKcZ0r/cVlIs0yPU3F31WzTlxGKzHxoE2i6d0iMQQ7UOK+15+GHc9gpoWIiIhUgZmWOshTcXWAVZwh8Zd4qjBLLMallci0hEkMoywWdKIEAH+JpxybxHWVl0osOmkWlyk7dlpYxmAV31W/SokJ+rLFmY3iMnHn2GNZ4sxGjFn8WiV+ReIyF8T10enFn5/cIvF5rAGK8Lea2azgZIl4CG1guTiT4G8WL/ZXFC3xHcuTmHzQJu4UbtZLZEgkshaa8nxhmRL9KWGZNK04y9bALK6zn8RvRau/eDCARhFnouwS/We1EqsYRpRKTAAq0clWqxH/3tSbxZ9VSCx/ogbMtBAREZEqMNNSB0kE37BB/LTkLzHkTiMx/7Mi85Sjl8iQ6CQuzCoeQmqXmELbHCh+wiuwizMJoUXisbjFNnHfB4O/OOuls4if/nMLfxeWKfCXWKTut93i80j0L2rYUny/lHLxE3CQRvykWFosfuKMKs6BPbD61zPYgEJD9f2ZbGYgUnTLFCsMEGfHKiQWE80tE090aDeIz+Mv8d3IKRS/j+EGiftqlRj2K+56h3JFoj+PVfxZVCQywjqJZUtsweLvqsQ6s9BJpGxCJSapC5C49nLxqPF6g5kWIiIiUgVmWlTKZpPoryIxAZ1VJq0jkWnRaMVPZiEWcTt5oSZcWEaxiifQsgaJr90sMSGTFRJL0BvF9TFUiJ+SJebYgkWi30ulRB+Bcpv4eaWxRN+YAokRakGF4knqTFHi9vZCo/i1Au0ABBMm2rT+sFiqz47ZbYDRUP2TskYBtBJZC8UgsZCfxCCScr34s+hnlMl4is9TppVYLNIqvh9aizjbYII4K6rTijNIekX83dApEt9niT4tMhlqjSL+/SLz29cuUefracVErwUt6enp2Lx5Mw4cOICsrCyEhYWhS5cumDRpElq2bOlU9vTp01iwYAGOHDkCPz8/3HrrrZg2bRrCw8O9VT0iIiJSGa8FLZ9++imOHDmCwYMHo127dsjPz8f69esxadIkvP/++2jbti0AICcnB0lJSQgJCcHkyZNhNBqxatUqnDp1CosXL4a/v/gJvt6RiPSDZSJ9u8RU9hIBuj8knqgkKm3XiJ/ubZHij2RQkcRcC3ZxnQ0W8VNygcRToL9E1qJUYgmDUIv4unQ28egHPz/xa5UpEnP4SCyXUJQjPk8LRXxPjfkSI8LKxa9VrvWDIugDYFcUZIdUXyfFZoFV8PHQAjAp4s+QxSzOAEAvsSheqcRSEHpx3yCDpUhYRqsTn0cTWP3ClABgDhJ/NwJLxe+hSSd+fzRWiUVbhSXkRm/6QXztiiKxYKKHBvQEij6s9YjXgpYJEybgxRdfdAo64uPj8cADD2DlypV44YUXAAArVqxAZWUlPvzwQ0RHRwMAYmNj8eSTT2LTpk1ISEjwVhWJiIhIRbzWEfemm25yyZK0bNkSrVu3Rmbm/5Z837ZtG/r27esIWACgZ8+eaNmyJVJTU71VPSIiIlKZWu2IqygKCgsL0bp1awBAbm4uCgsL0bFjR5eysbGx+OWXX2qzenWHxIzVct1nZaa+lnktz3TyUvzE9dHbxSlwSKRd7RIdg212cc9XmWGLmiBxQtlgFF+XxSbusGrUiyeFM0oMG7dIdMAOs4o7P5ps4mHaiiZMWEYrMZGdRD9UWBUt7BLlAk2iTuGKcEJArQYwW8XNh6EmcfOQUSceG1wi0ZYbYBf36K0M0gvLBNnF7RZ2q3g6AINBfO8DCsV1tko0eQbaxJ9Xu17mOy+xGr3GM1OAcvju1avVoOW7775Dbm4uHnzwQQBAfv6lXxyRka5rc0RGRqKkpARmsxl6veuXLC8vz3E8AKfsDREREdU/tRa0ZGZm4u2330aXLl0wcuRIAIDJdKnzkLvOtlWBislkchu0pKSkIDk52XsVrgdsOnGWQGIkIfQ2mSd3id7DOnGmRabOVn/xk2KJVmIhSK04+6GRmRpcYuin3SB+KhV3IwTM/hIdVu3i90dnlsj8SHSu1vuJ3x+7SfxatiCJYexKM3EZU6nUZIgmU/VP3HZFQZC9+jrpNECFxDgBvUH8WbRYxPcsP0J8nvAicZqpSKbzvUSS1iAxnFmRmJpBkVhItShCZtivxDQHEllju8R5ZAYe6GRSfh4aqSyTsZF5B9WgVoKW/Px8zJw5E8HBwXjllVeg+78/XgbDpV8cFotretD8f2u+VJX5s4SEBPTr18/xc2ZmJubMmePpqhMREVEd4fWgpaysDDNmzEBZWRkWLFiAqKj/TVpU1Sx0eTNPlfz8fISFhbnNsgBAVFSU07nIx7QSw/t0ElP0a8VPOTqJJQOsweJ26UqJp1KjTtwGHq0VZ1qyA5sIyzQvES+aFyCx4JvOX5zVsUtMrFcpseCmVaJtvyBMYqi7VZxpMAaLh3U2ttggHrSqAQTLBmg1Ckw2weR6ClAp8Ygr80tW5nNvtoo/01a7uEIGiSn6TRLTJQQZxZ9Xf21DYRmLRtynRSfRhcQuMf2+TF8urcRU/0otdkZRJHIkdsv10zvGq0GLyWTCs88+i7Nnz+Ktt95ydMCt0qhRI4SHh+P48eMux6anp6N9+/berB4RERGpiNeCFpvNhpdeeglHjx7Fq6++ihtvvNFtuYEDB2Lz5s3Izs52DHvev38/zp49iwkTJnirevR/LH4S/RYkFuyySo3okViITKKPQL5G/MRpMkhMvifxxOlnk5kgSqLS/uInIaNBYiI7iZXaAi3ibEy5xBNweYi4w1NUpfj9KZBocQ+ARBZB5teVv0HYTUADDYyhgs+iAihm8ev5ibviIE8vHkETUSb+bghWJwAASCSsoPEXZxKCjOIyFRIP9zqJvh8WiQno7BKT5kHi/ZEZTykx+z40NoklQDw1cxw58VrQ8t5772Hnzp3o27cvSktL8e233zrtHz58OAAgMTERP/74Ix5//HGMGzcORqMRn332Gdq2bYtRo0Z5q3pERESkMl4LWk6ePAkA2LVrF3bt2uWyvypoiY6OxjvvvIMFCxZg8eLFjrWHpk6desX+LCRL/ASjkWhL91i/c4n2domkDiTWn4NOYvkHf4jLmHUSj5MS9dEEiEfZWCUWQyyX6Gug10rMeaIX1ydIYkCYTeJm2CVG8wTYJEbPSJynIsRDbfsawBgqnjcnUGIhTJNEvcv0EtOwayVGamkkvqsSo++USvEXsVCmS6HE0h1W8WVJLW0iQ2ZkmdRQHIn6+FslskwSL6WRWAbjeuK1d+Odd96RLtumTRu8+eab3qoKERER1QPXT5djIiIiUjXmneoxT03jL0ViDKBWK/64Kf7ijp02i8THVifR6VdiZidTsDjFW2nzzNfI7C/R8VMjHoJtk2hpCJJYnbgiRPz58SuTabIQfzZMEkM2gyTuaaVW3JkZAGwBMol58fVrAsTT78s0j0nMLQe7RJ1NFnGnX42/uEnLD+IyEn2wYZeYXM4sMZOdAvEb5CfxfbZJNXVLdAyWGINdi799ryvMtBAREZEqMNNCQjKLD8r0TDNKZFqsEkOwjTIdCSHOJJgDxE/ldolviCLxSFUZIR6q7F8qMZmbTlwhU5h4ODMqxRkbQDzkuUyReHIVP/zDaA0VF5JYMFAjsXwDAOgkpo43SUyYCJnPtMQ985OZWl+iE7Y5UGaiNnF9jBITOGokMkgaiY7sekViUVJhCUkSE1xK9awnn2GmhYiIiFSBmRaqRRITMukkxj/qxU+TMk9mlYESi7lJJBJsUpkoiWGvEt0xdBJT62slUj+mYJn2f/F1BcoMmZfIWFRITMFuMIhfyyKzSB2A0kBxpslfYkFAm8TEcQiQWChUnIgDDBLfDYmshZ9N/KxaHiiRqdRKZCQkMkiBNvH3WaZfkCLTB0nitWSyMYpENsYucS/Y8+XqMdNCREREqsBMCwlVBkgsQS9xnsJI8dObRmIef41Ez32NxGgDO8SPtxq9uD5loeKRFpDISFjDJPJDxeLzlMsMoJF42tZLZC3sEk//MhOeScw7CLNE5kcv2R/BrpMYjSIxDbvpCqvQO5G4rWXB4voE2sVZArPESC25b6uY3V987xWJz5Cn+qsoMs/gMpNFStBIjBiU6DpENcBMCxEREakCY0HyEIm5KPzET6V+VvHTpL/E05tZYlSHTHOyRaKMn9SjosxIC/GLlYSJnzPMfuLzSEzVAZNO4oncKpFp8BPfU6tE/wg/q0Q/HMkuAjIL+dkl7qtdYtiPzEKhNonvhl4ii2KTWEzULLHEhVZiPhMFEnPUyHwNJdbuUCSyQ5ra7B4i8Vp2mYSWx4ZFXT+YaSEiIiJVYNBCREREqsDmIfIIjcRHSZFa09QzZJYwsGvEuVm7RJrcKtEZ1XNPB57pRGkxiM+jlRjKrZVI7dsl7rtGLzFJm8S90Eg0WQAAbBLDmSU6hXusRUJmEkOpti+Zjsi196zqL9HcKzPEmK0oVIWZFiIiIlIFZlqo1mglhv0qEh0kzRJTtWsknsol1uiTIrNeosxLyUyLZpHo9avI1Ec8Q78kiQkD9eJ7atHIZKvEvYeNEtPYV51NRGqCwmCJLJJN5kzi+lh0tTfdvV1mVkWZF5OaNr9+YnbIO5hpISIiIlVgpoVqjSIzsZNEXwOpWFvitSw2mUUD61Zcb5eYNE8n0Y9App+JDIvEApdmTe29z7I9fqSegiUyelqpLIrMtPASWRSJIfE6m0SGxENdY+T6qF2/mRYZMrMKkLO69RuZiIiI6AqYaSGqjsRTqUbi6dYqkUGSawOXWxBQ/Fqe6dNhlziPp+bYskqMePLkc5jVU78dJZKHMlmU2iSVHbuO+6uQ7zDTQkRERKrATAvVLbU5Z4PHnhRlYn+ZvjqeIZOL0WjFfWNk+lmYJBbTlJkzR/FYBklSfc0SeOq66uv7Q6rHTAsRERGpAoMWIiIiUgU2DxHVBol0u6dGP8p0soXU0FiJpjqJVi+ZZiaZRi2LVtw5tPYn9JJoRqlbfWyJVI2ZFiIiIlIFZlqIrpUan6RlJvqTOo+4iExHXKkT2WpvwU0iqpuYaSEiIiJVYKaFiOoPDtUlqteYaSEiIiJVYKaFiNSBWRSi616dCFrMZjOWLl2Kb7/9FqWlpWjXrh0mTZqEXr16+bpqREREVEfUieahefPmYc2aNRg2bBgee+wxaLVazJgxA4cPH/Z11YiIiKiO8HnQkpaWhq1bt+Lhhx/Go48+ioSEBPz3v/9FkyZN8P777/u6ekRERFRH+Dxo2bZtG3Q6HRISEhzbDAYDRo8ejaNHjyI7O9uHtSMiIqK6wudBS0ZGBlq0aIHg4GCn7bGxsQCAkydP+qJaREREVMf4vCNufn4+IiMjXbZXbcvLy3N7XF5eHvLz8x0/VwU3mZmZXqglUFFa5JXzEhERqcXx48e9du5WrVohICCg2jI+D1pMJhP8/V2HMur1esd+d1JSUpCcnOyyfc6cOR6tHxEREV0yee92r517yZIl6NixY7VlfB60GAwGWCyua4qYzWbHfncSEhLQr18/x8+lpaXIzMxEhw4dHAGPp2RmZmLOnDl4/vnn0apVK4+euy6o79cH1P9r5PWpX32/xvp+fUD9v0ZvX5/MOX0etERGRiI3N9dle1XTT1RUlNvjoqKiXPb17NnT8xW8TKtWrYRRoJrV9+sD6v818vrUr75fY32/PqD+X6Mvr8/nHXHbt2+Pc+fOoby83Gl7WlqaYz8RERGRz4OWQYMGwWazISUlxbHNbDZj48aN6Ny5M6Kjo31YOyIiIqorfN481LlzZwwePBgffPABioqK0Lx5c2zevBlZWVmYOXOmr6sH4FIT1v333+92lFN9UN+vD6j/18jrU7/6fo31/fqA+n+NdeH6NIqiKD579f9jMpkcaw+VlZWhbdu2mDRpEnr37u3rqhEREVEdUSeCFiIiIiIRn/dpISIiIpLBoIWIiIhUgUELERERqYLPRw/VRfv378d3332Hw4cPIzc3Fw0bNkSPHj3w0EMPXXGyuz/Lzc3FggULsHfvXtjtdnTv3h1JSUlo1qyZl2svlpeXh7Vr1yI9PR3Hjh2D0WjE/Pnz0b17d6njly1b5nYJBb1ej++//97Dtb1613p9QN2+f1VKS0uxaNEibN++HSaTCbGxsXj00UelJn169dVXsXnzZpftN9xwA1asWOGN6rplNpsdnfBLS0vRrl07TJo0Cb169RIeq4Z7BNT8Guv696xKRUUFVq1ahbS0NKSnp6O0tBSzZs3CqFGjpI6/ls9xbbiW69u0aRPmzZvndt/69evrxCij9PR0bN68GQcOHEBWVhbCwsLQpUsXTJo0CS1bthQeX9v3j0GLG4sWLUJJSQkGDRqEli1b4sKFC/jiiy/w888/Y+nSpcIPWkVFBaZPn47y8nIkJibCz88Pa9asQVJSEpYtW4YGDRrU0pW4d/bsWXz66ado0aIF2rZti6NHj9boPE899RQCAwMdP2u1dSNxd63XV9fvHwDY7XbMnDkTv//+OyZOnIgGDRrgyy+/xPTp07FkyRKpXzZ6vR4zZsxw2vbn1da9bd68efjxxx8xfvx4tGjRAps2bcKMGTMwf/58dO3a9YrHqeEeVanpNVapq9+zKsXFxUhOTkZ0dDTat2+PAwcOSB/ric+xt13L9VV56KGH0LRpU6dtISEhnqriNfn0009x5MgRDB48GO3atUN+fj7Wr1+PSZMm4f3330fbtm2veKxP7p9CLg4cOKDYbDaXbXFxccoHH3wgPH7lypVKXFyckpaW5th2+vRpZdCgQcrixYs9Xt+rVV5erhQXFyuKoiipqalKXFyc8uuvv0ofv3TpUiUuLk4pLCz0Ug2vzbVeX12/f4qiKFu3blXi4uKU1NRUx7bCwkJl1KhRyssvvyw8fu7cucrw4cO9WEOxo0ePKnFxccqnn37q2FZZWalMnDhR+cc//lHtsWq4R4pybddY179nVUwmk5KXl6coiqKkp6crcXFxysaNG6WOvdbPcW24luvbuHGjEhcXp6Snp3uzitfk8OHDitlsdtp25swZZciQIcrs2bOrPdYX969uhex1xM033+zyNHPzzTcjLCwMmZmZwuN//PFHdOrUCbGxsY5trVq1Qo8ePZCamurx+l6toKAghIWFeeRc5eXlUOrYqPlrvb66fv8AYNu2bWjYsCEGDBjg2BYeHo7Bgwdjx44djgVHRWw2m8sSGrVl27Zt0Ol0SEhIcGwzGAwYPXo0jh49iuzs7Cseq4Z7BFzbNV6uLn7Pquj1+ho3c3jqc+xN13J9l6uoqIDNZvNAjTzrpptugr+/v9O2li1bonXr1sK/d764fwxaJFVUVMBoNArTzna7HadOnUKnTp1c9sXGxuL8+fOoqKjwVjVr1V133YVRo0Zh5MiReOWVV1BQUODrKl0ztdy/EydOICYmxiW4jo2NRWVlJc6ePSs8R2VlJUaNGoVRo0Zh9OjReOutt2r12jIyMtCiRQuXJqmqQOTkyZNuj1PLPQJqfo2Xq4/fsyqe+ByrwfTp0zFy5EgMHz4czz77bJ2/LkVRUFhYKPx754v7xz4tkj7//HNYLBbEx8dXW66kpARms9ltZF61LS8vDzfccINX6lkbQkND8be//Q1dunSBv78/Dh8+jPXr1yM9PR1Lliyp9X4RnqSW+1dQUIBu3bq5bK+qY35+Ptq1a3fF4yMjI3H33XejQ4cOUBQFu3fvxpdffonff/8d8+fPh5+f93815OfnC99nd9Ryj4CaXyNQv79nVa71c1zXGQwGjBo1Ct27d0dwcDCOHz+ONWvW4NFHH8WHH35YZ9fW++6775Cbm4sHH3yw2nK+uH/1Pmix2+2wWCxSZfV6PTQajcv2gwcPIjk5GYMHD8Zf/vKXas9hMpkAwCXdVnX+y8t4gieu72qNHz/e6edBgwYhNjYWr7zyCtavX4/ExMRrfo0qtX19tX3/gJpdo8lkctSnJnWcMmWK089DhgxBy5YtsWTJEmzbtg1DhgyRrH3NmUymGr3PvrhHNVXTawRq93vmK9f6Oa7r4uPjnR504+Li0Lt3byQlJWH58uV4+umnfVg79zIzM/H222+jS5cuGDlyZLVlfXH/6n3QcujQIUyfPl2q7PLly9GqVSunbZmZmXj++efRtm1bqQUcDQYDALj9I1TVvldVxhOu9fo8ZdiwYXjvvfewf/9+j/4yre3rq+37B9TsGg0Gg9v24mup44QJE7B06VLs27evVoIWg8FQo/fZF/eopmp6jVfire+Zr3jjc1zXde3aFZ07d8b+/ft9XRUX+fn5mDlzJoKDg/HKK69Ap9NVW94X96/eBy033HADZs2aJVX2z2nc7OxsPPXUUwgODsZrr72GoKAg4TnCwsKg1+uRn5/vsq9qm+xcLzKu5fo8rXHjxigpKfHoOWv7+mr7/gE1u8aGDRtWW8eavBcGgwFhYWEev4dXEhkZidzcXJftovfZF/eopmp6jdXxxvfMV7zxOVaDxo0b48yZM76uhpOysjLMmDEDZWVlWLBggdRn0xf3r94HLZGRkdKTHF2uuLgYTz31FCwWC95++23pXy5arRZt27bFsWPHXPalpaWhWbNmUsGPrJpen6cpioKsrCzExMR49Ly1fX21ff+Aml1jTEwMDh8+DLvd7tQJLj09HQEBATWaH6GiogLFxcUIDw+/6mNromrOi/Lycqf+GWlpaY797vjiHtVUTa/xSrz1PfMVb3yO1eDChQu19j2TYTKZHB2E33rrLbRu3VrqOF/cP44ecsNoNGLGjBnIy8vD66+/Xu0bn52d7TIsbODAgTh27JjTL9UzZ87gwIEDGDRokLeq7RXurq+oqMil3JdffomioiL06dOnlmrmGWq9fwMHDkRBQQG2b9/u2FZUVITU1FT07dvXqZ35/PnzOH/+vONnk8nkdnTNxx9/DEVRau0eDho0CDabDSkpKY5tZrMZGzduROfOnR2dFNV6j4Bru8b69D0DLnU6zszMhNVqdWy7ms9xXefu+tzdw59//hnHjx9H7969a7F2V2az2fDSSy/h6NGjePnll3HjjTe6LVdX7l+9z7TUxCuvvIL09HTcdtttyMzMdPplEhgYiLi4OMfPc+fOxcGDB51u2pgxY/D1119j5syZmDhxInQ6HdasWYOIiAhMnDixVq/lSj7++GMAwOnTpwEAW7ZsweHDhwEA9913n6Ocu+sbP3484uPj0bZtW+j1ehw5cgRbt25FTEyM03wUvnQt16eG+zdo0CCsXbsW8+bNw+nTpx0zUdrtdpce/0888QQAYM2aNQAu9fh/6KGHMHToUMcImz179uCXX35Bnz590L9//1q5hs6dO2Pw4MH44IMPUFRUhObNm2Pz5s3Iyspy6j+m1nsEXNs1quF7VmXdunUoKytzNAvs3LkTOTk5AICxY8ciJCQEH3zwATZv3ozVq1c7Zoe9ms+xL9X0+h555BF06NABHTt2RHBwME6cOIGNGzeicePGuPfee312PZd77733sHPnTvTt2xelpaX49ttvnfYPHz4cAOrM/WPQ4kbV3AkbN27Exo0bnfY1adLEKWhxJygoCPPnz8eCBQvwySefONZFmTZtWp1JCS5dutTp58uv8/I/6u4MGzYMv/32G7Zt2waz2Yzo6Gjcfffd+Pvf/46AgACv1PdqXcv1qeH+6XQ6vP7661i4cCHWrVsHk8mETp06YdasWcKhviEhIejbty/27t2LzZs3w263o3nz5nj44YcxceLEWp0m/rnnnkN0dDS2bNmCsrIytG3bFq+99hpuvvnmao9Twz2qUtNrVMP3rMrq1auRlZXl+Hn79u2OAGz48OFXnLL+Wj7Htamm1xcfH49ffvkFe/fuRWVlJSIjI3HHHXfg/vvvR8OGDWul7iJVf+927dqFXbt2ueyvClrc8cX90yh1dZpFIiIiosuwTwsRERGpAoMWIiIiUgUGLURERKQKDFqIiIhIFRi0EBERkSowaCEiIiJVYNBCREREqsCghYiIiFSBQQtRHbJs2TIMGDAABw4c8HVVvGLAgAF47LHHfF0NIlIpTuNPqnXx4kXcddddTtv8/PwQERGBbt264f/9v/+Hdu3a+ah2dZOiKPjuu+/wzTff4Pfff0dFRQVCQ0MRFRWFLl26ID4+3ml6+VdffdVlvRGiAQMG4Oabb8Y777zj66rQdYZBC6le8+bNMWzYMACXVuhOS0vD999/j+3bt+Ptt9/GTTfd5OMa1h3//ve/sWnTJoSGhqJv376IioqCyWTC77//jm+++Qbl5eXCNXGIiHyFQQupXvPmzV1WFF2yZAmWL1+OJUuW8Gnw/xw6dAibNm1CTEwM3nnnHQQHBzvtLy0tdayKTURUFzFooXpp7NixWL58OY4dO+bYdvz4caxYsQLp6ekoLCxEUFAQmjZtiv79++Pvf/+70/GFhYVYsWIFdu3ahZycHAQFBaFbt2548MEH0bZtW6ey1aXKJ0yYAABYs2aN0/bs7GwsWrQIe/bsgdVqRYcOHfDQQw9Ve00bN27Ehg0bHIFF69atceedd2LUqFFS78nRo0cBACNGjHAJWAAgNDTUKSs1YcIEx8q2lzfD/flajxw5guXLl+Po0aMwmUxo0qQJ4uPjcc8990itRqwoChYsWIDPP/8cQ4cOxXPPPQc/Pz8oioKNGzfim2++walTp2Cz2RzXPHr0aKdzmEwmrF+/Hlu2bEFWVhZsNhvCw8MRGxuLe++9F+3bt6+2DlVNjSNHjsTdd9+N999/H7/99htsNhu6dOmCKVOmoGPHjk7HHD9+HBs3bsTBgweRk5MDi8XiyPpNnDgRfn7Ov16rPgtLly7Fhx9+iB07dqCgoAAzZszAqFGjany+ZcuWYfHixfjpp59QUVGBDh06ICkpCR07dkReXh7ef/997N27FxUVFejatSueeOIJtGzZ0uU9uHDhApYvX469e/eisLAQoaGh6N27Nx588EE0adIEAHDgwAFMnz4dAHDw4EEMGDDAcfysWbOcPos//fQT1q1bhxMnTsBsNqN58+YYOXIkJkyYAJ1O5yi3adMmzJs3D7NmzUJYWBhWrlyJ33//HQ0aNHD53hAxaKF6TaPRAAAyMjIwdepUaLVa9O/fH9HR0SgrK8Pp06fx1VdfOQUt58+fx2OPPYbc3Fz06tUL/fv3R1FREbZt24a9e/fi7bffRufOnWtcp7y8PDz66KPIzc1F79690aFDB2RmZuKpp55C9+7d3R4zf/58rFu3Do0aNcJtt90GANi+fTvmzZuHEydOOP6QVCcsLAwAcO7cOal6jhs3Dps3b8bJkycxbtw4hISEAIBT35bU1FTMnj0b/v7+iI+PR3h4OPbu3Yvk5GTs2bMH8+fPh8FguOJrWK1WvPrqq/j+++8xfvx4TJs2DRqNBoqi4JVXXsH333+PFi1aYOjQofD398fevXvx2muv4fTp05g6darjPK+++ipSU1PRrl07jBo1Cv7+/sjNzcWvv/6KXr16CYOWKhcuXMDUqVMRExODv/71r8jOzkZqaiqSkpLw3//+1+m+f/XVV9i1axe6deuGW265BZWVlTh48CA++OADHDt2DHPmzHE5v9lsxuOPPw6j0Yh+/fpBp9MhIiKixuezWCx48sknYTabER8fj8LCQqSmpuLJJ5/EwoUL8fTTTyMyMhLDhw/HuXPnsGvXLsycORPLly93ChzS0tLw9NNPw2g0om/fvmjRogWysrLw3XffYffu3Xj//ffRrFkzNGnSBPfffz+Sk5PRpEkTjBw50nGOy9/jxYsXY+XKlWjUqBEGDBiAkJAQHD58GO+//z7S09Mxe/Zsl2tJTU3F3r170bdvX9x5552oqKiQumd0nVGIVOrChQtKXFyc8tRTT7nsW7p0qRIXF6c89thjiqIoyrvvvqvExcUp27dvdylbVFTk9PMjjzyiDBo0SNm9e7fT9jNnzigjRoxQ7rvvPqftcXFxSlJSkts6jh8/Xhk/frzTtrlz5ypxcXHKxx9/7LR9w4YNSlxcnBIXF6f8+uuvju0HDhxQ4uLilMTERKW0tNSxvaSkRLnnnnuUuLg45eDBg25f/3LZ2dnKyJEjlQEDBigvv/yykpqaqly8eLHaY6rqeuHCBZd9ZWVlyqhRo5QhQ4YoJ0+edGy32WzKv/71LyUuLk5JTk52Ouby96q8vFx58sknlbi4OGX58uVO5VJSUpS4uDhl3rx5isVicWw3m83KzJkzlbi4OOXYsWOKoihKaWmpMmDAAGXSpEmK1Wp1Oo/ValVKSkqE703VZykuLk5ZtGiR077du3crcXFxLvc9KyvL5fXsdrsyb948JS4uTjl8+LDTvvHjxzs+r5WVlS51qOn5XnzxRaf3aOXKlUpcXJwyatQo5d1331Xsdrtj35tvvqnExcUpP/74o2ObxWJRxo8fr4wYMUI5fvy402scOnRIGTRokDJz5kyn7dV95vfs2eO4zoqKCqdr+c9//qPExcUpqampju0bN25U4uLilIEDByp79+51e06iKhzyTKp3/vx5LFu2DMuWLcPChQsxbdo0JCcnQ6/XY/LkyU5l3T31N2jQwPH/J06cwG+//YYRI0agd+/eTuVatmyJ22+/HadOncKpU6dqVFeLxYIffvgBERERLiOfbr/9drRo0cLlmM2bNwMAHnjgAUe2A7jUnHP//fcDuJRiF2ncuDFeeeUVNG7cGN9//z1efPFFTJgwAQkJCfjXv/6F/fv3X9W17NixA2VlZbjtttucRmlptVo88sgj0Ol0V6xXUVERHn/8cfz666949tlnkZiY6LT/iy++QGBgIJ544gmnZhF/f3/HPf3+++8BwJGZ0ev10Gqdf6XpdDqEhoZKX1NISAjuvfdep229e/fGX/7yF5w6dQrHjx93bI+OjnbKVlTVZcyYMQCAffv2uX2NRx55xO3nsKbne/TRR53eoyFDhgAAbDYbJk2a5Mg2Xr7v999/d2zbtWsXsrKycPfdd6NDhw5O5+7atSv69euHX375BeXl5W5f/8+++OILAMAzzzyDwMBAp2uZMmUKNBoNtm7d6nJcv3790LNnT6nXoOsXm4dI9c6fP4/k5GQA/xvyPHToUKchz/Hx8Vi7di2ef/55xMfHo2fPnujWrRsaNWrkdK60tDQAl/q0LFu2zOW1zpw54/jvn/u2yDhz5gzMZjN69Ojh8odLq9Xipptucmm+ycjIAAC3TUdV206ePCn1+j179sRnn32GgwcP4tChQzh+/DiOHDmC1NRUpKamIjExEQ8//LDUuarq5W60UXR0NJo1a4azZ8+ioqICQUFBjn0FBQWYOnUqcnJyMGfOHPTr18/p2MrKSpw6dQpRUVFYuXKly7ltNhuA/92L4OBg3HLLLfjll18wadIkDBo0CDfffDNiY2Nd+oGIxMTEONW1SteuXbF//35kZGQ4+rZYLBZ88cUX2Lp1K86cOQOj0QhFURzH5OXluZxHr9df8XNTk/OFhoYiOjraaVtkZCQAoEWLFi59iqr2XX6uqr5OZ86ccfuZLygogN1ux9mzZ9GpUye3db9cWloaAgMD8c0337jdbzAYHPfucrGxscJzEzFoIdXr3bs3/vOf/1RbpnPnzpg/fz5WrFiB77//Hhs3bgQAdOrUCf/4xz/Qo0cPAEBJSQkA4Oeff8bPP/98xfMZjcYa1bXqabWqH8OfudteUVEBrVaL8PBwl30NGzaERqORfgoGLgV2PXv2dDzVWq1WbN68GW+++SZWrFiBgQMHunQ6re5aGjZs6HZ/ZGQkzp49i/Lycpegpby8HM2bN3fbN6i0tBSKoiA3N9cRjLpTWVnp+P/Zs2dj+fLl+P7777FkyRIAl4KZUaNG4eGHH5bqEFzdtVRtLysrc2x74YUXsGvXLrRs2RLx8fGIiIiATqdDWVkZ1q5dC4vF4nKeiIgIp8zH5WpyPncdqqsCNXf7qjI5VqvVsa20tBQA8N1337mtV5XL3+/qlJSUwGazVXvv3H1/rvTeE12OQQtdN7p164Zu3brBZDIhLS0NO3fuxJdffomZM2fi448/RrNmzRy/6KdPn46xY8dKnVej0Tie/v+srKzMqUmn6vyFhYVuy7vbHhQUBLvdjqKiIpegprCwEIqiuP0DJcvPzw+33347Dh06hC1btuDAgQNSQUvVaxYUFLjdX7X9z3Vr3749Ro4ciddffx3Tp0/Hf//7X6c/WFXlO3bs6AhARAICAjB58mRMnjwZFy5cwIEDB7BhwwasXbsWJpMJzzzzjNR5RNdSdS/T09Oxa9cu9O7dG6+99ppTs87Ro0exdu1at+e5UsBS0/N5QlVA+e9//xt9+/a95vMFBwdDo9Hgq6++uqrjrvTeEF2OfVroumMwGNC9e3dMmzYN9957L0wmE/bu3QvgfynqqpS5jNDQUOTm5rpsv3jxotOTOXCpX4xer8fx48dhMpmc9tntdvz2228u54mJiQEAt1P7Hzx4EACkR8dU5/L+B1Wq+ojY7fYr1quqDpfLzs7G+fPn0axZM7fNLbfddhueffZZnDlzBtOnT3cKFoKCgtCqVStkZmY6sgBXo1mzZhg9ejTeffddBAYGYufOndLHZmRkuB21cvjwYQD/u+YLFy4AAG699VaXfihVZa+Gp893NaqyXVfzmddqtW4/E8Cl71BxcTHOnj3rkfoRXY5BC10XfvvtN5cgAfjfE7Rerwdw6Rd4586dsXXrVredBe12u8sf6U6dOiErK8tpu8ViwYIFC1yO1+v1GDx4MAoLC7F69WqnfV9//bXbX/RVw0qTk5OdmoHKysrw0UcfOZWpzu7du/HTTz85NQ1UOXfuHH788UcAl/pvVKkaJp2Tk+NyTP/+/RESEoKNGzfijz/+cGxXFAWLFy+GzWardg6ZkSNHYtasWTh79iwee+wx5OfnO/aNGzcOlZWVeOONN9w2JVy4cAEXL14EcKlTr7uO0aWlpbBYLI57K6OsrAzLly932rZnzx7s378fbdq0cWSgqvqR/Dmg+OOPP7BixQrp16vi6fNdjaopAFavXu02ALVarS71Cg0NdfuZAC7dOwB47bXXUFxc7LI/Pz+fkxhSjbF5iK4Ln376KQ4cOIBu3bqhadOm0Ov1OHHiBPbv349mzZo5TZL14osv4vHHH8fLL7+MtWvXIiYmBgaDATk5Ofjtt99QXFzsGLkCXJrka+/evZgxYwaGDBmCgIAA7N27F6GhoY6Oj5ebMmUKfv31V3z44Yc4cuQIYmJikJmZiV9++QW9evVyZH2q3HzzzRg7dizWrVuH++67DwMHDoSiKNi2bRtyc3MxduxYqan3MzMzsWDBAjRo0ADdunVD8+bNoSgKzp8/j19++QUWiwV33nmnUz+THj16YNWqVXjjjTcwcOBABAQEoEmTJo4J6p555hnMnj0b//jHPzB48GCEh4dj//79OH78OGJjYzFx4sRq6zRixAhoNBrMmzfP0VQUFRWFhIQEHD16FJs3b8aRI0fQs2dPREZGorCwEGfOnEFaWhpefPFFNG3aFLm5uXjooYfQvn17tGvXDlFRUSgpKcGOHTtgtVqFdbhc165dsWHDBqSlpaFLly7IyspCamoqDAYDZs6c6SgXGxuL2NhYpKamIj8/H126dEF2djZ27tyJW2+91REAyvL0+a6GXq/H7NmzMWPGDDz22GPo0aMH2rZtC41Gg6ysLBw+fBgNGjRwCp569OiB1NRUPPfcc4iJiXHMf9SuXTv06dMH9913Hz7++GPcfffd6NOnD6Kjo1FSUoLz58/j8OHDeOihh9C6dWuvXRPVXwxa6Lpw5513Ijg4GOnp6Th48CAURUF0dDTuvfdejB8/3qnfRbNmzbB06VKsXr0aP/30EzZt2gStVovIyEh069YNgwYNcjp379698fLLLyM5ORnffvstQkNDMXjwYEyePNkxJPlyUVFRWLhwId5//33s2bMHhw4dQocOHfDmm2/i119/dQlagEt9bGJiYvDll186+gq0bt0aDz30kGOyOZHhw4cjKCgIe/bswalTp7Bv3z6YzWY0aNAAvXr1wsiRI12u7ZZbbsEjjzyCr776CqtXr4bVasXNN9+MESNGAAAGDx6Mhg0bYsWKFdi+fbtjRtz77rsP99xzT7UTy11eL61Wi7lz5+Lxxx93BC7PPfccbrnlFnz99dfYtWsXjEYjIiIi0KJFCzz66KP4y1/+AgBo0qQJHnjgAfz666/Yt28fSkpK0KBBA3To0AHjxo1Dnz59pN4f4NK9f+qpp/D+++9j/fr1sNvt6N69u8uMuDqdDq+99ppjVuNjx4456tWnT5+rDjI8fb6rFRsbi2XLluGzzz7DL7/8gt9++w3+/v6IiopCXFycY6h0laqVun/99Vfs2rULdrsdjRs3dozWe+ihh9CtWzesXbsW+/fvR1lZGcLCwtC0aVPcf//9jrXCiK6WRrl8TB0R0XXo8mn8n3vuOV9Xh4iugH1aiIiISBUYtBAREZEqMGghIiIiVWCfFiIiIlIFZlqIiIhIFRi0EBERkSowaCEiIiJVYNBCREREqsCghYiIiFSBQQsRERGpAoMWIiIiUgUGLURERKQKDFqIiIhIFf4/TWplJdeNVVkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(TOT_NUM_EVENTS, show=True)\n", - "np.save('unpol_qs.npy', unpol_qs)\n", - "np.save('unpol_us.npy', unpol_us)" + "# np.save('unpol_qs.npy', unpol_qs)\n", + "# np.save('unpol_us.npy', unpol_us)" ] }, { @@ -446,7 +466,9 @@ "metadata": {}, "outputs": [], "source": [ - "mu, mu_err = source_photons.calculate_average_mu(bins=20, show=True) " + "# mu, mu_err = source_photons.calculate_average_mu(bins=20, show=True) \n", + "mu = 0.310\n", + "mu_err = 0.001" ] }, { @@ -468,7 +490,7 @@ "output_type": "stream", "text": [ "Calculating the MDP...\n", - "Espoure: 12.999999999998863 s\n", + "Exposure: 12.999999999998863 s\n", "Total number of events: 1305\n", "Modulation factor: 0.31\n", "Background rate: 22.0 ph/s\n", @@ -496,12 +518,17 @@ "output_type": "stream", "text": [ "modularion factor: 0.31 +/- 0.001\n", - "------- Q/I, U/I -0.5680315857794365 0.37067849501243155\n" + "Q, U, unsubtracted: 0.6471561754610413 0.4242658685728328\n", + "Q, U, subtracted: 0.8546123469299894 0.34242031577874094\n", + "PD: 92.07 %\n", + "PA: 79.08 deg\n", + "rotated_Q, rotated_U: -0.8546123469299894 0.3424203157787407\n", + "------- Q/I, U/I -0.8546123469299894 0.3424203157787407\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAJvCAYAAAAtNjaIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXhUhb3//5p9JpN93yBkA8KWACEJO4iKQpW64L5Qxb2t31t7u9n29qqtbe/P1rZqF2tdqhURUREXQJCdBAgkIRtkhQTIvk9mn/P745CRSAJZJpnM5LyeZ54kZ87yOZOZM+/zWWWCIAhISEhISEhISEh4BHJ3GyAhISEhISEhITFwJPEmISEhISEhIeFBSOJNQkJCQkJCQsKDkMSbhISEhISEhIQHIYk3CQkJCQkJCQkPQhJvEhISEhISEhIehCTeJCQkJCQkJCQ8CEm8SUhISEhISEh4EJJ4k5CQkJCQkJDwICTxJiEhISEhISHhQSjdbYCr6O7uZsOGDRQXF1NSUkJnZyc//elPuf766we0fWdnJ3/729/Yu3cvZrOZlJQUHn/8caZMmXLJuvv37+f111/n9OnTBAYGsmrVKu677z6USq95OSUkJCQkJCTGKF7jeWtvb+eNN97g9OnTJCUlDWpbh8PBj3/8Y7788ktuvvlmHn30UVpbW3nyySepqanptW52djZPP/00vr6+PPnkkyxevJi33nqLP/3pT648HQkJCQkJCQmJPvEaV1FISAgffvghISEhlJaW8vDDDw942927d1NYWMgzzzzDsmXLALjqqqu46667eP311/nlL3/pXPeVV14hMTGRF154welp8/Hx4e233+bWW28lLi7OpeclISEhISEhIXExXuN5U6vVhISEDGnbPXv2EBwczJIlS5zLAgMDWb58Ofv378disQBQXV1NdXU1N9xwQ68Q6U033YQgCOzevXtY5yAhISEhISEhcSW8xvM2HE6dOkVycjJyeW8tm5KSwieffEJNTQ2JiYmcOnUK4JI8uNDQUMLCwigrK+v3GE1NTTQ3Nzv/7uzs5PTp00yePBm1Wu3Cs5GQkJCQkJBwJRaLhfPnz5ORkUFgYKC7zZHEG0BLSwupqamXLO/x5DU3N5OYmOgUX315+EJCQnqJs2+yZcsW3njjDdcYLCEhISEhITHq/PznP+faa691txmSeAMwm819er96lpnNZgBn+LS/dbu7u/s9xo033sjChQudf5eXl/O73/2O1atXs2jRIkJDQ4d1DhIS4x2TyURbWxutra20trbS0dGBwWDAYDBgMpl6ravRaNDr9ej1enx9fdHr9eh0OtRqNWq1GpVKdcnvMpnM5Tbb7XasVitWqxWLxeL82fPo7u52nkNXVxddXV3YbLZe+9DpdM7zCAgIICgoiKCgIAIDA1GpVC63WUJiPHHmzBlOnz6Nr68vr7zyCpGRke42CZDEGyBeyHuE2cX0LNNoNMDXoq2/dXvW64vQ0NA+BdrUqVNpa2tjypQpkoCTkBgABoOBxsbGXo+GhgYMBgMAcrmc4OBgwsLCSEpKwt/fv9fDz8/Po1MVTCYTHR0dfT6am5uprKx0rhsQEEBYWBhhYWGEh4cTFhZGaGgoWq3WjWcgIeEZnD59GpPJxNKlS3E4HACX/Z4fTSTxBgQHB/cZ8vxmmPTiMGpERMQl66akpAz62FOmTKGtrY0jR46wePFifH19B70PCQlvRBAE2tvbqa2tpaamhrq6OhobG50eboVCQUhICGFhYcybN88pUkJCQlAoFG6xub29nb1797JkyRICAgJG5BharRatVkt4eHifz1ssFpqamnqJ25MnT5KdnY0gCAD4+/sTFhZGVFQUEyZMIDY2Fr1ePyL2Skh4Ig6Hg4qKCuLj40lOTubkyZPuNqkXkngDkpOTKSgowOFw9CpaKCkpQavVMmHCBOd6ACdPnmTatGnO9XoulDfeeOOgjy2TyUhPT6eiogIfH59hnomEhOditVo5d+6cU6zV1tbS1dUFiDdY0dHRJCQkOEVacHCw20TaWEatVhMdHU10dHSv5Varlebm5l7eyvz8fPbv3w9AUFAQsbGxTjEXEREhvb4S4xa5XM7ixYvHbPP9sWnVCNLU1ITBYCAmJsb5T1m6dCm7d+9m7969zj5vbW1tfPXVVyxYsMAZYomPj2fixIl88skn3Hjjjc4L20cffYRMJmPp0qVDskmpVDorWNvb29FqtWPGNSshMRIIgkBbW5tTpNXW1lJXV4fD4UCtVhMTE8Ps2bOJjY2VvEIuQqVSERkZ2StnRxAEOjo6ev0fiouLsdvtqFQqoqOjnf+D2NhY/Pz83HgGEhIjT0dHB4WFhcydO3dMfw97lXj74IMP6OrqcoY7Dxw4QENDAwC33HILvr6+/OMf/+CLL77gvffeIyoqCoBly5axadMmnn/+eaqrqwkICOCjjz7C4XDwwAMP9DrG448/zk9/+lOeeuopVqxYQWVlJR9++CHf+ta3mDRp0rDsFwSB3NxclEolCxYsGLOKX0JiKJhMJiorKykvL6eiooL29nZATEeYMGECc+bMITY2lvDw8Eva9kiMDDKZjICAAAICApgxYwYANpuN8+fPO8XciRMnOHDgAIAzjzAxMZG4uDipIELCq+ju7iY7OxutVjvmvc5epQ7ee+896urqnH/v3buXvXv3AnDttdf2m0+mUCj4/e9/zyuvvMIHH3yA2Wxm6tSp/PSnP2XixIm91l2wYAHPPfccb7zxBn/6058ICAjgnnvuYd26dcO2vyeEeuDAAY4ePUpGRob0JSbhsTgcDs6dO0dFRQXl5eXU1tYiCAKhoaGkpKSQkJBAbGyslC4wxlAqlUyYMMGZLgKiN+LMmTNUVlZSVFTEoUOHUCqVxMXFOcVcWFjYiFTkSkiMBhaLhezsbJRKJZmZmWPeeSITejJYJUaVkydP8tBDD/Hqq69e0vS3ubmZ7OxsoqKimD17tnRBlPAYOjo6nGKtsrISo9GIVqslISGBxMREkpKSRiyRfyzgcDgwGo3odDqvvfESBIGmpibKy8spLy/n9OnT2Gw2/P39nf/jhIQEdDqdu02VkBgQgiBw4MABuru7WbhwYZ9pGpf7znYHY1tajlNCQkKYM2cOJ06cwGg0Sp4JiTFNY2MjRUVFFBcX09DQgEwmIzo6moyMDBITE4mNjfVaIfNN5HK51+fnyWQyZ9HI/PnzsVqtnD59moqKCqqrqzl16hQymYzIyEinmJNy5STGEkqlspdnTSaTER8f7+z56AlI4m2MEhUVRVhYGEqlEkEQJO+bxJiiqamJoqIiioqKaGhoQKPRMHXqVJYsWUJCQsK4veHo7u6mtLSUqVOnjpvXoKewQa1WM3HiRBwOBzabzdl8uLy8HKVSiUqlQqVSjRshLzG20ev1hISE0NXVRUREBDExMe42aVBI4m0Mo1QqcTgcHD58mJiYmF45KBISo01zc7NTsNXX16PRaJgyZQorVqwgMTFxzOeIjAZWq5WzZ8+SmJjoblNGDYvFQk1NDSqViqioKDQajfNm0+FwYDabMZlMWK1WAOfECk9ICpfwPgRBwGw209LSQllZGWfPnmXRokUel84hXW3HOHK5HJ1OR35+Pmq1+pLmwBISI0lLS4tTsNXV1aFWq5kyZQrLly8nKSlJEmwSNDQ0oFAoiIuL61OM9XggHQ4HJpMJo9GI2Wx2jiXU6XSSkJMYVXQ6HSqVCqPRyKRJkzxOuIEk3jyCWbNmYbFYyM3NZf78+QQFBbnbJAkvxmw2U1hYyLFjxzh79ixqtZrJkyezdOlSkpKSpPYQEk4EQaC7u5ugoKArii+5XI6Pjw8+Pj69hFx7ezvt7e1oNBp8fHzQarVSmojEiNIzRzgoKIiuri6PTE2SxJsHIJPJmDNnDtnZ2eTk5LB8+fIx3TxQwvMQBIHz58+Tm5vLiRMnsFqtJCUlcdttt5GcnCwJNok+sVqt2O32QVeWflPIGY1Guru7aW1t7fWc5NmVGAksFgtqtRqlUkl7eztWq9Xj5h1LnwwPQaFQkJGRwfnz5yXhJuEyTCYTJ06cIDc3l7q6Ovz9/VmwYAGzZ8/2yFCCu9FoNEyePHncfEZ7hnUPJ+TZU6Gr1+uxWq10d3djMBjo6upCrVaj1+slb5yES+jxsPVUlJpMJuDr97EnIYk3D0KlUjmbBtfV1RESEiJ5RCQGjSAI1NbWkpubS1FREXa7ncmTJ3PVVVeRlJQkVQMOA61WOyZ6QI02rhJWKpWKgIAA/Pz8MJlMvbxxOp0OHx8f6ZonMSTsdjsGgwG9Xu+82fDkGwJJvHkgVquV/Px8fH19ycrKkhJ9JQaExWLh+PHj5Obm0tDQQGBgIIsXL2b27NlSHy4XYbPZaG1tJSgoSAr5DYOLQ6c93jij0YjBYECtVuPj44NOp/PoL1+J0cPhcGAwGADPFmwXI11dPBCVSkVGRgaHDh3i2LFjpKene80bUsL1dHV1kZOTw9GjR52j31auXElCQoL0vnExBoOB7OxslixZIoWdXUSPN87f3x+TyYTBYKCtrY3Ozk70ej0+Pj6St1iiXy4Wbr6+vl7zXpHEm4cSFBREeno6hw8fpqCggNTUVHebJDHGaGpq4uDBg+Tn56NQKJg7dy5ZWVmSqJDwSGQyGTqdDp1Oh9Vqpauri46ODqeIuzgcJiHRg9FoxOFweJVwA0m8eTTh4eGkpaVRUVGB1WqVckEkADhz5gwHDx6ktLQUX19fli9fTnp6Olqt1t2mSUi4BJVKRVBQEH5+fhgMBmeBg4+PD3q9XroWSjjRaDRoNBqvE/aSePNwYmNjiY6ORi6X43A4vOrOQmLgCIJAaWkpBw8epKamhrCwMNasWcPMmTOl3CsJr0WpVDoLHHpEXHd3NxqNBl9fX9RqtVtSAy4+5sGDB5k/f36f623cuJHbb78dgLi4OKqrq/vdD3x9vlFRUcydO5cbbriBNWvW9PsZ/+b2MpkMf39/Zs6cyf3338+DDz7otakTFosFlUrltdc/7zyrcYZcLsdsNnPgwAFSUlKIiopyt0kSo4TdbicvL4+DBw/S3NxMXFwcd911F8nJyV57UR7L9LS9kG6ivqZz11ejdiwfBCxmC0aTkS67HYVSiU6rRaVWI+Pynwe/q5aPiE3vvPNOv+Lt7bffHtA+7r//fkDM32pvb+fUqVO89dZbvPnmmyQlJfHOO++QkZFxxe3tdjsVFRUcOHCA/fv3s3PnTt59991BntHYx2QyYTKZvNoLK4k3L0GtVhMYGMixY8fIzMwkNDTU3SZJjCAOh4MTJ07w1Vdf0d7eTkpKCjfddBOxsbHuNm1c4+fnx1VXXeVuM8YtMmRoNBrUGjU2qxWj0URXVxcKpRIfnQ6lSnVFEecqFAoF06ZN47333uPFF1+8xAPU3NzMF198wZw5czh27Nhl9/XGG29csqyiooKf/exnbNy4keXLl3PgwAHS0tIGtP2OHTtYtWoVGzZs4O677+Zb3/rWYE5tTNMzS1er1XqtcAOQbg+9BJlMRlpaGiEhIRw5coSOjg53myQxAgiCQHFxMX/961/58MMPiYqK4rHHHuO2226ThJuExAVkyFCp1Pj7++Pn5w9AZ2cnnR2dWK3WUbPj7rvvpqmpiW3btl3y3HvvvYfVauWee+4Z0r4TExN57733ePDBB+nu7uaBBx4Y8LbXXHMN9957LwAfffTRkI4/FrFYLBiNRjQajdfn+ErizYuQy+Wkp6ej1+vJycnBbre72yQJFyEIAuXl5bz66qts3LgRf39/HnroIW6//XbCw8PdbZ7EBTo6Oti2bZt08zSGUKlUF0ScH4LgoLOzg87ODmy2kRdxd911FzKZrM/w6Ntvv42vry9r1qwZ1jFeeOEF9Ho9x48fZ//+/QPebvbs2QDU1NQM6/hjCbvdjkql8nrhBlLY1OtQKpVkZmbS0dHhddU145UzZ86wc+dOTp8+zcSJE1m3bh2TJk1yt1kSfSAIAhaLBUEQ3G2KxEU4PXEBKqwWC93dRjo6OlCr1eh0OhSKkfkqnDBhAkuWLGHLli10dXXh6+sLQGVlJYcOHeLee+/Fx8dnWMcICAjg+uuvZ9OmTXz11VcsWrRoQNt1dnYCeMUot56xVzqdziOHzA8FyfPmhWg0GsLCwhAEgaqqKmw2m7tNkhgC58+f55133uFf//oXZrOZu+++m+985zuScJOQGCIyZKjVGgICA9DrfbHZ7LS3t2MwdI3YdfKee+6hu7ubzZs3O5e98847zudcQU+uW0lJyYDWFwSBrVu3AjBr1iyX2OAu7HY7nZ1fh8PHg3ADSbx5NUajkdLSUo4ePeqRg3fHK21tbbz//vv8/e9/p7W1lbVr1/LII49IFaQSEi6ip7AhIDAAHx8fLFYrDQ0NtLe3u/xaeeutt6LRaJyCDUTxFhUVxYoVK1xyjJ4CtdbW1suuZ7fbKSsr44EHHuDQoUNoNBq+853vOJ9/5ZVXSExMRKvVkpqa6hR432Sg6400F09PGG+RJkm8eTE+Pj7MmzeP5uZm8vLypFDOGMdqtbJ7925eeuklzpw5w5o1a3j88ceZPn26JNokJEYAGTK0Wh2BF3rFdXd309DQgMFgcNn1MjAwkNWrV7Nz507q6uo4cuQIJ0+e5I477nCZ4Oixtb/rhEwmQyaToVQqmTx5Mm+88QZ+fn68++67JCYmAmIO3ve+9z3uvvtutmzZwpw5c7jpppvIzs7uta+BrjfSCILg/D+Nx/Y8Us6blxMaGsqcOXM4evQoGo2G6dOnu9skiW/Q02B327ZtdHZ2Mn/+fJYsWYJarXa3aRKDRK/Xs2jRIvR6vbtNkRgEMpkcPz8/fHx86OjooL29ne7ubgICAlzyObznnnvYvHkzGzZsoKqqyrnMVTQ1NQEQHBzc5/M9fd7kcrmzSe/NN99MUFCQc51nnnmGBx54gGeeeQaAa6+9lqKiIp555hk+++yzQa830vSMvRqvY9Ek8TYOiIqKYubMmTQ1NY2bZE5Poampic8//5yKigqSk5O59957CQkJcbdZEkNEqVT2+kKU8CwUCgVBQUFOEdfU1ISPjw9+fn7DEgirVq0iMDCQt956i3PnzpGSksKcOXNcZvfx48cBmDZtWp/P99Un7mK6u7spLy/nueee67V8xYoV/OEPf8BsNqPRaAa83mig1WpRq9VeO0HhSowvP+M4ZtKkSaSnpyOTyaQChjGA2Wxm+/btvPLKK7S0tHDnnXdy1113ScLNwzGZTBQVFWEymdxtisQw0Gg0hIaGEhAQgNFopKGhga6uriGHUjUaDWvXruX48ePU19e71OvW3t7u7CO3fPnQpkSYTCYEQbjEy6jRaLBYLE5v4UDXG0nMZrNzFOR4FW4gibdxR2dnJ19++SUNDQ3uNmVcIggC+fn5/OUvf+HIkSMsW7aMJ554gilTpkgeUS/AbDZTWVmJ2Wx2tykSw0Qmk6HX64mIiECn09HR0UFjY+OQ/7c9XvXQ0FDuvvtul9n51FNPYTAYmDdvXr9juK5EcHAwQUFBHDlypNfynr9bWloGtd5IYTKZMBqNo9poeawyfmXrOMXX15eQkBCOHj3K/PnzpRDPKFJXV8enn35KTU0N06dP59prryUgIMDdZklISFwGuVxOYGAger2e9vZ2mpub0Wq1BAQEDCqUunjxYmdumiuorKzkpz/9KRs3bkSv1/Paa68Na3+PPPIIL730EvPnz2fhwoVs2LCB7du3A/QqBhjoeq7GYrFgMpnQaDRe0ZtuuEjibZwhk8mYM2cO2dnZ5OTksGjRImfjSImRwW63s3fvXvbt20doaCj3338/8fHx7jZLQkJiEKhUKkJCQjAaxQa/DQ0N+Pv74+PjM+Je83Xr1gFia4yOjg5OnTpFaWkpgiCQnJzMf/7zH2bOnDmsY/z85z+npKSEG264AYCYmBiefvpp/vd//5fIyMhBr+dKrFYr3d3dzqbKEpJ4G5coFAoyMjI4cOAAx44dY8mSJe42yWs5d+4cH3/8MY2NjSxZsoTFixePy8ooCQlvQCaT4ePjg1ardValmkwmAgICRjT/6s033wTEghh/f3+io6O57777WLNmDTfeeKNLril6vZ6PPvqI8+fP09LSwuTJk/nzn/9MeHh4r8bgA13PlQiCgEqlkoTbRUjibZyiUqnIysqSihdGCJvNxp49ezhw4AARERE8/PDDI3ZXKjF2UKvVTJo0SWrzchF+Vw0tiX4s0xNK1Wq1tLW10djY2MsLN5jChsjIyH7XH26vuaFsHxUVRVRUFGazmddff93p9RvqesOhpzBBrVZLn6lvIIm3cUzP8F6bzUZZWRmTJ0+WvEIuoLa2lo8//piWlhaWLVvGwoULpdd1nKDT6YYdvpLwHLRaLeHh4U4vnNFoJDAw0COrILds2cK5c+eYMmUK586d48UXX8Rms/Gzn/1sSOsNF4fDQVdXl5Tj1g+e9w6TcDkGg4Gqqiq6urqc7UQkBk/PhISDBw8SFRXFI488Qnh4uLvNkhhF7Ha7cwC5JNjHBz1eOJ1O16cXzlNQKBS89NJLVFRU4Ovryw033MBvf/vbS4qqBrrecLh47JVKpXLZfr0JSbxJEBAQwNy5czly5AgFBQWkpqa62ySPo6amho8++oi2tjZWrFjBggULxt24Fgno6upi7969LFmyRKokHmdoNBrCwsI81gu3evVqVq9e7bL1hoogCHR3d+NwOPD19ZWuo/3gGe8qiREnIiKC1NRU8vLy0Gq1TJkyxd0meQQ2m42dO3eSnZ1NTEwMd9xxB2FhYe42S0JCwg305YXz8/NDr9d7lBfOnZjNZmw2m+S9vgKSeJNwMmHCBMxmszTAfoA0NzezadMmGhoauPrqq5k/f750lyghIeH0wnV2dtLR0YHZbCYwMFASIwNAo9GgVCo9xmPpLqRXR6IXSUlJzt9NJpOzqEGiNwUFBWzduhVfX1/Wr19PVFSUu02SkJAYQ8jlcgICAtBoNLS2ttLY2EhQUJCUfN8PZrMZhUIhCbcBIr1CEn3S0NDAkSNHyMrKkuZtXoTFYuGzzz4jLy+PWbNmsXr1auliLOFEJpOhVCqlEJmEk56K1NbWVpqbm/Hz88PX11d6j1yE2WzGaDSi1Wol4TZApFdJok9CQ0MJCQnh8OHDLFy4EH9/f3eb5Hbq6+t5//33aW9v59vf/japqanSBViiF/7+/lx//fXuNkNijKFQKAgJCaGzs5POzk7MZjNBQUFSGBWxSt9oNKLRaKRIzyCQEnQk+kQul5Oeno5eryc7O5vu7m53m+Q2BEHg6NGjvPrqqygUCh5++GHS0tIk4SYhITFgZDIZ/v7+hISEYLPZaGxsxGQyudsst2Kz2TAYDKhUKkm4DRJJvEn0i1KpJDMzE6VSSVFRkbvNcQsmk4n333+frVu3Mnv2bNavXy9Vk0r0S2dnJ7t376azs9PdpkiMUXqKGVQqFS0tLXR0dIzrIjGVSuVxPfHGAlLYVOKyaDQasrKyxmWjxNraWjZt2oTJZOK2225j2rRp7jZJYozjcDjo7OzE4XC42xSJMYxCoSA4OBiDweCsRg0KCho3+V4Oh8OZHzpeztnVSJ43iSvi4+ODSqWiu7ubgoKCcfHFlJuby+uvv46vry+PPvqoJNwkJCRcikwmw9fXl9DQUBwOB42NjZjNZnebNeL0jL0yGo3uNsWjkSSvxIAxGo3U1NRgs9mYPXu2V7q57XY727Zt4/Dhw6Snp3P99ddLScUSEhIjhlqtJiwszFmN6u/v77VNfQVBwGAwIAiCVKU/TCTxJjFgQkJCmD17Nrm5uWg0GqZPn+5uk1xKd3c377//PqdPn+Zb3/oW6enp7jZJQkJiHCCXywkODqajo4OOjg5sNhsBAQFeJeB6hJvD4UCv10s3xcNEEm8SgyI6Ohqz2UxhYSFarZbExER3m+QSGhoaePfddzGbzdx3331MmjTJ3SZJeCA+Pj7MmzcPHx8fd5si4WHIZDICAgJQqVS0tbVhtVoJDg72GpFjtVqx2Wzo9Xopz80FSK+gxKCJj4/HarWi1+vdbYpLKC0tZfPmzQQFBXH//fcTGBjobpMkPBSVSkVkZKS7zZDwYHx8fFAqlbS0tNDY2EhwcDBqtdrdZg0btVqNQqHwGjHqbqSCBYkhMXnyZOeXVFdXl5utGRqCILB37142bNhAUlISDz74oCTcJIaF2WymrKxsXCSeS/SNTCZzPg4dOtTvehs3bnSu901Pf08enEKhoLm52aOT+81mMxaLBWBUhFtfr6c3Iok3iWFRXV3N3r17aW1tdbcpg8JisbBp0yZ27drFsmXLWLt2rVfc3Uq4F5PJRGlp6bhvvioh8s477/T73Ntvv33ZbXumMmi1WlpbWz2yH5zFYsFoNGK3291titchiTeJYTFhwgQCAgI4fPiwx3jg2tvb+de//kVZWRm33347y5Yt86rEYAkJCfeiUCiYOXMm7733Hjab7ZLnm5ub+eKLL5gzZ85l9yOXywkMDMTf35+uri5aWlo8plWT1Wqlu7sbtVqNTqdztzlehyTeJIaFQqEgIyMDjUZDdnb2mPc41NXV8eqrr2IymXjwwQdJSUlxt0kSEhIDpawMfvpTuPNO8WdZmbst6pe7776bpqYmtm3bdslz7733HlarlXvuueeK++npBxccHIzFYqGpqWnMe7JsNhvd3d2oVCpJuI0QkniTGDYqlYqsrCwAKisr3WxN/1RXV/P666/j5+fH+vXriYiIcLdJEhISA+X112HqVPi//4ONG8WfU6fCG2+427I+ueuuu5DJZH2GR99++218fX1Zs2bNZfdRUlLCunXrnBGOtLQ0Hn74Yfbv33+JR89kMvHaa6+xZs0aEhIS0Ol0BAYGsmTJEjZs2NDn/i0WC6+88grz5s0jJCQEHx8fJk2axLe+9a1Ltpk0aVK/EYrdu3cjk8lYt24dIHoMVSoVTzzxBHK5nN27d7Nt2zaWL19OYGAgMpmMtrY25/ZffPEFq1evJiwsDI1GQ0JCAj/4wQ9obm7u83gtLS1897vfJTo6Gq1Wy7Rp0/jTn/7kcWHl4SBVm0q4BK1Wy8KFC8fscOGSkhI++OADJk6cyO233y41iJQYEVQqFVFRUeNynNyIUlYG69dDXyHDBx+ERYsgKWn07boMEyZMYMmSJWzZsoWuri58fX0B8Qb30KFD3HvvvZdtKfPRRx9xxx13YDabSUtLIysri5qaGrZs2cL27dt55513WL16tTNXt7q6mvXr1xMdHc2UKVPIyMigrq6OgwcPsm/fPkpLS/nVr37V6xh33303mzZtws/Pj8WLF+Pv78/Zs2fZv38/XV1d3HHHHYM6Z0EQcDgcyOXyXuf2n//8h3/+85/OxucVFRVOIfiTn/yE3/3ud6jVaubNm0dUVBT5+fn88Y9/ZMuWLRw4cKDXjXZrayuLFi2ipKSEyMhI1qxZQ0tLCz/84Q8pLy8flL0ejSDhFkpLS4XFixcLpaWl7jbF5TQ1NQnHjh0THA6Hu00RBEEQjhw5IvzqV78S3n//fcFqtbrbHAkJr8FoNArFxcWC0Wgc2QP95CeCoFAIAlz6UCjE58cIgKBQKARBEIRXX31VAIQ333zT+fwzzzwjAMK2bduE8+fPC4AQFxfXax9VVVWCXq8XfH19hR07dvR67vPPPxdUKpUQExMjVFdXO1/7pqYmYceOHZdcdysrK4VJkyYJcrlcqKqq6rW859hNTU29tjEajcLBgwd7LYuLixP6kwxfffWVAAh33XWX0NnZ6Vx+//33C4AACBs2bLhku40bNwqAMGPGDKGsrMy53OFwCL/85S8FQLj99tt7bfPoo48KgHDdddcJBoPBuTwnJ0fw9fXt8/Xsj8G8f8fad7YUNpVwOTabjbNnz3LixAm32iEIArt372br1q1kZGRwyy23SM0hJUYUh8OByWTymKRyj6G6WpRqfSEI4vNjkFtvvRWNRtOr6vSdd94hKiqKFStW9Lvdiy++iMFg4Pnnn+fqq6/u9dx1113HY489xtmzZ9mzZw8tLS0YjUZCQkK4+uqrLwltxsfH8/TTT+NwOPjkk0+cyxsbGwGYPXs2ISEhvbbRarXMnz9/wOcpXPjfCILQZ47b6tWruf322y9Z/utf/xqAd999l6SLPKcymYxf/epXpKWlsWnTJpqamgAwGAy8+eabyOVyXnrppV7evYyMDJ544okB2+zpSOJNwuVERESQmprK6dOnOXnypFtscDgcfPrpp+zevZsVK1Zw3XXXSRWlEiNOZ2cnO3bsoLOz092meBeTJkF/n1+ZTHx+DBIYGMjq1avZuXMndXV1HDlyhJMnT3LHHXdctufZ9u3bAbj55pv7fH7x4sUAFBcXo9PpaG1tdVb779+/n+eee47HHnuM73znO6xbt473338fgLKLCjymTp2KXq/n008/5f/+7/84d+7ckM5REARnoZpSqezzvG688cZLljU0NJCfn09ycjIzZsy45HmZTMbChQux2+3k5uYCkJubi9FoJD09vc/pPnfeeeeQzsET8So3hMVi4bXXXmP79u10dnaSmJjI+vXrmTdv3mW3u+2226irq+vzuZiYGN59913n30uWLOlzvYcffnhAlUPjhQkTJmA2mykpKUGn0zFx4sRRO7bNZuODDz6gtLSUNWvWMHv27FE7toSExAjwwAPw+9/3/ZwgiHlvY5R77rmHzZs3s2HDBqqqqpzLLkf1BU9iTEzMZddrbm4mMDAQhUJBbW0tjzzyCHv37u13/YtvKvz9/Xn11Vd5+OGH+dGPfsSPfvQjJk+ezPLly7n33ntZuHDhgM7Pbrc7q1/l8r79QX1d/3vOsays7Io31j2etx6BGRcX1+d646E5bw9eJd6ef/55du/ezdq1a4mNjeXzzz/nRz/6EX/605+YNWtWv9t973vfu6SDdV1dHf/85z/7FH7p6elcd911vZYlJye75iS8iKSkJBwOB0FBQaN2TJPJxIYNG6itreWOO+5gypQpo3ZsCQmJESI5GV57TRRpMpko2Hp+vvbamCtWuJhVq1YRGBjIW2+9xblz50hJSblif7eesPv9999/2fUyMzORyWT4+/vzX//1X+zdu5eFCxfy3HPPMXPmTKew2759OytXrrykGvPOO+/k6quv5uOPP2b79u3s2bOHv//97/z973/nBz/4AS+88MIVz0+pVF6xUK2v53vOMTIykpUrV152+/7E2njGa8RbcXExO3fu5LHHHnO6TleuXMm6dev461//yl//+td+t+1xQV/Mm2++CcA111xzyXMTJkzg2muvdZHl3s3kyZMB8e6sq6uLgICAETuWwWDgrbfeoqOjg/vuu29UvX0SEhIjzLp1YlXpa6+JOW6TJolibgwLNwCNRsPatWt59dVXAfj+979/xW1iY2OpqKjghRdeuCQfrT+2bt2KQqHgtddeIzQ0lODgYKdH63ItnMLCwli/fj3r169HEAS2bdvG7bffzh/+8AceeOABpk+fDuCsau2pnDWbzTgcDnQ6HWfPnh2Qjd88R4DQ0FDeGGC7l6ioKABOnz7d5/P9LfdGvCbnbc+ePSgUil6xdY1Gw+rVqykqKqK+vn5Q+/vyyy+Jiopi5syZfT5vNpul+YWD4OTJkxw8eJCOjo4R2X9PIqvBYOA73/mOJNwkJLyRpCR4/nl4913x5xgXbj3ce++9hISEEBoayt13333F9XucBh9++OGAj9Ha2oq/vz9xcXGYzWZaWlqcnraNGzcOaB8ymYzrrruO1atXA1BUVOR8rkc4nTp1CqvVitFodO5/x44dA7azh9jYWKZOnUpxcTGnTp0a0DZz585Fp9ORm5vbpyDtr5+dN+I14q2srIzY2Fj0en2v5T0d9AfT/+XUqVOcPn36kiqfHr744guuvfZarrnmGu69994BvXGbmpo4efKk8zGe7hBA9MDp9Xqys7Pp7u526b57hFt3dzfr1q0jPDzcpfuXGN+YTCZaW1tpbGzk/PnznDlzxtk81Gg0UlhYyIkTJygoKKCqqoqJEyfi7+8PiNelwsJCiouLKSsro6qqyvn+N5lMtLW10dXVJVWoejmLFy+mqamJxsbGAYUAn3rqKXQ6HT/84Q/ZvHnzJc+bzWY2bdpEbW2tc9nkyZNpbW3l448/Jjg42Cng/vCHP/DVV19dso/jx4+zefNm59D4HlpaWsjJyQHEKFMPS5cuBeA3v/kNHR0dzukJ7777bq+88MHwi1/8AofDwS233EJeXt4lzzc3Nzs9lgC+vr7ce++92O32S9Kdjh49yksvvTQkOzwRrwmbNjc39+le7lnWk/A4EHrEWF8h0xkzZrB8+XKioqJobm5m8+bNPPvssxgMBr797W/3u88tW7YM2DXsjSiVSjIzMzlw4ADZ2dksWrTIJYPgvyncQkNDh7YjoxHOnoXaWujsBJsNrFbxp90OCgWoVKBUij/9/SE2FmJiQGr463HYbDbMZrPzZq+iooKuri6MRiMmkwmTyURGRgbBwcFUVVVdcvMXFxdHSEgIDofDKeRkMhkymQyFQuEMV7W3t9PV1YXD4cBms2G1WtHpdPj4+FBTU0NpaWmv/cbExDBnzhysVquz2Een06HVap3bSVXT3k9SUhLvvvsud911F7fccgtJSUmkpKSg1+s5e/Ysx44dw2AwcPz4cWf48ac//Sn33HMPd9xxB4sXLyYqKoq8vDzKy8v5f//v//Hiiy/2Osbp06e55ZZbCAgIID09ncjISNra2ti7dy+dnZ3ccMMNvdqFPPHEE/ztb3/jgw8+ID8/n7S0NOfNyZNPPskf//jHQZ/nXXfdRVFREb/5zW+YO3cuaWlpJCYmIggCFRUVFBQU4Ovry0MPPeTc5vnnn2fPnj189tlnJCYmsmTJElpbW9m1axePPPIIL7/88tBedA/Da8Sb2Wzus6t5j0AYaIjT4XCwa9cukpOT+6xceeWVV3r9vWrVKtavX88//vEPrr/++n4799944429qndOnz7Nc889NyCbvAWNRuMUcHV1dcMObQ5KuHV3w7FjUFEhCrSeR02N+LOfMSwDIjxcFHLffCQnw+zZkrhzIz3d3k0mExUVFXR2dtLZ2YnJZEKlUjkLjxoaGrDZbGi1WkJDQ51iCcQ+WTExMahUKpRKJUql0img9Hq90yMB4nsyPz8fg8GAXq8nPT29X9vi4uKIiIjAZrM5xWTP9cNqtdLa2sr58+ednhGZTOYMZ5WUlADg5+eHr68vvr6+Ug9DL2PNmjUUFBTwhz/8gR07drBjxw5UKhXR0dHccMMN3HzzzUybNs25/t13301QUBDPPvsseXl5nDhxgjlz5vCb3/wGpVJ5iXjLysriueeeY9euXZw8eZJ9+/YRFBTErFmzePDBBy+piI2IiGDPnj089dRT7N+/n88//5y5c+eyY8cOZDLZkMQbiL3eVq5cyUsvvcSBAwc4ceIE/v7+xMTE8Nhjj7F27dpe6wcHB3PgwAF+8Ytf8OGHH/LRRx8RHx/Pb3/7W37wgx9I4s3T0Gg0WK3WS5b3XPgGOg4pLy+PxsbGS94w/aFSqbj55pt54YUXOHnyZL9VraGhoUP3CnkRer2eZcuWDdvrdlnhJghQWQnZ2XDokPgzP1/0ogGEhX0tsBYs6C24YmIgIED0rvV42pTKrz1xPY+2tt4isOexf7/4s6VFPJZaDXPmQFYWzJ8v/pwwof+eVRJDxmQy0dzcTFtbGx0dHXR2dhIaGuqs7GtoaMDX15cJEybg5+fXq5no5RqSarXaAY99s9lsNDc3XzJ3si/UanW/nwMfHx+nKLTb7ZhMJiwWi1M0Go1GZ3PWi88hNDSUlpYWLBYLQUFB0hg4N/DNis7LERkZedn1ExMTByVGVq1axapVq3otM5lMtLS00NTURHBwcK9jP/300zz99NNX3K/D4UAQBFJSUvjss8/6XKev83jjjTcGFHFasmRJv224+iIkJIRXXnnlEmdKf3Z4I14j3kJCQpwdoy+mJ6QxUOG0Y8cO5HJ5v/lufdGTYzVSyfjeRs8X1unTp2lpaSEtLW1QoaCLhdv9999PaHCwKNC++uprsdbzXpg8WRRN69eLwmnqVBjK/NVvfslGRcGFfMo+6e6G4uKvBeTHH0PPnW909Ndi7qqrRO+cJOYGhd1up62tjdbWVoKDgwkODqa+vp6CggL0er0zcbvny0qr1bJ8+XI3Wz00FAoFer2+Vz5vjyC12Wx0dXXR2dnpzLOrra115tT6+PgQFBTEhAkTCAsLG33jJdyOVqslODiYlpYWWlpaelWhDgRBEDAYDAiCgJ+fnxS2HyN4jXhLSkri+PHjznBFD8XFxc7nr4TFYmHPnj2kpaUNykvW0zgwMDBwcEaPc1QqFbW1tWg0ml7u/8vhFG4GAw/OnEnQb38L778vhj/9/CAzEx59VBRHmZkwwDJ7l+PjA+np4uO73xWX1deLYq5H0P3P/8B//zckJsJtt4mP1FRJyF2Gqqoqampq6OjoQBAElEol06ZNIzg4mOjoaKKiolySS+kpKJVKAgMDe117Zs2aRXJyMq2trc5HTwf8uro6KioqCA4OJiwsjODg4H4bq0p4D0MVcD3CzeFwoNfrJeE2hvAa8bZs2TI2bNjAli1bnH3eLBYLn332GdOmTSMiIgKA+vp6TCZTnxU/2dnZdHV19VmoANDW1naJQOvu7mbTpk0EBARIDWEHSXR0NGazmcLCQjQaTZ/jTi7G0NXF588+y7ycHOZUVqKoqYGICLj1VlH4LFwoFhaMVSIiYM0a8QFi+PWrr2DjRvjb38TWB8nJXwu5mTPHrZATBIGOjg4aGxtpaGhg2rRpBAYGIpfLnV61oKCgXp6AvnJexys9hQ7R0dG9lqtUKrRaLTU1NZSXl6NUKklISJCuXeOAoQg4o9GIzWZDr9dLOZVjDK/5b0ybNo3ly5fzj3/8g7a2NmJiYvjiiy+oq6vjxz/+sXO9X//61+Tl5fU5QmTHjh2o1epeCcgXs3nzZvbv38+CBQuIiIigubmZzz77jPr6ep5++mnpy2MIxMfHYzabKS4uxsfHx9lLqBfl5VhfeQX7W29xa3MzjtBQ5LfeCrffDosXj23BdjlUKrj2WvHx17/Czp2ikHv5Zfj1r2HKFFHEPfSQmCc3TigtLeXMmTOYzWYUCkUvL3hcXNyY7rau0+lITU3tczj3WCAkJISQkBCnOG5oaHAO925paeH48eOEh4cTFhZGWFjYZedvSngegxFwdrsdq9WKj4+P9N02BvEa8Qbws5/9jIiICLZt20ZXVxcJCQn87ne/Iy0t7YrbGgwGDh06RFZWFr6+vn2uM3PmTAoLC9m6dSsdHR1otVpSUlL48Y9/zNy5c118NuOHqVOnolKpLg1V5+TA73+P8OGH2H18qJw+nUl//zuBa9aIRQTehEoF110nPv72N/jyS1HI/elPokfujjvEEOtlxrx5IhaLhbq6Os6dO8esWbPw8fFBrVY7c7Q8LaynVqs9okG0TCYjICCg18QTtVpNeHg4jY2NVFdXo1AoiIuLc3bYl/AOLhZwPdGkvgScQqHAz8/Poz5/4wmZMF5KM8YYJ0+e5KGHHuLVV1+VQhYXYTQYsHzyCQGvvAL79iEkJ5OzaBF74+K456GHLgkDeT2dnfDPf8If/yjm9a1cCT/6ESxf7tEh1bNnz1JTU+PsvxgSEsL06dOdSfeeSo8YjYyM9OjcO4PBwPnz51GpVMTFxWEwGDh58iTR0dG9PHImk4mqqiri4+MHXJErMTYwGo20trY6C3x6BJzFYnF63Lw9x20w79+x9p3tZe4LCY/FbIZ33qH42Wdpqq5mYUYGPps2sdlmo+TUKe65557xJ9xALML4r/8Six42boT/+z9YsUJsP/Lf/y3m+3mAF9Jms3H+/HkiIyNRqVQ0NjbicDiYMWMGUVFRXtPSwmg0kp+fT0BAgEeLN71e36vIy2w209nZyZEjR1AqlURERBAbG+sU25IPwPPQ6XQ4HA7a29uRy+X4+flhtVrp7u5GrVZ7vXADz37fSv5QCfditYotNOLjYf16Zs2ciebPf+bQc8/xsVxOUWkpt956K/Hx8e621L2oVHD33XD8OGzfLlbR3nmnWODwz3+KUyDGIG1tbeTn57Njxw7y8vJobW0FIDU1lQULFjBp0iSvEW7eTHBwMEuXLuWqq64iKSmJzs5Ozp8/j0KhQBAEac6zh6LX6/Hz86Ozs5OOjg66u7tRKpVjNmfT1fT0hvXE3E5JvEm4jy+/FFtjPPUUrFoFJSWotmwhc/168vPz+fjjj7nuuuuc82klEEOl11wjCrjjx8WWKA89JLZFyc52t3W9KCgoYN++fTQ0NJCQkMDVV1/t7Ik4Hu7qvRG9Xk9ycjJLly5l5syZqFQqHA4HjY2NdHZ2YrFYPNqbMR7x9fXFx8eHpqYmZ2XpePh8CoJAe3s7Go3GIwsyxn68RcL7qK4WBdvmzWK16LvviiLuAiUlJTQ3NzNr1qwrtg8Z16Slia/d974nPubPh/vvh9/+FiIjR92clpYWzpw5w4QJEwgJCSEmJobIyEjCwsLGxZfBeKMnkT02NpaamhoaGhrQ6XSoVCo0Go1Hh43HGxqNBo1Gg8FgQKVSefX/ThAErFarc+5wTEyMu00aEpJ4kxg9jEb4/e9FcREcDP/5j1hFedEX+6lTp9i6dSuLFi1i5cqVzt5CgiBIAqA/FiyAw4fhtdfgZz+DDz8UGwB/73tiuHUEcTgcnDt3joqKCjo6OvDx8SHygnAMcVeDZDeiVCoJCQkZVz2xevrvNTU10drait1uRy6Xo1AonGOVPDEsNR4QBAGHw+EMfxsMBs6dO4evr6/X/880Gg0xMTEeWyQ1fq4wEu5DEOCjj+AHP4CzZ0Wv29NPwzdastTW1vL+++8zefJkrr/+eued/YkTJxAEod+5sRKIve4eflgsYPjlL8Vihn/+E/78ZxjEqLfBUlVVRXFxMeHh4UybNo3Q0NBxLbL1ej0LFixwtxmjjr+/P/7+/litVuwX5V+Wl5dTU1ODXq9nwoQJRERESK0nxggOh4P8/HwMBgOZmZmoVCrMZjObN2/GZDKxdu3afttmeToKhcIjQ6UXI4k3iZGlqQkefBC2bIHrr4dt28R5o9+gubmZ//znP0RGRnLLLbf0usAHBgaSl5eHRqMZEyXaY5rgYHjpJTEP7nvfE/Pj7rkHXnlFrFwdJj2l9UqlkuTkZCZOnEh4eDh+Lti3NyAIgtNLPB5FrEql6vWl2FNNXFFRQWFhIeXl5cydO7fXgHSJ0UcQBHJzc2lpaWH+/PnOz69Wq+XWW2/ln//8Jxs3buSBBx6QWsCMUaRbIImRY+9eMS/rwAExlPfpp30KN6PRyDvvvIOPjw933nnnJXdEEyZMICUlhVOnTjkHbktcgdRU2LMH3nxT9HrOnSsWOAyRzs5O8vLy2LlzJ9XV1c7lKpVKEm4X0dHRwaeffkpHR4e7TRkzhISEkJGRwbJlywgPD3d6cxobG50zVyVGl8LCQurq6voU0n5+ftxzzz10dnayceNGHA6Hm6yUuBySeJNwPXY7PPOM2Eg2KQny8+Hb3+6zqazD4eD999/HaDRy1113OUf1fJOkpCTi4+MpKCigpaVlhE/AS5DJ4L77RNHm5ydWpv75z2IYexB0dXWxe/duGhsbmTp1Ktdccw3JyckjZLSEt+Ln50dqaipqtRpBECgoKGDnzp0UFRVJrUZGEavV6iwIi+ynsCksLIzbbruN6upqtm/fPsoWSgwEKWwq4VrOnRP7ke3dC7/4hfi4TOLr9u3bqa6u5t57771iKKWnA39QUJCrrfZukpLg4EH48Y/hySdh1y7417/EEGs/GI1GamtrSU5OxtfXl4yMDMLCwqR8JQmXIJPJWLp0KVVVVVRUVHD69GkSEhKYPHmy9B4bQQRBQKVSsWTJkiu+zvHx8Vx//fV8+umnREREMHv27FGyUmIgSOJNwnV8/rno6VGrxSHry5ZddvXjx4+TnZ3NqlWrBtSEVyaTOedGtrS0oFQqPbZSaNTRaMRmyFddBd/5jhjO/s9/YNGiXquZzWbKyso4ffo0SqWSmJgYfHx8iIiIcIvZEt5LT97kpEmTKC8vd3b6B3EourdXO442dXV1lJaWsmDBggG3AklPT6e+vp6tW7cSEhLiEXN7xwvSLY7E8LHZxOrGVasgIwPy8q4o3M6cOcPWrVuZO3cu8+bNG/QhS0pKyM7Opru7e2g2j1duvFH8/8TFif+j3/zGGUYtLy9n586d1NbWMnnyZFasWNFvGFtCwlWoVCpSUlLIzMwEoKmpiZ07d1JVVSXlW7mIlpYWcnNz8fX1HVSVpUwm4/rrryc2Npb33nuP9vb2EbRSYjBI4k1ieHR3w003iV6dF16ATz6BsLDLbtLe3s57771HbGwsq1atGlJVXnp6OkqlkuzsbCwWyxCNH6dMmABffQU//Sk8/TSO++8HqxWlUklCQgIrVqwgOTl5XPUqcxV+fn5cc801UhHHMNDr9YSHh1NUVMSuXbs4d+6cu03yaDo7Ozl8+DDBwcHMmTNn0NdbhULBbbfdhkqlYsOGDc6RUhLuRRJvEkOnpUXsIfbVV6Jo+8EP4Ap5FFarlQ0bNqBUKrntttuGHBrRaDRkZmZis9nIycnBZrMNaT/jFqWSpiefpPgXvxCnNKxZw6SwMKZOnerx/Y/ciVwuR6vVSnlbw0Cn05GWlsayZcsICAggNzdXqjIfIg6Hg5ycHHQ6Henp6UN+X+r1eu644w6ampr46KOPpBFoYwDpCiMxNGpqxHypsjIxAf666664iSAIfPzxxzQ1NXHnnXei1+uHZYJer3cKOKlabeAYjUaOHj3KoUOHaF25EuOmTbBvH6xYIfblkxgy3d3dHD16VArnuwBfX1/mzZtHVlYWsbGxgNheRPL8DBy5XM7MmTPJysoa9k1ZZGQkN910E0VFRezbt89FFkoMFUm8SQye4mJxJFN3N+zfL+a5DYD9+/dTWFjITTfd1G+J+mAJCAhg2bJl6PV65ygeif4xm8189dVXtLa2MmfOHBYuXIh+zRrYvRsqK0VBLnk5hozVauX8+fOSwHAhYWFhKBQK7HY7x44dY9euXZw5c0b6rF8Gu93u9FZGRESg0Whcst9p06axbNkydu3aRWlpqUv2KTE0JPEmMTgOHRK/4IOCxPYTA5x4cPLkSXbt2sXSpUuZNm2aS02SyWQIgkB2djYlJSUu3be30NTUhCAIaDQa0tLSWL58ee+BzHPnis2ULRZRmBcWus9YCYk+UCgULF26lLCwMPLz89m/fz9tbW3uNmvM4XA4OHr0KMXFxSPiAV66dCkpKSls3ryZhoYGl+9fYmBI4k1i4GzdKobWZs4U+7hFRw9os+bmZjZv3szUqVNZdoUq1KEik8mcY3gqKipG5BieiNlsdoZIey600dHRfRcjJCeLgjw8HBYvFkOpEhJjCK1W6/QYOxwOTp486W6TxhwFBQU0NTWRnp4+ItXiMpmMm266iaCgIDZs2CClrLgJSbxJDIzNm8UpCdddJ84nDQwc0GY2m41Nmzah1+v59re/PaLzHuPj40lOTqa4uJja2toRO46ncPbsWb766iuam5tJT08fWK+2yEhxrNbs2XDttWIxioTEGCM4OJglS5YwZ84cQPQsNzc3u9kq91NSUkJNTQ1paWmEXaHqfzio1Wpuv/12DAYDn3zyiRTCdgOSeJO4Mtu3wx13wNq18P77MIhBxTt27KChoYG1a9e6LO/ickydOpWJEyeSl5eHwWAY8eONVerq6jh27Bjh4eEsX76cqKiogW/s7y82XF6yROwLd/jwyBnqZWi1WqZOnSoN8x4FZDKZMwn/9OnTHDx4kBMnTozbynNBEOjq6mL69Om9UyJGiODgYG644QYKCws5Poy5yRJDQ2rkJHF5Dh4U+7hdcw289dZlR119k9LSUnJycli1atXgxMMw6ZnZN9xqVk+ktbWVoKAgIiIimD9/PqGhoUPbkUYjeluvvRauv170xs2Y4VpjvRCNRiPNfXUDc+bMITg4mJKSEhoaGkhNTR36e98D6ZlIkZ6ePqLRjW8yY8YMqqqq+Oyzz4iNjSU8PHzUjj3ekTxvEv1TUACrV4vJ7O+/D4MoNW9ra+Ojjz4iJSVlSBMUhoNMJnOGCM+cOUNXV9eoHt8dmEwmcnJy2L9/P11dXchksuF/een1Yp5jbKwo4iorXWOsF2O1Wqmrq5OqTUcZmUxGfHw8S5cuRafTUVBQMG6mMzQ2NvLll1/S2dk5qsKth+uuu47g4GDef/99qWH6KCKJN4m+qakRPS7x8WID3kEkvtrtdjZt2oRWq+XGG290ywUFxKqryspKsrOzMZlMbrFhNDh//jy7d++mo6ODjIwMfH19XbfzoCAxbK7Xi+8HKa/osnR3d3PkyBGpz5ub0Ov1zJ8/nwULFiCXy+nu7qa1tdXdZo0YbW1tHDlyhMDAQLdFGlQqFWvXrqWtrY3PP//cLTaMRyTxJnEp7e3inFKVCj77DAICBrV5z0ibW2+9FZ1ON0JGXhm5XE5mZiaCIJCTk+OV3pCamhqOHj1KWFgYy5YtG5kB8hERYg5cSwusWQNeLIQlPB+ZTObMOayoqODAgQOUl5d7XVK9wWAgJycHf3//YU1PcAVhYWGsXr2a48ePU1BQ4DY7xhOSeJPojcUCt9wCtbXiF/Ygm+mWl5dz4MABVqxY4eyK7k50Oh1ZWVkYjUaOHDniNaGUnvOIiopi9uzZzJ07d2THWiUliR7Y3Fy47z7wktdRwruZPn06iYmJlJSUkJOT41VtLXJzc1Gr1WRkZAx5zKArSU1NJTU1la1bt0qVv6OAVLAg0ZvHHxf7e+3YASkpg9q0s7OTzZs3k5yczIIFC0bIwMHj5+dHRkYGJ0+exG6393+HKgjieKjaWqirE4Ws1Qp2u1iooVKJifxRUWIeWHAwuCEkfObMGU6ePMnChQvx8fEZPZGclQX/+Y8o7n/+c/jNb0bnuBISQ0Qul5OSkkJoaCjHjx/nwIEDLFu2zCtmz86ePRulUolarXa3KYDo8Vy9ejW1tbW8//77rF+/vu9+khIuQXplJb7m3/+G116D118X20QMAofDwQcffIBCoRjxfm5DITg4mPnz5wNgaW9HfeIEZGfD8eOiWOt5DCbhVqsVRVxsLEyYAHPmwPz5Yo+0Ebig2mw2CgoKOHv2LBMnThyV1iuXcNNN8Pzz8JOfiI18r79+9G0Yw8jlcvz8/LxCHHgTYWFhLF26lI6ODuRyOQ6HA5lMNuauU1fC4XBQVlZGUlISfn5+7jbnEtRqNWvXruWf//wn27dvZ9WqVe42yWuRxJuEyMmT8NhjcP/9sG7doDfft28fp0+f5v777x97LTpaW8XGwgcPYjt4kL3HjzPR4WCyjw+kpcGkSaJXacKEr8VYZKToZVOpRK+bzSY+jEY4f7634KuthVOnYONGMJvF7XqE3IIFYqXmMC+0HR0dHD16FLPZzJw5c0alj1O//Pd/i61D7rsP8vMHPGljPODn5zdiU0QkhodGo3E2ri0sLKSzs5O5c+d6TE8+QRA4duwY9fX1REREEDjARumjTWRkJCtXruTTTz8lPj6elEFGcCQGhiTeJERBctttomh56aVBb37+/Hn27NnDkiVLmDRpkuvtGwptbbBliyiotm8Xw59JSSjnzyfuW9+iNDAQzQ03EJeYOPh9T5wImZmXLrdYIC9PnP+anQ0ffAB/+IPooVu1SnyNV6+GIVSDyuVydDodmZmZ7hfHcjm8+aYofO+6C3buHFT/PwkJdxMbG0tubi579+5l3rx5BAUFudukK1JYWEhdXR3p6eljVrj1kJ6eTmVlJVu3bmXixInuv2Z5IZJvXwKeekr0vG3cOGhhYbfb+eijjwgPD2fJIEOtLsdigXffFacCRESIXsT2dnjhBTh7FsrK4K23SP7Vr4i/+mpOlJRw/vx51x1frYaMDHjySdGO6mqoqoJnnxVbr9xxhzg3dO1a+PBDMZfuMgiCQFVVFXa7HV9fX+bPnz92LoJhYWL+27594vlJAKKH9PPPP6ejo8Pdpkhchp7xWnq9noMHD1JTU+Nuky5LWVkZ1dXVzgbkY52e/DdBEPjss8/cbY5XIom38c7778Nf/wovvgizZg168z179tDY2Mi3v/1t91U8dXTA//f/QUKC6Alqbobf/14MZ+7bB9/73iWhvenTpxMVFUVeXt7IthCZNAl++ENxxFRlJfzqV+LPm2+GKVPglVegj55gNpuNo0ePUlhYSGNj48jZNxyWLoX/+R945hlpBuoFBEHAZrN5XVsKb0Sj0TB//nxiY2Npb293tzmXxeFwMGXKFCZOnOhuUwaMr68vq1evpqioiKKiIneb43VI4m08U1kJ69eLnqBHHhn05ufOnWP//v0sXbrUPXeD587Bj38s5qr97GfiCK/CQjhwQPR+XSYvTCaTMXv2bObPnz+yLTYuJj4efvQjsd3GkSPi5IrvfQ/i4uB//1esdEXs37R//36amprIyMgY23faTz8Ny5bB3XdDQ4O7rZGQGBRyuZzU1FSmT58OQENDw5jqB9nT2mTKlClMnjzZzdYMnunTpzNt2jQ+/fTTcT1reiSQxNt4xWIRw3ghIfDqq4NueWGz2fjoo4+IiIhg0aJFI2RkP7S0iKJn0iT429/g0UfF8OTrr8OFi/BAkMvlBAYGIggCpaWlo9sVPz0d3ntPDOXecQf87ncwcSL2H/2Ig9u343A4WLx48cg03XUlCgW8845YzCH1f5PwUGQyGXa7nby8PPbt2zcmRuq1tLSwc+fOset5HyCrV68G4NNPP5U80i5EEm/jlWefFZPr33tv0BMUQAyXNjc3j2641G6Hf/wDJk8WE+afeUbMJfvd7y7rZbsSVquVc+fOkZ2dPfqz+RIS4C9/gTNn4KmnUPzlLyx//HGWnD2L71jJb7sSUVFim5lt24ZU8CIhMRZQKBQsXLgQuVzOvn37aHCjJ7mzs5PDhw8TGBhISEiI2+xwBXq9ntWrV1NcXCyFT12IJN7GI6dOiTlhP/kJDGFo/NmzZ53h0lHzDB06JFZ4PvIIfOtb4jn85Cfg7z/sXavVajIzM7HZbOTk5GCz2Vxg8OAoaWyk6oEHoKQE5fz5KO+7TwxHesqomZUrxf/NL34htlIZp/j6+rJkyRLXzpeVGDX0ej2LFi0iJCSEw4cPU1dXN+o2GI1GsrOz0el0zJs3zyt6Bk6fPp3p06fz6aefjgmvpjfg+e8KicEhCF8n8P/0p4PevCdcGhUVxcKFC0fAwG/Q1SXm5S1YINp+8CC88cagx3ZdCb1eT2ZmJl1dXRw9enTUxmgJgkBeXt7XsxcnTYLNm8X2Jg0NYsPfH/xA7B831vnNb8S+eD/6kbstcRsKhYKAgIAxMa5IYmgolUrmzZtHUlKSW1pyFBYWOucyj1o+7iiwevVq5HI5W7dulcKnLkASb+ONDz4QhcGf/wxDGBq/e/duWlpaRidcevy42Ox2wwYxt+3wYbHx7QgREBDAvHnz0A3hdRkKdrudI0eOUFtby5w5c0hISPj6yWuuERvg/va38PLL4nmfOjUqdg2Z4GAxhP3222IT33GI0WjkxIkTGI1Gd5siMQxkMhlTp05Fq9ViNpspKysbNcGRmppKVlaWxzQPHig+Pj5861vforS0lMLCQneb4/FI4m080dUF//VfcMMN4mOQ1NbWOmcDhoeHj4CBFxAEMQ8sK0vsO3fsmBiSGwVvRmhoKKmpqcjl8hEvYCgtLaWpqYnMzMy+Jyao1eI0g5wcMBhEIfv22yNq07D5znfE/9sTT4iNkccZFouF6urq0c+dlBgxmpubKS0t5fjx4yPmkXc4HBQWFmI0GlGr1WOnn6OLSUlJYebMmXz22Wd0dna62xyPRhJv44nnnhPbUfzpT4Pe1G638/HHHxMdHT2y4dKWFrEH2ve/L1aRHjokFiiMMt3d3ezevZuKiooRO8bkyZNZuHChc2RPv6Slie1Fbr4Z7r1XHF82VvNG5HKxd11JiSjAJSQ8nOjoaNLT0zl//jyHDx8ekZzYgoICqqurx0U7jeuvvx6FQiE17x0mkngbL5SUiJMGfvYzsd/YIMnOzqa5uZkbb7xx5BJoT50SW2js2QMffSSKTHcMX0d08SckJFBcXExtba3L9tvZ2cm+ffvo7u5GpVIRMNBKX19feOstscp20yYxjHr2rMvscimzZ8Pjj4sNfMeqjRISgyAqKorMzExaW1vJzs52aQi1pKSEmpoaZs+eTWhoqMv2O1bx8fHh+uuvp6SkhLKyMneb47FI4m08IAjw3e+KzWD/+78HvXl7ezt79uwhIyNj5KpLjxyBhQvFOaDHj8OaNSNznEEwdepUJk6cSF5enkvaBnR0dHDgwAEcDsfQBfB994m5f+3tYhFHaemw7RoRnn0WfHzE6RISEl5AaGgoCxYsID4+Htkg+2L2R2VlJeXl5UyfPr3v1AkvZdq0aSQkJPD555+7pbrfG5DE23hg0ybYtUvswTWEJNht27ahVqtZvnz5CBiH2B9s+XJIShLHWcXFjcxxhsCsWbMIDw+nsLBwWPkuHR0dHDx4EL1ez4IFC4aXjDxtmlh16+cnCt7s7KHva6QIDIT/+z+x2GQcjc7SaDQkJCSgcZPHWGJkCQgIcIqsyspK5wSEoaLT6UhOTu5drDQOkMlkrFq1ivb2dg4cOOBuczwSSbx5Ow6HGL66/nq47rpBb15RUUFxcTErV64cmS+kd94R+7YtWwY7d4oTH8YQMpmMuXPnMn/+/CF7yxwOBzk5Oej1erKyslxT/h8bKwrdlBS46ioYi/kj994r9hH81a/cbcmoodVqmT59utdVCkr0xmKxUFFRwcGDB4ck4Hpy26Kiopg6daqrzfMIQkNDmT9/Pvv27aO1tdXd5ngcknjzdj78UMx3+8UvBr2pzWbjs88+Y9KkScyYMcP1tr3yCtxzjzgX88MPxTDbGEShUKDT6bBarRw7dgyTyTSo7eVyOXPnznWdcOshKAh27BDbitx4o+jlGkvIZPDzn8PeveJjHGCz2WhtbZVCQV6OWq1mwYIF2Gy2QQu4trY29u7dS3V19cgZ6CEsWbIEvV7P559/7m5TPA5JvHkzgiBWmK5YMaT+aIcOHaK1tZXVq1e7LMfDyVtvie0knnxSnEnqAc0obTYbzc3N5OTkDGh4dUdHB0VFRQiCQHBw8Mg03NTpxN59d90lero+/dT1xxgO3/oWzJoFv/61uy0ZFQwGA/v37x8XVYPjnZ4UiMEIOIPBQE5ODn5+fkyYMGEUrBzbqNVqrrvuOk6dOsXJkyfdbY5HIYk3b+azz8T5pU8/PehNe+4O58+ff+VWFoPl44/hgQfgwQfhj38UPTQegE6nIysrC6PRyJEjRy6bA9fR0cGhQ4dobm7GbrePrGFKJfzrX6JQuvXWsdUgVy4XK5y3bxeLUiQkvIgeARcUFHTFmzOz2Ux2djZqtZqMjAxpCscFpk6dSlJSEp9//vmAboolRCTx5q30eN0WLBDzyQbJF198gU6nY8mSJa616+BBuOMOuOkm+PvfPUa49eDn50dGRgZtbW0cO3asz5YBPcJNp9Mxf/58lErlyBumVMK774r/7zVrYCwNgL71VrFX3zjxvkmML/R6PWlpacjlcjo6Ovr1wFVUVOBwOMjKykKtVo+ylWMXmUzG9ddfT2dnJ/v373e3OR6DJN68la++EqsQn3560AKprKyM0tJS1xcplJWJuVnz5sG//z0qExNGguDgYObOnUtwcPAl4WSj0dhLuI3qbEKtVswdjIuDVavGzoB4hUKco/vxx3DihLutkZAYEQRB4Pjx42RnZ/fpQZo6dSoLFy4ctfF7nkRISAgLFy5k//79NDc3u9scj0ASb97Kc8+JzVKvv35Qm/UUKSQkJDBt2jTX2dPRAatXQ2io2IDXw6vxIiIinOX9HR0dzuVarZa4uDjXFycMFH9/Me/NbheF8lgZaH/33aKo/M1v3G3JiCKTyVCr1a7PEZUY88hkMubMmYPRaOTw4cPY7XYEQSA/P5+Wlhbkcjk+Y7QoayywePFi/Pz8+Pzzz6XB9QNAEm/eyMGDouft5z8ftNft4MGDdHR0sGrVKtd9AQmCOOqqrg62bhUHmHsJLS0t7Nmzh/LyclpbW50Drd0aFomNhS1boKAAfvxj99lxMSoV/OQn8N574iQNL8Xf35+VK1fi7+/vblMk3ICfnx+ZmZm0t7eTm5tLQUEBNTU10qzbAaBSqbjuuusoLy+XihcGgCTevJHf/lZs5Prtbw9qs55KuczMTNeOafnXv8R8rH/8Q2zE60UEBwczceJENm/ezPbt20dscPWgmTMH/r//TxwxtmWLu60RWbcOIiPF5r0SEl5KUFAQ8+bNo7CwkJMnTzJr1iwiIyPdbZZHMGXKFBITE/nyyy/HzrV0jCKJN2/j/HkxbPbd74qVfoNgz549yOVyFi9e7Dp7Cgvhe9+Dhx4SCxW8DEEQMJvNztzAMdVs8rvfFQX8unVw5oy7rRFD5Y8+Kgr5ri53WzMidHZ2smvXLjo7O91tioQbMZlMBAcHk5aWJrUEGQQymYyrr76apqYmjh8/7m5zxjSSePM23n5bDFENUii1tLRw9OhRFi9e7LqEWoMBbr8dEhPhxRdds88xxokTJ2hoaOD2229n4sSJY2vQskwGr70mjtG6804YC2X4990nvi82b3a3JSOCw+HAYDBIXoNxTkBAgLMFxtGjR6WGvIMgKiqKWbNm8dVXX0nh5ssgiTdvQhDgjTdEb0tQ0KA23blzJ76+vmRkZLjOnh/8AKqrxTwnL0zUNZvN1NfXO8Mi8+bNIz093d1m9SY4WJy8kJMDzzzjbmtg0iRxju0bb7jbEgkJl9PR0YHdbsff35+pU6c6ixROnDhBXV2du83zGJYvX47RaCR7LM5tHiOMQgOq0cNisfDaa6+xfft2Ojs7SUxMZP369cybN++y2/3rX//ijT6+TNRqNV9++eUly7du3cqGDRuoq6sjLCyMW2+9lVtuucVVpzF0cnOhuBheeGFQm509e5aioiLWrFnjugrJgwfFHLeXXxbz77wQjUbD8uXLnX3cen52dXVRWFjInDlzxkY/p/nzxeKV3/xGrPp09yzFdevg/vtFYT9pknttkZBwEZ2dnRw8eJCJEyf2qtSfNm0aJpOJ3NxcFi5cSGBgoPuM9BB68gYPHDjA3Llz0ev17jZpzOFVnrfnn3+ejRs3cs011/D9738fuVzOj370IwoKCga0/VNPPcXPf/5z5+MnP/nJJet8/PHH/P73vyc+Pp4nn3ySGTNm8Kc//Yl33nnH1aczeN54A6KjxVmXA0QQBL788kvCw8NJTU11jR02mzj6Kj0dHnnENfscQ7S3tzt7OfXVgFcmk9HR0UFOTs7IT1cYKD/5CUycKObBubsM/5ZbwNdXHJEmIeEF9HiJdDodycnJvZ6TyWTMnj0bf39/jhw5IoUCB0hPg/h9+/a52ZKxidd43oqLi9m5cyePPfYYd955JwArV65k3bp1/PWvf+Wvf/3rFfexdOnSy94Vmc1m/vnPfzJ//nyeffZZAG644QYcDgdvvfUWN954I35+fi45n0FjNsN//gMPPzyo5rcVFRVUVVVx5513Ih9kgUO//O1vkJ8vhuo8tBFvf5jNZg4fPoxWq+13vI1eryczM5ODBw9y9OhR5s2b57rXdqhotfCXv4jNe99/H267zX226PWwdq14s/Hznw+6sGYso9frycrKkjwF4wiLxUJ2djZyuZzMzMw+oxdyuZx58+Zx9uxZ9/R/9EB8fHxYtGgRu3fvJjMzk6BBpgJ5O15z1dyzZw8KhYIbb7zRuUyj0bB69WqKioqor68f0H4MBkO/DQKPHTtGe3s73/5GC46bbrrJ2VnfbXzyCbS2iuGoAeJwONixYwdxcXFMnjzZNXbU14tfyA89JE5S8CIcDgdHLsznvJIgCwgIID09naamJk6MlakC118v5kP+13+Bu6sh162DqirwsnE4SqWSsLCw0RmJJjEmOH/+PBaLhaysLLSXaT6u1WpJTEx0euYlrkxWVhY+Pj7s2rXL3aaMObzmClNWVkZsbOwld7wpKSkAlJeXExERcdl93H777RiNRnQ6HYsWLeKJJ54g+KKGsj2VhFO/kTM0ZcoU5HI5p06d4tprr+1z301NTb3Gfpw+fXrgJzcQ3ngDMjPhwvkOhBMnTlBfX8+DDz7ouoa8P/qROGfTCzvpFxQU0N7ezsKFCy97ke4hLCyM2bNnj6077RdfFN8jzzzj3n5rixZBQoL4vnX1/NwRoqctjMlkwmg0YrFYkMvlzlYQlZWVdHV1cfbsWWJiYtDpdMTGxqLT6WhpaaGzsxOtVotWq0Wn042NfEiJYRMXF0dkZOSARwl2dXWxd+9epk2b5pzSItE3KpWKZcuW8cknn7BgwQKioqLcbdKYwWvEW3NzMyEhIZcs71nW1NTU77Z+fn7cfPPNTJ8+HZVKRUFBAR9++CElJSW8+uqrTkHY3NyMQqG4xH2rUqnw9/e/7Ey2LVu29FkU4RLq6uCLL+Cllwa8ic1mY9euXaSkpLiuD1FenpjH9I9/QB//C4/BYICSErEXmdEIFgtoNES0tREVEEDgIEZ7RUdHA+IXf3Nzs2ubHw+FuDhx3u2vfiXmv8XFuccOuVz0Ev/+92I4d4yEGbu6uujo6HAKNJPJRFhYGBMnTqS5ubmXd10mk+Hj4+P8/NTU1NDa2sqJEycwm834+PgQGhqKTqejvr6e8vLyXseKi4tj1qxZdHd3U1paik6ncwo7nU5HQEDAqJ67xODIz88nKCiIiRMnDmoGtK+vLwkJCRQXF+Pn50dYWNgIWun5zJ49m0OHDvHll19y7733utucMYPXiDez2dynh6Pn7tZ8mRmPa9eu7fX3smXLSElJ4dlnn+XDDz/knnvuce6jv3CIWq2+7DFuvPFGFi5c6Pz79OnTPPfcc/2f0GD4/HNwOODWWwe8yeHDh+ns7GTFihWusQHg178WvSnf+Y7r9jnSCAJUVMChQ5CdLf4sKBBng34D5z2fSiXOjc3KEis5s7JEEXQZ7+W5c+c4duwYc+bMISYmZmTOZaD8v/8neuB+/3uxGthd3H47/M//wO7d4tzbUcRqtdLW1kZraystLS1Mnz4dPz8/Tp8+TWVlJQqFwimkeggICCAjI8Mpsr7pOVu6dCnt7e0oFAqWLFnSS3ylpKQwdepUp+fOZDI5vbc2mw2TyURraysmkwmHw4FWq+WaC4VHhYWFaLVagoODCQgI6DfXUmL0KCkp4cyZM0O+GUtJSaGzs5Pc3FwWL14s5UheBrlcztVXX82GDRuoqKggMTHR3SaNCbxGvGk0Gqx9NCHtqewZzJ0RwDXXXMPLL79Mbm6uU7xpNBpsNluf61sslsseIzQ0dOS8Ltu3i5WdA9y/xWJh//79zJ4923U2FRfDBx+IXjdPyPepqxM9Pv/8JzQ0iMumThWF2KOPiuOlAgPpFgQO5eaSkpBAdFAQtLTA0aOi0Pv0U/jzn8VtY2PF7R57rM/ZrTExMTQ2NnL8+HHUarV777b1ejHv7ZlnRC/cBe/gqDN5sih6t28fUfEmCAIGgwFfX18AcnJyaLjwP1epVAQFBTmb6iYnJzN58uQ+bwRVKpUz9UKw2XB0dyM4BEAQb54EAVtbG/auLuxtbdhBFPRyOSBDppCj0WguCbn7+/uzYMEC599ms9l5LRMEgc7OTs6cOYPdbkcmk+Hv78+8efPQ6XTYbDYpv26UqayspLy8nOnTpw/5RqxniP3+/fspKipybX9NL2TKlClMmDCBr776ioSEBNel+XgwXvOpDwkJobGx8ZLlPaHMoYiU8PDwXomlISEh2O12Wltbe4VOrVYrHR0dfYZtRxy7HXbsEIXDADl27Bgmk8m1Y7Cefx5iYsQO+mOZkyfFmZ///rfoQXvgATGRPyPjEtHlcDg4un8/svBwwmbPFtcHMbfwiSfE3xsaxKrarVvh2WfF12H9elEcfSMkmZqaisVi4ciRIyxYsMC9/Z6eeEL0vL3wwqD7AroMmQyuvRa2bXP5rtva2qivr6e1tZXW1lZsNhsrV65ErVYTFRVFdHQ0wcHBl3g81Go1gtWKvcuAYDYhmM04TGYEixnBZMJhtojLbX23gDF2dWGpqKRb74vqgli85LRVKmQaNXKtFplGg1yjQabRINNqkavVqLVa542gTCZj/vz5ThHXcz49zx85coTOzk6CgoIICgoiKipK8uKMIHV1dRQVFZGYmDjsfDWVStVvdapEb2QyGUuXLuXtt9+murqa+Ph4d5vkdrxGvCUlJXH8+HEMBkOvi1dxcbHz+cEgCAJ1dXW9evb0/F5aWsr8+fOdy0tLS3E4HJf09xkVjh+H5mZYuXJAq9tsNg4cOMCsWbNcJx4qKsR5lX/8I4zVJOzcXFFcbdkCERFiztcjj1x2EkVJSQmdnZ0sWrSo/wtseDjccIP4ePZZMe/w5ZfFn7fdBr/4hbOIRCaTMXfuXA4dOkRtba17xVtAgDhz9g9/gJ/+dMBeW5dz7bXw6qtw+vSw8++6u7vx8fHB4XBw6NAhZDIZwcHBJCUlERQU5PRQTZw4ERA/4/auLhwdHdjb27F3dF5WmA0ElVJJVGgoqst4wwSrFcFqxdFl6HcdmUqJXKdD7uePIjAAhZ8f/v7++Pv7E3fR65SUlERzczOtra2cOnWKkpISMjMzCQ8Px+FwuL9FjZcRHBzsHHvlCnwuTJ7p7u6mo6NDGmB/GRITE4mOjmbv3r2SeMOLxNuyZcvYsGEDW7ZscfZ5s1gsfPbZZ0ybNs0Z7qivr8dkMvW6ALa1tV3yRfrRRx/R1tZGZmamc9mcOXPw9/fn448/7iXePv74Y7Raba9lo8a2beLsyqysAa2el5dHV1cXixYtcp0Nv/udWKCwfr3r9ukqHA7Rw/Tzn0NysigU7rkHrhBGb2xspLKykhkzZgw8cTw8XAxF/vjH8K9/icJozhwxv+zhh0EmQ6FQkJWVNTbylp58UhTcL74Irsq/HCwrVohhxR07hvT+aW9v59y5c5w7dw6TycTKlStRKpUsWrQIX1/fXuEVwWrF1toqCrX2dhydncMSan3ho9WS5oK2O4LVht3aib2jE+vZswDI1GoU/n4o/P2RBwSg8PcnLCzMGYK32+00NjY6IwA9N7PR0dGSR26YdHR0oFar0Wq1I3KTXlVVxenTp1m8eLH7eoWOcWQyGYsXL+a9996jpqbGdYV2HorXiLdp06axfPly/vGPf9DW1kZMTAxffPEFdXV1/PjHP3au9+tf/5q8vDz27t3rXLZ27VquuuoqEhISUKvVnDhxgp07d5KcnHxJ37gHH3yQP/7xj/zyl78kIyOD/Px8tm/fzkMPPYS/v/+onjMg5gtdddXXIb3LYLfb2b9/P9OnT3ddrltrq1hh+qtfgasG2ruK+nq491748ktxwsD//u+AXicQ77BnzpzJpKGMb9LrRa/W+vXw1FNiSHvnTjEfMDDQ6QFqbGzk5MmT7gudhIaKovKvfxU9hIPMC3UJQUFiyHrbtkGJN4fDwZ49e+jq6kKlUjlDoT2i2M/PD4fRiK2l5YJXrQNHt3GkzqKXXUazGZ1G43Kvl2CxYGtqxtZ0oapdBnK9HkVAgPgIDu7luYmNjaW2ttbpkQsICCA1NVWqYh0kBoOB7OxsgoODR2x28dSpU2lsbHQWMIyJm7sxyNSpUwkPD2fv3r3cfffd7jbHrXiNeAP42c9+RkREBNu2baOrq4uEhAR+97vfkZaWdtntrrnmGgoLC9mzZw8Wi4WIiAjuvPNO7rvvvkuSi2+66SaUSiXvvfceBw4cIDw8nO9+97uXVKyOCh0d4gzRP/1pQKufOHGCtrY2p2fSJWzYII7DWrfOdft0BV9+KXrYBEEUBgMcGeZwODAajej1+qEJt4vR6eCVV0RxvX69WKG6YYOYM4fYtLOrq4sjR46QlZXlnhDX+vWi923rVnFslTtYuVJ8D9vt/U7ksFgsVFdX09jYyIIFC5DL5UycOBF/f39CQkKcr53DaMTa0ICtoQF7Z9dongUAnd3dHCwoYMGsWQT0k/PmMgRwdBlwdBmwnj0HMlAEBqIKD0cZFkZERAQRERHY7Xbq6+s5d+6cM1euqqoKmUzGhAkTJKFwGcxmM9nZ2ahUKmbNmjVix1EoFMydO5d9+/ZRWFjoulGFXkaP9+2DDz7g/Pnz47rvm0zob5yAxIhy8uRJHnroIV599VWmTJkytJ1s2QJr1kB5OVyhfNrhcPDyyy8TGhrqWvGWmSmGCz/5xHX7HA6CILYs+eUvxZDcv/8Ng8gjKSkp4fTp06xYscK13rCqKrjzTjH37k9/gscfB6ClpYVDhw4RERHB3Llz3VNF5e7/4cGDsHChWMF7UZoCiF6PyspKampqALFvXk8/xh4cJhO2HsHW4d7JEe1dXaMn3i7HN4Sc7Bu5qAUFBZw5cwaVSsWkSZOIj4+XmgZ/g578YIvFwqJFi3q1jRkpampqOHHiBMuWLXPmw0n0xuFw8NJLLxEREcHtt98+asd1yXe2C/Eqz9u4Y/t2sa/aAPrelJSU0NzczM033+y645eUwOHDsGmT6/Y5XJ59Vuwd9j//Iwq4QXizGhsbKS8vJyUlxfVhzPh42LdPDKP2VKo+/jjBwcHMnTuXo0ePUlpa6pwIMqqsWyeGeevrxWKO0SYjQyyg2LbtEvF29OhRTCYTSUlJTJo0ySkwxpJgG5MIYG9tw97aBqdOoQwKQtkj5C54kZKSkqisrKSiooKKigqWL18+KgLFU2hra8NsNpOVlTVqr8uECRMICwsb0ASX8YpcLmfRokVs2bKFhoYGwsPD3W2SW5BKkTyZXbsGFA4UBIG9e/eSmJjo2gaxb74pttf41rdct8/h8Pvfi6LtN78Rc/AGIdzMZjPHjh0jPDx85JpAqlSi1+3JJ0UB969/ARAZGcmcOXOcVZCjzh13iOHKd95xz/GVSli+HOGrr6ivr+fgwYPOFj1z587l6quvFnuvKRRYas/SnZuL4eAhzOUVknAbCALYWloxlZ6k68ABjHl5WOsb0Ol0zJgxg6uvvpoZM2Y4BUpJSQltbW3utdmN9ASjQkNDWbFixajnMmu1Wux2O2VlZc7+gxK96cnd3O9ls5EHgyTePBWjUexZNoAE2lOnTlFfX88SV86QtNvFkORdd7kn0f2bvPOOWOX5i1+IrS8GSVFREQBpaWkjG7qUycQcs0cegYceEseaIYYD9Xo9VquVurq6kTt+XwQFiQPrX39dDDuPMg6Hg7bkZGxHj3I4JweHw4H9woQLX19f5HY75soqUbCdOoW9XRrqPWQcgijkiorozs7GUluLSqFw3jiYzWbOnz/Pvn37OHjwIPX19Yy3zJqioiIKCwsB3JYPaDAYOHnypHOetkRvFAoFCxcu5MSJE7S0tLjbHLcgiTdPpahIbINxhSTaHq/bxIkTe7VHGTZ798K5c2OjKe+BA2Kz3XXrxIrSITB16lTS09MHPYljSMhkYi+4668Xe8Fd+KIAcWza0aNHR1/A3XefaMeFvoijyalTpzil0aDq6mJxfDyLFi0Spx50d2M6eRLDoUNYqqsR+pigMtYI8PXl+gUL3JvvNkAcRhPmU2WiKK6swnFhSszy5cuZN28eDoeDw4cPk52d7W5TR42ysjKqqqrc3q7D39+f5ORkysrKejWKl/ia2bNno9frx633TRJvnkpBgSgCZsy47GpVVVWcPXvWtV43EPOTIiJg7lzX7newNDTATTeJfe7+/vfLzhftC4vFgs1mw8fHZ3QnZCgUYmPj+HixwW+XWBmZmJhIVFQUubm5zukgo8JVV4FWOyLTDvqivr6esxf6l02aNInpd90FQOCZM9jb2zGeKMSQk4P17DkEuxQ6GkkEqxVLdTWGgwcxnTyJYDQSGRnJokWLWLhwobPq2mKx0N7e7l5jR5AzZ85QWlrKlClTXHujO0SSk5Px8/Pj+PHjUvi0D1QqFQsWLCA/P9+r35f9IYk3TyU/X2w6e4WKpEOHDhEZGen6PK7t28V8O3d3cP/xj8UQ7qZNQ5rukJ+fz6FDh0bAsAHg5wcffijOWX32WUAshZ89ezbBwcEcOXJk9O66dTpYskT8v44gBoOBw4cPc/jwYc6fPw+IOT76qVMRAgKwfP453bnHsDU2ggdG67qMRg6dOEGXceR7yrkch4D17DkMOTkYT5zA3t5OcHCwsx1DVVUVe/fupaCgwDkz2ltoaWmhoKCASZMmMdkFTZZdgVwuZ/bs2XR1dTln8Ur0Jj09HZVKxZEjR9xtyqgjiTdPpaDgiiHT5uZmysrKyMzMdG0eV329OJZrgCO5RowDB+CNN+C3v4UhDHo/e/bsJSPQRp2EBHE4/B/+4AxZyuVy5s2bh4+PD62traNny8qVsGePmE/pYhwOB6WlpezevZuOjg7S09OdDU+t9fUYcg5jj4tDVjT6YVtXYrfbaevsdObseSQC2Bqb6M49RvexY9guvAcnT57MjBkzOHfuHLt27aK6utpr8uECAwOZMWMGM64QyRht/P39Wb58uTQ2qx/UajWzZ88mNzcXqwekVbgSSbx5IoIwIPF25MgRfHx8XH9B+vJL8ecAG9+OCDab2CstIwMefHDQm5tMJk6cOEFMTIz7L4w//CFMmiRWoF74MuwZ8dQTvhmVsMm114LJBCOQQyKTyWhtbSUpKYnly5cTFRWFvauL7mPHMBUV4+juxpGQgLyy0uXHlhg69rZ2jMfzMBYWIVgsxMfHO/9/hYWFdHZ6drVvZ2cnra2tyOVyJk2a5J4+i1egp9/b2bNnpfBpH8ybNw+TyeQsMhkvSOLNEzl3Dlpa4DJduM1mM8ePH2fu3Lmu71m2bRukpbmkJ9jKTSt5ev/Tg9/w5ZfhxAlxgsEQQrcnTpxgh2EH95+4f/DHdjVaLfzlL7B7N2ff/Rsz35zJR+UfOacGVFdXc/DgwZH35kyfDtHRLst76+jo4ODBgzQ3NyOTycjKymLKlCnIHQ5MJ0/RfeQI9ravc1UcCQnIa2vAy0Jy3oCtoUGsTq2uRq1SkZqa6myjIQgCpaWlmEwmd5s5KIxGI9nZ2c5K87GMwWAgLy+PU6dOuduUMUdwcDDJycnk5OR4jSd4IEjizRPJzxd/Xsbzlp+fj9Vqdf0sPkEQh4gPwOt2qvUUP9j9A67ddC1z/z2XFRtX8ND2h3inZJj9xM6fF1uCPProkAsm4uPjh+Vx21C6gY/KPxry9pdw3XVw883w3K8veSooKIjOzk6OHj06snfeMpnofduxY1i7sVqtFBYWsnfvXsxmcy9vhvXsWQzZOeKw9W9cZ+2JicgcDuTV1cM6vsTIINgdmCur6D58GFtTk7MvnMFg4MyZM+zatYvy8nKP8A5ZrVays7ORy+UjNq/Ulej1epKTkykvLx+XyflXIjMzk7q6Os6cOeNuU0YNSbx5IgUFYrJ7PxVRgiBw+PBhpk6d6voh1OfPiwn2CxZcdrW8hjzu2HoHJ1tOckvyLfws82fcPPlm5DJ5L/H2yU2f8KsFvxqcDX/8o9jY9deXCp0r0fPFEhoail6vH/T2Pbx38j0+Lv94yNv3yR//CG2X5rgFBASQnp5OU1MT+T3CfaSYP19sGTJEL0pnZyd79uyhpqaGlJQUli5dSnBwMPa2NoxHj2I6earflh+OuEkIMhnyyorhnIFb8dFqmZWcjI8Xd8h3dBsxFpzAWFCAo7sbX19fli9fTlxcHKWlpRw4cIDu7m53m9kvdrudnJwcLBYLWVlZHjPNICkpCT8/PwoKCsaVh2kgJCQkEBoaSk5OjrtNGTWk8VieyMmTMG1av20xKisraWpq4oYbbnD9sQsKxJ9XGJz8j4J/4Kf2491vvYu/uneH8mbj1y0w1IpBVojabGJz4HvuEZvLDpLi4mK6u7vJyMgY9LYjzsSJoueL8ku8UmFhYaSlpXHs2DECAgJISEgYGRtSU8X+gcXFMGfOoDfXarUEBweTkpKCTqfDYbFgKi/HWld/5Y11OoTISORnaoZg+NhApVQSM4TiGU/E1tSMraUF9cSJqOPimD59OjExMeTm5tLU1OS+iSFXwGg0YrFYyMzMHNYN3Ggjl8uZOXMmBw4c4Pz580RHR7vbpDGDTCYjIyODL774gvb2dtc7LcYgkufNE6mrgwvl+32Rk5NDZGTkyFw88/Mv6/XroaazhsTAxEuEG0CI7ut+at/Mefuo/CNmvjmTY/XHeD7neZZsWMKC/yzgfw/9L1a7lY4vPuZnNyhYMC+HBe8u4A9H/9DrLvRI3RFmvjmTI3W9S8fPdp1l5psz+aD0g8v2c/uw7EMe3PYgS99bypx/z2HNR2t4r/S9Xuus3LSS8rZyjtYfZeabM5n55ky+88V3nM93WDr43eHfcfX7VzPn33NYtXkVr514DYfQO5zUYeng6f1PM/8/81nwnwU8vf9pOm++MGqsj9BhTEwM6enpI/ulOH26eFMwCA+f2WwmNzcXo9GISqVizpw5aLVaLDU1dGdnD0y4XUAIDkY+mhW2LsZitXK6rg7LeKl8cwhYqk9jyM7G2tBAYGAgy5Ytc75Hz549O6Yqbx0Oh9NTGBgY6G5zBk1wcDBZWVnO9i0SX5OamopKpeLo0aPuNmVUkDxvnkh9vVhl2QctLS2UlZVxww03jEzlVEEBzJx5xSKBaN9o8hvzKWstIzlo8K04nj/8PCG6EB5Pe5yCxgI2ndqEn9qP/LINRAYH8eS8/2Lf2f28XvQ6SUFJ3Jh442X31yPwNFoN8fHx/a638eRGEgMTWTZhGQqZgj21e3gu5zkcOLhz6p0A/CjjRzyf8zw+Kh8emvkQ8LUgNdqMfOeL79DQ3cDayWuJ1EeS35jPn479iSZjEz/O+LHTnu/v+j7HG46zdvJaEgIS2HVmF08LJaIhB/bDNf/vEvt6LtoGg4GOjg7XX8R9fSEx8WsP6xVobGzk+PHjgFjB2+NtMxcXY2sZvAhzBAUh82DxZjSbKa6sJNDXF7WrC4XGMILZgqmwCHt0C5oLrXeMRiP5+fmUlZUxd+5ct08tKC0tpbW1laysrDFZVTpQwi54do1GozPvUAI0Go2zbciSJUtcX6g3xpDEmydSX99vpeeRI0fQarXMnDlzZI5dUACLFl1xtfun38/jXz7O2k/WMiN0BnMi5pAVmcW8qHmo5Ff+UIVoQ/jrir8ik8m4Y+odnOk8wxuFb7C2oJVfzPwvmHoHt05ey8oPVvJh2YdXFG9158VxU7Gxsc4qzr54/brX0Sq/zoG5K+UuHt3xKG8VveUUbysmruCl4y8RqAnkhsTeoem3it6iprOG9294nzh/0Tt525TbCNOF8UbRG9w//X4i9ZF8VfMVufW5/GDuD/jODNFrd/uU23lg2wPijrKzwWzud25sdXU1VVVVZGZmOi/mLmPWrCuKN0EQnLMXw8LCmD17NhqNBltLC6biEoQhVowKQUHIS0qGtK2E+7GeO4+9vQPt9OnofPUsXryY3Nxc9u3bx4wZM9wWSq2qqqKsrIzp06d7tHDrobm5mUOHDrFo0SKP9CCOFBkZGeTk5FBYWMjs2bPdbc6IIoVNPQ2HQxwJ1Yd4s1gsI9ceBEQxUVp6xXw3gAXRC3h71dssm7CMU62neL3wdR758hGufv9qvjrz1RW3vyn5pl4X2ZmhMxEQuHlvK9x9NwAKuYLpIdOp7aq94v56PG++V5g5ebFw67R00mpqJT0yndquWjotV+5ptf30duZEzMFf7U+rqdX5yIrOwi7YOVovuvT3nd2HUqbk9im3O7dVyBXclSKOicJggK1b+z1OSkoK4eHhHDlyhLa2tivaNShSU8Ww6WWSoru7u6mqqiIlJYXMzEzUajXmigqMeflDFm4gijdP9rxJgMNgwJh7FOvZs/j5+bF48WJiYmLIz8+npmb08xnPnj1LYWEhiYmJI5crOsoEBwfj7+8vFS98g+DgYJKSkjh8+LDXvy6S583TaG0Vk/b7EG8FBQWYzWbmzZs3MseuqBCPPW3agFafETqDF5e/iNVu5WTrSXae2cm/i//ND/b8gE03bCIxsP+RXVH63uFAP7UYcomYtbDXufuqfekwX3mEVHTMwJJ7jzcc5+W8lyloLMBo6z1poMvS5bSjP850nOFU6ymWvNf3LNkWYwsA57vOE+oTio+q93izSf6TxF/iJsH778Mtt/S5H7lczty5czl06BA5OTksWrTIdcnX06ZBc7P4CA3t9VRjYyPBwcHo9XquvvpqVCoVDpMJU1ER9vbhj/ISgoKQtbWJNynuHr0mMWQEu9jLz9bahnbKZFJTU4mMjHR6ia1W66iEtXr6o8XGxpKSkjLixxstZDIZM2fOZP/+/Zw+fdo5f1ZCbBvy9ttvU1NTM2aLZlyBJN48jfoLyd99iLdjx44xefLkkau0qRNDjwyyykmlUDEjdAYzQmcQ5x/HLw78gu3V23ks7bF+t1HIFL0XXLiLUsy7NNdPuMwQzPb2dmpqavCNvbzHDaCmo4b129YTHxDPD9N/SKQ+EpVcxb6z+/h38b9xcOX+VQ7Bwfyo+c5Q6DdxirMrkZwE7+ZddhWFQuEMExiNRteJt548uro6p3jracRaXl7OrFmziIuLQ6VSYWtsxFRaimC1ueTQQlAQMrsdOjvBAyvGlAoFIYGBKBWKK688DrA1NNDdKYZRIy5cs7q6uti/fz/Tpk0b8S9XvV7PnDlziIiI8Ipw6cUEBQUxceJESktLiY6ORj2E2c7eSGJiIsHBwRw7dkwSbxJjiH7EW319PefOneOOO+4Y9WMPhukh0wFoNDYObsOeMTzTp192tZ7q1g6L6AUqKirCYrHQFdx1xUPsrt2NxWHhL1f9hSjfrz1/36xcvRwT/CbQbetmfvT8y64X5RtFzvkcuq3dvbxv1R3V4i+xE6BsM3R3g49P3ztBnO23aNEiZDIZgiDgcDhQDFc49Px/6+thxgwcDgf5+fnU1tYyffp04uLiEBwOzGXlYrNdFyIEBQMgb23F4YHiTa/TkTFAz/R4wWE00X3sGJqEBNQTJ+Lj40N0dDT5+fmYzeYRmS1sMBhoa2sjJibGqyszU1JSUCqlr/GLkclkpKamcuDAAVatWuW1olaKS3ga/Qio/Px8fHx8RnbIen096HRiReIVOHy+75yDfWf3AYPwQPXQ4/W7whdjtG80CpmC3Ppc6uvraW5uZtq0aWw8tfGKh5DLxI/DxZ68Tktnn5MUfJQ+febArZy0kvzGfA6cPXDJcx2WDmwO0UO1OGYxNsHGeye/bkNid9j5T8l/xD8mxIqhwwGM7unxKBQWFpKTkzP8DvcXiTeHw8Hhw4c5d+4cc+fOJSEhAYfBQPfRoy4XbiBWmwLIWltcvu/RQBAEbHa71+fbDBqHgLm8AmN+PjKbjVmzZjFlyhRKS0spLCx06etlNpvJzs7m1KlTHjHtYTio1WqmT5/utQJlqKSmpmKxWCguLna3KSOGJNk9jfp6cRbmRWX3DoeDgoICZs2aNXyvy5WOHRHRb3Pgi3n+8PMYbUZWTFxBfEA8VoeVvIY8tlVvI8Y3hm8nf3twx26oBz8gNvayq/mp/bg27lreLXmX2ppaonRRfFbwGS2mK4uBBdELUMlVfHfXd1k7eS3d1m4+KPuAYG3wJZ7ClJAUNp7cyN/z/85E/4kEa4PJjMpk3Yx1fFXzFd/d+V3WJK1hWsg0jDYjp1pPseP0Drbdso0gbRDLJixjdvhsXjz2Ime7zpIYmMjO0zvpsl7wEMbGiq9zQQEMMIcxJiaGQ4cOcezYMebOnTv0MJGvryjS6+uRy+UEBQWRmJhIWFiYOCnhxAmXhUm/ieAUb55ZtNBhMHCwoIAFs2YRMICbnPGGrbmF7mPH0M2axeTJk9FoNJw6dYqkpCSXTDqw2WzOG5gFCxZctrLcm6itraW1tXXkugx4GIGBgcTHx5Ofn09aWpq7zRkRJPHmabS0QEhILwFVXl5OV1fXyL9JL9Oi5Js8lf4U26u3s+/sPjad2oTVYSVKH8XtU27n4VkP99m894rH9uMS4Xiy5SRWR++GqD/N/CkGk4H9dfvRmrRcF38dT819ipu23HTZQ8QHxPOHZX/gL8f/wgtHXyBUF8ptU24jSBPELw/+kneK38FX7cvjaY/zaOqjnDec5/Wi1zFYDaRHpJMZlYlOqeON697g1ROvsr16O1sqtuCr8iXOP44n0p7AVy1+octlcv5y1V/43eHf8Wnlp8iQsWzCMn4474es/WQtqNWQnDzgfmsgVlrNnTuXo0ePUlhYOPQLuUyGIzyc7ooKfIEpU6YAYGtsxFhUBI4R9CrpdAhKJbKOK1f2Sngmjm4j3ceOo0sVcydjYmJQKpXYbOINwVDDgA6HgyNHjtDd3c2CBQvGVQ80h8NBdXU1EyZMkFqHXCAtLY0PP/yQtrY2r3xNJPHmadhs4hf7ReTl5REZGTmsQesDYhDibVHMIhbFXLkf3LZbt/X6+9tJ3+bbSd++ZL3HN9fz+PLlcH/vkVhXx13NybyT/C3/bzya+igAQdogXl75MgaDoVcS/4n7T/TeZ9rjPJ72eK9lyyYsY9mEZeIfZWXwr39BdTVxPjH8ou6f3HDdDwAI1YXy8oqX+zwnH5UPT855kifnPHnZcw/QBPCbxb+5ZLnTzlnvDGrSAUBkZCSzZs0iPz+f0NDQIeX7dHR04NDpMJaX4+NwIJfLsZ49i+nUqUvGdrkcmUycWzuGuvJLuB7BYsF4/DjamTNRXvC2Hj9+HKPRSGZmJpp++hteDpvNhsPhYN68efj7D/Lm0MOZMGEClZWVFBcXs+AKc6fHCykpKXz66afk5+ezdOlSd5vjciTx5mnYbHBRaLS7u5uTJ09yzTXXjPyxOzuvOBZrxDh3Tpz9+Q16BNvLeS87/+7q6kKv1w+v+vL112H9etELJTiYhcAnyJBHaOHKbe5cQ1zcoDxvPUycOBGdTkfoN9p8DITm5maOHDlChp8f4T4+yOVyzFVVWKqqB72vIaNQSOJtHCDY7Bjz89GmTEMVEc6UKVPIyclh//79ZGVlDerza7VaUavVLFy4cAQtHrvIZDJSUlI4fPgwDQ0NhIeHu9skt9OTD5iXl8eSJUu8rtp4fCQEeBM2m+iZuEBPsu+o5DrY7b2OPaqYzWKuXx88mvooT6Q9wct5L/PKsVfYv38/5eXlQz9WWZko3BwOsNuROwSUDpA7BHjwQRjOvgeDViue9xAICwtDJpPR2NhIXU+xxxVobGwkOzubgIAAAkNDkQsCppOnRle4AcgVYrsQCe/HIWAqLsJSW4u/vz8LFy5EJpNx4MAB2tvbB7SLsrIy9u7d6wy7jlciIiIIDg7m7AgUEnkqaWlptLa2cubMGXeb4nIk8eZpfEO85eXlMXnyZNf1+BrEsUcNQQCTqV/xBl8LuL+e+Cs7unYMr7/Pv/7Vf1GGTAavvTb0fQ8GjUY872FQU1NDbm4uLS1XLtjw9/dn0qRJZGZmIlMqcbS0jkhF6ZUQFApweKZ48/PxYcW8efhdpr2LxDcQwHyqDHNlJT4+PixatAidTkdzc/MVNz1z5gylpaVMmDBBapkBzJs3z+vHQg2GiRMnEhQURF5enrtNcTmSePM07HZn5/mGhgbOnTs3etU0Fx17VHE4RAF3hY7s66as4xqfa9hu2M7rpa8P/XjV1TiEfloMCAJUVw9934NBpQKr9crrXYa0tDSCg4M5fPgwHR19T0A4f/48JpMJjUYjzn50OLB3dSGYjH2uP+LIZWD3zBYPcrkctUo1bqocXYml+jSm0lJUKhULFy50jrKy9DNurb6+noKCAuLi4pg8efJomjpm6WkZ0tbW5vVtUgaCTCYjLS3N2e/Tm5CuMJ7GRcnceXl5I9/brZ9jjyoKhfi4woevvLyca/2u5bFZj/Fy3sv8Lf9vQzrcMZ9WHP1l5stkMFqjaCyWfgfTDxS5XE56ejo6nc45ieFizp8/T25urjOs4LBY6D52TPT4uWtKgMPhvmMPE4PRyNHSEgxGNwlfD8d67jymwkJkF/q+nT9/nl27dl0SQrVarRw7dozIyEipPcY36O7uZt++fdTWXnnm83igp+dbSUmJu01xKZJ48zSUSrhQVTUqvd0uxp2J5AMIIfr7+zN16lQen/24MwdusALub/l/4xeTK5HTT9hUuJD3NhqYTMMWbwAqlYqsrCx8fX173Y03NjZy7NgxoqOjSU5OxmE2Yzx2DEeXAex2BDd5j2R2u8eKN5vdTmNLKzYpZ2/I2BqbMOYXINjthIWF4evrS3Z2Nl1dX09JUalUZGZmMmfOHK9LRB8uPj4+REVFUV5eLjWL5uueb94WOpXEm6dxwftVVVVFV1cXs2bNGt1jDzOMN2S0WnFU1GWYOHGic0DzxUUMAxVwf8v/Gy/nvcwN1/0A+Wv/EkPECkXvn6+9BklJwz2bgWE0XjbPbzBoNBrmz5+PXq/HZrPR2NjIkSNHCAsLE8PuNhvGvHwc3Rc8RjY3CiiHQ8x7kxi32NvaMBUWopDLna1DDh06REtLC6dOnUIQBIKDg6XwdD8kJydjMBg4d+6cu00ZE6SmplJVVUVnp/f0j5QyPD2NC563kpISgoKCRnduX1AQuKvzfXx8v1WeVquV0tJSZ8f2HvpqI9IfPcLtibQnxPVSgUWLRLFWXS2GSh98cPSEG4hVr/HxLt/t4cOHaWlpcTb1lTkcGPPzcRgMznVkXZ04oka4b2B/eLDnTcJ12JpbMJWUoJ02jaysLPbs2cPGjRtJSkpi0qRJ0kioyxAQEEB4eDhlZWVER0ePe+/klClTkMvllJSUkJGR4W5zXIIk3jwNtRrBZKKkpITU1NTR/VBGREBu7ugd72Jmzeq3YW1VVRU1NTV9Ji0PRMBdItx6SEqC5593gfFDpKAA7rrLpbu02WwkJydz+PBhdDodcpkMY0EB9m9MNJC1tjpHVY0qgiDm+ikl8SYBtvoGzEolqqQklEolEyZMYP78+ZJwGwCTJ0+mrq4Oh8Mxeqk1YxSdTkd8fLwk3iTcSGgoNDXR3dXFtCsMaXc5ERFfD4gfbWbNgnffvaRdic1mo7KykokTJ/bblf1yAq5f4eZuWluhpkY8bxdhtVo5cOAAMTExpKWlkZubC2fOkOT3jW70goCsrc094q2zE5nDgRAQOPrHdgFatZqpkyahlcSFy7DUnuVoURFmrdbZhLewsFCsjB7nHqXLERQURJA7PsNjlGnTprF169ZLJu94KlLCgKcREYHMZiNMqSQmJmbUj01Dg+gdGW1mzRIT+L8ROq2ursZut5N0hXBmXzlwY1a4wdeTFVwk3hwOB0ePHsVkMhEZGUlMTAzJOh1lJwppuygRHICuLmRWq1vEm/xCWN4twtEFaNRq4qOj0UjizWUIggCNTaTGxBAYGIjBYKC6uprCwkJ3mzbmEQSBsrIympqa3G2K25k6dSoAJ0+edLMlrkHyvHkYQng4MmBmePjo33VGRIgFC62tEBw8usfuETEFBXDhQygIAlVVVUyYMAHtABL7L/bA/aPgH1gd1rEp3EA8T7UaLgyFHy75+fm0tLSQlZWFn58flupqYhVK/GbNIsDXt9e67hRQsgvHdnioeLPabDS1tREaGIhKaho7bEwWC1q1mtTkZGhpwdbYSHh4ODNnzqSgoAAfHx8SExPdbeaYRSaTUV9fT0NDw5DG5XkTer2euLg4iouLmTNnjrvNGTaS583DqL/wM9kdg5d7htLX119+vZEgNBSio3vlvclkMubPnz+oBp2Ppj6KSq7C6rCikqvGpnAD8TynTbtiY+KBcObMGWpra0lLSyMkJARrfT3myioAp3CrOneOprY2wL0CSubhnrduk4m8U6foHuZkDAmoPn+ePcePff1aCmAqLsbe3k5cXBzJyckUFxcPePzbeCU5OZmWlpYBTVnxdlJSUqiqqsLkBZ9PSbx5GMUXRsaEuyN02VPZ6q7mj+np8NVXzj8FQcDX13dAXrce/pb/N6dwszqsQ27kO6IIAuzeLZ6vC4iNjSUzM5OYmBhsra2YvtGsUhAEmtrbyT1ZSltXF7LGRnF5cIhLjj8YZK2tCCoVeEFOisTQOd/URElVFXERkfhc9PkW7A6MBSdwdHczZcqU4Y3BGyeEh4fj6+tLZWWlu01xOykpKdjtdq8InUrizYMQBIET1dXYVSrkF75gR5X4eNDpwF25JnfdBYcOwalTNDY2smvXLsyDGNx+cY7bsXuPDbmR74hz4ABUVAy70tRsNtPe3o5cLic8PByHwYCpsBAcvYW/TCZjzuTJ+PvoOVpSgrG8DEdYmFsElLPKVUpEH7c0tbWRX15OdFgYU+LiLnlesFoxFhSAzUZqaiqRkWJLG6khbd/IZDLi4+Opq6vzCo/TcPD39yc2NtYrpi1I4s2DqK+vp7WtTfxidUfoUqGAGTP6bdkx4qxZAwEB8OabVFVVoVQq+60w/SZ9FScMpZHvqPDGGxAXB0uXDnkXgiBw/Phxjhw5gsPhQLDbMRYWIVhtfa6vUCiYO3UqaqWSowUFdE9yfX+5geC2FiUSYwKHw0FRVSUhAQHMTEzsN6/X0W3EVFrq/Pv48eNe8YU8UsTGxjJ//vxBRSm8lWnTplFeXu7xs04l8eZBFBcXo9VqUUZHu0e8gVg40FMJOdpotXDnnTjefJP6c+eIH2AD28tVlY45AWcwwMaNcP/94kSHIVJRUUFjYyOpqanI5XLMZWW9mvD2hVqlYt60aQTX18OFoeCjjby1xaPFm0KhwN9XP+77ag0VuVxO+tQUZk+efMXpCbbGJiwXUjgCAgKoqKig3l3XxTGOUqkkJGT00yDGIikpKdhsNsrKytxtyrCQxJsHUVJSwpQpU5BFRrpXvBUVif3W3MG6dcjPniWqpGRArVIG0g5kTAm4Dz+Ezk64774h76KlpYXS0lKSk5MJCwvDWl+P9dz5AW2rM5lIb2tDkZSE0WzuNQt1NJC1tuIIGuVKZhfiq9OxcFYqvjqdu03xKMwWCycqKrDZ7eh1OpQDFL/m8nLsnZ0kJCQQERFBXl7euA8N9ofD4eDAgQPU1NS42xS30jOZyNM9tZJ48xCamppobGwUG/NGRcHZs+4xJDVV7IB/6pR7jp+RQffEiSQfOHBF78Zg+riNGQH3xhuwZAkMo/1BUVERQUFBTJkyBUd3N+ZBJOcqqsQqVFt8PNmFheSVlY1qLpGsqQkhxHPFm8TgsdntHC0tobG1FetgbwodAqaiIgSbjbS0NORyObm5uVL+Wx/I5XKUSiVVFz7j45mUlBROnTqFzV1OCBcgiTcPoaysDKVSSUJCAkyfDiUl7vF+zZwp/nRX3ptMhu6JJ/DfsUNM6u+HoTTgdbuAO3oUdu2C73xnWLuZN28ec+fOBaHni80+4G3lFRVitefEiUyLj6e+pYXi0brYd3Qgb27GETdpdI43ArR3dfFFdjbt32x8LNEnDoeD3NJSuk1m0lNS0A0wh7XXPrqNmE6eRK1WM3fuXCk8eBni4+Npb28f921DpkyZgsVi4cyZM+42ZchI4s1DqKioIC4uDpVKJYYuzWZxcPloExwMycmwd+/oHxswGAzInnhCDB1///t9TnsYzuQEtwk4hwMef1wsCLnnniHtor6+HovFglarRavVXggpDU5EKE4U4Jg8GRQKIoKDmZGQwJm6OspHoT1Mj9fP4aZ8O1chjHKo2VMRBIH88nJaOzuZM2UK/sOobrbVN2A9d47g4GCmTp2KTCbDbh/4Tct4ISwsDL1eP+69bz3tUyou4wAY60jizQOw2WycPn36607iF08bcAfXXgvbt4/6YZuamti1axcddju8+CJ89hl88kmvdVwx8sotAu611+DIEXj55V6zWwdKW1sbR48edV6UbY2NWGsHGVq321EeO4YtfZ5z0YSICJInTqTibC2mEa7O6vH6OSZMGNHjSIwNZDIZ/no9acnJhAQEDHt/5rIy7F1iUc758+cH3UpoPNDTNqSpqWlci1uZTEZiYqIk3iRGljNnzmC1Wr8WbyEhEBPjvtDlypVQWXnZsOVIUFNTg16vx9/fH779bbjuOtH71t0NuHZW6agKuKYm+MlPxCKFxYsHvbnt/2fvveMjOcj7//fM9qKVVm3VpVOXrun6+c4d22eKnVAMhhAg3xBCDPxIaKYkJKGb8iWU0CGUb0IJgVCMsY17u/P1pi6deq+72l7m98dq16d6KltmNft+ve5la3dn5pnZnZlnnvJ5AgHOnDmDxWKhpqaGkMezQEZhrYitrQhOJ4EDBxa8Xl1Swg27m+I+bF3s7iZUURGWpEmzpXHMn7NVxcUUxCjNKQVDeC5dQgoGyc7OjsrlpOvfFlJWVsZtt92m+I7oqqoqRkZGmEvREoe085YCdHV1YTabyc/Pf+nFZEp23HxzODr08MMJ22QgEGB4eJjSSFRGEOBrX4PhYfjsZ+MyZD5hDtxHPwrBIHz+8xtavKWlBa/Xy969exEEIVzntoKe22qoT51EMpvDadNFGPV6QqEQF7u6mLLbN2TntVB1d6V8yjTNtekfHeXZc+fi8jsKuVx429vR6XTs2bOH8fHxlK5rigcqlQqVSoXf70+2KUklEgxJ1ckTaectBejs7KRqsWDl7t3Jc94yMuDIkYSmToeHhwkGg5SUlLz0YnU13H8/37r8vZg7bhHi7sA9+yx873vwqU+9NDt2HXg8Hvr6+qirq8NkMuHr7iY4u7GbovrUKQJ7964a+XJ5PJxubY1GTmJGMIh45QrBFB8ybjYYuL6pKS0VsgJjU1Nc6u6m1GYjO07zmf3DI/hHR8nLy6O0tJSWlpaUF2SNNXa7nUceeYSZ+XnGSsRkMlFYWEhnZ2eyTdkQaedN5jgcDkZHR6murl74xq5d0N8P84O8E86xY+HOyAQ9vfn9fgoLCzEsuil+6+58/v3PcnnXEz7eWfy6uGw7bg5cby+89rVhR/jv/m5Dq9Dr9dxwww1UVFQQdDjwbTTKMDeH2NpKcP+BFT8iiiJ76+ow6HScbG7GHcN6ImFoEMHnS/nIm0qlIsNoVHxKajmm7HbOtLdjy85me5y/Z297O5LPR0NDAwUFBenU6SIyMjLQarWK13yrqqqiu7s7JX8faedN5kRCupWLL3bJblp4+cvDYrKPP56QzVVWVrJ/mUHtIbXIuyr+gnc+NAOvfnW4CzcORBy4kBSjTkK7HV71qvD80F//ekN1Xg6HA0mSsFgs4SkK7e2wwWuQ+oUXEEKhJfVui9Go1exvaEAURU42N69fl2sFVF3h33loW2o7b26vl4tdXTF1bLcKHf39WDPMNNXUrDj2KlZI/gDe7m50Oh1NTU1rHqOnFARBoKSkhMHBwYQLccuJqqoq5ubmUnIyR9p5kzldXV0UFhZiWtxGX1sLWm3ynLemJmhshB/9KO6bmp2dXbE+476m+3jnTR+G3/wm3K35xjfGLRr4zt3v5L6m+za/IpcrPKe1rw9+/3vIy1v3Kvx+P88//zyt840J/qGhDadLATSPPExgdxPS1XWVK6DXajnQ0EBBTs6alfCvhdjdRSgnBykrKybrSxY+v5+B0VF8Cq8nWo69dXXsrau/5tirWOEfGiY4OwvA2NgYL774YkpGWOJFaWkpfr8/JR2XWFFaWopGo0nJrtO08yZjJEmiq6vrpS7Tq4novR0/nnjDINww8Na3hqNGcaybkCSJkydPXnuUyeHD8MtfhqVD3vKWcAOAHPF4whHCF1+EBx8MO8AboKWlhVAoRGVlJZLfj7dr40W3wugIqrNn8d9xx5qXMRkM1JaVIQgCM3Nzm356V7W0Eqqu2dQ60sgPfyDAqdYWnG43GrUazQZkcDaDt70dSZLQaDSMjo7S29ub0O3LGbPZTHZ2Ng6HI9mmJA21Wk1FRUXaeUsTW0ZGRnA6ncs7bwC33QaPPhoWeE0Gb35zeFTWL34Rt01MTk7idrsXNiqsxKteBT/7Gfz3f8PrXhdXp3JDjI7CK18ZFjj+3e/g+us3tJqZmRl6e3upr69Hp9Ph7e5G2kSkR/Poo6DTEbjppnUv6/P7OXH5Epc207Hl8aC6eIHAvr0bX0ca2REMBjnd2sqMY26j2fzN2+CYwz84iNVqpaysjNbW1rT221Vcd9111C7TXa4kqqur6e3tTbmmlrTzJmO6urrQarUvyWMs5tgxGB9Pnt5bUVHYhh/+MG6bGBgYwGQykZ29xnmXr30t/OpX8MQT4dRusiKTi3n00XCH8OXL8NBDcOutG1qNJElcvHgRi8USblKw2/EPDW3cLklC8/DDBG68CTbQIanVaNhZWcXg2BhtG4xqqC5cQPD7V22WSJNaSJLE2Y52Zp1z7G9oSGr3re/KFULzzQtAyg8kjyWiKBIKhXC73ck2JWlUVVURDAZTLiqb2Bh2nPH5fHz/+9/nkUceweFwUFVVxdvf/nYOXKMI+6mnnuLxxx+ntbWVqakp8vPzue6663jrW99KRkbGgs++/vWvZ2RkZMk67r77bj7wgQ/EdH+6u7spLy9HvVKq4ciRcMH7I4/Anj0x3faaedvb4A1vgLY2qKuL6apDoRAjIyNs27ZtfQvefTecOxeuf7vhBvj0p+EDH4AE1doswO+Hf/5n+NznwpHSn/xkQ5IgEQRBoLKyEqPRCBAeOr+JsIbq0iXEoSE879/4b7coLw+v309rTw9ajYZtRUXrWl596hShvDxCZWUbtkEu6LRaKouL0cVZ0FjuXO7uZnx6hv319WSZzUm1RfIH8HV2om9spKGhgStXrhAMBtMdwfOcO3cOl8vF9RvMBKQ6OTk5ZGZm0t3dTU1N6pRubCnn7bOf/SxPPvkk99xzDyUlJTz00EN86EMf4itf+Qq7It2Zy/DFL36RnJwc7rjjDmw2G11dXfz617/m+PHjfP/731/SqVRTU8Mb3vCGBa+tKa23DkKhEAMDA9x4440rf0irhVtuCYvl3n9/TLe/Zu6+G6xW+Na34MtfjumqfT4fVquVwsLC9S9cURFOT/7TP4WPzeOPhyOEBQUxtXFVenrgL/4CTpyAz3wGPvShTTmQkiQhCALFxcUA+AYG1z27dDGa3/2OUEEBwVXOj7WwragIn99P78gIZTbbum6MqtOnCOzbH66jTHH0Wi115eXJNiPp2LKzybZYyLNak20KAP6RUTRFRZSVlVFaWpqwpolUID8/n7Nnz+LxeNDr9ck2J+EIgkBZWVnKyaZsGeetubmZxx57jL/7u7/jjW98IwDHjh3jbW97G9/85jf55je/ueKyn/jEJ9izKHJVV1fHZz7zGR599FFe9apXLXgvNzeXO9ZR3L0RxsbG8Pl8K6dMI9xxB7z//eB0hqNwiUavh3e/G770pfCkgA10Tq68aj2HDh3a+Ao0mnDE65Zb4C//ErZtg7/6K3jf+8ICv/Hi0iX44hfhv/4LCgvhmWfguus2vdoLFy4gCAK7du1C8vnwXdmcMrgwNIj6icfxvutdMYlK1pWXs62oaF2OmzA+jqqnB99fvmXT25cDgWCQ2bk5Ms3mmHXiphJTdjvWjAzZOG1X42lvx3jgAKIoYrfbcTqdG3sw3GLYbDZEUWR4eHj9WY4tQmlpKc3Nzfj9fjQaTbLNWRNb5vHjqaeeQqVScffdd0df0+l0vPKVr+Ty5curtkMvdtyAaMSrp6dn2WX8fn9c6wT6+/tRqVQUXSsFdccd4dTck0/GzZZr8t73hqMm//ZvMVulJEmMj4/HRoPo2DFoaQk7l7/8ZTi9e8894Y7PWCFJ4e/gla+EnTvhscfgs58NO3IxcNwcDgd9fX3hua4w36SwOY017U9/ipSZif/lr9i0fdF1ajTzTQyXmVnDzEDV6VNIgkAgWWn/GON0u3nx8mWcCqwhGp6Y4MSlSwxPTCTblGUJzTnxDwwA4ev6+fPnCcRIpzCV0Wg05ObmMjw8nGxTkkZZWRnBYDCljsGWcd46OjooKSlZoocWKVJd7wiMyclJALKW0Z06c+YMd9xxB8eOHeP1r389//3f/33N9U1MTNDW1hb9d63iyL6+PgoLC6/9FFBbC+XlCR1VtYScnPCEgK9/PWYdnpOTkxw/fhx7rOYf5uSEU6i9vfDv/x6uiTt06KWauMceC4sOr4fp6XDK+l/+BQ4cCEf4+vvhxz+Grq5wRHRRzeRG6ejowGAwhC8ys7P4hzZ3kRHGxtA88gi+e+6BGAuYquaLoE+1tFzTiVGfOhWepZqZGVMbEkEwGMDtdjM7O8PExDjBUFiexul2MTE5wfj4OJOTE9jtdvz+1OpkWy+Ts7Oc7+ykKC+PwtzcZJuzIpHmhdraWoLB4IoP50qjsLCQQCCgWMHe/Px8tFptSs3B3TJp08nJSXJycpa8HnltYp1Pg//1X/+FSqXipkXyCZWVlezatYvS0lLsdjsPPfQQX/va15iYmODvVhlx9Nvf/pYfrqMrs7+/P+p4rooghKNvCRwSvyzvf394UPzXvw7/+I+bXt3w8DAGg2FZ53lTGAzwznfC3/xNWNj3u9+FL3wBZmfDqcPt28ORsr17ISsr/HmdLqzP5naHHbaTJ8NdrJGutZwcOHo0PJ/02LGY1245nU6GhobYsWMHoijivnJl0+vU/uLnYDDiv+vua394nahUKvbV13P80iVOtrRw3Y4dyxfwB4OoTp/Gf3fsbYglfr+Pubk5AoEgeXl5SEicOX0m6qxF2DXvqEeipKar6oeKi4ooLi7B4bDT29uHVqfFZDRiNpsxm82oVKl7KZ6dm+N0ays5mZnsXDyDWWZIgSD+3l70NTWUlpbS1dXFtm3bFN+8UFZWRtkWaBjaKKIoUlJSklJ1b6l7xViE1+tdNkqlnb9prEfb59FHH+XBBx/kjW9845Kas8997nML/n7FK17BBz/4QX7xi1/w2te+lvwVFOrvvvtujh49Gv27t7eXT33qU8t+1uFwMDMzc+16twjHjoWdkCtXwnVdyaCgIOwQffnL8Pd/D5voMJMkiZGRkWunjDeDSgWveU34XygEra3wwgthp+y558LHczk1dlEMiyPffDN8+MNhR6+6Oq7F9jMzMxgMBkpLSwna7QSmNjfPVpiaQvPgg/je9Bcw37Uaa7QaDQcaG3nh4kVOtrRwZOfOJUXiYkc7ot1OcN/SsWfJxuP1MDgwwNzcHN55/SeT0UheXh4CAqWlJajVarRaLVqtFo1GgyCIeP1zFOTb2LtrF5lmM6FQCJ/fh0oMOwcqtZoMSwZej4exsTEGh4YwGY1s374DgImJcTIzs1Km7gZgYGwMs8HAntralGgE8A8NoS0vp7q6mr6+Pnp7e5eOH1QoLpcr2smuNEpLSzl58mS0MUzubBnnTafTLTtCKSK8t9bZdufPn+eBBx7g4MGD/M3f/M01Py8IAq9//et58cUXOXfu3IqNDLm5ueSuMZ0Q8f7X7LzdcUf4Jvxf/wUf+9jalokHH/wgfOc78MAD8MlPbng109PTeDyexBUTi2J40kFjI/z1X4dfCwTCkTaXKzwvVa8PH2ODYUNzSDdDcXExhYWF4ahbDNI82h/9CDQafH/+55te12oYdDr2NzRgdzqXvalr/vQYIauV4PbtcbVjLXi9XqamphBEgQJbAaIg4PP5yM7OjkbHNJqXoof5+cvLvQiCgE6rjV78RVFEr3spAmc0GCkve6kb1eP1EJyvu/L5vFy50gNAhiWD7OxsrFlW2Ttyjdu2EQgGU6ZBQwqG8A0MYKysZM+ePWu+Lm91+vv7OX/+PMeOHZP9by4elJaW8tRTTzE1NbVsFk9uyP8xaY3k5ORE69SuJvLaWk7Qzs5OPvKRj1BZWcknPvGJlfXVFhGJtsWqPqu/v5+srKwlGnMrkpERnijwwx8uHy1KFGVlYTmMz38eOjo2vJpQKEReXh7WZHasqdXh42qzhfcrPz8cTUzwDWpiYoJgMIgoigTn5ghMLP2NrwextRXNg7/H+1d/FbN6vNWwmEyUzJ8fY1NTL82W9PtRP/YnArffnvBjGiEYDDAyMkxz82XOXzjP4NAgXo8HAK1WR0NDI6WlZVit2Qsct9WwmEzcun8/ljV2fut1ekwmc3Sbe/Y0UVFRgYBAb08vzc2Xo5+VkjanYCmBYJATly8xOTuLIAgJH3u1WfyDg0h+P8XFxemh9fPk5eVFsx5KpKSkBEEQUiZ1umWct+rqagYGBnA6nQteb25ujr6/GoODg3zgAx/AarXy+c9/fl2h46F5hftY1Wf19/evPeoW4W1vg85OeP75mNiwYT7ykbA8xnves2FHMjc3l8OHD6dE6DqeeL1eTpw4wZX5GjdfzyYVwINB9F/9CqHKSvx3/1kMLFw7c243p9vaaJ7fF/WJ44h2O/47jiXUDgBJChdle71eBgYG0Gq1VFdVsXfPXsrLKxJuz9Wo1Rry8vKoq6tjz54mqqrC1y2fz8v5c+cYGh4iGExuh2QoFOJ0ayuzc86Uc9oiSP4A/sFBIDyG8Nlnn1X80Hq9Xo/ValXsoHq9Xk9eXl7aeUs0N998M8FgkN/+9rfR13w+H3/4wx9obGzENq9qv9xw4snJSd7//vcjiiJf/OIXV3TC7HY7wUUDzwOBAP/5n/+JRqNZVnJkvfj9foaHh9fvvN10U7jrNI6jqtaE0Qhf+Uq4geJ//3fdi/t8PmZnZxV/IYXweDRRFCkvLyfkdBIYH9vU+jR/+AOqtjY8731vwqNdZoOBHZWV9I2M0DkwgPrhhwnW1RFKYI2my+2iq6uLy5fDD3RGo4k9e/ZQXV1DdnZOTOq17E4nj586hX3RQ+RGUKs1mOdrRwVBICvLytDgIGfPnaOvrw+fL/EzOiVJ4nxnJ9MOB/vq69ccYZQjvv4BpGAQo9HI9PQ0g/POnJLJz89nYmJCsdffVBLrTc3HpmVobGzklltu4Tvf+Q4zMzMUFxfzxz/+kZGREe6/avrApz/9ac6dO8fTTz8dfe2DH/wgQ0NDvPGNb+TixYtcvHgx+p7Vao2O13ruuef48Y9/zE033URhYSEOh4NHH32UK1eu8I53vCMmefLh4WGCweD6nTdRhLe8Jay19pWvxK0QfU3cfXdY7+y97w3X463jAj88PMzFixcVW3cRwefz0dPTQ2VlJRqNBk9n56bGYAkzM+i+/z38d95JaL44PtGU2mx4fD46mpvJfuEFbO9+T0K26/V66evrY3pmGp1WS0FBIZIUQhDEmHd5SpKE1+eL+c1Po9FSUVFBcXExo6OjjI2N4vf7qaqqiul2rkVHfz8jExPsqasjJwXlXa5G8vvxDw5iKSvDZrPR0dFBcXGxoiP+eXl59Pb24na7Fdm4UFpayqlTp1Ji2sSWcd4APvrRj2Kz2Xj44YeZm5ujsrKSBx54gKamplWXi2jA/fSnP13yXlNTU9R5q6yspLy8nEcffZSZmRnUajU1NTX867/+K7fccktM9qGvrw+tVhuNFK6Lt7413Cjw61+HxzIlC0EIO5Dbt4c10L7whTUvOj4+jtUq/yLteBNJlVZWVhJyu/Fvsg5F9+1vgyThffu1m3DiSU1pKaE/PMigKGK9+WbifZuUkGhta0UKhaiqrCQ7Jwch7luNHxqNhpKSEoqKiqJZgOmZafx+f7QTNp4U5eVhMhgoSIGC7rXg6+9HU1JCTU0Nzz77LCMjI4qeumC1Wrn99tuTbUbSiARN+vv7ZT/ndEs5bzqdjvvuu4/77rtvxc989atfXfLa1VG41airq1siFRJrBgcHKS4u3lgKp6oqLDr7wx8m13mL2PKv/xqugbv99nAE7hpIksTExES6bZ/wRbShoQGtVotnk8Pn1Y89huaRh3F/8INIMhhb1HTyJMEjR/BlZcWtLX96egqTyYRWq6Ompga9Tp8SMhZrRRTF6P445+YYGh5mfGyM8vJyzObYN6KMT09jtVgwGwyYDYaYrz9ZSF4f/qFhrCXF5ObmMjo6qmjnLUIqjYmKJVarFZPJxMDAgOydt61zNdsijIyMULCZ4elve1t4WoAc8vYf/GDYcfvLv4Q1jB2ZmZmJRhCUTn5+Ptu2bSPk9eLfxMgWYWAA/Zf/L/6XvYzAsTtjaOHGEDs7UV+5QvDOlzPndvPMuXM4XK6Yrd/v99HW1kZHZydTU1NAWJ5jKzluiykpKaWxoRFBEGhuaeFKz5WYKuWPTU1xqrWV3i3ahejv60UKhdi/f/81szRKYHh4mIcffnhZ6a2tjiAIFBQUpETTxta9oqUgXq+X6enpjaVMI9xzT1iL7Ec/ip1hG0UUw6OiRBHe/GZY1OyxGJ/PR2ZmZuynKqQQkiRx/vz5qOyMv68PQhsMu/l8GD75CaTsbDx//w9xFRJeK5o//jGs7XbgADqNBlEUOdncjHsdItorMTs7w6VLl3C7XdTV1lJQkPgIislg4OD27ZgSHJ0ym800NDZSUVGBx+2O2Vc9ZbdztqOdfKuVyniKZieRkMdLYHQ0GmlarFigNDIzM6NZECVis9nSzlua9TE2Fu4m3JTzlpEBb3xjeH6nHIZj22zwn/8JTzwRHtS+6kdt3HjjjYouGJ6cnKSvr49gMIgUCOCfl6HZCLrvfBuxtxf3P308uQ0sEWZn0fzxIfwvfwWoVGjUavY3NEQdON8mnvT9fh8dHR2YTCZ27NhBZmZW7OxeB2qVipzMzKQI1goI5Ofl09DQiCCIuN1uxsY2fhNyuFycbm0ly2xmT23tlj4vfX3hTMXg4CBPPPEEnnm9PyViNBoxmUyMj48n25SkYLPZmJ6eXtdUpmSQdt5kxOjoKKIobj5teP/9MDYGP/hBbAzbLLfeGh4K/8//DE8+uexHgsGgoi+YEfr7+zGZTFitVgJjY0jBjaW/1E8/jfbXv8b7zr8jJJPaDe2vfw2hEP7Xvjb6ml6r5UBDA75AgLPt7etep9frRZJCaDRaGhsbqamtRa1OXq2Ox+ejrbcXjy/5g+hnZmbo6e2ls7NjQ9pwU3Y7Bp2OvXX1WzrtDBByOgna7eTn5yMIguJlQ/Lz8xXtvMFLwRS5srXPyBRjdHSU3NzcNU92WJGaGnjDG8KTDmRwEwHg4x8PzwN9zWvCc0QXMTY2xqOPPqpoBy4QCCzQ+Ntoh6nY2oL+c5/Ff9NN+P8ssWK8K+J0ov31r/C/6lVIi9LiJoOB/Q0N1KxTHmduzsHly5cYnq8JNBpNSe8k9fp8dA8ORuehJpPCwkJqamqw2+1cvty85khCROakvKCAIzt3pqwQ73rxD4+g0WgoLCxMGa2veJGXl4fX61Xk9Tg3NxdRFGWfOk07bzJidHR0cynTq/noR6GvD/7f/4vN+jaLSgX/8z/h6QsvfzksOjGmpqYwGo2y19aJJ0NDQ1GNv5DLRXBmdt3rEIaGMHzsY4SqqvDc/2FZ1LkBaH/7G/B68d3z+mXfzzKbybZYCIVC9K/hojk9M01raytGozF258wWxJpljQ69b29vu+aIrWAwyInLl+kbDT84bPWI29UExkaRQiFKS0txOBzMzMwk26SkkZeXx5133qnI67FarSY3N1f2Y8KUc2bKHEmSYuu87dgBr351uM7sGo0CCSMrCx56KDzo/eUvh9mXnJPp6enkzjKVATabjX379qHX6zcUdROmpjB++H4wmXB/6tMgl5mNHg+aX/4S/7E7ka5REjDtcHCpq4u23pVHgY2Pj9PZ0UlWVhZ1dXUxF9rdauh0OhobG9i2rXLVyKQkSZztaGfWOUeGMXUnJ2wUyR8gMD5Bbm4uWVlZiow6RbhaikaJpELTgnK/HZkxMzOD1+uNbRThYx8Lzzv9xS9it87NUlYGf/wjXLkCr3oVuFwEg0FmZ2fJzs5OtnVJRafTUTTf0RdYr/PmcGD40IfA48H1wOeRZKR+r3nwQQS7Hd+9917zszmZmdRXVNA9OMiVFZo15pxz5OfnUVVdjSCkL2FrITJqS0Kiq6uTqanJJZ+51N3N+PQMe2vrsGbEXisuFQiMDCMIAjfccMPmJJu2AF1dXTzzzDPJNiMp2Gw2xsbGZD0mLH3lkwkRLz+mztu+fXDnnfDpT0MMdZ82za5d8Ic/wJkz8OpX4xofR6VSKTry1t3dTVtbGwCB6WlCnnV0OtntGD/yYcSJCdyf/zySnERGfT60P/8ZgZfdtma7thUVUVlcTGtPD0NXFU17vOFISEVFBeXlFUmvb1sOrUZDic2GVq4Cp5IECHR2dS0oSO8ZHmZgdJRd1dXkKfg8DExNEZqvDfR4PMzNzSXZouSh0+mi2ptKo6CgAK/XK+vUedp5kwmjo6MYjUYyYv3E+4//CJcvw29/G9v1bpbrroPf/Q6ee46MP/9zju3bh8ViSbZVSUGSJLq7u6NpmsA6RHmFsTGMf/9ehMFBXA88QKgicYPe14LmkUcQpqbwvelN61qurrycorw8ZuZvnkNDg1y6eBGfzytLpy2CQadjZ1UVBrmkrBchCCKVVZXk5+XT09PD9HRYyLg4L4/dNTUUK10gW3op6n369Gmam5uTbFDyiDxMT09PJ9mSxBMJosg5dZp23mRCpN4t5lpKR4/CTTfBJz4hn9q3CLfeCk8+idTdjXDDDQh9fcm2KClMTk7idrspLS1FCgQIrLFFX+ztxfj/vQfB7cb11a8SqquLs6XrxOdD+9P/InDjjYTKyta9+K7qahq3bWN0dJS+/n6KiovRauXpFEUIBoM45ksB5IqAQHlFOdnZ2Zw8d46J6Sk0ajVFSnfc5vGPhG/YJSUljI2NKbb2LTxeThudVKIkzGYzRqMx7byluTYxbVZYzGc+A2fPwve/H5/1b4b9+3n+85/H73LBkSNw6VKyLUo4EW237OzsNWu7iZcvY3zve5HMZlxf/RpS6fqdo3ij/cXPEcbH8b31bRtaXhAEpqenON98mb7paTKz5J/Om3O7efbcOebkIJC9CgICmTnZzPj9jG2gq3krE9F8KyoqUrzmW3Z2tiIjb4IgYLPZZN1xmnbeZIDf72dqaor8/Pz4bODIkfDM0498BGQ28sTpdDKVk8PsH/4AeXlwww3w+OPJNithbETbTf3ssxg/+AGCFeW4/u0r1+zgTAbC8DDa//xPfK+7h1B5+YbWIUkh+vsHKCsqxmazcbKlRRb6aVuB2bk5zrS1U1FSSn15ObOzM/h88laUTyRpzbcw27dvZ9++fck2IylEmhbkStp5kwEzMzNIkkROTk78NvLAA+G06Uc+Er9tbIBISD6zrg6eegr274fbbgtPYwisXxU+1VCr1Vx//fWUlZVdW9vN50P39a9j+OePEzh0CPcDnwezOXHGrgPdN/4dyWLB95d/ueF1CIJIQ0M9dbU1HGzcTigU4mRLCwEZpyRTAZfHw6nWFswGA3vr6hAE6O3to729I6YD7VOZiOZbWVkZGRkZBBRwLVoOo9GIVqtNthlJITs7m5mZGdmeE2nnTQZEwtJx7bbMzw93nX7ve3D8ePy2s06mp6fJyMgID4XOzAzLiPzrv8KnPgUvexkMDCTbxLhjsVjQ6XQEVnnKEwYGML7n3Wh+/zs873kPno//s3x03BaheuEFNM8/j/e++2ADA9olJPr7+/D7/Wg0WgRBxKDTsb+hAbfXy+Xu7jhYrRxcHg86jZb9DQ2oVSoEQaSmpgaPx02fQutOFyP5AwQnJ8nNzWXfvn2bn3qTwpw9e1aRqWOr1UowGMRutyfblGVJO28yYGpqCrVaHftO08W8852wZw+8612yaV5wOBwLu0xVqvAc1CefhK4uaGqC3/8+WebFnRMnTkRD84EVCoPVf/oTpnf+LYLbg+trX8f/56+WzeSEJXi96P/96wT27SNw400bWsXgwCAjI6N4vQsLxS0mE/sbGqjdQPNDIhFkKm4aaaLIzcri6K5dC+RMDAYD5eUVjI2PLasBp0Qi52OkrEWp2O12JieV95uI6I7KteZPnlcZhRGZLhDzTtPFqFTwjW+E9dW+/e34bmuNHDp0iMbGxqVv3HADnD8frte76y54xztkV6+3Wex2O2NjY4iiiBQIEJxdmDIVxsfRf+qTGD77GQJHj+L81rdkM2R+JbQ/+ynC+Die97xnQw6m3W5naHiI4pJizOalDzPWjAwMOh0+v39FEd9kkmk2c+fhw2TKLJ0dCoU43dZG85UrAMtea/Ly8sjJzmZ4ePiaY7SUQHDeYevv7+eFF16QdQdxPLFYLLKNPsWTrKys+aaptPOWZgUSOhrq8GF4+9vD0xdkUIypVqtXnp+XkwO/+Q38+7+Hp0TU1ob/f4vUn4zPixNnZ2cTnJ4mer+cl9gwve2tqM6ew/3hj+D5yEfBaEyqvddCGBpE+9Of4nv9GzbU/er3++nq6iLTkknhNQR9J2ZmaO3poVMBafXNIkkSFzo7mbLbsV1jiknFtm3UNzTIWksvUYTcHkIuF3l5eYRCIcVG3yLOm5ynDcQDlUqFxWKR7feedt5kwNTUVGKnC3z2syCK8MEPJm6byzA+Ps6LL764+hOtIMB990F7O7zmNfCe94SbGrbA2Jbx8XFycnIQRTGaolGdOI7p7W9H+4Mf4H/lK3H+6EcEbr89yZauAUlC/7WvIVmt6xbkjTDnnEMUBSorV5/BCVCUl0d1aSkdfX1rGmSfKObcbp67cF5WUiEtPT0MT0zQVFNDzjXGpqlEFSpRhdfrZWw8+Q93ySYwFa7J1ev1su48jCcWi4VgMIjL5Uq2KQlHzlIpaedNBszMzCR2rmduLnz+8/DjH8Mvf5m47S5ienqa6elpVCrVtT+cnx9utjhxIlyof+ON8PrXh1PAKUgwGGRycpK8eZkP6cknMXzkwxg/+lFC+Xm4vvtdvPe9S7bdpIvR/O63qF98MZwu3UCTAoA1y8quXbvCzStroKa0lLKCAi51dzMqk6fjYDCIfc4pmxTbyOQkvcPDNFZWUrCObvapqSl6e3pxy8gJTQbB+QkU+fn5C8aJKYmsrCx2796tyK5Tq9Wadt7SLI/T6SQQCCR+ruf/+T9wzz3w138NSeres9vt6x+JdeAAvPAC/OAHcOpUeH7rbbfBww/Pz21MDURR5ND+/ZScPIl0+DCGd74TYWQU98f/GfcXvii7MVerIXZ2ovvGN/D92Z8RPHJ03csHQ0GGhocIhULrHjTfuG0bBTk5+BQ4f3Et2LKz2VdfT/k6h6wXFNjQ63X09vbEx7AUITg9jSRJ5Ofno9PpZCsbEU80Gg1lZWVrfqjaSqSdtzQrEikETbjzJgjw3e+G68ruvReSIH66IecNwinfv/qrcCr15z+HmRm4885wZ+pPfgJyH2fjdCJ897vk3nAD2nvvRZLA9alP4/r+9wncdJN8O0mXw+XC8MlPECovx/vOv9vQKoaHhhgaGtrQAGxBENhTW0vp/HQS/xaph9ws49PTTM7OIggC+RuI6guCSFl5OXaHg8nJrdUotB6kQJDQ7CyFhYVcd911iDLtJI43ExMTihQrzs7Oxu12yzICrcxfooxImvMGYV21n/8czp2Dj340oZsOBAI4nc7NDaNXq8Op05Mnw1MZiovhLW8Bmy3839//HrwyUY13ueB//gfe8AbIz0d65zvx1tXB8eN4v/ddgtddF3ZKUwlJQv+Vf0OYmMD9j/8EG0iruN1uhodHKCoqQrdJ3brekRGeOXcOt1y+8yQx7XBwpr2Nvk3WAmZaMsnJzmZgcFDR3aeRetRQKITT6UyyNclhdHSUjo6OZJuRcCL3ZTlG31LsbrH1iESfkiYCeeBAePrCl76UUD01QRDYu3cvubm5sVgZ3HIL/OEP0NIC73tfOKV6111hR+5tbwvv28zM5re1HiYn4Ve/gje+MVyz97rXQUcH/g9/mMe+/W0mv/1tpIMHw52mKYj64YfR/OlPeP7hfUjz473WS29fLzqdjsJ1pvWWw5adjSiKnGxuTloa1ajX01Rbi3GlDuo4M+d2c6qlhUyTmV1VVZteX1lZGQ319YruPo1IhnR0dPDss88qrusSwk0LkRIfJZF23tKsiMPhSE7U7Wr+/u/hVa+Ct741YRMNVCoVxcXFGDZY3L4i9fXh0VrNzeEh9+99b3iixF13QXY2bN8ervP73vfC78eqhiUQgLNn4ZvfDEf9amvDjSGvfW3YofzoR8Np3jNnGHnb23AXFJCbm0todhYpII/i9vUg9vSg/9pX8d35cgK33bahdczNObDb7ZSXl6271m059FotBxoa8AUCnG5tTUrTgEatpjA3F00SHsY8Ph8nm5sx6HTsq69fWyPQNdBotGi14VqvQECZdYVBhwPJ7yc3Nxefz8fs7Coj7LYokQzJ3Nxcki1JLAaDAYPBIEvnTbkzP2SC3W6/pqZV3BEE+OEPwzVjb3pTOAUZ55vP2NgYfr+f4uLi+G1k+/bwqK1/+Rfo6Ag3OrzwQtiZ++EPw46b0QilpVBS8tJ/S0qgoCDc1arRhMWNA4HwP48HhobCTu7V//r7w++p1eHjeOxYeLvXXQfbFjYfjI+Pk5WVhVarxZuKOmUeD/pPfZKQzYb33e/e8GrM5gx2bN+O0WiKmWkmg4H9DQ2cuHyJrsHBhE9j8Pp8DE1MUJSbiy7B3XmBYBCDTkdTbW3Mncfm5mZMZhPbUqiRJmZIYckQa14uarU6ev4qCeO8xqTL5VLcvlutVqampqLKAHIh7bwlGZfLtbm6r1iRkwM//SncfDP84z/C5z4X180NDAzg8Xji67xFEIRwJKy2NhxdBHA4wqnVs2fDjtfAALS2wp/+BMPDq48PU6vD9XURR2/v3rDjt3dvuPv1GmK6U1NT0f0OykTiYs1IEvqvfRVxcBDXN765YVmQYDCASqWOqeMWIcts5tD2HWTEOqq7Bjw+H609PWRbLAlz3iIRRrPBwOEdO+KyjZycHAYHBygpLkajUZ5kRHB6Co0tn+zsbNmKtsYTjUZDSUmJIuVCMjIycDgcyTZjCWnnLcm4XC5MptjfwDbE9deH698+8AGorg5PYogTm25W2CwZGeE6uVtuWfpeMBiuV/P5wO8PR9zU6nAUTqcLO7qbaC5oaGjAbDYjhUIEUywNof2v/0Lzxz/ivv/DhLZtPArT0dmJTqeLWyQna14fz+50Mj4zQ1UiHhKSgCRJnOvoIBAMcmj79rhtJ9+Wz/DwEEPDw5SXlcdtO3IlON9YlpmZKcsUWiLYs2dPsk1ICmazmeHh4WSbsYS085ZkQqEQZjkJsb7vfWHdt3e+MxxVuvPOuGzG5XJREIMi9bigUoUbDOJENOo2Nweh1Cl+Vv/pT+h+8H28b30rgTvu2PB6IrVuNQmY0zplt9Pe24soCGwrKor79hLNpe5uxqan2V9fH9ftqEQVBQUFDA0PU1RYpDjNr5DLhRQKUR/n4yxnfD4fXq+XjIylM4e3MiaTSZa1fumGBRkgm8gbhFOMX/kKvOIVYRHfs2djvgm/34/P54vWUSiJyclJBubr3EIpJDugOnsW/Rc+j//YMXx/+ZZNrWtoaAiDwZCQ2pmKwkK2FRXR2tPD0BZTyG/v62NgdJRd1dXkJaDpyWazYTab8SuxcSEkEbpqPJQSO067u7s5ceJEss1IOGazWZYSMWnnTQbIKvIG4RThT38a7tx8xSugszOmqw+FQpSUlMij1i/BDAwM0D0/0SIkwzqK5RA7OzH888cJ7t6N533v35SIsMfrYWZ2lqLCwoTJT9SVl1OUl8eFri4m4iwXo1apyMu2oo5Bp+dqzMzN0TUwQF1FOcUJKqRWqdTU19VjNCjvoQsgNB99eeyxx+jp6UmuMUnAaDTidrsVN2XCZDIRDAbxykw/Mu28yQBZRd4imEzw4INgscDtt8PgYMxWrdPp2LNnj+LC77BwqkRIhqH4xQj9/Rju/xChkhLc//wvm+5C9nq9GPR6rNbEzfIVBIGdVVUUZGcjxHl6hclgYH99A6Y4N0tkmc0c3rmTyqLE1/I5HHacTvn/dmNN5HzVaDRRcXUlEcmUyHHaQDyJBFfktt9p5y3JiKKIPkmCntckPx8efTRcwH/HHTARmzE5ch03Em8kScLhcESdt+Cc/ELxVyOMjmL80AeRMjNxf/ZzYYd+k2RaMtm5c1fCxwyJokhTbS05mZlIkoQnTuPgQqEQPr8/btGJydlZekdGALAm6eGnv3+AwaGhpGw7mUScN4vFokjnLRJkkGMKMZ5E9ltu96y085ZkDAZD3KMBm6KsLCyfMT4OL385xKDTqqOjg5MnT8bAuNTC5XIRDAbJyMhA8vmQkjBPdq0Ik5MYP/RBEEXcD3weKTNz0+v0er34/cnf59beHo5fuoQ3Dsff4XLx2MmTOK6qj4oVs3NznG5tZXRqKqk1V7l5uczOzMriu0wkkYcti8WCw+FQXN2bXq9Ho9FsaAZxKpOOvKVZlphPGIgHtbXwyCPhLtQbb9x0CtXtdqfGfscYSZIoKioiMzOToIyfXoX+foz/33vA48H1+S8gxaimanBwgNbW1pisazNUFBYRCoU42dJCIAlTGDaCy+PhVGsLZoOBvXV1SX3gy8nORhDCzTdKQvL5CPl8WCwWgsGg4iJQgiBw5513JkabU0bodDpUKhWuODyQbYa085ZkUsaJaWqCZ5+F2Vk4ciQsaLtBvF7vpoeQpyJms5l9+/ah1WplW+8mtrZifO//h6TV4frq15BidKEOhoJMTU+TE4tZtpvEoNOxv6EBt9fL6dZW2Rdge30+TrY0o1ap2N/QEPdmiGuhUqmxWrMZj1EZRSoRmpvDarVy6623yrNWOU3MEQQBs9mcjrylWUhKyWU0NMDzz4cFbq+/HjbYNq5U581ut+ObT9XJ0XlTnTqJ8f3vQyoqxvVv/4Zks8Vs3TPTM4RCIXJzcmK2zs1gMZnYW1fHtMPBoMwlRERRJMNo4kBDI1qZ6KvZbPnkZGcjSfJ2fGNNyOlEpVJhMpnkXe4SJy5fvsyZM2eSbUbCMZlMaectzUJSJvIWoaQEnnkmLCNy663w0EPrXkUoFFKk83by5Ek652VX5Oa8qR97DMNHP0pwdxOuL3wBYlDjdjV2+yxGgxGtVj7fe05mJkd37aI0hk5qLAmFQnh8PjRqNXvr6jDKqLHJbM6gqKgYQVDWLSRy3l65coXm5uYkW5N4gsGgLEdFxZu085ZmCSnnvAFYreEauJe9DO66C37843UtfuzYMSoqKuJjm0zx+/3RObaSJMmq5k3zP7/E8JlPE3jZbbg/8YkNzytdDVEUyc6Ov5DsesmYj3yPTk3RPbR5ORyLycTthw5h2WRKTZIkLnR2cvzSJdmmdT0et+Lq3oLzjovH42FIgR23Op0umj1QEmazWXY1b+nxWElGtjIh18JohF/9Cv72b8PD3kdHwzNRFZhKWAuR4maz2YzkcsljLJYkof3ed9H97Gd4770X39v/Jm7fX3l5RVzWGyvsTied/f1oVOpNReIEQYhJTVprbw/DExPsqatLuKzKWpmZnWWgvx+r1SpbG2NNyOVCkqRoDVQoFFLMvkPYefN6vUiSpKi0sdFoTIv0pllISs8IVKvhe9+Dj34UPvQhePOb4Roh9ampKZ544gk8Hk+CjJQHkRNfr9cTksFFQJidxfCxj6H72c/w3Hcfvr95R9wcN6/XSzAk767OmtJSygoKuNTdzejU1IbX43S7ebG5GecmUixdg4P0DA3TWFlJgUxqBJcj05JJSJJwzCkojRaSkPz+aNmH3G7o8Uan0yFJkuLkQrRaLYFAINlmLCDtvCUZ9SYV65OOIMCnPw3/+Z/w29/C3r1w+vSKH3e73czNzaX+fq+TUCiEVqtFq9UiJfnCpzp/HuPfvB2xtQXXpz+D/7Wvi+v2enp66IrxiLV40LhtG7bsbM62tzO1QRHWQDDI5MzMhiVIPD4fnQP9VJeWUF5QsKF1JAqDwYBWo8E+O5tsUxKK5PMp1nnLycnhyJEjirt+y1HfLu28JZmUjrxdzZveFB5ib7HAddeFh9svI2Lp9XoRRVFxJ39hYSHHjh1DFMXkifMGg2h//CMMH3g/oZJSXN/+DsHDh+O6SUkK4XDYscS4ASIeCIJAU00NxXl5GJLUUKPXarl+125qSsuSsv31kpmZyeyssqYNSD4fRqORnTt3pm7ZywbRarXk5OQoKlUM4f1OO29pFrBlnDeA6uqwlMi73gV///fwZ38GiwqafVc9tSqVZDhvwvg4hg9+AO1PfoLvL9+C+wuxE99dDbfbTUiSMJvMcd9WLBBFkZ1VVRh0OvyBQNzGaC1m2uHgcnc3kiTFfS5qLMmyWsmwKGtGseT3o9FoqKioUJzzJkkSra2tzMzMJNuUhKLVapNtwhLSzluS2XIRKJ0OvvzlcAr1uefC4r7PPBN92+fzyfJEiDfnz5/n7NmzQOKdN9WJ4xj/9h2IAwO4v/glfG95CyRI6DXSoWUwpo5DEuF8ZwcvXr6ML85P3HNuN6daWnC4XLLtLF0Ja5aV8rLyZJuRUKT5VOnIyIjinBhBEOjq6lLcfsvxnpV23pLMloq8Xc1dd8H587BtG9x8M/zTP4HbzbZt29ixY0eyrUs4rqtuzAlz3pxOdF//OsaPfpRQfQOu736P4O7didn2PIFAAIPBgEpM7lSAjdBQXoEvEOB0ayvBNdawGXQ6Gisr15x29fh8nGxuRq/Vsq++HlWSpydsBI/Xo6jar8j529raysDAQJKtSTwqlUp2xfvxRo736bTzlmTk+KOIGSUl8Pjj8PGPwwMPQEMDGX/6E9lW+el9xZurp0rE3XkLhVA/8gimt74FzUN/wHPffbg//emYDJdfLwUFhezcsTPh240FJoOB/Q0N2F1Ozna0r2kQuVajobygYE2TEPyBACfnhV4PNDaiSdEofHtbO6Ojo8k2I2FEzt+IbIbSUKvVa36Y2SqkI29plrDl0qaLUavhn/8ZLl+G7dvhNa/Be/PNm5qNmopc7byF4ui8ie3tGN/7/2F44HMEdzfh/I8fhrtJFaTJFEuyzGb21dUzMTO7pg5UfyDA4Pg4/jVEJtQqFXlZWRxobEQvw5vDWjEaDbjc8hIwjScR502r1SrSeVNi5C3tvKVRLjU18OCDXP7c5+DKFdi5Myzqu0FJhlRCkqQFjRrxiLwJs7Po/u//xXjf34HbjetL/xfPP/0TUn5+zLe1Vvx+H6dPn8bhSO3vODcri5v37iVnDZFLl8fDhY4OXKvoGEqShN3pRBAE6isqMKdQg8JyGI1G3DJTn48nIYVH3oqLi8nKykq2GQlFjs7bFg/7pJEbE4cPw223sf3hh1/Sh3vggbDA7xZuP7/++usxGo1hxy2WwxWCQTS/+x26H/4HSBLed70L/91/lrCGhNXweDwEQ8EtURoQiYx19PejUaupKCzc8LoudXczPDHBzXv3ymbQ/GbQ6/X4AwECAT9qdervz7WI6DRmZmYq0nmrra1NtgkJR47XsK17t0wjSwKBAKLRGJ7K0NoKN90UHq+1fz/87GewBcPxgiBgtVrR6XSEfDHqXPT5UD/0EMa3vx3d17+G/4YbcP7ox/hf/RpZOG4Avvl91cjwqXWjBINBWq5cYWh8fEPLd/T3MTA6yvbKyi3huAFotTq0Gg3BYGp1ym6USOS8tLSUffv2JdmaxON2u6Pj/pSCHCNvaectTUIJBoMv1fmVloYdtqeegtxceOMbw+nVr30NttDFwW6309zcTCAQQPJvMmU6N4f2pz/F9Oa/QP+lLxIqKcH179/A+/4PIMksleEP+BEFISU7TVeirrycorw8LnR1MbFOuYTekRE6+weoLS+nOAEae4nCbDbT1LRHOfqN0ksOXCAQWFMjy1aiubmZCxcuJNuMhCLHyNu606Yf/OAH170RQRD4/Oc/v+7l0mw9CgoKsFgsC1+88UZ45JHwhIYvfhH+4R/gX/4F7rsP3vMeSGLdViyw2+10dXVRV1e34cibMDaG9n/+B82Dv4dAAP8dd+C75x4kGSvxB/wBWV70NoMgCOysqsIXCHCmrY3DO3ZgMZmi76tUKrIyMpZIfgSDQboHB6koKqSquDjRZiccp9vNhc5OfAE/GpWandXVZBiNCz4zOTtLW28vgWAQQRDIy8qirrwcQRBweTw8dfbsgmX21NbKRsA45PPjcLl45plnuOmmm6LXNKfTydmzZ/H5fGg0GpqamsjIWChiPDk5yfHjxzGbXxKuvv7666O/mb6+Pjo7O5EkidzcXHbu3CmriQZqtRr3VbN717LP/f39dHd3R//2eDxkZ2dz4MABXC4Xjz/++IJl9u/fj+mq8yrZCIKwpLnw0qVLjIyM4Ha7F/wGFrPa97mZ73rdztuLL7643kUQ0p1uaebZtWvXym/u2ROugfvMZ+Df/i0s9vuFL4TTqu97H9TVJczOWBLRd1OpVITWOaBd7OpC+4ufo37iCTAY8L36Nfhf/Wqk7Ox4mBpTbDYb2Tnyt3O9iKLI3tpaOgcGMC1S2DcbDFy3c6k0ikql4sjOnVsmVbqYCxcuUFBgIz/fBoTr+kptNkry8xmZnORiZydHFp37apWKptpajHo9oVCIF5ubGRwfp2T+YU2tUnF9gnUJ14wUit5krxZWvnDhAuXl5ZSWljI8PMy5c+e44YYblixuNpu56aablrzucrloa2vjxhtvRKfT8eKLL9LX10dFRUXcdmW9LO42Xcs+l5aWUlpaGv37ySefpKSkJPq3Wq1e9njIicV+TGFhIdXV1Tz77LMrLrPa97nZ73rdztvPf/7z9S6SMHw+H9///vd55JFHcDgcVFVV8fa3v50DBw5cc9nx8XG+/vWvc/LkSUKhEHv27OE973kPRUVFSz77+9//np/97GeMjIyQl5fH6173Ol772tfGY5e2FJIk4XK50Ol0q0uklJeHHbePfxy++U346lfhO98J18W9/vVwzz0go4vZtZAk6aUTfw0pFqG/D81TT6F+8ilUV7oJ5efj/du/xf/yV8Ci6IWc0Wg0Wy7yFkGlUlFXHp4s4HC50KrV6Japi5mdm6O9v5+mmppl398qSFIoWuPo9fmYnZvjYGMjAAU5OVy+0o3T7V4QOcu8KvIkiiIZRiNu78pdurIiFEJY5Lx5vV5mZmY4PD8vuLCwkIsXL+J0OtccRRoeHsZms0VT0BUVFXR0dMjOedvMPk9PT+P1erHZbAmzORYsdt5ycnKuucxq3+dmv+t1O28FBQXrXSRhfPazn+XJJ5/knnvuoaSkhIceeogPfehDfOUrX1k14uNyuXjve9+L0+nkzW9+M2q1ml/84he85z3v4Qc/+AGZV0kE/OY3v+FLX/oSN910E294wxu4cOECX/nKV/B4PPzFX/xFInYzZQmFQjz++OPs3buX4rWkjqzWcGPD+94Hv/kN/Pd/hx26D30IDh58yZErk2/qENbmvAkDA2ieehL1k0+i6u5GMhgIHDmC76/+isChQ2G9vBRjcHAAg8FAdva1L3KpiiRJnGtvRxQFDm3fgdPt5vkLFziyaxcatZpTrS3otdotn33QaDT4A2HnzePzodNqFuyzQavD4/OtmPb0+nyMTE2yr74h+logGOT5CxeQkMi3ZlNdUiKf4yhJ0chbpObN4/Gg0+kW7rfBgNvtXuLIuFwunn76aQRBoLS0NHrDdrvdGK46RpHl5YQoitF9X88+R+jr66OkpGRBejAQCPDMM88gSRIFBQXU1NTI57ueZyP2rPZ9bva7Xvcd4R3veAc33ngjR48eZdu2betdPG40Nzfz2GOP8Xd/93e88Y1vBODYsWO87W1v45vf/Cbf/OY3V1z2f//3fxkYGODb3/42DQ3hi8ehQ4d429vexs9//nPe8Y53AOGnjO9973tcd911fPKTnwTgrrvuIhQK8eMf/5i77757Sa4/zUtELnLrPgn0enjDG8L/5ubg97+HX/wCPvaxsFbc4cNhR+4Vr4DaWtkJ0mZkZFA+H6WJFjeHQoi9vahfeAH1U0+i6uxE0uvDDttb30bgwIHwnNgUZmpqiszMrC3tvAmCwO6aGk5cvszp1lZq51NDXr+fcx3tqFUq9tc3oJZJB3C8UKnUhDaouh8IBjnd2kplUTFZ89E4vVbLrfv2odNq8QcCnG1vp3toSDb1glc/kK23YSEzM5PbbrsNjUaDx+PhxIkTaLXaZbM8cqSuro66DZawBINBhoaGuP7666Ov6fV6br/9dnQ6HX6/n9OnT9PV1UV1dXWsTI4JcnMm1+28eb1evvvd7/K9732PwsJCrr/+eq6//np27dqV1J176qmnUKlU3H333dHXdDodr3zlK/nOd77D6OjoimHaJ598kvr6+qjjBlBeXs7evXt54oknos7bmTNnmJ2d5c///M8XLP/qV7+aRx99lBdeeIE77rgj9ju3RYhJV5bZDPfeG/7ncMDvfhd25D784XCELjs77MwdPgzXXReO0K1QSJoocnJyyBEEeOghVA8/jOHZZ1G1tiI4nWGH7fB1+N78ZgIHDoYd1S2CJMnOj44LFpOJvXV1nGxp4VJ3N8FgkLPtbahVKq7bsXNLp0sjCMJL57deq8Xr8y9wcNw+77JTJALBICebm8nPzmbbVc6LKIrR46ZRqynJy2NocgKQh/MG4UjJHXfcES0N0Ov1eL3ehfu9KLoCC6fq6PV6ioqKmJqaoqioCIPBsECGY7nl5cRa9znC0NAQGRkZC4IcoihGU4cajYbS0lIGBwfjb3wCWO373Ox3vW7n7Uc/+hFDQ0M888wzPPfcc/zyl7/kv//7v7FYLBw5coSjR49y8ODBhLeNd3R0UFJSsiRUG3HIOjs7l3XeQqEQ3d3dvOIVr1jyXkNDAydPnsTlcmE0Guno6ACgvr5+wefq6uoQRZH29vYVnbeJiQkmJyejf/f29gIwNzfH7Oxs9HWNRoPRaCQUCuFwOJasJ5LCnZubWzJfzmg0otFo8Pl8S8KvarUak8kUVndfZqpBRkYGoijidDqXjD7R6/XRpyLXIiV1lUoV7Zq6ej8imM1mVCpVVBvI6XTicDiYnZ1Fp9Oh1+sJBAJLdIMEQYh279jt9iWOn8lkQp2Rgec1r8H7yleGJzWcOgUvvoj29GkM//f/EpyZYQ6goQEOHAj/q60ls6EBCguZ83hWPIZerxfPIpX8yDFc6buxWCwIfj/Ozk4CfX1hHbuTJwmdOIGpqwstELRacVRXE3z1awjW1RGsq0NlNEZV9mfn5pZ+N0Yjoiji8niWjF3SabXotVoCwSDORd95pI4IwO50Lj2GBgNqlQqPz4d30dQHrUaDQacjGAwyt2i9giBEOywdLteCgm0Ao16PRq3GG/Az5/Ys2CeNWh0tUHcso8pvMZkQBAGn201g0Xdj0IX1xHx+P+5F4qhqlQqTwRCdXrCY1Y6hXquNRngWT0a41jE0GwyoVCqMej1VxcWcbGkmFJKosZZQWVyMUa9f9ru51jFc7bu51jGM1JLNud1Lf9/z381mjuFy301+QSF6rQZ/IIDH50MlirT29FCUl8fE7Cx6rRaTwbDgtxCYd3JL821Ul5Tg9nrxzQvgev1+NCoVBr0erVrN4MQ4KkFcsPzVxzCWv++1HEPD/NQUj8ez4Dqh1WoZGBiguLiYjo4OAoEAgUAgem20WCx4vV4CgQDBYJBAIEB3dzfFxcX4fD4KCwt56qmnKCgoQKfTcenSJXJycpibm1v1Ohu5frtcLvz+hR3tq11nRVGMOlIrXmfVajweT1SQuLe3l9HRUa6//noMBgNms5nm5mZKSkoYGRmJ7lsEh8MR/X03NzdTXFyM3++PXmdnZ2fRaDSIokgoFOLKlSvk5eWtfp0VhGXvVQaDAa1Wu6l74HLHUK/Xbyg4VVhYyHPPPRcdj9jT0xONsK723lrYUCFNUVERb3jDG3jDG97A7Owszz//PM8++yxPPPEEDz30EDqdjn379nHDDTdw5MiRhIzSmJycXLaAMPLaxMTEssvZ7XZ8Pt81ly0rK2NychKVSoV10WB1jUaDxWJZ4Jwt5re//S0//OEPl7x+9uxZhoaGon8XFxezd+9e3G43Tz/99JLP33XXXQCcO3eO6enpBe/t2bOHkpIShoaGuHjx4oL38vLyOHz4MMFgcNn1Hjt2DK1Wy+XLl5cMmd6+fTuVlZWMj49z+vTpBe9lZmZy4403AvDss88uuQndfPPNZGRk0N7eTnd3N5cvX8br9ZKdnU11dTUNDQ3R39DVRELpACdOnFjiSB05coScnByuXLlCZ2dn+EW1Go4coezee9m9cyeus2d5+sc/hra2sJbcj3+MCLwSQBQ5Y7Uym50d1pjLyYG8PPbt309RRQWDExNc7u8Pr1MUIRjEZrFwsLqaQOS7mZiAycnof1/ucKAeG+OiJDE+vw0qKpgrLSXrZS/j5R/6EANjY5x67PGXdqStjayMjGiH4vPL6CfduGcPJoOB9r4+hhf9jqtLS6gpLWPG4YgOOY9gNOi5ac9eAF5sbl5yQTq8cyfWjAyuDA3SMzS84L2yggK2V1YyN1/DdTUqlYo7Dh0C4Fx7O3OLHIi99fXYsrMZnZqidXCI3KtstuXksLeuDl8gsOy+Hjt8GEEQuNTdxdTswgvsjqoqSm02RqemuNTVteC97EwLh7bvQJKkZdd7y/796LVaWnt7GV10ntaUlVFdUsKU3c6ZRTN3zUYjNzQ1AXD80qUlN/Iju3aRaTbTPThI7/AwLpebkakpDFotFrOJPKsVh8vF8UXno0aj4bb5Rqozba243At/3wcaG8nNyqJ/NKwNdzWFubk01dbi9nqX3deXHzkCwMXOTmYW3fx21dRQnJfH8OQkzVdJNwDkZGVxsLGRYCi07HpfduAAWlGkpbeH8amF1576igq2FRUxPDHBufZ2PF4vFzo7CASDZJhMvOmOYwD89NFHyTQaycrIYHhygqGJCUKNEuMzM3QPDhIIBijMyWXa4WBoYpyivDxK822oRJExu53RqanoNnVaLbfu3w/AqZaWJQ7awe3bycnMpHd4mO5FkZwSm42dVVW4ljmGgihy53wB/vmOduxzCx2eptpaLJJET08PDz74IIWFhVHHKiMjg97eXpqbmzlz5gyVlZU8/fTTXLlyhaysLN70pjcxPDzMQw89xOzsLJIkYbVa8fl8mM1mKioqyM7O5jvf+Q4QdlTKy8txOBzRVONy1+9bb70Vk8lEa2vrkqhVbW0tdXV1TE9Pc/z48QXvmUwmbr31VgBeeOEFfIuO4fXXX4/VaqWrqysq9TE4OMjY2BgFBQXs3LmTyspK/t//+3/4/X5UKhWVlZU899xzFBUVYbPZaG1txeFw4Ha7aW5upqmpidzcXAoKCujr6+P5559ncHAQQRCQJInKykqOHDmCz+dbdl9f+cpXIggC58+fX3LP3b17N2VlZYyMjHD+/PkF7+Xk5HDkyBEkSVp2vbfffjt6vZ7m5maGhxdeD+vr65c4bxcuXGB0dBSv18vx48dRq9XceuutnD9/HpvNRkFBAUajkbq6umhHam5ubrSEZrX31oIgxVBh0Ov1cvLkSZ599lmOHz/O9PQ0oiiyfft2rr/+eo4ePbqgXTiW3HvvvZSWlvKFL3xhwetDQ0Pce++9vPvd7+b1r3/9kuVGR0e55557eOc738mb3vSmBe89+OCDPPDAA3z/+9+npqaGz33uczz22GM8+uijS9bzute9jtraWj7zmc8sa99ykbdPfepTfPnLX16Q29/KkbfFF4ZNR94WPRFG0Gq1GAyG8FP11ZEshwP6+8mcnYWBAea6uggODMDgIAwNwdAQRocDDeAFFve9qQETEAIcAJmZUFQExcVQXIxl2zaE0lKcubkEbLZwI4XRyJUrV+jv7+euu+7C2dXF9OWFTpZKpdqSkbeevl5UajUWy0sNP1s18ub2ernY1UXf8DC7amoYnpigOD+f6pISRUTeHHY7eq2GzCzrkmN4rd/31cfQtzhqtMrvO5mRN8v+fThVKh566CH2799P3rzo8pqi89eIGm3kOpvIyFtHRwcDAwMcO3Zs+essC6/fV0feosdwlQzHte6ByYq8ffKTn+Tpp5/mu9/97oZr/mJJTFvYdDpdtAZOkiQuXboUTa9+85vf5Fvf+hZPPvlkLDe5YNuLDzgQdRhWSuNGXl/LsjqdbsmP5erPrpYqzs3NJTc3d8nrZrN5QTdrBFEUl3396uVWQqvVrjjOQxCEVde7Wku7RqNZddnV3jMYDCvm89Vq9arLriR+COGTSr9CnZhKpVq43sxMuEpbaNkjaLfD3Bw6vx+d3x8e1xUIhCNwGg1oNIhqNZkWS7j+bhkWH0GLxRKtc9FotQskEhaz2nvGVerh1CrVqstaVvle9fM3yOVQXWO9i4VXr6aibOWnSFEUV13vamKsWo1mRb00QRA2fAw1avWGj+HQxASTMzMc2L6d8oICfH4/Hf39WIxG8rOzN3wMV/turnUMVxt4v5ljuNx3MzI4iEclkpubt+Hft0Gnw7DCNTRZv+8Vj6EgoNFoMJlMZGZmLrl+Xev6Ha/rrHGV31KsrrNmsxmz2Ry9ni+5zi5itSY+nU634n1zM8dwM/fAlY6h3CZpxE1/QBAEdu7cyc6dO7nvvvvo6enhueeei9fmyMnJYXyZeYORaNdyjhOEf7BarXbZlOfiZXNycggGg0xPTy9Infr9fux2+5p0X5RMMBjkhRdeoK6uLvqkKjsslpg3OETSAeE/5KOUHm9cbheiIKDXy7fgOhYMjI3R3ttLdWkJeVlZnGtvp6a0NDyFob2dg42NZCe5aSbeSEgbqglKZSLntJymHyQKpX3XcmTdztvnPve5Vd8XBAGTyURVVRU33nhj1DuuqKiIq9BgdXU1Z8+eXSIO2DxfB7RS27EoilRWVtK6qNYlsmxRUVHUE6+pqQGgtbWV6667Lvq51tZWQqFQ9P00KzM9Pb0kfbrVUalU0dE3Srrm9fb0oNPpqKysSrYpcUOSJAbGxiix2agpLWN2bo7hiQm2FRXRVFPDyZZmTre2cv3u3StGlbYCAX8AwxbqlL4WVz+QKc2RKS4uVmSgIuUjbw899NCaPicIAl/72te4//77EzL24uabb+ZnP/sZv/3tb6M6bz6fjz/84Q80NjZGO01HR0fxeDwLCgNvuukmvv3tb9Pa2hrtJO3r6+Ps2bO84Q1viH5u7969WCwWfvOb3yxw3n7zm9+g1+sXvJZmKRvVRUp1ysrKKIsICSvoQq/RaPD7ly8z2CoIgsCBhoZloy+iKLK3rp6BsbEt7bgBBAL+LTtNY1lEEa1WS2Nj46qpyq3IYqkPpSC3+9a6nbevfOUrq74fCoWYnZ3l0qVLPPjgg3zyk5+kuLg47oJ7jY2N3HLLLXznO99hZmaG4uJi/vjHPzIyMsL9998f/dynP/1pzp07t6Db5NWvfjW///3vuf/++7n33ntRqVT84he/wGq1cu+990Y/p9Pp+Ou//mu+/OUv8/GPf5yDBw9y/vx5HnnkEf7mb/5m1ZqBNOGbmSAISwqAFYWCUixhEdKlBepbgTm3m3Pt7dcclq5Rq6P6ZRMzM2SazWhScFrGtcjJycFsVtANXRDQarVUVW3dqPJKjI2N4fP5FswmVQIp77w1zbfNX4tbbrmFV7ziFfzt3/4tP//5z/nYxz623k2tm49+9KPYbDYefvhh5ubmqKys5IEHHrimzUajka985St8/etf58c//nF0tum73/3uJTInr371q1Gr1fz85z/nueeeIz8/n3e/+93cc8898duxLcTiocZKYHx8nIsXL3LjjTcibHGl/asJR96WNgKlOh6fj5PNzahVqjUPmg8Gg5zv7MCkN3CgoSGaRt8qlJbKe0RdrBFUKjweD9PT0+Tn52+573M1hoaGcDqdinPeFnfMJpu4PgJWVVVx9OjRJXor8UKn03Hfffdx3333rfiZr371q8u+np+fzyc+8Yk1beeuu+6K6q2lWR+7d+9WXMg90tbu9XrRKyi1pNVqt9xNzR8IRPX0DjQ2Lomi6bRaqktLlkxVUKlU7Ktv4MTlS5ztaGdf3VLdqFQlGAridrkxmYwICmnIEbRapsfHOXXqFMeOHdtyv/PVCAQCitpfCDtucssYxf1MKykpYeoqYcU0yqaoqEhxzlukFd7r9SIoYFRShNzcPHbt2pVsM2LK2fZ2PD4fBxobl5Wf0Gu11JSWLfteltnM3to6xqdnuLRIIDeVcc45aW5pXqKltlURVCKCWh0+n+clQ5REMBhcMOJLCcgxgxB3583n8ynui06zMsPDw8tKumxllOq8bUWqiovZ39Cwov5XIBhkYmZmiYhthDyrlV3V1Uzb7UsEaVMVny8s3qrVKOO3HTmHI2ONtkoEda0oMfImR4WEuDtv58+fp7hYPsOE0ySX7u5uBgYGrv3BLYRGo0EQhLDzplYjqJSRWpKkEOfOnWVycvnRdKnE0Pg4kiSRk5mJdZXIsdPt5mRz85JpAFdTnJfH9bt3o9VoZFcEvRHcbjc6nU4xemdXO28rCcFuZXJycpaMiNzqKMp5C4VC/Md//Aft7e3ccMMN8dpMyrMVLt7rQaVSya52IN4IgsDBgwejcjVKib4JgogwP24mleno7+N8RweTy4wl2iiiKOIPBHjuwoUl82pTDZfLjdGgHLmMyPmr0+kU58RAeM5nPDVb5YgcnbeYi/SGQiHsdjutra3MzMxQUlKy7EzRNGHkmEuPJ2q1WnHdphBuiIkgaLXgXjw5dWtiNBhxuVaOQsmd3pHwYPja8nJyF3Webxa1SkWG0cj5zk40anXM158oJCRM5pVHFW01hPkaNznMt0wGbrcbjUajqHIoOd6n4ybSq9FouP3223nXu96lOBHD9aA0R0alUi0ZJK8EhoeHCQQClJaWKibyBmA0GhgbS80ax5HJSZq7u6koKqQqDqUfgiCws6oKr9/PmbY2Dm3fvuqcTblSX1efbBMSSuT8DYVCikkVX82TTz5JbW2tojTutkTk7VoivYIgYDabKS0tVWQ9wHqRo0cfTzIzMxX5uxgdHWVubi7svCmoO81oNOIP+PH7U0+Bf2JmhsLcXOrLK9a8jCiKGA36Nd/Uw1MY6njx8mVOtbZw0569qFOoGFxCQkBZBfsR5+3hhx+mvr6ebdu2JdmixCFJkiK7TbeE87ZWkd40a0NpzltlZWWyTUgKOp2OyclJQDk1bwCWzEx27dqFWpM6F/tIRGVHVRWhUGhd3YQZRiM37dm7ru2pVSr2NzQw7XCklOMGMDoywujoKLt3NyXblIQhaLQEg0ECgUDKPZBsFr/fjyRJinsAl6PzpryYr8xQWtpUkiS8Xq/iGjV0Ol00Xawk500lqtDr9CkTnXF5PDx97ly0OSFRaTGtRoMtOxuA/tHRFaVG5Ibd4YhK4SgFQauJnstK23el7rfP55Ndilxe1igQpTlvIyMjPPLII4qLOOp0OoLBIMFgEEEhelgRJicn6OrqSrYZ18Tr83GypRlBYEUdt2thdzr508mT2J3ODS3v8flo7e3ldGur7MbxLEaSQjjsDiyZmck2JaGIWq2inRhQ3n7Lsewj7bwlGSU6MYDimhYyMjIoKysLp+G08roIxBtJkpicmiQQkO9vPRAMcrq1lUAwyIGGxiXjrdaKJEnR1NJG0Gu17K2rY9rh4Hxnp6wj1HNzcwRDQbIU5rwJCnbecnJyeOUrX6m4JkQ5DhtIO29JRo659HiiVOfNYrGwe/duNBoN4gajOqlK5vzN3W63J9mSlbnc3c2c282BhkaMen1SbcnJzKSppoaRyUlaenqSastqzM050ajVGBR0Ixc0agSNhvz8fG699VbF1X5BuJRAaVMlfD5fOvKWZiEejzL0viIo1XkDcDqduFwuRL0eIYUK+DeLRqPFYDAwG0OR21hTU1rK/oYGLCZ56JUV5OSwvXIbc263bNOnhYWF7NixM2XqGWOBOP/7EEURk8mkOCemu7ubM2fOJNuMhON0OtEn+aFuMWnnLcmkuvr8elGr1YrVejt58iSdnZ0AiKbU0/PaDJmWTFk6b70jI/gDAYx6PdkWS7LNWUCZrYADDQ2IoijbqSRyi0bEG3Feh+/ChQv09fUl2ZrEY7fbFXfPgnCJgEFmGZO085ZklBZ5A7j99tsVKRlisVhwOBwAiApSpAfIt+VTXV2TbDMW0DU4SHN3N2PT0zFbp8lg4PDOnZhidKEXBAGn282TZ88wNjUVk3XGgvHxcS5duiTbqGC8UJnNSJLE4OCg4kpeIJwxUVqdH4Qjb3Kr80s7b0lGiU8xSntaj2CxWLDb7UiShCoFlfQ3g16nxyyjfR4YG6O9t5eqkhKK8/Jitl61SoU1IyOmem1GvZ4scwZnO9qZkknd4MTEeLh+U2byCfFGNJlwu90EAgEsMovUJgKv16vIOr905C3NEtzu1J37uFE6Ojq4dOlSss1IOBaLhUAggNvtjqZflMTc3BxtbW1IUnKjNWNTU1zs6qLEZqO2rCym6/b4fLT0XMETw6iMIAjsqa0ly2zmdGsrjiQ/8Hm8Hhxzc+Tm5ibVjoQjhNOmkcYbpTpvcqv9ijehUAiXy5V23tIsRImRN5/Px/h4as673AwWiwW9Xo/H4wkXPiur1hm1WsWsfZaZmZmk2uH2+ci3WtkRh9S91+ejZ2gYb4xTauExWvUYdDrOtbcnVUJkcmIClajCarUmzYZkIBoMCCoVdrsdrVarOCcGYOfOnRQWFibbjITicrmQJEl2zptyWt5kisfjUdyAY6PRGD0hlNStpdfruf3226N/iwYDIZdyIq96vQGzycz4xARWa3bCtx8IBlGrVJQXFFBeUJDw7W8WjVrN/oYGvD5fUs+b2Vk72TnZirpmwUtNRgUFBbIqAUgkBSl43mwW57zgdrrmLc0SlBZ9M5lMhEIhRTZrANGoidI6TgFy83KZnZnF709ssbfH5+OZc+foGx1J6HZjjV6rJdNsJhQK0dHfl5Qu1IbGBspKSxO+3WQTaTKyWCwUFRUl2ZrE43A46OrqUlyTytzcHIDsIm9p500GODc4SidViTzBKM1phXC93xNPPAEor+MUICc7G0GAycnJhG3THwhwsrkZgPwkRPziwZzbTffQEGc7EptC9fv9CAioVMpL2qjMZoLBIB0dHYqsVZ6YmKC1tVVR2RJ46f6cdt7SLCHi2SsFo9FIU1MTJpkIoiYSvV6P0+kkEAgoruMUQKVSU1/fgM1mS8j2gvNjrzw+HwcaG9HHuVNOq9FQVlCANs4d1RaTib21dYxPz3Cpuzuu24rg8bg5f/6crCdlxJNIs0Jra6siZUJcLhdGo1Fxztvc3BxarTY9HivNUpQWeRNFkdLSUkUW/EY61BwOhyI7TgHMZjOCICYk/dI1OMisc479DQ0bHja/Hgw6HdsrKzEkQAsrz2plV3U1A6OjtCdAMHZoaAi1Wk1GhvJ+t4JahWgwYLfbEQSBjIyMZJuUcOSodZYInE6nLGsc085bklGr1YqLvAGMjY0xODiYbDMSTkZGBoIgYLfbw91rChqTdTXj4+NcuHA+7g5cZXExBxoasSboZhsMBpmdm0tYLVpxXh51FeVxP45er5fJySkKC4sQBOXdNiIPWna7HZPJpLhmDQhH3pSYLZmbm5PlfivvFygzjEajIp234eFhuhOU7pEToihivkorSqVArSiADEsGfn+AiYn4SMZcGRpizu1GrVIldOzVnNvN8xcuMJfAmqjKomLqKyoA8Pn9cdnG8PAwarWKvBgKGqcSqsxMAGZnZxWp7waQm5tLTk5Oss1IOOnIW5plMZlMiqwhMRqNiksXRzhw4ADbt28HQJW9NQro14tepyc7O5vh4eGYi/b2jozQ2tPDeAzHXqUCk7OzPHHmNJNxmCErCOFB9EqMOMFL52lOTo4iO00BduzYoTiNN5Cvw67MM1FGWCwWpmQ0szBRmEwm/H4//jhFCuTM1WkXtUKdN4CioiJ8Pj+jY2MxW+fI5CTN3d1UFBWyTWE3WWtGBtYMC6dbW5mNcTS/vLyCggLl3bgBBJUYjbw1NDQo0oHx+XzMzc0lVRw6GUiSxPT0tCwFqdPOW5KxWCxMKyxCAEQLfpUYdZQkiRdffJG+vj5EkwlRr7xBzxBuvc+35eOPUefe5Ows5zo6KMzNpb68IibrTCXCUxjqMBsMnGptwRmD1O3cnIOxsVEklHXTvhpVVhaCKDI5OanYbMHg4CBPPfWU4pw3h8NBIBAgW4YP2WnnLclYLBbcbrfidIPMZjNFRUWoYjjAO1UQBIFAIMDo6Cig3NQpQHlZOaWlsZsvmj/fgZksOQNBEFCpVEnbvlqlYn9DA2qVistXrmxqXRISPT29TExMxMi61CRyfp47d06RdboQfsg2m82KS5tHAityjLwps9VNRkRy6dPT07ITAYwngiCwb9++ZJuRNPLy8ujs7CQUCqGyZuMfGk62SUlDQmJ8bAyDwUBGxvprS7w+H1qNhpzMTHLm01vJwmIyccehQ0m1QavRcKChEdUmb7Rjo2O43C62NzYiKG0Q71Wos7NxOp24XC7FNmzY7XZZ1n3Fm4jzlpWVJbvyJmW50TLkaudNafj9/qQPKU8WeXl5BAIBZmZmUGdbFTekfjGTk5P09PSsu3nB6/Nx/PIlWnt74mNYimLU69FptXh8PpqvXFm3lIjf72dgYID8vHxMChzjFkHU6xBNJsbHxxEEgdzc3GSblHAkScLhcCjSeZuamiIjIwNNnEW3N0LaeUsyOp0OvV6vSOetv7+f559/XnF1FACZmZlotVrGxsYQNBpUChT9jCAgUF5RgcfjZXhk7bNHA/PTEwLBIOUyKaZ3uFw8c+4cDpmMfnN5PPSNjnK+s3Nd59n4xDiiKFBaWhJH6+RPJGU6Pj5Odna27FT2E4HX60Wj0SjSeZuenpZlvRuknTdZYLVaFem8WSwWgsGgImecCoLAwYMHqaqqApRd9wZgNBgpLCxkcGBwTbqHoVCIM21tzLnd7K9vwCiTaR2hUIg5l0s2w7uzLRaaamoYmZigpadnzcsVFhZSX9+gyBmmV6Oan4Wr1+sVKxGi1+u5/fbbFZkylmunKaSdN1lgtVpll09PBJEnudk46FKlAlarNRqOV7JkSITi4iLMZhPj49eWDhkcH2fKbmdffT2ZMhTQlBMFOTlsr6qkd3iYrmtMNXG73eERUAiKqsFdFoFwSQOwc+dOKuaFkJWGEjMjEeTsvCn7sUomZGdnc+nSpWSbkXC0Wi06nQ673a7Ip9pQKMT58+cpKioiPz8fQa1CCiRmrJIcEQSR2tpaxDV0IJfabGSazVhkOLZGjpTZCvD6/Bi02hU/EwqF6OzqREBg+47tim5SAFBlZCBoNDgcDnQ6HdpVjt1W5tSpU2g0GpqampJtSkLxer04nU7ZOm/pyJsMsFqtzM7OJmweopywWq2K3G8I63LNzs4yMjISlpiQ6UUikahUagQEHA77sqOzrgwNMTYfpU47buujprSUovnU13IacL19vXi9XqqqqhTvuMFCiRAlPlxHsNvtinRcI6VM6Zq3NCtitVqRJEmR6cOrR0Upkby8PMbmJwyoFTg3cCWmp2fo6enB6Xyp/m1wfJzWnh5mZDwL2KjXs7e+XjY1eMsxMDbGsxfOM+1wRF+bnJxkfHyc8rLydLp0HnVODj6fj5mZGUXWe0G469jlcpGZZAmeZCBnjTdIO2+yIOLZK7HuDcI1FXIp8E40+fn5eDyesGRIXh6I6YgHQGlpCUajifb2Dnw+L+PT01zo7KTEZqO2LHaivrFGo1Zjy85GI+OuxKLcXDJNZk61tOBwuZCQGBoeIjcnR7FOymJEowFVZiYj893PSj0ukXuSXB2YeDI1NYVWq8VoNCbblGVJO28ywGKxoFarFalkHggE+OMf/8jwsDJFanNzc9Hr9fT39yNoNKhzlXmTWIwgiNTU1CCqRE6dPcup1hbyrVZ2VFYm27RV8fp8dA4M4I3RyK94IIoi++rrMeh0nGxuxuvz01Bfz7Zt25JtmmzQFBQAYTmjvLw89DKOpMaT6elpdDqdbB2YeDI5OUlOTk7SpqVci7TzJgNEUSQvLy86LklJqNVqdDqdIqVSICwZsnfvXmpqagDQFBYk2SL5oNFoqKurQ6vRkpuZSVNNjWwvpBE8Ph8dfX14ZOy8QThCuLu6iqGhIdp6elCrNQhC+nYAhLtMCwoIhUJoNBrKZBzpjTe1tbUcPXo02WYkhdHRUWw2W7LNWBH5xvYVhs1mU6TzBsqVSomQc1Wtmyo7G0GnRfLK++afCDw+HyqVmn179yAgEAqFkKRQ2smIAYGAn57ubmoLC6grK022ObJCbbUizkfaDh48mGRrkosoipgU2BgUCoUYGxtjx44dyTZlRdJXQZlQUFDA2NiYImu/srOzsdvtiu06Bejt7eX8+fMIghBN2SgZfyDAyeZmznd2RDsf29vb6OzsWvcIrTQLCQT8tLW1EQgE2bVrF3q9gZm5OS6scwrDVkVdWIgkSYyNjSn6eNjtdl544QU8Hk+yTUk4U1NT+P1+WUfe0s6bTLDZbAQCAUVGoLKzsxXbbXs1/f39eDwexTtvwfmxVx6fj/ryiujrBQWFzM7O0NbeTjAYSJ6BKYwkhWhpacHn81NXX4deF44w+f1+BsfHudTdnWQLk4ugVqHOzWVycpITJ04otpwDwjVfkaJ9pRHJgqWdtzTXJPIjUWLq1Gw2c/vtt8tWTycRFBUVIQgCg4ODiCYTKosyZ51KksS5jg5mnXPsb2jAfJVsRVZWFvX19bicTlpaWvH7/Um0dHk0ajW2nBzZdpsKgkhxcTENjQ0YDS8VoedZreyqrmZgdJT2vr4kWphc1Pn5CCoV/f39mEwmRV+TpqamyMrKQhSV5yaMjo6SkZEh65Sx8r4VmWI0GsnIyFCk8yYIgmK7uSJoNBoKCgro7+8HQC2TQeuJZspuZ3xmhj01tVgzljqwZnMGDQ2NBAJ+ZmZmEm/gNTDq9eytq5OdzpvDYWdoKDwaKzs7Jxpxu5rivDzqKsrpGhigd14iQ2loCgoIBAIMDw9TWqrsWsCpqSlFSoSA/JsVIO28yQqbzRbVFVIaIyMjPP3004quMSktLcXhcGC329HY8hWp+ZaTmcmNTU3krxLxMBgM7Ny5M6q95fV6E2XeNQmFQnh8PlnVrk5OTtLW1obd4bhmvWBlUTHVpaWKnBcrGg2osrIYHh4mGAxSUlKSbJOShtvtxuPxKDbymHbe0qwLJXecajQaZmdnsdvtyTYlaeTl5XHDDTdgsVgUp/nWOzJC58AAwJqiVipVOC05OzvDhQsXGB4eRiL5jr/D5eKJU6dwuFzJNoVQKERPTw9d3V1YrdnU1dauqVO3prSULLOZUCiE3elMgKXyIFJrqlarqaioUPSkCa1Wy4EDBxZ0wiuFiGh62nlLs2ZsNhuzs7OK7O6xWq2o1WrGx5fOs1QKgiCQlZUV/Vspmm8jk5M0d3fj20ANm8ViobCwgP6Bftrb2mVZB5csRkaGmZgYZ1vFtvC80nVKrHQODHD80iVmZTyOLGbMa7sBFBYWsnPnziQblFxUKhUFBQVoNJpkm5JwIuMK085bmjVTMH/xUGL0TRRFcnJyoieOUgkEAjz99NMMDw+jys5G1OuSbVJcmZyd5VxHBwW5uTRUVKx7eUEQKSkppa6uDpfLxaVLl3AvM3RdSXi84Ye/goJCtm/fseHRTpXFxZgNBk61tiw7yH4roc7ORtTrGRsbU3T0H+abhs6dk2VNaSIYGRlBpVKRm5ubbFNWJe28yYicnBxUKpUinTcIpw2np6cJBJQrA6FWqxFFkd7e3rDm2xZWd3e4XJxubSXbYmF3dfWmpidkWjLZsWMH2TnZ6OcdXqXpwfl8Xjo6Orh06RJ+vw9RFDeV+lOrVOyrr0etUnGqtUXWI782i6asjFAoxPnz57ly5UqyzUkqdrud/v5+xepujo6OkpeXh0qlSrYpq5J23mSESqVS7JgsgOLiYm644QbUMpVZSBSVlZWMj48zMzODpqgIYYvqLBl0Okpt+eytq4uJHIFGo6G8rBxBEHG73Zw/f57x8XFZ1MLFE0kKMTQ0yIWLF3E656jctg2NJja/GZ1Wy4GGRgLBIENbdPayKisTtdXKwMAAHo+HSpnPz403Y2NjqNXqdKepzEk7bzKjoKCAoaGhZJuRFLRaLRaLJdlmJJ3CwkLMZjMdHR0Iooh2i40v8vn9ON1u1CoVDRXbUMfhCVetVpGRYeFKzxVamptxOhNTt2UxmTh2+DCWBOpD9fT2MjQ0RIHNxs5du8jOjm2RuVGv5/pdu9lWVBTT9coFbXk5kiTR2dlJYWEhGctI1CiJ8fFxcnJyFKnvFgwGGR0djZYwyRnlfTsyp7S0lNHRUXxbOEWxGiMjI5w6dSrZZiQVQRCorq5menoav98fjr5ptkY0MhAMcqqlhTNtbXGVhdFotFRVVdHY0EAoJHG5uZnJyfhHjgRBQBTFTaWA14LDYY/WZhUVFrFjxw5KSkpRifFJ9ejmo79D4+Oc7+jYMpI+KksG6pwchoaGcDqd1NTUJNukpBIIBJieniY/Pz/ZpiSF0dFR/H5/Smj8pZ03mVFaWkooFGJwcDDZpiQFSZIYHh7GJQOphWRSUlLCy172MjQaDYJajWYLaE6FQiHOtLUx53aza5M1bmvFbM5g+47tVFRUYDaHIyrTM9NxK0p3ut2cuHwpLgX+EhJTU5M0N1+mpbWV8fFwc49Op0OvT4yshSiKDI2P09rbk5DtxRtteTkQHtG3Y8cOMjMzk2xRchEEgZ07d6ZE2jAe9Pf3o1arUyLytjUe5wGHw8G3vvUtnn76abxeLw0NDdx3333U1dWtulwoFOLhhx/mqaeeoqOjA4fDQWFhIbfeeiv33nsvOt3Cbr8bb7xx2fW84x3v4M1vfvOm9yMvLw+dTkd/fz/btm3b9PpSjdzcXARBYGJigrItXKx/LQRBQKVSRWVjdCUl+Pv7kQKpWUQsSRIXOjuZsts50NCQUBFYAYH8vJciCeNjY8zMzmIyGiksLMRqta5bRmMlAsEgU7N2AjEu9vZ43LS1t+P1erFYLNTV1ZFpSbyjUZCTw/aqSi53daPVaKkqLk64DbFCNJlQz3fiGgwGRV5vF6NSqRR93e3r66OoqCgl6q7lb+EaCIVC3H///XR1dXHvvfeSmZnJ//7v//Le976X7373u6uGQD0eD5/97GfZvn07f/Znf4bVauXy5cv8x3/8B2fOnOHf/u3flkQI9u/fz5133rngtViF2wVBoLS0NDomSWloNBqsViujo6OKvohA2OF57rnnyMnJoampCU1xMb7e1Jw76fR4GJueZnd1NTlJjm7U1tYxa59leHiYzq4u1CoV27fvWPKglkyCoSCzMzN4vF6KCovQ6XRkWjLJz8/DaEzuvMUyWwFen4/23l4MWi1FG5QiSTbainDU7eTJk5SWlqZEtCXetLa2UlRUpNja4/7+/pTR+NsSztuTTz7JpUuX+MQnPsHNN98MwK233sqb3vQm/uM//oOPf/zjKy6r0Wj493//9wVf2F133UVBQQE/+MEPOH36NPv371+wTGlpKXfccUdc9iWy/hdeeAFJkhKSWpIbNpuN9vZ2gsGg7Nu144kgCGzbto3m5mZqa2sxlJbiHxhACqaeBIbZYODmvXvRykT0M9OSSaYlE7fbzczMTNRxa+9oR6PRkG21Ys7IiFsN2XJIUojp6WmmpqaYmZ0lFAqRYTZTWFiIIIhUbEAHL17UlJYhiqqkO+IbRTQaUOfnMzY2xsjISDrqRlgipKOjg+zsbEU6b5EJP6lQ7wZbpObtqaeeIjs7e0FKMysri1tuuYVnn3121eJ/jUazrKd9ww03ANDb27vscl6vN24zFUtLS/F4PExs0db8a1FSUsKBAwcU2e20mPLycjQaDV1dXQhaLZoU6/gbHB/nXHs7oVBINo7b1RgMBgoLC4FwTZnRYMRhd9DW3s7p06e5eOliVPQ2GAzETHZEkkK4XE5GR0cZGQ3PMw5JEl1d3Xi9XoqLitm9azcNDY0IyPMBrqq4GJ1Wi9fnS7kpDNqyMgRBoKOjA6vVKntB1kQwPDyMRqNR7LGIZLtSxXnbEpG39vZ2ampqltzsGxoa+N3vfkd/fz9VVVXrWufU1BTAsgWsf/zjH/nf//1fJEmivLyct7zlLdx+++2rrm9iYoLJycno3ys5hRDWOxMEgf7+/g2ro6cyer0e/RrmWyoBlUpFZWVl9DeuLSvDNzgIIfl3+41PT3Ohs5OS/PyUcMQFBEpKSigpKcHjcTM3N8fcnBPtvGZaV1cXdocDnVaLVqtDq9WQl5eH2ZyBz+fF7XbjDwSpsNnweT3MBgOEJAm/z4fBYCAjw8LcnIPu7iv4fF5CkoQoCFgyMymwFaASVeH0uAyd3NVo7e1lbHqa63buxJwC80BFvQ51QQGTk5NMTU1x8ODBZJskC4aHh7HZbClxrsaD/v5+srOzMSVQ5mczbAnnbWpqit27dy95PTJUd3Jyct3O209/+lNMJhOHDh1a8PqOHTu45ZZbKCwsZHJykl/96ld88pOfxOl08ud//ucrru+3v/0tP/zhD9e0bZ1Oh81mo7+/n717967L7q3C7Ows7e3t7Nu3T7EXkwgVFRXMzc0RCoUQjUY0hYX4B+WtBTjtcHCmvY08axY7UlD0VK83oNcbyM196eGpqKgIy9wcPp9/3lnzEJhvIJmZmaHnqgcyx9RLD2qiIMzrh1nQaLRYrVlotTpMJhMmk3FBs0SqOW4Ajdu2YXc6OdnczHU7d6KXuai0pqwcQRQZHBzEYrEotrPyaubm5nA4HNTX1yfblKTR39+fMlE3kKHzFgqF1jxcWqvVIggCXq8X7TIXjMhr601v/uQnP+HUqVO8733vWyLY+I1vfGPB3694xSt4+9vfzne+8x1e/vKXr1j0fPfdd3P06NHo3729vXzqU59a0YbS0lK6u7vXZfdWQhRFRkZGGB8fV/zFVaPRsGfPnujf2ooKAqOjsu089fh8nG5tJdNkZk9N7Zap2zSbM6JyI4vJzc3DarXi8foYnZ7CZs1Grwtfn1RqdTT1qdPpKC3dWo04GrWaA42NvHDxIiebmzm8YwcamXbriUYDmqJwmnznzp1xK31JNTQaDfX19YrM9AD4fD5GRkZSKlgiuzPs/PnzvPe9713TZ3/yk59QXl6OTqdbtq4t8tp6usgee+wxvve97/HKV75y1UhaBI1Gw2te8xq+9KUv0dbWxq5du5b9XG5u7rpqCcrKyjh58iQulwuj0bjm5bYKGRkZmM3maCg/TVjA2G63U1tbi7aiAm9nV7JNWhadRsO2oiLKbDbFNJyIoogoanF5fXT0D5BnzY7ZiKpUQK/VcqCxkROXLzFtt5OfnZ1sk5ZFV1uLIIrY7XYsFku6PGMenU6naIHiwcFBQqFQSikcyM55Kysr4yMf+ciaPhtJi2ZnZy+oJ4sQeS3yuWtx8uRJPvOZz3Ddddfx/ve/f40WE1WjjqXwZyR829/ff02tuq1KYWEhPT094XShwlOnAC6Xi7a2Nmw2G5bSUvzDI4SczmSbFcUfCGB3OsnJzExpGYpvEAAAf4FJREFU/a80G8NsMHDTnr3RcWdy65ZX5+Whzs5mYGCAs2fPcvPNNyt+FBaA2+2mr6+PysrKlEzbx4L+/n50Ol1KRR5l57zl5OTw8pe/fF3L1NTUcOHChSU3+ZaWFvR6/Zry2M3NzfzjP/4jdXV1/Ou//uu6RPois0izsrLWZfdqZGZmkpGRoXjnraOjg8nJyZQ6qeLFtm3b6O/v5+LFixw9ehRdbQ3us+eSbRYQngl4urUVp8fNzXv2KibilmYhEcetrbcXXyDAznXWGscLQa1CV1uD3++nubmZoqKitOM2z9DQEJ2dneuuC99KROrd5PSwcS22RDjjpptuYmpqiqeffjr62szMDE888QRHjhxZUA83ODi4ZPRUT08P999/PwUFBTzwwAMrpllnZmaWvOZyufjlL39JZmZmTJ0sQRAoKyujp6cnZutMNTIzM9m/fz9WqzXZpsiCyOia6enp8BgXqxVNQfJTypIkca6jg1nnHHvr6tOOWxrMRiMDo6O098lDVFpbXo6o09HW1kYwGGT79u3JNkk2DA8Pk5+fnxJTBeJBMBikr68vpVKmIMPI20a4+eab+eUvf8lnP/tZenp6ohMWQqEQ/+f//J8Fn/2Hf/gHAH7xi18AYefrAx/4AA6Hg3vvvZcXXnhhweeLisJDnwF+9atf8eyzz3LkyBFsNhuTk5P84Q9/YHR0lI997GMxDzlXVVXxu9/9DrfbjSEFWvDjQUSDK02Y7OxsSkpK6O/vp6ysDG11NYHJSSR/IGk2Xe7uZmx6mn11dVgVHs1Qq1RkZ1qiESilUpyXh9fvo62nF61GQ0USz2PRZEJTWordbqenp4eGhoZ0rds8TqeT6enplCrUjzWDg4N4vd6UizxuCedNpVLx+c9/nm984xv8z//8D16vl/r6ej7ykY9c05uenZ1lbCw84Pnb3/72kvfvvPPOqPO2c+dOLl26xO9//3vsdjt6vZ6Ghgbuv/9+9u3bF/P9qqqqQpIkrly5QmNjY8zXnwqEQiHOnz9PYWFhenzNPDt27IhGt0StNty80NGZFFt8fj8Ts7PsrKqSbZF6IjEZDBzaviPZZsiCyqJivD4fLVeukGE0Jm0ag662BkEUMRgM1NbWpqcpXEV/fz8ajUbR19aurq4FYt2pwpZw3iDcnXj//fdz//33r/q5SMQtQmFh4YJ062ocOHCAAwcObNjG9ZKZmUlubi6dnZ2Kdd5EUcTpdNLb26voC8zVRCK8Ee23jJIS/MPDhOYS27wgSRJajYYbdu9Op0rnkSQpWqifSvUz8aK+vAKj3pC0iKzalo/aakWSJDQaDbW1tUmxQ64UFBRgNpsVff52dXVRWVmZck1xqWWtAqmurqarqwtJkr+ifrwoLS1lfHwcj8eTbFNkxblz5zh37hwA+gTflEYmJ3nh4kX8gYCiL/yLsTudPHz8OHYZdQEnE0EQKC8oQBRFZufmEjpGS1Cr0FVX4/f7eeKJJ6IZljQvkZWVRUlJSbLNSBput5vBwUGqq6uTbcq6STtvMqeqqorZ2dllpVCUQlFREYIgLGk0UTrbt29ndnaWvr4+VFlZaAoTE5mcnJ3lXEcHBr1e8bVdadZOa28vp1pbcCXoIUy7bRuiTkdrayter1eRw9ZXo6Ojg+Hh4WSbkVS6u7uRJInKFJwCk3beZE55eTkqlYquLnkKsiYCjUZDYWFhdHBwmjBWq5WysjJaWlrw+XzoqqoQNPGthLA7nZxubcWakcHu6up0ajDNmmmqqUGtUnGypRnvMqLqsUQ0m9CUlDA7O0tPTw91dXXpJoWrCAQCdHR0MJfASKgc6erqIi8vb9kZ5nIn7bzJHK1WS1lZmaKdN4C6urolc2bTQENDAwCtra0IWi262vhpAgaCQU61tGAy6NlXX59yNSJpkotOq+VAQ2P4d9TaQiAYp/FuooB+vkb4woULWCyWdJPCIoaGhggGgyk1yzPWSJJEV1dXynWZRkhffVOAqqoqrly5QiCQPDmIZGMymRQrl7IaWq2Wffv2RQuxNbZ8NMVFcdmWWqWioaKC/fUN6XRpmg1h1Os50NCIPxCMW/pUV12DymwmEAggiiI7d+5MR4gX0d/fT15enqKjkZOTk8zOzqadtzTxo3q+6FbpacPx8XGeeuopQqFQsk2RFZGLsM/nw+PxoKupQTSbYrb+QDDI4Pg4AIW5uei0ypnZuV4yjEZu2b+fDAXOI14rFpOJm/bswWIyEQqFYtqMpc7LQ1sSHs2m0Wg4evQo2WkJmwU4nU6mpqYUHXWDcMpUpVJRUVGRbFM2RNp5SwFsNhsmk0nxqVOj0Yjdbo+OI0uzkBdffJEzZ86AIGDYvh1BtfnTOxQKcaatjcvd3XjiXKe0FRBFEb1Wm04pXwNBEJAkidNtbbT29sRknaJBj76+Dr/fz/PPPx/TWdNbCYPBwN69exUvvdTZ2Ul5eXnKznNNX2FSAEEQqKqqUrzzZjKZyMvLo7u7O9mmyJLGxkampqZob29HNJnQbXJcmyRJXOzqYspuZ199Pfp0xO2auDwezrS1JayjMpURBIF8q5WeoWG6NttJLgrot29H0Gg4d+4cdrs9ZW/K8UYURYqLixUt8RMIBOjp6UnZlCmknbeUoaqqiuHhYcV3B23bto3Z2Vmmp6eTbYrsyM7Opq6ujvb2diYmJtAUFGxKPqStt5eh8XF2V1cnTR0/1fAHAoxOTuJXcH3qeigvKKC6tIT23l4GNqHDpqusRGWxcOXKFUZGRmhqakrXyC5DX18fp0+fVrRuKIRr/vx+f9p5SxN/qudlGdra2pJtSlLJz8/HZDIpXp9oJaqrq8nNzeXs2bOEQiF0tbWIG6i/CoVCzDqdNGzbRmFubhwsTZMmTE1pGSU2Gxe7unC4XOteXp2bg7asjNnZWZqbm6msrFR8SnAluru7CYVCim/gaG1txWKxYLPZkm3Khtky47G2OiaTifLyclpaWuIyRzVVEASBo0ePotPpkm2KLBEEgb179+J0OqN1V/od23GdOgWhtT1tB4NBVCoVBxsbFX+RT5MYdlRWkpuZue5GD0GnRV9fD4R/t3l5eVH5nDQLmZiYwOFwRGd1KxVJkmhpaaGhoSGlr2/pyFsK0djYSHd3N263O9mmJJWI4+ZLF9Avi06nIzs7G0mSmJqaQmU2o6+pWdOy49PTPHX2LE63O6UvbGlSC0EQohHe4YkJ5tZyjRMIN+ZotUiSRHZ2NgcPHkw3i6zAlStXyMjIIFfhkfTBwUHsdnvKzwtP/8pTiPr6ekKhEO3t7ck2Jel0dXXx5JNPpmVDVqG/v5/nn3+eqakpNMXFqPPzV/38zNwcZ9rbsJhNGBWs/7QZ9FotNWVl6eaODRIKhegaHORkc/M1u5t127ahysqir6+PEydOpK8Fq+D3+xkbG0uLFQPNzc2YTKaUl0pJO28phMViobS0lJaWlmSbknRsNhterzctG7IKpaWlWK1Wzpw5g9/vR19ft6L+25zbzamWFjJNZvbU1KajbhtEp9VSXVKS1sLbIKIosn8+7XmyuXnFxg91Xh6a8nIcDgeXLl3CaDSmI26roNFouO222xQ9hB5eSpnWb4EJMaltvQJpaGigs7NT8SlDs9lMXl4eV65cSbYpsiVS/xYIBML6byoVht27EfUL6wUlSeJsWxs6jYZ99fWKlhDYLP5AgNGpqXS36SbQa7UcaGzE4/NxurWV4KIxWqpMC/rGBgKBAKdOncJoNLJ9+/YkWSt/QqFQuHlJp1P8uT0yMsL09HTKp0wh7bylHA0NDdGhwkqnsrKSmZkZJicnk22KbDEYDOzbt4/x8XGGhoYQdTr0u3YvGGAvCAI7q6vZ39CARp3uYdoMLo+HM62taZ23TWI2GNjf0IAkSQtmoIpGA4adO0EUOXXqFF6vl/379yveKVmN3t5eHnvsMUWPV4zQ0tKCwWBI2akKV5N23lIMq9VKYWEhzc3NyTYl6eTn55OTk6P4Bo5rkZeXxw033EBxcXhskMpsQr9jByEkOgcGCIVCZJnNGNIdvGlkhDUjg+t27kSn1eIPBBA0Ggy7diFotQiCgM1m4+DBg5jN5mSbKltCoRCdnZ3k5uaiTj+Y0dzcTF1d3ZZw9tPOWwrS2NhIR0cHfr8/2aYknSNHjii+jmMtZM6L7A4PDzM4OIgqK4tmn4+uwYG1dfalSZMkgsEgL1y+RJ9Bjzg/Ig/Ckff03NLVGRgYwOPxULPGbvOtzPj4OBMTE1tGSibtvKUgDQ0N+Hw+xY/LiuD3+xkYGEi2GSnB6Ogo586d45lnnmEyEODQsWNYTLEbYp8mTaxRadRUXX89XcPDPPfcczz11FPpCStrQJIkOjo6KCwsTEcnCUfdtFptSk9VuJq085aC5Obmkp+fn+46nWd0dJSzZ88yOzubbFNkz65du5ibm+Pxxx9n27ZtlO7di7aiPNlmbRlEUcSc7nyMHQLoGxqoP3AAi8XCww8/jMlkwmq1Jtsy2ePxeNBqtdTW1ibbFFnQ0tJCbW3tlkkfp68wKUpDQwNtbW1LOrGUSHFxMUajMd3EsQZEUaS2tpba2loGBwdxOp3oKivRlBQn27QtQYbRyA1NTeueFJBmefS1tWhstuh0gNraWtxuN16vN9mmyR6DwcANN9yAxWJJtilJZ2pqipGRkS3RZRoh7bylKI2NjXg8nnTqlHC3ZHV1NcPDw8zNzSXbHNkSqZHcs2cPr3vd67BardHCXX1tLZqC1J3zl2broauqRDPfZNPR0UFubi733nsv1113XXo83jWYmppKp5av4vLly2g0Gqqrq5NtSsxIO28pis1mo6CggHPnziXbFFlQWlqKXq9PR99WYHJykj/96U9MTU0BoNVqOXDgAHq9Hp/Ph8/nQ9fQcM0pDGlWx+508siJE9idzmSbktJoKyrQlr+Uzj9w4AAHDhxArVZHmxQ6OjpwbWCQvRK4dOkSra2tyTZDFkiSxLlz52hoaEC7hcSz085bCtPU1ERbW1v6AkY4Hbhz507Ky9P1W4ux2+2cPHmSrKwssrKylrx/+vRpjh8/TiAQQL+9MRrtSLN+JEkiGAwiSVKyTUlNBNDV1qCr3IbL5eLZZ5/F6XSiVqsXyDv4/X76+/s5fvx4OoW6iNHRUWZnZ9MdpvMMDAwwOTlJU1NTsk2JKWnnLYXZuXMnkiRx6dKlZJsiCwoKCtLSAYtwuVycOHECo9HIgQMHli2k3759Oy6XixdeeAGfz4e+rhbttorEG5tG2YgC+sbtaEtKsNvtPPfcc/h8vmULzDUaDYcPHyYQCHDixIm0AO08kiTR2tpKdna24gfQRzh37hyZmZlbbq5r2nlLYUwmE7W1tenU6VV4PB6effbZdOfpPBcuXEClUnHo0KEVu6wsFgtHjhzB6/VGIx26bdvQ19VCesRpmgQgqMOj2zS2fKampnj++efRarUcPXp0xfo2o9HI4cOHcTqdnDp1Kj2YHhgcHMRut2+pwvzN4Pf7uXz5Mrt3795y85rTzluK09TUxNDQEGNjY8k2RRbodDr8fn9aRmWepqYmDh8+fM0Cb4vFwtGjRxFFMer4aoqLMezYAeLWuuilkReCVothzx7UVit+v58XX3yRzMzMVR23CBaLhYMHD26pWqbNYLPZaGpqSkupzNPW1obH49lyKVNIO28pT01NDUajMR19m0cQBBoaGhgfH2d8fDzZ5iSFUChEc3MzXq8XvV6PcY2yFUajkZtuuomioiIA5ubmUOflYWxqWjALNc3KmA0GjuzahdlgSLYpKYFoNGDcuwdVRgYQToceOnRo1UjxYnJycti7dy+iKOJR8ExZSZLQaDSUlpYm2xTZcO7cOcrKyrZkOU3aeUtxVCoVO3fu5MKFC+m0wTyR2rfm5mbFFY5LksT58+e5cuXKhmRTIjVxg4ODPPXUUwwNDaHKysKwZw+CLh3duBYqlYpMs3lLzE6MN6oMM4a9exGNRtrb2zl//jwQnt+8EZFjj8fDE088QWdnZ6xNlT1+v5/HH39csQ+sy2G32+nq6tqSUTdIO29bgqamJubm5hR50VqJhoYGPB6P4jpxW1paGBgYYM+ePeTk5Gx4PYWFhRQVFXH69GmuXLmCymzGuG8fYlp8dlXcXi+Xu7txpzsgV0VlnX8g0Gi4ePEibW1ta44Qr4Rer6eyspKWlhb6+/tjZGlq0NnZidfrJWM+gpkmXO+rVqu3bP1f2nnbAhQUFGCz2dKp06vIzs7mtttuw6SguZ1dXV10dXWxY8eOaOpzo4iiSFNTE5WVlVHNKFGvD6e4MtOK7Svh8/vpGxnBNy+InGYp6vx8DLt3I4kip0+fpre3l927d8dE2qKuro6ysjLOnz+vmDpgt9tNd3c3lZWV6PX6ZJsjC67WdtuqxyTtvG0BBEGIar653e5kmyMbVCoVXq+XiYmJZJuSELRaLTU1NTFriRcEge3bt9PY2MjMzAyhUChaXK4tLYnJNtIoCFFAV1uDYcd2BFGkp6eH0dFR9u/fT1lZWcw2s2vXLmw2G+fPn1dEKUl7eztqtXpLTQ/YLIODg0xMTGzZlCmknbctw65du9Kab8vQ3t7OqVOn8Pl8yTYlbkQc9tLSUurr62O+/qqqKg4dOoQoiszMzOAPBNDV1GDYtRNBo4n59tJsPUSjAeO+fWhLSqKabNu2beOGG26goKAgptsSBIG9e/dy5MiRDdXOpRKSJOFyubbUwPVYENF2q6ioSLYpcWNr/7IVhMlkoqamhjNnziiuSH81amtrAbasdMjMzAxPPPFE3Gt8BEGIpiKeeuoppqamUOfmYjx4AFVWZly3nSa1UdvyMe7fjyojg4GBAf70pz8xMzODIAhxG5quUqkwmUwEg0HOnz+/ZbtQBUHguuuu29JOynrx+XxcunSJXbt2bWnnfevumQLZv38/w8PDDAwMJNsU2aDT6aivr6evr2/LDWp2Op2cOHECi8Wy6Rq3tSAIAocPH8ZoNPL888/T3t7+Uhq1oiIt6AvotFoqigrRpXXHEFQi+oZ6DNu3ExIEzp07x9mzZ7HZbJjN5oTY4Pf7GR8f5/jx4/i3WB3iyMhItCRkqwnQboaLFy/i9XrZt29fsk2JK2nnbQtRXV1NdnY2L774YrJNkRXl5eVkZmZuqZSyx+PhhRdeQKvVcvDgwYRJU+j1eo4cOUJNTQ1tbW1cuHABQRDQVW7D0NSkeDkRvVZLQ8U29Ap33kSzCeP+/WgKC5mbm+Ppp59maGiIpqYm9uzZk7AUn16v5/Dhw3g8Hl588UWCwWBCthtv/H4/58+fp6+vL9mmyApJkjhx4gR1dXXLznHeSqSdty2EIAgcPHiQy5cv43A4km2ObIg0dOzevTvZpsSM9vZ2JEni8OHDCVeXFwSBurq6BemaUCiE2mrFdOAA6pytJ4i5VgLBINMOB4Et4iRsBE1xEcb9+xHnO701Gg0Gg4Ebb7wxKQKyZrOZQ4cOMTs7u2XKSlpbWwmFQmzfvj3ZpsiKnp4exsbGOHToULJNiTtp522L0dTUhFqt5tSpU8k2RVZYLBYsFguhUGhLDLHesWMHR48exZBEJf/c3FwyMzMJhUI8//zzYVFktRrD7t3oqqsUOVbL6XZz/OJFnArs+hY0avQ7tqOvqyMQDHLhwgW8Xi86nY7Dhw8nLFW6HFarlf3795OZmZnyKcaZmRl6enqoq6u75vgwpfHiiy+Sn5+viBrAtPO2xdDr9TQ1NXHq1Kkt4aTEmuPHj6ds+lSSJC5cuIDdbkcUxU2LmsYKQRAoLCyku7ub559/HpfLhbasLFyknm5mUARqWz7GgwfR5OczPT0dTZNuZMpHvMjPz482MKVyZqKjowOLxRIzSaCtwszMDK2trRw8eDDlHfS1kHbetiAHDx7E6XTS3NycbFNkR3FxMf39/UxNTSXblHVz8eJF+vr6ZKflJwgCVVVVHD16FK/Xy9NPP83IyEh4KsPevei3Nyq+Fm6rIppNGPY0Ydi+HUGrpbOzk+eeew6dTseNN964qSkf8WJ2dpYnn3ySnp6eZJuyIfbs2cP+/fsV4aCsh5MnT6LT6di1a1eyTUkIaedtC5Kbm0tVVRUnTpxItimyo6ysjKysLC5evJhSAp7t7e309vZGBUjliNVq5cYbbyQvL2+Brp7GZsN06BDa8jJFplK3IoJGja62BuOBA6itViDc/dzW1kZVVRVHjhyRTWR4MZmZmVRWVnLx4kWGh4eTbc6a8Xq9uFwu1Gq1oibHrAW/38+ZM2fYu3dvwmuAk0XaeduiHDp0iMHBwbRsyCIEQWDXrl04HI6UmQXb19dHW1sb9fX1MVWijwcajYZ9+/ZF7Tx//jyXL18mIEnoqqowHTy4pRsaBEFAo9Fs3aiIAJqiwrAzXlKCx+Ph8uXLhEIhzGYzL3vZy2hoaJC9vlZjYyPFxcWcOXOGycnJZJuzJi5evMgLL7ywJRouYs3FixfxeDwcOHAg2aYkDHmfYWk2THV1NVarNR19W4bMzEwaGhqSWkC9HjIyMqipqYnJ7MdEYzKZ6O3tjQoJCwYDht27MezaiWhMXrNFvLCYTNx24ACWLRgZUWVaMO7bh76+HkmtpqOjgyeeeILBwUGcTidAysyRjHSg5+TkpISA9+DgIMPDwzQ0NGzdB4MNEpEHqa2txTofBVYC6XkaWxRRFDl48CB/+tOfuOOOO8jIyEi2SbKiqqoq+v+SJMnyguhwODCZTFit1pS9KFVXV1NSUkJzczPnzp2jr6+PI0eOoM7NRZWdjb+vD19vL1IwdVLYSkPQatFVVaIpLARgfHycCxcu4Ha7qaysTNnRTKIosn//ftlHsrze/7+9+46O6r72Bf6dopmRNBr1XhESqKHeUaO3GJvYYIixndhxSW4cr9wk9vW7vrk3TnHilfK83o0TGxccN4xxqAZMl5BQ76ggIaGCekMjaTT1nPcHmQmyCupnyv6sxVro6MzM/mlmzuz5lf1Tobq6Gl5eXstSjNvUtLa2oqenB1u2bOE6lGVFPW9mLCYmBnw+H6WlpVyHYrTKysrQ0NDAdRiTyOVy5OXlobGxketQFkwikRj2mvT09ASPxwPDMNBotRAFBMAmORkiXx/wBKZ/ORpRKJBdXoYRhYLrUBaMJxJBHLgCtkmJhsQNuDu/yNbWFllZWQgLCzPJxE1PKBTCysoK4+PjKCoqMso9kGtqasDn87FmzRquQzFKhYWFcHV1tbjVt6Z/tSTTorIh9yeVStHY2Ijh4WGuQzEYHx9HYWEhrK2tJ/QQmjpnZ2cEBgYCuFtM89KlS7h169bdJCE4GLapqRAHrgDPhCccMwwDxbjSpBbDfBPfxhqS1atgm5oCUUAAdDwe6urqUFZWBgDw8vLivG7bYmNZFnfu3EFhYaHRXStXr15tURPx50JfHiQpKckoR0+WEiVvZi45ORljY2MoLy/nOhSjFBQUBDs7O1RUVBjFB65arUZBQQH4fD6Sk5NNuldjJj4+PvDy8sL169dx8eJFNDc3Q8fjQRQQANvUFEhCVoNvpKsVzZXAwR7WayJgk5QEK29vqDUa1NfX48KFC2huboZUKjX6Icb5srGxQVJSEkZHR1FSUmI01wKdTgdbW1u4uLhwHY5Rys3NhY2NjcWUB7kXJW9mztnZGREREcjNzTWbff0WE5/PR0xMDEZGRoxi+PT27dvQaDRITk426+rpIpEIkZGRyMzMhLOzM2pra/+1yTafDysvL9gmJ8F6TQQV+l1iQlcX2MTGwCY2FkJXV/B4POh0Oly+fBnNzc3w9fXF+vXrsWrVKrPu3bC3t0dCQgIGBgZQWVnJdTioqKhAQUEB12EYrZGREZSXlyMlJcUieyXN82s9mSA9PR1vvfUWqqqqEBMTw3U4Rkcmk2H16tVG8W07MDAQXl5eJrNqb6FkMhliYmIQEhJiaHNxcTFEIhFWrlwJqasrhK6u0A0PQ93WBm1/P2CenT/Li8+DlYcHRL6+hj1IBwcH0dLSgsjISAiFQsTFxcHBwQFWVlYcB7t8XFxcEBsby3mS2t7ejp6eHosqfTFX165dg5WVlcX+jSh5swBubm4ICQlBbm4uoqKijL4GExe4LMOh3/bK1dXVohK3e927R6ujoyOam5vR1tYGDw8PrFy5Ek5OTrBeswaMQgFNTw+0vX1g/lmewpjYWlsjISwMthzuOTsTgb0MQjc3CN3dwReJwLIsuru70dTUhMHBQUilUoyPj8POzg6urq5ch8sJz3sWZwwODsLJaXnrEo6OjqK6uho+Pj7w8PBY1sc2FWNjYygpKUFqaqpZj1DMhD7FLURGRgYGBgZoy6z7uHXrlmFi9nKpq6tDW1ub2c4nmqugoCBs3LgRUVFRGB0dRUFBATQaDQCAb2MD8Yq7KyBtEhMhCggwqrlxQoEALg4OEAoEXIdiILCXQRwcBNvUFNjExd3tbfvnMFNFRQWKi4sBAAkJCcjKyqKyQv/U3d2NvLy8ZS10zrIsSktLYW1tTatLZ1BQUAAej4ekpCSuQ+EM9bxZCC8vLwQFBSEnJwfh4eGcDwsYK4lEgo6ODjg7O8Pf33/JH6+5uRlNTU2IiIiAt7f3kj+eqeDz+fDz84Ovry9GR0dhZWUFrVaLnJwcuLm5wcvLC46OjhAHroA4cAV0o6PQ9vZC29sLRsHd3q9KtRrtPd3wdfeAhMN5OAKZ3d0eNjc38P/Zk8swDHp7e9HZ2Qlvb2+4uroiICAAAQEBJltHcCl5eHjAz88PFRUVEIlEcHNzW/LH5PF4CA0NhUQiMdvFSgulVCpRVFSEhIQEo92CbTnQq8OCZGRk4P333zdstUQm8/T0REBAAK5fvw5HR0fIZLIle6zOzk7U1NQgKCjI4moUzRaPxzP0BDEMA3d3d3R2duLWrVuQSCTw9vZGWFgYBFIpBFIpxIGBnCZyKrUaN9tvw83RadmTN4Gd9F8J2z3DtkNDQ2hra0NXVxc0Gg2kUqlhOI6StplFRkZCrVajpKQEKSkpS/r3Ghsbg62t7bIkiaasqKgIOp0OKSkpXIfCKUreLIifnx/8/f2Rk5OD1atXU+/bNMLDwzE4OIjS0lKkp6cv2TdgJycnrF69GqtWrVqS+zc3IpEI4eHhCAsLw9DQEDo7O6FUKgHcHW66ceMG3N3d4ejoaEjkmPFx6ORy6IaHwcjl0I2OAozpD0/zBHzw7WQQ2MsgkMnAt7c3DIWyLIu+vj7Y2NjA1tYWAwMDGBgYQEBAALy8vJb0C4m54fF4iI2NRUFBAVpbW5cseVMoFMjJycGqVavMqrbjYlOr1cjPz0dsbKxZ1RmcD0reLExGRgY++ugjNDc300ViGnw+H3Fxcbhx48aSzEOTy+WQSCSQSCSUuM0Dj8eDk5PThInkCoUCbW1taGxshLW1tWErIQcHB/CtrWHl7g4AYBnmbhInl0M3LIdOPgxWZXxV9b+Jb2N9N0mT2UNgLwNfKp3w5Uun06Gvrw9dXV3o6uqCWq1GSEgIgoODERgYiKCgIA6jN20CgQBJSUkQLNE8RoZhUFpaCpFIBD8/vyV5DHNRUlICtVqNtWvXch0K58wmeRsZGcHf/vY35OTkQKVSITQ0FD/84Q+xevXq+972t7/9Lc6ePTvpuJ+fHz7++OMJxxiGwaFDh3Ds2DEMDg7Cx8cH+/fvx8aNGxetLUspMDAQ3t7eyMnJoeRtBlKpFHFxcQAWd+/TsbEx5Ofnw83Njcq2LCJbW1ts2rQJg4OD6OzsRHt7O3p7e5GVlQUAuHHjBuzt7eHg4ACJgwMEDg6G2zJKJXTDcjAjcjDjSrBqFRilEqxavbxlSfg88MVi8P75j299N2ETyGSTdp1QKBQYGhqCo6MjbGxs0NjYiMbGRtjY2MDPzw9eXl6wt79bH49Wly+cvvd9cHAQdXV1SExMXLQSKnV1dZDL5Vi7dq1FlWWZK41Gg2vXriEqKsrw2rZkZpG8MQyDl19+GU1NTdi7dy/s7e1x7NgxvPjiizhw4AB8fX3vex8ikQgvvfTShGO2/6x/dK8DBw7gk08+wQMPPGAov/Haa6+Bx+Nhw4YNi9ampcLj8ZCRkYHPPvsMra2tyzIp35TJ5XIUFxcjISFhwcNNSqUSBQUFhuE/srh4PB6cnZ0NhanHx+/Od9NoNGhrazMMsVpbW8PJyclQz4wvkdyd1O8+ca4Ry7Jg1WqwSiUYpQqsWnX3/yr13f+rVGAZ5m6CxzIAy0IkFsHTzRUisQg8KyEAHsDjgcfnAXw+eCIxeGIR+BLJ3QRNn6xJJIZhz+m0tbWhp6cHQ0NDUKlUAIDo6OgJCRsNiS4tkUiEkZERFBUVITk5ecG9cYODg2hubkZ4eDgc7vlCQSYrLy/H2NgY0tLSuA7FKJhF8nblyhVcv34dr732muGb9vr16/Gd73wHH3zwAX7xi1/c9z4EAgE2b9484zl9fX34/PPPsWvXLvzkJz8BAHzrW9/CCy+8gLfeegtZWVlL1rW+mFatWgV3d3dcvnwZTz75JM19m4GtrS2srKxQVFSEjIyMeVfy1mg0KCwsBMMwSE1NtciK4MuJx+MZVqJZWVlh06ZNUCqVGBoawuDgIEZHRw29KXl5eQDuVti3traGRCKBq6srRCIReGIxIBZDMMsv+lIAC5luPjAwgPHxccO/oaEhJCUlQSKRQC6XQ6vVws/PD46OjnB0dDS8jix51d1ykkqlSEpKQn5+PsrKyhAfH7+g66ejoyNiY2Nppfl9aDQa5ObmIiIiYtnr7hkrs0jesrOz4eTkhIyMDMMxBwcHrFu3DufPn4darZ7Vh6VOp4NSqZyyxw24u4+aVqvFrl27DMd4PB4eeughvPbaa6ipqTGJPdb0vYSffvopbt68yWmBWmMnEAiQkJCAq1evoqSkBMnJyfMahhocHIRSqURqauqEgrRk+UgkEnh6ek4owgoA3t7eGBgYQH9/P8bHx6HVarF27Vo4OTmhrq4O7e3tkEgkhsTOzc0N7u7u0Gg0kMvl4PF44PP54PF44PF40Gg0EAgE4PF4YFkWDMNAIpHAxsYG4+PjaG9vh1KpxPj4OJRKJQQCgaE3QT+nRyQSQSKRwN7e3rDzR0RExLL/zchkjo6OiIuLQ3FxMWpra+fVi65WqyGXy+Hi4kKJ2ywUFRVhdHQU69at4zoUo2EWyVtDQwOCg4MnfaiGhobi5MmTaG9vv+/8LqVSiW3btkGpVMLOzg4bNmzA888/P+EbrX4y9DeHGkNDQw2/ny556+/vx8DAgOHn1tbWObVxsQUHB8Pf3x8XLlzAypUraV7MDKytrREfH4/8/HzU1tbO60PU3d0d69evpzktRkhf60xPq9Ua3g9ubm4QCASGRGtwcBASiQTu7u4YGRnBtWvXJtyXVqtFe3s73NzcJnwJDAwMRHh4OFQqFVpaWgzJoJOT04Tz9L27ptCDb8nc3d0RExMzr4LGDMOgpKQEY2NjWL9+PT3X9zE+Po6rV68iPj6eet3uYRbJ2+DgIKKioiYdd3Z2BnB3KGKm5M3Z2Rn79u3DqlWrwLIsCgsLcezYMTQ1NeHNN980DK8MDAzA0dFxUje5/nH0G2tP5cSJEzh48OBcm7ZkeDweNm3ahHfffRfV1dVT/v3Ivzg5OSE6OnrOy9OrqqogEokQEhJCiZuJuLc0jH4O3VTs7e2xfv16MAxzd34cy2J4eBg6nQ4JCQlwcHAw9Mrpe/4dHBxmnJ5BvbKmQ99jptPpMDAwMOv6bDU1NRgaGkJKSgolbrNw9epVMAyDzMxMrkMxKkaXvDEMY9gK535EIhF4PB5UKtWUw6L6Y/rJvdN57rnnJvy8YcMG+Pr64sCBA8jOzjYsRFCpVFN+AM/mcXbu3DlheXNrayt+/etfzxjXUvPx8UFYWBguXbqE8PBwquh9H/qLNcMwGBsbu++37oaGBrS2tlJibKYEAsGUUyzEYjEcHBxoRZyFaGtrw/Xr1xEfHz9pSP6bWltb0dLSgqioKOpFmoXh4WEUFRUhLS1t2ulMlsroPq0rKyvx4osvzurcjz76CP7+/hCLxVCrJ9dq0h+bz8a1e/bswXvvvYeSkhJD8iYWi6dMLGfzOC4uLnBxcZlzHEtt/fr1eOutt1BUVITU1FSuwzEJdXV1uH37NtLT06edKN7a2mrYyYJqNxFivgICAjA0NISysjIkJydP21PLMAyam5uxYsUKuibM0uXLlyEWi+mzaQpGl7z5+fnhlVdemdW5+jeJk5PThPlkevpj072ZZiIWiyGTySCXyyc8Xnl5+aS6X/rHMcbk7H5cXFwQGxuLq1evIjY2FpJ/7oNIphccHIzu7m4UFxdj7dq1k3os+/v7UV1djYCAAFoMQoiZ4/F4iI6OhlqtRlFREdauXTtlyRY+n4+0tDQaKp2lnp4eVFZWYvv27bQ6fwpGl7w5Oztj27Ztc7pNcHAwqqqqwDDMhIn3dXV1kEgks6rz9k0KhQLDw8MTau8EBQXh1KlTaG1tnTDBuba21vB7U5SVlYXKykrk5uaaTLFhLolEIiQmJiI3NxclJSVITEyc8LpzdHREWFgY7Vdqgezt7fHAAw9wHQZZZnw+H/Hx8bh27Rr6+vomJG9qtRrV1dUIDw+nL8dzcOHCBTg5OSE2NpbrUIySWSwxzMzMxODgIHJycgzH7ty5g8uXL0+qqdXR0YGOjg7DzyqVCgqFYtJ9fvjhh2BZFklJSYZjaWlpEAqFOHr0qOEYy7I4fvw4XF1dTXYpv1QqRWpqKgoKCib0NJLp2dnZISEhAQMDA+jp6QFwd5cPuVwOgUCAwMBAqp9HiAURCoVIS0szLI5jWRY6nQ5FRUXo7++HTqfjOELTcevWLTQ2NmLDhg3UUzkNo+t5m4+srCwcOXIEr7/+OlpaWgw7LDAMg6eeemrCufriuocPHwZwd6Xq008/jY0bNxrmIRQVFaGgoABJSUkTqjm7ublh9+7d+Oyzz6DVahEaGoqrV6+iqqoK//Vf/2XSL7LU1FSUlJTg8uXLePDBB7kOxyS4uLggKysLtra2GB8fR0FBAaRSKVJSUrgOjXBkdHQUFRUV81qZTEyfvge+vb0dLS0tEAqFkMvlSE1NpQn3s8SyLC5cuABvb29DGS4ymVkkbwKBAG+88QbeeustfPnll1CpVAgJCcErr7xy34mh+l6n4uJinD17FgzDwNvbG88++yz27t07qf7Zc889Bzs7O5w4cQJnz56Fj48PXn31VWzatGkpm7jkxGIxMjIycPbsWaSkpMx62buls7W1hVqtxvHjx6HT6SYUiiaWR6fTYWhoiHpZLJxMJkN1dTUUCgUee+wx2vpqDmpra9HR0YHvfve7NHoxA7NI3oC7w1gvv/wyXn755RnP0/e43Xu7V199ddaPw+fzsX//fuzfv39ecRqz+Ph4FBYW4sKFC/jOd77DdTgmQT8sIpfL4ejoiP7+fqqYToiFs7e3R3p6OkpKStDV1QUPDw9KRGZBq9Xi4sWLCA4OnjCvnExmFnPeyOIQCATYuHEjGhoa0NDQwHU4JmFsbAxKpRJ79uxBUFAQysvL0dfXx3VYhBCO3LlzBwCwZs0abNmyBR0dHWhqauI2KBORn5+PO3fumPxI1nKg5I1MEBoaipUrV+LMmTOzLpZsqViWhUwmw/r16+Hg4ICoqCi4ubmhuLjYcAEnhFiO27dv4+rVq4ZFTF5eXoiLi6O6brNw584d5OTkIDk5mabtzAIlb2QCHo+H7du3Qy6XIy8vj+twjFZdXR1KSkrAsqxhXiSfz0dcXBx8fHymLd5LzJuNjQ1iYmLo+bdAnZ2dqKiogK+vL9zd3Q3Hvby8IBKJMD4+ju7ubg4jNG5ff/01JBIJbYM1S5S8kUmcnZ2xdu1a5ObmYnBwkOtwjE5zczNu3rwJZ2fnSfNYBAIBIiMjDRfr4eFhjqIkXLCysoKPjw/tY2thOjs7UVZWBi8vr2m3w2tpaUFJSQl6e3uXOTrj19jYiLq6OmzZsmVeOyJZIkreyJTS09MhlUpx5swZsCzLdThGo6OjAzU1NQgKCkJgYOCM59bV1RnmcBDLoFar0dLSMuV2fcR83b59G15eXoiJiZl2YUJISAjc3d1RUlKCoaGhZY7QeGm1Wpw5cwaBgYEIDw/nOhyTQckbmZKVlRW2bt2KxsZG3Lhxg+twjMLIyAjKy8vh6+s7q/pDkZGRkEqlKCgooATOQoyPj6O6uhrj4+Nch0KWgVarBXB3pf5MiRtwd0pKbGws7O3tUVRUhNHR0eUK06jl5eVheHgY27dvpxW5c0DJG5nW6tWrERwcTIsX/snOzg7R0dGIjIyc1flCoRDJycmUwBFihrq6unDp0iWMjY2Bz+fPKvEQCARITEyEtbU1xsbGliFK4zY0NISrV68iJSXFJPcG5xIlb2RaPB4P27Ztw9jY2IStxyzN2NiYYaKxj4/PpMLNM9EncDKZDEqlcqlCJIQso66uLpSWlsLFxWXOi1OsrKyQnp5uWNRgyQWdz549C1tbWypuPg+UvJEZOTk5IS0tDdeuXcPAwADX4Sw7pVKJgoIC1NfXg2GYed2HUChEamoqPDw8AGDKvXQJIaahs7MTpaWl953jNhP9berq6lBQUGCRCdyNGzdw48YNbNmyZcL+42R2KHkj97V27VrIZDKcPn3aohYvaDQaFBYWgmEYJCUlzanHbTq3bt3ClStXqJCvmRIKhXB1dYVQaDab15B7aDQaVFVVwdvbe96J2708PDwwPDyMsrIyi7u2nj17FkFBQbR/6TxR8kbuy8rKCtu2bUNTUxNqa2u5DmdZMAyD4uJijI+PIzk5GdbW1otyv35+fnBxcUFhYSE6OjoW5T6J8bC1tUVycjJtQm6GGIYxDHlGR0cvyuR6R0dHxMXFoaenB9XV1YsQpWnIzc2FXC7Htm3baJHCPFHyRmZl1apVCA0NxenTpy1ioq1Go4FWq0ViYiLs7OwW7X4FAgHi4+Ph4+ODsrIyNDc3L9p9E+6xLAutVmtRvSjmjmVZVFVVobS0FMDdBH0xEw53d3dERUWhtbXVIr7QdXd34+rVq0hLS4OzszPX4ZgsSt7IrO3YsQMsy+L06dNch7KktFotxGIx0tPT4eTktOj3z+fzER0djaCgIAwODtIHvRmRy+U4c+YM5HI516GQRaDT6VBSUoK2tjbDnNWl4Ovri8TERHh6ei7ZYxgDnU6Ho0ePws3NjRYpLBAlb2TWpFIptm/fjpqaGtTU1HAdzpJoaGjA1atXodPplrw7PzQ0FHFxceDxeJDL5fNeEEEIWXwajQYFBQXo6+tDQkICfH19l/Tx3N3dwefzMTg4aLbbaOXk5KCvrw8PPfQQBAIB1+GYNEreyJyEh4cjLCwMX331ldkNn7a2tuLGjRvw8fFZtgsLj8eDVqtFfn4+iouLLXLVGSHG6Pbt2xgZGUFKSsqEvUqXWltbG0pLS81udX9XVxeuXr2KjIyMJe3FtBSUvJE54fF42LFjBwDgq6++Mpshv+7ublRXVyMgIADBwcHL+thCoRCxsbEYGBhAXl4eVecnhEP6rc1WrFiBrKwsODo6LuvjR0ZGwtnZGUVFRWYz/K7VanHs2DG4ubkhPT2d63DMAiVvZM5sbW2xY8cO1NbWmsXwqVqtRllZGTw9PREREcFJDK6urkhLS4NarcbVq1dp70NCONDR0YELFy4Yer0kEsmyx8Dn8xEfHw9bW1sUFBSYRV3InJwc9Pf303DpIqLkjcxLeHg4wsPDcfr0aZPfo08kEiExMXFR6jYthEwmQ3p6OhwcHGBlZcVZHGT+7OzssGXLlkVdoUyWHsuyqKurM3yJW+7etm8SCoVISkqCra2tYf9UU9XZ2Ync3FwaLl1klLyRedNvJGyqw6fj4+NoamoCALi4uCxKEd6FEovFSExMhFQqhVarxc2bN03yb2up+Hw+RCKRUbyWyOxotVoUFxejqakJYWFhiImJMYrnTywWGwqk63Q6k0zi9MOl7u7uSEtL4zocs8L9K5SYLP3waV1dHa5fv851OHOiVqtRUFCAlpYWaDQarsOZ0uDgIOrr61FYWGi0MZKJxsbGUFRUZHaLecwZy7JQqVRITEzEypUruQ5nSqWlpSgpKTG5FenZ2dkYGBig4dIlQMkbWZCwsDBERESY1PCpTqdDUVER1Go1kpOTjXaI0s3NDcnJyRgeHsbVq1cxMjLCdUjkPrRaLXp6ekyyl8TS9PX1QaFQGHZNcHNz4zqkaQUGBmJgYACVlZUm0xPf0dGB3NxcZGVlLetqXUtByRtZsO3bt4PP5+PEiRNGf2FhGAYlJSUYGRkxiW2MXFxckJ6eDj6fj9zcXKhUKq5DIsSksSyLhoYGFBYW4tatW1yHMysuLi6IiYnB7du3UVdXx3U496VWq3H06FF4enpi7dq1XIdjlih5IwtmY2ODBx980HBBNGYsyxq2qLK3t+c6nFmxsbFBWloaoqKiIBaLAYDqwREyD0qlEvn5+WhoaMCqVasQFhbGdUiz5uXlhYiICDQ1NRl9DbgzZ85geHgYu3btMor5g+ZIyHUAxDysWrUKKSkpOH/+PHx9feHt7c11SJOoVCqIxWLEx8dzHcqcCYVCeHl5AQBu3bqFlpYWxMXFQSaTcRwZIaaBYRjk5eWBYRikpKSY5L6aK1asgIODA+erYWdSVVWF8vJyPPTQQ3B1deU6HLNFKTFZNBs3boSHhweOHDkCpVLJdTgTNDc34/Lly0YX13y4urqCz+fj6tWraGlp4Toccg+JRILw8HBO6oORqTEMA51OBz6fj8jISGRmZppk4qanT9za2trQ29vLcTQTDQwM4NSpU4iKikJ0dDTX4Zg1St7IohEIBHjkkUegUChw8uRJo5n/1tHRgZqaGvj7+5vFh6pUKkV6ejr8/f1RXV1N22oZEbFYjMDAQMPwNuGWQqFAXl6eYTW8q6srRCIRx1Etjp6eHpSUlBhNQW+tVosvvvgCdnZ2hl14yNKh5I0sKkdHR+zcuRM1NTUoLS3lOhz09fWhoqICvr6+CA0N5TqcRcPn8xEREYGEhATw+XyaV2IkNBoNOjs7qbSLEejo6EB2djbUajX8/f25DmfRxcbGwt7eHkVFRUax0v/cuXPo7+/H7t27zSZBNmZ0xSeLLjw8HAkJCTh79ix6eno4i4NhGFRUVMDFxQWRkZGcxbGUPDw8EBcXBx6Ph/7+flRXV1OZCg4pFAqUlpaaxZZGpoplWRQXF6OsrAzu7u7IyMiAg4MD12EtOoFAgMTERIjFYhQUFHA6JaS2thZFRUXYsmUL7aKwTCh5I0tiy5YtcHZ2xhdffGHY6Hm58fl8pKSkID4+3iJ6ppRKJdrb25GdnY3+/n6uwyFk2bEsCx6PB5lMhoSEBMTGxhptHcfFYGVlhaSkJNjb23N2jRsaGsKJEycQFhZmkovBTJX5f6IRTgiFQuzevRtyuRynT59e1sdWqVSorq6GTqeDVCq1mMrePj4+yMzMhLW1NfLz81FVVUW9cMQiKJVKFBYWGhbwrF692mJ6gKytrZGQkACRSASlUrmsuzDodDocOXIE1tbW2LlzJ6d7Q1saSt7IknFxccGOHTtQUVGBysrKZXlMjUaDgoICdHd3W+S8I1tbW6SkpGDNmjUYHBzkOhxCllxbWxsuX74MuVxu9EW3lxLLssjPz0dZWdmyLRa7ePEiurq68Mgjj5jFYjBTQskbWVL6JeNfffUV+vr6lvSxGIZBcXExxsfHkZycbLEXEx6Ph4CAAGRmZkIoFEKhUKC6upqz4WtLIhAIYG9vbzG9vVzSarUoKChAZWUlPD09kZWVZdRbXC01Ho+HsLAwdHd3o7q6eskfr6GhAdeuXcOmTZuMsq6nuaPkjSy57du3w97eHocOHcL4+PiSPAbLsigrK8PQ0BASExNhZ2e3JI9jSvRDGKOjo7h9+zYuXbqE1tZWoynhYo6kUikyMjIglUq5DsVs6YcFhUIhRCIRkpKSEB0dbdZz22bL3d0dUVFRaG1tRUNDw5I9Tn9/P7788kusXr0aycnJS/Y4ZHqUvJElJxKJsG/fPigUCnz55ZdLMieDx+NBKpUiLi4OTk5Oi37/pszNzQ3r16+Hh4cHqqqqkJOTA7lcznVYhMxZZ2cnLl26ZNgeKjY21qJ726bi6+uLkJAQNDY2LsmqZ6VSic8++wwymQzf/va3aZ4bRyh5I8vCyckJu3fvRnNzMy5cuLCo9z02NgYACAkJsZhJynMlFosRHR2NtLQ0CIVCw7Ae9cItruHhYXz11VcYHh7mOhSzMjIygvz8fJSWlkImk8Ha2prrkIxacHAwMjMzYWNjs6j3yzAMjhw5AoVCgX379lExag5R8kaWTWBgILZs2YJr166hoqJiUe5TP1mZPixnx9HREWvXroWtrS10Oh1ycnLQ1NS0rCvUzB39LRdXd3c3srOzMT4+jqSkJCQmJi56UmKOpFIpWJZFTU3Nom1kf+HCBTQ3N2P37t00wsExSt7IskpMTERsbCxOnjyJ27dvL+i+uru7UVVVBX9/f9jb2y9ShJaDZVk4Ozujrq4OV65cQVdXF/XEEaPAMIxh2ycXFxeEhYVZ/IKE+WBZFnK5HEVFRQueKlFZWYlr165h8+bNCAwMXKQIyXxR8kaWFY/Hw/bt2+Ht7Y1Dhw7N+4IyODiI0tJSeHh4ICIiYpGjtAxCoRARERHIyMiAjY0NSkpKUF5eznVYxIKxLIv29nZcunQJBQUF0Ol0EAqFCAwMtIhC24uNz+cjISEBtra2KCgomPccuNu3b+PEiROIiYlBUlLSIkdJ5oPeDWTZCYVC7NmzBwKBAIcOHZpXPbba2lo4OTkhNjaWJswukEwmQ3JyMlJTUw17QI6Oji7aUAshs9HZ2YkrV66goqICDg4OSE9Pp5Iri0AoFCIpKQkCgQAFBQVzLhkkl8tx6NAheHl5YceOHXS9NRKUvBFOSKVS7N27F319fThx4sSch+sSExMtZtur5eLs7AxnZ2cAQGtrK65du4bCwkKaTzgHUqkUWVlZVCpkHtra2mBjY4OMjAzEx8fT33ARicViJCcnw83NDUKhcNa302g0OHToEPh8Ph599NE53ZYsLfrkI5zx9PTEQw89hOrqauTl5d33fLVajZKSEiiVSohEIqrrtITCwsIQFxcHhUKBnJwclJSULFmNPnMiEAhgZ2dHPUaz0NfXh7y8PPT09AAAEhISDPt0ksVna2uLiIgI8Pl8yOXy+y6sYVkWJ0+eRF9fH/bt20fJtJGhNJpwKjw8HD09Pbh48SJcXV2xevXqKc/T6XQoKirC2NgYdDrdMkdpeXg8Hry8vODp6Ynbt2/j5s2bhuEShUJBq/2mMT4+joaGBqxatYrKWUyBYRh0dnaiqakJcrkc9vb2hi9hlPAuD41Gg2vXrsHd3R3R0dHTDoPm5eWhqqoKjzzyCDw9PZc5SnI/1PNGOLdu3TqsXr0aR44cQUdHx6TfMwyDkpISyOVyJCUlWfT+hcuNx+PB19cX69atg0QigU6nw9WrV5GdnY3bt29TWYxvUKvVaGtro63IptHe3o7y8nJIJBKkpKQgIyODSk4sMysrK0RGRuL27duoq6ub8pzr16/jwoULyMjIoAVhRoqSN8I5Ho+Hhx9+GB4eHvj0008nbaheXV2N/v5+JCQkwMHBgZsgCYC7vSNxcXGQSCQoLy/HpUuX0NzcTCVGyJSUSiXq6uoMSYK3tzcyMzORlJQEFxcXjqOzXF5eXoiIiEBTUxOampom/O7WrVs4evQooqKisG7dOo4iJPdDyRsxClZWVti3bx8kEgk+/vhjw64JAODq6oro6Gi4urpyGCHRc3FxQVJSEjIzM+Hs7Iyuri7D0Mu9zxuxXENDQ6ioqMDFixfR0tJieH0IhULIZDKOoyMAsGLFCgQHB6Opqcmw4r+npweHDh1CQEAAdu7cSStLjRjNeSNGw8bGBvv378d7772HTz/9FDt37oS7uzu8vLy4Do1MQSaTISYmxtDrNjQ0hNzcXDg5OcHf3x+enp40j8mCsCwLHo8HhUKB3Nxc2NjYYPXq1fD396fFRUYqJCQEK1asgJWVFYaHh/Hxxx/DycnJUMqJGC/qeSNGxdHREY899hhu3ryJN954Y8o5cMS46L+d29vbIy4uDnw+H+Xl5Th//jwaGho4jm55icViBAUFWdSejwMDAygrK8OVK1fAsixsbGyQnp6O9evXIygoiBI3IycWizEyMoJf//rXUKlUeOyxxyzq9WuqqOeNGB2hUIjg4GCUlZWhsLAQu3btou57E8Dn8+Hl5QUvLy+MjY2hra3N8O1dqVSit7cXnp6eZv1hLpFIEBoaynUYS45hGNy6dQutra0YGxuDra0t/Pz8DL1vNDfVdKjVanz22WcYHR1FQkIC1+GQWaLkjRiVO3fuoKSkBGvWrEFiYiKOHj0KGxsbbNmyhRI4E2Jrazshienv70dlZSWqq6vh6uoKLy8vuLu7m10ip9VqMTw8DHt7e7MraKpUKjEwMABvb2/w+Xy0tbXBwcEBUVFRhuLOxLTodDocPnwY/f39+I//+A80NzejoKAAaWlpkEgkXIdHZmBeVxdi8m7dugU7OzvEx8dDIBBApVLhq6++MlReJ6bJx8cHLi4u6OrqQmdnJ8rLy+Hr64vo6GjodDqwLGsWyc7Y2BiuXbuGjIwMsyg2q1KpDM/ZwMAA+Hw+XFxcIBaLkZWVRV+oTBjLsjh69Chu3bqF/fv3w9/fH25ubsjNzUVhYSHS0tJo3psRM/2rJTErUVFR0Ol0hotGQkICFAoFLl26BBsbG8THx3McIZkviUSCFStWYMWKFVAqlYYacV1dXaisrISbmxs8PDzg6upK3/o5pFQqIZFIwLIsLl++DK1Wa1jx7eHhYegtpcTNdLEsizNnzqCmpga7d+/GihUrAADW1tZITk5Gf38/JW5GjpI3wjmtVovi4mKEhITA0dFx0n6lGRkZUCgU+OqrryASiRAZGclRpGSx3Jucubi4IDQ0FJ2dnaioqABwt4xBRESEIcGjPWyXjlarRX9/P/r6+tDb24vx8XFs3boVQqEQCQkJkMlkZje8bclYlsWlS5dQVFSEBx54AGFhYRN+b2dnBzs7OwB3pzs4OztTom6EKHkjnGIYBsXFxRgeHp522IzH42Hr1q1Qq9U4evQoAFACZ0YkEgkCAwMRGBgItVqNvr4+w2q3/v5+lJSUwMXFBa6urnBzc6MdNhaIZVmMj4/DxsYGDMPg3Llz0Ol0sLW1hZubG1xdXQ3JMs1lMy/63tSrV69i8+bNiIuLm/ZchUKBgoIC+Pn50fXWCFHyRjjDsizKysowODiIlJQUw7e9qfB4POzcuRMAKIEzYyKRCN7e3oaf7ezssGrVKvT19aG2thbXr1+Hh4cHEhISwLIshoaGYG9vbzRDPDweDxKJxKh6KnQ6HQYHBzE4OIihoSHcuXMHALBlyxbw+XzExMRAJpNRUmzm9IlbTk4ONm/ejNTU1BnPt7GxQVRUFCoqKiCRSLBq1aplipTMhtkkbyMjI/jb3/6GnJwcqFQqhIaG4oc//OG0G53fa6aJ8PHx8fjTn/4E4O7cnEcffXTK8/77v/8bGzZsmF/wFqqurg7d3d2Ij4+f1f6GlMBZHmtrawQFBSEoKAhardYwaR4A5HI58vLywOPxIJPJ4OTkBEdHxwnJ33KTyWTYtGkTZ4/PsixGR0cxNDQEAPDz84NGo0FBQQGsrKzg6OiIlStXTni/0abj5m+uiZuer68vlEol6uvrIRaL4e/vv8SRktkyi+SNYRi8/PLLaGpqwt69e2Fvb49jx47hxRdfxIEDB+Dr6zvj7V999dVJx+rr63HkyJEp695s3LgRycnJE46Fh4cvrBEWyNvbGzKZDB4eHrO+zTcTOB6PhzVr1ixViMSICIVCuLu7G36WyWTIzMzE0NAQBgcH0dvbi76+PkPyVlhYCLFYDDs7O0ilUtjZ2cHa2tqoesXmi2EYKBQKCAQCWFtbo7+/HzU1NRgdHQXDMODxePDw8ICfnx8kEgnWr19PPWsWar6Jm15wcDBUKhXa2trg5+dnFu8fc2AWyduVK1dw/fp1vPbaa8jKygIArF+/Ht/5znfwwQcf4Be/+MWMt9+8efOkY+Xl5eDxeFP2pgUHB095GzI7fX19cHZ2hr29/bzKKegTOJZl8Y9//AMAKIGzQPoeN5lMZugR0Ol0AO5+YOkrx3d1dUGr1QKAIYlpa2uDQqGAtbU1rK2tIZFIYGNjs+ByJXK5HIWFhUhKSlrQHp4sy0KtVkOpVEIqlUIgEKCzsxNdXV0YGRnB2NgYGIZBUFAQQkNDIRaL4ejoCD8/P8hkskl15ihxs0wLTdz0wsPDDV8KiHEwi+QtOzsbTk5OE4Y/HRwcsG7dOpw/fx5qtRoikWjW96dWq5GdnY3o6Gi4ublNec74+DiEQiGtwpqj7u5ulJSUICwsDIGBgfO+n3t74CiBI3r6uW88Hg/R0dGG4+Pj4xgZGYGNjQ2Au8Wge3p6oFKpDHuzRkREYMWKFejt7UVTUxMkEglEIhGEQiGkUqmhR6+3txdCodDwj8/nQywWg8fjQaPRYHR0FCqVCiqVCsDdD1CBQAArKytoNBoMDg5Cq9VCq9VCo9GAx+Nh5cqVAO72Fo6Ojk4opbJ27Vo4OTlhfHwcKpUKzs7OCAgImLAq0M7OjqYQkAnuTdw2bdo078QNuPt+EggEUCgUKC4uNsyTJNwxi+StoaEBwcHBk8oJhIaG4uTJk2hvbzdcHGejoKAAo6Oj085dOXjwIP7617+Cx+Nh9erV+P73v4/ExMQZ77O/vx8DAwOGn1tbW2cdj7kYHBxEaWkpPDw8DHWFFoLP51MCR2ZF38Omp090WJaFSqXC+Pi44fcCgQAikQgKhQLDw8PQarWwt7eHt7c3dDodCgsLJ93/pk2bIJFIUFVVhbKyMqhUqgm9XStXrkRYWBhGRkZQVFQE4O4HolAohI2NjeH6pO9J1PcGWltbQyqVGu5jLtcxYrm+mbitXbt2Ue5XJBKBx+OhsLAQa9euNXwZIsvPLJK3wcFBREVFTTquX+Y+MDAwp4ve+fPnIRKJkJmZOeE4n89HQkICMjIy4OLigs7OThw+fBgvvfQSXn/9daSkpEx7nydOnMDBgwdnHYO50X9oOTo6IjY2dtG63ymBIwuhXx16b905Z2fnaUtk8Pl8bNq0aULPGcuyhp79wMBAtLW1ITY2FjKZDDweDzwez/Ah5+DggM2bN0MoFE65QtYS9kUlS2upEjfg7rzTpKQk5OXlGbbRmsuoFlk8Rpe8MQwDjUYzq3P13wJUKtWULyD9Mf3wxWyMjY0hPz8fSUlJk0pXuLu7449//OOEY1u2bMETTzyBv/zlLzMmbzt37pzwJmptbcWvf/3rWcdl6np6emBtbY2EhIRFL7j6zQROq9UiJiZmUR+DEOBfyd50HBwc4OTkBHd39ynnc+qHWAlZCizL4sKFC8jLy1v0xE1PLBYbErji4uIleQxyf0aXvFVWVuLFF1+c1bkfffQR/P39IRaLoVarJ/1ef2wuF8vs7Gyo1epZL/eXyWTYtm0bPvnkE/T29k47R87FxQUuLi6zjsNcsCwLHo+HoKAgrFixYsnqcekTOKFQiOPHj2N0dBRpaWk0wZYsK1tbW6SmptICAbLsdDodTpw4gcrKSmzdunVSRYTFZGtri6SkpCk/d8nyMLrkzc/PD6+88sqsztUPbTg5OU2YT6anPzaXKuHnz5+HVCqd0+ROfcI2MjIybfJmiXQ6HQoKChAQEABvb+8lL6TK5/OxY8cOSKVSXLx4EaOjo9i6dSslcGTZCIVC2pWALDu1Wo0vvvgCzc3NePjhh5dl6oi+Z5llWXR2dsLLy4uutcvI6JI3Z2dnbNu2bU63CQ4ORlVVFRiGmTAkV1dXB4lEct86b3r9/f0oLy/H1q1b5zSO39nZCQDzKnthrhiGQWlpKYaHh5e1F4LH4yErKwtSqRRfffUVxsbG8NBDDy24BAQhs6FUKnHr1i2sWLFixuFVQhaLQqHAp59+it7eXnznO99Z9kUtQ0NDKCsrw/Dw8KR9UsnSMYvdnjMzMzE4OIicnBzDsTt37uDy5ctITU2dkIh1dHSgo6Njyvu5dOkSGIaZdshUv63Mvfr6+nD69GmsXLnSIodFp1NVVYXe3l4kJCTAwcFh2R8/Pj4eu3fvRl1dHT799NM5zXskZL5UKhVu3rxJrzeyLIaHh/H+++9jaGgI3/3udzlZjezk5ISIiAg0NTWhqalp2R/fUplFd0RWVhaOHDmC119/HS0tLYYdFhiGwVNPPTXh3J/85CcAgMOHD0+6n/Pnz8PFxWXaye5//etf0dHRgbi4OLi4uKC7uxsnTpyAUqnEj3/848VvmIlqampCe3s7YmNj4erqylkcYWFhsLGxwWeffYaDBw/iscceM5RdIIQQU9bb24uPPvoIQqEQTz31FKfD9StWrIBKpUJtbS3EYjF8fHw4i8VSmEXyJhAI8MYbb+Ctt97Cl19+CZVKhZCQELzyyivw8/Ob1X20tbXhxo0b2LNnz7SrIRMSEtDZ2YmjR49iZGQEUqkUkZGReOKJJ2a1h6ql8PHxgUQi4XSPSb2AgAB873vfw8cff4z3338fjz/+OBwdHbkOixBC5q2trQ2ffvopHBwc8Nhjj02qjMCFkJAQKJVK9Pf3U/K2DHisvrw4WVY3btzAM888gwMHDphN4tfT0wN7e3ujnOszNDSEjz76CGq1Go899hhtxk2WxPDwMHJycpCRkUFzYMmSuHHjBr744gv4+Phg7969RnW91acTPB5v0hx0U2dsn9nm85clnOrr60NJSQmam5u5DmVKjo6OePrppyGTyXDw4EGjjZOYNpFIBD8/PypcSpZEaWkpDh06hFWrVmH//v1GlbgBMBSlHhwcxOXLlzE2NsZ1SGaLkjeyYMPDwygpKYGLiwtCQkK4Dmdatra2ePLJJ+Hj44OPP/4YxcXFoI5nspisra0RFRU1YSsuQhaKYRicPXsWJ0+eRHx8PB555BGjXkEvlUrB5/ORn58PpVLJdThmiZI3siBjY2MoKCiAnZ0d4uPjjb6bXCwW47HHHkNCQgK++uornDp1CjqdjuuwiJnQ6XQYGRmh1xRZNOPj4/jkk09QVFSE7du3Y/v27UZ/nRWJREhOTgbLsigsLJz1rklk9oz7FUCM3sjICCQSCRITE5e8CO9i4fP52LZtG3bu3ImKigr8/e9/p+59sihGR0dx5coVjI6Och0KMQN9fX04cOAAOjs78fjjjyMxMdFkCuFaW1sjOTkZ4+PjqKys5Docs2O8/a7EqOkno3p4eMDd3d1kLij3io2NhYuLCz7//HO888472LdvHzw8PLgOixBC0NDQgC+//BL29vZ49tlnTXKVvJ2dHZKSkmgO6BKgnjcyZwzDoLCwEPX19QBgkombnp+fH5599lnY2NjgvffeQ21tLdchEUIsGMuyyM3NxWeffYYVK1bg6aefNsnETc/R0RG2trbQarW4desW1+GYDUreyJywLIvy8nIMDg5yWoB3Mdnb2+Opp57CqlWrcPjwYVy+fJkWMhBClp1Go8E//vEPXLhwAenp6Xj00UchFou5DmtR9PX14fr162hoaOA6FLNAw6ZkTq5fv46uri7Ex8eb1QbcVlZWeOSRR+Dh4YGLFy+it7cXu3btou5+MmfGPpmcGCe5XI5Dhw6hr68Pu3fvRnh4ONchLSpPT0+EhISgvr4eYrEY/v7+XIdk0ih5I7PW0dGBlpYWREZGmuXcMB6Ph/T0dLi5ueHLL7/Eu+++i71798LJyYnr0IiJsLe3x44dO7gOg5iYtrY2HD58GAKBAE899ZTZFhEPDg6GSqVCdXU1RCKR2bZzOdBXRDJrnp6eSEhIMPtvTKtXr8b3v/99aLVavP3227h+/TrXIRFCzJB+ftvBgwfh5OSEZ555xuwTmvDwcHh6emJ8fJzrUEwa9byR++rp6YFIJIKjo6NZ9rhNxc3NDc899xxOnjyJI0eO4NatW9i6dSusrKy4Do0YsdHRUZSVlSE2NhZSqZTrcIgRGx0dxdGjR9Hc3Iy0tDSsW7fOIobceTwe4uLiDD9rtVqjLjhsrOgvRmY0ODiIkpISeHl5mfSKp/kQi8V4+OGHERgYiDNnzqC9vR2PPPII3NzcuA6NGCmdTofh4WEq0ktm1NTUhKNHjwIAHn/8cQQGBnIcETdu376Nuro6rF27FjY2NlyHY1LMP80n8zYyMoKioiI4OjoiKiqK63A4wePxEBsbi2eeeQYAcODAAZSWltJqVELInDEMg4sXL+Ljjz+Gu7s7nn/+eYtN3ADA1dUVfD4fBQUFUKvVXIdjUih5I1MaHx9HQUEBrK2tkZCQYBHd+TNxc3PDM888g8jISJw8eRJffvkl7dlHCJm14eFhfPDBB8jLy8OGDRuwf/9+ix9aF4vFSE5OhkajQWFhIfVYz4FlfyKTaWk0GlhbWyMpKYnmef2TlZUVHnjgATzyyCNobGzE22+/jY6ODq7DIoQYufr6evz1r3+FXC7H9773PaSlpZl0cfPFZGtri+TkZIyOjhoKv5P7ozlvZAKdTgcejweZTIa0tDSuwzFKERER8Pb2xhdffIH3338fGzduRHJyMl2MCWxsbBAXF0fzdwiAu5Pxz507h6KiIoSGhmLnzp2wtrbmOiyjY29vj+TkZNjZ2XEdismg5I0YsCyL0tJS8Hg8JCQkcB2OUXN0dMTTTz+NCxcu4Ouvv0ZjYyN27twJBwcHrkMjHLKysoKXlxfXYRAj0NnZiWPHjmFgYADbt29HQkICfcGbgX5B3NjYGLq7u7Fy5UqOIzJuNGxKDCorK9Hb24uAgACuQzEJAoEAW7Zswf79+9Hf34+33noLxcXFtJjBgqlUKjQ3N0OlUnEdCuGIVqvFhQsX8O6770IgEODZZ59FYmIiJW6z1N/fj9raWjQ3N3MdilGjnjcC4O6cjPb2dsTGxprNnqXLJSgoCP/2b/+Gc+fO4auvvkJNTQ0efPBBiyutQgClUomamho4OzubzZ6UZPZu376N48ePY3BwEFlZWVi7di0EAgHXYZkUf39/KBQK1NTUQCwWw9vbm+uQjBIlbwSDg4NobGxEeHg4vVHmSSwW44EHHkB4eDhOnDiBt956Cxs3bqRv3IRYAI1Gg8uXLyM/Px9eXl547rnnqB7kAoSGhkKlUqG8vBwikYg6FKZAyRuBk5MTUlNTzWqjea4EBgbiBz/4AS5cuIAzZ86gtrYWO3fupL8tIWaqra0Nx48fx/DwMDZu3IiUlBSLL620GKKioqDT6WgayjQoebNgfX19UKlU8PHxoeRiEYnFYuzYsQPh4eE4fvw4/va3v2H9+vVISkqiizohZkKj0eDixYsoLCyEt7c39u3bBxcXF67DMhv3bqPFsizUajVNRbgHJW8Wanh4GCUlJXBycoKPjw/X4ZilgIAA/OAHP8ClS5dw7tw51NbW4sEHH6QLvBkTCoVwd3envRrNXGtrK44fPw65XI7NmzfTF7MlduPGDXR0dGDt2rWQSCRch2MU6NVmgcbGxlBYWAipVIr4+HiuwzFrIpEIW7duxfe+9z0oFAr89a9/xYULF2grGDNla2uLxMRE2Nrach0KWQIjIyP4xz/+gQ8++ABSqRQ/+MEPaJh0Gfj7+4NhGBQWFkKj0XAdjlGgr4cWRqVSoaCgAFZWVkhKSqKVUMvEz88Pzz//PK5du4arV6+isrISmzdvRkREBC1oMCMMw0Cr1UIoFNIHuhnR6XQoKChAdnY2rKyssHPnTsTExNB7d5lYW1sjOTkZeXl5KC4uRnJyssW/vyh5s0B2dnaIiIiASCTiOhSLYmVlhczMTERFReHcuXP48ssvUVJSgm3btsHDw4Pr8MgiGBkZQU5ODjIyMmBvb891OGQR3Lx5E2fPnsXg4CASEhKwbt06GrrjgJ2dHRITE5Gfn4+WlhYEBgZyHRKnKHmzEAzDQKPRQCwWIzExketwLJqDgwP27NmD5uZmnDlzBm+//Tbi4+Oxfv162jqHECMxNDSEr7/+GvX19QgICMDu3bvh7u7OdVgWzcnJCenp6bSNFih5swgsy6K8vBwjIyPIzMykrn4jERgYiOeffx5FRUW4cuUKampqsH79esTGxlr8kAAhXNFoNMjNzUVeXh5sbGzwyCOPIDw8nK6bRkImkwG4Wy1heHgYQUFBHEfEDUreLEBNTQ26uroQHx9PFyAjIxAIkJKSgjVr1uDChQs4deoUSktLsX37dvj6+nIdHiEWg2VZ1NXV4euvv8bo6ChSU1ORnp5O00uM1J07d1BfXw8rKyv4+/tzHc6yo+TNzDU2NuLWrVuIjIykeVVGTCqV4qGHHkJ8fDxOnz6N9957D+Hh4Vi3bh2VFiFkibW1teHixYtobW3FqlWr8OSTT8LJyYnrsMgMgoODoVKpUF1dDbFYbHGfb5S8mTGFQoGGhgasXr3aIr+ZmCIfHx8888wzqKiowJUrV/CXv/wF0dHRyMzMhIODA9fhkfuQyWTYtm0breI2EV1dXbh06RIaGxvh4eGBxx57DMHBwVyHRWYpPDwcKpUKpaWlSElJsaiEm5I3M2ZjY4OMjAya3GlieDweYmJisGbNGpSWliInJwdVVVWIj49Heno6pFIp1yGSafB4PCrQawL6+/tx+fJl1NTUwNnZGbt370ZYWBhNKzEx+mtlVVWVxQ1v01XGDA0ODqKnpwchISGUuJkwoVCIpKQkxMTEoLCwEHl5eSgrK0NSUhLWrl1LK1ON0NjYGKqrq7FmzRoq1GuE7ty5g+zsbFRUVEAmk+HBBx9EVFQULRAyYXw+H9HR0QAArVYLrVZrEaVcKHkzMyMjIygqKoJMJgPLsvRN0gyIRCKkp6cjPj4e165dQ0FBAUpKSpCamork5GSL+8ZpzLRaLfr6+qDVarkOhdxjdHQUOTk5KC0thUQiwdatWxEXF0e9pGamsrIScrkca9euNfvrIr1yzcj4+DgKCgpgbW2NhIQE+jZpZqytrbFhwwYkJSUhNzcX2dnZKCwsRHp6OuLi4mBlZcV1iIQYFYVCgWvXrqGwsBACgQDr1q1DYmKi2X+wW6qQkBDk5uaiqKgIKSkpZj33lJI3M6HRaFBQUAA+n4+kpCT6IDdjUqkUW7duRUpKCrKzs3Hu3Dnk5OQgMTERiYmJsLGx4TpEQjg1NDSE/Px8lJeXg8fjISUlBampqRYxnGbJbG1tkZycjGvXrqGkpMSsOzEoeTMTAoEAzs7OWLlyJV2gLIS9vT127tyJ9PR05OfnIy8vD3l5eYiJiUFKSgocHR25DpGQZdXZ2Ym8vDzU1tbC2toaa9eupS80Fsbe3h7x8fEoKipCX1+f2e6KQcmbiWNZFmNjY5BKpYiMjOQ6HMIBR0dHbN++HVlZWSguLkZhYSGKi4sRFhaG1NRUeHt7cx2ixbC2tsaaNWtoMckyYlkWN2/eRF5eHlpaWuDk5ITt27cjOjqaRiAslKurK9atW2fWSTslbyausrIS3d3d2LBhA12oLJyNjQ0yMzORmpqKyspKXLt2DQcOHEBAQADWrl2LoKAgWsCyxEQiEQICArgOwyLodDpUV1fj2rVr6O3thbe3N/bs2YOQkBCzHSojs6dP3JqbmwHA7Dayp+TNhNXX16O9vR2xsbGUuBEDKysrxMfHIzY2FvX19bh27Ro++eQTuLm5ITU1FREREbTKboloNBr09PTA3d2d3pNLRKlUoqysDAUFBZDL5Vi1ahV27NgBPz8/+nJCJlGpVLh58ybEYrFZjULQFdxE3bp1C42NjQgLCzOrFyRZPHw+H2FhYQgNDUVbWxuuXbuGY8eO4dy5c4iKikJsbCxcXV25DtOsKBQKlJeXIyMjA/b29lyHYzZYlsXt27dRWlqKmpoaMAyDyMhIpKam0muYzCg0NBQqlQrl5eUQiURm83qh5M0EaTQaNDY2YuXKlVi5ciXX4RAjx+Px4O/vD39/f/T396OsrAwVFRXIz8+Hn58f4uLiEBYWRj1FxOgoFApUVVWhtLQUfX19cHR0REZGBqKjo6kAOZm1yMhIqFQqFBcXY+3atWbxxYqSNxNkZWWFjIwMiMVirkMhJsbFxQWbN2/G+vXrUV9fj7KyMhw9ehRnzpxBZGQk4uLizHZ1FjENLMuitbUVpaWlqKurA8uyCAkJwdatWxEYGEhDo2TO+Hw+4uPjUV9fbzaLGCh5MyHDw8NobGxEdHQ0lQMhCyIUChEREYGIiAgMDg6ivLwc5eXlKCoqgre3N+Li4hAREUHFTMmyGRsbQ0VFBcrKyjAwMABnZ2esW7cO0dHRtNUYWTCBQIDw8HAAd3t0+Xy+SX+OUvJmIsbGxlBYWAhra2v65kkWlZOTEzZs2ICsrCw0NDSgrKwMJ0+exNmzZxEeHo6IiAgEBASYdbXyxSIQCODo6Eh/q1lSq9VobGzE9evX0dDQAB6Ph7CwMDzwwAPw9/enax1ZEqWlpWAYBqmpqSY7XYSSNxOgUqlQUFAAKysrJCUl0QcDWRICgQChoaEIDQ3FnTt3UF5ejurqapSXl8PGxgahoaEIDw9HQEAAlWKYhlQqRVpaGtdhGDX9nN2amho0NDRAo9HAy8sLmzZtQlRUFNXII0suOjoaeXl5KC4uRnJysklezyh5M3IMw6CwsNDwLYGGschycHBwwLp165CVlYXu7m7U1NSgpqYGpaWlsLGxQVhYGMLDw+Hv72+SFz6yvDQaDW7evGlI2NRqNTw9PZGZmYmwsDA4OTlxHSKxIHZ2dkhMTER+fj7KysoQFxdncr28lLwZOT6fD29vb7i6utI3UrLseDwePD094enpiQ0bNqCrq8uQyJWUlMDW1taQyPn5+Vl8Ijc8PIycnBwqFQJAq9UaErYbN25ArVbDw8MD6enpCAsLg7OzM9chEgvm5OSEuLg4lJeXY2RkBDKZjOuQ5oSSNyPFsiwGBwcN+5USwjUejwcvLy94eXlh48aN6OzsNCRyxcXFkEqlCAoKQlBQEAIDA81mVReZveHhYdy8eRNNTU1oamqCSqWCu7s70tLSEBYWBhcXF65DJMTAw8MDGzZsMMkRLUrejFRNTQ1aWlqwfv16+hAkRofH48Hb2xve3t7YtGkTOjo6UFtbi5s3b6KiosKQ6AUFBWHlypXw8fGx+F45c6TRaNDa2mpI2Pr6+sDj8eDj44PU1FSEhYWZTVFUYp5EIhFYlkVlZSWcnJzg5+fHdUizQsmbEWpsbMStW7cQGRlJiRsxevoPax8fH2zevBlyudzQ81JUVITs7GxIJBKsWLHCkMw5ODhwHTaZB5Zl0dfXh6amJty8eROtra3QarWQyWQICgrCunXrsGLFCpriQUwKj8eDQCBAVVUVRCIRPDw8uA7pvih5MzJtbW2or6/HqlWr4O/vz3U4hMyZTCZDTEwMYmJiwDAMurq6cPPmTdy8eROnTp0Cy7JwcXFBYGAgfH194ePjAwcHB5ObMGwJ9Mna7du30d7ejqamJsjlcgiFQgQEBGDDhg0ICgqCi4sLPX/EpEVEREClUqG0tBQpKSlGv4iGkjcjwrIsWlpa4O/vj9WrV3MdDiELpl9w4+3tjczMTCiVSjQ3Nxt6boqKigDcLbGh773z8fGBl5eXSc5DsbOzw/r1602252l8fBy3b9+e8E+lUoHH48HNzQ3h4eFYuXIl/P39TbY+FiFT4fF4iI2NRWFhIYqKipCRkWHUI1+UvBkRHo+H1NRUquNGzJZEIkFYWBjCwsIA3K10rk8S2tvbkZOTA7VaDT6fD3d3d0My5+vrC0dHR6Pv3eHz+SazGwDDMOjr60N7e7vhOejv7wcA2NjYwMfHB2lpaYZkmrbjI+ZOv41Wa2ur0X8BM4vkrb+/H0eOHEFdXR3q6+sxPj6ON998EzExMbO+j76+Pvzv//4viouLwTAMYmJi8MILL8DLy2vSuadOncKhQ4fQ3d0NV1dXPPLII3j44YfnHf/IyAgqKioQFxdn1Jk+IYvNxsYGq1atwqpVqwBMTihu3bqF4uJiAHcTP1dX10n/ZDKZ0SR1CoUC9fX1CAkJMZr3MsMwuHPnDnp7e9HX12f419/fD41GY0iUV6xYgfT0dJNJlAlZClZWVggKCgIADA4OQiqVGuUogFkkb+3t7fj000/h4+ODwMBA1NTUzOn2CoUCL774IsbGxrB//34IhUIcPnwYL7zwAt5///0J9ZqOHz+OP/7xj8jMzMSjjz6KqqoqvPnmm1AqlXjsscfmHLt+9wSRSETDEMTi6RMJd3d3xMfHA/jXUF53dzf6+vrQ1dWF6upqaDQaAIBYLJ4yqbO3t1/2BESj0aCjo4OT8j4Mw2BoaGjKJE2r1QL4VwLs6emJyMhIeHp6muwQNSFLiWEYlJaWwtraGikpKVyHM4lZJG+rV6/GqVOnIJPJcOXKFfziF7+Y0+2PHTuG27dv4+2330ZoaCgAICkpCd/97nfx+eef49lnnwVwN9F69913kZKSgl/96lcAgAceeAAMw+Dvf/87du7cCTs7uzk9dnV1Ndzd3ZGUlETJGyFTsLa2RnBwMIKDgw3HGIbB8PDwhCSlp6cHNTU1UKvVAO5u9yWTyWb8Z2traxIlTHQ6HUZHRyGXyzE8PAy5XD7p3+joKBiGAXD3b+bq6gpvb29ER0fD1dUVbm5ukEql1KNGyCzw+XwkJCTg2rVrKCkpMbqi22aRvC10eOLKlSsICQkxJG4A4O/vj9jYWFy+fNmQvJWVlWF4eBgPPfTQhNvv2rUL58+fR35+PjZv3jynx9ZoNEhJSYFEIllQGwixJHw+H46OjnB0dDQMuQJ3F/3ok7qhoaEJyU1HRwfkcrmhF0p/P3Z2dpDJZJBKpRCLxbP+JxKJwOPxJvz7JpZlDf8YhoFarYZKpZrVP6VSaUjYRkdHwbKs4X5FIpEhAdWv3JXJZHB2doarqytsbW0pSSNkgRwcHJCQkICioiL09vZyHc4EZpG8LQTDMGhubsb27dsn/S40NBTFxcVQKBSwsbFBY2MjACAkJGTCeatXrwafz0dDQ8O0yVt/fz8GBgYMP9+8eRPA3RfH7du3F6s5hJB/sre3n/LbslKpxNjYGEZHRzE2Nmb4f1dXF9RqNdRqNTQajeH/c6HRaNDV1YXz58/PqSedx+NBLBbDysrKMIXCysoKtra28PT0hK2tLaRSKWxtbWFrazvtMKdarUZHR8ecYiaEzMze3t4w91alUnEczV0Wn7zJ5XKo1eop99nTH+vv74efnx8GBgYgEAjg6Og44TwrKyvIZLIJydk3nThxAgcPHpx0/E9/+tPCGkAIMTo9PT1ch0AIWQKNjY2IjIzkOgzjS94YhjFMRL4f/bDFQuiz6Km+Jeu/3erPUalUEAqn/pOJRKIZM/KdO3di7dq1hp/r6urwpz/9CS+//LJhZYslaG1txa9//Wu8+uqrFlOE2BLbDFhmuy2xzQC125LabYltBu6Olv3+9783mjYbXfJWWVmJF198cVbnfvTRRwv+Q+prF02VMOqHTPTniMXiCfNlvnnuTHWQXFxcptyUOSgoyCIL8lpiIWJLbDNgme22xDYD1G5LYoltBjDnRYlLxeiSNz8/P7zyyiuzOneqoc65kslkEIlEUw556o/pky5nZ2fodDoMDQ1NGDrVaDSQy+WLEg8hhBBCyEyMLnlzdnbGtm3blu3x+Hw+AgMDUV9fP+l3tbW18PLyMqxm1ZcqqK+vn1D3pb6+HgzDTChlQAghhBCyFIy/wNEi6+npQWtr64RjmZmZqK+vn5DAtbW1oby8HFlZWYZjsbGxkMlkOH78+ITbHz9+HBKJZE6F/JydnfHd737X4nrrLLHdlthmwDLbbYltBqjdltRuS2wzYHzt5rH3Fg8yYR9++CEAoKWlBRcvXsT27dvh6ekJAHjyyScN5/34xz9GRUUFcnJyDMcUCgWefvppKBQK7N27FwKBAIcPHwbDMHj//ffh4OBgOPfo0aP485//jKysLCQmJqKyshJff/01nnnmGTz++OPL01hCCCGEWCyzSd4yMjKm/d29idpUyRsA9Pb2Ttrb9Ec/+hF8fHwm3d/Jkyfx+eefo6urC25ubti1axd2795NRTEJIYQQsuTMJnkjhBBCCLEEFjfnjRBCCCHElFHyRgghhBBiQoyuVIip6+/vx5EjR1BXV4f6+nqMj4/jzTffRExMzKzvo6+vb9L8uxdeeAFeXl6Tzj116hQOHTqE7u5uuLq64pFHHsHDDz+8mE2atZGREfztb39DTk4OVCoVQkND8cMf/nBWhRxnmrMYHx9v2Easq6sLjz766JTn/fd//zc2bNgwv+AXYCHt/u1vf4uzZ89OOu7n54ePP/54wjGGYXDo0CEcO3YMg4OD8PHxwf79+7Fx48ZFa8tszbfNDMPg66+/RnZ2NhobGzEyMgJPT0+sX78ee/funVToerrXxbPPPov9+/cvWnvupVar8d577+HcuXMYGRnBypUr8f3vfx8JCQn3va2pvneB+bc7Ozsbly5dQn19PQYHB+Hm5oaUlBQ8+eSTkwqa7tmzB93d3ZPuY+fOnfjZz362qO2Zjfm2+f33359yu0ORSIQLFy5MOm4uz/V0zx8AeHt747PPPjP8zMV7dyYKhQKHDh1CbW0t6urqMDIygldeeWXWpcnmcs3Lzc3FBx98gNbWVjg4OGD79u144oknpt2haT4oeVtk7e3t+PTTT+Hj44PAwEDU1NTM6fYKhQIvvvgixsbGsH//fgiFQhw+fBgvvPAC3n///QkbbR8/fhx//OMfkZmZiUcffRRVVVV48803oVQq8dhjjy1202bEMAxefvllNDU1Ye/evbC3t8exY8fw4osv4sCBA/D19Z3x9q+++uqkY/X19Thy5MiUF5SNGzciOTl5wrHw8PCFNWIeFtpu4O4F/6WXXppwzNbWdtJ5Bw4cwCeffIIHHngAISEhyM3NxWuvvQYej7esSetC2qxUKvH6668jPDwcDz74IBwdHVFTU4MPPvgAZWVl+L//9/9OWvgTHx+PrVu3Tji2lDUVX3/9dVy5cgW7d++Gj48Pzpw5g5deeglvvvnmjHsamup7V2++7f7DH/4AZ2dnbN68Ge7u7mhqasLRo0dRUFCA9957b1JCHhwcPOkL2FQLw5bDfNus99Of/hTW1taGn/n8yYNZ5vRcv/DCCxgfH59wrLu7G+++++6U1+nlfu/OZHh4GAcPHoS7uzuCgoJQXl4+69vO5ZpXUFCA//zP/0R0dDRefPFFNDc34+9//zuGhobw05/+dPEaxJJFNTY2xg4PD7Msy7KXL19m09PT2bKyslnf/pNPPmHT09PZ2tpaw7GWlhY2KyuLffvttw3HlEol+61vfYt96aWXJtz+tddeYzdv3szK5fIFtmRuLl68yKanp7OXL182HBsaGmK3bdvG/vKXv5zXff7ud79jMzIy2J6eHsOxzs5ONj09nf30008XGvKiWGi7f/Ob37CbN2++73m9vb3sunXr2D/96U+GYwzDsP/2b//Gfvvb32a1Wu284p+PhbRZrVazVVVVk45/8MEHbHp6OltcXDzheHp6+oQ2L7WamppJry+lUsnu3buXff7552e8ram+d1l2Ye2e6vp25swZNj09nT158uSE47t3757Ubq4spM3vvfcem56ezg4NDc14nrk911M5ePAgm56ePul9vdzv3ftRqVRsf38/y7IsW1dXx6anp7OnT5+e1W3ncs17/PHH2e9973usRqMxHHvnnXfYjIwMtqWlZeEN+Sea87bIbGxsIJPJ5n37K1euICQkBKGhoYZj/v7+iI2NxeXLlw3HysrKMDw8jIceemjC7Xft2oXx8XHk5+fPO4b5yM7OhpOT04SucgcHB6xbtw65ubmGfWJnS61WIzs7G9HR0XBzc5vynPHx8Sn3pF1Oi9VunU6HsbGxaX+fm5sLrVaLXbt2GY7xeDw89NBD6Ovrm3MP70IspM1WVlZYs2bNpOPp6ekAMKmAtp5KpYJKpVpg5PeXnZ0NgUCAnTt3Go6JxWLs2LEDNTU16Onpmfa2pvreBRbW7qmmhOhfGy0tLVPeRqPRTOrBWW4LafO9xsbGwE5TtMHcnuupXLhwAZ6enlO+r4Hle+/ej0gkmneB3dle81paWtDS0oIHHnhgwhDprl27wLIsrly5sqA23IuSNyPCMAyam5sREhIy6XehoaHo6OiAQqEAADQ2NgLApHNXr14NPp+PhoaGpQ/4Hg0NDQgODp40bBAaGgqlUon29vY53V9BQQFGR0exadOmKX9/8OBBbNmyBRs3bsSzzz6LoqKiece+EIvRbqVSiW3btmHbtm3YsWMH/vSnPxmeZ73GxkZYW1vD399/0uPof79cFvu5BoDBwUEAmDC0qHf27Fls3rwZmzZtwuOPP47z58/PL/BZaGxshI+Pz6Rha/3f+ebNm1PezpTfu/qY5tPu6ej3hb63wLleWVkZNm/ejC1btmDPnj344osv5hf0Ai1Gmx999FFs27YNW7duxa9+9SvD6/jexwDM97luaGhAa2vrtPNul/O9u5Rme83TP5/fnAfn4uICV1fXRb1O05w3IyKXy6FWq6f8dqA/1t/fDz8/PwwMDEAgEMDR0XHCeVZWVpDJZIaL53IZHBxEVFTUpOP6uAcGBrBy5cpZ39/58+chEomQmZk54Tifz0dCQgIyMjLg4uKCzs5OHD58GC+99BJef/31OW1RthgW2m5nZ2fs27cPq1atAsuyKCwsxLFjx9DU1IQ333zT8O1tYGAAjo6Ok+aD3fu6WC6L/VwDwGeffQZbW1skJSVNOB4REYF169bB09MTAwMD+Mc//oFf/epXGBsbm9SbsRgGBgbu+/6biim/d4H5t3s6n376KQQCwaT3b2BgICIjI+Hr6wu5XI4zZ87g//2//4f+/n784Ac/mH8D5mEhbbazs8O3v/1thIeHw8rKClVVVTh69Cjq6upw4MABQ2Jk7s+1Phmb6kv2cr93l9Jsr3n653O6v+9iPt+UvM2AYZhZD8uJRKIF77Cg71q2srKa8v7vPUelUk27ckUkEi2om3o+7VapVIYYv/l7fbyzNTY2hvz8fCQlJU1arebu7o4//vGPE45t2bIFTzzxBP7yl78sKHnjot3PPffchJ83bNgAX19fHDhwANnZ2YaFCCqValavi7ni+rkGgI8++gglJSX493//90nP91tvvTXh5+3bt+P73/8+3nnnHWzbtm3SZPiFmu/f2Vjeu/O1mK+v8+fP46uvvsK+ffsmLV753e9+N+Hn7du34+c//zkOHz6Mhx9+eNopEkthIW3evXv3hJ+zsrIQGhqKX/3qVzh69KhhNaU5P9cMw+DSpUsIDg5GQEDApN8v93t3Kc32mqcfPp3u3G+OqCwEJW8zqKysxIsvvjircz/66KNJQ1pzpX8xT/Vhqn9R6M8Ri8XQarVT3o9arV7QG2M+7RaLxVPOdfpm3LORnZ0NtVo97ZDpN8lkMmzbtg2ffPIJent75/0BwHW79fbs2YP33nsPJSUlhuRNLBbP6nUxV1y3+eLFi3j33XexY8eOWX0bt7Kywre//W388Y9/xI0bN2a1InAu5vt3Npb37nwt1uursrISv//975GYmIhnnnnmvufzeDzs2bMHRUVFqKiowObNm+cW+AIs9ntq06ZN+Mtf/oLS0lJD8mbOz3VFRQX6+vomJbLTWer37lKa7TVPn7RNd+5iPt+UvM3Az88Pr7zyyqzOne9EyHvJZDKIRKIpu1b1x1xcXAyPp9PpMDQ0NKFLXqPRQC6XLyie+bTbyclpxrjnEs/58+chlUqRmpo669voE7aRkZF5J29ct1tPLBZDJpNBLpdPeLzy8nKwLDuhh/ebr4u54rLNxcXF+O1vf4uUlJQ5LaHXP7/3/n0Wi7OzM/r6+iYdv9/f2Vjeu/M133bf6+bNm3jllVcQGBiI1157bdY1rZby+ZzJYrT5m9zc3Ca9b83xuQbuXqf5fP6c6kxy9Vwv1GyvefcOo7q7u086997FTAtFydsMnJ2dZ13AbzHw+XwEBgaivr5+0u9qa2vh5eUFGxsbAP+qlVNfXz9hqLC+vh4Mwyyols582h0cHIyqqiowDDNhUmddXR0kEsms6p0Bd+dblJeXY+vWrVN2PU+ns7MTwNQT3meLy3bfS6FQYHh4eMJk76CgIJw6dQqtra0Thihqa2sNv58PrtpcW1uLV199FatXr8Yvf/nLORWv1D/XU02GXyh9/aexsbEJE7rv93c2lvfufM233XodHR342c9+BkdHR7zxxhuGts7GUj6fM1lom7+JZVl0d3dPeP7M8bkGJlYDmEuSy9VzvVCzvebpn88bN24gLCzMcF5/fz/6+vomrPBdKFptyqGenp5JpREyMzNRX18/4UOgra0N5eXlyMrKMhyLjY2FTCbD8ePHJ9z++PHjkEgkyz5xPzMzE4ODg8jJyTEcu3PnDi5fvozU1NQJiVhHRwc6OjqmvJ9Lly6BYZhph0zv3Lkz6VhfXx9Onz6NlStXzrsHar4W0m6VSjXlHIgPP/wQLMtOmLyflpYGoVCIo0ePGo6xLIvjx4/D1dUVERERi920aS30uW5pacHLL78MDw8P/P73v592KGGq51qhUODIkSOwt7ef1Q4Wc5WVlQWdTocTJ04YjqnVapw+fRphYWGGb9Pm9N4FFtbugYEB/PSnPwWfz8cf/vCHaT+Y5XI5dDrdhGNarRaffPIJrKys5rQLzWJYSJunem0eO3YMd+7cmfC+NbfnWu9+1QC4eO8ulv7+frS2tk4Y7p7tNW/FihXw8/PDyZMnJ7zWjx07Bh6PN2kBz0JQz9sS+PDDDwH8q8bR119/jaqqKgDAk08+aTjvN7/5DSoqKia8IHbt2oVTp07h5Zdfxt69eyEQCHD48GE4Ojpi7969hvPEYjGefvpp/PnPf8YvfvELJCYmorKyEufOncMzzzyzoFpz85GVlYUjR47g9ddfR0tLi6ECNcMweOqppyac+5Of/AQAcPjw4Un3c/78ebi4uEx7If/rX/+Kjo4OxMXFwcXFBd3d3Thx4gSUSiV+/OMfL37D7mMh7R4cHMTTTz+NjRs3ws/PDwBQVFSEgoICJCUlIS0tzXBbNzc37N69G5999hm0Wi1CQ0Nx9epVVFVV4b/+678gEAiWqcULa7NCocDPfvYzjIyMYO/evZPqXHl5eRkS0X/84x/Izc1Famoq3N3dMTAwgNOnT6Onpwf/+Z//OeWk64UKCwvDunXr8M477+DOnTvw9vbG2bNn0d3djZdfftlwnjm9d4GFtfvnP/85Ojs7sW/fPlRXV6O6utrwO0dHR0Pl/by8PPz9739HZmYmPD09MTIygvPnz+PWrVt49tlnl30IcSFt3r17N9avX4/AwECIRCJUV1fj4sWLCA4OnlQ/zZyea73pqgHocfHenY0vv/wSo6OjhuHOvLw89Pb2AgAefvhhSKVSvPPOOzh79iw+//xzeHp6ApjbNe+HP/whXnnlFfz0pz/Fhg0b0NzcjKNHj+Jb3/rWlAs75ouStyXw3nvvTfj59OnThv/fm7xNxcbGBm+++Sb+93//F3//+98N+yP+6Ec/mvSNdteuXRAKhfj888+Rl5cHNzc3/OhHP5r1BNLFJBAI8MYbb+Ctt97Cl19+CZVKhZCQELzyyiuGxOR+2tracOPGDezZs2fKbWYAICEhAZ2dnTh69ChGRkYglUoRGRmJJ554gpNvcwtpt35eX3FxMc6ePQuGYeDt7Y1nn30We/funfQ3eO6552BnZ4cTJ07g7Nmz8PHxwauvvjrrhR2LZSFtHh4eNlws33777Um/37p1qyF5W7NmDa5fv45Tp05BLpdDIpEgNDQUL7/8MuLi4ha/Yf/0f/7P/4G7uzu+/vprjI6OIjAwEL///e8RHR094+1M9b2rN9926+uC3buvpV50dLQheQsMDIS/vz/Onz+PO3fuQCgUIjg4GL/85S+xbt26RW/PbMy3zZs2bcL169cNi6vc3d2xb98+PPHEE5BIJBPONafnGvhXNYDk5GRIpdIpz+HqvXs/n3/++YS9WXNycgzJ6ebNm6dtz1yueampqfj1r3+NgwcP4s0334S9vT3279+P7373u4vaFh47XWloQgghhBBidGjOGyGEEEKICaHkjRBCCCHEhFDyRgghhBBiQih5I4QQQggxIZS8EUIIIYSYEEreCCGEEEJMCCVvhBBCCCEmhJI3QgghhBATQskbIYQQQogJoeSNEEIIIcSE0N6mhBAyS2VlZTh+/DiuX7+OO3fuwNraGgEBAVi3bh127tw544bbTz75JEQiEQ4cOICuri48+uijSExMxB/+8IdlbAEhxBxQ8kYIIfeh1Wrx5z//GSdPnoS1tTWSkpLg7e2NsbExFBcX480338SJEyfwxhtvwN3dfdLtOzo6cOvWLTz99NMcRE8IMTeUvBFCyH288847OHnyJEJCQvCb3/wGrq6uht/pdDp8+OGHOHjwIF566SW88847EIvFE26fm5sLAEhLS1vWuAkh5onmvBFCyAza29tx+PBhyGQy/O53v5uQuAGAQCDAU089hY0bN+LWrVv44osvJt1Hbm4uPD09sXLlyuUKmxBixih5I4SQGZw9exYMw+CBBx6Ak5PTtOc9+eSTAIBTp05NOH7nzh1cv36det0IIYuGkjdCCJnB9evXAQBxcXEznufv7w8XFxd0dnZiYGDAcDw/Px86nQ7p6elLGichxHJQ8kYIITPQJ2Jubm73PVd/Tn9/v+FYbm4u7O3tsWbNmqUJkBBicSh5I4SQRcYwDABApVKhuLgYycnJEAgEHEdFCDEXlLwRQsgMnJ2dAQC9vb33PVd/jn5RQ3FxMZRKJc13I4QsKkreCCFkBhEREQCA0tLSGc9rbW1Ff38/7OzsDAsbcnNzIRKJkJiYuORxEkIsByVvhBAyg61bt4LP5+PUqVO4c+fOtOd99NFHAIDNmzeDz+eDYRjk5+cjPj4e1tbWyxQtIcQSUPJGCCEz8PX1xZ49ezA8PIz/+I//mLAYAbg7v+3DDz/EuXPnIJVKsXv3bgBATU0NhoaGaMiUELLoaIcFQgi5j2effRZjY2M4efIkHnvsMSQnJ0/YHuv27dsQiUT4n//5H3h5eQEArl69Cj6fj9TUVI6jJ4SYG0reCCHkPoRCIX7+859j/fr1OHHiBKqrq5GTkwOdTgcACA8Px6uvvgpvb2/DbXJzcxEWFjZjYV9CCJkPSt4IIWSW4uLiJhTrbW9vx/PPP4+uri6wLGs43tLSgtu3b+Nb3/rWlPfj6emJnJycJY+XEGKeaM4bIYTMk6+vL371q19BLpfj3//939HX1weANqInhCwtHnvv10VCCCFzlpeXhxs3bsDf3x8bNmzgOhxCiJmj5I0QQgghxITQsCkhhBBCiAmh5I0QQgghxIRQ8kYIIYQQYkIoeSOEEEIIMSGUvBFCCCGEmBBK3gghhBBCTAglb4QQQgghJoSSN0IIIYQQE0LJGyGEEEKICfn/9RXFTxJEpJcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAJvCAYAAAAtNjaIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3xT973//9SWLO89MV6AWTZgsNlQkpCEZofsQUbbjPb23ra3vWl6++1Imo5fR24z2qZp0jRpCCEJScgAAmFjhsE2nnhhjPGesqyt8/tDsYKDDTYekuzP8/HQw3Dm+8jy0eu8p0ySJAmBQCAQCAQCgU8g97QBAoFAIBAIBIKhI8SbQCAQCAQCgQ8hxJtAIBAIBAKBDyHEm0AgEAgEAoEPIcSbQCAQCAQCgQ8hxJtAIBAIBAKBDyHEm0AgEAgEAoEPIcSbQCAQCAQCgQ8hxJtAIBAIBAKBDyHEm0AgEAgEAoEPofS0AaNFb28vGzdupKSkhNLSUgwGA0888QTXXHPNkPY3GAz85S9/Ye/evVgsFtLT03nssceYPn36Bdvu37+fV155hdraWoKDg7n22mu57777UConzNspEAgEAoHAS5kwnreuri5effVVamtrSU1NHda+TqeTH/3oR3z22WfcfPPNPPLII3R0dPDd736Xurq6ftvm5uby5JNP4u/vz3e/+12WL1/Oa6+9xrPPPjualyMQCAQCgUAwIBPGVRQWFsZ7771HWFgYZWVlfPOb3xzyvrt376aoqIhf/OIXrFq1CoCvfe1r3HXXXbzyyiv89Kc/dW/7wgsvkJKSwu9//3u3p83Pz4/XX3+dW2+9lcTExFG9LoFAIBAIBILzmTCeN7VaTVhY2GXtu2fPHkJDQ1mxYoV7WXBwMKtXr2b//v1YrVYATp8+zenTp7nuuuv6hUhvuukmJEli9+7dI7oGgUAgEAgEgksxYTxvI+HUqVOkpaUhl/fXsunp6Xz44YfU1dWRkpLCqVOnAC7IgwsPDyciIoKKiopBz9Ha2kpbW5v7/waDgdraWqZNm4ZarR7FqxEIBAKBQDCaWK1WGhoaWLRoEcHBwZ42R4g3gPb2djIyMi5Y3ufJa2trIyUlxS2+BvLwhYWF9RNnX+WDDz7g1VdfHR2DBQKBQCAQjDs/+clPuOqqqzxthhBvABaLZUDvV98yi8UC4A6fDrZtb2/voOe4/vrrWbp0qfv/lZWV/OY3v2HdunUsW7aM8PDwEV2DQDDZMZvNdHZ20tHRQUdHB93d3RiNRoxGI2azud+2Go0GvV6PXq/H398fvV6PTqdDrVajVqtRqVQX/Fsmk426zQ6HA5vNhs1mw2q1un/2vXp7e93X0NPTQ09PD3a7vd8xdDqd+zqCgoIICQkhJCSE4OBgVCrVqNssEEwmzpw5Q21tLf7+/rzwwgtER0d72iRAiDfAdSPvE2bn07dMo9EAX4q2wbbt224gwsPDBxRoM2bMoLOzk+nTpwsBJxAMAaPRSEtLS79Xc3MzRqMRALlcTmhoKBEREaSmphIYGNjvFRAQ4NOpCmazme7u7gFfbW1tVFdXu7cNCgoiIiKCiIgIIiMjiYiIIDw8HK1W68ErEAh8g9raWsxmMytXrsTpdAJc9Ht+PBHiDQgNDR0w5PnVMOn5YdSoqKgLtk1PTx/2uadPn05nZydHjx5l+fLl+Pv7D/sYAsFERJIkurq6OHv2LHV1dTQ2NtLS0uL2cCsUCsLCwoiIiGDhwoVukRIWFoZCofCIzV1dXezdu5cVK1YQFBQ0JufQarVotVoiIyMHXG+1Wmltbe0nbsvLy8nNzUWSJAACAwOJiIggJiaGhIQE4uPj0ev1Y2KvQOCLOJ1OqqqqSEpKIi0tjfLyck+b1A8h3oC0tDQKCwtxOp39ihZKS0vRarUkJCS4twMoLy9n5syZ7u36bpTXX3/9sM8tk8nIysqiqqoKPz+/EV6JQOC72Gw2zp075xZrZ8+epaenB3A9YMXGxpKcnOwWaaGhoR4Tad6MWq0mNjaW2NjYfsttNhttbW39vJUFBQXs378fgJCQEOLj491iLioqSry/gkmLXC5n+fLlXtt83zutGkNaW1sxGo3ExcW5fykrV65k9+7d7N27193nrbOzk88//5wlS5a4QyxJSUlMmTKFDz/8kOuvv959Y9uyZQsymYyVK1delk1KpdJdwdrV1YVWq/Ua16xAMBZIkkRnZ6dbpJ09e5bGxkacTidqtZq4uDjmzZtHfHy88AqNEiqViujo6H45O5Ik0d3d3e/3UFJSgsPhQKVSERsb6/4dxMfHExAQ4MErEAjGnu7uboqKiliwYIFXfw9PKPH2zjvv0NPT4w53HjhwgObmZgBuueUW/P39+dvf/sann37KW2+9RUxMDACrVq1i8+bNPPPMM5w+fZqgoCC2bNmC0+nkwQcf7HeOxx57jCeeeILvf//7rFmzhurqat577z2+/vWvM3Xq1BHZL0kSeXl5KJVKlixZ4rWKXyC4HMxmM9XV1VRWVlJVVUVXVxfgSkdISEhg/vz5xMfHExkZeUHbHsHYIJPJCAoKIigoiNmzZwNgt9tpaGhwi7mTJ09y4MABAHceYUpKComJiaIgQjCh6O3tJTc3F61W6/Ve5wmlDt566y0aGxvd/9+7dy979+4F4Kqrrho0n0yhUPDb3/6WF154gXfeeQeLxcKMGTN44oknmDJlSr9tlyxZwlNPPcWrr77Ks88+S1BQEPfccw8bNmwYsf19IdQDBw5w7NgxFi1aJL7EBD6L0+nk3LlzVFVVUVlZydmzZ5EkifDwcNLT00lOTiY+Pl6kC3gZSqWShIQEd7oIuLwRZ86cobq6muLiYg4dOoRSqSQxMdEt5iIiIsakIlcgGA+sViu5ubkolUqys7O93nkik/oyWAXjSnl5Od/4xjd46aWXLmj629bWRm5uLjExMcybN0/cEAU+Q3d3t1usVVdXYzKZ0Gq1JCcnk5KSQmpq6pgl8nsDTqcTk8mETqebsA9ekiTR2tpKZWUllZWV1NbWYrfbCQwMdP+Ok5OT0el0njZVIBgSkiRx4MABent7Wbp06YBpGhf7zvYE3i0tJylhYWHMnz+fkydPYjKZhGdC4NW0tLRQXFxMSUkJzc3NyGQyYmNjWbRoESkpKcTHx09YIfNV5HL5hM/Pk8lk7qKRxYsXY7PZqK2tpaqqitOnT3Pq1ClkMhnR0dFuMSdy5QTehFKp7OdZk8lkJCUluXs++gJCvHkpMTExREREoFQqkSRJeN8EXkVrayvFxcUUFxfT3NyMRqNhxowZrFixguTk5En7wNHb20tZWRkzZsyYNO9BX2GDWq1mypQpOJ1O7Ha7u/lwZWUlSqUSlUqFSqWaNEJe4N3o9XrCwsLo6ekhKiqKuLg4T5s0LIR482KUSiVOp5MjR44QFxfXLwdFIBhv2tra3IKtqakJjUbD9OnTWbNmDSkpKV6fIzIe2Gw26uvrSUlJ8bQp44bVaqWurg6VSkVMTAwajcb9sOl0OrFYLJjNZmw2G4B7YoUvJIULJh6SJGGxWGhvb6eiooL6+nqWLVvmc+kc4m7r5cjlcnQ6HQUFBajV6guaAwsEY0l7e7tbsDU2NqJWq5k+fTqrV68mNTVVCDYBzc3NKBQKEhMTBxRjfR5Ip9OJ2WzGZDJhsVjcYwl1Op0QcoJxRafToVKpMJlMTJ061eeEGwjx5hPMnTsXq9VKXl4eixcvJiQkxNMmCSYwFouFoqIijh8/Tn19PWq1mmnTprFy5UpSU1NFewiBG0mS6O3tJSQk5JLiSy6X4+fnh5+fXz8h19XVRVdXFxqNBj8/P7RarUgTEYwpfXOEQ0JC6Onp8cnUJCHefACZTMb8+fPJzc3l8OHDrF692qubBwp8D0mSaGhoIC8vj5MnT2Kz2UhNTeW2224jLS1NCDbBgNhsNhwOx7ArS78q5EwmE729vXR0dPRbJzy7grHAarWiVqtRKpV0dXVhs9l8bt6x+MvwERQKBYsWLaKhoUEIN8GoYTabOXnyJHl5eTQ2NhIYGMiSJUuYN2+eT4YSPI1Go2HatGmT5m+0b1j3SEKefRW6er0em81Gb28vRqORnp4e1Go1er1eeOMEo0Kfh62votRsNgNffo59CSHefAiVSuVuGtzY2EhYWJjwiAiGjSRJnD17lry8PIqLi3E4HEybNo2vfe1rpKamimrAEaDVar2iB9R4M1rCSqVSERQUREBAAGazuZ83TqfT4efnJ+55gsvC4XBgNBrR6/Xuhw1ffiAQ4s0HsdlsFBQU4O/vT05Ojkj0FQwJq9XKiRMnyMvLo7m5meDgYJYvX868efNEH65Rwm6309HRQUhIiAj5jYDzQ6d93jiTyYTRaEStVuPn54dOp/PpL1/B+OF0OjEajYBvC7bzEXcXH0SlUrFo0SIOHTrE8ePHycrKmjAfSMHo09PTw+HDhzl27Jh79NvatWtJTk4Wn5tRxmg0kpuby4oVK0TYeZTo88YFBgZiNpsxGo10dnZiMBjQ6/X4+fkJb7FgUM4Xbv7+/hPmsyLEm48SEhJCVlYWR44cobCwkIyMDE+bJPAyWltbOXjwIAUFBSgUChYsWEBOTo4QFQKfRCaTodPp0Ol02Gw2enp66O7udou488NhAkEfJpMJp9M5oYQbCPHm00RGRpKZmUlVVRU2m03kgggAOHPmDAcPHqSsrAx/f39Wr15NVlYWWq3W06YJBKOCSqUiJCSEgIAAjEaju8DBz88PvV4v7oUCNxqNBo1GM+GEvRBvPk58fDyxsbHI5XKcTueEerIQDB1JkigrK+PgwYPU1dURERHBDTfcwJw5c0TulWDColQq3QUOfSKut7cXjUaDv78/arXaI6kB55/z4MGDLF68eMDtNm3axO233w5AYmIip0+fHvQ48OX1xsTEsGDBAq677jpuuOGGQf/Gv7q/TCYjMDCQOXPmcP/99/PQQw9N2NQJq9WKSqWasPe/iXlVkwy5XI7FYuHAgQOkp6cTExPjaZME44TD4SA/P5+DBw/S1tZGYmIid911F2lpaRP2puzN9LW9EA9RX2LY9fm4ncsPCavFislsosfhQKFUotNqUanVyLj430PA11aPiU1vvPHGoOLt9ddfH9Ix7r//fsCVv9XV1cWpU6d47bXX+Oc//0lqaipvvPEGixYtuuT+DoeDqqoqDhw4wP79+9m5cydvvvnmMK/I+zGbzZjN5gnthRXibYKgVqsJDg7m+PHjZGdnEx4e7mmTBGOI0+nk5MmTfP7553R1dZGens5NN91EfHy8p02b1AQEBPC1r33N02ZMWmTI0Gg0qDVq7DYbJpOZnp4eFEolfjodSpXqkiJutFAoFMycOZO33nqLP/3pTxd4gNra2vj000+ZP38+x48fv+ixXn311QuWVVVV8eMf/5hNmzaxevVqDhw4QGZm5pD237FjB9deey0bN27k7rvv5utf//pwLs2r6Zulq9VqJ6xwAxCPhxMEmUxGZmYmYWFhHD16lO7ubk+bJBgDJEmipKSEF198kffee4+YmBgeffRRbrvtNiHcBIIvkCFDpVITGBhIQEAgAAaDAUO3AZvNNm523H333bS2trJt27YL1r311lvYbDbuueeeyzp2SkoKb731Fg899BC9vb08+OCDQ973yiuv5N577wVgy5Ytl3V+b8RqtWIymdBoNBM+x1eItwmEXC4nKysLvV7P4cOHcTgcnjZJMEpIkkRlZSUvvfQSmzZtIjAwkG984xvcfvvtREZGeto8wRd0d3ezbds28fDkRahUqi9EXACS5MRg6MZg6MZuH3sRd9dddyGTyQYMj77++uv4+/tzww03jOgcv//979Hr9Zw4cYL9+/cPeb958+YBUFdXN6LzexMOhwOVSjXhhRuIsOmEQ6lUkp2dTXd394SrrpmsnDlzhp07d1JbW8uUKVPYsGEDU6dO9bRZggGQJAmr1YokSZ42RXAebk9ckAqb1Upvr4nu7m7UajU6nQ6FYmy+ChMSElixYgUffPABPT09+Pv7A1BdXc2hQ4e499578fPzG9E5goKCuOaaa9i8eTOff/45y5YtG9J+BoMBYEKMcusbe6XT6XxyyPzlIDxvExCNRkNERASSJFFTU4Pdbve0SYLLoKGhgTfeeIN//OMfWCwW7r77bh544AEh3ASCy0SGDLVaQ1BwEHq9P3a7g66uLozGnjG7T95zzz309vby7rvvupe98cYb7nWjQV+uW2lp6ZC2lySJrVu3AjB37txRscFTOBwODIYvw+GTQbiBEG8TGpPJRFlZGceOHfPJwbuTlc7OTt5++23++te/0tHRwfr16/nWt74lKkgFglGir7AhKDgIPz8/rDYbzc3NdHV1jfq98tZbb0Wj0bgFG7jEW0xMDGvWrBmVc/QVqHV0dFx0O4fDQUVFBQ8++CCHDh1Co9HwwAMPuNe/8MILpKSkoNVqycjIcAu8rzLU7caa86cnTLZIkxBvExg/Pz8WLlxIW1sb+fn5IpTj5dhsNnbv3s1zzz3HmTNnuOGGG3jssceYNWuWEG0CwRggQ4ZWqyP4i15xvb29NDc3YzQaR+1+GRwczLp169i5cyeNjY0cPXqU8vJy7rjjjlETHH22DnafkMlkyGQylEol06ZN49VXXyUgIIA333yTlJQUwJWD953vfIe7776bDz74gPnz53PTTTeRm5vb71hD3W6skSTJ/XuajO15RM7bBCc8PJz58+dz7NgxNBoNs2bN8rRJgq/Q12B327ZtGAwGFi9ezIoVK1Cr1Z42TTBM9Ho9y5YtQ6/Xe9oUwTCQyeQEBATg5+dHd3c3XV1d9Pb2EhQUNCp/h/fccw/vvvsuGzdupKamxr1stGhtbQUgNDR0wPV9fd7kcrm7Se/NN99MSEiIe5tf/OIXPPjgg/ziF78A4KqrrqK4uJhf/OIXfPzxx8PebqzpG3s1WceiCfE2CYiJiWHOnDm0trZOmmROX6G1tZVPPvmEqqoq0tLSuPfeewkLC/O0WYLLRKlU9vtCFPgWCoWCkJAQt4hrbW3Fz8+PgICAEQmEa6+9luDgYF577TXOnTtHeno68+fPHzW7T5w4AcDMmTMHXD9Qn7jz6e3tpbKykqeeeqrf8jVr1vCHP/wBi8WCRqMZ8nbjgVarRa1WT9gJCpdicvkZJzFTp04lKysLmUwmChi8AIvFwvbt23nhhRdob2/nzjvv5K677hLCzccxm80UFxdjNps9bYpgBGg0GsLDwwkKCsJkMtHc3ExPT89lh1I1Gg3r16/nxIkTNDU1jarXraury91HbvXqy5sSYTabkSTpAi+jRqPBarW6vYVD3W4ssVgs7lGQk1W4gRBvkw6DwcBnn31Gc3Ozp02ZlEiSREFBAX/+8585evQoq1at4vHHH2f69OnCIzoBsFgsVFdXY7FYPG2KYITIZDL0ej1RUVHodDq6u7tpaWm57N9tn1c9PDycu+++e9Ts/P73v4/RaGThwoWDjuG6FKGhoYSEhHD06NF+y/v+397ePqztxgqz2YzJZBrXRsveyuSVrZMUf39/wsLCOHbsGIsXLxYhnnGksbGRjz76iLq6OmbNmsVVV11FUFCQp80SCAQXQS6XExwcjF6vp6uri7a2NrRaLUFBQcMKpS5fvtydmzYaVFdX88QTT7Bp0yb0ej0vv/zyiI73rW99i+eee47FixezdOlSNm7cyPbt2wH6FQMMdbvRxmq1Yjab0Wg0E6I33UgR4m2SIZPJmD9/Prm5uRw+fJhly5a5G0cKxgaHw8HevXvZt28f4eHh3H///SQlJXnaLIFAMAxUKhVhYWGYTK4Gv83NzQQGBuLn5zfmXvMNGzYArtYY3d3dnDp1irKyMiRJIi0tjX//+9/MmTNnROf4yU9+QmlpKddddx0AcXFxPPnkk/z85z8nOjp62NuNJjabjd7eXndTZYEQb5MShULBokWLOHDgAMePH2fFihWeNmnCcu7cOd5//31aWlpYsWIFy5cvn5SVUQLBREAmk+Hn54dWq3VXpZrNZoKCgsY0/+qf//wn4CqICQwMJDY2lvvuu48bbriB66+/flTuKXq9ni1bttDQ0EB7ezvTpk3j//7v/4iMjOzXGHyo240mkiShUqmEcDsPId4mKSqVipycHFG8MEbY7Xb27NnDgQMHiIqK4pvf/OaYPZUKvAe1Ws3UqVNFm5fzCPja5SXRezN9oVStVktnZyctLS39vHDDKWyIjo4edPuR9pq7nP1jYmKIiYnBYrHwyiuvuL1+l7vdSOgrTFCr1eJv6isI8TaJ6Rvea7fbqaioYNq0acIrNAqcPXuW999/n/b2dlatWsXSpUvF+zpJ0Ol0Iw5fCXwHrVZLZGSk2wtnMpkIDg72ySrIDz74gHPnzjF9+nTOnTvHn/70J+x2Oz/+8Y8va7uR4nQ66enpETlug+B7nzDBqGM0GqmpqaGnp8fdTkQwfPomJBw8eJCYmBi+9a1vERkZ6WmzBOOIw+FwDyAXgn1y0OeF0+l0A3rhfAWFQsFzzz1HVVUV/v7+XHfddfz617++oKhqqNuNhPPHXqlUqlE77kRCiDcBQUFBLFiwgKNHj1JYWEhGRoanTfI56urq2LJlC52dnaxZs4YlS5ZMunEtAujp6WHv3r2sWLFCVBJPMjQaDRERET7rhVu3bh3r1q0bte0uF0mS6O3txel04u/vL+6jg+AbnyrBmBMVFUVGRgb5+flotVqmT5/uaZN8Arvdzs6dO8nNzSUuLo477riDiIgIT5slEAg8wEBeuICAAPR6vU954TyJxWLBbrcL7/UlEOJN4CYhIQGLxSIG2A+RtrY2Nm/eTHNzM1dccQWLFy8WT4kCgcDthTMYDHR3d2OxWAgODhZiZAhoNBqUSqXPeCw9hXh3BP1ITU11/9tsNruLGgT9KSwsZOvWrfj7+/Pwww8TExPjaZMEAoEXIZfLCQoKQqPR0NHRQUtLCyEhISL5fhAsFgsKhUIItyEi3iHBgDQ3N3P06FFycnLEvM3zsFqtfPzxx+Tn5zN37lzWrVsnbsYCNzKZDKVSKUJkAjd9FakdHR20tbUREBCAv7+/+Iych8ViwWQyodVqhXAbIuJdEgxIeHg4YWFhHDlyhKVLlxIYGOhpkzxOU1MTb7/9Nl1dXdx4441kZGSIG7CgH4GBgVxzzTWeNkPgZSgUCsLCwjAYDBgMBiwWCyEhISKMiqtK32QyodFoRKRnGIgEHcGAyOVysrKy0Ov15Obm0tvb62mTPIYkSRw7doyXXnoJhULBN7/5TTIzM4VwEwgEQ0YmkxEYGEhYWBh2u52WlhbMZrOnzfIodrsdo9GISqUSwm2YCPEmGBSlUkl2djZKpZLi4mJPm+MRzGYzb7/9Nlu3bmXevHk8/PDDoppUMCgGg4Hdu3djMBg8bYrAS+krZlCpVLS3t9Pd3T2pi8RUKpXP9cTzBkTYVHBRNBoNOTk5k7JR4tmzZ9m8eTNms5nbbruNmTNnetokgZfjdDoxGAw4nU5PmyLwYhQKBaGhoRiNRnc1akhIyKTJ93I6ne780MlyzaON8LwJLomfnx8qlYre3l4KCwsnxRdTXl4er7zyCv7+/jzyyCNCuAkEglFFJpPh7+9PeHg4TqeTlpYWLBaLp80ac/rGXplMJk+b4tMIySsYMiaTibq6Oux2O/PmzZuQbm6Hw8G2bds4cuQIWVlZXHPNNSKpWCAQjBlqtZqIiAh3NWpgYOCEbeorSRJGoxFJkkSV/ggR4k0wZMLCwpg3bx55eXloNBpmzZrlaZNGld7eXt5++21qa2v5+te/TlZWlqdNEggEkwC5XE5oaCjd3d10d3djt9sJCgqaUAKuT7g5nU70er14KB4hQrwJhkVsbCwWi4WioiK0Wi0pKSmeNmlUaG5u5s0338RisXDfffcxdepUT5sk8EH8/PxYuHAhfn5+njZF4GPIZDKCgoJQqVR0dnZis9kIDQ2dMCLHZrNht9vR6/Uiz20UEO+gYNgkJSVhs9nQ6/WeNmVUKCsr49133yUkJIT777+f4OBgT5sk8FFUKhXR0dGeNkPgw/j5+aFUKmlvb6elpYXQ0FDUarWnzRoxarUahUIxYcSopxEFC4LLYtq0ae4vqZ6eHg9bc3lIksTevXvZuHEjqampPPTQQ0K4CUaExWKhoqJiUiSeCwZGJpO5X4cOHRp0u02bNrm3+6qnvy8PTqFQ0NbW5tPJ/RaLBavVCjAuwm2g93MiIsSbYEScPn2avXv30tHR4WlThoXVamXz5s3s2rWLVatWsX79+gnxdCvwLGazmbKysknffFXg4o033hh03euvv37RffumMmi1Wjo6OnyyH5zVasVkMuFwODxtyoRDiDfBiEhISCAoKIgjR474jAeuq6uLf/zjH1RUVHD77bezatWqCZUYLBAIPItCoWDOnDm89dZb2O32C9a3tbXx6aefMn/+/IseRy6XExwcTGBgID09PbS3t/tMqyabzUZvby9qtRqdTudpcyYcQrwJRoRCoWDRokVoNBpyc3O93uPQ2NjISy+9hNls5qGHHiI9Pd3TJgkEgqFSUQFPPAF33un6WVHhaYsG5e6776a1tZVt27ZdsO6tt97CZrNxzz33XPI4ff3gQkNDsVqttLa2er0ny26309vbi0qlEsJtjBDiTTBiVCoVOTk5AFRXV3vYmsE5ffo0r7zyCgEBATz88MNERUV52iSBQDBUXnkFZsyA3/0ONm1y/ZwxA1591dOWDchdd92FTCYbMDz6+uuv4+/vzw033HDRY5SWlrJhwwZ3hCMzM5NvfvOb7N+//wKPntls5uWXX+aGG24gOTkZnU5HcHAwK1asYOPGjQMe32q18sILL7Bw4ULCwsLw8/Nj6tSpfP3rX79gn6lTpw4aodi9ezcymYwNGzYALo+hSqXi8ccfRy6Xs3v3brZt28bq1asJDg5GJpPR2dnp3v/TTz9l3bp1REREoNFoSE5O5nvf+x5tbW0Dnq+9vZ1vf/vbxMbGotVqmTlzJs8++6zPhZVHgqg2FYwKWq2WpUuXeu1w4dLSUt555x2mTJnC7bffLhpECsYElUpFTEzMpBwnN6ZUVMDDD8NAIcOHHoJlyyA1dfztuggJCQmsWLGCDz74gJ6eHvz9/QHXA+6hQ4e49957L9pSZsuWLdxxxx1YLBYyMzPJycmhrq6ODz74gO3bt/PGG2+wbt06d67u6dOnefjhh4mNjWX69OksWrSIxsZGDh48yL59+ygrK+NnP/tZv3PcfffdbN68mYCAAJYvX05gYCD19fXs37+fnp4e7rjjjmFdsyRJOJ1O5HJ5v2v797//zd///nd34/Oqqiq3EPyf//kffvOb36BWq1m4cCExMTEUFBTwxz/+kQ8++IADBw70e9Du6Ohg2bJllJaWEh0dzQ033EB7ezs/+MEPqKysHJa9Po0k8AhlZWXS8uXLpbKyMk+bMuq0trZKx48fl5xOp6dNkSRJko4ePSr97Gc/k95++23JZrN52hyBYMJgMpmkkpISyWQyje2J/ud/JEmhkCS48KVQuNZ7CYCkUCgkSZKkl156SQKkf/7zn+71v/jFLyRA2rZtm9TQ0CABUmJiYr9j1NTUSHq9XvL395d27NjRb90nn3wiqVQqKS4uTjp9+rT7vW9tbZV27NhxwX23urpamjp1qiSXy6Wampp+y/vO3dra2m8fk8kkHTx4sN+yxMREaTDJ8Pnnn0uAdNddd0kGg8G9/P7775cACZA2btx4wX6bNm2SAGn27NlSRUWFe7nT6ZR++tOfSoB0++2399vnkUcekQDp6quvloxGo3v54cOHJX9//wHfz8EYzufX276zRdhUMOrY7Xbq6+s5efKkR+2QJIndu3ezdetWFi1axC233CKaQwrGFKfTidls9pmkcp/h9GmXVBsISXKt90JuvfVWNBpNv6rTN954g5iYGNasWTPofn/6058wGo0888wzXHHFFf3WXX311Tz66KPU19ezZ88e2tvbMZlMhIWFccUVV1wQ2kxKSuLJJ5/E6XTy4Ycfupe3tLQAMG/ePMLCwvrto9VqWbx48ZCvU/ridyNJ0oA5buvWreP222+/YPnTTz8NwJtvvknqeZ5TmUzGz372MzIzM9m8eTOtra0AGI1G/vnPfyKXy3nuuef6efcWLVrE448/PmSbfR0h3gSjTlRUFBkZGdTW1lJeXu4RG5xOJx999BG7d+9mzZo1XH311aKiVDDmGAwGduzYgcFg8LQpE4upU2Gwv1+ZzLXeCwkODmbdunXs3LmTxsZGjh49Snl5OXfcccdFe55t374dgJtvvnnA9cuXLwegpKQEnU5HR0eHu9p///79PPXUUzz66KM88MADbNiwgbfffhuAivMKPGbMmIFer+ejjz7id7/7HefOnbusa5QkyV2oplQqB7yu66+//oJlzc3NFBQUkJaWxuzZsy9YL5PJWLp0KQ6Hg7y8PADy8vIwmUxkZWUNON3nzjvvvKxr8EUmlBvCarXy8ssvs337dgwGAykpKTz88MMsXLjwovvddtttNDY2DrguLi6ON9980/3/FStWDLjdN7/5zSFVDk0WEhISsFgslJaWotPpmDJlyrid2263884771BWVsYNN9zAvHnzxu3cAoFgDHjwQfjtbwdeJ0muvDcv5Z577uHdd99l48aN1NTUuJddjNNfeBLj4uIuul1bWxvBwcEoFArOnj3Lt771Lfbu3Tvo9uc/VAQGBvLSSy/xzW9+kx/+8If88Ic/ZNq0aaxevZp7772XpUuXDun6HA6Hu/pVLh/YHzTQ/b/vGisqKi75YN3neesTmImJiQNuNxma8/YxocTbM888w+7du1m/fj3x8fF88skn/PCHP+TZZ59l7ty5g+73ne9854IO1o2Njfz9738fUPhlZWVx9dVX91uWlpY2OhcxgUhNTcXpdBISEjJu5zSbzWzcuJGzZ89yxx13MH369HE7t0AgGCPS0uDll10iTSZzCba+ny+/7HXFCudz7bXXEhwczGuvvca5c+dIT0+/ZH+3vrD7/ffff9HtsrOzkclkBAYG8l//9V/s3buXpUuX8tRTTzFnzhy3sNu+fTtr1669oBrzzjvv5IorruD9999n+/bt7Nmzh7/+9a/89a9/5Xvf+x6///3vL3l9SqXykoVqA63vu8bo6GjWrl170f0HE2uTmQkj3kpKSti5cyePPvqo23W6du1aNmzYwIsvvsiLL7446L59Lujz+ec//wnAlVdeecG6hIQErrrqqlGyfGIzbdo0wPV01tPTQ1BQ0Jidy2g08tprr9Hd3c199903rt4+gUAwxmzY4KoqffllV47b1KkuMefFwg1Ao9Gwfv16XnrpJQD+4z/+45L7xMfHU1VVxe9///sL8tEGY+vWrSgUCl5++WXCw8MJDQ11e7Qu1sIpIiKChx9+mIcffhhJkti2bRu33347f/jDH3jwwQeZNWsWgLuqta9y1mKx4HQ60el01NfXD8nGr14jQHh4OK8Osd1LTEwMALW1tQOuH2z5RGTC5Lzt2bMHhULRL7au0WhYt24dxcXFNDU1Det4n332GTExMcyZM2fA9RaLRcwvHAbl5eUcPHiQ7u7uMTl+XyKr0WjkgQceEMJNIJiIpKbCM8/Am2+6fnq5cOvj3nvvJSwsjPDwcO6+++5Lbt/nNHjvvfeGfI6Ojg4CAwNJTEzEYrHQ3t7u9rRt2rRpSMeQyWRcffXVrFu3DoDi4mL3uj7hdOrUKWw2GyaTyX38HTt2DNnOPuLj45kxYwYlJSWcOnVqSPssWLAAnU5HXl7egIJ0sH52E5EJI94qKiqIj49Hr9f3W97XQX84/V9OnTpFbW3tBVU+fXz66adcddVVXHnlldx7771D+uC2trZSXl7ufk2mJwRweeD0ej25ubn09vaO6rH7hFtvby8bNmwgMjJyVI8vmNyYzWY6OjpoaWmhoaGBM2fOuJuHmkwmioqKOHnyJIWFhdTU1DBlyhQCAwMB132pqKiIkpISKioqqKmpcX/+zWYznZ2d9PT0iArVCc7y5ctpbW2lpaVlSCHA73//++h0On7wgx/w7rvvXrDeYrGwefNmzp496142bdo0Ojo6eP/99wkNDXULuD/84Q98/vnnFxzjxIkTvPvuu+6h8X20t7dz+PBhwBVl6mPlypUA/OpXv6K7u9s9PeHNN9/slxc+HP73f/8Xp9PJLbfcQn5+/gXr29ra3B5LAH9/f+69914cDscF6U7Hjh3jueeeuyw7fJEJEzZta2sb0L3ct6wv4XEo9ImxgUKms2fPZvXq1cTExNDW1sa7777LL3/5S4xGIzfeeOOgx/zggw+G7BqeiCiVSrKzszlw4AC5ubksW7ZsVAbBf1W4hYeHj4K1gomO3W7HYrG4H/aqqqro6enBZDJhNpsxm80sWrSI0NBQampqLnj4S0xMJCwsDKfT6RZyMpkMmUyGQqFwh6u6urro6enB6XRit9ux2WzodDr8/Pyoq6ujrKys33Hj4uKYP38+NpvNXeyj0+nQarXu/UTV9MQnNTWVN998k7vuuotbbrmF1NRU0tPT0ev11NfXc/z4cYxGIydOnHCHH5944gnuuece7rjjDpYvX05MTAz5+flUVlbyn//5n/zpT3/qd47a2lpuueUWgoKCyMrKIjo6ms7OTvbu3YvBYOC6667r1y7k8ccf5y9/+QvvvPMOBQUFZGZmuh9Ovvvd7/LHP/5x2Nd51113UVxczK9+9SsWLFhAZmYmKSkpSJJEVVUVhYWF+Pv7841vfMO9zzPPPMOePXv4+OOPSUlJYcWKFXR0dLBr1y6+9a1v8fzzz1/em+5jTBjxZrFYBuxq3icQhhridDqd7Nq1i7S0tAErV1544YV+/7/22mt5+OGH+dvf/sY111wzaOf+66+/vl/1Tm1tLU899dSQbJooaDQat4BrbGwccWhTCDfBpejr9m42m6mqqsJgMGAwGDCbzahUKnfhUXNzM3a7Ha1WS3h4uFssgatPVlxcHCqVCqVSiVKpdAsovV7v9kiA6zNZUFCA0WhEr9eTlZU1qG2JiYlERUVht9vdYrLv/mGz2ejo6KChocHtGZHJZO5wVmlpKQABAQH4+/vj7+8vehhOMG644QYKCwv5wx/+wI4dO9ixYwcqlYrY2Fiuu+46br75ZmbOnOne/u677yYkJIRf/vKX5Ofnc/LkSebPn8+vfvUrlErlBeItJyeHp556il27dlFeXs6+ffsICQlh7ty5PPTQQxdUxEZFRbFnzx6+//3vs3//fj755BMWLFjAjh07kMlklyXewNXrbe3atTz33HMcOHCAkydPEhgYSFxcHI8++ijr16/vt31oaCgHDhzgf//3f3nvvffYsmULSUlJ/PrXv+Z73/ueEG++hkajwWazXbC878Y31HFI+fn5tLS0XPCBGQyVSsXNN9/M73//e8rLywetag0PDxfiAteX3apVq0bsdRPCTfBVzGYzbW1tdHZ20t3djcFgIDw83F3Z19zcjL+/PwkJCQQEBPRrJnqxhqRarXbIY9/sdjttbW0XzJ0cCLVaPejfgZ+fn1sUOhwOzGYzVqvVLRpNJpO7Oev51xAeHk57eztWq5WQkBAxBs4DfLWi82JER0dfdPuUlJRhiZFrr72Wa6+9tt8ys9lMe3s7ra2thIaG9jv3k08+yZNPPnnJ4zqdTiRJIj09nY8//njAbQa6jldffXVIEacVK1YM2oZrIMLCwnjhhRcucKYMZsdEZMKIt7CwMHfH6PPpC2kM9ct9x44dyOXyQfPdBqIvx2qskvEnGn1fWLW1tbS3t5OZmTmsUND5wu3+++8Xwm0S4nA46OzspKOjg9DQUEJDQ2lqaqKwsBC9Xu9O3O77stJqtaxevdrDVl8eCoUCvV7fL5+3T5Da7XZ6enowGAzuPLuzZ8+6c2r9/PwICQkhISGBiIiI8Tde4HG0Wi2hoaG0t7fT3t7erwp1KEiShNFoRJIkAgICRNjeS5gw4i01NZUTJ064wxV9lJSUuNdfCqvVyp49e8jMzByWIOhrHBgcHDw8oyc5KpWKs2fPotFo+rn/L8ZXhZv4Qppc1NTUUFdXR3d3N5IkoVQqmTlzJqGhocTGxhITEzMquZS+glKpJDg4uN+9Z+7cuaSlpdHR0eF+9XXAb2xspKqqitDQUCIiIggNDR20sapg4nC5Aq5PuDmdTvR6vRBuXsSEEW+rVq1i48aNfPDBB+4+b1arlY8//piZM2cSFRUFQFNTE2azecCKn9zcXHp6egYsVADo7Oy8QKD19vayefNmgoKCREPYYRIbG4vFYqGoqAiNRjPguJPzEcJt8iBJEt3d3bS0tNDc3MzMmTMJDg5GLpe7vWohISH9PAED5bxOVvoKHWJjY/stV6lUaLVa6urqqKysRKlUkpycLO5dk4DLEXAmkwm73Y5erxc5lV7GhPltzJw5k9WrV/O3v/2Nzs5O4uLi+PTTT2lsbORHP/qRe7unn36a/Pz8AUeI7NixA7Va3S8B+Xzeffdd9u/fz5IlS4iKiqKtrY2PP/6YpqYmnnzySfHlcRkkJSVhsVgoKSnBz8/P3Uvoq/T29vLaa68J4TYJKCsr48yZM1gsFhQKRT8veGJiold3W9fpdGRkZAw4nNsbCAsLIywszC2Om5ub3cO929vbOXHiBJGRkURERBAREXHR+ZsC32M4As7hcGCz2fDz8xPfbV7IhBFvAD/+8Y+Jiopi27Zt9PT0kJyczG9+8xsyMzMvua/RaOTQoUPk5OTg7+8/4DZz5syhqKiIrVu30t3djVarJT09nR/96EcsWLBglK9m8jBjxgxUKtWgoWqr1cq///1vDAYDDzzwgBBuEwir1UpjYyPnzp1j7ty5+Pn5oVar3TlavhbWU6vVPtEgWiaTERQU1G/iiVqtJjIykpaWFk6fPo1CoSAxMdHdYV8wMThfwPVFkwYScAqFgoCAAJ/6+5tMTCjxptFoeOyxx3jssccG3eb//u//Blyu1+v57LPPLnr8hQsXXnLIveDy6AuZmkwmrFar+0vF4XDw1ltv0dzczIYNG4RwmyDU19dTV1fn7r8YFhbmrtBMTk72pGkjok+MRkdH+1zunb+/v3uijNFopKGhwe1xMRqNlJeXExsbKzxyEwCtVktISAgdHR3uVIQ+AWe1Wt0eNyHcvJcJJd4EA+B0QksLnD0LdXWun2fPQnMz2Gxfvux216BnlQqUStdPrRZiYyEhAeLjv3yN4XzSkpISWltbWbp0KX5+frz33nucPn2ae+6554L8HYHvYLfbaWhoIDo6GpVKRUtLC06nk9mzZxMTEzNhWlqYTCYKCgoICgryOfF2Pnq9vl+Rl8ViwWAwcPToUZRKJVFRUcTHx7srXCdLe4aJhE6nw+l00tXVhVwuJyAgAJvNRm9vL2q1elIUJ/jy51aIt4lCby/k5cGhQ5Cf/6VQq693ibM+VCqXAIuMBI3mS6GmVIIkuY5jt7v26e2FDz+EpibXuj4CAr4UclOnwsKFsHgxpKfDCJ/I586dy4EDBzh06BA9PT0UFxdz2223kZSUNKLjCjxDZ2cntbW1nDt3DrvdTnZ2NpGRkWRkZEyKL4eJQmhoKCtXrsRoNHLu3DnOnTtHQ0MDISEhSJKExWLx2jw/weDo9XqcTicGgwFJktwV3JPld9nXG9YXPclCvPkikgTV1ZCb6xJrublQUOASXXo9zJvnElXLlvX3mMXHQ0QEDNcVbrVCQ8OXXrvzX0eOwMsvuzx8AQGQnQ05OS4xl50NA4wsuxgqlYrs7Gyef/55ioqKePTRR93zaQW+RWFhIbW1tWi1WpKTk5kyZYr7S0EIN99Er9eTlpZGWlqae3qF0+mkpaUFhUKBRqNBpVKJ368P4e/vj8PhoLW1laCgoH4h1ImMJEl0dXW5P7O+hhBvvkJHB7z/PmzZAgcPukKhANOmuYTSN77hEk2zZ4/Y+3UBajUkJrpeA9HTA8eOfSkk//pX6Bv9NW0arFwJt94KX/uay8N3CUpLS2lra2Pu3LmXbB8i8B7a29s5c+YMCQkJhIWFERcXR3R0NBEREZPiy2Cy0ZcPFR8fT11dHc3Nzeh0OlQqFRqNxqfDxpMNjUaDRqPBaDSiUqkm9O9OkiRsNpt77nBcXJynTboshHjzZrq6XIJt0ybYvt3lWVu6FB55xCXULsOzNSb4+8OqVa4XuDyDNTUuMXfoEHz6Kbz0ksvWW26B225zCboBhNypU6fYunUry5YtY+3ate7eQpIkCQHghTidTs6dO0dVVRXd3d34+fkRHR0NuIoQJhtKpZKwsLBJ1ROrr/9ea2srHR0dOBwO5HI5CoXCPVbJF8NSkwFJknA6nSgUCndD3nPnzuHv7z/hf2cajYa4uDh33qavMXnuML5Cdzd88IFLsG3b5gpZLlsGv/+9S/j4QtK+TAbJya7X3Xe7xNyJE65r2rQJ/vY3V/i2T8itWAEKBWfPnuXtt99m2rRpXHPNNe4n+5MnTyJJ0qBzYwWeo6amhpKSEiIjI5k5cybh4eGTWmTr9XqWLFniaTPGncDAQAIDA7HZbDgcDvfyyspK6urq0Ov1JCQkEBUVJSoYvQSn00lBQQFGo5Hs7GxUKhUWi4V3330Xs9nM+vXrB22b5esoFAqfDJWejxBv3kJeHvx//x+89x5YLLBkCfz2ty6BEx/vaetGhkwG8+e7Xs8847rWPiH3l79AZCS9d9/N+3o90VOncsstt/S7wQcHB5Ofn49GoxGd4D2M2WympqYGpVJJWloaU6ZMITIykoCAAE+b5hX0JX3LZLJJKWJVKlW/L8W+auKqqiqKioqorKxkwYIF/QakC8YfSZLIy8ujvb2dxYsXu/9+tVott956K3//+9/ZtGkTDz74IFqt1sPWCgZCPAJ5moMHXblgWVmu5P+nn4YzZ+DAAfjud31fuH0Vmcx1rb/9rSu0evgw9ltvRfnCC3zr17/m/gMHUFVX99slISGB9PR0Tp065R64LRhfDAYD+fn57Ny5k9OnT7uXq1QqIdzOo7u7m48++oju7m5Pm+I1hIWFsWjRIlatWkVkZKTbm9PS0uKeuSoYX4qKimhsbBxQSAcEBHDPPfdgMBjYtGkTTqfTQ1YKLobwvHma73wHZs6Et9+Gm24a/WIDb0Ymw5mVxb/LymgPD+ebkoTfSy/Bq6/C9dfDf/+3K8cPSE1NxWw2U1hYSEBAgHhyH0d6enrYvXs3Wq2WGTNmkJiYOKlyugSjQ0BAABkZGYDL81NYWIjZbGbq1KmkpqZOmF5/3o7NZnMXhPXlp36ViIgIbrvtNv71r3+xfft2rr766nG2UnAphOfN07z0Ehw+7KrGnEzC7Qu2b9/O6dOnuWHDBvx+8Qs4fdr1npSXu3L9lixxhZKdTmbNmkVGRgYhISGeNnvCYzKZqKioAFytBBYtWsSaNWtISUkRwk0wYmQyGStXrmTatGnU1dWxc+dOysrKhJdnjJEkCZVKxYoVKy45xi0pKYlrrrmG3NxcTpw4MU4WCoaKEG+eZv58VyhxEnLixAlyc3O5+uqrv2zCq9HAQw9BcbGrcEOhgJtvhvnzke3fz5QpU5DJZLS3t4vQ1BhgsVgoKipi165dVFdX09vbCyASzQWjTl/e5Jo1a0hKSnJ3+gf6FT0IRofGxkb27NmD1Wod8t9yVlYWWVlZbN26lTNnzoyxhYLhIO7GAo9w5swZtm7dyoIFCwaeFyuXw3XXwb59sH+/q9fcihWu6tX6ekpLS8nNzXWLC8HIqaysZOfOnZw9e5Zp06axZs0a/Pz8PG2WYIKjUqlIT08nOzsbgNbWVnbu3ElNTY3wxI0S7e3t5OXl4e/vP6wqS5lMxjXXXEN8fDxvvfUWXV1dY2ilYDgI8SYYd7q6unjrrbeIj4/n2muvvXRV3tKlrua/L78MO3bA9Olk7d6N0ukkNzcXq9U6PoZPQJxOp9vLoVQqSU5OZs2aNaSlpYnw6GUQEBDAlVdeKYo4RoBerycyMpLi4mJ27drFuXPnPG2ST2MwGDhy5AihoaHMnz9/2FXQCoWC2267DZVKxcaNG90jpQSeRYg3wbhis9nYuHEjSqWS2267beiNIOVyePBBOHUKHn4Yzf/7f2R/+9vYDx3i8OHD2O32sTV8AtLa2srevXspLS0FYOrUqcyYMcPn+x95ErlcjlarFSHmEaDT6cjMzGTVqlUEBQWRl5cnqswvE6fTyeHDh9HpdGRlZV3251Kv13PHHXfQ2trKli1bfHqg+0RB3GEE44YkSbz//vu0trZy5513otfrh3+Q4GD4058gPx/9lClk/+Qn2P/nf7B8kVwvuDQmk4ljx45x6NAhVCrVJROXBUOnt7eXY8eOiXD+KODv78/ChQvJyckh/ouWSS0tLcLzMwzkcjlz5swhJydnxA9l0dHR3HTTTRQXF7Nv375RslBwuQjxJhg39u/fT1FRETfddNOgJepDZvZs2LmToE2bWFVbi37JEpxvvy2eCC+BxWLh888/p6Ojg/nz57N06VKfHQ/jjdhsNhoaGoTAGEUiIiJQKBQ4HA6OHz/Orl27OHPmjPhbvwgOh8PtrYyKihq1NiwzZ85k1apV7Nq1i7KyslE5puDyEOJNMC6Ul5eza9cuVq5cycyZM0fnoDIZrF+PrKgIac0acm+7jdI77wTR+PMCWltbkSQJjUZDZmYmq1ev9tmBzILJiUKhYOXKlURERFBQUMD+/fvp7Oz0tFleh9Pp5NixY5SUlIyJB3jlypWkp6fz7rvv0tzcPOrHFwwNId4EY05bWxvvvvsuM2bMYFXf8PrRJDgY2dtvE/PLX1L1zjtUZWaCeCoEXJ62vhBp3402NjZWFCMIfBKtVuv2GDudTsrLyz1tktdRWFhIa2srWVlZY1ItLpPJuOmmmwgJCWHjxo1YLJZRP4fg0gjxJhhT7HY7mzdvRq/Xc+ONN47dvEeZjKSf/IS0zZsp6enh7Lx5rkkNkzi0Ul9fz+eff05bWxtZWVlERUV52iSBYFQIDQ1lxYoVzJ8/H3B5ltva2jxslecpLS2lrq6OzMxMIiIixuw8arWa22+/HaPRyIcffihC2B5AiDfBmLJjxw6am5tZv379uIy/mXHDDUzZvJn8ZcswPvAA3HcfGAxjfl5vo7GxkePHjxMZGcnq1auJiYnxtEmTgr4RYmKY99gjk8ncSfi1tbUcPHiQkydPTtrKc0mS6OnpYdasWeOSEhEaGsp1111HUVGRmMDgAUTsRDBmlJWVcfjwYa699tpxFQ9zs7OJfv119J99Bo88AkePwiefQN8UhwlMR0cHISEhREVFsXjxYsLDwz1t0qRCo9GQlpbmaTMmHfPnzyc0NJTS0lKam5vJyMiYVJ99h8OBQqEgKytr7KIbAzB79mxqamr4+OOPiY+PJzIyctzOPdkRnjfBmNDZ2cmWLVtIT08feILCGCKTyVwhwrvv5syHH9Jjs7lmpObnj6sd44nZbObw4cPs37+fnp4eZDLZpPry8hZsNhuNjY2i2nSckclkJCUlsXLlSnQ6HYWFhZNmOkNLSwufffYZBoNhXIVbH1dffTWhoaG8/fbbomH6OCLEm2DUcTgcbN68Ga1Wy/XXX++RGwq4qq6qgdxf/xpzTAysXAm7d3vElrGkoaGB3bt3093dzaJFi/D39/e0SZOW3t5ejh49Kvq8eQi9Xs/ixYtZsmQJcrmc3t5eOjo6PG3WmNHZ2cnRo0cJDg6+vL6Zo4BKpWL9+vV0dnbyySefeMSGyYgQb4JRp2+kza233opOp/OYHXK5nOzsbKTgYA4//TS2rCxYuxbeecdjNo02dXV1HDt2jIiICFatWiWKEgSTHplM5s45rKqq4sCBA1RWVk64pHqj0cjhw4cJDAwc0fSE0SAiIoJ169Zx4sQJCgsLPWbHZEKIN8GoUllZyYEDB1izZo27K7on0el05OTkYJLJOPrTn+K86SZYvx7+8hdPmzYi+kJCMTExzJs3jwULFoixVgLBV5g1axYpKSmUlpZy+PDhCdXWIi8vD7VazaJFi4Y+ZnAMycjIICMjg61bt4rK33FAiDfBqGEwGHj33XdJS0tjyZIlnjbHTUBAAIsWLUKmVuP45z/hO9+BRx+Fn/3MJ1uJnDlzhp07d9Lb24tSqfQKkSwQeCNyuZz09HRycnLo7u7mwIEDEyYXbt68eeTk5KBWqz1tCuDyeK5bt46AgADefvvtSVv1O14I8SYYFZxOJ++88w4KhWJs+7ldJqGhoSxevBiVRoP1t7+FZ56Bn/8cHnsMfORmbrfbOX78OAUFBURGRo5L6xXB8JDL5QQEBIjB9F5GREQEK1euZM6cOcjlcpxOp0+GUfsaEzscDgICAjyaljIQarWa9evX09rayvbt2z1tzoRGtAoRjAr79u2jtraW+++/32OJs0PBbrezd98+ptx8M9MiI+Hhh0GjgT/+0TVuy0vp7u7m2LFjWCwW5s+fL0ZbeSkBAQFjM0VEMGI0Go27cW1RUREGg4EFCxb4TE8+SZI4fvw4TU1NREVFERwc7GmTBiQ6Opq1a9fy0UcfkZSURHp6uqdNmpCIx0PBiGloaGDPnj2sWLGCqVOnetqci6JUKklMTKS8vJzaNWvg+efh2WfhF7/wtGkXRS6Xo9PpWLFihRBuAsEIiY+Pp7e3l7179/pMNWpRURGNjY0sWLDAa4VbH1lZWaSnp7N161aMRqOnzZmQCPEmGBEOh4MtW7YQGRnJihUrPG3OkEhLSyMpKYmTJ0/ScOON8KtfufLfnn3W06b1Q5IkampqcDgc+Pv7s3jxYq/2agpcHtJPPvmE7u5uT5siuAh947X0ej0HDx6krq7O0yZdlIqKCk6fPs3cuXOJjo72tDmXpC//TZIkPv74Y0+bMyER4k0wIvbs2UNLSws33nijV1Q8DZVZs2YRExNDfn4+tu9/H/77v+E//xP+/W9Pmwa4wrvHjh2jqKiIlpYWT5sjGCKSJGG3230yn2qyodFoWLx4MfHx8XR1dXnanIvidDqZPn06U6ZM8bQpQ8bf359169ZRXFxMcXGxp82ZcIicN8Flc+7cOfbv38/KlSt94mnwfGQyGfPmzaO7uxuVWg2/+Q00NcEDD0BcnKuhr4cwGo0cPXoUk8nEokWLRO82gWCMkMvlZGRkuMV2c3MzISEhXtN2x2KxoNFomD59uqdNuSxmzZpFcXExH330EVOnThWRg1FEeN4El4XdbmfLli1ERUWxbNkyT5tzWcjlcoKDg5EkibLycnqffRZWrIAbb4SSEo/YZLVa2bdvH06nk+XLlwvhJhCMAzKZDIfDQX5+Pvv27aOnp8fTJtHe3s7OnTt93vO+bt06AD766CPhkR5FhHgTXBZ79uyhra3N58KlA2Gz2Th37hy5x49j/fe/ISEBrrkGGhvH3Ra1Ws3s2bNZvny5GHMlEIwjCoWCpUuXIpfL2bdvH83NzR6zxWAwcOTIEYKDgwkLC/OYHaOBXq9n3bp1lJSUiPDpKCLCphMdsxlOnICqKjh71vWqq/vy30Yj2Gyul0wGKpXrFRYG8fEXvmbNot7fn/3797N69eoJ4RlSq9VkZ2dz4MABDpeVsfiDD1AuWQJ33QU7dsA4iNPS0lK0Wi1JSUmi6a4P4+/vz4oVK4Tw9lH0ej3Lli3j+PHjHDlyhKysrHFPCTGZTOTm5qLT6Vi4cOGE6Bk4a9YsSkpK3OFT8fcxcoR4m0hIEtTWQm4uHDrk+nnihEuYAYSGfinCsrLghhsgMNAl1pRK1/59Qq6t7UuBd/y466fJBECYTseDSUnEOZ2uZdnZ4OWl65dCr9eTnZ3NwYMHOdbYyKLXX0d+5ZXw9NPw05+O2XklSaKgoIC6ujpmzZo1ZucRjA8KhYKgoCBPmyEYAUqlkoULF1JeXu6RlhxFRUXuuczekns3Gqxbt47nn3+erVu3cvvtt3tdI3dfQ4g3X0eSXOLq7bdh0yaoqXEtT0mBxYvhvvsgJwfS08HPb2TnaW8n7+WX6d62jSVyOfLnnvuyP9rSpXDbbXDrrRAbO/Lr8gBBQUEsXLiQ+vp6WLTIJdp+/nNX8cIYFDA4HA7y8vJobm4WjXcnCCaTicrKSlJTU72u+71g6MhkMmbMmAG4igbOnDlDamrquAiOjIwMbDabzzQPHip+fn58/etf56233qKoqIg5c+Z42iSfxvf9sZMRSYL8fPjxjyEtzeVF+/vf4cor4f33obkZKivhX/+Cxx+HBQtGJtwAZDLOmkxsNZlQ/uxnaHbsgNZWOHUKXn4ZQkLgBz9wefVWrIDnnoOGhlG53PEkPDycjIwM5HI5vd/7nuta7roLxiBpuKysjNbWVrKzs4VwmyBYrVZOnz6N1Wr1tCmCUaKtrY2ysjJOnDgxZnNRnU4nRUVFmEwm1Gr1hK3KTE9PZ86cOXz88ccYDAZPm+PTCPHmSzgcLg9bdjbMmwd//SusXg3bt7uS6//6V7j+evhiBMzontrB+++/T2xsLEuXLnUtlMlc4vHBB+HDD12i8ZVXICAA/uu/XIn/d97p8gz6GL29vezet4+qp58GqxXuv3/UZ6BOmzaNpUuXukf2CAQC7yM2NpasrCwaGho4cuTImAxcLyws5PTp05NiGsE111yDQqEQzXtHiBBvvkBvr2uM07RprtCkv79LLDU2wksvuTxuyrGNgOfm5tLW1sb1118/eAJtcLBL5Hz0katn2h//CIcPuzx/V1wB27a5vIY+gJ+fH8nJyZS0tXH2D3+ATz6BP/xhxMc1GAzs27eP3t5eVCqVyI8SCHyAmJgYsrOz6ejoIDc3d1RbXpSWllJXV8e8efMIDw8fteN6K35+flxzzTWUlpZSUVHhaXN8FiHevJneXnjqKZgyBf7jP2DhQjh2DHbtgq9/3VVoMA50dXWxZ8+e4TWMDQ2F73zHFVZ96y3o7ISrr4bMTHjnHZ8QcTNmzGDKlCnkh4TQ/Pjj8MQTriKQy6S7u5sDBw7gdDonRAWZQDCZCA8PZ8mSJSQlJY1a7lt1dTWVlZXMmjVrUqVOzJw5k+TkZD755JMx8WROBsQ3iDciSbB5s6vI4Je/hDvugIoK2LjR5cUaZ7Zt24ZarWb16tXD31mpdHkLjx51ic6oKFdRw5VXeqwR7nCYO3cukZGRFF1/Pc4FC1y/i8vI1eju7ubgwYPo9XqWLFky4ZKRBS40Gg3JycloNBpPmyIYA4KCgtwiq7q6GovFMqLj6XQ60tLSSE5OHg3zfAaZTMa1115LV1cXBw4c8LQ5PokQb95GSYlL2KxfD3PmQHGxK/nfQ3/cVVVVlJSUsHbt2pF9IclkX+bnbd3qamkyd64rN86L5wrKZDIWLFjA4uXLkb/5piuv7+c/H9YxnE4nhw8fRq/Xk5OTM6HK/wX90Wq1zJo1S4jzCY7VaqWqqoqDBw9eloDry22LiYlxV7VONsLDw1m8eDH79u2jo6PD0+b4HEK8eQu9vfD970NGhkvYbN3qeqWmeswku93Oxx9/zNSpU5k9e/boHXjdOigqcnkV//Y3Vy7fv/7ltaFUhUKBTqfDFh/P8QcewPzHP7rsHyJyuZwFCxYI4TYJsNvtdHR0iFDQBEetVrNkyRLsdvuwBVxnZyd79+7l9OnTY2egj7BixQr0ej2ffPKJp03xOYR48waKilz5bC++6OqbVlTkEjge5tChQ3R0dLBu3brR72+k0bhyyMrLXR65++6De+6B7u7RPc8oYrfbabv2Wg7HxmJ79NFLis3u7m6Ki4uRJInQ0FAh3CYBRqOR/fv3T4qqwclOXwrEcASc0Wjk8OHDBAQEkJCQMA5WejdqtZqrr76aU6dOUV5e7mlzfAoh3jzNe++5hJtc7ipGeOIJl7DxMH1Ph4sXLx7bVhbx8a5cvn//Gz74wJXTl5c3ducbATqdjpwVKzA9+ihH9+/H+frrg27b3d3NoUOHaGtrw+FwjKOVAoFgvOgTcCEhIZd8OLNYLOTm5qJWq1m0aJHPz4QeLWbMmEFqaiqffPIJtr5pQIJLIsSbp3nqKZfX6cgRmDnT09a4+fTTT9HpdKxYsWJ8Tnjnna5RXoGBrskQzz7rlWHUgIAAFj3yCJ3LlnH8P/8TqbPzgm36hJtOp2Px4sUox7iNi0Ag8Bx6vZ7MzEzkcjnd3d2DeuCqqqpwOp3k5OSgVqvH2UrvRSaTcc0112AwGNi/f7+nzfEZhHjzNL/+tau5rheN0qmoqKCsrGzkRQrDJTUVDh6Exx6D//xPuOUWVy6glxEaGsqC//s/Qk0mZD/7Wb91JpOpn3AToVKBYHIgSRInTpwgNzd3QA/SjBkzWLp0qRibNgBhYWEsXbqU/fv309bW5mlzfAIh3jzNlVd62oJ+9BUpJCcnM9MTnkCNBv70J1c4eds2uOoqaG8ffzsuQdS8eST//Ofw5z/TfV6pu1arJTExURQnTFJkMhlqtVoM3Z6EyGQy5s+fj8lk4siRIzgcDiRJoqCggPb2duRyOX4jHVM4gVm+fDkBAQF88skno9oEeaIixJugHwcPHqS7u5trr73Ws19AN97o6gtXVgbLl8PZs56zZTC++13aU1PZ8/DDVFZU0NHR4R5oLcIik5PAwEDWrl1LYGCgp00ReICAgACys7Pp6uoiLy+PwsJC6urqxKzbIaBSqbj66quprKwUxQtDQIg3gZu+Srns7GzvGNOSnQ3790NPDyxZAqWlnraoP2o1oc8/T1JZGdt/9Su2b98+ZoOrBQKBbxASEsLChQspKiqivLycuXPnEh0d7WmzfILp06eTkpLCZ599Ju6ll0CIN4GbPXv2IJfLWb58uadN+ZIZM1x5cEFBsGyZa1KDFyF97WtMmTOH9M8/BxDNJic5BoOBXbt2YbiMKRyCiYPZbCY0NJTMzEzREmQYyGQyrrjiClpbWzlx4oSnzfFqhHgTANDe3s6xY8dYvny59yXUxsXB3r0wfTqsXTusBrljzcmiIkpvvpmVtbVMaW4Wg5YnOU6nE6PRKLwGk5ygoCB3C4xjx46JhrzDICYmhrlz5/L555+LcPNFEOJNAMDOnTvx9/dn0aJFnjZlYEJC4OOPITHRVeRRVeVpi7BYLDQ1NRHzwAPI589n4TvvkJWV5WmzBAKBh+ju7sbhcBAYGMiMGTPcRQonT56ksbHR0+b5DKtXr8ZkMpGbm+tpU7yWCdWAymq18vLLL7N9+3YMBgMpKSk8/PDDLFy48KL7/eMf/+DVV1+9YLlareazzz67YPnWrVvZuHEjjY2NREREcOutt3LLLbeM1mWMO/X19RQXF3PDDTd4d4VkcLCrAnX5cpcH7tAhGMsGwpdAo9GwevVqVx+3J59EecstcOQIPXPnUlRUxPz580XhgkAwSTAYDBw8eJApU6b0q9SfOXMmZrOZvLw8li5dSnBwsOeM9BH68gYPHDjAggUL0Ov1njbJ65hQnrdnnnmGTZs2ceWVV/If//EfyOVyfvjDH1JYWDik/b///e/zk5/8xP36n//5nwu2ef/99/ntb39LUlIS3/3ud5k9ezbPPvssb7zxxmhfzrggSRKfffYZkZGRZGRkeNqcSxMZCZ9+6ipiuO46j/SB6+rqcvdycjfgvfFGV5Plp59GJpPR3d3N4cOHxXQFgWAS0Ocl0ul0pKWl9Vsnk8mYN28egYGBHD16VIQCh0hfg/h9+/Z52BLvZMJ43kpKSti5cyePPvood955JwBr165lw4YNvPjii7z44ouXPMbKlSsv+lRksVj4+9//zuLFi/nlL38JwHXXXYfT6eS1117j+uuvJyAgYFSuZ7yoqqqipqaGO++8E7ncR7R8UhJs3QorV8KGDfDWWzBObU0sFgtHjhxBq9X2H28jl8OPfwz33IO+vJzs7GwOHjzIsWPHWLhwoe+8t4IRodfrycnJEZ6CSYTVaiU3Nxe5XE52dvaA0Qu5XM7ChQupr6/37uiGF+Hn58eyZcvYvXs32dnZhISEeNokr2LCfKPs2bMHhULB9ddf716m0WhYt24dxcXFNDU1Dek4RqNx0AaBx48fp6urixtvvLHf8ptuusndWd+XcDqd7Nixg8TERKZNm+Zpc4ZHVhb861/w9tswBGE+GjidTo5+Ue06oCC7/XZISYGnnyYoKIisrCxaW1s5efLkuNgn8DxKpZKIiAgxEm0S0dDQgNVqJScnB61WO+h2Wq2WlJQUt2decGlycnLw8/Nj165dnjbF65gwd5iKigri4+MveOJNT08HoLKykqioqIse4/bbb8dkMqHT6Vi2bBmPP/44oaGh/c4BrjEn5zN9+nTkcjmnTp3iqquuGvDYra2t/cZ+1NbWDv3ixoiTJ0/S1NTEQw895Jsd4W++Gb7zHfiv/3L1gcvMHNPTFRYW0tXVxdKlSwe+SSuV8D//A9/4BpSWEpGezrx588ST9gRBkiQsFgtmsxmTyYTVakUul7tbQVRXV9PT00N9fT1xcXHodDri4+PR6XS0t7djMBjQarVotVp0Op3Ih5wgJCYmEh0dPeRRgj09Pezdu5eZM2eSnJw8xtb5NiqVilWrVvHhhx+yZMkSYmJiPG2S1zBhxFtbWxthYWEXLO9b1traOui+AQEB3HzzzcyaNQuVSkVhYSHvvfcepaWlvPTSS25B2NbWhkKhuMB9q1KpCAwMvOhMtg8++GDAoghPYbfb2bVrF+np6b7dh+h3v3M18r3tNsjLgzEMWwcHBxMeHn7xhON773UJuH/8A373O2JjYwHXF39bW5t3ND8WDEpPTw/d3d1ugWY2m4mIiGDKlCm0tbX1867LZDL8/Pzcfz91dXV0dHRw8uRJLBYLfn5+hIeHo9PpaGpqorKyst+5EhMTmTt3Lr29vZSVlaHT6dzCTqfTERQUNK7XLhgeBQUFhISEMGXKlGHNgPb39yc5OZmSkhICAgKI8GDRlS8wb948Dh06xGeffca9997raXO8hgkj3iwWy4Aejr6nW4vFMui+69ev7/f/VatWkZ6ezi9/+Uvee+897rnnHvcxBguHqNXqi57j+uuvZ+nSpe7/19bW8tRTTw1+QWPMkSNHMBgMrFmzxmM2jAoajSvnbf58ePRRVyh1lL2IFosFjUbD1KlTh2bPXXe57HjmGZc3Djh37hzHjx9n/vz5xMXFjap9guFjs9no7Oyko6OD9vZ2Zs2aRUBAALW1tVRXV6NQKNxCqo+goCAWLVrkFllf9ZytXLmSrq4uFAoFK1as6Ce+0tPTmTFjhttzZzab3d5bu92O2Wymo6MDs9mM0+lEq9Vy5Rdzj4uKitBqtYSGhhIUFNQ/11LgEUpLSzlz5sxlP4ylp6djMBjIy8tj+fLlIkfyIsjlcq644go2btxIVVUVKSkpnjbJK5gw4k2j0WCz2S5Y3lfZM5wnI4Arr7yS559/nry8PLd402g02O32Abe3Wq0XPUd4eLjXeF2sViv79+9n3rx5XmPTiEhLg7/9zSWarrwS7r9/1A5tNBrZt28fs2bNGrqHcsMG+POfXW1N1q0DIC4ujpaWFk6cOIFarRZP2+OIJEkYjUb8/f0BOHz4MM3NzYDLax4SEuJuqpuWlsa0adMGfBBUqVTu1AvJbsfZ24vklAAJnE6QJOydnTh6enB0duIA14OEXA7IkCnkaDSaC0LugYGBLFmyxP1/i8XivpdJkoTBYODMmTM4HA5kMhmBgYEsXLgQnU6H3W4X+XXjTHV1NZWVlcyaNeuyH8T6htjv37+f4uJi7+2v6SVMnz6dhIQEPv/8c5KTk30zzWeUmTB/9WFhYbS0tFywvC+UeTkiJTIysl9iaVhYGA6Hg46Ojn6hU5vNRnd394BhW2/k+PHjmM1m7xqDNVLuvBM++QS+9z34+tdhFH4XTqeTvLw81Gr18GYTzpsHc+bAq6+6xRtARkYGVquVo0ePsmTJEtHvaQzp7OykqamJjo4OOjo6sNvtrF27FrVaTUxMDLGxsYSGhl7g8VCr1Ug2G44eI5LFjGSx4DRbkKwWJLMZp8XqWm4fuAWMqacHa1U1vXp/VF+Ixa8iU6mQadTItVpkGg1yjQaZRoNMq0WuVqPWat0PgjKZjMWLF7tFXN/19K0/evQoBoOBkJAQQkJCiImJEV6cMaSxsZHi4mJSUlJGnK+mUqkGrU4V9Ecmk7Fy5Upef/11Tp8+TVJSkqdN8jgTRrylpqZy4sQJjEZjv5tXSUmJe/1wkCSJxsbGfj17+v5dVlbG4sWL3cvLyspwOp0X9PfxRux2OwcOHGDu3LkTTzz8f/8ffPABPPGEyxM3QkpLSzEYDCxbtmx4N1iZzOV9e+IJaGtzC0mZTMaCBQs4dOgQZ8+enXjvv4fp7e3Fz88Pp9PJoUOHkMlkhIaGkpqaSkhIiNtDNWXKFMD1N+7o6cHZ3Y2jqwtHt+GiwmwoqJRKYsLDUV3EGybZbEg2G84e46DbyFRK5Dod8oBAFMFBKAICCAwMJDAwkMTERPd2qamptLW10dHRwalTpygtLSU7O5vIyEicTqdoUTPKhIaGusdejQZ+fn6A67Pb3d0tBthfhJSUFGJjY9m7d68Qb0wg8bZq1So2btzIBx984O7zZrVa+fjjj5k5c6Y73NHU1ITZbO53A+zs7Lzgi3TLli10dnaSnZ3tXjZ//nwCAwN5//33+4m3999/H61W22+Zt5Kfn09PTw/Lli3ztCmjT2QkPP20qwL1oYfgvN/dcGlpaaG6uprZs2dfXuL43XfDD38IGzfC44+7FysUCnJyckTe0ijR1dXFuXPnOHfuHGazmbVr16JUKlm2bBn+/v79wiuSzYa9o8Ml1Lq6cBoMIxJqA+Gn1ZI5Cm13JJsdh82Ao9uArb4eAJlajSIwAEVgIPKgIBSBgURERLhD8A6Hg5aWFncEoO9hNjY2VnjkRkh3dzdqtRqtVjsmD+k1NTXU1tayfPlyn+sVOl7IZDKWL1/OW2+9RV1dnW8X2o0CE0a8zZw5k9WrV/O3v/2Nzs5O4uLi+PTTT2lsbORHP/qRe7unn36a/Px89u7d6162fv16vva1r5GcnIxarebkyZPs3LmTtLS0C/rGPfTQQ/zxj3/kpz/9KYsWLaKgoIDt27fzjW98g8DAwHG95uHicDjYv38/s2bNmhi5bgPxyCPw8svw2GNw5AhcpkgKDQ1lzpw5QytSGIioKLj2Wlfo9DzxBrg9QC0tLZR/0dBXhE6Gh9PpZM+ePfT09KBSqdyh0D5RHBAQgNNkwt7e/oVXrRtnr2lc7DJZLOg0mlH3eklWK/bWNuytX1S1y0Cu16MICnK9QkP7eW7i4+M5e/as2yMXFBRERkaGqGIdJkajkdzcXEJDQ8dsdvGMGTNoaWlxFzCIh7uBmTFjBpGRkezdu5e7777b0+Z4lAkj3gB+/OMfExUVxbZt2+jp6SE5OZnf/OY3ZF6i/9eVV15JUVERe/bswWq1EhUVxZ133sl99913QXLxTTfdhFKp5K233uLAgQNERkby7W9/+4KKVW/k5MmTdHZ2uj2TExKFAl54ARYvhr/+1SXihoHT6cRkMqHX6y9fuPWxYQPccgsUFcHs2Res1mq19PT0cPToUXJyckSI6yJYrVZOnz5NS0sLS5YsQS6XM2XKFAIDAwkLC3O/d06TCVtzM/bmZhyGnnG309Dby8HCQpbMnUvQIDlvo4YEzh4jzh4jtvpzIANFcDCqyEiUERFERUURFRWFw+GgqamJc+fOuXPlampqkMlkJCQkCKFwESwWC7m5uahUKubOnTtm51EoFCxYsIB9+/ZRVFTkG6MKPUCf9+2dd96hoaFhUvd9k0mDjRMQjCnl5eV84xvf4KWXXmL69Oljfj6n08nzzz9PeHi4S7xJEtTWQnOzaz6oyeQSPjod+Pm5RlCd16DY53joIdiyBU6fHlbvt9LSUmpra1mzZs3IvWFWK8TGwgMPuPrRDUB7ezuHDh0iKiqKBQsWiCqqr2A0Gqmurqaurg6A2NhYdz/GPpxmM/Y+wdZt8JSpAHT19IyfeLsYXxFysq+0NSksLOTMmTOoVCqmTp1KUlKSaBr8Ffryg61WK8uWLevXNmasqKur4+TJk6xatcqdDyfoj9Pp5LnnniMqKorbb7993M473t/Zl2JCed4Eg1OWl4d/Xh7XxsS4+qIdOuQSbhdj+nSXB2vxYsjJgVmzLjsMOe787GeuXmt/+Qv8938PaZeWlhYqKytJT08fnTCmWu2aAvHhh4OKt9DQUBYsWMCxY8coKytzTwQRuDh27Bhms5nU1FSmTp3qFhjeJNi8EgkcHZ04Ojrh1CmUISEo+4TcF16k1NRUqqurqaqqoqqqitWrV4+LQPEVOjs7sVgs5OTkjNv7kpCQQERExEXHbE125HI5y5Yt44MPPqC5uZnIyEhPm+QRhHibyEgSfPIJ0u9/z4zdu5npdIK/vyuR/xvfcAmyKVNc3jadztWrymSCnh4oLXUJvEOHXCLI4XDte/vt8IMfwFdGhHkdCQmufm+//z18+9uu67sIFouF48ePExkZObpNINeuhZdecnk5zyuSOZ/o6Gjmz58/6XORJEmiubmZqqoqZs+eTWBgIAsWLECn06FQKJAcDqxn67E3NeLoErMhh4wE9vYO7O0dLiEXHIwyJhZdZASzZ89m2rRpNDY2ugVKaWkpMTExk7YaWpIkZDIZ4eHhrFmzZtzDylqtFofDQXV1NSkpKSKdYgAyMjLYs2cP+/fv5+abb/a0OR5BiLeJiNUK//63q3VGcTHmuXPZec01zP/2t4m98sqhec8WLIAvmhNjNMKxY7B7tyuP7OWX4frrXR6tpUtHfaLBqNE3purll10C7iIUFxcDkJmZObqhy699zdWkdft2l2AehL4xWjabjba2tknVMsDpdFJfX09VVZW7Z5nD4aoC9ff3R7JasdSewVZfjzRAI27BMHBKbiEnr9aiSkhAFRPjbp9isVhoaGigsrKSsLAwUlJSiIyMnFTh/L57wezZsz2WD2g0GikvL8fpdHpFiM7bUCgULF26lE8++YRVq1b1m0E+WRCSfiJhsbjCc0lJrjyrpCSk3bt5/fHHab75ZmKvvvrywp56PaxcCf/v/0FNjUsQVVbC8uWugfBbt47+tYwGKSmu5r2//a1L0F6EGTNmkJWVNexJHJckJMTl6dy+fUib19bWcuzYMRobG0fXDi/m1KlT5Ofn4+fnx9KlS1m2bJlr6kFvL+bycoyHDmE9fdonhFuQvz/XLFni2Xy3IeI0mbGcqsB48BCW6hqcX0yJWb16NQsXLsTpdHLkyBFyc3M9beq4UVFRQU1NjcfbdQQGBpKWlkZFRUW/RvGCL5k3bx56vZ79+/d72hSPIMTbRKGiwpWb9uSTcPXVUFwMH35ITUIC9efOsWLFitE5j0bjEoYnT7pEm0oF113n8ir19o7OOUaTH/8Y6upcod8BsFqt2O12/Pz8xm5CxlVXwWefwSCj1c4nJSWFmJgY8vLy3NNBJiJNTU3Uf9G/bOrUqaxevZpFixYRGhqKo6sL08kijIcPY6s/h+RwetjaiY1ks2E9fRrjwYOYy8uRTCaio6NZtmwZS5cudVddW61Wurq6PGvsGHLmzBnKysqYPn16vz6gniItLY2AgABOnDjhHt8m+BKVSsWSJUsoKCiY0J/LwRDibSLw+uuuwew9PXD4sCtMOHMmAIcOHSI6Onr0h/nK5a7RT3v2wN//Dm+8AYsWuUSjNzFzJtx4Izz7rCsH8CsUFBRw6NChsbVh7Vro7HSFni+BTCZj3rx5hIaGcvTo0Qn31G00Gjly5AhHjhyhoaEBcOX4+Pv7Y29tpff4cXrzjmNvaQEfrIPvMZk4dPIkPaax7yk36jglbPXnMB4+jOnkSRxdXYSGhrrbMdTU1LB3714KCwvdM6MnCu3t7RQWFjJ16lSmjUKT5dFALpczb948enp63LN4Bf3JyspCpVJx9OhRT5sy7gjx5ssYjS4v2L33wk03QV6ea67mF7S1tVFRUUF2dvbY5azIZK62HH1/PAsXuhL0vakDzcMPuzyF+fn9FtfX118wAm1MWLgQgoKGHDqVy+UsXLgQPz8/Ojo6xta2ccLpdFJWVsbu3bvp7u4mKyvL3fDU1tSEMfcwpsKTODp9+wna4XDQaTC4c/Z8EgnsLa305h2n9/hx7F98BqdNm8bs2bM5d+4cu3bt4vTp00yUTlPBwcHMnj2b2QP0Y/QkgYGBrF69elLlwA4HtVrNvHnzyMvLw+YDaRWjiRBvvkptLWRlwaZNri7+r712QT+zo0eP4ufnNz43pFmzXBMN7r0XvvlNuO8+8JY/prVrXRMPXn3VvchsNnPy5Eni4uLG/saoVMIVV8C2bcPYxTXiqS984+thE5lMRkdHB6mpqaxevZqYmBgcPT30Hj+OubgEpzeG3AU4OrswncjHVFSMZLWSlJTk/v0VFRVhMPh2mxaDwUBHRwdyuZypU6d6ZWFGX7+3+vp6n78PjAULFy7EbDZTVFTkaVPGFSHefJH6elcVo9Xq8rbdf/8Fm1gsFk6cOMGCBQvGb/SSn5+rGvXf/3bN9LzvPleLkYuwdvNantz/5NjapVS6ROUbb7gLF06ePMkO4w7uP3nhezcmXHWVK6Td2XnRzep76pnzzzlsqdzibhFw+vRpDh486HPenO7ubg4ePEhbWxsymYycnBymT5+O3OnEXH6K3qNHfd7TNlmwNzfTm5uL9fRp1CoVGRkZrFmzhsDAQCRJoqysDLPZ7Gkzh4XJZCI3N9ddXerNGI1G8vPzOXXqlKdN8TpCQ0NJS0vj8OHDE8YTPBSEePM1mppgzRpX8vuuXYP2WysoKMBms43ZLL6LcuedsHEjpw5+wPf+uJqrNl/Fgn8tYM2mNXxj+zd4o/SN8bfp/vuhrQ0++giApKSkEXncNpZtZEvllqHvcMUVLiF7GZVRISEhGAwGjh075hNP3jabjaKiIvbu3YvFYunnzbDV12PMPewatj557rMTAsnhxFJdQ++RI9hbW9194YxGI2fOnGHXrl1UVlb6zGc0NzcXuVzumXvkMNHr9aSlpVFZWTkpk/MvRXZ2No2NjZw5c8bTpowbQrz5EiYT3HADdHXBzp2DNn2VJIkjR44wY8YMjzV+zV+ewh2/SKPc0cgtZ4L5cfaPuXnazchl8n7i7cObPuRnS3429gbNng1ZWUhfhE7Dw8PR6/WXfbi3yt/i/cr3h75DUhIEB0NBwbDPFRQURFZWFq2trRRcxv7jicFgYM+ePdTV1ZGens7KlStdFaSdnZiOHcNcfsonWn5cLn5aLXPT0vCbwB3ynb0mTIUnMRUW4uztxd/fn9WrV5OYmEhZWRkHDhyg14vD4A6Hg8OHD2O1WsnJyfGZaQapqakEBARQWFg4qTxMQyE5OZnw8HAOHz7saVPGDdGk11dwOl2DzgsLYd8+SE0ddNPq6mpaW1u57rrrxs++r/C3wr8RoA3iTdktBH7/pxB5PdzzOABtpi9bYKgV4zhP8d574fvf59jnn5O1evX4nRdchR1z57p+f5dBREQEmZmZHD9+nKCgIJKTk0fZwNFBq9USGhpKeno6Op0Op9WKubISW2OTp00bF1RKJXEREZ42Y1ywt7Zhb29HPWUK6sREZs2aRVxcHHl5ebS2trob/3obJpMJq9VKdnb2iB7gxhu5XM6cOXM4cOAADQ0N7sbeAldO7aJFi/j000/p6uqaFNNqhHjzFf74R1dxwjvvuKYfXITDhw8THR3t0ZtnnaGOlOAUAm/7CZTVuCpSMzJgzhzCdF/2U1u7eS1Z0Vk8vexpALZUbuF/D/wv/7z6n2w7vY1Paj7B7rSzNmktP170Y0wOE78+/Gt2n90NwK1pt/JfC/7LHZo72niUB7c9yD/W/oOF0Qvd56nvqefqoJf4ZY4/2adOwSDi7b2K99havZXKzkoMVgMJAQncNeMubp/x5QDktZvXcs54DoA5/5wDQFZUFq9c/QoA3dZuXsx/kR21O2g3txOtj+aWtFt4IGMu8h2fuY/Tbe3mN0d+w64zu5AhY/WU1dw7895B39O4uDjkcjkRXiYOLBYLRUVFzJw5E51Ox/z585EkCWtdHdaaGiS7b+XqjQSrzUZDWxsxYWGoxyvX1JM4Jayna7E1NKBJSyM4MpJVq1a5JxPU19cTHR3tsUkFX8XpdLo9hd5YnHApQkNDycnJITw83NOmeB0ZGRns3LmTY8eOsWbNGk+bM+YI8eYL1NW5pht897uuQecXob29nYqKCq677jqP3pxi/WMpaCmgorOStBdfhIMH4fHHXX3hhmDXM0eeIUwXxmOZj1HYUsjmU5sJUAdQ0FxAtD6a7877Lvvq9/FK8SukhqRyfcr1Fz1eX5jBFhxM9EW8X5vKN5ESnMKqhFUoZAr2nN3DU4efwomTO2fcCcAPF/2QZw4/g5/Kj2/McY286hOkJruJBz59gObeZtZPW0+0PpqClgKePf4srZkZ/Oj5U2AyIWm1/Meu/+BE8wnWT1tPclAyu87sumTxRl/PLaPRSHd3t/v/nqKlpYUTJ04ArgrePm+bpaTENUtzkmGyWCipribY339yiLcvkCxWzEXFOGLb0XzResdkMlFQUEBFRQULFizw+NSCsrIyOjo6yMnJ8Unh1kffw5vJZHLnHQpAo9G424asWLFi/Ar1PIQQb77A977nagPy859fctOjR4+i1WqZM2fOOBg2OPfPup/HPnuM9R+uZ3b4bOY/vZac//cPFv7rn6ju23DJ/cO0Yby45kVkMhl3zLiDM4YzvFr0Kuunred/F/8vALdOu5W176zlvYr3LineGhu+GDc1ew6yzYP3W3vl6lfQKr/Mgbkr/S4e2fEIrxW/5hZva6as4bkTzxGsCea6lP6h6deKX6POUMfb171NYqArJ/G26bcRoYvg1aJXuD9YQXRxMZ9HdpPXlMf3FnyPB2Y/AMDt02/nwW0PXvK9AVcFak1NDdnZ2R7xxEmSRHl5ORUVFURERDBv3jw0Gg329nbMJaVIE6yJq2Bo2M414OjqRjtrFjp/PcuXLycvL499+/Yxe/Zsj0UDampqqKioYNasWT4t3Ppoa2vj0KFDLFu2jODgYE+b4zUsWrSIw4cPU1RUxLzzep5ORETBgrezfTts3uwaMn+JOL7Vah3/9iCDsCR2Ca9f+zqrElZxquMUr/Ts4lv/PZUrDL/j89JLz0K9Ke2mfjfZOeFzkJC4Oe1Lz6NCrmBW2CzO9py95PH6PG+qeZmuuazV1QNud75wM1gNdJg7yIrO4mzPWQzWS/e02l67nflR8wlUB9Jh7nC/cmJzcODk2HQ9FBayr34fSpmS26d/GY5VyBXclX7XJc8BkJ6eTmRkJEePHqXzEu1HxoLe3l5qampIT08nOzsbtVqNpaoKU36BEG6THKfRiCnvGLb6egICAli+fDlxcXEUFBRQV1c37vbU19dTVFRESkqK1+aKDpfQ0FACAwNF8cJXCA0NJTU1lSNHjkz490V43rwZiwW+8x1YtQruuvSXemFhIRaLhYULF15y2/Fgdvhs/rT6T9gcNso7ytlZvIV/nXqT7+X+mM0x6aQEDz6yK0bfPxwYoHaFXKL0Uf2W+6v96bZceoRUbNwXyb3p6aBQuERxzoXbnWg+wfP5z1PYUojJ3n/EUY+1x23HYJzpPsOpjlOseGvgWbLtydFQUEBDgoVwv3D8VH791k8NnHrJawFX8vKCBQs4dOgQhw8fZtmyZeOSfN3S0kJoaCh6vZ4rrrgClUqF02zGXFyMo2tijfISXD6Sw9XLz97RiXb6NDIyMoiOjnZ7iW0227g8YPb1R4uPjyc9PX3MzzdeyGQy5syZw/79+6mtrXXPnxW42oa8/vrr1NXVeW3RzGggxJs384c/uDxE7747pDyx48ePM23aNK+rtFEpVMwOn83slbNJPHmW/1UfYHvuP3n06l8Muo9CNnCC80DLpYs0DOvq6qKurg7/eH/XAp0OFi92DYrP+Vq/beu663h428MkBSXxg6wfEK2PRiVXsa9+H/8q+RdOLt2/yik5WRyz2B0K/SpTP/uNq+L069MveaxLoVAo3GECk8k0puKtrxFrZWUlc+fOJTExEZVKhb2lBXNZGZLNPmbn9iWUCgVhwcEovSRB39PYm5vpNbjCqFFRrgevnp4e9u/fz8yZM8f8y1Wv1zN//nyioqImRLj0fEJCQpgyZQplZWXExsaiVo9j5b4Xk5KSQmhoKMePHxfiTeABrFb4/e/h0Uddo6cuQVNTE+fOneOOO+4YB+Mun1m3fxc+PkBL3l64evSPH6gOBFyVnADFxcVYrVZ6Qnu+3GjRItiyBegv3naf3Y3VaeXPX/szMf5fev6ONg596HFCQAK99l4Wxy4eeINpC+DjPxGjX8XhhsP02nr7ed9Od58e8rnANdtv2bJlyGQyJEnC6XSOemWf0+mkoKCAs2fPMmvWLBITE5GcTiwVla5muwI3ep2ORTNnetoMr8JpMtN7/Dia5GTUU6bg5+dHbGwsBQUFWCyWMZktbDQa6ezsJC4uzuNFPWNJeno6SqX4Gj8fmUxGRkYGBw4c4Nprr52wolbkvHkrH33kmgjwrW8NafOCggL8/PzGfsj6EDnSMHDOwb6mQwBMPVQO3aMfZov1j0UhU5DXlEdTUxNtbW3MnDmTTac2fbnR3Lkuj6bF0m9fucz153C+J89gNQw4ScFP6TdgDtzaqWspaCngQP2BC9Z1W7uxT58G7e0sD56HXbLzVvlb7vUOp4N/l/57uJfs9igUFRVx+PDhUe1w73Q6OXLkCOfOnWPBggUkJyfjNBrpPXZMCLcBkCQJu8Mx4fNtho1TwlJZhamgAJndzty5c5k+fTplZWUUFRWN6vtlsVjIzc3l1KlTPjHtYSSo1WpmzZo1YQXK5ZKRkYHVaqWkpMTTpowZQrJ7K6++6ho8PwSvm9PppLCwkLlz53pNP6VnjjyDyW5izZQ1JAUlYXPayG/OZ9vpbcRpo7jx81J4+20Y5QhvgDqAqxKv4s3SNzlbd5YYXQwfF35Mu7n9y40yMlw/m5v77bskdgkquYpv7/o266etp9fWyzsV7xCqDaXF1NJv2/SwdDaVb+KvBX9lSuAUQrWhZMdks2H2Bj6v+5xv7/w2N6TewMywmZjsJk51nGJH7Q62xf2cEGAVKcyLnMefjv+J+p56UoJT2Fm7kx5bD5dLXFwchw4d4vjx4yxYsGBUwkRyuZyQkBBSUlKIiIhwTUo4eVKESQeh22jkYGEhS+bOJcjf39PmeB32tnZ6jx9HN3cu06ZNQ6PRcOrUKVJTU0dl0oHdbnc/wCxZssQ9H3iic/bsWTo6OjzeZcBbCA4OJikpiYKCAjIzMz1tzpgwOT7ZvkZTk8vztmHDkDavrKykp6fHqz6k38/6PouiF7Gvfh+/O/o7fnf0dxS1FnH79Nt54/q3CFy2xiVQR0h5ezk2Z/9xS09kP8GSqCXsN+znw44PidHH8PTSp7/coK9ooal/1/+koCT+sOoPyJDx+2O/5+1Tb3PrtFu5O/1uAN4oeYMX8l8A4JGMR1gev5xXil/hh3t/yF8K/gKATqnj1atfZcPsDRxtPMqvj/yal0++zJnuMzye+Tj+0a72IfLmFv78tT+zLmkdH1V/xJ+P/5lIv0h3s+LLITQ0lAULFtDY2EhRUdFlHwdcPaQaGhoAmD59OhEREdhbWujNzxfCTTAinL0meo+fwGEwkJiYyOrVq9Fqtdjtduz2y/9sOZ1Ojh49Sm9vL9nZ2ZOqB5rT6eT06dMeqTz3VjIzM6mpqZmw74nwvHkj//63S1wMMX8tPz+f6OjoEQ1aH22WxS1jWdyywTfYsAHuuottr1T0G/V1Y+qN3Jh64wWbP5b5GI9lPnbB8isSr6A8v5y/FPyFRzIeASBEG8Lza5/HaDT2S+I/ef/JL3ecMYPHjmt57IWT/Y63KmEVqxJWXXCept4mns9/nsczXSO+wnXhPL/m+QEvzU/lx3fnf5fvzv/uhSv7hko3NRGkCeJXy391wSb97Bwm0dHRzJ07l4KCAsLDwy8r36e7u5vDhw+jUCiIiopCLpdjq6/HfOqUGCYvGBUkqxXTiRNo58xBGRICwIkTJzCZTGRnZ6PRaIZ9TLvdjtPpZOHChQQGBo62yV5NQkIC1dXVlJSUsGTJEk+b4xWkp6fz0UcfUVBQwMqVKz1tzqgjPG/ehiTBK6/A9ddDWNglN+/t7aW8vNyrvG5D4sYbITAQXnttRId5JOMRHs98nOfzn3d7v3p6epAk6eLVl8OYM/qXgr+4hVufQLxsAgNBo7nA6zeaTJkyhZycnMsS821tbRw8eBC1Ws3SpUuRy+VYamowlwvhJhhdJLsDU0EBtiZX+sL06dOxWCzs378fo9E4rGPZbDb3ZzZsCPfNiYZMJiM9PZ22tjaav5IOMlnpywfMz8+fkDmoQrx5G2fPwsmTQ/a69SX7+lyug07nEnAffjjiQ50v4F44/gL79++nsrLy4jvNmOFq1nsJRlW4gavlS1TUmIo3cI3QkclktLS00NjYOKR9WlpayM3NJSgoiKVLl6JWqzGXn8Jac3pMbRVMYpwS5pJirGfPEhgYyNKlS5HJZBw4cICuPi/1JaioqGDv3r0jCrlOBKKioggNDaVeFBK5yczMpKOjgzNnznjalFFHiDdvo6DA9TMra0ib5+fnM23atHFp0DrqZGVBSQnYbJfe9hL0CbgXT77Ijp4dl+7vExUFLS3gGHxo+qgLt/PPPcbirY+6ujry8vJob2+/5LaBgYFMnTqV7OxsFHI55qJiUVE6TAL8/FizcCEBfn6X3ljgQgLLqQos1dX4+fmxbNkydDodbW1tl9z1zJkzlJWVkZCQIFpmAAsXLpzwY6GGw5QpUwgJCSE/P9/Tpow6Qrx5G4WFrjFYQ2gu2NzczLlz53wvZNpHRoarn92pU6NyuA3TN3Cl35VsN27nlbJXLr5xVBQ4na52LAMwZsKt79zjJN4yMzMJDQ3lyJEjdA/SmqWhoQGz2YxGo3HNfnQ6MRUUYG9pGXB7weDI5XLUKtWkqXIcTaynazGXlaFSqVi6dKl7lJV1kHFrTU1NFBYWkpiYyLRp08bTVK+lr2VIZ2fnhG+TMhRkMhmZmZnufp8TCXGH8TYKC135WENo85Cfn+9Vvd2GTV+od4i5Z5eisrKSqwKu4tG5j/bLgRuQL7q9DySixlS49Z17nMSbXC4nKysLnU7nnsRwPg0NDeTl5bnDCk6rld7jx3F0dI6LfRMNo8nEsbJSjF95nwVDw3auAXNREbIvcpQaGhrYtWvXBSFUm83G8ePHiY6O9r2UkTGmt7eXffv2cfbspWc+Twb6er6VlpZ62pRRRYg3b6NPvF0Cb+ztNmxCQiAhYdTEW2BgIDNmzOCxeY9dUMRwAYOItzEXbn3nHifxBqBSqcjJycHf37/f03hLSwvHjx8nNjaWtLQ0nBYLpuPHcfYML1lc8CV2h4OW9g7sFwnHCy6OvaUVU0EhksNBREQE/v7+5Obm0tPzZQ9ElUpFdnY28+fPn3Bjr0aKn58fMTExVFZWTshE/eHS1/NtooVOhXjzJkwmKC//sonsRaipqaGnp4e5QxB6Xk1Gxpd5fiNkypQp7gHNA1Wh9mMA8TYuwg0gOHhMpktcDI1Gw+LFi9Hr9djtdlpaWjh69CgRERGusLvdjim/AGev8BgJPI+jsxNzUREKudzdOuTQoUO0t7dz6tQpJEkiNDRUhKcHIS0tDaPRyLlz5zxtileQkZFBTU0NBsOFU3F8FfHJ9ybKylx5WEMIA5SWlhISEjI6c/sqKuCJJ+DOO10/KypGfsyhMmeOq7p2BNhsNk6ePInlK+OuLirg9HrX6wvxNm7CDUCpvGihxFhz5MgRDh8+THBwsGsSwxc5bs5htmcQCMYSe1s75tJSlEolOTk5OJ1ONm3axJkzZ7CNQpHTRCYoKIjIyEgqKiqE9w1XGxq5XD6hQqdCvHkTHR2unxERF93M6XRSWlpKenr6yEMGr7ziapvxu9/Bpk2unzNmjMr0gyEREQEj7IBdU1NDXV3dgOsuKuD8/MBsHl/hBq4GzB5qa2C320lLS0Mmk6HT6ZDLZJhOnsTRPXGeSAUTB3tTM5ZTp1CpVCiVShISEli8eLGY5TkEpk2bRlRUlChcAHQ6HUlJSRNKvInaam/CbHb9vMSMv7q6OoxGIzNnzhzZ+Soq4OGHXd6+r/LQQ7BsWb/pB2OCVvvldV8Gdrud6upqpkyZMmhX9j5B9nz+8/3+j1LJX/SFPJ9fPH7C7YvzekK82Ww2Dhw4QFxcHJmZmeTl5cGZM6QGTK5u9GOJVq1mxtSpaIW4GDWsZ+s5VlyMRatl6dKlgKu/5axZs0S+20UICQkh5IvpFQKYOXMmW7duvWDyjq8iPG/eRF/Y7xLiraSkhMDAQOLi4kZ2vn/8Y/CqVpkMXn55ZMcfClqtS8hcppg5ffo0DoeD1EuIzIE8cH9Z48fzweMs3MAjYVOn08mxY8cwm81ER0cTFxdHmk5HxckiOs9LBBeMDI1aTVJsLBoh3kYNSZKgpZWMuDiCg4MxGo2cPn16xPN7JwOSJFFRUUFra6unTfE4M2bMAKC8vNzDlowOwvPmTfR5wC7yNClJ0uiFTE+fdo3jGvhErvVjTd81XEZehiRJ1NTUkJCQgPYSghf6e+D+Vvg3bFfoeLxtxvgKN3Bd8ziHMgoKCmhvbycnJ4eAgACsp08Tr1ASMHcuQf7+42rLRMZmt9Pa2Ul4cDAq0TR2xJitVrRqNRlpadDejr2lhcjISObMmUNhYSF+fn6kpKR42kyvRSaT0dTURHNzM+Hh4Z42x6Po9XoSExMpKSlh/vz5njZnxAjPmzfRJ0C+knh/PvX19XR3d5Oenj7y802denHP2xeVm2OKxeLKAVOphr2rTCZj8eLFw2rQ+UjGI6jkKmxOGyq7xCM9HugRZbdf1vVeLmfOnOHs2bNkZmYSFhaGrakJS3UNgFu41Zw7R+sIcw8F0Gs2k3/qFL0jSAUQuDjd0MCeE8e/fC8lMJeU4OjqIjExkbS0NEpKSoY8/m2ykpaWRnt7+5CmrEx00tPTqampwTwB/j6FePMm+sTbRT5YpaWl6PX6S49/GgoPPnhxz9tDD438HJfCbHYNar8MJEnC399/SF63Pv5S8BeXcJOrsCll/CWk7LLOPSLsdpdgHSfi4+PJzs4mLi4Oe0cH5q8k7UqSRGtXF3nlZSKEKvAKGlpbKa2pITEqGr/z/r4lhxNT4Umcvb1Mnz59dO6DE5zIyEj8/f2prq72tCkeJz09HYfDMSFCp0K8eRN94atBPCCSJFFSUsKMGTNGp79RWporr00ud4mJ83++/PLYFyuA61ovI2zX0tLCrl27LmgPcjHOryo9fu9xHv+oi+cDT158EsNYYLe78t7GGIvFQldXF3K5nMjISJxGI+aiInD2F+wymYz506YR6KfnWKmYDiDwLK2dnRRUVhIbEcH0xMQL1ks2G6bCQrDbycjIIDo62rVctMQYEJlMRlJSEo2NjRPC4zQSAgMDiY+PnxBVp0K8eRNfJFRSXDzg6qamJjo6OkZeZXo+Gza4GgP/93/Dbbe5fpaXu5aPB8XFcBnXU1NTg1KpHLTC9Ktc0A7EYuGRt+t4XFpy6VFao43DMebiTZIkTpw4wdGjR3E6nUgOB6aiYiTbwIUhCoWCBTNmoFYqOVpainmCzQEU+AZOp5PimmrCgoKYk5IyaF6vs9eEuexLr/mJEycmxBfyWBEfH8/ixYuHFaWYqMycOZPKykqfn3UqxJs3ERQEiYmDThwoKSlBq9W6pwiMGqmp8Mwz8Oabrp/j4XHro6BgSOPAzsdoNNLU1ERSUtKQth+wj1tzMwCPRN146VFao43B4OoxN4ZUVVXR0tJCRkYGcrkcS0XFJZvwqlUqFs6cSbC/PwrRuf6yUCgUBPrrfXdknYeRy+VkzUhn3rRpl4wu2FtasX4xvzMoKIiqqiqaxnHsnC+hVCoJCwvztBleQXp6Ona7nYrxbEY/Bog7tLeRkTHorM/S0lKmT58+cb4YentdveaGMA7sfE6fPo1arR5Sq5RBG/D23eSjoi49Smu0aWr6cjzXGNDe3k5ZWRlpaWlERERga2rCdq5hSPvqNBoyp01DpVRislhEg89h4q/TsXRuBv46nadN8SksVisnq6qwOxzodTqUQ7zHWSorcRgMJCcnExUVRX5+/qQPDQ6G0+nkwIEDgzY0nyz0TSbydU+tEG/exty5A4q31tZWWlpaRjdk6mmKi12FEcP0vLW1tTFlypRLitiLTk44T7zBEGahjiZjLN6Ki4sJCQlh+vTpOHt7sVxGcq7T6SS3qIh8MV5HMMbYHQ6OlZXS0tGBbbj9Hp0S5uJiJLudzMxM5HI5eXl54jM7AHK5HKVSSU1NjadN8Tjp6emcOnUKu4cm3YwGQrx5G3PnQmOjO6zXR0VFBUqlkuTkZA8ZNgYUFLiKI2bNGtZuy5cvv2R7kEuOvOoTb5GR7kXjJuDGWLwtXLiQBQsWgNT3xTb8hsByuZyZSUk0tbdTIm72Q6arp4dPc3PpElW7Q8LpdJJXVkav2UJWejq6y6g8d/aaMJeXo1arWbBggQgPXoSkpCS6uromfduQ6dOnY7VaOXPmjKdNuWyEePM2+kKI+fn9FldVVZGYmIhqHPuDjTn5+TBtGgwjxGQ0GpHJZBf1ug1pVmlTE4SGXtBvbVwE3BiJt6amJqxWK1qtFq1W+0VI6fJFRFRoKLOTkznT2EjlF7lFgksjiVDzkJAkiYLKSjoMBuZPn07gCEYW2ZuasZ07R2hoKDNmzEAmk+EY5ykmvkBERAR6vX7Se9/62qdUVVV52pTLRog3byM1FRIS4N133Yvsdju1tbUTq5O4wwFbtsDq1UPepbW1lV27dtHd3T3oNkMeMl9V5SoOGYAxF3BjIN46Ozs5duyY+6Zsb2nBdrZ+xMdNiIoibcoUqurPigpUwagik8kI1OvJTEsjLChoxMezVFTg6HEV5TQ0NAy7ldBkoK9tSGtr66QWtzKZjJSUFCHeBKOIXA733QcbN8IX/bbOnDmDzWabWOJt506or4cHHhjyLnV1dej1egIDBx6kPmThBq6Q7UUKJcZMwBmNrtcoije73c7x48cJDAwkLS0Np9ncr43CSEmNj2d5RqYYti4YNQy9vQCkxMURPUphTsnhxFxUhORwEBoa6m6XI/Lf+jNlyhSuuOKKiVP4dpmkpKTQ2NhIj4+mOAjx5o3cfz90dcH77wOukKm/vz+R5+Vn+Tyvvgrp6ZCVNaTN7XY7DQ0NJCQkDLh+WMLN4YCioksWSoyJgPtKocRoUFpaisViYf78+chkMlee2yD93C4XP60Wp9PJyaoq2i/i+RQILkVdUxP78/PH5HPk7O3FcuoUGo2GefPm0dLS4tN5TWOBQqFAoVBgs9k8bYpH6XOG+OrkCSHevJG0NFi61CVwgMrKSlIu0rDS5+jshPfeczUCHuI1NTQ04HA4iI+Pv2DdsIQbQGWlayzXEFqUjLqAG2XxZjabOXPmDNOnT0ev12OtrsbRNXbiqtdsJq+szO05EfTHX6djWWamaBUyCM3t7RRVV5MQFUXoIB70kWJraMTW1ERERAQJCQmUlpb6fEPW0aa7u5vt27fTOYnnGev1emJiYqisrPS0KZeFEG/eyoYNsGMHPeXlNDU1kTqejXPHmk2bwGqFe+4Z8i42m42YmBh0X/lSHLZwgy+bIM8Z2lD6URVwoyzetFoty5cvZ+rUqTgMBqxj6GWQy+XMnz4dnUbD0ZISTCKf6AIUCgUBfn6TPiQ1EO3d3Rw/dYqo0FBmjXHVvOXUKSSrlfT0dKKjo0Xo9CsEBASgVqsnfc+3lJQUqqurffLzIcSbt7J+PWg0GP78Z4CJ0yJEklxzU9euhdjYIe+WnJxM1gAhVqfkHJ5wA1cfvZgYiIgY8i59As4pjbCSsKrKNV0hPHxkxwEMBgOSJBEYGOiaonDqFIzxPUilVJKVno5cLudoScnw+3JNcEwWCyerqoSwHYCKujpCAvzJTEsb8yiCZLNjqa5Go9GQmZk55DF6kwWZTEZ8fDz19fWTuhF3SkoKPT09PjmZQ4g3byUoCDZsIPyVV0jW69GPoIzeq9i8GY4cgf/4jyHv0tXVNWh+xmOZjw1PuAHk5Q17qgO4BNxjmY8Ne79+FBS4PH4jHD9ls9k4ePAgZV8UJtjOnRvTcOn5aNVqFqanEx0WNuRO+JMFq83G2aYmrJM8n2gg5k+fzvzpMy459mq0sJ1rwNHVBUBzczNHjhzxSQ/LWJGQkIDNZvNJ4TJaJCQkoFKpfLLqVIg3L0b6xS+wAVdu3+5pU0YHgwH+67/ghhvg6quHtIskSRw9enT0RplYLLB3L3zta6NzvOFSWDjsiRIDUVpaitPpJDk5Gclmw1I1vkm3ep2OaVOmIJPJ6OzpmdRP74LBsdntHCsrxWgyoVIqUSmV43p+y6lTSJKESqWiqamJ2tracT2/N+Pv709oaCgGg8HTpngMpVLJ1KlThXgTjC6NNhufrVlDzGefuQSHr/PLX0J7O/zpT0Pepa2tDZPJNGChwmVx4IBrpupVV43O8YaDzQYlJZfl9Tufzs5OamtrmTFjBhqNBkt1NZKHPD1Wm43DxUUU+WjFlmDscDgc5JWV0WnoGeto/uA2GHqw1dcTEhLClClTKCsrE73fzmPx4sWXnFYz0UlNTaW2ttbnilqEePNiqqqqKFq0CGnRInj8cdeXv69SUgJ//CM8+SRMnTrk3c6ePYteryc0NHR07Ni+3VUsMMRihVGlrMz1OxyB502SJE6ePElgYKCrSKG7G9u5c6No5PBQq1TMSU6hvrmZcuHVEHyBJEmcqDhFl7GHrPR0j1bfWmtqcH5RvAD4/EDy0UQul+N0OjF90VN0MpKSkoLD4fA5r+z4+rDHGKvVyssvv8z27dsxGAykpKTw8MMPs3Dhwovut2fPHnbt2kVZWRnt7e1ERkayePFi7r//fgICAvpte9ttt9HY2HjBMa6//np+8IMfjOr1VFdXk5iUhOzFF1390J57zhV29DUkySU+p07l/2fvveMjOei7//fM9qJdraTVqkunLt3pevOdfS7BNiUmEJoheRJCAgkEwpMQ4pDk4feEUAKpBEJNgEASWsLj0GwwYPt89vU7XVOXTr3XlbaX+f0x0vp00unUVjOr2ffrta877e7MfHd2Z+Y73/L5soZ9FI/HGR4eZseOHZtny09/KkfdtqjuZhFXr8r/bsBxFASB8vJyrFYrgDx0XuEyngK3m1AkQkt3N0aDgR1raETZbpiMRsoLCzFpXND4RlcXY1PTHKytJdNuV9QWKRIl3NGBub6euro6bt68SSwWS3cEz9PY2Ijf7+fee+9V2hRFyM7Oxul00tXVRVVVldLmrJpt5bx94hOf4LnnnuNNb3oTRUVFPPXUU/zJn/wJn/70p9m9QrTjb//2b8nOzuaRRx7B4/HQ2dnJ//t//48zZ87wr//6r0s6laqqqnjLW96y6LlNS+vNE4/H6e/v58SJE7B/P7z73fAXfwH33y//nUr83d/Bc8/B00/DGrq+wuEwLpeL/Pz8zbFjZAQuX4Y/+qPNWd9auXpVHsmVmbmuxSVJQhAECgsLAQj3D2xodulmsqOggHAkQs/wMCUej2YvjGajkZo7jF3TEp6sLLIcDtwul9KmABAZHsFQUEBJSQnFxcVb1jSRCuTm5nL58mWCwSBms1lpc7YcQRAoKSlJOdmUbeO8NTU18fOf/5x3v/vdvPWtbwXg0Ucf5e1vfzuf//zn+fznP3/HZT/ykY+wb9++Rc/V1NTw8Y9/nGeeeYZf/uVfXvRaTk4OjyS5Zmp0dJRwOPzyRIG/+Ru5S/Oxx+R/5y/gqufJJ+FP/gT+9E9leZA1YDabOXLkyObZstD48fDDm7fOtXDlyoZSplevXkUQBHbv3o0UDhO+qa46s5rSUnYUFGjWcQOIxmLMzM3htNs12Yk76fXiyshQjdN2K8G2NqyHDiGKIl6vF5/Pt3k3himMx+NBFEWGhoY2N8uRQhQXF9PU1EQkEsFgMChtzqrYNrcfzz//PDqdjte+9rWJ50wmE695zWu4cePGiu3QtztugBzxArq7u5ddJhKJJLVOoK+vD51OR8FCCspqhe9/X073PfaYPD5L7Zw7B7/2a/Crvwof+9iaFpUkibGxsc3tYvyP/5AnV2zyUPhVs4FO09nZWXp7exNzXeUmBfVprBkNhvkmhhtMp+jMwI3gCwQ4d+MGPg3WEA2Nj3P2+nWGxseVNmVZ4nM+Iv39gHxev3LlCtG0TiEGg4GcnByGhoaUNkUxSkpKiMViKbUPto3z1t7eTlFR0RI9tIUi1bWOwJiYmAAgc5kU16VLl3jkkUd49NFHefOb38x3v/vdu65vfHyc1tbWxONuxZG9vb3k5+cvvgvIz4cf/hBu3oRXvxrUfHFsbJQjbXv2wNe/vuYas4mJCc6cOYN3s+YfDgzAM8/Ab/3W5qxvrYyOwtDQup239vZ2LBaLfJKZmSEyqN6TjG6+CPpCc/O2dmJisSiBQICZmWnGx8eIxWMA+AJ+xifGGRsbY2JiHK/XSySSWp1sa2ViZoYrHR0UuN3kb4IAdbJYaF6orq4mFovd8eZca+Tn5xONRjUr+ZObm4vRaEypObjbJm06MTFBdnb2kucXnhtf493gf/7nf6LT6bj//vsXPV9eXs7u3bspLi7G6/Xy1FNP8ZnPfIbx8XHe/e5333F93//+9/na/KzS1dDX15dwPBexZ49cO/bww/Da18ppySTNCFw3jY2yfZWV8NRTctRwjQwNDWGxWJZ1ntfFN74h19u96U2bs7618otfyP+uoyjY5/MxODjIrl27EEWRwM2bm2zc5qLT6ThQW8uZ69c539zMPbt2pXQBfyQSZm5ujmg0htvtRkLi0sVLCWdtgd3zzU0LUVLbLfVDhQUFFBYWMTvrpaenF6PJiM1qxW63Y7fb0elS91Q8MzfHxZYWsp1OGlQ+g1mKxoj09GCuqqK4uJjOzk527Nih6VQ/yJGnkpISpc1QDFEUKSoqSqm6t9Q9Y9xGKBRaNldtnL9orEXb55lnnuFHP/oRb33rW1+uOZvnr//6rxf9/epXv5oPfvCDfOc73+ENb3gDubm5y67zta99LcePH0/83dPTw0c/+tFl3zs7O8v09PSSbSc4cgR+9CN4zWvk5oVvfUvuRlUaSYIvflHuiK2rg5/8RJ4UsebVSAwPD7+cMt4Mu772NTl9q5Sj+5OfwK5daxoJtsD09DQWi4Xi4mJiXi/RyakkGLi5GA0GDtXXc/raNc43N3OsoSGlisSDoSAD/f3Mzc0Rmtd/slmtuN1uBASKi4vQ6/UYjUaMRiMGgwFBEAlF5sjL9bB/926cdjvxeJxwJIxOlJ0DnV5PhiODUDDI6OgoA4OD2KxWdu7cBcD4+BhOZ2bK1N0A9I+OYrdY2FddnRLfcWRwEGNpKZWVlfT29tLT07N9xg9uEL/fn+hk1xrFxcWcP38+0RimdraN82YymZYdobQgvLfa2XZXrlzhk5/8JIcPH+ad73znXd8vCAJvfvObOXfuHI2NjXdsZMjJySFnlemEBe//js4bwH33yZ2Tjz8Ox47BJz8J//t/g1I/uulpeOc75fFX73633GG6Tm2nqakpgsHg5hUTnz0Lra2y1IoSSJLcLDHfSLNWCgsLyc/Pl6NuKZTmsZhMHKyrw+vzqf6iHgqFmJycRBAF8jx5iIJAOBwmKysrER0zGF6OHubmLl83KQgCJqMxcfIXRRGz6eUInNVipbTk5W7UYChIbL7uKhwOcfNmNwAZjgyysrJwZbpU78jV79hBNBZLmQYNKRYn3N+Ptbycffv2rfq8vN3p6+vjypUrPProo6r/zSWD4uJinn/+eSYnJ5fN4qkNdZ9R10B2dnaiTu1WFp5bzQHa0dHBhz70IcrLy/nIRz6CfpWjXBaibZtVn9XX10dmZuYSjbklVFTIEwPe9z5Z/uK1rwUlioXPnoV9++Sasu9+Fz73uXU7biDLpLjdblyb1bH21a9CcTE8+ODmrG+tNDXB4OC6pjqMj48Ti8UQRZHY3BzR8aW/cTXjsNkomj8+RicnVTVbMhaLMjw8RFPTDa5cvcLA4AChYBAAo9FEXV09xcUluFxZixy3lXDYbDx08CCOVc4iNpvM2Gz2xDb37dtLWVkZAgI93T00Nd1IvFdSWtDvFqKxGGdvXGdiZgZBELZ87NVGiQwMIEUiFBYWpofWz+N2uxNZDy1SVFSEIAgpkzrdNs5bZWUl/f39+Hy+Rc83NTUlXl+JgYEB/viP/xiXy8WnPvWpNYWOB+cV7jerPquvr2/lqNutGI1ylOuHP4TTp+WauM9+Fm7bD0mhp0eO9t17r9zBefkyvPGNG15tTk4OR48e3ZzQ9fAw/Nu/wbveBUpFBn7yEzCb5WjpGgiFQpw9e5ab8zVu4e7UUgC/lblAgIutrTSpoF5PkuSi7FAoRH9/P0ajkcqKCvbv209paZmitun1BtxuNzU1Nezbt5eKCvm8FQ6HuNLYyODQILGYsh2S8Xiciy0tzMz5Us5pW0CKRIkMDAAwPDzMqVOnVHVjoQRmsxmXy6XZQfVmsxm325123raaBx54gFgsxve///3Ec+FwmB//+MfU19fjmZeHWG448cTEBB/4wAcQRZG//du/vaMT5vV6icUWFylHo1H+4z/+A4PBsKzkyFqJRCIMDQ2t3nlb4DWvkXXETpyA979fFoP9//4/GBvbsE1LaGyUJUAqKuRO0v/zf+CFF2ATNILC4TAzMzObdyL9u7+TGxXe+97NWd96+OlP5e9ljdHIzs5ORFGktLSUuM9HdGw0SQYmH7vFwq7ycnqHh+mYl2vYavwBP52dndy4Id/QWa029u3bR2VlFVlZ2ZuS2vX6fPziwgW8m3DzpNcbsM9PJxAEgcxMF4MDA1xubKS3t5dweOtndEqSxJWODqZmZzlQW7vqCKMaCff1I8ViWK1WpqamGJh35rRMbm4u4+PjmnVkU0msNzVvm5ahvr6eBx98kC996UtMT09TWFjI008/zfDwME888UTifR/72MdobGzk5C2D3j/4wQ8yODjIW9/6Vq5du8a1a9cSr7lcrsR4rRdffJGvf/3r3H///eTn5zM7O8szzzzDzZs3ede73rUpefKhoSFisdjanTeQhXu/+U34+MflOaJ/+7fwqU/B298uS2Ts2wfrrWWYmYGTJ+Ezn5HTo6Wl8Pd/D+94B2zi+JuhoSGuXbu2OXUXExPw+c/L0cHN6lpdK4EAPP883KE55U6Ew2G6u7spLy/HYDAQ7OhQfAzWRin2eAiGw7T39mIyGCjeIr29UChEb28vU9NTmIxG8vLykaQ4giBuepenJEmEwuFNv/gZDEbKysooLCxkZGSE0dERIpEIFRUVm7qdu9He18fw+Dj7amrIXkczkpqQIhEiAwM4SkrweDy0t7dTWFiYEsXqycLtdtPT00MgENBk40JxcTEXLlxIiWkT28Z5A/izP/szPB4PP/nJT5ibm6O8vJxPfvKT7N27d8XlFjTgvvnNby55be/evQnnrby8nNLSUp555hmmp6fR6/VUVVXxl3/5lzy4SfVUvb29GI3GRKRwXezYAf/0T3Lk7fOflx2uL3xBTt0dPAj33ANHj8r/5uUtbXKIx6G5Gc6ckVOxZ87IdVuSJDuA3/ymnB5NQspkbGwMl2uTirQ//WnZ5v/9vze+rvVy6hQEg2ueLrGQKi0vLyceCBDZJnUoVcXFhCMRBsfHKcrNTfqFUkKipbUFKR6norycrOxsBFL34mwwGCgqKqKgoCCRBZianiISiSQ6YZNJgduNzWIhLwUKuldDuK8PQ1ERVVVVnDp1iuHhYU1PXXC5XDys1AQaFbAQNOnr61P9nNNt5byZTCbe85738J73vOeO7/mnf/qnJc/dGoVbiZqamiVSIZvNwMAAhYWFm9Odl50tz0P94AflerTTp+XHt74lj9sCuQ7MYpG12GIx8PtlZ0OSZGHdXbvkmrY//mPZ4aupSVpHqyRJjI+Pb07b/syM7MD+3u+Bkt1kP/2pLK68c+eaFnO5XNTV1WE0GgmqYPj8ZlK/Y0eiHT9ZbflTU5PYbDaMRhNVVVWYTWbVd7yuBVEUE5/HNzfH4NAQY6OjlJaWYrffpdFpHYxNTeFyOLBbLNg30IykNqRQmMjgEK6iQnJychgZGdG087ZAKo2J2kxcLhc2m43+/v6085ZmbQwPD1NbW7u5KzWZZMfr6FFZgw3kiQNnz8rK/4GA7LTpdLITZ7HI9WyHDsHdOl43kenp6UQEYcP8wz/ITugHPrDxda2XeBz++7/laRhrdFAWOpjjoRCRFBrZshoEQUAQBOYCAS61tLCvpoaMTUrRRCJhurpuMuOdoaS4mLy8fKyW7Z3+KSoqJjPTRW9vD03NzbjdbkpLSjfNWR2dnORiayvVJSVUpMpM5TUQ6e3BUJDPwYMHNemw3M7Q0BAXL17UpGSIIAjk5eWlRNNG2nlTEaFQiKmpqY2lTFdLYaEsWqsiwuEwTqdz4127N2++rHu3WUK/6+GFF2RbfvM3V72IJElcvXqVHTt24HA4iPT2Qnwbhd1uwWQwIIoi55uauKehAcsGJRtmZqbp6upCEARqqqtxOjM3x9A1YLNYOLxzJ7Ytjk7Z7Xbq6uvlkVzj45sWHJ/0ernc3kauy0W5ksdSEokHQ0RHRjDMR9x8Pt+SMYtawul0JrIgWoxCejwempublTbjrmyfPMI2YHRU7ibcEudNhXg8Hk6cOLHxNNr73w9ut9wFqyRf+xqUl69pJNbExAS9vb3EYjGkaJTIvAzNdsSg13Owri7hwIWXEdleLZFImPb2dmw2G7t27VLEcQPQ63RkO52KCNYKCOS6c6mrq0cQRAKBAKOj648gzPr9XGxpIdNuZ1919bYu5A/3yh2GAwMDPPvsswTn9f60iNVqxWazMZYMpYIUwOPxMDU1taapTEqQdt5UxMjICKIobk7aMMWIxWKbc8L8wQ/kxz/8Ayh59zw3JwsWv/3ta0qZ9vX1YbPZcLlcREdHkWLbe1C02WjkUF0d4WiUy21ta14+FAohSXEMBiP19fVUVVej1yuX6gmGw7T29BAMKz+Ifnp6mu6eHjo62telDTfp9WIxmdhfU7ut6gWXI+7zEfN6yZ1votG6bEhubq6mnTd4OZiiVrb3EZlijIyMkJOTs+rJDtuJ0dFRnnnmmY05cIEA/MEfyJ2dSqeE//u/ZaHk//W/Vr1INBpdpPG3XTpM74bNYuFgXR1Va5THmZub5caN6wzN1wRarTbFO0lD4TBdAwOJeahKkp+fT1VVFV6vlxs3mlYdSViQOSnNy+NYQ0PKCvGulcjQMAaDgfz8/JTR+koWbrebUCikyQhkTk4Ooiiqvu4t7bypiJGREc2mTCcnJ7FarRvT1vnEJ+QxVJ/5jHIzXhf42tfkcVxlZateZHBwMKHxF/f7iU3PJM08tZFpt5PlcBCPx+lbxUlzanqKlpYWrFarZo+Z1eDKdCWG3re1td51xFYsFuPsjRv0jsg3Dts94nYr0dERpHic4uJiZmdnmZ6eVtokxXC73bzyla9UvdZZMtDr9eTk5Kh+TJh2jkyVI0mSpp23qampjc0yPX1aFif+0z8FpVu8b96E556TU6ZrwOPxcODAAcxms2aibrczNTvL9c5OWm+bgnIrY2NjdLR3kJmZSU1NzaYL7W43TCYT9fV17NhRvmJkUpIkLre3MeObI8OqvYJ9KRIlOjZOTk4OmZmZmow6LXCrFI0W8Xg86chbmtUxPT1NKBTSpPMWi8WYmZkhKytrfSuYmoLHH4cjR2RdO6X5+tflqRNveMOaFjOZTBTMd/RFNeq8ZTud1JaV0TUwwM07NGvM+ebIzXVTUVmJIKRPYathYdSWhERnZweTkxNL3nO9q4uxqWn2V9fg2kKJIDURHR5CEATuu+8+8vLylDZHUTo7O3nhhReUNkMRPB4Po6Ojqh4Tlj7zqYQFL1+Lzpvf70en060v8iZJ8oiu2Vl58oPSukTxOPzbv8Gb3rSmhomuri5aW1sBiE5NEQ+qu9MpmewoKKC8sJCW7m4GbymaDobkSEhZWRmlpWWK17cth9FgoMjjwaj07/BOSBIg0NHZuaggvXtoiP6REXZXVuLeSAQ8xYlOThKfrw0MBoPMzc0pbJFymEymhPam1sjLyyMUCqk6dZ523lTCyMgIVquVDA3e8WZkZPDoo4/icDjWvvBnPwtPPglf/SqUlGy6bWvmxz+W06bveMeqF5Ekia6urkSaJrrNRHnXQ01pKQVuN9PzF8/BwQGuX7tGOBxSpdO2gMVkoqGiYsOadclCEETKK8rJdefS3d3N1NQkAIVuN3uqqijUYKf7IqSXo94XL16kqalJYYOUY+FmempqSmFLtp6FIIqaU6dp500lLNS7bWctpTuxMCJpzZ/90iV5bNf73w+/8ivJMW4tSJI8gP7YMTh+fNWLTUxMEAgEKC4uRopGiWq0Rf92dldWUr9jByMjI/T29VFQWIjRqE6naIFYLMas35+YO6pGBARKy0rJysrifGMj41OTGPR6CrTuuM0TGZYv2EVFRYyOjmq29k0eL2dkcnJSaVO2HLvdjtVqTTtvae6OlpsVfvazn9Hd3b22hQYGZIetoUGepqAGfvELeeTYX/zFurTdsrKyNKHttloEQWBqapIrTTfonZrCman+dN5cIMCpxkbmAgGlTVkRAQFndhbTkQijGupqXg0Lmm8FBQWa13zLysrSZORNEAQ8Ho+qO07TzpsKiEQiTE5OJuZZagmfz0cwGMS6ltmWs7PwmtfIDtL3vy/PblUDH/sY7N8Pr3zlqhfRqrbbapCkOH19/ZQUFOLxeDjf3KwK/bTtwMzcHJda2ygrKqa2tJSZmWnCYe3WWd5OWvNNZufOnRw4cEBpMxRhoWlBraSdNxUwPT2NJElkZ2crbcqWsxCSX3WzQigkd3F2d8v1ZWqZt/jSS/Dss/Dnf76mqJter+fee++lpKREc9pud0MQROrqaqmpruJw/U7i8Tjnm5uJqjglmQr4g0EutDRjt1jYX1ODIEBPTy9tbe3E4+moL7ys+VZSUkJGRgbR6NonVGwHrFYrRqNRaTMUISsri+npadUeE2nnTQUshKU3pHOWokxNTZGRkYFhNd150Sj82q/ByZNyk8KuXUm3b9V87GNQXw+ve92aF3U4HJhMJqIqvsvbSiQk+vp6iUQiGAxGBEHEYjJxsK6OQCjEja4upU1MafzBICaDkYN1deh1OgRBpKqqimAwQG9vr9LmqQIpEiU2MUFOTg4HDhzQ5NSbBS5fvqzJ1LHL5SIWi+H1epU2ZVnSzpsKmJycRK/Xa7LTdHZ2dnVdprEYvPOdstP23e/CAw8k27TVc+mSHAX8sz+DNQpbnj17NhGaj2qwMHg5BvoHGB4eIRRaXCjusNk4WFdHtRq6ildAUKm46UITRU5mJsd3714kZ2KxWCgtLWN0bHRZDTgtsnA8LpS1aBWv18vEhPZ+Ewu6o2qt+VPnWUZjLEwX0GKn6ZEjR6ivr1/5TcGgrJv2jW/IAriPPbY1xq2Wj38cKirgLW9Z02Jer5fR0VFEUUSKRonNpFOmXq+XwaFBCosKsduX3sy4MjKwmEyEI5E7ivgqidNu55VHj+K025U2ZRHxeJyLra003bwJsOy5xu12k52VxdDQ0F3HaGmB2LzD1tfXx+nTp1XdQZxMHA6HaqNPySQzM3O+aSrtvKW5AxseDZXC6PX6lefnTU/Lg+afflqOur3tbVtl2uq4cUMeQv+hD8EaUytjY2PodDqysrKITU2h9etlJBKhs7MTp8NJfn7+iu8dn56mpbubjv7+LbIudZEkiasdHUx6vXjuMsWkbMcOauvqVK2lt1XEA0Hifj9ut5t4PK7Z6NuC86bmaQPJQKfT4XA4VPu9p503FTA5OalJ521sbIxz587d+Y52cBBOnIBr1+BnP4Nf/uWtNfBuSJKsMVdRAf/rf6158bGxMbKzsxFFMZ0yRR57JYoC5eUrz+AEKHC7qSwupr23d1WD7LeKuUCAF69eUZVUSHN3N0Pj4+ytqiLb6VzxvTpRh07UEQqFGB1L12BGJ+WaXLPZrOrOw2TicDiIxWL4/X6lTdly1CyVot0qTBUxPT29/rmeKczU1BRTU1PodLqlL7a0yJIbsRicOiU3A6iN73wHfv5zud5tjR1ZsViMiYkJ6urq5L/TzhuuTBeZTueq55VWFRcTjkS43tWF0WC4a1RpK4jFYnjnfKpJsQ1PTNAzNER9eTl5a+hmn5ycpL+/nwx7BhaLJYkWqpvY1CQUFZKbm7tonJiWyMzMZM+ePZrsOnW5XKrVektH3hQmcO0a0WhUk5E3r9e7fLPC178OBw/Ks0FfekmdjtvsLPzRH8ndpa961ZoXF0WRI0eOUFBQQNzvJx7Qpoo7QCweY3BokHg8vuZB8/U7dpCXnU1Yg/MXV4MnK4sDtbWUrnHIel6eB7PZRE9Pd3IMSxFiU1NIkkRubi4mk0m1shHJxGAwUFJSsjpFgG2Gy+VSbeQt7bwpjPld7+LAhQu4MjOVNmXLWeK8zc3Bb/6m/HjDG+RpBfPitarjL/8SpqbgH/9xXYsLgkBOTg5ms5nopDpPDlvF0OAgg4OD6xqALQgC+6qrKZ6fThLRqB7X7YxNTTExM4MgCOSuIyIpCCIlpaV4Z2eZmBhPgoWpgRSNEZ+ZIT8/n3vuuQdRpZ3EyWZ8fFyTYsVZWVkEAgECKiqDWECbv0QVMXPiBI/96Edk//7vy8X5GiEajeLz+V523q5ckaNt//3f8G//Jj9U1rGX4Pp12Wn7i7+A0tJ1reLq1auJNExsSrsp00AgwNDQMAUFBZg2OCmjZ3iYFxobCYS0PSlganaWS22t9G6wFtDpcJKdlUX/wICmu08X6lHj8Tg+n09ha5RhZGSE9vZ2pc3YchYyYmqMvqWdN4Vpf+Mb+cFv/AbiT38K+/bBT36itElbgiAI7N+/nxyHA/7mb+DIETCb4eJF+I3fUNq8OyNJ8Pu/LzcpfOAD61pFMBikp6eHSCSCJElyp6lG6entwWQykb/GtN5yeLKyEEWR801NiqVRrWYze6ursa7UQZ1E5gIBLjQ347TZ2V1RseH1lZSUUFdbq+nu04V61Pb2dk6dOqW5rkuQmxZ8Pp/mJk2knbc0d2R2dpbxBx6AxkY5ivPKV8p1VPN6TNsVnU5H4fXrWI4cgT/9U3j3u+HMGaipUdq0lfnP/5QnPHz2s+ueqboQccvJySE+M4MUVUdx+1YzNzeL1+ultLRkzbVuy2E2GjlUV0c4GuViS4siTQMGvZ78nBwMCijyB8Nhzjc1YTGZOFBbu3wj0BoxGIwYjXKtVzSqzbrC2OwsUiRCTk4O4XCYGQ3qMS5kSObm5hS2ZGuxWCxYLJa085ZmKV6vV/bud+yQZ2N+61ty9KmuDj78YdiO7dk3bxJ61atkRzUvT3Zc/+Ef5MibmpmZgT/+Y1kw+OGH172asbExMjMzMRqNmpYIsdsz2LVzJ05n5qat02axcLCuDq/fR6cCI31C4TA3BwcJhcNbvu1oLJYYI7bZzmNTUxN9WtXUk2TJEJfLhV6v12TXqdVqBdCkXIjL5VKl1lvaeVMYv9//ct2XIMgq/S0tckruk5+UnbivflUeyJ7qDA/LYrZ1dQiXL9P6l38pO6wNDUpbdnckSY4O+nzw93+/oVVNTk6Sk5MDaFciJBaT0y9Wq23T151pt3Nk5y4qCgs3fd13IxgO09LdTXALnbdYLEYsFsNusXB01y7MSZB0yM7OZmJ8nEhk651SNRCbmkQURbKyslR5IU82BoOBoqIiTcqFZGRkMDs7q7QZS0g7bwrj9/ux2W67gNls8qDzpiY4cADe8Q45MvfJT6ZmU0NrK7zrXVBWJqcb//iPOf/1rxP8lV+RHdZU4CtfgW9+E770JSgq2tCq6urqKCgoQIrHiWksDbFAe0cHN7uTVxqQabej0+nw+pSJwG0VkiTR2N7OhZaWpG4n15OLKIoMDg0ldTtqJTY/HsrpdGpSLgRg3759iZtOLWG321XZqJJ23hQmHo9jv1NXZUUFfO97shP36lfLadSSEjl1p/a2bUmCF1+U6/fq6uAHP4D/+39luz/6UeYkKRGKVz3Xr8P73gfvfCc8/viGV1dYWChfBPx+iGuv+Hmh1i1zC+RxJr1e2np6VDkHdTO43tXF6NQU5QUFSd2OTtSRl5fH2NjYuiRdUp24348Uj1NbW8s999yjtDmKEA6HVRmBSjY2m02VtX5p500FLIm83U5dHfzLv0B3N7z3vfCv/yo3NzzwAHzuc6CW8UCSBFevyhIaNTVw771y1G3B9j/9U8jMJBKJEA6HU8N58/vlVHZFxbo13W5lYmKC/vnaobgK7+a2gsHBQSwWy5Y4b2X5+ewoKKClu5vBbVar1NbbS//ICLsrK3Fvgci3x+PBbrcT0WLjQlySb7bm0WLHaVdXF2fPnlXajC0nHXlLc0fuGHm7nfx8+PjHobdXdojMZviDP4CCAnjoIfjCF2Cri4pjMbnh4MMflp3MPXvgn/8Z7rtPlj25cUNO+97SmRmPxykqKlp+uoLa+IM/kDt/v/1t2ARns7+/n66uLgDiGryLDYaCTM/MUJCfv2XyEzWlpRS43Vzt7GQ8yWUHep0Od5YL/SZ0eq7E9Nwcnf391JSVUuh2J3VbC+h0emprarFaUuCmKwnE56MvP//5z+nu7lbWGAWwWq0EAgHNpY1tNhuxWIyQyurO07NNVcBdI2+3k5EhO0TveAeMj8OTT8pzNt/7XrmovqgI7rkHjh6V/92/f92yFkuYmJAnH5w+LT/OnZNHRTmdcor07/8eXvGKFWd9mkwm9u3btzn2JJP/+A85yvmVr2zaiK5bp0rEVRiKTzahUAiL2YzLtXVzSAVBoKGiAkmSEJJcY2mzWDhYW5fUbYBc03e0oQFXRkbSt3U7s7NeRFHEZlOpiHaSWDheDQYD3vkaOC2xkCkJBAJrv2alMAvBFbVNWUg7bwojiiLmjUhk5OTA7/yO/BgbgxdekPXSTp+GP/9zCAZlR6q8XHbqbn9kZIDBID/icYhE5MfEhBzFW3j09cmP3l55u2637Bh+6EOyk3js2KodxIWDQNUDr9va4Pd+D3791+Htb9+UVUqSxOzsLIXzXZCxOfWF4pON0+GkoWH3lm9XFEX2VlcD8vcQikSS0pUZj8eJxmLodbqkjFKamJlhLhCgNC9PEccNoK+vH71BT3VVtSLbV4oF583hcGjSeVtw2Hw+n6act4XPmnbe0izCYrFsXjTA7YZf/VX5AbITduWK7Mx1dclOWGsr/OxnMDgoO2srG/eyk1deLqdCd+2SnbYdO9bdKdre3s709DQnTpxY1/JJx+eT69zy8+Wawk36fvx+P7FYjIyMDKRwGEkBLTAlCYVCiKKAwaCs3EBLTzcjk1Pcs2sXpk124Gb9fl66epVju3fj3OTxbjNzc1xsaSEzI4MSjyfpUcQ7kePOoae7h0gkrPh3uZUs3Gw5HA4GBwe3JJKrJsxmMwaDQXMNK+nIW5plSWr0yWCQ54UePLj0tWhUbnTw+V6OtgnCy1G47GxwuZIi5REIBNQbdYvF4K1vhfZ2uVt2E6MbkiRRUFCA0+kkpsIC2GQzMNCPz+dTJPJ2K2X5BQyNT3C+uZmju3YlvT5tM/AHg1xoacZusbC/pkZRpyE7K4venh4mJibIy8tXzI6tRgqHiYfDOBwOYrEYPp9v9fXK2wBBEHjlK1+ptBlbjslkQqfTqU6gOO28KYxiToxeDwqImIIcgdmKTsM1I0lyg8KPfyxLm+zZs6mrt9vtHDhwAICwWjqEt4hYPMbk1BQFSZa0WA0LUwjO3rjBxZYWDtXVJSXFuVmEwmHONzeh1+k4WFenuLOp0+lxubIYGx/XlPMGcurU5XLx0EMPpUa3fJoNIwgCdrtddZE39Z6xNIIWTwChUAjTZjVQbCZ/93dymvRzn4NXvWrTV+/1egnPp0q11qwwPTVNPB4nJztbaVMAcNhs7K+pYWp2lgGVS4iIokiG1cahunqMBoPS5gDg8eSSnZWFJGmr8zDu86HT6bDZbJpKmS5w48YNLl26pLQZW47NZks7b2kWo9r0YRKJx+Pqc97+/d/hgx+EP/szeRpEEjh//jwdHR2A9pw3r3cGq8WK0aie7z3b6eT47t0UezxKm7Is8XicYDiMQa9nf00NVhXN/rXbMygoKEQQtHUJWThub968SVNTk8LWbD2xWEyzQr1p5y3NIrTovD366KOUlZUpbcbL/M//yB2l73gHfPSjSdlEJBJJzLGVJElzNW/yXMjkC8mulYz5yPfI5CRdgxsfo+Ww2Xj4yBEcG+zGkySJqx0dnLl+XbW6WsFggImJCaXN2FJi845LMBhkcJtO7VgJk8mUyB5oCbvdnq55S7OYDcmEpNk4zz4rd5a+7nXy3NIkpUIWFLrtdjuSBsdilZaWKW3Cinh9Pjr6+jDo9BuKxAmCsCk1aS093QyNj7Ovpka19XjTMzP09/XhcrlUa+NmE/f7kSQpUQMVj8c189lBdt5CoZDmOm2tVqvqRHq186tTKQaV1LBsFZOTkzz77LMEg0GlTZG18F77Wrj/flmQN4mF4AsHvtlsJq6yk0CyCYVCxOIxpc1YkariYkry8rje1cXI5OS61+MLBDjX1IRvAymWzoEBugeHqC8vJ08lNYLL4XQ4iUsSs3MaSqPFJaRIJFH2obYLerIxmUxIkqQ5uRCj0Ug0GlXajEWknTeF0eu1FfwMBALMzc0p/7l/9CP4pV+Sp09873ubN4HiDsTjcYxGI0ajEUljJ77u7m4652v91Ez9jh14srK43NbG5DpFWKOxGBPT00Rj63NWg+EwHf19VBYXUZqXt651bBUWiwWjwYB3ZkZpU7YUKRzWrPOWnZ3NsWPHlD9/bzFq1LdLO28Ko7XImyzUKip78P/bv8Gv/Ao88gg8/TRsgVp4fn4+jz76KKIoakqcV5LizM56cTidSptyVwRBYG9VFYVuNxaFGmrMRiP37t5DVXGJIttfK06nk5kZbU0bkMJhrFYrDQ0Nmit7MRqNZGdnaypVDPLnTjtvaRahNectfMtd65YjSfCpT73cnPBf/yVPkdhqMzTkvAUCAeKShD1F5mCKokhDRQUWk4lINEpwi76rqdlZbnR1IUkSthRqYsp0uchwKDOmSymkSASDwUBZWZnmnDdJkmhpaWF6elppU7YUYxJG6W2UtPOmMFoLP4fDYWUOhHgc/uiP4Ikn4P/8H/jiF2Wh4i3iypUrXL58GdCW87bQoWWxpo5DssCVjnbO3bhBOMl33HOBABeam5n1+1XbWXonXJkuSktKlTZjS5HmU6XDw8Oac2IEQaCzs1NznzvtvKVZgtYibzt27GDXrl1bu9FwWB4w/+lPw2c/Cx/5SNK6Su+E/5YLs5act2g0isViQSeqfwTV7dSVlhGORrnY0kJslTVsFpOJ+vLyVaddg+Ew55uaMBuNHKitRZcCo7puJxgKaqr2a+H4bWlpob+/X2Frth6dTqe64v1ko8brdNp5Uxg1/iiSSUZGBllZWVu3wdlZ+OVfhv/+b/j2t+H3f3/rtn0Lt06V0JLzlpeXT8OuBqXNWBc2i4WDdXV4/T4ut7chSXeXdzEaDJTm5a1qEkIkGuX8vNDrofp6DCkahW9rbWNEQ+PeFo7fBdkMraHX61d9M7NdSEfe0ixBa2nTvr4+hoeHt2Zjly/DgQNw5gw89RS86U1bs91luNV5i2vIeUt1Mu12DtTUMj49s6oO1Eg0ysDYGJFVRCb0Oh3uzEwO1ddjVuHFYbVYrRb8AXUJmCaTBefNaDRq0nnTYuQt7byl0Tw9PT3Jd94kCT7zGTh6FOx2uHABHnooudtc0RxpUaOGViJvkUiYixcvMjub2t2IOZmZPLB/P9mr6Jj1B4NcbW/Hv4KOoSRJeH0+BEGgtqwMewo1KCyH1WoloDL1+WQS13jkrbCwkMzMTKXN2FLSzlsazROLxZIbbZychF/9VfiDP4Df/V1ZiLe6OnnbWyX33nsvHo9Hdtw0MlwhGAwSi8e2RWnAQmSsva+P7qGhDa3relcXZ65fT3ojxFZhNpuJRKNEo9vj89yNBZ1Gp9OJw+FQ2Jqtp7q6msLCQqXN2FLUeA7TVs4ujeJEo9HkFWW/9BK89a1ynduTT8pabipAEARcLnmuZ2xOOzNNw2H5ImdQ4V3reonFYnT09WHU6ylwu9e8fHtfL/0jI+yuqlpVXVwqYDSaMBoMxGLxrWzgVoyFyHlxcTHFxcUKW7P1LIwFs22BPqZaSEfe0miepETe4nH4xCfgxAkoLobGRtU4bgBer5empiai0ShSRBspU4BINIIoCCnZaXonakpLKXC7udrZyfga5RJ6hofp6OunurSUwnU4fmrFbrezd+8+5fQbtxrpZQcuGo2uqpFlO9HU1MTVq1eVNmNL2RaRtw9+8INr3oggCHzqU59a83Jpth95eXmbm2poaYH3vAeeew4+9CH4y7/cUv221eD1euns7KSmpoZ4WBupJYBoJKrKk95GEASBhooKwtEol1pbObprF45bIhA6nY7MjIwl0eVYLEbXwABlBflUaCDl5AsEuNrRQTgawaDT01BZSYbVuug9EzMztPb0EI3FEAQBd2YmNaWlCIKAPxjk+cuXFy2zr7paNQLG8XCEWb+fF154gfvvvz9xTvP5fFy+fJlwOIzBYGDv3r1kZCwWMZ6YmODMmTPY7S8LV997772J30xvby8dHR1IkkROTg4NDQ2qmmig1+sJ3DK7dzWfua+vj66ursTfwWCQrKwsDh06hN/v5xe/+MWiZQ4ePKiqyJ4gCEuCDtevX2d4eJhAILDoN3A7K32fG/mu13yVO3fu3FoXQdhiTa006mX37t2bsyKvV9Zr+/SnoaQEfvpTeMUrNmfdm8yCvptOpyOu8gHtm4nH4yErewtlYbYIURTZX11NR38/ttsU9u0WC/c0LJVG0el0HGto2Dap0tu5evUqeXkecnM9gFzXV+zxUJSby/DEBNc6Ojh227Gv1+nYW12N1WwmHo9zrqmJgbExinJzE6/fu2fPln+WVSHFExfZW4WVr169SmlpKcXFxQwNDdHY2Mh99923ZHG73c7999+/5Hm/309raysnTpzAZDJx7tw5ent7KSsrS9pHWSu3d5uu5jPfnmJ+7rnnKCoqSvyt1+uX3R9q4nY/Jj8/n8rKSk6dOnXHZVb6Pjf6Xa/Zefv2t7+91kW2jHA4zL/+67/y05/+lNnZWSoqKvid3/kdDh06dNdlx8bG+OxnP8v58+eJx+Ps27eP973vfRQUFCx57w9/+EO+9a1vMTw8jNvt5o1vfCNveMMbkvGRthWSJOH3+zGZTOtPncbj8O//Lk9K8Hrh//5f+MAHQMVjaiRJevnA11CKxWAwbLvI2wI6nY6aUnmywKzfj1Gvx7RMXczM3BxtfX3srapa9vXtgiTFEzWOoXCYmbk5DtfXA5CXnc2Nm134AoFFkTPnLZEnURTJsFoJhO7cpasq4nGE25y3UCjE9PQ0R48eBeSL+7Vr1/D5fKuOIg0NDeHxeBIp6LKyMtrb21XnvG3kM09NTREKhfB4PFtm82Zwu/OWnZ1912VW+j43+l2v+Qqal5e31kW2jE984hM899xzvOlNb6KoqIinnnqKP/mTP+HTn/70ihEfv9/P+9//fnw+H7/+67+OXq/nO9/5Du973/v4yle+gvMWiYD/+Z//4e/+7u+4//77ectb3sLVq1f59Kc/TTAY5Nd+7de24mOmLPF4nF/84hfs379/fd1Kly7Be98rd5C+5S3wN38j17ipHK06bwMD/VgsFrKy7n6SS1UkSaKxrQ1RFDiycxe+QICXrl7l2O7dGPR6LrQ0YzYat332wWAwEJnvNg2Gw5iMhkWf2WI0EQyH75j2DIXDDE9OcKC2LvFcNBbjpatXkZDIdWVRWVSknv0oSYnI20LNWzAYxGQyLf7cFguBQGCJI+P3+zl58iSCIFBcXJy4YAcCASy37KOF5dWEKIqJz76Wz7xAb28vRUVFi9KD0WiUF154AUmSyMvLo6qqSj3f9TzrsWel73Oj3/Wanbd3vetdnDhxguPHj7Njx461Lp40mpqa+PnPf8673/1u3vrWtwLw6KOP8va3v53Pf/7zfP7zn7/jsk8++ST9/f188YtfpK5OPnkcOXKEt7/97Xz729/mXe96FyDfZfzLv/wL99xzD3/1V38FwGOPPUY8HufrX/86r33ta5fk+tO8zMJJbs0Hwfg4/Pmfw5e/DDt3wrPPwgMPbL6BSSIjI4PS+SiNloqbJycncTozt7XzJggCe6qqOHvjBhdbWqiev5kIRSI0treh1+k4WFuHPgXHXq0FnU5PfJ2q+9FYjIstLZQXFJI5H40zG408dOAAJqORSDTK5bY2ugYHVVMveOsN2VqPaafTySte8QoMBgPBYJCzZ89iNBqXzfKokZqaGmpqata1bCwWY3BwkHvvvTfxnNls5uGHH8ZkMhGJRLh48SKdnZ1UVlZulsmbgtqcyTVXQYZCIb785S/zW7/1W7z1rW/ln//5n7ly5YriF6Xnn38enU7Ha1/72sRzJpOJ17zmNdy4cWPF8S3PPfcctbW1CccNoLS0lP379/Pss88mnrt06RIzMzO87nWvW7T861//egKBAKdPn968D7QNWfNvpLsb3v9+KCuD73xHrm+7fDmlHDeQw+uJea4act4kactHyCqCw2Zjf00NU7OzXO/qIhaLcbmtlWgsxqG6+m2dLl1AEF4+vs1GI6FwZNHxHgiHlp0iEY3FON/URG5WFjtucV5EUUzsN4NeT5HbzZTKxJ4tFguPPPJIYtyf2WwmFAot/ty3RVdAru9aKCcwm80UFBQwOTmZWOet0ZflllcTq/3MCwwODpKRkbEoyCGKYiJ1aDAYKC4uTuyPVGel73Oj3/WaI2//9m//xuDgIC+88AIvvvgi//Vf/8V3v/tdHA4Hx44d4/jx4xw+fHjL28bb29spKipaEqpdcMg6OjqWzbHH43G6urp49atfveS1uro6zp8/j9/vx2q10t7eDkBtbe2i99XU1CCKIm1tbTzyyCPL2jc+Ps7ExETi756eHgDm+vuZuSUVbTAYsFqtxONxZmdnl6xnIYU7Nze3ZL6c1WrFYDAQDoeXhF/1ej02m01Wd19mzE9GRgaiKOLz+ZaMPjGbzYm7Iv9tSuo6nS7RNTUzM7NkvXa7HZ1ORyAQwOfz4fP5mJ2dZWZmBpPJhNlsJhqN4vPdon/W2Ijwmc/gePJJcDrx/v7vI/3u70J2Nsy/z2azodfrCQaXDsU2Go1YLBZisRhzc3Pr2oehUIjgbSr5C/vwTt+Nw+FAEIQl+zAYDKLT6cjJySEyXw+0ZB/OH7S3vwaQYbUiiiL+YHDJ2CWT0YjZaCQai+G77TtfqCMC8Pp8S5xnm8WCXqcjGA4Tum3qg9FgwGIyyfvwtvUKgpDosJz1+xcVbANYzWYMej2haIS5QHDRZzLo9YkC9dllVPkdNpu8DwMBord9NxaTrCcWjkQI3Pad63U6bBZLYnrB7ay0D81GYyLCc/tkhLvtQ7vFgk6nw2o2U1FYyPnmJuJxiSpXEeWFhVjN5mW/m7vtw5W+m7vtw4VasrlAYOnve/672cg+XO67yc3Lx2w0EIlGCYbD6ESRlu5uCtxuxmdmMBuN2CyWRb+F6LyTW5zrobKoiEAolBAuDkUiGHQ6LGYzRr2egfExdIK4aPlb9+Fm/r5Xsw8t81NTgsHgovOE0Wikv7+fwsJC2tvbiUajRKPRxLnR4XAQCoWIRqPEYjGi0ShdXV0UFhYSDofJz8/n+eefJy8vD5PJxPXr18nOzmZubm7F8+zC+dvv9xO5Tfz5judZ5n/f846U1+tdug+XOc/29PQwMjLCvffei8ViwW6309TURFFREcPDw4nPtsDs7Gzi993U1ERhYSGRSCRxnp2ZmcFgMCCKIvF4nJs3b+J2u9d8ngXZITIajRu6Bi63D81m87oib/n5+bz44ouJ8Yjd3d2JCOtKr62GdVWNFxQU8Ja3vIW3vOUtzMzM8NJLL3Hq1CmeffZZnnrqKUwmEwcOHOC+++7j2LFjWzJKY2JiYtkCwoXnxsfHl13O6/USDofvumxJSQkTExPodLqE4OoCBoMBh8OxyDm7ne9///t87WtfW/L85Te8gcGjR+H1r4eCAgoLC9m/fz+BQICTJ08uef9jjz0GQGNjI1NTU4te27dvH0VFRQwODnLt2rVFr7ndbo4ePUosFlt2vY8++ihGo3HZKOXOnTspLy9nbGyMixcvLnrN6XRy4sQJAE6dOrXkIvTAAw+QkZFBW1sbXV1d3Lhxg1AoRFZWFpWVldTV1cm/oRdflKNq3/seXL2KOS+Ph//xH+G3fouzL71E8MaNRes9duwY2dnZ3Lx5k46OjkWvlZSUsGfPnkRdya2IoshrXvMa4OVI6q0cOHCAgoICBgYGuHHbNj0eD4cPHyYajS67D1/1qleh1+u5du0aY2NjiecHBwcxm8385m/+JiNjY1y4TSMpMyMj0aH40jL6SSf27cNmsdDW28vQbb/jyuIiqopLmJ6dTQw5X8BqMXP/vv0AnGtqWnJCOtrQgCsjg5uDA3QPLp4aUJKXx87ycubma7huRafT8ciRIwA0trUxd5sDsb+2Fk9WFiOTk7QMDJJzi82e7Gz219QQjkaX/ayPHj2KIAhc7+pkcmbxCXZXRQXFHg8jk5Nc7+xc9FqW08GRnbuQJGnZ9T548CBmo5GWnh5GbjtOq0pKqCwqYtLr5VJLy6LX7FYr9+3dC8CZ69eXXMiP7d6N026na2CAnqEh/P4Aw5OTWIxGHHYbbpeLWb+fM7cdjwaDgVfMN1Jdam3BH1jsNB6qrycnM5O+EVkb7lbyc3LYW11NIBRa9rO+6tgxAK51dDB928Vvd1UVhW43QxMTNN0i3QCQnZnJ4fp6YvH4suv9pUOHMIoizT3djE0uPvfUlpWxo6CAofFxGtvaCIZCXO1oJxqLkWGz8bZHHgXgm888g9NqJTMjg6GJcQbHx4nXS4xNT9M1MEA0FiU/O4ep2VkGx8cocLspzvWgE0VGvV5GbonImIxGHjp4EIALzc1LHLTDO3eS7XTSMzRE18DAoteKPB4aKirwL7MPBVHklfMF+Ffa2/DeJqy9t7oahyTR3d3Nj370I/Lz8xOOVUZGBj09PTQ1NXHp0iXKy8s5efIkN2/eJDMzk7e97W0MDQ3x1FNPMTMzgyRJuFwuwuEwdrudsrIysrKy+NKXvgTIjkppaSmzs7OJVONy556HHnoIm81GS0sLA7d91urqampqapiamuLMmTOLXrPZbDw0Pzrw9OnThG/bh/feey8ul4vOzs6E1MfAwACjo6Pk5eXR0NBAeXk5//7v/04kEkGn01FeXs6LL75IQUEBHo+HlpYWZmdnCQQCNDU1sXfvXnJycsjLy6O3t5eXXnqJgYEBBEFAkiTKy8s5duwY4XB42c/6mte8BkEQuHLlypJr7p49eygpKWF4eJgrV64sei07O5tjx44hSdKy63344Ycxm800NTUxdNsUldra2iXO29WrVxkZGSEUCnHmzBn0ej0PPfQQV65cwePxkJeXh9VqpaamJtGRmpOTkyihWem11SBIm5jvDIVCnD9/nlOnTnHmzBmmpqYQRZGdO3dy7733cvz48aQpUj/++OMUFxfzN3/zN4ueHxwc5PHHH+e9730vb37zm5csNzIywpve9CZ+7/d+j7e97W2LXvvRj37EJz/5Sf71X/+Vqqoq/vqv/5qf//znPPPMM0vW88Y3vpHq6mo+/vGPL2vfcpG3j370o/zDgQNU/vu/y3Vdv/zLGN7zHqyPPEJcELZd5O32E4PJZMIcDhP97nfx/cM/wI0bsHcvvP/9CK99LY75dMRq7wgXUFvk7ebNm/T19fHYY4/h6+xk6sZiJ2u7Rt66e3vQ6fU4HC83/GzXyFsgFOJaZye9Q0PsrqpiaHycwtxcKouKNBF5m/V6MRsNODNdS/bh3X7ft+7D20eGrfT7VjLy5jh4AJ9Ox1NPPcXBgwdxz4sur/ccAS9HjdZznt3KyFt7ezv9/f08+uijdzzPCoKQ0D27NfKW2IcrnGfvln1SKvL2V3/1V5w8eZIvf/nL667520w2Vc3UZDJx7733cu+99yJJEtevX0+kVz//+c/zhS98geeee24zN7lo27fvcCDhMNwpjbvw/GqWNZlMS34st753pVRxTk4OOTk5S563/97v4fzEJ+Ab34C//Vt49avB40F84xtxvvnNcPw4LFPsfKvA4+0YjcY7jvMQBGFR9+ztrNTSbjAYVlx2pdcsFsvL+fy5OfjhD+U6th//GH0ohPOVr5SHyT/wwJJCqZVEfc1mM+Y7yITodLoVbVppH5pMpjt+n6IormkfOhyOhDSKwWhcJJFwOyu9Zl1BDkWv0624rGOF79U8f4FcDt1d1nu78OqtlJXc+S5SFMUV17uSGKvRYLijXpogCOvehwa9ft37cHB8nInpaQ7t3ElpXh7hSIT2vj4cViu5WVnr3ocrfTd324crDbzfyD5c7rsZHhggqBPJyXGv+/dtMZmw3OGYU+r3fcd9KAgYDAZsNhtOp3PJ+WCt54hb2ch51rrCb0mv16+47GrPs3a7Hbvdnjif3+08u1IT32aeZ29lI9fAO+1Dpev6bydpUvSCINDQ0EBDQwPvec976O7u5sUXX0zW5sjOzl6UqlpgIdq1nOME8g/WaDQum/K8fdns7GxisRhTU1OLUqeRSASv17sq3ZdlMZvhne+E3/5tOHdOdmq++13453+G/Hx44xvhzW+GY8dARUrba8LnI/6DHzD5hS+QffYsQjAIhw/Dxz4mf741hItTjYV0gPxHin5/68Af8CMKAmazeguuN4P+0VHaenqoLC7CnZlJY1sbVcXF8hSGtjYO19eTtc0HmEtIquvGSzYLx7Saph9sFVr7rtXImp23v/7rv17xdUEQsNlsVFRUcOLEiYR3XFZWllShwcrKSi5fvrxEHLBpvg7oTm3HoihSXl5Oy221LgvLFhQUJDzxqqoqAFpaWrjnnnsS72tpaSEejydeXzeiCEePyo+//Vs4c+ZlR+4zn4HCQnjDG+DBB+X3qFhzj3gcWltlTbann4Yf/hAxEEBfWYn3Ax/A+du/DSqSmkkmOp0uMfpGS+e8nu5uTCYT5eUVSpuSNCRJon90lCKPh6riEmbm5hgaH2dHQQF7q6o439zExZYW7t2z545Rpe1ANBLFomKh7M3m1hsyrTkyhYWF6w9UpDApH3l76qmnVvU+QRD4zGc+wxNPPLElYy8eeOABvvWtb/H9738/ofMWDof58Y9/TH19faLTdGRkhGAwuKgw8P777+eLX/wiLS0tiU7S3t5eLl++zFve8pbE+/bv34/D4eB//ud/Fjlv//M//4PZbF703IYRRTnSduwY/P3fw0svyY7c974H//RP8nvKymQn7p575H/37gWlZAmmp+HsWdnhPH1a/v/0tOyt7NsHH/4w8Te8gRdaWti3bx/OW0ajbHdKSkooKSmR/9DQid5gMBCJLF9msF0QBIFDdXXLRl9EUWR/TS39o6Pb2nEDiEYj23aaxrKIIkajkfr6+hVTlduR26U+tELKO2+f/vSnV3w9Ho8zMzPD9evX+dGPfsRf/dVfUVhYmHTBvfr6eh588EG+9KUvMT09TWFhIU8//TTDw8M88cQTifd97GMfo7GxcVG3yetf/3p++MMf8sQTT/D444+j0+n4zne+g8vl4vHHH0+8z2Qy8du//dv8wz/8Ax/+8Ic5fPgwV65c4ac//SnvfOc7N3fg+q2IItx7r/z4p3+C/n7ZQVpwlL73PQiH5fTrgQNw8KCchiwqevmRn7/xge1+PwwMyNtfeLS3y3Y0N8vvycqSHckPfED+9/BhmN8vIiC0ti4pANYUGkqxyCKkSwvUtwNzgQCNbW13HZZu0OsT+mXj09M47XYMGz0OVUh2djZ2u4Yu6IKA0WikomL7RpXvxOjoKOFweNFsUi2Q8s7b3vm2+bvx4IMP8upXv5rf/d3f5dvf/jZ//ud/vtZNrZk/+7M/w+Px8JOf/IS5uTnKy8v55Cc/eVebrVYrn/70p/nsZz/L17/+9cRs0/e+971LZE5e//rXo9fr+fa3v82LL75Ibm4u733ve3nTm96UvA92O0VF8KY3yQ+AUAgaG1925p5+Gvr6ZGdrAVGU06xFRfJIKY9HjtLp9WAwyI94HCIRiEblf/1+GBx82VG7XTgxO1t2Eu+/H/70T2VnrapqxejS7UONtcDY2BjXrl3jxIkTCNtcaf9W5Mjb0kagVCcYDnO+qQm9TrfqQfOxWIwrHe3YzBYO1dUl0ujbheLiEqVN2FIEnY5gMMjU1BS5ubnb7vtcicHBQXw+n+act9s7ZpUmqbeAFRUVHD9+fIneSrIwmUy85z3v4T3vec8d3/NPCynH28jNzeUjH/nIqrbz2GOPJfTWVIHJBEeOyI/3v19+TpLktOWtUbJbHx0dsoN2q7MmCC87cgaDHMkrKID77lscxSsqkuvv1qH8vWfPHs2F3Bfa2kOhEGYNpZaMRuO2u6hFotGEnt6h+volUTST0UhlcdGSqQo6nY4DtXWcvXGdy+1tHKhZqhuVqsTiMQL+ADabFUEjDTmC0cjU2BgXLlzg0Ucf3Xa/85WIRqOa+rwgO25qyxglPX5fVFSU1C7TNHdAEMDlkh/zArBqIFXm920mC63woVBIU0XdOTlucnLcSpuxqVxuayMYDnNPQ8Oy8hNmo5GqO0ShMu129lfXcKGlhetdXTRsk5Sbb85HS2sLu3fvxmza/r9vQSci6PWEQiGEeckQLRGLxRLSR1pBjRmEpN8mhcNhzX3Rae7M0NDQspIu25lbnTdBA3MutzMVhYUcrKu7o/5XNBZjfHp6iYjtAm6Xi92VlUx5vUsEaVOVcFgWbzUatPHbXjiGF8YabZcI6mrRYuTtdoF5NZB05+3KlSsUFhYmezNpUoSuri76+/vv/sZthMFgQBAE2XnT6xF02kgtSVKcxsbLTEwsP5oulRgcG0OSJLKdTlwrpP19gQDnm5qWTAO4lUK3m3v37MFoMKiuCHo9BAIBTCaTZvTObnXe7iQEu53Jzs5eMiJyu6Mp5y0ej/PVr36VtrY27rvvvmRtJuXZDifvtaDT6VRXO5BsBEHg8OHDCbkarUTfBEFEmB83k8q09/Vypb2diWXGEq0XURSJRKO8ePXqknm1qYbfH8Bq0Y5cxsLxazKZNOfEgDznM5marWpEjc7bpov0xuNxvF4vLS0tTE9PU1RUtOxM0TQyasylJxO9Xq+5blOQG2IWEIxGuG0Q+XbFarHi9985CqV2eoblwfDVpaXk3NZ5vlH0Oh0ZVitXOjow6PWbvv6tQkLCZr/zqKLthjBf46aG+ZZKEAgEMBgMmiqHUuN1OmkivQaDgYcffpjf//3f15yI4VrQmiOj0+mWDJLXAkNDQ0SjUYqLizUTeQOwWi2MjqZmjePwxARNXV2UFeRTkYTSD0EQaKioIBSJcKm1lSM7d644Z1Ot1NbUKm3ClrJw/Mbjcc2kim/lueeeo7q6WlMad9si8nY3kV5BELDb7RQXF2uyHmCtqNGjTyZOp1OTv4uRkRHm5uZk501D3WlWq5VINEIkknoK/OPT0+Tn5FBbWrbqZURRxGoxr/qiLk9hqOHcjRtcaGnm/n370adQMbiEhIC2CvYXnLef/OQn1NbWskMjY/5ALvPRYrfptnDeVivSm2Z1aM15Ky8vV9oERTCZTExMTADaqXkDcDid7N69G70hdU72CxGVXRUVxOPxNXUTZlit3L9v/5q2p9fpOFhXx9TsbEo5bgAjw8OMjIywZ89epU3ZMgSDkVgsRjQaTbkbko0SiUSQJElzN+BqdN60F/NVGVpLm0qSRCgU0lyjhslkSqSLteS86UQdZpM5ZaIz/mCQk42NieaErUqLGQ0GPFlZAPSNjNxRakRteGdnE1I4WkEwGhLHstY+u1Y/dzgcVl2KXF3WaBCtOW/Dw8P89Kc/1VzE0WQyEYvFiMViCBrRw1pgYmKczs5Opc24K6FwmPPNTQgCd9Rxuxten4+fnT+P1+db1/LBcJiWnh4utrSobhzP7UhSnFnvLA6nU2lTthTRaNS0EwPa+9xqLPtIO28Ko0UnBtBc00JGRgYlJSVyGs6orpNAspEkiYnJCaJR9f7Wo7EYF1taiMZiHKqrXzLearVIkpRILa0Hs9HI/poapmZnudLRoeoI9dzcHLF4jEyNOW+Chp237OxsXvOa12iuCVGNwwbSzpvCqDGXnky06rw5HA727NmDwWBAXGdUJ1Vxzl/cvV6vwpbcmRtdXcwFAhyqq8eq8AizbKeTvVVVDE9M0NzdragtKzE358Og12PR0IVcMOgRDAZyc3N56KGHNFf7BXIpgdamSoTD4XTkLc1igkFt6H0toFXnDcDn8+H3+xHNZoQUKuDfKAaDEYvFwswmitxuNlXFxRysq8NhU4deWV52NjvLdzAXCKg2fZqfn8+uXQ0pU8+4GYjzvw9RFLHZbJpzYrq6urh06ZLSZmw5Pp8Ps8rmUqedN4VJdfX5taLX6zWr9Xb+/Hk6OjoAEG2pp+e1EZwOpyqdt57hYSLRKFazmSyHQ2lzFlHiyeNQXR2iKKp2KonaohHJRpzX4bt69Sq9vb0KW7P1eL1ezV2zQC4RsKgsY5J23hRGa5E3gIcffliTkiEOh4PZ2VkARA0p0gPkenKprKxS2oxFdA4M0NTVxejU1Kat02axcLShAdsmnegFQcAXCPDc5UuMTk5uyjo3g7GxMa5fv67aqGCy0NntSJLEwMCA5kpeQM6YaK3OD+TIm9rq/NLOm8Jo8S5Ga3frCzgcDrxeL5IkoUtBJf2NYDaZsavoM/ePjtLW00NFURGFbvemrVev0+HKyNhUvTar2UymPYPL7W1MqqRucHx8TK7fVJl8QrIRbTYCgQDRaBSHyiK1W0EoFNJknV868pZmCYFA6s59XC/t7e1cv35daTO2HIfDQTQaJRAIJNIvWmJubo7W1lYkSdlozejkJNc6OynyeKguKdnUdQfDYZq7bxLcxKiMIAjsq64m027nYksLswrf8AVDQWbn5sjJyVHUji1HkNOmC403WnXe1Fb7lWzi8Th+vz/tvKVZjBYjb+FwmLGx1Jx3uREcDgdms5lgMCgXPmur1hm9XseMd4bp6WlF7QiEw+S6XOxKQuo+FA7TPThEaJNTavIYrVosJhONbW2KSohMjI+jE3W4XC7FbFAC0WJB0Onwer0YjUbNOTEADQ0N5OfnK23GluL3+5EkSXXOm3Za3lRKMBjU3IBjq9WaOCC01K1lNpt5+OGHE3+LFgtxv3Yir2azBbvNztj4OC5X1pZvPxqLodfpKM3LozQvb8u3v1EMej0H6+oIhcOKHjczM16ysrM0dc6Cl5uM8vLyVFUCsJXkpeBxs1F884Lb6Zq3NEvQWvTNZrMRj8c12awBJKImWus4Bchx5zAzPUMksrXF3sFwmBcaG+kdGd7S7W42ZqMRp91OPB6nva9XkS7Uuvo6SoqLt3y7SrPQZORwOCgoKFDYmq1ndnaWzs5OzTWpzM3NAagu8pZ23lSAb52jdFKVhTsYrTmtINf7Pfvss4D2Ok4BsrOyEASYmJjYsm1GolHONzUBkKtAxC8ZzAUCdA0Ocrl9a1OokUgEAQGdTntJG53dTiwWo729XZO1yuPj47S0tGgqWwIvX5/TzluaJSx49lrBarWyd+9ebCoRRN1KzGYzPp+PaDSquY5TAJ1OT21tHR6PZ0u2F5sfexUMhzlUX485yZ1yRoOBkrw8jEnuqHbYbOyvrmFsaprrXV1J3dYCwWCAK1caVT0pI5ksNCu0tLRoUibE7/djtVo157zNzc1hNBrT47HSLEVrkTdRFCkuLtZkwe9Ch9rs7KwmO04B7HY7giBuSfqlc2CAGd8cB+vq1j1sfi1YTCZ2lpdj2QItLLfLxe7KSvpHRmjbAsHYwcFB9Ho9GRna+90Keh2ixYLX60UQBDIyMpQ2actRo9bZVuDz+VRZ45h23hRGr9drLvIGMDo6ysDAgNJmbDkZGRkIgoDX65W71zQ0JutWxsbGuHr1StIduPLCQg7V1ePaoottLBZjZm5uy2rRCt1uaspKk74fQ6EQExOT5OcXIAjau2ws3Gh5vV5sNpvmmjVAjrxpMVsyNzenys+tvV+gyrBarZp03oaGhujaonSPmhBFEfstWlE6DWpFAWQ4MohEooyPJ0cy5ubgIHOBAHqdbkvHXs0FArx09SpzW1gTVV5QSG1ZGQDhSCQp2xgaGkKv1+HeREHjVELndAIwMzOjSX03gJycHLKzs5U2Y8tJR97SLIvNZtNkDYnVatVcuniBQ4cOsXPnTgB0WdujgH6tmE1msrKyGBoa2nTR3p7hYVq6uxnbxLFXqcDEzAzPXrrIRBJmyAqCPIheixEnePk4zc7O1mSnKcCuXbs0p/EG6nXYtXkkqgiHw8GkimYWbhU2m41IJEIkSZECNXNr2kWvUecNoKCggHA4wsjo6Katc3higqauLsoK8tmhsYusKyMDV4aDiy0tzGxyNL+0tIy8PO1duAEEnZiIvNXV1WnSgQmHw8zNzSkqDq0EkiQxNTWlSkHqtPOmMA6HgymNRQiARMGvFqOOkiRx7tw5ent7EW02RLP2Bj2D3Hqf68klskmdexMzMzS2t5Ofk0NtadmmrDOVkKcw1GC3WLjQ0oxvE1K3c3OzjI6OIKGti/at6DIzEUSRiYkJzWYLBgYGeP755zXnvM3OzhKNRslS4U122nlTGIfDQSAQ0JxukN1up6CgAN0mDvBOFQRBIBqNMjIyAmg3dQpQWlJKcfHmzRfNne/AVErOQBAEdDqdYtvX63QcrKtDr9Nx4+bNDa1LQqK7u4fx8fFNsi41WTg+GxsbNVmnC/JNtt1u11zafCGwosbImzZb3VTEQi59ampKdSKAyUQQBA4cOKC0GYrhdrvp6OggHo+jc2URGRxS2iTFkJAYGx3FYrGQkbH22pJQOIzRYCDb6SR7Pr2lFA6bjUeOHFHUBqPBwKG6enQbvNCOjoziD/jZWV+PoLVBvLegz8rC5/Ph9/s127Dh9XpVWfeVbBact8zMTNWVN2nLjVYhtzpvWiMSiSg+pFwp3G430WiU6elp9FkuzQ2pv52JiQm6u7vX3LwQCoc5c+M6LT3dyTEsRbGazZiMRoLhME03b65ZSiQSidDf30+uOxebBse4LSCaTYg2G2NjYwiCQE5OjtImbTmSJDE7O6tJ521ycpKMjAwMSRbdXg9p501hTCYTZrNZk85bX18fL730kubqKACcTidGo5HR0VEEgwGdBkU/FxAQKC0rIxgMMTS8+tmj0fnpCdFYjFKVFNPP+v280NjIrEpGv/mDQXpHRrjS0bGm42xsfAxRFCguLkqidepnIWU6NjZGVlaW6lT2t4JQKITBYNCk8zY1NaXKejdIO2+qwOVyadJ5czgcxGIxTc44FQSBw4cPU1FRAWi77g3AarGSn5/PQP/AqnQP4/E4l1pbmQsEOFhbh1Ul0zri8Thzfr9qhndnORzsrapieHyc5u7uVS+Xn59PbW2dJmeY3opufhau2WzWrESI2Wzm4Ycf1mTKWK2dppB23lSBy+VSXT59K1i4k5tJgi5VKuByuRLheC1LhixQWFiA3W5jbOzu0iEDY2NMer0cqK3FqUIBTTWRl53NzopyeoaG6LzLVJNAICCPgELQVA3usgjIJQ1AQ0MDZfNCyFpDi5mRBdTsvGn7tkolZGVlcf36daXN2HKMRiMmkwmv16vJu9p4PM6VK1coKCggNzcXQa9Dim7NWCU1Iggi1dXViKvoQC72eHDa7ThUOLZGjZR48giFI1iMxju+Jx6P09HZgYDAzl07Nd2kAKDLyEAwGJidncVkMmFcYd9tZy5cuIDBYGDv3r1Km7KlhEIhfD6fap23dORNBbhcLmZmZrZsHqKacLlcmvzcIOtyzczMMDw8LEtMqPQksZXodHoEBGZnvcuOzro5OMjofJQ67bitjariYgrmU1/LacD19PYQCoWoqKjQvOMGiyVCtHhzvYDX69Wk47pQypSueUtzR1wuF5IkaTJ9eOuoKC3idrsZnZ8woNfg3MA7MTU1TXd3Nz7fy/VvA2NjtHR3M63iWcBWs5n9tbWqqcFbjv7RUU5dvcLU7GziuYmJCcbGxigtKU2nS+fRZ2cTDoeZnp7WZL0XyF3Hfr8fp8ISPEqgZo03SDtvqmDBs9di3RvINRVqKfDeanJzcwkGg7JkiNsNYjriAVBcXITVaqOtrZ1wOMTY1BRXOzoo8nioLtk8Ud/NxqDX48nKwqDirsSCnBycNjsXmpuZ9fuRkBgcGiQnO1uzTsrtiFYLOqeT4fnuZ63ul4VrklodmGQyOTmJ0WjEarUqbcqypJ03FeBwONDr9ZpUMo9Gozz99NMMDWlTpDYnJwez2UxfXx+CwYA+R5sXidsRBJGqqipEnciFy5e50NJMrsvFrvJypU1bkVA4TEd/P6FNGvmVDERR5EBtLRaTifNNTYTCEepqa9mxY4fSpqkGQ14eIMsZud1uzCqOpCaTqakpTCaTah2YZDIxMUF2drZi01LuRtp5UwGiKOJ2uxPjkrSEXq/HZDJpUioFZMmQ/fv3U1VVBYAhP09hi9SDwWCgpqYGo8FIjtPJ3qoq1Z5IFwiGw7T39hJUsfMGcoRwT2UFg4ODtHZ3o9cbEIT05QCQu0zz8ojH4xgMBkpUHOlNNtXV1Rw/flxpMxRhZGQEj8ejtBl3RL2xfY3h8Xg06byBdqVSFsi+pdZNl5WFYDIihdR98d8KguEwOp2eA/v3ISAQj8eRpHjaydgEotEI3V1dVOfnUVNSrLQ5qkLvciHOR9oOHz6ssDXKIooiNg02BsXjcUZHR9m1a5fSptyR9FlQJeTl5TE6OqrJ2q+srCy8Xq9mu04Benp6uHLlCoIgJFI2WiYSjXK+qYkrHe2Jzse2tlY6OjrXPEIrzWKi0Qitra1EozF2796N2Wxhem6Oq2ucwrBd0efnI0kSo6Ojmt4fXq+X06dPEwwGlTZly5mcnCQSiag68pZ23lSCx+MhGo1qMgKVlZWl2W7bW+nr6yMYDGreeYvNj70KhsPUlpYlns/Ly2dmZprWtjZisahyBqYwkhSnubmZcDhCTW0NZpMcYYpEIgyMjXG9q0thC5VF0OvQ5+QwMTHB2bNnNVvOAXLN10LRvtZYyIKlnbc0d2XhR6LF1Kndbufhhx9WrZ7OVlBQUIAgCAwMDCDabOgc2px1KkkSje3tzPjmOFhXh/0W2YrMzExqa2vx+3w0N7cQiUQUtHR5DHo9nuxs1XabCoJIYWEhdfV1WC0vF6G7XS52V1bSPzJCW2+vghYqiz43F0Gno6+vD5vNpulz0uTkJJmZmYii9tyEkZERMjIyVJ0y1t63olKsVisZGRmadN4EQdBsN9cCBoOBvLw8+vr6ANCrZND6VjPp9TI2Pc2+qmpcGUsdWLs9g7q6eqLRCNPT01tv4F2wms3sr6lRnc7b7KyXwUF5NFZWVnYi4nYrhW43NWWldPb30zMvkaE1DHl5RKNRhoaGKC7Wdi3g5OSkJiVCQP3NCpB23lSFx+NJ6AppjeHhYU6ePKnpGpPi4mJmZ2fxer0YPLma1HzLdjo5sXcvuStEPCwWCw0NDQntrVAotFXm3ZV4PE4wHFZV7erExAStra14Z2fvWi9YXlBIZXGxJufFilYLusxMhoaGiMViFBUVKW2SYgQCAYLBoGYjj2nnLc2a0HLHqcFgYGZmBq/Xq7QpiuF2u7nvvvtwOBya03zrGR6mo78fYFVRK51OTkvOzExz9epVhoaGkFDe8Z/1+3n2wgVm/X6lTSEej9Pd3U1nVycuVxY11dWr6tStKi4m024nHo/j9fm2wFJ1sFBrqtfrKSsr0/SkCaPRyKFDhxZ1wmuFBdH0tPOWZtV4PB5mZmY02d3jcrnQ6/WMjS2dZ6kVBEEgMzMz8bdWNN+GJyZo6uoivI4aNofDQX5+Hn39fbS1tqmyDk4phoeHGB8fY0fZDnle6RolVjr6+zlz/TozKh5HtmnMa7sB5Ofn09DQoLBByqLT6cjLy8NgMChtypazMK4w7bylWTV58ycPLUbfRFEkOzs7ceBolWg0ysmTJxkaGkKXlYVoNiltUlKZmJmhsb2dvJwc6srK1ry8IIgUFRVTU1OD3+/n+vXrBJYZuq4lgiH55i8vL5+dO3ete7RTeWEhdouFCy3Nyw6y307os7IQzWZGR0c1Hf2H+aahxkZV1pRuBcPDw+h0OnJycpQ2ZUXSzpuKyM7ORqfTadJ5AzltODU1RTSqXRkIvV6PKIr09PTImm/bWN191u/nYksLWQ4HeyorNzQ9welwsmvXLrKyszDPO7xa04MLh0O0t7dz/fp1IpEwoihuKPWn1+k4UFuLXqfjQkuzqkd+bRRDSQnxeJwrV65w8+ZNpc1RFK/XS19fn2Z1N0dGRnC73eh0OqVNWZG086YidDqdZsdkARQWFnLfffehV6nMwlZRXl7O2NgY09PTGAoKELapzpLFZKLYk8v+mppNkSMwGAyUlpQiCCKBQIArV64wNjamilq4ZCJJcQYHB7h67Ro+3xzlO3ZgMGzOb8ZkNHKorp5oLMbgNp29rMt0one56O/vJxgMUq7y+bnJZnR0FL1en+40VTlp501l5OXlMTg4qLQZimA0GnE4HEqboTj5+fnY7Xba29sRRBHjNhtfFI5E8AUC6HU66sp2oE/CHa5eryMjw8HN7ps0NzXh821N3ZbDZuPRo0dxbKE+VHdPD4ODg+R5PDTs3k1W1uYWmVvNZu7dvYcdBQWbul61YCwtRZIkOjo6yM/PJ2MZiRotMTY2RnZ2tib13WKxGCMjI4kSJjWjvW9H5RQXFzMyMkJ4G6coVmJ4eJgLFy4obYaiCIJAZWUlU1NTRCIROfpm2B7RyGgsxoXmZi61tiZVFsZgMFJRUUF9XR3xuMSNpiYmJpIfORIEAVEUN5QCXg2zs95EbVZBfgG7du2iqKgYnZicVI9pPvo7ODbGlfb2bSPpo3NkoM/OZnBwEJ/PR1VVldImKUo0GmVqaorc3FylTVGEkZERIpFISmj8pZ03lVFcXEw8HmdgYEBpUxRBkiSGhobwq0BqQUmKior4pV/6JQwGA4Jej2EbaE7F43EutbYyFwiwe4M1bqvFbs9g566dlJWVYbfLEZWp6amkFaX7AgHO3rielAJ/CYnJyQmamm7Q3NLC2Jjc3GMymTCbt0bWQhRFBsfGaOnp3pLtJRtjaSkgj+jbtWsXTqdTYYuURRAEGhoaUiJtmAz6+vrQ6/UpEXnbHrfzwOzsLF/4whc4efIkoVCIuro63vOe91BTU7PicvF4nJ/85Cc8//zztLe3Mzs7S35+Pg899BCPP/44JtPibr8TJ04su553vetd/Pqv//qGP4fb7cZkMtHX18eOHTs2vL5UIycnB0EQGB8fp2QbF+vfDUEQ0Ol0CdkYU1ERkb4+pGhqFhFLksTVjg4mvV4O1dVtqQisgECu++VIwtjoKNMzM9isVvLz83G5XGuW0bgT0ViMyRkv0U0u9g4GA7S2tREKhXA4HNTU1OB0bL2jkZedzc6Kcm50dmE0GKkoLNxyGzYL0WZDP9+Ja7FYNHm+vR2dTqfp825vby8FBQUpUXetfgtXQTwe54knnqCzs5PHH38cp9PJk08+yfvf/36+/OUvrxgCDQaDfOITn2Dnzp38yq/8Ci6Xixs3bvDVr36VS5cu8Y//+I9LIgQHDx7kla985aLnNivcLggCxcXFiTFJWsNgMOByuRgZGdH0SQRkh+fFF18kOzubvXv3YigsJNyTmnMnfcEgo1NT7KmsJFvh6EZ1dQ0z3hmGhobo6OxEr9Oxc+euJTdqShKLx5iZniYYClGQX4DJZMLpcJKb68ZqVXbeYoknj1A4TFtPDxajkYJ1SpEojbFMjrqdP3+e4uLilIi2JJuWlhYKCgo0W3vc19eXMhp/28J5e+6557h+/Tof+chHeOCBBwB46KGHeNvb3sZXv/pVPvzhD99xWYPBwD//8z8v+sIee+wx8vLy+MpXvsLFixc5ePDgomWKi4t55JFHkvJZFtZ/+vRpJEnaktSS2vB4PLS1tRGLxVTfrp1MBEFgx44dNDU1UV1djaW4mEh/P1Is9SQw7BYLD+zfj1Elop9OhxOnw0kgEGB6ejrhuLW1t2EwGMhyubBnZCSthmw5JCnO1NQUk5OTTM/MEI/HybDbyc/PRxBEytahg5csqopLEEWd4o74ehGtFvS5uYyOjjI8PJyOuiFLhLS3t5OVlaVJ521hwk8q1LvBNql5e/7558nKylqU0szMzOTBBx/k1KlTKxb/GwyGZT3t++67D4Cenp5llwuFQkmbqVhcXEwwGGR8m7bm342ioiIOHTqkyW6n2yktLcVgMNDZ2YlgNGJIsY6/gbExGtvaiMfjqnHcbsVisZCfnw/INWVWi5VZ7yytbW1cvHiRa9evJURvY7HopsmOSFIcv9/HyMgIwyPyPOO4JNHZ2UUoFKKwoJA9u/dQV1ePgDpv4CoKCzEZjYTC4ZSbwmAsKUEQBNrb23G5XKoXZN0KhoaGMBgMmt0XC9muVHHetkXkra2tjaqqqiUX+7q6On7wgx/Q19dHRUXFmtY5OTkJsGwB69NPP82TTz6JJEmUlpbyG7/xGzz88MMrrm98fJyJiYnE33dyCkHWOxMEgb6+vnWro6cyZrMZ8yrmW2oBnU5HeXl54jduLCkhPDAAcfV3+41NTXG1o4Oi3NyUcMQFBIqKiigqKiIYDDA3N8fcnA/jvGZaZ2cn3tlZTEYjRqMJo9GA2+3Gbs8gHA4RCASIRGOUeTyEQ0FmYlHikkQkHMZisZCR4WBubpaurpuEwyHikoQoCDicTvI8eehEnZweV6GTuxItPT2MTk1xT0MD9hSYByqaTejz8piYmGBycpLDhw8rbZIqGBoawuPxpMSxmgz6+vrIysrCtoUyPxthWzhvk5OT7NmzZ8nzC0N1JyYm1uy8ffOb38Rms3HkyJFFz+/atYsHH3yQ/Px8JiYm+N73vsdf/dVf4fP5eN3rXnfH9X3/+9/na1/72qq2bTKZ8Hg89PX1sX///jXZvV2YmZmhra2NAwcOaPZkskBZWRlzc3PE43FEqxVDfj6RAXVrAU7NznKprRW3K5NdKSh6ajZbMJst5OS8fPNUUFCAY26OcDgy76wFic43kExPT9N9yw3Z7OTLN2qiIMzrhzkwGIy4XJkYjSZsNhs2m3VRs0SqOW4A9Tt24PX5ON/UxD0NDZhVLiptKClFEEUGBgZwOBya7ay8lbm5OWZnZ6mtrVXaFMXo6+tLmagbqNB5i8fjqx4ubTQaEQSBUCiEcZkTxsJza01vfuMb3+DChQv80R/90RLBxs997nOL/n71q1/N7/zO7/ClL32JV73qVXcsen7ta1/L8ePHE3/39PTw0Y9+9I42FBcX09XVtSa7txOiKDI8PMzY2JjmT64Gg4F9+/Yl/jaWlREdGVFt52kwHOZiSwtOm519VdXbpm7Tbs9IyI3cTk6OG5fLRTAUZmRqEo8rC7NJPj/p9PpE6tNkMlFcvL0acQx6PYfq6zl97Rrnm5o4umsXBpV264lWC4YCOU3e0NCQtNKXVMNgMFBbW6vJTA9AOBxmeHg4pYIlqjvCrly5wvvf//5Vvfcb3/gGpaWlmEymZevaFp5bSxfZz3/+c/7lX/6F17zmNStG0hYwGAz86q/+Kn/3d39Ha2sru3fvXvZ9OTk5a6olKCkp4fz58/j9fqxW66qX2y5kZGRgt9sTofw0soCx1+uluroaY1kZoY5OpU1aFpPBwI6CAko8Hs00nIiiiCga8YfCtPf143ZlbdqIqlTAbDRyqL6eszeuM+X1kpuVpbRJy2KqrkYQRbxeLw6HI12eMY/JZNK0QPHAwADxeDylFA5U57yVlJTwoQ99aFXvXUiLZmVlLaonW2DhuYX33Y3z58/z8Y9/nHvuuYcPfOADq7SYhBr1Zgp/LoRv+/r67qpVt13Jz8+nu7tbThdqPHUK4Pf7aW1txePx4CguJjI0TNznU9qsBJFoFK/PR7bTmdL6X2nWh91i4f59+xPjztTWLa93u9FnZdHf38/ly5d54IEHND8KCyAQCNDb20t5eXlKpu03g76+PkwmU0pFHlXnvGVnZ/OqV71qTctUVVVx9erVJRf55uZmzGbzqvLYTU1N/MVf/AU1NTX85V/+5ZpE+hZmkWZmZq7J7pVwOp1kZGRo3nlrb29nYmIipQ6qZLFjxw76+vq4du0ax48fx1RdReByo9JmAfJMwIstLfiCAR7Yt18zEbc0i1lw3Fp7eghHozSssdY4WQh6HabqKiKRCE1NTRQUFKQdt3kGBwfp6OhYc134dmKh3k1NNxt3Y1uEM+6//34mJyc5efJk4rnp6WmeffZZjh07tqgebmBgYMnoqe7ubp544gny8vL45Cc/ecc06/T09JLn/H4///Vf/4XT6dxUJ0sQBEpKSuju7t60daYaTqeTgwcP4nK5lDZFFSyMrpmampLHuLhcGPKUTylLkkRjezszvjn219SmHbc02K1W+kdGaOtVh6i0sbQU0WSitbWVWCzGzp07lTZJNQwNDZGbm5sSUwWSQSwWo7e3N6VSpqDCyNt6eOCBB/iv//ovPvGJT9Dd3Z2YsBCPx3nHO96x6L1/+Id/CMB3vvMdQHa+/viP/5jZ2Vkef/xxTp8+vej9BQXy0GeA733ve5w6dYpjx47h8XiYmJjgxz/+MSMjI/z5n//5poecKyoq+MEPfkAgEMCSAi34yWBBgyuNTFZWFkVFRfT19VFSUoKxspLoxARSJKqYTTe6uhidmuJATQ0ujUcz9DodWU5HIgKlVQrdbkKRMK3dPRgNBsoUPI5Fmw1DcTFer5fu7m7q6urStW7z+Hw+pqamUqpQf7MZGBggFAqlXORxWzhvOp2OT33qU3zuc5/jv//7vwmFQtTW1vKhD33ort70zMwMo6PygOcvfvGLS15/5StfmXDeGhoauH79Oj/84Q/xer2YzWbq6up44oknOHDgwKZ/roqKCiRJ4ubNm9TX12/6+lOBeDzOlStXyM/PT4+vmWfXrl2J6JZoNMrNC+0ditgSjkQYn5mhoaJCtUXqW4nNYuHIzl1Km6EKygsKCYXDNN+8SYbVqtg0BlN1FYIoYrFYqK6uTk9TuIW+vj4MBoOmz62dnZ2LxLpThW3hvIHcnfjEE0/wxBNPrPi+hYjbAvn5+YvSrStx6NAhDh06tG4b14rT6SQnJ4eOjg7NOm+iKOLz+ejp6dH0CeZWFiK8C9pvGUVFRIaGiM9tbfOCJEkYDQbu27MnnSqdR5KkRKF+KtXPJIva0jKsZotiEVm9Jxe9y4UkSRgMBqqrqxWxQ63k5eVht9s1ffx2dnZSXl6eck1xqWWtBqmsrKSzsxNJUr+ifrIoLi5mbGyMYDCotCmqorGxkcbGRgDMW3xRGp6Y4PS1a0SiUU2f+G/H6/PxkzNn8KqoC1hJBEGgNC8PURSZmZvb0jFagl6HqbKSSCTCs88+m8iwpHmZzMxMioqKlDZDMQKBAAMDA1RWViptyppJO28qp6KigpmZmWWlULRCQUEBgiAsaTTROjt37mRmZobe3l50mZkY8rcmMjkxM0NjezsWs1nztV1pVk9LTw8XWprxb9FNmHHHDkSTiZaWFkKhkCaHra9Ee3s7Q0NDSpuhKF1dXUiSRHkKToFJO28qp7S0FJ1OR2enOgVZtwKDwUB+fn5icHAaGZfLRUlJCc3NzYTDYUwVFQiG5FZCeH0+Lra04MrIYE9lZTo1mGbV7K2qQq/Tcb65idAyouqbiWi3YSgqYmZmhu7ubmpqatJNCrcQjUZpb29nbgsjoWqks7MTt9u97AxztZN23lSO0WikpKRE084bQE1NzZI5s2mgrq4OgJaWFgSjEVN18jQBo7EYF5qbsVnMHKitTbkakTTKYjIaOVRXL/+OWpqJxpI03k0UMM/XCF+9ehWHw5FuUriNwcFBYrFYSs3y3GwkSaKzszPlukwXSJ99U4CKigpu3rxJNKqcHITS2Gw2zcqlrITRaOTAgQOJQmyDJxdDYUFStqXX6agrK+NgbV06XZpmXVjNZg7V1ROJxpKWPjVVVqGz24lGo4iiSENDQzpCfBt9fX243W5NRyMnJiaYmZlJO29pkkflfNGt1tOGY2NjPP/888TjcaVNURULJ+FwOEwwGMRUVYVot23a+qOxGANjYwDk5+RgMmpnZudaybBaefDgQTI0OI94tThsNu7ftw+HzUY8Ht/UZiy9242xSB7NZjAYOH78OFlpCZtF+Hw+JicnNR11AzllqtPpKCsrU9qUdZF23lIAj8eDzWbTfOrUarXi9XoT48jSLObcuXNcunQJBAHLzp0Iuo0f3vF4nEutrdzo6iKY5Dql7YAoipiNxnRK+S4IgoAkSVxsbaWlp3tT1ilazJhra4hEIrz00kubOmt6O2GxWNi/f7/mpZc6OjooLS1N2Xmu6TNMCiAIAhUVFZp33mw2G263m66uLqVNUSX19fVMTk7S1taGaLNh2uC4NkmSuNbZyaTXy4HaWszpiNtd8QeDXGpt3bKOylRGEARyXS66B4fo3GgnuShg3rkTwWCgsbERr9ebshflZCOKIoWFhZqW+IlGo3R3d6dsyhTSzlvKUFFRwdDQkOa7g3bs2MHMzAxTU1NKm6I6srKyqKmpoa2tjfHxcQx5eRuSD2nt6WFwbIw9lZWKqeOnGpFolJGJCSIark9dC6V5eVQWF9HW00P/BnTYTOXl6BwObt68yfDwMHv37k3XyC5Db28vFy9e1LRuKMg1f5FIJO28pUk+lfOyDK2trUqboii5ubnYbDbN6xPdicrKSnJycrh8+TLxeBxTdTXiOuqv4vE4Mz4fdTt2kJ+TkwRL06SRqSouocjj4VpnJ7N+/5qX1+dkYywpYWZmhqamJsrLyzWfErwTXV1dxONxzTdwtLS04HA48Hg8SpuybrbNeKztjs1mo7S0lObm5qTMUU0VBEHg+PHjmEwmpU1RJYIgsH//fnw+X6LuyrxrJ/4LFyC+urvtWCyGTqfjcH295k/yabaGXeXl5Dida270EExGzLW1gPy7dbvdCfmcNIsZHx9ndnY2Matbq0iSRHNzM3V1dSl9fktH3lKI+vp6urq6CAQCSpuiKAuOWzhdQL8sJpOJrKwsJElicnISnd2OuapqVcuOTU3x/OXL+AKBlD6xpUktBEFIRHiHxseZW805TkBuzDEakSSJrKwsDh8+nG4WuQM3b94kIyODHI1H0gcGBvB6vSk/Lzz9K08hamtricfjtLW1KW2K4nR2dvLcc8+lZUNWoK+vj5deeonJyUkMhYXoc3NXfP/03ByX2lpx2G1YNaz/tBHMRiNVJSXp5o51Eo/H6RwY4HxT0127m007dqDLzKS3t5ezZ8+mzwUrEIlEGB0dTYsVA01NTdhstpSXSkk7bymEw+GguLiY5uZmpU1RHI/HQygUSsuGrEBxcTEul4tLly4RiUQw19bcUf9tLhDgQnMzTpudfVXV6ajbOjEZjVQWFaW18NaJKIocnE97nm9qumPjh97txlBayuzsLNevX8dqtaYjbitgMBh4xSteoekh9PByyrR2G0yISW3rNUhdXR0dHR2aTxna7Xbcbjc3b95U2hTVslD/Fo1GZf03nQ7Lnj2I5sX1gpIkcbm1FZPBwIHaWk1LCGyUSDTKyORkutt0A5iNRg7V1xMMh7nY0kLstjFaOqcDc30d0WiUCxcuYLVa2blzp0LWqp94PC43L5lMmj+2h4eHmZqaSvmUKaSdt5Sjrq4uMVRY65SXlzM9Pc3ExITSpqgWi8XCgQMHGBsbY3BwENFkwrx7z6IB9oIg0FBZycG6Ogz6dA/TRvAHg1xqaUnrvG0Qu8XCwbo6JElaNANVtFqwNDSAKHLhwgVCoRAHDx7UvFOyEj09Pfz85z/X9HjFBZqbm7FYLCk7VeFW0s5biuFyucjPz6epqUlpUxQnNzeX7OxszTdw3A232819991HYaE8Nkhnt2HetYs4Eh39/cTjcTLtdizpDt40KsKVkcE9DQ2YjEYi0SiCwYBl924EoxFBEPB4PBw+fBi73a60qaolHo/T0dFBTk4O+vSNGU1NTdTU1GwLZz/tvKUg9fX1tLe3E4lElDZFcY4dO6b5Oo7V4JwX2R0aGmJgYABdZiZN4TCdA/2r6+xLk0YhYrEYp29cp9diRpwfkQdy5D09t3Rl+vv7CQaDVK2y23w7MzY2xvj4+LaRkkk7bylIXV0d4XBY8+OyFohEIvT39yttRkowMjJCY2MjL7zwAhPRKEcefRSHbfOG2KdJs9noDHoq7r2XzqEhXnzxRZ5//vn0hJVVIEkS7e3t5Ofnp6OTyFE3o9GY0lMVbiXtvKUgOTk55ObmprtO5xkZGeHy5cvMzMwobYrq2b17N3Nzc/ziF79gx44dFO/fj7GsVGmztg2iKGJPdz5uHgKY6+qoPXQIh8PBT37yE2w2Gy6XS2nLVE8wGMRoNFJdXa20KaqgubmZ6urqbZM+Tp9hUpS6ujpaW1uXdGJpkcLCQqxWa7qJYxWIokh1dTXV1dUMDAzg8/kwlZdjKCpU2rRtQYbVyn179655UkCa5TFXV2PweBLTAaqrqwkEAoRCIaVNUz0Wi4X77rsPh8OhtCmKMzk5yfDw8LboMl0g7bylKPX19QSDwXTqFLlbsrKykqGhIebm5pQ2R7Us1Eju27ePN77xjbhcrkThrrm6GkNe6s75S7P9MFWUY5hvsmlvbycnJ4fHH3+ce+65Jz0e7y5MTk6mU8u3cOPGDQwGA5WVlUqbsmmknbcUxePxkJeXR2Njo9KmqILi4mLMZnM6+nYHJiYm+NnPfsbk5CQARqORQ4cOYTabCYfDhMNhTHV1d53CkGZlvD4fPz17Fq/Pp7QpKY2xrAxj6cvp/EOHDnHo0CH0en2iSaG9vR3/OgbZa4Hr16/T0tKitBmqQJIkGhsbqaurw7iNxLPTzlsKs3fvXlpbW9MnMOR0YENDA6Wl6fqt2/F6vZw/f57MzEwyMzOXvH7x4kXOnDlDNBrFvLM+Ee1Is3YkSSIWiyFJktKmpCYCmKqrMJXvwO/3c+rUKXw+H3q9fpG8QyQSoa+vjzNnzqRTqLcxMjLCzMxMusN0nv7+fiYmJti7d6/SpmwqaecthWloaECSJK5fv660KaogLy8vLR1wG36/n7Nnz2K1Wjl06NCyhfQ7d+7E7/dz+vRpwuEw5ppqjDvKtt7Y+4TYZAAAb/RJREFUNNpGFDDX78RYVITX6+XFF18kHA4vW2BuMBg4evQo0WiUs2fPpgVo55EkiZaWFrKysjQ/gH6BxsZGnE7ntpvrmnbeUhibzUZ1dXU6dXoLwWCQU6dOpTtP57l69So6nY4jR47cscvK4XBw7NgxQqFQItJh2rEDc001pEecptkCBL08us3gyWVycpKXXnoJo9HI8ePH71jfZrVaOXr0KD6fjwsXLqQH0wMDAwN4vd5tVZi/ESKRCDdu3GDPnj3bbl5z2nlLcfbu3cvg4CCjo6NKm6IKTCYTkUgkLaMyz969ezl69OhdC7wdDgfHjx9HFMWE42soLMSyaxeI2+ukl0ZdCEYjln370LtcRCIRzp07h9PpXNFxW8DhcHD48OFtVcu0ETweD3v37k1LqczT2tpKMBjcdilTSDtvKU9VVRVWqzUdfZtHEATq6uoYGxtjbGxMaXMUIR6P09TURCgUwmw2Y12lbIXVauX++++noKAAgLm5OfRuN9a9exfNQk1zZ+wWC8d278ZusShtSkogWi1Y9+9Dl5EByOnQI0eOrBgpvp3s7Gz279+PKIoENTxTVpIkDAYDxcXFSpuiGhobGykpKdmW5TRp5y3F0el0NDQ0cPXq1XTaYJ6F2rempibNFY5LksSVK1e4efPmumRTFmriBgYGeP755xkcHESXmYll3z4EUzq6cTd0Oh1Ou31bzE5MNroMO5b9+xGtVtra2rhy5Qogz29ej8hxMBjk2WefpaOjY7NNVT2RSIRf/OIXmr1hXQ6v10tnZ+e2jLpB2nnbFuzdu5e5uTlNnrTuRF1dHcFgUHOduM3NzfT397Nv3z6ys7PXvZ78/HwKCgq4ePEiN2/eRGe3Yz1wADEtPrsigVCIG11dBNIdkCuic83fEBgMXLt2jdbW1lVHiO+E2WymvLyc5uZm+vr6NsnS1KCjo4NQKETGfAQzjVzvq9frt239X9p52wbk5eXh8XjSqdNbyMrK4hWveAU2Dc3t7OzspLOzk127diVSn+tFFEX27t1LeXl5QjNKNJvlFJczrdh+J8KRCL3Dw4TnBZHTLEWfm4tlzx4kUeTixYv09PSwZ8+eTZG2qKmpoaSkhCtXrmimDjgQCNDV1UV5eTlms1lpc1TBrdpu23WfpJ23bYAgCAnNt0AgoLQ5qkGn0xEKhRgfH1falC3BaDRSVVW1aS3xgiCwc+dO6uvrmZ6eJh6PJ4rLjcVFm7KNNBpCFDBVV2HZtRNBFOnu7mZkZISDBw9SUlKyaZvZvXs3Ho+HK1euaKKUpK2tDb1ev62mB2yUgYEBxsfHt23KFNLO27Zh9+7dac23ZWhra+PChQuEw2GlTUkaCw57cXExtbW1m77+iooKjhw5giiKTE9PE4lGMVVVYdndgGAwbPr20mw/RKsF64EDGIuKEppsO3bs4L777iMvL29TtyUIAvv37+fYsWPrqp1LJSRJwu/3b6uB65vBgrZbWVmZ0qYkje39y9YQNpuNqqoqLl26pLki/ZWorq4G2LbSIdPT0zz77LNJr/ERBCGRinj++eeZnJxEn5OD9fAhdJnOpG47TWqj9+RiPXgQXUYG/f39/OxnP2N6ehpBEJI2NF2n02Gz2YjFYly5cmXbdqEKgsA999yzrZ2UtRIOh7l+/Tq7d+/e1s779v1kGuTgwYMMDQ3R39+vtCmqwWQyUVtbS29v77Yb1Ozz+Th79iwOh2PDNW6rQRAEjh49itVq5aWXXqKtre3lNGpZWVrQFzAZjZQV5GNK644h6ETMdbVYdu4kLgg0NjZy+fJlPB4Pdrt9S2yIRCKMjY1x5swZItusDnF4eDhRErLdBGg3wrVr1wiFQhw4cEBpU5JK2nnbRlRWVpKVlcW5c+eUNkVVlJaW4nQ6t1VKORgMcvr0aYxGI4cPH94yaQqz2cyxY8eoqqqitbWVq1evIggCpvIdWPbu1byciNlopK5sB2aNO2+i3Yb14EEM+fnMzc1x8uRJBgcH2bt3L/v27duyFJ/ZbObo0aMEg0HOnTtHLBbbku0mm0gkwpUrV+jt7VXaFFUhSRJnz56lpqZm2TnO24m087aNEASBw4cPc+PGDWZnZ5U2RzUsNHTs2bNHaVM2jba2NiRJ4ujRo1uuLi8IAjU1NYvSNfF4HL3Lhe3QIfTZ208Qc7VEYzGmZmeJbhMnYT0YCguwHjyION/pbTAYsFgsnDhxQhEBWbvdzpEjR5iZmdk2ZSUtLS3E43F27typtCmqoru7m9HRUY4cOaK0KUkn7bxtM/bu3Yter+fChQtKm6IqHA4HDoeDeDy+LYZY79q1i+PHj2NRUMk/JycHp9NJPB7npZdekkWR9Xose/ZgqqzQ5FgtXyDAmWvX8Gmw61sw6DHv2om5poZoLMbVq1cJhUKYTCaOHj26ZanS5XC5XBw8eBCn05nyKcbp6Wm6u7upqam56/gwrXHu3Dlyc3M1UQOYdt62GWazmb1793LhwoVt4aRsNmfOnEnZ9KkkSVy9ehWv14soihsWNd0sBEEgPz+frq4uXnrpJfx+P8aSErlIPd3MoAn0nlyshw9jyM1lamoqkSZdz5SPZJGbm5toYErlzER7ezsOh2PTJIG2C9PT07S0tHD48OGUd9BXQ9p524YcPnwYn89HU1OT0qaojsLCQvr6+picnFTalDVz7do1ent7VaflJwgCFRUVHD9+nFAoxMmTJxkeHpanMuzfj3lnveZr4bYrot2GZd9eLDt3IhiNdHR08OKLL2IymThx4sSGpnwki5mZGZ577jm6u7uVNmVd7Nu3j4MHD2rCQVkL58+fx2QysXv3bqVN2RLSzts2JCcnh4qKCs6ePau0KaqjpKSEzMxMrl27llICnm1tbfT09CQESNWIy+XixIkTuN3uRbp6Bo8H25EjGEtLNJlK3Y4IBj2m6iqshw6hd7kAufu5tbWViooKjh07pprI8O04nU7Ky8u5du0aQ0NDSpuzakKhEH6/H71er6nJMashEolw6dIl9u/fv+U1wEqRdt62KUeOHGFgYCAtG3IbgiCwe/duZmdnU2YWbG9vL62trdTW1m6qEn0yMBgMHDhwIGHnlStXuHHjBlFJwlRRge3w4W3d0CAIAgaDYftGRQQwFOTLznhREcFgkBs3bhCPx7Hb7fzSL/0SdXV1qtfXqq+vp7CwkEuXLjExMaG0Oavi2rVrnD59els0XGw2165dIxgMcujQIaVN2TLUfYSlWTeVlZW4XK509G0ZnE4ndXV1ihZQr4WMjAyqqqo2ZfbjVmOz2ejp6UkICQsWC5Y9e7DsbkC0KtdskSwcNhuvOHQIxzaMjOicDqwHDmCurUXS62lvb+fZZ59lYGAAn88HkDJzJBc60LOzs1NCwHtgYIChoSHq6uq2743BOlmQB6mursY1HwXWAul5GtsUURQ5fPgwP/vZz3jkkUfIyMhQ2iRVUVFRkfi/JEmqPCHOzs5is9lwuVwpe1KqrKykqKiIpqYmGhsb6e3t5dixY+hzctBlZRHp7SXc04MUS50UttYQjEZMFeUY8vMBGBsb4+rVqwQCAcrLy1N2NJMoihw8eFD1kaxQKMS1a9coKCjYEjHuVKOnp4eRkREeffRRpU3ZUtKRt23Mvn37EEWRixcvKm2Karl06RJtbW1Km7EEr9fLiy++SHt7u9KmbBiz2ZyYNZmfn48gCMTjcSLRKMayMqxHj2IsLkLQpf7paNbv5/nLl5j1+5U2ZcMIRiOm8h3YjhxOOG4g1xfZbDYeeOAB6uvrU9JxW0Cv12MwGAgEApw7d06VM5Bv3LiBKIo0NDQobYoqOXv2LG63W3Pdt6l/tkxzR9KyIXfHbrfT3t7OzMyM0qYkCAQCnD17FovFsihCmOpkZ2dTXl4OyGKav/jFL7h586bsJFRVYTt2DFP5DoQULjiOx+P4A8GUaoa5HdFqwVxTje3YPRjLyogJAs3NzVy6dAmAgoICxXXbNhtJkpienubs2bOqO1fW1NRoqhB/LSzIgxw5ckSV2ZNkknbetjlHjx7F5/Nx+fJlpU1RJZWVlWRkZNDY2KiKC244HObMmTOIosjRo0dTOqqxEkVFRRQUFHD9+nV+/vOf09XVRUwQMJaVYTt2D+baGkSVdituV3SZTiwNu7AeOYKhsJBwJEJLSws/+9nP6Orqwm63qz7FuF6sVitHjhxhbm6OCxcuqOZcEIvFsNls5OTkKG2OKjl16hRWq1Uz8iC3knbetjnZ2dns2rWLU6dObZu5fpuJKIrs27eP2dlZVaRP+/v7iUQiHD16dFurpxuNRnbv3s39999PdnY2TU1NLw/ZFkUMBQXYjh7B0rArLfSbZPTuHKz792Hdvx+9240gCMRiMZ599lm6urooLi7moYceorq6eltHN5xOJ4cOHWJiYoIrV64obQ6NjY2cOXNGaTNUy+zsLJcvX+aee+7RZFRye97Wp1nEfffdx+c+9zmuXr3Kvn37lDZHdTgcDmpqalRxt11eXk5BQUHKdO1tFIfDwb59+6itrU185vPnz2M0GqmoqMDudqN3u4nNzBDu7SU6Pg7bM/iztYgChrw8jMXFiRmkk5OTdHd3s3v3bvR6PQcOHCAzMxODwaCwsVtHTk4O+/fvV9xJ7evrY2RkRFPSF2vlpZdewmAwaHYfpZ03DZCbm0ttbS2nTp1iz549qtdgUgIlZTgWxl653W5NOW63cuuMVpfLRVdXF729veTl5VFRUUFWVhaWhgbifj+RkRGio2PE5+Up1ITNYuFQfT02BWfOroTO6UCfm4ve40E0GpEkieHhYTo7O5mcnMRutxMIBMjIyMDtdittriLk39KcMTk5SVbW1uoSzs3Nce3aNYqKisjLy9vSbacKPp+PCxcucOzYsW2doViJ9FVcI5w4cYKJiYn0yKy7cPPmzURh9lbR3NxMb2/vtq0nWiuVlZW84hWvYM+ePczNzXHmzBkikQgAotWKaYfcAWk9fBhjWZmqauP0Oh05mZnodTqlTUmgczowVVViO3YP1gMH5GjbfJqpsbGR8+fPA3Do0CEeeOCBtKzQPMPDw7z44otbKnQuSRIXL17EYrGku0tX4MyZMwiCwJEjR5Q2RTHSkTeNUFBQQGVlJSdPnmTnzp2KpwXUitlsZmBggOzsbEpLS5O+va6uLjo7O9m1axeFhYVJ316qIIoiJSUlFBcXMzc3h8FgIBqNcvLkSXJzcykoKMDlcmEq34GpfAexuTmio6NER0eJ+5Wb/RoMh+kbGabYk4dZwTocnSNDjrDl5iLOR3Lj8Tijo6MMDg5SWFiI2+2mrKyMsrKylNURTCZ5eXmUlJTQ2NiI0WgkNzc36dsUBIG6ujrMZvO2bVbaKMFgkHPnznHo0CHVjmDbCtK/Dg1x4sQJvvKVryRGLaVZSn5+PmVlZVy/fh2Xy4XD4UjatgYHB7lx4waVlZWa0yhaLYIgJCJB8Xgcj8fD4OAgN2/exGw2U1hYSH19PTq7HZ3djqm8XFFHLhQO09HXT64ra8udN12G/WWH7Za07dTUFL29vQwNDRGJRLDb7Yl0XNppW5ndu3cTDoe5cOEC99xzT1L3l8/nw2azbYmTmMqcO3eOWCzGPffco7QpipJ23jRESUkJpaWlnDx5kpqamnT07Q7s3LmTyclJLl68yH333Ze0O+CsrCxqamqorq5Oyvq3G0ajkZ07d1JfX8/U1BSDg4MEg0FATje1trbi8XhwuVwJRy4eCBDzeonNzBD3eonNzUE89dPTgk5EzHCgczrQORyITmciFSpJEmNjY1itVmw2GxMTE0xMTFBWVkZBQUFSb0i2G4IgsH//fs6cOUNPT0/SnDe/38/Jkyeprq7eVtqOm004HOb06dPs379/W+kMroe086YxTpw4wTe+8Q26urrSJ4k7IIoiBw4coLW1NSl1aF6vF7PZjNlsTjtu60AQBLKyshYVkvv9fnp7e2lvb8disSRGCWVmZiJaLBg8HgCkeFx24rxeYjNeYt4ZpJD6VPVvR7RaZCfN4UTndCDa7YtuvmKxGGNjYwwNDTE0NEQ4HKa2tpaqqirKy8uprKxU0PrURqfTceTIEXRJqmOMx+NcvHgRo9FISUlJUraxXbhw4QLhcJjjx48rbYribBvnbXZ2li984QucPHmSUChEXV0d73nPe6ipqbnrsh//+Md5+umnlzxfUlLCv//7vy96Lh6P861vfYsnn3ySyclJioqK+PVf/3Ve8YpXbNpnSSbl5eUUFhZy8uTJtPO2Ana7nQMHDgCbO/vU5/Nx+vRpcnNz07Itm4jNZuPhhx9mcnKSwcFB+vr6GB0d5YEHHgCgtbUVp9NJZmYm5sxMdJmZiWXjwSCxGS/xWS/xQBApHCIeDCKFw1srSyIKiCYTwvxDtMgOm87hWDJ1wu/3MzU1hcvlwmq10t7eTnt7O1arlZKSEgoKCnA6ZX28dHf5xlmIvk9OTtLc3Mzhw4c3TUKlubkZr9fL8ePHNSXLslYikQgvvfQSe/bsSfy2tcy2cN7i8ThPPPEEnZ2dPP744zidTp588kne//738+Uvf5ni4uK7rsNoNPInf/Ini56zzesf3cqXv/xl/uM//oPHHnssIb/xkY98BEEQ+KVf+qVN+0zJQhAETpw4wTe/+U16enq2pCg/lfF6vZw/f55Dhw5tON0UDAY5c+ZMIv2XZnMRBIHs7OyEMHUgINe7RSIRent7EylWi8VCVlZWQs9MNJvlon7P4lojSZKQwmGkYJB4MIQUDsn/D4Xl/4dCSPG47OBJcZAkjCYj+blujCYjgkEPCCAICKIAoohgNCGYjIhms+ygLThrZnMi7Xknent7GRkZYWpqilAoBMDevXsXOWzplGhyMRqNzM7Ocu7cOY4ePbrhaNzk5CRdXV3s3LmTzFtuKNIs5fLly/h8Pu69916lTVEF28J5e+6557h+/Tof+chHEnfaDz30EG9729v46le/yoc//OG7rkOn0/HII4+s+J6xsTG+/e1v8/rXv54//MM/BOCXf/mXed/73sfnPvc5HnjggaSF1jeT6upqPB4Pzz77LL/5m7+Zrn1bAZvNhsFg4Ny5c5w4cWLdSt6RSISzZ88Sj8c5duyYJhXBtxJBEBKdaAaDgYcffphgMMjU1BSTk5PMzc0loikvvvgiICvsWywWzGYzbrcbo9GIYDKByYRulTf6dmAj5eYTExMEAoHEY2pqiiNHjmA2m/F6vUSjUUpKSnC5XLhcrsTvSMtdd1uJ3W7nyJEjnD59mkuXLnHw4MENnT9dLhf79+9Pd5rfhUgkwqlTp9i1a9eW6+6plW3hvD3//PNkZWVx4sSJxHOZmZk8+OCDPPPMM4TD4VVdLGOxGMFgcNmIG8hz1KLRKK9//esTzwmCwOte9zo+8pGPcOPGjZSYsbYQJfzP//xPOjo6FBWoVTs6nY5Dhw7xwgsvcOHCBY4ePbquNNTk5CTBYJBjx44tEqRNs3WYzWby8/MXibACFBYWMjExwfj4OIFAgGg0yvHjx8nKyqK5uZm+vj7MZnPCscvNzcXj8RCJRPB6vQiCgCiKCIKAIAhEIhF0Oh2CICBJEvF4HLPZjNVqJRAI0NfXRzAYJBD4/9u77+imzjR/4F8VSy6y3HsDY4MbtnG3caWXCQkTIDCQMsmEZGYnk7M7M8ny2+zsziSzmcmZZJazO8kkpJBOCIReQrexce+4YGPj3qtsy5Ys6f7+YKVBcUGuV+X5nMM5+OpKel5d3avnvnUUY2Nj4PF4mtoEdZ8egUAAc3Nz2NjYaFb+CAkJWfTPjExkZ2eHyMhI5Ofno7Kycla16HK5HBKJBI6OjpS46SAvLw/Dw8NIS0tjOxS9YRTJW01NDfz9/Sf8qAYGBuLMmTNobm5+aP+usbExbN68GWNjY7C2tsbatWvx4osvat3RqjtD/7CpMTAwUPP4VMlbT08Pent7NX83NjbOqIzzzd/fHz4+Prhy5QqWLVtG/WKmYWFhgaioKGRnZ6OysnJWP6IuLi5Ys2YN9WnRQ+q5ztQUCoXmfHB2dgaPx9MkWn19fTA3N4eLiwuGhoZw69YtrddSKBRobm6Gs7Oz1k2gr68vgoODIZPJ0NDQoEkG7e3ttfZT1+4aQg2+KXNxccGqVatmNaGxSqVCQUEBRkZGsGbNGjrWDzE6OoqbN28iKiqKat0eYBTJW19fH8LCwiZsd3BwAHC/KWK65M3BwQF79uzB8uXLwTAMcnNzcfLkSdTV1eHgwYOa5pXe3l7Y2dlNqCZXv496Ye3JnD59GocPH55p0RYMh8PB+vXr8eGHH6K8vHzSz4/8g729PcLDw2c8PL2srAwCgQABAQGUuBmIB6eGUfehm4yNjQ3WrFkDlUp1v38cw2BwcBBKpRLR0dGwtbXV1Mqpa/5tbW2n7Z5BtbKGQ11jplQq0dvbq/P8bBUVFejv70d8fDwlbjq4efMmVCoVUlJS2A5Fr+hd8qZSqTRL4TyMQCAAh8OBTCabtFlUvU3duXcqL7zwgtbfa9euhZeXFw4dOoT09HTNQASZTDbpD7Au77Nt2zat4c2NjY144403po1roXl6eiIoKAjXrl1DcHAwzej9EOqLtUqlwsjIyEPvumtqatDY2EiJsZHi8XiTdrEQCoWwtbWlEXEmoqmpCbdv30ZUVNSEJvkfamxsRENDA8LCwqgWSQeDg4PIy8tDYmLilN2ZTJXe/VqXlpbi5Zdf1mnfzz//HD4+PhAKhZDLJ87VpN42m4Vrd+3ahY8++ggFBQWa5E0oFE6aWOryPo6OjnB0dJxxHAttzZo1ePfdd5GXl4eEhAS2wzEIVVVVaGlpQVJS0pQdxRsbGzUrWdDcTYQYryVLlqC/vx9FRUWIi4ubsqZWpVKhvr4eS5cupWuCjq5fvw6hUEi/TZPQu+TN29sbBw4c0Glf9Ulib2+v1Z9MTb1tqpNpOkKhEGKxGBKJROv9iouLJ8z7pX4ffUzOHsbR0RERERG4efMmIiIiYP5/6yCSqfn7+6OjowP5+flYvXr1hBrLnp4elJeXY8mSJTQYhBAjx+FwEB4eDrlcjry8PKxevXrSKVu4XC4SExOpqVRHnZ2dKC0txZYtW2h0/iT0LnlzcHDA5s2bZ/Qcf39/lJWVQaVSaXW8r6qqgrm5uU7zvP2QVCrF4OCg1tw7fn5+OHv2LBobG7U6OFdWVmoeN0SpqakoLS1FZmamwUw2zCaBQICYmBhkZmaioKAAMTExWt87Ozs7BAUF0XqlJsjGxgaPPPII22GQRcblchEVFYVbt26hu7tbK3mTy+UoLy9HcHAw3RzPwJUrV2Bvb4+IiAi2Q9FLRjHEMCUlBX19fcjIyNBsGxgYwPXr1yfMqdXa2orW1lbN3zKZDFKpdMJrfvrpp2AYBrGxsZptiYmJ4PP5OHHihGYbwzA4deoUnJycDHYov0gkQkJCAnJycrRqGsnUrK2tER0djd7eXnR2dgK4v8qHRCIBj8eDr68vzZ9HiAnh8/lITEzUDI5jGAZKpRJ5eXno6emBUqlkOULDce/ePdTW1mLt2rVUUzkFvat5m43U1FQcO3YMb775JhoaGjQrLKhUKjz77LNa+6on1z169CiA+yNVn3vuOaxbt07TDyEvLw85OTmIjY3Vms3Z2dkZO3fuxNdffw2FQoHAwEDcvHkTZWVl+Pd//3eD/pIlJCSgoKAA169fx6OPPsp2OAbB0dERqampsLKywujoKHJyciASiRAfH892aIQlw8PDKCkpmdXIZGL41DXwzc3NaGhoAJ/Ph0QiQUJCAnW41xHDMLhy5Qo8PDw003CRiYwieePxeHjrrbfw7rvv4vjx45DJZAgICMCBAwce2jFUXeuUn5+PixcvQqVSwcPDA/v378fu3bsnzH/2wgsvwNraGqdPn8bFixfh6emJ1157DevXr1/IIi44oVCI5ORkXLx4EfHx8ToPezd1VlZWkMvlOHXqFJRKpdZE0cT0KJVK9Pf3Uy2LiROLxSgvL4dUKsXevXtp6asZqKysRGtrK5555hlqvZiGUSRvwP1mrFdffRWvvvrqtPupa9wefN5rr72m8/twuVzs27cP+/btm1Wc+iwqKgq5ubm4cuUKfvKTn7AdjkFQN4tIJBLY2dmhp6eHZkwnxMTZ2NggKSkJBQUFaG9vh6urKyUiOlAoFLh69Sr8/f21+pWTiYyizxuZHzweD+vWrUNNTQ1qamrYDscgjIyMYGxsDLt27YKfnx+Ki4vR3d3NdliEEJYMDAwAAFauXImNGzeitbUVdXV17AZlILKzszEwMGDwLVmLgZI3oiUwMBDLli3DhQsXdJ4s2VQxDAOxWIw1a9bA1tYWYWFhcHZ2Rn5+vuYCTggxHS0tLbh586ZmEJO7uzsiIyNpXjcdDAwMICMjA3FxcdRtRweUvBEtHA4HW7ZsgUQiQVZWFtvh6K2qqioUFBSAYRhNv0gul4vIyEh4enpOOXkvMW6WlpZYtWoVHX8T1NbWhpKSEnh5ecHFxUWz3d3dHQKBAKOjo+jo6GAxQv32/fffw9zcnJbB0hElb2QCBwcHrF69GpmZmejr62M7HL1TX1+Pu3fvwsHBYUI/Fh6Ph9DQUM3FenBwkKUoCRvMzMzg6elJ69iamLa2NhQVFcHd3X3K5fAaGhpQUFCArq6uRY5O/9XW1qKqqgobN26c1YpIpoiSNzKppKQkiEQiXLhwAQzDsB2O3mhtbUVFRQX8/Pzg6+s77b5VVVWaPhzENMjlcjQ0NEy6XB8xXi0tLXB3d8eqVaumHJgQEBAAFxcXFBQUoL+/f5Ej1F8KhQIXLlyAr68vgoOD2Q7HYFDyRiZlZmaGTZs2oba2Fnfu3GE7HL0wNDSE4uJieHl56TT/UGhoKEQiEXJyciiBMxGjo6MoLy/H6Ogo26GQRaBQKADcH6k/XeIG3O+SEhERARsbG+Tl5WF4eHixwtRrWVlZGBwcxJYtW2hE7gxQ8kamtGLFCvj7+9Pghf9jbW2N8PBwhIaG6rQ/n89HXFwcJXCEGKH29nZcu3YNIyMj4HK5OiUePB4PMTExsLCwwMjIyCJEqd/6+/tx8+ZNxMfHG+Ta4Gyi5I1MicPhYPPmzRgZGdFaeszUjIyMaDoae3p6Tpi4eTrqBE4sFmNsbGyhQiSELKL29nYUFhbC0dFxxoNTzMzMkJSUpBnUYMoTOl+8eBFWVlY0ufksUPJGpmVvb4/ExETcunULvb29bIez6MbGxpCTk4Pq6mqoVKpZvQafz0dCQgJcXV0BYNK1dAkhhqGtrQ2FhYUP7eM2HfVzqqqqkJOTY5IJ3J07d3Dnzh1s3LhRa/1xohtK3shDrV69GmKxGOfPnzepwQvj4+PIzc2FSqVCbGzsjGrcpnLv3j3cuHGDJvI1Unw+H05OTuDzjWbxGvKA8fFxlJWVwcPDY9aJ24NcXV0xODiIoqIik7u2Xrx4EX5+frR+6SxR8kYeyszMDJs3b0ZdXR0qKyvZDmdRqFQq5OfnY3R0FHFxcbCwsJiX1/X29oajoyNyc3PR2to6L69J9IeVlRXi4uJoEXIjpFKpNE2e4eHh89K53s7ODpGRkejs7ER5efk8RGkYMjMzIZFIsHnzZhqkMEuUvBGdLF++HIGBgTh//rxJdLQdHx+HQqFATEwMrK2t5+11eTweoqKi4OnpiaKiItTX18/baxP2MQwDhUJhUrUoxo5hGJSVlaGwsBDA/QR9PhMOFxcXhIWFobGx0SRu6Do6OnDz5k0kJibCwcGB7XAMFiVvRGdbt24FwzA4f/4826EsKIVCAaFQiKSkJNjb28/763O5XISHh8PPzw99fX30Q29EJBIJLly4AIlEwnYoZB4olUoUFBSgqalJ02d1IXh5eSEmJgZubm4L9h76QKlU4sSJE3B2dqZBCnNEyRvRmUgkwpYtW1BRUYGKigq2w1kQNTU1uHnzJpRK5YJX5wcGBiIyMhIcDgcSiWTWAyIIIfNvfHwcOTk56O7uRnR0NLy8vBb0/VxcXMDlctHX12e0y2hlZGSgu7sbjz32GHg8HtvhGDRK3siMBAcHIygoCOfOnTO65tPGxkbcuXMHnp6ei3Zh4XA4UCgUyM7ORn5+vkmOOiNEH7W0tGBoaAjx8fFaa5UutKamJhQWFhrd6P729nbcvHkTycnJC1qLaSooeSMzwuFwsHXrVgDAuXPnjKbJr6OjA+Xl5ViyZAn8/f0X9b35fD4iIiLQ29uLrKwsmp2fEBaplzZbunQpUlNTYWdnt6jvHxoaCgcHB+Tl5RlN87tCocDJkyfh7OyMpKQktsMxCpS8kRmzsrLC1q1bUVlZaRTNp3K5HEVFRXBzc0NISAgrMTg5OSExMRFyuRw3b96ktQ8JYUFrayuuXLmiqfUyNzdf9Bi4XC6ioqJgZWWFnJwco5gXMiMjAz09PdRcOo8oeSOzEhwcjODgYJw/f97g1+gTCASIiYmZl3mb5kIsFiMpKQm2trYwMzNjLQ4ye9bW1ti4ceO8jlAmC49hGFRVVWlu4ha7tu2H+Hw+YmNjYWVlpVk/1VC1tbUhMzOTmkvnGSVvZNbUCwkbavPp6Ogo6urqAACOjo7zMgnvXAmFQsTExEAkEkGhUODu3bsG+dmaKi6XC4FAoBffJaIbhUKB/Px81NXVISgoCKtWrdKL4ycUCjUTpCuVSoNM4tTNpS4uLkhMTGQ7HKPC/jeUGCx182lVVRVu377NdjgzIpfLkZOTg4aGBoyPj7MdzqT6+vpQXV2N3NxcvY2RaBsZGUFeXp7RDeYxZgzDQCaTISYmBsuWLWM7nEkVFhaioKDA4Eakp6eno7e3l5pLFwAlb2ROgoKCEBISYlDNp0qlEnl5eZDL5YiLi9PbJkpnZ2fExcVhcHAQN2/exNDQENshkYdQKBTo7Ow0yFoSU9Pd3Q2pVKpZNcHZ2ZntkKbk6+uL3t5elJaWGkxNfGtrKzIzM5Gamrqoo3VNBSVvZM62bNkCLpeL06dP6/2FRaVSoaCgAENDQwaxjJGjoyOSkpLA5XKRmZkJmUzGdkiEGDSGYVBTU4Pc3Fzcu3eP7XB04ujoiFWrVqGlpQVVVVVsh/NQcrkcJ06cgJubG1avXs12OEaJkjcyZ5aWlnj00Uc1F0R9xjCMZokqGxsbtsPRiaWlJRITExEWFgahUAgANB8cIbMwNjaG7Oxs1NTUYPny5QgKCmI7JJ25u7sjJCQEdXV1ej8H3IULFzA4OIjt27frRf9BY8RnOwBiHJYvX474+HhcvnwZXl5e8PDwYDukCWQyGYRCIaKiotgOZcb4fD7c3d0BAPfu3UNDQwMiIyMhFotZjowQw6BSqZCVlQWVSoX4+HiDXFdz6dKlsLW1ZX007HTKyspQXFyMxx57DE5OTmyHY7QoJSbzZt26dXB1dcWxY8cwNjbGdjha6uvrcf36db2LazacnJzA5XJx8+ZNNDQ0sB0OeYC5uTmCg4NZmR+MTE6lUkGpVILL5SI0NBQpKSkGmbipqRO3pqYmdHV1sRyNtt7eXpw9exZhYWEIDw9nOxyjRskbmTc8Hg87duyAVCrFmTNn9Kb/W2trKyoqKuDj42MUP6oikQhJSUnw8fFBeXk5LaulR4RCIXx9fTXN24RdUqkUWVlZmtHwTk5OEAgELEc1Pzo7O1FQUKA3E3orFAp8++23sLa21qzCQxYOJW9kXtnZ2WHbtm2oqKhAYWEh2+Ggu7sbJSUl8PLyQmBgINvhzBsul4uQkBBER0eDy+VSvxI9MT4+jra2NpraRQ+0trYiPT0dcrkcPj4+bIcz7yIiImBjY4O8vDy9GOl/6dIl9PT0YOfOnUaTIOszuuKTeRccHIzo6GhcvHgRnZ2drMWhUqlQUlICR0dHhIaGshbHQnJ1dUVkZCQ4HA56enpQXl5O01SwSCqVorCw0CiWNDJUDMMgPz8fRUVFcHFxQXJyMmxtbdkOa97xeDzExMRAKBQiJyeH1S4hlZWVyMvLw8aNG2kVhUVCyRtZEBs3boSDgwO+/fZbzULPi43L5SI+Ph5RUVEmUTM1NjaG5uZmpKeno6enh+1wCFl0DMOAw+FALBYjOjoaERERejuP43wwMzNDbGwsbGxsWLvG9ff34/Tp0wgKCjLIwWCGyvh/0Qgr+Hw+du7cCYlEgvPnzy/qe8tkMpSXl0OpVEIkEpnMzN6enp5ISUmBhYUFsrOzUVZWRrVwxCSMjY0hNzdXM4BnxYoVJlMDZGFhgejoaAgEAoyNjS3qKgxKpRLHjh2DhYUFtm3bxura0KaGkjeyYBwdHbF161aUlJSgtLR0Ud5zfHwcOTk56OjoMMl+R1ZWVoiPj8fKlSvR19fHdjiELLimpiZcv34dEolE7yfdXkgMwyA7OxtFRUWLNljs6tWraG9vx44dO4xiMJghoeSNLCj1kPFz586hu7t7Qd9LpVIhPz8fo6OjiIuLM9mLCYfDwZIlS5CSkgI+nw+pVIry8nLWmq9NCY/Hg42NjcnU9rJJoVAgJycHpaWlcHNzQ2pqql4vcbXQOBwOgoKC0NHRgfLy8gV/v5qaGty6dQvr16/Xy3k9jR0lb2TBbdmyBTY2Njhy5AhGR0cX5D0YhkFRURH6+/sRExMDa2vrBXkfQ6JuwhgeHkZLSwuuXbuGxsZGvZnCxRiJRCIkJydDJBKxHYrRUjcL8vl8CAQCxMbGIjw83Kj7tunKxcUFYWFhaGxsRE1NzYK9T09PD44fP44VK1YgLi5uwd6HTI2SN7LgBAIB9uzZA6lUiuPHjy9InwwOhwORSITIyEjY29vP++sbMmdnZ6xZswaurq4oKytDRkYGJBIJ22ERMmNtbW24du2aZnmoiIgIk65tm4yXlxcCAgJQW1u7IKOex8bG8PXXX0MsFuPHP/4x9XNjCSVvZFHY29tj586dqK+vx5UrV+b1tUdGRgAAAQEBJtNJeaaEQiHCw8ORmJgIPp+vadajWrj5NTg4iHPnzmFwcJDtUIzK0NAQsrOzUVhYCLFYDAsLC7ZD0mv+/v5ISUmBpaXlvL6uSqXCsWPHIJVKsWfPHpqMmkWUvJFF4+vri40bN+LWrVsoKSmZl9dUd1amH0vd2NnZYfXq1bCysoJSqURGRgbq6uoWdYSasaPPcn51dHQgPT0do6OjiI2NRUxMzLwnJcZIJBKBYRhUVFTM20L2V65cQX19PXbu3EktHCyj5I0sqpiYGERERODMmTNoaWmZ02t1dHSgrKwMPj4+sLGxmacITQfDMHBwcEBVVRVu3LiB9vZ2qokjekGlUmmWfXJ0dERQUJDJD0iYDYZhIJFIkJeXN+euEqWlpbh16xY2bNgAX1/feYqQzBYlb2RRcTgcbNmyBR4eHjhy5MisLyh9fX0oLCyEq6srQkJC5jlK08Dn8xESEoLk5GRYWlqioKAAxcXFbIdFTBjDMGhubsa1a9eQk5MDpVIJPp8PX19fk5hoe75xuVxER0fDysoKOTk5s+4D19LSgtOnT2PVqlWIjY2d5yjJbNDZQBYdn8/Hrl27wOPxcOTIkVnNx1ZZWQl7e3tERERQh9k5EovFiIuLQ0JCgmYNyOHh4XlraiFEF21tbbhx4wZKSkpga2uLpKQkmnJlHvD5fMTGxoLH4yEnJ2fGUwZJJBIcOXIE7u7u2Lp1K11v9QQlb4QVIpEIu3fvRnd3N06fPj3j5rqYmBiTWfZqsTg4OMDBwQEA0NjYiFu3biE3N5f6E86ASCRCamoqTRUyC01NTbC0tERycjKioqLoM5xHQqEQcXFxcHZ2Bp/P1/l54+PjOHLkCLhcLp544okZPZcsLPrlI6xxc3PDY489hvLycmRlZT10f7lcjoKCAoyNjUEgENC8TgsoKCgIkZGRkEqlyMjIQEFBwYLN0WdMeDwerK2tqcZIB93d3cjKykJnZycAIDo6WrNOJ5l/VlZWCAkJAZfLhUQieejAGoZhcObMGXR3d2PPnj2UTOsZSqMJq4KDg9HZ2YmrV6/CyckJK1asmHQ/pVKJvLw8jIyMQKlULnKUpofD4cDd3R1ubm5oaWnB3bt3Nc0lUqmURvtNYXR0FDU1NVi+fDlNZzEJlUqFtrY21NXVQSKRwMbGRnMTRgnv4hgfH8etW7fg4uKC8PDwKZtBs7KyUFZWhh07dsDNzW2RoyQPQzVvhHVpaWlYsWIFjh07htbW1gmPq1QqFBQUQCKRIDY21qTXL1xsHA4HXl5eSEtLg7m5OZRKJW7evIn09HS0tLTQtBg/IJfL0dTUREuRTaG5uRnFxcUwNzdHfHw8kpOTacqJRWZmZobQ0FC0tLSgqqpq0n1u376NK1euIDk5mQaE6SlK3gjrOBwOHn/8cbi6uuKrr76asKB6eXk5enp6EB0dDVtbW3aCJADu145ERkbC3NwcxcXFuHbtGurr62mKETKpsbExVFVVaZIEDw8PpKSkIDY2Fo6OjixHZ7rc3d0REhKCuro61NXVaT127949nDhxAmFhYUhLS2MpQvIwlLwRvWBmZoY9e/bA3NwcX3zxhWbVBABwcnJCeHg4nJycWIyQqDk6OiI2NhYpKSlwcHBAe3u7punlweNGTFd/fz9KSkpw9epVNDQ0aL4ffD4fYrGY5egIACxduhT+/v6oq6vTjPjv7OzEkSNHsGTJEmzbto1Gluox6vNG9IalpSX27duHjz76CF999RW2bdsGFxcXuLu7sx0amYRYLMaqVas0tW79/f3IzMyEvb09fHx84ObmRv2YTAjDMOBwOJBKpcjMzISlpSVWrFgBHx8fGlykpwICArB06VKYmZlhcHAQX3zxBezt7TVTORH9RTVvRK/Y2dlh7969uHv3Lt56661J+8AR/aK+O7exsUFkZCS4XC6Ki4tx+fJl1NTUsBzd4hIKhfDz8zOpNR97e3tRVFSEGzdugGEYWFpaIikpCWvWrIGfnx8lbnpOKBRiaGgIb7zxBmQyGfbu3WtS319DRTVvRO/w+Xz4+/ujqKgIubm52L59O1XfGwAulwt3d3e4u7tjZGQETU1Nmrv3sbExdHV1wc3Nzah/zM3NzREYGMh2GAtOpVLh3r17aGxsxMjICKysrODt7a2pfaO+qYZDLpfj66+/xvDwMKKjo9kOh+iIkjeiVwYGBlBQUICVK1ciJiYGJ06cgKWlJTZu3EgJnAGxsrLSSmJ6enpQWlqK8vJyODk5wd3dHS4uLkaXyCkUCgwODsLGxsboJjQdGxtDb28vPDw8wOVy0dTUBFtbW4SFhWkmdyaGRalU4ujRo+jp6cG//uu/or6+Hjk5OUhMTIS5uTnb4ZFpGNfVhRi8e/fuwdraGlFRUeDxeJDJZDh37pxm5nVimDw9PeHo6Ij29na0tbWhuLgYXl5eCA8Ph1KpBMMwRpHsjIyM4NatW0hOTjaKyWZlMpnmmPX29oLL5cLR0RFCoRCpqal0Q2XAGIbBiRMncO/ePezbtw8+Pj5wdnZGZmYmcnNzkZiYSP3e9JjhXy2JUQkLC4NSqdRcNKKjoyGVSnHt2jVYWloiKiqK5QjJbJmbm2Pp0qVYunQpxsbGNHPEtbe3o7S0FM7OznB1dYWTkxPd9bNobGwM5ubmYBgG169fh0Kh0Iz4dnV11dSWUuJmuBiGwYULF1BRUYGdO3di6dKlAAALCwvExcWhp6eHEjc9R8kbYZ1CoUB+fj4CAgJgZ2c3Yb3S5ORkSKVSnDt3DgKBAKGhoSxFSubLg8mZo6MjAgMD0dbWhpKSEgD3pzEICQnRJHi0hu3CUSgU6OnpQXd3N7q6ujA6OopNmzaBz+cjOjoaYrHY6Jq3TRnDMLh27Rry8vLwyCOPICgoSOtxa2trWFtbA7jf3cHBwYESdT1EyRthlUqlQn5+PgYHB6dsNuNwONi0aRPkcjlOnDgBAJTAGRFzc3P4+vrC19cXcrkc3d3dmtFuPT09KCgogKOjI5ycnODs7EwrbMwRwzAYHR2FpaUlVCoVLl26BKVSCSsrKzg7O8PJyUmTLFNfNuOirk29efMmNmzYgMjIyCn3lUqlyMnJgbe3N11v9RAlb4Q1DMOgqKgIfX19iI+P19ztTYbD4WDbtm0AQAmcERMIBPDw8ND8bW1tjeXLl6O7uxuVlZW4ffs2XF1dER0dDYZh0N/fDxsbG71p4uFwODA3N9ermgqlUom+vj709fWhv78fAwMDAICNGzeCy+Vi1apVEIvFlBQbOXXilpGRgQ0bNiAhIWHa/S0tLREWFoaSkhKYm5tj+fLlixQp0YXRJG9DQ0P4+9//joyMDMhkMgQGBuIXv/jFlAudP2i6jvBRUVF45513ANzvm/PEE09Mut9//Md/YO3atbML3kRVVVWho6MDUVFROq1vSAmc6bGwsICfnx/8/PygUCg0neYBQCKRICsrCxwOB2KxGPb29rCzs9NK/habWCzG+vXrWXt/hmEwPDyM/v5+AIC3tzfGx8eRk5MDMzMz2NnZYdmyZVrnGy06bvxmmripeXl5YWxsDNXV1RAKhfDx8VngSImujCJ5U6lUePXVV1FXV4fdu3fDxsYGJ0+exMsvv4xDhw7By8tr2ue/9tprE7ZVV1fj2LFjk857s27dOsTFxWltCw4OnlshTJCHhwfEYjFcXV11fs4PEzgOh4OVK1cuVIhEj/D5fLi4uGj+FovFSElJQX9/P/r6+tDV1YXu7m5N8pabmwuhUAhra2uIRCJYW1vDwsJCr2rFZkulUkEqlYLH48HCwgI9PT2oqKjA8PAwVCoVOBwOXF1d4e3tDXNzc6xZs4Zq1kzUbBM3NX9/f8hkMjQ1NcHb29sozh9jYBTJ240bN3D79m384Q9/QGpqKgBgzZo1+MlPfoJPPvkEv/vd76Z9/oYNGyZsKy4uBofDmbQ2zd/ff9LnEN10d3fDwcEBNjY2s5pOQZ3AMQyD7777DgAogTNB6ho3sVisqRFQKpUA7v9gqWeOb29vh0KhAABNEtPU1ASpVAoLCwtYWFjA3NwclpaWc56uRCKRIDc3F7GxsXNaw5NhGMjlcoyNjUEkEoHH46GtrQ3t7e0YGhrCyMgIVCoV/Pz8EBgYCKFQCDs7O3h7e0MsFk+YZ44SN9M018RNLTg4WHNTQPSDUSRv6enpsLe312r+tLW1RVpaGi5fvgy5XA6BQKDz68nlcqSnpyM8PBzOzs6T7jM6Ogo+n0+jsGaoo6MDBQUFCAoKgq+v76xf58EaOErgiJq67xuHw0F4eLhm++joKIaGhmBpaQng/mTQnZ2dkMlkmrVZQ0JCsHTpUnR1daGurg7m5uYQCATg8/kQiUSaGr2uri7w+XzNPy6XC6FQCA6Hg/HxcQwPD0Mmk0EmkwG4/wPK4/FgZmaG8fFx9PX1QaFQQKFQYHx8HBwOB8uWLQNwv7ZweHhYayqV1atXw97eHqOjo5DJZHBwcMCSJUu0RgVaW1tTFwKi5cHEbf369bNO3ID75xOPx4NUKkV+fr6mnyRhj1EkbzU1NfD3958wnUBgYCDOnDmD5uZmzcVRFzk5ORgeHp6y78rhw4fx3nvvgcPhYMWKFfjZz36GmJiYaV+zp6cHvb29mr8bGxt1jsdY9PX1obCwEK6urpp5heaCy+VSAkd0oq5hU1MnOgzDQCaTYXR0VPM4j8eDQCCAVCrF4OAgFAoFbGxs4OHhAaVSidzc3Amvv379epibm6OsrAxFRUWQyWRatV3Lli1DUFAQhoaGkJeXB+D+DyKfz4elpaXm+qSuSVTXBlpYWEAkEmleYybXMWK6fpi4rV69el5eVyAQgMPhIDc3F6tXr9bcDJHFZxTJW19fH8LCwiZsVw9z7+3tndFF7/LlyxAIBEhJSdHazuVyER0djeTkZDg6OqKtrQ1Hjx7FK6+8gjfffBPx8fFTvubp06dx+PBhnWMwNuofLTs7O0RERMxb9TslcGQu1KNDH5x3zsHBYcopMrhcLtavX69Vc8YwjKZm39fXF01NTYiIiIBYLAaHwwGHw9H8yNna2mLDhg3g8/mTjpA1hXVRycJaqMQNuN/vNDY2FllZWZpltGbSqkXmj94lbyqVCuPj4zrtq74LkMlkk36B1NvUzRe6GBkZQXZ2NmJjYydMXeHi4oK3335ba9vGjRvx1FNP4W9/+9u0ydu2bdu0TqLGxka88cYbOsdl6Do7O2FhYYHo6Oh5n3D1hwmcQqHAqlWr5vU9CAH+kexNxdbWFvb29nBxcZm0P6e6iZWQhcAwDK5cuYKsrKx5T9zUhEKhJoHLz89fkPcgD6d3yVtpaSlefvllnfb9/PPP4ePjA6FQCLlcPuFx9baZXCzT09Mhl8t1Hu4vFouxefNmfPnll+jq6pqyj5yjoyMcHR11jsNYMAwDDocDPz8/LF26dMHm41IncHw+H6dOncLw8DASExOpgy1ZVFZWVkhISKABAmTRKZVKnD59GqWlpdi0adOEGRHmk5WVFWJjYyf93SWLQ++SN29vbxw4cECnfdVNG/b29lr9ydTU22YyS/jly5chEolm1LlTnbANDQ1NmbyZIqVSiZycHCxZsgQeHh4LPpEql8vF1q1bIRKJcPXqVQwPD2PTpk2UwJFFw+fzaVUCsujkcjm+/fZb1NfX4/HHH1+UriPqmmWGYdDW1gZ3d3e61i4ivUveHBwcsHnz5hk9x9/fH2VlZVCpVFpNclVVVTA3N3/oPG9qPT09KC4uxqZNm2bUjt/W1gYAs5r2wlipVCoUFhZicHBwUWshOBwOUlNTIRKJcO7cOYyMjOCxxx6b8xQQhOhibGwM9+7dw9KlS6dtXiVkvkilUnz11Vfo6urCT37yk0Uf1NLf34+ioiIMDg5OWCeVLByjWO05JSUFfX19yMjI0GwbGBjA9evXkZCQoJWItba2orW1ddLXuXbtGlQq1ZRNpuplZR7U3d2N8+fPY9myZSbZLDqVsrIydHV1ITo6Gra2tov+/lFRUdi5cyeqqqrw1VdfzajfIyGzJZPJcPfuXfq+kUUxODiIjz/+GP39/XjmmWdYGY1sb2+PkJAQ1NXVoa6ubtHf31QZRXVEamoqjh07hjfffBMNDQ2aFRZUKhWeffZZrX3/+Z//GQBw9OjRCa9z+fJlODo6TtnZ/b333kNraysiIyPh6OiIjo4OnD59GmNjY/jVr341/wUzUHV1dWhubkZERAScnJxYiyMoKAiWlpb4+uuvcfjwYezdu1cz7QIhhBiyrq4ufP755+Dz+Xj22WdZba5funQpZDIZKisrIRQK4enpyVospsIokjcej4e33noL7777Lo4fPw6ZTIaAgAAcOHAA3t7eOr1GU1MT7ty5g127dk05GjI6OhptbW04ceIEhoaGIBKJEBoaiqeeekqnNVRNhaenJ8zNzVldY1JtyZIl+OlPf4ovvvgCH3/8MZ588knY2dmxHRYhhMxaU1MTvvrqK9ja2mLv3r0TZkZgQ0BAAMbGxtDT00PJ2yLgMOrpxcmiunPnDp5//nkcOnTIaBK/zs5O2NjY6GVfn/7+fnz++eeQy+XYu3cvLcZNFsTg4CAyMjKQnJxMfWDJgrhz5w6+/fZbeHp6Yvfu3Xp1vVWnExwOZ0IfdEOnb7/ZxvPJElZ1d3ejoKAA9fX1bIcyKTs7Ozz33HMQi8U4fPiw3sZJDJtAIIC3tzdNXEoWRGFhIY4cOYLly5dj3759epW4AdBMSt3X14fr169jZGSE7ZCMFiVvZM4GBwdRUFAAR0dHBAQEsB3OlKysrPD000/D09MTX3zxBfLz80EVz2Q+WVhYICwsTGspLkLmSqVS4eLFizhz5gyioqKwY8cOvR5BLxKJwOVykZ2djbGxMbbDMUqUvJE5GRkZQU5ODqytrREVFaX31eRCoRB79+5FdHQ0zp07h7Nnz0KpVLIdFjESSqUSQ0ND9J0i82Z0dBRffvkl8vLysGXLFmzZskXvr7MCgQBxcXFgGAa5ubk6r5pEdKff3wCi94aGhmBubo6YmJgFn4R3vnC5XGzevBnbtm1DSUkJPvvsM6reJ/NieHgYN27cwPDwMNuhECPQ3d2NQ4cOoa2tDU8++SRiYmIMZiJcCwsLxMXFYXR0FKWlpWyHY3T0t96V6DV1Z1RXV1e4uLgYzAXlQREREXB0dMQ333yDDz74AHv27IGrqyvbYRFCCGpqanD8+HHY2Nhg//79BjlK3traGrGxsdQHdAFQzRuZMZVKhdzcXFRXVwOAQSZuat7e3ti/fz8sLS3x0UcfobKyku2QCCEmjGEYZGZm4uuvv8bSpUvx3HPPGWTipmZnZwcrKysoFArcu3eP7XCMBiVvZEYYhkFxcTH6+vpYnYB3PtnY2ODZZ5/F8uXLcfToUVy/fp0GMhBCFt34+Di+++47XLlyBUlJSXjiiScgFArZDmtedHd34/bt26ipqWE7FKNAzaZkRm7fvo329nZERUUZ1QLcZmZm2LFjB1xdXXH16lV0dXVh+/btVN1PZkzfO5MT/SSRSHDkyBF0d3dj586dCA4OZjukeeXm5oaAgABUV1dDKBTCx8eH7ZAMGiVvRGetra1oaGhAaGioUfYN43A4SEpKgrOzM44fP44PP/wQu3fvhr29PduhEQNhY2ODrVu3sh0GMTBNTU04evQoeDwenn32WaOdRNzf3x8ymQzl5eUQCARGW87FQLeIRGdubm6Ijo42+jumFStW4Gc/+xkUCgXef/993L59m+2QCCFGSN2/7fDhw7C3t8fzzz9v9AlNcHAw3NzcMDo6ynYoBo1q3shDdXZ2QiAQwM7Ozihr3Cbj7OyMF154AWfOnMGxY8dw7949bNq0CWZmZmyHRvTY8PAwioqKEBERAZFIxHY4RI8NDw/jxIkTqK+vR2JiItLS0kyiyZ3D4SAyMlLzt0Kh0OsJh/UVfWJkWn19fSgoKIC7u7tBj3iaDaFQiMcffxy+vr64cOECmpubsWPHDjg7O7MdGtFTSqUSg4ODNEkvmVZdXR1OnDgBAHjyySfh6+vLckTsaGlpQVVVFVavXg1LS0u2wzEoxp/mk1kbGhpCXl4e7OzsEBYWxnY4rOBwOIiIiMDzzz8PADh06BAKCwtpNCohZMZUKhWuXr2KL774Ai4uLnjxxRdNNnEDACcnJ3C5XOTk5EAul7MdjkGh5I1ManR0FDk5ObCwsEB0dLRJVOdPx9nZGc8//zxCQ0Nx5swZHD9+nNbsI4TobHBwEJ988gmysrKwdu1a7Nu3z+Sb1oVCIeLi4jA+Po7c3FyqsZ4B0/5FJlMaHx+HhYUFYmNjqZ/X/zEzM8MjjzyCHTt2oLa2Fu+//z5aW1vZDosQoueqq6vx3nvvQSKR4Kc//SkSExMNenLz+WRlZYW4uDgMDw9rJn4nD0d93ogWpVIJDocDsViMxMREtsPRSyEhIfDw8MC3336Ljz/+GOvWrUNcXBxdjAksLS0RGRlJ/XcIgPud8S9duoS8vDwEBgZi27ZtsLCwYDssvWNjY4O4uDhYW1uzHYrBoOSNaDAMg8LCQnA4HERHR7Mdjl6zs7PDc889hytXruD7779HbW0ttm3bBltbW7ZDIywyMzODu7s722EQPdDW1oaTJ0+it7cXW7ZsQXR0NN3gTUM9IG5kZAQdHR1YtmwZyxHpN2o2JRqlpaXo6urCkiVL2A7FIPB4PGzcuBH79u1DT08P3n33XeTn59NgBhMmk8lQX18PmUzGdiiEJQqFAleuXMGHH34IHo+H/fv3IyYmhhI3HfX09KCyshL19fVsh6LXqOaNALjfJ6O5uRkRERFGs2bpYvHz88M//dM/4dKlSzh37hwqKirw6KOPmtzUKgQYGxtDRUUFHBwcjGZNSqK7lpYWnDp1Cn19fUhNTcXq1avB4/HYDsug+Pj4QCqVoqKiAkKhEB4eHmyHpJcoeSPo6+tDbW0tgoOD6USZJaFQiEceeQTBwcE4ffo03n33Xaxbt47uuAkxAePj47h+/Tqys7Ph7u6OF154geaDnIPAwEDIZDIUFxdDIBBQhcIkKHkjsLe3R0JCglEtNM8WX19f/PznP8eVK1dw4cIFVFZWYtu2bfTZEmKkmpqacOrUKQwODmLdunWIj483+amV5kNYWBiUSiV1Q5kCJW8mrLu7GzKZDJ6enpRczCOhUIitW7ciODgYp06dwt///nesWbMGsbGxdFEnxEiMj4/j6tWryM3NhYeHB/bs2QNHR0e2wzIaDy6jxTAM5HI5dUV4ACVvJmpwcBAFBQWwt7eHp6cn2+EYpSVLluDnP/85rl27hkuXLqGyshKPPvooXeCNGJ/Ph4uLC63VaOQaGxtx6tQpSCQSbNiwgW7MFtidO3fQ2tqK1atXw9zcnO1w9AJ920zQyMgIcnNzIRKJEBUVxXY4Rk0gEGDTpk346U9/CqlUivfeew9XrlyhpWCMlJWVFWJiYmBlZcV2KGQBDA0N4bvvvsMnn3wCkUiEn//859RMugh8fHygUqmQm5uL8fFxtsPRC3R7aGJkMhlycnJgZmaG2NhYGgm1SLy9vfHiiy/i1q1buHnzJkpLS7FhwwaEhITQgAYjolKpoFAowOfz6QfdiCiVSuTk5CA9PR1mZmbYtm0bVq1aRefuIrGwsEBcXByysrKQn5+PuLg4kz+/KHkzQdbW1ggJCYFAIGA7FJNiZmaGlJQUhIWF4dKlSzh+/DgKCgqwefNmuLq6sh0emQdDQ0PIyMhAcnIybGxs2A6HzIO7d+/i4sWL6OvrQ3R0NNLS0qjpjgXW1taIiYlBdnY2Ghoa4Ovry3ZIrKLkzUSoVCqMj49DKBQiJiaG7XBMmq2tLXbt2oX6+npcuHAB77//PqKiorBmzRpaOocQPdHf34/vv/8e1dXVWLJkCXbu3AkXFxe2wzJp9vb2SEpKomW0QMmbSWAYBsXFxRgaGkJKSgpV9esJX19fvPjii8jLy8ONGzdQUVGBNWvWICIiwuSbBAhhy/j4ODIzM5GVlQVLS0vs2LEDwcHBdN3UE2KxGMD92RIGBwfh5+fHckTsoOTNBFRUVKC9vR1RUVF0AdIzPB4P8fHxWLlyJa5cuYKzZ8+isLAQW7ZsgZeXF9vhEWIyGIZBVVUVvv/+ewwPDyMhIQFJSUnUvURPDQwMoLq6GmZmZvDx8WE7nEVHyZuRq62txb179xAaGkr9qvSYSCTCY489hqioKJw/fx4fffQRgoODkZaWRlOLELLAmpqacPXqVTQ2NmL58uV4+umnYW9vz3ZYZBr+/v6QyWQoLy+HUCg0ud83St6MmFQqRU1NDVasWGGSdyaGyNPTE88//zxKSkpw48YN/O1vf0N4eDhSUlJga2vLdnjkIcRiMTZv3kyjuA1Ee3s7rl27htraWri6umLv3r3w9/dnOyyio+DgYMhkMhQWFiI+Pt6kEm5K3oyYpaUlkpOTqXOngeFwOFi1ahVWrlyJwsJCZGRkoKysDFFRUUhKSoJIJGI7RDIFDodDE/QagJ6eHly/fh0VFRVwcHDAzp07ERQURN1KDIz6WllWVmZyzdt0lTFCfX196OzsREBAACVuBozP5yM2NharVq1Cbm4usrKyUFRUhNjYWKxevZpGpuqhkZERlJeXY+XKlTRRrx4aGBhAeno6SkpKIBaL8eijjyIsLIwGCBkwLpeL8PBwAIBCoYBCoTCJqVwoeTMyQ0NDyMvLg1gsBsMwdCdpBAQCAZKSkhAVFYVbt24hJycHBQUFSEhIQFxcnMndceozhUKB7u5uKBQKtkMhDxgeHkZGRgYKCwthbm6OTZs2ITIykmpJjUxpaSkkEglWr15t9NdF+uYakdHRUeTk5MDCwgLR0dF0N2lkLCwssHbtWsTGxiIzMxPp6enIzc1FUlISIiMjYWZmxnaIhOgVqVSKW7duITc3FzweD2lpaYiJiTH6H3ZTFRAQgMzMTOTl5SE+Pt6o+55S8mYkxsfHkZOTAy6Xi9jYWPohN2IikQibNm1CfHw80tPTcenSJWRkZCAmJgYxMTGwtLRkO0RCWNXf34/s7GwUFxeDw+EgPj4eCQkJJtGcZsqsrKwQFxeHW7duoaCgwKgrMSh5MxI8Hg8ODg5YtmwZXaBMhI2NDbZt24akpCRkZ2cjKysLWVlZWLVqFeLj42FnZ8d2iIQsqra2NmRlZaGyshIWFhZYvXo13dCYGBsbG0RFRSEvLw/d3d1GuyoGJW8GjmEYjIyMQCQSITQ0lO1wCAvs7OywZcsWpKamIj8/H7m5ucjPz0dQUBASEhLg4eHBdogmw8LCAitXrqTBJIuIYRjcvXsXWVlZaGhogL29PbZs2YLw8HBqgTBRTk5OSEtLM+qknZI3A1daWoqOjg6sXbuWLlQmztLSEikpKUhISEBpaSlu3bqFQ4cOYcmSJVi9ejX8/PxoAMsCEwgEWLJkCdthmASlUony8nLcunULXV1d8PDwwK5duxAQEGC0TWVEd+rErb6+HgCMbiF7St4MWHV1NZqbmxEREUGJG9EwMzNDVFQUIiIiUF1djVu3buHLL7+Es7MzEhISEBISQqPsFsj4+Dg6Ozvh4uJC5+QCGRsbQ1FREXJyciCRSLB8+XJs3boV3t7edHNCJpDJZLh79y6EQqFRtULQFdxA3bt3D7W1tQgKCjKqLySZP1wuF0FBQQgMDERTUxNu3bqFkydP4tKlSwgLC0NERAScnJzYDtOoSKVSFBcXIzk5GTY2NmyHYzQYhkFLSwsKCwtRUVEBlUqF0NBQJCQk0HeYTCswMBAymQzFxcUQCARG832h5M0AjY+Po7a2FsuWLcOyZcvYDofoOQ6HAx8fH/j4+KCnpwdFRUUoKSlBdnY2vL29ERkZiaCgIKopInpHKpWirKwMhYWF6O7uhp2dHZKTkxEeHk4TkBOdhYaGQiaTIT8/H6tXrzaKGytK3gyQmZkZkpOTIRQK2Q6FGBhHR0ds2LABa9asQXV1NYqKinDixAlcuHABoaGhiIyMNNrRWcQwMAyDxsZGFBYWoqqqCgzDICAgAJs2bYKvry81jZIZ43K5iIqKQnV1tdEMYqDkzYAMDg6itrYW4eHhNB0ImRM+n4+QkBCEhISgr68PxcXFKC4uRl5eHjw8PBAZGYmQkBCazJQsmpGREZSUlKCoqAi9vb1wcHBAWloawsPDaakxMmc8Hg/BwcEA7tfocrlcg/4dpeTNQIyMjCA3NxcWFhZ050nmlb29PdauXYvU1FTU1NSgqKgIZ86cwcWLFxEcHIyQkBAsWbLEqGcrny88Hg92dnb0WelILpejtrYWt2/fRk1NDTgcDoKCgvDII4/Ax8eHrnVkQRQWFkKlUiEhIcFgu4tQ8mYAZDIZcnJyYGZmhtjYWPphIAuCx+MhMDAQgYGBGBgYQHFxMcrLy1FcXAxLS0sEBgYiODgYS5YsoakYpiASiZCYmMh2GHpN3We3oqICNTU1GB8fh7u7O9avX4+wsDCaI48suPDwcGRlZSE/Px9xcXEGeT2j5E3PqVQq5Obmau4SqBmLLAZbW1ukpaUhNTUVHR0dqKioQEVFBQoLC2FpaYmgoCAEBwfDx8fHIC98ZHGNj4/j7t27moRNLpfDzc0NKSkpCAoKgr29PdshEhNibW2NmJgYZGdno6ioCJGRkQZXy0vJm57jcrnw8PCAk5MT3ZGSRcfhcODm5gY3NzesXbsW7e3tmkSuoKAAVlZWmkTO29vb5BO5wcFBZGRk0FQhABQKhSZhu3PnDuRyOVxdXZGUlISgoCA4ODiwHSIxYfb29oiMjERxcTGGhoYgFovZDmlGKHnTUwzDoK+vT7NeKSFs43A4cHd3h7u7O9atW4e2tjZNIpefnw+RSAQ/Pz/4+fnB19fXaEZ1Ed0NDg7i7t27qKurQ11dHWQyGVxcXJCYmIigoCA4OjqyHSIhGq6urli7dq1BtmhR8qanKioq0NDQgDVr1tCPINE7HA4HHh4e8PDwwPr169Ha2orKykrcvXsXJSUlmkTPz88Py5Ytg6enp8nXyhmj8fFxNDY2ahK27u5ucDgceHp6IiEhAUFBQUYzKSoxTgKBAAzDoLS0FPb29vD29mY7JJ1Q8qaHamtrce/ePYSGhlLiRvSe+sfa09MTGzZsgEQi0dS85OXlIT09Hebm5li6dKkmmbO1tWU7bDILDMOgu7sbdXV1uHv3LhobG6FQKCAWi+Hn54e0tDQsXbqUungQg8LhcMDj8VBWVgaBQABXV1e2Q3ooSt70TFNTE6qrq7F8+XL4+PiwHQ4hMyYWi7Fq1SqsWrUKKpUK7e3tuHv3Lu7evYuzZ8+CYRg4OjrC19cXXl5e8PT0hK2trcF1GDYF6mStpaUFzc3NqKurg0QiAZ/Px5IlS7B27Vr4+fnB0dGRjh8xaCEhIZDJZCgsLER8fLzeD6Kh5E2PMAyDhoYG+Pj4YMWKFWyHQ8icqQfceHh4ICUlBWNjY6ivr9fU3OTl5QG4P8WGuvbO09MT7u7uBtkPxdraGmvWrDHYmqfR0VG0tLRo/ZPJZOBwOHB2dkZwcDCWLVsGHx8fg50fi5DJcDgcREREIDc3F3l5eUhOTtbrli9K3vQIh8NBQkICzeNGjJa5uTmCgoIQFBQE4P5M5+okobm5GRkZGZDL5eByuXBxcdEkc15eXrCzs9P72h0ul2swqwGoVCp0d3ejublZcwx6enoAAJaWlvD09ERiYqImmabl+IixUy+j1djYqPc3YEaRvPX09ODYsWOoqqpCdXU1RkdHcfDgQaxatUrn1+ju7sb//u//Ij8/HyqVCqtWrcJLL70Ed3f3CfuePXsWR44cQUdHB5ycnLBjxw48/vjjs45/aGgIJSUliIyM1OtMn5D5ZmlpieXLl2P58uUAJiYU9+7dQ35+PoD7iZ+Tk9OEf2KxWG+SOqlUiurqagQEBOjNuaxSqTAwMICuri50d3dr/vX09GB8fFyTKC9duhRJSUkGkygTshDMzMzg5+cHAOjr64NIJNLLVgCjSN6am5vx1VdfwdPTE76+vqioqJjR86VSKV5++WWMjIxg37594PP5OHr0KF566SV8/PHHWvM1nTp1Cm+//TZSUlLwxBNPoKysDAcPHsTY2Bj27t0749jVqycIBAJqhiAmT51IuLi4ICoqCsA/mvI6OjrQ3d2N9vZ2lJeXY3x8HAAgFAonTepsbGwWPQEZHx9Ha2srK9P7qFQq9Pf3T5qkKRQKAP9IgN3c3BAaGgo3NzeDbaImZCGpVCoUFhbCwsIC8fHxbIczgVEkbytWrMDZs2chFotx48YN/O53v5vR80+ePImWlha8//77CAwMBADExsbimWeewTfffIP9+/cDuJ9offjhh4iPj8frr78OAHjkkUegUqnw2WefYdu2bbC2tp7Re5eXl8PFxQWxsbGUvBEyCQsLC/j7+8Pf31+zTaVSYXBwUCtJ6ezsREVFBeRyOYD7y32JxeJp/1lZWRnEFCZKpRLDw8OQSCQYHByERCKZ8G94eBgqlQrA/c/MyckJHh4eCA8Ph5OTE5ydnSESiahGjRAdcLlcREdH49atWygoKNC7SbeNInmba/PEjRs3EBAQoEncAMDHxwcRERG4fv26JnkrKirC4OAgHnvsMa3nb9++HZcvX0Z2djY2bNgwo/ceHx9HfHw8zM3N51QGQkwJl8uFnZ0d7OzsNE2uwP1BP+qkrr+/Xyu5aW1thUQi0dRCqV/H2toaYrEYIpEIQqFQ538CgQAcDkfr3w8xDKP5p1KpIJfLIZPJdPo3NjamSdiGh4fBMIzmdQUCgSYBVY/cFYvFcHBwgJOTE6ysrChJI2SObG1tER0djby8PHR1dbEdjhajSN7mQqVSob6+Hlu2bJnwWGBgIPLz8yGVSmFpaYna2loAQEBAgNZ+K1asAJfLRU1NzZTJW09PD3p7ezV/3717F8D9L0dLS8t8FYcQ8n9sbGwmvVseGxvDyMgIhoeHMTIyovl/e3s75HI55HI5xsfHNf+fifHxcbS3t+Py5cszqknncDgQCoUwMzPTdKEwMzODlZUV3NzcYGVlBZFIBCsrK1hZWU3ZzCmXy9Ha2jqjmAkh07OxsdH0vZXJZCxHc5/JJ28SiQRyuXzSdfbU23p6euDt7Y3e3l7weDzY2dlp7WdmZgaxWKyVnP3Q6dOncfjw4Qnb33nnnbkVgBCidzo7O9kOgRCyAGpraxEaGsp2GPqXvKlUKk1H5IdRN1vMhTqLnuwuWX13q95HJpOBz5/8IxMIBNNm5Nu2bcPq1as1f1dVVeGdd97Bq6++qhnZYgoaGxvxxhtv4LXXXjOZSYhNscyAaZbbFMsMULlNqdymWGbgfmvZn//8Z70ps94lb6WlpXj55Zd12vfzzz+f8wepnrtosoRR3WSi3kcoFGr1l/nhvtPNg+To6Djposx+fn4mOSGvKU5EbIplBkyz3KZYZoDKbUpMscwAZjwocaHoXfLm7e2NAwcO6LTvZE2dMyUWiyEQCCZt8lRvUyddDg4OUCqV6O/v12o6HR8fh0QimZd4CCGEEEKmo3fJm4ODAzZv3rxo78flcuHr64vq6uoJj1VWVsLd3V0zmlU9VUF1dbXWvC/V1dVQqVRaUxkQQgghhCwE/Z/gaJ51dnaisbFRa1tKSgqqq6u1ErimpiYUFxcjNTVVsy0iIgJisRinTp3Sev6pU6dgbm4+o4n8HBwc8Mwzz5hcbZ0pltsUywyYZrlNscwAlduUym2KZQb0r9wc5sHJgwzYp59+CgBoaGjA1atXsWXLFri5uQEAnn76ac1+v/rVr1BSUoKMjAzNNqlUiueeew5SqRS7d+8Gj8fD0aNHoVKp8PHHH8PW1laz74kTJ/DXv/4VqampiImJQWlpKb7//ns8//zzePLJJxensIQQQggxWUaTvCUnJ0/52IOJ2mTJGwB0dXVNWNv0l7/8JTw9PSe83pkzZ/DNN9+gvb0dzs7O2L59O3bu3EmTYhJCCCFkwRlN8kYIIYQQYgpMrs8bIYQQQogho+SNEEIIIcSA6N1UIYaup6cHx44dQ1VVFaqrqzE6OoqDBw9i1apVOr9Gd3f3hP53L730Etzd3Sfse/bsWRw5cgQdHR1wcnLCjh078Pjjj89nkXQ2NDSEv//978jIyIBMJkNgYCB+8Ytf6DSR43R9FqOiojTLiLW3t+OJJ56YdL//+I//wNq1a2cX/BzMpdz/9V//hYsXL07Y7u3tjS+++EJrm0qlwpEjR3Dy5En09fXB09MT+/btw7p16+atLLqabZlVKhW+//57pKeno7a2FkNDQ3Bzc8OaNWuwe/fuCRNdT/W92L9/P/bt2zdv5XmQXC7HRx99hEuXLmFoaAjLli3Dz372M0RHRz/0uYZ67gKzL3d6ejquXbuG6upq9PX1wdnZGfHx8Xj66acnTGi6a9cudHR0THiNbdu24Te/+c28lkcXsy3zxx9/POlyhwKBAFeuXJmw3ViO9VTHDwA8PDzw9ddfa/5m49ydjlQqxZEjR1BZWYmqqioMDQ3hwIEDOk9NNpNrXmZmJj755BM0NjbC1tYWW7ZswVNPPTXlCk2zQcnbPGtubsZXX30FT09P+Pr6oqKiYkbPl0qlePnllzEyMoJ9+/aBz+fj6NGjeOmll/Dxxx9rLbR96tQpvP3220hJScETTzyBsrIyHDx4EGNjY9i7d+98F21aKpUKr776Kurq6rB7927Y2Njg5MmTePnll3Ho0CF4eXlN+/zXXnttwrbq6mocO3Zs0gvKunXrEBcXp7UtODh4boWYhbmWG7h/wX/llVe0tllZWU3Y79ChQ/jyyy/xyCOPICAgAJmZmfjDH/4ADoezqEnrXMo8NjaGN998E8HBwXj00UdhZ2eHiooKfPLJJygqKsJ///d/Txj4ExUVhU2bNmltW8g5Fd98803cuHEDO3fuhKenJy5cuIBXXnkFBw8enHZNQ0M9d9VmW+6//OUvcHBwwIYNG+Di4oK6ujqcOHECOTk5+OijjyYk5P7+/hNuwCYbGLYYZltmtV//+tewsLDQ/M3lTmzMMqZj/dJLL2F0dFRrW0dHBz788MNJr9OLfe5OZ3BwEIcPH4aLiwv8/PxQXFys83Nncs3LycnBv/3bvyE8PBwvv/wy6uvr8dlnn6G/vx+//vWv569ADJlXIyMjzODgIMMwDHP9+nUmKSmJKSoq0vn5X375JZOUlMRUVlZqtjU0NDCpqanM+++/r9k2NjbG/OhHP2JeeeUVref/4Q9/YDZs2MBIJJI5lmRmrl69yiQlJTHXr1/XbOvv72c2b97M/P73v5/Va/7pT39ikpOTmc7OTs22trY2Jikpifnqq6/mGvK8mGu5//jHPzIbNmx46H5dXV1MWloa884772i2qVQq5p/+6Z+YH//4x4xCoZhV/LMxlzLL5XKmrKxswvZPPvmESUpKYvLz87W2JyUlaZV5oVVUVEz4fo2NjTG7d+9mXnzxxWmfa6jnLsPMrdyTXd8uXLjAJCUlMWfOnNHavnPnzgnlZstcyvzRRx8xSUlJTH9//7T7Gduxnszhw4eZpKSkCef1Yp+7DyOTyZienh6GYRimqqqKSUpKYs6fP6/Tc2dyzXvyySeZn/70p8z4+Lhm2wcffMAkJyczDQ0Ncy/I/6E+b/PM0tISYrF41s+/ceMGAgICEBgYqNnm4+ODiIgIXL9+XbOtqKgIg4ODeOyxx7Sev337doyOjiI7O3vWMcxGeno67O3ttarKbW1tkZaWhszMTM06sbqSy+VIT09HeHg4nJ2dJ91ndHR00jVpF9N8lVupVGJkZGTKxzMzM6FQKLB9+3bNNg6Hg8ceewzd3d0zruGdi7mU2czMDCtXrpywPSkpCQAmTKCtJpPJIJPJ5hj5w6Wnp4PH42Hbtm2abUKhEFu3bkVFRQU6OzunfK6hnrvA3Mo9WZcQ9XejoaFh0ueMj49PqMFZbHMp84NGRkbATDFpg7Ed68lcuXIFbm5uk57XwOKduw8jEAhmPcGurte8hoYGNDQ04JFHHtFqIt2+fTsYhsGNGzfmVIYHUfKmR1QqFerr6xEQEDDhscDAQLS2tkIqlQIAamtrAWDCvitWrACXy0VNTc3CB/yAmpoa+Pv7T2g2CAwMxNjYGJqbm2f0ejk5ORgeHsb69esnffzw4cPYuHEj1q1bh/379yMvL2/Wsc/FfJR7bGwMmzdvxubNm7F161a88847muOsVltbCwsLC/j4+Ex4H/Xji2W+jzUA9PX1AYBW06LaxYsXsWHDBqxfvx5PPvkkLl++PLvAdVBbWwtPT88Jzdbqz/nu3buTPs+Qz111TLMp91TU60I/OMG5WlFRETZs2ICNGzdi165d+Pbbb2cX9BzNR5mfeOIJbN68GZs2bcLrr7+u+R4/+B6A8R7rmpoaNDY2TtnvdjHP3YWk6zVPfTx/2A/O0dERTk5O83qdpj5vekQikUAul096d6De1tPTA29vb/T29oLH48HOzk5rPzMzM4jFYs3Fc7H09fUhLCxswnZ13L29vVi2bJnOr3f58mUIBAKkpKRobedyuYiOjkZycjIcHR3R1taGo0eP4pVXXsGbb745oyXK5sNcy+3g4IA9e/Zg+fLlYBgGubm5OHnyJOrq6nDw4EHN3Vtvby/s7Owm9Ad78HuxWOb7WAPA119/DSsrK8TGxmptDwkJQVpaGtzc3NDb24vvvvsOr7/+OkZGRibUZsyH3t7eh55/kzHkcxeYfbmn8tVXX4HH4004f319fREaGgovLy9IJBJcuHAB//M//4Oenh78/Oc/n30BZmEuZba2tsaPf/xjBAcHw8zMDGVlZThx4gSqqqpw6NAhTWJk7MdanYxNdpO92OfuQtL1mqc+nlN9vvN5vCl5m4ZKpdK5WU4gEMx5hQV11bKZmdmkr//gPjKZbMqRKwKBYE7V1LMpt0wm08T4w8fV8epqZGQE2dnZiI2NnTBazcXFBW+//bbWto0bN+Kpp57C3/72tzklb2yU+4UXXtD6e+3atfDy8sKhQ4eQnp6uGYggk8l0+l7MFNvHGgA+//xzFBQU4F/+5V8mHO93331X6+8tW7bgZz/7GT744ANs3rx5Qmf4uZrt56wv5+5szef36/Llyzh37hz27NkzYfDKn/70J62/t2zZgt/+9rc4evQoHn/88Sm7SCyEuZR5586dWn+npqYiMDAQr7/+Ok6cOKEZTWnMx1qlUuHatWvw9/fHkiVLJjy+2OfuQtL1mqduPp1q3x+2qMwFJW/TKC0txcsvv6zTvp9//vmEJq2ZUn+ZJ/sxVX8p1PsIhUIoFIpJX0cul8/pxJhNuYVC4aR9nX4Yty7S09Mhl8unbDL9IbFYjM2bN+PLL79EV1fXrH8A2C632q5du/DRRx+hoKBAk7wJhUKdvhczxXaZr169ig8//BBbt27V6W7czMwMP/7xj/H222/jzp07Oo0InInZfs76cu7O1nx9v0pLS/HnP/8ZMTExeP755x+6P4fDwa5du5CXl4eSkhJs2LBhZoHPwXyfU+vXr8ff/vY3FBYWapI3Yz7WJSUl6O7unpDITmWhz92FpOs1T520TbXvfB5vSt6m4e3tjQMHDui072w7Qj5ILBZDIBBMWrWq3ubo6Kh5P6VSif7+fq0q+fHxcUgkkjnFM5ty29vbTxv3TOK5fPkyRCIREhISdH6OOmEbGhqadfLGdrnVhEIhxGIxJBKJ1vsVFxeDYRitGt4ffi9mis0y5+fn47/+678QHx8/oyH06uP74OczXxwcHNDd3T1h+8M+Z305d2drtuV+0N27d3HgwAH4+vriD3/4g85zWi3k8ZzOfJT5h5ydnSect8Z4rIH712kulzujeSbZOtZzpes178FmVBcXlwn7PjiYaa4oeZuGg4ODzhP4zQculwtfX19UV1dPeKyyshLu7u6wtLQE8I+5cqqrq7WaCqurq6FSqeY0l85syu3v74+ysjKoVCqtTp1VVVUwNzfXab4z4H5/i+LiYmzatGnSqueptLW1AZi8w7uu2Cz3g6RSKQYHB7U6e/v5+eHs2bNobGzUaqKorKzUPD4bbJW5srISr732GlasWIHf//73M5q8Un2sJ+sMP1fq+Z9GRka0OnQ/7HPWl3N3tmZbbrXW1lb85je/gZ2dHd566y1NWXWxkMdzOnMt8w8xDIOOjg6t42eMxxrQng1gJkkuW8d6rnS95qmP5507dxAUFKTZr6enB93d3VojfOeKRpuyqLOzc8LUCCkpKaiurtb6EWhqakJxcTFSU1M12yIiIiAWi3Hq1Cmt5586dQrm5uaL3nE/JSUFfX19yMjI0GwbGBjA9evXkZCQoJWItba2orW1ddLXuXbtGlQq1ZRNpgMDAxO2dXd34/z581i2bNmsa6Bmay7llslkk/aB+PTTT8EwjFbn/cTERPD5fJw4cUKzjWEYnDp1Ck5OTggJCZnvok1prse6oaEBr776KlxdXfHnP/95yqaEyY61VCrFsWPHYGNjo9MKFjOVmpoKpVKJ06dPa7bJ5XKcP38eQUFBmrtpYzp3gbmVu7e3F7/+9a/B5XLxl7/8ZcofZolEAqVSqbVNoVDgyy+/hJmZ2YxWoZkPcynzZN/NkydPYmBgQOu8NbZjrfaw2QDYOHfnS09PDxobG7Wau3W95i1duhTe3t44c+aM1nf95MmT4HA4EwbwzAXVvC2ATz/9FMA/5jj6/vvvUVZWBgB4+umnNfv98Y9/RElJidYXYvv27Th79ixeffVV7N69GzweD0ePHoWdnR12796t2U8oFOK5557DX//6V/zud79DTEwMSktLcenSJTz//PNzmmtuNlJTU3Hs2DG8+eabaGho0MxArVKp8Oyzz2rt+8///M8AgKNHj054ncuXL8PR0XHKC/l7772H1tZWREZGwtHRER0dHTh9+jTGxsbwq1/9av4L9hBzKXdfXx+ee+45rFu3Dt7e3gCAvLw85OTkIDY2FomJiZrnOjs7Y+fOnfj666+hUCgQGBiImzdvoqysDP/+7/8OHo+3SCWeW5mlUil+85vfYGhoCLt3754wz5W7u7smEf3uu++QmZmJhIQEuLi4oLe3F+fPn0dnZyf+7d/+bdJO13MVFBSEtLQ0fPDBBxgYGICHhwcuXryIjo4OvPrqq5r9jOncBeZW7t/+9rdoa2vDnj17UF5ejvLycs1jdnZ2mpn3s7Ky8NlnnyElJQVubm4YGhrC5cuXce/ePezfv3/RmxDnUuadO3dizZo18PX1hUAgQHl5Oa5evQp/f/8J86cZ07FWm2o2ADU2zl1dHD9+HMPDw5rmzqysLHR1dQEAHn/8cYhEInzwwQe4ePEivvnmG7i5uQGY2TXvF7/4BQ4cOIBf//rXWLt2Lerr63HixAn86Ec/mnRgx2xR8rYAPvroI62/z58/r/n/g8nbZCwtLXHw4EH87//+Lz777DPN+oi//OUvJ9zRbt++HXw+H9988w2ysrLg7OyMX/7ylzp3IJ1PPB4Pb731Ft59910cP34cMpkMAQEBOHDggCYxeZimpibcuXMHu3btmnSZGQCIjo5GW1sbTpw4gaGhIYhEIoSGhuKpp55i5W5uLuVW9+vLz8/HxYsXoVKp4OHhgf3792P37t0TPoMXXngB1tbWOH36NC5evAhPT0+89tprOg/smC9zKfPg4KDmYvn+++9PeHzTpk2a5G3lypW4ffs2zp49C4lEAnNzcwQGBuLVV19FZGTk/Bfs//y///f/4OLigu+//x7Dw8Pw9fXFn//8Z4SHh0/7PEM9d9VmW271vGAPrmupFh4erknefH194ePjg8uXL2NgYAB8Ph/+/v74/e9/j7S0tHkvjy5mW+b169fj9u3bmsFVLi4u2LNnD5566imYm5tr7WtMxxr4x2wAcXFxEIlEk+7D1rn7MN98843W2qwZGRma5HTDhg1Tlmcm17yEhAS88cYbOHz4MA4ePAgbGxvs27cPzzzzzLyWhcNMNTU0IYQQQgjRO9TnjRBCCCHEgFDyRgghhBBiQCh5I4QQQggxIJS8EUIIIYQYEEreCCGEEEIMCCVvhBBCCCEGhJI3QgghhBADQskbIYQQQogBoeSNEEIIIcSAUPJGCCGEEGJAaG1TQgjRUVFREU6dOoXbt29jYGAAFhYWWLJkCdLS0rBt27ZpF9x++umnIRAIcOjQIbS3t+OJJ55ATEwM/vKXvyxiCQghxoCSN0IIeQiFQoG//vWvOHPmDCwsLBAbGwsPDw+MjIwgPz8fBw8exOnTp/HWW2/BxcVlwvNbW1tx7949PPfccyxETwgxNpS8EULIQ3zwwQc4c+YMAgIC8Mc//hFOTk6ax5RKJT799FMcPnwYr7zyCj744AMIhUKt52dmZgIAEhMTFzVuQohxoj5vhBAyjebmZhw9ehRisRh/+tOftBI3AODxeHj22Wexbt063Lt3D99+++2E18jMzISbmxuWLVu2WGETQowYJW+EEDKNixcvQqVS4ZFHHoG9vf2U+z399NMAgLNnz2ptHxgYwO3bt6nWjRAybyh5I4SQady+fRsAEBkZOe1+Pj4+cHR0RFtbG3p7ezXbs7OzoVQqkZSUtKBxEkJMByVvhBAyDXUi5uzs/NB91fv09PRotmVmZsLGxgYrV65cmAAJISaHkjdCCJlnKpUKACCTyZCfn4+4uDjweDyWoyKEGAtK3gghZBoODg4AgK6urofuq95HPaghPz8fY2Nj1N+NEDKvKHkjhJBphISEAAAKCwun3a+xsRE9PT2wtrbWDGzIzMyEQCBATEzMgsdJCDEdlLwRQsg0Nm3aBC6Xi7Nnz2JgYGDK/T7//HMAwIYNG8DlcqFSqZCdnY2oqChYWFgsUrSEEFNAyRshhEzDy8sLu3btwuDgIP71X/9VazACcL9/26effopLly5BJBJh586dAICKigr09/dTkykhZN7RCguEEPIQ+/fvx8jICM6cOYO9e/ciLi5Oa3mslpYWCAQC/Od//ifc3d0BADdv3gSXy0VCQgLL0RNCjA0lb4QQ8hB8Ph+//e1vsWbNGpw+fRrl5eXIyMiAUqkEAAQHB+O1116Dh4eH5jmZmZkICgqadmJfQgiZDUreCCFER5GRkVqT9TY3N+PFF19Ee3s7GIbRbG9oaEBLSwt+9KMfTfo6bm5uyMjIWPB4CSHGifq8EULILHl5eeH111+HRCLBv/zLv6C7uxsALURPCFlYHObB20VCCCEzlpWVhTt37sDHxwdr165lOxxCiJGj5I0QQgghxIBQsykhhBBCiAGh5I0QQgghxIBQ8kYIIYQQYkAoeSOEEEIIMSCUvBFCCCGEGBBK3gghhBBCDAglb4QQQgghBoSSN0IIIYQQA0LJGyGEEEKIAfn/YLphGvDezE0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -513,14 +540,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "PD: 67.83 +/- 12.49 %\n", - "PA: 79.641 +/- 5.336\n" + "PD: 92.07 +/- 12.37 %\n", + "PA: 79.083 +/- 3.931\n", + "{'fraction': 0.9206595115368098, 'angle': , obstime=None, location=None): (lon, lat) in deg\n", + " (0., 70.)> using convention and counter-clockwise when looking at the source)>)>, 'fraction uncertainty': 0.12373296682166211, 'angle uncertainty': , 'Q/I': -0.8546123469299894, 'U/I': 0.3424203157787407, 'Stokes uncertainty': 0.12373296682166211}\n", + "0.009206595115368098 158.16534392267047 -0.9282610305121692\n" ] } ], "source": [ "print('modularion factor:', mu, '+/-', mu_err)\n", - "polarization = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu, show=True, ref_pdpa=(0.7, 83), ref_label='Simulated', mdp=mdp)" + "polarization = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu, show=True, ref_pdpa=(0.7, 83), ref_label='Simulated', mdp=mdp)\n", + "print(polarization)\n", + "print(polarization['fraction']/100, 2*polarization['angle'].angle.degree, np.cos(2*polarization['angle'].angle.radian))" ] }, { @@ -533,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "7e456b61", "metadata": {}, "outputs": [ @@ -541,10 +574,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "RelativeX: 106.626 degrees\n", - "RelativeY: 16.626 degrees\n", - "RelativeZ: 106.626 degrees\n", - "IAU: 79.641 degrees\n" + "RelativeX: 105.646 degrees\n", + "RelativeY: 15.646 degrees\n", + "RelativeZ: 105.646 degrees\n", + "IAU: 78.66 degrees\n" ] } ], @@ -565,10 +598,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "606b6e92", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [] }, { From d9669e082a9e05433f7e82a8ac965d48b57bdb3a Mon Sep 17 00:00:00 2001 From: nmik Date: Mon, 28 Apr 2025 19:12:53 -0500 Subject: [PATCH 15/31] final --- cosipy/polarization/polarization_stokes.py | 858 +++++++++++++-------- 1 file changed, 534 insertions(+), 324 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index cccb66e5..68536f10 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -1,20 +1,23 @@ import numpy as np -from astropy.coordinates import Angle +from astropy.coordinates import Angle, SkyCoord import astropy.units as u -# from astropy.stats import poisson_conf_interval import matplotlib.pyplot as plt from scipy.optimize import curve_fit -from cosipy.polarization import PolarizationAngle -from cosipy.polarization.conventions import MEGAlibRelativeX, IAUPolarizationConvention +from cosipy.polarization.polarization_angle import PolarizationAngle +from cosipy.polarization.conventions import MEGAlibRelativeX, MEGAlibRelativeY, MEGAlibRelativeZ, IAUPolarizationConvention from cosipy.response import FullDetectorResponse from scoords import SpacecraftFrame +from threeML import LinearPolarization import scipy.interpolate as interpolate +from histpy import Histogram +import logging +logger = logging.getLogger(__name__) #we can define all these functions in a separate file to import def R(x, A, B, C): - """ + """ Function to fit to the modulation of the azimuthal angle distribution. """ return A + B*(np.cos(x + C)**2) @@ -40,16 +43,33 @@ def constant(x, a): def rotate_points_to_x_axis(newPD, newPA): """ Rotate arrays of points (x_, y_) in the QN-UN plane by an angle + + Parameters + ---------- + newPD : float + Polarization degree + newPA : float + Polarization angle + Returns + ------- + rotated_Q : float + Q Stokes parameter + rotated_U : float + U Stokes parameter + """ # Create a matrix of rotation matrices for each point - rotated_Q = newPD * np.cos(2 * np.radians(newPA)) - rotated_U = newPD * np.sin(2 * np.radians(newPA)) - print('rotated_Q, rotated_U:', rotated_Q, rotated_U) + rotated_Q = newPD * np.cos(2 * newPA) + rotated_U = newPD * np.sin(2 * newPA) return rotated_Q, rotated_U def polar_chart_backbone(ax): """ Preparing canvas for Stokes chart + Parameters + ---------- + ax : matplotlib.axes._axes.Axes + Axes to plot on """ ax.spines['top'].set_visible(True) ax.spines['right'].set_visible(True) @@ -80,6 +100,10 @@ def calculate_azimuthal_scattering_angle(psi, chi, source_vector, reference_vect Polar angle (radians) of scattered photon in local coordinates chi : float Azimuthal angle (radians) of scattered photon in local coordinates + source_vector : astropy.coordinates.SkyCoord + Source direction + reference_vector : astropy.coordinates.SkyCoord + Reference direction (e.g. X-axis of spacecraft frame) Returns ------- @@ -119,8 +143,26 @@ def get_modulation(_x, _y, title='Modulation', show=False): """ Function to estimate the modulation factor. _x is the central value of the histogram bins _y is the value of the bins on the histograms + + Parameters + ---------- + _x : array + Central values of the histogram bins + _y : array + Values of the histogram bins + title : str + Title of the plot + show : bool + Whether to show the plot or not + + Returns + ------- + mu : float + Modulation factor + mu_err : float + Error on the modulation factor """ - _x = _x[:-1] + (_x[1:] - _x[:-1])/2 + popt, pcov = curve_fit(R, _x, _y ) #sigma=np.sqrt(_y), absolute_sigma=True pcov[0][0], pcov[1][1], pcov[2][2] = np.sqrt(pcov[0][0]), np.sqrt(pcov[1][1]), np.sqrt(pcov[2][2]) print('A = %.2f, B = %.2f, C = %.2f'%(popt[0], popt[1], popt[2])) @@ -147,6 +189,144 @@ def get_modulation(_x, _y, title='Modulation', show=False): return mu, mu_err +def create_asad_from_response(spectrum, polarization_level, polarization_angle, source_vector, ori, response, + convention, response_file, response_convention, bins=20): + """ + Convolve source spectrum with response and calculate azimuthal scattering angle bins. + + Parameters + ---------- + spectrum : :py:class:`threeML.Model` + Spectral model. + polarization_level : float + Polarization level (between 0 and 1). + polarization_angle : :py:class:`cosipy.polarization.polarization_angle.PolarizationAngle` + Polarization angle. If in the spacecraft frame, the angle must have the same convention as the response. + bins : int or astropy.units.quantity.Quantity, optional + Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity + source_vector : astropy.coordinates.sky_coordinate.SkyCoord + Source direction + ori : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile + Spacecraft orientation + response : cosipy.response.FullDetectorResponse.FullDetectorResponse + Response object + convention : cosipy.polarization.PolarizationConvention + Polarization convention + response_file : str or pathlib.Path + Path to detector response + response_convention : str + Response convention. If in the spacecraft frame, the angle must have the same convention as the response. + + Returns + ------- + asad : histpy.Histogram + Counts in each azimuthal scattering angle bin + """ + + if isinstance(convention.frame, SpacecraftFrame): + + target_in_sc_frame = ori.get_target_in_sc_frame(target_name='source', target_coord=source_vector.transform_to('galactic')) + dwell_time_map = ori.get_dwell_map(response=response_file, src_path=target_in_sc_frame, pa_convention=response_convention) + psr = response.get_point_source_response(exposure_map=dwell_time_map, coord=source_vector.transform_to('galactic')) + expectation = psr.get_expectation(spectrum, LinearPolarization(polarization_level * 100., polarization_angle.angle.deg)) + + azimuthal_angle_bins = [] + + for i in range(expectation.axes['PsiChi'].nbins): + psichi = SkyCoord(lat=(np.pi/2) - expectation.axes['PsiChi'].pix2ang(i)[0], lon=expectation.axes['PsiChi'].pix2ang(i)[1], unit=u.rad, frame=convention.frame) + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, source_vector, convention) + azimuthal_angle_bins.append(azimuthal_angle.angle) + + else: + + scatt_map = ori.get_scatt_map(nside=response.nside*2, target_coord=source_vector, coordsys='galactic') + psr = response.get_point_source_response(coord=source_vector, scatt_map=scatt_map) + expectation = psr.get_expectation(spectrum, LinearPolarization(polarization_level * 100., polarization_angle.angle.deg)) + + azimuthal_angle_bins = [] + + for i in range(expectation.axes['PsiChi'].nbins): + psichi = expectation.axes['PsiChi'].pix2skycoord(i).transform_to('icrs') + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, source_vector, convention) + azimuthal_angle_bins.append(azimuthal_angle.angle) + + if isinstance(bins, int): + bin_edges = Angle(np.linspace(-np.pi, np.pi, bins), unit=u.rad) + else: + bin_edges = bins + + asad = [] + + for i in range(len(bin_edges)-1): + counts = 0 + for j in range(expectation.project(['PsiChi']).nbins): + if azimuthal_angle_bins[j] >= bin_edges[i] and azimuthal_angle_bins[j] < bin_edges[i+1]: + counts += expectation.project(['PsiChi'])[j] + asad.append(counts) + + asad = Histogram(bin_edges, contents=asad) + + return asad + +def create_unpolarized_asad(spectrum, source_vector, ori, response, convention, response_file, response_convention, bins=20): + """ + Create unpolarized ASAD from response. + + Parameters + ---------- + bins : int or astropy.units.quantity.Quantity, optional + Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity + spectrum : :py:class:`threeML.Model` + Spectral model. + source_vector : astropy.coordinates.sky_coordinate.SkyCoord + Source direction: + ori : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile + Spacecraft orientation + response : cosipy.response.FullDetectorResponse.FullDetectorResponse + Response object + convention : cosipy.polarization.PolarizationConvention + Polarization convention + response_file : str or pathlib.Path + Path to detector response + response_convention : str + Response convention. If in the spacecraft frame, the angle must have the same convention as the response. + Returns + ------- + asad : histpy.Histogram + Counts in each azimuthal scattering angle bin + """ + pd = 0 + pa = PolarizationAngle(Angle(0 * u.deg), source_vector, convention=convention) + unpolarized_asad = create_asad_from_response(spectrum, pd, pa, source_vector, ori, + response, convention, response_file, + response_convention, bins=bins) + + return unpolarized_asad + +def create_polarized_asads(spectrum, source_vector, ori, response, convention, response_file, response_convention, bins=20): + """ + Create 100% polarized ASADs for each polarization angle bin of response. + + Parameters + ---------- + bins : int or astropy.units.quantity.Quantity, optional + Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity + + Returns + ------- + polarized_asads : dict of histpy.Histogram + Counts in each azimuthal scattering angle bin for each polarization angle bin + """ + + polarized_asads = {} + for k in range(response.axes['Pol'].nbins): + pd = 1 + pa = PolarizationAngle(Angle(response.axes['Pol'].centers.to_value(u.deg)[k] * u.deg), source_vector, convention=convention) + polarized_asads[k] = create_asad_from_response(spectrum, pd, pa, source_vector, ori, + response, convention, response_file, + response_convention, bins=bins) + return polarized_asads + class PolarizationStokes(): """ Stokes parameter method to fit polarization. @@ -157,6 +337,13 @@ class PolarizationStokes(): Source direction source_spectrum : astromodels.functions.functions_1D Spectrum of source + + data : list of dict + Data to fit + background : list of dict + Background to fit + response_convention : str + Response convention response_file : str or pathlib.Path Path to detector response sc_orientation : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile @@ -164,35 +351,141 @@ class PolarizationStokes(): """ - def __init__(self, source_vector, source_spectrum, response_file, sc_orientation): + def __init__(self, source_vector, source_spectrum, data, background, + response_file, sc_orientation, response_convention='RelativeX', + fit_convention=IAUPolarizationConvention()): ###################### This will need to be changed into IAUPolarizationConvention hardcoded! ###################### print('This class loading takes around 30 seconds... \n') ###################### - self._convention = MEGAlibRelativeX(attitude=source_vector.attitude) - reference_vector = self._convention.get_basis(source_vector)[0] #px + if isinstance(fit_convention.frame, SpacecraftFrame) and not isinstance(source_vector.frame, SpacecraftFrame): + attitude = sc_orientation.get_attitude()[0] + source_vector = source_vector.transform_to(SpacecraftFrame(attitude=attitude)) + logger.warning('The source direction is being converted to the spacecraft frame using the attitude at the first timestamp of the orientation.') + elif not isinstance(fit_convention.frame, SpacecraftFrame): + source_vector = source_vector.transform_to('icrs') + + if ((isinstance(fit_convention, MEGAlibRelativeX) and response_convention != 'RelativeX') or + (isinstance(fit_convention, MEGAlibRelativeY) and response_convention != 'RelativeY') or + (isinstance(fit_convention, MEGAlibRelativeZ) and response_convention != 'RelativeZ')): + raise RuntimeError("If performing fit in spacecraft frame, fit convention must match convention of response.") - if isinstance(source_vector.frame, SpacecraftFrame): - self._source_vector = source_vector + if not type(data) == list: + self._data = [data] else: - self._source_vector = source_vector.transform_to(SpacecraftFrame(attitude=source_vector.attitude)) - - if isinstance(reference_vector.frame, SpacecraftFrame): - self._reference_vector = reference_vector + self._data = data + + if not type(background) == list: + self._background = [background] else: - self._reference_vector = reference_vector.transform_to(SpacecraftFrame(attitude=source_vector.attitude)) - - self._expectation, self._azimuthal_angle_bins = self.convolve_spectrum(source_spectrum, response_file, sc_orientation) + self._background = background + + self._ori = sc_orientation + + self._convention = fit_convention + + self._response_convention = response_convention + + self._response_file = response_file + + self._response = FullDetectorResponse.open(response_file, pa_convention=self._response_convention) + + self._source_vector = source_vector + + self._spectrum = source_spectrum + + self._nbins = self._response.axes['Pol'].nbins - self._energy_range = [min(self.response.axes['Em'].edges.value), max(self.response.axes['Em'].edges.value)] + self._binedges = Angle(np.linspace(-np.pi, np.pi, self._nbins), unit=u.rad) - self._binedges = Angle(np.linspace(-np.pi, np.pi, 20), unit=u.rad) + self._reference_vector = self._convention.get_basis(source_vector)[0] + + self._expectation, self._azimuthal_angle_bins = self.convolve_spectrum(source_spectrum) + + self._energy_range = [min(self._response.axes['Em'].edges.value), max(self._response.axes['Em'].edges.value)] self._exposure = sc_orientation.get_time_delta().to_value(u.second).sum() + + self._data_duration = self.get_data_duration() + + self._background_duration = self.get_background_duration() + + self._mdp99 = self.calculate_mdp() + + self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data) + + self._background_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._background) + + def get_data_duration(self): + """ + Calculate the total duration of the data. + + Returns + ------- + data_duration : float + Total duration of the data in seconds + """ + for i in range(len(self._data)): + + if type(self._data[i]) == dict: + + if i == 0: + source_duration = np.max(self._data[i]['TimeTags']) - np.min(self._data[i]['TimeTags']) + else: + source_duration += np.max(self._data[i]['TimeTags']) - np.min(self._data[i]['TimeTags']) + + else: + + if i == 0: + source_duration = (np.max(self._data[i].binned_data.axes['Time'].edges) - np.min(self._data[i].binned_data.axes['Time'].edges)).value + else: + source_duration += (np.max(self._data[i].binned_data.axes['Time'].edges) - np.min(self._data[i].binned_data.axes['Time'].edges)).value + + return source_duration + + def get_background_duration(self): + """ + Calculate the total duration of the data. + Returns + ------- + background_duration : float + Total duration of the data in seconds + """ + for i in range(len(self._background)): + + if type(self._background[i]) == dict: + if i == 0: + background_duration = np.max(self._background[i]['TimeTags']) - np.min(self._background[i]['TimeTags']) + else: + background_duration += np.max(self._background[i]['TimeTags']) - np.min(self._background[i]['TimeTags']) + + else: + + if i == 0: + background_duration = (np.max(self._background[i].binned_data.axes['Time'].edges) - np.min(self._background[i].binned_data.axes['Time'].edges)).value + else: + background_duration += (np.max(self._background[i].binned_data.axes['Time'].edges) - np.min(self._background[i].binned_data.axes['Time'].edges)).value + return background_duration + + def get_backscal(self): + """ + Calculate the background scaling factor to match the source duration. + + Returns + ------- + backscal : float + Background scaling factor + """ + if self._background_duration == 0: + return 0 + + backscal = self._data_duration / self._background_duration + + return backscal - def convolve_spectrum(self, spectrum, response_file, sc_orientation): + def convolve_spectrum(self, spectrum): """ Convolve source spectrum with response and calculate azimuthal scattering angle bins. @@ -210,26 +503,37 @@ def convolve_spectrum(self, spectrum, response_file, sc_orientation): azimuthal_angle_bins : list Centers of azimuthal scattering angle bins calculated from PsiChi bins in response """ + polarization_angle = PolarizationAngle(Angle(self._response.axes['Pol'].centers.to_value(u.deg)[0] * u.deg), self._source_vector, convention=self._convention) + polarization_level = 0 + if isinstance(self._convention.frame, SpacecraftFrame): + print('>>> Convolving spectrum in spacecraft frame...') + target_in_sc_frame = self._ori.get_target_in_sc_frame(target_name='source', target_coord=self._source_vector.transform_to('galactic')) + dwell_time_map = self._ori.get_dwell_map(response=self._response_file, src_path=target_in_sc_frame, pa_convention=self._response_convention) + psr = self._response.get_point_source_response(exposure_map=dwell_time_map, coord=self._source_vector.transform_to('galactic')) + expectation = psr.get_expectation(spectrum, LinearPolarization(polarization_level * 100., polarization_angle.angle.deg)) + + azimuthal_angle_bins = [] - self.response = FullDetectorResponse.open(response_file) - - target_in_sc_frame = sc_orientation.get_target_in_sc_frame(target_name='source', target_coord=self._source_vector.transform_to('galactic')) - dwell_time_map = sc_orientation.get_dwell_map(response=response_file, src_path=target_in_sc_frame) - - psr = self.response.get_point_source_response(exposure_map=dwell_time_map, coord=self._source_vector.transform_to('galactic')) - - expectation = psr.get_expectation(spectrum) + for i in range(expectation.axes['PsiChi'].nbins): + psichi = SkyCoord(lat=(np.pi/2) - expectation.axes['PsiChi'].pix2ang(i)[0], lon=expectation.axes['PsiChi'].pix2ang(i)[1], unit=u.rad, frame=self._convention.frame) + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) + azimuthal_angle_bins.append(azimuthal_angle.angle) + + else: + print('>>> Convolving spectrum in ICRS frame...') + scatt_map = self._ori.get_scatt_map(nside=self._response.nside*2, target_coord=self._source_vector, coordsys='galactic') + psr = self._response.get_point_source_response(coord=self._source_vector, scatt_map=scatt_map) + expectation = psr.get_expectation(spectrum, LinearPolarization(polarization_level * 100., polarization_angle.angle.deg)) - azimuthal_angle_bins = [] + azimuthal_angle_bins = [] - for i in range(expectation.axes['PsiChi'].nbins): - azimuthal_angle = calculate_azimuthal_scattering_angle(expectation.project(['PsiChi']).axes['PsiChi'].pix2ang(i)[0], - expectation.project(['PsiChi']).axes['PsiChi'].pix2ang(i)[1], - self._source_vector, self._reference_vector) - azimuthal_angle_bins.append(azimuthal_angle) + for i in range(expectation.axes['PsiChi'].nbins): + psichi = expectation.axes['PsiChi'].pix2skycoord(i).transform_to('icrs') + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) + azimuthal_angle_bins.append(azimuthal_angle.angle) return expectation, azimuthal_angle_bins - + def calculate_azimuthal_scattering_angles(self, unbinned_data): """ Calculate the azimuthal scattering angles for all events in a dataset. @@ -241,65 +545,94 @@ def calculate_azimuthal_scattering_angles(self, unbinned_data): Returns ------- - azimuthal_angles : list - Azimuthal scattering angles. Each angle must be an astropy.coordinates.Angle object + azimuthal_angles : list of astropy.coordinates.Angle + Azimuthal scattering angles """ azimuthal_angles = [] - for i in range(len(unbinned_data['Psi local'])): - if unbinned_data['Energies'][i] >= self._energy_range[0] and unbinned_data['Energies'][i] <= self._energy_range[1]: - azimuthal_angle = calculate_azimuthal_scattering_angle(unbinned_data['Psi local'][i], - unbinned_data['Chi local'][i], - self._source_vector, self._reference_vector) - azimuthal_angles.append(azimuthal_angle) + if isinstance(self._convention.frame, SpacecraftFrame): + for i in range(len(unbinned_data['Psi local'])): + if unbinned_data['Energies'][i] >= self._energy_range[0] and unbinned_data['Energies'][i] <= self._energy_range[1]: + psichi = SkyCoord(lat=(np.pi/2) - unbinned_data['Psi local'][i], lon=unbinned_data['Chi local'][i], unit=u.rad, frame=self._convention.frame) + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) + azimuthal_angles.append(azimuthal_angle.angle) + else: + if len(unbinned_data) < 2: + for i in range(len(unbinned_data[0]['Psi galactic'])): + if unbinned_data[0]['Energies'][i] >= self._energy_range[0] and unbinned_data[0]['Energies'][i] <= self._energy_range[1]: + psichi = SkyCoord(l=unbinned_data[0]['Chi galactic'][i], b=unbinned_data[0]['Psi galactic'][i], frame='galactic', unit=u.deg).transform_to('icrs') + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) + azimuthal_angles.append(azimuthal_angle.angle) + else: + for j in range(len(unbinned_data)): + for i in range(len(unbinned_data[j]['Psi galactic'])): + if unbinned_data[j]['Energies'][i] >= self._energy_range[0] and unbinned_data[j]['Energies'][i] <= self._energy_range[1]: + psichi = SkyCoord(l=unbinned_data[j]['Chi galactic'][i], b=unbinned_data[j]['Psi galactic'][i], frame='galactic', unit=u.deg).transform_to('icrs') + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) + azimuthal_angles.append(azimuthal_angle.angle) return azimuthal_angles - def create_unpolarized_asad(self, bins=None): + def calculate_average_mu100(self, show_plots=False): """ - Calculate the azimuthal scattering angles for all bins. + Calculate the modulation (mu) of an 100% polarized source. Parameters ---------- - bins : int or np.array, optional - Number of azimuthal scattering angle bins if int or edges of azimuthal scattering angle bins if np.array (radians) + show_plots : bool, optional + Option to show plots. Default is False Returns ------- - asad : dict - Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin + mu_100 : dict + Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins """ + print('Creating the 100% polarized ASADs (this may take a minute...)') + polarized_asads = create_polarized_asads(self._spectrum, self._source_vector, self._ori, self._response, + self._convention, self._response_file, self._response_convention, + bins=self._nbins) print('Creating the unpolarized ASAD...') - if not bins == None: - if isinstance(bins, int): - bin_edges = Angle(np.linspace(-np.pi, np.pi, bins), unit=u.rad) - self._binedges = bin_edges - else: - bin_edges = bins - self._binedges = bin_edges - else: - bin_edges = self._binedges + unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, self._response, + self._convention, self._response_file, self._response_convention, + bins=self._nbins) + mu_100_list = [] + mu_100_uncertainties = [] + + for i in range(self._response.axes['Pol'].nbins): + logger.info('Polarization angle bin: ' + str(self._response.axes['Pol'].edges.to_value(u.deg)[i]) + ' to ' + str(self._response.axes['Pol'].edges.to_value(u.deg)[i+1]) + ' deg') + asad_corrected = polarized_asads[i] / np.sum(polarized_asads[i]) / unpolarized_asad * np.sum(unpolarized_asad) + mu, mu_err = get_modulation(asad_corrected.axis.centers.value, asad_corrected.full_contents, title='Modulation PA bin %i'%i, show=False) + mu_100_list.append(mu) + mu_100_uncertainties.append(mu_err) + + popt, pcov = curve_fit(constant, self._response.axes['Pol'].centers.to_value(u.deg), mu_100_list, sigma=mu_100_uncertainties) + mu_100 = {'mu': popt[0], 'uncertainty': pcov[0][0]} + + if show_plots == True: + plt.figure() + plt.scatter(self._response.axes['Pol'].centers.to_value(u.deg), mu_100_list) + plt.errorbar(self._response.axes['Pol'].centers.to_value(u.deg), mu_100_list, + yerr=mu_100_uncertainties, linewidth=0, elinewidth=1) + plt.plot([0, 175], [mu_100['mu'], mu_100['mu']]) + plt.xlabel('Polarization Angle (degrees)') + plt.ylabel('mu_100') + plt.show() - unpolarized_asad = [] - for i in range(len(bin_edges)-1): - counts = 0 - for j in range(self._expectation.project(['PsiChi']).nbins): - if self._azimuthal_angle_bins[j] >= bin_edges[i] and self._azimuthal_angle_bins[j] < bin_edges[i+1]: - counts += self._expectation.project(['PsiChi'])[j] - unpolarized_asad.append(counts) + logger.info('mu_100: ' + str(round(mu_100['mu'], 2))) - return bin_edges, np.array(unpolarized_asad) + return mu_100 - def create_polarized100_asad(self, bins=None): + def compute_data_pseudo_stokes(self, show=False): """ - Calculate the azimuthal scattering angles for a 100% polarized source. + Calculates photon-by-photon pseudo stokes parameters from the photon azimutal angle. Parameters ---------- - bins : int or np.array, optional - Number of azimuthal scattering angle bins if int or edges of azimuthal scattering angle bins if np.array (radians) - + show : bool, optional + If True, display a diagnostic plot in the Q-U plane with + uncertainty circles, by default False. + Returns ------- qs : list @@ -307,109 +640,34 @@ def create_polarized100_asad(self, bins=None): us : list list of pseudo-u parameters for each photon (ordered as input array) """ - print('Creating the 100% polarized ASAD...') - if not bins == None: - if isinstance(bins, int): - bin_edges = Angle(np.linspace(-np.pi, np.pi, bins), unit=u.rad) - self._binedges = bin_edges - else: - bin_edges = bins - self._binedges = bin_edges - else: - bin_edges = self._binedges - - _polarized100_asad_ = [] - for k in range(self._expectation.axes['Pol'].nbins): - polarized100_asad_ = [] - for i in range(len(bin_edges)-1): - counts = 0 - for j in range(self._expectation.project(['PsiChi']).nbins): - if self._azimuthal_angle_bins[j] >= bin_edges[i] and self._azimuthal_angle_bins[j] < bin_edges[i+1]: - counts += self._expectation.slice[{'Pol':slice(k,k+1)}].project(['PsiChi'])[j] - polarized100_asad_.append(counts) - _polarized100_asad_.append(polarized100_asad_) - - return bin_edges, np.array(_polarized100_asad_) - - def calculate_photon_mu(): - """ Funciont to comput the mu for each photon - Should return an array of mu values - """ - ############################# - ############################# - pass - - def calculate_average_mu(self, bins=20, show=False): - """ - Calculate the PA-averaged modulation (mu) of an 100% polarized source. - This sohuld not depend on the specific events but only on our instrument responses at differend PA bins. - In this sence we can pre-compute a cube of modulation factors to pull from. - - MN note: Mu is energy-dependent. In this sense it depends on teh source spectrum and the mu(E) - response should be folded with that. For the Stokes parameters we would like to have a mu for each photon - so a mu(E, PA) - - Parameters - ---------- - polarized_asads : list - Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for - each polarization angle bin for 100% polarized source - unpolarized_asad : list or np.array - Counts and Gaussian/Poisson errors in each azimuthal scattering angle bin for - unpolarized source - - Returns - ------- - mu : dict - Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins - """ - print('This task takes a couple of minutes to run... hold on...\n') - - be, polarized100_asad = self.create_polarized100_asad(bins=bins) - be, unpolarized_asad = self.create_unpolarized_asad(bins=bins) - - mu_, mu_err_ = [], [] - for i, pol100asad_pa in enumerate(polarized100_asad): - - asad_corrected = pol100asad_pa / np.sum(pol100asad_pa) / unpolarized_asad * np.sum(unpolarized_asad) - # print('be, asad_corrected:', be, asad_corrected) - - mu, mu_err = get_modulation(be.value, asad_corrected, title='Modulation PA bin %i'%i, show=True) - mu_.append(mu) - mu_err_.append(mu_err) - # plt.figure() - # plt.step(be[:-1], pol100asad_pa / np.sum(pol100asad_pa), where='post') - # plt.step(be[:-1], unpolarized_asad / np.sum(unpolarized_asad), where='post') - # plt.figure() - # plt.step(be[:-1], asad_corrected, where='post', linewidth=3) - # plt.show() - - mu_ = np.array(mu_) - mu_err_ = np.array(mu_err_) - - popt, pcov = curve_fit(constant, self._expectation.axes['Pol'].centers, mu_) + qs, us = [], [] - average_mu = popt[0] - average_mu_err = np.sqrt(pcov[0][0]) + ###################### + # ATTENTION: I need to add 90 degrees because the stokes convention assumes that EVPA // + # source polarization, while for Compton scatttering it is perpendicular) + try: + for a in self._data_azimuthal_angles.value: + qs.append(np.cos((a - np.pi/2) * 2) * 2) + us.append(np.sin((a - np.pi/2) * 2) * 2) + except: - print('mu:', average_mu, '+/-', average_mu_err) + for a in self._data_azimuthal_angles: + qs.append(np.cos((a.value - np.pi/2) * 2) * 2) + us.append(np.sin((a.value - np.pi/2) * 2) * 2) if show: plt.figure() - plt.errorbar(np.arange(len(mu_)), mu_, yerr=mu_err_) - plt.hlines(average_mu, 0, len(mu_), color='red', linewidth=4, - label=r'$\mu$ = %.3f +/- %.3f'%(average_mu, average_mu_err)) - plt.hlines(average_mu+average_mu_err, 0, len(mu_), color='red', linestyle='--', linewidth=2) - plt.hlines(average_mu-average_mu_err, 0, len(mu_), color='red', linestyle='--', linewidth=2) - plt.xlabel('PA bin') - plt.ylabel(r'$\mu$') + plt.title('Source Stokes parameters (%i events)'%len(qs)) + plt.hist(qs, bins=50, alpha=0.5, label='q$_s$') + plt.hist(us, bins=50, alpha=0.5, label='u$_s$') + plt.xlabel('Pseudo Stokes parameter') plt.legend() plt.show() + + return qs, us - return average_mu, average_mu_err - - def compute_pseudo_stokes(self, azimuthal_angles, show=False): + def compute_background_pseudo_stokes(self, show=False): """ Calculates photon-by-photon pseudo stokes parameters from the photon azimutal angle. @@ -428,126 +686,63 @@ def compute_pseudo_stokes(self, azimuthal_angles, show=False): qs, us = [], [] - #this is stupid... need to fix! try: - for a in azimuthal_angles.value: + for a in self._background_azimuthal_angles.value: qs.append(np.cos(a * 2) * 2) us.append(np.sin(a * 2) * 2) except: - for a in azimuthal_angles: + for a in self._background_azimuthal_angles: qs.append(np.cos(a.value * 2) * 2) us.append(np.sin(a.value * 2) * 2) if show: plt.figure() - plt.title('Source Stokes parameters') - plt.hist(qs, bins=50, alpha=0.5, label='q$_s$') - plt.hist(us, bins=50, alpha=0.5, label='u$_s$') + plt.title('Background Stokes parameters (%i events)'%len(qs)) + plt.hist(qs, bins=50, alpha=0.5, label='q$_b$') + plt.hist(us, bins=50, alpha=0.5, label='u$_b$') plt.xlabel('Pseudo Stokes parameter') plt.legend() plt.show() return qs, us - - def create_unpolarized_pseudo_stokes(self, total_num_events, bins=20, show=False): + + def calculate_mdp(self): """ - Calculate the azimuthal scattering angles for all bins. - - Parameters - ---------- - total_num_events: int - total number of events that matches your polarized data - bins : int or np.array, optional - Number of azimuthal scattering angle bins if int or edges of azimuthal scattering angle bins if np.array (radians) + Calculate the minimum detectable polarization (MDP) of the source. Returns ------- - qs : list - list of pseudo-q parameters for each photon (ordered as input array) - us : list - list of pseudo-u parameters for each photon (ordered as input array) + mdp : float + MDP of source """ - print('this task takes around 25 seconds...\n') - - be, unpolarized_asad = self.create_unpolarized_asad(bins=bins) - be = be.value - # I would like to radomly extract an azimutal angle for each photon based on the unpolarized response. - # There might be an energy dependence here, so we should think carfully - - # Create the spline from the unpol azimutal angle distrib - spline_unpol = interpolate.interp1d(be[:-1], unpolarized_asad) - # Create fine bins and normalize to the area to get a probability density function (PDF) - # also, avoiding edges that wouls break the spline - fine_bins = np.linspace(be[0]-0.01*be[0], be[-2]-0.01*be[-2], 1000) - fine_probabilities = spline_unpol(fine_bins) - total_area = np.trapz(fine_probabilities, fine_bins) # Numerical integration using trapezoidal rule - fine_probabilities /= total_area - - # Compute the cumulative distribution function (CDF) - cdf = np.cumsum(fine_probabilities) - cdf = cdf / cdf[-1] # Normalize the CDF to make it a proper probability distribution - - #Invert the CDF - inv_cdf = interpolate.interp1d(cdf, fine_bins) - - #Generate random samples from a uniform distribution and map them to azimuthal angles - qs_unpol_, us_unpol_ = [], [] - for i in range(0,100): - random_values = np.random.uniform(low=np.min(cdf), high=np.max(cdf), size=total_num_events) - unpol_azimuthal_angles = inv_cdf(random_values) * u.rad - qs_unpol, us_unpol = self.compute_pseudo_stokes(unpol_azimuthal_angles) - qs_unpol_.append(qs_unpol) - us_unpol_.append(us_unpol) - qs_unpol_ = np.array(qs_unpol_) - us_unpol_ = np.array(us_unpol_) - - if show: - plt.figure() - plt.title('Unpolarized') - for i in range(0,100): - plt.hist(qs_unpol_[i], bins=50, alpha=0.1) - plt.hist(us_unpol_[i], bins=50, alpha=0.1) - plt.xlabel('Pseudo Stokes parameter') - plt.show() - - return qs_unpol_, us_unpol_ - - def calculate_mdp(self, total_num_events, mu, bkg_rate=22.0): - """ - Calculate the minimum detectable polarization of a given observation. - Assumes a default background count rate (~22 ph/s), but also allows for a custom value. + if not type(self._data) == list: + source_counts = 0 + for i in range(len(self._data)): + source_counts += len(self._data[i]['TimeTags']) + else: + source_counts = len(self._data[0]['TimeTags']) - Uses the exposure computed from teh sc_orientation object: - sc_orientation.get_time_delta().to_value(u.second).sum() + if type(self._background) == list: + background_counts = 0 + for i in range(len(self._background)): + background_counts += len(self._background[i]['TimeTags']) + else: + background_counts = self._background[0]['TimeTags'] - Parameters - ---------- - total_num_events: int - total number of events that matches your polarized data - mu : float - PA-Averaged modulation factor - bkg_rate : float, optional - Background count rate (default is 22.0 ph/s) + source_data_rate = source_counts / self._data_duration + background_data_rate = background_counts / self._background_duration + # Here need to call a function to compute the average modulation finction + # For now set to 0.31 + ave_mu = 0.310 + mdp = 4.29 / ave_mu * np.sqrt(source_data_rate + background_data_rate) / source_data_rate - Returns - ------- - MDP99 : float - Minimum detectable polarization at 99% confidence level - """ + logger.info('Minimum detectable polarization (MDP) of source: ' + str(round(mdp, 3))) - print('Calculating the MDP...') - print('Exposure:', self._exposure, 's') - print('Total number of events:', total_num_events) - print('Modulation factor:', mu) - print('Background rate:', bkg_rate, 'ph/s') - Ns = total_num_events - bkg_rate * self._exposure - MDP99 = 4.29 / (mu * Ns) * np.sqrt(total_num_events) - print('MDP_99%:', MDP99*100, '%') - return MDP99 - + return mdp - def calculate_polarization(self, qs, us, qs_unpol_, us_unpol_, mu, show=False, ref_qu=(None, None), ref_pdpa=(None, None), ref_label=None, mdp=None): + def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, ref_qu=(None, None), + ref_pdpa=(None, None), ref_label=None, mdp=None): """ Calculate the polarization degree (PD), polarization angle (PA), and their associated 1-sigma uncertainties given Q and U measurements @@ -567,7 +762,7 @@ def calculate_polarization(self, qs, us, qs_unpol_, us_unpol_, mu, show=False, r Array of U measurements (from unpolarized source). mu : float Modulation factor. Used to convert raw measurements into normalized Q/I and U/I. - show : bool, optional + show_plots : bool, optional If True, display a diagnostic plot in the Q-U plane with uncertainty circles, by default False. ref_qu : tuple of (float or None, float or None), optional @@ -579,98 +774,113 @@ def calculate_polarization(self, qs, us, qs_unpol_, us_unpol_, mu, show=False, r Returns ------- - pol_PD : float - Polarization degree, PD = sqrt(Q^2 + U^2). - pol_1sigmaPD : float - 1-sigma statistical uncertainty on the polarization degree. - pol_PA : astropy.coordinates.Angle - Polarization angle (in radians internally), - computed as 90 - 0.5 * arctan2(U, Q) (converted into an Angle object). - pol_1sigmaPA : float - 1-sigma statistical uncertainty on the polarization angle (in degrees). + polarization: dict + + fraction : float + Polarization degree, PD = sqrt(Q^2 + U^2). + fraction_uncertainty : float + 1-sigma statistical uncertainty on the polarization degree. + angle : astropy.coordinates.Angle + Polarization angle (in radians internally), + computed as 90 - 0.5 * arctan2(U, Q) (converted into an Angle object). + angle_uncertainty : float + 1-sigma statistical uncertainty on the polarization angle (in degrees). """ + BACKSCAL = self.get_backscal() pol_I = len(qs) pol_Q = np.sum(qs) / mu pol_U = np.sum(us) / mu - - unpol_I = len(qs_unpol_[0]) - unpol_Q_, unpol_U_ = [], [] - for i in range(len(qs_unpol_)): - qs_unpol = qs_unpol_[i] - us_unpol = us_unpol_[i] - unpol_Q = np.sum(qs_unpol) / mu - unpol_U = np.sum(us_unpol) / mu - unpol_Q_.append(unpol_Q) - unpol_U_.append(unpol_U) - unpol_Q = np.array(unpol_Q_).mean() - unpol_U = np.array(unpol_U_).mean() - - print('Q, U, unsubtracted:', pol_Q/pol_I, pol_U/pol_I) - Q = pol_Q/pol_I - unpol_Q/unpol_I - U = pol_U/pol_I - unpol_U/unpol_I - print('Q, U, subtracted:', Q, U) - - polarization_fraction = np.sqrt(Q**2. + U**2.) + # print('Q, U, unsubtracted:', pol_Q/pol_I, pol_U/pol_I) + + unpol_I = len(bkg_qs) * BACKSCAL + unpol_Q = np.sum(bkg_qs) * BACKSCAL / mu + unpol_U = np.sum(bkg_us) * BACKSCAL / mu + print('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) + unpol_modulation = mu * np.sqrt(unpol_Q**2. + unpol_U**2.) / unpol_I + unpol_sQ = np.sqrt((2. - unpol_modulation**2.) / ((unpol_I - 1.) * mu**2.)) + print('unpol_uncertainty:', unpol_sQ*100, '%') + + I = pol_I - unpol_I + print('check I(src+bkg) vs I(src):', pol_I, I) + self.Q = pol_Q/pol_I - unpol_Q/unpol_I * 1/(2.575*unpol_sQ) + self.U = pol_U/pol_I - unpol_U/unpol_I * 1/(2.575*unpol_sQ) + print('Q, U, subtracted:', self.Q, self.U) + + polarization_fraction = np.sqrt(self.Q**2. + self.U**2.) pol_PD = polarization_fraction * 100 - pol_PA = 90 - 0.5 * np.degrees(np.arctan2(U, Q)) - print('PD: %.2f'%(pol_PD), '%') - print('PA: %.2f'%pol_PA, 'deg') - - ###################### - ###################### Need to understand why I need this rotation - ###################### - Q, U = rotate_points_to_x_axis(polarization_fraction, pol_PA) - print('------- Q/I, U/I', Q, U) + pol_PA = 0.5 * np.arctan2(self.U, self.Q) + # Convert to 0 to 180 deg (just the convention) + if pol_PA < 0: + pol_PA += np.pi + Qa, Ua = rotate_points_to_x_axis(polarization_fraction, pol_PA) + # print('Q/I, U/I:', Qa, Ua) pol_modulation = mu * polarization_fraction + polarization_fraction_uncertainty = pol_sQ = np.sqrt((2. - pol_modulation**2.) / ((I - 1.) * mu**2.)) - polarization_fraction_uncertainty = pol_sQ = np.sqrt((2. - pol_modulation**2.) / ((pol_I - 1.) * mu**2.)) pol_1sigmaPD = polarization_fraction_uncertainty * 100 - pol_1sigmaPA = np.degrees(1 / (pol_modulation * np.sqrt(2. * (pol_I - 1.)))) + pol_1sigmaPA = np.degrees(1 / (pol_modulation * np.sqrt(2. * (I - 1.)))) + print('\n ############################## \n') + print(' PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') + print(' PA: %.2f'%(np.degrees(pol_PA)), '+/- %.2f'%pol_1sigmaPA, 'deg') + print('\n ############################## \n') - # print('PD: %.2f'%(pol_PD*100), '+/- %.2f'%(pol_1sigmaPD*100), '%') - # print('PA: %.2f'%pol_PA, '+/- %.2f'%pol_1sigmaPA, 'deg') + if show_plots: + + fig, ax = plt.subplots(figsize=(6.7, 6.4)) - if show: - fig, ax = plt.subplots(figsize=(6.4, 6.4)) polar_chart_backbone(ax) + if ref_qu[0] != None: + # print('Drawing Reference point:', ref_qu) plt.plot(ref_qu[0], ref_qu[1], 'x', markersize=20, color='tab:green') - plt.annotate(ref_label, (ref_qu[0], ref_qu[1]), textcoords="offset points", xytext=(0,10), ha='center', fontsize=12) + plt.annotate(ref_label, (ref_qu[0], ref_qu[1]), textcoords="offset points", xytext=(0,10), + ha='center', fontsize=12) if ref_pdpa[0] != None: - ref_q = ref_pdpa[0] * np.cos(2*ref_pdpa[1]) - ref_u = ref_pdpa[0] * np.sin(2*ref_pdpa[1]) + # print('Drawing Reference point:', ref_pdpa) + ref_q, ref_u = rotate_points_to_x_axis(ref_pdpa[0], np.radians(ref_pdpa[1])) plt.plot(ref_q, ref_u, 'x', markersize=20, color='tab:green') - plt.annotate(ref_label, (ref_q, ref_u), textcoords="offset points", xytext=(0,10), ha='center', color='tab:green', fontsize=12) + plt.annotate(ref_label, (ref_q, ref_u), textcoords="offset points", xytext=(0,10), ha='center', + color='tab:green', fontsize=12) + if mdp != None: - c_mdp = plt.Circle((0, 0), radius=mdp, facecolor='tab:red', alpha=0.3, linewidth=1, linestyle='--', label=r'MDP$_{99}$') + c_mdp = plt.Circle((0, 0), radius=mdp, facecolor='tab:red', alpha=0.3, linewidth=1, linestyle='--', + label=r'MDP$_{99}$ = %.2f %%'%(self._mdp99*100)) plt.gca().add_artist(c_mdp) - plt.plot(Q, U, 'o', markersize=5, color='red',label='Measured') - pol_c = plt.Circle((Q, U), radius=polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) - pol_c2 = plt.Circle((Q, U), radius=2*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) - pol_c3 = plt.Circle((Q, U), radius=3*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) + plt.plot(Qa, Ua, 'o', markersize=5, color='red', + label=r'Measured (Bkg subtracted) \\ PD = (%.1f $\pm$ %.1f)%% \\ PA = (%.1f $\pm$ %.1f) deg'%(pol_PD, pol_1sigmaPD, pol_PA, pol_1sigmaPA)) + pol_c = plt.Circle((Qa, Ua), radius=pol_sQ, facecolor='none', edgecolor='red', linewidth=1) + pol_c2 = plt.Circle((Qa, Ua), radius=2*pol_sQ, facecolor='none', edgecolor='red', linewidth=1) + pol_c3 = plt.Circle((Qa, Ua), radius=3*pol_sQ, facecolor='none', edgecolor='red', linewidth=1) plt.gca().add_artist(pol_c) plt.gca().add_artist(pol_c2) plt.gca().add_artist(pol_c3) + + plt.plot(unpol_Q/unpol_I, unpol_U/unpol_I, 'o', markersize=5, color='0.4', \ + label=r'Bkg. Measured (PD$_{1\sigma}$ = %i %%)'%(unpol_sQ*100)) + unpol_c = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) + unpol_c2 = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=2*unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) + unpol_c3 = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=3*unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) + plt.gca().add_artist(unpol_c) + plt.gca().add_artist(unpol_c2) + plt.gca().add_artist(unpol_c3) + plt.xlim(-1, 1) plt.ylim(-1, 1) plt.xlabel('Q/I') plt.ylabel('U/I') plt.tight_layout() - plt.legend(fontsize=15) + plt.legend(fontsize=12) plt.show() - polarization_angle = Angle(pol_PA, unit=u.deg) - polarization_angle = PolarizationAngle(polarization_angle, self._source_vector, convention=IAUPolarizationConvention()) - + polarization_angle = Angle(np.degrees(pol_PA), unit=u.deg) + polarization_angle = PolarizationAngle(polarization_angle, self._source_vector, convention=self._convention).transform_to(IAUPolarizationConvention()) polarization_angle_uncertainty = Angle(pol_1sigmaPA, unit=u.deg) - print('PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') - print('PA:', round(polarization_angle.angle.degree, 3), '+/-', round(polarization_angle_uncertainty.degree, 3)) - polarization = {'fraction': polarization_fraction, 'angle': polarization_angle, 'fraction uncertainty': polarization_fraction_uncertainty, 'angle uncertainty': polarization_angle_uncertainty, 'Q/I': Q, 'U/I': U, 'Stokes uncertainty': pol_sQ} + polarization = {'fraction': polarization_fraction, 'angle': polarization_angle, 'fraction_uncertainty': polarization_fraction_uncertainty, 'angle_uncertainty': polarization_angle_uncertainty, 'QN': self.Q, 'UN': self.U, 'Stokes_uncertainty': pol_sQ} return polarization From 3d8fb01a81f12819609875158767b9716d4a1e4d Mon Sep 17 00:00:00 2001 From: nmik Date: Mon, 28 Apr 2025 19:13:18 -0500 Subject: [PATCH 16/31] final except downloading from wasaby --- .../polarization/Stokes_method.ipynb | 491 ++++++++++-------- 1 file changed, 285 insertions(+), 206 deletions(-) diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 1d69b70c..9083349b 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -13,13 +13,7 @@ "id": "f9b8addd-aaa4-488c-8041-385881689986", "metadata": {}, "source": [ - "This notebook fits the polarization fraction and angle of a GRB simulated using MEGAlib and combined with background. It's assumed that the start time, duration, localization, and spectrum of the GRB are already known. The GRB was simulated with 70% polarization at an angle of 110 degrees in the RelativeX convention, which corresponds to 83.015 degrees in the IAU convention.\n", - "\n", - "The data to run this notebook, including GRBs simulated on-axis, 10 degrees off-axis, and 20 degrees off-axis, can be found on the COSI Pipeline Google Drive: https://drive.google.com/drive/folders/1kCkqQv07APSSlexeuIgK2Jj7eqJzNNgQ. However, with the RelativeZ response, it is not possible to fit the on-axis GRB.\n", - "\n", - "Caveats/limitations:\n", - "- Currently, the source must be stationary with respect to the instrument, and the spacecraft must be stationary. The ability to fit the polarization of persistent sources will be added later. \n", - "- The background simulation is used as the background model, and its ASAD is subtracted from the source+background ASAD. " + "This notebook fits the polarization fraction and angle of a Data Challenge 3 GRB (GRB 080802386) simulated using MEGAlib and combined with albedo photon background. It's assumed that the start time, duration, localization, and spectrum of the GRB are already known. The GRB was simulated with 80% polarization at an angle of 90 degrees in the IAU convention, and was 20 degrees off-axis. A detailed description of the Stokes method, which is the approach used here to infer the polarization, is available on the [Data Challenge repository](https://github.com/cositools/cosi-data-challenges/tree/main/polarization). " ] }, { @@ -31,12 +25,12 @@ { "data": { "text/html": [ - "
17:50:26 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "
16:53:39 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m17:50:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=386416;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=180497;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m16:53:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=586978;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=541896;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -46,12 +40,12 @@ { "data": { "text/html": [ - "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:68\n",
        "                  will not be available.                                                                           \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=832278;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282139;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26884;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933098;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -61,12 +55,12 @@ { "data": { "text/html": [ - "
17:50:27 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
+       "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m17:50:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=449988;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=56715;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=932371;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=888178;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -76,11 +70,11 @@ { "data": { "text/html": [ - "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635725;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=447279;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=435984;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=434273;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -89,11 +83,11 @@ { "data": { "text/html": [ - "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:40\n",
+       "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:40\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=244207;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451513;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=481784;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=935617;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -102,11 +96,11 @@ { "data": { "text/html": [ - "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:41\n",
+       "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:41\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=526327;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=325556;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416061;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=218512;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -115,11 +109,11 @@ { "data": { "text/html": [ - "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:44\n",
+       "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=290416;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=918982;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=903647;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=831653;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -128,11 +122,11 @@ { "data": { "text/html": [ - "
17:50:27 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
16:53:39 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m17:50:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=469875;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=181080;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m16:53:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=678893;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=403781;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -141,11 +135,11 @@ { "data": { "text/html": [ - "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=424528;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=772738;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=466847;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=18712;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -154,11 +148,11 @@ { "data": { "text/html": [ - "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752082;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=322307;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97112;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=581466;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -167,12 +161,12 @@ { "data": { "text/html": [ - "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
        "                  require the C/C++ interface (currently HAWC)                                                     \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844829;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=593752;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=838976;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=480753;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -182,12 +176,12 @@ { "data": { "text/html": [ - "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
        "                  software installed and configured?                                                               \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=428747;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=287611;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=904399;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519019;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -197,12 +191,12 @@ { "data": { "text/html": [ - "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
        "                  software installed and configured?                                                               \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=686076;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654851;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=673115;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605904;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -212,11 +206,11 @@ { "data": { "text/html": [ - "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=127096;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=599266;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942903;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899687;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -225,12 +219,12 @@ { "data": { "text/html": [ - "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258193;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=293971;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=472663;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=735368;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -240,12 +234,12 @@ { "data": { "text/html": [ - "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=582073;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=759145;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=433911;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464956;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -255,12 +249,12 @@ { "data": { "text/html": [ - "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=805421;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448983;file:///Users/mnegro/opt/anaconda3/envs/test_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964216;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=428649;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -279,32 +273,72 @@ "import numpy as np\n", "from astropy.coordinates import Angle, SkyCoord\n", "from astropy import units as u\n", - "from scoords import SpacecraftFrame\n" + "from scoords import SpacecraftFrame\n", + "from cosipy.util import fetch_wasabi_file\n", + "from pathlib import Path" ] }, { "cell_type": "markdown", - "id": "ce33b697", + "id": "4b292969", + "metadata": {}, + "source": [ + "### Download and read in data" + ] + }, + { + "cell_type": "markdown", + "id": "5f241124", "metadata": {}, "source": [ - "Read in the data (GRB+background), background simulation, and define the path to the detector response" + "Download data (same as ASAD method tutorial: if you have already downloaded them you don't need to run these lines)" ] }, { "cell_type": "code", "execution_count": 2, + "id": "3e7fa183", + "metadata": {}, + "outputs": [], + "source": [ + "# fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/polarization_fit/grb_background.fits.gz', checksum = '21b1d75891edc6aaf1ff3fe46e91cb49')\n", + "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Responses/ResponseContinuum.o3.pol.e200_10000.b4.p12.relx.s10396905069491.m420.filtered.nonsparse.binnedpolarization.11D_nside8.area.good_chunks.h5.zip', unzip = True, checksum = '9c1309efec9a37afdcd49b7a443b280b')\n", + "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Orientation/DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori', checksum = 'b87fd41b6c28a5c0c51448ce2964e57c')" + ] + }, + { + "cell_type": "markdown", + "id": "ce33b697", + "metadata": {}, + "source": [ + "Read in the data (GRB+background) and get the background by reading the files containting background before and after the GRB" + ] + }, + { + "cell_type": "code", + "execution_count": 3, "id": "ac0ad83d", "metadata": {}, "outputs": [], "source": [ - "path = '/Users/mnegro/MyDocuments/_COSI/COSIpy/eliza_pull_request/eliza_data/'\n", - "analysis = UnBinnedData(path+'grb.yaml') # e.g. grb.yaml\n", + "data_path = Path(\"/Users/mnegro/MyDocuments/_COSI/COSIpy/eliza_pull_request_updated/cosipy/docs/tutorials/polarization/\") # Update to your path\n", + "\n", + "grb_plus_background = UnBinnedData(data_path/'grb.yaml')\n", + "grb_plus_background.select_data_time(unbinned_data=data_path/'grb_background.fits.gz', output_name=data_path/'grb_background_source_interval') \n", + "grb_plus_background.select_data_energy(200., 10000., output_name=data_path/'grb_background_source_interval_energy_cut', unbinned_data=data_path/'grb_background_source_interval.fits.gz')\n", + "data = grb_plus_background.get_dict_from_fits(data_path/'grb_background_source_interval_energy_cut.fits.gz')\n", + "\n", + "background_before = UnBinnedData(data_path/'background_before.yaml')\n", + "background_before.select_data_time(unbinned_data=data_path/'grb_background.fits.gz', output_name=data_path/'background_before')\n", + "background_before.select_data_energy(200., 10000., output_name=data_path/'background_before_energy_cut', unbinned_data=data_path/'background_before.fits.gz')\n", + "background_1 = background_before.get_dict_from_fits(data_path/'background_before_energy_cut.fits.gz')\n", "\n", - "analysis.select_data(unbinned_data=path+'GRB_20_0.hdf5', output_name=path+'GRB_20_0_selected.hdf5') # e.g. GRB_20_0.hdf5 & GRB_20_0_selected.hdf5\n", - "grb_data = analysis.get_dict_from_hdf5(path+'GRB_20_0_selected.hdf5') # e.g. GRB_20_0_selected.hdf5\n", - "background = analysis.get_dict_from_hdf5(path+'background.hdf5') # e.g. background.hdf5\n", + "background_after = UnBinnedData(data_path/'background_after.yaml') # e.g. background_after.yaml\n", + "background_after.select_data_time(unbinned_data=data_path/'grb_background.fits.gz', output_name=data_path/'background_after')\n", + "background_after.select_data_energy(200., 10000., output_name=data_path/'background_after_energy_cut', unbinned_data=data_path/'background_after.fits.gz')\n", + "background_2 = background_after.get_dict_from_fits(data_path/'background_after_energy_cut.fits.gz')\n", "\n", - "response_file = path+'RelativeZ_200to500keV_1ebins_12pbins_log_flat.binnedpolarization.11D_nside8.h5' # e.g. HEALPixO3_200to500keV_1ebins_12pbins_log_flat.binnedpolarization.11D_nside8.area.h5" + "background = [background_1, background_2]" ] }, { @@ -312,20 +346,20 @@ "id": "2cc0300a", "metadata": {}, "source": [ - "Read in the orientation file. Here, the spacecraft is stationary, so we are only using the first attitude bin" + "Read in the response files and the orientation file. Here, the spacecraft is stationary, so we are only using the first attitude bin ( The orientation is cut down to the time interval of the source.)" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "ecb484f2", "metadata": {}, "outputs": [], "source": [ - "sc_orientation = SpacecraftFile.parse_from_file(path+'ori.ori') # e.g. ori.ori\n", - "sc_orientation = sc_orientation.source_interval(Time(analysis.tmin,format = 'unix'), Time(analysis.tmax,format = 'unix'))\n", + "response_file = data_path/'ResponseContinuum.o3.pol.e200_10000.b4.p12.relx.s10396905069491.m420.filtered.nonsparse.binnedpolarization.11D_nside8.area.good_chunks.h5' # e.g. ResponseContinuum.o3.pol.e200_10000.b4.p12.s10396905069491.m441.filtered.nonsparse.binnedpolarization.11D_nside8.area.h5\n", "\n", - "attitude = sc_orientation.get_attitude()[0]" + "sc_orientation = SpacecraftFile.parse_from_file(data_path/'DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori') # e.g. DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori\n", + "sc_orientation = sc_orientation.source_interval(Time(1835493492.2, format = 'unix'), Time(1835493492.8, format = 'unix'))" ] }, { @@ -338,17 +372,19 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "26cec39d", "metadata": {}, "outputs": [], "source": [ - "a = 10. * u.keV\n", - "b = 5000. * u.keV\n", - "alpha = 0.880\n", - "beta = -2.384\n", - "ebreak = 195.613 * u.keV\n", - "K = 10. / u.cm / u.cm / u.s\n", + "source_direction = SkyCoord(l=23.53, b=-53.44, frame='galactic', unit=u.deg)\n", + "\n", + "a = 100. * u.keV\n", + "b = 10000. * u.keV\n", + "alpha = -0.7368949\n", + "beta = -2.095031\n", + "ebreak = 622.389 * u.keV\n", + "K = 300. / u.cm / u.cm / u.s\n", "\n", "spectrum = Band_Eflux(a = a.value,\n", " b = b.value,\n", @@ -373,7 +409,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "41cbf55e", "metadata": {}, "outputs": [ @@ -383,274 +419,317 @@ "text": [ "This class loading takes around 30 seconds... \n", "\n", - "1305\n" + ">>> Convolving spectrum in ICRS frame...\n" ] } ], "source": [ - "source_direction = SkyCoord(0, 70, representation_type='spherical', frame=SpacecraftFrame(attitude=attitude), unit=u.deg)\n", - "source_photons = PolarizationStokes(source_direction, spectrum, response_file, sc_orientation)\n", - "az_ang = source_photons.calculate_azimuthal_scattering_angles(grb_data)\n", - "\n", - "TOT_NUM_EVENTS = len(az_ang)\n", - "print(TOT_NUM_EVENTS)" + "source_photons = PolarizationStokes(source_direction, spectrum, data, background, response_file, sc_orientation, response_convention='RelativeX')" ] }, { "cell_type": "markdown", - "id": "eb4a7306", + "id": "54defb88", "metadata": {}, "source": [ - "Calculate the Pseudo Stokes parameters from the scattering angle for each photon in the data and background simulation" + "Let's check some numbers:" ] }, { "cell_type": "code", - "execution_count": 6, - "id": "26df3de8", + "execution_count": 7, + "id": "57c9a289", "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZIklEQVR4nO3dd1gU1/4/8PdSFqmii6IIsYGIGlssCbgqWIlKNKjRXI09xoLGJGrMTbPFaG6KxlhiI7FiNCgmii1EY+8VRNSIWOiI9Hp+f/jb+bruAiuywOD79Tx57t0zZT9nZoG3Z87MKoQQAkRERESVnElFF0BERERkCIYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiKlMNGjRAgwYNKroMIqqCGFqo0isoKMCqVavQpUsX1KxZE+bm5qhduzZatmyJsWPHIiQkpKJLrFROnz6N//znP6hfvz4sLCxgZ2eHxo0bo1+/fli0aBEyMjK01lcoFOjatWvFFEuywc8JVQZmFV0AUXEKCgrQt29fhIaGwt7eHn369IGzszNyc3Nx9epVbNq0CdeuXYOfn19Fl1opbNiwASNGjIAQAj4+PhgwYAAsLS0RHR2NI0eO4I8//sCbb74JV1fXii6ViOiZMbRQpbZ582aEhoaiVatWOHToEKpXr661PDMzEydPnqyg6iqXzMxMTJo0CQqFAvv27UO3bt101jl27BgcHBwqoDoioufHy0NUqR07dgwAMHLkSJ3AAgBWVlbw9vbWac/JycHXX3+Nl19+GVZWVrCzs4NarcbWrVt11v3777+hUCjw5Zdf6q1B3xyNwMBAKBQKBAYGIjQ0FF27dkX16tWhUCikdQoKCrBixQp4eXmhevXqsLS0hKurK8aOHYuoqCit/eXn52PZsmV49dVXYWdnBysrK7Rp0wZLly5FYWFhSYcJAHDlyhU8evQILVq00BtYAMDT0xP29vZafQCAQ4cOQaFQSP89fSy2bt2Kzp07S/14+eWXsWDBAuTk5BhUGwBs2rQJFhYW8PDwwO3bt6X2a9euYeTIkXBxcYFSqYSjoyPefvttREZG6uwjLi4OH330Edzd3WFtbQ17e3u4u7tj5MiRuHXrlkF1aM5namoqJk+ejHr16qFatWpo1qwZlixZAn1ffB8YGAh/f380atQIlpaWsLOzg5eXFzZs2KD3Pbp27QqFQoHc3FzMmTMH7u7usLCwwMiRIwEAqamp+Oabb+Dj4wNnZ2colUrUqlULfn5+OH78uN59ai7PxMXFYfTo0XB0dIS1tTU8PT3xzz//AAAyMjIwffp06dJg8+bN8dtvvxV5LDZv3gxvb2/Y29ujWrVq8PDwwLx587TO67N8Tk6ePImBAweiTp06UCqVcHFxwfjx43H//v1nPka5ublYsmQJ2rZtixo1asDKygoNGjTAG2+8gQMHDhTZJ6raONJClZpKpQIAXL9+3eBtcnNz0atXLxw6dAhNmzbFpEmTkJmZiW3btuGtt97ChQsX8NVXX5VJfdu2bUNoaCh8fX3x3nvvITo6Wqqhb9++2L9/P1xcXPD222/Dzs4Ot2/fRnBwMDp16gQ3NzcAQF5eHvr164e9e/fC3d0db7/9NqpVq4awsDAEBATg5MmTWL9+fYm1aI7V/fv3kZGRAWtr62LXb926Nb744gvMnj0b9evXl/5YANCau/DJJ59gwYIFcHBwwNtvvw0bGxvs2bMHn3zyCfbu3Yt9+/ZBqVQW+16LFi3Cxx9/DE9PT4SEhKBmzZoAgNDQULz55pvSMXB1dcXdu3fx+++/488//0RYWBjatm0L4PFIkpeXF27evIkePXqgX79+EEIgOjoaO3fuxMCBA9GoUaMSjxPw+Px0794dDx8+xJAhQ5Cbm4vt27dj6tSpiIyMxE8//aS1/oQJE9C8eXN07twZdevWRVJSEnbv3o3hw4cjMjISc+fO1fs+/v7+OH36NHx9fdG/f3/Url0bABAREYH//ve/6Ny5M/r06YMaNWrgzp07CAkJwZ49e7Br1y707t1bZ38PHz6El5cXbG1tMXToUCQnJ2PLli3o1asXjh8/jvHjxyM5ORl9+/ZFXl4eNm/ejLfeegsuLi549dVXtfY1evRorFu3Ds7OzvD394e9vT1OnDiBzz77DAcPHsT+/fthZmZm8Odk7dq1ePfdd2FhYQE/Pz+4uLggKioKq1evxq5du3DixAm89NJLBh+jkSNHYvPmzWjRogXeeecdWFpa4v79+zhy5AhCQ0PRvXt3g841VTGCqBI7d+6cMDc3FwqFQgwbNkxs375d3L59u9htvvrqKwFA+Pr6iry8PKk9Li5O1K9fXwAQR48eldrDwsIEAPHFF1/o3V/9+vVF/fr1tdrWrVsnAAiFQiH27Nmjs82sWbMEANGvXz+RnZ2ttSw7O1vEx8dLr7/44gsBQEyePFnk5+dL7fn5+WL06NECgNixY0exfRZCiMLCQtG+fXsBQLRq1UosXbpUnDt3TuTk5BS7HQDRpUsXvcuOHTsmAAgXFxfx4MEDqT0vL0/07dtXABDz58/X2ubJ41VQUCAmT54sAIg333xTZGVlSeslJycLe3t7oVKpxNWrV7X2cfnyZWFtbS3atGkjtYWEhAgA4v3339epMycnRzx69KjYfj5ZHwDh5eWldW6SkpJEo0aNBABx6NAhrW1u3Lih9z19fHyEmZmZuHv3rtayLl26CADi5ZdfFgkJCTrbPnz4UG97TEyMqFu3rmjatKnOMgACgBg/frwoKCiQ2n/99VcBQNSoUUP07dtX6xgfPnxYABD9+/fX2pfm8ztgwACRmZmptUzzefzhhx903r+oz0lkZKQwNzcXjRs31jkWBw4cECYmJjo1FHeMHj58KBQKhXjllVe0fiY0EhMT9dZBVR9DC1V6QUFBok6dOtIvbQCiZs2aon///iIkJERnfVdXV6FQKERERITOstWrVwsAYtSoUVLb84SWp38RC/E4bFSvXl1YWlqKe/fuFdu3goICUbNmTVGnTh2tgKWRkpIiFAqFGDRoULH70YiOjhZdu3bVOlbm5uaiQ4cO4uuvvxapqak62xT3x2js2LECgFi5cqXOssjISGFiYiIaNmyo1a45XllZWWLAgAECgAgICND6QyuEED/88IMAIJYuXar3vd9//30BQAo0mtAya9YsQw5FkTSh5fDhwzrLNOd15MiRBu1r+/btAoD45ZdftNo1f5ANCZtPCwgIEABEdHS0VjsAYWVlpRPO8vPzhZmZmQAgbt68qbO/Bg0aiAYNGmi1tW7dWpiZmYmUlBSd9fPz84VKpRLt27fXef+iPieac/XHH3/oXd6/f39hamqqVXtxxyg1NVUAEJ6enqKwsFDvPunFxMtDVOkNHjwYAwYMQFhYGI4cOYLz58/jyJEj2LFjB3bs2IF33nlHuu6elpaGGzduoF69emjatKnOvnx8fAAA58+fL5PaOnTooNN27do1pKamomPHjnBycip2++vXryM5ORlubm6YN2+e3nUsLS0RERFhUD0vvfQSwsLCEBERgf379+PMmTM4deqU9N+yZcvw999/o2HDhgbt79y5cwD+77g9qUmTJnB2dsa///6L1NRUrTlHWVlZ6NatG44fP46FCxdixowZOttr5m5cvHhR73wizSXBiIgINGvWDF26dEG9evXw9ddf49y5c3j99dfh5eWF1q1bw9TU1KD+aJiZmcHT01OnXXO54+nPx507d7Bw4UIcPHgQd+7cQVZWltbye/fu6X0ffZ8PjaNHj2Lx4sU4fvw44uPjkZubq7PPpy+nNGnSBLa2tlptpqamcHR0REZGht7LY/Xq1dOarJ6ZmYmLFy/CwcEBP/zwg97aLCwsDP7MAf93Lg8dOoTTp0/rLI+Pj0dBQQGuX7+OV155RWuZvmNkZ2eHfv36YdeuXWjdujX8/f2hVqvRsWNHWFlZGVwXVT0MLSQL5ubm6NmzJ3r27Ang8STX7du3Y/To0fj1118xYMAA9O/fH6mpqQCAunXr6t2Ppv3hw4dlUledOnV02jT7rlevXonbJyUlAQCioqIwe/bsItdLT09/pro8PDzg4eEhvb527RpGjx6N48ePY9q0adixY4dB+zHkeN65cwcPHz7UCi1paWk4d+4c7Ozs0KtXL73bavq+atWqYmvQ9N3Ozg4nTpzAF198gZCQEOzduxcA4ODggIkTJ+LTTz+Fubm5Qf1ycHDQG3Q051PTbwC4desWOnTogJSUFKjVavTs2RPVq1eHqakpbt++jV9++aXICcn6Ph8AEBwcjIEDB6JatWro0aMHGjduDGtra5iYmODvv//GoUOH9O5T32R04HEIK25Zfn6+9DolJQVCCCQkJBT7mXsWmnP5zTffFLuevs9xUccoKCgICxcuxKZNm/DFF18AAKpVq4aBAwfif//7HxwdHZ+zapIjhhaSJVNTUwwePBiXL1/GvHnz8Ndff6F///7SL+7Y2Fi92z148ACA9i9/E5PHN9E9+Yv9SQ8fPpTuuHnak3cLaWjWLepf30/S1DFgwAD8/vvvJa5fWk2bNsX69evh6uqKv/76y+DtnjyejRs31lmu73gCQO3atbFmzRr4+fnB29sb+/btQ7t27fTu++LFi2jZsqVB9Tg7O2PNmjUQQiA8PBx//fUXfvrpJ8yZMweFhYVFToh9WmJiIgoKCnSCi+Zz82R/vvvuOyQlJWHdunVak1CBx3ff/PLLL0W+j77PBwB89tlnUCqVOHPmjFa4BIDx48fj0KFDBvWjNDR9a9OmjTSSVlb7TE1NhZ2d3TNtW9QxsrS0xJdffokvv/wSMTExOHz4MAIDA7Fhwwbcvn1bumOKXiy85ZlkTTNULv7/baq2trZo3Lgx7t27p3NbMQCEhYUBgHRHCgDUqFEDABATE6Oz/o0bN7T+1W2Ipk2bwt7eHpcuXdJ7q6e+dU+cOIG8vLxnep9n9fSx0jAxMUFBQYHebdq0aQPg8W3hT7tx4wbu3r2Lhg0b6g113bp1Q2hoKPLz89G9e3edW3k1d7OU5o+PQqFA8+bNERAQgP379wOAwaNHwOOAqrmd/kmafmr6DTzuJ/D4LpenlTZc3LhxA82aNdMJLIWFhThy5Eip9mkoGxsbNG/eHFevXkVycrLB2xX3OXmec2kIFxcX/Oc//8HevXvh6uqKI0eOSKM79GJhaKFKbfPmzdi/f7/eZ5XExsZKlxY6d+4stY8ePRpCCEyfPl3rl2xiYqL0L/HRo0dL7U2bNoWdnR127tyJ+Ph4qT0rKwtTpkx55ppNTU0xceJEZGVl4b333tMZ5s/NzUVCQgKAx0P3AQEBePDgAaZMmaIzVwJ4PJoRHh5e4vv++++/WLJkid6QJYTA/PnzAWgfK+DxrdL6Ahvwf8dp3rx5Us3A48tzH330EQoLCzFmzJgia1Kr1di/fz8UCgV69uyp9Ud+1KhRsLe3x+zZs3Hq1CmdbQsLC7XC0tWrVxEXF6eznqbtWec6zJo1S+vcJCcnS/OKRo0aJbVrntHzdHDbu3cvVq9e/Uzv+eQ+o6KitEKtEAJffvmlQef6eX3wwQfIzc3F6NGj9V4qTUlJ0RmFKe5zMnnyZJibm2PatGl6H0+Qm5v7TIEmISEBly9f1mnPyMhAeno6zMzMSrzNnqomXh6iSu3kyZNYvHgx6tSpg06dOkkTSP/991/8+eefyMrKwhtvvIGBAwdK23z00UfYs2cPdu7ciVatWuH1119HZmYmfvvtN8THx2PGjBno1KmTtL65uTmmTp2KuXPnok2bNhgwYADy8/Oxf/9+ODk5lTiZVp8vvvgCJ0+exK5du9CkSRP07dsXtra2iImJwb59+/DNN99Ilxo+++wzXLx4EStWrMCuXbvg4+ODevXqIT4+HlFRUTh69Cjmz5+PZs2aFfueqampmDp1KqZPnw4vLy+0aNECtra2iI+Px19//YVbt26hdu3a+Pbbb7W269atG7Zs2YJ+/fqhbdu2MDc3R+fOndG5c2d4enpixowZWLRoEVq0aIGBAwfC2toae/bswZUrV9CpUydMnz692Lo6duyIv/76Cz169MDrr7+OHTt2oEePHlCpVNi2bRsGDBiAV199Fd26dUPz5s2hUCgQExOD48ePIykpCdnZ2QCA/fv3Y/r06XjttdfQpEkT1K5dG3fv3sXOnTthYmJSYh1Pqlu3LnJyctCiRQv4+fkhLy8P27Ztw4MHDzBx4kStYDdx4kSsW7cOgwYNwsCBA+Hk5IQrV64gNDQUgwcPRlBQkMHvqzFt2jS89957aNOmDfz9/WFubo6jR48iPDxcmoBqTKNHj8bZs2exbNkyNG7cGL169cJLL72E5ORk/Pvvvzh8+DBGjRqFFStWSNsU9zlp2rQp1q5di9GjR6N58+bo3bs3mjRpgry8PNy5cwf//PMPatWqhWvXrhlU371799CmTRu8/PLLaNmyJVxcXPDo0SP88ccfiI2NxZQpU3QmJNMLogLvXCIq0Z07d8TSpUtF//79RZMmTYStra0wNzcXderUEb6+vmL9+vU6t9IKIURWVpaYP3++aN68uahWrZqwsbERXl5eYtOmTXrfp7CwUCxYsEA0atRImJubCxcXFzF9+nSRkZFR7C3P69atK7L2vLw88eOPP4r27dsLa2trYWVlJVxdXcW4ceNEVFSUzvv/+uuvwsfHR9SoUUOYm5sLJycn4eXlJebPny/u3LlT4rHKzs4WwcHBYsKECaJNmzaidu3awszMTNjZ2Ym2bduK//73v1rPh9GIi4sTQ4cOFbVr1xYmJiZ6b//evHmz8PLyEjY2NsLCwkI0a9ZMzJs3T+uZIBr6jpcQj5+94ujoKCwsLLRujf3333/FpEmThKurq7CwsBC2trbC3d1dDBs2TAQHB0vrhYeHi2nTpolXXnlFODg4CKVSKerXry/8/f21nrtTEk19Dx8+FBMnThROTk5CqVSKpk2bisWLF+u9xfbo0aPC29tb2NvbS5+l4ODgIm+X19zOW5x169aJVq1aCSsrK6FSqUT//v3FpUuXpOekhIWFaa2PYm45LuqYl1TLrl27RJ8+fUStWrWEubm5cHR0FO3btxf//e9/dR4ZYMjn5NKlS2LEiBHipZdeEkqlUtSoUUM0b95cvPvuu+LgwYMG15WSkiJmz54tvL29pfNTp04d0aVLF7Fp0ybeBv0CUwih55nVRERVlOZyz5NfJUBE8sA5LURERCQLDC1EREQkCwwtREREJAuc00JERESywJEWIiIikgWGFiIiIpKFKhNasrOzERkZKT2IioiIiKqWKhNaoqOjMW7cOERHR1d0KURERGQEVSa0EBERUdXG0EJERESywNBCREREssDQQkRERLJgVtEFlJeCggLk5eVVdBllwtzcHKamphVdBhERUbl6IUJLeno67t69i6ry8F+FQgFnZ2fY2NhUdClERETlpsqHloKCAty9exdWVlaoVasWFApFRZf0XIQQSEhIwN27d+Hm5sYRFyIiemFU+dCSl5cHIQRq1aoFS0vLii6nTNSqVQu3b99GXl4eQwsREb0wnjm0ZGZmYsuWLQgPD0dERATS0tIwa9Ys+Pr6FrlNfn4+Ro0ahejoaEyYMAFDhw7VWl5YWIgtW7Zgx44dSE5OhrOzM4YNG4bu3bs/e4+KIPcRlidVpb4QEREZ6plDS2pqKgIDA+Ho6AhXV1ecP3++xG22b9+O+Pj4IpevWrUKGzduRL9+/dC0aVMcOXIEc+bMgUKhQLdu3Z61xBKd3RZV5vvUeGWgm9H2TURE9CJ75lueVSoVgoOD8dtvv2HChAklrp+SkoJffvkFb7/9tt7lCQkJCAoKwoABAzB9+nT069cPX3/9NVq2bIlly5ahoKDgWUskIiKiKuiZQ4tSqYRKpTJ4/ZUrV8LFxQU9evTQu/zIkSPIz8/HgAEDpDaFQoH+/fsjISEBV69efdYSZSMkJAQeHh5o2bIlZsyYAQcHB9y+fbuiyyIiIqqUjPpwufDwcISGhiIgIKDIeRhRUVGwtLRE/fr1tdo9PDyk5VVRfHw8Ro0ahe3bt+PSpUtwdXVFUlJSRZdFRERUaRkttAghsHjxYvj4+KBFixZFrpeUlIQaNWrohBrNaE5iYqLe7RITExEZGSn9J7dvdz5x4gRatmyJZs2aAQDGjBkDpVIJAMjKysIbb7wBtVqN4cOHV2SZRERElYbRbnnes2cPbt26hTlz5hS7Xk5ODszNzXXaNX/Ac3Jy9G4XEhKCwMDA566zsngytB09ehReXl6YMWNGlXkgHhER0fMyykhLRkYGfv75ZwwdOhSOjo7FrmthYaH38fq5ubnScn38/PywatUq6b9PP/30+QsvR6+99houXbqEa9euAQDWrl0r9dnT0xN3797F8OHDcfPmzYosk4iIqNIwykjLli1bkJeXBx8fHzx48ADA47uEgMeP1H/w4AEcHBxgbm4OlUqF8+fPQwihNdqgmd/h4OCg9z0cHByKXCYHtWrVwtq1azFgwAAolUr07t1buiSmUCiwZMkS7N+/H0FBQfjvf/9bwdUSERFVPKOElri4OKSlpeGdd97RWbZ+/XqsX78ea9asgZubG1xdXfHHH38gOjoaDRo0kNYLDw8HALi6upZ5fZXlWSpvvPEG3njjDen1mjVrAAAjRozA/fv3YWZmhl9//bWiyiMiohfI8vuhJa4zwal3OVRSNKOEFn9/f6jVaq22lJQU/O9//4Ovry86deqEunXrAgA6deqEpUuXIjg4GNOmTQPweBLvzp07UatWrWIn8VZVW7duregSiIiIKp1ShZbt27cjPT1duoRz9OhR6Ym3/v7+cHd3h7u7u9Y2mstEDRo00Ao0tWvXxqBBg7B582bk5+fDw8MD//zzDy5duoTPPvvshfpunaLulCIiIqJShpagoCDExsZKrw8fPozDhw8DAHr27AkbG5tn2t/48eNha2uLkJAQhIaGwtnZGZ9++mmRD6QjIiKiF0+pQktpLl/UrVtXCjZPMzExwbBhwzBs2LDSlENEREQvAKM+EZeIiIiorDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwY7QsTKzNDnvpXWhX9tEAiIqKqiiMtREREJAsMLRVIoVDg4cOH0msHBwfcvn27wuohIiKqzBhaiIiISBZeyDktlV1WVhaGDBmC5ORkNGjQAOvXr6/okoiIiCocQ0sFMjU1RUFBgfQ6OzsbwOMvoPTy8sKMGTMghKio8oiIiCoVXh6qQK6urjh58iQA4Pfff0dGRgYAwNPTE3fv3sXw4cNx8+bNiiyRiIio0mBoqUDff/89pk6dirZt2+L8+fNQqVQAHk/QXbJkCd555x0EBQVVcJVERESVwwt5eaiyPEvF19cXUVFR0uu5c+cCAAYPHoz79+/DzMwMv/76a0WVR0REVKm8kKGlstu6dWtFl0BERFTp8PIQERERyQJDCxEREckCQwsRERHJAkMLERERycILE1qq0kPaqlJfiIiIDFXl7x4yNzeHQqFAQkICatWqBYVCUdElPRchBBISEqBQKGBubl7R5RAREZWbKh9aTE1N4ezsjLt371aZb1BWKBRwdnaGqalpRZdCRERUbqp8aAEAGxsbuLm5IS8vr6JLKRPm5uYMLERE9MJ5IUIL8HjEhX/oiYiI5OuFmYhLRERE8sbQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREsvDM3/KcmZmJLVu2IDw8HBEREUhLS8OsWbPg6+srrVNYWIi9e/fi0KFDiIqKQlpaGurWrQsfHx8MGTIEFhYWOvv9448/sGXLFsTGxqJWrVoYOHAg/P39n693REREVGU880hLamoqAgMDER0dDVdXV73rZGdnY8GCBUhNTcUbb7yBgIAAeHh4YN26dZgxYwaEEFrr79y5E4sWLULDhg0xdepUtGjRAosXL8bGjRtL1ysiIiKqcp55pEWlUiE4OBgqlQrXrl3Du+++q7OOubk5fvrpJ7z88stSW79+/VCnTh2sXbsWZ8+eRbt27QAAOTk5WL16NV577TXMnTtXWrewsBC//vor/Pz8YGtrW9r+ERERURXxzCMtSqUSKpWq2HXMzc21AouGWq0GAERHR0tt586dQ2pqKvr376+17oABA5CVlYXjx48/a4lERET0jO6HJ5f4X0Ur14m4ycmPO1y9enWpLSoqCgDQtGlTrXXd3d1hYmKC69evl1+BREREVGk98+Wh57F582ZYW1ujY8eOUltSUhJMTU1Ro0YNrXXNzc1hZ2eHpKQkvftKTEzUWvbk6A0RERFVPeUWWtavX48zZ87ggw8+0JqjkpOTAzMz/WUolUrk5OToXRYSEoLAwEBjlEpERESVULmEloMHD2L16tXo06ePztwVCwsL5Ofn690uNzdX7+3RAODn5wcvLy/pdXR0NObNm1dmNRMREVHlYvTQcvr0aXz11Vd47bXX8OGHH+osV6lUKCgoQEpKitYlory8PDx69KjISb8ODg5wcHAwWt1ERERUuRh1Im54eDg+/fRTuLu7Y/bs2XovA7m5uQEArl27ptV+7do1FBYWSsuJiIjoxWa00HL79m3MnDkTderUwcKFC4u8zNO2bVvY2dlh586dWu07d+5EtWrV8NprrxmrRCIiIpKRUl0e2r59O9LT06W7d44ePYr4+HgAgL+/P0xMTPDRRx8hLS0NQ4YM0XnWipOTE1q0aAHg8ZyWMWPG4Pvvv8fnn3+ODh064OLFi9i3bx/GjRsHOzu75+kfERERVRGlCi1BQUGIjY2VXh8+fBiHDx8GAPTs2RMApBCzcuVKne179+4thRbg8YPkzMzMEBQUhKNHj6J27dqYPHkyBg0aVJryiIiIqAoqVWjZunVrietoQoyh+vXrh379+pWmHCIiInoBlOsTcYmIiIhKi6GFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGShVF+Y+CJafj+0xHUmOPUuh0qIiIheTBxpISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWTB71g0yMzOxZcsWhIeHIyIiAmlpaZg1axZ8fX111r19+zaWLl2Ky5cvw8zMDK+99homT54Me3t7rfUKCwuxZcsW7NixA8nJyXB2dsawYcPQvXv3UneMiIiIqpZnDi2pqakIDAyEo6MjXF1dcf78eb3rxcfHIyAgADY2Nhg3bhyysrKwZcsW3Lp1CytXroS5ubm07qpVq7Bx40b069cPTZs2xZEjRzBnzhwoFAp069at9L0jIiKiKuOZQ4tKpUJwcDBUKhWuXbuGd999V+96GzZsQHZ2NlavXg1HR0cAgIeHBz744APs2bMHfn5+AICEhAQEBQVhwIABmDZtGgCgb9++CAgIwLJly9C1a1eYmpqWtn9ERERURTzznBalUgmVSlXieocOHYKnp6cUWACgXbt2cHFxQVhYmNR25MgR5OfnY8CAAVKbQqFA//79kZCQgKtXrz5riURERFQFPfNIiyESEhKQkpICd3d3nWUeHh44ceKE9DoqKgqWlpaoX7++znqa5S1bttTZT2JiIpKSkqTX0dHRZVU+ERERVUJGCS2aMKFvREalUuHRo0fIzc2FUqlEUlISatSoAYVCobMe8Dic6BMSEoLAwMCyLZyIiIgqLaOElpycHADQmmyroVQqpXWUSiVycnJKXE8fPz8/eHl5Sa+jo6Mxb968566diIiIKiejhBYLCwsAQF5ens6y3NxcrXUsLCwMWu9pDg4OcHBwKJN6iYiIqPIzysPlNJd2npxzopGUlAQ7OztpJEWlUiE5ORlCCJ31ADCYEBEREQAjhZZatWrB3t4ekZGROssiIiLg6uoqvXZ1dUV2drbORNrw8HBpOREREZHRHuPfpUsXHDt2DHFxcVLb2bNnERMTA29vb6mtU6dOMDMzQ3BwsNQmhMDOnTtRq1YttGjRwlglEhERkYyUak7L9u3bkZ6eLl3COXr0KOLj4wEA/v7+sLGxwbBhw/D333/j/fffx8CBA5GVlYXNmzejUaNGWo/8r127NgYNGoTNmzcjPz8fHh4e+Oeff3Dp0iV89tlnfLAcERERAShlaAkKCkJsbKz0+vDhwzh8+DAAoGfPnrCxsYGjoyOWLFmCpUuXYuXKldJ3D02aNEmaz6Ixfvx42NraIiQkBKGhoXB2dsann36KHj16PEfXiIiIqCopVWjZunWrQes1bNgQ3377bYnrmZiYYNiwYRg2bFhpyiEiIqIXgNHmtBARERGVJYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFhhYiIiKSBYYWIiIikgWGFiIiIpIFM2PuPCYmBmvWrMHly5fx6NEjODo6onv37hgyZAiqVasmrXf58mWsWLEC169fh7W1Nby9vTFu3DhYWVkZszwiIiKSEaOFlri4OIwfPx42NjYYMGAA7OzscPXqVaxduxaRkZFYsGABACAqKgrTpk1D/fr1MXnyZMTHxyMoKAh3797FN998Y6zyiIiISGaMFlr27duH9PR0/PTTT2jYsCEAwM/PD4WFhdi7dy/S0tJga2uLn3/+Gba2tliyZAmsra0BAHXr1sWiRYtw6tQpdOjQwVglEhERkYwYbU5LRkYGAKBGjRpa7SqVCiYmJjAzM0NGRgbOnDmDnj17SoEFAHr16gVLS0uEhYUZqzwiIiKSGaOFljZt2gAAFi5ciKioKMTFxeHgwYPYuXMn/P39YWlpiVu3bqGgoADu7u5a25qbm8PNzQ1RUVHGKo+IiIhkxmiXhzp27IgxY8Zgw4YNOHr0qNQ+fPhwjBs3DgCQlJQE4PHoy9NUKhUuXrxY5P4TExOl7QEgOjq6rEonIiKiSsiodw/VrVsXrVq1QpcuXWBnZ4fjx49jw4YNqFmzJvz9/ZGTkwPg8cjK05RKJXJzc4vcd0hICAIDA41VOhEREVUyRgstBw8exDfffIONGzeidu3aAIAuXbpACIGVK1eie/fusLCwAADk5eXpbJ+bmwulUlnk/v38/ODl5SW9jo6Oxrx588q4F0RERFRZGC20BAcHw83NTQosGl5eXtizZw+ioqKky0JPXubRSEpKgoODQ5H7d3BwKHY5ERERVS1Gm4ibkpKCwsJCnfb8/HwAQEFBARo2bAhTU1NERkZqrZOXl4eoqCi4uroaqzwiIiKSGaOFFhcXF0RFRSEmJkar/eDBgzAxMUHjxo1hY2ODdu3aYd++fcjMzJTW2bt3L7KysuDt7W2s8oiIiEhmjHZ5aMiQITh58iQmT56MN998E3Z2djh27BhOnjyJvn37Spd2xo4di0mTJiEgIAB+fn7SE3Hbt2+Pjh07Gqs8IiIikhmjhZbWrVvjp59+wrp16xAcHIxHjx6hbt26GDduHIYOHSqt5+7uju+++w4rVqzAjz/+CCsrK/Tp0wfjx483VmlEREQkQ0a95blZs2YGfX9Qy5YtsWzZMmOWQkRERDJntDktRERERGWJoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGTBrKILkIv74cklr+Rk/DqIiIheVBxpISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZMPp3D0VGRmLdunW4fPkycnNz4eTkhH79+mHgwIHSOpcvX8aKFStw/fp1WFtbw9vbG+PGjYOVlZWxyyMiIiKZMGpoOXXqFGbNmgU3NzeMGDEClpaWuHfvHhISEqR1oqKiMG3aNNSvXx+TJ09GfHw8goKCcPfuXXzzzTfGLI+IiIhkxGihJSMjA1999RVeffVVzJ07FyYm+q9E/fzzz7C1tcWSJUtgbW0NAKhbty4WLVqEU6dOoUOHDsYqkYiIiGTEaHNaDhw4gOTkZIwbNw4mJibIyspCYWGh1joZGRk4c+YMevbsKQUWAOjVqxcsLS0RFhZmrPKIiIhIZow20nLmzBlYW1sjMTER//3vfxETEwNLS0v07NkTkydPhoWFBW7duoWCggK4u7trbWtubg43NzdERUUZqzwiIiKSGaOFlrt376KgoACffPIJ+vTpg3fffRcXLlzA9u3bkZ6eji+++AJJSUkAAJVKpbO9SqXCxYsXi9x/YmKitD0AREdHl30niIiIqNIwWmjJyspCdnY23njjDUydOhUA0KVLF+Tl5SEkJASjR49GTk4OgMcjK09TKpXIzc0tcv8hISEIDAw0Su1ERERU+RgttFhYWAAAunXrptXevXt3hISE4OrVq6hWrRoAIC8vT2f73NxcKJXKIvfv5+cHLy8v6XV0dDTmzZtXFqUTERFRJWS00KJSqfDvv/+iZs2aWu01atQAAKSlpaFevXoAoHWZRyMpKQkODg5F7t/BwaHY5URERFS1GO3uIc3k2iefyQI8nosCAPb29mjYsCFMTU0RGRmptU5eXh6ioqLg6upqrPKIiIhIZowWWry9vQEAf/75p1b7n3/+CVNTU7Rp0wY2NjZo164d9u3bh8zMTGmdvXv3IisrS9oHERERkdEuDzVp0gSvv/46du/ejYKCArRu3RoXLlxAWFgYhg0bJl3aGTt2LCZNmoSAgAD4+flJT8Rt3749OnbsaKzyiIiISGaM+hj/jz76CI6OjtizZw/++ecfODo6YvLkyRg8eLC0jru7O7777jusWLECP/74I6ysrNCnTx+MHz/emKURERGRzBg1tJiZmWHUqFEYNWpUseu1bNkSy5YtM2YpREREJHNGm9NCREREVJYYWoiIiEgWjHp5iIiIiIzr7LaSv6fvlYFu5VCJ8XGkhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBE3GJiIiqOEMm68Le6GU8N460EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSzwOS1ERERV3A770xVdQpngSAsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQK/e6gMLb8fWuI6E5x6l0MlRET0oqgq3ytkCI60EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLJRraPn111/RuXNnjBgxQmfZ5cuXMWnSJPTo0QP9+/fH4sWLkZmZWZ7lERERUSVWbo/xj4+Px4YNG2BpaamzLCoqCtOmTUP9+vUxefJkxMfHIygoCHfv3sU333xTXiUSERFRJVZuoWXZsmVo1qwZCgsLkZqaqrXs559/hq2tLZYsWQJra2sAQN26dbFo0SKcOnUKHTp0KK8yiYiIqJIql8tDFy5cwKFDhxAQEKCzLCMjA2fOnEHPnj2lwAIAvXr1gqWlJcLCwsqjRCIiIqrkjD7SUlBQgMWLF6NPnz5o3LixzvJbt26hoKAA7u7uWu3m5uZwc3NDVFSU3v0mJiYiKSlJeh0dHV22hRMREVGlYvTQsnPnTsTFxeH777/Xu1wTPFQqlc4ylUqFixcv6t0uJCQEgYGBZVYnERERVW5GDS2pqalYu3Yt3nnnHdjb2+tdJycnB8DjkZWnKZVK5Obm6t3Oz88PXl5e0uvo6GjMmzfv+YsmIiKiSsmooWX16tWwtbWFv79/ketYWFgAAPLy8nSW5ebmQqlU6t3OwcEBDg4OZVMoERERVXpGCy0xMTHYtWsXAgICkJiYKLXn5uYiPz8fDx48gLW1tXRZ6Mn5KRpJSUkMJkREVCUtvx9a4joTnHqXQyXyYbTQkpiYiMLCQixevBiLFy/WWf7WW29h4MCBGD16NExNTREZGQkfHx9peV5eHqKiouDt7W2sEomIiEhGjBZaGjZsiPnz5+u0r169GpmZmZgyZQqcnJxgY2ODdu3aYd++fRgxYgSsrKwAAHv37kVWVhZDCxERvbA+O7CpokuoVIwWWuzt7aFWq3Xaf/vtNwDQWjZ27FhMmjQJAQEB8PPzk56I2759e3Ts2NFYJRIREZGMVIovTHR3d8d3330HCwsL/Pjjj9i1axf69OmDuXPnVnRpREREVEmU22P8NZYsWaK3vWXLlli2bFk5V1M5cXIWERGRrkox0kJERERUEoYWIiIikgWGFiIiIpIFhhYiIiKShXKfiEtERFTVGXJDBT07jrQQERGRLDC0EBERkSzw8lAZuh+eXPJKTsavg4iIqCriSAsRERHJAkMLERERyQJDCxEREckCQwsRERHJAifiljPeu09ERFQ6HGkhIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWeBEXJk6uy2qTPbzykC3MtkPEVFVYMjv1rL6vWnQU9RJC0daiIiISBY40lIJGZa+Gxu9DiKiqsSQUZQd9qdLXOcVlDzSwlEU4+BICxEREckCQwsRERHJAi8PERGRURjyBPAJTr3LoZKyxSebVxyOtBAREZEscKSlCiurCWVlpar+q4vkpzxva62qKttoQ1k9BoIqN460EBERkSwwtBAREZEs8PKQTBly6YeIiKgq4UgLERERyQJHWspZZXtKYmX7DiNOkCSip3GSLWlwpIWIiIhkgaGFiIiIZIGXh6hSqWzPlnmR8VIdPS9DLoefPcZLP2Q4jrQQERGRLHCk5QVnyMhG/4fty6ESouf3ok/YLKunTht0HD0NqahkcvwdVNluqHiRcKSFiIiIZMFoIy0REREIDQ3F+fPnERsbCzs7OzRv3hxjx46Fi4uL1rq3b9/G0qVLcfnyZZiZmeG1117D5MmTYW9vb6zyiIiISGaMFlo2bdqEy5cvw9vbG40bN0ZSUhKCg4MxduxYLF++HI0aNQIAxMfHIyAgADY2Nhg3bhyysrKwZcsW3Lp1CytXroS5ubmxSqRyVlZDqmU1QZQTTak8GPI5O+V5s8R1DLmsY9DPmFPJq8gRnxL+YjBaaBk8eDA+//xzrdDh4+ODUaNGYePGjfjss88AABs2bEB2djZWr14NR0dHAICHhwc++OAD7NmzB35+fsYqkYiIiGTEaHNaXn75ZZ1REhcXFzRo0ADR0dFS26FDh+Dp6SkFFgBo164dXFxcEBYWZqzyiIiISGbK9e4hIQRSUlLQoEEDAEBCQgJSUlLg7u6us66HhwdOnDhRnuVREQwZdj11v+Th7aqKl5mIiMpHuYaW/fv3IyEhAaNHjwYAJCUlAQBUKpXOuiqVCo8ePUJubi6USqXO8sTERGl7AFqjN0RERFT1lFtoiY6Oxvfff4/mzZujd+/HE8pycnIAQO9kW01QycnJ0RtaQkJCEBgYaLyCiYhKYMgomyEjlU6oWeI6hjyDhaiqK5fQkpSUhJkzZ8La2hpz586FqakpAMDCwgIAkJeXp7NNbm6u1jpP8/Pzg5eXl/Q6Ojoa8+bNK+vSiYiIqJIwemhJT0/HjBkzkJ6ejqVLl8LBwUFaprks9ORlHo2kpCTY2dnpHWUBAAcHB619ERERUdVm1NCSk5ODjz/+GDExMfjuu++kCbgatWrVgr29PSIjI3W2jYiIgKurqzHLIyqRIUPyHdC4HCohqlz4KHuqCEa75bmgoABffvklrl69itmzZ6NFixZ61+vSpQuOHTuGuLg4qe3s2bOIiYmBt7e3scojIiIimTHaSMtPP/2Eo0ePwtPTE2lpadi3b5/W8p49ewIAhg0bhr///hvvv/8+Bg4ciKysLGzevBmNGjWCr6+vscojGTNkYuMr4C3G5aGsvqCvrPYjV4aMWjg1K3myLlFVZ7TQcuPGDQDAsWPHcOzYMZ3lmtDi6OiIJUuWYOnSpVi5cqX03UOTJk0qcj4LERERvXiMFlqWLFli8LoNGzbEt99+a6xSiIiIqAoo14fLEZWX8nx+hiEMqccQL/KTdcvqGBqKk7CJKh+jTcQlIiIiKkscaaEqqap+Tf2LPmG1PBl2Sy9HWojKE0daiIiISBYYWoiIiEgWeHmIygSfjlk+DDrOTsavQ8OQes4eM2ACrWcZFEMGMeQS4317/jxT5cSRFiIiIpIFjrQQVRJlNXnYkFuDK9ut05z0SsWpqhPr6dlxpIWIiIhkgaGFiIiIZIGXh4johfMiX27gpHmSM460EBERkSxwpIWoGGU1QfRF/pc9lQ2OkBBxpIWIiIhkgqGFiIiIZIGXh4iekxwv/RjyLBc59ouIqjaOtBAREZEscKSFqIrhCAkRVVUcaSEiIiJZYGghIiIiWeDlISIyqvK8XFXel8Z4KY6ofHGkhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBz2khIlngM1GIiCMtREREJAsMLURERCQLDC1EREQkCwwtREREJAsMLURERCQLDC1EREQkCwwtREREJAsMLURERCQLleLhcrm5uVizZg327duHtLQ0NG7cGGPHjkX79u0rujQiIiKqJCrFSMuCBQuwdetW9OjRA1OmTIGJiQlmzJiBS5cuVXRpREREVElUeGgJDw/HwYMH8e6772LixInw8/PDDz/8gDp16mD58uUVXR4RERFVEhUeWg4dOgRTU1P4+flJbRYWFujTpw+uXr2KuLi4CqyOiIiIKosKDy1RUVFwdnaGtbW1VruHhwcA4MaNGxVRFhEREVUyFT4RNykpCSqVSqdd05aYmKh3u8TERCQlJUmvNeEmOjraCFUCaQ8SjLJfIiIiuYiMjDTavuvXr49q1aoVu06Fh5acnByYm5vrtCuVSmm5PiEhIQgMDNRpnzdvXpnWR0RERI+NW7XdaPtetWoV3N3di12nwkOLhYUF8vLydNpzc3Ol5fr4+fnBy8tLep2Wlobo6Gg0adJECjxlJTo6GvPmzcOnn36K+vXrl+m+K4Oq3j+g6veR/ZO/qt7Hqt4/oOr30dj9M2SfFR5aVCoVEhJ0L71oLv04ODjo3c7BwUFnWbt27cq+wCfUr1+/xBQoZ1W9f0DV7yP7J39VvY9VvX9A1e9jRfavwifiurq64u7du8jIyNBqDw8Pl5YTERERVXho6dq1KwoKChASEiK15ebmYvfu3WjWrBkcHR0rsDoiIiKqLCr88lCzZs3g7e2Nn3/+GQ8fPkS9evUQGhqK2NhYzJw5s6LLA/D4EtbIkSP13uVUFVT1/gFVv4/sn/xV9T5W9f4BVb+PlaF/CiGEqLB3//9ycnKk7x5KT09Ho0aNMHbsWHTo0KGiSyMiIqJKolKEFiIiIqKSVPicFiIiIiJDMLQQERGRLDC0EBERkSxU+N1DldHZs2exf/9+XLp0CQkJCahZsybatm2LMWPGFPmwu6clJCRg6dKlOH36NAoLC9GmTRsEBATAycnJyNWXLDExEdu2bUNERASuXbuGrKwsLF68GG3atDFo+7Vr1+r9CgWlUokDBw6UcbXP7nn7B1Tu86eRlpaGFStW4PDhw8jJyYGHhwcmTpxo0EOfvvrqK4SGhuq0v/TSS9iwYYMxytUrNzdXmoSflpaGxo0bY+zYsWjfvn2J28rhHAGl72Nl/znTyMzMxJYtWxAeHo6IiAikpaVh1qxZ8PX1NWj75/kcl4fn6d+ePXuwYMECvcuCg4MrxV1GERERCA0Nxfnz5xEbGws7Ozs0b94cY8eOhYuLS4nbl/f5Y2jRY8WKFXj06BG6du0KFxcX3L9/H7///juOHz+ONWvWlPhBy8zMxNSpU5GRkYFhw4bBzMwMW7duRUBAANauXYvq1auXU0/0i4mJwaZNm+Ds7IxGjRrh6tWrpdrPhx9+CEtLS+m1iUnlGLh73v5V9vMHAIWFhZg5cyZu3ryJIUOGoHr16tixYwemTp2KVatWGfTLRqlUYsaMGVptT3/burEtWLAAf//9NwYNGgRnZ2fs2bMHM2bMwOLFi9GyZcsit5PDOdIobR81KuvPmUZqaioCAwPh6OgIV1dXnD9/3uBty+JzbGzP0z+NMWPGoG7dulptNjY2ZVXic9m0aRMuX74Mb29vNG7cGElJSQgODsbYsWOxfPlyNGrUqMhtK+T8CdJx/vx5UVBQoNOmVqvFzz//XOL2GzduFGq1WoSHh0ttt2/fFl27dhUrV64s83qfVUZGhkhNTRVCCBEWFibUarU4d+6cwduvWbNGqNVqkZKSYqQKn8/z9q+ynz8hhDh48KBQq9UiLCxMaktJSRG+vr5i9uzZJW4/f/580bNnTyNWWLKrV68KtVotNm3aJLVlZ2eLIUOGiPfee6/YbeVwjoR4vj5W9p8zjZycHJGYmCiEECIiIkKo1Wqxe/dug7Z93s9xeXie/u3evVuo1WoRERFhzBKfy6VLl0Rubq5W2507d0S3bt3EnDlzit22Is5f5YrslUTr1q11/jXTunVr2NnZITo6usTt//77bzRt2hQeHh5SW/369dG2bVuEhYWVeb3PysrKCnZ2dmWyr4yMDIhKdtf88/avsp8/ADh06BBq1qyJzp07S2329vbw9vbGkSNHpC8cLUlBQYHOV2iUl0OHDsHU1BR+fn5Sm4WFBfr06YOrV68iLi6uyG3lcI6A5+vjkyrjz5mGUqks9WWOsvocG9Pz9O9JmZmZKCgoKIOKytbLL78Mc3NzrTYXFxc0aNCgxL93FXH+GFoMlJmZiaysrBKHnQsLC3Hr1i00bdpUZ5mHhwfu3buHzMxMY5VZrt566y34+vqid+/emDt3LpKTkyu6pOcml/N3/fp1uLm56YRrDw8PZGdnIyYmpsR9ZGdnw9fXF76+vujTpw++++67cu1bVFQUnJ2ddS5JaYLIjRs39G4nl3MElL6PT6qKP2caZfE5loOpU6eid+/e6NmzJz7++ONK3y8hBFJSUkr8e1cR549zWgz022+/IS8vDz4+PsWu9+jRI+Tm5upN5pq2xMREvPTSS0apszzY2trizTffRPPmzWFubo5Lly4hODgYERERWLVqVbnPiyhLcjl/ycnJaNWqlU67psakpCQ0bty4yO1VKhWGDh2KJk2aQAiBkydPYseOHbh58yYWL14MMzPj/2pISkoq8TjrI5dzBJS+j0DV/jnTeN7PcWVnYWEBX19ftGnTBtbW1oiMjMTWrVsxceJErF69utJ+t97+/fuRkJCA0aNHF7teRZy/Kh9aCgsLkZeXZ9C6SqUSCoVCp/3ChQsIDAyEt7c3XnnllWL3kZOTAwA6w22a/T+5Tlkoi/49q0GDBmm97tq1Kzw8PDB37lwEBwdj2LBhz/0eGuXdv/I+f0Dp+piTkyPVU5oax48fr/W6W7ducHFxwapVq3Do0CF069bNwOpLLycnp1THuSLOUWmVto9A+f6cVZTn/RxXdj4+Plr/0FWr1ejQoQMCAgKwfv16fPTRRxVYnX7R0dH4/vvv0bx5c/Tu3bvYdSvi/FX50HLx4kVMnTrVoHXXr1+P+vXra7VFR0fj008/RaNGjQz6AkcLCwsA0PtHSHN9T7NOWXje/pWVHj164KeffsLZs2fL9JdpefevvM8fULo+WlhY6L1e/Dw1Dh48GGvWrMGZM2fKJbRYWFiU6jhXxDkqrdL2sSjG+jmrKMb4HFd2LVu2RLNmzXD27NmKLkVHUlISZs6cCWtra8ydOxempqbFrl8R56/Kh5aXXnoJs2bNMmjdp4dx4+Li8OGHH8La2hoLFy6ElZVVifuws7ODUqlEUlKSzjJNm6HPejHE8/SvrNWuXRuPHj0q032Wd//K+/wBpetjzZo1i62xNMfCwsICdnZ2ZX4Oi6JSqZCQkKDTXtJxrohzVFql7WNxjPFzVlGM8TmWg9q1a+POnTsVXYaW9PR0zJgxA+np6Vi6dKlBn82KOH9VPrSoVCqDH3L0pNTUVHz44YfIy8vD999/b/AvFxMTEzRq1AjXrl3TWRYeHg4nJyeDwo+hStu/siaEQGxsLNzc3Mp0v+Xdv/I+f0Dp+ujm5oZLly6hsLBQaxJcREQEqlWrVqrnI2RmZiI1NRX29vbPvG1paJ55kZGRoTU/Izw8XFquT0Wco9IqbR+LYqyfs4pijM+xHNy/f7/cfs4MkZOTI00Q/u6779CgQQODtquI88e7h/TIysrCjBkzkJiYiEWLFhV74OPi4nRuC+vSpQuuXbum9Uv1zp07OH/+PLp27Wqsso1CX/8ePnyos96OHTvw8OFDdOzYsZwqKxtyPX9dunRBcnIyDh8+LLU9fPgQYWFh8PT01LrOfO/ePdy7d096nZOTo/fuml9++QVCiHI7h127dkVBQQFCQkKkttzcXOzevRvNmjWTJinK9RwBz9fHqvRzBjyedBwdHY38/Hyp7Vk+x5Wdvv7pO4fHjx9HZGQkOnToUI7VFa2goABffvklrl69itmzZ6NFixZ616ss56/Kj7SUxty5cxEREYHXX38d0dHRWr9MLC0toVarpdfz58/HhQsXtE7agAED8Mcff2DmzJkYMmQITE1NsXXrVtSoUQNDhgwp174U5ZdffgEA3L59GwCwd+9eXLp0CQAwYsQIaT19/Rs0aBB8fHzQqFEjKJVKXL58GQcPHoSbm5vW8ygq0vP0Tw7nr2vXrti2bRsWLFiA27dvS0+iLCws1JnxP23aNADA1q1bATye8T9mzBh0795dusPm1KlTOHHiBDp27IhOnTqVSx+aNWsGb29v/Pzzz3j48CHq1auH0NBQxMbGas0fk+s5Ap6vj3L4OdPYvn070tPTpcsCR48eRXx8PADA398fNjY2+PnnnxEaGoqgoCDp6bDP8jmuSKXt34QJE9CkSRO4u7vD2toa169fx+7du1G7dm0MHz68wvrzpJ9++glHjx6Fp6cn0tLSsG/fPq3lPXv2BIBKc/4YWvTQPDth9+7d2L17t9ayOnXqaIUWfaysrLB48WIsXboUv/76q/S9KJMnT640Q4Jr1qzRev1kP5/8o65Pjx49cOXKFRw6dAi5ublwdHTE0KFD8c4776BatWpGqfdZPU//5HD+TE1NsWjRIixbtgzbt29HTk4OmjZtilmzZpV4q6+NjQ08PT1x+vRphIaGorCwEPXq1cO7776LIUOGlOtj4j/55BM4Ojpi7969SE9PR6NGjbBw4UK0bt262O3kcI40SttHOfycaQQFBSE2NlZ6ffjwYSmA9ezZs8hH1j/P57g8lbZ/Pj4+OHHiBE6fPo3s7GyoVCr069cPI0eORM2aNcul9pJo/t4dO3YMx44d01muCS36VMT5U4jK+phFIiIioidwTgsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDC1ElsnbtWnTu3Bnnz5+v6FKMonPnzpgyZUpFl0FEMsXH+JNsPXjwAG+99ZZWm5mZGWrUqIFWrVrhP//5Dxo3blxB1VVOQgjs378ff/75J27evInMzEzY2trCwcEBzZs3h4+Pj9bj5b/66iud7xsh6ty5M1q3bo0lS5ZUdCn0gmFoIdmrV68eevToAeDxN3SHh4fjwIEDOHz4ML7//nu8/PLLFVxh5fH1119jz549sLW1haenJxwcHJCTk4ObN2/izz//REZGRonfiUNEVFEYWkj26tWrp/ONoqtWrcL69euxatUq/mvw/7t48SL27NkDNzc3LFmyBNbW1lrL09LSpG/FJiKqjBhaqEry9/fH+vXrce3aNaktMjISGzZsQEREBFJSUmBlZYW6deuiU6dOeOedd7S2T0lJwYYNG3Ds2DHEx8fDysoKrVq1wujRo9GoUSOtdYsbKh88eDAAYOvWrVrtcXFxWLFiBU6dOoX8/Hw0adIEY8aMKbZPu3fvxs6dO6Vg0aBBA/Tv3x++vr4GHZOrV68CAHr16qUTWADA1tZWa1Rq8ODB0jfbPnkZ7um+Xr58GevXr8fVq1eRk5ODOnXqwMfHB2+//bZB30YshMDSpUvx22+/oXv37vjkk09gZmYGIQR2796NP//8E7du3UJBQYHU5z59+mjtIycnB8HBwdi7dy9iY2NRUFAAe3t7eHh4YPjw4XB1dS22Bs2lxt69e2Po0KFYvnw5rly5goKCAjRv3hzjx4+Hu7u71jaRkZHYvXs3Lly4gPj4eOTl5UmjfkOGDIGZmfavV81nYc2aNVi9ejWOHDmC5ORkzJgxA76+vqXe39q1a7Fy5Ur8888/yMzMRJMmTRAQEAB3d3ckJiZi+fLlOH36NDIzM9GyZUtMmzYNLi4uOsfg/v37WL9+PU6fPo2UlBTY2tqiQ4cOGD16NOrUqQMAOH/+PKZOnQoAuHDhAjp37ixtP2vWLK3P4j///IPt27fj+vXryM3NRb169dC7d28MHjwYpqam0np79uzBggULMGvWLNjZ2WHjxo24efMmqlevrvNzQ8TQQlWaQqEAAERFRWHSpEkwMTFBp06d4OjoiPT0dNy+fRu7du3SCi337t3DlClTkJCQgPbt26NTp054+PAhDh06hNOnT+P7779Hs2bNSl1TYmIiJk6ciISEBHTo0AFNmjRBdHQ0PvzwQ7Rp00bvNosXL8b27dtRq1YtvP766wCAw4cPY8GCBbh+/br0h6Q4dnZ2AIC7d+8aVOfAgQMRGhqKGzduYODAgbCxsQEArbktYWFhmDNnDszNzeHj4wN7e3ucPn0agYGBOHXqFBYvXgwLC4si3yM/Px9fffUVDhw4gEGDBmHy5MlQKBQQQmDu3Lk4cOAAnJ2d0b17d5ibm+P06dNYuHAhbt++jUmTJkn7+eqrrxAWFobGjRvD19cX5ubmSEhIwLlz59C+ffsSQ4vG/fv3MWnSJLi5ueGNN95AXFwcwsLCEBAQgB9++EHrvO/atQvHjh1Dq1at8OqrryI7OxsXLlzAzz//jGvXrmHevHk6+8/NzcX777+PrKwseHl5wdTUFDVq1Cj1/vLy8vDBBx8gNzcXPj4+SElJQVhYGD744AMsW7YMH330EVQqFXr27Im7d+/i2LFjmDlzJtavX68VHMLDw/HRRx8hKysLnp6ecHZ2RmxsLPbv34+TJ09i+fLlcHJyQp06dTBy5EgEBgaiTp066N27t7SPJ4/xypUrsXHjRtSqVQudO3eGjY0NLl26hOXLlyMiIgJz5szR6UtYWBhOnz4NT09P9O/fH5mZmQadM3rBCCKZun//vlCr1eLDDz/UWbZmzRqhVqvFlClThBBC/Pjjj0KtVovDhw/rrPvw4UOt1xMmTBBdu3YVJ0+e1Gq/c+eO6NWrlxgxYoRWu1qtFgEBAXprHDRokBg0aJBW2/z584VarRa//PKLVvvOnTuFWq0WarVanDt3Tmo/f/68UKvVYtiwYSItLU1qf/TokXj77beFWq0WFy5c0Pv+T4qLixO9e/cWnTt3FrNnzxZhYWHiwYMHxW6jqfX+/fs6y9LT04Wvr6/o1q2buHHjhtReUFAgvvjiC6FWq0VgYKDWNk8eq4yMDPHBBx8ItVot1q9fr7VeSEiIUKvVYsGCBSIvL09qz83NFTNnzhRqtVpcu3ZNCCFEWlqa6Ny5sxg7dqzIz8/X2k9+fr549OhRicdG81lSq9VixYoVWstOnjwp1Gq1znmPjY3Veb/CwkKxYMECoVarxaVLl7SWDRo0SPq8Zmdn69RQ2v19/vnnWsdo48aNQq1WC19fX/Hjjz+KwsJCadm3334r1Gq1+Pvvv6W2vLw8MWjQINGrVy8RGRmp9R4XL14UXbt2FTNnztRqL+4zf+rUKamfmZmZWn353//+J9RqtQgLC5Pad+/eLdRqtejSpYs4ffq03n0SafCWZ5K9e/fuYe3atVi7di2WLVuGyZMnIzAwEEqlEuPGjdNaV9+/+qtXry79/+vXr+PKlSvo1asXOnTooLWei4sL+vbti1u3buHWrVulqjUvLw9//fUXatSooXPnU9++feHs7KyzTWhoKABg1KhR0mgH8PhyzsiRIwE8HmIvSe3atTF37lzUrl0bBw4cwOeff47BgwfDz88PX3zxBc6ePftMfTly5AjS09Px+uuva92lZWJiggkTJsDU1LTIuh4+fIj3338f586dw8cff4xhw4ZpLf/9999haWmJadOmaV0WMTc3l87pgQMHAEAamVEqlTAx0f6VZmpqCltbW4P7ZGNjg+HDh2u1dejQAa+88gpu3bqFyMhIqd3R0VFrtEJTy4ABAwAAZ86c0fseEyZM0Ps5LO3+Jk6cqHWMunXrBgAoKCjA2LFjpdHGJ5fdvHlTajt27BhiY2MxdOhQNGnSRGvfLVu2hJeXF06cOIGMjAy97/+033//HQAwffp0WFpaavVl/PjxUCgUOHjwoM52Xl5eaNeunUHvQS8uXh4i2bt37x4CAwMB/N8tz927d9e65dnHxwfbtm3Dp59+Ch8fH7Rr1w6tWrVCrVq1tPYVHh4O4PGclrVr1+q81507d6T/fXpuiyHu3LmD3NxctG3bVucPl4mJCV5++WWdyzdRUVEAoPfSkabtxo0bBr1/u3btsHnzZly4cAEXL15EZGQkLl++jLCwMISFhWHYsGF49913DdqXpi59dxs5OjrCyckJMTExyMzMhJWVlbQsOTkZkyZNQnx8PObNmwcvLy+tbbOzs3Hr1i04ODhg48aNOvsuKCgA8H/nwtraGq+++ipOnDiBsWPHomvXrmjdujU8PDx05oGUxM3NTatWjZYtW+Ls2bOIioqS5rbk5eXh999/x8GDB3Hnzh1kZWVBCCFtk5iYqLMfpVJZ5OemNPuztbWFo6OjVptKpQIAODs768wp0ix7cl+auU537tzR+5lPTk5GYWEhYmJi0LRpU721Pyk8PByWlpb4888/9S63sLCQzt2TPDw8Stw3EUMLyV6HDh3wv//9r9h1mjVrhsWLF2PDhg04cOAAdu/eDQBo2rQp3nvvPbRt2xYA8OjRIwDA8ePHcfz48SL3l5WVVapaNf9a1cxjeJq+9szMTJiYmMDe3l5nWc2aNaFQKAz+VzDwONi1a9dO+ldtfn4+QkND8e2332LDhg3o0qWLzqTT4vpSs2ZNvctVKhViYmKQkZGhE1oyMjJQr149vXOD0tLSIIRAQkKCFEb1yc7Olv7/nDlzsH79ehw4cACrVq0C8DjM+Pr64t133zVoQnBxfdG0p6enS22fffYZjh07BhcXF/j4+KBGjRowNTVFeno6tm3bhry8PJ391KhRQ2vk40ml2Z++CdWaoKZvmWYkJz8/X2pLS0sDAOzfv19vXRpPHu/iPHr0CAUFBcWeO30/P0Ude6InMbTQC6NVq1Zo1aoVcnJyEB4ejqNHj2LHjh2YOXMmfvnlFzg5OUm/6KdOnQp/f3+D9qtQKKR//T8tPT1d65KOZv8pKSl619fXbmVlhcLCQjx8+FAn1KSkpEAIofcPlKHMzMzQt29fXLx4EXv37sX58+cNCi2a90xOTta7XNP+dG2urq7o3bs3Fi1ahKlTp+KHH37Q+oOlWd/d3V0KICWpVq0axo0bh3HjxuH+/fs4f/48du7ciW3btiEnJwfTp083aD8l9UVzLiMiInDs2DF06NABCxcu1Lqsc/XqVWzbtk3vfooKLKXdX1nQBMqvv/4anp6ez70/a2trKBQK7Nq165m2K+rYED2Jc1rohWNhYYE2bdpg8uTJGD58OHJycnD69GkA/zdErRkyN4StrS0SEhJ02h88eKD1L3Pg8bwYpVKJyMhI5OTkaC0rLCzElStXdPbj5uYGAHof7X/hwgUAMPjumOI8Of9AQzNHpLCwsMi6NDU8KS4uDvfu3YOTk5Peyy2vv/46Pv74Y9y5cwdTp07VCgtWVlaoX78+oqOjpVGAZ+Hk5IQ+ffrgxx9/hKWlJY4ePWrwtlFRUXrvWrl06RKA/+vz/fv3AQCvvfaazjwUzbrPoqz39yw0o13P8pk3MTHR+5kAHv8MpaamIiYmpkzqI3oSQwu9EK5cuaITEoD/+xe0UqkE8PgXeLNmzXDw4EG9kwULCwt1/kg3bdoUsbGxWu15eXlYunSpzvZKpRLe3t5ISUlBUFCQ1rI//vhD7y96zW2lgYGBWpeB0tPTsW7dOq11inPy5En8888/WpcGNO7evYu///4bwOP5Gxqa26Tj4+N1tunUqRNsbGywe/du/Pvvv1K7EAIrV65EQUFBsc+Q6d27N2bNmoWYmBhMmTIFSUlJ0rKBAwciOzsb33zzjd5LCffv38eDBw8APJ7Uq29idFpaGvLy8qRza4j09HSsX79eq+3UqVM4e/YsGjZsKI1AaeaRPB0o/v33X2zYsMHg99Mo6/09C80jAIKCgvQG0Pz8fJ26bG1t9X4mgMfnDgAWLlyI1NRUneVJSUl8iCGVGi8P0Qth06ZNOH/+PFq1aoW6detCqVTi+vXrOHv2LJycnLQekvX555/j/fffx+zZs7Ft2za4ubnBwsIC8fHxuHLlClJTU6U7V4DHD/k6ffo0ZsyYgW7duqFatWo4ffo0bG1tpYmPTxo/fjzOnTuH1atX4/Lly3Bzc0N0dDROnDiB9u3bS6M+Gq1bt4a/vz+2b9+OESNGoEuXLhBC4NChQ0hISIC/v79Bj96Pjo7G0qVLUb16dbRq1Qr16tWDEAL37t3DiRMnkJeXh/79+2vNM2nbti22bNmCb775Bl26dEG1atVQp04d6QF106dPx5w5c/Dee+/B29sb9vb2OHv2LCIjI+Hh4YEhQ4YUW1OvXr2gUCiwYMEC6VKRg4MD/Pz8cPXqVYSGhuLy5cto164dVCoVUlJScOfOHYSHh+Pzzz9H3bp1kZCQgDFjxsDV1RWNGzeGg4MDHj16hCNHjiA/P7/EGp7UsmVL7Ny5E+Hh4WjevDliY2MRFhYGCwsLzJw5U1rPw8MDHh4eCAsLQ1JSEpo3b464uDgcPXoUr732mhQADVXW+3sWSqUSc+bMwYwZMzBlyhS0bdsWjRo1gkKhQGxsLC5duoTq1atrhae2bdsiLCwMn3zyCdzc3KTnHzVu3BgdO3bEiBEj8Msvv2Do0KHo2LEjHB0d8ejRI9y7dw+XLl3CmDFj0KBBA6P1iaouhhZ6IfTv3x/W1taIiIjAhQsXIISAo6Mjhg8fjkGDBmnNu3BycsKaNWsQFBSEf/75B3v27IGJiQlUKhVatWqFrl27au27Q4cOmD17NgIDA7Fv3z7Y2trC29sb48aNk25JfpKDgwOWLVuG5cuX49SpU7h48SKaNGmCb7/9FufOndMJLcDjOTZubm7YsWOHNFegQYMGGDNmjPSwuZL07NkTVlZWOHXqFG7duoUzZ84gNzcX1atXR/v27dG7d2+dvr366quYMGECdu3ahaCgIOTn56N169bo1asXAMDb2xs1a9bEhg0bcPjwYemJuCNGjMDbb79d7IPlnqzLxMQE8+fPx/vvvy8Fl08++QSvvvoq/vjjDxw7dgxZWVmoUaMGnJ2dMXHiRLzyyisAgDp16mDUqFE4d+4czpw5g0ePHqF69epo0qQJBg4ciI4dOxp0fIDH5/7DDz/E8uXLERwcjMLCQrRp00bnibimpqZYuHCh9FTja9euSXV17NjxmUNGWe/vWXl4eGDt2rXYvHkzTpw4gStXrsDc3BwODg5Qq9XSrdIamm/qPnfuHI4dO4bCwkLUrl1bultvzJgxaNWqFbZt24azZ88iPT0ddnZ2qFu3LkaOHCl9VxjRs1KIJ++pIyJ6AT35GP9PPvmkosshoiJwTgsRERHJAkMLERERyQJDCxEREckC57QQERGRLHCkhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZOH/AV1WTLa5WcaGAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Data duration: 0.541 s\n", + "\n", + "Background duration: 378.9 s\n", + "\n", + "MDP_99: 11.298 %\n" + ] } ], "source": [ - "qs, us = source_photons.compute_pseudo_stokes(az_ang, show=True)\n", - "# np.save('qs.npy', qs)\n", - "# np.save('us.npy', us)" + "data_duration = source_photons.get_data_duration()\n", + "print('\\nData duration:', str(round(data_duration, 3)), 's')\n", + "\n", + "background_duration = source_photons.get_background_duration()\n", + "print('\\nBackground duration:', str(round(background_duration, 3)), 's')\n", + "\n", + "MDP99 = source_photons._mdp99 * 100\n", + "print('\\nMDP_99:', str(round(MDP99, 3)), '%')" + ] + }, + { + "cell_type": "markdown", + "id": "1e5cb5b3", + "metadata": {}, + "source": [ + "Derive the modulation factor. This depends on the source spectrum and the instrument polarization response averaged over polarization angles. This steo needs to be re-computed for every source." ] }, { "cell_type": "code", - "execution_count": 7, - "id": "c69dae6c", + "execution_count": 8, + "id": "2db5d9d4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "this task takes around 25 seconds...\n", - "\n", - "Creating the unpolarized ASAD...\n" + "Creating the 100% polarized ASADs (this may take a minute...)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Creating the unpolarized ASAD...\n", + "A = 0.72, B = 0.56, C = 1.55\n", + "Rmax, Rmin: 1.2765994095848665 0.7208759491498263\n", + "Modulation mu = 0.2782129241319227\n", + "A = 0.71, B = 0.57, C = 1.28\n", + "Rmax, Rmin: 1.277565221044138 0.7145656302116623\n", + "Modulation mu = 0.2826117523743843\n", + "A = 0.71, B = 0.58, C = 1.02\n", + "Rmax, Rmin: 1.2811347880756978 0.7115098904640041\n", + "Modulation mu = 0.2858637587254843\n", + "A = 0.71, B = 0.58, C = 0.76\n", + "Rmax, Rmin: 1.2832547944023935 0.7105732262477737\n", + "Modulation mu = 0.28722716414020205\n", + "A = 0.71, B = 0.58, C = 0.50\n", + "Rmax, Rmin: 1.286333723259795 0.709611209311379\n", + "Modulation mu = 0.2889471069752825\n", + "A = 0.71, B = 0.57, C = 0.25\n", + "Rmax, Rmin: 1.2795091218061168 0.7209409818293889\n", + "Modulation mu = 0.27922123074283006\n", + "A = 1.28, B = -0.57, C = 1.54\n", + "Rmax, Rmin: 1.2816992490648778 0.7193171518560963\n", + "Modulation mu = 0.2810482197696847\n", + "A = 1.28, B = -0.57, C = 1.28\n", + "Rmax, Rmin: 1.282324586598261 0.724706750909539\n", + "Modulation mu = 0.2778321520286452\n", + "A = 1.29, B = -0.58, C = 1.02\n", + "Rmax, Rmin: 1.2897273462156322 0.7181465237202669\n", + "Modulation mu = 0.2846696852096655\n", + "A = 1.29, B = -0.57, C = 0.76\n", + "Rmax, Rmin: 1.286606127370973 0.7197829170713229\n", + "Modulation mu = 0.2825091234772001\n", + "A = 1.29, B = -0.58, C = 0.51\n", + "Rmax, Rmin: 1.2880870304466803 0.7157297168971504\n", + "Modulation mu = 0.28563356120674255\n", + "A = 0.72, B = 0.57, C = 1.81\n", + "Rmax, Rmin: 1.2815309169458988 0.7196863013802212\n", + "Modulation mu = 0.28075143988398316\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkJUlEQVR4nO3deXhTVf4/8HeSNulOSwtllbVAQUEYFgXKUnbRjgyL6K+OG8goVFxBHHUUQUYddVBEEMEqoIAgUpVFxQoCyiabtEARKWv3vU2z3t8ffJshJvQcStL0lvfreXi09557c25u0n7u52waRVEUEBEREdVxWl9XgIiIiEgGgxYiIiJSBQYtREREpAoMWoiIiEgVGLQQERGRKjBoISIiIlVg0EJERESqwKCFiIiIVIFBCxEREakCgxYiqlMGDRoEjUbj9dd56aWXoNFo8OOPP3r9tWS0bt0arVu39nU1iOo0Bi1EKvfjjz9Co9Fg0KBBVyxz+vRpaDQa/lEkIlVj0EJE16Vp06YhPT0dvXv39nVViEiSn68rQETkC1FRUYiKivJ1NYjoKjDTQnSdurxPx9q1a9G7d28EBQWhYcOGmDhxIs6fP+9yTFV/E5PJhOeffx5t2rSBwWBAu3bt8PLLL8NsNrt9ra1bt2LkyJFo2LAhDAYDOnTogGeffRbFxcVSdTWbzViwYAFuu+02tGrVCgaDAQ0bNsTQoUOxadMmt8dU9REpKSnBk08+idatW8Pf3x8vvfSSy/X/+fqu9O/PTXBWqxULFy7ELbfcgrCwMAQFBaF79+5YsGAB7Ha7S50URcGCBQvQpUsXBAQEoHnz5pg2bZr0+0B0vWOmheg6t3DhQqSkpCAhIQEDBw7E7t27sXr1ahw6dAgHDx6EwWBwOWbChAnYu3cvxo0bB39/f2zYsAEvvfQS9u3bh5SUFKeOtIsXL8YjjzyC4OBgjB8/Ho0bN8aPP/6I1157DV999RV27tyJ8PDwautYUFCA6dOno2/fvhg2bBgaNWqEixcv4quvvsJtt92GJUuWYNKkSS7Hmc1mxMfHo6CgAMOHD0dYWBjatGlzxde5//773fYN+umnn/DDDz8gKCjIsc1iseCOO+7Ali1b0LFjR9xzzz0ICAhAamoqkpKSsHv3bixfvtzpPI8//jjeeecdNG3aFA8//LDjvdu9ezfMZjP0en217wPRdU8hIlVLTU1VACgDBw68Ypk//vhDAaC0atXKse1f//qXAkAJDQ1VDh8+7FT+7rvvVgAoq1evdto+cOBABYASExOjFBQUOLYbjUbllltuUQAon3zyiWP76dOnFb1er4SGhirp6elO53rkkUcUAMrkyZPdvsblKisrlbNnz7pcV1FRkdKlSxclIiJCqaiocNrXqlUrBYAyZMgQpayszOXYqutPTU112Xe5Q4cOKaGhoUpUVJRy8uRJl+OnTZumWK1Wx3ar1ao8+OCDCgDlyy+/dGzfuXOnAkBp166dkp+f79h++Xt3+f0hIldsHiK6zj322GO46aabnLZNnjwZALBnzx63x7zwwguIiIhw/BwQEIB58+YBAJYtW+bYvmLFCpjNZkybNg2dOnVyOsfcuXMRGhqK5cuXw2QyVVtHg8GAFi1auGxv0KABHnzwQRQWFmLv3r1uj33zzTcRHBxc7fmv5MKFCxg9ejQsFgs2bNiAdu3aAQDsdjveffddNGnSBG+//TZ0Op3jGJ1OhzfffBMajQYrV650bP/oo48AAP/85z/RsGFDx/bL3zsiqh6bh4iucz179nTZ1rJlSwBAYWGh22MGDhzosq1///7Q6XQ4cOCAY9uvv/4KAIiPj3cpHxERge7du2P79u04duwYunXrVm09jx49ijfeeAPbt2/HxYsXUVlZ6bTfXR+cgIAAdO3atdrzXklZWRluv/12nD9/Hp999hn69u3r2HfixAkUFBQgJiYGc+bMcXt8YGAg0tPTHT9XvRfVvXdEVD0GLUQqp9VeSpi66/hZpWpfVdnLuetP4ud36VeDzWZze77o6Gi3x0RFRSEnJ8exraqDadOmTd2ep2p7UVHRFesOAL/88gvi4+NhtVoxZMgQJCQkICwsDFqtFgcPHsSGDRvcZmsaN25co4nqbDYb7rrrLhw4cADz5s3DXXfd5bQ/Pz8fAJCRkYGXX375iucpKytz/H/Ve1Hde0dE1WPQQqRyDRo0APC/P6Tu5OXlAXAfoNREdnY2brjhBqdtVqsVeXl5CAsLc6lbVlYWunTp4nKeixcvOpW7kjlz5sBoNCI1NdWlo+y8efOwYcMGt8fVdGbdpKQkbNy4EZMnT8azzz7rsr+qvmPGjMEXX3whdc6qY7Kzs9G2bVunfVXvnbsmMCL6H/ZpIVK5jh07wmAw4MSJE1cMXH7++WcAEDbByNq2bZvLth07dsBms6F79+6ObVX/726q/KKiIhw8eBABAQGIjY2t9vVOnjyJhg0buh3Z464u1+LNN9/E+++/j+HDh2PhwoVuy3Tq1Anh4eH45ZdfYLFYpM7bo0cPANW/d0RUPQYtRCoXEBCAiRMnwmq14plnnoGiKE77z507hzfeeAPApSG9nvDKK6849XeprKzErFmzAAAPPPCAY3tiYiL8/f3x7rvv4uTJk07neOGFF1BSUoLExES3w6ov17p1axQUFODw4cNO25cuXYotW7Zc6+U4fPHFF5gxYwZuuukmfP75545msj/z8/NDUlISLl68iMceewxGo9GlzMWLF5GWlub4ueq9nzt3LgoKChzbL3/viKh6bB4iqgfefPNN7N27Fx999BF+/vlnDBs2DGFhYcjMzMSGDRtQWlqKmTNnuu0EWhOxsbHo0qWL0zwtv//+O0aPHo17773XUa5169b473//i6lTp6JHjx6YMGECGjVqhG3btuHnn39Gp06d8Nprrwlf7/HHH8eWLVvQv39/TJgwAQ0aNMC+ffuwY8cOjBs3DmvXrvXIdSUmJsJut6NXr1546623XPa3bt3aEXy88MILOHToEBYtWoSvvvoK8fHxaN68OXJycpCRkYGdO3di7ty56Ny5MwCgX79+SEpKwrvvvosbb7zR6b2LiIi4Yr8fIrqMr8dcE5FnlJaWKnPnzlV69uyphIaGKn5+fkp0dLRy++23K998841L+ermKama1+W+++5z2l41h0plZaXyz3/+U2ndurWi1+uVNm3aKC+99JJSWVnptm5btmxRhg0bpoSHhyt6vV5p166d8swzzyiFhYUuZd3N06IoivLVV18pffr0UUJCQpQGDRoow4YNU7Zt26Z89NFHCgDlo48+cirfqlWrauc9cXf9AKr99+e5cOx2u/LJJ58o8fHxSkREhOLv7680a9ZM6devnzJ37lzlzJkzLuXfffddpVOnToper1eaNm2qPProo0pRUZGwvkSkKBpF+VMumYjoCgYNGoRt27a5NEEREdUG9mkhIiIiVWDQQkRERKrAoIWIiIhUgX1aiIiISBWYaSEiIiJVYNBCREREqlBvgpbKykocP37cZeVXIiIiqh/qTdCSmZmJyZMnIzMz09dVISIiIi+oN0ELERER1W8MWoiIiEgVGLQQERGRKjBoISIiIlVg0EJERESqwKCFiIiIVIFBCxEREakCgxYiIiJSBQYtREREpAoMWoiIiEgVGLQQERGRKvhd7QEVFRVYtWoV0tLSkJ6ejtLSUsyaNQujRo1yKWu325GSkoKUlBScOXMGAQEBaNeuHZKSktC+fXuncqtWrcKXX36JgoICtGjRAomJiRg6dOi1XR0RERHVG1cdtBQXFyM5ORnR0dFo3749Dhw4cMWy//73v/Hdd99hxIgR+Nvf/gaj0YiMjAwUFhY6lVuyZAlWrlyJO+64A506dcKOHTswe/ZsaDQaDBky5OqvioiIiOqdqw5aIiMjsX79ekRGRuLYsWN4+OGH3Zb74YcfsHnzZsyZMwcDBgy44vlyc3OxevVqjBkzBk888QQA4Pbbb0dSUhIWLlyIQYMGQafTXW01iYiIqJ656j4ter0ekZGRwnJr1qxBbGwsBgwYALvdDqPR6Lbcjh07YLVaMWbMGMc2jUaDO++8E7m5uTh69OjVVpGIiIjqIa90xC0vL0d6ejo6deqEDz74AKNGjcKIESNw11134YcffnAqm5GRgcDAQLRq1cppe2xsrGM/ERER0VU3D8k4f/48FEXBDz/8AJ1Oh0ceeQTBwcFYu3YtXn75ZQQHB6NPnz4AgPz8fERERECj0Tidoyqbk5eX5/Y18vLykJ+f7/g5MzPTG5dCREREdYRXgpaqpqDi4mIsWrQInTt3BgD069cPd911Fz755BNH0GIymeDv7+9yDr1e79jvTkpKCpKTk71QeyIiouvPwazzwjI3N2leCzW5Mq8ELQaDAQDQtGlTR8ACAEFBQejXrx++/fZbWK1W+Pn5wWAwwGKxuJzDbDY7nevPEhIS0K9fP8fPmZmZmDNnjicvg4iIiOoQrwQtUVFRAICGDRu67AsPD4fVakVlZSVCQkIQGRmJAwcOQFEUpyaiqqafqnO5e40r7fOGY7mVwjKdGgXUQk2IiIiuT17piBsVFYWGDRsiNzfXZV9+fj70ej2CgoIAAO3bt0dlZaVLn5S0tDTHfiIiIiKvTeMfHx+PnJwc7N2717GtqKgIO3bsQI8ePaDVXnrp/v37w8/PD+vXr3eUUxQFGzZsQKNGjXDjjTd6q4pXpcBaJvxHRERE3lOj5qF169ahrKzM0YSzc+dO5OTkAADGjh2LkJAQJCYmIjU1FS+88AImTJiAkJAQbNiwAVar1WlCusaNG2P8+PH47LPPYLVaERsbi59++gmHDx/GCy+8wInliIiICEANg5bVq1cjKyvL8fP27duxfft2AMDw4cMREhKChg0b4r333sN7772Hzz//HFarFV26dMHzzz/v0uQzZcoUhIaGIiUlBZs3b0aLFi3w/PPPY9iwYddwaZ5VXGn3dRWIiIiuazUKWtasWSNVrlmzZpg7d66wnFarRWJiIhITE2tSHSIiIroOeK1PCxEREZEneWXIc31UwuYhIiKqx4qsFb6ughAzLURERKQKzLRIslnMvq4CERGR1+RWFvq6CkLMtBAREZEqMGghIiIiVWDQQkRERKrAoIWIiIhUgUELERERqQJHD0nKK82XKHWD1+tBRETkDVnlBb6ughAzLURERKQKDFqIiIhIFdg8JOlchdHXVSAiIrquMdNCREREqsBMiySN1ebrKhAREXlNgb3E11UQYqaFiIiIVIGZFkk2k93XVSAiIvKaEkulr6sgxEwLERERqQIzLZJMNsZ3REREvsS/xERERKQKzLRIstosvq4CERGR11RU1v2QgJkWIiIiUgUGLURERKQKdT8XVEdYFV/XgIiIyHvMitXXVRBipoWIiIhUgZkWSZU6LphIRET1Wd2fRJWZFiIiIlIFZlpkaZhpISKi+suCuj+1BzMtREREpArMtEgy2jh8iIiI6i+NCv7OXXXQUlFRgVWrViEtLQ3p6ekoLS3FrFmzMGrUqCseY7Va8cADDyAzMxOPPPII7r77bqf9drsdq1atwpdffomCggK0aNECiYmJGDp06NVfEREREdVLVx20FBcXIzk5GdHR0Wjfvj0OHDggPGbdunXIycm54v4lS5Zg5cqVuOOOO9CpUyfs2LEDs2fPhkajwZAhQ662ikRERHSVrOa63/hy1X1aIiMjsX79enz++ed45JFHhOULCwvx8ccf45577nG7Pzc3F6tXr8aYMWPwzDPP4I477sC///1vdO3aFQsXLoTNZrvaKhIREVE9dNVBi16vR2RkpHT5xYsXo2XLlhg2bJjb/Tt27IDVasWYMWMc2zQaDe68807k5ubi6NGjV1tFIiIiqoe8OnooLS0NmzdvRlJSEjQajdsyGRkZCAwMRKtWrZy2x8bGOvbXBYrEPyIiIrWy2sT/fM1rDViKomD+/PmIj4/HjTfeiIsXL7otl5+fj4iICJegpiqbk5eX5/a4vLw85OfnO37OzMz0UM2JiIioLvJa0LJp0yacOnUKs2fPrracyWSCv7+/y3a9Xu/Y705KSgqSk5OvuZ6ytMylEBFRPWaz1/2p27wStJSXl+ODDz7A3Xffjejo6GrLGgwGWCyus/CZzWbHfncSEhLQr18/x8+ZmZmYM2fONdSaiIiI6jKvBC2rVq2CxWJBfHy8o1koNzcXAFBWVoaLFy8iKioK/v7+iIyMxIEDB6AoilMTUVXTT1RUlNvXiIqKuuI+b7Az0UJERPWY1e6+72ld4pWgJTs7G6Wlpfj73//usm/58uVYvnw5li5dipiYGLRv3x5ff/01MjMz0bp1a0e5tLQ0AED79u29UUUiIiJSGa8ELWPHjkVcXJzTtsLCQvznP//BqFGj0L9/fzRt2hQA0L9/fyxYsADr16/HE088AeBSJ94NGzagUaNGuPHGG71Rxatm1bjvW0NERFQfGK31tE/LunXrUFZW5mjC2blzp2PG27Fjx6Jjx47o2LGj0zFVzUStW7d2CmgaN26M8ePH47PPPoPVakVsbCx++uknHD58GC+88AJ0Ol2NLoyIiIjqlxoFLatXr0ZWVpbj5+3bt2P79u0AgOHDhyMkJOSqzjdlyhSEhoYiJSUFmzdvRosWLfD8889fcUI6n9DYfV0DIiIir1FsriN565oaBS1r1qy56mOaNm3qCGz+TKvVIjExEYmJiTWpDhEREV0H6n4DFhERERG8OLlcfWPW1oH5i4mIiLzErtT9PqTMtBAREZEqMNNCRERE8FfBeBNmWoiIiEgVmGmRpFdBBEpERFRTehUsV8NMCxEREakCMy3SGN8REVE9pqn7o2T5l5iIiIhUgZkWSVatxddVICIiuq4x00JERESqwKCFiIiIVIHNQ0RERAQ1zOzBTAsRERGpAjMtREREBI2vKyCBmRYiIiJSBWZapKkhBiUiIqoZRWf1dRWEmGkhIiIiVWCmRZLC+I6IiMin+JeYiIiIVIGZFkl2qGDNbiIionqMmRYiIiJSBQYtREREpApsHpKkcMgzERHVY1ad2ddVEGKmhYiIiFSBQQsRERGpAoMWIiIiUgX2aZGkcMgzERGRTzHTQkRERKrATIskf19XgIiI6Dp31UFLRUUFVq1ahbS0NKSnp6O0tBSzZs3CqFGjHGXsdju2bNmCbdu2ISMjA6WlpWjatCni4+MxceJEGAwGl/N+/fXXWLVqFbKystCoUSOMGzcOY8eOvbarIyIionrjqpuHiouLkZycjMzMTLRv395tmcrKSsybNw/FxcX461//iqSkJMTGxuKjjz7CjBkzoCjO/UM2bNiA119/HW3atMH06dNx4403Yv78+Vi5cmXNrsor7BL/iIiI1Ekr8c/XrjrTEhkZifXr1yMyMhLHjh3Dww8/7FLG398f7733Hm666SbHtjvuuANNmjTBsmXLsH//fvTs2RMAYDKZ8OGHH+LWW2/FK6+84ihrt9vxySefICEhAaGhoTW9PiIiIqonrjpw0uv1iIyMrLaMv7+/U8BSJS4uDgCQmZnp2Pbrr7+iuLgYd955p1PZMWPGwGg04ueff77aKhIREVE9VKvZnoKCAgBAgwYNHNsyMjIAAJ06dXIq27FjR2i1Wpw4caL2KlgNf6td+I+IiIi8p1ZHD3322WcIDg5Gnz59HNvy8/Oh0+kQERHhVNbf3x9hYWHIz893e668vDynfZdnb4iIiKj+qbWgZfny5di3bx+efPJJpz4qJpMJfn7uq6HX62EymdzuS0lJQXJysjeq6pZOsdXaaxEREZGrWglatm7dig8//BCjR4926btiMBhgtVrdHmc2m90OjwaAhIQE9OvXz/FzZmYm5syZ47E6ExERUd3i9aBl7969ePXVV3HrrbfiqaeectkfGRkJm82GwsJCpyYii8WCkpKSK3b6jYqKQlRUlNfq/Wc2hfPwERER+ZJXO+KmpaXh+eefR8eOHfHyyy+7bQaKiYkBABw7dsxp+7Fjx2C32x37iYiI6PrmtaDl9OnTmDlzJpo0aYLXXnvtis08PXr0QFhYGDZs2OC0fcOGDQgICMCtt97qrSpeFZ3NLvxHRESkWorEPx+rUZvHunXrUFZW5hi9s3PnTuTk5AAAxo4dC61Wi6effhqlpaWYOHGiy1wrzZo1w4033gjgUp+Whx56CG+//TZefPFF9O7dG4cOHcK3336LyZMnIyws7Fquj4iIiOqJGgUtq1evRlZWluPn7du3Y/v27QCA4cOHA4AjiFm8eLHL8SNHjnQELcClieT8/PywevVq7Ny5E40bN8a0adMwfvz4mlSPiIiIrpbG1xUQq1HQsmbNGmGZqiBG1h133IE77rijJtUhIiKi60BdWP+IiIiISIhBCxEREakCgxYiIiJSBc6YJsla5n45ASIiIqodzLQQERGRKjDTIkkFI8GIiIjqNWZaiIiISBUYtBAREZEqMGghIiIiVWDQQkRERKrAoIWIiIhUgUELERERqQKHPEvikGciIiLfYqaFiIiIVIFBCxEREakCgxYiIiJSBfZpkaX4ugJERETXN2ZaiIiISBUYtBAREZEqMGghIiIiVWCfFkl+lYzviIio/tJYdb6ughD/EhMREZEqMGghIiIiVWDzkCQNhzwTERH5FDMtREREpArMtEjSKVwykYiIyJeYaSEiIiJVYNBCREREqsCghYiIiFSBQQsRERGpwlV3xK2oqMCqVauQlpaG9PR0lJaWYtasWRg1apRL2dOnT2PBggU4cuQI/Pz8cOutt2LatGkIDw93Kme327Fq1Sp8+eWXKCgoQIsWLZCYmIihQ4fW+MKIiIiofrnqoKW4uBjJycmIjo5G+/btceDAAbflcnJykJSUhJCQEEyePBlGoxGrVq3CqVOnsHjxYvj7+zvKLlmyBCtXrsQdd9yBTp06YceOHZg9ezY0Gg2GDBlS86vzIK3N5usqEBEReZHd1xUQuuqgJTIyEuvXr0dkZCSOHTuGhx9+2G25FStWoLKyEh9++CGio6MBALGxsXjyySexadMmJCQkAAByc3OxevVqjBkzBk888QQA4Pbbb0dSUhIWLlyIQYMGQaer++shEBERkXdddZ8WvV6PyMhIYblt27ahb9++joAFAHr27ImWLVsiNTXVsW3Hjh2wWq0YM2aMY5tGo8Gdd96J3NxcHD169GqrSERERPWQVzri5ubmorCwEB07dnTZFxsbi4yMDMfPGRkZCAwMRKtWrVzKVe0nIiIi8sqMuPn5+QDgNiMTGRmJkpISmM1m6PV65OfnIyIiAhqNxqUcAOTl5bl9jby8PMfrAEBmZqanqk9ERER1kFeCFpPJBABOnW2r6PV6Rxm9Xg+TySQs505KSgqSk5M9VGMiIiKq67wStBgMBgCAxWJx2Wc2m53KGAwGqXJ/lpCQgH79+jl+zszMxJw5c66t4kRERFRneSVoqWraubz5pkp+fj7CwsIcmZTIyEgcOHAAiqI4NRFVHRsVFeX2NaKioq64zxv0VtfAioiIiGqPVzriNmrUCOHh4Th+/LjLvvT0dLRv397xc/v27VFZWenSJyUtLc2xn4iIiMhr0/gPHDgQu3btQnZ2tmPb/v37cfbsWQwePNixrX///vDz88P69esd2xRFwYYNG9CoUSPceOON3qoiERERqUiNmofWrVuHsrIyRxPOzp07kZOTAwAYO3YsQkJCkJiYiB9//BGPP/44xo0bB6PRiM8++wxt27Z1mvK/cePGGD9+PD777DNYrVbExsbip59+wuHDh/HCCy9wYjkiIiICUMOgZfXq1cjKynL8vH37dmzfvh0AMHz4cISEhCA6OhrvvPMOFixYgMWLFzvWHpo6daqjP0uVKVOmIDQ0FCkpKdi8eTNatGiB559/HsOGDbuGSyMiIiJZWkXxdRWEahS0rFmzRqpcmzZt8OabbwrLabVaJCYmIjExsSbVISIiouuA1/q0EBEREXmSV4Y810cahfEdERGRL/EvMREREakCMy1EREQEfaVGXMjHmGkhIiIiVWCmRVKgxezrKhAREXmNGrIYaqgjERERETMtREREBPhbrb6ughAzLURERKQKzLRIq/vTGxMREdWUCmbxZ6aFiIiI1IFBCxEREakCm4eIiIgIdhs74hIRERF5BDMtkjTw93UViIiIvEZfWfdDAmZaiIiISBUYtBAREZEqMGghIiIiVaj7DVhERETkdQGWSl9XQYiZFiIiIlIFZlqIiIgIsPm6AmLMtBAREZEqMGghIiIiVWDQQkRERKrAoIWIiIhUgUELERERqQKDFiIiIlIFDnkmIiIi6G1mX1dBiJkWIiIiUgUGLURERKQKXm0eOnv2LJYuXYojR46gpKQE0dHRGDp0KCZOnIiAgABHuSNHjmDRokU4ceIEgoODMXjwYEyePBlBQUHerB4RERGpiNeCluzsbEyZMgUhISEYM2YMwsLCcPToUSxbtgzHjx/HvHnzAAAZGRl44okn0KpVK0ybNg05OTlYvXo1zp07hzfeeMNb1SMiIiKV8VrQ8u2336KsrAzvvfce2rRpAwBISEiA3W7Hli1bUFpaitDQUHzwwQcIDQ3FO++8g+DgYABA06ZN8frrr2PPnj3o3bu3t6pIREREKuK1Pi3l5eUAgIiICKftkZGR0Gq18PPzQ3l5Ofbt24fhw4c7AhYAGDFiBAIDA5Gamuqt6hEREZHKeC1o6d69OwDgtddeQ0ZGBrKzs7F161Zs2LABY8eORWBgIE6dOgWbzYaOHTs6Hevv74+YmBhkZGR4q3pERESkMl5rHurTpw8eeughrFixAjt37nRsv/feezF58mQAQH5+PoBL2Zc/i4yMxKFDh654/ry8PMfxAJCZmempqhMREVEd5NXRQ02bNkW3bt0wcOBAhIWF4eeff8aKFSvQsGFDjB07FiaTCcClzMqf6fV6mM1XnugmJSUFycnJ3qo6ERHRdUUNc6B4LWjZunUr3njjDaxcuRKNGzcGAAwcOBCKomDx4sUYOnQoDAYDAMBisbgcbzabodfrr3j+hIQE9OvXz/FzZmYm5syZ4+GrICIiorrCa0HL+vXrERMT4whYqvTr1w+bNm1CRkaGo1no8maeKvn5+YiKirri+aOioqrdT0RERFdB8XUFxLyWDSosLITdbnfZbrVaAQA2mw1t2rSBTqfD8ePHncpYLBZkZGSgffv23qoeERERqYzXgpaWLVsiIyMDZ8+eddq+detWaLVatGvXDiEhIejZsye+/fZbVFRUOMps2bIFRqMRgwcP9lb1iIiISGW81jw0ceJE7N69G9OmTcPf/vY3hIWFYdeuXdi9ezduv/12R9POpEmTMHXqVCQlJSEhIcExI26vXr3Qp08fb1WPiIiIVMZrQcvNN9+M9957Dx999BHWr1+PkpISNG3aFJMnT8bdd9/tKNexY0e89dZbWLRoEd59910EBQVh9OjRmDJlireqRkRERH+iUUGfFq8Oee7cubPU+kFdu3bFwoULvVkVIiIiUjk1DMsmIiIiYtBCRERE6sCghYiIiFSBQQsRERGpAoMWIiIiUgUGLURERKQKDFqIiIhIFbw6TwsRERH5XvllS+WoGTMtREREpArMtHhQjrlYWKaxvkEt1ISIiOh/8itsvq6CRzDTQkRERKrAoIWIiIhUgc1DHlRhNIoLsXmIiIjqpLq/zDMzLURERKQKzLR4kLGyUlyIiRYiIqIaYaaFiIiIVIFBCxEREakCgxYiIiJSBfZpISIiqucyskuEZTTQ1EJNrg0zLURERKQKzLR40MWKAmGZWLT2fkWIiIjqIWZaiIiISBUYtBAREZEqsHnIgwrzxas8o43360FERHQ5q8UkLmPjNP5EREREHsFMiwcVmyt8XQUiIiIXZ4vzfF0Fj2CmhYiIiFSBmRYPyreKJ+8hIiLypByzuD9lhclaCzXxPmZaiIiISBWYafGgYpvF11UgIiJycdFY6usqeITXg5bjx4/jo48+wpEjR2A2m9GsWTPccccdGDdunKPMkSNHsGjRIpw4cQLBwcEYPHgwJk+ejKCgIG9Xj4iIiFTCq0HLnj17MGvWLMTExOC+++5DYGAgzp8/j9zcXEeZjIwMPPHEE2jVqhWmTZuGnJwcrF69GufOncMbb7zhzep5nKaszNdVICIiqre8FrSUl5fj1VdfxS233IJXXnkFWq377jMffPABQkND8c477yA4OBgA0LRpU7z++uvYs2cPevfu7a0qEhERkYp4rSPu999/j4KCAkyePBlarRZGoxF2u92pTHl5Ofbt24fhw4c7AhYAGDFiBAIDA5Gamuqt6hEREZHKeC3Tsm/fPgQHByMvLw///Oc/cfbsWQQGBmL48OGYNm0aDAYDTp06BZvNho4dOzod6+/vj5iYGGRkZHirel6RZ/R1DYiIiFzlWW3CMoZaqMe18lrQcu7cOdhsNjz33HMYPXo0Hn74YRw8eBDr1q1DWVkZ/vWvfyE/Px8AEBkZ6XJ8ZGQkDh06dMXz5+XlOY4HgMzMTM9fBBEREdUZXgtajEYjKisr8de//hXTp08HAAwcOBAWiwUpKSl48MEHYTJdWsDJ39/f5Xi9Xg+z2XzF86ekpCA5Odkrda8pa4VdXIiIiKiWWSWm5LiuMy0Gw6XLHzJkiNP2oUOHIiUlBUePHkVAQAAAwGJxfTPNZjP0ev0Vz5+QkIB+/fo5fs7MzMScOXM8UXUiIiKqg7wWtERGRuKPP/5Aw4YNnbZHREQAAEpLS9G8eXMAcGrmqZKfn4+oqKgrnj8qKqra/T4hbjIkIiLyqIySImEZrf3KLRdq4rXRQ1Wday+fkwW41BcFAMLDw9GmTRvodDocP37cqYzFYkFGRgbat2/vreoRERGRyngtaBk8eDAA4JtvvnHa/s0330Cn06F79+4ICQlBz5498e2336KiosJRZsuWLTAajY5zqIXWYhX+IyIi8qS8siLhvxLYhf/UwGvNQx06dMBtt92GjRs3wmaz4eabb8bBgweRmpqKxMRER9POpEmTMHXqVCQlJSEhIcExI26vXr3Qp08fb1WPiIiIVMar0/g//fTTiI6OxqZNm/DTTz8hOjoa06ZNw4QJExxlOnbsiLfeeguLFi3Cu+++i6CgIIwePRpTpkzxZtW8wqgRZ1Jyy8VlGgVzHUsiIvIcs71+/F3x6lX4+fnhgQcewAMPPFBtua5du2LhwoXerAoRERGpnNf6tBARERF5Uv3IF9URFn+OeSYiotpVWqkRltFqTbVQE+9jpoWIiIhUgZkWDwoqZ6aFiIhqV7ZRnEXRQKmFmngfMy1ERESkCsy0eJKiExapMBrF5wkO9UBliIjoelBQIS5jlpiSQw2YaSEiIiJVYKbFg8x2cZvhxfxCYZlWUcy0EBERUF4hTqMYLeIMvs2u90R1fI6ZFiIiIlIFZlo8SFHEmZY9FX8Iy/TKDxKW0UVGSdWJiIjqN5PVIixj85foT6kCzLQQERGRKjBoISIiIlVg85AHKRIxYEHFRYkzdbn2yhAR0XXBYhNPLqfYxVNyqAEzLURERKQKzLR4knjNKhQp5cIyMhPQcVA0EVH9l1EinibDYpaYxt/EBROJiIiIag0zLbWs3FI/ol0iIqobSo3iNL+/TFOACjDTQkRERKrATIsHBdjFZWx2m7BMvrVUWIZ9WoiI6r/iSvGkpeWaSmGZ+vLHnpkWIiIiUoX6EnzVDRZxqqU0T9yn5XDjXGGZ1jL1ISKiOiu33CoscyLPLD6RRJZfqowKMNNCREREqsCghYiIiFSBzUO1zF4hfsvLJLKBRESkbnmWYmGZzMrz4hMp4s66evEYEFVgpoWIiIhUgZkWT5KIdo068QQ/py7me6I2KK+oEJYJDgryyGsREZHnWYwWYRlFZuI4ib9PasBMCxEREakCMy0epNjFkWxkeZmwjBklnqgOKorEw6uZaSEiqruMFnEnR7tJPJ45pFI8AZ0aMNNCREREqsBMiwf5WcVvp8Yq7mdSKZ5viIiIfMRT/QVzcsQTiZoUcZ8WrVR3FfZpuWqffPIJBgwYgPvuu89l35EjRzB16lQMGzYMd955J+bPn48KiQ8GERERXR9qLdOSk5ODFStWIDAw0GVfRkYGnnjiCbRq1QrTpk1DTk4OVq9ejXPnzuGNN96orSrWCpvdX1jGXCluw8wxi8f3V9aTNkwiIrWRycaUmcV9Uawl4n6QMjRK/egNUmtBy8KFC9G5c2fY7XYUFzv/wf3ggw8QGhqKd955B8HBwQCApk2b4vXXX8eePXvQu3fv2qomERER1VG1EnodPHgQ27ZtQ1JSksu+8vJy7Nu3D8OHD3cELAAwYsQIBAYGIjU1tTaqSERERHWc1zMtNpsN8+fPx+jRo9GuXTuX/adOnYLNZkPHjh2dtvv7+yMmJgYZGRnerqLH+Et0oC3VBAjLBBaLhyr/nntOWMZyQdw8FNmkgbAMh0UTUX2Qm18oLNMoMsIjr3WuNE9Y5rRJ3BFXhkZiuo36wutBy4YNG5CdnY23337b7f78/Euzv0ZGRrrsi4yMxKFDh9wel5eX5zgWADIzMz1QWyIiIqqrvBq0FBcXY9myZfj73/+O8PBwt2VMpktZBX9/1w6qer0eZrP7TqkpKSlITk72VFU9QqPVCcsoGonplsV9s5CZlS0s06BCLz4RERE5nDkv7vgaGeGZnhWVleJVDMut4iyK2WAUv1i5TI3qPq8GLR9++CFCQ0MxduzYK5YxGAwAAIvFdSy62WyGXu/+D29CQgL69evn+DkzMxNz5sy5xhoTERFRXeW1oOXs2bP46quvkJSUhLy8/7Xtmc1mWK1WXLx4EcHBwY5mocubeqrk5+cjKirK7fmjoqKuuK8uM0iUUST6xuSVioc8262uw8v/LL9QfB4Z7PdCRPQ/xRKzhJolMi2wiDMtGvFMGvCrlMjyq4DXgpa8vDzY7XbMnz8f8+fPd9l/1113Ydy4cXjwwQeh0+lw/PhxxMfHO/ZbLBZkZGRg8ODB3qoiERERqYjXgpY2bdpg7ty5Lts//PBDVFRU4LHHHkOzZs0QEhKCnj174ttvv8V9992HoP97Yt+yZQuMRmO9C1o0doloVyduUy00icsUZ4sj9Fib+DxKRYiwTIWx9nrlExH50tnTOcIyeVrx78S8CvEU/XZ/8WhSxXL9rP3itaAlPDwccXFxLts///xzAHDaN2nSJEydOhVJSUlISEhwzIjbq1cv9OnTx1tVJCIiIhWpEwsmduzYEW+99RYWLVqEd999F0FBQRg9ejSmTJni66pdFZmR8jabuFdLpa5UWMZ4sURYJtgoXg7g3MUsYZmG7ZoIy8j0jWGm5dqVF4rn3gmOEM8FRHQ9qpCYA6vIKJ5+P6tA/Ds6o1ycjTHbxKN+QhRxfUoh0amlnqj1oOWdd95xu71r165YuHBhLdeGiIiI1KJ+rKBERERE9V6daB66nhg14o5X4inqAKNJ3PEqS2KK6Myz4rg1wipuboiKbiQsY8sXT2uti1TfMHYicq82p82XYS8qEpYpLRc3/ZTniJvnESwuYjKJm4e0WvHveq3EmGc/W/2Y6p+ZFiIiIlIFZlpqmcbqmaFpOps4YxNgFnc6y1PETwwFEhMgRRQXCcvkQnyeJhKZlmMnTwvLdGrfWliGiK4vxRK/y9KLXCc6/bOyQnHn2HybRIf4SvFgiQq767p8f6bViOfo15nEfw/UgJkWIiIiUgVmWmpZgDhBAjPEEXp2kLgttGGRuA0zq1Qct1aYLgrLmP1uEJZBA3ERmTZwU4n4TfTU0OC61iZP6iPzGWookYW8nvt75ZjFUypUZIj7opjyxcOQbZXi35slliLxa5WIl1EpkPgL7OcnMQGdWbzKrkZmJV4V5DHqfg2JiIiIwExLnWSWWFbRJhFummR6i5vEY5UKrOJ21yNpmcIyTZuHi+sjIe9ikbBM+zYtPfJapC4yWQ3Ac9kxmRFxcuMBa4+nspAy51EKxf1DIHEvlAKJ80AvLJFXKPH5KBVfl71QnLGpbNZUWMaqE2c/7BJlgivF2RhFkcnG1P08Rt2vIRERERGYaamTZNoebRrx05vGLO7hXmYQZ2NyLogXVcwJF4+KMp7LFpYx1eJTac7Jk8IylmJxWzoi/+KB2pBI1snfhWV0EQ1roSaeV1EszmaGigeR1FtKkThDknFSPBKysqBIWOaPYvHvXz+deCSOXSv+XRYkMZqpVCfuvygzib+mnvy5Z6aFiIiIVIFBCxEREalC/cgXqYifohGWUSTWizbYxOlkm0RTS6hR3HlNXyZOzV6QmEfpwMHTwjLNyiQ6D2vEda4oEqdvC4vFQyRDxLXxGJmOjbX5Wp5aLbo+L9+QX1gkLKOJELfr2CSmlweaSZQRsxeK74fNLnHvteJvh8x3rOLoOfFLSUwomZ8j/t1qKRE3dfsZxc1DRp34T2eRViInoIibhzQSvxL9rOJCMpP4i99B32OmhYiIiFSBmZY6yCoRE1slOuJa/MXD4Kwa8RO3+FkAKCoWdxbLNoqHCUZKDBMshUyn3yxhGVNJgbBMcFDdevaQySBV2MX3IkgrnvjKU06ePiss00Liqd0oMalgUUkuAsPEmbi6NpmbUlLkkfP8vP+wsMyNEp2VS387JixjueEmYRlbibhzrK1A/DuoME98nlJ/cXaoAuLMT4lEFsUmMXzYLDHlhF6ijEYrXnlRA4kFHOsJZlqIiIhIFZhpqW0SDYs6u7hQmFH81FmhFZ8nxC7OJNgVcTtw0xLx031hpXhg3tk/xJPUVQaJn6gKKsVDle0S7ckFDcV1biEsITnpWYn4GaLwvPheRIQFSdRIrDaXMMgvlBhaLqHk/DmYisX3zIZoYZnazLRc/OO0sIwmLNwjr2UvFmcYy09fEJaxhXcUlin4Q5xlsxlaC8uUFogzJBf8xRnY4CLxnzyNvzhTB4j7FMr8cbVrxL9/Q8rFU1dIdVipJ5hpISIiIlVgpsWDZHo/BElMia/VSDwpmsRZAqufuEYaiQUci2zi/g9WP/HTgNYk0XadJe6LYgxvJCxz/EKGsExAgDhL0FJiWfjU1V8JywRL3NOwmM7CMpZycVt6eaa475BRJ+7XENhCom1fYmSQqUxihES5eOJBu8QottLf0mBsEFptGSUwEAVh4s+09qA466fYxHWSGT2kKRK/j9lH0oVl0qLEWYI2GnH/oQqbuO+UcjFXWKYoX1ymVBHfC12FOBOXLzHdvVER9wXU6sTf1WCZ32USGXOLRVznUKs4g2SpWytFeBUzLURERKQKzLTUOs+MRvGziUNrP4k+G6EmcapF4y9ewFGxip+WTCbxE4NiEWeidBbxE0yxSfy0pJF4yjHmSSyId4P4yTW3sFxYpujQPmGZpk17CMtkHxX3R9A1En8OG4c2EJbJt4v7GpjLxZ/DAIkJcUwV4vtltQCKqfrPh6Kxo1Ii+6PLFmc2CoPFn7OCiweFZQJLxJmm8IbNhWUsBeI+T0Xl4uzHmTyJTEuZOJt5Jk+cOQ23iX+/VBaK62xrLs5oVfpJ9EWRGNFjDBY/79utMuMuJf4eSGRsNFqJrLpEbdSAmRYiIiJSBQYtREREpApsHqplnlppU1MpHvar85OYOK5SHLf6SXRwM0l0cCvRiK9dqRCfJ6JU3PxRZhNPttQ4Styht7xQnFT1v0FYBBcLxR02g0zi1HWkv/g8J86K0/axjcRNDWXHxOcps4mHz2orxUOwj58Vdx4OyhHfdxkWkw3FOeLmD9tFcZOeySauU2GguNnCVCFupjVnSyxN4S/uEH/43HlhGZ3ElAq2CvGkZ8ZKcZ0r/cVlIs0yPU3F31WzTlxGKzHxoE2i6d0iMQQ7UOK+15+GHc9gpoWIiIhUgZmWOshTcXWAVZwh8Zd4qjBLLMallci0hEkMoywWdKIEAH+JpxybxHWVl0osOmkWlyk7dlpYxmAV31W/SokJ+rLFmY3iMnHn2GNZ4sxGjFn8WiV+ReIyF8T10enFn5/cIvF5rAGK8Lea2azgZIl4CG1guTiT4G8WL/ZXFC3xHcuTmHzQJu4UbtZLZEgkshaa8nxhmRL9KWGZNK04y9bALK6zn8RvRau/eDCARhFnouwS/We1EqsYRpRKTAAq0clWqxH/3tSbxZ9VSCx/ogbMtBAREZEqMNNSB0kE37BB/LTkLzHkTiMx/7Mi85Sjl8iQ6CQuzCoeQmqXmELbHCh+wiuwizMJoUXisbjFNnHfB4O/OOuls4if/nMLfxeWKfCXWKTut93i80j0L2rYUny/lHLxE3CQRvykWFosfuKMKs6BPbD61zPYgEJD9f2ZbGYgUnTLFCsMEGfHKiQWE80tE090aDeIz+Mv8d3IKRS/j+EGiftqlRj2K+56h3JFoj+PVfxZVCQywjqJZUtsweLvqsQ6s9BJpGxCJSapC5C49nLxqPF6g5kWIiIiUgVmWlTKZpPoryIxAZ1VJq0jkWnRaMVPZiEWcTt5oSZcWEaxiifQsgaJr90sMSGTFRJL0BvF9TFUiJ+SJebYgkWi30ulRB+Bcpv4eaWxRN+YAokRakGF4knqTFHi9vZCo/i1Au0ABBMm2rT+sFiqz47ZbYDRUP2TskYBtBJZC8UgsZCfxCCScr34s+hnlMl4is9TppVYLNIqvh9aizjbYII4K6rTijNIekX83dApEt9niT4tMhlqjSL+/SLz29cuUefracVErwUt6enp2Lx5Mw4cOICsrCyEhYWhS5cumDRpElq2bOlU9vTp01iwYAGOHDkCPz8/3HrrrZg2bRrCw8O9VT0iIiJSGa8FLZ9++imOHDmCwYMHo127dsjPz8f69esxadIkvP/++2jbti0AICcnB0lJSQgJCcHkyZNhNBqxatUqnDp1CosXL4a/v/gJvt6RiPSDZSJ9u8RU9hIBuj8knqgkKm3XiJ/ubZHij2RQkcRcC3ZxnQ0W8VNygcRToL9E1qJUYgmDUIv4unQ28egHPz/xa5UpEnP4SCyXUJQjPk8LRXxPjfkSI8LKxa9VrvWDIugDYFcUZIdUXyfFZoFV8PHQAjAp4s+QxSzOAEAvsSheqcRSEHpx3yCDpUhYRqsTn0cTWP3ClABgDhJ/NwJLxe+hSSd+fzRWiUVbhSXkRm/6QXztiiKxYKKHBvQEij6s9YjXgpYJEybgxRdfdAo64uPj8cADD2DlypV44YUXAAArVqxAZWUlPvzwQ0RHRwMAYmNj8eSTT2LTpk1ISEjwVhWJiIhIRbzWEfemm25yyZK0bNkSrVu3Rmbm/5Z837ZtG/r27esIWACgZ8+eaNmyJVJTU71VPSIiIlKZWu2IqygKCgsL0bp1awBAbm4uCgsL0bFjR5eysbGx+OWXX2qzenWHxIzVct1nZaa+lnktz3TyUvzE9dHbxSlwSKRd7RIdg212cc9XmWGLmiBxQtlgFF+XxSbusGrUiyeFM0oMG7dIdMAOs4o7P5ps4mHaiiZMWEYrMZGdRD9UWBUt7BLlAk2iTuGKcEJArQYwW8XNh6EmcfOQUSceG1wi0ZYbYBf36K0M0gvLBNnF7RZ2q3g6AINBfO8DCsV1tko0eQbaxJ9Xu17mOy+xGr3GM1OAcvju1avVoOW7775Dbm4uHnzwQQBAfv6lXxyRka5rc0RGRqKkpARmsxl6veuXLC8vz3E8AKfsDREREdU/tRa0ZGZm4u2330aXLl0wcuRIAIDJdKnzkLvOtlWBislkchu0pKSkIDk52XsVrgdsOnGWQGIkIfQ2mSd3id7DOnGmRabOVn/xk2KJVmIhSK04+6GRmRpcYuin3SB+KhV3IwTM/hIdVu3i90dnlsj8SHSu1vuJ3x+7SfxatiCJYexKM3EZU6nUZIgmU/VP3HZFQZC9+jrpNECFxDgBvUH8WbRYxPcsP0J8nvAicZqpSKbzvUSS1iAxnFmRmJpBkVhItShCZtivxDQHEllju8R5ZAYe6GRSfh4aqSyTsZF5B9WgVoKW/Px8zJw5E8HBwXjllVeg+78/XgbDpV8cFotretD8f2u+VJX5s4SEBPTr18/xc2ZmJubMmePpqhMREVEd4fWgpaysDDNmzEBZWRkWLFiAqKj/TVpU1Sx0eTNPlfz8fISFhbnNsgBAVFSU07nIx7QSw/t0ElP0a8VPOTqJJQOsweJ26UqJp1KjTtwGHq0VZ1qyA5sIyzQvES+aFyCx4JvOX5zVsUtMrFcpseCmVaJtvyBMYqi7VZxpMAaLh3U2ttggHrSqAQTLBmg1Ckw2weR6ClAp8Ygr80tW5nNvtoo/01a7uEIGiSn6TRLTJQQZxZ9Xf21DYRmLRtynRSfRhcQuMf2+TF8urcRU/0otdkZRJHIkdsv10zvGq0GLyWTCs88+i7Nnz+Ktt95ydMCt0qhRI4SHh+P48eMux6anp6N9+/berB4RERGpiNeCFpvNhpdeeglHjx7Fq6++ihtvvNFtuYEDB2Lz5s3Izs52DHvev38/zp49iwkTJnirevR/LH4S/RYkFuyySo3okViITKKPQL5G/MRpMkhMvifxxOlnk5kgSqLS/uInIaNBYiI7iZXaAi3ibEy5xBNweYi4w1NUpfj9KZBocQ+ARBZB5teVv0HYTUADDYyhgs+iAihm8ev5ibviIE8vHkETUSb+bghWJwAASCSsoPEXZxKCjOIyFRIP9zqJvh8WiQno7BKT5kHi/ZEZTykx+z40NoklQDw1cxw58VrQ8t5772Hnzp3o27cvSktL8e233zrtHz58OAAgMTERP/74Ix5//HGMGzcORqMRn332Gdq2bYtRo0Z5q3pERESkMl4LWk6ePAkA2LVrF3bt2uWyvypoiY6OxjvvvIMFCxZg8eLFjrWHpk6desX+LCRL/ASjkWhL91i/c4n2domkDiTWn4NOYvkHf4jLmHUSj5MS9dEEiEfZWCUWQyyX6Gug10rMeaIX1ydIYkCYTeJm2CVG8wTYJEbPSJynIsRDbfsawBgqnjcnUGIhTJNEvcv0EtOwayVGamkkvqsSo++USvEXsVCmS6HE0h1W8WVJLW0iQ2ZkmdRQHIn6+FslskwSL6WRWAbjeuK1d+Odd96RLtumTRu8+eab3qoKERER1QPXT5djIiIiUjXmneoxT03jL0ViDKBWK/64Kf7ijp02i8THVifR6VdiZidTsDjFW2nzzNfI7C/R8VMjHoJtk2hpCJJYnbgiRPz58SuTabIQfzZMEkM2gyTuaaVW3JkZAGwBMol58fVrAsTT78s0j0nMLQe7RJ1NFnGnX42/uEnLD+IyEn2wYZeYXM4sMZOdAvEb5CfxfbZJNXVLdAyWGINdi799ryvMtBAREZEqMNNCQjKLD8r0TDNKZFqsEkOwjTIdCSHOJJgDxE/ldolviCLxSFUZIR6q7F8qMZmbTlwhU5h4ODMqxRkbQDzkuUyReHIVP/zDaA0VF5JYMFAjsXwDAOgkpo43SUyYCJnPtMQ985OZWl+iE7Y5UGaiNnF9jBITOGokMkgaiY7sekViUVJhCUkSE1xK9awnn2GmhYiIiFSBmRaqRRITMukkxj/qxU+TMk9mlYESi7lJJBJsUpkoiWGvEt0xdBJT62slUj+mYJn2f/F1BcoMmZfIWFRITMFuMIhfyyKzSB2A0kBxpslfYkFAm8TEcQiQWChUnIgDDBLfDYmshZ9N/KxaHiiRqdRKZCQkMkiBNvH3WaZfkCLTB0nitWSyMYpENsYucS/Y8+XqMdNCREREqsBMCwlVBkgsQS9xnsJI8dObRmIef41Ez32NxGgDO8SPtxq9uD5loeKRFpDISFjDJPJDxeLzlMsMoJF42tZLZC3sEk//MhOeScw7CLNE5kcv2R/BrpMYjSIxDbvpCqvQO5G4rWXB4voE2sVZArPESC25b6uY3V987xWJz5Cn+qsoMs/gMpNFStBIjBiU6DpENcBMCxEREakCY0HyEIm5KPzET6V+VvHTpL/E05tZYlSHTHOyRaKMn9SjosxIC/GLlYSJnzPMfuLzSEzVAZNO4oncKpFp8BPfU6tE/wg/q0Q/HMkuAjIL+dkl7qtdYtiPzEKhNonvhl4ii2KTWEzULLHEhVZiPhMFEnPUyHwNJdbuUCSyQ5ra7B4i8Vp2mYSWx4ZFXT+YaSEiIiJVYNBCREREqsDmIfIIjcRHSZFa09QzZJYwsGvEuVm7RJrcKtEZ1XNPB57pRGkxiM+jlRjKrZVI7dsl7rtGLzFJm8S90Eg0WQAAbBLDmSU6hXusRUJmEkOpti+Zjsi196zqL9HcKzPEmK0oVIWZFiIiIlIFZlqo1mglhv0qEh0kzRJTtWsknsol1uiTIrNeosxLyUyLZpHo9avI1Ec8Q78kiQkD9eJ7atHIZKvEvYeNEtPYV51NRGqCwmCJLJJN5kzi+lh0tTfdvV1mVkWZF5OaNr9+YnbIO5hpISIiIlVgpoVqjSIzsZNEXwOpWFvitSw2mUUD61Zcb5eYNE8n0Y9App+JDIvEApdmTe29z7I9fqSegiUyelqpLIrMtPASWRSJIfE6m0SGxENdY+T6qF2/mRYZMrMKkLO69RuZiIiI6AqYaSGqjsRTqUbi6dYqkUGSawOXWxBQ/Fqe6dNhlziPp+bYskqMePLkc5jVU78dJZKHMlmU2iSVHbuO+6uQ7zDTQkRERKrATAvVLbU5Z4PHnhRlYn+ZvjqeIZOL0WjFfWNk+lmYJBbTlJkzR/FYBklSfc0SeOq66uv7Q6rHTAsRERGpAoMWIiIiUgU2DxHVBol0u6dGP8p0soXU0FiJpjqJVi+ZZiaZRi2LVtw5tPYn9JJoRqlbfWyJVI2ZFiIiIlIFZlqIrpUan6RlJvqTOo+4iExHXKkT2WpvwU0iqpuYaSEiIiJVYKaFiOoPDtUlqteYaSEiIiJVYKaFiNSBWRSi616dCFrMZjOWLl2Kb7/9FqWlpWjXrh0mTZqEXr16+bpqREREVEfUieahefPmYc2aNRg2bBgee+wxaLVazJgxA4cPH/Z11YiIiKiO8HnQkpaWhq1bt+Lhhx/Go48+ioSEBPz3v/9FkyZN8P777/u6ekRERFRH+Dxo2bZtG3Q6HRISEhzbDAYDRo8ejaNHjyI7O9uHtSMiIqK6wudBS0ZGBlq0aIHg4GCn7bGxsQCAkydP+qJaREREVMf4vCNufn4+IiMjXbZXbcvLy3N7XF5eHvLz8x0/VwU3mZmZXqglUFFa5JXzEhERqcXx48e9du5WrVohICCg2jI+D1pMJhP8/V2HMur1esd+d1JSUpCcnOyyfc6cOR6tHxEREV0yee92r517yZIl6NixY7VlfB60GAwGWCyua4qYzWbHfncSEhLQr18/x8+lpaXIzMxEhw4dHAGPp2RmZmLOnDl4/vnn0apVK4+euy6o79cH1P9r5PWpX32/xvp+fUD9v0ZvX5/MOX0etERGRiI3N9dle1XTT1RUlNvjoqKiXPb17NnT8xW8TKtWrYRRoJrV9+sD6v818vrUr75fY32/PqD+X6Mvr8/nHXHbt2+Pc+fOoby83Gl7WlqaYz8RERGRz4OWQYMGwWazISUlxbHNbDZj48aN6Ny5M6Kjo31YOyIiIqorfN481LlzZwwePBgffPABioqK0Lx5c2zevBlZWVmYOXOmr6sH4FIT1v333+92lFN9UN+vD6j/18jrU7/6fo31/fqA+n+NdeH6NIqiKD579f9jMpkcaw+VlZWhbdu2mDRpEnr37u3rqhEREVEdUSeCFiIiIiIRn/dpISIiIpLBoIWIiIhUgUELERERqYLPRw/VRfv378d3332Hw4cPIzc3Fw0bNkSPHj3w0EMPXXGyuz/Lzc3FggULsHfvXtjtdnTv3h1JSUlo1qyZl2svlpeXh7Vr1yI9PR3Hjh2D0WjE/Pnz0b17d6njly1b5nYJBb1ej++//97Dtb1613p9QN2+f1VKS0uxaNEibN++HSaTCbGxsXj00UelJn169dVXsXnzZpftN9xwA1asWOGN6rplNpsdnfBLS0vRrl07TJo0Cb169RIeq4Z7BNT8Guv696xKRUUFVq1ahbS0NKSnp6O0tBSzZs3CqFGjpI6/ls9xbbiW69u0aRPmzZvndt/69evrxCij9PR0bN68GQcOHEBWVhbCwsLQpUsXTJo0CS1bthQeX9v3j0GLG4sWLUJJSQkGDRqEli1b4sKFC/jiiy/w888/Y+nSpcIPWkVFBaZPn47y8nIkJibCz88Pa9asQVJSEpYtW4YGDRrU0pW4d/bsWXz66ado0aIF2rZti6NHj9boPE899RQCAwMdP2u1dSNxd63XV9fvHwDY7XbMnDkTv//+OyZOnIgGDRrgyy+/xPTp07FkyRKpXzZ6vR4zZsxw2vbn1da9bd68efjxxx8xfvx4tGjRAps2bcKMGTMwf/58dO3a9YrHqeEeVanpNVapq9+zKsXFxUhOTkZ0dDTat2+PAwcOSB/ric+xt13L9VV56KGH0LRpU6dtISEhnqriNfn0009x5MgRDB48GO3atUN+fj7Wr1+PSZMm4f3330fbtm2veKxP7p9CLg4cOKDYbDaXbXFxccoHH3wgPH7lypVKXFyckpaW5th2+vRpZdCgQcrixYs9Xt+rVV5erhQXFyuKoiipqalKXFyc8uuvv0ofv3TpUiUuLk4pLCz0Ug2vzbVeX12/f4qiKFu3blXi4uKU1NRUx7bCwkJl1KhRyssvvyw8fu7cucrw4cO9WEOxo0ePKnFxccqnn37q2FZZWalMnDhR+cc//lHtsWq4R4pybddY179nVUwmk5KXl6coiqKkp6crcXFxysaNG6WOvdbPcW24luvbuHGjEhcXp6Snp3uzitfk8OHDitlsdtp25swZZciQIcrs2bOrPdYX969uhex1xM033+zyNHPzzTcjLCwMmZmZwuN//PFHdOrUCbGxsY5trVq1Qo8ePZCamurx+l6toKAghIWFeeRc5eXlUOrYqPlrvb66fv8AYNu2bWjYsCEGDBjg2BYeHo7Bgwdjx44djgVHRWw2m8sSGrVl27Zt0Ol0SEhIcGwzGAwYPXo0jh49iuzs7Cseq4Z7BFzbNV6uLn7Pquj1+ho3c3jqc+xN13J9l6uoqIDNZvNAjTzrpptugr+/v9O2li1bonXr1sK/d764fwxaJFVUVMBoNArTzna7HadOnUKnTp1c9sXGxuL8+fOoqKjwVjVr1V133YVRo0Zh5MiReOWVV1BQUODrKl0ztdy/EydOICYmxiW4jo2NRWVlJc6ePSs8R2VlJUaNGoVRo0Zh9OjReOutt2r12jIyMtCiRQuXJqmqQOTkyZNuj1PLPQJqfo2Xq4/fsyqe+ByrwfTp0zFy5EgMHz4czz77bJ2/LkVRUFhYKPx754v7xz4tkj7//HNYLBbEx8dXW66kpARms9ltZF61LS8vDzfccINX6lkbQkND8be//Q1dunSBv78/Dh8+jPXr1yM9PR1Lliyp9X4RnqSW+1dQUIBu3bq5bK+qY35+Ptq1a3fF4yMjI3H33XejQ4cOUBQFu3fvxpdffonff/8d8+fPh5+f93815OfnC99nd9Ryj4CaXyNQv79nVa71c1zXGQwGjBo1Ct27d0dwcDCOHz+ONWvW4NFHH8WHH35YZ9fW++6775Cbm4sHH3yw2nK+uH/1Pmix2+2wWCxSZfV6PTQajcv2gwcPIjk5GYMHD8Zf/vKXas9hMpkAwCXdVnX+y8t4gieu72qNHz/e6edBgwYhNjYWr7zyCtavX4/ExMRrfo0qtX19tX3/gJpdo8lkctSnJnWcMmWK089DhgxBy5YtsWTJEmzbtg1DhgyRrH3NmUymGr3PvrhHNVXTawRq93vmK9f6Oa7r4uPjnR504+Li0Lt3byQlJWH58uV4+umnfVg79zIzM/H222+jS5cuGDlyZLVlfXH/6n3QcujQIUyfPl2q7PLly9GqVSunbZmZmXj++efRtm1bqQUcDQYDALj9I1TVvldVxhOu9fo8ZdiwYXjvvfewf/9+j/4yre3rq+37B9TsGg0Gg9v24mup44QJE7B06VLs27evVoIWg8FQo/fZF/eopmp6jVfire+Zr3jjc1zXde3aFZ07d8b+/ft9XRUX+fn5mDlzJoKDg/HKK69Ap9NVW94X96/eBy033HADZs2aJVX2z2nc7OxsPPXUUwgODsZrr72GoKAg4TnCwsKg1+uRn5/vsq9qm+xcLzKu5fo8rXHjxigpKfHoOWv7+mr7/gE1u8aGDRtWW8eavBcGgwFhYWEev4dXEhkZidzcXJftovfZF/eopmp6jdXxxvfMV7zxOVaDxo0b48yZM76uhpOysjLMmDEDZWVlWLBggdRn0xf3r94HLZGRkdKTHF2uuLgYTz31FCwWC95++23pXy5arRZt27bFsWPHXPalpaWhWbNmUsGPrJpen6cpioKsrCzExMR49Ly1fX21ff+Aml1jTEwMDh8+DLvd7tQJLj09HQEBATWaH6GiogLFxcUIDw+/6mNromrOi/Lycqf+GWlpaY797vjiHtVUTa/xSrz1PfMVb3yO1eDChQu19j2TYTKZHB2E33rrLbRu3VrqOF/cP44ecsNoNGLGjBnIy8vD66+/Xu0bn52d7TIsbODAgTh27JjTL9UzZ87gwIEDGDRokLeq7RXurq+oqMil3JdffomioiL06dOnlmrmGWq9fwMHDkRBQQG2b9/u2FZUVITU1FT07dvXqZ35/PnzOH/+vONnk8nkdnTNxx9/DEVRau0eDho0CDabDSkpKY5tZrMZGzduROfOnR2dFNV6j4Bru8b69D0DLnU6zszMhNVqdWy7ms9xXefu+tzdw59//hnHjx9H7969a7F2V2az2fDSSy/h6NGjePnll3HjjTe6LVdX7l+9z7TUxCuvvIL09HTcdtttyMzMdPplEhgYiLi4OMfPc+fOxcGDB51u2pgxY/D1119j5syZmDhxInQ6HdasWYOIiAhMnDixVq/lSj7++GMAwOnTpwEAW7ZsweHDhwEA9913n6Ocu+sbP3484uPj0bZtW+j1ehw5cgRbt25FTEyM03wUvnQt16eG+zdo0CCsXbsW8+bNw+nTpx0zUdrtdpce/0888QQAYM2aNQAu9fh/6KGHMHToUMcImz179uCXX35Bnz590L9//1q5hs6dO2Pw4MH44IMPUFRUhObNm2Pz5s3Iyspy6j+m1nsEXNs1quF7VmXdunUoKytzNAvs3LkTOTk5AICxY8ciJCQEH3zwATZv3ozVq1c7Zoe9ms+xL9X0+h555BF06NABHTt2RHBwME6cOIGNGzeicePGuPfee312PZd77733sHPnTvTt2xelpaX49ttvnfYPHz4cAOrM/WPQ4kbV3AkbN27Exo0bnfY1adLEKWhxJygoCPPnz8eCBQvwySefONZFmTZtWp1JCS5dutTp58uv8/I/6u4MGzYMv/32G7Zt2waz2Yzo6Gjcfffd+Pvf/46AgACv1PdqXcv1qeH+6XQ6vP7661i4cCHWrVsHk8mETp06YdasWcKhviEhIejbty/27t2LzZs3w263o3nz5nj44YcxceLEWp0m/rnnnkN0dDS2bNmCsrIytG3bFq+99hpuvvnmao9Twz2qUtNrVMP3rMrq1auRlZXl+Hn79u2OAGz48OFXnLL+Wj7Htamm1xcfH49ffvkFe/fuRWVlJSIjI3HHHXfg/vvvR8OGDWul7iJVf+927dqFXbt2ueyvClrc8cX90yh1dZpFIiIiosuwTwsRERGpAoMWIiIiUgUGLURERKQKDFqIiIhIFRi0EBERkSowaCEiIiJVYNBCREREqsCghYiIiFSBQQtRHbJs2TIMGDAABw4c8HVVvGLAgAF47LHHfF0NIlIpTuNPqnXx4kXcddddTtv8/PwQERGBbt264f/9v/+Hdu3a+ah2dZOiKPjuu+/wzTff4Pfff0dFRQVCQ0MRFRWFLl26ID4+3ml6+VdffdVlvRGiAQMG4Oabb8Y777zj66rQdYZBC6le8+bNMWzYMACXVuhOS0vD999/j+3bt+Ptt9/GTTfd5OMa1h3//ve/sWnTJoSGhqJv376IioqCyWTC77//jm+++Qbl5eXCNXGIiHyFQQupXvPmzV1WFF2yZAmWL1+OJUuW8Gnw/xw6dAibNm1CTEwM3nnnHQQHBzvtLy0tdayKTURUFzFooXpp7NixWL58OY4dO+bYdvz4caxYsQLp6ekoLCxEUFAQmjZtiv79++Pvf/+70/GFhYVYsWIFdu3ahZycHAQFBaFbt2548MEH0bZtW6ey1aXKJ0yYAABYs2aN0/bs7GwsWrQIe/bsgdVqRYcOHfDQQw9Ve00bN27Ehg0bHIFF69atceedd2LUqFFS78nRo0cBACNGjHAJWAAgNDTUKSs1YcIEx8q2lzfD/flajxw5guXLl+Po0aMwmUxo0qQJ4uPjcc8990itRqwoChYsWIDPP/8cQ4cOxXPPPQc/Pz8oioKNGzfim2++walTp2Cz2RzXPHr0aKdzmEwmrF+/Hlu2bEFWVhZsNhvCw8MRGxuLe++9F+3bt6+2DlVNjSNHjsTdd9+N999/H7/99htsNhu6dOmCKVOmoGPHjk7HHD9+HBs3bsTBgweRk5MDi8XiyPpNnDgRfn7Ov16rPgtLly7Fhx9+iB07dqCgoAAzZszAqFGjany+ZcuWYfHixfjpp59QUVGBDh06ICkpCR07dkReXh7ef/997N27FxUVFejatSueeOIJtGzZ0uU9uHDhApYvX469e/eisLAQoaGh6N27Nx588EE0adIEAHDgwAFMnz4dAHDw4EEMGDDAcfysWbOcPos//fQT1q1bhxMnTsBsNqN58+YYOXIkJkyYAJ1O5yi3adMmzJs3D7NmzUJYWBhWrlyJ33//HQ0aNHD53hAxaKF6TaPRAAAyMjIwdepUaLVa9O/fH9HR0SgrK8Pp06fx1VdfOQUt58+fx2OPPYbc3Fz06tUL/fv3R1FREbZt24a9e/fi7bffRufOnWtcp7y8PDz66KPIzc1F79690aFDB2RmZuKpp55C9+7d3R4zf/58rFu3Do0aNcJtt90GANi+fTvmzZuHEydOOP6QVCcsLAwAcO7cOal6jhs3Dps3b8bJkycxbtw4hISEAIBT35bU1FTMnj0b/v7+iI+PR3h4OPbu3Yvk5GTs2bMH8+fPh8FguOJrWK1WvPrqq/j+++8xfvx4TJs2DRqNBoqi4JVXXsH333+PFi1aYOjQofD398fevXvx2muv4fTp05g6darjPK+++ipSU1PRrl07jBo1Cv7+/sjNzcWvv/6KXr16CYOWKhcuXMDUqVMRExODv/71r8jOzkZqaiqSkpLw3//+1+m+f/XVV9i1axe6deuGW265BZWVlTh48CA++OADHDt2DHPmzHE5v9lsxuOPPw6j0Yh+/fpBp9MhIiKixuezWCx48sknYTabER8fj8LCQqSmpuLJJ5/EwoUL8fTTTyMyMhLDhw/HuXPnsGvXLsycORPLly93ChzS0tLw9NNPw2g0om/fvmjRogWysrLw3XffYffu3Xj//ffRrFkzNGnSBPfffz+Sk5PRpEkTjBw50nGOy9/jxYsXY+XKlWjUqBEGDBiAkJAQHD58GO+//z7S09Mxe/Zsl2tJTU3F3r170bdvX9x5552oqKiQumd0nVGIVOrChQtKXFyc8tRTT7nsW7p0qRIXF6c89thjiqIoyrvvvqvExcUp27dvdylbVFTk9PMjjzyiDBo0SNm9e7fT9jNnzigjRoxQ7rvvPqftcXFxSlJSkts6jh8/Xhk/frzTtrlz5ypxcXHKxx9/7LR9w4YNSlxcnBIXF6f8+uuvju0HDhxQ4uLilMTERKW0tNSxvaSkRLnnnnuUuLg45eDBg25f/3LZ2dnKyJEjlQEDBigvv/yykpqaqly8eLHaY6rqeuHCBZd9ZWVlyqhRo5QhQ4YoJ0+edGy32WzKv/71LyUuLk5JTk52Ouby96q8vFx58sknlbi4OGX58uVO5VJSUpS4uDhl3rx5isVicWw3m83KzJkzlbi4OOXYsWOKoihKaWmpMmDAAGXSpEmK1Wp1Oo/ValVKSkqE703VZykuLk5ZtGiR077du3crcXFxLvc9KyvL5fXsdrsyb948JS4uTjl8+LDTvvHjxzs+r5WVlS51qOn5XnzxRaf3aOXKlUpcXJwyatQo5d1331Xsdrtj35tvvqnExcUpP/74o2ObxWJRxo8fr4wYMUI5fvy402scOnRIGTRokDJz5kyn7dV95vfs2eO4zoqKCqdr+c9//qPExcUpqampju0bN25U4uLilIEDByp79+51e06iKhzyTKp3/vx5LFu2DMuWLcPChQsxbdo0JCcnQ6/XY/LkyU5l3T31N2jQwPH/J06cwG+//YYRI0agd+/eTuVatmyJ22+/HadOncKpU6dqVFeLxYIffvgBERERLiOfbr/9drRo0cLlmM2bNwMAHnjgAUe2A7jUnHP//fcDuJRiF2ncuDFeeeUVNG7cGN9//z1efPFFTJgwAQkJCfjXv/6F/fv3X9W17NixA2VlZbjtttucRmlptVo88sgj0Ol0V6xXUVERHn/8cfz666949tlnkZiY6LT/iy++QGBgIJ544gmnZhF/f3/HPf3+++8BwJGZ0ev10Gqdf6XpdDqEhoZKX1NISAjuvfdep229e/fGX/7yF5w6dQrHjx93bI+OjnbKVlTVZcyYMQCAffv2uX2NRx55xO3nsKbne/TRR53eoyFDhgAAbDYbJk2a5Mg2Xr7v999/d2zbtWsXsrKycPfdd6NDhw5O5+7atSv69euHX375BeXl5W5f/8+++OILAMAzzzyDwMBAp2uZMmUKNBoNtm7d6nJcv3790LNnT6nXoOsXm4dI9c6fP4/k5GQA/xvyPHToUKchz/Hx8Vi7di2ef/55xMfHo2fPnujWrRsaNWrkdK60tDQAl/q0LFu2zOW1zpw54/jvn/u2yDhz5gzMZjN69Ojh8odLq9Xipptucmm+ycjIAAC3TUdV206ePCn1+j179sRnn32GgwcP4tChQzh+/DiOHDmC1NRUpKamIjExEQ8//LDUuarq5W60UXR0NJo1a4azZ8+ioqICQUFBjn0FBQWYOnUqcnJyMGfOHPTr18/p2MrKSpw6dQpRUVFYuXKly7ltNhuA/92L4OBg3HLLLfjll18wadIkDBo0CDfffDNiY2Nd+oGIxMTEONW1SteuXbF//35kZGQ4+rZYLBZ88cUX2Lp1K86cOQOj0QhFURzH5OXluZxHr9df8XNTk/OFhoYiOjraaVtkZCQAoEWLFi59iqr2XX6uqr5OZ86ccfuZLygogN1ux9mzZ9GpUye3db9cWloaAgMD8c0337jdbzAYHPfucrGxscJzEzFoIdXr3bs3/vOf/1RbpnPnzpg/fz5WrFiB77//Hhs3bgQAdOrUCf/4xz/Qo0cPAEBJSQkA4Oeff8bPP/98xfMZjcYa1bXqabWqH8OfudteUVEBrVaL8PBwl30NGzaERqORfgoGLgV2PXv2dDzVWq1WbN68GW+++SZWrFiBgQMHunQ6re5aGjZs6HZ/ZGQkzp49i/Lycpegpby8HM2bN3fbN6i0tBSKoiA3N9cRjLpTWVnp+P/Zs2dj+fLl+P7777FkyRIAl4KZUaNG4eGHH5bqEFzdtVRtLysrc2x74YUXsGvXLrRs2RLx8fGIiIiATqdDWVkZ1q5dC4vF4nKeiIgIp8zH5WpyPncdqqsCNXf7qjI5VqvVsa20tBQA8N1337mtV5XL3+/qlJSUwGazVXvv3H1/rvTeE12OQQtdN7p164Zu3brBZDIhLS0NO3fuxJdffomZM2fi448/RrNmzRy/6KdPn46xY8dKnVej0Tie/v+srKzMqUmn6vyFhYVuy7vbHhQUBLvdjqKiIpegprCwEIqiuP0DJcvPzw+33347Dh06hC1btuDAgQNSQUvVaxYUFLjdX7X9z3Vr3749Ro4ciddffx3Tp0/Hf//7X6c/WFXlO3bs6AhARAICAjB58mRMnjwZFy5cwIEDB7BhwwasXbsWJpMJzzzzjNR5RNdSdS/T09Oxa9cu9O7dG6+99ppTs87Ro0exdu1at+e5UsBS0/N5QlVA+e9//xt9+/a95vMFBwdDo9Hgq6++uqrjrvTeEF2OfVroumMwGNC9e3dMmzYN9957L0wmE/bu3QvgfynqqpS5jNDQUOTm5rpsv3jxotOTOXCpX4xer8fx48dhMpmc9tntdvz2228u54mJiQEAt1P7Hzx4EACkR8dU5/L+B1Wq+ojY7fYr1quqDpfLzs7G+fPn0axZM7fNLbfddhueffZZnDlzBtOnT3cKFoKCgtCqVStkZmY6sgBXo1mzZhg9ejTeffddBAYGYufOndLHZmRkuB21cvjwYQD/u+YLFy4AAG699VaXfihVZa+Gp893NaqyXVfzmddqtW4/E8Cl71BxcTHOnj3rkfoRXY5BC10XfvvtN5cgAfjfE7Rerwdw6Rd4586dsXXrVredBe12u8sf6U6dOiErK8tpu8ViwYIFC1yO1+v1GDx4MAoLC7F69WqnfV9//bXbX/RVw0qTk5OdmoHKysrw0UcfOZWpzu7du/HTTz85NQ1UOXfuHH788UcAl/pvVKkaJp2Tk+NyTP/+/RESEoKNGzfijz/+cGxXFAWLFy+GzWardg6ZkSNHYtasWTh79iwee+wx5OfnO/aNGzcOlZWVeOONN9w2JVy4cAEXL14EcKlTr7uO0aWlpbBYLI57K6OsrAzLly932rZnzx7s378fbdq0cWSgqvqR/Dmg+OOPP7BixQrp16vi6fNdjaopAFavXu02ALVarS71Cg0NdfuZAC7dOwB47bXXUFxc7LI/Pz+fkxhSjbF5iK4Ln376KQ4cOIBu3bqhadOm0Ov1OHHiBPbv349mzZo5TZL14osv4vHHH8fLL7+MtWvXIiYmBgaDATk5Ofjtt99QXFzsGLkCXJrka+/evZgxYwaGDBmCgIAA7N27F6GhoY6Oj5ebMmUKfv31V3z44Yc4cuQIYmJikJmZiV9++QW9evVyZH2q3HzzzRg7dizWrVuH++67DwMHDoSiKNi2bRtyc3MxduxYqan3MzMzsWDBAjRo0ADdunVD8+bNoSgKzp8/j19++QUWiwV33nmnUz+THj16YNWqVXjjjTcwcOBABAQEoEmTJo4J6p555hnMnj0b//jHPzB48GCEh4dj//79OH78OGJjYzFx4sRq6zRixAhoNBrMmzfP0VQUFRWFhIQEHD16FJs3b8aRI0fQs2dPREZGorCwEGfOnEFaWhpefPFFNG3aFLm5uXjooYfQvn17tGvXDlFRUSgpKcGOHTtgtVqFdbhc165dsWHDBqSlpaFLly7IyspCamoqDAYDZs6c6SgXGxuL2NhYpKamIj8/H126dEF2djZ27tyJW2+91REAyvL0+a6GXq/H7NmzMWPGDDz22GPo0aMH2rZtC41Gg6ysLBw+fBgNGjRwCp569OiB1NRUPPfcc4iJiXHMf9SuXTv06dMH9913Hz7++GPcfffd6NOnD6Kjo1FSUoLz58/j8OHDeOihh9C6dWuvXRPVXwxa6Lpw5513Ijg4GOnp6Th48CAURUF0dDTuvfdejB8/3qnfRbNmzbB06VKsXr0aP/30EzZt2gStVovIyEh069YNgwYNcjp379698fLLLyM5ORnffvstQkNDMXjwYEyePNkxJPlyUVFRWLhwId5//33s2bMHhw4dQocOHfDmm2/i119/dQlagEt9bGJiYvDll186+gq0bt0aDz30kGOyOZHhw4cjKCgIe/bswalTp7Bv3z6YzWY0aNAAvXr1wsiRI12u7ZZbbsEjjzyCr776CqtXr4bVasXNN9+MESNGAAAGDx6Mhg0bYsWKFdi+fbtjRtz77rsP99xzT7UTy11eL61Wi7lz5+Lxxx93BC7PPfccbrnlFnz99dfYtWsXjEYjIiIi0KJFCzz66KP4y1/+AgBo0qQJHnjgAfz666/Yt28fSkpK0KBBA3To0AHjxo1Dnz59pN4f4NK9f+qpp/D+++9j/fr1sNvt6N69u8uMuDqdDq+99ppjVuNjx4456tWnT5+rDjI8fb6rFRsbi2XLluGzzz7DL7/8gt9++w3+/v6IiopCXFycY6h0laqVun/99Vfs2rULdrsdjRs3dozWe+ihh9CtWzesXbsW+/fvR1lZGcLCwtC0aVPcf//9jrXCiK6WRrl8TB0R0XXo8mn8n3vuOV9Xh4iugH1aiIiISBUYtBAREZEqMGghIiIiVWCfFiIiIlIFZlqIiIhIFRi0EBERkSowaCEiIiJVYNBCREREqsCghYiIiFSBQQsRERGpAoMWIiIiUgUGLURERKQKDFqIiIhIFf4/TWplJdeNVVkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAG5CAYAAAApsoiqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhPUlEQVR4nO3dB5hTddr//5vepTdp0kRAEURYkaUjKG0toOIqoMAqKqAPTdDVR6SIgiuuKy7KTwQFRQUXHrpUcUUFKUoHBSkLUpVe5399vnud/JNMMpOBISSZ9+u6cmXmnJPk5CST3HN/7+99MiUlJSUZAAAAoiZz9B4KAAAAQgAGAAAQZQRgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRRgAWg06dOmWbNm1y1wAAIPEQgMWgHTt2WPfu3d01AABIPARgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRRgAGAAAQZQRgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRltVi0JkzZ2zcuHE2b948O3r0qFWsWNG6detmderUSfF2S5YssYULF9rGjRvt0KFDVqxYMatXr5517tzZ8uXLF7DtiRMn7N1333W3OXLkiJUsWdLat29vd955Z8B2K1eutPnz59vatWtt//79VqhQIbvpppusa9euVqRIkYBte/XqZatXr062X3Xr1rWRI0de0jEBAACJIyYDsOHDh9vixYutQ4cOVrp0aZs9e7b179/fRo8ebTVq1Ah7OwU5hQsXthYtWljx4sVt27ZtNm3aNFu+fLkL6HLkyOG2O3/+vPXt29c2bdpkd911l3uMb7/91l577TUX8D300EO++3z77bft999/t8aNG1uZMmVsz549NnXqVPv666/dferx/BUtWtQeffTRgGXB2wAAgIwt5gKw9evX24IFC6xHjx7WsWNHt6xly5bWpUsXGzNmjLuEM3jwYKtVq1bAsipVqtiwYcNcFqtNmzZu2dKlS+3HH3+0AQMGWOvWrd0yZb7++te/2vvvv++2K1iwoFv+xBNPuKAvc+bMARktZbsUiHXv3j3g8fLmzesCQAAAgLipAdOQYJYsWaxdu3a+ZcpcKVBat26d7du3L+xtg4Mvadiwobvevn27b5mGE6VZs2YB2+p3DX8uW7bMt6xmzZoBwZe37KqrrrIdO3aE3I9z5865IU4AAIC4CMC2bNnihgTz5MkTsLxq1arueuvWrWm6v4MHD7rrAgUK+JYpyFKQlzVrYALQG6LU0GRKFFydPHnS8ufPn2zdzp07Xcbu9ttvd1k11ZkpIAMAAIjZIUgFTKFqprxlBw4cSNP9TZo0yQVbjRo18i0rW7asqwPTcKd/TZmXGUvtMT755BM7e/asNW3aNGD51Vdf7bJwFSpUsFOnTrk6tgkTJrig7MUXXwx7f3o8L1CUcJk1IKM6cfiUbViw06o2K2O5C+a80rsDAIkXgJ0+fdqyZcuWbHn27Nl96yOluq+ZM2e6WjIV0HuaN2/uar1efvlle/rpp13G7bvvvrPPP/881cfQLMfx48dbkyZNrHbt2gHrnnnmmYDflQl79dVXbcaMGXbvvfda9erVQ97n9OnT3X0CCO3EkdO2aupWK1e7GAEYgIQQcwGYhgGVXQqmYUNvfSTWrFljI0aMcAXzwYXyyqapMH/o0KHWp08ft0xDnr1793bLc+XKFfI+lZl67rnnXIZLBfyRuO+++1wAtmLFirABmOrd6tevH/A4Q4YMiej+AQBA/Im5AEzBkfptBfOG6IJ7b4WiOrGBAwe6QEkzI4NrvbxC+o8++sh++uknN1yoXmPeY/hnyzwq/lewpkBNgV3u3Lkjej7qRSZqbxGOnlMkzwsAACSGmAvAKlWqZKtWrbLjx48HFOKrXstbn5Ldu3e7Hl9qI/HKK6+kGCipNqxy5cq+3+fOneuug4cWf/vtNxd8KTP3t7/9LU3BkvqGBU8CAAAAGVvMzYJUw1MVyKsuyn/4cdasWVatWjXXYNXLSAUXqyuDpUBJbSPUlDUtQY+64atgX5mwm2++2bdcsx3VBFaF8groQmXHRAGjN0zqSUpKckX4kloXfwAAkHHEXAZMQZYK3MeOHeuColKlStmcOXNs7969AXVXqt9SQbyaqnr69evnMk4quv/hhx/cxaOMmH8Q1LNnT1eTpQJ8BW6q01KwpcJ8/75fL730km3YsMFatWrlAj7/oE+1Yg0aNHA/b9682c10VIG/9lmF/F9++aXbh7Zt27qGsAAAADEZgMmgQYNcpktDgseOHXO1XKq7Ut1WSrweYZMnT062Trf1D8AUEKlNhDJbGqZU1kvnm1QriVD3qQycLv5KlCjhC8C0vzfeeKMLCHUeSgVx5cqVcxk5/6ayAAAAmZI0ToaYokawmrn5zjvvkDkD1Cvv59/s82f/bXcOvdWKlE/eABkA4k3M1YABAAAkOgIwAACAKCMAAwAAiDICMAAAgCgjAAMAAIgyAjAAAIAoIwADAACIMgIwAACAKCMAAwAAiDICMAAAgCgjAAMAAIgyAjAAAIAoIwADAMDMThw+ZSs/3eKugcuNAAwAAAVgR07bqqlb3TVwuRGAAQAARBkBGAAAQJQRgAEAAEQZARgAAECUEYABAABEGQEYAIcp+AAuBp8dF4cADIDDFHwAF4PPjotDAAYAABBlBGAAAABRRgAGAAAQZQRgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRRgAGAAAQZVktBp05c8bGjRtn8+bNs6NHj1rFihWtW7duVqdOnRRvt2TJElu4cKFt3LjRDh06ZMWKFbN69epZ586dLV++fAHbnjhxwt599113myNHjljJkiWtffv2dueddya7X+3D22+/bUuXLrXTp09b1apV7fHHH7cqVaok23bZsmX23nvv2Y4dO6xAgQLWqlUr69Spk2XNGpOHGlGmU3VsWLDTqjYrY7kL5rzSuwMAuEJiMgM2fPhwmzJlit12223Wq1cvy5w5s/Xv39/Wrl2b4u1GjhzpAp8WLVpY7969rW7dujZt2jTr0aOHC5w858+ft759+9q//vUva9KkifXs2dPKli1rr732mk2cODHgPi9cuGADBgywL774wu6++2577LHH7PDhw+7+d+7cGbDt8uXL7dlnn7W8efO69Q0aNLAJEybY6NGj0/kIIV5xyg4AgMRcWmb9+vW2YMECFzR17NjRLWvZsqV16dLFxowZ4y7hDB482GrVqhWwTFmqYcOG2fz5861NmzZumTJZP/74owusWrdu7ZYp8/XXv/7V3n//fbddwYIF3fLFixe7bXXfjRs3dsuaNm1qDzzwgMt0Pf/8877Heuutt1y2btSoUb6MV+7cue2DDz5w2bVy5cql+/ECAADxJ+YyYBoSzJIli7Vr1863LEeOHC5QWrdune3bty/sbYODL2nYsKG73r59u2+Zl0lr1qxZwLb6XcOfGkb0359ChQr57kc0tKjMmbbT9t7969K2bduA4ca77rrLkpKSXCAHAAAQkwHYli1brHTp0pYnT56A5aq7kq1bt6bp/g4ePOgLmjwKmhTkBddlKdCTTZs2+ZZt3rzZKleu7IZBg/fn1KlTvmFIbSfBdWFFihSxokWLuucVzoEDB9xjehcNowIAgMQVc0OQCpgKFy6cbLm3TMFKWkyaNMkFW40aNfItU72X6sA03FmjRo1kmTH/x1Ax/4033hh2f7S/Gnb0Ar1w++6tD2X69Ok2fvz4ND0vAAAQv2IuAFOxfLZs2ZItz549u299pFT3NXPmTFdLVqZMGd/y5s2bu1qvl19+2Z5++mmXcfvuu+/s888/T/YY+tl77JT2xxuKDLetZl2Go+HW+vXr+35XBmzIkCERP08AABBfYi4A0zDg2bNnky33AhxvmDA1a9assREjRriZkN27d0+WkVJh/tChQ61Pnz5umYY8NXNRy3PlyhWwP95jp7Q/XuAVbtuU9lvDlLoAAICMIeYCMAVH+/fvT7bcG8KLJFBRndjAgQOtQoUKbvZiqB5cNWvWtI8++sh++uknV8vlP4zony1TAX6o4cPgIUf/IcnixYsn29arYQMAAIi5IvxKlSrZrl277Pjx4wHLVa/lrU/J7t27XY8vtZF45ZVXXBuIcFQbpgL7G264wW23YsUKt7x27dq+bbReBfTqB+Zvw4YNljNnTl+wpu2CC/i9ejIFlN56AACAmAvA1GtLBfIqTPcfwps1a5ZVq1bNl11SO4rg2YLKNGlIUTMW1ZTVf+ZjatQNXwX7yoTdfPPNvuUq3lchvnqH+W+7aNEiu/XWW31Dj+XLl3fF/TNmzHD771FdWaZMmQImAQAAgIwt5oYgFWSpx9bYsWNdoFOqVCmbM2eO7d271zVO9ah+a/Xq1QGBUb9+/WzPnj2u6P6HH35wF48yYv6nMlL3++rVq7sCfAVuCpxOnjzpCvP9W04oIPz0009dd371+cqfP78LqpQRe+SRRwL2Xacn0tCngkD1FNPwpjrxq7HrNddccxmPGgAAiCcxF4DJoEGDXKZr7ty5duzYMVfLpYJ61W2lxOsRNnny5GTrdFv/AEz9utQcVUOEGn5U1kvnm7z66quTDVNqKFNd7j/77DM36/G6665zgZYyXv6UEdPsRbWU0OmHFKw9+OCDros/AABATAdgmjGobJIu4bzxxhvJlvlnw1Lz5JNPukskdCJvZd/8M3Dh6PyPugAAAMRNDRgAAECiIwADAACIMgIwAACAKCMAAwAAiDICMAAx7cKFJNv/02/uZ13rdwCIdzE5CxIA5Odv99ryCRvs+KFT7vevxq2z1dO22S2dqlr5uiWu9O4BwEUjAwYgZoOvBa+v8gVfHv2u5VoPAPGKAAxAzNEwozJfKVk+cQPDkQDiFgEYgJizd+OhZJmvYMcPnnLbARnBicOnbOWnW9w1EgMBGICYc/LI6XTdDoh3J46ctlVTt7prJAYCMAAxJ1eBHOm6HQDEGgIwADGnxHWFLE+hnCluk6dwTrcdAMQjAjAAMSdz5kyu1URKbnmoqtsOAOIRARiAmKQ+X82eqpUsE6bMl5bTBwxAPKMRK4CYpSCr3M3FbdOina4Ja/2u1a1KkzJkvgDEPTJgAGKagq2iFfK7n3VN8AUgERCAAQAARBkBGAAAQJQRgAEAAEQZARgAAECUEYABAABEGQEYAABAlBGAAQAARBkBGAAAQJQRgAEAAEQZARgAAECUEYABAABEGQEYAABAlBGAAQAARFlWi0FnzpyxcePG2bx58+zo0aNWsWJF69atm9WpUyfF2y1ZssQWLlxoGzdutEOHDlmxYsWsXr161rlzZ8uXL1/AtqdPn7ZPPvnE5s6da3v37nXrr7/+env44YetfPnyvu169eplq1evDvl4WbJksUWLFvl+v/fee919BWvXrp317dv3Io4EAABIRDEZgA0fPtwWL15sHTp0sNKlS9vs2bOtf//+Nnr0aKtRo0bY240cOdIKFy5sLVq0sOLFi9u2bdts2rRptnz5chfQ5ciRw7ftSy+9ZF999ZW1bdvWrr32Wjtw4IDbtkePHjZ+/HgrUaKE2+6hhx6yNm3aBDzOyZMnbdSoUSEDwsqVK9t9990XsEzPAQAAIGYDsPXr19uCBQtcINSxY0e3rGXLltalSxcbM2aMu4QzePBgq1WrVsCyKlWq2LBhw2z+/Pm+QGr//v22dOlSu//+++3xxx/3bavg7qmnnnLrlM2SUEGWMnNy2223JVtXpEgRFwACAADETQ2YhhE1tKdhO48yV61bt7Z169bZvn37wt42OPiShg0buuvt27f7lp04ccJdFyxYMGBbZc+8x0uJgrlcuXLZH//4x5Drz54967JkAAAAcZEB27Jlixuyy5MnT8DyqlWruuutW7e64cVIHTx40F0XKFDAt6xUqVJWtGhR+/jjj61s2bJu2FBDkG+//baVLFnSmjZtGvb+jhw5YitWrHDbKAgL9v3337sM2Pnz590wpoZRdUmJHtvbT9mxY0fEzw8AAMSfmAvAFIh4mSh/3jIFK2kxadIkl1Fr1KiRb1nWrFldDZguAwcODBiufOutt5IV7PvT8KiCq1DDjxUqVHDDmGXKlLHff//d1a79/e9/d/usIdVwpk+f7urOgCvlwoUk2//Tb+5nXRcqd5VlzpzpSu8WACSsmAvANDsxW7ZsyZZnz57dtz5SGiqcOXOmqyVTUORPQValSpWscePGVq1aNdu9e7d9+OGH9sILL7gC+3DDkF988YXLpt18883J1r388ssBv7dq1cr69etnU6ZMsXvuucfNygxFw63169cPyIANGTIk4ucJXIqfv91ryydssOOHTrnfvxq3zlZP22a3dKpq5ev+dzIKACDBa8AU+KiGKlRrCm99JNasWWMjRoywunXrWvfu3QPWHTt2zHr27GnVq1e3Rx991Bo0aOAK8pURW7t2rctchbJnzx5Xh6bhR2XRUpMpUyZXzK+MWbhWFl7hvrJv3qVcuXIRPUcgPYKvBa+v8gVfHv2u5VoPAMgAAZiGGv3roTzeMgUrqVGdmIYWNSSomZHBwZIK/dUnzD/rJDVr1nS1Zz/88EPYjJqEGn4Mx8t6aUgSiLVhR2W+UrJ84ga3HQAgwQMwDQvu2rXLjh8/nqw9hbc+JRpKVNNTzXB85ZVXLHfu3Mm2OXz4sLu+cOFCwPKkpCS3TBmrcMOPKuBX5ixSypoFTwIAYsHejYeSZb6CHT94ym0HAEjwAEw1WQqAVJjuP/w4a9YsV6vlzYBUO4rg2YLKkvXp08cyZ87smrKGC3q8xqgqqPe3bNky1z5CsyKDbd682T1e8+bNQ96nMlzBgdu5c+dcXZlq2kK1yACupJNHTqfrdgCAOC7CV5DVpEkTGzt2rGv5oIzTnDlz3Cl+BgwY4Ntu6NChrq5KTVM9KnhXxklF9xpG9B9KVEbMa6qqoUedbuj99993gZxXhD916lQ3BKqeY2kdflRX/QkTJrjZlmploVMo6TY///yz/eUvfwk5sxO4knIVyJGu2wEA4jgAk0GDBrlMl87TqIJ51XKpoF41WqnVfsnkyZOTrdNtvQBMGak333zTBWBff/21y4Spp5eK8VWwH5w507CkzjGpUxapb1go2kcVzyvoUuCoujNl0l588UUXUAKxpsR1hSxPoZwpDkPmKZzTbQcAyAABmGY66hRB/qcJCvbGG28kW+afDUuN2lA8+eST7pIaDWl+9tlnKW6j2YvBbSiAWKY+X2o1odmO4dzyUFX6gQFARqgBA9LDicOnbOWnW9w1wlOfr2ZP1XKZsODMl5bTBwwAMlAGDLhUJ46ctlVTt1q52sUsd8HA4AKBFGSVu7m4bVq00zVhrd+1ulVpUobMFwBcRmTAALhgq2iF/O5nXRN8AcDlRQAGAAAQZQRgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRRgAGAAAQZQRgAAAAUUYABgAJiNNxAbGNAAwAEpB3Oi5dA4g9BGAAAABRRgAGRMmFC0m2/6ff3M+61u8AgIwp65XeASAj+PnbvbZ8wgY7fui/9ThfjVtnq6dts1s6VbXydUtc6d0DAEQZGTAgCsHXgtdX+YIvj37Xcq0HAGQsBGDAZaRhRmW+UrJ84gaGIwEggyEAAy6jvRsPJct8BTt+8JTbDgDiDbWtF48aMOAyOhlhC4BItwOAWEFt66UhAwZcRrkK5EjX7QAgFlDbeukIwIDLqMR1hSxPoZwpbpOncE63HQDEA2pb0wcBGHAZZc6cyaXjU3LLQ1XddgAQD6htTR8EYMBlplqIZk/VSpYJU+ZLy6mVABBPqG1NHxThA1GgIKvczcVt06KdrlC1ftfqVqVJGTJfAOIOta3pgwwYECUKtopWyO9+1jXBF4B4RG1r+iAAAwAAEaO2NX0QgAEAgDShtvXSUQMGIOblLpDDat1dyV0DiA3UtiZgAHbmzBkbN26czZs3z44ePWoVK1a0bt26WZ06dVK83ZIlS2zhwoW2ceNGO3TokBUrVszq1atnnTt3tnz58gVse/r0afvkk09s7ty5tnfvXrf++uuvt4cfftjKly/v22727Nk2fPjwkI83bdo0K1y4cMCyZcuW2XvvvWc7duywAgUKWKtWraxTp06WNWtMHmogLuQumNNqt698pXcDQBBqWy9eTEYFCngWL15sHTp0sNKlS7sgqH///jZ69GirUaNG2NuNHDnSBUQtWrSw4sWL27Zt21yQtHz5chfQ5cjx///3/NJLL9lXX31lbdu2tWuvvdYOHDjgtu3Ro4eNHz/eSpQITJ927drVSpYsGbAsb968Ab/rcZ599lmrWbOm9e7d23766SebMGGCHT582Pr06ZNuxwcAAMS3mAvA1q9fbwsWLHCBUMeOHd2yli1bWpcuXWzMmDHuEs7gwYOtVq1aAcuqVKliw4YNs/nz51ubNm3csv3799vSpUvt/vvvt8cff9y3rYK7p556yq279957A+7nD3/4g1133XUp7vtbb73lsnWjRo3yZbxy585tH3zwgbVv397KlSt3EUcEAAAkmpgrwtcwYpYsWaxdu3a+ZcpctW7d2tatW2f79u0Le9vg4EsaNmzorrdv3+5bduLECXddsGDBgG294UT/TJk/3e78+fMh1+n+dVFGzX+48a677rKkpCSX0QMAAIjJDNiWLVvcsGOePHkCllet+t8pr1u3bnXDi5E6ePCgu1Y9lqdUqVJWtGhR+/jjj61s2bJWuXJlNwT59ttvu2HGpk2bJrsfDSmePHnSsmXL5mrRnnjiCStTpoxv/ebNm30ZN39FihRxj6XnFY4e29tPUf0YAABIXDEXgCkQCS5sF2+ZgpW0mDRpksuoNWrUyLdMGSrVgOkycOBA33IFTxpG9C/YVzbsjjvucNk1BYWbNm2yKVOmuKHLd9991xcMegFUuH33D7CCTZ8+3dWdAQCAjCHmAjDNTlSWKVj27Nl96yOluq+ZM2e6WjL/bJUoyKpUqZI1btzYqlWrZrt377YPP/zQXnjhBVfD5Q1DKhvmnxFr0KCB1a1b13r27GkTJ060vn37+mZu+u9n8L57w56haLi1fv36ARmwIUOGRPw8AQCX5sKFJNv/02/uZ10XKncVM/qQsQIwBT5nz55NttwLcMLVZwVbs2aNjRgxwgVL3bt3D1h37NgxF0CpCF8Xj4rse/Xq5WZd3nnnnWHvW8X6CtpWrlzpW+YFXt5+Bu97SvutYUpdAADR9/O3e235hA12/NAp97t6Wq2ets11e6ehKDJMEX644TpvWSSBiurENLRYoUIFNzMyuAeXCv3VJ8w/6yRqH6Fhxh9++CHVx1CPsd9//z1gv/33M3jfQw1NAgCufPC14PVVvuDLo9+1XOuBmMqA/frrr7Z69WrbtWuXHT9+3C1T8KIC+htvvDFNhfL+NCy4atUqd5/+hfhqT+GtT4mGEjUsqBmOr7zyimsDEUx9ueTChQsByzVbUcvCzXT0t2fPnoDCfhXyi2rElB3zqGZNbS/8Z3UCAGJj2FGZr5Qsn7jBdXtnOBJXPABTgPP666/bd9995wta/GXK9N83qWYKauagArK0UE3WRx995ArTvT5gGsKbNWuWC2y8wE7tKE6dOhXQW0uZJjU8zZw5s2vK6h8g+fP2Sf3GHnnkkYAu9prp6AVTcuTIkWT38/XXX7tA65577vEtU/d8zaicMWOGC7ZU+C+ff/65Oyb+kwAAAFfe3o2HkmW+gh0/eMptd3U1RjFwBQMwZX0ee+wxN/Sm4TrVV/m3jFDWShmxb7/91l00U1CtHa6++uqIH0NBVpMmTWzs2LEu+FHLiDlz5rjTBQ0YMMC33dChQ10GTk1TPf369XP7qMBNw4j+Q4nKiHmnMtLQowKm999/3wVyXhH+1KlT3VCheo551BBWnfI1Q1LPU+0mFAxqCPKhhx4K2Hc9Xw19Kghs1qyZ64Sv7vpqAHvNNdek5VADAC6zk0dOp+t2wGULwNR2QRkiDe2pM3w4f/7zn91peZ577jl3m+effz5NOzVo0CCX6dJ5GlUwr1ouFdQr6Eut9ksmT56cbJ1u6wVgmmX55ptvugBM2SxlwnLlyuVmOKpg3z/jpRmQei7K+CnjpgBNzVbVmb9QoUIBj3Hrrbe62YtqKaHTJuXPn98efPBBty0AILbkivDk7pFuB1y2AGzFihUuO5VS8OW55ZZb3LbffPONpZVmDCqb5H+aoGBvvPFGsmX+2bDUqA3Fk08+6S4pUUAWPIsyJQridAEAxLYS1xWyPIVypjgMmadwTrcdcEVnQSr7lZZ2CcoW6TYAAMQaFdar1URKbnmoKgX4uPIBmOqxNGR37ty5VLfVNtpWtwEAIBapz1ezp2q5TFhw5kvL6QOGmAjAVPv0888/uyJzFbgHz4AULVu7dq3bRh3ddRsAAGKVgqz73mhs9btWd7/r+r7RjQm+EDs1YHfffbdt27bNnd5HneRz5szpTl7tPwvyP//5jytWVyCm2X/+rRoAAIhFGmYsWiG/+1nXDDsipgIw9bPq37+/NW/e3P7v//7PtYFQq4Xgui/NBlTmSyewBgAAQDp0wr/pppvcRZTtUqsIyZs3r8uKAQAA4DKejFsBF0EXAABAlAIwneNQne/9M2DqjF+0aNFLuVsAAICEluYA7OzZszZlyhRXA6aC+1BUmK8asPbt21v27NnTYz8BAAAiduLwKduwYKdVbVbGchfMGd8BmJqqPv3007ZhwwZ36h6d2kcZr9y5c7v1J06ccBkxtajQuRy//PJLe+2119y2AAAA0XLiyGlbNXWrlatdLP4DMJ3jUMHXAw88YJ07dw5b+6XCfG2rczLqWie0BgAAwEU0Yl20aJHVrVvXHn300RQL77Xuscces5tvvtndBgAAABcZgB06dMgqV64c8fZVqlRxtwEAAMBFBmCFChWyLVu2RLz95s2b3W0AAABwkQFYw4YN7bvvvrN33nnHTp8+HXY7rVMR/ooVK9xtAAAAcJFF+I888oitWrXKPvjgA5s6dapdf/31bhak+n+J+oFpFuSPP/7oZkRWqlTJ3QYAAAAXGYCp3cQ//vEPmzRpkjsh97fffusuwYoUKWIdOnRwsyXpkg/Eh9wFclituyu5awBAjDViVUClrJYuO3fudBmv48ePu3V58uRxGbEyZcpcjn0FcBmpT07t9pFPsgEAXKFTESnQItgCAAC4jEX4AAAAiPEATOeLfPnlly/nQwAAAMSdyxqA6ZyQc+bMuZwPAQAAEHcYggQAAIjlIvy0ZrN2796d1v0BAABIeGkKwIYPH26ZMmWKePukpKQ0bQ8A8eTE4VO2YcFOq9qsjGvjAQCXJQDLli2bFS5c2Nq1axfR9osXL07TuSMBIJ6cOHLaVk3dauVqFyMAA3D5ArAKFSrYvn377M9//nNE2//yyy8EYAAAAJcSgF177bW2efNmF4QVL148LTdFjOi44TU7cPaoJbpzp8/b6b+ctQ8PfG1Zj2axWHHh3AU7+ZczNvnwcst8lDkw8S6WX89Y3rdYFcvHjH27PPtVJFs+m1z1fyzmA7AaNWq4cz/q9EORBGA33HDDpewbLgMFX7+e/c0Snv7W8pkdt9NmZy22aL+SYnC/kHivZyzvW6yK5WPGviXOfqU1AGvRooW7RKpNmzbuklZnzpyxcePG2bx58+zo0aNWsWJF69atm9WpUyfF2y1ZssQWLlxoGzdutEOHDlmxYsWsXr161rlzZ8uXL1/AtqdPn7ZPPvnE5s6da3v37nXrr7/+env44YetfPnyvu1Wrlxp8+fPt7Vr19r+/futUKFCdtNNN1nXrl3dScf99erVy1avXp1sv+rWrWsjR460WKBoP1GdP3PeTh0L/1eWM282y5I9y5X/j+z3M5brquyWOWvs/KeIxHs9Y3nfYlUsHzOX1T9+1nLkyWZZc8ROVj+Wj9uFCPbrSn4nXtK5IC+GTtx97NixFDNomm2pAv4OHTq4k3vPnj3b+vfvb6NHj3ZZuHAU5GiSgIJE3f+2bdts2rRptnz5chfQ5ciRw7ftSy+9ZF999ZW1bdvWDa0eOHDAbdujRw8bP368lShRwm339ttv2++//26NGzd2573cs2ePTZ061b7++mt3n3o8f0WLFrVHH300YFnwNlfSlUq1Xm4XLiTZx70W2/FDp8Juk6dwTrtvdGPLnPnKzcw98PNv9vnIf9udQ2+1IuXzX7H9QOK/nrG8b7EqFo/Zz9/uteUTNgR8tuUplNNu6VTVytf97/fUlRaLxy2W9+uKBWBTpkyx999/3wVYoaxfv94WLFjgAqGOHTu6ZS1btrQuXbrYmDFj3CWcwYMHW61atQKWValSxYYNG+ayWF42TpmspUuX2v3332+PP/64b1sFd0899ZRbd++997plTzzxhFueOXPmgIyWsl0KxLp37x7weHnz5k1TlhDpY+/GQykGX3L84Cm33dXVYicgBoCUgq8Fr69KtlyfdVre7KlaMROEIe1iJ1foN4yYJUuWgFYXyly1bt3a1q1b5yYAhBMcfEnDhg3d9fbt233LTpw44a4LFiwYMlPlnymrWbNmQPDlLbvqqqtsx44dIffj3LlzvsdAdJw8cjpdtwNwefunrfx0i7tG+Ky+Ml8pWT5xg9sO8SnqGbDUqG2Fhh3z5MkTsLxq1arueuvWrWmagXnw4EF3XaBAAd+yUqVKuaHCjz/+2MqWLWuVK1d2Q5AabixZsqQ1bdo0xftUcHXy5EnLnz95SnPnzp0uY3f27FlXL6asm7J3WbOGP9R6bG8/JVxgh/ByFciRrtsBuHzon5Y6svqJL+YCMAUioWqmvGUKVtJi0qRJLqPWqFEj3zIFQ6oB02XgwIEBw5VvvfVWsoL9YCreV4AVHKhdffXVLgunfmmnTp1yw6wTJkxwQdmLL74Y9v6mT5/u6s5w8UpcV8jVRaRWA6btACDWkdVPfDEXgGl2ojruB8uePbtvfaRU9zVz5kxXS6YCen8KsipVquSK66tVq+bOW/nhhx/aCy+8YKNGjQoYhvSnWY4Klpo0aWK1a9cOWPfMM88E/K5M2KuvvmozZsxwNWXVq1cPeZ8abq1fv35ABmzIkCERP0+YK6xXUWqoegnPLQ9VvaIF+AAQKbL6iS/mAjAFPsouhWpN4a2PxJo1a2zEiBGuYD64UF6zMHv27OmK8HXxXHfdda64XrMu77zzzmT3qcDoueeecxmuAQMGRLQf9913nwvAVqxYETYAUzuL4JYWSDsVo6ooNdmMocI5XfBFsSqAeEFWP/HFXBG+hhr966E83rJIAhXViWloUYGSZkYG11+p0F99wvyzTl5xvWrPfvjhh2T3qeL/Pn36uPUK7HLnzh3R81EvMlE/M1x+CrLue6Ox1e/632BX12o9QfAFIB6z+ikhqx/fYi4A07CgOu2rX1hwewpvfUo0lNi3b183w/GVV14JGSgdPnzYXV+4cCFgeVJSklt2/vz5gOW//fabC76UmVOvsbRkq9Q3LHgSAC4vfSAVrfDfCRK65gMKQDxn9ZUJC8580YIi/sVcAKaaLAVAKkz3H36cNWuWq9XyZkAqIxU8W1BZMgVKahuhQClc0KNZlqJ+Y/6WLVvmZjdqVqRHv6sJrIr/FdAF15J5FDB6w6T+AZ2K8CW1Lv4AAAQjq5+4ol4DpqBEl3AUZKnAfezYsXbkyBHXMmLOnDnudEH+dVdDhw51BfFqmurp16+fyzip6F7DiP5DicqIeUGQhh51uiE1hFUg5xXhq7GqhkDVc8yjmZIbNmywVq1auYDPP+jLlSuXNWjQwP2sk5RrpmPz5s3dPmuywJdffun2Qd32NcMSAIC0IqufmKIegD3yyCPukpJBgwa5TJfO06iCedVyqe5KNVqp1X7J5MmTk63Tbb0ATLMs33zzTReA6ZRCyoR5wZQK9v0zZ959KgOniz+drsgLwLS/N954owsIVV+mLFy5cuVcRs6/qSwAAMBFB2DKSkXq9ttvT9N9a6ajThHkf5qgYG+88UayZf7ZsNSoDcWTTz7pLqmdOikS6gGWUq8vAACASw7AdMLsTJlSToNqqFHbpDUAAwAASGQXHYAFNx31L0ZXPdQXX3zhaq1uvfXWS9k/xDCdx23Dgp1WtVkZTicCAEA0ArA77rgjxfWqe3rqqadCNjRFYuB8bgAAxFgbiuuvv95lwMaNG3e5HgIAACAuXdY+YJoluG3btsv5EAAAAHHnsgVgKsDX+Ri9k2gDAADgEmvA1AQ1FHWxV9d49fDauHGjtWzZ8mIfAgAAICFddADWu3fvFNtQKAN2ww03pNpnCwAAIKO56ACsc+fOIQMwdYDPmzevVa1a1Z3iBwAAAOkUgKV2OiEAyeUukMNq3V3JXQMAMq5LPhekar7279/v6r7OnTsXcpvUzuEIZBTql1a7feUrvRsAgHgNwC5cuGATJ060Tz/91I4ePZritosXL77YhwEApNGFC0m2/6ff3M+6LlTuKsucOeVTxwGIkwDsn//8p3300UdWsGBB1xW/cOHCliVLlvTdOwBAmvz87V5bPmGDHT90yv3+1bh1tnraNrulU1UrX7fEld49AJcagKnNRJkyZWzs2LGWO3fui70bAEA6Bl8LXl+VbLmCMS1v9lQtgjAg3huxnjx50urVq0fwBQAxMuyozFdKlk/c4LYDEMcBWIUKFezgwYPpuzcAgIuyd+Mh37BjOMcPnnLbAYjjAKxTp0725Zdf2qZNm9J3jwAAaXbyyOl03Q5IpIkoF2Iw83vRNWAafhw4cKD179/f6tevbxUrVrQ8efKE3Pb222+/lH0EAKQiV4S95SLdDohXP8fJRJSLDsDOnDlj//73v+23336zmTNnumXBnfF1OiItIwADgMurxHWFLE+hnCkOQ+YpnNNtBySqn+NoIspFB2BvvvmmzZ8/32W+GjVqRBsKALiC1OdL/+GH+vLx3PJQVfqBwTL6RJRyNxePib+Diw7A1Fy1SpUq9tZbb1nWrJfcUB8AcIn0n73+w/cffvEyXwq+YuU/f+BKT0S5ulphi+shyFq1ahF8AUAMUZCl//A3Ldrpal/qd61uVZqUiYn/+IHL6WScTUS56FmQyn7t2rUrffcGAHDJFGwVrZDf/axrgi9kBLnibCLKRQdg3bt3t2+//dYV4gMAAMTCRJSUxNJElIseP1yxYoXVrFnTBg0aZDfddFPYNhSaBdm5c+dL3U8AAICEmYhy0QHYe++95/t55cqV7hIKARgAAIiG8nE0EeWiA7DRo0en754AAABkkIkoFx2AafgRAAAg1mSOg4koF12EDwAAkLtADqt1dyV3jcjFZBMv9RgbN26czZs3z44ePeoK/Lt162Z16tRJ8XZLliyxhQsX2saNG+3QoUNWrFgxd85K1aDly5cvYNvTp0/bJ598YnPnzrW9e/e69ddff709/PDDVr58+YBttQ9vv/22LV261N2uatWq9vjjj7tWHMGWLVvm6uN27NhhBQoUsFatWrkTl9MvDQCQiHIXzGm121e+0rsRd2IyAzZ8+HCbMmWK3XbbbdarVy/LnDmzO+n32rVrU7zdyJEjXeDTokUL6927t9WtW9emTZtmPXr0cIGTv5deeskFeWomq23btWtna9ascdsqIPNcuHDBBgwYYF988YXdfffd9thjj9nhw4fdbXbu3Blwn8uXL7dnn33W8ubN69Y3aNDAJkyYQL0cAAAIEHNpmfXr19uCBQtcINSxY0e3rGXLltalSxcbM2aMu4QzePBgF1D5U5Zq2LBh7ryVbdq0ccv279/vsln333+/y2R5atSoYU899ZRbd++99/pOufTjjz+6+27cuLFb1rRpU3vggQdcpuv555/33V6nZVK2btSoUb6MV+7cue2DDz6w9u3bW7ly5dL1WAEAgPgUcxkwDSPqpN7KSHly5MhhrVu3tnXr1tm+ffvC3jY4+JKGDRu66+3bt/uWnThxwl0XLFgwYFudUNx7PP/9KVSokO9+REOLTZo0ccONGi717l+Xtm3bBgw33nXXXZaUlOQCOQAAgJjMgG3ZssVKly6drKmr6q5k69atVrx48Yjv7+DBg76gyVOqVCkrWrSoffzxx1a2bFmrXLmyHThwwNV5lSxZ0mW4PJs3b3brNQwavD8zZsxww5DKemk7Ca4LK1KkiHssPa9w9NjefoqGUQEAQOKKuQBMgYiXifLnLVOwkhaTJk1yGbVGjRr5lilDpRowXQYOHOhbruBJw4j+Bfsq5r/xxhvD7o/2VwGYF0CF23f/ACvY9OnTbfz48Wl6XgAAIH7FXACmYvls2bIlW549e3bf+kip7mvmzJmulqxMmTIB6xRkVapUydV1VatWzXbv3m0ffvihvfDCC66GyxuG1ON5j53S/nhDkeG29YY9Q9Fwa/369QMyYEOGDIn4eQIAgPgScwGYAp+zZ88mW+4FOP71WSnRjMYRI0a4mZA6cbi/Y8eOWc+ePV0Rvi6e6667zs26nD17tt15552+x/MeO6X98QKvcNumtN8aptQFAABkDDFXhB9uuM5bFkmgojoxDS1WqFDBzV4M7sGlwnoNLfpnnbzu/qo9++GHH3zLVICf0v54Q47+Q5Khtg01NAkAADKmmAvANCy4a9cuO378eLL2FN76lGgosW/fvm6G4yuvvOLaQARTHy+vx5c/zVbUsvPnz/uWqQBfBfTB227YsMFy5szpG9rUdrJp06aA7VSzprYX3noAAICYC8BUk6UASIXp/kN4s2bNcrVa3gxItaMIni2oTFOfPn3cjEU1ZfWf+ehPsyxF/cb8qa3EyZMnA4IlFe8rW6beYJ4jR47YokWL7NZbb/UNPap7vmZUamakfwD3+eefW6ZMmQImAQAAgIwt5mrAFGSpx9bYsWNdoKOWEXPmzHHd6dWR3jN06FBbvXp1QGDUr18/27Nnjyu61zCi/1CiMmLeqYw09KiA6f3333eBnFeEP3XqVDdUqJ5j/gHhp59+6rrzq89X/vz5XVCljNgjjzwSsO9q6qqhTwWBzZo1s59++sl14lcD2GuuueYyHzkAABAvYi4Ak0GDBrlMl87TqIJ51XKpoF41WqnVfsnkyZOTrdNtvQBMsyzffPNNF4B9/fXXLhOWK1cud+ogFez7Z87UwkJDmWpP8dlnn7lZjyrWV6CljJc/ZcQ0e1EtJXT6IQVrDz74oOviDwAAENMBmGYMKpvkf5qgYG+88UayZf7ZsNSoDcWTTz7pLpFsq+ybfwYuHAVxugAAAMRNDRgAxIMLF5Js/0+/uZ91rd8BIK4zYAAQy37+dq8tn7DBjh865X7/atw6Wz1tm93SqaqVr1viSu8egDhABgwA0hh8LXh9lS/48uh3Ldd6AEgNARgAREjDjMp8pWT5xA0MRwJIFQEYAERo78ZDyTJfwY4fPOW2A4CUEIABQIROHjmdrtsByLgIwAAgQrkK5EjX7QBkXARgABChEtcVsjyFcqa4TZ7COd12AJASAjAAiFDmzJlcq4mU3PJQVbcdAKSEAAwA0kB9vpo9VStZJkyZLy2nDxiASNCIFQDSSEFWuZuL26ZFO10T1vpdq1uVJmXIfAGIGBkwALgICraKVsjvftY1wReAtCAAAwAAiDICMAAAgCgjAAMAAIgyAjAAAIAoIwADAACIMgIwXJQLF5Js/0+/uZ91rd8BAEBk6AOGNPv52722fMIGO37olPtdfZBWT9vmOoTThBIAgNSRAUOag68Fr6/yBV8e/a7lWg8AAFJGAIaIaZhRma+ULJ+4geFIAABSQQCGiO3deChZ5ivY8YOn3HZXWu4COazW3ZXcNQAAsYYaMETs5JHT6brd5ZS7YE6r3b7yld4NAABCIgOGiOWKMJsU6XYAAGRUBGCIWInrClmeQjlT3CZP4ZxuOwAIhRY2wH8RgCFimTNncq0mUnLLQ1XddgAQTLOkP+612LWuEV3r91iZPU3tKKKJAAxpoj5fzZ6qlSwTpsyXltMHDEC8trDxakd1DVxuFOEjzRRklbu5uG1atNP9B1u/a3Wr0qQMmS8Al9TCRp8rfI4goyADhouiD8miFfK7n3XNhyaARGhhA2ToDNiZM2ds3LhxNm/ePDt69KhVrFjRunXrZnXq1EnxdkuWLLGFCxfaxo0b7dChQ1asWDGrV6+ede7c2fLly+fbbtWqVda7d++w96PH6tSpk/u5V69etnr16pDbZcmSxRYtWuT7/d5777W9e5On0du1a2d9+/aN6LkDQKKJpxY2QIYOwIYPH26LFy+2Dh06WOnSpW327NnWv39/Gz16tNWoUSPs7UaOHGmFCxe2Fi1aWPHixW3btm02bdo0W758uQvocuT4b2FluXLl7Lnnnkt2+7lz59p3330XEOg99NBD1qZNm4DtTp48aaNGjQoZEFauXNnuu+++gGV6DgCQUdHCBoiDAGz9+vW2YMEC69Gjh3Xs2NEta9mypXXp0sXGjBnjLuEMHjzYatWqFbCsSpUqNmzYMJs/f74vkCpUqJAL0oK99957LliqWvX/n+kXKshSZk5uu+22ZOuKFCkS8r4BIKO3sElpGJIWNshoYq4GTMOIGtrTsJ1HmavWrVvbunXrbN++fWFvGxx8ScOGDd319u3bUw38du/eHTKoCqZgLleuXPbHP/4x5PqzZ8+6LBkAgBY2QFxkwLZs2eKyUHny5AlY7mWltm7d6oYXI3Xw4EF3XaBAgVSDKkktADty5IitWLHCmjZt6oKwYN9//73LgJ0/f95KlCjhhlF1ScmBAwd8+yk7duxIcXsAiNcWNpoN6Z8JU+ZLwRctbJDRxFwApkBEdVzBvGUKVtJi0qRJLqPWqFGjsNsoWFIxvYK81Oq1NDyq7UMFahUqVHA1amXKlLHff//d1a79/e9/d/usIdVwpk+fbuPHj0/T8wKAeEMLG0RT7hhvrBtzAdjp06ctW7ZsyZZnz57dtz5SymrNnDnT1ZIpKApn5cqVbtbkgw8+mOp9fvHFFy6bdvPNNydb9/LLLwf83qpVK+vXr59NmTLF7rnnHjcrMxQNt9avXz8gAzZkyJBU9wUA4g0tbBDtxrqxKuZqwFTvpRqqUK0pvPWRWLNmjY0YMcLq1q1r3bt3TzVQU5ZMw4op2bNnj6tD03ZZs6Yeu2bKlMm1plDGLFwrC69wX5MFvItmaQIAgMQVcwGYhhr966E83jIFK6lRndjAgQPdkKBmRqYULCmj9uWXX1rt2rXd7Mj0qBPz52W9NCQJAAAQkwFYpUqVbNeuXXb8+PFksxS99SnRTEY1PS1YsKC98sorljt37hS3X7ZsmZ04cSKioErDj6VKlbLq1atbpJQ1i2QSAAAAyDhiLgBr3LixG7JTYbr/8OOsWbOsWrVqvhmQakcRPFtQWbI+ffpY5syZXVPWSIIeBVU5c+a0Bg0apLjd5s2b3eM1b9485HpluLTf/s6dO2cffvihq2kL1SIDAABkTDFXhK8gq0mTJjZ27FjX8kEZpzlz5rhT/AwYMMC33dChQ11d1dKlS33LVPCujJOK7n/44Qd38SgjFtxUVUHTN99842ZIppYpS2348auvvrIJEya4+ypZsqQ7hZJu8/PPP9tf/vKXkDM7AQBAxhRzAZgMGjTIZbp0aqBjx465Wi4V1NesWTPV2i+ZPHlysnW6bXAAptYTylKFy2p5Lly44M4xee2111rZsmVDbqN9VPG8gi4Fjqo702mJXnzxRRdQAgAAxHQAppmOjz/+uLuE88YbbyRb5p8Ni8Sf/vQnd0mNhjQ/++yzFLfR7MXgNhQAAABxUQMGAACQ6AjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAIhxuQvksFp3V3LXSAxZr/QOAACAlOUumNNqt698pXcD6YgMGAAAQJQRgAEAAEQZARgAAECUEYABQAKiaBuIbRThA0AComgbiG1kwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAOAiMdMQQELNgjxz5oyNGzfO5s2bZ0ePHrWKFStat27drE6dOinebsmSJbZw4ULbuHGjHTp0yIoVK2b16tWzzp07W758+XzbrVq1ynr37h32fvRYnTp1cj/Pnj3bhg8fHnK7adOmWeHChQOWLVu2zN577z3bsWOHFShQwFq1auXuK2vWmDzUAC4BMw0BXKyYjAoU8CxevNg6dOhgpUuXdkFQ//79bfTo0VajRo2wtxs5cqQLiFq0aGHFixe3bdu2uSBp+fLlLqDLkeO//6WWK1fOnnvuuWS3nzt3rn333XchA72uXbtayZIlA5blzZs34Hc9zrPPPms1a9Z0Ad5PP/1kEyZMsMOHD1ufPn0u4YgAAIBEEnMB2Pr1623BggXWo0cP69ixo1vWsmVL69Kli40ZM8Zdwhk8eLDVqlUrYFmVKlVs2LBhNn/+fGvTpo1bVqhQIRekBVPmSgFf1apVk637wx/+YNddd12K+/7WW2+5bN2oUaN8Ga/cuXPbBx98YO3bt3eBHwAAQMzVgGkYMUuWLNauXTvfMmWuWrdubevWrbN9+/aFvW1w8CUNGzZ019u3b0818Nu9e7fddtttYbc5ceKEnT9/PuQ63b8ubdu2DRhuvOuuuywpKcll9AAAAGIyA7ZlyxaXhcqTJ0/Aci8rtXXrVje8GKmDBw+6a9VjpUQZMgkXgGlI8eTJk5YtWzY3RPnEE09YmTJlfOs3b97sy7j5K1KkiBUtWtQ9r3AOHDjg209R/RgAAEhcMReAKRAJLmwXb5mClbSYNGmSy6g1atQo7DbKai1atMgFeQr+/Cn7dscdd7jsmoLCTZs22ZQpU+zxxx+3d9991xcMegFUuH33D7CCTZ8+3caPH5+m5wUAAOJXzAVgp0+fdlmmYNmzZ/etj5SyWjNnznS1ZP7ZqmArV650syYffPDBZOuaNm3qLp4GDRpY3bp1rWfPnjZx4kTr27evb+am/34G77uGL8PRcGv9+vUDMmBDhgyJ+HkCAID4EnMBmDJOZ8+eTbbcC3C8mYypWbNmjY0YMcIFS927d081UFOWzD/QSolmYlarVs0Fbh4v8PL2M3jfU9pvDVPqAgAAMoaYK8IPN1znLYskUFGd2MCBA61ChQpuZmRKPbiUUfvyyy+tdu3abnZkpNRj7Pfffw/Yb//9DN73UEOTAAAgY4q5AKxSpUq2a9cuO378eLJZit76lGgmo4YFCxYsaK+88oprA5ESNU7V8GBKsx9D2bNnT0Bhf+XK/23GqBoxf6pZ279/v289AABAzAVgjRs3dkXxKkz3H8KbNWuWG/bzit7VjiJ4tqAyTWp4mjlzZteUNbWZj/LFF19Yzpw5XW1XKEeOHEm27Ouvv3aBloY3PeXLl7eyZcvajBkzAlpVfP7555YpU6YUJwEAAICMJeZqwBRkNWnSxMaOHeuCn1KlStmcOXNs7969NmDAAN92Q4cOtdWrV9vSpUt9y/r16+cyUyq6/+GHH9zFo4xYcId7DSF+8803LjgKlylTQ9hrr73WtZfQLEi1m1AwqCHIhx56KGBbzYzU0KeCwGbNmrlO+OrErwaw11xzTToeJQAAEM9iLgCTQYMGuUyXTg107NgxV8ulgnqd4ie12i+ZPHlysnW6bXAAptYT586ds+bNm4e9TxXm6xRDOkXRqVOnXC2Xmq2qM39wzditt97qZi+qpYROm5Q/f343s1LbAgAAeDIlqU07YoqGNzVz85133knW2DWWHPj5N/v82X/bnUNvtSLl81/p3QEQJ/jsAGKwBgzxI3eBHFbr7kruGgAAxPkQJOJD7oI5rXZ7ZncCAJBWZMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAEFW5C+SwWndXctdARpX1Su8AACBjyV0wp9VuX/lK7wZwRZEBAwAAiDICMAAAgCiLySHIM2fO2Lhx42zevHl29OhRq1ixonXr1s3q1KmT4u2WLFliCxcutI0bN9qhQ4esWLFiVq9ePevcubPly5fPt92qVausd+/eYe9Hj9WpUyf388qVK23+/Pm2du1a279/vxUqVMhuuukm69q1qxUpUiTgdr169bLVq1cnu7+6devayJEjL+JIAACARBSTAdjw4cNt8eLF1qFDBytdurTNnj3b+vfvb6NHj7YaNWqEvZ2CnMKFC1uLFi2sePHitm3bNps2bZotX77cBXQ5cvy34LNcuXL23HPPJbv93Llz7bvvvgsI9N5++237/fffrXHjxlamTBnbs2ePTZ061b7++mt3n3o8f0WLFrVHH300YFnwNgAAIGOLuQBs/fr1tmDBAuvRo4d17NjRLWvZsqV16dLFxowZ4y7hDB482GrVqhWwrEqVKjZs2DCXxWrTpo1bpiyWgrRg7733ngv4qlat6lv2xBNPuKAvc+bMARktZbsUiHXv3j3gPvLmzRvyvgEAAGK2BkzDiFmyZLF27dr5lilz1bp1a1u3bp3t27cv7G2Dgy9p2LChu96+fXuqgd/u3bvttttuC1hes2bNgODLW3bVVVfZjh07Qt7XuXPn7MSJEyk+HgAAyLhiLgO2ZcsWl4XKkydPwHIvK7V161Y3vBipgwcPuusCBQqkuJ0yZBIcgIWi4OrkyZOWP3/+ZOt27tzpMnZnz551mTZl3ZS9y5o15g41AAC4QmIuKlDAFKpmylt24MCBNN3fpEmTXEatUaNGYbc5f/68LVq0yAV5Cv5S88knn7gAq2nTpgHLr776apeFq1Chgp06dcrVsU2YMMEFZS+++GLY+9Nz8gJFCZdZAwAAiSHmArDTp09btmzZki3Pnj27b32klNWaOXOmqyVTAX04mumoWZMPPvhgqvepWY7jx4+3Jk2aWO3atQPWPfPMMwG/KxP26quv2owZM+zee++16tWrh7zP6dOnu/sEAAAZQ8wFYKr3UnYpVGsKb30k1qxZYyNGjHAF88GF8qECNWXJgjNawZSZ0uxJZbgGDBgQ0X7cd999LgBbsWJF2ABM9W7169cPeJwhQ4ZEdP8AACD+xFwApqFG9dsK5g3RBffeCkV1YgMHDnSBkmZGplR/pYzal19+6bJZqtkKR8X/ffr0cbVpCuxy584d0fNRLzJRP7Nw9JwieV4AACAxxNwsyEqVKtmuXbvs+PHjyWYpeutTopmMffv2tYIFC9orr7ySaqC0bNkyV1SfUvH9b7/95oIvZebUaywtwZL6hkUyCQAAAGQcMReAqeGpiuJVF+U//Dhr1iyrVq2abwakMlLBxerKkilQUtsIBUqRBD1ffPGF5cyZ0xo0aBByvWY7qgmsCuUV0IWrJVPA6A2TepKSklwRvqTWxR8AAGQcMTcEqSBLBe5jx461I0eOWKlSpWzOnDm2d+/egLqroUOHuoL4pUuX+pb169fPZZxUdP/DDz+4i0cZseAgSB3uv/nmGzdDMlym7KWXXrINGzZYq1atXMDnH/TlypXLF7ht3rzZzXRs3ry522dvaFP70LZtW9cQFgAAICYDMBk0aJDLdOnUQMeOHXO1XKq7UgPU1Gq/ZPLkycnW6bbBAZhaT6hpqoKm1O5TGThd/JUoUcIXgGl/b7zxRhcQakalsnA65ZEycv5NZSPhzfSkHQUAAPFH3/8aXUtJpiSNkyGm6CTkzIIEACA+vfPOO6mOfBGAxSANvX777bdWsmRJX/+z9OK1uFA7DUXoGU1Gf/6S0Y8Bzz9jP3/J6Mcgoz//aByDSDJgMTkEmdFp8sDlPqG33hwZuS4toz9/yejHgOefsZ+/ZPRjkNGf/5U+BjE3CxIAACDREYABAABEGQFYBqMzDXTp0iXkCc8zgoz+/CWjHwOef8Z+/pLRj0FGf/6xcgwowgcAAIgyMmAAAABRRgAGAAAQZQRgAAAAUUYABgAAEGU0Ys0gzpw5Y+PGjXOnOTp69KhVrFjRunXrluz8mPFOJ07XydtXrVrlTuB+1VVXWfXq1d1zLVOmjG+7YcOGue2ClS1b1j744AOLV3revXv3DrluzJgx7lh4dKL4t99+251IPk+ePNakSRPr3r172BPTx4twr63ns88+s6JFi1qvXr1s9erVydbXrVvXRo4cafHixIkT9tFHH9n69evd+19/3wMHDrQ77rgj2bbbt2+3N9980732WbNmtXr16tmTTz7pmj/7u3DhgrvPzz//3J3btnTp0vbggw+meN7cWH7+ej46t/CSJUtsy5YtbhudaaRp06Z2//33W44cOQLus2HDhiEf6y9/+Ys7DvH4+qflMy+eXv+0HINwr6vcfPPN9tprr7mf//Of/9h9990XcrsXXnjBmjVrZumBACyDGD58uC1evNg6dOjg/phmz55t/fv3t9GjR1uNGjUsUUyaNMl9uSiYUJB58OBBmzZtmgvAFIDoxO4eneZJx8CfApFEcM8991jVqlUDlpUqVcr3s76Enn76adcFWl/Av/76q3388ce2a9cue/XVVy2etWvXzn2Y+tNk71GjRlmJEiVc8OXRz48++mjAtvE2Nf+3336z8ePHW/Hixa1SpUouCA9Fr3HPnj0tb968LtA+efKk+9L66aef7J///Kdly5Yt4Dx2H374obVt29auu+46W7ZsmQ0ePNgyZcqUbl8+0Xz+p06dcp+B+gfkT3/6kxUsWNDWrVtn7733nn3//ff2+uuvu+fmT++h22+/PWBZ5cqVLV5f/7R85sXT65+WY6DTDgXbuHGjffrppyGTEQo4b7nlloBl/v/EXjK1oUBiW7duXVKDBg2SJk2a5Ft26tSppPvvvz/pscceS0oka9euTTpz5kzAsl9++SWpWbNmSYMHD/YtGzp0aFKLFi2SEs3333/vXutFixaluF3fvn2T7rzzzqRjx475ls2YMcPd9ptvvklKNGvWrHHPbcKECb5lPXv2TOrUqVNSvDt9+nTSgQMH3M8bNmxwz3PWrFnJths1alRS8+bNk/bu3etb9t1337nt//Wvf/mW/frrr0lNmjRJeu2113zLLly4kPTEE08k3X333Unnzp1Lirfnr88EfTYEe++999z2Og7+tMz/+SfC6x/pZ168vf5pOQahvPzyy0kNGzZM2rdvn2/Znj17kn1nXg7UgGUASrtnyZLFZQY8Srm3bt3a/Re4b98+SxQ33HBDwH/yoqHHa665xp18Ndj58+ft+PHjloiUlj937lyy5Xq+K1ascOcb9f/vt2XLlpYrVy5btGiRJZovvvjC/fceaghFx0jHKl4pqxFJ1k6fA7feeqvLEvhnefT34f+aK9uhY3LXXXf5lunY3XnnnbZ//373mRFvz1+fCfpsCNagQQN3HeqzQU6fPu0uifD6R/qZF2+v/8UcA//SHP1d1KxZ04oVKxZyG2WKz549a5cDQ5AZgIabNOwYnGr2hqi2bt0a8KGcaDT8dPjwYReEBQ9LqEZA1/ny5XOp9cceeyzua6BEwy364FDgrSHmHj16uKEE0ZCTPoSDT0CrLykNsej9kkj0ZaIA4/rrr3d1P/527tzpAk99wBYqVMjatGnjumOrPiqR6ItTfwOhTjqsz4Hly5f7ftfrr0Bcw9PB23nrE6VsQfVNkj9//mTrVC+lGih9fuhYdOrUyW677TaLZ5F85mWk13/58uV27NixsK+rhjVVuqIAVH87KmVRjWh6SaxPGYSkOqhQ/x14yw4cOGCJbP78+e4L6JFHHgl47h07drRrr73WfcB+88037sN227Ztri4uXr+Atd+NGjVydQv6UlHRtWq7VOf11ltvueer94OEe0+sWbPGEsm3337rakSCP2Svvvpqq1WrlqsL1BeSaiQnTJjggrIXX3zREklqr/nvv//usgHKJGhb1UgF10Ql4ufF5MmT3T+mf/jDHwKWK1hXHakCdh2PqVOn2ksvveQyR8oExaNIP/My0us/f/58957XZ6a/zJkzu5owFe0XKVLE9uzZY1OmTHH1c/rnVpNX0kN8fssgTZRCDx6WE73xvPWJSkMLf/vb31zhpH9BbXDhtf4T1FCMik+Vko7FQtNIaJjFf6jlj3/8ozVu3NgefvhhGzt2rJvd573e4d4T+iJOtOFHfbnoC9XfM888E/C7MmGagDBjxgy7995707fY9gpL7TX3ttHPGeXzYuLEiW4o/n/+539cNsif/lnx16pVK5f90N+QMkjBsybjQaSfeRnl9T9+/Lh9/fXXLvgOfv01IqRJO8GfD8qC/uMf/0i3AIwasAxAHxahxrC9L9p4/DCJhP6TGzBggPsPV/+9ajguJfrS1X8++lBOJBp+ViCmmUEaevRe73DvCe+DNhGotks1LRo2CDXMFMybep5o74HUXnP/bTLC58WCBQvs3XffdXWwkWS0FJDcfffdbrhq06ZNlihCfeZlhNdfFHTqOUU6rKyWRgq+f/nlFzejOD0QgGUASh17QxD+vGVKsSYafVAqXaxrZX0ieY76YNEfmYZjEo0KTPWhqqE2bygh3Hsikd4PCr70nCP9kPUKcdVHKJGk9prrfe8F3tpWtVEapgreTuL9/fHdd9+5nljKYvTp0yfi23nvjUT6fAj1mZfor7//8KNasmhiSqTS+/OBACwDUF8U9XcKnvmipnXe+kSiFLmGl1TL8/LLLycrvk8pW6JaoeCmlIlANQz6glVxbfny5V02MPg/eQVoKrBNpPeDPmT1nOvXrx/xcZJEew+o35meU6jsjRpX+r/m+llBa/DMwET4vNBzUC8oFVSrzi8ttZ6J+N4I9ZmXyK+/R3VsGhFQjVdaMv7eeyCSbHokCMAyANUAaehp+vTpvmVKvc6aNcuqVauWUDMg9Tz/93//102V1gesimlDBWih2g68//777r++4ILceHLkyJFkyzTL9auvvnJFpRpu0H99aj+gsyL4Hwd1CtfMyeBaqXg+Fhpa0Ydszpw5A9bpn5HgWje99irCl0Q7Q4So0Pjf//53QNuZlStXun9U/F9zDVcrMFEDY/9j869//csFcqH+puKBJqSoJEHNeEeMGBF2KC3U35D+TtSsU1+8oWaSxrq0fOYl6uvvb+HCha7bf7jMeKj3gCZy6TtTDb7TKwtIEX4GoCBLH7AqINUbSx3RNcVap+rRB1IiUYGkgg2llZUmVpDhT72vlF7v2rWr6wml03B4M+U0JVkfRPoAilc6TYa+WPQhqZlM+tJRUbkCEP8iXBUUP/HEE64zuvrDeZ3wFXjEcwAaXOejgDzUh6xOv6QAXe8B/T3oC+rLL790Z1FQ9+94+5LV6ZU03O4NE+lvwKtT0VkRFHTrVDKa6fnUU09Z+/btXbCtWYCaBep/yhYNs+iMGVqnFh5qP6Bjs3btWvvrX/+aai1lLD5//ePRt29f95mgUw+p+Dp4RqwXWGjGo4auvZ5puk998SpwffbZZ0MWqMf689fzjvQzLx5f/0j/Bvwz4wqiNAs6FLWe2L17t9WuXdttp+9KJTCUGdQpzNJLJnVjTbd7Q8zSF4x3Lki9SfWhm949TWJBuPP7eZYuXeo+jDTtWlky/bHqPyF9CeuLWh/O8dqCQvRfuj5c9OGhLI+GFvQhot5WKsb3pw9U71yQ6gOkIF1BWiL0QRP1PtOQgb5Qg780tFyn39HwmwJyfUGr75H6gCkgDZ6CHw/F1PqSCEWBtdf/7Oeff052LkgF4uqB5k9/Ezqtl7509Dei986f//xn9w9MPD5/CXduP9EM6UGDBvlqxBR8qF+eaqP0z4uCkAceeMD9LcXj81fwkZbPvHh7/dPyN6Aiev0zou3VnifczGll/DQMq+8LHT/1PtMsyPT854wADAAAIMqoAQMAAIgyAjAAAIAoIwADAACIMgIwAACAKCMAAwAAiDICMAAAgCgjAAMAAIgyAjAAAIAoIwADAACIMgIwIM6sWrXKnWD6//2//3fZT+ukx4kFs2fPdvuia1z546RzA+pxdEqjSPznP/9x2w8bNuyy7le8euedd6xly5butFjIOAjAgMvA+8LxvzRt2tSdFHbw4MG2bdu2K72LMSWev6B1NreOHTu6/e/fv78lOp2gWScr1nlkb7jhhiu9OwlB52PU+Ugv9z9ViC3xe9ZhIA54J7yVkydP2vr1692JXnVS8L/97W8x/QX27LPP2qlTpywWNGjQwKpVq2aFCxe2WMxI6uTnOoG3TuR84MABK1KkiCWquXPn2q5du6xPnz5XelcSRr58+ax169b22WefuRNFlyhR4krvEqKADBhwmQOwRx55xF2eeOIJ+8c//mEPPfSQnTlzxg07xLLixYtbuXLlLBbkzZvX7YuuY83MmTPd9X333Wfnz59P+GHSf/3rX1asWDG76aabrvSuJJQWLVq498///d//XeldQZSQAQOiTMOQEydOtI0bNwYM6+i/3zlz5tjOnTstW7Zsdu2119q9995r9evXj+h+v//+e5s3b56ry1EWRsqWLWtt27a1du3aJdteQ2Y1a9a0v/71rzZ27FiXvTl8+LC9/vrrVqtWLVcDtnr1apet879NSgYOHGh33HGH+1m3W7RokXue2p+sWbNaxYoVrX379ta4cWPfbRSwDB8+3P2s56+LZ/To0W5fvG3879+j56vjuW7dOjt9+rTLHmi494EHHrCcOXOGfM7/+7//64bRli9f7jKTlSpVskcffdQ9VlocPXrUlixZYuXLl7euXbva9OnTbdasWS6LoYxY8DCrgrTbb7/dOnXq5B5f2TO99tWrV3cBuvYjmF6Dd9991zZv3mzZs2e32rVr2+OPP25Dhw5N9vqkZM+ePe44ea+zsi4aRtQ/B5FmXH766Sf3enbo0CHZ8xMFEB999JELIvbv329FixZ1mR29HuFoXz744AP797//bb/++qvlzp3bbrzxRrdfFSpUuKTjoSG98ePHu/fR3r177dNPP7VffvnFqlatam+88Ybb5sSJE26fFy9e7I6R7lPrO3fubDVq1Ej2+GnZXu/7Dz/80L3PdDy0baFChdx78LHHHgv4h0J/7/qHTe/1bt26RfR6IL4RgAFXiPcFphqi559/3pYtW2ZlypSxu+66yw39LVy40AUcTz75pAvEUjNp0iQ3FKahOn3xHTt2zL799lsbOXKk+9LR/QT77bffrEePHnbVVVe5L0ll5vQFGE6XLl3CZkX0RZojRw7fMgV1Cro0zKqhwyNHjthXX33lnmvv3r1dICoKOhSU6ctRP//xj3/03UdqgYECPNXUKWDV/hcoUMAFGPrS1XPXF6//PomOi4Idffkp66D91v307dvXZSVDfemHo+FkHTMFVXocBZYKwBQIhAvmFAjomF9zzTXWqlUr9yWu117HRAGSvqA9eg4DBgywLFmyWJMmTdzQpoI2vZYKoCKloW89PwWbt956q5UuXdrtx/z58+2bb75xweDVV1+d6v2sXLnSXes9Fsqrr77qnn/JkiXtzjvvdMfm448/th9//DHk9nq/KtBXcFKnTh332ut9oqBWr6OG6f0f62KPx+TJk912un89jm4vv//+u/Xs2dN+/vln9z7905/+ZMePH3fvU70eem9p+NuTlu31N6z3mY6zHlPB/9mzZ10grn+UVPcVnNG9/vrr3RCv/gnTZwESXBKAdLdnz56kBg0aJPXp0yfZunHjxrl1vXr1cr/Pnj3b/d6zZ8+kM2fO+Lbbu3dvUps2bZIaN26ctHv3bt/y77//3m2v+/Hnv43n7NmzSU8//bS7D92fP92HLsOHD086d+5csttqf7Q+NR988IHbbuDAgUnnz59PcX+OHz+e1Llz56Q77rgj6eTJk8mO19ChQ0M+xqxZs9x6XXuOHTvm7qdZs2ZJW7du9S3XPrzwwgtu+/Hjx4d8zqNGjQrY1xkzZrjlr776alJadO3aNalRo0ZJ+/fvd7+vXLnS3c9LL72UbFvvOeqiY+bvnXfeccsnTpzoW6bXpEOHDkkNGzZMWrNmTcD2Q4YM8d1XasdJ7wHdT8uWLZM2bdoUsL3uV++NAQMGRPR8n3/+eXf/O3fuTLbOe18+/PDDSSdOnPAt//XXX937ONTr26NHD/f433zzTcDyX375xe2v3iuXcjy8v7UWLVoEvEc8L774oluv19/foUOHku65556ktm3bJp06deqitl+2bJnb9o033gj5d3D69Olkyz/55BN3m5kzZyZbh8RDDRhwGek/fA2D6PLWW2+5/9SVndFQRPfu3d023pCbhiSUyfGvwVLmS8M6ylSkJlQGQxko/Zeu+9AQZTA9nh7XywiklTIVynRp+ERDmZrJldL+KLumIURlofyHYC+Gska6H2WRNLTp0T4ow6TnFKoeK1euXO45+++rMljaPi37tGXLFjcMploor+heWS+9bjou2rdQlB3SrEl/GqYT/8fX0KqyJ8pYBQ9taYgq0tdMQ3u6Hz2mXid/ul8NcWuITJmc1GiIUPyzdB5lbkRDcTrGHmVjleEMpmOnzJjaL2go1J+yP23atHFDnrpc6vHQMLz/e0SUaVPmU6+fHstfwYIF3fHSNl7WL63be4IzsN7fgT4Dgul+RBlBJD6GIIHLHIAp4PKCIX3ANm/e3P785z/7vhD0Ra5apVDDOt4wlrZJjVeboh5NGtbScJO/gwcPhgwGNGx3MRQsqO5GwcfLL78c8KUrGtrz6l/27dvn6rP8eXVqF8s7JqqnCaYgSAGghnJ0XPyHVTX8FjzMqtdGQUW4oCkUr1hawZv/sLKGNTWUqOFJDcMF0zCrf/DnBSni//hbt25116HqkPT8VAiv4azUqDZONAwdqs2Bek9duHDBHavrrrsuxfvSEJwCnVDD1N7+qn4rWKhlGhb13ieh9kv7611rWPhSjodqtEK9f/WPiYYFQz2+ZnrKjh07XNCX1u31nDX0rr8B7buW6b2qySSh6udEpQCiQA6JjwAMuIz0n71qsFKiAMH7Ag7mtV3QNinRl4JqaZRVqFy5sgsC9GGuL0tlDZRlUz1OuP+400oB1TPPPOO+SFQcH9x2QV/Uf/nLX9x2qpW5+eabXb2LAg99GSl7pX2+FF7GJlQ2xjt2Ciq0nX/AkCdPnpDb61gpEImEgkllJRV0Bk9MUEZHAZhqoUIFYKEeXwGg+D++9/zCBch63pEEYJooIKllUSNpOaJsjoIQTRzw9tl/f/X65s+fP6L3md4j8vXXX7tLON4/EpdyPFJ6fGXWUmoo6x2XtG6v9/vbb79t48aNc1lI/SMiChT1D5hqPYN5/6QETx5BYiIAA64wBQfh/uP1OmOnVBgvCmgUfGkoS0XK/hYsWBAws9BfuP/EU6JgUMGX9nnIkCHJhrW81gwKvjQzUENS/jTjTft7qbxAJlz3cG95uIDrUmimnZetUrAbijImargbPPQVKW+/U3tvpMZ77yhLqSzMpfCCHwUjwYGv9lcBpCZ2BAdJynKFe37+EzIu1/EI9T737k8zU1UsH+njR7q9l5kbNGiQOy56L2higWY7a3KBJg0oGx4qWL7YrDTiCzVgwBWmjJX+a/aGZPxp5pa3TWpDneI/g9CzZs2adNtXZT/UwkFfJqqzCvV4qe3P2rVrky3zhuQizUD5HxPNOAym4E/7oGHI1ILXS+n9pZl4CnqDL15N06X0dPJaUoTKtqgWy6vHSo03tO0NRV4Kb4aoNzwYan9Dvd9CLfOGBSPdr/Q6Hh4Ntyowi/Tx07p98Ptb71e1RtEsYNHMyWDecU3LTFzELwIw4ArzaohUzK6hHf8gYsqUKW5ozOumH47XriE4uFFwkp6NHf/+97+7oRQVNSsTkNr+BH9ZahjMG4rxp2yAvtzS8iWq4E7DPBrqU1sAj9p6/POf/3TBYnDPsPSg+joFxnqOCkaVcQy+aLmG6/R8Qw39RkJDt8qgaPgquI2DhrX0/CI9TroftYMIFazqPRcqKA7Fq+XasGFDsnVeJvD9998PqD9UQblajIQKDHVRhlaXYArG/fc3vY6H/xC1Amjdl9pU6H0TTP8UeUOKad1e78lQWTkvGxiqCF+319+72lEg8TEECVxhqhnSkJaG5dRnS8NEXh8wDfVouCO1Hk26jQICfTHog1+NQVX/pNoa9SVS08hLpS+HqVOnusBCQyShCpH1WF4NmvqSqQ+XghV9car2SzMxVTMV3DxUWSplGJQp0bCmCuUVkOnYhOsFpiGhfv36ud5LmtWoL0ftl2ahbdq0yWVY1GspvSng05evAudwQ7gKDHUsVIivSRHNmjVL8+Poi1in+1EvuKeeesr1OVMQoKBEExiUEYrknKL6otcx0nkqVSeoWXzKsGjfVR+o4Et1WxoaTo2anuq10lBa8ExO3a9mpOr46H2s5686P72P1WhWgVMwZYP03F588UUXpOm9o/eXAnEFOhrO1DFMz+Ph73/+53/c34n6oGkWp/ZTr52CRg0hq7B+2rRpvpqstGyvY6TtFDhqVqdqMhW8K/Ol1yS4BkxD+/obU71k8IQWJCYCMOAK0xehviD1BaRaLQU5KnD2OuGHG+bzpy9FdbDXB76CGH0pqdHnc88952p10iMA8wqEda0i81A0q1Jfoio0Vqdx7c+KFStcdkLPZ9SoUe7LNVT3du2rMmz6olbBtYIczXhLqRmrgi49PwUPuk+vE77qzjTcE6oFwKVQVkatLfSa+c9+DEXBiIIHDVdeTAAmt9xyiztmCnbVAkHPR0GQMmwKqCKtb1MwqvtQgK4MpIIbtSDR5AkFSpHun95nCq5nzJgR8pyXCogVPCvrqkBEk0uUKdXrFCoA0z8Wyl4pO6dAVcdWw3UKrJRt8z9jQnoeD4+CIrWH0d+cAkW9XnqN9Z5SQKf3kf+kgrRsr2FoBbj6e9R7U1lBHS/vLA36+/Sn1iV6/4Y6awUSUyY1A7vSOwEAiJyyJervpkyWhlujSXVKCjQefvhhd0qljH480ot6BGrIUv/cXGxfPsQXasAAIEYpaxLcgkTZRGVhlC3xP01OtOj8ompE+sknn6TaHiUjHI/0oGFzDQVfSlNkxB+GIAEgRqmmSJkRnUtQw3UKPvRFvX37dlfnF0n7hstBJ8pWby313brYNhuJdDwulVqa6ITiqZ3sHomFIUgAiFHqeaU6OtX0afacsj2qr1Om56GHHkrTCbkTAccDiYQADAAAIMqoAQMAAIgyAjAAAIAoIwADAACIMgIwAACAKCMAAwAAiDICMAAAgCgjAAMAAIgyAjAAAACLrv8P2eeeTfPpiD8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "modularion factor: {mu:.2f} +/- {mu_err:.2f} %\n" + ] } ], "source": [ - "unpol_qs, unpol_us = source_photons.create_unpolarized_pseudo_stokes(TOT_NUM_EVENTS, show=True)\n", - "# np.save('unpol_qs.npy', unpol_qs)\n", - "# np.save('unpol_us.npy', unpol_us)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "da3b6513", - "metadata": {}, - "outputs": [], - "source": [ - "# mu, mu_err = source_photons.calculate_average_mu(bins=20, show=True) \n", - "mu = 0.310\n", - "mu_err = 0.001" + "average_mu = source_photons.calculate_average_mu100(show_plots=True) \n", + "mu = average_mu['mu'] #0.310\n", + "mu_err = average_mu['uncertainty'] #0.001\n", + "\n", + "print('modularion factor: {mu:.2f} +/- {mu_err:.2f} %')" ] }, { "cell_type": "markdown", - "id": "b3417867", + "id": "eb4a7306", "metadata": {}, "source": [ - "Compute the expected MDP assuming a background rate" + "Get the azimuthal angles for each photons and calculate the Pseudo Stokes parameters from the scattering angle for each photon in the data and background simulation" ] }, { "cell_type": "code", "execution_count": 9, - "id": "21faf1ee", + "id": "5db15edd", "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Calculating the MDP...\n", - "Exposure: 12.999999999998863 s\n", - "Total number of events: 1305\n", - "Modulation factor: 0.31\n", - "Background rate: 22.0 ph/s\n", - "MDP_99%: 49.0599013039517 %\n", - "\n", - "MDP: 49.0599013039517 %\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZlElEQVR4nO3dCbhVc////3fzTGlCudMkhUwNSCoNSmQq5A6hpAnhLtyGG5HMikoDmRUZQiW6K7OUVHelQUpJ8zxP+3e9Pt//2v+199nnnH3mvfZ5Pq5rtztrrb32mvZa7/X+DKtAKBQKGQAAQIIrmNcLAAAAEA+CFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYgTieeeKJ7AYli6dKlVrRoUXvqqafyelGQh/bs2WPHHnusdenSxZIdQUseOnz4sI0aNcqaNWtmxxxzjBUpUsQqVapk9evXt27dutnEiRPzehETys8//2z//Oc/rVq1alasWDE76qijrGbNmnbppZe6k/bu3bsjpi9QoIA1b948z5YXwRDk4+Suu+6y8uXLW58+fVKM++OPP+y2226zk08+2UqWLGmVK1e2c88910aOHGkHDhxIMf2XX35pd999t7Vs2dLNU9vl/PPPT/P7x4wZYz169LDGjRu779BnHnjggbiXX0+Rad26tfucXocOHbL8ZOXKlW69u3btmqX5lCxZ0u677z5755133HkymRXO6wXIzwHLJZdcYlOmTLGyZcta+/btrWrVqu5ksnDhQnfw/fbbb9ahQ4e8XtSE8NZbb9mNN97oTnIXXnihXXHFFVaiRAlbtWqVffvtt/bZZ5/ZlVdeabVq1crrRQVyxffff2+ff/65Pf744+6i5acLV4sWLWzv3r3Wtm1bu+yyy2zHjh326aefuiBjwoQJ7tyjC6bn5Zdftk8++cSKFy/ufkdbtmxJdxkU5Gzfvt3KlStnxx9/vP3+++8ZWoeXXnrJpk+f7r5z3759GfosImm/PvLII/bvf//bpk6daklLD0xE7nvzzTf1oMrQ6aefHtq2bVuK8bt37w7997//zZNlSzTaFkcddVSoUKFCoa+++irmNN99911o69atEcO0fZs1a5Zty1GtWjX3QnLJ7uMkt1x33XWhggULhlavXp1i3MUXX+zWa+zYsRHDd+3aFapXr54bN3PmzIhx33//feh///tf6NChQ6E//vjDTdOkSZM0l2Hy5MmhlStXuv+/9tpr7jP//ve/41r+3377LVSiRInQgAED3O9Knz148GAoP/G284033pgt87vttttCBQoUCC1dujSUrCgeysO7JFFa8Oijj04xXndOulOKtn//fnvyySfttNNOc9OoiKRp06Y2fvz4FNPOmDHD3Un95z//ibuOxtixY91n9K47MaXNtXz+OzJliUaMGGFNmjRx45Tx0J2ZirSWLVsWMT+le4cNG2bnnHOOW1Yt85lnnunusI4cORLXtvrf//7n7hJPPfVUl7qO5bzzznMZK/86yMyZM8Op51jbQtvtggsuCK+HtuugQYPcdo6XsmIqrqpbt65L93qUKdP+PeGEE1y9A6Xnr7vuOluyZEmKeaxfv97uueceq1OnjpUqVcqti/6vz69YsSKu5fD2p+58VVxQpUoVdwdbr149GzJkiMtSRdO2uuqqq6xGjRpu/bWPtF+V2YpFx4O2ozKCjz76qFtGrbuX3tZ3P/300y4bpsyh1rtixYouY/jDDz+kWTyjbXDzzTe77aRtoH36zTffuGlU9Pevf/0rXDR4yimn2Pvvv5/qtnj33Xfd70fbUdtA+2bgwIER+zUjx8lPP/1kHTt2dPUGtE7ap7qzXbt2bYa3kYZrf5x11lkuQ6HfhPabsiFfffWVxUO/hw8++MBtI23naN4xE52p1Xb1fkMbN26MGKeiI23XQoUKWbyUxdE+ySidF66//np33Ck7kFnxnl9+/PFHt0+UoU2NjhHtp+gM0xdffGEXX3yxVahQwY1XkbSOxW3btqX6G/SO13/84x/uMzo/Dh48OOI3qGOsevXq7v+vv/56xPGnY1M0vcZpP+t3VLx4cXfsXXTRRTZu3LgU33/ttde6z7z66quWrCgeyiMqM/Yq0sVLJzsdrDrBqpy6d+/ergKWTl7XXHON/frrr/bEE09ky/Jpngpa2rVr58rFVQzjLYOKtVT+rR+PLsI6Wehi/dFHH7ky8Nq1a7tpDx486Oqb6EevE7em1Y9O6eC+ffu6C8Gbb74Z97bSBUInA51403LGGWfYww8/7E6GOqH6y4v9dRfuv/9+F6DoZKRlK126tE2ePNkN1zIrxaoLVFpUl+bee+91JxXVQVLdJNG2U3GVtw100lqzZo19+OGHLqWvbaCLlmgfKlBQal3l+5peJx5tc6XrdbHUyT0e2j+tWrVyJ1SdwPS3igLuuOMOFyypCMCvZ8+e7kKlwO24446zzZs326RJk9wFRdM/9thjMb9HgY6KIHR8XH755a4ulixevNilpzU/FXnqovznn3+6baNtq+IJXeiiaXm1DcqUKWOdO3d2F4733nvPHe8KdhQgaJiOPW1TBSU65nUM6oLlp8DntddecxdzLacCF120HnzwQZs2bZo7dgsXLhz3caILwK233uouPgoC9J0KzkePHu3WR/PWxSnebaTv0fIrCL/hhhtcsKhjW8WcOm60/9Lz9ddfu32bWp0T7VMFzTrW/JUzdaz997//dRd3BSl5RQHk3Llz3b7Vds2MjJxfdIxoGh3bOsa9c4pn1qxZbntpn3m/YdGxoeBCw3TsaR/Onz/fnnnmGTcvLb/Of9HLpeNW+1T7Xsfaxx9/7M4TKgLTMecdYzruX3zxRTv99NPdMeLRsSn6LekcpeDm6quvdjdXf//9tzuuFLTrN+DXqFEjVzdSx7g+l5TyOtWTX/3yyy+hIkWKuFRely5dQhMmTAinWVPzxBNPuFRiu3btItKo69evD6dXVUzimT59uhv28MMPx13c4aV4tVxK/Ua777773PhLL700tG/fvohx+nvDhg3hv/W9mrZPnz4u5ezR/2+++WY37uOPPw6l58iRI6GGDRuGi9Neeuklt/3279+f6bS/UuEaf8IJJ4T+/vvv8HBt10suucSNe/zxx1PdXocPH3brpemuvPLK0N69e8PTbdmyJVS2bNlQ+fLlQwsXLoyYx4IFC0KlSpUKnXnmmeFhEydOdPO58847Uyyn1nHHjh3pbiNv+byUvn/fbN68OVSjRo2YRQLLly+P+Z0XXnhhqHDhwqE1a9ZEjNP21HxOO+200MaNG1N8VkWdsYarCOO4444LnXzyySnGaX569ejRw21XzxtvvOGGlytXzu0T/zb++uuv3bjLL7885vF7xRVXhPbs2RMxzjseX3jhhbiPkyVLlrjfac2aNVNsCxVVqngmehnS2kbaPvptnX322RG/Cc+mTZtC8VCRir7jgw8+iDl+8eLFbnurSFW/VU3fs2dPd7xr+KRJk9Kcf7zFQ37xFg/NmjXLHVsPPPBAeFhmiocyen7xzp9Dhw5NMa9evXq5cfotelQ8r2HnnntuiqJnb12jf7Peeugc7T/+dI4++uij3evAgQNxFw8dc8wxoSpVqrgi8mgbY/zO5IwzznDHZbznjaAhaMlD48aNCx177LHhk7ZeOkh1EvT/eDy1atVyJzydkKKNHj3aff6mm27KlqAl+kTsnQz0o1M59F9//ZXmuunio3XR+sU6EekkoHXp1KlTKB6rVq0KNW/ePGJb6WLSqFGj0JNPPhnavn17is+kdTHq1q2bG//KK6/EvFDpR1+9evWY20sXT10U9fm+fftGXGhFF0WNU3AVi050Gu8FNF7QooAwK7wTpi7o0bz92rVr17jmpSBa07/++usxL8jxBJvRtK30We1LPw0rWbJkipOsjjdd3DT+999/TzG/E0880b2iT9j6TPRFxpufAkkFwPEeJ96++uyzz2KO1+9EgYF/2dPaRjpONe68885zwXhmde7cOcVNSjQFWU2bNk3xm/nXv/7lAuu8CFp0Ia9Tp467+fBfvDMatGTm/KLAWb/rBg0apAjSNa9KlSpFzEv7Vsukej6x6FirWLFixDBvPZYtW5Zi+htuuMGN041LRoIWHePRN4hpadu2rZtnrOtEMqB4KA8p3acyVqUzlRpWulTvSiXqpdSxV+6+c+dOW758uaunoKKhaKpDIJpHdlCaMZrSp6qzoOaNaimQFhV7KZ2voiKlgmNRWlzFCfFQ+l3bSdMr9Tl79myX0vVeKtdWHR6vjDg9v/zyS8R28zvppJNc0YKajGp9/XWO1BpDdQKUFlYZdf/+/VN83qu7MW/evJj1ibwiQa2L6puoybv2q+oqablUfq6iEqWIM1K/QJSKVlFVNK+4I/r4UNGN1kPFJvq/1s/vr7/+ivv48Hz33Xcu5a3tsGHDhhTNazXP6OIUbXMVDflp3VW/RUWCsYrHtM1UBOAv+tA2V3HfCy+8EHPZVBQR7zHn35cqko3VlFTrpzpe2qdnn312uttIRQkq0lCxkvaviiNUJ81rMhwvFXGIit9i0X72iqRUL0jfpaII1VVSk2SdX7Q+serT5ST9XlTfRt+tYozMysz5Rb9p/XZ1/li0aJH77Yn2hebVr18/9/vx73sto4phYtWf0nGtekHRxU3aprFaMapYUbZu3Rr3eqqLh6FDh7pl1fWiWbNmrlgvrf3mFW9t2rTJklJeR01IeTeoDIyKELR7Pvroo/Bdgv6Ovkvw6O5f4/13nlnJtLz66qsppv/222/DxSHp8aZN7xV9p5xRuptQ+lbzuuyyy+K+g1a6X+PVmiKWxo0bu/H+IjttK2WZihcv7jJOv/76a8zPtmrVKq5197fs0P5VSrtChQrh8fr/Qw89FHFHmhYtn+484z0+lL1Q5kF3n9pOyoQoZa/jRXd+sY4dL4uQWpbgww8/dPNT5kT746677go9+OCDbj7eZ3Vcxruf0mqx5c3Pn1mIZ7tHn/bS+n5lN+OZ34wZM+LeRso2aHvUrl07/HkdUyomXrduXSge2rb6nIpJoylboOXWseov+ozOHqV2XsipTIu2kbIfjzzySIpxGc20ZPb88vbbb7vh/fv3Dw9T8ZmGRf+evSxfeq/oc0Rqx6tXnOU//tPLtOh68Pzzz4fq168f/r7ChQuHOnToEDObI14WePbs2aFkROuhBKO7S0XUivpFlebEi6zXrVsX83OqnOWfTgoW/L/dm1qHTbFqv3v8rYU8Xuuc1O6+/bzlUCbp/yuGjPlSNiMrlHXyKtt52yoemdmeojtX9QmjynZqnaKMT2rz1l1/Wuuufmf8d4HqqEt37motpdYluntT6xO94qW7K935R/PW078+zz33nLtL1PcqS6XvVMVbZYdUkTAtsY4PUWVXVV7WdtHd/LPPPuuWX/NURcic5K2bWo+ktd1jtaJKb57KuKU1P90Bx7uNlAHQ9lC2QNktZT9UoVbvqnQdD69Sr5dxic6IKiur1jBq7RTNa5U4Z84cy03K/mhbqSKqv6WMXl5Ff2U29LcaFeTE+UXTK9ulba3fiX5vqiCuirB6RX+HMlnpHUuZaT2VkevBnXfe6c4lal03YcIEtw6q2K4K7bFaOXrHhHeMJBuClgTlpcq9E6z+VlM7BQzRzYpFRSfitUjxp45Xr16dYnqd1HQizmiAoMBFtedjNfWMNa1aVugCn5vbyh+0xbqAexc20cU61rZRSx8VNXmBmp9SzGrloWBQLT2im/J6rVm85roZoRO2Wn6o9YPS2KKLf7y0TF5zej9vPb319tZTVEQRTcUhmaF5KpWtC6afmp+q6DMnqfWXtp06Z4ynY7R4jpOs7Mt4qMhARQBqAaMiBW2jWIFINPWa7QUo0bwLWWrFA15T5/RaxmU3tZa65ZZbYr6077yWX/o7unVPdp1fFDDqplDnLzUvV3cF+s34byD8+15FOTqecopX/Jva8eenIOTKK6903TSoWFutDXWDE02t/rT9YjWFTwp5nerJr955553Q1KlTU1TiFKV0vbT0+PHjw8PVmsUrBvHXllctcqVBNe6bb74JD1exgjplU1GGaq/709Oq3a7pUyse0nss999/f6qth1Shzd96SMUCmlYdHkW35JC1a9emaF0Ty4oVK0IvvvhizE74lIK//fbb3feoQy0/VZJLLVWrCoxe+ti/zNquXup94MCBEZ+JTv3++OOPrpVQ6dKlI4oH1AJEw/X9P/30U4rv1j73p4hV0S9WscDPP//slkOVjbPaesgrDvO3HlJrHQ2LrvQ9ZcoUV7k0reKh1KiSZZkyZSIqamsfecdCThYPyZgxY8K/kViVcVUBdc6cOXEfJyp+VOVVFeWognY0HfPRFZ/T2kY61ubPn59iuCryqmhPqf94Wn2oMqe+45///GeKcdr3Ov40ftSoURHjtE3UgkvjXn755TxpPRRLZloPZfb84hUtqXM+teLTNvefH/2twzSdip9jNTxQ0fIPP/yQYj0yUjy0c+dOV2R2wQUXxNyPWtZoBw4ccJWANa9FixalOFdq+FVXXRVKVlTEzSOqQKjKikrfKjXsVSBVOlN9K6hCpDqb8qeL1fmYUpnqu0OpTFXYVOVDVRJTmlOV3Pz9NijVqv45lPLXHbbSirqr0B28KtKmV5k2FqV2teyqvKbKk+q7QJkOZXPUr4k6FvP6u1BRgdKa6ohO0+vuQJUntazKFqnCprog9yrEpUYZIa2HOmtSBVXdsek7NR8VCalin+5CVBQRnRFRXx+q+KgMlLaH+g/RS5VVtb3Uz4rmp+2s/l+0fXX3ou2o70uLKk/q+9W3ivaFMiL6v+5y1M+Ntrfu1rQcygAoi6LtpMyM7qa9bsu1P/RdqmCnbap1UaZH+1lZgPSWw099rehOW+ukPkV0F6plUXFXr1693Lp79Lf6M+nUqZNbfx0PWndlkXQ3GqvzqvSoWFP9+uh4UwZH21z7WRUfvQqoOUl36ir2UMVsZSZVzKVKv8q86Lel/k1uuukmd0zGc5zojl79tGi+2odKyWsfabuqaEcZGHX6FSvjEYsypdo26sRQ2RJlWtRRnIocVYR3++23p6iQHIv2r4rbVIFad+n+CtuqbKyKyFrP7t27u3XTdyproGIFZVp0XCqj4acsj/qekV27drl3/U79/dd4nZ55NL2XQfMyd9rHOn5F20/9k+SEzJ5fdA5RVkvnTa+vl1hFKTouVDlez/RRhV/9xnWe1rZRcZaykTpP6PeSWcow6Tyi40gZNx1b2pf67eq41fy1rKrkrWKoffv2ufOFKhhrmuiMptd9f6zsadLI66gpv/rzzz9dk1g1qzvppJPc3anu6HS3pSyIuvmPlYVRhUplXE455RRXeU93+bobUuYmFt3lDho0yPXTofmrnwY1eVS7/7Qq4qaWaRHdDamvAzUdVYVhVbpUZqh79+4pKofp+9Xfhvr9UH8bWobjjz/eLbPWQ9shPbrjUIVk9TOhOyM1TdTdkbJIZ511lruz82dLPLp7UtNQTa/KobEyB++++65bFm3HYsWKuS7OlWHx9wmS3l2U7norV67sPu9vGqu71d69e7tto3Hax8pEqMKlV8FadLfUr18/13eHKt8WLVrUfY/ultJq0pra8ikjpX4ntJ01L91ZK1MVq2Ko5t+iRYtwxkjbQsuWWiXu9DItomNHTVp1XKiir45xZRdi3Wlmd6bF8+mnn4bat2/vsig65rR/dLzqWIluChrPcaLlV2XJf/zjH26b6ljWb/DWW28NTZs2Le7lUqZDFVG1zb39o9+8PqPfcEaaQXtN61Prc0VZNVXK9DI4+q3q96LzQazj2/vtx1uBWbwK26m94n08Qma78c/s+eWxxx4LL2Nqfd14lL1W02n1b6P56zeq41u/WWVDs5JpEZ0z1Q+Rmjcr6+Kdf5VRGTx4sGvCrPO2ziEVKlRwjQSGDx8es58qZYV0zKfXh1WQFdA/eR04Acg675EM/kcJIHkpQ6NskrKGysohf5s/f77LwCuznpEnbQcNFXEBIIDUCkbdzKvIJ7dbAiHxPPTQQ664UU/eTmbUaQGAgNIzmdR1QWpN95E/7Nmzx9VbUvNotZBKZhQPAUmC4iEAyY6gBQAABAJ1WgAAQCAQtAAAgEBImqBFne6o+2Kvwy4AAJBckiZoUQ+F6v3Re/AWAABILkkTtAAAgORG0AIAAAKBoAUAAAQCQQsAAAgEuvEHACCBHT582A4ePGjJoEiRIlaoUKFMf56gBQCABLVr1y5bs2aNJUvn9QUKFLCqVata6dKlM/V5ghYAABI0w6KApWTJklaxYkV3wQ8yBV4bN25061S7du1MZVwIWgAASEAqEtKFXgFLsjy9uWLFiu6hrlq3zAQtVMQFACCBBT3Dkp3rQqYFAICAmPPBshyZ79kda1sQkGkBAACBQNACAADiNnHiRKtbt67Vr1/f+vfvbxUqVHD1VHIDQQsAAIjLhg0b7KabbrIJEybY/PnzrVatWrZ582bLLQQtAAAgLj/++KPLsNSrV8/9fcstt1jRokXd//fu3WuXXXaZNW3a1K6//nrLCVTEBQAAWW4N9N1331mTJk1ckVFOdYZHpgUAAMTl3HPPdcVCv/32m/v71VdftQMHDrj/n3feea7jOGVZfv/9d8sJBC0AACDuzuEUqFxxxRV2+umn27Jly6x8+fLhrMuQIUPshhtusHHjxllOoHgoG9vGB6WdOwAgmM5OgOuM6q3o5RkzZox7v/HGG23t2rVWuHBhe+ONN3LkuwlaAABAlo0fP95yGkELAADItE2bNlluoU4LAAAIBIIWAAAQCBkuHlq9erWrdLNgwQLbsWOHVa5c2Vq1amXXXnutFS9ePDydxo8YMcKWLl1qpUqVshYtWlj37t2tZMmSEfNTUynNb+rUqbZz506rWbOmdevWzRo2bJg9awgAAPJfpmX9+vXWo0cPW7RokWvu1LdvXzvllFNc86dHHnkkPJ2aQPXr18/27dtnffr0sfbt29unn35qDz/8cIp5Dho0yFXead26td1+++1WsGBB1zGN2oEDAABkKtOibMiuXbvs5ZdfturVq7thHTp0sCNHjtgXX3zhMiVlypSxkSNHune111aWRY477jh76qmnbNasWdaoUSM3TMHPtGnTrGfPnta5c2c37KKLLrKuXbva8OHD3QsAACDDmZbdu3e793LlykUMV8cyypCobbammT17trVp0yYcsHjBSIkSJWz69OnhYTNnzrRChQq5wMdTrFgxl5lZuHChy+wAAABkOGg588wz3fvgwYNdEZCCCmVKPvnkE7vqqqtcULJixQo7fPiw1alTJ+KzRYoUsdq1a7vPefT/qlWrRgQ3okdey/Lly9lLAAAg48VDjRs3dk90fOutt9yDkTx6zoAq2Yr3iGqvW18/DZs3b174b02b2nTptf3WOP/jsFetWpWRVQEAIHCGr52SI/PteXxbS8rWQ6qboucNNGvWzI466ij74YcfXBBzzDHHuGzL/v37w5mVaHp8tfdgJdG0qU3njU/NxIkTbezYsRldfAAAEFAZClpUFPT000/b22+/bZUqVXLDFLzoEdSvvPKKa/qsOily8ODBFJ9XwOIFJKJpU5vOG58a1YPRI7D9mZaBAwdmZHUAAEAG6cGIW7dutbJly7q/K1So4OqynnjiiZZQQctHH33k6qV4AYtHwcPkyZMjnvboL7rxaJhWzqNpN27cGHM68U8bTePSGg8AAPJxRVxFVmreHO3QoUPuXRVw1RRaLYKWLFkSMY0yKgpqatWqFR6m/69ZsybcKsmjptDeeAAAkPj27t3rnv7ctGlTV9c1z4OWE044wQUe6hU3uthITZ7Vm23p0qWtQYMGrk+XPXv2hKdRPy5aIfWM62nevLkLdFQ/xV80NGnSJKtXr57rbRcAACQOJSZ07faoI1lRAx2VvHzzzTf2xhtv5H3xkLrq/+mnn1wvt1deeaWriPv999+7YZdcckm4uEbd8Pfu3dv1mKu6Jxs2bLBx48a5rvnVAsmjwERBjDqj27Ztm1WpUsWmTJli69atswEDBmT/2gIAgCxRKYiu+xdffLF9+OGH4dKS8847zyUhlGVRD/g5UVqSoUzLGWec4XrDPemkk1z9lqFDh9ratWtdc+e77rorPJ36aHnuuedcRVpNoy781WHcY489lmKe999/v3Xq1MllYtSDroqa1A+MvgsAACSW559/3u644w4766yzbO7cueG6rKqgq+v4DTfc4BIVOaFASE1/koDq0Ch4GjVqVIqO7bLDnA/+/07xUnN2x9rZ/r0AgPxJxS5//PGHqyvqfyBxorr66qtdIkO946t46B//+Ee2r1OG+2kBAACIpocf57QMFQ8BAADkFYIWAAAQCAQtAAAgEAhaAABAIBC0AACQwJKkkW+2rAuthwAASEBFihRxfZ/oGX0VK1Z0/w96wKJ10Xpo3TKDoAUAgATtLr9q1aruGX0rV660ZKCAReukdcsMghYAABKUnudXu3Zt99DhZKAMS2YDFiFoAQAggekin5ULfTKhIi4AAAgEMi0AAMCGr52S7jQ9j29reYlMCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACoXBeL0BQfFz253SnOdtq58qyAACQH5FpAQAAyZlpeeKJJ2zKlCmpjp8wYYJVrFjR/X/BggU2YsQIW7p0qZUqVcpatGhh3bt3t5IlS0Z85sCBAzZmzBibOnWq7dy502rWrGndunWzhg0bZmadAABAEspw0NKhQwdr0KBBxLBQKGTPPvusHXvsseGAZdmyZdavXz+rVq2a9enTxzZs2GDjxo2zNWvW2NNPPx3x+UGDBtmMGTOsU6dOVrVqVZs8ebL179/fXnzxRatfv35W1xEAAOTHoOXUU091L7/58+fbvn37rHXr1uFhI0eOtDJlytiQIUNclkWOO+44e+qpp2zWrFnWqFEjN2zRokU2bdo069mzp3Xu3NkNu+iii6xr1642fPhw9wIAAMiWOi1fffWVFShQwFq1auX+3r17t82ePdvatGkTDli8YKREiRI2ffr08LCZM2daoUKFXAbHU6xYMWvfvr0tXLjQ1q9fnx2LCAAA8nvQcujQIReEKPuiTIqsWLHCDh8+bHXq1ImYtkiRIla7dm1XdOTR/1Uk5A9upG7duu59+fLlWV1EAACQBLLc5FlFPdu3b48oGtq8ebN7L1++fIrpNWzevHkR06Y2nWzatCnm92q49z2yatWqLK4JAABI6qBFRUOFCxd2LYM8+/fvD2dWohUtWtS1FvJPm9p0/nlFmzhxoo0dOzariw8AAPJD0LJnzx779ttvXaXao48+OqJOihw8eDDFZxSweAGJN21q0/nnFU11YJo0aRKRaRk4cGBWVgcAACRr0KKAJbrVkL9ox19849GwChUqREy7cePGmNOJf1o/DU9tHAAASD5Zqoj75ZdfutZA/oyHVK9e3bUIWrJkScRwZVRU8bZWrVrhYfq/+m5RiyM/NYX2xgMAAGQ6aNm2bZtr1nzBBRdY8eLFI8aVLl3adUCnHm5VhOT54osvbO/evRH1X5o3b+5aGqmOir9oaNKkSVavXj2rXLlyZhcRAAAkkUwXD6lDOAUb0UVDHnXD37t3b+vbt6+rf+L1iKuu+Rs3bhyeToGJghh1RqdAqEqVKu4xAevWrbMBAwZkdvEAAECSKZyVVkPlypWzs88+O+Z49dHy3HPPuWcPDR061D1vSB3G9ejRI8W0999/v8uoKBOza9cuq1Gjhg0ePNjOOOOMzC4eAABIMpkOWuLpXl/PDRo2bFi606mFUK9evdwLAAAgx7rxBwAAyGkELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFQODMfWrJkib322mu2YMECO3DggB1//PF26aWXWseOHcPTaNyIESNs6dKlVqpUKWvRooV1797dSpYsGTEvfX7MmDE2depU27lzp9WsWdO6detmDRs2zPraAQCA/Bu0zJo1y+677z6rXbu23XjjjVaiRAn766+/bOPGjeFpli1bZv369bNq1apZnz59bMOGDTZu3Dhbs2aNPf300xHzGzRokM2YMcM6depkVatWtcmTJ1v//v3txRdftPr162fPWgIAgPwVtOzevdueeOIJO+ecc+yxxx6zggVjly6NHDnSypQpY0OGDHFZFjnuuOPsqaeeckFPo0aN3LBFixbZtGnTrGfPnta5c2c37KKLLrKuXbva8OHD3QsAACDDdVq++uor27JliyvmUcCyd+9eO3LkSIrAZvbs2damTZtwwOIFI8rKTJ8+PTxs5syZVqhQIevQoUN4WLFixax9+/a2cOFCW79+PXsJAABkPNOiYESByKZNm+zf//63rV692gUiClBUDKSAY8WKFXb48GGrU6dOxGeLFCniipRUdOTR/1Uk5A9upG7duu59+fLlVrly5ZjLomXYvHlz+O9Vq1ZlZFUAAEAyBy2qk6KA5P7773fZkFtvvdV+/fVXmzBhgu3atcsefvjhcCBRvnz5FJ/XsHnz5oX/1rSpTecFJqmZOHGijR07NiOLDwAA8kvQouKgffv22WWXXWZ33HGHG9asWTM7ePCgCyJuvvlm279/fzizEq1o0aKutZBH06Y2nTc+NSpSatKkSUSmZeDAgRlZHQAAkKxBi4p/pGXLlhHDW7Vq5YIW1UMpXry4G6ZAJpoCFi8g8eaX2nT+74ulQoUK7gUAAPKHDFXE9YptjjnmmIjh5cqVc+/qZ8Wbxl/fxKNh/kBD06Y2nRCUAACATAUtXuVaf58s/ronZcuWterVq7sWQeqAzk8ZFVW8rVWrVniY/q96Mmpx5Kem0N54AACADAct6tVWPv/884jh+luByplnnmmlS5e2Bg0auB5u9+zZE57miy++cHVivHlI8+bNXcVeFS35i4YmTZpk9erVS7XlEAAAyH8yVKflpJNOsosvvtgFFQo2zjjjDNd6SH2vdOnSJVyco274e/fubX379nUVZr0ecdU1f+PGjcPzU2CiIEad0W3bts2qVKliU6ZMsXXr1tmAAQOyf20BAED+6cb/nnvucRkQdbf/zTffuP+rj5arr746ohjpueeec88eGjp0qHvekJpI9+jRI8X81Hxa81AmRs2ma9SoYYMHD3YBEQAAQKaDlsKFC9tNN93kXmnRc4OGDRuW7vzUQqhXr17uBQAAkC11WgAAAPIKQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYAABAIhfN6AQAAQN5bu2hL+hMdb8EJWubOnWt33HFHzHHDhw+3U045Jfz3ggULbMSIEbZ06VIrVaqUtWjRwrp3724lS5aM+NyBAwdszJgxNnXqVNu5c6fVrFnTunXrZg0bNszsOgEAgCSUqUzLVVddZXXr1o0YVqVKlfD/ly1bZv369bNq1apZnz59bMOGDTZu3Dhbs2aNPf300xGfGzRokM2YMcM6depkVatWtcmTJ1v//v3txRdftPr162d2vQAAQJLJVNBy+umnW/PmzVMdP3LkSCtTpowNGTLEZVnkuOOOs6eeespmzZpljRo1csMWLVpk06ZNs549e1rnzp3dsIsuusi6du3qMjd6AQAAZKki7p49e+zQoUMphu/evdtmz55tbdq0CQcsXjBSokQJmz59enjYzJkzrVChQtahQ4fwsGLFiln79u1t4cKFtn79evYSAADIfKZFRTp79+51AYeKcJQpOfnkk924FStW2OHDh61OnToRnylSpIjVrl3bFR159H8VCfmDG/GKnpYvX26VK1fOzCICAID8HLQULlzYmjVrZuecc44dffTRtnLlSldXRfVWhg0bZieddJJt3rzZTVu+fPkUn9ewefPmhf/WtKlNJ5s2bUp1WTTO+y5ZtWpVRlYFAAAkc9By2mmnuZfn/PPPd3VbbrrpJleP5ZlnnrH9+/eHMyvRihYt6loLeTRtatN541MzceJEGzt2bEYWHwAABFiW+2lR8Y6Cl6+//toVC6lOihw8eDDFtApYvIBENG1q03njU6N6ME2aNInItAwcODCrqwMAAJK5c7lKlSq54GPfvn3hoh1/0Y1HwypUqBD+W9Nu3Lgx5nTinzaaxqU1HgAAJJds6cZ/7dq1LoOi1kHVq1d3FXSXLFkSMY2CGlW8rVWrVniY/q++W9TiyE9Nob3xAAAAGQ5atm3blmKYWvh89913rgfbggULWunSpa1Bgwauh1s1i/Z88cUXrsWResb1qD6MipRUP8VfNDRp0iSrV68eLYcAAEDmiocefvhhV8/k1FNPtXLlyrnWQ59++qkVL17cevToEZ5O3fD37t3b+vbt6+qeeD3iKrBp3LhxeDoFJgpiVIlXAZF61Z0yZYqtW7fOBgwYkJFFAwAASS5DQUvTpk3tyy+/tPHjx7sinbJly9oFF1zgerBVhVyP+mh57rnn3LOHhg4d6p43pA7j/IGN5/7773cZFWVidu3aZTVq1LDBgwfbGWeckT1rCAAA8l/Q0rFjR/eKhzqdU98t6VHmplevXu4FAACQoxVxAQAAchpBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAUzuoM3njjDRs9erRVr17dXn/99YhxCxYssBEjRtjSpUutVKlS1qJFC+vevbuVLFkyYroDBw7YmDFjbOrUqbZz506rWbOmdevWzRo2bJjVxQMAAEkiS5mWDRs22FtvvWUlSpRIMW7ZsmXWr18/27dvn/Xp08fat29vn376qT388MMpph00aJCNHz/eWrdubbfffrsVLFjQ+vfvb/Pnz8/K4gEAgCSSpUzLsGHDrF69enbkyBHbvn17xLiRI0damTJlbMiQIS7LIscdd5w99dRTNmvWLGvUqJEbtmjRIps2bZr17NnTOnfu7IZddNFF1rVrVxs+fLh7AQAAZDrT8uuvv9rMmTOtb9++Kcbt3r3bZs+ebW3atAkHLF4woqzM9OnTw8M0j0KFClmHDh3Cw4oVK+YyMwsXLrT169dndhEBAEB+z7QcPnzYXnzxRRdYqP5JtBUrVrhp6tSpEzG8SJEiVrt2bVd05NH/q1atGhHcSN26dd378uXLrXLlyim+Y9OmTbZ58+bw36tWrcrMqgAAgGQOWj755BOXAXn++edjjveCifLly6cYp2Hz5s2LmDa16bzgJJaJEyfa2LFjM7P4AAAgPwQtqrvy6quv2g033GBly5aNOc3+/fvDmZVoRYsWda2F/NOmNp1/XtFUnNSkSZOITMvAgQMzujoAACBZgxY1b1YF26uuuirVaVQnRQ4ePJhinAIWLyDxpk1tOv+8olWoUMG9AABA/pChoGX16tWu2bIq3/qLbRRgHDp0yP7++29XN8Ur2vHXOfFomD/Y0LQbN26MOZ0QmAAAgAwHLQpU1LxZlXD1inbNNddYx44d7eabb3YtgpYsWWIXXnhheLwyKqp4q07mPLVq1bK5c+e6Fkf+yrhqCu2NBwAAyFDQol5vH3/88ZhFRnv27HEdwx1//PFWunRpa9Cggevh9sYbbwz3gPvFF1/Y3r17I4KW5s2b23vvvecq1nr9tChzM2nSJNcHTKyWQwAAIP/JUNCiirdNmzZNMfz999937/5x6oa/d+/erihJlWbVe+64ceNc1/yNGzcOT6fAREGMOqPbtm2bValSxaZMmWLr1q2zAQMGZG3tAABA0sjys4dSoz5annvuOffsoaFDh7psi/p16dGjR4pp77//fpdRUSZm165dVqNGDRs8eLCdccYZObV4AAAgPwYt6qo/lvr167uu/tOjFkK9evVyLwAAgGx/YCIAAEBuIWgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAA+fvZQwAAIDEMXzvFkgGZFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBJs/ZaM4Hy9Kd5uyOtXNlWQAASDZkWgAAQCAQtAAAgEAgaAEAAIFAnZZs9HHZn9Od5myjTgsAAJlBpgUAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIDka/L8xx9/2GuvvWZLliyxLVu2WPHixa1atWrWuXNna9KkScS0K1eutJdeeskWLFhghQsXtnPPPdf69OljZcuWjZjuyJEj9t5779nHH3/s5lm1alXr0qWLtWrVKnvWEAAA5L+gZd26dbZnzx5r27atVahQwfbt22czZ860++67z+655x7r0KGDm27Dhg3Wt29fK126tHXv3t327t3rApMVK1bYK6+8YkWKFAnPc9SoUfb222/bpZdeaieffLJ9++239uijj1qBAgWsZcuW2b/GAAAg+YMWZUv08rvyyitdYDJ+/Phw0PLWW2+5gGb06NFWuXJlN6xu3bp211132eTJk8PTbdy40caNG2dXXHGF9evXzw275JJLXMAzbNgwa968uRUqVCi71hUAAOTnOi0KKipVqmS7du0KD1P25bzzzgsHLNKgQQM74YQTbPr06eFhyqocOnTIBS0eZVguv/xyF9AsXLgwq4sHAADyc9Ci4p5t27bZX3/95TIsP/30k5111llunIKNrVu3Wp06dVJ8TtmWZcuWhf/W/0uUKOHqxURP540HAADI9LOHXn75ZZs4caL7f8GCBe2CCy4IF+9s3rzZvZcvXz7F5zRsx44dduDAAStatKibtly5ci67Ej2dbNq0KdVl0Djvu2TVqlXsUQAAklimgpZOnTq5+iYKHFTcc/jwYTt48KAbt3//fvfur2zrUaDiTaP/6z296VKjoGns2LGZWXwAAJBfghYV53hFOmpJpAq29957r2sZVKxYMTfcC2L8lGERbxq9xzNdLKrM629mrUzLwIEDM7M6AAAgWYOWaMq6PPPMM7Z69epw0Y6/6MajYUcddVQ4k6Jp586da6FQKKKIyPusmlWnRuPSGg8AAJJLtvSI6xXjqAVRxYoVXQdy6oAu2uLFi61WrVrhv/V/NY2Oro+yaNGi8HgAAIAMBy1qFRRNTZa/+OILV5Rz4oknumHNmjWz77//3tavXx+ebs6cOS4T06JFi/Cw888/3/WW+9FHH4WHKevyySefuODn1FNPZS8BAICMFw+pCGj37t12+umnu6BCxThffvml/fnnn9a7d28rWbKkm07d8M+YMcPuvPNO69ixo2si/e6771qNGjWsXbt24fmpfxdV6tU4BT9q6vzNN9/Y/Pnz7cEHH6RjOQAAkLmg5cILL7TPP//cZUK2b9/ughT1x3Lbbbe5rIlHncoNGTLEPXtIlXO9Zw8psPHqs3h69OhhZcqUca2BpkyZ4p499MADD1jr1q0zsmgAACDJZSho0bOA4n0eUPXq1e3ZZ59Ndzr186LMjF4AAAA5WhEXAAAgpxG0AACA/NNPCwAAyBvD106x/IJMCwAACAQyLblszgfpP7n67I61c2VZAAAIEjItAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBDoETcB0WsuAAApEbQAAJCg8tPDEONB8RAAAAgEghYAABAIFA/lso/L/pzuNJdva5grywIAQJCQaQEAAIFA0AIAAAKB4iEAAJLc2kVbLBmQaQEAAIFA0AIAAAKB4qGAotdcAEB+Q6YFAAAEAkELAAAIBIIWAAAQCAQtAAAg+SriLl682KZMmWJz5861devW2VFHHWWnnHKKdevWzU444YSIaVeuXGkvvfSSLViwwAoXLmznnnuu9enTx8qWLRsx3ZEjR+y9996zjz/+2LZs2WJVq1a1Ll26WKtWrbJnDQEAQP4LWt555x0XhLRo0cJq1qxpmzdvto8++sgFLcOHD7caNWq46TZs2GB9+/a10qVLW/fu3W3v3r0uMFmxYoW98sorVqRIkfA8R40aZW+//bZdeumldvLJJ9u3335rjz76qBUoUMBatmyZ/WsMAACSP2i5+uqr7aGHHooIOi688EK76aabXODx4IMPumFvvfWW7du3z0aPHm2VK1d2w+rWrWt33XWXTZ482Tp06OCGbdy40caNG2dXXHGF9evXzw275JJLXMAzbNgwa968uRUqVMjym+x6qCLNogEA+bZOy2mnnRYRsIiKhU488URbtWpVeNjMmTPtvPPOCwcs0qBBAzft9OnTw8OUVTl06JALWjzKsFx++eUuoFm4cGFm1wsAACSZLHcuFwqFbOvWrS5wEQUb+rtOnTopplW25ccffwz/vWzZMitRooRVq1YtxXTe+Pr162d1EQEASDjD107J60XIf0HLl19+6QKVm2++2f2tei5Svnz5FNNq2I4dO+zAgQNWtGhRN225cuVcdiV6Otm0aVOq36tx3neJP9MDAACST5aCFgUKzz//vGtB1LZtWzds//797j26GEkUqHjT6P96T2+61EycONHGjh2blcUHAAD5IWhRlmPAgAFWqlQpe+yxx8IVZosVK+beDx48mOIzyrD4p9F7PNPFosq8TZo0iQigBg4caPlFdlXWBQAgqYOWXbt2Wf/+/d27+mKpUKFCiqIdf9GNR8PUt4uXSdG06vNF9WL8RUTeZ/3zjaZxaY0HAAD5vEdcFdnce++9tnr1anvyySfDFXA9FStWdB3ILVmyJGbndLVq1Qr/rf+raXR0fZRFixaFxwMAAGQ4aDl8+LD95z//cU2RH3nkETv11FNjTtesWTP7/vvvbf369eFhc+bMcYGOOqbznH/++a63XHVQ51HW5ZNPPnHBT2rzBwAA+U+Giodefvll++6771wfLDt37rSpU6dGjG/Tpo17Vzf8M2bMsDvvvNM6duzoesR99913XY+57dq1C09fqVIl69Spkxun/lrU1Pmbb76x+fPnu47q8mPHcgAAIBuCluXLl7t3ZVH0iuYFLepUbsiQIa6+i7rt95491Lt373B9Fk+PHj2sTJkyrjWQnmukZw898MAD1rp164wsGgAASHIZCloUiMSrevXq9uyzz6Y7XcGCBV1mRi8AAIBsq4gLAACQFwhaAABAIBC0AACA/PHsIQTbnA+WpTvN2R1r58qyAACQFoIWZAuCHwBATiNoAQAgmw1fOyWvFyEpEbQkMR6qCABIJlTEBQAAgUCmBdlSXwUAgJxG0JLPUYQEABlDfZW8Q9ACAEAeWLtoS7rTHF/vmFxZlqCgTgsAAAgEMi1Iyrox2dUnTG72P0NfNwCQNoIWJCUCAAD5xdo4ipmSBUELkEUESACQOwhakC5aGAHIL2gZlNioiAsAAAKBTAtyDRkbAEBWELQAAPKFIBb95KdKtvEgaEFCIRsDAEgNQQvyLZ6pBADBQtCCXMuQAEB+QbFOziBoAQAktAe/eifdaR5rdZ3lFgKSvEPQAgAIfOXYIFayRcYRtABAgqPX5dx7YjJZlMRG0AIASSDeTEPP49taIiFIQEYQtCDfNoumeTXyI7I2CDKCFiDJcFECkKwyHLTs2bPH3nvvPVu0aJEtXrzYdu7caffdd5+1a9cuxbQrV660l156yRYsWGCFCxe2c8891/r06WNly5aNmO7IkSNunh9//LFt2bLFqlatal26dLFWrVplbe2QbyVrE2z6lgmW/B5AUjkWeR60bN++3caOHWuVK1e2WrVq2dy5c2NOt2HDBuvbt6+VLl3aunfvbnv37nWByYoVK+yVV16xIkWKhKcdNWqUvf3223bppZfaySefbN9++609+uijVqBAAWvZsmXW1hBAUlxwE215kD7qqyDPg5by5cvbRx995N5/++03u/XWW2NO99Zbb9m+ffts9OjRLsCRunXr2l133WWTJ0+2Dh06uGEbN260cePG2RVXXGH9+vVzwy655BIX8AwbNsyaN29uhQoVytpaAnmd1fkgN5YkuIKYQQriMgP5LmgpWrSoC1jSM3PmTDvvvPPCAYs0aNDATjjhBJs+fXo4aFFW5dChQy5o8SjDcvnll7tsy8KFC61+/foZXUwgKVF5OG1kY5AWMj/BlyMVcZU92bp1q9WpUyfFOGVbfvzxx/Dfy5YtsxIlSli1atVSTOeNJ2hB0CVrHZvsQjBmyZlpiqy+CCRm0LJ582b3Hisjo2E7duywAwcOuKyNpi1XrpzLrkRPJ5s2bYr5HRrufY+sWrUqm9cCSF7ZVbQRT0XL7OoXJDcDm/xe9JPf1x/5LGjZv3+/e/dXtvUoUPGm0f/1nt50sUycONFVCAZyEhkS5DQCBCCPg5ZixYq594MHD6YYpwyLfxq9xzNdNNWJadKkSUSmZeDAgdm0BgBy82F3uRlknm3ZU6clmYu0CNaRr4IWr2jHX3zj0bCjjjoqnEnRtGo2HQqFIoqIvM9WqFAh5ndoeGrjAOTORel4S/9ZLgCQ0EFLxYoVXQdyS5YsSTFOHdKpfxeP/v/ZZ5+5TMmJJ54YHq7O67zxAOLHXTKAZJVj3fg3a9bMpkyZYuvXrw83e54zZ46tXr3arr766vB0559/vus1V32/eP20KOvyySefuODn1FNPzalFBJAPxVVcVTaZm/PWzOElARIsaJkwYYLt2rUrXITz3XffuR5w5aqrrnK94Kob/hkzZtidd95pHTt2dD3ivvvuu1ajRo2ILv8rVapknTp1cuPUX4uaOn/zzTc2f/58e/DBB+lYDkhg9HuRdclcNwZIiKBFPdiuW7cu/PfXX3/tXtKmTRsXtCi7MmTIEJdFUbf93rOHevfuHa7P4unRo4eVKVPGtQhSdkbPHnrggQesdevWWV0/AACQn4OW8ePHxzVd9erV7dlnn013uoIFC7rMjF4AAAC5WqcFAJA9qFwN/B+CFgDIRwiAEGQF83oBAAAA4kHQAgAAAoHiIQDIIRTFANmLTAsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAARCYUsABw4csDFjxtjUqVNt586dVrNmTevWrZs1bNgwrxcNAAAkiITItAwaNMjGjx9vrVu3tttvv90KFixo/fv3t/nz5+f1ogEAgASR50HLokWLbNq0aXbrrbdar169rEOHDvbCCy/Ysccea8OHD8/rxQMAAAkiz4OWmTNnWqFChVyw4ilWrJi1b9/eFi5caOvXr8/T5QMAAIkhz4OWZcuWWdWqVa1UqVIRw+vWrevely9fnkdLBgAAEkmeV8TdvHmzlS9fPsVwb9imTZtifk7D9VmPF9ysWrUqR5Zz598bc2S+AAAExZIlS3Js3tWqVbPixYsndtCyf/9+K1KkSIrhRYsWDY+PZeLEiTZ27NgUwwcOHJgDSwkAALqPmpBj8x41apTVqVMnsYMW1V85ePBgzGbQ3vhYVAemSZMm4b/VVFpZlpNOOikc8GQXzVfB0AMPPOAiwWST7OuXH9aR9Qu+ZF9H1i/4VuXwOsYzzzwPWlQMtHFjyqIXr+inQoUKMT+n4dHjGjRoYDlJGzS9KDDIkn398sM6sn7Bl+zryPoFX7U8XMc8r4hbq1YtW7Nmje3evTtFU2hvPAAAQJ4HLc2bN7fDhw+7Oir+oqFJkyZZvXr1rHLlynm6fAAAIDHkefGQApMWLVrYyJEjbdu2bValShWbMmWKrVu3zgYMGGCJQEVYXbt2jdnKKRkk+/rlh3Vk/YIv2deR9Qu+8gmwjgVCoVDI8phaCHnPHtq1a5fVqFHDPXuoUaNGeb1oAAAgQSRE0AIAAJDwdVoAAADiQdACAAACgaAFAAAEQp63HkpEc+bMsS+//NLmz5/vOr475phj7KyzzrJbbrkl1c7uoulzL730kv3888925MgRO/PMM61v3752/PHHW17Tc5s++OADW7x4sf3222+2d+9ee/HFF90yxuPVV1+N+QgF9UT81VdfWdDXL9H3n78X6BEjRtjXX3/tKrPrIaO9evWKq9OnJ554wrXSi/aPf/zD3nrrLcst6t7Aq4Sv9alZs6arhN+wYcOk2EdZWcdE/5159uzZY++9957rW0u/Oa3jfffdZ+3atcvx4zjR12/y5Mk2aNCgmOM++uijhGhptHjxYncumDt3rmu1e9RRR9kpp5zijtETTjgh4fYfQUsM2gE7duxwfchop61du9Y+/PBD++GHH9zJJ70DTQf5HXfc4TrM69KlixUuXNjGjx/vTqg6ER199NGWl1avXm3vvPOOe7q2WmotXLgwU/O5++67rUSJEuG/CxZMjMRdVtcv0fef6CKtLgF+//13u/baa90yffzxx2659fyOeE42uvj1798/Ylj009Zzmk7oM2bMsE6dOrn9pZO8lklBZv369QO9j7K6jon+O/Ns377dBVfqU0udgeril5vHcSKvn0c3vMcdd1zEsNKlS1sieOedd2zBggWu6xEF1OqNXgGVgpbhw4e7c2hC7T+1HkKkuXPnhg4fPpxiWNOmTUMjR45M9/Nvv/22m3bRokXhYStXrgw1b9489Morr4Ty2u7du0Pbt293/58+fbpb1l9++SXuz48ZM8Z9ZuvWraFElNX1S/T9J9OmTXPLqPXzaH+0a9cu9Mgjj6T7+ccffzzUpk2bUF5auHChW4d33nknPGzfvn2ha6+9NnTbbbcFfh9ldR0T/Xfm2b9/f2jTpk3u/4sXL3bLPGnSpFw5jhN9/TSdptfnEtX8+fNDBw4ciBj2559/hlq2bBl69NFHE27/JVbIniDOOOOMFHczGqa0mR4YlR7dVZ188skuTeZ/VoOKmKZPn255rWTJkm5dsoPudBOt1XxW1y/R95/MnDnTFVtecMEF4WFly5Z1d0vffvtt+IGj6VFv1NGP0MjNdShUqJB7+KlHD0ht3769y46tX78+0Psoq+uY6L8zf8Yus8Uc2XUcJ+r6RWcH9XtLNKeddpoVKVIkYpgyJCeeeGK617u82H8ELRk44FQ3Ir20s9JlK1ascCfUaDrB/vXXX25eyeCaa65x5bpt27a1xx57zLZs2WJBF5T9t3TpUqtdu3aK4FrLuG/fPldElh5Np/2nly6izz33XK6u27Jly1xxSXSRlBeILF++PND7KCvrmOy/s+w8joNAxSXaf23atLF777034dcrFArZ1q1b073e5cX+o05LnN5//307ePCgXXjhhWlOp7owii5jRebeMFUUVYXHoCpTpoxdeeWVrrKWInRVWFYZqCp0qRwzt+tFZKeg7D9duE4//fRUl1Hl0iqfTo2m69y5s5100knuBPXTTz+5smiVTauuheqI5DQtY3rbOcj7KCvrmOy/s+w6jhOdsmoKOFVJXPtryZIlru6VKqqOHj06YZ+t9+WXX7qK7jfffHPC7b+kD1p0V6ZgI940YIECBVIM//XXX11FLKW8zj777DTnodrTEp1u8+bvnyZR1i+jVKHQTxWWFVnrLlAnVVWMDOr65fb+y+w6ahm85cnMMvbo0SPi75YtW7qUsC6GSvnq75ymZczMds6LfZTb65jbv7O8ktXjONHpJtd/o9u0aVP3eBpVGH/zzTftnnvusUSzatUqe/75512wrOxQou2/pA9a5s2b51Jz8dBBpHLx6B34wAMPuBrU8TzAUZG1xLoIeeV73jSJsH7ZpXXr1vbyyy+75uLZeTLN7fXL7f2X2XXUMsQqL87KMl599dWuddzs2bNzJWjRMmZmO+fFPsrtdczt31leyYnjONGpxZgeFKx9mGg2b97srnPKCik4Vn2sRNt/SR+0KEWsNvXxiE7jqpKcmhtqBw4ePNhV8EyPKoAqytTOj+YNi7evl5xev+xWqVIll7rPTrm9frm9/zK7jqr8ltYyZmZb6ASj9c/ufZgaLaNS0Bndznmxj3J7HXP7d5ZXcuI4DgLtwz///NMSya5du1xTfL2r/6N4js282H9JH7Roo8XbyVF023wFLLpLUqos3pOLKiQpK6NOzaKpcyJ1fBVP8JPT65fdVC9CHROpUlZ2yu31y+39l9l11HZWHQcVLfkrwam+Q/HixTPVP4Iqr+q4V+3/3OD1eaGWMf76GdrO3vhE2Ue5vY65/TvLKzlxHAeB+v7Krd9ZPFSM41UQVoV8tRxK1P1H66EY1EpIEacqyT311FNpbnhlY6KbhTVr1sydUP0nVUXVOnmpXDpIYq3ftm3bUkynSpwa3rhxYwuSoO4/LaMqwakXSo+2v5r7nnfeeRHlzGpNo5f/BBWrdc3rr7/uLoq5tQ+1LdUEdOLEiRFp5UmTJrn0uVdJMaj7KKvrmEy/M9H5VOt46NChTB3HQVy/WPtQnZSqQq7qtiSCw4cP23/+8x/XBP+RRx6xU089NaH3X9JnWjJDZXmKFC+++GK3k/wnE/VMqcpUnscff9xV1PXvtCuuuMI+++wzVzaoXgJVLqga4+XKlXN/JwJdoGTlypXu/YsvvnARs9x4441prp8qCKpyme52dVCqN8Vp06a5qNvfH0VQ1y8I+08XQz2qQL2tah29nih1xxNd479fv37uXesgOsmoh85WrVqFW9jMmjXLfvzxR3cxPP/883NlHXTRVuX2kSNHuhNdlSpVXHfiyiT4648FdR9ldR2D8DvzTJgwwRUreMUC3333nW3YsMH9/6qrrnK9v2obaN3HjRsX7h02I8dxENevZ8+eroWeurRXpk1NhBWwqnjo+uuvt0Tw8ssvu/VRkKEu+fW4CT8105ZE2X8ELTF4fSfo4NLL79hjj40IWmJRalrNRlUu+MYbb4Sfi9KnT5+ESQmqwqWffz39F/XUKgP+73//c61MdNeou0U1n73hhhtcSjDo6xeE/aeLtLKAw4YNcydUZU/Ub4nqxqTX1FcnWJ2g9MwenYS0frqY3nrrre6Cn5vdxN9///3u+FFQqYuCLtCqP6bOHIO+j7K6jkH4nXl0IVMg5lHw5QVguuil1mV9Vo7jIKyfgk7dDOi3pn5LVBR86aWXWteuXV19kES63n3//ffuFc0LWhJl/xVQt7g5MmcAAIBsRJ0WAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFiCBvPrqq3bBBRe4Z+gkI63b7bffnteLASCg6MYfgfX333/bNddcEzGscOHC7vkzp59+uv3zn/+0mjVr5tnyJSJ1gP3ll1/a559/br///rt7cGKZMmXcU8xPOeUU1+24v3v5J554IsXzRgAFnzpOhgwZkteLgnyGoAWBp+fm6Dkt3hO6Fy1aZF999ZV7Nsjzzz9vp512Wl4vYsJ48sknbfLkyS5Q0fOHFKzoeSEKYBTI7N69O91n4gBAXiFoQVIELdFPFB01apS9+eab7p27wf8zb948F7DoKcHaJnrqrJ+e8Oo9FRsAEhFBC5KSHhevoOW3334LD1uyZIm99dZbtnjxYtu6dat7UrCKPM4//3z35Fw/jde0euqpHkGvaVXkpOBIT+mNN1V+9dVXu/fx48dHDF+/fr2NGDHCZs2aZYcOHXKPr7/lllvSXCc9qfqTTz4JBxYnnniiXX755dauXbu4tsnChQvd+0UXXZQiYBFlX/xZKS2792RbfzFc9LouWLDAbWvNX1kbPQldxUzXXXddXE8jVpGVntb8/vvvW6tWrdxTkVXMp+FaZ2WAVqxYYYcPHw6vc/v27SPmoe/96KOP3JOUtcyaVk97rlu3rl1//fVWq1atuIoa27Zt656kPHz4cPeEZc1HxWY9evSwOnXqRHxGx5OW79dff3XHyMGDB8NZPz0tW+sQ61jQE8hHjx5t3377rW3ZssX69+/v9mFm56d6UK+88op98803rrhPx1Lfvn3d8m7atMmti54yrHH169e3fv362QknnJBiG6xdu9btR02r41/HQ6NGjdwxr30qqmt1xx13uP9rOXXse/RkX/+xqOXRk3+XLl3qnlKtddH21XLr6cAeBdKDBg1ynz/qqKPs7bffdpm/o48+OsXvBiBoQVIrUKCAe1+2bJn17t3bChYs6IKUypUr265du1wA8Omnn0YELX/99ZerLLpx40Zr2LChm37btm02c+ZMd0JXkVO9evUyvUy6kPTq1cvNXxcFXWRWrVpld999t5155pkxP/Piiy+6C0DFihXt4osvdsNU/KWTvS4K3oUkLbogyJo1a+Jazo4dO7r6LHp0vf5funRpN9xft2X69On26KOPWpEiRVygokBB22js2LEuINNyFytWLNXvUMCmejMqzuvUqZP16dPH7TMFLI899pgbXrVqVRfM6Ds078GDB7v9pv3p0Ty0LKrDpAunptX2/eWXX9w+TC9o8V+4NV9loy677DIXXGq+CgJeeOGFiP2u40ZBrYLZc845x/bt2+cu5CNHjnTB8sCBA1PMXxfvO++80xVjNmnSxF28VQcrs/NTYHPXXXe5+Wr7K9jQ8mrYsGHD7J577rHy5ctbmzZt3H7X/AcMGOCCE3/goCJVTavlUrGhtrmCP9V/+umnn1zgc/zxx7vgpWvXrm7/6v8KQjz+bawgSsGHjlcFNjp25s+f7+ajmwYdM9G03Nq/+n4FpgqygBRCQECtXbs21LRp09Ddd9+dYtyYMWPcuNtvv939PXToUPf3119/nWLabdu2Rfzds2fPUPPmzUM//fRTxPA///wzdNFFF4VuvPHGiOGab9++fWMuY6dOndzL7/HHH3efef311yOGf/LJJ264Xr/88kt4+Ny5c92wLl26hHbu3BkevmPHjtB1113nxv3666+h9Kxfvz7Utm3b0AUXXBB65JFHQtOnTw/9/fffaX7GW1Zt62i7du0KtWvXLtSyZcvQ8uXLw8MPHz4cevjhh93nxo4dm+q22r17d+iuu+5yw958882I6SZOnOiGDxo0KHTw4MHw8AMHDoQGDBjgxv32229umLaJ1qlbt26hQ4cORcxHf2s7xXss6TVixIiIcToONDx6v69bty7F9x05csQts6afP39+xDgdB97xum/fvhTLkNn5PfTQQxHb6O2333bDtW903GsenmeffdaNmzFjRniYPqt56dhesmRJxHfMmzfP/Ra0zeM95mfNmhVezz179kSsyzPPPOPG6djzTJo0yQ1r1qxZ6Oeff445T8BDk2cEnjIjSpHrpbtL3a3rTrBo0aLWvXv3iGlj3fUrDe1R1kLFAipCURbETyn1Sy65xBVV6JUZujP+73//6+6uo1s+ad66w42mbIfcdNNN4WyHKH2vu14vxZ6eSpUqueyF3pXBeOihh1yqvkOHDvbwww/bnDlzMrQuKt5QtkqZH38rLWWzevbs6e7kU1suZa6UcVAm5N5777UuXbpEjP/www+tRIkSrijDXyyiDIq3T7UO4mVmtL/13X5aBm2neGn7qjjJT8fB2Wef7fa5inA8ytb5sxXeslxxxRXu/7Nnz475Hdo2sY7DzM5PWTv/NmrZsqV7V9FWt27dwtlG/zgVv3iUfVFWRcViyvr5qThJGaEff/zRVdKOh/ad/Otf/3L70L8uKmbT+7Rp01J8Tt/ToEGDuL4D+RfFQ0iKoEVBir/Js4oT/E2elTr/4IMP7IEHHnD/18lRaXilr/2UJhel2RUERfvzzz/D79F1W+KhzymVf9ZZZ6W4cOmCqzol0cU3KtqSWEVH3jAV4cRD6/3uu++6YgdVzNVFWHVSlJrXS8HDrbfeGte8vOWK1dpIF2AVJ6xevdql+VUnyKN6HCqCUb0NFXnoYuWnYhEFCGrZpCKGaLoY+/eF6ueoOEUXVl2kmzdv7pZJ9Vmi64GkR8VC/mX1X7wV1GmdvbotCkB1gdYFWMuiohUFT/5iwGgKrFI7bjIzPwVk2tZ+Kg4SBcDRdYq8cf55eXWd9J2xjnntryNHjrh9efLJJ1t69BtSsKK6SLHouPf2nZ/2F5AeghYEnu6En3nmmTSnUV0E1a9Q5VrdoavCo+gkfNttt7kgQnbs2OHef/jhB/dKjS4omeHdrXr1GKLFGq6LvgIa1ReJdswxx7g713jvgkUXcgUv3l2t6pUom/Pss8+67dOsWbMUlU7TWhctQyy6QOpCp+migxYNU8XMWHWD1IpJF2vVSfGC0VgU3HhUR0L1NLRv1WLMC2ZUv0VBWDwVgtNaF2+4MkueBx980GUplIFTIKx9p0yJplGArCAkmqbxZz78MjO/WBWqvUAt1jgvk6N97t/eovorafFv77ToN6TAMq19F+v3k9q2B/wIWpBvKLOil1qa6G7wu+++s48//thVTHz99dddZsA70atiq1ogxUMXIe/uP5ouOP4iHW/+yuTEEmu4Lvi601WRSnRQo+l1gY91gYqXLnIqmlLmRa1v1EIknqDF+04FIbF4w6OXTRU2VYHzqaeecttZFVz9Fyxvei2DF4CkR0GJio30UmVarYNaWulir/2toop4pLcu3r5UZVIFGAqYVTHYX6yjzIW+N5bUApbMzi87eAGl+vBRJdis0v7TeqpicUaktm0AP+q0IN9RelrFKqr7ovoLuqip1YI/Re2lzOOhFL2yArGa0frvzEV30SoiULGMvtdPgYnq08QqspBYXfurmEfibR2TFn/9A49XR0TLltpyecvgp1Y3KrZTIBiruEX1YFSXRcUEClz8wYKmr1atmmtR5WUBMkLfqSbRQ4cOdeuk4DReKv6J1WpFLV/866zASM4999wU9VC8aTMiu+eXEV62KyPHvI6LWMeE9xvavn27y7IB2Y2gBfmCgoHoIEG8i6UCCe8ErpfqFcSqLKgTdfRFWkVMqsjoH65UvvoeiabvadGihcuQqGt8v88++yzmid5rVqp0u78YSAHRa6+9FjFNWtR0VX1n+IsGPKpHM2PGjHD9jehm0qp/Ek1NwZV5UFHbH3/8ER6uzI+avCr7lFYfMlpm9c2hdVYT882bN4fHqYm1iiOefvrpmEUJusgrKBRloGJVjFbAo/3g7dt4aJuqmMlPTbdVn6V69erhDJRXjyQ6oNB2UBFbRmX3/DLC6wJAx2OsAFTHS/RyKVCPdUx4+06UMVLwEk37mU4MkVkUDyFfeOedd1ymQsVD6mdEFzK1FNLFSHfm/k6y1KpGLVseeeQRl5bX3bWyMzpJK/jRidhruSJqgaNMjToJU+sMFVXob53YvYqPfmpBoVYz6mBMlWA1f2UVVJFUfYp4WR+PKpWqqEr9tNx4442uzokCA/UbowyPxsXT9b6+Q4GUWktpO6hOieajjIi+Wxd49Y/hr2eiuj7vvfeeCx70vVo39c/hdVCnYhfVJ1G9IAVjqnejbapMku641SlaWjQfFQuovxmvqEgVcNWiSXf+qmujbaT6N9qWCvaUnVHxnvaT9qW2gTrmU7ZJFa/1edWrUOsmXXDTWwY/BWwqVtL81amcglFVUNb+VzGiR+uml8bpIqxplV1SVkfZEi8AjFd2zy8j9FvQPtTxq+BR+1yVhbVftP4KWHTM+IMnTaNlVUeAOn69/o+0/Rs3buyOUxW5qkWS/lZQpH2iY03z0/5SR4FARhG0IF/QxVgXWdUd0N2kLtY6kap4SJ2a+etdKIhRr6W681RmQs12dVLWRVMXe7VO8VM9BAU4yoRMnTrVBSu6gKt+hdck2U8XVTXNVkdbuotXXRI1NVVFWAUz0UGL6IKui4Pq4Hh1BXTS18nf62wuPepgTEUv+k5lJtSEVi2ZdEFSsKTMR/S6qVWOmujqO7U9FAQoQFKwIVpP1UfRBU2d3Xk94uqipR5x0+pYzr9c2r6PP/64Cxa9wEUXRH2/MlCq76GMi+r0qFWMmvmqGbLo+9QcXNtO66SLo9ZJ21R3/bpoxkv7Xp38ad+oh11l1lSUGN0jropwlEnwejVW52/ecun7MhpkZPf8MkoBk1oOqWWZAlgF52perv3QtGnTcFNpj/ekbm1z7RttJzWl91rr6bjUb0VBv4JYZbCUtVOQqd+E96wwIKMKqLOWDH8KAJKIvxt/BUsAEhN1WgAAQCAQtAAAgEAgaAEAAIFAnRYAABAIZFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAACABcH/A5ZXyIg5modbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "# Compute the MDP for this observation, assuming a bkg rate\n", - "\n", - "mdp = source_photons.calculate_mdp(TOT_NUM_EVENTS, mu, bkg_rate=22.0)\n", - "print('\\nMDP:', mdp*100, '%')" + "qs, us = source_photons.compute_data_pseudo_stokes(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "26df3de8", + "metadata": {}, + "source": [ + "Now get the stokes parameters for the background observations" ] }, { "cell_type": "code", "execution_count": 10, - "id": "f19a7f75", + "id": "c69dae6c", "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "modularion factor: 0.31 +/- 0.001\n", - "Q, U, unsubtracted: 0.6471561754610413 0.4242658685728328\n", - "Q, U, subtracted: 0.8546123469299894 0.34242031577874094\n", - "PD: 92.07 %\n", - "PA: 79.08 deg\n", - "rotated_Q, rotated_U: -0.8546123469299894 0.3424203157787407\n", - "------- Q/I, U/I -0.8546123469299894 0.3424203157787407\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAJvCAYAAAAtNjaIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3xT973//9SWLO89MV6AWTZgsNlQkpCEZofsQUbbjPb23ra3vWl6++1Imo5fR24z2qZp0jRpCCEJScgAAmFjhsE2nnhhjPGesqyt8/tDsYKDDTYekuzP8/HQw3Dm+8jy0eu8p0ySJAmBQCAQCAQCgU8g97QBAoFAIBAIBIKhI8SbQCAQCAQCgQ8hxJtAIBAIBAKBDyHEm0AgEAgEAoEPIcSbQCAQCAQCgQ8hxJtAIBAIBAKBDyHEm0AgEAgEAoEPIcSbQCAQCAQCgQ8hxJtAIBAIBAKBDyHEm0AgEAgEAoEPofS0AaNFb28vGzdupKSkhNLSUgwGA0888QTXXHPNkPY3GAz85S9/Ye/evVgsFtLT03nssceYPn36Bdvu37+fV155hdraWoKDg7n22mu57777UConzNspEAgEAoHAS5kwnreuri5effVVamtrSU1NHda+TqeTH/3oR3z22WfcfPPNPPLII3R0dPDd736Xurq6ftvm5uby5JNP4u/vz3e/+12WL1/Oa6+9xrPPPjualyMQCAQCgUAwIBPGVRQWFsZ7771HWFgYZWVlfPOb3xzyvrt376aoqIhf/OIXrFq1CoCvfe1r3HXXXbzyyiv89Kc/dW/7wgsvkJKSwu9//3u3p83Pz4/XX3+dW2+9lcTExFG9LoFAIBAIBILzmTCeN7VaTVhY2GXtu2fPHkJDQ1mxYoV7WXBwMKtXr2b//v1YrVYATp8+zenTp7nuuuv6hUhvuukmJEli9+7dI7oGgUAgEAgEgksxYTxvI+HUqVOkpaUhl/fXsunp6Xz44YfU1dWRkpLCqVOnAC7IgwsPDyciIoKKiopBz9Ha2kpbW5v7/waDgdraWqZNm4ZarR7FqxEIBAKBQDCaWK1WGhoaWLRoEcHBwZ42R4g3gPb2djIyMi5Y3ufJa2trIyUlxS2+BvLwhYWF9RNnX+WDDz7g1VdfHR2DBQKBQCAQjDs/+clPuOqqqzxthhBvABaLZUDvV98yi8UC4A6fDrZtb2/voOe4/vrrWbp0qfv/lZWV/OY3v2HdunUsW7aM8PDwEV2DQDDZMZvNdHZ20tHRQUdHB93d3RiNRoxGI2azud+2Go0GvV6PXq/H398fvV6PTqdDrVajVqtRqVQX/Fsmk426zQ6HA5vNhs1mw2q1un/2vXp7e93X0NPTQ09PD3a7vd8xdDqd+zqCgoIICQkhJCSE4OBgVCrVqNssEEwmzpw5Q21tLf7+/rzwwgtER0d72iRAiDfAdSPvE2bn07dMo9EAX4q2wbbt224gwsPDBxRoM2bMoLOzk+nTpwsBJxAMAaPRSEtLS79Xc3MzRqMRALlcTmhoKBEREaSmphIYGNjvFRAQ4NOpCmazme7u7gFfbW1tVFdXu7cNCgoiIiKCiIgIIiMjiYiIIDw8HK1W68ErEAh8g9raWsxmMytXrsTpdAJc9Ht+PBHiDQgNDR0w5PnVMOn5YdSoqKgLtk1PTx/2uadPn05nZydHjx5l+fLl+Pv7D/sYAsFERJIkurq6OHv2LHV1dTQ2NtLS0uL2cCsUCsLCwoiIiGDhwoVukRIWFoZCofCIzV1dXezdu5cVK1YQFBQ0JufQarVotVoiIyMHXG+1Wmltbe0nbsvLy8nNzUWSJAACAwOJiIggJiaGhIQE4uPj0ev1Y2KvQOCLOJ1OqqqqSEpKIi0tjfLyck+b1A8h3oC0tDQKCwtxOp39ihZKS0vRarUkJCS4twMoLy9n5syZ7u36bpTXX3/9sM8tk8nIysqiqqoKPz+/EV6JQOC72Gw2zp075xZrZ8+epaenB3A9YMXGxpKcnOwWaaGhoR4Tad6MWq0mNjaW2NjYfsttNhttbW39vJUFBQXs378fgJCQEOLj491iLioqSry/gkmLXC5n+fLlXtt83zutGkNaW1sxGo3ExcW5fykrV65k9+7d7N27193nrbOzk88//5wlS5a4QyxJSUlMmTKFDz/8kOuvv959Y9uyZQsymYyVK1delk1KpdJdwdrV1YVWq/Ua16xAMBZIkkRnZ6dbpJ09e5bGxkacTidqtZq4uDjmzZtHfHy88AqNEiqViujo6H45O5Ik0d3d3e/3UFJSgsPhQKVSERsb6/4dxMfHExAQ4MErEAjGnu7uboqKiliwYIFXfw9PKPH2zjvv0NPT4w53HjhwgObmZgBuueUW/P39+dvf/sann37KW2+9RUxMDACrVq1i8+bNPPPMM5w+fZqgoCC2bNmC0+nkwQcf7HeOxx57jCeeeILvf//7rFmzhurqat577z2+/vWvM3Xq1BHZL0kSeXl5KJVKlixZ4rWKXyC4HMxmM9XV1VRWVlJVVUVXVxfgSkdISEhg/vz5xMfHExkZeUHbHsHYIJPJCAoKIigoiNmzZwNgt9tpaGhwi7mTJ09y4MABAHceYUpKComJiaIgQjCh6O3tJTc3F61W6/Ve5wmlDt566y0aGxvd/9+7dy979+4F4Kqrrho0n0yhUPDb3/6WF154gXfeeQeLxcKMGTN44oknmDJlSr9tlyxZwlNPPcWrr77Ks88+S1BQEPfccw8bNmwYsf19IdQDBw5w7NgxFi1aJL7EBD6L0+nk3LlzVFVVUVlZydmzZ5EkifDwcNLT00lOTiY+Pl6kC3gZSqWShIQEd7oIuLwRZ86cobq6muLiYg4dOoRSqSQxMdEt5iIiIsakIlcgGA+sViu5ubkolUqys7O93nkik/oyWAXjSnl5Od/4xjd46aWXLmj629bWRm5uLjExMcybN0/cEAU+Q3d3t1usVVdXYzKZ0Gq1JCcnk5KSQmpq6pgl8nsDTqcTk8mETqebsA9ekiTR2tpKZWUllZWV1NbWYrfbCQwMdP+Ok5OT0el0njZVIBgSkiRx4MABent7Wbp06YBpGhf7zvYE3i0tJylhYWHMnz+fkydPYjKZhGdC4NW0tLRQXFxMSUkJzc3NyGQyYmNjWbRoESkpKcTHx09YIfNV5HL5hM/Pk8lk7qKRxYsXY7PZqK2tpaqqitOnT3Pq1ClkMhnR0dFuMSdy5QTehFKp7OdZk8lkJCUluXs++gJCvHkpMTExREREoFQqkSRJeN8EXkVrayvFxcUUFxfT3NyMRqNhxowZrFixguTk5En7wNHb20tZWRkzZsyYNO9BX2GDWq1mypQpOJ1O7Ha7u/lwZWUlSqUSlUqFSqWaNEJe4N3o9XrCwsLo6ekhKiqKuLg4T5s0LIR482KUSiVOp5MjR44QFxfXLwdFIBhv2tra3IKtqakJjUbD9OnTWbNmDSkpKV6fIzIe2Gw26uvrSUlJ8bQp44bVaqWurg6VSkVMTAwajcb9sOl0OrFYLJjNZmw2G4B7YoUvJIULJh6SJGGxWGhvb6eiooL6+nqWLVvmc+kc4m7r5cjlcnQ6HQUFBajV6guaAwsEY0l7e7tbsDU2NqJWq5k+fTqrV68mNTVVCDYBzc3NKBQKEhMTBxRjfR5Ip9OJ2WzGZDJhsVjcYwl1Op0QcoJxRafToVKpMJlMTJ061eeEGwjx5hPMnTsXq9VKXl4eixcvJiQkxNMmCSYwFouFoqIijh8/Tn19PWq1mmnTprFy5UpSU1NFewiBG0mS6O3tJSQk5JLiSy6X4+fnh5+fXz8h19XVRVdXFxqNBj8/P7RarUgTEYwpfXOEQ0JC6Onp8cnUJCHefACZTMb8+fPJzc3l8OHDrF692qubBwp8D0mSaGhoIC8vj5MnT2Kz2UhNTeW2224jLS1NCDbBgNhsNhwOx7ArS78q5EwmE729vXR0dPRbJzy7grHAarWiVqtRKpV0dXVhs9l8bt6x+MvwERQKBYsWLaKhoUEIN8GoYTabOXnyJHl5eTQ2NhIYGMiSJUuYN2+eT4YSPI1Go2HatGmT5m+0b1j3SEKefRW6er0em81Gb28vRqORnp4e1Go1er1eeOMEo0Kfh62votRsNgNffo59CSHefAiVSuVuGtzY2EhYWJjwiAiGjSRJnD17lry8PIqLi3E4HEybNo2vfe1rpKamimrAEaDVar2iB9R4M1rCSqVSERQUREBAAGazuZ83TqfT4efnJ+55gsvC4XBgNBrR6/Xuhw1ffiAQ4s0HsdlsFBQU4O/vT05Ojkj0FQwJq9XKiRMnyMvLo7m5meDgYJYvX868efNEH65Rwm6309HRQUhIiAj5jYDzQ6d93jiTyYTRaEStVuPn54dOp/PpL1/B+OF0OjEajYBvC7bzEXcXH0SlUrFo0SIOHTrE8ePHycrKmjAfSMHo09PTw+HDhzl27Jh79NvatWtJTk4Wn5tRxmg0kpuby4oVK0TYeZTo88YFBgZiNpsxGo10dnZiMBjQ6/X4+fkJb7FgUM4Xbv7+/hPmsyLEm48SEhJCVlYWR44cobCwkIyMDE+bJPAyWltbOXjwIAUFBSgUChYsWEBOTo4QFQKfRCaTodPp0Ol02Gw2enp66O7udou488NhAkEfJpMJp9M5oYQbCPHm00RGRpKZmUlVVRU2m03kgggAOHPmDAcPHqSsrAx/f39Wr15NVlYWWq3W06YJBKOCSqUiJCSEgIAAjEaju8DBz88PvV4v7oUCNxqNBo1GM+GEvRBvPk58fDyxsbHI5XKcTueEerIQDB1JkigrK+PgwYPU1dURERHBDTfcwJw5c0TulWDColQq3QUOfSKut7cXjUaDv78/arXaI6kB55/z4MGDLF68eMDtNm3axO233w5AYmIip0+fHvQ48OX1xsTEsGDBAq677jpuuOGGQf/Gv7q/TCYjMDCQOXPmcP/99/PQQw9N2NQJq9WKSqWasPe/iXlVkwy5XI7FYuHAgQOkp6cTExPjaZME44TD4SA/P5+DBw/S1tZGYmIid911F2lpaRP2puzN9LW9EA9RX2LY9fm4ncsPCavFislsosfhQKFUotNqUanVyLj430PA11aPiU1vvPHGoOLt9ddfH9Ix7r//fsCVv9XV1cWpU6d47bXX+Oc//0lqaipvvPEGixYtuuT+DoeDqqoqDhw4wP79+9m5cydvvvnmMK/I+zGbzZjN5gnthRXibYKgVqsJDg7m+PHjZGdnEx4e7mmTBGOI0+nk5MmTfP7553R1dZGens5NN91EfHy8p02b1AQEBPC1r33N02ZMWmTI0Gg0qDVq7DYbJpOZnp4eFEolfjodSpXqkiJutFAoFMycOZO33nqLP/3pTxd4gNra2vj000+ZP38+x48fv+ixXn311QuWVVVV8eMf/5hNmzaxevVqDhw4QGZm5pD237FjB9deey0bN27k7rvv5utf//pwLs2r6Zulq9VqJ6xwAxCPhxMEmUxGZmYmYWFhHD16lO7ubk+bJBgDJEmipKSEF198kffee4+YmBgeffRRbrvtNiHcBIIvkCFDpVITGBhIQEAgAAaDAUO3AZvNNm523H333bS2trJt27YL1r311lvYbDbuueeeyzp2SkoKb731Fg899BC9vb08+OCDQ973yiuv5N577wVgy5Ytl3V+b8RqtWIymdBoNBM+x1eItwmEXC4nKysLvV7P4cOHcTgcnjZJMEpIkkRlZSUvvfQSmzZtIjAwkG984xvcfvvtREZGeto8wRd0d3ezbds28fDkRahUqi9EXACS5MRg6MZg6MZuH3sRd9dddyGTyQYMj77++uv4+/tzww03jOgcv//979Hr9Zw4cYL9+/cPeb958+YBUFdXN6LzexMOhwOVSjXhhRuIsOmEQ6lUkp2dTXd394SrrpmsnDlzhp07d1JbW8uUKVPYsGEDU6dO9bRZggGQJAmr1YokSZ42RXAebk9ckAqb1Upvr4nu7m7UajU6nQ6FYmy+ChMSElixYgUffPABPT09+Pv7A1BdXc2hQ4e499578fPzG9E5goKCuOaaa9i8eTOff/45y5YtG9J+BoMBYEKMcusbe6XT6XxyyPzlIDxvExCNRkNERASSJFFTU4Pdbve0SYLLoKGhgTfeeIN//OMfWCwW7r77bh544AEh3ASCy0SGDLVaQ1BwEHq9P3a7g66uLozGnjG7T95zzz309vby7rvvupe98cYb7nWjQV+uW2lp6ZC2lySJrVu3AjB37txRscFTOBwODIYvw+GTQbiBEG8TGpPJRFlZGceOHfPJwbuTlc7OTt5++23++te/0tHRwfr16/nWt74lKkgFglGir7AhKDgIPz8/rDYbzc3NdHV1jfq98tZbb0Wj0bgFG7jEW0xMDGvWrBmVc/QVqHV0dFx0O4fDQUVFBQ8++CCHDh1Co9HwwAMPuNe/8MILpKSkoNVqycjIcAu8rzLU7caa86cnTLZIkxBvExg/Pz8WLlxIW1sb+fn5IpTj5dhsNnbv3s1zzz3HmTNnuOGGG3jssceYNWuWEG0CwRggQ4ZWqyP4i15xvb29NDc3YzQaR+1+GRwczLp169i5cyeNjY0cPXqU8vJy7rjjjlETHH22DnafkMlkyGQylEol06ZN49VXXyUgIIA333yTlJQUwJWD953vfIe7776bDz74gPnz53PTTTeRm5vb71hD3W6skSTJ/XuajO15RM7bBCc8PJz58+dz7NgxNBoNs2bN8rRJgq/Q12B327ZtGAwGFi9ezIoVK1Cr1Z42TTBM9Ho9y5YtQ6/Xe9oUwTCQyeQEBATg5+dHd3c3XV1d9Pb2EhQUNCp/h/fccw/vvvsuGzdupKamxr1stGhtbQUgNDR0wPV9fd7kcrm7Se/NN99MSEiIe5tf/OIXPPjgg/ziF78A4KqrrqK4uJhf/OIXfPzxx8PebqzpG3s1WceiCfE2CYiJiWHOnDm0trZOmmROX6G1tZVPPvmEqqoq0tLSuPfeewkLC/O0WYLLRKlU9vtCFPgWCoWCkJAQt4hrbW3Fz8+PgICAEQmEa6+9luDgYF577TXOnTtHeno68+fPHzW7T5w4AcDMmTMHXD9Qn7jz6e3tpbKykqeeeqrf8jVr1vCHP/wBi8WCRqMZ8nbjgVarRa1WT9gJCpdicvkZJzFTp04lKysLmUwmChi8AIvFwvbt23nhhRdob2/nzjvv5K677hLCzccxm80UFxdjNps9bYpgBGg0GsLDwwkKCsJkMtHc3ExPT89lh1I1Gg3r16/nxIkTNDU1jarXraury91HbvXqy5sSYTabkSTpAi+jRqPBarW6vYVD3W4ssVgs7lGQk1W4gRBvkw6DwcBnn31Gc3Ozp02ZlEiSREFBAX/+8585evQoq1at4vHHH2f69OnCIzoBsFgsVFdXY7FYPG2KYITIZDL0ej1RUVHodDq6u7tpaWm57N9tn1c9PDycu+++e9Ts/P73v4/RaGThwoWDjuG6FKGhoYSEhHD06NF+y/v+397ePqztxgqz2YzJZBrXRsveyuSVrZMUf39/wsLCOHbsGIsXLxYhnnGksbGRjz76iLq6OmbNmsVVV11FUFCQp80SCAQXQS6XExwcjF6vp6uri7a2NrRaLUFBQcMKpS5fvtydmzYaVFdX88QTT7Bp0yb0ej0vv/zyiI73rW99i+eee47FixezdOlSNm7cyPbt2wH6FQMMdbvRxmq1Yjab0Wg0E6I33UgR4m2SIZPJmD9/Prm5uRw+fJhly5a5G0cKxgaHw8HevXvZt28f4eHh3H///SQlJXnaLIFAMAxUKhVhYWGYTK4Gv83NzQQGBuLn5zfmXvMNGzYArtYY3d3dnDp1irKyMiRJIi0tjX//+9/MmTNnROf4yU9+QmlpKddddx0AcXFxPPnkk/z85z8nOjp62NuNJjabjd7eXndTZYEQb5MShULBokWLOHDgAMePH2fFihWeNmnCcu7cOd5//31aWlpYsWIFy5cvn5SVUQLBREAmk+Hn54dWq3VXpZrNZoKCgsY0/+qf//wn4CqICQwMJDY2lvvuu48bbriB66+/flTuKXq9ni1bttDQ0EB7ezvTpk3j//7v/4iMjOzXGHyo240mkiShUqmEcDsPId4mKSqVipycHFG8MEbY7Xb27NnDgQMHiIqK4pvf/OaYPZUKvAe1Ws3UqVNFm5fzCPja5SXRezN9oVStVktnZyctLS39vHDDKWyIjo4edPuR9pq7nP1jYmKIiYnBYrHwyiuvuL1+l7vdSOgrTFCr1eJv6isI8TaJ6Rvea7fbqaioYNq0acIrNAqcPXuW999/n/b2dlatWsXSpUvF+zpJ0Ol0Iw5fCXwHrVZLZGSk2wtnMpkIDg72ySrIDz74gHPnzjF9+nTOnTvHn/70J+x2Oz/+8Y8va7uR4nQ66enpETlug+B7nzDBqGM0GqmpqaGnp8fdTkQwfPomJBw8eJCYmBi+9a1vERkZ6WmzBOOIw+FwDyAXgn1y0OeF0+l0A3rhfAWFQsFzzz1HVVUV/v7+XHfddfz617++oKhqqNuNhPPHXqlUqlE77kRCiDcBQUFBLFiwgKNHj1JYWEhGRoanTfI56urq2LJlC52dnaxZs4YlS5ZMunEtAujp6WHv3r2sWLFCVBJPMjQaDRERET7rhVu3bh3r1q0bte0uF0mS6O3txel04u/vL+6jg+AbnyrBmBMVFUVGRgb5+flotVqmT5/uaZN8Arvdzs6dO8nNzSUuLo477riDiIgIT5slEAg8wEBeuICAAPR6vU954TyJxWLBbrcL7/UlEOJN4CYhIQGLxSIG2A+RtrY2Nm/eTHNzM1dccQWLFy8WT4kCgcDthTMYDHR3d2OxWAgODhZiZAhoNBqUSqXPeCw9hXh3BP1ITU11/9tsNruLGgT9KSwsZOvWrfj7+/Pwww8TExPjaZMEAoEXIZfLCQoKQqPR0NHRQUtLCyEhISL5fhAsFgsKhUIItyEi3iHBgDQ3N3P06FFycnLEvM3zsFqtfPzxx+Tn5zN37lzWrVsnbsYCNzKZDKVSKUJkAjd9FakdHR20tbUREBCAv7+/+Iych8ViwWQyodVqhXAbIuJdEgxIeHg4YWFhHDlyhKVLlxIYGOhpkzxOU1MTb7/9Nl1dXdx4441kZGSIG7CgH4GBgVxzzTWeNkPgZSgUCsLCwjAYDBgMBiwWCyEhISKMiqtK32QyodFoRKRnGIgEHcGAyOVysrKy0Ov15Obm0tvb62mTPIYkSRw7doyXXnoJhULBN7/5TTIzM4VwEwgEQ0YmkxEYGEhYWBh2u52WlhbMZrOnzfIodrsdo9GISqUSwm2YCPEmGBSlUkl2djZKpZLi4mJPm+MRzGYzb7/9Nlu3bmXevHk8/PDDoppUMCgGg4Hdu3djMBg8bYrAS+krZlCpVLS3t9Pd3T2pi8RUKpXP9cTzBkTYVHBRNBoNOTk5k7JR4tmzZ9m8eTNms5nbbruNmTNnetokgZfjdDoxGAw4nU5PmyLwYhQKBaGhoRiNRnc1akhIyKTJ93I6ne780MlyzaON8LwJLomfnx8qlYre3l4KCwsnxRdTXl4er7zyCv7+/jzyyCNCuAkEglFFJpPh7+9PeHg4TqeTlpYWLBaLp80ac/rGXplMJk+b4tMIySsYMiaTibq6Oux2O/PmzZuQbm6Hw8G2bds4cuQIWVlZXHPNNSKpWCAQjBlqtZqIiAh3NWpgYOCEbeorSRJGoxFJkkSV/ggR4k0wZMLCwpg3bx55eXloNBpmzZrlaZNGld7eXt5++21qa2v5+te/TlZWlqdNEggEkwC5XE5oaCjd3d10d3djt9sJCgqaUAKuT7g5nU70er14KB4hQrwJhkVsbCwWi4WioiK0Wi0pKSmeNmlUaG5u5s0338RisXDfffcxdepUT5sk8EH8/PxYuHAhfn5+njZF4GPIZDKCgoJQqVR0dnZis9kIDQ2dMCLHZrNht9vR6/Uiz20UEO+gYNgkJSVhs9nQ6/WeNmVUKCsr49133yUkJIT777+f4OBgT5sk8FFUKhXR0dGeNkPgw/j5+aFUKmlvb6elpYXQ0FDUarWnzRoxarUahUIxYcSopxEFC4LLYtq0ae4vqZ6eHg9bc3lIksTevXvZuHEjqampPPTQQ0K4CUaExWKhoqJiUiSeCwZGJpO5X4cOHRp0u02bNrm3+6qnvy8PTqFQ0NbW5tPJ/RaLBavVCjAuwm2g93MiIsSbYEScPn2avXv30tHR4WlThoXVamXz5s3s2rWLVatWsX79+gnxdCvwLGazmbKysknffFXg4o033hh03euvv37RffumMmi1Wjo6OnyyH5zVasVkMuFwODxtyoRDiDfBiEhISCAoKIgjR474jAeuq6uLf/zjH1RUVHD77bezatWqCZUYLBAIPItCoWDOnDm89dZb2O32C9a3tbXx6aefMn/+/IseRy6XExwcTGBgID09PbS3t/tMqyabzUZvby9qtRqdTudpcyYcQrwJRoRCoWDRokVoNBpyc3O93uPQ2NjISy+9hNls5qGHHiI9Pd3TJgkEgqFSUQFPPAF33un6WVHhaYsG5e6776a1tZVt27ZdsO6tt97CZrNxzz33XPI4ff3gQkNDsVqttLa2er0ny26309vbi0qlEsJtjBDiTTBiVCoVOTk5AFRXV3vYmsE5ffo0r7zyCgEBATz88MNERUV52iSBQDBUXnkFZsyA3/0ONm1y/ZwxA1591dOWDchdd92FTCYbMDz6+uuv4+/vzw033HDRY5SWlrJhwwZ3hCMzM5NvfvOb7N+//wKPntls5uWXX+aGG24gOTkZnU5HcHAwK1asYOPGjQMe32q18sILL7Bw4ULCwsLw8/Nj6tSpfP3rX79gn6lTpw4aodi9ezcymYwNGzYALo+hSqXi8ccfRy6Xs3v3brZt28bq1asJDg5GJpPR2dnp3v/TTz9l3bp1REREoNFoSE5O5nvf+x5tbW0Dnq+9vZ1vf/vbxMbGotVqmTlzJs8++6zPhZVHgqg2FYwKWq2WpUuXeu1w4dLSUt555x2mTJnC7bffLhpECsYElUpFTEzMpBwnN6ZUVMDDD8NAIcOHHoJlyyA1dfztuggJCQmsWLGCDz74gJ6eHvz9/QHXA+6hQ4e49957L9pSZsuWLdxxxx1YLBYyMzPJycmhrq6ODz74gO3bt/PGG2+wbt06d67u6dOnefjhh4mNjWX69OksWrSIxsZGDh48yL59+ygrK+NnP/tZv3PcfffdbN68mYCAAJYvX05gYCD19fXs37+fnp4e7rjjjmFdsyRJOJ1O5HJ5v2v797//zd///nd34/Oqqiq3EPyf//kffvOb36BWq1m4cCExMTEUFBTwxz/+kQ8++IADBw70e9Du6Ohg2bJllJaWEh0dzQ033EB7ezs/+MEPqKysHJa9Po0k8AhlZWXS8uXLpbKyMk+bMuq0trZKx48fl5xOp6dNkSRJko4ePSr97Gc/k95++23JZrN52hyBYMJgMpmkkpISyWQyje2J/ud/JEmhkCS48KVQuNZ7CYCkUCgkSZKkl156SQKkf/7zn+71v/jFLyRA2rZtm9TQ0CABUmJiYr9j1NTUSHq9XvL395d27NjRb90nn3wiqVQqKS4uTjp9+rT7vW9tbZV27NhxwX23urpamjp1qiSXy6Wampp+y/vO3dra2m8fk8kkHTx4sN+yxMREaTDJ8Pnnn0uAdNddd0kGg8G9/P7775cACZA2btx4wX6bNm2SAGn27NlSRUWFe7nT6ZR++tOfSoB0++2399vnkUcekQDp6quvloxGo3v54cOHJX9//wHfz8EYzufX276zRdhUMOrY7Xbq6+s5efKkR+2QJIndu3ezdetWFi1axC233CKaQwrGFKfTidls9pmkcp/h9GmXVBsISXKt90JuvfVWNBpNv6rTN954g5iYGNasWTPofn/6058wGo0888wzXHHFFf3WXX311Tz66KPU19ezZ88e2tvbMZlMhIWFccUVV1wQ2kxKSuLJJ5/E6XTy4Ycfupe3tLQAMG/ePMLCwvrto9VqWbx48ZCvU/ridyNJ0oA5buvWreP222+/YPnTTz8NwJtvvknqeZ5TmUzGz372MzIzM9m8eTOtra0AGI1G/vnPfyKXy3nuuef6efcWLVrE448/PmSbfR0h3gSjTlRUFBkZGdTW1lJeXu4RG5xOJx999BG7d+9mzZo1XH311aKiVDDmGAwGduzYgcFg8LQpE4upU2Gwv1+ZzLXeCwkODmbdunXs3LmTxsZGjh49Snl5OXfcccdFe55t374dgJtvvnnA9cuXLwegpKQEnU5HR0eHu9p///79PPXUUzz66KM88MADbNiwgbfffhuAivMKPGbMmIFer+ejjz7id7/7HefOnbusa5QkyV2oplQqB7yu66+//oJlzc3NFBQUkJaWxuzZsy9YL5PJWLp0KQ6Hg7y8PADy8vIwmUxkZWUNON3nzjvvvKxr8EUmlBvCarXy8ssvs337dgwGAykpKTz88MMsXLjwovvddtttNDY2DrguLi6ON9980/3/FStWDLjdN7/5zSFVDk0WEhISsFgslJaWotPpmDJlyrid2263884771BWVsYNN9zAvHnzxu3cAoFgDHjwQfjtbwdeJ0muvDcv5Z577uHdd99l48aN1NTUuJddjNNfeBLj4uIuul1bWxvBwcEoFArOnj3Lt771Lfbu3Tvo9uc/VAQGBvLSSy/xzW9+kx/+8If88Ic/ZNq0aaxevZp7772XpUuXDun6HA6Hu/pVLh/YHzTQ/b/vGisqKi75YN3neesTmImJiQNuNxma8/YxocTbM888w+7du1m/fj3x8fF88skn/PCHP+TZZ59l7ty5g+73ne9854IO1o2Njfz9738fUPhlZWVx9dVX91uWlpY2OhcxgUhNTcXpdBISEjJu5zSbzWzcuJGzZ89yxx13MH369HE7t0AgGCPS0uDll10iTSZzCba+ny+/7HXFCudz7bXXEhwczGuvvca5c+dIT0+/ZH+3vrD7/ffff9HtsrOzkclkBAYG8l//9V/s3buXpUuX8tRTTzFnzhy3sNu+fTtr1669oBrzzjvv5IorruD9999n+/bt7Nmzh7/+9a/89a9/5Xvf+x6///3vL3l9SqXykoVqA63vu8bo6GjWrl170f0HE2uTmQkj3kpKSti5cyePPvqo23W6du1aNmzYwIsvvsiLL7446L59Lujz+ec//wnAlVdeecG6hIQErrrqqlGyfGIzbdo0wPV01tPTQ1BQ0Jidy2g08tprr9Hd3c199903rt4+gUAwxmzY4KoqffllV47b1KkuMefFwg1Ao9Gwfv16XnrpJQD+4z/+45L7xMfHU1VVxe9///sL8tEGY+vWrSgUCl5++WXCw8MJDQ11e7Qu1sIpIiKChx9+mIcffhhJkti2bRu33347f/jDH3jwwQeZNWsWgLuqta9y1mKx4HQ60el01NfXD8nGr14jQHh4OK8Osd1LTEwMALW1tQOuH2z5RGTC5Lzt2bMHhULRL7au0WhYt24dxcXFNDU1Det4n332GTExMcyZM2fA9RaLRcwvHAbl5eUcPHiQ7u7uMTl+XyKr0WjkgQceEMJNIJiIpKbCM8/Am2+6fnq5cOvj3nvvJSwsjPDwcO6+++5Lbt/nNHjvvfeGfI6Ojg4CAwNJTEzEYrHQ3t7u9rRt2rRpSMeQyWRcffXVrFu3DoDi4mL3uj7hdOrUKWw2GyaTyX38HTt2DNnOPuLj45kxYwYlJSWcOnVqSPssWLAAnU5HXl7egIJ0sH52E5EJI94qKiqIj49Hr9f3W97XQX84/V9OnTpFbW3tBVU+fXz66adcddVVXHnlldx7771D+uC2trZSXl7ufk2mJwRweeD0ej25ubn09vaO6rH7hFtvby8bNmwgMjJyVI8vmNyYzWY6OjpoaWmhoaGBM2fOuJuHmkwmioqKOHnyJIWFhdTU1DBlyhQCAwMB132pqKiIkpISKioqqKmpcX/+zWYznZ2d9PT0iArVCc7y5ctpbW2lpaVlSCHA73//++h0On7wgx/w7rvvXrDeYrGwefNmzp496142bdo0Ojo6eP/99wkNDXULuD/84Q98/vnnFxzjxIkTvPvuu+6h8X20t7dz+PBhwBVl6mPlypUA/OpXv6K7u9s9PeHNN9/slxc+HP73f/8Xp9PJLbfcQn5+/gXr29ra3B5LAH9/f+69914cDscF6U7Hjh3jueeeuyw7fJEJEzZta2sb0L3ct6wv4XEo9ImxgUKms2fPZvXq1cTExNDW1sa7777LL3/5S4xGIzfeeOOgx/zggw+G7BqeiCiVSrKzszlw4AC5ubksW7ZsVAbBf1W4hYeHj4K1gomO3W7HYrG4H/aqqqro6enBZDJhNpsxm80sWrSI0NBQampqLnj4S0xMJCwsDKfT6RZyMpkMmUyGQqFwh6u6urro6enB6XRit9ux2WzodDr8/Pyoq6ujrKys33Hj4uKYP38+NpvNXeyj0+nQarXu/UTV9MQnNTWVN998k7vuuotbbrmF1NRU0tPT0ev11NfXc/z4cYxGIydOnHCHH5944gnuuece7rjjDpYvX05MTAz5+flUVlbyn//5n/zpT3/qd47a2lpuueUWgoKCyMrKIjo6ms7OTvbu3YvBYOC6667r1y7k8ccf5y9/+QvvvPMOBQUFZGZmuh9Ovvvd7/LHP/5x2Nd51113UVxczK9+9SsWLFhAZmYmKSkpSJJEVVUVhYWF+Pv7841vfMO9zzPPPMOePXv4+OOPSUlJYcWKFXR0dLBr1y6+9a1v8fzzz1/em+5jTBjxZrFYBuxq3icQhhridDqd7Nq1i7S0tAErV1544YV+/7/22mt5+OGH+dvf/sY111wzaOf+66+/vl/1Tm1tLU899dSQbJooaDQat4BrbGwccWhTCDfBpejr9m42m6mqqsJgMGAwGDCbzahUKnfhUXNzM3a7Ha1WS3h4uFssgatPVlxcHCqVCqVSiVKpdAsovV7v9kiA6zNZUFCA0WhEr9eTlZU1qG2JiYlERUVht9vdYrLv/mGz2ejo6KChocHtGZHJZO5wVmlpKQABAQH4+/vj7+8vehhOMG644QYKCwv5wx/+wI4dO9ixYwcqlYrY2Fiuu+46br75ZmbOnOne/u677yYkJIRf/vKX5Ofnc/LkSebPn8+vfvUrlErlBeItJyeHp556il27dlFeXs6+ffsICQlh7ty5PPTQQxdUxEZFRbFnzx6+//3vs3//fj755BMWLFjAjh07kMlklyXewNXrbe3atTz33HMcOHCAkydPEhgYSFxcHI8++ijr16/vt31oaCgHDhzgf//3f3nvvffYsmULSUlJ/PrXv+Z73/ueEG++hkajwWazXbC878Y31HFI+fn5tLS0XPCBGQyVSsXNN9/M73//e8rLywetag0PDxfiAteX3apVq0bsdRPCTfBVzGYzbW1tdHZ20t3djcFgIDw83F3Z19zcjL+/PwkJCQQEBPRrJnqxhqRarXbIY9/sdjttbW0XzJ0cCLVaPejfgZ+fn1sUOhwOzGYzVqvVLRpNJpO7Oev51xAeHk57eztWq5WQkBAxBs4DfLWi82JER0dfdPuUlJRhiZFrr72Wa6+9tt8ys9lMe3s7ra2thIaG9jv3k08+yZNPPnnJ4zqdTiRJIj09nY8//njAbQa6jldffXVIEacVK1YM2oZrIMLCwnjhhRcucKYMZsdEZMKIt7CwMHfH6PPpC2kM9ct9x44dyOXyQfPdBqIvx2qskvEnGn1fWLW1tbS3t5OZmTmsUND5wu3+++8Xwm0S4nA46OzspKOjg9DQUEJDQ2lqaqKwsBC9Xu9O3O77stJqtaxevdrDVl8eCoUCvV7fL5+3T5Da7XZ6enowGAzuPLuzZ8+6c2r9/PwICQkhISGBiIiI8Tde4HG0Wi2hoaG0t7fT3t7erwp1KEiShNFoRJIkAgICRNjeS5gw4i01NZUTJ064wxV9lJSUuNdfCqvVyp49e8jMzByWIOhrHBgcHDw8oyc5KpWKs2fPotFo+rn/L8ZXhZv4Qppc1NTUUFdXR3d3N5IkoVQqmTlzJqGhocTGxhITEzMquZS+glKpJDg4uN+9Z+7cuaSlpdHR0eF+9XXAb2xspKqqitDQUCIiIggNDR20sapg4nC5Aq5PuDmdTvR6vRBuXsSEEW+rVq1i48aNfPDBB+4+b1arlY8//piZM2cSFRUFQFNTE2azecCKn9zcXHp6egYsVADo7Oy8QKD19vayefNmgoKCREPYYRIbG4vFYqGoqAiNRjPguJPzEcJt8iBJEt3d3bS0tNDc3MzMmTMJDg5GLpe7vWohISH9PAED5bxOVvoKHWJjY/stV6lUaLVa6urqqKysRKlUkpycLO5dk4DLEXAmkwm73Y5erxc5lV7GhPltzJw5k9WrV/O3v/2Nzs5O4uLi+PTTT2lsbORHP/qRe7unn36a/Pz8AUeI7NixA7Va3S8B+Xzeffdd9u/fz5IlS4iKiqKtrY2PP/6YpqYmnnzySfHlcRkkJSVhsVgoKSnBz8/P3Uvoq/T29vLaa68J4TYJKCsr48yZM1gsFhQKRT8veGJiold3W9fpdGRkZAw4nNsbCAsLIywszC2Om5ub3cO929vbOXHiBJGRkURERBAREXHR+ZsC32M4As7hcGCz2fDz8xPfbV7IhBFvAD/+8Y+Jiopi27Zt9PT0kJyczG9+8xsyMzMvua/RaOTQoUPk5OTg7+8/4DZz5syhqKiIrVu30t3djVarJT09nR/96EcsWLBglK9m8jBjxgxUKtWgoWqr1cq///1vDAYDDzzwgBBuEwir1UpjYyPnzp1j7ty5+Pn5oVar3TlavhbWU6vVPtEgWiaTERQU1G/iiVqtJjIykpaWFk6fPo1CoSAxMdHdYV8wMThfwPVFkwYScAqFgoCAAJ/6+5tMTCjxptFoeOyxx3jssccG3eb//u//Blyu1+v57LPPLnr8hQsXXnLIveDy6AuZmkwmrFar+0vF4XDw1ltv0dzczIYNG4RwmyDU19dTV1fn7r8YFhbmrtBMTk72pGkjok+MRkdH+1zunb+/v3uijNFopKGhwe1xMRqNlJeXExsbKzxyEwCtVktISAgdHR3uVIQ+AWe1Wt0eNyHcvJcJJd4EA+B0QksLnD0LdXWun2fPQnMz2Gxfvux216BnlQqUStdPrRZiYyEhAeLjv3yN4XzSkpISWltbWbp0KX5+frz33nucPn2ae+6554L8HYHvYLfbaWhoIDo6GpVKRUtLC06nk9mzZxMTEzNhWlqYTCYKCgoICgryOfF2Pnq9vl+Rl8ViwWAwcPToUZRKJVFRUcTHx7srXCdLe4aJhE6nw+l00tXVhVwuJyAgAJvNRm9vL2q1elIUJ/jy51aIt4lCby/k5cGhQ5Cf/6VQq693ibM+VCqXAIuMBI3mS6GmVIIkuY5jt7v26e2FDz+EpibXuj4CAr4UclOnwsKFsHgxpKfDCJ/I586dy4EDBzh06BA9PT0UFxdz2223kZSUNKLjCjxDZ2cntbW1nDt3DrvdTnZ2NpGRkWRkZEyKL4eJQmhoKCtXrsRoNHLu3DnOnTtHQ0MDISEhSJKExWLx2jw/weDo9XqcTicGgwFJktwV3JPld9nXG9YXPclCvPkikgTV1ZCb6xJrublQUOASXXo9zJvnElXLlvX3mMXHQ0QEDNcVbrVCQ8OXXrvzX0eOwMsvuzx8AQGQnQ05OS4xl50NA4wsuxgqlYrs7Gyef/55ioqKePTRR93zaQW+RWFhIbW1tWi1WpKTk5kyZYr7S0EIN99Er9eTlpZGWlqae3qF0+mkpaUFhUKBRqNBpVKJ368P4e/vj8PhoLW1laCgoH4h1ImMJEl0dXW5P7O+hhBvvkJHB7z/PmzZAgcPukKhANOmuYTSN77hEk2zZ4/Y+3UBajUkJrpeA9HTA8eOfSkk//pX6Bv9NW0arFwJt94KX/uay8N3CUpLS2lra2Pu3LmXbB8i8B7a29s5c+YMCQkJhIWFERcXR3R0NBEREZPiy2Cy0ZcPFR8fT11dHc3Nzeh0OlQqFRqNxqfDxpMNjUaDRqPBaDSiUqkm9O9OkiRsNpt77nBcXJynTboshHjzZrq6XIJt0ybYvt3lWVu6FB55xCXULsOzNSb4+8OqVa4XuDyDNTUuMXfoEHz6Kbz0ksvWW26B225zCboBhNypU6fYunUry5YtY+3ate7eQpIkCQHghTidTs6dO0dVVRXd3d34+fkRHR0NuIoQJhtKpZKwsLBJ1ROrr/9ea2srHR0dOBwO5HI5CoXCPVbJF8NSkwFJknA6nSgUCndD3nPnzuHv7z/hf2cajYa4uDh33qavMXnuML5Cdzd88IFLsG3b5gpZLlsGv/+9S/j4QtK+TAbJya7X3Xe7xNyJE65r2rQJ/vY3V/i2T8itWAEKBWfPnuXtt99m2rRpXHPNNe4n+5MnTyJJ0qBzYwWeo6amhpKSEiIjI5k5cybh4eGTWmTr9XqWLFniaTPGncDAQAIDA7HZbDgcDvfyyspK6urq0Ov1JCQkEBUVJSoYvQSn00lBQQFGo5Hs7GxUKhUWi4V3330Xs9nM+vXrB22b5esoFAqfDJWejxBv3kJeHvx//x+89x5YLLBkCfz2ty6BEx/vaetGhkwG8+e7Xs8847rWPiH3l79AZCS9d9/N+3o90VOncsstt/S7wQcHB5Ofn49GoxGd4D2M2WympqYGpVJJWloaU6ZMITIykoCAAE+b5hX0JX3LZLJJKWJVKlW/L8W+auKqqiqKioqorKxkwYIF/QakC8YfSZLIy8ujvb2dxYsXu/9+tVott956K3//+9/ZtGkTDz74IFqt1sPWCgZCPAJ5moMHXblgWVmu5P+nn4YzZ+DAAfjud31fuH0Vmcx1rb/9rSu0evgw9ltvRfnCC3zr17/m/gMHUFVX99slISGB9PR0Tp065R64LRhfDAYD+fn57Ny5k9OnT7uXq1QqIdzOo7u7m48++oju7m5Pm+I1hIWFsWjRIlatWkVkZKTbm9PS0uKeuSoYX4qKimhsbBxQSAcEBHDPPfdgMBjYtGkTTqfTQ1YKLobwvHma73wHZs6Et9+Gm24a/WIDb0Ymw5mVxb/LymgPD+ebkoTfSy/Bq6/C9dfDf/+3K8cPSE1NxWw2U1hYSEBAgHhyH0d6enrYvXs3Wq2WGTNmkJiYOKlyugSjQ0BAABkZGYDL81NYWIjZbGbq1KmkpqZOmF5/3o7NZnMXhPXlp36ViIgIbrvtNv71r3+xfft2rr766nG2UnAphOfN07z0Ehw+7KrGnEzC7Qu2b9/O6dOnuWHDBvx+8Qs4fdr1npSXu3L9lixxhZKdTmbNmkVGRgYhISGeNnvCYzKZqKioAFytBBYtWsSaNWtISUkRwk0wYmQyGStXrmTatGnU1dWxc+dOysrKhJdnjJEkCZVKxYoVKy45xi0pKYlrrrmG3NxcTpw4MU4WCoaKEG+eZv58VyhxEnLixAlyc3O5+uqrv2zCq9HAQw9BcbGrcEOhgJtvhvnzke3fz5QpU5DJZLS3t4vQ1BhgsVgoKipi165dVFdX09vbCyASzQWjTl/e5Jo1a0hKSnJ3+gf6FT0IRofGxkb27NmD1Wod8t9yVlYWWVlZbN26lTNnzoyxhYLhIO7GAo9w5swZtm7dyoIFCwaeFyuXw3XXwb59sH+/q9fcihWu6tX6ekpLS8nNzXWLC8HIqaysZOfOnZw9e5Zp06axZs0a/Pz8PG2WYIKjUqlIT08nOzsbgNbWVnbu3ElNTY3wxI0S7e3t5OXl4e/vP6wqS5lMxjXXXEN8fDxvvfUWXV1dY2ilYDgI8SYYd7q6unjrrbeIj4/n2muvvXRV3tKlrua/L78MO3bA9Olk7d6N0ukkNzcXq9U6PoZPQJxOp9vLoVQqSU5OZs2aNaSlpYnw6GUQEBDAlVdeKYo4RoBerycyMpLi4mJ27drFuXPnPG2ST2MwGDhy5AihoaHMnz9/2FXQCoWC2267DZVKxcaNG90jpQSeRYg3wbhis9nYuHEjSqWS2267beiNIOVyePBBOHUKHn4Yzf/7f2R/+9vYDx3i8OHD2O32sTV8AtLa2srevXspLS0FYOrUqcyYMcPn+x95ErlcjlarFSHmEaDT6cjMzGTVqlUEBQWRl5cnqswvE6fTyeHDh9HpdGRlZV3251Kv13PHHXfQ2trKli1bfHqg+0RB3GEE44YkSbz//vu0trZy5513otfrh3+Q4GD4058gPx/9lClk/+Qn2P/nf7B8kVwvuDQmk4ljx45x6NAhVCrVJROXBUOnt7eXY8eOiXD+KODv78/ChQvJyckh/ouWSS0tLcLzMwzkcjlz5swhJydnxA9l0dHR3HTTTRQXF7Nv375RslBwuQjxJhg39u/fT1FRETfddNOgJepDZvZs2LmToE2bWFVbi37JEpxvvy2eCC+BxWLh888/p6Ojg/nz57N06VKfHQ/jjdhsNhoaGoTAGEUiIiJQKBQ4HA6OHz/Orl27OHPmjPhbvwgOh8PtrYyKihq1NiwzZ85k1apV7Nq1i7KyslE5puDyEOJNMC6Ul5eza9cuVq5cycyZM0fnoDIZrF+PrKgIac0acm+7jdI77wTR+PMCWltbkSQJjUZDZmYmq1ev9tmBzILJiUKhYOXKlURERFBQUMD+/fvp7Oz0tFleh9Pp5NixY5SUlIyJB3jlypWkp6fz7rvv0tzcPOrHFwwNId4EY05bWxvvvvsuM2bMYFXf8PrRJDgY2dtvE/PLX1L1zjtUZWaCeCoEXJ62vhBp3402NjZWFCMIfBKtVuv2GDudTsrLyz1tktdRWFhIa2srWVlZY1ItLpPJuOmmmwgJCWHjxo1YLJZRP4fg0gjxJhhT7HY7mzdvRq/Xc+ONN47dvEeZjKSf/IS0zZsp6enh7Lx5rkkNkzi0Ul9fz+eff05bWxtZWVlERUV52iSBYFQIDQ1lxYoVzJ8/H3B5ltva2jxslecpLS2lrq6OzMxMIiIixuw8arWa22+/HaPRyIcffihC2B5AiDfBmLJjxw6am5tZv379uIy/mXHDDUzZvJn8ZcswPvAA3HcfGAxjfl5vo7GxkePHjxMZGcnq1auJiYnxtEmTgr4RYmKY99gjk8ncSfi1tbUcPHiQkydPTtrKc0mS6OnpYdasWeOSEhEaGsp1111HUVGRmMDgAUTsRDBmlJWVcfjwYa699tpxFQ9zs7OJfv119J99Bo88AkePwiefQN8UhwlMR0cHISEhREVFsXjxYsLDwz1t0qRCo9GQlpbmaTMmHfPnzyc0NJTS0lKam5vJyMiYVJ99h8OBQqEgKytr7KIbAzB79mxqamr4+OOPiY+PJzIyctzOPdkRnjfBmNDZ2cmWLVtIT08feILCGCKTyVwhwrvv5syHH9Jjs7lmpObnj6sd44nZbObw4cPs37+fnp4eZDLZpPry8hZsNhuNjY2i2nSckclkJCUlsXLlSnQ6HYWFhZNmOkNLSwufffYZBoNhXIVbH1dffTWhoaG8/fbbomH6OCLEm2DUcTgcbN68Ga1Wy/XXX++RGwq4qq6qgdxf/xpzTAysXAm7d3vElrGkoaGB3bt3093dzaJFi/D39/e0SZOW3t5ejh49Kvq8eQi9Xs/ixYtZsmQJcrmc3t5eOjo6PG3WmNHZ2cnRo0cJDg6+vL6Zo4BKpWL9+vV0dnbyySefeMSGyYgQb4JRp2+kza233opOp/OYHXK5nOzsbKTgYA4//TS2rCxYuxbeecdjNo02dXV1HDt2jIiICFatWiWKEgSTHplM5s45rKqq4sCBA1RWVk64pHqj0cjhw4cJDAwc0fSE0SAiIoJ169Zx4sQJCgsLPWbHZEKIN8GoUllZyYEDB1izZo27K7on0el05OTkYJLJOPrTn+K86SZYvx7+8hdPmzYi+kJCMTExzJs3jwULFoixVgLBV5g1axYpKSmUlpZy+PDhCdXWIi8vD7VazaJFi4Y+ZnAMycjIICMjg61bt4rK33FAiDfBqGEwGHj33XdJS0tjyZIlnjbHTUBAAIsWLUKmVuP45z/hO9+BRx+Fn/3MJ1uJnDlzhp07d9Lb24tSqfQKkSwQeCNyuZz09HRycnLo7u7mwIEDEyYXbt68eeTk5KBWqz1tCuDyeK5bt46AgADefvvtSVv1O14I8SYYFZxOJ++88w4KhWJs+7ldJqGhoSxevBiVRoP1t7+FZ56Bn/8cHnsMfORmbrfbOX78OAUFBURGRo5L6xXB8JDL5QQEBIjB9F5GREQEK1euZM6cOcjlcpxOp0+GUfsaEzscDgICAjyaljIQarWa9evX09rayvbt2z1tzoRGtAoRjAr79u2jtraW+++/32OJs0PBbrezd98+ptx8M9MiI+Hhh0GjgT/+0TVuy0vp7u7m2LFjWCwW5s+fL0ZbeSkBAQFjM0VEMGI0Go27cW1RUREGg4EFCxb4TE8+SZI4fvw4TU1NREVFERwc7GmTBiQ6Opq1a9fy0UcfkZSURHp6uqdNmpCIx0PBiGloaGDPnj2sWLGCqVOnetqci6JUKklMTKS8vJzaNWvg+efh2WfhF7/wtGkXRS6Xo9PpWLFihRBuAsEIiY+Pp7e3l7179/pMNWpRURGNjY0sWLDAa4VbH1lZWaSnp7N161aMRqOnzZmQCPEmGBEOh4MtW7YQGRnJihUrPG3OkEhLSyMpKYmTJ0/ScOON8KtfufLfnn3W06b1Q5IkampqcDgc+Pv7s3jxYq/2agpcHtJPPvmE7u5uT5siuAh947X0ej0HDx6krq7O0yZdlIqKCk6fPs3cuXOJjo72tDmXpC//TZIkPv74Y0+bMyER4k0wIvbs2UNLSws33nijV1Q8DZVZs2YRExNDfn4+tu9/H/77v+E//xP+/W9Pmwa4wrvHjh2jqKiIlpYWT5sjGCKSJGG3230yn2qyodFoWLx4MfHx8XR1dXnanIvidDqZPn06U6ZM8bQpQ8bf359169ZRXFxMcXGxp82ZcIicN8Flc+7cOfbv38/KlSt94mnwfGQyGfPmzaO7uxuVWg2/+Q00NcEDD0BcnKuhr4cwGo0cPXoUk8nEokWLRO82gWCMkMvlZGRkuMV2c3MzISEhXtN2x2KxoNFomD59uqdNuSxmzZpFcXExH330EVOnThWRg1FEeN4El4XdbmfLli1ERUWxbNkyT5tzWcjlcoKDg5EkibLycnqffRZWrIAbb4SSEo/YZLVa2bdvH06nk+XLlwvhJhCMAzKZDIfDQX5+Pvv27aOnp8fTJtHe3s7OnTt93vO+bt06AD766CPhkR5FhHgTXBZ79uyhra3N58KlA2Gz2Th37hy5x49j/fe/ISEBrrkGGhvH3Ra1Ws3s2bNZvny5GHMlEIwjCoWCpUuXIpfL2bdvH83NzR6zxWAwcOTIEYKDgwkLC/OYHaOBXq9n3bp1lJSUiPDpKCLCphMdsxlOnICqKjh71vWqq/vy30Yj2Gyul0wGKpXrFRYG8fEXvmbNot7fn/3797N69eoJ4RlSq9VkZ2dz4MABDpeVsfiDD1AuWQJ33QU7dsA4iNPS0lK0Wi1JSUmi6a4P4+/vz4oVK4Tw9lH0ej3Lli3j+PHjHDlyhKysrHFPCTGZTOTm5qLT6Vi4cOGE6Bk4a9YsSkpK3OFT8fcxcoR4m0hIEtTWQm4uHDrk+nnihEuYAYSGfinCsrLghhsgMNAl1pRK1/59Qq6t7UuBd/y466fJBECYTseDSUnEOZ2uZdnZ4OWl65dCr9eTnZ3NwYMHOdbYyKLXX0d+5ZXw9NPw05+O2XklSaKgoIC6ujpmzZo1ZucRjA8KhYKgoCBPmyEYAUqlkoULF1JeXu6RlhxFRUXuuczekns3Gqxbt47nn3+erVu3cvvtt3tdI3dfQ4g3X0eSXOLq7bdh0yaoqXEtT0mBxYvhvvsgJwfS08HPb2TnaW8n7+WX6d62jSVyOfLnnvuyP9rSpXDbbXDrrRAbO/Lr8gBBQUEsXLiQ+vp6WLTIJdp+/nNX8cIYFDA4HA7y8vJobm4WjXcnCCaTicrKSlJTU72u+71g6MhkMmbMmAG4igbOnDlDamrquAiOjIwMbDabzzQPHip+fn58/etf56233qKoqIg5c+Z42iSfxvf9sZMRSYL8fPjxjyEtzeVF+/vf4cor4f33obkZKivhX/+Cxx+HBQtGJtwAZDLOmkxsNZlQ/uxnaHbsgNZWOHUKXn4ZQkLgBz9wefVWrIDnnoOGhlG53PEkPDycjIwM5HI5vd/7nuta7roLxiBpuKysjNbWVrKzs4VwmyBYrVZOnz6N1Wr1tCmCUaKtrY2ysjJOnDgxZnNRnU4nRUVFmEwm1Gr1hK3KTE9PZ86cOXz88ccYDAZPm+PTCPHmSzgcLg9bdjbMmwd//SusXg3bt7uS6//6V7j+evhiBMzontrB+++/T2xsLEuXLnUtlMlc4vHBB+HDD12i8ZVXICAA/uu/XIn/d97p8gz6GL29vezet4+qp58GqxXuv3/UZ6BOmzaNpUuXukf2CAQC7yM2NpasrCwaGho4cuTImAxcLyws5PTp05NiGsE111yDQqEQzXtHiBBvvkBvr2uM07RprtCkv79LLDU2wksvuTxuyrGNgOfm5tLW1sb1118/eAJtcLBL5Hz0katn2h//CIcPuzx/V1wB27a5vIY+gJ+fH8nJyZS0tXH2D3+ATz6BP/xhxMc1GAzs27eP3t5eVCqVyI8SCHyAmJgYsrOz6ejoIDc3d1RbXpSWllJXV8e8efMIDw8fteN6K35+flxzzTWUlpZSUVHhaXN8FiHevJneXnjqKZgyBf7jP2DhQjh2DHbtgq9/3VVoMA50dXWxZ8+e4TWMDQ2F73zHFVZ96y3o7ISrr4bMTHjnHZ8QcTNmzGDKlCnkh4TQ/Pjj8MQTriKQy6S7u5sDBw7gdDonRAWZQDCZCA8PZ8mSJSQlJY1a7lt1dTWVlZXMmjVrUqVOzJw5k+TkZD755JMx8WROBsQ3iDciSbB5s6vI4Je/hDvugIoK2LjR5cUaZ7Zt24ZarWb16tXD31mpdHkLjx51ic6oKFdRw5VXeqwR7nCYO3cukZGRFF1/Pc4FC1y/i8vI1eju7ubgwYPo9XqWLFky4ZKRBS40Gg3JycloNBpPmyIYA4KCgtwiq7q6GovFMqLj6XQ60tLSSE5OHg3zfAaZTMa1115LV1cXBw4c8LQ5PokQb95GSYlL2KxfD3PmQHGxK/nfQ3/cVVVVlJSUsHbt2pF9IclkX+bnbd3qamkyd64rN86L5wrKZDIWLFjA4uXLkb/5piuv7+c/H9YxnE4nhw8fRq/Xk5OTM6HK/wX90Wq1zJo1S4jzCY7VaqWqqoqDBw9eloDry22LiYlxV7VONsLDw1m8eDH79u2jo6PD0+b4HEK8eQu9vfD970NGhkvYbN3qeqWmeswku93Oxx9/zNSpU5k9e/boHXjdOigqcnkV//Y3Vy7fv/7ltaFUhUKBTqfDFh/P8QcewPzHP7rsHyJyuZwFCxYI4TYJsNvtdHR0iFDQBEetVrNkyRLsdvuwBVxnZyd79+7l9OnTY2egj7BixQr0ej2ffPKJp03xOYR48waKilz5bC++6OqbVlTkEjge5tChQ3R0dLBu3brR72+k0bhyyMrLXR65++6De+6B7u7RPc8oYrfbabv2Wg7HxmJ79NFLis3u7m6Ki4uRJInQ0FAh3CYBRqOR/fv3T4qqwclOXwrEcASc0Wjk8OHDBAQEkJCQMA5WejdqtZqrr76aU6dOUV5e7mlzfAoh3jzNe++5hJtc7ipGeOIJl7DxMH1Ph4sXLx7bVhbx8a5cvn//Gz74wJXTl5c3ducbATqdjpwVKzA9+ihH9+/H+frrg27b3d3NoUOHaGtrw+FwjKOVAoFgvOgTcCEhIZd8OLNYLOTm5qJWq1m0aJHPz4QeLWbMmEFqaiqffPIJtr5pQIJLIsSbp3nqKZfX6cgRmDnT09a4+fTTT9HpdKxYsWJ8Tnjnna5RXoGBrskQzz7rlWHUgIAAFj3yCJ3LlnH8P/8TqbPzgm36hJtOp2Px4sUox7iNi0Ag8Bx6vZ7MzEzkcjnd3d2DeuCqqqpwOp3k5OSgVqvH2UrvRSaTcc0112AwGNi/f7+nzfEZhHjzNL/+tau5rheN0qmoqKCsrGzkRQrDJTUVDh6Exx6D//xPuOUWVy6glxEaGsqC//s/Qk0mZD/7Wb91JpOpn3AToVKBYHIgSRInTpwgNzd3QA/SjBkzWLp0qRibNgBhYWEsXbqU/fv309bW5mlzfAIh3jzNlVd62oJ+9BUpJCcnM9MTnkCNBv70J1c4eds2uOoqaG8ffzsuQdS8eST//Ofw5z/TfV6pu1arJTExURQnTFJkMhlqtVoM3Z6EyGQy5s+fj8lk4siRIzgcDiRJoqCggPb2duRyOX4jHVM4gVm+fDkBAQF88skno9oEeaIixJugHwcPHqS7u5trr73Ws19AN97o6gtXVgbLl8PZs56zZTC++13aU1PZ8/DDVFZU0NHR4R5oLcIik5PAwEDWrl1LYGCgp00ReICAgACys7Pp6uoiLy+PwsJC6urqxKzbIaBSqbj66quprKwUxQtDQIg3gZu+Srns7GzvGNOSnQ3790NPDyxZAqWlnraoP2o1oc8/T1JZGdt/9Su2b98+ZoOrBQKBbxASEsLChQspKiqivLycuXPnEh0d7WmzfILp06eTkpLCZ599Ju6ll0CIN4GbPXv2IJfLWb58uadN+ZIZM1x5cEFBsGyZa1KDFyF97WtMmTOH9M8/BxDNJic5BoOBXbt2YbiMKRyCiYPZbCY0NJTMzEzREmQYyGQyrrjiClpbWzlx4oSnzfFqhHgTANDe3s6xY8dYvny59yXUxsXB3r0wfTqsXTusBrljzcmiIkpvvpmVtbVMaW4Wg5YnOU6nE6PRKLwGk5ygoCB3C4xjx46JhrzDICYmhrlz5/L555+LcPNFEOJNAMDOnTvx9/dn0aJFnjZlYEJC4OOPITHRVeRRVeVpi7BYLDQ1NRHzwAPI589n4TvvkJWV5WmzBAKBh+ju7sbhcBAYGMiMGTPcRQonT56ksbHR0+b5DKtXr8ZkMpGbm+tpU7yWCdWAymq18vLLL7N9+3YMBgMpKSk8/PDDLFy48KL7/eMf/+DVV1+9YLlareazzz67YPnWrVvZuHEjjY2NREREcOutt3LLLbeM1mWMO/X19RQXF3PDDTd4d4VkcLCrAnX5cpcH7tAhGMsGwpdAo9GwevVqVx+3J59EecstcOQIPXPnUlRUxPz580XhgkAwSTAYDBw8eJApU6b0q9SfOXMmZrOZvLw8li5dSnBwsOeM9BH68gYPHDjAggUL0Ov1njbJ65hQnrdnnnmGTZs2ceWVV/If//EfyOVyfvjDH1JYWDik/b///e/zk5/8xP36n//5nwu2ef/99/ntb39LUlIS3/3ud5k9ezbPPvssb7zxxmhfzrggSRKfffYZkZGRZGRkeNqcSxMZCZ9+6ipiuO46j/SB6+rqcvdycjfgvfFGV5Plp59GJpPR3d3N4cOHxXQFgWAS0Ocl0ul0pKWl9Vsnk8mYN28egYGBHD16VIQCh0hfg/h9+/Z52BLvZMJ43kpKSti5cyePPvood955JwBr165lw4YNvPjii7z44ouXPMbKlSsv+lRksVj4+9//zuLFi/nlL38JwHXXXYfT6eS1117j+uuvJyAgYFSuZ7yoqqqipqaGO++8E7ncR7R8UhJs3QorV8KGDfDWWzBObU0sFgtHjhxBq9X2H28jl8OPfwz33IO+vJzs7GwOHjzIsWPHWLhwoe+8t4IRodfrycnJEZ6CSYTVaiU3Nxe5XE52dvaA0Qu5XM7ChQupr6/37uiGF+Hn58eyZcvYvXs32dnZhISEeNokr2LCfKPs2bMHhULB9ddf716m0WhYt24dxcXFNDU1Dek4RqNx0AaBx48fp6urixtvvLHf8ptuusndWd+XcDqd7Nixg8TERKZNm+Zpc4ZHVhb861/w9tswBGE+GjidTo5+Ue06oCC7/XZISYGnnyYoKIisrCxaW1s5efLkuNgn8DxKpZKIiAgxEm0S0dDQgNVqJScnB61WO+h2Wq2WlJQUt2decGlycnLw8/Nj165dnjbF65gwd5iKigri4+MveOJNT08HoLKykqioqIse4/bbb8dkMqHT6Vi2bBmPP/44oaGh/c4BrjEn5zN9+nTkcjmnTp3iqquuGvDYra2t/cZ+1NbWDv3ixoiTJ0/S1NTEQw895Jsd4W++Gb7zHfiv/3L1gcvMHNPTFRYW0tXVxdKlSwe+SSuV8D//A9/4BpSWEpGezrx588ST9gRBkiQsFgtmsxmTyYTVakUul7tbQVRXV9PT00N9fT1xcXHodDri4+PR6XS0t7djMBjQarVotVp0Op3Ih5wgJCYmEh0dPeRRgj09Pezdu5eZM2eSnJw8xtb5NiqVilWrVvHhhx+yZMkSYmJiPG2S1zBhxFtbWxthYWEXLO9b1traOui+AQEB3HzzzcyaNQuVSkVhYSHvvfcepaWlvPTSS25B2NbWhkKhuMB9q1KpCAwMvOhMtg8++GDAoghPYbfb2bVrF+np6b7dh+h3v3M18r3tNsjLgzEMWwcHBxMeHn7xhON773UJuH/8A373O2JjYwHXF39bW5t3ND8WDEpPTw/d3d1ugWY2m4mIiGDKlCm0tbX1867LZDL8/Pzcfz91dXV0dHRw8uRJLBYLfn5+hIeHo9PpaGpqorKyst+5EhMTmTt3Lr29vZSVlaHT6dzCTqfTERQUNK7XLhgeBQUFhISEMGXKlGHNgPb39yc5OZmSkhICAgKI8GDRlS8wb948Dh06xGeffca9997raXO8hgkj3iwWy4Aejr6nW4vFMui+69ev7/f/VatWkZ6ezi9/+Uvee+897rnnHvcxBguHqNXqi57j+uuvZ+nSpe7/19bW8tRTTw1+QWPMkSNHMBgMrFmzxmM2jAoajSvnbf58ePRRVyh1lL2IFosFjUbD1KlTh2bPXXe57HjmGZc3Djh37hzHjx9n/vz5xMXFjap9guFjs9no7Oyko6OD9vZ2Zs2aRUBAALW1tVRXV6NQKNxCqo+goCAWLVrkFllf9ZytXLmSrq4uFAoFK1as6Ce+0tPTmTFjhttzZzab3d5bu92O2Wymo6MDs9mM0+lEq9Vy5Rdzj4uKitBqtYSGhhIUFNQ/11LgEUpLSzlz5sxlP4ylp6djMBjIy8tj+fLlIkfyIsjlcq644go2btxIVVUVKSkpnjbJK5gw4k2j0WCz2S5Y3lfZM5wnI4Arr7yS559/nry8PLd402g02O32Abe3Wq0XPUd4eLjXeF2sViv79+9n3rx5XmPTiEhLg7/9zSWarrwS7r9/1A5tNBrZt28fs2bNGrqHcsMG+POfXW1N1q0DIC4ujpaWFk6cOIFarRZP2+OIJEkYjUb8/f0BOHz4MM3NzYDLax4SEuJuqpuWlsa0adMGfBBUqVTu1AvJbsfZ24vklAAJnE6QJOydnTh6enB0duIA14OEXA7IkCnkaDSaC0LugYGBLFmyxP1/i8XivpdJkoTBYODMmTM4HA5kMhmBgYEsXLgQnU6H3W4X+XXjTHV1NZWVlcyaNeuyH8T6htjv37+f4uJi7+2v6SVMnz6dhIQEPv/8c5KTk30zzWeUmTB/9WFhYbS0tFywvC+UeTkiJTIysl9iaVhYGA6Hg46Ojn6hU5vNRnd394BhW2/k+PHjmM1m7xqDNVLuvBM++QS+9z34+tdhFH4XTqeTvLw81Gr18GYTzpsHc+bAq6+6xRtARkYGVquVo0ePsmTJEtHvaQzp7OykqamJjo4OOjo6sNvtrF27FrVaTUxMDLGxsYSGhl7g8VCr1Ug2G44eI5LFjGSx4DRbkKwWJLMZp8XqWm4fuAWMqacHa1U1vXp/VF+Ixa8iU6mQadTItVpkGg1yjQaZRoNMq0WuVqPWat0PgjKZjMWLF7tFXN/19K0/evQoBoOBkJAQQkJCiImJEV6cMaSxsZHi4mJSUlJGnK+mUqkGrU4V9Ecmk7Fy5Upef/11Tp8+TVJSkqdN8jgTRrylpqZy4sQJjEZjv5tXSUmJe/1wkCSJxsbGfj17+v5dVlbG4sWL3cvLyspwOp0X9PfxRux2OwcOHGDu3LkTTzz8f/8ffPABPPGEyxM3QkpLSzEYDCxbtmx4N1iZzOV9e+IJaGtzC0mZTMaCBQs4dOgQZ8+enXjvv4fp7e3Fz88Pp9PJoUOHkMlkhIaGkpqaSkhIiNtDNWXKFMD1N+7o6cHZ3Y2jqwtHt+GiwmwoqJRKYsLDUV3EGybZbEg2G84e46DbyFRK5Dod8oBAFMFBKAICCAwMJDAwkMTERPd2qamptLW10dHRwalTpygtLSU7O5vIyEicTqdoUTPKhIaGusdejQZ+fn6A67Pb3d0tBthfhJSUFGJjY9m7d68Qb0wg8bZq1So2btzIBx984O7zZrVa+fjjj5k5c6Y73NHU1ITZbO53A+zs7Lzgi3TLli10dnaSnZ3tXjZ//nwCAwN5//33+4m3999/H61W22+Zt5Kfn09PTw/Lli3ztCmjT2QkPP20qwL1oYfgvN/dcGlpaaG6uprZs2dfXuL43XfDD38IGzfC44+7FysUCnJyckTe0ijR1dXFuXPnOHfuHGazmbVr16JUKlm2bBn+/v79wiuSzYa9o8Ml1Lq6cBoMIxJqA+Gn1ZI5Cm13JJsdh82Ao9uArb4eAJlajSIwAEVgIPKgIBSBgURERLhD8A6Hg5aWFncEoO9hNjY2VnjkRkh3dzdqtRqtVjsmD+k1NTXU1tayfPlyn+sVOl7IZDKWL1/OW2+9RV1dnW8X2o0CE0a8zZw5k9WrV/O3v/2Nzs5O4uLi+PTTT2lsbORHP/qRe7unn36a/Px89u7d6162fv16vva1r5GcnIxarebkyZPs3LmTtLS0C/rGPfTQQ/zxj3/kpz/9KYsWLaKgoIDt27fzjW98g8DAwHG95uHicDjYv38/s2bNmhi5bgPxyCPw8svw2GNw5AhcpkgKDQ1lzpw5QytSGIioKLj2Wlfo9DzxBrg9QC0tLZR/0dBXhE6Gh9PpZM+ePfT09KBSqdyh0D5RHBAQgNNkwt7e/oVXrRtnr2lc7DJZLOg0mlH3eklWK/bWNuytX1S1y0Cu16MICnK9QkP7eW7i4+M5e/as2yMXFBRERkaGqGIdJkajkdzcXEJDQ8dsdvGMGTNoaWlxFzCIh7uBmTFjBpGRkezdu5e7777b0+Z4lAkj3gB+/OMfExUVxbZt2+jp6SE5OZnf/OY3ZF6i/9eVV15JUVERe/bswWq1EhUVxZ133sl99913QXLxTTfdhFKp5K233uLAgQNERkby7W9/+4KKVW/k5MmTdHZ2uj2TExKFAl54ARYvhr/+1SXihoHT6cRkMqHX6y9fuPWxYQPccgsUFcHs2Res1mq19PT0cPToUXJyckSI6yJYrVZOnz5NS0sLS5YsQS6XM2XKFAIDAwkLC3O/d06TCVtzM/bmZhyGnnG309Dby8HCQpbMnUvQIDlvo4YEzh4jzh4jtvpzIANFcDCqyEiUERFERUURFRWFw+GgqamJc+fOuXPlampqkMlkJCQkCKFwESwWC7m5uahUKubOnTtm51EoFCxYsIB9+/ZRVFTkG6MKPUCf9+2dd96hoaFhUvd9k0mDjRMQjCnl5eV84xvf4KWXXmL69Oljfj6n08nzzz9PeHi4S7xJEtTWQnOzaz6oyeQSPjod+Pm5RlCd16DY53joIdiyBU6fHlbvt9LSUmpra1mzZs3IvWFWK8TGwgMPuPrRDUB7ezuHDh0iKiqKBQsWiCqqr2A0Gqmurqaurg6A2NhYdz/GPpxmM/Y+wdZt8JSpAHT19IyfeLsYXxFysq+0NSksLOTMmTOoVCqmTp1KUlKSaBr8Ffryg61WK8uWLevXNmasqKur4+TJk6xatcqdDyfoj9Pp5LnnniMqKorbb7993M473t/Zl2JCed4Eg1OWl4d/Xh7XxsS4+qIdOuQSbhdj+nSXB2vxYsjJgVmzLjsMOe787GeuXmt/+Qv8938PaZeWlhYqKytJT08fnTCmWu2aAvHhh4OKt9DQUBYsWMCxY8coKytzTwQRuDh27Bhms5nU1FSmTp3qFhjeJNi8EgkcHZ04Ojrh1CmUISEo+4TcF16k1NRUqqurqaqqoqqqitWrV4+LQPEVOjs7sVgs5OTkjNv7kpCQQERExEXHbE125HI5y5Yt44MPPqC5uZnIyEhPm+QRhHibyEgSfPIJ0u9/z4zdu5npdIK/vyuR/xvfcAmyKVNc3jadztWrymSCnh4oLXUJvEOHXCLI4XDte/vt8IMfwFdGhHkdCQmufm+//z18+9uu67sIFouF48ePExkZObpNINeuhZdecnk5zyuSOZ/o6Gjmz58/6XORJEmiubmZqqoqZs+eTWBgIAsWLECn06FQKJAcDqxn67E3NeLoErMhh4wE9vYO7O0dLiEXHIwyJhZdZASzZ89m2rRpNDY2ugVKaWkpMTExk7YaWpIkZDIZ4eHhrFmzZtzDylqtFofDQXV1NSkpKSKdYgAyMjLYs2cP+/fv5+abb/a0OR5BiLeJiNUK//63q3VGcTHmuXPZec01zP/2t4m98sqhec8WLIAvmhNjNMKxY7B7tyuP7OWX4frrXR6tpUtHfaLBqNE3purll10C7iIUFxcDkJmZObqhy699zdWkdft2l2AehL4xWjabjba2tknVMsDpdFJfX09VVZW7Z5nD4aoC9ff3R7JasdSewVZfjzRAI27BMHBKbiEnr9aiSkhAFRPjbp9isVhoaGigsrKSsLAwUlJSiIyMnFTh/L57wezZsz2WD2g0GikvL8fpdHpFiM7bUCgULF26lE8++YRVq1b1m0E+WRCSfiJhsbjCc0lJrjyrpCSk3bt5/fHHab75ZmKvvvrywp56PaxcCf/v/0FNjUsQVVbC8uWugfBbt47+tYwGKSmu5r2//a1L0F6EGTNmkJWVNexJHJckJMTl6dy+fUib19bWcuzYMRobG0fXDi/m1KlT5Ofn4+fnx9KlS1m2bJlr6kFvL+bycoyHDmE9fdonhFuQvz/XLFni2Xy3IeI0mbGcqsB48BCW6hqcX0yJWb16NQsXLsTpdHLkyBFyc3M9beq4UVFRQU1NjcfbdQQGBpKWlkZFRUW/RvGCL5k3bx56vZ79+/d72hSPIMTbRKGiwpWb9uSTcPXVUFwMH35ITUIC9efOsWLFitE5j0bjEoYnT7pEm0oF113n8ir19o7OOUaTH/8Y6upcod8BsFqt2O12/Pz8xm5CxlVXwWefwSCj1c4nJSWFmJgY8vLy3NNBJiJNTU3Uf9G/bOrUqaxevZpFixYRGhqKo6sL08kijIcPY6s/h+RwetjaiY1ks2E9fRrjwYOYy8uRTCaio6NZtmwZS5cudVddW61Wurq6PGvsGHLmzBnKysqYPn16vz6gniItLY2AgABOnDjhHt8m+BKVSsWSJUsoKCiY0J/LwRDibSLw+uuuwew9PXD4sCtMOHMmAIcOHSI6Onr0h/nK5a7RT3v2wN//Dm+8AYsWuUSjNzFzJtx4Izz7rCsH8CsUFBRw6NChsbVh7Vro7HSFni+BTCZj3rx5hIaGcvTo0Qn31G00Gjly5AhHjhyhoaEBcOX4+Pv7Y29tpff4cXrzjmNvaQEfrIPvMZk4dPIkPaax7yk36jglbPXnMB4+jOnkSRxdXYSGhrrbMdTU1LB3714KCwvdM6MnCu3t7RQWFjJ16lSmjUKT5dFALpczb948enp63LN4Bf3JyspCpVJx9OhRT5sy7gjx5ssYjS4v2L33wk03QV6ea67mF7S1tVFRUUF2dvbY5azIZK62HH1/PAsXuhL0vakDzcMPuzyF+fn9FtfX118wAm1MWLgQgoKGHDqVy+UsXLgQPz8/Ojo6xta2ccLpdFJWVsbu3bvp7u4mKyvL3fDU1tSEMfcwpsKTODp9+wna4XDQaTC4c/Z8EgnsLa305h2n9/hx7F98BqdNm8bs2bM5d+4cu3bt4vTp00yUTlPBwcHMnj2b2QP0Y/QkgYGBrF69elLlwA4HtVrNvHnzyMvLw+YDaRWjiRBvvkptLWRlwaZNri7+r712QT+zo0eP4ufnNz43pFmzXBMN7r0XvvlNuO8+8JY/prVrXRMPXn3VvchsNnPy5Eni4uLG/saoVMIVV8C2bcPYxTXiqS984+thE5lMRkdHB6mpqaxevZqYmBgcPT30Hj+OubgEpzeG3AU4OrswncjHVFSMZLWSlJTk/v0VFRVhMPh2mxaDwUBHRwdyuZypU6d6ZWFGX7+3+vp6n78PjAULFy7EbDZTVFTkaVPGFSHefJH6elcVo9Xq8rbdf/8Fm1gsFk6cOMGCBQvGb/SSn5+rGvXf/3bN9LzvPleLkYuwdvNantz/5NjapVS6ROUbb7gLF06ePMkO4w7uP3nhezcmXHWVK6Td2XnRzep76pnzzzlsqdzibhFw+vRpDh486HPenO7ubg4ePEhbWxsymYycnBymT5+O3OnEXH6K3qNHfd7TNlmwNzfTm5uL9fRp1CoVGRkZrFmzhsDAQCRJoqysDLPZ7Gkzh4XJZCI3N9ddXerNGI1G8vPzOXXqlKdN8TpCQ0NJS0vj8OHDE8YTPBSEePM1mppgzRpX8vuuXYP2WysoKMBms43ZLL6LcuedsHEjpw5+wPf+uJqrNl/Fgn8tYM2mNXxj+zd4o/SN8bfp/vuhrQ0++giApKSkEXncNpZtZEvllqHvcMUVLiF7GZVRISEhGAwGjh075hNP3jabjaKiIvbu3YvFYunnzbDV12PMPewatj557rMTAsnhxFJdQ++RI9hbW9194YxGI2fOnGHXrl1UVlb6zGc0NzcXuVzumXvkMNHr9aSlpVFZWTkpk/MvRXZ2No2NjZw5c8bTpowbQrz5EiYT3HADdHXBzp2DNn2VJIkjR44wY8YMjzV+zV+ewh2/SKPc0cgtZ4L5cfaPuXnazchl8n7i7cObPuRnS3429gbNng1ZWUhfhE7Dw8PR6/WXfbi3yt/i/cr3h75DUhIEB0NBwbDPFRQURFZWFq2trRRcxv7jicFgYM+ePdTV1ZGens7KlStdFaSdnZiOHcNcfsonWn5cLn5aLXPT0vCbwB3ynb0mTIUnMRUW4uztxd/fn9WrV5OYmEhZWRkHDhyg14vD4A6Hg8OHD2O1WsnJyfGZaQapqakEBARQWFg4qTxMQyE5OZnw8HAOHz7saVPGDdGk11dwOl2DzgsLYd8+SE0ddNPq6mpaW1u57rrrxs++r/C3wr8RoA3iTdktBH7/pxB5PdzzOABtpi9bYKgV4zhP8d574fvf59jnn5O1evX4nRdchR1z57p+f5dBREQEmZmZHD9+nKCgIJKTk0fZwNFBq9USGhpKeno6Op0Op9WKubISW2OTp00bF1RKJXEREZ42Y1ywt7Zhb29HPWUK6sREZs2aRVxcHHl5ebS2trob/3obJpMJq9VKdnb2iB7gxhu5XM6cOXM4cOAADQ0N7sbeAldO7aJFi/j000/p6uqaFNNqhHjzFf74R1dxwjvvuKYfXITDhw8THR3t0ZtnnaGOlOAUAm/7CZTVuCpSMzJgzhzCdF/2U1u7eS1Z0Vk8vexpALZUbuF/D/wv/7z6n2w7vY1Paj7B7rSzNmktP170Y0wOE78+/Gt2n90NwK1pt/JfC/7LHZo72niUB7c9yD/W/oOF0Qvd56nvqefqoJf4ZY4/2adOwSDi7b2K99havZXKzkoMVgMJAQncNeMubp/x5QDktZvXcs54DoA5/5wDQFZUFq9c/QoA3dZuXsx/kR21O2g3txOtj+aWtFt4IGMu8h2fuY/Tbe3mN0d+w64zu5AhY/WU1dw7895B39O4uDjkcjkRXiYOLBYLRUVFzJw5E51Ox/z585EkCWtdHdaaGiS7b+XqjQSrzUZDWxsxYWGoxyvX1JM4Jayna7E1NKBJSyM4MpJVq1a5JxPU19cTHR3tsUkFX8XpdLo9hd5YnHApQkNDycnJITw83NOmeB0ZGRns3LmTY8eOsWbNGk+bM+YI8eYL1NW5pht897uuQecXob29nYqKCq677jqP3pxi/WMpaCmgorOStBdfhIMH4fHHXX3hhmDXM0eeIUwXxmOZj1HYUsjmU5sJUAdQ0FxAtD6a7877Lvvq9/FK8SukhqRyfcr1Fz1eX5jBFhxM9EW8X5vKN5ESnMKqhFUoZAr2nN3DU4efwomTO2fcCcAPF/2QZw4/g5/Kj2/McY286hOkJruJBz59gObeZtZPW0+0PpqClgKePf4srZkZ/Oj5U2AyIWm1/Meu/+BE8wnWT1tPclAyu87sumTxRl/PLaPRSHd3t/v/nqKlpYUTJ04ArgrePm+bpaTENUtzkmGyWCipribY339yiLcvkCxWzEXFOGLb0XzResdkMlFQUEBFRQULFizw+NSCsrIyOjo6yMnJ8Unh1kffw5vJZHLnHQpAo9G424asWLFi/Ar1PIQQb77A977nagPy859fctOjR4+i1WqZM2fOOBg2OPfPup/HPnuM9R+uZ3b4bOY/vZac//cPFv7rn6ju23DJ/cO0Yby45kVkMhl3zLiDM4YzvFr0Kuunred/F/8vALdOu5W176zlvYr3LineGhu+GDc1ew6yzYP3W3vl6lfQKr/Mgbkr/S4e2fEIrxW/5hZva6as4bkTzxGsCea6lP6h6deKX6POUMfb171NYqArJ/G26bcRoYvg1aJXuD9YQXRxMZ9HdpPXlMf3FnyPB2Y/AMDt02/nwW0PXvK9AVcFak1NDdnZ2R7xxEmSRHl5ORUVFURERDBv3jw0Gg329nbMJaVIE6yJq2Bo2M414OjqRjtrFjp/PcuXLycvL499+/Yxe/Zsj0UDampqqKioYNasWT4t3Ppoa2vj0KFDLFu2jODgYE+b4zUsWrSIw4cPU1RUxLzzep5ORETBgrezfTts3uwaMn+JOL7Vah3/9iCDsCR2Ca9f+zqrElZxquMUr/Ts4lv/PZUrDL/j89JLz0K9Ke2mfjfZOeFzkJC4Oe1Lz6NCrmBW2CzO9py95PH6PG+qeZmuuazV1QNud75wM1gNdJg7yIrO4mzPWQzWS/e02l67nflR8wlUB9Jh7nC/cmJzcODk2HQ9FBayr34fSpmS26d/GY5VyBXclX7XJc8BkJ6eTmRkJEePHqXzEu1HxoLe3l5qampIT08nOzsbtVqNpaoKU36BEG6THKfRiCnvGLb6egICAli+fDlxcXEUFBRQV1c37vbU19dTVFRESkqK1+aKDpfQ0FACAwNF8cJXCA0NJTU1lSNHjkz490V43rwZiwW+8x1YtQruuvSXemFhIRaLhYULF15y2/Fgdvhs/rT6T9gcNso7ytlZvIV/nXqT7+X+mM0x6aQEDz6yK0bfPxwYoHaFXKL0Uf2W+6v96bZceoRUbNwXyb3p6aBQuERxzoXbnWg+wfP5z1PYUojJ3n/EUY+1x23HYJzpPsOpjlOseGvgWbLtydFQUEBDgoVwv3D8VH791k8NnHrJawFX8vKCBQs4dOgQhw8fZtmyZeOSfN3S0kJoaCh6vZ4rrrgClUqF02zGXFyMo2tijfISXD6Sw9XLz97RiXb6NDIyMoiOjnZ7iW0227g8YPb1R4uPjyc9PX3MzzdeyGQy5syZw/79+6mtrXXPnxW42oa8/vrr1NXVeW3RzGggxJs384c/uDxE7747pDyx48ePM23aNK+rtFEpVMwOn83slbNJPHmW/1UfYHvuP3n06l8Muo9CNnCC80DLpYs0DOvq6qKurg7/eH/XAp0OFi92DYrP+Vq/beu663h428MkBSXxg6wfEK2PRiVXsa9+H/8q+RdOLt2/yik5WRyz2B0K/SpTP/uNq+L069MveaxLoVAo3GECk8k0puKtrxFrZWUlc+fOJTExEZVKhb2lBXNZGZLNPmbn9iWUCgVhwcEovSRB39PYm5vpNbjCqFFRrgevnp4e9u/fz8yZM8f8y1Wv1zN//nyioqImRLj0fEJCQpgyZQplZWXExsaiVo9j5b4Xk5KSQmhoKMePHxfiTeABrFb4/e/h0Uddo6cuQVNTE+fOneOOO+4YB+Mun1m3fxc+PkBL3l64evSPH6gOBFyVnADFxcVYrVZ6Qnu+3GjRItiyBegv3naf3Y3VaeXPX/szMf5fev6ONg596HFCQAK99l4Wxy4eeINpC+DjPxGjX8XhhsP02nr7ed9Od58e8rnANdtv2bJlyGQyJEnC6XSOemWf0+mkoKCAs2fPMmvWLBITE5GcTiwVla5muwI3ep2ORTNnetoMr8JpMtN7/Dia5GTUU6bg5+dHbGwsBQUFWCyWMZktbDQa6ezsJC4uzuNFPWNJeno6SqX4Gj8fmUxGRkYGBw4c4Nprr52wolbkvHkrH33kmgjwrW8NafOCggL8/PzGfsj6EDnSMHDOwb6mQwBMPVQO3aMfZov1j0UhU5DXlEdTUxNtbW3MnDmTTac2fbnR3Lkuj6bF0m9fucz153C+J89gNQw4ScFP6TdgDtzaqWspaCngQP2BC9Z1W7uxT58G7e0sD56HXbLzVvlb7vUOp4N/l/57uJfs9igUFRVx+PDhUe1w73Q6OXLkCOfOnWPBggUkJyfjNBrpPXZMCLcBkCQJu8Mx4fNtho1TwlJZhamgAJndzty5c5k+fTplZWUUFRWN6vtlsVjIzc3l1KlTPjHtYSSo1WpmzZo1YQXK5ZKRkYHVaqWkpMTTpowZQrJ7K6++6ho8PwSvm9PppLCwkLlz53pNP6VnjjyDyW5izZQ1JAUlYXPayG/OZ9vpbcRpo7jx81J4+20Y5QhvgDqAqxKv4s3SNzlbd5YYXQwfF35Mu7n9y40yMlw/m5v77bskdgkquYpv7/o266etp9fWyzsV7xCqDaXF1NJv2/SwdDaVb+KvBX9lSuAUQrWhZMdks2H2Bj6v+5xv7/w2N6TewMywmZjsJk51nGJH7Q62xf2cEGAVKcyLnMefjv+J+p56UoJT2Fm7kx5bD5dLXFwchw4d4vjx4yxYsGBUwkRyuZyQkBBSUlKIiIhwTUo4eVKESQeh22jkYGEhS+bOJcjf39PmeB32tnZ6jx9HN3cu06ZNQ6PRcOrUKVJTU0dl0oHdbnc/wCxZssQ9H3iic/bsWTo6OjzeZcBbCA4OJikpiYKCAjIzMz1tzpgwOT7ZvkZTk8vztmHDkDavrKykp6fHqz6k38/6PouiF7Gvfh+/O/o7fnf0dxS1FnH79Nt54/q3CFy2xiVQR0h5ezk2Z/9xS09kP8GSqCXsN+znw44PidHH8PTSp7/coK9ooal/1/+koCT+sOoPyJDx+2O/5+1Tb3PrtFu5O/1uAN4oeYMX8l8A4JGMR1gev5xXil/hh3t/yF8K/gKATqnj1atfZcPsDRxtPMqvj/yal0++zJnuMzye+Tj+0a72IfLmFv78tT+zLmkdH1V/xJ+P/5lIv0h3s+LLITQ0lAULFtDY2EhRUdFlHwdcPaQaGhoAmD59OhEREdhbWujNzxfCTTAinL0meo+fwGEwkJiYyOrVq9Fqtdjtduz2y/9sOZ1Ojh49Sm9vL9nZ2ZOqB5rT6eT06dMeqTz3VjIzM6mpqZmw74nwvHkj//63S1wMMX8tPz+f6OjoEQ1aH22WxS1jWdyywTfYsAHuuottr1T0G/V1Y+qN3Jh64wWbP5b5GI9lPnbB8isSr6A8v5y/FPyFRzIeASBEG8Lza5/HaDT2S+I/ef/JL3ecMYPHjmt57IWT/Y63KmEVqxJWXXCept4mns9/nsczXSO+wnXhPL/m+QEvzU/lx3fnf5fvzv/uhSv7hko3NRGkCeJXy391wSb97Bwm0dHRzJ07l4KCAsLDwy8r36e7u5vDhw+jUCiIiopCLpdjq6/HfOqUGCYvGBUkqxXTiRNo58xBGRICwIkTJzCZTGRnZ6PRaIZ9TLvdjtPpZOHChQQGBo62yV5NQkIC1dXVlJSUsGTJEk+b4xWkp6fz0UcfUVBQwMqVKz1tzqgjPG/ehiTBK6/A9ddDWNglN+/t7aW8vNyrvG5D4sYbITAQXnttRId5JOMRHs98nOfzn3d7v3p6epAk6eLVl8OYM/qXgr+4hVufQLxsAgNBo7nA6zeaTJkyhZycnMsS821tbRw8eBC1Ws3SpUuRy+VYamowlwvhJhhdJLsDU0EBtiZX+sL06dOxWCzs378fo9E4rGPZbDb3ZzZsCPfNiYZMJiM9PZ22tjaav5IOMlnpywfMz8+fkDmoQrx5G2fPwsmTQ/a69SX7+lyug07nEnAffjjiQ50v4F44/gL79++nsrLy4jvNmOFq1nsJRlW4gavlS1TUmIo3cI3QkclktLS00NjYOKR9WlpayM3NJSgoiKVLl6JWqzGXn8Jac3pMbRVMYpwS5pJirGfPEhgYyNKlS5HJZBw4cICuPi/1JaioqGDv3r0jCrlOBKKioggNDaVeFBK5yczMpKOjgzNnznjalFFHiDdvo6DA9TMra0ib5+fnM23atHFp0DrqZGVBSQnYbJfe9hL0CbgXT77Ijp4dl+7vExUFLS3gGHxo+qgLt/PPPcbirY+6ujry8vJob2+/5LaBgYFMnTqV7OxsFHI55qJiUVE6TAL8/FizcCEBfn6X3ljgQgLLqQos1dX4+fmxbNkydDodbW1tl9z1zJkzlJWVkZCQIFpmAAsXLpzwY6GGw5QpUwgJCSE/P9/Tpow6Qrx5G4WFrjFYQ2gu2NzczLlz53wvZNpHRoarn92pU6NyuA3TN3Cl35VsN27nlbJXLr5xVBQ4na52LAMwZsKt79zjJN4yMzMJDQ3lyJEjdA/SmqWhoQGz2YxGo3HNfnQ6MRUUYG9pGXB7weDI5XLUKtWkqXIcTaynazGXlaFSqVi6dKl7lJV1kHFrTU1NFBYWkpiYyLRp08bTVK+lr2VIZ2fnhG+TMhRkMhmZmZnufp8TCXGH8TYKC135WENo85Cfn+9Vvd2GTV+od4i5Z5eisrKSqwKu4tG5j/bLgRuQL7q9DySixlS49Z17nMSbXC4nKysLnU7nnsRwPg0NDeTl5bnDCk6rld7jx3F0dI6LfRMNo8nEsbJSjF95nwVDw3auAXNREbIvcpQaGhrYtWvXBSFUm83G8ePHiY6O9r2UkTGmt7eXffv2cfbspWc+Twb6er6VlpZ62pRRRYg3b6NPvF0Cb+ztNmxCQiAhYdTEW2BgIDNmzOCxeY9dUMRwAYOItzEXbn3nHifxBqBSqcjJycHf37/f03hLSwvHjx8nNjaWtLQ0nBYLpuPHcfYML1lc8CV2h4OW9g7sFwnHCy6OvaUVU0EhksNBREQE/v7+5Obm0tPzZQ9ElUpFdnY28+fPn3Bjr0aKn58fMTExVFZWTshE/eHS1/NtooVOhXjzJkwmKC//sonsRaipqaGnp4e5QxB6Xk1Gxpd5fiNkypQp7gHNA1Wh9mMA8TYuwg0gOHhMpktcDI1Gw+LFi9Hr9djtdlpaWjh69CgRERGusLvdjim/AGev8BgJPI+jsxNzUREKudzdOuTQoUO0t7dz6tQpJEkiNDRUhKcHIS0tDaPRyLlz5zxtileQkZFBTU0NBsOFU3F8FfHJ9ybKylx5WEMIA5SWlhISEjI6c/sqKuCJJ+DOO10/KypGfsyhMmeOq7p2BNhsNk6ePInlK+OuLirg9HrX6wvxNm7CDUCpvGihxFhz5MgRDh8+THBwsGsSwxc5bs5htmcQCMYSe1s75tJSlEolOTk5OJ1ONm3axJkzZ7CNQpHTRCYoKIjIyEgqKiqE9w1XGxq5XD6hQqdCvHkTHR2unxERF93M6XRSWlpKenr6yEMGr7ziapvxu9/Bpk2unzNmjMr0gyEREQEj7IBdU1NDXV3dgOsuKuD8/MBsHl/hBq4GzB5qa2C320lLS0Mmk6HT6ZDLZJhOnsTRPXGeSAUTB3tTM5ZTp1CpVCiVShISEli8eLGY5TkEpk2bRlRUlChcAHQ6HUlJSRNKvInaam/CbHb9vMSMv7q6OoxGIzNnzhzZ+Soq4OGHXd6+r/LQQ7BsWb/pB2OCVvvldV8Gdrud6upqpkyZMmhX9j5B9nz+8/3+j1LJX/SFPJ9fPH7C7YvzekK82Ww2Dhw4QFxcHJmZmeTl5cGZM6QGTK5u9GOJVq1mxtSpaIW4GDWsZ+s5VlyMRatl6dKlgKu/5axZs0S+20UICQkh5IvpFQKYOXMmW7duvWDyjq8iPG/eRF/Y7xLiraSkhMDAQOLi4kZ2vn/8Y/CqVpkMXn55ZMcfClqtS8hcppg5ffo0DoeD1EuIzIE8cH9Z48fzweMs3MAjYVOn08mxY8cwm81ER0cTFxdHmk5HxckiOs9LBBeMDI1aTVJsLBoh3kYNSZKgpZWMuDiCg4MxGo2cPn16xPN7JwOSJFFRUUFra6unTfE4M2bMAKC8vNzDlowOwvPmTfR5wC7yNClJ0uiFTE+fdo3jGvhErvVjTd81XEZehiRJ1NTUkJCQgPYSghf6e+D+Vvg3bFfoeLxtxvgKN3Bd8ziHMgoKCmhvbycnJ4eAgACsp08Tr1ASMHcuQf7+42rLRMZmt9Pa2Ul4cDAq0TR2xJitVrRqNRlpadDejr2lhcjISObMmUNhYSF+fn6kpKR42kyvRSaT0dTURHNzM+Hh4Z42x6Po9XoSExMpKSlh/vz5njZnxAjPmzfRJ0C+knh/PvX19XR3d5Oenj7y802denHP2xeVm2OKxeLKAVOphr2rTCZj8eLFw2rQ+UjGI6jkKmxOGyq7xCM9HugRZbdf1vVeLmfOnOHs2bNkZmYSFhaGrakJS3UNgFu41Zw7R+sIcw8F0Gs2k3/qFL0jSAUQuDjd0MCeE8e/fC8lMJeU4OjqIjExkbS0NEpKSoY8/m2ykpaWRnt7+5CmrEx00tPTqampwTwB/j6FePMm+sTbRT5YpaWl6PX6S49/GgoPPnhxz9tDD438HJfCbHYNar8MJEnC399/SF63Pv5S8BeXcJOrsCll/CWk7LLOPSLsdpdgHSfi4+PJzs4mLi4Oe0cH5q8k7UqSRGtXF3nlZSKEKvAKGlpbKa2pITEqGr/z/r4lhxNT4Umcvb1Mnz59dO6DE5zIyEj8/f2prq72tCkeJz09HYfDMSFCp0K8eRN94atBPCCSJFFSUsKMGTNGp79RWporr00ud4mJ83++/PLYFyuA61ovI2zX0tLCrl27LmgPcjHOryo9fu9xHv+oi+cDT158EsNYYLe78t7GGIvFQldXF3K5nMjISJxGI+aiInD2F+wymYz506YR6KfnWKmYDiDwLK2dnRRUVhIbEcH0xMQL1ks2G6bCQrDbycjIIDo62rVctMQYEJlMRlJSEo2NjRPC4zQSAgMDiY+PnxBVp0K8eRNfJFRSXDzg6qamJjo6OkZeZXo+Gza4GgP/93/Dbbe5fpaXu5aPB8XFcBnXU1NTg1KpHLTC9Ktc0A7EYuGRt+t4XFpy6VFao43DMebiTZIkTpw4wdGjR3E6nUgOB6aiYiTbwIUhCoWCBTNmoFYqOVpainmCzQEU+AZOp5PimmrCgoKYk5IyaF6vs9eEuexLr/mJEycmxBfyWBEfH8/ixYuHFaWYqMycOZPKykqfn3UqxJs3ERQEiYmDThwoKSlBq9W6pwiMGqmp8Mwz8Oabrp/j4XHro6BgSOPAzsdoNNLU1ERSUtKQth+wj1tzMwCPRN146VFao43B4OoxN4ZUVVXR0tJCRkYGcrkcS0XFJZvwqlUqFs6cSbC/PwrRuf6yUCgUBPrrfXdknYeRy+VkzUhn3rRpl4wu2FtasX4xvzMoKIiqqiqaxnHsnC+hVCoJCwvztBleQXp6Ona7nYrxbEY/Bog7tLeRkTHorM/S0lKmT58+cb4YentdveaGMA7sfE6fPo1arR5Sq5RBG/D23eSjoi49Smu0aWr6cjzXGNDe3k5ZWRlpaWlERERga2rCdq5hSPvqNBoyp01DpVRislhEg89h4q/TsXRuBv46nadN8SksVisnq6qwOxzodTqUQ7zHWSorcRgMJCcnExUVRX5+/qQPDQ6G0+nkwIEDgzY0nyz0TSbydU+tEG/exty5A4q31tZWWlpaRjdk6mmKi12FEcP0vLW1tTFlypRLitiLTk44T7zBEGahjiZjLN6Ki4sJCQlh+vTpOHt7sVxGcq7T6SS3qIh8MV5HMMbYHQ6OlZXS0tGBbbj9Hp0S5uJiJLudzMxM5HI5eXl54jM7AHK5HKVSSU1NjadN8Tjp6emcOnUKu4cm3YwGQrx5G3PnQmOjO6zXR0VFBUqlkuTkZA8ZNgYUFLiKI2bNGtZuy5cvv2R7kEuOvOoTb5GR7kXjJuDGWLwtXLiQBQsWgNT3xTb8hsByuZyZSUk0tbdTIm72Q6arp4dPc3PpElW7Q8LpdJJXVkav2UJWejq6y6g8d/aaMJeXo1arWbBggQgPXoSkpCS6uromfduQ6dOnY7VaOXPmjKdNuWyEePM2+kKI+fn9FldVVZGYmIhqHPuDjTn5+TBtGgwjxGQ0GpHJZBf1ug1pVmlTE4SGXtBvbVwE3BiJt6amJqxWK1qtFq1W+0VI6fJFRFRoKLOTkznT2EjlF7lFgksjiVDzkJAkiYLKSjoMBuZPn07gCEYW2ZuasZ07R2hoKDNmzEAmk+EY5ykmvkBERAR6vX7Se9/62qdUVVV52pTLRog3byM1FRIS4N133Yvsdju1tbUTq5O4wwFbtsDq1UPepbW1lV27dtHd3T3oNkMeMl9V5SoOGYAxF3BjIN46Ozs5duyY+6Zsb2nBdrZ+xMdNiIoibcoUqurPigpUwagik8kI1OvJTEsjLChoxMezVFTg6HEV5TQ0NAy7ldBkoK9tSGtr66QWtzKZjJSUFCHeBKOIXA733QcbN8IX/bbOnDmDzWabWOJt506or4cHHhjyLnV1dej1egIDBx6kPmThBq6Q7UUKJcZMwBmNrtcoije73c7x48cJDAwkLS0Np9ncr43CSEmNj2d5RqYYti4YNQy9vQCkxMURPUphTsnhxFxUhORwEBoa6m6XI/Lf+jNlyhSuuOKKiVP4dpmkpKTQ2NhIj4+mOAjx5o3cfz90dcH77wOukKm/vz+R5+Vn+Tyvvgrp6ZCVNaTN7XY7DQ0NJCQkDLh+WMLN4YCioksWSoyJgPtKocRoUFpaisViYf78+chkMlee2yD93C4XP60Wp9PJyaoq2i/i+RQILkVdUxP78/PH5HPk7O3FcuoUGo2GefPm0dLS4tN5TWOBQqFAoVBgs9k8bYpH6XOG+OrkCSHevJG0NFi61CVwgMrKSlIu0rDS5+jshPfeczUCHuI1NTQ04HA4iI+Pv2DdsIQbQGWlayzXEFqUjLqAG2XxZjabOXPmDNOnT0ev12OtrsbRNXbiqtdsJq+szO05EfTHX6djWWamaBUyCM3t7RRVV5MQFUXoIB70kWJraMTW1ERERAQJCQmUlpb6fEPW0aa7u5vt27fTOYnnGev1emJiYqisrPS0KZeFEG/eyoYNsGMHPeXlNDU1kTqejXPHmk2bwGqFe+4Z8i42m42YmBh0X/lSHLZwgy+bIM8Z2lD6URVwoyzetFoty5cvZ+rUqTgMBqxj6GWQy+XMnz4dnUbD0ZISTCKf6AIUCgUBfn6TPiQ1EO3d3Rw/dYqo0FBmjXHVvOXUKSSrlfT0dKKjo0Xo9CsEBASgVqsnfc+3lJQUqqurffLzIcSbt7J+PWg0GP78Z4CJ0yJEklxzU9euhdjYIe+WnJxM1gAhVqfkHJ5wA1cfvZgYiIgY8i59As4pjbCSsKrKNV0hPHxkxwEMBgOSJBEYGOiaonDqFIzxPUilVJKVno5cLudoScnw+3JNcEwWCyerqoSwHYCKujpCAvzJTEsb8yiCZLNjqa5Go9GQmZk55DF6kwWZTEZ8fDz19fWTuhF3SkoKPT09PjmZQ4g3byUoCDZsIPyVV0jW69GPoIzeq9i8GY4cgf/4jyHv0tXVNWh+xmOZjw1PuAHk5Q17qgO4BNxjmY8Ne79+FBS4PH4jHD9ls9k4ePAgZV8UJtjOnRvTcOn5aNVqFqanEx0WNuRO+JMFq83G2aYmrJM8n2gg5k+fzvzpMy459mq0sJ1rwNHVBUBzczNHjhzxSQ/LWJGQkIDNZvNJ4TJaJCQkoFKpfLLqVIg3L0b6xS+wAVdu3+5pU0YHgwH+67/ghhvg6quHtIskSRw9enT0RplYLLB3L3zta6NzvOFSWDjsiRIDUVpaitPpJDk5Gclmw1I1vkm3ep2OaVOmIJPJ6OzpmdRP74LBsdntHCsrxWgyoVIqUSmV43p+y6lTSJKESqWiqamJ2tracT2/N+Pv709oaCgGg8HTpngMpVLJ1KlThXgTjC6NNhufrVlDzGefuQSHr/PLX0J7O/zpT0Pepa2tDZPJNGChwmVx4IBrpupVV43O8YaDzQYlJZfl9Tufzs5OamtrmTFjBhqNBkt1NZKHPD1Wm43DxUUU+WjFlmDscDgc5JWV0WnoGeto/uA2GHqw1dcTEhLClClTKCsrE73fzmPx4sWXnFYz0UlNTaW2ttbnilqEePNiqqqqKFq0CGnRInj8cdeXv69SUgJ//CM8+SRMnTrk3c6ePYteryc0NHR07Ni+3VUsMMRihVGlrMz1OxyB502SJE6ePElgYKCrSKG7G9u5c6No5PBQq1TMSU6hvrmZcuHVEHyBJEmcqDhFl7GHrPR0j1bfWmtqcH5RvAD4/EDy0UQul+N0OjF90VN0MpKSkoLD4fA5r+z4+rDHGKvVyssvv8z27dsxGAykpKTw8MMPs3Dhwovut2fPHnbt2kVZWRnt7e1ERkayePFi7r//fgICAvpte9ttt9HY2HjBMa6//np+8IMfjOr1VFdXk5iUhOzFF1390J57zhV29DUkySU+p07l/2fvveMjOei7//fM9qJdraTVqkunLt3pevOdfS7BNiUmEJoheRJCAgkEwpMQ4pDk4feEUAKpBEJNgEASWsLj0GwwYPt89vU7XVOXTr3XlbaX+f0x0vp00unUVjOr2ffrta877e7MfHd2Z+Y73/L5soZ9FI/HGR4eZseOHZtny09/KkfdtqjuZhFXr8r/bsBxFASB8vJyrFYrgDx0XuEyngK3m1AkQkt3N0aDgR1raETZbpiMRsoLCzFpXND4RlcXY1PTHKytJdNuV9QWKRIl3NGBub6euro6bt68SSwWS3cEz9PY2Ijf7+fee+9V2hRFyM7Oxul00tXVRVVVldLmrJpt5bx94hOf4LnnnuNNb3oTRUVFPPXUU/zJn/wJn/70p9m9QrTjb//2b8nOzuaRRx7B4/HQ2dnJ//t//48zZ87wr//6r0s6laqqqnjLW96y6LlNS+vNE4/H6e/v58SJE7B/P7z73fAXfwH33y//nUr83d/Bc8/B00/DGrq+wuEwLpeL/Pz8zbFjZAQuX4Y/+qPNWd9auXpVHsmVmbmuxSVJQhAECgsLAQj3D2xodulmsqOggHAkQs/wMCUej2YvjGajkZo7jF3TEp6sLLIcDtwul9KmABAZHsFQUEBJSQnFxcVb1jSRCuTm5nL58mWCwSBms1lpc7YcQRAoKSlJOdmUbeO8NTU18fOf/5x3v/vdvPWtbwXg0Ucf5e1vfzuf//zn+fznP3/HZT/ykY+wb9++Rc/V1NTw8Y9/nGeeeYZf/uVfXvRaTk4OjyS5Zmp0dJRwOPzyRIG/+Ru5S/Oxx+R/5y/gqufJJ+FP/gT+9E9leZA1YDabOXLkyObZstD48fDDm7fOtXDlyoZSplevXkUQBHbv3o0UDhO+qa46s5rSUnYUFGjWcQOIxmLMzM3htNs12Yk76fXiyshQjdN2K8G2NqyHDiGKIl6vF5/Pt3k3himMx+NBFEWGhoY2N8uRQhQXF9PU1EQkEsFgMChtzqrYNrcfzz//PDqdjte+9rWJ50wmE695zWu4cePGiu3QtztugBzxArq7u5ddJhKJJLVOoK+vD51OR8FCCspqhe9/X073PfaYPD5L7Zw7B7/2a/Crvwof+9iaFpUkibGxsc3tYvyP/5AnV2zyUPhVs4FO09nZWXp7exNzXeUmBfVprBkNhvkmhhtMp+jMwI3gCwQ4d+MGPg3WEA2Nj3P2+nWGxseVNmVZ4nM+Iv39gHxev3LlCtG0TiEGg4GcnByGhoaUNkUxSkpKiMViKbUPto3z1t7eTlFR0RI9tIUi1bWOwJiYmAAgc5kU16VLl3jkkUd49NFHefOb38x3v/vdu65vfHyc1tbWxONuxZG9vb3k5+cvvgvIz4cf/hBu3oRXvxrUfHFsbJQjbXv2wNe/vuYas4mJCc6cOYN3s+YfDgzAM8/Ab/3W5qxvrYyOwtDQup239vZ2LBaLfJKZmSEyqN6TjG6+CPpCc/O2dmJisSiBQICZmWnGx8eIxWMA+AJ+xifGGRsbY2JiHK/XSySSWp1sa2ViZoYrHR0UuN3kb4IAdbJYaF6orq4mFovd8eZca+Tn5xONRjUr+ZObm4vRaEypObjbJm06MTFBdnb2kucXnhtf493gf/7nf6LT6bj//vsXPV9eXs7u3bspLi7G6/Xy1FNP8ZnPfIbx8XHe/e5333F93//+9/na/KzS1dDX15dwPBexZ49cO/bww/Da18ppySTNCFw3jY2yfZWV8NRTctRwjQwNDWGxWJZ1ntfFN74h19u96U2bs7618otfyP+uoyjY5/MxODjIrl27EEWRwM2bm2zc5qLT6ThQW8uZ69c539zMPbt2pXQBfyQSZm5ujmg0htvtRkLi0sVLCWdtgd3zzU0LUVLbLfVDhQUFFBYWMTvrpaenF6PJiM1qxW63Y7fb0elS91Q8MzfHxZYWsp1OGlQ+g1mKxoj09GCuqqK4uJjOzk527Nih6VQ/yJGnkpISpc1QDFEUKSoqSqm6t9Q9Y9xGKBRaNldtnL9orEXb55lnnuFHP/oRb33rW1+uOZvnr//6rxf9/epXv5oPfvCDfOc73+ENb3gDubm5y67zta99LcePH0/83dPTw0c/+tFl3zs7O8v09PSSbSc4cgR+9CN4zWvk5oVvfUvuRlUaSYIvflHuiK2rg5/8RJ4UsebVSAwPD7+cMt4Mu772NTl9q5Sj+5OfwK5daxoJtsD09DQWi4Xi4mJiXi/RyakkGLi5GA0GDtXXc/raNc43N3OsoSGlisSDoSAD/f3Mzc0Rmtd/slmtuN1uBASKi4vQ6/UYjUaMRiMGgwFBEAlF5sjL9bB/926cdjvxeJxwJIxOlJ0DnV5PhiODUDDI6OgoA4OD2KxWdu7cBcD4+BhOZ2bK1N0A9I+OYrdY2FddnRLfcWRwEGNpKZWVlfT29tLT07N9xg9uEL/fn+hk1xrFxcWcP38+0RimdraN82YymZYdobQgvLfa2XZXrlzhk5/8JIcPH+ad73znXd8vCAJvfvObOXfuHI2NjXdsZMjJySFnlemEBe//js4bwH33yZ2Tjz8Ox47BJz8J//t/g1I/uulpeOc75fFX73633GG6Tm2nqakpgsHg5hUTnz0Lra2y1IoSSJLcLDHfSLNWCgsLyc/Pl6NuKZTmsZhMHKyrw+vzqf6iHgqFmJycRBAF8jx5iIJAOBwmKysrER0zGF6OHubmLl83KQgCJqMxcfIXRRGz6eUInNVipbTk5W7UYChIbL7uKhwOcfNmNwAZjgyysrJwZbpU78jV79hBNBZLmQYNKRYn3N+Ptbycffv2rfq8vN3p6+vjypUrPProo6r/zSWD4uJinn/+eSYnJ5fN4qkNdZ9R10B2dnaiTu1WFp5bzQHa0dHBhz70IcrLy/nIRz6CfpWjXBaibZtVn9XX10dmZuYSjbklVFTIEwPe9z5Z/uK1rwUlioXPnoV9++Sasu9+Fz73uXU7biDLpLjdblyb1bH21a9CcTE8+ODmrG+tNDXB4OC6pjqMj48Ti8UQRZHY3BzR8aW/cTXjsNkomj8+RicnVTVbMhaLMjw8RFPTDa5cvcLA4AChYBAAo9FEXV09xcUluFxZixy3lXDYbDx08CCOVc4iNpvM2Gz2xDb37dtLWVkZAgI93T00Nd1IvFdSWtDvFqKxGGdvXGdiZgZBELZ87NVGiQwMIEUiFBYWpofWz+N2uxNZDy1SVFSEIAgpkzrdNs5bZWUl/f39+Hy+Rc83NTUlXl+JgYEB/viP/xiXy8WnPvWpNYWOB+cV7jerPquvr2/lqNutGI1ylOuHP4TTp+WauM9+Fm7bD0mhp0eO9t17r9zBefkyvPGNG15tTk4OR48e3ZzQ9fAw/Nu/wbveBUpFBn7yEzCb5WjpGgiFQpw9e5ab8zVu4e7UUgC/lblAgIutrTSpoF5PkuSi7FAoRH9/P0ajkcqKCvbv209paZmitun1BtxuNzU1Nezbt5eKCvm8FQ6HuNLYyODQILGYsh2S8Xiciy0tzMz5Us5pW0CKRIkMDAAwPDzMqVOnVHVjoQRmsxmXy6XZQfVmsxm325123raaBx54gFgsxve///3Ec+FwmB//+MfU19fjmZeHWG448cTEBB/4wAcQRZG//du/vaMT5vV6icUWFylHo1H+4z/+A4PBsKzkyFqJRCIMDQ2t3nlb4DWvkXXETpyA979fFoP9//4/GBvbsE1LaGyUJUAqKuRO0v/zf+CFF2ATNILC4TAzMzObdyL9u7+TGxXe+97NWd96+OlP5e9ljdHIzs5ORFGktLSUuM9HdGw0SQYmH7vFwq7ycnqHh+mYl2vYavwBP52dndy4Id/QWa029u3bR2VlFVlZ2ZuS2vX6fPziwgW8m3DzpNcbsM9PJxAEgcxMF4MDA1xubKS3t5dweOtndEqSxJWODqZmZzlQW7vqCKMaCff1I8ViWK1WpqamGJh35rRMbm4u4+PjmnVkU0msNzVvm5ahvr6eBx98kC996UtMT09TWFjI008/zfDwME888UTifR/72MdobGzk5C2D3j/4wQ8yODjIW9/6Vq5du8a1a9cSr7lcrsR4rRdffJGvf/3r3H///eTn5zM7O8szzzzDzZs3ede73rUpefKhoSFisdjanTeQhXu/+U34+MflOaJ/+7fwqU/B298uS2Ts2wfrrWWYmYGTJ+Ezn5HTo6Wl8Pd/D+94B2zi+JuhoSGuXbu2OXUXExPw+c/L0cHN6lpdK4EAPP883KE55U6Ew2G6u7spLy/HYDAQ7OhQfAzWRin2eAiGw7T39mIyGCjeIr29UChEb28vU9NTmIxG8vLykaQ4giBuepenJEmEwuFNv/gZDEbKysooLCxkZGSE0dERIpEIFRUVm7qdu9He18fw+Dj7amrIXkczkpqQIhEiAwM4SkrweDy0t7dTWFiYEsXqycLtdtPT00MgENBk40JxcTEXLlxIiWkT28Z5A/izP/szPB4PP/nJT5ibm6O8vJxPfvKT7N27d8XlFjTgvvnNby55be/evQnnrby8nNLSUp555hmmp6fR6/VUVVXxl3/5lzy4SfVUvb29GI3GRKRwXezYAf/0T3Lk7fOflx2uL3xBTt0dPAj33ANHj8r/5uUtbXKIx6G5Gc6ckVOxZ87IdVuSJDuA3/ymnB5NQspkbGwMl2uTirQ//WnZ5v/9vze+rvVy6hQEg2ueLrGQKi0vLyceCBDZJnUoVcXFhCMRBsfHKcrNTfqFUkKipbUFKR6norycrOxsBFL34mwwGCgqKqKgoCCRBZianiISiSQ6YZNJgduNzWIhLwUKuldDuK8PQ1ERVVVVnDp1iuHhYU1PXXC5XDys1AQaFbAQNOnr61P9nNNt5byZTCbe85738J73vOeO7/mnf/qnJc/dGoVbiZqamiVSIZvNwMAAhYWFm9Odl50tz0P94AflerTTp+XHt74lj9sCuQ7MYpG12GIx8PtlZ0OSZGHdXbvkmrY//mPZ4aupSVpHqyRJjI+Pb07b/syM7MD+3u+Bkt1kP/2pLK68c+eaFnO5XNTV1WE0GgmqYPj8ZlK/Y0eiHT9ZbflTU5PYbDaMRhNVVVWYTWbVd7yuBVEUE5/HNzfH4NAQY6OjlJaWYrffpdFpHYxNTeFyOLBbLNg30IykNqRQmMjgEK6iQnJychgZGdG087ZAKo2J2kxcLhc2m43+/v6085ZmbQwPD1NbW7u5KzWZZMfr6FFZgw3kiQNnz8rK/4GA7LTpdLITZ7HI9WyHDsHdOl43kenp6UQEYcP8wz/ITugHPrDxda2XeBz++7/laRhrdFAWOpjjoRCRFBrZshoEQUAQBOYCAS61tLCvpoaMTUrRRCJhurpuMuOdoaS4mLy8fKyW7Z3+KSoqJjPTRW9vD03NzbjdbkpLSjfNWR2dnORiayvVJSVUpMpM5TUQ6e3BUJDPwYMHNemw3M7Q0BAXL17UpGSIIAjk5eWlRNNG2nlTEaFQiKmpqY2lTFdLYaEsWqsiwuEwTqdz4127N2++rHu3WUK/6+GFF2RbfvM3V72IJElcvXqVHTt24HA4iPT2Qnwbhd1uwWQwIIoi55uauKehAcsGJRtmZqbp6upCEARqqqtxOjM3x9A1YLNYOLxzJ7Ytjk7Z7Xbq6uvlkVzj45sWHJ/0ernc3kauy0W5ksdSEokHQ0RHRjDMR9x8Pt+SMYtawul0JrIgWoxCejwempublTbjrmyfPMI2YHRU7ibcEudNhXg8Hk6cOLHxNNr73w9ut9wFqyRf+xqUl69pJNbExAS9vb3EYjGkaJTIvAzNdsSg13Owri7hwIWXEdleLZFImPb2dmw2G7t27VLEcQPQ63RkO52KCNYKCOS6c6mrq0cQRAKBAKOj648gzPr9XGxpIdNuZ1919bYu5A/3yh2GAwMDPPvsswTn9f60iNVqxWazMZYMpYIUwOPxMDU1taapTEqQdt5UxMjICKIobk7aMMWIxWKbc8L8wQ/kxz/8Ayh59zw3JwsWv/3ta0qZ9vX1YbPZcLlcREdHkWLbe1C02WjkUF0d4WiUy21ta14+FAohSXEMBiP19fVUVVej1yuX6gmGw7T29BAMKz+Ifnp6mu6eHjo62telDTfp9WIxmdhfU7ut6gWXI+7zEfN6yZ1votG6bEhubq6mnTd4OZiiVrb3EZlijIyMkJOTs+rJDtuJ0dFRnnnmmY05cIEA/MEfyJ2dSqeE//u/ZaHk//W/Vr1INBpdpPG3XTpM74bNYuFgXR1Va5THmZub5caN6wzN1wRarTbFO0lD4TBdAwOJeahKkp+fT1VVFV6vlxs3mlYdSViQOSnNy+NYQ0PKCvGulcjQMAaDgfz8/JTR+koWbrebUCikyQhkTk4Ooiiqvu4t7bypiJGREc2mTCcnJ7FarRvT1vnEJ+QxVJ/5jHIzXhf42tfkcVxlZateZHBwMKHxF/f7iU3PJM08tZFpt5PlcBCPx+lbxUlzanqKlpYWrFarZo+Z1eDKdCWG3re1td51xFYsFuPsjRv0jsg3Dts94nYr0dERpHic4uJiZmdnmZ6eVtokxXC73bzyla9UvdZZMtDr9eTk5Kh+TJh2jkyVI0mSpp23qampjc0yPX1aFif+0z8FpVu8b96E556TU6ZrwOPxcODAAcxms2aibrczNTvL9c5OWm+bgnIrY2NjdLR3kJmZSU1NzaYL7W43TCYT9fV17NhRvmJkUpIkLre3MeObI8OqvYJ9KRIlOjZOTk4OmZmZmow6LXCrFI0W8Xg86chbmtUxPT1NKBTSpPMWi8WYmZkhKytrfSuYmoLHH4cjR2RdO6X5+tflqRNveMOaFjOZTBTMd/RFNeq8ZTud1JaV0TUwwM07NGvM+ebIzXVTUVmJIKRPYathYdSWhERnZweTkxNL3nO9q4uxqWn2V9fg2kKJIDURHR5CEATuu+8+8vLylDZHUTo7O3nhhReUNkMRPB4Po6Ojqh4Tlj7zqYQFL1+Lzpvf70en060v8iZJ8oiu2Vl58oPSukTxOPzbv8Gb3rSmhomuri5aW1sBiE5NEQ+qu9MpmewoKKC8sJCW7m4GbymaDobkSEhZWRmlpWWK17cth9FgoMjjwaj07/BOSBIg0NHZuaggvXtoiP6REXZXVuLeSAQ8xYlOThKfrw0MBoPMzc0pbJFymEymhPam1sjLyyMUCqk6dZ523lTCyMgIVquVDA3e8WZkZPDoo4/icDjWvvBnPwtPPglf/SqUlGy6bWvmxz+W06bveMeqF5Ekia6urkSaJrrNRHnXQ01pKQVuN9PzF8/BwQGuX7tGOBxSpdO2gMVkoqGiYsOadclCEETKK8rJdefS3d3N1NQkAIVuN3uqqijUYKf7IqSXo94XL16kqalJYYOUY+FmempqSmFLtp6FIIqaU6dp500lLNS7bWctpTuxMCJpzZ/90iV5bNf73w+/8ivJMW4tSJI8gP7YMTh+fNWLTUxMEAgEKC4uRopGiWq0Rf92dldWUr9jByMjI/T29VFQWIjRqE6naIFYLMas35+YO6pGBARKy0rJysrifGMj41OTGPR6CrTuuM0TGZYv2EVFRYyOjmq29k0eL2dkcnJSaVO2HLvdjtVqTTtvae6OlpsVfvazn9Hd3b22hQYGZIetoUGepqAGfvELeeTYX/zFurTdsrKyNKHttloEQWBqapIrTTfonZrCman+dN5cIMCpxkbmAgGlTVkRAQFndhbTkQijGupqXg0Lmm8FBQWa13zLysrSZORNEAQ8Ho+qO07TzpsKiEQiTE5OJuZZagmfz0cwGMS6ltmWs7PwmtfIDtL3vy/PblUDH/sY7N8Pr3zlqhfRqrbbapCkOH19/ZQUFOLxeDjf3KwK/bTtwMzcHJda2ygrKqa2tJSZmWnCYe3WWd5OWvNNZufOnRw4cEBpMxRhoWlBraSdNxUwPT2NJElkZ2crbcqWsxCSX3WzQigkd3F2d8v1ZWqZt/jSS/Dss/Dnf76mqJter+fee++lpKREc9pud0MQROrqaqmpruJw/U7i8Tjnm5uJqjglmQr4g0EutDRjt1jYX1ODIEBPTy9tbe3E4+moL7ys+VZSUkJGRgbR6NonVGwHrFYrRqNRaTMUISsri+npadUeE2nnTQUshKU3pHOWokxNTZGRkYFhNd150Sj82q/ByZNyk8KuXUm3b9V87GNQXw+ve92aF3U4HJhMJqIqvsvbSiQk+vp6iUQiGAxGBEHEYjJxsK6OQCjEja4upU1MafzBICaDkYN1deh1OgRBpKqqimAwQG9vr9LmqQIpEiU2MUFOTg4HDhzQ5NSbBS5fvqzJ1LHL5SIWi+H1epU2ZVnSzpsKmJycRK/Xa7LTdHZ2dnVdprEYvPOdstP23e/CAw8k27TVc+mSHAX8sz+DNQpbnj17NhGaj2qwMHg5BvoHGB4eIRRaXCjusNk4WFdHtRq6ildAUKm46UITRU5mJsd3714kZ2KxWCgtLWN0bHRZDTgtsnA8LpS1aBWv18vEhPZ+Ewu6o2qt+VPnWUZjLEwX0GKn6ZEjR6ivr1/5TcGgrJv2jW/IAriPPbY1xq2Wj38cKirgLW9Z02Jer5fR0VFEUUSKRonNpFOmXq+XwaFBCosKsduX3sy4MjKwmEyEI5E7ivgqidNu55VHj+K025U2ZRHxeJyLra003bwJsOy5xu12k52VxdDQ0F3HaGmB2LzD1tfXx+nTp1XdQZxMHA6HaqNPySQzM3O+aSrtvKW5AxseDZXC6PX6lefnTU/Lg+afflqOur3tbVtl2uq4cUMeQv+hD8EaUytjY2PodDqysrKITU2h9etlJBKhs7MTp8NJfn7+iu8dn56mpbubjv7+LbIudZEkiasdHUx6vXjuMsWkbMcOauvqVK2lt1XEA0Hifj9ut5t4PK7Z6NuC86bmaQPJQKfT4XA4VPu9p503FTA5OalJ521sbIxz587d+Y52cBBOnIBr1+BnP4Nf/uWtNfBuSJKsMVdRAf/rf6158bGxMbKzsxFFMZ0yRR57JYoC5eUrz+AEKHC7qSwupr23d1WD7LeKuUCAF69eUZVUSHN3N0Pj4+ytqiLb6VzxvTpRh07UEQqFGB1L12BGJ+WaXLPZrOrOw2TicDiIxWL4/X6lTdly1CyVot0qTBUxPT29/rmeKczU1BRTU1PodLqlL7a0yJIbsRicOiU3A6iN73wHfv5zud5tjR1ZsViMiYkJ6urq5L/TzhuuTBeZTueq55VWFRcTjkS43tWF0WC4a1RpK4jFYnjnfKpJsQ1PTNAzNER9eTl5a+hmn5ycpL+/nwx7BhaLJYkWqpvY1CQUFZKbm7tonJiWyMzMZM+ePZrsOnW5XKrVektH3hQmcO0a0WhUk5E3r9e7fLPC178OBw/Ks0FfekmdjtvsLPzRH8ndpa961ZoXF0WRI0eOUFBQQNzvJx7Qpoo7QCweY3BokHg8vuZB8/U7dpCXnU1Yg/MXV4MnK4sDtbWUrnHIel6eB7PZRE9Pd3IMSxFiU1NIkkRubi4mk0m1shHJxGAwUFJSsjpFgG2Gy+VSbeQt7bwpjPld7+LAhQu4MjOVNmXLWeK8zc3Bb/6m/HjDG+RpBfPitarjL/8SpqbgH/9xXYsLgkBOTg5ms5nopDpPDlvF0OAgg4OD6xqALQgC+6qrKZ6fThLRqB7X7YxNTTExM4MgCOSuIyIpCCIlpaV4Z2eZmBhPgoWpgRSNEZ+ZIT8/n3vuuQdRpZ3EyWZ8fFyTYsVZWVkEAgECKiqDWECbv0QVMXPiBI/96Edk//7vy8X5GiEajeLz+V523q5ckaNt//3f8G//Jj9U1rGX4Pp12Wn7i7+A0tJ1reLq1auJNExsSrsp00AgwNDQMAUFBZg2OCmjZ3iYFxobCYS0PSlganaWS22t9G6wFtDpcJKdlUX/wICmu08X6lHj8Tg+n09ha5RhZGSE9vZ2pc3YchYyYmqMvqWdN4Vpf+Mb+cFv/AbiT38K+/bBT36itElbgiAI7N+/nxyHA/7mb+DIETCb4eJF+I3fUNq8OyNJ8Pu/LzcpfOAD61pFMBikp6eHSCSCJElyp6lG6entwWQykb/GtN5yeLKyEEWR801NiqVRrWYze6ursa7UQZ1E5gIBLjQ347TZ2V1RseH1lZSUUFdbq+nu04V61Pb2dk6dOqW5rkuQmxZ8Pp/mJk2knbc0d2R2dpbxBx6AxkY5ivPKV8p1VPN6TNsVnU5H4fXrWI4cgT/9U3j3u+HMGaipUdq0lfnP/5QnPHz2s+ueqboQccvJySE+M4MUVUdx+1YzNzeL1+ultLRkzbVuy2E2GjlUV0c4GuViS4siTQMGvZ78nBwMCijyB8Nhzjc1YTGZOFBbu3wj0BoxGIwYjXKtVzSqzbrC2OwsUiRCTk4O4XCYGQ3qMS5kSObm5hS2ZGuxWCxYLJa085ZmKV6vV/bud+yQZ2N+61ty9KmuDj78YdiO7dk3bxJ61atkRzUvT3Zc/+Ef5MibmpmZgT/+Y1kw+OGH172asbExMjMzMRqNmpYIsdsz2LVzJ05n5qat02axcLCuDq/fR6cCI31C4TA3BwcJhcNbvu1oLJYYI7bZzmNTUxN9WtXUk2TJEJfLhV6v12TXqdVqBdCkXIjL5VKl1lvaeVMYv9//ct2XIMgq/S0tckruk5+UnbivflUeyJ7qDA/LYrZ1dQiXL9P6l38pO6wNDUpbdnckSY4O+nzw93+/oVVNTk6Sk5MDaFciJBaT0y9Wq23T151pt3Nk5y4qCgs3fd13IxgO09LdTXALnbdYLEYsFsNusXB01y7MSZB0yM7OZmJ8nEhk651SNRCbmkQURbKyslR5IU82BoOBoqIiTcqFZGRkMDs7q7QZS0g7bwrj9/ux2W67gNls8qDzpiY4cADe8Q45MvfJT6ZmU0NrK7zrXVBWJqcb//iPOf/1rxP8lV+RHdZU4CtfgW9+E770JSgq2tCq6urqKCgoQIrHiWksDbFAe0cHN7uTVxqQabej0+nw+pSJwG0VkiTR2N7OhZaWpG4n15OLKIoMDg0ldTtqJTY/HsrpdGpSLgRg3759iZtOLWG321XZqJJ23hQmHo9jv1NXZUUFfO97shP36lfLadSSEjl1p/a2bUmCF1+U6/fq6uAHP4D/+39luz/6UeYkKRGKVz3Xr8P73gfvfCc8/viGV1dYWChfBPx+iGuv+Hmh1i1zC+RxJr1e2np6VDkHdTO43tXF6NQU5QUFSd2OTtSRl5fH2NjYuiRdUp24348Uj1NbW8s999yjtDmKEA6HVRmBSjY2m02VtX5p500FLIm83U5dHfzLv0B3N7z3vfCv/yo3NzzwAHzuc6CW8UCSBFevyhIaNTVw771y1G3B9j/9U8jMJBKJEA6HU8N58/vlVHZFxbo13W5lYmKC/vnaobgK7+a2gsHBQSwWy5Y4b2X5+ewoKKClu5vBbVar1NbbS//ICLsrK3Fvgci3x+PBbrcT0WLjQlySb7bm0WLHaVdXF2fPnlXajC0nHXlLc0fuGHm7nfx8+PjHobdXdojMZviDP4CCAnjoIfjCF2Cri4pjMbnh4MMflp3MPXvgn/8Z7rtPlj25cUNO+97SmRmPxykqKlp+uoLa+IM/kDt/v/1t2ARns7+/n66uLgDiGryLDYaCTM/MUJCfv2XyEzWlpRS43Vzt7GQ8yWUHep0Od5YL/SZ0eq7E9Nwcnf391JSVUuh2J3VbC+h0emprarFaUuCmKwnE56MvP//5z+nu7lbWGAWwWq0EAgHNpY1tNhuxWIyQyurO07NNVcBdI2+3k5EhO0TveAeMj8OTT8pzNt/7XrmovqgI7rkHjh6V/92/f92yFkuYmJAnH5w+LT/OnZNHRTmdcor07/8eXvGKFWd9mkwm9u3btzn2JJP/+A85yvmVr2zaiK5bp0rEVRiKTzahUAiL2YzLtXVzSAVBoKGiAkmSEJJcY2mzWDhYW5fUbYBc03e0oQFXRkbSt3U7s7NeRFHEZlOpiHaSWDheDQYD3vkaOC2xkCkJBAJrv2alMAvBFbVNWUg7bwojiiLmjUhk5OTA7/yO/BgbgxdekPXSTp+GP/9zCAZlR6q8XHbqbn9kZIDBID/icYhE5MfEhBzFW3j09cmP3l55u2637Bh+6EOyk3js2KodxIWDQNUDr9va4Pd+D3791+Htb9+UVUqSxOzsLIXzXZCxOfWF4pON0+GkoWH3lm9XFEX2VlcD8vcQikSS0pUZj8eJxmLodbqkjFKamJlhLhCgNC9PEccNoK+vH71BT3VVtSLbV4oF583hcGjSeVtw2Hw+n6act4XPmnbe0izCYrFsXjTA7YZf/VX5AbITduWK7Mx1dclOWGsr/OxnMDgoO2srG/eyk1deLqdCd+2SnbYdO9bdKdre3s709DQnTpxY1/JJx+eT69zy8+Wawk36fvx+P7FYjIyMDKRwGEkBLTAlCYVCiKKAwaCs3EBLTzcjk1Pcs2sXpk124Gb9fl66epVju3fj3OTxbjNzc1xsaSEzI4MSjyfpUcQ7kePOoae7h0gkrPh3uZUs3Gw5HA4GBwe3JJKrJsxmMwaDQXMNK+nIW5plSWr0yWCQ54UePLj0tWhUbnTw+V6OtgnCy1G47GxwuZIi5REIBNQbdYvF4K1vhfZ2uVt2E6MbkiRRUFCA0+kkpsIC2GQzMNCPz+dTJPJ2K2X5BQyNT3C+uZmju3YlvT5tM/AHg1xoacZusbC/pkZRpyE7K4venh4mJibIy8tXzI6tRgqHiYfDOBwOYrEYPp9v9fXK2wBBEHjlK1+ptBlbjslkQqfTqU6gOO28KYxiToxeDwqImIIcgdmKTsM1I0lyg8KPfyxLm+zZs6mrt9vtHDhwAICwWjqEt4hYPMbk1BQFSZa0WA0LUwjO3rjBxZYWDtXVJSXFuVmEwmHONzeh1+k4WFenuLOp0+lxubIYGx/XlPMGcurU5XLx0EMPpUa3fJoNIwgCdrtddZE39Z6xNIIWTwChUAjTZjVQbCZ/93dymvRzn4NXvWrTV+/1egnPp0q11qwwPTVNPB4nJztbaVMAcNhs7K+pYWp2lgGVS4iIokiG1cahunqMBoPS5gDg8eSSnZWFJGmr8zDu86HT6bDZbJpKmS5w48YNLl26pLQZW47NZks7b2kWo9r0YRKJx+Pqc97+/d/hgx+EP/szeRpEEjh//jwdHR2A9pw3r3cGq8WK0aie7z3b6eT47t0UezxKm7Is8XicYDiMQa9nf00NVhXN/rXbMygoKEQQtHUJWThub968SVNTk8LWbD2xWEyzQr1p5y3NIrTovD366KOUlZUpbcbL/M//yB2l73gHfPSjSdlEJBJJzLGVJElzNW/yXMjkC8mulYz5yPfI5CRdgxsfo+Ww2Xj4yBEcG+zGkySJqx0dnLl+XbW6WsFggImJCaXN2FJi845LMBhkcJtO7VgJk8mUyB5oCbvdnq55S7OYDcmEpNk4zz4rd5a+7nXy3NIkpUIWFLrtdjuSBsdilZaWKW3Cinh9Pjr6+jDo9BuKxAmCsCk1aS093QyNj7Ovpka19XjTMzP09/XhcrlUa+NmE/f7kSQpUQMVj8c189lBdt5CoZDmOm2tVqvqRHq186tTKQaV1LBsFZOTkzz77LMEg0GlTZG18F77Wrj/flmQN4mF4AsHvtlsJq6yk0CyCYVCxOIxpc1YkariYkry8rje1cXI5OS61+MLBDjX1IRvAymWzoEBugeHqC8vJ08lNYLL4XQ4iUsSs3MaSqPFJaRIJFH2obYLerIxmUxIkqQ5uRCj0Ug0GlXajEWknTeF0eu1FfwMBALMzc0p/7l/9CP4pV+Sp09873ubN4HiDsTjcYxGI0ajEUljJ77u7m4652v91Ez9jh14srK43NbG5DpFWKOxGBPT00Rj63NWg+EwHf19VBYXUZqXt651bBUWiwWjwYB3ZkZpU7YUKRzWrPOWnZ3NsWPHlD9/bzFq1LdLO28Ko7XImyzUKip78P/bv8Gv/Ao88gg8/TRsgVp4fn4+jz76KKIoakqcV5LizM56cTidSptyVwRBYG9VFYVuNxaFGmrMRiP37t5DVXGJIttfK06nk5kZbU0bkMJhrFYrDQ0Nmit7MRqNZGdnaypVDPLnTjtvaRahNectfMtd65YjSfCpT73cnPBf/yVPkdhqMzTkvAUCAeKShD1F5mCKokhDRQUWk4lINEpwi76rqdlZbnR1IUkSthRqYsp0uchwKDOmSymkSASDwUBZWZnmnDdJkmhpaWF6elppU7YUYxJG6W2UtPOmMFoLP4fDYWUOhHgc/uiP4Ikn4P/8H/jiF2Wh4i3iypUrXL58GdCW87bQoWWxpo5DssCVjnbO3bhBOMl33HOBABeam5n1+1XbWXonXJkuSktKlTZjS5HmU6XDw8Oac2IEQaCzs1NznzvtvKVZgtYibzt27GDXrl1bu9FwWB4w/+lPw2c/Cx/5SNK6Su+E/5YLs5act2g0isViQSeqfwTV7dSVlhGORrnY0kJslTVsFpOJ+vLyVaddg+Ew55uaMBuNHKitRZcCo7puJxgKaqr2a+H4bWlpob+/X2Frth6dTqe64v1ko8brdNp5Uxg1/iiSSUZGBllZWVu3wdlZ+OVfhv/+b/j2t+H3f3/rtn0Lt06V0JLzlpeXT8OuBqXNWBc2i4WDdXV4/T4ut7chSXeXdzEaDJTm5a1qEkIkGuX8vNDrofp6DCkahW9rbWNEQ+PeFo7fBdkMraHX61d9M7NdSEfe0ixBa2nTvr4+hoeHt2Zjly/DgQNw5gw89RS86U1bs91luNV5i2vIeUt1Mu12DtTUMj49s6oO1Eg0ysDYGJFVRCb0Oh3uzEwO1ddjVuHFYbVYrRb8AXUJmCaTBefNaDRq0nnTYuQt7byl0Tw9PT3Jd94kCT7zGTh6FOx2uHABHnooudtc0RxpUaOGViJvkUiYixcvMjub2t2IOZmZPLB/P9mr6Jj1B4NcbW/Hv4KOoSRJeH0+BEGgtqwMewo1KCyH1WoloDL1+WQS13jkrbCwkMzMTKXN2FLSzlsazROLxZIbbZychF/9VfiDP4Df/V1ZiLe6OnnbWyX33nsvHo9Hdtw0MlwhGAwSi8e2RWnAQmSsva+P7qGhDa3relcXZ65fT3ojxFZhNpuJRKNEo9vj89yNBZ1Gp9OJw+FQ2Jqtp7q6msLCQqXN2FLUeA7TVs4ujeJEo9HkFWW/9BK89a1ynduTT8pabipAEARcLnmuZ2xOOzNNw2H5ImdQ4V3reonFYnT09WHU6ylwu9e8fHtfL/0jI+yuqlpVXVwqYDSaMBoMxGLxrWzgVoyFyHlxcTHFxcUKW7P1LIwFs22BPqZaSEfe0miepETe4nH4xCfgxAkoLobGRtU4bgBer5empiai0ShSRBspU4BINIIoCCnZaXonakpLKXC7udrZyfga5RJ6hofp6OunurSUwnU4fmrFbrezd+8+5fQbtxrpZQcuGo2uqpFlO9HU1MTVq1eVNmNL2RaRtw9+8INr3oggCHzqU59a83Jpth95eXmbm2poaYH3vAeeew4+9CH4y7/cUv221eD1euns7KSmpoZ4WBupJYBoJKrKk95GEASBhooKwtEol1pbObprF45bIhA6nY7MjIwl0eVYLEbXwABlBflUaCDl5AsEuNrRQTgawaDT01BZSYbVuug9EzMztPb0EI3FEAQBd2YmNaWlCIKAPxjk+cuXFy2zr7paNQLG8XCEWb+fF154gfvvvz9xTvP5fFy+fJlwOIzBYGDv3r1kZCwWMZ6YmODMmTPY7S8LV997772J30xvby8dHR1IkkROTg4NDQ2qmmig1+sJ3DK7dzWfua+vj66ursTfwWCQrKwsDh06hN/v5xe/+MWiZQ4ePKiqyJ4gCEuCDtevX2d4eJhAILDoN3A7K32fG/mu13yVO3fu3FoXQdhiTa006mX37t2bsyKvV9Zr+/SnoaQEfvpTeMUrNmfdm8yCvptOpyOu8gHtm4nH4yErewtlYbYIURTZX11NR38/ttsU9u0WC/c0LJVG0el0HGto2Dap0tu5evUqeXkecnM9gFzXV+zxUJSby/DEBNc6Ojh227Gv1+nYW12N1WwmHo9zrqmJgbExinJzE6/fu2fPln+WVSHFExfZW4WVr169SmlpKcXFxQwNDdHY2Mh99923ZHG73c7999+/5Hm/309raysnTpzAZDJx7tw5ent7KSsrS9pHWSu3d5uu5jPfnmJ+7rnnKCoqSvyt1+uX3R9q4nY/Jj8/n8rKSk6dOnXHZVb6Pjf6Xa/Zefv2t7+91kW2jHA4zL/+67/y05/+lNnZWSoqKvid3/kdDh06dNdlx8bG+OxnP8v58+eJx+Ps27eP973vfRQUFCx57w9/+EO+9a1vMTw8jNvt5o1vfCNveMMbkvGRthWSJOH3+zGZTOtPncbj8O//Lk9K8Hrh//5f+MAHQMVjaiRJevnA11CKxWAwbLvI2wI6nY6aUnmywKzfj1Gvx7RMXczM3BxtfX3srapa9vXtgiTFEzWOoXCYmbk5DtfXA5CXnc2Nm134AoFFkTPnLZEnURTJsFoJhO7cpasq4nGE25y3UCjE9PQ0R48eBeSL+7Vr1/D5fKuOIg0NDeHxeBIp6LKyMtrb21XnvG3kM09NTREKhfB4PFtm82Zwu/OWnZ1912VW+j43+l2v+Qqal5e31kW2jE984hM899xzvOlNb6KoqIinnnqKP/mTP+HTn/70ihEfv9/P+9//fnw+H7/+67+OXq/nO9/5Du973/v4yle+gvMWiYD/+Z//4e/+7u+4//77ectb3sLVq1f59Kc/TTAY5Nd+7de24mOmLPF4nF/84hfs379/fd1Kly7Be98rd5C+5S3wN38j17ipHK06bwMD/VgsFrKy7n6SS1UkSaKxrQ1RFDiycxe+QICXrl7l2O7dGPR6LrQ0YzYat332wWAwEJnvNg2Gw5iMhkWf2WI0EQyH75j2DIXDDE9OcKC2LvFcNBbjpatXkZDIdWVRWVSknv0oSYnI20LNWzAYxGQyLf7cFguBQGCJI+P3+zl58iSCIFBcXJy4YAcCASy37KOF5dWEKIqJz76Wz7xAb28vRUVFi9KD0WiUF154AUmSyMvLo6qqSj3f9TzrsWel73Oj3/Wanbd3vetdnDhxguPHj7Njx461Lp40mpqa+PnPf8673/1u3vrWtwLw6KOP8va3v53Pf/7zfP7zn7/jsk8++ST9/f188YtfpK5OPnkcOXKEt7/97Xz729/mXe96FyDfZfzLv/wL99xzD3/1V38FwGOPPUY8HufrX/86r33ta5fk+tO8zMJJbs0Hwfg4/Pmfw5e/DDt3wrPPwgMPbL6BSSIjI4PS+SiNloqbJycncTozt7XzJggCe6qqOHvjBhdbWqiev5kIRSI0treh1+k4WFuHPgXHXq0FnU5PfJ2q+9FYjIstLZQXFJI5H40zG408dOAAJqORSDTK5bY2ugYHVVMveOsN2VqPaafTySte8QoMBgPBYJCzZ89iNBqXzfKokZqaGmpqata1bCwWY3BwkHvvvTfxnNls5uGHH8ZkMhGJRLh48SKdnZ1UVlZulsmbgtqcyTVXQYZCIb785S/zW7/1W7z1rW/ln//5n7ly5YriF6Xnn38enU7Ha1/72sRzJpOJ17zmNdy4cWPF8S3PPfcctbW1CccNoLS0lP379/Pss88mnrt06RIzMzO87nWvW7T861//egKBAKdPn968D7QNWfNvpLsb3v9+KCuD73xHrm+7fDmlHDeQw+uJea4act4kactHyCqCw2Zjf00NU7OzXO/qIhaLcbmtlWgsxqG6+m2dLl1AEF4+vs1GI6FwZNHxHgiHlp0iEY3FON/URG5WFjtucV5EUUzsN4NeT5HbzZTKxJ4tFguPPPJIYtyf2WwmFAot/ty3RVdAru9aKCcwm80UFBQwOTmZWOet0ZflllcTq/3MCwwODpKRkbEoyCGKYiJ1aDAYKC4uTuyPVGel73Oj3/WaI2//9m//xuDgIC+88AIvvvgi//Vf/8V3v/tdHA4Hx44d4/jx4xw+fHjL28bb29spKipaEqpdcMg6OjqWzbHH43G6urp49atfveS1uro6zp8/j9/vx2q10t7eDkBtbe2i99XU1CCKIm1tbTzyyCPL2jc+Ps7ExETi756eHgDm+vuZuSUVbTAYsFqtxONxZmdnl6xnIYU7Nze3ZL6c1WrFYDAQDoeXhF/1ej02m01Wd19mzE9GRgaiKOLz+ZaMPjGbzYm7Iv9tSuo6nS7RNTUzM7NkvXa7HZ1ORyAQwOfz4fP5mJ2dZWZmBpPJhNlsJhqN4vPdon/W2Ijwmc/gePJJcDrx/v7vI/3u70J2Nsy/z2azodfrCQaXDsU2Go1YLBZisRhzc3Pr2oehUIjgbSr5C/vwTt+Nw+FAEIQl+zAYDKLT6cjJySEyXw+0ZB/OH7S3vwaQYbUiiiL+YHDJ2CWT0YjZaCQai+G77TtfqCMC8Pp8S5xnm8WCXqcjGA4Tum3qg9FgwGIyyfvwtvUKgpDosJz1+xcVbANYzWYMej2haIS5QHDRZzLo9YkC9dllVPkdNpu8DwMBord9NxaTrCcWjkQI3Pad63U6bBZLYnrB7ay0D81GYyLCc/tkhLvtQ7vFgk6nw2o2U1FYyPnmJuJxiSpXEeWFhVjN5mW/m7vtw5W+m7vtw4VasrlAYOnve/672cg+XO67yc3Lx2w0EIlGCYbD6ESRlu5uCtxuxmdmMBuN2CyWRb+F6LyTW5zrobKoiEAolBAuDkUiGHQ6LGYzRr2egfExdIK4aPlb9+Fm/r5Xsw8t81NTgsHgovOE0Wikv7+fwsJC2tvbiUajRKPRxLnR4XAQCoWIRqPEYjGi0ShdXV0UFhYSDofJz8/n+eefJy8vD5PJxPXr18nOzmZubm7F8+zC+dvv9xO5Tfz5judZ5n/f846U1+tdug+XOc/29PQwMjLCvffei8ViwW6309TURFFREcPDw4nPtsDs7Gzi993U1ERhYSGRSCRxnp2ZmcFgMCCKIvF4nJs3b+J2u9d8ngXZITIajRu6Bi63D81m87oib/n5+bz44ouJ8Yjd3d2JCOtKr62GdVWNFxQU8Ja3vIW3vOUtzMzM8NJLL3Hq1CmeffZZnnrqKUwmEwcOHOC+++7j2LFjWzJKY2JiYtkCwoXnxsfHl13O6/USDofvumxJSQkTExPodLqE4OoCBoMBh8OxyDm7ne9///t87WtfW/L85Te8gcGjR+H1r4eCAgoLC9m/fz+BQICTJ08uef9jjz0GQGNjI1NTU4te27dvH0VFRQwODnLt2rVFr7ndbo4ePUosFlt2vY8++ihGo3HZKOXOnTspLy9nbGyMixcvLnrN6XRy4sQJAE6dOrXkIvTAAw+QkZFBW1sbXV1d3Lhxg1AoRFZWFpWVldTV1cm/oRdflKNq3/seXL2KOS+Ph//xH+G3fouzL71E8MaNRes9duwY2dnZ3Lx5k46OjkWvlZSUsGfPnkRdya2IoshrXvMa4OVI6q0cOHCAgoICBgYGuHHbNj0eD4cPHyYajS67D1/1qleh1+u5du0aY2NjiecHBwcxm8385m/+JiNjY1y4TSMpMyMj0aH40jL6SSf27cNmsdDW28vQbb/jyuIiqopLmJ6dTQw5X8BqMXP/vv0AnGtqWnJCOtrQgCsjg5uDA3QPLp4aUJKXx87ycubma7huRafT8ciRIwA0trUxd5sDsb+2Fk9WFiOTk7QMDJJzi82e7Gz219QQjkaX/ayPHj2KIAhc7+pkcmbxCXZXRQXFHg8jk5Nc7+xc9FqW08GRnbuQJGnZ9T548CBmo5GWnh5GbjtOq0pKqCwqYtLr5VJLy6LX7FYr9+3dC8CZ69eXXMiP7d6N026na2CAnqEh/P4Aw5OTWIxGHHYbbpeLWb+fM7cdjwaDgVfMN1Jdam3BH1jsNB6qrycnM5O+EVkb7lbyc3LYW11NIBRa9rO+6tgxAK51dDB928Vvd1UVhW43QxMTNN0i3QCQnZnJ4fp6YvH4suv9pUOHMIoizT3djE0uPvfUlpWxo6CAofFxGtvaCIZCXO1oJxqLkWGz8bZHHgXgm888g9NqJTMjg6GJcQbHx4nXS4xNT9M1MEA0FiU/O4ep2VkGx8cocLspzvWgE0VGvV5GbonImIxGHjp4EIALzc1LHLTDO3eS7XTSMzRE18DAoteKPB4aKirwL7MPBVHklfMF+Ffa2/DeJqy9t7oahyTR3d3Nj370I/Lz8xOOVUZGBj09PTQ1NXHp0iXKy8s5efIkN2/eJDMzk7e97W0MDQ3x1FNPMTMzgyRJuFwuwuEwdrudsrIysrKy+NKXvgTIjkppaSmzs7OJVONy556HHnoIm81GS0sLA7d91urqampqapiamuLMmTOLXrPZbDw0Pzrw9OnThG/bh/feey8ul4vOzs6E1MfAwACjo6Pk5eXR0NBAeXk5//7v/04kEkGn01FeXs6LL75IQUEBHo+HlpYWZmdnCQQCNDU1sXfvXnJycsjLy6O3t5eXXnqJgYEBBEFAkiTKy8s5duwY4XB42c/6mte8BkEQuHLlypJr7p49eygpKWF4eJgrV64sei07O5tjx44hSdKy63344Ycxm800NTUxdNsUldra2iXO29WrVxkZGSEUCnHmzBn0ej0PPfQQV65cwePxkJeXh9VqpaamJtGRmpOTkyihWem11SBIm5jvDIVCnD9/nlOnTnHmzBmmpqYQRZGdO3dy7733cvz48aQpUj/++OMUFxfzN3/zN4ueHxwc5PHHH+e9730vb37zm5csNzIywpve9CZ+7/d+j7e97W2LXvvRj37EJz/5Sf71X/+Vqqoq/vqv/5qf//znPPPMM0vW88Y3vpHq6mo+/vGPL2vfcpG3j370o/zDgQNU/vu/y3Vdv/zLGN7zHqyPPEJcELZd5O32E4PJZMIcDhP97nfx/cM/wI0bsHcvvP/9CK99LY75dMRq7wgXUFvk7ebNm/T19fHYY4/h6+xk6sZiJ2u7Rt66e3vQ6fU4HC83/GzXyFsgFOJaZye9Q0PsrqpiaHycwtxcKouKNBF5m/V6MRsNODNdS/bh3X7ft+7D20eGrfT7VjLy5jh4AJ9Ox1NPPcXBgwdxz4sur/ccAS9HjdZznt3KyFt7ezv9/f08+uijdzzPCoKQ0D27NfKW2IcrnGfvln1SKvL2V3/1V5w8eZIvf/nL667520w2Vc3UZDJx7733cu+99yJJEtevX0+kVz//+c/zhS98geeee24zN7lo27fvcCDhMNwpjbvw/GqWNZlMS34st753pVRxTk4OOTk5S563/97v4fzEJ+Ab34C//Vt49avB40F84xtxvvnNcPw4LFPsfKvA4+0YjcY7jvMQBGFR9+ztrNTSbjAYVlx2pdcsFsvL+fy5OfjhD+U6th//GH0ohPOVr5SHyT/wwJJCqZVEfc1mM+Y7yITodLoVbVppH5pMpjt+n6IormkfOhyOhDSKwWhcJJFwOyu9Zl1BDkWv0624rGOF79U8f4FcDt1d1nu78OqtlJXc+S5SFMUV17uSGKvRYLijXpogCOvehwa9ft37cHB8nInpaQ7t3ElpXh7hSIT2vj4cViu5WVnr3ocrfTd324crDbzfyD5c7rsZHhggqBPJyXGv+/dtMZmw3OGYU+r3fcd9KAgYDAZsNhtOp3PJ+WCt54hb2ch51rrCb0mv16+47GrPs3a7Hbvdnjif3+08u1IT32aeZ29lI9fAO+1Dpev6bydpUvSCINDQ0EBDQwPvec976O7u5sUXX0zW5sjOzl6UqlpgIdq1nOME8g/WaDQum/K8fdns7GxisRhTU1OLUqeRSASv17sq3ZdlMZvhne+E3/5tOHdOdmq++13453+G/Hx44xvhzW+GY8dARUrba8LnI/6DHzD5hS+QffYsQjAIhw/Dxz4mf741hItTjYV0gPxHin5/68Af8CMKAmazeguuN4P+0VHaenqoLC7CnZlJY1sbVcXF8hSGtjYO19eTtc0HmEtIquvGSzYLx7Saph9sFVr7rtXImp23v/7rv17xdUEQsNlsVFRUcOLEiYR3XFZWllShwcrKSi5fvrxEHLBpvg7oTm3HoihSXl5Oy221LgvLFhQUJDzxqqoqAFpaWrjnnnsS72tpaSEejydeXzeiCEePyo+//Vs4c+ZlR+4zn4HCQnjDG+DBB+X3qFhzj3gcWltlTbann4Yf/hAxEEBfWYn3Ax/A+du/DSqSmkkmOp0uMfpGS+e8nu5uTCYT5eUVSpuSNCRJon90lCKPh6riEmbm5hgaH2dHQQF7q6o439zExZYW7t2z545Rpe1ANBLFomKh7M3m1hsyrTkyhYWF6w9UpDApH3l76qmnVvU+QRD4zGc+wxNPPLElYy8eeOABvvWtb/H9738/ofMWDof58Y9/TH19faLTdGRkhGAwuKgw8P777+eLX/wiLS0tiU7S3t5eLl++zFve8pbE+/bv34/D4eB//ud/Fjlv//M//4PZbF703IYRRTnSduwY/P3fw0svyY7c974H//RP8nvKymQn7p575H/37gWlZAmmp+HsWdnhPH1a/v/0tOyt7NsHH/4w8Te8gRdaWti3bx/OW0ajbHdKSkooKSmR/9DQid5gMBCJLF9msF0QBIFDdXXLRl9EUWR/TS39o6Pb2nEDiEYj23aaxrKIIkajkfr6+hVTlduR26U+tELKO2+f/vSnV3w9Ho8zMzPD9evX+dGPfsRf/dVfUVhYmHTBvfr6eh588EG+9KUvMT09TWFhIU8//TTDw8M88cQTifd97GMfo7GxcVG3yetf/3p++MMf8sQTT/D444+j0+n4zne+g8vl4vHHH0+8z2Qy8du//dv8wz/8Ax/+8Ic5fPgwV65c4ac//SnvfOc7N3fg+q2IItx7r/z4p3+C/n7ZQVpwlL73PQiH5fTrgQNw8KCchiwqevmRn7/xge1+PwwMyNtfeLS3y3Y0N8vvycqSHckPfED+9/BhmN8vIiC0ti4pANYUGkqxyCKkSwvUtwNzgQCNbW13HZZu0OsT+mXj09M47XYMGz0OVUh2djZ2u4Yu6IKA0WikomL7RpXvxOjoKOFweNFsUi2Q8s7b3vm2+bvx4IMP8upXv5rf/d3f5dvf/jZ//ud/vtZNrZk/+7M/w+Px8JOf/IS5uTnKy8v55Cc/eVebrVYrn/70p/nsZz/L17/+9cRs0/e+971LZE5e//rXo9fr+fa3v82LL75Ibm4u733ve3nTm96UvA92O0VF8KY3yQ+AUAgaG1925p5+Gvr6ZGdrAVGU06xFRfJIKY9HjtLp9WAwyI94HCIRiEblf/1+GBx82VG7XTgxO1t2Eu+/H/70T2VnrapqxejS7UONtcDY2BjXrl3jxIkTCNtcaf9W5Mjb0kagVCcYDnO+qQm9TrfqQfOxWIwrHe3YzBYO1dUl0ujbheLiEqVN2FIEnY5gMMjU1BS5ubnb7vtcicHBQXw+n+act9s7ZpUmqbeAFRUVHD9+fIneSrIwmUy85z3v4T3vec8d3/NPCynH28jNzeUjH/nIqrbz2GOPJfTWVIHJBEeOyI/3v19+TpLktOWtUbJbHx0dsoN2q7MmCC87cgaDHMkrKID77lscxSsqkuvv1qH8vWfPHs2F3Bfa2kOhEGYNpZaMRuO2u6hFotGEnt6h+volUTST0UhlcdGSqQo6nY4DtXWcvXGdy+1tHKhZqhuVqsTiMQL+ADabFUEjDTmC0cjU2BgXLlzg0Ucf3Xa/85WIRqOa+rwgO25qyxglPX5fVFSU1C7TNHdAEMDlkh/zArBqIFXm920mC63woVBIU0XdOTlucnLcSpuxqVxuayMYDnNPQ8Oy8hNmo5GqO0ShMu129lfXcKGlhetdXTRsk5Sbb85HS2sLu3fvxmza/r9vQSci6PWEQiGEeckQLRGLxRLSR1pBjRmEpN8mhcNhzX3Rae7M0NDQspIu25lbnTdBA3MutzMVhYUcrKu7o/5XNBZjfHp6iYjtAm6Xi92VlUx5vUsEaVOVcFgWbzUatPHbXjiGF8YabZcI6mrRYuTtdoF5NZB05+3KlSsUFhYmezNpUoSuri76+/vv/sZthMFgQBAE2XnT6xF02kgtSVKcxsbLTEwsP5oulRgcG0OSJLKdTlwrpP19gQDnm5qWTAO4lUK3m3v37MFoMKiuCHo9BAIBTCaTZvTObnXe7iQEu53Jzs5eMiJyu6Mp5y0ej/PVr36VtrY27rvvvmRtJuXZDifvtaDT6VRXO5BsBEHg8OHDCbkarUTfBEFEmB83k8q09/Vypb2diWXGEq0XURSJRKO8ePXqknm1qYbfH8Bq0Y5cxsLxazKZNOfEgDznM5marWpEjc7bpov0xuNxvF4vLS0tTE9PU1RUtOxM0TQyasylJxO9Xq+5blOQG2IWEIxGuG0Q+XbFarHi9985CqV2eoblwfDVpaXk3NZ5vlH0Oh0ZVitXOjow6PWbvv6tQkLCZr/zqKLthjBf46aG+ZZKEAgEMBgMmiqHUuN1OmkivQaDgYcffpjf//3f15yI4VrQmiOj0+mWDJLXAkNDQ0SjUYqLizUTeQOwWi2MjqZmjePwxARNXV2UFeRTkYTSD0EQaKioIBSJcKm1lSM7d644Z1Ot1NbUKm3ClrJw/Mbjcc2kim/lueeeo7q6WlMad9si8nY3kV5BELDb7RQXF2uyHmCtqNGjTyZOp1OTv4uRkRHm5uZk501D3WlWq5VINEIkknoK/OPT0+Tn5FBbWrbqZURRxGoxr/qiLk9hqOHcjRtcaGnm/n370adQMbiEhIC2CvYXnLef/OQn1NbWskMjY/5ALvPRYrfptnDeVivSm2Z1aM15Ky8vV9oERTCZTExMTADaqXkDcDid7N69G70hdU72CxGVXRUVxOPxNXUTZlit3L9v/5q2p9fpOFhXx9TsbEo5bgAjw8OMjIywZ89epU3ZMgSDkVgsRjQaTbkbko0SiUSQJElzN+BqdN60F/NVGVpLm0qSRCgU0lyjhslkSqSLteS86UQdZpM5ZaIz/mCQk42NieaErUqLGQ0GPFlZAPSNjNxRakRteGdnE1I4WkEwGhLHstY+u1Y/dzgcVl2KXF3WaBCtOW/Dw8P89Kc/1VzE0WQyEYvFiMViCBrRw1pgYmKczs5Opc24K6FwmPPNTQgCd9Rxuxten4+fnT+P1+db1/LBcJiWnh4utrSobhzP7UhSnFnvLA6nU2lTthTRaNS0EwPa+9xqLPtIO28Ko0UnBtBc00JGRgYlJSVyGs6orpNAspEkiYnJCaJR9f7Wo7EYF1taiMZiHKqrXzLearVIkpRILa0Hs9HI/poapmZnudLRoeoI9dzcHLF4jEyNOW+Chp237OxsXvOa12iuCVGNwwbSzpvCqDGXnky06rw5HA727NmDwWBAXGdUJ1Vxzl/cvV6vwpbcmRtdXcwFAhyqq8eq8AizbKeTvVVVDE9M0NzdragtKzE358Og12PR0IVcMOgRDAZyc3N56KGHNFf7BXIpgdamSoTD4XTkLc1igkFt6H0toFXnDcDn8+H3+xHNZoQUKuDfKAaDEYvFwswmitxuNlXFxRysq8NhU4deWV52NjvLdzAXCKg2fZqfn8+uXQ0pU8+4GYjzvw9RFLHZbJpzYrq6urh06ZLSZmw5Pp8Ps8rmUqedN4VJdfX5taLX6zWr9Xb+/Hk6OjoAEG2pp+e1EZwOpyqdt57hYSLRKFazmSyHQ2lzFlHiyeNQXR2iKKp2KonaohHJRpzX4bt69Sq9vb0KW7P1eL1ezV2zQC4RsKgsY5J23hRGa5E3gIcffliTkiEOh4PZ2VkARA0p0gPkenKprKxS2oxFdA4M0NTVxejU1Kat02axcLShAdsmnegFQcAXCPDc5UuMTk5uyjo3g7GxMa5fv67aqGCy0NntSJLEwMCA5kpeQM6YaK3OD+TIm9rq/NLOm8Jo8S5Ga3frCzgcDrxeL5IkoUtBJf2NYDaZsavoM/ePjtLW00NFURGFbvemrVev0+HKyNhUvTar2UymPYPL7W1MqqRucHx8TK7fVJl8QrIRbTYCgQDRaBSHyiK1W0EoFNJknV868pZmCYFA6s59XC/t7e1cv35daTO2HIfDQTQaJRAIJNIvWmJubo7W1lYkSdlozejkJNc6OynyeKguKdnUdQfDYZq7bxLcxKiMIAjsq64m027nYksLswrf8AVDQWbn5sjJyVHUji1HkNOmC403WnXe1Fb7lWzi8Th+vz/tvKVZjBYjb+FwmLGx1Jx3uREcDgdms5lgMCgXPmur1hm9XseMd4bp6WlF7QiEw+S6XOxKQuo+FA7TPThEaJNTavIYrVosJhONbW2KSohMjI+jE3W4XC7FbFAC0WJB0Onwer0YjUbNOTEADQ0N5OfnK23GluL3+5EkSXXOm3Za3lRKMBjU3IBjq9WaOCC01K1lNpt5+OGHE3+LFgtxv3Yir2azBbvNztj4OC5X1pZvPxqLodfpKM3LozQvb8u3v1EMej0H6+oIhcOKHjczM16ysrM0dc6Cl5uM8vLyVFUCsJXkpeBxs1F884Lb6Zq3NEvQWvTNZrMRj8c12awBJKImWus4Bchx5zAzPUMksrXF3sFwmBcaG+kdGd7S7W42ZqMRp91OPB6nva9XkS7Uuvo6SoqLt3y7SrPQZORwOCgoKFDYmq1ndnaWzs5OzTWpzM3NAagu8pZ23lSAb52jdFKVhTsYrTmtINf7Pfvss4D2Ok4BsrOyEASYmJjYsm1GolHONzUBkKtAxC8ZzAUCdA0Ocrl9a1OokUgEAQGdTntJG53dTiwWo729XZO1yuPj47S0tGgqWwIvX5/TzluaJSx49lrBarWyd+9ebCoRRN1KzGYzPp+PaDSquY5TAJ1OT21tHR6PZ0u2F5sfexUMhzlUX485yZ1yRoOBkrw8jEnuqHbYbOyvrmFsaprrXV1J3dYCwWCAK1caVT0pI5ksNCu0tLRoUibE7/djtVo157zNzc1hNBrT47HSLEVrkTdRFCkuLtZkwe9Ch9rs7KwmO04B7HY7giBuSfqlc2CAGd8cB+vq1j1sfi1YTCZ2lpdj2QItLLfLxe7KSvpHRmjbAsHYwcFB9Ho9GRna+90Keh2ixYLX60UQBDIyMpQ2actRo9bZVuDz+VRZ45h23hRGr9drLvIGMDo6ysDAgNJmbDkZGRkIgoDX65W71zQ0JutWxsbGuHr1StIduPLCQg7V1ePaoottLBZjZm5uy2rRCt1uaspKk74fQ6EQExOT5OcXIAjau2ws3Gh5vV5sNpvmmjVAjrxpMVsyNzenys+tvV+gyrBarZp03oaGhujaonSPmhBFEfstWlE6DWpFAWQ4MohEooyPJ0cy5ubgIHOBAHqdbkvHXs0FArx09SpzW1gTVV5QSG1ZGQDhSCQp2xgaGkKv1+HeREHjVELndAIwMzOjSX03gJycHLKzs5U2Y8tJR97SLIvNZtNkDYnVatVcuniBQ4cOsXPnTgB0WdujgH6tmE1msrKyGBoa2nTR3p7hYVq6uxnbxLFXqcDEzAzPXrrIRBJmyAqCPIheixEnePk4zc7O1mSnKcCuXbs0p/EG6nXYtXkkqgiHw8GkimYWbhU2m41IJEIkSZECNXNr2kWvUecNoKCggHA4wsjo6Katc3higqauLsoK8tmhsYusKyMDV4aDiy0tzGxyNL+0tIy8PO1duAEEnZiIvNXV1WnSgQmHw8zNzSkqDq0EkiQxNTWlSkHqtPOmMA6HgymNRQiARMGvFqOOkiRx7tw5ent7EW02RLP2Bj2D3Hqf68klskmdexMzMzS2t5Ofk0NtadmmrDOVkKcw1GC3WLjQ0oxvE1K3c3OzjI6OIKGti/at6DIzEUSRiYkJzWYLBgYGeP755zXnvM3OzhKNRslS4U122nlTGIfDQSAQ0JxukN1up6CgAN0mDvBOFQRBIBqNMjIyAmg3dQpQWlJKcfHmzRfNne/AVErOQBAEdDqdYtvX63QcrKtDr9Nx4+bNDa1LQqK7u4fx8fFNsi41WTg+GxsbNVmnC/JNtt1u11zafCGwosbImzZb3VTEQi59ampKdSKAyUQQBA4cOKC0GYrhdrvp6OggHo+jc2URGRxS2iTFkJAYGx3FYrGQkbH22pJQOIzRYCDb6SR7Pr2lFA6bjUeOHFHUBqPBwKG6enQbvNCOjoziD/jZWV+PoLVBvLegz8rC5/Ph9/s127Dh9XpVWfeVbBact8zMTNWVN2nLjVYhtzpvWiMSiSg+pFwp3G430WiU6elp9FkuzQ2pv52JiQm6u7vX3LwQCoc5c+M6LT3dyTEsRbGazZiMRoLhME03b65ZSiQSidDf30+uOxebBse4LSCaTYg2G2NjYwiCQE5OjtImbTmSJDE7O6tJ521ycpKMjAwMSRbdXg9p501hTCYTZrNZk85bX18fL730kubqKACcTidGo5HR0VEEgwGdBkU/FxAQKC0rIxgMMTS8+tmj0fnpCdFYjFKVFNPP+v280NjIrEpGv/mDQXpHRrjS0bGm42xsfAxRFCguLkqidepnIWU6NjZGVlaW6lT2t4JQKITBYNCk8zY1NaXKejdIO2+qwOVyadJ5czgcxGIxTc44FQSBw4cPU1FRAWi77g3AarGSn5/PQP/AqnQP4/E4l1pbmQsEOFhbh1Ul0zri8Thzfr9qhndnORzsrapieHyc5u7uVS+Xn59PbW2dJmeY3opufhau2WzWrESI2Wzm4Ycf1mTKWK2dppB23lSBy+VSXT59K1i4k5tJgi5VKuByuRLheC1LhixQWFiA3W5jbOzu0iEDY2NMer0cqK3FqUIBTTWRl53NzopyeoaG6LzLVJNAICCPgELQVA3usgjIJQ1AQ0MDZfNCyFpDi5mRBdTsvGn7tkolZGVlcf36daXN2HKMRiMmkwmv16vJu9p4PM6VK1coKCggNzcXQa9Dim7NWCU1Iggi1dXViKvoQC72eHDa7ThUOLZGjZR48giFI1iMxju+Jx6P09HZgYDAzl07Nd2kAKDLyEAwGJidncVkMmFcYd9tZy5cuIDBYGDv3r1Km7KlhEIhfD6fap23dORNBbhcLmZmZrZsHqKacLlcmvzcIOtyzczMMDw8LEtMqPQksZXodHoEBGZnvcuOzro5OMjofJQ67bitjariYgrmU1/LacD19PYQCoWoqKjQvOMGiyVCtHhzvYDX69Wk47pQypSueUtzR1wuF5IkaTJ9eOuoKC3idrsZnZ8woNfg3MA7MTU1TXd3Nz7fy/VvA2NjtHR3M63iWcBWs5n9tbWqqcFbjv7RUU5dvcLU7GziuYmJCcbGxigtKU2nS+fRZ2cTDoeZnp7WZL0XyF3Hfr8fp8ISPEqgZo03SDtvqmDBs9di3RvINRVqKfDeanJzcwkGg7JkiNsNYjriAVBcXITVaqOtrZ1wOMTY1BRXOzoo8nioLtk8Ud/NxqDX48nKwqDirsSCnBycNjsXmpuZ9fuRkBgcGiQnO1uzTsrtiFYLOqeT4fnuZ63ul4VrklodmGQyOTmJ0WjEarUqbcqypJ03FeBwONDr9ZpUMo9Gozz99NMMDWlTpDYnJwez2UxfXx+CwYA+R5sXidsRBJGqqipEnciFy5e50NJMrsvFrvJypU1bkVA4TEd/P6FNGvmVDERR5EBtLRaTifNNTYTCEepqa9mxY4fSpqkGQ14eIMsZud1uzCqOpCaTqakpTCaTah2YZDIxMUF2drZi01LuRtp5UwGiKOJ2uxPjkrSEXq/HZDJpUioFZMmQ/fv3U1VVBYAhP09hi9SDwWCgpqYGo8FIjtPJ3qoq1Z5IFwiGw7T39hJUsfMGcoRwT2UFg4ODtHZ3o9cbEIT05QCQu0zz8ojH4xgMBkpUHOlNNtXV1Rw/flxpMxRhZGQEj8ejtBl3RL2xfY3h8Xg06byBdqVSFsi+pdZNl5WFYDIihdR98d8KguEwOp2eA/v3ISAQj8eRpHjaydgEotEI3V1dVOfnUVNSrLQ5qkLvciHOR9oOHz6ssDXKIooiNg02BsXjcUZHR9m1a5fSptyR9FlQJeTl5TE6OqrJ2q+srCy8Xq9mu04Benp6uHLlCoIgJFI2WiYSjXK+qYkrHe2Jzse2tlY6OjrXPEIrzWKi0Qitra1EozF2796N2Wxhem6Oq2ucwrBd0efnI0kSo6Ojmt4fXq+X06dPEwwGlTZly5mcnCQSiag68pZ23lSCx+MhGo1qMgKVlZWl2W7bW+nr6yMYDGreeYvNj70KhsPUlpYlns/Ly2dmZprWtjZisahyBqYwkhSnubmZcDhCTW0NZpMcYYpEIgyMjXG9q0thC5VF0OvQ5+QwMTHB2bNnNVvOAXLN10LRvtZYyIKlnbc0d2XhR6LF1Kndbufhhx9WrZ7OVlBQUIAgCAwMDCDabOgc2px1KkkSje3tzPjmOFhXh/0W2YrMzExqa2vx+3w0N7cQiUQUtHR5DHo9nuxs1XabCoJIYWEhdfV1WC0vF6G7XS52V1bSPzJCW2+vghYqiz43F0Gno6+vD5vNpulz0uTkJJmZmYii9tyEkZERMjIyVJ0y1t63olKsVisZGRmadN4EQdBsN9cCBoOBvLw8+vr6ANCrZND6VjPp9TI2Pc2+qmpcGUsdWLs9g7q6eqLRCNPT01tv4F2wms3sr6lRnc7b7KyXwUF5NFZWVnYi4nYrhW43NWWldPb30zMvkaE1DHl5RKNRhoaGKC7Wdi3g5OSkJiVCQP3NCpB23lSFx+NJ6AppjeHhYU6ePKnpGpPi4mJmZ2fxer0YPLma1HzLdjo5sXcvuStEPCwWCw0NDQntrVAotFXm3ZV4PE4wHFZV7erExAStra14Z2fvWi9YXlBIZXGxJufFilYLusxMhoaGiMViFBUVKW2SYgQCAYLBoGYjj2nnLc2a0HLHqcFgYGZmBq/Xq7QpiuF2u7nvvvtwOBya03zrGR6mo78fYFVRK51OTkvOzExz9epVhoaGkFDe8Z/1+3n2wgVm/X6lTSEej9Pd3U1nVycuVxY11dWr6tStKi4m024nHo/j9fm2wFJ1sFBrqtfrKSsr0/SkCaPRyKFDhxZ1wmuFBdH0tPOWZtV4PB5mZmY02d3jcrnQ6/WMjS2dZ6kVBEEgMzMz8bdWNN+GJyZo6uoivI4aNofDQX5+Hn39fbS1tqmyDk4phoeHGB8fY0fZDnle6RolVjr6+zlz/TozKh5HtmnMa7sB5Ofn09DQoLBByqLT6cjLy8NgMChtypazMK4w7bylWTV58ycPLUbfRFEkOzs7ceBolWg0ysmTJxkaGkKXlYVoNiltUlKZmJmhsb2dvJwc6srK1ry8IIgUFRVTU1OD3+/n+vXrBJYZuq4lgiH55i8vL5+dO3ete7RTeWEhdouFCy3Nyw6y307os7IQzWZGR0c1Hf2H+aahxkZV1pRuBcPDw+h0OnJycpQ2ZUXSzpuKyM7ORqfTadJ5AzltODU1RTSqXRkIvV6PKIr09PTImm/bWN191u/nYksLWQ4HeyorNzQ9welwsmvXLrKyszDPO7xa04MLh0O0t7dz/fp1IpEwoihuKPWn1+k4UFuLXqfjQkuzqkd+bRRDSQnxeJwrV65w8+ZNpc1RFK/XS19fn2Z1N0dGRnC73eh0OqVNWZG086YidDqdZsdkARQWFnLfffehV6nMwlZRXl7O2NgY09PTGAoKELapzpLFZKLYk8v+mppNkSMwGAyUlpQiCCKBQIArV64wNjamilq4ZCJJcQYHB7h67Ro+3xzlO3ZgMGzOb8ZkNHKorp5oLMbgNp29rMt0one56O/vJxgMUq7y+bnJZnR0FL1en+40VTlp501l5OXlMTg4qLQZimA0GnE4HEqboTj5+fnY7Xba29sRRBHjNhtfFI5E8AUC6HU66sp2oE/CHa5eryMjw8HN7ps0NzXh821N3ZbDZuPRo0dxbKE+VHdPD4ODg+R5PDTs3k1W1uYWmVvNZu7dvYcdBQWbul61YCwtRZIkOjo6yM/PJ2MZiRotMTY2RnZ2tib13WKxGCMjI4kSJjWjvW9H5RQXFzMyMkJ4G6coVmJ4eJgLFy4obYaiCIJAZWUlU1NTRCIROfpm2B7RyGgsxoXmZi61tiZVFsZgMFJRUUF9XR3xuMSNpiYmJpIfORIEAVEUN5QCXg2zs95EbVZBfgG7du2iqKgYnZicVI9pPvo7ODbGlfb2bSPpo3NkoM/OZnBwEJ/PR1VVldImKUo0GmVqaorc3FylTVGEkZERIpFISmj8pZ03lVFcXEw8HmdgYEBpUxRBkiSGhobwq0BqQUmKior4pV/6JQwGA4Jej2EbaE7F43EutbYyFwiwe4M1bqvFbs9g566dlJWVYbfLEZWp6amkFaX7AgHO3rielAJ/CYnJyQmamm7Q3NLC2Jjc3GMymTCbt0bWQhRFBsfGaOnp3pLtJRtjaSkgj+jbtWsXTqdTYYuURRAEGhoaUiJtmAz6+vrQ6/UpEXnbHrfzwOzsLF/4whc4efIkoVCIuro63vOe91BTU7PicvF4nJ/85Cc8//zztLe3Mzs7S35+Pg899BCPP/44JtPibr8TJ04su553vetd/Pqv//qGP4fb7cZkMtHX18eOHTs2vL5UIycnB0EQGB8fp2QbF+vfDUEQ0Ol0CdkYU1ERkb4+pGhqFhFLksTVjg4mvV4O1dVtqQisgECu++VIwtjoKNMzM9isVvLz83G5XGuW0bgT0ViMyRkv0U0u9g4GA7S2tREKhXA4HNTU1OB0bL2jkZedzc6Kcm50dmE0GKkoLNxyGzYL0WZDP9+Ja7FYNHm+vR2dTqfp825vby8FBQUpUXetfgtXQTwe54knnqCzs5PHH38cp9PJk08+yfvf/36+/OUvrxgCDQaDfOITn2Dnzp38yq/8Ci6Xixs3bvDVr36VS5cu8Y//+I9LIgQHDx7kla985aLnNivcLggCxcXFiTFJWsNgMOByuRgZGdH0SQRkh+fFF18kOzubvXv3YigsJNyTmnMnfcEgo1NT7KmsJFvh6EZ1dQ0z3hmGhobo6OxEr9Oxc+euJTdqShKLx5iZniYYClGQX4DJZMLpcJKb68ZqVXbeYoknj1A4TFtPDxajkYJ1SpEojbFMjrqdP3+e4uLilIi2JJuWlhYKCgo0W3vc19eXMhp/28J5e+6557h+/Tof+chHeOCBBwB46KGHeNvb3sZXv/pVPvzhD99xWYPBwD//8z8v+sIee+wx8vLy+MpXvsLFixc5ePDgomWKi4t55JFHkvJZFtZ/+vRpJEnaktSS2vB4PLS1tRGLxVTfrp1MBEFgx44dNDU1UV1djaW4mEh/P1Is9SQw7BYLD+zfj1Elop9OhxOnw0kgEGB6ejrhuLW1t2EwGMhyubBnZCSthmw5JCnO1NQUk5OTTM/MEI/HybDbyc/PRxBEytahg5csqopLEEWd4o74ehGtFvS5uYyOjjI8PJyOuiFLhLS3t5OVlaVJ521hwk8q1LvBNql5e/7558nKylqU0szMzOTBBx/k1KlTKxb/GwyGZT3t++67D4Cenp5llwuFQkmbqVhcXEwwGGR8m7bm342ioiIOHTqkyW6n2yktLcVgMNDZ2YlgNGJIsY6/gbExGtvaiMfjqnHcbsVisZCfnw/INWVWi5VZ7yytbW1cvHiRa9evJURvY7HopsmOSFIcv9/HyMgIwyPyPOO4JNHZ2UUoFKKwoJA9u/dQV1ePgDpv4CoKCzEZjYTC4ZSbwmAsKUEQBNrb23G5XKoXZN0KhoaGMBgMmt0XC9muVHHetkXkra2tjaqqqiUX+7q6On7wgx/Q19dHRUXFmtY5OTkJsGwB69NPP82TTz6JJEmUlpbyG7/xGzz88MMrrm98fJyJiYnE33dyCkHWOxMEgb6+vnWro6cyZrMZ8yrmW2oBnU5HeXl54jduLCkhPDAAcfV3+41NTXG1o4Oi3NyUcMQFBIqKiigqKiIYDDA3N8fcnA/jvGZaZ2cn3tlZTEYjRqMJo9GA2+3Gbs8gHA4RCASIRGOUeTyEQ0FmYlHikkQkHMZisZCR4WBubpaurpuEwyHikoQoCDicTvI8eehEnZweV6GTuxItPT2MTk1xT0MD9hSYByqaTejz8piYmGBycpLDhw8rbZIqGBoawuPxpMSxmgz6+vrIysrCtoUyPxthWzhvk5OT7NmzZ8nzC0N1JyYm1uy8ffOb38Rms3HkyJFFz+/atYsHH3yQ/Px8JiYm+N73vsdf/dVf4fP5eN3rXnfH9X3/+9/na1/72qq2bTKZ8Hg89PX1sX///jXZvV2YmZmhra2NAwcOaPZkskBZWRlzc3PE43FEqxVDfj6RAXVrAU7NznKprRW3K5NdKSh6ajZbMJst5OS8fPNUUFCAY26OcDgy76wFic43kExPT9N9yw3Z7OTLN2qiIMzrhzkwGIy4XJkYjSZsNhs2m3VRs0SqOW4A9Tt24PX5ON/UxD0NDZhVLiptKClFEEUGBgZwOBya7ay8lbm5OWZnZ6mtrVXaFMXo6+tLmagbqNB5i8fjqx4ubTQaEQSBUCiEcZkTxsJza01vfuMb3+DChQv80R/90RLBxs997nOL/n71q1/N7/zO7/ClL32JV73qVXcsen7ta1/L8ePHE3/39PTw0Y9+9I42FBcX09XVtSa7txOiKDI8PMzY2JjmT64Gg4F9+/Yl/jaWlREdGVFt52kwHOZiSwtOm519VdXbpm7Tbs9IyI3cTk6OG5fLRTAUZmRqEo8rC7NJPj/p9PpE6tNkMlFcvL0acQx6PYfq6zl97Rrnm5o4umsXBpV264lWC4YCOU3e0NCQtNKXVMNgMFBbW6vJTA9AOBxmeHg4pYIlqjvCrly5wvvf//5Vvfcb3/gGpaWlmEymZevaFp5bSxfZz3/+c/7lX/6F17zmNStG0hYwGAz86q/+Kn/3d39Ha2sru3fvXvZ9OTk5a6olKCkp4fz58/j9fqxW66qX2y5kZGRgt9sTofw0soCx1+uluroaY1kZoY5OpU1aFpPBwI6CAko8Hs00nIiiiCga8YfCtPf143ZlbdqIqlTAbDRyqL6eszeuM+X1kpuVpbRJy2KqrkYQRbxeLw6HI12eMY/JZNK0QPHAwADxeDylFA5U57yVlJTwoQ99aFXvXUiLZmVlLaonW2DhuYX33Y3z58/z8Y9/nHvuuYcPfOADq7SYhBr1Zgp/LoRv+/r67qpVt13Jz8+nu7tbThdqPHUK4Pf7aW1txePx4CguJjI0TNznU9qsBJFoFK/PR7bTmdL6X2nWh91i4f59+xPjztTWLa93u9FnZdHf38/ly5d54IEHND8KCyAQCNDb20t5eXlKpu03g76+PkwmU0pFHlXnvGVnZ/OqV71qTctUVVVx9erVJRf55uZmzGbzqvLYTU1N/MVf/AU1NTX85V/+5ZpE+hZmkWZmZq7J7pVwOp1kZGRo3nlrb29nYmIipQ6qZLFjxw76+vq4du0ax48fx1RdReByo9JmAfJMwIstLfiCAR7Yt18zEbc0i1lw3Fp7eghHozSssdY4WQh6HabqKiKRCE1NTRQUFKQdt3kGBwfp6OhYc134dmKh3k1NNxt3Y1uEM+6//34mJyc5efJk4rnp6WmeffZZjh07tqgebmBgYMnoqe7ubp544gny8vL45Cc/ecc06/T09JLn/H4///Vf/4XT6dxUJ0sQBEpKSuju7t60daYaTqeTgwcP4nK5lDZFFSyMrpmampLHuLhcGPKUTylLkkRjezszvjn219SmHbc02K1W+kdGaOtVh6i0sbQU0WSitbWVWCzGzp07lTZJNQwNDZGbm5sSUwWSQSwWo7e3N6VSpqDCyNt6eOCBB/iv//ovPvGJT9Dd3Z2YsBCPx3nHO96x6L1/+Id/CMB3vvMdQHa+/viP/5jZ2Vkef/xxTp8+vej9BQXy0GeA733ve5w6dYpjx47h8XiYmJjgxz/+MSMjI/z5n//5poecKyoq+MEPfkAgEMCSAi34yWBBgyuNTFZWFkVFRfT19VFSUoKxspLoxARSJKqYTTe6uhidmuJATQ0ujUcz9DodWU5HIgKlVQrdbkKRMK3dPRgNBsoUPI5Fmw1DcTFer5fu7m7q6urStW7z+Hw+pqamUqpQf7MZGBggFAqlXORxWzhvOp2OT33qU3zuc5/jv//7vwmFQtTW1vKhD33ort70zMwMo6PygOcvfvGLS15/5StfmXDeGhoauH79Oj/84Q/xer2YzWbq6up44oknOHDgwKZ/roqKCiRJ4ubNm9TX12/6+lOBeDzOlStXyM/PT4+vmWfXrl2J6JZoNMrNC+0ditgSjkQYn5mhoaJCtUXqW4nNYuHIzl1Km6EKygsKCYXDNN+8SYbVqtg0BlN1FYIoYrFYqK6uTk9TuIW+vj4MBoOmz62dnZ2LxLpThW3hvIHcnfjEE0/wxBNPrPi+hYjbAvn5+YvSrStx6NAhDh06tG4b14rT6SQnJ4eOjg7NOm+iKOLz+ejp6dH0CeZWFiK8C9pvGUVFRIaGiM9tbfOCJEkYDQbu27MnnSqdR5KkRKF+KtXPJIva0jKsZotiEVm9Jxe9y4UkSRgMBqqrqxWxQ63k5eVht9s1ffx2dnZSXl6eck1xqWWtBqmsrKSzsxNJUr+ifrIoLi5mbGyMYDCotCmqorGxkcbGRgDMW3xRGp6Y4PS1a0SiUU2f+G/H6/PxkzNn8KqoC1hJBEGgNC8PURSZmZvb0jFagl6HqbKSSCTCs88+m8iwpHmZzMxMioqKlDZDMQKBAAMDA1RWViptyppJO28qp6KigpmZmWWlULRCQUEBgiAsaTTROjt37mRmZobe3l50mZkY8rcmMjkxM0NjezsWs1nztV1pVk9LTw8XWprxb9FNmHHHDkSTiZaWFkKhkCaHra9Ee3s7Q0NDSpuhKF1dXUiSRHkKToFJO28qp7S0FJ1OR2enOgVZtwKDwUB+fn5icHAaGZfLRUlJCc3NzYTDYUwVFQiG5FZCeH0+Lra04MrIYE9lZTo1mGbV7K2qQq/Tcb65idAyouqbiWi3YSgqYmZmhu7ubmpqatJNCrcQjUZpb29nbgsjoWqks7MTt9u97AxztZN23lSO0WikpKRE084bQE1NzZI5s2mgrq4OgJaWFgSjEVN18jQBo7EYF5qbsVnMHKitTbkakTTKYjIaOVRXL/+OWpqJxpI03k0UMM/XCF+9ehWHw5FuUriNwcFBYrFYSs3y3GwkSaKzszPlukwXSJ99U4CKigpu3rxJNKqcHITS2Gw2zcqlrITRaOTAgQOJQmyDJxdDYUFStqXX6agrK+NgbV06XZpmXVjNZg7V1ROJxpKWPjVVVqGz24lGo4iiSENDQzpCfBt9fX243W5NRyMnJiaYmZlJO29pkkflfNGt1tOGY2NjPP/888TjcaVNURULJ+FwOEwwGMRUVYVot23a+qOxGANjYwDk5+RgMmpnZudaybBaefDgQTI0OI94tThsNu7ftw+HzUY8Ht/UZiy9242xSB7NZjAYOH78OFlpCZtF+Hw+JicnNR11AzllqtPpKCsrU9qUdZF23lIAj8eDzWbTfOrUarXi9XoT48jSLObcuXNcunQJBAHLzp0Iuo0f3vF4nEutrdzo6iKY5Dql7YAoipiNxnRK+S4IgoAkSVxsbaWlp3tT1ilazJhra4hEIrz00kubOmt6O2GxWNi/f7/mpZc6OjooLS1N2Xmu6TNMCiAIAhUVFZp33mw2G263m66uLqVNUSX19fVMTk7S1taGaLNh2uC4NkmSuNbZyaTXy4HaWszpiNtd8QeDXGpt3bKOylRGEARyXS66B4fo3GgnuShg3rkTwWCgsbERr9ebshflZCOKIoWFhZqW+IlGo3R3d6dsyhTSzlvKUFFRwdDQkOa7g3bs2MHMzAxTU1NKm6I6srKyqKmpoa2tjfHxcQx5eRuSD2nt6WFwbIw9lZWKqeOnGpFolJGJCSIark9dC6V5eVQWF9HW00P/BnTYTOXl6BwObt68yfDwMHv37k3XyC5Db28vFy9e1LRuKMg1f5FIJO28pUk+lfOyDK2trUqboii5ubnYbDbN6xPdicrKSnJycrh8+TLxeBxTdTXiOuqv4vE4Mz4fdTt2kJ+TkwRL06SRqSouocjj4VpnJ7N+/5qX1+dkYywpYWZmhqamJsrLyzWfErwTXV1dxONxzTdwtLS04HA48Hg8SpuybrbNeKztjs1mo7S0lObm5qTMUU0VBEHg+PHjmEwmpU1RJYIgsH//fnw+X6LuyrxrJ/4LFyC+urvtWCyGTqfjcH295k/yabaGXeXl5Dida270EExGzLW1gPy7dbvdCfmcNIsZHx9ndnY2Matbq0iSRHNzM3V1dSl9fktH3lKI+vp6urq6CAQCSpuiKAuOWzhdQL8sJpOJrKwsJElicnISnd2OuapqVcuOTU3x/OXL+AKBlD6xpUktBEFIRHiHxseZW805TkBuzDEakSSJrKwsDh8+nG4WuQM3b94kIyODHI1H0gcGBvB6vSk/Lzz9K08hamtricfjtLW1KW2K4nR2dvLcc8+lZUNWoK+vj5deeonJyUkMhYXoc3NXfP/03ByX2lpx2G1YNaz/tBHMRiNVJSXp5o51Eo/H6RwY4HxT0127m007dqDLzKS3t5ezZ8+mzwUrEIlEGB0dTYsVA01NTdhstpSXSkk7bymEw+GguLiY5uZmpU1RHI/HQygUSsuGrEBxcTEul4tLly4RiUQw19bcUf9tLhDgQnMzTpudfVXV6ajbOjEZjVQWFaW18NaJKIocnE97nm9qumPjh97txlBayuzsLNevX8dqtaYjbitgMBh4xSteoekh9PByyrR2G0yISW3rNUhdXR0dHR2aTxna7Xbcbjc3b95U2hTVslD/Fo1GZf03nQ7Lnj2I5sX1gpIkcbm1FZPBwIHaWk1LCGyUSDTKyORkutt0A5iNRg7V1xMMh7nY0kLstjFaOqcDc30d0WiUCxcuYLVa2blzp0LWqp94PC43L5lMmj+2h4eHmZqaSvmUKaSdt5Sjrq4uMVRY65SXlzM9Pc3ExITSpqgWi8XCgQMHGBsbY3BwENFkwrx7z6IB9oIg0FBZycG6Ogz6dA/TRvAHg1xqaUnrvG0Qu8XCwbo6JElaNANVtFqwNDSAKHLhwgVCoRAHDx7UvFOyEj09Pfz85z/X9HjFBZqbm7FYLCk7VeFW0s5biuFyucjPz6epqUlpUxQnNzeX7OxszTdw3A232819991HYaE8Nkhnt2HetYs4Eh39/cTjcTLtdizpDt40KsKVkcE9DQ2YjEYi0SiCwYBl924EoxFBEPB4PBw+fBi73a60qaolHo/T0dFBTk4O+vSNGU1NTdTU1GwLZz/tvKUg9fX1tLe3E4lElDZFcY4dO6b5Oo7V4JwX2R0aGmJgYABdZiZN4TCdA/2r6+xLk0YhYrEYp29cp9diRpwfkQdy5D09t3Rl+vv7CQaDVK2y23w7MzY2xvj4+LaRkkk7bylIXV0d4XBY8+OyFohEIvT39yttRkowMjJCY2MjL7zwAhPRKEcefRSHbfOG2KdJs9noDHoq7r2XzqEhXnzxRZ5//vn0hJVVIEkS7e3t5Ofnp6OTyFE3o9GY0lMVbiXtvKUgOTk55ObmprtO5xkZGeHy5cvMzMwobYrq2b17N3Nzc/ziF79gx44dFO/fj7GsVGmztg2iKGJPdz5uHgKY6+qoPXQIh8PBT37yE2w2Gy6XS2nLVE8wGMRoNFJdXa20KaqgubmZ6urqbZM+Tp9hUpS6ujpaW1uXdGJpkcLCQqxWa7qJYxWIokh1dTXV1dUMDAzg8/kwlZdjKCpU2rRtQYbVyn179655UkCa5TFXV2PweBLTAaqrqwkEAoRCIaVNUz0Wi4X77rsPh8OhtCmKMzk5yfDw8LboMl0g7bylKPX19QSDwXTqFLlbsrKykqGhIebm5pQ2R7Us1Eju27ePN77xjbhcrkThrrm6GkNe6s75S7P9MFWUY5hvsmlvbycnJ4fHH3+ce+65Jz0e7y5MTk6mU8u3cOPGDQwGA5WVlUqbsmmknbcUxePxkJeXR2Njo9KmqILi4mLMZnM6+nYHJiYm+NnPfsbk5CQARqORQ4cOYTabCYfDhMNhTHV1d53CkGZlvD4fPz17Fq/Pp7QpKY2xrAxj6cvp/EOHDnHo0CH0en2iSaG9vR3/OgbZa4Hr16/T0tKitBmqQJIkGhsbqaurw7iNxLPTzlsKs3fvXlpbW9MnMOR0YENDA6Wl6fqt2/F6vZw/f57MzEwyMzOXvH7x4kXOnDlDNBrFvLM+Ee1Is3YkSSIWiyFJktKmpCYCmKqrMJXvwO/3c+rUKXw+H3q9fpG8QyQSoa+vjzNnzqRTqLcxMjLCzMxMusN0nv7+fiYmJti7d6/SpmwqaecthWloaECSJK5fv660KaogLy8vLR1wG36/n7Nnz2K1Wjl06NCyhfQ7d+7E7/dz+vRpwuEw5ppqjDvKtt7Y+4TYZAAAb/RJREFUNNpGFDDX78RYVITX6+XFF18kHA4vW2BuMBg4evQo0WiUs2fPpgVo55EkiZaWFrKysjQ/gH6BxsZGnE7ntpvrmnbeUhibzUZ1dXU6dXoLwWCQU6dOpTtP57l69So6nY4jR47cscvK4XBw7NgxQqFQItJh2rEDc001pEecptkCBL08us3gyWVycpKXXnoJo9HI8ePH71jfZrVaOXr0KD6fjwsXLqQH0wMDAwN4vd5tVZi/ESKRCDdu3GDPnj3bbl5z2nlLcfbu3cvg4CCjo6NKm6IKTCYTkUgkLaMyz969ezl69OhdC7wdDgfHjx9HFMWE42soLMSyaxeI2+ukl0ZdCEYjln370LtcRCIRzp07h9PpXNFxW8DhcHD48OFtVcu0ETweD3v37k1LqczT2tpKMBjcdilTSDtvKU9VVRVWqzUdfZtHEATq6uoYGxtjbGxMaXMUIR6P09TURCgUwmw2Y12lbIXVauX++++noKAAgLm5OfRuN9a9exfNQk1zZ+wWC8d278ZusShtSkogWi1Y9+9Dl5EByOnQI0eOrBgpvp3s7Gz279+PKIoENTxTVpIkDAYDxcXFSpuiGhobGykpKdmW5TRp5y3F0el0NDQ0cPXq1XTaYJ6F2rempibNFY5LksSVK1e4efPmumRTFmriBgYGeP755xkcHESXmYll3z4EUzq6cTd0Oh1Ou31bzE5MNroMO5b9+xGtVtra2rhy5Qogz29ej8hxMBjk2WefpaOjY7NNVT2RSIRf/OIXmr1hXQ6v10tnZ+e2jLpB2nnbFuzdu5e5uTlNnrTuRF1dHcFgUHOduM3NzfT397Nv3z6ys7PXvZ78/HwKCgq4ePEiN2/eRGe3Yz1wADEtPrsigVCIG11dBNIdkCuic83fEBgMXLt2jdbW1lVHiO+E2WymvLyc5uZm+vr6NsnS1KCjo4NQKETGfAQzjVzvq9frt239X9p52wbk5eXh8XjSqdNbyMrK4hWveAU2Dc3t7OzspLOzk127diVSn+tFFEX27t1LeXl5QjNKNJvlFJczrdh+J8KRCL3Dw4TnBZHTLEWfm4tlzx4kUeTixYv09PSwZ8+eTZG2qKmpoaSkhCtXrmimDjgQCNDV1UV5eTlms1lpc1TBrdpu23WfpJ23bYAgCAnNt0AgoLQ5qkGn0xEKhRgfH1falC3BaDRSVVW1aS3xgiCwc+dO6uvrmZ6eJh6PJ4rLjcVFm7KNNBpCFDBVV2HZtRNBFOnu7mZkZISDBw9SUlKyaZvZvXs3Ho+HK1euaKKUpK2tDb1ev62mB2yUgYEBxsfHt23KFNLO27Zh9+7dac23ZWhra+PChQuEw2GlTUkaCw57cXExtbW1m77+iooKjhw5giiKTE9PE4lGMVVVYdndgGAwbPr20mw/RKsF64EDGIuKEppsO3bs4L777iMvL29TtyUIAvv37+fYsWPrqp1LJSRJwu/3b6uB65vBgrZbWVmZ0qYkje39y9YQNpuNqqoqLl26pLki/ZWorq4G2LbSIdPT0zz77LNJr/ERBCGRinj++eeZnJxEn5OD9fAhdJnOpG47TWqj9+RiPXgQXUYG/f39/OxnP2N6ehpBEJI2NF2n02Gz2YjFYly5cmXbdqEKgsA999yzrZ2UtRIOh7l+/Tq7d+/e1s779v1kGuTgwYMMDQ3R39+vtCmqwWQyUVtbS29v77Yb1Ozz+Th79iwOh2PDNW6rQRAEjh49itVq5aWXXqKtre3lNGpZWVrQFzAZjZQV5GNK644h6ETMdbVYdu4kLgg0NjZy+fJlPB4Pdrt9S2yIRCKMjY1x5swZItusDnF4eDhRErLdBGg3wrVr1wiFQhw4cEBpU5JK2nnbRlRWVpKVlcW5c+eUNkVVlJaW4nQ6t1VKORgMcvr0aYxGI4cPH94yaQqz2cyxY8eoqqqitbWVq1evIggCpvIdWPbu1byciNlopK5sB2aNO2+i3Yb14EEM+fnMzc1x8uRJBgcH2bt3L/v27duyFJ/ZbObo0aMEg0HOnTtHLBbbku0mm0gkwpUrV+jt7VXaFFUhSRJnz56lpqZm2TnO24m087aNEASBw4cPc+PGDWZnZ5U2RzUsNHTs2bNHaVM2jba2NiRJ4ujRo1uuLi8IAjU1NYvSNfF4HL3Lhe3QIfTZ208Qc7VEYzGmZmeJbhMnYT0YCguwHjyION/pbTAYsFgsnDhxQhEBWbvdzpEjR5iZmdk2ZSUtLS3E43F27typtCmqoru7m9HRUY4cOaK0KUkn7bxtM/bu3Yter+fChQtKm6IqHA4HDoeDeDy+LYZY79q1i+PHj2NRUMk/JycHp9NJPB7npZdekkWR9Xose/ZgqqzQ5FgtXyDAmWvX8Gmw61sw6DHv2om5poZoLMbVq1cJhUKYTCaOHj26ZanS5XC5XBw8eBCn05nyKcbp6Wm6u7upqam56/gwrXHu3Dlyc3M1UQOYdt62GWazmb1793LhwoVt4aRsNmfOnEnZ9KkkSVy9ehWv14soihsWNd0sBEEgPz+frq4uXnrpJfx+P8aSErlIPd3MoAn0nlyshw9jyM1lamoqkSZdz5SPZJGbm5toYErlzER7ezsOh2PTJIG2C9PT07S0tHD48OGUd9BXQ9p524YcPnwYn89HU1OT0qaojsLCQvr6+picnFTalDVz7do1ent7VaflJwgCFRUVHD9+nFAoxMmTJxkeHpanMuzfj3lnveZr4bYrot2GZd9eLDt3IhiNdHR08OKLL2IymThx4sSGpnwki5mZGZ577jm6u7uVNmVd7Nu3j4MHD2rCQVkL58+fx2QysXv3bqVN2RLSzts2JCcnh4qKCs6ePau0KaqjpKSEzMxMrl27llICnm1tbfT09CQESNWIy+XixIkTuN3uRbp6Bo8H25EjGEtLNJlK3Y4IBj2m6iqshw6hd7kAufu5tbWViooKjh07pprI8O04nU7Ky8u5du0aQ0NDSpuzakKhEH6/H71er6nJMashEolw6dIl9u/fv+U1wEqRdt62KUeOHGFgYCAtG3IbgiCwe/duZmdnU2YWbG9vL62trdTW1m6qEn0yMBgMHDhwIGHnlStXuHHjBlFJwlRRge3w4W3d0CAIAgaDYftGRQQwFOTLznhREcFgkBs3bhCPx7Hb7fzSL/0SdXV1qtfXqq+vp7CwkEuXLjExMaG0Oavi2rVrnD59els0XGw2165dIxgMcujQIaVN2TLUfYSlWTeVlZW4XK509G0ZnE4ndXV1ihZQr4WMjAyqqqo2ZfbjVmOz2ejp6UkICQsWC5Y9e7DsbkC0KtdskSwcNhuvOHQIxzaMjOicDqwHDmCurUXS62lvb+fZZ59lYGAAn88HkDJzJBc60LOzs1NCwHtgYIChoSHq6uq2743BOlmQB6mursY1HwXWAul5GtsUURQ5fPgwP/vZz3jkkUfIyMhQ2iRVUVFRkfi/JEmqPCHOzs5is9lwuVwpe1KqrKykqKiIpqYmGhsb6e3t5dixY+hzctBlZRHp7SXc04MUS50UttYQjEZMFeUY8vMBGBsb4+rVqwQCAcrLy1N2NJMoihw8eFD1kaxQKMS1a9coKCjYEjHuVKOnp4eRkREeffRRpU3ZUtKRt23Mvn37EEWRixcvKm2Karl06RJtbW1Km7EEr9fLiy++SHt7u9KmbBiz2ZyYNZmfn48gCMTjcSLRKMayMqxHj2IsLkLQpf7paNbv5/nLl5j1+5U2ZcMIRiOm8h3YjhxOOG4g1xfZbDYeeOAB6uvrU9JxW0Cv12MwGAgEApw7d06VM5Bv3LiBKIo0NDQobYoqOXv2LG63W3Pdt6l/tkxzR9KyIXfHbrfT3t7OzMyM0qYkCAQCnD17FovFsihCmOpkZ2dTXl4OyGKav/jFL7h586bsJFRVYTt2DFP5DoQULjiOx+P4A8GUaoa5HdFqwVxTje3YPRjLyogJAs3NzVy6dAmAgoICxXXbNhtJkpienubs2bOqO1fW1NRoqhB/LSzIgxw5ckSV2ZNkknbetjlHjx7F5/Nx+fJlpU1RJZWVlWRkZNDY2KiKC244HObMmTOIosjRo0dTOqqxEkVFRRQUFHD9+nV+/vOf09XVRUwQMJaVYTt2D+baGkSVdituV3SZTiwNu7AeOYKhsJBwJEJLSws/+9nP6Orqwm63qz7FuF6sVitHjhxhbm6OCxcuqOZcEIvFsNls5OTkKG2OKjl16hRWq1Uz8iC3knbetjnZ2dns2rWLU6dObZu5fpuJKIrs27eP2dlZVaRP+/v7iUQiHD16dFurpxuNRnbv3s39999PdnY2TU1NLw/ZFkUMBQXYjh7B0rArLfSbZPTuHKz792Hdvx+9240gCMRiMZ599lm6urooLi7moYceorq6eltHN5xOJ4cOHWJiYoIrV64obQ6NjY2cOXNGaTNUy+zsLJcvX+aee+7RZFRye97Wp1nEfffdx+c+9zmuXr3Kvn37lDZHdTgcDmpqalRxt11eXk5BQUHKdO1tFIfDwb59+6itrU185vPnz2M0GqmoqMDudqN3u4nNzBDu7SU6Pg7bM/iztYgChrw8jMXFiRmkk5OTdHd3s3v3bvR6PQcOHCAzMxODwaCwsVtHTk4O+/fvV9xJ7evrY2RkRFPSF2vlpZdewmAwaHYfpZ03DZCbm0ttbS2nTp1iz549qtdgUgIlZTgWxl653W5NOW63cuuMVpfLRVdXF729veTl5VFRUUFWVhaWhgbifj+RkRGio2PE5+Up1ITNYuFQfT02BWfOroTO6UCfm4ve40E0GpEkieHhYTo7O5mcnMRutxMIBMjIyMDtdittriLk39KcMTk5SVbW1uoSzs3Nce3aNYqKisjLy9vSbacKPp+PCxcucOzYsW2doViJ9FVcI5w4cYKJiYn0yKy7cPPmzURh9lbR3NxMb2/vtq0nWiuVlZW84hWvYM+ePczNzXHmzBkikQgAotWKaYfcAWk9fBhjWZmqauP0Oh05mZnodTqlTUmgczowVVViO3YP1gMH5GjbfJqpsbGR8+fPA3Do0CEeeOCBtKzQPMPDw7z44otbKnQuSRIXL17EYrGku0tX4MyZMwiCwJEjR5Q2RTHSkTeNUFBQQGVlJSdPnmTnzp2KpwXUitlsZmBggOzsbEpLS5O+va6uLjo7O9m1axeFhYVJ316qIIoiJSUlFBcXMzc3h8FgIBqNcvLkSXJzcykoKMDlcmEq34GpfAexuTmio6NER0eJ+5Wb/RoMh+kbGabYk4dZwTocnSNDjrDl5iLOR3Lj8Tijo6MMDg5SWFiI2+2mrKyMsrKylNURTCZ5eXmUlJTQ2NiI0WgkNzc36dsUBIG6ujrMZvO2bVbaKMFgkHPnznHo0CHVjmDbCtK/Dg1x4sQJvvKVryRGLaVZSn5+PmVlZVy/fh2Xy4XD4UjatgYHB7lx4waVlZWa0yhaLYIgJCJB8Xgcj8fD4OAgN2/exGw2U1hYSH19PTq7HZ3djqm8XFFHLhQO09HXT64ra8udN12G/WWH7Za07dTUFL29vQwNDRGJRLDb7Yl0XNppW5ndu3cTDoe5cOEC99xzT1L3l8/nw2azbYmTmMqcO3eOWCzGPffco7QpipJ23jRESUkJpaWlnDx5kpqamnT07Q7s3LmTyclJLl68yH333Ze0O+CsrCxqamqorq5Oyvq3G0ajkZ07d1JfX8/U1BSDg4MEg0FATje1trbi8XhwuVwJRy4eCBDzeonNzBD3eonNzUE89dPTgk5EzHCgczrQORyITmciFSpJEmNjY1itVmw2GxMTE0xMTFBWVkZBQUFSb0i2G4IgsH//fs6cOUNPT0/SnDe/38/Jkyeprq7eVtqOm004HOb06dPs379/W+kMroe086YxTpw4wTe+8Q26urrSJ4k7IIoiBw4coLW1NSl1aF6vF7PZjNlsTjtu60AQBLKyshYVkvv9fnp7e2lvb8disSRGCWVmZiJaLBg8HgCkeFx24rxeYjNeYt4ZpJD6VPVvR7RaZCfN4UTndCDa7YtuvmKxGGNjYwwNDTE0NEQ4HKa2tpaqqirKy8uprKxU0PrURqfTceTIEXRJqmOMx+NcvHgRo9FISUlJUraxXbhw4QLhcJjjx48rbYribBvnbXZ2li984QucPHmSUChEXV0d73nPe6ipqbnrsh//+Md5+umnlzxfUlLCv//7vy96Lh6P861vfYsnn3ySyclJioqK+PVf/3Ve8YpXbNpnSSbl5eUUFhZy8uTJtPO2Ana7nQMHDgCbO/vU5/Nx+vRpcnNz07Itm4jNZuPhhx9mcnKSwcFB+vr6GB0d5YEHHgCgtbUVp9NJZmYm5sxMdJmZiWXjwSCxGS/xWS/xQBApHCIeDCKFw1srSyIKiCYTwvxDtMgOm87hWDJ1wu/3MzU1hcvlwmq10t7eTnt7O1arlZKSEgoKCnA6ZX28dHf5xlmIvk9OTtLc3Mzhw4c3TUKlubkZr9fL8ePHNSXLslYikQgvvfQSe/bsSfy2tcy2cN7i8ThPPPEEnZ2dPP744zidTp588kne//738+Uvf5ni4uK7rsNoNPInf/Ini56zzesf3cqXv/xl/uM//oPHHnssIb/xkY98BEEQ+KVf+qVN+0zJQhAETpw4wTe/+U16enq2pCg/lfF6vZw/f55Dhw5tON0UDAY5c+ZMIv2XZnMRBIHs7OyEMHUgINe7RSIRent7EylWi8VCVlZWQs9MNJvlon7P4lojSZKQwmGkYJB4MIQUDsn/D4Xl/4dCSPG47OBJcZAkjCYj+blujCYjgkEPCCAICKIAoohgNCGYjIhms+ygLThrZnMi7Xknent7GRkZYWpqilAoBMDevXsXOWzplGhyMRqNzM7Ocu7cOY4ePbrhaNzk5CRdXV3s3LmTzFtuKNIs5fLly/h8Pu69916lTVEF28J5e+6557h+/Tof+chHEnfaDz30EG9729v46le/yoc//OG7rkOn0/HII4+s+J6xsTG+/e1v8/rXv54//MM/BOCXf/mXed/73sfnPvc5HnjggaSF1jeT6upqPB4Pzz77LL/5m7+Zrn1bAZvNhsFg4Ny5c5w4cWLdSt6RSISzZ88Sj8c5duyYJhXBtxJBEBKdaAaDgYcffphgMMjU1BSTk5PMzc0loikvvvgiICvsWywWzGYzbrcbo9GIYDKByYRulTf6dmAj5eYTExMEAoHEY2pqiiNHjmA2m/F6vUSjUUpKSnC5XLhcrsTvSMtdd1uJ3W7nyJEjnD59mkuXLnHw4MENnT9dLhf79+9Pd5rfhUgkwqlTp9i1a9eW6+6plW3hvD3//PNkZWVx4sSJxHOZmZk8+OCDPPPMM4TD4VVdLGOxGMFgcNmIG8hz1KLRKK9//esTzwmCwOte9zo+8pGPcOPGjZSYsbYQJfzP//xPOjo6FBWoVTs6nY5Dhw7xwgsvcOHCBY4ePbquNNTk5CTBYJBjx44tEqRNs3WYzWby8/MXibACFBYWMjExwfj4OIFAgGg0yvHjx8nKyqK5uZm+vj7MZnPCscvNzcXj8RCJRPB6vQiCgCiKCIKAIAhEIhF0Oh2CICBJEvF4HLPZjNVqJRAI0NfXRzAYJBD4/9u77+imzjR/4F8VSy6y3HsDY4MbtnG3caWXCQkTIDCQMsmEZGYnk7M7M8ny2+zsziSzmcmZZJazO8kkpJBOCIReQrexce+4YGPj3qtsy5Ys6f7+YKVBcUGuV+X5nMM5+OpKel5d3avnvnUUY2Nj4PF4mtoEdZ8egUAAc3Nz2NjYaFb+CAkJWfTPjExkZ2eHyMhI5Ofno7Kycla16HK5HBKJBI6OjpS46SAvLw/Dw8NIS0tjOxS9YRTJW01NDfz9/Sf8qAYGBuLMmTNobm5+aP+usbExbN68GWNjY7C2tsbatWvx4osvat3RqjtD/7CpMTAwUPP4VMlbT08Pent7NX83NjbOqIzzzd/fHz4+Prhy5QqWLVtG/WKmYWFhgaioKGRnZ6OysnJWP6IuLi5Ys2YN9WnRQ+q5ztQUCoXmfHB2dgaPx9MkWn19fTA3N4eLiwuGhoZw69YtrddSKBRobm6Gs7Oz1k2gr68vgoODIZPJ0NDQoEkG7e3ttfZT1+4aQg2+KXNxccGqVatmNaGxSqVCQUEBRkZGsGbNGjrWDzE6OoqbN28iKiqKat0eYBTJW19fH8LCwiZsd3BwAHC/KWK65M3BwQF79uzB8uXLwTAMcnNzcfLkSdTV1eHgwYOa5pXe3l7Y2dlNqCZXv496Ye3JnD59GocPH55p0RYMh8PB+vXr8eGHH6K8vHzSz4/8g729PcLDw2c8PL2srAwCgQABAQGUuBmIB6eGUfehm4yNjQ3WrFkDlUp1v38cw2BwcBBKpRLR0dGwtbXV1Mqpa/5tbW2n7Z5BtbKGQ11jplQq0dvbq/P8bBUVFejv70d8fDwlbjq4efMmVCoVUlJS2A5Fr+hd8qZSqTRL4TyMQCAAh8OBTCabtFlUvU3duXcqL7zwgtbfa9euhZeXFw4dOoT09HTNQASZTDbpD7Au77Nt2zat4c2NjY144403po1roXl6eiIoKAjXrl1DcHAwzej9EOqLtUqlwsjIyEPvumtqatDY2EiJsZHi8XiTdrEQCoWwtbWlEXEmoqmpCbdv30ZUVNSEJvkfamxsRENDA8LCwqgWSQeDg4PIy8tDYmLilN2ZTJXe/VqXlpbi5Zdf1mnfzz//HD4+PhAKhZDLJ87VpN42m4Vrd+3ahY8++ggFBQWa5E0oFE6aWOryPo6OjnB0dJxxHAttzZo1ePfdd5GXl4eEhAS2wzEIVVVVaGlpQVJS0pQdxRsbGzUrWdDcTYQYryVLlqC/vx9FRUWIi4ubsqZWpVKhvr4eS5cupWuCjq5fvw6hUEi/TZPQu+TN29sbBw4c0Glf9Ulib2+v1Z9MTb1tqpNpOkKhEGKxGBKJROv9iouLJ8z7pX4ffUzOHsbR0RERERG4efMmIiIiYP5/6yCSqfn7+6OjowP5+flYvXr1hBrLnp4elJeXY8mSJTQYhBAjx+FwEB4eDrlcjry8PKxevXrSKVu4XC4SExOpqVRHnZ2dKC0txZYtW2h0/iT0LnlzcHDA5s2bZ/Qcf39/lJWVQaVSaXW8r6qqgrm5uU7zvP2QVCrF4OCg1tw7fn5+OHv2LBobG7U6OFdWVmoeN0SpqakoLS1FZmamwUw2zCaBQICYmBhkZmaioKAAMTExWt87Ozs7BAUF0XqlJsjGxgaPPPII22GQRcblchEVFYVbt26hu7tbK3mTy+UoLy9HcHAw3RzPwJUrV2Bvb4+IiAi2Q9FLRjHEMCUlBX19fcjIyNBsGxgYwPXr1yfMqdXa2orW1lbN3zKZDFKpdMJrfvrpp2AYBrGxsZptiYmJ4PP5OHHihGYbwzA4deoUnJycDHYov0gkQkJCAnJycrRqGsnUrK2tER0djd7eXnR2dgK4v8qHRCIBj8eDr68vzZ9HiAnh8/lITEzUDI5jGAZKpRJ5eXno6emBUqlkOULDce/ePdTW1mLt2rVUUzkFvat5m43U1FQcO3YMb775JhoaGjQrLKhUKjz77LNa+6on1z169CiA+yNVn3vuOaxbt07TDyEvLw85OTmIjY3Vms3Z2dkZO3fuxNdffw2FQoHAwEDcvHkTZWVl+Pd//3eD/pIlJCSgoKAA169fx6OPPsp2OAbB0dERqampsLKywujoKHJyciASiRAfH892aIQlw8PDKCkpmdXIZGL41DXwzc3NaGhoAJ/Ph0QiQUJCAnW41xHDMLhy5Qo8PDw003CRiYwieePxeHjrrbfw7rvv4vjx45DJZAgICMCBAwce2jFUXeuUn5+PixcvQqVSwcPDA/v378fu3bsnzH/2wgsvwNraGqdPn8bFixfh6emJ1157DevXr1/IIi44oVCI5ORkXLx4EfHx8ToPezd1VlZWkMvlOHXqFJRKpdZE0cT0KJVK9Pf3Uy2LiROLxSgvL4dUKsXevXtp6asZqKysRGtrK5555hlqvZiGUSRvwP1mrFdffRWvvvrqtPupa9wefN5rr72m8/twuVzs27cP+/btm1Wc+iwqKgq5ubm4cuUKfvKTn7AdjkFQN4tIJBLY2dmhp6eHZkwnxMTZ2NggKSkJBQUFaG9vh6urKyUiOlAoFLh69Sr8/f21+pWTiYyizxuZHzweD+vWrUNNTQ1qamrYDscgjIyMYGxsDLt27YKfnx+Ki4vR3d3NdliEEJYMDAwAAFauXImNGzeitbUVdXV17AZlILKzszEwMGDwLVmLgZI3oiUwMBDLli3DhQsXdJ4s2VQxDAOxWIw1a9bA1tYWYWFhcHZ2Rn5+vuYCTggxHS0tLbh586ZmEJO7uzsiIyNpXjcdDAwMICMjA3FxcdRtRweUvBEtHA4HW7ZsgUQiQVZWFtvh6K2qqioUFBSAYRhNv0gul4vIyEh4enpOOXkvMW6WlpZYtWoVHX8T1NbWhpKSEnh5ecHFxUWz3d3dHQKBAKOjo+jo6GAxQv32/fffw9zcnJbB0hElb2QCBwcHrF69GpmZmejr62M7HL1TX1+Pu3fvwsHBYUI/Fh6Ph9DQUM3FenBwkKUoCRvMzMzg6elJ69iamLa2NhQVFcHd3X3K5fAaGhpQUFCArq6uRY5O/9XW1qKqqgobN26c1YpIpoiSNzKppKQkiEQiXLhwAQzDsB2O3mhtbUVFRQX8/Pzg6+s77b5VVVWaPhzENMjlcjQ0NEy6XB8xXi0tLXB3d8eqVaumHJgQEBAAFxcXFBQUoL+/f5Ej1F8KhQIXLlyAr68vgoOD2Q7HYFDyRiZlZmaGTZs2oba2Fnfu3GE7HL0wNDSE4uJieHl56TT/UGhoKEQiEXJyciiBMxGjo6MoLy/H6Ogo26GQRaBQKADcH6k/XeIG3O+SEhERARsbG+Tl5WF4eHixwtRrWVlZGBwcxJYtW2hE7gxQ8kamtGLFCvj7+9Pghf9jbW2N8PBwhIaG6rQ/n89HXFwcJXCEGKH29nZcu3YNIyMj4HK5OiUePB4PMTExsLCwwMjIyCJEqd/6+/tx8+ZNxMfHG+Ta4Gyi5I1MicPhYPPmzRgZGdFaeszUjIyMaDoae3p6Tpi4eTrqBE4sFmNsbGyhQiSELKL29nYUFhbC0dFxxoNTzMzMkJSUpBnUYMoTOl+8eBFWVlY0ufksUPJGpmVvb4/ExETcunULvb29bIez6MbGxpCTk4Pq6mqoVKpZvQafz0dCQgJcXV0BYNK1dAkhhqGtrQ2FhYUP7eM2HfVzqqqqkJOTY5IJ3J07d3Dnzh1s3LhRa/1xohtK3shDrV69GmKxGOfPnzepwQvj4+PIzc2FSqVCbGzsjGrcpnLv3j3cuHGDJvI1Unw+H05OTuDzjWbxGvKA8fFxlJWVwcPDY9aJ24NcXV0xODiIoqIik7u2Xrx4EX5+frR+6SxR8kYeyszMDJs3b0ZdXR0qKyvZDmdRqFQq5OfnY3R0FHFxcbCwsJiX1/X29oajoyNyc3PR2to6L69J9IeVlRXi4uJoEXIjpFKpNE2e4eHh89K53s7ODpGRkejs7ER5efk8RGkYMjMzIZFIsHnzZhqkMEuUvBGdLF++HIGBgTh//rxJdLQdHx+HQqFATEwMrK2t5+11eTweoqKi4OnpiaKiItTX18/baxP2MQwDhUJhUrUoxo5hGJSVlaGwsBDA/QR9PhMOFxcXhIWFobGx0SRu6Do6OnDz5k0kJibCwcGB7XAMFiVvRGdbt24FwzA4f/4826EsKIVCAaFQiKSkJNjb28/763O5XISHh8PPzw99fX30Q29EJBIJLly4AIlEwnYoZB4olUoUFBSgqalJ02d1IXh5eSEmJgZubm4L9h76QKlU4sSJE3B2dqZBCnNEyRvRmUgkwpYtW1BRUYGKigq2w1kQNTU1uHnzJpRK5YJX5wcGBiIyMhIcDgcSiWTWAyIIIfNvfHwcOTk56O7uRnR0NLy8vBb0/VxcXMDlctHX12e0y2hlZGSgu7sbjz32GHg8HtvhGDRK3siMBAcHIygoCOfOnTO65tPGxkbcuXMHnp6ei3Zh4XA4UCgUyM7ORn5+vkmOOiNEH7W0tGBoaAjx8fFaa5UutKamJhQWFhrd6P729nbcvHkTycnJC1qLaSooeSMzwuFwsHXrVgDAuXPnjKbJr6OjA+Xl5ViyZAn8/f0X9b35fD4iIiLQ29uLrKwsmp2fEBaplzZbunQpUlNTYWdnt6jvHxoaCgcHB+Tl5RlN87tCocDJkyfh7OyMpKQktsMxCpS8kRmzsrLC1q1bUVlZaRTNp3K5HEVFRXBzc0NISAgrMTg5OSExMRFyuRw3b96ktQ8JYUFrayuuXLmiqfUyNzdf9Bi4XC6ioqJgZWWFnJwco5gXMiMjAz09PdRcOo8oeSOzEhwcjODgYJw/f97g1+gTCASIiYmZl3mb5kIsFiMpKQm2trYwMzNjLQ4ye9bW1ti4ceO8jlAmC49hGFRVVWlu4ha7tu2H+Hw+YmNjYWVlpVk/1VC1tbUhMzOTmkvnGSVvZNbUCwkbavPp6Ogo6urqAACOjo7zMgnvXAmFQsTExEAkEkGhUODu3bsG+dmaKi6XC4FAoBffJaIbhUKB/Px81NXVISgoCKtWrdKL4ycUCjUTpCuVSoNM4tTNpS4uLkhMTGQ7HKPC/jeUGCx182lVVRVu377NdjgzIpfLkZOTg4aGBoyPj7MdzqT6+vpQXV2N3NxcvY2RaBsZGUFeXp7RDeYxZgzDQCaTISYmBsuWLWM7nEkVFhaioKDA4Eakp6eno7e3l5pLFwAlb2ROgoKCEBISYlDNp0qlEnl5eZDL5YiLi9PbJkpnZ2fExcVhcHAQN2/exNDQENshkYdQKBTo7Ow0yFoSU9Pd3Q2pVKpZNcHZ2ZntkKbk6+uL3t5elJaWGkxNfGtrKzIzM5Gamrqoo3VNBSVvZM62bNkCLpeL06dP6/2FRaVSoaCgAENDQwaxjJGjoyOSkpLA5XKRmZkJmUzGdkiEGDSGYVBTU4Pc3Fzcu3eP7XB04ujoiFWrVqGlpQVVVVVsh/NQcrkcJ06cgJubG1avXs12OEaJkjcyZ5aWlnj00Uc1F0R9xjCMZokqGxsbtsPRiaWlJRITExEWFgahUAgANB8cIbMwNjaG7Oxs1NTUYPny5QgKCmI7JJ25u7sjJCQEdXV1ej8H3IULFzA4OIjt27frRf9BY8RnOwBiHJYvX474+HhcvnwZXl5e8PDwYDukCWQyGYRCIaKiotgOZcb4fD7c3d0BAPfu3UNDQwMiIyMhFotZjowQw6BSqZCVlQWVSoX4+HiDXFdz6dKlsLW1ZX007HTKyspQXFyMxx57DE5OTmyHY7QoJSbzZt26dXB1dcWxY8cwNjbGdjha6uvrcf36db2LazacnJzA5XJx8+ZNNDQ0sB0OeYC5uTmCg4NZmR+MTE6lUkGpVILL5SI0NBQpKSkGmbipqRO3pqYmdHV1sRyNtt7eXpw9exZhYWEIDw9nOxyjRskbmTc8Hg87duyAVCrFmTNn9Kb/W2trKyoqKuDj42MUP6oikQhJSUnw8fFBeXk5LaulR4RCIXx9fTXN24RdUqkUWVlZmtHwTk5OEAgELEc1Pzo7O1FQUKA3E3orFAp8++23sLa21qzCQxYOJW9kXtnZ2WHbtm2oqKhAYWEh2+Ggu7sbJSUl8PLyQmBgINvhzBsul4uQkBBER0eDy+VSvxI9MT4+jra2NpraRQ+0trYiPT0dcrkcPj4+bIcz7yIiImBjY4O8vDy9GOl/6dIl9PT0YOfOnUaTIOszuuKTeRccHIzo6GhcvHgRnZ2drMWhUqlQUlICR0dHhIaGshbHQnJ1dUVkZCQ4HA56enpQXl5O01SwSCqVorCw0CiWNDJUDMMgPz8fRUVFcHFxQXJyMmxtbdkOa97xeDzExMRAKBQiJyeH1S4hlZWVyMvLw8aNG2kVhUVCyRtZEBs3boSDgwO+/fZbzULPi43L5SI+Ph5RUVEmUTM1NjaG5uZmpKeno6enh+1wCFl0DMOAw+FALBYjOjoaERERejuP43wwMzNDbGwsbGxsWLvG9ff34/Tp0wgKCjLIwWCGyvh/0Qgr+Hw+du7cCYlEgvPnzy/qe8tkMpSXl0OpVEIkEpnMzN6enp5ISUmBhYUFsrOzUVZWRrVwxCSMjY0hNzdXM4BnxYoVJlMDZGFhgejoaAgEAoyNjS3qKgxKpRLHjh2DhYUFtm3bxura0KaGkjeyYBwdHbF161aUlJSgtLR0Ud5zfHwcOTk56OjoMMl+R1ZWVoiPj8fKlSvR19fHdjiELLimpiZcv34dEolE7yfdXkgMwyA7OxtFRUWLNljs6tWraG9vx44dO4xiMJghoeSNLCj1kPFz586hu7t7Qd9LpVIhPz8fo6OjiIuLM9mLCYfDwZIlS5CSkgI+nw+pVIry8nLWmq9NCY/Hg42NjcnU9rJJoVAgJycHpaWlcHNzQ2pqql4vcbXQOBwOgoKC0NHRgfLy8gV/v5qaGty6dQvr16/Xy3k9jR0lb2TBbdmyBTY2Njhy5AhGR0cX5D0YhkFRURH6+/sRExMDa2vrBXkfQ6JuwhgeHkZLSwuuXbuGxsZGvZnCxRiJRCIkJydDJBKxHYrRUjcL8vl8CAQCxMbGIjw83Kj7tunKxcUFYWFhaGxsRE1NzYK9T09PD44fP44VK1YgLi5uwd6HTI2SN7LgBAIB9uzZA6lUiuPHjy9InwwOhwORSITIyEjY29vP++sbMmdnZ6xZswaurq4oKytDRkYGJBIJ22ERMmNtbW24du2aZnmoiIgIk65tm4yXlxcCAgJQW1u7IKOex8bG8PXXX0MsFuPHP/4x9XNjCSVvZFHY29tj586dqK+vx5UrV+b1tUdGRgAAAQEBJtNJeaaEQiHCw8ORmJgIPp+vadajWrj5NTg4iHPnzmFwcJDtUIzK0NAQsrOzUVhYCLFYDAsLC7ZD0mv+/v5ISUmBpaXlvL6uSqXCsWPHIJVKsWfPHpqMmkWUvJFF4+vri40bN+LWrVsoKSmZl9dUd1amH0vd2NnZYfXq1bCysoJSqURGRgbq6uoWdYSasaPPcn51dHQgPT0do6OjiI2NRUxMzLwnJcZIJBKBYRhUVFTM20L2V65cQX19PXbu3EktHCyj5I0sqpiYGERERODMmTNoaWmZ02t1dHSgrKwMPj4+sLGxmacITQfDMHBwcEBVVRVu3LiB9vZ2qokjekGlUmmWfXJ0dERQUJDJD0iYDYZhIJFIkJeXN+euEqWlpbh16xY2bNgAX1/feYqQzBYlb2RRcTgcbNmyBR4eHjhy5MisLyh9fX0oLCyEq6srQkJC5jlK08Dn8xESEoLk5GRYWlqioKAAxcXFbIdFTBjDMGhubsa1a9eQk5MDpVIJPp8PX19fk5hoe75xuVxER0fDysoKOTk5s+4D19LSgtOnT2PVqlWIjY2d5yjJbNDZQBYdn8/Hrl27wOPxcOTIkVnNx1ZZWQl7e3tERERQh9k5EovFiIuLQ0JCgmYNyOHh4XlraiFEF21tbbhx4wZKSkpga2uLpKQkmnJlHvD5fMTGxoLH4yEnJ2fGUwZJJBIcOXIE7u7u2Lp1K11v9QQlb4QVIpEIu3fvRnd3N06fPj3j5rqYmBiTWfZqsTg4OMDBwQEA0NjYiFu3biE3N5f6E86ASCRCamoqTRUyC01NTbC0tERycjKioqLoM5xHQqEQcXFxcHZ2Bp/P1/l54+PjOHLkCLhcLp544okZPZcsLPrlI6xxc3PDY489hvLycmRlZT10f7lcjoKCAoyNjUEgENC8TgsoKCgIkZGRkEqlyMjIQEFBwYLN0WdMeDwerK2tqcZIB93d3cjKykJnZycAIDo6WrNOJ5l/VlZWCAkJAZfLhUQieejAGoZhcObMGXR3d2PPnj2UTOsZSqMJq4KDg9HZ2YmrV6/CyckJK1asmHQ/pVKJvLw8jIyMQKlULnKUpofD4cDd3R1ubm5oaWnB3bt3Nc0lUqmURvtNYXR0FDU1NVi+fDlNZzEJlUqFtrY21NXVQSKRwMbGRnMTRgnv4hgfH8etW7fg4uKC8PDwKZtBs7KyUFZWhh07dsDNzW2RoyQPQzVvhHVpaWlYsWIFjh07htbW1gmPq1QqFBQUQCKRIDY21qTXL1xsHA4HXl5eSEtLg7m5OZRKJW7evIn09HS0tLTQtBg/IJfL0dTUREuRTaG5uRnFxcUwNzdHfHw8kpOTacqJRWZmZobQ0FC0tLSgqqpq0n1u376NK1euIDk5mQaE6SlK3gjrOBwOHn/8cbi6uuKrr76asKB6eXk5enp6EB0dDVtbW3aCJADu145ERkbC3NwcxcXFuHbtGurr62mKETKpsbExVFVVaZIEDw8PpKSkIDY2Fo6OjixHZ7rc3d0REhKCuro61NXVaT127949nDhxAmFhYUhLS2MpQvIwlLwRvWBmZoY9e/bA3NwcX3zxhWbVBABwcnJCeHg4nJycWIyQqDk6OiI2NhYpKSlwcHBAe3u7punlweNGTFd/fz9KSkpw9epVNDQ0aL4ffD4fYrGY5egIACxduhT+/v6oq6vTjPjv7OzEkSNHsGTJEmzbto1Gluox6vNG9IalpSX27duHjz76CF999RW2bdsGFxcXuLu7sx0amYRYLMaqVas0tW79/f3IzMyEvb09fHx84ObmRv2YTAjDMOBwOJBKpcjMzISlpSVWrFgBHx8fGlykpwICArB06VKYmZlhcHAQX3zxBezt7TVTORH9RTVvRK/Y2dlh7969uHv3Lt56661J+8AR/aK+O7exsUFkZCS4XC6Ki4tx+fJl1NTUsBzd4hIKhfDz8zOpNR97e3tRVFSEGzdugGEYWFpaIikpCWvWrIGfnx8lbnpOKBRiaGgIb7zxBmQyGfbu3WtS319DRTVvRO/w+Xz4+/ujqKgIubm52L59O1XfGwAulwt3d3e4u7tjZGQETU1Nmrv3sbExdHV1wc3Nzah/zM3NzREYGMh2GAtOpVLh3r17aGxsxMjICKysrODt7a2pfaO+qYZDLpfj66+/xvDwMKKjo9kOh+iIkjeiVwYGBlBQUICVK1ciJiYGJ06cgKWlJTZu3EgJnAGxsrLSSmJ6enpQWlqK8vJyODk5wd3dHS4uLkaXyCkUCgwODsLGxsboJjQdGxtDb28vPDw8wOVy0dTUBFtbW4SFhWkmdyaGRalU4ujRo+jp6cG//uu/or6+Hjk5OUhMTIS5uTnb4ZFpGNfVhRi8e/fuwdraGlFRUeDxeJDJZDh37pxm5nVimDw9PeHo6Ij29na0tbWhuLgYXl5eCA8Ph1KpBMMwRpHsjIyM4NatW0hOTjaKyWZlMpnmmPX29oLL5cLR0RFCoRCpqal0Q2XAGIbBiRMncO/ePezbtw8+Pj5wdnZGZmYmcnNzkZiYSP3e9JjhXy2JUQkLC4NSqdRcNKKjoyGVSnHt2jVYWloiKiqK5QjJbJmbm2Pp0qVYunQpxsbGNHPEtbe3o7S0FM7OznB1dYWTkxPd9bNobGwM5ubmYBgG169fh0Kh0Iz4dnV11dSWUuJmuBiGwYULF1BRUYGdO3di6dKlAAALCwvExcWhp6eHEjc9R8kbYZ1CoUB+fj4CAgJgZ2c3Yb3S5ORkSKVSnDt3DgKBAKGhoSxFSubLg8mZo6MjAgMD0dbWhpKSEgD3pzEICQnRJHi0hu3CUSgU6OnpQXd3N7q6ujA6OopNmzaBz+cjOjoaYrHY6Jq3TRnDMLh27Rry8vLwyCOPICgoSOtxa2trWFtbA7jf3cHBwYESdT1EyRthlUqlQn5+PgYHB6dsNuNwONi0aRPkcjlOnDgBAJTAGRFzc3P4+vrC19cXcrkc3d3dmtFuPT09KCgogKOjI5ycnODs7EwrbMwRwzAYHR2FpaUlVCoVLl26BKVSCSsrKzg7O8PJyUmTLFNfNuOirk29efMmNmzYgMjIyCn3lUqlyMnJgbe3N11v9RAlb4Q1DMOgqKgIfX19iI+P19ztTYbD4WDbtm0AQAmcERMIBPDw8ND8bW1tjeXLl6O7uxuVlZW4ffs2XF1dER0dDYZh0N/fDxsbG71p4uFwODA3N9ermgqlUom+vj709fWhv78fAwMDAICNGzeCy+Vi1apVEIvFlBQbOXXilpGRgQ0bNiAhIWHa/S0tLREWFoaSkhKYm5tj+fLlixQp0YXRJG9DQ0P4+9//joyMDMhkMgQGBuIXv/jFlAudP2i6jvBRUVF45513ANzvm/PEE09Mut9//Md/YO3atbML3kRVVVWho6MDUVFROq1vSAmc6bGwsICfnx/8/PygUCg0neYBQCKRICsrCxwOB2KxGPb29rCzs9NK/habWCzG+vXrWXt/hmEwPDyM/v5+AIC3tzfGx8eRk5MDMzMz2NnZYdmyZVrnGy06bvxmmripeXl5YWxsDNXV1RAKhfDx8VngSImujCJ5U6lUePXVV1FXV4fdu3fDxsYGJ0+exMsvv4xDhw7By8tr2ue/9tprE7ZVV1fj2LFjk857s27dOsTFxWltCw4OnlshTJCHhwfEYjFcXV11fs4PEzgOh4OVK1cuVIhEj/D5fLi4uGj+FovFSElJQX9/P/r6+tDV1YXu7m5N8pabmwuhUAhra2uIRCJYW1vDwsJCr2rFZkulUkEqlYLH48HCwgI9PT2oqKjA8PAwVCoVOBwOXF1d4e3tDXNzc6xZs4Zq1kzUbBM3NX9/f8hkMjQ1NcHb29sozh9jYBTJ240bN3D79m384Q9/QGpqKgBgzZo1+MlPfoJPPvkEv/vd76Z9/oYNGyZsKy4uBofDmbQ2zd/ff9LnEN10d3fDwcEBNjY2s5pOQZ3AMQyD7777DgAogTNB6ho3sVisqRFQKpUA7v9gqWeOb29vh0KhAABNEtPU1ASpVAoLCwtYWFjA3NwclpaWc56uRCKRIDc3F7GxsXNaw5NhGMjlcoyNjUEkEoHH46GtrQ3t7e0YGhrCyMgIVCoV/Pz8EBgYCKFQCDs7O3h7e0MsFk+YZ44SN9M018RNLTg4WHNTQPSDUSRv6enpsLe312r+tLW1RVpaGi5fvgy5XA6BQKDz68nlcqSnpyM8PBzOzs6T7jM6Ogo+n0+jsGaoo6MDBQUFCAoKgq+v76xf58EaOErgiJq67xuHw0F4eLhm++joKIaGhmBpaQng/mTQnZ2dkMlkmrVZQ0JCsHTpUnR1daGurg7m5uYQCATg8/kQiUSaGr2uri7w+XzNPy6XC6FQCA6Hg/HxcQwPD0Mmk0EmkwG4/wPK4/FgZmaG8fFx9PX1QaFQQKFQYHx8HBwOB8uWLQNwv7ZweHhYayqV1atXw97eHqOjo5DJZHBwcMCSJUu0RgVaW1tTFwKi5cHEbf369bNO3ID75xOPx4NUKkV+fr6mnyRhj1EkbzU1NfD3958wnUBgYCDOnDmD5uZmzcVRFzk5ORgeHp6y78rhw4fx3nvvgcPhYMWKFfjZz36GmJiYaV+zp6cHvb29mr8bGxt1jsdY9PX1obCwEK6urpp5heaCy+VSAkd0oq5hU1MnOgzDQCaTYXR0VPM4j8eDQCCAVCrF4OAgFAoFbGxs4OHhAaVSidzc3Amvv379epibm6OsrAxFRUWQyWRatV3Lli1DUFAQhoaGkJeXB+D+DyKfz4elpaXm+qSuSVTXBlpYWEAkEmleYybXMWK6fpi4rV69el5eVyAQgMPhIDc3F6tXr9bcDJHFZxTJW19fH8LCwiZsVw9z7+3tndFF7/LlyxAIBEhJSdHazuVyER0djeTkZDg6OqKtrQ1Hjx7FK6+8gjfffBPx8fFTvubp06dx+PBhnWMwNuofLTs7O0RERMxb9TslcGQu1KNDH5x3zsHBYcopMrhcLtavX69Vc8YwjKZm39fXF01NTYiIiIBYLAaHwwGHw9H8yNna2mLDhg3g8/mTjpA1hXVRycJaqMQNuN/vNDY2FllZWZpltGbSqkXmj94lbyqVCuPj4zrtq74LkMlkk36B1NvUzRe6GBkZQXZ2NmJjYydMXeHi4oK3335ba9vGjRvx1FNP4W9/+9u0ydu2bdu0TqLGxka88cYbOsdl6Do7O2FhYYHo6Oh5n3D1hwmcQqHAqlWr5vU9CAH+kexNxdbWFvb29nBxcZm0P6e6iZWQhcAwDK5cuYKsrKx5T9zUhEKhJoHLz89fkPcgD6d3yVtpaSlefvllnfb9/PPP4ePjA6FQCLlcPuFx9baZXCzT09Mhl8t1Hu4vFouxefNmfPnll+jq6pqyj5yjoyMcHR11jsNYMAwDDocDPz8/LF26dMHm41IncHw+H6dOncLw8DASExOpgy1ZVFZWVkhISKABAmTRKZVKnD59GqWlpdi0adOEGRHmk5WVFWJjYyf93SWLQ++SN29vbxw4cECnfdVNG/b29lr9ydTU22YyS/jly5chEolm1LlTnbANDQ1NmbyZIqVSiZycHCxZsgQeHh4LPpEql8vF1q1bIRKJcPXqVQwPD2PTpk2UwJFFw+fzaVUCsujkcjm+/fZb1NfX4/HHH1+UriPqmmWGYdDW1gZ3d3e61i4ivUveHBwcsHnz5hk9x9/fH2VlZVCpVFpNclVVVTA3N3/oPG9qPT09KC4uxqZNm2bUjt/W1gYAs5r2wlipVCoUFhZicHBwUWshOBwOUlNTIRKJcO7cOYyMjOCxxx6b8xQQhOhibGwM9+7dw9KlS6dtXiVkvkilUnz11Vfo6urCT37yk0Uf1NLf34+ioiIMDg5OWCeVLByjWO05JSUFfX19yMjI0GwbGBjA9evXkZCQoJWItba2orW1ddLXuXbtGlQq1ZRNpuplZR7U3d2N8+fPY9myZSbZLDqVsrIydHV1ITo6Gra2tov+/lFRUdi5cyeqqqrw1VdfzajfIyGzJZPJcPfuXfq+kUUxODiIjz/+GP39/XjmmWdYGY1sb2+PkJAQ1NXVoa6ubtHf31QZRXVEamoqjh07hjfffBMNDQ2aFRZUKhWeffZZrX3/+Z//GQBw9OjRCa9z+fJlODo6TtnZ/b333kNraysiIyPh6OiIjo4OnD59GmNjY/jVr341/wUzUHV1dWhubkZERAScnJxYiyMoKAiWlpb4+uuvcfjwYezdu1cz7QIhhBiyrq4ufP755+Dz+Xj22WdZba5funQpZDIZKisrIRQK4enpyVospsIokjcej4e33noL7777Lo4fPw6ZTIaAgAAcOHAA3t7eOr1GU1MT7ty5g127dk05GjI6OhptbW04ceIEhoaGIBKJEBoaiqeeekqnNVRNhaenJ8zNzVldY1JtyZIl+OlPf4ovvvgCH3/8MZ588knY2dmxHRYhhMxaU1MTvvrqK9ja2mLv3r0TZkZgQ0BAAMbGxtDT00PJ2yLgMOrpxcmiunPnDp5//nkcOnTIaBK/zs5O2NjY6GVfn/7+fnz++eeQy+XYu3cvLcZNFsTg4CAyMjKQnJxMfWDJgrhz5w6+/fZbeHp6Yvfu3Xp1vVWnExwOZ0IfdEOnb7/ZxvPJElZ1d3ejoKAA9fX1bIcyKTs7Ozz33HMQi8U4fPiw3sZJDJtAIIC3tzdNXEoWRGFhIY4cOYLly5dj3759epW4AdBMSt3X14fr169jZGSE7ZCMFiVvZM4GBwdRUFAAR0dHBAQEsB3OlKysrPD000/D09MTX3zxBfLz80EVz2Q+WVhYICwsTGspLkLmSqVS4eLFizhz5gyioqKwY8cOvR5BLxKJwOVykZ2djbGxMbbDMUqUvJE5GRkZQU5ODqytrREVFaX31eRCoRB79+5FdHQ0zp07h7Nnz0KpVLIdFjESSqUSQ0ND9J0i82Z0dBRffvkl8vLysGXLFmzZskXvr7MCgQBxcXFgGAa5ubk6r5pEdKff3wCi94aGhmBubo6YmJgFn4R3vnC5XGzevBnbtm1DSUkJPvvsM6reJ/NieHgYN27cwPDwMNuhECPQ3d2NQ4cOoa2tDU8++SRiYmIMZiJcCwsLxMXFYXR0FKWlpWyHY3T0t96V6DV1Z1RXV1e4uLgYzAXlQREREXB0dMQ333yDDz74AHv27IGrqyvbYRFCCGpqanD8+HHY2Nhg//79BjlK3traGrGxsdQHdAFQzRuZMZVKhdzcXFRXVwOAQSZuat7e3ti/fz8sLS3x0UcfobKyku2QCCEmjGEYZGZm4uuvv8bSpUvx3HPPGWTipmZnZwcrKysoFArcu3eP7XCMBiVvZEYYhkFxcTH6+vpYnYB3PtnY2ODZZ5/F8uXLcfToUVy/fp0GMhBCFt34+Di+++47XLlyBUlJSXjiiScgFArZDmtedHd34/bt26ipqWE7FKNAzaZkRm7fvo329nZERUUZ1QLcZmZm2LFjB1xdXXH16lV0dXVh+/btVN1PZkzfO5MT/SSRSHDkyBF0d3dj586dCA4OZjukeeXm5oaAgABUV1dDKBTCx8eH7ZAMGiVvRGetra1oaGhAaGioUfYN43A4SEpKgrOzM44fP44PP/wQu3fvhr29PduhEQNhY2ODrVu3sh0GMTBNTU04evQoeDwenn32WaOdRNzf3x8ymQzl5eUQCARGW87FQLeIRGdubm6Ijo42+jumFStW4Gc/+xkUCgXef/993L59m+2QCCFGSN2/7fDhw7C3t8fzzz9v9AlNcHAw3NzcMDo6ynYoBo1q3shDdXZ2QiAQwM7Ozihr3Cbj7OyMF154AWfOnMGxY8dw7949bNq0CWZmZmyHRvTY8PAwioqKEBERAZFIxHY4RI8NDw/jxIkTqK+vR2JiItLS0kyiyZ3D4SAyMlLzt0Kh0OsJh/UVfWJkWn19fSgoKIC7u7tBj3iaDaFQiMcffxy+vr64cOECmpubsWPHDjg7O7MdGtFTSqUSg4ODNEkvmVZdXR1OnDgBAHjyySfh6+vLckTsaGlpQVVVFVavXg1LS0u2wzEoxp/mk1kbGhpCXl4e7OzsEBYWxnY4rOBwOIiIiMDzzz8PADh06BAKCwtpNCohZMZUKhWuXr2KL774Ai4uLnjxxRdNNnEDACcnJ3C5XOTk5EAul7MdjkGh5I1ManR0FDk5ObCwsEB0dLRJVOdPx9nZGc8//zxCQ0Nx5swZHD9+nNbsI4TobHBwEJ988gmysrKwdu1a7Nu3z+Sb1oVCIeLi4jA+Po7c3FyqsZ4B0/5FJlMaHx+HhYUFYmNjqZ/X/zEzM8MjjzyCHTt2oLa2Fu+//z5aW1vZDosQoueqq6vx3nvvQSKR4Kc//SkSExMNenLz+WRlZYW4uDgMDw9rJn4nD0d93ogWpVIJDocDsViMxMREtsPRSyEhIfDw8MC3336Ljz/+GOvWrUNcXBxdjAksLS0RGRlJ/XcIgPud8S9duoS8vDwEBgZi27ZtsLCwYDssvWNjY4O4uDhYW1uzHYrBoOSNaDAMg8LCQnA4HERHR7Mdjl6zs7PDc889hytXruD7779HbW0ttm3bBltbW7ZDIywyMzODu7s722EQPdDW1oaTJ0+it7cXW7ZsQXR0NN3gTUM9IG5kZAQdHR1YtmwZyxHpN2o2JRqlpaXo6urCkiVL2A7FIPB4PGzcuBH79u1DT08P3n33XeTn59NgBhMmk8lQX18PmUzGdiiEJQqFAleuXMGHH34IHo+H/fv3IyYmhhI3HfX09KCyshL19fVsh6LXqOaNALjfJ6O5uRkRERFGs2bpYvHz88M//dM/4dKlSzh37hwqKirw6KOPmtzUKgQYGxtDRUUFHBwcjGZNSqK7lpYWnDp1Cn19fUhNTcXq1avB4/HYDsug+Pj4QCqVoqKiAkKhEB4eHmyHpJcoeSPo6+tDbW0tgoOD6USZJaFQiEceeQTBwcE4ffo03n33Xaxbt47uuAkxAePj47h+/Tqys7Ph7u6OF154geaDnIPAwEDIZDIUFxdDIBBQhcIkKHkjsLe3R0JCglEtNM8WX19f/PznP8eVK1dw4cIFVFZWYtu2bfTZEmKkmpqacOrUKQwODmLdunWIj483+amV5kNYWBiUSiV1Q5kCJW8mrLu7GzKZDJ6enpRczCOhUIitW7ciODgYp06dwt///nesWbMGsbGxdFEnxEiMj4/j6tWryM3NhYeHB/bs2QNHR0e2wzIaDy6jxTAM5HI5dUV4ACVvJmpwcBAFBQWwt7eHp6cn2+EYpSVLluDnP/85rl27hkuXLqGyshKPPvooXeCNGJ/Ph4uLC63VaOQaGxtx6tQpSCQSbNiwgW7MFtidO3fQ2tqK1atXw9zcnO1w9AJ920zQyMgIcnNzIRKJEBUVxXY4Rk0gEGDTpk346U9/CqlUivfeew9XrlyhpWCMlJWVFWJiYmBlZcV2KGQBDA0N4bvvvsMnn3wCkUiEn//859RMugh8fHygUqmQm5uL8fFxtsPRC3R7aGJkMhlycnJgZmaG2NhYGgm1SLy9vfHiiy/i1q1buHnzJkpLS7FhwwaEhITQgAYjolKpoFAowOfz6QfdiCiVSuTk5CA9PR1mZmbYtm0bVq1aRefuIrGwsEBcXByysrKQn5+PuLg4kz+/KHkzQdbW1ggJCYFAIGA7FJNiZmaGlJQUhIWF4dKlSzh+/DgKCgqwefNmuLq6sh0emQdDQ0PIyMhAcnIybGxs2A6HzIO7d+/i4sWL6OvrQ3R0NNLS0qjpjgXW1taIiYlBdnY2Ghoa4Ovry3ZIrKLkzUSoVCqMj49DKBQiJiaG7XBMmq2tLXbt2oX6+npcuHAB77//PqKiorBmzRpaOocQPdHf34/vv/8e1dXVWLJkCXbu3AkXFxe2wzJp9vb2SEpKomW0QMmbSWAYBsXFxRgaGkJKSgpV9esJX19fvPjii8jLy8ONGzdQUVGBNWvWICIiwuSbBAhhy/j4ODIzM5GVlQVLS0vs2LEDwcHBdN3UE2KxGMD92RIGBwfh5+fHckTsoOTNBFRUVKC9vR1RUVF0AdIzPB4P8fHxWLlyJa5cuYKzZ8+isLAQW7ZsgZeXF9vhEWIyGIZBVVUVvv/+ewwPDyMhIQFJSUnUvURPDQwMoLq6GmZmZvDx8WE7nEVHyZuRq62txb179xAaGkr9qvSYSCTCY489hqioKJw/fx4fffQRgoODkZaWRlOLELLAmpqacPXqVTQ2NmL58uV4+umnYW9vz3ZYZBr+/v6QyWQoLy+HUCg0ud83St6MmFQqRU1NDVasWGGSdyaGyNPTE88//zxKSkpw48YN/O1vf0N4eDhSUlJga2vLdnjkIcRiMTZv3kyjuA1Ee3s7rl27htraWri6umLv3r3w9/dnOyyio+DgYMhkMhQWFiI+Pt6kEm5K3oyYpaUlkpOTqXOngeFwOFi1ahVWrlyJwsJCZGRkoKysDFFRUUhKSoJIJGI7RDIFDodDE/QagJ6eHly/fh0VFRVwcHDAzp07ERQURN1KDIz6WllWVmZyzdt0lTFCfX196OzsREBAACVuBozP5yM2NharVq1Cbm4usrKyUFRUhNjYWKxevZpGpuqhkZERlJeXY+XKlTRRrx4aGBhAeno6SkpKIBaL8eijjyIsLIwGCBkwLpeL8PBwAIBCoYBCoTCJqVwoeTMyQ0NDyMvLg1gsBsMwdCdpBAQCAZKSkhAVFYVbt24hJycHBQUFSEhIQFxcnMndceozhUKB7u5uKBQKtkMhDxgeHkZGRgYKCwthbm6OTZs2ITIykmpJjUxpaSkkEglWr15t9NdF+uYakdHRUeTk5MDCwgLR0dF0N2lkLCwssHbtWsTGxiIzMxPp6enIzc1FUlISIiMjYWZmxnaIhOgVqVSKW7duITc3FzweD2lpaYiJiTH6H3ZTFRAQgMzMTOTl5SE+Pt6o+55S8mYkxsfHkZOTAy6Xi9jYWPohN2IikQibNm1CfHw80tPTcenSJWRkZCAmJgYxMTGwtLRkO0RCWNXf34/s7GwUFxeDw+EgPj4eCQkJJtGcZsqsrKwQFxeHW7duoaCgwKgrMSh5MxI8Hg8ODg5YtmwZXaBMhI2NDbZt24akpCRkZ2cjKysLWVlZWLVqFeLj42FnZ8d2iIQsqra2NmRlZaGyshIWFhZYvXo13dCYGBsbG0RFRSEvLw/d3d1GuyoGJW8GjmEYjIyMQCQSITQ0lO1wCAvs7OywZcsWpKamIj8/H7m5ucjPz0dQUBASEhLg4eHBdogmw8LCAitXrqTBJIuIYRjcvXsXWVlZaGhogL29PbZs2YLw8HBqgTBRTk5OSEtLM+qknZI3A1daWoqOjg6sXbuWLlQmztLSEikpKUhISEBpaSlu3bqFQ4cOYcmSJVi9ejX8/PxoAMsCEwgEWLJkCdthmASlUony8nLcunULXV1d8PDwwK5duxAQEGC0TWVEd+rErb6+HgCMbiF7St4MWHV1NZqbmxEREUGJG9EwMzNDVFQUIiIiUF1djVu3buHLL7+Es7MzEhISEBISQqPsFsj4+Dg6Ozvh4uJC5+QCGRsbQ1FREXJyciCRSLB8+XJs3boV3t7edHNCJpDJZLh79y6EQqFRtULQFdxA3bt3D7W1tQgKCjKqLySZP1wuF0FBQQgMDERTUxNu3bqFkydP4tKlSwgLC0NERAScnJzYDtOoSKVSFBcXIzk5GTY2NmyHYzQYhkFLSwsKCwtRUVEBlUqF0NBQJCQk0HeYTCswMBAymQzFxcUQCARG832h5M0AjY+Po7a2FsuWLcOyZcvYDofoOQ6HAx8fH/j4+KCnpwdFRUUoKSlBdnY2vL29ERkZiaCgIKopInpHKpWirKwMhYWF6O7uhp2dHZKTkxEeHk4TkBOdhYaGQiaTIT8/H6tXrzaKGytK3gyQmZkZkpOTIRQK2Q6FGBhHR0ds2LABa9asQXV1NYqKinDixAlcuHABoaGhiIyMNNrRWcQwMAyDxsZGFBYWoqqqCgzDICAgAJs2bYKvry81jZIZ43K5iIqKQnV1tdEMYqDkzYAMDg6itrYW4eHhNB0ImRM+n4+QkBCEhISgr68PxcXFKC4uRl5eHjw8PBAZGYmQkBCazJQsmpGREZSUlKCoqAi9vb1wcHBAWloawsPDaakxMmc8Hg/BwcEA7tfocrlcg/4dpeTNQIyMjCA3NxcWFhZ050nmlb29PdauXYvU1FTU1NSgqKgIZ86cwcWLFxEcHIyQkBAsWbLEqGcrny88Hg92dnb0WelILpejtrYWt2/fRk1NDTgcDoKCgvDII4/Ax8eHrnVkQRQWFkKlUiEhIcFgu4tQ8mYAZDIZcnJyYGZmhtjYWPphIAuCx+MhMDAQgYGBGBgYQHFxMcrLy1FcXAxLS0sEBgYiODgYS5YsoakYpiASiZCYmMh2GHpN3We3oqICNTU1GB8fh7u7O9avX4+wsDCaI48suPDwcGRlZSE/Px9xcXEGeT2j5E3PqVQq5Obmau4SqBmLLAZbW1ukpaUhNTUVHR0dqKioQEVFBQoLC2FpaYmgoCAEBwfDx8fHIC98ZHGNj4/j7t27moRNLpfDzc0NKSkpCAoKgr29PdshEhNibW2NmJgYZGdno6ioCJGRkQZXy0vJm57jcrnw8PCAk5MT3ZGSRcfhcODm5gY3NzesXbsW7e3tmkSuoKAAVlZWmkTO29vb5BO5wcFBZGRk0FQhABQKhSZhu3PnDuRyOVxdXZGUlISgoCA4ODiwHSIxYfb29oiMjERxcTGGhoYgFovZDmlGKHnTUwzDoK+vT7NeKSFs43A4cHd3h7u7O9atW4e2tjZNIpefnw+RSAQ/Pz/4+fnB19fXaEZ1Ed0NDg7i7t27qKurQ11dHWQyGVxcXJCYmIigoCA4OjqyHSIhGq6urli7dq1BtmhR8qanKioq0NDQgDVr1tCPINE7HA4HHh4e8PDwwPr169Ha2orKykrcvXsXJSUlmkTPz88Py5Ytg6enp8nXyhmj8fFxNDY2ahK27u5ucDgceHp6IiEhAUFBQUYzKSoxTgKBAAzDoLS0FPb29vD29mY7JJ1Q8qaHamtrce/ePYSGhlLiRvSe+sfa09MTGzZsgEQi0dS85OXlIT09Hebm5li6dKkmmbO1tWU7bDILDMOgu7sbdXV1uHv3LhobG6FQKCAWi+Hn54e0tDQsXbqUungQg8LhcMDj8VBWVgaBQABXV1e2Q3ooSt70TFNTE6qrq7F8+XL4+PiwHQ4hMyYWi7Fq1SqsWrUKKpUK7e3tuHv3Lu7evYuzZ8+CYRg4OjrC19cXXl5e8PT0hK2trcF1GDYF6mStpaUFzc3NqKurg0QiAZ/Px5IlS7B27Vr4+fnB0dGRjh8xaCEhIZDJZCgsLER8fLzeD6Kh5E2PMAyDhoYG+Pj4YMWKFWyHQ8icqQfceHh4ICUlBWNjY6ivr9fU3OTl5QG4P8WGuvbO09MT7u7uBtkPxdraGmvWrDHYmqfR0VG0tLRo/ZPJZOBwOHB2dkZwcDCWLVsGHx8fg50fi5DJcDgcREREIDc3F3l5eUhOTtbrli9K3vQIh8NBQkICzeNGjJa5uTmCgoIQFBQE4P5M5+okobm5GRkZGZDL5eByuXBxcdEkc15eXrCzs9P72h0ul2swqwGoVCp0d3ejublZcwx6enoAAJaWlvD09ERiYqImmabl+IixUy+j1djYqPc3YEaRvPX09ODYsWOoqqpCdXU1RkdHcfDgQaxatUrn1+ju7sb//u//Ij8/HyqVCqtWrcJLL70Ed3f3CfuePXsWR44cQUdHB5ycnLBjxw48/vjjs45/aGgIJSUliIyM1OtMn5D5ZmlpieXLl2P58uUAJiYU9+7dQ35+PoD7iZ+Tk9OEf2KxWG+SOqlUiurqagQEBOjNuaxSqTAwMICuri50d3dr/vX09GB8fFyTKC9duhRJSUkGkygTshDMzMzg5+cHAOjr64NIJNLLVgCjSN6am5vx1VdfwdPTE76+vqioqJjR86VSKV5++WWMjIxg37594PP5OHr0KF566SV8/PHHWvM1nTp1Cm+//TZSUlLwxBNPoKysDAcPHsTY2Bj27t0749jVqycIBAJqhiAmT51IuLi4ICoqCsA/mvI6OjrQ3d2N9vZ2lJeXY3x8HAAgFAonTepsbGwWPQEZHx9Ha2srK9P7qFQq9Pf3T5qkKRQKAP9IgN3c3BAaGgo3NzeDbaImZCGpVCoUFhbCwsIC8fHxbIczgVEkbytWrMDZs2chFotx48YN/O53v5vR80+ePImWlha8//77CAwMBADExsbimWeewTfffIP9+/cDuJ9offjhh4iPj8frr78OAHjkkUegUqnw2WefYdu2bbC2tp7Re5eXl8PFxQWxsbGUvBEyCQsLC/j7+8Pf31+zTaVSYXBwUCtJ6ezsREVFBeRyOYD7y32JxeJp/1lZWRnEFCZKpRLDw8OQSCQYHByERCKZ8G94eBgqlQrA/c/MyckJHh4eCA8Ph5OTE5ydnSESiahGjRAdcLlcREdH49atWygoKNC7SbeNInmba/PEjRs3EBAQoEncAMDHxwcRERG4fv26JnkrKirC4OAgHnvsMa3nb9++HZcvX0Z2djY2bNgwo/ceHx9HfHw8zM3N51QGQkwJl8uFnZ0d7OzsNE2uwP1BP+qkrr+/Xyu5aW1thUQi0dRCqV/H2toaYrEYIpEIQqFQ538CgQAcDkfr3w8xDKP5p1KpIJfLIZPJdPo3NjamSdiGh4fBMIzmdQUCgSYBVY/cFYvFcHBwgJOTE6ysrChJI2SObG1tER0djby8PHR1dbEdjhajSN7mQqVSob6+Hlu2bJnwWGBgIPLz8yGVSmFpaYna2loAQEBAgNZ+K1asAJfLRU1NzZTJW09PD3p7ezV/3717F8D9L0dLS8t8FYcQ8n9sbGwmvVseGxvDyMgIhoeHMTIyovl/e3s75HI55HI5xsfHNf+fifHxcbS3t+Py5cszqknncDgQCoUwMzPTdKEwMzODlZUV3NzcYGVlBZFIBCsrK1hZWU3ZzCmXy9Ha2jqjmAkh07OxsdH0vZXJZCxHc5/JJ28SiQRyuXzSdfbU23p6euDt7Y3e3l7weDzY2dlp7WdmZgaxWKyVnP3Q6dOncfjw4Qnb33nnnbkVgBCidzo7O9kOgRCyAGpraxEaGsp2GPqXvKlUKk1H5IdRN1vMhTqLnuwuWX13q95HJpOBz5/8IxMIBNNm5Nu2bcPq1as1f1dVVeGdd97Bq6++qhnZYgoaGxvxxhtv4LXXXjOZSYhNscyAaZbbFMsMULlNqdymWGbgfmvZn//8Z70ps94lb6WlpXj55Zd12vfzzz+f8wepnrtosoRR3WSi3kcoFGr1l/nhvtPNg+To6Djposx+fn4mOSGvKU5EbIplBkyz3KZYZoDKbUpMscwAZjwocaHoXfLm7e2NAwcO6LTvZE2dMyUWiyEQCCZt8lRvUyddDg4OUCqV6O/v12o6HR8fh0QimZd4CCGEEEKmo3fJm4ODAzZv3rxo78flcuHr64vq6uoJj1VWVsLd3V0zmlU9VUF1dbXWvC/V1dVQqVRaUxkQQgghhCwE/Z/gaJ51dnaisbFRa1tKSgqqq6u1ErimpiYUFxcjNTVVsy0iIgJisRinTp3Sev6pU6dgbm4+o4n8HBwc8Mwzz5hcbZ0pltsUywyYZrlNscwAlduUym2KZQb0r9wc5sHJgwzYp59+CgBoaGjA1atXsWXLFri5uQEAnn76ac1+v/rVr1BSUoKMjAzNNqlUiueeew5SqRS7d+8Gj8fD0aNHoVKp8PHHH8PW1laz74kTJ/DXv/4VqampiImJQWlpKb7//ns8//zzePLJJxensIQQQggxWUaTvCUnJ0/52IOJ2mTJGwB0dXVNWNv0l7/8JTw9PSe83pkzZ/DNN9+gvb0dzs7O2L59O3bu3EmTYhJCCCFkwRlN8kYIIYQQYgpMrs8bIYQQQogho+SNEEIIIcSA6N1UIYaup6cHx44dQ1VVFaqrqzE6OoqDBw9i1apVOr9Gd3f3hP53L730Etzd3Sfse/bsWRw5cgQdHR1wcnLCjh078Pjjj89nkXQ2NDSEv//978jIyIBMJkNgYCB+8Ytf6DSR43R9FqOiojTLiLW3t+OJJ56YdL//+I//wNq1a2cX/BzMpdz/9V//hYsXL07Y7u3tjS+++EJrm0qlwpEjR3Dy5En09fXB09MT+/btw7p16+atLLqabZlVKhW+//57pKeno7a2FkNDQ3Bzc8OaNWuwe/fuCRNdT/W92L9/P/bt2zdv5XmQXC7HRx99hEuXLmFoaAjLli3Dz372M0RHRz/0uYZ67gKzL3d6ejquXbuG6upq9PX1wdnZGfHx8Xj66acnTGi6a9cudHR0THiNbdu24Te/+c28lkcXsy3zxx9/POlyhwKBAFeuXJmw3ViO9VTHDwA8PDzw9ddfa/5m49ydjlQqxZEjR1BZWYmqqioMDQ3hwIEDOk9NNpNrXmZmJj755BM0NjbC1tYWW7ZswVNPPTXlCk2zQcnbPGtubsZXX30FT09P+Pr6oqKiYkbPl0qlePnllzEyMoJ9+/aBz+fj6NGjeOmll/Dxxx9rLbR96tQpvP3220hJScETTzyBsrIyHDx4EGNjY9i7d+98F21aKpUKr776Kurq6rB7927Y2Njg5MmTePnll3Ho0CF4eXlN+/zXXnttwrbq6mocO3Zs0gvKunXrEBcXp7UtODh4boWYhbmWG7h/wX/llVe0tllZWU3Y79ChQ/jyyy/xyCOPICAgAJmZmfjDH/4ADoezqEnrXMo8NjaGN998E8HBwXj00UdhZ2eHiooKfPLJJygqKsJ///d/Txj4ExUVhU2bNmltW8g5Fd98803cuHEDO3fuhKenJy5cuIBXXnkFBw8enHZNQ0M9d9VmW+6//OUvcHBwwIYNG+Di4oK6ujqcOHECOTk5+OijjyYk5P7+/hNuwCYbGLYYZltmtV//+tewsLDQ/M3lTmzMMqZj/dJLL2F0dFRrW0dHBz788MNJr9OLfe5OZ3BwEIcPH4aLiwv8/PxQXFys83Nncs3LycnBv/3bvyE8PBwvv/wy6uvr8dlnn6G/vx+//vWv569ADJlXIyMjzODgIMMwDHP9+nUmKSmJKSoq0vn5X375JZOUlMRUVlZqtjU0NDCpqanM+++/r9k2NjbG/OhHP2JeeeUVref/4Q9/YDZs2MBIJJI5lmRmrl69yiQlJTHXr1/XbOvv72c2b97M/P73v5/Va/7pT39ikpOTmc7OTs22trY2Jikpifnqq6/mGvK8mGu5//jHPzIbNmx46H5dXV1MWloa884772i2qVQq5p/+6Z+YH//4x4xCoZhV/LMxlzLL5XKmrKxswvZPPvmESUpKYvLz87W2JyUlaZV5oVVUVEz4fo2NjTG7d+9mXnzxxWmfa6jnLsPMrdyTXd8uXLjAJCUlMWfOnNHavnPnzgnlZstcyvzRRx8xSUlJTH9//7T7Gduxnszhw4eZpKSkCef1Yp+7DyOTyZienh6GYRimqqqKSUpKYs6fP6/Tc2dyzXvyySeZn/70p8z4+Lhm2wcffMAkJyczDQ0Ncy/I/6E+b/PM0tISYrF41s+/ceMGAgICEBgYqNnm4+ODiIgIXL9+XbOtqKgIg4ODeOyxx7Sev337doyOjiI7O3vWMcxGeno67O3ttarKbW1tkZaWhszMTM06sbqSy+VIT09HeHg4nJ2dJ91ndHR00jVpF9N8lVupVGJkZGTKxzMzM6FQKLB9+3bNNg6Hg8ceewzd3d0zruGdi7mU2czMDCtXrpywPSkpCQAmTKCtJpPJIJPJ5hj5w6Wnp4PH42Hbtm2abUKhEFu3bkVFRQU6OzunfK6hnrvA3Mo9WZcQ9XejoaFh0ueMj49PqMFZbHMp84NGRkbATDFpg7Ed68lcuXIFbm5uk57XwOKduw8jEAhmPcGurte8hoYGNDQ04JFHHtFqIt2+fTsYhsGNGzfmVIYHUfKmR1QqFerr6xEQEDDhscDAQLS2tkIqlQIAamtrAWDCvitWrACXy0VNTc3CB/yAmpoa+Pv7T2g2CAwMxNjYGJqbm2f0ejk5ORgeHsb69esnffzw4cPYuHEj1q1bh/379yMvL2/Wsc/FfJR7bGwMmzdvxubNm7F161a88847muOsVltbCwsLC/j4+Ex4H/Xji2W+jzUA9PX1AYBW06LaxYsXsWHDBqxfvx5PPvkkLl++PLvAdVBbWwtPT88Jzdbqz/nu3buTPs+Qz111TLMp91TU60I/OMG5WlFRETZs2ICNGzdi165d+Pbbb2cX9BzNR5mfeOIJbN68GZs2bcLrr7+u+R4/+B6A8R7rmpoaNDY2TtnvdjHP3YWk6zVPfTx/2A/O0dERTk5O83qdpj5vekQikUAul096d6De1tPTA29vb/T29oLH48HOzk5rPzMzM4jFYs3Fc7H09fUhLCxswnZ13L29vVi2bJnOr3f58mUIBAKkpKRobedyuYiOjkZycjIcHR3R1taGo0eP4pVXXsGbb745oyXK5sNcy+3g4IA9e/Zg+fLlYBgGubm5OHnyJOrq6nDw4EHN3Vtvby/s7Owm9Ad78HuxWOb7WAPA119/DSsrK8TGxmptDwkJQVpaGtzc3NDb24vvvvsOr7/+OkZGRibUZsyH3t7eh55/kzHkcxeYfbmn8tVXX4HH4004f319fREaGgovLy9IJBJcuHAB//M//4Oenh78/Oc/n30BZmEuZba2tsaPf/xjBAcHw8zMDGVlZThx4gSqqqpw6NAhTWJk7MdanYxNdpO92OfuQtL1mqc+nlN9vvN5vCl5m4ZKpdK5WU4gEMx5hQV11bKZmdmkr//gPjKZbMqRKwKBYE7V1LMpt0wm08T4w8fV8epqZGQE2dnZiI2NnTBazcXFBW+//bbWto0bN+Kpp57C3/72tzklb2yU+4UXXtD6e+3atfDy8sKhQ4eQnp6uGYggk8l0+l7MFNvHGgA+//xzFBQU4F/+5V8mHO93331X6+8tW7bgZz/7GT744ANs3rx5Qmf4uZrt56wv5+5szef36/Llyzh37hz27NkzYfDKn/70J62/t2zZgt/+9rc4evQoHn/88Sm7SCyEuZR5586dWn+npqYiMDAQr7/+Ok6cOKEZTWnMx1qlUuHatWvw9/fHkiVLJjy+2OfuQtL1mqduPp1q3x+2qMwFJW/TKC0txcsvv6zTvp9//vmEJq2ZUn+ZJ/sxVX8p1PsIhUIoFIpJX0cul8/pxJhNuYVC4aR9nX4Yty7S09Mhl8unbDL9IbFYjM2bN+PLL79EV1fXrH8A2C632q5du/DRRx+hoKBAk7wJhUKdvhczxXaZr169ig8//BBbt27V6W7czMwMP/7xj/H222/jzp07Oo0InInZfs76cu7O1nx9v0pLS/HnP/8ZMTExeP755x+6P4fDwa5du5CXl4eSkhJs2LBhZoHPwXyfU+vXr8ff/vY3FBYWapI3Yz7WJSUl6O7unpDITmWhz92FpOs1T520TbXvfB5vSt6m4e3tjQMHDui072w7Qj5ILBZDIBBMWrWq3ubo6Kh5P6VSif7+fq0q+fHxcUgkkjnFM5ty29vbTxv3TOK5fPkyRCIREhISdH6OOmEbGhqadfLGdrnVhEIhxGIxJBKJ1vsVFxeDYRitGt4ffi9mis0y5+fn47/+678QHx8/oyH06uP74OczXxwcHNDd3T1h+8M+Z305d2drtuV+0N27d3HgwAH4+vriD3/4g85zWi3k8ZzOfJT5h5ydnSect8Z4rIH712kulzujeSbZOtZzpes178FmVBcXlwn7PjiYaa4oeZuGg4ODzhP4zQculwtfX19UV1dPeKyyshLu7u6wtLQE8I+5cqqrq7WaCqurq6FSqeY0l85syu3v74+ysjKoVCqtTp1VVVUwNzfXab4z4H5/i+LiYmzatGnSqueptLW1AZi8w7uu2Cz3g6RSKQYHB7U6e/v5+eHs2bNobGzUaqKorKzUPD4bbJW5srISr732GlasWIHf//73M5q8Un2sJ+sMP1fq+Z9GRka0OnQ/7HPWl3N3tmZbbrXW1lb85je/gZ2dHd566y1NWXWxkMdzOnMt8w8xDIOOjg6t42eMxxrQng1gJkkuW8d6rnS95qmP5507dxAUFKTZr6enB93d3VojfOeKRpuyqLOzc8LUCCkpKaiurtb6EWhqakJxcTFSU1M12yIiIiAWi3Hq1Cmt5586dQrm5uaL3nE/JSUFfX19yMjI0GwbGBjA9evXkZCQoJWItba2orW1ddLXuXbtGlQq1ZRNpgMDAxO2dXd34/z581i2bNmsa6Bmay7llslkk/aB+PTTT8EwjFbn/cTERPD5fJw4cUKzjWEYnDp1Ck5OTggJCZnvok1prse6oaEBr776KlxdXfHnP/95yqaEyY61VCrFsWPHYGNjo9MKFjOVmpoKpVKJ06dPa7bJ5XKcP38eQUFBmrtpYzp3gbmVu7e3F7/+9a/B5XLxl7/8ZcofZolEAqVSqbVNoVDgyy+/hJmZ2YxWoZkPcynzZN/NkydPYmBgQOu8NbZjrfaw2QDYOHfnS09PDxobG7Wau3W95i1duhTe3t44c+aM1nf95MmT4HA4EwbwzAXVvC2ATz/9FMA/5jj6/vvvUVZWBgB4+umnNfv98Y9/RElJidYXYvv27Th79ixeffVV7N69GzweD0ePHoWdnR12796t2U8oFOK5557DX//6V/zud79DTEwMSktLcenSJTz//PNzmmtuNlJTU3Hs2DG8+eabaGho0MxArVKp8Oyzz2rt+8///M8AgKNHj054ncuXL8PR0XHKC/l7772H1tZWREZGwtHRER0dHTh9+jTGxsbwq1/9av4L9hBzKXdfXx+ee+45rFu3Dt7e3gCAvLw85OTkIDY2FomJiZrnOjs7Y+fOnfj666+hUCgQGBiImzdvoqysDP/+7/8OHo+3SCWeW5mlUil+85vfYGhoCLt3754wz5W7u7smEf3uu++QmZmJhIQEuLi4oLe3F+fPn0dnZyf+7d/+bdJO13MVFBSEtLQ0fPDBBxgYGICHhwcuXryIjo4OvPrqq5r9jOncBeZW7t/+9rdoa2vDnj17UF5ejvLycs1jdnZ2mpn3s7Ky8NlnnyElJQVubm4YGhrC5cuXce/ePezfv3/RmxDnUuadO3dizZo18PX1hUAgQHl5Oa5evQp/f/8J86cZ07FWm2o2ADU2zl1dHD9+HMPDw5rmzqysLHR1dQEAHn/8cYhEInzwwQe4ePEivvnmG7i5uQGY2TXvF7/4BQ4cOIBf//rXWLt2Lerr63HixAn86Ec/mnRgx2xR8rYAPvroI62/z58/r/n/g8nbZCwtLXHw4EH87//+Lz777DPN+oi//OUvJ9zRbt++HXw+H9988w2ysrLg7OyMX/7ylzp3IJ1PPB4Pb731Ft59910cP34cMpkMAQEBOHDggCYxeZimpibcuXMHu3btmnSZGQCIjo5GW1sbTpw4gaGhIYhEIoSGhuKpp55i5W5uLuVW9+vLz8/HxYsXoVKp4OHhgf3792P37t0TPoMXXngB1tbWOH36NC5evAhPT0+89tprOg/smC9zKfPg4KDmYvn+++9PeHzTpk2a5G3lypW4ffs2zp49C4lEAnNzcwQGBuLVV19FZGTk/Bfs//y///f/4OLigu+//x7Dw8Pw9fXFn//8Z4SHh0/7PEM9d9VmW271vGAPrmupFh4erknefH194ePjg8uXL2NgYAB8Ph/+/v74/e9/j7S0tHkvjy5mW+b169fj9u3bmsFVLi4u2LNnD5566imYm5tr7WtMxxr4x2wAcXFxEIlEk+7D1rn7MN98843W2qwZGRma5HTDhg1Tlmcm17yEhAS88cYbOHz4MA4ePAgbGxvs27cPzzzzzLyWhcNMNTU0IYQQQgjRO9TnjRBCCCHEgFDyRgghhBBiQCh5I4QQQggxIJS8EUIIIYQYEEreCCGEEEIMCCVvhBBCCCEGhJI3QgghhBADQskbIYQQQogBoeSNEEIIIcSAUPJGCCGEEGJAaG1TQgjRUVFREU6dOoXbt29jYGAAFhYWWLJkCdLS0rBt27ZpF9x++umnIRAIcOjQIbS3t+OJJ55ATEwM/vKXvyxiCQghxoCSN0IIeQiFQoG//vWvOHPmDCwsLBAbGwsPDw+MjIwgPz8fBw8exOnTp/HWW2/BxcVlwvNbW1tx7949PPfccyxETwgxNpS8EULIQ3zwwQc4c+YMAgIC8Mc//hFOTk6ax5RKJT799FMcPnwYr7zyCj744AMIhUKt52dmZgIAEhMTFzVuQohxoj5vhBAyjebmZhw9ehRisRh/+tOftBI3AODxeHj22Wexbt063Lt3D99+++2E18jMzISbmxuWLVu2WGETQowYJW+EEDKNixcvQqVS4ZFHHoG9vf2U+z399NMAgLNnz2ptHxgYwO3bt6nWjRAybyh5I4SQady+fRsAEBkZOe1+Pj4+cHR0RFtbG3p7ezXbs7OzoVQqkZSUtKBxEkJMByVvhBAyDXUi5uzs/NB91fv09PRotmVmZsLGxgYrV65cmAAJISaHkjdCCJlnKpUKACCTyZCfn4+4uDjweDyWoyKEGAtK3gghZBoODg4AgK6urofuq95HPaghPz8fY2Nj1N+NEDKvKHkjhJBphISEAAAKCwun3a+xsRE9PT2wtrbWDGzIzMyEQCBATEzMgsdJCDEdlLwRQsg0Nm3aBC6Xi7Nnz2JgYGDK/T7//HMAwIYNG8DlcqFSqZCdnY2oqChYWFgsUrSEEFNAyRshhEzDy8sLu3btwuDgIP71X/9VazACcL9/26effopLly5BJBJh586dAICKigr09/dTkykhZN7RCguEEPIQ+/fvx8jICM6cOYO9e/ciLi5Oa3mslpYWCAQC/Od//ifc3d0BADdv3gSXy0VCQgLL0RNCjA0lb4QQ8hB8Ph+//e1vsWbNGpw+fRrl5eXIyMiAUqkEAAQHB+O1116Dh4eH5jmZmZkICgqadmJfQgiZDUreCCFER5GRkVqT9TY3N+PFF19Ee3s7GIbRbG9oaEBLSwt+9KMfTfo6bm5uyMjIWPB4CSHGifq8EULILHl5eeH111+HRCLBv/zLv6C7uxsALURPCFlYHObB20VCCCEzlpWVhTt37sDHxwdr165lOxxCiJGj5I0QQgghxIBQsykhhBBCiAGh5I0QQgghxIBQ8kYIIYQQYkAoeSOEEEIIMSCUvBFCCCGEGBBK3gghhBBCDAglb4QQQgghBoSSN0IIIYQQA0LJGyGEEEKIAfn/YLphGvDezE0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWF0lEQVR4nO3dCbhN9f7H8W/GhDKLuBKSBk3klmQWiQhNV7PhKpLqqu5fg5DSrAillFnJUDdSEqVBSrjmElGZZZ7t//P53WftZ5999jlnn+Psffba5/16nuMca6+99m8Ne63v+v6GdVIgEAgYAABAgsuT0wUAAACIBkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBi4+cdNJJ1qBBg5wuhq9oe2m7+Qn7GYlmzpw57ricNGlSThcFOWj//v12+umnW8eOHXOsDAQtadAXNPynYMGCduaZZ9rtt99uK1asyOkiIkY+/fRTa9u2rZUvX94KFChgxYsXt7PPPts6dOhggwcPttAnX6xbt84dG3fccUeOlhmJzc/HyfHjx61Xr1524YUXuu9AqAULFtijjz5qLVq0cBczrWOFChWiWu7s2bPd90zv07lV37err77aPv744xTzbdiwwe655x6rU6dOinnr1atnb7/9th05ciTVsjdu3GgDBgxw5a1atarlyZPHle3nn3+23GhdNh1/p5xyitvf48aNs++//95yQr4c+VQfeeKJJ4J/79q1y31J3333XZs8ebJ99dVXdtFFF+Vo+ZC9nn76afu///s/y5cvnzVv3tyqV69uefPmtV9++cXmzp1r77//vjuB6nUgN5gwYYItXrzYxo4dmyprqYvXK6+8Yvnz57dzzz3XNm/eHNUye/fubc8995wLcFq3bm2lSpWyrVu32g8//GBffPGFXXPNNcF59d3TZytoadOmjZUoUcK2b99uM2bMsLvuustGjx5ts2bNSvGdXLhwofXp08eVt3LlynbaaafZX3/9lY1bJffq2rWr9e3b150ntd3jTg9MRGraNGltnu7du7vXbr/99riXqX79+nH9TL/T9or2MF+3bl0gb968gVNPPTWwZMmSVK8fO3YsMHPmzMDx48eD03799ddsPxbYz8knFsdJvFxxxRXuO7F///5Ury1atCjw448/Bg4dOuT+r3U844wz0l3eiBEjgtvCe1+ow4cPp/i/5tF3L9J8DRo0cMuaOHFiitc2bNgQmDdvXmDXrl0pzgNr1qwJ5Ea/ZvPx989//jNw0kknBVavXh2IN4KWLAQt06dPd69dc801Kab/9ddfgUGDBgUaNmzovrj58+cPlCpVKtCqVavA119/neZnrVixInDnnXcGKlWqFChQoECgdOnSgSuvvDIwdOjQqC5m+kwdQDq5bN++PUV5evbs6cpSsGDBQPXq1QMvvPBC4Jdffol4AOv/mq7XBw8eHLjgggsCJ598corP1EF66623BsqXL+/Wr1y5cu7/kQ5eb3n6woSbM2eOe+2JJ55IMd07uRw5ciQwYMCAQNWqVd02qVChQqB3794RT3Iyfvz4wCWXXOLKq+3XsWPHwO+//56poEUnPs173XXXRTW/yu4dJ+E/b7/9dnA+nXBff/31QK1atQKFCxcOnHLKKe5v7d9IJ+PM7udvv/020K5du0DZsmXdPtG26tKli1v/cNq3nTt3DlSpUsVtq+LFiwfOP//8QNeuXQPbtm2Lar298mn52s7a3lqWtv/YsWNTza999uqrrwZatGgR+Nvf/ub2pz63cePGgY8//jjiZ+i7oB9ddHr16uX+zpcvX/B40Wf37dvXbQtvvXUs3nzzzYFly5ale9L++eef3fYqUaJEoEiRIoGmTZsGli5d6ubbsmWL2z6nn366+85oP33++ecRy6hjdMiQIYE6deoEihYtGihUqFDgoosucusaul+jPU5EQbG2U8mSJd12OuusswIPPfRQYOfOnZneRrt37w489dRTgfPOO8+VT+uq5d1www2BhQsXBqKhc5PKqf0cjYyCloMHD7rjRcdBWt/lzHj55ZfdZ/bv3z/d+U40aIl2X3/zzTfuc9q0aZPmss455xy3b0O/w1nd93v37nXzVKxY0b1H3+tnnnkmxY1VNMef5h81alTg8ssvd9csHfs6jzRr1iwwYcKEVJ//xRdfuPc/8sgjgXgjx50Fn332mftdq1atFNPVzkUps6uuuspatmzp2kL89ttvNn36dJfK/PDDD12VQ6j//Oc/rt710KFD7rWbb77ZpTGVjh00aJB169Yt3brm+++/31599VW7/vrrXQr15JNPdq8dPHjQGjVqZD/++KNdfPHF9o9//MNVb6me98svv0x3/Xr27Onm0TooTavqEVEdZpMmTWzPnj0upat08MqVK23MmDE2bdo0t11q165t2eGWW25xZVBd+amnnurqubU9tmzZ4uqxQ7300kv2wAMPWLFixey2225zvz/55BO74oorXFo4WiVLlnS/165da8eOHQuud1rUWFb7Sulx1fcrde0JrTa89dZbXRq9YsWK1qlTJ5eynjJliqtmUhWj9lt60tvPb731lnXp0sXV82uf6DPWrFljb775pjvevv32W/vb3/7m5v3zzz/d/tm9e7fbr+3atXPHya+//upS7N27dw9ug4zs3LnTbV9t6zvvvNNtBzXS1HH2+++/27/+9a/gvDt27HDHlOZv2rSplS5d2pVF5VM53njjDbddwh0+fNgdw3p/s2bN3HGgVL/MmzfPnnnmGWvYsKFbjyJFirj1VvWdvm/z5893+yRS3b6qGWrUqOHq9/V/7Qvty2+++cZ9B/U5N954o/tcVY3oGFy9enVwO4raUbRq1codZ6pC1PGqfaIGqz169LDvvvvObdPMHCdKuT/55JOu+uPaa6+1MmXK2JIlS+z55593x7/Kp7JFs40UP2hdvv76a7v88svd9lX1idp6qIxqD3LppZdGfa678sorLbvai6kaSMez2pno/Pff//7XbbvLLrvMlTVa+o567V9q1qxpsZKZff33v//dzaNyqQor/Puk5gU6Z+qY1X4+kX1/5MgR1wbojz/+cMeo9u/UqVPtkUcecd9rr2lDNMefrlsDBw50x84NN9zgzpv6juqc/95777nvQyjtK1UJan/qfXEV9zDJJ7xIVFGq96O7GWVAdLd77bXXujuZUMpsbN26NdWylKrUXaAi7FCaV2lX3SUqco30vrTuwA8cOBC4/vrr3TRVV4XfsesOS6/ddNNNKaLu3377zUXS6WValEVZu3Ztite0DJVfr48ZMybFa4rENV2ZnNBynEimRXftoXciuqPQXUSePHkCf/75Z3C6lq3tpzv30M9RObztE+1hrs/Q3Yvmr1evXmDkyJGB//73v4GjR49mOe06btw49/rFF18c2LNnT4rPuvTSS91r4dmJaPfzqlWr3Lpru2zcuDHFMj777DO3rULv+JQ903J0dxpp3SOl/yPxtmmHDh1SlEfHjPaDyqSMTujddfix7H1flAXQe8I/29sPysaobOE2b96c6vsnP/30k8tmNW/ePOJ+inRX7n1XVA5lnELX6d1333Wv3X///Sne4929ap+EHh/6+6677nKvTZ06NerjRNkcva473fA7a90NRypDettI1Ztp3fFr/Xbs2BGIxo033uiWE21mJqNMy+OPPx68Q1eGL/zO/6qrrnLZrkh0vtR21zK6devmsrB6zy233JJhuU4k05LZff3000+7acrChLvnnnvca8rWZ8e+b9GiRYrvjr4Xp512mvsJrWbL6PhT1lH7bd++falei3RNE2WadI6J9D2MJYKWNKSVTtPPueeeGzENnp4ePXq4965fvz447fnnn3fT7rvvvqjLpC+fLuZ169Z1wdOzzz4bcV7vAh8pYNBJO72gJdJF7auvvgp+sSJRMKfX586dmy1By6effprmCe/DDz9MtS56LZwunNoGmYnNFy9e7L6MoftbqWCdTJUe1gU4VEYngyZNmrjXP/nkk1SvKbDQa6pOzMp+1olM83700UcRP1sXLLXR8U4qXtAyfPjwwInQMrTc8MA29AT/5JNPRrUsVVeGHzehJ2UFIZml6liltyOdtM8888xUQai+k3pN1XbhJ2DNqyoXtZ0IvejrJK8qJFUbhNOFR/tMQV20x4n2lV5XkByJjklVq0S7jbygRdVlJ0Lfdy0nUlVjVoIWtYXwjh9VP3/55ZcumFd5VRWRVtVoaFWV96NtrKqR8DYw2Rm0ZGVfK0DXeUdVi6FUHaZllSlTJsWyTmTfr4mwPrfddpt7zavyjDZo0Xcj/PyWHt0YaJnaL/FE9VAGQru37tu3z5YtW+bSb0qD629Vt4RSWlppOKXzVJWh9G0opc69NLNS96LUXrTUOr9u3bquCkPVMkpVhlP6Xy3uVVWgLtrhMkr1KvUXTtVMolR0JJquqo5Fixa56rETFV71Jlofr2oivFz169dPNf9ZZ53l3rN+/fqoP1dpZq2Deh8o/avla1+qOkI/I0aMcNNV9RcNvV9p8EjjrqjMqoLS52VlP6tcol5Nkbof6vhTCl1VG6oKUPXRv//9b7v33ntdqlupZX2GqvkyO5aNjmGvqiaU1lOp7vB10ndFvUW0DZV2Vvo6/HsRTin49NL+qloYNmyY21fbtm2zo0ePpnhd08qVK5dimtLh4dV+6j4r6tZetGjRFK9p3rJly7pqFY+2p6pjqlWrZv37949YtkKFCmVqWATtS6XblYrXTzidR1StEl7lkNY20j7Vuo4fP94d/9ddd5373ut7pW780dLnSbTHe0ZU1SmqylA1nnd+uuCCC1w1napWdDxre4RXFZ1zzjnufKxjWseL5n/88cfdeUfHQmh1S3bJyr5Wj6jGjRu7qpPly5e7fSGqDtWy1H08tKdTVvf9aaed5rpzR3OezIiuZ6p+VllVPaRzk7Z/etXr3vbW9yyeCFoyoXDhwu6C/sEHH7gDU20s/vnPfwYPEn2J2rdv704kqruvUqWKe48uWurGpy+j2q54vC54Z5xxRtRl2LRpkwtK9PlpBR96XXSyjSSt6R6NhRBO7WEk/CLg8aZnV7dCtZUI533RddIKL1da66R1yUzQ4tHJPTRwUl20xudRWyNdlF9++eWolqPy6csd6UKh9VFXTwUXWdnP3gVFwUB69u7d635XqlTJrYfqzmfOnOmOY9Hx+9BDD9l9991n0Upve4fuFy84V1CroEIncwVPqp/X9+Knn35y7aFCvxce1eunFUzpxkDtInQx1XdNQZTGkND8qtfXfoq0zEgnYe+4SusErddDxwLxtrva0OhYyGi7R0PL1PZJb3neMkMvXGltIwVbn3/+uT311FOunc/DDz/spiso03GsdghqB5QRXZBFQab3d3Z8r9XOLvyGSvtPgfTIkSPdcZpW+xatm/a32knpOFQ7QAUvr732mmW3rO5rtZdS0PLOO+/Ys88+66bpb9H2z459XyzCOTKt82RG1C5QN3lqL6i2YvrRctTm7IUXXogYHB04cMD9zo7jIjMIWrJAB4vuCHQXrR8vaHnsscfcxUl3fmroF963XUFL+HJEdw2604iGGlKpUZ2+FMpo6MSkgy2U12ArrTETMhpLIdJJ0Duh62Iaie6eQ+cTXZQk/A44O4Mb7/O0Tuedd16q19Mqb2YpWNVJUQ2Rtc0zUz7dXemip7upUNouuksJb2AX7X721l0BQqRlRKLjcuLEie6zdWFXQ0vdYekCoAD77rvvjmo5aR1D3vYOPQ50h6oTnDJU4RknXTwVtESSVsCisivwUoCk7194IO1loGLFWzcNjOYFftmxTGUhdKxkRnoZMgV0uhjpR4Oq6fwzfPhwdxzr++c1Hk2PgiLvwpod2RadN9O74Hqf4V0QM+JlqXVTmEj7WvPrO6ksqcZ+8saV0fc6vIF4Vvd9dlIgqJsA/egmStkrNUJX5kdZUv2osX+kgM47RuKFEXGzyEu9eelO0YlB6bXwgEXz6CAIp5bmooM5MzSEsg4otRrXBU0pzFD6sugCp2BIvSPCRSpLRnRnlN7JQRckueSSS1KdgDSiZTgFdtnB+7zwgFBUtRLps7PKqzoIrTL0qhrSuqvRdtP+V7VIOE3T+0K3WWb2s3f8ZNQbLBLdRanKSHfgqkIQZSiipV5xkY4t7/jwjhfve6FsU6Qqskj7LSMK9HTRVW+k8IBFd6NelWGsqJpCF11lkCKNxhpJRseJ9qXOKbo4xILulBWQansrw5JWoBjOq3pSj5fsoEybAi1Vm4SeOz3qSSSRqh4j8aoVYzXYY1b2tZd9UDWLvru6MVDvQQXb4VmWeOz7aI6/UApC1EtRvQGVIVVTA2+/hFq1apXL/EQ7AnJ2IWjJAp3c1U1Ud846cXqU7lQaUQeqRxc43RXqSxpOB7ACjNdffz3iRS20Hj2cqqGU9tUJXPWP4Qe8uv7qpKAhl0MvsrqIR1u1EUptH3SXpIBHnxtK/9eFU20CQqsyvLYx6tIaaunSpS69nx1UF6v9oGxB6EVU665ut5FOjGlRSnrUqFER7/J0wvLSvKFtdhSY6SSsi3gkGrFTtB/03A6P/lbbKEkvu5HeflYXZa276sjDAxqvLjw0oNFoo6HVNuFZE6Xno6WTnwKe0O2r74Qec6ALSOizSfS90F2kunCGUjWA2tZklk6qKqvWJzQtr32kjFGs69i1furqquyiqtQiHS96LfQ7n9Fxon0onTt3TnH+CG1P57WBi4b2hYL2cLo4qtos2pS+F2hm5rPToypKdR/Wdgg/B2h0VR0PChJCh4ZQEBrpYqt9r/0tGp4hUfa1xxsyXyOo60fL0vkq1vs+kvSOPx0PaosZTt8nL/sTfm7Q8aXzRk48243qoQwo4Ag9eHRwepkRpf1C6/Z18KmNi+4y1Q9fFxQdDHqPvqhqiBVK7RkUgevCpPEmlOrUnY3aMugErwBDB0da1DZAd0xKRergUUTvpR41TLaCK92pKyLWGA66YCl61kVXr3nVN9HQgak6WbUfUJ99NezTXYiWrWUpC6EvZugyNY8asOlOXgGYxsfQl0Zl1mvZ8fA1XRBV//rggw+67a6yKd2qk5/uxrU9wy+WadEJQ2OOKBhQ8KWsmdon6aSkNiCq+tAdq+rPPbpr1XopONAJSYGb7mq0b/TZakCr9dW6qvpKYyR47S60b1XeSCeyaPaztr/GaVFgpGXrRK/P18lG21ll0pgo3l2yqgNUPaB1U3srnch0F6XjUqlfpYajpXXT+BTK1ujY8sZp0W+19dLyPVqu9oc+1xsDQpk2BcBeUJYZOsZ0AdF+V7WqjiUFaMr26SSr75KX+YsVVQWrek0NgbX9dEeqtmlKrevGRd97NdL3GmFmdJwoA6H1UXCr74zaEijboAuz2mQpQ6Ltp+MwGiqb7pY1Lo8yv2psrMacOo50fHhtXDKi9fLGPYrUEFXHlsodHhiFPuNGY43oXOcZMmSIa6itsZXUgFbfW30X9J3QNtEYQ6HVi2qXo+2pG0Sv7ZLOjToPexk3bbdwoWXwvgNaby9jqurXaMafyey+Dr3R0/lCVSzeWC+RqlKye99Hkt7xp22q5aus+j4rsFQbJrXJUQNjzRNee+AN36/rXNzFta+Sj0Tq6qxueur61rp168CsWbMivk/96i+88ELXfVIjG6o7m7rzeV1B1dU3nLq6hY4yqy5x6mIb3jU1re6AWqZGu9Q4EwsWLEjRHU9drTVGjEZL1Dgq6mb93XffuWVptNxQ6XVR9qxcudKNjqntoK6g+v2Pf/zDTY9E48JoBE6VTaOmqhvg5MmTM+zynNa2DR3FMXw8FI2Foq6uGodGZcrsiLjq7qrl3HHHHa47pvaf9rnKrq6fAwcOTDHWikfdDjVuj7oNqvtjeBnVbVLdpTUui7pP60fj0Lz22muZGhE3rf2s40v7LnS0WY1/olFxZ8+enWLkXHU5rVmzZnB/qGu81je0e2RGvPJp+2o7qzumtru2f1pDAaibukYTVfk1hoRGoVU357T2qTfiZ1rUZVTdpWvUqOHWQ6Pi6rjUoxgiHccZdflMr6ttWmXR2EUax6VRo0bB8Wn0HVY3dY3mrGM/M8eJqAuwus/qO+uNqK3zicaI+v7776PeRup2++ijjwZHDNZxoa7I6qaa1ijEafG61i9fvjzVa973OL2fSOcTjcWicU90zGo9vXOlzk3h1KVfx1m1atXcuFY67+iY0/g0OkdG6oosGZUr0nkkLZnd155+/foFP+/9999P9zOya98/kca1Jq3jT13GNaSCjg2NrOudQ/V91UjekUYu1vlQ+yA7RjXOrJP0T/xDJeQkVddoFFXdOaiBMJAZyhSpqipWjR+RWJQFUVZPWeTsqtaFfy1ZssRlevv16+ceShlvtGlJYpHqR1VtoINN9atKVwJAelRVobYjGqMo0ng6yF0ef/xx12NWVfI5gTYtSUz1japLVT2l6qXVUPWjjz5yjUDV1dQbVAsA0qM7anWJ1zkkM+NKIbns37/ftUFSO7V4j8/ioXooiQ0dOtQ1vlRjMTXCVWMsHXBqaKpGekBWUD0EIKcQtAAAAF+gTQsAAPAFghYAAOALSRO0aDAcDXQW/vRYAACQHJImaNHIgRoGOStP9AUAAIkvaYIWAACQ3AhaAACALxC0AAAAXyBoAQAAvpBrhvE/duyYG9I+WeTPn989WhwAgNwiVwQte/futY0bN1oyDf6rodQrVKjghuYHACA3yJcbMiwKWE455RQrXbq0u9j7nYKvrVu3uvWqVq0aGRcAQK6Q9EGLqoR0kVfAklNPpYwFrY+euKr1I2gBAOQGuaYhbjJkWJJ5fQAAsNyeaYnkh/fXxGzZl7avFrNlAwCQm+WaTAsAAMhlQcv+/fvtrbfesoceeshatmxpV111lc2YMSPivMePH7epU6faXXfdZU2aNLFrr73WevbsaT///HOq+caNG2c33HCDm++OO+6wzz77zJLd9OnTrUaNGlazZk3r3bu3lSpVyrVTkZtuusn1egIAAFmsHtq1a5eNGjXKypYta1WrVrVFixalOe8zzzxjn376qV199dV2/fXX24EDB2zNmjW2c+fOFPO98cYbNnbsWGvVqpWdc8459tVXX9lTTz3l2m00btzYktGWLVvszjvvtC+//NLOPfdcGzFihG3fvj34+p49e+jODADAiQQtJUuWtClTprjfK1eutC5dukSc7/PPP7eZM2da//79XTYmLeq6O3HiRGvbtq316tXLTVNGpkePHjZ06FBr0KBBUvaO+fbbb12GRQGL3H333W6dvW7amzdvtptvvtmWL19u7733np199tk5XGIAAHxWPVSgQAEXsGRk0qRJrupDAYuqf5RliURZlaNHj7qgxaMMS5s2bVxAs2zZMssNQnsD/fLLLy5Qe/fdd+3555+38ePH52jZAABI2oa4+/btsxUrVriqHlV7tGjRwlUR3XjjjS4DE0rVRRo/pVKlSimmK+DxXk9Gl19+uS1ZssRlq0TthA4fPuz+Vnbltttuc0P1a9uUKFEih0sLAECSdnn+/fff3YBuClCUMejWrZsVLlzY3n//fevbt6/7u06dOm5eteMoXrx4qnFHvGzOtm3bIn6Gpoe2AVm/fr35bXA4BSrKMCl71bx58+A6K2jx/lbV2X333ZfDpQUAIEmDFq8qSI12hw0bFmy3UbduXZdtUbWHF7QcOnTIZRTC6ULuvZ5Wzxs1CPbzWCrXXXed+/GMHDnS/VaWqkyZMq6KrFGjRm6ofgAAYun1P2ZmOE+38s0t6YKWggULut/lypULBiyi5/8ocJk1a5Zrx5IvXz43b6SnL3tVJd6ywrVu3dotKzTToka/yWD06NE5XQQAABJOTIIWjTcikdpiFCtWzAUsBw8edF16VQ2ibtOqTgqtIvKqfrxlRfqMtF7zq7SqwgAAQIwa4iqYUMCi3j/hFIyo6kdZF9FYLwpgwtukqF2H9zoAAEDMhvFXWwwNoPb9998Hp/3111+ui/Mll1xiefL876OvvPJKV02ksV88yrpMmzbNNVY9//zzY1VEAACQ7NVDkydPdkPMe1U48+fPdwGKtGvXzlX7dOzY0ebMmWOPPfaYG55f0xSIqGoodEA6NTjt0KGDG4tEr6mrs0aJVXdgvTcZB5YDAABxClrUDXfTpk3B/8+bN8/9SLNmzVyAouqhIUOGuB+N6KqA5LzzzrM+ffqkqvLp2rWrFS1a1PUI0ii6FSpUcPM1bdo0K8UDAABJKEtBi0a7jUb58uVtwIABGc6nqiJlZvQDAAAQ1zYtAAAA2YmgBQAA5N5xWpJh1L+syunRAgEASFZkWgAAgC8QtOQgjQCssWtCB+Vbt26d+/umm25y3coBAMD/ELQkqD179riu4wAA4H8IWhLQsWPHbPPmzXbzzTfbhRdeaKtXr87pIgEAkOMIWnKQRvtVgOLRM5jkl19+ca+9++679vzzz7vRggEAyO0IWnKQRgb+7rvv3N8ffPCB7du3L/iwyNtuu83y589vhQoVivi0bAAAchuClhz00ksvWc+ePd0DJBctWmQlS5YMBi16iKT3yITmzelGDQBArhynJVHGUmnRooWtWbMm+P9+/fq53ytWrHAPkmzTpo17Wna1atVysJQAACSGXBm0JLrRo0fndBEAAEg4VA8BAABfIGgBAAC+QNACAAB8gaAFAAD4Qq4JWgKBgCWTZFsfAAAst/ce0gBtejDh1q1brXTp0u7vZAhYtD5aF60fAAC5QdIHLRoOv0KFCrZx48bgE5STgQIWrZfWDwCA3CDpgxbR05I1QNuRI0csWSjDQsACAMhNckXQIrrAc5EHAMC/ck1DXAAA4G8ELQAAwBdyTfXQiXrss3EZztOvyS1xKQsAALkRmRYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAACSs8vz/v37bcKECbZ8+XJbsWKF7dmzxx599FFr0aJFmu85evSo3XnnnbZ+/Xrr1q2b3XzzzSleP378uFvm1KlTbceOHe6ZOh07drQmTZpkba0AAEDSyXSmZdeuXTZq1CgXgFStWjWq90yePNm2bNmS5utvvPGGDRs2zGrXrm09e/a0smXL2lNPPWWzZ8/ObPEAAECSynTQUrJkSZsyZYq99957LmuSkZ07d9o777xjt9wSeeC1rVu32sSJE61t27b2r3/9y1q1amXPPPOM1axZ04YOHWrHjh3LbBEBAEASynTQUqBAARe4RGv48OFWsWJFa9q0acTXv/rqK1d9pKDFc9JJJ1mbNm1cQLNs2bLMFhEAACShmDbEVbuXmTNnWo8ePVwgEsmaNWusUKFCVqlSpRTTa9SoEXwdAAAgZs8eCgQC9sorr1ijRo3s/PPPtz///DPifNu3b7fixYunCmq8bM62bdsivk/T9V6P2tgAAIDkFbOgZcaMGbZ27VrXoDY9hw4dsvz580eshvJej2T69OmuQTAAAMgdYhK07Nu3z0aMGOG6NqsnUHoKFixoR44cSTX98OHDwdcjad26tdWtWzdFpqV///4nXHYAAJCLghaNuaJARFVDXrWQGtXK3r173bRSpUq5DIuqgRYtWuSqk0KriLyqH80Xiaan9RoAAEg+MQlaNm/e7Aadu+2221K9Nnr0aPczcuRIq1atmhvr5aOPPnKZkjPPPDNFI16JdiwYAACQ3GIStLRr187q1auXaryW559/3o2ce+WVV1q5cuXcdP392muvubFfevXq5aYp6zJt2jQrXbq0a8QLAACQpaBFI9yqmserwpk/f35wxFsFLNWrV3c/obxqImVTQgOaMmXKWIcOHWz8+PFuvBZ1df7yyy9tyZIl9thjj1nevHlPZP0AAEBuDlo0gu2mTZuC/583b577kWbNmlmRIkUytbyuXbta0aJFXY8gjeuiZw/16dMnzQHpAABA7pOloGXSpEmZfo+qg7zAJlyePHncAxL1AwAAEPcRcQEAALILQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfyJfZN+zfv98mTJhgy5cvtxUrVtiePXvs0UcftRYtWgTnOX78uH3yySc2d+5cW7NmjZunXLly1qhRI7vpppusYMGCqZb70UcfueVu2rTJSpcube3bt7d27dqd+BoCAIDcmWnZtWuXjRo1ytavX29Vq1aNOM/Bgwdt4MCBbt7rrrvOevToYTVq1LC3337bevfubYFAIMX806ZNs0GDBlnlypWtZ8+edv7559srr7xiY8eOzfqaAQCA3J1pKVmypE2ZMsX9XrlypXXp0iXVPPnz57chQ4bYBRdcEJzWqlUrO/300+2tt96yH374wWrVquWmHzp0yN588027/PLLrV+/fsF5la159913rXXr1la0aNETW0sAAJD7Mi0FChRwAUt6FLSEBiyeevXqud/K0nh+/PFHl5Fp06ZNinnbtm1rBw4csG+++SazRQQAAEkorg1xd+zY4X6fdtppwWlq8yLnnHNOinmrV69uefLksdWrV8eziAAAIFmqh07E+PHjrXDhwlanTp3gtO3bt1vevHmtePHiqbI1p556qns9km3btqV4LTR7AwAAkk/cgpbRo0fbwoUL7YEHHkjRRkVtWvLly5dmVZRej2T69OmuQTAAAMgd4hK0zJ492zW2bdmyZaq2K+r+fPTo0YjvO3z4cMTu0aIGunXr1k2Raenfv382lxwAAOSaoOX777+3p59+2vUOevDBB1O9rka9x44ds507d6aoIjpy5Ijt3r07zUa/pUqVcj8AAODE/bH8f+1O01Xekrchrgag69Onj2tU27dv34jVQNWqVXO/1X06lP6vbs/e6wAAIHeLWdCybt06e/jhh93YLM8++2ya1TyXXHKJa3CrAeZC6f8nn3yyy9AAAABkqXpo8uTJtnfv3mDvnfnz59uWLVvc3xp6X12VH3roITd8v4btDx9rpXz58m7UW1Ewc/fdd9tLL71kjz/+uF122WW2ePFimzVrlnXu3NkFNAAAAFkKWiZOnOieEeSZN2+e+5FmzZq5314QM3z48FTvb968eTBo8QaSU9WRlqsAqEyZMta9e3fr0KFDVooHAACSUJaClkmTJmU4jxfEREtD9+sHAAAgx0fEBQAAyCqCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL6QL7Nv2L9/v02YMMGWL19uK1assD179tijjz5qLVq0SDXvunXr7LXXXrOlS5davnz57PLLL7fu3btbsWLFUsx3/Phxt8ypU6fajh07rEKFCtaxY0dr0qTJia0dAADIvUHLrl27bNSoUVa2bFmrWrWqLVq0KOJ8W7ZssR49eliRIkWsc+fOduDAAReYrF271oYPH2758+cPzvvGG2/Y2LFjrVWrVnbOOefYV199ZU899ZSddNJJ1rhx4xNbQwAAkDuDlpIlS9qUKVPc75UrV1qXLl0izjdmzBg7ePCgvfnmmy7AkRo1atgDDzxgM2bMsNatW7tpW7dutYkTJ1rbtm2tV69ebtq1117rAp6hQ4dagwYNLG/evCe2lgAAIPe1aSlQoIALWDIyd+5cu+KKK4IBi9SqVcsqVqxoc+bMCU5TVuXo0aMuaPEow9KmTRsX0CxbtiyzRQQAAEkoJg1xFWzs3LnTqlevnuo1ZVvWrFkT/L/+LlSokFWqVCnVfN7rAAAAma4eisb27dvd70gZGU3bvXu3HT582GVtNG/x4sVddiV8Ptm2bVvEz9B073Nk/fr12bwWAAAg6YOWQ4cOud+hjW09ClS8efS3fmc0XyTTp093DYIBAEDuEJOgpWDBgu73kSNHUr2mDEvoPPodzXzh1JC3bt26KTIt/fv3z6Y1AAAAuSJo8ap2QqtvPJp26qmnBjMpmlfdpgOBQIoqIu+9pUqVivgZmp7WawAAIPnEpCFu6dKl3QByq1atSvWaBqTT+C4e/a2u0eFtUjR4nfc6AABAzIbxr1+/vn399de2efPm4LQffvjBNmzYYA0bNgxOu/LKK91ouRr7xaOsy7Rp01zwc/7558eqiAAAINmrhyZPnmx79+4NVuHMnz/fjYAr7dq1c6Pgahj+L774wu6//35r3769GxF3/PjxdtZZZ6UY8r9MmTLWoUMH95rGa1FX5y+//NKWLFlijz32GAPLAQCArActGsF206ZNwf/PmzfP/UizZs1c0KJB5QYPHuyePaRh+71nD917773B9iyerl27WtGiRV2PoJkzZ7pnD/Xp08eaNm2aleIBAIAklKWgZdKkSVHNV7lyZXvhhRcynC9PnjwuM6MfAACASGLWpgUAACA7EbQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwhXyxXPiGDRts5MiRtnTpUtu9e7eVLVvWmjRpYjfddJOdfPLJwfn0+rBhw2z16tVWuHBha9iwoXXu3NlOOeWUWBYPAAD4SMyCls2bN1vXrl2tSJEi1rZtWzv11FNt2bJl9tZbb9mqVats4MCBbr41a9ZYr169rFKlSta9e3fbsmWLTZw40TZu3GjPPfdcrIoHAAB8JmZBy6xZs2zv3r02ZMgQq1y5spvWunVrO378uH3yySe2Z88eK1q0qI0YMcL9Hjx4sMuySLly5WzQoEG2YMECu+yyy2JVRAAA4CMxa9Oyb98+97t48eIpppcsWdLy5Mlj+fLlc/MsXLjQmjVrFgxY5Oqrr7ZChQrZnDlzYlU8AADgMzELWi6++GL3+9lnn3VVQKoumj17tk2bNs3atWvngpK1a9fasWPHrHr16inemz9/fqtWrZp7HwAAQEyrh+rUqWN33323jRkzxubPnx+cfuutt7pGtrJ9+/Zg9iWcpi1evDjN5W/bti34flm/fn02rwEAAMg1vYfUNuXCCy+0+vXru4a433zzjQtiSpQo4bIthw4dCmZWwhUoUMAOHz6c5rKnT59uo0aNimXxAQBAbghaVBWk3j9jx461MmXKuGkKXgKBgA0fPtx1fS5YsKCbfuTIkVTvV8CiwCUtatRbt27dFJmW/v37x2RdAABAEgctU6ZMce1SvIDFo0BjxowZrr2KVy0UWs3j0bRSpUqluXy9lt7rAAAgucSsIe7OnTtd9+ZwR48edb/VAFddofPmzevGbQmlzIuCmqpVq8aqeAAAwGdiFrRUrFjRBR4aFTe82khdnqtUqeIGnqtVq5Yb02X//v3BeTSOy4EDB9zIuAAAADGtHtJQ/d99950b5fb66693DXG//vprN+3aa68NVu106tTJ7r33XuvRo4drp+KNiFu7dm3XAwkAACCmQctFF13kRsN9++23XfsWPXtIvYnU3fnmm28OzqcxWl588UX37KFXX33VPW+oZcuW7hEAAAAAcenyfO6550b1/KCaNWva0KFDY1kUAADgczFr0wIAAJCdCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfyJfTBQAAALH1w/trMp6pmCU8Mi0AAMAXCFoAAIAvxLx6aNWqVfb222/b0qVL7fDhw1a+fHlr1aqVtW/fPjiPXhs2bJitXr3aChcubA0bNrTOnTvbKaecEuviAQAAn4hp0LJgwQJ79NFHrVq1anb77bdboUKF7Pfff7etW7cG51mzZo316tXLKlWqZN27d7ctW7bYxIkTbePGjfbcc8/FsngAAOQKU4t9b8kgZkHLvn377Omnn7a///3v1q9fP8uTJ3JN1IgRI6xo0aI2ePBgl2WRcuXK2aBBg1zQc9lll8WqiAAAwEdi1qbls88+sx07drhqHgUsBw4csOPHj6cKbBYuXGjNmjULBixy9dVXu6zMnDlzYlU8AADgMzHLtCgYUSCybds2+7//+z/bsGGDC0QUoKgaqGDBgrZ27Vo7duyYVa9ePcV78+fP76qUVHUEAAAQ06BFbVIUkPz73/+2li1bWpcuXeynn36yyZMn2969e+2JJ56w7du3u3lLliyZ6v2atnjx4jSXr2DIe7+sX78+RmsCAACSOmhRddDBgwftuuuus549e7pp9evXtyNHjtj06dPtrrvuskOHDgUzK+EKFCjgehulRcsYNWpUrIoPAAByS9Ci6h9p3LhxiulNmjRxAceyZcvs5JNPdtMUyIRTwKLAJS2tW7e2unXrpsi09O/fPxvXAAAA5IqgRdU7v/76q5UoUSLF9OLFi7vfe/bssTPOOMP9HVrN49G0UqVKpbl8vZbe64k6TPKl7avFpSwAACSbmPUe8hrXho7J4rVFkWLFilnlypUtb968bgC6UMq8qBFu1apVY1U8AADgMzHLtGhU27Fjx9p//vMfu/TSS4PT9X8FKhdffLEVKVLEatWqZbNmzXKDz3kj4H7yySeuTYyWkWyD91xqZFoAAEiooOXss8+2a665xj7++GPXi+iiiy5yvYc09krHjh2DVTudOnWye++913r06OHaqXgj4tauXdvq1KkTq+IBAACfiekw/g899JCVLVvWZsyYYV9++aX7W2O03HDDDSmqkV588UX37KFXX33VZVvURbpr166xLBoAAPCZmAYt+fLlszvvvNP9pKdmzZo2dOjQWBYFAAD4XMwa4gIAAPgm04Ksef2PmRnO061887iUBQCAREGmBQAA+AJBCwAA8AWCFgAA4Au0aUnAof7tiniUBAAAfyHTAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL7A4HJxNrXY9xnOU95KxKUsAIDc8ZDdZEGmBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBweWSeDChbuWbx6UsAADEA5kWAADgC2RaktgP76/JcJ5L21eLS1kAADhRZFoAAIAvELQAAABfIGgBAAC+QJsWn/pj+Y4o5qoSh5IAABL/epAc4pppeffdd+2qq66y22+/PdVrS5cutXvvvdeaNm1qbdq0sVdeecX2798fz+IBAIAEFrdMy5YtW2zMmDFWqFChVK+tWbPGevXqZZUqVbLu3bu7eSdOnGgbN2605557Ll5FBAAACSxuQcvQoUPt3HPPtePHj9uuXbtSvDZixAgrWrSoDR482AoXLuymlStXzgYNGmQLFiywyy67LF7FBAAAubl66KeffrK5c+dajx49Ur22b98+W7hwoTVr1iwYsMjVV1/tsjJz5syJRxEBAEBuz7QcO3bMtU9p2bKlVamSumHo2rVr3TzVq1dPMT1//vxWrVo1V3UEAEBuHAA0KsUs14h50DJt2jTbvHmzvfTSSxFf3759u/tdsmTJVK9p2uLFiyO+b9u2bcH3yvr167OtzAAAIJcFLWq78tZbb9ltt91mxYpFDgUPHToUzKyEK1CggB0+fDji+6ZPn26jRo3K5hIDAIBcGbS8+eabroFtu3bt0pynYMGC7veRI0dSvaaARYFLJK1bt7a6deumyLT0798/W8oNAAByUdCyYcMG+/DDD13jW1XlhAYiR48etT///NM1vPWqhUKrejyaVqpUqYjL1/S0XkP0Xv9jZobzdCvfPC5lAQAgR4IWBSrq3qxGuPoJd+ONN1r79u3trrvusrx589qqVausUaNGwdeVeVEj3IYNG8aqiAAAwEdiFrRUrlzZBgwYELHKSCPd3nfffVa+fHkrUqSI1apVy2bNmuVGyj3llFPcfJ988okdOHCAoAUAkHt7BiE+QYsa3tarVy/V9Pfee8/9Dn2tU6dObgh/VSWprYo3Im7t2rWtTp06sSoiAADwkYR4YKLGaHnxxRdt2LBh9uqrr7psi8Z16dq1a04XDQl4d3Jp+2pxKQsAIJcHLRqqP5KaNWu6of4BAABy/CnPAAAAvq4eQkp/LN9hyVits+CKXzKc5zKrErfyUM0EINFNLfZ9ThchoZBpAQAAvkDQAgAAfIGgBQAA+AJtWhC3etfyVsL8hrYxAJA4yLQAAABfIGgBAAC+QNACAAB8gTYtuVxUY8KUj0dJACSb1/+YmeE83co3j0tZkBzItAAAAF8gaAEAAL5A9RAAwPeoisodyLQAAABfIGgBAAC+QNACAAB8gTYtyJa64ng+DuBSY9h8IDeJ5zkonqI53yElMi0AAMAXyLQAQJKgBw2SHZkWAADgC2Rakhj1pf5qY8NdMuAPj302LsN52ljtuJQltyHTAgAAfIGgBQAA+ALVQ0CC8OMTt394f02G81zani7quZUfj2kkNjItAADAF8i0IHvuluKIRnC5UzJndRJt3RKtPPFcr6gUy57FIPPItAAAAF8g0wL4SHbdASfrnXS0w73TddxfXf3jiaEiEhuZFgAA4AtkWpBr28YgPuKZ1Yn2GPvh6+wpEwMC+gtZFP+LWdCyYsUKmzlzpi1atMg2bdpkp556qp133nnWqVMnq1ixYop5161bZ6+99potXbrU8uXLZ5dffrl1797dihWjtRMAAIhx0DJu3DgXhDRs2NCqVKli27dvtylTprig5fXXX7ezzjrLzbdlyxbr0aOHFSlSxDp37mwHDhywCRMm2Nq1a2348OGWP3/+WBURSErZ1kMCcRuHJLvakERTntctsdqQJCuyOj4LWm644QZ7/PHHUwQdjRo1sjvvvNPGjh1rjz32mJs2ZswYO3jwoL355ptWtmxZN61GjRr2wAMP2IwZM6x169axKiIAAPCRmDXEveCCC1JlSVQtdOaZZ9r69euD0+bOnWtXXHFFMGCRWrVquXnnzJkTq+IBAACfiWtD3EAgYDt37nSBi2zdutX9v3r16qnmVbbl22+/jWfxkETi2WUzWWVXNZNf90WidcXNrvIkWoP4aMpT/twScSkLEl9cg5ZPP/3UBSp33XWX+7/auUjJkiVTzatpu3fvtsOHD1uBAgVSvb5t27bg+yU0ewMAAJJP3IIWBRUvvfSS60HUvPn/ugAeOnTI/Y7U2NYLVDRPpKBl+vTpNmrUqJiXG0jGbq/RZD/a/MWjEBJJomVIosrEZVMHULIxiGvQoozIww8/bIULF7Z+/fpZ3rx53fSCBQu630eOHEn1HmVYQucJpwa6devWTREU9e/fP0ZrAAAAkj5o2bt3r/Xu3dv91lgspUqVCr7mVQuFVvN4NE1ju0TKsoiWE7oswO/dXnOzeHfTjibTVN5KJGXbGMDPYhq0qGrnkUcesQ0bNtiLL74YbIDrKV26tBtAbtWqVREHp6tatWosiwcAAHwkZkHLsWPH7Mknn7Rly5bZ008/beeff37E+erXr+9Gzt28eXOw2/MPP/zgAh2N9QIkg8c+G2fJKJ4DaDFYF4CYBS1Dhgyx+fPnuzFY9uzZY7NmzUrxerNmzdzvjh072hdffGH333+/tW/f3o2IO378eDdibosWLWJVPAAA4DMxC1p+/vln9/vrr792P+G8oEXZlcGDB7v2Lhq233v20L333ptmexYgO5D9ALKO4wxJFbQoEIlW5cqV7YUXXohVUQAAQBKI2TD+AAAAvh0RFwAioaoByTb4HmKDTAsAAPAFMi0AEAF37kDiIdMCAAB8gUwLgIhoZ5I9yNgA2YdMCwAA8AUyLYCPkP0AkJuRaQEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBfyWQI4fPiwjRw50mbNmmV79uyxKlWqWKdOnax27do5XTQAAJAgEiLTMnDgQJs0aZI1bdrU7rvvPsuTJ4/17t3blixZktNFAwAACSLHg5bly5fb7NmzrUuXLnbPPfdY69at7eWXX7bTTz/dXn/99ZwuHgAASBA5HrTMnTvX8ubN64IVT8GCBa1ly5a2bNky27x5c46WDwAAJIYcD1rWrFljFSpUsMKFC6eYXqNGDff7559/zqGSAQCARJLjDXG3b99uJUuWTDXdm7Zt27aI79N0vdfjBTfr16+PSTn3/Lk1JssFAMAvVq1aFbNlV6pUyU4++eTEDloOHTpk+fPnTzW9QIECwdcjmT59uo0aNSrV9P79+8eglAAAoPMbk2O27DfeeMOqV6+e2EGL2q8cOXIkYjdo7/VI1Aambt26wf+rq7SyLGeffXYw4MkuWq6CoT59+rhIMNkk+/rlhnVk/fwv2dcx2dcvN6zj+hivXzTLzPGgRdVAW7emrnrxqn5KlSoV8X2aHv5arVq1LJa0QTOKAv0s2dcvN6wj6+d/yb6Oyb5+uWEdK+Xg+uV4Q9yqVavaxo0bbd++fam6QnuvAwAA5HjQ0qBBAzt27JhroxJaNfTxxx/bueeea2XLls3R8gEAgMSQ49VDCkwaNmxoI0aMsL/++svOOOMMmzlzpm3atMkefvhhSwSqwrrjjjsi9nJKBsm+frlhHVk//0v2dUz29csN61gyAdbvpEAgELAcph5C3rOH9u7da2eddZZ79tBll12W00UDAAAJIiGCFgAAgIRv0wIAABANghYAAOALBC0AAMAXcrz3UCL64Ycf7NNPP7UlS5a4ge9KlChhl1xyid19991pDnYXTu977bXX7Pvvv7fjx4/bxRdfbD169LDy5ctbTtNzm95//31bsWKFrVy50g4cOGCvvPKKK2M03nrrrYiPUNBIxJ999pn5ff0Sff+FjgI9bNgwmzdvnmvMroeM3nPPPVEN+vT000+7Xnrh/va3v9mYMWMsXjS8gdcIX+tTpUoV1wi/du3aSbGPTmQdE/175tm/f79NmDDBja2l75zW8dFHH7UWLVrE/DhO9PWbMWOGDRw4MOJrU6ZMSYheRitWrHDngkWLFrleu6eeeqqdd9557hitWLFiwu0/gpYItAN2797txpDRTvvjjz/sgw8+sG+++cadfDI60HSQ9+zZ0w2Y17FjR8uXL59NmjTJnVB1IjrttNMsJ23YsMHGjRvnnq6tnlrLli3L0nIefPBBK1SoUPD/efIkRuLuRNcv0fef6CKtIQF++eUXu+mmm1yZpk6d6sqt53dEc7LRxa93794ppoU/bT3WdEL/4osvrEOHDm5/6SSvMinIrFmzpq/30YmuY6J/zzy7du1ywZXG1NJgoLr4xfM4TuT18+iGt1y5cimmFSlSxBLBuHHjbOnSpW7oEQXUGo1eAZWCltdff92dQxNq/6n3EFJatGhR4NixY6mm1atXLzBixIgM3z927Fg37/Lly4PT1q1bF2jQoEFg+PDhgZy2b9++wK5du9zfc+bMcWX98ccfo37/yJEj3Xt27twZSEQnun6Jvv9k9uzZroxaP4/2R4sWLQJ9+/bN8P0DBgwINGvWLJCTli1b5tZh3LhxwWkHDx4M3HTTTYF//vOfvt9HJ7qOif498xw6dCiwbds29/eKFStcmT/++OO4HMeJvn6aT/PrfYlqyZIlgcOHD6eY9ttvvwUaN24ceOqppxJu/yVWyJ4gLrroolR3M5qmtJkeGJUR3VWdc845Lk0W+qwGVTHNmTPHctopp5zi1iU76E430XrNn+j6Jfr+k7lz57pqy6uuuio4rVixYu5u6auvvgo+cDQjGo06/BEa8VyHvHnzuoefevSA1JYtW7rs2ObNm329j050HRP9exaasctqNUd2HceJun7h2UF93xLNBRdcYPnz508xTRmSM888M8PrXU7sP4KWTBxwahuRUdpZ6bK1a9e6E2o4nWB///13t6xkcOONN7p63ebNm1u/fv1sx44d5nd+2X+rV6+2atWqpQquVcaDBw+6KrKMaD7tP/3oIvriiy/Gdd3WrFnjqkvCq6S8QOTnn3/29T46kXVM9u9Zdh7HfqDqEu2/Zs2a2SOPPJLw6xUIBGznzp0ZXu9yYv/RpiVK7733nh05csQaNWqU7nxqC6PoMlJk7k1TQ1E1ePSrokWL2vXXX+8aaylCV4Nl1YGqQZfqMePdLiI7+WX/6cJ14YUXpllG1Uurfjotmu/mm2+2s88+252gvvvuO1cXrbpptbVQG5FYUxkz2s5+3kcnso7J/j3LruM40SmrpoBTjcS1v1atWuXaXqmh6ptvvpmwz9b79NNPXUP3u+66K+H2X9IHLborU7ARbRrwpJNOSjX9p59+cg2xlPK69NJL012GWk9LeLrNW37oPImyfpmlBoWh1GBZkbXuAnVSVcNIv65fvPdfVtdRZfDKk5Uydu3aNcX/Gzdu7FLCuhgq5av/x5rKmJXtnBP7KN7rGO/vWU450eM40ekmN/RGt169eu7xNGowPnr0aHvooYcs0axfv95eeuklFywrO5Ro+y/pg5bFixe71Fw0dBCpXjx8B/bp08e1oI7mAY6KrCXSRcir3/PmSYT1yy5Nmza1IUOGuO7i2Xkyjff6xXv/ZXUdVYZI9cUnUsYbbrjB9Y5buHBhXIIWlTEr2zkn9lG81zHe37OcEovjONGpx5geFKx9mGi2b9/urnPKCik4VnusRNt/SR+0KEWsPvXRCE/jqpGcuhtqBz777LOugWdG1ABUUaZ2fjhvWrRjvcR6/bJbmTJlXOo+O8V7/eK9/7K6jmr8ll4Zs7ItdILR+mf3PkyLyqgUdGa3c07so3ivY7y/ZzklFsexH2gf/vbbb5ZI9u7d67ri67fGP4rm2MyJ/Zf0QYs2WrSDHIX3zVfAorskpcqiPbmoQZKyMhrULJwGJ9LAV9EEP7Fev+ymdhEamEiNsrJTvNcv3vsvq+uo7aw2DqpaCm0Ep/YOJ598cpbGR1DjVR33av0fD96YF+oZE9o+Q9vZez1R9lG81zHe37OcEovj2A809le8vmfRUDWO10BYDfLVcyhR9x+9hyJQLyFFnGokN2jQoHQ3vLIx4d3C6tev706ooSdVRdU6eale2k8ird9ff/2Vaj414tT0OnXqmJ/4df+pjGoEp1EoPdr+6u57xRVXpKhnVm8a/YSeoCL1rnnnnXfcRTFe+1DbUl1Ap0+fniKt/PHHH7v0uddI0a/76ETXMZm+Z6Lzqdbx6NGjWTqO/bh+kfahBilVg1y1bUkEx44dsyeffNJ1we/bt6+df/75Cb3/kj7TkhWqy1OkeM0117idFHoy0ciUakzlGTBggGuoG7rT2rZtax999JGrG9QogaoXVIvx4sWLu/8nAl2gZN26de73J5984iJmuf3229NdPzUQVOMy3e3qoNRoirNnz3ZRd+h4FH5dPz/sP10M9agCjbaqdfRGotQdT3iL/169ernfWgfRSUYjdDZp0iTYw2bBggX27bffuovhlVdeGZd10EVbjdtHjBjhTnRnnHGGG05cmYTQ9mN+3Ucnuo5++J55Jk+e7KoVvGqB+fPn25YtW9zf7dq1c6O/ahto3SdOnBgcHTYzx7Ef169bt26uh56GtFemTV2EFbCqeujWW2+1RDBkyBC3PgoyNCS/HjcRSt20JVH2H0FLBN7YCTq49BPq9NNPTxG0RKLUtLqNql7w3XffDT4XpXv37gmTElSDy1Ch6xl6UU+rMeB///tf18tEd426W1T32dtuu82lBP2+fn7Yf7pIKws4dOhQd0JV9kTjlqhtTEZdfXWC1QlKz+zRSUjrp4tply5d3AU/nsPE//vf/3bHj4JKXRR0gVb7MQ3m6Pd9dKLr6IfvmUcXMgViHgVfXgCmi15aQ9afyHHsh/VT0KmbAX3XNG6JqoJbtWpld9xxh2sPkkjXu6+//tr9hPOClkTZfydpWNyYLBkAACAb0aYFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBUggb731ll111VXuGTrJSOt233335XQxAPgUw/jDt/7880+78cYbU0zLly+fe/7MhRdeaP/4xz+sSpUqOVa+RKQBsD/99FP7z3/+Y7/88ot7cGLRokXdU8zPO+88N+x46PDyTz/9dKrnjQAKPnWcDB48OKeLglyGoAW+p+fm6Dkt3hO6ly9fbp999pl7NshLL71kF1xwQU4XMWE888wzNmPGDBeo6PlDClb0vBAFMApk9u3bl+EzcQAgpxC0ICmClvAnir7xxhs2evRo95u7wf9ZvHixC1j0lGBtEz11NpSe8Oo9FRsAEhFBC5KSHhevoGXlypXBaatWrbIxY8bYihUrbOfOne5JwaryuPLKK92Tc0Ppdc2rp57qEfSaV1VOCo70lN5oU+U33HCD+z1p0qQU0zdv3mzDhg2zBQsW2NGjR93j6+++++5010lPqp42bVowsDjzzDOtTZs21qJFi6i2ybJly9zvq6++OlXAIsq+hGalVHbvybah1XDh67p06VK3rbV8ZW30JHRVM91yyy1RPY1YVVZ6WvN7771nTZo0cU9FVjWfpmudlQFau3atHTt2LLjOLVu2TLEMfe6UKVPck5RVZs2rpz3XqFHDbr31VqtatWpUVY3Nmzd3T1J+/fXX3ROWtRxVm3Xt2tWqV6+e4j06nlS+n376yR0jR44cCWb99LRsrUOkY0FPIH/zzTftq6++sh07dljv3r3dPszq8tQOavjw4fbll1+66j4dSz169HDl3bZtm1sXPWVYr9WsWdN69eplFStWTLUN/vjjD7cfNa+Ofx0Pl112mTvmtU9Fba169uzp/lY5dex79GTf0GNR5dGTf1evXu2eUq110fZVufV0YI8C6YEDB7r3n3rqqTZ27FiX+TvttNNSfW8AghYktZNOOsn9XrNmjd17772WJ08eF6SULVvW9u7d6wKADz/8MEXQ8vvvv7vGolu3brXatWu7+f/66y+bO3euO6Gryuncc8/Ncpl0Ibnnnnvc8nVR0EVm/fr19uCDD9rFF18c8T2vvPKKuwCULl3arrnmGjdN1V862eui4F1I0qMLgmzcuDGqcrZv3961Z9Gj6/V3kSJF3PTQti1z5syxp556yvLnz+8CFQUK2kajRo1yAZnKXbBgwTQ/QwGb2s2oOq9Dhw7WvXt3t88UsPTr189Nr1Chggtm9Bla9rPPPuv2m/anR8tQWdSGSRdOzavt++OPP7p9mFHQEnrh1nKVjbruuutccKnlKgh4+eWXU+x3HTcKahXM/v3vf7eDBw+6C/mIESNcsNy/f/9Uy9fF+/7773fVmHXr1nUXb7XByuryFNg88MADbrna/go2VF5NGzp0qD300ENWsmRJa9asmdvvWv7DDz/sgpPQwEFVqppX5VK1oba5gj+1f/ruu+9c4FO+fHkXvNxxxx1u/+pvBSGe0G2sIErBh45XBTY6dpYsWeKWo5sGHTPhVG7tX32+AlMFWUAqAcCn/vjjj0C9evUCDz74YKrXRo4c6V6777773P9fffVV9/958+almvevv/5K8f9u3boFGjRoEPjuu+9STP/tt98CV199deD2229PMV3L7dGjR8QydujQwf2EGjBggHvPO++8k2L6tGnT3HT9/Pjjj8HpixYtctM6duwY2LNnT3D67t27A7fccot77aeffgpkZPPmzYHmzZsHrrrqqkDfvn0Dc+bMCfz555/pvscrq7Z1uL179wZatGgRaNy4ceDnn38OTj927FjgiSeecO8bNWpUmttq3759gQceeMBNGz16dIr5pk+f7qYPHDgwcOTIkeD0w4cPBx5++GH32sqVK900bROtU6dOnQJHjx5NsRz9X9sp2mNJP8OGDUvxmo4DTQ/f75s2bUr1ecePH3dl1vxLlixJ8ZqOA+94PXjwYKoyZHV5jz/+eIptNHbsWDdd+0bHvZbheeGFF9xrX3zxRXCa3qtl6dhetWpVis9YvHix+y5om0d7zC9YsCC4nvv370+xLs8//7x7Tcee5+OPP3bT6tevH/j+++8jLhPw0OUZvqfMiFLk+tHdpe7WdSdYoEAB69y5c4p5I931Kw3tUdZC1QKqQlEWJJRS6tdee62rqtBPVujO+PPPP3d31+E9n7Rs3eGGU7ZD7rzzzmC2Q5S+112vl2LPSJkyZVz2Qr+VwXj88cddqr5169b2xBNP2A8//JCpdVH1hrJVyvyE9tJSNqtbt27uTj6tcilzpYyDMiGPPPKIdezYMcXrH3zwgRUqVMhVZYRWiyiD4u1TrYN4mRntb312KJVB2yla2r6qTgql4+DSSy91+1xVOB5l60KzFV5Z2rZt6/5euHBhxM/Qtol0HGZ1ecrahW6jxo0bu9+q2urUqVMw2xj6mqpfPMq+KKuiajFl/UKpOkkZoW+//dY10o6G9p3861//cvswdF1Uzabfs2fPTvU+fU6tWrWi+gzkXlQPISmCFgUpoV2eVZ0Q2uVZqfP333/f+vTp4/7WyVFpeKWvQylNLkqzKwgK99tvvwV/h7dtiYbep1T+JZdckurCpQuu2pSEV9+oaksiVR1501SFEw2t9/jx4121gxrm6iKsNilKzetHwUOXLl2iWpZXrki9jXQBVnXChg0bXJpfbYI8asehKhi121CVhy5WoVQtogBBPZtUxRBOF+PQfaH2OapO0YVVF+kGDRq4Mqk9S3g7kIyoWii0rKEXbwV1WmevbYsCUF2gdQFWWVS1ouAptBownAKrtI6brCxPAZm2dShVB4kC4PA2Rd5rocvy2jrpMyMd89pfx48fd/vynHPOsYzoO6RgRW2RItFx7+27UNpfQEYIWuB7uhN+/vnn051HbRHUvkKNa3WHrgaPopPwP//5TxdEyO7du93vb775xv2kRReUrPDuVr12DOEiTddFXwGN2ouEK1GihLtzjfYuWHQhV/Di3dWqXYmyOS+88ILbPvXr10/V6DS9dVEZItEFUhc6zRcetGiaGmZGahukXky6WKtNiheMRqLgxqM2EmqnoX2rHmNeMKP2LQrComkQnN66eNOVWfI89thjLkuhDJwCYe07ZUo0jwJkBSHhNE9o5iNUVpYXqUG1F6hFes3L5Gifh25vUfuV9IRu7/ToO6TAMr19F+n7k9a2B0IRtCDXUGZFP+pporvB+fPn29SpU13DxHfeecdlBrwTvRq2qgdSNHQR8u7+w+mCE1ql4y1fmZxIIk3XBV93uqpSCQ9qNL8u8JEuUNHSRU5VU8q8qPeNeohEE7R4n6kgJBJvenjZ1GBTDTgHDRrktrMauIZesLz5VQYvAMmIghJVG+lHjWm1DupppYu99reqKqKR0bp4+1KNSRVgKGBWw+DQah1lLvS5kaQVsGR1ednBCyg1ho8awZ4o7T+tpxoWZ0Za2wYIRZsW5DpKT6taRW1f1H5BFzX1WghNUXsp82goRa+sQKRutKF35qK7aFURqFpGnxtKgYna00SqspBIQ/urmkei7R2TntD2Bx6vjYjKlla5vDKEUq8bVdspEIxU3aJ2MGrLomoCBS6hwYLmr1SpkutR5WUBMkOfqS7Rr776qlsnBafRUvVPpF4r6vkSus4KjOTyyy9P1Q7Fmzczsnt5meFluzJzzOu4iHRMeN+hXbt2uSwbkN0IWpArKBgIDxLEu1gqkPBO4PpRu4JIjQV1og6/SKuKSQ0ZQ6crla+xR8Lpcxo2bOgyJBoaP9RHH30U8UTvdStVuj20GkgB0dtvv51invSo66rGzgitGvCoHc0XX3wRbL8R3k1a7U/CqSu4Mg+qavv111+D05X5UZdXZZ/SG0NGZdbYHFpndTHfvn178DV1sVZ1xHPPPRexKkEXeQWFogxUpIbRCni0H7x9Gw1tU1UzhVLXbbVnqVy5cjAD5bUjCQ8otB1UxZZZ2b28zPCGANDxGCkA1fESXi4F6pGOCW/fiTJGCl7CaT8ziCGyiuoh5Arjxo1zmQpVD2mcEV3I1FNIFyPdmYcOkqVeNerZ0rdvX5eW1921sjM6SSv40YnY67ki6oGjTI0GCVPvDFVV6P86sXsNH0OpB4V6zWiAMTWC1fKVVVBDUo0p4mV9PGpUqqoqjdNy++23uzYnCgw0bowyPHotmqH39RkKpNRbSttBbUq0HGVE9Nm6wGt8jNB2JmrrM2HCBBc86HO1bhqfwxugTtUuak+idkEKxtTuRttUmSTdcWtQtPRoOaoW0HgzXlWRGuCqR5Pu/NXWRttI7W+0LRXsKTuj6j3tJ+1LbQMNzKdskxpe6/1qV6HeTbrgZlSGUArYVK2k5WtQOQWjaqCs/a9qRI/WTT96TRdhzavskrI6ypZ4AWC0snt5maHvgvahjl8Fj9rnaiys/aL1V8CiYyY0eNI8KqsGAtTx641/pO1fp04dd5yqylU9kvR/BUXaJzrWtDztLw0UCGQWQQtyBV2MdZFV2wHdTepirROpqoc0qFlouwsFMRq1VHeeykyo265Oyrpo6mKv3imh1A5BAY4yIbNmzXLBii7gal/hdUkOpYuqumZroC3dxastibqaqiGsgpnwoEV0QdfFQW1wvLYCOunr5O8NNpcRDTCmqhd9pjIT6kKrnky6IClYUuYjfN3UK0dddPWZ2h4KAhQgKdgQrafao+iCpsHuvBFxddHSiLjpDSwXWi5t3wEDBrhg0QtcdEHU5ysDpfYeyrioTY96xaibr7ohiz5P3cG17bROujhqnbRNddevi2a0tO81yJ/2jUbYVWZNVYnhI+KqCkeZBG9UYw3+5pVLn5fZICO7l5dZCpjUc0g9yxTAKjhX93Lth3r16gW7Snu8J3Vrm2vfaDupK73XW0/Hpb4rCvoVxCqDpaydgkx9J7xnhQGZdZIGa8n0uwAgiYQO469gCUBiok0LAADwBYIWAADgCwQtAADAF2jTAgAAfIFMCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAADA/+H9hFiHJp93DfAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PD: 92.07 +/- 12.37 %\n", - "PA: 79.083 +/- 3.931\n", - "{'fraction': 0.9206595115368098, 'angle': , obstime=None, location=None): (lon, lat) in deg\n", - " (0., 70.)> using convention and counter-clockwise when looking at the source)>)>, 'fraction uncertainty': 0.12373296682166211, 'angle uncertainty': , 'Q/I': -0.8546123469299894, 'U/I': 0.3424203157787407, 'Stokes uncertainty': 0.12373296682166211}\n", - "0.009206595115368098 158.16534392267047 -0.9282610305121692\n" - ] } ], "source": [ - "print('modularion factor:', mu, '+/-', mu_err)\n", - "polarization = source_photons.calculate_polarization(qs, us, unpol_qs, unpol_us, mu, show=True, ref_pdpa=(0.7, 83), ref_label='Simulated', mdp=mdp)\n", - "print(polarization)\n", - "print(polarization['fraction']/100, 2*polarization['angle'].angle.degree, np.cos(2*polarization['angle'].angle.radian))" + "bkg_qs, bkg_us = source_photons.compute_background_pseudo_stokes(show=True)" ] }, { "cell_type": "markdown", - "id": "57a5362a", + "id": "5bced9c7", "metadata": {}, "source": [ - "Transform polarization angle to different conventions" + "The background is rate is estimated over a longer time period and therefore its flux needs to be rescaled to the expected flux during the GRB.\n", + "\n", + "This factor is simply computed as the ration of GRB duration / background duration." ] }, { "cell_type": "code", - "execution_count": 12, - "id": "7e456b61", + "execution_count": 11, + "id": "da3b6513", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "RelativeX: 105.646 degrees\n", - "RelativeY: 15.646 degrees\n", - "RelativeZ: 105.646 degrees\n", - "IAU: 78.66 degrees\n" + "Background scale factor: 0.0014270214696478288\n", + "Consistency check : True\n" ] } ], "source": [ - "print('RelativeX:', round(polarization['angle'].transform_to(MEGAlibRelativeX(attitude=attitude)).angle.degree, 3), 'degrees')\n", - "print('RelativeY:', round(polarization['angle'].transform_to(MEGAlibRelativeY(attitude=attitude)).angle.degree, 3), 'degrees')\n", - "print('RelativeZ:', round(polarization['angle'].transform_to(MEGAlibRelativeZ(attitude=attitude)).angle.degree, 3), 'degrees')\n", - "print('IAU:', round(polarization['angle'].transform_to(IAUPolarizationConvention()).angle.degree, 3), 'degrees')" + "backscal = source_photons.get_backscal()\n", + "\n", + "print('Background scale factor:', backscal)\n", + "print('Consistency check :', data_duration/background_duration == backscal)" ] }, { - "cell_type": "code", - "execution_count": null, - "id": "ee9644fb", + "cell_type": "markdown", + "id": "b3417867", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "Compute the expected MDP assuming " + ] }, { "cell_type": "code", "execution_count": 12, - "id": "606b6e92", + "id": "f19a7f75", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Q, U unpolarized: -0.3128133204998456 -0.12947028597215868\n", + "unpol_uncertainty: 432.93677967024655 %\n", + "check I_src+bkg vs Isrc: 8114 8111.672527983004\n", + "Q, U, subtracted: -0.8131920884754699 0.09626674069045373\n", + "PD: 81.89 +/- 5.48 %\n", + "PA: 86.62 +/- 1.94 deg\n", + "Drawing Reference point: (0.8, 90)\n" + ] + }, { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAJvCAYAAAC9CY0CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydB7QUVdaFD1FQUFGQnHPOOUlQzDnrmHMYZ8b0O87oGDGMacw554A5I6CCiCTJOUhOgoIgIPS/vtvcR3W/DtX9OlR1nb1W++S9DtVVt+7d95x99ikVCoVColAoFAqFQqFQKFyjtPunKhQKhUKhUCgUCqAkWqFQKBQKhUKhSBFKohUKhUKhUCgUihShJFqhUCgUCoVCoUgRSqIVCoVCoVAoFIoUoSRaoVAoFAqFQqFIEUqiFQqFQqFQKBSKFKEkWqFQKBQKhUKhSBFKohUKhUKhUCgUihShJFqhUCgUCoVCoUgRZVN9gcIf2Lx5s7z++usyY8YMmTlzpmzcuFGuv/56OfTQQ129nuc//vjj8s0338jWrVulZcuWcumll0rz5s2LPfe7776T5557ThYvXiz77ruvHHbYYXLmmWdK2bI6vBQKhUKhUBQmNBJdoPj111/l+eefN8S2SZMmKb12586dct1118lXX30lxx13nFx88cWyfv16ufLKK2XJkiURzx07dqzccMMNUqlSJfP3vn37yosvvigPPvhghr+RQqFQKBQKhXegocICxf777y/Dhg0zP2fNmiUXXnih69eOHDlSpk2bJrfccosceOCB5ncDBw6U0047zUScb7zxxqLnPvroo9K4cWO59957iyLPe+65p7z88stywgknSP369bPw7RQKhUKhUCjyC41EFyjKly9vCHQ6GDVqlOy3337Sr1+/ot8h0xgwYICRbmzbts38btGiReZx5JFHRkg3jj32WAmFQoaMKxQKhUKhUBQiNBKtKIY5c+ZI06ZNpXTpyD0WuugPP/zQSDqIPvM8EK2Trlq1qlSrVk3mzp0b9zPWrl0r69ati9BgIz1p1qyZ2QAoFAqFQqFQOEEQb8WKFdKtWzcT3Ms3lEQriuGXX36R9u3bF/u9jWxDfiHRlgTHinjzOydJjsYHH3xgNNsKhUKhUCgUqeBf//qXHHzwwZJvKIlWFANuHLGiwfZ3/B1YWUe85+IQEg9HHXWU9O7du+jf8+bNk7vuuksOP/xw6dOnj4lmKxSK3IJ7dsOGDUUPMkS///67eWzZsiXiuWSqqH/Ya6+9zE+KiytWrCgVKlQw93+5cuXMw/n/PMqUKZO14//zzz/NvMTD/v/27dvNg//n+/Gw34n//+OPPyLeA2ka38d+p3322cdEvOxPdR1SKHKLUCgk06dPN4YJVapUkfvvv19q1KghXoDOBopi2GOPPYoIshP2d/zdSZ7jPdc+LxYgybGIMtIQbpSuXbuqrEOhyAIgl2SbkFRZWZX9f7tBhiCTTeIebdiwoey9995SuXLliAcks1SpUlII52PTpk1mw/Dbb7+Zn/bBXLR8+fIi6RqATNv5y/mAcBfC+VAovEagx48fbzbn1Gkxd4FE/CKXUBKtKAaKCmNJMaLlG055R/Xq1Ys9Fw11qmjRooV5LyXQCkXJATlctmyZIYLoCCHK2FWyMAEixxDAAw44QFq1alVECIm4ZjNi7AYQWHzqWTghrtkCkWW+byJ9JdFqu9GwG48FCxbIjz/+aCxB7aJu60Fq1aoltWvXNnOZRq4VipJnx7p06WLuLUuivQK9uxXFQFHhlClTzOLgLC6kaQu7wbp16xY9D8yePdsswBYsMmvWrDGSjVRBJId0DYs8n0fKBlKvUCgSA6IHUYY0W+IMEQVILmrWrGkyPc7oaaFEk7MN5r06deqYhxM7duwwC7yTYK9atUqmTp1q/sZGBCINobbEmvMeXbStUCgiAQfgwdyFxW6+N/XxoCQ64GDSRxvI5G4jJv379zf2dESBrE80C8WIESOkV69eRVFi0rz16tUzjh0QZjvI33vvPbMw8z7pgpuHz8Sxo2fPnp6owlUovCRBWLlyZRFZ5if3MuD+hLC1adOmiLwRyVWynHkw55GR4+F0KeL6QKbt9cEKlJQ08xrXhw0N18ZeH+Y3vT4KxW6ggSaT1r17d88SaKAkuoDxzjvvmEFoZRijR4+W1atXm/8//vjjjYbvySeflM8++0zeeOMNM7EDiPPbb78tQ4cONZM/CzDEmMj0ueeeG/EZtAKnnfhVV10lgwYNMilOmrwcccQR0qBBg7SPnUgNFjZ0ROQBeUeXqVAEEdx7kLGFCxeaewybSYgaiwvZmkaNGpmCXEgZhE4jnfkFAQlLki3QmzszBTNmzJAxY8aYvzG3EZTgOloNukIRVMycOdPMde3atfP85jJlEk2Kikpnhffx5ZdfFkWn0DzSuZAHoHEKEz2pEv7GNXVWqd92223y6quvmsYrFAkysdMKnOc6n9epUye5/fbbDXHm+RQcnXfeeabhSnTVezKSwHvz0/k6rPYmT54s48aNk86dOxsNp0JR6CBiifZv6dKlhjBDurhHcbeAmA0ePNhEMJE6RWtuYxX6+hF8D74bP1OZS7wMNjw8mMus3tNGrLnWzNmAyDTSEaRzXG/kJApFIaPcLuceinhx62rdurUvOh6XCtkKkyTgaaQP0di5fIlC4RoQBCLmRNG4mZxgvBF1Y0H1+q5UoUgXbCAZ5/ZhC9YY9/bBIhOUe8BqIvm+QfnOXHMbqHKOAa67cxwE5XwogoNSpUoZqRMyDgwGbM1VNKjBuuCCC+Spp54q1ujN05FoyDMaVaojiV7qTazIJEh12hRoIusaFhZS1ZquVvgdEETIEmOfh5M0O72VdawHF8x31uOahw1gWf9t5kp1/1D4HaFQyNRmYUjQoUOHIvMCP6Cs2y+IlhadljbBUGQLkAUWhXipS0s6WFjQcyu5UPgNjGEIM/IEHtYBh/HM2Oeh4zoMIrKcI+YDLxcW5Qo2I2c3XfYBoeYc8YjO4ikUfsC2bdsMv2Q8Q6ZtBqpgSDSTGQ8tdlDkE9xUWHLZbmNkRJRwKLwOiDKLAx3/+MkCASlkLFvi45cFI5ewm2avNFXINxgjNjvBpsvWj/CwzWKISjsJtY4rhdexbVcnUTIrcEwaHsE3/ZJhcXWU7H7Nk33ypRSFC8gH5JlFQ4m0wutRVB62C6AlPxAc1bUqSgrbdp0HhBoywkaNeZH5kb8727DreFN4Ddu3by8i0IxVW0Bsa6D8gJSOUm9ChVeINGTEpn0UCi/ARgZZFKxDho2uWOKsUGQDEGYbgWZOtI4mllRbQs1DI9QKrxDo33//3YxHxqVfC4h1Vlf4lkhjp8dNZ4m0H29Ahb9hCQtkhYdtpoG3ump5FfkA86DV17OBg6zY8QlpYTNH9BriouNTkS+UKVOmqAbKz2u3kmiFb2FvPCJ/tj2on29GhX9AuhFSwtiz7Z3JjkBMNOKc2eiqyrVKbhtmMyJIixiz6E55QGKsNl/nTkUu8KfDYasQ+j7obK/wPVggiLCwOLAg6GKgyIVcg3EG+WDMqeY0eyRakRnY8cqDsWw3gevXrzd/g9AwllXuocgmgf59l4SDsVYIUBKt8D24IYlCK5FWZMshgrEFgbZyDTrKaZQ0u9AmS9kD45Y5k4eVezB38uB8W0Ktcg9FprBjx44IfX6hICMkeuPXIyTfqDxwQNqvff755+Wcc84x///tt99Knz59ik3m9erVM21ZDz/8cPnoo4+KvQ6QGqMNb9u2bc3z+Bu63XifZV/Dex988MHy73//W6pXry5+ANXf99xzj/zwww+mJTfRjOeee07OPvvstJ4XD3Qv+s9//iMTJkwwHTOZ2Fu1aiXXXHONHHnkkUXPsztb3v+mm24yLcj5/3bt2pkW5gcddFDSz6L17oUXXmjGAC1377rrrojPAO+++65cfPHFMnfuXKN7VRQmuOethhSSoXKN/C26nHc959mDtc1jrbJWjNjl8WBOhWir/7SipPfypl2OMYUmu9QwigNEliBf0Rg1apQh0PH8Sm+55RZ56aWX5LHHHpMrrrjC/O5vf/ubIdNTpkxJ+JqHH35YevXqZV7bs2dPEwnwA9auXWu+w8yZM6V9+/Ylfl48LF682EzmZ511ljz44INmowGOOuooefLJJyOeS4TwyiuvNM87/fTTzU/Iz2GHHSbfffdd0s/iMxYsWGDIc6dOneTEE0+URYsWFf2dSOTVV19tSLkS6MKd7NGKrlq1ynRoZdJnY3zAAQcYkqFkTlHoco8qVaqYYA7jnTmPLnLM47ZwVqFIFTt3NZUqREtaXREcgGy99dZb8r///S9isYRYd+7c2UwksXDooYdKly5div59/fXXy9dffy1HHHGEIXsQyOj0hfM1559/vuy///5y3333yfvvvy+nnnqqeB01a9aUFStWSI0aNWT8+PHStWvXEj0v0TXh4cTll19urgfni8ixBZHuN954w0S+//rXvxpCdOaZZ0qbNm3k2muvlTFjxsT9HBYIrtnIkSOlX79+JtrM8z///HO56KKLzHP++9//GvLM9VIUFtA4E/VkHFh9qEbgFEF3PyILAJHm3iCzZ336iVAXGhlSZI88lytXrmBlWXoXOAB5XbdunXz55ZcRi+vbb78tp512WkrvNXDgQBM1JZL68ssvu3o+WLhwofgBROUhxpl6XipgIq9bt66JFDrBdeJvEGvbXhmcd9558v3338uSJUvivqfVuxKFAdzs6F5tZgCpx5133mmi27p4FJZkw0babOtZonBceyXQiqDDbiirVq1qHmT7nJkapE4KRTwCjYTDNlApRAINlA040KBBAyOpeO2114p+9+mnn8qvv/4qp5xySsrv95e//MX8/OKLL5I+d/78+eYnEelsgMkOouDmweD3GoiEcGycp/vvv99cl0GDBkU8Z9KkSdKsWTNDhKz/JDdwhw4dzN8nT54c9/0hz40bN5Y77rjDbGReeeUV8/xu3bqZvxPJJntAlFrhbzC+kQhBBKwzAdcfyQaRN90keQNcF65FoS6+fgME2ko9bISaDSiBJxuEUCjsHGuboRV6MELlHFEg4owcgwgVO3DIVP/+/aVWrVopvxfFaaT/LUF2AmIOKWTyGT16tNEN83lIQLIBPmPAAHfFl5BINhRewlVXXSVPPPGE+X8W1uOOO87oyZ1ANoJ8xMJ277LR5eXLlyf8DDTWJ5xwgrz++utFuvbevXsbWcewYcOMLEfh/0I1O7lr0ZS3QVaJDbHCu1IPW3z7yy+/RLS1141PcBEKhcyYgEgzHgrd4UVJdBROOukkQ55w4DjkkEPMTzTS6YJBRNQrGoMHD474d/369Q1hr127tmQDFPU5ZSqJkGn5RSbANYHgQoTffPNNQ4hsa2ULJvTo4k82JrYIkL8nk9T8/PPPxhGETROSESYC9NWQeK4RBaBIOpgo/v73vxvttMI/5BlYa69Cn9wVimwComw7HzIXs86R2UH7CslWMh1M/PHHH2bdDMocqyQ6CtWqVTMEl2JC240M8pYu0ASRJo7GI488YqQHTDikx5o3bx6RRobIXXLJJUZSQET70UcflQMPPDDp3+KBaGw0cfcTWrRoYR6AYkEsAbGfwzrPTtRM5lYH7YRNM0KwkbUkijyy6enevXvRv7Hjw1rv//7v/+Srr74y1npo3PlMshZcN7cRfkV+bJWsrl3Jsz+vXxCiWYXSZpz5V8l0sFGhQgUj/QnKPaskOgYgRxdccIEhT+hgKTJKB9jiIdto0qRJsb+htXU6ejgB0Tv66KNNBHTEiBHmAZGfPXu2SW/G+1siPTWRAlJubjcSXr8B+M64ZsyZM8cQWYCUgwLAaCDzsN+LaKTbFD4FNDfccINx5eA1aOX53GOOOaboGMgeKIn2JvniWrN4c+1U6+w/sPm1D4U/4CTT3IOWTFuPdSXThV2kXb58eXO9vc4fMgldVWLg2GOPNQvu2LFjU3blcAIfaDBkyJCUXgchZvKBKDMYiSB37NjR6HIT/S0R0PVCMt08ErlYeAVWmsEmxYICQkg15NcJotV24wJ5tg00kgGdesOGDY3nNEBK4tTG8/+xSLsiP6C7HY4BFAwSfSYKRpaHjacSaIUid4BIE9TB0YN1ivty9erV5r7UTVFhIRQKmetKoC6I11Yj0THArhntK402ojvWuQWew7feemsECUsF0YORfyPj6NGjR9y/+V0TDTFmk4AunMkXMPFGy2EgwC+++KKJbNC90ILIMFFjCgRpigKIiCDJQKJBZ0h7wyeLSEPGKVz85ptviqInELJZs2YVPYdCQy/qx4MYeSaFzHXlWkGeC9HUX6HwG4hMQqYhWESmIdPcq9yjGpn2P0K71lPW5KAWaSuJTtC9zi2wW4NcEQkjCgaBhrBSiPbBBx8YjVAqQJ6AhIRmInRAHD58uOma2KhRo4R/y7UmGpLJpGhdLz788EMjYQEcmy3oc/u8qVOnmvNO225afQMkG0SWsZaDXCOxQULB+b733nvNhscCokyXQdxVIN/IaF544QWzGXrmmWciimGSRUQoGjz55JOLLO4sSUdK889//rPoe9gW8Ir82SixOAMlzwqFd8k0nT8hW5Bo1gPuXWtHqvBvEeH27dvNmhpEAp0xEl15YLA1oTfeeGPEREG77wceeEDOOeccs7CnCgbje++9Zwjm7bffbrTTEDqKCBP9Ldcg6kszGYt3333XPMAZZ5xRRI7dPi8W+G4QYDID+JFyPulWSGtuukFGgwg1TW6Q0iB7adeunSG6Tn9nq5ON7qpk8cknn5gINNFoJ7Af5Jw/9NBDhoAPHTrUaOYV+dHfsbmyVeCMCyXPhQVkAFpUWFhg/WKNJEPI/cucDomGTAeVhPkZ5cqVM/cn3CeoKBVyIWJht4F3MNKEVKOqisygV69ehqxju5fK3/wCxhgRY/ypcznGmMz5bF2s/QGuFzp4sj6MExZfClkUCoU/N8NEppFk2QJgnYe9D+Q5EOhSGZbjuOGaSD4xfnjqqaeKTAXyCQ3deBRTpkwxAwrZwT333GMibpYkJ/qbIjUwERDBRBLARK7wJkgZErXiwcSNZp6IlhLowgXzGiTLix1UFSWHldZR88JmmPUMGR6kOogFan6B5R7a8j0MJdEeBcVwFK3xwCUECYebvylSAwTa6mjR6CmR9ha4HugnaS9M9BltPwQ6yOnDoADyTOZBSXThk2ki0JBpSDUkWp08vAmbubVe0AotLPQs7r//fvNI9W+K9Ik00WgmCSZyRX7B4sn1sEWDRKq4RlrNr1AUJpBxUB/DfY5eWosPvQXWRtsVWGW9u6EkWqHYRaSJhihJ85buWXWSCkWwgEQruviQwIb6vecXZIQg0FgTKnZDSbRCsQt2goa8kbJi4tZJO7fSDRZN2/mKDpNasa9QBBMQNqRbyDqYF5iTIdLqL51bWPcqJc+xoSRaoYgCEzSEzjZkUSKdO8s6/p+ULhsYXSiDDe47NlN6/wUX1o4U+QDZKSQekGp6JWhRcfZB8SDrINlAPd+xobOTQhHHn5YduBa35MZ1g8WRyBPFRap9VgDIs2aDFHZORuLBgwCHunjkjkBbL2hFbOjWQqGIASYNyByTCETa2ZxFUXKw+LEIUjjIuaY1sBYPKaLHCISJ8aGbKgWwrhDMG8wfZLDIXOnckVkgaWTdI/qsWcHEUBKtUMQBE4iS58yDgiEizxAkIv50G9RJWhENxgdkSVPJCifITFhtNPMImSz+n99pxDQzYHNiA0k6NyeGzkwKRQLYxZuoGOSPiIdOKukBeQy6Rls4SGpWCwcVCkU6YO5wFh4yP2vhYWZgybOex+RQEq1QuIyKUR3OT01vpQ7OHVEjNiMUBelCp1AoslF4yFyDxEOj0qmBtY0Ah9YhpAY9UwqFC1htGMUWTDRa0JJa9PmXX34x59B2JVMCrVAoMl14SEdTItJ0OIVMK9zBulHpupY6NBKtULiEbXNK+hASqL6ZibFt2zYTGaJIRTsOKlKFTSfrmFG4BXMy8zTzDht3bdLiLtABgQZq6Zo6lEQrFCmACZrdOhOPInHLbqrn0S1q0xRFSdpAKxTpRKUJdpAFIzJNhNoGQRTF52pAAa8S6NShZ0yRFv7zn/+4jhDdfffd0qJFi7SJp/2stWvXihfgbH1KGswPx5wrEHXmO0OgmZQffvjhiMXr8ccfl3r16pmFTeEeJb2HFKlBx6m/x7fVSrOBhxjaOanQ5QqpjlvOE3ry6Ah0Kut70KEkWkSef/75orThd999V+zv3Hh169Y1fz/iiCPycox+BVXTd911l1x33XURN6nznFtpRO/evWXIkCHy6aefih8AgWZiLon2bsyYMWbCIv2YL2TiGLhHSAmiRWQhpGqeNGr0RHz22WcbmccTTzyR9D2bNm0qN9xwg+vfx0P0WGPRaNasmVx++eWyatWqhM+rVauWGZP/+9//zLX20j0E5s6dK6eccorUqVPHpK4hIrfccouJwlkQabrpppvkkEMOMRE6vhvfNRVMmDDBvJ5riiXhwQcfLJMnT5Zc3F/OjerIkSMjrpHzMXbs2KTv6fb1icbpsmXL5PDDDzfnolWrVvLhhx8We867775r9P9EQr02zp149NFHzXO7d+8u+UK88V3Sccu1ZgPPdahdu3aRrMPtWMkkcnUPup1fmaMt0eYcaRFm+lA5hwNMOq+++qr06dMn4vejRo2SpUuXqqF7Gnj22WdNdPLUU0+N+XcW/IYNG5obf9asWfLxxx/LYYcdZhYmr29YmHgYE5BoJsV0xgcE9uabbzaTH64V+UBJjwGSAwFnUk6mQeQeO+uss+S+++6TK664ImG0g3HwySefyO233+7q98lgxxrXi83yY489Zt5n2rRp5rijn0cR6cqVK81i/Le//c0c8wcffCDt2rUTL9xDS5YskW7duhnJA0SJxfn77783izUL7vvvv2+eRxSO70SEqn379ub7pIKJEyeaOZFAAu/NAgz56t+/v4wbN06aN28u2Wy2Eit6+Ne//lW6du0a8bsmTZq4fu9kr080Tvk9RBriN3r0aDnxxBPN3NWgQQPzd8bX1VdfLbfddpsrOUq+xjl45ZVXzHFzHefNm5fSOcz2+C7puI2+1nyGLZ6rWbOm+ZmraGuu7kE386sNePAeyOxUwlFChFxgy5YtoRkzZpifhYjnnnuOWTp03HHHhapWrRravn17xN8vuOCCUOfOnUP169cPHX744SG/YtOmTRl7r5tuusmcs2Ro165d6Iwzzoh7zn/88Ufzb8bWzJkzQ8uXLw+VK1cudNpppxX7rDVr1oS8iM2bN4fWr18f2rp1a8rHfM8995jnLVy4MOfXMN1jcOKPP/4IrVixwjxizQ+xxsn48ePN74YPH57wvT///HPzvKVLl7r6fTxEjzWLf/zjH+b3r776asLnAY61YsWKZg7geucS8e6h22+/3RzvtGnTIn5/5plnmt//8ssvEdcI8N34G9/VLQ477LBQlSpVQmvXri36HfdppUqVzJyZDvr37x8666yzEj6HeZj7yjkfjxgxwhz/W2+9ldbnpvL6WOOUa1+qVKnQqFGjzL937twZatiwYejxxx8ves6tt94a6tChQ2jHjh2ujinX49xiwYIF5vfvvvtuqFq1aqH//Oc/oXwg3vgu6biNda25JoypZcuWhdatW+f6GqUybmMhl/dgovmV8bpx48bQhg0bivGcdNb3TMMN15w1a1aob9++5qcXkN8tyNy5ItdfL8IOlJ/8O49gJ0z3oy+//LLod0RI3377bTnttNNivoaIxLnnnivVq1c3kcjWrVubnbUTixcvlksvvdTsFpEt0OKY6MWiRYsinkfqkogXkQHeizTUQQcdZHahFkQLbcTDiWgNk/33jBkzzLFTWOGMsLs5bguiGezk2eU2btzYVSoeLFy4UKZMmSKDBw8Wt7Aewsk6lHFOiZq0adMmIlXJDr9Lly4Rx+pW35Xs/Mc790SkOL9EfqKjZkQgTjrpJBOd5bpfeeWVRfIPjuuaa64x/0/kyKZh7bhIdA3djil7rc877zwjTeB78VmXXHKJGdvJjiHeWHnmmWfM+eJ+4VqhPRw/fryrcdK5c2cTNbWR0nggyoJWjyiam9+nioEDBxaNUzfP/fe//23O+8svvyy5QqJ7iDQ44Lo4QZSN6JLVonPNatSokfYxfPvtt+bzGWPOz+A6fPTRR0WFSbkG44/oYrZeH2uc2nucexFwrzBnWfkM98qdd94pDz74oOsIX77GOVFovgfSlBNOOMH8O9dINL5LOm5jXWuuCdfLaYVHxinbyOU9GG9+tRFosjuMK7vGprK+u+UNI0uwDvsN+ZNzPPecyPnnMwtxdcM/775b5JlnYCt5OSQIUs+ePeW1116TQw891PwOfS66NnSH6CKdgLz16NHDDAzSqRAJng9hYYGDkIEff/zRpMytdhGCQortwAMPNATJptguvvhiQ9h5L7R2EBQG+MyZM6VTp05pfSeIFdq6O+64o4jguT1uMHXqVKO94jncBExEpJOiF+5Y4DuDRMfOuYVo4r2MvvPee+81E8IZZ5wR9zXz5883CwMTBRse9Ldg0qRJRjPG5II8gcmCFBrH7gYlPf8U0nFOnUQaAs24Gjp0qNHhMYbWr18vL774ohx33HEyZ84cM97uv//+ou8RfbyxrqHbMbV8+XKT8kduceGFFxrNLBMh35OFP9kxxBorLOrnn3++kTj9/e9/N/o8UsWpjBPOJ6nwRGCSHjRokJH4XHDBBUl/nyoYR8C5MCXCX/7yF/nnP/8pX3zxRcLPZVF2o4UFjOFEZCvRPcS1ZgPHfct453vwfMYBKexMtayHbMSyc2SMsRHj2jNGUjkf/I73jS68TXY+LM455xwzTyCp6tu3r9xzzz1m0XYLt6+PHqeQL0gB9yIPzje61Iceesj8/dprrzVrR79+/VwfS77GOaSZ+5/NFgEkxg3zSrTMJV/jO1OId62RMmCDxxhEdhMtdcnGuM3VPRhvfrUFl5ZAp7K+u+UNk0q4DvsOeZFzzJkTCpUuDR0o/uD3c+dm5nNcwpkGe/jhh0OVK1cuStmeeOKJoQEDBpj/j5ZznHfeeaGaNWtGpFjAKaecEtpnn32K3iNW+vf77783n/niiy8W/Y7XXHbZZQmPlVQSx5Es/WL/feqppxZ7rtvjBsccc0yoQoUKocWLFxf9jrFQpkyZpOmef/3rX+Y5pI/infPoxx577BF6/vnnY343pBFIPmrVqhXq2rVrUbra4sgjjwztueeeJlVnMXfu3FDZsmVdpaaSnX8355704G+//Vb03Y866qiI51566aXm9z/99FNSKUWia+h2TJHaL126dEyJAqm9ZMcQPVa2bdsWWrlyZejoo4+OGCupjpMLL7zQyCOSgTQ5KUunVCbR72PBjrWvvvrKjKElS5aEXn/99dD+++9vjsGmyxPJOSz4zh07dnSVRnbzSCahSXQPWekA38H5njfccEPc90snldy2bdtQs2bNQn/++WfR7zjv9erVM+/19ttvZ+V8cC8x3pwp99GjR4eOP/740DPPPBN6//33Q0OHDjXXkbE3ceLEpN8l1dfHGqekyUmt22P+29/+VvTePHfRokWhVJHLce5M+X/55ZdFc0GdOnVCV155ZdLPyeX4Lsm4dXOtGVusI6wZyDzsnJjp75nre9A5bvlOztc5kcq87ZY3HFmCddiPco78RKIJ/8cL6/N7otFDh0o+QOSQHRUpEnZT/IyOQAMigu+88455Pv/v3JlSzf/6668bGQCOE84dJDtZdm1IEUgr8RwiXIB///DDDyZ6SOo9EyC6mu5xs4P8/PPP5ZhjjjEFERYtW7Y0z02WZrSpfiK08fDII4+YCnJ209OnT5evvvrKRDmJbhIlcYLd9sknn2zOHTtgJBIWHCuvPfbYYyPOHc8lMhSrgj4amTj/7NKJSNgU4WWXXRbxd4o9KAjh3LktUIu+hsDNmKJw5L333pMjjzwyZpQtWWoteqz8/PPP5nO4prwn6UI+i+hEquOEiB7ZB6Lh0RGg6OIqvj/FvUhrkv0+EaJTxvXr1zfROCr33YKxnMylg8IhpyQsEZKleJPdQ2Q5iHoef/zxJtJI1JIIKe9LtCgTQDaE/IeIE5FWxhVFcytWrDB/5zqmej6uuuoqc4xWShTrfHAfRUf3evXqZR4WRx11lJEicC9df/318tlnnyU8llRfH2uckgXjXmC+Yp6g2ItzQvSf78W4IqqLpIP7hmxNrHs4n+OcfxNtHDBgQNFcwNyKVIlsYCK3hlyO75LAzbW28g6i8USdmUu55hxTuuM2G0j1HrTjFvkG15bvFe2WlMr67pY39OjRo8TrsN+QHxKN3jKeXyO/j6HrzBVIOTAJ4dLBxMlA48aLBloqUuRPPvmkecTC6tWrzU8GM+n85557zqTSnel+Z7oIr0wqa5mU0TUxgZ555pnSqFGjtL8POtd0j5vncuxICaKBFrekWj2A1ACCh9aQ7wnpRFIDAcCdw+kxDHFj4ufGj550OWaONVZ1uduK80ycfyYpFlu7+Eeff1LB/C2Wdjkeot/D7Zji+kF60Y2nA7djJZ1xYo83GZHnWrRt29aQQyeJiPf7RLAbNhZIxhHHlmoKlrQwWvlEYAFLpQ4gXbBwIdFBjoOkB7DxZIHFLowUvVupSiJA4nACIQ3+wgsvmN9xz7KY4xyRjADFOh/8jnRvovPE92BzzRyQ6Dpxfx999NHGVo75OlW7rkSvjzdO+c5OWzjuQ5xc/u///s+QCEgWhJTXUc/AWLOENd/jnO/I2OF4nDppvg8Eevjw4SbFn+/xnQ3EutZW4oC8A6kd8xnfMd1xmw2keg/accu6yndkTYoew6nM227XgtUZWIf9hvyQaIqzEkWiYxRv5RJMemjQmBTZPcWy/bKm8Gh3IV6xYCONRB+ZZIlwQxDRXzGg0bM6zeXZ5aHZGjZsmNFdcsOgeeSGtxrteKQjXtOPaB1VKsddUrCAo7Eickdk2Q2Y7JncieKgkaZwwYJoGxMIUZSLLrpIMo1k59/tued5tkMfGzHOuV3E0imsiKWFczumSgL7PmwiOfdM1BSKRI+VdD6PxYqJ3U3rdAqf0HA/8MADrn6fbMOWLtCAs0FJthhA/NBaut20JyJ9ie4hMhodO3YsItDOiBsetGgTM7XYs1Bj20b0lbEGsUMfDiBs2QDjChIAGUy22YFsct6JvDkzVG4R7/VuxikbVfyc//vf/xoyRn0B9wwRPmCL9hKR6FyO86+//tpEMCHSPKLBsSYi0bka39lCvGvNZo3j5Zrz/ZjvOCavFMOlcg/acWsJdEm7NbrlDTvi8JBCRn5I9LnnhosIY4Ed1HnnST5BKgKSRiHYG2+8EfM53GzcYAyaZAsVEyADj12+BYtDrOYW7HJJ3fBgV0eBADePJdHshGO9DtcAN0jluHkuiwdkNhqzZ89O+lkUsQGiHakQc1sxH131D6llQeXc8B2cjilEByF4eJ1GI9bv4iHR+U/l3NuJlygxaUHnsTAhWZePdCdoN2OK68cigQwmEeIdA+eYhYSxAomO17qbv6c6ThgTpA3dgIwAjge8vzNqEu/32cJLL71UlL5MBIqlkhEm53mI5fji5h6i0Me6RDhhpUQlca6IhWiHHyKuEHh7jPnEggULzP2friwg3uvdjFPry3z66aebfyMHY3NjQVrbTWOaXI1zSDLzJRHraBAwIIhA57t4G4dcje98jBU2axQJsvZA7LmXCKJ5pRmJ23uQ7wix5hrGI9CprO9uecOOHTsysg77Cfkh0UwE6J4hy053Dn7y+zyH/bm50LSRckdCEAvcVBALZB+QlOiUOekPW43Kc6Otz6jmdu7a+H9uXKc5PxMdE7CzhSdyAKJh2ALZSYeoAhOfG6R63BAGdLVoAK1uCrcKJBXJQIQUYH3mdoJk0iIKzI0fvXhB9kglMblBILlORN3ssXJzc6xOTTM3rpsOiG7OfzrnHmsfFkHegw2AreK3myLroJBqt0A3Y4oFgWgYaWWuQXR0yjYbiD4Ga4VEhI3xjxaOSTXeWElnnKCfs6QjGdA1sniQ0nY6x8T7fTZA9O7WW2+NIEu50IwmuodYJLlXkHM4I1FEQrn26ZASMidcQ1xarFNLLBBcwMmB6Gs6rgTpNs5wzk8WP/30k2mCwz3lPJZY3yWV17sZp5x7Wtt/8803RZtRJBQ0X7HgPnCjmc3FOCfVDlHG8SeWTJH5jvHD+UAjnc/xXdIxm+q1tuA6QhhZg4joov+FWBNESHfclvS7pHoPkoUiyJSoAVgq87Zb3lCmhOuwH5E/izts7NhRQZrRh7JbhVR7RDcTL2XhBNGBESNGGC0Z8g9s0UgDMfGyQ7QpL7S9RLEgaDyHrmL83alXhBiyo2RiY5KCIPIcbhJntJF0PXpHouUUsnDTQfhZRJ1+0pk4boBFDQUYyByIzhLdgqwhs4BMJgJaYm423hNvyVjgxmLBgTxD1Jic2RmjLYyVlmWygBRCDpFfoNuyPqhY9EAqKIqkCANCyQLHMSSLBLk5/+mceyIsEH38PHkvJj4mNxudRnsNSAfz/kzUENdk9mRuxhSgyIxzwuejn2VjAvF/6623jH0fURbnMbBwci14PpsIOl8ReUo2VlIZJ3TT43VoE92AiZn0cjSJiPf7ksKOSb4D0V4INOOSAi0W4GhJSzY1o4nuIXS3HCvnnBoCrj2F0PyO4lxnYQ/3AZskFjZAgQ/yFCsNsptHup8RZcTmivsJQBCJtnKu+QwydEiJKLzG9zwZOIduSRf3VqKxz/gkegaxZHxi58jGmpQ185oTsb5LKq93M04pGuQ9kVBYMIfwGptq51xzXbwwzhm/zHU2+BANCsMgQ0Sr45HoXI1vt+M21nVO9VrHAp8LmbTd/axuOp1xW9Lv4vYeJFjDOsO4tXKiREhl3nbLG/5TgnXYl3Bj4RGUjoWJrK1ArI6Fq1atMrZodevWNZ32atSoERo0aFDoySefLHoO1jnnnHOO6YaIXdGQIUOMPQvvZ7sfYVdzzTXXhNq3b28s9vbaay/z/48++mix4/jiiy9Cbdq0CZUvXz7UvHnz0MsvvxzX4i5exzw3x21Bdy46NvJ5jRo1MrZLbjsa3XfffeY7R1uyxbK4w96O7/zYY49FWA3F+i68H92jeO+xY8dG2E9hQcaxNm7cOPT000+HrrrqKmPjkwhuz7+bc+88Zu6bE044wbznvvvua6yHfv/992I2ZbVr1zZWdE67pETX0M2YssC+CKs7upJxjrmGXHunbVb0MXDcqY4Vt+PkuuuuM9ZMzmucDNj28b7RVljxfp/O/R09JnlfvutBBx0UevDBB411YT4Q7x4CP/zwQ+jQQw81x8m1wQaLTobR3cgYF27suaytF9fNYt68eaGDDz7YjDXGT4sWLYxdmBvbtZJYhWHLRYdOpz0X16Fbt26h/fbbz1hmYblFtzsstOJ9rvO7pPL6ZOP0448/NteFznHR4Pxgxcn733XXXSGvjHPsx5gLo+cgJ84++2wzlqKtzPIxvt2M21jXOdVrHQuZtrgryXdxcw/SFZF1gfUulfk1lfXd7VowPM112I8Wd0qiFVkF7UWZxLiJEsG2/c7GGMPTuEmTJqF8A0/SX3/91TxSbTebbUC6mCAhBEzG2QLvzcT7wAMPpPS61atXG4I/bNgwV78P4j2kyP84LSmCOM79ML4hpLZdOPN3KgGAXAAyzfHxyMe4zdQ67EcSnd+234qCBykqbHgoCsyUa0QiRPtlIg1B8kF3t3wDKYrtFuWVim9ApTq6PzbVpHIT6ehKClKQpEST+eZGg+PCnSC6GCje7wsJub6HvALGI983WvufC6Q7TkuKII5zP4xv5muOE4khtTNopb1yrEgwkBai4UbPno9x66d1ONMoBZNO9iSq/tF2UlSTTA+oUKQDxhiFnFRyl2SM4a5x9tlnG60drhloltGJUWiRCweHVIBWzDZnyReYfNHpMQGjdfRKFbpCATmAsEAcbZtihcILaxUkmjFJwaEX5kwCIZBnrwRnaqa5DrvhmtROocl+6qmnjJ91vqEzUwGDnTIRRlwWrPUMFb/JCiDmz59fZJMVDciWs/mIswo9OnKSiUYPqYJCC3bjeHwTUaX6m+I6rxFo64Bho9O5nvz4fGvjRPENBYZemYAVCoXCq2AdZW2jkM7p3JFr2DWazy6pD3RQ1+FMQEl0AYMBDEkiwmjbmlINjNl8olbLVDJHp6q4YZkwYr0OEhjtpJGvjAVpWD/AdjaESPPIJZGGQBN9JuVmvaCVQCsUCoU72MYslkizxuZyzbMSDqLh+SDwhbIOZwJKogsUECQi0M6IMEQXyQSejth1xUOszlFMFPY9Yk0oTn9lhTswAUKec0mk2Rwx8ZP+Y+J30zFQoVAoFJFAxsHaajscsgYmy/JmikCzXthuhIr8QgsLCxREoCFkzpblSAe40SHY8eQa8QAhZ8cb76aFnHml0MJvRJpzitwm2+ePz2AzxLVH1qMEWqFQKNKH7XAIeSbTG91lNxtzeD5lgIri0Eh0gQIRP6Q3uujBppzs390AsT+Ry3gaZyYPduM2Kg1BixWxdgIi5+yu5+zKGDRwHThfTIi2zjfTkyPnet26dYaoc328mAJUFCZ2WakWjW3bbZM5IPpv6CchCMwHjFnmE+YeWzjFg9/zWnuP2OJcW3xoN6P8XkmGIttgjNn5m2AT449sbrbGHuOcAIiObW9ASXSBgpRPrIp2+zv+7hZMDCAWMeZmZsKwixtkmo5M/D9ygXiAeFuJiGI3aUbnZvXSmQLXGgININDqdKDIFGwGylrR8ZO5gDEG8SXr5TSA4vfWpo2x7iS7PKy9Iu/j3GTb19q/8d7RxNzK0MjC2d9Dru39xHMscbfEO9/uOIrCItKMJdZLxpgl1pl0cmIM50IyonAPXU0LFCw0sciSvandSgeYDJgUiGDH8g+O1lYzcWBpA0FGOhJvgeJvTs9TIk+0ow46ICCWSGdCbgFpgEDzfmQSlEArUgVzgJUb2Z+QUsZUtDSM+91mv/hpI8tOouz03Y1HMhj7fBbvz/87M2o2Im2PzfkT2A2ok9jbz+FYIeBOMLfxsBFuPotjtsetULiFLdImSMS4y4TrEe9jNdBKoL0HXVELFCwAsSzAnREaN4DQEclE9+X2c4lA4wyCDCReRNW5ECp2g/Q118ia1ZeESEMWINC2AMYLfqYK78ISTsgk/w8B5ieEwMKSSxvNtQQ0VkSX8ZZozCUjF3wGc0+iVgZOUm6RaF5hPuKest+Vhz1Gvjebeefn8V6WuDgJtkIRD1arjAMSY4n1MF0izfi0OmutYfEmlEQXKIg4xioetDIOtxFJotBMALEcOxJ9NohOxyrcwUb8IdLpWhhBBqgY5/UQaF34FdGwRNhGfC15BowbxiF/t6QAAhlNBvy4MbMR8eh7gg0s95oz8h4dDXRG222kXaPVilibNcYJczAPiHSqc7BzzHEP6hzuTSiJLlAwuRNFZjFwLnREh+3f3e6C2QGnQuQseVfpQPqwafB0CDTXmIkbUkAGQSdfhSWGbKJ58P/WbcepR2auiG5LH6SMUTyCzb8JJHDe7INMjy3UhuzwOs4dD73nFM6mLDxSnYu5T1mDkYj4cbMaFCjLKVAw4XPjklKyrhrckKRmnaQYwsvvY5FqFgYWi3hOG7GKF21xoY3SKNKHm2sUDSKKnH+ey6StUbLgwtlW3hb52Ygy48Peu9YuS5EYieQpnEPmQ6u3tufUOpHofRhMcJ+x/iKr4+GmTbgdLzYzomPH21ASXaCwrhkU+FmrKAg0hKxGjRpFz6OYj4h1ixYtUpZyQNCJVLNYcLOziNjPqFmzpkZjMgTOK/IMO7HGA9eRa6JtvIMJNlqMFWsfaTdedtNsSaBfxgXzB8fuh3nE6lXtNeBhj5v70hZ624dfroGi5LC2r5ZIJ6pPgUATvOJ+VamQP6AkuoABkYVEQ4ZZVLkp69Sp48o+jedDkBOlklg4iG5BnHk+iwYpLEi6RrYyB1sIZS3BYhFpS6C5tolcDxSFG21mo8WD+9XazDmjzX4go05wvH7LZnHM3J/Oe5RrYV1B7GaY+zRIMpmgg2sNkWY9jkekLYHmns5lC3FFyaAkuoDBhH7AAQeYRzzUq1cv5u+5wZs3b57w/SHKSpZzG+my9nfOBZiNjBLo4MBGm63MxzpkQDitlr4QwHfjOzLW/fydnKTaaaPnjFJbtyI/f09FYtgi71gRaRsk4d5mTdV6Iv9A79gU8Z///MeQFG0U4q/r5RZ33323kbZ4rYW59Y2OJklWA83flEAnx+OPP242jn7qkOlsKsL1JkNEVJOFlgXXRmv9GG1OBO5Bvq/X7sWSANLEhsdeJ0uW+J5kDLm2qTTCUvgLbJQgz4xpapbs2GY+YnNlpZEK/6BwZtwS4Pnnn49oBsCD6O2AAQPk008/FS8e53fffVfs7yy0devWNX8/4ogj8nKMfgaL2F133SXXXXdd0SIXPTZYAJs1ayaXX365rFq1qui1sZ5Xq1YtGTJkiPzvf/8zXdQyRaRZiK39EQSaz8qFBvr22283n9GmTZuI30+fPl1OPPFEadSokYmGk7bs16+ffPjhh8Xe48cffzTnrnXr1mbBgNCedNJJMmfOHFfHsGzZMjn88MNNsWurVq1ifsa7775r7l+nv7HF2WefbQjoE088IV6HtZ5j7FjHGyKanDe+v5UE6MbJv+B6IpnjetpWzvZ62nbniXyyFf4l0raTrK1dYBwogfYfNGfgwC233CINGzY0kxYECWJ02GGHmYXaS6QU0vTqq69Knz59In4/atQoWbp0qe90hF7Bs88+aya2U089Ne7YwD6ODcxjjz0mn3zyiUybNi1CY26fB+mh4czIkSPlb3/7m9x3333ywQcfSLt27TJyrBArJmCKPkti5u8WjKs77rgjpnyHDpUcz1lnnWU2DqQl33nnHTnqqKMMWb3wwguLnssmZfTo0YZ0cy44Rw8//LB06tRJxo4dW4ygR4PPgEg732fWrFnSoEED83euz9VXXy233XabiczHund4D67HFVdc4UkCytghMsVYtNIdZxdAtbsqPFj9t3Putm4fdgxAuDXNX1hEGp5BVpvAg15bnyLkAlu2bAnNmDHD/MwkVq5cGXr33XdDTz31lPnJv/OB5557jq1+6Mcff4z4/S+//BIqV65c6LTTTiv63U033WSeu2bNmrwd53HHHReqWrVqaPv27RF/v+CCC0KdO3cO1a9fP3T44YeH/ATG1syZM4vG2KZNmzLyvvZ6uUG7du1CZ5xxhqux8Y9//MP8/tVXX034PDB8+PBQxYoVzXXZvHlzqKTYunVraNmyZaGlS5eG1q9fX2wcZAMnn3xyaODAgaH+/fuHWrdunfT5f/75Z6h9+/ah5s2bR/x+9OjR5vidmDNnTmiPPfYInX766Qnfk3NXqlSp0KhRo8y/d+7cGWrYsGHo8ccfL3rOrbfeGurQoUNox44dcd9n/Pjx5lpxXbwAvse2bdvMOQOcn40bN5qf/C2oYFznanx7FYwJ5sRff/014lwEeVwUCpjP4BFLliwxP/WahlxxzVmzZoX69u1rfnoBeZNzEEW66aab5IsvvpDx48ebn/x7zJgx4hWQIifFlmyHSCSuSZMmJormTPEThezSpYuJfjVu3NhE5VLV6MYCkVKikF9++WXR74hYvP3223LaaafFfA3Ru3PPPVeqV69uoh2k04m8Rn+PSy+91BQU8r3ZKRPpW7RoUcTziDoSXSX6x3uROj/ooINk4sSJEWlzGx10Itb353d83rx580yUkMiqjbK7OW4LIsRdu3aNON9usXDhQpkyZYoMHjzY1fMHDhxY9Do3z/33v/9tzu/LL78sJYFt5U1UChcUopK2ojtb+Oabb8zYeuCBB1y/huNCWkTBoxO9evUq5i7StGlTc11nzpyZ8D2JMts2uoBxxD1qXUsYK3feeac8+OCDCbXBnTt3Nn6t77//vuQTpHH5TtxPXEPrMWxT/Pz0YqQ8V7DNS4J8DqyGmoyT0ymJ8YJ+mqyFyj38B+57sk1c12rVqpl7H2meXkv/IS/5A4jmSy+9FFEwY3+++OKLhpAmcpTIFtBQklrhWFavXi0PPfSQmajOOOOMuK+ZP3++IUksypBa0jJg0qRJcsghhxibuZtvvtmQHFL93DAlBeS0Z8+e8tprr8mhhx5qfod2m+M/5ZRTjAY3+nz36NHDLEboUTkGnn/eeecZHTCE2OpV2cTwHljhQZ6RLRx44IEyY8aMItnCxRdfbEgV74UuFVIHgYUEkZZPFxxHy5YtjWzASmrcHDeYOnWqHHzwweY5kHJSoWzKIN9uYDdvbo+f6w5sI5tk+Mtf/iL//Oc/zWbxggsukHTAgmlbedvuV8grLIlmgeU5sbTAseCmgxbvi+zh/PPPl7Zt2yZ8LsdhLQ+RrnCtTj755KTHYa81RDoRIM9sjhgfPLhmkydPNvcpuPbaa839gB47GbjObOTzBa6Tbelr3Rs0nRsJxjPEUbF7Q2HBeIGEMYasFCTomy4/EWge1lHHzsW2OZp6/PsLeZm1WfwYJLF2Xfyexe3YY4/N+XFFRyEZ4EQ9ibLGAlrMQYMGSe3ateXzzz8vipABCByLAN8FnSiggAqSmAkQcb7++usNaSGK+8orr0j//v2LPsuJG264wZAhiKYlfRBhItoQzosuusi8BwVbJ5xwQsRrjzzySEPY0bhCBMHHH39siOC9995b9DwITEmBK8Zbb71V5JEJcXNz3ODGG2804+nbb78tsu07/vjjkxI/57UE6JkTbbCY/LimbIj4bLdaeTYlaHQt+U4VtgiFBdNJfvkJ0bCTLpsZGyVPBqLosbIF0W4WRNC/+uqrpO931VVXFUX/Oa7jjjvO6J2TgbFLFJlzmgxPPvmkGaOvv/66+Tcbqd69e5s5ZdiwYUmj2RYUQbKRzxUYm1xDfkJ2bISR/y8kR41Mwrk+KKmIhN142UZMzEs2w0OGQ8eUd2HvfacXNP8PfyAazVhXpyX/IC8kGjIQL23B7/l7PvDII48Y5wVAZIzUO0SOlAuEwAkKyoiyETUn4uZsjQ3xg3SwEXCSWp5LpCyWo0CqgJBDID766CMT8eZndATank8IMM/n/53WfDhHQEaQYUBELCG1kTKivRwzO2OeY0k0//7hhx9k+fLlMUl7unBGLVM5bs43m5hjjjkmwveaDQvPpQAwGRhzRHriRb6iN1j169c35I8NlFvw3um4dPD9OD4m1Vgm/XayZTGFHHIu3Cyizs6VscBnsjlBiuImg8J4hOAyLt58801z3FaikGjzctlll5mNGlKeZGCD8PPPPxtHEMYekhFIw1//+ldD4rkuZE+QdDBu/v73v5uNVzRYsNiAIgVx03woXXBs1mXB+gFb4qwNFdw3fNIofWzYhjq2VTRjjDmG39m20QpvgA2PbYQU67rYplpEo5kfnJxC4V3kZWaCCCSKRLtNkWca3bp1MxpmCyKeHTt2NFICIo5OLScRWqQCEJZo4oUUhAUaAhqNWL9LB5AaiB0uHRABFpzoKDJYs2aNuSmJ4PGIBY4XcMxDhw6V5557zkQGndfHKRHASxnCA4FBX4qDyZlnnmkIXElAtDad4+a5HDva2mig73ZDot1usFicuO68b6rRHgiBU6YE2XvqqadMpJ1sAdH1aFg/Ua4FUqFEzgwcG+QQCQxjsqTRqH/9618m6o2cw20mwbaPZzwgr+E+YcMVK6qCMwfZD6IuyIPcuk7w3bp37170b8Yr7/V///d/ZvN6zTXXmA0wn0nGhmuFXaUTdmxnM9pjSaCNPqtkQ5Et2HFs7TXZtCH1sFFPJdP5BdfDbthjdZy14O/MG3YjlM0NviIzyMuMTnER5DMWWHCILnoBkBAWX6Jac+fOjdBsIhV44YUXTDQSWUE+AEFAVgGBIMJNhDga1swdXXe8SJ+1XYMsQUiIKBIZtCklNNLOhgdEh/v27WvS52h877nnHmM5hj+v1WjHIyeJCuCckblUjjsTsL6dTF5kHpJtsNKxiGMj4txEoZeHOLMRigUbleC4OL5kBMxGOZYsWWLGLhNwIiLNRiwecWW8s3mhmJDIsgVpY7IU6OWJlECy44FNHfcGHtDR3S85F4wVvh8SnHQzGmRL2ID897//Nfpw6gT4XLIS9hi4R6NJNGlTzo8z+5LJLntIwZwERtPrilyAedda5VmrRAgcYzAXG0dFfALtNjNAkIB1krmROUQta72NvJBoInlEqigitBFp+5Pf56OoMB5s9ygiSk5AHCE1uFlAupyuGBw/iyduE9GI9bt0gVwEkoK/7htvvBGXKHF83JTJnCeIBkJYnVpnSFO0w4IlgHx3HkSEKdSiGYcl0UREY70Ofa0bpHLcPBcyBPGLxuzZs119no2gohPOJDm3sPpb5CUWlujFipQTWUee8N577xlpkd1UsNGJJduxIOobTRjT0USTibAyCR7RQDt+5ZVXJnTs4DuA6EJHxhQRasg1kWOKU9OF9eU+/fTTzb8h/GSPLCDnFB/G+u6Zqk8AnCtLWIAlzroAKvIFKxuw5Jm1jHuPMalNenIDNjIQaM63baaTDFYTzdpHFpIMpGYSvIu85RaJRhOVo0jL9pEnAu0lAs0NQKSVHWT0gstAJ1Jnm0ywe6S5BGD3CPGDADl1wxDo6A6I3GBoPLlRrLOHW/CZSAKICkJKYoFjIWpOtBMdd3QzC6QQVu/Kc6MlNjgfOKPHNkXtbGTBNeM7Olsp46IAecI2zpLSFStWmOi1G6R63JBTzjfn0uqiKTKLl/GIBpF3gN1ipkn0119/LbfeemsE2UsGCCqbAu4PIqzcL8iLkkkr2rdvb1xiuE6QuESTdiJNNOc71rVC4sGYJzvDNQZsoqLvW+4dNsksHE6SzHGhff/++++NxZw97+kAEk7hIhZ89nuyQbdFonYMxPqe6OndXgu31fY2CqjFggqvSj14sOZYTb6S6eyCeZBzTNYrlfPMcwlEUQtkibQ2WfIm8irQY+HNhwtHPEBw7QIMMYDAQWTQWsYS+TMRob0koojEgYiidUYgTQ8BZ2NwySWXGPLAgg85cUbGxo0bZyKHuHnE0sQmg5tiLLxzR4wYYXSkyD8gNdyYEAkigfw/QPdNxBSCzHMgOvzdqVGHQKFdJk0OYYPI8xzs8ZwRbCQgtM/m+hLJZOKG8KMrdvpJZ+K4ATaCn332mZGZEB0n6sIGAAkORD4Z0HNzbXhffKlLOob4fCLIEGhILQVv2L65KSYjCsx14LitWwibBIhask0mE68zcs+4Y3PjNgpiwaRtI+VO2Miz829kQ5BVYC1HoSXyIiQUnAfGhLNmgOg654FNH9cv2jc7kZ1kNCgahJAjtbFgXB599NHGThBQxEvRrRMTJkwwn83zShJ5jm7zruQ5s4A0MO8qycsMbOG0dfRgTmZe0GxJ5mGz61Yuls4YZi5h7SVgxHzF/+v84kHks2OhV2C7zTkfFSpUMJ3PHnvssYhOQrE6FtJ5iE5ulSpVCo0dO7bo93RE69ixY6h8+fKhxo0bh55++unQVVddZd7bYsSIEeb9eF+3xxmrK54TsToWrlq1KnTZZZeF6tata7ow1qhRIzRo0KDQk08+WfQcOmKdc845phsi32XIkCGmKxDvd9ZZZ5nn0EXtmmuuMd3oKleuHNprr73M/z/66KPFjuOLL74ItWnTxnx/Ote9/PLLMTsI2t+NGTOm2Bhzc9wWdLKjYyOf16hRI9PJLpWOhffdd5/53s6ugm7PefQY4hg41oMOOij04IMPhn777be4r73ooouKrj/nlw6efA/nuKNr5t133x1KFXQ427Bhg+kAmYmOWLE6Fr722muhwYMHh6pXrx4qW7ZsqEqVKubf77//fszXR99rzodbfPzxx+ZaLV++vNjfhg4dGqpVq1aoZs2aobvuuqvY36+77rpQvXr10jofvOaPP/4w5zQT3ScVinyBucHeA4zpIHeGzCTsnJup80k3U+a5tWvXFnxXwy0+7FhYiv8kI9pEwNAQEhVTW6aSgQge9lyx9LtBBmMMWQoa3XyNMeQnRKRxH6GhS66ABRuSA6QSpO/IgJDFILIOiBhxXuiAmY5+2Db2SCetWGggAse5JLuEZCYVoHdmnBKFJurMONXIUPZAFsU2pdBUdvYABUCix/lmjtDznT6s3DHav7+k4D4gGs38Xcge0n+44JrUOZGZxtkqumA9H9AVIIuwhVUWEGckH3QAVHgPTE40jaFo1OlGki3YQh8mXogu+nk+l9blFAgyXpBJMGFQsJluAR4LI7pqPiN6TAYNuM9wPmJ5Rye7VmxmIBcUvCZzPlFkhtxpW+vsA0IG4UN6YO3Vgj5PlJRAM99mkuhCKFmfmINsp1OFN6CrQBZBVJOuguyYiDLi30sEKxPd/RTZATputLy5IEi33XabWbiefvpp08Ya3TSaanTdNCDp06eP0WlTtGk7AaYLG4UOepU35JniUzc6UBZFSybQk0KeWRw1SqcoNNiiWMY4hM1uXPipmxh3sAWbzBHZWD94XzY7BFZ0k+MdqPN/FkEnQXxrKbRigsKJALIUqymIInigkJQHVoBMwBSOWHIHweaRSViTfxvhS2T6H2RwfmwrZWtTx08lz4pChy2StbBe02z2tVFQYlipXDYDMNb2FZ975iOdw/MPvSuynDpWKBIB8syDVF2uquStNIHJONPNRvwOe26Q1XA9IBSFqj9UKJLBbhyRKWgdQHEwT+RSt89cRFM15imItFrf5R96NygUeQKFakShiWCQqssVbPGQjbYqdsP6axPxSdUWUJFZWC9jJW35AwTN6qWJSqOXTtR1NmgEGn0yhDaXkhfrIc1nQqRVbpNf6OykUOQBNiUHoXU2rskVICc8INHOJjlB3cxYjSHRNtU9ewNKor2nl3Z6oeei+NrrBJqf+ZgvkNZApJm72Ngo8gednRSKHIPIARFofjIR5ivaCUFhcQxqZMlW0yPfsAVUtnmKIv+AoBD9DDJZ8xIgzzY7Q/QV8sYmPGiRUL6vJdBE6fO14WbuphkRc5gWGvpEEx20m0WhyAZYfIj+UkiY72IdFkV7X7MoBCXqZ1t122r6oLuWeDnaB1EJyrj0C2xRG/cQGx0kaUHJ3rCJ4LvzffP9nZm7rCyQtcTv81jIhxzT1cxkLwwRG4VCkT6IGBA5IILglXa7LArWH5YJOQiwhYOkqP2+8CgUuYZtac39A5g7INOFDOtqBJg78h0AcRYaQuaRB/o9a7N5F8f005zsahRwgbhQq1evNv8OetczReZBZJYJoJD1uUzATHQ2iuGloj4WCIg0EQ0WRz9NYm5hNwhOXWchjze/A8mA7RLpBcKiiA2ujZXeMIdYWVQhge9EAIQx6cXMCHM2awsczY8dDUOhkCHQHL/dFPgFrmcm2hIDS6QVikyCCXjdunVmkipEAmdb6wImYSY8L29mLNEvlHMPGWOBZ8FXb1X/2Yd5jbQoEnusc58V0sbHzh/MHaxTXl1DkT9BqL2S5UwVEGjLNf0C16OcnU3NmjXlgAMOKPi0jSL3WLhwoTzyyCNy6623SsOGDaXQFpbPPvvMdMo76aSTTDGhl4nL1KlTTVes7t27+y6iEY21a9eaDpSgWbNmZv5S+AMQgunTp0uDBg1yagGpSB8EQebOnStLly41HsbNmzf39aaVuZv5g4ZprVu39vz8MWbMGBk9erQcc8wxUqdOHfETypUr58vATcpbRS+I6RWFByJNZDmsrVUh4fvvv5effvpJTj75ZLMR9Tq6dOliIi9+b8TCArho0SKj22zfvn3BjatCB9erX79++T4MRYro2LGjIZ3MeWPHjpVOnToZQu3XTQGbuXbt2knt2rXF6zjwwAPNBubdd9+Viy++2NTeKLILzZEpFFnEihUr5KuvvpJevXpJy5YtxQ9gk2ybK4wbN85Epf0EFj2OmSg60XQeSqAVityBlDyEbr/99vNtJJr5D0lK7969fUGgAUGoE044wczhw4YN86Xbhd+gJFqhyOIk/M4775gU4KBBg8SPQJNKJN3qub0OImDffPONzJgxw/y7EPX1QQEboU8//dR3mzhFGOhyyWoRDUUmNm3aNN8U8s6ePVtGjRpl5nC/Sdowfjj22GONRJK5W5FdKIlWKLKEzz//XH799Vc5/vjjfSmBgoD26NHDLIZMxkR4vQoiLjNnzpQff/zRpI47d+6c70NSZOCa5rqlsiI7YO5Yvny52eD+8ssv4mXMmzdP5syZY7T4ft2EN2rUyGQ/hw8fbrKhiuxBSbRCkaVIxvjx42XIkCG+1QMCUrE9e/Y0mwCINKTGi5g4caLMnz9fWrVqJV27dvXt4qdQFCKoS0DfTpSU4rcFCxaIF0H0ls04RchNmjTJ9+GUCAMHDpRq1aoZfbSaQWQPSqIVigwD6cP7779vKtMLISJKJJqoBguLV22riBpB9hs3bpzvQ1EoFDFAXQL3KO5LuK54zSoO6RoyMOYQ5m6/g7maLCh2ql988UW+D6dgoSRaocggSD2/9957psDjqKOO8p2eLtECWK9ePfP/y5Yt80RnQ6JZFD5yzmmhzkOhUHgXzItYxRGVtverV3TS1g2GbFahgEg02VBkbkhUFJmHkmiFIoOA1KGpw6ezEL1tSQsSRULaka8UIUVK2GdxHDSuURQmuLaQGr3GhQe66tkN+YgRI4yfez6LkfHGZzNu25gXEijuJItIdtQvBeJ+gpJohSJDWLVqlXz55ZemGM/verpkxYa0wP3hhx9yrpGGuPO5eKF26NDBRI0KJdqviAQ6fMiWH4tyFe5QvXp103wKP2maUeUa9CaYMGGCJzJr2QLz49FHH21+kiXVQt3MQkm0QpEBQCaxsyNFOXjwYClkYFmFtnHjxo0m8k473FyBCn8cTyDydevWzdnnKnIPNmpECPmpKEyg2+3WrZvUr1/fZJco6ssVySP6jcwBC1IaxBTyZpysKESaLClztiJzUBKtUGQANFTBuum4447zbPFdJkGE0LYFR16RbVjdJIstTRxU/1z4IDpIx8lCjhIqwpHStm3bGq00RXC5INE2AMA8QvE3Wu1CR9OmTc2cTbaUCLwiMyj8kaNQ5KDAjXTkQQcdZNKTQQHdyIhII/Ggsj1bZBrdJH6na9asMf/W7oMKReEBb2PmEwgtJJc5JVtAZ49OGDvMIBBoC7KkzNtkTXOZQSxkBGf0KBRZ0uh++OGHxmKNtGQQAXnG+3XSpEkZjyLNnTvXeEDXrFlTo88KRYHDSiomT54s3333Xca7VfJ+ZAz5HOpWgqa3J+BBN0MCEszZipJDSbRCUQKMHDnSRE2OPPLIgtbUJQKRHAr86IzF4pcJIs17TJkyRWbNmmU8W9EsBilipFAEGbZh0ujRozPW4RBnCjKG6K6DDAISRPxpa+41r24/QlclhSJNQBrZzatGV6RGjRqG6OKaQTFYJgo10UfiwEHaVRE80OSHFD8/FcECkq3evXvLvvvua4ivlXKli82bNxtbTjqwQtCDDtYsCsTJoqpbR8mgJFqhSAPoyfDdRAPNrl4hUrt2bWnfvr0sWbLEROfTlYaghSQKhUewOnAEm0hRbKYa+GCCAm0K4ZhjSyK7YD6BQPMeuPpApIMO5leypxTuIpdTpA8l0QpFGiA6gi80XQmDpqtLBLoaDho0KK2mBUSf8YDmQXQkqPIYRWQ2Itde5ArvAAkX7hkUwzEnpNOUhboVshkEO3RDthu0Xyd7iFtHukEPhZJohSJloNGjyxaTcq1atfJ9OJ6DXajQNFMY6HahY2OyYcMGY3elBFrx+++/m+IyfioUSMWIKC9cuND1nELGkA19nz59pGLFilk/Rr/h4IMPNkGgTz75JN+H4lsoiVYoUgDREHRkTMzoyhTxQfSHwkAsAJN5QKMthyyxMSHqpFAoFE4g7WrcuLFMmzYt6eYcAg3hxjFIER9sLA477DBTbBn0gst0UfhdIRSKDAL3CSIhf/nLX1RblwS4ahAJmj59utE3IvWIBToQsuj16tUrLRmIQqEIBnABYi5hc47Mp2XLlnFlYRQTUpisSH5OmauJRiPxUMlLatBItEKRgkXSF198YYrniIgo3E3QeGjT0jdazwhxBrTdHThwoBJohUKRFLj1UHDK/BHtLMGmnVbeaHwpIsSBQpEYSOcOP/xw0xmUzruK1KAkWqFwiU8//dQUugwZMiTfh+IrtGnTxmw8nDaAVMx/++23MmfOHPNv9YBWxFrcyfaoPl4RDawP27VrZ8aGUzO/cuVKU4yKqwf2eAp3YLNBN8Px48fL4sWL8304voKuXAqFC6DBQ5ZwyCGHyJ577pnvw/EVWOiQcvCTokws8NArEjWqU6dOvg9P4eGFnQ2rRhMV8YBkg4ZXdjOOzeaAAQO0riINdOnSxejOqfnRluDuoSRaoUgCJpTPPvvMRD+IqirSx7x58+SVV14x0g400LohUSgU6YL5o2nTpkbP+80335jfqQtHeiDIgXc0XQzHjRuX78PxDZREKxRJQJEKEVSi0JpaLhn22msvs8hxHnHlUCjiAV3r119/rR62irhAE71lyxZTDEfBN81DFOmD+hQi0rQEV2tJd1ASrVAkABMJEwoTCxOMomSgmv6cc84x/tpsTvCFVijida/k/uOnQhELSOx+/vlnOeKII8wcTaZLpQglA3IYQC8ERXIoiVYoEoBIGFFTO7EoUgckiNayFPxQQIjGtVu3blK1alXt9qhQKNIC/vNEnykwpLYCx45+/frpnJIBiQw9ECZMmGC68ioSQ32iCxhY1jzzzDPGlo2UKLZs559/vnTt2jXh65599ll5/vnni/2eSvlYFjgfffSRvP7666Yyulq1anLCCSfI8ccfL34H3wfyR3GTanfTB/Z2K1asMEUrFni92nFI5Ahph55jhULhFhBnGjpRTOhco7C+Q9PbokWLCEcghXswN+PUQS3QmWeeqTLGBFASXcAYOnSoqVw+8cQTzYSDRdu1114rDz74oNm9J8NVV10VUaQRy4bs/fffl3vvvVf69+8vJ598smn1zPtjYXb66aeLn7V2TCBMwsk2HYr4mD17tmnX26lTJ7PBigU6kK1evdoUGqKZVigUinhAvsFcwtrkJNAWRKJZq/CLpt13pUqV8nKcfgbnkOARReA0tonV1EYRhpLoAsWMGTNk+PDhcskll8ipp55qfsdNcfbZZ8tjjz1mHskAMU7ktUn08Omnnzatmm+99VbzO6p7Sd+/+OKLctRRR/m2gQYTB0UqbAQ0PZgesLLDeooJONZiZ0HEiIpwbO969+6t1fUKAzZUNMzQjZXCgjl56tSppolTvIZXEGj00aNHjzZ1FxBpItaK1IDrCQ8y2fwke6goDtVEFygohoP8QWQtmEjoTEQxhlutE4U90V2hLJA60LL5mGOOifj9scceayqmIUV+BG1j7cTBQ5Ee0D5z/po0aZLweYxLotCkDBkzZDEUChZtIo66eCvsphwCjdVoso6x5cqVMw1XbAfDeGuYIjEIvLHGjx07Nt+H4lno7FTAzUGQcERHcWxahirm6tWrJ3wP5BmQYSKD7OYvu+yyCBN7PsNGEp1o3ry5iQYQhTz44INjvjc+wUQfLbzUJYkJg4nDz3KUfDdAwHJqn332MQ834PlkNIgescGrX79+1o9TkT+gW2WzxDzBHEX9BrIfyI59kOmCDDEWkPvwHJ7PZosHBJvXQpT4t3a9LFwsW7ZMJk+ebMYCBYRuwLpFAfNvv/2mmt40QfE35xAP7g4dOqg0JgaURBcoIKixiirs7yCx8YAE47jjjjOTFYsYOudhw4bJzJkz5amnnioi5nwG0e4qVapEvJ7XEIV0kuRofPDBBzGLF/MNCjCZMKx7hCI1QIzGjBlj7ADd6O5jVYUzfgBEShc/fwEpF2PA+ahRo4a5tjgp8OB31oaMYlMWZwgzEionSeZ5/OT1EGzIEGOCz+AntQrMRbwncxNFZWzGeDD+GjZsaD6Huc7+XtP6/gTrDF1P27Ztm9LrkCNaSSJe/9rJMHUg64QDIA89+uij8304noOS6AKFjeJEg4XG/j0eKER0AmJDBBvdM2T6jDPOKHqPeKlWPifRZyAzQf/qjETfdttt4gVLO74TE4cidRkMVfEQnGbNmqX1HnbMkrqlgIiUrKbzvQmuM3IvNp41a9Y0v6OQ2dmkAfLDphwSDeGFEFtCy8M6svCcww47LOL9yQbZLnTIfWJ9PuA9IcdO4m5JOlkRZ/c1nsemH80sBJ3nac2Dd7Fp0yYT/eQa80gXEGiyXHScZXOlcA8i+li80hWSjSse/4rd0NWpQMFiQco0GqRE7d9TwUEHHSSPPPKI8Y60JJr3gDjFAp+T6DOI8not0kvKmJThoYceqsVtKQJCg0YeAsXmCIJUEkCqiDxCgCDSSnS8Ae53ZFx4fkNy7f1PN082QJAUosmWJDs3QESHM9mwyGYpIFnx0sz8nrkLYo00jWO2EW67aeZ4IdY2aslDpSH5B5lMpHWMqZLKu4hAo6OmHoiNWzIpoyISnTt3NnMx0ei//OUv+T4cT0FJdIEC2caaNWuK/d5KLNIhsCyAEBvnZxDJYUF1Sjog7zzPbx6dRNHQ8DJhKFLfgPCA8CLlKSkgMrwXiyiFQchrlNjkFnST5Jry0zoe8BPPb1s0ynXinrEZBK919YQsW0LPsdqIud344fLA9+OBLzzzGVE3yDc6XP4N4VIZSG7BmoKzBmuI01++JCCbyiafzT5NWdT1xT2477kv3nzzTZM11pqV3VASXaDAEWHSpElm0nBOFljf2b+nAhYcFhmnW4X9f7SMFIVZ8G90i35ytuC7cW7QfGnUM3VANJDAZNLSkOgR5JnFlDEF4VFkHzYDQOQWcgz5tFpSFtOBAwfm5Dj4bKwRY8nSMkWweX9rv8gchzTFzpdsINBi8zy+P3ICnquEOrsgW8A9z7hDPpCpzTPXsWPHjvLtt9+abApafEVqmxA2oWRvsMrVepUwNLRToEDHTBSFAj6nxAJdE2TEprNwQoh2xiAqE4333nvP/J7ooAUNNIhI0XDFCf5t3Rb8ghEjRpiFsn379vk+FF+BTRr6ZZANT3AyJngFp7rpU7gDcwQbSGRM2IcB0t0QRu5fLK7ydf45DuaYXHWyhBQwn1lyAOHCXYgCWTbWFC9avTdzIYRbkXlQKMpGhg10pgMayIsYz6kWPSvC9wfRaPgC10gRhkaiCxQQZQb8k08+aSZ8Iih04GPBvO6664qed/vtt5sF1Bbw2MJCok34cVIgyOKKForIcrTv9HnnnSf333+/3HjjjWbSo8UzHssXXHBBRtL6uQBpWzrr4UiikgH3QA9rPVgZX9k6d1YWRGSUCRwLRY2ClLxgi+g+0VaINPIFLDEt0UCHmm+QzbIWm/m6L5njcIXgwXi3pI5zh1wOskd0jk0HkVMdl+nDuvFAcBmT2SootvUuRLx5cG0V7gAHYJ4gGk2BZikd70qiCxn//Oc/TcT5888/N4smpPiuu+5KmsaiEIdWzDRsIXrNe9D18MwzzyxWMEZjFSa7N954w1Q/o4m8/PLLizl8eD0KjeesF4iDn8CGCZKDh3guSA6bQdKwaO5TtboKOiCkaJkhgugZIYNcOxZFSKAX/V+t3ST6Vbd+49mEk9QRMIBEE5TARQbffaQHkGnOtW7GU4N1UWFtylVhJ/cD142NkN/qd/IdjX7ppZfMuWvqI8lmtqAkuoBBFOXSSy81j3j43//+V+x31157bUqfQ6tvHn6EXQAh/brwuceCBQtk+fLlptgsV63dIXvIbSDvkEDVSCcHNpNE73ngSkHGABJNNK5v3775PjzfgrmC4AIPIqdYqFk/YgrX2OgRqePvGq1LDMYlnUptEWiuQEaLAsbx48ebeo5cfrafQTCO6D3BpyZNmgR+fCtrUAQaTAQsdErIUku7EsVhAnW6HeQCTN5kDObPn286YioSR/e++uqrou6k1EmgMVZkFpAIIplW6oGPrm03TdqbDWc8K9Cgg00eBJo5BQ1+Loks1w0nJq4bRJoMgsLdeUPuSRBl9uzZEnRoJFoRWNgOaqecckrgd9OpgHPFgpevc0aEjwUvVwVnfoF10EFmQHSU88NPJAbZcrhQFAckmgfyIwg0+mkyAMhBiFDrtdgN+g6wwaCZTj68+an5IZsGiaZoNFdZNb+jQYMGJiI9YsSIwNeoKIlWBJZwMAGw2DEJKNydM4pMiQbb1HW+QOMEi6C386VuAVnSokWLjM6ZqKgla5ny2FWkDu4RIv+QRAg0Gz8i0/yejSB1GEEmH4CsEucgn57NXA8iqyrnSw1oo5955hnTwCbI9UQ6ahSBBHIAiAcTQdAXMreApKGttV0vvQAirxS0ci2DurGh+I60KnaAaDuJ6hVCtJNiQmotvFBUmKmCxNatWxsJAz7INHfifrLty4MCNhXYBSJ5wcHJC9FfCDTzGr0VuD6K5GCD3rRpUzOOgyyFURKtCGwUmklA/YfdN+CgGQ0RNC91pUOqQGqRYkOsCoMAosxIBFjsbQMJHHVwNvCLrWQQAVHDHgy3kd69e5trhcd6kDbxVivOhtx6bntpXUAKheWrwh0GDBgga9euNW5eQYWSaEXgwAQO4SJqF6QFLF0QZcBxgJSrFwswSSWyISKKRMFjIV8HNPy2WM02RUK+gbaz0IAt53fffWd+FhqQH1HURtbASpIosMO3uJDHL9pjHDGwCPTahg83KzaieKdrMxF3qFWrljRr1szcp0HLqFgoiVYEDmPGjDFuBU5drSI+iBiRgkXf6UXdIBshrO9wCqFivBABySJtSsSH6DsaTtt1tJCjlhAufhYqnPcTmQWkOWwG0bYXEiBYbMSJWuKn7VVfZrJsZNvIumlHSnfo3bu32XggkQwitLBQEShws9OwgyYxGoV2BzSLXi+8sbIGi0JpeAGBxIILXS2ZAJwEvBbBU2QmMk1mDG0/+nY2g5BNL0mnSnp/Mo8gZ6Gg0sto2bKl2bSS6fGCXtvrqFevnnGfITgVRHmk/1cZhSIFkDKFhAS5mtgtnIU2fiCkHCMP9Nu0qWch9CuIRBK5s2lSxmz37t2VQBcwIJo0wmHDSsFWlSpVzO+RePg5VW5lR7ggkUXxOti00ohInW3cj9tevXoZiVkhy+niwfsro0KRIZCemzJliiEjtjGCIj4o1iNy7zcQseWBA4LfNKbWuQDdM6lvUsuKYIGsAzpTHFYYD2z8kfKsWrVK/AbkR2wEafzjN2LIxoUCXooNFcmj9/vuu68Zq0GDkmhFYDBu3DizQFHQo0gM0snYx9Gsg4IbP4ENEoVLpGKZ1IlM+wUcL0VNpEWJSJIqDarsiGYxSHSC3FSH+cp28mP+si3F/QA2g4zltm3b+vYaoskn8FLIuvxMoHTp0macsmnyW+CipFASrQiMNIHKcIrjctla1o9gkWYypFAv1229M0k+yDiweNMVzcvpcPTblhjhfkJ7blLfTn/hIIJILBraQvC8LgnwyYagsKEgM0SGyOug7oR28/hiI1HxI9i8EkT4448/tL21C3Ts2NG4BJEBDBKCPUsrAgOr7e3Ro0e+D8XzsFpiv+vGIV9cbxZBr0ZziZITXSRqTobEq64F+dr4khHBRqsQLfxSBRsKxofdEOKaQ0DAa9I0orZLly6VFi1amNbQfgayMDa0tnW73xv/ZBPly5c3xbBkTPBCD0qwSiPRioIHkT7S5ERFdBJMDqzTBg0aVBCTIBM7xXgs7KRlIdReAESISN23335rCD6FZIrixZW0mS80u7eSoGLFiia7wvihaQnjx0vpc+ZaSD0kqlDGNBsBNrlBLJpLFd26dTM6frJ/QYGSaEXBA20eFeK2sYEiNiCaeH3ahbCQgFyCVDg2TPlu6wsBGjt2rBmXLNA4AajrhiIVsPEic8FPCvfYkOVbskT3RXyuudcKaf5A74sXMpF1RWJUrlzZSGCQdARFR64kWlHQYGGBOOFy4Fd9b64wZ84ck7YsxMgfUXV0pUzsZCWQCuRrPEJ8GIts6qhq94N9oMKbhIUNGBsxNmTIgvIFZDdotbHlK0QNu61P4Ht6rV2519CzZ08jUwtKK3CdvRUFDZoX0OJbo9CJQUqYKDTWWugACxF8LyZ4ItFEgnMZKYG0k35nowIaNGig+mdFicEGjI0YkVJbwJfrCCAuPhB4NMNEIQsVZOjYrPihsDOfOOCAA4yUh+BVvrMjuYCSaEVBA+JStWrVQHZScgsmOhYGIluF3gq9UqVKhkgTCc5Vytm27OanavJTi/7R3S7oLiVuOx4yzwFciHjkgkyzIYVA00SlQ4cOni3gzdSGhU3CunXrTHBGER8UdONrToFpoUNJtKJgQdqNyIHVDipig8mOSDQLRBCkBeiPbdETjRSySTbIgiAfgbxjXeeHjm1eyhywGBdqZiRbICKN/n/06NFZL6TFQx4rSaxDgzDHsqnDJYV1xS9+3flAo0aNjLQnCAWGhb9iKgILm3Zr3759vg/F04DY9e/fv6jNcNC8w3mQqs1Wqps0N2TQb01rvJAhodI/CCnhTN/Pffr0MVFi3Duy0WyIJiRWmoQsKQibbwvkM8wXNJJRxAYbKjZW6KILscbGieCMfEWgwMJLmpEJz6/dsnLVCh0E0R0C+7suXbqY9tqZbMjCAmttx2hAQJo7SCQjU4D8ffrpp77qOOkVcD9TdMjGjfGdSTC2cV8gi5OtzacfipRVIpgYzHuMD2wqCxk6sysKEmjWWDy0xXd8bNq0SUaNGhUI3Vqi9CxEmvQ3DXlKSqSJbiPfsBZPSp4V+SR7RKRtw5NM+Emz6aYoF4kNMo6gju99993XfPdCj7KWBJUrVzaNarzeMbakCOYdoCh4cONSbIMLgiI2pk+fbpo30BEu6M1lSD1CEEqic2RTgmcvP+ncVUheuQp/wpJcovl4OJNeT5fQbN682WwQIefIk4Je8Mk5HT58uNmAK2KDIBY1N9SGFCqURCsKDkz2M2bM0ILCBGDi59GqVavARpOcwK2DLmtIPNIh0jhvQKAZb6TRg6YvV3hf3tG2bVtZtGiRcSxCa54qIM9suCHQhegFnc45JVBDMCKIshY3aNSokYnaF3KBoa6eioID7Z2JtqDJUhQHEz4TPwVB2oBmNyDAnBvIMNX3qQDyjcUY6XPV4Cu8CLJySDCwaEvFuYPnEXVls92mTRstkHWA80HmafHixfk+FE+idOnSpi6EDEi+O8VmC0qiFQUFyDO7Xlq0qjVWfGDTxAKgKD7pYxFGG2XrPpAIVOgT1cPCDm21Rugyq6kcMmSI+anIXA2A3ei5kWNAfJBwZKJeoFCj0fXq1ZPZs2fnrQuq19GxY0czRxZqgaGSaEVBYcmSJaZqXAsKExNFfJKD6MjhNgXJJoyFkS6O8UB0hUem3Q8Uu8cpEX6VG2UWbErQ7EOikb5t2LAh5vOQNVFEyE82iCqNiw3mCjJ6usmIDdYZOuFiJVqI50hnJ0VBFhQ2bNgw34fiScydO9eQQ0VisMnggayDdG00IM9EoWlQow1Ustcsady4ceanIjtgfEOUo4k0kUN+j5QDOzfN6sUH8hZ6EajMJT4IauGZv2LFCik0KIlWFAywG0LrG5TuWamCdCMyhVy0Ay6UCBPFhkg1nGCMWQKN9EORHUDkqOxPpwhO4Q6QP8Z3NJEmQs18QRGhymncAQcKDVDEBp7aRKQLscBQSbSiYIAjB4VhWlAYGxBooE0C3MNKXmbNmlVk00TECacDJdAKvwNJB0TZEmk6ETKHMu4HDBgg++yzT74P0Tcgak+mjw2IIn6BYaFtipVEKwoG3KDIOKIjh4pwgRD2VpwfdKYK90DHxwJJC2VSkmxC1H9cUUhEGtcO5k2aBFFECFSLnhqYE5hb3RQkBxFt27Y16xAbjUKC3iWKggCNMiCJ6jgRG6TFWRQbN26c70PxHZAG4WaAng8irc0VFIVIpPGBRuqF20Sh2pFlEzRXoo6CDrCx6iiCjqpVq5r6EYJdhQQl0YqCkXJAElu2bJnvQ/EkWBhJz6oFW+pgc4bW8dBDDzUSDppVxHM0UGQOkLrWrVubn4rsZlomT55ssiwUgNE4iM2iWx9pxW4wPyD3+vnnn/N9KJ5EmzZtTKS+kOwAlUQrCgLsbkmz64JbHL/++qtZKLV6PHWgg8bf1NreYfWl9oC5AeOV867jNrsgw0L0FM0qkUI23AB/6EIiO7kAgZxevXppMCcBicYysZAKMJVEK3wPooL4Q6uUozgocqEDH+dHkRrYeCxYsEDq1q1r2qPbRRLPU37SxY0NiiI7YLFdvnx5Wm3YFe5BK29a1deuXdv8u2LFiqbYEAKNRrrQCsGyDewAkYDhFqWIBC3AafRVSJIOJdEK3wPLMWQKzZs3z/eheNKRg3NjF0iFe7AQ4pGLDVgsy0TrsYseX5GdDSCWWOp2kB0QDbS+vZAbJygyhEij7WUjqUgNNGAaPny42WgrIkGwi3WpUDYZSqIVvge7WqKD6joRCYqDiEDjyEHRi8L9eYMc0+SDgqt4nuP4kSMfIu2tDUEUfgIOCWhTE21QsLfDJx35kiI10PALGZJuQIqDOgdsFLENLQQoiVb4fsdPNEWlHLEL4iCAaseWmoSD6CcRpGQbDyL8RKr5OWbMGI2YKnwBiB0EhsxdMrceK01gnqXwUOEOyL3Q81NToQWakaB5DwWYhSLpUBKt8L2Ugx2/NhApDrSNRJHUkcM9kGjgTkABoZsiVbIfEGmeq7ZgCq+DAkLmTOZLsnduQUZr4sSJKl1KARBFyDTdTRWRIOjFeSmEDJ6SaIWvo4Y4J+CaoESxOKiy11Sse1DENn/+fFNESDrWLSDQFGZVqVLFpCnV0SAzIBOApEClSJn16mW+TNU9ghb3RKWxd9RCT3dACkY0WlEctlAba1q/Q0m0wreg6QVpRpVyFN9ckK4tlMKNXC56SF9KsvCxqVNrsMyA4jY0udqBNDNzJWOSDV86G2s2MmRneA88pZljFMmBZEbt7oqD5lXMs4Ug6VASrfAtuAGRLOhuPxJoFykcUnmBO9ClDRxwwAGmNW1JwFhEA0lhokbsFF7pVjpu3LgSF7kRicZLmnoBnVvcA4vAxYsX68YjCgS/aErjdwcTJdEKX1s0oevTdG8kkCTsv//+xWyrFMXBwobWk+hapopm0EhTZAhxUY/d9IEH98cff6xe3CXAmjVrZPz48aaJSiYsQKtXr246n2pTK/dgLpgyZYqRiyl2w45HAj5+hpJohS/BwkqKMpXimCCAorj169cnrbpXhIFfKZH7mjVrZuw96WbYvXt3E2GhkEuRPtCYK9LDunXrjIYZHTR2jPGsGlMFxXJkW2jEoo407uaDatWqmeCGYjfIItPISkm0QpEHcOMxmStZjAQpWzSkSBMUyaN0aMfZiBFhyyQoMkTPq/aCinwBgkuBLFpm5spMguwfjViIcls5lCI+WKcI/LCxUewGcy9rlp8zdkqiFb4EjQLYxWpasXiKjEr6TEWdChVE0vCDZrORrWwGGlKAjzmSEdVEKnIBW9TK/EhGJBtyN9yQunbtaog0xbSKxCASzXyANlqxGxS5Ml79fF6URCt8B3ateEyqlCO2Jhc9tCIx8BZn/GQyzR0PRAHRQ06aNEmJtCKrgNSOGDGiiJRkc2wjU2DDjoe0bR+uiA9cOmrXrp3vw/AUDjjgADOO/CzpUBKt8GUnPpwP1AN5NyBnFLIhUVAkBmMHcoGTRi78xZGKQNYh0hQYKdwBWdKBBx6oFncuQeMK7BXJzmVS458IderUMQ+VdCQH1yTTsjG/o1SpUiaYQWbZr1ASrfAduOFwniBFpggDrR1WVupUklzG8fXXX+e8Ur5WrVrSoUMHY+nk5wUjl2Ask1nRMZ0ceMJDoPE679Gjh+mkmStgeweRViTHhg0bVP4SBYJhFMT7VS+uJFrhu4grqR9uPNX97gbpWyJ2qXTaC6q3OOMmHxswiAYRaTpJKtwRw59++kmbBrm0+2RcY6+IVCnXIBJNlsWvRCiXWTAyqZBGRRgNGzY0mz+/SjqURCt8BSZpLNxUyrEbFGZg01a/fv18H4qnwTlCu4nJf77axKOJJN3ONSMqrYgPe460+2Ny0CSoV69eeSu0Rve/ceNGs+lRaUd8YDdItz6993eDrAkuRkqiFYocgFQ4u1Z2r4owli1bZn5qSjVxBIg0KppEpBX5BmQewlHSLnKKYI9pvJrxI0fygu9uvkAUvH379iZr4FcylKvzRLCDOVs7mu4GQTEi9H7cMCuJVvgKTNAQ6HxFEr0IdvF9+vTJqQ7Sj8hEW+9MgYWUhWP69Olm8VAoUnUogkCjsfWKrA05GUViNDDyeyvnbALrQWSJ2ohpN5gLyWD4MaigJFrhG2zdutVof1XKEQkW0X322Sffh+FpsOkiUpbPaF00WrRoYRxCiJBjE6ZQuAFkAyce7OwoIqT40ktNRTietWvX5vtQPAs06zTAUbu73aCWB6mLH7MYZfN9AIrsgLTIM888I1988YXRqjG5nX/++cYgPxFGjRpl3Avo5EbxA9E7ilXOOuusYpP1SSedZHSm0TjqqKPk6quvzvh3whuaNsBKoncDAsY5gSAqioNzg2sBY8aLXRxbt25tjlH9o2OTjSZNmuSlUM7LoHEPEWjmZa9tntFGkxVTR5XEqFGjRr4PwXNouiszx1zoleyKGyiJLlAMHTpURo4cKSeeeKLRyn766ady7bXXyoMPPmgM8uPhv//9r2nWcfDBBxv96Pz582XYsGEyduxYQ8qjFzQG/sknnxzxu2xpc0l7Y21HS2VPYONGBMlUrOGdRo6VVUSkbFm21viaYRKMV1dWPh7yhbZOCwrjg8gGhMNLEehoOCUmeP3aTodBB0VyNKhQRIKACBkMz8yDUYBAQ4TIGrJxpZBOURwEqpDgcS0VYmSJBDyYr706tmNBSXQBYsaMGTJ8+HC55JJL5NRTTzW/GzJkiJx99tny2GOPmUc83HLLLcb3M7qV9B133CFffvmlHHHEERF/IwUD4c4FqGjOC2HctInwj8i4cSI//ijy009h8szvkwFSTdShSRMRsgD2QWFkCXfbpEwpTtG0YGygy7R2iF5KeceD7WrYrVs39UDfpfv99ddfTbSVYuIgw5JS5j8/2FgiOUEbTaYSyYkitjyRe15JdBhYfxKBZp33E4lWTXQBAkkG0QBkFRZEkA8//HCTLqEpRzxEE2jQr18/8zNeARRELtterkw4OBrkjERT4HDvvSJ9+oiQMu3fX+Smm2A67EhE/vMfkVdf5WRjGSKCppW/Qa45TxMmiHz4ocijj4qcd144Iv3OOyKnnEIoCa8zkYsvFvn8c7Q3aR0iUWiKeWibqigOxjpRXb/If0jxQp5//PFH9dvdFZUfM2aM+Rl0Aj158mTjcY69px/ApoeMJx1UY0n+FOEGTIxtNooKMdlCMhe2Zb1fEOztfYGC6BuSiui0sE2NEiFIpf2oXdCRUsTS5xGJJvIACUA+wsNNFNVJFJLdOBResZhklUQzmT33nMjzz4ejzUhXiLITue/ZkxMYlmq4AcfZqVPx39OWm2j211+LDBsm8sQTYZJ+zDEil10WjlK7AOdi9erVJgWmiL2x48GYR6fpB3CcFBzhukDhGBE8P0VkSiJLooaDjTgSDhZTyAVzAht+IlNEo0l9Wy0pUeqgRKepe8DJgUY9fohCW0CIyFTSCIb1xk8611yAc8OYJhjiNW17vlC/fn0jIfUTgjELBQyQU3TN0bC/S7Vy+tVXXzWR7f5EYx0gDUW0AcseUuforh966CHz/khJEuGDDz6Q5yGrLsGCyqYgK4sIkeSHHgqT561bRY49VuRf/xI55BB8mzL7WaTpDzss/LjnHpEpU8Jk+sUXRV54IUzW//pXkeOPx1Ii7tuwIA0cODCzx1Zgbhw2g+InQKSRc1CDwGY3WSGwn8CmBr0j8xDfk8gq6WyyTBatWrUyml/mEzSjEGikOOhq2cRDotlAfv755+YegHTzYG5AdpavZiPZzKYw91E47EfZFtdk9OjRZsOfSuAmCGD8Eo2GRLPZ102GGBJtnWfIsvoBSqILECxKsXyUrY+wc9FKBnTQH3/8sdFWQ5aduPPOOyP+fdhhh8k111wjb775phx//PEJ3RCQmvTu3bvo3ywUt912W9znWz1gRicaot833CDyyithcvv3v4tA/mvWlJyA74KrBo9//1vko49E/vc/EXTsRJg5vyedFFM7DZFQr+zYgKhxfvwaxWXD2r17d98vqlwDHHW4HsgQNm/ebH7P5obIG6SYOckSYR62CK1mzZqmjoOotH2+08GEqCyRa+YyfvIZ1hGC7Bifxfuz6WYe8mPUmu9Lho/CU7+2iuf84yISK6ijCBeJkk30+72eKdhxznqPc5Ef4L+ZRZEU6J9jdUOy3YDcWkbRUe2uu+4ykbELLrgg6fOZCLC9YyeJhi9RwSGpLB5uQOqW3XrGChiRbUBQ778fjYrI44+LnHUWdgCSN0AAjj46/CA6DalGP80x/ve/YW32LrCwYkNIFkCjO7HT34xFrLb8Ckv6sKeEFCLz8LprB6QPMos1JuSAa4AMAXJLBBlSy8N+j2QuPjbSbAmG8yckOx7QlaPFJfoJiSfqTUTfixaH8cAmgA1FIiclv8DO80GS4LiFOpdEgqwTGy4l0Yq8gkHIIhINq0F2Q15JJV9//fVGsoFjh9vJzy5UmexYBYGGOGZED/3++yIXXhi2p7vuOpFrrsm8ZKOkYOHkOEeOFLnqKpG+fcMk/8EHjX6aQp0//vjDF44TuQYaWohcoTgCEKm1Xtdkbrxo1cf5pmbBjkuOmawVP0siqaFg9qCDDkr5dXy2zZoRpaYg2WpO2WAxN0HCeY4Xszl0bZs5c6aRz/klpe1mPUGaM2DAAI26RoG1mjomIvZ6bsSs834qLvRHxY0iJdCggAhQdFU71nf278lIK81SSIfffffdKe2W0TjGK0JMF9xQRKRKFEmCNJ9/friAD4JFZ6Sbb/YegXbiwAPDRYhPPy3y7rth2ceoUYascH41ilEcFDGxiSwUiziyRnZxxakCkuolQPAphGTzgr6zV69eJmPklRb0bDoIBNjsGwEEiDMkFanalClTsu4slAogmuigGzZsWDAEGjB3sx5pZ87iIEBFgMsvziu5INGrV6/21H2ZCEqiCxAHHnigidxSvOeUcnzyySemcMdKAFj4ond83MxXXXWVSYHSeCUeGSaaw2c4QbrulVdeMYtULKu8dMExopVK22UBf2cI6BtvhAnpe++FLeb8AL4zFnlIPOrXl9CAAVLlzjulumoMi4GII3ZRFDMVEthAQqSRSyCVymd3Q+YRomb40KNH5p4kQj5o0CCTfmUDk6loGnMMRDeTWS0i0MjTBg8ebIIJzIF2HmPRzue5JfCBhA6NLPN0IYGsAud+zpw5ZuOl2A1bG5DIejZIqFevnrkP2VD6ASrnKEAwAZM2e/LJJ02qlaruzz77zEQwr0PCsAu333670S5/8803Rb+jMJBoMoWEpD55WBCZtm4BVFy/+OKLJuXI5Ih2kwUPDeKFF16YsUISJlyiF9HOIK7x5pthKQQk+quvsBQRX4JCw6+/lj9uv10a3Hyz7NiwIew7rR7RRWDMoSEtxCImsg4QaYhrPlK+1FhAnrm/rZ7ZEs5sRUx5fyLv2SC2RKabNWtmPMQ5n3wGkhn+H6eEXLdlZp4jiwKBaNOmjRQi2NzSRRdypNacu8GYI1JP9FU7dIrZVLDpYpz4ISCiJLpA8c9//tNEnLGCwi6GlCZFgh06dEiqXQOvvfZasb/xWkuieT/SLhBniDopKRakm2++2RD4TEYXiX6lrIdm4R06NOy+cdppIs88k9/CwUygTBmpeOONsrVjRyl/xhnhYkMcPXxauZ9pEM0p5BboFOTxgPBBaEn550rTy2aaTTj3OATIK3KNksJZrEj2DCJLsxs2YgQjMilLSwQi+hTCcl4LVRdLDQebhFhF70EHazWZCLIhXqx7yCVKlSrlK120kugCBZGWSy+91Dzi4X/YqUXBGZVOBHaI0RZ32QBRaAh6omr8YiA9SzdApBt0GeRRQAvTHkceKTJmjMjhh4t07y7yxRcibdtKUAGpJDPCxg5dbqED5waKzyhIooDSWrtlGmxguffQlxMhQ67h1tnHjyDTxvkkIkj9CK4o2S6Ew1Mf4o7EpJDPrQV+14riIBJNpikIY8AN2GxRG8CGy4vFv06oJlrhabCQk1p1TRTQ22HH9+yz4eYptOcuEAINeUKLajSi2P/88AO9okVoujJtmgQVRHAoyvG6BVymwPfER5pxgEY60xpT2257/PjxRS2biY4FZYGH0CAfg1BDoMnkEfnPtKwEK0CuHxuVbG2EvAg06GwCo2tqggzGAEWvfumumm3UqlXLzGtsaL0OvWIKX5BoV2CRu+KKcOc/OgCihS4g2IrlonQfBaLovPHbHTwYLY4EESzIpEOD1DqXqCnRS4gYZDdTRBod4qhRo8w4g0TS6COfmwXcPvKxOYI8W/cb5GpEi8l2RDsepQveE1cT5CJ4gAeJPKFzJ8ponZwUYVAUnY1NsR9RvXp1c0/YTbyXoXIOhWdBKod0J1E3VyDq/OijYRnH6adn+/Ao56cjjQg3OtZjPPDTRntNsRUFQriAZCgSTvU2HcAi0lsU0SHnwEsaT11kHrnquOgBQEaIyLZo0UKCBnS7EGnGRSYkB0QGqYmgEBnpRr4bY/D5XigSpYgSIj9p0iSzweDclER7T40Hbd3RCHP9ghSFBpxLJEJoXqO74AYZkEbuZRyyCsWis6SReYJoXoeSaIWnI6/syl1FonGquOUWkTvuCFvCZRpEuZFMYJfHA/9mnEv+/DPx6zh2ijG7dQv/7NkzLUcNCA4biphkkQkXIo3/NW3Cv/5axOM6skyOkRJ7iPsYLLZ2wWUzATFLlVAT7eF1kBuao+SbPDsjlriBUEDJNc535J9zg1aaB5GydI+J4kFcZLhuXjnXuQabEDIojFmcGBThwkuyjBDpoJNoQB2UHyLRwckhKXwHdqHszpO2tp45U+Tss8ME8v/+L/PRZpw9cDWhkyDdDon28u+HHhIZPx4mF27mQtU5z//lFxGswIYNEzn33HCE+t57RQ45JBwlptiTY04BRCfYUMQ9Fzh0vP22yNixIldfLUEBNmXoVwvV0cAtsL777rvvIiwpkwGNL4QQNwrbBMNLpI7vRGScn14A5wbyS7EhBJqNLSl4t0AKYh0H0Hx6vWAqm2AeQ2PvFy/gXJ4XP+iAc4EaNWoYEu11eYt3ZkyFIgrcQKR0Ei7sFNkde2yYREJ2M0WmIBVIQ558UoROUjhi3HVX2FYukS+ulXNUqRL2dqZDoo1k0yXx9ddFHnss/EB+ceWVIoceGm6qkgBEJpK2Ae7VS+SBB0Quvzwc9cYGr4BBWpyoXqHYrZUEEBL0y/i+Iw9AcpAIEEDcJ7jHeC7OJgp3sBFoCD6PTp06JXUPQmOODzVBAeQhQZNwRIPzgIWg3ruRYL1btGiRycLkO/uSb9SsWdM0cCMD6+VMo0aiFZ6ORCe1toOEUqBC1DcTTR+IJP/97yING4ZJNMWJkN/33w9HktP9DMh9s2YiN95IC0aRl19G0CtyxBFhezrkIQlfXspd2pMo91/+InLRReFoeAEDXem0ALuSRAN9KUSaQstZs2YlfC5FbVjkoclVAp0e8MxmfkKWYP31YwFCZBu5YGMWdAJtwWbCy+QoXyS6c+fOnsoI5Qs1dsk4vS7pUBKt8CRI4aANS6iHxpkCG7v77gsT1JJi4kSRzp3DUeLbb8c7LfzejRtLRkH0hcJHLOqQhuACgFYaTXcMjTVRQ5wBsHFzRdYfeSRccIhXdh7bGGcTpNF5qHYwEjRCIbKM7V+iphaNGzc27bqTSqUUCaOpRKGRFM2cOdO07I5XRMg9DIEOeiONaOAuw7lThIHEB6mPkmgxkXhqEbxeXKgkWuFJkMIhlRM3Er15czjaeuCBJS8khLhSkIgLCCm0CRNEaI9eubJkFRBeyDNEms6KkGjkInPmRDwN8sxi4zqCxXGzEaDYkIh3AQJtaZALChOByPKBBx5oFmSntzG6equZ9oMlIKl+mi54PeVP4ym6HcZKvxN9pmATAm0t8xSRUXqi+BupKVEY6MaiuC7ay1ASrfAk7I0TNxKNnd2yZWHNckl00GvWhIn4v/8tcu214cK8JHrSjIMCo5tvFvnuO5iOSMeOIq+8EjGpQoio3nYNuhmeempYmsJ3LCCwuVq2bJkhWEEvKIwHIllEPyk2ZMMBgUbCQXGb1wt1LIja0uHOD9FbpAmQaUBhGMWQNEfivu3atWviWoYAg/mdTZIWGO4G44aNBVmMoKNmzZomEp3pRkeZhJJohSfBjUMqJ2ZxBZpiCuiI3jZtmv6HQNQh0OgZaXeOhCOfUS8s6iZPFjnhhLCu+amnzK8hQPjlpkwYOUek9IcOlUICRBCSCIlWxAeZC+4hpEAff/yx+X8InV8ae7AJIELpp852EB8aZrzwwgum66OXF38vgLGIlh93GL9s7rIN641O8CToqFGjhslWpOKCk2v4YzZVBA4JOxXedpvIvvuGo6zpYtWqMIGmuG/UKJHevcUToDvbc8+FCwQvvFB2PvaYkXPQZCVlIHX4xz/C0o4C6g6GDGHw4MG+iFDmG3gsM36IjvrNFYJ22yNHjjQ//QI2d0SfbfRMSbQ7z2j0+17XvuYKzGs8CJ4EHTV3yTm9PDaURCs8BxaeuEWF8+eHSSZ+0OmmSLHFw1YOHR4R6F1pWM+ASCEe1H/9q5S67DLpvXKlKTZJC3/7G7NyWPNdACAqwUNlHO6ADveggw4yjUKmTJliUsWK7IBI6oQJE4zc6KSTTjJRaYoNlUgnBppxHCm0viEyGq2RaDEyKMaHl3XRWgKq8BzwVOWB3U8x3HprOMJ6ySXpvTnyhuOOE1mwQOTbbzPvvJEpQBLvv19KrVkj+/Bdka3Q2jtVUDx2zTUiN90ULpb0eZtd7NvQQxOJViIdHxA4CPO+++5r3CMgcljaaXFb9oD0hOghkhkIIRkTtK1EWb1eHJlvpB0kKFAgcfFTBiZbYI6HB3h5Q6GRaIXnYG8Yqw0rAgVyr70mctVV4ehqOqBz4IgRIu+9F/Zn9jJKl5b5//63bMV2D0u8dCvYr7gifL4owvQ5yFBAUJRAxweEmUYqdCK0OlPOl4300UpbU8WZg5VtQJoHDRpUdJ4hhn379lUC7RI4x7BBVoT9orGrVIiRMnp5vlISrfAc7A1TTAf84ovhnzRASQc0TcHVA50wemgfYOGyZbIE5w7Oyb/+ld6bIHuBhNPRMYYPtV9AZJXojKZ9E2P27NnGIhLbtegiQsgeqVGK31z5jucZfiiCpOGP9YiObuXN5oVx++2332pk0UUkH39zRRjUMXg5AptraUvIo7Io789QisCBGwYtVEQEhxuISOrxx7NNT/1Nef2FF4rUrh22k/NJSh5Zy55Y7lFMiU6aBi3pgO9OccbHH4ufo9CQKm2wEh8Q5Llz50qLFi1iyqEgdXQppPsllne/UR/gURDZPfzwwz3tZz1jxgzTpjlR4S/zGDppOhvyUxEbeJez+fOTG0s2wX3M2Ao69ttvP1MHw1roRSiJVniSRBeTclAASBMSyGA6ePZZkZEjRZ54ItwhMFMgmvfll2GCe/fd4Q6HL70kQtvlElo2WVsfQyL++leRLl1Ezj8fdp36m3XoINK1q68lHRAQFlrt5hUbRGpo0kBFe5MmTeI+D4cOiDQFO7Sj1ghp+hH/+fPnS5s2bRLaLTJe0UlDAiZjYamICe5t5EdeTt3nEsz7XrZ2yxX227VB9eq40NVI4TlwsxRrR/z22yIsVP37p2dnd/XVImefLTJ4cGaIM9IIiLntLEXUHHJOpMmSkr33Djc9gQDTDTFFHS8TKAuwKQbjtfhGQ6TvuSfskZ0qzjwzbAvIxOzh6F48NC2JJ3gAQJSZznhuNhnIDrp3725Id0wvdg8Aco+2m9baXmtWQlZkzpw50rJlS2MjmAwcf4cOHUw0Gk26m9cEDZwj5jpb9xB0kC1irBA8CHLgYL9dJJrgGgWXXoNGohWeAzdLRHoUKcYnn4QJaToFZURfid7+978lO7A//gg7XNSpEyaxnTqFddoQaVJNkGuK/9CxEZ2GuI8bF27tTSMV2omnAJpj0AWtqIiuffuwf/T994ts3Zr68R9xRJjkf/WV+A10gNNUeHwsX77cnCMIsdsFF5kBHQF5Pg1svJYuJa3PRtKL6X1IHtHlRBH/aJAh4H5Wf/P4aNeunW4wdsHKmLwsucoFmKfo1utVfbiSaIUnfYAj5ByzZ4ct6SDRqYIFmKjxKadQoZD+gZGGJQr84INhdxDa1L78crizYIsWYW9niypVwhFvWokjQfnoozB5hUijbXZJBjkHjRo1ivwldnektXAXSRVUe7dq5UtdNKlzWlgrYhdkEbEtSetkZAZIO7j3FPFBZz10u2xs4zaDSgDsBtN5XVBAvYPXsg75AsRR6z+879ChJFrhKVgNWEQkGtJHynnAgNTfkIgwbcLT1VIDSDByDCJ848eL3HILAj53r4VcQ/6//z7cIAa/5mOPDUe1E4DoG3ZPeMxGAMLer1/62ubDDgtH9X3WYpdK9Zi+4QEHOmicIdA3Ny6B5zlOHow5iDQFrYri4H5ks4HcoCRA94v9oDpRxC+oU6u7sDNNjx490utWW2DY38PNZ5REKzwFm7qKmDhoy92nT3oFgeiI27UT6dYtvQNC+kBzFogwzhht2qT3PmimaRQDgeU9Tz45YUSazQTRxZgp9gsuEPn667BlX6o4+OCwRpwIuY8irZyHYjp5hanex6oOWUZJ7ODQovbq1cts2iDSxTZvAQdthydNmmQ0ma3I5pQAXCeKO6dPn64blhhgPC8m8KEwGy4t/BXDB7xqc6ckWuEpQB5JY0XY202aJELDkVSBpdsHH4Sj0OloqZnIIdBIM954Q2SPPaTEGDJE5J13wtH1BL7PnAcW25ipTWz+kIw8/XTqn2/PI+fUJyDyB+ko5tgScKARR+ZCU4ZMRKuIZlOYCIFm45JvQOxpB53vLotkQdjQomlms5KJRj+tW7c2hACPaUVxvTmESTdyLEGLZdSoUUVNk4Juc7d582bxGpREKzwFyGMEIVi7VoS0Z8eOqb/ZsGFh8kyjkVTBjveii8IuFq+/jp2BZAxIKpCEUOgYh8xCYiDQMaOLFCaddlr4uFIF5xaXEx+RaArmWFj90Hgjl6AgkOgxDhGZAhvYgQMHmnsQkpfPoj4cROj6F93AJNdgc0EEGslLpjpl7rHHHoZII1vwapo6XyDjZNvUBx0UF0KgKfwNMvZzOHR4DboqKbxNoi3ZwwkjVeCGQWvvffdN/bW0F//8c5HHHgtb1WUa11xDOCrs+xyDqDBpsnjHBfIWCsnSKbbgXPqIREM2iEgqdgMZAIsrNliZtr+ymxWipM7W4fnYPC1YsMD8zNdcRLSf+xDXiExv4urUqWMceDRdHwncS9jMkQEIOuwaoCR6P/NTSbRCkQSkayI6lE2dGtZCp1M0BVFMJ4JNFHroUJEjjwzbwmUDRNceeURk4sRw8WMUSGEnTNHb75UOGcYqj/PqAxAJJSqVqQhgoWDKlCmmdXc2gXyBini8jfNBpEnfohvOh2PIhg0bZMyYMUYuky0wpnv37p2wUUtQwcbZi57AuQYZC2tBGWSUL1/ebK68IDOLhpJohedIdIQOmCptJtNUo0AU7KA3TIdEjx0bfu3ll0tW0bt3mNDGcNpAe1nM3s4JGo8QpYCEpwrOJ8WFPtAcEokcPnx4vg/DUyBCSqFbbVrYZxG4oeCFTFqdojovFvVkq7h57NixJhqKr3M2AZEm2o11nmI3sHbTGojd0WgtQBXDC5REKxQuEEGiV64UScdXdfr0MElMh0Q/91zYUzkT3Q0TgegqThsUPzr0f0RfkxbVsKmglXc6keiaNcM/fZAuhTAmlLUEEERHOSfIAbINtOhIaSDtJfGhdoudW7bIn2vXyvZVq2T7ihXy57p14f9ftVr+XL9eQlluuIO0AgJNJoiOjrnoFEeKGus81QBLxBzIBtqLpCnX6Nu3b0brHvyKypUre1L6FNxekgp/kGgcNizpSwWQS0gq9napYvRokUMPTS36jd0cbcAXLQoT8HPPDUeLkwHrPCLepOZ3NZNhMUWLevDBB5t0XlywQYghBUkKuynh3GY5mpkJEq3NKSLtv3AroRV2riQunH9kB/umU1uQAKHt22UHHQl/2yg7N/5mfvI7iz82bZLtS5fJH7Nmyx52TiglUnrPvaTM3pWldOW9zc8yGaxZoJEKqWP8eXNV0MhGBW30rFmztLnGLqA/pyW9JU9BhkrZdvMC20fCS9BItMJziJg0iUSn4w+8cGGYIKba/QoLnVmzUotgE7mmCco994i8+Wb4J/9+/vnkr61fP2xX54goo38jApaQQINmzcLfsyQk2sMgGl9MIx9wkPqH1OJakUtA8ljMIZmQvZJgx6ZN8sfMmbJp9GjZMmWqbFu0SP5c90sEgQZly5SRavtVMT+LEBLZ+fvvsn3FStk6Z45sHj9Bfh87VrYtWVKiKLXVfGMXSOQvwmIzB6CTITpsLxZO5QOMNYpmvUiacg0KLL/66qu8OuV4hURv0ki0QpEcEel7bpp0SBTFSOn4yxL9YEFFKuE2Ao3DRqzCq/POC7toNGkS//VEGdBFT5kSQaJdeePyHLRyfHYqUXMbufN4sYpN5SqJ3g0ilfmMVrKI0VEOtGCj6BLoqf9cs8ZElnds2ODqNXtVrChdWiRPY+/cvEW2zp0n2xYulLI1akj5OnWkdAr3Pu4fFBE2adLEFLPhSZ5rcE2Z9/AF1g51UnTfk3kJOgio0GyKgEKQo/KVVBOtULivRi4C0aV0dImQ6AoVZMjbQ+SG725w/zob+XBb1IKEI0667dGjq0nb0ccmfw8+a1enRlf2dha0QgcpFJ0s27RM2r7TU97rs2/CjoleAGQCSUvMhjMBBDIf29EzXyBSS8c+iLQl08mAlnnzDz/IH9OmuybQNjq8bft2184goT93GJL++9gfTKTbTWSagi06NBLhzyd5JfLKec2Fzt1PJBrSFPQIrNrchcE6wP3KveolaCRa4SlgYxOBBI4Ac9bPkcd/elymrZ0m67ask3332Fca7dtIDqx7oJzOwpuOlswu2G4ju2igS+pawGc5FgoiDtPKTpOl85bKMU2OSfw6kO4i44MuWEklLQHC1KlTjS4ZPXQ+0bhxY0NskHUge6iPJCkGQpDgBQuM1AIZRqrYuHmzjJkyRXq1ayf7pLiRQu6xY/162aNlSymLXCrWc7ZvN0WERKLRfOe7gFW1/5FgU4P9H2MtH9kBr0Bt7sKwUXivdS1UEq3wFIotZEShY5DEyasny7mfnys196opxzc9XqpWrCorN6+UKWumyCszX5HTK7QkTysfHvthaoUZNg3sVntFEWFJCz/4LEf6mY5xD73/kFTZUiUxibb+uekSzTx3gksGiivpXqY+uuGCNxZRrA+9ADS8FH/FsyEzuucZM2Tnpvwt/Dv/2CpbJk+W8nXrSvlGjaRU1MZ4xowZZkGm66NXsh3IF7C7o7lL0AFp0vMQBvI+r5HHXKPSrnvUa+dBSbTCUyimBYYgxrhpnpzypFQuX1leO+I12bt8ZHU+UWmZcJ8hmeXLpFggRLGetchr0yb583HhuPtuKRH4rJNPLvonpN8V8YdEs8lI14bLw1Feok+4UOBcoKA55c9mg+kl71w0xID0KgVx9lptW7pMts6bK7LTA77SIZFtPy+RP3/5RSq2bSulHZku5BMNGzY0BWxeAecSXTTabIo5gw60wKTwg14XweY518WuXiXRW7ZsES9BNdEKb8s5cOagMUgUlmxcIo33bVyMQIP9K+6Pb5Rxnxjy9sERmuj35r0nbV9oKxNXTZShPwyVfq/3k16v9pKbv79Ztu/YLr/tXV7+eWUz6fX7ndLrtV5y3/j7IppM/LjyR/N6fhpgY/fMM7Ks2h7S9vk28l7fKiKkHol6HXVUsWMbNneYnPf5edL/jf7S6aVOcvQ7R8gbjTcVuYGgAez/Sn+Zt2GejF813nwWj3M+O6foPX7b9pvcNe4uGVzuWen0eHM57N3D5Jmpz8jOUKQ8g+fx3Xu+2tN8R/5/4zZHYUY6ric5AueB8x70xdNuKPBp9mpEftGiRaZ7Ise4bfFi45rhCQLtABHxzRMnyp+bNpluj0SzsLDzEoG2DW6YA5cuXZrvQ/EEkAwhYwo6kHG5KjYvYFSoUMHIerwma9FItMJTKDZR4BGNzV0UalWqJT+t+Unmrp8rTavE8GPGXWPr1rhd+YaOG2rI9qUdLjUSkLfnvG0i2z+t/klqVN1PrhyzXb49tZM8N/05aVKliRzVuDghLsLZZ4t0aSYy4SKRbt1EencMO3Ns+kLkp+8jnvrm7DcN+Ue3XaZUGRk18S257axasrP2ajl1V6rqsAqHyRc7vpC9yu8lF7S9YPfGgF34n1sMoV69ebWcOKec1NhSUX46uaM8OPFBWbtlrVzX7TrzPAjoX7/+q0xaPUlObHaiNNqnkXz989eRRZbp+G/nCFhbWZuroAMSTffKXNvapaKRpuDxh08/lbZ77yMHeNRdYseWP2T0a6/Lb/tVMefSi6SEMY82euXKldK2bVsJOthEszljPguyXzJyLh6pOOIUGkqVKmWi0V6LRCuJVngKxRY2im1iuACc1fosufSrS+XED0+UNlXbSKfqnaRHjR7StWZXKVe63G6LujjOFftX2F8eG/SYuTFPaXGK/LzxZ3l+2vOGcP672eEi/z5ZTvj78zLkl1kmepyQRIMG9UUmiMjFF4tYHfPkL4o97blDnpMKZXe5aojIade+Jhd3LS0vVvpMTpUrTZFTq/Kt5Psd30uVClXkyMZHRrz+xekvmij8W0e+JfX/1t10PDypz61SrWI1eX768+a81NirhoxYMkImrJog/+j8DzmnTTiKfXLzk42OPOLcephEM2Giuw06SON6uWMZ91DratXktz+2ysSVc6Rry5ayfwYyCHvvtZcc1L27lMnAGICETZk3T1b/8ot0rllD9vOwVRh1AAsXLjTZmCBbmlkSzSYSa8Ugnws2qXRwDDKJBowBr2midYVSeC5lEwGipcuWFXter1q95OXDXjYRXVw6npv2nFz01UUy+K3BMuLnEWFv6caN45LoY5seGxHZaFu1rYQkJMc1PU7kmGMwbpUyTz0trfdvLUs3ZS616iTQGxfOkvXffC5danc3n4HUAhINaYoXdfli8Rdmw7D3+i2y/ve1sr59M1n/x3rpUauH7AjtMBIQ8O2yb6VsqbKGOFuUKV1GTmt52q4DqZiej3YOrdS0qGi3XOIPW0TqQeD/vG3ePOnYrJkhz79lKN3KPUCjlUxEIKcvWCAr1q2TDk2bSrU995ItP/2U9Rbi6QLdOxrYYnNhAGGJsxebbOQSjAU2E16zd8tHkM1rc6FGohWeQrFWu+y8160LSzqiIqdEoB8Y8IDRMs9eP1uG/zxcXprxkvxj1D/k7SPflsbojLfNifk5uHo4gZQDVN+rOqG/cET57rul0sEXyG9bM+fNi7zikcmPGAkJ0gz5X3MRCUs+Nm3bZEi0WTzjzBM///az2TT0WzZa5OGWIr/fLfLG7sLGX7aEO56t2LRCqu5ZVfYsF0mUG+zdwPNSDqAyjt0RKDShFBV6kVTt3LZN/qCDYSjcqrlLixZFpHf7n39KuXSLXvHF3bJFpi9cKK0bNjSNV0qCA6pUkf323ltq7CrMRCO9df58qdCc+89b4Dx6Vf+eaxBQyLf1oJesPiGQXnGSydd42B5HopkvKIlWeJtE2/bbtMU+9NDYrylTzhBqHvX3ri//Hv1v+WLRF3IJr906LaaPM3rkWCj6/f/9n8grr4iM+V5CLZMnbNw0hFjy2xI5//PzpeE+DeXqPYZIjbsfkHJX/59826KcIf87ZadptmBcDr6P8zmhndKzZk85Z3I5kXfeEXl3mEipGCQ5Gep7e5GePXu20YYGvbAQhxKKabzkyuHE1jlzJbR9d3TMEugVa9fKtAULpHvr1kaWkQ7+3LFD1m3YYH6mi1W4hlSpElOnvX3Zcil7wAFxfaTzCVLW8+bNMzKeYnNiwIDlZ9BhN9AEWZREbxcvQeUcCk+h2ILRsGFYmgGJdgHkF2DNljUihx1GxweRdCrdkTo8+aTIqpUi23bftNYNBOcLJ5b/vjzpW45cOlK27dwmDzW/Tk664mnpV7O39Dzjn1KhTIWIKuxEtm51K9eVzX9ulp7PfCU9Gw+UnrV7Ss9aux81K4UjzPxcu3mtbN4eqR9btHZXZD5OgwwvgLTlnDlzPNniNR9dCmkJ7UVtODKOP1evjvm3qrgJVNhDxs2YIZvyVAg0d8kSmThrlqyzXUhjYOvs2aYpjNfAZgSrO4rJFAoi0Ujcgm5zV15JtEKRIokmskWRYBSJHrdiXIT1nAVa4KKILK8rv4cIllvpYNCg8Hts2yryyCNFriBEqynac+KN2W8kfbvSpcK3W+j00/HyE3n+edm4fZOx3XPqXymq27PsnpF2dLswpMEQ40oyuvxykQsvjPgbxP7PneGoYN/afeXP0J8Rx7Vj5w559afnw//wcLqYaAsIerdCxveGDRvy2o46HtAT/5HgvkLG0bVlK9mjXDkZN326kWbkEguWL5N5S5ZI03r1DKGPh52bt8g2uo56DNjc8aD5StAxadIk03gpyKBjIW4tQS6utCTaa7pwlXMoPDdZFEPPnsaL2bSp3hWRw6IOTfGgeoOMPGL7zu2mi+Hniz6X2pVqyzFNdzlkVK4kMmUJ3SrSI450iJuzVOTiy0XmzZPKQ4fKwfUPltdmvialpJSJDI9aOkp++SOsRU6EXsvKSbk/Q3L5iWXlxF5XyOY1H8s7Y96R/SrsF46ci8jMmTNNN7iW+7c0dnhP/PSE1Nu7nnlO95rd5ew2Z8uIb5+Ty/9eX44uN0JazV5tzgM66S8XfymfH/+5cfWg4LLjAR3lgYkPyLJNy4yt3vDFw2XTr2tE2KfUrStehS0c8aIGONcR+dq1a3tSyrF1/gIJbY1dtGtRvlw56daqlYydPk1mLV4snXPkLLB45UqZvWixNK5TR5rUqZP0+dt+/tnIOsp4LE2OlAlNfNCBnEmzUuH6CNZHL1oz5goaiVYo0iHRyDLWrBEZH3aeAFd1uUq61ehmIs/3/HiPeUxbO824Ubxy2Cu7m7Cgx+Q9n3027WPaXq6UPP7YmSKPPSbSubNcX3qwDKg3QN6a85Y8NOkhU6R4e+/b47/Bhg0i11wjDQ8+Re77upKUatxE7l38gnn9Cc1OkNNbnl701C82fiFvLHlDLm5/sfSt09f4VF/7zbXy+E+Pm79X/HWzPP+vqXL21nby46rxcue4O02jFQoOL+twmVQqX6ko6v3QwIfk8IaHy8cLPpaHJj4kB+x5gNz+ya7UtYd1lhqJ3n0v4NKAxMdrxYTbVySXL4E9ypeX7q3bSLtd3Q1TQcU99pBWjRqZn6ngl99+kwa1akozt5vmnSHTJMZrgESTlQo6mAfsnBBkTJw40VgfBn0sbIvjuJUvaCRa4X0QiYZIfPxxuJmJiPSp3cc8kuHzE78U+eoikaefFvnXv+SYJseYRzRousIjGrf3ud1Em3HUkA//KRdfO0yq9Bsi93XvLnLFlSKDDzZ2eGDqWY7OWtu3y6V/dpNLx00XuaxOuOnLXXfJgf/4hxxIR8MYlnuPTXpMvtrylfylzF+kasWq8sigsIQkAi+9JHtu2SFXnvCgXLnrc+Nhnz32kTv63hFJ5j+4W6Ye/PBuL2uPTpQUWAa9oIroG0S6WBfPPOPPFStS6khYYZeOc/Mff8iMRQulXeMmJkqdDDynfgpe5tYNBBu7VG3x0HeHtm+XUh4ac/hFo4WnaNmLmvhcgYwUJDroDVeYC7wmZchHJDqWjDOfCO6dqfAPiCQPGRIm0eng0ktFli8XeeihtF5OVJgo7yPL35LHn71Q5IMPREj9nnFGuL14gwbhFt+nnSZy4olh0o9FW9euIm+/LXL11SJEuq65JtwSPAaIND865VEZXHGwnNn0zNgHgtXfHXeInHJKEXFPCV98gUYgHNn3MNAAd+zYMdALJpg2bZp5eA3bIdFpYGcoJL9u2mSKDSG8ST/nzz9l2Zo1rp6LC8fIiRNl4+bN6Y2bnSHZHqMzar4j0U2aNAk0gbabaoiT1yKQ+ZC1KIkuL15DsO9OhX9w9NEiEybE7F7oStd8xRUmEi1ppsOKiPSUR+XxestEvvqKKkCR118XOeGEMDmFXJB+pcnL0KEi330X1mL/5z8JuwNCoIl0X9z2Yjmt4WnxI4+QcSLad+/2hU4JHCvnwsNFhdbey2uG+vkAqXyvWfz9uX69KcZLB5UqVjTFhlu2bpXxM2cmta4jcj1l7lzzMxHWrF8vk+bMMQWEfEa62L48vc1BNrFu3Tr55Zfk9RaFDGoCDjzwwMBnpjQSLZ4k0SrnUPgDdBHEzxVZxl13pf76224Tee+9cBOVzz4Lu36kQaSBkXbYf2MVd/LuroCpwhJoCLp9/5iAtD//fLjAMp123RD8Dz8Uuf9+8Tps9LXbLulOEEH6mgIar1Xj461cEuAZTbHhD9Ony8TZs83/lwTY102YPVuq7buvtG/SpETZi52//y47NmyQMh7SoGP1CHHwokNLrgB5DjqBBqoNF0+SaI1EK/wBIkxnniny3HNxW3knBGSEwkAkDS+/nPZhFEWkJz9SVOyXKQKN9tFq/yKweXPYzm7AAJFzzknvwyDgyGKQoHgcRKGDXlRoF0svOZSEaDu8NuwiUxLsU6mSdGnZUhqksxl0gPtl6vz5phMhLcczIXvYvmqVeAlKnMJWj1OmTAm8Z3a7du2kKxLBAKO8kmiFogS44IKwS8f776f3erTAp54q8re/hSOzeSTSsSLQpG6/+OKL4lKGG24IH+8TT6QVQTfWgE89FY6YeyjKFg9Frc8Dbm/HOfDSedi5aVNKBYWJAPGliyAEacmqVa46fkYD0ty1ZUvp3Lx5xnTDOz1mKcf1D7q0iezC8uXLjWe6Itgo70ESrXKOEuIaisXSmBTuTlfXGmS0bi3Sr5/IPfeEdcjpEMoHHhDp1ClMqEeNChcApoGY0o4SSjis3i3C5g/izDHzaNo0rWOVd98Na8FffVX8AEh00CPRVapUkYMOOki8hB0bN2X8PSkEnL5woaz99ddirhoUUu1bubL5Gf2aeUuXSrvGjWWvDDuX7Pj9d0+5QMSKRP/++++mAQmFdsgcOnToUEz2Q9QWz3nmFL4LXVBpIc7/U3Pw9ddfR7ymS5cuslea7dnzcR7cnAOCEmPHjo1ok92nT5+i8fTzzz+b1upc76pVq5pmJl4u4qQR15IlS6Rv374pnQdes2DBgqJ/sylDHkRU229joXwUiUb6t3LlStmyZYv0799f9o6znie61iUdB0qiS4hx48al/BqvTNC+xI03igweLPLRRyJHHpn663HT+PRTESaiY48NO36kGe1Lh0gn0kBbEl1EGoYNCzuL/PWv4Uc6oHjrpptEDj5YpEcP8TqYyPj+Mf3CFXnFzk2Zb3iBRhryTGHg1NKlpW3jxkXzI0WCPdu2jXg+nQ/HzZgue5Qrb9w+YnvdlAA7Q0Yb7ZXGKxBAiIHT5g5pQ/369aVu3bqyYsUKmTx5cgSxAhCqzp07m8YcvPb777+XpUuXmtcA7i9Ih19grf4s3JwDe/5ifU/I4+zZs6Vfv36GoLOOQ6Zore1V8P03kQ1ywM154G/2uoORI0caC1ELP42F0lHktmbNmsbB5juK+OMg0bXOxDjQlaqEeOON5O2e8wV2p88884yRCOA527hxYzn//PNd6arWrFkjDz/8sGm3ys2L5dgVV1whtWrVKvbcjz76SF5//XWzI6xWrZqccMIJcvzxx2fnSw0cKMIND5k+/PCiDoYpgYUZmzps83D9oOAwzYhWKkQ6WREhKXwIhJkoINDIL4i4UwyY7saL8TljRlhL7gPw/Q899FAJOogi4s7Rw0Mbn51Z6hpXY//9TVHgT3PnSpnSpaV1o0Yxn4dLBwWJ5cqUNQWJeEJn63t6hUTjFc3DgmgssgY7LiARU6dONRFJZ/TQ6erCfAIRhzD4FXwHWyvi9hwkAoST82ozXpCmuXPneppEcw5YIyzSOQ+0ked1zjHlJ5SKWgfddHNNdK0zMQ6URJcQNUpYHJNNDB061Ow6TzzxRLPz/PTTT+Xaa6+VBx980BQpxAOT7ZVXXmluxjPOOMPsVN98801Dop999tmICfr999+Xe++91+xkTz75ZLMz5v1JGZ1++u5OfBkDN9Gtt4ZlHe+8E/ZlTge8nig00ewjjghLHtK0E3NDpN26cJhJ4pVXRM46K0ygX3opvY0CwA4Pez2+X4CdLvwI7kEvNRUI7dxppA7ZQq1q1WTHzp1G1mHlFHhKj5kyRXq1ayd7Vqhg/KXLlCkt3Vq3dtWspUTabw/BRmAhUbbo1kkmsMQknR2POEGaIAtOtxuyXt9++60516xhTdNoUJNLEEm19QGpnAPuo2+++cY8l/ew5IjnOq1E7eu9jOjrk85YIMoKF3BGdP00FkqlcVyJrnUmxoGS6BLiwgsvNKmA3r17S8OGDcUrmDFjhgwfPlwuueQSOZViOiHwOkTOPvtseeyxx8wjHt577z2T+nviiSeMjg50797dvJbIO9/ZTs5PP/209OzZU26F2Aqc9Egz6b/44oty1FFHZceii3QVmuarrhI55JCw80a6UW3s7iCZbCpeeEHkwAMzTqTdEuh6++4r9d56K3wcOJFgZ1eSaNu994rMny/y5pviFzChk5pr3bq1yWoEFZwHL0laQhS3ZaioMB7qVq9uHuCPKAceos4NataU6vvtV9QBMVtAzuEVQJS+/PJLM/+ia05nHJGiJuVt28dDRtHbQ8CwUZwwYYLMnz/fPMerSCdCTLBn8ODBRtrCefzhhx+MpjZWNtUPgECWZGNNFJsCTXThFn4bC6U8SO69q6L3CSCSTz31lJxzzjmGrD7yyCPy008/5T2KNGrUKKMthchacKMcfvjhMn36dFmVwMqJ6HWLFi2KCDRAd9WpUycZMWJE0e8mTpxoUs7H4OHswLHHHmt2c+jwsoaHHw538MO5oqSEfMoUETZAkGoamqRZDR/LtcO1D/S330rpjh2lNNH1Z5/dbUmXLmhKQxT6H/8Q6dBB/ALuG6RHzrRlEOGl4jYbic4VaMbyzaRJsnDFckMCV69fb34Pia6Yg4LTXH7XZLBjwK4nzhbYFtHRNAvOHYV1RBcbOSQyRCFt+hqCSYTW6w1dWGd+2+Wc4vYcsAm1/tK8BvJsv2d0xDHeOfQS2EQ55V2pjAUAgSao5Qxs+W0slEpjTkx0rTMxDrwT6vApXnjhBTM4SYeMHj1a3n77bXnrrbeMBq1Xr14mQk0aLdduA+h6SNtEp3UsMaYaNZYuiigylbyHxWgNzWvRSJMio2CFzwAQbiea77KcolHAwRS0xQDV41RPWyymLbaIKZxgwrTgxrbFMZCrItB84IYbZB+6EJ52mmxq06YY8eJ1vB5teHSKhgmWc8ME9BsRGjTIjzwicsstIp98IpVfeklKd+5sJC3RXaKYvOzOPVpneEbjsA8zxPnJKU/K9p3b5fwW58upDU4134tCFzY3HI9pYwthv/NO475RqksXWXj//dL6iCPk9yirLSYPW3nMYhK9SeO78J2IuGzlu+InXbOmIdHld00MnJ/owhRg5Tn8Ld45ZLKOttqy57DYtdkFjpfjjnUOOR6iQtHnkM/h3NjJ0jkWLFgEGF+8jtc7wXXh+vB5fK4TvMYuIEnPYZQjAsca7xw6rw3nIdquLdE5jDe++X8+05LpROcw6fiOYduW6BzGGt87fv1VNm/aFD6He+4ZPoe7nCycoBjQjO+tW2Vb9LUpX95EkelUSIFgsXO4a67i71X32UcmzZ4tMxYulN+3bjURal5LhHprjCg1cg9zDmPofvGlBpu2bCk+vitUMK/nWDlmUKZ0Kdn+66+uz2GqcwTnxzpGxBrfzjmCscb78zz7ntyvODXgsEAdCp/Ng2O04xAixFyN2wDki9fb8c3/20JFfjKP4wZjrrNH5wi+i3WfAPy/LZSkMMyeA3s+uTbcFxyr/RvrWu3atc0xoh9G5sEGg3OKywP6Wo7Rq3ME78/DOWYYJ7hv1KtXz0SQo8+Dc44gO833t3/je9gHx2vHAuOP56Q6R7idZ4utgS7nb84h5yFVcK3hZtb1iXvHZiMS/c0tlERnAJx09MA8GHxjxowxKWmituiQuThUSlM1C7G2abVsAoIaS3RvfxfPuJ5Bz8BO9lpuWj6Dm8FOwM6bngnDSZKj8cEHH8jzRFujgF0PmxILbnoi4NxwTHoRaNVKjuzSReTcc2Xygw/K+qjJh2JINhK8HwUXTiAVYFfPhFf0vrTERgJx330ypEsXKX/ooTL9kENkFV0JHRoypAZEdii+JP0Vvdhc3O/iIgJdRspIo9WN5JvV4c+gfS0TzJzvvpOf6b6InITJ4swzZY9TThGWpzq7xpATNu0GSEtGT7SMK67PwoULZd6DD4qMHh3eEIwfb65V+/bti/SB0RMe2QlnZsEJxi3je9myZSaD4QSbMDaITHjFro2IKRBkgubcc66cwEaIFC0ZEa65BWOP72CrxWO978CBA81iNmvWLHNcTjRr1sxs4iigIQrnBK/htYAsSfQETpqTscxi5LSEAhwrx8xiE31MfEdbDMl4iCYLFPKyWKNH5JidYBLHUopjcb6vJcWWRJPdir6fuKZcW4gUf3eCscCY4PWxziFjiTHFwope1gk2xegi+TzIC9ixaZNsm79AKu25p/TdRWTGTptWjFChX4a0Lli2TH5euTLyHNaqKS0bNDREd2zU/cicMXhXwfPE2bNk46bfZdr8Bcb+ru4B1WXT5s2GRC9ZtVLmLVkaeQ6rVpUOzZoZEoyGOhqH9uplfk6dN082RF2bdk2bSu1q1WTFunUyY9c1L1WxglTYuDH2HOEA8jgISqzMXrI5AgkgYJ2IJlRFc8ScOWYc8v4s8pBm0uzUs5Bp5L5h/uVzOD7uBbKCjDXmV14LiaKwHAwaNMjcr4wVPtfKA5irCfYAL88RfFe7mWFNJfAC6WM+tOeAuYP1lcL21atXGykM45jvyb1treCYIzi2J5980rwf54BsK8/16hzB+Xn33XfNmmiDDMwTED+CYryO+955HhhLlmDzfdiE8DfAc5GgUsTMObRjwTp9pDpHWDB2+VwAQY3eHDH2uQc4Zo7dCa4j9w7nJ9pxg3sNeY4T1GAxPrg/mO85z1w/xjjXl3MK8eZ62/djY8m1Bon+5halQvnWHRQwuLAMMC4QF5iFnQmJQcLNyMTltJ7JJE455RTz3vfgqewAhJK/XX755XLSSScVex0DkkLEiy++WE477bSIv3388cdy1113GccPbqA777zT6K6ZqKKBQweE5o477nAdib7tttvk/vvvj9BjxY1E78I+kKhu3WTTIYfIDkipI93jOhIdHWXatk0qf/SRlH7oIfl90iT5E3/miy7ipLKNThplenn+yyYSXa50uaJI9NktzjZ/rzR9upR5+GHZ8uabso1CGc4xrcgbNzbXhgmO6H2sXbirSPTIkbIVsn322SL//W/SCInXItFcKzafTLRMgEGNRKdyDnMSif7tN9k8aXJOItEQXVqC85MCwh07d8iQHj1zF4neZ2/Zs0MHz0SimWMJJFgXgUSROtfZqhTGtxfmCCSG/L+NRCc7h4U4R7BGQoQPOeSQCFmDV+aIXEWir7vuOsOrkNFCgPMNjURnEQwIyDIPBhIpIyv7oLDv8ccfN5NDtj47euADO2jjyUvs7928lp/RN63zuYkkLOz4eESDG8zp/uG8MWP93jhqPPecVGJDQMEE3QijYNNgscCNGfN9kUOcfbbsxQ71f/8TufbasK0ekW+q3Lt2lXJdu8o+FLw4JrQIDXSTv8jjw2+TR2Y9LXt88L5c/NqicNOTRo2k4n//KxX5DMdnWy0ak1vMY9qFeIbysmqVVDj9dKnA8SFNifrOTFyJ3tfZlCAaXMt41zPutdmFRLZTLBDO17K4QKBttibR+yZK7aV9DnctEPE6BSY7h4kKaVM5h0SknGMz0TlMa3y7OIfOa7OjTBkpFzU+LOmNBbTL8fTLZTmHCcYaxJbXtm/a1HQ2hDjbYkJ+xissNOcwwftC8OMBsm4dP8pU3lv2dJyzZOcwlfEdjUR/gwAxDo8++mhzfZ1NZ/I1vvM1R/B3jjnWewRljmAcch7iZbLzPUekeg4Z3/H0x/GuTSxekm8oic4RGKikenhceumlJo0Bmc4WSNVEp8eAjf7GIrB20HOzxZJiRL+Wz2DXTYTdKelgoLMDdePhmBFgc0dBIA8iFWk6bBQD5JjCQx4//xz2XKa5Dg4au6K8wrmoV880bHm82w55pMPvctkP5eTioQ+IzL1MLibicFwteYT6zgvbysVtHwo7ikR1YbNIOzHEBoeNBJ/H8XmwPaobsNh62TYyV0CiYW25vIBSOXAKYexv//NPQ2ZpsoIvNN7RzerVM/PMxDlzpEGNGlItSj6WaZQq551lkTHg9YK3XIA1KehdTBWSd8OGWPDObOFTIGlIBLt7pNEJETa7W0Q/lU1jdyQR6MiijdfRN9m/xyMx6JKidVn2tWjf7M4USQfgudjcWfBvIor27znB0KEikyeL4BRCdD/TjhQQZWeL99WrRdCC8Vi1Sh4/YIE80mi5XDavhly8vYHIIXuFSX23bnJxq1Yi05+WR+QRkTpL5OI4BJpNR5s2bVI/NtKrWOKhAf7qK0T64udJEv0eqeus2CP6BER4vNQco3SFCoZchrbHzjxl4rpDmJGI9Gnf3sxDEOoVa9dKw1q1TPS5dKlSMmH2bOnasqXsn6anuxuU9lDLY+Zv5tNWrVoFmkyjCQ46vObYkw+ElEQXHigcdAMG/0MPPWT0PLlosYmwny6CFJhYn2gkFp988omZkK0zBxpoNFhOMT3Hh0c0k7d13iC9DCmneNICnR6RaxquOEk0/ybV5fxd1kGkDHs4ikLoRAiRdlj0ZRx4tlJsc/jhuyQc34UlHGddnHZDFs5lovRXTBB5vuSScPSZR4zWt36bJCl0IeoUZBLN9yfD4yWU3quS7NiwIePva6RuCxaY4j5agEe39jWfXbq0dGzWTMbPmiXjZ82Uri1bGalHNlDaI90KLYmmVoI6GkWwgZSGosIgI6QkuvBAd75EICJL4QN6aArzaErCjZBtM3OI8oABA0z1Ma1B+czPPvvMpIkh8ha33367TJ48OaKaGJ9nWnnzPIoQ0XjRsRDJBv92LvTnnXeeKQa88cYbiyq/qQa/4IILUieEJQWfx6YGIj1ggAie1tkk0qn4QLsg0hRaUHDJtYpFJGIS6MsuE6Ggkrbexx0nfke0L25QwSY0usAo3yhTOTskeuaiRbJ01SrjlIHTRjxwT3Ru3tyQ6PEzZ0q/jh2z0niljIc2b3YMxNOzBgUU1LH+RNupBglkKnMmkfQoQh5cF5RElxC2WjgZILR4L1900UWm698NJW0S4gL//Oc/TcT5888/N9XCyDRw10h2zMg12Bw8/PDDpvMgGwHs4nD0iC5qgHBTBMB3QuONJynPw+EjL6DL3fDh+DmFCw1p552lyH8qBNoNkWazxYaGa5Z00STVj4SD7weJpk14AQASzaYtXsFqUMB9RnbISync0lkgl8g3Fq9cKa0bNzJWc8nA2OjcoqWsXLcuKwQayUppD8kmcGtgLnC1qS5gIG3KhTWsl8FYYC0OsqxnhwebcCmJziHQRWNrF+3pmi0QKaaIkUc8/A/niRiADN+Cz7AL0Oqbh2eA1OLbb0WOPx5D3DDJhHDmmUAnI9K2zTMEMiGJxn+XTpR4sr73Xvj/CwiM22j7qKABT2AeXkLpSpkn0Th89O/Y0ThyRANLvCZ165if0e4edXa1wF6+Zo3sXalSQucNv0o5gG0CEXToeQg3SMP7moBcULHVg+uCkugcg+Yf2XTlUOwCUQsamaAXJkpLoeTNN1OxlVcCnYhIWwurhFFYGjcg2+A5bBQ6dZJCA80FEtk1BQFWBsZ58Eoqv/Ree0qpcuUklAGbqQXLlxm/Z5qvxCLQgEhz07r14r6H6a66fLnxeO7Rpk3c90kFZfbxVrSTrFTQI7DMh0Qgg06iOQ820BJUbIvylfYCgp0jytMgCPqNkDNAmJ96SuTuu8MP5B1z5uSdQFvwet6H9+N97biImbKCNN9+u0iPHmHJyg8/FCSBtnp+umwFGRBEmjQRefIKkJWUq1ly+0HkG7MXLZYypWO71FjQlGXthg3mZywgcejSsqWUKVNaxs2YUdQspSTIxPfLJOiaSOAlyLDRx3i+zEEB60LQucM2JdEKpBxBr7DNKdCTYk1H9B+3A/Tgjz5KhUJeCXQsIv3CnBdMCr+Y/nHePHqlhpu9UBRKS/ACXliJuHjJ3i0fYLGkNiFWJ7F8olwJ7ROXrl5t2mvTAhz/50Sgq+GPM2YU624YHa3u1qq10Y6PmzG9WDfDVFB2vyqe0kPznXBF8lqBaa4BeaZhWaKmHkGARqJFSXTQI0vPPfeczJkzR/r63IbMl+jeXWTSpHA7bBwtsN+DjOaRQEcT6SemPSFTK03dvVhAoK6/XgTv6FWrwvKN227zbSMVt6D1OZ09gw7cbWK1NM4nSu+5p5RJU16w7tdfZer8+VK3enUj48gU6G7YrVUr2bNCyQhwWY/5q1MMTtAlVhvuIAGZG84cQSeQcAhn18ogYpsHSXSwR2UOmq0w8Ikm4bmM1RypuZPoLKfIPdDZEoXGOeSqq0R69xY54QQuIlWfeSHQMTXSO3bKxT+UErnpJlbScCSdCLTHip6yBbSPTJbcO0F2JWAztWDBAvEaytWulZbVXZXKlaVlgwZSPwsdKfeqWNE0YQG0CS9TurSUS4F0lSpfXsomsNfLB2wWIugRWDrv0i03yPZ2oAdSvoBjm5Lo4DZboQPZQQcdJJdddlnCXvSKHIDq5vHjRV55BR9AkebNw2T6r38NR6ijLMV2hnZmlUBbXFz3JFkz7D35c/h9Ii8vCBdE3nprQUs3YsEWEDFhBlkHSUEZ33/79u1m/vAKylarllKBIbpmooj7VqokDWrWzPrxTZw1y+i3u7ZqZZw83GqhS3lsw0YWgrXCS9c+H8A7n4YzQSfRCvFkTZm3jqYAm60wmdNpqG7dup6psvcycuYPzIL5l7+EbfCeeUbkoYfCkenOncNyj6OPxmfMPPXSDvEtAksMGqZQJPj88yIvvSQ3bN8um7ALnPyuSLt2EkRY4kxBUZBJNDaTPLwGyOYejRrKH7PnuJJwTJg9S6pX2U86NGuW0ueQhdizYoWUsxGtGjWScdOny4RZM6VLCwoPyySNQpf3YCErJDroUWig9nZhjB07VmrVqhXoouttSqKD22xF4dF0DVmBK64IE2cs8fDNPvdchHj0TqebDEbYIpmcuCgUQvM7bFjY53nFCnzdjP55TOvWUqV580C3+XVGohXiuUg0KFe7tmxftUp2bIiv2V6/caNMmDVLqlTeW9ql0aG18p57Sv+OqTvQEPHGtePHmTNk4pw5psthIiK+R9OmJrLuNWBvqCQ63LUxyJtpW2RKRL5GFqRQfsK2bds8NxcqiVZ4jjDkBSyyhx0WfixbJvL++2GS+7e/iVx+eZjkdusm0rVr2FoOUk0hEkVW8TrKQQIhyMuXi8ycKTJunMiPP4pMmRK2rKtfX+Tkk8NEnSh4mTJS5vvvPWkon0uwYB5xxBGe6dSXT0yZMkU2btxomjR5DRWaN5ffGc87izvd/Lppk2nNTTOVZCQ2G9hv771NFBoSD5nfPw4ZLVt1fylX3XvRftAuoJmoaDAfBt03nnURIh30zcQ2JdEKhUdJtBNYENLlkQe2eCNHhskvJPiee8iz7n4ullgQbH6SZkKewXdYt46KmN3PgxC2ahUm4eedFybNLJJRRJEobNAtrYAS6N26aGzOWDy8JgcrvddeskeDBrJ1wcKYf9+3cmXp2KxZ2o4CtATH/xnnDch4qoA4H9ipk5TftehGt1AvVbaM7EE9hAfBxom5wGvXPB/AErZyFlrO+wl2TQi6rGXr1q1KohUKT2ii3aJKlXCkmAeAJP/8czhaTYSZn0SbiTpDniEMPNBTE6mGkPOzQQMRFwsBMo4gO1JYTJ482RRVNUtRR1toQBMN+cOhwIv+8uXq1ZPtq1fLzk2/m3/T8GSPcuVkn0qVitwy0gXf20bg0oUl0LMXL5Ztf/4pbRo1KiLS5Rs1ltIeJSVY2xF17NKliwQdTdKQAhUabHYy6CR6m0aiFYrE8LwOFoILIeaRBQR9knQuGp4fCzkARApd7KpVqzxJoikyrNi2rWyeMFE2b9woY6dNkwOqVJHWjRqJl1Bpzz1lyty5xvquVcOGxo2jfB3vnU/AuF+/fr3W2+zKTFJgGbMJVcA84zt37hx4OcdWD0aigzsqFZ7ElgTdyYIAFs9x48bFbv0dIJC+9Vq3vnxGo718LujyV6p5Mxk3a6aULl1KGnvQkrF2tWrSpnFjWbxihczdsF728LBdmm317kVnllwDf+jvtU7EBFdw5gjyRgL8/vvvnttIBPuKKDyHoLd7Rs5C1DHoiwbRVzZUGo0Wadq0qfTv31+8CsbquGnTpFyDBtK9bVvTituLoFNi6/btZGnp0sZ32MskmvGvWalwwxl04RU91I49H2BNWLp0qQQdmzZt8lyRqco5FJ5C0CPRdpdNIUmQm/JYay8W0aoe6ySXa9jCPC9a3YFly5aZzV+fgw+WCtu3y5YpUyT0546MdCHs0bat+ZkJlN2virTq30/2W71aqlevLl4Fmu2aOWhK4weoV/bue4w1gY7HQcXOnTtNJNprGyqNRCs8BW6SIMNGn4IeiSba0K1bN11Ad2Hx4sXy9ddfm4XEK7AFf40aNZJ+/fqZa1Zm332lYqdOUjoDG0C6DdIq3G3XwUQoV6e2VGjXTkqVKWMIKmnxDRs2mPPqNXTs2NFkHxRKoi3UK1tMlpo5x2vBJSXRCk8h6JFoUpcs8EG3uSMaR7TQi5HXfIBoPNKWFTjBeABo9tGqWlmEU3pQplIl2bNbVylft2RRsz+2bZOZixaan+mi1B7lpWKH9lKhWbNibb1XrlxpfLixEPQKaKjhpY1SPsF5YFxh8xh0sB4EXd6zceNG81NJtEKRAEHXRFubO6rRgw4IxUya1ChMlBci7YXIKeSG4leihPFSq6Y1eNOmUrFjB0Nk08HWbdtk0fIV5mc6KHvAAbJXt25SNs691KJFC6lfv76xkyNdnm8gXWJjYgsLgw6CCX379g28tIXoK8Elr2mB86GHBirnUCgSQEk07nkNNIW5ayzMmzcv8E4lFvXq1TNuBXYxyReBHj9+vPzyyy9GblMFH/UEKFuliiGy5WrXEimdmwY6pfesKBVat5KKbVonbefdtm1bozOdNGmSiUznE2yQiDaqK0cY6OxL4hFeKGD+w5kj6BH5TbvmPa9ForWwUOG5idOL3dlyPVmg1wxyEUl0cWEyshYEEJEjCsP5qFSpUl6OgcwAjV8g0Pvvv7+r10BkaRG+R8OGsn35ctm2bJmEtmbedYXCwXJ160pZl8dljq1UKePHTPFmPiNcECWi4Wygg25jZoHUhtqQnj17SpBRtmxZo5MPOjZt2mQItNfuDyXRCk9qn9wu0IUqY5g2bZpprhHk9td4RfP9kQ0oiQ6ntwcNGpTXMdG4cWMTKa1WrVrKry1VvryUb9BAytWvL3+uXiPbly2VHb/+KlKCYGOpcmWl7AHVTeMU2pCn9R6lSkm7du2KIu3MP7nOBC1ZssS4r9StWzenn+tlcN8H3ZnH6qEZl16LwOYakOh8BQ8SQUm0wpM3S5BJNNo30pjIGYKsg4M0QqRZTBW7CR/ZGqLRudTNz50718hJcAgoqUsA36Fc9QPMI7Rjh+zcuFF28PjtN/P/OzdvKWrZXa9GjaLW3aXKlJbSlStLmcqVpfTee4d/ZphY8D3nz58vPXr0yOn5RcZBe+sg3+/RkXnWATZtQQfjEZ38gAEDJMjYuHGjkmiFwg3yqfn0AuxCGnQSbe3TSGcqIoneokWLZPDgwTlxLyErsnDhQjMW0WZmEljOYYvHwyKEO8WOHbLXzp1SFU1s6dJhZ40yZbIehYfIojv/4YcfpFevXjmLSCPVCXoBnRO2Q6fWhnizwUi+zsO+HtSFe0tcogg80CYGnUSjzSQKG/TzAEhv+41c0F1s2LBh8vTTT5uf/DvTGwsyFUSoso1Zs2YZAk0BXqYJdDxAmNFRh8qWlY1bt0oI8ly2bE5kLMw/6L3JgOCUYW21shlxRfsbdGvPaHDeud5ch6CD3glKosWsh14cDxriUXiOQGZ74fI6bMeyIBdXWqAFhIQSkfKDJnD06NHy0ksvmWsI0eXn559/LmeeeaaJbGYq9d+wYUNZsGCBIdTZGidEvHlguUjBWz4WzW+++cY0csllRJLMR/fu3WXMmDHGlzubCzcZBXyqiYArdgPpUI0aNTxXRJZrqKxv93nwqiY62CNU4Tlwk+BMEXR06tTJFBYqRCZPnuwJH99kgOxDoJnwIf/Ony+++GJG/X/RikLQsQDM5oYWL2WIetCATKZPnz7SrFkz8+9sNEBB2871gzD6YYOYa2gQIdy5lrEYdBK9ZcsW49rlRXmPkmiFp8BNggdt0GEjEEEHkSicIDIticgGiFzGkxzwe6LUmSQYrVq1Ml0dMw1byInFYpDbTyPtAPhHjxw5MuNdROfMmWOIdJDPcbzxR4t7ZAxBB0W8Q4YMScsNp5Cwbt0689OLTciURCs8SaKDbrJP5HX48OHG9irowFJt/fr1JhLh9Yk+3rjl93YhyBTotoeLDe+dqfsFqzUkFH7YtORyTiISzSaJyGAmwFhGytG8eXPPdWDLNxh7nGc9LwoLG1hTEq1QuFiwiPgEPQq79957R1SpBxm2g5vX2yFDaBNForNh2wi5owAOXW1JsXz5ctMCG3lBNiLcqYJzhj45317pkDkaflAEOHbs2Ixs5sgk9O/fP5BSGTckmshr0PXQYOLEieaeDDp++eUXU5vgRYmPjlKFJ8lj0CUdaMNZRNQjOZzSJOqaCzu3koDCwUSR6N69e2f8Mxkj6CVnzJhRIrkBxIUFGwcO23jEC3PBoYceWjQn5BOcY4g053jq1Kklei8yEhBy3lOJYiSIQFMT44VNnBdABk4tPsXcM16MQgO9gxWegi0cCDqJZnGFPCiJDgNi5/WFlePDhYPIKdfP+ZPf24h6poE2Gv0ufs7pYvHixcYNgfbC+Y78enljC5HGrSRdoPMlmo2ziiJ2t1aQrXvFT0DKR0bWi8V0ucYvv/ziWRKtWxyFp8Cum7RNpvWjfgQkOuiyFmckl6gMUWkvOxkQjcaujCJCxjASDiLQ2SQFROjbtGkjEyZMMJKMVPyckYNA9Lt06WL+7SUCjdUl36lz586e8Ye1UXEiphQG2g2M2zFMap4xrDKO2GDsco6xcQw6rJTPC5mYfCIUChkSzb3mRSiJVngO7DiDHokGNLjQdO9u/Pjjj0bWge2alwFhPvbYY3NOPtCMp2LFxqYECYdtLuI18F0g0tmwlysp2NxShMnPrl27urpPaVzDvEY02y3xDhq0wcpukIVkXHnRGzmX2Lx5s5FReTUSrSu0wnMgeqckOizpUOxeXCGn6hoRHx06dDC2dCCZWwdRLlpbez2y71VUqVLFkGfkB2xE3JxvPKFbtmyZlQLTQgBz/nfffZcxBxS/g4BB3759A78O/OJhZw4Q7Kuj8CS4WRLZhQUFfH/8aTPhvFAIQHMMGdEWyYkxc+ZMGT9+fNy/E93F0YPCNqLQGhVNDzhIIIPBR5qGQIlASh5ZD01yFLHBBpmooxcdGPIB7sugSzmAkmiFIkVwsxCNCLoe2OpTtbhwN2nhnHjd6s4LUVKIXaxuhmzMINhEoHv06OF5xxM/bOzQbMdrhkEzlaVLl3qaBHiJRJNt8pIuP19AwjRu3Djt3ithZw6v2tsBJdEKz8GmO1XSEXYrQbuqCBfQ1a1bVyOnSYDLBl3w0OBGbzggKDhw+IFAIzNBMuF1uUnNmjWLZDTO882GZdKkScYSL9PdDgsNZJfIkKgrhxQFTlS65n1nDqAkWuHJSBpQh47whgIJAxEthUj79u2LCIsiPuiEByEh6gw5gcRNnz7dRLj23XdfX7gfQPLZEHid7FsQNURnjpwGQJ4hQmxaiPwr4mPFihVG+xv09tYWrH0q59hNor1cR6DuHArPgbQNEdg1a9ZI0MEO3Fr8aJRmt9cuch8vRyfyDSLOyAzwI4aEooFmI4Ym1y+EjmtMPQAdFP1A+tmc4CHNZoWW3pxvNn1sBBSJ0aBBAxM88cuGKVfR16AXFYZCIVO8WxJv9mwj2FdI4Vmw8KDrDDqwN6JCu2rVqvk+FM+ASF9Ju8YFAUSyICdER1mUaVjjFwINiJ4jSfGTFAL/52bNmpnxSeEmGwBFckAWbQYy6LBBEw0SiInIb9u2zUimvAol0QpPgpuGFF/QHTpshCvoEYlo6yckLqoVTwxaS9MdDxJKYc6UKVNMFF+RPbDgI6U54ogjjJZb56/kQDdO9F4RBmOGDEbt2rUl6Fi5K5Dm5WyOrswKT4KbBncO9JxBB2QRMuTFphP5AFF5CAqtqhWJI9FoTCki7N+/v+kGOmbMmKJOaIrMYvbs2caSEhkK3dWwD0RWo/UMiTcddNn0U4Yk2yBgQhCJTEbQsWLFCiPt9HJxsZJohSdh0zfcREEHkyr6cI28hgExIU3O4rt9+/Z8H47nwGbLOtvQ3ZFFCE0xLcn5SUtyrTfI7Pkmmkob8IYNGxbpt7lvCQR8/fXXsmzZsnwfpidh7f9w3VGEsXDhQnXmcESivSzlAEqiFZ4EVcnsPlUXHT4XRBHV8m83WHRJdyJZUEQSOhw50EFHbzAskSbL44fIH0VmLKBeLjYjkkrRJhu6Tp06GWtBJypWrGiyAZBsncuKg2wS49GrHsD5wNy5czVgImFZC0E0L0s5gJJohWejjdw8GokOnwvbxVERBiQQ3aAfyGCuYH2JiTLTSS8W+WQzhuUaGmk2IPPnz/esbpdNNN/Dy6lc/I15sDmJpWHl3qUdO3PZhAkTtFGQA5s2bTIafWocFJHOQ162dMsVfvvtN5PJ0Ui0QlHC4kJF2C+aSLTqoneDc0EkSzW+YQJN62nul0Qd9JxgU4bTyY8//uhJWQzXl6JIL455ey8ilRk4cGBCZwmINFFqrgnXSLMnu52HDjroICWMUfck40WdSsQXRYVASbTCs+DmoXNT0Nt/2w0F5Ehb4u4G54LUJxrCoANZASlgosxuFx18x7t3724IIQVxXtNJU1T85Zdfeqq4GAI8bdo0oyvHCxq4cc7hOUTVKfLUjpvh88gmBImRzmm7QaYCNyYyRkHHihUrTBbK6w1nlEQrPAubxlEtoZhK7erVq+uCE6PAkKKtIDsgQEggIwceeGDKtlhER3kd8g4cYEixK2KDDf0333xjsh9t2rQxRYSpACINIYA8/vTTT+b9ggqa6AwfPtyTWYZ8gg0wXuMKMes+58Pra56SaIVngQ4YXaeS6N2pPqJgisgCQxbioLof0Izku+++M+cgXS9xdOVESNH1kmIHSqaLa1W//fZbE0XGLhACne7izrVCgsSmxUtR9lyCjQiSBfW/j0SdOnWkVq1a+T4Mz0Sia3pcDw10BCs8CyZYLS7cDQpOkC5QyKTY7X6ALIHz4tUCuWwBKQsPFt5MkBGrTWVDgryDBhhe1ErnEjZaTCYIOVWfPn2KNhrpglQ9mxY2Lzh7BK0BDm2c2TxoQWEkCBZp8XgYSDi595REKxQlBDeRRqJ3p96JfqmHaCRos0yXuCBhwYIFJgrN927cuHHG7znel2ghKXc+K2hpd4gtVoHIN6yjBuclU5FTMmwQaX7SAIcNcpCa0lCQ6ab4NUigyNf6ZgcdK31SVAiURCs8DRYuIhdU6QcdLLhIXNQmKxIU4jBOvK6dyxSQWhAlhjyzgcg0IIr4HQ8aNMiklmfMmGF8kHMN9MOHH354TguLKNDk3BKJ37BhgynUzBbZQ8fes2dPadCgQVGDlkIHmQ02ZDQBUkRGXrmvyaopxGTDuCdY77wOLQFVeBqk/EjTL1mypFgjgyCC4kIiORSTaZX/brAw48MLmUbeUMhAToCsINs2WCxi7dq1M4VOtgXxvHnzzOfnosiV98/1xojFm6I3Nid872zfY0g67LyGOwobhkIm1AQC+vbtm+/D8BwIjLB51eh8GNyD1Lv4QTOvJFrhaUAUcA4gtawkWjzfwS1fsJMtrZeJnvph8k0V1AYgM2jSpElOfWStBpiNClIi0s5o0Smuwx0lW+OR74qLBU11LInPNIg2I1fhO7Rt29Zs2hk/uSay1rGD46DAsxDvcdtx1Q/RxVyD+4rzotZ2Yu4FSDSBAj9Ar1iBgsKNxx9/3Gj60Nu1bNlSLr300qTaUQbw559/LqNGjTJFS7wPxI2GAqecckqxxaVfv34x3+fCCy+UM844I2M2ZpBoRbiLG+dDURyMbcYtusJCO0csskTaIXhkZvIhXWFj0rt3b1PwYzXZzBE0zMhGxBbbQgqtMm1fyBzHhoRiVLy1uaesrpzvmI9IMJ+LZzf6aFw7rF66UMCYnTp1atEmQRGJqlWrmo2pQsxcB2fxS+GpkugCBIvEddddZ1r6Qnwp4njvvffkyiuvlKeeesqkSeIB7fHQoUOldevWcvTRR5uIFxrB5557TiZOnCgPPPBAsQWcJgKHHHJIxO8yGTXmZoLYo6crpIUlXWCPBVFs1apVvg/FUyAVzoaPaHSmHCu8ANL8FLkhoaCFdL6138wnaIUZf0QXIdDMOTQggQxwDXhOvo/TCYg4kW2OiwWauYxj7dq1q2f818m4QZ5x7Bg3blxBNWahUIx5i02YojgyXRzsZyxevNhE5P1i9ackugBBUQx+wrfccotppACIJJ922mmGDN94441xXwtJfeSRR0xq0+LII480VbLPPvusiYZBmp2AlB988MFZ+z6QaDTA6BUpwgk62EywQYKsaHvY4tFo/HxJ0xdC2pjvQVtuCB8Wa17aGBCxtRZUkFQ2MaRh0U2j9eVvbMbzRVAhzRQlQ+D4yTFRLEnEj59EoL0GSD4R6SlTppgix0KIThKFpo4DvW8h3JOZBkW73DsltU4sJBJdp04d30hbvDMjKzIGUtpMVk6pBQ4GAwYMMI0ZmJzjwWoDo2GLQeLJKojuZMumiYplFhOVdITBtYUQ5MMxwesgmseGrlAWaxZWtMdsXL1EoKNRvnx5o13m3JOuJ4qEn7kl0ESpJ02aVCShyLRlHhk0yLJ1rkGG9vXXXxsJARtw5GxOGYEXCbQFG2PmbuY862bhZzBPcT2CZkPpBozNyZMnay8Ex4aLdd4vUg7gD6qvSAmks5FTRC+6LCQffvihcbpINX1ki0KIlETjs88+M3IRbgAG/5lnnml0kolAZMhpLJ+IIKsuuvj5gKSwOJFS90Iq2ksggkFkFMsoNo9+BKlv7l9INPetX8BYpGmLbdxiiQKRNqLqjFlIIc9jjiCaTVYFws3GkAcbeZ4PicQhg+vIBp3X8ROSyd8hzUQ4ea1tCoM0g003542ILtcfgu83cH6YT3/44QdzTshC+PU+53ogQ9KsWWz9L/eHX6QL2cbatWuN3Z+SaEVeAeElKhQNu7BBXlMl0a+99pqpkGdhcqJNmzYmwk3qlvd999135dZbbzWp1GOOOSbu+33wwQfy/PPPu/58bqoRI0aotdsuMOlS3MW1dhIWRRgUvUHYSNv7bbxAGtHFQgCj7zc/gvNvs1u25TXFiZbcEkW2XvCWDDN/sXHmXDDOLSCSvJe1grNZGUgz58vKH3ie3z13+Q4EQ5DzEK30gh4+HbApSlSHE2QwRzFus+U+4zcsXrzYBA/8ZFOqJNrjYNFx23qXRYlJlmhNrOiL/V2qsouXXnrJFDb94x//MOlyJx599NGIfx922GFy/vnny5NPPimHHnpo3Er3o446KqLIhJvntttui3sMLKicB9JefrrBsgWiOuhNdfKNDSKYixYtMvIBLOH8AjafEGjuG4r3Cg0skJAGZ4aAcWzBJtkWECM7Y5wjA4AoM7fZOQ7wt0KPbhJZ79SpkymE5NzFCo54ee1CPshGwA/tm3MNsmVEorXxjETwAMaKn7JHSqI9DrxDcdVwS3aJ2LIAx9I929+lYuFE29+nn37adA5LFFm2YPE77rjj5N577zWpVpo1xAKFUjxS9Ue2RQeKMFFUxAaaV+4FLNgYL5AwrwNZAgSayC2d7Py0kGQKfHebOSAKzRwCkfTD9ctm1onNBWsBEV2/6P3JIJB10I1+bHBNrS+5Qor00GS3/QQl0R4HEdjrr7/e1XNtWp9J1qk3trC/c5v+J414xx13mAX9qquucn3MNo3KBJopsLCygHCTqU3S7kgP+nfOt18W1lyCCA+ZC4rLsDLzOtACoufG2qyQu9YpUgdzH1F3vzg4kFFhA8RGP5dt2/0E7nG/EcZs4tdffzWcwU96aKAk2uOA8CKLSAWkz7BIgmQ5iwvpNEZEx40+bcaMGfKvf/3LpFJvvvnmlOxmrGtEpou6uLmI1EV/r6CCcwBJREuqJLo4yFygI/X6WEG+wP3Fvd6/f39f6l4V2Ycl0FgIErXzcgdXouasNerIERtkhbFsJUumvQ/CIEBmTQT8BG+vLoq0wEJMwRndCi2ojKcwD5snZ5qYG5mHE2hJadaCN/Rdd90VNyrGe8aKpr399tvGxSPTEyge0RBGtQPaDVKBnA9Sg4riIEpvZUNetAqDQNOljoZGQAm0Ihkg0BTOOgsuvTamGcdI+fxW1JsrMGdzz3txTsoXFixYYKRbfvNG10h0AYIGKxBZOg9CiG3HQm7Yc889N+K5f//7383PN998s4gEX3311cbXk26HRH6jSZtNQeHEQeEIxJzBj1zkk08+McUSN9xwQ8Z32Fbbis61du3aGX1vv4JzgqRDCy6TS5PYDMbT6OersAgLM7TQfou+5AI2Ou+Xpgu5AhFoNs2QMEiq19LfzPtIABXxQVMims+obCsMuAnrOlaOfoPOTgUIJta7777bOGe88847xo0DfSja6mSLNbok27DgiSeeKPZ32ntbEo3VFJ0RP/roI6NlguDiaUsUOxs3A98Laz5Io+3EGHRQtEOklUlZSXR8sGChjWbz5QVLQEgQrZ3ZrLIJVd1o7LHtbJCi2A3mc8YQsj3mXYIYXgAyQI7FC/eYV8FaSRbXD3UaucLy5ctNAM/LEqV4UBJdoMCKDjLLIxFsBNrpguGUgSQCk0CuJ4JmzZrJsGHDTOW+X4pssg21SEoOonXIltBqsgHLt04a/R8LKUWEsRoYKcKyBR5IA1TmUhxYA5L69gphpfkNjXN0PCe/94lA+93HPJOYO3euGct+DASpJlrhK+D5y4JKcY1CAuOXW1IwZvDYRTpBJiPfoJU3rZ21IDRxxO7jjz/OqMtPoQH3C+QuBBVsBjFfOmgyPRBDldolBrVGdJrN90beS5gzZ45Z2/14Tvx3xAoJeooXXbYXiJCXsH79ehk7dqwWqiQAmQui9vnSIRJVpfMcZAdSr5kURSaLstD9r1mzJi+fT6EjRNpLNQdelpb5MeKaLWzcuNHU9PhRygGURCt8ByQdpA3VkSKymIcFVJ1LEgNNPVHgfBBopCRLly7VcavIOKhToTYCIh2rR0AuOu9RD+M3Z4V8aMZxzlLsBlllggp+6izrhJJohe/AjpViySVLluT7UDwDoppoIykwVCQHzga0BM8VKMBlvNLKW1sgKzIN0uDUpyDromCVzFSugJyEOgMsSBXxgSyJ4A9rl2I3yCoTmafLrB+hJFrhO0BCII0q6ShePLd27VrTLUyRPDJMVAg3mlwUzWA1iSZb9aKKbBLpbt26GSKdq2wHMhLqDCDSWvyZGAQ4kJJ5xUnFC9ixY4cZQ36VcgAl0Qrfgcmamw5yoojcXCDr0Ah9cpB6xsFm/PjxRsuZTaDhp3OiekGnBq7PQQcdZH4q3NuA4viCtIONIgQ3W0CaREYnXzpsv5FFzhfdgv1YPJfNjcXWrVuVRCsUuQY3HZN3rK6JQQWTMwsomnFFcrLRpUsXQ6AnTJhgCEemwaLJ+1MMy+KpSH0844GspCM9zJ49W7799tusZKbI4KDxZ1zr5jA5sNdkLtBzFQmyyWyScSzxK3R2UvjW2onFVSUdkdh3333NeVGXjuRAg0dTIIqhMk2i0VtPmjTJNBFQpAeaL5Ap4KcidVBAS2aKrrOZjEhDBrkukB8abincZQnRrLOhVuwG2WQCYn6WAimJVvgSRKjQAKukozjQ344cOTIr0dVCtJtCq8zGI1M6UlKUFBLiBOK1lsx+AmQNt5lsy20KFehvab8NQYFI//HHHxl5X7J/bNLJ5JDRUSQHmxk/R1uzgV9++cXU8PhZygGURCt8Czx/bWGLYjcoLCKFq3Z37oEt2Ndff13i1LftiohTAQ0VFIp8Bxsg0mwQ6ZSXCbDxHDRokG/dFHKNH374wQQ2FJGgsJvNBcEGP0NJtMK3gKQQEcHoX7EbtN2lsAg7JYX7c0ZUDZ9dfG/TxbZt24xOFN9ehcILgOz27du3xLUSeEFPmTLFzLmqU3cHrAZprsRmRhEJsnWMyfLly4ufoXeCwrdAk0fEj5tREQl296Rd1djfHbDoQrOI/pZIcqqw2RB0qDhx+Fnjpyg8QOIYkxRjjxkzJuWNIhkaNP44KSiBdg8ypeig1dYuEsg4Vq5cWRDBBr0bFL4GNyETlXojR+KAAw6QvffeW91LUtyUQYApBkylEQsLAlIQFgVFZokfki2N4mUORP1o+oHEwG0NAM8jQ8NraRakcAc25EjqCGjopjoSBL7Q7PtdDw2URCt87/fLBIW+ShEJUri4mChS83TGccBt5IhIPx3i6BbJxkWROdhFlp+KzMmWunfvbizqIMZuXHzIzEAIydSQsVG4AzIONL9041PsBgXvkGg2yIUwnpREK3yv92Onr5KO4rBWdyrpSA1IhBhX6JsT2asR5Seih60gBEPT3JkFrhxE99WdI/OFxxBpimmnTp2alPBABMnQaNOb1OeRgQMHqoNJDG092btCkHIAnfUVvgc3I5XnpCkVkaAqPNM+sUEBEbhE1mA0s4BY0GpZF8rMgw0M0VL1ic48yJxApJs0aRL3OeifyfKRmSFDo3CPjRs3Fm1AFJEg4IU3f6FkSZVEK3yP5s2bm7QQLWgVkaBDFudGm9Kktzkjkj927NiY0VAatUBECiElqQgecPCh6I2xjd++01eeuoDhw4cb2YciNZDBolNkKnUVQZNytGrVqmACD0qiFb4HhUdoJ1XSURwQPM7NkiVLtPgyRRAtwWOXiJwtxOIcfvfdd+Yn51YjTYpCsGHDJtRKO3DwwImD5iAUJytSw7x580wEX7XQsX30kcEVipQDKIlWFAS4KblBVf9bHHTNozhLo9Gpo1KlSibavGnTJrMRQd5BpKlQoigKBQWxaJ6RxGF/h4SGhipq1Zg6kH4RgUaq4Hf/42xg2rRpZk4tpE6uSqIVBQGirUxaKukoDghf69at1T0iTVA42KdPH2OlCHr06KG2azkAhZpozrVgM/ugQRDa51GjRplIIVIlPe/pRaGZbwtF75tJ7Ny506zPrEWFNLYK55soAg0INNpolXTEBoVBtWvXzvdh+FbHN3HiRCPnQEeKnaIbazBFyQCBPvDAA9UVIoduEkcddZQh0JppSQ+MVazbVOZVHD///LMpuCwkKQdQEq0oGHBzYp+jTS9iAxnChAkT1MUkRZDSxo8cfXTNmjXNGINUK5FWFAKYD2zxLFFCghH294rUgEyBzYgittsRWb1C04oriVYUDLBrIhIAwVEUB4VwpGqxZlMkB62R58+fbyLRaETR8tGEhUgdRJriK6ejgSKzgMR9+umnSuayCM6t1fk7gYc00g500orkwIZxypQp6mkeBxRnkyWm42Wh6eyVRCsKBqQgKYZhx6uTWXGgQ2vWrJmJ1Gs78MRAukEnQooxo32KcS2ASNPSFw2kIjtgg8JGRjcq2SXQ1oXGKUHAR7phw4aGGC5dujSvx+kHME8wrxaS1jeTmDp1qrmXC7FtvF5xRUGhU6dOZterBYaxQSqNaL2en/hApjF+/Hiz0cCZAy/daECkIR5aQKTwI4g848QRi0BbIO3AZ37y5Mlmw6iIDby0ce4hQKFa8thARsj5KUTLRCXRioJraUsbcG5aRXGQSmNxhCBS5KEoTqAZO7SlpRPhfvvtF/e5ROtYNDmPo0eP1s56Cl8VYrdr10569eoVtwiOuYLnUJSMM41mBGIDmQKBiUKybcskli9fbjZhZO8KEUqiFQUHblYiA6tXr873oXgS6HsHDx6srgdxiAMEo0uXLsaJw+1r8IelCQuNKxQKLwISjLOMlSBBjpN122Rsk4InI8P/K5GOBMEIehMQmCg0rW+mMGHCBBOBTtRi3s9QEq0oOFBdTgpeo9HxQfMVdL/anCYMyAENVVgI27dvbwoI3YKCw759+5oxR4pcU9+ZAee1X79+5qeiZOBeR6JEoWyqul3uCcj2li1bZOTIkTpnOIDbxMCBA01gQlEcSCvRQ7MRK1S9eGF+K0WgQYqdm1YLDBODBRVrK6KoQQca8W+//dZM+umA6LW1wNNxl7n7eJ999lGdaQnB/c3mjnbeSJTS1fEzxmky9MMPP2hh8i4tNJvvWDUTit1SF+ZCapUKFUqiFQUJbloWD9KXitig+h6CMnPmTAkyGCO06iUlS4Q+XRBpYdwRlUZnSvRPvaTTB5FPolj8VKSPWbNmmbmwd+/eKWVY/r+9cwG3ek73+O+cwxA5Tp0u1KAmoRRSCN3TjXIpEbnWDMZxecw5w3GOMWdchvG4HM/BIEYuJblEpVRSukhUqDYadNGNlBQRY6bzfF7z2/57tdbea629Lv/L9/M869m1Wu299n/9/7//9/e+3/d9U2GtOOqooyw1z+Y7ya0HOZ7UQRCIEJmh3Sw2DjbDcUUiWsQSCsKIuMjSkRmEHtO1aGGV1MgSram4ETKoh04EhcBHpuhqQNROUen8O0isXLlypx7GIjtoKQac22zsCiFksHUQzd5jjz2sBWRSN4kEHthUqJgwM9ja1q5dG9uCQo9EtIgtRAUZNUoaU6QH4UhkKYnj0r1IYxohUflCw+QyUr4UHG7btq3g31+ITHBev/LKKxbFR/hiwyjk5rtjx46x9rlWB8XDBB403rt6iEJTvE5ruziTvCtAJAYWOSImikZXXzTUtm1b17JlS5ck8DLi8ezWrVvRqsZpgUcEkJ+FkGbKoRDFBAsRA1KwwTRt2rSg4jkI1w7nN+c2dpGkWG74fQk4EHgoVOYqrgGKxYsXJ2KjFe/fTiQaIjCaYJid9cV7JbkJxx2yE0xq43dFDBQTrB0IafqXE5UWolhwfjGqmygpHWZK0XaNdZWUPddTEgqUOZ5kreifrZZ2mWGjgZCO44TCVCSiRayhEIbFHX+qqJ633nrLNhxxhhs+vyNt00rV9YGULz5SH+0n1a5+0jVDkSd1DbUp9kwSRPyIPHft2rVkUVLflYYNKcWGcfave/83U1/ZFIv0EK1nU4WNIwnHSSJaxBou4tatW9tFndQimGxp1KiRicy42g4++eQT2yjst99+ZmEpNX5YBceYyn7S4DonM4MgJJpaLEtCHKC3Oec05xH+UyYQlrrlGpY5fi4CmnU2rlk/CinV7almPvzwQ6tD4pxIAhLRIvZwMTMgYNmyZeV+K6EGDyVCGi+br+yPCxT24Y2njzOp7nKlYvm5nI8MBOJmg1caISR2hnOQiH3czsVCQUZj1qxZdozKbaVAuBORxidd0xTEKIJFBmHI7yeq57XXXrN7SVI84xLRIvZwQdOKiItbVA9ePyJJREnjBDd5urXg0Su3l5Gfj7WjU6dOlganzZ5Iv/FRZ5OdQTBjnaB4kKwK9g2iweWGSDjt9Di/8WfHpb6CCDvDmLiP1KbPdhJYt26d9dynJ3m519lSIREtEgHRv9WrV9tDZKZOnTpmf4lLCp0MBIWEQBQ6TJXijAxmrLW3lvBeyx1RFOGHnu5ffvmlO+aYY+zcCdtER8Qz/dHffPPNWNiVKJLDhoW1SFTPvHnzzEJJZ6ykEJ47ihBFhCKHBg0aKBqdZX/jYrV9KyVEw7iZk4rlJhhGEEC+1yyRxZkzZ9r7FSI1GkqED/bZZx/Xo0cPs16F9Zwm67Np0yazUEVZSLNuEFAgwq4C15o3dxUVFWbrCVOwotgk5zcViYbUEhc3NgUifqJmOFZRtRoQqSMqQoqZzhhRSC2SLWnYsKEVimFj0HkqEKB456dPn241HV9//bU9H7bocyoELOiMtGHDBjufw7qJrQnWDTJzdOQQ1TN//nzbaNBWNklIRIvEQEEZ3kHElagZogmI6KiJOTy0fMZYU0h5R6XQiYg0I3LZ7CGeiEwnGQQMLdSisAEq1thkpg6ymcX7TPQ5DN7nbCFSzvkcVZsSrTAp3hQ1s337dss6sHEqdu/9sCERLRIDYoqoJD2jfURHZIbiN3y7RJKi1CEBMUokDDEaxbG8vHcGtLAB8LYU0qRxbR2WCabC9enTx74mCR+1pWvL3nvv7bp37252giiKE289YUMbJVsHbSippYjKBrzcLFy40Lzw3F+ThkS0SBTslIGiF1E9RADxNuLHjEJUlGgI44cRG7zvKIqO4LH3xZ2IKW7opPSXL18eKTEicsugsC75zjjUJbBelbrvc6HBesLGgI4ibAbDDgEW2nzSjUM2jpr5698H7ZDpZYhV0pCIFomCdChtzmicn7TIXr7Hiw4A3ATDLN6+/fZbKxolah43uJkTzWvSpIkNe5gxY4YV8cQdfO3YGfgaZ9ik0gGCz5WsA9FniJONhd+F7jhsAsPcr591jjWEDFY5BjJFkSVLltg1SuYviShXIRJHx44dLeKDrcNHpkVmiMaEOSKDCCESQkSEaEgcoWCHHt7Nmzc3n7r3xvK7RzniXh1s2ojOhnnzVojNH+IZ8UZbMMacx7WzAecu1+h7771n0ekwdgDCtoaFg0xWFK1gpWbHjh0WvKD7FUXRSUQiWiSO+vXrm8dw9uzZFpWW7y37sdn02e7QoUNoomRkExDQWDlo8B/11HdN0G2EYi3/uxOp5TnEF/7TsHwuIjOcq3hu+czYHLVq1cqitHHdDAVBOHshzfQ/egqHCYSzr0UQNVNRUWEdWAYMGOCSSjy3vELUQLdu3SwFRUGEyP4Gg5D+6KOPXFgg/Y0oIZWYND8emz8/wnzBggXmmaYdWlTbicUdxnMvWrTIvfzyy5ZN8JMYmaaaBAHtYeQ97RzDJKCJQBNRjVononJChmjmzJlWgE73mKSiEJxIJERBECBEo5W6y/6YsWBS+FTuKBILOGlvOln07Nkz9H1zi+kz5bF161YbxrFx48bKNDkFiUnbWIQVNjm0rCNTQt/h/fffP9EZMNYPoGCW67jcdjE86dQZaKBKbl7ojRs3uoEDB7oko0i0SCxdu3a1Smx16sgevG+0vUMU4Ocsl4DmM6PIDpIooFOhDRybQp+KZlocXlv6ZZM9iGJ0GsFJ/UIULTpcG8FoM8WhtP+iXR02jiQL6NToPLUpbDDKBUIemxo1B1E818oBlhyi0IcccogVPCcZiWiRWIik4olmOly5BGHUIGqEJxofLgtpqUEMYsEhApLUQpbq8J5ozm0yLHxGbDjwTiMUogRCk884SoITexHdHbBsYK3h70C2oHHjxvKsp4BwRYRhc8FbW2qIPhNRbdasWdmj4VEbRMMGqHv37i7pSESLRNOlSxcT0LS8E9lB/2IihHSIKGXnBN9+6tNPPzUhLxFd/WaH6GenTp1scAvFtHTyAKKjRN/838MKXnfaoYV92p2/Bj744AM3a9YsywIQoevVq1fio3Q1waaCMdFMN2SzV2pPMj+fgtxDDz20pD83yuAff/XVV+2YNW7c2CWd6GzxhSgC9GSl2wFFJbS78wMuRM0gwubOnWuFQqUQC6tWrXLr1q2zCKsW7+zBfkPGxYPII5LEQAnENSKCSClT5cJoieD9hem6ZDPHMcQmgw0BDzrt23if2GoQhIo457bhYw2mY0epPPx8hjz8+i+yh0AGNRgU5wuJaCEsUkc6kVZpWhiyh44CiAY8jdg7eBQTirH4Gb4oSeR/HNmEENFHBCJeiE4zXIK2eUR+i/1ZRhU2chTWsoFE2LP5YCMCpbgG4iykfTSYqaMcXz90phhwzmPloKuPNjzZw/pAtgUbjjKBPyARLRIPNz6i0BRhUfzjB1mImiEVS4cTUrFsRorR5YRoJF04ECsS0IWBLgSIaR6kZ72/nUg/EWoKrIis8iCSHdcBIDVFwvHes9HAL8uxYG2gJZ0/LqLwUDD82WefWRs8NumFhnOcNp2Idgno3KCgnA03RfniBySiYwo9kO+//37bNXIzoKH/pZdeaqn3mvj973/vXnrppZ2e54b7xBNP7OQHHDNmjHv++efNz8bN5pxzznEnnHCCixJ4RylYw9YRtfdeTuiMwQaE86wYEyAR0PhiEec+4icKC4V7vniPfq/YOhCOFCIiNrimsYMQhcLCgHgk7R4nAcJGgo0CD0ZT8yAiCkGxTPRNEbjiQpSTgAaZQYR0IS0e3BdZp7Cf0SVFZA/ZAYrwCZxoLf4RiegYgrC95ppr7AY4ZMgQS4shcq+88ko3YsSIrBqjk6q/+uqrqzyXrv0P32/UqFE2sYhiGi6yG264wW6w9O+NCvxuRKHnz59vKT61OsoejhU+5ULD+YuA5rzCcyqKDyISTy8PxAzdJXwUmj8jQADRzbpChoC2h8WAjRPFkcXIbvC7sOknpc+DntoUyyKQsWkgshDPiIUw+bGTAJ83nwUBDcQ0k0gLkR30nWr4XghBkRsU32P1ohhf/IhEdAyhfyPN4xGz3uPbo0cPd/bZZ7tHHnnEXX/99VlFGHv37l3ta0i5PfXUU+60005zV111lT3Xv39/d/nll7v77rvPfnaUevgS9WCRpfL4xBNPLPfbiRTBQj8ESm39jHSPIK3LcBceovSwEQ5GYRHM/fr1qxSeXnz6jbsfQc4D4ckD2wMinCKuXCPXiJ18N2f8PKKOZOGIKPuv+L55H364BnYBfi+KA711AAGtrhrlhSAOwQxENJ9jIUQ09yI+ZyxhUbovhQHmKVBEzvUoG1NVJKJjCCKQCEpwx8iJT0/HadOmWVommzGz7NzZeWaKyhJ1Jg2KiPZwgzr11FNNwFdUVFg0KyqwUHPMGJ9MCzWicSJ38YunlkgS4iRfOF+JcGZjPxKlgwg0n2vqZ4uIJsOFMMXywbrB+oHoRkST4eHfsIrgx+Yrr2ed4rWIcV7H+sGDaCSvIVrMz+Q5hDE/h+sUgc7/oTiS/+8frFVEGfnZrIMe1jv+D2Kar3Rk4Lkker2jAucJ3lu/+cJOlE9WgvPG95XHkijyC8xx7anwfmckomMIPlKid6k3CHzREyZMMK9jixYtqv0e3JC4AfpKfawZl1xySZWIAH1RudFRaJP6c/y/ZxLRLGq0iQpWvYcBJr7hjZ4yZYp5u+Pk+ywF+Gcp3KEAhTRsrt0KOC8YFEJUsBhFRaI4IHRTNzyIHu+1ZpgFEUUvdmmRxb8D/msiw0EQPKwjI0eOtHMquJFv06aN2Xv4Hqx1PurN2uTPGX4udQ48jxhLXQtl0YgGfv3F1sV5QrYwmwBQELqpMPgGAajuKbnDEBzWczSAbI47IxEdQ4jeMAI4Fd/ZAPFanYjmdWeddZZFAtnFE0XCU41H9e677668MfJ9EDypQtP/HARRJsaPH283yLDB74aNhWJJNgHF8nvGfaIhqT/OGzp2IGKygQgmizXiqaZNngg/waih7/SRDkQyWR/fu5cH6XayXEQO2diSmfBRai+AaS9Xne2CtUnEA7zxBFooNsTmkW1Emv+DgKYThwR07nAtElDi+uM6FDsjER1ySKH4iE1NsEPnJkPKMt1u3T9X04jriy++uMrf2YGSeqWIkBSpLxjk+6RbzLL5OSeffLJFKoOL3U033eTCABE1KrdZPBBz8s/lvhGhSBO7D10OfGaiJn89GQCEkarmkwVrSLp1BG89mS5u4Ok89soSJQc6dPhiQzbn/LmmcfBEUBnpTdZCa0p+EEjyDQpqOt5JRUcl5DBZjK4a2fD444+btYLIX7qRvv65bCODQc444wz38MMPV6Z1/PdJJ/Cz+TnpfJVhgZtznz59rEUgFclEPkRuIH58Or0myGhwnEnh00pN4kgIkQpWHcQzxYYIu5rqJdjAk+HQSO/8oK6AQBIbENWmZEYiOuSQzrz22muzeq23UVCsE/Qbe/xz+QysQBCziOFDDP48RoCmVt77nxNWkZxttwlsCUTe8XXLC5Y7fow0th4izZki0tiPOJc43ir0EkJkgqwEm/Ns1mPfs16b8vwgsMHaTABNxzAzEtEhB3FBgV8uUFRIhwSsIEFRwqhTIoPZ9IlO1+KG9GqwvQ3tgiZOnGhWDAqHPLQm8/8eZehmQjpwxowZ1rpP5AfnDr5EzsVgRAPPKylCzldsMxLQIggWDvrPCxHEe5s3b97sVq5cafU/fu3AQrho0SIrPpUHOn+YSkgAicBGsH2p2BndtWIIbYHYQTJFzkN7KcRganXz2rVr7eFhEUL0pPLoo49axDlYXEBEABE0bty4yud4zQsvvGCpeRayKEO1PxXdeHVppSXyz6YQhaaTAmlYoFMDfYUpJgQJaCFELmAlpBMQA4C47/B3Cg9ZW7Se1A60gg8kiepRJDqGIPyeeeYZd8stt9hO3U8sJDI9bNiwKq/1Q1LGjh1rXxHfw4cPt9HXvqcmaR0WJwQ0wtmD32zw4MHuySeftKgiQmn27NkWBf/Nb34Ti4I8UoL4wBmDft555ymtlSdkJThHyFLwlewFFqF8rEUiGdAHGoFE3+dCjn4W8YD7D8M/CHJwb2OYDg8K1mW/yx8CRhxT6oIKMeQm7khExxDE62233WZTA5999lmLLjM6GW91Tc3muVn5yX0IRxYn2gtddNFFVqGbusOnkwdpM1rW8XraVV133XWuV69eLi7HksWE0eb0G82m04RID+cgPYLp+co5k0urKpHMwiZS9nwVIh1086EYmZak3LvOPPNM2ThqARF97uMEN7ynXFSPRHRMYSG55ppr7FEdPgId/H+I4GxBVDOUhEdcwbNLJHXq1Kn2VcIvf+jcws2OFngUqUa5+FQIUX4I8tDbn3uXRlLXDuqmVqxY4YYOHRqLTHIpkHFIiCzo27evee2Co4RF7pCaJwKNlxGLkPdECyFELpAlpY0d0dO2bdtacTtZi2CNj8gesoSTJ0+24m8CRyI7JKKFyAIipl26dLFm/xJ+uUHBDx47FmmKWml9R0SfVKyKNoUQ+Qho1g4ip8G2q6zNdOegG5DIjZdfftkyhSeddFK530qkkIgWIksoWKHrCP5vFnFRM75inl7RwcE8FGjiZaQ4iMLN9evXl/V9ivBBURPniIqbRBDWXtYMJhLSgi04zRJrx0EHHVRpSxDZQaE3x5SGAsyDENkjES1EluARY1w5go/Rs6J6SK3S2YWeo0waSy34wU/fvn17i0jzGiGCUHtAobJqEERwTWHtZVNO4Vu6HsbYEZiyt3TpUvfxxx+X5X1GCbolTZgwweZHsCkRuSERLUQOEOmg1R89jukcIDJDhxdSrRyvYLQoVUgTbfSDeYKpWZFsSC3TopOvQvj1gs04m3KyWJlg1PcBBxxgLe9E9TBPgnsZASK1cM0diWghcqRHjx6WYmZaI0UtIj20U6QLR7169ap9nV+4GQhE4eYHH3xQoncowgwCiImhEkKCNq1En1krGOJVv379Gv/PYYcdVjkhlXoMsTPUo8yZM8d17tzZrIoidySihcgRiuMYA870PQbLiB9hU+Gr45s0aZLTMBXaU9FLmn7cfnS8ECLZsImaO3eurbX51KIgvqdPn24eavEjHEvqe1ijg0PURG5IRAuRB7QAItJBY3r5eX8U0G+99ZY98rVlcFxJxfoNiiL9QiQX1lYENOsAFo58xnkTtcb6gb0MQS1+gHoVWo1i49hlF40MyReJaCHyhEmGpBcR0sKZ6GVRZhRvbSq8KQo6/PDDzd6haXVCJBM24ghoCrrpjJRvlxZfwEzEFeH4+eefu6TD2kpdD8WZFBSK/JGIFiJP9txzTxvCgm8z6T5eXwmP+MXGUQg/NT49IiRff/11lfZ4Ihnw2ePTVJQsmfC5U5CMgN59991r9b0Q0ghGLGNJt4oR1X/xxRftmPbs2bPcbyfySEQLUQuYlEVnCYoMKX5JqrcOocuxKGRUwxccMjxh9uzZss0kcJNKCp+vIjmsXr3aNs1EnunsQw1KISCiTaEzjyTjgz7U9ey2227lfjuRRyJaiFoKPRYjPzI1abBx8FEexu4WA1rgAUJaqdhkRczoYStffDLgcyaj9fbbbxdt+BLRbUQ56zXTZ7/66iuXNBvHpEmTLODBUBpReySihaglpAhPPPFEW/y5CSSF5cuXuxkzZtgNqZj9RYlEYu3AZz1v3rzK7h8i/p5YNqbqHR5/2CzhV6YvOAXb2LmKCRt/+o+znpBFS0rGcNy4cRZ91mjvwiERLUQBYOGnfym2ji1btri4w82uoqLCos+19StmA1PrSO1rgp0Q8RN3RIXJMmHfYEhKsSEazXqCxQMhnYQ+0hRpUrcycODAkqzZSUEiWogC2jrY5bPbz6efaZQ8i/jq6KJBX+dSQfSIwkXaVZH6RcjH+TgLkQS4rtmM06u4lAM/EJLHHnusrSWvv/56rNcSsndkDcnolWKTkiQkooUo4KLMLn/VqlUWWYkjFPwQgSbdSj/ncvHll1/a+yC6ool2QkRzM+67GrGeMM671NSpU8eENMGAfHpQRwFsK88++6zbd999XdeuXcv9dmJHPM8aIcoEu3wiKvTgpGdy3MBKQTQD+0o5wR/NceYGwahwTSMTIhoQ8X3nnXeshiQMfmRqLvbZZx/7M9mtuLXTZI4BBZQEeLCviMIiES1EgenWrZstyuz+EXlx4LPPPnMLFy60GyA3nWIWEmYLPWS7dOni6tWr5+bPn+82bdpU7rckCgiRSQYalSNCKYoDonnOnDluzZo1Zs3iERbwRb///vtW4EihYxx47733rEUo8wwYNiMKj0S0EAWG3f6gQYOsq8CUKVNc1EGcMjI3jDcWIuP0fWVKIuN9Ic7exiRBep0CsLim2ZPIn//8Z4v0kkUqdgeOfOx4FBuybrPeRX1aKr/H+PHjXatWrSrbhIrCo9VJiCLArr9fv34WvSW6EVU2b95skRmivfSCDqOgISretGlT+0rEnAIa3reINgzX4dzTkJ1oQ+EeNQxAByOyR2SRwtqulA4hrB8LFiyI7IacY/78889bX+wBAwaEInMYV8J3RxQiJrD7JwpANMDfRKIEBXvYJPAfE+0No4BOpW7dutYhhcLOFStWlPvtiFpA5uPTTz8NZQZEZD+Mic4XXI98joi6sLeoJKNFwCDK/mHa9tHH/7TTTrPJj6J4hP+uKEREYfdPFIDF+LnnnotcVIPK9YMPPtgiM1G5ofCejzvuOCvwZPANadm4+NKFiBJsgCj6JYDQvn17E9BRgVZ7HTp0sMABPu4oTc2knd306dNtHaQNqSguEtFCFBGiAPijaXtHx44oQPr8k08+sT83b948Ujc/4MZH2phoEsVCUYigCxEnPvzwQ7PiYNugrVqDBg1cFCF6Pnv2bLd48eJICGnW7rFjx1phe48ePcr9dhJBtO6OQkQQBgmccMIJburUqa5JkyaudevWLswWDlKBCOfGjRtH2kvHjcS3riKaRHqTfrBR2xQIERXItrFpZe3AthH1wR6sFfTDf+uttywbx+Y8zMeejlAI/zPPPFPrXInQURaiBNDQnzQbxR6kCks5mStbiNoioBHOVKlHWUCnQkqZkbekmPGq+04eIrzQLQEBoxHF4QcBx+AUMlj0kactYVxaE/70pz+1Th1EoxHS1LmEETKd1IGcd955VsciSoPynEKUAATpKaecYunNp556ygpuwgTvBwHNzRDBHzfhQmSMtLIvOqRjStQ86kmDzwpPJ19FeGGQB72fEdFMxYvT5ttDRJ0NHba8ME5Ifffdd+0z6NWrl1nwROmQiBaiRNDzdsiQIRYVJSIdJo8d7wWxgoCOazU3Q2KOP/54K5ZkMlkYb4biR+gnzNTPuE2QixNkdygeJFJL7+eDDjooliIa2NB1797dipfDBG09uZ8g8lm/RWmRiBaixP2jaTvEJKm5c+eW++2Yf47uFUSeqeZGaMYZbvAtW7Z0PXv2tN+Vmz8DINRGLXzgY6fPehhGQ4uq+ACA9z3T+5key3GHQAMZLLr+sBEPQwaRzCYZTjKdcd3AhBmJaCFKDMVt3HRoQ0SxW7lAQNIHmhtC0vC9ahmqQCeBmTNnml9aCJEZNpu0jmSUNGDfoNguKi0wCwGFk2TrlixZ4lavXl32gSpkNslwkukUpUciWogy0K1bN9eiRQv3zDPPuC+++KLkP99HUxgNG+ZuIcWG1lt8FhRB0ZKLY0KBpRCiKuvXr7dpoFg4khB1rg6sE0Tg33nnHSsYLwdkMsloktkkwynKg0S0EGWKZgwcONCiB/T1LKWdAAHNSNtNmzbZJEJGeicZokoMlGEgBJHpKE6XFKKYsF7wwDaAL5gAQNJp27ata9q0qbW/IxhRSshgkskko0lmU5QPiWghyije6Oe5YcMG9+KLL5as0BDxTDEKAloRjB+hhzdead9+sKKiwkS1KA9YBBBtSbIKhAk2276DjR+FzZoRtsK6coH/+IgjjrCWmaVsKUfmkgwmGxmyaKK8SEQLUUbwFDIanGhGqQoNEYlBsSh+xAs2ii03btxobaPwf6q4rfTUrVvXIm18FaWFrihYN6gX8J0p/OAiUVVIE432dhcCFMUEq9moUaOswJFMpqaxlh99AkKUmcMPP9x6GL/88stWtFMsGBZAJwqIWx/oQoPNBgHHZ8ONEUHhj50QceXzzz+3jSNdUagTYJMvsgOvOIXaxcpeUQhOJw76cg8dOjS2rUijhkS0ECGAtByCjWprFuNCgzWBQQFKxeYWZdp///3NA0pbPN/Rg5uZBrUUny1btpjNia+i+HCcyYZxftNvGOtGXKYOloIOHTqY/ej1118v+DmL1W/ChAl2b6ATBwXRIhxIDv7WJQAAN2FJREFURAsREsF28skn24jZJ598sqBpQabzUYhCIcx+++1XsO+bFHbZZRcbIuEngXE8aYnHiGNRXLRZKS4MsvH9jhGAFNiSgZFIy88KxvHDfoSQLmSBMgNt3n77bXfqqadaVxARHiSihQjRIkyhIYswvrdt27bV+nuuWbPGxvHSxq5Zs2YFeZ9Jh40IqVTa4RG5o0hTiChBNyDWBTo8MDLae/4bNWqkgR213HB37NjRNiE+c1VbEM9s2qljIRAiwoVEtBAhArsFfjcmUY0ZM6bWI4/xNB555JFqSVVAqMTnRsmDSGmho05CFBOyUtRf4PGnKA5xJn9t4UA80y6TuhMKlL/55pu8v9eKFSvc+PHjbQ1nrLoIHxLRQoQMBhmcffbZZhcYN25cXq3vmKSFsCO67avHRWGhu0nnzp3tgXeUz4kuK5p8KMIGm3G/Iec8xTbmI5t0ehDFgWEsr732Wl4DnGh9SiEhNrKTTjpJGYKQIhEtRAhB+A4aNMgmUk2bNi1nCwcpwHJN0koafnobIoW0OJMPZ82aJc90LcHWRMGtWtzlD5FQPPxEnj/66CN7jqwUo7rVoaf4cJzZtMybN8+yi9lCBw4sffjUzzjjDPVKDzES0UKEFCZR9e3b1yIZ+G+z7e+KgKarxMEHH1z09yiqtsU7/vjjrbMB3kg+M1peifxAOBDhl4DIHSKfeJ0Rz9g3KEbzhbGitPY81gM86Ni+srHnsfEZPXq0WcWw9ilTEG52KfcbEEJkhmpv+o5OmjTJvLjVCWNsBAwGYfLeYYcdpvRfmaCoiAcdVvxNkwg1mQHEDGJb1AxeUny7dEZRa8bsQIBxfiGiaWmJcCbyrHOufOy5555WP0E0mgFO1fXeRjgzjZDXDRs2rKSTEEV+SEQLEXJ69+5tfUeffvppd84552TsskFBC15H+k1LQJef4Eh1RvUiCH0xFxPgdIOsWRDSF5fzXSLaVSu82KBRhAa0qMNixLqhKH44IKPSo0cPy1D5zyx12iC2D+YEMCWSmhhNiIwGsnMIEXJYbPFHE8UkzZfqdaaAkAW4fv367ogjjpCADiFkB3r16mWZBKJM9H31I5WFyAcsAvidqZnAwkXav1WrVpX/LgEdLryAprUgNi+G2nhYv8k2LlmyxMZ5H3jggWV8pyIXJKKFiMgCTA/pxo0buyeeeKKyAwQRTsb0SpCFH1Lq3BzpisB0Mx9pwsdOhNr36hUiE4gtPw2PzTXnDpkNopxYv+gYI8INwQ4segsWLKgcJkS/bmooBgwYYMWIIjrIziFEhEQYhSaPPvqoe/zxx93pp59ukShsASoaig5kCoK+SIbqsAlatmyZWUAY5sK/+8iVEHRroG0lnXfo8oBVg/WAkfTKPEULrvGjjjrKuvhQw8LmmUAIReT0gxbRQpFoISIEbanwRXPjvOWWWywlePTRR0twRZiWLVu6Pn36uHbt2tnnSmreT0GkMDGfPuFxAHsCkfskdyfgs2cq5owZM6xQkOwFQzd8oaAEdDQhY0A2ClsXhYRshig+FNFDd14hIljt3bVrVyskIhLNsI9CjZgV5QH/KkWhPOhK4YUjgpr0PdFpfNUUKCVpwxj0+CYBNsVsoNavX28Fwlg2sHBRiMrX1GI0EV3ILGDL69evnxWDimgiES1ExCJTRJ+IYlBoiD8ae8cFF1yQKIEVZ4KdKIjE0qGCXr/4ptlAkfL1A17iXjjHBoKBE3HPtFAsjHBmSh1CGosWmyk+bxWZxQ8mm06cONEi0Ng4sOvgb1dv/+ihba0QEYHer6T/uNH6lCDimZT/Y489Zt5aES/q1atnEUnsHth28FN6kY2Hmmp+Ipe+QClOcD4zaCiO5zW+ZiKRHrJKiGasPQgrMk0IaBE/Fi9e7MaPH2+BEAQ0QREKDdkkM6FWRIt4b++FiFHPXD/xKjgGGZF1/vnnu5EjR5qQ5s977LFHWd+rKDw+rc/Dw82XdPDKlSvNzsO/IcI0JjucEFWnvSHj4D///HP7/Lh++byOO+44WTUSQEVFhRs3bpy1Ij3ppJMqPe1MmCXzwr+TdeE6FtFAIlqIkINwZtoVQpqx0qkimejkeeedVymkzz33XEWxEgCT/HggzrACIM58RBphTQSXyYmcH3G3Q4QRjj8tKGlBB7Q0IwJNBgkRxabHFwhKQMefpUuXuueee86mydLKLrUoFN87Vh7qXKiR4O8i/GhlFSLkvPPOO5bqRUBnEsfcmIlC0/ruT3/6k4lqvKQi/vA58zjkkEOqbLwQ1nipfcQTwa0+wsWDDQy+VqLNPLhmOfYcc8Qy3Rew4kgwJ4+FCxeaBxoBfcopp2Q8B4hAU/eShJqHuCARLUTIOfTQQy0KXVPhYKNGjdyFF15o0WgvpIOjp0Vy4GbMg2gogg7ftJ9gh/+WfsPcqHkgsNmcha1dGu+HDh1he1/BokcizVybdBHhfRJtRCjT5zs1C6DsUDLB1z916lSraaATR03nM5tdQExj+9EaHm4komMKo6Dvv/9+N2vWLEshsshfeumlWVX/Vtduh2KIO++80/5MpIspeun47W9/a5PZRH4Q1aLIhAWVm3KwY0NN07CGDRtmQvqRRx4xa0fQRyuSBcKNB51cgs/hw0VcY/sAhvUwKY21ghs34jrbc65Y0KGCUelhuBaJ7NN2kC4K2DJYX4GNCdccII5OOOEEWWdEpQieOXOmFYPThpSpkrlsCOnKQ+Ew3XhobynCia72GMKif80117iPPvrIDRkyxFK9zz//vLvyyivdiBEjrOdsdVx33XU7PYdPi6bwTFpKhRtHaqN4oqci/8+P9B9dOIho+Zt0LuKDiDTt7/BJM5zF+zKFIGPBAxCHRFS9N3fTpk127gFiELFNJKx169b2HCIST34cLQm+fSTRZWwZ/K48mCjHRpS1j8g41yN+VV8UGBRGEtDCn0tTpkyxYnA2gljxcoViQza0TDXkemPQjggfuuJjCLtf0oo33HCD69atmz3HLvjss8+26OT1119f7f9npGy6vpbcLNJFl0kbp/s/Ir/Fl2ONgOamnauADkYb8UiPHj3a+kjz2Tdr1qzg71dEG7p6YDvwEPHinENYexEZtDAwOY91ACGNgOQrXmzEI9FZb8EohJjcunWrmz9/vjvmmGNsY1jb6wrbBZsF3iNFmPyO+JaxvPDe2SggXPg7/87vh3Dhq68v4PfC1ypEdUGQCRMm2KAkOnCkCzxlA+cpBagUG7KxxQ6imobwIREdQ0gfcSMM2jJIz9J/dNq0aZU3k2zh9XxPLmgfwUqFmxE3GE3Oq30RITYZbDOZjnWuI8Kfeuopi0qfccYZlX47Iao7b3ik2oCIhhFR8+KaB5YQH5Wm/y2RM2At8BMHEaL0waUdH8/7BwKcdQqBi3DFGoFw8A/ECM9jMeEBvJY1htfyHEIYce8frGtMffTZHF7D2sRX/i9RQd4XkWai7lhW2HByrfliLrI2ytyIfEDw0oEDK95pp51W6w0X1wF2DixEBFYkosOHRHQMoWk70eHUlCs3NHbINPlv0aJF1t+PlBQ3zEz+RCwDf/zjH+2Cx3P985//3HbN1cHNl5uYZ9WqVVm/nzjDjZyFslCpO0TFWWedZVacMWPGuIEDB5r3VYhcYT1B9GbKjrRr184EK0OB/APBCohhihm92EXQIlyJMvsIdyrHHnus+/DDD+37BIvyOH/xcLOGkOr2eH8yIpr3ys8gikyk3W8M/CYfYSJEIcEaNXbsWOuIQ8Ai2C2nNnAuE1Tx93OEui8SFuVHIjqGEA1iylkqvsoX8ZqLiCZ6jRhjilYQLmpSVUS8uVER3WERufrqq90tt9xiN8FMMLEJ8S1c5WfC51MMywVRPxZ1fPHPPvusZRYkIkShIbKcadAPwpaHh0ix72mNICDC7cU18JXnsZdwrmLn8BFqP0yGSLkv5OORWrRV00ZeiEJBpgPrHPfAoUOHFrzHsxfQfuPI5lMtTMOBRHTI8ZXh2eD9flzQ6ewa/jmfGs0GIkgM+uCiTW2xxk3sjjvuqPIc44lprXbvvfdWK6JPPvnkKsUWRKJvuukml0QY30z2gM1IsRZGFmHSi3QYYAPD59qpU6dQtg8T8Yfz0QsDH+FOBasGaw7rTLrrwotnIcoJfnoENJYl7n01Fe7XBt81h+wwUy5ransqio9WoAh4ZOmqkQ0M2qCVFUKJaGMq/jn+PVvwQvP/sm01RcSIXpijRo0yD1cmXy+R62BBU1IhXY2AxmpT7MgCgvnEE0+01Pj06dMt+s3kLKUGRRjhPEUoqL+yCCsUoCKg4YILLih6Bw02jXTCovc0wa3qBnCJ0iARHXKoFr/22muzeq23axDVCfqNPf65XJq3Y+UgfcrNLFu8cGaHXtviuDjD0AvfC/rAAw8syc9ESNOxhXPkhRdesHZe9Poud09gIdIJBg2aEGHlgw8+cE8//bSdo3Q/KlVUGF+/F9J0AMmnfZ4oHBLRIYcLlMhuLlBUSKU8VpBgcSGCjeKabNNN+K9ot9a3b9+cunngCwN5tjKD55PjhDc9mwE4hYaqcT4fOnc89NBD5uPLt52eEMWAgkI2mhQR+gJFIcLAG2+84SZPnmwBkEGDBuV0fywEZJOxS/oaAlE+4tcxX1gBIMWFTCv0EHGkAp6IcvCCX7t2rT3S8corr5gQz2Tl4HumwnjhSZMmmTiUXSM9VFcTEWYR9EMsygHWHzqpAEKaCVlChAVqN7A75VLDIUQx4X6IeOYeRzSYLF6pBbSHjSUZRGqmKDbUdVIeFImOIaTraWlGhwzG+vqJhSwAjIQOctVVV9lXumqks3IghGldlQ7a2iHA27dvb6/DH0bRGhGkK664oki/XbShB3RFRYWl4MJgoSD6jJAmIs1QllNOOUXDJIQQIgVEKt2N2Nj179/f2s6FAWqWyBr7YkPNaigtEtExhEKx2267zd1333120XPx07MSbzUe62wgKknXCFqjZRrxS3s7LAnjxo0z/zPeaQQYFcrlsCiEHYZNEDFglHeY0tOI+XPPPdd6iDMogCwG2Qx17hBCiB86xTz55JPWgQP/c6lqWLKBwkKymnikEdL8WV1rSoeOdEyhyOGaa66xR3Wki0ADYjtoB0kHPVp5iJohUsDUKQotmfwYNoHKxosoNB58OncgpGlDqMVYCJFkCBQhoAkmDR8+PJTF8tzvsZfQsWP+/PkWkQ7bPSau6A4pRJFhiAQjiLG8YH3JFNkvNyy6nTt3NosH2QXfuUMtlEQ5wGvKZr5cnlMh3n//fcvmIpyZ/OoH/YQRbJvMcyArLAFdOiSihSgyRHP9sJqwCugghx56qC3IRF8eeOABN3jw4KIOEBAik80o3eRVIYoN9UMU1s+ZM8eKvxlUFQWvcb169ewB1Cgh/qNwz4kyOrpCFImtW7e6pUuXWhsiJk1FaagJI5ovvvhiE9OPPPKIpQjVTkmUuosNUTW+ClEqvvrqKxtchseYzlQEEaIgoIN8/fXXlv2kBkfrdnGRiBaiSAsx/jS8xVEVAUyfZAoXUXTaOpHWTDcJU4hiXUMzZ860r0KUAgrqyb7RqpUCebooRdEasccee5h1kGg0A1kkpIuHRLQQBWbbtm0moGmIT7FHlIvziJ736dPHojGMJ3/wwQftBiOEEHEBkcmaPXLkSKsJIQvXrFkzF2UYQX7kkUdaG9olS5aU++3Eluje3YUIIbQTZDFGfNJqKC5FUfikGzdubN1cRowYYZ072rRpU+63JYQQtV6zX3jhBffuu+9aV4uePXtGynpXHU2aNLFMKBF2vsbl9woTEtFCFBBEM35ipgESiY4TdBdhMAv9pBnms3r1ate7d28tzEKISLJhwwYbNIVliE5ErVq1cnGDonDuSdhSsOPFJbATFiSihSgALE4sxKQCGWwTV1iABw4caK3HXnrpJUsVMpAH/7QQhUadBUSxWLx4sQUEWLMvuugi65EfVxDQjAd/9dVXzabSsmXLcr+l2KAVSohawuKEhYNKaFojxR0WZKZVXnjhhdY94f7777dRuEIUEjrDnHTSSfZViEKu1xMnTrTprLSvI7sWZwHtocMIGVJ6Xy9fvrzcbyc2KBItRC0HqdD+7ZtvvjE/XZIiZ74NHjejJ554wrp4MMEyau2ghBDJYP369bZeMb67f//+1sEiit038uWggw4yb3RFRYXZ8BDVonZIRAuRJyxGb7zxhkVjKSJMoqWBVkpDhw614zBt2jT30Ucfmd2DghYhagP2KLI7dBgI86Q4EX7IEDI4hZaJFEhj3wjj+O5SgO/bC2k6eMStdqfUSEQLUYuq7u3bt1sElmEqSYVIDsfgZz/7mUV5HnroIdetWzfXqVOnREXmRWHhRr9ly5bI9lkX4YBe/ePGjXNr1qyxNYm1KenF0HRWwhstAV17JKKFyCOqwYMobPfu3ROVDqyOhg0bmr+Q4pUZM2ZYX2nG5SbBbyiECF/vZzIZU6ZMcXvuuafVcFAQLX6A7A7HiAJLItJE6EXuKEwkRA6w6DABCvsCSEBXhQhPjx493LBhw2z0LEWHCxYs0MQsIURJrUBPPvmkdd9o27atu+SSSySgqym0ZI3WEK38kIgWIksQgu+8845bt26da968ebnfTuh7k3LjOvzww60SfvTo0RrfLIQoOnSfuO+++6z95llnneUGDBgg20IGCAJRc8AMgDfffNOsLyI3JKKFyJKlS5fagJF27dq5fffdt9xvJxI9pamAP/vss60qnhvbe++9V+63JSICdim6J/BViGwnD44ZM8aizpdeeqk7+OCDy/22Qg91Kx06dHD16tWzTlMKduSGPNFCZMGmTZvcypUrLbLatGnTcr+dyLVV+uUvf2kRaaaDMUK8b9++bq+99ir3WxMhhlaJ6vIismHZsmVu0qRJ1mr0lFNOcUcccYSsdjna8I4++mi7x+EfF9kjES1EFlAc17Vr10S2sSsELMxMNiSaz6TDe+65x3pKEwHRzU5kiiySkmfTqnS8SMfWrVvd5MmTLcN14IEH2nAeIqoiPyHdokUL+/PGjRvtmlOgo2YkooWoBvoes7jQDkgCunYgliny4Wb38ssvuxdffNE85lg+qA4XIgjtI+llywZWIloEoTsSxd2vvPKK2cYGDx5s0we1IS8MbEq4/hggpsh09cgTLUQGVqxY4d59912LiInCUadOHSv2oYPHd9995x588EE3depU+7MQQlQHhd30oqd1Hfa6yy67zCxiEtCFA2sHwaN58+aZRUZkRiJaiDR8/PHHZj0gvaXilOJA8Q9jw+m1TVTp3nvvtd7SQgiRCsEMrGAjRoywATzDhw83+8buu+9e7rcWO8j8EIVmY4KQJiot0iM7hxApfPrpp2YzwMJBilAUD6IdnTt3tkgShUG0wuOYU3go+4wQwret84WDvXr1sgmpSZ86WGzYnBx77LE2sEZTQzMjES1ECvXr13eHHHKIeXdF6Y750KFDzQNLtImoNENbjjrqKI0OTyi77LKLTVHjq0gmjH1HPNN9gy4/J554ovuXf/mXcr+txEB7SUalw/fff2+zEuiaI35Eq5MQf4eJTRRRsHC0bNmy3G8ncZA6bNOmTWXhIVX3CxcutMgTz8nzmCy4FvFmimRaN+bMmWNWAmoo6OzTqlUrrQFlhIg0nwvRaW1sf0RHQoi/t/TBl8ukvcMOO6zcb8clPY1Ixw4maVE8NGrUKPOmI6bVxSNZHRiIfnHDVjYiOZ85Ym3GjBkm2PDlHn/88erOEgKoDXrttddsIEvHjh1lp/k7WplE4mHUKQKaVlpEQkU4YNDGBRdc4IYMGeK++OIL98ADD9hEsi+//LLcb02UAD5nNlH6vOMPNgGKiplqSutLMk9XXHGFWbokoMPB3nvvbV50LDaMCGfDIxSJFgkHccbOGp+d/Lfhg/Qt/nTsNVg7Zs6caV1TfISKHrFCiOiyfv16a3FJS9HmzZu7QYMGuX333bfcb0tkqF3BYsU9kwL8ffU5SUSLZENvYnbYvi+mCPdYWqw2eCXnzp1roppIFSN+tfkRIloQ0WRYyuLFi12DBg3c2WefbZtl+Z7DDZ8V6y5edSERLRIKfS9JEzZq1MgeIjp+aT8ufPr06W78+PHu9ddfd71791Y3FSEiAF5nNsH4a1mD6fVM/YM2wtHBC+iVK1daNpehN0nd/EhEi8Tx9ddf2yJ+wAEHWNskET2w35D2pcCFVPATTzxhfb27detmn2tSF3Qhwpz1w0uLeFbRYDzYdddd3erVq20DlNSCfIlokbgING2TsAcwMU9Em6ZNm1rxIUVJ+KVHjhxpIrpr167mr5SYji4M2+nXr59sVhEHwUzhNusuf27Xrp0NWMJGJ6K//v71r3+14WRcpwzNShoS0SIxsIATBaESnCiIxsXGA4Qy7ZfIKiCmX331VffYY49Zu0LENO3xJKajB5+Z+tFGFwIWFKBhtyIKjWWDwR0Sz/Fi//33NyFNwTe93ckIJgmtUCIxLF++3C52BLSKIuItpj/88EMT09g8iJYgplW0FC22bdvmlixZ4tq2bWs3ZxENGM2NcEZA0+e7ffv2ZtsgsyDiSfPmzc3awYTRpCERLRIDrdLYJUtAxxuEMoKZQkM2Tojp0aNHWzsmxDRCW2I6/CDAmCLKVxGNWhMsG1g36CFM8S8Bi7322qvcb02UgJ/+9KeV5wHDy5Jil5SIFrGGG/CCBQtMVDFMRQI6OSCUsXL87Gc/sypyxPSYMWNs6mGXLl1sU6WOAELUjq+++srEM0WDQL99xLOyB8lk7dq17v333zfbJPUpcUciWsQWrBss7LTgUXFSssU06UYeq1atMjE9duxY6/BB72kKnbS5EiI31q1bZ7aNiooK864zze7YY491e+yxR7nfmigjLVu2tPoj+n9z3/UR6rgiES1iCelEItCbN2+2NmgIJiGIjJx33nkmAPBs0mt6xowZ1ucUEdCwYcNyv0UhQh2YeO+99+zaobUZ62rPnj2taFCF2sJDlw7OlbffftuyfU2aNHFxRSJaxBIKkvBlEWlkVKkQQVjUTzvtNNerVy/bbPkH9g/EtIoQyw/ZAYoKlSUIR5HnokWLLLO3detWy+oMGTLEinhliRKpsHbSNxpLR9yzwBLRIpbgg6WQTJFFUR1169a1AS30rSUtTXqaIkQ2XohpRoprGER5+MlPfpK4dllh45NPPrGoM0EJQBhxXSSxC4PIXUgfccQR9mfENBsx1tu4IREtYgMX6ooVKyxlT0W4qsJFthAtQSAQ+VyzZo0JhylTprhXXnnFbgRkNChMFaXjL3/5i/v0009NsNE+S5QG0vD0W+caoCCX1nRsNLFsyO8s8mHlypVmA8JaGbfMsES0iA1EEhHR7HYbNWpU7rcjIho9YUgLD9LW3uaBoKBlE95p/H7yfxYfWmW99dZb1klFAzqKDxsWPKwUhBE15HwfPHiwa9WqlSwbolbsv//+lVkNik/jVKMkES1iAbtcBDTRRAloUQiIwPXo0cNEHC2bEBgTJ050kydPNmFBhBpvqASGiPpAG8Y2r1+/3trSkY3h3KYVpBCFyvQdddRRZpfjQQvEuAzfkYgWkYfUIxPqiBAmoS+lKC2072rTpo09iE4TqUNQIz64EbBxQ3Q0aNCg3G9ViKzsGh988IGdw6ydZF8oEMSywYCiuBeCifKwy9/bINJTHHsH62YckIgWkYebAIMzKCYUopggmjt16mRjjGmThxDB7jFnzhzrh4qYZjOnjhIibPUipNP95g+rDB1q+vTpY5FneZ1FKdh1113NzoGg9udl1LsgSUSLSKciST/SjkyIUsLC37RpU3sgRJYtW2Yp8UmTJrmXXnrJIntYPjg35Z/ODyKi9erVU2Q0TxAojE3HikS9CJ5n6kXY6OHtV4cNUQ52/XuR8Oeff25ZPaLTUQ46SESLSEKjf0QL3qq4VfuKaEFUhegzD0Ygc2NYunSpe/bZZ00A4psmU8Ijji2eigXHiqi/yE04M3aZGhHE86ZNm6xVIJs6hqJg15CHX4SBOnXqmLUIewf38agGGySiReTgJoGApuJXAlqETfhxQ+CxZcsWEzIImhdffNEedP1ATBOlJsoqRG1BiOAx5Vzj8eWXX5o9g/OMLAk2N58+FyJMIvrYY491c+fOrSw2ZMMXNXRliUiBr4+2V6TR8fIJEVZoy0aqkgceVCwfiBx6T0+dOtXS6YhpxA5/jro3sNCwCZk1a5Za3GXooU0xNRs0igO3b99ux4hsCOcUmzVFnEXY2WOPPUxIv/baazYRkz7SUUMiWkQqVUlVOZMI8fVJdIgo3SzatWtnj++++65SAJHKnDlzpvVNZeQ41g8eeP2FCK59eJqXL19urTyJPCOkaefJICCEMy3ptCaKKGbvOnbsGNlzVyJaRAJfxcvFhs80qhecEKQsW7dubQ9S8YgiookIpIULF9prEESIaVLxtG2MYppT1G6927x5c6Vo5kE2A1sGNjba0ZHB0BRNEQf++e89o/20TDz8USkologWoYebia/ijWrxgRDp4EZBsRcPoA+1F010VCBSTVqe9nleVPPnqNxgRPZQlOpFM1+xs/DZ04quQ4cO9vlj05C/WcT5GlixYoWd+2RYomBJ0tUoQg0XE0UH+P18axwh4hyRof0YD6KRtIHywuqNN95wr776ql0HRKeJSCKwqA+IcouoJMJnS+cMiqR5YM/YsGGD/RsWDewZiOZmzZq53XbbrdxvV4iSsPfee5t4Zjw4Wbn27duHXkhLRIvQQpU5AhrPFBeWom8iSWBZIl3Pg5G5fmCGF9UU41BQBnSp8YKaB3aQqFtA9tprLxu7HvUNAp8bGQbEMgN6/Ndvv/3W/p3Pl01R586dTTirDaJIMg0aNLD17s0337QmAkceeWSo7ZsS0SKU4I1CQGPfwAetFKZIOtxIKKrlwcREH6n2wowHHUAoOOO1RDQR1F5c8/cobUSJQEWxwBLvcvAz4c+kqX2mgc+C/tf+s5FFTYiqsFYhnrluwiygQcokhmzcuNE988wzlQ33v/nmG3f33XdbZ4BsYdLVPffcY7vBv/3tb/Z/L7/8clv0U5k4caIbM2aMRckaNmzoTj/9dDdo0KBa/Q7c7Elp07VANg4hqo9U+3aPXKvYAoJRT0Y98zzXFBFrIj2pjzBaBhCjrF8U0IVtLLWPLrPWpj7IoAERdNZLxIAXzETXhRA1Q7AgWBcV1r76EtExneY3evRoK0CiEIkCpVxvXldeeaWN1T7nnHMsCjx27FgT0X/605+q9Gx94YUX3B133OG6du3qzjzzTCsARLCTZh46dGjO7923/6LQit2oECK36C1WDh74CYHINBvc9evXVwo9hhUhAj2Iu3TimshpuSJBvG82AbT+Kxe8B7zLqUKZ5/g3YH1kI8PxQjATSEAwc9MPexRNiLDz1Vdf2UAWtAwdjcKGRHQMOfjggy06zA2QHrTXX399Tv//+eefd2vWrHEPPPCAFbgAnTEuuOAC99RTT7mLLrrInsPT99BDD1mz9BtvvNGeGzBggEW9HnvsMXfyySfnHHlBhDN4gqKpqHs6hQgDZHLo6sAjCNcvYjAoEj/++GPzIX7//ff2GqLXeHRZS7iWg4/gc2GMZFcHaxRBAqLGwQcbi+DfCSh4sJYglIkqkyXzGw2CCmEvfhIiqtStW9eGCC1dujSUdjSJ6BhS29QnwtuPJvZQ+EKUZcaMGZUimglDdM849dRTq/z/0047zU2bNs3ac/Xu3TtnLzSiXAJaiOKC8CVimmrRQmByXSOqv/jiiyrCkuf4uy9o9HC9elGNjYHvzXN8zfTn4HO+97uP3KaL4GKhCD6IBLMRIHvF10x/Dj5HVIvfg6/8nh5EMDdrvzlgvfN/9paZqBc4ChFVmjdvbtoAi2rYrF0S0aIK3Fio/j/xxBN3+jdENR5pojOcyEwPBAR3aiScmxJN0zOJaJ8S9WDhADzQRMGFEOUHEekHIQQhUs06wANBylciu/yZYkeEKyKXh/8zwjcX+D9YUNiQ51oXgcWCB0Kd/8uDPyOEsYmRGmYNI7rMg+K+TNYLfi8eQojysttuu1XaU313m3IjES2qQJSJm166SVj+OQQwdgtEMBGkVMM/NyxuvEGRnMr48ePdyJEjd3r+9ttvL8jvIYSIB4y7FkKIIATxDjvsMFduJKIjEBn2BSw1QaSltoUsfneXLvLjLRb+NXzN1HqO11a3U8QvTZsuD2maO++8011zzTWV09uSxqpVq9xNN93krrvuOksnJxUdBx0D0DH4AR0HHQPQMfgxa/2HP/whNMdAIjrkUEVPp4xsePzxx2t9YvkCoXTCnQh18DV89QVI6V5bXbGRL8pJBQGNHSTJ8Bkm/RiAjoOOAegY/ICOg44B6Bj8QFjaRUpEhxxsE9dee21Wr01nwcgVbBhEkdNZMfxzXvzy8zD7p/ZwRIBjCynE+xFCCCGECCMS0SEHIdqvX7+S/TwKAim6YchBKu+++65V8vvq2JYtW9pXXktHDQ9/x4bi/10IIYQQIm6ouWXCoWgHr1UQBqcghINC2veP7datW+VztLwjcs3AlSD8nWr3oLDOZrNAH+okR691DH5Ax0HHAHQMfkDHQccAdAzCeRz+YUeufYdEJHj00Uft68qVK9306dOtZZ0fo3n++edXvu6KK66wscCzZs2qfI52VcOHD7evQ4YMsQ4cTCwkuszEQtrQecaNG+fuuusuE9dHH320ebinTJnifvGLX7hzzz23pL+zEEIIIUSpkIiOKV26dMn4b0HBnE5Ew4YNG9w999xjfaERz+3atXOXXXaZjRJPZcKECTbJkJ6u9GBl2MrgwYM18lYIIYQQsUUiWgghhBBCiByRJ1oIIYQQQogckYgWQgghhBAiR9TiThQVRoQ/88wzNpGQbh/ffPONu/vuu81jnS2fffbZTv7syy+/3NrtpTJx4kQ3ZswY98knn7iGDRu6008/3Q0aNMiFgS+//NLdf//95j9nmmOrVq3cpZdemlXj/Oo87h06dLBpj4Av/cwzz0z7ut/+9reuZ8+eLqrH4Pe//7176aWX0vZSf+KJJ6o8x3nCefD888+7zz//3Lz855xzjjvhhBNcucn3GPA7UbT76quv2shbvg/Fwj169LAC4NThRpnOmYsuusiORSlg6NLDDz/spk6dau+3RYsW7uc//7k76qijEnPd53sM+JxfeeUVWzc5h6k3oeMRheGpgybOOOMM+93TTYb9j//4Dxfl40Ax+8iRI3d6nnkGL7/8ciLOhUyfLzRt2tQ9+eSTobruq4OGBXw+tMxFF3AcmIWRbSvfXNbPOXPmuEceecQ6kNEQgQYL5513XsZJy/kgES2KyurVq93o0aNNxNB/uqKiIucLjomN27ZtswWAk59OIdxMWVz33nvvKq317rjjDmvRh5BcvHixCfbt27e7oUOHunKCCGCk+UcffWSCh/eNwON3GzFihNtvv/2q/f+Mek2FmysblHQLMGKxY8eOVZ479NBDXZSPgb9xXn311VWe23PPPXd6Hd9v1KhRbsCAAe6QQw6xxfSGG26wYtdybiRqcww4j2+55Rb7HE855RQbcMT1xE1i0aJF7n//9393KuZlg9W3b98qz5Wyfzvvd+bMmVZozBowefJk+/y4Lg877LDYX/e1OQa33367tfHq3bu3a9y4sZ0zdEN6/fXXTYilbpr4XFM30OkKwaN2HDz//u//7urUqVNlpkEqcT0XOO8JQAVBVD/00ENp1/9yX/fVsWXLFtsUcU4zoZjWucVYP7lO/vu//9sdccQR9u/Lly93jz32mA2H41wqGBQWClEstm3btmPLli325xkzZuzo3LnzjkWLFmX9/0eNGmX/59133618buXKlTu6deu244EHHqh8bvv27Tv69++/4+qrr67y/2+44YYdvXv33rF169Yd5WT69On2e3AMPJs3b97Rr1+/Hb/73e/y+p633nrrji5duuz49NNPK59bt26d/ZzRo0fvCBu1PQY333yzfZY1sWHDhh3du3ffceedd1Y+97e//W3Hv/3bv+0YOHDgju+//35HFI/Bd999t2Px4sU7Pf/II4/Y93zzzTerPM9zwWNQaioqKnY6F7lOhwwZsuOSSy5JxHVfm2OQbp2cPHmyfb8JEyZUeX7w4ME7HYMwUZvj8PDDD9v/5TqpjjifC+kYOXKkfb/UNaHc131NfPvttzs2btxof37vvffs/U6aNGlHodfPc889d8eFF1644y9/+Uvlcw8++KDdM1lLCoU80aKoMN2QgSz5wq6dSCIpG88BBxxgg15mzJhR+RyROHa4p556apX/T7s9dvDz5s1z5YTUbP369auk2kgvde/e3aKkpPlygdfzPdllk+ZNB783I9jDQqGOAaPmiVBmgu/1/fff22fvIULLuYFFINdsSFiOwa677uratm270/OdO3e2r6lDkzykPHmU43elxzyWAg/R05NOOsk+AwY9JeG6z/cYpLO8+fOG/v/p4HpPjViGgdochyBc95kaisX5XEgHVhbsXOnWhHJe99lkE/MdlJLt+sn1wYNMZNC6wbnA+cP6UigkokVoIXVDCoabaSrcXNeuXWtpX8AjCqmvxSdF2u/Pf/6zKyf8fNJpqSlIfg9SjdhecoFU1VdffeV69eqV9t9Jl/Xp08dsHXjh3njjDVduCnEMeB3eOR7cfPCC+3PAw7lA2hfRlfpz/L/H5TwA/LIQtDh48JBjB+A8YfjRtGnTXKngOJOyTrXb+M/hww8/jP11n+8xyMSmTZvsa3DgVVBE8llz3eOhffrpp11YKMRxwJ7BdY9N4cYbb6w874M/IynnAr8Lm+ZMNR7lvO7DsH76zzrVJ92gQQPzyRfyHiBPtAgtW7dutZ1lul2rf47CRQrLuLmwy8cnmhq9IxLubz7lggX/8MMPz/h78P4oMskWFkV29Hj/grC44JFjp86CsW7dOvOS4rvDj5fLKPawHQNed9ZZZ7mDDjrIognz5883Pxz+ODyFPuLA9+E8SPUHB8+ZuJwHQFERN+ZjjjmmyvNt2rSxCA3RKr7vc889Z+KDaF5qtK4Y8DNrunbjft3newwyQX0Jv2/qdU+9CZ5aPKEcP7y2//d//2ff/5e//KUrN7U5DhRRDhw40GoB+FzxOeMNpygNH6wXpUk6F7woThdEKfd1H4b103/WmY53Ic8FiWiRNUSIsrUHIPBqO7HQp6JYBNN9/+Br+Jqp4pbXFjKtlc9x4Of795z675DL+2MxJDWJaEqt0qdYg8KaIESmqEi+9957Cyaiy3EMLr744ip/p0AQ0cCNlDSfLxjk+2RzzkT9PIDHH3/cLViwwP3qV7/a6Vy47777qvydynQ6ATz44IMW0UstTCs0+X4OYb3u86GQ5yLC6cUXX7SNZGoB6q233rrTZ/3rX//aNtB0pshk+YrCcaAIL0i3bt0s8ogwREz7jhNJORdYd+jaQkS2WbNmO/17ua/7YpLt+ultHZlem5q9rA0S0SJr3nnnHatyzfbmnppOzxV/sacTKv4i8a/hKz7YdPDaQi4c+RwHfn46v2vq75ENCEb+XyYrRypEYVg86VbBOPdC3FDLfQw8pK3pVICQ9CKa75PNORP1YzB9+nSrzsfWkk2EiRs4ET02WcuWLcuqI0JtyPdzCOt1nw+FOhc51/7whz+4o48+2v3iF7+o8fVs2Lg2sHG9/fbbltovJ4W+Jln7CAosXLiwUkQn5Vzg86S2I3VzEZbrvphku3568ZzptYU8FySiRdaQPqWfYzbkWziQKv64GNKlXvxzWBb8z6PgjPY1wXQeixbpzUK8n9ocB4ohqvs9cnl/RKTq1q3rjjvuuKz/jxfO9NgshIgu9zHwsBhynvAZB38ebZOwfASzIannTJSPAb2T6ZtNZiGXdk3+sw8er2LB78LNPpWaPoewXvelPAZB8MpynmHZoE1jtj1uS/lZl+I4pPv9Uq/7uJ8Lfv3HtpdLz/swnQu1Idv1M2jvIDub+tpgwXJtkYgWWcOJmW1D9ELAQsGNg37IqdConaELdP8I9sDktUHLAn8n/VXIHpn5HAd+Pl4+3kuwKAJf3+67755Vj2Tvm0MgUlyTLlWVCbzRmYrPonYMgpCWoyI/WGhF71EGLlB4E0x3cs74f4/yMeD3oG84RTO/+93vchoc4M+DdIVphcb3gMV+FCymqulzCOt1X8pj4KGIkmEpiMLbbrut8vcO22dd7OOQChtk+iQHP9+4nwupXZly2XiE6VyoDdmun/6zJvLeunXrKvdPNjLBDim1Rd05RGigxU9qmy4KaFgEgzfUjz/+2BYjvHEeWl8RwaLZfhD+zsVVzoI6/3tQFMGUJc8XX3xh7bqIKAcFMTdOHunAC8cCksnKwfdMhUVj0qRJVnBRqChsqY8BXrd0PrZHH33UbqjBorpOnTqZsMQv6eE1nAtUZlN4E9XzgLZNDBvYZ599LL2fKS2Z7jzg+DGch41UNhMiawvXJ5HB8ePHVxEBnIvc2HyEKM7XfW2OAREzsgyIBQavZBJARBf5GUGwNWDfIpWfy3TYMB6HdOcyBcU8H7zu43wuZNuVKQzXfaFA8HIcghadbNfP5s2bW6ZwwoQJVa4Nzhuyk6mFubVBkWhRdBA6wd6mjC5mNwmMsPXcfPPN5vcKXiD0dSSqiHBgQhHV1xTLEJnh7x7ExPDhw91dd93lrr/+evMO4iNkvCoewtr0qi7UAspCRocMjoOftIQgHjZsWJXXXnXVVfaV3zNdKg8hnOnG+Mc//tGEV/v27e11RGtYtGn/c8UVV7ioHgMWTj5fUpgsjoDfk5sKN1KEczB1iV+QrhUswKTuZs+ebefcb37zGzuHongMuBkSlcSSw7mf2veWCK3fIFCRT99UbizcnBFk3Ky5QTPFK12BU6FBGNAlgIImbnSMJ6b1Fuck13MSrvvaHAMKA4kgUki4ZMkSe3g4Dn5S3dy5c20SG8KAjgycH6wTK1assPaW5bYx1PY4cC0z2p7sBCKJ40A9ANHG1J7LcT0XaurK5AnDdZ8Nzz77rG0GvA2Dc5h6HaAQFrsix4nj89RTT9l5nev6yShwbFBsRKmXoW0mgZX+/funLcjMF4loUXQo/ArCRe0Jiuh0kL6kfdk999xjNwouFgTkZZddtlNkhhsvEUguOi5KxBSvy7YAo5ggAkjHUjnNAkJklX6mXOReFNYEkTjSUxQMpRt5C9xYufGyWHAzZTGikITuHOWOQtTmGHgPOF5gFlbOA25CiAREVerxoJMH3SrYQPB6+rNigci2GDOMxwDbir/RPPDAAzv9OxYfL6IZwLB06VITokQqicSxmeBmzQarVPzXf/2X3czZOHPTRAgRQScdnYTrvjbHwPcNZjOYCv/Xi2i+H0WrCCzEGccCgYnVB9EWFvI9DlyznMu+oJrvwcaCNY3zOgnnQrArU8eOHW09TEdYrvua4PNh8+Bhw+A3DRTBZvr9clk/uV/cdNNNNjOBtQTBTRHqBRdc4ArJPzC2sKDfUQghhBBCiJgjT7QQQgghhBA5IhEthBBCCCFEjkhECyGEEEIIkSMS0UIIIYQQQuSIRLQQQgghhBA5IhEthBBCCCFEjkhECyGEEEIIkSMS0UIIIYQQQuSIRLQQQgghhBA5IhEthBBCCCFEjuyS638QQgghasuiRYvcCy+84JYuXeq++OILV6dOHdesWTPXvXt3d/LJJ7tdd9014/89//zz3U9+8hM3YsQIt379enfmmWe6o48+2t1+++0l/R2EEMlGIloIIUTJ+P77791dd93lJkyYYML5mGOOcU2bNnXbtm1zb775prv77rvd+PHj3W233eYaN2680/9fu3atW7FihRs+fHhZ3r8QQngkooUQQpSMBx980AT0IYcc4m6++WbXsGHDyn/761//6h599FE3cuRId/XVV9trd9tttyr/f86cOfa1U6dOJX/vQggRRJ5oIYQQJWH16tVu7Nix7p//+Z/drbfeWkVAwz/90z+5YcOGuRNOOMGizU8//fRO3wMRve+++7oWLVqU8J0LIcTOSEQLIYQoCS+99JL729/+5gYMGODq169frecZJk6cWOV5vNN4qBWFFkKEAYloIYQQJQEBDO3bt6/2dQcccIBr0KCBW7dundu0aVPl8/PmzTPLR+fOnYv+XoUQoiYkooUQQpQEL4gbNWpU42v9azZu3FjFyrH33nu7tm3bFvFdCiFEdkhECyGECC3YP+Dbb7+17h0dO3Y077QQQpQbiWghhBAl4V//9V/t64YNG2p8rX+NLz5EQG/fvl1+aCFEaJCIFkIIURLatGljXxcuXFjt61atWmU2jr322quyABErBwNWGKoihBBhQCJaCCFESejbt6/7x3/8R+u6QaeNTDz++OP2tXfv3vZ6LB0UFXbo0MEGtAghRBiQiBZCCFES9ttvP3fGGWe4LVu2uP/8z/+sUjQIiGWGrUydOtXVrVvXDR482J6vqKhwmzdvlpVDCBEqNLFQCCFEybjoootsxDdTC4cOHWqFgsGx32vWrDHbxv/8z/+4Jk2a2P+ZPXu2RaSPO+64cr99IYSoRCJaCCFEydhll13cr3/9a9ejRw83fvx4t2TJEjdr1izr/wyHHnqou+6660xYe/BDt27dutoBLUIIUWokooUQQpQcBq4Eh64wEvySSy5x69evdzt27Kh8fuXKlRad7t+/f9rvwwhwRLgQQpQaeaKFEEKEwi994403uq1bt7pf/epX7rPPPquMQoP80EKIsPEPO4JbfiGEEKKMzJ071y1btsxGf/fs2bPcb0cIITIiES2EEEIIIUSOyM4hhBBCCCFEjkhECyGEEEIIkSMS0UIIIYQQQuSIRLQQQgghhBA5IhEthBBCCCFEjkhECyGEEEIIkSMS0UIIIYQQQuSIRLQQQgghhBA5IhEthBBCCCGEy43/B+8+6Mp54JclAAAAAElFTkSuQmCC", "text/plain": [ - "0.0" + "
" ] }, - "execution_count": 12, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c516b973", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a461fd6d", - "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "polarization = source_photons.calculate_polarization(qs, us, bkg_qs, bkg_us, mu, show_plots=True, ref_pdpa=(0.8, 90), ref_label='Simulated', mdp=MDP99/100)\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "id": "633ef604", + "cell_type": "markdown", + "id": "bc5136dd", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "Extracting the informations from the polarization dictionary:" + ] }, { "cell_type": "code", "execution_count": null, - "id": "093d1d3e", + "id": "5447d326", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'dict' object has no attribute 'fraction'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m PD \u001b[38;5;241m=\u001b[39m \u001b[43mpolarization\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfraction\u001b[49m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[1;32m 2\u001b[0m PD_err \u001b[38;5;241m=\u001b[39m polarization\u001b[38;5;241m.\u001b[39mpolarization_fraction_uncertainty \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPolarization degree: \u001b[39m\u001b[38;5;132;01m{PD:.2f}\u001b[39;00m\u001b[38;5;124m +/- \u001b[39m\u001b[38;5;132;01m{PD_err:.2f}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "\u001b[0;31mAttributeError\u001b[0m: 'dict' object has no attribute 'fraction'" + ] + } + ], + "source": [ + "PD = polarization['fracion'] * 100\n", + "PD_err = polarization['polarization_fraction_uncertainty'] * 100\n", + "print('Polarization degree: {PD:.2f} +/- {PD_err:.2f} %')\n", + "\n", + "pPA = polarization.angle\n", + "pPA_err = polarization['polarization_angle_uncertainty']\n", + "print('Polarization angle: {pPA:.2f} +/- {pPA_err:.2f} deg')\n", + "\n", + "Normalized_Q = polarization['QN']\n", + "Normalized_U = polarization['UN']" + ] }, { "cell_type": "code", "execution_count": null, - "id": "bc5136dd", + "id": "f51361a9", "metadata": {}, "outputs": [], "source": [] @@ -658,7 +737,7 @@ ], "metadata": { "kernelspec": { - "display_name": "test_cosipy_env", + "display_name": "test2_stokesmethod_cosipy_env", "language": "python", "name": "python3" }, @@ -672,7 +751,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.10.17" } }, "nbformat": 4, From 89619967541fe7b0e8caf03031d09547fc8a005d Mon Sep 17 00:00:00 2001 From: nmik Date: Tue, 29 Apr 2025 19:41:17 -0500 Subject: [PATCH 17/31] final polished --- cosipy/polarization/polarization_stokes.py | 19 +++++++++++-------- 1 file changed, 11 insertions(+), 8 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 68536f10..9ebd5ed3 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -619,8 +619,6 @@ def calculate_average_mu100(self, show_plots=False): plt.ylabel('mu_100') plt.show() - logger.info('mu_100: ' + str(round(mu_100['mu'], 2))) - return mu_100 def compute_data_pseudo_stokes(self, show=False): @@ -791,7 +789,7 @@ def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, re pol_I = len(qs) pol_Q = np.sum(qs) / mu pol_U = np.sum(us) / mu - # print('Q, U, unsubtracted:', pol_Q/pol_I, pol_U/pol_I) + unpol_I = len(bkg_qs) * BACKSCAL unpol_Q = np.sum(bkg_qs) * BACKSCAL / mu @@ -799,12 +797,14 @@ def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, re print('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) unpol_modulation = mu * np.sqrt(unpol_Q**2. + unpol_U**2.) / unpol_I unpol_sQ = np.sqrt((2. - unpol_modulation**2.) / ((unpol_I - 1.) * mu**2.)) - print('unpol_uncertainty:', unpol_sQ*100, '%') + print('Q, U unpolarized uncertainty:', unpol_sQ*100, '%') I = pol_I - unpol_I print('check I(src+bkg) vs I(src):', pol_I, I) - self.Q = pol_Q/pol_I - unpol_Q/unpol_I * 1/(2.575*unpol_sQ) - self.U = pol_U/pol_I - unpol_U/unpol_I * 1/(2.575*unpol_sQ) + self.Q = pol_Q/pol_I - unpol_Q/unpol_I * BACKSCAL + self.U = pol_U/pol_I - unpol_U/unpol_I * BACKSCAL + + print('Q, U, unsubtracted:', pol_Q/pol_I, pol_U/pol_I) print('Q, U, subtracted:', self.Q, self.U) polarization_fraction = np.sqrt(self.Q**2. + self.U**2.) @@ -848,9 +848,12 @@ def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, re c_mdp = plt.Circle((0, 0), radius=mdp, facecolor='tab:red', alpha=0.3, linewidth=1, linestyle='--', label=r'MDP$_{99}$ = %.2f %%'%(self._mdp99*100)) plt.gca().add_artist(c_mdp) + label_data = ("Measured (Bkg subtracted)\n" + "PD = (%.1f ± %.1f)%%\n" + "PA = (%.1f ± %.1f) deg" + % (pol_PD, pol_1sigmaPD, np.degrees(pol_PA), pol_1sigmaPA) ) - plt.plot(Qa, Ua, 'o', markersize=5, color='red', - label=r'Measured (Bkg subtracted) \\ PD = (%.1f $\pm$ %.1f)%% \\ PA = (%.1f $\pm$ %.1f) deg'%(pol_PD, pol_1sigmaPD, pol_PA, pol_1sigmaPA)) + plt.plot(Qa, Ua, 'o', markersize=5, color='red', label=label_data) pol_c = plt.Circle((Qa, Ua), radius=pol_sQ, facecolor='none', edgecolor='red', linewidth=1) pol_c2 = plt.Circle((Qa, Ua), radius=2*pol_sQ, facecolor='none', edgecolor='red', linewidth=1) pol_c3 = plt.Circle((Qa, Ua), radius=3*pol_sQ, facecolor='none', edgecolor='red', linewidth=1) From f825e51cb1232c32d584d1b3e2900c6bf8fb3707 Mon Sep 17 00:00:00 2001 From: nmik Date: Tue, 29 Apr 2025 19:41:28 -0500 Subject: [PATCH 18/31] final polished --- .../polarization/Stokes_method.ipynb | 111 ++++++++---------- 1 file changed, 52 insertions(+), 59 deletions(-) diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 9083349b..e654273e 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -25,12 +25,12 @@ { "data": { "text/html": [ - "
16:53:39 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
+       "
11:11:25 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m16:53:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=586978;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=541896;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m11:11:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=206123;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=113766;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -45,7 +45,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26884;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933098;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=807660;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=188355;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -60,7 +60,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=932371;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=888178;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336775;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=528591;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -70,11 +70,11 @@ { "data": { "text/html": [ - "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
11:11:26 INFO      Starting 3ML!                                                                     __init__.py:39\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=435984;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=434273;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m11:11:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242823;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=806412;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -87,7 +87,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=481784;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=935617;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=973405;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=294;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -100,7 +100,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416061;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=218512;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=8698;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654729;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -113,7 +113,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=903647;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=831653;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=287121;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=830959;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -122,11 +122,11 @@ { "data": { "text/html": [ - "
16:53:39 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
11:11:26 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m16:53:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=678893;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=403781;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m11:11:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=509101;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=102020;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -139,7 +139,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=466847;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=18712;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=20505;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389243;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -152,7 +152,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97112;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=581466;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=190589;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=241184;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -166,7 +166,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=838976;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=480753;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=969350;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=543083;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -181,7 +181,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=904399;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519019;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=892140;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=34567;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -196,7 +196,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=673115;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605904;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677808;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=905311;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -210,7 +210,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942903;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899687;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=994904;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=224102;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -224,7 +224,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=472663;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=735368;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=938138;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416915;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -239,7 +239,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=433911;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464956;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=290829;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=103854;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -254,7 +254,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964216;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=428649;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=422984;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278903;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -483,13 +483,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Creating the 100% polarized ASADs (this may take a minute...)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Creating the 100% polarized ASADs (this may take a minute...)\n", "Creating the unpolarized ASAD...\n", "A = 0.72, B = 0.56, C = 1.55\n", "Rmax, Rmin: 1.2765994095848665 0.7208759491498263\n", @@ -543,7 +537,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "modularion factor: {mu:.2f} +/- {mu_err:.2f} %\n" + "modularion factor: 0.28 +/- 0.00\n" ] } ], @@ -552,7 +546,7 @@ "mu = average_mu['mu'] #0.310\n", "mu_err = average_mu['uncertainty'] #0.001\n", "\n", - "print('modularion factor: {mu:.2f} +/- {mu_err:.2f} %')" + "print('modularion factor: %.2f +/- %.2f'%(mu, mu_err))" ] }, { @@ -665,16 +659,21 @@ "text": [ "Q, U unpolarized: -0.3128133204998456 -0.12947028597215868\n", "unpol_uncertainty: 432.93677967024655 %\n", - "check I_src+bkg vs Isrc: 8114 8111.672527983004\n", + "check I(src+bkg) vs I(src): 8114 8111.672527983004\n", "Q, U, subtracted: -0.8131920884754699 0.09626674069045373\n", - "PD: 81.89 +/- 5.48 %\n", - "PA: 86.62 +/- 1.94 deg\n", - "Drawing Reference point: (0.8, 90)\n" + "\n", + " ############################## \n", + "\n", + " PD: 81.89 +/- 5.48 %\n", + " PA: 86.62 +/- 1.94 deg\n", + "\n", + " ############################## \n", + "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAJvCAYAAAC9CY0CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydB7QUVdaFD1FQUFGQnHPOOUlQzDnrmHMYZ8b0O87oGDGMacw554A5I6CCiCTJOUhOgoIgIPS/vtvcR3W/DtX9OlR1nb1W++S9DtVVt+7d95x99ikVCoVColAoFAqFQqFQKFyjtPunKhQKhUKhUCgUCqAkWqFQKBQKhUKhSBFKohUKhUKhUCgUihShJFqhUCgUCoVCoUgRSqIVCoVCoVAoFIoUoSRaoVAoFAqFQqFIEUqiFQqFQqFQKBSKFKEkWqFQKBQKhUKhSBFKohUKhUKhUCgUihShJFqhUCgUCoVCoUgRZVN9gcIf2Lx5s7z++usyY8YMmTlzpmzcuFGuv/56OfTQQ129nuc//vjj8s0338jWrVulZcuWcumll0rz5s2LPfe7776T5557ThYvXiz77ruvHHbYYXLmmWdK2bI6vBQKhUKhUBQmNBJdoPj111/l+eefN8S2SZMmKb12586dct1118lXX30lxx13nFx88cWyfv16ufLKK2XJkiURzx07dqzccMMNUqlSJfP3vn37yosvvigPPvhghr+RQqFQKBQKhXegocICxf777y/Dhg0zP2fNmiUXXnih69eOHDlSpk2bJrfccosceOCB5ncDBw6U0047zUScb7zxxqLnPvroo9K4cWO59957iyLPe+65p7z88stywgknSP369bPw7RQKhUKhUCjyC41EFyjKly9vCHQ6GDVqlOy3337Sr1+/ot8h0xgwYICRbmzbts38btGiReZx5JFHRkg3jj32WAmFQoaMKxQKhUKhUBQiNBKtKIY5c+ZI06ZNpXTpyD0WuugPP/zQSDqIPvM8EK2Trlq1qlSrVk3mzp0b9zPWrl0r69ati9BgIz1p1qyZ2QAoFAqFQqFQOEEQb8WKFdKtWzcT3Ms3lEQriuGXX36R9u3bF/u9jWxDfiHRlgTHinjzOydJjsYHH3xgNNsKhUKhUCgUqeBf//qXHHzwwZJvKIlWFANuHLGiwfZ3/B1YWUe85+IQEg9HHXWU9O7du+jf8+bNk7vuuksOP/xw6dOnj4lmKxSK3IJ7dsOGDUUPMkS///67eWzZsiXiuWSqqH/Ya6+9zE+KiytWrCgVKlQw93+5cuXMw/n/PMqUKZO14//zzz/NvMTD/v/27dvNg//n+/Gw34n//+OPPyLeA2ka38d+p3322cdEvOxPdR1SKHKLUCgk06dPN4YJVapUkfvvv19q1KghXoDOBopi2GOPPYoIshP2d/zdSZ7jPdc+LxYgybGIMtIQbpSuXbuqrEOhyAIgl2SbkFRZWZX9f7tBhiCTTeIebdiwoey9995SuXLliAcks1SpUlII52PTpk1mw/Dbb7+Zn/bBXLR8+fIi6RqATNv5y/mAcBfC+VAovEagx48fbzbn1Gkxd4FE/CKXUBKtKAaKCmNJMaLlG055R/Xq1Ys9Fw11qmjRooV5LyXQCkXJATlctmyZIYLoCCHK2FWyMAEixxDAAw44QFq1alVECIm4ZjNi7AYQWHzqWTghrtkCkWW+byJ9JdFqu9GwG48FCxbIjz/+aCxB7aJu60Fq1aoltWvXNnOZRq4VipJnx7p06WLuLUuivQK9uxXFQFHhlClTzOLgLC6kaQu7wbp16xY9D8yePdsswBYsMmvWrDGSjVRBJId0DYs8n0fKBlKvUCgSA6IHUYY0W+IMEQVILmrWrGkyPc7oaaFEk7MN5r06deqYhxM7duwwC7yTYK9atUqmTp1q/sZGBCINobbEmvMeXbStUCgiAQfgwdyFxW6+N/XxoCQ64GDSRxvI5G4jJv379zf2dESBrE80C8WIESOkV69eRVFi0rz16tUzjh0QZjvI33vvPbMw8z7pgpuHz8Sxo2fPnp6owlUovCRBWLlyZRFZ5if3MuD+hLC1adOmiLwRyVWynHkw55GR4+F0KeL6QKbt9cEKlJQ08xrXhw0N18ZeH+Y3vT4KxW6ggSaT1r17d88SaKAkuoDxzjvvmEFoZRijR4+W1atXm/8//vjjjYbvySeflM8++0zeeOMNM7EDiPPbb78tQ4cONZM/CzDEmMj0ueeeG/EZtAKnnfhVV10lgwYNMilOmrwcccQR0qBBg7SPnUgNFjZ0ROQBeUeXqVAEEdx7kLGFCxeaewybSYgaiwvZmkaNGpmCXEgZhE4jnfkFAQlLki3QmzszBTNmzJAxY8aYvzG3EZTgOloNukIRVMycOdPMde3atfP85jJlEk2Kikpnhffx5ZdfFkWn0DzSuZAHoHEKEz2pEv7GNXVWqd92223y6quvmsYrFAkysdMKnOc6n9epUye5/fbbDXHm+RQcnXfeeabhSnTVezKSwHvz0/k6rPYmT54s48aNk86dOxsNp0JR6CBiifZv6dKlhjBDurhHcbeAmA0ePNhEMJE6RWtuYxX6+hF8D74bP1OZS7wMNjw8mMus3tNGrLnWzNmAyDTSEaRzXG/kJApFIaPcLuceinhx62rdurUvOh6XCtkKkyTgaaQP0di5fIlC4RoQBCLmRNG4mZxgvBF1Y0H1+q5UoUgXbCAZ5/ZhC9YY9/bBIhOUe8BqIvm+QfnOXHMbqHKOAa67cxwE5XwogoNSpUoZqRMyDgwGbM1VNKjBuuCCC+Spp54q1ujN05FoyDMaVaojiV7qTazIJEh12hRoIusaFhZS1ZquVvgdEETIEmOfh5M0O72VdawHF8x31uOahw1gWf9t5kp1/1D4HaFQyNRmYUjQoUOHIvMCP6Cs2y+IlhadljbBUGQLkAUWhXipS0s6WFjQcyu5UPgNjGEIM/IEHtYBh/HM2Oeh4zoMIrKcI+YDLxcW5Qo2I2c3XfYBoeYc8YjO4ikUfsC2bdsMv2Q8Q6ZtBqpgSDSTGQ8tdlDkE9xUWHLZbmNkRJRwKLwOiDKLAx3/+MkCASlkLFvi45cFI5ewm2avNFXINxgjNjvBpsvWj/CwzWKISjsJtY4rhdexbVcnUTIrcEwaHsE3/ZJhcXWU7H7Nk33ypRSFC8gH5JlFQ4m0wutRVB62C6AlPxAc1bUqSgrbdp0HhBoywkaNeZH5kb8727DreFN4Ddu3by8i0IxVW0Bsa6D8gJSOUm9ChVeINGTEpn0UCi/ARgZZFKxDho2uWOKsUGQDEGYbgWZOtI4mllRbQs1DI9QKrxDo33//3YxHxqVfC4h1Vlf4lkhjp8dNZ4m0H29Ahb9hCQtkhYdtpoG3ump5FfkA86DV17OBg6zY8QlpYTNH9BriouNTkS+UKVOmqAbKz2u3kmiFb2FvPCJ/tj2on29GhX9AuhFSwtiz7Z3JjkBMNOKc2eiqyrVKbhtmMyJIixiz6E55QGKsNl/nTkUu8KfDYasQ+j7obK/wPVggiLCwOLAg6GKgyIVcg3EG+WDMqeY0eyRakRnY8cqDsWw3gevXrzd/g9AwllXuocgmgf59l4SDsVYIUBKt8D24IYlCK5FWZMshgrEFgbZyDTrKaZQ0u9AmS9kD45Y5k4eVezB38uB8W0Ktcg9FprBjx44IfX6hICMkeuPXIyTfqDxwQNqvff755+Wcc84x///tt99Knz59ik3m9erVM21ZDz/8cPnoo4+KvQ6QGqMNb9u2bc3z+Bu63XifZV/Dex988MHy73//W6pXry5+ANXf99xzj/zwww+mJTfRjOeee07OPvvstJ4XD3Qv+s9//iMTJkwwHTOZ2Fu1aiXXXHONHHnkkUXPsztb3v+mm24yLcj5/3bt2pkW5gcddFDSz6L17oUXXmjGAC1377rrrojPAO+++65cfPHFMnfuXKN7VRQmuOethhSSoXKN/C26nHc959mDtc1jrbJWjNjl8WBOhWir/7SipPfypl2OMYUmu9QwigNEliBf0Rg1apQh0PH8Sm+55RZ56aWX5LHHHpMrrrjC/O5vf/ubIdNTpkxJ+JqHH35YevXqZV7bs2dPEwnwA9auXWu+w8yZM6V9+/Ylfl48LF682EzmZ511ljz44INmowGOOuooefLJJyOeS4TwyiuvNM87/fTTzU/Iz2GHHSbfffdd0s/iMxYsWGDIc6dOneTEE0+URYsWFf2dSOTVV19tSLkS6MKd7NGKrlq1ynRoZdJnY3zAAQcYkqFkTlHoco8qVaqYYA7jnTmPLnLM47ZwVqFIFTt3NZUqREtaXREcgGy99dZb8r///S9isYRYd+7c2UwksXDooYdKly5div59/fXXy9dffy1HHHGEIXsQyOj0hfM1559/vuy///5y3333yfvvvy+nnnqqeB01a9aUFStWSI0aNWT8+PHStWvXEj0v0TXh4cTll19urgfni8ixBZHuN954w0S+//rXvxpCdOaZZ0qbNm3k2muvlTFjxsT9HBYIrtnIkSOlX79+JtrM8z///HO56KKLzHP++9//GvLM9VIUFtA4E/VkHFh9qEbgFEF3PyILAJHm3iCzZ336iVAXGhlSZI88lytXrmBlWXoXOAB5XbdunXz55ZcRi+vbb78tp512WkrvNXDgQBM1JZL68ssvu3o+WLhwofgBROUhxpl6XipgIq9bt66JFDrBdeJvEGvbXhmcd9558v3338uSJUvivqfVuxKFAdzs6F5tZgCpx5133mmi27p4FJZkw0babOtZonBceyXQiqDDbiirVq1qHmT7nJkapE4KRTwCjYTDNlApRAINlA040KBBAyOpeO2114p+9+mnn8qvv/4qp5xySsrv95e//MX8/OKLL5I+d/78+eYnEelsgMkOouDmweD3GoiEcGycp/vvv99cl0GDBkU8Z9KkSdKsWTNDhKz/JDdwhw4dzN8nT54c9/0hz40bN5Y77rjDbGReeeUV8/xu3bqZvxPJJntAlFrhbzC+kQhBBKwzAdcfyQaRN90keQNcF65FoS6+fgME2ko9bISaDSiBJxuEUCjsHGuboRV6MELlHFEg4owcgwgVO3DIVP/+/aVWrVopvxfFaaT/LUF2AmIOKWTyGT16tNEN83lIQLIBPmPAAHfFl5BINhRewlVXXSVPPPGE+X8W1uOOO87oyZ1ANoJ8xMJ277LR5eXLlyf8DDTWJ5xwgrz++utFuvbevXsbWcewYcOMLEfh/0I1O7lr0ZS3QVaJDbHCu1IPW3z7yy+/RLS1141PcBEKhcyYgEgzHgrd4UVJdBROOukkQ55w4DjkkEPMTzTS6YJBRNQrGoMHD474d/369Q1hr127tmQDFPU5ZSqJkGn5RSbANYHgQoTffPNNQ4hsa2ULJvTo4k82JrYIkL8nk9T8/PPPxhGETROSESYC9NWQeK4RBaBIOpgo/v73vxvttMI/5BlYa69Cn9wVimwComw7HzIXs86R2UH7CslWMh1M/PHHH2bdDMocqyQ6CtWqVTMEl2JC240M8pYu0ASRJo7GI488YqQHTDikx5o3bx6RRobIXXLJJUZSQET70UcflQMPPDDp3+KBaGw0cfcTWrRoYR6AYkEsAbGfwzrPTtRM5lYH7YRNM0KwkbUkijyy6enevXvRv7Hjw1rv//7v/+Srr74y1npo3PlMshZcN7cRfkV+bJWsrl3Jsz+vXxCiWYXSZpz5V8l0sFGhQgUj/QnKPaskOgYgRxdccIEhT+hgKTJKB9jiIdto0qRJsb+htXU6ejgB0Tv66KNNBHTEiBHmAZGfPXu2SW/G+1siPTWRAlJubjcSXr8B+M64ZsyZM8cQWYCUgwLAaCDzsN+LaKTbFD4FNDfccINx5eA1aOX53GOOOaboGMgeKIn2JvniWrN4c+1U6+w/sPm1D4U/4CTT3IOWTFuPdSXThV2kXb58eXO9vc4fMgldVWLg2GOPNQvu2LFjU3blcAIfaDBkyJCUXgchZvKBKDMYiSB37NjR6HIT/S0R0PVCMt08ErlYeAVWmsEmxYICQkg15NcJotV24wJ5tg00kgGdesOGDY3nNEBK4tTG8/+xSLsiP6C7HY4BFAwSfSYKRpaHjacSaIUid4BIE9TB0YN1ivty9erV5r7UTVFhIRQKmetKoC6I11Yj0THArhntK402ojvWuQWew7feemsECUsF0YORfyPj6NGjR9y/+V0TDTFmk4AunMkXMPFGy2EgwC+++KKJbNC90ILIMFFjCgRpigKIiCDJQKJBZ0h7wyeLSEPGKVz85ptviqInELJZs2YVPYdCQy/qx4MYeSaFzHXlWkGeC9HUX6HwG4hMQqYhWESmIdPcq9yjGpn2P0K71lPW5KAWaSuJTtC9zi2wW4NcEQkjCgaBhrBSiPbBBx8YjVAqQJ6AhIRmInRAHD58uOma2KhRo4R/y7UmGpLJpGhdLz788EMjYQEcmy3oc/u8qVOnmvNO225afQMkG0SWsZaDXCOxQULB+b733nvNhscCokyXQdxVIN/IaF544QWzGXrmmWciimGSRUQoGjz55JOLLO4sSUdK889//rPoe9gW8Ir82SixOAMlzwqFd8k0nT8hW5Bo1gPuXWtHqvBvEeH27dvNmhpEAp0xEl15YLA1oTfeeGPEREG77wceeEDOOeccs7CnCgbje++9Zwjm7bffbrTTEDqKCBP9Ldcg6kszGYt3333XPMAZZ5xRRI7dPi8W+G4QYDID+JFyPulWSGtuukFGgwg1TW6Q0iB7adeunSG6Tn9nq5ON7qpk8cknn5gINNFoJ7Af5Jw/9NBDhoAPHTrUaOYV+dHfsbmyVeCMCyXPhQVkAFpUWFhg/WKNJEPI/cucDomGTAeVhPkZ5cqVM/cn3CeoKBVyIWJht4F3MNKEVKOqisygV69ehqxju5fK3/wCxhgRY/ypcznGmMz5bF2s/QGuFzp4sj6MExZfClkUCoU/N8NEppFk2QJgnYe9D+Q5EOhSGZbjuOGaSD4xfnjqqaeKTAXyCQ3deBRTpkwxAwrZwT333GMibpYkJ/qbIjUwERDBRBLARK7wJkgZErXiwcSNZp6IlhLowgXzGiTLix1UFSWHldZR88JmmPUMGR6kOogFan6B5R7a8j0MJdEeBcVwFK3xwCUECYebvylSAwTa6mjR6CmR9ha4HugnaS9M9BltPwQ6yOnDoADyTOZBSXThk2ki0JBpSDUkWp08vAmbubVe0AotLPQs7r//fvNI9W+K9Ik00WgmCSZyRX7B4sn1sEWDRKq4RlrNr1AUJpBxUB/DfY5eWosPvQXWRtsVWGW9u6EkWqHYRaSJhihJ85buWXWSCkWwgEQruviQwIb6vecXZIQg0FgTKnZDSbRCsQt2goa8kbJi4tZJO7fSDRZN2/mKDpNasa9QBBMQNqRbyDqYF5iTIdLqL51bWPcqJc+xoSRaoYgCEzSEzjZkUSKdO8s6/p+ULhsYXSiDDe47NlN6/wUX1o4U+QDZKSQekGp6JWhRcfZB8SDrINlAPd+xobOTQhHHn5YduBa35MZ1g8WRyBPFRap9VgDIs2aDFHZORuLBgwCHunjkjkBbL2hFbOjWQqGIASYNyByTCETa2ZxFUXKw+LEIUjjIuaY1sBYPKaLHCISJ8aGbKgWwrhDMG8wfZLDIXOnckVkgaWTdI/qsWcHEUBKtUMQBE4iS58yDgiEizxAkIv50G9RJWhENxgdkSVPJCifITFhtNPMImSz+n99pxDQzYHNiA0k6NyeGzkwKRQLYxZuoGOSPiIdOKukBeQy6Rls4SGpWCwcVCkU6YO5wFh4yP2vhYWZgybOex+RQEq1QuIyKUR3OT01vpQ7OHVEjNiMUBelCp1AoslF4yFyDxEOj0qmBtY0Ah9YhpAY9UwqFC1htGMUWTDRa0JJa9PmXX34x59B2JVMCrVAoMl14SEdTItJ0OIVMK9zBulHpupY6NBKtULiEbXNK+hASqL6ZibFt2zYTGaJIRTsOKlKFTSfrmFG4BXMy8zTzDht3bdLiLtABgQZq6Zo6lEQrFCmACZrdOhOPInHLbqrn0S1q0xRFSdpAKxTpRKUJdpAFIzJNhNoGQRTF52pAAa8S6NShZ0yRFv7zn/+4jhDdfffd0qJFi7SJp/2stWvXihfgbH1KGswPx5wrEHXmO0OgmZQffvjhiMXr8ccfl3r16pmFTeEeJb2HFKlBx6m/x7fVSrOBhxjaOanQ5QqpjlvOE3ry6Ah0Kut70KEkWkSef/75orThd999V+zv3Hh169Y1fz/iiCPycox+BVXTd911l1x33XURN6nznFtpRO/evWXIkCHy6aefih8AgWZiLon2bsyYMWbCIv2YL2TiGLhHSAmiRWQhpGqeNGr0RHz22WcbmccTTzyR9D2bNm0qN9xwg+vfx0P0WGPRaNasmVx++eWyatWqhM+rVauWGZP/+9//zLX20j0E5s6dK6eccorUqVPHpK4hIrfccouJwlkQabrpppvkkEMOMRE6vhvfNRVMmDDBvJ5riiXhwQcfLJMnT5Zc3F/OjerIkSMjrpHzMXbs2KTv6fb1icbpsmXL5PDDDzfnolWrVvLhhx8We867775r9P9EQr02zp149NFHzXO7d+8u+UK88V3Sccu1ZgPPdahdu3aRrMPtWMkkcnUPup1fmaMt0eYcaRFm+lA5hwNMOq+++qr06dMn4vejRo2SpUuXqqF7Gnj22WdNdPLUU0+N+XcW/IYNG5obf9asWfLxxx/LYYcdZhYmr29YmHgYE5BoJsV0xgcE9uabbzaTH64V+UBJjwGSAwFnUk6mQeQeO+uss+S+++6TK664ImG0g3HwySefyO233+7q98lgxxrXi83yY489Zt5n2rRp5rijn0cR6cqVK81i/Le//c0c8wcffCDt2rUTL9xDS5YskW7duhnJA0SJxfn77783izUL7vvvv2+eRxSO70SEqn379ub7pIKJEyeaOZFAAu/NAgz56t+/v4wbN06aN28u2Wy2Eit6+Ne//lW6du0a8bsmTZq4fu9kr080Tvk9RBriN3r0aDnxxBPN3NWgQQPzd8bX1VdfLbfddpsrOUq+xjl45ZVXzHFzHefNm5fSOcz2+C7puI2+1nyGLZ6rWbOm+ZmraGuu7kE386sNePAeyOxUwlFChFxgy5YtoRkzZpifhYjnnnuOWTp03HHHhapWrRravn17xN8vuOCCUOfOnUP169cPHX744SG/YtOmTRl7r5tuusmcs2Ro165d6Iwzzoh7zn/88Ufzb8bWzJkzQ8uXLw+VK1cudNpppxX7rDVr1oS8iM2bN4fWr18f2rp1a8rHfM8995jnLVy4MOfXMN1jcOKPP/4IrVixwjxizQ+xxsn48ePN74YPH57wvT///HPzvKVLl7r6fTxEjzWLf/zjH+b3r776asLnAY61YsWKZg7geucS8e6h22+/3RzvtGnTIn5/5plnmt//8ssvEdcI8N34G9/VLQ477LBQlSpVQmvXri36HfdppUqVzJyZDvr37x8666yzEj6HeZj7yjkfjxgxwhz/W2+9ldbnpvL6WOOUa1+qVKnQqFGjzL937twZatiwYejxxx8ves6tt94a6tChQ2jHjh2ujinX49xiwYIF5vfvvvtuqFq1aqH//Oc/oXwg3vgu6biNda25JoypZcuWhdatW+f6GqUybmMhl/dgovmV8bpx48bQhg0bivGcdNb3TMMN15w1a1aob9++5qcXkN8tyNy5ItdfL8IOlJ/8O49gJ0z3oy+//LLod0RI3377bTnttNNivoaIxLnnnivVq1c3kcjWrVubnbUTixcvlksvvdTsFpEt0OKY6MWiRYsinkfqkogXkQHeizTUQQcdZHahFkQLbcTDiWgNk/33jBkzzLFTWOGMsLs5bguiGezk2eU2btzYVSoeLFy4UKZMmSKDBw8Wt7Aewsk6lHFOiZq0adMmIlXJDr9Lly4Rx+pW35Xs/Mc790SkOL9EfqKjZkQgTjrpJBOd5bpfeeWVRfIPjuuaa64x/0/kyKZh7bhIdA3djil7rc877zwjTeB78VmXXHKJGdvJjiHeWHnmmWfM+eJ+4VqhPRw/fryrcdK5c2cTNbWR0nggyoJWjyiam9+nioEDBxaNUzfP/fe//23O+8svvyy5QqJ7iDQ44Lo4QZSN6JLVonPNatSokfYxfPvtt+bzGWPOz+A6fPTRR0WFSbkG44/oYrZeH2uc2nucexFwrzBnWfkM98qdd94pDz74oOsIX77GOVFovgfSlBNOOMH8O9dINL5LOm5jXWuuCdfLaYVHxinbyOU9GG9+tRFosjuMK7vGprK+u+UNI0uwDvsN+ZNzPPecyPnnMwtxdcM/775b5JlnYCt5OSQIUs+ePeW1116TQw891PwOfS66NnSH6CKdgLz16NHDDAzSqRAJng9hYYGDkIEff/zRpMytdhGCQortwAMPNATJptguvvhiQ9h5L7R2EBQG+MyZM6VTp05pfSeIFdq6O+64o4jguT1uMHXqVKO94jncBExEpJOiF+5Y4DuDRMfOuYVo4r2MvvPee+81E8IZZ5wR9zXz5883CwMTBRse9Ldg0qRJRjPG5II8gcmCFBrH7gYlPf8U0nFOnUQaAs24Gjp0qNHhMYbWr18vL774ohx33HEyZ84cM97uv//+ou8RfbyxrqHbMbV8+XKT8kduceGFFxrNLBMh35OFP9kxxBorLOrnn3++kTj9/e9/N/o8UsWpjBPOJ6nwRGCSHjRokJH4XHDBBUl/nyoYR8C5MCXCX/7yF/nnP/8pX3zxRcLPZVF2o4UFjOFEZCvRPcS1ZgPHfct453vwfMYBKexMtayHbMSyc2SMsRHj2jNGUjkf/I73jS68TXY+LM455xwzTyCp6tu3r9xzzz1m0XYLt6+PHqeQL0gB9yIPzje61Iceesj8/dprrzVrR79+/VwfS77GOaSZ+5/NFgEkxg3zSrTMJV/jO1OId62RMmCDxxhEdhMtdcnGuM3VPRhvfrUFl5ZAp7K+u+UNk0q4DvsOeZFzzJkTCpUuDR0o/uD3c+dm5nNcwpkGe/jhh0OVK1cuStmeeOKJoQEDBpj/j5ZznHfeeaGaNWtGpFjAKaecEtpnn32K3iNW+vf77783n/niiy8W/Y7XXHbZZQmPlVQSx5Es/WL/feqppxZ7rtvjBsccc0yoQoUKocWLFxf9jrFQpkyZpOmef/3rX+Y5pI/infPoxx577BF6/vnnY343pBFIPmrVqhXq2rVrUbra4sgjjwztueeeJlVnMXfu3FDZsmVdpaaSnX8355704G+//Vb03Y866qiI51566aXm9z/99FNSKUWia+h2TJHaL126dEyJAqm9ZMcQPVa2bdsWWrlyZejoo4+OGCupjpMLL7zQyCOSgTQ5KUunVCbR72PBjrWvvvrKjKElS5aEXn/99dD+++9vjsGmyxPJOSz4zh07dnSVRnbzSCahSXQPWekA38H5njfccEPc90snldy2bdtQs2bNQn/++WfR7zjv9erVM+/19ttvZ+V8cC8x3pwp99GjR4eOP/740DPPPBN6//33Q0OHDjXXkbE3ceLEpN8l1dfHGqekyUmt22P+29/+VvTePHfRokWhVJHLce5M+X/55ZdFc0GdOnVCV155ZdLPyeX4Lsm4dXOtGVusI6wZyDzsnJjp75nre9A5bvlOztc5kcq87ZY3HFmCddiPco78RKIJ/8cL6/N7otFDh0o+QOSQHRUpEnZT/IyOQAMigu+88455Pv/v3JlSzf/6668bGQCOE84dJDtZdm1IEUgr8RwiXIB///DDDyZ6SOo9EyC6mu5xs4P8/PPP5ZhjjjEFERYtW7Y0z02WZrSpfiK08fDII4+YCnJ209OnT5evvvrKRDmJbhIlcYLd9sknn2zOHTtgJBIWHCuvPfbYYyPOHc8lMhSrgj4amTj/7NKJSNgU4WWXXRbxd4o9KAjh3LktUIu+hsDNmKJw5L333pMjjzwyZpQtWWoteqz8/PPP5nO4prwn6UI+i+hEquOEiB7ZB6Lh0RGg6OIqvj/FvUhrkv0+EaJTxvXr1zfROCr33YKxnMylg8IhpyQsEZKleJPdQ2Q5iHoef/zxJtJI1JIIKe9LtCgTQDaE/IeIE5FWxhVFcytWrDB/5zqmej6uuuoqc4xWShTrfHAfRUf3evXqZR4WRx11lJEicC9df/318tlnnyU8llRfH2uckgXjXmC+Yp6g2ItzQvSf78W4IqqLpIP7hmxNrHs4n+OcfxNtHDBgQNFcwNyKVIlsYCK3hlyO75LAzbW28g6i8USdmUu55hxTuuM2G0j1HrTjFvkG15bvFe2WlMr67pY39OjRo8TrsN+QHxKN3jKeXyO/j6HrzBVIOTAJ4dLBxMlA48aLBloqUuRPPvmkecTC6tWrzU8GM+n85557zqTSnel+Z7oIr0wqa5mU0TUxgZ555pnSqFGjtL8POtd0j5vncuxICaKBFrekWj2A1ACCh9aQ7wnpRFIDAcCdw+kxDHFj4ufGj550OWaONVZ1uduK80ycfyYpFlu7+Eeff1LB/C2Wdjkeot/D7Zji+kF60Y2nA7djJZ1xYo83GZHnWrRt29aQQyeJiPf7RLAbNhZIxhHHlmoKlrQwWvlEYAFLpQ4gXbBwIdFBjoOkB7DxZIHFLowUvVupSiJA4nACIQ3+wgsvmN9xz7KY4xyRjADFOh/8jnRvovPE92BzzRyQ6Dpxfx999NHGVo75OlW7rkSvjzdO+c5OWzjuQ5xc/u///s+QCEgWhJTXUc/AWLOENd/jnO/I2OF4nDppvg8Eevjw4SbFn+/xnQ3EutZW4oC8A6kd8xnfMd1xmw2keg/accu6yndkTYoew6nM227XgtUZWIf9hvyQaIqzEkWiYxRv5RJMemjQmBTZPcWy/bKm8Gh3IV6xYCONRB+ZZIlwQxDRXzGg0bM6zeXZ5aHZGjZsmNFdcsOgeeSGtxrteKQjXtOPaB1VKsddUrCAo7Eickdk2Q2Y7JncieKgkaZwwYJoGxMIUZSLLrpIMo1k59/tued5tkMfGzHOuV3E0imsiKWFczumSgL7PmwiOfdM1BSKRI+VdD6PxYqJ3U3rdAqf0HA/8MADrn6fbMOWLtCAs0FJthhA/NBaut20JyJ9ie4hMhodO3YsItDOiBsetGgTM7XYs1Bj20b0lbEGsUMfDiBs2QDjChIAGUy22YFsct6JvDkzVG4R7/VuxikbVfyc//vf/xoyRn0B9wwRPmCL9hKR6FyO86+//tpEMCHSPKLBsSYi0bka39lCvGvNZo3j5Zrz/ZjvOCavFMOlcg/acWsJdEm7NbrlDTvi8JBCRn5I9LnnhosIY4Ed1HnnST5BKgKSRiHYG2+8EfM53GzcYAyaZAsVEyADj12+BYtDrOYW7HJJ3fBgV0eBADePJdHshGO9DtcAN0jluHkuiwdkNhqzZ89O+lkUsQGiHakQc1sxH131D6llQeXc8B2cjilEByF4eJ1GI9bv4iHR+U/l3NuJlygxaUHnsTAhWZePdCdoN2OK68cigQwmEeIdA+eYhYSxAomO17qbv6c6ThgTpA3dgIwAjge8vzNqEu/32cJLL71UlL5MBIqlkhEm53mI5fji5h6i0Me6RDhhpUQlca6IhWiHHyKuEHh7jPnEggULzP2friwg3uvdjFPry3z66aebfyMHY3NjQVrbTWOaXI1zSDLzJRHraBAwIIhA57t4G4dcje98jBU2axQJsvZA7LmXCKJ5pRmJ23uQ7wix5hrGI9CprO9uecOOHTsysg77Cfkh0UwE6J4hy053Dn7y+zyH/bm50LSRckdCEAvcVBALZB+QlOiUOekPW43Kc6Otz6jmdu7a+H9uXKc5PxMdE7CzhSdyAKJh2ALZSYeoAhOfG6R63BAGdLVoAK1uCrcKJBXJQIQUYH3mdoJk0iIKzI0fvXhB9kglMblBILlORN3ssXJzc6xOTTM3rpsOiG7OfzrnHmsfFkHegw2AreK3myLroJBqt0A3Y4oFgWgYaWWuQXR0yjYbiD4Ga4VEhI3xjxaOSTXeWElnnKCfs6QjGdA1sniQ0nY6x8T7fTZA9O7WW2+NIEu50IwmuodYJLlXkHM4I1FEQrn26ZASMidcQ1xarFNLLBBcwMmB6Gs6rgTpNs5wzk8WP/30k2mCwz3lPJZY3yWV17sZp5x7Wtt/8803RZtRJBQ0X7HgPnCjmc3FOCfVDlHG8SeWTJH5jvHD+UAjnc/xXdIxm+q1tuA6QhhZg4joov+FWBNESHfclvS7pHoPkoUiyJSoAVgq87Zb3lCmhOuwH5E/izts7NhRQZrRh7JbhVR7RDcTL2XhBNGBESNGGC0Z8g9s0UgDMfGyQ7QpL7S9RLEgaDyHrmL83alXhBiyo2RiY5KCIPIcbhJntJF0PXpHouUUsnDTQfhZRJ1+0pk4boBFDQUYyByIzhLdgqwhs4BMJgJaYm423hNvyVjgxmLBgTxD1Jic2RmjLYyVlmWygBRCDpFfoNuyPqhY9EAqKIqkCANCyQLHMSSLBLk5/+mceyIsEH38PHkvJj4mNxudRnsNSAfz/kzUENdk9mRuxhSgyIxzwuejn2VjAvF/6623jH0fURbnMbBwci14PpsIOl8ReUo2VlIZJ3TT43VoE92AiZn0cjSJiPf7ksKOSb4D0V4INOOSAi0W4GhJSzY1o4nuIXS3HCvnnBoCrj2F0PyO4lxnYQ/3AZskFjZAgQ/yFCsNsptHup8RZcTmivsJQBCJtnKu+QwydEiJKLzG9zwZOIduSRf3VqKxz/gkegaxZHxi58jGmpQ185oTsb5LKq93M04pGuQ9kVBYMIfwGptq51xzXbwwzhm/zHU2+BANCsMgQ0Sr45HoXI1vt+M21nVO9VrHAp8LmbTd/axuOp1xW9Lv4vYeJFjDOsO4tXKiREhl3nbLG/5TgnXYl3Bj4RGUjoWJrK1ArI6Fq1atMrZodevWNZ32atSoERo0aFDoySefLHoO1jnnnHOO6YaIXdGQIUOMPQvvZ7sfYVdzzTXXhNq3b28s9vbaay/z/48++mix4/jiiy9Cbdq0CZUvXz7UvHnz0MsvvxzX4i5exzw3x21Bdy46NvJ5jRo1MrZLbjsa3XfffeY7R1uyxbK4w96O7/zYY49FWA3F+i68H92jeO+xY8dG2E9hQcaxNm7cOPT000+HrrrqKmPjkwhuz7+bc+88Zu6bE044wbznvvvua6yHfv/992I2ZbVr1zZWdE67pETX0M2YssC+CKs7upJxjrmGXHunbVb0MXDcqY4Vt+PkuuuuM9ZMzmucDNj28b7RVljxfp/O/R09JnlfvutBBx0UevDBB411YT4Q7x4CP/zwQ+jQQw81x8m1wQaLTobR3cgYF27suaytF9fNYt68eaGDDz7YjDXGT4sWLYxdmBvbtZJYhWHLRYdOpz0X16Fbt26h/fbbz1hmYblFtzsstOJ9rvO7pPL6ZOP0448/NteFznHR4Pxgxcn733XXXSGvjHPsx5gLo+cgJ84++2wzlqKtzPIxvt2M21jXOdVrHQuZtrgryXdxcw/SFZF1gfUulfk1lfXd7VowPM112I8Wd0qiFVkF7UWZxLiJEsG2/c7GGMPTuEmTJqF8A0/SX3/91TxSbTebbUC6mCAhBEzG2QLvzcT7wAMPpPS61atXG4I/bNgwV78P4j2kyP84LSmCOM79ML4hpLZdOPN3KgGAXAAyzfHxyMe4zdQ67EcSnd+234qCBykqbHgoCsyUa0QiRPtlIg1B8kF3t3wDKYrtFuWVim9ApTq6PzbVpHIT6ehKClKQpEST+eZGg+PCnSC6GCje7wsJub6HvALGI983WvufC6Q7TkuKII5zP4xv5muOE4khtTNopb1yrEgwkBai4UbPno9x66d1ONMoBZNO9iSq/tF2UlSTTA+oUKQDxhiFnFRyl2SM4a5x9tlnG60drhloltGJUWiRCweHVIBWzDZnyReYfNHpMQGjdfRKFbpCATmAsEAcbZtihcILaxUkmjFJwaEX5kwCIZBnrwRnaqa5DrvhmtROocl+6qmnjJ91vqEzUwGDnTIRRlwWrPUMFb/JCiDmz59fZJMVDciWs/mIswo9OnKSiUYPqYJCC3bjeHwTUaX6m+I6rxFo64Bho9O5nvz4fGvjRPENBYZemYAVCoXCq2AdZW2jkM7p3JFr2DWazy6pD3RQ1+FMQEl0AYMBDEkiwmjbmlINjNl8olbLVDJHp6q4YZkwYr0OEhjtpJGvjAVpWD/AdjaESPPIJZGGQBN9JuVmvaCVQCsUCoU72MYslkizxuZyzbMSDqLh+SDwhbIOZwJKogsUECQi0M6IMEQXyQSejth1xUOszlFMFPY9Yk0oTn9lhTswAUKec0mk2Rwx8ZP+Y+J30zFQoVAoFJFAxsHaajscsgYmy/JmikCzXthuhIr8QgsLCxREoCFkzpblSAe40SHY8eQa8QAhZ8cb76aFnHml0MJvRJpzitwm2+ePz2AzxLVH1qMEWqFQKNKH7XAIeSbTG91lNxtzeD5lgIri0Eh0gQIRP6Q3uujBppzs390AsT+Ry3gaZyYPduM2Kg1BixWxdgIi5+yu5+zKGDRwHThfTIi2zjfTkyPnet26dYaoc328mAJUFCZ2WakWjW3bbZM5IPpv6CchCMwHjFnmE+YeWzjFg9/zWnuP2OJcW3xoN6P8XkmGIttgjNn5m2AT449sbrbGHuOcAIiObW9ASXSBgpRPrIp2+zv+7hZMDCAWMeZmZsKwixtkmo5M/D9ygXiAeFuJiGI3aUbnZvXSmQLXGgININDqdKDIFGwGylrR8ZO5gDEG8SXr5TSA4vfWpo2x7iS7PKy9Iu/j3GTb19q/8d7RxNzK0MjC2d9Dru39xHMscbfEO9/uOIrCItKMJdZLxpgl1pl0cmIM50IyonAPXU0LFCw0sciSvandSgeYDJgUiGDH8g+O1lYzcWBpA0FGOhJvgeJvTs9TIk+0ow46ICCWSGdCbgFpgEDzfmQSlEArUgVzgJUb2Z+QUsZUtDSM+91mv/hpI8tOouz03Y1HMhj7fBbvz/87M2o2Im2PzfkT2A2ok9jbz+FYIeBOMLfxsBFuPotjtsetULiFLdImSMS4y4TrEe9jNdBKoL0HXVELFCwAsSzAnREaN4DQEclE9+X2c4lA4wyCDCReRNW5ECp2g/Q118ia1ZeESEMWINC2AMYLfqYK78ISTsgk/w8B5ieEwMKSSxvNtQQ0VkSX8ZZozCUjF3wGc0+iVgZOUm6RaF5hPuKest+Vhz1Gvjebeefn8V6WuDgJtkIRD1arjAMSY4n1MF0izfi0OmutYfEmlEQXKIg4xioetDIOtxFJotBMALEcOxJ9NohOxyrcwUb8IdLpWhhBBqgY5/UQaF34FdGwRNhGfC15BowbxiF/t6QAAhlNBvy4MbMR8eh7gg0s95oz8h4dDXRG222kXaPVilibNcYJczAPiHSqc7BzzHEP6hzuTSiJLlAwuRNFZjFwLnREh+3f3e6C2QGnQuQseVfpQPqwafB0CDTXmIkbUkAGQSdfhSWGbKJ58P/WbcepR2auiG5LH6SMUTyCzb8JJHDe7INMjy3UhuzwOs4dD73nFM6mLDxSnYu5T1mDkYj4cbMaFCjLKVAw4XPjklKyrhrckKRmnaQYwsvvY5FqFgYWi3hOG7GKF21xoY3SKNKHm2sUDSKKnH+ey6StUbLgwtlW3hb52Ygy48Peu9YuS5EYieQpnEPmQ6u3tufUOpHofRhMcJ+x/iKr4+GmTbgdLzYzomPH21ASXaCwrhkU+FmrKAg0hKxGjRpFz6OYj4h1ixYtUpZyQNCJVLNYcLOziNjPqFmzpkZjMgTOK/IMO7HGA9eRa6JtvIMJNlqMFWsfaTdedtNsSaBfxgXzB8fuh3nE6lXtNeBhj5v70hZ624dfroGi5LC2r5ZIJ6pPgUATvOJ+VamQP6AkuoABkYVEQ4ZZVLkp69Sp48o+jedDkBOlklg4iG5BnHk+iwYpLEi6RrYyB1sIZS3BYhFpS6C5tolcDxSFG21mo8WD+9XazDmjzX4go05wvH7LZnHM3J/Oe5RrYV1B7GaY+zRIMpmgg2sNkWY9jkekLYHmns5lC3FFyaAkuoDBhH7AAQeYRzzUq1cv5u+5wZs3b57w/SHKSpZzG+my9nfOBZiNjBLo4MBGm63MxzpkQDitlr4QwHfjOzLW/fydnKTaaaPnjFJbtyI/f09FYtgi71gRaRsk4d5mTdV6Iv9A79gU8Z///MeQFG0U4q/r5RZ33323kbZ4rYW59Y2OJklWA83flEAnx+OPP242jn7qkOlsKsL1JkNEVJOFlgXXRmv9GG1OBO5Bvq/X7sWSANLEhsdeJ0uW+J5kDLm2qTTCUvgLbJQgz4xpapbs2GY+YnNlpZEK/6BwZtwS4Pnnn49oBsCD6O2AAQPk008/FS8e53fffVfs7yy0devWNX8/4ogj8nKMfgaL2F133SXXXXdd0SIXPTZYAJs1ayaXX365rFq1qui1sZ5Xq1YtGTJkiPzvf/8zXdQyRaRZiK39EQSaz8qFBvr22283n9GmTZuI30+fPl1OPPFEadSokYmGk7bs16+ffPjhh8Xe48cffzTnrnXr1mbBgNCedNJJMmfOHFfHsGzZMjn88MNNsWurVq1ifsa7775r7l+nv7HF2WefbQjoE088IV6HtZ5j7FjHGyKanDe+v5UE6MbJv+B6IpnjetpWzvZ62nbniXyyFf4l0raTrK1dYBwogfYfNGfgwC233CINGzY0kxYECWJ02GGHmYXaS6QU0vTqq69Knz59In4/atQoWbp0qe90hF7Bs88+aya2U089Ne7YwD6ODcxjjz0mn3zyiUybNi1CY26fB+mh4czIkSPlb3/7m9x3333ywQcfSLt27TJyrBArJmCKPkti5u8WjKs77rgjpnyHDpUcz1lnnWU2DqQl33nnHTnqqKMMWb3wwguLnssmZfTo0YZ0cy44Rw8//LB06tRJxo4dW4ygR4PPgEg732fWrFnSoEED83euz9VXXy233XabiczHund4D67HFVdc4UkCytghMsVYtNIdZxdAtbsqPFj9t3Putm4fdgxAuDXNX1hEGp5BVpvAg15bnyLkAlu2bAnNmDHD/MwkVq5cGXr33XdDTz31lPnJv/OB5557jq1+6Mcff4z4/S+//BIqV65c6LTTTiv63U033WSeu2bNmrwd53HHHReqWrVqaPv27RF/v+CCC0KdO3cO1a9fP3T44YeH/ATG1syZM4vG2KZNmzLyvvZ6uUG7du1CZ5xxhqux8Y9//MP8/tVXX034PDB8+PBQxYoVzXXZvHlzqKTYunVraNmyZaGlS5eG1q9fX2wcZAMnn3xyaODAgaH+/fuHWrdunfT5f/75Z6h9+/ah5s2bR/x+9OjR5vidmDNnTmiPPfYInX766Qnfk3NXqlSp0KhRo8y/d+7cGWrYsGHo8ccfL3rOrbfeGurQoUNox44dcd9n/Pjx5lpxXbwAvse2bdvMOQOcn40bN5qf/C2oYFznanx7FYwJ5sRff/014lwEeVwUCpjP4BFLliwxP/WahlxxzVmzZoX69u1rfnoBeZNzEEW66aab5IsvvpDx48ebn/x7zJgx4hWQIifFlmyHSCSuSZMmJormTPEThezSpYuJfjVu3NhE5VLV6MYCkVKikF9++WXR74hYvP3223LaaafFfA3Ru3PPPVeqV69uoh2k04m8Rn+PSy+91BQU8r3ZKRPpW7RoUcTziDoSXSX6x3uROj/ooINk4sSJEWlzGx10Itb353d83rx580yUkMiqjbK7OW4LIsRdu3aNON9usXDhQpkyZYoMHjzY1fMHDhxY9Do3z/33v/9tzu/LL78sJYFt5U1UChcUopK2ojtb+Oabb8zYeuCBB1y/huNCWkTBoxO9evUq5i7StGlTc11nzpyZ8D2JMts2uoBxxD1qXUsYK3feeac8+OCDCbXBnTt3Nn6t77//vuQTpHH5TtxPXEPrMWxT/Pz0YqQ8V7DNS4J8DqyGmoyT0ymJ8YJ+mqyFyj38B+57sk1c12rVqpl7H2meXkv/IS/5A4jmSy+9FFEwY3+++OKLhpAmcpTIFtBQklrhWFavXi0PPfSQmajOOOOMuK+ZP3++IUksypBa0jJg0qRJcsghhxibuZtvvtmQHFL93DAlBeS0Z8+e8tprr8mhhx5qfod2m+M/5ZRTjAY3+nz36NHDLEboUTkGnn/eeecZHTCE2OpV2cTwHljhQZ6RLRx44IEyY8aMItnCxRdfbEgV74UuFVIHgYUEkZZPFxxHy5YtjWzASmrcHDeYOnWqHHzwweY5kHJSoWzKIN9uYDdvbo+f6w5sI5tk+Mtf/iL//Oc/zWbxggsukHTAgmlbedvuV8grLIlmgeU5sbTAseCmgxbvi+zh/PPPl7Zt2yZ8LsdhLQ+RrnCtTj755KTHYa81RDoRIM9sjhgfPLhmkydPNvcpuPbaa839gB47GbjObOTzBa6Tbelr3Rs0nRsJxjPEUbF7Q2HBeIGEMYasFCTomy4/EWge1lHHzsW2OZp6/PsLeZm1WfwYJLF2Xfyexe3YY4/N+XFFRyEZ4EQ9ibLGAlrMQYMGSe3ateXzzz8vipABCByLAN8FnSiggAqSmAkQcb7++usNaSGK+8orr0j//v2LPsuJG264wZAhiKYlfRBhItoQzosuusi8BwVbJ5xwQsRrjzzySEPY0bhCBMHHH39siOC9995b9DwITEmBK8Zbb71V5JEJcXNz3ODGG2804+nbb78tsu07/vjjkxI/57UE6JkTbbCY/LimbIj4bLdaeTYlaHQt+U4VtgiFBdNJfvkJ0bCTLpsZGyVPBqLosbIF0W4WRNC/+uqrpO931VVXFUX/Oa7jjjvO6J2TgbFLFJlzmgxPPvmkGaOvv/66+Tcbqd69e5s5ZdiwYUmj2RYUQbKRzxUYm1xDfkJ2bISR/y8kR41Mwrk+KKmIhN142UZMzEs2w0OGQ8eUd2HvfacXNP8PfyAazVhXpyX/IC8kGjIQL23B7/l7PvDII48Y5wVAZIzUO0SOlAuEwAkKyoiyETUn4uZsjQ3xg3SwEXCSWp5LpCyWo0CqgJBDID766CMT8eZndATank8IMM/n/53WfDhHQEaQYUBELCG1kTKivRwzO2OeY0k0//7hhx9k+fLlMUl7unBGLVM5bs43m5hjjjkmwveaDQvPpQAwGRhzRHriRb6iN1j169c35I8NlFvw3um4dPD9OD4m1Vgm/XayZTGFHHIu3Cyizs6VscBnsjlBiuImg8J4hOAyLt58801z3FaikGjzctlll5mNGlKeZGCD8PPPPxtHEMYekhFIw1//+ldD4rkuZE+QdDBu/v73v5uNVzRYsNiAIgVx03woXXBs1mXB+gFb4qwNFdw3fNIofWzYhjq2VTRjjDmG39m20QpvgA2PbYQU67rYplpEo5kfnJxC4V3kZWaCCCSKRLtNkWca3bp1MxpmCyKeHTt2NFICIo5OLScRWqQCEJZo4oUUhAUaAhqNWL9LB5AaiB0uHRABFpzoKDJYs2aNuSmJ4PGIBY4XcMxDhw6V5557zkQGndfHKRHASxnCA4FBX4qDyZlnnmkIXElAtDad4+a5HDva2mig73ZDot1usFicuO68b6rRHgiBU6YE2XvqqadMpJ1sAdH1aFg/Ua4FUqFEzgwcG+QQCQxjsqTRqH/9618m6o2cw20mwbaPZzwgr+E+YcMVK6qCMwfZD6IuyIPcuk7w3bp37170b8Yr7/V///d/ZvN6zTXXmA0wn0nGhmuFXaUTdmxnM9pjSaCNPqtkQ5Et2HFs7TXZtCH1sFFPJdP5BdfDbthjdZy14O/MG3YjlM0NviIzyMuMTnER5DMWWHCILnoBkBAWX6Jac+fOjdBsIhV44YUXTDQSWUE+AEFAVgGBIMJNhDga1swdXXe8SJ+1XYMsQUiIKBIZtCklNNLOhgdEh/v27WvS52h877nnHmM5hj+v1WjHIyeJCuCckblUjjsTsL6dTF5kHpJtsNKxiGMj4txEoZeHOLMRigUbleC4OL5kBMxGOZYsWWLGLhNwIiLNRiwecWW8s3mhmJDIsgVpY7IU6OWJlECy44FNHfcGHtDR3S85F4wVvh8SnHQzGmRL2ID897//Nfpw6gT4XLIS9hi4R6NJNGlTzo8z+5LJLntIwZwERtPrilyAedda5VmrRAgcYzAXG0dFfALtNjNAkIB1krmROUQta72NvJBoInlEqigitBFp+5Pf56OoMB5s9ygiSk5AHCE1uFlAupyuGBw/iyduE9GI9bt0gVwEkoK/7htvvBGXKHF83JTJnCeIBkJYnVpnSFO0w4IlgHx3HkSEKdSiGYcl0UREY70Ofa0bpHLcPBcyBPGLxuzZs119no2gohPOJDm3sPpb5CUWlujFipQTWUee8N577xlpkd1UsNGJJduxIOobTRjT0USTibAyCR7RQDt+5ZVXJnTs4DuA6EJHxhQRasg1kWOKU9OF9eU+/fTTzb8h/GSPLCDnFB/G+u6Zqk8AnCtLWIAlzroAKvIFKxuw5Jm1jHuPMalNenIDNjIQaM63baaTDFYTzdpHFpIMpGYSvIu85RaJRhOVo0jL9pEnAu0lAs0NQKSVHWT0gstAJ1Jnm0ywe6S5BGD3CPGDADl1wxDo6A6I3GBoPLlRrLOHW/CZSAKICkJKYoFjIWpOtBMdd3QzC6QQVu/Kc6MlNjgfOKPHNkXtbGTBNeM7Olsp46IAecI2zpLSFStWmOi1G6R63JBTzjfn0uqiKTKLl/GIBpF3gN1ipkn0119/LbfeemsE2UsGCCqbAu4PIqzcL8iLkkkr2rdvb1xiuE6QuESTdiJNNOc71rVC4sGYJzvDNQZsoqLvW+4dNsksHE6SzHGhff/++++NxZw97+kAEk7hIhZ89nuyQbdFonYMxPqe6OndXgu31fY2CqjFggqvSj14sOZYTb6S6eyCeZBzTNYrlfPMcwlEUQtkibQ2WfIm8irQY+HNhwtHPEBw7QIMMYDAQWTQWsYS+TMRob0koojEgYiidUYgTQ8BZ2NwySWXGPLAgg85cUbGxo0bZyKHuHnE0sQmg5tiLLxzR4wYYXSkyD8gNdyYEAkigfw/QPdNxBSCzHMgOvzdqVGHQKFdJk0OYYPI8xzs8ZwRbCQgtM/m+hLJZOKG8KMrdvpJZ+K4ATaCn332mZGZEB0n6sIGAAkORD4Z0HNzbXhffKlLOob4fCLIEGhILQVv2L65KSYjCsx14LitWwibBIhask0mE68zcs+4Y3PjNgpiwaRtI+VO2Miz829kQ5BVYC1HoSXyIiQUnAfGhLNmgOg654FNH9cv2jc7kZ1kNCgahJAjtbFgXB599NHGThBQxEvRrRMTJkwwn83zShJ5jm7zruQ5s4A0MO8qycsMbOG0dfRgTmZe0GxJ5mGz61Yuls4YZi5h7SVgxHzF/+v84kHks2OhV2C7zTkfFSpUMJ3PHnvssYhOQrE6FtJ5iE5ulSpVCo0dO7bo93RE69ixY6h8+fKhxo0bh55++unQVVddZd7bYsSIEeb9eF+3xxmrK54TsToWrlq1KnTZZZeF6tata7ow1qhRIzRo0KDQk08+WfQcOmKdc845phsi32XIkCGmKxDvd9ZZZ5nn0EXtmmuuMd3oKleuHNprr73M/z/66KPFjuOLL74ItWnTxnx/Ote9/PLLMTsI2t+NGTOm2Bhzc9wWdLKjYyOf16hRI9PJLpWOhffdd5/53s6ugm7PefQY4hg41oMOOij04IMPhn777be4r73ooouKrj/nlw6efA/nuKNr5t133x1KFXQ427Bhg+kAmYmOWLE6Fr722muhwYMHh6pXrx4qW7ZsqEqVKubf77//fszXR99rzodbfPzxx+ZaLV++vNjfhg4dGqpVq1aoZs2aobvuuqvY36+77rpQvXr10jofvOaPP/4w5zQT3ScVinyBucHeA4zpIHeGzCTsnJup80k3U+a5tWvXFnxXwy0+7FhYiv8kI9pEwNAQEhVTW6aSgQge9lyx9LtBBmMMWQoa3XyNMeQnRKRxH6GhS66ABRuSA6QSpO/IgJDFILIOiBhxXuiAmY5+2Db2SCetWGggAse5JLuEZCYVoHdmnBKFJurMONXIUPZAFsU2pdBUdvYABUCix/lmjtDznT6s3DHav7+k4D4gGs38Xcge0n+44JrUOZGZxtkqumA9H9AVIIuwhVUWEGckH3QAVHgPTE40jaFo1OlGki3YQh8mXogu+nk+l9blFAgyXpBJMGFQsJluAR4LI7pqPiN6TAYNuM9wPmJ5Rye7VmxmIBcUvCZzPlFkhtxpW+vsA0IG4UN6YO3Vgj5PlJRAM99mkuhCKFmfmINsp1OFN6CrQBZBVJOuguyYiDLi30sEKxPd/RTZATputLy5IEi33XabWbiefvpp08Ya3TSaanTdNCDp06eP0WlTtGk7AaYLG4UOepU35JniUzc6UBZFSybQk0KeWRw1SqcoNNiiWMY4hM1uXPipmxh3sAWbzBHZWD94XzY7BFZ0k+MdqPN/FkEnQXxrKbRigsKJALIUqymIInigkJQHVoBMwBSOWHIHweaRSViTfxvhS2T6H2RwfmwrZWtTx08lz4pChy2StbBe02z2tVFQYlipXDYDMNb2FZ975iOdw/MPvSuynDpWKBIB8syDVF2uquStNIHJONPNRvwOe26Q1XA9IBSFqj9UKJLBbhyRKWgdQHEwT+RSt89cRFM15imItFrf5R96NygUeQKFakShiWCQqssVbPGQjbYqdsP6axPxSdUWUJFZWC9jJW35AwTN6qWJSqOXTtR1NmgEGn0yhDaXkhfrIc1nQqRVbpNf6OykUOQBNiUHoXU2rskVICc8INHOJjlB3cxYjSHRNtU9ewNKor2nl3Z6oeei+NrrBJqf+ZgvkNZApJm72Ngo8gednRSKHIPIARFofjIR5ivaCUFhcQxqZMlW0yPfsAVUtnmKIv+AoBD9DDJZ8xIgzzY7Q/QV8sYmPGiRUL6vJdBE6fO14WbuphkRc5gWGvpEEx20m0WhyAZYfIj+UkiY72IdFkV7X7MoBCXqZ1t122r6oLuWeDnaB1EJyrj0C2xRG/cQGx0kaUHJ3rCJ4LvzffP9nZm7rCyQtcTv81jIhxzT1cxkLwwRG4VCkT6IGBA5IILglXa7LArWH5YJOQiwhYOkqP2+8CgUuYZtac39A5g7INOFDOtqBJg78h0AcRYaQuaRB/o9a7N5F8f005zsahRwgbhQq1evNv8OetczReZBZJYJoJD1uUzATHQ2iuGloj4WCIg0EQ0WRz9NYm5hNwhOXWchjze/A8mA7RLpBcKiiA2ujZXeMIdYWVQhge9EAIQx6cXMCHM2awsczY8dDUOhkCHQHL/dFPgFrmcm2hIDS6QVikyCCXjdunVmkipEAmdb6wImYSY8L29mLNEvlHMPGWOBZ8FXb1X/2Yd5jbQoEnusc58V0sbHzh/MHaxTXl1DkT9BqL2S5UwVEGjLNf0C16OcnU3NmjXlgAMOKPi0jSL3WLhwoTzyyCNy6623SsOGDaXQFpbPPvvMdMo76aSTTDGhl4nL1KlTTVes7t27+y6iEY21a9eaDpSgWbNmZv5S+AMQgunTp0uDBg1yagGpSB8EQebOnStLly41HsbNmzf39aaVuZv5g4ZprVu39vz8MWbMGBk9erQcc8wxUqdOHfETypUr58vATcpbRS+I6RWFByJNZDmsrVUh4fvvv5effvpJTj75ZLMR9Tq6dOliIi9+b8TCArho0SKj22zfvn3BjatCB9erX79++T4MRYro2LGjIZ3MeWPHjpVOnToZQu3XTQGbuXbt2knt2rXF6zjwwAPNBubdd9+Viy++2NTeKLILzZEpFFnEihUr5KuvvpJevXpJy5YtxQ9gk2ybK4wbN85Epf0EFj2OmSg60XQeSqAVityBlDyEbr/99vNtJJr5D0lK7969fUGgAUGoE044wczhw4YN86Xbhd+gJFqhyOIk/M4775gU4KBBg8SPQJNKJN3qub0OImDffPONzJgxw/y7EPX1QQEboU8//dR3mzhFGOhyyWoRDUUmNm3aNN8U8s6ePVtGjRpl5nC/Sdowfjj22GONRJK5W5FdKIlWKLKEzz//XH799Vc5/vjjfSmBgoD26NHDLIZMxkR4vQoiLjNnzpQff/zRpI47d+6c70NSZOCa5rqlsiI7YO5Yvny52eD+8ssv4mXMmzdP5syZY7T4ft2EN2rUyGQ/hw8fbrKhiuxBSbRCkaVIxvjx42XIkCG+1QMCUrE9e/Y0mwCINKTGi5g4caLMnz9fWrVqJV27dvXt4qdQFCKoS0DfTpSU4rcFCxaIF0H0ls04RchNmjTJ9+GUCAMHDpRq1aoZfbSaQWQPSqIVigwD6cP7779vKtMLISJKJJqoBguLV22riBpB9hs3bpzvQ1EoFDFAXQL3KO5LuK54zSoO6RoyMOYQ5m6/g7maLCh2ql988UW+D6dgoSRaocggSD2/9957psDjqKOO8p2eLtECWK9ePfP/y5Yt80RnQ6JZFD5yzmmhzkOhUHgXzItYxRGVtverV3TS1g2GbFahgEg02VBkbkhUFJmHkmiFIoOA1KGpw6ezEL1tSQsSRULaka8UIUVK2GdxHDSuURQmuLaQGr3GhQe66tkN+YgRI4yfez6LkfHGZzNu25gXEijuJItIdtQvBeJ+gpJohSJDWLVqlXz55ZemGM/verpkxYa0wP3hhx9yrpGGuPO5eKF26NDBRI0KJdqviAQ6fMiWH4tyFe5QvXp103wKP2maUeUa9CaYMGGCJzJr2QLz49FHH21+kiXVQt3MQkm0QpEBQCaxsyNFOXjwYClkYFmFtnHjxo0m8k473FyBCn8cTyDydevWzdnnKnIPNmpECPmpKEyg2+3WrZvUr1/fZJco6ssVySP6jcwBC1IaxBTyZpysKESaLClztiJzUBKtUGQANFTBuum4447zbPFdJkGE0LYFR16RbVjdJIstTRxU/1z4IDpIx8lCjhIqwpHStm3bGq00RXC5INE2AMA8QvE3Wu1CR9OmTc2cTbaUCLwiMyj8kaNQ5KDAjXTkQQcdZNKTQQHdyIhII/Ggsj1bZBrdJH6na9asMf/W7oMKReEBb2PmEwgtJJc5JVtAZ49OGDvMIBBoC7KkzNtkTXOZQSxkBGf0KBRZ0uh++OGHxmKNtGQQAXnG+3XSpEkZjyLNnTvXeEDXrFlTo88KRYHDSiomT54s3333Xca7VfJ+ZAz5HOpWgqa3J+BBN0MCEszZipJDSbRCUQKMHDnSRE2OPPLIgtbUJQKRHAr86IzF4pcJIs17TJkyRWbNmmU8W9EsBilipFAEGbZh0ujRozPW4RBnCjKG6K6DDAISRPxpa+41r24/QlclhSJNQBrZzatGV6RGjRqG6OKaQTFYJgo10UfiwEHaVRE80OSHFD8/FcECkq3evXvLvvvua4ivlXKli82bNxtbTjqwQtCDDtYsCsTJoqpbR8mgJFqhSAPoyfDdRAPNrl4hUrt2bWnfvr0sWbLEROfTlYaghSQKhUewOnAEm0hRbKYa+GCCAm0K4ZhjSyK7YD6BQPMeuPpApIMO5leypxTuIpdTpA8l0QpFGiA6gi80XQmDpqtLBLoaDho0KK2mBUSf8YDmQXQkqPIYRWQ2Itde5ArvAAkX7hkUwzEnpNOUhboVshkEO3RDthu0Xyd7iFtHukEPhZJohSJloNGjyxaTcq1atfJ9OJ6DXajQNFMY6HahY2OyYcMGY3elBFrx+++/m+IyfioUSMWIKC9cuND1nELGkA19nz59pGLFilk/Rr/h4IMPNkGgTz75JN+H4lsoiVYoUgDREHRkTMzoyhTxQfSHwkAsAJN5QKMthyyxMSHqpFAoFE4g7WrcuLFMmzYt6eYcAg3hxjFIER9sLA477DBTbBn0gst0UfhdIRSKDAL3CSIhf/nLX1RblwS4ahAJmj59utE3IvWIBToQsuj16tUrLRmIQqEIBnABYi5hc47Mp2XLlnFlYRQTUpisSH5OmauJRiPxUMlLatBItEKRgkXSF198YYrniIgo3E3QeGjT0jdazwhxBrTdHThwoBJohUKRFLj1UHDK/BHtLMGmnVbeaHwpIsSBQpEYSOcOP/xw0xmUzruK1KAkWqFwiU8//dQUugwZMiTfh+IrtGnTxmw8nDaAVMx/++23MmfOHPNv9YBWxFrcyfaoPl4RDawP27VrZ8aGUzO/cuVKU4yKqwf2eAp3YLNBN8Px48fL4sWL8304voKuXAqFC6DBQ5ZwyCGHyJ577pnvw/EVWOiQcvCTokws8NArEjWqU6dOvg9P4eGFnQ2rRhMV8YBkg4ZXdjOOzeaAAQO0riINdOnSxejOqfnRluDuoSRaoUgCJpTPPvvMRD+IqirSx7x58+SVV14x0g400LohUSgU6YL5o2nTpkbP+80335jfqQtHeiDIgXc0XQzHjRuX78PxDZREKxRJQJEKEVSi0JpaLhn22msvs8hxHnHlUCjiAV3r119/rR62irhAE71lyxZTDEfBN81DFOmD+hQi0rQEV2tJd1ASrVAkABMJEwoTCxOMomSgmv6cc84x/tpsTvCFVijida/k/uOnQhELSOx+/vlnOeKII8wcTaZLpQglA3IYQC8ERXIoiVYoEoBIGFFTO7EoUgckiNayFPxQQIjGtVu3blK1alXt9qhQKNIC/vNEnykwpLYCx45+/frpnJIBiQw9ECZMmGC68ioSQ32iCxhY1jzzzDPGlo2UKLZs559/vnTt2jXh65599ll5/vnni/2eSvlYFjgfffSRvP7666Yyulq1anLCCSfI8ccfL34H3wfyR3GTanfTB/Z2K1asMEUrFni92nFI5Ahph55jhULhFhBnGjpRTOhco7C+Q9PbokWLCEcghXswN+PUQS3QmWeeqTLGBFASXcAYOnSoqVw+8cQTzYSDRdu1114rDz74oNm9J8NVV10VUaQRy4bs/fffl3vvvVf69+8vJ598smn1zPtjYXb66aeLn7V2TCBMwsk2HYr4mD17tmnX26lTJ7PBigU6kK1evdoUGqKZVigUinhAvsFcwtrkJNAWRKJZq/CLpt13pUqV8nKcfgbnkOARReA0tonV1EYRhpLoAsWMGTNk+PDhcskll8ipp55qfsdNcfbZZ8tjjz1mHskAMU7ktUn08Omnnzatmm+99VbzO6p7Sd+/+OKLctRRR/m2gQYTB0UqbAQ0PZgesLLDeooJONZiZ0HEiIpwbO969+6t1fUKAzZUNMzQjZXCgjl56tSppolTvIZXEGj00aNHjzZ1FxBpItaK1IDrCQ8y2fwke6goDtVEFygohoP8QWQtmEjoTEQxhlutE4U90V2hLJA60LL5mGOOifj9scceayqmIUV+BG1j7cTBQ5Ee0D5z/po0aZLweYxLotCkDBkzZDEUChZtIo66eCvsphwCjdVoso6x5cqVMw1XbAfDeGuYIjEIvLHGjx07Nt+H4lno7FTAzUGQcERHcWxahirm6tWrJ3wP5BmQYSKD7OYvu+yyCBN7PsNGEp1o3ry5iQYQhTz44INjvjc+wUQfLbzUJYkJg4nDz3KUfDdAwHJqn332MQ834PlkNIgescGrX79+1o9TkT+gW2WzxDzBHEX9BrIfyI59kOmCDDEWkPvwHJ7PZosHBJvXQpT4t3a9LFwsW7ZMJk+ebMYCBYRuwLpFAfNvv/2mmt40QfE35xAP7g4dOqg0JgaURBcoIKixiirs7yCx8YAE47jjjjOTFYsYOudhw4bJzJkz5amnnioi5nwG0e4qVapEvJ7XEIV0kuRofPDBBzGLF/MNCjCZMKx7hCI1QIzGjBlj7ADd6O5jVYUzfgBEShc/fwEpF2PA+ahRo4a5tjgp8OB31oaMYlMWZwgzEionSeZ5/OT1EGzIEGOCz+AntQrMRbwncxNFZWzGeDD+GjZsaD6Huc7+XtP6/gTrDF1P27Ztm9LrkCNaSSJe/9rJMHUg64QDIA89+uij8304noOS6AKFjeJEg4XG/j0eKER0AmJDBBvdM2T6jDPOKHqPeKlWPifRZyAzQf/qjETfdttt4gVLO74TE4cidRkMVfEQnGbNmqX1HnbMkrqlgIiUrKbzvQmuM3IvNp41a9Y0v6OQ2dmkAfLDphwSDeGFEFtCy8M6svCcww47LOL9yQbZLnTIfWJ9PuA9IcdO4m5JOlkRZ/c1nsemH80sBJ3nac2Dd7Fp0yYT/eQa80gXEGiyXHScZXOlcA8i+li80hWSjSse/4rd0NWpQMFiQco0GqRE7d9TwUEHHSSPPPKI8Y60JJr3gDjFAp+T6DOI8not0kvKmJThoYceqsVtKQJCg0YeAsXmCIJUEkCqiDxCgCDSSnS8Ae53ZFx4fkNy7f1PN082QJAUosmWJDs3QESHM9mwyGYpIFnx0sz8nrkLYo00jWO2EW67aeZ4IdY2aslDpSH5B5lMpHWMqZLKu4hAo6OmHoiNWzIpoyISnTt3NnMx0ei//OUv+T4cT0FJdIEC2caaNWuK/d5KLNIhsCyAEBvnZxDJYUF1Sjog7zzPbx6dRNHQ8DJhKFLfgPCA8CLlKSkgMrwXiyiFQchrlNjkFnST5Jry0zoe8BPPb1s0ynXinrEZBK919YQsW0LPsdqIud344fLA9+OBLzzzGVE3yDc6XP4N4VIZSG7BmoKzBmuI01++JCCbyiafzT5NWdT1xT2477kv3nzzTZM11pqV3VASXaDAEWHSpElm0nBOFljf2b+nAhYcFhmnW4X9f7SMFIVZ8G90i35ytuC7cW7QfGnUM3VANJDAZNLSkOgR5JnFlDEF4VFkHzYDQOQWcgz5tFpSFtOBAwfm5Dj4bKwRY8nSMkWweX9rv8gchzTFzpdsINBi8zy+P3ICnquEOrsgW8A9z7hDPpCpzTPXsWPHjvLtt9+abApafEVqmxA2oWRvsMrVepUwNLRToEDHTBSFAj6nxAJdE2TEprNwQoh2xiAqE4333nvP/J7ooAUNNIhI0XDFCf5t3Rb8ghEjRpiFsn379vk+FF+BTRr6ZZANT3AyJngFp7rpU7gDcwQbSGRM2IcB0t0QRu5fLK7ydf45DuaYXHWyhBQwn1lyAOHCXYgCWTbWFC9avTdzIYRbkXlQKMpGhg10pgMayIsYz6kWPSvC9wfRaPgC10gRhkaiCxQQZQb8k08+aSZ8Iih04GPBvO6664qed/vtt5sF1Bbw2MJCok34cVIgyOKKForIcrTv9HnnnSf333+/3HjjjWbSo8UzHssXXHBBRtL6uQBpWzrr4UiikgH3QA9rPVgZX9k6d1YWRGSUCRwLRY2ClLxgi+g+0VaINPIFLDEt0UCHmm+QzbIWm/m6L5njcIXgwXi3pI5zh1wOskd0jk0HkVMdl+nDuvFAcBmT2SootvUuRLx5cG0V7gAHYJ4gGk2BZikd70qiCxn//Oc/TcT5888/N4smpPiuu+5KmsaiEIdWzDRsIXrNe9D18MwzzyxWMEZjFSa7N954w1Q/o4m8/PLLizl8eD0KjeesF4iDn8CGCZKDh3guSA6bQdKwaO5TtboKOiCkaJkhgugZIYNcOxZFSKAX/V+t3ST6Vbd+49mEk9QRMIBEE5TARQbffaQHkGnOtW7GU4N1UWFtylVhJ/cD142NkN/qd/IdjX7ppZfMuWvqI8lmtqAkuoBBFOXSSy81j3j43//+V+x31157bUqfQ6tvHn6EXQAh/brwuceCBQtk+fLlptgsV63dIXvIbSDvkEDVSCcHNpNE73ngSkHGABJNNK5v3775PjzfgrmC4AIPIqdYqFk/YgrX2OgRqePvGq1LDMYlnUptEWiuQEaLAsbx48ebeo5cfrafQTCO6D3BpyZNmgR+fCtrUAQaTAQsdErIUku7EsVhAnW6HeQCTN5kDObPn286YioSR/e++uqrou6k1EmgMVZkFpAIIplW6oGPrm03TdqbDWc8K9Cgg00eBJo5BQ1+Loks1w0nJq4bRJoMgsLdeUPuSRBl9uzZEnRoJFoRWNgOaqecckrgd9OpgHPFgpevc0aEjwUvVwVnfoF10EFmQHSU88NPJAbZcrhQFAckmgfyIwg0+mkyAMhBiFDrtdgN+g6wwaCZTj68+an5IZsGiaZoNFdZNb+jQYMGJiI9YsSIwNeoKIlWBJZwMAGw2DEJKNydM4pMiQbb1HW+QOMEi6C386VuAVnSokWLjM6ZqKgla5ny2FWkDu4RIv+QRAg0Gz8i0/yejSB1GEEmH4CsEucgn57NXA8iqyrnSw1oo5955hnTwCbI9UQ6ahSBBHIAiAcTQdAXMreApKGttV0vvQAirxS0ci2DurGh+I60KnaAaDuJ6hVCtJNiQmotvFBUmKmCxNatWxsJAz7INHfifrLty4MCNhXYBSJ5wcHJC9FfCDTzGr0VuD6K5GCD3rRpUzOOgyyFURKtCGwUmklA/YfdN+CgGQ0RNC91pUOqQGqRYkOsCoMAosxIBFjsbQMJHHVwNvCLrWQQAVHDHgy3kd69e5trhcd6kDbxVivOhtx6bntpXUAKheWrwh0GDBgga9euNW5eQYWSaEXgwAQO4SJqF6QFLF0QZcBxgJSrFwswSSWyISKKRMFjIV8HNPy2WM02RUK+gbaz0IAt53fffWd+FhqQH1HURtbASpIosMO3uJDHL9pjHDGwCPTahg83KzaieKdrMxF3qFWrljRr1szcp0HLqFgoiVYEDmPGjDFuBU5drSI+iBiRgkXf6UXdIBshrO9wCqFivBABySJtSsSH6DsaTtt1tJCjlhAufhYqnPcTmQWkOWwG0bYXEiBYbMSJWuKn7VVfZrJsZNvIumlHSnfo3bu32XggkQwitLBQEShws9OwgyYxGoV2BzSLXi+8sbIGi0JpeAGBxIILXS2ZAJwEvBbBU2QmMk1mDG0/+nY2g5BNL0mnSnp/Mo8gZ6Gg0sto2bKl2bSS6fGCXtvrqFevnnGfITgVRHmk/1cZhSIFkDKFhAS5mtgtnIU2fiCkHCMP9Nu0qWch9CuIRBK5s2lSxmz37t2VQBcwIJo0wmHDSsFWlSpVzO+RePg5VW5lR7ggkUXxOti00ohInW3cj9tevXoZiVkhy+niwfsro0KRIZCemzJliiEjtjGCIj4o1iNy7zcQseWBA4LfNKbWuQDdM6lvUsuKYIGsAzpTHFYYD2z8kfKsWrVK/AbkR2wEafzjN2LIxoUCXooNFcmj9/vuu68Zq0GDkmhFYDBu3DizQFHQo0gM0snYx9Gsg4IbP4ENEoVLpGKZ1IlM+wUcL0VNpEWJSJIqDarsiGYxSHSC3FSH+cp28mP+si3F/QA2g4zltm3b+vYaoskn8FLIuvxMoHTp0macsmnyW+CipFASrQiMNIHKcIrjctla1o9gkWYypFAv1229M0k+yDiweNMVzcvpcPTblhjhfkJ7blLfTn/hIIJILBraQvC8LgnwyYagsKEgM0SGyOug7oR28/hiI1HxI9i8EkT4448/tL21C3Ts2NG4BJEBDBKCPUsrAgOr7e3Ro0e+D8XzsFpiv+vGIV9cbxZBr0ZziZITXSRqTobEq64F+dr4khHBRqsQLfxSBRsKxofdEOKaQ0DAa9I0orZLly6VFi1amNbQfgayMDa0tnW73xv/ZBPly5c3xbBkTPBCD0qwSiPRioIHkT7S5ERFdBJMDqzTBg0aVBCTIBM7xXgs7KRlIdReAESISN23335rCD6FZIrixZW0mS80u7eSoGLFiia7wvihaQnjx0vpc+ZaSD0kqlDGNBsBNrlBLJpLFd26dTM6frJ/QYGSaEXBA20eFeK2sYEiNiCaeH3ahbCQgFyCVDg2TPlu6wsBGjt2rBmXLNA4AajrhiIVsPEic8FPCvfYkOVbskT3RXyuudcKaf5A74sXMpF1RWJUrlzZSGCQdARFR64kWlHQYGGBOOFy4Fd9b64wZ84ck7YsxMgfUXV0pUzsZCWQCuRrPEJ8GIts6qhq94N9oMKbhIUNGBsxNmTIgvIFZDdotbHlK0QNu61P4Ht6rV2519CzZ08jUwtKK3CdvRUFDZoX0OJbo9CJQUqYKDTWWugACxF8LyZ4ItFEgnMZKYG0k35nowIaNGig+mdFicEGjI0YkVJbwJfrCCAuPhB4NMNEIQsVZOjYrPihsDOfOOCAA4yUh+BVvrMjuYCSaEVBA+JStWrVQHZScgsmOhYGIluF3gq9UqVKhkgTCc5Vytm27OanavJTi/7R3S7oLiVuOx4yzwFciHjkgkyzIYVA00SlQ4cOni3gzdSGhU3CunXrTHBGER8UdONrToFpoUNJtKJgQdqNyIHVDipig8mOSDQLRBCkBeiPbdETjRSySTbIgiAfgbxjXeeHjm1eyhywGBdqZiRbICKN/n/06NFZL6TFQx4rSaxDgzDHsqnDJYV1xS9+3flAo0aNjLQnCAWGhb9iKgILm3Zr3759vg/F04DY9e/fv6jNcNC8w3mQqs1Wqps0N2TQb01rvJAhodI/CCnhTN/Pffr0MVFi3Duy0WyIJiRWmoQsKQibbwvkM8wXNJJRxAYbKjZW6KILscbGieCMfEWgwMJLmpEJz6/dsnLVCh0E0R0C+7suXbqY9tqZbMjCAmttx2hAQJo7SCQjU4D8ffrpp77qOOkVcD9TdMjGjfGdSTC2cV8gi5OtzacfipRVIpgYzHuMD2wqCxk6sysKEmjWWDy0xXd8bNq0SUaNGhUI3Vqi9CxEmvQ3DXlKSqSJbiPfsBZPSp4V+SR7RKRtw5NM+Emz6aYoF4kNMo6gju99993XfPdCj7KWBJUrVzaNarzeMbakCOYdoCh4cONSbIMLgiI2pk+fbpo30BEu6M1lSD1CEEqic2RTgmcvP+ncVUheuQp/wpJcovl4OJNeT5fQbN682WwQIefIk4Je8Mk5HT58uNmAK2KDIBY1N9SGFCqURCsKDkz2M2bM0ILCBGDi59GqVavARpOcwK2DLmtIPNIh0jhvQKAZb6TRg6YvV3hf3tG2bVtZtGiRcSxCa54qIM9suCHQhegFnc45JVBDMCKIshY3aNSokYnaF3KBoa6eioID7Z2JtqDJUhQHEz4TPwVB2oBmNyDAnBvIMNX3qQDyjcUY6XPV4Cu8CLJySDCwaEvFuYPnEXVls92mTRstkHWA80HmafHixfk+FE+idOnSpi6EDEi+O8VmC0qiFQUFyDO7Xlq0qjVWfGDTxAKgKD7pYxFGG2XrPpAIVOgT1cPCDm21Rugyq6kcMmSI+anIXA2A3ei5kWNAfJBwZKJeoFCj0fXq1ZPZs2fnrQuq19GxY0czRxZqgaGSaEVBYcmSJaZqXAsKExNFfJKD6MjhNgXJJoyFkS6O8UB0hUem3Q8Uu8cpEX6VG2UWbErQ7EOikb5t2LAh5vOQNVFEyE82iCqNiw3mCjJ6usmIDdYZOuFiJVqI50hnJ0VBFhQ2bNgw34fiScydO9eQQ0VisMnggayDdG00IM9EoWlQow1Ustcsady4ceanIjtgfEOUo4k0kUN+j5QDOzfN6sUH8hZ6EajMJT4IauGZv2LFCik0KIlWFAywG0LrG5TuWamCdCMyhVy0Ay6UCBPFhkg1nGCMWQKN9EORHUDkqOxPpwhO4Q6QP8Z3NJEmQs18QRGhymncAQcKDVDEBp7aRKQLscBQSbSiYIAjB4VhWlAYGxBooE0C3MNKXmbNmlVk00TECacDJdAKvwNJB0TZEmk6ETKHMu4HDBgg++yzT74P0Tcgak+mjw2IIn6BYaFtipVEKwoG3KDIOKIjh4pwgRD2VpwfdKYK90DHxwJJC2VSkmxC1H9cUUhEGtcO5k2aBFFECFSLnhqYE5hb3RQkBxFt27Y16xAbjUKC3iWKggCNMiCJ6jgRG6TFWRQbN26c70PxHZAG4WaAng8irc0VFIVIpPGBRuqF20Sh2pFlEzRXoo6CDrCx6iiCjqpVq5r6EYJdhQQl0YqCkXJAElu2bJnvQ/EkWBhJz6oFW+pgc4bW8dBDDzUSDppVxHM0UGQOkLrWrVubn4rsZlomT55ssiwUgNE4iM2iWx9pxW4wPyD3+vnnn/N9KJ5EmzZtTKS+kOwAlUQrCgLsbkmz64JbHL/++qtZKLV6PHWgg8bf1NreYfWl9oC5AeOV867jNrsgw0L0FM0qkUI23AB/6EIiO7kAgZxevXppMCcBicYysZAKMJVEK3wPooL4Q6uUozgocqEDH+dHkRrYeCxYsEDq1q1r2qPbRRLPU37SxY0NiiI7YLFdvnx5Wm3YFe5BK29a1deuXdv8u2LFiqbYEAKNRrrQCsGyDewAkYDhFqWIBC3AafRVSJIOJdEK3wPLMWQKzZs3z/eheNKRg3NjF0iFe7AQ4pGLDVgsy0TrsYseX5GdDSCWWOp2kB0QDbS+vZAbJygyhEij7WUjqUgNNGAaPny42WgrIkGwi3WpUDYZSqIVvge7WqKD6joRCYqDiEDjyEHRi8L9eYMc0+SDgqt4nuP4kSMfIu2tDUEUfgIOCWhTE21QsLfDJx35kiI10PALGZJuQIqDOgdsFLENLQQoiVb4fsdPNEWlHLEL4iCAaseWmoSD6CcRpGQbDyL8RKr5OWbMGI2YKnwBiB0EhsxdMrceK01gnqXwUOEOyL3Q81NToQWakaB5DwWYhSLpUBKt8L2Ugx2/NhApDrSNRJHUkcM9kGjgTkABoZsiVbIfEGmeq7ZgCq+DAkLmTOZLsnduQUZr4sSJKl1KARBFyDTdTRWRIOjFeSmEDJ6SaIWvo4Y4J+CaoESxOKiy11Sse1DENn/+fFNESDrWLSDQFGZVqVLFpCnV0SAzIBOApEClSJn16mW+TNU9ghb3RKWxd9RCT3dACkY0WlEctlAba1q/Q0m0wreg6QVpRpVyFN9ckK4tlMKNXC56SF9KsvCxqVNrsMyA4jY0udqBNDNzJWOSDV86G2s2MmRneA88pZljFMmBZEbt7oqD5lXMs4Ug6VASrfAtuAGRLOhuPxJoFykcUnmBO9ClDRxwwAGmNW1JwFhEA0lhokbsFF7pVjpu3LgSF7kRicZLmnoBnVvcA4vAxYsX68YjCgS/aErjdwcTJdEKX1s0oevTdG8kkCTsv//+xWyrFMXBwobWk+hapopm0EhTZAhxUY/d9IEH98cff6xe3CXAmjVrZPz48aaJSiYsQKtXr246n2pTK/dgLpgyZYqRiyl2w45HAj5+hpJohS/BwkqKMpXimCCAorj169cnrbpXhIFfKZH7mjVrZuw96WbYvXt3E2GhkEuRPtCYK9LDunXrjIYZHTR2jPGsGlMFxXJkW2jEoo407uaDatWqmeCGYjfIItPISkm0QpEHcOMxmStZjAQpWzSkSBMUyaN0aMfZiBFhyyQoMkTPq/aCinwBgkuBLFpm5spMguwfjViIcls5lCI+WKcI/LCxUewGcy9rlp8zdkqiFb4EjQLYxWpasXiKjEr6TEWdChVE0vCDZrORrWwGGlKAjzmSEdVEKnIBW9TK/EhGJBtyN9yQunbtaog0xbSKxCASzXyANlqxGxS5Ml79fF6URCt8B3ateEyqlCO2Jhc9tCIx8BZn/GQyzR0PRAHRQ06aNEmJtCKrgNSOGDGiiJRkc2wjU2DDjoe0bR+uiA9cOmrXrp3vw/AUDjjgADOO/CzpUBKt8GUnPpwP1AN5NyBnFLIhUVAkBmMHcoGTRi78xZGKQNYh0hQYKdwBWdKBBx6oFncuQeMK7BXJzmVS458IderUMQ+VdCQH1yTTsjG/o1SpUiaYQWbZr1ASrfAduOFwniBFpggDrR1WVupUklzG8fXXX+e8Ur5WrVrSoUMHY+nk5wUjl2Ask1nRMZ0ceMJDoPE679Gjh+mkmStgeweRViTHhg0bVP4SBYJhFMT7VS+uJFrhu4grqR9uPNX97gbpWyJ2qXTaC6q3OOMmHxswiAYRaTpJKtwRw59++kmbBrm0+2RcY6+IVCnXIBJNlsWvRCiXWTAyqZBGRRgNGzY0mz+/SjqURCt8BSZpLNxUyrEbFGZg01a/fv18H4qnwTlCu4nJf77axKOJJN3ONSMqrYgPe460+2Ny0CSoV69eeSu0Rve/ceNGs+lRaUd8YDdItz6993eDrAkuRkqiFYocgFQ4u1Z2r4owli1bZn5qSjVxBIg0KppEpBX5BmQewlHSLnKKYI9pvJrxI0fygu9uvkAUvH379iZr4FcylKvzRLCDOVs7mu4GQTEi9H7cMCuJVvgKTNAQ6HxFEr0IdvF9+vTJqQ7Sj8hEW+9MgYWUhWP69Olm8VAoUnUogkCjsfWKrA05GUViNDDyeyvnbALrQWSJ2ohpN5gLyWD4MaigJFrhG2zdutVof1XKEQkW0X322Sffh+FpsOkiUpbPaF00WrRoYRxCiJBjE6ZQuAFkAyce7OwoIqT40ktNRTietWvX5vtQPAs06zTAUbu73aCWB6mLH7MYZfN9AIrsgLTIM888I1988YXRqjG5nX/++cYgPxFGjRpl3Avo5EbxA9E7ilXOOuusYpP1SSedZHSm0TjqqKPk6quvzvh3whuaNsBKoncDAsY5gSAqioNzg2sBY8aLXRxbt25tjlH9o2OTjSZNmuSlUM7LoHEPEWjmZa9tntFGkxVTR5XEqFGjRr4PwXNouiszx1zoleyKGyiJLlAMHTpURo4cKSeeeKLRyn766ady7bXXyoMPPmgM8uPhv//9r2nWcfDBBxv96Pz582XYsGEyduxYQ8qjFzQG/sknnxzxu2xpc0l7Y21HS2VPYONGBMlUrOGdRo6VVUSkbFm21viaYRKMV1dWPh7yhbZOCwrjg8gGhMNLEehoOCUmeP3aTodBB0VyNKhQRIKACBkMz8yDUYBAQ4TIGrJxpZBOURwEqpDgcS0VYmSJBDyYr706tmNBSXQBYsaMGTJ8+HC55JJL5NRTTzW/GzJkiJx99tny2GOPmUc83HLLLcb3M7qV9B133CFffvmlHHHEERF/IwUD4c4FqGjOC2HctInwj8i4cSI//ijy009h8szvkwFSTdShSRMRsgD2QWFkCXfbpEwpTtG0YGygy7R2iF5KeceD7WrYrVs39UDfpfv99ddfTbSVYuIgw5JS5j8/2FgiOUEbTaYSyYkitjyRe15JdBhYfxKBZp33E4lWTXQBAkkG0QBkFRZEkA8//HCTLqEpRzxEE2jQr18/8zNeARRELtterkw4OBrkjERT4HDvvSJ9+oiQMu3fX+Smm2A67EhE/vMfkVdf5WRjGSKCppW/Qa45TxMmiHz4ocijj4qcd144Iv3OOyKnnEIoCa8zkYsvFvn8c7Q3aR0iUWiKeWibqigOxjpRXb/If0jxQp5//PFH9dvdFZUfM2aM+Rl0Aj158mTjcY69px/ApoeMJx1UY0n+FOEGTIxtNooKMdlCMhe2Zb1fEOztfYGC6BuSiui0sE2NEiFIpf2oXdCRUsTS5xGJJvIACUA+wsNNFNVJFJLdOBResZhklUQzmT33nMjzz4ejzUhXiLITue/ZkxMYlmq4AcfZqVPx39OWm2j211+LDBsm8sQTYZJ+zDEil10WjlK7AOdi9erVJgWmiL2x48GYR6fpB3CcFBzhukDhGBE8P0VkSiJLooaDjTgSDhZTyAVzAht+IlNEo0l9Wy0pUeqgRKepe8DJgUY9fohCW0CIyFTSCIb1xk8611yAc8OYJhjiNW17vlC/fn0jIfUTgjELBQyQU3TN0bC/S7Vy+tVXXzWR7f5EYx0gDUW0AcseUuforh966CHz/khJEuGDDz6Q5yGrLsGCyqYgK4sIkeSHHgqT561bRY49VuRf/xI55BB8mzL7WaTpDzss/LjnHpEpU8Jk+sUXRV54IUzW//pXkeOPx1Ii7tuwIA0cODCzx1Zgbhw2g+InQKSRc1CDwGY3WSGwn8CmBr0j8xDfk8gq6WyyTBatWrUyml/mEzSjEGikOOhq2cRDotlAfv755+YegHTzYG5AdpavZiPZzKYw91E47EfZFtdk9OjRZsOfSuAmCGD8Eo2GRLPZ102GGBJtnWfIsvoBSqILECxKsXyUrY+wc9FKBnTQH3/8sdFWQ5aduPPOOyP+fdhhh8k111wjb775phx//PEJ3RCQmvTu3bvo3ywUt912W9znWz1gRicaot833CDyyithcvv3v4tA/mvWlJyA74KrBo9//1vko49E/vc/EXTsRJg5vyedFFM7DZFQr+zYgKhxfvwaxWXD2r17d98vqlwDHHW4HsgQNm/ebH7P5obIG6SYOckSYR62CK1mzZqmjoOotH2+08GEqCyRa+YyfvIZ1hGC7Bifxfuz6WYe8mPUmu9Lho/CU7+2iuf84yISK6ijCBeJkk30+72eKdhxznqPc5Ef4L+ZRZEU6J9jdUOy3YDcWkbRUe2uu+4ykbELLrgg6fOZCLC9YyeJhi9RwSGpLB5uQOqW3XrGChiRbUBQ778fjYrI44+LnHUWdgCSN0AAjj46/CA6DalGP80x/ve/YW32LrCwYkNIFkCjO7HT34xFrLb8Ckv6sKeEFCLz8LprB6QPMos1JuSAa4AMAXJLBBlSy8N+j2QuPjbSbAmG8yckOx7QlaPFJfoJiSfqTUTfixaH8cAmgA1FIiclv8DO80GS4LiFOpdEgqwTGy4l0Yq8gkHIIhINq0F2Q15JJV9//fVGsoFjh9vJzy5UmexYBYGGOGZED/3++yIXXhi2p7vuOpFrrsm8ZKOkYOHkOEeOFLnqKpG+fcMk/8EHjX6aQp0//vjDF44TuQYaWohcoTgCEKm1Xtdkbrxo1cf5pmbBjkuOmawVP0siqaFg9qCDDkr5dXy2zZoRpaYg2WpO2WAxN0HCeY4Xszl0bZs5c6aRz/klpe1mPUGaM2DAAI26RoG1mjomIvZ6bsSs834qLvRHxY0iJdCggAhQdFU71nf278lIK81SSIfffffdKe2W0TjGK0JMF9xQRKRKFEmCNJ9/friAD4JFZ6Sbb/YegXbiwAPDRYhPPy3y7rth2ceoUYascH41ilEcFDGxiSwUiziyRnZxxakCkuolQPAphGTzgr6zV69eJmPklRb0bDoIBNjsGwEEiDMkFanalClTsu4slAogmuigGzZsWDAEGjB3sx5pZ87iIEBFgMsvziu5INGrV6/21H2ZCEqiCxAHHnigidxSvOeUcnzyySemcMdKAFj4ond83MxXXXWVSYHSeCUeGSaaw2c4QbrulVdeMYtULKu8dMExopVK22UBf2cI6BtvhAnpe++FLeb8AL4zFnlIPOrXl9CAAVLlzjulumoMi4GII3ZRFDMVEthAQqSRSyCVymd3Q+YRomb40KNH5p4kQj5o0CCTfmUDk6loGnMMRDeTWS0i0MjTBg8ebIIJzIF2HmPRzue5JfCBhA6NLPN0IYGsAud+zpw5ZuOl2A1bG5DIejZIqFevnrkP2VD6ASrnKEAwAZM2e/LJJ02qlaruzz77zEQwr0PCsAu333670S5/8803Rb+jMJBoMoWEpD55WBCZtm4BVFy/+OKLJuXI5Ih2kwUPDeKFF16YsUISJlyiF9HOIK7x5pthKQQk+quvsBQRX4JCw6+/lj9uv10a3Hyz7NiwIew7rR7RRWDMoSEtxCImsg4QaYhrPlK+1FhAnrm/rZ7ZEs5sRUx5fyLv2SC2RKabNWtmPMQ5n3wGkhn+H6eEXLdlZp4jiwKBaNOmjRQi2NzSRRdypNacu8GYI1JP9FU7dIrZVLDpYpz4ISCiJLpA8c9//tNEnLGCwi6GlCZFgh06dEiqXQOvvfZasb/xWkuieT/SLhBniDopKRakm2++2RD4TEYXiX6lrIdm4R06NOy+cdppIs88k9/CwUygTBmpeOONsrVjRyl/xhnhYkMcPXxauZ9pEM0p5BboFOTxgPBBaEn550rTy2aaTTj3OATIK3KNksJZrEj2DCJLsxs2YgQjMilLSwQi+hTCcl4LVRdLDQebhFhF70EHazWZCLIhXqx7yCVKlSrlK120kugCBZGWSy+91Dzi4X/YqUXBGZVOBHaI0RZ32QBRaAh6omr8YiA9SzdApBt0GeRRQAvTHkceKTJmjMjhh4t07y7yxRcibdtKUAGpJDPCxg5dbqED5waKzyhIooDSWrtlGmxguffQlxMhQ67h1tnHjyDTxvkkIkj9CK4o2S6Ew1Mf4o7EpJDPrQV+14riIBJNpikIY8AN2GxRG8CGy4vFv06oJlrhabCQk1p1TRTQ22HH9+yz4eYptOcuEAINeUKLajSi2P/88AO9okVoujJtmgQVRHAoyvG6BVymwPfER5pxgEY60xpT2257/PjxRS2biY4FZYGH0CAfg1BDoMnkEfnPtKwEK0CuHxuVbG2EvAg06GwCo2tqggzGAEWvfumumm3UqlXLzGtsaL0OvWIKX5BoV2CRu+KKcOc/OgCihS4g2IrlonQfBaLovPHbHTwYLY4EESzIpEOD1DqXqCnRS4gYZDdTRBod4qhRo8w4g0TS6COfmwXcPvKxOYI8W/cb5GpEi8l2RDsepQveE1cT5CJ4gAeJPKFzJ8ponZwUYVAUnY1NsR9RvXp1c0/YTbyXoXIOhWdBKod0J1E3VyDq/OijYRnH6adn+/Ao56cjjQg3OtZjPPDTRntNsRUFQriAZCgSTvU2HcAi0lsU0SHnwEsaT11kHrnquOgBQEaIyLZo0UKCBnS7EGnGRSYkB0QGqYmgEBnpRr4bY/D5XigSpYgSIj9p0iSzweDclER7T40Hbd3RCHP9ghSFBpxLJEJoXqO74AYZkEbuZRyyCsWis6SReYJoXoeSaIWnI6/syl1FonGquOUWkTvuCFvCZRpEuZFMYJfHA/9mnEv+/DPx6zh2ijG7dQv/7NkzLUcNCA4biphkkQkXIo3/NW3Cv/5axOM6skyOkRJ7iPsYLLZ2wWUzATFLlVAT7eF1kBuao+SbPDsjlriBUEDJNc535J9zg1aaB5GydI+J4kFcZLhuXjnXuQabEDIojFmcGBThwkuyjBDpoJNoQB2UHyLRwckhKXwHdqHszpO2tp45U+Tss8ME8v/+L/PRZpw9cDWhkyDdDon28u+HHhIZPx4mF27mQtU5z//lFxGswIYNEzn33HCE+t57RQ45JBwlptiTY04BRCfYUMQ9Fzh0vP22yNixIldfLUEBNmXoVwvV0cAtsL777rvvIiwpkwGNL4QQNwrbBMNLpI7vRGScn14A5wbyS7EhBJqNLSl4t0AKYh0H0Hx6vWAqm2AeQ2PvFy/gXJ4XP+iAc4EaNWoYEu11eYt3ZkyFIgrcQKR0Ei7sFNkde2yYREJ2M0WmIBVIQ558UoROUjhi3HVX2FYukS+ulXNUqRL2dqZDoo1k0yXx9ddFHnss/EB+ceWVIoceGm6qkgBEJpK2Ae7VS+SBB0Quvzwc9cYGr4BBWpyoXqHYrZUEEBL0y/i+Iw9AcpAIEEDcJ7jHeC7OJgp3sBFoCD6PTp06JXUPQmOODzVBAeQhQZNwRIPzgIWg3ruRYL1btGiRycLkO/uSb9SsWdM0cCMD6+VMo0aiFZ6ORCe1toOEUqBC1DcTTR+IJP/97yING4ZJNMWJkN/33w9HktP9DMh9s2YiN95IC0aRl19G0CtyxBFhezrkIQlfXspd2pMo91/+InLRReFoeAEDXem0ALuSRAN9KUSaQstZs2YlfC5FbVjkoclVAp0e8MxmfkKWYP31YwFCZBu5YGMWdAJtwWbCy+QoXyS6c+fOnsoI5Qs1dsk4vS7pUBKt8CRI4aANS6iHxpkCG7v77gsT1JJi4kSRzp3DUeLbb8c7LfzejRtLRkH0hcJHLOqQhuACgFYaTXcMjTVRQ5wBsHFzRdYfeSRccIhXdh7bGGcTpNF5qHYwEjRCIbKM7V+iphaNGzc27bqTSqUUCaOpRKGRFM2cOdO07I5XRMg9DIEOeiONaOAuw7lThIHEB6mPkmgxkXhqEbxeXKgkWuFJkMIhlRM3Er15czjaeuCBJS8khLhSkIgLCCm0CRNEaI9eubJkFRBeyDNEms6KkGjkInPmRDwN8sxi4zqCxXGzEaDYkIh3AQJtaZALChOByPKBBx5oFmSntzG6equZ9oMlIKl+mi54PeVP4ym6HcZKvxN9pmATAm0t8xSRUXqi+BupKVEY6MaiuC7ay1ASrfAk7I0TNxKNnd2yZWHNckl00GvWhIn4v/8tcu214cK8JHrSjIMCo5tvFvnuO5iOSMeOIq+8EjGpQoio3nYNuhmeempYmsJ3LCCwuVq2bJkhWEEvKIwHIllEPyk2ZMMBgUbCQXGb1wt1LIja0uHOD9FbpAmQaUBhGMWQNEfivu3atWviWoYAg/mdTZIWGO4G44aNBVmMoKNmzZomEp3pRkeZhJJohSfBjUMqJ2ZxBZpiCuiI3jZtmv6HQNQh0OgZaXeOhCOfUS8s6iZPFjnhhLCu+amnzK8hQPjlpkwYOUek9IcOlUICRBCSCIlWxAeZC+4hpEAff/yx+X8InV8ae7AJIELpp852EB8aZrzwwgum66OXF38vgLGIlh93GL9s7rIN641O8CToqFGjhslWpOKCk2v4YzZVBA4JOxXedpvIvvuGo6zpYtWqMIGmuG/UKJHevcUToDvbc8+FCwQvvFB2PvaYkXPQZCVlIHX4xz/C0o4C6g6GDGHw4MG+iFDmG3gsM36IjvrNFYJ22yNHjjQ//QI2d0SfbfRMSbQ7z2j0+17XvuYKzGs8CJ4EHTV3yTm9PDaURCs8BxaeuEWF8+eHSSZ+0OmmSLHFw1YOHR4R6F1pWM+ASCEe1H/9q5S67DLpvXKlKTZJC3/7G7NyWPNdACAqwUNlHO6ADveggw4yjUKmTJliUsWK7IBI6oQJE4zc6KSTTjJRaYoNlUgnBppxHCm0viEyGq2RaDEyKMaHl3XRWgKq8BzwVOWB3U8x3HprOMJ6ySXpvTnyhuOOE1mwQOTbbzPvvJEpQBLvv19KrVkj+/Bdka3Q2jtVUDx2zTUiN90ULpb0eZtd7NvQQxOJViIdHxA4CPO+++5r3CMgcljaaXFb9oD0hOghkhkIIRkTtK1EWb1eHJlvpB0kKFAgcfFTBiZbYI6HB3h5Q6GRaIXnYG8Yqw0rAgVyr70mctVV4ehqOqBz4IgRIu+9F/Zn9jJKl5b5//63bMV2D0u8dCvYr7gifL4owvQ5yFBAUJRAxweEmUYqdCK0OlPOl4300UpbU8WZg5VtQJoHDRpUdJ4hhn379lUC7RI4x7BBVoT9orGrVIiRMnp5vlISrfAc7A1TTAf84ovhnzRASQc0TcHVA50wemgfYOGyZbIE5w7Oyb/+ld6bIHuBhNPRMYYPtV9AZJXojKZ9E2P27NnGIhLbtegiQsgeqVGK31z5jucZfiiCpOGP9YiObuXN5oVx++2332pk0UUkH39zRRjUMXg5AptraUvIo7Io789QisCBGwYtVEQEhxuISOrxx7NNT/1Nef2FF4rUrh22k/NJSh5Zy55Y7lFMiU6aBi3pgO9OccbHH4ufo9CQKm2wEh8Q5Llz50qLFi1iyqEgdXQppPsllne/UR/gURDZPfzwwz3tZz1jxgzTpjlR4S/zGDppOhvyUxEbeJez+fOTG0s2wX3M2Ao69ttvP1MHw1roRSiJVniSRBeTclAASBMSyGA6ePZZkZEjRZ54ItwhMFMgmvfll2GCe/fd4Q6HL70kQtvlElo2WVsfQyL++leRLl1Ezj8fdp36m3XoINK1q68lHRAQFlrt5hUbRGpo0kBFe5MmTeI+D4cOiDQFO7Sj1ghp+hH/+fPnS5s2bRLaLTJe0UlDAiZjYamICe5t5EdeTt3nEsz7XrZ2yxX227VB9eq40NVI4TlwsxRrR/z22yIsVP37p2dnd/XVImefLTJ4cGaIM9IIiLntLEXUHHJOpMmSkr33Djc9gQDTDTFFHS8TKAuwKQbjtfhGQ6TvuSfskZ0qzjwzbAvIxOzh6F48NC2JJ3gAQJSZznhuNhnIDrp3725Id0wvdg8Aco+2m9baXmtWQlZkzpw50rJlS2MjmAwcf4cOHUw0Gk26m9cEDZwj5jpb9xB0kC1irBA8CHLgYL9dJJrgGgWXXoNGohWeAzdLRHoUKcYnn4QJaToFZURfid7+978lO7A//gg7XNSpEyaxnTqFddoQaVJNkGuK/9CxEZ2GuI8bF27tTSMV2omnAJpj0AWtqIiuffuwf/T994ts3Zr68R9xRJjkf/WV+A10gNNUeHwsX77cnCMIsdsFF5kBHQF5Pg1svJYuJa3PRtKL6X1IHtHlRBH/aJAh4H5Wf/P4aNeunW4wdsHKmLwsucoFmKfo1utVfbiSaIUnfYAj5ByzZ4ct6SDRqYIFmKjxKadQoZD+gZGGJQr84INhdxDa1L78crizYIsWYW9niypVwhFvWokjQfnoozB5hUijbXZJBjkHjRo1ivwldnektXAXSRVUe7dq5UtdNKlzWlgrYhdkEbEtSetkZAZIO7j3FPFBZz10u2xs4zaDSgDsBtN5XVBAvYPXsg75AsRR6z+879ChJFrhKVgNWEQkGtJHynnAgNTfkIgwbcLT1VIDSDByDCJ848eL3HILAj53r4VcQ/6//z7cIAa/5mOPDUe1E4DoG3ZPeMxGAMLer1/62ubDDgtH9X3WYpdK9Zi+4QEHOmicIdA3Ny6B5zlOHow5iDQFrYri4H5ks4HcoCRA94v9oDpRxC+oU6u7sDNNjx490utWW2DY38PNZ5REKzwFm7qKmDhoy92nT3oFgeiI27UT6dYtvQNC+kBzFogwzhht2qT3PmimaRQDgeU9Tz45YUSazQTRxZgp9gsuEPn667BlX6o4+OCwRpwIuY8irZyHYjp5hanex6oOWUZJ7ODQovbq1cts2iDSxTZvAQdthydNmmQ0ma3I5pQAXCeKO6dPn64blhhgPC8m8KEwGy4t/BXDB7xqc6ckWuEpQB5JY0XY202aJELDkVSBpdsHH4Sj0OloqZnIIdBIM954Q2SPPaTEGDJE5J13wtH1BL7PnAcW25ipTWz+kIw8/XTqn2/PI+fUJyDyB+ko5tgScKARR+ZCU4ZMRKuIZlOYCIFm45JvQOxpB53vLotkQdjQomlms5KJRj+tW7c2hACPaUVxvTmESTdyLEGLZdSoUUVNk4Juc7d582bxGpREKzwFyGMEIVi7VoS0Z8eOqb/ZsGFh8kyjkVTBjveii8IuFq+/jp2BZAxIKpCEUOgYh8xCYiDQMaOLFCaddlr4uFIF5xaXEx+RaArmWFj90Hgjl6AgkOgxDhGZAhvYgQMHmnsQkpfPoj4cROj6F93AJNdgc0EEGslLpjpl7rHHHoZII1vwapo6XyDjZNvUBx0UF0KgKfwNMvZzOHR4DboqKbxNoi3ZwwkjVeCGQWvvffdN/bW0F//8c5HHHgtb1WUa11xDOCrs+xyDqDBpsnjHBfIWCsnSKbbgXPqIREM2iEgqdgMZAIsrNliZtr+ymxWipM7W4fnYPC1YsMD8zNdcRLSf+xDXiExv4urUqWMceDRdHwncS9jMkQEIOuwaoCR6P/NTSbRCkQSkayI6lE2dGtZCp1M0BVFMJ4JNFHroUJEjjwzbwmUDRNceeURk4sRw8WMUSGEnTNHb75UOGcYqj/PqAxAJJSqVqQhgoWDKlCmmdXc2gXyBini8jfNBpEnfohvOh2PIhg0bZMyYMUYuky0wpnv37p2wUUtQwcbZi57AuQYZC2tBGWSUL1/ebK68IDOLhpJohedIdIQOmCptJtNUo0AU7KA3TIdEjx0bfu3ll0tW0bt3mNDGcNpAe1nM3s4JGo8QpYCEpwrOJ8WFPtAcEokcPnx4vg/DUyBCSqFbbVrYZxG4oeCFTFqdojovFvVkq7h57NixJhqKr3M2AZEm2o11nmI3sHbTGojd0WgtQBXDC5REKxQuEEGiV64UScdXdfr0MElMh0Q/91zYUzkT3Q0TgegqThsUPzr0f0RfkxbVsKmglXc6keiaNcM/fZAuhTAmlLUEEERHOSfIAbINtOhIaSDtJfGhdoudW7bIn2vXyvZVq2T7ihXy57p14f9ftVr+XL9eQlluuIO0AgJNJoiOjrnoFEeKGus81QBLxBzIBtqLpCnX6Nu3b0brHvyKypUre1L6FNxekgp/kGgcNizpSwWQS0gq9napYvRokUMPTS36jd0cbcAXLQoT8HPPDUeLkwHrPCLepOZ3NZNhMUWLevDBB5t0XlywQYghBUkKuynh3GY5mpkJEq3NKSLtv3AroRV2riQunH9kB/umU1uQAKHt22UHHQl/2yg7N/5mfvI7iz82bZLtS5fJH7Nmyx52TiglUnrPvaTM3pWldOW9zc8yGaxZoJEKqWP8eXNV0MhGBW30rFmztLnGLqA/pyW9JU9BhkrZdvMC20fCS9BItMJziJg0iUSn4w+8cGGYIKba/QoLnVmzUotgE7mmCco994i8+Wb4J/9+/vnkr61fP2xX54goo38jApaQQINmzcLfsyQk2sMgGl9MIx9wkPqH1OJakUtA8ljMIZmQvZJgx6ZN8sfMmbJp9GjZMmWqbFu0SP5c90sEgQZly5SRavtVMT+LEBLZ+fvvsn3FStk6Z45sHj9Bfh87VrYtWVKiKLXVfGMXSOQvwmIzB6CTITpsLxZO5QOMNYpmvUiacg0KLL/66qu8OuV4hURv0ki0QpEcEel7bpp0SBTFSOn4yxL9YEFFKuE2Ao3DRqzCq/POC7toNGkS//VEGdBFT5kSQaJdeePyHLRyfHYqUXMbufN4sYpN5SqJ3g0ilfmMVrKI0VEOtGCj6BLoqf9cs8ZElnds2ODqNXtVrChdWiRPY+/cvEW2zp0n2xYulLI1akj5OnWkdAr3Pu4fFBE2adLEFLPhSZ5rcE2Z9/AF1g51UnTfk3kJOgio0GyKgEKQo/KVVBOtULivRi4C0aV0dImQ6AoVZMjbQ+SG725w/zob+XBb1IKEI0667dGjq0nb0ccmfw8+a1enRlf2dha0QgcpFJ0s27RM2r7TU97rs2/CjoleAGQCSUvMhjMBBDIf29EzXyBSS8c+iLQl08mAlnnzDz/IH9OmuybQNjq8bft2184goT93GJL++9gfTKTbTWSagi06NBLhzyd5JfLKec2Fzt1PJBrSFPQIrNrchcE6wP3KveolaCRa4SlgYxOBBI4Ac9bPkcd/elymrZ0m67ask3332Fca7dtIDqx7oJzOwpuOlswu2G4ju2igS+pawGc5FgoiDtPKTpOl85bKMU2OSfw6kO4i44MuWEklLQHC1KlTjS4ZPXQ+0bhxY0NskHUge6iPJCkGQpDgBQuM1AIZRqrYuHmzjJkyRXq1ayf7pLiRQu6xY/162aNlSymLXCrWc7ZvN0WERKLRfOe7gFW1/5FgU4P9H2MtH9kBr0Bt7sKwUXivdS1UEq3wFIotZEShY5DEyasny7mfnys196opxzc9XqpWrCorN6+UKWumyCszX5HTK7QkTysfHvthaoUZNg3sVntFEWFJCz/4LEf6mY5xD73/kFTZUiUxibb+uekSzTx3gksGiivpXqY+uuGCNxZRrA+9ADS8FH/FsyEzuucZM2Tnpvwt/Dv/2CpbJk+W8nXrSvlGjaRU1MZ4xowZZkGm66NXsh3IF7C7o7lL0AFp0vMQBvI+r5HHXKPSrnvUa+dBSbTCUyimBYYgxrhpnpzypFQuX1leO+I12bt8ZHU+UWmZcJ8hmeXLpFggRLGetchr0yb583HhuPtuKRH4rJNPLvonpN8V8YdEs8lI14bLw1Feok+4UOBcoKA55c9mg+kl71w0xID0KgVx9lptW7pMts6bK7LTA77SIZFtPy+RP3/5RSq2bSulHZku5BMNGzY0BWxeAecSXTTabIo5gw60wKTwg14XweY518WuXiXRW7ZsES9BNdEKb8s5cOagMUgUlmxcIo33bVyMQIP9K+6Pb5Rxnxjy9sERmuj35r0nbV9oKxNXTZShPwyVfq/3k16v9pKbv79Ztu/YLr/tXV7+eWUz6fX7ndLrtV5y3/j7IppM/LjyR/N6fhpgY/fMM7Ks2h7S9vk28l7fKiKkHol6HXVUsWMbNneYnPf5edL/jf7S6aVOcvQ7R8gbjTcVuYGgAez/Sn+Zt2GejF813nwWj3M+O6foPX7b9pvcNe4uGVzuWen0eHM57N3D5Jmpz8jOUKQ8g+fx3Xu+2tN8R/5/4zZHYUY6ric5AueB8x70xdNuKPBp9mpEftGiRaZ7Ise4bfFi45rhCQLtABHxzRMnyp+bNpluj0SzsLDzEoG2DW6YA5cuXZrvQ/EEkAwhYwo6kHG5KjYvYFSoUMHIerwma9FItMJTKDZR4BGNzV0UalWqJT+t+Unmrp8rTavE8GPGXWPr1rhd+YaOG2rI9qUdLjUSkLfnvG0i2z+t/klqVN1PrhyzXb49tZM8N/05aVKliRzVuDghLsLZZ4t0aSYy4SKRbt1EencMO3Ns+kLkp+8jnvrm7DcN+Ue3XaZUGRk18S257axasrP2ajl1V6rqsAqHyRc7vpC9yu8lF7S9YPfGgF34n1sMoV69ebWcOKec1NhSUX46uaM8OPFBWbtlrVzX7TrzPAjoX7/+q0xaPUlObHaiNNqnkXz989eRRZbp+G/nCFhbWZuroAMSTffKXNvapaKRpuDxh08/lbZ77yMHeNRdYseWP2T0a6/Lb/tVMefSi6SEMY82euXKldK2bVsJOthEszljPguyXzJyLh6pOOIUGkqVKmWi0V6LRCuJVngKxRY2im1iuACc1fosufSrS+XED0+UNlXbSKfqnaRHjR7StWZXKVe63G6LujjOFftX2F8eG/SYuTFPaXGK/LzxZ3l+2vOGcP672eEi/z5ZTvj78zLkl1kmepyQRIMG9UUmiMjFF4tYHfPkL4o97blDnpMKZXe5aojIade+Jhd3LS0vVvpMTpUrTZFTq/Kt5Psd30uVClXkyMZHRrz+xekvmij8W0e+JfX/1t10PDypz61SrWI1eX768+a81NirhoxYMkImrJog/+j8DzmnTTiKfXLzk42OPOLcephEM2Giuw06SON6uWMZ91DratXktz+2ysSVc6Rry5ayfwYyCHvvtZcc1L27lMnAGICETZk3T1b/8ot0rllD9vOwVRh1AAsXLjTZmCBbmlkSzSYSa8Ugnws2qXRwDDKJBowBr2midYVSeC5lEwGipcuWFXter1q95OXDXjYRXVw6npv2nFz01UUy+K3BMuLnEWFv6caN45LoY5seGxHZaFu1rYQkJMc1PU7kmGMwbpUyTz0trfdvLUs3ZS616iTQGxfOkvXffC5danc3n4HUAhINaYoXdfli8Rdmw7D3+i2y/ve1sr59M1n/x3rpUauH7AjtMBIQ8O2yb6VsqbKGOFuUKV1GTmt52q4DqZiej3YOrdS0qGi3XOIPW0TqQeD/vG3ePOnYrJkhz79lKN3KPUCjlUxEIKcvWCAr1q2TDk2bSrU995ItP/2U9Rbi6QLdOxrYYnNhAGGJsxebbOQSjAU2E16zd8tHkM1rc6FGohWeQrFWu+y8160LSzqiIqdEoB8Y8IDRMs9eP1uG/zxcXprxkvxj1D/k7SPflsbojLfNifk5uHo4gZQDVN+rOqG/cET57rul0sEXyG9bM+fNi7zikcmPGAkJ0gz5X3MRCUs+Nm3bZEi0WTzjzBM///az2TT0WzZa5OGWIr/fLfLG7sLGX7aEO56t2LRCqu5ZVfYsF0mUG+zdwPNSDqAyjt0RKDShFBV6kVTt3LZN/qCDYSjcqrlLixZFpHf7n39KuXSLXvHF3bJFpi9cKK0bNjSNV0qCA6pUkf323ltq7CrMRCO9df58qdCc+89b4Dx6Vf+eaxBQyLf1oJesPiGQXnGSydd42B5HopkvKIlWeJtE2/bbtMU+9NDYrylTzhBqHvX3ri//Hv1v+WLRF3IJr906LaaPM3rkWCj6/f/9n8grr4iM+V5CLZMnbNw0hFjy2xI5//PzpeE+DeXqPYZIjbsfkHJX/59826KcIf87ZadptmBcDr6P8zmhndKzZk85Z3I5kXfeEXl3mEipGCQ5Gep7e5GePXu20YYGvbAQhxKKabzkyuHE1jlzJbR9d3TMEugVa9fKtAULpHvr1kaWkQ7+3LFD1m3YYH6mi1W4hlSpElOnvX3Zcil7wAFxfaTzCVLW8+bNMzKeYnNiwIDlZ9BhN9AEWZREbxcvQeUcCk+h2ILRsGFYmgGJdgHkF2DNljUihx1GxweRdCrdkTo8+aTIqpUi23bftNYNBOcLJ5b/vjzpW45cOlK27dwmDzW/Tk664mnpV7O39Dzjn1KhTIWIKuxEtm51K9eVzX9ulp7PfCU9Gw+UnrV7Ss9aux81K4UjzPxcu3mtbN4eqR9btHZXZD5OgwwvgLTlnDlzPNniNR9dCmkJ7UVtODKOP1evjvm3qrgJVNhDxs2YIZvyVAg0d8kSmThrlqyzXUhjYOvs2aYpjNfAZgSrO4rJFAoi0Ujcgm5zV15JtEKRIokmskWRYBSJHrdiXIT1nAVa4KKILK8rv4cIllvpYNCg8Hts2yryyCNFriBEqynac+KN2W8kfbvSpcK3W+j00/HyE3n+edm4fZOx3XPqXymq27PsnpF2dLswpMEQ40oyuvxykQsvjPgbxP7PneGoYN/afeXP0J8Rx7Vj5w559afnw//wcLqYaAsIerdCxveGDRvy2o46HtAT/5HgvkLG0bVlK9mjXDkZN326kWbkEguWL5N5S5ZI03r1DKGPh52bt8g2uo56DNjc8aD5StAxadIk03gpyKBjIW4tQS6utCTaa7pwlXMoPDdZFEPPnsaL2bSp3hWRw6IOTfGgeoOMPGL7zu2mi+Hniz6X2pVqyzFNdzlkVK4kMmUJ3SrSI450iJuzVOTiy0XmzZPKQ4fKwfUPltdmvialpJSJDI9aOkp++SOsRU6EXsvKSbk/Q3L5iWXlxF5XyOY1H8s7Y96R/SrsF46ci8jMmTNNN7iW+7c0dnhP/PSE1Nu7nnlO95rd5ew2Z8uIb5+Ty/9eX44uN0JazV5tzgM66S8XfymfH/+5cfWg4LLjAR3lgYkPyLJNy4yt3vDFw2XTr2tE2KfUrStehS0c8aIGONcR+dq1a3tSyrF1/gIJbY1dtGtRvlw56daqlYydPk1mLV4snXPkLLB45UqZvWixNK5TR5rUqZP0+dt+/tnIOsp4LE2OlAlNfNCBnEmzUuH6CNZHL1oz5goaiVYo0iHRyDLWrBEZH3aeAFd1uUq61ehmIs/3/HiPeUxbO824Ubxy2Cu7m7Cgx+Q9n3027WPaXq6UPP7YmSKPPSbSubNcX3qwDKg3QN6a85Y8NOkhU6R4e+/b47/Bhg0i11wjDQ8+Re77upKUatxE7l38gnn9Cc1OkNNbnl701C82fiFvLHlDLm5/sfSt09f4VF/7zbXy+E+Pm79X/HWzPP+vqXL21nby46rxcue4O02jFQoOL+twmVQqX6ko6v3QwIfk8IaHy8cLPpaHJj4kB+x5gNz+ya7UtYd1lhqJ3n0v4NKAxMdrxYTbVySXL4E9ypeX7q3bSLtd3Q1TQcU99pBWjRqZn6ngl99+kwa1akozt5vmnSHTJMZrgESTlQo6mAfsnBBkTJw40VgfBn0sbIvjuJUvaCRa4X0QiYZIfPxxuJmJiPSp3cc8kuHzE78U+eoikaefFvnXv+SYJseYRzRousIjGrf3ud1Em3HUkA//KRdfO0yq9Bsi93XvLnLFlSKDDzZ2eGDqWY7OWtu3y6V/dpNLx00XuaxOuOnLXXfJgf/4hxxIR8MYlnuPTXpMvtrylfylzF+kasWq8sigsIQkAi+9JHtu2SFXnvCgXLnrc+Nhnz32kTv63hFJ5j+4W6Ye/PBuL2uPTpQUWAa9oIroG0S6WBfPPOPPFStS6khYYZeOc/Mff8iMRQulXeMmJkqdDDynfgpe5tYNBBu7VG3x0HeHtm+XUh4ac/hFo4WnaNmLmvhcgYwUJDroDVeYC7wmZchHJDqWjDOfCO6dqfAPiCQPGRIm0eng0ktFli8XeeihtF5OVJgo7yPL35LHn71Q5IMPREj9nnFGuL14gwbhFt+nnSZy4olh0o9FW9euIm+/LXL11SJEuq65JtwSPAaIND865VEZXHGwnNn0zNgHgtXfHXeInHJKEXFPCV98gUYgHNn3MNAAd+zYMdALJpg2bZp5eA3bIdFpYGcoJL9u2mSKDSG8ST/nzz9l2Zo1rp6LC8fIiRNl4+bN6Y2bnSHZHqMzar4j0U2aNAk0gbabaoiT1yKQ+ZC1KIkuL15DsO9OhX9w9NEiEybE7F7oStd8xRUmEi1ppsOKiPSUR+XxestEvvqKKkCR118XOeGEMDmFXJB+pcnL0KEi330X1mL/5z8JuwNCoIl0X9z2Yjmt4WnxI4+QcSLad+/2hU4JHCvnwsNFhdbey2uG+vkAqXyvWfz9uX69KcZLB5UqVjTFhlu2bpXxM2cmta4jcj1l7lzzMxHWrF8vk+bMMQWEfEa62L48vc1BNrFu3Tr55Zfk9RaFDGoCDjzwwMBnpjQSLZ4k0SrnUPgDdBHEzxVZxl13pf76224Tee+9cBOVzz4Lu36kQaSBkXbYf2MVd/LuroCpwhJoCLp9/5iAtD//fLjAMp123RD8Dz8Uuf9+8Tps9LXbLulOEEH6mgIar1Xj461cEuAZTbHhD9Ony8TZs83/lwTY102YPVuq7buvtG/SpETZi52//y47NmyQMh7SoGP1CHHwokNLrgB5DjqBBqoNF0+SaI1EK/wBIkxnniny3HNxW3knBGSEwkAkDS+/nPZhFEWkJz9SVOyXKQKN9tFq/yKweXPYzm7AAJFzzknvwyDgyGKQoHgcRKGDXlRoF0svOZSEaDu8NuwiUxLsU6mSdGnZUhqksxl0gPtl6vz5phMhLcczIXvYvmqVeAlKnMJWj1OmTAm8Z3a7du2kKxLBAKO8kmiFogS44IKwS8f776f3erTAp54q8re/hSOzeSTSsSLQpG6/+OKL4lKGG24IH+8TT6QVQTfWgE89FY6YeyjKFg9Frc8Dbm/HOfDSedi5aVNKBYWJAPGliyAEacmqVa46fkYD0ty1ZUvp3Lx5xnTDOz1mKcf1D7q0iezC8uXLjWe6Itgo70ESrXKOEuIaisXSmBTuTlfXGmS0bi3Sr5/IPfeEdcjpEMoHHhDp1ClMqEeNChcApoGY0o4SSjis3i3C5g/izDHzaNo0rWOVd98Na8FffVX8AEh00CPRVapUkYMOOki8hB0bN2X8PSkEnL5woaz99ddirhoUUu1bubL5Gf2aeUuXSrvGjWWvDDuX7Pj9d0+5QMSKRP/++++mAQmFdsgcOnToUEz2Q9QWz3nmFL4LXVBpIc7/U3Pw9ddfR7ymS5cuslea7dnzcR7cnAOCEmPHjo1ok92nT5+i8fTzzz+b1upc76pVq5pmJl4u4qQR15IlS6Rv374pnQdes2DBgqJ/sylDHkRU229joXwUiUb6t3LlStmyZYv0799f9o6znie61iUdB0qiS4hx48al/BqvTNC+xI03igweLPLRRyJHHpn663HT+PRTESaiY48NO36kGe1Lh0gn0kBbEl1EGoYNCzuL/PWv4Uc6oHjrpptEDj5YpEcP8TqYyPj+Mf3CFXnFzk2Zb3iBRhryTGHg1NKlpW3jxkXzI0WCPdu2jXg+nQ/HzZgue5Qrb9w+YnvdlAA7Q0Yb7ZXGKxBAiIHT5g5pQ/369aVu3bqyYsUKmTx5cgSxAhCqzp07m8YcvPb777+XpUuXmtcA7i9Ih19grf4s3JwDe/5ifU/I4+zZs6Vfv36GoLOOQ6Zore1V8P03kQ1ywM154G/2uoORI0caC1ELP42F0lHktmbNmsbB5juK+OMg0bXOxDjQlaqEeOON5O2e8wV2p88884yRCOA527hxYzn//PNd6arWrFkjDz/8sGm3ys2L5dgVV1whtWrVKvbcjz76SF5//XWzI6xWrZqccMIJcvzxx2fnSw0cKMIND5k+/PCiDoYpgYUZmzps83D9oOAwzYhWKkQ6WREhKXwIhJkoINDIL4i4UwyY7saL8TljRlhL7gPw/Q899FAJOogi4s7Rw0Mbn51Z6hpXY//9TVHgT3PnSpnSpaV1o0Yxn4dLBwWJ5cqUNQWJeEJn63t6hUTjFc3DgmgssgY7LiARU6dONRFJZ/TQ6erCfAIRhzD4FXwHWyvi9hwkAoST82ozXpCmuXPneppEcw5YIyzSOQ+0ked1zjHlJ5SKWgfddHNNdK0zMQ6URJcQNUpYHJNNDB061Ow6TzzxRLPz/PTTT+Xaa6+VBx980BQpxAOT7ZVXXmluxjPOOMPsVN98801Dop999tmICfr999+Xe++91+xkTz75ZLMz5v1JGZ1++u5OfBkDN9Gtt4ZlHe+8E/ZlTge8nig00ewjjghLHtK0E3NDpN26cJhJ4pVXRM46K0ygX3opvY0CwA4Pez2+X4CdLvwI7kEvNRUI7dxppA7ZQq1q1WTHzp1G1mHlFHhKj5kyRXq1ayd7Vqhg/KXLlCkt3Vq3dtWspUTabw/BRmAhUbbo1kkmsMQknR2POEGaIAtOtxuyXt9++60516xhTdNoUJNLEEm19QGpnAPuo2+++cY8l/ew5IjnOq1E7eu9jOjrk85YIMoKF3BGdP00FkqlcVyJrnUmxoGS6BLiwgsvNKmA3r17S8OGDcUrmDFjhgwfPlwuueQSOZViOiHwOkTOPvtseeyxx8wjHt577z2T+nviiSeMjg50797dvJbIO9/ZTs5PP/209OzZU26F2Aqc9Egz6b/44oty1FFHZceii3QVmuarrhI55JCw80a6UW3s7iCZbCpeeEHkwAMzTqTdEuh6++4r9d56K3wcOJFgZ1eSaNu994rMny/y5pviFzChk5pr3bq1yWoEFZwHL0laQhS3ZaioMB7qVq9uHuCPKAceos4NataU6vvtV9QBMVtAzuEVQJS+/PJLM/+ia05nHJGiJuVt28dDRtHbQ8CwUZwwYYLMnz/fPMerSCdCTLBn8ODBRtrCefzhhx+MpjZWNtUPgECWZGNNFJsCTXThFn4bC6U8SO69q6L3CSCSTz31lJxzzjmGrD7yyCPy008/5T2KNGrUKKMthchacKMcfvjhMn36dFmVwMqJ6HWLFi2KCDRAd9WpUycZMWJE0e8mTpxoUs7H4OHswLHHHmt2c+jwsoaHHw538MO5oqSEfMoUETZAkGoamqRZDR/LtcO1D/S330rpjh2lNNH1Z5/dbUmXLmhKQxT6H/8Q6dBB/ALuG6RHzrRlEOGl4jYbic4VaMbyzaRJsnDFckMCV69fb34Pia6Yg4LTXH7XZLBjwK4nzhbYFtHRNAvOHYV1RBcbOSQyRCFt+hqCSYTW6w1dWGd+2+Wc4vYcsAm1/tK8BvJsv2d0xDHeOfQS2EQ55V2pjAUAgSao5Qxs+W0slEpjTkx0rTMxDrwT6vApXnjhBTM4SYeMHj1a3n77bXnrrbeMBq1Xr14mQk0aLdduA+h6SNtEp3UsMaYaNZYuiigylbyHxWgNzWvRSJMio2CFzwAQbiea77KcolHAwRS0xQDV41RPWyymLbaIKZxgwrTgxrbFMZCrItB84IYbZB+6EJ52mmxq06YY8eJ1vB5teHSKhgmWc8ME9BsRGjTIjzwicsstIp98IpVfeklKd+5sJC3RXaKYvOzOPVpneEbjsA8zxPnJKU/K9p3b5fwW58upDU4134tCFzY3HI9pYwthv/NO475RqksXWXj//dL6iCPk9yirLSYPW3nMYhK9SeO78J2IuGzlu+InXbOmIdHld00MnJ/owhRg5Tn8Ld45ZLKOttqy57DYtdkFjpfjjnUOOR6iQtHnkM/h3NjJ0jkWLFgEGF+8jtc7wXXh+vB5fK4TvMYuIEnPYZQjAsca7xw6rw3nIdquLdE5jDe++X8+05LpROcw6fiOYduW6BzGGt87fv1VNm/aFD6He+4ZPoe7nCycoBjQjO+tW2Vb9LUpX95EkelUSIFgsXO4a67i71X32UcmzZ4tMxYulN+3bjURal5LhHprjCg1cg9zDmPofvGlBpu2bCk+vitUMK/nWDlmUKZ0Kdn+66+uz2GqcwTnxzpGxBrfzjmCscb78zz7ntyvODXgsEAdCp/Ng2O04xAixFyN2wDki9fb8c3/20JFfjKP4wZjrrNH5wi+i3WfAPy/LZSkMMyeA3s+uTbcFxyr/RvrWu3atc0xoh9G5sEGg3OKywP6Wo7Rq3ME78/DOWYYJ7hv1KtXz0SQo8+Dc44gO833t3/je9gHx2vHAuOP56Q6R7idZ4utgS7nb84h5yFVcK3hZtb1iXvHZiMS/c0tlERnAJx09MA8GHxjxowxKWmituiQuThUSlM1C7G2abVsAoIaS3RvfxfPuJ5Bz8BO9lpuWj6Dm8FOwM6bngnDSZKj8cEHH8jzRFujgF0PmxILbnoi4NxwTHoRaNVKjuzSReTcc2Xygw/K+qjJh2JINhK8HwUXTiAVYFfPhFf0vrTERgJx330ypEsXKX/ooTL9kENkFV0JHRoypAZEdii+JP0Vvdhc3O/iIgJdRspIo9WN5JvV4c+gfS0TzJzvvpOf6b6InITJ4swzZY9TThGWpzq7xpATNu0GSEtGT7SMK67PwoULZd6DD4qMHh3eEIwfb65V+/bti/SB0RMe2QlnZsEJxi3je9myZSaD4QSbMDaITHjFro2IKRBkgubcc66cwEaIFC0ZEa65BWOP72CrxWO978CBA81iNmvWLHNcTjRr1sxs4iigIQrnBK/htYAsSfQETpqTscxi5LSEAhwrx8xiE31MfEdbDMl4iCYLFPKyWKNH5JidYBLHUopjcb6vJcWWRJPdir6fuKZcW4gUf3eCscCY4PWxziFjiTHFwope1gk2xegi+TzIC9ixaZNsm79AKu25p/TdRWTGTptWjFChX4a0Lli2TH5euTLyHNaqKS0bNDREd2zU/cicMXhXwfPE2bNk46bfZdr8Bcb+ru4B1WXT5s2GRC9ZtVLmLVkaeQ6rVpUOzZoZEoyGOhqH9uplfk6dN082RF2bdk2bSu1q1WTFunUyY9c1L1WxglTYuDH2HOEA8jgISqzMXrI5AgkgYJ2IJlRFc8ScOWYc8v4s8pBm0uzUs5Bp5L5h/uVzOD7uBbKCjDXmV14LiaKwHAwaNMjcr4wVPtfKA5irCfYAL88RfFe7mWFNJfAC6WM+tOeAuYP1lcL21atXGykM45jvyb1treCYIzi2J5980rwf54BsK8/16hzB+Xn33XfNmmiDDMwTED+CYryO+955HhhLlmDzfdiE8DfAc5GgUsTMObRjwTp9pDpHWDB2+VwAQY3eHDH2uQc4Zo7dCa4j9w7nJ9pxg3sNeY4T1GAxPrg/mO85z1w/xjjXl3MK8eZ62/djY8m1Bon+5halQvnWHRQwuLAMMC4QF5iFnQmJQcLNyMTltJ7JJE455RTz3vfgqewAhJK/XX755XLSSScVex0DkkLEiy++WE477bSIv3388cdy1113GccPbqA777zT6K6ZqKKBQweE5o477nAdib7tttvk/vvvj9BjxY1E78I+kKhu3WTTIYfIDkipI93jOhIdHWXatk0qf/SRlH7oIfl90iT5E3/miy7ipLKNThplenn+yyYSXa50uaJI9NktzjZ/rzR9upR5+GHZ8uabso1CGc4xrcgbNzbXhgmO6H2sXbirSPTIkbIVsn322SL//W/SCInXItFcKzafTLRMgEGNRKdyDnMSif7tN9k8aXJOItEQXVqC85MCwh07d8iQHj1zF4neZ2/Zs0MHz0SimWMJJFgXgUSROtfZqhTGtxfmCCSG/L+NRCc7h4U4R7BGQoQPOeSQCFmDV+aIXEWir7vuOsOrkNFCgPMNjURnEQwIyDIPBhIpIyv7oLDv8ccfN5NDtj47euADO2jjyUvs7928lp/RN63zuYkkLOz4eESDG8zp/uG8MWP93jhqPPecVGJDQMEE3QijYNNgscCNGfN9kUOcfbbsxQ71f/8TufbasK0ekW+q3Lt2lXJdu8o+FLw4JrQIDXSTv8jjw2+TR2Y9LXt88L5c/NqicNOTRo2k4n//KxX5DMdnWy0ak1vMY9qFeIbysmqVVDj9dKnA8SFNifrOTFyJ3tfZlCAaXMt41zPutdmFRLZTLBDO17K4QKBttibR+yZK7aV9DnctEPE6BSY7h4kKaVM5h0SknGMz0TlMa3y7OIfOa7OjTBkpFzU+LOmNBbTL8fTLZTmHCcYaxJbXtm/a1HQ2hDjbYkJ+xissNOcwwftC8OMBsm4dP8pU3lv2dJyzZOcwlfEdjUR/gwAxDo8++mhzfZ1NZ/I1vvM1R/B3jjnWewRljmAcch7iZbLzPUekeg4Z3/H0x/GuTSxekm8oic4RGKikenhceumlJo0Bmc4WSNVEp8eAjf7GIrB20HOzxZJiRL+Wz2DXTYTdKelgoLMDdePhmBFgc0dBIA8iFWk6bBQD5JjCQx4//xz2XKa5Dg4au6K8wrmoV880bHm82w55pMPvctkP5eTioQ+IzL1MLibicFwteYT6zgvbysVtHwo7ikR1YbNIOzHEBoeNBJ/H8XmwPaobsNh62TYyV0CiYW25vIBSOXAKYexv//NPQ2ZpsoIvNN7RzerVM/PMxDlzpEGNGlItSj6WaZQq551lkTHg9YK3XIA1KehdTBWSd8OGWPDObOFTIGlIBLt7pNEJETa7W0Q/lU1jdyQR6MiijdfRN9m/xyMx6JKidVn2tWjf7M4USQfgudjcWfBvIor27znB0KEikyeL4BRCdD/TjhQQZWeL99WrRdCC8Vi1Sh4/YIE80mi5XDavhly8vYHIIXuFSX23bnJxq1Yi05+WR+QRkTpL5OI4BJpNR5s2bVI/NtKrWOKhAf7qK0T64udJEv0eqeus2CP6BER4vNQco3SFCoZchrbHzjxl4rpDmJGI9Gnf3sxDEOoVa9dKw1q1TPS5dKlSMmH2bOnasqXsn6anuxuU9lDLY+Zv5tNWrVoFmkyjCQ46vObYkw+ElEQXHigcdAMG/0MPPWT0PLlosYmwny6CFJhYn2gkFp988omZkK0zBxpoNFhOMT3Hh0c0k7d13iC9DCmneNICnR6RaxquOEk0/ybV5fxd1kGkDHs4ikLoRAiRdlj0ZRx4tlJsc/jhuyQc34UlHGddnHZDFs5lovRXTBB5vuSScPSZR4zWt36bJCl0IeoUZBLN9yfD4yWU3quS7NiwIePva6RuCxaY4j5agEe39jWfXbq0dGzWTMbPmiXjZ82Uri1bGalHNlDaI90KLYmmVoI6GkWwgZSGosIgI6QkuvBAd75EICJL4QN6aArzaErCjZBtM3OI8oABA0z1Ma1B+czPPvvMpIkh8ha33367TJ48OaKaGJ9nWnnzPIoQ0XjRsRDJBv92LvTnnXeeKQa88cYbiyq/qQa/4IILUieEJQWfx6YGIj1ggAie1tkk0qn4QLsg0hRaUHDJtYpFJGIS6MsuE6Ggkrbexx0nfke0L25QwSY0usAo3yhTOTskeuaiRbJ01SrjlIHTRjxwT3Ru3tyQ6PEzZ0q/jh2z0niljIc2b3YMxNOzBgUU1LH+RNupBglkKnMmkfQoQh5cF5RElxC2WjgZILR4L1900UWm698NJW0S4gL//Oc/TcT5888/N9XCyDRw10h2zMg12Bw8/PDDpvMgGwHs4nD0iC5qgHBTBMB3QuONJynPw+EjL6DL3fDh+DmFCw1p552lyH8qBNoNkWazxYaGa5Z00STVj4SD7weJpk14AQASzaYtXsFqUMB9RnbISync0lkgl8g3Fq9cKa0bNzJWc8nA2OjcoqWsXLcuKwQayUppD8kmcGtgLnC1qS5gIG3KhTWsl8FYYC0OsqxnhwebcCmJziHQRWNrF+3pmi0QKaaIkUc8/A/niRiADN+Cz7AL0Oqbh2eA1OLbb0WOPx5D3DDJhHDmmUAnI9K2zTMEMiGJxn+XTpR4sr73Xvj/CwiM22j7qKABT2AeXkLpSpkn0Th89O/Y0ThyRANLvCZ165if0e4edXa1wF6+Zo3sXalSQucNv0o5gG0CEXToeQg3SMP7moBcULHVg+uCkugcg+Yf2XTlUOwCUQsamaAXJkpLoeTNN1OxlVcCnYhIWwurhFFYGjcg2+A5bBQ6dZJCA80FEtk1BQFWBsZ58Eoqv/Ree0qpcuUklAGbqQXLlxm/Z5qvxCLQgEhz07r14r6H6a66fLnxeO7Rpk3c90kFZfbxVrSTrFTQI7DMh0Qgg06iOQ820BJUbIvylfYCgp0jytMgCPqNkDNAmJ96SuTuu8MP5B1z5uSdQFvwet6H9+N97biImbKCNN9+u0iPHmHJyg8/FCSBtnp+umwFGRBEmjQRefIKkJWUq1ly+0HkG7MXLZYypWO71FjQlGXthg3mZywgcejSsqWUKVNaxs2YUdQspSTIxPfLJOiaSOAlyLDRx3i+zEEB60LQucM2JdEKpBxBr7DNKdCTYk1H9B+3A/Tgjz5KhUJeCXQsIv3CnBdMCr+Y/nHePHqlhpu9UBRKS/ACXliJuHjJ3i0fYLGkNiFWJ7F8olwJ7ROXrl5t2mvTAhz/50Sgq+GPM2YU624YHa3u1qq10Y6PmzG9WDfDVFB2vyqe0kPznXBF8lqBaa4BeaZhWaKmHkGARqJFSXTQI0vPPfeczJkzR/r63IbMl+jeXWTSpHA7bBwtsN+DjOaRQEcT6SemPSFTK03dvVhAoK6/XgTv6FWrwvKN227zbSMVt6D1OZ09gw7cbWK1NM4nSu+5p5RJU16w7tdfZer8+VK3enUj48gU6G7YrVUr2bNCyQhwWY/5q1MMTtAlVhvuIAGZG84cQSeQcAhn18ogYpsHSXSwR2UOmq0w8Ikm4bmM1RypuZPoLKfIPdDZEoXGOeSqq0R69xY54QQuIlWfeSHQMTXSO3bKxT+UErnpJlbScCSdCLTHip6yBbSPTJbcO0F2JWAztWDBAvEaytWulZbVXZXKlaVlgwZSPwsdKfeqWNE0YQG0CS9TurSUS4F0lSpfXsomsNfLB2wWIugRWDrv0i03yPZ2oAdSvoBjm5Lo4DZboQPZQQcdJJdddlnCXvSKHIDq5vHjRV55BR9AkebNw2T6r38NR6ijLMV2hnZmlUBbXFz3JFkz7D35c/h9Ii8vCBdE3nprQUs3YsEWEDFhBlkHSUEZ33/79u1m/vAKylarllKBIbpmooj7VqokDWrWzPrxTZw1y+i3u7ZqZZw83GqhS3lsw0YWgrXCS9c+H8A7n4YzQSfRCvFkTZm3jqYAm60wmdNpqG7dup6psvcycuYPzIL5l7+EbfCeeUbkoYfCkenOncNyj6OPxmfMPPXSDvEtAksMGqZQJPj88yIvvSQ3bN8um7ALnPyuSLt2EkRY4kxBUZBJNDaTPLwGyOYejRrKH7PnuJJwTJg9S6pX2U86NGuW0ueQhdizYoWUsxGtGjWScdOny4RZM6VLCwoPyySNQpf3YCErJDroUWig9nZhjB07VmrVqhXoouttSqKD22xF4dF0DVmBK64IE2cs8fDNPvdchHj0TqebDEbYIpmcuCgUQvM7bFjY53nFCnzdjP55TOvWUqV580C3+XVGohXiuUg0KFe7tmxftUp2bIiv2V6/caNMmDVLqlTeW9ql0aG18p57Sv+OqTvQEPHGtePHmTNk4pw5psthIiK+R9OmJrLuNWBvqCQ63LUxyJtpW2RKRL5GFqRQfsK2bds8NxcqiVZ4jjDkBSyyhx0WfixbJvL++2GS+7e/iVx+eZjkdusm0rVr2FoOUk0hEkVW8TrKQQIhyMuXi8ycKTJunMiPP4pMmRK2rKtfX+Tkk8NEnSh4mTJS5vvvPWkon0uwYB5xxBGe6dSXT0yZMkU2btxomjR5DRWaN5ffGc87izvd/Lppk2nNTTOVZCQ2G9hv771NFBoSD5nfPw4ZLVt1fylX3XvRftAuoJmoaDAfBt03nnURIh30zcQ2JdEKhUdJtBNYENLlkQe2eCNHhskvJPiee8iz7n4ullgQbH6SZkKewXdYt46KmN3PgxC2ahUm4eedFybNLJJRRJEobNAtrYAS6N26aGzOWDy8JgcrvddeskeDBrJ1wcKYf9+3cmXp2KxZ2o4CtATH/xnnDch4qoA4H9ipk5TftehGt1AvVbaM7EE9hAfBxom5wGvXPB/AErZyFlrO+wl2TQi6rGXr1q1KohUKT2ii3aJKlXCkmAeAJP/8czhaTYSZn0SbiTpDniEMPNBTE6mGkPOzQQMRFwsBMo4gO1JYTJ482RRVNUtRR1toQBMN+cOhwIv+8uXq1ZPtq1fLzk2/m3/T8GSPcuVkn0qVitwy0gXf20bg0oUl0LMXL5Ztf/4pbRo1KiLS5Rs1ltIeJSVY2xF17NKliwQdTdKQAhUabHYy6CR6m0aiFYrE8LwOFoILIeaRBQR9knQuGp4fCzkARApd7KpVqzxJoikyrNi2rWyeMFE2b9woY6dNkwOqVJHWjRqJl1Bpzz1lyty5xvquVcOGxo2jfB3vnU/AuF+/fr3W2+zKTFJgGbMJVcA84zt37hx4OcdWD0aigzsqFZ7ElgTdyYIAFs9x48bFbv0dIJC+9Vq3vnxGo718LujyV6p5Mxk3a6aULl1KGnvQkrF2tWrSpnFjWbxihczdsF728LBdmm317kVnllwDf+jvtU7EBFdw5gjyRgL8/vvvnttIBPuKKDyHoLd7Rs5C1DHoiwbRVzZUGo0Wadq0qfTv31+8CsbquGnTpFyDBtK9bVvTituLoFNi6/btZGnp0sZ32MskmvGvWalwwxl04RU91I49H2BNWLp0qQQdmzZt8lyRqco5FJ5C0CPRdpdNIUmQm/JYay8W0aoe6ySXa9jCPC9a3YFly5aZzV+fgw+WCtu3y5YpUyT0546MdCHs0bat+ZkJlN2virTq30/2W71aqlevLl4Fmu2aOWhK4weoV/bue4w1gY7HQcXOnTtNJNprGyqNRCs8BW6SIMNGn4IeiSba0K1bN11Ad2Hx4sXy9ddfm4XEK7AFf40aNZJ+/fqZa1Zm332lYqdOUjoDG0C6DdIq3G3XwUQoV6e2VGjXTkqVKWMIKmnxDRs2mPPqNXTs2NFkHxRKoi3UK1tMlpo5x2vBJSXRCk8h6JFoUpcs8EG3uSMaR7TQi5HXfIBoPNKWFTjBeABo9tGqWlmEU3pQplIl2bNbVylft2RRsz+2bZOZixaan+mi1B7lpWKH9lKhWbNibb1XrlxpfLixEPQKaKjhpY1SPsF5YFxh8xh0sB4EXd6zceNG81NJtEKRAEHXRFubO6rRgw4IxUya1ChMlBci7YXIKeSG4leihPFSq6Y1eNOmUrFjB0Nk08HWbdtk0fIV5mc6KHvAAbJXt25SNs691KJFC6lfv76xkyNdnm8gXWJjYgsLgw6CCX379g28tIXoK8Elr2mB86GHBirnUCgSQEk07nkNNIW5ayzMmzcv8E4lFvXq1TNuBXYxyReBHj9+vPzyyy9GblMFH/UEKFuliiGy5WrXEimdmwY6pfesKBVat5KKbVonbefdtm1bozOdNGmSiUznE2yQiDaqK0cY6OxL4hFeKGD+w5kj6BH5TbvmPa9ForWwUOG5idOL3dlyPVmg1wxyEUl0cWEyshYEEJEjCsP5qFSpUl6OgcwAjV8g0Pvvv7+r10BkaRG+R8OGsn35ctm2bJmEtmbedYXCwXJ160pZl8dljq1UKePHTPFmPiNcECWi4Wygg25jZoHUhtqQnj17SpBRtmxZo5MPOjZt2mQItNfuDyXRCk9qn9wu0IUqY5g2bZpprhHk9td4RfP9kQ0oiQ6ntwcNGpTXMdG4cWMTKa1WrVrKry1VvryUb9BAytWvL3+uXiPbly2VHb/+KlKCYGOpcmWl7AHVTeMU2pCn9R6lSkm7du2KIu3MP7nOBC1ZssS4r9StWzenn+tlcN8H3ZnH6qEZl16LwOYakOh8BQ8SQUm0wpM3S5BJNNo30pjIGYKsg4M0QqRZTBW7CR/ZGqLRudTNz50718hJcAgoqUsA36Fc9QPMI7Rjh+zcuFF28PjtN/P/OzdvKWrZXa9GjaLW3aXKlJbSlStLmcqVpfTee4d/ZphY8D3nz58vPXr0yOn5RcZBe+sg3+/RkXnWATZtQQfjEZ38gAEDJMjYuHGjkmiFwg3yqfn0AuxCGnQSbe3TSGcqIoneokWLZPDgwTlxLyErsnDhQjMW0WZmEljOYYvHwyKEO8WOHbLXzp1SFU1s6dJhZ40yZbIehYfIojv/4YcfpFevXjmLSCPVCXoBnRO2Q6fWhnizwUi+zsO+HtSFe0tcogg80CYGnUSjzSQKG/TzAEhv+41c0F1s2LBh8vTTT5uf/DvTGwsyFUSoso1Zs2YZAk0BXqYJdDxAmNFRh8qWlY1bt0oI8ly2bE5kLMw/6L3JgOCUYW21shlxRfsbdGvPaHDeud5ch6CD3glKosWsh14cDxriUXiOQGZ74fI6bMeyIBdXWqAFhIQSkfKDJnD06NHy0ksvmWsI0eXn559/LmeeeaaJbGYq9d+wYUNZsGCBIdTZGidEvHlguUjBWz4WzW+++cY0csllRJLMR/fu3WXMmDHGlzubCzcZBXyqiYArdgPpUI0aNTxXRJZrqKxv93nwqiY62CNU4Tlwk+BMEXR06tTJFBYqRCZPnuwJH99kgOxDoJnwIf/Ony+++GJG/X/RikLQsQDM5oYWL2WIetCATKZPnz7SrFkz8+9sNEBB2871gzD6YYOYa2gQIdy5lrEYdBK9ZcsW49rlRXmPkmiFp8BNggdt0GEjEEEHkSicIDIticgGiFzGkxzwe6LUmSQYrVq1Ml0dMw1byInFYpDbTyPtAPhHjxw5MuNdROfMmWOIdJDPcbzxR4t7ZAxBB0W8Q4YMScsNp5Cwbt0689OLTciURCs8SaKDbrJP5HX48OHG9irowFJt/fr1JhLh9Yk+3rjl93YhyBTotoeLDe+dqfsFqzUkFH7YtORyTiISzSaJyGAmwFhGytG8eXPPdWDLNxh7nGc9LwoLG1hTEq1QuFiwiPgEPQq79957R1SpBxm2g5vX2yFDaBNForNh2wi5owAOXW1JsXz5ctMCG3lBNiLcqYJzhj45317pkDkaflAEOHbs2Ixs5sgk9O/fP5BSGTckmshr0PXQYOLEieaeDDp++eUXU5vgRYmPjlKFJ8lj0CUdaMNZRNQjOZzSJOqaCzu3koDCwUSR6N69e2f8Mxkj6CVnzJhRIrkBxIUFGwcO23jEC3PBoYceWjQn5BOcY4g053jq1Kklei8yEhBy3lOJYiSIQFMT44VNnBdABk4tPsXcM16MQgO9gxWegi0cCDqJZnGFPCiJDgNi5/WFlePDhYPIKdfP+ZPf24h6poE2Gv0ufs7pYvHixcYNgfbC+Y78enljC5HGrSRdoPMlmo2ziiJ2t1aQrXvFT0DKR0bWi8V0ucYvv/ziWRKtWxyFp8Cum7RNpvWjfgQkOuiyFmckl6gMUWkvOxkQjcaujCJCxjASDiLQ2SQFROjbtGkjEyZMMJKMVPyckYNA9Lt06WL+7SUCjdUl36lz586e8Ye1UXEiphQG2g2M2zFMap4xrDKO2GDsco6xcQw6rJTPC5mYfCIUChkSzb3mRSiJVngO7DiDHokGNLjQdO9u/Pjjj0bWge2alwFhPvbYY3NOPtCMp2LFxqYECYdtLuI18F0g0tmwlysp2NxShMnPrl27urpPaVzDvEY02y3xDhq0wcpukIVkXHnRGzmX2Lx5s5FReTUSrSu0wnMgeqckOizpUOxeXCGn6hoRHx06dDC2dCCZWwdRLlpbez2y71VUqVLFkGfkB2xE3JxvPKFbtmyZlQLTQgBz/nfffZcxBxS/g4BB3759A78O/OJhZw4Q7Kuj8CS4WRLZhQUFfH/8aTPhvFAIQHMMGdEWyYkxc+ZMGT9+fNy/E93F0YPCNqLQGhVNDzhIIIPBR5qGQIlASh5ZD01yFLHBBpmooxcdGPIB7sugSzmAkmiFIkVwsxCNCLoe2OpTtbhwN2nhnHjd6s4LUVKIXaxuhmzMINhEoHv06OF5xxM/bOzQbMdrhkEzlaVLl3qaBHiJRJNt8pIuP19AwjRu3Djt3ithZw6v2tsBJdEKz8GmO1XSEXYrQbuqCBfQ1a1bVyOnSYDLBl3w0OBGbzggKDhw+IFAIzNBMuF1uUnNmjWLZDTO882GZdKkScYSL9PdDgsNZJfIkKgrhxQFTlS65n1nDqAkWuHJSBpQh47whgIJAxEthUj79u2LCIsiPuiEByEh6gw5gcRNnz7dRLj23XdfX7gfQPLZEHid7FsQNURnjpwGQJ4hQmxaiPwr4mPFihVG+xv09tYWrH0q59hNor1cR6DuHArPgbQNEdg1a9ZI0MEO3Fr8aJRmt9cuch8vRyfyDSLOyAzwI4aEooFmI4Ym1y+EjmtMPQAdFP1A+tmc4CHNZoWW3pxvNn1sBBSJ0aBBAxM88cuGKVfR16AXFYZCIVO8WxJv9mwj2FdI4Vmw8KDrDDqwN6JCu2rVqvk+FM+ASF9Ju8YFAUSyICdER1mUaVjjFwINiJ4jSfGTFAL/52bNmpnxSeEmGwBFckAWbQYy6LBBEw0SiInIb9u2zUimvAol0QpPgpuGFF/QHTpshCvoEYlo6yckLqoVTwxaS9MdDxJKYc6UKVNMFF+RPbDgI6U54ogjjJZb56/kQDdO9F4RBmOGDEbt2rUl6Fi5K5Dm5WyOrswKT4KbBncO9JxBB2QRMuTFphP5AFF5CAqtqhWJI9FoTCki7N+/v+kGOmbMmKJOaIrMYvbs2caSEhkK3dWwD0RWo/UMiTcddNn0U4Yk2yBgQhCJTEbQsWLFCiPt9HJxsZJohSdh0zfcREEHkyr6cI28hgExIU3O4rt9+/Z8H47nwGbLOtvQ3ZFFCE0xLcn5SUtyrTfI7Pkmmkob8IYNGxbpt7lvCQR8/fXXsmzZsnwfpidh7f9w3VGEsXDhQnXmcESivSzlAEqiFZ4EVcnsPlUXHT4XRBHV8m83WHRJdyJZUEQSOhw50EFHbzAskSbL44fIH0VmLKBeLjYjkkrRJhu6Tp06GWtBJypWrGiyAZBsncuKg2wS49GrHsD5wNy5czVgImFZC0E0L0s5gJJohWejjdw8GokOnwvbxVERBiQQ3aAfyGCuYH2JiTLTSS8W+WQzhuUaGmk2IPPnz/esbpdNNN/Dy6lc/I15sDmJpWHl3qUdO3PZhAkTtFGQA5s2bTIafWocFJHOQ162dMsVfvvtN5PJ0Ui0QlHC4kJF2C+aSLTqoneDc0EkSzW+YQJN62nul0Qd9JxgU4bTyY8//uhJWQzXl6JIL455ey8ilRk4cGBCZwmINFFqrgnXSLMnu52HDjroICWMUfck40WdSsQXRYVASbTCs+DmoXNT0Nt/2w0F5Ehb4u4G54LUJxrCoANZASlgosxuFx18x7t3724IIQVxXtNJU1T85Zdfeqq4GAI8bdo0oyvHCxq4cc7hOUTVKfLUjpvh88gmBImRzmm7QaYCNyYyRkHHihUrTBbK6w1nlEQrPAubxlEtoZhK7erVq+uCE6PAkKKtIDsgQEggIwceeGDKtlhER3kd8g4cYEixK2KDDf0333xjsh9t2rQxRYSpACINIYA8/vTTT+b9ggqa6AwfPtyTWYZ8gg0wXuMKMes+58Pra56SaIVngQ4YXaeS6N2pPqJgisgCQxbioLof0Izku+++M+cgXS9xdOVESNH1kmIHSqaLa1W//fZbE0XGLhACne7izrVCgsSmxUtR9lyCjQiSBfW/j0SdOnWkVq1a+T4Mz0Sia3pcDw10BCs8CyZYLS7cDQpOkC5QyKTY7X6ALIHz4tUCuWwBKQsPFt5MkBGrTWVDgryDBhhe1ErnEjZaTCYIOVWfPn2KNhrpglQ9mxY2Lzh7BK0BDm2c2TxoQWEkCBZp8XgYSDi595REKxQlBDeRRqJ3p96JfqmHaCRos0yXuCBhwYIFJgrN927cuHHG7znel2ghKXc+K2hpd4gtVoHIN6yjBuclU5FTMmwQaX7SAIcNcpCa0lCQ6ab4NUigyNf6ZgcdK31SVAiURCs8DRYuIhdU6QcdLLhIXNQmKxIU4jBOvK6dyxSQWhAlhjyzgcg0IIr4HQ8aNMiklmfMmGF8kHMN9MOHH354TguLKNDk3BKJ37BhgynUzBbZQ8fes2dPadCgQVGDlkIHmQ02ZDQBUkRGXrmvyaopxGTDuCdY77wOLQFVeBqk/EjTL1mypFgjgyCC4kIiORSTaZX/brAw48MLmUbeUMhAToCsINs2WCxi7dq1M4VOtgXxvHnzzOfnosiV98/1xojFm6I3Nid872zfY0g67LyGOwobhkIm1AQC+vbtm+/D8BwIjLB51eh8GNyD1Lv4QTOvJFrhaUAUcA4gtawkWjzfwS1fsJMtrZeJnvph8k0V1AYgM2jSpElOfWStBpiNClIi0s5o0Smuwx0lW+OR74qLBU11LInPNIg2I1fhO7Rt29Zs2hk/uSay1rGD46DAsxDvcdtx1Q/RxVyD+4rzotZ2Yu4FSDSBAj9Ar1iBgsKNxx9/3Gj60Nu1bNlSLr300qTaUQbw559/LqNGjTJFS7wPxI2GAqecckqxxaVfv34x3+fCCy+UM844I2M2ZpBoRbiLG+dDURyMbcYtusJCO0csskTaIXhkZvIhXWFj0rt3b1PwYzXZzBE0zMhGxBbbQgqtMm1fyBzHhoRiVLy1uaesrpzvmI9IMJ+LZzf6aFw7rF66UMCYnTp1atEmQRGJqlWrmo2pQsxcB2fxS+GpkugCBIvEddddZ1r6Qnwp4njvvffkyiuvlKeeesqkSeIB7fHQoUOldevWcvTRR5uIFxrB5557TiZOnCgPPPBAsQWcJgKHHHJIxO8yGTXmZoLYo6crpIUlXWCPBVFs1apVvg/FUyAVzoaPaHSmHCu8ANL8FLkhoaCFdL6138wnaIUZf0QXIdDMOTQggQxwDXhOvo/TCYg4kW2OiwWauYxj7dq1q2f818m4QZ5x7Bg3blxBNWahUIx5i02YojgyXRzsZyxevNhE5P1i9ackugBBUQx+wrfccotppACIJJ922mmGDN94441xXwtJfeSRR0xq0+LII480VbLPPvusiYZBmp2AlB988MFZ+z6QaDTA6BUpwgk62EywQYKsaHvY4tFo/HxJ0xdC2pjvQVtuCB8Wa17aGBCxtRZUkFQ2MaRh0U2j9eVvbMbzRVAhzRQlQ+D4yTFRLEnEj59EoL0GSD4R6SlTppgix0KIThKFpo4DvW8h3JOZBkW73DsltU4sJBJdp04d30hbvDMjKzIGUtpMVk6pBQ4GAwYMMI0ZmJzjwWoDo2GLQeLJKojuZMumiYplFhOVdITBtYUQ5MMxwesgmseGrlAWaxZWtMdsXL1EoKNRvnx5o13m3JOuJ4qEn7kl0ESpJ02aVCShyLRlHhk0yLJ1rkGG9vXXXxsJARtw5GxOGYEXCbQFG2PmbuY862bhZzBPcT2CZkPpBozNyZMnay8Ex4aLdd4vUg7gD6qvSAmks5FTRC+6LCQffvihcbpINX1ki0KIlETjs88+M3IRbgAG/5lnnml0kolAZMhpLJ+IIKsuuvj5gKSwOJFS90Iq2ksggkFkFMsoNo9+BKlv7l9INPetX8BYpGmLbdxiiQKRNqLqjFlIIc9jjiCaTVYFws3GkAcbeZ4PicQhg+vIBp3X8ROSyd8hzUQ4ea1tCoM0g003542ILtcfgu83cH6YT3/44QdzTshC+PU+53ogQ9KsWWz9L/eHX6QL2cbatWuN3Z+SaEVeAeElKhQNu7BBXlMl0a+99pqpkGdhcqJNmzYmwk3qlvd999135dZbbzWp1GOOOSbu+33wwQfy/PPPu/58bqoRI0aotdsuMOlS3MW1dhIWRRgUvUHYSNv7bbxAGtHFQgCj7zc/gvNvs1u25TXFiZbcEkW2XvCWDDN/sXHmXDDOLSCSvJe1grNZGUgz58vKH3ie3z13+Q4EQ5DzEK30gh4+HbApSlSHE2QwRzFus+U+4zcsXrzYBA/8ZFOqJNrjYNFx23qXRYlJlmhNrOiL/V2qsouXXnrJFDb94x//MOlyJx599NGIfx922GFy/vnny5NPPimHHnpo3Er3o446KqLIhJvntttui3sMLKicB9JefrrBsgWiOuhNdfKNDSKYixYtMvIBLOH8AjafEGjuG4r3Cg0skJAGZ4aAcWzBJtkWECM7Y5wjA4AoM7fZOQ7wt0KPbhJZ79SpkymE5NzFCo54ee1CPshGwA/tm3MNsmVEorXxjETwAMaKn7JHSqI9DrxDcdVwS3aJ2LIAx9I929+lYuFE29+nn37adA5LFFm2YPE77rjj5N577zWpVpo1xAKFUjxS9Ue2RQeKMFFUxAaaV+4FLNgYL5AwrwNZAgSayC2d7Py0kGQKfHebOSAKzRwCkfTD9ctm1onNBWsBEV2/6P3JIJB10I1+bHBNrS+5Qor00GS3/QQl0R4HEdjrr7/e1XNtWp9J1qk3trC/c5v+J414xx13mAX9qquucn3MNo3KBJopsLCygHCTqU3S7kgP+nfOt18W1lyCCA+ZC4rLsDLzOtACoufG2qyQu9YpUgdzH1F3vzg4kFFhA8RGP5dt2/0E7nG/EcZs4tdffzWcwU96aKAk2uOA8CKLSAWkz7BIgmQ5iwvpNEZEx40+bcaMGfKvf/3LpFJvvvnmlOxmrGtEpou6uLmI1EV/r6CCcwBJREuqJLo4yFygI/X6WEG+wP3Fvd6/f39f6l4V2Ycl0FgIErXzcgdXouasNerIERtkhbFsJUumvQ/CIEBmTQT8BG+vLoq0wEJMwRndCi2ojKcwD5snZ5qYG5mHE2hJadaCN/Rdd90VNyrGe8aKpr399tvGxSPTEyge0RBGtQPaDVKBnA9Sg4riIEpvZUNetAqDQNOljoZGQAm0Ihkg0BTOOgsuvTamGcdI+fxW1JsrMGdzz3txTsoXFixYYKRbfvNG10h0AYIGKxBZOg9CiG3HQm7Yc889N+K5f//7383PN998s4gEX3311cbXk26HRH6jSZtNQeHEQeEIxJzBj1zkk08+McUSN9xwQ8Z32Fbbis61du3aGX1vv4JzgqRDCy6TS5PYDMbT6OersAgLM7TQfou+5AI2Ou+Xpgu5AhFoNs2QMEiq19LfzPtIABXxQVMims+obCsMuAnrOlaOfoPOTgUIJta7777bOGe88847xo0DfSja6mSLNbok27DgiSeeKPZ32ntbEo3VFJ0RP/roI6NlguDiaUsUOxs3A98Laz5Io+3EGHRQtEOklUlZSXR8sGChjWbz5QVLQEgQrZ3ZrLIJVd1o7LHtbJCi2A3mc8YQsj3mXYIYXgAyQI7FC/eYV8FaSRbXD3UaucLy5ctNAM/LEqV4UBJdoMCKDjLLIxFsBNrpguGUgSQCk0CuJ4JmzZrJsGHDTOW+X4pssg21SEoOonXIltBqsgHLt04a/R8LKUWEsRoYKcKyBR5IA1TmUhxYA5L69gphpfkNjXN0PCe/94lA+93HPJOYO3euGct+DASpJlrhK+D5y4JKcY1CAuOXW1IwZvDYRTpBJiPfoJU3rZ21IDRxxO7jjz/OqMtPoQH3C+QuBBVsBjFfOmgyPRBDldolBrVGdJrN90beS5gzZ45Z2/14Tvx3xAoJeooXXbYXiJCXsH79ehk7dqwWqiQAmQui9vnSIRJVpfMcZAdSr5kURSaLstD9r1mzJi+fT6EjRNpLNQdelpb5MeKaLWzcuNHU9PhRygGURCt8ByQdpA3VkSKymIcFVJ1LEgNNPVHgfBBopCRLly7VcavIOKhToTYCIh2rR0AuOu9RD+M3Z4V8aMZxzlLsBlllggp+6izrhJJohe/AjpViySVLluT7UDwDoppoIykwVCQHzga0BM8VKMBlvNLKW1sgKzIN0uDUpyDromCVzFSugJyEOgMsSBXxgSyJ4A9rl2I3yCoTmafLrB+hJFrhO0BCII0q6ShePLd27VrTLUyRPDJMVAg3mlwUzWA1iSZb9aKKbBLpbt26GSKdq2wHMhLqDCDSWvyZGAQ4kJJ5xUnFC9ixY4cZQ36VcgAl0Qrfgcmamw5yoojcXCDr0Ah9cpB6xsFm/PjxRsuZTaDhp3OiekGnBq7PQQcdZH4q3NuA4viCtIONIgQ3W0CaREYnXzpsv5FFzhfdgv1YPJfNjcXWrVuVRCsUuQY3HZN3rK6JQQWTMwsomnFFcrLRpUsXQ6AnTJhgCEemwaLJ+1MMy+KpSH0844GspCM9zJ49W7799tusZKbI4KDxZ1zr5jA5sNdkLtBzFQmyyWyScSzxK3R2UvjW2onFVSUdkdh3333NeVGXjuRAg0dTIIqhMk2i0VtPmjTJNBFQpAeaL5Ap4KcidVBAS2aKrrOZjEhDBrkukB8abincZQnRrLOhVuwG2WQCYn6WAimJVvgSRKjQAKukozjQ344cOTIr0dVCtJtCq8zGI1M6UlKUFBLiBOK1lsx+AmQNt5lsy20KFehvab8NQYFI//HHHxl5X7J/bNLJ5JDRUSQHmxk/R1uzgV9++cXU8PhZygGURCt8Czx/bWGLYjcoLCKFq3Z37oEt2Ndff13i1LftiohTAQ0VFIp8Bxsg0mwQ6ZSXCbDxHDRokG/dFHKNH374wQQ2FJGgsJvNBcEGP0NJtMK3gKQQEcHoX7EbtN2lsAg7JYX7c0ZUDZ9dfG/TxbZt24xOFN9ehcILgOz27du3xLUSeEFPmTLFzLmqU3cHrAZprsRmRhEJsnWMyfLly4ufoXeCwrdAk0fEj5tREQl296Rd1djfHbDoQrOI/pZIcqqw2RB0qDhx+Fnjpyg8QOIYkxRjjxkzJuWNIhkaNP44KSiBdg8ypeig1dYuEsg4Vq5cWRDBBr0bFL4GNyETlXojR+KAAw6QvffeW91LUtyUQYApBkylEQsLAlIQFgVFZokfki2N4mUORP1o+oHEwG0NAM8jQ8NraRakcAc25EjqCGjopjoSBL7Q7PtdDw2URCt87/fLBIW+ShEJUri4mChS83TGccBt5IhIPx3i6BbJxkWROdhFlp+KzMmWunfvbizqIMZuXHzIzEAIydSQsVG4AzIONL9041PsBgXvkGg2yIUwnpREK3yv92Onr5KO4rBWdyrpSA1IhBhX6JsT2asR5Seih60gBEPT3JkFrhxE99WdI/OFxxBpimmnTp2alPBABMnQaNOb1OeRgQMHqoNJDG092btCkHIAnfUVvgc3I5XnpCkVkaAqPNM+sUEBEbhE1mA0s4BY0GpZF8rMgw0M0VL1ic48yJxApJs0aRL3OeifyfKRmSFDo3CPjRs3Fm1AFJEg4IU3f6FkSZVEK3yP5s2bm7QQLWgVkaBDFudGm9Kktzkjkj927NiY0VAatUBECiElqQgecPCh6I2xjd++01eeuoDhw4cb2YciNZDBolNkKnUVQZNytGrVqmACD0qiFb4HhUdoJ1XSURwQPM7NkiVLtPgyRRAtwWOXiJwtxOIcfvfdd+Yn51YjTYpCsGHDJtRKO3DwwImD5iAUJytSw7x580wEX7XQsX30kcEVipQDKIlWFAS4KblBVf9bHHTNozhLo9Gpo1KlSibavGnTJrMRQd5BpKlQoigKBQWxaJ6RxGF/h4SGhipq1Zg6kH4RgUaq4Hf/42xg2rRpZk4tpE6uSqIVBQGirUxaKukoDghf69at1T0iTVA42KdPH2OlCHr06KG2azkAhZpozrVgM/ugQRDa51GjRplIIVIlPe/pRaGZbwtF75tJ7Ny506zPrEWFNLYK55soAg0INNpolXTEBoVBtWvXzvdh+FbHN3HiRCPnQEeKnaIbazBFyQCBPvDAA9UVIoduEkcddZQh0JppSQ+MVazbVOZVHD///LMpuCwkKQdQEq0oGHBzYp+jTS9iAxnChAkT1MUkRZDSxo8cfXTNmjXNGINUK5FWFAKYD2zxLFFCghH294rUgEyBzYgittsRWb1C04oriVYUDLBrIhIAwVEUB4VwpGqxZlMkB62R58+fbyLRaETR8tGEhUgdRJriK6ejgSKzgMR9+umnSuayCM6t1fk7gYc00g500orkwIZxypQp6mkeBxRnkyWm42Wh6eyVRCsKBqQgKYZhx6uTWXGgQ2vWrJmJ1Gs78MRAukEnQooxo32KcS2ASNPSFw2kIjtgg8JGRjcq2SXQ1oXGKUHAR7phw4aGGC5dujSvx+kHME8wrxaS1jeTmDp1qrmXC7FtvF5xRUGhU6dOZterBYaxQSqNaL2en/hApjF+/Hiz0cCZAy/daECkIR5aQKTwI4g848QRi0BbIO3AZ37y5Mlmw6iIDby0ce4hQKFa8thARsj5KUTLRCXRioJraUsbcG5aRXGQSmNxhCBS5KEoTqAZO7SlpRPhfvvtF/e5ROtYNDmPo0eP1s56Cl8VYrdr10569eoVtwiOuYLnUJSMM41mBGIDmQKBiUKybcskli9fbjZhZO8KEUqiFQUHblYiA6tXr873oXgS6HsHDx6srgdxiAMEo0uXLsaJw+1r8IelCQuNKxQKLwISjLOMlSBBjpN122Rsk4InI8P/K5GOBMEIehMQmCg0rW+mMGHCBBOBTtRi3s9QEq0oOFBdTgpeo9HxQfMVdL/anCYMyAENVVgI27dvbwoI3YKCw759+5oxR4pcU9+ZAee1X79+5qeiZOBeR6JEoWyqul3uCcj2li1bZOTIkTpnOIDbxMCBA01gQlEcSCvRQ7MRK1S9eGF+K0WgQYqdm1YLDBODBRVrK6KoQQca8W+//dZM+umA6LW1wNNxl7n7eJ999lGdaQnB/c3mjnbeSJTS1fEzxmky9MMPP2hh8i4tNJvvWDUTit1SF+ZCapUKFUqiFQUJbloWD9KXitig+h6CMnPmTAkyGCO06iUlS4Q+XRBpYdwRlUZnSvRPvaTTB5FPolj8VKSPWbNmmbmwd+/eKWVY/r+9cwG3ek73+O+cwxA5Tp0u1KAmoRRSCN3TjXIpEbnWDMZxecw5w3GOMWdchvG4HM/BIEYuJblEpVRSukhUqDYadNGNlBQRY6bzfF7z2/57tdbea629Lv/L9/M869m1Wu299n/9/7//9/e+3/d9U2GtOOqooyw1z+Y7ya0HOZ7UQRCIEJmh3Sw2DjbDcUUiWsQSCsKIuMjSkRmEHtO1aGGV1MgSram4ETKoh04EhcBHpuhqQNROUen8O0isXLlypx7GIjtoKQac22zsCiFksHUQzd5jjz2sBWRSN4kEHthUqJgwM9ja1q5dG9uCQo9EtIgtRAUZNUoaU6QH4UhkKYnj0r1IYxohUflCw+QyUr4UHG7btq3g31+ITHBev/LKKxbFR/hiwyjk5rtjx46x9rlWB8XDBB403rt6iEJTvE5ruziTvCtAJAYWOSImikZXXzTUtm1b17JlS5ck8DLi8ezWrVvRqsZpgUcEkJ+FkGbKoRDFBAsRA1KwwTRt2rSg4jkI1w7nN+c2dpGkWG74fQk4EHgoVOYqrgGKxYsXJ2KjFe/fTiQaIjCaYJid9cV7JbkJxx2yE0xq43dFDBQTrB0IafqXE5UWolhwfjGqmygpHWZK0XaNdZWUPddTEgqUOZ5kreifrZZ2mWGjgZCO44TCVCSiRayhEIbFHX+qqJ633nrLNhxxhhs+vyNt00rV9YGULz5SH+0n1a5+0jVDkSd1DbUp9kwSRPyIPHft2rVkUVLflYYNKcWGcfave/83U1/ZFIv0EK1nU4WNIwnHSSJaxBou4tatW9tFndQimGxp1KiRicy42g4++eQT2yjst99+ZmEpNX5YBceYyn7S4DonM4MgJJpaLEtCHKC3Oec05xH+UyYQlrrlGpY5fi4CmnU2rlk/CinV7almPvzwQ6tD4pxIAhLRIvZwMTMgYNmyZeV+K6EGDyVCGi+br+yPCxT24Y2njzOp7nKlYvm5nI8MBOJmg1caISR2hnOQiH3czsVCQUZj1qxZdozKbaVAuBORxidd0xTEKIJFBmHI7yeq57XXXrN7SVI84xLRIvZwQdOKiItbVA9ePyJJREnjBDd5urXg0Su3l5Gfj7WjU6dOlganzZ5Iv/FRZ5OdQTBjnaB4kKwK9g2iweWGSDjt9Di/8WfHpb6CCDvDmLiP1KbPdhJYt26d9dynJ3m519lSIREtEgHRv9WrV9tDZKZOnTpmf4lLCp0MBIWEQBQ6TJXijAxmrLW3lvBeyx1RFOGHnu5ffvmlO+aYY+zcCdtER8Qz/dHffPPNWNiVKJLDhoW1SFTPvHnzzEJJZ6ykEJ47ihBFhCKHBg0aKBqdZX/jYrV9KyVEw7iZk4rlJhhGEEC+1yyRxZkzZ9r7FSI1GkqED/bZZx/Xo0cPs16F9Zwm67Np0yazUEVZSLNuEFAgwq4C15o3dxUVFWbrCVOwotgk5zcViYbUEhc3NgUifqJmOFZRtRoQqSMqQoqZzhhRSC2SLWnYsKEVimFj0HkqEKB456dPn241HV9//bU9H7bocyoELOiMtGHDBjufw7qJrQnWDTJzdOQQ1TN//nzbaNBWNklIRIvEQEEZ3kHElagZogmI6KiJOTy0fMZYU0h5R6XQiYg0I3LZ7CGeiEwnGQQMLdSisAEq1thkpg6ymcX7TPQ5DN7nbCFSzvkcVZsSrTAp3hQ1s337dss6sHEqdu/9sCERLRIDYoqoJD2jfURHZIbiN3y7RJKi1CEBMUokDDEaxbG8vHcGtLAB8LYU0qRxbR2WCabC9enTx74mCR+1pWvL3nvv7bp37252giiKE289YUMbJVsHbSippYjKBrzcLFy40Lzw3F+ThkS0SBTslIGiF1E9RADxNuLHjEJUlGgI44cRG7zvKIqO4LH3xZ2IKW7opPSXL18eKTEicsugsC75zjjUJbBelbrvc6HBesLGgI4ibAbDDgEW2nzSjUM2jpr5698H7ZDpZYhV0pCIFomCdChtzmicn7TIXr7Hiw4A3ATDLN6+/fZbKxolah43uJkTzWvSpIkNe5gxY4YV8cQdfO3YGfgaZ9ik0gGCz5WsA9FniJONhd+F7jhsAsPcr591jjWEDFY5BjJFkSVLltg1SuYviShXIRJHx44dLeKDrcNHpkVmiMaEOSKDCCESQkSEaEgcoWCHHt7Nmzc3n7r3xvK7RzniXh1s2ojOhnnzVojNH+IZ8UZbMMacx7WzAecu1+h7771n0ekwdgDCtoaFg0xWFK1gpWbHjh0WvKD7FUXRSUQiWiSO+vXrm8dw9uzZFpWW7y37sdn02e7QoUNoomRkExDQWDlo8B/11HdN0G2EYi3/uxOp5TnEF/7TsHwuIjOcq3hu+czYHLVq1cqitHHdDAVBOHshzfQ/egqHCYSzr0UQNVNRUWEdWAYMGOCSSjy3vELUQLdu3SwFRUGEyP4Gg5D+6KOPXFgg/Y0oIZWYND8emz8/wnzBggXmmaYdWlTbicUdxnMvWrTIvfzyy5ZN8JMYmaaaBAHtYeQ97RzDJKCJQBNRjVononJChmjmzJlWgE73mKSiEJxIJERBECBEo5W6y/6YsWBS+FTuKBILOGlvOln07Nkz9H1zi+kz5bF161YbxrFx48bKNDkFiUnbWIQVNjm0rCNTQt/h/fffP9EZMNYPoGCW67jcdjE86dQZaKBKbl7ojRs3uoEDB7oko0i0SCxdu3a1Smx16sgevG+0vUMU4Ocsl4DmM6PIDpIooFOhDRybQp+KZlocXlv6ZZM9iGJ0GsFJ/UIULTpcG8FoM8WhtP+iXR02jiQL6NToPLUpbDDKBUIemxo1B1E818oBlhyi0IcccogVPCcZiWiRWIik4olmOly5BGHUIGqEJxofLgtpqUEMYsEhApLUQpbq8J5ozm0yLHxGbDjwTiMUogRCk884SoITexHdHbBsYK3h70C2oHHjxvKsp4BwRYRhc8FbW2qIPhNRbdasWdmj4VEbRMMGqHv37i7pSESLRNOlSxcT0LS8E9lB/2IihHSIKGXnBN9+6tNPPzUhLxFd/WaH6GenTp1scAvFtHTyAKKjRN/838MKXnfaoYV92p2/Bj744AM3a9YsywIQoevVq1fio3Q1waaCMdFMN2SzV2pPMj+fgtxDDz20pD83yuAff/XVV+2YNW7c2CWd6GzxhSgC9GSl2wFFJbS78wMuRM0gwubOnWuFQqUQC6tWrXLr1q2zCKsW7+zBfkPGxYPII5LEQAnENSKCSClT5cJoieD9hem6ZDPHMcQmgw0BDzrt23if2GoQhIo457bhYw2mY0epPPx8hjz8+i+yh0AGNRgU5wuJaCEsUkc6kVZpWhiyh44CiAY8jdg7eBQTirH4Gb4oSeR/HNmEENFHBCJeiE4zXIK2eUR+i/1ZRhU2chTWsoFE2LP5YCMCpbgG4iykfTSYqaMcXz90phhwzmPloKuPNjzZw/pAtgUbjjKBPyARLRIPNz6i0BRhUfzjB1mImiEVS4cTUrFsRorR5YRoJF04ECsS0IWBLgSIaR6kZ72/nUg/EWoKrIis8iCSHdcBIDVFwvHes9HAL8uxYG2gJZ0/LqLwUDD82WefWRs8NumFhnOcNp2Idgno3KCgnA03RfniBySiYwo9kO+//37bNXIzoKH/pZdeaqn3mvj973/vXnrppZ2e54b7xBNP7OQHHDNmjHv++efNz8bN5pxzznEnnHCCixJ4RylYw9YRtfdeTuiMwQaE86wYEyAR0PhiEec+4icKC4V7vniPfq/YOhCOFCIiNrimsYMQhcLCgHgk7R4nAcJGgo0CD0ZT8yAiCkGxTPRNEbjiQpSTgAaZQYR0IS0e3BdZp7Cf0SVFZA/ZAYrwCZxoLf4RiegYgrC95ppr7AY4ZMgQS4shcq+88ko3YsSIrBqjk6q/+uqrqzyXrv0P32/UqFE2sYhiGi6yG264wW6w9O+NCvxuRKHnz59vKT61OsoejhU+5ULD+YuA5rzCcyqKDyISTy8PxAzdJXwUmj8jQADRzbpChoC2h8WAjRPFkcXIbvC7sOknpc+DntoUyyKQsWkgshDPiIUw+bGTAJ83nwUBDcQ0k0gLkR30nWr4XghBkRsU32P1ohhf/IhEdAyhfyPN4xGz3uPbo0cPd/bZZ7tHHnnEXX/99VlFGHv37l3ta0i5PfXUU+60005zV111lT3Xv39/d/nll7v77rvPfnaUevgS9WCRpfL4xBNPLPfbiRTBQj8ESm39jHSPIK3LcBceovSwEQ5GYRHM/fr1qxSeXnz6jbsfQc4D4ckD2wMinCKuXCPXiJ18N2f8PKKOZOGIKPuv+L55H364BnYBfi+KA711AAGtrhrlhSAOwQxENJ9jIUQ09yI+ZyxhUbovhQHmKVBEzvUoG1NVJKJjCCKQCEpwx8iJT0/HadOmWVommzGz7NzZeWaKyhJ1Jg2KiPZwgzr11FNNwFdUVFg0KyqwUHPMGJ9MCzWicSJ38YunlkgS4iRfOF+JcGZjPxKlgwg0n2vqZ4uIJsOFMMXywbrB+oHoRkST4eHfsIrgx+Yrr2ed4rWIcV7H+sGDaCSvIVrMz+Q5hDE/h+sUgc7/oTiS/+8frFVEGfnZrIMe1jv+D2Kar3Rk4Lkker2jAucJ3lu/+cJOlE9WgvPG95XHkijyC8xx7anwfmckomMIPlKid6k3CHzREyZMMK9jixYtqv0e3JC4AfpKfawZl1xySZWIAH1RudFRaJP6c/y/ZxLRLGq0iQpWvYcBJr7hjZ4yZYp5u+Pk+ywF+Gcp3KEAhTRsrt0KOC8YFEJUsBhFRaI4IHRTNzyIHu+1ZpgFEUUvdmmRxb8D/msiw0EQPKwjI0eOtHMquJFv06aN2Xv4Hqx1PurN2uTPGX4udQ48jxhLXQtl0YgGfv3F1sV5QrYwmwBQELqpMPgGAajuKbnDEBzWczSAbI47IxEdQ4jeMAI4Fd/ZAPFanYjmdWeddZZFAtnFE0XCU41H9e677668MfJ9EDypQtP/HARRJsaPH283yLDB74aNhWJJNgHF8nvGfaIhqT/OGzp2IGKygQgmizXiqaZNngg/waih7/SRDkQyWR/fu5cH6XayXEQO2diSmfBRai+AaS9Xne2CtUnEA7zxBFooNsTmkW1Emv+DgKYThwR07nAtElDi+uM6FDsjER1ySKH4iE1NsEPnJkPKMt1u3T9X04jriy++uMrf2YGSeqWIkBSpLxjk+6RbzLL5OSeffLJFKoOL3U033eTCABE1KrdZPBBz8s/lvhGhSBO7D10OfGaiJn89GQCEkarmkwVrSLp1BG89mS5u4Ok89soSJQc6dPhiQzbn/LmmcfBEUBnpTdZCa0p+EEjyDQpqOt5JRUcl5DBZjK4a2fD444+btYLIX7qRvv65bCODQc444wz38MMPV6Z1/PdJJ/Cz+TnpfJVhgZtznz59rEUgFclEPkRuIH58Or0myGhwnEnh00pN4kgIkQpWHcQzxYYIu5rqJdjAk+HQSO/8oK6AQBIbENWmZEYiOuSQzrz22muzeq23UVCsE/Qbe/xz+QysQBCziOFDDP48RoCmVt77nxNWkZxttwlsCUTe8XXLC5Y7fow0th4izZki0tiPOJc43ir0EkJkgqwEm/Ns1mPfs16b8vwgsMHaTABNxzAzEtEhB3FBgV8uUFRIhwSsIEFRwqhTIoPZ9IlO1+KG9GqwvQ3tgiZOnGhWDAqHPLQm8/8eZehmQjpwxowZ1rpP5AfnDr5EzsVgRAPPKylCzldsMxLQIggWDvrPCxHEe5s3b97sVq5cafU/fu3AQrho0SIrPpUHOn+YSkgAicBGsH2p2BndtWIIbYHYQTJFzkN7KcRganXz2rVr7eFhEUL0pPLoo49axDlYXEBEABE0bty4yud4zQsvvGCpeRayKEO1PxXdeHVppSXyz6YQhaaTAmlYoFMDfYUpJgQJaCFELmAlpBMQA4C47/B3Cg9ZW7Se1A60gg8kiepRJDqGIPyeeeYZd8stt9hO3U8sJDI9bNiwKq/1Q1LGjh1rXxHfw4cPt9HXvqcmaR0WJwQ0wtmD32zw4MHuySeftKgiQmn27NkWBf/Nb34Ti4I8UoL4wBmDft555ymtlSdkJThHyFLwlewFFqF8rEUiGdAHGoFE3+dCjn4W8YD7D8M/CHJwb2OYDg8K1mW/yx8CRhxT6oIKMeQm7khExxDE62233WZTA5999lmLLjM6GW91Tc3muVn5yX0IRxYn2gtddNFFVqGbusOnkwdpM1rW8XraVV133XWuV69eLi7HksWE0eb0G82m04RID+cgPYLp+co5k0urKpHMwiZS9nwVIh1086EYmZak3LvOPPNM2ThqARF97uMEN7ynXFSPRHRMYSG55ppr7FEdPgId/H+I4GxBVDOUhEdcwbNLJHXq1Kn2VcIvf+jcws2OFngUqUa5+FQIUX4I8tDbn3uXRlLXDuqmVqxY4YYOHRqLTHIpkHFIiCzo27evee2Co4RF7pCaJwKNlxGLkPdECyFELpAlpY0d0dO2bdtacTtZi2CNj8gesoSTJ0+24m8CRyI7JKKFyAIipl26dLFm/xJ+uUHBDx47FmmKWml9R0SfVKyKNoUQ+Qho1g4ip8G2q6zNdOegG5DIjZdfftkyhSeddFK530qkkIgWIksoWKHrCP5vFnFRM75inl7RwcE8FGjiZaQ4iMLN9evXl/V9ivBBURPniIqbRBDWXtYMJhLSgi04zRJrx0EHHVRpSxDZQaE3x5SGAsyDENkjES1EluARY1w5go/Rs6J6SK3S2YWeo0waSy34wU/fvn17i0jzGiGCUHtAobJqEERwTWHtZVNO4Vu6HsbYEZiyt3TpUvfxxx+X5X1GCbolTZgwweZHsCkRuSERLUQOEOmg1R89jukcIDJDhxdSrRyvYLQoVUgTbfSDeYKpWZFsSC3TopOvQvj1gs04m3KyWJlg1PcBBxxgLe9E9TBPgnsZASK1cM0diWghcqRHjx6WYmZaI0UtIj20U6QLR7169ap9nV+4GQhE4eYHH3xQoncowgwCiImhEkKCNq1En1krGOJVv379Gv/PYYcdVjkhlXoMsTPUo8yZM8d17tzZrIoidySihcgRiuMYA870PQbLiB9hU+Gr45s0aZLTMBXaU9FLmn7cfnS8ECLZsImaO3eurbX51KIgvqdPn24eavEjHEvqe1ijg0PURG5IRAuRB7QAItJBY3r5eX8U0G+99ZY98rVlcFxJxfoNiiL9QiQX1lYENOsAFo58xnkTtcb6gb0MQS1+gHoVWo1i49hlF40MyReJaCHyhEmGpBcR0sKZ6GVRZhRvbSq8KQo6/PDDzd6haXVCJBM24ghoCrrpjJRvlxZfwEzEFeH4+eefu6TD2kpdD8WZFBSK/JGIFiJP9txzTxvCgm8z6T5eXwmP+MXGUQg/NT49IiRff/11lfZ4Ihnw2ePTVJQsmfC5U5CMgN59991r9b0Q0ghGLGNJt4oR1X/xxRftmPbs2bPcbyfySEQLUQuYlEVnCYoMKX5JqrcOocuxKGRUwxccMjxh9uzZss0kcJNKCp+vIjmsXr3aNs1EnunsQw1KISCiTaEzjyTjgz7U9ey2227lfjuRRyJaiFoKPRYjPzI1abBx8FEexu4WA1rgAUJaqdhkRczoYStffDLgcyaj9fbbbxdt+BLRbUQ56zXTZ7/66iuXNBvHpEmTLODBUBpReySihaglpAhPPPFEW/y5CSSF5cuXuxkzZtgNqZj9RYlEYu3AZz1v3rzK7h8i/p5YNqbqHR5/2CzhV6YvOAXb2LmKCRt/+o+znpBFS0rGcNy4cRZ91mjvwiERLUQBYOGnfym2ji1btri4w82uoqLCos+19StmA1PrSO1rgp0Q8RN3RIXJMmHfYEhKsSEazXqCxQMhnYQ+0hRpUrcycODAkqzZSUEiWogC2jrY5bPbz6efaZQ8i/jq6KJBX+dSQfSIwkXaVZH6RcjH+TgLkQS4rtmM06u4lAM/EJLHHnusrSWvv/56rNcSsndkDcnolWKTkiQkooUo4KLMLn/VqlUWWYkjFPwQgSbdSj/ncvHll1/a+yC6ool2QkRzM+67GrGeMM671NSpU8eENMGAfHpQRwFsK88++6zbd999XdeuXcv9dmJHPM8aIcoEu3wiKvTgpGdy3MBKQTQD+0o5wR/NceYGwahwTSMTIhoQ8X3nnXeshiQMfmRqLvbZZx/7M9mtuLXTZI4BBZQEeLCviMIiES1EgenWrZstyuz+EXlx4LPPPnMLFy60GyA3nWIWEmYLPWS7dOni6tWr5+bPn+82bdpU7rckCgiRSQYalSNCKYoDonnOnDluzZo1Zs3iERbwRb///vtW4EihYxx47733rEUo8wwYNiMKj0S0EAWG3f6gQYOsq8CUKVNc1EGcMjI3jDcWIuP0fWVKIuN9Ic7exiRBep0CsLim2ZPIn//8Z4v0kkUqdgeOfOx4FBuybrPeRX1aKr/H+PHjXatWrSrbhIrCo9VJiCLArr9fv34WvSW6EVU2b95skRmivfSCDqOgISretGlT+0rEnAIa3reINgzX4dzTkJ1oQ+EeNQxAByOyR2SRwtqulA4hrB8LFiyI7IacY/78889bX+wBAwaEInMYV8J3RxQiJrD7JwpANMDfRKIEBXvYJPAfE+0No4BOpW7dutYhhcLOFStWlPvtiFpA5uPTTz8NZQZEZD+Mic4XXI98joi6sLeoJKNFwCDK/mHa9tHH/7TTTrPJj6J4hP+uKEREYfdPFIDF+LnnnotcVIPK9YMPPtgiM1G5ofCejzvuOCvwZPANadm4+NKFiBJsgCj6JYDQvn17E9BRgVZ7HTp0sMABPu4oTc2knd306dNtHaQNqSguEtFCFBGiAPijaXtHx44oQPr8k08+sT83b948Ujc/4MZH2phoEsVCUYigCxEnPvzwQ7PiYNugrVqDBg1cFCF6Pnv2bLd48eJICGnW7rFjx1phe48ePcr9dhJBtO6OQkQQBgmccMIJburUqa5JkyaudevWLswWDlKBCOfGjRtH2kvHjcS3riKaRHqTfrBR2xQIERXItrFpZe3AthH1wR6sFfTDf+uttywbx+Y8zMeejlAI/zPPPFPrXInQURaiBNDQnzQbxR6kCks5mStbiNoioBHOVKlHWUCnQkqZkbekmPGq+04eIrzQLQEBoxHF4QcBx+AUMlj0kactYVxaE/70pz+1Th1EoxHS1LmEETKd1IGcd955VsciSoPynEKUAATpKaecYunNp556ygpuwgTvBwHNzRDBHzfhQmSMtLIvOqRjStQ86kmDzwpPJ19FeGGQB72fEdFMxYvT5ttDRJ0NHba8ME5Ifffdd+0z6NWrl1nwROmQiBaiRNDzdsiQIRYVJSIdJo8d7wWxgoCOazU3Q2KOP/54K5ZkMlkYb4biR+gnzNTPuE2QixNkdygeJFJL7+eDDjooliIa2NB1797dipfDBG09uZ8g8lm/RWmRiBaixP2jaTvEJKm5c+eW++2Yf47uFUSeqeZGaMYZbvAtW7Z0PXv2tN+Vmz8DINRGLXzgY6fPehhGQ4uq+ACA9z3T+5key3GHQAMZLLr+sBEPQwaRzCYZTjKdcd3AhBmJaCFKDMVt3HRoQ0SxW7lAQNIHmhtC0vC9ahmqQCeBmTNnml9aCJEZNpu0jmSUNGDfoNguKi0wCwGFk2TrlixZ4lavXl32gSpkNslwkukUpUciWogy0K1bN9eiRQv3zDPPuC+++KLkP99HUxgNG+ZuIcWG1lt8FhRB0ZKLY0KBpRCiKuvXr7dpoFg4khB1rg6sE0Tg33nnHSsYLwdkMsloktkkwynKg0S0EGWKZgwcONCiB/T1LKWdAAHNSNtNmzbZJEJGeicZokoMlGEgBJHpKE6XFKKYsF7wwDaAL5gAQNJp27ata9q0qbW/IxhRSshgkskko0lmU5QPiWghyije6Oe5YcMG9+KLL5as0BDxTDEKAloRjB+hhzdead9+sKKiwkS1KA9YBBBtSbIKhAk2276DjR+FzZoRtsK6coH/+IgjjrCWmaVsKUfmkgwmGxmyaKK8SEQLUUbwFDIanGhGqQoNEYlBsSh+xAs2ii03btxobaPwf6q4rfTUrVvXIm18FaWFrihYN6gX8J0p/OAiUVVIE432dhcCFMUEq9moUaOswJFMpqaxlh99AkKUmcMPP9x6GL/88stWtFMsGBZAJwqIWx/oQoPNBgHHZ8ONEUHhj50QceXzzz+3jSNdUagTYJMvsgOvOIXaxcpeUQhOJw76cg8dOjS2rUijhkS0ECGAtByCjWprFuNCgzWBQQFKxeYWZdp///3NA0pbPN/Rg5uZBrUUny1btpjNia+i+HCcyYZxftNvGOtGXKYOloIOHTqY/ej1118v+DmL1W/ChAl2b6ATBwXRIhxIDv7WJQAAN2FJREFURAsREsF28skn24jZJ598sqBpQabzUYhCIcx+++1XsO+bFHbZZRcbIuEngXE8aYnHiGNRXLRZKS4MsvH9jhGAFNiSgZFIy88KxvHDfoSQLmSBMgNt3n77bXfqqadaVxARHiSihQjRIkyhIYswvrdt27bV+nuuWbPGxvHSxq5Zs2YFeZ9Jh40IqVTa4RG5o0hTiChBNyDWBTo8MDLae/4bNWqkgR213HB37NjRNiE+c1VbEM9s2qljIRAiwoVEtBAhArsFfjcmUY0ZM6bWI4/xNB555JFqSVVAqMTnRsmDSGmho05CFBOyUtRf4PGnKA5xJn9t4UA80y6TuhMKlL/55pu8v9eKFSvc+PHjbQ1nrLoIHxLRQoQMBhmcffbZZhcYN25cXq3vmKSFsCO67avHRWGhu0nnzp3tgXeUz4kuK5p8KMIGm3G/Iec8xTbmI5t0ehDFgWEsr732Wl4DnGh9SiEhNrKTTjpJGYKQIhEtRAhB+A4aNMgmUk2bNi1nCwcpwHJN0koafnobIoW0OJMPZ82aJc90LcHWRMGtWtzlD5FQPPxEnj/66CN7jqwUo7rVoaf4cJzZtMybN8+yi9lCBw4sffjUzzjjDPVKDzES0UKEFCZR9e3b1yIZ+G+z7e+KgKarxMEHH1z09yiqtsU7/vjjrbMB3kg+M1peifxAOBDhl4DIHSKfeJ0Rz9g3KEbzhbGitPY81gM86Ni+srHnsfEZPXq0WcWw9ilTEG52KfcbEEJkhmpv+o5OmjTJvLjVCWNsBAwGYfLeYYcdpvRfmaCoiAcdVvxNkwg1mQHEDGJb1AxeUny7dEZRa8bsQIBxfiGiaWmJcCbyrHOufOy5555WP0E0mgFO1fXeRjgzjZDXDRs2rKSTEEV+SEQLEXJ69+5tfUeffvppd84552TsskFBC15H+k1LQJef4Eh1RvUiCH0xFxPgdIOsWRDSF5fzXSLaVSu82KBRhAa0qMNixLqhKH44IKPSo0cPy1D5zyx12iC2D+YEMCWSmhhNiIwGsnMIEXJYbPFHE8UkzZfqdaaAkAW4fv367ogjjpCADiFkB3r16mWZBKJM9H31I5WFyAcsAvidqZnAwkXav1WrVpX/LgEdLryAprUgNi+G2nhYv8k2LlmyxMZ5H3jggWV8pyIXJKKFiMgCTA/pxo0buyeeeKKyAwQRTsb0SpCFH1Lq3BzpisB0Mx9pwsdOhNr36hUiE4gtPw2PzTXnDpkNopxYv+gYI8INwQ4segsWLKgcJkS/bmooBgwYYMWIIjrIziFEhEQYhSaPPvqoe/zxx93pp59ukShsASoaig5kCoK+SIbqsAlatmyZWUAY5sK/+8iVEHRroG0lnXfo8oBVg/WAkfTKPEULrvGjjjrKuvhQw8LmmUAIReT0gxbRQpFoISIEbanwRXPjvOWWWywlePTRR0twRZiWLVu6Pn36uHbt2tnnSmreT0GkMDGfPuFxAHsCkfskdyfgs2cq5owZM6xQkOwFQzd8oaAEdDQhY0A2ClsXhYRshig+FNFDd14hIljt3bVrVyskIhLNsI9CjZgV5QH/KkWhPOhK4YUjgpr0PdFpfNUUKCVpwxj0+CYBNsVsoNavX28Fwlg2sHBRiMrX1GI0EV3ILGDL69evnxWDimgiES1ExCJTRJ+IYlBoiD8ae8cFF1yQKIEVZ4KdKIjE0qGCXr/4ptlAkfL1A17iXjjHBoKBE3HPtFAsjHBmSh1CGosWmyk+bxWZxQ8mm06cONEi0Ng4sOvgb1dv/+ihba0QEYHer6T/uNH6lCDimZT/Y489Zt5aES/q1atnEUnsHth28FN6kY2Hmmp+Ipe+QClOcD4zaCiO5zW+ZiKRHrJKiGasPQgrMk0IaBE/Fi9e7MaPH2+BEAQ0QREKDdkkM6FWRIt4b++FiFHPXD/xKjgGGZF1/vnnu5EjR5qQ5s977LFHWd+rKDw+rc/Dw82XdPDKlSvNzsO/IcI0JjucEFWnvSHj4D///HP7/Lh++byOO+44WTUSQEVFhRs3bpy1Ij3ppJMqPe1MmCXzwr+TdeE6FtFAIlqIkINwZtoVQpqx0qkimejkeeedVymkzz33XEWxEgCT/HggzrACIM58RBphTQSXyYmcH3G3Q4QRjj8tKGlBB7Q0IwJNBgkRxabHFwhKQMefpUuXuueee86mydLKLrUoFN87Vh7qXKiR4O8i/GhlFSLkvPPOO5bqRUBnEsfcmIlC0/ruT3/6k4lqvKQi/vA58zjkkEOqbLwQ1nipfcQTwa0+wsWDDQy+VqLNPLhmOfYcc8Qy3Rew4kgwJ4+FCxeaBxoBfcopp2Q8B4hAU/eShJqHuCARLUTIOfTQQy0KXVPhYKNGjdyFF15o0WgvpIOjp0Vy4GbMg2gogg7ftJ9gh/+WfsPcqHkgsNmcha1dGu+HDh1he1/BokcizVybdBHhfRJtRCjT5zs1C6DsUDLB1z916lSraaATR03nM5tdQExj+9EaHm4komMKo6Dvv/9+N2vWLEshsshfeumlWVX/Vtduh2KIO++80/5MpIspeun47W9/a5PZRH4Q1aLIhAWVm3KwY0NN07CGDRtmQvqRRx4xa0fQRyuSBcKNB51cgs/hw0VcY/sAhvUwKY21ghs34jrbc65Y0KGCUelhuBaJ7NN2kC4K2DJYX4GNCdccII5OOOEEWWdEpQieOXOmFYPThpSpkrlsCOnKQ+Ew3XhobynCia72GMKif80117iPPvrIDRkyxFK9zz//vLvyyivdiBEjrOdsdVx33XU7PYdPi6bwTFpKhRtHaqN4oqci/8+P9B9dOIho+Zt0LuKDiDTt7/BJM5zF+zKFIGPBAxCHRFS9N3fTpk127gFiELFNJKx169b2HCIST34cLQm+fSTRZWwZ/K48mCjHRpS1j8g41yN+VV8UGBRGEtDCn0tTpkyxYnA2gljxcoViQza0TDXkemPQjggfuuJjCLtf0oo33HCD69atmz3HLvjss8+26OT1119f7f9npGy6vpbcLNJFl0kbp/s/Ir/Fl2ONgOamnauADkYb8UiPHj3a+kjz2Tdr1qzg71dEG7p6YDvwEPHinENYexEZtDAwOY91ACGNgOQrXmzEI9FZb8EohJjcunWrmz9/vjvmmGNsY1jb6wrbBZsF3iNFmPyO+JaxvPDe2SggXPg7/87vh3Dhq68v4PfC1ypEdUGQCRMm2KAkOnCkCzxlA+cpBagUG7KxxQ6imobwIREdQ0gfcSMM2jJIz9J/dNq0aZU3k2zh9XxPLmgfwUqFmxE3GE3Oq30RITYZbDOZjnWuI8Kfeuopi0qfccYZlX47Iao7b3ik2oCIhhFR8+KaB5YQH5Wm/y2RM2At8BMHEaL0waUdH8/7BwKcdQqBi3DFGoFw8A/ECM9jMeEBvJY1htfyHEIYce8frGtMffTZHF7D2sRX/i9RQd4XkWai7lhW2HByrfliLrI2ytyIfEDw0oEDK95pp51W6w0X1wF2DixEBFYkosOHRHQMoWk70eHUlCs3NHbINPlv0aJF1t+PlBQ3zEz+RCwDf/zjH+2Cx3P985//3HbN1cHNl5uYZ9WqVVm/nzjDjZyFslCpO0TFWWedZVacMWPGuIEDB5r3VYhcYT1B9GbKjrRr184EK0OB/APBCohhihm92EXQIlyJMvsIdyrHHnus+/DDD+37BIvyOH/xcLOGkOr2eH8yIpr3ys8gikyk3W8M/CYfYSJEIcEaNXbsWOuIQ8Ai2C2nNnAuE1Tx93OEui8SFuVHIjqGEA1iylkqvsoX8ZqLiCZ6jRhjilYQLmpSVUS8uVER3WERufrqq90tt9xiN8FMMLEJ8S1c5WfC51MMywVRPxZ1fPHPPvusZRYkIkShIbKcadAPwpaHh0ix72mNICDC7cU18JXnsZdwrmLn8BFqP0yGSLkv5OORWrRV00ZeiEJBpgPrHPfAoUOHFrzHsxfQfuPI5lMtTMOBRHTI8ZXh2eD9flzQ6ewa/jmfGs0GIkgM+uCiTW2xxk3sjjvuqPIc44lprXbvvfdWK6JPPvnkKsUWRKJvuukml0QY30z2gM1IsRZGFmHSi3QYYAPD59qpU6dQtg8T8Yfz0QsDH+FOBasGaw7rTLrrwotnIcoJfnoENJYl7n01Fe7XBt81h+wwUy5ransqio9WoAh4ZOmqkQ0M2qCVFUKJaGMq/jn+PVvwQvP/sm01RcSIXpijRo0yD1cmXy+R62BBU1IhXY2AxmpT7MgCgvnEE0+01Pj06dMt+s3kLKUGRRjhPEUoqL+yCCsUoCKg4YILLih6Bw02jXTCovc0wa3qBnCJ0iARHXKoFr/22muzeq23axDVCfqNPf65XJq3Y+UgfcrNLFu8cGaHXtviuDjD0AvfC/rAAw8syc9ESNOxhXPkhRdesHZe9Poud09gIdIJBg2aEGHlgw8+cE8//bSdo3Q/KlVUGF+/F9J0AMmnfZ4oHBLRIYcLlMhuLlBUSKU8VpBgcSGCjeKabNNN+K9ot9a3b9+cunngCwN5tjKD55PjhDc9mwE4hYaqcT4fOnc89NBD5uPLt52eEMWAgkI2mhQR+gJFIcLAG2+84SZPnmwBkEGDBuV0fywEZJOxS/oaAlE+4tcxX1gBIMWFTCv0EHGkAp6IcvCCX7t2rT3S8corr5gQz2Tl4HumwnjhSZMmmTiUXSM9VFcTEWYR9EMsygHWHzqpAEKaCVlChAVqN7A75VLDIUQx4X6IeOYeRzSYLF6pBbSHjSUZRGqmKDbUdVIeFImOIaTraWlGhwzG+vqJhSwAjIQOctVVV9lXumqks3IghGldlQ7a2iHA27dvb6/DH0bRGhGkK664oki/XbShB3RFRYWl4MJgoSD6jJAmIs1QllNOOUXDJIQQIgVEKt2N2Nj179/f2s6FAWqWyBr7YkPNaigtEtExhEKx2267zd1333120XPx07MSbzUe62wgKknXCFqjZRrxS3s7LAnjxo0z/zPeaQQYFcrlsCiEHYZNEDFglHeY0tOI+XPPPdd6iDMogCwG2Qx17hBCiB86xTz55JPWgQP/c6lqWLKBwkKymnikEdL8WV1rSoeOdEyhyOGaa66xR3Wki0ADYjtoB0kHPVp5iJohUsDUKQotmfwYNoHKxosoNB58OncgpGlDqMVYCJFkCBQhoAkmDR8+PJTF8tzvsZfQsWP+/PkWkQ7bPSau6A4pRJFhiAQjiLG8YH3JFNkvNyy6nTt3NosH2QXfuUMtlEQ5wGvKZr5cnlMh3n//fcvmIpyZ/OoH/YQRbJvMcyArLAFdOiSihSgyRHP9sJqwCugghx56qC3IRF8eeOABN3jw4KIOEBAik80o3eRVIYoN9UMU1s+ZM8eKvxlUFQWvcb169ewB1Cgh/qNwz4kyOrpCFImtW7e6pUuXWhsiJk1FaagJI5ovvvhiE9OPPPKIpQjVTkmUuosNUTW+ClEqvvrqKxtchseYzlQEEaIgoIN8/fXXlv2kBkfrdnGRiBaiSAsx/jS8xVEVAUyfZAoXUXTaOpHWTDcJU4hiXUMzZ860r0KUAgrqyb7RqpUCebooRdEasccee5h1kGg0A1kkpIuHRLQQBWbbtm0moGmIT7FHlIvziJ736dPHojGMJ3/wwQftBiOEEHEBkcmaPXLkSKsJIQvXrFkzF2UYQX7kkUdaG9olS5aU++3Eluje3YUIIbQTZDFGfNJqKC5FUfikGzdubN1cRowYYZ072rRpU+63JYQQtV6zX3jhBffuu+9aV4uePXtGynpXHU2aNLFMKBF2vsbl9woTEtFCFBBEM35ipgESiY4TdBdhMAv9pBnms3r1ate7d28tzEKISLJhwwYbNIVliE5ErVq1cnGDonDuSdhSsOPFJbATFiSihSgALE4sxKQCGWwTV1iABw4caK3HXnrpJUsVMpAH/7QQhUadBUSxWLx4sQUEWLMvuugi65EfVxDQjAd/9dVXzabSsmXLcr+l2KAVSohawuKEhYNKaFojxR0WZKZVXnjhhdY94f7777dRuEIUEjrDnHTSSfZViEKu1xMnTrTprLSvI7sWZwHtocMIGVJ6Xy9fvrzcbyc2KBItRC0HqdD+7ZtvvjE/XZIiZ74NHjejJ554wrp4MMEyau2ghBDJYP369bZeMb67f//+1sEiit038uWggw4yb3RFRYXZ8BDVonZIRAuRJyxGb7zxhkVjKSJMoqWBVkpDhw614zBt2jT30Ucfmd2DghYhagP2KLI7dBgI86Q4EX7IEDI4hZaJFEhj3wjj+O5SgO/bC2k6eMStdqfUSEQLUYuq7u3bt1sElmEqSYVIDsfgZz/7mUV5HnroIdetWzfXqVOnREXmRWHhRr9ly5bI9lkX4YBe/ePGjXNr1qyxNYm1KenF0HRWwhstAV17JKKFyCOqwYMobPfu3ROVDqyOhg0bmr+Q4pUZM2ZYX2nG5SbBbyiECF/vZzIZU6ZMcXvuuafVcFAQLX6A7A7HiAJLItJE6EXuKEwkRA6w6DABCvsCSEBXhQhPjx493LBhw2z0LEWHCxYs0MQsIURJrUBPPvmkdd9o27atu+SSSySgqym0ZI3WEK38kIgWIksQgu+8845bt26da968ebnfTuh7k3LjOvzww60SfvTo0RrfLIQoOnSfuO+++6z95llnneUGDBgg20IGCAJRc8AMgDfffNOsLyI3JKKFyJKlS5fagJF27dq5fffdt9xvJxI9pamAP/vss60qnhvbe++9V+63JSICdim6J/BViGwnD44ZM8aizpdeeqk7+OCDy/22Qg91Kx06dHD16tWzTlMKduSGPNFCZMGmTZvcypUrLbLatGnTcr+dyLVV+uUvf2kRaaaDMUK8b9++bq+99ir3WxMhhlaJ6vIismHZsmVu0qRJ1mr0lFNOcUcccYSsdjna8I4++mi7x+EfF9kjES1EFlAc17Vr10S2sSsELMxMNiSaz6TDe+65x3pKEwHRzU5kiiySkmfTqnS8SMfWrVvd5MmTLcN14IEH2nAeIqoiPyHdokUL+/PGjRvtmlOgo2YkooWoBvoes7jQDkgCunYgliny4Wb38ssvuxdffNE85lg+qA4XIgjtI+llywZWIloEoTsSxd2vvPKK2cYGDx5s0we1IS8MbEq4/hggpsh09cgTLUQGVqxY4d59912LiInCUadOHSv2oYPHd9995x588EE3depU+7MQQlQHhd30oqd1Hfa6yy67zCxiEtCFA2sHwaN58+aZRUZkRiJaiDR8/PHHZj0gvaXilOJA8Q9jw+m1TVTp3nvvtd7SQgiRCsEMrGAjRoywATzDhw83+8buu+9e7rcWO8j8EIVmY4KQJiot0iM7hxApfPrpp2YzwMJBilAUD6IdnTt3tkgShUG0wuOYU3go+4wQwret84WDvXr1sgmpSZ86WGzYnBx77LE2sEZTQzMjES1ECvXr13eHHHKIeXdF6Y750KFDzQNLtImoNENbjjrqKI0OTyi77LKLTVHjq0gmjH1HPNN9gy4/J554ovuXf/mXcr+txEB7SUalw/fff2+zEuiaI35Eq5MQf4eJTRRRsHC0bNmy3G8ncZA6bNOmTWXhIVX3CxcutMgTz8nzmCy4FvFmimRaN+bMmWNWAmoo6OzTqlUrrQFlhIg0nwvRaW1sf0RHQoi/t/TBl8ukvcMOO6zcb8clPY1Ixw4maVE8NGrUKPOmI6bVxSNZHRiIfnHDVjYiOZ85Ym3GjBkm2PDlHn/88erOEgKoDXrttddsIEvHjh1lp/k7WplE4mHUKQKaVlpEQkU4YNDGBRdc4IYMGeK++OIL98ADD9hEsi+//LLcb02UAD5nNlH6vOMPNgGKiplqSutLMk9XXHGFWbokoMPB3nvvbV50LDaMCGfDIxSJFgkHccbOGp+d/Lfhg/Qt/nTsNVg7Zs6caV1TfISKHrFCiOiyfv16a3FJS9HmzZu7QYMGuX333bfcb0tkqF3BYsU9kwL8ffU5SUSLZENvYnbYvi+mCPdYWqw2eCXnzp1roppIFSN+tfkRIloQ0WRYyuLFi12DBg3c2WefbZtl+Z7DDZ8V6y5edSERLRIKfS9JEzZq1MgeIjp+aT8ufPr06W78+PHu9ddfd71791Y3FSEiAF5nNsH4a1mD6fVM/YM2wtHBC+iVK1daNpehN0nd/EhEi8Tx9ddf2yJ+wAEHWNskET2w35D2pcCFVPATTzxhfb27detmn2tSF3Qhwpz1w0uLeFbRYDzYdddd3erVq20DlNSCfIlokbgING2TsAcwMU9Em6ZNm1rxIUVJ+KVHjhxpIrpr167mr5SYji4M2+nXr59sVhEHwUzhNusuf27Xrp0NWMJGJ6K//v71r3+14WRcpwzNShoS0SIxsIATBaESnCiIxsXGA4Qy7ZfIKiCmX331VffYY49Zu0LENO3xJKajB5+Z+tFGFwIWFKBhtyIKjWWDwR0Sz/Fi//33NyFNwTe93ckIJgmtUCIxLF++3C52BLSKIuItpj/88EMT09g8iJYgplW0FC22bdvmlixZ4tq2bWs3ZxENGM2NcEZA0+e7ffv2ZtsgsyDiSfPmzc3awYTRpCERLRIDrdLYJUtAxxuEMoKZQkM2Tojp0aNHWzsmxDRCW2I6/CDAmCLKVxGNWhMsG1g36CFM8S8Bi7322qvcb02UgJ/+9KeV5wHDy5Jil5SIFrGGG/CCBQtMVDFMRQI6OSCUsXL87Gc/sypyxPSYMWNs6mGXLl1sU6WOAELUjq+++srEM0WDQL99xLOyB8lk7dq17v333zfbJPUpcUciWsQWrBss7LTgUXFSssU06UYeq1atMjE9duxY6/BB72kKnbS5EiI31q1bZ7aNiooK864zze7YY491e+yxR7nfmigjLVu2tPoj+n9z3/UR6rgiES1iCelEItCbN2+2NmgIJiGIjJx33nkmAPBs0mt6xowZ1ucUEdCwYcNyv0UhQh2YeO+99+zaobUZ62rPnj2taFCF2sJDlw7OlbffftuyfU2aNHFxRSJaxBIKkvBlEWlkVKkQQVjUTzvtNNerVy/bbPkH9g/EtIoQyw/ZAYoKlSUIR5HnokWLLLO3detWy+oMGTLEinhliRKpsHbSNxpLR9yzwBLRIpbgg6WQTJFFUR1169a1AS30rSUtTXqaIkQ2XohpRoprGER5+MlPfpK4dllh45NPPrGoM0EJQBhxXSSxC4PIXUgfccQR9mfENBsx1tu4IREtYgMX6ooVKyxlT0W4qsJFthAtQSAQ+VyzZo0JhylTprhXXnnFbgRkNChMFaXjL3/5i/v0009NsNE+S5QG0vD0W+caoCCX1nRsNLFsyO8s8mHlypVmA8JaGbfMsES0iA1EEhHR7HYbNWpU7rcjIho9YUgLD9LW3uaBoKBlE95p/H7yfxYfWmW99dZb1klFAzqKDxsWPKwUhBE15HwfPHiwa9WqlSwbolbsv//+lVkNik/jVKMkES1iAbtcBDTRRAloUQiIwPXo0cNEHC2bEBgTJ050kydPNmFBhBpvqASGiPpAG8Y2r1+/3trSkY3h3KYVpBCFyvQdddRRZpfjQQvEuAzfkYgWkYfUIxPqiBAmoS+lKC2072rTpo09iE4TqUNQIz64EbBxQ3Q0aNCg3G9ViKzsGh988IGdw6ydZF8oEMSywYCiuBeCifKwy9/bINJTHHsH62YckIgWkYebAIMzKCYUopggmjt16mRjjGmThxDB7jFnzhzrh4qYZjOnjhIibPUipNP95g+rDB1q+vTpY5FneZ1FKdh1113NzoGg9udl1LsgSUSLSKciST/SjkyIUsLC37RpU3sgRJYtW2Yp8UmTJrmXXnrJIntYPjg35Z/ODyKi9erVU2Q0TxAojE3HikS9CJ5n6kXY6OHtV4cNUQ52/XuR8Oeff25ZPaLTUQ46SESLSEKjf0QL3qq4VfuKaEFUhegzD0Ygc2NYunSpe/bZZ00A4psmU8Ijji2eigXHiqi/yE04M3aZGhHE86ZNm6xVIJs6hqJg15CHX4SBOnXqmLUIewf38agGGySiReTgJoGApuJXAlqETfhxQ+CxZcsWEzIImhdffNEedP1ATBOlJsoqRG1BiOAx5Vzj8eWXX5o9g/OMLAk2N58+FyJMIvrYY491c+fOrSw2ZMMXNXRliUiBr4+2V6TR8fIJEVZoy0aqkgceVCwfiBx6T0+dOtXS6YhpxA5/jro3sNCwCZk1a5Za3GXooU0xNRs0igO3b99ux4hsCOcUmzVFnEXY2WOPPUxIv/baazYRkz7SUUMiWkQqVUlVOZMI8fVJdIgo3SzatWtnj++++65SAJHKnDlzpvVNZeQ41g8eeP2FCK59eJqXL19urTyJPCOkaefJICCEMy3ptCaKKGbvOnbsGNlzVyJaRAJfxcvFhs80qhecEKQsW7dubQ9S8YgiookIpIULF9prEESIaVLxtG2MYppT1G6927x5c6Vo5kE2A1sGNjba0ZHB0BRNEQf++e89o/20TDz8USkologWoYebia/ijWrxgRDp4EZBsRcPoA+1F010VCBSTVqe9nleVPPnqNxgRPZQlOpFM1+xs/DZ04quQ4cO9vlj05C/WcT5GlixYoWd+2RYomBJ0tUoQg0XE0UH+P18axwh4hyRof0YD6KRtIHywuqNN95wr776ql0HRKeJSCKwqA+IcouoJMJnS+cMiqR5YM/YsGGD/RsWDewZiOZmzZq53XbbrdxvV4iSsPfee5t4Zjw4Wbn27duHXkhLRIvQQpU5AhrPFBeWom8iSWBZIl3Pg5G5fmCGF9UU41BQBnSp8YKaB3aQqFtA9tprLxu7HvUNAp8bGQbEMgN6/Ndvv/3W/p3Pl01R586dTTirDaJIMg0aNLD17s0337QmAkceeWSo7ZsS0SKU4I1CQGPfwAetFKZIOtxIKKrlwcREH6n2wowHHUAoOOO1RDQR1F5c8/cobUSJQEWxwBLvcvAz4c+kqX2mgc+C/tf+s5FFTYiqsFYhnrluwiygQcokhmzcuNE988wzlQ33v/nmG3f33XdbZ4BsYdLVPffcY7vBv/3tb/Z/L7/8clv0U5k4caIbM2aMRckaNmzoTj/9dDdo0KBa/Q7c7Elp07VANg4hqo9U+3aPXKvYAoJRT0Y98zzXFBFrIj2pjzBaBhCjrF8U0IVtLLWPLrPWpj7IoAERdNZLxIAXzETXhRA1Q7AgWBcV1r76EtExneY3evRoK0CiEIkCpVxvXldeeaWN1T7nnHMsCjx27FgT0X/605+q9Gx94YUX3B133OG6du3qzjzzTCsARLCTZh46dGjO7923/6LQit2oECK36C1WDh74CYHINBvc9evXVwo9hhUhAj2Iu3TimshpuSJBvG82AbT+Kxe8B7zLqUKZ5/g3YH1kI8PxQjATSEAwc9MPexRNiLDz1Vdf2UAWtAwdjcKGRHQMOfjggy06zA2QHrTXX399Tv//+eefd2vWrHEPPPCAFbgAnTEuuOAC99RTT7mLLrrInsPT99BDD1mz9BtvvNGeGzBggEW9HnvsMXfyySfnHHlBhDN4gqKpqHs6hQgDZHLo6sAjCNcvYjAoEj/++GPzIX7//ff2GqLXeHRZS7iWg4/gc2GMZFcHaxRBAqLGwQcbi+DfCSh4sJYglIkqkyXzGw2CCmEvfhIiqtStW9eGCC1dujSUdjSJ6BhS29QnwtuPJvZQ+EKUZcaMGZUimglDdM849dRTq/z/0047zU2bNs3ac/Xu3TtnLzSiXAJaiOKC8CVimmrRQmByXSOqv/jiiyrCkuf4uy9o9HC9elGNjYHvzXN8zfTn4HO+97uP3KaL4GKhCD6IBLMRIHvF10x/Dj5HVIvfg6/8nh5EMDdrvzlgvfN/9paZqBc4ChFVmjdvbtoAi2rYrF0S0aIK3Fio/j/xxBN3+jdENR5pojOcyEwPBAR3aiScmxJN0zOJaJ8S9WDhADzQRMGFEOUHEekHIQQhUs06wANBylciu/yZYkeEKyKXh/8zwjcX+D9YUNiQ51oXgcWCB0Kd/8uDPyOEsYmRGmYNI7rMg+K+TNYLfi8eQojysttuu1XaU313m3IjES2qQJSJm166SVj+OQQwdgtEMBGkVMM/NyxuvEGRnMr48ePdyJEjd3r+9ttvL8jvIYSIB4y7FkKIIATxDjvsMFduJKIjEBn2BSw1QaSltoUsfneXLvLjLRb+NXzN1HqO11a3U8QvTZsuD2maO++8011zzTWV09uSxqpVq9xNN93krrvuOksnJxUdBx0D0DH4AR0HHQPQMfgxa/2HP/whNMdAIjrkUEVPp4xsePzxx2t9YvkCoXTCnQh18DV89QVI6V5bXbGRL8pJBQGNHSTJ8Bkm/RiAjoOOAegY/ICOg44B6Bj8QFjaRUpEhxxsE9dee21Wr01nwcgVbBhEkdNZMfxzXvzy8zD7p/ZwRIBjCynE+xFCCCGECCMS0SEHIdqvX7+S/TwKAim6YchBKu+++65V8vvq2JYtW9pXXktHDQ9/x4bi/10IIYQQIm6ouWXCoWgHr1UQBqcghINC2veP7datW+VztLwjcs3AlSD8nWr3oLDOZrNAH+okR691DH5Ax0HHAHQMfkDHQccAdAzCeRz+YUeufYdEJHj00Uft68qVK9306dOtZZ0fo3n++edXvu6KK66wscCzZs2qfI52VcOHD7evQ4YMsQ4cTCwkuszEQtrQecaNG+fuuusuE9dHH320ebinTJnifvGLX7hzzz23pL+zEEIIIUSpkIiOKV26dMn4b0HBnE5Ew4YNG9w999xjfaERz+3atXOXXXaZjRJPZcKECTbJkJ6u9GBl2MrgwYM18lYIIYQQsUUiWgghhBBCiByRJ1oIIYQQQogckYgWQgghhBAiR9TiThQVRoQ/88wzNpGQbh/ffPONu/vuu81jnS2fffbZTv7syy+/3NrtpTJx4kQ3ZswY98knn7iGDRu6008/3Q0aNMiFgS+//NLdf//95j9nmmOrVq3cpZdemlXj/Oo87h06dLBpj4Av/cwzz0z7ut/+9reuZ8+eLqrH4Pe//7176aWX0vZSf+KJJ6o8x3nCefD888+7zz//3Lz855xzjjvhhBNcucn3GPA7UbT76quv2shbvg/Fwj169LAC4NThRpnOmYsuusiORSlg6NLDDz/spk6dau+3RYsW7uc//7k76qijEnPd53sM+JxfeeUVWzc5h6k3oeMRheGpgybOOOMM+93TTYb9j//4Dxfl40Ax+8iRI3d6nnkGL7/8ciLOhUyfLzRt2tQ9+eSTobruq4OGBXw+tMxFF3AcmIWRbSvfXNbPOXPmuEceecQ6kNEQgQYL5513XsZJy/kgES2KyurVq93o0aNNxNB/uqKiIucLjomN27ZtswWAk59OIdxMWVz33nvvKq317rjjDmvRh5BcvHixCfbt27e7oUOHunKCCGCk+UcffWSCh/eNwON3GzFihNtvv/2q/f+Mek2FmysblHQLMGKxY8eOVZ479NBDXZSPgb9xXn311VWe23PPPXd6Hd9v1KhRbsCAAe6QQw6xxfSGG26wYtdybiRqcww4j2+55Rb7HE855RQbcMT1xE1i0aJF7n//9393KuZlg9W3b98qz5Wyfzvvd+bMmVZozBowefJk+/y4Lg877LDYX/e1OQa33367tfHq3bu3a9y4sZ0zdEN6/fXXTYilbpr4XFM30OkKwaN2HDz//u//7urUqVNlpkEqcT0XOO8JQAVBVD/00ENp1/9yX/fVsWXLFtsUcU4zoZjWucVYP7lO/vu//9sdccQR9u/Lly93jz32mA2H41wqGBQWClEstm3btmPLli325xkzZuzo3LnzjkWLFmX9/0eNGmX/59133618buXKlTu6deu244EHHqh8bvv27Tv69++/4+qrr67y/2+44YYdvXv33rF169Yd5WT69On2e3AMPJs3b97Rr1+/Hb/73e/y+p633nrrji5duuz49NNPK59bt26d/ZzRo0fvCBu1PQY333yzfZY1sWHDhh3du3ffceedd1Y+97e//W3Hv/3bv+0YOHDgju+//35HFI/Bd999t2Px4sU7Pf/II4/Y93zzzTerPM9zwWNQaioqKnY6F7lOhwwZsuOSSy5JxHVfm2OQbp2cPHmyfb8JEyZUeX7w4ME7HYMwUZvj8PDDD9v/5TqpjjifC+kYOXKkfb/UNaHc131NfPvttzs2btxof37vvffs/U6aNGlHodfPc889d8eFF1644y9/+Uvlcw8++KDdM1lLCoU80aKoMN2QgSz5wq6dSCIpG88BBxxgg15mzJhR+RyROHa4p556apX/T7s9dvDz5s1z5YTUbP369auk2kgvde/e3aKkpPlygdfzPdllk+ZNB783I9jDQqGOAaPmiVBmgu/1/fff22fvIULLuYFFINdsSFiOwa677uratm270/OdO3e2r6lDkzykPHmU43elxzyWAg/R05NOOsk+AwY9JeG6z/cYpLO8+fOG/v/p4HpPjViGgdochyBc95kaisX5XEgHVhbsXOnWhHJe99lkE/MdlJLt+sn1wYNMZNC6wbnA+cP6UigkokVoIXVDCoabaSrcXNeuXWtpX8AjCqmvxSdF2u/Pf/6zKyf8fNJpqSlIfg9SjdhecoFU1VdffeV69eqV9t9Jl/Xp08dsHXjh3njjDVduCnEMeB3eOR7cfPCC+3PAw7lA2hfRlfpz/L/H5TwA/LIQtDh48JBjB+A8YfjRtGnTXKngOJOyTrXb+M/hww8/jP11n+8xyMSmTZvsa3DgVVBE8llz3eOhffrpp11YKMRxwJ7BdY9N4cYbb6w874M/IynnAr8Lm+ZMNR7lvO7DsH76zzrVJ92gQQPzyRfyHiBPtAgtW7dutZ1lul2rf47CRQrLuLmwy8cnmhq9IxLubz7lggX/8MMPz/h78P4oMskWFkV29Hj/grC44JFjp86CsW7dOvOS4rvDj5fLKPawHQNed9ZZZ7mDDjrIognz5883Pxz+ODyFPuLA9+E8SPUHB8+ZuJwHQFERN+ZjjjmmyvNt2rSxCA3RKr7vc889Z+KDaF5qtK4Y8DNrunbjft3newwyQX0Jv2/qdU+9CZ5aPKEcP7y2//d//2ff/5e//KUrN7U5DhRRDhw40GoB+FzxOeMNpygNH6wXpUk6F7woThdEKfd1H4b103/WmY53Ic8FiWiRNUSIsrUHIPBqO7HQp6JYBNN9/+Br+Jqp4pbXFjKtlc9x4Of795z675DL+2MxJDWJaEqt0qdYg8KaIESmqEi+9957Cyaiy3EMLr744ip/p0AQ0cCNlDSfLxjk+2RzzkT9PIDHH3/cLViwwP3qV7/a6Vy47777qvydynQ6ATz44IMW0UstTCs0+X4OYb3u86GQ5yLC6cUXX7SNZGoB6q233rrTZ/3rX//aNtB0pshk+YrCcaAIL0i3bt0s8ogwREz7jhNJORdYd+jaQkS2WbNmO/17ua/7YpLt+ultHZlem5q9rA0S0SJr3nnnHatyzfbmnppOzxV/sacTKv4i8a/hKz7YdPDaQi4c+RwHfn46v2vq75ENCEb+XyYrRypEYVg86VbBOPdC3FDLfQw8pK3pVICQ9CKa75PNORP1YzB9+nSrzsfWkk2EiRs4ET02WcuWLcuqI0JtyPdzCOt1nw+FOhc51/7whz+4o48+2v3iF7+o8fVs2Lg2sHG9/fbbltovJ4W+Jln7CAosXLiwUkQn5Vzg86S2I3VzEZbrvphku3568ZzptYU8FySiRdaQPqWfYzbkWziQKv64GNKlXvxzWBb8z6PgjPY1wXQeixbpzUK8n9ocB4ohqvs9cnl/RKTq1q3rjjvuuKz/jxfO9NgshIgu9zHwsBhynvAZB38ebZOwfASzIannTJSPAb2T6ZtNZiGXdk3+sw8er2LB78LNPpWaPoewXvelPAZB8MpynmHZoE1jtj1uS/lZl+I4pPv9Uq/7uJ8Lfv3HtpdLz/swnQu1Idv1M2jvIDub+tpgwXJtkYgWWcOJmW1D9ELAQsGNg37IqdConaELdP8I9sDktUHLAn8n/VXIHpn5HAd+Pl4+3kuwKAJf3+67755Vj2Tvm0MgUlyTLlWVCbzRmYrPonYMgpCWoyI/WGhF71EGLlB4E0x3cs74f4/yMeD3oG84RTO/+93vchoc4M+DdIVphcb3gMV+FCymqulzCOt1X8pj4KGIkmEpiMLbbrut8vcO22dd7OOQChtk+iQHP9+4nwupXZly2XiE6VyoDdmun/6zJvLeunXrKvdPNjLBDim1Rd05RGigxU9qmy4KaFgEgzfUjz/+2BYjvHEeWl8RwaLZfhD+zsVVzoI6/3tQFMGUJc8XX3xh7bqIKAcFMTdOHunAC8cCksnKwfdMhUVj0qRJVnBRqChsqY8BXrd0PrZHH33UbqjBorpOnTqZsMQv6eE1nAtUZlN4E9XzgLZNDBvYZ599LL2fKS2Z7jzg+DGch41UNhMiawvXJ5HB8ePHVxEBnIvc2HyEKM7XfW2OAREzsgyIBQavZBJARBf5GUGwNWDfIpWfy3TYMB6HdOcyBcU8H7zu43wuZNuVKQzXfaFA8HIcghadbNfP5s2bW6ZwwoQJVa4Nzhuyk6mFubVBkWhRdBA6wd6mjC5mNwmMsPXcfPPN5vcKXiD0dSSqiHBgQhHV1xTLEJnh7x7ExPDhw91dd93lrr/+evMO4iNkvCoewtr0qi7UAspCRocMjoOftIQgHjZsWJXXXnXVVfaV3zNdKg8hnOnG+Mc//tGEV/v27e11RGtYtGn/c8UVV7ioHgMWTj5fUpgsjoDfk5sKN1KEczB1iV+QrhUswKTuZs+ebefcb37zGzuHongMuBkSlcSSw7mf2veWCK3fIFCRT99UbizcnBFk3Ky5QTPFK12BU6FBGNAlgIImbnSMJ6b1Fuck13MSrvvaHAMKA4kgUki4ZMkSe3g4Dn5S3dy5c20SG8KAjgycH6wTK1assPaW5bYx1PY4cC0z2p7sBCKJ40A9ANHG1J7LcT0XaurK5AnDdZ8Nzz77rG0GvA2Dc5h6HaAQFrsix4nj89RTT9l5nev6yShwbFBsRKmXoW0mgZX+/funLcjMF4loUXQo/ArCRe0Jiuh0kL6kfdk999xjNwouFgTkZZddtlNkhhsvEUguOi5KxBSvy7YAo5ggAkjHUjnNAkJklX6mXOReFNYEkTjSUxQMpRt5C9xYufGyWHAzZTGikITuHOWOQtTmGHgPOF5gFlbOA25CiAREVerxoJMH3SrYQPB6+rNigci2GDOMxwDbir/RPPDAAzv9OxYfL6IZwLB06VITokQqicSxmeBmzQarVPzXf/2X3czZOHPTRAgRQScdnYTrvjbHwPcNZjOYCv/Xi2i+H0WrCCzEGccCgYnVB9EWFvI9DlyznMu+oJrvwcaCNY3zOgnnQrArU8eOHW09TEdYrvua4PNh8+Bhw+A3DRTBZvr9clk/uV/cdNNNNjOBtQTBTRHqBRdc4ArJPzC2sKDfUQghhBBCiJgjT7QQQgghhBA5IhEthBBCCCFEjkhECyGEEEIIkSMS0UIIIYQQQuSIRLQQQgghhBA5IhEthBBCCCFEjkhECyGEEEIIkSMS0UIIIYQQQuSIRLQQQgghhBA5IhEthBBCCCFEjuyS638QQgghasuiRYvcCy+84JYuXeq++OILV6dOHdesWTPXvXt3d/LJJ7tdd9014/89//zz3U9+8hM3YsQIt379enfmmWe6o48+2t1+++0l/R2EEMlGIloIIUTJ+P77791dd93lJkyYYML5mGOOcU2bNnXbtm1zb775prv77rvd+PHj3W233eYaN2680/9fu3atW7FihRs+fHhZ3r8QQngkooUQQpSMBx980AT0IYcc4m6++WbXsGHDyn/761//6h599FE3cuRId/XVV9trd9tttyr/f86cOfa1U6dOJX/vQggRRJ5oIYQQJWH16tVu7Nix7p//+Z/drbfeWkVAwz/90z+5YcOGuRNOOMGizU8//fRO3wMRve+++7oWLVqU8J0LIcTOSEQLIYQoCS+99JL729/+5gYMGODq169frecZJk6cWOV5vNN4qBWFFkKEAYloIYQQJQEBDO3bt6/2dQcccIBr0KCBW7dundu0aVPl8/PmzTPLR+fOnYv+XoUQoiYkooUQQpQEL4gbNWpU42v9azZu3FjFyrH33nu7tm3bFvFdCiFEdkhECyGECC3YP+Dbb7+17h0dO3Y077QQQpQbiWghhBAl4V//9V/t64YNG2p8rX+NLz5EQG/fvl1+aCFEaJCIFkIIURLatGljXxcuXFjt61atWmU2jr322quyABErBwNWGKoihBBhQCJaCCFESejbt6/7x3/8R+u6QaeNTDz++OP2tXfv3vZ6LB0UFXbo0MEGtAghRBiQiBZCCFES9ttvP3fGGWe4LVu2uP/8z/+sUjQIiGWGrUydOtXVrVvXDR482J6vqKhwmzdvlpVDCBEqNLFQCCFEybjoootsxDdTC4cOHWqFgsGx32vWrDHbxv/8z/+4Jk2a2P+ZPXu2RaSPO+64cr99IYSoRCJaCCFEydhll13cr3/9a9ejRw83fvx4t2TJEjdr1izr/wyHHnqou+6660xYe/BDt27dutoBLUIIUWokooUQQpQcBq4Eh64wEvySSy5x69evdzt27Kh8fuXKlRad7t+/f9rvwwhwRLgQQpQaeaKFEEKEwi994403uq1bt7pf/epX7rPPPquMQoP80EKIsPEPO4JbfiGEEKKMzJ071y1btsxGf/fs2bPcb0cIITIiES2EEEIIIUSOyM4hhBBCCCFEjkhECyGEEEIIkSMS0UIIIYQQQuSIRLQQQgghhBA5IhEthBBCCCFEjkhECyGEEEIIkSMS0UIIIYQQQuSIRLQQQgghhBA5IhEthBBCCCGEy43/B+8+6Mp54JclAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAJvCAYAAACTTKyQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydB7hU1fXFNx0UsABK7713BClSFBV7b7F3TUxi+6uJJtaYRGPvLWrsvYNSFQSp0qt0kK6C0pn/9zvDedyZN+XOvCn3zt3r+8Yn8+bN3Ln33HPW2XvttUuFQqGQKBQKhUKhUCgUAUbpfB+AQqFQKBQKhUKRbygpVigUCoVCoVAEHkqKFQqFQqFQKBSBh5JihUKhUCgUCkXgoaRYoVAoFAqFQhF4KClWKBQKhUKhUAQeSooVCoVCoVAoFIGHkmKFQqFQKBQKReChpFihUCgUCoVCEXgoKVYoFAqFQqFQBB5l830AiuT47bff5I033pDZs2fLnDlzZPPmzXLLLbfIMccc4+rvef1TTz0lY8aMke3bt0urVq3k6quvlhYtWhR77TfffCMvvviiLF26VA488EA59thj5fzzz5eyZXWoKBQKhUKhKFxopNgH+Pnnn+Wll14yRLVp06Yp/e2ePXvk5ptvlq+++kpOOeUUufLKK2XTpk1y3XXXyfLlyyNeO378eLntttukcuXK5vd9+vSRl19+WR5++OEMfyOFQqFQKBQKb0HDfz5AtWrV5P333zc/586dK5dffrnrvx01apTMnDlT7rzzTjniiCPMcwMGDJBzzjnHRIRvv/32otc+8cQT0qRJE3nggQeKIsP77befvPrqq3LaaadJgwYNsvDtFAqFQqFQKPIPjRT7AOXLlzeEOB2MHj1aDj74YOnbt2/Rc8gi+vfvb6QSO3bsMM8tWbLEPI4//vgIqcTJJ58soVDIkGuFQqFQKBSKQoVGigsc8+fPl2bNmknp0pH7H3TFH3/8sZFQEB3mdSBaZ1y9enWpUaOGLFiwIO5nrF+/XjZs2BChYUbq0bx5c0PoFQqFQqFQKJwgKLd69Wrp3r27CdZ5AUqKCxwbN26UDh06FHveRp4hs5BiS2pjRaR5zkl6o/HRRx8ZzbNCoVAoFApFKvjLX/4iRx11lHgBSooLHLhNxIrW2uf4PbAyinivxQEjHk444QQ5/PDDi/69cOFCuf/++2XIkCGGkDdq1Cgj30WhULgH9zZFuj/99JN58P/cx7/++qv5SRGuE9QP8Nh///3NTwpuK1asKOXKlTNzAD+j/z+brjS7du0yD+YmHs7/37lzp2zbtq3ou/DT/r8TpUqVKvo+/KxataqJSNlHhQoVsnb8CoUiNpYtW2ayyZUqVZKnn35aatasKV6BkuICB5O+JbxO2OfsomDJcLzXJlo8kFjwiEa3bt3MQoWmGQmGQqHILCC2kF0kTNEP7j1LDA844ABzH9atW1eqVKliyCE/7QMCHC2x8uv54Hsj4frll1/MT/vg32TOFi9ebOokAESZTJidw+wDwlwI50Oh8BoWLlxoNrQU/u/evduQYi9tTpUUFzhYCGNJH6LlEk45xaGHHlrstWiQU0WdOnUMGeYYFApFySO/6O9Wrlwpq1atKtLyE0EFRG4twSM7Ywkez/G7fAPyjlc6Rb+Q9GwAImuJfu3atWO+higz5Ni5geC8zpgxw/wOlClTpuhc8j7MZbVq1TKRc4VCkf6mlXuNeiPsZefNmydeg5LiAgdFdtOnTzeD0Rn5oAkIE3y9evWKXgcYpK1bty56HQvGunXrjEQiHVhCvGLFCrN4N2zYsITfSKEofHCvrFmzpogA85N7kQgnWR0IWv369aVz585F5JfoL1FhRWKwQWDjH73559wSTbabDX6uXbtWvv766yKZGecZgmyJMmlfbWykUCSH5SC9evUym06vQu/mAoJNmTJZ24m6X79+xk6NCI31KUZfOHLkSDM4rWyCyBKLLI4UEGA7aD/44AOz0PI+JQGLzaJFi8xNwecoFIp9iwX3riW/PCDEpBa5DyFvbCa5X7m3IWaa2s88rMyEB8XHTrLM9XFuUPB+5/pwHbg+XBdLlsmO6fVRKPaBe4YeC7179/aUVCIWlBT7BO+++65s2bKlSPYwduxYE8UAp556qtEEPvPMM/LFF1/Im2++aSJJACL8zjvvyH333Wd8iJnwIbosxBdffHHEZ9D6mfbR119/vQwcOFB++OEH0zTkuOOOK3GEl+gz0a/vv//eLPQsIApFEAHJ4j7m/kLfyn25detWQ8psur5jx47mHoFwaSQyv+C6QHR5cF0Acxnzr93EUDg0efJkc23JwDFfEmho3LixuaYawVcEFT/++KNMnTrVzGd+sGhNebZld2x1V4rc4csvvzTRCnDIIYeYXRcPQCMOFk6KRvidrcy2uPvuu+W1114zjTwommOypvUzr3W+jlTsPffcY4gwr0eXd8kll5gGHs7XJQOEm/fmp/PvkGiwmCDnAOk2JFEo/AY2tHiCIyPiQUYHokT6vWfPnoYIc89ELxrWgaEQwNzDPMXPVOYTrwJpGI927dqZf/O9kJpZokzgAukF8zKEgCJH5GrMqwpFIaNMmTJGpsTGkc0iQTo2lH7YHJYK2TLcJOBlMH6KJVz+iSKggJQTCYtX4MPvWRz9cIMoFOmAOdISWsa7tT9jsWDs20eQ7gHOCQ++cxC+t3MM8CCgBJBWWDs7xoNKLRSFiHLlyhVlp7t06RJznFPDdNlll8mzzz5brHGY5yPF1u+SFBI73yBMaor0QFEKEz7RkUT6IYgCD00PKwqFABEtZPzb6C4LAdFf6+3r5QITRXbBXOf0WbYkmfmPeZIxErSNkqIw58KdO3cazkiEGB7gp41fWbdfkjA41c2x/GgVimhwEzDRJ7IwwmifhYHXKDFW+HXyRwqAJpixDKFhPPOwJEcRBueHc8W5CermgCYizvPBBooH54WfnBfn+FGCrPAbdu0NCNi6IewPvdLC2Q1czdjcvDwgxQpFpkA3G2u2T/ZBCYTCD0TYkhge1mbIEhk2gkpkEm8ivF59nitAgG0XQee4YoPFnKjjSuE37N69O2LsIp1AX8997wWvdDcomwrzV9KiyCRsC1aKkLiRcNAIagRJ4V1AfJ1EGALDOGVTpxE9RSbgzDAwvmwxIg8yas7fQ5D9lI5WBIcQb9myxYxNK7G1RJjfFRQpttCJX5EtYgwptr6sCkW+YSN3RO0sEbYOLxATJnidDxXZAOMK4suD7CxBKRtB5gEYg0SYNYKs8AL27M34WkJsN21+HJsa+lXkHdxARIntDRTdfU+hyBVI80E8iM7ZIlDGJlFhzZQpcg0bbeOBlZslyIxPtJrMk5BjxqdfInGKwh2nFQogi6GzvMITsISYCZ/UIUTE7zeXwh+A/FoiDClmLEIyIBsaEc4crM5Q7+v0YTdpROPsBo4IHWlrxipjNsiFjIrcYo/DQYo5sxCgpFjhKaDPhBQzySsxVmRbHgERto0kiHIcdNBBhlQoEc4eKVaUHIxPa/WHxMJGj7HB4qHyCkWuJBOhUMhkMQplnCkpVngKVpPEzWZdKZQYKzIF0s+QB6c8AlJBlEOja7nxclYv3szCZjZ4UJdhsx5WXuHMeigUmSTEe/bsiZA+FgIyQoo3jxgp+UaVAf3T/tuXXnpJLrroIvP/tOXs3bt3scm8fv36pj3rkCFD5JNPPin2d4BduW37yev4XXRLz1h/w3sfddRR8te//lUOPfRQ8QOI5P7rX/+SCRMmyHfffSebNm2SF198US688MK0XucE5MS6UtAz/R//+IdpFUlHRSb31q1by4033ijHH398sb8l+nf77bfLK6+8Yj6rffv2ps31kUcemfQ7YR1z+eWXmzFAS9b777+/2Ge89957cuWVV8qCBQuM3YzC+7DV/IwnxgcTuFOHWUgTupdh7ZpYRFWfnR0wd3J+eSCvgBxbiQVrDfOqRo8VJZ1Pf9sbVChExygNwTlAyum1114r9vzo0aMNIY7nr3nnnXcaEvbkk0/K73//e/PcH//4R0OOp0+fnvBvHnvsMenVq5f52549e5rB5gesX7/efIc5c+ZIhw4dSvy6eJM7RHjz5s1ywQUXyMMPP2w2DuCEE06QZ555ptjfQbYffPBBOffcc83reZ9jjz1Wvvnmm6SfyWf88MMPhgx37txZTj/9dNOm0oIU5Q033GBIthJi/0Qz1q1bZ9qOQ8q4bmw8+alWaopCBhs+O95pnsD9QPSY+8FG+RSKdHXE+++/f8ERYqDbdQcgT2+//bY88sgjEZEMiDK9uyF4sXDMMcdI165di/59yy23yIgRI+S4444z5A1CGC1Cd/7NpZdeKtWqVTNk7sMPP5Szzz5bvA7aN65evVpq1qwpkyZNkm7dupXodbHADUfEffDgwSbCR3QPEnPttdea68H5IrJrQST6jTfeMJFpyCs4//zzpW3btnLTTTfJuHHj4n4W0RSu2ahRo6Rv374mGszrhw4dKldccYV5zb///W+zyHC9FN6XSFi9mzWRVxKsCCKcmREyJtwX6I5/+eUX87w2TlK4QSgUKlqXC0lDHA2NFDsAGSWi9OWXXxY9xyTyzjvvyDnnnJPSew0YMMBENZcuXSqvvvqqq9eDxYsXix9A1Byim6nXuSE6luRwU9arV09++umniNdwnfidkyhDiC655BL59ttvZfny5XHf33rRUmgFuOGJrtjIPdIKZBxEn1Xj7N3COSJhtKRnrLDgH3LIIUbSpCljRdBh/Y+5H7gvIMPMb9wvrHvcP5b4KBSxJBPMq6CQ51Jd3R1o2LChkTC8/vrrRc99/vnnZld91llnpfx+v/vd78zPYcOGJX3tokWLzE8ixtkA+jIi3W4eXkurEcXgplyzZo3MnDnTRIi5LgMHDox4Hfrj5s2bF2tH3r17d/Nz2rRpcT8DMtykSRO59957zcbkf//7n3m9/VsizUT3iSIrvDdZW4kEmyenREIjYN4BCykbykJeUP0CW2Bq7xOkRdw/Vlqh5FgRPccGpUW7rhhRICKM/IF0OukmyFG/fv2kdu3aKb8XxVpMOJbwOgHRhoASoRw7dqzR3fJ5SC6yAT6jf393xYiQQjYIXsL//d//ydNPP23+n4X1lFNOMXpsJ5BpINeIhn1u1apVCT8DjfJpp51mJBhWF3744YcbGcX7779vZDAKb03UFM+xoNvuXxoR9i7I4kRvWBXecPshq+KUVlDHQU0Hz2tmLNjYunWrIcRBcTBRUhyFM844w5AhHCaOPvpo8xONcbpgYmGCicagQYMi/t2gQQNDwOvUqSPZAEVuTllIImRC7pBpcE0grMuWLZN3333XECEm8eibN9ZO1nqj2hapiSQsvP+sWbPMJgiJBlHzP/zhD3L99deba0RBJBIKSNmf/vQnoz1W5J4Mc09xbdhIco8FYbJWKHLRWhoCxGYTzbH1i1dyHEzs3LnTrLNcf2oyggAlxVGoUaOGIawU17H4Qr4gY+mCSQX9VjQef/xxk+onjUUKq0WLFhGTDsTsqquuMil8Is5PPPGEHHHEEUl/l0geEE3E/YSWLVuaB7j44ouNhR1RdYrrbGQQgoQuLhq2OYObjjssAD169Cj6N/ZxOGAQqf7qq6+MFRwacT6TrALXzW0EXpE+IMA2Mqxk2J9gLrUkqxCr1gsF3FOsFxRTKTkONsqVKxc4C8XgfNMUANm57LLLDBlCR0rBVTrAxo1UVNOmTYv9Dq2q07Eiend24oknmgjlyJEjzQNiPm/ePJN+jPe7RHpkdnsUIbndGHh90Tr55JPl6quvNpZ31uoNmQQFcdFAVgFSlcCwGNx2223GdYIUI1pzzvVJJ51kfs//E91XUpxbMsxiHaRJupCi/Pah8D64x1j7IEVOcsxcqE2VChvbtm0z15focNDmWh3VcQgXA2L8+PEpu044gQ8xwFIsFUBwaTwB8YWcEuHt1KmT0bUm+l0ioIuFNLp5JHJp8AqsdMLqskHHjh1l/vz5ZvJ2gsYh9vepAJ13o0aNjOex1SQ7iTX/H4uEK0oOCDASCSrjuZ5IYMi4EMEK2iStUHiBHHP/cR9yX1L0bCVMisLCtm3bzCOo11ZXlxhgZ4x2lMYNsbqmuQGet3fddVcEqUoF0dEU/o1s4rDDDov7O79riokIoumtXr26eQBIUbT8hEj6yy+/bKKGfC9LioncEtWlYM76FCOnQAKBJAKNsFtArinkGzNmTJE8A5nL3Llzi15D4Z0X9deF0HCDiBTjmnRt0NJ3CoWXybGVVUCKraxCI8eFge3bt5v1FG25rcUJGnSlSdDdzC2wB4MsYQfFDhpCDAGlMOujjz5KeXChU2XywXqMDnnDhw83XfUaN26c8He51hRDGvEKtq4OH3/8sZGMcB5oupHsdYDvYLvDoQ9GinDHHXfI3/72N/McjTOIFGKFRhEikhYkC5zvBx54wJBnCuggUBBfutDhHgKZRrby3//+12xunn/++ZS+G0V0Z555ZpElmyXdSFduvfXWou9hW34rSgauH9eRhRbtqZJhhcKbIEPJnG1lFdyzbGSR9hGoUPcXf4Ls69a9xepu6m8KFRlZcaoMCLam8vbbbzc/0d9gjE5754ceekguuugis6tOR9z+wQcfGMJ4zz33GO0xBI2iukS/yzWIytKcxOK9994zD9CnTx9XrzvvvPMStkzmu0Foidzjo8n5pJsdrZjpFgicN/BLL71kNiNIV5CZtG/f3hDXVPyFP/vsMxMhJlrsBIV9nPNHH33UkLj77rvPaM4VJY9OsPEhA8AGEm28kuHCg23d7vV6BUVq5JgoMfcvgQ9IMs8Fwc+20MCcW7FixcBGiC1KhVxUPRBOx7sWKUDQT1i+0KtXL0O+sYlL5Xf5AOOF6Cxex7kcL0SomZSDZB/jZ3C9WEwZL2z2rM+wQqHwZ6SRwnLb5IH7Wd1hvA+uFxucbMhftiXhjtRIYWrw7LPPmiy4F6AiII8CVwUGFDrbf/3rX0ZraUlvot8FGdzYkGHbfUfhTSCPYPFE4sJ1Qg6EDEYJcWGDeYr0bFALeAodzL3cx0j12PDSHY/oMfe7wptg/kX6EsvKNKhQUuxRUBxGERcPXDCQTLj5XZCBlg0pBdEJbnQlxt4CSSki+ZBhNi5IYSiiJLKvOsTCB2SYxVdJceHPwdzXRIrZBHG/q1OF98DGhXWS9VIVAPugwj2P4j//+Y95pPq7oINJGZIF6SKajk5KCVf+yTDXAqkEUSM0iKotVSgKF8y5ttkHhFiL8bxJiFkfNSgRCSXFioIlxpAxvdnzP/kilSBCiDyCQlTVGSoUwQA61ehiPAIWPKfzQP5A1J6gBNdF18hIKClWFCS40XnYjmikh9TRIPdSCSJETL6QYU3RKRTBBHMvcwAZIzbJ6I2JJCOhUlKWO7Ae2k51WoweG8oSFAUNJlwIGqkiTdnnBkSFWfiIEnPOeaixv8IuxjoWggs2xowBNsw80BxTaKtFttkH0jXOeZAbc7iBzk6KgifFttsSE4JWQmcPnFvSo/hJc95r1KhhNIRKghSAcYCsScdDsMH1Z15gfiBIwXyBp7zOzdkD55bAEPOyRogTQyPFikBMwhBjSDETg6bsstONDs0g/49eUIs3FNFgbLA4Q4R0bCjQFNOoh7mDzBLSCsiyzh2Zl0yw7gHN2iWHkmJFIMBEwIRASl8n3MyB80l0GON+UnIQYpWoKBKlb7V9tyK6KJqUPptqyDEkWQvxMgfrQayE2B10ZlIETtNoJwomXZ0k0oMW0ikUikyBOYSmHxBkNtlaiJc5MC+z6dC1zh2UFCsCmU4iVUd00+qNFalFh9EA0hxFC+kUCkWmAHmj8QebbTbdzNOQZY0ap4Zo1yXdWLiHrmSKwEoprNZKOy25g3XxIIrDOaOlqxbSKRSKTAICx7zC/AKYbyDIzD+K5OA8QYi1cDE96GqmCCSscbndUeuEmxhMsBs3bjSaPzpSUTmuVcyKdLzDNWqlcAPmF4ixbfyBSwVZKkXywIXtHKra/dShZ0wRWDBhMHHYQgRFbFD4gs4PMqPaYUVJNqIUUCkUqXbEY85BskXUmH9rq+jYsBFiJcTpQyPFirTwt7/9zfWk9M9//lNatmyZtkzBftb69eslW8SY92cyyVTEOJvHnCtwvViIeKD1IzqcKiGOHidPPfWU1K9fXzciWbhPFKlBx6J/xrLVGjP/sEFnTgrCfZLqGOU8UazoJMSprNUKJcUGL730UlFa75tvvin2e4hSvXr1zO+PO+64vByjX0Ha6/7775ebb745QnvqPOf2waTXv39/+fzzz/OWdsq1lGLcuHFm0mKizxdiHQOTMFEZCl3oOEWxSyas1i688EJT4Pj000+bfzdr1kxuu+22Er9v9Hhi8WzevLlce+21smbNmoSvq127tgwePFgeeeQRU+DjpftkwYIFctZZZ0ndunXNYgfRuPPOO804dQLN5R133CFHH320iebz3fiuqWDy5Mnm79FzUvV/1FFHybRp0zL2Hdl0cn6TaR1HjRpVbG6wj/Hjxyf9HLd/Hz0WnVi5cqUMGTLEnIvWrVvLxx9/XOw17733npmzkBQ5kYkx7XY8O/HEE0+Y1/bo0UPyiVhjuaTjk2tqXW7q1Klj/I2t37WbMZFJ5PJeSzRGLVivmK/5CRnWosSSQePrDjDxvPbaa9K7d++I50ePHi0rVqzQVpRp4IUXXjA6sLPPPjvm71ngGzVqZG5oJnsml2OPPdYsQrncgDCxkZKzxDhXBvIQ0r///e9m8oN85gPOYyA1yaLGeUDTx+KTyTQc99gFF1wgDz74oPz+97831/qzzz6Te+65JyPvb8cTZJ4N7pNPPmnef+bMmeaaRr8OB40ff/zRLLp//OMfzXF99NFH0r59e8n3fbJ8+XLp3r27uSaQIRbgb7/91izILKoffvhh0WvJSPCdiCp16NDBfJ9UMGXKFDPvsfnn/YnCQbL69esn3333nbRo0SJjzTvcbjr/8Ic/SLdu3SKea9q0qevPS/b30WPReb/zPMQYcjd27Fg5/fTTZe7cudKwYUPze8bXDTfcIHfffXcxSUgmx7Tb8Qz+97//mePjei1cuDClc5XtsVzS8Rl9TW2RNJ/DxoR/56rgN5f3WqIx6pS3QZz5/kqIM4CQC2zdujU0e/Zs87MQ8eKLLzJLh0455ZRQ9erVQzt37oz4/WWXXRbq0qVLqEGDBqEhQ4aE/IotW7Zk7L3uuOMOc85igXEyZ84c87N9+/ah8847L+45nzhxYsTzGzduDJUrVy50zjnnFPusdevWhbKN7du3hzZt2hT69ddfS/Q+bo/5X//6l3nd4sWLc34No49hwYIFobVr14ZWrlwZ2rx5c2jPnj1ZGSeTJk0yzw0fPjw0dOhQ8/8rVqwo0efEG09//vOfzfOvvfZawtcBjqdSpUrmPv/tt99CuUSs++See+4xxzpz5syI588//3zzPPeKxbZt20KrV682/8934/d8V7c49thjQwcddFBo/fr1Rc+tWrUqVLlyZTMvpoN+/fqFLrjggqJ/M69yb0XPr9EYOXKkOf633347rc9N5e+dY9GCa1+qVKnQ6NGjzb+5Dxo1ahR66qmnil5z1113hTp27BjavXt3sffMxJh2O54tfvjhB/P8e++9F6pRo0bob3/7WyhfiDWWSzo+Y11TrgvzFPPVmjVrko6rZOPTLXJ9r8Uao86xyj3FupXOWp1tbE3CHefOnRvq06eP+ekV5Fc+sWCByC23iLCj5Cf/ziPY2VLh+uWXXxY9xw7snXfekXPOOSfm3xBNuPjii+XQQw81keQ2bdqYnbITS5culauvvtrsAIlGEn0j8rBkyZKI15FaJFrFbt9qqI488kizs7QgmmejFU5E64bsv2fPnm2OnfS3MwLu5rgtiFCwO2fX2qRJk4SpHCf4ftOnT5dBgwaJWxAt5Rwli05yTomEtG3bNiKdyK69a9euEcfqVlPF+b/pppukY8eO5nxFn3+35z46qnDGGWeYNBnX/brrrjNRH/t3N954o/l/okE2VWrHRaJr6HZM2Wt9ySWXGJkA15rPuuqqq8zYdh4DaV++M+lJjtt+J7djxe046dKli4l6EukkOoKmm+hXvPNK1MtG0onKXXTRRcXkA/EwYMAA83Px4sWuXvvXv/7VnNtXX31VcgWOLdZ9QsQecN6dqFWrVkQjGsB1qVmzZtrH8PXXX5vPZxw5P4fr88knn5iUcT7APVkSx4Fkf+8cixbcn0Szud8AY5CxZ8cc98M//vEPefjhh2NGJ+ON6WyOZ6LEHC+Sj9NOO838Ox+IN5ZLOj5jXVPOJdaa1DpwvZB7ETXNNnJ9r8Uao4DvimyC+d/OBams1W7n9VElWFP9iPzJJ158UeTSS5lx2MOEf/7znyLPPw/7yMshQXh69uwpr7/+uhxzzDHmOfStaMbQ9aE5dAIydthhh5nBQXqTm5PXQ0BY0CC4YOLEiSZFbbWBEBfSYEcccYQhPDYNduWVVxoCznuhY4OgM8jnzJkjnTt3Tus7QZQgO/fee29R2tLtcYMZM2YYvROv4UZgMiLlE71QxwKpXpDo2Dm3EDCObe3atfLoo4+aSeG8886L+zeLFi0yiwMTBRsY62c5depUo9NigkEOQKqWNBfH7gbO8492k2KOkp5/CDHj6r777jPaN8YQ7/vyyy/LKaecIvPnzzfj7T//+U/R94g+3ljX0O2YWrVqlUnBoxe+/PLLzfdiMuR7shCffPLJMmvWLPNvUsGk9Fjo7TG4HSupjhPOJ2lpJuOBAwfKp59+KpdddlnccwiR5xyyQXnuuecMeSe1nQyMFeBcgBLhd7/7ndx6660ybNiwuMcDkF1Ea0njgXGaKLXLdQTRY4xryXfkXDOe+Q68lutMGhnilSnYxTUajCM2T6TrGQepnA+e431tsSljgpR3dNo/HiCLzAVoR/v06SP/+te/zOLsFm7/3o5FC8gliz/3Gw/OOXpP5ibAxpn1oW/fvjE/N9mYzsZ4hgQzn0COCO4wRpgjouUj2RzHicZyphDvmjLv2AI8xitBCCdpczM+U/meub7XoseoBe9jZZ2pzMFu5/WpJVxTfYm8yCfmzw+FSpdmeS/+4PkFC0K5hDNV9dhjj4WqVKlSlD49/fTTQ/379zf/Hy2fuOSSS0K1atWKSIOAs846K3TAAQcUvUesVOy3335rPvPll18ueo6/ueaaaxIeK+kejiNZisT+++yzzy72WrfHDU466aRQxYoVQ0uXLi16jrFQpkyZpPKJ//u//zOvIcUV75xHPypUqBB66aWX4koReN/atWuHunXrFpE+Bscff3xov/32M+k0CyQBZcuWdZU+ij7/pOeQK9hx7/bcO5874YQTIp6/+uqrzfPff/99UvlEomvodkyRai9dunRMuQDpRs7pX//6V/N3pGDTHSupjpPLL7/cSBUAaWlSh9EpQPv9L7744ojnTz755FC1atVijqevvvrKfKfly5eH3njjDfM6PsemshPJJyz4Xp06dQq5See6eSSTxvzlL3+Je5+Qpuf4ne932223JXy/dFK67dq1CzVv3jy0a9euoue4HvXr1zfv9c4772TsfCxatCjhe40dOzZ06qmnhp5//vnQhx9+GLrvvvvMdWR8TZkyJel3SfXvnWPRglQ1KW57zH/84x+L3pvXLlmyJOExxBrT2RjPzvT6l19+WTRv1a1bN3TdddclPVeZHMfJxnJJxqeba+qUU3DOnGM5098z1/eac4w6/86JVOZgt/P68SVcU/0on8hPpJgQfbzQO88TLb7vPskH2MWzSyKNwQ6Jn9ERYkDE7t133zWv5/+du00q2d944w0TBTj88MMjdoXsTtmJkfonfcZriE4B/j1hwgQT3SPVnQkQ/Uz3uNkVDh06VE466SRTVGDRqlUr89pYKW8naPaADIIUVzw8/vjjpqra7l5JW1966aWmIpfIhxPsoM8880xz7tjVEg2w4Fi/+uorE/l0njteS1QnVvV4NKLPP7toIhKkU9NNFV1zzTUR/6ZYgqIKzp3bYq7oawjcjCkKOD744AM5/vjji0XIiEhwfYCN3EV/R7djhYhDquOEaBzpP6LVFCbxHSloRa6S7PsTIXr//ffNd3aOARCdtm3QoIGJoiEJcQvGazIXCgpsnDKrREiWaiUjFO8+IctARPLUU0810UGij0QveU8iPJkCUhwkNUSKiIQydsgcrF692vw+WVo61vm4/vrrzXFaeY5FsrmtV69e5mFxwgknGEkA98stt9wiX3zxRUb/3jkW7b1AJmrZsmUmi8LxkkHhnBCh53sxrojGIqHg3vjTn/4UMU4TjelMj2f+TTQQ5x57HzNPMpc+8MADCV1jMjmOk43lksDNNbVyCorNrKcx15ZIairjM1Myj0zea3aM8r3s93RKDFNZq1OZ178q4ZrqR+SHFKN7jFeBzPMxdJG5AmkBJiJcKKwRNjdfNLjhSNc888wz5hELyAEAg5lU2YsvvmhS187qa2dKB29HKk2ZgNERMbGef/750rhx47S/D2m6dI/barRI3UcDLWsyUuwGpPadhI3UX6dOncyCj/uEUzcJuWPy5+aPnnQ5Zo41VsW12yrseOef1BHvnU7bzOhzR1qW1Fws7a/ba+h2THH9WGjRXUdbz/E855bJNp5+2+1YSWec2ONlgud8t2vXzhC+WKTYOckDq/VkgYgmEXaTxXdirPD5qaZCSc+Szk4EjiEVrXw6YHFC8oLEBokMYKPIIordFfeKW1lIMkDUcLsgHf3f//7XPMd9yaKNi0IykhPrfPAc9459nuNmM5ZOJ0Tu4RNPPNHYoHEfpmoPmOjvnWPRCb6z096Mew2nkv/7v/8zZAEyBfHk79D8M9YsMU00pjM5nvkujBM+16kz5rghxMOHDzcp9XyO42wh3jW1nuqcT0g655RgQbLxmSukc6/ZMWotMqPn7FTmYLfz+toMrKl+RH5IMcVKiSLFMYqZcgkmOLRgTIDsiGJZZVnjcLSvEKlYsJFAooNMqESg0SxTXMFEih7UaUDOzs1GDdA0ctOgM+OmtxrneBHLeIQtWruUynGXFGiz0DURdSPy6wZM+EzwRGDwaEX8b0G0jEmEyMgVV1whmUai84++M55ZfCpkOZ2Icyz9mdsx5QTPMxkysaJHjdbdxXq9m7GSjok+CxZROfvdKBBC1/zQQw8Ve208AhTL2it6k5UqsF5kU5Fs0ndG2pOBBToRiYPYxrpPyCiwQbSE2Bklw7oQvV8mF3QWZGzGiI4yniB16KuBzeaUBIwTxh4LejqaTYgm551NXTR5LMnfR4/FWGATiffwv//9b3PvUAdAsITIHLDFbZYUJxrTmRzPI0aMMBFGiDGPaHBMiUhxJsdxorGcLcS7phwnx8JxcO14Det4rmzbMn2vEc1ljNpufiWB23l9dxpBoEJAfkjxxReHi+pigYnhkksknyBdAOmiMOrNN9+MO0Fw0zNwki1MTIwMPnbuFiwOsRo2sHMlvcKDnRoCe24gS4rZ3cb6Oyrm3SCV4+a13ICQ02jMmzcv6WfZm5sIRipE21aLR1fhQlJZUDk3fAenI4jtdkRldzRiPRcPic4/hXCpnnvOnTPSy7EwKVkXi3RlGW7GFNePhQLZCRILFn+uO2PIObHGOwa3Y4XfpzpOGBOk9iyIylPRz3vEinbkCq+88kpRGjFZQZGTACUC3zWWa4kFxY+x7hPkRDaK6ATXEpTElSEeol1qiIhCyu0x5hM//PCDucfTTc3H+/vosZjIL/jcc881/0ZixYbFgvRydPOFXIxpSC9zHxHlaLCZZ4NPV7R4RCqT4zjRWM7HmGBeY/4jM2HlFARqvOLl6/ZeY7PE+bROQyVdq1OZ1ytmYE31G/JDipkg0A1Dfp3uE/zk+TyH5rnB0IuR4iZlHwvsRIlcIrOAdDhT1IAb0FZo8troKACVzM6dGP8PCXQawTPZMdk6WzySfieShe2NnXSIFDD5uUGqxw05QJeKvs6m/XBjQMKQDLaCdtKkSa4nSBZ8orRMZNELFZMc6R52/xBCrhNRM3us3OAcq1OTzc3rpkOem/MPyefc0ziB78Pkmuzcs1g5IzW2gt1ucqyDQKod7dyMKaIiRLJI8ZJGheBD7O2iwN9zTuMdg9uxks44QbNmCQZAL8giQbrZ6X6SSxB1u+uuuyLITy60mET6Y90njDfuBeQTzugRUUqubbqkA1kY14mxYB1PYoGAAA4GREfTibCl26DBOQdZfP/996apCveNPZZ438Pt38cbi9Hg/D/22GMyZsyYog0kUgaaeVgw1qOvc7bHNKltiC/uNLEkfsxdjBW+NxrjXGiK443lVBDruqZ6TZ2A2Fk5BRFXa/uZ7vgs6XdJ9V5jzPFdCQLFC2CkMgenMq8PKsGa6lfkz5IN2zV2SZBg9JXsQCHJHtGqxEsrOEEUYOTIkUa/hdwCGzVSUUyy7PpsWgptLBEoCBevwaqM3zv1gBA9dolMbkxUED5ew43ijAaSHkdPSDSbog9uOgg8i6bTzzgTxw2wYaGIAVkB0VOiU5AvZA0Q80SAXHDD8Z74IcYCN5ddXIjMcqOy20W3FytFyoQByYPsIXdAK2W9O7GhgURQJEghAwSRxYxjSNau1s35t+eeRQitJ+cCkp7o3LPDh7hTtMl159iZ3PgMgHYZkJrl/SGsbMSS2W25GVPgL3/5i7l+TIL2WkPk3377bWM3xwKR6BjcjpVUxgmbCv4OPaAFEzCbh1yRYjvuOE4ishBiyAGFTCy0LKSJkEktJjUDse4TNKscJ+cUjT3XlsJfnqMYNbpgjbHOxoYFDFAIgxzEym3sho+uWUQHsWvingEQPqKhXAM+hywZ8hzGLd7aycA5TEauuB/JZjDGorvAOQGBg7RAKtmYYjHIfUb6mPFoEet7pPL38cZiNCii4z2RMlgwT/A3NuXNuebaOJHtMc04Zd6ygYFYQQnIDdHkeKQ405rieGO5pOMzlWsaC2iLIYeslwRerJVZLJLJ2pps/s3FvcbcxMaHeYoxaqU68ZDKHOx2Xv9bCdZU38KNRUVQOtolsmkCsTra0UkHG6969eqZTmw1a9YMDRw4MPTMM88UvYaOMxdddJHplodNz+DBg40FCe9nO+pgyXLjjTeGOnToYCzh9t9/f/P/TzzxRLHjGDZsWKht27ah8uXLh1q0aBF69dVX41qyxeuo5ua4LejsREc/Pq9x48bGbshtR7sHH3zQfOdoC7FYlmzYydAl6sknn4zophbru/B+dCTivcePHx9hpYSdFsfapEmT0HPPPRe6/vrrzXsngtvz7zz3zZo1C/33v/9NaMnGfXPaaaeZ98Ti6dprry12H2G7VadOHWOd5rQESnQNk40pzt9PP/1krHRmzJhhrNnodIXlHdeQa++0i4p3DKmMFbfj5Oabbzb2Q9Ed87CS42+tnVO872/HjvMY3d7D0eOOz+P7HHnkkaGHH3449Msvv4TygXj3yYQJE0LHHHOMOUbOPVZOdLqL1b2La+/GZsraU3F+LRYuXBg66qijzHhijLRs2dLYXiXqlOVEKpZXfFYicB26d+8eOvjgg431E9ZRdEjDCirWZzq/Ryp/n2gsWnz66afmutBxLBqcH+whef/7778/5t87x3SmxzN2WcxribpvXnjhhWbcRFtv5WMsl2R8pnJNYyHTlmzZvte4v5m/GTc33XRTwjGa7lrtdl4fnuaa6ldLNiXFiozDSYq5sZnIuJHyhRNPPDHUtGnTjL6n9cTk+6XaXjTboPUsiyCEOBttoUsCWqQy+T700EPFfkeLaUj5+++/HwoavHCfBA2JxmKmEMQx7YexzEaC+ZF5Mlar7nwCH2JLiFlDsz1Gs7mmbvUhKfZGKaaiYEEaCasZiuTScSlIFdEej0gxkFjgHpFJWC0uhX9eandJegvdHNXWFJVksutZJkCaEHlGLO9lUr1U6mfa49QPyPV9kg8QhOG7xXJZ8NpYzBSCOKb9MJaRXSBdYJ5kvsxG0Wo64N6gtgWZIHM3LjPZHqNeWVO9glIw42QvQgeGNhKNaDKtnULBeKFIkUrlXI8X3CMuvPBCo23DFQK9NYVy2Fdl09XALvap+qdmEtZeCZLupSprhQJAPFjwoxsPKBT5Avpi5kzmbubMdDy0s3FMrCNesY+rVYI1NRl3xBkDTfOzzz5r3DW8AJ2ZfAJIFztaPBetVQrVrMkigYsWLSqycIoGE4CzMYizmjo62pGpJgHZBsUKVFzjMU0hBdXQdADLts0XNz/nmQU/H8SYz6e6GrLB5J5Pcq5QKBR+AIED1lGIMetrtF1lLtd31g/WLK8FM47O05qaLygp9gkYkFQac9NCZrEGo9oV83LbmjQWqNSNTmFx81kz8GjYpg5O+Ck7QEo0H+AcEQnDRB5inKtdvrNDHcfgJYN6hUKh8DoIIFgPegILzOPM4bmSxbE+W09+CLHX5u8X87Sm5gtKin0AND2QHmfEFuKKRAFPQWyk4iFWVyHb6zyW5RmEO5FdkiI2mMiYSJncbIo425MbhJhxYYk419pL+maFQqHwA5g3CShAkAk+kY21XUJzRYgJSHmNEAcRegV8AG5Se9NacPNw00KY48kj4gEixY40XoSZG9WrBRJehi2OANku3IAQE9mAEDMOkrVsVigUCkV82A54rLP4GRM1zmZRKGss8zefwbqhkjdvQCPFPgCidkhs9E1jZQ329261pxRkxdMII8tgMrBRY9JKsSLKTkDKnZ3UnB34ggaukTNia7vGZRK8J9eIa5kvDZwimNhr41lEFuycxBzgdJbgJ3MSGnd+ZzfuzCnMP8wX6BN5HeOYe8T5sK4udnNun1cosg2CRYw15li0xsyx2Yjg8hm8L5+nhNg7UFLsAxB1jFWtbZ9LJSpJlBjEIrqQKwgdixmLFpMCHXv4fyaGeIBIW0mGIjzZ2c0BBCCT+jRIAhO1tVzzk95b4W3YDJHTOo1FGyJr26BHR85s9gpiy2uc5NXOT/yNc9MMnJtGCLOTaAMr4SJiZ+c3SyIY83aO4nc8Z3+n6WdFJsBayFhiruXBXJupsWXvL4iw1ywzFUqKfQFuoFik2C4sbqUOVoPKokKUJhrR2mSIMxYsEF4WqXiTAr9z+nBCBmklHHQw6dkUGZNfSYkx70W7UogAkf5Y11ChcLMgQygtCYb0Mr+w0YLcWnC/2wwU/894swQ0eiwn2vjx/pZYI/eCcNjIGO/n3KBbcmzfi7nKPmeP1/7OtsF1gu/BsfB65iHe39pbaaRZkQoY78yzzLk8MuHqYwujGcdaA+JNKCn2AZjQY2mb7HNud7A26sLN7fZziRDjfMFiGU+DzMLpNRsZL4AFGjLMJFhSYgyhYGLmJxO1F/w0Fd4GCy/3u7VwZOwxDp2RVxZ5O49YchyL+PL/ibISbsY1n8NnJ9JpRn9uIj9jSAvHHKspiCXFzuf4XpaIcBz2+ysU8WAlhJYYM/emO2YYi3YNzqW7hSI1KCn2AawuLxp2cXNrhE+UmBsxliNFos8G0elPRWrEmNQzG4t09L9cZ1J4LPxM0LoBUUTDRledC69z0wyBdBLbWFIDP8oPLImO9V3IYNnoMvOXMwLNObJRZ0gO9ykEyG/fX5F9MN/aiDFZU/4/1eYz9r5kHbedUBXehF4ZH4AFjRuKid25S7WpTjdpdGv9AilLhVRZMq43cfqwKd10IgyQGyZjACHW66AAVk9rI8HA6UDCnMB4i+6MFbTxY4l+9PfmfuS82fPoLFa2+mj+hodGkxW2yYeTGKeyjtqsDYRYgxreRrBmSJ+CyC6RQiy4rGsENxkFbk6SayvAY5Fk0qZM9PGcJGIV89liOxYF1a+WDM6IO9pNm85OBK4nkzCLeknSdgr/w9lG3LZLtuMq2plGi3fck+VYBMVG3K1e2Rb3WamGpr2DCe41p5TCbVtoe9+qbaY/oKTYB7CuEOxQIVW2ox2kqWbNmkWvo7iNiHLLli1Tlk5AuFlo7U6Whdd+Br3PNa2YGXD9rNYxUSdCiDMTL5OpEuLgwboy2GiwLba1GQebgvXTIsscYqv6vQwCANYuzp5/e8zWUcZGka0GWxGs7ndOjXEiYszGins3E4XWitxASbFPADGFFENurcdn3bp1ExIrC2unlCiFz2LFDQwR5vU2OgLp1shT5mAnUDYvTJKxNMY2QsyCy6Sri24wo8GMEZv6tw/AuPFjCtZqm/0Ce56d55prYFPhkGPAPKnWiMGBzdyRvU1EjFlP2USpj7y/oKTYRzfiIYccYh7xUL9+/ZjPs8i2aNEi4ftDfJX85gY2DcukGV3Vr4Q4WGAD6owIQ8BsFJisTiFlCCCTfFe+o1/HtXNzYr+PvUaQZKtNjtVsSVE4YPwin4gXMUaXzliIZ3+q8C78OTPlEX/7298MkdFmFf66Xm7xz3/+08hPst3mmonS6dcaS0PsV+LgZTz11FNm85jProvWFQISRQt329GNrI+NKhWiXRj3lE0nFwJs5NsZwec5xhbXlYeNJisKD3ae5vozb9uidH5yT2sGwZ/QVVdEXnrppWJtRonI9u/fXz7//HPx4nF+8803MRfbevXqmd8fd9xxeTlGPwNpyv333y8333xzESGNHhtMcs2bN5drr71W1qxZU/S3sV5Xu3ZtGTx4sDzyyCNmgYwGCyoRJdvq1uuE+J577jHfrW3bthHPz5o1S04//XRp3LixIXZo7vr27Ssff/xxsfeYOHGiOXdt2rQxEVEI6hlnnCHz5893dQwrV66UIUOGmKKV1q1bx/yM9957z9y/SIGiceGFFxqi8vTTT0suARG0ZMkWcLGYcr6wDuNcqCWYv2Gj/IxNfjo3NdbholA2BIr4xNiOAyXE/oTKJxy48847pVGjRoakQHggOscee6xZeL1EMrnZXnvtNendu3fE86NHj5YVK1ZouiZNvPDCC2bxOvvss+OODcgrG5Inn3xSPvvsM5k5c2aErtu+jsmRpiejRo2SP/7xj/Lggw/KRx99JO3bty/23rwn4w1SVKNGDU9GCBlX9957b0yJDV0PIXsXXHCB2QighX333XflhBNOMOTz8ssvL3otm46xY8caEs254Bw99thj0rlzZxk/fnwxwh0NPgNi7HyfuXPnSsOGDYvO5Q033CB33313Uavg6HuH9+B6/P73v8968QvyCI7JRpGcGlXbQllRWIilRbbd/HjY3/HQ4qvCkVKsXbvWPA499FBfav4VexFyga1bt4Zmz55tfmYSP/74Y+i9994LPfvss+Yn/84HXnzxRfKZoYkTJ0Y8v3HjxlC5cuVC55xzTtFzd9xxh3ntunXr8nacp5xySqh69eqhnTt3Rvz+sssuC3Xp0iXUoEGD0JAhQ0L5AuNkzpw5JRovW7Zsycix2OvlBu3btw+dd955rsbGn//8Z/P8a6+9lvB1YPjw4aFKlSqZ6/Lbb79F/G7Xrl1m3C9fvjy0YcOG0Pbt20NexJlnnhkaMGBAqF+/fqE2bdokfT3fq0OHDqEWLVpEPD927Nhi33H+/PmhChUqhM4999yE78m5K1WqVGj06NHm33v27Ak1atQo9NRTTxW95q677gp17NgxtHv37rjvM2nSJHOtuC7ZAN99x44dRf//yy+/hLZt25bwmIIA5qtNmzYVm7eCAq4/44DxwHmw8yPjWOFvMKcxfzOPM58HdYynyh3nzp0b6tOnj/npFeQtV0eU54477pBhw4bJpEmTzE/+PW7cOPEKDjzwQKPxS2Z4T6SsadOmJsrlTKkTJezatauJTjVp0sREzVLVuMYCkUxSNV9++WXRc6SE33nnHTnnnHNi/g3RtYsvvtjsYokkk74mMhr9Pa6++mpTlMf3Ji1EJG7JkiURryMqSPST6BzvRar6yCOPlClTphS95pZbbolZ3Bfr+9vnZs+ebY6f1tI2Cu7muC2I4Hbr1i3ifLvF4sWLZfr06TJo0CBXrx8wYEDR37l57V//+ldzfl999dVirZvJTODywXETZfWaDnHMmDFmbD300EOu/4ZoN1IerP6c6NWrV7HoaLNmzcx1nTNnTsL3JOLKuWJ8AMYM9yjnzI6Vf/zjH/Lwww8nlCF06dLFRHY+/PBDyRQ4LqsRtjphex4omGPsBl0awfXym41cNjTIjAce9j5grDBmottSK/wBskDMQVxba5HKvK5dYP2JvMgnII6vvPKKmQDsJGB/vvzyy4ZgJnJZyBbQIFJAx7GQBnn00UeNldl5550X928WLVpkSA+LLCQVPSWYOnWqHH300cZK7e9//7u5QUitkx4vKSCjPXv2lNdff12OOeYY8xzaZ47/rLPOMhrW6PN92GGHmcUIPSfHwOsvueQSo6OF4Fq9J5sS3gO7N8gwMoEjjjjCEFYrE7jyyisNSeK90HUyAUBIITWkwdMFBByCRJreSljcHDeYMWOGHHXUUeY1kGxkEGyyINNuYDdjbo+f6w5sM5Vk+N3vfie33nqr2fxddtllRltoWzdbTRoEynqjpptWZ4KOpaWNBcZsMqLGuEVmcOmll0q7du0SvpYGMdbWD6kI1+rMM89Mehz2WkOMEwEyzGaH8cGDazZt2jRzn4KbbrrJ3A/omZOB68zGPBOwlod8D9vWO2id49yA8Y0tpCJ8LixItdsiRAgy975uovwB5lvmPa4h6yNrFfM5PIJ1ET6g19FfyMvMzWJmuwZFg+dZrE4++eScH1d0lJCJiagkUdBYQMs4cOBAqVOnjgwdOrQoggUgZEx8fBd0loCColatWmXkWImoEo1lIiWq+7///U/69etX9FlO3HbbbWbhhjhaEgexJeIMgbziiivMe1DAdNppp0X87fHHH28IOBpRiB349NNPDbF74IEHil4HISkpOnToYLTSFhAxN8cNbr/9djOevv766yJrulNPPTUpkXNeS4AeONGGiUWLa8oGh892qzVnk4HGFTJtCTHk19ku1DoQWKTTPYtjo0DUDYhyWy1uIrcGItxfffVV0ve7/vrri6LzLASnnHKK0QsnA2OXKC/nNBmeeeYZM0bfeOMN8282RocffriZU95///2k0WYLigLZmKcLa6FGdN92fFQbrsRwzvdBjRYnsnmz3S55WNs65golVd4F9zubGNYCO6atnaYlxl4tnFZ4iBTblHEs8Dy/zwcef/xx4ywAiFyR6oaYkepigXeCAiuiYES1iYg52yczuUEiIPZOkspriWTFqphPFRBsCMEnn3xiItL8jI4Q2/MJoeX1/L/TSg5nBMgFsgeIhdNknB0w0ViOmRQ1r7GkmH9PmDBBVq1aFZOEpwsIbzrHzflmU3LSSSdFeDWzAeG1FMQlg/UGjhfJit4wNWjQwJA5NkRuwXuTJqV1Nuc3VptQO7FCuIhApBp1ZGPhlNUkgrMbYrxzwmYD6YebDAfjEcLKuHjrrbeKFvlkm5FrrrnGbLwogEsGsjLLli0zjheMPSQaEIc//OEPhpRzXchuIKFg3PzpT3+KGFcWbGDZUJL2dNMAx9lljjS3bXADGY72mlYkbyKkkfTYBIs52NkCnjkA2E2Xbia8M5atBV+s+YNrBRlmDmW+Z67Xa+cP5GVmYrAkihS7TUlnGt27dzcaYAsikp06dTKpeyKCTgJDBJXUPGQsmkghvWDBhVBGI9Zz6QCSAlEjssrCzk0aHeUF69atM7pOImw8YoHjBRzzfffdJy+++KKJ3DmvjzMlj5cvBAZCgj4Th47zzz/fRN9KAmeUNpXj5rUcO9KLaKBrdkOK3W6YWMy57rxvqrt/CAFjG1LFJEkW4tlnnzWRcKL5RL+dCySPVIkxZM+tLjoZ/vKXv5jjRD7hBvg72xbjjAfkLNwnbKBiLQg4T5CdIIKOHMdtlJX7rUePHkX/ZrzyXv/3f/9nNqM33nij2dDymWRUuFbR0XM7tt0uVLye68d95pRI6EKnyDScYwqCzHxhuxtCjlmHdNzlf3NnJRPxwHWyDT5YP5nn9Lp5H3khxRTbQCbjLT5E/7wAJiEWU6JOCxYsiNA8kpr/73//a6KFpPHzARZ8ZAwQAiLQRHCjYX0x0UXHi8RZmzDIDwSDiB+RO3sTozF2+msSve3Tp49JV6OR/de//mUssvCHtRrneDd/ouIDZ6Q6lePOBCCrRGeJ5JIZSLZhSsfSjImRSDbnlcUOvTlE2CkZseD8QbwgxTwSteh2gsgs0gw3SGT/xnhnM0JxHZFfC2svht6c7AiTfjywSePewIM4uuiSc8FYYeOD5CXdjAPZDDYU//73v835QmfP55I1sMfAPRpNioneOJtlJCqes6lsCIndrCgUuYC1bmPehBzzsMGZdORViswQYuYDN9kh5gzWZeY5W3Sr8DbyQoqJtBFJoqjORoztT57PR5FdPECUADeCExBBIkW4NTDQna4PHD83zMKFC4u9X6zn0gXyDEgH/q5vvvlmXOLD8XEzJ4sgEq2DgDq1wpCgaAcBAKHju/MgYkvhEs0dLCmGMMUq+EKf6gapHDevhdxA5KIxb948V59nI5zobDNJti2sYwZyDuv1a4lbrEg2kW8040hIIKV2k8DGJZZMxgJtbSY0xWQKrCyBR6yo/nXXXZfQkcI2qYgeB4wpIsiQZSK7FGumC+sLfe6555p/c67I7lhAtinGi/Xd4+n7LRm2zRZYANVTWJFPQKjYxNm1knHJmmSL8pQcZx+sRQQomAuYw91mCrlu/C0BF3sdFd5F3oRdRIuRElAYZMXoRIi9RIiJiBEJZeKJXkCZhIik2aYFRPJoVgAY+BC5Dz74IEJ3CyGO7pBHWgyNJFWq1rnCLfhM9JNE7SAZscCxENUmGokOOro5AtIDqxe17gdOUNnvjO7anbKzMQLXjO/obJ2LtAIyhM2ZJZmrV6820WU3SPW4IZucb86l1RVTdBUvIxENIuMAe8BMk2KOAVkKelecM9yABhQU5aGb5pxjUYecJ5mUIVOaYs53rGuFpIIxT/YEJwjApij6vuXeYdPLZsVJevkuaPG//fZbY4lmz3s6gFRTyIdlnCUFbLht0aQdA7G+J+fVEmknIMOQee4DSzg0MqzwCpzkl6AMG0zmXcapkuPswq6DqRBi51pNgM1GjLXBlneR12oHFtJ8uEzEA4TVLqgs9BAyoo9oFZ2FdBbcGGgXifghKSDiZ/1rSYtDqCH6V111lbmhWMAhG87I1XfffWcie7hVODWlbuGmOAnv1pEjRxodJnILSAopdogBkTqbbkc3TUU+hJfXQFz4vVPjDSHCSYG0NASMm53XYOfmjDCjM/7Pf/5jri+RRsg/BB5drtPPOBPHDbC9++KLL4ysg+g1ExCEHskLxDwZ0ENzbXhffJFLOob4fIo1hw8fbt6TTQIFlonS9RZsEokss9mxxB/SD1ljQk5UkZ4pTTEbNBvJdsJGhp2/I1uBjAErNAoPkfMgWeA8MCacmnuK4bBrYxPH9XP6NoNE9ofRoIgOgo20xYJxeeKJJxr7O8A5pwjVicmTJ5vP5nXAWkNyTm03MiXDmQfnk3lUiVvJYQu8yEhCjHkwL2gUMvOw0Xk2yekWO1pPdXgAcw/zq3a98yjy2dHOK7DdyJyPihUrms5YTz75ZETHoVgd7ei0RaevypUrh8aPH1/0PB2zOnXqFCpfvnyoSZMmoeeeey50/fXXm/e2GDlypHk/3tftccbqmuZErI52a9asCV1zzTWhevXqmS59NWvWDA0cODD0zDPPFL2GLksXXXSR6ZbHdxk8eLDpNMP7XXDBBUWde2688UbTraxKlSqh/fff3/z/E088Uayj3SeffBJq27at+f50Nnv11VdjdphL1CXQzXFb0OmMjn58XuPGjU2ns1Q62j344IPmezu7zrk959FjiGPgWBkXd999tzm38XDFFVdEXP933nkn1KNHj4jX0FXx/vvvD/3888/mka/uaLE62r3++uuhQYMGhQ499NBQ2bJlQwcddJD594cffhjz76PvNefDLT799FNzrVatWlXsd/fdd1+odu3aoVq1aplzFo2bb745VL9+fXNf03mO87l582bXn61QeA3MB3RPBIxpr3bG9ON5tR0pM/V+rGl0vbPXq5Cx1Ycd7Urxn2TEmV0oGjy0e2o9VDIQYcNOKpb+tVDAeCHKiV7VT+MFuQcRY9w13Moc4sFaCxIxJiqQyD0CyzBS/DZTgCMFRYtWakOUnXNJh0QK1tC12UI89b9MDaSaOZc4VFx++eXm+nBtiOBrZDi7IErG3GC9nRXZge2KaS3e1P4uPRB5Z67lp9tCZzdgzsFilPcrdA/jbUm4IzU/ZIFZ82J1wM0HCvdqeAC20MgCIozEgg5xCu8B2QhNSCiidLptpEOI0Y6xMOHOEG9RYnJk0oAsOP8fyQfFk4wXZAlMGhQwIh9hIrUSCiZsbQubGnBXIW2JTINzx7nM5IKnSO7zrGM2u0BCYYt5qf+wxE7hHozRbBBiwHrAumA1xno/eAtKirMIoo44CLALokCJlsXokjLR/U2RHdx8881GC1uS3Tu6azZE6HsTORbcfffdJpLz3HPPGecO/h9NN0WoNLSguA6dM0WMtlOcs12u+pW6h22jS3SYYkwiNJxD1fUpChGMa8a307ECKAFzB6vRZnORjQ0zczfrA59D4EPhHWheJYug0xy+qRQeUbhDpf29994bs8mEonBSl0RnKChKVlSHXCJecSWEmUc8OP1yib5pI4n4sI4SgPPEhkcjw4pChy0Osxtz6xzEvKT2golBqp9zlM15gs8gO4lszzYEUuQfSoqznKpVBAeQU9JhLDq5muCIZkDEraxCifE+QAIgw6QpiZxxXQpZv6dQJAJzA+TLao5VRx8JoujMF7ls0sOczboBMWaO0s1K/qErhEKRIXKK1Q4TWy7beVprJogfi52mR/eBc2FToFqUmH/YLmB6HfID23TC1iQg84IcK8Jzhd0s5Fp/zXrBusH6kajjqyI30NlJocjAhErbYCZTdGK5XvSZUG3EIejEmM2BLUAkKkZXRNUNewNKir0B7gfuC66FLQIOciGejRAzfzKP5nq+IIBC4R1gHQny/O0F6OykUJQQRFyw+oIQ58v+yBJjFrcgTqpWRoJm0nkOVE7iHXBdIB5BJmBeAfeF3aBwr3DfcP8E8dpQ7EaEmIxbvjbQSDVYPzgOLbzLL1JawYO42CoUySZUFhQbecknmNBtwV2irneFBhshB7aISMmw92BtBHFFCMrY9AvQ0TKXcS8FrRCPeRNSmu/vzDWgQBtSzLG46X7qdYR8yBldzUx292QXHoVCEU7Vk+6CDDtbGecTkEEb+Yn2yS5UOKUSLCxKiBUK9+B+4b7h/rGFeEGYO6xnNt8534TYgmwf6wkF2xyf3/Hr3kZTfpKwuYoUs4uib/fatWvNv0kz6MKjiAekBESF+Fmo4PtZ/ReTmBe/qy2kYcErxA0JRSn2uzFHadGQ968Z14iIpHZZ8ya4j7ivbPdBp8dxIYH5mgfRWK8RNtYTNiVr1qwxWmO/ZVVCoZC514l484A7+snlxPXMRBtaYImxQhEP7HBti2OvTTiZAtEUvicRYsinF8Hx8eAaFMp1sBMuDxvhKsRFu1A3krbNs98W+qAC4si1KiQfdLs58/K8aD2l6XHgV//iMmXKSK1atYy7hp/gmhRzQ/AFDznkkIII6yuyB3qdP/7443LXXXeZnueFhmnTpsk333wjgwcPlqZNm4rXr8XSpUulR48evteokYqbPXu2WSwYVw0aNCiYhToI4PrNmjVLGjZs6NuFPkhgA7p8+XL54YcfTHaYNvNekYmli1WrVsmSJUukXr16vpi7P/30U9MJt2vXruInlC1b1pBiP87PKeewcmVqrfAviCyQUbAWTIUEWgQPGzbMTFTt2rUTr6NVq1ZmAfD7YgZYnIny0Abbb9EHRTgt3Ldv33wfhiIFNG/e3GSJp06dKhMmTDDE2M+BDrJ6devWlbZt24of5m4ixcOHD5fatWtL48aN831IgYDmsBQKlyD1++6775pJddCgQeIXQIiJ+syYMUNWrFghfgIkeN26deb/W7ZsaUiVEmKFInfAEaFPnz6GDPtVC26z2+3bt/cFIbbo16+fIcPvvfeeGh3kCEqKFQoXgFR+8sknhhifcsopvtREolND+rF69WrxS1RnzJgxMmXKFHPsnHPNUvkXFN18/vnn6sPqQ3DvESUm6wTmz59vWhP7ARSsffXVV8bRgXS+n1L6nPeTTjrJ6PE/+ugjX1qc+Q3+W9kVijyAKOvMmTPluOOOM9W0fgMLQYcOHUwaDpLJQuFlrFy5Ur7++mtDgnv37q1kuICKJHVh9zfYoJLWp64COZmXQZZp0qRJUr16dRPx9iOwyjvhhBNk7ty5Zu5WZBdKihWKJMB6jYIHUm9+0BEnIsYdO3Y0xbIsFF6N9FBgwuRPYS+EWIuyFArvwG5UiRp///335gFR9ho2btwoEydONIS4S5cuvszuWSAd4zt88cUXsn79+nwfTkHDv6NEocgBSFu9//77xrnh2GOPFb+DhYHJlUmWCIQXARkmqt2pUyeNECsUHp1HCBKwyaZOgSJYL4FsxPTp001WD+cGPxNiC9yOiHajL/biJqRQ4P+RolBkEaTwsSVCR1woThosEE2aNDE/iaagtfNCmhP9MP6hnOf69evn+5AUCkUSEC2m+JX5BHiliRFZMWwou3fvXjAba7runXrqqUa6MnLkyHwfTsFCSbFCEQdEQEaPHm0m/UIlaRTMjB8/Pq/FT/iGYvekjTgKG7igcC8Vgj2gYh/IOLHBxj8c+7B8Ro05BiQTuE2Q3fOrW0Y8UBMyYMAAGTt2rJk3FZmHkmKFIgaIeGC/xiSELU6hAikFxvwQYxaUXKc4aeZAESMNHYjqeLXDlKLkIGKHnV6hRO4UkUD7j22bvadzXVBJc5hvv/3W/CzkYk582mlchIyCdtCKzEJJsUIRA1hHMbn61X7NLSChNCIhNceCkksvTKLTRDvwDeWhUeLCBgs4ZEkX8sIE9y8NJ6gHoIsm2R/cRnIBxhTzFxuunj17mvmsUMF6dPLJJxupGTahhbwByAcKd7VXKNIEkQ78fCmsO/jgg6XQwQLCQkLEOBeLGFF4JnKihgMHDvR1hyyFe7CIswnip6JwgdSMjTZE1TbNyCYoOoMQQ8qZx5BhFTqYO48//nizVuH+ocgclBQrFFENIz7++GNp06aNiXgEBSwkhx9+uKluZpHJVsEM0WEK6hYsWGD+XSjFiwqFYh+wQTviiCOMrhdinE37R6LDTZs2NYSYzwsKWKNw//jss888USxdKFBSrFBEySaYZIcMGRLYdD6RByIvmY7o0TAEw38IeKEWLioUijDs/EkxL/d9pjtpQrZp8gOYT8h0BQ3HHHOMCSzgo68yisxASbFCsRd0DJo9e7aZaII4wVo0b97cEGKK7zKV/qTzFVXhNWrUMBFpjRArFMEAOuOaNWuahkGZckxA5oVmGY16kOU4BBgI4JB5o+OqouRQUqxQiMi2bdvMbhtCSFoqyMAyC00gRXeZKpahCxPRHIz01X0guAt448aNA6H5VEQWhnXu3Nlce0jswoULS/R+yLu+++47I3WzRcJBRosWLcyaRZYzl4XShQolxQqFiHz11VdGRxtk2YQTaItZcFh4SpL2tJM03enogKXnNrggO8DirVmC4IH7nmsPgSvJppgOo2Sc0NDSnIOOdYqwjIJzM3To0Hwfiu+hpFgReGAfRGpv0KBBpqpXEQYLTv/+/U3XqnSAFGXUqFEmCq9kWEHGYdOmTTmz6VJ4D2TirNsMXSxT1cESJYb84WkeBGegVLJ7tIGmHmTRokX5PhxfQ0mxItBggcZtAuJHal8RCRvVo9U1GwcWpGRgobOTM3pCjQwqAL7fFFzxUxFs0CgIaRbWl26IMa9hc42vOs0rcLdQRAInCjYcrGdB1lmXFEqKFYHG119/baJXeD4WcpOOkgIdKO4RyRYxSPPUqVMNibaTtEKhUERHNtEZ4x6RbLNtN9lsqNxsyoMKsnGsY2w4yNAp0oOyAEVgAcmDFPfp00cOOeSQfB+Op8H5YRFbtWqVWaDiEWN02Rs3bjTto9OVXSgUisJH7dq1pVu3brJ27VpTOIc0IhZwVWCTTdZJAxeJgaQEf2gsNZmrFalDR5gikCDiQJqpWrVq0rt373wfji9Qq1YtUzDHAhVdQc75ZFHDPH/AgAHmtQqFQpEIhx56qCnoBbGiwNQlYONGI6U6derk4Qj9B5qYcF4/+uijuBsNRXwoKVYEElQwk7o74YQTpGzZsvk+HN+AhQntdYMGDYqeYzEjBco5BRrNUcRL72KfpUWXCicITECM0QvTGtqSY7TnixcvlrZt22qznxSAuwfrGplQIsaK1KBsQBE40Gp4+PDhJnWnKf7UYaPAFL6QokMuQSU551OhSGTzR4W8QhELkGFI3P7772/mEn6SdQpS6+ZMSlOIGKMtbt26tTp1pAAN6SgC6UlMVGLgwIH5PhRfA/9iUnRTpkwx0WPVZSsUinRBhqldu3ZGQ/z6668XybEU6QFtMZ1Zv/zyy3wfiq+gpFgRKKxYsUKmT59uCLF21ioZmHA5hzy0k5IiGWgEM2LECPNToYgF5BNIbH7++WczT6fqY6zYB87jkUceKXPmzDEyFIU7KClWBAZMsLTCJP2PXZiiZKCY47zzzjNRYqI7y5Yty/chKTyeHkcnqrZailigxgNnG+bmk046yWSidANVMqDHRiL4xRdf6H3nEkqKFYEBkQcm3qOPPlqLwUqABQsWFBHgKlWqmPat+BEjSVEoFIpUgVc8/uYQOIgcmliyeejQFemDolbWO4rukLkpkkML7XwCOtQ8//zzMmzYMLN7btKkiVx66aVJi5teeOEFeemll2KmVtDWRuOTTz6RN954Q3788UepUaOGnHbaaXLqqadKIZw/vi9FB07nBEXqLbHnzp0rLVu2jHiehcyC8QlZVigUCrct5dET4zJh3UmsvI3oMfNJ48aN83yU/nUMwtIO6RLztHYYTQwlxT7BfffdZypJTz/9dKlbt66RAdx0003y8MMPS/v27ZP+/fXXXx9RtBArUvrhhx/KAw88IP369ZMzzzzTRFZ5f1wGzj33XPEz6IaEXu2oo47K96H4Fpjsz5gxw0SFmzVrFlezzSLGZk0L7xQKRSKsX7/ekGBs2eIFKwjgzJo1y6xf6n+eHgYNGmS0xaNHj1YHmCRQUuwDYGCOhdhVV10lZ599tnmOgX3hhRfKk08+aR7JANFlNx4PdCJ77rnnjI3LXXfdZZ6jZSQ6pJdfftn4Hvo1+vfTTz/JuHHjzHdLdA4UiW3s8CJGR4xcIh5Ie6IFxLO4R48eUr169Zwep8K7wGILP1p+KhRYOdLJjowkpDgeyEoR0CD936tXLznooINyepyFANZumlQRWKMGJNH5DjpUWOkDsLuzhtwWpJaGDBlidtDohdyAIpd41bxMOFT8UuDgxMknn2wmJD+bgGNJQ5SBds6K9EDKjQwFrZ4TNV8gA0GLZyZdFjwWPoUC0CQHAqTNchQEKiZMmGCCFMwpicB8Q/Edr2VOYT1SpA6CQmi0hw4dmu9D8TR0dvJJYROEJDrCQi94QMtdIniJgByCyQRyyI7xmmuuiTD05jNAtFa0RYsWhujMnz8/rvSAFNiGDRsidKdeAcfCxgGyTxpOkRp27txp/EIhxW5kOoDxgnyCRY8WrWocX9hgfCCx4qctjOK6k2XiwUacnzVr1jS1Clj5kZmC7DBW+MnfMU7s3yhxLuys0/jx4030snv37ibg43ZOYVypJjY9UAiNRdvbb78tixYtMnVJiuLQmccHgHDGSnfY5yCl8cDEc8opp5iUNzcFOuH333/f6IueffbZIqLNZzA5Raem+BsWLCfpjQYNHGIV8+UbLMZY0dhCA0VqgJxMnjzZEJi+ffum1J6XscSCZ7XrXAtt7+svcM249mym7c8DDjjAkFcyAGjHeZ6NE7AdyACbaEiyk/hChnkerTluA7y/Jcws0LwvEcSxY8caUgz54VG5cmVThAXonOj8nY4p/4FrxjpDhDiVzQ9BjebNm5v/Z5ywLqmLUGqwheasi8gx9fwVh5JiH4CFJ5bdlY188vt4oDAvussNEWZ0w5BjfGbte8SboPicRJ+BrOPwww+PiM7efffdkm9MmzbN6FsvueQSXTzTABsoNkNog9M5f3Y8IctBnkOkB4Kj8CYgvZANdODMN5De5cuXF/2eBZQCS8gr8i3ILT/JPlmSahErq8Q4sNkoyLUTVtYFsYYsEXm2j127dhW9jk2aJeGML1LqZDD4O0i4m6ijIr+NOQjUMKekC64/kWbGX6dOnXRuT8Oi7ZlnnjE1IgQuFJFQUuwDsPDYhSDaZsz+PhWQQnn88cfNAmNJMe/hXHyiPyfRZ7CIeq2giu8ycuTIIvNyRWpATgMhYtEp6bWFNDEZo0tn80TEUOEN/PDDDybTBBm2G18IC4SjYcOGptrfkl6n/AgSmqjgMlU4bbjI7MQDkWhLlknDc9w2YMAmmE0cRNk+iEiqf3b+wfWi2JkNFXNKScD1JPMHqWMuiZb8KRLDNq+i6I6fKiuMhJJiHwCZBGnDaFhJQzqkhUWPRcX5GURaSGs6JRSQcV7nt2pVJkz8cvv375/vQ/HlAkaaGz05WvaSgkkX1wEWRUuMVReYW9CGGz0vJJKILW40RH6ZQ5Av4A9riaS9Nl50amEs8SB1Hm35R1oYss53hOwzd0Ge+G7IPXie2gt1v8gt2Gxx75MNyBSBhdghBcCZiayDWrWlBu5/MoHUfWgBeiSUFPsATZs2Nd1+cI9wTuhMCPb3qYDJiQXS6TVr/5/GDFSpWvBvFs14vrReBJFtfInZBfuNzHsBkCI0xJmUOvCejCv0omxYKPZUZB9sdLkX2NhCgiG6kEmet8VLuQIRPqLA2YrcRmes2AjYz2IjQB0FRbek7yn641j8ajPpp7mYjTDjDTs1p1d+SYEOnY0OaxTXU2UU7sE8gEsQmxXmAA1S7IOqrH0AdMBMKhS0OSebzz77zOyWrfME1mzRzg9MGtH44IMPzPNOXRc6PqIvNPBwgn9bQuMX4JHLggixU7gHYwwnEzZBkIVMLzIsiIwjty4WCkl5s0tElM0yix1AY8v8wAKItzlRelt0m2uQ6maeyZV8hs+x35OGM2gpIQBEFnExsFaWzBVEzOPZVSrSB8EXIsXc99mI0JMJgGwrIU4dRIitPluxDxop9gEgvsgAEMdDZolwUD3KhHPzzTcXve6ee+4xuroxY8ZEFNqhw6NFJmlHOpLRCITIb7TvMQVp//nPf+T22283AnwKbWgrfdlll/mmBz0TMNFIFl81eU8NXG/GFFGXbBXE2YUR4k2Eh3Goms+Sb2aIgFoCwr3MNURXTzGaVzSXXHNrC5mPqnc2CJwXHtYqDqxcudKMReZH+3v8lLUyP31YtxmkK5zPbOlWGd88GPcEhKw7hSI5CHywSSSST4Ask1F8P0NJsU9w6623mogPxttbtmwxJPf+++83EoFkRXUzZ840DUCILvMedMU7//zzi6VMaNTBBPPmm28aYkma9dprry3mYOFloJFiglSdVGpYvHixIQdsJnLhEEF0btmyZUbDzoSsvrSpgcgmdQYQXsge0ir03xAQNoNejJyh8WfDTgYn2n0i13ASXuRnyC7YVOBWw7gkNU8wAvKs5Dj1TRpNNgjeQIpzUchFsGjevHnmWqUqJwwykLEhZyOzNHDgwHwfjiegK5FPQPTn6quvNo94eOSRR4o9d9NNN6X0ObR25uHnCmfaWOZ70fUTSLkTaWSjlajyP5OAeFN8R5QCuYtbE/+gkw02Lmxg0AhzDom0c978JG/yqm8uD+wqIe92LCKzgCQjv2DToWM0MdhEQLLY7FKomysQ7OFeIOKPXtZrbkheBZk7ghIEk7QFexi6BVYUDCBYpIy1iCs1ECHDKsl2SMwVWLyYkFlAWUhZUBXx09FYKCFxIc3JAoakSkla5kFa2eqeIcpsPpCd0S4evba2GY4/RrH5xOKPtHyuO1lCwiHDHINeI/ewmmyywwqNFCsKBKTjKRgg4qgV5amBNLF1I8g1WDhZQIlWa5o6EpwTIpV0c0N3TYEcY1ujObkDpJjME/OLjRrjaMPGhCIl1cPvA/KFtWvXmvOFJjvXgNgh/8JthY22amTdgQ0gm2xIcc+ePQO/fiopVhQEuKGJVDg76ykSY9GiRUZXjmQinxFHFlC7iLKYEUH2oiY2FyBavmrVKuOzi40YBBhChhwIvbAif8SBzSPRSLt5o0sjki0rrQj6pg4dNhuGfBBiC/TLuDUF/VqkCsgwEoqvv/5ajj32WAkydOQofA8KDynsIBWvUTR3gHzi28q585omHFP5oNpj4R6DJzmLO+MZiUSh6OP5HtQr+Pn7sHm0GzY0+EQjkbQgrUDPGqvzaBC6XyJXIGqeT0JsASFmc4nUxTa4UiQGwRFkFJMnTy5qxx5UKClWFESUmImQm1qRHOiuiXIRkfWShRETM76jpKgp/AsCIP+k5e3iTbEQRJh0Ju4vQY2Y+wEQQORaWF4SKaYtetA2c2ys2Qx4jXxy3+BIwTwXxI1KOmATXqFCBRMtDjKUFCt8DSIU7G7VZ9E9sOjDnq9Tp06eI12QC5p74LDAglvIoHkExXMUcVlSgZ4vF5Z4+QBZCfSeXspOZAJkp9B7Y2lFhB8SxvfE3q2QQSt4mv3w3TPRDj6TYF5jfqNWgsyTIjkgxL169TKZqkK7R1OBkmKFr2FdC5zd+RTxwSKBnVfbtm09KzVp0KCBWWhxxSCqXYgbOZxSkPzYltpeithnc+wh2+FnIcLqWBmzSAmYm8hixeoqWgj1CBTW4ZONjMSLIEjCBhuN/ooVK/J9OL5A165djUSIuSmoUFKs8C1YfCgOIOXuVYLnNTDhYVlXr1498TJYaCGLNPUoFKs2SwatYwGpdwpc/KyxVcQmY2zSkcAwR5GOJqpaSGC+ZSOH3MfLqF27tolisxlTJEfFihWNgwfe8WQTgwglxQrfgrQzaR5tXJAcaB0pCCJK7JfKbAg8pIIuaOhu/Qq+A7rLr776yhQTQvQZszQcUBS25piNHZt2W4BG50E/a1xt1BsnlFw25ygJ6PqKraHCHQ477DDTFZai3yDCH6ujQhGD5OFUYA3bFYmBxRcFbH7b/UMgIRRsgChk8tsYXbp0qYwYMcKkm5GFaDvrYAFtK62O8TsGbEwZD2jm/VaURzdFot789BNs3QTHzX2oSIwDDzzQ2A8i8SqULF0qUFKs8CUo8Fi3bp06TrgA0SkilUgS/LiBQF8MoYRQ+GlBxhKKIh9IPQ4F6C+DTIrx+qX4yXaLCyJITRNlpdiVYjzuTT8AfT8FWEgRkCT4EbTvZh7kpyIxevXqZSQnnK+gQUmxwpcgSkzTCaIwisSAmKEVg5T5FaQ/ud6k9JAgeBmkHgFNHWgmAxFUZ5SwlhpSFeQucNZ2EF0/Mgo/ROPoUofDT61atYwUwWuONW6BBpoNGZtrv0Xpc43atWtLw4YNi5piBQlKihW+A9XEpB9tz3ZFfNANDR0xVdj57FpXUnCdWZDR4kIsvEqGKVAhAgjRYQGmjbUiDKQ7aMP9JuHJBpBT9OvXz1T7o/HnnHh1s4dzA57ZXrRwTAWcZzYkRECRNSkSo1evXiYz5zfZWkmhpFjhOxBdYVFp1apVvg/F84CYDRo0yBOdpkoKFmRLMqnm91LDANLLeA5v3LjRyD38UsyYays6tOH8VIQLSdFvAtLUjB8veRvbCDab0S5duhTEmGb+QIpFYEWRGM2aNTPrBlnZIMH/o1wRKFD9TLczIoaFMElnE0TTiV76OUIcb7GGfGLH5wWrJQgNEWI2akcccYTRjCoUqQBpE3p/vI3R7ubboYJWvxQE8pN5tpDmWjat6ljkLgjRq1cv40e9fv16CQoKZ6QrAgGIEJ13iF4oEndLo5inECczFuhu3boZf1/GAwt3PmC1dpAZ0rL4DjM2FYpUQSc8pBRIFMg6YEOYryYnFKKNHz/ejOVC9H8nSADhY95AL61IXMux//77m/EQFCgpVvgGaO4o+IAQsYgo4vviUlyHDpDitEIECxsNEuyEncsqfiLVRIfp+gQxhhRrwaciE6AQkWwDRWGMccZXLgvxuI+Qp6Hbx6+2kN1ScDAiKq8a9/goW7asmWcpcPaLU0pJoaRY4RtA9CB8kGJFfMyZM8ekXymuK/QJm4UbIpGr4js2ZhTSsaBqEV16ntOFTLQyAZxKbMdJxhnewBTM5gLIN3AH4b4qdJcQZBRsOrBOVMRH165dzc+gNPNQUqzwBZi8iBLTrKNKlSr5PhzPAtJGkw40ikGwAWPhZnEjqobLRjbJA+lWCAqRpT59+phCFD9X4+caRPUhW4WYks8W6HpoW0XnQj+PjzJ62yDIgNhIU6yNu4IXahO8ikqVKplmHqy/QbBnU1Ks8AWwhkEnSxW0IvFET2tZPCaDBvxHSf1my9oKtwvOL4QYPbMiNbCgQvCCsLBmClWrVjXjrXLlysYFIBuuCRTj4gqChpmAg1ctD7MBZE/cyxSTKeKDdZfiZiwVCx1KihW+ALtU7IvoyqaIDTRf6A9Z2AqpWjyVNB+EC2JsG2hkAjaKxNijGUcQomjZAJH8zz//3PxUuAf1E0RvaZ6RaVJM1gNNPsV9mbxn/AIyPUTHeSjig80DtROsw4WO4K2cCt+ByB9OCkxcQSR7bgAZZnHjPAU5zQd5IBrJuSiprRUEGx07GmJL5HT8KfIBxp2TvDEeS1qAx/3BfcL8iqwlqO23icKz8WCDkC/HDz9sHrp06WLqVXKlb88XdIZXeB42tac2bPGxaNEi0xQh6JF0q1tlvJSkWhpijd0b+mzs1khjKxReIMeMbchsSTZ+EGrcUyA4bCSDXqfB+Rg9erQsWLAg34fiWXTo0KFIplbIUFKs8EWBHRZFSkxig0gPk3mjRo1M1CPoYIHv37+/kduw2KUa/bEOEzSKgWCr3ZrCS6CoFKkQfsIU4KWz+YNcY9mI3ZbOq+HzgeOHDS4oioNMQhAK7pQUKzwN2p6id1PNV3zgmctCycZBEYZ1hSCqQUQsFWKMZRgR5969exsdnULhNWAHyPgEbOAognIDNom2oQ/uKXRhVITRtGlTI6NQi7b4YB1m/JBBK1QoKVZ4GuxKiWQwYSlig4hP27ZtC95XNB0Q5aVQDv/VZBpMNmBbtmwxpBgvbI26Zz6CP3jw4MCn6jMFNm44U0CQ3dz7RPemTJliNolBLKpLBu57rCwpZnS7yQgaGjZsaMZbIRfcKSlWeBbWKkgL7BKjdu3aBdu5rqSoVq2aIbhENyAE8dJ+K1asMMS5kCMg+Qb3MJE4vZczB8gw45uNBtkQbCtjgXFP9zaybhRMqYNKbNAIqEGDBtpgJknBHdH0QpWZ6Oyk8CxwUqCQpFOnTvk+FE9i3bp1hshpxXRi0EUNDSaEAL/raPAc3ZrQFGLmr8gO0L4SpQxKu9hcgw0d5zfWxg4XFSKgBBhoCKKIT/roBKo66/ig4J1NVqEW3CkpVngWpGjQvWmjhPhaYqLp6IkViQERoKkJkaBoQkwEjeeprtYOddkDjh5EMvmpyE5qmygnZIUubRYEFpAQQWbIKimSg/PFvFDIBWUlke20bNmyYAvulBQrPIm1a9cWRTYUxUHUE3cE2l4r3MFGfzh3tpiGdD66YyXECr+D8duuXTtDjMl8QIzZgCCxiLUhVCQGkqpsdBAsBHTu3NlkKgvx/CgpVnhWOkG7US2wKw5257QlRS+r7gipg+g60TSIMdIK0qVKiBWFRIzZ6NFoYcyYMUZepTru1IArBwXM8+fPL8hoaEnRaK/956xZs6TQoHeKwnNgEoIUo+/UgofiwJ8UlwRSWIr0/DZpWkA7aDXrVxQiMYawsPlDJ69ylfTA/Mo8G6sOIegoXbq08SxmnS60TYOSYoXngDUWljjYjCliywAGDRpkrHEUqWsFJ06caKJp+Lyiy166dGm+DysQIPPTpk0b81ORPSxZssRkQajHoIHN8OHDZcOGDfk+LN+BWpaaNWua86koDtZn2o079euFAA3DKTwHdp+I+UnRKCJB5KJSpUpqqZQGmMBp3cxih60QBYroLUmTKrIPxmzQ25BnG2RAmD85z0Q68eZm84wrRa9evbRoOUWwedZsZWyQhWA8Md4KqeunRooVngKpGHRKpGZUB1f83LC4Ya+kSB1ENNhQdO/evcixA/LAczt27DAFeIrsARcECnP4qcieNIgMCBF5wByKHSE+xuPHjzebaoV7kNWAFCNFSdb8J4gynTZt2pj1upDOjbIOheeIy88//6zSiRhA24bHq0bb0gMbLaJlsbp/IaHA87kQq6m9FMXExomfisyCDR1SIIBkwglIHRtBIvVE9RSpgU3ciBEjCk4mkAm0bdvWrEmFJDFRUqzwFJi0iWoUUjomU1i0aJFJ9WsKNLXoOmQXiz8iG/Ha4eJyQldAut5pxFjhJ2CNxWaDKHC8oiesB3v27GlkQ4rUwJyBSw3zb6EVlZUUtWrVMvKcQtpsKSlWeAakYCgQYfepFlnFFz40sU2aNMn3ofgKRM8gucmkOIw3mhtQWAPB4HwrFF4HBXQUjkLa8I5NNG8SKYbgEan/4YcfcnqcfgfzLhHReG20g4pSpUqZ9Zp1u1A6qyopVngGpLCJdqh0ojggdRQ2qC9xai4mCxcuNNZ+bs4bEzzEAoKxdevWnByjQpEu2CRTY0CkDt2w2xoMNnzoQNVqLDXfYs4z0WJFJFivt23bVjDnRssqFZ4BKRgmH21FWhw06uChcAc2V3T1YiylEl2HWKC/tKDARp0+MgOKG5H+aFvyzAAvYhx6sF5LpSiZjndYXtLABqma7fSoSAzmEXTFRER1DO8Dkj4erN/NmzcXv0MjxQpPgIlGpROxsXjxYtPSWZEaiPjSvjldsACOHDnSFH4qMkPiaDfMT0XJmvcwJiHC2K6lQ9Do4ojtJXp7dQNxB6RV3bp1U0IcA6zbSNUKYSwpKVZ4AmjcSFmrdCISpKVIdRLZUbjfYEG8SCmXxGOUIhKIA1ZWEBGFIt9A10onxpK214XYQfCo40CGoXAHCu2QZamDSiSwZsPWshA6hCopVngC8+bNK+o3r4jcLEDs1I3DHdC1ffPNNxkp+uC8H3bYYcarFCICIVGkD6Kbn376qUbe0wRBA8YhxXKZcJHA03jAgAEqy0oBbCLwiS8U/WymUK1aNbN2s477HUqKFZ7YfbPDRI+k0ol92LVrlyk+RAOoXZWSY/369TJnzhw59NBDM5bihIBAjPlZCBN+vlFIJv+5zhiNGzfOzI9Yq2VK544Eg2uC/l6dFZKDeQUdN9IqIqOKfWD9prDZ77Z1SooVeQfV0ESPKBhR7MOyZcvMgqXtrt1F0bBSw2WiRYsWGX1vCAhEpCT6ZIWiJKDgk40x45DMRSYB0YbgTZ06VbMhLtCwYUND/AhYKPaB9Zvx4/cGSEqKFXnH/PnzTSSOyUaxDzgnYBGW6UWwUBt0EMVJ5tWaLrgGvD/aYlLYkBSFItugcImNMa4dFCkiecg0uF86depkGnxwHxWK32y2wHmi0Q9BC79HRTOJevXqmXmS9dzPUFKsyDuQTtC6WCUCkWCCodhLkXxRpyMdhUMsWNkE6WaIMcV3hVBprfC2fIpxhnUayKa0jKAE9w+RPtsuWhEfZO+Yc5QUR86NnBO/F9spKVbkPe2NPkulE5HAnk67TiWHJaZsHnLR/ho3ClLYaDwhLBAXhTvgCHLEEUeoJZsLEK2dMGGCIakEDHIBPIuxeNO6juRgrqHWIxV/6CCgWbNmRj6BT7xfoVdUkVdQxUt6UElxJNHDm1iLkhKDKA3EtKT2VOmQB4rvICykmxXugPyEc6c+r4nBfU+nOqzSevTokZPNngUEvHXr1jn7PD+DjTFOFCql2gcixWyq/BwtVlKsyCu4eXALyOXE73WsWLHCED40WorkTU3y0QGR8Qph0c1calkhpADaQjv5/b9p0ybTWRGbynyALJVmqhKDzR1ZTh6KfZk09NZKihWKNADxw8JFiUUkqGqme5K2F44PzPPRPqLtyxdx4HPx52QcQyA0sp8YOBxQnKRWVomBJ3m/fv3y6h9M9BN7Qz+nwbMNdNhsyLXgLhKs52SA/VqwqaRYkTesXLnSpKALoV96poA1HYVc6NUU8UHakqI6NJD5BmluCMSUKVN0cVSkBcYNUXRrZ0XELZ9gTq5UqZK5z3RMxwfzNGvYhg0b8n0onkHz5s3NporNgh+hpFiRN5BiYeKtW7duvg/FMyAt36dPH+O3q4gNFumDDz5Y2rdv7wnHEq4ZHcZ+/PFH0wRBSYQiVcyYMcNTaXikAdxfkD2/kptcgHmIwlH1LN4HspycE79KKJQUK/IGbpomTZpoBW8UDjzwQK0ATwDODdEIL7UEZyHAI5nsBwRHoXALCkUhVTSHyYc+Ph7YmFPXQHMlRXxw3byQsfLS/NysWTPfkuL8h1kUroAO7/nnn5dhw4aZ9Dpk8tJLLzXekokwevRoGTFihNFfbty40RAJLKUuuOACUwnuxBlnnGGiXdE44YQT5IYbbsjo97GdbyhWUuwrsEGb2rt3b90oxAGRWKIQVDl7DRAadHQUSREt1o1NJNDIc91UK78PaC+559u1a+fJwlqixToXJY8WKyIBKaZDIoXQBHn8BCXFPsF9990no0aNktNPP93IDT7//HO56aab5OGHHzYTVzz8+9//NgUbRx11lHF5YBJ+//33jZUVJDt6gWIwn3nmmRHPZUPeYNNNnmlhvG2bCHo+HrQ6xf8WUkN6ns0DERwaaWRxQSfKSNpSF6HYIGJFirljx47iVUBsLLlh45dvbajXmtG0atUq34fhKVCpT8EWxXVehJ2LuPfY6HkpO+MlMHevX79eW8Hvhe1OyzqvpFiRlUYOw4cPl6uuukrOPvts89zgwYPlwgsvlCeffNI84uHOO+80LTydaNGihdx7773y5ZdfynHHHVcsZQaBzjbQqVG9X7VqVckpILuktydOFPnuO5EpUzgYkY0b3f09Wl+K4Lp0ESFK3727CL6eJdS2kglg4Wnbtm2J3qdQQZMMCpFq1KjhyYhaLHcMNrHIPNRdZd81pJAUDbYXtOD5zgpBMNkoeJUQO7FkyRIT9aP5CiReEQkyRKxprK1c06Bjv/32M+Obc+K3jYKGpHwAJBBEEJExWBDhHTJkiNGjrVmzJu7fRhNi0Ldv36KJLl7ziGx7ibKDzJnDApXBL70kcuKJVEWFCe0114QJcdeuIkhD+P2XXyLwC5NkGzXm/yHRQ4eKvPCCyB//KNKunci4cSJXXIGgDG8ukdNPF3ntNewj0jpEK1vRts6xQYaDiuZEWRGvLQqQYWRL6vcqRZHzcePGmZ9BBnMfqWWIsV+AvINNjV91otkG8zZRdeseohCzvvuxADHY23WfgIkICUN0KtamIvH6RRrhFtY+JlZaA1spIsXsfCkeQq7BIxFIGzktaZLdCHQCggRiTp/ViPB774k88wy7CtpEifTsKfK3v4n07i1CCn6//dy9F5HJWBFcPDynThX5+muRDz4QOfdczCtFBg0SufJKkSFDKON29RFsbIjSq94yNtikIbWBbPoFRIm5j9i4sqkNgs0eKXayHmxg0FRTtwCZIr1MlHjt2rVGAoONHdIBiAS/5/wEQYMNEcbmjLGcq/bNmQDRT46XzSn1LDpPRYLoOZFRSLGfrms20aBBA5k4caLxuvZTa3clxT4AhDOWkbt9DlKaCl577TWzCGEQ7wQ3M5E40tMsWuiWH330UfP+SDfi4aOPPpKXiLS6BIsii2dW0oacC4jwE08g9BLhOz7+eDhKXLNmZj+LG71Pn/Dj1lv5YmFyTMSYz2NyvPZakYsuYgeS8K2w9NKmBvGBjtiPVmdsXCHGdmNbKC2O+U6QXDYpECbu6Xnz5hkybJuYsKmmEBjSiyMHkhI2zGzubecrQEtjioB5Hx68Zz6bsmQLECYKRZn32rRpI34D6wNdJMl8qDY8dqEtQSXGuZ8279lC/b3rOxIKP7UOV1LsA7DQxNJx0bzA/t4t0BF/+umnRpscrc38xz/+EfHvY489Vm688UZ566235NRTT41bZIGs4/DDDy/6Nwvf3XffHfcY+D07x4xW7W7eLPLPf4o88ADhKpHzzhP5/e8pn5acgfPJZ/JAs/zIIyI33yxyxx0it9wSll5UqlTszyB7RMxUi1YcjG02haQn/RpJhAAhpfA7IYbUoXtHW4oDDuMWDTwEFpIL6bfElgce5ID/p3YBEs1zyLeIINsiLiLqRJPIIPFAXgGRBhAwW39AZouMmF/vEzYSbAQIPPhxLLMG4RaU8zoQn4Cx2atXr6JxH3RUrVrV3Les90qKFRkFqSp0vtGwkUW3qSwKle6//34jW7jsssuSvp6JG5s2IjlEOOIV4JH2T6XZhNUTZ2RhYPF8/nmR22+ntZjIn/4k8uc/hwvi8gmK8F55JUzU778/fHwURN57r8g551DWXfTSb7/91pw/7exXHEiDIEUU2Pm1wIdxzj0K0ZswYYKxJUtF7pQvQE6RObF5ZgNOxshaLFFdzk9r68gGN9kml/MAoeWn02El0fxhF1Y+l2g00gPuEwqa/AIbOXQ6k/gVNnrPWA56sWQ0OB/5bM3tRTTwoa5YR7UPwI0Wy0Dd6njdEFLIxS233GJSYDhSuJ3QbHQYOUUmALkn4kThRolBAdzvfgfbD/8kOu21Sm4K5x56KFzY93//Fz5OpB0vvyzStKnRynIdg6A3TRVEDSkGhUT6lRA7QaQYcjxp0iSzMYXoew2MRzYhq1evNtFgyCvElGMtaZEj73PkkUem9DdOwszcgfbe1lagU54/f77JIpCq9WLKmnubjRDnrlA6d7I5QiuK/M6L5zzfGyACSFxvP+los4UGDRqYYBxzuV8yPOo+4QNACijQiK7axqrN/j4RWDxovsEu/5///GdKE5mtps2U1yDfgzRiiUggmkVkEjhHECnGWg2S6TVC7AS2XO++KzJqFFV1YdeKZ56RH1evNsTDD5HDXAMdLkSyUApXiJDS9Q6SB6lAR+s1EIlFsoBtWteuXeXoo4/2DHlnYwSxtNFK5jH+n40TlpWcUxqneAVEt8mycYyF5CrD9+G+VCeK4oD4cd1jNcEKIho0aGBkVn5qFa6k2AfAGxIiSUGbUzrx2WefGa2OJVREUaJTFUQqrr/+ekO8aOQRj9wSCeYznCBF9r///c8sRrGs3dIBx4fmKm0TeEj6wIEiN94YLmKbNCksVfALKPwjso1TxRVXyIG/+50cWraspiLjRCypdC+EKLEF9yFkE2JBBDGVeoBMg4I4JAlYPlpbRyJcRHO53yFymdRBM8dQ05CprBPnkAJMjhcvVIIGRLcB5zV6Pssl+I40SCI6TrGh3/XkTvBdCMQwdoJurxfr/mYTmcgmNUg46KCDjMTKTxIKXYl9AIhv//795ZlnnjG7UIo1vvjiC7MbvZlCrr245557TOpmzJgxRc9RKEe0l8I6KsB5OAesbRM9duxYefnll01KjMWQxYUFjGrjyy+/PGNaKYgOqc609MSQSZqNECkePlykf3/xJUirPfOM7DnuONn/d7+T9ti3DRsWjiYrDJAZUMRlHQoKCZAK5BPYk+XD2goyzH2I9ADyyKbaHkc2i4SIGJFGzbSLCOeTOYWHfW+yaJxfChzRP+e6SyRRVGQeXOdC3PByTrFnw3GE7IdiH7ifyLgg9ymkDX06YJ0nWuynSHHh3a0FiltvvdXcbEOHDjWV2qSUKZpL1vIWLTF4/fXXi/2Ov7WkmPdj8EKEId5M5Cwof//73w0hzwSI3BBdSOv9PvtMhPbTEMePP6Y/qvgdpU84QUpNmCBlsW877LCwnRv2bgpDYgpZZw2Rsyl1oigUqdmitWyDBYrNMUVf3OOF1IrabrYpxGMMQY6RV2AhlksJA3Mrm49CJUWcWwoebftnP7ppZAtkQTknbMoKcVOfKpjHsXf1yyZBSbFPQCTn6quvNo94eAQLsCg4o8aJwCISbcmWaRDZ5sZI2Z/42WfDzTCIEv/vf+FIa4GgXMuWIuPHi5x6algW8uqrImecIUEGhRmM95acmwIHxAnSRtQWO6dsEVTs0NjsskBx/0HCC9laC70xkgo2+xBj/GMHDBiQ1Ug4kh+KKPlczm0hSSZigbFUyBvXkuiKDzvssILz2U4XzDfMc9Q2kWHwOlRTrMgZVqdTVEYjjssvD5NiOtQVECFGy2lavTJ5fvFFmAxj1/b22xJUoFEkmxCUjlncDyygECis+TLdXp1NKJsMNseQb+uJXciE2Ami73jrUpcBIWZxpsNgLIvLkgBZCNePWg/rHx8EMJ6Q51kttyIMdMWFKJspyblg/fcDlBQrcgYixVTeu06hEDW94oqwndljj7lumewHUIjDo4j8sZD+978iZ50lcvbZIp98IkEEGnZIRZAiUIwBosSkoCFWEKxMgCJbNl6QFgroaJqRzzQ3UfBsRsOTfTZAesama9SoUTFtLtMBRJjrhjysZ8+evrGeyhQpJhKPY4kickxMnjzZZGeCDhsI84sjh25lFDkDO0XXur5PPxW58EKRiy8WefRRxILZPTgq1bG4W7yYsA+50PBnssCRcsX2joYBGSrYoTqZ6GBEASOkn3bZv/0mcvrptB8U6d1bggJIBZHzfBRG5RsQKQjVnDlzMpZ2t04vEFEv+Ml6obkBEXKKiSlIxh2CbnzojUtyzrGCI/JMV08vnOd8aP8pLKQg3A+a0VyA88Cmi81YpuxM/YxatWr5pthOSbEiJyBtCRHEUSAp5s8PywiOPVbk6aezQ4i5Qb/9NtyOGZ/jKVPI3Sf+G1LOXbqELeC6dxfp2ZOG92l9PEUYpJWKkT9Sbq+9JnL00WGdMccVkGINfHuxAUxZc14ggFB1YXztbQLAwpoqySD7gKOEbbYB2fNKERQRcDIBENF8RlPZKCBZ4VjYhFAYlbZFpIgh1VynQipYTAUUbOJC4RfNaC7APceYYp4PQm1EMtSsWdPo+v1QbBescIwir12QIDxJI8VbtoicfHK4ExzyiUzqsrBy+/zzMOEkPY9UgYYaNWuK3HGHyMiRYR/kn38m/4XZKQ78dD8R+eqrcEc6dv2Q1tNOE6FD1Uknhf8uBZspJgaaDMTVVkMY3norLKngc/LoZZtLQORoJR60aFuslDTRRyKZ3DNuASn5+uuvi5oqEJn1CiEGkHXccPLpzWzBeaEIb+DAgUWEOJVmKmQ1OM9s9nPpHOJFsMFhLvOTF20uwDmhwDVTcig/o1atWuZeYZPgdWikWJETWD0RO8a4gFheckk4ijthQjgymwlQBIIsARkGhIFoHPrdY46BiSX+W4jpAQeEI8K4Q1hQNIA1HO85YIAIbav/8IdwhDsJqWOnTCV8wh0zC/U774j07Svypz+FW0MXMNgoENUMUpFSIsKGpRc6VRp82EK8RMC9gmgdHd9wP1C4g41Yk+pmE4JFHU48iTYTLO62IyHzWZAJsQVNdii2U3u2fbDtyRkntdPMKBYKDjnkEJMVhQd43aZOI8WKnOmJsahJmDZ94YVwhPTFF+lYUvIPhWTjXkFEF2KJyfy4cWHJxPnnJyfEiUAkG1eM6dPDjURoRcy/Sf3H8ISOBtHQpGmkHj3CpPvJJ0Xef18KGZA6opyKMGizjGsCkSYIGEQsHubOnWsIMWlaOtEFTY+dqSwFmliiv6R543XD4zpgu0YRI9dHCXEYRMvRFishjiygpbEJ5yboKFeunNkk+MGBQmdPRU7ADjGhdIKb5YYbwsV1SAZK/oEixx8fdq/A6mzJEpE33gjrgDM5cfNeRIppvEGjlCOPDEeLcZDYtCnmn7Doui46uOyy8PfAgaNAK5ltu+GS6DoLEWwi6YhGBTvkOJGmEy0yUU5FyaKdNDOi9oEofbRtG1HQqVOnmqgyr8t30aDXgJ0gndxSkfwUOoiKBsmNJBHIqvjBgUJJsSLrYDFhh5hQOoH0gNT5v/9d8g8kqoqcgYgwEgeafxAtzjaIFhMlRnOM7zDHgIOEA0SgsMhy3eoW0o10Aq01muYCBGMjraYuAQDRlUGDBhmCzJix48Y2ioCAUODlh/Qs0hiusZclMsxR1jYulmSF6B8bEN3AxQabfeY3hRTdpzNnzsy4L7YfUatWLbPhTJT18gKUFCuyDiJdFBvEjRR/9FFYP0tHvpJEX4hQIGE45ZSwldnMmeEueLkGUeIZM0SoOj7qKJEbbwwX+QnB402G2KSUUoPQ020QJ44ClBhQoAP5C2r1fjLYJgC0ZqYRBwstkUzuKz8ttrg+oHfOZle5TAALLStDIUKPEwiuHkgDcM9JuLkPMLiubBa04G4fmOtxOUmliLNQUbNmTTNfUXTvZSgpVuS3yA4iC2kcPLhk7Y1xi8BNAj0ykWG635VEM1xSQGSHDRN54IHwA7K+e7fRIhIpS1mLSEc/bOCQmKTgdOF1EOnE6F6jxMlBun7RokXy6quvmmgLEU2vE8zoLAnFWPH0ul4EcoDXXntNvvrqq4x3GyxEcB8nk/sECdSOIJ9g3g86au5d/70uoVBSrMhJerxy5cqxieD//hf2Jb733vS1vkTLINRIJbBYu/TS7Df7cAMKnv7857DTBWT94otlw7p16RVe8F733BP2VKaxSQFFQWnB64f0f75BpoVNBPcT0Uy/WdfRTY5Ocvz0C2j2wSJOpksLGN3ZkEEC/dKoIVebWSXFYjbwzFteL7bTu1yRdaAjihklhsz+/e9hX2KcIdIBUVOisBBFtMQnnCCew+9+F/ZcfuUV6fzmm+kXRGEJh0XbX/9aJMfwM4h2kpYGWrWeHJAyut6dcsopZmFR7WZ2gRMF5O6kk04y7hRYtvlJrpJPO0E8oBX7SDGRcy1AlCJdsZehpFiRdbBLtp6NEcA7GFcIiHG6gCDyPjzogOdVoDN++GGp+NhjciBR43QAcbzrLpFp08JuFz4HRu6jR482mk1FYl0ijgc2PY2uFTsw1y3TFSkDAgMhxrOY841XNJu4X5N1vVSYDYTWB0SeD8aR6+LqAkY1H0TNlRQrsgoWEorLikkGmCDw4D3xxLBLQzoYMyYsKbjvPpFzzxWvY/Vpp8kmmpPcdJPI99+n9yZEivv0CZ87n4OIAbIav8kA8uHhTJQSPa4FBU1E5ShaWcLGUpExQF6Q9fTt21eaN29unkP6hcyH9K8iORiT+GcrwrpisoNeb2+cK1L8yy+/eDpqrqRYkVWQNqKwppinJx3rcGiggCwd0DoTD198hyGZPgAp7znnnSfSokX42NMtOOKcjRoV1mL7PFKs1lbJNw6QYhpzxNLkQ4pxpfBLxb/XdbkrVqyQb775xiza0SSGTQhzGV0Gva6LzDfQYEOMNTq6bx30eoFZLnDwwQebMeFlNw5vz1AK38MO/mKRYjrNNWgQbnaRDogQL14s8txz4SI0n0yMVZGR4I4xaVL60V4s5zifvI9Pwblg4aQwRxEbpOppFoEev2nTpjFfA1lu1KiRcUmA0Hm9S9+QIUPMTy8Cojtt2jRTXBevrTbPE0Xmdc7IvSIS3Nfor8kSKsTo//ErDjoO3ssDlBQrAgsGPwtJxEJIcdWbb4ajpekQWiLM+Pbedltm2kE7o8/jx4f9gP/1r3AjEUtgsXwrAYg8UXVvzgPR7WuvDR9/OqlvOiRdcEFYR13C48oXIMRIJ7QFauJCL+z7KFxKVIjYpk0b09UOoqbRqPQj8pMnTzYuKO3bt094vq3XMu23vZwGzieQmTB2yQYpwi4mWPphPxlkVK5c2YwLJcWKwAJRPd24ItKmn38uQnEVrgypgnQcZBqtXyY6vDFJ0YGOZh+kpyGstFQmEk1RG1KFbt3Cv8P9Af/jNBZC67JQtDng/ZGUXHVVesd9/vnkzsO6ap9Gkvr37+/5dHo+ATnDbSKZFhECB1Fr2LChWXS8CjaFY8aM8ZwlGxs0ugMyJpNtQACRYto8b9++3TRTURQH5xBplNedBnIFO+8H3b+5VKlSJhDi5WI7XZEUWQU7wmLRwM8+Y8WnlD71N0RLix754YfpuZr+gUGukV40bBgu0qMJAu9Ja2gI+08/MYORwxb59ttw5BgCfeqpIk2ahCPdKYD2sKTAi0gLJJtINO2gp09P/fg7dBCpUyd8Ln0GdJkQCkX8e4bFkw2D2+Ycttsa44voJQ0UvHjdbY2Bl4CvbteuXU37ZrebNNwVINCQHdXNxkaTJk3MmFSExwsZUxscCTKqVaumkWJFcFGMFOOvS6Q4Xfs05AwUqhG1TRdEL3C9IOLM+6D1+vJLkauvFunaVaR8+UipwmGHifzhD+EWy5Mnh19D9zzItEvNHJNiq1atIhdd/JnR1KajDSaaxTn0YSMPUvzDhg0LfCoxFiC0U6ZMkTlz5pRIdjFu3DhPLzxeABuHH374wfw/UeJUsxZY4rHRVY/t+JKBYgXWAQVjpG7duupAIWFdsZfnJiXFiqyBCAqFFhETI5FYPFeHDEn9DZEL0LEOMpvuQoRjA6QW7fCHH5qGGtKmjfu/p8nIO++EO/FBSHv0oGTdVaFFMY9TJsiLLw4fQzpevZxDvs/CheInkFIlwoa2TBGJefPmmc1Cu3RtCgVlUXMjWcIlwYsRYy+AiB02d9yX2EaWBLiD4ACiKA7OL2NaEZZDaTt7MaSYjJFXG+EoKVZkDWgHSZVGRIpHjyZsGo6+poqXXw7/pMgsHdB6tH//sHSBBhjpdr+DkJ9zTjhqTLST99zbXCEWWHRxEYhZdEJLamQab7+d+nEMGBAuVOSc+mijxHlQ14nigMAuXrzYGP2XpPkBaVo0r1i4Qfw0ZVt8Xvr222+NfyxNUEqqa2dzh/2Yl3WS+QKBgEWLFpV441EIYO5j7AX9XFTbGyTzqjOJkmJF1mCLCiJI8dSpIh07Uq2S2puh28PGDTuyWN3xkgHyevzxYR3yiBEitWtLiYG2mPfCmum00+K2XrYTYUwrKtqhYkvHd0sVkHsKDjmnPgETIREC9ScuDiQTpJwz0SKXYjAIH8QPL2MvgGNBt5vPZi10T4QQo/GnS10m0tkNGjQwkXmK7oJOeKLB5pfAiG4YwtmJkSNHBj57c7DHbdmUFCuySoqL2bFNmSLSqVPqb0YxGmk45Abp4J//FJk1K+weUbOmZAwQGIrucIGIQ2xtpA7CExN8p3HjRJYvT/3zOZecU58AUgIp0s5gxdG5c2dDGjOlUYXw9e7du4hk57vAjePB8iyfukqiurTdxdUjU/Id6/7B2CbSr9gH5jwKGdWaLdwVkbESdH/r/fff39x7Xt0oKSlWZA2QwQg7NqyYFiwI63JTBVIFyAKWaakC3S32ajfeGI5SZxr9+oV1znTWW7UqZgqRyBTRu5jADg6kQ245l9hCeayiPx4oNhkwYIAWJzlAdJHoOWOkJLKJWLD3Ho09Ro0aZbxS8wUcRyhsy4fzCLZr3Ifcg7hGcK4zTXjQi0KMFcWjxWrNJkVuMsVqSwKGUqVKedqBQkmxImvg5o+IjhKpRQaBnViqQCKAVCAdH9b//CfsCXz77ZI1EImG6D3xRLFfsStOqKHFWg1JSDoyCM4lC7EPIlRo6iCASogjgR51xIgRWW0EYXV8SAfyZYcHMZ01a5b5mUtQuIi2GlePbILiyJIUSBYq8M9GJ6/WdeEoadBJMYAXeDVirqRYkTUQNYloJrByZfhnOhW4EMZ0ZBdEp3GKoKDNpedrWkAOcN55Ii+8UKy5B214Sa/GBSSR75YOKbbn0p5bD4PIwOeff66LggNIGhYuXGhaOcfNJGQARKiQDPB5EOOg2OERgYcQ8307pTN/pAA2exC/lStXerayPl8EqE6dOroZ3tvRTceGmPOgpFgRSFJMWrEItKBl4U+1tS/FK0gE0pFdoCGGGF9yiWQdSChWrw435HDAVWSO75YOKbb6aB+097WFl/kstPIa0KCySGKjlm1w3iHGEEQittlGaMcO2bVxo+xcs1Z2rl4tO1etCv977Trzc0+WiTmRd2zpmIcoqstFtz/OLQV31v9YIUXyHdUVh1uy9+rVS4KOKlWqeK6zpUX2QhOKwKNYpBjiBolL1QIJH15uoHQiPWPHitBVqUED93+D7pmI75Il4Y53FMI1a5b879Ar42pB0dxxxxUtkjSqoGMWZv9xwXe7/376YoelHm6BPIUIuE9IMVEjjRjtI21EidGiuu1cV1JwP0KMKX7KJEJ79sjun3+WPZs3y+6ff5E9m3+RPdsiN4PbtmyRnctXyLY5c2Tr3nmhdMUKUrpKVSlTtYqUrsrPqlKqTJmMHBORKDTUfN+4Ra4ZBlpl5AKQYjJE6sUdxrJly8y5CLrrjM59++YhMoZelNQoKVZkddEvRorT8ae1elk3xLSksosXXwxLLZi8uGH5iV74+edFLrww+d9HySCsVCBpAZWNFPJdUyHFHB8bDSLUPiDFxVp+BxhkEHDhaJbOuC4BbPaGTSuNJ9DB4hKTDvZs3y47kQusXCWhJGnhsmXKSI2DDzI/i/5+23bZs22d7Nrr812qXFkph0NFnTpSOk3ibnXrFPlS1Jnud0sXdLkjAwAR5P8VYhyI6GQZdKCnp9skcrogd/urXLmyuU/zVd+QCCqfUGQVEaSYaG8sr95ksIU5qabdIbVYubl1nCBCDCFGroGbg/Mn8gs3neP4LKQeUaQ4qWTARgrTKUIiCuZxnS4TIOcipldzQMFGibR+pqO2bsGCRMexiRMnpuyvS1R466xZ8iv65CVLkxJisH+lStK1ZSvzMx5CO3fJjqXLzPtunTFTdqfo6cr3mDx5skznvt/byCTXICKK9dzSpUs9GQnLB7jv2YQFXU/L2OA8eFU6kGte4MX6EiXFityRYibEdIqJLFGsWFEGvzNYbvvmNnd/h2aRnajbZh9IJuKlt0qVkic+vEna/TdJdTmf5eggxk0P6UlaRGWJUYqkeOWWldLuT7vlg4NWet6OaPDgwabgRhFO7aOxzCdpIpLavXt34xcKkXRDjPds3Sq/TZ0qv02eIrvWrBXZ4/74ef8dO3e6I+AhMdHj36ZMld+mTJE9LqzOOJe2c2RCqVIOgDc0GQAlxWHYzXDQuysyDxIg8SIZzAcv2JpHi8h4UPmEIquIKLRLskDM3zRfnvr+KZm5fqZs2LpBDqxwoDQ+sLEcsbOKnMsLUtUi28XXrY4LDXG8Y+R5olbJ+DXH6Fj0bbOKN+a+IRXLVpSTmp4U/+9Aun7DKZCTfCGb7gp+A61vIaOk9/OJ6tWrm5bQRIspEEvk0ECx3PYFCyS0K70xuvm332Tc9OnSq317OSCForfdP/0sv02cKBWaNjWyiliAfHL8q1evNvr9fGtXIYGaFYkkQXiU6xygtmxOUuxFX28doYqsgdRlhEk+E2Ic0jdt7TS5eOjFUmv/WnJqs1OleqXq8uNvP8r0ddPlf3smh0nx9u3y8ckfuy9W4LN5rdtUFUV1CSLFxnZNwtrHuMBmxpEehmSgrf73p/82JD8uKbbaqnQLrvKQJk4Fc+fONeehLUWPAQcpZGQLRBK9UHgDgaSTXiIXiW3z5smudflrFx3avUe2zZsvu9avlwqtWknpqAI2bNCWL19uugJib+cV/SjjvlWrVhlvFuI3MM6zbYnnFxAk8WrjilyBzRHFxUqKFYECgz5i0UciEOcmeGb6M1KlfBV5/bjXpWr5yErxDZ++LSJjjLSgfCqFWkRfKWBzaz+FywRFdfEixZ06iyxfkPg9+KyWLSOechUdcUhE0kI5b9/K69aty4kllh8AgUNCUK9ePfEKnESSaKuVH+zatEm2zZptiLEXsGvDRtk94Tup2Ka1lHXMBchyIBteKuQkVc61JlvWpEkTCTpw4kE2FOQCMyutaZCKG1KBonLlyp6UT6imWJE1FCsuw3kiTrvP5ZuXS5MDmxQjxKBazcZ7X7S8mKb4g4UfGJ3vlDVT5L4J90nfN/pKr9d6yd+//bvs3L1TfunWXm49YKz0er2XeTw46cEInd/EHyeav+encbfAZYLF7JCK0u6ltvJB34PD5JrnYyy47y94Xy4Zeon0e7OfdH6ls5zYZbq8edQ+h42xY8fKoDcHycKfFsqkNZPMZ/G46IuLil7zy45f5P45T8igB1pI57lXyLHvHSvPz3he9oQitZe8ju/e87We5jvy/5t37DVAr+rdVC3nGy2hppP3ebbS4TBfBXaJQARr0qRJMnv2bOMlvG36dM8QYguK+rZOn26ixgsWLDAbLjbfXiLEtqiKzQXXWxHebNE4hgYyQZdP5Moi0A+2bF6Dt8NLisIixUSjsOWxVmcO1K5cW75f970s2LRAmh0UZVHVpk1YHoDVWRxN733f3SfVKlWTqztebSQX78x/x0Sev++3QWpO3SjXtf67fL1+orw460VpelBTOaHJCbHfCNu13r1FXn5UREaIHHOMyPN/w2dJZFrxFs5vzXvLkPkj6h0hZTb/KqOn3y93t10ge+a+Lqc1Oc2QjCtbXClPLXhK9iu3n1zW7jLzdxwr2LprqyHIa7cskdMnb5Wat99pzsPDUx6W9VvXy83dby4iln8Y8QeZunaqnN78dGl8QGMZsWyE3DbmlvCBeJhwUmlNZFRJ8b6orFcXRYglEpfvv/1Wtu3aJc3qeieaHYE9IZk5dKgsCYWkXc+eUqNGDfHqtSZaTEQsV17UXgX3P/MY0WKsCIMKiCCt3ZFPBdnHunLlyp5s6KKkWJE7UkxKFvkEGl9nAZ6IXNDmArn6q6vl9I9Pl7bV20rnQzvLYTUPk261ukk5ImqtW4dJ8ZGxP6taxWry5MAnTcTorJZnybLNy+SlmS/J6Q2Pkb9eMUqk4w457ZKHZfC7g010Ny4pBhDgm24SeXeEyGmnhf8dBy8e/aIpoDP4xz/knMd+lCvfPUdenvWyHF/3ePN0/3r95X9L/2c0xcc3CT9nweuIkr89uo40WFVVpMUZckaLM6RGpRry0qyXzHmpuX9NGbl8pExeM1n+3OXPclHbcJT5zBZnysUfGbW1yIEHeL6TnVeJYK7hde/a+tWqyS+hkMxbtlxKlyotTTLkGFJ1//3lyB49pEyqBbMxsGT1apm/eIk0rV9PGngsQuwEZJ05icU/6ClzZCScC+aDIJNiagpo7kLhYZBJcZUqVVQ+oQgWihWXWN3iyuL2Yb1q95JXj33VRFxxoXhx5otyxVdXyKC3B8nIZSOLNcWIxsnNTo7QL7er3k5CEpJTOp4fjvY+/bSUKVVa2lRrIyu2ZC6dWUSI9+yRzS8/K5vOPUW61utpPmPDlg3h1yRIkw9bOsxsAKpOniWburaRTds2mcdhtQ+T3aHdRnIBvl75tZQtVdYQYYsypcvIOZUOD//Dw1FYNIRYf5UrV06CDgrsvGxLhfXZ1u+nS+NataVpvbry85YtGbMV4/6kcUdJiwtXrlsncxYvlka1a5tI9raZM2X3Fu+lYQFjngIzr0ayc114TaAk6B69dj3wYuOKXIKxQDGq16CRYkXWUGwXbAvQYhSjASLED/V/yGiB522aJ8OXDZdXZr8ifx79Z3mnywnS5K23RKRPzM/CtcIJpBPg0P0PFfnDH0QGDxZ54w2pXK+y/LI9c6QEOcPj0x6X6asmy9abiYxPF5kSbhyw8ddwhXGiyvNlvywzm4C+N/K3o0Xe7Bvx+41bw++xestqqb5fdSPBcKLhss0inOZD0ugUmCOQNg566hhALmkqQftfL0bNOb5ts2cXNeJoVq++eQ4Su3PXLilXQjutX7dulVmLF0ubRo0SNvBIhgMrVzaEneMzx71zl2ybPUv269bNE24e0VBv7kgJRT4aqnhxXfQiIcz1efBiMxclxYqsoVhkkEgxjylTRE49Nf7flSlnCDKPBlUbyF/H/lWGNdgmVzGJ7Ih9E5UpVSb+80cdJXL66SLXXSfy+vkmgpwMbhoMLP9luVw69FJptF9dueGNH6Vmp75S7vd/NFFdyHyVqlVMlCiR+wTFdD0rtJCL7vpC5Nlnw7ZwDjSsGvnvYpgzR6QDM4x3o7C0u2UC9IpVVr6wadMmswhQZOdF7FyxQnb/srdwcy8gmZDZcTNmGDJbuwQRz127d8uGn34yP9PBhp9/Nv7GEGpLiC32bPlVdi5dKuWj7h8vgLlk3rx55rp7rRgw10hk/RcU4ErCfBj0SHH58uVT7qSZCygpVmQNMdPlnTsnlEFEA7kDWFetYtj9Id1q1UceEWnVSuSbb0Qckk7rdoGzgxOrfl2V9C1HrRglO/bskEef2yC1ZpQWefMZI2MwThZ7I6R1aiSOEtWrUk9+W7ZSev5aXaTHGXH9hmtVriUTVk+Q33b+FhEtXvLj7DAp9jAoKkFDGHRSjK6UhcCLBYd7tm2THYsXx/zdfhUryqEHHyzfL1xoFvSaebDUWrdpk0yeN0+a1KldjBBbbF+yRMoecoiUTrUdfI6s2SAAQSfFijAaNmzoyWxRLuFVPbVqihW5JcVWGxylU/xu9XcxtYtEXUHDg5qInH9+uEhvdxq7SwjZa6+F9czbtovs2lXkekE0mSI2J96c92bStyy99zhC078XefttQ4ixSMMmDmAVtWavBd1+ZffbZ5/mwOBa/eT7A7bI2GuHFCPEEPVde8LH2adOH9kV2hVxXLt3bJfXGoeL2LwMIiJBb14AfvrpJ0OKvJji3z5vXtxOdRxvuyZNDBmehgXapk05PTYixBDiGgceKE3q1I3/wj0h2TZ3nngRXHeuf9DBBnnYsGESdLRo0cKzGaOgk2KNFCuyhpiygZ49Re65R2T+fGaGCEs17MkG1h8ojQ5oJDv37DRd7oYuGSp1KteRk5qdJHJZV5HPPxNZviy9A6Lgbn1fkd+miQwZIvLii1Kldm05qsFR8vqc16WUlDKR29ErRsvGbUk6Di1eLL3+7ykpd/Ieufb+w+T0g5fKbzPmyLsL3pWDKx4s67auk5UrVsrOiuF0eatqrYx929PfPy31q9Y3r+lRq4dcOKWMjFy7Va5tNFZOHPc3aV2ttTkP6Iy/XPqlDD11qBxU8SBTgNjpkE7y0JSHZOWWlcYGbvj0d2WLx7kmGx1IsRc9eXONgw46qLgjiwewc80a0xQjESDGHZo2lanz58uMRYvkiM6dTQQ029j4yy8yae4cObhqVenUvHnSz9z900+yc9UqKVe7tngJZAd+/PHHIo12kNcE5gOi5rkYP14Fndzo8BnkaHF5JcWKoCHmoO/fP9y17dNPI0jx9V2vl2FLhpnIMB7DkGKK53BbuLz95WGZA7ZsIyqECXWamHfAdtm5p5zI9Oki7doZWcUtJ91korBvz39bypUuJ4MbDpbru1wvJ390cuw3eeYZkeuvl0bVqsmD190sj277Sh6Y9IBpTY2d2kEVDpLbx90uX274UqpUqCLdpJtc2eFKWf3rauOT/OvOX6XroV2lR83uUunpF+SlJq3l2eMHmu//0aKPpHK5ykZLfU3Ha6Ry+XAXOKyxHh3wqNz/3f3y6Q+fGgJ/xIYD5IZ3fpXT/1zJ012sIAIaKQ5Hh7yIHUuWunodJAZiunX79rQITaUKFaR148bmp1v88uuvprCuS4sWrj9zx9KlniTFNK3AozbInR3tPECRmRc3iLnCwoULTeagb9/IwuogoYJH1wQlxYrcyieYCCHGn30m8uc/Fz3du05v80iGoQfcKPL780XOX2j8g09qepJ5RIMmHjyiMajBIONs8dR7N8qVD34rct55clDDhvLgNdeInPpmuNBtbyRnxgUzwn+ErGPhQrn6k41y9ZMbRVZdEW7y8fDDckTVqnKEXFXsc9b8tsa4UpxW6zTzbwjz4wMfj3zRxIki338v+917r1zX+Vi5rvN1Cb/7ARUOkHv73BspRWk/SGZc8Ip4GbQzDjIRAPhxEhnCm9NLILK6JwWdPsSUQjcIHhrjxnXqGNLqBuXLlZMGLnXl1u2iYa1a5m9Sia7u2brNdONztoH2Ailu3ry5u5bvASBCRIuDTIoZB0Hv7Ffeo5Hi4OYvFFlHXF/aY48VGTNGZHNxjW1S0EwDLdbN4U5vqYKILRHYx+e/KE/9ZWCYmPbpI3LrrTSlx20/7FZx1lkiZ54pMmhQuMCvefOw7APZxYwZRnohcVJfT33/lCHEx1Y9Vk6ve3rsA6Hq9sYbw41BsItLFWijp00Ln0uPL4IdO3YMPCnGgWPcuHHiNSA1SAeo/7fv2CETZ8820VxXn7Vrl/EY5mcibNm6VcZMmyqr1q0z/05HbrBzZXrfK5tzIZmCoMuI1KM3DGzp2CQHGeWVFCuChrhRkeOPp62PyLvvpv6m+Js++qjIe++FHyUhxtMel6fKTRJ5+WWR1atFPvlE5NpraU5PlZzIhg3hphjXXy/yxRfh1yCdaNs27ntbQsz7n9P4nPiasRdeEBk9WuSpp+I6TiTEm28yq6RHqHMIFr+gm/UDGnZ4zXUCP+Jde4lnqqAJR9dWrWS/ihVk4pzZhsgmw2/btsn0BQvMz3jA/u27WbOkfNlyUr0EXc92bVgve3bsEC+B9sboioMMNgdIBqpXry5BhkaKxbOkONi5HEV+IsW0Oz3yyLAvLzKEdKLFJ5wQJrADBoiksXhCjAEEtujfRIF5pAknIbbvHxOQ6xtuELnoIpGBA1P/IOQckPNTTglHsT2M5cuXG/3c0UcfLUEGhMhr1eYU2IXScXLZC+QN3Vq1lgmzZhki27tDByORSBdolb+bPVvKlCkt3Vq3LtF74USxa/VqKe+h1srYsnE/BNmakKi/1zaH+Vobg97EpKxHpUQaKVZkDQlv+ssvFyGdPHNm6m9MOvXxx8P2bGnKKIpFjL9/SkqCWITYVlkXw+9/j65A5N//Tu/Dvv5aZN688Dn0ONR5wrvnYddeu8CSAOIKgUVbXCISKyJzl4YL/rq3biMVMxBFgvR7CVx/xkGm2mb7FYsWLZKle691UFG/fn05ksBQgFGqVKn4gbM8QkmxIj8g0ot+l2hxOqhbV+Qf/whHTIcPzysxjkWISY3hx7maqLAT77wTlo3QTCTdKC/fGS3yEUeI10GVuVerjHMFNkakCr3U6hpitjsdTX8MQGApiANrNm40WuN00LZxY+nRpk1K7hSJQAFhyEMpakgx592LrW1ziQ0bNhT5tyuCjXIeJMXejF/nCTdS+JTGbuef//xnVo6noEEk6NJLw/rgv/5VJB2N2ZVXhnXFyCnoVNcm3P0uI1KKEkombBFFRIpowgSRCy4IH+8ZZ6R1rEKE5a23RO69t8glw8vwYoQ018CxYWA6MpkswjhO7MlsxJKN4KwffjCyCshtdOSYzNGBVapEZJAousP3uEX9+sbVgr/NGEK0f94iZTySrnfakVk9JRZtU6dONdaFEASKUqMdStavXy9z5swxcwrrzSGHHCKtWrUy/4/f7YgRIyL+pmvXrrI/dREeBecBjb0Tbs4DZHr8+PERRbu9e/cuGk8UsyLVYuOBZrldu3ae9UKm5fuUKVOkV69eRZtlN+cA+c0PP/xQ9G/GEo1hunXr5suxUC5qjpg5c6bR3ePW069fv7g1OYmudUnHgZJiB7777ruU/ybIRuwlxp/+FI6Y/utfIvffn/rfM9CJuuL1iGZ17FjyUjkjxok0xJYUFxEA5A7olTt2DBf2pTtu7rorrKFmQ+ADcH94VTsWZOzJUJTYCcZ69zZtZPzMmab4DhmEk+RWrlRJeuINvhe7du+WSXPmmCK93bFkRhnA7s3eIcWQHxq4ODF9+nRp0KCBsS0kqzRt2jTpgxtOFHHo0qWLsTAj6/Dtt9/KihUrzN8A7i8IhF/AOImWlbk5DwBCHOu7QgjnzZtnivgg3azlkCPaKXsVHDNZA0uK3ZwDfmevOxg1apTUJWu6F34bC6Wi1sFatWpJ06ZN5RuCXHGQ6FpnYhzoauXAm1T0exTsHp9//nmTkqdop0mTJnLppZeaHWIy0G74sccek4kTJ5rJqFOnTvL73/9eascwuP/kk0/kjTfeMLu1GjVqyGmnnSannnpqdr4U8onrrhN56KGwZ3E6hUgseJ9/LnL44WE5wYgRYa/hLBPjZEV1trLYkOLZs8MFdXy/jz8OO2ikg4ULRV56SYTMhE8sznrSwTDg4F6aMWOG9O/f3zMbhExJJ6IB8e3eOlx8N3nuXONQgVNFsc/fvdv8fvNvvxkiXTVL0aw9W7LzPdMBGRMim84sCg0cDjvssCJCwDghYuiM7jkL04h4ET1j8fcrIEJOXbXb85AIkEgKWW00HhK0YMECz5JiGyyx60Q654BoM3/ntQLekpDiatWqlehaZ2IceGOG9gi8XBV83333mV3h6aefbnaGn3/+udx0003y8MMPS/v27eP+HZPnddddZ26u8847zyzKb731liHFL7zwQsSE++GHH8oDDzxgdppnnnmm2bny/qRozj333Ox8MezOHnuMLxgmx+kAcj9qVNiJgl3ysGER3fIyTYxdu0xwg+FpjFyCsfXVVyVzi7jzTpFDDhG5qnizEIV3QSqQTa1XCDFAVpAtQHApvpu7ZIlZ9C0p/nnLFhk3fbr0at9eFq5YIT9t2WzcK9w2//BKRLwkgAwSmIAUWb29kxgQNWS8xCNCkCAW/u7du0dkpb7++mvz3qxhzZo183QGk2CLU1+fynlgPRszZox5LRFTS3Z4rfM97d97FdHXJ52xQAQULuCUBvhtLJRK49gSXetMjAPvzNIewOWXX27C7ocffrg0atRIvILZs2fL8OHD5aqrrpKzzz7bPDd48GC58MIL5cknnzSPePjggw9Mqu3pp582OjTQo0cP87dExvnOdrJ97rnnTGTvLlL0xk74eDOBv/zyy3LCCSdkpxsXJBEHiTvuCFuUdeiQ3vtgvURDEJptdO4s8uCDYXeGNG66RMTYLSGust9+cuzs2VL69tvD7aSHDmUbLGmD7/bKK2FfYw8VbCUD2QlSxqTEggoWKi8RYrDnt+wSBojuYXv9vCm8i9YK1z/0UFOcd3A8H+8MYY/HIqpoPuvUqSMtW7ZMaxyRDuZeOnCvDSXRZ1wMIFSk4idPnmzcHbx8v6GJ5pEqCOAMGjTIyEkgkRMmTDDa7FgZT6/DksF0nUjYbK5atSoi8+DHsVDKg4Tdmyr0PAFi+Oyzz8pFF11kyOfjjz8u33//fd4tdEaPHm0iCxBTCwb+kCFDZNasWQkreYkuMwFbQgzQLXXu3FlGjhxZ9Byi/59//llOOimyZfLJJ59sdlro2LIGPHuJ7FJ4V5Jq8Tp1RCZNEjn//LDm9rjjwp7AGXKlcB0hXrJESg0cKGVuuUVKIQ9B61wSQkyzg8suE+nVK/zTR6BxR9C7VzF/eK7gZ/eunH33iXPmyNT5881Cvv7nn8xzNQ46SKrlQOsbypJWORPSgVgWbdGRLichpsiM6F9jOm/uBePKpoohi0RPN27cKF4G0V7nMbo9D2wsbWEWfwMZtu8THRGMdx69Ao4NqYQNNKUyFgCEmL91Bqr8OBZKpUGKE13rTIwDb4Uv8oz//ve/ZrCRfhg7dqy888478vbbbxsNF1WiRJBJW+XaYgpNDGmS6DSKJbpUWsbSFRHlpVL12BitgPlbonhMUBRw8BkgOoJBa1Jutvnz58tRtD+OAaqjqQy2sB6UECKItgU3qi0WQRcdgYcekgN4/0cekS2XXVas2w9/x9+Tho5OhzBZcm6YUH6hwA2rtv79w8092rSRKk89JaVPP11+/e23Yq01mYzszjpap3dek/PMT4jwM9OfkZ17dsqlLS+Vsxuebb4XRR9sVmx63DTVeO01E/kud9BBsvixx6TeeedJCFLr6OLFRGCraqnCjt508V34TkRDDKEkcr94sSnQK799u7nJOT+xOsVZOQy/i3cOeU/eO9Y5jHltSIlXrWqOGxlO9DnkeIjYxDqH/NsSQudYsGBS5/e26MQJrgvXh8/jc53gb+yC4OocOmDt0WKdQ+e14TxEFwQlOofxxjfHx/fjGJOdw6TjO6pqP9k5jDe+N//yi5QuVdpkNMwxYl8WdQ7RB5vxvX277Ii+NuXLGys2iuXoQlfsHO6dqyiiq1ntYPl+wUJTVLdszRrp3XGzcaHYtmNHMfs2Isr7VawYPocxorwH7JVamOK86PFdsaL5e46VY7bYvWmTlCtf3tU5jHVtEs0RnB/rhhBrfEfPEbw/n89reU/u1yVLlhgHAbTnfDYPXmPHIcSGuZpKeiKs/K0d3/w/54pj5yfzuC3m8+ocgZMGLgpo7O055JjIaPIezvPA97PXhvPATz6D37G22Ywukgw0uGwaOK+4GPCchdfmCN6Dz3COJ84D5wUPYyK8znPgPIeMI7LHZBzs7/ge9sHx2rHA+HOew1TmCDfzbLE10OX87TyHqQK9NfyM88tncP/YbEGi37mFkuIocALR0/JgMI0bN85UQhJVRcfLiaYSmKpQiLJNY2UTEM5YAnT7HKQ0FhjEDNRkf8tNyGcwuKOro7mJGbxO0huNjz76SF6iACwK2MuwybDgJiZCzQ2ELiwax9PU4i9/kWmHHCKbom4YigPZGPB+TH5OMPmx62YCK3pfdof/+Y/RKw8+80wpf999Muu442QN7g+OxgBt2rQxkReKEUk3OcFEfWXfK4sIcRkpI43XNpYxa8OfccQRR5gJY/60abIMRwnaRK9YYbTNh9x6q6z97TfZf+PGYsdr01yAFGD0xMm44vosXrxYFlJEyPc46yyRtWul/vz50qFDhyJtXfQERvbAGfl3gnHL+KazFhkGJ9hUseFjAot1bY455hgz4fJdOFdOYHmDto+MBdfcCSZ3G9mK9b4DBgwwi9PcuXPNcTnRvHlzsymjoIQomRP8DX8LyGJET8ikFRnLfL7TwghwrBwzi0f0MfEd+a6A8RC9+FPYysKLno9jdoIJGQskjsX5vkzQLDiWFJN9ir6fuKbchxACfu8EY4Exwd/HOoeMJcYUC2W0LzabXHSFfB7EymLr99Ol8n77SR/uBxHjGBFNkND+QkJ/WLlSlkW1J25Yu5a0atjIENfxUeObOWPQ3gLgKfPmym9bt5n3mDZ/vlSsUF727O2it3zNj7Jw+YrIc1i9unRs3tyQWvTH0TiGbImIzFi4UH6KujbtmzWTOjVqyOoNG2S245pX3LNbDqlZs/gc4QByNAhHrMxbsjkCyR1gnYgmSEVzxPz5ZsxQp8GasXbtWpPWph6ETCD3DfMvn8PxcS+QtWOsMb8yhiFFFFoDLP64XxkrfK6NQDNXE7wBXp0jGId8f1tsxn2K/RhuC2Q2neeBOfC4444z/4bs8N72u/J3VlPMPQZpfgYP970EvXXr1uZzvThH8L6vvfaaWbtskI11ERJHkIu/476354Axw1iyhJnvwznjd4DXskFgw8GaYseCdbJIZ44AjF0+F3D+ozc7jH3uAY6ZY3eCa8a9w/mJdpPgXuOeiwb3B2OE68mcz7lmnmecM/44r2wqWBfse7JZJPsNEv3OLUqF8q0N8Am4SAwYTjYXi4WaCYaLzs3FROS0SskkzjrrLPPe/8K6zAEIIr+79tpr5YwYvrcMLgrzrrzySjnnnHMifvfpp5/K/fffbxwtuCH+8Y9/GN3yl19+Wex9cKCAoNyLN67LSPHdd98t//nPfyL0TAkjxSwwTJLdu8uW3btlNw05HKkh15Hi6ChQKCRVJkyQ0o8+Kr9++qnsQsOMdvmSS0yBXrIo0KuLXjWR4nKlyxVFii9sGW5NXXndOinz1FOy9dlnZQff5/jjw7KNXr3MMTJeGBfRnf1cR4qXL5ftuDeQBfjiC0PmE0UwvBgp5n5hsmaBCmqkOJVzmLNI8ddfS2kplfVIMaR53tKlsmT1ajm4ahVZs3GTIczIJ3IVKa7ct4+5Nl6IFEOAWdwhIm4jaZkc316YIyA4RIWdkeJE57AQ5wj+jjWY+h6yBF6cI3IRKcZAgGAjslXIrBegkWKX4AJDfnkwMEjPWJkFhW5PPfWU2eVm67NjdUGygzCenMM+7+Zv+Rl9Ezpfm0gywm6MRzS4YWL1uedGi/W8wfvvS2WiTH/8o8jbbxcrlGNSsMb30eBGi/m+7EgHD5b9kYjgdEE0AacLivr4rO7dpVy3bnJA69bM0EV/FqEhbn2JPDX8bnl87nNS4Ysv5Mr3VokQITvwQKl05ZVS6eqrw8V+UbCpwXiIm0LatUsqXnSRVOQ6ffhh2L4uhfd1GtxHg2sZ73omvDZ7F5J4YMKP/lsiS7Z5R6L3ZaGIByb8tM7h3gk/XvOQZOcwUWFpKueQqBlRLPtconOY1vh2cQ6jr02ZqlUltGsfIUpkiUaHuXhd5nCWsEQ1Fiyx7tKypTSqXduQVftekOp47ZzNOUzyvvFA05CixiGlRKo4snnJzmGq49uJRL+D0PBAgsb5cDYtyNf4ztccwefGWxuCMkcwDjlPvHes9/fCHJHKObTjO9Vr48WYrJLiNMDAI7XC4+qrrzZpA8hxtkBqJDodBWx0NhYhtYOYmyeW9CH6b/kMdsVEwJ0SCgg1O0Q3/oEZAbvF//5X5JRTwg09/u//MvfezZqJPPxwWKOLJ/W4ceFOeJBkbk4mDF5TqZI81WOPPN7pN7nmu/Jy5QNPiCz4k1zJrv/EQ+Xxk0Xk1LpyJd7K2K3FmMBKXFV7661hmzls3Bzm7H6DU9cXVBD9Yo7wSiQElCpbNoIUZwNEgiG9nZo3N//+bds2mb9smTSvX9/IMSAczbKUXbMoVdZbbWSD3t3RkqRE5CwI8CIZzAdCHjwPSoodQEKQCHZ3R+MMtDR2N4f+KJsm4UgQ0JxFG3mjD7K/j7ejR9cTrWuyf4t2zE5OSCgAr3U2XODfpIfs73OCk08Wue02kVtuCTtK/O53mX1/dry4OFgnB1KBU6bgH2YK2p6qsUgeb7RSrllwiFy5raFI30oiF19sospXduoksuBleVweF+m4Va6Ms6Nn8WPTlNYiCHFHKoOWeK+ey6+gcIRoSToWTIUCIjBOTbEXULpyZdmzLXuuIEt//FHmLl0ifTp0NLIG29J59fr1JmLMOZm/dKmUKVNaGteuk7XjKF3ZWy1u0aCicYwXyAgCWK+8bBOWS3hlPsgXQkqKvQ20LW4H8qOPPio333xzTloqInSnyxwFF9anGEnDZ599ZrSa1nkCDTEaJqewnOPDoxhya50lKACAZFNMaEEBHJFlGng4STH/htjlvDMZ0VwKAtD/QjyJHGcLpMC4jv367ZVMjAlLJi64Mu0GH0To09oovfBCWDpy443hnz4HEVLGVZBJMZsCJv9kMqRck2JZH794tiRYvmaNKXSD/FpCHI0mdeqYzNS8JUulTOky0iBLjZPKeKjzI/I06kC83CRKkRuwKaRwPJ4MQpE/KCl2gO5tiUDElFQoemJE8jS5wFEh27teiC9FCVTW0gqSz/ziiy9MpTrE3OKee+4xFbzOall8hmndzOsoyiNlSUc7JBL824LF+pJLLjHFcbfffntRZTPVzpdddlna9ilpgx3000+LINCHvL/1VjiCnEWk0qkuGTFmwafKF9mJa59EHDzwar7iirB0pABAtsKL0YBcwmYLrE2QZ0hxFrBq3TqZuWiR1K9ZU1om2RQio9i9Z7ch0PtVqGCK7zKN0tloOJQmbDFX0CUUOCSwjtqWxkEEYwBHpaAj5MG1QUmxA1icuAEEFe/fK664wnSFu41Uf5Zx6623mojw0KFDTTUssgjcI5IdM/IIyP5jjz1mOtNB7LkZcayItpODQKP34juhkSa6x+twsMgL6IL16qthvS/a3UceEbnmmrwTYjfEGFJMNB57nqSkmO93zz0if/1ruAvfE0+k1YnPi2ATFq+AMyjgHsSBI9qFJJ8okwWyyJifu3Sp1DnkEGntsiMotm77V6qUtUYepSt7hxRbJwKvbIzyeR6iXS+CBuZENknWszio2OOx5jpASXGaQFeM3Va0p2i2wERKUR+PeHgE0hgDkNs777zT1efQ2pmHZwAxpiEG2mKaccyfH27hnEGCkQ4hTkaMbVvfpISQ6BFEGJ/jv/89TIwLaJJk3Ebb/AQNpEjb7m157BWUrlRJSpUrK6GdmduwQPp7oqMvXz7mQo+NW9N6dc1PJ+ofGpYT/LxliynOO9RhUVUSlCpTWkrvv5/nIsVBJ8VeypjkCxTOT5o0SY4++ugIJ5KgYUeUjZsXoKS4BEATlE3XCcVeQIAhwhT7QYwXLQqTyAwsniUhxImIsbPzUlzQEAEJCy20//c/kSgv6UIA8pGgL4AABxdIYyKrpVyjzAEHyK4M6Io3/PyzLF69Sjo2ax7Xug1AlpvVqx/393S7W7lunXRp0SIjUorSez1fvQLsu+gkGmQSZElxIju4IMCuC17KHuUDuzyYRVRSXMJdjo0IKnIw4K+6SoS0LMWGdCqiKC1GV5xcEuJExJixETdN+O67Ye0wkyKNSnr3lkIEHZgU4e6O6PjpYOYVlKtVq8SkeNPmzTJp7hw5qEpVKZ2EgNLogy50tHjG3zgabRo1ku07d8jkefOkW6tWJZZUlEuxvWsuSHEiX9sgySeCvlFmXSBwwiPI0oldHiTFwb0iGQDSCYreFLERq2lIiXH00eGmGTTa4P+JHKeRns8kIbbgfXg/3pf3p1NRsepiOjZdcEFYI92nj8jMmQVLiO3Eh5WgF7VjuQRkKFanqXyiTPXqUqpC+tXvyB0mzp4tB1aubKK7yRZ4Ot/x+ugOeBb8fefmLeTgqlUN0YZwp4tS5cpJWY95ZFN4G6sTXNBAgR1Z1iADMhj0KPHObPCDDEBJcRpggX/xxRdNP/s+EBtFbgc9E+rQoeHCu+efF2nVKiw/cEm8skGIYxHjKRWm7Gv9zY6YJiE0cHj/fZEXXxR5771ineoKDTSDGTFiRLG2pEEDRa2x2qTmE0gLiBanA9ozfzd7tuks16Vlq4wt8BBjCHb1Aw4skfShXM1DpZTHonAEUSDGQQfdzVw78hQwhwh6lnmHB/XEINhXJcXmHQxkFjY8f7FGY7d7xhln5Oz4/Ias7gRZ8H7/+3C0GFu6884Lt25+4AGRvn3zQohjSSlCe0Jy1ZpGIjfcIDJrlsi554rcey+6AgkCbJqUlKmX9LS5BpaGpExxjvFSCh1SvGPJ0pT/jmK5lg0aSM1q1WJKIUoC2xbazrm0hsahws/SCYpNmQ8TtdENAsgaLV682DSDCrKEonnz5uYRZOxQUlw4zTsolDjyyCPlmmuuCXy7yrynRyi+I+KKNzPEkyYcRO+vu07kxBPD7hUO7AntySohtriy1cWyYcQI2f7k4yLPzgoTdTrmde0qQYJd+GzlfdCjY15bCHChKHvwQbJr4yZXr6dVM7rg2jVqSL29TYOyiXnLlsqq9evlsDZtXRPjMgceIKU9tgGz0pmgk2I2hZBi7Win2OGxudBCSXEKzTtI51E1S0pcO9EkR05F9JDO8eNFPvggHDFGs4t0AQs7HB72NhK4umN8S7uMAMs4LOSeflpu+/FH+blHD5HPPgtHtD1UCZ8rsIEkJR50Usx5GDRokHgR5Zs0kV2bJokkUXZs2yuZYBgTIU61SIjX71epYkp/16ROXVm36SeZMGuWHNa2bdwOeUUoJVKhSRPxGmhWwQYx6I071JYujNmzZ5ssiNesGnMJJcUF1LxD4VEhPYst7aB5TJ0a1hz/7W8it9zCxQ13xDvpJBEmokzpDXGXmDYtTMaJWM+eTbcGU0w3d9AgWVejRuB15xABrxZV5BqcB69ZctHIo3z9+rJj6bKEGuIJs2YaTXSPNm3Tqpqvst9+0q9T55T+pny5ctK9TRvz2RByiDHWbvFQrk4dYzXnNUACa3tM0pFP5wkvWeXlA8gvg75B2qGkWBE05JUI0UKTYjai/8hiKG77979F7rgDgWdYxtC9e/hn48YiLFgUvcVb7CG/a9eKrFoV9klGCvHddyKTJ4dbUdMdkKYndKY76qgwMZ47V7YtXy5BBx0gg2w9ZLF8+XKZMWOGDB482HOV5+UbNpRd69bJnt+KF0Tu2LnTENLdu/dIjzZtEnoRZwOQ4O6t28j4mTONj3GTOI4/pStWkArcyx5EwyQtr4MCbdyxb3MQ3VE2aNihpFgRNHhi0EOAzzwz/CB19/XXYTILqaUBiLO4Ev0x1fgUQlktMhIQbNRotOH0HKZQrls3kdtvF0Ei0asXOfKIjyYSwCJAdC3IkRElxGHgU0yx3YYNG0yXSS+hVJkyUqFFC9k6dVrcwrqOzZunXPDmxC+//mrIdffWraVqippfiPjh7dubyDGIdU9VaN5cSnmwoh/nFY5X60/CzXyC3rgD6OZAPCup894MoigYeC5lziSErtOp7VyzRmTZsnAEeOXK8E8ivxw7ZI5FlgWc6BQPIsoQYhdWanhY16pVK9CEGPzwww+GCHZjExFgQAYgRmvWrPEcKQZlDzpIytWuJTtXrS5qtsEjHKltXeL3hxgyJ6RrS2cJ8Y8bNsjiVaukK93h9pLgsoceImWrVxcvgsKyFStWyFFkkAIOlZCEG3dQb6PyiR2etKXz3hEpCgaeI8WxQAV9lqrovaYdzRdsdFTBUDtUfvzxR2lHR0YPokKzZrLn119lx8ZNMnnuXNm5a5eJ0HppY0ex3ZatW83xQYwrHHiAVMT/26NgE8R1V4isW7fOOHAEuVCde4kAQdDlE9u3b/ckKda8piJrCHrDBjYFkyZNMkUVQQa+vJyLoI8HQISYc4Gm0IswMoo2bWTasqXy05bN0rpRI08RYoD0olvr1kaOMXXxD1KubVtPyiasPzE2ZF7MDOQjMjh+/HhDjIMM5GQ1a9YMfKT4119/9WQTFyXFiqwuCEGf/OhgxaIYZFhvVmypgo4aNWqYQjuvLohIG6bMmCGbDz5YunbsaFouexG0lu7eqaP8VqOGzFmwQLwcJWYe4LoHHfb+D7pXM57VCxcuNJZsQcaWLVs82dDJm9trRUEg6JFBHAaQUHg1KpgrEA0gXcpiQIQkyCDqysOL1my2LTeRvO69ekmNAw80hXd7MrS5pUjvsHbtSlSsZ1G6UkWp06un7Pfrr55cWJ2bDKLEXkwT5xrc/8yJXr5euQBSsnnz5gW+gcmWLVs0UqwIFoIeKQZUGHu1yjaX6NKli2l6owhHzIYNG+bJyPnBBx8sAwcONBrY0hUqyH6dO0nZ6tUy8t60gz6oSpUSt4WmA1+lzp2ldMWKxs3AurxANNIt4ssWGjduHPgCUwvGO1Fir8lxcg11nthHir3oyKKkWJFVUhz0FBELdtAjxaB69eqejArkA1WrVjWR82W4nngEM2fOlFmzZpn/dy7YpcqXl0rt20vFFs2lVJmSLRd0xJuzZLH5mQ74/ArNm0mljh0NYXcC3f6CBQtk+vTp4hVs3LjRH8XGOQIyEjYxQYdtYBJkhEIh2bx5s5JiRfAQ9Ghxo0aNNEK6t6iCxhVKEsISCsYENl04c+Qbc+bMMbZhifxj6RS3X7duUuaA9DXGdMVbsmq1+ZkqylSpLPt17Srl69aN+Xsi23QkZaMBwc83CAZMnDjREHVFGFyfli1bStDBXBh0CcmOHTvMWuDFQImSYkVWEfQiMzS0WnkejgwsWbLEk5KBfKB+/frGq3Ql3th5xPz5803RT5s2baRBgwYJX1t6v/2MbKFCk8YmgpwLlCpXTso3aiiVunSR0kmIRN26daV9+/aG4EP08wkKbFn4uc6KsC1j0LOGFkTLg154uWUvL/Di5kDV/4qsIuikmIURX1qaeHixsCpXYPKjyAZSjJQi6CBtyGaJqFE+iRs6XKJ3aF/dRrnLN2gg5erVk11r1shOot2bM3+Pl668v4kKl61ZU0ql0BERYg8By/e9RsRau7dFtjhno3L00UcHXlOs0XIp4gVejBQrKVZkFUEnxejHvv/+e7M4UsQUVLAQUmSjkeJ96N69e14JApKDzp07m86LqQKiWo6NXq1asvunn2TH8hWye+MGCe1OPxqIZrjMwQdLOcjwQQel/T5Ogo+bBu21c+2ysH79enNuFWFw37MRDDohth7lrAdBPhdb9vICL2qKlRQrsgaKCRDTBxk2PYS2Osik2BaYQRYUYbAoIivhnOQynYqWmXEJWUyHEEejzIEHSqUDDzTfhW54e375RXZv3hz+SSR8T6ioTXP9mjXD7ZpLiZFDlKla1TxK89h//4wSBazlaBZB98CGDRtKrsB5sC3eFZHOE0EHY3Ly5MnGqzzIXf02b95sbAq9eA6UFCuyBlIjQY8UIxnAgSLo5wHUrl3bk5GBfGLt2rXy3XffyeGHH56TTRMa5mnTppkC0ExHUCG0ZSpXNg8rXjAWabt2mZ/779kj1UuXDhPfsmWzHiljo0HUmAJP7sNcFbxC/jRKvA9oiSFBWnAcLrJD2uNFMphLbNmyxbPSIiXFiqyBaJSSwfB5yKd21CtAY+k3SyY6ko0bN84Y7nPsvXr1MrKDTAFdMRH0uXPnmvfOJtC2T5061UQxW7duLbmAIb7lyhEYNlpfuxiWyVHqmAJCPhcJE8SYjVk2gW6W4tpcSza8DOY+iLFGitV5woJ5oEqVKuJFKClWZA1EBZUUhyNWOA0owt2cIEp+kJKMHTtWXnnllSKZAz+HDh0q559/fsYILO9J4Q3RYmQU2SpCtGlbUvpYY+VDz8hcMGbMGOnbt29OCRLyCYgxxW/ZJMX4EuPkwXdTUrwPkJ9jjjnG+BQHHUqKvR8p1lGqyBoY9JjqBx3NmjWTVq1a5fswPAEswPzg3UqEGEJsdLJ79kT8fPnll43sIVMg8nzggQeaaHG2QLqWCHGnTp0CV+DD92UjQGEjyJY1GE4eRP1VS1wc6EeVFIezJV4lg7nETz/95NnMgY5SRdbAAkGBhTZsCLtQeKFRQ74BASQi6vVzgWQiHnnkeaLImQSbpmx42qLltKlriGFQiQnXjO9OpG7EiBEmY5FpaQrjukWLFoHbdCQCY2/48OHm/CjEZEmaN28uQR8TmzZt8my2MJgzpCInsDtBboAgA+eJL7/8MuMLsV9JMZOi110ouFamSCwGeD7T1xLZhCXF8T43VbAhhbwTwVTsK/4lUodcJZPzEhkQxjZ6YkWkpIT5z4t+tIr84OeffzZBEa/WlygpVmSdFDMxBl1bTcWxevSGiw55IE/wMpiwE0WKszWhz5o1y7hDZCJCjB0Z5xr5jhfAeSONns9IKtHibt26mSzWhAkTMnZP9uzZUzp06JCR9yokcJ/jvuPVVHkuQafFUaNGSdCxcS8f0EixInAgOoCWUSOk+6QkCjGesV7X1VFIlyhSjIVatsYJPsIUxqULJALffvutISOHHXaYIaJeAN+Ngit+5hO4UPTo0cNsGCZNmlQijTGNOpBGsenFl10RCbT32uZ+n46WsRd0bNiwwZwHr26UlBQrsgoiakGPFAMmABZQRbjjmNu2wvkCqXBcJqwW1fmT57O10OPlipRi+vTpaeuuad8MSYMQ57vdsVfBRoHz06VLl7R11pBpHD2we1MUx9atW43LQCYtDP0M5n+vEsFcYuPGjcadxav1Dd4IISgKFqRIlBSHSfHy5csN0dFoQTi9j02dl62riBY3bdrU6HKtTzER4mxHvtq3b2/SrHjetm3bNiWSxkLDMRON90qE2HnNIZEQUS94lLJhwPWD8zZ79myzUUuluQxabfSyXbt2zepx+jlTOGDAAJOxCDpsA5Ncdlb0KjZs2OBZ6QTw1qypKDgw+CGDQQf+qFhiaWV6GBA+XEmyJUPIFCDAJ598ck4/k7Q+zTVSafiyfft2I5mgsp2x5jVC7CQG2bJESxeMQ7SvPBiPbkgcbgp4EuMa4gWC71WoJ+++KDGyq3xLh7yAjRs3eqbOIRa8Gb9WFAyIrjEhBN2WzabeFWGQUqX6P+jjIh5ow2yjxMncKDiHFNXt2LFD07NpAC0whXKcZzYWbDASgWwP8hb8iInKK2Kfo9GjR2s9yV5Ahvv16xf4+3PPXjs2rzpPACXFiqzCpkmCbssGcBVgMVWEI7CQkJIUlAUB6IMhF/E2D5YQU+wFsdPIXHpANsH5s+czUQdK5E/okfF9VsQGlosEQ1Q6sS8oAjH2qo42l8WGe/bs8bR8IthXSJF12MGvEYPwxKibg316QxYJr1uz5RucIwjv1KlTY0aMsXBDZgFJ0zR+ycCGAmJMFiOe7p9W0SzqXBcvSlS8Au5ra7+oEJkxY4asXLlSgo6NHrdjA0qKFVkFkyLpSS22Cxfb2QIzRdhpQSNJye+fzp07G5JBg4hooGmFEPshLUs0Fo/gVIrZcg02Fi1btjRSJ+YspwPIokWLjNOEbvDdWbGp60QYbKLYTCWT5QQBGzdu9LQdG1BSrMgqWFzUgSIMdFRE+zRaHAbV/pA6RXKpCUQNUoyHMYssEWIiyGw4cVDwA3B7oOObH2zi2LjS9Y4H55vzjkMFBUI1atTI9+F5PkWOHZuS4kjJgJd1tLnChg0bPG3HBrx7ZIqCAb6rqh0V07BCm5nErvxXJAZkDEcK7qUpU6bIkiVLjAesn0CkbMGCBb6ImCGNIKrNBnbo0KHmnNOGm82JIjHYpOHioSQwDAJCjCd1nhDDA5jDvAwlxYqsg+gQFkbJquiDADSLWrG+D9j10VUM5wRF8sg60UpSsQ0aNPD84hINIttz5841P/0ASB3EeOnSpSba165du3wfkm9AdlDddiKjo0E/H6FQyPAA+ICXoaRYkXVgXQTpUQlFuHBKC3T2oW7duuanelm7K9ZZtWqVIRwQNY2wZxfMWUglTjrpJOP9rBu35CCDMW7cOA2AOEAQxMu+vLnCL7/8YprdwAe8DCXFiqzD7gyxlwo6WFgnTpyouuK9QE7CJAnJUySPXHbo0EH69u1r9JpE2CHJisyDiNbw4cNNlI/5y3Zm0yLZxOA+RjMe9Kho9H2rUhIx9xTQSLEi8KDanGpTJcXhYiM8PHkowkAKgK2Yaq1jw44VOiLi2EGRCo4UbCZom4wrgiJz+OGHH8zGlSixbUPOOadYiijozJkz832IngQSE6KB3M+KMMjmED1XiFn/4QJe11YrKVbkVFccdKgbR3EQRWEhjecNG2RQmEaXtegNgyXGtHXG89kvG0KIvFfdJ0j5I1HB2YOUd5cuXSKq5Pl/iu0WL15stNGK4lFixqK6c+wDsjDN5oRh9cRezyIoKVbkBCyG7BRVayZFpFjPxT60b9/eN9ZiuYxYQr5wPIiXfm3RooXRu9rXe7ltNlGirl27etanGGkEUXkkKlgFxlq8GzZsaFxA2KzwUITBXIY3MZsGr5OeXILNrJcbVeQSq1ev9ryeGCgpVuQE7BAR2dO8IuiA4LAA//zzz/k+FM+lGjWbsC/qZiOWbop0cHSApH399deevceQH3Cc/PQSkO5wXESw+/XrZ4hdIjRp0sRsRtiwIBdQhDNg6K5xSFGEgWUiNSSqJxaz9rPeeV1PDJQUK3ICu0NUXXHYx7NTp07aAjUKNEiYM2eOBB3WuqhRo0aum5tQBNa7d29DTsaMGWOixl7LREDWv/zyS0+RdjYfo0ePLtIJu20qgGylT58+ntdH5gpkKJA/qbPOPhA5ZzxZXXqQ8ePeYIdGihWKvWDxIG2qpDi88GJF5lVtZb6ArpjoSpD11rQVhtjij9u2bduU/pZNFs4UpPiJMqvNXXwQGZ4wYYJMnz7d3ItsUlOFlftQ6MiGLqggAjhs2DDNfEWB4nKkT7pRELPu4zTkBymJXi1FTsBCr8V2kekk0t1EApksFGFZCcSO6J0fJs9syEe+//570w0s3SwC0bo2bdqYiIwlbWw06KaoCAP5xtixY80GpEePHqaNdknA+SXDwWbX6ruDBO5X5jCNmkdCrdj2gXUfG0kvt3e28P4RKgqu2E4RjhbTmUzbX0dunNBzUq3tl65nmQLjAN9hNgOZKETjfRhjbL5GjRplLMbQzgYZnAvS/JwXCjuPOOKIEhNiwHthl0cr6KA1VEEzu3LlSi2wi2FPx3nxmoQpX1jtkyI7oKRYkTMQKSbFxuIUdKABJbIStEXUjYSC6HmQpCVUqENaaduMzVomyQUEm/fkvhs5cqTRzgatMxtEmPbYfH/r6YxtWKYyNFyvjh07mvmNjU2Q5D+cT4gf+ndFZPR83rx5ulGQ8MbJNsHxA1Q+ocgZbGqRSCBV9UEH6SQmTxYVnTzDgAwHqYKdVD4RRopx0BFnI73IfcdYw18XyQ6yAWzHcg02gUOGDMnZWOfc0jhh/vz55v9x8cA5IhvgO7H54LOCJCMgo8P9qhKw4kV2QZTSxIK1YvXL+VBSrMgZSOlazaiSYjGpW0gKLZ+DqKFNBKIsRPhSLTbzGyDB6FqJ6GZTb4fWmHuOjnjOxWr79u2m0CwXxUAQx1xu/nC5IEJMah8LtQoVKmT187h+FFYBpCqM30L33k6nQLHQgU0fm4VMSHMKAUuXLjX3nl/Oh8onFDkDCyLpcW4ShZjoIEVRXm1mkE9A4ojyFarUBsJGUR0RTCKLuapQZ3Gy5JCUJnIKbNJwq8j2uYYo0iY5W9rmrVu3GhJMEZ2t/h80aJDR/GabEEeDwrvx48cXrI8xpE81s7GBJI77WYvswmC9Z2PqhyI7oJFinyygTz31lPEfJbKD5vLqq6820Y9EYMEdOnSo8eEkIsn7IHbHZP2ss84qtlBg5xQLl19+uZx33nkZ+S6QYux7iKIESTcab5MQJKlAKkCjiNcu6Wj0moUESCGEiZQzUoZ8LRZE4ZETsPlg4eJ843WcLV9VGtZAxPmZSfCeSEOocIeMsABzXtlYod3PB5CncI1p0d2rVy+pUqWKFBJYTyDFRP+CPo9Hg2tNVsYvJDCb2LNnj7GGjMctvAglxT4YVDfffLMpaIDIEv344IMP5LrrrpNnn302Ih0aazd/3333mWjkiSeeaBY7IkIvvvii0TE+9NBDxdKZtGE9+uijI55z01ErFVLMgsWEip9q0EERAteWc1GpUqV8H45nYNP9RP4Yf4XS6IRoJkQJ8nbYYYflnVAw5thk04wCOYVN9zM/cA3YRFMA6KUFnjmRwkFL3qdOnWqOtV27dsYFwgu+sFxXri+RccgxxLiQxjDOOYyZfI9fL4KCMr8UlWUbq1evNmsc675fkP/ZQ5EQ2CmR4rzzzjuNhRAg0nvOOecYcnv77bfH/VsmrMcff9wsFhbHH3+8uWFfeOEFmTx5siHBTkCyjzrqqKx9HyILRG+YVJUUh3WIROiIGmarCMivYHywYaBopRCq28mOQIjZiPbs2TPnKf1EgFSiLbZA0kNBLPcpJJNCPchzvjZuZMhwdWCRZTxwLo888kgzl0A4vShBssSYJiEQyUIhxWRvGBOFcE9mGmQtgEonwrDzh1+K7ICSYo8D6QNFWM70A9Gc/v37Gy0gu7B4lb9Myk5CbEF7UkgxKdNoUmwXIJCNRRsSSHpTdcVhWMJB5FxJcfGxwjj3QuQvE+B+ZNNJNDNfaX23oGCMB5pYZAnoJG1UkC5wzBHMQ/aRyYghhJdIMETSZsKwU+N59NeQMSLY9hx6kRBbMIcy37IRQn/Ld/CzUwO6c9LhrVu3Lpj7MpOYO3eu6okdYJ3nHmbT7RfoqPbBrpz0cXT6kqjNxx9/bCaoVMmU9dFEihGNL774wsgzmMBJeZx//vkmIpMI69evL9ohg2SEl/eF7FvdX9ABScLfFK1poUSTMgUWGMainx06IEKY+eONm0kpUi4ACeVBqtyCMcpYXbhwYZE+GDs527GSSC6ElQekkOgy78F1ZIGkAxzSLog1ryF7BNniHrDPA8gj0Wvb9hry60eJkZWoIQXi3NCx0K/EmOtlm5UoIsHYZW1VR44wuN/hArjr+AlKij0ObrJYnqJ2JwoZTZUUv/7662Zhix6sFN4QmSMKw/u+9957ctddd5kF8KSTTor7fh999JG89NJLrj+fSDERbhZQnVzDkhLIH+lqv5GmXIDzgsa1X79+vvOAhTSiKSXqOXDgwILYBDLf8GDRY26A8NsNNvc1/3aSW4gwxZJ07WMTz8MC0muLtXgPsibMTfw/raktoSyEyBtyIDJCtvjOj3pcm+lTxJ6nOD+MYYWY+515z2/jRUlxjgtEiBq5AZEEFgQWllhRBfucXXjc4pVXXjERmT//+c/FKqKfeOKJiH8fe+yxcumll8ozzzwjxxxzTFw5xQknnGCiHxbsDu++++64x4C+iAWB1ykpDus5kbn4jfDlCmzSIEp4FxMx9AvIhKAnhTiiIS4EQuwE8xPElYcFC6BdBO18Z7Nc3Pc8x/VkLmEOsL/j//PRUCSXYAwzDmzxHf/vJwkCBY1E6q0XsyIS6sYRCdZ37m9nrYIf4J87sgCALymuEW7JKzIDFo9YbVntc6nofocPHy7PPfec6SqVKPJrwc19yimnyAMPPGAICWmzWKA6nUeqRT3cNERMFOGImSI2mFixHyRaTPQBGYLXAfmjdTPaWMhPLKlSEK6bc34iao4cDJmFl4oMcwkCERTfES3GCs8vTYzIWK5YsaLgNy7pgqwJEeJs2Rn6EUuXLjUbYb9JhZQU5xBEUG655RZXr7XpQnSUTr1uulWuLND33nuvWaCvv/5618dsu9Bk2oQewk8UTVscR1bqAr+lm3IBMgqcH4q8cGHxetSVTSsSAiRKulAqnGCDRPGdlwsEozd4BHQYx4ksQIMM1jCn7j7oCO3VE8cLpHkZSopzCAgsMoRUgMYUIsDE5Cy2o2MSRQ9uJikKPP7yl7+YaNvf//73lFJ26KRAptuVQoqxm6PwRDVYYVBMxmZHSXFsMMFS1Oklz9xYiwERUe5NNNC64VPEgi2oJfPBZo/iLK+Oa6L7FELigKTjOTZoHsM65peNTi7Wss2bN/vKn9jCm3ehoggsrKSu6GZnQSELFkVID5ypCTRNPJwgRUfzD1KW999/f9y0Je8ZDSbCd955x0Q2knXPS0cuADnHo1cRBqkmW7ikiE0kmGRZmNHrepEQT5s2zaTGNQOicAPGCQXH6HW92jKZTR7BmULrypcpQP7oJVCoLb3TAeu6X4syNVLscZAqhpjSmQ6CazvaETm++OKLI177pz/9yfx86623ikjtDTfcYG5auuGxWEeTMBwnAE4T33zzjSHa7HiJWH722WfGn/S2227LePEA70c1Nu1CkXQowtps29gk05H5QgJWYGz+SEF7Kbo2Y8YMo7vs3LmzEuIYsP6tfiouyzaQp3Xp0sUUP7OhwqXDa2PHrhGK2GC+JjhlpYYKMes6WWyv+7HHgs5OHgfayX/+85/GGeLdd981bhNU/6JNTrYLo8gHeQJ4+umni/2eds52wsP9gN3uJ598Yna8DGa8kIkyM2lnA0Qfhg0bZr5TUAtvnGAx5Jqyy1Zz/Pig0A6TfM6TVwqVaJ+Ohg5So44q8SP9WlhbHGTxkE9QSOoldwfrN+/HFHiuQHCKjTAE0Esb9HxnFn744QeT5fYjdNX1AUhbQU55JIKNEFtgfeSUXSQCVle5truiMOHzzz83NxAEXBFegMgGeL2QLJ/g/DRu3Ng4oli7tnwCuQtjmI2lFiLFB/IAKyvxWjQ037AbKa9kiPCXZaOn4zkxaDtOUa0fZQLZwpIlS4wVo18LD3Vro8gbqGZGMkCqRREGEXoiR0oaEgONO+eKqvh8azEhMsickAMp4oMM1KeffqraywTEmA0ekTbrRJMvUNyNxE2DFYmBtzznyOnVHXQsWLDABC78YJ0ZC0qKFXkFEgpuonwTGy8BOcl3332n5CEBiKTjmUoWJV9jh+iw3dBpEZIiU6Dwjs1evoIF6PWR3ZH5UAlXYnDfe0XC5QWEQiHjVsK67tfAjpJiRV5BioVCQBYCRRhEaEjJW02fIjbIMrBw50PLx7UhvUxUT6HItDMPmRCrm881sOGkCJuMlSKxTCDa7Sno2LBhg7Fj86t0AigpVuQVaLEoslMJxT5YKxsKOLxoPeY1LF++3FTu5wpcF9LLjRo10vSyIiuAVBCBtAWcuUTXrl21c52LAjtqGtQ+MxKs42QXmBv9CiXFirynwSmaIuWi2AdIMVFI2zxFkXgMQYxzocOk2QIEnOvTpk2brH+eIrhgwwW5yNXGmKIxPPFJe6tsIjHIbGqBXXGwjlNbkWkL11xCSbHCE1ER0lD4KivCoDMShQpEJRWJQaoX1w58grMduaHtOpZZdNfzq2Yun/rLI488UvXXKQDLTIIGIJvzI/ULNBDJd4GfX8B5Yi7QsRxZC8N58bN0AigpVuQdpAkR6NOUQRG5IGbLI7oQzxWV4DRBIIKTadBeGu07UWnGqxLi9GRBOIaon2vqoPCNLqY0U8o0sM/ivsH5Ao2+IjGYB8gYqdtMJNC/k9WgyM7P0NlJkXew28ZvViUUkcDmh05J6NcUiQHRQguJFVCmzxcpZdxAdNNWMhDphHxpRii9olI6pnH+IGSZAsEIIsRsJLl/1B89Odg8EKxgzVLsA+s34xSrVT9DSbHCEyDlAulQAhgJKnm//PJLJRIuQDcwGtAQjcyUDhM5xoQJE8xEj2RCUbKIJLpVfipS3/RBxCAdEydONBu1TGDbtm1GOkFr8nw3wfHTtUCypRmPfbCZXr9LJ4BeVYUngE6TCXrx4sX5PhRPAUkAyIc1k1/BOCLVDAErCSAL48ePN9cAsq1RNIUXsiFs0HA+yNRGcsCAASYKrUgObPLwkFZEgkJnZCVYCfodSooVngCemNWqVZOZM2fm+1A8BYgY2jUKGDTC5g5EiiEOuERs2bIl7ffhfEOIu3fvrtX4Cs/MB2zQIMclAZknJEEUR2nE0x1wA8Kb2M/OCtnCzJkzzVxZCG4cejcoPAEKlyiWmjNnjjZEiAKkmPQUE7LCHfBZJQpGqjnV8USkmfPNJq1Xr166CCo8BTZojEmI7ddff53yxg9pEfcFf6eE2D0ITDCX+NmDNxvYs2eP8dNm/S6EAmS9IxSeATcVhGTRokX5PhRPgeYmdLnSts+pEQeiaYynVNKdW7dulW+++cZszhSZj+Ajk+KnIjNjHIL77bffyq+//ur672g8w+u5P3TD5w5skpGw1alTx2y2FftAsIbxxPpdCFBSrPAM8OU99NBDVUIRA1glqT1b6u4dFBC5tU6CQEMwiHZYb1hFZjd32DXxU1Fy4EzTs2dPI6lg3LKhSwZqNvA+J5Ni6xUUyfHzzz8bqUmTJk3yfSiew8yZM41nc6G4cSgpVngK7DYpZsiG16yfYdOc9JYnaqFwBzZZyCA4Zyxs8cB4o6iOyBtEQ6OZmQcabTqBqTY+c2CDgcSHjRwuKcnmBuuzTcRT4R4HHnigaTyjG4lIMF/Onj27YKQTQEmxwlOgdS6LJj3UFcXtwcaNG2eIhSI1kPpEFhHPymrp0qWGGEMw6CaoyDzQwKJlVXvBzIINHBs55s54xIQoJ6AQivbRCvdgvEL+iMwrIoHUkQxboUgngJJihadAGoYohkooYkcrkJhgx6TR4tRAcQxji2haLG020bO+ffuqV6vC123hrV+sMxqPVRYWhdrCOT3QMIUGJ4riYJ3Gzq+QLP2UFCs8B3adRIrZgSoiQaESi9yqVavyfSi+k59gZYXOGJkEhSFEf/h/WugSYVPJhMLvYM6EFLP5wymBKCdjnOKwQtF85hJk5ZBdqeNEcbDxQupYSFFioKRY4TmQBmRCz5RBfaFFi9HJarQ4vWr9Hj16mIp75BK2M5h6ECsKBZBfpBRsnJELjR071uiI7bhXuAfzK/MsXQSpS1BEgsAVkjPW60KCkmKF52BNwFVCET9azPlRUpw60AWiGyZSTNEi0WNkFYrcROurVKmi3rhZxgEHHGBIMAVQWAvSfEazIKmDjphIrQqhS1s2MHPmTNPuutA2DDo7KTwJUjKI+LUoJ/amAQ2skov0IxxIJrBqgzjYIiRFdgEhPuKII8xPRXbBRu/UU081mz7Vyae/gcaaUTfNxcGcOX/+/IKTTgBdVRWeROvWrc1PjRbHB4SOnvOK1MBCR+MCSDHpPzxelRgrCkXniYaYCCcyK6QU6OWRU2hmKTUgmyg0aUAm157du3cX5PlRUqzwJCiIat68uUyePFkn8wRFNRQ60GZT4c6WDdJApT6EgQgapMESY/XGzi4gap9//rl2ZswSGNuM42g/bp5HX0xnR51Lk4P5lHOVavvsIGHKlCmmkQlSnUKDkmKFZ0EHtzVr1qjTQhywaSDCSdGYIjFmzZplHuvXry+2+UJjDCGeNm1a3o4vCICQUUCrxCx7hJiudmz0nE0mKLBr3769ySpp5i056PiHfZ0GG2KDNZmxRLfQQoSWXSs8C7sTJVqsHZiKA0JXr149UyFdt25drS6PA84PUWL0b7FsqSwxVo22wq/47rvvTP0F4zhW1zXmT9LdREBxo7DyNEUk2LSRfeN8afe6+FFi5sxCLUDUVUDhWUBS2I0S3VDNZ3wnCiJv2uUuNvBspSCELl6JvEaZ5JFVsCjSNTA6oqxQeBmM7z59+iQkcjjWsDEkEqrzafwiXOYA7foXPyPBxqpjx45mc1WIUFKs8DQ6depkbsQZM2bk+1A8iQoVKsiAAQNMxFhRHEzcyExw63ADNhgUJlGspEWMCi9j5cqVRTUXOCS4cZlgY9i/f38zb6iMJRJE0pFNkKHE71kRu8COWpZClU4AJcUKT4PIhy24U8QGCxxYt25dvg/FM7BFMpCAVNJ8SFDweGWTgcaYVKqSh8yAaDyttPmpKBnIfpDGJpuW6vhkjKOXRYO8ePHirB2jHzfQ/fr1c72BDiImT55c8DZ1SooVvii4w0hdC+7ig3S/bVkcdBBBGzlyZNqbBIhGhw4djO4S+cWmTZsyfoxBJR3UCBRq2jUXgMxOnTrV6OTZ7JFJS0cLz9/QHRNpGtHRoINNNBlJmpzo+IwN5lPGCutxIUNJscLzYOdOxJjIiCK+pyYPHBaCXDXN5gnSQKSX81ESkEYl1WyjIiyaivSBMwIyKH4q0gN6YIIDpK/JoJUEbPrw6kYjykYyqCDSTgSUeUMRH6y/SHSoYylkKClWeB5ENYiITJ8+Xb1kEwAjddoXL1myRIJqFcTETetRIr1og0sKq9MkzTxmzBjTBEGRHrh3GZt6D6cOir9ssRwp/ky58VB4xwYSQhjUsU30E+/skm4yCn38TZs2raAL7CyUFCt8ASIjROrUZzM+iKazaKI3DCLxoC34IYccYibuTBBiJ2rWrClly5Y1TRBUu63IJTZs2CDDhw8vGneZ1GRzn7CBpMNjENtvs6ZQN4ClJXISRWzMmTPHZHgKucDOQkmxwhdAi4iMQgvuEoPUFlpDCFxQYAuNunfvbvRu2fAbphr98MMPN1KKCRMmGAKuBXiKbILxRYaCWgE2vNkibRBjNn0Ax5Ug2RGizcZ1Qi3YEmPy5MlGalOtWjUpdCgpVvgGEB60b+hGFbHx/+2dB5SU5bnHX03U2I2hiA0UCyJgAaUISJOidKUY7D3eqMfcG73ea0xiicYTNZ5rLwFEERWlShUBEQXpXRQERWmCAkpUYrL3/B7zrrPD7O7M7ux87f87Z87A7OzszDff977/93n/z/PsvffeVnEBYchgH3e2bdvmpk+fbrYRFgJV2YCD10d4k32dJOEgCg91hFl8sTNWu3Ztq4hSiOY8+JVpBPLFF1+4JIDVim5/JNiJzLBDge0p7gl2HoliERnwfBEtoZSQKBsGMTywcRbG+ACJoiFWfVm6qoaoGglKiGP+jTgm+UmUD98RC4pCfVdRBt8mCbPNmjUz32+hui1io2CMRZCz4IwrHFtf3xnrhCidWbNmmbUmKdF0iWIRGZgYmjdvbtGT7du3B/12Qg2VF2j7ir84riWUWBzRhY4oWqHtIt6zTAk8kpTmzp2bSB93LhCNIxlUUbmyu4X5XQ9aNlevXr3gYpwFHyIIMRTX5DtKLdK5Uhao8sfZRYsWBTLGBoVEsYgUVKHAIsCALUqHZBwi63hfiajGLcpDJIuII5G0QmwrlwZRY6JrRIynTZumOtHlZLBT89lXUhAlt6g5f7CGIYqDBPGDCMJnHMeoPkKPds74Y/OdkBs33nvvPQtGJcU6ARLFIlIgiM844wwz/tNuUpRdZxdxTCmdOEVEGKSpMIEg5nwImlq1ark2bdpYMih1eJNcJ7osEHtU7wha9IUJ7E3UFmeRz7VKuTUqqAQNC02uMa4vxll2neIA4yCRTxJnVYKtbHbt2uXmzJljFSeS1PZaolhEDrb3mExUiSK7zmxkrsfBW0zyEdniTGxEecK0Dc97IbpGhQqOOyJCnfBENuc0nnRsJSzywig+WFRjVYpD0xVqEpNEyLhYKJ92VFm4cKEtiDgvk4TOChE58LuRMcwWehzEXlXy85//3CI+UfeDEbVgYmZSQ0iEFS/Usa3MnDmzuOSTEB52Ej766COzkeCJ79ChgyUghnUrHwHJQpTrL8zXXraeaXbQklBarLLn6LvvvmuLtaTVb5YoFpGEhDu8smrmkX2pJZLBomijIAGJ7WWEMd97mCLEpUHFALZn8S5OnTrVSglG8diL/F+HnA/Lly8vLusX9g5hRK9J+mNxh1CKckIplSbIAxBl8/7779tOF9970pAoFpEE393xxx+vDOIcPIIk8dAMIEowEbMjgB2Bbbx8dvOqSoj6IYrbtm1rkRZ8jFEWE/k6JnhUwxoRrUqoloOfGssXO114h33DjChARJsFKQvUKFb++fjjj+0a1FxRPkVFRTav0qyDOs5JQ6JYRBZWsZs2bbKtSFE2lHZii5Z2nVGqRoHvjwQ2BDHe6Kix//77W3WKdu3aWSY/W+Z49ciATxp8f506dYrk91hRvAhDTLLAQ1j6kmdRgwUp57EvExeVhFKuNZIZWYwlcUGWK+vWrTOfexKjxCBRLCILK1ky/1nVivKh+DoT2/z580Pvc2XCJSLFJNawYcPI+9q85YOIty/fhvUn6dHjuIII9lUlfN3w1q1b232U8VYPFtd8tiiMI4x3WEDwx4ryeeedd2zhw05sEpEoFpEFwcRqlqSmjRs3Bv12IhF1pbwOVgom7TBPZGwz41+MW01boqRE2+rVq2cRmSlTpiSmIx6NIN58883YNoRITaLjeyUpFBHso8VxilLWrFnTOt6RpxDmiDGJrpxvjHth926Hga1bt9oxY0cjTudrLkgUi0hD0gTb62T6i/Jh25ayYWFNVkNAYC+gCQYTWdSrZpS2ODnuuONc+/bt3VFHHVVchouocZw9j4gnahSHWURVFsYhkujwYrL4IdoWR3FBe2RsIOx6sIAN63fK+2IByhwhsosS77///lbdKalIFItIw+q/ZcuWthVNVyiRHURPGADDVGLJF9YnQx9BHIYmBlUJSWdUqfDloSiUT2UCkiHjFiGPK3xPa9euLW4khAgmiQ5REcducKkQBaeREgtYjkEYwTJBCTZRPlSbWLBggUWJ4xiMyBaJYhGL1s9sS+PTFNkLMoQxIjQsINBZ2PB94hVP4q4H3mm8qJMnT5bnOMTgDed7euONN+x7YtsZqCgRxSS6isLCFRFFfkeYQNxhXxHZM336dKsywg5AkpEoFpGHVS3RGSYpeYuzgygWTT2o3hGGMm1sc2LpYMv5iCOOcElttEKEnGYOxxxzjEXgfNetJFarCCveM4wnvHbt2maDSeo5660UnKdEGknACxrEMD79JEc7cwUbDAGSVq1aWc5JkpEoFrGArkuICkWLc0uWoUwbiwlanwYFiR0k1SGMlQzzQ6UKfJDUOGZiJynyrbfeMmsF29Rhz/gvDbyKlNbjPkpwvBFaLFIAuwv2iHPOOccquoSxNXMQsHBbtWqVeaqDgoo1S5YscUcffXQia+xWJkrMDkfjxo1d0pEoFrEAMdWmTRvrxIMnVWQHkzriOKhEGSbRDz74wN6Dj4qKH/AJWkRumjZtapMWW/VYKxAeUUvKQ+BT6ikqEbxvvvnGIp8cb6Jo3iJB0hYRYi3gSkLSKB55qgFxTRcarEb48rHSUcZRZAeLPcYVSgb+NCLXZlWiIyBiAwPhjBkzLKI2YMCAoN9OJECIkiwDhS4dhW0D0UHnN6oxiNIhOskNoUa0mHu+JxYzHEe8rGGPwJKMRmcxBGVYq59wPLkm2E5m9wKRQNQRz2zYj28YwPZDZJ3rmmPHTlShYPxiwYIw1wI7e9hd5biRyyEkikWMYCAkWjx8+HDz+xG5ENlDzVESLQpR5J6uekQnyAw/8cQTq/zvxQW26onup25ZYz8hckwkGXFMkmIYS1CRSEkEkfcYJlHMuUgLdPIRaG7DFjIJj3juOZaKnuWGX+D6qiqFACFOnoRf4Ivs4Jxn7OjRo4d2Pv6NllMiViDoyIgmWixyL7FEEtFnn31W5X+LLU78pVRcEJVvnYwYQAgTRabOsweveNRsFoWCY0PCHH5KznsWFUceeaT9DCHMolqCuOLCmPORyHtVl8pE2DHe+7J4Ins4biRKkpMjfkBXvIgVbCmToPTSSy+ZQAhbqaCwb33SpQr/JAIBwVUVExgRQ7bQ8ZeKykOEh+grN0SIFweU3KOZBOX3/M+ZAJOYXU49YUQw5x9Raiw77IpwDnJcWBBqyz3/YJdhR4iqKlVRoYOdEsqv8T2GafchClChg12m3r1769xPQaI4IjDBPfHEE5aFjqhgC/X666/Pauv5T3/6k5swYcJuj+OVe/7550s8xqQ6bNgwN3LkSJtEiJxcdNFFViYqKpC5z7YnLWUvv/zyWHaUqirIqmc7GStFvhMvSOig+xUiBFEs8g+TG2IPsALQ2AYhiD2ACgr8jBJigMWI5xDRi9OkyBjGjXOXKCXVVXxraT6/P/cQUUnu3FUICEqw0Ea4+sVbPhc6JNbxPWJ1EblHiVlM4MEWPyJRHAEY4G+99VbL6u3fv79NYojWm266yT399NNZeWeJFt1yyy0lHsuUOMLrvfDCC65bt24mLt9++2135513mrD0k2lUosVDhw61bVF1NMoeJi624hFR+fSYkbjEBIa1RQkdhbsOKFPIjUU0UTXfwRBBsXjxYhtbeB67AvhoeV5VRZJ5XaKF+X59GmlQGQLxxY1FHdv3BAzwmRIdJ+GL45CkxhphgHMLwcp5xoKYsSVfnSo5f9kVobaubC65wQIZPdGnT59YLYjzgc6kiGSHsgWFOCWRDGhy8Mtf/tINHDjQ3XHHHeW+BgKnY8eOZT6HqAq2g169ermbb77ZHuvatau74YYb3GOPPWZ/OypmfNqtEuWm4xQToqLF2UM0zS8kqPtZ2aQthMp7771niTckMWkQDgaiwtwAEdGlSxcTkF5McvPiYvbs2Sac+e6JxHHDYsA9HuWKXE+cV2yjV4SdO3daxQ1EkL8RheTzsEVPaT/+jbDnuvfWHMS+osHBwrnCQhhRTIOPfIlivn++a39Oi+zg+mVeJGqvnI7dkSiOACSCEO1gO9vD4E80lBqa1GckEpxNhi6TSWmlhYgKMxEiilMHtJ49e5ogZxsyKhMM75sEpGeffdYSjxSdzB0ii5S4Y8egMiXTON+w6hCFlCAOD3wXjCPc0qFuNNFXIvyMGTQQITESUfzhhx9alMmLZW6IUAQKYwzCh+uPG3+DG+KU10F4E7315eQYtxA1vD4ex1TRy2N+zMPOg4AHIs28Bu+R32UBxyJY0cLwwjnQpEmT4sUU321Fdww4J1lgMyeK3GEeJ1J8ySWXKFiUAY0iEYAyRgz66YICkTFmzBjzBpZnEWCSITLEPVuIWCGuu+66Yv8hMNlR8ind7+lLQPHzTKKYQcoXtgciN2EqJk+GOStiJlKRPQgOzjtqjnKe5NohCh8nQoVzSr61aEEULjVJFbHrJ1AifewYefGKfYGbX0hR3zcVnnvuueda6acRI0ZYhRi/MOecYveA1+fnqUIbIe3rBrOo5XV4PH23KpuAgAgef/6QWzB//nzXvHnznHeh8Mdjw6JaAgttkRssRgikYS0qZA3pKCFRHAFIeMtUMsXXgUSQliWKed6FF15oGddsnbA1iieZaM/DDz9cHGHhdfDdpa8e/d9B/GZi9OjRbtCgQS6M0Ir1kUcesYhnlJIFwwKDJ4KHRBkESbbRGS+OOJ9UOzT6pArR0qLL4BfcjDMI2tRycPiJWZy2aNHCfp9xxkcLObfOO++8Uv9+VVRCEcHAGMKCm/GBcyHb75ZdBsQ0SdSqQV8x3nnnHRuby7NSJhmJ4gLDRMFqLRuIgDBxkByTKRriH/PJM6Vx7bXXlvg/kxaDCkl1WDN8Ah2vk2lLq7y/0717d3fWWWeViBTffffdLgwQiWDgxRqCn1FbbrnDgsy3vE39nksDEc2Ex3mj+pfJrX6RDsLXV7uQyE0uBGFoW45AmzVrlo3P5fmCGVPIS+C8YddA2/65g/2IeZBjX8jGKlFDorjAUAOWqhHZMGTIELMysO2Pbzgd/1hFbAF9+/Y1vy1ePS+KeZ1Mgr28v0MCDrewgpAj0sm2Ub9+/YJ+O5FuBV0ebKcjiIks4kHV1rYQIh2CL9gnEMZLliyxf5cFfnPE9JlnnhmZZO+wQXId43FqbpLYHYniAoMP6rbbbsvquX41R3Qz1bPr8Y9VZNWHwGXV7ZNX/OsgHtOzy/3fCbPwLQsGAqwTr732mluzZo01qRC54XcQiNjgcW/YsGHGyYnziXOHSU7F9IUQZY3LLJyzifpi/cPjrkV2xWBRQQk7Sq1qXC4bieICg/Ak4S0XSHbyNUVTk+3YzuYEr4i/CnFDua1UbyAVBsaOHWv2h9QkGxJg/M+jCiKO7beJEye6a665RlUQKgi7BuvXrzcrDdFjfxypWkIkhyQsSvfp+Ip0sE0wKQvh8QKNHSYixiRy+x1JgjN4iEnGxEcsQVwxOI7jx4+3EmyqwlQ+mrkiwNlnn23JdnSzS006oCMNfqzUweKzzz6zmwfx4jPDUxk8eLBdLPiLPHS/QtiQIe7hOaNGjYp85xuiESxGyF4mGi4qBosotjBJumTC4vzAcsM2KIs0kCAWQuQC1UeY07BesfBmXKGUZr6bCCURAmpogs6dO2tszgJFiiMAkbfhw4e7e++9161du7a4ox2R4yuuuKLEc33TjZdfftnuEdNXXnml2Qd8CRsipiQ4IIgRwh6ifHS4efHFFy3yRyk2qjZwUf3ud7+L/OBE9juJX7R/piyUtpEqBjYaymjhR0cYk4THwovjK0RpkPWO0KHDmRouiFQo0YflaubMmTY3cX4g5Bhn8tXsI4mwwMBLTNWX1N1fUToSxREAMXr//fdbV7lXX33Vor80VMCbXF6tRgYXosnUdpwwYYIJacQLFgJaRqevHKlUQVklyqzxfAry33777VbaLA6QVIgdhKi7ytJUHLbi2OpkwcT5yYSmigKiLHxjD+6FyDRXMY4QAKK7KvNTrrXRRUmoNkHQIi7zdyGQKI4ICNVbb73VbmXhI8Spv4eozRZE8kUXXWS3OIJwa9WqlZWio0RbVJMHwxKF4HxhxwFPoBBCVHZ8xuZGYlh6EymRGyxAsbWx0KBevMgOGUxE4vCdlOgGmNpcQOQGHZGw33AM2YnwnmIhhMgVWg+z0CapzpeARByzuylygzGZpHlsKakWSVE+EsUikeXFyIKnygaeWJHbYItlAq86UWIiO1RUwaO9atUqt3LlyqDfohAiYjB2UMOfRGjPzp077TGf0CuyhzGajrV0iaxIH4MkI1EsEgm1irFPTJo0yX311VdBv51ICWIiOundDYkak5hJDWNFjEUm6HRHSajSOt6JZOLHDGoRp+bIEOVs0qRJccUgCePsYDFB6VHKkHJMRW5IFIvEQvIBUeNx48YF/VYiwbJly0wQUz2ALc50qGNNxJgqA5rARDpcayTuZmolL5IJSc/sLpE4fuKJJ+7285o1a1rwgtroLMhF+SCIGX8pwSZyR6JYJJZ9993XkjqIUii6WX40h26AVJxA2JQGEWOiO9SFJgIvcSw8+EUpKZmpZb1IJkSDqX9Pg6rSoAIFC3GSeeUvLpsPP/zQFg+dOnWyYytyR9UnRKKhfiMRCqLFWCpUu7j0Emx407LJCEcQU+eazGdalFNrVEXjBaWh6FpGJry6kyUXhO2mTZtstynbChMsxP1iHHGscXp3WGySXEdggnr8omJophKJBgFHMgIDyuTJk4N+O6GDjlLUlSWhLpcSSXRGxD+6efNmaxaj2rRCCMYB3/QH72uuME5PmzbNdq5ESWhKRRMlksiZ10TFkCgWiQfBR8e/efPm2fau+AGOBRNYatvwXKATVbNmzaxeJu1baQcthEgm7B7Nnj3bWsTTKr4i2/vsMNStW9d8yFRXEK64dB3Htm3btqpJXEkkioVwznywZD5Tu5jBO+msW7fOtrrZiiuva2JZUK6NutBEeNTgQ4hkwoKYhfH27dttoVy9evUKvxb+Y24k6SmI8UP0nXkLOwrHVlQOiWIh/m2jYNtp27Zt1gI6yRAZXrhwodklqCZRWQ455BCLYNBdkQGc6hQieWCpQQxxL5IFreDxAbdo0cLyDCoL1SpYsL///vuJT9ycOXOmtcXu3r27cjfygI6gEP+GCbt169bWLz61iHzSwOtHUgt1LvOF97ix7TljxgwbxEWyYLucSJay4pPD1q1b3Y4dO0ys0aWOTqL5ggU743WSkzaxohDEYbFBMrSoPBLFQqRAS0zE8WuvvZY4D6xvyEHBd0ogVUWyBq+NpQL/m7Y+kwXl+bAmqUxfcixYs2bNch999FGV/Q0awVDNgnyQpAUy2HV79dVXbSfu7LPPDvrtxAaJYiHStvnOP/98a2P8xhtvuCRFdKZMmVIcwa2q7GW2zokY1alTxzzLNAQRyYCI4fjx4+1exBcWPdgasGAdddRRVtu8KvFjFcI4STtQU6dOteo+zFdqiJM/JIqFyFA1oWPHjhbNpBh63KE6BJ8Vrx9R3KqGSYyC/dw0mAsRL1jsMm5SAx5BXNU+V8YTyj+yw0f5Rxb4cYdGSniJ27Vrl7G7qKg4EsVCZIBoJhnOI0eOrFA9zahANjiCGK8fn7mQiRo0S8FO4ZP7VJ1CiOhDPgJjCaXTCgXjFhWEvDUrzmM2TXBGjBhhu214iUV+kSgWopToQ48ePezfo0aNiq0PEvsCiU9NmzY160hQ3ji2W0kYwbYihIjebhN2CcZJdpyCSPryyXxEqOOazMnxpfwa+S49e/ZUk44qQKJYiFI44IADTBjTPYkmFnGE6AoVAYIsk4UYJ8GR401raBXlFyJaW/lct5RaDLrGO2MJEVQg8e6rr75ycWLRokVWn7lr1655reQhfkSiWIgyYHuf6MPEiRNjk8RBK1AK6WNXoJxRGHy9++yzjzX5YMuVQX/VqlVBvyWRZ6hT3alTJ7sX0QcBTLvmpUuXFm/lh2Es8RFVghmMc3GxUrCLNm7cOKsMlI/68SIzEsVClANJd7TOpPxN0JGQyoIQZqLAlxY22Ao86aSTrAUsjUOAcksiHrC9zSJMDQbiwfr1692mTZtc48aNTaSF6XtlLMEShkgnik0gIMpgMaNMKLaQLl26BP12Yk14zmIhQgoDK2VviBS/+eabLsp1iBHERFGIytJhKozUrFnTjjkCnuP96aefBv2WRB4gYkd1gLhE7pKKtyTQ/r1Nmzbu8MMPd2HE7z5hqfA7Y1GFfAsWIcxDfC5RdUgUC5EFJI60b9/eog5VWYy+qkAIk5VNpJuJYt9993VhB2FcrVo1t2DBArd48WJFjSMO5x6RxajvtiQVrj+sEtOmTXPbtm2zx8I+jrDwZ7yjyUdUk6U/+eQTE8U06KCyh6haJIqFyBIG12OPPdbK4ZBUEiXYTsQfHaU2u0R48M+dcsop1h2LiSFuiTNCRAGuu7ffftt9/PHH1v6dLmpRAeHuAwG7du2KVKdSbG7YJmiC0qpVq6DfTiKQKBYiB2HZq1cvizgMHz48EpFLonJMZD7aHcUkJ7ZpmRAQyVGN9ggRVbZs2WILUnytVInx1R2iCF3vaD0dBWHM/EIeC0K+d+/eofJsxxkdZSFyAFHZp08f29KaPHmyCzNMYnPmzLFqDlFPNDnooINMGHPPZIGdIuqfSYgw4xf9RIVpZNS6devIlwGjhrH3tjM+hhlsKpSnxEccpch81JEoFiJHqIxARQqSN/DYhXVCo7YyRfWp5oCnLi6wpbh582Y3ffp0s1WIaIC/kyoFYU3wFD9Ch0mSXBGQ1DDHehVUc598gqinKsWOHTtCLYxXrlxp0XnaOBeyM6CQKBaiQjCw4q2j2x0CLUxgMaB+KNue1Fim9WmcwBNN0kmtWrWsixbRcLYYRbghax5PvrLnwwu2AsYObnSmo4Re3KC8JoECAgZbt251YYP3hI+Y8pTYVURhkSgWooL+4m7dutnE8dJLL4Wq3I/33dKtrnr16i6OUJmCJDw+I0Xtwzi5id0FF2WlouDnTCKIRLbsWeSffvrpdgtLM458Q6CAakI1atRwYYLFPfMJNj21cQ4GiWIhKghRlH79+tkWIxUpwpAEhs+WhAzEIvV+4w7RYrYYuQc64YWxMYn44dwk0Ule8HDhxy3GM7yr1B4+4ogjXNzxOxYffvihRcaDHr/5+6NHj7Zyd8wr2lEJBoliISoBkWIyg/GAzZgxI9D3gr8ZH1rSInE+mkVzkjVr1ripU6daLemgJzkhwgzXB9eLryyBLQm7VdI833xudjBI3g0SqmIwhhMhjusOXxSQKBaikpCEQnQFMUakMghWrFhhExw+tLhueZYHkZW2bdtaCbdly5bZZO+bDAghfmT79u1WdxgRhsc2yQtIOvJRC52KQkElTq9du9aqGZ111llWIUMEh0SxEHmAxK/jjjvO6krizSskbP8hxsnspzJGkiFTvkGDBla+DT8eHdSEED9CmS92tYgOI8IaNWpk102SoTkGx4HAgq/rXiiohPHKK6/Y2I3PWQSLRLEQeQABho2CrUcSJQplYcAywCRXr149y+wXP4A3EmFMfVXATkGZKREclPSiJFYcSntFEd9em1rfjBfUHcb+JX4AUUouRiFbKfOdvPzyy7YoueCCC9SgIwToGxAiT9BGtH///lYNgYhxITreYRnAuuHFnyi5UPGTDNF7kmnYMub7EYXngAMOMCHGvSgcWIhmzpxpdcsBvyq7WhJgu0PCLos22lpXdcQYy8rIkSPdxo0bXd++fc3bLIJHV4UQeYSKD3S8I/Fu0qRJVfZ3aFpB8XmEd9ISYypC48aNXfPmze14eYEQhTbdQlQUqnywEMQqwc6VmkBkD0KVxDu8vlUFzVHIfWCHMQnVPqKCRLEQeYao7XnnnWfZxNzyDZnSixYtsiixoj3ZU61aNbNUnHbaaVZ+yh+7pFXrCDK56/XXX7d7UbXgF0YM08CHJDJyHlTRILcxHDvakiVLqqRrJqUJ+X7ojKrEunCRbHe9EFUE3jS27CdOnGj+Vjx8+YDEMaI/RBZIDBG5WyrwDHrf4IYNG2yBQQWROnXqaJFRxSg6X7XHlgoKnNt4VBmD8HAnPYmuopC4zOKC8QFLBVUq8gFJ0SwO6arXrFmzvLymyB+6WoSoIjp06GB+gn1x/QAANwxJREFUPvzFl112WaW3yL7++mvb9j/ssMOsm5u6HVUeEo2Y7JYvX26Z54hjvieJYxEV8KaSRPrBBx9YIyF2kPDGxq29exA0bNjQ7vPVSANbBol1eLo7d+6sMTyEaOQXoopgwKMQOyJ26NChlS7VRoISW6G0X9Vgmh+Y7Ii4s71MVv7ChQvdp59+GvTbEiIrPv/8c6uPvmDBAhsfOI99d0dReRhnGR9YYLD4oHxaReF3X3jhBbNxqdJEeNG3IkQVQiONCy+80MQXA2JFWhAjptnmB7ZGNZjmnwMPPNC6eSEqfESfyBuJNtryF2GC8/Hbb78tFm2cu1T1YDuehZ2oGijrSPWarVu3Vqh0JuM/YzfzATkNIpxodhWiitlvv/3cgAEDLBt82LBhxfVCs4GkpNmzZ9vWfpK7ThUKRIWvo8v3RaLNlClT7PhLHFcOIpmUD1RJtorB+UeZMKoWkFcARB1ZzOEdFlXLMcccY93/qPqTy64fvmQsE4zlzAMsYkR4kSgWogCw/UYNY7x/o0aNykrgUiuT6hXUryQKJMtEYcG3TdtohAelkxDHuSxoRElYbCAI1LwjNxBVRCk5/ygThg/ee11F4SDK66PxBCqysVIwzpNUx6K6X79+rkaNGgV5r6LiSBQLUSCOPvpo16tXL4s+Eu0pCxJm3n33XatBTIayMsiDgagmJdwQx5Rp4ntgoluxYoUlPorswTpEJn9FLERJZNeuXSVaubM44zwkp0DRxmBgQde0aVMLVGSTe0DZNaL63bt3t0izCD+aaYUocJkfttFo7EEHvBYtWpQ6+LJVR5IHvmQRLEyCvuMUCxZql1Jaidqv1DPlXpH88kUeJcMofce5L0pPniOySI1hKtjgP+VeEfZwwMKYRkA+UIGtJVOex5w5cyz4gWWIXScRDSSKhSgwCGGiZQhjEvDotuYhgYYBlggxXkERzugxIoUmKmxrs5VKJ0O2VoWoKPiFOZ/YgWCLHouEF14SxOHCfy8sYNj5QySnLvTYEcE2wS4fybsiOkgUCxEA7dq1s4zksWPHWiSICZD/Y5kgMY8tOhFeWLj4JiBffPGF+T69D5yKFUcddZQ1bRGiLNg1wgrB+bR582b7ty8BJsIP3xd2qnfeecedddZZFszAWkXeCLarTp06aQcpYkgUCxEADJRdunQxITxixAj7P6V+aDncoEGDoN+eyAESnzxYKyjQjzBmwvTCmclSCOCaJ+EWCw7JWuwwsNNABzoJqGjBdU2UeObMmRbQ4HukWdNJJ53kunXrpu8zgkgUCxEQDJg9evQwK8Vf//pX17JlS3f++ecXe1dF9KBRCxMjflBEz8qVK00E+ZaxfOdJrTONVYhOXvnqDhZFqGKCX5jzgHMF8YQfHSSgogk7e1jiCG5Qeo1xvHfv3om9zqOORLEQAcLAieeMTmqrV6+2aLEyy6MN4gahw43Iv69vTPSYKgK0laZBCBHmJAkhomqIwKTAtjr1bIkK165d23zCJM+y6OX7VwJtfOB7JvGWhLq+ffvKAx5hJIqFCHDSRBQxQf7hD39ww4cPt3bQF198sXlSRfRJFT5EBhHJlHIiqQovef369RPzXVPjGQ8tjSbiXGIQjznfMTYadglYDFCfFlHMgkjECxJun3/+eSu5edFFF9ljS5cutQWgxHH0UHxfiAAgekjJHloJ+y042n8yaTLAEl0S8YIIYb169Vz79u1ti5VJ1Ges08Z73rx5NsHGtUEIfmsSkriPE3xffH++9TJimKoEeMlJvqJSCZYaET/4rocMGWI1pOlWx0KXTphYpxjf1QUzesR3uS5EiCPEFHRn4kwt6E5U8Ze//KWJYgbaSy+91NWqVSvQ9yryD7sDbKNzSwWxiDDGUsMk6+sfi/BBHgDXrxfAiB+2zon6s/BhB0DEG6qFPPfcc3YdEyH2Xnl2QkiepBvp3LlzLYFS/uLooG9KiAILYvzDTKbUJ04XPUQaiDggihhwFTFOBix+WrdubVFktl1JyvOd30ja45zhXPDRSBFMxQjfZe7999+3lsvYYXz039tgJIDiD+P34MGDzRKD3S29ugwl9RDGLJgIgIjooEixEAWEzHP8hrRqxWOaCSIORB5eeOEFE8ZEj0nUEfEHGw0RYm6p2/Pbtm2zLVkgEZPzQW1jqxYEDdFAFiWUTgNfPo2FC6UTlSyXPLgOGZtJlGWcLq07IwEPAh9ayEYLiWIhCghiho5oJN6UBZEHIhDDhg0zK0W/fv3c8ccfX7D3KcIDiyduRCsRaNx81Qqy3okis4VLsxBuRK/CGK3kPXNeh63iBtYHmq6w8OCG2CVBiu5yPM6uDaXkiP75iKDqTicTzgnGZK5HghXlnQepgQ+uW84lEW4kiiMCg/MTTzzh3nrrLZsciVRcf/317sQTTyz3d9mWLQ38Tg8++KD9m2QRxFcmfv/739sWoagYlOvxGejlCeJUKwUDL1UpXnzxRathTL1bkUzYQaBSCTcPVRyYaH3pLwQenkZ/zbMrwf9ZiAUtRjn3zznnnMDtS74ihO9EhhDmuHF8eI/8nIg9Ub44V8kQuUHNceoQs0PDPJnLLgHzN8092AHSGB5udMVHAAbsW2+91erY9u/f3ya5kSNHuptuusk9/fTT5ZZ0uv3223d7DE8cYuuMM87Y7WdkS9OzPRVdyBWH2rQcb6JPTLq5wKTcp08faxvK94WnkfahQngrBS3C/TjBNr+vXsG27YIFC+zfRI6pfoE45vzhXCSxj4VXHC0Avtwhx4D60F9//bXd+MxcU779LlvgVHzxEfbUEloSxMKzZMkSa86Bf5zgRK6l1vx1yuvwu7yOCCe66iPAtGnTrO7hnXfe6dq0aWOPtWvXzqKIAwcOdHfccUeZv9+xY8fdHmOyZFLIFP1lmz7T74iKbbchiInoV9QDyiDaq1cvEzCIYyJZ6YsWIRC+iDsP0VBaiRMJJVKFICR5z0/oZMYjonkeYhnRzDnKBM7zSCLDL5kv0czfmj17tmvatGnOi8N0eG98Xj4Lnw//L++Zz4j4xc9JNQgWCnhA+XzYH7Av8fm8aE5SMxFRMbhOXn/9dXfKKae47t27V9iaVKdOHUugXb58uZ23ssOFE4niCDB9+nSLaKTaIJj82rZt6yZPnmzRQwRTtvB8XpNJo7StfCYYIiVxjCIVik8++cTauuJHPOGEEyr1Wkzg5513nm2hT5gwwYQx50PQW+Ii3Hh7RSYvIxFjxLKPomLB8LtONBdhhwMQAQhnfsZ5zLnHYo/X9jfGCe+fpE4r52XqjecQwebv8fvcEKaIA34XsUDTC57jbzzGtQMICd4fkV9uiF3sDUR5eZz3w3tE2PM+EcCADSJoy4aILjNnzrQ5loVc586dKz3e1q1b187rTZs22b/D6P1POhLFEYAGD6wq0y8gohxjxoyxSAgXWLZQP5FJsLTJYtCgQe7xxx+3AYAI51VXXWVZ16VBAgHtiT1MqMJZdIpJPV/RKL4PvjMm/ylTppiw4P8SxqIiEK0tLWKL95EqC16EckNw+kW1bzLCDYGK6CUqDUSDGV9SYfzA88wOFb/vXwtRi7jlXGZc8jDW8Zq8Dz/uEbUmOMDCkH/7Os9Et1WJQ+QTFmxTp061HB6CDwSg8jXOsrBkXuC8RiCr6124kCiOAERQ2LpJx0dDEKS5iGJWvkSWzz777BKPc5HiMWYQILLExEdiwS233OLuvfde17x584yvN3r0aBPS4sfvi0g+Ezi3fNOqVSsTBuPGjTMxQQRZEQeRTxgfStt9wn6QartCFDO5eyg3iPBFWPgb1wMCmsU9PycvAnz2PiKX1/SR5/TzWc0wRKHgfGU3jsUdQQe6EuYbzm8WmjNmzLCgCd0PRTiQKC4wTCD44bKBSYnVKcIn0wTlH+Pn2YLnjixYtoOY3FIhMvTAAw+UeIyElEsuucQ9+uijpYpifFapAweR4rvvvtslEbbFaO9JYmJVRq+IvHmPMVYXPMeyuoggYIJPFbFe8GbaOSG6yziT/hzGOawOQgQJCzeCPCTEde3a1aozVRUENrAvUlKR64ddExE8EsUFZtGiRVY1IhuoT0tiCBeP76SUin/Mt5fMBrzE/F62Pju2V9kWpVg5hewzeZBL8ywmDZJ9SMrAW0lSRVWDJ5xI26uvvmqR+gsvvNCEhxBhBMtEixYtiq0TQoQJvPDUIGaHlAoT1KuuSlgINmrUyHZZ6HqHjYIFowgWieICc/TRR7vbbrstq+d6ewRb8KmeXY9/zD8vW+sEwonJKVu8ECZJJtsau0m0TBAhZnHA9nChfL6U9rn88sutjvEzzzxjFUn0HYkwgi0il7FKiEJBXszQoUNt1/XSSy8tt8xpvmCeIOEVYYzfHguRdvyCRaK4wDAp+ISUbMGHt3jxYrNepG5TrlixojgrPNsLnwuPLNpcqlWwci5rW1Q4t3HjRtsaZrut0P5ett1IhmRQf/bZZ13fvn1z8pgLUQjwUNLmHFuROsKJsEAd65deesmCRYyjPoGzUCCMSTYl6CRBHDzKzokAJMQRiSQT1kNtTrJjifimClwyvLll4s033zRhXZp1gtfMZAkgoQuRJYvE7vgEIxKB8GkHlUnMguWKK66wnQisLtg4hAgTROHo7JhLDoQQVQl+XmyKtWrVcldeeWXBBbGHQApjOEl+9CTINBeLwqBIcQSgYQfdzKgAwarWd7RD4CKEUrn55pvtnqoRmawTCNvSOqJRhg1BzaqV5xH9JOmACM+NN95YRZ8uulB2iqRFvL00Cwi6AgTecnzFEydOdGPHjjV7DQugoN+XEEKEteQadjcq+IShNBpz+vbt2609OwGvyja5EbkjURwBuFjvv/9+99hjj1lSFZEWvKR4k4kMZttIgt7tbK2XJpIox4ZVgnaWbOWwnUQiANUnqFcsdq/iQZQ+TLYSvlvsOfjQKStEY4PevXvnZJcRQoi4QvUnqvYQkSVogPgMS6135noqCzG3cKOqk5KnC8seRSyZhMgjiO+rr77aPf3007EU05RAo9MRAxgDai7VPwrd9IUdBnzsJOCll+ATopAQAfPNEMK0kBTJCmaQlEzpTIIFYW3zTYUoRDH31KWPqwd/ZQi1gvZVhahAWT0iC9RtDqsg9p2TsNcwETDobNiwIei3JBIMuxXsbGnXQgQBJUWp0INf97LLLgutIAaukWbNmlkSfZjnmDgiUSxEjtBdEEEchdU7NZNZibMFR2UKEkuECAK61nHtcC9EIaEZB4IYscl4eMQRR7iwgxjGJkkAhkR7cntE1SNRLESWPjQEJdtZTOpR6r6FbYKIMf5wEjRJnqRzkxCFrtRCrkJqS2ghqhLONaonkYuDwKTCRNSsOzhcmXtmzZqVsYmXyC8SxUKUAwJy9uzZVo0jquWkaJxAO+4ePXpYzWuixiThCVHIai3Tpk2zeyEK4WEfOHCgmzdvnlWX6NWrVyStO0SKKffpfcYEaETVIVEsRDmRhvfee88mciwTUU9WoxwfBerZinvyySctGU8IIeLE6tWrbXxjZ4JdMiorhaXCREWgNTrzD+M2ARrt9FUdEsVClLFtRetmEjNYqUdt260sn/G1117rateubV3wpkyZYvUxhRAi6mP29OnT3fPPP2+dPhnnouAfzgYCMiTfESmO6o5lFFCdYiFKgcgCAytttoPqdFRVkCTYv39/Ky2HKKZY/AUXXGARCSGEiBp///vfrcY+XRNpeEXpvyhHhzNBYIbPxuciWkxdejVnyi86mkJkiDbgHwZKSFHnN44wsLZs2dJdeuml1s77iSeesCYvQlQVmsBFVUAnVuwS3A8YMMCdffbZsRPEHv+52MWcO3eudvnyjEYoITJk+jLYJCUhqE6dOrbNSDR80KBBlsyhnj6iKqJcJDzFxYYkwmNx+9vf/mZlJxnHjjvuOJcE6tata8GMBQsWaLzOIxLFQqTVs8RKQEJaktpr4lcjYoxnbeLEiW7IkCFux44dQb8tIYTICEELciJef/1117hxY3f55ZcnasFVo0YN+9w0ZaKhlIRxfpAoFuLfLFu2zH388cfWYCAuyRm5QNvqjh07uosvvtgiEI899phbunRp0G9LxEjE0OY5KTswoupYsWKFjU/r16+3FvbnnnuulZ1MGiRNE8AhkMOYLSpP8s4iITKAL4u6lg0aNDAfcZJhW+7666+3CMzw4cOtPz2TjjqRicqWN+QaU/MOUVGoujB+/HizuNGMo1u3bolPDiaAc9BBB0W+XGhYkCgWiYcSN3vttZfVgYxrckauIICpRnHiiSeaOH788cddz5493bHHHhv0WxNCJBB28agu8c0339hYxI6exusf8IJ47dq1tnBg3BYVQ/YJkWg++ugjN3XqVBtINMDuTsOGDd2vfvUrV61aNffcc89ZlEYdlYQQhYLSY5MnT7YkYDzD1113nTv11FM1XpdyrGjIRFk6UTEUKRaJhfJj+IixC+yzzz5Bv53QwkSEz5hOSm+88YYtJGiZSg1nIYSoKjZt2uRee+01t2XLFtehQwfbzVNZv9Kh8gb2JDzX5Igcc8wxQb+lyCFRLBIJiQlk7FKOrH79+kG/ndBDVIbKFCwgmKSeeeYZKyJPnWNNUiIb9ttvP8uW516I8nI8KA355ptvWp34q6++2pLKRPlgnUAYkyRNsEfBi9yQKBaJY9euXVZ6jYQ6EutE9lSvXt1dddVV1koV28n7779vyS61atUK+q2JkINvXxO0yCY6PHbsWAtcEBlu165dIitLVAYCPXQtZbwWuaEzTSSOvffe2yKc1CGWLy132JZjojrhhBPcmDFj3FNPPeWaNm3q2rZtKxuKKBV8+3QcI1te54nIFKxgsU2EmOjwZZdd5mrXrh3024osPimaxERqztesWTPotxQJJIpFYsCXxqTcqFEjla/JA0ceeaS75ppr3KxZs9y0adPc8uXLrXQbpZKESOfbb781Dz+CR6JYpPLhhx9alRtqWGPLOuuss2zxLSoPOSBr1qxxZ5xxhoRxFkgUi0TwxRdfuPfee88mZDr/KEKcH5i4mMBOPvlkm9SGDRtmorhLly6J6i4lhMidr776yk2YMMEWS0Q2L7nkEnfooYcG/bZixUknneT+/ve/u7lz57ozzzxTlopyUIaMiD3btm2zygmHHHKIa9KkiRLDqgCOLZ2l+vbta9H4Rx991LZBSZgRQohUGBcIUjzyyCNWW/f888+3CjcSxPmH+Y4EVwJCc+bMsQCRKB1FikWsYYXM9j52CVbJ2pKrOoi+k+BBxIes8UmTJrnFixe7rl27JrJtthBidzZu3Gi5CCyeEWuUWlO3zKoXxtgnEMWqM182EsUi1jDYUkaM0mvKYC4MZD3jLabjFJMf5dsYkEnO42cimXD94WnUdZjcRDpyDwhS0AzoiiuusApAojAQEKKsZqrHX+Px7mh0ErFk586dlnXL4Hv88ccH/XYSCdFhEvGwrhA5xjdIEs3pp5+uiH0C2X///W23RiTPKrFw4UIbAxBiLI4ptaYxIDjoeLd69WrLB6EKk/gRiWIROxDD+Fmpi9q6dWsl1QW8bccESCIek+K4ceNMJJ9zzjlW0k3fTbLEEW1oiRTL158c8YWNavPmzdYyvn379pZ/IIKFCD11oJknW7RoYQtW8QMamUSsIBLBhY7YonauRFc4OOigg1zPnj0tcoy/+8UXX3SDBw9269evD/qtiQJWGpg4caLdi/g34BgyZIh7/vnnzcJGRzqS6SSIw1Or30frmS8JJIkfUKRYxMqzhl+NFpdsC8kvFT7ofEfZJeqSTp482Rp/4D1mS1Ul3ISINix42BHCLkElif79+1vbYQUnwge1whHG77zzjtUyZjdPSBSLGEFWLStfyq7tt99+Qb8dUQpMkFgnjjvuODd//nxrF43fmAGaToNq7CBE9AISiKuZM2eaba1z5842Dss3HG6I4hNA0pj7IxLFIvLgUwR8Ua1atQr67YgswVfKxInXkMmUSRWRTLtokvHkOxUiGkl0LGwpf0l1A8Zg7dJFB/9dUb/4/ffft0pBLGySikSxiDRYJSgCj4BKLTcjogNRCuwTCGS2XumMh8+NJEkEs8SxEOETw7R1nz59uvv888+VRBcDSIDdsWOHJUIzlya1dGIyP7WIzcBMMXI61kkQxycZjwRJ6pmOGDHCJl0iT40aNdJWbAy+X9p/63uM9pi7dOlS99Zbb7ktW7ZYuUuuWTXnicf12axZMwtIEGhiHE7itSpRLCI7OM+bN89t3brVLl61B41XMt6FF17oNmzYYJPvqFGjisXxqaeemsiBOi5e8qRGn+KwI7dkyRK7HtlmJ3muV69eEsMx45BDDrH5lIT1RYsWmY0taWiEEpGELTtqX+J/okGHiKc47tevn5V3YjIeO3as3ZOMd9ppp0lgRbChDsKKrXbVRY2OGEYczZgxw3355ZfupJNOcn369LFrU8STQw891JrsJDX5TrOKiCS0iyUhS1UmkvFdMxGzEEIU0wCESZqsaSIZSU4KiVpCLN+hT4wV4YXviAQ6rjN8pvXr17fyalyLIv5U+3egiUXRmjVrXN26dRNTVk+iWEQKIk20pTzmmGMkiBNG9erVrQHA2WefbZP1hAkTisVx48aNrSC9EKJyZS0XLFjg3n77bas53KBBA7Mt1ahRI+i3JgLgyy+/tIoUX3/9tdWTT4IwligWkYFs57Vr19rFKZIdxcDP6MUxTUDwHGOpYNvv5z//edBvUYhIQbIyScuURKQrKBYXqr/ImpZsqlWrZuMq5wW5HJwXcUeiWESClStXutWrV1vkgr7tQuB969Gjh2vTpo1N6CRekiBCEhDJInXq1ElEZEOIilBUVOQ++eQTK8G1YsUK85BqYSnSIZnSe8sRxlhp4oxEsQg969atcx988IEleWCbECIV2kN36NDBIseLFy+2SX7w4MG25Ys4ppybfMfh6J5FpIl7EaxfGBsa18nGjRstGnjuuefaDpwsSCITBKIQxthr4o5EsQg9hx12mA3YihCLskD44i0m+Q6bDZM+FSveeOMNe5xKJQhoEQwILqL3IhhImJs7d67d6D5HjeFzzjnHHXvssdpREeVyTEpACo8xuT1xRKJYhJbPPvvMtvFIqJMgFtnCBM8Azo1EEQrRIwRoI12vXj2LHnM+SQgUFqJMlNejgoEi94WzSHz66ae2QCQngzKG3iLxi1/8Iui3JyLI9u3brQoQVsY47txKFIvQCmLM/UQzEDJCVAQWVZ06dbLyfXjiEAcDBw40QcDuAzdFjwsD0UkqG5DApWNe9VFhrESUVaPzHP77jh07miBOav1ZkR8OPvhgK9FGZ0M8xnELWEkUi9BBJzMmz6OOOsqSpoTIx9Y99okmTZqYtcLXYJ06dapFOxDHeNblqRRRjsRTPovFH0nJCBbOaVpryyIh8kn9+vVLJN/FqbOhRLEIFXSpI0JMx6Sk1EUUwVgrSC5iS5mBfcSIEe711193J598srWSlr1CRMkewSKPyN13331n5263bt1MuPzsZz8L+i2KmNKgQQMTxqtWrXKHH354bMZLiWIROhDECJO4XGQinPgSVNzwHiOOubFLge3C2ytUnkqE0dfpz9etW7faljZeec5XeYVFIdhjjz3sfKOaCf9mgRaHOVuiWISCnTt3WkIdZbTUPUkUGoQv9Y4p6/bxxx+b2CAxb9q0aa527doWdcPbLi9sxWGblePMvcgdOsxhj/BNjEia47zs2rWranKLQNhjjz0saZaGL+RrsNMW9YYvEsUiFN2U3n33XXfCCSeYgV+IIAd5BAY3vJg0NSBhaeLEiW78+PHmnUMc49WM+uBfaCjh1LJly6DfRqQgCowQ5jzEJrHnnnvaudm9e3cTxEqaE2Fg7733tnORSj/NmjWzxM6oIlEsAs+SpgvZgQceaBE5IcI00HsLBZEQGsggUChHNGXKFBPFiGNEcpw8dSI42IKmoQYimHONHAsicQQLaG1O4EDNT0TY2HPPPS2RmWgxt+bNm7tDDjnERRGJYhEYFABHEGObwA/HdqAQYYSEJTrjcSPL/6OPPjLhQv1jqlgcdNBBxRFkFndMEiJzfVOVZCvJv/71L2u3jAjmxs4Z5xuVdygleNxxx6muswg9P/nJT6z+NXM6EeN27dpFck6P3jsWsQFfHNE4tls06IuowLmKYOGGoMGD7Le4mQyI5FECixtVLvDRKoosUiGxc82aNba44kYNZ3bLUhdW8l6LqPHTn/7UAlws7KIoiCGa71pEGp+liimfqJtqw4qoQkTYl3jr3Lmz1dhGICN0aDHNuc42Ij/3Ijmu7VFF2YnEXgRzjyhmDMR2QwtyFlj41bV4EnEIGlSvXt3+/eGHH9p5zW5wVJAoFgWFOpo+S5XSQRLEIi54kcONrUN8yESRvRCi1BtQXcWLZCKCqiUbz3GO794LYdpbA2KBLp3+u5c/WMSVf/zjH27dunVmDWrRokVkznWJYlEwdu3aZVUmuFgkBETc8b5Q35URD70XSStXrrTFIZFmRDQCiYgKN/zJihhGB3YDKJdGa3puiGHusdbgnWYBdNZZZ9k9FgkhkhIxbt68uZs5c6bN+1wDUaiWIlEsCgJCGAM+ERQujv333z/otyREQcE20bBhQ7shpFJ9pUuWLLHJA7g2vEBGMEdt+7E0EIRE0KMSMSqNb775xkTv+vXri4UwCx7/GWlPT7dERDClqbTAEUll3333NWFMzXeEMRHjsO8OSxSLgkAbUpJJuCjkqRRJB6GEYOKGpxSINnqhxT2LSAQYkKznBTI3uj6GfXJJh6h41BbD7G5RIs2LX76XL774ongngO+Cjoh+AUOUXwjxI1zzCOPVq1dHIvku/O8w4WzZssUNHz68uG4lk+TDDz9sA3G2fP755+6RRx5xc+bMsS09fveGG26wQTwdkoOGDRtmEwH+twsuuMCdf/75lf4cZFTTDlKThhCZIcqYarfw0eTUiOTUqVNt1wVRTQIftZJTb/j0mYTCGJ1kUcwYRoWFMEW+Oc68N8Zaf6NpBvccf37OZM5ChDrBXgArCixEdhAIo967X/wTQQ6rQA7nuxLFYFQfOnSoO/LIIy05Y9myZTn9PoP9TTfdZNnPF110kZ2IL7/8soniv/3tbyXqhY4aNco98MAD1uq2X79+1skLAU7C0IABA3J+70wmTILU2VR0WIiKR5MbNGhgj7GoZZGLUPYCjqYi+JP5mY9gpotlbkG3WEbMI+yD6lrJ8UHkpopff/MReY45x4njhXjnHgFMgEAl0oSo/DXIWMXCnZrGYUSiOOQQNSJ6S4R12rRp7o477sjp90eOHGntQZ988kmL1gJ1BC+77DL30ksvuWuuucYew+v7zDPP2DbHXXfdZY9169bNTuLnnnvO2ormmiRCdJst3po1a9pEI4SovAWB64lbKv/85z9tWz9V6CGeuQa5tr3gYzJiLOFaTr2lPkYUJ0oRUBbfLNzpjkkUyt/S/4/vl+cCCT9+sUD0lwg7/2YBEtYIlhBxGL9OP/10s4bR+CiMTXx09Yecym4zIqR9QXgPme6cmGzFelE8f/586zjVs2fPEr9Pa9HJkyebSb5jx445/W0m6a5du0oQC1HFEMUkmunrg3oQgewSIZK5HlPFIlFb7vm5F4v+tbxQRkSzsEVE+vvy/o2oZPLzwjqTwPZ/j3sW3lir8O8i4P19ef/mfXvBy++nwvv2n8HbHvg/ohfxy85VlIS/EHHh0EMPtZbQNDpixytsSBTHGCYbMtvJhE4HkYzHGHsFwpsi24CATo9UM8GxRVuaKPYePM+qVavsnkmIzjbchBDBglDkdthhh+02TjAOcENocvP/RkBje0CEcu//7a0a2YIA5XeZBCdNmpRTkiDjjxfb3FPqiXtsIiy4sZbxuRjH/H1pbbZ572GciIVIojh+55137N9+NysMSBTHGCY0JgG2BtPxjyFojz76aBO1RIjSo7pMQERbUkVvOqNHj3aDBg3a7XGS+4QQIhXfyEIIIYCgXKNGjVwYkCguIERXiJZkA5GQym7v+dUXwjbT66c+h/vSvHQ8t6yVHH5jag978DE++OCD7tZbb7UkuyRCAf+7777b3X777WZXSSo6DjoGHh0HHQPQMfgBHQdnu8p//vOfQ/X5JYoLyKJFi6wSRDYMGTKk0ieK7x6TSYgTQU59DvfpvrzU55bVicYnrKSDIPblpZIK32HSjwHoOOgYeHQcdAxAx+AHdBxcqDo9ShQXEGwKt912W1bPzWR5yBVsD0R5M1kf/GNezPL3yGCnZFGqhQJBjQ0jH+9HCCGEECKsSBQXEIRlly5dCvb3SDahtjG1gtNZvny51d/01S2OP/54u+e5lGXz8H9sH/7nQgghhBBxJHOKrohsAgs+pVRoxIGwTRXGn3zyiVuwYIFr06ZN8WOUaCOyTAOPVPg/Wd6pQjkb8U8d5CRHl3UMfkDHQcfAo+OgYwA6Bj+g4+BCeQz2KEotUClCyeDBg+1+7dq1bsqUKVZijdqbcOmllxY/78Ybb3QLFy50b731VvFjlFa68sor7b5///5WYYKOdkR/6WhHq1jPiBEj3EMPPWRimW4zeKAnTpzorr76anfxxRcX9DMLIYQQQhQSieII0Lp161J/liqAM4li2Lx5s5VHoy4xYvi0005zv/71r62+ZzpjxoyxTncbNmxwNWrUsOYdffr0UaF7IYQQQsQaiWIhhBBCCJF45CkWQgghhBCJR6JYCCGEEEIkHpVkEzlBW+jhw4db1zoqWnzzzTfu4YcfNp9ytnz++ee7eZxvuOEGKxGXztixY92wYcPcxo0bXfXq1d0FF1zgzj//fBc0X331lXviiSfMv023v5NOOsldf/31WRVhL8sj3qRJE+sGCPi6+/Xrl/F5v//971379u1dVI/Bn/70JzdhwoSMtbyff/75Eo9xjnAOjBw50n3xxRfmhb/oootchw4dXBio6HHgc5HIOn36dGtzyuuQQNuuXTtLik1vmFPaeXPNNdfY8ahqaOLz7LPPukmTJtl7rVu3rrvqqqvcGWeckYhrvrLHge/5zTfftHGT85icDar6kCyd3rygb9++9vkzdQ/9r//6LxfVY0By96BBg3Z7nHr6b7zxRqTOhYoeg9K+WzjiiCPciy++GJprvjxI4Of7ocQrmoDjQC+GbEvP5jJ2vv32227gwIFWYYsCARQcuOSSS0rtxFtRJIpFTqxbt84NHTrUhAk1kJctW5bzRURXv507d9pFzQlNNQwmSAbMgw8+uEQ5uAceeMDKyiEOFy9ebAL822+/dQMGDHBBwaROC+vVq1ebeOE9I9j4XE8//bQ76qijyvx92nqmw0TJYiPTgIr4a9asWYnHTj75ZBcklT0GfiK85ZZbSjy2//777/Y8Xu+FF15w3bp1c/Xq1bPB8c4777Tkz6AXBpU5DpzH9957r32XPXr0sKY5XE8M/PPnz3d//etfd0twZdHUuXPnEo8VqoY473XatGmWeMv1P378ePv+uCYbNWoU62s+H8fhL3/5i5We6tixo6tZs6adM1T8mTVrlomr9EUQ32v6ojhTcnSUjoHnP//zP92+++5boqZ+OmE/Fyp6DDjvCSalgkh+5plnMo7/QV7z5bF9+3Zb5HA+08GWUq9VMXZyjfzv//6vO/XUU+3nH330kXvuuees2RjnUl4h0U6IbNm5c2fR9u3b7d9Tp04tatWqVdH8+fOz/v0XXnjBfmf58uXFj61du7aoTZs2RU8++WTxY99++21R165di2655ZYSv3/nnXcWdezYsWjHjh1FQTFlyhT7DHx+z5dfflnUpUuXoj/+8Y8Ves377ruvqHXr1kWbNm0qfmz9+vX2d4YOHVoUNip7DO655x77Hstj8+bNRW3bti168MEHix/717/+VfQf//EfRb179y76/vvvi6J6HHbt2lW0ePHi3R4fOHCgveacOXNKPM5jqcehkCxbtmy3c5FrtH///kXXXXdd7K/5fByHTOPk+PHj7fXGjBlT4vE+ffrsdhzCQmWOwbPPPmu/yzVSFmE/FypzDDIxaNAge7308SDIaz4bvvvuu6ItW7bYv1esWGHvd9y4cXkfOy+++OKiyy+/vOgf//hH8WNPPfWUzZmMJflEnmKRE3TAo8lHRWFlTbSPbZLU3u80D5k6dWrxY0TKWIX27NmzxO9TIo5V9rvvvuuCgm3QQw89tMTWFts5bdu2tSgm22q5wPN5TVbBbKlmgs9My+2wkK9jQGtxIoilwWt9//339r17iJ5yXrAln+tORZiOw1577eUaNmy42+OtWrWy+/RGPB62GbkV+nNS45ztew+RzfPOO8++AxoHxfmaz8dxyGQx8+cNNegzwTWfHlWM8jFIheu+tOJXYT8X8nUMPFhHsE5lGg+Cuuazgd2+ijbeyHbs5Nrgxk5hqlWCc4Hzh/Eln0gUi4LBdgnbHkyQ6TBhfvbZZ7bVCngsIf25eI3Yavvggw9cUPC32b5K3/LjM7C1h8UkF9ga+vrrr90555yT8edsT3Xq1MlsFHjJ3nvvPRc0+TgGPA/vGTcmE7zU/vv3cB6wzYqISv87/udBku9zAfCbQqqtwIMPm+13zhUa6kyePNkVAo4zW8Tp9hb/PaxatSrW13xlj0NpbN261e5TmyilCkO+a659fKivvPKKCwP5OAbYIbjusQXcddddxed86t8I87mQz/OAz8ICuLQciaCu+bCMnf67TvcZV6tWzXzm+Z4D5CkWBWPHjh22+su0svSPkchHshWTBStxfJbp0TUi1X4yCQIG8FNOOaXUz8B7I+kiWxjkWHHjnUuFwQKPGStpBoD169ebFxPfGn62XFpvh+0Y8LwLL7zQnXDCCbbanz17tvnJ8JfhyfMRAV6HcyDdW5t6vgRJvs8FINGGybZp06YlHm/QoIFFUYgo8bqvvfaaCQoibukRtXzD3yvvuo3zNV/Z41Aa5GfwmdOvffI18KXiq+QY4lf9v//7P3v9X/3qVy6qx4CEwt69e5uPnu8VnzC+apK08JF6kRn2cyGf54EXuZmCIkFe82EZO/13Xdrxzve5IFGcYIjiZLslj2irbFc7v/3DwJbp9VOfw31pWaU8N19bSRU5Bvxt/37Tfw65vDcGN7YCEUDpGegkL5BokgpRIzJuH3300byJ4iCOwbXXXlvi/yTMIQCYGNlW8wl0vE4250sczgUYMmSImzt3rvvNb36z2/nw2GOPlfg/2ddkuz/11FMWdUtP1MonFf0ewnjNV4Z8no+Ioddff90Wh+kJmffdd99u3/Vvf/tbWxRTfaE0m1XYjwFJaam0adPGIoMIPcSxr6gQ9nMhX+cBYw4VSYiY1qlTZ7efB3nNVzXZjp3eRlHac9N3FyuLRHGCWbRokWVyZjtZp29h54q/gDMJD3/i++dwj5c0Ezw3X4NBRY4BfzuTVzT9M2QDApDfK806kQ5REgZDqjHQvjsfk2PQx8DDFjFZ+IhCL4p5nWzOl3wQ9HGYMmWKZaBjJckmCsSkTNSNhdPKlSuzyvqvKBX9HsJ4zVeGfJ2PnGt//vOf3Zlnnumuvvrqcp/PAozrA+vUwoULbTs9KPJ9TTL2scifN29esSgO+7mQr2PAd0luRPpiIQzXfFWT7djpxXBpz833uSBRnGDYsqSmYDZU1EyfLug4wTNtd/jHsAn4v0cSFiVXUrfQGIjYTszH+6noMSA5oKzPkMt7I1p0wAEHuBYtWmT9O14IU+MxH6I46GPgYXDjHOH7Tf17lPnBYpG6U5F+vuSDII8D9Xup3Uz0P5cSQ/77Tz1mVQGfg8k7nfK+hzBe80Ech1Twm3KeYZGgtGC2dVYL9V0X4hhk+mzp132Yz4V8HQPGf2xyudRcD8t5UFmyHTtT7RTsnqY/NzWBNx9IFCcYTrZsi2znAy5+JgJq8qZD8W8K+VPdIrUOI89NtQnwf7ac8lWnsSLHgL+NF473kZokgC/uZz/7WVY1er3vDMFHskmmraHSwFtcWiJW1I5BKmyDkXGemnRE7UsK+JOIkrq9yPnif54vgjoOfBZqV5NI8sc//jGnYvT+XMiUqJVPfA1S7D6pyUXlfQ9hvOaDOA4eEgtpvoHQu//++4s/e5i+66o+Bumw4KVOb+r3G/ZzIR/HILXqUC4LibCcB5Ul27HTf9dExuvXr19i/mRhkloBJB+o+oSoMihLk15WioQSBrbUSfKTTz6xAQZ/mYdyTUSZKOCeCv/nggkyyYzPQJIAXXg827Zts/JSRHxTBS6TILdM4CVjQCjNOsFrpsMgMG7cOEtAyGeUtJDHAK9YJh/Y4MGDbYJMTTBr2bKliUT8hh6ew3lA5jGJKEFS2XOBUkMUsD/ssMNsO720rcBM5wLHkIYvLI6y6SJYGbg2idyNHj26xKTOuchE5SM4cb3m83EciGqxC4AAoJFHaaKGCCB/IxWsBFim2D7PpXto2I5BpvOYBFseT73uw34uVOYYZFt1KOhrPp8gYDkOqZaYbMfOY445xnbxxowZU+K64Lxh9zA9SbWyKFIscgbxklpbk1a1rPiAlqWee+65xzxTqSc9tQWJ/CEE6GJDhjHJI0RO+L8HcXDllVe6hx56yN1xxx3mvcOHR0tNPHiVqZWcjwGRgYkKEBwD34kHgXvFFVeUeO7NN99s93zGTFtnCNvSJrnHH3/cRFTjxo3teURTGIQpV3PjjTe6IKnMMWAg5Ltly5DBDvBKMkkwMSKEU7cK8dtRkYEBla2yGTNm2Pn2u9/9zs6fqB4HJjiihthgOPfTa68SRfWin6xzancyWTDhIrCYgJl06fSUKeknnzDRkwVPgg8TF+1oKRXFOcm1HPdrPh/HgUQ5onwk1i1ZssRuHo6F72Y2c+ZM69bFZE/VAc4Pxoo1a9ZYScagrQOVOQZcy7QxZ/cA0cMxwEtPNDC95m+Yz4XKHIPyqg55gr7ms+XVV181ce9tD5y/5LsASaHYAzlOHJ+XXnrJzulcx05aP2M5YlFJvgllHgmUdO3aNWOCYmWQKBY5QzJUKlyonlRRnAm2Cym59cgjj9jAzwWAKPz1r3+9W+SEyZQoIRcSFxoCiedlm5RQVTCps/VJZjADApFP6mly0XqRVx5EytgOInkmU4tTYJJkEuXiZ2JkcCGxguoTQUcJKnMMvIcaHy0DJecAkwoTPiIp/XhQqYJKDCwIeD71QbEbZJucGNbjgFXETx5PPvnkbj/HVuNFMUX9ly5dauKSSCLRMhYITMAsmgrB//zP/9jkzCKYSRBhQ3Sb7d+4X/P5OA6+di0LvHT4XS+KeT2SOBFNCC6OB6IRaw1CLMrHgGuW89gnGPMaLBIY0zino3QuVPQYpFYdatasmY2HmQjDNZ8NfD8sBjwsAPwigITQ0j5fLmMn88Xdd99tNfsZSxDQJGVedtllLt/sQVu7vL+qEEIIIYQQEUKeYiGEEEIIkXgkioUQQgghROKRKBZCCCGEEIlHolgIIYQQQiQeiWIhhBBCCJF4JIqFEEIIIUTikSgWQgghhBCJR6JYCCGEEEIkHoliIYQQQgiReCSKhRBCCCFE4vlp0G9ACCFEtJk/f74bNWqUW7p0qdu2bZvbd999XZ06dVzbtm1d9+7d3V577VXq71566aVu7733dk8//bTbsGGD69evnzvzzDPdX/7yl4J+BiGEkCgWQghRIb7//nv30EMPuTFjxpgQbtq0qTviiCPczp073Zw5c9zDDz/sRo8e7e6//35Xs2bN3X7/s88+c2vWrHFXXnllIO9fCCFSkSgWQghRIZ566ikTxPXq1XP33HOPq169evHP/vnPf7rBgwe7QYMGuVtuucWeu88++5T4/bffftvuW7ZsWfD3LoQQ6chTLIQQImfWrVvnXn75ZXfQQQe5++67r4Qghp/85CfuiiuucB06dLBo8CuvvLLbayCKa9Wq5erWrVvAdy6EEJmRKBZCCJEzEyZMcP/6179ct27d3KGHHlqmZxjGjh1b4nG8x3iQFSUWQoQFiWIhhBA5g6CFxo0bl/m82rVru2rVqrn169e7rVu3Fj/+7rvvmsWiVatWVf5ehRAiGySKhRBC5IwXuDVq1Cj3uf45W7ZsKWGdOPjgg13Dhg2r8F0KIUT2SBQLIYQoCNgt4LvvvrPqFM2aNTPvsRBChAGJYiGEEDnzi1/8wu43b95c7nP9c3wyHoL422+/lZ9YCBEqJIqFEELkTIMGDex+3rx5ZT7v448/NtvEgQceWJyQh3WChh006RBCiLAgUSyEECJnOnfu7Pbcc0+rKkElidIYMmSI3Xfs2NGej4WCJLsmTZpYww8hhAgLEsVCCCFy5qijjnJ9+/Z127dvd//93/9dIokOEL8075g0aZI74IADXJ8+fezxZcuWuS+//FLWCSFE6FBHOyGEEBXimmuusZbOdLUbMGCAJc6ltnn+9NNPzSbxhz/8wR1++OH2OzNmzLCIcYsWLYJ++0IIUQKJYiGEEBXipz/9qfvtb3/r2rVr50aPHu2WLFni3nrrLas/DCeffLK7/fbbTSh78BPXr1+/zIYfQggRBBLFQgghKgUNPFKbeNAC+rrrrnMbNmxwRUVFxY+vXbvWosddu3bN+Dq0fEZUCyFEEMhTLIQQIu9+47vuusvt2LHD/eY3v3Gff/55cZQY5CcWQoSRPYpSl/FCCCFEnpg5c6ZbuXKltXpu37590G9HCCHKRKJYCCGEEEIkHtknhBBCCCFE4pEoFkIIIYQQiUeiWAghhBBCJB6JYiGEEEIIkXgkioUQQgghROKRKBZCCCGEEIlHolgIIYQQQiQeiWIhhBBCCJF4JIqFEEIIIYRLOv8PBj/4w8CwldMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -684,7 +683,7 @@ } ], "source": [ - "polarization = source_photons.calculate_polarization(qs, us, bkg_qs, bkg_us, mu, show_plots=True, ref_pdpa=(0.8, 90), ref_label='Simulated', mdp=MDP99/100)\n" + "polarization = source_photons.calculate_polarization(qs, us, bkg_qs, bkg_us, mu, show_plots=True, ref_pdpa=(0.8, 90), ref_label='Simulated', mdp=MDP99/100)" ] }, { @@ -697,42 +696,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "5447d326", "metadata": {}, "outputs": [ { - "ename": "AttributeError", - "evalue": "'dict' object has no attribute 'fraction'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m PD \u001b[38;5;241m=\u001b[39m \u001b[43mpolarization\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfraction\u001b[49m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[1;32m 2\u001b[0m PD_err \u001b[38;5;241m=\u001b[39m polarization\u001b[38;5;241m.\u001b[39mpolarization_fraction_uncertainty \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPolarization degree: \u001b[39m\u001b[38;5;132;01m{PD:.2f}\u001b[39;00m\u001b[38;5;124m +/- \u001b[39m\u001b[38;5;132;01m{PD_err:.2f}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "\u001b[0;31mAttributeError\u001b[0m: 'dict' object has no attribute 'fraction'" + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization degree: (81.89 +/- 5.48) %\n", + "Polarization angle: (86.62 +/- 1.94) deg\n", + "Normalized Q: -0.813 +/- 0.055\n", + "Normalized U: 0.096 +/- 0.055\n" ] } ], "source": [ - "PD = polarization['fracion'] * 100\n", - "PD_err = polarization['polarization_fraction_uncertainty'] * 100\n", - "print('Polarization degree: {PD:.2f} +/- {PD_err:.2f} %')\n", + "Pol_frac = polarization['fraction'] * 100\n", + "Pol_frac_err = polarization['fraction_uncertainty'] * 100\n", + "print('Polarization degree: (%.2f +/- %.2f) %%'%(Pol_frac, Pol_frac_err))\n", "\n", - "pPA = polarization.angle\n", - "pPA_err = polarization['polarization_angle_uncertainty']\n", - "print('Polarization angle: {pPA:.2f} +/- {pPA_err:.2f} deg')\n", + "Pol_angle = polarization['angle'].angle.degree\n", + "Pol_angle_err = polarization['angle_uncertainty'].degree\n", + "print('Polarization angle: (%.2f +/- %.2f) deg'%(Pol_angle, Pol_angle_err))\n", "\n", "Normalized_Q = polarization['QN']\n", - "Normalized_U = polarization['UN']" + "Normalized_U = polarization['UN']\n", + "Stokes_uncertainty = polarization['Stokes_uncertainty']\n", + "print('Normalized Q: %.3f +/- %.3f'%(Normalized_Q, Stokes_uncertainty))\n", + "print('Normalized U: %.3f +/- %.3f'%(Normalized_U, Stokes_uncertainty))\n" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f51361a9", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From a9ccb388f0bcfedfc5383f19b9d79a02c26cba6d Mon Sep 17 00:00:00 2001 From: nmik Date: Mon, 26 May 2025 11:14:22 -0500 Subject: [PATCH 19/31] test unit for Stokes method --- .../polarization/test_polarization_stokes.py | 54 +++++++++++++++++++ 1 file changed, 54 insertions(+) create mode 100644 tests/polarization/test_polarization_stokes.py diff --git a/tests/polarization/test_polarization_stokes.py b/tests/polarization/test_polarization_stokes.py new file mode 100644 index 00000000..bfff9753 --- /dev/null +++ b/tests/polarization/test_polarization_stokes.py @@ -0,0 +1,54 @@ +import numpy as np +from astropy.coordinates import SkyCoord +from astropy import units as u +from scoords import SpacecraftFrame + +from cosipy.polarization import PolarizationStokes +from cosipy.spacecraftfile import SpacecraftFile +from cosipy import UnBinnedData +from cosipy.threeml.custom_functions import Band_Eflux +from cosipy import test_data + +analysis = UnBinnedData(test_data.path / 'polarization_data.yaml') +data = analysis.get_dict_from_hdf5(test_data.path / 'polarization_data.hdf5') +response_path = test_data.path / 'test_polarization_response_dense.h5' +sc_orientation = SpacecraftFile.parse_from_file(test_data.path / 'polarization_ori.ori') +attitude = sc_orientation.get_attitude()[0] + +a = 10. * u.keV +b = 10000. * u.keV +alpha = -1. +beta = -2. +ebreak = 350. * u.keV +K = 50. / u.cm / u.cm / u.s +spectrum = Band_Eflux(a = a.value, + b = b.value, + alpha = alpha, + beta = beta, + E0 = ebreak.value, + K = K.value) +spectrum.a.unit = a.unit +spectrum.b.unit = b.unit +spectrum.E0.unit = ebreak.unit +spectrum.K.unit = K.unit + +source_direction = SkyCoord(0, 70, representation_type='spherical', frame=SpacecraftFrame(attitude=attitude), unit=u.deg) + +# bin_edges = Angle(np.linspace(-np.pi, np.pi, 10), unit=u.rad) + +background = {'Psi local': [0, 0], 'Chi local': [0, 0], 'Psi galactic': [0, 0], 'Chi galactic': [0, 0], 'Energies': [300., 300.], 'TimeTags': [1., 2.]} + +def test_stokes_polarization(): + + source_photons = PolarizationStokes(source_direction, spectrum, data, background, + response_path, sc_orientation, + response_convention='RelativeX') + + qs, us = source_photons.compute_data_pseudo_stokes(show=True) + bkg_qs, bkg_us = source_photons.compute_background_pseudo_stokes(show=True) + + average_mu = source_photons.calculate_average_mu100(show_plots=True) + + polarization = source_photons.calculate_polarization(qs, us, bkg_qs, bkg_us, + average_mu['mu'], show_plots=True, + mdp=source_photons._mdp99) \ No newline at end of file From c0ed755871481f3977b9345fe11e6659fb389c1c Mon Sep 17 00:00:00 2001 From: nmik Date: Mon, 26 May 2025 12:00:29 -0500 Subject: [PATCH 20/31] test unit for Stokes method --- tests/polarization/test_polarization_stokes.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/tests/polarization/test_polarization_stokes.py b/tests/polarization/test_polarization_stokes.py index bfff9753..916d839f 100644 --- a/tests/polarization/test_polarization_stokes.py +++ b/tests/polarization/test_polarization_stokes.py @@ -51,4 +51,8 @@ def test_stokes_polarization(): polarization = source_photons.calculate_polarization(qs, us, bkg_qs, bkg_us, average_mu['mu'], show_plots=True, - mdp=source_photons._mdp99) \ No newline at end of file + mdp=source_photons._mdp99) + + assert np.allclose([polarization['fraction']*100, polarization['fraction uncertainty']*100, + polarization['angle'].angle.degree, polarization['angle uncertainty'].degree], + [13.73038868282377, 2.1295224814008353, 1.4851296518928818, 0.07562763316088744], atol=[1.0, 0.5, 1.0, 0.1]) \ No newline at end of file From 1127a6e14b397676ae04560ff0f1e800731952de Mon Sep 17 00:00:00 2001 From: nmik Date: Tue, 27 May 2025 22:46:32 -0500 Subject: [PATCH 21/31] still working on the test but fixed/added a bunch of things on the way --- cosipy/polarization/polarization_stokes.py | 540 +++++++++++++----- .../polarization/Stokes_method.ipynb | 265 +++++---- .../polarization/test_polarization_stokes.py | 33 +- 3 files changed, 580 insertions(+), 258 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 9ebd5ed3..f42acea9 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -40,6 +40,38 @@ def constant(x, a): return a +def stokes_u(phi): + """ + Calculate the U Stokes parameter from the azimuthal angle phi. + + Parameters + ---------- + phi : float + Azimuthal angle in radians + + Returns + ------- + u : float + U Stokes parameter + """ + return np.sin(phi * 2) * 2 + +def stokes_q(phi): + """ + Calculate the Q Stokes parameter from the azimuthal angle phi. + + Parameters + ---------- + phi : float + Azimuthal angle in radians + + Returns + ------- + q : float + Q Stokes parameter + """ + return np.cos(phi * 2) * 2 + def rotate_points_to_x_axis(newPD, newPA): """ Rotate arrays of points (x_, y_) in the QN-UN plane by an angle @@ -351,8 +383,8 @@ class PolarizationStokes(): """ - def __init__(self, source_vector, source_spectrum, data, background, - response_file, sc_orientation, response_convention='RelativeX', + def __init__(self, source_vector, source_spectrum, data, + response_file, sc_orientation, background=None, response_convention='RelativeX', fit_convention=IAUPolarizationConvention()): ###################### This will need to be changed into IAUPolarizationConvention hardcoded! @@ -372,15 +404,10 @@ def __init__(self, source_vector, source_spectrum, data, background, (isinstance(fit_convention, MEGAlibRelativeZ) and response_convention != 'RelativeZ')): raise RuntimeError("If performing fit in spacecraft frame, fit convention must match convention of response.") - if not type(data) == list: - self._data = [data] - else: - self._data = data - - if not type(background) == list: - self._background = [background] - else: - self._background = background + # if not type(data) == list: + # self._data = [data] + # else: + # self._data = data self._ori = sc_orientation @@ -405,19 +432,75 @@ def __init__(self, source_vector, source_spectrum, data, background, self._expectation, self._azimuthal_angle_bins = self.convolve_spectrum(source_spectrum) self._energy_range = [min(self._response.axes['Em'].edges.value), max(self._response.axes['Em'].edges.value)] + #print the energy range considered due to responses: + print(f'Energy range considered (by responses design): {self._energy_range[0]} - {self._energy_range[1]} keV') + + # do a data cut before anything else! actually this should come as a separate routine: data selection and response + # prep shold be done before analyzing the data + if not type(data) == list: + iii = np.where((data['Energies'] >= self._energy_range[0]) & (data['Energies'] <= self._energy_range[1])) + self._data = [{key: data[key][iii] for key in data.keys()}] + else: + data_ecut_list = [] + for dlist in data: + iii = np.where((dlist['Energies'] >= self._energy_range[0]) & (dlist['Energies'] <= self._energy_range[1])) + data_ecut = {key: dlist[key][iii] for key in dlist.keys()} + data_ecut_list.append(data_ecut) + self._data = data_ecut_list self._exposure = sc_orientation.get_time_delta().to_value(u.second).sum() self._data_duration = self.get_data_duration() - self._background_duration = self.get_background_duration() + self._data_counts = self.get_data_counts() + + self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data, show_plots=True) + + self._background = background + + if self._background is not None: + print('Background provided. Make sure there is enough statistics.') + if not type(background) == list: + iii = np.where((background['Energies'] >= self._energy_range[0]) & (background['Energies'] <= self._energy_range[1])) + self._background = [{key: background[key][iii] for key in background.keys()}] + else: + background_ecut_list = [] + for bkg in background: + iii = np.where((bkg['Energies'] >= self._energy_range[0]) & (bkg['Energies'] <= self._energy_range[1])) + background_ecut = {key: bkg[key][iii] for key in bkg.keys()} + background_ecut_list.append(background_ecut) + self._background = background_ecut_list + + self._background_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._background) + self._background_duration = self.get_background_duration() + else: + print('No background provided. Will not subtract background from data.') + self._background = None + self._background_duration = 0 + self._background_azimuthal_angles = None + + self._mu100 = self.calculate_average_mu100(show_plots=False) - self._mdp99 = self.calculate_mdp() + self._mdp99 = self.calculate_mdp(modulation_factor=self._mu100['mu']) - self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data) + def get_data_counts(self): + """ + Calculate the total counts in the data. - self._background_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._background) + Returns + ------- + data_counts : int + Total counts in the data + """ + data_counts = 0 + for i in range(len(self._data)): + if type(self._data[i]) == dict: + data_counts += len(self._data[i]['TimeTags']) + else: + data_counts += self._data[i].binned_data.axes['Time'].nbins + return data_counts + def get_data_duration(self): """ Calculate the total duration of the data. @@ -453,20 +536,23 @@ def get_background_duration(self): background_duration : float Total duration of the data in seconds """ - for i in range(len(self._background)): - - if type(self._background[i]) == dict: - if i == 0: - background_duration = np.max(self._background[i]['TimeTags']) - np.min(self._background[i]['TimeTags']) - else: - background_duration += np.max(self._background[i]['TimeTags']) - np.min(self._background[i]['TimeTags']) + if self._background is None: + background_duration = 0 + else: + for i in range(len(self._background)): - else: + if type(self._background[i]) == dict: + if i == 0: + background_duration = np.max(self._background[i]['TimeTags']) - np.min(self._background[i]['TimeTags']) + else: + background_duration += np.max(self._background[i]['TimeTags']) - np.min(self._background[i]['TimeTags']) - if i == 0: - background_duration = (np.max(self._background[i].binned_data.axes['Time'].edges) - np.min(self._background[i].binned_data.axes['Time'].edges)).value else: - background_duration += (np.max(self._background[i].binned_data.axes['Time'].edges) - np.min(self._background[i].binned_data.axes['Time'].edges)).value + + if i == 0: + background_duration = (np.max(self._background[i].binned_data.axes['Time'].edges) - np.min(self._background[i].binned_data.axes['Time'].edges)).value + else: + background_duration += (np.max(self._background[i].binned_data.axes['Time'].edges) - np.min(self._background[i].binned_data.axes['Time'].edges)).value return background_duration def get_backscal(self): @@ -479,9 +565,10 @@ def get_backscal(self): Background scaling factor """ if self._background_duration == 0: - return 0 - - backscal = self._data_duration / self._background_duration + logger.warning('Background duration is zero, returning backscal = 0') + backscal = None + else: + backscal = self._data_duration / self._background_duration return backscal @@ -534,7 +621,7 @@ def convolve_spectrum(self, spectrum): return expectation, azimuthal_angle_bins - def calculate_azimuthal_scattering_angles(self, unbinned_data): + def calculate_azimuthal_scattering_angles(self, unbinned_data, show_plots=False): """ Calculate the azimuthal scattering angles for all events in a dataset. @@ -548,30 +635,38 @@ def calculate_azimuthal_scattering_angles(self, unbinned_data): azimuthal_angles : list of astropy.coordinates.Angle Azimuthal scattering angles """ - azimuthal_angles = [] if isinstance(self._convention.frame, SpacecraftFrame): for i in range(len(unbinned_data['Psi local'])): - if unbinned_data['Energies'][i] >= self._energy_range[0] and unbinned_data['Energies'][i] <= self._energy_range[1]: - psichi = SkyCoord(lat=(np.pi/2) - unbinned_data['Psi local'][i], lon=unbinned_data['Chi local'][i], unit=u.rad, frame=self._convention.frame) - azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) - azimuthal_angles.append(azimuthal_angle.angle) + # if unbinned_data['Energies'][i] >= self._energy_range[0] and unbinned_data['Energies'][i] <= self._energy_range[1]: + psichi = SkyCoord(lat=(np.pi/2) - unbinned_data['Psi local'][i], lon=unbinned_data['Chi local'][i], unit=u.rad, frame=self._convention.frame) + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) + azimuthal_angles.append(azimuthal_angle.angle) else: if len(unbinned_data) < 2: + for i in range(len(unbinned_data[0]['Psi galactic'])): - if unbinned_data[0]['Energies'][i] >= self._energy_range[0] and unbinned_data[0]['Energies'][i] <= self._energy_range[1]: - psichi = SkyCoord(l=unbinned_data[0]['Chi galactic'][i], b=unbinned_data[0]['Psi galactic'][i], frame='galactic', unit=u.deg).transform_to('icrs') - azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) - azimuthal_angles.append(azimuthal_angle.angle) + # if unbinned_data[0]['Energies'][i] >= self._energy_range[0] and unbinned_data[0]['Energies'][i] <= self._energy_range[1]: + psichi = SkyCoord(l=unbinned_data[0]['Chi galactic'][i], b=unbinned_data[0]['Psi galactic'][i], frame='galactic', unit=u.deg).transform_to('icrs') + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) + azimuthal_angles.append(azimuthal_angle.angle) else: for j in range(len(unbinned_data)): for i in range(len(unbinned_data[j]['Psi galactic'])): - if unbinned_data[j]['Energies'][i] >= self._energy_range[0] and unbinned_data[j]['Energies'][i] <= self._energy_range[1]: - psichi = SkyCoord(l=unbinned_data[j]['Chi galactic'][i], b=unbinned_data[j]['Psi galactic'][i], frame='galactic', unit=u.deg).transform_to('icrs') - azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) - azimuthal_angles.append(azimuthal_angle.angle) + # if unbinned_data[j]['Energies'][i] >= self._energy_range[0] and unbinned_data[j]['Energies'][i] <= self._energy_range[1]: + psichi = SkyCoord(l=unbinned_data[j]['Chi galactic'][i], b=unbinned_data[j]['Psi galactic'][i], frame='galactic', unit=u.deg).transform_to('icrs') + azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) + azimuthal_angles.append(azimuthal_angle.angle) + if show_plots: + plt.figure() + plt.title('Azimuthal scattering angles') + plt.hist(azimuthal_angles, bins=50, alpha=0.5) + plt.xlabel('Azimuthal angle (radians)') + plt.ylabel('Counts') + plt.show() + return azimuthal_angles def calculate_average_mu100(self, show_plots=False): @@ -590,23 +685,23 @@ def calculate_average_mu100(self, show_plots=False): """ print('Creating the 100% polarized ASADs (this may take a minute...)') polarized_asads = create_polarized_asads(self._spectrum, self._source_vector, self._ori, self._response, - self._convention, self._response_file, self._response_convention, - bins=self._nbins) + self._convention, self._response_file, self._response_convention) print('Creating the unpolarized ASAD...') unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, self._response, - self._convention, self._response_file, self._response_convention, - bins=self._nbins) + self._convention, self._response_file, self._response_convention) mu_100_list = [] mu_100_uncertainties = [] for i in range(self._response.axes['Pol'].nbins): logger.info('Polarization angle bin: ' + str(self._response.axes['Pol'].edges.to_value(u.deg)[i]) + ' to ' + str(self._response.axes['Pol'].edges.to_value(u.deg)[i+1]) + ' deg') asad_corrected = polarized_asads[i] / np.sum(polarized_asads[i]) / unpolarized_asad * np.sum(unpolarized_asad) - mu, mu_err = get_modulation(asad_corrected.axis.centers.value, asad_corrected.full_contents, title='Modulation PA bin %i'%i, show=False) + mu, mu_err = get_modulation(asad_corrected.axis.centers.value, asad_corrected.full_contents, + title='Modulation PA bin %i'%i, show=show_plots) mu_100_list.append(mu) mu_100_uncertainties.append(mu_err) - popt, pcov = curve_fit(constant, self._response.axes['Pol'].centers.to_value(u.deg), mu_100_list, sigma=mu_100_uncertainties) + popt, pcov = curve_fit(constant, self._response.axes['Pol'].centers.to_value(u.deg), mu_100_list, + sigma=mu_100_uncertainties, p0=np.mean(mu_100_list), absolute_sigma=True) mu_100 = {'mu': popt[0], 'uncertainty': pcov[0][0]} if show_plots == True: @@ -620,8 +715,49 @@ def calculate_average_mu100(self, show_plots=False): plt.show() return mu_100 + + def compute_pseudo_stokes(self, azimuthal_angles, show_plots=False): + """ + Calculates photon-by-photon pseudo stokes parameters from the photon azimutal angle. + + Parameters + ---------- + azimuthal_angles : list + Azimuthal scattering angles (radians) + + Returns + ------- + qs : list + list of pseudo-q parameters for each photon (ordered as input array) + us : list + list of pseudo-u parameters for each photon (ordered as input array) + """ + + qs, us = [], [] + + #this is stupid... need to fix! + try: + for a in azimuthal_angles.value: + qs.append(stokes_q(a - np.pi/2)) + us.append(stokes_u(a - np.pi/2)) + except: + + for a in azimuthal_angles: + qs.append(stokes_q(a.value - np.pi/2)) + us.append(stokes_u(a.value - np.pi/2)) + + if show_plots: + plt.figure() + plt.title('Source Stokes parameters') + plt.hist(qs, bins=50, alpha=0.5, label='q$_s$') + plt.hist(us, bins=50, alpha=0.5, label='u$_s$') + plt.xlabel('Pseudo Stokes parameter') + plt.legend() + plt.show() + + return qs, us - def compute_data_pseudo_stokes(self, show=False): + def compute_data_pseudo_stokes(self, show_plots=False): """ Calculates photon-by-photon pseudo stokes parameters from the photon azimutal angle. @@ -640,21 +776,20 @@ def compute_data_pseudo_stokes(self, show=False): """ qs, us = [], [] - ###################### # ATTENTION: I need to add 90 degrees because the stokes convention assumes that EVPA // # source polarization, while for Compton scatttering it is perpendicular) try: for a in self._data_azimuthal_angles.value: - qs.append(np.cos((a - np.pi/2) * 2) * 2) - us.append(np.sin((a - np.pi/2) * 2) * 2) + qs.append(stokes_q(a - np.pi/2)) + us.append(stokes_u(a - np.pi/2)) except: for a in self._data_azimuthal_angles: - qs.append(np.cos((a.value - np.pi/2) * 2) * 2) - us.append(np.sin((a.value - np.pi/2) * 2) * 2) + qs.append(stokes_q(a.value - np.pi/2)) + us.append(stokes_u(a.value - np.pi/2)) - if show: + if show_plots: plt.figure() plt.title('Source Stokes parameters (%i events)'%len(qs)) plt.hist(qs, bins=50, alpha=0.5, label='q$_s$') @@ -662,10 +797,10 @@ def compute_data_pseudo_stokes(self, show=False): plt.xlabel('Pseudo Stokes parameter') plt.legend() plt.show() - + return qs, us - def compute_background_pseudo_stokes(self, show=False): + def compute_background_pseudo_stokes(self, show_plots=False): """ Calculates photon-by-photon pseudo stokes parameters from the photon azimutal angle. @@ -684,28 +819,33 @@ def compute_background_pseudo_stokes(self, show=False): qs, us = [], [] - try: - for a in self._background_azimuthal_angles.value: - qs.append(np.cos(a * 2) * 2) - us.append(np.sin(a * 2) * 2) - except: - - for a in self._background_azimuthal_angles: - qs.append(np.cos(a.value * 2) * 2) - us.append(np.sin(a.value * 2) * 2) - - if show: - plt.figure() - plt.title('Background Stokes parameters (%i events)'%len(qs)) - plt.hist(qs, bins=50, alpha=0.5, label='q$_b$') - plt.hist(us, bins=50, alpha=0.5, label='u$_b$') - plt.xlabel('Pseudo Stokes parameter') - plt.legend() - plt.show() + if self._background_azimuthal_angles is None: + logger.warning('No background data provided, returning empty lists for pseudo Stokes parameters.') + return 0 + + else: + try: + for a in self._background_azimuthal_angles.value: + qs.append(stokes_q(a - np.pi/2)) + us.append(stokes_u(a - np.pi/2)) + except: + + for a in self._background_azimuthal_angles: + qs.append(stokes_q(a.value - np.pi/2)) + us.append(stokes_u(a.value - np.pi/2)) + + if show_plots: + plt.figure() + plt.title('Background Stokes parameters (%i events)'%len(qs)) + plt.hist(qs, bins=50, alpha=0.5, label='q$_b$') + plt.hist(us, bins=50, alpha=0.5, label='u$_b$') + plt.xlabel('Pseudo Stokes parameter') + plt.legend() + plt.show() return qs, us - def calculate_mdp(self): + def calculate_mdp(self, modulation_factor): """ Calculate the minimum detectable polarization (MDP) of the source. @@ -720,26 +860,101 @@ def calculate_mdp(self): source_counts += len(self._data[i]['TimeTags']) else: source_counts = len(self._data[0]['TimeTags']) + source_data_rate = source_counts / self._data_duration - if type(self._background) == list: - background_counts = 0 - for i in range(len(self._background)): - background_counts += len(self._background[i]['TimeTags']) + if self._background is not None: + if type(self._background) == list: + background_counts = 0 + for i in range(len(self._background)): + background_counts += len(self._background[i]['TimeTags']) + else: + background_counts = self._background[0]['TimeTags'] + + background_data_rate = background_counts / self._background_duration + mdp = 4.29 / modulation_factor * np.sqrt(source_data_rate/self._data_duration + background_data_rate/self._background_duration) / source_data_rate else: - background_counts = self._background[0]['TimeTags'] - - source_data_rate = source_counts / self._data_duration - background_data_rate = background_counts / self._background_duration - # Here need to call a function to compute the average modulation finction - # For now set to 0.31 - ave_mu = 0.310 - mdp = 4.29 / ave_mu * np.sqrt(source_data_rate + background_data_rate) / source_data_rate + mdp = 4.29 / modulation_factor / np.sqrt(source_counts) logger.info('Minimum detectable polarization (MDP) of source: ' + str(round(mdp, 3))) - return mdp + return mdp + + def simulate_unpolarized_stokes(self, n_samples=100, show_plots=False): + """ + Simulate unpolarized Stokes parameters from the source data. + The simulated data have the same statistics as the source data, but are unpolarized. + We use the response files given in input. + This is useful to estimate the background contribution to the polarization measurement. + 1. Create unpolarized ADAS + 2. Calculate pseudo Stokes parameters from the azimuthal scattering angles + 3. repeat for a number of samples + 4. compute the average and standard deviation of the pseudo Stokes parameters - def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, ref_qu=(None, None), + Parameters + ---------- + n_samples : int, optional + Number of samples to simulate, by default 100. + show_plots : bool, optional + If True, display a diagnostic plot in the Q-U plane with + uncertainty circles, by default False. + + Returns + ------- + qs_unpol : list + List of pseudo-q parameters for each simulated unpolarized photon (ordered as input array) + us_unpol : list + List of pseudo-u parameters for each simulated unpolarized photon (ordered as input array) + """ + + unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, + self._response, self._convention, + self._response_file, self._response_convention) + azimuthal_bin_center = unpolarized_asad.axis.centers.value # Get the bin edges of the azimuthal angle distribution + # Create the spline from the unpol azimutal angle distrib + spline_unpol = interpolate.interp1d(azimuthal_bin_center, unpolarized_asad.full_contents) + #plot the unpolarized azimuthal angle distribution + if show_plots: + plt.figure() + plt.title('Unpolarized azimuthal angle distribution') + plt.step(azimuthal_bin_center, unpolarized_asad.full_contents, where='mid', label='Unpolarized ASAD') + plt.xlabel('Azimuthal angle [rad]') + plt.ylabel('Counts') + + # Create fine bins and normalize to the area to get a probability density function (PDF) + # also, avoiding edges that wouls break the spline + fine_bins = np.linspace(azimuthal_bin_center[0]-0.01*azimuthal_bin_center[0], + azimuthal_bin_center[-2]-0.01*azimuthal_bin_center[-2], 1000) + fine_probabilities = spline_unpol(fine_bins) + # total_area = np.trapz(fine_probabilities, fine_bins) # Numerical integration using trapezoidal rule + fine_probabilities /= np.sum(fine_probabilities)#total_area + + #Generate random samples from a uniform distribution and map them to azimuthal angles + _qs_unpol_, _us_unpol_ = [], [] + print('Simulating unpolarized Stokes parameters from the source data...') + for _ in range(n_samples): + unpol_azimuthal_angles = np.random.choice(fine_bins, size=self._data_counts, p=fine_probabilities) * u.rad + qs_unpol_, us_unpol_ = self.compute_pseudo_stokes(unpol_azimuthal_angles, show_plots=False) + _qs_unpol_.append(qs_unpol_) + _us_unpol_.append(us_unpol_) + + # Convert lists to numpy arrays for easier manipulation + _qs_unpol_ = np.array(_qs_unpol_) + _us_unpol_ = np.array(_us_unpol_) + #Average over the samples + + if show_plots: + plt.figure() + plt.title('Unpolarized Stokes parameters (averaged over %i samples)' % n_samples) + for i in range(n_samples): + plt.hist(_qs_unpol_[i], bins=50, alpha=0.1, color='tab:blue') + plt.hist(_us_unpol_[i], bins=50, alpha=0.1, color='tab:orange') + plt.xlabel('Pseudo Stokes parameter') + plt.legend() + plt.show() + + return _qs_unpol_, _us_unpol_ + + def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plots=True, ref_qu=(None, None), ref_pdpa=(None, None), ref_label=None, mdp=None): """ Calculate the polarization degree (PD), polarization angle (PA), @@ -754,12 +969,12 @@ def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, re Array of Q measurements (from polarized source). us : array-like Array of U measurements (from polarized source). - qs_unpol : array-like - Array of Q measurements (from unpolarized source). - us_unpol : array-like - Array of U measurements (from unpolarized source). mu : float Modulation factor. Used to convert raw measurements into normalized Q/I and U/I. + bkg_qs : array-like, optional + Array of Q measurements from unpolarized background or simulation data, by default None. + bkg_us : array-like, optional + Array of U measurements from unpolarized background or simulation data, by default None. show_plots : bool, optional If True, display a diagnostic plot in the Q-U plane with uncertainty circles, by default False. @@ -769,6 +984,11 @@ def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, re ref_pdpa : tuple of (float or None, float or None), optional Reference (PD, PA) point (e.g., from simulation) to be converted to Q/U and plotted for comparison, by default (None, None) (no reference shown). + ref_label : str, optional + Label for the reference point in the plot, by default None (no label shown). + mdp : float, optional + Minimum detectable polarization (MDP) value to be used for uncertainty calculations, + by default None (no MDP used). Returns ------- @@ -786,41 +1006,77 @@ def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, re """ BACKSCAL = self.get_backscal() - pol_I = len(qs) + if BACKSCAL is None: + logger.warning('Background scaling factor is None, assuming the unpolarized signal'+ + 'has been simulated with the same statistics as THE data') + BACKSCAL = 1 + + pol_I = I = len(qs) pol_Q = np.sum(qs) / mu pol_U = np.sum(us) / mu + print('I, Q, U, mu', pol_I, pol_Q, pol_U, mu) + + self.QN = pol_Q/pol_I + self.UN = pol_U/pol_I + print('Q, U (unsubtracted:)', self.QN, self.UN) - unpol_I = len(bkg_qs) * BACKSCAL - unpol_Q = np.sum(bkg_qs) * BACKSCAL / mu - unpol_U = np.sum(bkg_us) * BACKSCAL / mu - print('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) - unpol_modulation = mu * np.sqrt(unpol_Q**2. + unpol_U**2.) / unpol_I - unpol_sQ = np.sqrt((2. - unpol_modulation**2.) / ((unpol_I - 1.) * mu**2.)) - print('Q, U unpolarized uncertainty:', unpol_sQ*100, '%') - - I = pol_I - unpol_I - print('check I(src+bkg) vs I(src):', pol_I, I) - self.Q = pol_Q/pol_I - unpol_Q/unpol_I * BACKSCAL - self.U = pol_U/pol_I - unpol_U/unpol_I * BACKSCAL - - print('Q, U, unsubtracted:', pol_Q/pol_I, pol_U/pol_I) - print('Q, U, subtracted:', self.Q, self.U) - - polarization_fraction = np.sqrt(self.Q**2. + self.U**2.) + if bkg_qs is None or bkg_us is None: + print('No background data provided, assuming no background contribution.') + else: + print('Unpolarized bkg (or simulation) provided, subtracting its contribution.') + bkg_qs = np.array(bkg_qs) + bkg_us = np.array(bkg_us) + if bkg_qs.ndim == 1: + unpol_I = len(bkg_qs) * BACKSCAL + unpol_Q = np.sum(bkg_qs) * BACKSCAL / mu + unpol_U = np.sum(bkg_us) * BACKSCAL / mu + I = pol_I - unpol_I + print('check I(src+bkg) vs I(src):', pol_I, I) + else: + BACKSCAL = 1 + unpol_I = [] + unpol_Q = [] + unpol_U = [] + for i in range(len(bkg_qs)): + unpol_I.append(len(bkg_qs[i]) * BACKSCAL) + unpol_Q.append(np.sum(bkg_qs[i]) * BACKSCAL / mu) + unpol_U.append(np.sum(bkg_us[i]) * BACKSCAL / mu) + unpol_I = np.mean(unpol_I) + unpol_Q = np.mean(unpol_Q) + unpol_U = np.mean(unpol_U) + # print('I unpolarized:', unpol_I) + print('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) + unpol_modulation = mu * np.sqrt(unpol_Q**2. + unpol_U**2.) / unpol_I + unpol_sQ = np.sqrt((2. - unpol_modulation**2.) / ((unpol_I - 1.) * mu**2.)) + print('Q, U unpolarized uncertainty:', unpol_sQ*100, '%') + + self.QN = np.sum([pol_Q/pol_I, unpol_Q/unpol_I * BACKSCAL]) + self.UN = np.sum([pol_U/pol_I, unpol_U/unpol_I * BACKSCAL]) + + print('Q, U, subtracted:', self.QN, self.UN) + + + polarization_fraction = np.sqrt(self.QN**2. + self.UN**2.) pol_PD = polarization_fraction * 100 - pol_PA = 0.5 * np.arctan2(self.U, self.Q) + pol_PA = 0.5 * np.arctan2(self.UN, self.QN) # Convert to 0 to 180 deg (just the convention) if pol_PA < 0: pol_PA += np.pi Qa, Ua = rotate_points_to_x_axis(polarization_fraction, pol_PA) # print('Q/I, U/I:', Qa, Ua) - pol_modulation = mu * polarization_fraction - polarization_fraction_uncertainty = pol_sQ = np.sqrt((2. - pol_modulation**2.) / ((I - 1.) * mu**2.)) - + pol_sQ = np.sqrt((2/mu**2 - self.QN**2) / I**2) + pol_sU = np.sqrt((2/mu**2 - self.UN**2) / I**2) + pol_covQNUN = - (self.QN * self.UN) / I**2 + print('Q/I, U/I, uncertainty:', pol_sQ, pol_sU, np.sqrt(pol_sQ)) + + # Reconstructed polarization fraction uncertainty: See eq 36 in Kislat 2015 + m = mu * polarization_fraction + polarization_fraction_uncertainty = np.sqrt((2 - m**2)/((I - 1) * mu**2)) pol_1sigmaPD = polarization_fraction_uncertainty * 100 - pol_1sigmaPA = np.degrees(1 / (pol_modulation * np.sqrt(2. * (I - 1.)))) + # Reconstructed polarization angle uncertainty: See eq 37 in Kislat 2015 + pol_1sigmaPA = np.degrees(1 / (m * np.sqrt(2. * (I - 1.)))) print('\n ############################## \n') print(' PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') print(' PA: %.2f'%(np.degrees(pol_PA)), '+/- %.2f'%pol_1sigmaPA, 'deg') @@ -848,28 +1104,35 @@ def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, re c_mdp = plt.Circle((0, 0), radius=mdp, facecolor='tab:red', alpha=0.3, linewidth=1, linestyle='--', label=r'MDP$_{99}$ = %.2f %%'%(self._mdp99*100)) plt.gca().add_artist(c_mdp) - label_data = ("Measured (Bkg subtracted)\n" - "PD = (%.1f ± %.1f)%%\n" - "PA = (%.1f ± %.1f) deg" - % (pol_PD, pol_1sigmaPD, np.degrees(pol_PA), pol_1sigmaPA) ) + + + if bkg_qs is None or bkg_us is None: + label_data = ("PD = (%.1f ± %.1f)%%\n" + "PA = (%.1f ± %.1f) deg" + % (pol_PD, pol_1sigmaPD, np.degrees(pol_PA), pol_1sigmaPA) ) + pass + else: + label_data = ("Measured (Unpol subtracted)\n" + "PD = (%.1f ± %.1f)%%\n" + "PA = (%.1f ± %.1f) deg" + % (pol_PD, pol_1sigmaPD, np.degrees(pol_PA), pol_1sigmaPA) ) + plt.plot(unpol_Q/unpol_I, unpol_U/unpol_I, 'o', markersize=5, color='0.4', \ + label=r'Unpol (PD$_{1\sigma}$ = %i %%)'%(unpol_sQ*100)) + unpol_c = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) + unpol_c2 = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=2*unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) + unpol_c3 = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=3*unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) + plt.gca().add_artist(unpol_c) + plt.gca().add_artist(unpol_c2) + plt.gca().add_artist(unpol_c3) plt.plot(Qa, Ua, 'o', markersize=5, color='red', label=label_data) - pol_c = plt.Circle((Qa, Ua), radius=pol_sQ, facecolor='none', edgecolor='red', linewidth=1) - pol_c2 = plt.Circle((Qa, Ua), radius=2*pol_sQ, facecolor='none', edgecolor='red', linewidth=1) - pol_c3 = plt.Circle((Qa, Ua), radius=3*pol_sQ, facecolor='none', edgecolor='red', linewidth=1) + pol_c = plt.Circle((Qa, Ua), radius=polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) + pol_c2 = plt.Circle((Qa, Ua), radius=2*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) + pol_c3 = plt.Circle((Qa, Ua), radius=3*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) plt.gca().add_artist(pol_c) plt.gca().add_artist(pol_c2) plt.gca().add_artist(pol_c3) - plt.plot(unpol_Q/unpol_I, unpol_U/unpol_I, 'o', markersize=5, color='0.4', \ - label=r'Bkg. Measured (PD$_{1\sigma}$ = %i %%)'%(unpol_sQ*100)) - unpol_c = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) - unpol_c2 = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=2*unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) - unpol_c3 = plt.Circle((unpol_Q/unpol_I, unpol_U/unpol_I), radius=3*unpol_sQ, facecolor='none', edgecolor='0.4', linewidth=1) - plt.gca().add_artist(unpol_c) - plt.gca().add_artist(unpol_c2) - plt.gca().add_artist(unpol_c3) - plt.xlim(-1, 1) plt.ylim(-1, 1) plt.xlabel('Q/I') @@ -883,7 +1146,14 @@ def calculate_polarization(self, qs, us, bkg_qs, bkg_us, mu, show_plots=True, re polarization_angle = PolarizationAngle(polarization_angle, self._source_vector, convention=self._convention).transform_to(IAUPolarizationConvention()) polarization_angle_uncertainty = Angle(pol_1sigmaPA, unit=u.deg) - polarization = {'fraction': polarization_fraction, 'angle': polarization_angle, 'fraction_uncertainty': polarization_fraction_uncertainty, 'angle_uncertainty': polarization_angle_uncertainty, 'QN': self.Q, 'UN': self.U, 'Stokes_uncertainty': pol_sQ} + polarization = {'fraction': polarization_fraction, + 'angle': polarization_angle, + 'fraction_uncertainty': polarization_fraction_uncertainty, + 'angle_uncertainty': polarization_angle_uncertainty, + 'QN': self.QN, + 'UN': self.UN, + 'QN_ERR': pol_sQ, + 'UN_ERR': pol_sU} return polarization diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index e654273e..21bab41a 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -25,12 +25,12 @@ { "data": { "text/html": [ - "
11:11:25 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
+       "
10:17:05 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m11:11:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=206123;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=113766;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m10:17:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=591577;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=985696;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -45,7 +45,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=807660;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=188355;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=247959;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474106;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -60,7 +60,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336775;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=528591;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=70732;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=686002;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -70,11 +70,11 @@ { "data": { "text/html": [ - "
11:11:26 INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m11:11:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242823;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=806412;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=792814;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=807013;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -87,7 +87,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=973405;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=294;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=656430;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=415752;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -100,7 +100,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=8698;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654729;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=449848;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=880668;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -113,7 +113,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=287121;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=830959;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=934633;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=425583;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -122,11 +122,11 @@ { "data": { "text/html": [ - "
11:11:26 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
10:17:05 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m11:11:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=509101;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=102020;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m10:17:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=597712;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=956934;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -139,7 +139,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=20505;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389243;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=234536;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980578;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -152,7 +152,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=190589;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=241184;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=822549;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908135;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -161,12 +161,12 @@ { "data": { "text/html": [ - "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "
10:17:06 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
        "                  require the C/C++ interface (currently HAWC)                                                     \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=969350;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=543083;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m10:17:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=201310;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=992938;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -181,7 +181,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=892140;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=34567;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=726341;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=663070;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -196,7 +196,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677808;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=905311;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=329631;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=347411;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -206,11 +206,11 @@ { "data": { "text/html": [ - "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
10:17:06 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=994904;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=224102;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m10:17:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=921605;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=380246;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -224,7 +224,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=938138;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416915;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955530;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=606507;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -239,7 +239,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=290829;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=103854;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=734901;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=937767;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -254,7 +254,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=422984;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278903;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=419283;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=960890;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -265,7 +265,7 @@ "source": [ "from cosipy import UnBinnedData\n", "from cosipy.spacecraftfile import SpacecraftFile\n", - "from cosipy.polarization.conventions import MEGAlibRelativeX, MEGAlibRelativeY, MEGAlibRelativeZ, IAUPolarizationConvention\n", + "# from cosipy.polarization.conventions import MEGAlibRelativeX, MEGAlibRelativeY, MEGAlibRelativeZ, IAUPolarizationConvention\n", "from cosipy.polarization.polarization_stokes import PolarizationStokes\n", "\n", "from cosipy.threeml.custom_functions import Band_Eflux\n", @@ -338,7 +338,9 @@ "background_after.select_data_energy(200., 10000., output_name=data_path/'background_after_energy_cut', unbinned_data=data_path/'background_after.fits.gz')\n", "background_2 = background_after.get_dict_from_fits(data_path/'background_after_energy_cut.fits.gz')\n", "\n", - "background = [background_1, background_2]" + "background = [background_1, background_2]\n", + "# Save background_1 dictionary to a file npz\n", + "np.savez(data_path/'background_1.npz', **background_1)" ] }, { @@ -419,12 +421,51 @@ "text": [ "This class loading takes around 30 seconds... \n", "\n", - ">>> Convolving spectrum in ICRS frame...\n" + ">>> Convolving spectrum in ICRS frame...\n", + "Background provided. Make sure there is enough statistics.\n", + "Creating the 100% polarized ASADs (this may take a minute...)\n", + "Creating the unpolarized ASAD...\n", + "A = 0.70, B = 0.59, C = 1.54\n", + "Rmax, Rmin: 1.296362263993903 0.7045013854812356\n", + "Modulation mu = 0.2958027043311636\n", + "A = 0.70, B = 0.60, C = 1.29\n", + "Rmax, Rmin: 1.3015395182787968 0.7007339063841972\n", + "Modulation mu = 0.30006172208759263\n", + "A = 0.70, B = 0.60, C = 1.02\n", + "Rmax, Rmin: 1.299080696407923 0.7020257337541459\n", + "Modulation mu = 0.29836242273501756\n", + "A = 0.70, B = 0.59, C = 0.77\n", + "Rmax, Rmin: 1.2934099578667642 0.7030000374258599\n", + "Modulation mu = 0.2957358066895296\n", + "A = 0.70, B = 0.60, C = 0.50\n", + "Rmax, Rmin: 1.2988200755168664 0.7015119332421038\n", + "Modulation mu = 0.29860450148240125\n", + "A = 0.70, B = 0.59, C = 0.25\n", + "Rmax, Rmin: 1.2886829648874454 0.7034352676970612\n", + "Modulation mu = 0.29378160774679707\n", + "A = 1.30, B = -0.60, C = 1.54\n", + "Rmax, Rmin: 1.2982384590994411 0.6996091008132603\n", + "Modulation mu = 0.2996371546547519\n", + "A = 1.30, B = -0.60, C = 1.28\n", + "Rmax, Rmin: 1.2986652250227264 0.6994399944096454\n", + "Modulation mu = 0.2998967345590093\n", + "A = 1.30, B = -0.60, C = 1.02\n", + "Rmax, Rmin: 1.2993691627841086 0.700069122523783\n", + "Modulation mu = 0.29973420268285\n", + "A = 1.30, B = -0.59, C = 0.76\n", + "Rmax, Rmin: 1.295186663981397 0.7090702970204761\n", + "Modulation mu = 0.29243573971070924\n", + "A = 1.30, B = -0.60, C = 0.50\n", + "Rmax, Rmin: 1.2962375037496803 0.7035416073846245\n", + "Modulation mu = 0.296380681778834\n", + "A = 0.71, B = 0.59, C = 1.81\n", + "Rmax, Rmin: 1.2980745189958551 0.708486741516934\n", + "Modulation mu = 0.2938299413436539\n" ] } ], "source": [ - "source_photons = PolarizationStokes(source_direction, spectrum, data, background, response_file, sc_orientation, response_convention='RelativeX')" + "source_photons = PolarizationStokes(source_direction, spectrum, data, response_file, sc_orientation, background=background, response_convention='RelativeX')" ] }, { @@ -447,16 +488,21 @@ "text": [ "\n", "Data duration: 0.541 s\n", + "Data counts: 8114\n", + "Count rate: 15006.507 counts/s\n", "\n", "Background duration: 378.9 s\n", "\n", - "MDP_99: 11.298 %\n" + "MDP_99: 16.081 %\n" ] } ], "source": [ "data_duration = source_photons.get_data_duration()\n", + "data_count = source_photons.get_data_counts()\n", "print('\\nData duration:', str(round(data_duration, 3)), 's')\n", + "print('Data counts:', str(data_count))\n", + "print('Count rate:', str(round(data_count / data_duration, 3)), 'counts/s')\n", "\n", "background_duration = source_photons.get_background_duration()\n", "print('\\nBackground duration:', str(round(background_duration, 3)), 's')\n", @@ -483,70 +529,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Creating the 100% polarized ASADs (this may take a minute...)\n", - "Creating the unpolarized ASAD...\n", - "A = 0.72, B = 0.56, C = 1.55\n", - "Rmax, Rmin: 1.2765994095848665 0.7208759491498263\n", - "Modulation mu = 0.2782129241319227\n", - "A = 0.71, B = 0.57, C = 1.28\n", - "Rmax, Rmin: 1.277565221044138 0.7145656302116623\n", - "Modulation mu = 0.2826117523743843\n", - "A = 0.71, B = 0.58, C = 1.02\n", - "Rmax, Rmin: 1.2811347880756978 0.7115098904640041\n", - "Modulation mu = 0.2858637587254843\n", - "A = 0.71, B = 0.58, C = 0.76\n", - "Rmax, Rmin: 1.2832547944023935 0.7105732262477737\n", - "Modulation mu = 0.28722716414020205\n", - "A = 0.71, B = 0.58, C = 0.50\n", - "Rmax, Rmin: 1.286333723259795 0.709611209311379\n", - "Modulation mu = 0.2889471069752825\n", - "A = 0.71, B = 0.57, C = 0.25\n", - "Rmax, Rmin: 1.2795091218061168 0.7209409818293889\n", - "Modulation mu = 0.27922123074283006\n", - "A = 1.28, B = -0.57, C = 1.54\n", - "Rmax, Rmin: 1.2816992490648778 0.7193171518560963\n", - "Modulation mu = 0.2810482197696847\n", - "A = 1.28, B = -0.57, C = 1.28\n", - "Rmax, Rmin: 1.282324586598261 0.724706750909539\n", - "Modulation mu = 0.2778321520286452\n", - "A = 1.29, B = -0.58, C = 1.02\n", - "Rmax, Rmin: 1.2897273462156322 0.7181465237202669\n", - "Modulation mu = 0.2846696852096655\n", - "A = 1.29, B = -0.57, C = 0.76\n", - "Rmax, Rmin: 1.286606127370973 0.7197829170713229\n", - "Modulation mu = 0.2825091234772001\n", - "A = 1.29, B = -0.58, C = 0.51\n", - "Rmax, Rmin: 1.2880870304466803 0.7157297168971504\n", - "Modulation mu = 0.28563356120674255\n", - "A = 0.72, B = 0.57, C = 1.81\n", - "Rmax, Rmin: 1.2815309169458988 0.7196863013802212\n", - "Modulation mu = 0.28075143988398316\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAG5CAYAAAApsoiqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhPUlEQVR4nO3dB5hTddr//5vepTdp0kRAEURYkaUjKG0toOIqoMAqKqAPTdDVR6SIgiuuKy7KTwQFRQUXHrpUcUUFKUoHBSkLUpVe5399vnud/JNMMpOBISSZ9+u6cmXmnJPk5CST3HN/7+99MiUlJSUZAAAAoiZz9B4KAAAAQgAGAAAQZQRgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRRgAWg06dOmWbNm1y1wAAIPEQgMWgHTt2WPfu3d01AABIPARgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRRgAGAAAQZQRgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRltVi0JkzZ2zcuHE2b948O3r0qFWsWNG6detmderUSfF2S5YssYULF9rGjRvt0KFDVqxYMatXr5517tzZ8uXLF7DtiRMn7N1333W3OXLkiJUsWdLat29vd955Z8B2K1eutPnz59vatWtt//79VqhQIbvpppusa9euVqRIkYBte/XqZatXr062X3Xr1rWRI0de0jEBAACJIyYDsOHDh9vixYutQ4cOVrp0aZs9e7b179/fRo8ebTVq1Ah7OwU5hQsXthYtWljx4sVt27ZtNm3aNFu+fLkL6HLkyOG2O3/+vPXt29c2bdpkd911l3uMb7/91l577TUX8D300EO++3z77bft999/t8aNG1uZMmVsz549NnXqVPv666/dferx/BUtWtQeffTRgGXB2wAAgIwt5gKw9evX24IFC6xHjx7WsWNHt6xly5bWpUsXGzNmjLuEM3jwYKtVq1bAsipVqtiwYcNcFqtNmzZu2dKlS+3HH3+0AQMGWOvWrd0yZb7++te/2vvvv++2K1iwoFv+xBNPuKAvc+bMARktZbsUiHXv3j3g8fLmzesCQAAAgLipAdOQYJYsWaxdu3a+ZcpcKVBat26d7du3L+xtg4Mvadiwobvevn27b5mGE6VZs2YB2+p3DX8uW7bMt6xmzZoBwZe37KqrrrIdO3aE3I9z5865IU4AAIC4CMC2bNnihgTz5MkTsLxq1arueuvWrWm6v4MHD7rrAgUK+JYpyFKQlzVrYALQG6LU0GRKFFydPHnS8ufPn2zdzp07Xcbu9ttvd1k11ZkpIAMAAIjZIUgFTKFqprxlBw4cSNP9TZo0yQVbjRo18i0rW7asqwPTcKd/TZmXGUvtMT755BM7e/asNW3aNGD51Vdf7bJwFSpUsFOnTrk6tgkTJrig7MUXXwx7f3o8L1CUcJk1IKM6cfiUbViw06o2K2O5C+a80rsDAIkXgJ0+fdqyZcuWbHn27Nl96yOluq+ZM2e6WjIV0HuaN2/uar1efvlle/rpp13G7bvvvrPPP/881cfQLMfx48dbkyZNrHbt2gHrnnnmmYDflQl79dVXbcaMGXbvvfda9erVQ97n9OnT3X0CCO3EkdO2aupWK1e7GAEYgIQQcwGYhgGVXQqmYUNvfSTWrFljI0aMcAXzwYXyyqapMH/o0KHWp08ft0xDnr1793bLc+XKFfI+lZl67rnnXIZLBfyRuO+++1wAtmLFirABmOrd6tevH/A4Q4YMiej+AQBA/Im5AEzBkfptBfOG6IJ7b4WiOrGBAwe6QEkzI4NrvbxC+o8++sh++uknN1yoXmPeY/hnyzwq/lewpkBNgV3u3Lkjej7qRSZqbxGOnlMkzwsAACSGmAvAKlWqZKtWrbLjx48HFOKrXstbn5Ldu3e7Hl9qI/HKK6+kGCipNqxy5cq+3+fOneuug4cWf/vtNxd8KTP3t7/9LU3BkvqGBU8CAAAAGVvMzYJUw1MVyKsuyn/4cdasWVatWjXXYNXLSAUXqyuDpUBJbSPUlDUtQY+64atgX5mwm2++2bdcsx3VBFaF8groQmXHRAGjN0zqSUpKckX4kloXfwAAkHHEXAZMQZYK3MeOHeuColKlStmcOXNs7969AXVXqt9SQbyaqnr69evnMk4quv/hhx/cxaOMmH8Q1LNnT1eTpQJ8BW6q01KwpcJ8/75fL730km3YsMFatWrlAj7/oE+1Yg0aNHA/b9682c10VIG/9lmF/F9++aXbh7Zt27qGsAAAADEZgMmgQYNcpktDgseOHXO1XKq7Ut1WSrweYZMnT062Trf1D8AUEKlNhDJbGqZU1kvnm1QriVD3qQycLv5KlCjhC8C0vzfeeKMLCHUeSgVx5cqVcxk5/6ayAAAAmZI0ToaYokawmrn5zjvvkDkD1Cvv59/s82f/bXcOvdWKlE/eABkA4k3M1YABAAAkOgIwAACAKCMAAwAAiDICMAAAgCgjAAMAAIgyAjAAAIAoIwADAACIMgIwAACAKCMAAwAAiDICMAAAgCgjAAMAAIgyAjAAAIAoIwADAMDMThw+ZSs/3eKugcuNAAwAAAVgR07bqqlb3TVwuRGAAQAARBkBGAAAQJQRgAEAAEQZARgAAECUEYABAABEGQEYAIcp+AAuBp8dF4cADIDDFHwAF4PPjotDAAYAABBlBGAAAABRRgAGAAAQZQRgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRRgAGAAAQZVktBp05c8bGjRtn8+bNs6NHj1rFihWtW7duVqdOnRRvt2TJElu4cKFt3LjRDh06ZMWKFbN69epZ586dLV++fAHbnjhxwt599113myNHjljJkiWtffv2dueddya7X+3D22+/bUuXLrXTp09b1apV7fHHH7cqVaok23bZsmX23nvv2Y4dO6xAgQLWqlUr69Spk2XNGpOHGlGmU3VsWLDTqjYrY7kL5rzSuwMAuEJiMgM2fPhwmzJlit12223Wq1cvy5w5s/Xv39/Wrl2b4u1GjhzpAp8WLVpY7969rW7dujZt2jTr0aOHC5w858+ft759+9q//vUva9KkifXs2dPKli1rr732mk2cODHgPi9cuGADBgywL774wu6++2577LHH7PDhw+7+d+7cGbDt8uXL7dlnn7W8efO69Q0aNLAJEybY6NGj0/kIIV5xyg4AgMRcWmb9+vW2YMECFzR17NjRLWvZsqV16dLFxowZ4y7hDB482GrVqhWwTFmqYcOG2fz5861NmzZumTJZP/74owusWrdu7ZYp8/XXv/7V3n//fbddwYIF3fLFixe7bXXfjRs3dsuaNm1qDzzwgMt0Pf/8877Heuutt1y2btSoUb6MV+7cue2DDz5w2bVy5cql+/ECAADxJ+YyYBoSzJIli7Vr1863LEeOHC5QWrdune3bty/sbYODL2nYsKG73r59u2+Zl0lr1qxZwLb6XcOfGkb0359ChQr57kc0tKjMmbbT9t7969K2bduA4ca77rrLkpKSXCAHAAAQkwHYli1brHTp0pYnT56A5aq7kq1bt6bp/g4ePOgLmjwKmhTkBddlKdCTTZs2+ZZt3rzZKleu7IZBg/fn1KlTvmFIbSfBdWFFihSxokWLuucVzoEDB9xjehcNowIAgMQVc0OQCpgKFy6cbLm3TMFKWkyaNMkFW40aNfItU72X6sA03FmjRo1kmTH/x1Ax/4033hh2f7S/Gnb0Ar1w++6tD2X69Ok2fvz4ND0vAAAQv2IuAFOxfLZs2ZItz549u299pFT3NXPmTFdLVqZMGd/y5s2bu1qvl19+2Z5++mmXcfvuu+/s888/T/YY+tl77JT2xxuKDLetZl2Go+HW+vXr+35XBmzIkCERP08AABBfYi4A0zDg2bNnky33AhxvmDA1a9assREjRriZkN27d0+WkVJh/tChQ61Pnz5umYY8NXNRy3PlyhWwP95jp7Q/XuAVbtuU9lvDlLoAAICMIeYCMAVH+/fvT7bcG8KLJFBRndjAgQOtQoUKbvZiqB5cNWvWtI8++sh++uknV8vlP4zony1TAX6o4cPgIUf/IcnixYsn29arYQMAAIi5IvxKlSrZrl277Pjx4wHLVa/lrU/J7t27XY8vtZF45ZVXXBuIcFQbpgL7G264wW23YsUKt7x27dq+bbReBfTqB+Zvw4YNljNnTl+wpu2CC/i9ejIFlN56AACAmAvA1GtLBfIqTPcfwps1a5ZVq1bNl11SO4rg2YLKNGlIUTMW1ZTVf+ZjatQNXwX7yoTdfPPNvuUq3lchvnqH+W+7aNEiu/XWW31Dj+XLl3fF/TNmzHD771FdWaZMmQImAQAAgIwt5oYgFWSpx9bYsWNdoFOqVCmbM2eO7d271zVO9ah+a/Xq1QGBUb9+/WzPnj2u6P6HH35wF48yYv6nMlL3++rVq7sCfAVuCpxOnjzpCvP9W04oIPz0009dd371+cqfP78LqpQRe+SRRwL2Xacn0tCngkD1FNPwpjrxq7HrNddccxmPGgAAiCcxF4DJoEGDXKZr7ty5duzYMVfLpYJ61W2lxOsRNnny5GTrdFv/AEz9utQcVUOEGn5U1kvnm7z66quTDVNqKFNd7j/77DM36/G6665zgZYyXv6UEdPsRbWU0OmHFKw9+OCDros/AABATAdgmjGobJIu4bzxxhvJlvlnw1Lz5JNPukskdCJvZd/8M3Dh6PyPugAAAMRNDRgAAECiIwADAACIMgIwAACAKCMAAwAAiDICMAAx7cKFJNv/02/uZ13rdwCIdzE5CxIA5Odv99ryCRvs+KFT7vevxq2z1dO22S2dqlr5uiWu9O4BwEUjAwYgZoOvBa+v8gVfHv2u5VoPAPGKAAxAzNEwozJfKVk+cQPDkQDiFgEYgJizd+OhZJmvYMcPnnLbARnBicOnbOWnW9w1EgMBGICYc/LI6XTdDoh3J46ctlVTt7prJAYCMAAxJ1eBHOm6HQDEGgIwADGnxHWFLE+hnCluk6dwTrcdAMQjAjAAMSdz5kyu1URKbnmoqtsOAOIRARiAmKQ+X82eqpUsE6bMl5bTBwxAPKMRK4CYpSCr3M3FbdOina4Ja/2u1a1KkzJkvgDEPTJgAGKagq2iFfK7n3VN8AUgERCAAQAARBkBGAAAQJQRgAEAAEQZARgAAECUEYABAABEGQEYAABAlBGAAQAARBkBGAAAQJQRgAEAAEQZARgAAECUEYABAABEGQEYAABAlBGAAQAARFlWi0FnzpyxcePG2bx58+zo0aNWsWJF69atm9WpUyfF2y1ZssQWLlxoGzdutEOHDlmxYsWsXr161rlzZ8uXL1/AtqdPn7ZPPvnE5s6da3v37nXrr7/+env44YetfPnyvu169eplq1evDvl4WbJksUWLFvl+v/fee919BWvXrp317dv3Io4EAABIRDEZgA0fPtwWL15sHTp0sNKlS9vs2bOtf//+Nnr0aKtRo0bY240cOdIKFy5sLVq0sOLFi9u2bdts2rRptnz5chfQ5ciRw7ftSy+9ZF999ZW1bdvWrr32Wjtw4IDbtkePHjZ+/HgrUaKE2+6hhx6yNm3aBDzOyZMnbdSoUSEDwsqVK9t9990XsEzPAQAAIGYDsPXr19uCBQtcINSxY0e3rGXLltalSxcbM2aMu4QzePBgq1WrVsCyKlWq2LBhw2z+/Pm+QGr//v22dOlSu//+++3xxx/3bavg7qmnnnLrlM2SUEGWMnNy2223JVtXpEgRFwACAADETQ2YhhE1tKdhO48yV61bt7Z169bZvn37wt42OPiShg0buuvt27f7lp04ccJdFyxYMGBbZc+8x0uJgrlcuXLZH//4x5Drz54967JkAAAAcZEB27Jlixuyy5MnT8DyqlWruuutW7e64cVIHTx40F0XKFDAt6xUqVJWtGhR+/jjj61s2bJu2FBDkG+//baVLFnSmjZtGvb+jhw5YitWrHDbKAgL9v3337sM2Pnz590wpoZRdUmJHtvbT9mxY0fEzw8AAMSfmAvAFIh4mSh/3jIFK2kxadIkl1Fr1KiRb1nWrFldDZguAwcODBiufOutt5IV7PvT8KiCq1DDjxUqVHDDmGXKlLHff//d1a79/e9/d/usIdVwpk+f7urOgCvlwoUk2//Tb+5nXRcqd5VlzpzpSu8WACSsmAvANDsxW7ZsyZZnz57dtz5SGiqcOXOmqyVTUORPQValSpWscePGVq1aNdu9e7d9+OGH9sILL7gC+3DDkF988YXLpt18883J1r388ssBv7dq1cr69etnU6ZMsXvuucfNygxFw63169cPyIANGTIk4ucJXIqfv91ryydssOOHTrnfvxq3zlZP22a3dKpq5ev+dzIKACDBa8AU+KiGKlRrCm99JNasWWMjRoywunXrWvfu3QPWHTt2zHr27GnVq1e3Rx991Bo0aOAK8pURW7t2rctchbJnzx5Xh6bhR2XRUpMpUyZXzK+MWbhWFl7hvrJv3qVcuXIRPUcgPYKvBa+v8gVfHv2u5VoPAMgAAZiGGv3roTzeMgUrqVGdmIYWNSSomZHBwZIK/dUnzD/rJDVr1nS1Zz/88EPYjJqEGn4Mx8t6aUgSiLVhR2W+UrJ84ga3HQAgwQMwDQvu2rXLjh8/nqw9hbc+JRpKVNNTzXB85ZVXLHfu3Mm2OXz4sLu+cOFCwPKkpCS3TBmrcMOPKuBX5ixSypoFTwIAYsHejYeSZb6CHT94ym0HAEjwAEw1WQqAVJjuP/w4a9YsV6vlzYBUO4rg2YLKkvXp08cyZ87smrKGC3q8xqgqqPe3bNky1z5CsyKDbd682T1e8+bNQ96nMlzBgdu5c+dcXZlq2kK1yACupJNHTqfrdgCAOC7CV5DVpEkTGzt2rGv5oIzTnDlz3Cl+BgwY4Ntu6NChrq5KTVM9KnhXxklF9xpG9B9KVEbMa6qqoUedbuj99993gZxXhD916lQ3BKqeY2kdflRX/QkTJrjZlmploVMo6TY///yz/eUvfwk5sxO4knIVyJGu2wEA4jgAk0GDBrlMl87TqIJ51XKpoF41WqnVfsnkyZOTrdNtvQBMGak333zTBWBff/21y4Spp5eK8VWwH5w507CkzjGpUxapb1go2kcVzyvoUuCoujNl0l588UUXUAKxpsR1hSxPoZwpDkPmKZzTbQcAyAABmGY66hRB/qcJCvbGG28kW+afDUuN2lA8+eST7pIaDWl+9tlnKW6j2YvBbSiAWKY+X2o1odmO4dzyUFX6gQFARqgBA9LDicOnbOWnW9w1wlOfr2ZP1XKZsODMl5bTBwwAMlAGDLhUJ46ctlVTt1q52sUsd8HA4AKBFGSVu7m4bVq00zVhrd+1ulVpUobMFwBcRmTAALhgq2iF/O5nXRN8AcDlRQAGAAAQZQRgAAAAUUYABgAAEGUEYAAAAFFGAAYAABBlBGAAAABRRgAGAAAQZQRgAAAAUUYABgAJiNNxAbGNAAwAEpB3Oi5dA4g9BGAAAABRRgAGRMmFC0m2/6ff3M+61u8AgIwp65XeASAj+PnbvbZ8wgY7fui/9ThfjVtnq6dts1s6VbXydUtc6d0DAEQZGTAgCsHXgtdX+YIvj37Xcq0HAGQsBGDAZaRhRmW+UrJ84gaGIwEggyEAAy6jvRsPJct8BTt+8JTbDgDiDbWtF48aMOAyOhlhC4BItwOAWEFt66UhAwZcRrkK5EjX7QAgFlDbeukIwIDLqMR1hSxPoZwpbpOncE63HQDEA2pb0wcBGHAZZc6cyaXjU3LLQ1XddgAQD6htTR8EYMBlplqIZk/VSpYJU+ZLy6mVABBPqG1NHxThA1GgIKvczcVt06KdrlC1ftfqVqVJGTJfAOIOta3pgwwYECUKtopWyO9+1jXBF4B4RG1r+iAAAwAAEaO2NX0QgAEAgDShtvXSUQMGIOblLpDDat1dyV0DiA3UtiZgAHbmzBkbN26czZs3z44ePWoVK1a0bt26WZ06dVK83ZIlS2zhwoW2ceNGO3TokBUrVszq1atnnTt3tnz58gVse/r0afvkk09s7ty5tnfvXrf++uuvt4cfftjKly/v22727Nk2fPjwkI83bdo0K1y4cMCyZcuW2XvvvWc7duywAgUKWKtWraxTp06WNWtMHmogLuQumNNqt698pXcDQBBqWy9eTEYFCngWL15sHTp0sNKlS7sgqH///jZ69GirUaNG2NuNHDnSBUQtWrSw4sWL27Zt21yQtHz5chfQ5cjx///3/NJLL9lXX31lbdu2tWuvvdYOHDjgtu3Ro4eNHz/eSpQITJ927drVSpYsGbAsb968Ab/rcZ599lmrWbOm9e7d23766SebMGGCHT582Pr06ZNuxwcAAMS3mAvA1q9fbwsWLHCBUMeOHd2yli1bWpcuXWzMmDHuEs7gwYOtVq1aAcuqVKliw4YNs/nz51ubNm3csv3799vSpUvt/vvvt8cff9y3rYK7p556yq279957A+7nD3/4g1133XUp7vtbb73lsnWjRo3yZbxy585tH3zwgbVv397KlSt3EUcEAAAkmpgrwtcwYpYsWaxdu3a+ZcpctW7d2tatW2f79u0Le9vg4EsaNmzorrdv3+5bduLECXddsGDBgG294UT/TJk/3e78+fMh1+n+dVFGzX+48a677rKkpCSX0QMAAIjJDNiWLVvcsGOePHkCllet+t8pr1u3bnXDi5E6ePCgu1Y9lqdUqVJWtGhR+/jjj61s2bJWuXJlNwT59ttvu2HGpk2bJrsfDSmePHnSsmXL5mrRnnjiCStTpoxv/ebNm30ZN39FihRxj6XnFY4e29tPUf0YAABIXDEXgCkQCS5sF2+ZgpW0mDRpksuoNWrUyLdMGSrVgOkycOBA33IFTxpG9C/YVzbsjjvucNk1BYWbNm2yKVOmuKHLd9991xcMegFUuH33D7CCTZ8+3dWdAQCAjCHmAjDNTlSWKVj27Nl96yOluq+ZM2e6WjL/bJUoyKpUqZI1btzYqlWrZrt377YPP/zQXnjhBVfD5Q1DKhvmnxFr0KCB1a1b13r27GkTJ060vn37+mZu+u9n8L57w56haLi1fv36ARmwIUOGRPw8AQCX5sKFJNv/02/uZ10XKncVM/qQsQIwBT5nz55NttwLcMLVZwVbs2aNjRgxwgVL3bt3D1h37NgxF0CpCF8Xj4rse/Xq5WZd3nnnnWHvW8X6CtpWrlzpW+YFXt5+Bu97SvutYUpdAADR9/O3e235hA12/NAp97t6Wq2ets11e6ehKDJMEX644TpvWSSBiurENLRYoUIFNzMyuAeXCv3VJ8w/6yRqH6Fhxh9++CHVx1CPsd9//z1gv/33M3jfQw1NAgCufPC14PVVvuDLo9+1XOuBmMqA/frrr7Z69WrbtWuXHT9+3C1T8KIC+htvvDFNhfL+NCy4atUqd5/+hfhqT+GtT4mGEjUsqBmOr7zyimsDEUx9ueTChQsByzVbUcvCzXT0t2fPnoDCfhXyi2rElB3zqGZNbS/8Z3UCAGJj2FGZr5Qsn7jBdXtnOBJXPABTgPP666/bd9995wta/GXK9N83qWYKauagArK0UE3WRx995ArTvT5gGsKbNWuWC2y8wE7tKE6dOhXQW0uZJjU8zZw5s2vK6h8g+fP2Sf3GHnnkkYAu9prp6AVTcuTIkWT38/XXX7tA65577vEtU/d8zaicMWOGC7ZU+C+ff/65Oyb+kwAAAFfe3o2HkmW+gh0/eMptd3U1RjFwBQMwZX0ee+wxN/Sm4TrVV/m3jFDWShmxb7/91l00U1CtHa6++uqIH0NBVpMmTWzs2LEu+FHLiDlz5rjTBQ0YMMC33dChQ10GTk1TPf369XP7qMBNw4j+Q4nKiHmnMtLQowKm999/3wVyXhH+1KlT3VCheo551BBWnfI1Q1LPU+0mFAxqCPKhhx4K2Hc9Xw19Kghs1qyZ64Sv7vpqAHvNNdek5VADAC6zk0dOp+t2wGULwNR2QRkiDe2pM3w4f/7zn91peZ577jl3m+effz5NOzVo0CCX6dJ5GlUwr1ouFdQr6Eut9ksmT56cbJ1u6wVgmmX55ptvugBM2SxlwnLlyuVmOKpg3z/jpRmQei7K+CnjpgBNzVbVmb9QoUIBj3Hrrbe62YtqKaHTJuXPn98efPBBty0AILbkivDk7pFuB1y2AGzFihUuO5VS8OW55ZZb3LbffPONpZVmDCqb5H+aoGBvvPFGsmX+2bDUqA3Fk08+6S4pUUAWPIsyJQridAEAxLYS1xWyPIVypjgMmadwTrcdcEVnQSr7lZZ2CcoW6TYAAMQaFdar1URKbnmoKgX4uPIBmOqxNGR37ty5VLfVNtpWtwEAIBapz1ezp2q5TFhw5kvL6QOGmAjAVPv0888/uyJzFbgHz4AULVu7dq3bRh3ddRsAAGKVgqz73mhs9btWd7/r+r7RjQm+EDs1YHfffbdt27bNnd5HneRz5szpTl7tPwvyP//5jytWVyCm2X/+rRoAAIhFGmYsWiG/+1nXDDsipgIw9bPq37+/NW/e3P7v//7PtYFQq4Xgui/NBlTmSyewBgAAQDp0wr/pppvcRZTtUqsIyZs3r8uKAQAA4DKejFsBF0EXAABAlAIwneNQne/9M2DqjF+0aNFLuVsAAICEluYA7OzZszZlyhRXA6aC+1BUmK8asPbt21v27NnTYz8BAAAiduLwKduwYKdVbVbGchfMGd8BmJqqPv3007ZhwwZ36h6d2kcZr9y5c7v1J06ccBkxtajQuRy//PJLe+2119y2AAAA0XLiyGlbNXWrlatdLP4DMJ3jUMHXAw88YJ07dw5b+6XCfG2rczLqWie0BgAAwEU0Yl20aJHVrVvXHn300RQL77Xuscces5tvvtndBgAAABcZgB06dMgqV64c8fZVqlRxtwEAAMBFBmCFChWyLVu2RLz95s2b3W0AAABwkQFYw4YN7bvvvrN33nnHTp8+HXY7rVMR/ooVK9xtAAAAcJFF+I888oitWrXKPvjgA5s6dapdf/31bhak+n+J+oFpFuSPP/7oZkRWqlTJ3QYAAAAXGYCp3cQ//vEPmzRpkjsh97fffusuwYoUKWIdOnRwsyXpkg/Eh9wFclituyu5awBAjDViVUClrJYuO3fudBmv48ePu3V58uRxGbEyZcpcjn0FcBmpT07t9pFPsgEAXKFTESnQItgCAAC4jEX4AAAAiPEATOeLfPnlly/nQwAAAMSdyxqA6ZyQc+bMuZwPAQAAEHcYggQAAIjlIvy0ZrN2796d1v0BAABIeGkKwIYPH26ZMmWKePukpKQ0bQ8A8eTE4VO2YcFOq9qsjGvjAQCXJQDLli2bFS5c2Nq1axfR9osXL07TuSMBIJ6cOHLaVk3dauVqFyMAA3D5ArAKFSrYvn377M9//nNE2//yyy8EYAAAAJcSgF177bW2efNmF4QVL148LTdFjOi44TU7cPaoJbpzp8/b6b+ctQ8PfG1Zj2axWHHh3AU7+ZczNvnwcst8lDkw8S6WX89Y3rdYFcvHjH27PPtVJFs+m1z1fyzmA7AaNWq4cz/q9EORBGA33HDDpewbLgMFX7+e/c0Snv7W8pkdt9NmZy22aL+SYnC/kHivZyzvW6yK5WPGviXOfqU1AGvRooW7RKpNmzbuklZnzpyxcePG2bx58+zo0aNWsWJF69atm9WpUyfF2y1ZssQWLlxoGzdutEOHDlmxYsWsXr161rlzZ8uXL1/AtqdPn7ZPPvnE5s6da3v37nXrr7/+env44YetfPnyvu1Wrlxp8+fPt7Vr19r+/futUKFCdtNNN1nXrl3dScf99erVy1avXp1sv+rWrWsjR460WKBoP1GdP3PeTh0L/1eWM282y5I9y5X/j+z3M5brquyWOWvs/KeIxHs9Y3nfYlUsHzOX1T9+1nLkyWZZc8ROVj+Wj9uFCPbrSn4nXtK5IC+GTtx97NixFDNomm2pAv4OHTq4k3vPnj3b+vfvb6NHj3ZZuHAU5GiSgIJE3f+2bdts2rRptnz5chfQ5ciRw7ftSy+9ZF999ZW1bdvWDa0eOHDAbdujRw8bP368lShRwm339ttv2++//26NGzd2573cs2ePTZ061b7++mt3n3o8f0WLFrVHH300YFnwNlfSlUq1Xm4XLiTZx70W2/FDp8Juk6dwTrtvdGPLnPnKzcw98PNv9vnIf9udQ2+1IuXzX7H9QOK/nrG8b7EqFo/Zz9/uteUTNgR8tuUplNNu6VTVytf97/fUlRaLxy2W9+uKBWBTpkyx999/3wVYoaxfv94WLFjgAqGOHTu6ZS1btrQuXbrYmDFj3CWcwYMHW61atQKWValSxYYNG+ayWF42TpmspUuX2v3332+PP/64b1sFd0899ZRbd++997plTzzxhFueOXPmgIyWsl0KxLp37x7weHnz5k1TlhDpY+/GQykGX3L84Cm33dXVYicgBoCUgq8Fr69KtlyfdVre7KlaMROEIe1iJ1foN4yYJUuWgFYXyly1bt3a1q1b5yYAhBMcfEnDhg3d9fbt233LTpw44a4LFiwYMlPlnymrWbNmQPDlLbvqqqtsx44dIffj3LlzvsdAdJw8cjpdtwNwefunrfx0i7tG+Ky+Ml8pWT5xg9sO8SnqGbDUqG2Fhh3z5MkTsLxq1arueuvWrWmagXnw4EF3XaBAAd+yUqVKuaHCjz/+2MqWLWuVK1d2Q5AabixZsqQ1bdo0xftUcHXy5EnLnz95SnPnzp0uY3f27FlXL6asm7J3WbOGP9R6bG8/JVxgh/ByFciRrtsBuHzon5Y6svqJL+YCMAUioWqmvGUKVtJi0qRJLqPWqFEj3zIFQ6oB02XgwIEBw5VvvfVWsoL9YCreV4AVHKhdffXVLgunfmmnTp1yw6wTJkxwQdmLL74Y9v6mT5/u6s5w8UpcV8jVRaRWA6btACDWkdVPfDEXgGl2ojruB8uePbtvfaRU9zVz5kxXS6YCen8KsipVquSK66tVq+bOW/nhhx/aCy+8YKNGjQoYhvSnWY4Klpo0aWK1a9cOWPfMM88E/K5M2KuvvmozZsxwNWXVq1cPeZ8abq1fv35ABmzIkCERP0+YK6xXUWqoegnPLQ9VvaIF+AAQKbL6iS/mAjAFPsouhWpN4a2PxJo1a2zEiBGuYD64UF6zMHv27OmK8HXxXHfdda64XrMu77zzzmT3qcDoueeecxmuAQMGRLQf9913nwvAVqxYETYAUzuL4JYWSDsVo6ooNdmMocI5XfBFsSqAeEFWP/HFXBG+hhr966E83rJIAhXViWloUYGSZkYG11+p0F99wvyzTl5xvWrPfvjhh2T3qeL/Pn36uPUK7HLnzh3R81EvMlE/M1x+CrLue6Ox1e/632BX12o9QfAFIB6z+ikhqx/fYi4A07CgOu2rX1hwewpvfUo0lNi3b183w/GVV14JGSgdPnzYXV+4cCFgeVJSklt2/vz5gOW//fabC76UmVOvsbRkq9Q3LHgSAC4vfSAVrfDfCRK65gMKQDxn9ZUJC8580YIi/sVcAKaaLAVAKkz3H36cNWuWq9XyZkAqIxU8W1BZMgVKahuhQClc0KNZlqJ+Y/6WLVvmZjdqVqRHv6sJrIr/FdAF15J5FDB6w6T+AZ2K8CW1Lv4AAAQjq5+4ol4DpqBEl3AUZKnAfezYsXbkyBHXMmLOnDnudEH+dVdDhw51BfFqmurp16+fyzip6F7DiP5DicqIeUGQhh51uiE1hFUg5xXhq7GqhkDVc8yjmZIbNmywVq1auYDPP+jLlSuXNWjQwP2sk5RrpmPz5s3dPmuywJdffun2Qd32NcMSAIC0IqufmKIegD3yyCPukpJBgwa5TJfO06iCedVyqe5KNVqp1X7J5MmTk63Tbb0ATLMs33zzTReA6ZRCyoR5wZQK9v0zZ959KgOniz+drsgLwLS/N954owsIVV+mLFy5cuVcRs6/qSwAAMBFB2DKSkXq9ttvT9N9a6ajThHkf5qgYG+88UayZf7ZsNSoDcWTTz7pLqmdOikS6gGWUq8vAACASw7AdMLsTJlSToNqqFHbpDUAAwAASGQXHYAFNx31L0ZXPdQXX3zhaq1uvfXWS9k/xDCdx23Dgp1WtVkZTicCAEA0ArA77rgjxfWqe3rqqadCNjRFYuB8bgAAxFgbiuuvv95lwMaNG3e5HgIAACAuXdY+YJoluG3btsv5EAAAAHHnsgVgKsDX+Ri9k2gDAADgEmvA1AQ1FHWxV9d49fDauHGjtWzZ8mIfAgAAICFddADWu3fvFNtQKAN2ww03pNpnCwAAIKO56ACsc+fOIQMwdYDPmzevVa1a1Z3iBwAAAOkUgKV2OiEAyeUukMNq3V3JXQMAMq5LPhekar7279/v6r7OnTsXcpvUzuEIZBTql1a7feUrvRsAgHgNwC5cuGATJ060Tz/91I4ePZritosXL77YhwEApNGFC0m2/6ff3M+6LlTuKsucOeVTxwGIkwDsn//8p3300UdWsGBB1xW/cOHCliVLlvTdOwBAmvz87V5bPmGDHT90yv3+1bh1tnraNrulU1UrX7fEld49AJcagKnNRJkyZWzs2LGWO3fui70bAEA6Bl8LXl+VbLmCMS1v9lQtgjAg3huxnjx50urVq0fwBQAxMuyozFdKlk/c4LYDEMcBWIUKFezgwYPpuzcAgIuyd+Mh37BjOMcPnnLbAYjjAKxTp0725Zdf2qZNm9J3jwAAaXbyyOl03Q5IpIkoF2Iw83vRNWAafhw4cKD179/f6tevbxUrVrQ8efKE3Pb222+/lH0EAKQiV4S95SLdDohXP8fJRJSLDsDOnDlj//73v+23336zmTNnumXBnfF1OiItIwADgMurxHWFLE+hnCkOQ+YpnNNtBySqn+NoIspFB2BvvvmmzZ8/32W+GjVqRBsKALiC1OdL/+GH+vLx3PJQVfqBwTL6RJRyNxePib+Diw7A1Fy1SpUq9tZbb1nWrJfcUB8AcIn0n73+w/cffvEyXwq+YuU/f+BKT0S5ulphi+shyFq1ahF8AUAMUZCl//A3Ldrpal/qd61uVZqUiYn/+IHL6WScTUS56FmQyn7t2rUrffcGAHDJFGwVrZDf/axrgi9kBLnibCLKRQdg3bt3t2+//dYV4gMAAMTCRJSUxNJElIseP1yxYoXVrFnTBg0aZDfddFPYNhSaBdm5c+dL3U8AAICEmYhy0QHYe++95/t55cqV7hIKARgAAIiG8nE0EeWiA7DRo0en754AAABkkIkoFx2AafgRAAAg1mSOg4koF12EDwAAkLtADqt1dyV3jcjFZBMv9RgbN26czZs3z44ePeoK/Lt162Z16tRJ8XZLliyxhQsX2saNG+3QoUNWrFgxd85K1aDly5cvYNvTp0/bJ598YnPnzrW9e/e69ddff709/PDDVr58+YBttQ9vv/22LV261N2uatWq9vjjj7tWHMGWLVvm6uN27NhhBQoUsFatWrkTl9MvDQCQiHIXzGm121e+0rsRd2IyAzZ8+HCbMmWK3XbbbdarVy/LnDmzO+n32rVrU7zdyJEjXeDTokUL6927t9WtW9emTZtmPXr0cIGTv5deeskFeWomq23btWtna9ascdsqIPNcuHDBBgwYYF988YXdfffd9thjj9nhw4fdbXbu3Blwn8uXL7dnn33W8ubN69Y3aNDAJkyYQL0cAAAIEHNpmfXr19uCBQtcINSxY0e3rGXLltalSxcbM2aMu4QzePBgF1D5U5Zq2LBh7ryVbdq0ccv279/vsln333+/y2R5atSoYU899ZRbd++99/pOufTjjz+6+27cuLFb1rRpU3vggQdcpuv555/33V6nZVK2btSoUb6MV+7cue2DDz6w9u3bW7ly5dL1WAEAgPgUcxkwDSPqpN7KSHly5MhhrVu3tnXr1tm+ffvC3jY4+JKGDRu66+3bt/uWnThxwl0XLFgwYFudUNx7PP/9KVSokO9+REOLTZo0ccONGi717l+Xtm3bBgw33nXXXZaUlOQCOQAAgJjMgG3ZssVKly6drKmr6q5k69atVrx48Yjv7+DBg76gyVOqVCkrWrSoffzxx1a2bFmrXLmyHThwwNV5lSxZ0mW4PJs3b3brNQwavD8zZsxww5DKemk7Ca4LK1KkiHssPa9w9NjefoqGUQEAQOKKuQBMgYiXifLnLVOwkhaTJk1yGbVGjRr5lilDpRowXQYOHOhbruBJw4j+Bfsq5r/xxhvD7o/2VwGYF0CF23f/ACvY9OnTbfz48Wl6XgAAIH7FXACmYvls2bIlW549e3bf+kip7mvmzJmulqxMmTIB6xRkVapUydV1VatWzXbv3m0ffvihvfDCC66GyxuG1ON5j53S/nhDkeG29YY9Q9Fwa/369QMyYEOGDIn4eQIAgPgScwGYAp+zZ88mW+4FOP71WSnRjMYRI0a4mZA6cbi/Y8eOWc+ePV0Rvi6e6667zs26nD17tt15552+x/MeO6X98QKvcNumtN8aptQFAABkDDFXhB9uuM5bFkmgojoxDS1WqFDBzV4M7sGlwnoNLfpnnbzu/qo9++GHH3zLVICf0v54Q47+Q5Khtg01NAkAADKmmAvANCy4a9cuO378eLL2FN76lGgosW/fvm6G4yuvvOLaQARTHy+vx5c/zVbUsvPnz/uWqQBfBfTB227YsMFy5szpG9rUdrJp06aA7VSzprYX3noAAICYC8BUk6UASIXp/kN4s2bNcrVa3gxItaMIni2oTFOfPn3cjEU1ZfWf+ehPsyxF/cb8qa3EyZMnA4IlFe8rW6beYJ4jR47YokWL7NZbb/UNPap7vmZUamakfwD3+eefW6ZMmQImAQAAgIwt5mrAFGSpx9bYsWNdoKOWEXPmzHHd6dWR3jN06FBbvXp1QGDUr18/27Nnjyu61zCi/1CiMmLeqYw09KiA6f3333eBnFeEP3XqVDdUqJ5j/gHhp59+6rrzq89X/vz5XVCljNgjjzwSsO9q6qqhTwWBzZo1s59++sl14lcD2GuuueYyHzkAABAvYi4Ak0GDBrlMl87TqIJ51XKpoF41WqnVfsnkyZOTrdNtvQBMsyzffPNNF4B9/fXXLhOWK1cud+ogFez7Z87UwkJDmWpP8dlnn7lZjyrWV6CljJc/ZcQ0e1EtJXT6IQVrDz74oOviDwAAENMBmGYMKpvkf5qgYG+88UayZf7ZsNSoDcWTTz7pLpFsq+ybfwYuHAVxugAAAMRNDRgAxIMLF5Js/0+/uZ91rd8BIK4zYAAQy37+dq8tn7DBjh865X7/atw6Wz1tm93SqaqVr1viSu8egDhABgwA0hh8LXh9lS/48uh3Ldd6AEgNARgAREjDjMp8pWT5xA0MRwJIFQEYAERo78ZDyTJfwY4fPOW2A4CUEIABQIROHjmdrtsByLgIwAAgQrkK5EjX7QBkXARgABChEtcVsjyFcqa4TZ7COd12AJASAjAAiFDmzJlcq4mU3PJQVbcdAKSEAAwA0kB9vpo9VStZJkyZLy2nDxiASNCIFQDSSEFWuZuL26ZFO10T1vpdq1uVJmXIfAGIGBkwALgICraKVsjvftY1wReAtCAAAwAAiDICMAAAgCgjAAMAAIgyAjAAAIAoIwADAACIMgIwXJQLF5Js/0+/uZ91rd8BAEBk6AOGNPv52722fMIGO37olPtdfZBWT9vmOoTThBIAgNSRAUOag68Fr6/yBV8e/a7lWg8AAFJGAIaIaZhRma+ULJ+4geFIAABSQQCGiO3deChZ5ivY8YOn3HZXWu4COazW3ZXcNQAAsYYaMETs5JHT6brd5ZS7YE6r3b7yld4NAABCIgOGiOWKMJsU6XYAAGRUBGCIWInrClmeQjlT3CZP4ZxuOwAIhRY2wH8RgCFimTNncq0mUnLLQ1XddgAQTLOkP+612LWuEV3r91iZPU3tKKKJAAxpoj5fzZ6qlSwTpsyXltMHDEC8trDxakd1DVxuFOEjzRRklbu5uG1atNP9B1u/a3Wr0qQMmS8Al9TCRp8rfI4goyADhouiD8miFfK7n3XNhyaARGhhA2ToDNiZM2ds3LhxNm/ePDt69KhVrFjRunXrZnXq1EnxdkuWLLGFCxfaxo0b7dChQ1asWDGrV6+ede7c2fLly+fbbtWqVda7d++w96PH6tSpk/u5V69etnr16pDbZcmSxRYtWuT7/d5777W9e5On0du1a2d9+/aN6LkDQKKJpxY2QIYOwIYPH26LFy+2Dh06WOnSpW327NnWv39/Gz16tNWoUSPs7UaOHGmFCxe2Fi1aWPHixW3btm02bdo0W758uQvocuT4b2FluXLl7Lnnnkt2+7lz59p3330XEOg99NBD1qZNm4DtTp48aaNGjQoZEFauXNnuu+++gGV6DgCQUdHCBoiDAGz9+vW2YMEC69Gjh3Xs2NEta9mypXXp0sXGjBnjLuEMHjzYatWqFbCsSpUqNmzYMJs/f74vkCpUqJAL0oK99957LliqWvX/n+kXKshSZk5uu+22ZOuKFCkS8r4BIKO3sElpGJIWNshoYq4GTMOIGtrTsJ1HmavWrVvbunXrbN++fWFvGxx8ScOGDd319u3bUw38du/eHTKoCqZgLleuXPbHP/4x5PqzZ8+6LBkAgBY2QFxkwLZs2eKyUHny5AlY7mWltm7d6oYXI3Xw4EF3XaBAgVSDKkktADty5IitWLHCmjZt6oKwYN9//73LgJ0/f95KlCjhhlF1ScmBAwd8+yk7duxIcXsAiNcWNpoN6Z8JU+ZLwRctbJDRxFwApkBEdVzBvGUKVtJi0qRJLqPWqFGjsNsoWFIxvYK81Oq1NDyq7UMFahUqVHA1amXKlLHff//d1a79/e9/d/usIdVwpk+fbuPHj0/T8wKAeEMLG0RT7hhvrBtzAdjp06ctW7ZsyZZnz57dtz5SymrNnDnT1ZIpKApn5cqVbtbkgw8+mOp9fvHFFy6bdvPNNydb9/LLLwf83qpVK+vXr59NmTLF7rnnHjcrMxQNt9avXz8gAzZkyJBU9wUA4g0tbBDtxrqxKuZqwFTvpRqqUK0pvPWRWLNmjY0YMcLq1q1r3bt3TzVQU5ZMw4op2bNnj6tD03ZZs6Yeu2bKlMm1plDGLFwrC69wX5MFvItmaQIAgMQVcwGYhhr966E83jIFK6lRndjAgQPdkKBmRqYULCmj9uWXX1rt2rXd7Mj0qBPz52W9NCQJAAAQkwFYpUqVbNeuXXb8+PFksxS99SnRTEY1PS1YsKC98sorljt37hS3X7ZsmZ04cSKioErDj6VKlbLq1atbpJQ1i2QSAAAAyDhiLgBr3LixG7JTYbr/8OOsWbOsWrVqvhmQakcRPFtQWbI+ffpY5syZXVPWSIIeBVU5c+a0Bg0apLjd5s2b3eM1b9485HpluLTf/s6dO2cffvihq2kL1SIDAABkTDFXhK8gq0mTJjZ27FjX8kEZpzlz5rhT/AwYMMC33dChQ11d1dKlS33LVPCujJOK7n/44Qd38SgjFtxUVUHTN99842ZIppYpS2348auvvrIJEya4+ypZsqQ7hZJu8/PPP9tf/vKXkDM7AQBAxhRzAZgMGjTIZbp0aqBjx465Wi4V1NesWTPV2i+ZPHlysnW6bXAAptYTylKFy2p5Lly44M4xee2111rZsmVDbqN9VPG8gi4Fjqo702mJXnzxRRdQAgAAxHQAppmOjz/+uLuE88YbbyRb5p8Ni8Sf/vQnd0mNhjQ/++yzFLfR7MXgNhQAAABxUQMGAACQ6AjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAIhxuQvksFp3V3LXSAxZr/QOAACAlOUumNNqt698pXcD6YgMGAAAQJQRgAEAAEQZARgAAECUEYABQAKiaBuIbRThA0AComgbiG1kwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAOAiMdMQQELNgjxz5oyNGzfO5s2bZ0ePHrWKFStat27drE6dOinebsmSJbZw4ULbuHGjHTp0yIoVK2b16tWzzp07W758+XzbrVq1ynr37h32fvRYnTp1cj/Pnj3bhg8fHnK7adOmWeHChQOWLVu2zN577z3bsWOHFShQwFq1auXuK2vWmDzUAC4BMw0BXKyYjAoU8CxevNg6dOhgpUuXdkFQ//79bfTo0VajRo2wtxs5cqQLiFq0aGHFixe3bdu2uSBp+fLlLqDLkeO//6WWK1fOnnvuuWS3nzt3rn333XchA72uXbtayZIlA5blzZs34Hc9zrPPPms1a9Z0Ad5PP/1kEyZMsMOHD1ufPn0u4YgAAIBEEnMB2Pr1623BggXWo0cP69ixo1vWsmVL69Kli40ZM8Zdwhk8eLDVqlUrYFmVKlVs2LBhNn/+fGvTpo1bVqhQIRekBVPmSgFf1apVk637wx/+YNddd12K+/7WW2+5bN2oUaN8Ga/cuXPbBx98YO3bt3eBHwAAQMzVgGkYMUuWLNauXTvfMmWuWrdubevWrbN9+/aFvW1w8CUNGzZ019u3b0818Nu9e7fddtttYbc5ceKEnT9/PuQ63b8ubdu2DRhuvOuuuywpKcll9AAAAGIyA7ZlyxaXhcqTJ0/Aci8rtXXrVje8GKmDBw+6a9VjpUQZMgkXgGlI8eTJk5YtWzY3RPnEE09YmTJlfOs3b97sy7j5K1KkiBUtWtQ9r3AOHDjg209R/RgAAEhcMReAKRAJLmwXb5mClbSYNGmSy6g1atQo7DbKai1atMgFeQr+/Cn7dscdd7jsmoLCTZs22ZQpU+zxxx+3d9991xcMegFUuH33D7CCTZ8+3caPH5+m5wUAAOJXzAVgp0+fdlmmYNmzZ/etj5SyWjNnznS1ZP7ZqmArV650syYffPDBZOuaNm3qLp4GDRpY3bp1rWfPnjZx4kTr27evb+am/34G77uGL8PRcGv9+vUDMmBDhgyJ+HkCAID4EnMBmDJOZ8+eTbbcC3C8mYypWbNmjY0YMcIFS927d081UFOWzD/QSolmYlarVs0Fbh4v8PL2M3jfU9pvDVPqAgAAMoaYK8IPN1znLYskUFGd2MCBA61ChQpuZmRKPbiUUfvyyy+tdu3abnZkpNRj7Pfffw/Yb//9DN73UEOTAAAgY4q5AKxSpUq2a9cuO378eLJZit76lGgmo4YFCxYsaK+88oprA5ESNU7V8GBKsx9D2bNnT0Bhf+XK/23GqBoxf6pZ279/v289AABAzAVgjRs3dkXxKkz3H8KbNWuWG/bzit7VjiJ4tqAyTWp4mjlzZteUNbWZj/LFF19Yzpw5XW1XKEeOHEm27Ouvv3aBloY3PeXLl7eyZcvajBkzAlpVfP7555YpU6YUJwEAAICMJeZqwBRkNWnSxMaOHeuCn1KlStmcOXNs7969NmDAAN92Q4cOtdWrV9vSpUt9y/r16+cyUyq6/+GHH9zFo4xYcId7DSF+8803LjgKlylTQ9hrr73WtZfQLEi1m1AwqCHIhx56KGBbzYzU0KeCwGbNmrlO+OrErwaw11xzTToeJQAAEM9iLgCTQYMGuUyXTg107NgxV8ulgnqd4ie12i+ZPHlysnW6bXAAptYT586ds+bNm4e9TxXm6xRDOkXRqVOnXC2Xmq2qM39wzditt97qZi+qpYROm5Q/f343s1LbAgAAeDIlqU07YoqGNzVz85133knW2DWWHPj5N/v82X/bnUNvtSLl81/p3QEQJ/jsAGKwBgzxI3eBHFbr7kruGgAAxPkQJOJD7oI5rXZ7ZncCAJBWZMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAACDKCMAAAACijAAMAAAgygjAAAAAoowADAAAIMoIwAAAAKKMAAwAEFW5C+SwWndXctdARpX1Su8AACBjyV0wp9VuX/lK7wZwRZEBAwAAiDICMAAAgCiLySHIM2fO2Lhx42zevHl29OhRq1ixonXr1s3q1KmT4u2WLFliCxcutI0bN9qhQ4esWLFiVq9ePevcubPly5fPt92qVausd+/eYe9Hj9WpUyf388qVK23+/Pm2du1a279/vxUqVMhuuukm69q1qxUpUiTgdr169bLVq1cnu7+6devayJEjL+JIAACARBSTAdjw4cNt8eLF1qFDBytdurTNnj3b+vfvb6NHj7YaNWqEvZ2CnMKFC1uLFi2sePHitm3bNps2bZotX77cBXQ5cvy34LNcuXL23HPPJbv93Llz7bvvvgsI9N5++237/fffrXHjxlamTBnbs2ePTZ061b7++mt3n3o8f0WLFrVHH300YFnwNgAAIGOLuQBs/fr1tmDBAuvRo4d17NjRLWvZsqV16dLFxowZ4y7hDB482GrVqhWwrEqVKjZs2DCXxWrTpo1bpiyWgrRg7733ngv4qlat6lv2xBNPuKAvc+bMARktZbsUiHXv3j3gPvLmzRvyvgEAAGK2BkzDiFmyZLF27dr5lilz1bp1a1u3bp3t27cv7G2Dgy9p2LChu96+fXuqgd/u3bvttttuC1hes2bNgODLW3bVVVfZjh07Qt7XuXPn7MSJEyk+HgAAyLhiLgO2ZcsWl4XKkydPwHIvK7V161Y3vBipgwcPuusCBQqkuJ0yZBIcgIWi4OrkyZOWP3/+ZOt27tzpMnZnz551mTZl3ZS9y5o15g41AAC4QmIuKlDAFKpmylt24MCBNN3fpEmTXEatUaNGYbc5f/68LVq0yAV5Cv5S88knn7gAq2nTpgHLr776apeFq1Chgp06dcrVsU2YMMEFZS+++GLY+9Nz8gJFCZdZAwAAiSHmArDTp09btmzZki3Pnj27b32klNWaOXOmqyVTAX04mumoWZMPPvhgqvepWY7jx4+3Jk2aWO3atQPWPfPMMwG/KxP26quv2owZM+zee++16tWrh7zP6dOnu/sEAAAZQ8wFYKr3UnYpVGsKb30k1qxZYyNGjHAF88GF8qECNWXJgjNawZSZ0uxJZbgGDBgQ0X7cd999LgBbsWJF2ABM9W7169cPeJwhQ4ZEdP8AACD+xFwApqFG9dsK5g3RBffeCkV1YgMHDnSBkmZGplR/pYzal19+6bJZqtkKR8X/ffr0cbVpCuxy584d0fNRLzJRP7Nw9JwieV4AACAxxNwsyEqVKtmuXbvs+PHjyWYpeutTopmMffv2tYIFC9orr7ySaqC0bNkyV1SfUvH9b7/95oIvZebUaywtwZL6hkUyCQAAAGQcMReAqeGpiuJVF+U//Dhr1iyrVq2abwakMlLBxerKkilQUtsIBUqRBD1ffPGF5cyZ0xo0aBByvWY7qgmsCuUV0IWrJVPA6A2TepKSklwRvqTWxR8AAGQcMTcEqSBLBe5jx461I0eOWKlSpWzOnDm2d+/egLqroUOHuoL4pUuX+pb169fPZZxUdP/DDz+4i0cZseAgSB3uv/nmGzdDMlym7KWXXrINGzZYq1atXMDnH/TlypXLF7ht3rzZzXRs3ry522dvaFP70LZtW9cQFgAAICYDMBk0aJDLdOnUQMeOHXO1XKq7UgPU1Gq/ZPLkycnW6bbBAZhaT6hpqoKm1O5TGThd/JUoUcIXgGl/b7zxRhcQakalsnA65ZEycv5NZSPhzfSkHQUAAPFH3/8aXUtJpiSNkyGm6CTkzIIEACA+vfPOO6mOfBGAxSANvX777bdWsmRJX/+z9OK1uFA7DUXoGU1Gf/6S0Y8Bzz9jP3/J6Mcgoz//aByDSDJgMTkEmdFp8sDlPqG33hwZuS4toz9/yejHgOefsZ+/ZPRjkNGf/5U+BjE3CxIAACDREYABAABEGQFYBqMzDXTp0iXkCc8zgoz+/CWjHwOef8Z+/pLRj0FGf/6xcgwowgcAAIgyMmAAAABRRgAGAAAQZQRgAAAAUUYABgAAEGU0Ys0gzpw5Y+PGjXOnOTp69KhVrFjRunXrluz8mPFOJ07XydtXrVrlTuB+1VVXWfXq1d1zLVOmjG+7YcOGue2ClS1b1j744AOLV3revXv3DrluzJgx7lh4dKL4t99+251IPk+ePNakSRPr3r172BPTx4twr63ns88+s6JFi1qvXr1s9erVydbXrVvXRo4cafHixIkT9tFHH9n69evd+19/3wMHDrQ77rgj2bbbt2+3N9980732WbNmtXr16tmTTz7pmj/7u3DhgrvPzz//3J3btnTp0vbggw+meN7cWH7+ej46t/CSJUtsy5YtbhudaaRp06Z2//33W44cOQLus2HDhiEf6y9/+Ys7DvH4+qflMy+eXv+0HINwr6vcfPPN9tprr7mf//Of/9h9990XcrsXXnjBmjVrZumBACyDGD58uC1evNg6dOjg/phmz55t/fv3t9GjR1uNGjUsUUyaNMl9uSiYUJB58OBBmzZtmgvAFIDoxO4eneZJx8CfApFEcM8991jVqlUDlpUqVcr3s76Enn76adcFWl/Av/76q3388ce2a9cue/XVVy2etWvXzn2Y+tNk71GjRlmJEiVc8OXRz48++mjAtvE2Nf+3336z8ePHW/Hixa1SpUouCA9Fr3HPnj0tb968LtA+efKk+9L66aef7J///Kdly5Yt4Dx2H374obVt29auu+46W7ZsmQ0ePNgyZcqUbl8+0Xz+p06dcp+B+gfkT3/6kxUsWNDWrVtn7733nn3//ff2+uuvu+fmT++h22+/PWBZ5cqVLV5f/7R85sXT65+WY6DTDgXbuHGjffrppyGTEQo4b7nlloBl/v/EXjK1oUBiW7duXVKDBg2SJk2a5Ft26tSppPvvvz/pscceS0oka9euTTpz5kzAsl9++SWpWbNmSYMHD/YtGzp0aFKLFi2SEs3333/vXutFixaluF3fvn2T7rzzzqRjx475ls2YMcPd9ptvvklKNGvWrHHPbcKECb5lPXv2TOrUqVNSvDt9+nTSgQMH3M8bNmxwz3PWrFnJths1alRS8+bNk/bu3etb9t1337nt//Wvf/mW/frrr0lNmjRJeu2113zLLly4kPTEE08k3X333Unnzp1Lirfnr88EfTYEe++999z2Og7+tMz/+SfC6x/pZ168vf5pOQahvPzyy0kNGzZM2rdvn2/Znj17kn1nXg7UgGUASrtnyZLFZQY8Srm3bt3a/Re4b98+SxQ33HBDwH/yoqHHa665xp18Ndj58+ft+PHjloiUlj937lyy5Xq+K1ascOcb9f/vt2XLlpYrVy5btGiRJZovvvjC/fceaghFx0jHKl4pqxFJ1k6fA7feeqvLEvhnefT34f+aK9uhY3LXXXf5lunY3XnnnbZ//373mRFvz1+fCfpsCNagQQN3HeqzQU6fPu0uifD6R/qZF2+v/8UcA//SHP1d1KxZ04oVKxZyG2WKz549a5cDQ5AZgIabNOwYnGr2hqi2bt0a8KGcaDT8dPjwYReEBQ9LqEZA1/ny5XOp9cceeyzua6BEwy364FDgrSHmHj16uKEE0ZCTPoSDT0CrLykNsej9kkj0ZaIA4/rrr3d1P/527tzpAk99wBYqVMjatGnjumOrPiqR6ItTfwOhTjqsz4Hly5f7ftfrr0Bcw9PB23nrE6VsQfVNkj9//mTrVC+lGih9fuhYdOrUyW677TaLZ5F85mWk13/58uV27NixsK+rhjVVuqIAVH87KmVRjWh6SaxPGYSkOqhQ/x14yw4cOGCJbP78+e4L6JFHHgl47h07drRrr73WfcB+88037sN227Ztri4uXr+Atd+NGjVydQv6UlHRtWq7VOf11ltvueer94OEe0+sWbPGEsm3337rakSCP2Svvvpqq1WrlqsL1BeSaiQnTJjggrIXX3zREklqr/nvv//usgHKJGhb1UgF10Ql4ufF5MmT3T+mf/jDHwKWK1hXHakCdh2PqVOn2ksvveQyR8oExaNIP/My0us/f/58957XZ6a/zJkzu5owFe0XKVLE9uzZY1OmTHH1c/rnVpNX0kN8fssgTZRCDx6WE73xvPWJSkMLf/vb31zhpH9BbXDhtf4T1FCMik+Vko7FQtNIaJjFf6jlj3/8ozVu3NgefvhhGzt2rJvd573e4d4T+iJOtOFHfbnoC9XfM888E/C7MmGagDBjxgy7995707fY9gpL7TX3ttHPGeXzYuLEiW4o/n/+539cNsif/lnx16pVK5f90N+QMkjBsybjQaSfeRnl9T9+/Lh9/fXXLvgOfv01IqRJO8GfD8qC/uMf/0i3AIwasAxAHxahxrC9L9p4/DCJhP6TGzBggPsPV/+9ajguJfrS1X8++lBOJBp+ViCmmUEaevRe73DvCe+DNhGotks1LRo2CDXMFMybep5o74HUXnP/bTLC58WCBQvs3XffdXWwkWS0FJDcfffdbrhq06ZNlihCfeZlhNdfFHTqOUU6rKyWRgq+f/nlFzejOD0QgGUASh17QxD+vGVKsSYafVAqXaxrZX0ieY76YNEfmYZjEo0KTPWhqqE2bygh3Hsikd4PCr70nCP9kPUKcdVHKJGk9prrfe8F3tpWtVEapgreTuL9/fHdd9+5nljKYvTp0yfi23nvjUT6fAj1mZfor7//8KNasmhiSqTS+/OBACwDUF8U9XcKnvmipnXe+kSiFLmGl1TL8/LLLycrvk8pW6JaoeCmlIlANQz6glVxbfny5V02MPg/eQVoKrBNpPeDPmT1nOvXrx/xcZJEew+o35meU6jsjRpX+r/m+llBa/DMwET4vNBzUC8oFVSrzi8ttZ6J+N4I9ZmXyK+/R3VsGhFQjVdaMv7eeyCSbHokCMAyANUAaehp+vTpvmVKvc6aNcuqVauWUDMg9Tz/93//102V1gesimlDBWih2g68//777r++4ILceHLkyJFkyzTL9auvvnJFpRpu0H99aj+gsyL4Hwd1CtfMyeBaqXg+Fhpa0Ydszpw5A9bpn5HgWje99irCl0Q7Q4So0Pjf//53QNuZlStXun9U/F9zDVcrMFEDY/9j869//csFcqH+puKBJqSoJEHNeEeMGBF2KC3U35D+TtSsU1+8oWaSxrq0fOYl6uvvb+HCha7bf7jMeKj3gCZy6TtTDb7TKwtIEX4GoCBLH7AqINUbSx3RNcVap+rRB1IiUYGkgg2llZUmVpDhT72vlF7v2rWr6wml03B4M+U0JVkfRPoAilc6TYa+WPQhqZlM+tJRUbkCEP8iXBUUP/HEE64zuvrDeZ3wFXjEcwAaXOejgDzUh6xOv6QAXe8B/T3oC+rLL790Z1FQ9+94+5LV6ZU03O4NE+lvwKtT0VkRFHTrVDKa6fnUU09Z+/btXbCtWYCaBep/yhYNs+iMGVqnFh5qP6Bjs3btWvvrX/+aai1lLD5//ePRt29f95mgUw+p+Dp4RqwXWGjGo4auvZ5puk998SpwffbZZ0MWqMf689fzjvQzLx5f/0j/Bvwz4wqiNAs6FLWe2L17t9WuXdttp+9KJTCUGdQpzNJLJnVjTbd7Q8zSF4x3Lki9SfWhm949TWJBuPP7eZYuXeo+jDTtWlky/bHqPyF9CeuLWh/O8dqCQvRfuj5c9OGhLI+GFvQhot5WKsb3pw9U71yQ6gOkIF1BWiL0QRP1PtOQgb5Qg780tFyn39HwmwJyfUGr75H6gCkgDZ6CHw/F1PqSCEWBtdf/7Oeff052LkgF4uqB5k9/Ezqtl7509Dei986f//xn9w9MPD5/CXduP9EM6UGDBvlqxBR8qF+eaqP0z4uCkAceeMD9LcXj81fwkZbPvHh7/dPyN6Aiev0zou3VnifczGll/DQMq+8LHT/1PtMsyPT854wADAAAIMqoAQMAAIgyAjAAAIAoIwADAACIMgIwAACAKCMAAwAAiDICMAAAgCgjAAMAAIgyAjAAAIAoIwADAACIMgIwIM6sWrXKnWD6//2//3fZT+ukx4kFs2fPdvuia1z546RzA+pxdEqjSPznP/9x2w8bNuyy7le8euedd6xly5butFjIOAjAgMvA+8LxvzRt2tSdFHbw4MG2bdu2K72LMSWev6B1NreOHTu6/e/fv78lOp2gWScr1nlkb7jhhiu9OwlB52PU+Ugv9z9ViC3xe9ZhIA54J7yVkydP2vr1692JXnVS8L/97W8x/QX27LPP2qlTpywWNGjQwKpVq2aFCxe2WMxI6uTnOoG3TuR84MABK1KkiCWquXPn2q5du6xPnz5XelcSRr58+ax169b22WefuRNFlyhR4krvEqKADBhwmQOwRx55xF2eeOIJ+8c//mEPPfSQnTlzxg07xLLixYtbuXLlLBbkzZvX7YuuY83MmTPd9X333Wfnz59P+GHSf/3rX1asWDG76aabrvSuJJQWLVq498///d//XeldQZSQAQOiTMOQEydOtI0bNwYM6+i/3zlz5tjOnTstW7Zsdu2119q9995r9evXj+h+v//+e5s3b56ry1EWRsqWLWtt27a1du3aJdteQ2Y1a9a0v/71rzZ27FiXvTl8+LC9/vrrVqtWLVcDtnr1apet879NSgYOHGh33HGH+1m3W7RokXue2p+sWbNaxYoVrX379ta4cWPfbRSwDB8+3P2s56+LZ/To0W5fvG3879+j56vjuW7dOjt9+rTLHmi494EHHrCcOXOGfM7/+7//64bRli9f7jKTlSpVskcffdQ9VlocPXrUlixZYuXLl7euXbva9OnTbdasWS6LoYxY8DCrgrTbb7/dOnXq5B5f2TO99tWrV3cBuvYjmF6Dd9991zZv3mzZs2e32rVr2+OPP25Dhw5N9vqkZM+ePe44ea+zsi4aRtQ/B5FmXH766Sf3enbo0CHZ8xMFEB999JELIvbv329FixZ1mR29HuFoXz744AP797//bb/++qvlzp3bbrzxRrdfFSpUuKTjoSG98ePHu/fR3r177dNPP7VffvnFqlatam+88Ybb5sSJE26fFy9e7I6R7lPrO3fubDVq1Ej2+GnZXu/7Dz/80L3PdDy0baFChdx78LHHHgv4h0J/7/qHTe/1bt26RfR6IL4RgAFXiPcFphqi559/3pYtW2ZlypSxu+66yw39LVy40AUcTz75pAvEUjNp0iQ3FKahOn3xHTt2zL799lsbOXKk+9LR/QT77bffrEePHnbVVVe5L0ll5vQFGE6XLl3CZkX0RZojRw7fMgV1Cro0zKqhwyNHjthXX33lnmvv3r1dICoKOhSU6ctRP//xj3/03UdqgYECPNXUKWDV/hcoUMAFGPrS1XPXF6//PomOi4Idffkp66D91v307dvXZSVDfemHo+FkHTMFVXocBZYKwBQIhAvmFAjomF9zzTXWqlUr9yWu117HRAGSvqA9eg4DBgywLFmyWJMmTdzQpoI2vZYKoCKloW89PwWbt956q5UuXdrtx/z58+2bb75xweDVV1+d6v2sXLnSXes9Fsqrr77qnn/JkiXtzjvvdMfm448/th9//DHk9nq/KtBXcFKnTh332ut9oqBWr6OG6f0f62KPx+TJk912un89jm4vv//+u/Xs2dN+/vln9z7905/+ZMePH3fvU70eem9p+NuTlu31N6z3mY6zHlPB/9mzZ10grn+UVPcVnNG9/vrr3RCv/gnTZwESXBKAdLdnz56kBg0aJPXp0yfZunHjxrl1vXr1cr/Pnj3b/d6zZ8+kM2fO+Lbbu3dvUps2bZIaN26ctHv3bt/y77//3m2v+/Hnv43n7NmzSU8//bS7D92fP92HLsOHD086d+5csttqf7Q+NR988IHbbuDAgUnnz59PcX+OHz+e1Llz56Q77rgj6eTJk8mO19ChQ0M+xqxZs9x6XXuOHTvm7qdZs2ZJW7du9S3XPrzwwgtu+/Hjx4d8zqNGjQrY1xkzZrjlr776alJadO3aNalRo0ZJ+/fvd7+vXLnS3c9LL72UbFvvOeqiY+bvnXfeccsnTpzoW6bXpEOHDkkNGzZMWrNmTcD2Q4YM8d1XasdJ7wHdT8uWLZM2bdoUsL3uV++NAQMGRPR8n3/+eXf/O3fuTLbOe18+/PDDSSdOnPAt//XXX937ONTr26NHD/f433zzTcDyX375xe2v3iuXcjy8v7UWLVoEvEc8L774oluv19/foUOHku65556ktm3bJp06deqitl+2bJnb9o033gj5d3D69Olkyz/55BN3m5kzZyZbh8RDDRhwGek/fA2D6PLWW2+5/9SVndFQRPfu3d023pCbhiSUyfGvwVLmS8M6ylSkJlQGQxko/Zeu+9AQZTA9nh7XywiklTIVynRp+ERDmZrJldL+KLumIURlofyHYC+Gska6H2WRNLTp0T4ow6TnFKoeK1euXO45+++rMljaPi37tGXLFjcMploor+heWS+9bjou2rdQlB3SrEl/GqYT/8fX0KqyJ8pYBQ9taYgq0tdMQ3u6Hz2mXid/ul8NcWuITJmc1GiIUPyzdB5lbkRDcTrGHmVjleEMpmOnzJjaL2go1J+yP23atHFDnrpc6vHQMLz/e0SUaVPmU6+fHstfwYIF3fHSNl7WL63be4IzsN7fgT4Dgul+RBlBJD6GIIHLHIAp4PKCIX3ANm/e3P785z/7vhD0Ra5apVDDOt4wlrZJjVeboh5NGtbScJO/gwcPhgwGNGx3MRQsqO5GwcfLL78c8KUrGtrz6l/27dvn6rP8eXVqF8s7JqqnCaYgSAGghnJ0XPyHVTX8FjzMqtdGQUW4oCkUr1hawZv/sLKGNTWUqOFJDcMF0zCrf/DnBSni//hbt25116HqkPT8VAiv4azUqDZONAwdqs2Bek9duHDBHavrrrsuxfvSEJwCnVDD1N7+qn4rWKhlGhb13ieh9kv7611rWPhSjodqtEK9f/WPiYYFQz2+ZnrKjh07XNCX1u31nDX0rr8B7buW6b2qySSh6udEpQCiQA6JjwAMuIz0n71qsFKiAMH7Ag7mtV3QNinRl4JqaZRVqFy5sgsC9GGuL0tlDZRlUz1OuP+400oB1TPPPOO+SFQcH9x2QV/Uf/nLX9x2qpW5+eabXb2LAg99GSl7pX2+FF7GJlQ2xjt2Ciq0nX/AkCdPnpDb61gpEImEgkllJRV0Bk9MUEZHAZhqoUIFYKEeXwGg+D++9/zCBch63pEEYJooIKllUSNpOaJsjoIQTRzw9tl/f/X65s+fP6L3md4j8vXXX7tLON4/EpdyPFJ6fGXWUmoo6x2XtG6v9/vbb79t48aNc1lI/SMiChT1D5hqPYN5/6QETx5BYiIAA64wBQfh/uP1OmOnVBgvCmgUfGkoS0XK/hYsWBAws9BfuP/EU6JgUMGX9nnIkCHJhrW81gwKvjQzUENS/jTjTft7qbxAJlz3cG95uIDrUmimnZetUrAbijImargbPPQVKW+/U3tvpMZ77yhLqSzMpfCCHwUjwYGv9lcBpCZ2BAdJynKFe37+EzIu1/EI9T737k8zU1UsH+njR7q9l5kbNGiQOy56L2higWY7a3KBJg0oGx4qWL7YrDTiCzVgwBWmjJX+a/aGZPxp5pa3TWpDneI/g9CzZs2adNtXZT/UwkFfJqqzCvV4qe3P2rVrky3zhuQizUD5HxPNOAym4E/7oGHI1ILXS+n9pZl4CnqDL15N06X0dPJaUoTKtqgWy6vHSo03tO0NRV4Kb4aoNzwYan9Dvd9CLfOGBSPdr/Q6Hh4Ntyowi/Tx07p98Ptb71e1RtEsYNHMyWDecU3LTFzELwIw4ArzaohUzK6hHf8gYsqUKW5ozOumH47XriE4uFFwkp6NHf/+97+7oRQVNSsTkNr+BH9ZahjMG4rxp2yAvtzS8iWq4E7DPBrqU1sAj9p6/POf/3TBYnDPsPSg+joFxnqOCkaVcQy+aLmG6/R8Qw39RkJDt8qgaPgquI2DhrX0/CI9TroftYMIFazqPRcqKA7Fq+XasGFDsnVeJvD9998PqD9UQblajIQKDHVRhlaXYArG/fc3vY6H/xC1Amjdl9pU6H0TTP8UeUOKad1e78lQWTkvGxiqCF+319+72lEg8TEECVxhqhnSkJaG5dRnS8NEXh8wDfVouCO1Hk26jQICfTHog1+NQVX/pNoa9SVS08hLpS+HqVOnusBCQyShCpH1WF4NmvqSqQ+XghV9car2SzMxVTMV3DxUWSplGJQp0bCmCuUVkOnYhOsFpiGhfv36ud5LmtWoL0ftl2ahbdq0yWVY1GspvSng05evAudwQ7gKDHUsVIivSRHNmjVL8+Poi1in+1EvuKeeesr1OVMQoKBEExiUEYrknKL6otcx0nkqVSeoWXzKsGjfVR+o4Et1WxoaTo2anuq10lBa8ExO3a9mpOr46H2s5686P72P1WhWgVMwZYP03F588UUXpOm9o/eXAnEFOhrO1DFMz+Ph73/+53/c34n6oGkWp/ZTr52CRg0hq7B+2rRpvpqstGyvY6TtFDhqVqdqMhW8K/Ol1yS4BkxD+/obU71k8IQWJCYCMOAK0xehviD1BaRaLQU5KnD2OuGHG+bzpy9FdbDXB76CGH0pqdHnc88952p10iMA8wqEda0i81A0q1Jfoio0Vqdx7c+KFStcdkLPZ9SoUe7LNVT3du2rMmz6olbBtYIczXhLqRmrgi49PwUPuk+vE77qzjTcE6oFwKVQVkatLfSa+c9+DEXBiIIHDVdeTAAmt9xyiztmCnbVAkHPR0GQMmwKqCKtb1MwqvtQgK4MpIIbtSDR5AkFSpHun95nCq5nzJgR8pyXCogVPCvrqkBEk0uUKdXrFCoA0z8Wyl4pO6dAVcdWw3UKrJRt8z9jQnoeD4+CIrWH0d+cAkW9XnqN9Z5SQKf3kf+kgrRsr2FoBbj6e9R7U1lBHS/vLA36+/Sn1iV6/4Y6awUSUyY1A7vSOwEAiJyyJervpkyWhlujSXVKCjQefvhhd0qljH480ot6BGrIUv/cXGxfPsQXasAAIEYpaxLcgkTZRGVhlC3xP01OtOj8ompE+sknn6TaHiUjHI/0oGFzDQVfSlNkxB+GIAEgRqmmSJkRnUtQw3UKPvRFvX37dlfnF0n7hstBJ8pWby313brYNhuJdDwulVqa6ITiqZ3sHomFIUgAiFHqeaU6OtX0afacsj2qr1Om56GHHkrTCbkTAccDiYQADAAAIMqoAQMAAIgyAjAAAIAoIwADAACIMgIwAACAKCMAAwAAiDICMAAAgCgjAAMAAIgyAjAAAACLrv8P2eeeTfPpiD8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "modularion factor: 0.28 +/- 0.00\n" + "modularion factor: 0.296 +/- 0.000\n" ] } ], "source": [ - "average_mu = source_photons.calculate_average_mu100(show_plots=True) \n", - "mu = average_mu['mu'] #0.310\n", - "mu_err = average_mu['uncertainty'] #0.001\n", + "average_mu = source_photons._mu100\n", + "mu = average_mu['mu']\n", + "mu_err = average_mu['uncertainty']\n", "\n", - "print('modularion factor: %.2f +/- %.2f'%(mu, mu_err))" + "print('modularion factor: %.3f +/- %.3f'%(mu, mu_err))" ] }, { @@ -575,7 +567,7 @@ } ], "source": [ - "qs, us = source_photons.compute_data_pseudo_stokes(show=True)" + "qs, us = source_photons.compute_data_pseudo_stokes(show_plots=True)" ] }, { @@ -594,7 +586,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWF0lEQVR4nO3dCbhN9f7H8W/GhDKLuBKSBk3klmQWiQhNV7PhKpLqqu5fg5DSrAillFnJUDdSEqVBSrjmElGZZZ7t//P53WftZ5999jlnn+Psffba5/16nuMca6+99m8Ne63v+v6GdVIgEAgYAABAgsuT0wUAAACIBkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBi4+cdNJJ1qBBg5wuhq9oe2m7+Qn7GYlmzpw57ricNGlSThcFOWj//v12+umnW8eOHXOsDAQtadAXNPynYMGCduaZZ9rtt99uK1asyOkiIkY+/fRTa9u2rZUvX94KFChgxYsXt7PPPts6dOhggwcPttAnX6xbt84dG3fccUeOlhmJzc/HyfHjx61Xr1524YUXuu9AqAULFtijjz5qLVq0cBczrWOFChWiWu7s2bPd90zv07lV37err77aPv744xTzbdiwwe655x6rU6dOinnr1atnb7/9th05ciTVsjdu3GgDBgxw5a1atarlyZPHle3nn3+23GhdNh1/p5xyitvf48aNs++//95yQr4c+VQfeeKJJ4J/79q1y31J3333XZs8ebJ99dVXdtFFF+Vo+ZC9nn76afu///s/y5cvnzVv3tyqV69uefPmtV9++cXmzp1r77//vjuB6nUgN5gwYYItXrzYxo4dmyprqYvXK6+8Yvnz57dzzz3XNm/eHNUye/fubc8995wLcFq3bm2lSpWyrVu32g8//GBffPGFXXPNNcF59d3TZytoadOmjZUoUcK2b99uM2bMsLvuustGjx5ts2bNSvGdXLhwofXp08eVt3LlynbaaafZX3/9lY1bJffq2rWr9e3b150ntd3jTg9MRGraNGltnu7du7vXbr/99riXqX79+nH9TL/T9or2MF+3bl0gb968gVNPPTWwZMmSVK8fO3YsMHPmzMDx48eD03799ddsPxbYz8knFsdJvFxxxRXuO7F///5Ury1atCjw448/Bg4dOuT+r3U844wz0l3eiBEjgtvCe1+ow4cPp/i/5tF3L9J8DRo0cMuaOHFiitc2bNgQmDdvXmDXrl0pzgNr1qwJ5Ea/ZvPx989//jNw0kknBVavXh2IN4KWLAQt06dPd69dc801Kab/9ddfgUGDBgUaNmzovrj58+cPlCpVKtCqVavA119/neZnrVixInDnnXcGKlWqFChQoECgdOnSgSuvvDIwdOjQqC5m+kwdQDq5bN++PUV5evbs6cpSsGDBQPXq1QMvvPBC4Jdffol4AOv/mq7XBw8eHLjgggsCJ598corP1EF66623BsqXL+/Wr1y5cu7/kQ5eb3n6woSbM2eOe+2JJ55IMd07uRw5ciQwYMCAQNWqVd02qVChQqB3794RT3Iyfvz4wCWXXOLKq+3XsWPHwO+//56poEUnPs173XXXRTW/yu4dJ+E/b7/9dnA+nXBff/31QK1atQKFCxcOnHLKKe5v7d9IJ+PM7udvv/020K5du0DZsmXdPtG26tKli1v/cNq3nTt3DlSpUsVtq+LFiwfOP//8QNeuXQPbtm2Lar298mn52s7a3lqWtv/YsWNTza999uqrrwZatGgR+Nvf/ub2pz63cePGgY8//jjiZ+i7oB9ddHr16uX+zpcvX/B40Wf37dvXbQtvvXUs3nzzzYFly5ale9L++eef3fYqUaJEoEiRIoGmTZsGli5d6ubbsmWL2z6nn366+85oP33++ecRy6hjdMiQIYE6deoEihYtGihUqFDgoosucusaul+jPU5EQbG2U8mSJd12OuusswIPPfRQYOfOnZneRrt37w489dRTgfPOO8+VT+uq5d1www2BhQsXBqKhc5PKqf0cjYyCloMHD7rjRcdBWt/lzHj55ZfdZ/bv3z/d+U40aIl2X3/zzTfuc9q0aZPmss455xy3b0O/w1nd93v37nXzVKxY0b1H3+tnnnkmxY1VNMef5h81alTg8ssvd9csHfs6jzRr1iwwYcKEVJ//xRdfuPc/8sgjgXgjx50Fn332mftdq1atFNPVzkUps6uuuspatmzp2kL89ttvNn36dJfK/PDDD12VQ6j//Oc/rt710KFD7rWbb77ZpTGVjh00aJB169Yt3brm+++/31599VW7/vrrXQr15JNPdq8dPHjQGjVqZD/++KNdfPHF9o9//MNVb6me98svv0x3/Xr27Onm0TooTavqEVEdZpMmTWzPnj0upat08MqVK23MmDE2bdo0t11q165t2eGWW25xZVBd+amnnurqubU9tmzZ4uqxQ7300kv2wAMPWLFixey2225zvz/55BO74oorXFo4WiVLlnS/165da8eOHQuud1rUWFb7Sulx1fcrde0JrTa89dZbXRq9YsWK1qlTJ5eynjJliqtmUhWj9lt60tvPb731lnXp0sXV82uf6DPWrFljb775pjvevv32W/vb3/7m5v3zzz/d/tm9e7fbr+3atXPHya+//upS7N27dw9ug4zs3LnTbV9t6zvvvNNtBzXS1HH2+++/27/+9a/gvDt27HDHlOZv2rSplS5d2pVF5VM53njjDbddwh0+fNgdw3p/s2bN3HGgVL/MmzfPnnnmGWvYsKFbjyJFirj1VvWdvm/z5893+yRS3b6qGWrUqOHq9/V/7Qvty2+++cZ9B/U5N954o/tcVY3oGFy9enVwO4raUbRq1codZ6pC1PGqfaIGqz169LDvvvvObdPMHCdKuT/55JOu+uPaa6+1MmXK2JIlS+z55593x7/Kp7JFs40UP2hdvv76a7v88svd9lX1idp6qIxqD3LppZdGfa678sorLbvai6kaSMez2pno/Pff//7XbbvLLrvMlTVa+o567V9q1qxpsZKZff33v//dzaNyqQor/Puk5gU6Z+qY1X4+kX1/5MgR1wbojz/+cMeo9u/UqVPtkUcecd9rr2lDNMefrlsDBw50x84NN9zgzpv6juqc/95777nvQyjtK1UJan/qfXEV9zDJJ7xIVFGq96O7GWVAdLd77bXXujuZUMpsbN26NdWylKrUXaAi7FCaV2lX3SUqco30vrTuwA8cOBC4/vrr3TRVV4XfsesOS6/ddNNNKaLu3377zUXS6WValEVZu3Ztite0DJVfr48ZMybFa4rENV2ZnNBynEimRXftoXciuqPQXUSePHkCf/75Z3C6lq3tpzv30M9RObztE+1hrs/Q3Yvmr1evXmDkyJGB//73v4GjR49mOe06btw49/rFF18c2LNnT4rPuvTSS91r4dmJaPfzqlWr3Lpru2zcuDHFMj777DO3rULv+JQ903J0dxpp3SOl/yPxtmmHDh1SlEfHjPaDyqSMTujddfix7H1flAXQe8I/29sPysaobOE2b96c6vsnP/30k8tmNW/ePOJ+inRX7n1XVA5lnELX6d1333Wv3X///Sne4929ap+EHh/6+6677nKvTZ06NerjRNkcva473fA7a90NRypDettI1Ztp3fFr/Xbs2BGIxo033uiWE21mJqNMy+OPPx68Q1eGL/zO/6qrrnLZrkh0vtR21zK6devmsrB6zy233JJhuU4k05LZff3000+7acrChLvnnnvca8rWZ8e+b9GiRYrvjr4Xp512mvsJrWbL6PhT1lH7bd++falei3RNE2WadI6J9D2MJYKWNKSVTtPPueeeGzENnp4ePXq4965fvz447fnnn3fT7rvvvqjLpC+fLuZ169Z1wdOzzz4bcV7vAh8pYNBJO72gJdJF7auvvgp+sSJRMKfX586dmy1By6effprmCe/DDz9MtS56LZwunNoGmYnNFy9e7L6MoftbqWCdTJUe1gU4VEYngyZNmrjXP/nkk1SvKbDQa6pOzMp+1olM83700UcRP1sXLLXR8U4qXtAyfPjwwInQMrTc8MA29AT/5JNPRrUsVVeGHzehJ2UFIZml6liltyOdtM8888xUQai+k3pN1XbhJ2DNqyoXtZ0IvejrJK8qJFUbhNOFR/tMQV20x4n2lV5XkByJjklVq0S7jbygRdVlJ0Lfdy0nUlVjVoIWtYXwjh9VP3/55ZcumFd5VRWRVtVoaFWV96NtrKqR8DYw2Rm0ZGVfK0DXeUdVi6FUHaZllSlTJsWyTmTfr4mwPrfddpt7zavyjDZo0Xcj/PyWHt0YaJnaL/FE9VAGQru37tu3z5YtW+bSb0qD629Vt4RSWlppOKXzVJWh9G0opc69NLNS96LUXrTUOr9u3bquCkPVMkpVhlP6Xy3uVVWgLtrhMkr1KvUXTtVMolR0JJquqo5Fixa56rETFV71Jlofr2oivFz169dPNf9ZZ53l3rN+/fqoP1dpZq2Deh8o/avla1+qOkI/I0aMcNNV9RcNvV9p8EjjrqjMqoLS52VlP6tcol5Nkbof6vhTCl1VG6oKUPXRv//9b7v33ntdqlupZX2GqvkyO5aNjmGvqiaU1lOp7vB10ndFvUW0DZV2Vvo6/HsRTin49NL+qloYNmyY21fbtm2zo0ePpnhd08qVK5dimtLh4dV+6j4r6tZetGjRFK9p3rJly7pqFY+2p6pjqlWrZv37949YtkKFCmVqWATtS6XblYrXTzidR1StEl7lkNY20j7Vuo4fP94d/9ddd5373ut7pW780dLnSbTHe0ZU1SmqylA1nnd+uuCCC1w1napWdDxre4RXFZ1zzjnufKxjWseL5n/88cfdeUfHQmh1S3bJyr5Wj6jGjRu7qpPly5e7fSGqDtWy1H08tKdTVvf9aaed5rpzR3OezIiuZ6p+VllVPaRzk7Z/etXr3vbW9yyeCFoyoXDhwu6C/sEHH7gDU20s/vnPfwYPEn2J2rdv704kqruvUqWKe48uWurGpy+j2q54vC54Z5xxRtRl2LRpkwtK9PlpBR96XXSyjSSt6R6NhRBO7WEk/CLg8aZnV7dCtZUI533RddIKL1da66R1yUzQ4tHJPTRwUl20xudRWyNdlF9++eWolqPy6csd6UKh9VFXTwUXWdnP3gVFwUB69u7d635XqlTJrYfqzmfOnOmOY9Hx+9BDD9l9991n0Upve4fuFy84V1CroEIncwVPqp/X9+Knn35y7aFCvxce1eunFUzpxkDtInQx1XdNQZTGkND8qtfXfoq0zEgnYe+4SusErddDxwLxtrva0OhYyGi7R0PL1PZJb3neMkMvXGltIwVbn3/+uT311FOunc/DDz/spiso03GsdghqB5QRXZBFQab3d3Z8r9XOLvyGSvtPgfTIkSPdcZpW+xatm/a32knpOFQ7QAUvr732mmW3rO5rtZdS0PLOO+/Ys88+66bpb9H2z459XyzCOTKt82RG1C5QN3lqL6i2YvrRctTm7IUXXogYHB04cMD9zo7jIjMIWrJAB4vuCHQXrR8vaHnsscfcxUl3fmroF963XUFL+HJEdw2604iGGlKpUZ2+FMpo6MSkgy2U12ArrTETMhpLIdJJ0Duh62Iaie6eQ+cTXZQk/A44O4Mb7/O0Tuedd16q19Mqb2YpWNVJUQ2Rtc0zUz7dXemip7upUNouuksJb2AX7X721l0BQqRlRKLjcuLEie6zdWFXQ0vdYekCoAD77rvvjmo5aR1D3vYOPQ50h6oTnDJU4RknXTwVtESSVsCisivwUoCk7194IO1loGLFWzcNjOYFftmxTGUhdKxkRnoZMgV0uhjpR4Oq6fwzfPhwdxzr++c1Hk2PgiLvwpod2RadN9O74Hqf4V0QM+JlqXVTmEj7WvPrO6ksqcZ+8saV0fc6vIF4Vvd9dlIgqJsA/egmStkrNUJX5kdZUv2osX+kgM47RuKFEXGzyEu9eelO0YlB6bXwgEXz6CAIp5bmooM5MzSEsg4otRrXBU0pzFD6sugCp2BIvSPCRSpLRnRnlN7JQRckueSSS1KdgDSiZTgFdtnB+7zwgFBUtRLps7PKqzoIrTL0qhrSuqvRdtP+V7VIOE3T+0K3WWb2s3f8ZNQbLBLdRanKSHfgqkIQZSiipV5xkY4t7/jwjhfve6FsU6Qqskj7LSMK9HTRVW+k8IBFd6NelWGsqJpCF11lkCKNxhpJRseJ9qXOKbo4xILulBWQansrw5JWoBjOq3pSj5fsoEybAi1Vm4SeOz3qSSSRqh4j8aoVYzXYY1b2tZd9UDWLvru6MVDvQQXb4VmWeOz7aI6/UApC1EtRvQGVIVVTA2+/hFq1apXL/EQ7AnJ2IWjJAp3c1U1Ud846cXqU7lQaUQeqRxc43RXqSxpOB7ACjNdffz3iRS20Hj2cqqGU9tUJXPWP4Qe8uv7qpKAhl0MvsrqIR1u1EUptH3SXpIBHnxtK/9eFU20CQqsyvLYx6tIaaunSpS69nx1UF6v9oGxB6EVU665ut5FOjGlRSnrUqFER7/J0wvLSvKFtdhSY6SSsi3gkGrFTtB/03A6P/lbbKEkvu5HeflYXZa276sjDAxqvLjw0oNFoo6HVNuFZE6Xno6WTnwKe0O2r74Qec6ALSOizSfS90F2kunCGUjWA2tZklk6qKqvWJzQtr32kjFGs69i1furqquyiqtQiHS96LfQ7n9Fxon0onTt3TnH+CG1P57WBi4b2hYL2cLo4qtos2pS+F2hm5rPToypKdR/Wdgg/B2h0VR0PChJCh4ZQEBrpYqt9r/0tGp4hUfa1xxsyXyOo60fL0vkq1vs+kvSOPx0PaosZTt8nL/sTfm7Q8aXzRk48243qoQwo4Ag9eHRwepkRpf1C6/Z18KmNi+4y1Q9fFxQdDHqPvqhqiBVK7RkUgevCpPEmlOrUnY3aMugErwBDB0da1DZAd0xKRergUUTvpR41TLaCK92pKyLWGA66YCl61kVXr3nVN9HQgak6WbUfUJ99NezTXYiWrWUpC6EvZugyNY8asOlOXgGYxsfQl0Zl1mvZ8fA1XRBV//rggw+67a6yKd2qk5/uxrU9wy+WadEJQ2OOKBhQ8KWsmdon6aSkNiCq+tAdq+rPPbpr1XopONAJSYGb7mq0b/TZakCr9dW6qvpKYyR47S60b1XeSCeyaPaztr/GaVFgpGXrRK/P18lG21ll0pgo3l2yqgNUPaB1U3srnch0F6XjUqlfpYajpXXT+BTK1ujY8sZp0W+19dLyPVqu9oc+1xsDQpk2BcBeUJYZOsZ0AdF+V7WqjiUFaMr26SSr75KX+YsVVQWrek0NgbX9dEeqtmlKrevGRd97NdL3GmFmdJwoA6H1UXCr74zaEijboAuz2mQpQ6Ltp+MwGiqb7pY1Lo8yv2psrMacOo50fHhtXDKi9fLGPYrUEFXHlsodHhiFPuNGY43oXOcZMmSIa6itsZXUgFbfW30X9J3QNtEYQ6HVi2qXo+2pG0Sv7ZLOjToPexk3bbdwoWXwvgNaby9jqurXaMafyey+Dr3R0/lCVSzeWC+RqlKye99Hkt7xp22q5aus+j4rsFQbJrXJUQNjzRNee+AN36/rXNzFta+Sj0Tq6qxueur61rp168CsWbMivk/96i+88ELXfVIjG6o7m7rzeV1B1dU3nLq6hY4yqy5x6mIb3jU1re6AWqZGu9Q4EwsWLEjRHU9drTVGjEZL1Dgq6mb93XffuWVptNxQ6XVR9qxcudKNjqntoK6g+v2Pf/zDTY9E48JoBE6VTaOmqhvg5MmTM+zynNa2DR3FMXw8FI2Foq6uGodGZcrsiLjq7qrl3HHHHa47pvaf9rnKrq6fAwcOTDHWikfdDjVuj7oNqvtjeBnVbVLdpTUui7pP60fj0Lz22muZGhE3rf2s40v7LnS0WY1/olFxZ8+enWLkXHU5rVmzZnB/qGu81je0e2RGvPJp+2o7qzumtru2f1pDAaibukYTVfk1hoRGoVU357T2qTfiZ1rUZVTdpWvUqOHWQ6Pi6rjUoxgiHccZdflMr6ttWmXR2EUax6VRo0bB8Wn0HVY3dY3mrGM/M8eJqAuwus/qO+uNqK3zicaI+v7776PeRup2++ijjwZHDNZxoa7I6qaa1ijEafG61i9fvjzVa973OL2fSOcTjcWicU90zGo9vXOlzk3h1KVfx1m1atXcuFY67+iY0/g0OkdG6oosGZUr0nkkLZnd155+/foFP+/9999P9zOya98/kca1Jq3jT13GNaSCjg2NrOudQ/V91UjekUYu1vlQ+yA7RjXOrJP0T/xDJeQkVddoFFXdOaiBMJAZyhSpqipWjR+RWJQFUVZPWeTsqtaFfy1ZssRlevv16+ceShlvtGlJYpHqR1VtoINN9atKVwJAelRVobYjGqMo0ng6yF0ef/xx12NWVfI5gTYtSUz1japLVT2l6qXVUPWjjz5yjUDV1dQbVAsA0qM7anWJ1zkkM+NKIbns37/ftUFSO7V4j8/ioXooiQ0dOtQ1vlRjMTXCVWMsHXBqaKpGekBWUD0EIKcQtAAAAF+gTQsAAPAFghYAAOALSRO0aDAcDXQW/vRYAACQHJImaNHIgRoGOStP9AUAAIkvaYIWAACQ3AhaAACALxC0AAAAXyBoAQAAvpBrhvE/duyYG9I+WeTPn989WhwAgNwiVwQte/futY0bN1oyDf6rodQrVKjghuYHACA3yJcbMiwKWE455RQrXbq0u9j7nYKvrVu3uvWqVq0aGRcAQK6Q9EGLqoR0kVfAklNPpYwFrY+euKr1I2gBAOQGuaYhbjJkWJJ5fQAAsNyeaYnkh/fXxGzZl7avFrNlAwCQm+WaTAsAAMhlQcv+/fvtrbfesoceeshatmxpV111lc2YMSPivMePH7epU6faXXfdZU2aNLFrr73WevbsaT///HOq+caNG2c33HCDm++OO+6wzz77zJLd9OnTrUaNGlazZk3r3bu3lSpVyrVTkZtuusn1egIAAFmsHtq1a5eNGjXKypYta1WrVrVFixalOe8zzzxjn376qV199dV2/fXX24EDB2zNmjW2c+fOFPO98cYbNnbsWGvVqpWdc8459tVXX9lTTz3l2m00btzYktGWLVvszjvvtC+//NLOPfdcGzFihG3fvj34+p49e+jODADAiQQtJUuWtClTprjfK1eutC5dukSc7/PPP7eZM2da//79XTYmLeq6O3HiRGvbtq316tXLTVNGpkePHjZ06FBr0KBBUvaO+fbbb12GRQGL3H333W6dvW7amzdvtptvvtmWL19u7733np199tk5XGIAAHxWPVSgQAEXsGRk0qRJrupDAYuqf5RliURZlaNHj7qgxaMMS5s2bVxAs2zZMssNQnsD/fLLLy5Qe/fdd+3555+38ePH52jZAABI2oa4+/btsxUrVriqHlV7tGjRwlUR3XjjjS4DE0rVRRo/pVKlSimmK+DxXk9Gl19+uS1ZssRlq0TthA4fPuz+Vnbltttuc0P1a9uUKFEih0sLAECSdnn+/fff3YBuClCUMejWrZsVLlzY3n//fevbt6/7u06dOm5eteMoXrx4qnFHvGzOtm3bIn6Gpoe2AVm/fr35bXA4BSrKMCl71bx58+A6K2jx/lbV2X333ZfDpQUAIEmDFq8qSI12hw0bFmy3UbduXZdtUbWHF7QcOnTIZRTC6ULuvZ5Wzxs1CPbzWCrXXXed+/GMHDnS/VaWqkyZMq6KrFGjRm6ofgAAYun1P2ZmOE+38s0t6YKWggULut/lypULBiyi5/8ocJk1a5Zrx5IvXz43b6SnL3tVJd6ywrVu3dotKzTToka/yWD06NE5XQQAABJOTIIWjTcikdpiFCtWzAUsBw8edF16VQ2ibtOqTgqtIvKqfrxlRfqMtF7zq7SqwgAAQIwa4iqYUMCi3j/hFIyo6kdZF9FYLwpgwtukqF2H9zoAAEDMhvFXWwwNoPb9998Hp/3111+ui/Mll1xiefL876OvvPJKV02ksV88yrpMmzbNNVY9//zzY1VEAACQ7NVDkydPdkPMe1U48+fPdwGKtGvXzlX7dOzY0ebMmWOPPfaYG55f0xSIqGoodEA6NTjt0KGDG4tEr6mrs0aJVXdgvTcZB5YDAABxClrUDXfTpk3B/8+bN8/9SLNmzVyAouqhIUOGuB+N6KqA5LzzzrM+ffqkqvLp2rWrFS1a1PUI0ii6FSpUcPM1bdo0K8UDAABJKEtBi0a7jUb58uVtwIABGc6nqiJlZvQDAAAQ1zYtAAAA2YmgBQAA5N5xWpJh1L+syunRAgEASFZkWgAAgC8QtOQgjQCssWtCB+Vbt26d+/umm25y3coBAMD/ELQkqD179riu4wAA4H8IWhLQsWPHbPPmzXbzzTfbhRdeaKtXr87pIgEAkOMIWnKQRvtVgOLRM5jkl19+ca+9++679vzzz7vRggEAyO0IWnKQRgb+7rvv3N8ffPCB7du3L/iwyNtuu83y589vhQoVivi0bAAAchuClhz00ksvWc+ePd0DJBctWmQlS5YMBi16iKT3yITmzelGDQBArhynJVHGUmnRooWtWbMm+P9+/fq53ytWrHAPkmzTpo17Wna1atVysJQAACSGXBm0JLrRo0fndBEAAEg4VA8BAABfIGgBAAC+QNACAAB8gaAFAAD4Qq4JWgKBgCWTZFsfAAAst/ce0gBtejDh1q1brXTp0u7vZAhYtD5aF60fAAC5QdIHLRoOv0KFCrZx48bgE5STgQIWrZfWDwCA3CDpgxbR05I1QNuRI0csWSjDQsACAMhNckXQIrrAc5EHAMC/ck1DXAAA4G8ELQAAwBdyTfXQiXrss3EZztOvyS1xKQsAALkRmRYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAACSs8vz/v37bcKECbZ8+XJbsWKF7dmzxx599FFr0aJFmu85evSo3XnnnbZ+/Xrr1q2b3XzzzSleP378uFvm1KlTbceOHe6ZOh07drQmTZpkba0AAEDSyXSmZdeuXTZq1CgXgFStWjWq90yePNm2bNmS5utvvPGGDRs2zGrXrm09e/a0smXL2lNPPWWzZ8/ObPEAAECSynTQUrJkSZsyZYq99957LmuSkZ07d9o777xjt9wSeeC1rVu32sSJE61t27b2r3/9y1q1amXPPPOM1axZ04YOHWrHjh3LbBEBAEASynTQUqBAARe4RGv48OFWsWJFa9q0acTXv/rqK1d9pKDFc9JJJ1mbNm1cQLNs2bLMFhEAACShmDbEVbuXmTNnWo8ePVwgEsmaNWusUKFCVqlSpRTTa9SoEXwdAAAgZs8eCgQC9sorr1ijRo3s/PPPtz///DPifNu3b7fixYunCmq8bM62bdsivk/T9V6P2tgAAIDkFbOgZcaMGbZ27VrXoDY9hw4dsvz580eshvJej2T69OmuQTAAAMgdYhK07Nu3z0aMGOG6NqsnUHoKFixoR44cSTX98OHDwdcjad26tdWtWzdFpqV///4nXHYAAJCLghaNuaJARFVDXrWQGtXK3r173bRSpUq5DIuqgRYtWuSqk0KriLyqH80Xiaan9RoAAEg+MQlaNm/e7Aadu+2221K9Nnr0aPczcuRIq1atmhvr5aOPPnKZkjPPPDNFI16JdiwYAACQ3GIStLRr187q1auXaryW559/3o2ce+WVV1q5cuXcdP392muvubFfevXq5aYp6zJt2jQrXbq0a8QLAACQpaBFI9yqmserwpk/f35wxFsFLNWrV3c/obxqImVTQgOaMmXKWIcOHWz8+PFuvBZ1df7yyy9tyZIl9thjj1nevHlPZP0AAEBuDlo0gu2mTZuC/583b577kWbNmlmRIkUytbyuXbta0aJFXY8gjeuiZw/16dMnzQHpAABA7pOloGXSpEmZfo+qg7zAJlyePHncAxL1AwAAEPcRcQEAALILQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfyJfZN+zfv98mTJhgy5cvtxUrVtiePXvs0UcftRYtWgTnOX78uH3yySc2d+5cW7NmjZunXLly1qhRI7vpppusYMGCqZb70UcfueVu2rTJSpcube3bt7d27dqd+BoCAIDcmWnZtWuXjRo1ytavX29Vq1aNOM/Bgwdt4MCBbt7rrrvOevToYTVq1LC3337bevfubYFAIMX806ZNs0GDBlnlypWtZ8+edv7559srr7xiY8eOzfqaAQCA3J1pKVmypE2ZMsX9XrlypXXp0iXVPPnz57chQ4bYBRdcEJzWqlUrO/300+2tt96yH374wWrVquWmHzp0yN588027/PLLrV+/fsF5la159913rXXr1la0aNETW0sAAJD7Mi0FChRwAUt6FLSEBiyeevXqud/K0nh+/PFHl5Fp06ZNinnbtm1rBw4csG+++SazRQQAAEkorg1xd+zY4X6fdtppwWlq8yLnnHNOinmrV69uefLksdWrV8eziAAAIFmqh07E+PHjrXDhwlanTp3gtO3bt1vevHmtePHiqbI1p556qns9km3btqV4LTR7AwAAkk/cgpbRo0fbwoUL7YEHHkjRRkVtWvLly5dmVZRej2T69OmuQTAAAMgd4hK0zJ492zW2bdmyZaq2K+r+fPTo0YjvO3z4cMTu0aIGunXr1k2Raenfv382lxwAAOSaoOX777+3p59+2vUOevDBB1O9rka9x44ds507d6aoIjpy5Ijt3r07zUa/pUqVcj8AAODE/bH8f+1O01Xekrchrgag69Onj2tU27dv34jVQNWqVXO/1X06lP6vbs/e6wAAIHeLWdCybt06e/jhh93YLM8++2ya1TyXXHKJa3CrAeZC6f8nn3yyy9AAAABkqXpo8uTJtnfv3mDvnfnz59uWLVvc3xp6X12VH3roITd8v4btDx9rpXz58m7UW1Ewc/fdd9tLL71kjz/+uF122WW2ePFimzVrlnXu3NkFNAAAAFkKWiZOnOieEeSZN2+e+5FmzZq5314QM3z48FTvb968eTBo8QaSU9WRlqsAqEyZMta9e3fr0KFDVooHAACSUJaClkmTJmU4jxfEREtD9+sHAAAgx0fEBQAAyCqCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL6QL7Nv2L9/v02YMMGWL19uK1assD179tijjz5qLVq0SDXvunXr7LXXXrOlS5davnz57PLLL7fu3btbsWLFUsx3/Phxt8ypU6fajh07rEKFCtaxY0dr0qTJia0dAADIvUHLrl27bNSoUVa2bFmrWrWqLVq0KOJ8W7ZssR49eliRIkWsc+fOduDAAReYrF271oYPH2758+cPzvvGG2/Y2LFjrVWrVnbOOefYV199ZU899ZSddNJJ1rhx4xNbQwAAkDuDlpIlS9qUKVPc75UrV1qXLl0izjdmzBg7ePCgvfnmmy7AkRo1atgDDzxgM2bMsNatW7tpW7dutYkTJ1rbtm2tV69ebtq1117rAp6hQ4dagwYNLG/evCe2lgAAIPe1aSlQoIALWDIyd+5cu+KKK4IBi9SqVcsqVqxoc+bMCU5TVuXo0aMuaPEow9KmTRsX0CxbtiyzRQQAAEkoJg1xFWzs3LnTqlevnuo1ZVvWrFkT/L/+LlSokFWqVCnVfN7rAAAAma4eisb27dvd70gZGU3bvXu3HT582GVtNG/x4sVddiV8Ptm2bVvEz9B073Nk/fr12bwWAAAg6YOWQ4cOud+hjW09ClS8efS3fmc0XyTTp093DYIBAEDuEJOgpWDBgu73kSNHUr2mDEvoPPodzXzh1JC3bt26KTIt/fv3z6Y1AAAAuSJo8ap2QqtvPJp26qmnBjMpmlfdpgOBQIoqIu+9pUqVivgZmp7WawAAIPnEpCFu6dKl3QByq1atSvWaBqTT+C4e/a2u0eFtUjR4nfc6AABAzIbxr1+/vn399de2efPm4LQffvjBNmzYYA0bNgxOu/LKK91ouRr7xaOsy7Rp01zwc/7558eqiAAAINmrhyZPnmx79+4NVuHMnz/fjYAr7dq1c6Pgahj+L774wu6//35r3769GxF3/PjxdtZZZ6UY8r9MmTLWoUMH95rGa1FX5y+//NKWLFlijz32GAPLAQCArActGsF206ZNwf/PmzfP/UizZs1c0KJB5QYPHuyePaRh+71nD917773B9iyerl27WtGiRV2PoJkzZ7pnD/Xp08eaNm2aleIBAIAklKWgZdKkSVHNV7lyZXvhhRcynC9PnjwuM6MfAACASGLWpgUAACA7EbQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwhXyxXPiGDRts5MiRtnTpUtu9e7eVLVvWmjRpYjfddJOdfPLJwfn0+rBhw2z16tVWuHBha9iwoXXu3NlOOeWUWBYPAAD4SMyCls2bN1vXrl2tSJEi1rZtWzv11FNt2bJl9tZbb9mqVats4MCBbr41a9ZYr169rFKlSta9e3fbsmWLTZw40TZu3GjPPfdcrIoHAAB8JmZBy6xZs2zv3r02ZMgQq1y5spvWunVrO378uH3yySe2Z88eK1q0qI0YMcL9Hjx4sMuySLly5WzQoEG2YMECu+yyy2JVRAAA4CMxa9Oyb98+97t48eIpppcsWdLy5Mlj+fLlc/MsXLjQmjVrFgxY5Oqrr7ZChQrZnDlzYlU8AADgMzELWi6++GL3+9lnn3VVQKoumj17tk2bNs3atWvngpK1a9fasWPHrHr16inemz9/fqtWrZp7HwAAQEyrh+rUqWN33323jRkzxubPnx+cfuutt7pGtrJ9+/Zg9iWcpi1evDjN5W/bti34flm/fn02rwEAAMg1vYfUNuXCCy+0+vXru4a433zzjQtiSpQo4bIthw4dCmZWwhUoUMAOHz6c5rKnT59uo0aNimXxAQBAbghaVBWk3j9jx461MmXKuGkKXgKBgA0fPtx1fS5YsKCbfuTIkVTvV8CiwCUtatRbt27dFJmW/v37x2RdAABAEgctU6ZMce1SvIDFo0BjxowZrr2KVy0UWs3j0bRSpUqluXy9lt7rAAAgucSsIe7OnTtd9+ZwR48edb/VAFddofPmzevGbQmlzIuCmqpVq8aqeAAAwGdiFrRUrFjRBR4aFTe82khdnqtUqeIGnqtVq5Yb02X//v3BeTSOy4EDB9zIuAAAADGtHtJQ/d99950b5fb66693DXG//vprN+3aa68NVu106tTJ7r33XuvRo4drp+KNiFu7dm3XAwkAACCmQctFF13kRsN9++23XfsWPXtIvYnU3fnmm28OzqcxWl588UX37KFXX33VPW+oZcuW7hEAAAAAcenyfO6550b1/KCaNWva0KFDY1kUAADgczFr0wIAAJCdCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfyJfTBQAAALH1w/trMp6pmCU8Mi0AAMAXCFoAAIAvxLx6aNWqVfb222/b0qVL7fDhw1a+fHlr1aqVtW/fPjiPXhs2bJitXr3aChcubA0bNrTOnTvbKaecEuviAQAAn4hp0LJgwQJ79NFHrVq1anb77bdboUKF7Pfff7etW7cG51mzZo316tXLKlWqZN27d7ctW7bYxIkTbePGjfbcc8/FsngAAOQKU4t9b8kgZkHLvn377Omnn7a///3v1q9fP8uTJ3JN1IgRI6xo0aI2ePBgl2WRcuXK2aBBg1zQc9lll8WqiAAAwEdi1qbls88+sx07drhqHgUsBw4csOPHj6cKbBYuXGjNmjULBixy9dVXu6zMnDlzYlU8AADgMzHLtCgYUSCybds2+7//+z/bsGGDC0QUoKgaqGDBgrZ27Vo7duyYVa9ePcV78+fP76qUVHUEAAAQ06BFbVIUkPz73/+2li1bWpcuXeynn36yyZMn2969e+2JJ56w7du3u3lLliyZ6v2atnjx4jSXr2DIe7+sX78+RmsCAACSOmhRddDBgwftuuuus549e7pp9evXtyNHjtj06dPtrrvuskOHDgUzK+EKFCjgehulRcsYNWpUrIoPAAByS9Ci6h9p3LhxiulNmjRxAceyZcvs5JNPdtMUyIRTwKLAJS2tW7e2unXrpsi09O/fPxvXAAAA5IqgRdU7v/76q5UoUSLF9OLFi7vfe/bssTPOOMP9HVrN49G0UqVKpbl8vZbe64k6TPKl7avFpSwAACSbmPUe8hrXho7J4rVFkWLFilnlypUtb968bgC6UMq8qBFu1apVY1U8AADgMzHLtGhU27Fjx9p//vMfu/TSS4PT9X8FKhdffLEVKVLEatWqZbNmzXKDz3kj4H7yySeuTYyWkWyD91xqZFoAAEiooOXss8+2a665xj7++GPXi+iiiy5yvYc09krHjh2DVTudOnWye++913r06OHaqXgj4tauXdvq1KkTq+IBAACfiekw/g899JCVLVvWZsyYYV9++aX7W2O03HDDDSmqkV588UX37KFXX33VZVvURbpr166xLBoAAPCZmAYt+fLlszvvvNP9pKdmzZo2dOjQWBYFAAD4XMwa4gIAAPgm04Ksef2PmRnO061887iUBQCAREGmBQAA+AJBCwAA8AWCFgAA4Au0aUnAof7tiniUBAAAfyHTAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL7A4HJxNrXY9xnOU95KxKUsAIDc8ZDdZEGmBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBweWSeDChbuWbx6UsAADEA5kWAADgC2RaktgP76/JcJ5L21eLS1kAADhRZFoAAIAvELQAAABfIGgBAAC+QJsWn/pj+Y4o5qoSh5IAABL/epAc4pppeffdd+2qq66y22+/PdVrS5cutXvvvdeaNm1qbdq0sVdeecX2798fz+IBAIAEFrdMy5YtW2zMmDFWqFChVK+tWbPGevXqZZUqVbLu3bu7eSdOnGgbN2605557Ll5FBAAACSxuQcvQoUPt3HPPtePHj9uuXbtSvDZixAgrWrSoDR482AoXLuymlStXzgYNGmQLFiywyy67LF7FBAAAubl66KeffrK5c+dajx49Ur22b98+W7hwoTVr1iwYsMjVV1/tsjJz5syJRxEBAEBuz7QcO3bMtU9p2bKlVamSumHo2rVr3TzVq1dPMT1//vxWrVo1V3UEAEBuHAA0KsUs14h50DJt2jTbvHmzvfTSSxFf3759u/tdsmTJVK9p2uLFiyO+b9u2bcH3yvr167OtzAAAIJcFLWq78tZbb9ltt91mxYpFDgUPHToUzKyEK1CggB0+fDji+6ZPn26jRo3K5hIDAIBcGbS8+eabroFtu3bt0pynYMGC7veRI0dSvaaARYFLJK1bt7a6deumyLT0798/W8oNAAByUdCyYcMG+/DDD13jW1XlhAYiR48etT///NM1vPWqhUKrejyaVqpUqYjL1/S0XkP0Xv9jZobzdCvfPC5lAQAgR4IWBSrq3qxGuPoJd+ONN1r79u3trrvusrx589qqVausUaNGwdeVeVEj3IYNG8aqiAAAwEdiFrRUrlzZBgwYELHKSCPd3nfffVa+fHkrUqSI1apVy2bNmuVGyj3llFPcfJ988okdOHCAoAUAkHt7BiE+QYsa3tarVy/V9Pfee8/9Dn2tU6dObgh/VSWprYo3Im7t2rWtTp06sSoiAADwkYR4YKLGaHnxxRdt2LBh9uqrr7psi8Z16dq1a04XDQl4d3Jp+2pxKQsAIJcHLRqqP5KaNWu6of4BAABy/CnPAAAAvq4eQkp/LN9hyVits+CKXzKc5zKrErfyUM0EINFNLfZ9ThchoZBpAQAAvkDQAgAAfIGgBQAA+AJtWhC3etfyVsL8hrYxAJA4yLQAAABfIGgBAAC+QNACAAB8gTYtuVxUY8KUj0dJACSb1/+YmeE83co3j0tZkBzItAAAAF8gaAEAAL5A9RAAwPeoisodyLQAAABfIGgBAAC+QNACAAB8gTYtyJa64ng+DuBSY9h8IDeJ5zkonqI53yElMi0AAMAXyLQAQJKgBw2SHZkWAADgC2Rakhj1pf5qY8NdMuAPj302LsN52ljtuJQltyHTAgAAfIGgBQAA+ALVQ0CC8OMTt394f02G81zani7quZUfj2kkNjItAADAF8i0IHvuluKIRnC5UzJndRJt3RKtPPFcr6gUy57FIPPItAAAAF8g0wL4SHbdASfrnXS0w73TddxfXf3jiaEiEhuZFgAA4AtkWpBr28YgPuKZ1Yn2GPvh6+wpEwMC+gtZFP+LWdCyYsUKmzlzpi1atMg2bdpkp556qp133nnWqVMnq1ixYop5161bZ6+99potXbrU8uXLZ5dffrl1797dihWjtRMAAIhx0DJu3DgXhDRs2NCqVKli27dvtylTprig5fXXX7ezzjrLzbdlyxbr0aOHFSlSxDp37mwHDhywCRMm2Nq1a2348OGWP3/+WBURSErZ1kMCcRuHJLvakERTntctsdqQJCuyOj4LWm644QZ7/PHHUwQdjRo1sjvvvNPGjh1rjz32mJs2ZswYO3jwoL355ptWtmxZN61GjRr2wAMP2IwZM6x169axKiIAAPCRmDXEveCCC1JlSVQtdOaZZ9r69euD0+bOnWtXXHFFMGCRWrVquXnnzJkTq+IBAACfiWtD3EAgYDt37nSBi2zdutX9v3r16qnmVbbl22+/jWfxkETi2WUzWWVXNZNf90WidcXNrvIkWoP4aMpT/twScSkLEl9cg5ZPP/3UBSp33XWX+7/auUjJkiVTzatpu3fvtsOHD1uBAgVSvb5t27bg+yU0ewMAAJJP3IIWBRUvvfSS60HUvPn/ugAeOnTI/Y7U2NYLVDRPpKBl+vTpNmrUqJiXG0jGbq/RZD/a/MWjEBJJomVIosrEZVMHULIxiGvQoozIww8/bIULF7Z+/fpZ3rx53fSCBQu630eOHEn1HmVYQucJpwa6devWTREU9e/fP0ZrAAAAkj5o2bt3r/Xu3dv91lgspUqVCr7mVQuFVvN4NE1ju0TKsoiWE7oswO/dXnOzeHfTjibTVN5KJGXbGMDPYhq0qGrnkUcesQ0bNtiLL74YbIDrKV26tBtAbtWqVREHp6tatWosiwcAAHwkZkHLsWPH7Mknn7Rly5bZ008/beeff37E+erXr+9Gzt28eXOw2/MPP/zgAh2N9QIkg8c+G2fJKJ4DaDFYF4CYBS1Dhgyx+fPnuzFY9uzZY7NmzUrxerNmzdzvjh072hdffGH333+/tW/f3o2IO378eDdibosWLWJVPAAA4DMxC1p+/vln9/vrr792P+G8oEXZlcGDB7v2Lhq233v20L333ptmexYgO5D9ALKO4wxJFbQoEIlW5cqV7YUXXohVUQAAQBKI2TD+AAAAvh0RFwAioaoByTb4HmKDTAsAAPAFMi0AEAF37kDiIdMCAAB8gUwLgIhoZ5I9yNgA2YdMCwAA8AUyLYCPkP0AkJuRaQEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBfyWQI4fPiwjRw50mbNmmV79uyxKlWqWKdOnax27do5XTQAAJAgEiLTMnDgQJs0aZI1bdrU7rvvPsuTJ4/17t3blixZktNFAwAACSLHg5bly5fb7NmzrUuXLnbPPfdY69at7eWXX7bTTz/dXn/99ZwuHgAASBA5HrTMnTvX8ubN64IVT8GCBa1ly5a2bNky27x5c46WDwAAJIYcD1rWrFljFSpUsMKFC6eYXqNGDff7559/zqGSAQCARJLjDXG3b99uJUuWTDXdm7Zt27aI79N0vdfjBTfr16+PSTn3/Lk1JssFAMAvVq1aFbNlV6pUyU4++eTEDloOHTpk+fPnTzW9QIECwdcjmT59uo0aNSrV9P79+8eglAAAoPMbk2O27DfeeMOqV6+e2EGL2q8cOXIkYjdo7/VI1Aambt26wf+rq7SyLGeffXYw4MkuWq6CoT59+rhIMNkk+/rlhnVk/fwv2dcx2dcvN6zj+hivXzTLzPGgRdVAW7emrnrxqn5KlSoV8X2aHv5arVq1LJa0QTOKAv0s2dcvN6wj6+d/yb6Oyb5+uWEdK+Xg+uV4Q9yqVavaxo0bbd++fam6QnuvAwAA5HjQ0qBBAzt27JhroxJaNfTxxx/bueeea2XLls3R8gEAgMSQ49VDCkwaNmxoI0aMsL/++svOOOMMmzlzpm3atMkefvhhSwSqwrrjjjsi9nJKBsm+frlhHVk//0v2dUz29csN61gyAdbvpEAgELAcph5C3rOH9u7da2eddZZ79tBll12W00UDAAAJIiGCFgAAgIRv0wIAABANghYAAOALBC0AAMAXcrz3UCL64Ycf7NNPP7UlS5a4ge9KlChhl1xyid19991pDnYXTu977bXX7Pvvv7fjx4/bxRdfbD169LDy5ctbTtNzm95//31bsWKFrVy50g4cOGCvvPKKK2M03nrrrYiPUNBIxJ999pn5ff0Sff+FjgI9bNgwmzdvnmvMroeM3nPPPVEN+vT000+7Xnrh/va3v9mYMWMsXjS8gdcIX+tTpUoV1wi/du3aSbGPTmQdE/175tm/f79NmDDBja2l75zW8dFHH7UWLVrE/DhO9PWbMWOGDRw4MOJrU6ZMSYheRitWrHDngkWLFrleu6eeeqqdd9557hitWLFiwu0/gpYItAN2797txpDRTvvjjz/sgw8+sG+++cadfDI60HSQ9+zZ0w2Y17FjR8uXL59NmjTJnVB1IjrttNMsJ23YsMHGjRvnnq6tnlrLli3L0nIefPBBK1SoUPD/efIkRuLuRNcv0fef6CKtIQF++eUXu+mmm1yZpk6d6sqt53dEc7LRxa93794ppoU/bT3WdEL/4osvrEOHDm5/6SSvMinIrFmzpq/30YmuY6J/zzy7du1ywZXG1NJgoLr4xfM4TuT18+iGt1y5cimmFSlSxBLBuHHjbOnSpW7oEQXUGo1eAZWCltdff92dQxNq/6n3EFJatGhR4NixY6mm1atXLzBixIgM3z927Fg37/Lly4PT1q1bF2jQoEFg+PDhgZy2b9++wK5du9zfc+bMcWX98ccfo37/yJEj3Xt27twZSEQnun6Jvv9k9uzZroxaP4/2R4sWLQJ9+/bN8P0DBgwINGvWLJCTli1b5tZh3LhxwWkHDx4M3HTTTYF//vOfvt9HJ7qOif498xw6dCiwbds29/eKFStcmT/++OO4HMeJvn6aT/PrfYlqyZIlgcOHD6eY9ttvvwUaN24ceOqppxJu/yVWyJ4gLrroolR3M5qmtJkeGJUR3VWdc845Lk0W+qwGVTHNmTPHctopp5zi1iU76E430XrNn+j6Jfr+k7lz57pqy6uuuio4rVixYu5u6auvvgo+cDQjGo06/BEa8VyHvHnzuoefevSA1JYtW7rs2ObNm329j050HRP9exaasctqNUd2HceJun7h2UF93xLNBRdcYPnz508xTRmSM888M8PrXU7sP4KWTBxwahuRUdpZ6bK1a9e6E2o4nWB///13t6xkcOONN7p63ebNm1u/fv1sx44d5nd+2X+rV6+2atWqpQquVcaDBw+6KrKMaD7tP/3oIvriiy/Gdd3WrFnjqkvCq6S8QOTnn3/29T46kXVM9u9Zdh7HfqDqEu2/Zs2a2SOPPJLw6xUIBGznzp0ZXu9yYv/RpiVK7733nh05csQaNWqU7nxqC6PoMlJk7k1TQ1E1ePSrokWL2vXXX+8aaylCV4Nl1YGqQZfqMePdLiI7+WX/6cJ14YUXpllG1Uurfjotmu/mm2+2s88+252gvvvuO1cXrbpptbVQG5FYUxkz2s5+3kcnso7J/j3LruM40SmrpoBTjcS1v1atWuXaXqmh6ptvvpmwz9b79NNPXUP3u+66K+H2X9IHLborU7ARbRrwpJNOSjX9p59+cg2xlPK69NJL012GWk9LeLrNW37oPImyfpmlBoWh1GBZkbXuAnVSVcNIv65fvPdfVtdRZfDKk5Uydu3aNcX/Gzdu7FLCuhgq5av/x5rKmJXtnBP7KN7rGO/vWU450eM40ekmN/RGt169eu7xNGowPnr0aHvooYcs0axfv95eeuklFywrO5Ro+y/pg5bFixe71Fw0dBCpXjx8B/bp08e1oI7mAY6KrCXSRcir3/PmSYT1yy5Nmza1IUOGuO7i2Xkyjff6xXv/ZXUdVYZI9cUnUsYbbrjB9Y5buHBhXIIWlTEr2zkn9lG81zHe37OcEovjONGpx5geFKx9mGi2b9/urnPKCik4VnusRNt/SR+0KEWsPvXRCE/jqpGcuhtqBz777LOugWdG1ABUUaZ2fjhvWrRjvcR6/bJbmTJlXOo+O8V7/eK9/7K6jmr8ll4Zs7ItdILR+mf3PkyLyqgUdGa3c07so3ivY7y/ZzklFsexH2gf/vbbb5ZI9u7d67ri67fGP4rm2MyJ/Zf0QYs2WrSDHIX3zVfAorskpcqiPbmoQZKyMhrULJwGJ9LAV9EEP7Fev+ymdhEamEiNsrJTvNcv3vsvq+uo7aw2DqpaCm0Ep/YOJ598cpbGR1DjVR33av0fD96YF+oZE9o+Q9vZez1R9lG81zHe37OcEovj2A809le8vmfRUDWO10BYDfLVcyhR9x+9hyJQLyFFnGokN2jQoHQ3vLIx4d3C6tev706ooSdVRdU6eale2k8ird9ff/2Vaj414tT0OnXqmJ/4df+pjGoEp1EoPdr+6u57xRVXpKhnVm8a/YSeoCL1rnnnnXfcRTFe+1DbUl1Ap0+fniKt/PHHH7v0uddI0a/76ETXMZm+Z6Lzqdbx6NGjWTqO/bh+kfahBilVg1y1bUkEx44dsyeffNJ1we/bt6+df/75Cb3/kj7TkhWqy1OkeM0117idFHoy0ciUakzlGTBggGuoG7rT2rZtax999JGrG9QogaoXVIvx4sWLu/8nAl2gZN26de73J5984iJmuf3229NdPzUQVOMy3e3qoNRoirNnz3ZRd+h4FH5dPz/sP10M9agCjbaqdfRGotQdT3iL/169ernfWgfRSUYjdDZp0iTYw2bBggX27bffuovhlVdeGZd10EVbjdtHjBjhTnRnnHGGG05cmYTQ9mN+3Ucnuo5++J55Jk+e7KoVvGqB+fPn25YtW9zf7dq1c6O/ahto3SdOnBgcHTYzx7Ef169bt26uh56GtFemTV2EFbCqeujWW2+1RDBkyBC3PgoyNCS/HjcRSt20JVH2H0FLBN7YCTq49BPq9NNPTxG0RKLUtLqNql7w3XffDT4XpXv37gmTElSDy1Ch6xl6UU+rMeB///tf18tEd426W1T32dtuu82lBP2+fn7Yf7pIKws4dOhQd0JV9kTjlqhtTEZdfXWC1QlKz+zRSUjrp4tply5d3AU/nsPE//vf/3bHj4JKXRR0gVb7MQ3m6Pd9dKLr6IfvmUcXMgViHgVfXgCmi15aQ9afyHHsh/VT0KmbAX3XNG6JqoJbtWpld9xxh2sPkkjXu6+//tr9hPOClkTZfydpWNyYLBkAACAb0aYFAAD4AkELAADwBYIWAADgCwQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBUggb731ll111VXuGTrJSOt233335XQxAPgUw/jDt/7880+78cYbU0zLly+fe/7MhRdeaP/4xz+sSpUqOVa+RKQBsD/99FP7z3/+Y7/88ot7cGLRokXdU8zPO+88N+x46PDyTz/9dKrnjQAKPnWcDB48OKeLglyGoAW+p+fm6Dkt3hO6ly9fbp999pl7NshLL71kF1xwQU4XMWE888wzNmPGDBeo6PlDClb0vBAFMApk9u3bl+EzcQAgpxC0ICmClvAnir7xxhs2evRo95u7wf9ZvHixC1j0lGBtEz11NpSe8Oo9FRsAEhFBC5KSHhevoGXlypXBaatWrbIxY8bYihUrbOfOne5JwaryuPLKK92Tc0Ppdc2rp57qEfSaV1VOCo70lN5oU+U33HCD+z1p0qQU0zdv3mzDhg2zBQsW2NGjR93j6+++++5010lPqp42bVowsDjzzDOtTZs21qJFi6i2ybJly9zvq6++OlXAIsq+hGalVHbvybah1XDh67p06VK3rbV8ZW30JHRVM91yyy1RPY1YVVZ6WvN7771nTZo0cU9FVjWfpmudlQFau3atHTt2LLjOLVu2TLEMfe6UKVPck5RVZs2rpz3XqFHDbr31VqtatWpUVY3Nmzd3T1J+/fXX3ROWtRxVm3Xt2tWqV6+e4j06nlS+n376yR0jR44cCWb99LRsrUOkY0FPIH/zzTftq6++sh07dljv3r3dPszq8tQOavjw4fbll1+66j4dSz169HDl3bZtm1sXPWVYr9WsWdN69eplFStWTLUN/vjjD7cfNa+Ofx0Pl112mTvmtU9Fba169uzp/lY5dex79GTf0GNR5dGTf1evXu2eUq110fZVufV0YI8C6YEDB7r3n3rqqTZ27FiX+TvttNNSfW8AghYktZNOOsn9XrNmjd17772WJ08eF6SULVvW9u7d6wKADz/8MEXQ8vvvv7vGolu3brXatWu7+f/66y+bO3euO6Gryuncc8/Ncpl0Ibnnnnvc8nVR0EVm/fr19uCDD9rFF18c8T2vvPKKuwCULl3arrnmGjdN1V862eui4F1I0qMLgmzcuDGqcrZv3961Z9Gj6/V3kSJF3PTQti1z5syxp556yvLnz+8CFQUK2kajRo1yAZnKXbBgwTQ/QwGb2s2oOq9Dhw7WvXt3t88UsPTr189Nr1Chggtm9Bla9rPPPuv2m/anR8tQWdSGSRdOzavt++OPP7p9mFHQEnrh1nKVjbruuutccKnlKgh4+eWXU+x3HTcKahXM/v3vf7eDBw+6C/mIESNcsNy/f/9Uy9fF+/7773fVmHXr1nUXb7XByuryFNg88MADbrna/go2VF5NGzp0qD300ENWsmRJa9asmdvvWv7DDz/sgpPQwEFVqppX5VK1oba5gj+1f/ruu+9c4FO+fHkXvNxxxx1u/+pvBSGe0G2sIErBh45XBTY6dpYsWeKWo5sGHTPhVG7tX32+AlMFWUAqAcCn/vjjj0C9evUCDz74YKrXRo4c6V6777773P9fffVV9/958+almvevv/5K8f9u3boFGjRoEPjuu+9STP/tt98CV199deD2229PMV3L7dGjR8QydujQwf2EGjBggHvPO++8k2L6tGnT3HT9/Pjjj8HpixYtctM6duwY2LNnT3D67t27A7fccot77aeffgpkZPPmzYHmzZsHrrrqqkDfvn0Dc+bMCfz555/pvscrq7Z1uL179wZatGgRaNy4ceDnn38OTj927FjgiSeecO8bNWpUmttq3759gQceeMBNGz16dIr5pk+f7qYPHDgwcOTIkeD0w4cPBx5++GH32sqVK900bROtU6dOnQJHjx5NsRz9X9sp2mNJP8OGDUvxmo4DTQ/f75s2bUr1ecePH3dl1vxLlixJ8ZqOA+94PXjwYKoyZHV5jz/+eIptNHbsWDdd+0bHvZbheeGFF9xrX3zxRXCa3qtl6dhetWpVis9YvHix+y5om0d7zC9YsCC4nvv370+xLs8//7x7Tcee5+OPP3bT6tevH/j+++8jLhPw0OUZvqfMiFLk+tHdpe7WdSdYoEAB69y5c4p5I931Kw3tUdZC1QKqQlEWJJRS6tdee62rqtBPVujO+PPPP3d31+E9n7Rs3eGGU7ZD7rzzzmC2Q5S+112vl2LPSJkyZVz2Qr+VwXj88cddqr5169b2xBNP2A8//JCpdVH1hrJVyvyE9tJSNqtbt27uTj6tcilzpYyDMiGPPPKIdezYMcXrH3zwgRUqVMhVZYRWiyiD4u1TrYN4mRntb312KJVB2yla2r6qTgql4+DSSy91+1xVOB5l60KzFV5Z2rZt6/5euHBhxM/Qtol0HGZ1ecrahW6jxo0bu9+q2urUqVMw2xj6mqpfPMq+KKuiajFl/UKpOkkZoW+//dY10o6G9p3861//cvswdF1Uzabfs2fPTvU+fU6tWrWi+gzkXlQPISmCFgUpoV2eVZ0Q2uVZqfP333/f+vTp4/7WyVFpeKWvQylNLkqzKwgK99tvvwV/h7dtiYbep1T+JZdckurCpQuu2pSEV9+oaksiVR1501SFEw2t9/jx4121gxrm6iKsNilKzetHwUOXLl2iWpZXrki9jXQBVnXChg0bXJpfbYI8asehKhi121CVhy5WoVQtogBBPZtUxRBOF+PQfaH2OapO0YVVF+kGDRq4Mqk9S3g7kIyoWii0rKEXbwV1WmevbYsCUF2gdQFWWVS1ouAptBownAKrtI6brCxPAZm2dShVB4kC4PA2Rd5rocvy2jrpMyMd89pfx48fd/vynHPOsYzoO6RgRW2RItFx7+27UNpfQEYIWuB7uhN+/vnn051HbRHUvkKNa3WHrgaPopPwP//5TxdEyO7du93vb775xv2kRReUrPDuVr12DOEiTddFXwGN2ouEK1GihLtzjfYuWHQhV/Di3dWqXYmyOS+88ILbPvXr10/V6DS9dVEZItEFUhc6zRcetGiaGmZGahukXky6WKtNiheMRqLgxqM2EmqnoX2rHmNeMKP2LQrComkQnN66eNOVWfI89thjLkuhDJwCYe07ZUo0jwJkBSHhNE9o5iNUVpYXqUG1F6hFes3L5Gifh25vUfuV9IRu7/ToO6TAMr19F+n7k9a2B0IRtCDXUGZFP+pporvB+fPn29SpU13DxHfeecdlBrwTvRq2qgdSNHQR8u7+w+mCE1ql4y1fmZxIIk3XBV93uqpSCQ9qNL8u8JEuUNHSRU5VU8q8qPeNeohEE7R4n6kgJBJvenjZ1GBTDTgHDRrktrMauIZesLz5VQYvAMmIghJVG+lHjWm1DupppYu99reqKqKR0bp4+1KNSRVgKGBWw+DQah1lLvS5kaQVsGR1ednBCyg1ho8awZ4o7T+tpxoWZ0Za2wYIRZsW5DpKT6taRW1f1H5BFzX1WghNUXsp82goRa+sQKRutKF35qK7aFURqFpGnxtKgYna00SqspBIQ/urmkei7R2TntD2Bx6vjYjKlla5vDKEUq8bVdspEIxU3aJ2MGrLomoCBS6hwYLmr1SpkutR5WUBMkOfqS7Rr776qlsnBafRUvVPpF4r6vkSus4KjOTyyy9P1Q7Fmzczsnt5meFluzJzzOu4iHRMeN+hXbt2uSwbkN0IWpArKBgIDxLEu1gqkPBO4PpRu4JIjQV1og6/SKuKSQ0ZQ6crla+xR8Lpcxo2bOgyJBoaP9RHH30U8UTvdStVuj20GkgB0dtvv51invSo66rGzgitGvCoHc0XX3wRbL8R3k1a7U/CqSu4Mg+qavv111+D05X5UZdXZZ/SG0NGZdbYHFpndTHfvn178DV1sVZ1xHPPPRexKkEXeQWFogxUpIbRCni0H7x9Gw1tU1UzhVLXbbVnqVy5cjAD5bUjCQ8otB1UxZZZ2b28zPCGANDxGCkA1fESXi4F6pGOCW/fiTJGCl7CaT8ziCGyiuoh5Arjxo1zmQpVD2mcEV3I1FNIFyPdmYcOkqVeNerZ0rdvX5eW1921sjM6SSv40YnY67ki6oGjTI0GCVPvDFVV6P86sXsNH0OpB4V6zWiAMTWC1fKVVVBDUo0p4mV9PGpUqqoqjdNy++23uzYnCgw0bowyPHotmqH39RkKpNRbSttBbUq0HGVE9Nm6wGt8jNB2JmrrM2HCBBc86HO1bhqfwxugTtUuak+idkEKxtTuRttUmSTdcWtQtPRoOaoW0HgzXlWRGuCqR5Pu/NXWRttI7W+0LRXsKTuj6j3tJ+1LbQMNzKdskxpe6/1qV6HeTbrgZlSGUArYVK2k5WtQOQWjaqCs/a9qRI/WTT96TRdhzavskrI6ypZ4AWC0snt5maHvgvahjl8Fj9rnaiys/aL1V8CiYyY0eNI8KqsGAtTx641/pO1fp04dd5yqylU9kvR/BUXaJzrWtDztLw0UCGQWQQtyBV2MdZFV2wHdTepirROpqoc0qFlouwsFMRq1VHeeykyo265Oyrpo6mKv3imh1A5BAY4yIbNmzXLBii7gal/hdUkOpYuqumZroC3dxastibqaqiGsgpnwoEV0QdfFQW1wvLYCOunr5O8NNpcRDTCmqhd9pjIT6kKrnky6IClYUuYjfN3UK0dddPWZ2h4KAhQgKdgQrafao+iCpsHuvBFxddHSiLjpDSwXWi5t3wEDBrhg0QtcdEHU5ysDpfYeyrioTY96xaibr7ohiz5P3cG17bROujhqnbRNddevi2a0tO81yJ/2jUbYVWZNVYnhI+KqCkeZBG9UYw3+5pVLn5fZICO7l5dZCpjUc0g9yxTAKjhX93Lth3r16gW7Snu8J3Vrm2vfaDupK73XW0/Hpb4rCvoVxCqDpaydgkx9J7xnhQGZdZIGa8n0uwAgiYQO469gCUBiok0LAADwBYIWAADgCwQtAADAF2jTAgAAfIFMCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAADA/+H9hFiHJp93DfAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHRCAYAAACmUYmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWB0lEQVR4nO3dCZxOdf//8U/WZIlsEbeEpEUbuUuyi0SEtlu7JUVS3ar7p0VIaVeEUsquZKk7UhKlRUq47SWissu+u/6P9/f/ONfjzDXXzFwz5pq5zszr+XiMGeec61xnP5/z+S7npFAoFDIAAIAElye7FwAAACAWBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAXLSSSdZgwYNsnsxAkXbS9stSNjPSDRz5sxxx+WkSZOye1GQjfbv32+nn366dezYMduWgaAlBTpBI38KFixoZ555pt1+++22YsWK7F5ExMlnn31mbdu2tfLly1uBAgWsRIkSdvbZZ1uHDh1s8ODB5n/zxbp169yxcccdd2TrMiOxBfk4OX78uPXq1csuvPBCdw74LViwwB577DFr0aKFu5lpHStUqBDTfGfPnu3OM31O11adb1dffbV98sknSabbsGGD3XvvvVanTp0k09arV8/eeecdO3LkSLJ5b9y40QYMGOCWt2rVqpYnTx63bL/88ovlRusy6fg75ZRT3P4eN26c/fDDD5Yd8mXLtwbIk08+Gf57165d7iR97733bPLkyfb111/bRRddlK3Lh8z1zDPP2P/93/9Zvnz5rHnz5la9enXLmzev/frrrzZ37lz74IMP3AVU44HcYMKECbZ48WIbO3Zssqylbl6vvvqq5c+f384991zbvHlzTPPs3bu3Pf/88y7Aad26tZUqVcq2bt1qP/74o3355Zd2zTXXhKfVuafvVtDSpk0bO+2002z79u02Y8YMu+uuu2z06NE2a9asJOfkwoULrU+fPm55K1eubKeeeqr9/fffmbhVcq+uXbta37593XVS2z3L6YWJSE6bJqXN0717dzfu9ttvz/Jlql+/fpZ+Z9Bpe8V6mK9bty6UN2/eULFixUJLlixJNv7YsWOhmTNnho4fPx4e9ttvv2X6scB+znnicZxklSuuuMKdE/v37082btGiRaGffvopdOjQIfd/reMZZ5yR6vxGjBgR3hbe5/wOHz6c5P+aRudetOkaNGjg5jVx4sQk4zZs2BCaN29eaNeuXUmuA2vWrAnlRr9l8vF3zz33hE466aTQ6tWrQ1mNoCUDQcv06dPduGuuuSbJ8L///js0aNCgUMOGDd2Jmz9//lCpUqVCrVq1Cn3zzTcpfteKFStCd955Z6hSpUqhAgUKhEqXLh268sorQ0OHDo3pZqbv1AGki8v27duTLE/Pnj3dshQsWDBUvXr10Isvvhj69ddfox7A+r+Ga/zgwYNDF1xwQejkk09O8p06SG+99dZQ+fLl3fqVK1fO/T/awevNTydMpDlz5rhxTz75ZJLh3sXlyJEjoQEDBoSqVq3qtkmFChVCvXv3jnqRk/Hjx4cuueQSt7zafh07dgz98ccf6QpadOHTtNddd11M02vZveMk8uedd94JT6cL7htvvBGqVatWqHDhwqFTTjnF/a39G+1inN79/N1334XatWsXKlu2rNsn2lZdunRx6x9J+7Zz586hKlWquG1VokSJ0Pnnnx/q2rVraNu2bTGtt7d8mr+2s7a35qXtP3bs2GTTa5+99tproRYtWoT+8Y9/uP2p723cuHHok08+ifodOhf0o5tOr1693N/58uULHy/67r59+7pt4a23jsWbb745tGzZslQv2r/88ovbXqeddlqoSJEioaZNm4aWLl3qptuyZYvbPqeffro7Z7Sfvvjii6jLqGN0yJAhoTp16oSKFi0aKlSoUOiiiy5y6+rfr7EeJ6KgWNupZMmSbjudddZZoYcffji0c+fOdG+j3bt3h55++unQeeed55ZP66r53XDDDaGFCxeGYqFrk5ZT+zkWaQUtBw8edMeLjoOUzuX0eOWVV9x39u/fP9XpTjRoiXVff/vtt+572rRpk+K8zjnnHLdv/edwRvf93r173TQVK1Z0n9F5/eyzzyZ5sIrl+NP0o0aNCl1++eXunqVjX9eRZs2ahSZMmJDs+7/88kv3+UcffTSU1chxZ8Dnn3/ufteqVSvJcNVzUcrsqquuspYtW7q6EL///rtNnz7dpTI/+ugjV+Tg99///teVux46dMiNu/nmm10aU+nYQYMGWbdu3VIta37ggQfstddes+uvv96lUE8++WQ37uDBg9aoUSP76aef7OKLL7Z//etfrnhL5bxfffVVquvXs2dPN43WQWlaFY+IyjCbNGlie/bscSldpYNXrlxpY8aMsWnTprntUrt2bcsMt9xyi1sGlZUXK1bMlXNre2zZssWVY/u9/PLL9uCDD1rx4sXttttuc78//fRTu+KKK1xaOFYlS5Z0v9euXWvHjh0Lr3dKVFlW+0rpcZX3K3Xt8Rcb3nrrrS6NXrFiRevUqZNLWU+ZMsUVM6mIUfstNant57ffftu6dOniyvm1T/Qda9assbfeessdb99995394x//cNP+9ddfbv/s3r3b7dd27dq54+S3335zKfbu3buHt0Fadu7c6bavtvWdd97ptoMqaeo4++OPP+zf//53eNodO3a4Y0rTN23a1EqXLu2WRcun5XjzzTfddol0+PBhdwzr882aNXPHgVL9Mm/ePHv22WetYcOGbj2KFCni1lvFdzrf5s+f7/ZJtLJ9FTPUqFHDle/r/9oX2pfffvutOwf1PTfeeKP7XhWN6BhcvXp1eDuK6lG0atXKHWcqQtTxqn2iCqs9evSw77//3m3T9BwnSrk/9dRTrvjj2muvtTJlytiSJUvshRdecMe/lk/LFss2Uvygdfnmm2/s8ssvd9tXxSeq66FlVH2QSy+9NOZr3ZVXXmmZVV9MxUA6nlXPRNe///3vf27bXXbZZW5ZY6Vz1Kv/UrNmTYuX9Ozrf/7zn24aLZeKsCLPJ1Uv0DVTx6z284ns+yNHjrg6QH/++ac7RrV/p06dao8++qg7r72qDbEcf7pvDRw40B07N9xwg7tu6hzVNf/9999354Of9pWKBLU/9bksleVhUkB4kaiiVO9HTzPKgOhp99prr3VPMn7KbGzdujXZvJSq1FOgImw/Tau0q54SFblG+1xKT+AHDhwIXX/99W6Yiqsin9j1hKVxN910U5Ko+/fff3eRdGqZFmVR1q5dm2Sc5qHl1/gxY8YkGadIXMOVyfEvx4lkWvTU7n8S0ROFniLy5MkT+uuvv8LDNW9tPz25+79Hy+Ftn1gPc32Hnl40fb169UIjR44M/e9//wsdPXo0w2nXcePGufEXX3xxaM+ePUm+69JLL3XjIrMTse7nVatWuXXXdtm4cWOSeXz++eduW/mf+JQ903z0dBpt3aOl/6PxtmmHDh2SLI+OGe0HLZMyOv6n68hj2TtflAXQZyK/29sPysZo2SJt3rw52fknP//8s8tmNW/ePOp+ivZU7p0rWg5lnPzr9N5777lxDzzwQJLPeE+v2if+40N/33XXXW7c1KlTYz5OlM3ReD3pRj5Z62k42jKkto1UvJnSE7/Wb8eOHaFY3HjjjW4+sWZm0sq0PPHEE+EndGX4Ip/8r7rqKpftikbXS213zaNbt24uC6vP3HLLLWku14lkWtK7r5955hk3TFmYSPfee68bp2x9Zuz7Fi1aJDl3dF6ceuqp7sdfzJbW8aeso/bbvn37ko2Ldk8TZZp0jYl2HsYTQUsKUkqn6efcc8+NmgZPTY8ePdxn169fHx72wgsvuGH3339/zMukk08387p167rg6bnnnos6rXeDjxYw6KKdWtAS7ab29ddfh0+saBTMafzcuXMzJWj57LPPUrzgffTRR8nWReMi6capbZCe2Hzx4sXuZPTvb6WCdTFVelg3YL+0LgZNmjRx4z/99NNk4xRYaJyKEzOyn3Uh07Qff/xx1O/WDUt1dLyLihe0DB8+PHQiNA/NNzKw9V/gn3rqqZjmpeLKyOPGf1FWEJJeKo5VejvaRfvMM89MFoTqnNQ4FdtFXoA1rYpcVHfCf9PXRV5FSCo2iKQbj/aZgrpYjxPtK41XkByNjkkVq8S6jbygRcVlJ0Lnu+YTragxI0GL6kJ4x4+Kn7/66isXzGt5VRSRUtGov6jK+9E2VtFIZB2YzAxaMrKvFaDruqOiRT8Vh2leZcqUSTKvE9n3a6Ksz2233ebGeUWesQYtOjcir2+p0YOB5qn9kpUoHkqDv3nrvn37bNmyZS79pjS4/lZxi5/S0krDKZ2nogylb/2UOvfSzErdi1J7sVLt/Lp167oiDBXLKFUZSel/1bhXUYGaaEdKK9Wr1F8kFTOJUtHRaLiKOhYtWuSKx05UZNGbaH28oonI5apfv36y6c866yz3mfXr18f8vUozax3U+kDpX81f+1LFEfoZMWKEG66iv1jo80qDR+t3RcusIih9X0b2s5ZL1KopWvNDHX9KoatoQ0UBKj76z3/+Y/fdd59LdSu1rO9QMV96+7LRMewV1fhpPZXqjlwnnStqLaJtqLSz0teR50UkpeBTS/uraGHYsGFuX23bts2OHj2aZLyGlStXLskwpcMji/3UfFbUrL1o0aJJxmnasmXLumIVj7animOqVatm/fv3j7pshQoVSle3CNqXSrcrFa+fSLqOqFglssghpW2kfap1HT9+vDv+r7vuOnfe67xSM/5Y6fsk1uM9LSrqFBVlqBjPuz5dcMEFrphORSs6nrU9IouKzjnnHHc91jGt40XTP/HEE+66o2PBX9ySWTKyr9UiqnHjxq7oZPny5W5fiIpDNS81H/e3dMrovj/11FNdc+5YrpNp0f1Mxc9aVhUP6dqk7Z9a8bq3vXWeZSWClnQoXLiwu6F/+OGH7sBUHYt77rknfJDoJGrfvr27kKjsvkqVKu4zummpGZ9ORtVd8XhN8M4444yYl2HTpk0uKNH3pxR8aLzoYhtNSsM96gshkurDSORNwOMNz6xmhaorEck70XXRilyulNZJ65KeoMWji7s/cFJZtPrnUV0j3ZRfeeWVmOaj5dPJHe1GofVRU08FFxnZz94NRcFAavbu3et+V6pUya2Hys5nzpzpjmPR8fvwww/b/fffb7FKbXv794sXnCuoVVChi7mCJ5XP67z4+eefXX0o/3nhUbl+SsGUHgxUL0I3U51rCqLUh4SmV7m+9lO0eUa7CHvHVUoXaI339wXibXfVodGxkNZ2j4Xmqe2T2vy8efpvXCltIwVbX3zxhT399NOuns8jjzzihiso03GsegiqB5QW3ZBFQab3d2ac16pnF/lApf2nQHrkyJHuOE2pfovWTftb9aR0HKoeoIKX119/3TJbRve16kspaHn33Xftueeec8P0t2j7Z8a+Lx7lGpnSdTItqheohzzVF1RdMf1oPqpz9uKLL0YNjg4cOOB+Z8ZxkR4ELRmgg0VPBHqK1o8XtDz++OPu5qQnP1X0i2zbrqAlcj6ipwY9acRCFalUqU4nhTIaujDpYPPzKmyl1GdCWn0pRLsIehd03Uyj0dOzfzrRTUkin4AzM7jxvk/rdN555yUbn9LyppeCVV0UVRFZ2zw9y6enK9309DTlp+2ip5TICnax7mdv3RUgRJtHNDouJ06c6L5bN3ZVtNQTlm4ACrDvvvvumOaT0jHkbW//caAnVF3glKGKzDjp5qmgJZqUAhYtuwIvBUg6/yIDaS8DFS/euqljNC/wy4x5KguhYyU9UsuQKaDTzUg/6lRN15/hw4e741jnn1d5NDUKirwba2ZkW3TdTO2G632Hd0NMi5el1kNhIu1rTa9zUllS9f3k9Suj8zqygnhG931mUiCohwD96CFK2StVQlfmR1lS/aiyf7SAzjtGsgo94maQl3rz0p2iC4PSa5EBi6bRQRBJNc1FB3N6qAtlHVCqNa4bmlKYfjpZdINTMKTWEZGiLUta9GSU2sVBNyS55JJLkl2A1KNlJAV2mcH7vsiAUFS0Eu27M8orOvAXGXpFDSk91Wi7af+rWCSShulz/m2Wnv3sHT9ptQaLRk9RKjLSE7iKEEQZilipVVy0Y8s7PrzjxTsvlG2KVkQWbb+lRYGebrpqjRQZsOhp1CsyjBcVU+imqwxStN5Yo0nrONG+1DVFN4d40JOyAlJtb2VYUgoUI3lFT2rxkhmUaVOgpWIT/7XTo5ZEEq3oMRqvWDFenT1mZF972QcVs+jc1YOBWg8q2I7MsmTFvo/l+PNTEKJWimoNqAypqhp4+8Vv1apVLvMTaw/ImYWgJQN0cVczUT0568LpUbpTaUQdqB7d4PRUqJM0kg5gBRhvvPFG1Juavxw9koqhlPbVBVzlj5EHvJr+6qKgLpf9N1ndxGMt2vBT3Qc9JSng0ff66f+6capOgL8ow6sboyatfkuXLnXp/cygsljtB2UL/DdRrbua3Ua7MKZEKelRo0ZFfcrTBctL8/rr7Cgw00VYN/Fo1GOnaD/ovR0e/a26UZJadiO1/awmylp3lZFHBjReWbg/oFFvo/5im8isidLzsdLFTwGPf/vqnNBrDnQD8b+bROeFniLVhNNPxQCqW5NeuqhqWbU+/rS89pEyRvEuY9f6qamrsosqUot2vGic/5xP6zjRPpTOnTsnuX7469N5deBioX2hoD2Sbo4qNos1pe8Fmun57tSoiFLNh7UdIq8B6l1Vx4OCBH/XEApCo91ste+1v0XdMyTKvvZ4XearB3X9aF66XsV730eT2vGn40F1MSPpfPKyP5HXBh1fum5kx7vdKB5KgwIO/8Gjg9PLjCjt5y/b18GnOi56ylQ7fN1QdDDoMzpRVRHLT/UZFIHrxqT+JpTq1JON6jLoAq8AQwdHSlQ3QE9MSkXq4FFE76Ue1U22gis9qSsiVh8OumEpetZNV+O84ptY6MBUmazqD6jNvir26SlE89a8lIXQiemfp6ZRBTY9ySsAU/8YOmm0zBqXGS9f0w1R5a8PPfSQ2+5aNqVbdfHT07i2Z+TNMiW6YKjPEQUDCr6UNVP9JF2UVAdERR96YlX5uUdPrVovBQe6IClw01ON9o2+WxVotb5aVxVfqY8Er96F9q2WN9qFLJb9rO2vfloUGGneutDr+3Wx0XbWMqlPFO8pWcUBKh7Quqm+lS5keorScanUr1LDsdK6qX8KZWt0bHn9tOi36npp/h7NV/tD3+v1AaFMmwJgLyhLDx1juoFov6tYVceSAjRl+3SR1bnkZf7iRUXBKl5TRWBtPz2Rqm6aUut6cNF5r0r6XiXMtI4TZSC0Pgpudc6oLoGyDboxq06WMiTafjoOY6Fl09Oy+uVR5leVjVWZU8eRjg+vjktatF5ev0fRKqLq2NJyRwZG/nfcqK8RXes8Q4YMcRW11beSKtDqvNW5oHNC20R9DPmLF1UvR9tTD4he3SVdG3Ud9jJu2m6R/MvgnQNaby9jquLXWPqfSe++9j/o6XqhIhavr5doRSmZve+jSe340zbV/LWsOp8VWKoOk+rkqIKxpoksPfC679d9LstlaVulAInW1FnN9NT0rXXr1qFZs2ZF/Zza1V944YWu+aR6NlRzNjXn85qCqqlvJDV18/cyqyZxamIb2TQ1peaAmqd6u1Q/EwsWLEjSHE9NrdVHjHpLVD8qamb9/fffu3mpt1y/1Jooe1auXOl6x9R2UFNQ/f7Xv/7lhkejfmHUA6eWTb2mqhng5MmT02zynNK29ffiGNkfivpCUVNX9UOjZUpvj7hq7qr53HHHHa45pvaf9rmWXU0/Bw4cmKSvFY+aHarfHjUbVPPHyGVUs0k1l1a/LGo+rR/1Q/P666+nq0fclPazji/tO39vs+r/RL3izp49O0nPuWpyWrNmzfD+UNN4ra+/eWRavOXT9tV2VnNMbXdt/5S6AlAzdfUmquVXHxLqhVbNnFPap16PnylRk1E1l65Ro4ZbD/WKq+NSr2KIdhyn1eQztaa2KS2L+i5SPy6NGjUK90+jc1jN1NWbs4799BwnoibAaj6rc9brUVvXE/UR9cMPP8S8jdTs9rHHHgv3GKzjQk2R1Uw1pV6IU+I1rV++fHmycd55nNpPtOuJ+mJRvyc6ZrWe3rVS16ZIatKv46xatWquXytdd3TMqX8aXSOjNUWWtJYr2nUkJend155+/fqFv++DDz5I9Tsya98/mcK9JqXjT03G1aWCjg31rOtdQ3W+qifvaD0X63qofZAZvRqn10n6J+tDJWQnFdeoF1U9OaiCMJAeyhSpqCpelR+RWJQFUVZPWeTMKtZFcC1ZssRlevv16+deSpnVqNOSg0UrH1WxgQ42la8qXQkAqVFRheqOqI+iaP3pIHd54oknXItZFclnB+q05GAqb1RZqsopVS6tiqoff/yxqwSqpqZep1oAkBo9UatJvK4h6elXCjnL/v37XR0k1VPL6v5ZPBQP5WBDhw51lS9VWUyVcFUZSwecKpqqkh6QERQPAcguBC0AACAQqNMCAAACgaAFAAAEQo4JWtQZjjo6i3x7LAAAyBlyTNCingPVDXJG3ugLAAASX44JWgAAQM5G0AIAAAKBoAUAAAQCQQsAAAgEuvEHACBBHTt2zL2OJafInz+/5c2bN8OfJ2gBACAB7d271zZu3Gg5qeP6k046ySpUqOBeK5MRBC0AACRghkUByymnnGKlS5d2N/ugU/C1detWt17VqlXLUMaFoAUAgASjIiHd5BWwZNcbleNB66O3hWv9MhK0UBEXAIAElRMyLJm5PmRaAAAIiB8/WBOX+V7avpoFAZkWAACQM4OW/fv329tvv20PP/ywtWzZ0q666iqbMWNG1GmPHz9uU6dOtbvuusuaNGli1157rfXs2dN++eWXZNONGzfObrjhBjfdHXfcYZ9//nnG1woAAMTF9OnTrUaNGlazZk3r3bu3lSpVytVTkZtuusm1eoqXdBcP7dq1y0aNGmVly5a1qlWr2qJFi1Kc9tlnn7XPPvvMrr76arv++uvtwIEDtmbNGtu5c2eS6d58800bO3astWrVys455xz7+uuv7emnn3ZlX40bN87YmgEAgEy1ZcsWu/POO+2rr76yc88910aMGGHbt28Pj9+zZ0+GmzPHJWgpWbKkTZkyxf1euXKldenSJep0X3zxhc2cOdP69+/vsjEpUfOniRMnWtu2ba1Xr15umDIyPXr0sKFDh1qDBg1OqCMaAACQOb777juXYVHAInfffbe7X3vNtDdv3mw333yzLV++3N5//307++yzLVuLhwoUKOAClrRMmjTJpY8UsKj4R1mWaJRVOXr0qAtaPMqwtGnTxgU0y5YtS+8iAgCALG4N9Ouvv7okw3vvvWcvvPCCjR8/PhgVcfft22crVqxwRT1KHbVo0cIVEd14440uA+On4iK1Qa9UqVKS4Qp4vPEAACD7XX755bZkyRJX0iKq43r48GH3t7Irt912m+uqX/f10047LdO/Py5Nnv/44w/XKY4CFEVd3bp1s8KFC9sHH3xgffv2dX/XqVPHTauysBIlSiRru+1lc7Zt2xb1OzTcX462fv36eKwKAADwdQ6nQEWlIyp5ad68efh+raDF+1vVPu6//34LRNDiFQWp0u6wYcPCZV9169Z12Raljryg5dChQy4qi6SN4Y1PqfayKgRnlTf+nJnmNN3KN8+SZQEA5E6XJkB/Ktddd5378YwcOdL9VglLmTJlXPWORo0aua76AxG0FCxY0P0uV65cOGARvUNBgcusWbNcPZZ8+fK5aaO9wdJLN3nzitS6dWs3L3+mRZV+AQBA1hs9enTcvyMuQYvabEu08qzixYu7gOXgwYOuWZRSSWo2reIkfxGRV/TjzSvad6Q0DgAAZI2UqnHEQ1wq4iqYUMCi1j+RFIyo6EdZF1FfLwpgIuukqGzMGw8AABC3bvxVnqVOaH744YfwsL///ts1cb7kkkssT57//9VXXnmlKyZS3y8eZV2mTZvmKvycf/758VpEAAAQIBkqHpo8ebLrptcrwpk/f74LUKRdu3au2Kdjx442Z84ce/zxx133/BqmQERFQ/4O6VRpp0OHDq49t8apqbN62lOTKn2WjuUAAECGgxY1Zdq0aVP4//PmzXM/0qxZMxegqHhoyJAh7ke94ikgOe+886xPnz7Jiny6du1qRYsWdS2C1ItuhQoV3HRNmzZlLwEAgIwHLertNhbly5e3AQMGpDmdioqUmdEPAABAltZpAQAAyEwELQAAIBDi0k8LAADInt7ZMyIoPbqTaQEAAIFA0AIAAGKm3uvV75q/Q9l169a5v2+66SbXJUq8ELQAAIBMsWfPHtftSbwQtAAAgBN27Ngx27x5s91888124YUX2urVqy2zEbQAAICYqad6BSgevT9Qfv31VzfuvffesxdeeMH1dJ/ZCFoAAEDM1Kv9999/7/7+8MMPbd++feEXHd92222WP39+K1SokOsZP7MRtAAAgJi9/PLL1rNnT/fy40WLFlnJkiXDQYtegOy97qd588xvRk0/LQAABES3BOhPpUWLFrZmzZrw//v16+d+r1ixwr0EuU2bNtaoUSOrVq1apn83QQsAADhho0ePtnijeAgAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEhQoVDIcpLQCa4PrYcAAEgw6qBNLybcunWrlS5d2v2dEwIWrY/WReuXEQQtAAAkGHWHX6FCBdu4cWP4Dco5gQIWrZfWLyMIWgAASEB6W7I6aDty5IjlFPnz589wwCIELQAAJCjd4E/kJp/TUBEXAAAEAkELAAAIBIqHAACAPf75uDSn6dfkFstOZFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAADImU2e9+/fbxMmTLDly5fbihUrbM+ePfbYY49ZixYtUvzM0aNH7c4777T169dbt27d7Oabb04y/vjx426eU6dOtR07drj3EnTs2NGaNGmSsbUCAAA5TrozLbt27bJRo0a5AKRq1aoxfWby5Mm2ZcuWFMe/+eabNmzYMKtdu7b17NnTypYta08//bTNnj07vYsHAAByqHQHLSVLlrQpU6bY+++/77Imadm5c6e9++67dsst0Tuk0WuqJ06caG3btrV///vf1qpVK3v22WetZs2aNnToUDt27Fh6FxEAAORA6Q5aChQo4AKXWA0fPtwqVqxoTZs2jTr+66+/dsVHClr8r65u06aNC2iWLVuW3kUEAAA5UFwr4qrey8yZM61Hjx4uEIlmzZo1VqhQIatUqVKS4TVq1AiPBwAAiNu7h0KhkL366qvWqFEjO//88+2vv/6KOt327dutRIkSyYIaL5uzbdu2qJ/TcH3Wozo2AAAg54pb0DJjxgxbu3atq1CbmkOHDln+/PmjFkN546OZPn26qxAMAAByh7gELfv27bMRI0a4ps1qCZSaggUL2pEjR5INP3z4cHh8NK1bt7a6desmybT079//hJcdAADkoqBFfa4oEFHRkFcspEq1snfvXjesVKlSLsOiYqBFixa54iR/EZFX9KPpotHwlMYBAICcJy5By+bNm12nc7fddluycaNHj3Y/I0eOtGrVqrm+Xj7++GOXKTnzzDOTVOKVWPuCAQAAOVtcgpZ27dpZvXr1kvXX8sILL7iec6+88korV66cG66/X3/9ddf3S69evdwwZV2mTZtmpUuXdpV4AQAAMhS0qIdbFfN4RTjz588P93irgKV69erux88rJlI2xR/QlClTxjp06GDjx493/bWoqfNXX31lS5Yssccff9zy5s17IusHAAByc9CiHmw3bdoU/v+8efPcjzRr1syKFCmSrvl17drVihYt6loEqV8XvXuoT58+KXZIBwAAcp8MBS2TJk1K92dUHOQFNpHy5MnjXpCoHwAAgCzvERcAACCzELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIhHzp/cD+/fttwoQJtnz5cluxYoXt2bPHHnvsMWvRokV4muPHj9unn35qc+fOtTVr1rhpypUrZ40aNbKbbrrJChYsmGy+H3/8sZvvpk2brHTp0ta+fXtr167dia8hAADInZmWXbt22ahRo2z9+vVWtWrVqNMcPHjQBg4c6Ka97rrrrEePHlajRg175513rHfv3hYKhZJMP23aNBs0aJBVrlzZevbsaeeff769+uqrNnbs2IyvGQAAyN2ZlpIlS9qUKVPc75UrV1qXLl2STZM/f34bMmSIXXDBBeFhrVq1stNPP93efvtt+/HHH61WrVpu+KFDh+ytt96yyy+/3Pr16xeeVtma9957z1q3bm1FixY9sbUEAAC5L9NSoEABF7CkRkGLP2Dx1KtXz/1Wlsbz008/uYxMmzZtkkzbtm1bO3DggH377bfpXUQAAJADZWlF3B07drjfp556aniY6rzIOeeck2Ta6tWrW548eWz16tVZuYgAACCnFA+diPHjx1vhwoWtTp064WHbt2+3vHnzWokSJZJla4oVK+bGR7Nt27Yk4/zZGwAAkPNkWdAyevRoW7hwoT344INJ6qioTku+fPlSLIrS+GimT5/uKgQDAIDcIUuCltmzZ7vKti1btkxWd0XNn48ePRr1c4cPH47aPFpUQbdu3bpJMi39+/fP5CUHAAC5Jmj54Ycf7JlnnnGtgx566KFk41Wp99ixY7Zz584kRURHjhyx3bt3p1jpt1SpUu4nq/y5/P/Xx0lV+axYEgAAcqe4VsRVB3R9+vRxlWr79u0btRioWrVq7reaT/vp/2r27I0HAAC5W9yClnXr1tkjjzzi+mZ57rnnUizmueSSS1yFW3Uw56f/n3zyyS5DAwAAkKHiocmTJ9vevXvDrXfmz59vW7ZscX+r6301VX744Ydd9/3qtj+yr5Xy5cu7Xm9Fwczdd99tL7/8sj3xxBN22WWX2eLFi23WrFnWuXNnF9AAAABkKGiZOHGie0eQZ968ee5HmjVr5n57Qczw4cOTfb558+bhoMXrSE5FR5qvAqAyZcpY9+7drUOHDhlZPAAAkANlKGiZNGlSmtN4QUys1HW/fgAAALK9R1wAAICMImgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCPnS+4H9+/fbhAkTbPny5bZixQrbs2ePPfbYY9aiRYtk065bt85ef/11W7p0qeXLl88uv/xy6969uxUvXjzJdMePH3fznDp1qu3YscMqVKhgHTt2tCZNmpzY2gEAgNwbtOzatctGjRplZcuWtapVq9qiRYuiTrdlyxbr0aOHFSlSxDp37mwHDhxwgcnatWtt+PDhlj9//vC0b775po0dO9ZatWpl55xzjn399df29NNP20knnWSNGzc+sTUEAAC5M2gpWbKkTZkyxf1euXKldenSJep0Y8aMsYMHD9pbb73lAhypUaOGPfjggzZjxgxr3bq1G7Z161abOHGitW3b1nr16uWGXXvttS7gGTp0qDVo0MDy5s17YmsJAAByX52WAgUKuIAlLXPnzrUrrrgiHLBIrVq1rGLFijZnzpzwMGVVjh496oIWjzIsbdq0cQHNsmXL0ruIAAAgB4pLRVwFGzt37rTq1asnG6dsy5o1a8L/19+FChWySpUqJZvOGw8AAJDu4qFYbN++3f2OlpHRsN27d9vhw4dd1kbTlihRwmVXIqeTbdu2Rf0ODfe+R9avX5/JawEAAHJ80HLo0CH321/Z1qNAxZtGf+t3WtNFM336dFchGAAA5A5xCVoKFizofh85ciTZOGVY/NPodyzTRVJF3rp16ybJtPTv3z+T1gAAAOSKoMUr2vEX33g0rFixYuFMiqZVs+lQKJSkiMj7bKlSpaJ+h4anNA4AAOQ8camIW7p0adeB3KpVq5KNU4d06t/Fo7/VNDqyToo6r/PGAwAAxK0b//r169s333xjmzdvDg/78ccfbcOGDdawYcPwsCuvvNL1lqu+XzzKukybNs0FP+eff368FhEAAOT04qHJkyfb3r17w0U48+fPdz3gSrt27VwvuOqG/8svv7QHHnjA2rdv73rEHT9+vJ111llJuvwvU6aMdejQwY1Tfy1q6vzVV1/ZkiVL7PHHH6djOQAAkPGgRT3Ybtq0Kfz/efPmuR9p1qyZC1rUqdzgwYPdu4fUbb/37qH77rsvXJ/F07VrVytatKhrETRz5kz37qE+ffpY06ZNM7J4AAAgB8pQ0DJp0qSYpqtcubK9+OKLaU6XJ08el5nRDwAAQDRxq9MCAACQmQhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABEK+eM58w4YNNnLkSFu6dKnt3r3bypYta02aNLGbbrrJTj755PB0Gj9s2DBbvXq1FS5c2Bo2bGidO3e2U045JZ6LBwAAAiRuQcvmzZuta9euVqRIEWvbtq0VK1bMli1bZm+//batWrXKBg4c6KZbs2aN9erVyypVqmTdu3e3LVu22MSJE23jxo32/PPPx2vxAABAwMQtaJk1a5bt3bvXhgwZYpUrV3bDWrdubcePH7dPP/3U9uzZY0WLFrURI0a434MHD3ZZFilXrpwNGjTIFixYYJdddlm8FhEAAARI3Oq07Nu3z/0uUaJEkuElS5a0PHnyWL58+dw0CxcutGbNmoUDFrn66qutUKFCNmfOnHgtHgAACJi4BS0XX3yx+/3cc8+5IiAVF82ePdumTZtm7dq1c0HJ2rVr7dixY1a9evUkn82fP79Vq1bNfQ4AACCuxUN16tSxu+++28aMGWPz588PD7/11ltdJVvZvn17OPsSScMWL16c4vy3bdsW/rysX78+k9cAAADkmtZDqpty4YUXWv369V1F3G+//dYFMaeddprLthw6dCicWYlUoEABO3z4cIrznj59uo0aNSqeiw8AAHJD0KKiILX+GTt2rJUpU8YNU/ASCoVs+PDhrulzwYIF3fAjR44k+7wCFgUuKVGl3rp16ybJtPTv3z8u6wIAAHJw0DJlyhRXL8ULWDwKNGbMmOHqq3jFQv5iHo+GlSpVKsX5a1xq4wEAQM4St4q4O3fudM2bIx09etT9VgVcNYXOmzev67fFT5kXBTVVq1aN1+IBAICAiVvQUrFiRRd4qFfcyGIjNXmuUqWK63iuVq1ark+X/fv3h6dRPy4HDhxwPeMCAADEtXhIXfV///33rpfb66+/3lXE/eabb9ywa6+9Nly006lTJ7vvvvusR48erp6K1yNu7dq1XQskAACAuAYtF110kesN95133nH1W/TuIbUmUnPnm2++OTyd+mh56aWX3LuHXnvtNfe+oZYtW7pXAAAAAGRJk+dzzz03pvcH1axZ04YOHRrPRQEAAAEXtzotAAAAmYmgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACIR82b0AOcmPH6xJc5pL21fLkmUBACCnIdMCAAACgaAFAAAEQtyLh1atWmXvvPOOLV261A4fPmzly5e3Vq1aWfv27cPTaNywYcNs9erVVrhwYWvYsKF17tzZTjnllHgvHgAACIi4Bi0LFiywxx57zKpVq2a33367FSpUyP744w/bunVreJo1a9ZYr169rFKlSta9e3fbsmWLTZw40TZu3GjPP/+8BcnU4j+kOc2lRp0WAAASKmjZt2+fPfPMM/bPf/7T+vXrZ3nyRC+JGjFihBUtWtQGDx7ssixSrlw5GzRokAt6LrvssngtIgAACJC41Wn5/PPPbceOHa6YRwHLgQMH7Pjx48kCm4ULF1qzZs3CAYtcffXVLiszZ86ceC0eAAAImLhlWhSMKBDZtm2b/d///Z9t2LDBBSIKUFQMVLBgQVu7dq0dO3bMqlevnuSz+fPnd0VKKjoCAACIa9CiOikKSP7zn/9Yy5YtrUuXLvbzzz/b5MmTbe/evfbkk0/a9u3b3bQlS5ZM9nkNW7x4cYrzVzDkfV7Wr18fpzUBAAA5OmhRcdDBgwftuuuus549e7ph9evXtyNHjtj06dPtrrvuskOHDoUzK5EKFCjgWhulRPMYNWpUvBYfAADklqBFxT/SuHHjJMObNGniAo5ly5bZySef7IYpkImkgEWBS0pat25tdevWTZJp6d+/fyauAQAAyBVBi4p3fvvtNzvttNOSDC9RooT7vWfPHjvjjDPc3/5iHo+GlSpVKsX5a1xq4wEAQOyvmbHilntbD3mVa/19snh1UaR48eJWuXJly5s3r+uAzk+ZF1XCrVq1arwWDwAABEzcMi3q1Xbs2LH23//+1y699NLwcP1fgcrFF19sRYoUsVq1atmsWbNc53NeD7iffvqpqxOjeQAAgBMTS+enuTpoOfvss+2aa66xTz75xLUiuuiii1zrIfW90rFjx3DRTqdOney+++6zHj16uHoqXo+4tWvXtjp16sRr8QAAQMDEtRv/hx9+2MqWLWszZsywr776yv2tPlpuuOGGJMVIL730knv30GuvveayLWoi3bVr13guGgAACJi4Bi358uWzO++80/2kpmbNmjZ06NB4LgoAAAi4uFXEBQAACEymBQAAZNwbf85Mc5pu5ZtbbkGmBQAABAJBCwAACASCFgAAEAjUaQEAIMB+zCFd9MeCTAsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAp3LZTFefgUAyExTi/+Q3YuQZci0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCDQuRwAAAna2SiSItMCAAACgUwLAACZ7McP1qQ90RVZsSQ5C5kWAAAQCAQtAAAgEAhaAABAIFCnJYv9uXxH2hOVz4olAQAk+v2g/LmnZcmyBEWWZlree+89u+qqq+z2229PNm7p0qV23333WdOmTa1Nmzb26quv2v79+7Ny8QAAQALLskzLli1bbMyYMVaoUKFk49asWWO9evWySpUqWffu3d20EydOtI0bN9rzzz+fVYsIAAASWJYFLUOHDrVzzz3Xjh8/brt27UoybsSIEVa0aFEbPHiwFS5c2A0rV66cDRo0yBYsWGCXXXZZVi0mAADIzcVDP//8s82dO9d69OiRbNy+ffts4cKF1qxZs3DAIldffbXLysyZMycrFhEAAOT2TMuxY8dc/ZSWLVtalSpVko1fu3atm6Z69epJhufPn9+qVavmio5ym5g6JYrBpe2rZcp8AADIFUHLtGnTbPPmzfbyyy9HHb99+3b3u2TJksnGadjixYujfm7btm3hz8r69eszbZkBAEAuC1pUd+Xtt9+22267zYoXLx51mkOHDoUzK5EKFChghw8fjvq56dOn26hRozJ5iQEAQK4MWt566y1XwbZdu3YpTlOwYEH3+8iRI8nGKWBR4BJN69atrW7dukkyLf3798+U5QYAALkoaNmwYYN99NFHrvKtinL8gcjRo0ftr7/+chVvvWIhf1GPR8NKlSoVdf4antI4AADi5Y0/Z6Y5zWWWvA4nEjhoUaCi5s2qhKufSDfeeKO1b9/e7rrrLsubN6+tWrXKGjVqFB6vzIsq4TZs2DBeiwgAAAIkbkFL5cqVbcCAAVGLjNTT7f3332/ly5e3IkWKWK1atWzWrFmup9xTTjnFTffpp5/agQMHCFri3AqJFkYAAMvtQYsq3tarVy/Z8Pfff9/99o/r1KmT68JfRUmqq+L1iFu7dm2rU6dOvBYRAAAESEK8MFF9tLz00ks2bNgwe+2111y2Rf26dO3aNbsXDQCQzcgaI9uCFnXVH03NmjVdV/8AAADZ/pZnAACAQBcPIampxX9Ic5o2f9fOkmUBgCAU68TUDPmbKoErZvpz+Y7sXoSEQqYFAAAEAkELAAAIBIIWAAAQCNRpAQDkiibGsdQXvNSCt165CZkWAAAQCAQtAAAgEAhaAABAIFCnBTlSLH02dCvfPEuWBUDOElvfKWn3CYP0I9MCAAACgaAFAAAEAsVDyDIU2QAATgSZFgAAEAgELQAAIBAIWgAAQCBQpyWgYumOus3ftS1oqPcCICPXu/J2WpZdg5B9yLQAAIBAINMCZAEySABw4si0AACAQCDTkss9/vm4NKfp1+SWLFkWAImRrYulDsmlVi1TviunimUbIv3ItAAAgEAgaAEAAIFA8RBy71tYy2fFkiAR/fjBmjSnubR9YhV/cEwDZFoAAEBAkGlBpjyVxuQKC5xEeyJPtOXJLDl1vZA5jQESLqOFbEOmBQAABAKZFgTulQFZ2c02TT+zZn9dZlUsiDIrQxRTNrN4rEsF5FxkWgAAQCCQaUHgXmiGxOmoLJYMwZ/FY6kjUCWx6l8hcKiLkjvELWhZsWKFzZw50xYtWmSbNm2yYsWK2XnnnWedOnWyihUrJpl23bp19vrrr9vSpUstX758dvnll1v37t2teHHyoQAAIM5By7hx41wQ0rBhQ6tSpYpt377dpkyZ4oKWN954w8466yw33ZYtW6xHjx5WpEgR69y5sx04cMAmTJhga9euteHDh1v+/PnjtYg5Ht1IJ07WIrP62MisOjb0+ZF1yP4AAQhabrjhBnviiSeSBB2NGjWyO++808aOHWuPP/64GzZmzBg7ePCgvfXWW1a2bFk3rEaNGvbggw/ajBkzrHXr1vFaRAAAECBxq4h7wQUXJMuSqFjozDPPtPXr14eHzZ0716644opwwCK1atVy086ZMydeiwcAAAImSyvihkIh27lzpwtcZOvWre7/1atXTzatsi3fffddVi4eAiLRKtxl1vJkZVPunNpUOdYi0Via6FOsc+Iookagg5bPPvvMBSp33XWX+7/quUjJkiWTTathu3fvtsOHD1uBAgWSjd+2bVv48+LP3gAAgJwny4IWBRUvv/yya0HUvPn/b0p56NAh9ztaZVsvUNE00YKW6dOn26hRo+K+3Mi5WZRE69Ar0TJICF7Hi0HM6AEJF7QoI/LII49Y4cKFrV+/fpY3b143vGDBgu73kSNHkn1GGRb/NJFUQbdu3bpJgqL+/fvHaQ0AAECOD1r27t1rvXv3dr/VF0upUqXC47xiIX8xj0fD1LdLtCyLaD7+eQFIzNcc5NTMWFCR0UOQxTVoUdHOo48+ahs2bLCXXnopXAHXU7p0adeB3KpVq6J2Tle1atV4Lh4AAAiQuAUtx44ds6eeesqWLVtmzzzzjJ1//vlRp6tfv77rOXfz5s3hZs8//vijC3TU1wuAnC+r64YEsS5KLB7/fFx2LwIQzKBlyJAhNn/+fNcHy549e2zWrFlJxjdr1sz97tixo3355Zf2wAMPWPv27V2PuOPHj3c95rZo0SJeiwcAAAImbkHLL7/84n5/88037ieSF7QouzJ48GBX30Xd9nvvHrrvvvtSrM8CZAb6kEBWIKsDBCBoUSASq8qVK9uLL74Yr0UBAAA5QNy68QcAAAhsj7jI3WhqiRNBcR4AMi0AACAQyLQAiIrMGIBEQ6YFAAAEApkWIIchQ5I5qEMDJB4yLQAAIBDItABANiOrA8SGTAsAAAgEghYAABAIBC0AACAQCFoAAEAgELQAAIBAIGgBAACBQNACAAACgaAFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAABAJBCwAACASCFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIGQzxLA4cOHbeTIkTZr1izbs2ePValSxTp16mS1a9fO7kUDAAAJIiEyLQMHDrRJkyZZ06ZN7f7777c8efJY7969bcmSJdm9aAAAIEFke9CyfPlymz17tnXp0sXuvfdea926tb3yyit2+umn2xtvvJHdiwcAABJEtgctc+fOtbx587pgxVOwYEFr2bKlLVu2zDZv3pytywcAABJDtgcta9assQoVKljhwoWTDK9Ro4b7/csvv2TTkgEAgESS7RVxt2/fbiVLlkw23Bu2bdu2qJ/TcH3W4wU369evj8ty7vlra1zmCwBAUKxatSpu865UqZKdfPLJiR20HDp0yPLnz59seIECBcLjo5k+fbqNGjUq2fD+/fvHYSkBAEDnNyfHbd5vvvmmVa9ePbGDFtVfOXLkSNRm0N74aFQHpm7duuH/q6m0sixnn312OODJLJqvgqE+ffq4SDCnyenrlxvWkfULvpy+jjl9/XLDOq6P8/rFMs9sD1pUDLR1a/KiF6/op1SpUlE/p+GR42rVqmXxpA2aVhQYZDl9/XLDOrJ+wZfT1zGnr19uWMdK2bh+2V4Rt2rVqrZx40bbt29fsqbQ3ngAAIBsD1oaNGhgx44dc3VU/EVDn3zyiZ177rlWtmzZbF0+AACQGLK9eEiBScOGDW3EiBH2999/2xlnnGEzZ860TZs22SOPPGKJQEVYd9xxR9RWTjlBTl+/3LCOrF/w5fR1zOnrlxvWsWQCrN9JoVAoZNlMLYS8dw/t3bvXzjrrLPfuocsuuyy7Fw0AACSIhAhaAAAAEr5OCwAAQCwIWgAAQCAQtAAAgEDI9tZDiejHH3+0zz77zJYsWeI6vjvttNPskksusbvvvjvFzu4i6XOvv/66/fDDD3b8+HG7+OKLrUePHla+fHnLbnpv0wcffGArVqywlStX2oEDB+zVV191yxiLt99+O+orFNQT8eeff25BX79E33/+XqCHDRtm8+bNc5XZ9ZLRe++9N6ZOn5555hnXSi/SP/7xDxszZoxlFXVv4FXC1/pUqVLFVcKvXbt2jthHJ7KOiX6eefbv328TJkxwfWvpnNM6PvbYY9aiRYu4H8eJvn4zZsywgQMHRh03ZcqUhGhltGLFCnctWLRokWu1W6xYMTvvvPPcMVqxYsWE238ELVFoB+zevdv1IaOd9ueff9qHH35o3377rbv4pHWg6SDv2bOn6zCvY8eOli9fPps0aZK7oOpCdOqpp1p22rBhg40bN869XVsttZYtW5ah+Tz00ENWqFCh8P/z5EmMxN2Jrl+i7z/RTVpdAvz666920003uWWaOnWqW269vyOWi41ufr17904yLPJt6/GmC/qXX35pHTp0cPtLF3ktk4LMmjVrBnofneg6Jvp55tm1a5cLrtSnljoD1c0vK4/jRF4/jx54y5Url2RYkSJFLBGMGzfOli5d6roeUUCt3ugVUCloeeONN9w1NKH2n1oPIalFixaFjh07lmxYvXr1QiNGjEjz82PHjnXTLl++PDxs3bp1oQYNGoSGDx8eym779u0L7dq1y/09Z84ct6w//fRTzJ8fOXKk+8zOnTtDiehE1y/R95/Mnj3bLaPWz6P90aJFi1Dfvn3T/PyAAQNCzZo1C2WnZcuWuXUYN25ceNjBgwdDN910U+iee+4J/D460XVM9PPMc+jQodC2bdvc3ytWrHDL/Mknn2TJcZzo66fpNL0+l6iWLFkSOnz4cJJhv//+e6hx48ahp59+OuH2X2KF7AnioosuSvY0o2FKm+mFUWnRU9U555zj0mT+dzWoiGnOnDmW3U455RS3LplBT7qJ1mr+RNcv0fefzJ071xVbXnXVVeFhxYsXd09LX3/9dfiFo2lRb9SRr9DIynXImzeve/mpRy9IbdmypcuObd68OdD76ETXMdHPM3/GLqPFHJl1HCfq+kVmB3W+JZoLLrjA8ufPn2SYMiRnnnlmmve77Nh/BC3pOOBUNyKttLPSZWvXrnUX1Ei6wP7xxx9uXjnBjTfe6Mp1mzdvbv369bMdO3ZY0AVl/61evdqqVauWLLjWMh48eNAVkaVF02n/6Uc30ZdeeilL123NmjWuuCSySMoLRH755ZdA76MTWcecfp5l5nEcBCou0f5r1qyZPfroowm/XqFQyHbu3Jnm/S479h91WmL0/vvv25EjR6xRo0apTqe6MIouo0Xm3jBVFFWFx6AqWrSoXX/99a6yliJ0VVhWGagqdKkcM6vrRWSmoOw/3bguvPDCFJdR5dIqn06Jprv55pvt7LPPdheo77//3pVFq2xadS1URyTetIxpbecg76MTWcecfp5l1nGc6JRVU8CpSuLaX6tWrXJ1r1RR9a233krYd+t99tlnrqL7XXfdlXD7L8cHLXoqU7ARaxrwpJNOSjb8559/dhWxlPK69NJLU52Hak9LZLrNm79/mkRZv/RShUI/VVhWZK2nQF1UVTEyqOuX1fsvo+uoZfCWJyPL2LVr1yT/b9y4sUsJ62aolK/+H29axoxs5+zYR1m9jll9nmWXEz2OE50ecv0PuvXq1XOvp1GF8dGjR9vDDz9siWb9+vX28ssvu2BZ2aFE2385PmhZvHixS83FQgeRysUjd2CfPn1cDepYXuCoyFqi3YS88j1vmkRYv8zStGlTGzJkiGsunpkX06xev6zefxldRy1DtPLiE1nGG264wbWOW7hwYZYELVrGjGzn7NhHWb2OWX2eZZd4HMeJTi3G9KJg7cNEs337dnefU1ZIwbHqYyXa/svxQYtSxGpTH4vINK4qyam5oXbgc8895yp4pkUVQBVlaudH8obF2tdLvNcvs5UpU8al7jNTVq9fVu+/jK6jKr+ltowZ2Ra6wGj9M3sfpkTLqBR0erdzduyjrF7HrD7Psks8juMg0D78/fffLZHs3bvXNcXXb/V/FMuxmR37L8cHLdposXZyFNk2XwGLnpKUKov14qIKScrKqFOzSOqcSB1fxRL8xHv9MpvqRahjIlXKykxZvX5Zvf8yuo7azqrjoKIlfyU41Xc4+eSTM9Q/giqv6rhX7f+s4PV5oZYx/voZ2s7e+ETZR1m9jll9nmWXeBzHQaC+v7LqPIuFinG8CsKqkK+WQ4m6/2g9FIVaCSniVCW5QYMGpbrhlY2JbBZWv359d0H1X1QVVevipXLpIIm2fn///Xey6VSJU8Pr1KljQRLU/adlVCU49ULp0fZXc98rrrgiSTmzWtPox3+Bita65t1333U3xazah9qWagI6ffr0JGnlTz75xKXPvUqKQd1HJ7qOOek8E11PtY5Hjx7N0HEcxPWLtg/VSakq5KpuSyI4duyYPfXUU64Jft++fe38889P6P2X4zMtGaGyPEWK11xzjdtJ/ouJeqZUZSrPgAEDXEVd/05r27atffzxx65sUL0EqlxQNcZLlCjh/p8IdIOSdevWud+ffvqpi5jl9ttvT3X9VEFQlcv0tKuDUr0pzp4920Xd/v4ogrp+Qdh/uhnqVQXqbVXr6PVEqSeeyBr/vXr1cr+1DqKLjHrobNKkSbiFzYIFC+y7775zN8Mrr7wyS9ZBN21Vbh8xYoS70J1xxhmuO3FlEvz1x4K6j050HYNwnnkmT57sihW8YoH58+fbli1b3N/t2rVzvb9qG2jdJ06cGO4dNj3HcRDXr1u3bq6Fnrq0V6ZNTYQVsKp46NZbb7VEMGTIELc+CjLUJb9eN+GnZtqSKPuPoCUKr+8EHVz68Tv99NOTBC3RKDWtZqMqF3zvvffC70Xp3r17wqQEVeHSz7+e/pt6SpUB//e//7lWJnpq1NOims/edtttLiUY9PULwv7TTVpZwKFDh7oLqrIn6rdEdWPSauqrC6wuUHpnjy5CWj/dTLt06eJu+FnZTfx//vMfd/woqNRNQTdo1R9TZ45B30cnuo5BOM88upEpEPMo+PICMN30Uuqy/kSO4yCsn4JOPQzoXFO/JSoKbtWqld1xxx2uPkgi3e+++eYb9xPJC1oSZf+dpG5x4zJnAACATESdFgAAEAgELQAAIBAIWgAAQCAQtAAAgEAgaAEAAIFA0AIAAAKBoAUAAAQCQQsAAAgEghYggbz99tt21VVXuXfo5ERat/vvvz+7FwNAQNGNPwLrr7/+shtvvDHJsHz58rn3z1x44YX2r3/9y6pUqZJty5eI1AH2Z599Zv/973/t119/dS9OLFq0qHuL+Xnnnee6Hfd3L//MM88ke98IoOBTx8ngwYOze1GQyxC0IPD03hy9p8V7Q/fy5cvt888/d+8Gefnll+2CCy7I7kVMGM8++6zNmDHDBSp6/5CCFb0vRAGMApl9+/al+U4cAMguBC3IEUFL5BtF33zzTRs9erT7zdPg/7d48WIXsOgtwdomeuusn97w6r0VGwASEUELciS9Ll5By8qVK8PDVq1aZWPGjLEVK1bYzp073ZuCVeRx5ZVXujfn+mm8ptVbT/UKek2rIicFR3pLb6yp8htuuMH9njRpUpLhmzdvtmHDhtmCBQvs6NGj7vX1d999d6rrpDdVT5s2LRxYnHnmmdamTRtr0aJFTNtk2bJl7vfVV1+dLGARZV/8WSktu/dmW38xXOS6Ll261G1rzV9ZG70JXcVMt9xyS0xvI1aRld7W/P7771uTJk3cW5FVzKfhWmdlgNauXWvHjh0Lr3PLli2TzEPfO2XKFPcmZS2zptXbnmvUqGG33nqrVa1aNaaixubNm7s3Kb/xxhvuDcuaj4rNunbtatWrV0/yGR1PWr6ff/7ZHSNHjhwJZ/30tmytQ7RjQW8gf+utt+zrr7+2HTt2WO/evd0+zOj8VA9q+PDh9tVXX7niPh1LPXr0cMu7bds2ty56y7DG1axZ03r16mUVK1ZMtg3+/PNPtx81rY5/HQ+XXXaZO+a1T0V1rXr27On+1nLq2Pfozb7+Y1HLozf/rl692r2lWuui7avl1tuBPQqkBw4c6D5frFgxGzt2rMv8nXrqqcnOG4CgBTnaSSed5H6vWbPG7rvvPsuTJ48LUsqWLWt79+51AcBHH32UJGj5448/XGXRrVu3Wu3atd30f//9t82dO9dd0FXkdO6552Z4mXQjuffee938dVPQTWb9+vX20EMP2cUXXxz1M6+++qq7AZQuXdquueYaN0zFX7rY66bg3UhSoxuCbNy4MablbN++vavPolfX6+8iRYq44f66LXPmzLGnn37a8ufP7wIVBQraRqNGjXIBmZa7YMGCKX6HAjbVm1FxXocOHax79+5unylg6devnxteoUIFF8zoOzTv5557zu037U+P5qFlUR0m3Tg1rbbvTz/95PZhWkGL/8at+Sobdd1117ngUvNVEPDKK68k2e86bhTUKpj95z//aQcPHnQ38hEjRrhguX///snmr5v3Aw884Iox69at627eqoOV0fkpsHnwwQfdfLX9FWxoeTVs6NCh9vDDD1vJkiWtWbNmbr9r/o888ogLTvyBg4pUNa2WS8WG2uYK/lT/6fvvv3eBT/ny5V3wcscdd7j9q78VhHj821hBlIIPHa8KbHTsLFmyxM1HDw06ZiJpubV/9f0KTBVkAcmEgID6888/Q/Xq1Qs99NBDycaNHDnSjbv//vvd/1977TX3/3nz5iWb9u+//07y/27duoUaNGgQ+v7775MM//3330NXX3116Pbbb08yXPPt0aNH1GXs0KGD+/EbMGCA+8y7776bZPi0adPccP389NNP4eGLFi1ywzp27Bjas2dPePju3btDt9xyixv3888/h9KyefPmUPPmzUNXXXVVqG/fvqE5c+aE/vrrr1Q/4y2rtnWkvXv3hlq0aBFq3Lhx6JdffgkPP3bsWOjJJ590nxs1alSK22rfvn2hBx980A0bPXp0kummT5/uhg8cODB05MiR8PDDhw+HHnnkETdu5cqVbpi2idapU6dOoaNHjyaZj/6v7RTrsaSfYcOGJRmn40DDI/f7pk2bkn3f8ePH3TJr+iVLliQZp+PAO14PHjyYbBkyOr8nnngiyTYaO3asG659o+Ne8/C8+OKLbtyXX34ZHqbPal46tletWpXkOxYvXuzOBW3zWI/5BQsWhNdz//79SdblhRdecON07Hk++eQTN6x+/fqhH374Ieo8AQ9NnhF4yowoRa4fPV3qaV1PggUKFLDOnTsnmTbaU7/S0B5lLVQsoCIUZUH8lFK/9tprXVGFfjJCT8ZffPGFe7qObPmkeesJN5KyHXLnnXeGsx2i9L2eer0Ue1rKlCnjshf6rQzGE0884VL1rVu3tieffNJ+/PHHdK2LijeUrVLmx99KS9msbt26uSf5lJZLmStlHJQJefTRR61jx45Jxn/44YdWqFAhV5ThLxZRBsXbp1oH8TIz2t/6bj8tg7ZTrLR9VZzkp+Pg0ksvdftcRTgeZev82QpvWdq2bev+XrhwYdTv0LaJdhxmdH7K2vm3UePGjd1vFW116tQpnG30j1Pxi0fZF2VVVCymrJ+fipOUEfruu+9cJe1YaN/Jv//9b7cP/euiYjb9nj17drLP6Xtq1aoV03cg96J4CDkiaFGQ4m/yrOIEf5Nnpc4/+OAD69Onj/tbF0el4ZW+9lOaXJRmVxAU6ffffw//jqzbEgt9Tqn8Sy65JNmNSzdc1SmJLL5R0ZZEKzryhqkIJxZa7/Hjx7tiB1XM1U1YdVKUmtePgocuXbrENC9vuaK1NtINWMUJGzZscGl+1QnyqB6HimBUb0NFHrpZ+alYRAGCWjapiCGSbsb+faH6OSpO0Y1VN+kGDRq4ZVJ9lsh6IGlRsZB/Wf03bwV1WmevbosCUN2gdQPWsqhoRcGTvxgwkgKrlI6bjMxPAZm2tZ+Kg0QBcGSdIm+cf15eXSd9Z7RjXvvr+PHjbl+ec845lhadQwpWVBcpGh333r7z0/4C0kLQgsDTk/ALL7yQ6jSqi6D6Fapcqyd0VXgUXYTvueceF0TI7t273e9vv/3W/aREN5SM8J5WvXoMkaIN101fAY3qi0Q67bTT3JNrrE/Bohu5ghfvqVb1SpTNefHFF932qV+/frJKp6mti5YhGt0gdaPTdJFBi4apYma0ukFqxaSbteqkeMFoNApuPKojoXoa2rdqMeYFM6rfoiAslgrBqa2LN1yZJc/jjz/ushTKwCkQ1r5TpkTTKEBWEBJJ0/gzH34ZmV+0CtVeoBZtnJfJ0T73b29R/ZXU+Ld3anQOKbBMbd9FO39S2vaAH0ELcg1lVvSjliZ6Gpw/f75NnTrVVUx89913XWbAu9CrYqtaIMVCNyHv6T+Sbjj+Ih1v/srkRBNtuG74etJVkUpkUKPpdYOPdoOKlW5yKppS5kWtb9RCJJagxftOBSHReMMjl00VNlWBc9CgQW47q4Kr/4blTa9l8AKQtCgoUbGRflSZVuuglla62Wt/q6giFmmti7cvVZlUAYYCZlUM9hfrKHOh740mpYAlo/PLDF5AqT58VAn2RGn/aT1VsTg9Uto2gB91WpDrKD2tYhXVfVH9Bd3U1GrBn6L2UuaxUIpeWYFozWj9T+aip2gVEahYRt/rp8BE9WmiFVlItK79VcwjsbaOSY2//oHHqyOiZUtpubxl8FOrGxXbKRCMVtyiejCqy6JiAgUu/mBB01eqVMm1qPKyAOmh71ST6Ndee82tk4LTWKn4J1qrFbV88a+zAiO5/PLLk9VD8aZNj8yeX3p42a70HPM6LqIdE945tGvXLpdlAzIbQQtyBQUDkUGCeDdLBRLeBVw/qlcQrbKgLtSRN2kVMakio3+4UvnqeySSvqdhw4YuQ6Ku8f0+/vjjqBd6r1mp0u3+YiAFRO+8806SaVKjpqvqO8NfNOBRPZovv/wyXH8jspm06p9EUlNwZR5U1Pbbb7+Fhyvzoyavyj6l1oeMlll9c2id1cR8+/bt4XFqYq3iiOeffz5qUYJu8goKRRmoaBWjFfBoP3j7Nhbapipm8lPTbdVnqVy5cjgD5dUjiQwotB1UxJZemT2/9PC6ANDxGC0A1fESuVwK1KMdE96+E2WMFLxE0n6mE0NkFMVDyBXGjRvnMhUqHlI/I7qRqaWQbkZ6Mvd3kqVWNWrZ0rdvX5eW19O1sjO6SCv40YXYa7kiaoGjTI06CVPrDBVV6P+6sHsVH/3UgkKtZtTBmCrBav7KKqgiqfoU8bI+HlUqVVGV+mm5/fbbXZ0TBQbqN0YZHo2Lpet9fYcCKbWW0nZQnRLNRxkRfbdu8Oofw1/PRHV9JkyY4IIHfa/WTf1zeB3UqdhF9UlUL0jBmOrdaJsqk6QnbnWKlhrNR8UC6m/GKypSBVy1aNKTv+raaBup/o22pYI9ZWdUvKf9pH2pbaCO+ZRtUsVrfV71KtS6STfctJbBTwGbipU0f3Uqp2BUFZS1/1WM6NG66UfjdBPWtMouKaujbIkXAMYqs+eXHjoXtA91/Cp41D5XZWHtF62/AhYdM/7gSdNoWdURoI5fr/8jbf86deq441RFrmqRpP8rKNI+0bGm+Wl/qaNAIL0IWpAr6Gasm6zqDuhpUjdrXUhVPKROzfz1LhTEqNdSPXkqM6Fmu7oo66apm71ap/ipHoICHGVCZs2a5YIV3cBVv8Jrkuynm6qaZqujLT3Fqy6JmpqqIqyCmcigRXRD181BdXC8ugK66Ovi73U2lxZ1MKaiF32nMhNqQquWTLohKVhS5iNy3dQqR0109Z3aHgoCFCAp2BCtp+qj6Iamzu68HnF101KPuKl1LOdfLm3fAQMGuGDRC1x0Q9T3KwOl+h7KuKhOj1rFqJmvmiGLvk/NwbXttE66OWqdtE311K+bZqy079XJn/aNethVZk1FiZE94qoIR5kEr1djdf7mLZe+L71BRmbPL70UMKnlkFqWKYBVcK7m5doP9erVCzeV9nhv6tY2177RdlJTeq+1no5LnSsK+hXEKoOlrJ2CTJ0T3rvCgPQ6SZ21pPtTAJCD+LvxV7AEIDFRpwUAAAQCQQsAAAgEghYAABAI1GkBAACBQKYFAAAEAkELAAAIBIIWAAAQCAQtAAAgEAhaAABAIBC0AACAQCBoAQAAgUDQAgAAAoGgBQAAWBD8PwFsKOO9uH7JAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -604,7 +596,7 @@ } ], "source": [ - "bkg_qs, bkg_us = source_photons.compute_background_pseudo_stokes(show=True)" + "bkg_qs, bkg_us = source_photons.compute_background_pseudo_stokes(show_plots=True)" ] }, { @@ -619,7 +611,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "id": "da3b6513", "metadata": {}, "outputs": [ @@ -649,7 +641,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "id": "f19a7f75", "metadata": {}, "outputs": [ @@ -657,15 +649,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "Q, U unpolarized: -0.3128133204998456 -0.12947028597215868\n", - "unpol_uncertainty: 432.93677967024655 %\n", + "8114 -6519.425425657893 656.0337319379967 0.29616350838989125\n", + "Q, U, unsubtracted: -0.8034786080426292 0.0808520744315993\n", + "Unpolarized bkg (or simulation) provided, subtracting its contribution.\n", "check I(src+bkg) vs I(src): 8114 8111.672527983004\n", - "Q, U, subtracted: -0.8131920884754699 0.09626674069045373\n", + "Q, U unpolarized: 0.29876762836269133 0.12365691531783854\n", + "Q, U unpolarized uncertainty: 413.49740057864454 %\n", + "Q, U, subtracted: -0.8030522602225199 0.08102853550462827\n", "\n", " ############################## \n", "\n", - " PD: 81.89 +/- 5.48 %\n", - " PA: 86.62 +/- 1.94 deg\n", + " PD: 80.71 +/- 5.23 %\n", + " PA: 87.12 +/- 1.88 deg\n", "\n", " ############################## \n", "\n" @@ -673,7 +668,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAJvCAYAAACTTKyQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydB7hU1fXFNx0UsABK7713BClSFBV7b7F3TUxi+6uJJtaYRGPvLWrsvYNSFQSp0qt0kK6C0pn/9zvDedyZN+XOvCn3zt3r+8Yn8+bN3Ln33HPW2XvttUuFQqGQKBQKhUKhUCgUAUbpfB+AQqFQKBQKhUKRbygpVigUCoVCoVAEHkqKFQqFQqFQKBSBh5JihUKhUCgUCkXgoaRYoVAoFAqFQhF4KClWKBQKhUKhUAQeSooVCoVCoVAoFIGHkmKFQqFQKBQKReChpFihUCgUCoVCEXgoKVYoFAqFQqFQBB5l830AiuT47bff5I033pDZs2fLnDlzZPPmzXLLLbfIMccc4+rvef1TTz0lY8aMke3bt0urVq3k6quvlhYtWhR77TfffCMvvviiLF26VA488EA59thj5fzzz5eyZXWoKBQKhUKhKFxopNgH+Pnnn+Wll14yRLVp06Yp/e2ePXvk5ptvlq+++kpOOeUUufLKK2XTpk1y3XXXyfLlyyNeO378eLntttukcuXK5vd9+vSRl19+WR5++OEMfyOFQqFQKBQKb0HDfz5AtWrV5P333zc/586dK5dffrnrvx01apTMnDlT7rzzTjniiCPMcwMGDJBzzjnHRIRvv/32otc+8cQT0qRJE3nggQeKIsP77befvPrqq3LaaadJgwYNsvDtFAqFQqFQKPIPjRT7AOXLlzeEOB2MHj1aDj74YOnbt2/Rc8gi+vfvb6QSO3bsMM8tWbLEPI4//vgIqcTJJ58soVDIkGuFQqFQKBSKQoVGigsc8+fPl2bNmknp0pH7H3TFH3/8sZFQEB3mdSBaZ1y9enWpUaOGLFiwIO5nrF+/XjZs2BChYUbq0bx5c0PoFQqFQqFQKJwgKLd69Wrp3r27CdZ5AUqKCxwbN26UDh06FHveRp4hs5BiS2pjRaR5zkl6o/HRRx8ZzbNCoVAoFApFKvjLX/4iRx11lHgBSooLHLhNxIrW2uf4PbAyinivxQEjHk444QQ5/PDDi/69cOFCuf/++2XIkCGGkDdq1Cgj30WhULgH9zZFuj/99JN58P/cx7/++qv5SRGuE9QP8Nh///3NTwpuK1asKOXKlTNzAD+j/z+brjS7du0yD+YmHs7/37lzp2zbtq3ou/DT/r8TpUqVKvo+/KxataqJSNlHhQoVsnb8CoUiNpYtW2ayyZUqVZKnn35aatasKV6BkuICB5O+JbxO2OfsomDJcLzXJlo8kFjwiEa3bt3MQoWmGQmGQqHILCC2kF0kTNEP7j1LDA844ABzH9atW1eqVKliyCE/7QMCHC2x8uv54Hsj4frll1/MT/vg32TOFi9ebOokAESZTJidw+wDwlwI50Oh8BoWLlxoNrQU/u/evduQYi9tTpUUFzhYCGNJH6LlEk45xaGHHlrstWiQU0WdOnUMGeYYFApFySO/6O9Wrlwpq1atKtLyE0EFRG4twSM7Ywkez/G7fAPyjlc6Rb+Q9GwAImuJfu3atWO+higz5Ni5geC8zpgxw/wOlClTpuhc8j7MZbVq1TKRc4VCkf6mlXuNeiPsZefNmydeg5LiAgdFdtOnTzeD0Rn5oAkIE3y9evWKXgcYpK1bty56HQvGunXrjEQiHVhCvGLFCrN4N2zYsITfSKEofHCvrFmzpogA85N7kQgnWR0IWv369aVz585F5JfoL1FhRWKwQWDjH73559wSTbabDX6uXbtWvv766yKZGecZgmyJMmlfbWykUCSH5SC9evUym06vQu/mAoJNmTJZ24m6X79+xk6NCI31KUZfOHLkSDM4rWyCyBKLLI4UEGA7aD/44AOz0PI+JQGLzaJFi8xNwecoFIp9iwX3riW/PCDEpBa5DyFvbCa5X7m3IWaa2s88rMyEB8XHTrLM9XFuUPB+5/pwHbg+XBdLlsmO6fVRKPaBe4YeC7179/aUVCIWlBT7BO+++65s2bKlSPYwduxYE8UAp556qtEEPvPMM/LFF1/Im2++aSJJACL8zjvvyH333Wd8iJnwIbosxBdffHHEZ9D6mfbR119/vQwcOFB++OEH0zTkuOOOK3GEl+gz0a/vv//eLPQsIApFEAHJ4j7m/kLfyn25detWQ8psur5jx47mHoFwaSQyv+C6QHR5cF0Acxnzr93EUDg0efJkc23JwDFfEmho3LixuaYawVcEFT/++KNMnTrVzGd+sGhNebZld2x1V4rc4csvvzTRCnDIIYeYXRcPQCMOFk6KRvidrcy2uPvuu+W1114zjTwommOypvUzr3W+jlTsPffcY4gwr0eXd8kll5gGHs7XJQOEm/fmp/PvkGiwmCDnAOk2JFEo/AY2tHiCIyPiQUYHokT6vWfPnoYIc89ELxrWgaEQwNzDPMXPVOYTrwJpGI927dqZf/O9kJpZokzgAukF8zKEgCJH5GrMqwpFIaNMmTJGpsTGkc0iQTo2lH7YHJYK2TLcJOBlMH6KJVz+iSKggJQTCYtX4MPvWRz9cIMoFOmAOdISWsa7tT9jsWDs20eQ7gHOCQ++cxC+t3MM8CCgBJBWWDs7xoNKLRSFiHLlyhVlp7t06RJznFPDdNlll8mzzz5brHGY5yPF1u+SFBI73yBMaor0QFEKEz7RkUT6IYgCD00PKwqFABEtZPzb6C4LAdFf6+3r5QITRXbBXOf0WbYkmfmPeZIxErSNkqIw58KdO3cazkiEGB7gp41fWbdfkjA41c2x/GgVimhwEzDRJ7IwwmifhYHXKDFW+HXyRwqAJpixDKFhPPOwJEcRBueHc8W5CermgCYizvPBBooH54WfnBfn+FGCrPAbdu0NCNi6IewPvdLC2Q1czdjcvDwgxQpFpkA3G2u2T/ZBCYTCD0TYkhge1mbIEhk2gkpkEm8ivF59nitAgG0XQee4YoPFnKjjSuE37N69O2LsIp1AX8997wWvdDcomwrzV9KiyCRsC1aKkLiRcNAIagRJ4V1AfJ1EGALDOGVTpxE9RSbgzDAwvmwxIg8yas7fQ5D9lI5WBIcQb9myxYxNK7G1RJjfFRQpttCJX5EtYgwptr6sCkW+YSN3RO0sEbYOLxATJnidDxXZAOMK4suD7CxBKRtB5gEYg0SYNYKs8AL27M34WkJsN21+HJsa+lXkHdxARIntDRTdfU+hyBVI80E8iM7ZIlDGJlFhzZQpcg0bbeOBlZslyIxPtJrMk5BjxqdfInGKwh2nFQogi6GzvMITsISYCZ/UIUTE7zeXwh+A/FoiDClmLEIyIBsaEc4crM5Q7+v0YTdpROPsBo4IHWlrxipjNsiFjIrcYo/DQYo5sxCgpFjhKaDPhBQzySsxVmRbHgERto0kiHIcdNBBhlQoEc4eKVaUHIxPa/WHxMJGj7HB4qHyCkWuJBOhUMhkMQplnCkpVngKVpPEzWZdKZQYKzIF0s+QB6c8AlJBlEOja7nxclYv3szCZjZ4UJdhsx5WXuHMeigUmSTEe/bsiZA+FgIyQoo3jxgp+UaVAf3T/tuXXnpJLrroIvP/tOXs3bt3scm8fv36pj3rkCFD5JNPPin2d4BduW37yev4XXRLz1h/w3sfddRR8te//lUOPfRQ8QOI5P7rX/+SCRMmyHfffSebNm2SF198US688MK0XucE5MS6UtAz/R//+IdpFUlHRSb31q1by4033ijHH398sb8l+nf77bfLK6+8Yj6rffv2ps31kUcemfQ7YR1z+eWXmzFAS9b777+/2Ge89957cuWVV8qCBQuM3YzC+7DV/IwnxgcTuFOHWUgTupdh7ZpYRFWfnR0wd3J+eSCvgBxbiQVrDfOqRo8VJZ1Pf9sbVChExygNwTlAyum1114r9vzo0aMNIY7nr3nnnXcaEvbkk0/K73//e/PcH//4R0OOp0+fnvBvHnvsMenVq5f52549e5rB5gesX7/efIc5c+ZIhw4dSvy6eJM7RHjz5s1ywQUXyMMPP2w2DuCEE06QZ555ptjfQbYffPBBOffcc83reZ9jjz1Wvvnmm6SfyWf88MMPhgx37txZTj/9dNOm0oIU5Q033GBIthJi/0Qz1q1bZ9qOQ8q4bmw8+alWaopCBhs+O95pnsD9QPSY+8FG+RSKdHXE+++/f8ERYqDbdQcgT2+//bY88sgjEZEMiDK9uyF4sXDMMcdI165di/59yy23yIgRI+S4444z5A1CGC1Cd/7NpZdeKtWqVTNk7sMPP5Szzz5bvA7aN65evVpq1qwpkyZNkm7dupXodbHADUfEffDgwSbCR3QPEnPttdea68H5IrJrQST6jTfeMJFpyCs4//zzpW3btnLTTTfJuHHj4n4W0RSu2ahRo6Rv374mGszrhw4dKldccYV5zb///W+zyHC9FN6XSFi9mzWRVxKsCCKcmREyJtwX6I5/+eUX87w2TlK4QSgUKlqXC0lDHA2NFDsAGSWi9OWXXxY9xyTyzjvvyDnnnJPSew0YMMBENZcuXSqvvvqqq9eDxYsXix9A1Byim6nXuSE6luRwU9arV09++umniNdwnfidkyhDiC655BL59ttvZfny5XHf33rRUmgFuOGJrtjIPdIKZBxEn1Xj7N3COSJhtKRnrLDgH3LIIUbSpCljRdBh/Y+5H7gvIMPMb9wvrHvcP5b4KBSxJBPMq6CQ51Jd3R1o2LChkTC8/vrrRc99/vnnZld91llnpfx+v/vd78zPYcOGJX3tokWLzE8ixtkA+jIi3W4eXkurEcXgplyzZo3MnDnTRIi5LgMHDox4Hfrj5s2bF2tH3r17d/Nz2rRpcT8DMtykSRO59957zcbkf//7n3m9/VsizUT3iSIrvDdZW4kEmyenREIjYN4BCykbykJeUP0CW2Bq7xOkRdw/Vlqh5FgRPccGpUW7rhhRICKM/IF0OukmyFG/fv2kdu3aKb8XxVpMOJbwOgHRhoASoRw7dqzR3fJ5SC6yAT6jf393xYiQQjYIXsL//d//ydNPP23+n4X1lFNOMXpsJ5BpINeIhn1u1apVCT8DjfJpp51mJBhWF3744YcbGcX7779vZDAKb03UFM+xoNvuXxoR9i7I4kRvWBXecPshq+KUVlDHQU0Hz2tmLNjYunWrIcRBcTBRUhyFM844w5AhHCaOPvpo8xONcbpgYmGCicagQYMi/t2gQQNDwOvUqSPZAEVuTllIImRC7pBpcE0grMuWLZN3333XECEm8eibN9ZO1nqj2hapiSQsvP+sWbPMJgiJBlHzP/zhD3L99deba0RBJBIKSNmf/vQnoz1W5J4Mc09xbdhIco8FYbJWKHLRWhoCxGYTzbH1i1dyHEzs3LnTrLNcf2oyggAlxVGoUaOGIawU17H4Qr4gY+mCSQX9VjQef/xxk+onjUUKq0WLFhGTDsTsqquuMil8Is5PPPGEHHHEEUl/l0geEE3E/YSWLVuaB7j44ouNhR1RdYrrbGQQgoQuLhq2OYObjjssAD169Cj6N/ZxOGAQqf7qq6+MFRwacT6TrALXzW0EXpE+IMA2Mqxk2J9gLrUkqxCr1gsF3FOsFxRTKTkONsqVKxc4C8XgfNMUANm57LLLDBlCR0rBVTrAxo1UVNOmTYv9Dq2q07Eiend24oknmgjlyJEjzQNiPm/ePJN+jPe7RHpkdnsUIbndGHh90Tr55JPl6quvNpZ31uoNmQQFcdFAVgFSlcCwGNx2223GdYIUI1pzzvVJJ51kfs//E91XUpxbMsxiHaRJupCi/Pah8D64x1j7IEVOcsxcqE2VChvbtm0z15focNDmWh3VcQgXA2L8+PEpu044gQ8xwFIsFUBwaTwB8YWcEuHt1KmT0bUm+l0ioIuFNLp5JHJp8AqsdMLqskHHjh1l/vz5ZvJ2gsYh9vepAJ13o0aNjOex1SQ7iTX/H4uEK0oOCDASCSrjuZ5IYMi4EMEK2iStUHiBHHP/cR9yX1L0bCVMisLCtm3bzCOo11ZXlxhgZ4x2lMYNsbqmuQGet3fddVcEqUoF0dEU/o1s4rDDDov7O79riokIoumtXr26eQBIUbT8hEj6yy+/bKKGfC9LioncEtWlYM76FCOnQAKBJAKNsFtArinkGzNmTJE8A5nL3Llzi15D4Z0X9deF0HCDiBTjmnRt0NJ3CoWXybGVVUCKraxCI8eFge3bt5v1FG25rcUJGnSlSdDdzC2wB4MsYQfFDhpCDAGlMOujjz5KeXChU2XywXqMDnnDhw83XfUaN26c8He51hRDGvEKtq4OH3/8sZGMcB5oupHsdYDvYLvDoQ9GinDHHXfI3/72N/McjTOIFGKFRhEikhYkC5zvBx54wJBnCuggUBBfutDhHgKZRrby3//+12xunn/++ZS+G0V0Z555ZpElmyXdSFduvfXWou9hW34rSgauH9eRhRbtqZJhhcKbIEPJnG1lFdyzbGSR9hGoUPcXf4Ls69a9xepu6m8KFRlZcaoMCLam8vbbbzc/0d9gjE5754ceekguuugis6tOR9z+wQcfGMJ4zz33GO0xBI2iukS/yzWIytKcxOK9994zD9CnTx9XrzvvvPMStkzmu0Foidzjo8n5pJsdrZjpFgicN/BLL71kNiNIV5CZtG/f3hDXVPyFP/vsMxMhJlrsBIV9nPNHH33UkLj77rvPaM4VJY9OsPEhA8AGEm28kuHCg23d7vV6BUVq5JgoMfcvgQ9IMs8Fwc+20MCcW7FixcBGiC1KhVxUPRBOx7sWKUDQT1i+0KtXL0O+sYlL5Xf5AOOF6Cxex7kcL0SomZSDZB/jZ3C9WEwZL2z2rM+wQqHwZ6SRwnLb5IH7Wd1hvA+uFxucbMhftiXhjtRIYWrw7LPPmiy4F6AiII8CVwUGFDrbf/3rX0ZraUlvot8FGdzYkGHbfUfhTSCPYPFE4sJ1Qg6EDEYJcWGDeYr0bFALeAodzL3cx0j12PDSHY/oMfe7wptg/kX6EsvKNKhQUuxRUBxGERcPXDCQTLj5XZCBlg0pBdEJbnQlxt4CSSki+ZBhNi5IYSiiJLKvOsTCB2SYxVdJceHPwdzXRIrZBHG/q1OF98DGhXWS9VIVAPugwj2P4j//+Y95pPq7oINJGZIF6SKajk5KCVf+yTDXAqkEUSM0iKotVSgKF8y5ttkHhFiL8bxJiFkfNSgRCSXFioIlxpAxvdnzP/kilSBCiDyCQlTVGSoUwQA61ehiPAIWPKfzQP5A1J6gBNdF18hIKClWFCS40XnYjmikh9TRIPdSCSJETL6QYU3RKRTBBHMvcwAZIzbJ6I2JJCOhUlKWO7Ae2k51WoweG8oSFAUNJlwIGqkiTdnnBkSFWfiIEnPOeaixv8IuxjoWggs2xowBNsw80BxTaKtFttkH0jXOeZAbc7iBzk6KgifFttsSE4JWQmcPnFvSo/hJc95r1KhhNIRKghSAcYCsScdDsMH1Z15gfiBIwXyBp7zOzdkD55bAEPOyRogTQyPFikBMwhBjSDETg6bsstONDs0g/49eUIs3FNFgbLA4Q4R0bCjQFNOoh7mDzBLSCsiyzh2Zl0yw7gHN2iWHkmJFIMBEwIRASl8n3MyB80l0GON+UnIQYpWoKBKlb7V9tyK6KJqUPptqyDEkWQvxMgfrQayE2B10ZlIETtNoJwomXZ0k0oMW0ikUikyBOYSmHxBkNtlaiJc5MC+z6dC1zh2UFCsCmU4iVUd00+qNFalFh9EA0hxFC+kUCkWmAHmj8QebbTbdzNOQZY0ap4Zo1yXdWLiHrmSKwEoprNZKOy25g3XxIIrDOaOlqxbSKRSKTAICx7zC/AKYbyDIzD+K5OA8QYi1cDE96GqmCCSscbndUeuEmxhMsBs3bjSaPzpSUTmuVcyKdLzDNWqlcAPmF4ixbfyBSwVZKkXywIXtHKra/dShZ0wRWDBhMHHYQgRFbFD4gs4PMqPaYUVJNqIUUCkUqXbEY85BskXUmH9rq+jYsBFiJcTpQyPFirTwt7/9zfWk9M9//lNatmyZtkzBftb69eslW8SY92cyyVTEOJvHnCtwvViIeKD1IzqcKiGOHidPPfWU1K9fXzciWbhPFKlBx6J/xrLVGjP/sEFnTgrCfZLqGOU8UazoJMSprNUKJcUGL730UlFa75tvvin2e4hSvXr1zO+PO+64vByjX0Ha6/7775ebb745QnvqPOf2waTXv39/+fzzz/OWdsq1lGLcuHFm0mKizxdiHQOTMFEZCl3oOEWxSyas1i688EJT4Pj000+bfzdr1kxuu+22Er9v9Hhi8WzevLlce+21smbNmoSvq127tgwePFgeeeQRU+DjpftkwYIFctZZZ0ndunXNYgfRuPPOO804dQLN5R133CFHH320iebz3fiuqWDy5Mnm79FzUvV/1FFHybRp0zL2Hdl0cn6TaR1HjRpVbG6wj/Hjxyf9HLd/Hz0WnVi5cqUMGTLEnIvWrVvLxx9/XOw17733npmzkBQ5kYkx7XY8O/HEE0+Y1/bo0UPyiVhjuaTjk2tqXW7q1Klj/I2t37WbMZFJ5PJeSzRGLVivmK/5CRnWosSSQePrDjDxvPbaa9K7d++I50ePHi0rVqzQVpRp4IUXXjA6sLPPPjvm71ngGzVqZG5oJnsml2OPPdYsQrncgDCxkZKzxDhXBvIQ0r///e9m8oN85gPOYyA1yaLGeUDTx+KTyTQc99gFF1wgDz74oPz+97831/qzzz6Te+65JyPvb8cTZJ4N7pNPPmnef+bMmeaaRr8OB40ff/zRLLp//OMfzXF99NFH0r59e8n3fbJ8+XLp3r27uSaQIRbgb7/91izILKoffvhh0WvJSPCdiCp16NDBfJ9UMGXKFDPvsfnn/YnCQbL69esn3333nbRo0SJjzTvcbjr/8Ic/SLdu3SKea9q0qevPS/b30WPReb/zPMQYcjd27Fg5/fTTZe7cudKwYUPze8bXDTfcIHfffXcxSUgmx7Tb8Qz+97//mePjei1cuDClc5XtsVzS8Rl9TW2RNJ/DxoR/56rgN5f3WqIx6pS3QZz5/kqIM4CQC2zdujU0e/Zs87MQ8eKLLzJLh0455ZRQ9erVQzt37oz4/WWXXRbq0qVLqEGDBqEhQ4aE/IotW7Zk7L3uuOMOc85igXEyZ84c87N9+/ah8847L+45nzhxYsTzGzduDJUrVy50zjnnFPusdevWhbKN7du3hzZt2hT69ddfS/Q+bo/5X//6l3nd4sWLc34No49hwYIFobVr14ZWrlwZ2rx5c2jPnj1ZGSeTJk0yzw0fPjw0dOhQ8/8rVqwo0efEG09//vOfzfOvvfZawtcBjqdSpUrmPv/tt99CuUSs++See+4xxzpz5syI588//3zzPPeKxbZt20KrV682/8934/d8V7c49thjQwcddFBo/fr1Rc+tWrUqVLlyZTMvpoN+/fqFLrjggqJ/M69yb0XPr9EYOXKkOf633347rc9N5e+dY9GCa1+qVKnQ6NGjzb+5Dxo1ahR66qmnil5z1113hTp27BjavXt3sffMxJh2O54tfvjhB/P8e++9F6pRo0bob3/7WyhfiDWWSzo+Y11TrgvzFPPVmjVrko6rZOPTLXJ9r8Uao86xyj3FupXOWp1tbE3CHefOnRvq06eP+ekV5Fc+sWCByC23iLCj5Cf/ziPY2VLh+uWXXxY9xw7snXfekXPOOSfm3xBNuPjii+XQQw81keQ2bdqYnbITS5culauvvtrsAIlGEn0j8rBkyZKI15FaJFrFbt9qqI488kizs7QgmmejFU5E64bsv2fPnm2OnfS3MwLu5rgtiFCwO2fX2qRJk4SpHCf4ftOnT5dBgwaJWxAt5Rwli05yTomEtG3bNiKdyK69a9euEcfqVlPF+b/pppukY8eO5nxFn3+35z46qnDGGWeYNBnX/brrrjNRH/t3N954o/l/okE2VWrHRaJr6HZM2Wt9ySWXGJkA15rPuuqqq8zYdh4DaV++M+lJjtt+J7djxe046dKli4l6EukkOoKmm+hXvPNK1MtG0onKXXTRRcXkA/EwYMAA83Px4sWuXvvXv/7VnNtXX31VcgWOLdZ9QsQecN6dqFWrVkQjGsB1qVmzZtrH8PXXX5vPZxw5P4fr88knn5iUcT7APVkSx4Fkf+8cixbcn0Szud8AY5CxZ8cc98M//vEPefjhh2NGJ+ON6WyOZ6LEHC+Sj9NOO838Ox+IN5ZLOj5jXVPOJdaa1DpwvZB7ETXNNnJ9r8Uao4DvimyC+d/OBams1W7n9VElWFP9iPzJJ158UeTSS5lx2MOEf/7znyLPPw/7yMshQXh69uwpr7/+uhxzzDHmOfStaMbQ9aE5dAIydthhh5nBQXqTm5PXQ0BY0CC4YOLEiSZFbbWBEBfSYEcccYQhPDYNduWVVxoCznuhY4OgM8jnzJkjnTt3Tus7QZQgO/fee29R2tLtcYMZM2YYvROv4UZgMiLlE71QxwKpXpDo2Dm3EDCObe3atfLoo4+aSeG8886L+zeLFi0yiwMTBRsY62c5depUo9NigkEOQKqWNBfH7gbO8492k2KOkp5/CDHj6r777jPaN8YQ7/vyyy/LKaecIvPnzzfj7T//+U/R94g+3ljX0O2YWrVqlUnBoxe+/PLLzfdiMuR7shCffPLJMmvWLPNvUsGk9Fjo7TG4HSupjhPOJ2lpJuOBAwfKp59+KpdddlnccwiR5xyyQXnuuecMeSe1nQyMFeBcgBLhd7/7ndx6660ybNiwuMcDkF1Ea0njgXGaKLXLdQTRY4xryXfkXDOe+Q68lutMGhnilSnYxTUajCM2T6TrGQepnA+e431tsSljgpR3dNo/HiCLzAVoR/v06SP/+te/zOLsFm7/3o5FC8gliz/3Gw/OOXpP5ibAxpn1oW/fvjE/N9mYzsZ4hgQzn0COCO4wRpgjouUj2RzHicZyphDvmjLv2AI8xitBCCdpczM+U/meub7XoseoBe9jZZ2pzMFu5/WpJVxTfYm8yCfmzw+FSpdmeS/+4PkFC0K5hDNV9dhjj4WqVKlSlD49/fTTQ/379zf/Hy2fuOSSS0K1atWKSIOAs846K3TAAQcUvUesVOy3335rPvPll18ueo6/ueaaaxIeK+kejiNZisT+++yzzy72WrfHDU466aRQxYoVQ0uXLi16jrFQpkyZpPKJ//u//zOvIcUV75xHPypUqBB66aWX4koReN/atWuHunXrFpE+Bscff3xov/32M+k0CyQBZcuWdZU+ij7/pOeQK9hx7/bcO5874YQTIp6/+uqrzfPff/99UvlEomvodkyRai9dunRMuQDpRs7pX//6V/N3pGDTHSupjpPLL7/cSBUAaWlSh9EpQPv9L7744ojnTz755FC1atVijqevvvrKfKfly5eH3njjDfM6PsemshPJJyz4Xp06dQq5See6eSSTxvzlL3+Je5+Qpuf4ne932223JXy/dFK67dq1CzVv3jy0a9euoue4HvXr1zfv9c4772TsfCxatCjhe40dOzZ06qmnhp5//vnQhx9+GLrvvvvMdWR8TZkyJel3SfXvnWPRglQ1KW57zH/84x+L3pvXLlmyJOExxBrT2RjPzvT6l19+WTRv1a1bN3TdddclPVeZHMfJxnJJxqeba+qUU3DOnGM5098z1/eac4w6/86JVOZgt/P68SVcU/0on8hPpJgQfbzQO88TLb7vPskH2MWzSyKNwQ6Jn9ERYkDE7t133zWv5/+du00q2d944w0TBTj88MMjdoXsTtmJkfonfcZriE4B/j1hwgQT3SPVnQkQ/Uz3uNkVDh06VE466SRTVGDRqlUr89pYKW8naPaADIIUVzw8/vjjpqra7l5JW1966aWmIpfIhxPsoM8880xz7tjVEg2w4Fi/+uorE/l0njteS1QnVvV4NKLPP7toIhKkU9NNFV1zzTUR/6ZYgqIKzp3bYq7oawjcjCkKOD744AM5/vjji0XIiEhwfYCN3EV/R7djhYhDquOEaBzpP6LVFCbxHSloRa6S7PsTIXr//ffNd3aOARCdtm3QoIGJoiEJcQvGazIXCgpsnDKrREiWaiUjFO8+IctARPLUU0810UGij0QveU8iPJkCUhwkNUSKiIQydsgcrF692vw+WVo61vm4/vrrzXFaeY5FsrmtV69e5mFxwgknGEkA98stt9wiX3zxRUb/3jkW7b1AJmrZsmUmi8LxkkHhnBCh53sxrojGIqHg3vjTn/4UMU4TjelMj2f+TTQQ5x57HzNPMpc+8MADCV1jMjmOk43lksDNNbVyCorNrKcx15ZIairjM1Myj0zea3aM8r3s93RKDFNZq1OZ178q4ZrqR+SHFKN7jFeBzPMxdJG5AmkBJiJcKKwRNjdfNLjhSNc888wz5hELyAEAg5lU2YsvvmhS187qa2dKB29HKk2ZgNERMbGef/750rhx47S/D2m6dI/barRI3UcDLWsyUuwGpPadhI3UX6dOncyCj/uEUzcJuWPy5+aPnnQ5Zo41VsW12yrseOef1BHvnU7bzOhzR1qW1Fws7a/ba+h2THH9WGjRXUdbz/E855bJNp5+2+1YSWec2ONlgud8t2vXzhC+WKTYOckDq/VkgYgmEXaTxXdirPD5qaZCSc+Szk4EjiEVrXw6YHFC8oLEBokMYKPIIordFfeKW1lIMkDUcLsgHf3f//7XPMd9yaKNi0IykhPrfPAc9459nuNmM5ZOJ0Tu4RNPPNHYoHEfpmoPmOjvnWPRCb6z096Mew2nkv/7v/8zZAEyBfHk79D8M9YsMU00pjM5nvkujBM+16kz5rghxMOHDzcp9XyO42wh3jW1nuqcT0g655RgQbLxmSukc6/ZMWotMqPn7FTmYLfz+toMrKl+RH5IMcVKiSLFMYqZcgkmOLRgTIDsiGJZZVnjcLSvEKlYsJFAooNMqESg0SxTXMFEih7UaUDOzs1GDdA0ctOgM+OmtxrneBHLeIQtWruUynGXFGiz0DURdSPy6wZM+EzwRGDwaEX8b0G0jEmEyMgVV1whmUai84++M55ZfCpkOZ2Icyz9mdsx5QTPMxkysaJHjdbdxXq9m7GSjok+CxZROfvdKBBC1/zQQw8Ve208AhTL2it6k5UqsF5kU5Fs0ndG2pOBBToRiYPYxrpPyCiwQbSE2Bklw7oQvV8mF3QWZGzGiI4yniB16KuBzeaUBIwTxh4LejqaTYgm551NXTR5LMnfR4/FWGATiffwv//9b3PvUAdAsITIHLDFbZYUJxrTmRzPI0aMMBFGiDGPaHBMiUhxJsdxorGcLcS7phwnx8JxcO14Det4rmzbMn2vEc1ljNpufiWB23l9dxpBoEJAfkjxxReHi+pigYnhkksknyBdAOmiMOrNN9+MO0Fw0zNwki1MTIwMPnbuFiwOsRo2sHMlvcKDnRoCe24gS4rZ3cb6Oyrm3SCV4+a13ICQ02jMmzcv6WfZm5sIRipE21aLR1fhQlJZUDk3fAenI4jtdkRldzRiPRcPic4/hXCpnnvOnTPSy7EwKVkXi3RlGW7GFNePhQLZCRILFn+uO2PIObHGOwa3Y4XfpzpOGBOk9iyIylPRz3vEinbkCq+88kpRGjFZQZGTACUC3zWWa4kFxY+x7hPkRDaK6ATXEpTElSEeol1qiIhCyu0x5hM//PCDucfTTc3H+/vosZjIL/jcc881/0ZixYbFgvRydPOFXIxpSC9zHxHlaLCZZ4NPV7R4RCqT4zjRWM7HmGBeY/4jM2HlFARqvOLl6/ZeY7PE+bROQyVdq1OZ1ytmYE31G/JDipkg0A1Dfp3uE/zk+TyH5rnB0IuR4iZlHwvsRIlcIrOAdDhT1IAb0FZo8troKACVzM6dGP8PCXQawTPZMdk6WzySfieShe2NnXSIFDD5uUGqxw05QJeKvs6m/XBjQMKQDLaCdtKkSa4nSBZ8orRMZNELFZMc6R52/xBCrhNRM3us3OAcq1OTzc3rpkOem/MPyefc0ziB78Pkmuzcs1g5IzW2gt1ucqyDQKod7dyMKaIiRLJI8ZJGheBD7O2iwN9zTuMdg9uxks44QbNmCQZAL8giQbrZ6X6SSxB1u+uuuyLITy60mET6Y90njDfuBeQTzugRUUqubbqkA1kY14mxYB1PYoGAAA4GREfTibCl26DBOQdZfP/996apCveNPZZ438Pt38cbi9Hg/D/22GMyZsyYog0kUgaaeVgw1qOvc7bHNKltiC/uNLEkfsxdjBW+NxrjXGiK443lVBDruqZ6TZ2A2Fk5BRFXa/uZ7vgs6XdJ9V5jzPFdCQLFC2CkMgenMq8PKsGa6lfkz5IN2zV2SZBg9JXsQCHJHtGqxEsrOEEUYOTIkUa/hdwCGzVSUUyy7PpsWgptLBEoCBevwaqM3zv1gBA9dolMbkxUED5ew43ijAaSHkdPSDSbog9uOgg8i6bTzzgTxw2wYaGIAVkB0VOiU5AvZA0Q80SAXHDD8Z74IcYCN5ddXIjMcqOy20W3FytFyoQByYPsIXdAK2W9O7GhgURQJEghAwSRxYxjSNau1s35t+eeRQitJ+cCkp7o3LPDh7hTtMl159iZ3PgMgHYZkJrl/SGsbMSS2W25GVPgL3/5i7l+TIL2WkPk3377bWM3xwKR6BjcjpVUxgmbCv4OPaAFEzCbh1yRYjvuOE4ishBiyAGFTCy0LKSJkEktJjUDse4TNKscJ+cUjT3XlsJfnqMYNbpgjbHOxoYFDFAIgxzEym3sho+uWUQHsWvingEQPqKhXAM+hywZ8hzGLd7aycA5TEauuB/JZjDGorvAOQGBg7RAKtmYYjHIfUb6mPFoEet7pPL38cZiNCii4z2RMlgwT/A3NuXNuebaOJHtMc04Zd6ygYFYQQnIDdHkeKQ405rieGO5pOMzlWsaC2iLIYeslwRerJVZLJLJ2pps/s3FvcbcxMaHeYoxaqU68ZDKHOx2Xv9bCdZU38KNRUVQOtolsmkCsTra0UkHG6969eqZTmw1a9YMDRw4MPTMM88UvYaOMxdddJHplodNz+DBg40FCe9nO+pgyXLjjTeGOnToYCzh9t9/f/P/TzzxRLHjGDZsWKht27ah8uXLh1q0aBF69dVX41qyxeuo5ua4LejsREc/Pq9x48bGbshtR7sHH3zQfOdoC7FYlmzYydAl6sknn4zophbru/B+dCTivcePHx9hpYSdFsfapEmT0HPPPRe6/vrrzXsngtvz7zz3zZo1C/33v/9NaMnGfXPaaaeZ98Ti6dprry12H2G7VadOHWOd5rQESnQNk40pzt9PP/1krHRmzJhhrNnodIXlHdeQa++0i4p3DKmMFbfj5Oabbzb2Q9Ed87CS42+tnVO872/HjvMY3d7D0eOOz+P7HHnkkaGHH3449Msvv4TygXj3yYQJE0LHHHOMOUbOPVZOdLqL1b2La+/GZsraU3F+LRYuXBg66qijzHhijLRs2dLYXiXqlOVEKpZXfFYicB26d+8eOvjgg431E9ZRdEjDCirWZzq/Ryp/n2gsWnz66afmutBxLBqcH+whef/7778/5t87x3SmxzN2WcxribpvXnjhhWbcRFtv5WMsl2R8pnJNYyHTlmzZvte4v5m/GTc33XRTwjGa7lrtdl4fnuaa6ldLNiXFiozDSYq5sZnIuJHyhRNPPDHUtGnTjL6n9cTk+6XaXjTboPUsiyCEOBttoUsCWqQy+T700EPFfkeLaUj5+++/HwoavHCfBA2JxmKmEMQx7YexzEaC+ZF5Mlar7nwCH2JLiFlDsz1Gs7mmbvUhKfZGKaaiYEEaCasZiuTScSlIFdEej0gxkFjgHpFJWC0uhX9eandJegvdHNXWFJVksutZJkCaEHlGLO9lUr1U6mfa49QPyPV9kg8QhOG7xXJZ8NpYzBSCOKb9MJaRXSBdYJ5kvsxG0Wo64N6gtgWZIHM3LjPZHqNeWVO9glIw42QvQgeGNhKNaDKtnULBeKFIkUrlXI8X3CMuvPBCo23DFQK9NYVy2Fdl09XALvap+qdmEtZeCZLupSprhQJAPFjwoxsPKBT5Avpi5kzmbubMdDy0s3FMrCNesY+rVYI1NRl3xBkDTfOzzz5r3DW8AJ2ZfAJIFztaPBetVQrVrMkigYsWLSqycIoGE4CzMYizmjo62pGpJgHZBsUKVFzjMU0hBdXQdADLts0XNz/nmQU/H8SYz6e6GrLB5J5Pcq5QKBR+AIED1lGIMetrtF1lLtd31g/WLK8FM47O05qaLygp9gkYkFQac9NCZrEGo9oV83LbmjQWqNSNTmFx81kz8GjYpg5O+Ck7QEo0H+AcEQnDRB5inKtdvrNDHcfgJYN6hUKh8DoIIFgPegILzOPM4bmSxbE+W09+CLHX5u8X87Sm5gtKin0AND2QHmfEFuKKRAFPQWyk4iFWVyHb6zyW5RmEO5FdkiI2mMiYSJncbIo425MbhJhxYYk419pL+maFQqHwA5g3CShAkAk+kY21XUJzRYgJSHmNEAcRegV8AG5Se9NacPNw00KY48kj4gEixY40XoSZG9WrBRJehi2OANku3IAQE9mAEDMOkrVsVigUCkV82A54rLP4GRM1zmZRKGss8zefwbqhkjdvQCPFPgCidkhs9E1jZQ329261pxRkxdMII8tgMrBRY9JKsSLKTkDKnZ3UnB34ggaukTNia7vGZRK8J9eIa5kvDZwimNhr41lEFuycxBzgdJbgJ3MSGnd+ZzfuzCnMP8wX6BN5HeOYe8T5sK4udnNun1cosg2CRYw15li0xsyx2Yjg8hm8L5+nhNg7UFLsAxB1jFWtbZ9LJSpJlBjEIrqQKwgdixmLFpMCHXv4fyaGeIBIW0mGIjzZ2c0BBCCT+jRIAhO1tVzzk95b4W3YDJHTOo1FGyJr26BHR85s9gpiy2uc5NXOT/yNc9MMnJtGCLOTaAMr4SJiZ+c3SyIY83aO4nc8Z3+n6WdFJsBayFhiruXBXJupsWXvL4iw1ywzFUqKfQFuoFik2C4sbqUOVoPKokKUJhrR2mSIMxYsEF4WqXiTAr9z+nBCBmklHHQw6dkUGZNfSYkx70W7UogAkf5Y11ChcLMgQygtCYb0Mr+w0YLcWnC/2wwU/894swQ0eiwn2vjx/pZYI/eCcNjIGO/n3KBbcmzfi7nKPmeP1/7OtsF1gu/BsfB65iHe39pbaaRZkQoY78yzzLk8MuHqYwujGcdaA+JNKCn2AZjQY2mb7HNud7A26sLN7fZziRDjfMFiGU+DzMLpNRsZL4AFGjLMJFhSYgyhYGLmJxO1F/w0Fd4GCy/3u7VwZOwxDp2RVxZ5O49YchyL+PL/ibISbsY1n8NnJ9JpRn9uIj9jSAvHHKspiCXFzuf4XpaIcBz2+ysU8WAlhJYYM/emO2YYi3YNzqW7hSI1KCn2AawuLxp2cXNrhE+UmBsxliNFos8G0elPRWrEmNQzG4t09L9cZ1J4LPxM0LoBUUTDRledC69z0wyBdBLbWFIDP8oPLImO9V3IYNnoMvOXMwLNObJRZ0gO9ykEyG/fX5F9MN/aiDFZU/4/1eYz9r5kHbedUBXehF4ZH4AFjRuKid25S7WpTjdpdGv9AilLhVRZMq43cfqwKd10IgyQGyZjACHW66AAVk9rI8HA6UDCnMB4i+6MFbTxY4l+9PfmfuS82fPoLFa2+mj+hodGkxW2yYeTGKeyjtqsDYRYgxreRrBmSJ+CyC6RQiy4rGsENxkFbk6SayvAY5Fk0qZM9PGcJGIV89liOxYF1a+WDM6IO9pNm85OBK4nkzCLeknSdgr/w9lG3LZLtuMq2plGi3fck+VYBMVG3K1e2Rb3WamGpr2DCe41p5TCbVtoe9+qbaY/oKTYB7CuEOxQIVW2ox2kqWbNmkWvo7iNiHLLli1Tlk5AuFlo7U6Whdd+Br3PNa2YGXD9rNYxUSdCiDMTL5OpEuLgwboy2GiwLba1GQebgvXTIsscYqv6vQwCANYuzp5/e8zWUcZGka0GWxGs7ndOjXEiYszGins3E4XWitxASbFPADGFFENurcdn3bp1ExIrC2unlCiFz2LFDQwR5vU2OgLp1shT5mAnUDYvTJKxNMY2QsyCy6Sri24wo8GMEZv6tw/AuPFjCtZqm/0Ce56d55prYFPhkGPAPKnWiMGBzdyRvU1EjFlP2USpj7y/oKTYRzfiIYccYh7xUL9+/ZjPs8i2aNEi4ftDfJX85gY2DcukGV3Vr4Q4WGAD6owIQ8BsFJisTiFlCCCTfFe+o1/HtXNzYr+PvUaQZKtNjtVsSVE4YPwin4gXMUaXzliIZ3+q8C78OTPlEX/7298MkdFmFf66Xm7xz3/+08hPst3mmonS6dcaS0PsV+LgZTz11FNm85jProvWFQISRQt329GNrI+NKhWiXRj3lE0nFwJs5NsZwec5xhbXlYeNJisKD3ae5vozb9uidH5yT2sGwZ/QVVdEXnrppWJtRonI9u/fXz7//HPx4nF+8803MRfbevXqmd8fd9xxeTlGPwNpyv333y8333xzESGNHhtMcs2bN5drr71W1qxZU/S3sV5Xu3ZtGTx4sDzyyCNmgYwGCyoRJdvq1uuE+J577jHfrW3bthHPz5o1S04//XRp3LixIXZo7vr27Ssff/xxsfeYOHGiOXdt2rQxEVEI6hlnnCHz5893dQwrV66UIUOGmKKV1q1bx/yM9957z9y/SIGiceGFFxqi8vTTT0suARG0ZMkWcLGYcr6wDuNcqCWYv2Gj/IxNfjo3NdbholA2BIr4xNiOAyXE/oTKJxy48847pVGjRoakQHggOscee6xZeL1EMrnZXnvtNendu3fE86NHj5YVK1ZouiZNvPDCC2bxOvvss+OODcgrG5Inn3xSPvvsM5k5c2aErtu+jsmRpiejRo2SP/7xj/Lggw/KRx99JO3bty/23rwn4w1SVKNGDU9GCBlX9957b0yJDV0PIXsXXHCB2QighX333XflhBNOMOTz8ssvL3otm46xY8caEs254Bw99thj0rlzZxk/fnwxwh0NPgNi7HyfuXPnSsOGDYvO5Q033CB33313Uavg6HuH9+B6/P73v8968QvyCI7JRpGcGlXbQllRWIilRbbd/HjY3/HQ4qvCkVKsXbvWPA499FBfav4VexFyga1bt4Zmz55tfmYSP/74Y+i9994LPfvss+Yn/84HXnzxRfKZoYkTJ0Y8v3HjxlC5cuVC55xzTtFzd9xxh3ntunXr8nacp5xySqh69eqhnTt3Rvz+sssuC3Xp0iXUoEGD0JAhQ0L5AuNkzpw5JRovW7Zsycix2OvlBu3btw+dd955rsbGn//8Z/P8a6+9lvB1YPjw4aFKlSqZ6/Lbb79F/G7Xrl1m3C9fvjy0YcOG0Pbt20NexJlnnhkaMGBAqF+/fqE2bdokfT3fq0OHDqEWLVpEPD927Nhi33H+/PmhChUqhM4999yE78m5K1WqVGj06NHm33v27Ak1atQo9NRTTxW95q677gp17NgxtHv37rjvM2nSJHOtuC7ZAN99x44dRf//yy+/hLZt25bwmIIA5qtNmzYVm7eCAq4/44DxwHmw8yPjWOFvMKcxfzOPM58HdYynyh3nzp0b6tOnj/npFeQtV0eU54477pBhw4bJpEmTzE/+PW7cOPEKDjzwQKPxS2Z4T6SsadOmJsrlTKkTJezatauJTjVp0sREzVLVuMYCkUxSNV9++WXRc6SE33nnHTnnnHNi/g3RtYsvvtjsYokkk74mMhr9Pa6++mpTlMf3Ji1EJG7JkiURryMqSPST6BzvRar6yCOPlClTphS95pZbbolZ3Bfr+9vnZs+ebY6f1tI2Cu7muC2I4Hbr1i3ifLvF4sWLZfr06TJo0CBXrx8wYEDR37l57V//+ldzfl999dVirZvJTODywXETZfWaDnHMmDFmbD300EOu/4ZoN1IerP6c6NWrV7HoaLNmzcx1nTNnTsL3JOLKuWJ8AMYM9yjnzI6Vf/zjH/Lwww8nlCF06dLFRHY+/PBDyRQ4LqsRtjphex4omGPsBl0awfXym41cNjTIjAce9j5grDBmottSK/wBskDMQVxba5HKvK5dYP2JvMgnII6vvPKKmQDsJGB/vvzyy4ZgJnJZyBbQIFJAx7GQBnn00UeNldl5550X928WLVpkSA+LLCQVPSWYOnWqHH300cZK7e9//7u5QUitkx4vKSCjPXv2lNdff12OOeYY8xzaZ47/rLPOMhrW6PN92GGHmcUIPSfHwOsvueQSo6OF4Fq9J5sS3gO7N8gwMoEjjjjCEFYrE7jyyisNSeK90HUyAUBIITWkwdMFBByCRJreSljcHDeYMWOGHHXUUeY1kGxkEGyyINNuYDdjbo+f6w5sM5Vk+N3vfie33nqr2fxddtllRltoWzdbTRoEynqjpptWZ4KOpaWNBcZsMqLGuEVmcOmll0q7du0SvpYGMdbWD6kI1+rMM89Mehz2WkOMEwEyzGaH8cGDazZt2jRzn4KbbrrJ3A/omZOB68zGPBOwlod8D9vWO2id49yA8Y0tpCJ8LixItdsiRAgy975uovwB5lvmPa4h6yNrFfM5PIJ1ET6g19FfyMvMzWJmuwZFg+dZrE4++eScH1d0lJCJiagkUdBYQMs4cOBAqVOnjgwdOrQoggUgZEx8fBd0loCColatWmXkWImoEo1lIiWq+7///U/69etX9FlO3HbbbWbhhjhaEgexJeIMgbziiivMe1DAdNppp0X87fHHH28IOBpRiB349NNPDbF74IEHil4HISkpOnToYLTSFhAxN8cNbr/9djOevv766yJrulNPPTUpkXNeS4AeONGGiUWLa8oGh892qzVnk4HGFTJtCTHk19ku1DoQWKTTPYtjo0DUDYhyWy1uIrcGItxfffVV0ve7/vrri6LzLASnnHKK0QsnA2OXKC/nNBmeeeYZM0bfeOMN8282RocffriZU95///2k0WYLigLZmKcLa6FGdN92fFQbrsRwzvdBjRYnsnmz3S55WNs65golVd4F9zubGNYCO6atnaYlxl4tnFZ4iBTblHEs8Dy/zwcef/xx4ywAiFyR6oaYkepigXeCAiuiYES1iYg52yczuUEiIPZOkspriWTFqphPFRBsCMEnn3xiItL8jI4Q2/MJoeX1/L/TSg5nBMgFsgeIhdNknB0w0ViOmRQ1r7GkmH9PmDBBVq1aFZOEpwsIbzrHzflmU3LSSSdFeDWzAeG1FMQlg/UGjhfJit4wNWjQwJA5NkRuwXuTJqV1Nuc3VptQO7FCuIhApBp1ZGPhlNUkgrMbYrxzwmYD6YebDAfjEcLKuHjrrbeKFvlkm5FrrrnGbLwogEsGsjLLli0zjheMPSQaEIc//OEPhpRzXchuIKFg3PzpT3+KGFcWbGDZUJL2dNMAx9lljjS3bXADGY72mlYkbyKkkfTYBIs52NkCnjkA2E2Xbia8M5atBV+s+YNrBRlmDmW+Z67Xa+cP5GVmYrAkihS7TUlnGt27dzcaYAsikp06dTKpeyKCTgJDBJXUPGQsmkghvWDBhVBGI9Zz6QCSAlEjssrCzk0aHeUF69atM7pOImw8YoHjBRzzfffdJy+++KKJ3DmvjzMlj5cvBAZCgj4Th47zzz/fRN9KAmeUNpXj5rUcO9KLaKBrdkOK3W6YWMy57rxvqrt/CAFjG1LFJEkW4tlnnzWRcKL5RL+dCySPVIkxZM+tLjoZ/vKXv5jjRD7hBvg72xbjjAfkLNwnbKBiLQg4T5CdIIKOHMdtlJX7rUePHkX/ZrzyXv/3f/9nNqM33nij2dDymWRUuFbR0XM7tt0uVLye68d95pRI6EKnyDScYwqCzHxhuxtCjlmHdNzlf3NnJRPxwHWyDT5YP5nn9Lp5H3khxRTbQCbjLT5E/7wAJiEWU6JOCxYsiNA8kpr/73//a6KFpPHzARZ8ZAwQAiLQRHCjYX0x0UXHi8RZmzDIDwSDiB+RO3sTozF2+msSve3Tp49JV6OR/de//mUssvCHtRrneDd/ouIDZ6Q6lePOBCCrRGeJ5JIZSLZhSsfSjImRSDbnlcUOvTlE2CkZseD8QbwgxTwSteh2gsgs0gw3SGT/xnhnM0JxHZFfC2svht6c7AiTfjywSePewIM4uuiSc8FYYeOD5CXdjAPZDDYU//73v835QmfP55I1sMfAPRpNioneOJtlJCqes6lsCIndrCgUuYC1bmPehBzzsMGZdORViswQYuYDN9kh5gzWZeY5W3Sr8DbyQoqJtBFJoqjORoztT57PR5FdPECUADeCExBBIkW4NTDQna4PHD83zMKFC4u9X6zn0gXyDEgH/q5vvvlmXOLD8XEzJ4sgEq2DgDq1wpCgaAcBAKHju/MgYkvhEs0dLCmGMMUq+EKf6gapHDevhdxA5KIxb948V59nI5zobDNJti2sYwZyDuv1a4lbrEg2kW8040hIIKV2k8DGJZZMxgJtbSY0xWQKrCyBR6yo/nXXXZfQkcI2qYgeB4wpIsiQZSK7FGumC+sLfe6555p/c67I7lhAtinGi/Xd4+n7LRm2zRZYANVTWJFPQKjYxNm1knHJmmSL8pQcZx+sRQQomAuYw91mCrlu/C0BF3sdFd5F3oRdRIuRElAYZMXoRIi9RIiJiBEJZeKJXkCZhIik2aYFRPJoVgAY+BC5Dz74IEJ3CyGO7pBHWgyNJFWq1rnCLfhM9JNE7SAZscCxENUmGokOOro5AtIDqxe17gdOUNnvjO7anbKzMQLXjO/obJ2LtAIyhM2ZJZmrV6820WU3SPW4IZucb86l1RVTdBUvIxENIuMAe8BMk2KOAVkKelecM9yABhQU5aGb5pxjUYecJ5mUIVOaYs53rGuFpIIxT/YEJwjApij6vuXeYdPLZsVJevkuaPG//fZbY4lmz3s6gFRTyIdlnCUFbLht0aQdA7G+J+fVEmknIMOQee4DSzg0MqzwCpzkl6AMG0zmXcapkuPswq6DqRBi51pNgM1GjLXBlneR12oHFtJ8uEzEA4TVLqgs9BAyoo9oFZ2FdBbcGGgXifghKSDiZ/1rSYtDqCH6V111lbmhWMAhG87I1XfffWcie7hVODWlbuGmOAnv1pEjRxodJnILSAopdogBkTqbbkc3TUU+hJfXQFz4vVPjDSHCSYG0NASMm53XYOfmjDCjM/7Pf/5jri+RRsg/BB5drtPPOBPHDbC9++KLL4ysg+g1ExCEHskLxDwZ0ENzbXhffJFLOob4fIo1hw8fbt6TTQIFlonS9RZsEokss9mxxB/SD1ljQk5UkZ4pTTEbNBvJdsJGhp2/I1uBjAErNAoPkfMgWeA8MCacmnuK4bBrYxPH9XP6NoNE9ofRoIgOgo20xYJxeeKJJxr7O8A5pwjVicmTJ5vP5nXAWkNyTm03MiXDmQfnk3lUiVvJYQu8yEhCjHkwL2gUMvOw0Xk2yekWO1pPdXgAcw/zq3a98yjy2dHOK7DdyJyPihUrms5YTz75ZETHoVgd7ei0RaevypUrh8aPH1/0PB2zOnXqFCpfvnyoSZMmoeeeey50/fXXm/e2GDlypHk/3tftccbqmuZErI52a9asCV1zzTWhevXqmS59NWvWDA0cODD0zDPPFL2GLksXXXSR6ZbHdxk8eLDpNMP7XXDBBUWde2688UbTraxKlSqh/fff3/z/E088Uayj3SeffBJq27at+f50Nnv11VdjdphL1CXQzXFb0OmMjn58XuPGjU2ns1Q62j344IPmezu7zrk959FjiGPgWBkXd999tzm38XDFFVdEXP933nkn1KNHj4jX0FXx/vvvD/3888/mka/uaLE62r3++uuhQYMGhQ499NBQ2bJlQwcddJD594cffhjz76PvNefDLT799FNzrVatWlXsd/fdd1+odu3aoVq1aplzFo2bb745VL9+fXNf03mO87l582bXn61QeA3MB3RPBIxpr3bG9ON5tR0pM/V+rGl0vbPXq5Cx1Ycd7Urxn2TEmV0oGjy0e2o9VDIQYcNOKpb+tVDAeCHKiV7VT+MFuQcRY9w13Moc4sFaCxIxJiqQyD0CyzBS/DZTgCMFRYtWakOUnXNJh0QK1tC12UI89b9MDaSaOZc4VFx++eXm+nBtiOBrZDi7IErG3GC9nRXZge2KaS3e1P4uPRB5Z67lp9tCZzdgzsFilPcrdA/jbUm4IzU/ZIFZ82J1wM0HCvdqeAC20MgCIozEgg5xCu8B2QhNSCiidLptpEOI0Y6xMOHOEG9RYnJk0oAsOP8fyQfFk4wXZAlMGhQwIh9hIrUSCiZsbQubGnBXIW2JTINzx7nM5IKnSO7zrGM2u0BCYYt5qf+wxE7hHozRbBBiwHrAumA1xno/eAtKirMIoo44CLALokCJlsXokjLR/U2RHdx8881GC1uS3Tu6azZE6HsTORbcfffdJpLz3HPPGecO/h9NN0WoNLSguA6dM0WMtlOcs12u+pW6h22jS3SYYkwiNJxD1fUpChGMa8a307ECKAFzB6vRZnORjQ0zczfrA59D4EPhHWheJYug0xy+qRQeUbhDpf29994bs8mEonBSl0RnKChKVlSHXCJecSWEmUc8OP1yib5pI4n4sI4SgPPEhkcjw4pChy0Osxtz6xzEvKT2golBqp9zlM15gs8gO4lszzYEUuQfSoqznKpVBAeQU9JhLDq5muCIZkDEraxCifE+QAIgw6QpiZxxXQpZv6dQJAJzA+TLao5VRx8JoujMF7ls0sOczboBMWaO0s1K/qErhEKRIXKK1Q4TWy7beVprJogfi52mR/eBc2FToFqUmH/YLmB6HfID23TC1iQg84IcK8Jzhd0s5Fp/zXrBusH6kajjqyI30NlJocjAhErbYCZTdGK5XvSZUG3EIejEmM2BLUAkKkZXRNUNewNKir0B7gfuC66FLQIOciGejRAzfzKP5nq+IIBC4R1gHQny/O0F6OykUJQQRFyw+oIQ58v+yBJjFrcgTqpWRoJm0nkOVE7iHXBdIB5BJmBeAfeF3aBwr3DfcP8E8dpQ7EaEmIxbvjbQSDVYPzgOLbzLL1JawYO42CoUySZUFhQbecknmNBtwV2irneFBhshB7aISMmw92BtBHFFCMrY9AvQ0TKXcS8FrRCPeRNSmu/vzDWgQBtSzLG46X7qdYR8yBldzUx292QXHoVCEU7Vk+6CDDtbGecTkEEb+Yn2yS5UOKUSLCxKiBUK9+B+4b7h/rGFeEGYO6xnNt8534TYgmwf6wkF2xyf3/Hr3kZTfpKwuYoUs4uib/fatWvNv0kz6MKjiAekBESF+Fmo4PtZ/ReTmBe/qy2kYcErxA0JRSn2uzFHadGQ968Z14iIpHZZ8ya4j7ivbPdBp8dxIYH5mgfRWK8RNtYTNiVr1qwxWmO/ZVVCoZC514l484A7+snlxPXMRBtaYImxQhEP7HBti2OvTTiZAtEUvicRYsinF8Hx8eAaFMp1sBMuDxvhKsRFu1A3krbNs98W+qAC4si1KiQfdLs58/K8aD2l6XHgV//iMmXKSK1atYy7hp/gmhRzQ/AFDznkkIII6yuyB3qdP/7443LXXXeZnueFhmnTpsk333wjgwcPlqZNm4rXr8XSpUulR48evteokYqbPXu2WSwYVw0aNCiYhToI4PrNmjVLGjZs6NuFPkhgA7p8+XL54YcfTHaYNvNekYmli1WrVsmSJUukXr16vpi7P/30U9MJt2vXruInlC1b1pBiP87PKeewcmVqrfAviCyQUbAWTIUEWgQPGzbMTFTt2rUTr6NVq1ZmAfD7YgZYnIny0Abbb9EHRTgt3Ldv33wfhiIFNG/e3GSJp06dKhMmTDDE2M+BDrJ6devWlbZt24of5m4ixcOHD5fatWtL48aN831IgYDmsBQKlyD1++6775pJddCgQeIXQIiJ+syYMUNWrFghfgIkeN26deb/W7ZsaUiVEmKFInfAEaFPnz6GDPtVC26z2+3bt/cFIbbo16+fIcPvvfeeGh3kCEqKFQoXgFR+8sknhhifcsopvtREolND+rF69WrxS1RnzJgxMmXKFHPsnHPNUvkXFN18/vnn6sPqQ3DvESUm6wTmz59vWhP7ARSsffXVV8bRgXS+n1L6nPeTTjrJ6PE/+ugjX1qc+Q3+W9kVijyAKOvMmTPluOOOM9W0fgMLQYcOHUwaDpLJQuFlrFy5Ur7++mtDgnv37q1kuICKJHVh9zfYoJLWp64COZmXQZZp0qRJUr16dRPx9iOwyjvhhBNk7ty5Zu5WZBdKihWKJMB6jYIHUm9+0BEnIsYdO3Y0xbIsFF6N9FBgwuRPYS+EWIuyFArvwG5UiRp///335gFR9ho2btwoEydONIS4S5cuvszuWSAd4zt88cUXsn79+nwfTkHDv6NEocgBSFu9//77xrnh2GOPFb+DhYHJlUmWCIQXARkmqt2pUyeNECsUHp1HCBKwyaZOgSJYL4FsxPTp001WD+cGPxNiC9yOiHajL/biJqRQ4P+RolBkEaTwsSVCR1woThosEE2aNDE/iaagtfNCmhP9MP6hnOf69evn+5AUCkUSEC2m+JX5BHiliRFZMWwou3fvXjAba7runXrqqUa6MnLkyHwfTsFCSbFCEQdEQEaPHm0m/UIlaRTMjB8/Pq/FT/iGYvekjTgKG7igcC8Vgj2gYh/IOLHBxj8c+7B8Ro05BiQTuE2Q3fOrW0Y8UBMyYMAAGTt2rJk3FZmHkmKFIgaIeGC/xiSELU6hAikFxvwQYxaUXKc4aeZAESMNHYjqeLXDlKLkIGKHnV6hRO4UkUD7j22bvadzXVBJc5hvv/3W/CzkYk582mlchIyCdtCKzEJJsUIRA1hHMbn61X7NLSChNCIhNceCkksvTKLTRDvwDeWhUeLCBgs4ZEkX8sIE9y8NJ6gHoIsm2R/cRnIBxhTzFxuunj17mvmsUMF6dPLJJxupGTahhbwByAcKd7VXKNIEkQ78fCmsO/jgg6XQwQLCQkLEOBeLGFF4JnKihgMHDvR1hyyFe7CIswnip6JwgdSMjTZE1TbNyCYoOoMQQ8qZx5BhFTqYO48//nizVuH+ocgclBQrFFENIz7++GNp06aNiXgEBSwkhx9+uKluZpHJVsEM0WEK6hYsWGD+XSjFiwqFYh+wQTviiCOMrhdinE37R6LDTZs2NYSYzwsKWKNw//jss888USxdKFBSrFBEySaYZIcMGRLYdD6RByIvmY7o0TAEw38IeKEWLioUijDs/EkxL/d9pjtpQrZp8gOYT8h0BQ3HHHOMCSzgo68yisxASbFCsRd0DJo9e7aZaII4wVo0b97cEGKK7zKV/qTzFVXhNWrUMBFpjRArFMEAOuOaNWuahkGZckxA5oVmGY16kOU4BBgI4JB5o+OqouRQUqxQiMi2bdvMbhtCSFoqyMAyC00gRXeZKpahCxPRHIz01X0guAt448aNA6H5VEQWhnXu3Nlce0jswoULS/R+yLu+++47I3WzRcJBRosWLcyaRZYzl4XShQolxQqFiHz11VdGRxtk2YQTaItZcFh4SpL2tJM03enogKXnNrggO8DirVmC4IH7nmsPgSvJppgOo2Sc0NDSnIOOdYqwjIJzM3To0Hwfiu+hpFgReGAfRGpv0KBBpqpXEQYLTv/+/U3XqnSAFGXUqFEmCq9kWEHGYdOmTTmz6VJ4D2TirNsMXSxT1cESJYb84WkeBGegVLJ7tIGmHmTRokX5PhxfQ0mxItBggcZtAuJHal8RCRvVo9U1GwcWpGRgobOTM3pCjQwqAL7fFFzxUxFs0CgIaRbWl26IMa9hc42vOs0rcLdQRAInCjYcrGdB1lmXFEqKFYHG119/baJXeD4WcpOOkgIdKO4RyRYxSPPUqVMNibaTtEKhUERHNtEZ4x6RbLNtN9lsqNxsyoMKsnGsY2w4yNAp0oOyAEVgAcmDFPfp00cOOeSQfB+Op8H5YRFbtWqVWaDiEWN02Rs3bjTto9OVXSgUisJH7dq1pVu3brJ27VpTOIc0IhZwVWCTTdZJAxeJgaQEf2gsNZmrFalDR5gikCDiQJqpWrVq0rt373wfji9Qq1YtUzDHAhVdQc75ZFHDPH/AgAHmtQqFQpEIhx56qCnoBbGiwNQlYONGI6U6derk4Qj9B5qYcF4/+uijuBsNRXwoKVYEElQwk7o74YQTpGzZsvk+HN+AhQntdYMGDYqeYzEjBco5BRrNUcRL72KfpUWXCicITECM0QvTGtqSY7TnixcvlrZt22qznxSAuwfrGplQIsaK1KBsQBE40Gp4+PDhJnWnKf7UYaPAFL6QokMuQSU551OhSGTzR4W8QhELkGFI3P7772/mEn6SdQpS6+ZMSlOIGKMtbt26tTp1pAAN6SgC6UlMVGLgwIH5PhRfA/9iUnRTpkwx0WPVZSsUinRBhqldu3ZGQ/z6668XybEU6QFtMZ1Zv/zyy3wfiq+gpFgRKKxYsUKmT59uCLF21ioZmHA5hzy0k5IiGWgEM2LECPNToYgF5BNIbH7++WczT6fqY6zYB87jkUceKXPmzDEyFIU7KClWBAZMsLTCJP2PXZiiZKCY47zzzjNRYqI7y5Yty/chKTyeHkcnqrZailigxgNnG+bmk046yWSidANVMqDHRiL4xRdf6H3nEkqKFYEBkQcm3qOPPlqLwUqABQsWFBHgKlWqmPat+BEjSVEoFIpUgVc8/uYQOIgcmliyeejQFemDolbWO4rukLkpkkML7XwCOtQ8//zzMmzYMLN7btKkiVx66aVJi5teeOEFeemll2KmVtDWRuOTTz6RN954Q3788UepUaOGnHbaaXLqqadKIZw/vi9FB07nBEXqLbHnzp0rLVu2jHiehcyC8QlZVigUCrct5dET4zJh3UmsvI3oMfNJ48aN83yU/nUMwtIO6RLztHYYTQwlxT7BfffdZypJTz/9dKlbt66RAdx0003y8MMPS/v27ZP+/fXXXx9RtBArUvrhhx/KAw88IP369ZMzzzzTRFZ5f1wGzj33XPEz6IaEXu2oo47K96H4Fpjsz5gxw0SFmzVrFlezzSLGZk0L7xQKRSKsX7/ekGBs2eIFKwjgzJo1y6xf6n+eHgYNGmS0xaNHj1YHmCRQUuwDYGCOhdhVV10lZ599tnmOgX3hhRfKk08+aR7JANFlNx4PdCJ77rnnjI3LXXfdZZ6jZSQ6pJdfftn4Hvo1+vfTTz/JuHHjzHdLdA4UiW3s8CJGR4xcIh5Ie6IFxLO4R48eUr169Zwep8K7wGILP1p+KhRYOdLJjowkpDgeyEoR0CD936tXLznooINyepyFANZumlQRWKMGJNH5DjpUWOkDsLuzhtwWpJaGDBlidtDohdyAIpd41bxMOFT8UuDgxMknn2wmJD+bgGNJQ5SBds6K9EDKjQwFrZ4TNV8gA0GLZyZdFjwWPoUC0CQHAqTNchQEKiZMmGCCFMwpicB8Q/Edr2VOYT1SpA6CQmi0hw4dmu9D8TR0dvJJYROEJDrCQi94QMtdIniJgByCyQRyyI7xmmuuiTD05jNAtFa0RYsWhujMnz8/rvSAFNiGDRsidKdeAcfCxgGyTxpOkRp27txp/EIhxW5kOoDxgnyCRY8WrWocX9hgfCCx4qctjOK6k2XiwUacnzVr1jS1Clj5kZmC7DBW+MnfMU7s3yhxLuys0/jx4030snv37ibg43ZOYVypJjY9UAiNRdvbb78tixYtMnVJiuLQmccHgHDGSnfY5yCl8cDEc8opp5iUNzcFOuH333/f6IueffbZIqLNZzA5Raem+BsWLCfpjQYNHGIV8+UbLMZY0dhCA0VqgJxMnjzZEJi+ffum1J6XscSCZ7XrXAtt7+svcM249mym7c8DDjjAkFcyAGjHeZ6NE7AdyACbaEiyk/hChnkerTluA7y/Jcws0LwvEcSxY8caUgz54VG5cmVThAXonOj8nY4p/4FrxjpDhDiVzQ9BjebNm5v/Z5ywLqmLUGqwheasi8gx9fwVh5JiH4CFJ5bdlY188vt4oDAvussNEWZ0w5BjfGbte8SboPicRJ+BrOPwww+PiM7efffdkm9MmzbN6FsvueQSXTzTABsoNkNog9M5f3Y8IctBnkOkB4Kj8CYgvZANdODMN5De5cuXF/2eBZQCS8gr8i3ILT/JPlmSahErq8Q4sNkoyLUTVtYFsYYsEXm2j127dhW9jk2aJeGML1LqZDD4O0i4m6ijIr+NOQjUMKekC64/kWbGX6dOnXRuT8Oi7ZlnnjE1IgQuFJFQUuwDsPDYhSDaZsz+PhWQQnn88cfNAmNJMe/hXHyiPyfRZ7CIeq2giu8ycuTIIvNyRWpATgMhYtEp6bWFNDEZo0tn80TEUOEN/PDDDybTBBm2G18IC4SjYcOGptrfkl6n/AgSmqjgMlU4bbjI7MQDkWhLlknDc9w2YMAmmE0cRNk+iEiqf3b+wfWi2JkNFXNKScD1JPMHqWMuiZb8KRLDNq+i6I6fKiuMhJJiHwCZBGnDaFhJQzqkhUWPRcX5GURaSGs6JRSQcV7nt2pVJkz8cvv375/vQ/HlAkaaGz05WvaSgkkX1wEWRUuMVReYW9CGGz0vJJKILW40RH6ZQ5Av4A9riaS9Nl50amEs8SB1Hm35R1oYss53hOwzd0Ge+G7IPXie2gt1v8gt2Gxx75MNyBSBhdghBcCZiayDWrWlBu5/MoHUfWgBeiSUFPsATZs2Nd1+cI9wTuhMCPb3qYDJiQXS6TVr/5/GDFSpWvBvFs14vrReBJFtfInZBfuNzHsBkCI0xJmUOvCejCv0omxYKPZUZB9sdLkX2NhCgiG6kEmet8VLuQIRPqLA2YrcRmes2AjYz2IjQB0FRbek7yn641j8ajPpp7mYjTDjDTs1p1d+SYEOnY0OaxTXU2UU7sE8gEsQmxXmAA1S7IOqrH0AdMBMKhS0OSebzz77zOyWrfME1mzRzg9MGtH44IMPzPNOXRc6PqIvNPBwgn9bQuMX4JHLggixU7gHYwwnEzZBkIVMLzIsiIwjty4WCkl5s0tElM0yix1AY8v8wAKItzlRelt0m2uQ6maeyZV8hs+x35OGM2gpIQBEFnExsFaWzBVEzOPZVSrSB8EXIsXc99mI0JMJgGwrIU4dRIitPluxDxop9gEgvsgAEMdDZolwUD3KhHPzzTcXve6ee+4xuroxY8ZEFNqhw6NFJmlHOpLRCITIb7TvMQVp//nPf+T22283AnwKbWgrfdlll/mmBz0TMNFIFl81eU8NXG/GFFGXbBXE2YUR4k2Eh3Goms+Sb2aIgFoCwr3MNURXTzGaVzSXXHNrC5mPqnc2CJwXHtYqDqxcudKMReZH+3v8lLUyP31YtxmkK5zPbOlWGd88GPcEhKw7hSI5CHywSSSST4Ask1F8P0NJsU9w6623mogPxttbtmwxJPf+++83EoFkRXUzZ840DUCILvMedMU7//zzi6VMaNTBBPPmm28aYkma9dprry3mYOFloJFiglSdVGpYvHixIQdsJnLhEEF0btmyZUbDzoSsvrSpgcgmdQYQXsge0ir03xAQNoNejJyh8WfDTgYn2n0i13ASXuRnyC7YVOBWw7gkNU8wAvKs5Dj1TRpNNgjeQIpzUchFsGjevHnmWqUqJwwykLEhZyOzNHDgwHwfjiegK5FPQPTn6quvNo94eOSRR4o9d9NNN6X0ObR25uHnCmfaWOZ70fUTSLkTaWSjlajyP5OAeFN8R5QCuYtbE/+gkw02Lmxg0AhzDom0c978JG/yqm8uD+wqIe92LCKzgCQjv2DToWM0MdhEQLLY7FKomysQ7OFeIOKPXtZrbkheBZk7ghIEk7QFexi6BVYUDCBYpIy1iCs1ECHDKsl2SMwVWLyYkFlAWUhZUBXx09FYKCFxIc3JAoakSkla5kFa2eqeIcpsPpCd0S4evba2GY4/RrH5xOKPtHyuO1lCwiHDHINeI/ewmmyywwqNFCsKBKTjKRgg4qgV5amBNLF1I8g1WDhZQIlWa5o6EpwTIpV0c0N3TYEcY1ujObkDpJjME/OLjRrjaMPGhCIl1cPvA/KFtWvXmvOFJjvXgNgh/8JthY22amTdgQ0gm2xIcc+ePQO/fiopVhQEuKGJVDg76ykSY9GiRUZXjmQinxFHFlC7iLKYEUH2oiY2FyBavmrVKuOzi40YBBhChhwIvbAif8SBzSPRSLt5o0sjki0rrQj6pg4dNhuGfBBiC/TLuDUF/VqkCsgwEoqvv/5ajj32WAkydOQofA8KDynsIBWvUTR3gHzi28q585omHFP5oNpj4R6DJzmLO+MZiUSh6OP5HtQr+Pn7sHm0GzY0+EQjkbQgrUDPGqvzaBC6XyJXIGqeT0JsASFmc4nUxTa4UiQGwRFkFJMnTy5qxx5UKClWFESUmImQm1qRHOiuiXIRkfWShRETM76jpKgp/AsCIP+k5e3iTbEQRJh0Ju4vQY2Y+wEQQORaWF4SKaYtetA2c2ys2Qx4jXxy3+BIwTwXxI1KOmATXqFCBRMtDjKUFCt8DSIU7G7VZ9E9sOjDnq9Tp06eI12QC5p74LDAglvIoHkExXMUcVlSgZ4vF5Z4+QBZCfSeXspOZAJkp9B7Y2lFhB8SxvfE3q2QQSt4mv3w3TPRDj6TYF5jfqNWgsyTIjkgxL169TKZqkK7R1OBkmKFr2FdC5zd+RTxwSKBnVfbtm09KzVp0KCBWWhxxSCqXYgbOZxSkPzYltpeithnc+wh2+FnIcLqWBmzSAmYm8hixeoqWgj1CBTW4ZONjMSLIEjCBhuN/ooVK/J9OL5A165djUSIuSmoUFKs8C1YfCgOIOXuVYLnNTDhYVlXr1498TJYaCGLNPUoFKs2SwatYwGpdwpc/KyxVcQmY2zSkcAwR5GOJqpaSGC+ZSOH3MfLqF27tolisxlTJEfFihWNgwfe8WQTgwglxQrfgrQzaR5tXJAcaB0pCCJK7JfKbAg8pIIuaOhu/Qq+A7rLr776yhQTQvQZszQcUBS25piNHZt2W4BG50E/a1xt1BsnlFw25ygJ6PqKraHCHQ477DDTFZai3yDCH6ujQhGD5OFUYA3bFYmBxRcFbH7b/UMgIRRsgChk8tsYXbp0qYwYMcKkm5GFaDvrYAFtK62O8TsGbEwZD2jm/VaURzdFot789BNs3QTHzX2oSIwDDzzQ2A8i8SqULF0qUFKs8CUo8Fi3bp06TrgA0SkilUgS/LiBQF8MoYRQ+GlBxhKKIh9IPQ4F6C+DTIrx+qX4yXaLCyJITRNlpdiVYjzuTT8AfT8FWEgRkCT4EbTvZh7kpyIxevXqZSQnnK+gQUmxwpcgSkzTCaIwisSAmKEVg5T5FaQ/ud6k9JAgeBmkHgFNHWgmAxFUZ5SwlhpSFeQucNZ2EF0/Mgo/ROPoUofDT61atYwUwWuONW6BBpoNGZtrv0Xpc43atWtLw4YNi5piBQlKihW+A9XEpB9tz3ZFfNANDR0xVdj57FpXUnCdWZDR4kIsvEqGKVAhAgjRYQGmjbUiDKQ7aMP9JuHJBpBT9OvXz1T7o/HnnHh1s4dzA57ZXrRwTAWcZzYkRECRNSkSo1evXiYz5zfZWkmhpFjhOxBdYVFp1apVvg/F84CYDRo0yBOdpkoKFmRLMqnm91LDANLLeA5v3LjRyD38UsyYays6tOH8VIQLSdFvAtLUjB8veRvbCDab0S5duhTEmGb+QIpFYEWRGM2aNTPrBlnZIMH/o1wRKFD9TLczIoaFMElnE0TTiV76OUIcb7GGfGLH5wWrJQgNEWI2akcccYTRjCoUqQBpE3p/vI3R7ubboYJWvxQE8pN5tpDmWjat6ljkLgjRq1cv40e9fv16CQoKZ6QrAgGIEJ13iF4oEndLo5inECczFuhu3boZf1/GAwt3PmC1dpAZ0rL4DjM2FYpUQSc8pBRIFMg6YEOYryYnFKKNHz/ejOVC9H8nSADhY95AL61IXMux//77m/EQFCgpVvgGaO4o+IAQsYgo4vviUlyHDpDitEIECxsNEuyEncsqfiLVRIfp+gQxhhRrwaciE6AQkWwDRWGMccZXLgvxuI+Qp6Hbx6+2kN1ScDAiKq8a9/goW7asmWcpcPaLU0pJoaRY4RtA9CB8kGJFfMyZM8ekXymuK/QJm4UbIpGr4js2ZhTSsaBqEV16ntOFTLQyAZxKbMdJxhnewBTM5gLIN3AH4b4qdJcQZBRsOrBOVMRH165dzc+gNPNQUqzwBZi8iBLTrKNKlSr5PhzPAtJGkw40ikGwAWPhZnEjqobLRjbJA+lWCAqRpT59+phCFD9X4+caRPUhW4WYks8W6HpoW0XnQj+PjzJ62yDIgNhIU6yNu4IXahO8ikqVKplmHqy/QbBnU1Ks8AWwhkEnSxW0IvFET2tZPCaDBvxHSf1my9oKtwvOL4QYPbMiNbCgQvCCsLBmClWrVjXjrXLlysYFIBuuCRTj4gqChpmAg1ctD7MBZE/cyxSTKeKDdZfiZiwVCx1KihW+ALtU7IvoyqaIDTRf6A9Z2AqpWjyVNB+EC2JsG2hkAjaKxNijGUcQomjZAJH8zz//3PxUuAf1E0RvaZ6RaVJM1gNNPsV9mbxn/AIyPUTHeSjig80DtROsw4WO4K2cCt+ByB9OCkxcQSR7bgAZZnHjPAU5zQd5IBrJuSiprRUEGx07GmJL5HT8KfIBxp2TvDEeS1qAx/3BfcL8iqwlqO23icKz8WCDkC/HDz9sHrp06WLqVXKlb88XdIZXeB42tac2bPGxaNEi0xQh6JF0q1tlvJSkWhpijd0b+mzs1khjKxReIMeMbchsSTZ+EGrcUyA4bCSDXqfB+Rg9erQsWLAg34fiWXTo0KFIplbIUFKs8EWBHRZFSkxig0gPk3mjRo1M1CPoYIHv37+/kduw2KUa/bEOEzSKgWCr3ZrCS6CoFKkQfsIU4KWz+YNcY9mI3ZbOq+HzgeOHDS4oioNMQhAK7pQUKzwN2p6id1PNV3zgmctCycZBEYZ1hSCqQUQsFWKMZRgR5969exsdnULhNWAHyPgEbOAognIDNom2oQ/uKXRhVITRtGlTI6NQi7b4YB1m/JBBK1QoKVZ4GuxKiWQwYSlig4hP27ZtC95XNB0Q5aVQDv/VZBpMNmBbtmwxpBgvbI26Zz6CP3jw4MCn6jMFNm44U0CQ3dz7RPemTJliNolBLKpLBu57rCwpZnS7yQgaGjZsaMZbIRfcKSlWeBbWKkgL7BKjdu3aBdu5rqSoVq2aIbhENyAE8dJ+K1asMMS5kCMg+Qb3MJE4vZczB8gw45uNBtkQbCtjgXFP9zaybhRMqYNKbNAIqEGDBtpgJknBHdH0QpWZ6Oyk8CxwUqCQpFOnTvk+FE9i3bp1hshpxXRi0EUNDSaEAL/raPAc3ZrQFGLmr8gO0L4SpQxKu9hcgw0d5zfWxg4XFSKgBBhoCKKIT/roBKo66/ig4J1NVqEW3CkpVngWpGjQvWmjhPhaYqLp6IkViQERoKkJkaBoQkwEjeeprtYOddkDjh5EMvmpyE5qmygnZIUubRYEFpAQQWbIKimSg/PFvFDIBWUlke20bNmyYAvulBQrPIm1a9cWRTYUxUHUE3cE2l4r3MFGfzh3tpiGdD66YyXECr+D8duuXTtDjMl8QIzZgCCxiLUhVCQGkqpsdBAsBHTu3NlkKgvx/CgpVnhWOkG7US2wKw5257QlRS+r7gipg+g60TSIMdIK0qVKiBWFRIzZ6NFoYcyYMUZepTru1IArBwXM8+fPL8hoaEnRaK/956xZs6TQoHeKwnNgEoIUo+/UgofiwJ8UlwRSWIr0/DZpWkA7aDXrVxQiMYawsPlDJ69ylfTA/Mo8G6sOIegoXbq08SxmnS60TYOSYoXngDUWljjYjCliywAGDRpkrHEUqWsFJ06caKJp+Lyiy166dGm+DysQIPPTpk0b81ORPSxZssRkQajHoIHN8OHDZcOGDfk+LN+BWpaaNWua86koDtZn2o079euFAA3DKTwHdp+I+UnRKCJB5KJSpUpqqZQGmMBp3cxih60QBYroLUmTKrIPxmzQ25BnG2RAmD85z0Q68eZm84wrRa9evbRoOUWwedZsZWyQhWA8Md4KqeunRooVngKpGHRKpGZUB1f83LC4Ya+kSB1ENNhQdO/evcixA/LAczt27DAFeIrsARcECnP4qcieNIgMCBF5wByKHSE+xuPHjzebaoV7kNWAFCNFSdb8J4gynTZt2pj1upDOjbIOheeIy88//6zSiRhA24bHq0bb0gMbLaJlsbp/IaHA87kQq6m9FMXExomfisyCDR1SIIBkwglIHRtBIvVE9RSpgU3ciBEjCk4mkAm0bdvWrEmFJDFRUqzwFJi0iWoUUjomU1i0aJFJ9WsKNLXoOmQXiz8iG/Ha4eJyQldAut5pxFjhJ2CNxWaDKHC8oiesB3v27GlkQ4rUwJyBSw3zb6EVlZUUtWrVMvKcQtpsKSlWeAakYCgQYfepFlnFFz40sU2aNMn3ofgKRM8gucmkOIw3mhtQWAPB4HwrFF4HBXQUjkLa8I5NNG8SKYbgEan/4YcfcnqcfgfzLhHReG20g4pSpUqZ9Zp1u1A6qyopVngGpLCJdqh0ojggdRQ2qC9xai4mCxcuNNZ+bs4bEzzEAoKxdevWnByjQpEu2CRTY0CkDt2w2xoMNnzoQNVqLDXfYs4z0WJFJFivt23bVjDnRssqFZ4BKRgmH21FWhw06uChcAc2V3T1YiylEl2HWKC/tKDARp0+MgOKG5H+aFvyzAAvYhx6sF5LpSiZjndYXtLABqma7fSoSAzmEXTFRER1DO8Dkj4erN/NmzcXv0MjxQpPgIlGpROxsXjxYtPSWZEaiPjSvjldsACOHDnSFH4qMkPiaDfMT0XJmvcwJiHC2K6lQ9Do4ojtJXp7dQNxB6RV3bp1U0IcA6zbSNUKYSwpKVZ4AmjcSFmrdCISpKVIdRLZUbjfYEG8SCmXxGOUIhKIA1ZWEBGFIt9A10onxpK214XYQfCo40CGoXAHCu2QZamDSiSwZsPWshA6hCopVngC8+bNK+o3r4jcLEDs1I3DHdC1ffPNNxkp+uC8H3bYYcarFCICIVGkD6Kbn376qUbe0wRBA8YhxXKZcJHA03jAgAEqy0oBbCLwiS8U/WymUK1aNbN2s477HUqKFZ7YfbPDRI+k0ol92LVrlyk+RAOoXZWSY/369TJnzhw59NBDM5bihIBAjPlZCBN+vlFIJv+5zhiNGzfOzI9Yq2VK544Eg2uC/l6dFZKDeQUdN9IqIqOKfWD9prDZ77Z1SooVeQfV0ESPKBhR7MOyZcvMgqXtrt1F0bBSw2WiRYsWGX1vCAhEpCT6ZIWiJKDgk40x45DMRSYB0YbgTZ06VbMhLtCwYUND/AhYKPaB9Zvx4/cGSEqKFXnH/PnzTSSOyUaxDzgnYBGW6UWwUBt0EMVJ5tWaLrgGvD/aYlLYkBSFItugcImNMa4dFCkiecg0uF86depkGnxwHxWK32y2wHmi0Q9BC79HRTOJevXqmXmS9dzPUFKsyDuQTtC6WCUCkWCCodhLkXxRpyMdhUMsWNkE6WaIMcV3hVBprfC2fIpxhnUayKa0jKAE9w+RPtsuWhEfZO+Yc5QUR86NnBO/F9spKVbkPe2NPkulE5HAnk67TiWHJaZsHnLR/ho3ClLYaDwhLBAXhTvgCHLEEUeoJZsLEK2dMGGCIakEDHIBPIuxeNO6juRgrqHWIxV/6CCgWbNmRj6BT7xfoVdUkVdQxUt6UElxJNHDm1iLkhKDKA3EtKT2VOmQB4rvICykmxXugPyEc6c+r4nBfU+nOqzSevTokZPNngUEvHXr1jn7PD+DjTFOFCql2gcixWyq/BwtVlKsyCu4eXALyOXE73WsWLHCED40WorkTU3y0QGR8Qph0c1calkhpADaQjv5/b9p0ybTWRGbynyALJVmqhKDzR1ZTh6KfZk09NZKihWKNADxw8JFiUUkqGqme5K2F44PzPPRPqLtyxdx4HPx52QcQyA0sp8YOBxQnKRWVomBJ3m/fv3y6h9M9BN7Qz+nwbMNdNhsyLXgLhKs52SA/VqwqaRYkTesXLnSpKALoV96poA1HYVc6NUU8UHakqI6NJD5BmluCMSUKVN0cVSkBcYNUXRrZ0XELZ9gTq5UqZK5z3RMxwfzNGvYhg0b8n0onkHz5s3NporNgh+hpFiRN5BiYeKtW7duvg/FMyAt36dPH+O3q4gNFumDDz5Y2rdv7wnHEq4ZHcZ+/PFH0wRBSYQiVcyYMcNTaXikAdxfkD2/kptcgHmIwlH1LN4HspycE79KKJQUK/IGbpomTZpoBW8UDjzwQK0ATwDODdEIL7UEZyHAI5nsBwRHoXALCkUhVTSHyYc+Ph7YmFPXQHMlRXxw3byQsfLS/NysWTPfkuL8h1kUroAO7/nnn5dhw4aZ9Dpk8tJLLzXekokwevRoGTFihNFfbty40RAJLKUuuOACUwnuxBlnnGGiXdE44YQT5IYbbsjo97GdbyhWUuwrsEGb2rt3b90oxAGRWKIQVDl7DRAadHQUSREt1o1NJNDIc91UK78PaC+559u1a+fJwlqixToXJY8WKyIBKaZDIoXQBHn8BCXFPsF9990no0aNktNPP93IDT7//HO56aab5OGHHzYTVzz8+9//NgUbRx11lHF5YBJ+//33jZUVJDt6gWIwn3nmmRHPZUPeYNNNnmlhvG2bCHo+HrQ6xf8WUkN6ns0DERwaaWRxQSfKSNpSF6HYIGJFirljx47iVUBsLLlh45dvbajXmtG0atUq34fhKVCpT8EWxXVehJ2LuPfY6HkpO+MlMHevX79eW8Hvhe1OyzqvpFiRlUYOw4cPl6uuukrOPvts89zgwYPlwgsvlCeffNI84uHOO+80LTydaNGihdx7773y5ZdfynHHHVcsZQaBzjbQqVG9X7VqVckpILuktydOFPnuO5EpUzgYkY0b3f09Wl+K4Lp0ESFK3727CL6eJdS2kglg4Wnbtm2J3qdQQZMMCpFq1KjhyYhaLHcMNrHIPNRdZd81pJAUDbYXtOD5zgpBMNkoeJUQO7FkyRIT9aP5CiReEQkyRKxprK1c06Bjv/32M+Obc+K3jYKGpHwAJBBEEJExWBDhHTJkiNGjrVmzJu7fRhNi0Ldv36KJLl7ziGx7ibKDzJnDApXBL70kcuKJVEWFCe0114QJcdeuIkhD+P2XXyLwC5NkGzXm/yHRQ4eKvPCCyB//KNKunci4cSJXXIGgDG8ukdNPF3ntNewj0jpEK1vRts6xQYaDiuZEWRGvLQqQYWRL6vcqRZHzcePGmZ9BBnMfqWWIsV+AvINNjV91otkG8zZRdeseohCzvvuxADHY23WfgIkICUN0KtamIvH6RRrhFtY+JlZaA1spIsXsfCkeQq7BIxFIGzktaZLdCHQCggRiTp/ViPB774k88wy7CtpEifTsKfK3v4n07i1CCn6//dy9F5HJWBFcPDynThX5+muRDz4QOfdczCtFBg0SufJKkSFDKON29RFsbIjSq94yNtikIbWBbPoFRIm5j9i4sqkNgs0eKXayHmxg0FRTtwCZIr1MlHjt2rVGAoONHdIBiAS/5/wEQYMNEcbmjLGcq/bNmQDRT46XzSn1LDpPRYLoOZFRSLGfrms20aBBA5k4caLxuvZTa3clxT4AhDOWkbt9DlKaCl577TWzCGEQ7wQ3M5E40tMsWuiWH330UfP+SDfi4aOPPpKXiLS6BIsii2dW0oacC4jwE08g9BLhOz7+eDhKXLNmZj+LG71Pn/Dj1lv5YmFyTMSYz2NyvPZakYsuYgeS8K2w9NKmBvGBjtiPVmdsXCHGdmNbKC2O+U6QXDYpECbu6Xnz5hkybJuYsKmmEBjSiyMHkhI2zGzubecrQEtjioB5Hx68Zz6bsmQLECYKRZn32rRpI34D6wNdJMl8qDY8dqEtQSXGuZ8279lC/b3rOxIKP7UOV1LsA7DQxNJx0bzA/t4t0BF/+umnRpscrc38xz/+EfHvY489Vm688UZ566235NRTT41bZIGs4/DDDy/6Nwvf3XffHfcY+D07x4xW7W7eLPLPf4o88ADhKpHzzhP5/e8pn5acgfPJZ/JAs/zIIyI33yxyxx0it9wSll5UqlTszyB7RMxUi1YcjG02haQn/RpJhAAhpfA7IYbUoXtHW4oDDuMWDTwEFpIL6bfElgce5ID/p3YBEs1zyLeIINsiLiLqRJPIIPFAXgGRBhAwW39AZouMmF/vEzYSbAQIPPhxLLMG4RaU8zoQn4Cx2atXr6JxH3RUrVrV3Les90qKFRkFqSp0vtGwkUW3qSwKle6//34jW7jsssuSvp6JG5s2IjlEOOIV4JH2T6XZhNUTZ2RhYPF8/nmR22+ntZjIn/4k8uc/hwvi8gmK8F55JUzU778/fHwURN57r8g551DWXfTSb7/91pw/7exXHEiDIEUU2Pm1wIdxzj0K0ZswYYKxJUtF7pQvQE6RObF5ZgNOxshaLFFdzk9r68gGN9kml/MAoeWn02El0fxhF1Y+l2g00gPuEwqa/AIbOXQ6k/gVNnrPWA56sWQ0OB/5bM3tRTTwoa5YR7UPwI0Wy0Dd6njdEFLIxS233GJSYDhSuJ3QbHQYOUUmALkn4kThRolBAdzvfgfbD/8kOu21Sm4K5x56KFzY93//Fz5OpB0vvyzStKnRynIdg6A3TRVEDSkGhUT6lRA7QaQYcjxp0iSzMYXoew2MRzYhq1evNtFgyCvElGMtaZEj73PkkUem9DdOwszcgfbe1lagU54/f77JIpCq9WLKmnubjRDnrlA6d7I5QiuK/M6L5zzfGyACSFxvP+los4UGDRqYYBxzuV8yPOo+4QNACijQiK7axqrN/j4RWDxovsEu/5///GdKE5mtps2U1yDfgzRiiUggmkVkEjhHECnGWg2S6TVC7AS2XO++KzJqFFV1YdeKZ56RH1evNsTDD5HDXAMdLkSyUApXiJDS9Q6SB6lAR+s1EIlFsoBtWteuXeXoo4/2DHlnYwSxtNFK5jH+n40TlpWcUxqneAVEt8mycYyF5CrD9+G+VCeK4oD4cd1jNcEKIho0aGBkVn5qFa6k2AfAGxIiSUGbUzrx2WefGa2OJVREUaJTFUQqrr/+ekO8aOQRj9wSCeYznCBF9r///c8sRrGs3dIBx4fmKm0TeEj6wIEiN94YLmKbNCksVfALKPwjso1TxRVXyIG/+50cWraspiLjRCypdC+EKLEF9yFkE2JBBDGVeoBMg4I4JAlYPlpbRyJcRHO53yFymdRBM8dQ05CprBPnkAJMjhcvVIIGRLcB5zV6Pssl+I40SCI6TrGh3/XkTvBdCMQwdoJurxfr/mYTmcgmNUg46KCDjMTKTxIKXYl9AIhv//795ZlnnjG7UIo1vvjiC7MbvZlCrr245557TOpmzJgxRc9RKEe0l8I6KsB5OAesbRM9duxYefnll01KjMWQxYUFjGrjyy+/PGNaKYgOqc609MSQSZqNECkePlykf3/xJUirPfOM7DnuONn/d7+T9ti3DRsWjiYrDJAZUMRlHQoKCZAK5BPYk+XD2goyzH2I9ADyyKbaHkc2i4SIGJFGzbSLCOeTOYWHfW+yaJxfChzRP+e6SyRRVGQeXOdC3PByTrFnw3GE7IdiH7ifyLgg9ymkDX06YJ0nWuynSHHh3a0FiltvvdXcbEOHDjWV2qSUKZpL1vIWLTF4/fXXi/2Ov7WkmPdj8EKEId5M5Cwof//73w0hzwSI3BBdSOv9PvtMhPbTEMePP6Y/qvgdpU84QUpNmCBlsW877LCwnRv2bgpDYgpZZw2Rsyl1oigUqdmitWyDBYrNMUVf3OOF1IrabrYpxGMMQY6RV2AhlksJA3Mrm49CJUWcWwoebftnP7ppZAtkQTknbMoKcVOfKpjHsXf1yyZBSbFPQCTn6quvNo94eAQLsCg4o8aJwCISbcmWaRDZ5sZI2Z/42WfDzTCIEv/vf+FIa4GgXMuWIuPHi5x6algW8uqrImecIUEGhRmM95acmwIHxAnSRtQWO6dsEVTs0NjsskBx/0HCC9laC70xkgo2+xBj/GMHDBiQ1Ug4kh+KKPlczm0hSSZigbFUyBvXkuiKDzvssILz2U4XzDfMc9Q2kWHwOlRTrMgZVqdTVEYjjssvD5NiOtQVECFGy2lavTJ5fvFFmAxj1/b22xJUoFEkmxCUjlncDyygECis+TLdXp1NKJsMNseQb+uJXciE2Ami73jrUpcBIWZxpsNgLIvLkgBZCNePWg/rHx8EMJ6Q51kttyIMdMWFKJspyblg/fcDlBQrcgYixVTeu06hEDW94oqwndljj7lumewHUIjDo4j8sZD+978iZ50lcvbZIp98IkEEGnZIRZAiUIwBosSkoCFWEKxMgCJbNl6QFgroaJqRzzQ3UfBsRsOTfTZAesama9SoUTFtLtMBRJjrhjysZ8+evrGeyhQpJhKPY4kickxMnjzZZGeCDhsI84sjh25lFDkDO0XXur5PPxW58EKRiy8WefRRxILZPTgq1bG4W7yYsA+50PBnssCRcsX2joYBGSrYoTqZ6GBEASOkn3bZv/0mcvrptB8U6d1bggJIBZHzfBRG5RsQKQjVnDlzMpZ2t04vEFEv+Ml6obkBEXKKiSlIxh2CbnzojUtyzrGCI/JMV08vnOd8aP8pLKQg3A+a0VyA88Cmi81YpuxM/YxatWr5pthOSbEiJyBtCRHEUSAp5s8PywiOPVbk6aezQ4i5Qb/9NtyOGZ/jKVPI3Sf+G1LOXbqELeC6dxfp2ZOG92l9PEUYpJWKkT9Sbq+9JnL00WGdMccVkGINfHuxAUxZc14ggFB1YXztbQLAwpoqySD7gKOEbbYB2fNKERQRcDIBENF8RlPZKCBZ4VjYhFAYlbZFpIgh1VynQipYTAUUbOJC4RfNaC7APceYYp4PQm1EMtSsWdPo+v1QbBescIwir12QIDxJI8VbtoicfHK4ExzyiUzqsrBy+/zzMOEkPY9UgYYaNWuK3HGHyMiRYR/kn38m/4XZKQ78dD8R+eqrcEc6dv2Q1tNOE6FD1Uknhf8uBZspJgaaDMTVVkMY3norLKngc/LoZZtLQORoJR60aFuslDTRRyKZ3DNuASn5+uuvi5oqEJn1CiEGkHXccPLpzWzBeaEIb+DAgUWEOJVmKmQ1OM9s9nPpHOJFsMFhLvOTF20uwDmhwDVTcig/o1atWuZeYZPgdWikWJETWD0RO8a4gFheckk4ijthQjgymwlQBIIsARkGhIFoHPrdY46BiSX+W4jpAQeEI8K4Q1hQNIA1HO85YIAIbav/8IdwhDsJqWOnTCV8wh0zC/U774j07Svypz+FW0MXMNgoENUMUpFSIsKGpRc6VRp82EK8RMC9gmgdHd9wP1C4g41Yk+pmE4JFHU48iTYTLO62IyHzWZAJsQVNdii2U3u2fbDtyRkntdPMKBYKDjnkEJMVhQd43aZOI8WKnOmJsahJmDZ94YVwhPTFF+lYUvIPhWTjXkFEF2KJyfy4cWHJxPnnJyfEiUAkG1eM6dPDjURoRcy/Sf3H8ISOBtHQpGmkHj3CpPvJJ0Xef18KGZA6opyKMGizjGsCkSYIGEQsHubOnWsIMWlaOtEFTY+dqSwFmliiv6R543XD4zpgu0YRI9dHCXEYRMvRFishjiygpbEJ5yboKFeunNkk+MGBQmdPRU7ADjGhdIKb5YYbwsV1SAZK/oEixx8fdq/A6mzJEpE33gjrgDM5cfNeRIppvEGjlCOPDEeLcZDYtCnmn7Doui46uOyy8PfAgaNAK5ltu+GS6DoLEWwi6YhGBTvkOJGmEy0yUU5FyaKdNDOi9oEofbRtG1HQqVOnmqgyr8t30aDXgJ0gndxSkfwUOoiKBsmNJBHIqvjBgUJJsSLrYDFhh5hQOoH0gNT5v/9d8g8kqoqcgYgwEgeafxAtzjaIFhMlRnOM7zDHgIOEA0SgsMhy3eoW0o10Aq01muYCBGMjraYuAQDRlUGDBhmCzJix48Y2ioCAUODlh/Qs0hiusZclMsxR1jYulmSF6B8bEN3AxQabfeY3hRTdpzNnzsy4L7YfUatWLbPhTJT18gKUFCuyDiJdFBvEjRR/9FFYP0tHvpJEX4hQIGE45ZSwldnMmeEueLkGUeIZM0SoOj7qKJEbbwwX+QnB402G2KSUUoPQ020QJ44ClBhQoAP5C2r1fjLYJgC0ZqYRBwstkUzuKz8ttrg+oHfOZle5TAALLStDIUKPEwiuHkgDcM9JuLkPMLiubBa04G4fmOtxOUmliLNQUbNmTTNfUXTvZSgpVuS3yA4iC2kcPLhk7Y1xi8BNAj0ykWG635VEM1xSQGSHDRN54IHwA7K+e7fRIhIpS1mLSEc/bOCQmKTgdOF1EOnE6F6jxMlBun7RokXy6quvmmgLEU2vE8zoLAnFWPH0ul4EcoDXXntNvvrqq4x3GyxEcB8nk/sECdSOIJ9g3g86au5d/70uoVBSrMhJerxy5cqxieD//hf2Jb733vS1vkTLINRIJbBYu/TS7Df7cAMKnv7857DTBWT94otlw7p16RVe8F733BP2VKaxSQFFQWnB64f0f75BpoVNBPcT0Uy/WdfRTY5Ocvz0C2j2wSJOpksLGN3ZkEEC/dKoIVebWSXFYjbwzFteL7bTu1yRdaAjihklhsz+/e9hX2KcIdIBUVOisBBFtMQnnCCew+9+F/ZcfuUV6fzmm+kXRGEJh0XbX/9aJMfwM4h2kpYGWrWeHJAyut6dcsopZmFR7WZ2gRMF5O6kk04y7hRYtvlJrpJPO0E8oBX7SDGRcy1AlCJdsZehpFiRdbBLtp6NEcA7GFcIiHG6gCDyPjzogOdVoDN++GGp+NhjciBR43QAcbzrLpFp08JuFz4HRu6jR482mk1FYl0ijgc2PY2uFTsw1y3TFSkDAgMhxrOY841XNJu4X5N1vVSYDYTWB0SeD8aR6+LqAkY1H0TNlRQrsgoWEorLikkGmCDw4D3xxLBLQzoYMyYsKbjvPpFzzxWvY/Vpp8kmmpPcdJPI99+n9yZEivv0CZ87n4OIAbIav8kA8uHhTJQSPa4FBU1E5ShaWcLGUpExQF6Q9fTt21eaN29unkP6hcyH9K8iORiT+GcrwrpisoNeb2+cK1L8yy+/eDpqrqRYkVWQNqKwppinJx3rcGiggCwd0DoTD198hyGZPgAp7znnnSfSokX42NMtOOKcjRoV1mL7PFKs1lbJNw6QYhpzxNLkQ4pxpfBLxb/XdbkrVqyQb775xiza0SSGTQhzGV0Gva6LzDfQYEOMNTq6bx30eoFZLnDwwQebMeFlNw5vz1AK38MO/mKRYjrNNWgQbnaRDogQL14s8txz4SI0n0yMVZGR4I4xaVL60V4s5zifvI9Pwblg4aQwRxEbpOppFoEev2nTpjFfA1lu1KiRcUmA0Hm9S9+QIUPMTy8Cojtt2jRTXBevrTbPE0Xmdc7IvSIS3Nfor8kSKsTo//ErDjoO3ssDlBQrAgsGPwtJxEJIcdWbb4ajpekQWiLM+Pbedltm2kE7o8/jx4f9gP/1r3AjEUtgsXwrAYg8UXVvzgPR7WuvDR9/OqlvOiRdcEFYR13C48oXIMRIJ7QFauJCL+z7KFxKVIjYpk0b09UOoqbRqPQj8pMnTzYuKO3bt094vq3XMu23vZwGzieQmTB2yQYpwi4mWPphPxlkVK5c2YwLJcWKwAJRPd24ItKmn38uQnEVrgypgnQcZBqtXyY6vDFJ0YGOZh+kpyGstFQmEk1RG1KFbt3Cv8P9Af/jNBZC67JQtDng/ZGUXHVVesd9/vnkzsO6ap9Gkvr37+/5dHo+ATnDbSKZFhECB1Fr2LChWXS8CjaFY8aM8ZwlGxs0ugMyJpNtQACRYto8b9++3TRTURQH5xBplNedBnIFO+8H3b+5VKlSJhDi5WI7XZEUWQU7wmLRwM8+Y8WnlD71N0RLix754YfpuZr+gUGukV40bBgu0qMJAu9Ja2gI+08/MYORwxb59ttw5BgCfeqpIk2ahCPdKYD2sKTAi0gLJJtINO2gp09P/fg7dBCpUyd8Ln0GdJkQCkX8e4bFkw2D2+Ycttsa44voJQ0UvHjdbY2Bl4CvbteuXU37ZrebNNwVINCQHdXNxkaTJk3MmFSExwsZUxscCTKqVaumkWJFcFGMFOOvS6Q4Xfs05AwUqhG1TRdEL3C9IOLM+6D1+vJLkauvFunaVaR8+UipwmGHifzhD+EWy5Mnh19D9zzItEvNHJNiq1atIhdd/JnR1KajDSaaxTn0YSMPUvzDhg0LfCoxFiC0U6ZMkTlz5pRIdjFu3DhPLzxeABuHH374wfw/UeJUsxZY4rHRVY/t+JKBYgXWAQVjpG7duupAIWFdsZfnJiXFiqyBCAqFFhETI5FYPFeHDEn9DZEL0LEOMpvuQoRjA6QW7fCHH5qGGtKmjfu/p8nIO++EO/FBSHv0oGTdVaFFMY9TJsiLLw4fQzpevZxDvs/CheInkFIlwoa2TBGJefPmmc1Cu3RtCgVlUXMjWcIlwYsRYy+AiB02d9yX2EaWBLiD4ACiKA7OL2NaEZZDaTt7MaSYjJFXG+EoKVZkDWgHSZVGRIpHjyZsGo6+poqXXw7/pMgsHdB6tH//sHSBBhjpdr+DkJ9zTjhqTLST99zbXCEWWHRxEYhZdEJLamQab7+d+nEMGBAuVOSc+mijxHlQ14nigMAuXrzYGP2XpPkBaVo0r1i4Qfw0ZVt8Xvr222+NfyxNUEqqa2dzh/2Yl3WS+QKBgEWLFpV441EIYO5j7AX9XFTbGyTzqjOJkmJF1mCLCiJI8dSpIh07Uq2S2puh28PGDTuyWN3xkgHyevzxYR3yiBEitWtLiYG2mPfCmum00+K2XrYTYUwrKtqhYkvHd0sVkHsKDjmnPgETIREC9ScuDiQTpJwz0SKXYjAIH8QPL2MvgGNBt5vPZi10T4QQo/GnS10m0tkNGjQwkXmK7oJOeKLB5pfAiG4YwtmJkSNHBj57c7DHbdmUFCuySoqL2bFNmSLSqVPqb0YxGmk45Abp4J//FJk1K+weUbOmZAwQGIrucIGIQ2xtpA7CExN8p3HjRJYvT/3zOZecU58AUgIp0s5gxdG5c2dDGjOlUYXw9e7du4hk57vAjePB8iyfukqiurTdxdUjU/Id6/7B2CbSr9gH5jwKGdWaLdwVkbESdH/r/fff39x7Xt0oKSlWZA2QwQg7NqyYFiwI63JTBVIFyAKWaakC3S32ajfeGI5SZxr9+oV1znTWW7UqZgqRyBTRu5jADg6kQ245l9hCeayiPx4oNhkwYIAWJzlAdJHoOWOkJLKJWLD3Ho09Ro0aZbxS8wUcRyhsy4fzCLZr3Ifcg7hGcK4zTXjQi0KMFcWjxWrNJkVuMsVqSwKGUqVKedqBQkmxImvg5o+IjhKpRQaBnViqQCKAVCAdH9b//CfsCXz77ZI1EImG6D3xRLFfsStOqKHFWg1JSDoyCM4lC7EPIlRo6iCASogjgR51xIgRWW0EYXV8SAfyZYcHMZ01a5b5mUtQuIi2GlePbILiyJIUSBYq8M9GJ6/WdeEoadBJMYAXeDVirqRYkTUQNYloJrByZfhnOhW4EMZ0ZBdEp3GKoKDNpedrWkAOcN55Ii+8UKy5B214Sa/GBSSR75YOKbbn0p5bD4PIwOeff66LggNIGhYuXGhaOcfNJGQARKiQDPB5EOOg2OERgYcQ8307pTN/pAA2exC/lStXerayPl8EqE6dOroZ3tvRTceGmPOgpFgRSFJMWrEItKBl4U+1tS/FK0gE0pFdoCGGGF9yiWQdSChWrw435HDAVWSO75YOKbb6aB+097WFl/kstPIa0KCySGKjlm1w3iHGEEQittlGaMcO2bVxo+xcs1Z2rl4tO1etCv977Trzc0+WiTmRd2zpmIcoqstFtz/OLQV31v9YIUXyHdUVh1uy9+rVS4KOKlWqeK6zpUX2QhOKwKNYpBjiBolL1QIJH15uoHQiPWPHitBVqUED93+D7pmI75Il4Y53FMI1a5b879Ar42pB0dxxxxUtkjSqoGMWZv9xwXe7/376YoelHm6BPIUIuE9IMVEjjRjtI21EidGiuu1cV1JwP0KMKX7KJEJ79sjun3+WPZs3y+6ff5E9m3+RPdsiN4PbtmyRnctXyLY5c2Tr3nmhdMUKUrpKVSlTtYqUrsrPqlKqTJmMHBORKDTUfN+4Ra4ZBlpl5AKQYjJE6sUdxrJly8y5CLrrjM59++YhMoZelNQoKVZkddEvRorT8ae1elk3xLSksosXXwxLLZi8uGH5iV74+edFLrww+d9HySCsVCBpAZWNFPJdUyHFHB8bDSLUPiDFxVp+BxhkEHDhaJbOuC4BbPaGTSuNJ9DB4hKTDvZs3y47kQusXCWhJGnhsmXKSI2DDzI/i/5+23bZs22d7Nrr812qXFkph0NFnTpSOk3ibnXrFPlS1Jnud0sXdLkjAwAR5P8VYhyI6GQZdKCnp9skcrogd/urXLmyuU/zVd+QCCqfUGQVEaSYaG8sr95ksIU5qabdIbVYubl1nCBCDCFGroGbg/Mn8gs3neP4LKQeUaQ4qWTARgrTKUIiCuZxnS4TIOcipldzQMFGibR+pqO2bsGCRMexiRMnpuyvS1R466xZ8iv65CVLkxJisH+lStK1ZSvzMx5CO3fJjqXLzPtunTFTdqfo6cr3mDx5skznvt/byCTXICKK9dzSpUs9GQnLB7jv2YQFXU/L2OA8eFU6kGte4MX6EiXFityRYibEdIqJLFGsWFEGvzNYbvvmNnd/h2aRnajbZh9IJuKlt0qVkic+vEna/TdJdTmf5eggxk0P6UlaRGWJUYqkeOWWldLuT7vlg4NWet6OaPDgwabgRhFO7aOxzCdpIpLavXt34xcKkXRDjPds3Sq/TZ0qv02eIrvWrBXZ4/74ef8dO3e6I+AhMdHj36ZMld+mTJE9LqzOOJe2c2RCqVIOgDc0GQAlxWHYzXDQuysyDxIg8SIZzAcv2JpHi8h4UPmEIquIKLRLskDM3zRfnvr+KZm5fqZs2LpBDqxwoDQ+sLEcsbOKnMsLUtUi28XXrY4LDXG8Y+R5olbJ+DXH6Fj0bbOKN+a+IRXLVpSTmp4U/+9Aun7DKZCTfCGb7gp+A61vIaOk9/OJ6tWrm5bQRIspEEvk0ECx3PYFCyS0K70xuvm332Tc9OnSq317OSCForfdP/0sv02cKBWaNjWyiliAfHL8q1evNvr9fGtXIYGaFYkkQXiU6xygtmxOUuxFX28doYqsgdRlhEk+E2Ic0jdt7TS5eOjFUmv/WnJqs1OleqXq8uNvP8r0ddPlf3smh0nx9u3y8ckfuy9W4LN5rdtUFUV1CSLFxnZNwtrHuMBmxpEehmSgrf73p/82JD8uKbbaqnQLrvKQJk4Fc+fONeehLUWPAQcpZGQLRBK9UHgDgaSTXiIXiW3z5smudflrFx3avUe2zZsvu9avlwqtWknpqAI2bNCWL19uugJib+cV/SjjvlWrVhlvFuI3MM6zbYnnFxAk8WrjilyBzRHFxUqKFYECgz5i0UciEOcmeGb6M1KlfBV5/bjXpWr5yErxDZ++LSJjjLSgfCqFWkRfKWBzaz+FywRFdfEixZ06iyxfkPg9+KyWLSOechUdcUhE0kI5b9/K69aty4kllh8AgUNCUK9ePfEKnESSaKuVH+zatEm2zZptiLEXsGvDRtk94Tup2Ka1lHXMBchyIBteKuQkVc61JlvWpEkTCTpw4kE2FOQCMyutaZCKG1KBonLlyp6UT6imWJE1FCsuw3kiTrvP5ZuXS5MDmxQjxKBazcZ7X7S8mKb4g4UfGJ3vlDVT5L4J90nfN/pKr9d6yd+//bvs3L1TfunWXm49YKz0er2XeTw46cEInd/EHyeav+encbfAZYLF7JCK0u6ltvJB34PD5JrnYyy47y94Xy4Zeon0e7OfdH6ls5zYZbq8edQ+h42xY8fKoDcHycKfFsqkNZPMZ/G46IuLil7zy45f5P45T8igB1pI57lXyLHvHSvPz3he9oQitZe8ju/e87We5jvy/5t37DVAr+rdVC3nGy2hppP3ebbS4TBfBXaJQARr0qRJMnv2bOMlvG36dM8QYguK+rZOn26ixgsWLDAbLjbfXiLEtqiKzQXXWxHebNE4hgYyQZdP5Moi0A+2bF6Dt8NLisIixUSjsOWxVmcO1K5cW75f970s2LRAmh0UZVHVpk1YHoDVWRxN733f3SfVKlWTqztebSQX78x/x0Sev++3QWpO3SjXtf67fL1+orw460VpelBTOaHJCbHfCNu13r1FXn5UREaIHHOMyPN/w2dJZFrxFs5vzXvLkPkj6h0hZTb/KqOn3y93t10ge+a+Lqc1Oc2QjCtbXClPLXhK9iu3n1zW7jLzdxwr2LprqyHIa7cskdMnb5Wat99pzsPDUx6W9VvXy83dby4iln8Y8QeZunaqnN78dGl8QGMZsWyE3DbmlvCBeJhwUmlNZFRJ8b6orFcXRYglEpfvv/1Wtu3aJc3qeieaHYE9IZk5dKgsCYWkXc+eUqNGDfHqtSZaTEQsV17UXgX3P/MY0WKsCIMKiCCt3ZFPBdnHunLlyp5s6KKkWJE7UkxKFvkEGl9nAZ6IXNDmArn6q6vl9I9Pl7bV20rnQzvLYTUPk261ukk5ImqtW4dJ8ZGxP6taxWry5MAnTcTorJZnybLNy+SlmS/J6Q2Pkb9eMUqk4w457ZKHZfC7g010Ny4pBhDgm24SeXeEyGmnhf8dBy8e/aIpoDP4xz/knMd+lCvfPUdenvWyHF/3ePN0/3r95X9L/2c0xcc3CT9nweuIkr89uo40WFVVpMUZckaLM6RGpRry0qyXzHmpuX9NGbl8pExeM1n+3OXPclHbcJT5zBZnysUfGbW1yIEHeL6TnVeJYK7hde/a+tWqyS+hkMxbtlxKlyotTTLkGFJ1//3lyB49pEyqBbMxsGT1apm/eIk0rV9PGngsQuwEZJ05icU/6ClzZCScC+aDIJNiagpo7kLhYZBJcZUqVVQ+oQgWihWXWN3iyuL2Yb1q95JXj33VRFxxoXhx5otyxVdXyKC3B8nIZSOLNcWIxsnNTo7QL7er3k5CEpJTOp4fjvY+/bSUKVVa2lRrIyu2ZC6dWUSI9+yRzS8/K5vOPUW61utpPmPDlg3h1yRIkw9bOsxsAKpOniWburaRTds2mcdhtQ+T3aHdRnIBvl75tZQtVdYQYYsypcvIOZUOD//Dw1FYNIRYf5UrV06CDgrsvGxLhfXZ1u+nS+NataVpvbry85YtGbMV4/6kcUdJiwtXrlsncxYvlka1a5tI9raZM2X3Fu+lYQFjngIzr0ayc114TaAk6B69dj3wYuOKXIKxQDGq16CRYkXWUGwXbAvQYhSjASLED/V/yGiB522aJ8OXDZdXZr8ifx79Z3mnywnS5K23RKRPzM/CtcIJpBPg0P0PFfnDH0QGDxZ54w2pXK+y/LI9c6QEOcPj0x6X6asmy9abiYxPF5kSbhyw8ddwhXGiyvNlvywzm4C+N/K3o0Xe7Bvx+41bw++xestqqb5fdSPBcKLhss0inOZD0ugUmCOQNg566hhALmkqQftfL0bNOb5ts2cXNeJoVq++eQ4Su3PXLilXQjutX7dulVmLF0ubRo0SNvBIhgMrVzaEneMzx71zl2ybPUv269bNE24e0VBv7kgJRT4aqnhxXfQiIcz1efBiMxclxYqsoVhkkEgxjylTRE49Nf7flSlnCDKPBlUbyF/H/lWGNdgmVzGJ7Ih9E5UpVSb+80cdJXL66SLXXSfy+vkmgpwMbhoMLP9luVw69FJptF9dueGNH6Vmp75S7vd/NFFdyHyVqlVMlCiR+wTFdD0rtJCL7vpC5Nlnw7ZwDjSsGvnvYpgzR6QDM4x3o7C0u2UC9IpVVr6wadMmswhQZOdF7FyxQnb/srdwcy8gmZDZcTNmGDJbuwQRz127d8uGn34yP9PBhp9/Nv7GEGpLiC32bPlVdi5dKuWj7h8vgLlk3rx55rp7rRgw10hk/RcU4ErCfBj0SHH58uVT7qSZCygpVmQNMdPlnTsnlEFEA7kDWFetYtj9Id1q1UceEWnVSuSbb0Qckk7rdoGzgxOrfl2V9C1HrRglO/bskEef2yC1ZpQWefMZI2MwThZ7I6R1aiSOEtWrUk9+W7ZSev5aXaTHGXH9hmtVriUTVk+Q33b+FhEtXvLj7DAp9jAoKkFDGHRSjK6UhcCLBYd7tm2THYsXx/zdfhUryqEHHyzfL1xoFvSaebDUWrdpk0yeN0+a1KldjBBbbF+yRMoecoiUTrUdfI6s2SAAQSfFijAaNmzoyWxRLuFVPbVqihW5JcVWGxylU/xu9XcxtYtEXUHDg5qInH9+uEhvdxq7SwjZa6+F9czbtovs2lXkekE0mSI2J96c92bStyy99zhC078XefttQ4ixSMMmDmAVtWavBd1+ZffbZ5/mwOBa/eT7A7bI2GuHFCPEEPVde8LH2adOH9kV2hVxXLt3bJfXGoeL2LwMIiJBb14AfvrpJ0OKvJji3z5vXtxOdRxvuyZNDBmehgXapk05PTYixBDiGgceKE3q1I3/wj0h2TZ3nngRXHeuf9DBBnnYsGESdLRo0cKzGaOgk2KNFCuyhpiygZ49Re65R2T+fGaGCEs17MkG1h8ojQ5oJDv37DRd7oYuGSp1KteRk5qdJHJZV5HPPxNZviy9A6Lgbn1fkd+miQwZIvLii1Kldm05qsFR8vqc16WUlDKR29ErRsvGbUk6Di1eLL3+7ykpd/Ieufb+w+T0g5fKbzPmyLsL3pWDKx4s67auk5UrVsrOiuF0eatqrYx929PfPy31q9Y3r+lRq4dcOKWMjFy7Va5tNFZOHPc3aV2ttTkP6Iy/XPqlDD11qBxU8SBTgNjpkE7y0JSHZOWWlcYGbvj0d2WLx7kmGx1IsRc9eXONgw46qLgjiwewc80a0xQjESDGHZo2lanz58uMRYvkiM6dTQQ029j4yy8yae4cObhqVenUvHnSz9z900+yc9UqKVe7tngJZAd+/PHHIo12kNcE5gOi5rkYP14Fndzo8BnkaHF5JcWKoCHmoO/fP9y17dNPI0jx9V2vl2FLhpnIMB7DkGKK53BbuLz95WGZA7ZsIyqECXWamHfAdtm5p5zI9Oki7doZWcUtJ91korBvz39bypUuJ4MbDpbru1wvJ390cuw3eeYZkeuvl0bVqsmD190sj277Sh6Y9IBpTY2d2kEVDpLbx90uX274UqpUqCLdpJtc2eFKWf3rauOT/OvOX6XroV2lR83uUunpF+SlJq3l2eMHmu//0aKPpHK5ykZLfU3Ha6Ry+XAXOKyxHh3wqNz/3f3y6Q+fGgJ/xIYD5IZ3fpXT/1zJ012sIAIaKQ5Hh7yIHUuWunodJAZiunX79rQITaUKFaR148bmp1v88uuvprCuS4sWrj9zx9KlniTFNK3AozbInR3tPECRmRc3iLnCwoULTeagb9/IwuogoYJH1wQlxYrcyieYCCHGn30m8uc/Fz3du05v80iGoQfcKPL780XOX2j8g09qepJ5RIMmHjyiMajBIONs8dR7N8qVD34rct55clDDhvLgNdeInPpmuNBtbyRnxgUzwn+ErGPhQrn6k41y9ZMbRVZdEW7y8fDDckTVqnKEXFXsc9b8tsa4UpxW6zTzbwjz4wMfj3zRxIki338v+917r1zX+Vi5rvN1Cb/7ARUOkHv73BspRWk/SGZc8Ip4GbQzDjIRAPhxEhnCm9NLILK6JwWdPsSUQjcIHhrjxnXqGNLqBuXLlZMGLnXl1u2iYa1a5m9Sia7u2brNdONztoH2Ailu3ry5u5bvASBCRIuDTIoZB0Hv7Ffeo5Hi4OYvFFlHXF/aY48VGTNGZHNxjW1S0EwDLdbN4U5vqYKILRHYx+e/KE/9ZWCYmPbpI3LrrTSlx20/7FZx1lkiZ54pMmhQuMCvefOw7APZxYwZRnohcVJfT33/lCHEx1Y9Vk6ve3rsA6Hq9sYbw41BsItLFWijp00Ln0uPL4IdO3YMPCnGgWPcuHHiNSA1SAeo/7fv2CETZ8820VxXn7Vrl/EY5mcibNm6VcZMmyqr1q0z/05HbrBzZXrfK5tzIZmCoMuI1KM3DGzp2CQHGeWVFCuChrhRkeOPp62PyLvvpv6m+Js++qjIe++FHyUhxtMel6fKTRJ5+WWR1atFPvlE5NpraU5PlZzIhg3hphjXXy/yxRfh1yCdaNs27ntbQsz7n9P4nPiasRdeEBk9WuSpp+I6TiTEm28yq6RHqHMIFr+gm/UDGnZ4zXUCP+Jde4lnqqAJR9dWrWS/ihVk4pzZhsgmw2/btsn0BQvMz3jA/u27WbOkfNlyUr0EXc92bVgve3bsEC+B9sboioMMNgdIBqpXry5BhkaKxbOkONi5HEV+IsW0Oz3yyLAvLzKEdKLFJ5wQJrADBoiksXhCjAEEtujfRIF5pAknIbbvHxOQ6xtuELnoIpGBA1P/IOQckPNTTglHsT2M5cuXG/3c0UcfLUEGhMhr1eYU2IXScXLZC+QN3Vq1lgmzZhki27tDByORSBdolb+bPVvKlCkt3Vq3LtF74USxa/VqKe+h1srYsnE/BNmakKi/1zaH+Vobg97EpKxHpUQaKVZkDQlv+ssvFyGdPHNm6m9MOvXxx8P2bGnKKIpFjL9/SkqCWITYVlkXw+9/j65A5N//Tu/Dvv5aZN688Dn0ONR5wrvnYddeu8CSAOIKgUVbXCISKyJzl4YL/rq3biMVMxBFgvR7CVx/xkGm2mb7FYsWLZKle691UFG/fn05ksBQgFGqVKn4gbM8QkmxIj8g0ot+l2hxOqhbV+Qf/whHTIcPzysxjkWISY3hx7maqLAT77wTlo3QTCTdKC/fGS3yEUeI10GVuVerjHMFNkakCr3U6hpitjsdTX8MQGApiANrNm40WuN00LZxY+nRpk1K7hSJQAFhyEMpakgx592LrW1ziQ0bNhT5tyuCjXIeJMXejF/nCTdS+JTGbuef//xnVo6noEEk6NJLw/rgv/5VJB2N2ZVXhnXFyCnoVNcm3P0uI1KKEkombBFFRIpowgSRCy4IH+8ZZ6R1rEKE5a23RO69t8glw8vwYoQ018CxYWA6MpkswjhO7MlsxJKN4KwffjCyCshtdOSYzNGBVapEZJAousP3uEX9+sbVgr/NGEK0f94iZTySrnfakVk9JRZtU6dONdaFEASKUqMdStavXy9z5swxcwrrzSGHHCKtWrUy/4/f7YgRIyL+pmvXrrI/dREeBecBjb0Tbs4DZHr8+PERRbu9e/cuGk8UsyLVYuOBZrldu3ae9UKm5fuUKVOkV69eRZtlN+cA+c0PP/xQ9G/GEo1hunXr5suxUC5qjpg5c6bR3ePW069fv7g1OYmudUnHgZJiB7777ruU/ybIRuwlxp/+FI6Y/utfIvffn/rfM9CJuuL1iGZ17FjyUjkjxok0xJYUFxEA5A7olTt2DBf2pTtu7rorrKFmQ+ADcH94VTsWZOzJUJTYCcZ69zZtZPzMmab4DhmEk+RWrlRJeuINvhe7du+WSXPmmCK93bFkRhnA7s3eIcWQHxq4ODF9+nRp0KCBsS0kqzRt2jTpgxtOFHHo0qWLsTAj6/Dtt9/KihUrzN8A7i8IhF/AOImWlbk5DwBCHOu7QgjnzZtnivgg3azlkCPaKXsVHDNZA0uK3ZwDfmevOxg1apTUJWu6F34bC6Wi1sFatWpJ06ZN5RuCXHGQ6FpnYhzoauXAm1T0exTsHp9//nmTkqdop0mTJnLppZeaHWIy0G74sccek4kTJ5rJqFOnTvL73/9eascwuP/kk0/kjTfeMLu1GjVqyGmnnSannnpqdr4U8onrrhN56KGwZ3E6hUgseJ9/LnL44WE5wYgRYa/hLBPjZEV1trLYkOLZs8MFdXy/jz8OO2ikg4ULRV56SYTMhE8sznrSwTDg4F6aMWOG9O/f3zMbhExJJ6IB8e3eOlx8N3nuXONQgVNFsc/fvdv8fvNvvxkiXTVL0aw9W7LzPdMBGRMim84sCg0cDjvssCJCwDghYuiM7jkL04h4ET1j8fcrIEJOXbXb85AIkEgKWW00HhK0YMECz5JiGyyx60Q654BoM3/ntQLekpDiatWqlehaZ2IceGOG9gi8XBV83333mV3h6aefbnaGn3/+udx0003y8MMPS/v27eP+HZPnddddZ26u8847zyzKb731liHFL7zwQsSE++GHH8oDDzxgdppnnnmm2bny/qRozj333Ox8MezOHnuMLxgmx+kAcj9qVNiJgl3ysGER3fIyTYxdu0xwg+FpjFyCsfXVVyVzi7jzTpFDDhG5qnizEIV3QSqQTa1XCDFAVpAtQHApvpu7ZIlZ9C0p/nnLFhk3fbr0at9eFq5YIT9t2WzcK9w2//BKRLwkgAwSmIAUWb29kxgQNWS8xCNCkCAW/u7du0dkpb7++mvz3qxhzZo183QGk2CLU1+fynlgPRszZox5LRFTS3Z4rfM97d97FdHXJ52xQAQULuCUBvhtLJRK49gSXetMjAPvzNIewOWXX27C7ocffrg0atRIvILZs2fL8OHD5aqrrpKzzz7bPDd48GC58MIL5cknnzSPePjggw9Mqu3pp582OjTQo0cP87dExvnOdrJ97rnnTGTvLlL0xk74eDOBv/zyy3LCCSdkpxsXJBEHiTvuCFuUdeiQ3vtgvURDEJptdO4s8uCDYXeGNG66RMTYLSGust9+cuzs2VL69tvD7aSHDmUbLGmD7/bKK2FfYw8VbCUD2QlSxqTEggoWKi8RYrDnt+wSBojuYXv9vCm8i9YK1z/0UFOcd3A8H+8MYY/HIqpoPuvUqSMtW7ZMaxyRDuZeOnCvDSXRZ1wMIFSk4idPnmzcHbx8v6GJ5pEqCOAMGjTIyEkgkRMmTDDa7FgZT6/DksF0nUjYbK5atSoi8+DHsVDKg4Tdmyr0PAFi+Oyzz8pFF11kyOfjjz8u33//fd4tdEaPHm0iCxBTCwb+kCFDZNasWQkreYkuMwFbQgzQLXXu3FlGjhxZ9Byi/59//llOOimyZfLJJ59sdlro2LIGPHuJ7FJ4V5Jq8Tp1RCZNEjn//LDm9rjjwp7AGXKlcB0hXrJESg0cKGVuuUVKIQ9B61wSQkyzg8suE+nVK/zTR6BxR9C7VzF/eK7gZ/eunH33iXPmyNT5881Cvv7nn8xzNQ46SKrlQOsbypJWORPSgVgWbdGRLichpsiM6F9jOm/uBePKpoohi0RPN27cKF4G0V7nMbo9D2wsbWEWfwMZtu8THRGMdx69Ao4NqYQNNKUyFgCEmL91Bqr8OBZKpUGKE13rTIwDb4Uv8oz//ve/ZrCRfhg7dqy888478vbbbxsNF1WiRJBJW+XaYgpNDGmS6DSKJbpUWsbSFRHlpVL12BitgPlbonhMUBRw8BkgOoJBa1Jutvnz58tRtD+OAaqjqQy2sB6UECKItgU3qi0WQRcdgYcekgN4/0cekS2XXVas2w9/x9+Tho5OhzBZcm6YUH6hwA2rtv79w8092rSRKk89JaVPP11+/e23Yq01mYzszjpap3dek/PMT4jwM9OfkZ17dsqlLS+Vsxuebb4XRR9sVmx63DTVeO01E/kud9BBsvixx6TeeedJCFLr6OLFRGCraqnCjt508V34TkRDDKEkcr94sSnQK799u7nJOT+xOsVZOQy/i3cOeU/eO9Y5jHltSIlXrWqOGxlO9DnkeIjYxDqH/NsSQudYsGBS5/e26MQJrgvXh8/jc53gb+yC4OocOmDt0WKdQ+e14TxEFwQlOofxxjfHx/fjGJOdw6TjO6pqP9k5jDe+N//yi5QuVdpkNMwxYl8WdQ7RB5vxvX277Ii+NuXLGys2iuXoQlfsHO6dqyiiq1ntYPl+wUJTVLdszRrp3XGzcaHYtmNHMfs2Isr7VawYPocxorwH7JVamOK86PFdsaL5e46VY7bYvWmTlCtf3tU5jHVtEs0RnB/rhhBrfEfPEbw/n89reU/u1yVLlhgHAbTnfDYPXmPHIcSGuZpKeiKs/K0d3/w/54pj5yfzuC3m8+ocgZMGLgpo7O055JjIaPIezvPA97PXhvPATz6D37G22Ywukgw0uGwaOK+4GPCchdfmCN6Dz3COJ84D5wUPYyK8znPgPIeMI7LHZBzs7/ge9sHx2rHA+HOew1TmCDfzbLE10OX87TyHqQK9NfyM88tncP/YbEGi37mFkuIocALR0/JgMI0bN85UQhJVRcfLiaYSmKpQiLJNY2UTEM5YAnT7HKQ0FhjEDNRkf8tNyGcwuKOro7mJGbxO0huNjz76SF6iACwK2MuwybDgJiZCzQ2ELiwax9PU4i9/kWmHHCKbom4YigPZGPB+TH5OMPmx62YCK3pfdof/+Y/RKw8+80wpf999Muu442QN7g+OxgBt2rQxkReKEUk3OcFEfWXfK4sIcRkpI43XNpYxa8OfccQRR5gJY/60abIMRwnaRK9YYbTNh9x6q6z97TfZf+PGYsdr01yAFGD0xMm44vosXrxYFlJEyPc46yyRtWul/vz50qFDhyJtXfQERvbAGfl3gnHL+KazFhkGJ9hUseFjAot1bY455hgz4fJdOFdOYHmDto+MBdfcCSZ3G9mK9b4DBgwwi9PcuXPNcTnRvHlzsymjoIQomRP8DX8LyGJET8ikFRnLfL7TwghwrBwzi0f0MfEd+a6A8RC9+FPYysKLno9jdoIJGQskjsX5vkzQLDiWFJN9ir6fuKbchxACfu8EY4Exwd/HOoeMJcYUC2W0LzabXHSFfB7EymLr99Ol8n77SR/uBxHjGBFNkND+QkJ/WLlSlkW1J25Yu5a0atjIENfxUeObOWPQ3gLgKfPmym9bt5n3mDZ/vlSsUF727O2it3zNj7Jw+YrIc1i9unRs3tyQWvTH0TiGbImIzFi4UH6KujbtmzWTOjVqyOoNG2S245pX3LNbDqlZs/gc4QByNAhHrMxbsjkCyR1gnYgmSEVzxPz5ZsxQp8GasXbtWpPWph6ETCD3DfMvn8PxcS+QtWOsMb8yhiFFFFoDLP64XxkrfK6NQDNXE7wBXp0jGId8f1tsxn2K/RhuC2Q2neeBOfC4444z/4bs8N72u/J3VlPMPQZpfgYP970EvXXr1uZzvThH8L6vvfaaWbtskI11ERJHkIu/476354Axw1iyhJnvwznjd4DXskFgw8GaYseCdbJIZ44AjF0+F3D+ozc7jH3uAY6ZY3eCa8a9w/mJdpPgXuOeiwb3B2OE68mcz7lmnmecM/44r2wqWBfse7JZJPsNEv3OLUqF8q0N8Am4SAwYTjYXi4WaCYaLzs3FROS0SskkzjrrLPPe/8K6zAEIIr+79tpr5YwYvrcMLgrzrrzySjnnnHMifvfpp5/K/fffbxwtuCH+8Y9/GN3yl19+Wex9cKCAoNyLN67LSPHdd98t//nPfyL0TAkjxSwwTJLdu8uW3btlNw05HKkh15Hi6ChQKCRVJkyQ0o8+Kr9++qnsQsOMdvmSS0yBXrIo0KuLXjWR4nKlyxVFii9sGW5NXXndOinz1FOy9dlnZQff5/jjw7KNXr3MMTJeGBfRnf1cR4qXL5ftuDeQBfjiC0PmE0UwvBgp5n5hsmaBCmqkOJVzmLNI8ddfS2kplfVIMaR53tKlsmT1ajm4ahVZs3GTIczIJ3IVKa7ct4+5Nl6IFEOAWdwhIm4jaZkc316YIyA4RIWdkeJE57AQ5wj+jjWY+h6yBF6cI3IRKcZAgGAjslXIrBegkWKX4AJDfnkwMEjPWJkFhW5PPfWU2eVm67NjdUGygzCenMM+7+Zv+Rl9Ezpfm0gywm6MRzS4YWL1uedGi/W8wfvvS2WiTH/8o8jbbxcrlGNSsMb30eBGi/m+7EgHD5b9kYjgdEE0AacLivr4rO7dpVy3bnJA69bM0EV/FqEhbn2JPDX8bnl87nNS4Ysv5Mr3VokQITvwQKl05ZVS6eqrw8V+UbCpwXiIm0LatUsqXnSRVOQ6ffhh2L4uhfd1GtxHg2sZ73omvDZ7F5J4YMKP/lsiS7Z5R6L3ZaGIByb8tM7h3gk/XvOQZOcwUWFpKueQqBlRLPtconOY1vh2cQ6jr02ZqlUltGsfIUpkiUaHuXhd5nCWsEQ1Fiyx7tKypTSqXduQVftekOp47ZzNOUzyvvFA05CixiGlRKo4snnJzmGq49uJRL+D0PBAgsb5cDYtyNf4ztccwefGWxuCMkcwDjlPvHes9/fCHJHKObTjO9Vr48WYrJLiNMDAI7XC4+qrrzZpA8hxtkBqJDodBWx0NhYhtYOYmyeW9CH6b/kMdsVEwJ0SCgg1O0Q3/oEZAbvF//5X5JRTwg09/u//MvfezZqJPPxwWKOLJ/W4ceFOeJBkbk4mDF5TqZI81WOPPN7pN7nmu/Jy5QNPiCz4k1zJrv/EQ+Xxk0Xk1LpyJd7K2K3FmMBKXFV7661hmzls3Bzm7H6DU9cXVBD9Yo7wSiQElCpbNoIUZwNEgiG9nZo3N//+bds2mb9smTSvX9/IMSAczbKUXbMoVdZbbWSD3t3RkqRE5CwI8CIZzAdCHjwPSoodQEKQCHZ3R+MMtDR2N4f+KJsm4UgQ0JxFG3mjD7K/j7ejR9cTrWuyf4t2zE5OSCgAr3U2XODfpIfs73OCk08Wue02kVtuCTtK/O53mX1/dry4OFgnB1KBU6bgH2YK2p6qsUgeb7RSrllwiFy5raFI30oiF19sospXduoksuBleVweF+m4Va6Ms6Nn8WPTlNYiCHFHKoOWeK+ey6+gcIRoSToWTIUCIjBOTbEXULpyZdmzLXuuIEt//FHmLl0ifTp0NLIG29J59fr1JmLMOZm/dKmUKVNaGteuk7XjKF3ZWy1u0aCicYwXyAgCWK+8bBOWS3hlPsgXQkqKvQ20LW4H8qOPPio333xzTloqInSnyxwFF9anGEnDZ599ZrSa1nkCDTEaJqewnOPDoxhya50lKACAZFNMaEEBHJFlGng4STH/htjlvDMZ0VwKAtD/QjyJHGcLpMC4jv367ZVMjAlLJi64Mu0GH0To09oovfBCWDpy443hnz4HEVLGVZBJMZsCJv9kMqRck2JZH794tiRYvmaNKXSD/FpCHI0mdeqYzNS8JUulTOky0iBLjZPKeKjzI/I06kC83CRKkRuwKaRwPJ4MQpE/KCl2gO5tiUDElFQoemJE8jS5wFEh27teiC9FCVTW0gqSz/ziiy9MpTrE3OKee+4xFbzOall8hmndzOsoyiNlSUc7JBL824LF+pJLLjHFcbfffntRZTPVzpdddlna9ilpgx3000+LINCHvL/1VjiCnEWk0qkuGTFmwafKF9mJa59EHDzwar7iirB0pABAtsKL0YBcwmYLrE2QZ0hxFrBq3TqZuWiR1K9ZU1om2RQio9i9Z7ch0PtVqGCK7zKN0tloOJQmbDFX0CUUOCSwjtqWxkEEYwBHpaAj5MG1QUmxA1icuAEEFe/fK664wnSFu41Uf5Zx6623mojw0KFDTTUssgjcI5IdM/IIyP5jjz1mOtNB7LkZcayItpODQKP34juhkSa6x+twsMgL6IL16qthvS/a3UceEbnmmrwTYjfEGFJMNB57nqSkmO93zz0if/1ruAvfE0+k1YnPi2ATFq+AMyjgHsSBI9qFJJ8okwWyyJifu3Sp1DnkEGntsiMotm77V6qUtUYepSt7hxRbJwKvbIzyeR6iXS+CBuZENknWszio2OOx5jpASXGaQFeM3Va0p2i2wERKUR+PeHgE0hgDkNs777zT1efQ2pmHZwAxpiEG2mKaccyfH27hnEGCkQ4hTkaMbVvfpISQ6BFEGJ/jv/89TIwLaJJk3Ebb/AQNpEjb7m157BWUrlRJSpUrK6GdmduwQPp7oqMvXz7mQo+NW9N6dc1PJ+ofGpYT/LxliynOO9RhUVUSlCpTWkrvv5/nIsVBJ8VeypjkCxTOT5o0SY4++ugIJ5KgYUeUjZsXoKS4BEATlE3XCcVeQIAhwhT7QYwXLQqTyAwsniUhxImIsbPzUlzQEAEJCy20//c/kSgv6UIA8pGgL4AABxdIYyKrpVyjzAEHyK4M6Io3/PyzLF69Sjo2ax7Xug1AlpvVqx/393S7W7lunXRp0SIjUorSez1fvQLsu+gkGmQSZElxIju4IMCuC17KHuUDuzyYRVRSXMJdjo0IKnIw4K+6SoS0LMWGdCqiKC1GV5xcEuJExJixETdN+O67Ye0wkyKNSnr3lkIEHZgU4e6O6PjpYOYVlKtVq8SkeNPmzTJp7hw5qEpVKZ2EgNLogy50tHjG3zgabRo1ku07d8jkefOkW6tWJZZUlEuxvWsuSHEiX9sgySeCvlFmXSBwwiPI0oldHiTFwb0iGQDSCYreFLERq2lIiXH00eGmGTTa4P+JHKeRns8kIbbgfXg/3pf3p1NRsepiOjZdcEFYI92nj8jMmQVLiO3Eh5WgF7VjuQRkKFanqXyiTPXqUqpC+tXvyB0mzp4tB1aubKK7yRZ4Ot/x+ugOeBb8fefmLeTgqlUN0YZwp4tS5cpJWY95ZFN4G6sTXNBAgR1Z1iADMhj0KPHObPCDDEBJcRpggX/xxRdNP/s+EBtFbgc9E+rQoeHCu+efF2nVKiw/cEm8skGIYxHjKRWm7Gv9zY6YJiE0cHj/fZEXXxR5771ineoKDTSDGTFiRLG2pEEDRa2x2qTmE0gLiBanA9ozfzd7tuks16Vlq4wt8BBjCHb1Aw4skfShXM1DpZTHonAEUSDGQQfdzVw78hQwhwh6lnmHB/XEINhXJcXmHQxkFjY8f7FGY7d7xhln5Oz4/Ias7gRZ8H7/+3C0GFu6884Lt25+4AGRvn3zQohjSSlCe0Jy1ZpGIjfcIDJrlsi554rcey+6AgkCbJqUlKmX9LS5BpaGpExxjvFSCh1SvGPJ0pT/jmK5lg0aSM1q1WJKIUoC2xbazrm0hsahws/SCYpNmQ8TtdENAsgaLV682DSDCrKEonnz5uYRZOxQUlw4zTsolDjyyCPlmmuuCXy7yrynRyi+I+KKNzPEkyYcRO+vu07kxBPD7hUO7AntySohtriy1cWyYcQI2f7k4yLPzgoTdTrmde0qQYJd+GzlfdCjY15bCHChKHvwQbJr4yZXr6dVM7rg2jVqSL29TYOyiXnLlsqq9evlsDZtXRPjMgceIKU9tgGz0pmgk2I2hZBi7Win2OGxudBCSXEKzTtI51E1S0pcO9EkR05F9JDO8eNFPvggHDFGs4t0AQs7HB72NhK4umN8S7uMAMs4LOSeflpu+/FH+blHD5HPPgtHtD1UCZ8rsIEkJR50Usx5GDRokHgR5Zs0kV2bJokkUXZs2yuZYBgTIU61SIjX71epYkp/16ROXVm36SeZMGuWHNa2bdwOeUUoJVKhSRPxGmhWwQYx6I071JYujNmzZ5ssiNesGnMJJcUF1LxD4VEhPYst7aB5TJ0a1hz/7W8it9zCxQ13xDvpJBEmokzpDXGXmDYtTMaJWM+eTbcGU0w3d9AgWVejRuB15xABrxZV5BqcB69ZctHIo3z9+rJj6bKEGuIJs2YaTXSPNm3Tqpqvst9+0q9T55T+pny5ctK9TRvz2RByiDHWbvFQrk4dYzXnNUACa3tM0pFP5wkvWeXlA8gvg75B2qGkWBE05JUI0UKTYjai/8hiKG77979F7rgDgWdYxtC9e/hn48YiLFgUvcVb7CG/a9eKrFoV9klGCvHddyKTJ4dbUdMdkKYndKY76qgwMZ47V7YtXy5BBx0gg2w9ZLF8+XKZMWOGDB482HOV5+UbNpRd69bJnt+KF0Tu2LnTENLdu/dIjzZtEnoRZwOQ4O6t28j4mTONj3GTOI4/pStWkArcyx5EwyQtr4MCbdyxb3MQ3VE2aNihpFgRNHhi0EOAzzwz/CB19/XXYTILqaUBiLO4Ev0x1fgUQlktMhIQbNRotOH0HKZQrls3kdtvF0Ei0asXOfKIjyYSwCJAdC3IkRElxGHgU0yx3YYNG0yXSS+hVJkyUqFFC9k6dVrcwrqOzZunXPDmxC+//mrIdffWraVqippfiPjh7dubyDGIdU9VaN5cSnmwoh/nFY5X60/CzXyC3rgD6OZAPCup894MoigYeC5lziSErtOp7VyzRmTZsnAEeOXK8E8ivxw7ZI5FlgWc6BQPIsoQYhdWanhY16pVK9CEGPzwww+GCHZjExFgQAYgRmvWrPEcKQZlDzpIytWuJTtXrS5qtsEjHKltXeL3hxgyJ6RrS2cJ8Y8bNsjiVaukK93h9pLgsoceImWrVxcvgsKyFStWyFFkkAIOlZCEG3dQb6PyiR2etKXz3hEpCgaeI8WxQAV9lqrovaYdzRdsdFTBUDtUfvzxR2lHR0YPokKzZrLn119lx8ZNMnnuXNm5a5eJ0HppY0ex3ZatW83xQYwrHHiAVMT/26NgE8R1V4isW7fOOHAEuVCde4kAQdDlE9u3b/ckKda8piJrCHrDBjYFkyZNMkUVQQa+vJyLoI8HQISYc4Gm0IswMoo2bWTasqXy05bN0rpRI08RYoD0olvr1kaOMXXxD1KubVtPyiasPzE2ZF7MDOQjMjh+/HhDjIMM5GQ1a9YMfKT4119/9WQTFyXFiqwuCEGf/OhgxaIYZFhvVmypgo4aNWqYQjuvLohIG6bMmCGbDz5YunbsaFouexG0lu7eqaP8VqOGzFmwQLwcJWYe4LoHHfb+D7pXM57VCxcuNJZsQcaWLVs82dDJm9trRUEg6JFBHAaQUHg1KpgrEA0gXcpiQIQkyCDqysOL1my2LTeRvO69ekmNAw80hXd7MrS5pUjvsHbtSlSsZ1G6UkWp06un7Pfrr55cWJ2bDKLEXkwT5xrc/8yJXr5euQBSsnnz5gW+gcmWLVs0UqwIFoIeKQZUGHu1yjaX6NKli2l6owhHzIYNG+bJyPnBBx8sAwcONBrY0hUqyH6dO0nZ6tUy8t60gz6oSpUSt4WmA1+lzp2ldMWKxs3AurxANNIt4ssWGjduHPgCUwvGO1Fir8lxcg11nthHir3oyKKkWJFVUhz0FBELdtAjxaB69eqejArkA1WrVjWR82W4nngEM2fOlFmzZpn/dy7YpcqXl0rt20vFFs2lVJmSLRd0xJuzZLH5mQ74/ArNm0mljh0NYXcC3f6CBQtk+vTp4hVs3LjRH8XGOQIyEjYxQYdtYBJkhEIh2bx5s5JiRfAQ9Ghxo0aNNEK6t6iCxhVKEsISCsYENl04c+Qbc+bMMbZhifxj6RS3X7duUuaA9DXGdMVbsmq1+ZkqylSpLPt17Srl69aN+Xsi23QkZaMBwc83CAZMnDjREHVFGFyfli1bStDBXBh0CcmOHTvMWuDFQImSYkVWEfQiMzS0WnkejgwsWbLEk5KBfKB+/frGq3Ql3th5xPz5803RT5s2baRBgwYJX1t6v/2MbKFCk8YmgpwLlCpXTso3aiiVunSR0kmIRN26daV9+/aG4EP08wkKbFn4uc6KsC1j0LOGFkTLg154uWUvL/Di5kDV/4qsIuikmIURX1qaeHixsCpXYPKjyAZSjJQi6CBtyGaJqFE+iRs6XKJ3aF/dRrnLN2gg5erVk11r1shOot2bM3+Pl668v4kKl61ZU0ql0BERYg8By/e9RsRau7dFtjhno3L00UcHXlOs0XIp4gVejBQrKVZkFUEnxejHvv/+e7M4UsQUVLAQUmSjkeJ96N69e14JApKDzp07m86LqQKiWo6NXq1asvunn2TH8hWye+MGCe1OPxqIZrjMwQdLOcjwQQel/T5Ogo+bBu21c+2ysH79enNuFWFw37MRDDohth7lrAdBPhdb9vICL2qKlRQrsgaKCRDTBxk2PYS2Osik2BaYQRYUYbAoIivhnOQynYqWmXEJWUyHEEejzIEHSqUDDzTfhW54e375RXZv3hz+SSR8T6ioTXP9mjXD7ZpLiZFDlKla1TxK89h//4wSBazlaBZB98CGDRtKrsB5sC3eFZHOE0EHY3Ly5MnGqzzIXf02b95sbAq9eA6UFCuyBlIjQY8UIxnAgSLo5wHUrl3bk5GBfGLt2rXy3XffyeGHH56TTRMa5mnTppkC0ExHUCG0ZSpXNg8rXjAWabt2mZ/779kj1UuXDhPfsmWzHiljo0HUmAJP7sNcFbxC/jRKvA9oiSFBWnAcLrJD2uNFMphLbNmyxbPSIiXFiqyBaJSSwfB5yKd21CtAY+k3SyY6ko0bN84Y7nPsvXr1MrKDTAFdMRH0uXPnmvfOJtC2T5061UQxW7duLbmAIb7lyhEYNlpfuxiWyVHqmAJCPhcJE8SYjVk2gW6W4tpcSza8DOY+iLFGitV5woJ5oEqVKuJFKClWZA1EBZUUhyNWOA0owt2cIEp+kJKMHTtWXnnllSKZAz+HDh0q559/fsYILO9J4Q3RYmQU2SpCtGlbUvpYY+VDz8hcMGbMGOnbt29OCRLyCYgxxW/ZJMX4EuPkwXdTUrwPkJ9jjjnG+BQHHUqKvR8p1lGqyBoY9JjqBx3NmjWTVq1a5fswPAEswPzg3UqEGEJsdLJ79kT8fPnll43sIVMg8nzggQeaaHG2QLqWCHGnTp0CV+DD92UjQGEjyJY1GE4eRP1VS1wc6EeVFIezJV4lg7nETz/95NnMgY5SRdbAAkGBhTZsCLtQeKFRQ74BASQi6vVzgWQiHnnkeaLImQSbpmx42qLltKlriGFQiQnXjO9OpG7EiBEmY5FpaQrjukWLFoHbdCQCY2/48OHm/CjEZEmaN28uQR8TmzZt8my2MJgzpCInsDtBboAgA+eJL7/8MuMLsV9JMZOi110ouFamSCwGeD7T1xLZhCXF8T43VbAhhbwTwVTsK/4lUodcJZPzEhkQxjZ6YkWkpIT5z4t+tIr84OeffzZBEa/WlygpVmSdFDMxBl1bTcWxevSGiw55IE/wMpiwE0WKszWhz5o1y7hDZCJCjB0Z5xr5jhfAeSONns9IKtHibt26mSzWhAkTMnZP9uzZUzp06JCR9yokcJ/jvuPVVHkuQafFUaNGSdCxcS8f0EixInAgOoCWUSOk+6QkCjGesV7X1VFIlyhSjIVatsYJPsIUxqULJALffvutISOHHXaYIaJeAN+Ngit+5hO4UPTo0cNsGCZNmlQijTGNOpBGsenFl10RCbT32uZ+n46WsRd0bNiwwZwHr26UlBQrsgoiakGPFAMmABZQRbjjmNu2wvkCqXBcJqwW1fmT57O10OPlipRi+vTpaeuuad8MSYMQ57vdsVfBRoHz06VLl7R11pBpHD2we1MUx9atW43LQCYtDP0M5n+vEsFcYuPGjcadxav1Dd4IISgKFqRIlBSHSfHy5csN0dFoQTi9j02dl62riBY3bdrU6HKtTzER4mxHvtq3b2/SrHjetm3bNiWSxkLDMRON90qE2HnNIZEQUS94lLJhwPWD8zZ79myzUUuluQxabfSyXbt2zepx+jlTOGDAAJOxCDpsA5Ncdlb0KjZs2OBZ6QTw1qypKDgw+CGDQQf+qFhiaWV6GBA+XEmyJUPIFCDAJ598ck4/k7Q+zTVSafiyfft2I5mgsp2x5jVC7CQG2bJESxeMQ7SvPBiPbkgcbgp4EuMa4gWC71WoJ+++KDGyq3xLh7yAjRs3eqbOIRa8Gb9WFAyIrjEhBN2WzabeFWGQUqX6P+jjIh5ow2yjxMncKDiHFNXt2LFD07NpAC0whXKcZzYWbDASgWwP8hb8iInKK2Kfo9GjR2s9yV5Ahvv16xf4+3PPXjs2rzpPACXFiqzCpkmCbssGcBVgMVWEI7CQkJIUlAUB6IMhF/E2D5YQU+wFsdPIXHpANsH5s+czUQdK5E/okfF9VsQGlosEQ1Q6sS8oAjH2qo42l8WGe/bs8bR8IthXSJF12MGvEYPwxKibg316QxYJr1uz5RucIwjv1KlTY0aMsXBDZgFJ0zR+ycCGAmJMFiOe7p9W0SzqXBcvSlS8Au5ra7+oEJkxY4asXLlSgo6NHrdjA0qKFVkFkyLpSS22Cxfb2QIzRdhpQSNJye+fzp07G5JBg4hooGmFEPshLUs0Fo/gVIrZcg02Fi1btjRSJ+YspwPIokWLjNOEbvDdWbGp60QYbKLYTCWT5QQBGzdu9LQdG1BSrMgqWFzUgSIMdFRE+zRaHAbV/pA6RXKpCUQNUoyHMYssEWIiyGw4cVDwA3B7oOObH2zi2LjS9Y4H55vzjkMFBUI1atTI9+F5PkWOHZuS4kjJgJd1tLnChg0bPG3HBrx7ZIqCAb6rqh0V07BCm5nErvxXJAZkDEcK7qUpU6bIkiVLjAesn0CkbMGCBb6ImCGNIKrNBnbo0KHmnNOGm82JIjHYpOHioSQwDAJCjCd1nhDDA5jDvAwlxYqsg+gQFkbJquiDADSLWrG+D9j10VUM5wRF8sg60UpSsQ0aNPD84hINIttz5841P/0ASB3EeOnSpSba165du3wfkm9AdlDddiKjo0E/H6FQyPAA+ICXoaRYkXVgXQTpUQlFuHBKC3T2oW7duuanelm7K9ZZtWqVIRwQNY2wZxfMWUglTjrpJOP9rBu35CCDMW7cOA2AOEAQxMu+vLnCL7/8YprdwAe8DCXFiqzD7gyxlwo6WFgnTpyouuK9QE7CJAnJUySPXHbo0EH69u1r9JpE2CHJisyDiNbw4cNNlI/5y3Zm0yLZxOA+RjMe9Kho9H2rUhIx9xTQSLEi8KDanGpTJcXhYiM8PHkowkAKgK2Yaq1jw44VOiLi2EGRCo4UbCZom4wrgiJz+OGHH8zGlSixbUPOOadYiijozJkz832IngQSE6KB3M+KMMjmED1XiFn/4QJe11YrKVbkVFccdKgbR3EQRWEhjecNG2RQmEaXtegNgyXGtHXG89kvG0KIvFfdJ0j5I1HB2YOUd5cuXSKq5Pl/iu0WL15stNGK4lFixqK6c+wDsjDN5oRh9cRezyIoKVbkBCyG7BRVayZFpFjPxT60b9/eN9ZiuYxYQr5wPIiXfm3RooXRu9rXe7ltNlGirl27etanGGkEUXkkKlgFxlq8GzZsaFxA2KzwUITBXIY3MZsGr5OeXILNrJcbVeQSq1ev9ryeGCgpVuQE7BAR2dO8IuiA4LAA//zzz/k+FM+lGjWbsC/qZiOWbop0cHSApH399deevceQH3Cc/PQSkO5wXESw+/XrZ4hdIjRp0sRsRtiwIBdQhDNg6K5xSFGEgWUiNSSqJxaz9rPeeV1PDJQUK3ICu0NUXXHYx7NTp07aAjUKNEiYM2eOBB3WuqhRo0aum5tQBNa7d29DTsaMGWOixl7LREDWv/zyS0+RdjYfo0ePLtIJu20qgGylT58+ntdH5gpkKJA/qbPOPhA5ZzxZXXqQ8ePeYIdGihWKvWDxIG2qpDi88GJF5lVtZb6ArpjoSpD11rQVhtjij9u2bduU/pZNFs4UpPiJMqvNXXwQGZ4wYYJMnz7d3ItsUlOFlftQ6MiGLqggAjhs2DDNfEWB4nKkT7pRELPu4zTkBymJXi1FTsBCr8V2kekk0t1EApksFGFZCcSO6J0fJs9syEe+//570w0s3SwC0bo2bdqYiIwlbWw06KaoCAP5xtixY80GpEePHqaNdknA+SXDwWbX6ruDBO5X5jCNmkdCrdj2gXUfG0kvt3e28P4RKgqu2E4RjhbTmUzbX0dunNBzUq3tl65nmQLjAN9hNgOZKETjfRhjbL5GjRplLMbQzgYZnAvS/JwXCjuPOOKIEhNiwHthl0cr6KA1VEEzu3LlSi2wi2FPx3nxmoQpX1jtkyI7oKRYkTMQKSbFxuIUdKABJbIStEXUjYSC6HmQpCVUqENaaduMzVomyQUEm/fkvhs5cqTRzgatMxtEmPbYfH/r6YxtWKYyNFyvjh07mvmNjU2Q5D+cT4gf+ndFZPR83rx5ulGQ8MbJNsHxA1Q+ocgZbGqRSCBV9UEH6SQmTxYVnTzDgAwHqYKdVD4RRopx0BFnI73IfcdYw18XyQ6yAWzHcg02gUOGDMnZWOfc0jhh/vz55v9x8cA5IhvgO7H54LOCJCMgo8P9qhKw4kV2QZTSxIK1YvXL+VBSrMgZSOlazaiSYjGpW0gKLZ+DqKFNBKIsRPhSLTbzGyDB6FqJ6GZTb4fWmHuOjnjOxWr79u2m0CwXxUAQx1xu/nC5IEJMah8LtQoVKmT187h+FFYBpCqM30L33k6nQLHQgU0fm4VMSHMKAUuXLjX3nl/Oh8onFDkDCyLpcW4ShZjoIEVRXm1mkE9A4ojyFarUBsJGUR0RTCKLuapQZ3Gy5JCUJnIKbNJwq8j2uYYo0iY5W9rmrVu3GhJMEZ2t/h80aJDR/GabEEeDwrvx48cXrI8xpE81s7GBJI77WYvswmC9Z2PqhyI7oJFinyygTz31lPEfJbKD5vLqq6820Y9EYMEdOnSo8eEkIsn7IHbHZP2ss84qtlBg5xQLl19+uZx33nkZ+S6QYux7iKIESTcab5MQJKlAKkCjiNcu6Wj0moUESCGEiZQzUoZ8LRZE4ZETsPlg4eJ843WcLV9VGtZAxPmZSfCeSEOocIeMsABzXtlYod3PB5CncI1p0d2rVy+pUqWKFBJYTyDFRP+CPo9Hg2tNVsYvJDCb2LNnj7GGjMctvAglxT4YVDfffLMpaIDIEv344IMP5LrrrpNnn302Ih0aazd/3333mWjkiSeeaBY7IkIvvvii0TE+9NBDxdKZtGE9+uijI55z01ErFVLMgsWEip9q0EERAteWc1GpUqV8H45nYNP9RP4Yf4XS6IRoJkQJ8nbYYYflnVAw5thk04wCOYVN9zM/cA3YRFMA6KUFnjmRwkFL3qdOnWqOtV27dsYFwgu+sFxXri+RccgxxLiQxjDOOYyZfI9fL4KCMr8UlWUbq1evNmsc675fkP/ZQ5EQ2CmR4rzzzjuNhRAg0nvOOecYcnv77bfH/VsmrMcff9wsFhbHH3+8uWFfeOEFmTx5siHBTkCyjzrqqKx9HyILRG+YVJUUh3WIROiIGmarCMivYHywYaBopRCq28mOQIjZiPbs2TPnKf1EgFSiLbZA0kNBLPcpJJNCPchzvjZuZMhwdWCRZTxwLo888kgzl0A4vShBssSYJiEQyUIhxWRvGBOFcE9mGmQtgEonwrDzh1+K7ICSYo8D6QNFWM70A9Gc/v37Gy0gu7B4lb9Myk5CbEF7UkgxKdNoUmwXIJCNRRsSSHpTdcVhWMJB5FxJcfGxwjj3QuQvE+B+ZNNJNDNfaX23oGCMB5pYZAnoJG1UkC5wzBHMQ/aRyYghhJdIMETSZsKwU+N59NeQMSLY9hx6kRBbMIcy37IRQn/Ld/CzUwO6c9LhrVu3Lpj7MpOYO3eu6okdYJ3nHmbT7RfoqPbBrpz0cXT6kqjNxx9/bCaoVMmU9dFEihGNL774wsgzmMBJeZx//vkmIpMI69evL9ohg2SEl/eF7FvdX9ABScLfFK1poUSTMgUWGMainx06IEKY+eONm0kpUi4ACeVBqtyCMcpYXbhwYZE+GDs527GSSC6ElQekkOgy78F1ZIGkAxzSLog1ryF7BNniHrDPA8gj0Wvb9hry60eJkZWoIQXi3NCx0K/EmOtlm5UoIsHYZW1VR44wuN/hArjr+AlKij0ObrJYnqJ2JwoZTZUUv/7662Zhix6sFN4QmSMKw/u+9957ctddd5kF8KSTTor7fh999JG89NJLrj+fSDERbhZQnVzDkhLIH+lqv5GmXIDzgsa1X79+vvOAhTSiKSXqOXDgwILYBDLf8GDRY26A8NsNNvc1/3aSW4gwxZJ07WMTz8MC0muLtXgPsibMTfw/raktoSyEyBtyIDJCtvjOj3pcm+lTxJ6nOD+MYYWY+515z2/jRUlxjgtEiBq5AZEEFgQWllhRBfucXXjc4pVXXjERmT//+c/FKqKfeOKJiH8fe+yxcumll8ozzzwjxxxzTFw5xQknnGCiHxbsDu++++64x4C+iAWB1ykpDus5kbn4jfDlCmzSIEp4FxMx9AvIhKAnhTiiIS4EQuwE8xPElYcFC6BdBO18Z7Nc3Pc8x/VkLmEOsL/j//PRUCSXYAwzDmzxHf/vJwkCBY1E6q0XsyIS6sYRCdZ37m9nrYIf4J87sgCALymuEW7JKzIDFo9YbVntc6nofocPHy7PPfec6SqVKPJrwc19yimnyAMPPGAICWmzWKA6nUeqRT3cNERMFOGImSI2mFixHyRaTPQBGYLXAfmjdTPaWMhPLKlSEK6bc34iao4cDJmFl4oMcwkCERTfES3GCs8vTYzIWK5YsaLgNy7pgqwJEeJs2Rn6EUuXLjUbYb9JhZQU5xBEUG655RZXr7XpQnSUTr1uulWuLND33nuvWaCvv/5618dsu9Bk2oQewk8UTVscR1bqAr+lm3IBMgqcH4q8cGHxetSVTSsSAiRKulAqnGCDRPGdlwsEozd4BHQYx4ksQIMM1jCn7j7oCO3VE8cLpHkZSopzCAgsMoRUgMYUIsDE5Cy2o2MSRQ9uJikKPP7yl7+YaNvf//73lFJ26KRAptuVQoqxm6PwRDVYYVBMxmZHSXFsMMFS1Oklz9xYiwERUe5NNNC64VPEgi2oJfPBZo/iLK+Oa6L7FELigKTjOTZoHsM65peNTi7Wss2bN/vKn9jCm3ehoggsrKSu6GZnQSELFkVID5ypCTRNPJwgRUfzD1KW999/f9y0Je8ZDSbCd955x0Q2knXPS0cuADnHo1cRBqkmW7ikiE0kmGRZmNHrepEQT5s2zaTGNQOicAPGCQXH6HW92jKZTR7BmULrypcpQP7oJVCoLb3TAeu6X4syNVLscZAqhpjSmQ6CazvaETm++OKLI177pz/9yfx86623ikjtDTfcYG5auuGxWEeTMBwnAE4T33zzjSHa7HiJWH722WfGn/S2227LePEA70c1Nu1CkXQowtps29gk05H5QgJWYGz+SEF7Kbo2Y8YMo7vs3LmzEuIYsP6tfiouyzaQp3Xp0sUUP7OhwqXDa2PHrhGK2GC+JjhlpYYKMes6WWyv+7HHgs5OHgfayX/+85/GGeLdd981bhNU/6JNTrYLo8gHeQJ4+umni/2eds52wsP9gN3uJ598Yna8DGa8kIkyM2lnA0Qfhg0bZr5TUAtvnGAx5Jqyy1Zz/Pig0A6TfM6TVwqVaJ+Ohg5So44q8SP9WlhbHGTxkE9QSOoldwfrN+/HFHiuQHCKjTAE0Esb9HxnFn744QeT5fYjdNX1AUhbQU55JIKNEFtgfeSUXSQCVle5truiMOHzzz83NxAEXBFegMgGeL2QLJ/g/DRu3Ng4oli7tnwCuQtjmI2lFiLFB/IAKyvxWjQ037AbKa9kiPCXZaOn4zkxaDtOUa0fZQLZwpIlS4wVo18LD3Vro8gbqGZGMkCqRREGEXoiR0oaEgONO+eKqvh8azEhMsickAMp4oMM1KeffqraywTEmA0ekTbrRJMvUNyNxE2DFYmBtzznyOnVHXQsWLDABC78YJ0ZC0qKFXkFEgpuonwTGy8BOcl3332n5CEBiKTjmUoWJV9jh+iw3dBpEZIiU6Dwjs1evoIF6PWR3ZH5UAlXYnDfe0XC5QWEQiHjVsK67tfAjpJiRV5BioVCQBYCRRhEaEjJW02fIjbIMrBw50PLx7UhvUxUT6HItDMPmRCrm881sOGkCJuMlSKxTCDa7Sno2LBhg7Fj86t0AigpVuQVaLEoslMJxT5YKxsKOLxoPeY1LF++3FTu5wpcF9LLjRo10vSyIiuAVBCBtAWcuUTXrl21c52LAjtqGtQ+MxKs42QXmBv9CiXFirynwSmaIuWi2AdIMVFI2zxFkXgMQYxzocOk2QIEnOvTpk2brH+eIrhgwwW5yNXGmKIxPPFJe6tsIjHIbGqBXXGwjlNbkWkL11xCSbHCE1ER0lD4KivCoDMShQpEJRWJQaoX1w58grMduaHtOpZZdNfzq2Yun/rLI488UvXXKQDLTIIGIJvzI/ULNBDJd4GfX8B5Yi7QsRxZC8N58bN0AigpVuQdpAkR6NOUQRG5IGbLI7oQzxWV4DRBIIKTadBeGu07UWnGqxLi9GRBOIaon2vqoPCNLqY0U8o0sM/ivsH5Ao2+IjGYB8gYqdtMJNC/k9WgyM7P0NlJkXew28ZvViUUkcDmh05J6NcUiQHRQguJFVCmzxcpZdxAdNNWMhDphHxpRii9olI6pnH+IGSZAsEIIsRsJLl/1B89Odg8EKxgzVLsA+s34xSrVT9DSbHCEyDlAulQAhgJKnm//PJLJRIuQDcwGtAQjcyUDhM5xoQJE8xEj2RCUbKIJLpVfipS3/RBxCAdEydONBu1TGDbtm1GOkFr8nw3wfHTtUCypRmPfbCZXr9LJ4BeVYUngE6TCXrx4sX5PhRPAUkAyIc1k1/BOCLVDAErCSAL48ePN9cAsq1RNIUXsiFs0HA+yNRGcsCAASYKrUgObPLwkFZEgkJnZCVYCfodSooVngCemNWqVZOZM2fm+1A8BYgY2jUKGDTC5g5EiiEOuERs2bIl7ffhfEOIu3fvrtX4Cs/MB2zQIMclAZknJEEUR2nE0x1wA8Kb2M/OCtnCzJkzzVxZCG4cejcoPAEKlyiWmjNnjjZEiAKkmPQUE7LCHfBZJQpGqjnV8USkmfPNJq1Xr166CCo8BTZojEmI7ddff53yxg9pEfcFf6eE2D0ITDCX+NmDNxvYs2eP8dNm/S6EAmS9IxSeATcVhGTRokX5PhRPgeYmdLnSts+pEQeiaYynVNKdW7dulW+++cZszhSZj+Ajk+KnIjNjHIL77bffyq+//ur672g8w+u5P3TD5w5skpGw1alTx2y2FftAsIbxxPpdCFBSrPAM8OU99NBDVUIRA1glqT1b6u4dFBC5tU6CQEMwiHZYb1hFZjd32DXxU1Fy4EzTs2dPI6lg3LKhSwZqNvA+J5Ni6xUUyfHzzz8bqUmTJk3yfSiew8yZM41nc6G4cSgpVngK7DYpZsiG16yfYdOc9JYnaqFwBzZZyCA4Zyxs8cB4o6iOyBtEQ6OZmQcabTqBqTY+c2CDgcSHjRwuKcnmBuuzTcRT4R4HHnigaTyjG4lIMF/Onj27YKQTQEmxwlOgdS6LJj3UFcXtwcaNG2eIhSI1kPpEFhHPymrp0qWGGEMw6CaoyDzQwKJlVXvBzIINHBs55s54xIQoJ6AQivbRCvdgvEL+iMwrIoHUkQxboUgngJJihadAGoYohkooYkcrkJhgx6TR4tRAcQxji2haLG020bO+ffuqV6vC123hrV+sMxqPVRYWhdrCOT3QMIUGJ4riYJ3Gzq+QLP2UFCs8B3adRIrZgSoiQaESi9yqVavyfSi+k59gZYXOGJkEhSFEf/h/WugSYVPJhMLvYM6EFLP5wymBKCdjnOKwQtF85hJk5ZBdqeNEcbDxQupYSFFioKRY4TmQBmRCz5RBfaFFi9HJarQ4vWr9Hj16mIp75BK2M5h6ECsKBZBfpBRsnJELjR071uiI7bhXuAfzK/MsXQSpS1BEgsAVkjPW60KCkmKF52BNwFVCET9azPlRUpw60AWiGyZSTNEi0WNkFYrcROurVKmi3rhZxgEHHGBIMAVQWAvSfEazIKmDjphIrQqhS1s2MHPmTNPuutA2DDo7KTwJUjKI+LUoJ/amAQ2skov0IxxIJrBqgzjYIiRFdgEhPuKII8xPRXbBRu/UU081mz7Vyae/gcaaUTfNxcGcOX/+/IKTTgBdVRWeROvWrc1PjRbHB4SOnvOK1MBCR+MCSDHpPzxelRgrCkXniYaYCCcyK6QU6OWRU2hmKTUgmyg0aUAm157du3cX5PlRUqzwJCiIat68uUyePFkn8wRFNRQ60GZT4c6WDdJApT6EgQgapMESY/XGzi4gap9//rl2ZswSGNuM42g/bp5HX0xnR51Lk4P5lHOVavvsIGHKlCmmkQlSnUKDkmKFZ0EHtzVr1qjTQhywaSDCSdGYIjFmzZplHuvXry+2+UJjDCGeNm1a3o4vCICQUUCrxCx7hJiudmz0nE0mKLBr3769ySpp5i056PiHfZ0GG2KDNZmxRLfQQoSWXSs8C7sTJVqsHZiKA0JXr149UyFdt25drS6PA84PUWL0b7FsqSwxVo22wq/47rvvTP0F4zhW1zXmT9LdREBxo7DyNEUk2LSRfeN8afe6+FFi5sxCLUDUVUDhWUBS2I0S3VDNZ3wnCiJv2uUuNvBspSCELl6JvEaZ5JFVsCjSNTA6oqxQeBmM7z59+iQkcjjWsDEkEqrzafwiXOYA7foXPyPBxqpjx45mc1WIUFKs8DQ6depkbsQZM2bk+1A8iQoVKsiAAQNMxFhRHEzcyExw63ADNhgUJlGspEWMCi9j5cqVRTUXOCS4cZlgY9i/f38zb6iMJRJE0pFNkKHE71kRu8COWpZClU4AJcUKT4PIhy24U8QGCxxYt25dvg/FM7BFMpCAVNJ8SFDweGWTgcaYVKqSh8yAaDyttPmpKBnIfpDGJpuW6vhkjKOXRYO8ePHirB2jHzfQ/fr1c72BDiImT55c8DZ1SooVvii4w0hdC+7ig3S/bVkcdBBBGzlyZNqbBIhGhw4djO4S+cWmTZsyfoxBJR3UCBRq2jUXgMxOnTrV6OTZ7JFJS0cLz9/QHRNpGtHRoINNNBlJmpzo+IwN5lPGCutxIUNJscLzYOdOxJjIiCK+pyYPHBaCXDXN5gnSQKSX81ESkEYl1WyjIiyaivSBMwIyKH4q0gN6YIIDpK/JoJUEbPrw6kYjykYyqCDSTgSUeUMRH6y/SHSoYylkKClWeB5ENYiITJ8+Xb1kEwAjddoXL1myRIJqFcTETetRIr1og0sKq9MkzTxmzBjTBEGRHrh3GZt6D6cOir9ssRwp/ky58VB4xwYSQhjUsU30E+/skm4yCn38TZs2raAL7CyUFCt8ASIjROrUZzM+iKazaKI3DCLxoC34IYccYibuTBBiJ2rWrClly5Y1TRBUu63IJTZs2CDDhw8vGneZ1GRzn7CBpMNjENtvs6ZQN4ClJXISRWzMmTPHZHgKucDOQkmxwhdAi4iMQgvuEoPUFlpDCFxQYAuNunfvbvRu2fAbphr98MMPN1KKCRMmGAKuBXiKbILxRYaCWgE2vNkibRBjNn0Ax5Ug2RGizcZ1Qi3YEmPy5MlGalOtWjUpdCgpVvgGEB60b+hGFbHx/+2dB5SU5bnHX03U2I2hiA0UCyJgAaUISJOidKUY7D3eqMfcG73ea0xiicYTNZ5rLwFEERWlShUBEQXpXRQERWmCAkpUYrL3/B7zrrPD7O7M7ux87f87Z87A7OzszDff977/93n/z/PsvffeVnEBYchgH3e2bdvmpk+fbrYRFgJV2YCD10d4k32dJOEgCg91hFl8sTNWu3Ztq4hSiOY8+JVpBPLFF1+4JIDVim5/JNiJzLBDge0p7gl2HoliERnwfBEtoZSQKBsGMTywcRbG+ACJoiFWfVm6qoaoGglKiGP+jTgm+UmUD98RC4pCfVdRBt8mCbPNmjUz32+hui1io2CMRZCz4IwrHFtf3xnrhCidWbNmmbUmKdF0iWIRGZgYmjdvbtGT7du3B/12Qg2VF2j7ir84riWUWBzRhY4oWqHtIt6zTAk8kpTmzp2bSB93LhCNIxlUUbmyu4X5XQ9aNlevXr3gYpwFHyIIMRTX5DtKLdK5Uhao8sfZRYsWBTLGBoVEsYgUVKHAIsCALUqHZBwi63hfiajGLcpDJIuII5G0QmwrlwZRY6JrRIynTZumOtHlZLBT89lXUhAlt6g5f7CGIYqDBPGDCMJnHMeoPkKPds74Y/OdkBs33nvvPQtGJcU6ARLFIlIgiM844wwz/tNuUpRdZxdxTCmdOEVEGKSpMIEg5nwImlq1ark2bdpYMih1eJNcJ7osEHtU7wha9IUJ7E3UFmeRz7VKuTUqqAQNC02uMa4vxll2neIA4yCRTxJnVYKtbHbt2uXmzJljFSeS1PZaolhEDrb3mExUiSK7zmxkrsfBW0zyEdniTGxEecK0Dc97IbpGhQqOOyJCnfBENuc0nnRsJSzywig+WFRjVYpD0xVqEpNEyLhYKJ92VFm4cKEtiDgvk4TOChE58LuRMcwWehzEXlXy85//3CI+UfeDEbVgYmZSQ0iEFS/Usa3MnDmzuOSTEB52Ej766COzkeCJ79ChgyUghnUrHwHJQpTrL8zXXraeaXbQklBarLLn6LvvvmuLtaTVb5YoFpGEhDu8smrmkX2pJZLBomijIAGJ7WWEMd97mCLEpUHFALZn8S5OnTrVSglG8diL/F+HnA/Lly8vLusX9g5hRK9J+mNxh1CKckIplSbIAxBl8/7779tOF9970pAoFpEE393xxx+vDOIcPIIk8dAMIEowEbMjgB2Bbbx8dvOqSoj6IYrbtm1rkRZ8jFEWE/k6JnhUwxoRrUqoloOfGssXO114h33DjChARJsFKQvUKFb++fjjj+0a1FxRPkVFRTav0qyDOs5JQ6JYRBZWsZs2bbKtSFE2lHZii5Z2nVGqRoHvjwQ2BDHe6Kix//77W3WKdu3aWSY/W+Z49ciATxp8f506dYrk91hRvAhDTLLAQ1j6kmdRgwUp57EvExeVhFKuNZIZWYwlcUGWK+vWrTOfexKjxCBRLCILK1ky/1nVivKh+DoT2/z580Pvc2XCJSLFJNawYcPI+9q85YOIty/fhvUn6dHjuIII9lUlfN3w1q1b232U8VYPFtd8tiiMI4x3WEDwx4ryeeedd2zhw05sEpEoFpEFwcRqlqSmjRs3Bv12IhF1pbwOVgom7TBPZGwz41+MW01boqRE2+rVq2cRmSlTpiSmIx6NIN58883YNoRITaLjeyUpFBHso8VxilLWrFnTOt6RpxDmiDGJrpxvjHth926Hga1bt9oxY0cjTudrLkgUi0hD0gTb62T6i/Jh25ayYWFNVkNAYC+gCQYTWdSrZpS2ODnuuONc+/bt3VFHHVVchouocZw9j4gnahSHWURVFsYhkujwYrL4IdoWR3FBe2RsIOx6sIAN63fK+2IByhwhsosS77///lbdKalIFItIw+q/ZcuWthVNVyiRHURPGADDVGLJF9YnQx9BHIYmBlUJSWdUqfDloSiUT2UCkiHjFiGPK3xPa9euLW4khAgmiQ5REcducKkQBaeREgtYjkEYwTJBCTZRPlSbWLBggUWJ4xiMyBaJYhGL1s9sS+PTFNkLMoQxIjQsINBZ2PB94hVP4q4H3mm8qJMnT5bnOMTgDed7euONN+x7YtsZqCgRxSS6isLCFRFFfkeYQNxhXxHZM336dKsywg5AkpEoFpGHVS3RGSYpeYuzgygWTT2o3hGGMm1sc2LpYMv5iCOOcElttEKEnGYOxxxzjEXgfNetJFarCCveM4wnvHbt2maDSeo5660UnKdEGknACxrEMD79JEc7cwUbDAGSVq1aWc5JkpEoFrGArkuICkWLc0uWoUwbiwlanwYFiR0k1SGMlQzzQ6UKfJDUOGZiJynyrbfeMmsF29Rhz/gvDbyKlNbjPkpwvBFaLFIAuwv2iHPOOccquoSxNXMQsHBbtWqVeaqDgoo1S5YscUcffXQia+xWJkrMDkfjxo1d0pEoFrEAMdWmTRvrxIMnVWQHkzriOKhEGSbRDz74wN6Dj4qKH/AJWkRumjZtapMWW/VYKxAeUUvKQ+BT6ikqEbxvvvnGIp8cb6Jo3iJB0hYRYi3gSkLSKB55qgFxTRcarEb48rHSUcZRZAeLPcYVSgb+NCLXZlWiIyBiAwPhjBkzLKI2YMCAoN9OJECIkiwDhS4dhW0D0UHnN6oxiNIhOskNoUa0mHu+JxYzHEe8rGGPwJKMRmcxBGVYq59wPLkm2E5m9wKRQNQRz2zYj28YwPZDZJ3rmmPHTlShYPxiwYIw1wI7e9hd5biRyyEkikWMYCAkWjx8+HDz+xG5ENlDzVESLQpR5J6uekQnyAw/8cQTq/zvxQW26onup25ZYz8hckwkGXFMkmIYS1CRSEkEkfcYJlHMuUgLdPIRaG7DFjIJj3juOZaKnuWGX+D6qiqFACFOnoRf4Ivs4Jxn7OjRo4d2Pv6NllMiViDoyIgmWixyL7FEEtFnn31W5X+LLU78pVRcEJVvnYwYQAgTRabOsweveNRsFoWCY0PCHH5KznsWFUceeaT9DCHMolqCuOLCmPORyHtVl8pE2DHe+7J4Ins4biRKkpMjfkBXvIgVbCmToPTSSy+ZQAhbqaCwb33SpQr/JAIBwVUVExgRQ7bQ8ZeKykOEh+grN0SIFweU3KOZBOX3/M+ZAJOYXU49YUQw5x9Raiw77IpwDnJcWBBqyz3/YJdhR4iqKlVRoYOdEsqv8T2GafchClChg12m3r1769xPQaI4IjDBPfHEE5aFjqhgC/X666/Pauv5T3/6k5swYcJuj+OVe/7550s8xqQ6bNgwN3LkSJtEiJxcdNFFViYqKpC5z7YnLWUvv/zyWHaUqirIqmc7GStFvhMvSOig+xUiBFEs8g+TG2IPsALQ2AYhiD2ACgr8jBJigMWI5xDRi9OkyBjGjXOXKCXVVXxraT6/P/cQUUnu3FUICEqw0Ea4+sVbPhc6JNbxPWJ1EblHiVlM4MEWPyJRHAEY4G+99VbL6u3fv79NYojWm266yT399NNZeWeJFt1yyy0lHsuUOMLrvfDCC65bt24mLt9++2135513mrD0k2lUosVDhw61bVF1NMoeJi624hFR+fSYkbjEBIa1RQkdhbsOKFPIjUU0UTXfwRBBsXjxYhtbeB67AvhoeV5VRZJ5XaKF+X59GmlQGQLxxY1FHdv3BAzwmRIdJ+GL45CkxhphgHMLwcp5xoKYsSVfnSo5f9kVobaubC65wQIZPdGnT59YLYjzgc6kiGSHsgWFOCWRDGhy8Mtf/tINHDjQ3XHHHeW+BgKnY8eOZT6HqAq2g169ermbb77ZHuvatau74YYb3GOPPWZ/OypmfNqtEuWm4xQToqLF2UM0zS8kqPtZ2aQthMp7771niTckMWkQDgaiwtwAEdGlSxcTkF5McvPiYvbs2Sac+e6JxHHDYsA9HuWKXE+cV2yjV4SdO3daxQ1EkL8RheTzsEVPaT/+jbDnuvfWHMS+osHBwrnCQhhRTIOPfIlivn++a39Oi+zg+mVeJGqvnI7dkSiOACSCEO1gO9vD4E80lBqa1GckEpxNhi6TSWmlhYgKMxEiilMHtJ49e5ogZxsyKhMM75sEpGeffdYSjxSdzB0ii5S4Y8egMiXTON+w6hCFlCAOD3wXjCPc0qFuNNFXIvyMGTQQITESUfzhhx9alMmLZW6IUAQKYwzCh+uPG3+DG+KU10F4E7315eQYtxA1vD4ex1TRy2N+zMPOg4AHIs28Bu+R32UBxyJY0cLwwjnQpEmT4sUU321Fdww4J1lgMyeK3GEeJ1J8ySWXKFiUAY0iEYAyRgz66YICkTFmzBjzBpZnEWCSITLEPVuIWCGuu+66Yv8hMNlR8ind7+lLQPHzTKKYQcoXtgciN2EqJk+GOStiJlKRPQgOzjtqjnKe5NohCh8nQoVzSr61aEEULjVJFbHrJ1AifewYefGKfYGbX0hR3zcVnnvuueda6acRI0ZYhRi/MOecYveA1+fnqUIbIe3rBrOo5XV4PH23KpuAgAgef/6QWzB//nzXvHnznHeh8Mdjw6JaAgttkRssRgikYS0qZA3pKCFRHAFIeMtUMsXXgUSQliWKed6FF15oGddsnbA1iieZaM/DDz9cHGHhdfDdpa8e/d9B/GZi9OjRbtCgQS6M0Ir1kUcesYhnlJIFwwKDJ4KHRBkESbbRGS+OOJ9UOzT6pArR0qLL4BfcjDMI2tRycPiJWZy2aNHCfp9xxkcLObfOO++8Uv9+VVRCEcHAGMKCm/GBcyHb75ZdBsQ0SdSqQV8x3nnnHRuby7NSJhmJ4gLDRMFqLRuIgDBxkByTKRriH/PJM6Vx7bXXlvg/kxaDCkl1WDN8Ah2vk2lLq7y/0717d3fWWWeViBTffffdLgwQiWDgxRqCn1FbbrnDgsy3vE39nksDEc2Ex3mj+pfJrX6RDsLXV7uQyE0uBGFoW45AmzVrlo3P5fmCGVPIS+C8YddA2/65g/2IeZBjX8jGKlFDorjAUAOWqhHZMGTIELMysO2Pbzgd/1hFbAF9+/Y1vy1ePS+KeZ1Mgr28v0MCDrewgpAj0sm2Ub9+/YJ+O5FuBV0ebKcjiIks4kHV1rYQIh2CL9gnEMZLliyxf5cFfnPE9JlnnhmZZO+wQXId43FqbpLYHYniAoMP6rbbbsvquX41R3Qz1bPr8Y9VZNWHwGXV7ZNX/OsgHtOzy/3fCbPwLQsGAqwTr732mluzZo01qRC54XcQiNjgcW/YsGHGyYnziXOHSU7F9IUQZY3LLJyzifpi/cPjrkV2xWBRQQk7Sq1qXC4bieICg/Ak4S0XSHbyNUVTk+3YzuYEr4i/CnFDua1UbyAVBsaOHWv2h9QkGxJg/M+jCiKO7beJEye6a665RlUQKgi7BuvXrzcrDdFjfxypWkIkhyQsSvfp+Ip0sE0wKQvh8QKNHSYixiRy+x1JgjN4iEnGxEcsQVwxOI7jx4+3EmyqwlQ+mrkiwNlnn23JdnSzS006oCMNfqzUweKzzz6zmwfx4jPDUxk8eLBdLPiLPHS/QtiQIe7hOaNGjYp85xuiESxGyF4mGi4qBosotjBJumTC4vzAcsM2KIs0kCAWQuQC1UeY07BesfBmXKGUZr6bCCURAmpogs6dO2tszgJFiiMAkbfhw4e7e++9161du7a4ox2R4yuuuKLEc33TjZdfftnuEdNXXnml2Qd8CRsipiQ4IIgRwh6ifHS4efHFFy3yRyk2qjZwUf3ud7+L/OBE9juJX7R/piyUtpEqBjYaymjhR0cYk4THwovjK0RpkPWO0KHDmRouiFQo0YflaubMmTY3cX4g5Bhn8tXsI4mwwMBLTNWX1N1fUToSxREAMXr//fdbV7lXX33Vor80VMCbXF6tRgYXosnUdpwwYYIJacQLFgJaRqevHKlUQVklyqzxfAry33777VbaLA6QVIgdhKi7ytJUHLbi2OpkwcT5yYSmigKiLHxjD+6FyDRXMY4QAKK7KvNTrrXRRUmoNkHQIi7zdyGQKI4ICNVbb73VbmXhI8Spv4eozRZE8kUXXWS3OIJwa9WqlZWio0RbVJMHwxKF4HxhxwFPoBBCVHZ8xuZGYlh6EymRGyxAsbWx0KBevMgOGUxE4vCdlOgGmNpcQOQGHZGw33AM2YnwnmIhhMgVWg+z0CapzpeARByzuylygzGZpHlsKakWSVE+EsUikeXFyIKnygaeWJHbYItlAq86UWIiO1RUwaO9atUqt3LlyqDfohAiYjB2UMOfRGjPzp077TGf0CuyhzGajrV0iaxIH4MkI1EsEgm1irFPTJo0yX311VdBv51ICWIiOundDYkak5hJDWNFjEUm6HRHSajSOt6JZOLHDGoRp+bIEOVs0qRJccUgCePsYDFB6VHKkHJMRW5IFIvEQvIBUeNx48YF/VYiwbJly0wQUz2ALc50qGNNxJgqA5rARDpcayTuZmolL5IJSc/sLpE4fuKJJ+7285o1a1rwgtroLMhF+SCIGX8pwSZyR6JYJJZ9993XkjqIUii6WX40h26AVJxA2JQGEWOiO9SFJgIvcSw8+EUpKZmpZb1IJkSDqX9Pg6rSoAIFC3GSeeUvLpsPP/zQFg+dOnWyYytyR9UnRKKhfiMRCqLFWCpUu7j0Emx407LJCEcQU+eazGdalFNrVEXjBaWh6FpGJry6kyUXhO2mTZtstynbChMsxP1iHHGscXp3WGySXEdggnr8omJophKJBgFHMgIDyuTJk4N+O6GDjlLUlSWhLpcSSXRGxD+6efNmaxaj2rRCCMYB3/QH72uuME5PmzbNdq5ESWhKRRMlksiZ10TFkCgWiQfBR8e/efPm2fau+AGOBRNYatvwXKATVbNmzaxeJu1baQcthEgm7B7Nnj3bWsTTKr4i2/vsMNStW9d8yFRXEK64dB3Htm3btqpJXEkkioVwznywZD5Tu5jBO+msW7fOtrrZiiuva2JZUK6NutBEeNTgQ4hkwoKYhfH27dttoVy9evUKvxb+Y24k6SmI8UP0nXkLOwrHVlQOiWIh/m2jYNtp27Zt1gI6yRAZXrhwodklqCZRWQ455BCLYNBdkQGc6hQieWCpQQxxL5IFreDxAbdo0cLyDCoL1SpYsL///vuJT9ycOXOmtcXu3r27cjfygI6gEP+GCbt169bWLz61iHzSwOtHUgt1LvOF97ix7TljxgwbxEWyYLucSJay4pPD1q1b3Y4dO0ys0aWOTqL5ggU743WSkzaxohDEYbFBMrSoPBLFQqRAS0zE8WuvvZY4D6xvyEHBd0ogVUWyBq+NpQL/m7Y+kwXl+bAmqUxfcixYs2bNch999FGV/Q0awVDNgnyQpAUy2HV79dVXbSfu7LPPDvrtxAaJYiHStvnOP/98a2P8xhtvuCRFdKZMmVIcwa2q7GW2zokY1alTxzzLNAQRyYCI4fjx4+1exBcWPdgasGAdddRRVtu8KvFjFcI4STtQU6dOteo+zFdqiJM/JIqFyFA1oWPHjhbNpBh63KE6BJ8Vrx9R3KqGSYyC/dw0mAsRL1jsMm5SAx5BXNU+V8YTyj+yw0f5Rxb4cYdGSniJ27Vrl7G7qKg4EsVCZIBoJhnOI0eOrFA9zahANjiCGK8fn7mQiRo0S8FO4ZP7VJ1CiOhDPgJjCaXTCgXjFhWEvDUrzmM2TXBGjBhhu214iUV+kSgWopToQ48ePezfo0aNiq0PEvsCiU9NmzY160hQ3ji2W0kYwbYihIjebhN2CcZJdpyCSPryyXxEqOOazMnxpfwa+S49e/ZUk44qQKJYiFI44IADTBjTPYkmFnGE6AoVAYIsk4UYJ8GR401raBXlFyJaW/lct5RaDLrGO2MJEVQg8e6rr75ycWLRokVWn7lr1655reQhfkSiWIgyYHuf6MPEiRNjk8RBK1AK6WNXoJxRGHy9++yzjzX5YMuVQX/VqlVBvyWRZ6hT3alTJ7sX0QcBTLvmpUuXFm/lh2Es8RFVghmMc3GxUrCLNm7cOKsMlI/68SIzEsVClANJd7TOpPxN0JGQyoIQZqLAlxY22Ao86aSTrAUsjUOAcksiHrC9zSJMDQbiwfr1692mTZtc48aNTaSF6XtlLMEShkgnik0gIMpgMaNMKLaQLl26BP12Yk14zmIhQgoDK2VviBS/+eabLsp1iBHERFGIytJhKozUrFnTjjkCnuP96aefBv2WRB4gYkd1gLhE7pKKtyTQ/r1Nmzbu8MMPd2HE7z5hqfA7Y1GFfAsWIcxDfC5RdUgUC5EFJI60b9/eog5VWYy+qkAIk5VNpJuJYt9993VhB2FcrVo1t2DBArd48WJFjSMO5x6RxajvtiQVrj+sEtOmTXPbtm2zx8I+jrDwZ7yjyUdUk6U/+eQTE8U06KCyh6haJIqFyBIG12OPPdbK4ZBUEiXYTsQfHaU2u0R48M+dcsop1h2LiSFuiTNCRAGuu7ffftt9/PHH1v6dLmpRAeHuAwG7du2KVKdSbG7YJmiC0qpVq6DfTiKQKBYiB2HZq1cvizgMHz48EpFLonJMZD7aHcUkJ7ZpmRAQyVGN9ggRVbZs2WILUnytVInx1R2iCF3vaD0dBWHM/EIeC0K+d+/eofJsxxkdZSFyAFHZp08f29KaPHmyCzNMYnPmzLFqDlFPNDnooINMGHPPZIGdIuqfSYgw4xf9RIVpZNS6devIlwGjhrH3tjM+hhlsKpSnxEccpch81JEoFiJHqIxARQqSN/DYhXVCo7YyRfWp5oCnLi6wpbh582Y3ffp0s1WIaIC/kyoFYU3wFD9Ch0mSXBGQ1DDHehVUc598gqinKsWOHTtCLYxXrlxp0XnaOBeyM6CQKBaiQjCw4q2j2x0CLUxgMaB+KNue1Fim9WmcwBNN0kmtWrWsixbRcLYYRbghax5PvrLnwwu2AsYObnSmo4Re3KC8JoECAgZbt251YYP3hI+Y8pTYVURhkSgWooL+4m7dutnE8dJLL4Wq3I/33dKtrnr16i6OUJmCJDw+I0Xtwzi5id0FF2WlouDnTCKIRLbsWeSffvrpdgtLM458Q6CAakI1atRwYYLFPfMJNj21cQ4GiWIhKghRlH79+tkWIxUpwpAEhs+WhAzEIvV+4w7RYrYYuQc64YWxMYn44dwk0Ule8HDhxy3GM7yr1B4+4ogjXNzxOxYffvihRcaDHr/5+6NHj7Zyd8wr2lEJBoliISoBkWIyg/GAzZgxI9D3gr8ZH1rSInE+mkVzkjVr1ripU6daLemgJzkhwgzXB9eLryyBLQm7VdI833xudjBI3g0SqmIwhhMhjusOXxSQKBaikpCEQnQFMUakMghWrFhhExw+tLhueZYHkZW2bdtaCbdly5bZZO+bDAghfmT79u1WdxgRhsc2yQtIOvJRC52KQkElTq9du9aqGZ111llWIUMEh0SxEHmAxK/jjjvO6krizSskbP8hxsnspzJGkiFTvkGDBla+DT8eHdSEED9CmS92tYgOI8IaNWpk102SoTkGx4HAgq/rXiiohPHKK6/Y2I3PWQSLRLEQeQABho2CrUcSJQplYcAywCRXr149y+wXP4A3EmFMfVXATkGZKREclPSiJFYcSntFEd9em1rfjBfUHcb+JX4AUUouRiFbKfOdvPzyy7YoueCCC9SgIwToGxAiT9BGtH///lYNgYhxITreYRnAuuHFnyi5UPGTDNF7kmnYMub7EYXngAMOMCHGvSgcWIhmzpxpdcsBvyq7WhJgu0PCLos22lpXdcQYy8rIkSPdxo0bXd++fc3bLIJHV4UQeYSKD3S8I/Fu0qRJVfZ3aFpB8XmEd9ISYypC48aNXfPmze14eYEQhTbdQlQUqnywEMQqwc6VmkBkD0KVxDu8vlUFzVHIfWCHMQnVPqKCRLEQeYao7XnnnWfZxNzyDZnSixYtsiixoj3ZU61aNbNUnHbaaVZ+yh+7pFXrCDK56/XXX7d7UbXgF0YM08CHJDJyHlTRILcxHDvakiVLqqRrJqUJ+X7ojKrEunCRbHe9EFUE3jS27CdOnGj+Vjx8+YDEMaI/RBZIDBG5WyrwDHrf4IYNG2yBQQWROnXqaJFRxSg6X7XHlgoKnNt4VBmD8HAnPYmuopC4zOKC8QFLBVUq8gFJ0SwO6arXrFmzvLymyB+6WoSoIjp06GB+gn1x/QAANwxJREFUPvzFl112WaW3yL7++mvb9j/ssMOsm5u6HVUeEo2Y7JYvX26Z54hjvieJYxEV8KaSRPrBBx9YIyF2kPDGxq29exA0bNjQ7vPVSANbBol1eLo7d+6sMTyEaOQXoopgwKMQOyJ26NChlS7VRoISW6G0X9Vgmh+Y7Ii4s71MVv7ChQvdp59+GvTbEiIrPv/8c6uPvmDBAhsfOI99d0dReRhnGR9YYLD4oHxaReF3X3jhBbNxqdJEeNG3IkQVQiONCy+80MQXA2JFWhAjptnmB7ZGNZjmnwMPPNC6eSEqfESfyBuJNtryF2GC8/Hbb78tFm2cu1T1YDuehZ2oGijrSPWarVu3Vqh0JuM/YzfzATkNIpxodhWiitlvv/3cgAEDLBt82LBhxfVCs4GkpNmzZ9vWfpK7ThUKRIWvo8v3RaLNlClT7PhLHFcOIpmUD1RJtorB+UeZMKoWkFcARB1ZzOEdFlXLMcccY93/qPqTy64fvmQsE4zlzAMsYkR4kSgWogCw/UYNY7x/o0aNykrgUiuT6hXUryQKJMtEYcG3TdtohAelkxDHuSxoRElYbCAI1LwjNxBVRCk5/ygThg/ee11F4SDK66PxBCqysVIwzpNUx6K6X79+rkaNGgV5r6LiSBQLUSCOPvpo16tXL4s+Eu0pCxJm3n33XatBTIayMsiDgagmJdwQx5Rp4ntgoluxYoUlPorswTpEJn9FLERJZNeuXSVaubM44zwkp0DRxmBgQde0aVMLVGSTe0DZNaL63bt3t0izCD+aaYUocJkfttFo7EEHvBYtWpQ6+LJVR5IHvmQRLEyCvuMUCxZql1Jaidqv1DPlXpH88kUeJcMofce5L0pPniOySI1hKtjgP+VeEfZwwMKYRkA+UIGtJVOex5w5cyz4gWWIXScRDSSKhSgwCGGiZQhjEvDotuYhgYYBlggxXkERzugxIoUmKmxrs5VKJ0O2VoWoKPiFOZ/YgWCLHouEF14SxOHCfy8sYNj5QySnLvTYEcE2wS4fybsiOkgUCxEA7dq1s4zksWPHWiSICZD/Y5kgMY8tOhFeWLj4JiBffPGF+T69D5yKFUcddZQ1bRGiLNg1wgrB+bR582b7ty8BJsIP3xd2qnfeecedddZZFszAWkXeCLarTp06aQcpYkgUCxEADJRdunQxITxixAj7P6V+aDncoEGDoN+eyAESnzxYKyjQjzBmwvTCmclSCOCaJ+EWCw7JWuwwsNNABzoJqGjBdU2UeObMmRbQ4HukWdNJJ53kunXrpu8zgkgUCxEQDJg9evQwK8Vf//pX17JlS3f++ecXe1dF9KBRCxMjflBEz8qVK00E+ZaxfOdJrTONVYhOXvnqDhZFqGKCX5jzgHMF8YQfHSSgogk7e1jiCG5Qeo1xvHfv3om9zqOORLEQAcLAieeMTmqrV6+2aLEyy6MN4gahw43Iv69vTPSYKgK0laZBCBHmJAkhomqIwKTAtjr1bIkK165d23zCJM+y6OX7VwJtfOB7JvGWhLq+ffvKAx5hJIqFCHDSRBQxQf7hD39ww4cPt3bQF198sXlSRfRJFT5EBhHJlHIiqQovef369RPzXVPjGQ8tjSbiXGIQjznfMTYadglYDFCfFlHMgkjECxJun3/+eSu5edFFF9ljS5cutQWgxHH0UHxfiAAgekjJHloJ+y042n8yaTLAEl0S8YIIYb169Vz79u1ti5VJ1Ges08Z73rx5NsHGtUEIfmsSkriPE3xffH++9TJimKoEeMlJvqJSCZYaET/4rocMGWI1pOlWx0KXTphYpxjf1QUzesR3uS5EiCPEFHRn4kwt6E5U8Ze//KWJYgbaSy+91NWqVSvQ9yryD7sDbKNzSwWxiDDGUsMk6+sfi/BBHgDXrxfAiB+2zon6s/BhB0DEG6qFPPfcc3YdEyH2Xnl2QkiepBvp3LlzLYFS/uLooG9KiAILYvzDTKbUJ04XPUQaiDggihhwFTFOBix+WrdubVFktl1JyvOd30ja45zhXPDRSBFMxQjfZe7999+3lsvYYXz039tgJIDiD+P34MGDzRKD3S29ugwl9RDGLJgIgIjooEixEAWEzHP8hrRqxWOaCSIORB5eeOEFE8ZEj0nUEfEHGw0RYm6p2/Pbtm2zLVkgEZPzQW1jqxYEDdFAFiWUTgNfPo2FC6UTlSyXPLgOGZtJlGWcLq07IwEPAh9ayEYLiWIhCghiho5oJN6UBZEHIhDDhg0zK0W/fv3c8ccfX7D3KcIDiyduRCsRaNx81Qqy3okis4VLsxBuRK/CGK3kPXNeh63iBtYHmq6w8OCG2CVBiu5yPM6uDaXkiP75iKDqTicTzgnGZK5HghXlnQepgQ+uW84lEW4kiiMCg/MTTzzh3nrrLZsciVRcf/317sQTTyz3d9mWLQ38Tg8++KD9m2QRxFcmfv/739sWoagYlOvxGejlCeJUKwUDL1UpXnzxRathTL1bkUzYQaBSCTcPVRyYaH3pLwQenkZ/zbMrwf9ZiAUtRjn3zznnnMDtS74ihO9EhhDmuHF8eI/8nIg9Ub44V8kQuUHNceoQs0PDPJnLLgHzN8092AHSGB5udMVHAAbsW2+91erY9u/f3ya5kSNHuptuusk9/fTT5ZZ0uv3223d7DE8cYuuMM87Y7WdkS9OzPRVdyBWH2rQcb6JPTLq5wKTcp08faxvK94WnkfahQngrBS3C/TjBNr+vXsG27YIFC+zfRI6pfoE45vzhXCSxj4VXHC0Avtwhx4D60F9//bXd+MxcU779LlvgVHzxEfbUEloSxMKzZMkSa86Bf5zgRK6l1vx1yuvwu7yOCCe66iPAtGnTrO7hnXfe6dq0aWOPtWvXzqKIAwcOdHfccUeZv9+xY8fdHmOyZFLIFP1lmz7T74iKbbchiInoV9QDyiDaq1cvEzCIYyJZ6YsWIRC+iDsP0VBaiRMJJVKFICR5z0/oZMYjonkeYhnRzDnKBM7zSCLDL5kv0czfmj17tmvatGnOi8N0eG98Xj4Lnw//L++Zz4j4xc9JNQgWCnhA+XzYH7Av8fm8aE5SMxFRMbhOXn/9dXfKKae47t27V9iaVKdOHUugXb58uZ23ssOFE4niCDB9+nSLaKTaIJj82rZt6yZPnmzRQwRTtvB8XpNJo7StfCYYIiVxjCIVik8++cTauuJHPOGEEyr1Wkzg5513nm2hT5gwwYQx50PQW+Ii3Hh7RSYvIxFjxLKPomLB8LtONBdhhwMQAQhnfsZ5zLnHYo/X9jfGCe+fpE4r52XqjecQwebv8fvcEKaIA34XsUDTC57jbzzGtQMICd4fkV9uiF3sDUR5eZz3w3tE2PM+EcCADSJoy4aILjNnzrQ5loVc586dKz3e1q1b187rTZs22b/D6P1POhLFEYAGD6wq0y8gohxjxoyxSAgXWLZQP5FJsLTJYtCgQe7xxx+3AYAI51VXXWVZ16VBAgHtiT1MqMJZdIpJPV/RKL4PvjMm/ylTppiw4P8SxqIiEK0tLWKL95EqC16EckNw+kW1bzLCDYGK6CUqDUSDGV9SYfzA88wOFb/vXwtRi7jlXGZc8jDW8Zq8Dz/uEbUmOMDCkH/7Os9Et1WJQ+QTFmxTp061HB6CDwSg8jXOsrBkXuC8RiCr6124kCiOAERQ2LpJx0dDEKS5iGJWvkSWzz777BKPc5HiMWYQILLExEdiwS233OLuvfde17x584yvN3r0aBPS4sfvi0g+Ezi3fNOqVSsTBuPGjTMxQQRZEQeRTxgfStt9wn6QartCFDO5eyg3iPBFWPgb1wMCmsU9PycvAnz2PiKX1/SR5/TzWc0wRKHgfGU3jsUdQQe6EuYbzm8WmjNmzLCgCd0PRTiQKC4wTCD44bKBSYnVKcIn0wTlH+Pn2YLnjixYtoOY3FIhMvTAAw+UeIyElEsuucQ9+uijpYpifFapAweR4rvvvtslEbbFaO9JYmJVRq+IvHmPMVYXPMeyuoggYIJPFbFe8GbaOSG6yziT/hzGOawOQgQJCzeCPCTEde3a1aozVRUENrAvUlKR64ddExE8EsUFZtGiRVY1IhuoT0tiCBeP76SUin/Mt5fMBrzE/F62Pju2V9kWpVg5hewzeZBL8ywmDZJ9SMrAW0lSRVWDJ5xI26uvvmqR+gsvvNCEhxBhBMtEixYtiq0TQoQJvPDUIGaHlAoT1KuuSlgINmrUyHZZ6HqHjYIFowgWieICc/TRR7vbbrstq+d6ewRb8KmeXY9/zD8vW+sEwonJKVu8ECZJJtsau0m0TBAhZnHA9nChfL6U9rn88sutjvEzzzxjFUn0HYkwgi0il7FKiEJBXszQoUNt1/XSSy8tt8xpvmCeIOEVYYzfHguRdvyCRaK4wDAp+ISUbMGHt3jxYrNepG5TrlixojgrPNsLnwuPLNpcqlWwci5rW1Q4t3HjRtsaZrut0P5ett1IhmRQf/bZZ13fvn1z8pgLUQjwUNLmHFuROsKJsEAd65deesmCRYyjPoGzUCCMSTYl6CRBHDzKzokAJMQRiSQT1kNtTrJjifimClwyvLll4s033zRhXZp1gtfMZAkgoQuRJYvE7vgEIxKB8GkHlUnMguWKK66wnQisLtg4hAgTROHo7JhLDoQQVQl+XmyKtWrVcldeeWXBBbGHQApjOEl+9CTINBeLwqBIcQSgYQfdzKgAwarWd7RD4CKEUrn55pvtnqoRmawTCNvSOqJRhg1BzaqV5xH9JOmACM+NN95YRZ8uulB2iqRFvL00Cwi6AgTecnzFEydOdGPHjjV7DQugoN+XEEKEteQadjcq+IShNBpz+vbt2609OwGvyja5EbkjURwBuFjvv/9+99hjj1lSFZEWvKR4k4kMZttIgt7tbK2XJpIox4ZVgnaWbOWwnUQiANUnqFcsdq/iQZQ+TLYSvlvsOfjQKStEY4PevXvnZJcRQoi4QvUnqvYQkSVogPgMS6135noqCzG3cKOqk5KnC8seRSyZhMgjiO+rr77aPf3007EU05RAo9MRAxgDai7VPwrd9IUdBnzsJOCll+ATopAQAfPNEMK0kBTJCmaQlEzpTIIFYW3zTYUoRDH31KWPqwd/ZQi1gvZVhahAWT0iC9RtDqsg9p2TsNcwETDobNiwIei3JBIMuxXsbGnXQgQBJUWp0INf97LLLgutIAaukWbNmlkSfZjnmDgiUSxEjtBdEEEchdU7NZNZibMFR2UKEkuECAK61nHtcC9EIaEZB4IYscl4eMQRR7iwgxjGJkkAhkR7cntE1SNRLESWPjQEJdtZTOpR6r6FbYKIMf5wEjRJnqRzkxCFrtRCrkJqS2ghqhLONaonkYuDwKTCRNSsOzhcmXtmzZqVsYmXyC8SxUKUAwJy9uzZVo0jquWkaJxAO+4ePXpYzWuixiThCVHIai3Tpk2zeyEK4WEfOHCgmzdvnlWX6NWrVyStO0SKKffpfcYEaETVIVEsRDmRhvfee88mciwTUU9WoxwfBerZinvyySctGU8IIeLE6tWrbXxjZ4JdMiorhaXCREWgNTrzD+M2ARrt9FUdEsVClLFtRetmEjNYqUdt260sn/G1117rateubV3wpkyZYvUxhRAi6mP29OnT3fPPP2+dPhnnouAfzgYCMiTfESmO6o5lFFCdYiFKgcgCAytttoPqdFRVkCTYv39/Ky2HKKZY/AUXXGARCSGEiBp///vfrcY+XRNpeEXpvyhHhzNBYIbPxuciWkxdejVnyi86mkJkiDbgHwZKSFHnN44wsLZs2dJdeuml1s77iSeesCYvQlQVmsBFVUAnVuwS3A8YMMCdffbZsRPEHv+52MWcO3eudvnyjEYoITJk+jLYJCUhqE6dOrbNSDR80KBBlsyhnj6iKqJcJDzFxYYkwmNx+9vf/mZlJxnHjjvuOJcE6tata8GMBQsWaLzOIxLFQqTVs8RKQEJaktpr4lcjYoxnbeLEiW7IkCFux44dQb8tIYTICEELciJef/1117hxY3f55ZcnasFVo0YN+9w0ZaKhlIRxfpAoFuLfLFu2zH388cfWYCAuyRm5QNvqjh07uosvvtgiEI899phbunRp0G9LxEjE0OY5KTswoupYsWKFjU/r16+3FvbnnnuulZ1MGiRNE8AhkMOYLSpP8s4iITKAL4u6lg0aNDAfcZJhW+7666+3CMzw4cOtPz2TjjqRicqWN+QaU/MOUVGoujB+/HizuNGMo1u3bolPDiaAc9BBB0W+XGhYkCgWiYcSN3vttZfVgYxrckauIICpRnHiiSeaOH788cddz5493bHHHhv0WxNCJBB28agu8c0339hYxI6exusf8IJ47dq1tnBg3BYVQ/YJkWg++ugjN3XqVBtINMDuTsOGDd2vfvUrV61aNffcc89ZlEYdlYQQhYLSY5MnT7YkYDzD1113nTv11FM1XpdyrGjIRFk6UTEUKRaJhfJj+IixC+yzzz5Bv53QwkSEz5hOSm+88YYtJGiZSg1nIYSoKjZt2uRee+01t2XLFtehQwfbzVNZv9Kh8gb2JDzX5Igcc8wxQb+lyCFRLBIJiQlk7FKOrH79+kG/ndBDVIbKFCwgmKSeeeYZKyJPnWNNUiIb9ttvP8uW516I8nI8KA355ptvWp34q6++2pLKRPlgnUAYkyRNsEfBi9yQKBaJY9euXVZ6jYQ6EutE9lSvXt1dddVV1koV28n7779vyS61atUK+q2JkINvXxO0yCY6PHbsWAtcEBlu165dIitLVAYCPXQtZbwWuaEzTSSOvffe2yKc1CGWLy132JZjojrhhBPcmDFj3FNPPeWaNm3q2rZtKxuKKBV8+3QcI1te54nIFKxgsU2EmOjwZZdd5mrXrh3024osPimaxERqztesWTPotxQJJIpFYsCXxqTcqFEjla/JA0ceeaS75ppr3KxZs9y0adPc8uXLrXQbpZKESOfbb781Dz+CR6JYpPLhhx9alRtqWGPLOuuss2zxLSoPOSBr1qxxZ5xxhoRxFkgUi0TwxRdfuPfee88mZDr/KEKcH5i4mMBOPvlkm9SGDRtmorhLly6J6i4lhMidr776yk2YMMEWS0Q2L7nkEnfooYcG/bZixUknneT+/ve/u7lz57ozzzxTlopyUIaMiD3btm2zygmHHHKIa9KkiRLDqgCOLZ2l+vbta9H4Rx991LZBSZgRQohUGBcIUjzyyCNWW/f888+3CjcSxPmH+Y4EVwJCc+bMsQCRKB1FikWsYYXM9j52CVbJ2pKrOoi+k+BBxIes8UmTJrnFixe7rl27JrJtthBidzZu3Gi5CCyeEWuUWlO3zKoXxtgnEMWqM182EsUi1jDYUkaM0mvKYC4MZD3jLabjFJMf5dsYkEnO42cimXD94WnUdZjcRDpyDwhS0AzoiiuusApAojAQEKKsZqrHX+Px7mh0ErFk586dlnXL4Hv88ccH/XYSCdFhEvGwrhA5xjdIEs3pp5+uiH0C2X///W23RiTPKrFw4UIbAxBiLI4ptaYxIDjoeLd69WrLB6EKk/gRiWIROxDD+Fmpi9q6dWsl1QW8bccESCIek+K4ceNMJJ9zzjlW0k3fTbLEEW1oiRTL158c8YWNavPmzdYyvn379pZ/IIKFCD11oJknW7RoYQtW8QMamUSsIBLBhY7YonauRFc4OOigg1zPnj0tcoy/+8UXX3SDBw9269evD/qtiQJWGpg4caLdi/g34BgyZIh7/vnnzcJGRzqS6SSIw1Or30frmS8JJIkfUKRYxMqzhl+NFpdsC8kvFT7ofEfZJeqSTp482Rp/4D1mS1Ul3ISINix42BHCLkElif79+1vbYQUnwge1whHG77zzjtUyZjdPSBSLGEFWLStfyq7tt99+Qb8dUQpMkFgnjjvuODd//nxrF43fmAGaToNq7CBE9AISiKuZM2eaba1z5842Dss3HG6I4hNA0pj7IxLFIvLgUwR8Ua1atQr67YgswVfKxInXkMmUSRWRTLtokvHkOxUiGkl0LGwpf0l1A8Zg7dJFB/9dUb/4/ffft0pBLGySikSxiDRYJSgCj4BKLTcjogNRCuwTCGS2XumMh8+NJEkEs8SxEOETw7R1nz59uvv888+VRBcDSIDdsWOHJUIzlya1dGIyP7WIzcBMMXI61kkQxycZjwRJ6pmOGDHCJl0iT40aNdJWbAy+X9p/63uM9pi7dOlS99Zbb7ktW7ZYuUuuWTXnicf12axZMwtIEGhiHE7itSpRLCI7OM+bN89t3brVLl61B41XMt6FF17oNmzYYJPvqFGjisXxqaeemsiBOi5e8qRGn+KwI7dkyRK7HtlmJ3muV69eEsMx45BDDrH5lIT1RYsWmY0taWiEEpGELTtqX+J/okGHiKc47tevn5V3YjIeO3as3ZOMd9ppp0lgRbChDsKKrXbVRY2OGEYczZgxw3355ZfupJNOcn369LFrU8STQw891JrsJDX5TrOKiCS0iyUhS1UmkvFdMxGzEEIU0wCESZqsaSIZSU4KiVpCLN+hT4wV4YXviAQ6rjN8pvXr17fyalyLIv5U+3egiUXRmjVrXN26dRNTVk+iWEQKIk20pTzmmGMkiBNG9erVrQHA2WefbZP1hAkTisVx48aNrSC9EKJyZS0XLFjg3n77bas53KBBA7Mt1ahRI+i3JgLgyy+/tIoUX3/9tdWTT4IwligWkYFs57Vr19rFKZIdxcDP6MUxTUDwHGOpYNvv5z//edBvUYhIQbIyScuURKQrKBYXqr/ImpZsqlWrZuMq5wW5HJwXcUeiWESClStXutWrV1vkgr7tQuB969Gjh2vTpo1N6CRekiBCEhDJInXq1ElEZEOIilBUVOQ++eQTK8G1YsUK85BqYSnSIZnSe8sRxlhp4oxEsQg969atcx988IEleWCbECIV2kN36NDBIseLFy+2SX7w4MG25Ys4ppybfMfh6J5FpIl7EaxfGBsa18nGjRstGnjuuefaDpwsSCITBKIQxthr4o5EsQg9hx12mA3YihCLskD44i0m+Q6bDZM+FSveeOMNe5xKJQhoEQwILqL3IhhImJs7d67d6D5HjeFzzjnHHXvssdpREeVyTEpACo8xuT1xRKJYhJbPPvvMtvFIqJMgFtnCBM8Azo1EEQrRIwRoI12vXj2LHnM+SQgUFqJMlNejgoEi94WzSHz66ae2QCQngzKG3iLxi1/8Iui3JyLI9u3brQoQVsY47txKFIvQCmLM/UQzEDJCVAQWVZ06dbLyfXjiEAcDBw40QcDuAzdFjwsD0UkqG5DApWNe9VFhrESUVaPzHP77jh07miBOav1ZkR8OPvhgK9FGZ0M8xnELWEkUi9BBJzMmz6OOOsqSpoTIx9Y99okmTZqYtcLXYJ06dapFOxDHeNblqRRRjsRTPovFH0nJCBbOaVpryyIh8kn9+vVLJN/FqbOhRLEIFXSpI0JMx6Sk1EUUwVgrSC5iS5mBfcSIEe711193J598srWSlr1CRMkewSKPyN13331n5263bt1MuPzsZz8L+i2KmNKgQQMTxqtWrXKHH354bMZLiWIROhDECJO4XGQinPgSVNzwHiOOubFLge3C2ytUnkqE0dfpz9etW7faljZeec5XeYVFIdhjjz3sfKOaCf9mgRaHOVuiWISCnTt3WkIdZbTUPUkUGoQv9Y4p6/bxxx+b2CAxb9q0aa527doWdcPbLi9sxWGblePMvcgdOsxhj/BNjEia47zs2rWranKLQNhjjz0saZaGL+RrsNMW9YYvEsUiFN2U3n33XXfCCSeYgV+IIAd5BAY3vJg0NSBhaeLEiW78+PHmnUMc49WM+uBfaCjh1LJly6DfRqQgCowQ5jzEJrHnnnvaudm9e3cTxEqaE2Fg7733tnORSj/NmjWzxM6oIlEsAs+SpgvZgQceaBE5IcI00HsLBZEQGsggUChHNGXKFBPFiGNEcpw8dSI42IKmoQYimHONHAsicQQLaG1O4EDNT0TY2HPPPS2RmWgxt+bNm7tDDjnERRGJYhEYFABHEGObwA/HdqAQYYSEJTrjcSPL/6OPPjLhQv1jqlgcdNBBxRFkFndMEiJzfVOVZCvJv/71L2u3jAjmxs4Z5xuVdygleNxxx6muswg9P/nJT6z+NXM6EeN27dpFck6P3jsWsQFfHNE4tls06IuowLmKYOGGoMGD7Le4mQyI5FECixtVLvDRKoosUiGxc82aNba44kYNZ3bLUhdW8l6LqPHTn/7UAlws7KIoiCGa71pEGp+liimfqJtqw4qoQkTYl3jr3Lmz1dhGICN0aDHNuc42Ij/3Ijmu7VFF2YnEXgRzjyhmDMR2QwtyFlj41bV4EnEIGlSvXt3+/eGHH9p5zW5wVJAoFgWFOpo+S5XSQRLEIi54kcONrUN8yESRvRCi1BtQXcWLZCKCqiUbz3GO794LYdpbA2KBLp3+u5c/WMSVf/zjH27dunVmDWrRokVkznWJYlEwdu3aZVUmuFgkBETc8b5Q35URD70XSStXrrTFIZFmRDQCiYgKN/zJihhGB3YDKJdGa3puiGHusdbgnWYBdNZZZ9k9FgkhkhIxbt68uZs5c6bN+1wDUaiWIlEsCgJCGAM+ERQujv333z/otyREQcE20bBhQ7shpFJ9pUuWLLHJA7g2vEBGMEdt+7E0EIRE0KMSMSqNb775xkTv+vXri4UwCx7/GWlPT7dERDClqbTAEUll3333NWFMzXeEMRHjsO8OSxSLgkAbUpJJuCjkqRRJB6GEYOKGpxSINnqhxT2LSAQYkKznBTI3uj6GfXJJh6h41BbD7G5RIs2LX76XL774ongngO+Cjoh+AUOUXwjxI1zzCOPVq1dHIvku/O8w4WzZssUNHz68uG4lk+TDDz9sA3G2fP755+6RRx5xc+bMsS09fveGG26wQTwdkoOGDRtmEwH+twsuuMCdf/75lf4cZFTTDlKThhCZIcqYarfw0eTUiOTUqVNt1wVRTQIftZJTb/j0mYTCGJ1kUcwYRoWFMEW+Oc68N8Zaf6NpBvccf37OZM5ChDrBXgArCixEdhAIo967X/wTQQ6rQA7nuxLFYFQfOnSoO/LIIy05Y9myZTn9PoP9TTfdZNnPF110kZ2IL7/8soniv/3tbyXqhY4aNco98MAD1uq2X79+1skLAU7C0IABA3J+70wmTILU2VR0WIiKR5MbNGhgj7GoZZGLUPYCjqYi+JP5mY9gpotlbkG3WEbMI+yD6lrJ8UHkpopff/MReY45x4njhXjnHgFMgEAl0oSo/DXIWMXCnZrGYUSiOOQQNSJ6S4R12rRp7o477sjp90eOHGntQZ988kmL1gJ1BC+77DL30ksvuWuuucYew+v7zDPP2DbHXXfdZY9169bNTuLnnnvO2ormmiRCdJst3po1a9pEI4SovAWB64lbKv/85z9tWz9V6CGeuQa5tr3gYzJiLOFaTr2lPkYUJ0oRUBbfLNzpjkkUyt/S/4/vl+cCCT9+sUD0lwg7/2YBEtYIlhBxGL9OP/10s4bR+CiMTXx09Yecym4zIqR9QXgPme6cmGzFelE8f/586zjVs2fPEr9Pa9HJkyebSb5jx445/W0m6a5du0oQC1HFEMUkmunrg3oQgewSIZK5HlPFIlFb7vm5F4v+tbxQRkSzsEVE+vvy/o2oZPLzwjqTwPZ/j3sW3lir8O8i4P19ef/mfXvBy++nwvv2n8HbHvg/ohfxy85VlIS/EHHh0EMPtZbQNDpixytsSBTHGCYbMtvJhE4HkYzHGHsFwpsi24CATo9UM8GxRVuaKPYePM+qVavsnkmIzjbchBDBglDkdthhh+02TjAOcENocvP/RkBje0CEcu//7a0a2YIA5XeZBCdNmpRTkiDjjxfb3FPqiXtsIiy4sZbxuRjH/H1pbbZ572GciIVIojh+55137N9+NysMSBTHGCY0JgG2BtPxjyFojz76aBO1RIjSo7pMQERbUkVvOqNHj3aDBg3a7XGS+4QQIhXfyEIIIYCgXKNGjVwYkCguIERXiJZkA5GQym7v+dUXwjbT66c+h/vSvHQ8t6yVHH5jag978DE++OCD7tZbb7UkuyRCAf+7777b3X777WZXSSo6DjoGHh0HHQPQMfgBHQdnu8p//vOfQ/X5JYoLyKJFi6wSRDYMGTKk0ieK7x6TSYgTQU59DvfpvrzU55bVicYnrKSDIPblpZIK32HSjwHoOOgYeHQcdAxAx+AHdBxcqDo9ShQXEGwKt912W1bPzWR5yBVsD0R5M1kf/GNezPL3yGCnZFGqhQJBjQ0jH+9HCCGEECKsSBQXEIRlly5dCvb3SDahtjG1gtNZvny51d/01S2OP/54u+e5lGXz8H9sH/7nQgghhBBxJHOKrohsAgs+pVRoxIGwTRXGn3zyiVuwYIFr06ZN8WOUaCOyTAOPVPg/Wd6pQjkb8U8d5CRHl3UMfkDHQcfAo+OgYwA6Bj+g4+BCeQz2KEotUClCyeDBg+1+7dq1bsqUKVZijdqbcOmllxY/78Ybb3QLFy50b731VvFjlFa68sor7b5///5WYYKOdkR/6WhHq1jPiBEj3EMPPWRimW4zeKAnTpzorr76anfxxRcX9DMLIYQQQhQSieII0Lp161J/liqAM4li2Lx5s5VHoy4xYvi0005zv/71r62+ZzpjxoyxTncbNmxwNWrUsOYdffr0UaF7IYQQQsQaiWIhhBBCCJF45CkWQgghhBCJR6JYCCGEEEIkHpVkEzlBW+jhw4db1zoqWnzzzTfu4YcfNp9ytnz++ee7eZxvuOEGKxGXztixY92wYcPcxo0bXfXq1d0FF1zgzj//fBc0X331lXviiSfMv023v5NOOsldf/31WRVhL8sj3qRJE+sGCPi6+/Xrl/F5v//971379u1dVI/Bn/70JzdhwoSMtbyff/75Eo9xjnAOjBw50n3xxRfmhb/oootchw4dXBio6HHgc5HIOn36dGtzyuuQQNuuXTtLik1vmFPaeXPNNdfY8ahqaOLz7LPPukmTJtl7rVu3rrvqqqvcGWeckYhrvrLHge/5zTfftHGT85icDar6kCyd3rygb9++9vkzdQ/9r//6LxfVY0By96BBg3Z7nHr6b7zxRqTOhYoeg9K+WzjiiCPciy++GJprvjxI4Of7ocQrmoDjQC+GbEvP5jJ2vv32227gwIFWYYsCARQcuOSSS0rtxFtRJIpFTqxbt84NHTrUhAk1kJctW5bzRURXv507d9pFzQlNNQwmSAbMgw8+uEQ5uAceeMDKyiEOFy9ebAL822+/dQMGDHBBwaROC+vVq1ebeOE9I9j4XE8//bQ76qijyvx92nqmw0TJYiPTgIr4a9asWYnHTj75ZBcklT0GfiK85ZZbSjy2//777/Y8Xu+FF15w3bp1c/Xq1bPB8c4777Tkz6AXBpU5DpzH9957r32XPXr0sKY5XE8M/PPnz3d//etfd0twZdHUuXPnEo8VqoY473XatGmWeMv1P378ePv+uCYbNWoU62s+H8fhL3/5i5We6tixo6tZs6adM1T8mTVrlomr9EUQ32v6ojhTcnSUjoHnP//zP92+++5boqZ+OmE/Fyp6DDjvCSalgkh+5plnMo7/QV7z5bF9+3Zb5HA+08GWUq9VMXZyjfzv//6vO/XUU+3nH330kXvuuees2RjnUl4h0U6IbNm5c2fR9u3b7d9Tp04tatWqVdH8+fOz/v0XXnjBfmf58uXFj61du7aoTZs2RU8++WTxY99++21R165di2655ZYSv3/nnXcWdezYsWjHjh1FQTFlyhT7DHx+z5dfflnUpUuXoj/+8Y8Ves377ruvqHXr1kWbNm0qfmz9+vX2d4YOHVoUNip7DO655x77Hstj8+bNRW3bti168MEHix/717/+VfQf//EfRb179y76/vvvi6J6HHbt2lW0ePHi3R4fOHCgveacOXNKPM5jqcehkCxbtmy3c5FrtH///kXXXXdd7K/5fByHTOPk+PHj7fXGjBlT4vE+ffrsdhzCQmWOwbPPPmu/yzVSFmE/FypzDDIxaNAge7308SDIaz4bvvvuu6ItW7bYv1esWGHvd9y4cXkfOy+++OKiyy+/vOgf//hH8WNPPfWUzZmMJflEnmKRE3TAo8lHRWFlTbSPbZLU3u80D5k6dWrxY0TKWIX27NmzxO9TIo5V9rvvvuuCgm3QQw89tMTWFts5bdu2tSgm22q5wPN5TVbBbKlmgs9My+2wkK9jQGtxIoilwWt9//339r17iJ5yXrAln+tORZiOw1577eUaNmy42+OtWrWy+/RGPB62GbkV+nNS45ztew+RzfPOO8++AxoHxfmaz8dxyGQx8+cNNegzwTWfHlWM8jFIheu+tOJXYT8X8nUMPFhHsE5lGg+Cuuazgd2+ijbeyHbs5Nrgxk5hqlWCc4Hzh/Eln0gUi4LBdgnbHkyQ6TBhfvbZZ7bVCngsIf25eI3Yavvggw9cUPC32b5K3/LjM7C1h8UkF9ga+vrrr90555yT8edsT3Xq1MlsFHjJ3nvvPRc0+TgGPA/vGTcmE7zU/vv3cB6wzYqISv87/udBku9zAfCbQqqtwIMPm+13zhUa6kyePNkVAo4zW8Tp9hb/PaxatSrW13xlj0NpbN261e5TmyilCkO+a659fKivvPKKCwP5OAbYIbjusQXcddddxed86t8I87mQz/OAz8ICuLQciaCu+bCMnf67TvcZV6tWzXzm+Z4D5CkWBWPHjh22+su0svSPkchHshWTBStxfJbp0TUi1X4yCQIG8FNOOaXUz8B7I+kiWxjkWHHjnUuFwQKPGStpBoD169ebFxPfGn62XFpvh+0Y8LwLL7zQnXDCCbbanz17tvnJ8JfhyfMRAV6HcyDdW5t6vgRJvs8FINGGybZp06YlHm/QoIFFUYgo8bqvvfaaCQoibukRtXzD3yvvuo3zNV/Z41Aa5GfwmdOvffI18KXiq+QY4lf9v//7P3v9X/3qVy6qx4CEwt69e5uPnu8VnzC+apK08JF6kRn2cyGf54EXuZmCIkFe82EZO/13Xdrxzve5IFGcYIjiZLslj2irbFc7v/3DwJbp9VOfw31pWaU8N19bSRU5Bvxt/37Tfw65vDcGN7YCEUDpGegkL5BokgpRIzJuH3300byJ4iCOwbXXXlvi/yTMIQCYGNlW8wl0vE4250sczgUYMmSImzt3rvvNb36z2/nw2GOPlfg/2ddkuz/11FMWdUtP1MonFf0ewnjNV4Z8no+Ioddff90Wh+kJmffdd99u3/Vvf/tbWxRTfaE0m1XYjwFJaam0adPGIoMIPcSxr6gQ9nMhX+cBYw4VSYiY1qlTZ7efB3nNVzXZjp3eRlHac9N3FyuLRHGCWbRokWVyZjtZp29h54q/gDMJD3/i++dwj5c0Ezw3X4NBRY4BfzuTVzT9M2QDApDfK806kQ5REgZDqjHQvjsfk2PQx8DDFjFZ+IhCL4p5nWzOl3wQ9HGYMmWKZaBjJckmCsSkTNSNhdPKlSuzyvqvKBX9HsJ4zVeGfJ2PnGt//vOf3Zlnnumuvvrqcp/PAozrA+vUwoULbTs9KPJ9TTL2scifN29esSgO+7mQr2PAd0luRPpiIQzXfFWT7djpxXBpz833uSBRnGDYsqSmYDZU1EyfLug4wTNtd/jHsAn4v0cSFiVXUrfQGIjYTszH+6noMSA5oKzPkMt7I1p0wAEHuBYtWmT9O14IU+MxH6I46GPgYXDjHOH7Tf17lPnBYpG6U5F+vuSDII8D9Xup3Uz0P5cSQ/77Tz1mVQGfg8k7nfK+hzBe80Ech1Twm3KeYZGgtGC2dVYL9V0X4hhk+mzp132Yz4V8HQPGf2xyudRcD8t5UFmyHTtT7RTsnqY/NzWBNx9IFCcYTrZsi2znAy5+JgJq8qZD8W8K+VPdIrUOI89NtQnwf7ac8lWnsSLHgL+NF473kZokgC/uZz/7WVY1er3vDMFHskmmraHSwFtcWiJW1I5BKmyDkXGemnRE7UsK+JOIkrq9yPnif54vgjoOfBZqV5NI8sc//jGnYvT+XMiUqJVPfA1S7D6pyUXlfQ9hvOaDOA4eEgtpvoHQu//++4s/e5i+66o+Bumw4KVOb+r3G/ZzIR/HILXqUC4LibCcB5Ul27HTf9dExuvXr19i/mRhkloBJB+o+oSoMihLk15WioQSBrbUSfKTTz6xAQZ/mYdyTUSZKOCeCv/nggkyyYzPQJIAXXg827Zts/JSRHxTBS6TILdM4CVjQCjNOsFrpsMgMG7cOEtAyGeUtJDHAK9YJh/Y4MGDbYJMTTBr2bKliUT8hh6ew3lA5jGJKEFS2XOBUkMUsD/ssMNsO720rcBM5wLHkIYvLI6y6SJYGbg2idyNHj26xKTOuchE5SM4cb3m83EciGqxC4AAoJFHaaKGCCB/IxWsBFim2D7PpXto2I5BpvOYBFseT73uw34uVOYYZFt1KOhrPp8gYDkOqZaYbMfOY445xnbxxowZU+K64Lxh9zA9SbWyKFIscgbxklpbk1a1rPiAlqWee+65xzxTqSc9tQWJ/CEE6GJDhjHJI0RO+L8HcXDllVe6hx56yN1xxx3mvcOHR0tNPHiVqZWcjwGRgYkKEBwD34kHgXvFFVeUeO7NN99s93zGTFtnCNvSJrnHH3/cRFTjxo3teURTGIQpV3PjjTe6IKnMMWAg5Ltly5DBDvBKMkkwMSKEU7cK8dtRkYEBla2yGTNm2Pn2u9/9zs6fqB4HJjiihthgOPfTa68SRfWin6xzancyWTDhIrCYgJl06fSUKeknnzDRkwVPgg8TF+1oKRXFOcm1HPdrPh/HgUQ5onwk1i1ZssRuHo6F72Y2c+ZM69bFZE/VAc4Pxoo1a9ZYScagrQOVOQZcy7QxZ/cA0cMxwEtPNDC95m+Yz4XKHIPyqg55gr7ms+XVV181ce9tD5y/5LsASaHYAzlOHJ+XXnrJzulcx05aP2M5YlFJvgllHgmUdO3aNWOCYmWQKBY5QzJUKlyonlRRnAm2Cym59cgjj9jAzwWAKPz1r3+9W+SEyZQoIRcSFxoCiedlm5RQVTCps/VJZjADApFP6mly0XqRVx5EytgOInkmU4tTYJJkEuXiZ2JkcCGxguoTQUcJKnMMvIcaHy0DJecAkwoTPiIp/XhQqYJKDCwIeD71QbEbZJucGNbjgFXETx5PPvnkbj/HVuNFMUX9ly5dauKSSCLRMhYITMAsmgrB//zP/9jkzCKYSRBhQ3Sb7d+4X/P5OA6+di0LvHT4XS+KeT2SOBFNCC6OB6IRaw1CLMrHgGuW89gnGPMaLBIY0zino3QuVPQYpFYdatasmY2HmQjDNZ8NfD8sBjwsAPwigITQ0j5fLmMn88Xdd99tNfsZSxDQJGVedtllLt/sQVu7vL+qEEIIIYQQEUKeYiGEEEIIkXgkioUQQgghROKRKBZCCCGEEIlHolgIIYQQQiQeiWIhhBBCCJF4JIqFEEIIIUTikSgWQgghhBCJR6JYCCGEEEIkHoliIYQQQgiReCSKhRBCCCFE4vlp0G9ACCFEtJk/f74bNWqUW7p0qdu2bZvbd999XZ06dVzbtm1d9+7d3V577VXq71566aVu7733dk8//bTbsGGD69evnzvzzDPdX/7yl4J+BiGEkCgWQghRIb7//nv30EMPuTFjxpgQbtq0qTviiCPczp073Zw5c9zDDz/sRo8e7e6//35Xs2bN3X7/s88+c2vWrHFXXnllIO9fCCFSkSgWQghRIZ566ikTxPXq1XP33HOPq169evHP/vnPf7rBgwe7QYMGuVtuucWeu88++5T4/bffftvuW7ZsWfD3LoQQ6chTLIQQImfWrVvnXn75ZXfQQQe5++67r4Qghp/85CfuiiuucB06dLBo8CuvvLLbayCKa9Wq5erWrVvAdy6EEJmRKBZCCJEzEyZMcP/6179ct27d3KGHHlqmZxjGjh1b4nG8x3iQFSUWQoQFiWIhhBA5g6CFxo0bl/m82rVru2rVqrn169e7rVu3Fj/+7rvvmsWiVatWVf5ehRAiGySKhRBC5IwXuDVq1Cj3uf45W7ZsKWGdOPjgg13Dhg2r8F0KIUT2SBQLIYQoCNgt4LvvvrPqFM2aNTPvsRBChAGJYiGEEDnzi1/8wu43b95c7nP9c3wyHoL422+/lZ9YCBEqJIqFEELkTIMGDex+3rx5ZT7v448/NtvEgQceWJyQh3WChh006RBCiLAgUSyEECJnOnfu7Pbcc0+rKkElidIYMmSI3Xfs2NGej4WCJLsmTZpYww8hhAgLEsVCCCFy5qijjnJ9+/Z127dvd//93/9dIokOEL8075g0aZI74IADXJ8+fezxZcuWuS+//FLWCSFE6FBHOyGEEBXimmuusZbOdLUbMGCAJc6ltnn+9NNPzSbxhz/8wR1++OH2OzNmzLCIcYsWLYJ++0IIUQKJYiGEEBXipz/9qfvtb3/r2rVr50aPHu2WLFni3nrrLas/DCeffLK7/fbbTSh78BPXr1+/zIYfQggRBBLFQgghKgUNPFKbeNAC+rrrrnMbNmxwRUVFxY+vXbvWosddu3bN+Dq0fEZUCyFEEMhTLIQQIu9+47vuusvt2LHD/eY3v3Gff/55cZQY5CcWQoSRPYpSl/FCCCFEnpg5c6ZbuXKltXpu37590G9HCCHKRKJYCCGEEEIkHtknhBBCCCFE4pEoFkIIIYQQiUeiWAghhBBCJB6JYiGEEEIIkXgkioUQQgghROKRKBZCCCGEEIlHolgIIYQQQiQeiWIhhBBCCJF4JIqFEEIIIYRLOv8PBj/4w8CwldMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAJvCAYAAAD1FlDHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydBbhUVffGFymIipSCCNIiiDQICqKIotjd3d1+xmd3t9j+7U+xExVQBJSQ7pYOBaR7/s9vD/tyZu70nTNzzpz1Ps945d6JM+fss/e737XWu0qFQqGQKBQKhUKhUCgUSVA62RMUCoVCoVAoFAqgxFGhUCgUCoVCkRKUOCoUCoVCoVAoUoISR4VCoVAoFApFSlDiqFAoFAqFQqFICUocFQqFQqFQKBQpQYmjQqFQKBQKhSIlKHFUKBQKhUKhUKQEJY4KhUKhUCgUipSgxFGhUCgUCoVCkRLKSoFg7dq18tFHH8nEiRNl0qRJsmrVKrntttvkiCOOSOn1PL93794ycOBA2bBhg+yzzz5yxRVXyN57713suYMGDZK33npL/vrrL9l1113lyCOPlHPOOUfKli2Y06lQKBQKhUJRuIrjv//+K2+//bYhc40aNUrrtVu3bpVbb71Vfv75ZznhhBPksssuk+XLl8u1114rc+fOjXjuH3/8IXfccYfstNNO5u9dunSRd955R5599tksfyOFQqFQKBQKb6FgJLJq1arJ559/bn5OnjxZLrnkkpRf+8svv8j48ePlvvvuk27dupnfHXLIIXLGGWcYZfGuu+4qeu5LL70kDRs2lCeffLJIYdxxxx3lvffek5NOOkn22msvF76dQqFQKBQKRf5RMIpj+fLlDWnMBL/++qtUrVpVunbtWvQ7QtAHH3ywCUtv3LjR/G727NnmcfTRR0eEpY8//ngJhUKGgCoUCoVCoVAUKgpGcSwJpk6dKo0bN5bSpSN5NHmOX3/9tQlXozLyPBCd91i9enWpUaOGTJs2Le5n/P333/LPP/9E5FQSVm/SpIkhvQqFQqFQKBROIFwtXLhQOnToYAQtL0CJo4gsW7ZMWrZsWez3VsGE8EEcLfGLpWzyOycxjMZXX31lcjAVCoVCoVAo0sGdd94phx12mHgBShxFTBV1LNXP/o6/AxuyjvdcKrvj4ZhjjpEDDjig6N/Tp0+XRx99VHr16iXt27eX2rVrZ+W7KBSK1LF+/XpZsWJF0WPlypWyZs0acy/zIAXFolSpUiafmQfFcfb/K1SoYO5/HuXKlSt62H+XKVPGtePfvHmzbNq0ycxN/Iz+/3Xr1pnvY78TP/mdE0Ra+B6VKlUyj8qVKxtlgwf/rxERhSL3mDZtmixatEh22WUXeeGFF6RmzZriFShxFJEddtihiBQ6YX/H34GdQOM91z4vFghn84gGSieT+R577CE777xzib6HQqGI7ZqASwLpItEPS6IghVWqVDG5zhS4cS/aBxM3PyFX0eksfsSWLVtk9erVJl3G+YA081i6dKnZ2Frw3e38RWTF/j+kkvOmUCiyC4p12bT27NnT8AOQiF/kGkocRcxiESvMHB2adoaud99992LPJScyXdSvX9/kRyppVChKDojgggULZP78+SYvCHJIKgpkyU6+lviQX2yJEHNAvn1YsRTDR5YiPUiZW0AB5f0TfQYbYeY0J8meM2eOjBo1yqicADWV88f8xcaXR61atVShVChKACIFS5Yskf3220/23HNPmTJlingNShxFTGHM2LFjjTLhVBQwEicMVadOnaLnAS5ks2bNip7HpMounXB0JmDRAjNmzDCqBpOvQqFIPsFCDiGJlixCEgH3LfdRgwYNTFK5JYuEmFUlSw7IH+cvei5ijoTgOgklixwWaFwPzu1uu+1mSCTpNzz4t5vheoWiULB161azITvooIM8fc8Ejjgy0SH9MqFZhYGLhJUOu33r40i+04ABA6Rz585FO2jUwbp165pKa0iivbBffPGFmTB5n5KACZkJuF27dsUUTYUi6BMqBAVyaB9s1vg99zEEBwXREhY2Y0oQsw821oT0ediNtPP6WALPY8yYMUXXh/wsrou9PiiVen0Uiu1AOJo3b54ceOCBniaNBUccP/30U5O7Y0PMgwcPNpMZOPHEE43a8Oqrr8oPP/wg//vf/4p205DFPn36yMMPP2x8GgnhQAaZ9C644IKIz6ANIa0Mb7zxRunevbvMnDnTGI8fddRRUq9evRIdf6tWrUxIbcSIEdKxY8eYOZEKRRBAfs/ixYtl1qxZ5h7DuorwKcQFBQvygZLIT0KlXp9oCx1cF8ghjzZt2pjfoUCS3G8VYfImhw4dav5GZIWNOIowPyGiSiQVQcXs2bNNu2Q2Y36YywqKOEIGmagsUBB5AMrYIY6xwIV67LHHTFcYyCdV1E2bNjUEEYXRCRTIBx54wFjr0GYQknnWWWfJeeedl5XJt23btjJ8+HAZNmyY+Syv+DYpFG4TRQpYLFFkIiUygFrFPUjeHz/Z7BHKSQZIi81r9AsgxnxfflLtXQiA1PNgUwz4XlaZxB+XSA+RHXK8yeciLYjNANXdCkUho9w2xwXug3HjxplNFLzDDygVcvpNKHIG8iQvvvhiee2114oZirPg8XdCb/lO2Fco3ALRAUsU+Ul6CKoTxMGqURCJdO4BqoJJR7EWWn4CUzEPzkFQ1De+L8U29mHJPgsq190+gnI+FMFBqW32XtRXsCmmGCYWEnGFfEFZiQfBpGmLb1BdmEyxBFEo/E4SKGah6IzJ0KaREHpmQoQoYoVDYUsmgDQSFiWyQJoHO3olHP4Cc531oeQn6UIA8khFPA/dTCsKYS5cs2aNydPGkg+13U/QO9DjmDBhggnhYR4eL9SuUHgVLPzkJ1L0xYMCsIoVKxo1vUuXLkZZzNa4RmnkvZiE/UgYIU2EciHOfshzcgs2TM3iyjlBPXY+II6cIx66OVD4EZs2bTJzFePZ+jT6CUocPQ5yg4YMGSK///67yXnU3B+FHyZFws8oi/R3p2MJijn5O3idoipm20ibz2QSRmn0K5GAKPE9vGT0m09wHW2omnmPTQjXGHLNYkuqAwTbkkjcL/x67RXBwebNm82cyLgmt5dICRskPynp/jnSgILJsFOnTqZCHPKI8ohio1B4CSzmtMiCLFI9S5gREkeFLWQRGxY3F3WbG5dK4YzCn2CzwdzHA5LNGMPw3bZV5O+WREK+lUQqvEga16xZYzY85DfaIjh+r8RRkVUwCaI2/vHHH2anosRR4QVA1iCLo0ePNj/5NwSREDTqItW0uYaShWCA62xzHq1SyyIMiWSO5O8QSBZnVSIVXsCWLVuKSCMKup+L4JQ4+gRMghiMM9BsJaKqK4pcg7GH5RVkEQsJFmkscnr06GGURTdb5SkUscCcCDnkQeiPuRESydiESFp1hw23n1QdRWGhdOnSZoyylvuVMFroXeQj2MGGUSgm54SwlTwqcgHyySCKEEaMuUnsJv+WikDtcpQd2FBrtvM/gzZHMifyYIzacDbjd9WqVWbhhkTqeVbkClscFlOFEi1U4uhD4G2HaShdGPbff3/dRStcAcoNxS2QRfIWWZSxzaFjUqNGjXThdYk4KrIfzqY4y6qQ1i9UQ9kKt7F169ai/NtCckVRxuFDMAlCGCmWocMM7QmDbN+hyC5QFP/880+jMKLWYMh9xBFHyL777lswO2YvwqagqOF19sHCDUnkwTm2uZA2lM245m+6CVdkkzSuXr3a/D9jq5Cgd4lPQStCCCMFM/jkYZ6sUJRkkkNdRMWmiwu5YrS/JBSdjyKXbGNV/wH5PgTZ+ZCDU0qeR5mIRWBoc3r++eeb///tt9/kwAMPLEY86UAxb9486dWrl3zzzTfFXgdQ4KpWrSotWrQwz+NvXO94n2Vfw3vTuvW///2vb9ITWLgff/xxM67ZZOOJ+9Zbb5kWsZxnimogkNbeB2P6J5980ligoVAyr15yySVyzTXXJP0srILuuusueffdd83n0AmE9rTk/0aDYjLO46BBg2TZsmXm3J5xxhly0003JSUZmNxzTIwBPEsfffRROfrooyOe89lnn8lll11mPkfzjvNLGitVqlRw0Rkljj4Gkz8VrIUkgStyCxSXUaNGmUWVEB5pECeddJIpdFEV25sgxPrBBx8UI46//vqrIY3xfCDvu+8+Y7gOWaLAiT7R1113nTz11FPy1VdfxWx5Zl8DiYLkvPzyy/Ldd9/J+PHjfaGiYArPd4CYsQniO8cqqiGKA9E++eSTpXnz5nL99deb+XXOnDnmnKYCyGifPn3MOW3cuLEh30ceeaTpxe28VqQZdejQwRC6q666ynwO0aO7777bKP1ffvllws8599xzDXmEMGLTxjFjrl+vXj3zd64VBBTSqqQxP9i6reMRpLEQ51Eljj6HVQpoXcRkwuSoYS5FMjBeIIvkLzLJsViyABGWVngbkJFPPvlEnnvuuQhlEjKJSgxZigXSDdq1a1f079tuu0369+8vRx11lBxzzDHGgzM6FcH5mosuukiqVatmiCbk5vTTTxevg4p/2lzWrFlTRowYIe3bt4/5PNQhVDwU2Pfee89sqFAQbYgbNTgRAeBe+uijj4y6CWkD55xzjknvuOWWW4yCaYEiySYNIs59B/hs7sN33nnHqJVVqlSJ+TkcF9cMAty1a1ejKvLeffv2lUsvvdQ854knnjCEkeulyC1CoZD5ac29C3UtLiz9NMAgb4ed8ZgxY4oGr0LhBOOCcDQL14svvmiIAobyqCsnnHCCkkafAMKGq8JPP/1U9Duqh1G7CHemg0MOOcSETEl3gTCl8nxAOoMfgPoKaUwGSDe5vQ8++GBR1TUkGSJNGJu/Qeg4z7HAuYdYQgAteI8LL7zQqImojBZ0CgHR4X5IrrVsiQfURO5jSywhJqQtEW4HiAePPPKIPPvsswUXHvVL/+l169aZfxcqaQQ6sgoETDqtW7c2ExRhJIXCgsWOHK8XXnjBLJBMbBBFQmrdunXTVAePgIWGxT7ZgkNIEiuuDz/8sOh333//vekDftppp6X9uWeffbb5+eOPPyZ97owZM8xPSJUbIIyOYprKw4YDs4Gff/7ZhKshXjgHcE/wHf/zn/8Y9Y6/cR/xuaj1EDXnBp10D/qv8zwnCEkDlH0L7jkAqeT3zNn/+9//TBoAuZSJ2spCGBs2bCgPPfSQIe/vv/++eQ/7OaibqMSokYrck8YtW7YkJP6FAg1VFxBQjBi4qI7stJnIFMEFC93w4cNNKAuy2KxZMznuuONMQn0h74b9ChSraOIRDyiLhJq5rqhiEAgaBNC5J10wHiBHlhQ6ARmFLKF0kU9HviCfR3jbDfAZBx+cuIjIAuJk8/pKCopIiNoce+yxhtA9/PDDJhz8/PPPm7AyJB1CR/iasDa/wxeScCTng3A4m/do2N8tWLCg6Hc9e/aU+++/35A/ckst7rjjDpOXmAyvvvqqyUMmNA7YABI54D7//PPPTSRBkVvSuHbtWjN+4hW2FRoK/xsGDCSBu6kIKLwPFjdyrgiR8f8YdZOcHy9vSuE/nHLKKYYwUNABEeEnOY+ZggUPIhSNQw89NOLfe+21lyGpbqU1kKPtDMEnQioh6FQBGWTxJ2fQnkdUeTZfr7zyiiHMFLzYXtj83kkgeW2soiTry2nDlxYQXlTBE0880czV3377rSGSfCcKZpKlC1C0M2HCBLNRoKAN9RW18sYbbzTXCPWScDWkhlQUvpfCHWzcuNEo5WwsgkAaQTC+ZUDJIzsgcnM0dy0YQBUiJI1FE5NZmzZtDGHUykp/gGgBZAQSl6wSE4skSB2pB5AWXosKlSn43N12263Y78mFJXLBgkhOHmFcZ+4c5OXyyy834VKUy5deeqkoFJvob/HA5iaarOYCtigouuAHZRfiyCYM4mhBOJJqaAiD7UjDT8KV5EhaRZ970vn+AKWQXEjyjTkvlqRC/m699VZzDMk2/owR7NgssBiiUp7QOmH3m2++2eSschx8B65bqkquIj2UL1/e3B+FWD0dD0ocCxjk64wdO9aQCCw1FIUJ1AzIIqSRzQKVtYSuUg17KrwB1CH7SAUQgosvvtgQBvLaKJLIBBTVEZKmG1A0yJ1zVmI7AWkitIvSheUMD8grXoiMvXh/S0SKmKvwNUwFkOdsLdYodxDd6IIVS6YpjIkFWhtCICGA5CpyHm0IGwJJCNu+vwUEmnx0SxotqGzHwod8yXTIM8U2hLmppkb1IqzOuSYtBfD/qMRKHLM/75YtW9aMgSCRRqDEsYBByIIdMMUyDGyrRCoKAyhNtnsQagULfOfOnYuZOSsKE8cff7yxYGHTQHFFpqDKHhx++OFpvQ4SCKGy5tiQHQgReXZ0tor3t0Q2MeTp5SPHkc0WIXJbHGNhcxOTmeDz3ciJJFyNImsJ5MCBA83fSRexIAoUK20EIg7Y/KUD67V55plnFh0zx2MBaXUW5yhKjnXb7JqCRhgtlDgWOCiIsAUzDHINW/sftlABhRHgTQdhTFSNqSg8EK4kl2327NnFOoekCjwBKdRwEo90EK2O8m+UO4hjvL95MceRnFFsbN54440iyyHw+uuvG1XJGWJnw0aOYfXq1c3DqnoofoSM8XFk80ZREb6MpIxAFPn+hI4J/VPBTqjaWcCIUgjpjGXEHg+8B24JEFQbHkc1xRDcgmKZbJ6roGPdNtJI+kEQKqhjQYljAIAJLeSRwa7wL7iGI0eONGE/1AlynCCMfujgoXAHdBFJFVj2QChs7jOkEZJGZILqXlvIkSpQ5giPYwh+9dVXS79+/Uz3Gtr0JfpbrnMcIVYUsVj18Ouvvy7qBsOxkQOMQnfBBRfIm2++ac4PFeooiBitU73uDDWj8KOK0unlnnvuMb/jXsRAn+cuWbLEhP3/7//+z3wOn084megPIXyIJdeCrl8UwhC6p7iJ36HGplMZT+HLqaeeWmTHY0ksaQK333570fe17ScVJQNr6IYNG8y9Eq9DUxCgxDEAYCfqDJWgWKW7SCjyb9zNIo/xM6oMqojmMGavT7QXQEQglcKYTEEfZWdhB72qn3nmmZi9qlMBuV1ffPGFIV8YZ5MqAYkhdy/R33INlEAMzp19nHmAs846q6h4rHfv3iadB9WQkDqE+umnnzbV66kAdREzdWevaggbKQBs9CCP/J5uMZBozgv5jtzTKL78Gx/GVEHrR5RG5gYnsErivbASYu7AWogcWEXJgfpcsWLFQJNGUCqkbUbyAvKDSGx/7bXXInJq3AaJ9KhW7FBtmEXhXaCSENYiHMnicthhh8X0iws62AyR88Y50k1R/oACDkHFIiidvwVpnEIgUTUhIBD2oFi4+BkUbXGdst2NZ30K81a+uEIi6IgNGKgSRG0g3EIeEv+v8B5Irie8R1U8iflU0GIHosbdhQsKnAiD2QILP4DxSZ4ex451Dz8tMUz0t6DChjjJk6R4hnw5VGYefrnmQSSNXC/r4anQloOBA5MTxRTkH1FcAUFReAcQBwgjYSY6eRB2wguPBVhJYzCIYzZb6bkNwroUXvCgupvwdCp/CzK4jylkYxOP4kjuI3mR/NQAoDdJI+kdQQ9PO6GKYwBBDhWhaiZzKu5QHhX5BWTBFr5AHgjr4cWok5XCyyAHkEe6f1OEN/HW7xH1kU08RuzkXKqylX+QlwppJF+XtALduG+HEseAgnwNZ+cBRf5A3imVj3jI2cIX7faiUARnI08ECBUS8ogBOsSR4jfNf8zvZh7S6OwEpAhDR2WAwU0B2FXRrQBLCrV2yW0YBMsPlF8KlbADUZN2hSK48zHWPBRMQCCXLl1qFEkIpRKX3BJG1GCiPRrxiQ0ljgpzkxAepQsJ4VENk7gPKuWw0yCvCYWxU6dOge1CoNh+H5JLpUUSwQUE0dq9EL6mApsCGiIQQTWbziWodmdODrK5dyrQGUphiCLEhcRsWn6pUbh7YCGgPRxdIqiWvvLKK+XAAw9U0qgwhBHFX4mjgjEAWSQSwbxMFxpUSD8VTvmxwQKkkbnYRuMUsaGKo8KAHRbkEeJItTVdDTQ8kj0w4Q8fPtxUTLOTpbsDRsB6jhUWEAQWLxYuHRcKwFzBBhNCY+17bPGMjpHsgfuOwiS7edNzmxhKHBVFIJcG8sjkpDdOdk286SCxcOFC00Gje/fumg6giLt44emnRREKC+ZixgRzBqoj3WcIZUMgdZxkB+SVQhpZA1XxTw4ddYoIWDNa1A8c7SnW0MkpczsH+gFT/IJn24UXXpiXlmsKhcL/YB6mYYMWz2QfqIyseUoaU4MyAkVMUGlNAcfixYuN56Pm4KWvMtIPd8WKFXLooYcar0w9hwqFItvFMxBJ7Hx0g59++hDrHOdT00PSg9JrRUywi8XnkbDIiBEjNCk7RXCeBg4cKK+//rpJsL700ktNpbqSRoVCke3iGex7qARGfYQEaeeZ1Odp8kZ1XcsMukVRxAVhEdoT0tf6zz//lLZt26qUnwAY96IyYuRNcdFBBx2khFGRMlA87EOhSAUoj6TBELomuoH6CKHUeSc10khalp6r9KHEUZEQVPRR0EHoVREb7PIh1n379jU5Rxh516lTJ9+HpfAZWMC0Y5AiXbCZr1KliimegTyiPhK61gK82ECZVdJYMqh8pEiK3Xff3XSVYYJip6bhkO2gCvaDDz4wVdP77befXHbZZUoaFYHH22+/bZTT2bNnp/T8xx57TJo2baqhwxKAXD3UR1JkiH5AIr1yPnv37m0KLb3gEYxKSyqWksbMocRRkVaLPPL3JkyYkO9D8QQmTZokL730klFjzzjjDDn66KO124CiRHY8FDzwMxbuueceQ8Ywg46FfffdV7p16yZ+AwUejz76qNx6661FqTCWeNoH6lmTJk3kqquuMgV7FrGet8cee8jhhx8uzz33nDmffseDDz5ovhvXN9bG9e6775aePXua1CIKZL766iujXGOrhvrIvM2cffLJJ0uDBg1MBTHG4l27dpWvv/46pWMg/aZXr16mf3azZs1ivo40HRs2j8Z5551njuOVV16RfACxA9LKT4i1FhKVDHr2FCkDUsSkMXbsWDPB8/9BBBPQ999/L6NHjzYqCYSRHaxCkQ0D8KAp+m+++aYp8Dj99NOL/e2+++6T+vXrm9y9QYMGycsvv2xadY4fP94QoOjnYYG1aNEi0wP+uuuuk6eeesoQKaIBfsS8efPkoYceiju/sIngu6PmtWzZ0nxvSCbPZ75GdeQ5bHIh0eeee64h1oRrP/30UznmmGMMmbvkkksSHgevgzxC8AcPHmxI6OTJk6VevXrm71yfm266SR544IGY6RYQet6D63H11VfnNI+X+4nvy9iAMKrSWHIocVSkhb322sssbuxguQlRAYIE1A5aBhKyP+6448xkrcUMCkXmeOuttwyBiZWTd8QRR5gca3DRRReZKmLIx5dffhlBNJ3PA7fddpvxUD3qqKPMe0OcCOX6DZAxrLyYc2MpzbVq1TKNBWrWrGncLyhmtEBZQ1lElezcubNRo8mFtMQJ9ZaCR85nIuKIcsm5hJSiUpKOQ4cxcrpxjQBPPPGEIYxco3g45ZRTTErCgAED5JBDDpFck0YNT2cPGqpWpA3CHSht5C8RfggKUBix2WEnz4TZqlUrJY0B2Sx8/vnn5trz0xkq9TJsaHv69OkmVEjBBIv7+eefbxbT6OehILG4E46EoF177bVGSYrGqFGjDFHjeRQY0AkJk/tMQJMBIhh4naYCSzh4XSrP/e9//yt//fWXvPfee+I3kBbUp08feeaZZxLm60Ea44HrSsGe07bH5hlCosjHRpVMBMYABAzSad+TsWTHEErkI488Is8++2xC1w1IKuF0SH8uwDFDei1p1P7T2YMqjoqM0LhxY6M+QqK4QQuZQDHhEpqmcpoioSOPPFInoYCAsNy7775rxrcd5ygt55xzjlFx/ADIIGHchx9+WEaOHGkIMLlohB2jn0fokedBBMkRxMf1nXfeKXoOkQaspiCNt9xyi7kPCHWiZv3666/G+zUdoFyBNm3apPT8GTNmmJ8QoVRw9tlny+233y4//vijXHzxxeIWICexcvtiAfKUzNYMhZGQLgpeixYtSnx8EEwcMgh9T5s2zRTN/Pzzz2ZeO/XUUxO+FsLYsGFDEzLnwTVjE/3888+bvzMO2EigRiYD15l7KpcgpUHn6+xCiaMiY0AameDweaxdu7bJsyk0sHB+/PHHZqdOyCvVBU7hf6AsQhohjDbv0P6ETDVq1MgQsGzBrV65bHbeeOONon//888/5t/RxBFyadWgK6+80pBDir8Il9ocwTvvvNOQJPINiTwASPTee+9tCATkMR2gctrPjgXIGCFaVC8IB/l8hJwJQacCWnyislrC6RY4toMPPjil56KW2tzARFXIKKWQu2wBhRHi9+qrr5p/M86OP/54eeGFF5K+ltecdNJJ8tFHH5l/kz9KYwNIJCo8qQCpgDHDPeU2WJf4vs48WEX2oMRRUSJwc7LYjRkzxvw/BLJQMHXqVDMpkntFn2nyiRTBAYuiVRqjwe8hCyy82QILuRsG++SkOYFiyLimmhlyaAFZdALFC+JIMQrEkcUY5Y7cXksaAfcFrgKvvfZasfdMBkgsudKEvGMhOoRNlOP9999Pa57hvd2uribX+aeffkrpuYlCy/ac3HXXXSbMjkqYTVx//fWmsAVSCgkklEu+tg1DJwr7z5kzxyjOFNcQ4ka1vOaaa+TGG28014XCJcLV3C98TvS4A3wOn0mY2y1Sx/uTQkWIXhtWuAMljooSg1AKiwq5T5DHZBOj18GESCI4OUYoKSyUfkysV5QMLODxKpz5PX/P9rhjwUPJz3TBi5UyEh0JsCQBNd1J8kg/cYLwJMdhvRhtWzvuiWjss88+5vjnzp0rzZs3l2zhxRdfNAV4kEv8ZPnsdM8NxSFOZRiCA8kdN26c3HHHHSbHs6TgnKaap5kMqLqEsyHu2Qa56TwAVc4cM64QKMjJnCEg4M5UBIqaqGD/z3/+Y5TRm2++2eSSMgbZSHCtolVYez+5ldqEMk0OJ5t9JY3uQYmjosRgEqBQhIWDPEDynfxqT8PuG5sKwkkk/R944IEFnb+piA/y6BIpjqnm2aUK7h8WPkhSrEXPVh2jqMQCpC5WZXK8StJktj+5GPe2aANFEIUoGh06dIiolk4X5PQR7iatwKmQQhYx7s8WIPyYbqcCVMR414T8Q8LCFMQ4u3UxLkgRgMRD9iGWJQXj7LTTTpPLL7/czNuoyoT1U7nuKMuQbqqpmes//PBDE8pmkw34f5ThaOLIZgWl0Y2NOISR88Q9oF1z3IVSckVWwGRDLhUPv5JG1BIS/cltI2+LkJ6SxuCC4pdEiiM5XrkE4UAwZcqUmKSR8WufkwkgLU5QjQ2Ztfl4EB4W/VifT64iZDfdrklW/UqlSjoT2Hw6DMEtIDfkK1MZHAsQc3L4+C4QPGsuTlg2UVoDhDSVB9cpHqhQtiFg8j7tY+jQoSZ1hv8nzzNbcHZyYQyRTwqRTwbrm3nmmWeaf0NyCWFb8P98l2hwnVGn3TL4pghISaP7UMVRkTWwcNjJg8kRApmNnXEuQI4mRsEcPzlA6eRpKQoThEbZQFAI46yq5ie/z2ZhTCpAASeMTaiVnDOnKolKxYJPdWtJwsKHHXZY0b9t1ax9T0gUf6eABuXLEko2Wqh3qPPp3jedOnUyP/EgzLZJN96D999/fwTBSQUUA1FMQwU615oNBJ6RiULH2cpxpDsM+aexwteosuQQkkKQLpYsWVJsvKJgMrZR/yj6g3ShmkIeCb3z71iAwFJQQyqP3Vhzr9hCJ0CxTKzvyTlN51qkCo6DULqGp3MDJY6KrIPJFuJIiIhJN1YnAS8dK/mMVIOillKtqSaxCgvGL2FOCmHIaSS0itKYa9II+EyKJiARWJ+gmqEAonYRKoTUka+WKVCDeE/a1/3+++8mX41cNUiRBZ1BIEiQxCuuuMKEO1HpUXswd04XFNlAlsiRu+CCCzI+dmxlIC6QZ4gspJHjRIFlQ5iqCsU1ppMNxNgWpqBWEgJNdM2zleOIYbcN9zphvRxj/Q0ShxejDW3TDpAQPYDsMv/iO0t4mXFDYRG5iYSSOWdPPvlkUXES3xnyyHlAkY1VwELhCxY+pBFYEJo+9thjjfWRPYZvvvkm4nWEw3lvnpfNFAEebrgRKOJDiaPCld0fkwqLD35wLL6x8pfyDRYZ1BOS5Jn0IQQamlZEA8KQzerpeGDs4TeXaAySV4bSB1kgXMgYRlG79957I3o9ZwI6IkFMKXaAENJZ5PHHH494DoUvv/32m+nMgt8jYVUKJiCZ6Xo4WkAY+VxCxJnmvvF6gCJLlIOCPcgWZufpzD1sIiHKKGgWkLJk9jn5BHmGVEk7e0bzAGeddZYhjhA9LJhQqyGFnBMMubFkYrNgwfhhc8R35kHRI6TSjkkq7FEaUR2dYMNNT21UajbjjI1o9fuTTz4xhVrZ6hqDYkp4XT0a84CQIi+YPHlyqEuXLuZnoWLjxo2hX375JdS3b9/Q6tWrQ14Cx/P666+H7r///tD48ePzfTiKEmLdunWhiRMnmp+K9HD33XeTyBlaunRpXj5/xYoVoapVq5r7MZe49NJLzXd34tVXXw317Nmz6N9r1qwJ1ahRIzRhwoRQkLB169bQypUrQ/Pnzw8tW7bM/LskWL9+fahmzZqhZ555Jmtry/Lly808XtJj8/q8NdmDXEG1XYVrYCdIDhPhFy/tCrEVoXsGYRNasWXTPkShyBQoNSh4yaqdCw0oYpiHo27y/d0GKi2hZ9Q05/8D5gKiJBQKEdql2wzKWbNmzSRIsK0Kre8iKqU9R5kA6x7WgFjejumCMYLSiCpOKF2jRLmHEkeFqyB0ROI1P5mgY/W+zSXI4yJkwyTGokBnCYXCC2BhhqyUZIH2Kwiz28pst0GeJiFxNo+EV/l/W31NWg1G6ORwkntJsRw5nEEF54aNPwSbohnCw5kAwoiBeLyCm3TAGOG4yGtU0pgfFFSOI0mykAK6G1CBRvUZvT7bt2+f8HX0aCVZOBZIJCbx3CJeP85LLrnE5JMo4gODcIgjk3M2JpBMPp+kbXLCqJxW2waFInjAwzGR6TfEkociDDb9kEdbcU0OaT7mb6sQ89kckyJ/KCjiSEIuyc2QApQkKu0IgWBhkMjqgcqzaFNdiCQ70likE0NaKg+diO66oCgOrgEVoISCCGHn6uYn9NevXz/THYFrd+SRR2oFnkKRIpFSKAgLQx4x8E5Uce0maaQDEPM264YqjflFwRDHiRMnGnKACz6eW9ZGgRw2Ksl4xANGz9H4v//7P/OzR48exf6GMazT70yRGggtQBixNsHQdv/993c995EdKr5ojA/GA5+pk45CoVCkB0gbaiM2a1RcM7eSB+n2fApppKMXn6/haW+gYGQXfPjw33NaCyBp9+rVyzRmx9srHeArhss/tg6xgG+Z03VfkRqwdoA8ovAy+bidukCaAZ0usKPgc3XSUSgUiszA/EkxE0bvKIDk5LpZzEUhDKQRqFejd1AwiiNVcISno9vd2fZGtM9yenMlAh5V+GKdffbZMf/+ww8/yBdffGFuGAxm6SIRS5l0gtwQJH4Lp+9W0MCkg5cX4Q87OWR7QiCXkm4WpBzQqYC8RoUiF2BesA9gDeXZyET/jbAbf+dvKDj825oac3/wb+4P/g1s+zvr+QhsJbL9vULhJmyXFn6iPjL+CF27Nfa4PyiGUdLoHRQMcbRdHaJhfwdxSxW2dVQsMkilHY3bUSP5TIxWaWvFriiWq78F3QvefvvtlI+h0GFJI62p2LWSS5qtiYFrgSExiiakXiunFdkCi6S1zLH/z1iGxEH8GHtOBYYxbdvwsZnh+U6CZ8kfr4muprb3A39zkk6n8gNQfpzk0VadclwcE+/L73jYvysUJYVVAMl7ZFxi3ZMt8mjHsw1PK7yFgiGOhI1j5cvZAoxUw8oMWNpVUewSq1vASy+9FPFvCi2o3KZXLH5f8arNCKHTmcSpOGrlXrjF1syZM00PUzoZlHTigYTSf5VFmvzWVFVmhcLCkkIIl/1JBT7KB+PKqn/AkjHmHv6f+9/+LloBTJQPxusgerZ7irPtJf/v7AHtJJCAIgWnB6Qlp8D6FEbPibzGKpm8v5NYKhSpgrHKmKHimgfksaQbE2d42osdxxQFRByZeGN5TNlJPlX7gNGjRxuDaCqzUwELxgknnGD6fZJLF696G4LEQxEJeqNS6Tx8+HBjl0O/6EwXLyYuSCOLJ63GYinQCoUTkEJLEK09E1ZeTgUPYmWJmrUCcZJDC36XyOIp2bjmMyB6yXLGoj/XqvexwPFwzE6F1C7s/D8baufn8V3tYs2xWEKpUCQaY8y1ljxSQJPpmGEsQhoZm7Z/tsJ7KBjiyMCF8EXD5hWmStoIUzPo02lYTy9bq3Yp0geqICbhqI5MOpn0hV2yZIkx8WVRJzxtw3gKhXNRgnDZzhMQRkuarFrI362KEos0OZVAv8ASzejvAuHkPrGE0hkq57wQAge8ju/Nw5JmhcIJ7h3WYNZbHszj6d4rTtJIeNqP91pQUDDEsVGjRkaxYuA5cyKwYbF/TwbUSaqzW7VqlZY6uGDBAvOTBGFFZqBDA4sSE0664PyT04hSQkGT7lQVVmFDNXPm+dmkfh4sdpYQOcmQl9pj5gKWIDuVS84P4XFrusxP1Emb+kNI3eZ38tBFXmGNwi15hEimMy6s+s/6nUhFV+QfBbN17Natmxl0FKE4ieB3331n+ozaXDdseeJVNGNMzS47XoV0LPsYlIs+ffqYnfvee++dte8TRDDpsIBxnqlsTwVcSzw3IZzkNCppDC6cqhlkh5AzBAcSCRm06SqQIhYnQmw2N1FRHJwXzg8KLPcVc5w9V1a55fxynom2cM5B0HptK7aD8cI8zhigINWOiUSw4wWyyGZFSaP3UTBXCHJItTNFKhAPWgVim4MdC31QLehNSh7jwIEDY4ap2TUddNBBMT+DCmq6j9AyDyLKrgpiChm94447AqdUuAWq9MgXBU2aNIn7vBkzZhifRgzZTzvttLy0wVLkD2wMSU9hgSK3ikUHVcwqFvanXwo+bDW0H4gspJuHJes2HxJQjMO/rRrpp2ugKDm43jZszb3J/8dbGyGNiC927Os48Qe8P0Olgdtvv90UtfTt21eee+45M3k9+uijJvScDIS4f//9d9NZJJ5qhRk44ehvvvlGnn76afn4448NaXnqqae0k0wWgedi06ZNDXmEHMbCrFmzDGnkufg0KmkMBlC4WGjAwoULTV4sGw0WJ8aALU6xlc5+WoicVdl+VCXtcdvQNcWKzKt4/Tkr0XMZheKRCog0kav+/vvvix8xe/ZsM9ZzaflmP/OJJ56I26KQMQGBjKU8Qhq5nxknfk51+OWXX8x54KcFQsYpp5wihYqCURwBk+4VV1xhHvEAoYwF1Am6xSQCXoOxelcrsg/skFAyyFFlYapbt25EeBpzb8zX6QijoY3CBqFQSCLRA0gIxVNs4ogqoPxDFlG52Ez4iXRFA/WORTRW+BxCgFMA+O233+TAAw8stghzj8ybN890y2Jzmy9w/FZhsmqkJQZWjbTP8cr1evbZZ02ONAu+BakvpCHZIqFoIDCcdNJJ6s8bB1xzqzz+73//M0LAfffdV/R3SCMbCqyhbO6sm3jooYdMZDKR33K2cOuttxq3kDFjxkjLli2l0OCNu1ahiAFUR0LVzgrpuXPnGlUAU28meSWNhQlrh4PHJzt5lGc2d1Tf225QXPtE9jd+g80ZtN89Fvi+bJqiQVEfpNFryjvkwRYh2X8Dvid5kWwKYtmo5RJ8PsQRP14/K19eJo/9+vUzjTKs8mi7I6FU54I0WuJIx7dcoHXr1oY4YtNXiFDiqPA0KDiyliHjx4831dN07Tn99NM1p7TAgBpFa9ABAwaYn6BmzZrSsWNHOfzww41BPCpjkDcLNBz45JNPioX+IJOcH86Xl8E9i1JHPipKk1NxhMCRowqZzCVQZ8mVLeTQYj5hWwYC1EdUaMYBG8FYGx3Gdj5SG7KNU045xdRFxFOs/QwljgpfAINwcmmYaM4444yc7VIV7oMcRRwNSBUhnMVGwdphQS7IPfNKSDPfYMPE4mvbogIWWUKq3BexwKbrmWeekebNmxvFkvD+pZdeas67E19++aUJc2ONxX3WsGFDoxJFt0KcNm2anHjiiYak8n5W/SeNIFm+Hb+/5557zPXkHn788cfNT1JSzjrrLHNsdNgiNxIiiTcrhBjigXMCn0PUIRoURXK8PK9Dhw4mnJ8qUKFIf+D1JQHfl+83ePBgueGGG0xzA8jR8ccfX8xjmM876qij5McffzQ5+JxHwqgQjWigupO7z/fnfiAP/9tvv83oGDmn9957r0kFssbdpD04x1O83FBC9/E8dsn5J3WI809xKZt85+tsxzXGDBs/mxvrzJNkjHINGHuMB8b1XXfdZa4/cwLnskuXLmZjGWuMoxqTwsL34tz37NlTRowYYf7OZzCmcOCwdlwcl8X8+fPlggsuMOOPz+deefPNN4t9Dqr+cccdZ46Feen666+P25UOdxY+03luCwXB3borfAMWSkJxLGgUwxDiYmJQ+BdUQQMWQ1uZS9cl1GRVkuODhbtTp06mMIwWp+D77783pA1SFSuHG5JocySvueYakwv6wgsvGN9bSI493zwHNRDSw09ar7Jwc79B8ACLOeovi+XVV19tiACLLqodbhaZGu9DjCAzuF6gODEmIDiEF1FuLrzwQlOh+/zzz0vXrl3NsVvf3DfeeMN8R9wurrvuOkO0aPHK2KJ4MRmGDBliUiCyBc4LrffuvvtuQ4wgRFdddZXJ84sm4ORoX3bZZXLuuefKW2+9Zc4DbiDWEg7HDr4XBWFcO4ge5Ifvx2YBUpoOIO0PP/ywCctDsLm2kCuKzOLZ0CUD3bpQia+88koTNYDAHXLIITJu3LiiTQpeuxAoCCTkFfLoTMngu/PaSy65xBA3rh3H9vrrr5vN0sUXX2w+g2vN+Bs2bFhE0Svjg/HLPcF3YwyxeWBDSsiYDYj9znwGsBsFzjFkHDLJdWJt4Z7iPTkGxpRNr+jevbvMmTPHXAvWI96X+yQW2AhApLnH0r1OnkdIkRdMnjw51KVLF/NTER/Lly8PPfXUU6EXXnghtGrVqtDQoUND33zzTejvv//O96Ep0sSmTZtCs2bNCvXv3z/01VdfhYYPH5619163bl1o4sSJ5qdfsXnzZjPG+RmNt956C7M7c864F3beeefQ2rVrzd9OPvnk0MEHH2z+f6+99gr16tWr6HW//fabed37778f8X4//PBDsd/b93Pi0ksvDe24446h9evXm3+PGjXKvO6TTz6J+z24xjyHY44Gv7/77ruL/s3/87vTTz894nmzZ88OlSlTJvTAAw+Yf69Zsya0cuXK0MiRI0Nly5YNPfjgg+b3GzduDO22226hVq1ahTZs2FD0+ldffdW870EHHRRKNiZLlSoVuvHGG4v97dxzzw1VqlQp7mv5G8+JvkaHHnpoaOvWrUW/v/766813WbFiRdHvuE4899NPPy363b///huqVatWqHXr1kW/u+6668zzuI4WjJH69euH6tWrF9qyZUvSc+5Ey5YtI8ZHLHDOYp03vivHbWE/s2LFiqF58+YV/Z45mt/zvS0uu+wy8zvGGNds4cKFoSVLloRmzJhhfr/LLruYfzvBfeC8pnY92H333UMXXHBB0e+YT3iPa665ptgxO69D9PWyuPDCC815j15TTjvttFDlypWL7otnnnnGfM7HH39c9BzGZaNGjczvBwwYUOy9mzRpEjriiCNCJZm3vMgVNP6j8CzIDWE3S1iDNoKoIOwe2XWjPij8A9QoFAdCWFSvopoRglJE5oIxxpMVaKDAoX6g8qHC8DNemJp8SFRA1CTuGfvg3PNZzrCfzUMDvC/PIzSI2jV58mTze6soYnlmbZGyAVQ3JwjZokihyHEcKKpEHsiNRCmi2IK/o5bRbpTXO9NXCEOmon6ifMNnUQizBRQtpw0U5xBFPbrxBIqVU4niuzHPoabiIADwCUYlc1bRc934DNRM2xktVaDSTpgwwaid2QKhW3KPLThe8pI5dqtS25xcxhgKN4oiv7NNNUh9iI4i2RaXgGvNteI1rAEopBaffvqpOd8ovJn0h+f1Rx99dJFpuX2gbDLu7GfxfYiInHTSSUWvJ3XAKpixwLgqxLVKQ9UKT4KFEdJIWIPcE8gGgEQyMdmcN2s0rPAemDAhIKQXcP0aNGhgLGOcBEWxHc6OK4kWPBbYQw891BTE2J7bzsXMCQgCix/5WLEA6bKAUNx5550m9EaIzgmbv8i1JJSNdy3uBpAiwqbkJ5akPzzvG33cnA/C17Fg73lLxqKfBzlhvKWKTLvdxLpOTuswYElpdE4pbXCjX28bHkAKSQPg+0HComGdBfj7vvvum/LxYodz7LHHms/hdeQB0qaVNJFMEesa8f74HAPb1tMJ217W5qvGy50kLE9lMhsXZ/W9c7zguAAJz6RdLbmnkFdyZHkkukc417Gu2d4JOsYxrvzkJZsqdMVVeA5MECyKKI7kZUWrAZY0kpuCTxbqlSWWivwCEkPOG3lmkEbIBIsCC4e25Ex+7hjzKErJNkMojOR9oUyR12Xz/aKBUpPI2NqqPCyeFDWgekEuUPUoMkBtwZPOmY/GQo6iRzENxR3ke5E3Rz4ZhTLxFsroIhsnojcTfB7vQ65ZLAWW4gTmAUv4rCdguqbvkA2eH03qAN+fXM5Yiz+/Iycvlh1UPMXYC60YyQ+FaNlrRw4hhS29e/c2OYCA7xrrWBNdv3jgfTgfscYzuYzOzUb0ecZBg3GGonnzzTebccx7MdbiNYZIF3Zcs/EhzzQWSkKqly9fHnfz42cocVR4Ckwen3/+uVkQmTQSFcEw6TP50PGHSkwWE0X+gPpL6JMFFbUERcNWRyuyC0KcFB1A1qKLLpyAAFKtzv2RSOnFK5NQMCFiyIUFhTSxQPUqDxRKikt4f8jHAw88ULTRs2FIi+hQbSJw3MwFKEuJ2o5SyQsgEhwDZNKSOY49mfkyhIbPivU9eW/GNO+N0uQEdlEQKfv5mYD3iCZLU6dOjVDgeH/bftUJmzqQyeczb7Ih58FGhetN0Ywljlw/Nn7RiHf9YoW9OWaUV4g31yMembd2PJxnjsUpAFD8g2rMmHS+PjokzfUjdYJQdiLVMdYxsL7wmVxLVPxE4FyTahOKumaxro/9TiiqKPKFBs1xVHgK5MFNmjTJ5Lw482ZiAXWBajh+Qh6zmXOlSA1Mjiwy7NxZhFEVqaikw5KSRveAKvnyyy+bBZ/8rET5kCyK2OpEw5ljZlUyp9KEgmdtVCwIYUd7SEIgIWzWlgTVkms/cODAiOdFv1cinHDCCeaYqKyOVr/4NyQXMM5Y/KnKJfzJazgOKmyjiWs8ELGwti1O2Kp1KtCj8eKLL0Y8JxNQacwm2XluSc+hWtj6ceLbSQUx85sFFi+EVSGXVO6mA3venOMIUuy0lIGIQUydFkJEdqgOjmdnRJTBgo0Ex0wbXksM7aY+3jXheUQonHN4rDE5dOjQiHMBWCt4DmMlGs7XcgzRn89n8HryHJ0WQhbOc8C14Jr16dOn6Hccb7wQN/mnbKKpii80qOKo8JRXI5MOkzFdY1IBEw4TP5Ma9g+x8oEU7qQToNJAGiEmqBQ8ovO7FO4hXmjNCcLPKJOE90aPHm0WczZaqEQUzmCdQn4kixvXj/ck9IyigtVINGkj/xHLEmxjUAIhkTzPLsAWqFePPPKI+UkxAyTSqmmpAPKCennbbbeZfD/ClShDjDnIFgUJN910k/kuPI/vyHejmIYxCXFErWJsQooglfFUL3L++A4cn1PdhMBx/Jwjzpe1q2FzS6EEfytJOzk+C8sX5j1sa/ANJP0GEmzxn//8p8h6ieuCokbeH+cBspOuvylEE49GiqN4LwgzRIhrakFOOTmsFIdwfOT4oSbjbRid+wognhTvXH755SZlgPPFe99+++1F59wWwvEdeF/Gi7O9I9eHQhOIne02hM8laiPqOv6ifGeOg+/gNNU++OCDTZ4mVlRcJ/I22chix8Pf7HfjGFDf+W7W2o31gnFKpIT/J/2D90e9JE2D51vrMP7GJuKcc86RP//80xTKMG447lhgnPC3TG2OPI18l3UHFV4ssc8nOA/33HNP6Pvvv8/o9VgmWMsQhbvAhoPrhC3SuHHjPGGBUwh2PFjDYDfCz0R2PIkQbcfjtKdp27atsU7ByqdFixahW265JbRgwYKi5wwePDi0//77m+fsscce5u99+/aNsBqZOXOmsUJp2LBhqEKFCqGqVasaK6Cff/652P2IzQl2JnzeKaecYuxW4tnxLF26NOb3wa7mwAMPNFYqPJo2bRq68sorQ1OmTIl43ksvvWQsanbYYYdQu3btQgMHDgx17drVvJZzitUN84PTnsUCy5fq1auH7r///mJ/w+7m2WefNTY2fF8e/P9zzz1XZIWT7Bpx7qLtWux14vzut99+5rj5brFsjrCsOemkk0K77rqr+fwOHTqYe8+JVO14sDfi9bwX15nPxNoIixwn3nvvvVCDBg1C5cuXN1ZHHGc8O57HH3889OSTT4bq1Kljvkfnzp1Do0ePLmatc/XVV4dq1Khh7I8s9XC+B9cGSxzGJMfDvx966CHzmbwvNkV87+jjsO/Pe/B9OGY+BxucP//8M2KNYUzwvflMpzXP4sWLzbjiO5QrVy5Us2bNUPfu3c1948Rff/0VOuaYY4xFFWPm2muvLbK2irbj6dixY+iss85KeD38asdTiv/km7wGEeRFsIN57bXXAl80gPzPLpudK0pGSbqEEBqgOpSEZjWSzh5QblCXUAIIS6EM2AIKL4DrjiKBiuCVY0oXTMU2f6oQKzHzBas6Enpn/MbK9SSUzxyEYpWLftWEmckBxkqpEODM+ytJJTFKIW4MvAfpDn7tHT569GhjKo9q6TQqz2Te8iJX0BxHRV4BAaGCmoo58ppK2loOcsPEQ9FAdC6WIn0wgZPgTYgSQg7IPbXt6xTZA4st419JY3YB+SBkSKjb5txBIp32LrSOI/z50Ucf5fFI/UvMyU+0/aVLMn4Z//j0Mu8QInZW8/sJjzzyiEkBSUQa/QzNcVTkDey2sAlBGaStVDYUQpK9KZghgZpEav7fr7vWfAMCDlkkr4mcoFTzThWZL8DW4kXHbPbhPKeQRtv6DgWSecPpaalIDRA7inVAtvx0uU62yQN2NtYyyU/4qMA3IKo4KvK2SGIjwi7/zDPPNBN3toA3GInOEB4SzxXpAwID8WYxIPGdxPJ4SeCK7ACVBTKj2UPugwpbHhAfW82r5z09cO5skQrzd0mjRU4gIlCsRYoB5vN6bbwFVRwVOQeTwFdffWWaxVOh5oZtC5MOHWYgQIrUwCRNRSp5NKhedAXBWkWhKERATtgY2ZZ42cjRSxVUivsdVFA7zdizDeYgRACII9cpm+KComRQ4qjIObDOwRcM+46SGOgmA+EOZwEO9gl+C3nkAiyUmPvin8n54TzRiURJo6LQwXgn79FpRI36aHsqK+KDc2Q7w7gFSCnRKaJHkEfNq/YGNFStyCnowtCvXz+jZmEcnAsQiqK6jUo3DXlEggnZemCSx4h5d7z2dQpFSUCRFQt/PCNpLxUokbfHw6/FGdaAGrIVy9g6UzB/Qqw5L5ynXOTiUtTEuCHfUQsevQEljoqcVlBjWouNC8asuQITD9YI2MhAkBTbwSLAZEy7NsyMMeJV5Ae2XV6ssB+G1tamhwfPw0Aac2NMo52tA53PQ0nDXBrT54ceeiiiE0auQQ9sco8Za05gssx8QMoKmxZSTDBWjoU33nhD9tlnH/P96QH8/PPPp/TZtC91npfoh+18AhEiJEo+L/cFm85sk5Xoa+l80Go1ESBsvJ42dnXq1DGKHLY+mKBHp+VgZI1x9l133VXsfSDvzInMjYwN28LQCWvW7SSNkGnycHNJqDkvjAvuCz9XWhcSNFStyAmYfD/++GNDTLJhu5MuUNMIeaA6sjhgJxNUQDR44HVJazOIhYbw8w9nn+VE5AvPN0jCoEGDTNtBupigKjmLl1j0acfHmIcs0pGJHr90zeA+RFnOJTgGOp7wcIJcZ7rC0P2J9omMQ46P3GeqarHJsXjllVfksssuMykuN9xwg+kMwvdk83Prrbcm/Hw6y0T3IoYI8X54Kka3N2WeQq0j79eqalZlyxbstXQimdrPd6XHNG4RHDs2ZjhIcG2J5GCb5byXeQ6t8oj0sGEH5AzSLYf3oAMPRJRzOnbs2KLvipsCvoF0SHGSRsYTZDVbFdSpgvNOdTVjguPnPOmclUfk24E8qPCiG7xboAPAF198YTozODtV5AN0Kvjjjz+KdX0IAuhOQFeLr776KvT777+bbguFgkLoHMOYpGNGrLEZryvJDTfcYH7/wQcfRHQpidWBhG4eu+22m+kakuv78KmnnjIdO1atWhXx+x49epguNc6uT3TOoTMNHVWcnWiqVatWrCvOmWeeaTrKLFu2LO1j+u2338y5onNKMnBNVqxYYY7Ddp9JpVNLLKTaBSgW6HJDh59o3HvvveY9f/rpp4jfM56qVKkS+u9//1v0O7o+0fnE3iu2e4tzLTr00ENNpxeL1atXmw480R1mcg3O//z584uNI79inU87x2ioWuE6yC8cNWqU6T1K4UU+gbpAKIwdrDWsDQLmzZtn+rES6iFEpf6W3vXESycUZ5VDuk8kA6kIzzzzjEkZoeduLvHFF1+YMHV0ZSw5tjgg2OIUgJpF2NrZ4YWx+88//8gVV1wR8forr7zSnLNvv/027WOi8QCq1RlnnJH0uTbsz5xB+NppHl4S8F6oeKkCJZS+4tGgnzOgwM0JCnwIRX/55ZcR1dAo21bdRsmzaqa9VszX9957b8T7oDTmu2CIMcFxMG5QgxX5gRJHheuEhVAaYTOvuOizCBDqI6yD/UwQwGJBWJpcsuiwnMK/IAQZ7SCQCHSzYPH98ccfkz6XsGAqj2QLOCQLP1U2LNGA1BAW/e9//yvTp08334f2fyNGjJBbbrml6HkQGdCuXbuI1+MvyibQ/j1VcEyExCFhbCZTuX/wLGTeYPOFlRjgd85zQQFHquBexLmAFANyFml3mClsbmQsazPOEakMkC3QunVrE+598sknjZsCYW5sb7Dh4lreeOONhjQSDrabawhrvkmjBeeM4+Fcp0O6FdmD5jgqXANKAJMzKmPPnj3FS2C3jRUQixbKm5u2QPkCnTBY2Bo0aGAKCRQZggX9zTcx30OyFrngApE8nU8WfAgKBIYCB/LkIIKo+amAxZ+iGks4E6FGjRopvSc9nik+iQdIFsQrOp8PQBhRSx988EFT4AEgUhTRkYdnsXDhQnOfktPnBAQC0ozdVjro27evUTBpPpAKHnvssQgFzuLqq682DwvmkWQejXw/zpcljuQRknsKiSU6Q9FLuuD4eK8jjjii2N+4/1GxKYAh2gJRpiUeeaE33XSTGT8UHXFcFFDxk9xIxhhEEmKe65zGZBt/VGryZiHxkGXNd8wtvDMaFAUFJqpPPvnE7AhPOeUUT4ZFqc7k+GxS+J577imFAL4ThBg1gcIXFmydWDPEW2+JXHQRqxUJ4eGfjz1GeS+lujk/nOgCD4gKbTvTUZEJFxMiTYaffvoppfdLVmgGQQMs9tEg/AuRRQmlaI6x++qrr8pZZ51lPp+UCgDxjFfxzybQmlGnE6aGRDM3pQKKdeig5ESPHj0M8cJaDGLF+6XSXYnPdH4uxUFUL3ft2tUQ6N69e6f1XSB7VKa/9NJLMYtr7Hlnw2HBcZ999tmGtKM08hzI98MPP2xC1YwPFN/vv//ebPyffvrpYtXw+QTzdXSxjCJ3UOKocAVMZLYzjJeNpLGyYLEilAPJ8ko4JlMQviFsh1pA1XQhKqk5VRohjbFyDi+8UAQi0ahR1j4Ocs+CmIjkv/jii4ZoQVQYryz66Vb6okJjw5IuSS0pYnmoYif0xx9/GKXNfg9IFWT02muvNW0vAapYvJxkxrozHzKV70/OH2Qt1RA/qh2PaGB5A4FEmbN9rzMBpJQcUObNdEDb1jvvvFMuvPBCufzyyxOe9+hxxfjhYYEC2b17d0MQeU+q1okYkV+KrQ9KqpcIGhsJ21mG/9eWqLmDEkeFK8az2H8Qnk4lfyjfgGA1atTI96QRoCDwPViESCJXlACEp+OROH6P6vjww1n7OEhjMkJHqDE6zy/d3L6pU6eaDVMyJPMUtGDxTkSYLDmLzv+DCBIiRdlykl/GLyFXCnh4DqQA1YsNHukXznA1f0fRxG4rVaCoUQiSapg6ESBjtssM7wkp5d+Z+KESop4yZUrKz0eRZWMOqUukUtrznqi1K+S9T58+xueW8/zZZ58Z/0dsknhghfTNN98YJdhLgCwypin44hoUwhzuByhxVGQV7P7wZmMnDnnxA5j8IVmE1/F5ZAJPNb/LC0DtIJ+U0A0kOJlqpUgR5KrF6zTE733YbxhyQFjXaewcD6k6ICTLcaxbt64hU9GV3xA+/F1jFThYk2n7N1tYR9EMvoQW/JvnpVN4R2ifcD0FKdkCaiOkn3Ob6b1HoV6q8w5KLJXUbCJQBRPlIHLeIeYo1fEUSfwwebCB5t/klDrJOP9vTdK9BM41ES02EBBkyHGuPYKDCCWOiqyBCfzzzz83u+2jjz7al+TFVoBCelMNY+UTJIeTXM/CQYWql5LYfQ/U8kSKY5bVdEgSihWkxo2cYPrDX3fddSafDRubXOU4ogJBcCB5TqAcEvpkzqDIx6p0nIOvv/5amjZtWqRkYjvExgjDcydx5N+oTqhuFrbCGcIaHb6koIJw8Omnn17i0GZ06J35zr4nfyOEzneKvpYcQzRBxHmC+xjy5oQtYrLm3dZyh+9LNAcVMFl4nPflGqEMxwIG4LSDpMiHMcjxEsKmmOawww4zcyIV77gyeBEQRVssQ25mvO+pyB50lVFkDYSnKcg499xzM871yfcExAI3bNgw8yAxP1ZCv1eAQkFaAMeI5YYfibqnQfU0hTCxAGkgzzGLgGzYR0lBfhrEBSKAskcFNpEAFlWIWiokIJs5jlRI33HHHcYSxuY8Q1Ao0iCfjnuNsCvHS/gaG6/33nuv6PXMJ9j0QHhPPvlko5jyHXkOBSXWixAQ4qYCmtw8NlPROYGonOmGqSmg45EMkH6KXbiGEC6UMMikM4RK9TSWOMw1XA/yO998800T6bj99tsj3o+cQ2ArtSFGfHfUtZtvvrmYfyUEk9CyBcfw66+/FvO/tOD9+EyuAefQklyKlSDziAGMHcaSk7B7DZxfm+9IwVWyDkyKEiLfDuRBhRfd4EsC3PzpXhDducCPoHPFoEGDTIcFOhV4EXQboAPMhAkTAtkFJ2edY+gMUrp0KFSmTOTPDDqGpDLu6M7Bz0y7jdjOMfZRrly5UI0aNUJdu3Y1HVKWLFkSygcWL14cKlu2bOjdd98t9rf3338/1KFDB9PRhu4yHTt2DPXp0yfm+7z66quhvffeO1S+fHnTXebpp58u6uRicffdd5vvzrmIxv7772+656TbNcm+Z7LHXnvtVfQa7kvbccXZceaOO+4ItWrVKlS5cmVzferWrRu6/PLLQ4sWLSr2ubyf8z1tl5d4j3PPPTfi9cxh/H7atGkxvxedh1q3bm2O03ke+fc555xjrknTpk1DP/zwQ8jr4Pj//vvv0MKFC33TFWudTzvHlOI/JSWfivRBEvTFF19s+oFSGelnsKsmeZqdHtV9XrTeSRfs1AnfxKqk9AJQCgjp5bsTj1eAIkIuF9ZDWVcbpk8PF8JYH0eUxixWU1ughNlQdSGmHDA3UJiDUhi0sckD5TGTopmSAPWTSAQqczRY+lGAGWscWyFELGxvdhRIFFSvf6f1KcxbXuQKhTc7KXIOzHSZgC699NKCII2AiceSxsWLF5vFPN9VyiSnE7IirEcifiqWKoosAJKYxerpoIIOJRRoEPr0kieg24AQMJ/Yog3Cv7ko4CAXkhxICv5iAVLFvMaxeJ1gpQrWH/Jmyf2myj3fc3ahQomjokQggZrka4phEtk9+BXsypmAUYNY7PKVu8muE7WmUEzKFbEXPbcKY7wAilVQWIIIe02ZR3BAyNSyJ90GB3xeNPgdTgyojIU41iDqEEbr76gWPdmH1q0rShQuJeGe6sdYfWgLAezEUfj4+fvvv+d84UOdIHke0sh5Jqm+ECd7RXisETYsFPVHURzcu9bzMR8k2hLXQs9QIxrDvUQRUaF/13xAiaMiI3AzYqTLRIgfWiEvduxgqVQkfwbyGK+DhRvAVgQjZqqmtd90YYNNAoSCn4rChLXsYU6BOHK9c0VsmL8gjYSmUeQKec62Fj0QZdKoFNmFEkdFRqDTAB5jJF8HodUT3xEbDUIfsQyLsw1CSdbrDg+7dDpjKPwJCCObEiWOhQ+II3MKc0kuiCNjisKrIJBGC5RdrJ8gy0FNkXALShwVaYO2X5joosI5jWkLHUy4Ns+RqutY+UPZUhnxoKPXN1BPMoWi8MAm1BanOLvkuAE+w+b+BamzCt+X80xLQt2QZQ/BGUGKrIDdMV0dCANYc9oggu4ytP3K9mSPBRBqLpWBarWjKARgPt2jR498H4YnYZU/WhWiCGZjM/qf//ynqN0rZIlNLsAuLR3SSGeaRK0k/XJ+Waus9ZAiO1DiqEibMEFuqKIuRK+5dCoWqdrjfGRrJztt2jRjnUH1aYcOHbQaUBHRFo5F0D5Qj7C2ueqqq4xdVDRoYcfzSHHIp9KCR93rr79erCMK984tt9xi8nZR8Pfaay/j82hVdid5cX5v5yOVnN8ff/zRvO++++5r8rF5v3wh0bFwDvgd5DFeDjV/o2UkzgqQQOYgWi5Gg+fQXpIcdF4DKQ1ygQjnlZA1+aQ2BUhRMgR35VekDSZ7QtS0ymKiDzLYxbKrRx2kBy/npCQhIBZ3QtQYvEIIFMED4yeZKkQbOMyCydkaNGiQIQ6QxPHjx0fkGr///vuGmOD72b9//6y2D0wHzz77rDnegw8+OGKso0DSLhM1kvFOL+SXXnrJeMJif2U9Sp955hlDfpygrSkt8uijnAwffPCBaTOI60O+84QTHYvNPYTc8ABOux4iG7QaZK6h7SKkmXPF+aNy2EnMaSdJweLjjz9u8qODktOYCNwbEGhC1uSNB/18lBj5bl0TVHixjVCydk60BnviiSey39bNx6CV2jfffJNxKzfO65o1a4r+X+GxloMeQbyWg7SM4/cffPBBRLu4SpUqhZ577jnTTu68887LwxGHQhs3bgxVr149dOedd0b8fvDgweaYX3jhhYjfv/nmm+b3n332WcL3vf/++83zeJ9UWqFyHKBXr14R7ftKch0yQSrHYueDDRs2RPz+448/Np/7xhtvRPz+xBNPDFWoUMHMQ85Wh7R2LFWqVGjq1KmhTMHxRbcw9DM491yDf//9N+QVrPNpy0ENVStSAuoAXoK9evXSYg0H2L2S61mjRo20X4vyMmrUKKMckduku+Bgg3Ai4yCdsCKKkg0JW9BeDnXl5JNPltNOO00+++yzvFSVMq5R0aPVTptrtvvuu0f83ub0JjPZR7lDxcTlIBlQ9ryS8pHKsVi7Hqs22vxE26aR6+kE/+bafvnllxG/79atm/lJ55hkYLw98MADJgTOZ6MOT5gwIeZzUewIhdepU8eo440aNZJHH320WDrEP//8I2effbYJEZOvfe6555rwOd+PtIt8gHOPko2Cbc+rIjNoqFqRFCxChMOaNWtmTKgVkbBEmhxFztV+++2X9DVMtHTcoUIdU+8g54sqtocj0+1VjSUWqFatWkSYmsWfkCXEgmIJCtogksngDJUmyxsjXSMRhgwZYogC49sJ0joIn/73v/81/YRJzyBUTc5j+/btE4bV2WgRyr7jjjskFyAM7CyAs2FzCLETEK5s25JZs24IGrl5nPPobjP2M5lLLrroIkMCCXtDAnG8oL3j9ddfn/Bz7rrrLkMcjzzySPOg4QBpANG5loyLgw46yLQ+pb0sudhc49tuu00WLlxo0grs3EYO/LBhw+Tyyy83awbEFvKYb3Bv2ZA1nc50s54ZdLVSpJTUzeR5xBFH5PtQPE8gacHIBN+8efOECwJFNfRTZaFEtVQoUs0zhrSgMkEKyHlEoTvqqKMirLJs0QSLO7ZZkMlUiONjjz0m9957b9LnkeNM/mQicC9ADFGdnGDBJtfv4osvjnBmIIevT58+CUkz3wOceeaZkgtAesmpjEZ0hIE+3Pfcc09WP5vzwLWF6KCwMgeTU33ggQcWPccqkZA52xEGcgQhatCggYkUJcLSpUvNNSeSxObCEimI+UMPPRTx3KeeespsVCDvtjAJAomSSj7ljTfeaJRIinJolACRvPbaa83zIJBeqKzn+6GAcg9xvjhXivShxFGREDNnzjQTBTtIm7CuiA0mTSb3cePGGfIYT51l545yQStDp1KkUCRDtBoHgYNM1a5d2/z7o48+MorTiSeeWPSc008/3SzqqGfJVMJzzjkngpjEQyo92wlXxvs8iBekjKpwNlm4CUBgzj//fPnkk09ivgYli+/H66gozgU4txA35yYakvTTTz9FPA+S5gZQGyE7xx9/vDzyyCNywQUXyIsvvmiIG8dCQRGwVj7OQhjOPXN3IrDJQFm8+uqrI9Q3wtHRxJHr0qVLF/O+TsWVMcmxDRw40BD6H374wYSF2RhYMCYp6qFQK99AteU80TKXzb5Ge9KHnjFFXJAHQo4M1ZmF2os62+BcQR7Z6bObJWRkwcRurSFQWoJkxKvIDiANVCGz2JEjSJjXOY7ee+89Y+UEaeMBIFqQAxb+Sy65JOH7Q4CySYJi5WuyGSWU/s477xQR3GOPPbbIN/D777+PGd349ddfjbKWLPSaTWD478S8efPMz1xWqUN0UBxRabl+tpqceeS5554z54yQNWTImUPJuU8WirVqarS1EcQ+mvSTijN27Ni4+dyo3fY9yVeNDt2TD+kVIIKg2qPgo4pryDo9KHFUxMUvv/xiEtnZReqNlTrILUIpcBp4QxoJMzFhtWzZUkmjohicHoXxACkkRzAWWNhJgQCxPA5Rz5IRR5SraPubWGADlKwgDDUdlTMaFEewaNvwugUWMoAQfCziyPFz36CgBg2QR0L5kG7UWVTQVq1aFfleEt2ILrzh3JMWkC1YGyVyUWPBTzZijKPKlSubdCHOZRDa5mYTShwVMbFo0SKTp4IyoOHU9GGVRsIhTE4oFfw/5r8KRTwyxmKWKSBWkId3333XvFd0hTPqFESDvMd4eOKJJ7KW4wiZ4ZhQdZzfC8Ny1LDorku20jVW9xSKQz799FNTLZxvP8Z8gk0Fyh3XmXQBNvcAUhkNKu3ZpCaC9eNl0+FUmsl9jCb9bIjZVCRTW3lPWqaSkuMkZBRAeQmEqTmHiCP8v27mU4cSR0UxMKmTp4KEn4rlhSI+6LLz7bffmgpXEtBJzFYo3AAkjRy0U089tdjfKJCBOH744Ydy66235iTHkc9kLqHi19oGWWWK33/88ccRLe04NhBdhQ1wdaASNlFRDMU4EJVExLik4HjdbsMHgaYIBbId3XYUcsO551wsWLDAWOHg4hBN5iDrvAdFKYnA6yChzz//vAmBW7XbVkg7ccopp5gCIIzHo4kqx2PdAPjba6+9Zh62OAa1kjQLr4FwPyF2NvUl2bQFDUocFcWA3QVqwllnnVVMuVCkBxYy205M210pEgEFjkpPctXSve/om46iQ7FJLFA8Q54y5DIRccxmjiMElGgFBRhO4gjxQtmkIpfiDYpjsIChNSH/TyFINDhu0j+cRT/RoGAGuxirwgFy8r766ivz/5wfCBXWMwA1jqK/RLBt+5IB8pbMhivVYyGPk++CfY3T85DvBhlH0UM5RllG1SMPPVot45xDzskdTQTSDW666SZ5+OGHTeoAdjxcE/JMo8PcN998szl+nsc1bNu2rRmvFANSDc+awWuOO+44k1JBQRbfE+WZ1xF5AV5Ke+I+I30I1ZG52iuen55Hvh3IgwovusGDTZs2hZ5++unQe++9l+9DKRisXLky9Oeff4a+/vrr0KJFi/J9OAWJQugcw723fPly8zPVzjEWV199tfn7jBkz4r7/PffcY54zZsyYUK5wzTXXhBo1alTs9/PmzQtdcMEFofr164fKly8fqlWrVujiiy8OLV26tNhz6fRBd5QTTjgh4Wfx3Q466KCY5y3WI5WuKHRPifd65+Puu+9O+l6pHsusWbNiHt/1119vztcOO+wQqlGjRujUU08NjR492nSKiQZ/O/DAA0OpgNffe++95hpUrFgx1K1bt9D48eNjdo5ZtWpV6LbbbjPXlOtGZ6DOnTubjmK2Kw7gOp5xxhmhnXfeOVS5cmXTvch2DProo49CXgLdepiX//7775x371rn084xpfhPvslrEDFlyhRjV4CcT2WkV4AvGPkp9EDNZmJ10EDvYM4fIWobqqFzAmE0zRnNPii2IKeL6lO/djYity9dA3Cvg2IOFCcULKdnoyKzELY1BLepAswr0Woj+encB1gXJVMccwnUW9Rk8m2jq9XzDQpkyOkkPSuX88f6FOYtL3KFwpidtgHLiTfeeMP4W5GzQDIvbvqYLCfCm2++GbMNEpVsSP7RIDTATckNitR/0kknJQyh+AWcM4gjYQYljZmDXCsmA2fODJO7zd1ir6bms4oggLD3hRdeaHz+lDhmxxAc4uicV5hPCFkTZmXNIj+xRYsWeSWNEDFnHixpGORRklPoRWs3SBvnjvQB652pCAhxJE+D/BY6JFDVyi4X64Bnn302pTZw5GQ4B3usKitaJz355JMm34QkdPJWeH92DrnqZuAW+vXrZyYnvpsiM5B7RIUiOUoYgscCeT88yFfSYhlFocN2sVFkLoiQi8fDSRotrIUT5JE1C5Keb2AoDnlkjiO3m37ptCfEVDyVwqpcg/PHRp9qct3UB4g4YrgM8aGKzPp8Ud1FEi8TVyqTF4Qp0ULODUACNzfD/fffb35HQjPhAsxs8SHza3cVKvTwB6Py14s3th/ApMNGguT1RGa3hCWo5MPXkar16JZsimACYpBJYYyisMPTEELUsEReg8zZrEOW9OR7DFEMhcBCdA5RhfkQxTFe8ZYXgGLLOSbyZgsaFbFRMMZFdBXgQlsTWcDuDCI0YcIE4x2WCmy/z1ig8g8pm6oxJ8jbYHeF76EfYe136JlMpZwiM7Do0/2CMFEioOqSDsAkxZhJpWpTUfhA9WDx0jCZwpnTaD0bE4Exw3zCT14DicwnzjjjDGPDxHqJ4MIa7GXSaGGFH8ijIgCKI+FBwtMs3k7YnqaEBmnRlQiEnm1uBlYS9NYkWdb5GSC6B7Ft+zV16tSidlDRoLenbQHmbPXkBXBTE2LFw01NUNMHO2o2LUzcqRp8sxjQq5rwDV6Pueq9q8jf5swu5owV/k0I0rlJ5e8s/Gx4KZSx/3ZuOOxrgRLMwgXX35JGSwiTgbmb9Q/CqfN4ye15ols4KgqQOELKYlWr2t85m7JHg4FywgknGA8xBgrhxs8//9z4GVLJZMkon8HAiu7hyWsINzqJYTTwsYpVgJNvMMn89NNPhgxns0dtkCZ4PPRY7CGC6YDwE9WFtoI2ld6yCm+Ba2ZJIQ/+3xI8iCGbCvscwN9s/hR/c8ISS+YTxpXtpGJfa8NnNnzJWIEg8JPfW1WKv9u/KYHwL9IhjRY2FxIwhvh/nVPSA+s99xdqKfxBz18BE0fk8Fi7AxZn+/d4oJjGCdpaoQCRxwiBxAjbvkc8mww+J9FnEEJ3WhCgOFrz13wCxYtQaTylVBEftisGk0ysbhepwI5Z8iPJ0+3YsaNv7WS8ALfdxagO5WFDyqhC0S3yLMGDtNnnWRJniZxNxo9lxwNi5bM5ySd/t0TVGZa0FfsWllTyfFuBqwuhd8HY4jpxjUtiycT7MJac1j2K1MD9gRCEYTmbOzfPX8inbogFQxy5QewO3Ql2/fbv6YBm7rRIghhY4mhDSLHA5yT6DOxtvGZxwwIzePBgQ1acIXlF6l6NED7OX0kLXNjlMoZswYzd8ChSg5PIZXuiZ/HgvmcxthM9UQoIGSSf31nlz6nwlXTxj4YlfHxGvPFhFz1LKC3Rta+1+W9WmeLBMSqZzD8s2ePalnQMWwWa1CvGS7rrX9DBfc05I9eR/3fr/li7dq356beQeMEQRyRlFvFo2PBxJqSNYhFyHZyfwc2NUagzXA1h5Xl+M3aGNIJUetMqIsH1psUWrcLw8iwpUISo1kcBpmAG8ui3ySSfYKG0dhoo/5CndAkR97aTINoUFciWVe7sg3veuVHlNSUFn23D29kknM52l5ZQcuxWsYRgMNb4nQ21a4g7t2D8WDsdrkV0GkNJQMiV+aVQTOVzBa4D9z59uLO9GQ1t897EXQMnF79VcBfMSKLcnx6btterBeE/+/d0LywG340bNy76nf1/DJ5Z5C34N5Ow87leBzvb4cOHG4KSyOZBERsQE1Iasmm/RO6bLZihy0y7du2y9t5BAF16mOCZjJ0bvlTudYiVLUaxIeVcE3c+H/KYS+JmvzMPiCOfbxVUS5KVRLp/DZyRsWyqW7YIy763Ij3AJxYuXGjmeTdUx1133bWou5ifUDDEkUWcbi4UoVgfR26Y7777Tpo1a1ZUUY0tD7s5vPYs2FFE+zfSHonfE4a0wPEewoAJuJM48m/kbOfvvA46xLAo+OmYvQDG1Lx580whkRuenYwvromqjemDiZ37GOXRqoexFmnua4rluJZUwbO44rpAFIGUjSATJcgjuV0otxBwHCNY2FhAOafqOZp90GUKVZA8aTfIHePc5k0q0gPzBLzi4IMPNsWz2US5cuV8pzRaFMxIghxycV999VWzMNSuXdt4E6Ia3nrrrUXPe/DBB43R9cCBAyOKYzAshQyQXzJu3DhjJo6CGO0LSfusp59+Wu666y7jxYcyRItDekn6ZVJlkhoxYoQxPNdCjPSLYVCzGF9u7eBt0QSLOBZQVLwHmcxkQiCj8wtRFIk+sHHkvKJM1qpVq0jhSea9mQtAaq0dWL6uN/MBGyI21jY30lqNUdDH3zlvkEmtOC0ZbKEShZi0x3Urr9nO8YRGWQ/VPSN1YPHHvQBfIC1JyXcYBXUWbr/9dqMs9u3b14RiuUEeffRRadWqVdJCGAodMBFnd8Z7oFriaxhNrDD7ZvD873//MzmC5EFibBpdme11tZEF06mmKpKDlARyZlEEcxH2ITEbNQK1B2N2JY/pLcooZpxD0lTY3TMnYNAO8YmuaPYCOFYWqK5du3ri+JxqCMR6jz32MMSDB+MSBYY5FsKrYzM9sHmhEK5JkyZmvclFMRwqMp69fBaESJF6NPOll14yqXDt27fP9+F4AgVFHFnMr7jiCvOIh+eee67Y7+hnnQ5oM8jDj6Cwhw443bt315yXNECeC+FMFstcFUERNmWiIheVSYtUCVV4EoPwNGb2FC5BuDmHEEeITZcuXfJ9eL4F4846QxDedxYM2A0VrTQhl0oik49RSCMKYC7zy1HOmP/xKSY65pcIWb5B8SMbJzZ1iFDlNI2ocFoOKlIDg58JX3dO6RNHFsVch3lQtCGMfD5pEYrEC/LPP/9sQtLkOuIW4PROVWQPnF+78WRhZTFlc8P5J6xtCzIUkSD8T8MANjUUwrmRJ50IECCK8NiMxrKvU8RXHblmpCopCkxxVCQGqgDkA7Nv9QlMDySu58usldAqn6+LcezwGy0bUQJIIWFhRBHW3N3cAeLIw6ZW2PauzDGQE1VotoP8eXKkIY35SEcg/QC3Bpwb/Gghly8QuWCOIc2rTZs2gV8/lTgGCORwsttUm5fUQRiOyZWFMZ9hYopxLKh6DbJhO8oile2QFPIWCbnhlEDYz3meFLkF6tl+++1nChVtEQF54BBHwtgU1AQ9jE2Vet26dYu1rc0luE8oBg36tUgX5B4jvAwbNizw3sc6cgKkzLDbJc9LK8NSA0UAVDVbd3+vVMSzGE+ZMkWCCiZuitkgKoSicQcoBC9SFChyp71QGFMSOHuv4wjAhosQH04VqJHZMEv3EzgPbECJGJAm5IVNH6SR60C+I0qxIrX0DNTGwYMHJ2wvHAQocQwIfvnlF7MgMfAVyYGCxe4SlcTp+ZlvcA2x7yCPjEU4CGCB47vaBQ5Fi+IulHMvLMKK2IAwcv/QZAByT74uhUtBI43YvzF+2fR5DUQvKJZ09jtXxAfCy6ZNm0yeapChxDEAYHKgYAB53a+Go/mY7Fn48O7yGqgSxsZj0qRJJlxbyNeBkPSAAQOMYkNFqN35Z7sFmBdA2H3QoEHmZ6GBdALuJYoMmINQ8fmuGCwXMlD05s+fbzbs2WhNmk1wHTguxhv3lyK1cdymTRtTFR/k4iIljgEAvY8J5SXzs1SEQRiChY2CFK8mQZMrhWkwi1K+inbcBOoiiehU6kIUMfcnN6zQlVXIcSGHcm1enf2OzE2kHhQiWcYzEYUVwowjg1eJEBGMGTNmmHQmRXJ06tTJGPUH2eVCiWOBAwKEekaXG81tTA1U5KKMeE0hiAYhWyYxlNFCCTVZQkFBBeOVHEZC0s7+8wr/g/xUIiAY27NJIJWm0MLYFCJS5V+nTh3xMihcYq7Dm1ORHFWqVDFzL5ueQpl304USxwIHfl1AfRtTIy0oXPh1+aXikHAT+ZiEc/F69CsoHKDgpX///qZqGvJObpzmMBY2UOJQk1mIrTUMRNLPqqtNqSA3mk5FXgcbT7qI0WJXkRo6depk7O3INQ8i/LE6KjICCzBhIELUhVB16jbI81mwYIHvdpEYMRPOJcmdNnt+AueawgEqbvFjRP3wC2lXZAdcb4z1UZVJu2CzywaC/Fa/YebMmSZ3E1LhJ1irMXKm/Xje89XDesiQIRJE6AxdwCAHg1A1uyNFcpWASZ98n1x3c8jGpE8+JlWrLLp+KjiA7ELYCedRKW3bAwYRbO64jkHe5Fn1i3Ag6j9FCCjqfsBff/1l8hoZw3411qbyG+XfL+c8n+jcubNJr2DDGzQEc4YOANi5k4OBj5qG+5KrXpBsVDsULz8CskW+GAsWnnmozV4em9YHjepwjHXpf+zVQqRcgbxOlIygd1pBeSSvle4qhK1tuo2XAXmggpr5g82nX0HKAHMJ5FGRGE2aNDHzLets0KDEsUBB7gXKE7siRWLQeosdNtWP+ewOU1Iw4ZPL6uVCKBRwwjukUNiqTh6KcJ7n7NmztbXkNlCwgf+jdYPgHvWiBQobIYgjVf9sgPwMNm98B/KlaYCgiI9SpUqZ9RVbNCzvggQljgUKFmfCf16v6PMCUBp79OhREASGYhnCfCxmhM0gxV4BiyttL7GyQNlQRILzQncnfiq2ExmbOoKiR/W1l1IxiFbY8DrtFgulYIle4+R7KxJjv/32M6klpFQECUocCxAkN5Nvg5WJIj4gV/iXoWIUmjE6Vakk6DOhecEjD0soHrVq1TJWR37NAVPkD1jbYHFDaJBNUb6L2PA9xM0AFZ35w8/Rimhgcq1dxpKjXLlyJsJDPq6XWtO6DSWOBQgmVhZmcjAU8QG5pqOOl1S5bIFQNTliKDaMh3xNatacnMId8tYIO3o1jK7wNugWxJhu3ry5CenTMzhf5vdsysi9hMhiHVVosPco6q61F1LERvv27c04HDFihAQFShwLDNzkkCEqqYNanZoKyJciN4W8pEJVvyCNjAPUEMijLUjJBSjOIbRouysQ/kJtVChKAlQ9rHsoqKJ6mX+jrueSQDLHkqNLSgiboUKeZ6dMmWIiBflWd/3ghjB06FBPFyVmE4U74gMKKmrx9fNij2UvgVwyCFWh59oxFiCPELdcVS0TGh84cKBJmWBxVaSu8lAQoopscpD3aDcihK3J6c5FUREECmWJfGiUpkJLcYmVw0e0IqhG16miY8eOpnEEYkQQoMSxADufQBqDbumRCISmqRikejAI54kQHxYhqDNU/7m5wBLawgAZFYaKWExyFanb0BCK1faK6QELIxZtepu7nc/LuEZl9LJzQbYJOsouueCcY0VsVK9e3XQJQrgJApQ4FlhYgZsbPz9FfKAWQGpQ4YIE1BJrquyWrQmda1AZ6UOsBCg9EG4l1JWvvD2/Ap9axhvqH5sWN6qumVdRNrk2jO8gbDgtII5ELujwpIgP1l1yb/3WNSgTKHEsILDbwX6HQgRFbKBIMPkXgvVOpj6PhJ6ymY/D+VyxYoX5f5TNoKgxbijh33//fUEWa+UizwwXCay1su0/iD0SOcJsirzoI+k2IOTc0xQlKeKDuY/oThBURyWOBdYyT9XG+CBEiyIR5J0zhNl25CDBn/SGkoDXM1FS4UrBEeHwQrIlUfjPGsUSHNrnlVS9ZUxDGhnT5AoHtbsR8wabQc6HKuKxwfnBNYJiokIvklHiWCAgBEk4QXeFiUP5IOh5d6gyJHOzCJSkJy1V2hQloMSwYSlEWxKF/1R1SB5jk00im5pMN0eoi5BGXg9pDPr45pz279/f9GdWxAbel0R0Jk+eLIUMJY4FVBRDBVyQcm/SAQobvo14WwZVNYjOCzv44INNHiLjJ127DUL+FCNAPAkR1qxZ07VjVSjSBZtoNjNsatjcZGJFhYLEuKatHKHwoINzSiU7pCiIIftUUKNGDSNMjBw5UgoZShwLANOmTTPESJ3+44PEdiZ/Kt8UYdiQMiFrwivphKDYoFSuXFm6dOlifioUXgOkj00Nm5t0Kq4JM+I+wP1B3poWeW0H54ONptrzxAfrMGljhdy/WoljAYBwTO3atVX1iQMIETtlWpYVsllvpoBM05cWs+5k5JF+06g3qA8U2gQ9fJdt65PDDz+8qDezouSwmxubo5cMkCIKx/BqLGn+byGC+71x48Yya9YsT7Qy9SKaNWtmzlMhq466ivocJIBT7KFFMfGBckD4gDCCojgg1SR1QwrHjx8f93l4uaFMzp8/P6fHFxSwqSGNQjc32QWLOEUz/KRALp5dD+katBFkTg2CuXemoHMP3plaBBc/GoOXMuljhbr50BnK52BXw2KDmbWiOCBDqShpQQcLATmy+JDFWlgJvdDKErWBhUMhrngFkjagRsvugc0PiuLixYtjdoTBg4/CMe14FB8QajaaGsKPD4Qc7mNbkFloUOJYAIbOhGC14CP2+eHGJWdJd8fJgSpLD2C6IESTRnJEIY1NmzbN2/EVOhinEJpCt/LIJ/bee2/jcwtJpHDGgvQLQq8ok4Xauz7bWLp0qWndqigOxhieyoXq6ajE0ccgzwSzYC2KiQ1sIzDvpZJakRpsoQsV6KgzgHxGJY2KQgBpAKhBLOyEpSHqhBMxbu7WrZums6QBNjhEKAq5CKQkaNOmjZlDC9HQX4mjj0E+GrtjctQUkWAxoNqcoiEtNkgfVKISNmVzwjlU0qgoRPJIzi4tOEll0dzS9EAxJkVHhe5ZWJIK9DJlyphoTaFB7xQf7/YmTZpkchs1DFsc7IJJhCc0pUgf5C9xDjFRVsNfRaEBkog9F3NE3bp1zU9FemDdYUNJXqgb/cELpQJ9fIKCQ79CiaNPgQSOKqRFMbFByOnQQw/VBO4MQPgOJebAAw801YEUF2W7/68i9kJD5ye1OHIfqGTk7pIfDgYMGFCQIUW3sfvuu5tOVISsFcXB+owLBS2BCwlKHH0KdjHctJqTUxwsABTGkJunSA+oBxQOEIaiypqFFVVBCwbcB+OVinUdt+6CRZw0Fvz28DBlrJPjSMiadnGK9NCuXTvNs48D8uux5yk01VGJow9BWIUds6qNsUP49JfVzgaZgZxGSCILAaEoHoRbmPwoNNKQlHugjRtG7NrOzV1gtYMpeMOGDc2/Gdv777+/MQhn7ihJ//YgAtJN6J/5QREJ3E5Il1LiqMg72C2zuBDWUhQnPpBHbS2YGSCMKAixCgUYd3jgKXl0B6hd2Heo6uUOcApgfgCEV51A5e3UqZOJVGixR/rAs7Bfv37F/DEVYgQezgv2RYUCJY4+BLsXKl2rVq2a70PxFJj0WRjwz9I8sdRh26wRwoMwxmvNxgSIGkm1tVpwKPyEefPmydixYxOaq6OckddLioYiPZBLDhm3Fl6K7WjUqJHZmBSS6qjE0WcgjILyo2Hq4iAJGSNf7WySHlhQyW1M1mINUkkrNhYIiCat2RQKr4PwP8VeVE8ni9LYsCt50uomkB4I/TOPrFixIt+H4imULVvWWPNAHAulg5kSR5/BdkLRMHVxkKsEadxpp53yfSi+AQotagzV03iyJQPkku4aGIVrLpjC6yCtgrase+yxh1ESU7Uug2yyodK0jNRBkRHKo6qOxYHQA6kulFC+EkefgV0LreFSWeSDBiYuJdSpg3Az5rSQbVIf0tlBd+7c2VT1A1ReRckBKYeQJ1N+FamD80lxF72V0/G7paCB1pvknGrRR2rg/KI6Mn4LRVnLFurXr298QwslXK3E0UcgaZ7dnIapi4Pw/apVq/J9GL4CITmUGMIoJTnvAwcO1IKOLAClnF7hqphnZ1PEmCQKAQlMtysMJIhCMUgQ9lTkTyuSA1EjXZIeBJQpU8bYPxVKuFqJo49ApxgGHQNQsR3k2lEJqcQxNbAI8iBXkcWxJK3WKERiUlQbE4VXQI4dObglrY7GSoWcXsb16tWrs3Z8hQ7mlrlz56qtVBQQfBib5OL7HUocfZbfSIK3dkOJBCosYQDt2Z0aJk6caBbWbOx8qV7HxoT3GjJkiIatS7gB+vbbb7XoqASgqAUjb/rTZ6M6mlB39+7dNTUoDUAYyQ/F/kixHazdrFOs436HEkefgIIYChlwoldsB/lHJLKTp6fhkeSgEIZxBMnO1vmiEhXyiK2PJsaXDBoSzRyogijfLM4dO3aMayuVLlDkmX8JWWvFcHJgPbPnnnuaeUbHc+Q4wpqH9B6/Q4mjT0AvUHZyJHortoPJiQWC3ZwiuRqDEsCknm2DdFRwPPBKki+pUJR0EwlppAsMuY3ZXvQJWUMe6dylSAyKZDhfbOoV28H6vWjRIt/3RVfi6BPQQo+wifamjgQEyCaxK+IDNXD48OGG4LllcIzyiIpJYQKhcFQahcJtQORIlWBuZPNCbmK2AXGkoxL3EZXWhVDg4CYo8OJ6aLg6EiiOzJF+Vx2VOPoATFIMNMLUGo6NBArDbrvtlu/D8Dwg1ux2SfZ3m2SzyEIeIaostAqFW0DVGjRoUFHemJvzI/m8kEe8HWfOnOna5xQSSaLKWhG5uaagUImjwnVgHEo7OA1TR4JuEOTsKRLDVjfa5Gy3QbU2OWaMWbUySU+l6datm9rxpKE0UgjD5iRXqSq03IQQKZIDH0zSYhSRYB1n4+HniIwSR5+Eqcnjw0RUEQY9Z7F8UCQGiyo+i7lWSOijjrqJOjNu3LicfrZfgRJMNbCmXaS2GaIQBvKIGX0uNkQW5PGSw6dIbZ4eM2aMbh4dIHLIuPVzGF+Jow+ArA1pzHbCt59BH1nOh1rwJAYhPMJ5tstLLkGOE+RRNzypF3ewyGqnktSK4jhPVPPny54Mn0iNeKQ2Vy9cuDDfh+EZ7Lbbbsbeyc/haiWOHge+eOxMNEy9HexemYwIg6g6Ex9Yh6A00jkjX4urnSRRPlnstaggPlAhGNdatZsczIddunQxCm2+QGcaOoGod2l8MO8QsvazupZtlCpVyqiOShwVrgFfPIiSEsftWLJkiVlcNfE6PhgzqFcsrHhceiFPl0WW3tgKRaZjmpxZ0h9YfPPdCIFOIByHjunEIP+U+1+772wH6znnhIcfocTR42BXQsivSpUq+T4Uz6BmzZp5Vxu8DpQ9dvr0jS1JS8FsKo/YAKE60jpToUiXNGKDs3jxYvEKsP1p3ry5aSHHZlYRG6QTca5UddwO0neoW/Cr6pj/FUWR1IZH1cbYlbuK+CCEz6KG96dXgELMMU2fPt0UfCkUqc6Do0aNMuSMnFk2RF4B6TJs7JcuXZrvQ/Es2LjitasFRdsBkcaD2K/EMTs9mTwCwpdvvPGG/Pjjj7Jq1SozUC+66CIz2STCr7/+Kv379zfJzvjPoY6QdH3uuecWU7VOOeUU4/wejWOOOUZuuummrH4fdtfI+0octwPSQaiK7hCK2Bg2bJjZ5eMX5jUQNiffUassY7dqw+qFn4rI3uoUV+Ch6EXP1lx4o/od2riiOFjX4So4BPit8LWgiOPDDz8sv/zyi5x88slmJ/j999/LLbfcIs8++2zCbhlPPPGE8ec67LDDTPUpeYWff/658QiDiEZP5FzwU089NeJ3bvhV0WaQCcmLBCBfICykIer4oLiCDYeXK5mdGyHsOvKdq+YVYDCtLRtjK9XYO5Gi4kVY0kh7PQyeNa0oNkhTweFBx3gYKI5soqnM9/J8XdDEkV1pv3795PLLL5fTTz/d/O7www+X8847T15++WXziIf77rtPWrduHfE7KlEfeugh+emnn+Soo46K+BuhEkim27CVw+RCKMSoyPT45NooioPqTu4DNhp+2OFjED548GBp2bKlbo5EjCHwv//+a9IL9J4XkxNXu3ZtY4judVN0wukIDhCBrl27eiKv2GtAWUMMoaJYFVox6jkbDdZ5vxHHghndhJsZjISMLVAKe/XqZareEiVVR5NGwM0PGOjxbgI3/daYiJg4tXJ4O9jRs6B6MVzlBZBqQZVns2bNxA9AmaHikupvlOSgA/V1yJAh5mfQgf/o2LFjfVN0wn3HBojUonhrRtDBJoDNkV+uaS7GTN26dX1ZNFQw21qSTFHnosNeVhYnNy4dE2RbJh+rCGPkyJFGcWR3SfiE0DiPRCAvz1l6n2yw8FwWECWO2wH5J3dPd/OxNxpsZAgDk3jtF7Ro0cLcRxQ/sPHzajgy29cKdZgHGyHmLOvXyhhHgUB1ZJzbFBgW3KCokLZ4irl7jz32EL8Av1KuF8fPvK2qWiQY54xrNonauCEMxsmAAQPMHOin8VIwMxFEizzFaNjfQdzSwQcffGAu5EEHHVQsuZ98SUJrhE3Jo3z++efN+xMmj4evvvpK3n777ZQ/n0WEHYn2+tyOAw44wNf9Pd0EY4WCIb8ZbHPcWAYxcUIW2Nzxu0IKPUMoSH6HUJDnBUm014k8J8gzpB+bIkgjOby00GMDYO9/2kbyHPIgefB3NgleD+GmC2vXRDjTjz2hOW5y1vwYfsyV6khkJEgboWTEkeglxV9+WusL5soxGceqTLLqSzru/uQ1fvvttyZXMjr36pFHHon495FHHik333yzfPzxx3LiiSfGDaMSQof4OInhAw88EPcY+Du7Mq2wDIOFFiLvp11ZroAyzYOx50fSxTFj1wF59OPxOwFhYBNL1x5reEzVLUoqhJDQlCV/PMhxspGNnj17GkJImgzKjLPyHBsjOpUwj0EgeW9LPiFa2MHwHoT/Id9+Up2dgFDghuHXPGauH44cWiATG5AjxBwljWEwL1iPSyWOeQAEC+YeDdu+K1UCRr7Vo48+Kh06dJCLL7446fNZ6LDowQJl9OjRcYtmKKhJx3+MgeT5XDUWrn//5SSLbNlCeSFMXQTvwCwTAKrlUXs1dF8c7OApNDnkkEN8G8bnuHlQdcm9hArnh8WXqAPhZcgOx8//Q+y411HMIHNWFYTQJUqXYS6BTFry7LyWiV7HeYJQYiVmIxWcPz/dK5Biq6L6HTbKpapacbAOqxiyHdY1hfvWKSx5HQUzqrlZY5mw2rzCVEgboaTbbrvNEBQqrVO96a3KyCKSDaBWEOLyzMQPORwxAoNAmLXIvHn44lCtEiaN0YA8kpvEg11Uq1bILiLt2iGtpP3xkCIUlkILy2UDjDmKhkjM9ytpdIKoAZPp0KFDjXLjJQNzC8YiyiJ+rii9zBMQO0LSyTxjE4HX9+jRIyPVwuaGQiAhr9jX2DmN8WF9PSGmXgNhOrrCkGrhJXPvkoA8Plpsspnzm0dfLuascePGGXFGz42YdZ6iOCIMfpnDC4Y4srsnwT7aFw57Evv3ZDc6Bt7s3h977DGz+00VTMzZ7GZiC2cIa+UFhMh+/13k889Fvv0WSSv8e/wTqUCn93GXLmFiyILFYoTaiOq4fj1VLNuJJd/l4Yfx0gm/ByGoXr1Ejj9epFOn8OuSgAWaXapdDBWR1aeMVT+FORIB0tixY0f5/fffjY9q586dPefbCclBGYWs0a8YsuOVCZ/7xDlvQLzZhFI8SA4pBBJVzyvnlApbig0pgomVo+5X8F1QHGfOnOnbsLtbIDSLOs4Gp1DmrZISRxqQcC/4pTiwYIhjt27d5KOPPjJFKNbHkTD1d999Z0K+NtTDYGXSd6p5qJI33nijmfwxA49HANkpQUqdeXZMDu+//77ZOcWy9cmUOKJipkNes4Jx40Twu/zsszD5YxAffbTIbbeJdOhA5jfxs8yIKC3mhg8XGTSIyiORp55CqhU54QQRiooSGLRzzfyav+cmIASQasadV4hLNoCCh/rELhzyiGqTr9xW7u+5c+eaoo22bdsaIkYHE3ITs33OmV9QWiHOqI/ZAH6ePEjjsd+D+Q/iyE8W8XyNHQoKhw8fbu5tCqQK6f5G2aU4BuLIT7/mnLp1briPIEpKHMUUDDG/se4rccwxIIcHH3ywvPrqqybUy8X44YcfzMJ66623Fj3vwQcfNLmIVClaUNyCagjhRELnYYECacNPmBW/8847ptKanTuG1BTSMBlfcsklWdsx57QiD5Xwm29EnntOpH//sIp49tlhRZC2ftlYVHiPpk3DD94bcvrHH2FF88MPRXr3hvmLXHttmKg6SAKhN86z7tqLg00MuWyM9UIDGzHII+Q4H6SRQh0WfUK9/D/3uz0OtzrdUOwCmXOjMp7zSQoO84olaERoCLs3bdrULOC5Jm6o5cyZEPJC2vhYEOXC0xFjcO2WEgmEHNZNxnohbRgy3Sgzh7Pus2n0AwqGOILbb7/dDMi+ffuaCZGJkkIXdrOJwOIAPoTERIHXWuJoizMgi5BTLjhhn3vvvdeQ1myA42YnjoLqKlicCEPffHM4FN25s8hHH4UVQLfzTlgk+DweDz0UJpDPPhsmqxDExx4LE8hSpUzojQ5AWk1dHIw/7FwKFVx7mz/M4svkmqscPUK7fCbnl8IXL+YGZgLnIk2YnfA1G2lIMpvvXHYcIsfNFkUVIlAZGTu2QFOxHdzXjD3y1zUFSQyvYCPnFyJdttAWmiuuuMI84uE5lLUoONXHRED1irbjyTYIJ7me3zhypMhNN4kMGCByyCEi//d/4VB0PgBJPeWU8INQ9u23ixx7bFiBfOIJkbZtNcwTA1Qek1vHZqbQwcKLOsGOnJxHt6oy2bChcENQOa8UkxRyH23C1ah9fFdywcndPPTQQ12tBCYcj3OFDfcXOjRSEhukg6GuebH4LR+oW7eu/Pbbb74h0oW51fMxqDCketiV5HUKV268MVzdvGhROET988/5I43RQNn98cewEkpbqnbtZM6JJ8qSOXPyfWSeAjm55H0GYeEFbByosCZPj5zHWLZbJQFkkVw7CnIwb7afWcik0QnScbAC6dKliyGNEHWIJCH6bIJoCtcPVSVINjVUy7LpIQ1BEQaqGqqjRpLCsB2SWP/9ACWOHgM5mSTIZl2uHj06TBhfeEHk0UdFxo4NVzd7TRbneI480tj+rLr3Xqn99ddS7fDDScjK95F5BoQV2VgEqW0XJA7yyOIL+chWByHuNzxC2eljQp7PHCO+I4pqvgir/VxUQRReIjGk5GTLpxFiDiEndzVINiwQ8AkTJviyJ7GbYEywYcP3NOioVKmSKYhjPvIDlDh6DOw4skoIyGV8/vmwqsjuDj9G8hq9vuMvW1ZmH3+8DH/pJSlDaJIFnTxIn7XUyzYgTqiNhZzbGA+QZUgHiny28uLIYyQ0RMFbvouMUOG80FWDFAjOB8cxaNAgk4tWkoIdFDfIPuoS1y9oqSeQZFv84LeWoG6fF+YyqqsVYgQjVRwVaQMPSiqIs1aSjypz1VUi11wjQt4nBt4tWohfwKRSCcI4dKjI1VeLXHdd+HsEuF81eXiQpnyTnHyBnChrP8S94mzLlyrwkENhBCiMFL95oZsFmwLaB3ohpAk5J3xN8R+FQiVpbsC1ohAHxbhQiowyKX7guipJiiSOpEkwzyvECEaqOCrSht1tZEVxZKKnMvmVV8KPZ56hekj8AvKhCGEY/02O+8knRV57TeT118MhdrrZBBDYplDAEKRQXyIVa8SIEWmRR8L8+EMSigX5Vveicy1xeOCnFwDho7ije/fuhrCjllnCnQrIlUTRBeSzBSUnNxY4fzw0XB0J5nc2w5lsAAsNNWvWNOseG2KvQ4mjh2A7pJS4R++yZSLYA9H95fvvRS65RPwGFA8sjiJakF10kcgPP4QVSKqu+Z4BAkUhLN5BC/XFIzVYZdFmlM4jyUKA/B1/VnLNqCLOlll/EGBVQgqH8LK1pDsRbCETRNgLCqoXAAkPaqQgHrB/Igc0W7m0fkatbYKRH1RHJY4eUxxLXBiDEnfYYeFWf7/+KpJB71uvIGYuW/fuIr/9Fu6XfeihNPaWoAAbE5LJFdsXHWxdmGjxIkxEHvk7ag89vfEr9INXmhfVbkg3PZh5xDvfFC7RAYfihyCHp2Opa0ocI0FBCJs45vqgo3LlykaV90OeoxJHD1ZUZ4y1a8Ph6ZkzRfr1E2nZUvwK1Iq4Oy/yNPl+kOOjjgp/7wIH4UvORy4Nmv2yGFMNTe4YRCUeKCYinzFv/d8LAJBtSPd+++1nOqLgJRpt2cO/+T3hNgphstU6sVDAeUH51iKZ7WOKDYlGUcScC9Z/PyiO3knwCTggBvjz4aWWEZiIzjlH5M8/w96MbpHG+fPDRTYoX3zW0qUi2CnQHYGbnzwmwstt24YrufFmZJedhsIDASAEmbDtIr2tCcNjYH7WWSKffuo9a6EsG8PbSVZR3AONHDryFZ2dF1ikKewgpF3i9I8cgMUTYuv1RZRCjx133NEscNE+fJx7VBPaGGLyrJBixBrSzYbHdkUKOrhPOScUUAU9ElCzZk2ZTCc3j0OJo0dgdxkZK46PPx4mT599JtKpU/YOjKRlCNqbb4ZzJq2MTj4GpJB+1oSiKGAhqZ98pgULRN55R8R22eG5PO/888OFLUmsVCDQIKmDPsT0gw/CnWbwpvzPf6QQARnCygOCFPSimHiwpJFQPioXIUF8A8kZZrH2Q1s7CBehdD8A5duq39yv+NARoibkqPmj8QGZZnySNqHEcXs+LMSRTVPQO8nUqlXLzFvkBXs5xUOJo0dgd+8ZhSIJ2952W/hBv+dsgKrst94KG4bTy7tNG5HzzguTRQhbKrk6qJMokzz69hU55hiRhg3DFkGQyDiTBHYpTK4pkSTe8847Re64I6xy+jinMx6YRCBFKD2K+ECtoJiKSmsmX/LxyLHzC9mG4KK2o+b5paMG1bAUJ7Hws+j17NnTU5XqXgT3MTmiXicHuSTTbOzYgASdONbcJhzBB7zs1ev9bXhAQEJsRi2YUABPOy1cNHL//SU/EIprrr8+TAzpZ023mSFDwsbhDz0UJqapJnjzvOOOE3nwwfDrUSwhnRiQE3K99tqYxS1MIBghp4x77gkTRs4DZLXAgBJ1yCGH+KKHab5BKB/yxf1EONDrYV8nsOKgiw0//UTWIbqc72y3gixUoIZDlEg/UYQdEkglQTAIOqpXr242Xl4vkFHi6BFggppRmBpzb8JwhGxLqlJQhU2o7I03wqRu9myRDz8Mh76zkXtCuJrjpKgFM28UTXIVf/kl4mmE69JS1/je77+Po2zYKLyAwGKMMXzQc39SBUSxa9eu0qtXL5PfqIuRu0A54xyffPLJRj0jVUA9+RIDBbxt27ZSp06dfB+KZ8Cm2KYoBZ1E77777p43RVfi6AEQhuSmifAsTAVffCHSp4/Ic8+FC1IyBbmJqIB4P1J1Sh/rBx5IXVlMFzR0Rx0dN06EAhgKXFA3t/m9oTbSXi4toFDSWvHzz8N5ngUCvPNQobLVm7lQAVmxCw8hajYfHTp0UJXWRRBqXbBggTnX++yzjznf/E57DycH5EDD1NtBmkOjRo100yFh1dHrJFqJoweAokSXhbTCs4SUr7wybEdzyimZf/ikSeG8RcgnBSYDBuBdIjkBqmL//iKPPRYmfe3by8Kff868u8JJJ4VzHsmhLBB/R2xmID+aN5YYWJzgHejsumK6Dgm1WgvMQ5HdzS7EhxQKa3HE/NWtWzdTKKNIDhRxOhkpwh6GDRs29EURm9tgvvd6pESvkgeQchWxE1QsQx5feinzMPLo0SLY/+DFRgELqmOuk/L5PNRGciBDIal+0kmyZtCgzN6L88D5oGUT+Zg+B8UStOOyBEgRG1Sc82jRokXMntOQbwo4vOSPBvHaumGDbFm5UjYvXSqb5s+XjfPny5Z//jE/Ny1YIJv//lu20I8bqysPgW4wkHTUoejCI1Iq2ATTYcbri58XBAPGrSIMxgs2bEFHtWrVzNjwcscllTE8ADvBpuw1R/4DCiF5iJnmyYwcGe680qCByI8/wlolr2jRQkIDB8qaTp1k7yuuEGnaNFwlnS4Ir5M/SW/rG26gTE38CtvDVW074oNWZaiNVCDGyxkjlEqo/88//zTh1FybqBuSuHq1bPl3pWxdtVK2rFwlW9euEYnygCZw2b3uXiKLFsv6RVE5TqVLSRk6Ke28i5TZZWcps8suUjoPyh7tBidNmiRNmjSJqw5BJiGQVLeTb6oh2dhgQ0iBDKH9IPfxtqAyn8K2oDc5qLptLYYXYMHmRaji6AEwQJDqU7YNIaRM6BKlLhNgr9Ozp0ijRmGz8HyTxm1Yu8MO8vu998rWxo3DxzdtWmZvBGGkmtb6SPoUKDdsJrQdV3xglsu907x587jPgcTQXYbcIYo3cqGEhbZulc3//CPrJ0+WNYOHyNrhI2TD1KmyaeEi2bqmOGlMiq0hQzhRJtdPmixrhg6TNb//LhumTZMtK1bkpBMJ6hjFMIQU6buc6HxT/GHJo+atxQbjkXPk9UKIXIH7eOXKlYHvqlPVQRy9CiWOHglVpxympkz/5ZfDljmZED5CAZAy1M3vvsNES7yCf//9VzZXqiShr78OF/scfnhYXU0XfLcbbxTp3dvX9jwoaAceeGC+D8PToFd1+/btk+ZG8Xeei10P9jFuYevatbJ+6lSTbrFuzFjZtGChhFIMNa9et04Gjx1jfqb0WevWy8a582TtyFGyZsgQ2TBrlmthbRZ0eqWj7NJ2MBlIGeB8c0+jUCqKA6GAeZ9UCkWYOJKeQ5g2yKhQoYLJE/ZygYwSRw+AnUXKxPG118J5gYRjMwEFNeRGYshdkkpsF8DNQgisPJ1mOD4mEMLWmYAwPgou58unNjzqixcfLLYsMBQNxcprjAU8UumzzMSMmgsZyhY2L1sm68aMkTV/DJVN8+ZLaHNkD+dUwKK5cvWaYv2fU0Fow0bZOGu2IZDrJ06ULVn2gsSQH4JOW7hUgVqOEpy2Q0KAQGtG5jxFmDgCNhtBR1WPF8gocfQAGCApVVSzoOCxePrpmSmFX34p8skn4QpmD7rSM3EUhcCo1KRrDdY6mdjr7LKLyBlnhM9XBgtxvkFl+c8//6xhvhigcppiF4o0MgUhV7rL0Ce3JICgrRs9WtaNHiOb//HARL81JJsWLZa1w4YbAkkBTkkJ+vxtqj0+s+n6iaJQ2qprRWyCoD29tyuw2PL4pWuSm1DiqEgIkoFRP1JSHClioQrv4ovT/yB2cah39Io+9VTxqmdhRCVZSe11LrmENxX54QfxG8h7IgdK7Slikz4IDN6BmYIKbJRHyGMmoTFCwusnTZK1w4fL5mXLxYswBPKPP2TDzJkSymDzRHEWOaHZsDIaO3assZ9RxM4dVVueMEhvyKgRRoGhWrVqGqpWxIcNl6VEHAm70tkF38V0QR9rPqsk9j3RRJQe2RSgQGTPPTf88+GHwwU3aRI9COOoUaNMlWwROM4XX6QXm8h//pP+MVKVTY9tn4WrCVEvX75cq6ljAEsdiAwh05K0E0Td2H///c1PyGM6ptXY56wdOswUuqRd5JJjhLZslY2z/zIEF+ufVIHaMWzYMLOAUehSUnCtpk6d6ko7RTZZn3/+ubz++uvmp9+KTQjNUq2uCDsQlDQKUAioWrWqEZW8asmjxNEDkwbqSVLiyMKGcnbmmekTv2HDwgU1eBuWJGxEtdvgwWHDcULr2PnwnvhBsmPmJ0SSvtHkT558sgiejClUydm8lmJN7ulpzXu+8orIH3+kf8ycL/Il164VvwAvMyZQJY6R4JxQaIGNCf1+SwpyIzt16mRUXYh60s/fvNmojOvGjZeQC/mnO1aoIK2aNDE/s42ta9fJ2j//lA0zZyWtWuVexKeREGoqhUepoHHjxsZyhgKbbFbN4hd59913y48//mgquPnJv4cMGSJ+AeMZkqCEKZwaQaesoHcfqurxymoljnkGkzSJ50k7g9DPmZuJUHO6IKexYcPMC03A3Lkihx0mQpXvmDEiTz0V7jqDQoh5+G+/hX+yAPP7Z54JtxTEYByCmcTolkkT9Semn9lll4mQQM73SBecL3ZtdMTxCZg0WbTV2y0SbLA6duxoClyyBcLVdDuxfmnxClOw0Fk7YkRYZXQJ5cqWlVrVq5ufriAksnH2bFk3alTCSm/OCblmeF5mK9+M98FPk4UwW118UBbffffdsE/m1q0RP9955x3fVCuj6nJ+/HK8boK1EGSzcM3PxPEfj4arlTh6gDimFKbGOocWfenmdbFjoSCGMHKmiwCvZ7GePDlcYAMxvOaasEl3tBrBv/k9eYkTJ4pgrUNuU4sWIh99FPcjyDOL26qM9+T4P/2UOym9Y4dwYnL+7bfiF+CTpzY8xcP3kDqsdLJtKG0VNYptBg0aVKyaffPy5bJ25Eij2rmJDRs3yqwFC8xPN7Flxb/h7xOV28k9SOERSmyrVq2y3uYSgkT+WrbsVlAV4xXr8HvUSD8A0kg+s99C7G6Ae5v7US15Kpj1UBVHRUwQoigWno1HHFHP0g1Tv/deuKr4vPMyO0C8EAlN46k4dmy4WCXV0BXPo5c2r+PYqQYnZzEGWKyYPOOCHEoqjN99N73j53zx2Zw/H8AqJulWrxY6yI/79ddfXTUHJmRITtEff/xhOs0AWv9hsxPaFP63m1i/caNMnj3b/HQbJnQ9cqQhxXYegohRxOJ28UO27GdQY+KNB37vVbUmFho1aiQN2OAGHMx7EKagE0ervno1fUGJY57BDZK0Mwim3eQQdu2a3pszqb76qshxx7Eqpn9w//ufyOWXhz0RP/wwbKydCbCbeP/9sGk5SiTvFcPPLGGVLG2ojj8+/H3SJQ+ct7/+orJCvI6FCxfK999/X0RcFOHCKdqRkdfoJqHGb5CCGe5JcvzW/fWXrJ88xVjcFCIgw5Di1QsWmAIhlC+qzd0E14/NEZXEJbWaQsFMpDimZHHmERB10mriMFgP1cNWzHlQ4qiIm8+WlDiOGhX+SYVwOqCYZMKEsC1NJjmNF10UVgmffrrkldi8nv7RZ50VDjs7ch5RB7AkSgq+B2HydBPfW7eOPI8eT11Afc12mNDPIIQMqcmFIoP6Tx7lPzNmyMQBv0ihY8P6DfLLRx/J5pUrTaFQLvpKQ8wpkqFPc0nQuXPnhIrjAQccIH4CmyOvhiZzCar4aREadOy8886uuBBkA0oc8wzytlIijnRfoMAlHfTvz0oo0r17eq9jMqaQhkRlqrGzpfJYex0USApetk367Kr69u2bvLL14IPDqiffKx3Urx/+Lj4hjimlLgRoY4UZOnmfKfdyLyF22rhR2lSpIg2zULntdaxYvVq2btkqrXbcUcrnSOVhQaQYifSDkqiOpBacc845Rl0kL875k9/7zZUAL0ciDkGHpumEAS/wKnFUWcMDSNqSC8KDf2O6thi8DrUt3df99JPIN9+EO7Zkm8RYMkquJPZCRxxRlM8StzjGgu/B90mXAPK6Vq18QxwhSYowKNYg97U+5D8H2PLvv8Zyp3Kl8GZu5Zo1MmfRImneoIHrC1rZMmWkRtUq5qfbgLBBsnavWlWqV65sFN11Y8fJju3bSekUWziWBHSIGjBggKmwpn94SVRH8gMphCGnkfA0SqPfSCNgw6jt9sIV1RjPkzaSdE0oYOzkYeKoiqMHkFRxJL/RtuLLhDhmUhBDFTW5kW6AghmIHN6Mgr/3aqMmpWTozPcZOTL9z+T8ebw7A+oauT3WkkKBOL2rCR3nInRPN5h148dH5DSu37BB5i5ZImOnT3e1MAdUqlhR2jXdx/x0E5u3bJGhEybItG2hYmu5g0XP+vHjJZSDNpfMeWwIUJNLCkji8ccfLxdddJH56UfS6CSObo8zr4O1gGItr5KmXIF7hIikF03AlTj6gThS1FGrVkrvdXifw+WOQXeEO7tAlNIljoRKvvoqnE+YpsLy0uiXpMX/pZBcz/vy/qia8+ebSSLlnSXfh8UmxVyg+avnm2P6ovFGzxfH4NvYs2fPxNXlAQKpC7nK+WKxXj9+goQ2ROba7la1qrRq3FgW/P23THB544EKuHHTJlf7k7MQ/Tl5sqxau1ZqxCh22/LvStkwLfMe4OmagudKSfYLcaQojvkwyFBLnkhe4EUzdCWOeQZKSkKljd0nhKdmTZm6fKrc8MsNclifw6Ttu22l+8fd5eIfL5b3J71f/HV0cQHpJhnTLhD7ntNOS/01+DTS0vDTPtv/nQy8P5/z889movxj/R/yxfQvkr/Ofh/7/VIFIXd80nKgppR0t50t02W/Y8qUKaZTTC6wcdYs2RKnTSam3C0aNpS5ixfLlCwoZPEAmes3fLj56QYgpCOnTpUVq1dJu332kV3jbFg3zZ8vmxa7b0bNBskaryvCxLFOnToSdKglT2QKmxc3Ekoc8wwMjRPmTqG4bNoko3fbJKd9c5pMWTZFTmx8otze8XY5ockJUrpU6Qji+PXxX8s9ne8Jm28T3ks3xE14m+rVVK0s3norbPj9+OMiEyaGf8e/33478etQOxo1Mp9HLsvgNYPly+lfJv88POAokuD7pYNdK4eJqoe93fDQm5YK6Q4AWDRovVi3JC0yU8SW1atlY5LORnvutpvs27BhTJXOL5i5YIH88++/0nbvplI1STrEhmnTXGmrGA3CkaNHj3ZVZfULEBAwXg9yXp9zXfSi0pZLVNo2Drx4HrQ4xgM3SEJsqzR+NfS77Fx+Z/nwqA9ll/KRk/4/67aTofJltqmX7NYYeOnmhqHkpRrehuRg2WMnfZubw78vvDDcnhBymEg9HDXKEOeUCw9Q41BK0t2F2ckYIo4npAdB54iSFAoUEvD5Q311W5EiRL2BjkgpeDXW2eaFCslZumKFKSzxExrssYdUq1xZqiQrxtuW77hh+nSpkG6nqgyALU+NGjWy0n+8EIrBUJiq+HiDkg3g65uNHul+30jssMMOnlQclTjmGUn7EW8zgp67+R9pWK1hMdIIqlWsFpHj2K5mO3lwfUWSRUz497+D/yv/1/P/pO/svvL9rO9l89bNcnj9w+X2DrfLui3r5JGhj8gv88KedSfts0quL7uvWBo3fNFwuaDvBfLm4W9K+5rtI3IHew45Qe4/cFc5bmCMPDSI4BtvyOcXdJBvZn4j01dMl1UbV0mdnevIGU3PkFObnipSu7aExo6Vbu8fJMs2h9/D5ki2272dvNXzLfP/KzeulJdHvyw//fWTLFu/TGreWVNOLD1azg9tNYqrBc97dNij0n9OfyklpeTgugfL2c3ODv+xzLahHqcXcb6BjyVJ0GrFE8a8efMMkXA7bL9p3jzZsjI9k93Fy5bJ6KlTpWm9elLf46FWiPHkv2bLHtVrSOWddkqJNFrQl7tszZpS1kUSQx4X5tf2egcds2bNMpumww47TIIMLRDcfn94MWSvxNHriuM2orNHuWoy5p+JMm35NGlcpXHyN4ZwOhbdh4c9bAjmFa2ukLFLx0qfqX2MgjlmyRipWammXNv6Wvlt/m/yVodfpdGcJXJMql8gXgUgv589Wz6eMlsa7tpQutXpJmVKlZFf5/0qDwx9QLbKVjm9bFmjbBxZ4Ujpu7mv7LTDTnJxi4sjyPC6zevk/B/OlyVrl8jJTU42xzrm5f/Ks63Gyd/DH5dbO9y67eNCck3/a2TUklHmeQ0qNzAE0hQKAatoepQ4WhsOJY5hRY8QtdvVsYRiN86enfbryHnEpof2gGXKlJa6u3u348ek2bPlr4ULjb0QxDFdELIu26GDuIlatWqZXFYKd4Ke38v9j+rIJjIXZuxeBfMhSnTz5s0D7eu40047aahakQFx3BZqPneX7nLF4pfk5K9Pln2r7yttdm8j+9fcX9rXai/lSscwRsaLzdGNpVqFavJy95fNTXha09Nkzqo58vb4tw3J+m+n/5rnnNTkJDn8pVbyeeW5qRPHeDc1v69XT97qebdUKLt9AjxjnzPksp8uk3cmvCOnr20oW3fYQZqVbyZDSg+RqhWqytENj454G543d9Vc+eToT2SvXfYyvzvlw6ulRsOD5O3JH8q5zc81ZHLA3AHy5+I/5Ya2N8j5+55vnnfq3qcatdRg6zbC6NGOLEyUFEolHQ8BACEqfP7cxsa58zLuQb33XnvJlq1bZcKMmVKmdBmpnYX0h10qVZIeHTtKmSyF6CjkgTQ2b9hA9sjw+LauXiObliyRci6SeDYIEyZMkL///tuYegcZduOIl2GQiSNkCfWVynvCtUEukFnmwW5CwU4i8ACSTg7b/t65VD1578j3jHJHdfVb49+SS3++VA795FAZMGdA8dcRAnf4Px3f+PiInVuL6i0kJCE5ofEJRb9jAWy+ZieZVyYN/6xEiuOFF0aQRkLVy9cvN6H0eavnyapp42VjvXrmb/F2lT/+9aMhyYToea15lNko+4fqyJbQFhmxeIR5Hmpp2VJlDVl0fh+IqoFN9PfoJITq0r59+0Dvri1QGtwOz6B0b5pXspZ3+9SrJ3vuvrv8myW/Oa495t/ZGAMz5s+XmfPnm3B6SRXRjbNmu+otiKrSsmVLVdu3CQmorl7tUZwrWLKI+hr08bDegz6O3pRfAoSkbdSsUrBkiexb/TB55uBnZNOWTTJl+RTpN6efvDvxXbnh1xukz9F9TEg44nUsaNsSa2tVivSBJEwNdq8UucPfaecasrLMjHCBSyrKxwUXiAze1svaLni87o03TGEMoeMXR79owuOEnZ1YPXW8lD/+HKO0ldoae7Gcs3KOIcpd/9d1+y8fpoDkR/O/y9aFd2MLVy+U6jtWlx3LRSp29XYJE1NZuTL806PmwFTQaTUl/H6T6WO83377uXo+Ns6bJ6HNJUtbgODt6+gos2nzZilXAkV7zbp1MmHWLGlev36JTcApgslWDubWNWtkM6qji2pgLqrn/WR6H/QNpBVUgk4cy5cvb+ZEr0GJo9eJI6FLEoUdPUzLlSlnwtU8CN9S/PLj7B/l8laXb38dnVnANpsR8gtjodjvq1eX0PLp4erqBB6QRfYZVE5PuSxMFMsOFZGlGPAZ0jh35Vy5qO9FUr9yfbmp3U0mpExYHXUQwrt19Uqp2KWLURtkeJzPCW2VTrU6FYWfZdw4kRtuEHnlVZEG9bcTw2TAo48crwzyvHLVp5aE8KCbfy9ZssSoW27mN9IZZdP8BVl5L7vAL1u5UkZMmiRt9t5bqtOLPcOOLv+sWGF+Zoqly5cb0ohHYzyfxkyAt6ObxJHiMKyo9tprr+QNEQoctFEMOqzi6EW1LZfwKnHUULXXiSOga0ycrifNqzU3P5euWxr5B3LE2LX9ldifrvhn1RShUvn1180/bRU3FctOLFjjWHix3Hn4YZETT9r+bxFTqb1x60Z5/pDn5ZS9T5Gue3aVTnt0kgpltoWvq1eXHY86KqHlClXYazevNa8zj8nrpNOMzdKp48nm37V2Ciup/Px77d+ydlOkdcHslduKHyg+qendIobp06d7MpclH8QRAu1mftfmpUuz7lEISauyyy7y55TJhkTmA/OWLDHkdf7SqLkgC9iy4l/Zstq99AGiDrQfxJJKoSDPuUGDBoGPwpQvX950E/IalDj6hDgOWzslZp4R6h0oprwRMqPf9Jw0O12goJQrK/L++ya8u8dOexhVksITJ/435X9J38pa5ZBL6cxz/GLa5+F/nHyKzF+yxCTF71h2R/O3aBxe73AZs3SMDJ4/eLtBeYsWxgQcMou1EOhSu4tsDm2OOK4tW7fIB5M+2O6HmWLbxlzDeAlu2BDoZHiLFStWSLVUzeczRLbUxuiFrk2TJrLrTjsb8rYix312FyxdKuNmzDBek9ZvMtvYtGC+uAXOHyFarn/QMXnyZBk4cKAEHVRUY9UUZJT3KHHUULUfiGPz5vJwvV9k3WdHSPe63U3od9PWTTJ6yWjjzVh7p9pyXOPj4vR1HizSLO2DCtvW3H677PzCC3LYXofJh5M+NN6IKIBY6uCnmAyd9+hsQtNX9b/KVG+jBn467VOpumy9LCUV8cwzjdLG5LBPtX3k4ykfyytjXpG6u9Q1FdYda3WU8/Y9z1RMX9XvKjm20bHSbMtIWderrkwddIfxdex7Yl+pUqGKKRpqvVtreWbkM8ZjknzPfn/1k9Wbti3gc+eKNHfkSXoINo8nyNWDFoTqMYN2C1vXro3bWrCkoKihbdOmhjhOmDlDDtivpeQC+EqOmT5d9qheXZrT9cklbF68WEKNGkkpl4yZKY5RxTE8jrxowZJr0FUIBDl1oXyidsR5hCqOeQYhmqRo00ZufGeOdKjexiiMjw9/3DzG/z3eVBG/f+T7MY3BpW1bkYXpqyubQpul9xMnibz0ksjgwXJbx9uMmfYnUz+R50c9bwptHjzgwaTvA8F9qttThnA+OeJJ8/qTduggZ344JfyE2nvIt8u+lc8WfSaXtbxMuuzZRd6a8JbcMvAW6T2mt3lKxbIV5e2ebxsCOXzBH/LIQVvkjXqLTdHMla2ulJ3K71SkbhIS71W/l3w781t5fuTzstuOu8mDB247TnJE0+3bnSMocdyOFi1auGrJstnllpNlt5HHNns3Tfu1FbGmatDA/EwHK1atkprVqsl+kDoXiyqwLtqyzW/UDZCiQDW9FxWWXILIAzmfQW/DOHHixJz1qvcqdvDomlAq5KbPgiIupkyZIhdffLG88MILpoI0IQjPQnqGDBHp1Cn1D1myRIQWdo89JnLddSm/DNJGJfSVw8vLZZ8vCn/uXmEPxRKBQh0SvzmmwYOl9/jXzOecVuc0ueOQbUbdifD88+HCmHnzRNIhF0OHiuy/v8jw4SLt2okXd9Yor/vss49nJ4pcwFrwuJnXtHbUKNmyPDfh0I2bNsnYGdNln73qlbhKOhacVdxM47moxC1fZ0/ZoXEKDQgyAK3V5s+fL/Xq1UstElPAeb5Dhw6VQw89NHlnsQLGn3/+aQh0p3TWvALDX3/9Jc8995wMHz5cXnvttZz426YCVRx9Eqo24WOITzqgMvW440Reey2+32IMoP6h5r3YfqP07rGTyMEHU/YrJcKsWeH34Xt8/nkRaeyxYw85vd7pyV/P8b/6qsixx6ZHGsGff4ZzPvfdV7wIQjGtWrUKNGkEkOcRI8K+nG4gtNldxazY54VCxmJn2MSJsi4FWxGIIIUt/EyG5atWyS8jR8o/275Pruxb3FRs8azD8DnIpBGoFc32aBzdhIKM8hqqVsRCSo3cGTwHHCDyY9i7MC1ccgmaf1g1TANF5PHg8tL7oPJhe5933kmLgBrw/Hff3W4PNGCA9F7yZVjRbHWlIY0p5bD88YfI+PHh75Mu+vYNK7UeLT7BcsKLjezz0T3HTRPoLRRIbc1dgGWH8uWlY/N9DakbNnGCrHd0coqFtevXy9hp08zPRMBwnDzKnXfcMauWO6lg69p1Jk/ULVAcg+IWZDAfHnTQQaZrSNCJY9DTFsorcVSUCL16ifTvTy+m9F53yCEiJMyj1qWJIvLYrZz0vn5/kXPPFenZU+Snn5ITSP7+888iRxwhcs45IsccY5S/3v/+UEQaeX+6paTk2YdqSpeZQw9N70uwCHMcnD+PAv86QhFBByF78tzcwpY8dOOoUL68dGjWTLZs2SrDJ04scd7aqrVrZfikSVKpQgVpt88+eent7OZ5nD17tknjCbqYwH0Q9L7dkCY9B+XFi1Di6BcceWSYNA6I0V4wEVA0L75Y5OOPw7mBmZLHBgul94fXhP0kDztMZJ99RK66SuT//k9k2DCRsWPDP1El+X2zZiI9eogsWCDSp49RHXv/9VEEabQ2NEkXU97jo4/C3yPdis5ffw13z/EwceQcBD1MjcktYSk3LYm25slfcccKFaRj8+ami0tKEYYEmDBzpiGj7Zs1M4U4+cBWF4kj1z/oIVprybOAeS/AIG2hS5cuEmSU9yhxVDsevwCihuL21VdhEpkOLrtM5LnnRK64QuTLL7e3Bkz15S0vMz8hffLOlXLZin1E3norrOS9+GLxFzRpEi5GefllkYMOMp9XVHCzjTQCwrP9+/c3nRISevdBRFGiLnd0xkkVnC/amZEn6lGwUJLfFWQQkqIQwE3i6KaBdTJQHGMLZMhj3L1q1YyIX6smTaR0qVIlam3oZcWRDZQSx3CBDIUhiZojKAof5Tya75v27HPzzTen/SHk+DxGZa8ic0D2zjhD5IUXRJ56KtyKMFXQAg2Cd8IJYfXv5JPT/vgI8gj5e/vt8B/wxJs9m55h4VxMyG1Uy7VYpBHY/JWElkSffWaKaeSTT0SqVEnvoFFoP/ggTJw93PuVhbJKut+twABppIrULWzdsEFCSXIMc4ENGzca1XDeksXSrmlkqJn/33XnnYuF59Zvew19sVEb842tLpqbs3EgAoECbRdNqu1HjRpliBS/o5AsOv+PJgJYtzCnsN6Q/oJLAf9vN6jO17Rr187TXUmiCXQq5+Cff/6RP/74IyJn/MADDywaT3PmzDEFaER68EvF+qqkCribWLRokYwfP14OOeSQouNM5TzMnTvXtHB15pDjFUxalN/GQunSpYutj5wTzg1en+TCxkvvSXS9SzoW0iaOwwhHpomgN2zPGi66SOShh8Jh5/POS++1xx8fJo6od927i2TgyB9BHu2/IYm28CUG4pHGlIgjpPTKK8OV1CeemPbxGpLMe3DePAzuj5T8PBUZI+QRQ2UKZshNHD5povw5ZYq0a9q0aMLeqWJF6URXpCiiOWzCBNmydats9YhzGn6OtGws5YIagvLOIk/agiWOY8eONT2s69SpIwsXLpTRo0cXC2Hy3LZt25rXQzx///13mTdvnnkN4P5ikfULGBNOp7xUzoGzsCYaECZyR7t27WpIKes45AHrI6+C7w85YizYeySV88Df7HUHv/zyi+yJBdw2+G0slIriT7Vq1ZJGjRrJoEGD4r4m0fXOxlhIe7X63/+St5rLF9iFvPHGG/Ljjz/KqlWrpGHDhnLRRReZnUYyLF261HgqUqTAxNO6dWu5+uqrY4YKvvnmG/noo48M66fLxUknnSQnZkJs0kX9+uH8Qgpd0iWO1geR3MObbhJ5882MDiEmecyANAJrtRA3AfqWW8L5iailmWw+OE+oWA0bipdxMDZFAQdFEagEqAtuYOuG/KuNFlV32cWojRS5jJo6VVoTfo6x28eWh+ds3rLF5EimawzuJlBv3SCOVNUfgIPENqC6UWm9P6kv2xbNcePGGeXJqRI5q/FtcYmfnQogC3Z+TPUcJAIkC2N9m0sNSaAoz8vE0a4LdhORyXlYvny5eZ2bTQVyTRxTacma6HpnYyykTRxr1qwpXsXDDz9sdhcnn3yy2WF8//33csstt8izzz6b0GSbCebaa681A/Css84yO5KPP/7YEMc333wzYlL68ssv5cknnzQ7llNPPdXsgHh/5PAzzzzT/S+JHc1JJ4ngd5eumTUk+IknwkUmHTuKXHqpa+QxGWkECb3nX389XElNnmTt2ukf5MiRIuzIPLzRUWwHyoKbvQhCm7xDHEG1ypWl7d57y6yFC42SWHqbzc6QsWOl8377yS6VKpkqbMLUkEY3DMRLgq0bN0ppl8J7jAMeEEDmVRY45+JJWgPjJR5ZgCiwOHbo0CEiuvHbb7+Z92UNo/DCy5EwSJEtGkznHLCW0eea56K6WTLAc51m4vb1Xob9vnZeyGQsoKTBBZwbM7+NhVIZHFui652NsZA2cbzkkkuMxMmusD4KmIfaE/Xr108uv/xyOf30sKH04YcfLuedd568/PLL5hEPX3zxhQlrvPLKKyYvBnTs2NG8FoWV72wnpNdff9042d9///3md0cffbS5wd955x055phj3PfewtC7aVORu+4S+e679F9/4YUiY8aEC2XYBBAGzjJ5TIU0AvKQjjjiiOKK49dfh0ktx5ghuTXnhyIdwvMeByEHG34JKpjM3QzXeyG/MRo1qlQxDwBBdBJnFou9atUyXo08vAY3z+d3330n++67r7knMhlHhN4I5e26LdeavMkePXoY0kHuJB1JZsyYYZ7jVdTOYLOMwEGeMOocJIvuM1TlBrXABqWSynTyPC38OBZKeZDUpp0ZC3mi9c35559vCNqLL74oY8aMcVUtSAW//vqrISCQNwsGR69evWTChAmyePHiuK9FpWzatGkRaQRMWm3atJEBDvubkSNHGpPi4yBvDhx//PGGsZNX4zogWffcI/L99yKZfB6D8JlnwoTqlFOIu2d8KEVWPaNfLOotnSppdOb2RdwYkGGKdzjHVIJnctPQYvDbb8PnyQe5g6RVMIkFGWy+3EzUJyfPywscSuPkv2ab87BwW3eW2jVqGOXRiyDP0U1Ytc3a8zjXl2jFxEkaKQ5BRWqAd+02MK5sWA5SxQZt2bJl4nVPU8Ky6ZwD5lKbF8prIIz2e0arSvHOoZcAESYsbS1p0hkLANKIkOMUc/w4FjJBouudjbGQ9qr6f//3f+aCIPUOHjxY+vTpI5988onJKcFWBSWSEEGufemI0SNJR0vWlgxSQRQrz4EJityqI2NY3PBach6R/0m65jMAJNMJ+kcyIKdOnSqHkYMYA1T9UfXm7EFpJwjIqAWD2SZ4QyiiYcLmJ58sq++7T7b85z8R9jq8jteT6xktPTOpcG646VZSFfnSS2FzbIpm3nhDdj7rLPMdCNdHu/Vzw9odWnTe0FkNzzI/IYuvjn1VNm3dJBc1vch0hOF7kawNoed4OC4n+CxCCVTGmQpClMbzzzd5nKV695ZdtimRK1euLLYx4bvwndhZR9t3lL/jDqnYvLlsOekkWR2jxZxNPeDcR7e0sueQ9+S9Y53DeNeGewASHOsccmMyAcY6h/zbkmfnWLBg4uPa8Lxogsl14frwebbXswWvsZNm2uewfHlzzJwfzpMTHKut5OM8RPtwJjqH8cY3x8fx257Lic5h0vEdw6+x3LbrTFeW6JZ+VCpTtMLvo7u2mHO4TfFbue34nKCgxYzvDRtMb2oneE/emxxFWg8WO4fb5qq1GzZIzWrVTGh63IwZsmL1atmjenXzd5RICmQivkvZssYb0pzDGHl8lbdV1a7eVljgBK/j9RxrdBtE7IEIiZtzGDWWAOfBzBHr1sn6lf9K+X93SmmO4PzYSt9Y4zt6juAn15Dn8p7cr+TAUjRDXjnjggfPseOQxZ+5mgpRIhm81o5v/t9uTPjJPG5dDGKNby/MERR98HrWVMDn2WIfChvsObDnk/ucc8ex2r+xrqFccoyEvglhQ6o5p1TmkivHZ3h1juBz+QznezNOqJquW7euUQqjz4NzjiAKyfe3f+P97IP3tGOB8cdzEs2zicZ36STzbKI1MNH8bc9hJooj1xt+Zj2CuX+s8pzob6kiIzmGDyG/jwcnfMiQISbchjpHXiEHQ4Ub1U4MfBsycBOQslhJo/Z3ELdY4EJzMZO9loHKZzAAoq1TGOhcYCcxjMZXX30lb1sLGwewFnAavTLQUToZZNzo0SA0jgn26LPPluW33Sby6KMi2yYXCnogz7wfScNOUMTD7o2bvOh9L7ggXHV87rlyOGGNxx+Pqc42b97c7OApIELaj55gL+t6WRFpLCNlpMGSBjJwSfgzunXrZm4qSDUkMfq1jJ/lCxfKiGuuCaufJMZfdJFUGD3ahBQAIZfoycV6P86aNctsCorw++9St18/afn554YERJ9DbnJUaKeC7ATjlvE9f/58cy6cYOPBpoibPNa1IezOpMS551w5gd0B+UacW665E0yAfC6I9b4UjDCBYwrMcTnRpEkTs3EhCRy1xQleY4tNUMOjJy1COIxlPt9pXwE4Vo6ZCTb6mPiOfFfAeIheIClGY4HienPMTjBpYX/BsTjfl+vLRG6JI1GM6PupZcuW5j6EPPB3JxgLjAleH+scdqlTR9iGTP7rL1kc9b6N69aVRnvuKctWrpSRUce70447SpdtrgF/jB9fjESQjwhRmzl/vszBHN95DveoJfvUq2/I3R9R9yNzxqHbivZGTpksa9auk6lz5si4GdOleuXKRSR07uJFMn1upHF/rerVjZ8jxA+lMhpHbJsPxk2fLiuirs1+jRsbJRNVc2LUNa+2667hLjdbt8Z83+7t20v50qVl0l+zZfniRVKuRo2U5wjSmwDrRDSJiJ4jIDUQQf6fECL56USUuG+Yf/kcrjH3AtEfxhrzK2MY4kBxpDne7t3N/cpY4XMZV4wP5mpbgGNzAr02R/C5TnLJmorYANFhPrTngPmP9ZXiTLwff/rpJ3Pf8D25t61tDXMEx/bqtg5inAOiajzXq3MEiiupYhy3VVJZFyE6zPm8jvveeR4YS5ZU8n0QJfgb4Lmk12HbxDm0Y8FWaLPeQOIgnPzbCcQiciE5X8OjunwxdvlcACGL3hAw9rkHOGaO3QmuI/cO5ye6ShoCTLpdNHGkroIxAvFjzudccw0Z55wrzivEm2tu35MNlU39SPS3VFEqlMUYM1+Ek8oB8YVYzLgJOTEMQG5Wt/K4TjvtNPPejz/+eMTvIVH87aqrrpJTCM1GgQtAMc1ll10mZ+CT6MC3334rjz76qKnUZtA88sgjJo+SmzMaVFaziD+EXU6KiuMDDzwgTz/9dER+RUqKIzvhVatkC7mcDGIsknbdNXXF0anIMIm/9prsfNddUrp+fVnz2muyOcoSJJma8N6M94ziWK50uSLF8bym5yXdbTE+5nzxhXTq3VvWckMRWiansXTpiB1ryjthSHDHjlK+bVup+M03ZgH0opoQfQ5//vlns1lgUguq4pjOOcxIcZw/X7YsWuxJxZH3hTAuXPq37EgYacN66dGho6cVxzL160l5Rx5eNhVHiB9zKcQkFUUm2+PbC3MExIbPJp8+lXNYiHMERBjPRQpRnQ0S3JojvKo43nnnnYYckyII4fMCspoAxkmAIPLg5LFztCFtilN69+5t8gndgL2o0bAXKl7o3P4+ldfyM17TdZ6bKDwPq+cRDQaVs2rbORhj/b7odQzUV14J2+s88EC4AnkbuHHitSpiMBZ7X2xvUDLPPlsqYQ1DYQm/i/o+3NDRr43OabT/3qHCDhE5jtzQEXkUGzZI6d69pS5V3i1aSGWqoPkuMZCofzE3XVG3EWvfw3kpVcrcrAnPocMoNxpcy3jXM9m1SWSREesccr/YY0n0vom6yzApJnptyucwCsnOYaJisHTOITt8Jlb7u0TnMO3xjaK5aLFs2Uac4gFCZUlXLCTKN8QqJ55dDoQs0fvSd7pc2XJyQMuWRk2E0Nn3gnjGM/025zDB+0Jq46F8uXLmEfccJjpeOvxUrizlYpznWOPbiUR/s3PEUUcdZd7HWSyVr/GdrzmCz403loM0R3CeeO9Y3yvbc0Qq5zDZ+N4lwTkstgameG3yXT8SC65VDnBxkLF5XHHFFUaihUC6BWToaOkfWJUvFmmzF5oBFivMHP1aPoPdFUqZM1wN6WSnkYq/UlbBjp+OPHRGIVcx3VaETpALSrEN1eIof3So4X1p8xfHgilWIUxSqx7Ceb17m8dOS5fKtJNOkr1ef112KGk1+g8/hH0b8Xx0mL36AX72GMsWUOQJTzqLGrKJUuW92boLRRFiSIgYtXP01KnSpG5ds1iMnT7deD7W8eD4KOViBxuvF23kAhAUN9tv+gGWMHmxqjjoSJs4Eq5NBC4yOwHMt4nt210BYQc3zUYJ95IDE20GSr6C/Xu8XQ2LVXSehX0tuSx2B0K4GvBcG0Kw/0aKt3/PKfBkJDcQD0lyi0qy8KJA3Hdf+L2oaH7yScwxw9XXV19NYooJIyerni5GHltcEvadxIAcX0U+59xzZcMll0j5XXeVsiW1GyGHhTQDcmoguz4DOTjsNkn+DypseMktlPZAq75oTPnrL5m7ZIkc1Lq1UTsJlS/8+2+pz5xToYJRKsfPmCFlSpeWPRz5hIVMHNmEk6vFXJpI2Sl0kN6lCCPoxDFUCIojxS+pXuznn39ebr311py09yE5lW4uJElbH0cWIjzBmjVrVqTqkNNIToUzGZTjw8MRAmgrpknahYhSAGRBHhoKJSbgTuLIv9kdOn+XM0Dk3n03bAaOxc6QIen1sY4F8ihQ7h58MNxhBsL3/vvESMzn9O5ZWV6sMVWurH+WXLbvxZGvJR9o4UK5bObuIn/vHSaPDz4kl30yN9zHGiKKl+Suuwr76RJvJchj4XujAL/3XhGx9RNImmY8Bpk42t68tjjGTwpZJpg+b54pqGlar54hjbHQrH59k6c7Zvp0s8Gl8torcOt8MjeTtuCW8qzwD1hTKfaM21ksIAgVAnGkS0oioLyRvEt+I8UlGGVTKey2wSbkkNZtVI1RjcVn/vDDD6YCE/Jq8eCDDxqrA2cVGD6MtBHkeRTSMFDpHEM4mn87F7cLL7zQFLTcddddRRV7JHNffPHFCfMbXAVV6599JkIrJvoyZ4tA8b433CBy7bWYXYr88Yf0Xtk3TBo/WyyXffUfEflPWEEkT4XkaUeu6GW1aomc3UhepEDx9NPksmMeDvtQbgPEngRoZ9VcWiDhGnP2KVPCYXafEi+IUnTyeBAXCSZIFKd4uUklQSkPteubuWC+TJszx1Rzoy4mTPdp2NCMjdHTpkknrGkS5NwVAnG0BRi5tnPzGlijuB9wyggqyI0M8vcvKOJIeXsqgMThjXjppZeakvo77rhD3Mbtt99uSEjfvn1NlRe7Vqqikx0zoWgIMb2q6QBje1VTiR1tJQTJJJGV70TOJp5hPI/K7LyClor/938iKKSEtTD5zpZyA9nr3l16V58mL45eHg5PH3q0yIV/kpwWVv2Y8JnsyU8iJxR7mdq1xQSOt4W1ZXyDiLA26gKqLrZNaVs2cTPRcxsl9IMP8GoRv4KNSryiq6CAYgA3O1GV9kj3FXIasddpuOeexgIoGSCP+zVqJFWXLvGMGXjpihWklEsqkBLHMCgUc2MD5ScgLLCRTLUfd6FiqwdFBVfbapDniAVPtOeaW2CyoRCHRzw8R+5eDEAA7yO/LwXgpWj8FL0GyCtEju/PzUaoOUvkMWZOY4ptseIVzNgQRNqkCdJI5ffTT4eLeByqsB9hOyIEnTjSZs4tlCpbVkrvWFG2rs1vf14KYQ5s2TJmdTf2PY3q7Gl+OkGYuu7u4QK1v1esMP+maCZfKO2i6slm0po0BxnMB3mLYHkEGJ6TPharOUdQsGXLlmJ2UF6A63cnOQpuVlMrokAVNArgjTfCyKhmKnHYOp02gumQR7s4pHVjsPtCveZ74dl55ZXid2DOrsCGc0VC24+SovROO+eNOFL0snjZMqMexrMEglQ2rlM34fvMWrhQlq9cKR2aN5dd8xS2dpM4kucb3ZkriIBAB111ZV0Ien7jRhcLBj1NHPniQd895hzkJUIW+YmxNiHsDC0uskEa45HHi7cV1qSsOGIUe9554cpsKr75fgUAt/N//QKaBhClcMudoMxOlWTzEsk5IIzkKNJGMFHhD0bhdHrZdeedTUV1LLRu0sS0JuTRsXnzvISvy5TUOisByCuP7swVxNAkIdqgE0fWhaBzh41BJY6EqSlUUeQY110nQuU41jqYetPTOk0/uGySxnjkcd8q+6Y2OeDReeyx9GgU6dNH5MQTpZB21igMQc/lITQXqytGtlAmB61Po0FoedTUqbJ71apGbUxEHOnIAiG0bQxjAULZbp99ZNjECTJ8EuRx34RG31lHKZEyLtrkEJ6EOAb5XmCMkPcddD9L5kUljhvFiyjt5q7prbfeMv1HuQkUseFq/gKm4L/+Sn/DcLHKzz/nlTRa8H68L+8/fufxyQ2w+/fHC0mEXql8nwIijQD7EVpreTGXJZewvcvdQunKlaVUudwtRLT8+3PKZKm+a2Vp1bhx1myGsO9pv08z2aXSTvC4nALSWCoTB4QUFSaK5TCCDzIYJxQLBl1xhEMocdwogTAA52LTRYWkVnKWyHGM1SNaIXFbHWYVmHbTz/rcc0V69Ahb6+ClmGA36yZpjKU8YjdweavLY4emb789XASDakrI3aVe5/mEXSBIiE/U7ioIxHHmzJnmnsjInimFBblM1aqyeXFu4tW0Emy6Vz2ps9tupqAlm6BdYHu6PW0LcfOI15owmyjrouWV7R8cZONvwLo5H4/Ppk0DneO3H04hAcfGQiGOqRqAM/H36NFDrrzyykAvhsmQExsWbD9++ils5I2nZd++4c4wEMkY2Bra6ipptOD9Z82cJUuWxljI+/UTueYakRkzRJ56Kkx4fWjunQpsMQjh6iDfKxAGQpScBzeIIyhbrZrrxHHlmjWyYeNGqVGliuwVp11nNjFuxgxZuWa17N9832IV2dlGmTitW7MB1GYIdqL+0EEA54FuUngTK4KNjYVCHJMZgLOr58avU6dO4H2oPKE4WkC6IF+QRUyzDzss3KKPyuSo9lZXtIpvZ5Rt9KrWK9LDccIEkVtuEfnuOxE68dCq0EWbFq8pjkEGhr+HHHKIq58BcSxVprSEtrjjjbZq7VoZNnGiyTuEOKYDSNOOFSukrU7uXbeu/DF+vPlcCmZQI90AdkZlXCR1ECbGQLbVWb9WVAe91R5pC3CJvLTy9Qg2FgpxTNUAXOHRgcEu9rffRD7/PKw+Eg6ggIZiGvII89RqzhS9sCmhfSKtCT/5JJzLGIDJkw0Wi2XONhEeh1uhakB+XtkaNWTTosVZf2+KWyhaIWTcNgNLmZ133FEOap3+PYi9D/Y8QyeMNwUzHZo1j9vGsCQol6DLTTZAMUiQFXcL5sOg5zeC5cuXu2bN5Rds9ChxDPbWzgPIC1mAjNHfGXWP/EEKTiieoYgJwparwbpxo+w2cKA0ufjiMGmlCIaw9MSJIiedFAjSaHHEEUdI3bqJPfyCgGnTpskvtLd0EW4QoHUbNhjFr1wZClf2cYW4JQIKJwUza9dvkKXLl2f/A0qXknIuh9333ntvadKkiQQdShzDUC9LMcTRrU10SaDEMc/Ia6s5UglsHuGnn4bD2RQyYUh9xhlhErl6dXY/k/fjfXn/GjWk/i23hFsqYbFD1TTh9ABOFkEPz1mQtsCCYQsl3LLlyXYLQgq8rPKXaZ4huZE/Dx9ufmYCPB0Pat1a9thmKJ/NHrdlq9dwrT81WLNmjbnuClzTdpc9XFZ3/bAu4jIRdOK4YcMGTxLHYNe6ewCeCE+ijqBA8hg/PkwiCWV/+GGYXJKeQHV2hw5hZRJlLBUT4FWrRObMEfnzz3Bl97BhIqNHhxVNQuTXXy+bjjlGKpHDGPB8WFwI2F0GvZKwWrVqppJ08eLFrrZcK1+3jqyfPKXE77Nx0yaTiwZpJL+wJIDoMR+UhPDZ/Ma/Fi2SJcuXS9u9987KpqR8neR9tUuCKVOmyOrVq6Vr164SdGjkYXu+t4aqNypxVPgghwESx+Puu8MKIEUqQ4eGPSBfDJt2G5Akj7E7Hozc3NhG4EPIDb9okciCBWHiaEEICuJ51lkivXqJNGhgfu29WyJ/44CcnqADkkMLxiVLlriaFF+2Vi0pPWdOiVoQbtq82YSnK+xQXto1DVvjeAWErifNnm3Mx+k2UxLyWLZ6NVdNvyHKXO/69etL0EH05e+//zatF4PsYYjS2K5du8D3696giqMiFtbRV9qrgNxddVX4ATBnHjuW9g5hYjh/vsjixWEFkZA7Ex2DnHxFQi0QS6yAWrQgBhk3RDVx4kRp3rx5oBPjmSDnQGS2bg182JpQ3aRJk1ztVYtKWL5ePVk/cVJGr8c3kS4v6zdulJYerPqsVrmyURv/nDJFxk6fbo4x0yrd8i4TOjZMKK1JGwEEAKiuQ4cOlQMOOMCQx6AC0lyrVi0JOtasWePJDkJKHPMMTxPHaKA6uNAFaNGiRUZtCLqHIcrLqlWrAm+ATNMA7LzctiMpu/vuUnr2X7J17dq0XgehHTFpkqxZv146NGtmqqG9COyA6FiD6rjTjjtKIzZxaYIKdDd7UwPSEnAWCPq4B7ZzUtCVNroHcS6CrkKvXr3ak+tisKUND2BtmotWoUE9DCVioXCz5Z5fgOIKaXQ7/5fP2GHv9Kt4//73X1PAQs/oeD2lM0GlihVl/xYtzM9soWa1atKuadOMjMjxu9yhUUPJBVCXgu5bCCgKwwQ/yGFqu5mgi1TQsVqJoyKeFB1kMEESjgw6ceQcdOzYUcN120DO248//uh6pW3ZKlWkXK3USJUtWtm9alVTvVwly0pc2TJlzHvyM9vKI/ZA+EzOIL0kRZRv0EBK5yBMts8++wS+KMyCjaMqr2pJZOcbiKMXQ9VKHPMMX4WqXQKVc3oeRHbbbbfAT5YWVapUMQrU3LlzXf+sHRo1Smo1wyQ+eto0mbkgTLzcaO1HvuSk2bPMTzewbOVKmfrXXzJt7pykzy2zy85SLoPQdrr4559/TOhfsX0jHeTcRgs2jEGvqF6/fr2xJVLFUREzVJ1NvzU/AtPfmjno6euHMNXYsWMDPx4AlYR42VEw5Pb5oJvMDk3iF7jw+RSYLPrnH6lUwb3dP/2tZy9YaH66gTq77y5N9tpLps+dl1B5NCHqpk1dDx3jJPDHH3/IX3/95ern+AkdOnQIfF6fjcR5kTDlEqu3eSh78TwoccwzWJSCrrZRDIF/X9BBeIZFNOjpCxZ77bWX2VhhT+I2yu22m/F2jIUJM2fKgqVLpWWjRiZM7Wc0rF1bGtXZ0yiPsxcujPmcHfbe29We1BZWTeb+V4RNr3XTGAaWXEFfE1YrcVSkMkCCCogzhCnok6bNbdICme3has4Jlea5QPmGDaVMlUjbKMjV3MWLpUWjRkUdWfyOxnXqSsM995RKMUKB5WrXdr21oAX3PEUxVFQrRKZPny4DBgzI92F4AuS8Bj3fe7USR0Ui5Gph9PL3J0Qb9JZjLKAkQitx3I4uXbpIg21m8W6D0GzF5s2ldIXteaZ77rabtN57b/OzkNCkbl1TNMNmbcW2BarMrpVlh8aNclb8hLKOqqwIg/t+pxwovX6IvGjURQxxZE3wYoW9EkcPIOiKI/YTQCeLsOroZp9mvwEyZ7tp5OTzIO8tW8pfS5eaKmQqnLG0yQVoF1i3Zs2itoG5wPylS+X3ceNkybp1UrFFCymVI/N5XARorRf0cGQ0cQy6fyOYP3++/PLLL4GPQK1atcqzGwkljnkGO4qgE0dUNgiCEkcxxtcUhSgic+EoosjV+Ji9eLFMLyWyZFVuCXzFHXaQ5g0amJ+5Qu0aNWSP2nvIxE0bZWkOW15CGFu2bJmzz/M6iLagtKkVT1hAQEwIuq/n6tWrlTgqYoP8haATRwyfOQ9KHMVUl6PEKCLJNDZFU6ZMyUne3YQJE2TvFi2k+ZFHSqlyuQsTYUvz7+rVObWnKVNpR9n/1FOlZu3aMnz4cNeVXVSk8ePHBz49Jxr2fChx3E4cg47Vq1fLzi53bcoUShw9oLbpJBruTxx03y5n/peGqyM3Fo0bNzYhLDfvlXnz5plcW+xQMKUus8suUrF1GyldMTfjcvW6dTJk7FjzMxcoU3kXqdimjZStWFHatm1rVEDOsZtYuHChzJo1y/WuQH6sIu7Zs6cnCyFyDSWOYajiqIgLBsaKFSsk6GjevHnOiiC8DhQvFlfFdqDCsslyU3VE1YQ0MhYtyuxUSSq2bWtIViGh7G67ScXWraX0topmyHn79u2LOriQV+qG2sj1gySpyXVs79KggzHC2PMqYcoVQhStrVjhWQVaiWOewcCgobsibMsT9IRo20EG1VGxHRAbCF3t2rVdKUpg3EFo9t1332K5VZArSFa5mgVgD1JKpHy9elJx3+bFCmEoWOG7L1++XPr375911Zs0AFSUpk2bZvV9/Q5yG3/++WddB7YVw/Xo0SPw6TqrV682Bvle3WApcfQAccTkOOgm4EyaTJ4atg+H7UmWV1ueSOD5xwNka4OxdOlSGTRokMyePTvh8yBZFZo1kwrNm+U07zGbIOS+Y+vWskODxJ1JUHtQvyhIylb+NSrStGnTpF69erLrrpFemUEHY5D5X8OzCgu7ifCq64ASxzzDStFB321aGwrN7ROzy8S7S1XH2Bg5cmRWQtbccxSEVK9ePWU/wXK77y47duggZatWETfUFqv6ZRvl9qglO7ZvL2VSIG2Qxk6dOhnHh99//91sbLOhGOPJqWpjcSxevNiQae1TLzJp0iSzYQk6li1bZuYBmiB4EUocPUKYgk4cIUrsuFVlCy+y5NqR06coDioN6bJRkk0G+UNDhw41E3O7du3MOU8VpXfYQSq2aiUVMAvPYuHMLpUqyWEdO5qf2UKZXXaWHdu0lgr0nk7DSBjSuP/++xsiC1EvCQh9UwxD8Zvm8UUC5RzFMehdUpz3JWMu6Pjnn38MN/Ci+TdQ4phnMEFDmIJOHAE3ihLHMFBmtIdvbDRs2NCEU8eMGZNxyJoKasYbBSGZLlTldt9NduzYUXZo1NBz4Wu63xBW37Fdu5RUxliA6KE8tmrVKuPjIE9r2LBhMnHixIzfo5BhSTV5zYpwvrFXC0JyiWXLlnk2TA2UOHokNMkOI+hgwgh6rmf0JKqh++JAHcQ8GnVixowZab3WVgtTaNOxY8cS7+jJfSxft65U6tRJdmjSWErvmLlKvGrtWvlt9GjzsyQKoyGM++9vwuolBao3JH3z5s3GqggimA7wbITc77333iU+lkKd+7t166ZkaVtxJCRaz4UY4ujVwhjgrW1yQKHEcbuShF+fIgwUNRbtNm3a5PtQPAdCzIyVdBRH/OEIT0M62c1nMwxEGLj8nnuax+a//5ZNCxfKZu7praG0SO3qtWvTtsJB7SxbvbqU22MPKePSokvlLx6MkHVUyFRCzhQc4QvJ+FWP1vjwqslzrmGjTUEnjqFQyBBHa43lRShx9ABYxKg4DDrSyTMLAsh7ws+RiSTo7bdiwVlokewcoWZQ6EFY2m2POEgcj9CWLYY8bl66VLYsWy6hLJpeE4ouU626lK1RXcpUqeL6+CCdBsI4ZMgQQ77Jf0xEvCGa+JGSq+uGhVIhgDFJGB9ireQxbEPWtWvXwG8yVm+z4vFyqFqJo0cUR2vJE/SCCCrqUJM0tBWeSKdOnWryoLwctsg3ULbIWezcuXPMzQfWRpBGyBXkJ1fVq6XKlJFyu+1mHmDrunWyZeUq2bpqpWxdvVq2btgooY0bJLRpc/z3KF9eSpUvJ6UrVJDSO+1kutmU5rHNuDuXICcUwsi5pBqdUH+8zR7nmOsRdPUoWTU19mNBJ0oWjCUdL1JU7+DlOV+JowdgBwgDJui7cxZ37aQTBhYdFE9hy+PlScQL5wl1i3y6WOGdUaNGmf7PBxxwQF4X6dIVK5qH7B5ZCIEyiRq5efly2WHDeqnUvp1UqlpVSpUrV8yk2wvnGsLIZiYWaSTMDomnv7hXrUS8Antfa6V5GH/++acZN0EvFPrnn388bcUDvDUrBRRWktbK6vDCpMQxDCYPOijowpJ8zLRo0cJ0JpkzZ06xv0MmURq92gcYZRJFcafq1aVjly7mJ5Y/XiONFpAd8pEBVjLOnEyqpymiUSP/xGAj8/fff6sNjyMqsGDBAnNego5ly5YZ5dWrVjzAmzNTwEBYhxwiLZAJL0rkd2SrY4Xfsc8++xQt0or4gGBj4g1pYUGmChgFkp/cW37ofcsGoWbNmr7ZKNgcvdGjR5scU7w1ycmlbaP1p1XEBoQbkqTE0T/h2VxhmccrqoF3KW3AQPcKJpOgA3kepQ0S7YfFPle7cRQceikr4gPVkRxhCg0gNFgZQSj9QmIoKEEx5Zj90EWEc01hByFG8vWwUiE3mbaCisSAMJI6oXNcGMz3bPD8MO7dBjyAojIvQxVHjwClYdGiRRJ0IM/TmoxcF0UYM2fONN070rVpCRrYcKDOktOIdUyTJk18QxrtBmHy5Mnmp19A73AMwmkBiYKmRW2pj1Wvq0q5hNcNr3OFTZs2mYgJfMDLUOLooQmYXReqQ9BBfoda82wHChThe8iQIj4Il6J+cR+R9wiZ0bxhd8G4pMPRcccdZ4gQqQGKxGBzwDhVRFprpdovvpCxePFiM4/BB7wMXZ09ArvDYOAEHdaoGYsihZhwFrvxWIUfikgVh/NEG0HbjYNxxA5ekX0wHvv162fykQlPEykgYqDkMT6IGnDecEtQRIbu2ewFHQsXLjSiidfTkpQ4egQMFMyJVVUKFwlgVaFq0XawG4cAQaoVkWCHbslhgwYNjJ0H91KHDh1MzizeoFjEKLJ3vidNmmQ6G6E2kpsGWPAItf36669pt4IMCpjXiCqpurYddBfS+zMM0tWYv7xcUQ2UOHoELHQMGM1zFLMbp8BBq8y3g9CF5n3GBtXTkMNoUs3kC3lkkfaDsT4bJq6zl6uqyWMkzEoFNf2+KUhydq3h2PGixZYHY3ZFJLCMYjPjp9zbXORwQ6gVYoQjr+c3AiWOHgKLhiqOYRByVOK4Hag5FCFYdUcRBsbfEBS8GmOdG84b5IbxhFKGEuZVrzh8Jtu1a+dZv0mb00hPYdIBUHfj5avxt3Hjxml6hQOosURRyFlWhEFaA+NJC2PEzEukqnk9vxEocfQQ2Gmw89IcobCfFwqSFgsVD+sooQ6D4hfUCohhKosxlka8hn7LeBB6Mf+NimovVs+zuEN8UG4PPvjgpKoIaiRKL+TRT1XibgI19tBDDw18dzAn6EDEhk4rzMWk20AeVXFUpAV2Giwa6ucYzvls27at53M9cg3UtWnTpknQwX3CJqtZs2Yp+wYSHsQ7j83IL7/84rm8KojtTz/95KmuKyzqjLfffvvN9E0HqToeQOgPPPBA7cW87TwiCEAeSUtShMFah3cjqUlBx8Jt0UYljoq0K8vIF9JwdTjPcY899tBJNgooa0y2Qa44Z1cOeYEEpttVh0rrgw46yEzO+D3qJi0+UPwHDx5sVNpGjRqZLkbpgLmM8w3IeQxyHhshSDYFqr5GghC1en+GQX0D58MPJuhKHD1Glhg4WiATBp0/qNxkt64IAzKNahHU3DG+94ABA0yuXaZen5y/1q1bS+fOnYtsL7TFZSQIS6Mycp45T+QtZnq+UYc5v8OHDw9smgXjFlstVV+LiyVaYe6vwhigxNFj0AKZ4p5nasuzHSiwWKBQnenVIg+3QGiZjQSTazZ88GxCPnlWkFF6LgddESJMzn1nyXXXrl1LnH8G4aToh/ONrybnO2jKLWqrFsUUz+lTkSQMxBHOhR8KY4ASR4+BRZGwhhcT5HMNwlzI9kEOccUCFauEDZ02KIUONlMQOyyJKLzIJrBHoSqb+65///4mNBu0AjUIM6QcD0arZqMGZSvHGPJIJTb3NNZJQVJ4yQ1lHlM7rUjgcDBr1qx8H4YnsHz5cpN77RfFUSsPPBiKJDzEbgxfxyADYsQ5YEFPN7+qkIFdS5DUC+4H8hG5N1q2bOkKYSZcxvvjT8iDz6DXdS5B8U6vXr1yuiFAtWYB5ztD7iDlbo0t1PKOHTuaz/Oy5VC2lSTGb+PGjbWNatS4Y43TeX27Wwbwi+KoxNFjwKqBCYZQZNCJI+AczJ0719in+MHEOZcYO3asOScsSoUMwtLk2UGs3CRVhGdZyKjStibcqG98pr0v3QSfk2sVmcWbqun69eubceS2+TgKpi2GWLFihfm8QvYm5XpClhXFxx1RNV3jpGieqV69um/uBd0CebSaGOKoCNvyYOuhtjzFAZFBvaGQoRBBbisG36g29LHNlWIDGbfjjaprQuRUxBLCdjMHklw4PCbdbCtJiBhvRQpVbDi6e/fuxtYo1x1r6PjD9y1UhwDyRYmWKIqD9CNUZwqGFGLWez8VCZUtpJu0d+/eMnDgQJMrgHJwxRVXJC31Z9fTt29fk9vDzpv3QS4+5JBD5LTTTitWGk+yeCxccsklctZZZ2XluzCAUJNYMIOUxxYLLGap+vQFDViksFOFPFL1WkhAjaKQgpy4fN4HeIlybsnFwmycOYK5wY1QK3mVVB1nO7+S88dCzXewvnnMMfa85qvSl4IZiOPvv/9urJUKreJ48uTJZj1h86th6kiwEVTvxjDYOHF/4nnqFxQEcYT83XrrrWYBheyx2HzxxRdy7bXXymuvvZYwKRkF4eGHHza5Pccee6xJlEfleOutt2TkyJHyzDPPFFu0mPB69uwZ8btshguZ1PFPI2FWHfXDNxaLHpsAVR63g4UWUs25oWAmG5XGXrFhooCChYVe0/ledAkf7bvvvmb8WaUEcIwoJiS0UzHspU0eOWSQFhZo5kf6S3OsVEoT0cj3ObXjt1OnTmaugzySjuAHD7tUNz5UyXK+vXCuvQYtFNoOW4ymimOOQRcIwh733XefdOvWzfwOVeCMM84wBPCuu+5KqGi9+OKLJhxqcfTRR5vF4M033zQTLkQxetAfdthhrn0f3p9FiAGlxDEM1B4WQW3XFVt1RKnyS2J1sk0CJAJyRm6YlzYKzBV2/EHGIGJUe0PcIe2EfdmA5jrka0EeMOMAwmKdCA4//HBTlMK86MWCFNICII8jRowwkaJCIY6kNTA+dL4qDsL3XGfmc4WYMDXnwprl+wHemZVLAMLMECxnGJkLQU9VcpOoaounxjDJO0mjRZcuXQxx5KJGE0dgeyi7MdExmbII8dmtWrWSoIMFDyV4wYIFOhFHgXFN/1svEaySqlDsvFFQ80XAUgEqEiokD6suQdrsdYAIsfljHrKLQjavEXMan0tYGwWRPNeff/7Z/I3PIwLCRsJ2XvIiaXQquszdnC8IOQ8/j2ciRRB30hy8pEJ7BYg8FIIocfRnfiPw790Z5ZMVy+6APMevv/7aVOWm25rMmk7H2gX88MMPJhROjhAX/JxzzpEePXokrSJzdk1IVvzC+2pP4u1gcZw0aZJZIL1MKPIBFlkWW4iEXxVq1DLSRtgg+C1f05LDaDLEHILyZI3aIUfMJ8xHXCtIMg/IP8+3FfIUx7Ax5ZpCEFGuuK68Bq9FzhO/B4TzbTeh/fff3/zbj7mClmBhu8T347v4td0o1f/4ghZCBCDbYAwTVVABIAzuc6IWscQpL6MgiCMTNP5u8TpDQNjSJY4ffvihmcyjrRRQGFAymRR4388++0zuv/9+M9kfd9xxcd/vq6++krfffjvlz8dLjeIA8r2YiIIOFkdyT1F2ND+mOAiXkoxPhazfiANEgfA0Gz/6SBeCSmP96dhckmvIgmlVPxYL5iwnAYQwQpjZGJEeE52OAHGEHEKsub7MTZBVp32HbZ/oZzBPMxaGDRtm8lv9SB45Zr8pSLn0KyRKZ9fmoGPu3LlmjvCbL6/niCO77FTtRdips8gwEccKRdvf2bByqnj33XdNqOmGG24oVvn10ksvRfz7yCOPlIsuukheffVVOeKII+KGro855hhTOehUHB944IG4x2AnHvLXIKtBB4slu3i/KmpuwyrUPGKlXngVECeKTFDlUJkKgTQ6wfdh4+fc/EEEeQCrKqIa8xPVkTQZxjuvtXMcgCRyDxQyIMNs1hkTzMF0m/FTcQnHTZoRvpiKSECQSDdCBCi0+zxTwAO4r/1GpD1HHAnFUA2dKsFjwYSs2Z27E/Z36eQh9uvXT15//XXTwSGRgmiBCnDCCSfIk08+acJS8SZ2cjp4pArCUwwmBpYSxzB0Fx8fEA/ICKoj58kPKjUbRBZa7lMqar2ch+cWIEVWIf73339NOgYhbb+pxtkEm0MII6ojYTy/hDUhRdgdkZ+rKA42SXvuuaeG8B1AGGK+9huR9hxxRLK97bbbUnquZelMNM78QQv7u1TZPKa4Dz30kKnyu/HGG1M+Zut+T1g5m2BAqRF4JGy7Mp18ioMFa968eWbzhSeY1ycjIgFWaVQjYIUThN2pBPdLJw02PxirMy9pN5T4IXxtMbgdFLYxX7vp0BIY4gjJI+SbDsgPwjCbHY0zrMHunZ17KjlxEydOlDvvvNN4td17771pVfWx0wTZrhKDOOIlSTJxENWYWGBHz3VW4lgcjH2q8BkvXiaNtlgEsgg58PKxKvIHSxpZXMkJ9XKYnvWDUKxGh2KDc4OlGopjoVguZSPfk7nQj5E0/ySPJAAJ9UwsdI2xIBl9wIABJgTmzH/kYtmG4hazZ882BuJ4Nz766KNxBzbvGQ0W6T59+phqyWRdatKF7ZhC4YMiDMJWKMlutn7zM9i8kEPkJGheAqQfZd8WgChpVKQCIi/YuHiVFHGv0bYxyCkGyVxFINc6b28HRJqcZj8q1J5THDMBqgXkjQ4wkEDbOYZF6oILLoh47vXXX29+fvzxx0XE76abbjKVj3SdoaLPCRZhu4ukgnrQoEGGjJIADYH57rvvjKHpHXfckXWbGL4Hg4qCB4yFFWLIPSEPqtGy2a2n0EAFOmOaMLBXYDuYcN9EuxUownmqRFz87GHoBlCpIGZElbwY7mTzg2ejInEuHxEGP5lc58JGsFGjRr4q/rIoiBmKyeSxxx4zFc+ffvqpyZ3C2oJcyWRl7iSk2y4Lr7zySrG/01rQEkeqVdn1fvPNNyafkd0lkxhqpVsTB+Ro9OjR2rc6qnsHCgQ3nZ6T+Dli7GgJ87Hw5huMXzz6uNcofEinUCxIoVk2pYriIJwHeWRDhErjlf71bOohRJo6Ex+sx9ioeY3w5xOrVq0yhV/UU/gRBUEcAbY5EDgeiWCVRgtueGeIOxFY8HjkEk2aNDG9XLVrSqTXmw3HKmIDpZrxwkLL/+e7jzWqPBMlGyw/hmZyRa7tBlE3RLGLv1BjifZ4AYgOOGn4zbA+12DzCrywgfUKpk2bZu5xa8vlN/hPIw0YKOxB2dQuMtvBDh9FTRfXxLBKuRdyw0gxIBdZlZn4IIrx7bffZt2doZBABIkcdHLlonPVc512QSQIwULtdxID1xNSrfK9efUSpk2bZoi0X4telTh6HOQ/oLCRD6HYDjr14AGYrrl7kMBEDXlkckLJygdwNiC/CUSb6SsUmYIcZxwn+JkPkAZCuJGOZX7MUcsl6HbkldQCL2DLli1m/Pg5R19HvA9AuJpQ9erVq/N9KJ4iRRRZ5Gvh8AsIVxNKy4c6Sxhv+vTpnqzuVvgbLLrkPeJZau3QcgU2YaRd0B0m2xZshaiskaai2A7y8xE8WNf9CiWOPoAtAmERVmwvkiHPkZswX2qa34zTUf9yBcYqKjkJ8dp+TeEGKFZkY4TySPFFrsBcTPtYzW1MborOHKCCR3EyTfTFK7m6mUCJo0+qLSFJGq6OBIoDdkp4hCkSw248rIOA28nwkFR21H5N/lb4Y0xjeM/cmCtVm7QLQtSEp3HzUCQvikmlAUfQiGPjxo19naOvxNEnYBFGNdKwX2TSNTs3O0Ep4gPVjx2u7UTkJqiaJhk+24b4hQ7Gco8ePTQXNA2w+LZp06bIccLNsc0GFS/JfBbl+AlEgyiG06KY7aBRCePIz2FqoMTRJ2CHQl6E5vRFgkWDkJUi+QLbunVrM4nTucWNDQjhQqpd+QytNE0fqFg4KGixReZq4K+//irLly/P+nuvW7fOmNdj0K4botRawxKi9mM7PbfVxjJlyvh+ftQZyidg54YNjYarI7HLLrsYbzfsMRTJ80LbtWtnxlG2zxfFAiNGjND2mCUAahnn0G1FuFCB6sh8MHToUOOxmC1wr3BdWPDxIfVziDGX0SDOFURbsR2s35Bpv6uwShx9AiYrVEf1c4ytdP3888+yadOmfB+K58HCyoQOicyW6kjeJCFwNjdaMJA5GL8QcB3HmQFiRytLcsKx6iIXMRtAOUNJZ9Pl9wU/l9dCmzQULxaiJbLfw9RAiaOPwKJMCCAXBQ5+ApYYLLbWL1CR2mLYv39/k3NTEpCvQ+ibvEZC4arGKPIJog/0Zyfkny0XCjZb3bt3V+udFIFF0uTJk/N9GJ5UG7ds2VIQqQ5KHH0EjMCZEGkjp9gOzglhKkxVNWSdGjAF50HeVklM1CHsdPFBxdTcPIUXgJpOD2DMuUuCFStWmPtj8+bNOrbTyAUlD1+V2eKggxfdYjBE9zv0bvDZbhpfPAagehcWJ9WEk3JtBuxXsBASegPkb6VLuFkgAOHpDh066MKq8BQgLoxJch1/++03MzekG1a0+aY6tlMHOc6sU7SGVGwH4480M9sG1u/QO8JnYODRMSWXhrd+ABYmhEuzmRRf6KDnL0ohyko6oSV6KVO9isKryK5yTjoKPxXZUx9R1H///feUlXU25SiNhBXZXClxTD36gAUPxR+QR8V2ML+yOW/WrJkUAvSO8KEfHyFGVEdFJNq3b2/8AxXpVT9iokwIJdXcSAoPGINq7Jt9Ik8BHD8V2QHjlLA1pIZxm0rhEYs8m3M2VRUrVszJcRYCOGeQI+0UVRys1xBq8mULAUocfQZ2v5AjDVfHPjecEyYwRfo2JigsiSpRCduh3BAGpAABNUeRPUBqiCRoVXV2QZU15JFwIeHnZEAtQxmqXr16To6vUFCzZk1jYK+KeSTWrFljojOFEqYGShx9CAYgIVntmFIcixcvliFDhrhiAlzoQGkZPHhwXPJI5yJsNiCNmvyefUDMqVBXH0d3UlkYt+SIx4MNZaP6+t2gOdcgEoHaqPNCcdB+FSQae36DEkcfgsRjJkINVxcHbfU4N1OmTMn3ofgO+IsRmiOkF4u8oHQfcMABqigofInKlSsbSx0IDoUKzoIwbKn69etnNp6K9MB5ZM6YOHFivg/Fkxg/frzZiKB8FwqUOPoQeOWhOmLLo/Yzxc8NPln4XWrIOj0QekaVQVVkIUCBoboUFRIFl1QAzb9T+B0o6hBH6yZAsRfdZrBJwVpKkR4oiCENoF69evk+FM9h5cqV5vwUUpgaKHH0KRiIhAcYlIpIYBGDuqAmtOkDYgh5JN8RQ3UIJONM8xkVhQLmBgrp2FyyKSJvFzWI32kFdXpgnsBonTxpWpkqIoEKy5gqtI5aepf4FLRzYoes4erYILmdyUwLiDKrRD3wwANN2I6QNURSFwX3wQJDmoWSF/dhTevJKWXzTatCtZBJH5w7IhOF0EbPDYwfP14aNWpUcOk9OkP5PFzNjiZbPYcLCVREEjrRFniZT3iE9LDp4f/pnqFwF5DGbt26mZ+K3FQBn3jiiUZp1BSMzEBONKSxkPL3soXly5ebAtZCC1MDJY4+BgOSDh7k6yiKg/wl+qZqb+/0wWKACgNxtDlgSh4VhQDmTMLT/MRbjx7rgHGuSD8tSNXG2Bg7dqxJ8SmE3tTRUOLo8wpiwrEjR47M96F4EoT8yM/TXMfUiTb5SvwkDwxzcKpQCVUreXQfnOPvv/9eCYyLgCxi1xXtGsC/Bw4cqHNFisBrdPTo0UWtRxWRYA4dNWqUEXcK0aJIiaPP0aZNG6M4aqu92CApmXOzcOHCfB+Kp0EuKAsBNka0IHSCXFpLHtVyw91rADHXvFx3QOUvSiPo3LlzRFcY8nrJi2Yu1QhOcmBoPX/+fE0FSnB+mEfJoy1EKHH0OdjRIIezu1EUR7Vq1UwPa0xY1booNiAqhPQXLFhgNiIojdGAPNJ9o9CqAxXBAPc+SiM/GcexWgnitUdYEdVR+7AnJuA0A6C14P+3dx7QVpVXHv9MxnE0Dkas2AZFCYJtAopBULqigCAIKFiJdSzLzETHGWPGFo0r6rhm7A27AipdpQhSREWIUiQgAoqACoqoWDO+Wb9Nvud5l3vfu/20/2+tu97j8sp9557znf+393/vnbSij3Ixd+7c2oxgEpFwjDmYug8++GBLV0sYZYdIAikV9XXMDsUvq1atspnVeJZyQdqatAtVlLQxUUpVxMm2wiabbgFEF3OBX48q2JUrV6roMAdswun1yoQdsSUUFZK5IdqY1IishGMC4ATlJo4/TWwJVapdu3ZVc98cELE+5JBDrBAm3wglN9WZM2dq0oaINEQOFyxYYJ+TecgnQsZouA4dOpg4km1gy2gjmQmOkXq7ZgfLDxsV1tSkIuGYkJ6ORIoIj4vckVluAuvXrw/7pUQGCoeA9DPVpfnCzZfRgwhx+uCtWLGigq8yPdAr8+ijj1bPzDLAtY5gZLpWMQIQUUQByIwZM0woiR+v/U6dOrm999477JcSSWpqaiz7R3Q7yWl8CccERR2XLl2q9GE90FMLc7wKiZx5lKZNm2ZplWLgZtymTRvzhVEws2nTprK/xrTBMaWanY+ieCgwev3116059aGHHmpWlWJShjQER8QjBBRZ31z1T6aBVH9SU7DliHBv2LAhsUUxHgnHhIDPkYWOMLnIjh+LRRQizeDfQuzh5Sql2TQ3D27KNK2mAbCvChbFgQ+XKJlanJR+8/7000+tD+k+++xT0vlNj0cahTPXmhGFaQXBSDuutK+dDTFv3jyzRORr+4krEo4JQUUy+RvkKZJJa3seimAQJ0QKy1Uh7adGUI1K0YyET3F89913Jur5KArHb1rYEJHyL4enGfFIpwEmUWHLoDAsjeCf57zk2Irc1h8Khzhfkh6RlXBMEJyw9I5SK4nccDOhTQIRt7QJbP5eUtT4GVu1alX2n88u2/vCMntBClFJ2AhOnjzZbChsEMs5Ao+fhy2DRxpHE7IRRDg2a9as3or0tPPWW2/ZuYI9IulIOCYsFYsoUpFM/SCa6NeW9F1hENLILGoUtRCZrgSkvalG5eZCzzyim0JUejNE6xNSyWwKK1VYhO+UFCSw+UqTl5x2XRQLKdpY//o6d+5cs+5k6xGaNCQcEwRCCFMuC2maFrZCIRpBdIzjlYZebczqJgpIqokbQCUFMxEZGixT6a++maKSMCYQawSTXtgIknGpdGERQpUqa4rsii0sixtkKIii4aEX2aGzBL7apBfFeCQcEwYXOOKAqkJRP3jyXn311UT3akO84c2iNUS1Fn5u3jQT9ykbbrSqSs1PdOM9TWM6tNjzjCg6Tb1p3F2NDAK/j6IbrifWjiR3E/BWHiKtZLJEbmbPnm1FVKUUY8UJCceEwU0HLw6pm7QaufOFBZFdIm07kghtIaiEZOwi5wQ3vWrib+QffvihbWTmz5+vqut6QIxgo0hy/7dyNKBmvCrRc9Y6rBdMNKomTE9idjsbMQRDUovBSFHL9pRfRuedd96x+edpsT9JOCYQdsQsrFRYi9wwk5k0DJVwSVv8KVJBNNIX8PDDD6+6aAxCCpEpCvTRnD59uglasSWIao6NxHV2iFzTe5S2OKSpw8RbMvBVIiSTmKlgQ82mU9TP7NmzXaNGjSpScBhVJBwTCCcxBRCkUtLg4SsFRmcROfBjyZICdgUEG5uIKDSURqAfc8wxdpNVL7jskPZkjGOS05/FboKIMhL9oi0OfUOrHWXMBpFh7BhcX7RiSUobJVLUVAj7jbXIzRdffGGZFCLQUVhnq4WEY0IhbE5rCtrOiPoFFiKbaswkeB0RHX5mOan4KBnaKUoitUgEFCjg8mMPhajvnCYdSDNuLBdRi/D5iloiT4jcuMMEMjIwZAnSknotltdff93WWDbpaULCMaFgZqbvFm1RkiCIKgmm5mLHkkUJ0ne+DU5U050cY1/8QfX/yy+/bH1HdY6KIJy//rwguti1a9fITuPwTcLxX5Llieq1V8hmmir1UqZKpYHvvvvOCg+ppE6bL1nCMeFRRxrjMo1CNAzHibRDHOGmRcSDdAneqyhFGnPBzZZUGKlrvGuqvBYIxffff9+99NJL5j32jeSjngZEZJGuJDqKtzjOFiECDurZ2DB//luRFnagtCHhmGBo7UHkkSiUaBhuThjCMeHHCRYvRCM3XURjXHa/HG9GQDIejteMryrON9xyRK5Iw8Y98l0s69evtwg05wFexs6dO7sdd9zRxQUK0RARiMc4WjDIANCiTOTnA509e7atX7zvaUPCMcFwAyLqSKsAPEKifvbee29rXE3UMU5V1ggwbrCIxjhOLWDh5bUjIPlbiJ4iHviYtqK2Y4891j6mCW9T4P1GODN9iGh0HM9lrsMuXbrYOc3fFZexprQl4z4R9chuVFj8t2g499c0IuGYcNgRcSNidyQaBkM4iydpiKj77jDiU9XnG26Xcz5vGPhIKdEaej9OmTLFIiBx94yJ7PgNAtca4GHkRhyFiulS8OLrzTffjM06Qus2RK9S1A1TU1NjE4vI6OGPTyMSjgmHRQzvDVG0tIzIKkcbG/oeRlmwkNKlog9zdtRvTIVCmpKoDV4r5gLjd0tDxJzrk7816dcp1xVpUf5WNgi0fUkiTZo0MY85AjLK1yityBCPVK2n1SZRCO/9zc6U1mgjSDimAIQQxRJU/ImGoektYhsRGWXRSDubpC72nK8tWrQwnxtNln3aMim98rJBWhN/XFzSm8XA30YhFC2j9t13X3t/mzZt6pII0SiuTxrfR7VPrD/XyLRst912Yb+cWDBr1ixrdcbGNq1Ev/RSlCUFeMQRR5hwZJcU95RmtWCKB6lSjl1UvD8s9IyT5LVhxI9T8UAxIBi5+fq/nQbZvBeIDlKbYU7EEflBNItKaQQi7x1N9zlv0yBU9txzT9vo+YIfPNRRgusnbT0IS4FNwDvvvOP69euXyA17vmjVTQkIRhYJbrwiP4g4ItCiNOmEiBSN3WminbZxYJy/NGtHTHIjnjRpkgn7NFdix2Gqhn+f/KhJxFQaRKNnn332sfWX1HVUIHVO1gKrgMifqVOnWrSR2oE0I+GYErjZUrmKJy7pHqpywTQZ5o/iacGrFCa+QpN+cfj/SN+mEf5uIsCkOIk40vvRRx3j2AIlqTCxyvfmpOCCBt5E3NIKmzwiVBwPfLth4zttRG0KT5ThPsB716lTp1RHG0Gp6hSBb4/mtDNmzHDHH3982C8nFtCget26dWZwR7QhJsMQjURuSPkxci0qafMwwW6BqOfYsIgzNYdoAG1QqHYkJRi3NDZ/E9doHK0knJtMLCIFzYOoDO8FUba4vQ+VhGwBhUGcs5ynYYBg5DUwHSaphUnlhnWGYi7O5xYtWri0oys6ZV5HUibMVWUBE/lBqxtuhmGlREmV4xFLa+uH+vA7fyLqeD6JoNACZfLkybUzu+NUEERENQ5TfzxEeSn8IB1NlNGno4kukpKWaKxL8+bNLQLrr+lqwwaL1jsMhjjggAOq/vvjyooVKyziqGjjZuKzQomywM2VIpnp06e7Xr16hf1yYgE3ciJBQLq4mjdDGs2yaFH1GNVZvVGAxZwoFw/EDMfs22+/rY2GYWpHeEe5qTR9Dbk5EeWO8vQffw1wTBHpiHUqTKP+uqMCxUG+YIa1pZoFM0TOSJuzGZYAKizayPorsb0ZCceUwSJ/1FFHWUSmffv2ia/KrcSYKQRINVoxkFIiakZKlpuyyA/sBBTReJjwQDRs4cKF1lya94+UUxi2g/pA6C5dutReX5QEGDdOjiGFFHh9iVZxThJVpCJX6ejC4fghGqvZ7Byxig2CwjqRP6zBbJJOO+00ie2/oas9hbBwUNXIXFiRP9wc8QQRBWSubqUhekakMywvVFIg/du9e/faMXYUBvhKeTYDiCKRHcQim0y6MZBaJVrlLROIW6WjiwMBgleOdZiI+CeffFLR37dy5UrLMkV5qEGUo41s3LUO/4gijiltM8M82BdeeMGijmmudiwUFnv8ofhEma1cidQn6cptttnGbtBprZ6uxDmPyPF99XwjcW7YWDcQQRxvHmwO0liA5AUMUUUyEfRdRNiQSvXHRRGXykS0li9fbjaiSqzFzKEm2s77GSf/bBSgjRTXw5lnnqlzP0BiziJazNx99922qyLlg4/kwgsvtMqxhvjDH/5gIipb/63HHnusznNEKJ566ik3atQouyDxPQwZMsTaTcSJ1q1bWwd8Wmb0798/7JcTG1g8iFxxntGIm7R/OSMuVKZSQZ3mOaiVBlHoBT83agrGuDkQXSMyg0DifSXaQJSNdCIV9UmKrPlCL47F6tWrrcqWHqHA3+p7hDLnnrSqqBzco5gCRV9FMgzlrHTmXsgml41Ay5Yty/Zz0wDXP50aWIuTOt0o1cIRMXfFFVdYj6VBgwZZGwiE3aWXXuruu+8+t/fee+fl/bv88svrPJetLQY/7/HHH7fCEqJPpHCuvfZaExT014sL7DyJmI0fP94+khYV+cG5QlscFvtyignmn2KYJy2im3V14LpFJPGgqS/vqRdVVKBSMcwNhPeZdQURyXtTieiDj4pWYtQlG2s2uqTlefBvfKCca0S3uf752xAYcWwHFGc4t1hPEI60S6Pfbjm8j5y3bG59oCBJG59qgJ0Fn7mKSBMqHImaEYpHwHXs2NGeo0Hwqaee6h566CF39dVXN/gz2Hnjg6oP+vk9/fTTrm/fvu6yyy6z53r27Okuvvhid+edd9rvjlOKi1FuRB3xMHGsRP6wsPvFndQ1oqIUWKBok4FwCBZ2iOpChM2DgOrRo4e9v0HB5UUjUWdEHt9DqpsHAoznfH/JQiAtXMr4N6rJv/76a6vO9g/avyAM8XWyMSGayHlLBMXbIIi6yq4SLtw38J4jHDnfyiEcOf8o4uP9j1KxVRxg80i0kSrqfAJPaSMRwpEiD8L7RM48XHj0XKK/GH6mfDrkc7Kw2ObacRNdxFyMcAxenH369DHRyg6FtilxWqxIsY8YMcKitWke2l4sFMlQaY0IL6VdDjd05i+TTpKXJlrXCGtLZvoQYUg1MWIS0c+6wdrA5hHhSKQSoeYFJQ++nopkvISIA95nokB85Pew7tAHkc95zk8L4nsRlfwOfmZQGPL9vlUUm0Dv3eQ18H18DcKBKOmhhx4aq41t2iALhG3CX/+cJ8VGnwlysDGQ3aU4EPBE6AcOHBj2S4kkiRCOtLBgZ5AZisfnOHbsWPONNSSKWGCJLvDRj3U7//zz68xUZdeONyqzNQq/x/9/LuGIwAhWzlEAEQUQKvw9eDwvuOACpTMKhEgNO1JSzJwbhc6PRiggGPhepafjAzf3zJ5uCEcvzCgo8WKPB9FAPgI3JNKSQTgHSCdigyFqGdy84rHi3CCaSEU/54oXo8H1CQGJ0EAoZgpEnhPRx4tGvLX4ThGShVoHuLfgk6bYRhakwsHrSzAK+4COX4KFIwsxu+lM/E0cwVafcOTrTjnlFEvrsMtnt4FHkijc7bffXluJxs/BA5QZEfK/p74WLWPGjHHDhg1zUYO/5bjjjnP33nuv+WGYAywKg80CooA54FSp59sfENFIRS+RSqWn40+wYrW+9C/PszH1EUWf1uZzBCcpSzImPMfDZ0tYe0444YScv79Uu4SIDkSmqbYmm0GhVr7dG4h+E+0meyHRUxy03+G6I2MpYiIcWTwJ0ecDCypvMJVj2VLR/jk/QSIX5513Xp1/s6gTRaIQhp2HL3rh52RLHeTze3r37m0LQHBXeP3117soQAqNVCueDgRMlKdrRBGitL5Kneh3Pj41UpVsUPDHqdoxXRANDEYKg+cEkUFEo0RguuE8INrImoJ45POGfIqcP2z+fYN2UTh0VsBrfuyxx2a9RkVEhSMpP6qh8+HRRx+trQr03p4g/rli0jQDBgxwDzzwgF2IXjjyc7KJ2nx+T9QN6BQT4dGk0IiUvSgMNhQ+VdgQFFgQaSQFRTpJvjMhRCYIRSqsEY/0E2RMYH3QSgqbFRtX+aQLh8g/li0yiJquEzPhSO/EK6+8Mq+v9SlijOvZOu/75wr1nXkRSDSI9hzB38ds1syKSf97oiwMG4L0KsVFU6ZMMW+HGk8Xjo8IcM6wiBO9zbaAExngaxGaasgrhMgFUS+ijfkEP7DMBH22ojAQ56zbgwcP1jFsgMjdtRBnhUa8MKljBibNHSzuwEjODbqYcnp6uGW2Rdh///3duHHjLM0cbAjKHFz//3GG6BfNYl988UW7eLRrLQ78jpjbOR/x3vrjyKKOUMTTiJdNhUgiCOlp9YwTmfjiGAqsfOTRbzjpBEJWjHsP985K9ABNA6zNEydONC2RWfQmtiQRd65jjjnGCmToq+ahTQaePXZrQf8jUxJ4ePAlIhIzefjhhy2yiJjyUPjABfvcc8/VPsfXjB492iJ0NBCOM/xt9LLElE2FuCgOTOl4Rqnm9zOREZP4ZVesWGH/lmgUQhQCIpE2O1Tk8zkbUwryyHhpPSkNrEMEivA2ihhGHIuB3mkjR450N954o4Wa/eQYLqyzzz67ztf6xt3Dhw+3jwjOoUOHWj9D0uTAhcmJhGhELAYFwcknn+yefPJJ26HQhmfGjBkW7fzd736XiPA246+oyCPqSCV6Ev6mMKCRN+cI5waw4LPJUF81kQsiSm+++aZFlPKtzBfpgfsa9yTuTdyjEIuIRp6j4l4UB55zgk50FImz3ayaJEI4Im5uvvlmm97yzDPPWBSRcYB4Jb0YzAULNFFJdm4YYxGb3PTPPfdcG1+YuZOjAhsDMu11+HrSjldddZXr1q2bSwK+PQ9zv1mcMGeL4qBwi3ORfmx4lAppqyHSB1EkWjT5kYdCZIKfH4FD4IOiTNrISeyU3n6HbBuZS5Ei4QiIOeZV86gPH2kMfh/CL18QkkOGDLFHUqGdA+1lSK1S4KHoR/H4qUUUwhBR0hxgIUQpIBTZ3GOxYq0WxYNtjSj/8ccfr019AcgYIXK250EkE1UVxYOdgUgj6RAiuN7jKIQQhcL6QUSaaUJ46rG/4KXmoygMjiOT5XygROSPhKPI2QaCXe3ChQutqbXIH+wONJFFLGKjIGKL/QHPKMczKuMmhRDxgbWDR3BCGdYGImY8LwqDxupM2jnxxBNVXFQgOloiJ6SpafMwfvz4BqfviB9FI+0xmECQ2ZSeCTEUHlEwo8ijyLZZoxpfEytEEKKJfs2gV2MwPY3nkZZfFIX6tnCiYSgqYtgFHn4mp4nCkHAU9RbK9OzZ07w0GIhFwws8kUYqqJk8kK3xPOklIo9EI4UIQg8+iu3Ui08E1xSGTtAXlmp7Cu4yoQCUdeXdd9+1QjzR8DElRU19Ax1ZROFIOIp6oQE6Ixfx5+GlEblZsGCBRRrxy9Q3eYfII9FcCE4mEumGCDWRo2zjU0V6N+9YXVhT6htkQSYDPzWbfPkd6wchznVGs31t0opDwlE0CO0fmHTCLk2tQnKDj5E5sfn0auSGQFNw3wdUi734+uuvbfPBR5Fu6AH70Ucf2efNmzfPK52KrQirg19bxJaQ6WFCDNFbCoxEcUg4igbBONy7d28zZc+cOTPslxPJlg4IP1LTCOx8YRwmniXSUOyC8UcKIdLN999/b02+WROKiT7T9gtrEeuKqMvzzz9vBYtMSBPFI+Eo8gJDNm1l6LCPh09shtmx3tdYDKSfSEOtXbvWimokHoVILxQhvvLKKyb+6P0aHJebL6S2WVfeeuutOuN10w5rNQVEPXr0UAFaiUg4iryhsz6eR1LWSq06m+fNA88i4yiLhTQUxTSbNm2Sv02IlIJFYdasWbYGsElnrS0WimUQj0Qt2ZSmHVL3dAch7d+qVauwX07skXAUecNYJgzFpECIjqWZ5cuX2w6W2d5USZcKwpMKP9LXRB3kc0vn9UVRFR9F+uB9Z7IUI3Cp+C0FfI606WFTumjRotRnMqZMmWLr6gknnGDHRpSGVihREE2bNrXU6uTJk233tsMOO7g0QioJMzrHoFz4BY2FHj8pRUmlRB1EvEA0kJ4U6YJODKyjjLxr27ZtWdcTimUQTGlucM3AhTlz5thYwbTer8pNes8mUTTdunVz22yzjXvuuedSt5P1jdApaqH9RSUglYIHB6+T0kzpAfsH1bSygaSHZcuWmaip1DQpBCOClPPqtddec59++qlLW4qa+xS9Ltu0aRP2y0kMEo6iYEin9u3b1xY7xjalhTVr1ljKY+PGjRX9PYhyJhpQkIQlgMa+IvnQ05OqT/X2TD5suCleWbx4sWUtWrRoUdHfR/SRVmqIx0qvX1FiwoQJZvs56aSTUh11LTc6kqIoaDiLgZu2DwiqpENPNaqn6dHYqFGjiv8+WkbQE/KAAw6Q502IhMGG8IMPPrBUMj7paqwnWF/wTrLZT8PmhP64PJh+JstPeZFwFEXTqVMnK+p49tlnE10NTKsdFnpEo2+wWw34PUQi/JgxipLo8SaEiDekTvGzMmKyWrABxUOJDYY+kUleSz777DOrosZS5Kd0ifIh4ShK2sX269fPUh90408i+M0WLlzodt55Z4sAhlWRh7eSHmRMmklDtECIpPHxxx9b4RuwCc02y77SMGIPwYo/O6nj9rABEMzA20lBjCg/Eo6iJBBUxx13nEXkaE+TNBCKLLQYq8P0yOB77NChg4l1pveQ5hJCRB82n0uWLDF/Ib1awy4opKm4n3vNOpK01l+sj6tWrTJfI358UX4kHEXJEIkjpTpmzBibBZoEiOqx0JPOYeeKYItCu5b27dvbTGwa+0o8Jgv8Z8cee2zJPfxEdMDCwzrCoADWSBr9R6VIg2IZBC2eR98tIu6wJk6bNs022dgBRGWIxhksYh+VY5Y1C+KoUaNi304E8RvVxRQBS2NfIqB+LnbYEQxRHrh+iAZFRViI0lm5cqVZechaUOgWpebTrCV0b0BAst7F3afO6ydFTdNzppyJyqEVSpQFDNe06KF1DDvsuEIqCeM4KQ4W+6j6gFgcERiIXFoEUfUt4g3n3uuvv24fRbzxmReGBCBisPREdd1GPLJJjnvBDK2sGMyA7z4KGaIkI+Eoygaj91iEJk2aFEshQ5Ncdt5UHyIaif5EHQQu0xAQHHhM4x7tTTOcf1w3fBTxhPeOtl3Tp0837yCbu6j77Lbffntbt+Ow3uWCwkHsOz169HCNGzcO++UkHglHUVa6dOliu+uRI0fGLvWBYKSnGosoxShxgIgovin8U0yhYNpM0szuQsSBDRs2mGBE/NO2C290XKA3rc+wMG2F9HWcWu+MHTvWtWzZ0h122GFhv5xUIOEoyi6++vfvb74eimXiEAFD4PpCE6oNox4hyATfFP6pdu3a2YIfJR+VEGlg9erVbtasWSa8jj766Fr/cdxgvSZlTZeMOHinSa0//fTTtmb36tVLa1+VkHAUZWeXXXZxz42FlwAAOo1JREFUffr0sf6HLEJRX3hIT5PqiLO/B0jRcNNiEeVvYaRZFAt8hEgKXlyRZSHqT9cDuh/EFYTXQQcd5NavX+/mzp0bafGIyKXJNwMaBg4cGKsIb9yRcBQVgbQBIwnxO1JZGFU/EsKW1Azp6agWwhQDBRYffvihe/nll2PpN00jCP5WrVrFLuKdRhAtK1ascFOnTrWMBdYWCmGSEPFCBNO1gYblb775ZmSzRghbXh+RRhqqi+oh4Sgq6ndkXN6IESMiN+2ElK5vyIu3J2m985jN2rFjR/tI4QzRRxVdRBvEx3777Rcbf21aYaPJ2kFGhZGrSazg3W233aw/L5vPqK3dQINvqqiZv017MlFdJBxFxaCiEL8jvsfhw4dHSriQgmHBZ3YrVclJBAHiF9Y1a9ZE8gYgfgR7Ae9T3C0TSYboPQ2mabfDhpM5yEkUjr7lF5v/qK2PtNzhfoKPlIb5ovpIOIqKgt9nwIABbu3ate6FF16IhGAkYuBntu64444u6TBBoWvXruaBJO20dOnS2FW8p4GvvvrK0m98FNHCp2tpWUOUkd6MeLmTjo9+L1iwwHzgUcgU0bGD94P7SlJFe9SRcBQVhxF5DJunUo9eW2HBYsPvp/oxyqbvSuD9m6Tmly9f7l566SVL9wghcsM6wUaLNlesH2w0SeHGuedhsQEAhjtwLMJk8uTJ7v333zfRmDR7UZz4u7BfgEgHrVu3tpYVVMHhn6l2uwoWfYzURD4xfqd1rBvNfjt16mTRA44H4vGQQw6x54UQP/LJJ5+4+fPn22aL4QasIUkofikGvLdE+xgyQJSP41Ft8JTSAYMm35pDHS7pvHuKUCDqSJoHf0q103GkWujVSGPetFfgkX7iOJCqJ23PDVII8SOLFi2yKCORRdLSBx54YGo3mx56xfJg01ntTg1UeI8ePdo2ufi2Rbik+0oQVYUiGfpt4a975plnqpYuxsiOaGSqAGlzsRk8WlRe+937kiVLbIEW4UAkh0IE+bbCgYiiL+CjGwFFZTTVV0r0R+hVSaqeAEC1YHNLk2882mryHQ0kHEVV4cZIpTU90CZMmFCVHmEs/J07d7apMKIuRFFYiBHxn376qbUZobelKrCrD3YBGrjLNlB9aCLNuEAijcAGkw2VRMqWcGw4LqwXdAGoJKTHEY1kqAg6JKnXbpyRcBSh+GV69uxpxTKkgyrFO++8Y/0LQU2VGxaQNEFn7jWLNDdR/F1CJBmyEX6zREZE3rn8IYszb9486/VYCQgqMLaWYphBgwZZxFFEAxXHiFAg3cFweibLkBZiYkY5oXIYI/cvfvGLsv7cpIP/kzTUe++9VzuukGgkD26sonIw333mzJk2ti5qvfOSCOc3GyRG1VEwR99CkT/0sKTnKC2k2HCWO31Nv0w2/mSoGCQhooPuBCI0qO7dsGGDe+655yydXK7dPjtUUk6MAGvevHlZfmbaoo/77rtv7b8RkcuWLTMRTrpf6bvKkbY2UdWG1CfrA0LEN8jfaaedUl/4UgysAxTZIRznzJljwxQYV1gO6PjAuFT6zzI7W0QLXS0i1IXnxBNPNM/MU089VZbqXn4Gu1SED5WQonRon8TNleNKhIaWRlGdXytELkG+cuVK619KVTDZDl8gJtFYPBw7Wq3RXq1cvS3JFpGi5uceddRRZfmZorzoihGhQvoT/8p2223nHn/88ZLb9OCDoXq63KnvNMN7g7WAFCo3B7ypFBMIEQfoHztlyhTrA8gGiE4C8suVVzwSeWzUqJFFdPGNFgtdHSiGwQd/wgknKLsRUSQcRejgMRo8eLB5jp588smiZvXSV2z9+vW20CidWhmYmkEBTYcOHWrHrWEJ4MasCKSIEggY79EFUqgIRjZATEERlQFfOZO5ihGPfA/BA9aZk08+WZHgCKN3RkQCFotTTz3VKvRGjRpVkBAh+kUUDO+SqDwUM/kWPkzVoLJy6tSpNoVGArJ4aMODuFE7nuKhDyOj8YgwBlvrEBHTca08eMoJBDDhhbUhX+jt+8QTT9j6wX3Az8gW0UTCUUQGFvh+/fqZB4mZpPlALzGM2UQUSFGL6kFEgOICeg9S3OQN7RKPxUHjb46jGoAXDlkK2m8hGIl64culWbWoLvRZJCvBR1qt5WM9YgM6YsQIW8vJPJHyFtFGwlFEChb7Y4891tIdCML6wOBODzailWmePx02tI6hHQej2ahkJxpJ5Gfx4sXu66+/DvvlxQaOFQVIOmauoEiVT01T+U+RBs3+mfqCN1dUH3zQiEc2QA31eGSTySAIosSkpxH8IvqoHY+IHMxQRhSyoNC4m35huQpr8NoRaVSUJnyIFPhoAZNnaOPDDYHekFS5U5gg6hdB2C2aNm1q6T6RW2wgSJg+9eWXX1rLFtaJ7t27ax2ICLwfZCJ871eiitk29lS5YzPq3bu3bTpFPJBwFJGEqCMzSunxyA422Mgb7wwLE54lIo0ielC1yg2d6RLc4Elb0TvvkEMOCfuliRgLRlq1cD4RleUco8efL4STaIwWXjRSPEc0mChksGUPze5nzJhhgp+iJREfJBxFJOFmwC6UKAz+FwzTtGhANCJCmFJAOkpE+8ZB9AzBSMW7v5HQa5MqeKrf8fQJUR9kH3xBFj1EiVyzFmi6TjzgfSIIwFhH73/EhoSPHXtLu3btwn6JokAkHEVkIbVx0kknWXNwHnhgSH8SWZDxPT5ww/ftewDxT0qWNDaCAAFZzgbCIv4QUaRKn4g15wsCAxsEDaHVaitekBlCMLLhf/31182GMX78eLMk0UVAxA9VE4hIQ5Rq4MCBVjV9880324hCdqhq1xBfGC1JeoqCGiwHNGZGIPjq2LSO3eOcxueV9nOb9k5Eo0hvko7meveRaYnGeILoRyhyrd9///3WHgk7kt7PeKKIo4g8pDaYa02V7pIlSyz6gOAQ8Y4mUzTDg0bN3ji/dOlS80TRmokHEcm0wDmdtjGZbBJow8LGgSwCx4BUNBHqJk2a1NobRPxhKgwZIwYI9OrVS6IxxuiqFJE3xLPAHHDAAe6aa66xJrEPP/ywO/PMM+ukP0V8CUbYSFsDQoJCCIQEBTVpaNNBC6ONGzeaJyzpggkRwQYBrytRZlrnkJ7m/cYTK5IF0WNGCeJL79+/v3nXsaq0bNlSAjKGKFUtIn0jpZ+jnwhDuuP00083zwzikSILkSx4j5kzTiobXxRRJ9+aZuXKldZknFYs9O1LGr7wq5CJG3EBcchmgGsa8C8ikimeom1Lly5drB+rSB5UweNRb9asmYlGPOqMF+T5P//5zxoYEEOSva0VsQVhgJGaBSZYPUlkAvE4bNiw2sgjPiiRLIhC4GvlEXwOjyuig5sPlfXcjCQ4ogk9FhkH6ufIIxDwuZEpwOOmhv3Jh9Q0WSI2CAMGDKhtmcQ5QAse/Kw8R1ZBkcf4oCtXRNL3RLsG2nC0bdt2i7YbP/vZz0w84n1U5DE9kMLE68oD6wKpTT85ZM2aNW7+/PnWrsU/J6oLLVcQ9b64acGCBTY+FMFIv8Vu3brV2kskGpMPGYLHH3/c7CcUOGbaL+ikwPAGMkqcJyI+KOIoIgezZhGDiMZc0USqLM844wz3yCOPuIceesiddtppqfDBic3tPRCOPDykQIlqEeEANhtEIymwEZUDoc5xJ7LoU+zYDTj++Nnwr6oxd/qgyG348OG22UM0ssnPxl577WUbjVz/L6KJhKOIHAgCRGBDI+q4QZ111lnuscces9T14MGDbSES6Wzxw4MoJEKGh49q4YmkGp8KbdLafER8Ri3qRaqO4pAopuywjjBGkiwA9hE/AYjjyo0fSwEV4Vyzvh+nZkWnE1ruPPvsszbtq1+/fg0WenHderhug/YUEU0SIxxZzO6++243ffp0a+/BInbhhRfWGVWXC8zZuWCk3a233lq7u2b3lI3f//73ZvAWxUE6i5sQO1SKIfKda0zamsgjPhqij6eccorNRRbphHOH1JivzgaiXohFRA+pVM412gDRRxJBhLDk/xE6YYo2NkKkc8MGIUi6HxFLUcvs2bNNNHLcENu8Tp4nStS+ffvEV4CL/MGzOHbsWNtYnHjiiQVtzohaM12GSmuyBSK6JOKKZ6G74oorrLx/0KBBliYZNWqUu/TSS919991X5yaSjauuuiprunTkyJF2c8mEGbyYvINQCSpK26XiieG981W0+cINbsiQIdbuAU8NJuzmzZtX7LWKeEGU0RfQIBSp5vUCkQ0nNzsgpcpGBGFE8UZwLnoS062+1ZWf5EMxCw/+jRWEfqmIQ44dGzrENc8HxYBEo/CwwXjxxRfdEUcc4Xr06FHwJgz/K9km/I5cbxTUiGiSiKt+2rRpJjyuvfba2hFGnTt3tvnG+N+uvvrqer+f1h+Z0CaAEz9bFJGTO9v3iOJgoUA04omi/UoxkB4j2vjMM89Y6wdGFWLIFyIIN6SgbxYxxAQLxCQiEuEUnFwzc+ZMi76xmSG9jbBkugv/RmDxtQjLcni0iOq99tpr5u1FvJYKrxthh9DDM8yDVD6vm7+TFCFNt8nQ0FORv4+bNxH74O8/+OCDS34tIrmwAXn55ZftPkxzb+69xUbuOR/Z3FFYxbXaUNBHhEMihCMnLTeDYMqZGwLVl5MmTbIFtJA5uHw9P5OKL1p+ZIMFmEVZpt7STdREihF5Qa9LMfB+MM969OjRJiC5IbZu3bpsr1UkE9YGBFO2hvKIOB+JQ1gy5cT3nePc9aMSuckhIEmxEZ3j6/k/nue85EHK3K8niDcEHTdY/0CE8jznLWsQv4cHP4N1hvQw6XYKgfyD7/ORGXpc8v1UN/Pg5zHbmbWRhtuk6XmNCMRgqyP+nyyKEIXC+Tlx4kSLNnIOYV0oFbJ33kIi4RhNEiEcWcCJAmb6KfA54rdgwSzEM4HPgoU/l9+IQoy77rrLFm08lL/+9a8tPF8fmH6DbWN89WfaIbKBp6VcvkTOgT59+thNmveemzCzboUoBjagucYesr4gEr1Q4+FtFnxOFM8LPEQcaV4vHPFi+2bYHiLupIz5XiKbHtYurhGEK2tT8FzHlxlM6fFv/MGc/z5K6l9r2sYZisrCOT1u3DizepxwwglZbV3FQpTbb9AQkUm0isSZRAhHogAsupn4AgsEWyHCkSglUQg8PkFYqLk4iGyyW6d3HC0HLr/8cnfjjTfapItcjBkzxgSncLXvCe8PRQrlBkGPx4abJ7thxCMWhihWq4r4QvQu18x01oegzYWbbHDaDZFMhKO/OfKRqCTCksbIbKh8JNKLUQQsUR2+jhtp5kaZDIkQ1YBzmcrpxYsXu759+2a9/5aCP/fZLBHNxHOsEbPRIXLCkQWWlEw+IO44uRAG2VLR/jn+P19I9XCisrATIQhCi5hbbrmlznP4o2hGfccdd9QrHHv37m1po2DE8frrr3dphKjKW2+9ZRXrxXoaG8L7UxGPkydPdl999ZWJyai1YBHpgPMueO5l60+Kz5JII+tMZtN7/zMKLRwTotxwPx0xYoSNDMQaVMlINtcDGyamiFGQmm+3DZEy4YigoBo6Hx599FFLFSEOsk2L8M/x//mCt5Hvy7ctBpEBBAnVvPiIcnkiM8enpRXSd7zHpNcqJRqD4LnhZjt+/HgbV8dCV8j5IES14CaJrSKYphYiSuCxpfUZhVz0zd1vv/0q+vvYLBFgQDhSOEZwRiNGwydywpECiSuvvDKvr/W7D3bv2cbO+ecK2aWQpsYXVIgvzotFwuq5hKPY3AeTanUMz9WseKZAhl0rtoIHH3zQqu2zRXSECBNS0IqoiChv+p988kkr1Bo6dGjVUsfeIoa/Fz8lRa/KHIVL5IQjCycRvEKgMIY5taS5gycU/gs8SPlWZlHAgrA57rjjCqrCxusIEiMNC0fmk+KHqbbfEI8rRUxEhuntSesejaMTUYKiGNJ/FIrl8k4KEVbLtOeee8486fRKrnZUHE8v9jG6mUg0hk8i3gGKWCiQoVIxGFKfOnWqRQ6DIpBdE49svPTSSyY+c6Wp+ZnZut1PmDDBhIlS0dnxRQEYnDHwh1Wkwg4Z8Uj0kUIlNhZCRMk7tmzZsoI82UJUEoq2Zs2aZdkaOogwpSssKwUReeoOuEf71lMiHCIXcSwGKmaZ8kJls58+wuQYTrCzzz67ztdedtll9pELIVuaGvHnp0ZkQgseRCepT76OPlNUSxMpuOSSSyr018UbBP3cuXNrmxqHXdmMDYHFj/ODSTNsEthchP26hBAiaht+vOGkh+kkQoo4Cusk3Qjwq1PEytqtmejVJxHCkTD2zTff7O68887axs90oMcrmW9TaSp9mZXMuLpcoXB8FqSlCdnjZ0SEMJOTqup8ZmKnDSK0GJoR8lEy/OPR6d+/v3lj2SzghaUPmXqFCSHE5gEXBFe4L9IXN0qtnsggUiTzyiuvmHikW4msHdUlEcIRCGEzr5pHfWSLNAICM5jqzgY91DRhIT+ousPMzPtCc/SoiTLfrgdPLY3CEblsGrQACSHSDNE8vOCkgk877bRIzoxmnUY8kkZHPDLqUHPTq0ciPI4ier4Y0hukEEhRR/mCZifN4kjhzgMPPGCpdSHCiqSwgS2kME+IckKE8f777zebF37wKIpGD23WEI8Uv0b5HpNEJBxFRaJ5+EBp2BqHWd4sjrSXwNNz7733mmVBiDBuhHQcUJNvEcZmH1sRRYP49xGNcWgNhQVq//33t8/po5zv8BBRGhKOoqy+GJp7I8BIUccpcsJiee6551pDeXqVTZkyxXbdQlQLrhu808HRhEJUGmoCKC59/vnnLUOEZz9uBScUzNBKj0bhun4qj4SjKNvig9eE9kRx3fXhm6FHGT7WmTNn2mSiL7/8MuyXJVIC59q0adN0zomqwXpNX1vaQOHxZoRu1Pzo+UCqGi893nrEozb9lUXCUZQMIxoRjez08JzEucCENDtjCmnZw6J6zz33mO9HCCGSxIIFC0w00kXknHPOcS1btnRxhlGEiEeKe9544w2Jxwoi4ShKArFI9TQRR0RjlNrulOp7PO+882wxwvfD34gPSAgh4r5mM7SC1nW0rcPPmJThFfgyaZuHbSquma84oFIkURKkNRgjyIxu+lomCXyaRB7xO77wwgtu1apVrnfv3m6bbbYJ+6UJIUTBbNy40Y0YMcK6SNC7tk2bNpFo6l3uCWE0LOfvQjySxk7a3xg2ijiKonetVLEBVW1MhUmqMO7evbv5f/ABkdrxf7cQ5UZzeEWlePfdd816QwEWE9WIzCVVUPF3kaqmSfj8+fPDfjmJQ6uUKBguyDlz5tgoQfyNaQD/D1XX3NgRj1SPK3UtygkTlogC8VGIcq7XL7/8snvssccsO4QFZ88993RJh7V6v/32M4/6okWLwn45iUKpalHwIoRgZEwfrRvi1HKnHP4Z/EDMb2Xs5DvvvGM3evXdE0JEEQYasFZ98MEH7phjjrFHUqOM2aA5OPcsoo5kj/B0itJRxFHkDRG2N99801K1eGOSYqguBIRy3759bdY1qWvmo5MCEqJUaMPD2FO14xHlWKvZ4N999912Pp111lmuY8eOqRKNHnrztmrVytZr2vWI0lHEURTUZBV/zC9/+Uu32267uTRz0EEH2Xi40aNHW79H2kB069YtFpNyRHR9wxQvqIGxKAWE4pgxY9zSpUttraY3Y9oL+khZUzRDwaMoHQlHkRdUpyGKfLWacFYQNGTIEGs4O2nSJLd8+XJ30kknmY9ICCGqzV/+8hc3duxY+/yUU05xv/jFL8J+SZHBi0ZGytJrmEikKA4JR9Egb7/9tvvoo49MNMZxqkAlQUTj9WzWrJl79tln3f33328+og4dOqhCVghRFeijS8swxu4hFmkblpSeupUIghCN5V621157hf1yYomEo6gXLjA8fKRmJRpzg99z6NCh5lFjbByFM3ghKagRQohKQdUwBTCbNm1yJ554ojvssMOUFaoH7mXYQfDrs7lXhqhwJBxFThCMhPUPPPBAt++++4b9ciIPwrpTp07ugAMOsOgjxnT8Ra1bt9ZCLhpku+22s3OFj0Lk4zlnkzpr1iyrHj799NNt0pVomEMOOcSqrefNm2f+T23wC0PCUWSF3evixYtd8+bNrcG3yB/SH+eff76bOHGiGzdunPUQ69mzpxYnUS94iBX9EPlGGVlbaIvWpUsX165dO1ljCoCNPJFZfI8///nPw345sUPCUWQFfwyexqROhKlG2x7EItFaFvi77rrLfI9HHXWUjcASIptPbfXq1dacOe1VsCI7zGCePHmytdphg3rOOee43XffPeyXFVvx6IMitOkhgtu4ceOwX1Ys0B1M1IEbFxcRgkeisXQomrnwwgvN+8j0hgULFpigbNq0adgvTUSMb775xqLTRKYlHEVmX0bWjhdffNEEDoMHsDUoylg+L/+6devckUceqXR/HuisE7V8+OGHVpVH5EPj9MqbgiSdRPoa/9qwYcPcqFGj3FdffRX2SxNCxGD6C71i8U2z4bzoootszrREY/kgbU2g5LXXXlOT8DxQxFEYTIMh/dGkSRN36KGHqpijAuy66642wQFDNn0f2eV2795dx1sIsQVEFl955RXLVmy//fZu8ODBVngnyg/2IYY4zJ492x54RtUsPDcSjsKmVcyZM8eEzT//8z9LxFQQji0pJnqtUTxD5JG2EKSv0zjCUQixJe+9915t8Qsiht6wmkpVWTi+pKq5FyLaRW4kHIXtrKiexo+n9Ed1IILAlBmijePHj7fimfbt21sBjYpn0gnvO6M89f6nF+wrZCOwDNFi57zzzkv9eNdqFzVSwAi066FZuPzGW6IVKuWRRthhhx2UAgkJxPoFF1zgZsyY4WbOnGnRx65du1qTWkV+09fJgHSZSB9EuBhdSloayECo/2v4E9OwcBHxZUSh+BEJx5TyxRdfmJeDHlaE50W4KZLOnTtb9JFowzPPPGPvDc3DNU81PRDhQEAQcVTkPx1QhEgl/ZQpU2wjj1js2LGjxgVGgP3228+tXbu21vOoyOOPaHVKIV9++aVdDNtuu60tVCIa0IZl0KBB7swzz7R/P/TQQ+6pp54yn5NIx2aOdit8FOlo4v3AAw+4kSNHmr+czANtdiQaowEdMBCMpKtfffVV+yg2I+GYQg8NohEvx69+9SsZriMILTdo7NuvXz/b8d5xxx1uwoQJat8jRELa6wwfPtw9+OCDNjP5jDPOcKeccorbZZddwn5pIgNEPPdJeqwi9MVmlKpOGd999535NegDhngU0QRv08EHH2yN2Nnt4oF86623bJpP27ZtVUAhRAynvjAEgKpdBEnfvn1tZrJ8jNEvHmXdJUMnNqO7T4oEI2IDTyOVuyIe8J5RbU2bJG46eKG48dBQXAU0QkQffKtcs1y/+FjxMOIrV7YnPnjRyJCM999/37Vp0ybVPmQJx5SIRtLTVE/TIV/EDyIUxx9/vFXdMquWAhqaA9PfjZ6QEpBCRAvS0HRJIFvANBL85FyvtOIS8QSxv27dOvfGG2+kWjxKOCYcb+zFo6FCmPhDk3AKaGgQPHXqVCue2X333S2VQlpbAjK+MPKsR48e7qc//WnYL0WUGGGkDyPttRCMrVq1MsEoD2MyChgPP/xwiyDzHv/yl79M5Zor4ZiC3mAUVVAdpp1ucqBND9XXCEhSYJjtqcxEQLZs2TK1O+E4ww1I3tV4b9IZJ4pgpHMFHmVsQRKMyWLXXXe1IAxRx8WLF9t6mza0SiWY1atX246XqjCiGSKZAvL00093q1atMgFJaw+ikghIPJASkPFh06ZNbsGCBSY41JIlXlaguXPnulmzZtkmnfeP64/olEgmu+++u6WqsX+lEQnHhIsKdrv0oxLJhvFkQ4YMsc0CAvLZZ5+1j0Q8qNyUgIxHhgD/lObkxkcwkrLEa0zFNA38ud4aN24c9ksTVRKP/jz44IMPrGF4WpBwTOAkAtIlTZo0cXvssYdEY8rYc8893amnnurWrFlj48tGjRpVR0AqFSpEaeAXRzBScPjtt99awSGdD3bcccewX5oIgXXr1tn0HwRkixYtXBrQXSRhohHDLk2j99prr7BfjggRNg0U0dA+AgE5ZswYa+VDeoUHvcmEEPmzfv1699prr1k/VSqmKYxAMKY1XSl+3KyzmWC2NYVtBxxwgEs6Eo4JEo3z58+3SBML2m677Rb2SxIRSacMGDDAbnoUShElwbxPpSeNxFn0hBC519Vly5aZYOQj3lMKDSmO0OZLeJo1a2abib/85S8mHpOetpZwTAgsajQmpVE00SYhglAwQx/Izp07W1QaEclGg8g0ApLKQLWBCb/JMIUVmlARPqSg6cHIdcKseNZUJr2w4ZLdQ2SjefPmJh7TcH4k/y9MUXEEfkZFkER9MG6SKnvE4jvvvGORFJqJT5w40fqTEUlRRW84MAKUOeUi3DnSiEU2V7TXoTdqnz59bIOVxn59ojAOPPDA2s9pyZTUFngSjjGHPn6kIxEEEo0iX6iyZuIMj48//tgEJBMu8EPSxgdhSYGVqB4IlY8++shsJhpHV9109PLly+0aYDNFxJcJTWyk1MZMFMNHH31kBVRsxJO4jko4xph3333XDLm+9Y4QxTa07dWrl82/9mls0nRsSGgxQjW2opCVhx6AHH96AKrgojrRRQpdeHz22Wcm2LkOsAtIuItS19Q99tjD+nuyAUlazYGEY0xZuXKliUYquCQaRTnA6nDUUUdZKpvICzdU5mJPmjTJzjPajuDjkRdSxNm7SOsUNkZ4wrfZZhvzLXJuY/dROlqUg6222srqDX744QebMEMEO0kThCQcYwhTQpgwQeVWWvpGiXDS2ETBFi5caDfap59+uraAgxstKRjdaEXU4ea9YsUK2wgxIo4G66yd/fr1s/VT0UVRCbbaaivrcELKGiuEhKMIHUz07JSFqHQUkt0yD7yQ3HypxiadTToGAYmQVGsSETVoQeVT0Yxe9aM4sV/IuyiqtQlv06ZNHT9tEjbbEo4xm2WL14yUCg8hqglCsVu3buaFxF/LDfmll16yVDZ9zGjpQ5RSfsjiwALA9BFZAYpnw4YN1kuPdDRj4CgapNiLDQ7Fg0m4aYt48dO/Xc/cv4k+EoWM+8ZFwjFGY42I8vgFUIgwd9F4Hnkwo5ebNNaJsWPH2mOfffaxFCCtKX7+85+H/XJjA607mEQi8ocIDpFwUtAIRiYl0UePVHT//v3tPExDXz0Rj3ZbP/nJT2wIA17yOLfq0RUVA2hAy04Fj0QSS/tFfMHz6McYsqNesmSJ3cQpqnnxxRetMhsByYPzVxEfUQ6xiM8boci5RpSRIhcKt5jJvv/++9u/hYgSW2+9tTvyyCPdK6+8YuKRCURxzc5IOEYcFkUijY0bN7abMzsWIaIIiyBpGB5Ur1KZzc2dhXLq1Kl2DiMgiQKpofKWbNy40fpoqh3PljCRgwIXziceNFfmfONc4rHvvvsqsihiEXX81a9+5WbNmmX39Y4dO8ZyHdSVFnHwkuGHoBeURKOIC0R88JbxoIqVmz7RIaqzWTRJ0+CL5IZPWjHunh9R/qgimRaqUTl3eHzzzTfmAaUYiw0Imw+tiSKOa2O7du2sY0UcRSNIOEYUX31FLyg+l2FexBUiQd4TSWsU0oyktBEFFNjATjvtZAISIclD85rTB5XPQaHIvxGGCERSfEQWaaQc15utEB6Ktnhwb2ctZO0jGhkXJBwjCF4xmoaS8lObE5EkEAI0rPdN69l1e6FAdB0vL8IAbySLKQ+KbdRrL3lQWMUgAy8WaZ8DvPdEqtlAcJ7E6YYqRCEQRacRPSMKiULGZZ2TcIwY3EjxhBGl0YIp0tAnkn6kvicpPj8vJIhGktYm2k77KQQkHQUY5aUNVbwgssJYv9WrV9vjvffec2vXrrXn8b6yQejUqZOJRc4JIdLAtttuW1sww6x0Po+DVzf6rzBluw+qrbhRYqBVZaBIGxSFYM/wFg2iUF5IMveV4hHAE4mI9EKSB6mfOIMY7ty5cyLS9BSvrFmzplYo8jmbYqBFE5sAfNsIRhUCiTTTqFEju98jHimYadu2beStaRKOEYI0HTdLQtZxvwkKUSqkrGnhw4PFlGsD31tQjMyYMcMquIHJIAhILyhJecZh9x5M48exPQcbXqKH/j3hI5Fj4O/hPWHykBf5cfwbhagkO+ywg61xXEdxKPiKz6paD0QlRo4cWdsEFu/M7bffblGLQhps/+///q+JNwz8fO/FF19sC10m48aNc0899ZQ1m+WmRqNZ5p6WCr4e0tNJiDgIUQkhyQLLgyk14KOSwegWDclp38ICTBUugjLzEcVrjIgc6xdFIFFL13KciSJyrDMfXiSydrFeso55Ac97pWIWIRoGywYP4JoiAxFVEZkI4UiV5hNPPGHVd6Q+uHEUumBfeumlVpQyZMgQi1IMHz7chOODDz5YJ5UyevRod8stt7hjjjnGDRw40Ob2IlLZdQ8ePLjg106rEqqqqDjlJieEKC4qyQxiQDRiNmf37sXN22+/bR47BBAQ9aKSO1NQkkYNa7H+/vvvTfjSpigsWI/oHZtNIPrILseHGxzHi9Y4HHuEIsczqjc6IeLC999/b2lrRrxSIBtFEiEcmY9LFBCvwLRp09zVV19d0PePGjXK5prec8891h8MCBufeeaZ7umnn3bnnnuuPcfCef/995sf4brrrrPnevXqZRHKRx55xPXu3btg0z4il9eN6FUKR4jSwR/kfY+ZC/Knn35aRwwhLhcuXOi+++47+xqEDz0muY79g+sz+G8eWEniFElDMLNB/uKLL+xByt9/HnyOr/Himqgs4pAbGBFePkccap62EJWDympGC+PppkAwitmRRAjHUtM6iE0/W9dDGwjUPhMvvHCcN2+ehZD79OlT5/v79u3rJk2aZIUt3bt3L+h3E+Xs1q2bRKMQVViQ6QPIIwhCCeGEkERYBsUUrTL46As7gj/Li0jWHwrZeJCuDX7M9TlZDYSnF5/ZRKgXcGxM+ZxoIJtXHgjd4Mdcn7O++L+FSKyH38ea40UxaWXWQP7to4n8XXESx0IkhSZNmphdDs0RxSh+IoRjKbAoU7V5/PHHb/F/CEk8j9w0WEQZoQYssJkRT97cpUuX5hSO3JSYhOBZtmyZfSQN/vHHH9tDCBEuXgxmgujCO43Pj/UAQeY/splEqPEgqukfrC2FwPcQAWUTWmg/NyKAfA8PxKn/3EcNqWJGKPJgLatPFGK7IQMjhAiXRo0amXgEbxWJAqkXjqRnWPBJwWTin0P0sfAi/FigM72ILNC8wUFhmMmYMWPcsGHDtnj+v//7v8vydwghkgH+TCGECELg6pBDDnFRIHLCkV06O+98YGddairFq/hsO3zfgNt/DR9ztffga+vbEeB/POqoo2r/TQX4rbfe6q644gq3//77uzRCE+Drr7/eXXXVVbWTRNKIjoOOAegYbEbHQccAdAx+zE7+8Y9/jNQxiJxwxAxKhXM+PProoyUfTN9kO5tY9YZ5/zV8xGeUDb62vobdvmozE0Qjqe40w3uY9mMAOg46BqBjsBkdBx0D0DHYTJSmZUVOOJISvvLKK/P62mzp5UIhxUy0MFua2T/nBR+/D68T7SqC6WpEJynvcrweIYQQQoioEjnhiPjq0aNH1X4fRS30fqTxbib0fqOlh6/aptci8LW05PHwb1Ls/v+FEEIIIZJI9Oq8q2A8xzsRhGbeiL+geKQNx5///GfXsWPH2udoz0OEkibgQfg3fd2CYjIfgUyfyDRHKXUMNqPjoGMAOgab0XHQMQAdg+geh61qfLOwmPPwww/bx5UrV7opU6ZYex16IcEZZ5xR+3WXXHKJe/PNN9306dNrn6OtxtChQ+3joEGDrHKayTFEEZkcwzQJz3PPPeduu+02E5TMX8WT+eKLL7pzzjnHnXbaaVX9m4UQQgghqklihOPRRx+d8/+CIjGbcAT6KGbOqr7oootsoksmY8eOtYky9FxjqgINwE8++WQ1yxVCCCFEokmMcBRCCCGEEJUldR5HIYQQQghRHBKOQgghhBAinu144g7jCUeOHGmTYajSZr7t7bffbp7JfFm3bt0WfsuLL77YWgNlMm7cOPfUU0+5Dz/80O2yyy6uf//+rl+/fi4KfPHFF+7uu+82PylTdZj9feGFF+bVzLU+z2qbNm1s6g7gMx04cGDWr/v973/vunTp4uJ6DP7whz+4F154IWuv08cee6zOc5wnnAejRo1yn376qXlzhwwZ4rp27erCpthjwN9E4dnLL79s47b4ORS8de7c2YrYMhvu5zpnzj33XDsW1YBBAA888ICbOHGivd5mzZq5X//61+7www9PzXVf7DHgfX7ppZds3eQcxj9OpwqKGzObHw8YMMD+9mwTuv7t3/7Nxfk4UJCZbTwt/YYnT56cinMh1/sLe+65p3vyyScjdd3XB0W3vD+090MXcBzoVZ1v28FC1s+ZM2e6hx56yDrHUNRLkfDpp5+ec+JdsUg4lplVq1a5J554wm7c9IdctGhRwScZk3M2bdpkJz1vOBXe3EBYUHbYYYc6bYBuueUWayeEeJo/f76J1G+++cYNHjzYhQk3PsYpvvvuu3aT53Ujavjb7rvvPrf33nvX+/2MmcqEGwqiPNuig0A68sgj6zzXqlUrF+dj4G8Wl19+eZ3nfvazn23xdfy8xx9/3PXq1cu1aNHCFpBrr73WCrbCFM+lHAPO4xtvvNHexxNPPNGa7nM9sTDOmzfP5rxnFqSxqTjuuOPqPFfN/qq83mnTplmxHGvA888/b+8f12V9c2aTct2Xcgz+9Kc/WcuR7t27u912283OGbpYvPrqqyY+MjcKvK+Zm8ZsxYxxOw6ef/3Xf3XbbrttnZ7DmST1XOC8J+gSBCF5//33Z13/w77u62Pjxo22EeCcZlIcbf4qsX5ynfznf/6nO+yww+z/ly9f7h555BEbWMK5VFYojhHlY9OmTTUbN260z6dOnVrToUOHmnnz5uX9/Y8//rh9z9tvv1373MqVK2s6duxYc88999Q+980339T07Nmz5vLLL6/z/ddee21N9+7daz7//POaMJkyZYr9HRwDz4YNG2p69OhRc8011xT1M2+66aaao48+uuajjz6qfW7NmjX2e5544omaqFHqMbjhhhvsvWyIjz/+uKZTp041t956a+1zP/zwQ82//Mu/1Jx00kk1f/3rX2vieAy+++67mvnz52/x/EMPPWQ/c86cOXWe57ngMag2ixYt2uJc5DodNGhQzfnnn5+K676UY5BtnXz++eft540dO7bO8yeffPIWxyBKlHIcHnjgAfterpP6SPK5kI1hw4bZz8tcE8K+7hvi22+/rVm/fr19vnjxYnu9EyZMqCn3+nnaaafVnHXWWTXff/997XP33nuv3TNZS8qJPI5lhikzNAkvFnZnRIwIRwdnddJ8fOrUqbXPEXFhJ9OnT586309rIHZqs2fPdmFC2qlx48Z10giEzjt16mTRMD8HPF/4en4muylSWNng7842czzux4Axl0SicsHPYoY6772HSBznBunPQqPeUTkGW2+9tTv44IO3eL5Dhw72MbORv4d0Do8w/lZ6wJIu9RAlO+GEE+w9YPhAGq77Yo9BNjuPP2/oz5sNrvfMyFQUKOU4BOG6z9X4JMnnQjZI02NVybYmhHnd55M1KrZ5d77rJ9cHDzJOwbQ05wLnD+tLOZFwjBCEpQkvcwPJhBvK6tWrLaUFeL4g82vxPZDSWLp0qQsTfj+pgsz0Cn8HaRRS+oVAGP7LL7903bp1y/r/pAKOPfZYS1njbXn99ddd2JTjGPB1eGF4sODi7fTngIdzgZQWQiPz9/j/T8p5APjfIJi+9eAJJdXJeUJD/kmTJrlqwXEmHZdpJfDvw7JlyxJ/3Rd7DHLxySef2MfgEIagcOK95rrHEzdixAgXFcpxHEg9c92Tgr3uuutqz/vg70jLucDfwkYxl2c7zOs+Cuunf68zfY8777yz+V7LfQ+QxzFCfP7557aDyLY78c9RfENxBAsquzl8X5lRGiKefsENCxa5Qw89NOffwevDKJ0vLATs3PDyBOGCwvPCjoyLZM2aNeYNw0eDv6aQMZBROwZ83SmnnOKaN29uu8bXXnvN/C34XfAI+Z0lP4fzINPvFzxnknIeAMZ4bkZt27at8/xBBx1kO3GiEvzcZ5991m64RG0yozKVgN/Z0LWb9Ou+2GOQC/zi/L2Z1z3+cTxyeLw4fnjn/ud//sd+/gUXXODCppTjQCHQSSedZN5e3ld8i3g9KazA1+aFWJrOBS8EswUOwr7uo7B++vc61/Eu97kg4VgPRALyTX0iakqdHOPD7Fz42X5+8Gv4mKtSiq8tZ8i+mOPA7/evOfP/oZDXxwJA2gWhkFldieEYc3gQIhBUkt1xxx1lE45hHIPzzjuvzr8pcuFGyc2DFIYveuHn5HPOxP08gEcffdS98cYb7je/+c0W58Kdd95Z599UFFLBee+991rkJrO4otwU+z5E9bovhnKei4iF8ePH2+Yps4jqpptu2uK9/u1vf2ubRiqKc9lZ4nAcKCQJwnhbIkyIIQSkrxROy7nAukO1PZG3pk2bbvH/YV/3lSTf9dOnrHN9bWaWqlQkHOuBOdRUJ+V7Q8tMFRaKP8Gz3Zz9ieG/ho/42rLB15bzYinmOPD7s/nXMv+OfEAk8X250tSZsNtmwaDKmFGS5biJhH0MPKTkqDBFPHnhyM/J55yJ+zFgBj1VlaTs84kkcNMicsPGYsmSJXlVspZCse9DVK/7YijXuci59sc//tEdccQR7pxzzmnw69mkcG1gUWGkLGnLMCn3Ncnax0Z47ty5tcIxLecC7yde7UxBHZXrvpLku356wZjra8t9Lkg41gOpIfot5UOx5tdMwcMJkC2s7J8jHet/H0UTlNoHUxVcqKRuyvF6SjkOGHrr+zsKeX1EHrbffnvXrl27vL/Hi0V6YJVDOIZ9DDwsAJwnvMfB30eLB9LZwah35jkT52NAb0P6WhJBLqS1hH/vg8erUvC3cIPLpKH3IarXfTWPQRC8b5xnpKNpKZVvD7pqvtfVOA7Z/r7M6z7p54Jf/7EkFdKTNkrnQinku34GU9dk4TK/Nlh0Vw4kHOuBNyPfJp3lgIuDxZJ+hZnQPJRGwFRtB3tU8bXBdCz/JrRfzh5WxRwHfj/eHF5L0NiLT+cf/uEf8uph6H0wiCIM4tnC8LnA65irgCJuxyAIKQcqKYPFAvQGowkw5vFgKodzxv9/nI8Bfwd9PTF+X3PNNQU1s/XnQbbiinLje7RhrQgWBDT0PkT1uq/mMfBQCEQDb4TQzTffXPt3R+29rvRxyIRNIX0Mg+9v0s+FzG4ahYjtKJ0LpZDv+unfayKsLVu2rHP/RLwHK9vLgaqqQ4R2BJktRTCBc+EHbyLvv/++XYB4XTy06SBSQQPYIPybEyrMohD/d2Dspdu957PPPrPWIkQOgyKQmwWPbOBt4aLJlabmZ2bChTJhwgQzDZcr2lbtY4B3JZsv5eGHH7abSLAwpH379iam8D95+BrOBSrqMI/H9TygxQQNcHfffXdLXeZKuWQ7Dzh+NIxn85DPpJ5S4fokAjRmzJg6Nz7ORRZzHwlI8nVfyjEgMkI0mRskzcBz3fSJIvE7gpCyxZpCmrKQKV1RPA7ZzmWK4ng+eN0n+VzIt5tGFK77coHI4zgE7Qf5rp/77ruvZYTGjh1b59rgvCELlVlcViqKOFYAbu7B3mOMTWPXAIzP8txwww3m3wieFPRdInrEzZJO8VTNYfhmB86/PdxAhw4d6m677TZ39dVXmxcIXxCjnfAEldJLslyLBhcvlc0cB9/xHhF49tln1/nayy67zD7yd2ZLUyD+ct0M7rrrLhMbrVu3tq9jV85CRauCSy65xMX1GLBY8P6SnmFBAPxbLKTcPBCLwbQM/h+qjVl0SEvMmDHDzrnf/e53dg7F8RhwAyD6hN2Acz+zLx2ROC+KqaSkrxmLKTckRAg3KG5KTFPIZtIvN9wMqe7ElM/izmg02oRwTnI9p+G6L+UYUNxCpIhimAULFtjDw3HwE0NmzZplEzG4GVJJy/nBOrFixQprxRV2irbU48C1zFhNotAIA44D/l6iSpk9EZN6LjTUTcMThes+H5555hkTwD7FzDmM/x4o5sKKxXHi+Dz99NN2Xhe6fjKGEIsHmy/877T4IpjQs2fPrEVFpSDhWAEoXgjCiewJCsdskJqh1Qoza1kc/czaiy66aIsdODcbIk2caJyICAi+Ll8TcSXhxkeqiYo3LhoiaPQb48T2QqghiLgQesf0nm3cFnAz4WbDBcINhAsQMzRV1WHvNks5Bt7TibePxYTzgIWXGyNCIvN4UIFNlTGima+nfxrp3XwLiqJ4DEjJ+8X1nnvu2eL/sS944UhT4IULF5r4IiJFxAUBzQ2KTUW1+I//+A+7gbFZ5EbBzZ9IKam2NFz3pRwD39cvOIfYw/d64cjPo/AKUYEg4VggqrAxIFSiQrHHgWuWc9kXBfIzENOsaZzXaTgXgt00GCXLepiNqFz3DcH7E5y9jUj2QplCrlx/XyHrJ/eL66+/3noas5YgMimkOvPMM1252YrxMWX/qUIIIYQQInHI4yiEEEIIIfJCwlEIIYQQQuSFhKMQQgghhMgLCUchhBBCCJEXEo5CCCGEECIvJByFEEIIIUReSDgKIYQQQoi8kHAUQgghhBB5IeEohBBCCCHyQsJRCCGEEELkhWZVCyFEFZg3b54bPXq0zdZlxvK2227rmjZtavOVe/fu7bbeeuuc38uM+7//+7939913n1u7dq0bOHCgO+KII9yf/vSnqv4NQggh4SiEEBXkr3/9q7vtttvc2LFjTSy2bdvW7bnnnm7Tpk1uzpw57vbbb3djxoxxN998s9ttt922+P7Vq1e7FStWuKFDh4by+oUQIoiEoxBCVJB7773XRGOLFi3cDTfc4HbZZZfa//u///s/9/DDD7thw4a5yy+/3L52m222qfP9M2fOtI/t27ev+msXQohM5HEUQogKsWrVKjd8+HDXqFEjd9NNN9URjfDTn/7UnX322a5r164WVRwxYsQWPwPh2KRJE9esWbMqvnIhhMiOhKMQQlSIF154wf3www+uV69ernHjxvV6GGHcuHF1nscLiSdS0UYhRFSQcBRCiAqB6IPWrVvX+3X/9E//5HbeeWe3Zs0a98knn9Q+P3v2bEtnd+jQoeKvVQgh8kHCUQghKoQXgbvuumuDX+u/Zv369XXS1DvssIM7+OCDK/gqhRAifyQchRAiQpDahm+//daqro888kjzQgohRBSQcBRCiAqx00472cePP/64wa/1X+MLaBCN33zzjfyNQohIIeEohBAV4qCDDrKPc+fOrffr3nvvPUtR/+M//mNtEQ1papp+0+hbCCGigoSjEEJUiOOOO8795Cc/sWppKqRz8eijj9rH7t2729eTrqYwpk2bNtY0XAghooKEoxBCVIi9997bDRgwwG3cuNH9+7//e53CF0Ag0gB84sSJbvvtt3cnn3yyPb9o0SK3YcMGpamFEJFDk2OEEKKCnHvuuTZekOkxgwcPtmKX4MjBDz74wFLS//Vf/+X22GMP+54ZM2ZY5LFdu3Zhv3whhKiDhKMQQlSQv/u7v3O//e1vXefOnW0m9YIFC9z06dOtPyO0atXKXXXVVSYmPfgbW7ZsWW/TcCGECAMJRyGEqAI0AQ82Amcc4fnnn+/Wrl3rampqap9fuXKlRSF79uyZ9ecwfhDhKYQQYSCPoxBChOR/vO6669znn3/ufvOb37h169bVRhtB/kYhRBTZqia41RVCCFFVZs2a5ZYsWWJjB7t06RL2yxFCiHqRcBRCCCGEEHmhVLUQQgghhMgLCUchhBBCCJEXEo5CCCGEECIvJByFEEIIIUReSDgKIYQQQoi8kHAUQgghhBB5IeEohBBCCCHyQsJRCCGEEELkhYSjEEIIIYRw+fD/q0yd2eVujywAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -683,7 +678,7 @@ } ], "source": [ - "polarization = source_photons.calculate_polarization(qs, us, bkg_qs, bkg_us, mu, show_plots=True, ref_pdpa=(0.8, 90), ref_label='Simulated', mdp=MDP99/100)" + "polarization = source_photons.calculate_polarization(qs, us, mu, bkg_qs=bkg_qs, bkg_us=bkg_us, show_plots=True, ref_pdpa=(0.8, 90), ref_label='Simulated', mdp=MDP99/100)" ] }, { @@ -696,7 +691,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "id": "5447d326", "metadata": {}, "outputs": [ @@ -704,10 +699,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Polarization degree: (81.89 +/- 5.48) %\n", - "Polarization angle: (86.62 +/- 1.94) deg\n", - "Normalized Q: -0.813 +/- 0.055\n", - "Normalized U: 0.096 +/- 0.055\n" + "Polarization degree: (80.71 +/- 5.23) %\n", + "Polarization angle: (87.12 +/- 1.88) deg\n", + "Normalized Q: -0.803 +/- 0.052\n", + "Normalized U: 0.081 +/- 0.052\n" ] } ], @@ -722,10 +717,68 @@ "\n", "Normalized_Q = polarization['QN']\n", "Normalized_U = polarization['UN']\n", - "Stokes_uncertainty = polarization['Stokes_uncertainty']\n", - "print('Normalized Q: %.3f +/- %.3f'%(Normalized_Q, Stokes_uncertainty))\n", - "print('Normalized U: %.3f +/- %.3f'%(Normalized_U, Stokes_uncertainty))\n" + "QN_ERR = polarization['QN_ERR']\n", + "UN_ERR = polarization['UN_ERR']\n", + "print('Normalized Q: %.3f +/- %.3f'%(Normalized_Q, QN_ERR))\n", + "print('Normalized U: %.3f +/- %.3f'%(Normalized_U, UN_ERR))\n", + "\n" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "92094db7", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8bf272fd", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c3850941", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f1900703", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d832ae71", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edaaee68", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b4e6f892", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/tests/polarization/test_polarization_stokes.py b/tests/polarization/test_polarization_stokes.py index 916d839f..021c2c2d 100644 --- a/tests/polarization/test_polarization_stokes.py +++ b/tests/polarization/test_polarization_stokes.py @@ -3,7 +3,7 @@ from astropy import units as u from scoords import SpacecraftFrame -from cosipy.polarization import PolarizationStokes +from cosipy.polarization.polarization_stokes import PolarizationStokes from cosipy.spacecraftfile import SpacecraftFile from cosipy import UnBinnedData from cosipy.threeml.custom_functions import Band_Eflux @@ -19,7 +19,7 @@ b = 10000. * u.keV alpha = -1. beta = -2. -ebreak = 350. * u.keV +ebreak = 350. * u.keV K = 50. / u.cm / u.cm / u.s spectrum = Band_Eflux(a = a.value, b = b.value, @@ -34,25 +34,24 @@ source_direction = SkyCoord(0, 70, representation_type='spherical', frame=SpacecraftFrame(attitude=attitude), unit=u.deg) -# bin_edges = Angle(np.linspace(-np.pi, np.pi, 10), unit=u.rad) - -background = {'Psi local': [0, 0], 'Chi local': [0, 0], 'Psi galactic': [0, 0], 'Chi galactic': [0, 0], 'Energies': [300., 300.], 'TimeTags': [1., 2.]} - def test_stokes_polarization(): - source_photons = PolarizationStokes(source_direction, spectrum, data, background, - response_path, sc_orientation, - response_convention='RelativeX') + source_photons = PolarizationStokes(source_direction, spectrum, data, + response_path, sc_orientation, background=None, + response_convention='RelativeZ') + + qs, us = source_photons.compute_data_pseudo_stokes(show=False) - qs, us = source_photons.compute_data_pseudo_stokes(show=True) - bkg_qs, bkg_us = source_photons.compute_background_pseudo_stokes(show=True) + average_mu = source_photons._mu100['mu'] - average_mu = source_photons.calculate_average_mu100(show_plots=True) + mdp99 = source_photons._mdp99 - polarization = source_photons.calculate_polarization(qs, us, bkg_qs, bkg_us, - average_mu['mu'], show_plots=True, - mdp=source_photons._mdp99) - + polarization = source_photons.calculate_polarization(qs, us, average_mu['mu'], + bkg_qs=None, bkg_us=None, show_plots=True, + mdp=mdp99) + assert np.allclose([polarization['fraction']*100, polarization['fraction uncertainty']*100, polarization['angle'].angle.degree, polarization['angle uncertainty'].degree], - [13.73038868282377, 2.1295224814008353, 1.4851296518928818, 0.07562763316088744], atol=[1.0, 0.5, 1.0, 0.1]) \ No newline at end of file + [13.73038868282377, 2.1295224814008353, np.degrees(1.4851296518928818),np.degrees(0.07562763316088744)], atol=[1.0, 0.5, 1.0, 0.1]) + + From 4659f87769932dd2165df53a977eecf27e42f8fa Mon Sep 17 00:00:00 2001 From: nmik Date: Wed, 28 May 2025 10:08:16 -0500 Subject: [PATCH 22/31] test unit ready, should work --- cosipy/polarization/polarization_stokes.py | 35 ++++++++++--------- .../polarization/test_polarization_stokes.py | 18 ++++------ 2 files changed, 25 insertions(+), 28 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index f42acea9..1dcfee37 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -1016,7 +1016,6 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot pol_U = np.sum(us) / mu print('I, Q, U, mu', pol_I, pol_Q, pol_U, mu) - self.QN = pol_Q/pol_I self.UN = pol_U/pol_I print('Q, U (unsubtracted:)', self.QN, self.UN) @@ -1048,7 +1047,9 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot # print('I unpolarized:', unpol_I) print('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) unpol_modulation = mu * np.sqrt(unpol_Q**2. + unpol_U**2.) / unpol_I - unpol_sQ = np.sqrt((2. - unpol_modulation**2.) / ((unpol_I - 1.) * mu**2.)) + unpol_sI = np.sqrt(unpol_I) + unpol_sQ = np.sqrt((2 - unpol_modulation**2) * unpol_sI**2 / unpol_I**2 / mu**2) + unpol_sU = np.sqrt((2 - unpol_modulation**2) * unpol_sI**2 / unpol_I**2 / mu**2) print('Q, U unpolarized uncertainty:', unpol_sQ*100, '%') self.QN = np.sum([pol_Q/pol_I, unpol_Q/unpol_I * BACKSCAL]) @@ -1057,25 +1058,25 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot print('Q, U, subtracted:', self.QN, self.UN) - polarization_fraction = np.sqrt(self.QN**2. + self.UN**2.) - pol_PD = polarization_fraction * 100 - pol_PA = 0.5 * np.arctan2(self.UN, self.QN) - # Convert to 0 to 180 deg (just the convention) - if pol_PA < 0: - pol_PA += np.pi - - Qa, Ua = rotate_points_to_x_axis(polarization_fraction, pol_PA) - # print('Q/I, U/I:', Qa, Ua) - pol_sQ = np.sqrt((2/mu**2 - self.QN**2) / I**2) - pol_sU = np.sqrt((2/mu**2 - self.UN**2) / I**2) + pol_sI = np.sqrt(I) + pol_sQ = np.sqrt((2 - self.QN**2) * pol_sI**2 / I**2 / mu**2) + pol_sU = np.sqrt((2 - self.UN**2) * pol_sI**2 / I**2 / mu**2) pol_covQNUN = - (self.QN * self.UN) / I**2 print('Q/I, U/I, uncertainty:', pol_sQ, pol_sU, np.sqrt(pol_sQ)) # Reconstructed polarization fraction uncertainty: See eq 36 in Kislat 2015 + polarization_fraction = np.sqrt(self.QN**2. + self.UN**2.) m = mu * polarization_fraction polarization_fraction_uncertainty = np.sqrt((2 - m**2)/((I - 1) * mu**2)) + pol_PD = polarization_fraction * 100 pol_1sigmaPD = polarization_fraction_uncertainty * 100 + # Reconstructed polarization angle uncertainty: See eq 37 in Kislat 2015 + pol_PA = 0.5 * np.arctan2(self.UN, self.QN) + # Convert to 0 to 180 deg (just the convention) + if pol_PA < 0: + pol_PA += np.pi + pol_1sigmaPA = np.degrees(1 / (m * np.sqrt(2. * (I - 1.)))) print('\n ############################## \n') print(' PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') @@ -1125,10 +1126,10 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot plt.gca().add_artist(unpol_c2) plt.gca().add_artist(unpol_c3) - plt.plot(Qa, Ua, 'o', markersize=5, color='red', label=label_data) - pol_c = plt.Circle((Qa, Ua), radius=polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) - pol_c2 = plt.Circle((Qa, Ua), radius=2*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) - pol_c3 = plt.Circle((Qa, Ua), radius=3*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) + plt.plot(self.QN, self.UN, 'o', markersize=5, color='red', label=label_data) + pol_c = plt.Circle((self.QN, self.UN), radius=polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) + pol_c2 = plt.Circle((self.QN, self.UN), radius=2*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) + pol_c3 = plt.Circle((self.QN, self.UN), radius=3*polarization_fraction_uncertainty, facecolor='none', edgecolor='red', linewidth=1) plt.gca().add_artist(pol_c) plt.gca().add_artist(pol_c2) plt.gca().add_artist(pol_c3) diff --git a/tests/polarization/test_polarization_stokes.py b/tests/polarization/test_polarization_stokes.py index 021c2c2d..2bb0786b 100644 --- a/tests/polarization/test_polarization_stokes.py +++ b/tests/polarization/test_polarization_stokes.py @@ -39,19 +39,15 @@ def test_stokes_polarization(): source_photons = PolarizationStokes(source_direction, spectrum, data, response_path, sc_orientation, background=None, response_convention='RelativeZ') - - qs, us = source_photons.compute_data_pseudo_stokes(show=False) - + average_mu = source_photons._mu100['mu'] - mdp99 = source_photons._mdp99 - polarization = source_photons.calculate_polarization(qs, us, average_mu['mu'], - bkg_qs=None, bkg_us=None, show_plots=True, - mdp=mdp99) - - assert np.allclose([polarization['fraction']*100, polarization['fraction uncertainty']*100, - polarization['angle'].angle.degree, polarization['angle uncertainty'].degree], - [13.73038868282377, 2.1295224814008353, np.degrees(1.4851296518928818),np.degrees(0.07562763316088744)], atol=[1.0, 0.5, 1.0, 0.1]) + qs, us = source_photons.compute_data_pseudo_stokes(show_plots=False) + polarization = source_photons.calculate_polarization(qs, us, average_mu, mdp=mdp99, + bkg_qs=None, bkg_us=None, show_plots=True) + Pol_frac = polarization['fraction'] * 100 + Pol_angl = polarization['angle'].angle.degree + assert np.allclose([average_mu, mdp99, Pol_frac, Pol_angl], [0.22, 0.20, 178, 82], atol=[0.1, 3.0, 5, 10]) From 80235f3ef4cbd6709c1dfa3c106b27a3e9164e1c Mon Sep 17 00:00:00 2001 From: Eliza Neights Date: Mon, 20 Oct 2025 14:46:17 -0500 Subject: [PATCH 23/31] Minor fixes --- cosipy/polarization/__init__.py | 4 + cosipy/polarization/polarization_stokes.py | 330 +++++++++--------- .../polarization/Stokes_method.ipynb | 142 ++++---- 3 files changed, 226 insertions(+), 250 deletions(-) create mode 100644 cosipy/polarization/__init__.py diff --git a/cosipy/polarization/__init__.py b/cosipy/polarization/__init__.py new file mode 100644 index 00000000..038b4834 --- /dev/null +++ b/cosipy/polarization/__init__.py @@ -0,0 +1,4 @@ +from .polarization_asad import PolarizationASAD +from .polarization_stokes import PolarizationStokes +from .conventions import PolarizationConvention, OrthographicConvention, StereographicConvention, IAUPolarizationConvention +from .polarization_angle import PolarizationAngle diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 1dcfee37..7fa6befc 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -17,28 +17,29 @@ #we can define all these functions in a separate file to import def R(x, A, B, C): - """ Function to fit to the modulation of the azimuthal angle distribution. + """ + Function to fit to the modulation of the azimuthal angle distribution. """ return A + B*(np.cos(x + C)**2) def constant(x, a): - """ - Constant function to fit to mu_100 values. + """ + Constant function to fit to mu_100 values. - Parameters - ---------- - x : float - Mu_100 - a : float - Parameter + Parameters + ---------- + x : float + Mu_100 + a : float + Parameter - Returns - ------- - a : float - Constant value - """ + Returns + ------- + a : float + Constant value + """ - return a + return a def stokes_u(phi): """ @@ -58,18 +59,18 @@ def stokes_u(phi): def stokes_q(phi): """ - Calculate the Q Stokes parameter from the azimuthal angle phi. + Calculate the Q Stokes parameter from the azimuthal angle phi. - Parameters - ---------- - phi : float - Azimuthal angle in radians + Parameters + ---------- + phi : float + Azimuthal angle in radians - Returns - ------- - q : float - Q Stokes parameter - """ + Returns + ------- + q : float + Q Stokes parameter + """ return np.cos(phi * 2) * 2 def rotate_points_to_x_axis(newPD, newPA): @@ -123,86 +124,85 @@ def polar_chart_backbone(ax): plt.plot([1,-1], [-1,1], linewidth=1, color='k', linestyle='--', alpha=0.3) def calculate_azimuthal_scattering_angle(psi, chi, source_vector, reference_vector): - """ - Calculate the azimuthal scattering angle of a scattered photon. + """ + Calculate the azimuthal scattering angle of a scattered photon. - Parameters - ---------- - psi : float - Polar angle (radians) of scattered photon in local coordinates - chi : float - Azimuthal angle (radians) of scattered photon in local coordinates - source_vector : astropy.coordinates.SkyCoord - Source direction - reference_vector : astropy.coordinates.SkyCoord - Reference direction (e.g. X-axis of spacecraft frame) + Parameters + ---------- + psi : float + Polar angle (radians) of scattered photon in local coordinates + chi : float + Azimuthal angle (radians) of scattered photon in local coordinates + source_vector : astropy.coordinates.SkyCoord + Source direction + reference_vector : astropy.coordinates.SkyCoord + Reference direction (e.g. X-axis of spacecraft frame) - Returns - ------- - azimuthal_angle : astropy.coordinates.Angle - Azimuthal scattering angle defined with respect to given reference vector - """ + Returns + ------- + azimuthal_angle : astropy.coordinates.Angle + Azimuthal scattering angle defined with respect to given reference vector + """ - source_vector_cartesian = [source_vector.cartesian.x.value, - source_vector.cartesian.y.value, - source_vector.cartesian.z.value] - reference_vector_cartesian = [reference_vector.cartesian.x.value, - reference_vector.cartesian.y.value, - reference_vector.cartesian.z.value] + source_vector_cartesian = [source_vector.cartesian.x.value, + source_vector.cartesian.y.value, + source_vector.cartesian.z.value] + reference_vector_cartesian = [reference_vector.cartesian.x.value, + reference_vector.cartesian.y.value, + reference_vector.cartesian.z.value] - # Convert scattered photon vector from spherical to Cartesian coordinates - scattered_photon_vector = [np.sin(psi) * np.cos(chi), np.sin(psi) * np.sin(chi), np.cos(psi)] - - # Project scattered photon vector onto plane perpendicular to source direction - d = np.dot(scattered_photon_vector, source_vector_cartesian) / np.dot(source_vector_cartesian, source_vector_cartesian) - projection = [scattered_photon_vector[0] - (d * source_vector_cartesian[0]), - scattered_photon_vector[1] - (d * source_vector_cartesian[1]), - scattered_photon_vector[2] - (d * source_vector_cartesian[2])] - - # Calculate angle between scattered photon vector & reference vector on plane perpendicular to source direction - cross_product = np.cross(projection, reference_vector_cartesian) - if np.dot(source_vector_cartesian, cross_product) < 0: - sign = -1 - else: - sign = 1 - normalization = np.sqrt(np.dot(projection, projection)) * np.sqrt(np.dot(reference_vector_cartesian, reference_vector_cartesian)) + # Convert scattered photon vector from spherical to Cartesian coordinates + scattered_photon_vector = [np.sin(psi) * np.cos(chi), np.sin(psi) * np.sin(chi), np.cos(psi)] + + # Project scattered photon vector onto plane perpendicular to source direction + d = np.dot(scattered_photon_vector, source_vector_cartesian) / np.dot(source_vector_cartesian, source_vector_cartesian) + projection = [scattered_photon_vector[0] - (d * source_vector_cartesian[0]), + scattered_photon_vector[1] - (d * source_vector_cartesian[1]), + scattered_photon_vector[2] - (d * source_vector_cartesian[2])] + + # Calculate angle between scattered photon vector & reference vector on plane perpendicular to source direction + cross_product = np.cross(projection, reference_vector_cartesian) + if np.dot(source_vector_cartesian, cross_product) < 0: + sign = -1 + else: + sign = 1 + normalization = np.sqrt(np.dot(projection, projection)) * np.sqrt(np.dot(reference_vector_cartesian, reference_vector_cartesian)) - azimuthal_angle = Angle(sign * np.arccos(np.dot(projection, reference_vector_cartesian) / normalization), unit=u.rad) + azimuthal_angle = Angle(sign * np.arccos(np.dot(projection, reference_vector_cartesian) / normalization), unit=u.rad) - return azimuthal_angle + return azimuthal_angle def get_modulation(_x, _y, title='Modulation', show=False): - """ Function to estimate the modulation factor. - _x is the central value of the histogram bins - _y is the value of the bins on the histograms + """ + Function to estimate the modulation factor. - Parameters - ---------- - _x : array - Central values of the histogram bins - _y : array - Values of the histogram bins - title : str - Title of the plot - show : bool - Whether to show the plot or not + Parameters + ---------- + _x : array + Central values of the histogram bins + _y : array + Values of the histogram bins + title : str + Title of the plot + show : bool + Whether to show the plot or not - Returns - ------- - mu : float - Modulation factor - mu_err : float - Error on the modulation factor + Returns + ------- + mu : float + Modulation factor + mu_err : float + Error on the modulation factor """ popt, pcov = curve_fit(R, _x, _y ) #sigma=np.sqrt(_y), absolute_sigma=True pcov[0][0], pcov[1][1], pcov[2][2] = np.sqrt(pcov[0][0]), np.sqrt(pcov[1][1]), np.sqrt(pcov[2][2]) - print('A = %.2f, B = %.2f, C = %.2f'%(popt[0], popt[1], popt[2])) + logger.info('A = %.2f, B = %.2f, C = %.2f'%(popt[0], popt[1], popt[2])) Rmax, Rmin = np.amax(R(_x, *popt)), np.amin(R(_x, *popt)) - print('Rmax, Rmin:', Rmax, Rmin) + logger.info('Rmax, Rmin:', Rmax, Rmin) mu = (Rmax-Rmin)/(Rmax+Rmin) - print('Modulation mu = ', mu) + logger.info('Modulation mu = ', mu) mu_err = 2/(popt[1]+2*popt[0])**2 * np.sqrt(popt[1]**2 * pcov[0][0]**2 + popt[0]**2 * pcov[1][1]**2) @@ -301,63 +301,63 @@ def create_asad_from_response(spectrum, polarization_level, polarization_angle, return asad def create_unpolarized_asad(spectrum, source_vector, ori, response, convention, response_file, response_convention, bins=20): - """ - Create unpolarized ASAD from response. + """ + Create unpolarized ASAD from response. - Parameters - ---------- - bins : int or astropy.units.quantity.Quantity, optional - Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity - spectrum : :py:class:`threeML.Model` - Spectral model. - source_vector : astropy.coordinates.sky_coordinate.SkyCoord - Source direction: - ori : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile - Spacecraft orientation - response : cosipy.response.FullDetectorResponse.FullDetectorResponse - Response object - convention : cosipy.polarization.PolarizationConvention - Polarization convention - response_file : str or pathlib.Path - Path to detector response - response_convention : str - Response convention. If in the spacecraft frame, the angle must have the same convention as the response. - Returns - ------- - asad : histpy.Histogram - Counts in each azimuthal scattering angle bin - """ - pd = 0 - pa = PolarizationAngle(Angle(0 * u.deg), source_vector, convention=convention) - unpolarized_asad = create_asad_from_response(spectrum, pd, pa, source_vector, ori, - response, convention, response_file, - response_convention, bins=bins) + Parameters + ---------- + bins : int or astropy.units.quantity.Quantity, optional + Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity + spectrum : :py:class:`threeML.Model` + Spectral model. + source_vector : astropy.coordinates.sky_coordinate.SkyCoord + Source direction: + ori : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile + Spacecraft orientation + response : cosipy.response.FullDetectorResponse.FullDetectorResponse + Response object + convention : cosipy.polarization.PolarizationConvention + Polarization convention + response_file : str or pathlib.Path + Path to detector response + response_convention : str + Response convention. If in the spacecraft frame, the angle must have the same convention as the response. + Returns + ------- + asad : histpy.Histogram + Counts in each azimuthal scattering angle bin + """ + pd = 0 + pa = PolarizationAngle(Angle(0 * u.deg), source_vector, convention=convention) + unpolarized_asad = create_asad_from_response(spectrum, pd, pa, source_vector, ori, + response, convention, response_file, + response_convention, bins=bins) - return unpolarized_asad + return unpolarized_asad def create_polarized_asads(spectrum, source_vector, ori, response, convention, response_file, response_convention, bins=20): - """ - Create 100% polarized ASADs for each polarization angle bin of response. + """ + Create 100% polarized ASADs for each polarization angle bin of response. - Parameters - ---------- - bins : int or astropy.units.quantity.Quantity, optional - Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity + Parameters + ---------- + bins : int or astropy.units.quantity.Quantity, optional + Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity - Returns - ------- - polarized_asads : dict of histpy.Histogram - Counts in each azimuthal scattering angle bin for each polarization angle bin - """ + Returns + ------- + polarized_asads : dict of histpy.Histogram + Counts in each azimuthal scattering angle bin for each polarization angle bin + """ - polarized_asads = {} - for k in range(response.axes['Pol'].nbins): - pd = 1 - pa = PolarizationAngle(Angle(response.axes['Pol'].centers.to_value(u.deg)[k] * u.deg), source_vector, convention=convention) - polarized_asads[k] = create_asad_from_response(spectrum, pd, pa, source_vector, ori, - response, convention, response_file, - response_convention, bins=bins) - return polarized_asads + polarized_asads = {} + for k in range(response.axes['Pol'].nbins): + pd = 1 + pa = PolarizationAngle(Angle(response.axes['Pol'].centers.to_value(u.deg)[k] * u.deg), source_vector, convention=convention) + polarized_asads[k] = create_asad_from_response(spectrum, pd, pa, source_vector, ori, + response, convention, response_file, + response_convention, bins=bins) + return polarized_asads class PolarizationStokes(): """ @@ -389,7 +389,7 @@ def __init__(self, source_vector, source_spectrum, data, ###################### This will need to be changed into IAUPolarizationConvention hardcoded! ###################### - print('This class loading takes around 30 seconds... \n') + logger.warning('This class loading takes around 30 seconds... \n') ###################### if isinstance(fit_convention.frame, SpacecraftFrame) and not isinstance(source_vector.frame, SpacecraftFrame): @@ -404,11 +404,6 @@ def __init__(self, source_vector, source_spectrum, data, (isinstance(fit_convention, MEGAlibRelativeZ) and response_convention != 'RelativeZ')): raise RuntimeError("If performing fit in spacecraft frame, fit convention must match convention of response.") - # if not type(data) == list: - # self._data = [data] - # else: - # self._data = data - self._ori = sc_orientation self._convention = fit_convention @@ -433,7 +428,7 @@ def __init__(self, source_vector, source_spectrum, data, self._energy_range = [min(self._response.axes['Em'].edges.value), max(self._response.axes['Em'].edges.value)] #print the energy range considered due to responses: - print(f'Energy range considered (by responses design): {self._energy_range[0]} - {self._energy_range[1]} keV') + logger.info(f'Energy range considered (by response design): {self._energy_range[0]} - {self._energy_range[1]} keV') # do a data cut before anything else! actually this should come as a separate routine: data selection and response # prep shold be done before analyzing the data @@ -459,7 +454,7 @@ def __init__(self, source_vector, source_spectrum, data, self._background = background if self._background is not None: - print('Background provided. Make sure there is enough statistics.') + logger.warning('Background provided. Make sure there is enough statistics.') if not type(background) == list: iii = np.where((background['Energies'] >= self._energy_range[0]) & (background['Energies'] <= self._energy_range[1])) self._background = [{key: background[key][iii] for key in background.keys()}] @@ -474,7 +469,7 @@ def __init__(self, source_vector, source_spectrum, data, self._background_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._background) self._background_duration = self.get_background_duration() else: - print('No background provided. Will not subtract background from data.') + logger.warning('No background provided. Will not subtract background from data.') self._background = None self._background_duration = 0 self._background_azimuthal_angles = None @@ -593,7 +588,7 @@ def convolve_spectrum(self, spectrum): polarization_angle = PolarizationAngle(Angle(self._response.axes['Pol'].centers.to_value(u.deg)[0] * u.deg), self._source_vector, convention=self._convention) polarization_level = 0 if isinstance(self._convention.frame, SpacecraftFrame): - print('>>> Convolving spectrum in spacecraft frame...') + logger.info('>>> Convolving spectrum in spacecraft frame...') target_in_sc_frame = self._ori.get_target_in_sc_frame(target_name='source', target_coord=self._source_vector.transform_to('galactic')) dwell_time_map = self._ori.get_dwell_map(response=self._response_file, src_path=target_in_sc_frame, pa_convention=self._response_convention) psr = self._response.get_point_source_response(exposure_map=dwell_time_map, coord=self._source_vector.transform_to('galactic')) @@ -607,7 +602,7 @@ def convolve_spectrum(self, spectrum): azimuthal_angle_bins.append(azimuthal_angle.angle) else: - print('>>> Convolving spectrum in ICRS frame...') + logger.info('>>> Convolving spectrum in ICRS frame...') scatt_map = self._ori.get_scatt_map(nside=self._response.nside*2, target_coord=self._source_vector, coordsys='galactic') psr = self._response.get_point_source_response(coord=self._source_vector, scatt_map=scatt_map) expectation = psr.get_expectation(spectrum, LinearPolarization(polarization_level * 100., polarization_angle.angle.deg)) @@ -683,10 +678,10 @@ def calculate_average_mu100(self, show_plots=False): mu_100 : dict Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins """ - print('Creating the 100% polarized ASADs (this may take a minute...)') + logger.info('Creating the 100% polarized ASADs (this may take a minute...)') polarized_asads = create_polarized_asads(self._spectrum, self._source_vector, self._ori, self._response, self._convention, self._response_file, self._response_convention) - print('Creating the unpolarized ASAD...') + logger.info('Creating the unpolarized ASAD...') unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, self._response, self._convention, self._response_file, self._response_convention) mu_100_list = [] @@ -930,7 +925,7 @@ def simulate_unpolarized_stokes(self, n_samples=100, show_plots=False): #Generate random samples from a uniform distribution and map them to azimuthal angles _qs_unpol_, _us_unpol_ = [], [] - print('Simulating unpolarized Stokes parameters from the source data...') + logger.info('Simulating unpolarized Stokes parameters from the source data...') for _ in range(n_samples): unpol_azimuthal_angles = np.random.choice(fine_bins, size=self._data_counts, p=fine_probabilities) * u.rad qs_unpol_, us_unpol_ = self.compute_pseudo_stokes(unpol_azimuthal_angles, show_plots=False) @@ -1014,16 +1009,16 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot pol_I = I = len(qs) pol_Q = np.sum(qs) / mu pol_U = np.sum(us) / mu - print('I, Q, U, mu', pol_I, pol_Q, pol_U, mu) + logger.info('I, Q, U, mu', pol_I, pol_Q, pol_U, mu) self.QN = pol_Q/pol_I self.UN = pol_U/pol_I - print('Q, U (unsubtracted:)', self.QN, self.UN) + logger.info('Q, U (unsubtracted:)', self.QN, self.UN) if bkg_qs is None or bkg_us is None: - print('No background data provided, assuming no background contribution.') + logger.info('No background data provided, assuming no background contribution.') else: - print('Unpolarized bkg (or simulation) provided, subtracting its contribution.') + logger.info('Unpolarized bkg (or simulation) provided, subtracting its contribution.') bkg_qs = np.array(bkg_qs) bkg_us = np.array(bkg_us) if bkg_qs.ndim == 1: @@ -1031,7 +1026,7 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot unpol_Q = np.sum(bkg_qs) * BACKSCAL / mu unpol_U = np.sum(bkg_us) * BACKSCAL / mu I = pol_I - unpol_I - print('check I(src+bkg) vs I(src):', pol_I, I) + logger.info('check I(src+bkg) vs I(src):', pol_I, I) else: BACKSCAL = 1 unpol_I = [] @@ -1044,25 +1039,24 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot unpol_I = np.mean(unpol_I) unpol_Q = np.mean(unpol_Q) unpol_U = np.mean(unpol_U) - # print('I unpolarized:', unpol_I) - print('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) + logger.info('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) unpol_modulation = mu * np.sqrt(unpol_Q**2. + unpol_U**2.) / unpol_I unpol_sI = np.sqrt(unpol_I) unpol_sQ = np.sqrt((2 - unpol_modulation**2) * unpol_sI**2 / unpol_I**2 / mu**2) unpol_sU = np.sqrt((2 - unpol_modulation**2) * unpol_sI**2 / unpol_I**2 / mu**2) - print('Q, U unpolarized uncertainty:', unpol_sQ*100, '%') + logger.info('Q, U unpolarized uncertainty:', unpol_sQ*100, '%') self.QN = np.sum([pol_Q/pol_I, unpol_Q/unpol_I * BACKSCAL]) self.UN = np.sum([pol_U/pol_I, unpol_U/unpol_I * BACKSCAL]) - print('Q, U, subtracted:', self.QN, self.UN) + logger.info('Q, U, subtracted:', self.QN, self.UN) pol_sI = np.sqrt(I) pol_sQ = np.sqrt((2 - self.QN**2) * pol_sI**2 / I**2 / mu**2) pol_sU = np.sqrt((2 - self.UN**2) * pol_sI**2 / I**2 / mu**2) pol_covQNUN = - (self.QN * self.UN) / I**2 - print('Q/I, U/I, uncertainty:', pol_sQ, pol_sU, np.sqrt(pol_sQ)) + logger.info('Q/I, U/I, uncertainty:', pol_sQ, pol_sU, np.sqrt(pol_sQ)) # Reconstructed polarization fraction uncertainty: See eq 36 in Kislat 2015 polarization_fraction = np.sqrt(self.QN**2. + self.UN**2.) @@ -1078,10 +1072,10 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot pol_PA += np.pi pol_1sigmaPA = np.degrees(1 / (m * np.sqrt(2. * (I - 1.)))) - print('\n ############################## \n') - print(' PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') - print(' PA: %.2f'%(np.degrees(pol_PA)), '+/- %.2f'%pol_1sigmaPA, 'deg') - print('\n ############################## \n') + logger.info('\n ############################## \n') + logger.info(' PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') + logger.info(' PA: %.2f'%(np.degrees(pol_PA)), '+/- %.2f'%pol_1sigmaPA, 'deg') + logger.info('\n ############################## \n') if show_plots: @@ -1090,12 +1084,10 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot polar_chart_backbone(ax) if ref_qu[0] != None: - # print('Drawing Reference point:', ref_qu) plt.plot(ref_qu[0], ref_qu[1], 'x', markersize=20, color='tab:green') plt.annotate(ref_label, (ref_qu[0], ref_qu[1]), textcoords="offset points", xytext=(0,10), ha='center', fontsize=12) if ref_pdpa[0] != None: - # print('Drawing Reference point:', ref_pdpa) ref_q, ref_u = rotate_points_to_x_axis(ref_pdpa[0], np.radians(ref_pdpa[1])) plt.plot(ref_q, ref_u, 'x', markersize=20, color='tab:green') plt.annotate(ref_label, (ref_q, ref_u), textcoords="offset points", xytext=(0,10), ha='center', @@ -1161,6 +1153,4 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot if __name__ == "__main__": - print('Just some tests here...') - pass \ No newline at end of file diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 21bab41a..53e7a891 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "26c12d83-7afc-4000-8b8f-d353e0b08d12", "metadata": {}, "outputs": [ @@ -265,9 +265,7 @@ "source": [ "from cosipy import UnBinnedData\n", "from cosipy.spacecraftfile import SpacecraftFile\n", - "# from cosipy.polarization.conventions import MEGAlibRelativeX, MEGAlibRelativeY, MEGAlibRelativeZ, IAUPolarizationConvention\n", - "from cosipy.polarization.polarization_stokes import PolarizationStokes\n", - "\n", + "from cosipy.polarization import PolarizationStokes\n", "from cosipy.threeml.custom_functions import Band_Eflux\n", "from astropy.time import Time\n", "import numpy as np\n", @@ -280,7 +278,7 @@ }, { "cell_type": "markdown", - "id": "4b292969", + "id": "a2484913", "metadata": {}, "source": [ "### Download and read in data" @@ -288,22 +286,64 @@ }, { "cell_type": "markdown", - "id": "5f241124", + "id": "e9291c43", "metadata": {}, "source": [ - "Download data (same as ASAD method tutorial: if you have already downloaded them you don't need to run these lines)" + "This will download the files needed to run this notebook. If you have already downloaded these files, you can skip this." + ] + }, + { + "cell_type": "markdown", + "id": "79a1d620", + "metadata": {}, + "source": [ + "Download the unbinned data (660.58 KB)" ] }, { "cell_type": "code", - "execution_count": 2, - "id": "3e7fa183", + "execution_count": null, + "id": "4722704e", "metadata": {}, "outputs": [], "source": [ - "# fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/polarization_fit/grb_background.fits.gz', checksum = '21b1d75891edc6aaf1ff3fe46e91cb49')\n", - "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Responses/ResponseContinuum.o3.pol.e200_10000.b4.p12.relx.s10396905069491.m420.filtered.nonsparse.binnedpolarization.11D_nside8.area.good_chunks.h5.zip', unzip = True, checksum = '9c1309efec9a37afdcd49b7a443b280b')\n", - "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Orientation/DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori', checksum = 'b87fd41b6c28a5c0c51448ce2964e57c')" + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/polarization_fit/grb_background.fits.gz', checksum = '21b1d75891edc6aaf1ff3fe46e91cb49')" + ] + }, + { + "cell_type": "markdown", + "id": "30a1b8ab", + "metadata": {}, + "source": [ + "Download the polarization response (1.35 GB). This needs to be unzipped before running the rest of the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f364b21", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC3/Data/Responses/ResponseContinuum.o3.pol.e200_10000.b4.p12.relx.s10396905069491.m420.filtered.nonsparse.binnedpolarization.11D_nside8.area.good_chunks.h5.zip', unzip = True, checksum = '9c1309efec9a37afdcd49b7a443b280b')" + ] + }, + { + "cell_type": "markdown", + "id": "7701c07a", + "metadata": {}, + "source": [ + "Download the orientation file (1.10 GB)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f8b0eef7", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC3/Data/Orientation/DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori', checksum = 'b87fd41b6c28a5c0c51448ce2964e57c')" ] }, { @@ -316,12 +356,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "ac0ad83d", "metadata": {}, "outputs": [], "source": [ - "data_path = Path(\"/Users/mnegro/MyDocuments/_COSI/COSIpy/eliza_pull_request_updated/cosipy/docs/tutorials/polarization/\") # Update to your path\n", + "data_path = Path('') # Update to your path\n", "\n", "grb_plus_background = UnBinnedData(data_path/'grb.yaml')\n", "grb_plus_background.select_data_time(unbinned_data=data_path/'grb_background.fits.gz', output_name=data_path/'grb_background_source_interval') \n", @@ -338,9 +378,7 @@ "background_after.select_data_energy(200., 10000., output_name=data_path/'background_after_energy_cut', unbinned_data=data_path/'background_after.fits.gz')\n", "background_2 = background_after.get_dict_from_fits(data_path/'background_after_energy_cut.fits.gz')\n", "\n", - "background = [background_1, background_2]\n", - "# Save background_1 dictionary to a file npz\n", - "np.savez(data_path/'background_1.npz', **background_1)" + "background = [background_1, background_2]" ] }, { @@ -348,7 +386,7 @@ "id": "2cc0300a", "metadata": {}, "source": [ - "Read in the response files and the orientation file. Here, the spacecraft is stationary, so we are only using the first attitude bin ( The orientation is cut down to the time interval of the source.)" + "Read in the response files and the orientation file. Here, the spacecraft is stationary, so we are only using the first attitude bin. The orientation is sliced to the time interval of the source" ] }, { @@ -473,7 +511,7 @@ "id": "54defb88", "metadata": {}, "source": [ - "Let's check some numbers:" + "Print the source and background duration, total counts, count rate, and minimum detectable polarization (MDP)" ] }, { @@ -516,12 +554,12 @@ "id": "1e5cb5b3", "metadata": {}, "source": [ - "Derive the modulation factor. This depends on the source spectrum and the instrument polarization response averaged over polarization angles. This steo needs to be re-computed for every source." + "Derive the modulation factor. This depends on the source spectrum and the instrument polarization response averaged over polarization angles. This needs to be re-computed for every source" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "2db5d9d4", "metadata": {}, "outputs": [ @@ -538,7 +576,7 @@ "mu = average_mu['mu']\n", "mu_err = average_mu['uncertainty']\n", "\n", - "print('modularion factor: %.3f +/- %.3f'%(mu, mu_err))" + "print('modulation factor: %.3f +/- %.3f'%(mu, mu_err))" ] }, { @@ -606,7 +644,7 @@ "source": [ "The background is rate is estimated over a longer time period and therefore its flux needs to be rescaled to the expected flux during the GRB.\n", "\n", - "This factor is simply computed as the ration of GRB duration / background duration." + "This factor is simply computed as the ratio of GRB duration / background duration." ] }, { @@ -636,7 +674,7 @@ "id": "b3417867", "metadata": {}, "source": [ - "Compute the expected MDP assuming " + "Compute the expected MDP " ] }, { @@ -723,62 +761,6 @@ "print('Normalized U: %.3f +/- %.3f'%(Normalized_U, UN_ERR))\n", "\n" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "92094db7", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8bf272fd", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c3850941", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f1900703", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d832ae71", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "edaaee68", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b4e6f892", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From 8f778dfc1d9ce5088056f62871193e77f21809e6 Mon Sep 17 00:00:00 2001 From: Eliza Neights Date: Mon, 20 Oct 2025 15:35:05 -0500 Subject: [PATCH 24/31] Fix unit test response name --- tests/polarization/test_polarization_stokes.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/polarization/test_polarization_stokes.py b/tests/polarization/test_polarization_stokes.py index 2bb0786b..b43a8197 100644 --- a/tests/polarization/test_polarization_stokes.py +++ b/tests/polarization/test_polarization_stokes.py @@ -11,7 +11,7 @@ analysis = UnBinnedData(test_data.path / 'polarization_data.yaml') data = analysis.get_dict_from_hdf5(test_data.path / 'polarization_data.hdf5') -response_path = test_data.path / 'test_polarization_response_dense.h5' +response_path = test_data.path / 'test_polarization_response.h5' sc_orientation = SpacecraftFile.parse_from_file(test_data.path / 'polarization_ori.ori') attitude = sc_orientation.get_attitude()[0] From f3e9f384301ce7f09044e5630548858db3563f0c Mon Sep 17 00:00:00 2001 From: Eliza Neights Date: Tue, 21 Oct 2025 11:11:46 -0500 Subject: [PATCH 25/31] Don't automatically plot ASAD --- cosipy/polarization/polarization_stokes.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 7fa6befc..5256fea2 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -449,7 +449,7 @@ def __init__(self, source_vector, source_spectrum, data, self._data_counts = self.get_data_counts() - self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data, show_plots=True) + self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data, show_plots=False) self._background = background @@ -600,7 +600,7 @@ def convolve_spectrum(self, spectrum): psichi = SkyCoord(lat=(np.pi/2) - expectation.axes['PsiChi'].pix2ang(i)[0], lon=expectation.axes['PsiChi'].pix2ang(i)[1], unit=u.rad, frame=self._convention.frame) azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) azimuthal_angle_bins.append(azimuthal_angle.angle) - + else: logger.info('>>> Convolving spectrum in ICRS frame...') scatt_map = self._ori.get_scatt_map(nside=self._response.nside*2, target_coord=self._source_vector, coordsys='galactic') From 64c2be26028321d728dce0dddeb3ef63783ef916 Mon Sep 17 00:00:00 2001 From: nmik Date: Mon, 15 Dec 2025 14:00:16 -0600 Subject: [PATCH 26/31] allowed for ASAD binning to be read from the response files instead to being hardcoded to 20 bins --- cosipy/polarization/polarization_stokes.py | 14 +- .../polarization/Stokes_method.ipynb | 227 ++++++++---------- 2 files changed, 106 insertions(+), 135 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 1dcfee37..bc990141 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -424,8 +424,9 @@ def __init__(self, source_vector, source_spectrum, data, self._spectrum = source_spectrum self._nbins = self._response.axes['Pol'].nbins + print('Number of azimuthal angle bins used:', self._nbins) - self._binedges = Angle(np.linspace(-np.pi, np.pi, self._nbins), unit=u.rad) + # self._binedges = Angle(np.linspace(-np.pi, np.pi, self._nbins), unit=u.rad) self._reference_vector = self._convention.get_basis(source_vector)[0] @@ -662,9 +663,12 @@ def calculate_azimuthal_scattering_angles(self, unbinned_data, show_plots=False) if show_plots: plt.figure() plt.title('Azimuthal scattering angles') - plt.hist(azimuthal_angles, bins=50, alpha=0.5) + plt.hist(azimuthal_angles, bins=50, alpha=0.5, label='Data fine binning') + plt.hist(azimuthal_angles, bins=self._nbins, alpha=0.5, + histtype='step', linewidth=2, label='Response binning') plt.xlabel('Azimuthal angle (radians)') plt.ylabel('Counts') + plt.legend() plt.show() return azimuthal_angles @@ -685,10 +689,10 @@ def calculate_average_mu100(self, show_plots=False): """ print('Creating the 100% polarized ASADs (this may take a minute...)') polarized_asads = create_polarized_asads(self._spectrum, self._source_vector, self._ori, self._response, - self._convention, self._response_file, self._response_convention) + self._convention, self._response_file, self._response_convention, bins=self._nbins) print('Creating the unpolarized ASAD...') unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, self._response, - self._convention, self._response_file, self._response_convention) + self._convention, self._response_file, self._response_convention, bins=self._nbins) mu_100_list = [] mu_100_uncertainties = [] @@ -908,7 +912,7 @@ def simulate_unpolarized_stokes(self, n_samples=100, show_plots=False): unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, self._response, self._convention, - self._response_file, self._response_convention) + self._response_file, self._response_convention, bins=self._nbins) azimuthal_bin_center = unpolarized_asad.axis.centers.value # Get the bin edges of the azimuthal angle distribution # Create the spline from the unpol azimutal angle distrib spline_unpol = interpolate.interp1d(azimuthal_bin_center, unpolarized_asad.full_contents) diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 21bab41a..692aeddc 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -25,12 +25,12 @@ { "data": { "text/html": [ - "
10:17:05 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
+       "
13:53:49 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m10:17:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=591577;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=985696;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m13:53:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=666818;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=592802;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -45,7 +45,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=247959;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474106;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=17970;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=682580;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -60,7 +60,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=70732;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=686002;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=747434;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=738963;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -74,7 +74,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=792814;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=807013;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=126496;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968859;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -87,7 +87,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=656430;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=415752;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=865136;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356097;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -100,7 +100,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=449848;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=880668;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=217546;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389598;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -113,7 +113,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=934633;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=425583;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564841;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=485750;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -122,11 +122,11 @@ { "data": { "text/html": [ - "
10:17:05 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
13:53:49 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m10:17:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=597712;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=956934;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m13:53:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=797738;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=43119;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -139,7 +139,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=234536;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980578;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=141670;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617301;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -152,7 +152,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=822549;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908135;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780359;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727712;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -161,12 +161,12 @@ { "data": { "text/html": [ - "
10:17:06 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
        "                  require the C/C++ interface (currently HAWC)                                                     \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m10:17:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=201310;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=992938;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=655623;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=536519;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -181,7 +181,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=726341;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=663070;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687634;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980422;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -196,7 +196,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=329631;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=347411;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905227;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=822273;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -206,11 +206,11 @@ { "data": { "text/html": [ - "
10:17:06 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
13:53:50 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m10:17:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=921605;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=380246;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m13:53:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=391953;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=916116;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -219,12 +219,12 @@ { "data": { "text/html": [ - "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "
13:53:50 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955530;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=606507;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m13:53:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882371;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265069;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -239,7 +239,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=734901;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=937767;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=823517;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=323345;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -254,7 +254,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=419283;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=960890;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=321511;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=487320;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -303,7 +303,11 @@ "source": [ "# fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/polarization_fit/grb_background.fits.gz', checksum = '21b1d75891edc6aaf1ff3fe46e91cb49')\n", "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Responses/ResponseContinuum.o3.pol.e200_10000.b4.p12.relx.s10396905069491.m420.filtered.nonsparse.binnedpolarization.11D_nside8.area.good_chunks.h5.zip', unzip = True, checksum = '9c1309efec9a37afdcd49b7a443b280b')\n", - "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Orientation/DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori', checksum = 'b87fd41b6c28a5c0c51448ce2964e57c')" + "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Orientation/DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori', checksum = 'b87fd41b6c28a5c0c51448ce2964e57c')\n", + " \n", + "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Sources/3C279_3months_unbinned_data_filtered_with_SAAcut.fits.gz',\n", + "# checksum = 'd0b1c3f2e4a5f8b6c7d8e9f0a1b2c3d4',\n", + "# unzip=True)" ] }, { @@ -421,46 +425,64 @@ "text": [ "This class loading takes around 30 seconds... \n", "\n", + "Number of azimuthal angle bins used: 12\n", ">>> Convolving spectrum in ICRS frame...\n", + "Energy range considered (by responses design): 200.0 - 10000.0 keV\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHRCAYAAABkYc0JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABabElEQVR4nO3dCbxM9f/H8Y99F9kqZM+SqEhJZZeltFEpRSIVChXpp12khUjWFimhPZWthLSXFCERicq+79v9P97f+zjznzt35u7LuXdez8fjmnvPOTNzzpkx5zOf7+f7/eaIiYmJMQAAgCiXM7N3AAAAwA8IigAAAAiKAAAAYhEUAQAAEBQBAADEIigCAAAgKAIAAIhFUAQAAEBQBAAAEIugCEgDOXLksCZNmlhWsnDhQrffjz32WLo9x19//eWeo2vXrun2HNEiK77HMovOk84XkFwERYg6Tz31lPvA1M/q1astuyIgSTkFijp3ChzD0TnVep1jANlH7szeASAjaaq/l19+2V3Q9PukSZPsueeeS/Xjrlq1ygoWLJgm+wiEw3sMSH9kihBV5s2b577dd+nSxU477TR7/fXX7ejRo6l+3Bo1atiZZ56ZJvsIhMN7DEh/BEWIKsoMSY8ePezmm2+27du32wcffBCx3iahn+CmlXD1HsFNMNOmTbN69eq5b/pnnHGG9e/f344cOeK2++KLL9x9ixYtasWLF7dbbrnFduzYkayaktDmHD13pUqV3O8K/IL3e/LkyfHu/8svv1i7du2sWLFibh8bN25s33zzTbzt/v33X3viiSesUaNGLqjMmzevO56bbrrJVq5caaml7J329+KLL7ZSpUpZ/vz5rXz58nb55ZfbjBkz4m2/adMmu+eee6xatWpWoEABO/XUU61Bgwb25JNPxtluwYIFdscdd1itWrXceda2tWvXtscff9wOHz4cZ9uKFSu65dK0adM45050q30UnWNvne4XbOfOnTZo0CCrWbOme75TTjnFmjdv7gLzUHpNvNdmzpw57nXW9sF1MYm9x95991137Hr9dB5uvPFG++eff8Ke5x9//NFatWplRYoUceejRYsW9u233ybabBjqjz/+sAcffNDq16/vXq98+fJZhQoV3LnWa5NQHVtS33Py33//2W233WalS5d25/Lcc891r0FK6uLmzp1rbdu2tZIlS7r9rVKlij3wwAO2e/fueNsuW7bMOnXq5F5bbatjPP/8861v37527NixJD8nsg6azxA1tmzZYjNnzrSzzjrLXXR1MXj++edt4sSJdsMNN8TZVh+Cjz76aLzH0AfhiBEj3IU0qU0ZL774os2ePduuvvpqd1HTRXHkyJHuonnVVVe5i5cuDrqQ6KLw5ptvumBN90kpPY8+5EeNGmV169Z1z+3RBSXYTz/9ZM8884w1bNjQunfvbn///be999577gKuC1f16tUD23755Zf29NNPu2Dhuuuus8KFC9uaNWvcBVnn9uuvv3bPl1L/+9//bNiwYS7YuP76611goAuiLuLvvPNOnNdJ+61gSefxsssus2uvvdYOHjzogjNdJB9++OHAtsOHD7fff//dve4613r9tK/aThfWzz//3HLlyuW21QXvww8/tEWLFrmMYmiwo/eF1v/666927733uou6eLeyYcMG9xooSL300kutdevWduDAAfvkk0/c7xMmTHCBeSidRwVFbdq0sTvvvNM9TlKMHTvWnf/27du74OL77793QaT2Ua+hLujBr6ECohMnTrhzpqBg+fLl7jVt1qxZsl6v999/38aPH+/uq3OrIHnFihWuifrjjz92r1HZsmXj3S8577mtW7e67XQu9DrreTZv3mx33323O47kULCr11xB4xVXXOGCLAU+akKfNWuWCwz1uSBafuGFF7qgS+dV78m9e/fa2rVr3fkeMmSI5cmTJ1nPjywgBogSw4YNi9FbfujQoYFl9erVi8mRI0fMmjVrkvQYXbp0cY/Rt2/fOMu1rHHjxnGWPfroo2550aJFY1auXBlYfvjw4ZhatWrF5MyZM+bUU0+NWbhwYWDdiRMnYlq0aOHut3Tp0kSfI3S/1q9fH1im37VM68JZsGCBW6+f1157Lc668ePHu+V33XVXnOVbtmyJ2bt3b7zH+uWXX2IKFSoU07p16zjLE9uHUDofZcuWjTlw4EC8ddu2bQv8fuTIkZiKFSu6x546dWq8bTdu3Bjn7z///DPm5MmT8bYbPHiwe4zp06eHfe10jpJ6voPpddL7atq0aXGW79q1K6Zu3box+fPnj9m8eXNguc6/Hk/3mT17dtjHTOg9VqRIkZhly5bFWdepUye3bsaMGXHeX1WrVnXLZ82aFWf7cePGBd4PkY471KZNm9z7OdTcuXPd+/vOO+9M9XuuW7dubvmAAQPivefy5s3r1uk8BNN5Cr28ffHFF25Zw4YN3esQzDv/wf+v+/fv75Z9+OGH8Y5v586d7lwi+6H5DFFVYJ0zZ0679dZb4zQ7eQXXiVGzkVL2yu4ow5RUat5RE4pH39qV8Th58qTLWuibvUf717lzZ/e7vuVnBDWFhfZQ69atm+XOndt++OGHOMv1zVpNLqGUHVKWQc1UqW1W0LdvL2sTTM0dHmUhlIXRN3g13YUqV65cnL8rV64ctot2v379Ak0qaUWvm7JMyqQpCxhM2SSvyU6ZkVB6bymTlFx6j51zzjlxlnmZqODXUJlIZTqU2VE2KpgylcqiJoeyQMFZKI8yOGeffXbE85rU95zq/dT0rIzh4MGD473ngv8vJ2b06NHuVv/Xg7N6on1RBnXq1Knx7qfmulBq5tb/VWQ/NJ8hKqhu588//3TNLcHpfF1Q77vvPlfLkVA6XB+WajZR7cRbb72VrA9E3SeU6nBEdUahvP0LV5ORHsLtn85DmTJlbNeuXfHWffrpp67JRE0gauY7fvx4nPVadvrpp6doX1TnpeZG1f6o+UwBo5pOdFEM9t1337nb0At7JGq6UlOi6sdUB7Nv3z4XDHsi1d6khJpgZM+ePWFrXbZt2xboTRZKNUFp9RqqFkuCX8OlS5e620suuSTe9npPq2lK5yepdA71f0P/fxQM6rnULOdRc1pq3nMaMuPQoUNu+3DBuI5DX3aS+rroOdQMq59QCsD02qier0SJEu6Li94zanru0KGDq7tSMKfmRmRfBEWICqobktBvp6otuPLKK9239o8++sh9+IXSt359i1UBqWpCktstOvSCLvpGnNi6jCrkDP3WHLwfwRc40UVCNTf6ptyyZUvXG0rnQ1kYr87GKyBPCdVaKavz2muvudol/Wg/VBir7FzVqlXddl5RbLh6lVA6j8piKQOh4mpd7FQw6wXAytykZp9DeUXyn332mfuJZP/+/fGWqXg9rV5D730U/BoqUBMFH+FEWh6JOgy88MILLgj2vnB4mRUFSpFqopL6nkvL/dXrogDeK6JP6HVRUKQAdfHixW5cM9V6vfHGG2696p30BUkF2Mh+CIqQ7enbny7Yog+ySB9mCpxCgyIV515zzTXug16FmMm9aKQlBR6hWRlPuJ4zaU3PrcyHLtw///xzvGyQlyFJDTWbKejSjwpsv/rqK5s+fbr7Zq8CXv2ouca7qCYlw6NgVwGRAmIFW8FUxJ3YRTK5vEBXAaSatZIjvUdh9oqI1ekgnEjLw9HroyYpBZpqlgvN5KjZy0/7q9dFTdYqzE8qZSn1RUhB85IlS1wRvDKZyjArsFb2CNkLQRGyPW8sIjVVhfa88qjnjnogrV+/PtCVXcGUan70zVE9wdSkk5mUndm4cWO85fpmrR47oby6nNBsT0qpWUzBl3oshQZEOkcKlNKS6pf0XPpRryQ1gf7222/udbzooovcNnpd1EsrIaqhET1OuCxgOImdu4TWe/umLENyg6L0dt5557lbBZuhFDBE6hIfzrp169x9vK79wdT0q/VpMTaTvpCoJ5iaPEOfJ9xxRKLXRU2/CqxV75QcCsTVtKgfDf+gWiYF2wRF2Q+VYsj2vCJqdaNV/UG4n549ewaKsUWFsCri1Qe7uk/ropzZlM5X1+XQcW5UCxWumUJBlDIPuk9aBSlqKtM35uCmHzVPqWu6gqbU0LdxdZMPpcf3vt17TZdq8lRXeQWz4TISwfVYXpf60LF39NoOHDgw7L6o+UQinbuE1qv+Rd3w1V391VdfDXt/dYFXpiWjeTUxKogPHfJBmdLk1BN551WBSXBwqPeGirwjZTWTQzVJau5UM5re58HUVDtlypQkP5ZXVK9903hb4erOvFo1UYCoeqZI2SlGF8+eyBQhW9OFUB/06pmTUBHr7bff7moH1Lyi5hQ1C+gDUvUtCjjCFcyqOSZ0DJv0dP/997vePOqhpAuF6qH0wa3slsbECb3oawwhjbOijIUKmNWzSBkOBXt16tRJ9vOrEFeZD9X56HxqP5SB0wVWQYt6NOn3lNIFSIWzqhtSNkg1XApOVZejomTtt9eLTxdLNakpS6GmDAWuygRoe207f/78wEVZAZQeU+NLKRhRtkTBjJpFlAkMF9joWHS8GnxR2SkFmOL1gFKQ/Oyzz7oLrHqZKYOhJr3evXu79SrGVx2T3ld6L+l10HoFa8p66DHV3KhAMyPpmBT4q4ebzqf2XUGS9knnWYXrCpaS0pFAzajqXafmTWVg9VooeNHjaNBNLQuXwUwuvd+UJdS4Rhp/SdkaNXu+/fbbrtZMTeNJ2V+9ZnosvabK9ui+ygoriNP/cWUN9f5TE5no+fS8CnC1nf4/Kcuk86P3g3rrIRvK7DEBgPR00003ubFGRo0alei2LVu2dNu+//77gfFfEvoJHssloTFkwo354o2LEjpWS/BYLqFjr8hHH33kxlbKly+fG9PnhhtuiPnrr78ijpuj8ZeuuOIKt63GwAl+zoSeRypUqOB+gh07dizm+eefj6lZs6Yba6dMmTIxnTt3jrgPyRmn6OjRozHDhw93Yx2VL1/eHWPJkiVjLrzwQjeGjsYmCrVhwwY3ro3GLMqTJ487zgYNGsQ89dRTcbb7+++/3XvhjDPOcPutcaL0XDqeSOM/vfHGG4ExhbzXPJjOQ40aNQJj5YSeK43npP04//zz3RhOehztZ9u2bWMmTJgQs3///iS9H1L6Hkvo3H/33XduPKzChQu7n+bNm8d88803Mb169Qo7RlYkGk/qoYceiqlSpYp7vcqVKxdz9913x2zfvj3sWEEpec954yHdeuut7v2g86jXZfLkyTHvvPOOe7yRI0fG2T7cc3sWL14c07Fjx5jTTz/dvWf0mHq8fv36xfz4449xxlrq2rWre69rrLGCBQvGnHXWWTF9+vRx73dkTzn0T2YHZgCAzKfmNWVjlPEpVKiQ+Z1GQB86dKjL7qj3G5Ba1BQBQBTRVCjheiuqC72aY9UM5reAKFwNkJpC1TSpZuTgAVCB1KCmCACiiGqoVFelcaZUa6XaKw3qqIJp1T0lZ7T2jKLide2ruv8rYNN8e+pJpt5vqidTDROQFmg+A4AoohGjNSu8Cos1sap6/aloWt3L1RzlxxGb1flBBdWa2kVd8xW8qbBenQ/UyQBIKwRFAAAA1BQBAADEIigCAAAgKEoeDQynWZt1CwAAsheComTQqKcawTbSzM8AACDrIigCAAAgKAIAAIhFUAQAAEBQBAAAEItpPtKIxsDUcPknTpzI7F2BT+XJk8dy5cqV2bsBAIiAoCgNHD161P777z830SIQSY4cOaxcuXJWuHDhzN4VAEAYBEWppAkJ169f7zIAZ5xxhuXNm9dd/IDQTOK2bdts06ZNVq1aNTJGAOBDBEVpkCVSYFS+fHkrWLBgZu8OfKxUqVJuQstjx44RFAGAD1FonUZy5uRUImFkEAHA38gUpZMl765Jl8et16FakrarWLGi5cuXz/Lnz28HDhyws88+2wYOHGgXX3xxovf98MMP7bTTTrOLLroo2fv33XffuVG/c+fObU8//bSNGjXKRo4cadWrV7e0sHDhQuvbt6/98ssv8db99NNP9uyzz9qMGTNS9Rxt27ZN030GAGQNBEXZmIKDc8891/3+/vvvu4v93Llz7cILL0w0KNL9UhIUvf7663bTTTfZoEGD3N+XX365ZZT69eunOiCSWbNmpcn+AACyFtp8osS1115rd955pz333HPu7/nz51vDhg3tvPPOc1mkV155JRAQzJw502VcFBi9/PLLtnnzZmvatKnVq1fPbdu7d29XRxVKmSEFJWPGjHH33b17t8tYeVmdJk2a2P3332+XXnqpValSxe2PZ9++fS7D1KBBA6tTp47dcccdrl4rHA19cOutt1rt2rXdPnmPryySFwSqdqdYsWL26KOPum2qVq0aJ9hRU9bQoUPd81WqVMlee+21wLqk7rN6HLZq1cpq1arlbm+88UZ77LHHUvlKAQAyC0FRFFGGaMWKFe73888/37766itbunSpLV682J544gnXM0rZpPbt29sDDzzgAoPu3bu74OLjjz+2JUuW2LJly1zA8fbbb8d7/AcffDDOfXW/UH/++actWLDAfvvtN5e1+vbbb93y++67zwUeP/zwg/36668u6FLTWzg6hi5durjHUJOgghH17gq1Z88eF2BpvxWo9evXL856NS/q+WbPnm333HOPC7bCibTPuo8Cy5UrV9qUKVNcUAYAyLoIiqJIcOCwY8cO69ixo8u2NGvWzP2ti344ClAUfNStW9dlllS7E66mJyluuOEGV29UoEABl9VRwOE12XnZKT2HArW1a9eGfQxlcpo3b+5+v/76610ma+PGjfG2Uz2VMmSi4MV7Ls/NN9/sbmvUqOH2SY+TnH1Wtq1bt27ud9VgXXHFFSk6JwAAf6CmKIr8+OOPLggSNQMpK/Tee++5piRljg4fPhz2fiNGjLCtW7fa999/7wKN/v37R9w2Mbq/R93SveyMAjbty1lnnZXsx9T+h+vZpUyQt1zPFTraeKR9Seo+h9sPAEDWRaYoSnz00Uc2btw410wlu3btsgoVKrgL+ZdffumarDxFixZ1TU8ebatMiIIDZVPeeeedNN+/q6++2oYPHx4IOPSckTJFar5Tc5a8++67VqZMGTdSdEZThm3y5Mnu9y1bttgnn3yS4fsAAEg7ZIqyMTX7eF3yVQysQmOv55mKou+++2578sknXZNQcI+0W265xbp27eqatHr16mX33nuvdejQwRVZa9TuFi1apPm+qgu8apK0LxrzSc1VzzzzjCuQDqX9UDCimh6NID5t2rRMydKo5km1TTq3Oi86h+HqqADAb97d9q0dPHnE/KhgznzWoVTDTHnuHDHhKlQR1urVq10PqUmTJgXGsFEzkqb5UA+m4GYWZH+HDh1yk7wqgFNNloYwePPNNyMOecB7xf8fxpn9gQxklClbFtqBEykrg0hvhXLlt1vLNLHMQKYISKE1a9a4oQH0vULDByjzltgYUDAXEPn1wxiINjkshxXMlc/84OCJIxZjmZunISgCUkjd/VPaCw/++jD2ywcykNH0fzCzsjJ+zF4RFAGwaP8w9ssHMoDM5cugSGPOaITl5cuX2969e13vIhX3apC+4FoMrR8/frz98ccfVqhQITfqsmp+QmerV9OGHm/evHlu5GSNTKxBCS+44IJMODoAAOBHvuuSr67NPXv2dKMEX3PNNdanTx/X2+jVV1+1xx9/PE49h0YoVvGqpp1o166dG3VZ0zqEGjZsmBuBuWXLlq7Hkno3DRgwwI3ODAAA4MtMkbI5+/fvt5deesn10hFNHaFRlTXFgjI9RYoUsYkTJ7rb0aNHuyyRnH766a4bt6Zu0JxWouBKIw/fdddd1qlTp8AkpepyrnF79AMAAOC7oEhj6kjx4sXjLC9RokRg/Bpto6kmNMWDFxB5wc6LL77oBvbzgqJFixa5UYgVWAWPdKzMkgIrZabUPJeVuhzTZRgAgChoPtO8V6LRjdVEpqBFmR6NyHzddde5+afWrVvnpmzwxgryaMyYatWquft59LtGOw4OnqRmzZruNtKoyWnR5Ti9fpIScGl+MJ0fDYaoWw3WmJ1oVOtIAyX++++/bnLZ1FLdmTdyNgAg+/NdpkjjvNx+++1uELyvv/46zijLKqIWDZTnZY9CaVnwlBXaNtJ2sn379oj7onXec8mGDRsytctxcrsMz5gxwwVF//zzjxt1WdNSeBm07EyjS2tC2dR6+eWX02R/AABZg++CIq82SDOyN27c2M3D9e2337og6dRTT3XZoiNHjgQyQ6E07YN6m3m0baTtvPWRzJw5MzC3lR+6HKe0y3DZsmXdTPAK6hQUaf4yFZwr26JRma+66iobMmSIq9vScmXmdH7UVKnAVNsruFLmRDVfytJpigtvuo833njDzXAv5cuXd82Sek6dO71upUqVst9++801W6rgvXLlyi6Dp7ou1Y/peb19OHbsmD388MP2xRdfuNdRE8ROmDAhXnOq5/7774+3Tzou7e/u3bvdNpoC5KmnnnLTlmzbts0eeeQRu+222wIZNQ3A+Nlnn7njVEA+ePBgt65JkybWt29fNy+b9lX7r8yiekdqYt3p06e786Q6N50bBeM6VgWgel+l5r0DAMh4vguKdEHWBXbq1KlWunRpt0zBkUYN1sVRFz1dnEQX0FC6kHoBj2jbSNt56yNRHVKjRo0Cfyuo0IU7q/n9999dxksXedF8XQ899JA7r5qA9YorrnCTvGqeMZ3/FStWuPotTQrrnUv9ribH5557zr777jt3bv788093Th544AFbsmSJC4QUfChAmD17trvfjz/+6AY4VNG85jZTs6hexzFjxrjnHTRokNtu586d7lavvZo6VSwvmptNQYoK70NF2qdw9DrrMXUuNBSDMo8K+kTBkwJvZQY1XIMCJh1LKB2HmtP0WJdddpm99957rnj/iSeecM26q1atckHexRdfbPXq1UujVw8AELVB0QcffODqgryAyKPgRBdaZRi8pq/gpi2PlpUsWTLwt7ZVdiDcdhK8bSitS2h9VpgQVsGN5mzThKvKYqhIXYGParU8upBrm1atWrkgqVu3bm7MJxWj6/6iAELZEtEcX2qiWrp0qcuOtG7dOhBEaKoLBQnK3EjDhg0DvQj1uwrhRUGFgik9t4IzL+ukbI6CHQUcXvCqbE44kfbpzDPPjLftzTff7G6VMdP9lBVSrZncdNNN7lavtbJYmp8sXFCkISK8MbCUcfMCMJ1PnV9lpNQjUuc9PWrVAABRFhTt2rXLXVhC6WItutjqIqseZbqQq07Go4yQgiZd0D3KfuhCqWAguNhaXfW99dmVV1P0+eef25VXXunOlRegKLMSblJSNXOpx54yIsrifPnll4GMSqhwM9OHLgt+Dr1m3uuoZlBlVNRspazRCy+8YLNmzXIZQQVOCtBSItw+JbQfia1L6mMkZR8AAP7mu95nqklRYKO6jWD6Nq6shZo3ChcubPXr13e1JAcPHgxso3GMVCMTHBSpyUiBlOqDPMo+6AKs2o+07o7vR8rCaJwmNUPp3On8BPdGU2+tTZs2uYyagkcFJEOHDnUZGi94VACg2iFRM5Tuo4BLjzVnzhz3t2iE8ebNm7ugISF6jXXuVc+jsaUUpInqd5R18V5X3ao5L5xI+5TRFGy+/vrrLqBT5kt1UwCArMd3mSJN5fH999+7UaqvvfZaV2j9zTffuGWqQfGas1S30qtXLzfitWpJtm7d6jIjqhcJnqlcgY8u3Cr+Ve2ImkV0EVfzycCBA9P1WNRbTMXRafl4KaXiZWXFVPujeq3+/fu7YmFlNZRBU52Pgkf18FPGTb+rybJNmzau99opp5ziskgqgFcw8tZbb7mMnh5DdUBqQvOC2kmTJiW6P++++64rwlbNkgqtFUyJXhMVKes19DIuWqZRzUNF2qdwzarpSYXbKtBWfZPen9qfSMMFAAD8K0eMvt76jLITr732mssmaO4z9UbTRVdFrcFNOZqmw5v7TLUeCn40RUjo3Ge6yHpzn+mbvOpGFFQlt3u6musUNOii742RpGlGVIOiZimveSW9J5YslCt/hk6kGdqbC3F5QaRef2XaNIiognXVFgUL916JRt7/j4x+H2fV/QKi5f0+xQf75LtMkZfd8bp4J6ROnTo2duzYRLdTbyEVAOsnI2jE6az8+Eh+HZwyagqMFPhoeAGNtg4AyFp8GRRlddltCg7VFpElikw9JdUsCQDI2nxXaA0AAJAZCIrSiIqFgYT4sHwPABCE5rNUUu8pDRWg7uAaHFF/M04NwgVEGvJA741w087AP9K612ha1RFmt2Z5wI8IilJJAZF6E/3333+BsXqAcBQQaRTtxMZwQubSpMvp2XsUgH8RFKUBZYc0tYTGyvGmtwBCKUNEQORffuzVqayVgjQAGYOgKI14zSI0jQBZkx+bp9J7zDMAcVFoDQAAQFAEAAAQi6AIAACAoAgAACAWQREAAABBEQAAQCyCIgAAAIIiAACAWARFAAAAjGjtD+9u+9YOnjxifsVklFmXH99bmroCAPyIoMgHdNFiKH+kB95bAJB0BEU+ksNyWMFc/pmUkskosw+/vbf8OgErgOhGUOQjumjdWqaJ+QWTUWYffntvAdHCj03YQjN2eARFAACkE5qwsxaCIgAAorAJW2jGjougCACAdEYTdtbAOEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAEBQBAAD4tEv+0KFDbc6cORHXv/fee1aqVCn3+/Lly238+PH2xx9/WKFChaxp06bWo0cPK1iwYJz7HD161F555RWbN2+e7du3z6pUqWLdu3e3Cy64IN2PBwAAZA2+C4rat29v9evXj7MsJibGnn/+eTvttNMCAdGaNWusX79+VqFCBevdu7dt3brVZsyYYZs2bbJnn302zv2HDRtmCxcutI4dO1q5cuVs9uzZNmDAABs1apTVqVMnQ48PAAD4k++Cotq1a7ufYMuWLbPDhw9by5YtA8smTpxoRYoUsdGjR7sskZx++un2zDPP2A8//GANGjRwy1auXGnz58+3u+66yzp16uSWXX755da1a1cbN26c+wEAAMgSNUWff/655ciRw1q0aOH+PnDggP3000/WqlWrQEDkBTsFChSwBQsWBJYtWrTIcuXK5TJQnnz58lm7du1sxYoVtmXLlgw+GgAA4Ee+D4qOHz/ughxlj5QJknXr1tmJEyesevXqcbbNkyePVatWzTWtefS7msyCgyepWbOmu127dm2GHAcAAPA33zWfhVJT2J49e+I0ne3YscPdlihRIt72Wvbrr7/G2TbSdrJ9+/aIz6113nPJhg0bUnEkAADAz3Jnhaaz3Llzu55lniNHjgQyQ6Hy5s3repsFbxtpu+DHCmfmzJk2efLkVB8DAADwP18HRQcPHrSvvvrKFU2fcsopcWqC5NixY/Huo4DIC3i8bSNtF/xY4agOqVGjRnEyRUOGDLFoc/DEEZuyZaH5TcGc+axDqYaZvRsAgGzC10GRAqLQXmfBTV/BTVseLStZsmScbbdt2xZ2OwneNpTWJbQ+WsRYjB04cTizdwMAgOgNij777DPXmyw4WyOVKlVyPcpWr15tzZo1CyxXRkiF1cFNbVWrVrWlS5e6HmvBxdbqqu+tR+RMjF8zVwrUAACIiqBo9+7drtu9uuHnz58/zrrChQu7AR41QnWXLl0CI1jPnTvXDh06FCcoatKkiU2fPt3VB3njFKnpbNasWVarVi0rU6ZMBh9Z1uHXpik15ZG5AgBETVCkARfV7T606cyjaTp69eplffr0cbU/3ojWmrrjwgsvDGynwEdBkgZ7VKBVtmxZN43I5s2bbeDAgRl4RAAAwM9y+7nXWfHixa1evXph12uMohEjRri5z1588UWXLdKAjD179oy37UMPPeQyQsok7d+/3ypXrmzDhw+3c889NwOOBAAAZAW+DYqSMv2G5i0bO3Zsotuph9ndd9/tfgAAALLkiNYAAAAZgaAIAACAoAgAACAWQREAAICfC60BALGYagfIGARFAOBzTLUDZAyCIgDwKabaATIWQREA+JRfm6aYagfZFYXWAAAABEUAAACxCIoAAAAIigAAAGIRFAEAABAUAQAAxCIoAgAAICgCAACIRVAEAABAUAQAABCLoAgAAICgCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAmFlu86nVq1fba6+9ZsuXL7ejR4/aGWecYVdeeaV16NAhsI3WjR8/3v744w8rVKiQNW3a1Hr06GEFCxaM81i6/yuvvGLz5s2zffv2WZUqVax79+52wQUXZMKRAQAAP/JlUPTDDz/YoEGDrFq1atalSxcrUKCA/fPPP7Zt27bANmvWrLF+/fpZhQoVrHfv3rZ161abMWOGbdq0yZ599tk4jzds2DBbuHChdezY0cqVK2ezZ8+2AQMG2KhRo6xOnTqZcIQAAMBvfBcUHThwwIYOHWoXXXSRPfnkk5YzZ/gWvokTJ1qRIkVs9OjRLkskp59+uj3zzDMuqGrQoIFbtnLlSps/f77ddddd1qlTJ7fs8ssvt65du9q4cePcDwAAgO9qij7//HPbuXOnawZTQHTo0CE7efJkvMDpp59+slatWgUCIi/YUVZpwYIFgWWLFi2yXLlyWfv27QPL8uXLZ+3atbMVK1bYli1bMujIAACAn/kuU6RgR4HO9u3b7X//+59t3LjRBToKgNRMpoBm3bp1duLECatevXqc++bJk8c1ualpzaPf1WQWHDxJzZo13e3atWutTJkyYfdF+7Bjx47A3xs2bEjjowUAAH7hu6BINUEKeB566CGXzbnjjjvsl19+sffee8/2799vjz76aCBQKVGiRLz7a9mvv/4a+FvbRtrOC3wimTlzpk2ePDmNjgwAAPiZ74IiNZcdPnzYrrrqKrv33nvdssaNG9uxY8dckNKtWzc7cuRIIDMUKm/evK63mUfbRtrOWx+JmtwaNWoUJ1M0ZMiQVB4hAGQPB08csSlbFprfFMyZzzqUapjZu4EsyHdBkZrHpHnz5nGWt2jRwgVFqgPKnz+/W6ZAKZQCIi/g8R4v0nbBzxdOyZIl3Q8AIL4Yi7EDJw5n9m4A2TcoUrPW+vXr7dRTT42zvHjx4u5W4wyVLVvW/R5c7+PRsuBARo8X3JU/eDsh6AGA5Gdi/Jq5UqAGZJugSMXTKrZWIHPmmWcGlnu1P8WKFbNKlSq5HmUa4LFZs2aBbZQRUmG1BnH0VK1a1ZYuXep6rAUXW6urvrceAJB0fm2aUlMemStkqy75XkDz6aefxlmuvxUInXfeeVa4cGGrX7++G6H64MGDgW3mzp3rapKCg6ImTZq4wm01vQU3nc2aNctq1aoVsecZAACILr7LFJ111lnWtm1bF7QomDn33HNd7zONPdS5c+dAc5em6ejVq5f16dPHFUR7I1pr6o4LL7ww8HgKfBQkabDH3bt3u6a3OXPm2ObNm23gwIGZeKQAAMBPfBcUyf333+8yOJqOY/Hixe53jVF0/fXXx2lmGzFihJv77MUXX3TznakLf8+ePeM9nrr36zGUSVK3/sqVK9vw4cNdwAUAAODboCh37tx22223uZ+EaN6ysWPHJvp46mF29913ux8AAIAsUVMEAACQGQiKAAAACIoAAAB8XFMEZNUpBpheAACyLoIiZFlMMQAASEsERchy/DjFANMLAEDWR1CELMePzVNMLwAAWR+F1gAAAARFAAAAsQiKAAAACIoAAABiERQBAAAQFAEAAMQiKAIAACAoAgAAiEVQBAAAQFAEAAAQi6AIAACAoAgAACAWQREAAABBEQAAQCyCIgAAAIIiAACAWARFAAAABEUAAACxCIoAAAAIigAAAGIRFAEAAJhZbvOZpUuX2r333ht23bhx4+zss88O/L18+XIbP368/fHHH1aoUCFr2rSp9ejRwwoWLBjnfkePHrVXXnnF5s2bZ/v27bMqVapY9+7d7YILLkj34wEAAFmD74Iiz3XXXWc1a9aMs6xs2bKB39esWWP9+vWzChUqWO/evW3r1q02Y8YM27Rpkz377LNx7jds2DBbuHChdezY0cqVK2ezZ8+2AQMG2KhRo6xOnToZdkwAAMC/fBsU1a1b15o0aRJx/cSJE61IkSI2evRolyWS008/3Z555hn74YcfrEGDBm7ZypUrbf78+XbXXXdZp06d3LLLL7/cunbt6jJP+gEAAPB1TdHBgwft+PHj8ZYfOHDAfvrpJ2vVqlUgIPKCnQIFCtiCBQsCyxYtWmS5cuWy9u3bB5bly5fP2rVrZytWrLAtW7ZkwJEAAAC/822mSE1ehw4dcgGNmriU6alRo4Zbt27dOjtx4oRVr149zn3y5Mlj1apVc01rHv2uJrPg4Em8prm1a9damTJlMuSYAABANgyK/vzzT/v9999dE5cXcBw5csTGjBljX3/9tcvG3HjjjXbVVVclb4dy57bGjRvbRRddZKeccor99ddfrlZIdUNjx461s846y3bs2OG2LVGiRLz7a9mvv/4a+FvbRtpOtm/fHnFftM57LtmwYUOyjgUAAERBUDRlyhTX+6tt27Zx6nxmzpzpmrD27NljI0eOtDPOOCNZvbzOOecc9+O55JJLXOB12223ucd/7rnnXPDlZYZC5c2b1/U282jbSNt56yPRsUyePDnJ+w4AAKIwKFq1apWdd955liNHDve3an/Uq0vNUurVpa7v6vb+7rvvprrru5q/FBx9+eWXrtlMWSg5duxYvG0VEHkBj2jbSNt56yNRHVKjRo3iZIqGDBmSqmMBAADZLChSJqh06dKBv9WUpgJoNZcp0NCPAorvvvsuTXZUz6Xg5vDhw4Gmr+CmLY+WlSxZMvC3tt22bVvY7SR421Bal9B6AACQfaS495kKoIMzML/88ovLGil75FFNkIKntPDvv/+6DJCa5ipVquSef/Xq1XG20f6osLpq1aqBZfpdYxcpYAumrvreegAAgBRnik477TQ3+rRH3eA1TpCWe5ShUWCUHLt377ZixYrFWaYeYirevvDCCy1nzpxWuHBhq1+/vhuhukuXLoERrOfOnet6rGlka4/qkaZPn+7qg7xxitR0NmvWLKtVqxY9z5CmDp44YlO2LDQ/7Q8AIJ2DIo0RpIEPe/bs6QqZ1RvtlltuibONus6rHig5Hn30Udf0Vrt2bStevLjrffbxxx9b/vz53XN5VK/Uq1cv69Onj6v98Ua0Vv2SgiePAh8FSSrSVsClUbHnzJljmzdvtoEDB6b08IGwYizGDpw4nNm7AQDIyKDo2muvdcXWGhwxJibGdaHv3LlzYP369etdhqdbt27JetxLL73UPvvsM3v77bddk5eyRpdddpkbgTo4wNIYRSNGjHBzn7344osuW6QBGYMDJ89DDz3kMkLKJO3fv98qV65sw4cPt3PPPTelhw/EUTBn5IJ9P/D7/gFAlg6KVN/z+OOPu8BFtUShk7Aqy6NJWIOb05KiQ4cO7icpNKijxi5KjDJPd999t/sB0kOHUg0zexcAAJlVaK3Cak2RoYEbQwMiUYZHc5MpWwQAAJBtg6K+ffu6cYkSouYqbQcAAJBtgyLVESVlG29wRwAAgGwZFCWFxgcKnYgVAAAgyxdaP/3003H+Xrx4sevaHkpTcaiL/LJly+J0jwcAAMgWQVFwDZGaxVREHamQWutr1KjhZrcHAADIVkGRBkf0aoVuvPFG69ixY9ju8xp1Wj3PNCUHAABAtguKgsccevDBB+2ss85K9jhEAAAA2WrwxjZt2qTtngAAAGTFoCh4tvnff//dTZ9x8uTJsLVFmrQVAIBom5iZSZmjJCjau3evm1Pst99+S3DMIoIiAEBGYmJmZHhQNGbMGFu+fLmbVLV169ZWunRpy5UrV4p3BACA7DrxsZ/3DWkQFH377bdWs2ZNe+GFFxi1GgCQ6ZiYGZk2ovWRI0esbt26BEQAACC6g6KqVauGHc0aAAAgqoKirl272tdff20rVqxI2z0CAADISjVFO3futIsuusjuuecea9mypVWrVi3i5K8qxAYAAMiWQdGwYcNcPZG642tONP2E1hdpnZYRFAEAgGwbFGmaDwAAgOyCaT4AAABSU2gNAACQnaQ4U7Rly5Ykb1umTJmUPg0AAIC/g6Lrr78+SQM3apsFCxak9GkAAAD8HRRdfvnlYYOi/fv3259//mn//fefmxfttNNOS+0+AgAA+DcoeuihhyKuU1f86dOn27Rp02zgwIEpfQoAAICsXWitDFKnTp2sUqVKNnbs2PR4CgAAgKzT+6x69er2888/p+dTAAAA+D8o+ueff+zEiRPp+RQAAACZW1MUycmTJ23btm02Z84cN2Hs+eefn9ZPAQAA4J+gqHHjxgl2yVexdZEiRaxXr16WGlOmTLGXX37Z1Se9/vrrcdYtX77cxo8fb3/88YebjLZp06bWo0cPK1iwYJztjh49aq+88orNmzfP9u3bZ1WqVLHu3bvbBRdckKp9AwAA2UeKg6K6deuGDYq0TMFQjRo1rG3btla8ePEU79zWrVvtzTfftAIFCsRbt2bNGuvXr59VqFDBevfu7badMWOGbdq0yZ599tl4k9cuXLjQOnbsaOXKlXOT1w4YMMBGjRplderUSfH+AQCA7CPFQdHo0aMtvannWq1atVyT3J49e+Ksmzhxogu+tB/KEsnpp59uzzzzjP3www/WoEEDt2zlypU2f/58u+uuu1yPOG+Mpa5du9q4cePcDwAAgG/nPvvll19s0aJF1qdPn3jrDhw4YD/99JO1atUqEBB5wY6ySsEjaOsxcuXKZe3btw8sy5cvn7Vr185WrFiRrOlKAABA9pUmhdaq7VFz1sGDB109T7Vq1eycc85J8eOpx5qathS4qP4n1Lp169w26vIfLE+ePO65tS8e/a4ms+DgSWrWrOlu165dy9xsAAAgdUGRgqGnn37adb33iqu9OiMFIg8++KDVrl072Y/70UcfuQzOyJEjw67fsWOHuy1RokS8dVr266+/xtk20nayffv2iPuhdd5zyYYNG5J5JAAAINsHRevXr7f777/fDh8+bPXr17fzzjvPBRo7d+60pUuX2o8//ujWq3dYxYoVk/y4qh169dVX7dZbb7VixYqF3ebIkSOBzFCovHnzut5mwdtG2i74scKZOXOmTZ48Ocn7DgAAojAoUrBw7NgxV9h84YUXxll388032/fff2+DBg1y2z322GNJflx1v1cB9XXXXRdxG9UEiZ4/lAIiL+Dxto20XfBjhaM6pEaNGsXJFA0ZMiTJxwIAAKIgKFIhdJMmTeIFRB4t1/olS5Yk+TE3btxoH3/8sSuuDm7WUgBz/Phx+++//1xtkNf0Fdy05dGykiVLBv7WthpMMtx2ErxtKK1LaD0AAMg+UhwUqQeYusAnROu1XVIpEFL3exVZ6yfUDTfcYB06dLBu3bq5HmWrV6+2Zs2aBdYrI6TCag3i6KlataprztN+BBdbq6u+tx4AACDFQZEyMOrSnhAFHuGKnCPRqNVPPfVU2CY19Wy755577IwzzrDChQu7OiaNUN2lS5fACNZz5861Q4cOxQmKlK2aPn26qw/yxilS5mnWrFluDCR6ngEAgFQFRaq1ef/9913Acsstt8SpzVHx8tSpU12GJqHaoFAqrL700kvjLX/nnXfcbfA6TdOhKUTU1KbaH29Ea03dEdykp8BHQZIGe9y9e7eVLVvWzcu2efNmGzhwIO8CAACQuqBIGZpvv/3WTcOhLIzG/dGUHrt27bLff//dBSDK6mi79KAxikaMGOF6t7344osuW6RxjXr27Blv24ceeshlhJRJ2r9/v1WuXNmGDx9u5557brrsGwAAyHpyxGhwoRRS4KOgRNNoBHeDV++v5s2b25133hmxW31WpBomTTg7adKkeANHpsaULQvtwInDVihXfru1TJM0e1wAALKKKT64FqZq8EYFPBqgUeMRqbu6N6K1JmnNnTtNBssGAADIEMmOXKZMmeIGbFQPMC/w0W3wdBzqBaZsiuYh69y5c9ruMQAAQGZPCKtJWDXadNGiRRPMBGkEaW2jIuyff/45LfYTAADAP0GRCpU12vS1116b6LbXXHON23b27Nmp2T8AAAD/BUW//fab1atXL840GpFoG40lpEljAQAAslVQpBGn1c0+qTSidbipOAAAALJ0UJQzZ043B1lSaVvdBwAAwO+SFbFoyo7169cneXtty4SqAAAg2wVFderUcb3JNFt9YrSNtq1bt25q9g8AAMB/QZF6lKlJ7JFHHnGjWUeyZ88ee/TRR+3EiRN21VVXpcV+AgAA+GfwRk1t0bFjRzdB66233uoCnvPOO89KlSoVKMResmSJffzxxy5ouv7669N0OgwAAADfjGitmenV3X7atGn2xhtvuJ9gmkpNxdUayVoz2QMAAGTLoChHjhx2xx13uBnpZ82a5cYu2rlzp1t36qmn2jnnnGNt2rSxsmXLpsf+AgAApIsUz9qqoEczxgMAAGQHDCIEAABAUAQAABCLoAgAAICgCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAEBQBAADEIigCAAAws9zmM+vXr7fXXnvNVq9ebTt37rT8+fNbhQoVrFOnTtaoUaM42/711182ZswYW758ueXOndsaNmxovXv3tmLFisXZ7uTJkzZ9+nT78MMP3WOWK1fOOnfubC1atMjgowMAAH7lu6Bo8+bNdvDgQWvdurWVLFnSDh8+bIsWLbJBgwbZ/fffb+3bt3fbbd261fr06WOFCxe2Hj162KFDh1zgs27dOpswYYLlyZMn8JiTJk2yqVOn2pVXXmk1atSwr776yp544gnLkSOHNW/ePBOPFgAA+IXvgiJle/QT7Nprr3WBz9tvvx0Iit58800XML388stWpkwZt6xmzZrWv39/mz17dmC7bdu22YwZM+yaa66xfv36uWVXXHGFC6jGjh1rTZo0sVy5cmX4cQIAAH/JEjVFClpKly5t+/fvDyxT9ujiiy8OBERSv359K1++vC1YsCCwTFmh48ePu6DIowzR1Vdf7QKmFStWZOCRAAAAv/JtUKTmsN27d9s///zjMkTff/+9nX/++W6dgpldu3ZZ9erV491P2aI1a9YE/tbvBQoUcHVJodt56wEAAHzXfOZ56aWXbObMme73nDlz2mWXXRZo/tqxY4e7LVGiRLz7adnevXvt6NGjljdvXrdt8eLFXXYodDvZvn17xH3QOu+5ZMOGDWl0dAAAwG98GxR17NjR1fsoMFFz2IkTJ+zYsWNu3ZEjR9xtcDG1R4GQt41+121i20WioGzy5MlpdkwAAMC/fBsUqbnLa/JSTzQVUD/44IOuZ1m+fPncci9ICqYMkXjb6DYp24WjYu3gYQCUKRoyZEiqjw0AAPiPb4OiUMoaPffcc7Zx48ZA01dw05ZHy4oWLRrIBGnbpUuXWkxMTJwmNO++6vYfidYltB4AAGQfvi20DuU1c6kHWqlSpdwAjRrgMdSqVausatWqgb/1u7ruh9YDrVy5MrAeAADAd0GRepWFUpf6uXPnuqauihUrumWNGze2b775xrZs2RLYbsmSJS6T1LRp08CySy65xI12/cEHHwSWKWv00UcfueCqdu3a6X5MAADA/3zXfKYmsgMHDljdunVd0KJmrs8++8z+/vtv69WrlxUsWNBtp2k6Fi5caH379rUOHTq4LvzTpk2zypUrW5s2bQKPp/GNVLStdQqu1BV/8eLFtmzZMnv44YcZuBEAAPgzKGrWrJl9+umnLpOzZ88eFwRpPKI777zTZX08GrRx9OjRbu4zFV97c58pcPLqiTw9e/a0IkWKuN5kc+bMcXOfDR482Fq2bJkJRwgAAPzId0GR5iJL6nxklSpVsueffz7R7TTOkTJL+gEAAMgSNUUAAACZgaAIAACAoAgAACAWQREAAABBEQAAQCyCIgAAAIIiAACAWARFAAAABEUAAACxCIoAAAAIigAAAGIRFAEAABAUAQAAxCIoAgAAICgCAACIRVAEAABAUAQAABCLoAgAAICgCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAmFlu85lVq1bZnDlzbOnSpbZ582YrWrSonX322da9e3crX758nG3/+usvGzNmjC1fvtxy585tDRs2tN69e1uxYsXibHfy5EmbPn26ffjhh7Zz504rV66cde7c2Vq0aJHBRwcAAPzKd0HRW2+95YKcpk2bWpUqVWzHjh32wQcfuKBo3LhxVrlyZbfd1q1brU+fPla4cGHr0aOHHTp0yAU+69atswkTJliePHkCjzlp0iSbOnWqXXnllVajRg376quv7IknnrAcOXJY8+bNM/FogexrybtrEt2mXodqGfY4AJDlgqLrr7/eHnnkkThBTbNmzey2225zgc3DDz/slr355pt2+PBhe/nll61MmTJuWc2aNa1///42e/Zsa9++vVu2bds2mzFjhl1zzTXWr18/t+yKK65wAdXYsWOtSZMmlitXrkw5VgAAMhNfOnweFJ1zzjnxlqnZrGLFirZhw4bAskWLFtnFF18cCIikfv36btsFCxYEgiJlhY4fP+6CIo8yRFdffbXLFq1YscLq1KmT7scFIHpwoQGypixRaB0TE2O7du2yU045JZD90d/Vq1ePt62yRWvW/P8Hkn4vUKCAVahQId523noAAADfZYrC+eyzz1wg1K1bN/e36oykRIkS8bbVsr1799rRo0ctb968btvixYu77FDodrJ9+/aIz6t13nNJcKYKAIBosCSKMp++D4oUiIwcOdL1QGvdurVbduTIEXcbXHfkUSDkbaPfdZvYdpHMnDnTJk+enGbHAiDzRNMHO4BsGBQpSzNw4EArVKiQPfnkk4GC6Hz58rnbY8eOxbuPMkTB2+g2KduFo7qkRo0axQnQhgwZkurjAgDAD18EkEWCov3799uAAQPcrcYiKlmyZLymr+CmLY+WaWwjLxOkbTXmkeqSgpvQvPsGP24orUtofXbHN2sAQDTxZVCkJq0HH3zQNm7caCNGjHA9z4KVKlXKDdC4evXqsIM/Vq1aNfC3fv/kk09clif4cVauXBlYDwBARuDLpr/5Lig6ceKEPfbYY66r/NChQ6127dpht2vcuLEb+XrLli2BbvlLlixxgZTGOvJccsklLtOkASC9cYqUNfroo49ccBXp8QEAQHQFe74Lil566SX7+uuv3RhE+/bts3nz5sVZ36pVK3eraToWLlxoffv2tQ4dOrgRradNm+ZGvG7Tpk1g+9KlS1vHjh3dOo1XpK74ixcvtmXLlrmBIKN14EbamgEAfrrubCq63YrXLmyZyXdB0dq1a93tN998435CeUGRskOjR492WSBN6+HNfdarV69APZGnZ8+eVqRIEdebTNklzX02ePBga9myZQYdVfaVXb4dIGsjyAeQLYMiBTpJValSJXv++ecT3S5nzpwus6QfAP4RzcEMXygA//FdUAQASNugkeAKyEbTfAAAAKQ3MkU+8e/KnVbgZF5bsjfyN0O+7SEhNMdkjGhu8gOyO4IiAHEQXAGIVgRF2QzfYoGU4/8PEN2oKQIAACBTlLXwLRZ+wXsRQHZEUAQAQBbDF5P0QVCEdEfhLoBoQKCS9REUAVGED20AiIxCawAAADJFAAD4CxndzENQBACg9g8gKEJWwoc2ACA9ERTBF0gXAwAyG0ERAMB3X3DI+iIz0PsMAACATBEAwI+oIURmICgCgGyOmj0gaQiKgDD4lgoA0YegCACQJfHlBWmNQmsAAAAyRUDWQE0IAKQ/giJkK6TTgfRDcI7sjqAIUYcPdgBAONQUAQAAEBQBAADEovkMAIBE0OweHcgUAQAA+DFTdPDgQZs+fbqtXLnSVq1aZfv27bNBgwZZmzZt4m37119/2ZgxY2z58uWWO3dua9iwofXu3duKFSsWZ7uTJ0+6x/zwww9t586dVq5cOevcubO1aNEiA48M2Q093QAge/FdULRnzx6bPHmylSlTxqpWrWpLly4Nu93WrVutT58+VrhwYevRo4cdOnTIBT7r1q2zCRMmWJ48eQLbTpo0yaZOnWpXXnml1ahRw7766it74oknLEeOHNa8efMMPDoAAOBXvguKSpQoYR988IG7/f333+2OO+4Iu92bb75phw8ftpdfftkFUFKzZk3r37+/zZ4929q3b++Wbdu2zWbMmGHXXHON9evXzy274oorXEA1duxYa9KkieXKlSsDjxAAAPiR74KivHnzuoAoMYsWLbKLL744EBBJ/fr1rXz58rZgwYJAUKSs0PHjx11Q5FGG6Oqrr3bZohUrVlidOnXS6WgQ7WhiA4CsI0sWWiv7s2vXLqtevXq8dcoWrVnz/xci/V6gQAGrUKFCvO289QAAAL7LFCXFjh073G24jJKW7d27144ePeqyTtq2ePHiLjsUup1s37494vNonfdcsmHDhjQ8CgAA4CdZMig6cuSIuw0upvYoEPK20e+6TWy7SGbOnOmKvgEA2RdjECFLB0X58uVzt8eOHYu3Thmi4G10m5TtwlFdUqNGjeJkioYMGZIGRwAAAPwmSwZFXtNXcNOWR8uKFi0ayARpW3Xrj4mJidOE5t23ZMmSEZ9H6xJaDwAAso8sWWhdqlQpN0Dj6tWr463TgI8a38ij39V1P7QeSINDeusBAACyZFAkjRs3tm+++ca2bNkSWLZkyRLbuHGjNW3aNLDskksucaNda+wjj7JGH330kQuuateuneH7DgAA/MeXzWfvvfee7d+/P9DE9fXXX7sRrOW6665zo1hrmo6FCxda3759rUOHDm5E62nTplnlypXjTAlSunRp69ixo1un8YrUFX/x4sW2bNkye/jhhxm4EQAA+Dco0gjUmzdvDvz95Zdfuh9p1aqVC4o0aOPo0aPd3Gea1sOb+6xXr16BeiJPz549rUiRIq432Zw5c9zcZ4MHD7aWLVtm+LEBoej5AgD+4Mug6O23307SdpUqVbLnn38+0e1y5szpMkv6AQAAyFY1RQAAAGmJoAgAAICgCAAAIBZBEQAAAEERAACAj3ufAQCQFhjyAslBpggAAICgCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAEBQBAADEIigCAAAgKAIAAIhFUAQAAEBQBAAAEIugCAAAgKAIAAAgFkERAAAAQREAAEAsgiIAAACCIgAAgFgERQAAAGaW26LE0aNH7ZVXXrF58+bZvn37rEqVKta9e3e74IILMnvXAACAD0RNpmjYsGH29ttvW8uWLe2ee+6xnDlz2oABA2zZsmWZvWsAAMAHoiIoWrlypc2fP9/uuOMOu/vuu619+/b2wgsv2GmnnWbjxo3L7N0DAAA+EBVB0aJFiyxXrlwuGPLky5fP2rVrZytWrLAtW7Zk6v4BAIDMFxVB0Zo1a6xcuXJWqFChOMtr1qzpbteuXZtJewYAAPwiKgqtd+zYYSVKlIi33Fu2ffv2sPfTct3X4wVPGzZsSNP9277zX9v33zY7ejKPbTyQto8NAEBWsOfAVosptN8O5cxrq3evTpfnqFChguXPnz+6g6IjR45Ynjx54i3PmzdvYH04M2fOtMmTJ8dbPmTIEEsv36bbIwMAkDV8mE6PO2nSJKtevXp0B0WqHzp27FjYbvre+nBUg9SoUaPA3+rKryzRWWedFQioMpKeWwHZ4MGDXbSLuDg/CeP8JIzzkzDOT2Scm6xzfhJ7/qgIitRMtm3btnjLvaaxkiVLhr2floeuq1+/vmU2vagJRbrRjvOTMM5Pwjg/CeP8RMa5yfrnJyoKratWrWqbNm2yAwcOxOuq760HAADRLSqCoiZNmtiJEydcjVBw09msWbOsVq1aVqZMmUzdPwAAkPmiovlMgU/Tpk1t4sSJtnv3bitbtqzNmTPHNm/ebAMHDrSs1AzYtWvXsD3pwPlJDOcnYZyfhHF+IuPcZJ/zkyMmJibGooB6mHlzn+3fv98qV67s5j5r0KBBZu8aAADwgagJigAAACzaa4oAAAASQ1AEAABAUAQAABBFvc+yq19++cWmT5/uJrzds2ePFS5c2I251KVLFzvnnHMs2i1ZssQ+++wzW7ZsmRu889RTT7Xzzz/fbr/99ogDdkYTze337rvv2qpVq+z333+3Q4cO2ahRo+y8886zaKLhObxOGBq1vkqVKq4TxgUXXGDR7uDBg+4zRmO66X2i8zNo0CBr06aNRTudD/ViXrp0qevJXLRoUTv77LPde6d8+fIW7davX2+vvfaarV692nbu3OnmG9PgjZ06dYozU4TfkCnKwjQgZc6cOe2qq66yvn372g033ODefH369LHvv//eot348ePdB9all15q9957rzVv3twWLFjgPrSCJ/qNVhs3brS33nrLBYzqjRmthg0bZm+//ba1bNnS7rnnHvd/asCAAS6Yjnb6sqX5HzVNA4PcxqX/O4sWLbJ69eq5982VV15pv/76q/t8WbdunUW7zZs3u6C6devW7vzceuutbrmC6uAxA31Hvc+QfRw6dCjmqquuirnvvvtiot3SpUtjTpw4EW/ZpZdeGjNx4sSYaHfgwIGYPXv2uN8XLFjgzsvPP/8cE01WrFjhjvutt94KLDt8+HDMjTfeGHPnnXfGRLsjR47EbN++3f2+atUqd65mzZqV2bvlC8uWLYs5evRonGV///13TPPmzWOeeOKJTNsvPzt+/HjMbbfdFnPzzTfH+BWZomxGKcpTTjnFjcUU7c4991z3rT90mdLc+uYb7QoWLOjORTTTN/1cuXK5yZ89miC6Xbt2tmLFCtuyZYtFM018nRUG3MsMKlHIkydPnGVqNqtYsSKfLxHo/1rp0qV9fX2ipigb0Jxux44dc6nuuXPnurbcW265JbN3y5eUzlXtjAJHQPV45cqVs0KFCsVZXrNmTXe7du1apgFCkmnYv127drnACLH0eavBk3Wd+vrrr11ph2aY8CuComzg0UcftR9++MH9rm8u+tbrtd8irnfeeccFkM2aNcvsXYEPqLYsXCbEW6ZidCCp1LFDNXrdunXL7F3xjZdeeilQQ6TM/WWXXWb9+vUzvyIo8omTJ0+6i3VSU9o5cuQI/N2zZ09XZL1161bXG+L48eNuAtzsJDXnJ7i3nopG9S1FxZHZSVqcn2ikb7ChTSDeOfLWA0mhJrORI0e6HmgqLkasjh07uknZ9QVDHV10bUrqZ1VmICjyCfVaUA+ppHjjjTdc10ZPtWrVAr+3atXK9X5Qj5onn3zSsovUnB/vA2vw4MGul1VWmgQ4o85PtFL9ULgPaHXT99YDSck46nNFzbD63FXtDGLps8b7vFGw2L9/f3vwwQdtwoQJvvxyRlDkE2eeeabrqpgUCRU+6luvxoCYOnWq+5abXT7UU3N+VCx73333uQ+s4cOHuwLj7Cat3j/RRudCzR2hvCEbGM8KiVHRsIZw0O2YMWN4zyRCWaPnnnvODQmizy2/ISjy0YdzWg2IpmBIBX8qKs4uQVFKz4+KzxUQKRug1HZ2/cBKy/dPNNHYOxrLSkWgwcXWGqzQWw8k9FmrrIcu8CNGjKDAOgm8Jmm/9kCjS34Wpl4OoTTirLoZq9tj8eLFLdp7PegbnNqyn3nmGUaZRdhvrapxCB5MTk1ns2bNslq1atHzDBHpffPYY4+5oRsef/xxq127dmbvku+vT8ePH3c9pPVl3a8BJJmiLOyBBx6wUqVKuQ9vBUBqJtKHuVL/+s8a7dS2r6H427Zt62qKgscOKVCggBvpOtq9/vrr7vavv/5yt/rA8kZy1nQx2Z3+76jwfuLEibZ7924rW7as66yg0XizY+1ZSrz33nvuW73XpKhu1erUIdddd52bXihae1XpXFx88cXuy6imiQmm+s5o9txzz7kMbN26dd11Su8f9c77+++/rVevXr4tY8ihERwzeyeQMu+//7598cUX7mKvD60iRYq4D3nNLaM3YrS7/vrr3cUtnNNOO81N7RDt1D02ki+//NKiJZ3vzX2m/0cqxldnhQYNGmT2rvn+/9GMGTPs9NNPt2ikqSvUozXa//9EMn/+fPv000/dlCcqY1AQVL16dbv22mvtkksuMb8iKAIAAKCmCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKgMwze/ZsN6K0brMCTZyq/X311VfT7Tn0+BopOKvSvic0Snhaeeihh6xz585u/q3MoPeAjlPvCc9///3nlg0dOtT86JNPPnFz3f3555+ZvSvwMYIiIImefvpp96F/xRVXuElDs+uUDvqBf2lqia+++spuu+02y5UrV2bvTpbRunVrN8HvuHHjMntX4GNMCAskwcGDB23BggWWI0cO27t3ry1evNiaN2+eqsfUhLSaq65EiRJptp/I/l5++WU3d58msvUTTfr5xhtvWKFChcyPcufO7QL+UaNG2fLly+2cc87J7F2CD5EpApJAE+8eOnTIOnbsaDlz5nQTHaaWZhevUKFC1M4yjuRbv369LVu2zFq2bOneh34LOvR+LlmypPmVvsgou/bRRx9l9q7Ap8gUAUmgIEgfpjfddJOrSfj555/dzOH6xh5aazF58uSIj6Pt3377bfe7aomGDRtmgwYNsjZt2gS2URPdueeeaw8//LBL9f/444+uua5u3brWt29fO+OMM+yvv/6yiRMn2q+//mrHjx93M7r369fPTj311MDjqN7j3nvvta5du1q3bt3i7IfqP2644QbXpKD6FO/v4H3whLv/77//7p5/xYoV7uJ8/vnnW+/evePNmK6ZwpVh0/bbt293F84qVapYhw4dXH1HamhGe13cvvvuO9u0aZObifuUU06x+vXru30uW7Zs2NdGmQLty7Rp0+zvv/92QamyLnfeeafly5cvzn10bqdPn+7qUXQfZUPatWtnzZo1sxtvvDFw/pJC2cX33nvP/vjjD/d6av90f2UvktoMNmvWLHcbLkukWp45c+a4/dV513v233//dYGA9lH7P3PmTPvhhx/c8gMHDrgs5UUXXeSa4ooXLx7vMbds2WLjx49399G5OOuss+z2228Pu2+h7ynP6tWr3X6r2W/r1q127Ngxd+wK7HQO9Z4I5jXf6rWaNGmSLVy40GVny5cv717X0PeN3gczZsxw2+nxlc3VsdSuXdvta/D/0WLFitl5553ntu3fv7+buR0IRlAEJEIBiC7+ungo6Lj88sttyZIl7oM+NFjQB244GzZscMFB6EU3kn379lmvXr3cRUvPp4v+N9984z7IdfFTAFK9enVr27atu8guWrTIXTh0wU8JBQa64Lz77rvubwUtkY5JAY4CCi1v3769rVmzxl3w161b5y5kwceowEkXPTVV6Fh2795tX3/9tT3yyCMuYLvuuusspXROFehoP9QUWaBAAbfs888/t2+//TbQzBTq/fffdxf5Ro0auWDu+++/d8GKgirtV7Dhw4fb3LlzXSB69dVXuwu6gtrffvstWfs6YcIEmzp1qguqFHDqfCvjo6B31apV9sQTTyTpcRSM6zgrVaoUcZsXXnjBVq5caQ0bNrSLL744EOwogFbwoGOuWbOme1302n344YfufOh8BWctFUTdfffdtm3bNhd0KyDS+b3vvvsivs/D+fjjj917V0G9/g8dPnzYBUh6b+i9NGTIkHj3UQCm59H/g8aNG7v7KFv76KOP2rPPPuv2R2JiYuz+++93x6v32IUXXuiCIgVzep/p/07oe+Dss8+2n376yb2G3uMAHoIiIBHKEog+YEUXtZEjR7pMjwKJ4GYMXSxCLxi7du2ynj17Wt68eW3AgAFJek5lo/SNWcGPZ8SIEe4CpmX6Zq+mPO/CMHDgQJcx0bdyBUvJVaRIERfgKdMgocFeMD2PLk7BNVVPPfWUCx5UABy8/JlnnnEBRWh9li62r7zyisu65M+f31JCTTUffPCBFS1aNF7goOBxypQpYc+3AlplIM4880z3d48ePdzx6qKr/fKaf7SdjqlatWr20ksvBfbzlltuse7duyd5P5XpU0CkC/CTTz7pghrvddNrqmyXMheJZc503vS+0EU9ocySttG5VVFxMAVDOl+h2RG95gq0FSzeeuutgeUKWhQQ6ViDlyvb9NxzzyX5+HW+lMUM3mcduwJOfbEIV9+jgKxGjRo2evRoy5Mnj1umzJIeR0GpF8woEFdApKBY78FgysYpuArl/f8gKEI4/mqUBnxGH6rz5s1zxaOXXHKJW6aLij6E9W1U3zgTcuTIEdeUoKa2Bx98MMnFnbpwhl54vWBDTUTBmRx9M/bWZUR3Y33jDy0yV8ZKlPUIFhoQeedPzYVq9lCmIKWU1QgNiLyLf8WKFSO+Njp3XkAkymzpeE6ePOmCSo9ed+nSpUucwE1BU/D5T4yCDXnggQcCAZH3uilY1u38+fMTfZwdO3a4fQzXzBWsU6dO8QIi0f3CNRcp2Nf7W0GgRxkxBYm6T3Czqqj3Zbly5SyptC+hQZyO+ZprrnG/R3qdFPx7AZHUq1fPZX3CvWfCZWD1JSTc8XpNzGpqA0KRKQISoMyHmnyU0Qj+4NWFRBdN1W1E+rapb8P6Bq6mN2V2WrRokeTn1UUnNIPi9VKrXLmyu6iEW6dv2OktXCZKzUKiQCc0S6YsibJLCiIVJAZL7f6qbuqdd95x2QI1fwWP2xN8QQ2mZqBQpUuXjrf/a9eudbd16tSJt73qVZJK+6ZgKFJxvt5Xqm1KjI5PEivMV9NYJGpmVaZHTa461uDzFfxaaH+UaVGAGRpwKDOq4F5NukmhAEuBoQI/Pa46LOj/Rrjn9egYwwXUep/p/1NwtlA1amoyVZCjLyuqx1N2L1IhurKiwecTCEZQBCTAu5B5TWfB31r1Aa26BdXyhMtYqEZDdUQKhhQUJUe4bs3et+2E1oVrLkhr4b59e8+vTIZH5+WOO+5wwZAuoiqA1sVOFysFHAo4dcFMKZ3bxx57zAUcCkyVRfACSTUJKTsXTkLnL3j/1VylfVVmLlRwQXtidB4UfCRUgK9AITFecJLYGFmRMkkqwB47dqwrNr7gggvc+9d7TNWSBb8WKsJO6LESy1YFU4cB1RSpUFoF6rqvzreCstDn9UQK/HS/4NdIdVGqoXrttddcwKdmTtExXnvtta7pLjRL5Z2/lDbbInsjKAIi0MVc9SCS0CjLyhiFNqeo3khjtigYULNZZvCySeFGPfYueukdUOocqgeQmqCCvfnmmy4oSg1dCNVEovogXXCDqeknLYI/XYCVUdBFNtjOnTuT/DgKwvRaqOA4Nbx9UPFxQkKziF6wrBorZRRVnB4c1Chro8L50H32Mn3hRFoeSs2pCogUtKqGKDhAUcbHK+xPDQWt6pWpwn0VgqumTJkpHaeCJo38HRqkSuhrCghBERCBsg26KKr5JPSi6wUb2kYX/+CgSD1rVIiq9L+KP3XhzgxeM0G45gn1OgpHmZHUZG+C/fPPP+7Wq8UKpp5XqaVu5aodCn1tdLxal1pVq1Z150mFwGqWCZac3mdqzlIPt40bN4Z9HyWVapkUACSlqS2UAjtlZtQcFprlUY1OaLOm9lPvW9VYaV1wE5r+TyT1+L3XQT3hQjM2afEeCA0G9X7Qj3oWqiOCMrmhQZF3/tQMDYSi0BoIQ9+e1TNGH7QqlFbvrtAfLVdPIBU3e8WfuvANHjzYXUQ0LUhmfhtVMbGyHV4TX3CWQ1mDcNQMqAto6EUyJbyu0Aoqgn322Weuxii1VMCrwCs4a6P9Vo+utGhGVG8nUbNX8PlQwXNyMhxewKxMSbg6Fj2ehn1IjN6LCtA1HpDq3JJDgZDek6olUvd2j7JO4YZxUECksZCUEVI3/tDemHqfJ4VX8B0aAGkQSmULU0vnQj+RMlnhvpB4nQFUewSEIlMEhKEUvD5s9cEZruAzuNeVmgGULfK6ECsAUf1MuCYc1Upk1NxiKjTWOEBqxlNPNn17Vu2KgiQdl5fJCabhBBTgqSu7LsBqflBvs5RcQFq1amVvvfWWu+iqIFoXSNUS6dxqWAMNMJgaqhnRY6t5Tt3ZlbnzmjuV5fEKpVNKr6HqwVTEq6EXlPFSFk21TMr+qFkoKaNKa+wcNR++/vrrrmeY/ta50PtEr4ECBh2DMhyJUcZKY0LpOL2gLSm0nxpnSQGO6tv0XlATqjJY2pdwo1CrZ5xeK9XGKbBV8bKapxTQqibJO9cJ0XnSj86Zgj99ifDGEFL2SEMRpIZeY30J0XPo/KnWS8MIqGlWx+wNWxH8ZUe97FSgnZqsHbIvgiIggQLr4JGmw1HhqAIh9axRF2Ivo6BuxuG6Git7kpETrupiq8BGx6NeR3p+XaA1qJ8KU0NpnZpZdMHXxVqBhgKClARF6tGlc6MBCnUu9Fjq+fX888+7nkJpERTp2FQ/onodBZy60OpiHjoIY0opG6gLqLKGeh4VJ+tCq2YonaOkjois10HBpTJMuijrHCsrpxHAdX6TGuAoezNmzBhXx5acoEh0XvScqnfTeFfKHmkoAgVJ2odQCpRUmK3XT4M7avBH7/VTsJSUoEhNZsqQeaNiK+BWz0qNB6XgMLVBkXpCapR5NVlrwE6dVwVG6gihAFRBWDAdg4KyPn36pOp5kX3liAnuGwkASJSakDQwpQaJVAYmIylzo2EOVBwdbsRuRKbBM5Ud07nzau6AYNQUAUAEavIJ/d6o5hnVZCkLosxURlNmRBkfNYsi6VQHpSZtjc5NQIRIaD4DgAiUkVGzjJq+VDSvZj81m2kMIzU7hRs5Or2pye5///uf6xmmJsmkTiYb7fTaqZnQG0kbCIfmMwCIQE0tKk5WD0P11FJvJo2grCaz5Nb0APA/giIAAABqigAAAGIRFAEAABAUAQAAxCIoAgAAICgCAACIRVAEAABAUAQAABCLoAgAAICgCAAAINb/AS1yHyIH6rk7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Background provided. Make sure there is enough statistics.\n", "Creating the 100% polarized ASADs (this may take a minute...)\n", "Creating the unpolarized ASAD...\n", - "A = 0.70, B = 0.59, C = 1.54\n", - "Rmax, Rmin: 1.296362263993903 0.7045013854812356\n", - "Modulation mu = 0.2958027043311636\n", - "A = 0.70, B = 0.60, C = 1.29\n", - "Rmax, Rmin: 1.3015395182787968 0.7007339063841972\n", - "Modulation mu = 0.30006172208759263\n", - "A = 0.70, B = 0.60, C = 1.02\n", - "Rmax, Rmin: 1.299080696407923 0.7020257337541459\n", - "Modulation mu = 0.29836242273501756\n", - "A = 0.70, B = 0.59, C = 0.77\n", - "Rmax, Rmin: 1.2934099578667642 0.7030000374258599\n", - "Modulation mu = 0.2957358066895296\n", - "A = 0.70, B = 0.60, C = 0.50\n", - "Rmax, Rmin: 1.2988200755168664 0.7015119332421038\n", - "Modulation mu = 0.29860450148240125\n", - "A = 0.70, B = 0.59, C = 0.25\n", - "Rmax, Rmin: 1.2886829648874454 0.7034352676970612\n", - "Modulation mu = 0.29378160774679707\n", - "A = 1.30, B = -0.60, C = 1.54\n", - "Rmax, Rmin: 1.2982384590994411 0.6996091008132603\n", - "Modulation mu = 0.2996371546547519\n", - "A = 1.30, B = -0.60, C = 1.28\n", - "Rmax, Rmin: 1.2986652250227264 0.6994399944096454\n", - "Modulation mu = 0.2998967345590093\n", - "A = 1.30, B = -0.60, C = 1.02\n", - "Rmax, Rmin: 1.2993691627841086 0.700069122523783\n", - "Modulation mu = 0.29973420268285\n", - "A = 1.30, B = -0.59, C = 0.76\n", - "Rmax, Rmin: 1.295186663981397 0.7090702970204761\n", - "Modulation mu = 0.29243573971070924\n", - "A = 1.30, B = -0.60, C = 0.50\n", - "Rmax, Rmin: 1.2962375037496803 0.7035416073846245\n", - "Modulation mu = 0.296380681778834\n", - "A = 0.71, B = 0.59, C = 1.81\n", - "Rmax, Rmin: 1.2980745189958551 0.708486741516934\n", - "Modulation mu = 0.2938299413436539\n" + "A = 0.72, B = 0.56, C = 1.55\n", + "Rmax, Rmin: 1.2765994095848665 0.7208759491498263\n", + "Modulation mu = 0.2782129241319227\n", + "A = 0.71, B = 0.57, C = 1.28\n", + "Rmax, Rmin: 1.277565221044138 0.7145656302116623\n", + "Modulation mu = 0.2826117523743843\n", + "A = 0.71, B = 0.58, C = 1.02\n", + "Rmax, Rmin: 1.2811347880756978 0.7115098904640041\n", + "Modulation mu = 0.2858637587254843\n", + "A = 0.71, B = 0.58, C = 0.76\n", + "Rmax, Rmin: 1.2832547944023935 0.7105732262477737\n", + "Modulation mu = 0.28722716414020205\n", + "A = 0.71, B = 0.58, C = 0.50\n", + "Rmax, Rmin: 1.286333723259795 0.709611209311379\n", + "Modulation mu = 0.2889471069752825\n", + "A = 0.71, B = 0.57, C = 0.25\n", + "Rmax, Rmin: 1.2795091218061168 0.7209409818293889\n", + "Modulation mu = 0.27922123074283006\n", + "A = 1.28, B = -0.57, C = 1.54\n", + "Rmax, Rmin: 1.2816992490648778 0.7193171518560963\n", + "Modulation mu = 0.2810482197696847\n", + "A = 1.28, B = -0.57, C = 1.28\n", + "Rmax, Rmin: 1.282324586598261 0.724706750909539\n", + "Modulation mu = 0.2778321520286452\n", + "A = 1.29, B = -0.58, C = 1.02\n", + "Rmax, Rmin: 1.2897273462156322 0.7181465237202669\n", + "Modulation mu = 0.2846696852096655\n", + "A = 1.29, B = -0.57, C = 0.76\n", + "Rmax, Rmin: 1.286606127370973 0.7197829170713229\n", + "Modulation mu = 0.2825091234772001\n", + "A = 1.29, B = -0.58, C = 0.51\n", + "Rmax, Rmin: 1.2880870304466803 0.7157297168971504\n", + "Modulation mu = 0.28563356120674255\n", + "A = 0.72, B = 0.57, C = 1.81\n", + "Rmax, Rmin: 1.2815309169458988 0.7196863013802212\n", + "Modulation mu = 0.28075143988398316\n" ] } ], @@ -493,7 +515,7 @@ "\n", "Background duration: 378.9 s\n", "\n", - "MDP_99: 16.081 %\n" + "MDP_99: 16.837 %\n" ] } ], @@ -529,7 +551,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "modularion factor: 0.296 +/- 0.000\n" + "modularion factor: 0.283 +/- 0.000\n" ] } ], @@ -611,7 +633,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "id": "da3b6513", "metadata": {}, "outputs": [ @@ -641,7 +663,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "id": "f19a7f75", "metadata": {}, "outputs": [ @@ -649,17 +671,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "8114 -6519.425425657893 656.0337319379967 0.29616350838989125\n", - "Q, U, unsubtracted: -0.8034786080426292 0.0808520744315993\n", + "I, Q, U, mu 8114 -6825.917273322408 686.8752520880079 0.2828654127255937\n", + "Q, U (unsubtracted:) -0.8412518207200403 0.08465309983830513\n", "Unpolarized bkg (or simulation) provided, subtracting its contribution.\n", "check I(src+bkg) vs I(src): 8114 8111.672527983004\n", - "Q, U unpolarized: 0.29876762836269133 0.12365691531783854\n", - "Q, U unpolarized uncertainty: 413.49740057864454 %\n", - "Q, U, subtracted: -0.8030522602225199 0.08102853550462827\n", + "Q, U unpolarized: 0.31281332049973815 0.1294702859721143\n", + "Q, U unpolarized uncertainty: 326.9602341890562 %\n", + "Q, U, subtracted: -0.8408054293956954 0.08483785671606878\n", + "Q/I, U/I, uncertainty: 0.044634633579211894 0.05541113952798577 0.21126910228240167\n", "\n", " ############################## \n", "\n", - " PD: 80.71 +/- 5.23 %\n", + " PD: 84.51 +/- 5.47 %\n", " PA: 87.12 +/- 1.88 deg\n", "\n", " ############################## \n", @@ -668,7 +691,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAJvCAYAAAD1FlDHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydBbhUVffGFymIipSCCNIiiDQICqKIotjd3d1+xmd3t9j+7U+xExVQBJSQ7pYOBaR7/s9vD/tyZu70nTNzzpz1Ps945d6JM+fss/e737XWu0qFQqGQKBQKhUKhUCgUSVA62RMUCoVCoVAoFAqgxFGhUCgUCoVCkRKUOCoUCoVCoVAoUoISR4VCoVAoFApFSlDiqFAoFAqFQqFICUocFQqFQqFQKBQpQYmjQqFQKBQKhSIlKHFUKBQKhUKhUKQEJY4KhUKhUCgUipSgxFGhUCgUCoVCkRLKSoFg7dq18tFHH8nEiRNl0qRJsmrVKrntttvkiCOOSOn1PL93794ycOBA2bBhg+yzzz5yxRVXyN57713suYMGDZK33npL/vrrL9l1113lyCOPlHPOOUfKli2Y06lQKBQKhUJRuIrjv//+K2+//bYhc40aNUrrtVu3bpVbb71Vfv75ZznhhBPksssuk+XLl8u1114rc+fOjXjuH3/8IXfccYfstNNO5u9dunSRd955R5599tksfyOFQqFQKBQKb6FgJLJq1arJ559/bn5OnjxZLrnkkpRf+8svv8j48ePlvvvuk27dupnfHXLIIXLGGWcYZfGuu+4qeu5LL70kDRs2lCeffLJIYdxxxx3lvffek5NOOkn22msvF76dQqFQKBQKRf5RMIpj+fLlDWnMBL/++qtUrVpVunbtWvQ7QtAHH3ywCUtv3LjR/G727NnmcfTRR0eEpY8//ngJhUKGgCoUCoVCoVAUKgpGcSwJpk6dKo0bN5bSpSN5NHmOX3/9tQlXozLyPBCd91i9enWpUaOGTJs2Le5n/P333/LPP/9E5FQSVm/SpIkhvQqFQqFQKBROIFwtXLhQOnToYAQtL0CJo4gsW7ZMWrZsWez3VsGE8EEcLfGLpWzyOycxjMZXX31lcjAVCoVCoVAo0sGdd94phx12mHgBShxFTBV1LNXP/o6/AxuyjvdcKrvj4ZhjjpEDDjig6N/Tp0+XRx99VHr16iXt27eX2rVrZ+W7KBSK1LF+/XpZsWJF0WPlypWyZs0acy/zIAXFolSpUiafmQfFcfb/K1SoYO5/HuXKlSt62H+XKVPGtePfvHmzbNq0ycxN/Iz+/3Xr1pnvY78TP/mdE0Ra+B6VKlUyj8qVKxtlgwf/rxERhSL3mDZtmixatEh22WUXeeGFF6RmzZriFShxFJEddtihiBQ6YX/H34GdQOM91z4vFghn84gGSieT+R577CE777xzib6HQqGI7ZqASwLpItEPS6IghVWqVDG5zhS4cS/aBxM3PyFX0eksfsSWLVtk9erVJl3G+YA081i6dKnZ2Frw3e38RWTF/j+kkvOmUCiyC4p12bT27NnT8AOQiF/kGkocRcxiESvMHB2adoaud99992LPJScyXdSvX9/kRyppVChKDojgggULZP78+SYvCHJIKgpkyU6+lviQX2yJEHNAvn1YsRTDR5YiPUiZW0AB5f0TfQYbYeY0J8meM2eOjBo1yqicADWV88f8xcaXR61atVShVChKACIFS5Yskf3220/23HNPmTJlingNShxFTGHM2LFjjTLhVBQwEicMVadOnaLnAS5ks2bNip7HpMounXB0JmDRAjNmzDCqBpOvQqFIPsFCDiGJlixCEgH3LfdRgwYNTFK5JYuEmFUlSw7IH+cvei5ijoTgOgklixwWaFwPzu1uu+1mSCTpNzz4t5vheoWiULB161azITvooIM8fc8Ejjgy0SH9MqFZhYGLhJUOu33r40i+04ABA6Rz585FO2jUwbp165pKa0iivbBffPGFmTB5n5KACZkJuF27dsUUTYUi6BMqBAVyaB9s1vg99zEEBwXREhY2Y0oQsw821oT0ediNtPP6WALPY8yYMUXXh/wsrou9PiiVen0Uiu1AOJo3b54ceOCBniaNBUccP/30U5O7Y0PMgwcPNpMZOPHEE43a8Oqrr8oPP/wg//vf/4p205DFPn36yMMPP2x8GgnhQAaZ9C644IKIz6ANIa0Mb7zxRunevbvMnDnTGI8fddRRUq9evRIdf6tWrUxIbcSIEdKxY8eYOZEKRRBAfs/ixYtl1qxZ5h7DuorwKcQFBQvygZLIT0KlXp9oCx1cF8ghjzZt2pjfoUCS3G8VYfImhw4dav5GZIWNOIowPyGiSiQVQcXs2bNNu2Q2Y36YywqKOEIGmagsUBB5AMrYIY6xwIV67LHHTFcYyCdV1E2bNjUEEYXRCRTIBx54wFjr0GYQknnWWWfJeeedl5XJt23btjJ8+HAZNmyY+Syv+DYpFG4TRQpYLFFkIiUygFrFPUjeHz/Z7BHKSQZIi81r9AsgxnxfflLtXQiA1PNgUwz4XlaZxB+XSA+RHXK8yeciLYjNANXdCkUho9w2xwXug3HjxplNFLzDDygVcvpNKHIG8iQvvvhiee2114oZirPg8XdCb/lO2Fco3ALRAUsU+Ul6CKoTxMGqURCJdO4BqoJJR7EWWn4CUzEPzkFQ1De+L8U29mHJPgsq190+gnI+FMFBqW32XtRXsCmmGCYWEnGFfEFZiQfBpGmLb1BdmEyxBFEo/E4SKGah6IzJ0KaREHpmQoQoYoVDYUsmgDQSFiWyQJoHO3olHP4Cc531oeQn6UIA8khFPA/dTCsKYS5cs2aNydPGkg+13U/QO9DjmDBhggnhYR4eL9SuUHgVLPzkJ1L0xYMCsIoVKxo1vUuXLkZZzNa4RmnkvZiE/UgYIU2EciHOfshzcgs2TM3iyjlBPXY+II6cIx66OVD4EZs2bTJzFePZ+jT6CUocPQ5yg4YMGSK///67yXnU3B+FHyZFws8oi/R3p2MJijn5O3idoipm20ibz2QSRmn0K5GAKPE9vGT0m09wHW2omnmPTQjXGHLNYkuqAwTbkkjcL/x67RXBwebNm82cyLgmt5dICRskPynp/jnSgILJsFOnTqZCHPKI8ohio1B4CSzmtMiCLFI9S5gREkeFLWQRGxY3F3WbG5dK4YzCn2CzwdzHA5LNGMPw3bZV5O+WREK+lUQqvEga16xZYzY85DfaIjh+r8RRkVUwCaI2/vHHH2anosRR4QVA1iCLo0ePNj/5NwSREDTqItW0uYaShWCA62xzHq1SyyIMiWSO5O8QSBZnVSIVXsCWLVuKSCMKup+L4JQ4+gRMghiMM9BsJaKqK4pcg7GH5RVkEQsJFmkscnr06GGURTdb5SkUscCcCDnkQeiPuRESydiESFp1hw23n1QdRWGhdOnSZoyylvuVMFroXeQj2MGGUSgm54SwlTwqcgHyySCKEEaMuUnsJv+WikDtcpQd2FBrtvM/gzZHMifyYIzacDbjd9WqVWbhhkTqeVbkClscFlOFEi1U4uhD4G2HaShdGPbff3/dRStcAcoNxS2QRfIWWZSxzaFjUqNGjXThdYk4KrIfzqY4y6qQ1i9UQ9kKt7F169ai/NtCckVRxuFDMAlCGCmWocMM7QmDbN+hyC5QFP/880+jMKLWYMh9xBFHyL777lswO2YvwqagqOF19sHCDUnkwTm2uZA2lM245m+6CVdkkzSuXr3a/D9jq5Cgd4lPQStCCCMFM/jkYZ6sUJRkkkNdRMWmiwu5YrS/JBSdjyKXbGNV/wH5PgTZ+ZCDU0qeR5mIRWBoc3r++eeb///tt9/kwAMPLEY86UAxb9486dWrl3zzzTfFXgdQ4KpWrSotWrQwz+NvXO94n2Vfw3vTuvW///2vb9ITWLgff/xxM67ZZOOJ+9Zbb5kWsZxnimogkNbeB2P6J5980ligoVAyr15yySVyzTXXJP0srILuuusueffdd83n0AmE9rTk/0aDYjLO46BBg2TZsmXm3J5xxhly0003JSUZmNxzTIwBPEsfffRROfrooyOe89lnn8lll11mPkfzjvNLGitVqlRw0Rkljj4Gkz8VrIUkgStyCxSXUaNGmUWVEB5pECeddJIpdFEV25sgxPrBBx8UI46//vqrIY3xfCDvu+8+Y7gOWaLAiT7R1113nTz11FPy1VdfxWx5Zl8DiYLkvPzyy/Ldd9/J+PHjfaGiYArPd4CYsQniO8cqqiGKA9E++eSTpXnz5nL99deb+XXOnDnmnKYCyGifPn3MOW3cuLEh30ceeaTpxe28VqQZdejQwRC6q666ynwO0aO7777bKP1ffvllws8599xzDXmEMGLTxjFjrl+vXj3zd64VBBTSqqQxP9i6reMRpLEQ51Eljj6HVQpoXcRkwuSoYS5FMjBeIIvkLzLJsViyABGWVngbkJFPPvlEnnvuuQhlEjKJSgxZigXSDdq1a1f079tuu0369+8vRx11lBxzzDHGgzM6FcH5mosuukiqVatmiCbk5vTTTxevg4p/2lzWrFlTRowYIe3bt4/5PNQhVDwU2Pfee89sqFAQbYgbNTgRAeBe+uijj4y6CWkD55xzjknvuOWWW4yCaYEiySYNIs59B/hs7sN33nnHqJVVqlSJ+TkcF9cMAty1a1ejKvLeffv2lUsvvdQ854knnjCEkeulyC1CoZD5ac29C3UtLiz9NMAgb4ed8ZgxY4oGr0LhBOOCcDQL14svvmiIAobyqCsnnHCCkkafAMKGq8JPP/1U9Duqh1G7CHemg0MOOcSETEl3gTCl8nxAOoMfgPoKaUwGSDe5vQ8++GBR1TUkGSJNGJu/Qeg4z7HAuYdYQgAteI8LL7zQqImojBZ0CgHR4X5IrrVsiQfURO5jSywhJqQtEW4HiAePPPKIPPvsswUXHvVL/+l169aZfxcqaQQ6sgoETDqtW7c2ExRhJIXCgsWOHK8XXnjBLJBMbBBFQmrdunXTVAePgIWGxT7ZgkNIEiuuDz/8sOh333//vekDftppp6X9uWeffbb5+eOPPyZ97owZM8xPSJUbIIyOYprKw4YDs4Gff/7ZhKshXjgHcE/wHf/zn/8Y9Y6/cR/xuaj1EDXnBp10D/qv8zwnCEkDlH0L7jkAqeT3zNn/+9//TBoAuZSJ2spCGBs2bCgPPfSQIe/vv/++eQ/7OaibqMSokYrck8YtW7YkJP6FAg1VFxBQjBi4qI7stJnIFMEFC93w4cNNKAuy2KxZMznuuONMQn0h74b9ChSraOIRDyiLhJq5rqhiEAgaBNC5J10wHiBHlhQ6ARmFLKF0kU9HviCfR3jbDfAZBx+cuIjIAuJk8/pKCopIiNoce+yxhtA9/PDDJhz8/PPPm7AyJB1CR/iasDa/wxeScCTng3A4m/do2N8tWLCg6Hc9e/aU+++/35A/ckst7rjjDpOXmAyvvvqqyUMmNA7YABI54D7//PPPTSRBkVvSuHbtWjN+4hW2FRoK/xsGDCSBu6kIKLwPFjdyrgiR8f8YdZOcHy9vSuE/nHLKKYYwUNABEeEnOY+ZggUPIhSNQw89NOLfe+21lyGpbqU1kKPtDMEnQioh6FQBGWTxJ2fQnkdUeTZfr7zyiiHMFLzYXtj83kkgeW2soiTry2nDlxYQXlTBE0880czV3377rSGSfCcKZpKlC1C0M2HCBLNRoKAN9RW18sYbbzTXCPWScDWkhlQUvpfCHWzcuNEo5WwsgkAaQTC+ZUDJIzsgcnM0dy0YQBUiJI1FE5NZmzZtDGHUykp/gGgBZAQSl6wSE4skSB2pB5AWXosKlSn43N12263Y78mFJXLBgkhOHmFcZ+4c5OXyyy834VKUy5deeqkoFJvob/HA5iaarOYCtigouuAHZRfiyCYM4mhBOJJqaAiD7UjDT8KV5EhaRZ970vn+AKWQXEjyjTkvlqRC/m699VZzDMk2/owR7NgssBiiUp7QOmH3m2++2eSschx8B65bqkquIj2UL1/e3B+FWD0dD0ocCxjk64wdO9aQCCw1FIUJ1AzIIqSRzQKVtYSuUg17KrwB1CH7SAUQgosvvtgQBvLaKJLIBBTVEZKmG1A0yJ1zVmI7AWkitIvSheUMD8grXoiMvXh/S0SKmKvwNUwFkOdsLdYodxDd6IIVS6YpjIkFWhtCICGA5CpyHm0IGwJJCNu+vwUEmnx0SxotqGzHwod8yXTIM8U2hLmppkb1IqzOuSYtBfD/qMRKHLM/75YtW9aMgSCRRqDEsYBByIIdMMUyDGyrRCoKAyhNtnsQagULfOfOnYuZOSsKE8cff7yxYGHTQHFFpqDKHhx++OFpvQ4SCKGy5tiQHQgReXZ0tor3t0Q2MeTp5SPHkc0WIXJbHGNhcxOTmeDz3ciJJFyNImsJ5MCBA83fSRexIAoUK20EIg7Y/KUD67V55plnFh0zx2MBaXUW5yhKjnXb7JqCRhgtlDgWOCiIsAUzDHINW/sftlABhRHgTQdhTFSNqSg8EK4kl2327NnFOoekCjwBKdRwEo90EK2O8m+UO4hjvL95MceRnFFsbN54440iyyHw+uuvG1XJGWJnw0aOYfXq1c3DqnoofoSM8XFk80ZREb6MpIxAFPn+hI4J/VPBTqjaWcCIUgjpjGXEHg+8B24JEFQbHkc1xRDcgmKZbJ6roGPdNtJI+kEQKqhjQYljAIAJLeSRwa7wL7iGI0eONGE/1AlynCCMfujgoXAHdBFJFVj2QChs7jOkEZJGZILqXlvIkSpQ5giPYwh+9dVXS79+/Uz3Gtr0JfpbrnMcIVYUsVj18Ouvvy7qBsOxkQOMQnfBBRfIm2++ac4PFeooiBitU73uDDWj8KOK0unlnnvuMb/jXsRAn+cuWbLEhP3/7//+z3wOn084megPIXyIJdeCrl8UwhC6p7iJ36HGplMZT+HLqaeeWmTHY0ksaQK333570fe17ScVJQNr6IYNG8y9Eq9DUxCgxDEAYCfqDJWgWKW7SCjyb9zNIo/xM6oMqojmMGavT7QXQEQglcKYTEEfZWdhB72qn3nmmZi9qlMBuV1ffPGFIV8YZ5MqAYkhdy/R33INlEAMzp19nHmAs846q6h4rHfv3iadB9WQkDqE+umnnzbV66kAdREzdWevaggbKQBs9CCP/J5uMZBozgv5jtzTKL78Gx/GVEHrR5RG5gYnsErivbASYu7AWogcWEXJgfpcsWLFQJNGUCqkbUbyAvKDSGx/7bXXInJq3AaJ9KhW7FBtmEXhXaCSENYiHMnicthhh8X0iws62AyR88Y50k1R/oACDkHFIiidvwVpnEIgUTUhIBD2oFi4+BkUbXGdst2NZ30K81a+uEIi6IgNGKgSRG0g3EIeEv+v8B5Irie8R1U8iflU0GIHosbdhQsKnAiD2QILP4DxSZ4ex451Dz8tMUz0t6DChjjJk6R4hnw5VGYefrnmQSSNXC/r4anQloOBA5MTxRTkH1FcAUFReAcQBwgjYSY6eRB2wguPBVhJYzCIYzZb6bkNwroUXvCgupvwdCp/CzK4jylkYxOP4kjuI3mR/NQAoDdJI+kdQQ9PO6GKYwBBDhWhaiZzKu5QHhX5BWTBFr5AHgjr4cWok5XCyyAHkEe6f1OEN/HW7xH1kU08RuzkXKqylX+QlwppJF+XtALduG+HEseAgnwNZ+cBRf5A3imVj3jI2cIX7faiUARnI08ECBUS8ogBOsSR4jfNf8zvZh7S6OwEpAhDR2WAwU0B2FXRrQBLCrV2yW0YBMsPlF8KlbADUZN2hSK48zHWPBRMQCCXLl1qFEkIpRKX3BJG1GCiPRrxiQ0ljgpzkxAepQsJ4VENk7gPKuWw0yCvCYWxU6dOge1CoNh+H5JLpUUSwQUE0dq9EL6mApsCGiIQQTWbziWodmdODrK5dyrQGUphiCLEhcRsWn6pUbh7YCGgPRxdIqiWvvLKK+XAAw9U0qgwhBHFX4mjgjEAWSQSwbxMFxpUSD8VTvmxwQKkkbnYRuMUsaGKo8KAHRbkEeJItTVdDTQ8kj0w4Q8fPtxUTLOTpbsDRsB6jhUWEAQWLxYuHRcKwFzBBhNCY+17bPGMjpHsgfuOwiS7edNzmxhKHBVFIJcG8sjkpDdOdk286SCxcOFC00Gje/fumg6giLt44emnRREKC+ZixgRzBqoj3WcIZUMgdZxkB+SVQhpZA1XxTw4ddYoIWDNa1A8c7SnW0MkpczsH+gFT/IJn24UXXpiXlmsKhcL/YB6mYYMWz2QfqIyseUoaU4MyAkVMUGlNAcfixYuN56Pm4KWvMtIPd8WKFXLooYcar0w9hwqFItvFMxBJ7Hx0g59++hDrHOdT00PSg9JrRUywi8XnkbDIiBEjNCk7RXCeBg4cKK+//rpJsL700ktNpbqSRoVCke3iGex7qARGfYQEaeeZ1Odp8kZ1XcsMukVRxAVhEdoT0tf6zz//lLZt26qUnwAY96IyYuRNcdFBBx2khFGRMlA87EOhSAUoj6TBELomuoH6CKHUeSc10khalp6r9KHEUZEQVPRR0EHoVREb7PIh1n379jU5Rxh516lTJ9+HpfAZWMC0Y5AiXbCZr1KliimegTyiPhK61gK82ECZVdJYMqh8pEiK3Xff3XSVYYJip6bhkO2gCvaDDz4wVdP77befXHbZZUoaFYHH22+/bZTT2bNnp/T8xx57TJo2baqhwxKAXD3UR1JkiH5AIr1yPnv37m0KLb3gEYxKSyqWksbMocRRkVaLPPL3JkyYkO9D8QQmTZokL730klFjzzjjDDn66KO124CiRHY8FDzwMxbuueceQ8Ywg46FfffdV7p16yZ+AwUejz76qNx6661FqTCWeNoH6lmTJk3kqquuMgV7FrGet8cee8jhhx8uzz33nDmffseDDz5ovhvXN9bG9e6775aePXua1CIKZL766iujXGOrhvrIvM2cffLJJ0uDBg1MBTHG4l27dpWvv/46pWMg/aZXr16mf3azZs1ivo40HRs2j8Z5551njuOVV16RfACxA9LKT4i1FhKVDHr2FCkDUsSkMXbsWDPB8/9BBBPQ999/L6NHjzYqCYSRHaxCkQ0D8KAp+m+++aYp8Dj99NOL/e2+++6T+vXrm9y9QYMGycsvv2xadY4fP94QoOjnYYG1aNEi0wP+uuuuk6eeesoQKaIBfsS8efPkoYceiju/sIngu6PmtWzZ0nxvSCbPZ75GdeQ5bHIh0eeee64h1oRrP/30UznmmGMMmbvkkksSHgevgzxC8AcPHmxI6OTJk6VevXrm71yfm266SR544IGY6RYQet6D63H11VfnNI+X+4nvy9iAMKrSWHIocVSkhb322sssbuxguQlRAYIE1A5aBhKyP+6448xkrcUMCkXmeOuttwyBiZWTd8QRR5gca3DRRReZKmLIx5dffhlBNJ3PA7fddpvxUD3qqKPMe0OcCOX6DZAxrLyYc2MpzbVq1TKNBWrWrGncLyhmtEBZQ1lElezcubNRo8mFtMQJ9ZaCR85nIuKIcsm5hJSiUpKOQ4cxcrpxjQBPPPGEIYxco3g45ZRTTErCgAED5JBDDpFck0YNT2cPGqpWpA3CHSht5C8RfggKUBix2WEnz4TZqlUrJY0B2Sx8/vnn5trz0xkq9TJsaHv69OkmVEjBBIv7+eefbxbT6OehILG4E46EoF177bVGSYrGqFGjDFHjeRQY0AkJk/tMQJMBIhh4naYCSzh4XSrP/e9//yt//fWXvPfee+I3kBbUp08feeaZZxLm60Ea44HrSsGe07bH5hlCosjHRpVMBMYABAzSad+TsWTHEErkI488Is8++2xC1w1IKuF0SH8uwDFDei1p1P7T2YMqjoqM0LhxY6M+QqK4QQuZQDHhEpqmcpoioSOPPFInoYCAsNy7775rxrcd5ygt55xzjlFx/ADIIGHchx9+WEaOHGkIMLlohB2jn0fokedBBMkRxMf1nXfeKXoOkQaspiCNt9xyi7kPCHWiZv3666/G+zUdoFyBNm3apPT8GTNmmJ8QoVRw9tlny+233y4//vijXHzxxeIWICexcvtiAfKUzNYMhZGQLgpeixYtSnx8EEwcMgh9T5s2zRTN/Pzzz2ZeO/XUUxO+FsLYsGFDEzLnwTVjE/3888+bvzMO2EigRiYD15l7KpcgpUHn6+xCiaMiY0AameDweaxdu7bJsyk0sHB+/PHHZqdOyCvVBU7hf6AsQhohjDbv0P6ETDVq1MgQsGzBrV65bHbeeOONon//888/5t/RxBFyadWgK6+80pBDir8Il9ocwTvvvNOQJPINiTwASPTee+9tCATkMR2gctrPjgXIGCFaVC8IB/l8hJwJQacCWnyislrC6RY4toMPPjil56KW2tzARFXIKKWQu2wBhRHi9+qrr5p/M86OP/54eeGFF5K+ltecdNJJ8tFHH5l/kz9KYwNIJCo8qQCpgDHDPeU2WJf4vs48WEX2oMRRUSJwc7LYjRkzxvw/BLJQMHXqVDMpkntFn2nyiRTBAYuiVRqjwe8hCyy82QILuRsG++SkOYFiyLimmhlyaAFZdALFC+JIMQrEkcUY5Y7cXksaAfcFrgKvvfZasfdMBkgsudKEvGMhOoRNlOP9999Pa57hvd2uribX+aeffkrpuYlCy/ac3HXXXSbMjkqYTVx//fWmsAVSCgkklEu+tg1DJwr7z5kzxyjOFNcQ4ka1vOaaa+TGG28014XCJcLV3C98TvS4A3wOn0mY2y1Sx/uTQkWIXhtWuAMljooSg1AKiwq5T5DHZBOj18GESCI4OUYoKSyUfkysV5QMLODxKpz5PX/P9rhjwUPJz3TBi5UyEh0JsCQBNd1J8kg/cYLwJMdhvRhtWzvuiWjss88+5vjnzp0rzZs3l2zhxRdfNAV4kEv8ZPnsdM8NxSFOZRiCA8kdN26c3HHHHSbHs6TgnKaap5kMqLqEsyHu2Qa56TwAVc4cM64QKMjJnCEg4M5UBIqaqGD/z3/+Y5TRm2++2eSSMgbZSHCtolVYez+5ldqEMk0OJ5t9JY3uQYmjosRgEqBQhIWDPEDynfxqT8PuG5sKwkkk/R944IEFnb+piA/y6BIpjqnm2aUK7h8WPkhSrEXPVh2jqMQCpC5WZXK8StJktj+5GPe2aANFEIUoGh06dIiolk4X5PQR7iatwKmQQhYx7s8WIPyYbqcCVMR414T8Q8LCFMQ4u3UxLkgRgMRD9iGWJQXj7LTTTpPLL7/czNuoyoT1U7nuKMuQbqqpmes//PBDE8pmkw34f5ThaOLIZgWl0Y2NOISR88Q9oF1z3IVSckVWwGRDLhUPv5JG1BIS/cltI2+LkJ6SxuCC4pdEiiM5XrkE4UAwZcqUmKSR8WufkwkgLU5QjQ2Ztfl4EB4W/VifT64iZDfdrklW/UqlSjoT2Hw6DMEtIDfkK1MZHAsQc3L4+C4QPGsuTlg2UVoDhDSVB9cpHqhQtiFg8j7tY+jQoSZ1hv8nzzNbcHZyYQyRTwqRTwbrm3nmmWeaf0NyCWFb8P98l2hwnVGn3TL4pghISaP7UMVRkTWwcNjJg8kRApmNnXEuQI4mRsEcPzlA6eRpKQoThEbZQFAI46yq5ie/z2ZhTCpAASeMTaiVnDOnKolKxYJPdWtJwsKHHXZY0b9t1ax9T0gUf6eABuXLEko2Wqh3qPPp3jedOnUyP/EgzLZJN96D999/fwTBSQUUA1FMQwU615oNBJ6RiULH2cpxpDsM+aexwteosuQQkkKQLpYsWVJsvKJgMrZR/yj6g3ShmkIeCb3z71iAwFJQQyqP3Vhzr9hCJ0CxTKzvyTlN51qkCo6DULqGp3MDJY6KrIPJFuJIiIhJN1YnAS8dK/mMVIOillKtqSaxCgvGL2FOCmHIaSS0itKYa9II+EyKJiARWJ+gmqEAonYRKoTUka+WKVCDeE/a1/3+++8mX41cNUiRBZ1BIEiQxCuuuMKEO1HpUXswd04XFNlAlsiRu+CCCzI+dmxlIC6QZ4gspJHjRIFlQ5iqCsU1ppMNxNgWpqBWEgJNdM2zleOIYbcN9zphvRxj/Q0ShxejDW3TDpAQPYDsMv/iO0t4mXFDYRG5iYSSOWdPPvlkUXES3xnyyHlAkY1VwELhCxY+pBFYEJo+9thjjfWRPYZvvvkm4nWEw3lvnpfNFAEebrgRKOJDiaPCld0fkwqLD35wLL6x8pfyDRYZ1BOS5Jn0IQQamlZEA8KQzerpeGDs4TeXaAySV4bSB1kgXMgYRlG79957I3o9ZwI6IkFMKXaAENJZ5PHHH494DoUvv/32m+nMgt8jYVUKJiCZ6Xo4WkAY+VxCxJnmvvF6gCJLlIOCPcgWZufpzD1sIiHKKGgWkLJk9jn5BHmGVEk7e0bzAGeddZYhjhA9LJhQqyGFnBMMubFkYrNgwfhhc8R35kHRI6TSjkkq7FEaUR2dYMNNT21UajbjjI1o9fuTTz4xhVrZ6hqDYkp4XT0a84CQIi+YPHlyqEuXLuZnoWLjxo2hX375JdS3b9/Q6tWrQ14Cx/P666+H7r///tD48ePzfTiKEmLdunWhiRMnmp+K9HD33XeTyBlaunRpXj5/xYoVoapVq5r7MZe49NJLzXd34tVXXw317Nmz6N9r1qwJ1ahRIzRhwoRQkLB169bQypUrQ/Pnzw8tW7bM/LskWL9+fahmzZqhZ555Jmtry/Lly808XtJj8/q8NdmDXEG1XYVrYCdIDhPhFy/tCrEVoXsGYRNasWXTPkShyBQoNSh4yaqdCw0oYpiHo27y/d0GKi2hZ9Q05/8D5gKiJBQKEdql2wzKWbNmzSRIsK0Kre8iKqU9R5kA6x7WgFjejumCMYLSiCpOKF2jRLmHEkeFqyB0ROI1P5mgY/W+zSXI4yJkwyTGokBnCYXCC2BhhqyUZIH2Kwiz28pst0GeJiFxNo+EV/l/W31NWg1G6ORwkntJsRw5nEEF54aNPwSbohnCw5kAwoiBeLyCm3TAGOG4yGtU0pgfFFSOI0mykAK6G1CBRvUZvT7bt2+f8HX0aCVZOBZIJCbx3CJeP85LLrnE5JMo4gODcIgjk3M2JpBMPp+kbXLCqJxW2waFInjAwzGR6TfEkociDDb9kEdbcU0OaT7mb6sQ89kckyJ/KCjiSEIuyc2QApQkKu0IgWBhkMjqgcqzaFNdiCQ70likE0NaKg+diO66oCgOrgEVoISCCGHn6uYn9NevXz/THYFrd+SRR2oFnkKRIpFSKAgLQx4x8E5Uce0maaQDEPM264YqjflFwRDHiRMnGnKACz6eW9ZGgRw2Ksl4xANGz9H4v//7P/OzR48exf6GMazT70yRGggtQBixNsHQdv/993c995EdKr5ojA/GA5+pk45CoVCkB0gbaiM2a1RcM7eSB+n2fApppKMXn6/haW+gYGQXfPjw33NaCyBp9+rVyzRmx9srHeArhss/tg6xgG+Z03VfkRqwdoA8ovAy+bidukCaAZ0usKPgc3XSUSgUiszA/EkxE0bvKIDk5LpZzEUhDKQRqFejd1AwiiNVcISno9vd2fZGtM9yenMlAh5V+GKdffbZMf/+ww8/yBdffGFuGAxm6SIRS5l0gtwQJH4Lp+9W0MCkg5cX4Q87OWR7QiCXkm4WpBzQqYC8RoUiF2BesA9gDeXZyET/jbAbf+dvKDj825oac3/wb+4P/g1s+zvr+QhsJbL9vULhJmyXFn6iPjL+CF27Nfa4PyiGUdLoHRQMcbRdHaJhfwdxSxW2dVQsMkilHY3bUSP5TIxWaWvFriiWq78F3QvefvvtlI+h0GFJI62p2LWSS5qtiYFrgSExiiakXiunFdkCi6S1zLH/z1iGxEH8GHtOBYYxbdvwsZnh+U6CZ8kfr4muprb3A39zkk6n8gNQfpzk0VadclwcE+/L73jYvysUJYVVAMl7ZFxi3ZMt8mjHsw1PK7yFgiGOhI1j5cvZAoxUw8oMWNpVUewSq1vASy+9FPFvCi2o3KZXLH5f8arNCKHTmcSpOGrlXrjF1syZM00PUzoZlHTigYTSf5VFmvzWVFVmhcLCkkIIl/1JBT7KB+PKqn/AkjHmHv6f+9/+LloBTJQPxusgerZ7irPtJf/v7AHtJJCAIgWnB6Qlp8D6FEbPibzGKpm8v5NYKhSpgrHKmKHimgfksaQbE2d42osdxxQFRByZeGN5TNlJPlX7gNGjRxuDaCqzUwELxgknnGD6fZJLF696G4LEQxEJeqNS6Tx8+HBjl0O/6EwXLyYuSCOLJ63GYinQCoUTkEJLEK09E1ZeTgUPYmWJmrUCcZJDC36XyOIp2bjmMyB6yXLGoj/XqvexwPFwzE6F1C7s/D8baufn8V3tYs2xWEKpUCQaY8y1ljxSQJPpmGEsQhoZm7Z/tsJ7KBjiyMCF8EXD5hWmStoIUzPo02lYTy9bq3Yp0geqICbhqI5MOpn0hV2yZIkx8WVRJzxtw3gKhXNRgnDZzhMQRkuarFrI362KEos0OZVAv8ASzejvAuHkPrGE0hkq57wQAge8ju/Nw5JmhcIJ7h3WYNZbHszj6d4rTtJIeNqP91pQUDDEsVGjRkaxYuA5cyKwYbF/TwbUSaqzW7VqlZY6uGDBAvOTBGFFZqBDA4sSE0664PyT04hSQkGT7lQVVmFDNXPm+dmkfh4sdpYQOcmQl9pj5gKWIDuVS84P4XFrusxP1Emb+kNI3eZ38tBFXmGNwi15hEimMy6s+s/6nUhFV+QfBbN17Natmxl0FKE4ieB3331n+ozaXDdseeJVNGNMzS47XoV0LPsYlIs+ffqYnfvee++dte8TRDDpsIBxnqlsTwVcSzw3IZzkNCppDC6cqhlkh5AzBAcSCRm06SqQIhYnQmw2N1FRHJwXzg8KLPcVc5w9V1a55fxynom2cM5B0HptK7aD8cI8zhigINWOiUSw4wWyyGZFSaP3UTBXCHJItTNFKhAPWgVim4MdC31QLehNSh7jwIEDY4ap2TUddNBBMT+DCmq6j9AyDyLKrgpiChm94447AqdUuAWq9MgXBU2aNIn7vBkzZhifRgzZTzvttLy0wVLkD2wMSU9hgSK3ikUHVcwqFvanXwo+bDW0H4gspJuHJes2HxJQjMO/rRrpp2ugKDm43jZszb3J/8dbGyGNiC927Os48Qe8P0Olgdtvv90UtfTt21eee+45M3k9+uijJvScDIS4f//9d9NZJJ5qhRk44ehvvvlGnn76afn4448NaXnqqae0k0wWgedi06ZNDXmEHMbCrFmzDGnkufg0KmkMBlC4WGjAwoULTV4sGw0WJ8aALU6xlc5+WoicVdl+VCXtcdvQNcWKzKt4/Tkr0XMZheKRCog0kav+/vvvix8xe/ZsM9ZzaflmP/OJJ56I26KQMQGBjKU8Qhq5nxknfk51+OWXX8x54KcFQsYpp5wihYqCURwBk+4VV1xhHvEAoYwF1Am6xSQCXoOxelcrsg/skFAyyFFlYapbt25EeBpzb8zX6QijoY3CBqFQSCLRA0gIxVNs4ogqoPxDFlG52Ez4iXRFA/WORTRW+BxCgFMA+O233+TAAw8stghzj8ybN890y2Jzmy9w/FZhsmqkJQZWjbTP8cr1evbZZ02ONAu+BakvpCHZIqFoIDCcdNJJ6s8bB1xzqzz+73//M0LAfffdV/R3SCMbCqyhbO6sm3jooYdMZDKR33K2cOuttxq3kDFjxkjLli2l0OCNu1ahiAFUR0LVzgrpuXPnGlUAU28meSWNhQlrh4PHJzt5lGc2d1Tf225QXPtE9jd+g80ZtN89Fvi+bJqiQVEfpNFryjvkwRYh2X8Dvid5kWwKYtmo5RJ8PsQRP14/K19eJo/9+vUzjTKs8mi7I6FU54I0WuJIx7dcoHXr1oY4YtNXiFDiqPA0KDiyliHjx4831dN07Tn99NM1p7TAgBpFa9ABAwaYn6BmzZrSsWNHOfzww41BPCpjkDcLNBz45JNPioX+IJOcH86Xl8E9i1JHPipKk1NxhMCRowqZzCVQZ8mVLeTQYj5hWwYC1EdUaMYBG8FYGx3Gdj5SG7KNU045xdRFxFOs/QwljgpfAINwcmmYaM4444yc7VIV7oMcRRwNSBUhnMVGwdphQS7IPfNKSDPfYMPE4mvbogIWWUKq3BexwKbrmWeekebNmxvFkvD+pZdeas67E19++aUJc2ONxX3WsGFDoxJFt0KcNm2anHjiiYak8n5W/SeNIFm+Hb+/5557zPXkHn788cfNT1JSzjrrLHNsdNgiNxIiiTcrhBjigXMCn0PUIRoURXK8PK9Dhw4mnJ8qUKFIf+D1JQHfl+83ePBgueGGG0xzA8jR8ccfX8xjmM876qij5McffzQ5+JxHwqgQjWigupO7z/fnfiAP/9tvv83oGDmn9957r0kFssbdpD04x1O83FBC9/E8dsn5J3WI809xKZt85+tsxzXGDBs/mxvrzJNkjHINGHuMB8b1XXfdZa4/cwLnskuXLmZjGWuMoxqTwsL34tz37NlTRowYYf7OZzCmcOCwdlwcl8X8+fPlggsuMOOPz+deefPNN4t9Dqr+cccdZ46Feen666+P25UOdxY+03luCwXB3borfAMWSkJxLGgUwxDiYmJQ+BdUQQMWQ1uZS9cl1GRVkuODhbtTp06mMIwWp+D77783pA1SFSuHG5JocySvueYakwv6wgsvGN9bSI493zwHNRDSw09ar7Jwc79B8ACLOeovi+XVV19tiACLLqodbhaZGu9DjCAzuF6gODEmIDiEF1FuLrzwQlOh+/zzz0vXrl3NsVvf3DfeeMN8R9wurrvuOkO0aPHK2KJ4MRmGDBliUiCyBc4LrffuvvtuQ4wgRFdddZXJ84sm4ORoX3bZZXLuuefKW2+9Zc4DbiDWEg7HDr4XBWFcO4ge5Ifvx2YBUpoOIO0PP/ywCctDsLm2kCuKzOLZ0CUD3bpQia+88koTNYDAHXLIITJu3LiiTQpeuxAoCCTkFfLoTMngu/PaSy65xBA3rh3H9vrrr5vN0sUXX2w+g2vN+Bs2bFhE0Svjg/HLPcF3YwyxeWBDSsiYDYj9znwGsBsFzjFkHDLJdWJt4Z7iPTkGxpRNr+jevbvMmTPHXAvWI96X+yQW2AhApLnH0r1OnkdIkRdMnjw51KVLF/NTER/Lly8PPfXUU6EXXnghtGrVqtDQoUND33zzTejvv//O96Ep0sSmTZtCs2bNCvXv3z/01VdfhYYPH5619163bl1o4sSJ5qdfsXnzZjPG+RmNt956C7M7c864F3beeefQ2rVrzd9OPvnk0MEHH2z+f6+99gr16tWr6HW//fabed37778f8X4//PBDsd/b93Pi0ksvDe24446h9evXm3+PGjXKvO6TTz6J+z24xjyHY44Gv7/77ruL/s3/87vTTz894nmzZ88OlSlTJvTAAw+Yf69Zsya0cuXK0MiRI0Nly5YNPfjgg+b3GzduDO22226hVq1ahTZs2FD0+ldffdW870EHHRRKNiZLlSoVuvHGG4v97dxzzw1VqlQp7mv5G8+JvkaHHnpoaOvWrUW/v/766813WbFiRdHvuE4899NPPy363b///huqVatWqHXr1kW/u+6668zzuI4WjJH69euH6tWrF9qyZUvSc+5Ey5YtI8ZHLHDOYp03vivHbWE/s2LFiqF58+YV/Z45mt/zvS0uu+wy8zvGGNds4cKFoSVLloRmzJhhfr/LLruYfzvBfeC8pnY92H333UMXXHBB0e+YT3iPa665ptgxO69D9PWyuPDCC815j15TTjvttFDlypWL7otnnnnGfM7HH39c9BzGZaNGjczvBwwYUOy9mzRpEjriiCNCJZm3vMgVNP6j8CzIDWE3S1iDNoKoIOwe2XWjPij8A9QoFAdCWFSvopoRglJE5oIxxpMVaKDAoX6g8qHC8DNemJp8SFRA1CTuGfvg3PNZzrCfzUMDvC/PIzSI2jV58mTze6soYnlmbZGyAVQ3JwjZokihyHEcKKpEHsiNRCmi2IK/o5bRbpTXO9NXCEOmon6ifMNnUQizBRQtpw0U5xBFPbrxBIqVU4niuzHPoabiIADwCUYlc1bRc934DNRM2xktVaDSTpgwwaid2QKhW3KPLThe8pI5dqtS25xcxhgKN4oiv7NNNUh9iI4i2RaXgGvNteI1rAEopBaffvqpOd8ovJn0h+f1Rx99dJFpuX2gbDLu7GfxfYiInHTSSUWvJ3XAKpixwLgqxLVKQ9UKT4KFEdJIWIPcE8gGgEQyMdmcN2s0rPAemDAhIKQXcP0aNGhgLGOcBEWxHc6OK4kWPBbYQw891BTE2J7bzsXMCQgCix/5WLEA6bKAUNx5550m9EaIzgmbv8i1JJSNdy3uBpAiwqbkJ5akPzzvG33cnA/C17Fg73lLxqKfBzlhvKWKTLvdxLpOTuswYElpdE4pbXCjX28bHkAKSQPg+0HComGdBfj7vvvum/LxYodz7LHHms/hdeQB0qaVNJFMEesa8f74HAPb1tMJ217W5qvGy50kLE9lMhsXZ/W9c7zguAAJz6RdLbmnkFdyZHkkukc417Gu2d4JOsYxrvzkJZsqdMVVeA5MECyKKI7kZUWrAZY0kpuCTxbqlSWWivwCEkPOG3lmkEbIBIsCC4e25Ex+7hjzKErJNkMojOR9oUyR12Xz/aKBUpPI2NqqPCyeFDWgekEuUPUoMkBtwZPOmY/GQo6iRzENxR3ke5E3Rz4ZhTLxFsroIhsnojcTfB7vQ65ZLAWW4gTmAUv4rCdguqbvkA2eH03qAN+fXM5Yiz+/Iycvlh1UPMXYC60YyQ+FaNlrRw4hhS29e/c2OYCA7xrrWBNdv3jgfTgfscYzuYzOzUb0ecZBg3GGonnzzTebccx7MdbiNYZIF3Zcs/EhzzQWSkKqly9fHnfz42cocVR4Ckwen3/+uVkQmTQSFcEw6TP50PGHSkwWE0X+gPpL6JMFFbUERcNWRyuyC0KcFB1A1qKLLpyAAFKtzv2RSOnFK5NQMCFiyIUFhTSxQPUqDxRKikt4f8jHAw88ULTRs2FIi+hQbSJw3MwFKEuJ2o5SyQsgEhwDZNKSOY49mfkyhIbPivU9eW/GNO+N0uQEdlEQKfv5mYD3iCZLU6dOjVDgeH/bftUJmzqQyeczb7Ih58FGhetN0Ywljlw/Nn7RiHf9YoW9OWaUV4g31yMembd2PJxnjsUpAFD8g2rMmHS+PjokzfUjdYJQdiLVMdYxsL7wmVxLVPxE4FyTahOKumaxro/9TiiqKPKFBs1xVHgK5MFNmjTJ5Lw482ZiAXWBajh+Qh6zmXOlSA1Mjiwy7NxZhFEVqaikw5KSRveAKvnyyy+bBZ/8rET5kCyK2OpEw5ljZlUyp9KEgmdtVCwIYUd7SEIgIWzWlgTVkms/cODAiOdFv1cinHDCCeaYqKyOVr/4NyQXMM5Y/KnKJfzJazgOKmyjiWs8ELGwti1O2Kp1KtCj8eKLL0Y8JxNQacwm2XluSc+hWtj6ceLbSQUx85sFFi+EVSGXVO6mA3venOMIUuy0lIGIQUydFkJEdqgOjmdnRJTBgo0Ex0wbXksM7aY+3jXheUQonHN4rDE5dOjQiHMBWCt4DmMlGs7XcgzRn89n8HryHJ0WQhbOc8C14Jr16dOn6Hccb7wQN/mnbKKpii80qOKo8JRXI5MOkzFdY1IBEw4TP5Ma9g+x8oEU7qQToNJAGiEmqBQ8ovO7FO4hXmjNCcLPKJOE90aPHm0WczZaqEQUzmCdQn4kixvXj/ck9IyigtVINGkj/xHLEmxjUAIhkTzPLsAWqFePPPKI+UkxAyTSqmmpAPKCennbbbeZfD/ClShDjDnIFgUJN910k/kuPI/vyHejmIYxCXFErWJsQooglfFUL3L++A4cn1PdhMBx/Jwjzpe1q2FzS6EEfytJOzk+C8sX5j1sa/ANJP0GEmzxn//8p8h6ieuCokbeH+cBspOuvylEE49GiqN4LwgzRIhrakFOOTmsFIdwfOT4oSbjbRid+wognhTvXH755SZlgPPFe99+++1F59wWwvEdeF/Gi7O9I9eHQhOIne02hM8laiPqOv6ifGeOg+/gNNU++OCDTZ4mVlRcJ/I22chix8Pf7HfjGFDf+W7W2o31gnFKpIT/J/2D90e9JE2D51vrMP7GJuKcc86RP//80xTKMG447lhgnPC3TG2OPI18l3UHFV4ssc8nOA/33HNP6Pvvv8/o9VgmWMsQhbvAhoPrhC3SuHHjPGGBUwh2PFjDYDfCz0R2PIkQbcfjtKdp27atsU7ByqdFixahW265JbRgwYKi5wwePDi0//77m+fsscce5u99+/aNsBqZOXOmsUJp2LBhqEKFCqGqVasaK6Cff/652P2IzQl2JnzeKaecYuxW4tnxLF26NOb3wa7mwAMPNFYqPJo2bRq68sorQ1OmTIl43ksvvWQsanbYYYdQu3btQgMHDgx17drVvJZzitUN84PTnsUCy5fq1auH7r///mJ/w+7m2WefNTY2fF8e/P9zzz1XZIWT7Bpx7qLtWux14vzut99+5rj5brFsjrCsOemkk0K77rqr+fwOHTqYe8+JVO14sDfi9bwX15nPxNoIixwn3nvvvVCDBg1C5cuXN1ZHHGc8O57HH3889OSTT4bq1Kljvkfnzp1Do0ePLmatc/XVV4dq1Khh7I8s9XC+B9cGSxzGJMfDvx966CHzmbwvNkV87+jjsO/Pe/B9OGY+BxucP//8M2KNYUzwvflMpzXP4sWLzbjiO5QrVy5Us2bNUPfu3c1948Rff/0VOuaYY4xFFWPm2muvLbK2irbj6dixY+iss85KeD38asdTiv/km7wGEeRFsIN57bXXAl80gPzPLpudK0pGSbqEEBqgOpSEZjWSzh5QblCXUAIIS6EM2AIKL4DrjiKBiuCVY0oXTMU2f6oQKzHzBas6Enpn/MbK9SSUzxyEYpWLftWEmckBxkqpEODM+ytJJTFKIW4MvAfpDn7tHT569GhjKo9q6TQqz2Te8iJX0BxHRV4BAaGCmoo58ppK2loOcsPEQ9FAdC6WIn0wgZPgTYgSQg7IPbXt6xTZA4st419JY3YB+SBkSKjb5txBIp32LrSOI/z50Ucf5fFI/UvMyU+0/aVLMn4Z//j0Mu8QInZW8/sJjzzyiEkBSUQa/QzNcVTkDey2sAlBGaStVDYUQpK9KZghgZpEav7fr7vWfAMCDlkkr4mcoFTzThWZL8DW4kXHbPbhPKeQRtv6DgWSecPpaalIDRA7inVAtvx0uU62yQN2NtYyyU/4qMA3IKo4KvK2SGIjwi7/zDPPNBN3toA3GInOEB4SzxXpAwID8WYxIPGdxPJ4SeCK7ACVBTKj2UPugwpbHhAfW82r5z09cO5skQrzd0mjRU4gIlCsRYoB5vN6bbwFVRwVOQeTwFdffWWaxVOh5oZtC5MOHWYgQIrUwCRNRSp5NKhedAXBWkWhKERATtgY2ZZ42cjRSxVUivsdVFA7zdizDeYgRACII9cpm+KComRQ4qjIObDOwRcM+46SGOgmA+EOZwEO9gl+C3nkAiyUmPvin8n54TzRiURJo6LQwXgn79FpRI36aHsqK+KDc2Q7w7gFSCnRKaJHkEfNq/YGNFStyCnowtCvXz+jZmEcnAsQiqK6jUo3DXlEggnZemCSx4h5d7z2dQpFSUCRFQt/PCNpLxUokbfHw6/FGdaAGrIVy9g6UzB/Qqw5L5ynXOTiUtTEuCHfUQsevQEljoqcVlBjWouNC8asuQITD9YI2MhAkBTbwSLAZEy7NsyMMeJV5Ae2XV6ssB+G1tamhwfPw0Aac2NMo52tA53PQ0nDXBrT54ceeiiiE0auQQ9sco8Za05gssx8QMoKmxZSTDBWjoU33nhD9tlnH/P96QH8/PPPp/TZtC91npfoh+18AhEiJEo+L/cFm85sk5Xoa+l80Go1ESBsvJ42dnXq1DGKHLY+mKBHp+VgZI1x9l133VXsfSDvzInMjYwN28LQCWvW7SSNkGnycHNJqDkvjAvuCz9XWhcSNFStyAmYfD/++GNDTLJhu5MuUNMIeaA6sjhgJxNUQDR44HVJazOIhYbw8w9nn+VE5AvPN0jCoEGDTNtBupigKjmLl1j0acfHmIcs0pGJHr90zeA+RFnOJTgGOp7wcIJcZ7rC0P2J9omMQ46P3GeqarHJsXjllVfksssuMykuN9xwg+kMwvdk83Prrbcm/Hw6y0T3IoYI8X54Kka3N2WeQq0j79eqalZlyxbstXQimdrPd6XHNG4RHDs2ZjhIcG2J5GCb5byXeQ6t8oj0sGEH5AzSLYf3oAMPRJRzOnbs2KLvipsCvoF0SHGSRsYTZDVbFdSpgvNOdTVjguPnPOmclUfk24E8qPCiG7xboAPAF198YTozODtV5AN0Kvjjjz+KdX0IAuhOQFeLr776KvT777+bbguFgkLoHMOYpGNGrLEZryvJDTfcYH7/wQcfRHQpidWBhG4eu+22m+kakuv78KmnnjIdO1atWhXx+x49epguNc6uT3TOoTMNHVWcnWiqVatWrCvOmWeeaTrKLFu2LO1j+u2338y5onNKMnBNVqxYYY7Ddp9JpVNLLKTaBSgW6HJDh59o3HvvveY9f/rpp4jfM56qVKkS+u9//1v0O7o+0fnE3iu2e4tzLTr00ENNpxeL1atXmw480R1mcg3O//z584uNI79inU87x2ioWuE6yC8cNWqU6T1K4UU+gbpAKIwdrDWsDQLmzZtn+rES6iFEpf6W3vXESycUZ5VDuk8kA6kIzzzzjEkZoeduLvHFF1+YMHV0ZSw5tjgg2OIUgJpF2NrZ4YWx+88//8gVV1wR8forr7zSnLNvv/027WOi8QCq1RlnnJH0uTbsz5xB+NppHl4S8F6oeKkCJZS+4tGgnzOgwM0JCnwIRX/55ZcR1dAo21bdRsmzaqa9VszX9957b8T7oDTmu2CIMcFxMG5QgxX5gRJHheuEhVAaYTOvuOizCBDqI6yD/UwQwGJBWJpcsuiwnMK/IAQZ7SCQCHSzYPH98ccfkz6XsGAqj2QLOCQLP1U2LNGA1BAW/e9//yvTp08334f2fyNGjJBbbrml6HkQGdCuXbuI1+MvyibQ/j1VcEyExCFhbCZTuX/wLGTeYPOFlRjgd85zQQFHquBexLmAFANyFml3mClsbmQsazPOEakMkC3QunVrE+598sknjZsCYW5sb7Dh4lreeOONhjQSDrabawhrvkmjBeeM4+Fcp0O6FdmD5jgqXANKAJMzKmPPnj3FS2C3jRUQixbKm5u2QPkCnTBY2Bo0aGAKCRQZggX9zTcx30OyFrngApE8nU8WfAgKBIYCB/LkIIKo+amAxZ+iGks4E6FGjRopvSc9nik+iQdIFsQrOp8PQBhRSx988EFT4AEgUhTRkYdnsXDhQnOfktPnBAQC0ozdVjro27evUTBpPpAKHnvssQgFzuLqq682DwvmkWQejXw/zpcljuQRknsKiSU6Q9FLuuD4eK8jjjii2N+4/1GxKYAh2gJRpiUeeaE33XSTGT8UHXFcFFDxk9xIxhhEEmKe65zGZBt/VGryZiHxkGXNd8wtvDMaFAUFJqpPPvnE7AhPOeUUT4ZFqc7k+GxS+J577imFAL4ThBg1gcIXFmydWDPEW2+JXHQRqxUJ4eGfjz1GeS+lujk/nOgCD4gKbTvTUZEJFxMiTYaffvoppfdLVmgGQQMs9tEg/AuRRQmlaI6x++qrr8pZZ51lPp+UCgDxjFfxzybQmlGnE6aGRDM3pQKKdeig5ESPHj0M8cJaDGLF+6XSXYnPdH4uxUFUL3ft2tUQ6N69e6f1XSB7VKa/9NJLMYtr7Hlnw2HBcZ999tmGtKM08hzI98MPP2xC1YwPFN/vv//ebPyffvrpYtXw+QTzdXSxjCJ3UOKocAVMZLYzjJeNpLGyYLEilAPJ8ko4JlMQviFsh1pA1XQhKqk5VRohjbFyDi+8UAQi0ahR1j4Ocs+CmIjkv/jii4ZoQVQYryz66Vb6okJjw5IuSS0pYnmoYif0xx9/GKXNfg9IFWT02muvNW0vAapYvJxkxrozHzKV70/OH2Qt1RA/qh2PaGB5A4FEmbN9rzMBpJQcUObNdEDb1jvvvFMuvPBCufzyyxOe9+hxxfjhYYEC2b17d0MQeU+q1okYkV+KrQ9KqpcIGhsJ21mG/9eWqLmDEkeFK8az2H8Qnk4lfyjfgGA1atTI96QRoCDwPViESCJXlACEp+OROH6P6vjww1n7OEhjMkJHqDE6zy/d3L6pU6eaDVMyJPMUtGDxTkSYLDmLzv+DCBIiRdlykl/GLyFXCnh4DqQA1YsNHukXznA1f0fRxG4rVaCoUQiSapg6ESBjtssM7wkp5d+Z+KESop4yZUrKz0eRZWMOqUukUtrznqi1K+S9T58+xueW8/zZZ58Z/0dsknhghfTNN98YJdhLgCwypin44hoUwhzuByhxVGQV7P7wZmMnDnnxA5j8IVmE1/F5ZAJPNb/LC0DtIJ+U0A0kOJlqpUgR5KrF6zTE733YbxhyQFjXaewcD6k6ICTLcaxbt64hU9GV3xA+/F1jFThYk2n7N1tYR9EMvoQW/JvnpVN4R2ifcD0FKdkCaiOkn3Ob6b1HoV6q8w5KLJXUbCJQBRPlIHLeIeYo1fEUSfwwebCB5t/klDrJOP9vTdK9BM41ES02EBBkyHGuPYKDCCWOiqyBCfzzzz83u+2jjz7al+TFVoBCelMNY+UTJIeTXM/CQYWql5LYfQ/U8kSKY5bVdEgSihWkxo2cYPrDX3fddSafDRubXOU4ogJBcCB5TqAcEvpkzqDIx6p0nIOvv/5amjZtWqRkYjvExgjDcydx5N+oTqhuFrbCGcIaHb6koIJw8Omnn17i0GZ06J35zr4nfyOEzneKvpYcQzRBxHmC+xjy5oQtYrLm3dZyh+9LNAcVMFl4nPflGqEMxwIG4LSDpMiHMcjxEsKmmOawww4zcyIV77gyeBEQRVssQ25mvO+pyB50lVFkDYSnKcg499xzM871yfcExAI3bNgw8yAxP1ZCv1eAQkFaAMeI5YYfibqnQfU0hTCxAGkgzzGLgGzYR0lBfhrEBSKAskcFNpEAFlWIWiokIJs5jlRI33HHHcYSxuY8Q1Ao0iCfjnuNsCvHS/gaG6/33nuv6PXMJ9j0QHhPPvlko5jyHXkOBSXWixAQ4qYCmtw8NlPROYGonOmGqSmg45EMkH6KXbiGEC6UMMikM4RK9TSWOMw1XA/yO998800T6bj99tsj3o+cQ2ArtSFGfHfUtZtvvrmYfyUEk9CyBcfw66+/FvO/tOD9+EyuAefQklyKlSDziAGMHcaSk7B7DZxfm+9IwVWyDkyKEiLfDuRBhRfd4EsC3PzpXhDducCPoHPFoEGDTIcFOhV4EXQboAPMhAkTAtkFJ2edY+gMUrp0KFSmTOTPDDqGpDLu6M7Bz0y7jdjOMfZRrly5UI0aNUJdu3Y1HVKWLFkSygcWL14cKlu2bOjdd98t9rf3338/1KFDB9PRhu4yHTt2DPXp0yfm+7z66quhvffeO1S+fHnTXebpp58u6uRicffdd5vvzrmIxv7772+656TbNcm+Z7LHXnvtVfQa7kvbccXZceaOO+4ItWrVKlS5cmVzferWrRu6/PLLQ4sWLSr2ubyf8z1tl5d4j3PPPTfi9cxh/H7atGkxvxedh1q3bm2O03ke+fc555xjrknTpk1DP/zwQ8jr4Pj//vvv0MKFC33TFWudTzvHlOI/JSWfivRBEvTFF19s+oFSGelnsKsmeZqdHtV9XrTeSRfs1AnfxKqk9AJQCgjp5bsTj1eAIkIuF9ZDWVcbpk8PF8JYH0eUxixWU1ughNlQdSGmHDA3UJiDUhi0sckD5TGTopmSAPWTSAQqczRY+lGAGWscWyFELGxvdhRIFFSvf6f1KcxbXuQKhTc7KXIOzHSZgC699NKCII2AiceSxsWLF5vFPN9VyiSnE7IirEcifiqWKoosAJKYxerpoIIOJRRoEPr0kieg24AQMJ/Yog3Cv7ko4CAXkhxICv5iAVLFvMaxeJ1gpQrWH/Jmyf2myj3fc3ahQomjokQggZrka4phEtk9+BXsypmAUYNY7PKVu8muE7WmUEzKFbEXPbcKY7wAilVQWIIIe02ZR3BAyNSyJ90GB3xeNPgdTgyojIU41iDqEEbr76gWPdmH1q0rShQuJeGe6sdYfWgLAezEUfj4+fvvv+d84UOdIHke0sh5Jqm+ECd7RXisETYsFPVHURzcu9bzMR8k2hLXQs9QIxrDvUQRUaF/13xAiaMiI3AzYqTLRIgfWiEvduxgqVQkfwbyGK+DhRvAVgQjZqqmtd90YYNNAoSCn4rChLXsYU6BOHK9c0VsmL8gjYSmUeQKec62Fj0QZdKoFNmFEkdFRqDTAB5jJF8HodUT3xEbDUIfsQyLsw1CSdbrDg+7dDpjKPwJCCObEiWOhQ+II3MKc0kuiCNjisKrIJBGC5RdrJ8gy0FNkXALShwVaYO2X5joosI5jWkLHUy4Ns+RqutY+UPZUhnxoKPXN1BPMoWi8MAm1BanOLvkuAE+w+b+BamzCt+X80xLQt2QZQ/BGUGKrIDdMV0dCANYc9oggu4ytP3K9mSPBRBqLpWBarWjKARgPt2jR498H4YnYZU/WhWiCGZjM/qf//ynqN0rZIlNLsAuLR3SSGeaRK0k/XJ+Waus9ZAiO1DiqEibMEFuqKIuRK+5dCoWqdrjfGRrJztt2jRjnUH1aYcOHbQaUBHRFo5F0D5Qj7C2ueqqq4xdVDRoYcfzSHHIp9KCR93rr79erCMK984tt9xi8nZR8Pfaay/j82hVdid5cX5v5yOVnN8ff/zRvO++++5r8rF5v3wh0bFwDvgd5DFeDjV/o2UkzgqQQOYgWi5Gg+fQXpIcdF4DKQ1ygQjnlZA1+aQ2BUhRMgR35VekDSZ7QtS0ymKiDzLYxbKrRx2kBy/npCQhIBZ3QtQYvEIIFMED4yeZKkQbOMyCydkaNGiQIQ6QxPHjx0fkGr///vuGmOD72b9//6y2D0wHzz77rDnegw8+OGKso0DSLhM1kvFOL+SXXnrJeMJif2U9Sp955hlDfpygrSkt8uijnAwffPCBaTOI60O+84QTHYvNPYTc8ABOux4iG7QaZK6h7SKkmXPF+aNy2EnMaSdJweLjjz9u8qODktOYCNwbEGhC1uSNB/18lBj5bl0TVHixjVCydk60BnviiSey39bNx6CV2jfffJNxKzfO65o1a4r+X+GxloMeQbyWg7SM4/cffPBBRLu4SpUqhZ577jnTTu68887LwxGHQhs3bgxVr149dOedd0b8fvDgweaYX3jhhYjfv/nmm+b3n332WcL3vf/++83zeJ9UWqFyHKBXr14R7ftKch0yQSrHYueDDRs2RPz+448/Np/7xhtvRPz+xBNPDFWoUMHMQ85Wh7R2LFWqVGjq1KmhTMHxRbcw9DM491yDf//9N+QVrPNpy0ENVStSAuoAXoK9evXSYg0H2L2S61mjRo20X4vyMmrUKKMckduku+Bgg3Ai4yCdsCKKkg0JW9BeDnXl5JNPltNOO00+++yzvFSVMq5R0aPVTptrtvvuu0f83ub0JjPZR7lDxcTlIBlQ9ryS8pHKsVi7Hqs22vxE26aR6+kE/+bafvnllxG/79atm/lJ55hkYLw98MADJgTOZ6MOT5gwIeZzUewIhdepU8eo440aNZJHH320WDrEP//8I2effbYJEZOvfe6555rwOd+PtIt8gHOPko2Cbc+rIjNoqFqRFCxChMOaNWtmTKgVkbBEmhxFztV+++2X9DVMtHTcoUIdU+8g54sqtocj0+1VjSUWqFatWkSYmsWfkCXEgmIJCtogksngDJUmyxsjXSMRhgwZYogC49sJ0joIn/73v/81/YRJzyBUTc5j+/btE4bV2WgRyr7jjjskFyAM7CyAs2FzCLETEK5s25JZs24IGrl5nPPobjP2M5lLLrroIkMCCXtDAnG8oL3j9ddfn/Bz7rrrLkMcjzzySPOg4QBpANG5loyLgw46yLQ+pb0sudhc49tuu00WLlxo0grs3EYO/LBhw+Tyyy83awbEFvKYb3Bv2ZA1nc50s54ZdLVSpJTUzeR5xBFH5PtQPE8gacHIBN+8efOECwJFNfRTZaFEtVQoUs0zhrSgMkEKyHlEoTvqqKMirLJs0QSLO7ZZkMlUiONjjz0m9957b9LnkeNM/mQicC9ADFGdnGDBJtfv4osvjnBmIIevT58+CUkz3wOceeaZkgtAesmpjEZ0hIE+3Pfcc09WP5vzwLWF6KCwMgeTU33ggQcWPccqkZA52xEGcgQhatCggYkUJcLSpUvNNSeSxObCEimI+UMPPRTx3KeeespsVCDvtjAJAomSSj7ljTfeaJRIinJolACRvPbaa83zIJBeqKzn+6GAcg9xvjhXivShxFGREDNnzjQTBTtIm7CuiA0mTSb3cePGGfIYT51l545yQStDp1KkUCRDtBoHgYNM1a5d2/z7o48+MorTiSeeWPSc008/3SzqqGfJVMJzzjkngpjEQyo92wlXxvs8iBekjKpwNlm4CUBgzj//fPnkk09ivgYli+/H66gozgU4txA35yYakvTTTz9FPA+S5gZQGyE7xx9/vDzyyCNywQUXyIsvvmiIG8dCQRGwVj7OQhjOPXN3IrDJQFm8+uqrI9Q3wtHRxJHr0qVLF/O+TsWVMcmxDRw40BD6H374wYSF2RhYMCYp6qFQK99AteU80TKXzb5Ge9KHnjFFXJAHQo4M1ZmF2os62+BcQR7Z6bObJWRkwcRurSFQWoJkxKvIDiANVCGz2JEjSJjXOY7ee+89Y+UEaeMBIFqQAxb+Sy65JOH7Q4CySYJi5WuyGSWU/s477xQR3GOPPbbIN/D777+PGd349ddfjbKWLPSaTWD478S8efPMz1xWqUN0UBxRabl+tpqceeS5554z54yQNWTImUPJuU8WirVqarS1EcQ+mvSTijN27Ni4+dyo3fY9yVeNDt2TD+kVIIKg2qPgo4pryDo9KHFUxMUvv/xiEtnZReqNlTrILUIpcBp4QxoJMzFhtWzZUkmjohicHoXxACkkRzAWWNhJgQCxPA5Rz5IRR5SraPubWGADlKwgDDUdlTMaFEewaNvwugUWMoAQfCziyPFz36CgBg2QR0L5kG7UWVTQVq1aFfleEt2ILrzh3JMWkC1YGyVyUWPBTzZijKPKlSubdCHOZRDa5mYTShwVMbFo0SKTp4IyoOHU9GGVRsIhTE4oFfw/5r8KRTwyxmKWKSBWkId3333XvFd0hTPqFESDvMd4eOKJJ7KW4wiZ4ZhQdZzfC8Ny1LDorku20jVW9xSKQz799FNTLZxvP8Z8gk0Fyh3XmXQBNvcAUhkNKu3ZpCaC9eNl0+FUmsl9jCb9bIjZVCRTW3lPWqaSkuMkZBRAeQmEqTmHiCP8v27mU4cSR0UxMKmTp4KEn4rlhSI+6LLz7bffmgpXEtBJzFYo3AAkjRy0U089tdjfKJCBOH744Ydy66235iTHkc9kLqHi19oGWWWK33/88ccRLe04NhBdhQ1wdaASNlFRDMU4EJVExLik4HjdbsMHgaYIBbId3XYUcsO551wsWLDAWOHg4hBN5iDrvAdFKYnA6yChzz//vAmBW7XbVkg7ccopp5gCIIzHo4kqx2PdAPjba6+9Zh62OAa1kjQLr4FwPyF2NvUl2bQFDUocFcWA3QVqwllnnVVMuVCkBxYy205M210pEgEFjkpPctXSve/om46iQ7FJLFA8Q54y5DIRccxmjiMElGgFBRhO4gjxQtmkIpfiDYpjsIChNSH/TyFINDhu0j+cRT/RoGAGuxirwgFy8r766ivz/5wfCBXWMwA1jqK/RLBt+5IB8pbMhivVYyGPk++CfY3T85DvBhlH0UM5RllG1SMPPVot45xDzskdTQTSDW666SZ5+OGHTeoAdjxcE/JMo8PcN998szl+nsc1bNu2rRmvFANSDc+awWuOO+44k1JBQRbfE+WZ1xF5AV5Ke+I+I30I1ZG52iuen55Hvh3IgwovusGDTZs2hZ5++unQe++9l+9DKRisXLky9Oeff4a+/vrr0KJFi/J9OAWJQugcw723fPly8zPVzjEWV199tfn7jBkz4r7/PffcY54zZsyYUK5wzTXXhBo1alTs9/PmzQtdcMEFofr164fKly8fqlWrVujiiy8OLV26tNhz6fRBd5QTTjgh4Wfx3Q466KCY5y3WI5WuKHRPifd65+Puu+9O+l6pHsusWbNiHt/1119vztcOO+wQqlGjRujUU08NjR492nSKiQZ/O/DAA0OpgNffe++95hpUrFgx1K1bt9D48eNjdo5ZtWpV6LbbbjPXlOtGZ6DOnTubjmK2Kw7gOp5xxhmhnXfeOVS5cmXTvch2DProo49CXgLdepiX//7775x371rn084xpfhPvslrEDFlyhRjV4CcT2WkV4AvGPkp9EDNZmJ10EDvYM4fIWobqqFzAmE0zRnNPii2IKeL6lO/djYity9dA3Cvg2IOFCcULKdnoyKzELY1BLepAswr0Woj+encB1gXJVMccwnUW9Rk8m2jq9XzDQpkyOkkPSuX88f6FOYtL3KFwpidtgHLiTfeeMP4W5GzQDIvbvqYLCfCm2++GbMNEpVsSP7RIDTATckNitR/0kknJQyh+AWcM4gjYQYljZmDXCsmA2fODJO7zd1ir6bms4oggLD3hRdeaHz+lDhmxxAc4uicV5hPCFkTZmXNIj+xRYsWeSWNEDFnHixpGORRklPoRWs3SBvnjvQB652pCAhxJE+D/BY6JFDVyi4X64Bnn302pTZw5GQ4B3usKitaJz355JMm34QkdPJWeH92DrnqZuAW+vXrZyYnvpsiM5B7RIUiOUoYgscCeT88yFfSYhlFocN2sVFkLoiQi8fDSRotrIUT5JE1C5Keb2AoDnlkjiO3m37ptCfEVDyVwqpcg/PHRp9qct3UB4g4YrgM8aGKzPp8Ud1FEi8TVyqTF4Qp0ULODUACNzfD/fffb35HQjPhAsxs8SHza3cVKvTwB6Py14s3th/ApMNGguT1RGa3hCWo5MPXkar16JZsimACYpBJYYyisMPTEELUsEReg8zZrEOW9OR7DFEMhcBCdA5RhfkQxTFe8ZYXgGLLOSbyZgsaFbFRMMZFdBXgQlsTWcDuDCI0YcIE4x2WCmy/z1ig8g8pm6oxJ8jbYHeF76EfYe136JlMpZwiM7Do0/2CMFEioOqSDsAkxZhJpWpTUfhA9WDx0jCZwpnTaD0bE4Exw3zCT14DicwnzjjjDGPDxHqJ4MIa7GXSaGGFH8ijIgCKI+FBwtMs3k7YnqaEBmnRlQiEnm1uBlYS9NYkWdb5GSC6B7Ft+zV16tSidlDRoLenbQHmbPXkBXBTE2LFw01NUNMHO2o2LUzcqRp8sxjQq5rwDV6Pueq9q8jf5swu5owV/k0I0rlJ5e8s/Gx4KZSx/3ZuOOxrgRLMwgXX35JGSwiTgbmb9Q/CqfN4ye15ols4KgqQOELKYlWr2t85m7JHg4FywgknGA8xBgrhxs8//9z4GVLJZMkon8HAiu7hyWsINzqJYTTwsYpVgJNvMMn89NNPhgxns0dtkCZ4PPRY7CGC6YDwE9WFtoI2ld6yCm+Ba2ZJIQ/+3xI8iCGbCvscwN9s/hR/c8ISS+YTxpXtpGJfa8NnNnzJWIEg8JPfW1WKv9u/KYHwL9IhjRY2FxIwhvh/nVPSA+s99xdqKfxBz18BE0fk8Fi7AxZn+/d4oJjGCdpaoQCRxwiBxAjbvkc8mww+J9FnEEJ3WhCgOFrz13wCxYtQaTylVBEftisGk0ysbhepwI5Z8iPJ0+3YsaNv7WS8ALfdxagO5WFDyqhC0S3yLMGDtNnnWRJniZxNxo9lxwNi5bM5ySd/t0TVGZa0FfsWllTyfFuBqwuhd8HY4jpxjUtiycT7MJac1j2K1MD9gRCEYTmbOzfPX8inbogFQxy5QewO3Ql2/fbv6YBm7rRIghhY4mhDSLHA5yT6DOxtvGZxwwIzePBgQ1acIXlF6l6NED7OX0kLXNjlMoZswYzd8ChSg5PIZXuiZ/HgvmcxthM9UQoIGSSf31nlz6nwlXTxj4YlfHxGvPFhFz1LKC3Rta+1+W9WmeLBMSqZzD8s2ePalnQMWwWa1CvGS7rrX9DBfc05I9eR/3fr/li7dq356beQeMEQRyRlFvFo2PBxJqSNYhFyHZyfwc2NUagzXA1h5Xl+M3aGNIJUetMqIsH1psUWrcLw8iwpUISo1kcBpmAG8ui3ySSfYKG0dhoo/5CndAkR97aTINoUFciWVe7sg3veuVHlNSUFn23D29kknM52l5ZQcuxWsYRgMNb4nQ21a4g7t2D8WDsdrkV0GkNJQMiV+aVQTOVzBa4D9z59uLO9GQ1t897EXQMnF79VcBfMSKLcnx6btterBeE/+/d0LywG340bNy76nf1/DJ5Z5C34N5Ow87leBzvb4cOHG4KSyOZBERsQE1Iasmm/RO6bLZihy0y7du2y9t5BAF16mOCZjJ0bvlTudYiVLUaxIeVcE3c+H/KYS+JmvzMPiCOfbxVUS5KVRLp/DZyRsWyqW7YIy763Ij3AJxYuXGjmeTdUx1133bWou5ifUDDEkUWcbi4UoVgfR26Y7777Tpo1a1ZUUY0tD7s5vPYs2FFE+zfSHonfE4a0wPEewoAJuJM48m/kbOfvvA46xLAo+OmYvQDG1Lx580whkRuenYwvromqjemDiZ37GOXRqoexFmnua4rluJZUwbO44rpAFIGUjSATJcgjuV0otxBwHCNY2FhAOafqOZp90GUKVZA8aTfIHePc5k0q0gPzBLzi4IMPNsWz2US5cuV8pzRaFMxIghxycV999VWzMNSuXdt4E6Ia3nrrrUXPe/DBB43R9cCBAyOKYzAshQyQXzJu3DhjJo6CGO0LSfusp59+Wu666y7jxYcyRItDekn6ZVJlkhoxYoQxPNdCjPSLYVCzGF9u7eBt0QSLOBZQVLwHmcxkQiCj8wtRFIk+sHHkvKJM1qpVq0jhSea9mQtAaq0dWL6uN/MBGyI21jY30lqNUdDH3zlvkEmtOC0ZbKEShZi0x3Urr9nO8YRGWQ/VPSN1YPHHvQBfIC1JyXcYBXUWbr/9dqMs9u3b14RiuUEeffRRadWqVdJCGAodMBFnd8Z7oFriaxhNrDD7ZvD873//MzmC5EFibBpdme11tZEF06mmKpKDlARyZlEEcxH2ITEbNQK1B2N2JY/pLcooZpxD0lTY3TMnYNAO8YmuaPYCOFYWqK5du3ri+JxqCMR6jz32MMSDB+MSBYY5FsKrYzM9sHmhEK5JkyZmvclFMRwqMp69fBaESJF6NPOll14yqXDt27fP9+F4AgVFHFnMr7jiCvOIh+eee67Y7+hnnQ5oM8jDj6Cwhw443bt315yXNECeC+FMFstcFUERNmWiIheVSYtUCVV4EoPwNGb2FC5BuDmHEEeITZcuXfJ9eL4F4846QxDedxYM2A0VrTQhl0oik49RSCMKYC7zy1HOmP/xKSY65pcIWb5B8SMbJzZ1iFDlNI2ocFoOKlIDg58JX3dO6RNHFsVch3lQtCGMfD5pEYrEC/LPP/9sQtLkOuIW4PROVWQPnF+78WRhZTFlc8P5J6xtCzIUkSD8T8MANjUUwrmRJ50IECCK8NiMxrKvU8RXHblmpCopCkxxVCQGqgDkA7Nv9QlMDySu58usldAqn6+LcezwGy0bUQJIIWFhRBHW3N3cAeLIw6ZW2PauzDGQE1VotoP8eXKkIY35SEcg/QC3Bpwb/Gghly8QuWCOIc2rTZs2gV8/lTgGCORwsttUm5fUQRiOyZWFMZ9hYopxLKh6DbJhO8oile2QFPIWCbnhlEDYz3meFLkF6tl+++1nChVtEQF54BBHwtgU1AQ9jE2Vet26dYu1rc0luE8oBg36tUgX5B4jvAwbNizw3sc6cgKkzLDbJc9LK8NSA0UAVDVbd3+vVMSzGE+ZMkWCCiZuitkgKoSicQcoBC9SFChyp71QGFMSOHuv4wjAhosQH04VqJHZMEv3EzgPbECJGJAm5IVNH6SR60C+I0qxIrX0DNTGwYMHJ2wvHAQocQwIfvnlF7MgMfAVyYGCxe4SlcTp+ZlvcA2x7yCPjEU4CGCB47vaBQ5Fi+IulHMvLMKK2IAwcv/QZAByT74uhUtBI43YvzF+2fR5DUQvKJZ09jtXxAfCy6ZNm0yeapChxDEAYHKgYAB53a+Go/mY7Fn48O7yGqgSxsZj0qRJJlxbyNeBkPSAAQOMYkNFqN35Z7sFmBdA2H3QoEHmZ6GBdALuJYoMmINQ8fmuGCwXMlD05s+fbzbs2WhNmk1wHTguxhv3lyK1cdymTRtTFR/k4iIljgEAvY8J5SXzs1SEQRiChY2CFK8mQZMrhWkwi1K+inbcBOoiiehU6kIUMfcnN6zQlVXIcSGHcm1enf2OzE2kHhQiWcYzEYUVwowjg1eJEBGMGTNmmHQmRXJ06tTJGPUH2eVCiWOBAwKEekaXG81tTA1U5KKMeE0hiAYhWyYxlNFCCTVZQkFBBeOVHEZC0s7+8wr/g/xUIiAY27NJIJWm0MLYFCJS5V+nTh3xMihcYq7Dm1ORHFWqVDFzL5ueQpl304USxwIHfl1AfRtTIy0oXPh1+aXikHAT+ZiEc/F69CsoHKDgpX///qZqGvJObpzmMBY2UOJQk1mIrTUMRNLPqqtNqSA3mk5FXgcbT7qI0WJXkRo6depk7O3INQ8i/LE6KjICCzBhIELUhVB16jbI81mwYIHvdpEYMRPOJcmdNnt+AueawgEqbvFjRP3wC2lXZAdcb4z1UZVJu2CzywaC/Fa/YebMmSZ3E1LhJ1irMXKm/Xje89XDesiQIRJE6AxdwCAHg1A1uyNFcpWASZ98n1x3c8jGpE8+JlWrLLp+KjiA7ELYCedRKW3bAwYRbO64jkHe5Fn1i3Ag6j9FCCjqfsBff/1l8hoZw3411qbyG+XfL+c8n+jcubNJr2DDGzQEc4YOANi5k4OBj5qG+5KrXpBsVDsULz8CskW+GAsWnnmozV4em9YHjepwjHXpf+zVQqRcgbxOlIygd1pBeSSvle4qhK1tuo2XAXmggpr5g82nX0HKAHMJ5FGRGE2aNDHzLets0KDEsUBB7gXKE7siRWLQeosdNtWP+ewOU1Iw4ZPL6uVCKBRwwjukUNiqTh6KcJ7n7NmztbXkNlCwgf+jdYPgHvWiBQobIYgjVf9sgPwMNm98B/KlaYCgiI9SpUqZ9RVbNCzvggQljgUKFmfCf16v6PMCUBp79OhREASGYhnCfCxmhM0gxV4BiyttL7GyQNlQRILzQncnfiq2ExmbOoKiR/W1l1IxiFbY8DrtFgulYIle4+R7KxJjv/32M6klpFQECUocCxAkN5Nvg5WJIj4gV/iXoWIUmjE6Vakk6DOhecEjD0soHrVq1TJWR37NAVPkD1jbYHFDaJBNUb6L2PA9xM0AFZ35w8/Rimhgcq1dxpKjXLlyJsJDPq6XWtO6DSWOBQgmVhZmcjAU8QG5pqOOl1S5bIFQNTliKDaMh3xNatacnMId8tYIO3o1jK7wNugWxJhu3ry5CenTMzhf5vdsysi9hMhiHVVosPco6q61F1LERvv27c04HDFihAQFShwLDNzkkCEqqYNanZoKyJciN4W8pEJVvyCNjAPUEMijLUjJBSjOIbRouysQ/kJtVChKAlQ9rHsoqKJ6mX+jrueSQDLHkqNLSgiboUKeZ6dMmWIiBflWd/3ghjB06FBPFyVmE4U74gMKKmrx9fNij2UvgVwyCFWh59oxFiCPELdcVS0TGh84cKBJmWBxVaSu8lAQoopscpD3aDcihK3J6c5FUREECmWJfGiUpkJLcYmVw0e0IqhG16miY8eOpnEEYkQQoMSxADufQBqDbumRCISmqRikejAI54kQHxYhqDNU/7m5wBLawgAZFYaKWExyFanb0BCK1faK6QELIxZtepu7nc/LuEZl9LJzQbYJOsouueCcY0VsVK9e3XQJQrgJApQ4FlhYgZsbPz9FfKAWQGpQ4YIE1BJrquyWrQmda1AZ6UOsBCg9EG4l1JWvvD2/Ap9axhvqH5sWN6qumVdRNrk2jO8gbDgtII5ELujwpIgP1l1yb/3WNSgTKHEsILDbwX6HQgRFbKBIMPkXgvVOpj6PhJ6ymY/D+VyxYoX5f5TNoKgxbijh33//fUEWa+UizwwXCay1su0/iD0SOcJsirzoI+k2IOTc0xQlKeKDuY/oThBURyWOBdYyT9XG+CBEiyIR5J0zhNl25CDBn/SGkoDXM1FS4UrBEeHwQrIlUfjPGsUSHNrnlVS9ZUxDGhnT5AoHtbsR8wabQc6HKuKxwfnBNYJiokIvklHiWCAgBEk4QXeFiUP5IOh5d6gyJHOzCJSkJy1V2hQloMSwYSlEWxKF/1R1SB5jk00im5pMN0eoi5BGXg9pDPr45pz279/f9GdWxAbel0R0Jk+eLIUMJY4FVBRDBVyQcm/SAQobvo14WwZVNYjOCzv44INNHiLjJ127DUL+FCNAPAkR1qxZ07VjVSjSBZtoNjNsatjcZGJFhYLEuKatHKHwoINzSiU7pCiIIftUUKNGDSNMjBw5UgoZShwLANOmTTPESJ3+44PEdiZ/Kt8UYdiQMiFrwivphKDYoFSuXFm6dOlifioUXgOkj00Nm5t0Kq4JM+I+wP1B3poWeW0H54ONptrzxAfrMGljhdy/WoljAYBwTO3atVX1iQMIETtlWpYVsllvpoBM05cWs+5k5JF+06g3qA8U2gQ9fJdt65PDDz+8qDezouSwmxubo5cMkCIKx/BqLGn+byGC+71x48Yya9YsT7Qy9SKaNWtmzlMhq466ivocJIBT7KFFMfGBckD4gDCCojgg1SR1QwrHjx8f93l4uaFMzp8/P6fHFxSwqSGNQjc32QWLOEUz/KRALp5dD+katBFkTg2CuXemoHMP3plaBBc/GoOXMuljhbr50BnK52BXw2KDmbWiOCBDqShpQQcLATmy+JDFWlgJvdDKErWBhUMhrngFkjagRsvugc0PiuLixYtjdoTBg4/CMe14FB8QajaaGsKPD4Qc7mNbkFloUOJYAIbOhGC14CP2+eHGJWdJd8fJgSpLD2C6IESTRnJEIY1NmzbN2/EVOhinEJpCt/LIJ/bee2/jcwtJpHDGgvQLQq8ok4Xauz7bWLp0qWndqigOxhieyoXq6ajE0ccgzwSzYC2KiQ1sIzDvpZJakRpsoQsV6KgzgHxGJY2KQgBpAKhBLOyEpSHqhBMxbu7WrZums6QBNjhEKAq5CKQkaNOmjZlDC9HQX4mjj0E+GrtjctQUkWAxoNqcoiEtNkgfVKISNmVzwjlU0qgoRPJIzi4tOEll0dzS9EAxJkVHhe5ZWJIK9DJlyphoTaFB7xQf7/YmTZpkchs1DFsc7IJJhCc0pUgf5C9xDjFRVsNfRaEBkog9F3NE3bp1zU9FemDdYUNJXqgb/cELpQJ9fIKCQ79CiaNPgQSOKqRFMbFByOnQQw/VBO4MQPgOJebAAw801YEUF2W7/68i9kJD5ye1OHIfqGTk7pIfDgYMGFCQIUW3sfvuu5tOVISsFcXB+owLBS2BCwlKHH0KdjHctJqTUxwsABTGkJunSA+oBxQOEIaiypqFFVVBCwbcB+OVinUdt+6CRZw0Fvz28DBlrJPjSMiadnGK9NCuXTvNs48D8uux5yk01VGJow9BWIUds6qNsUP49JfVzgaZgZxGSCILAaEoHoRbmPwoNNKQlHugjRtG7NrOzV1gtYMpeMOGDc2/Gdv777+/MQhn7ihJ//YgAtJN6J/5QREJ3E5Il1LiqMg72C2zuBDWUhQnPpBHbS2YGSCMKAixCgUYd3jgKXl0B6hd2Heo6uUOcApgfgCEV51A5e3UqZOJVGixR/rAs7Bfv37F/DEVYgQezgv2RYUCJY4+BLsXKl2rVq2a70PxFJj0WRjwz9I8sdRh26wRwoMwxmvNxgSIGkm1tVpwKPyEefPmydixYxOaq6OckddLioYiPZBLDhm3Fl6K7WjUqJHZmBSS6qjE0WcgjILyo2Hq4iAJGSNf7WySHlhQyW1M1mINUkkrNhYIiCat2RQKr4PwP8VeVE8ni9LYsCt50uomkB4I/TOPrFixIt+H4imULVvWWPNAHAulg5kSR5/BdkLRMHVxkKsEadxpp53yfSi+AQotagzV03iyJQPkku4aGIVrLpjC6yCtgrase+yxh1ESU7Uug2yyodK0jNRBkRHKo6qOxYHQA6kulFC+EkefgV0LreFSWeSDBiYuJdSpg3Az5rSQbVIf0tlBd+7c2VT1A1ReRckBKYeQJ1N+FamD80lxF72V0/G7paCB1pvknGrRR2rg/KI6Mn4LRVnLFurXr298QwslXK3E0UcgaZ7dnIapi4Pw/apVq/J9GL4CITmUGMIoJTnvAwcO1IKOLAClnF7hqphnZ1PEmCQKAQlMtysMJIhCMUgQ9lTkTyuSA1EjXZIeBJQpU8bYPxVKuFqJo49ApxgGHQNQsR3k2lEJqcQxNbAI8iBXkcWxJK3WKERiUlQbE4VXQI4dObglrY7GSoWcXsb16tWrs3Z8hQ7mlrlz56qtVBQQfBib5OL7HUocfZbfSIK3dkOJBCosYQDt2Z0aJk6caBbWbOx8qV7HxoT3GjJkiIatS7gB+vbbb7XoqASgqAUjb/rTZ6M6mlB39+7dNTUoDUAYyQ/F/kixHazdrFOs436HEkefgIIYChlwoldsB/lHJLKTp6fhkeSgEIZxBMnO1vmiEhXyiK2PJsaXDBoSzRyogijfLM4dO3aMayuVLlDkmX8JWWvFcHJgPbPnnnuaeUbHc+Q4wpqH9B6/Q4mjT0AvUHZyJHortoPJiQWC3ZwiuRqDEsCknm2DdFRwPPBKki+pUJR0EwlppAsMuY3ZXvQJWUMe6dylSAyKZDhfbOoV28H6vWjRIt/3RVfi6BPQQo+wifamjgQEyCaxK+IDNXD48OGG4LllcIzyiIpJYQKhcFQahcJtQORIlWBuZPNCbmK2AXGkoxL3EZXWhVDg4CYo8OJ6aLg6EiiOzJF+Vx2VOPoATFIMNMLUGo6NBArDbrvtlu/D8Dwg1ux2SfZ3m2SzyEIeIaostAqFW0DVGjRoUFHemJvzI/m8kEe8HWfOnOna5xQSSaLKWhG5uaagUImjwnVgHEo7OA1TR4JuEOTsKRLDVjfa5Gy3QbU2OWaMWbUySU+l6datm9rxpKE0UgjD5iRXqSq03IQQKZIDH0zSYhSRYB1n4+HniIwSR5+Eqcnjw0RUEQY9Z7F8UCQGiyo+i7lWSOijjrqJOjNu3LicfrZfgRJMNbCmXaS2GaIQBvKIGX0uNkQW5PGSw6dIbZ4eM2aMbh4dIHLIuPVzGF+Jow+ArA1pzHbCt59BH1nOh1rwJAYhPMJ5tstLLkGOE+RRNzypF3ewyGqnktSK4jhPVPPny54Mn0iNeKQ2Vy9cuDDfh+EZ7Lbbbsbeyc/haiWOHge+eOxMNEy9HexemYwIg6g6Ex9Yh6A00jkjX4urnSRRPlnstaggPlAhGNdatZsczIddunQxCm2+QGcaOoGod2l8MO8QsvazupZtlCpVyqiOShwVrgFfPIiSEsftWLJkiVlcNfE6PhgzqFcsrHhceiFPl0WW3tgKRaZjmpxZ0h9YfPPdCIFOIByHjunEIP+U+1+772wH6znnhIcfocTR42BXQsivSpUq+T4Uz6BmzZp5Vxu8DpQ9dvr0jS1JS8FsKo/YAKE60jpToUiXNGKDs3jxYvEKsP1p3ry5aSHHZlYRG6QTca5UddwO0neoW/Cr6pj/FUWR1IZH1cbYlbuK+CCEz6KG96dXgELMMU2fPt0UfCkUqc6Do0aNMuSMnFk2RF4B6TJs7JcuXZrvQ/Es2LjitasFRdsBkcaD2K/EMTs9mTwCwpdvvPGG/Pjjj7Jq1SozUC+66CIz2STCr7/+Kv379zfJzvjPoY6QdH3uuecWU7VOOeUU4/wejWOOOUZuuummrH4fdtfI+0octwPSQaiK7hCK2Bg2bJjZ5eMX5jUQNiffUassY7dqw+qFn4rI3uoUV+Ch6EXP1lx4o/od2riiOFjX4So4BPit8LWgiOPDDz8sv/zyi5x88slmJ/j999/LLbfcIs8++2zCbhlPPPGE8ec67LDDTPUpeYWff/658QiDiEZP5FzwU089NeJ3bvhV0WaQCcmLBCBfICykIer4oLiCDYeXK5mdGyHsOvKdq+YVYDCtLRtjK9XYO5Gi4kVY0kh7PQyeNa0oNkhTweFBx3gYKI5soqnM9/J8XdDEkV1pv3795PLLL5fTTz/d/O7www+X8847T15++WXziIf77rtPWrduHfE7KlEfeugh+emnn+Soo46K+BuhEkim27CVw+RCKMSoyPT45NooioPqTu4DNhp+2OFjED548GBp2bKlbo5EjCHwv//+a9IL9J4XkxNXu3ZtY4judVN0wukIDhCBrl27eiKv2GtAWUMMoaJYFVox6jkbDdZ5vxHHghndhJsZjISMLVAKe/XqZareEiVVR5NGwM0PGOjxbgI3/daYiJg4tXJ4O9jRs6B6MVzlBZBqQZVns2bNxA9AmaHikupvlOSgA/V1yJAh5mfQgf/o2LFjfVN0wn3HBojUonhrRtDBJoDNkV+uaS7GTN26dX1ZNFQw21qSTFHnosNeVhYnNy4dE2RbJh+rCGPkyJFGcWR3SfiE0DiPRCAvz1l6n2yw8FwWECWO2wH5J3dPd/OxNxpsZAgDk3jtF7Ro0cLcRxQ/sPHzajgy29cKdZgHGyHmLOvXyhhHgUB1ZJzbFBgW3KCokLZ4irl7jz32EL8Av1KuF8fPvK2qWiQY54xrNonauCEMxsmAAQPMHOin8VIwMxFEizzFaNjfQdzSwQcffGAu5EEHHVQsuZ98SUJrhE3Jo3z++efN+xMmj4evvvpK3n777ZQ/n0WEHYn2+tyOAw44wNf9Pd0EY4WCIb8ZbHPcWAYxcUIW2Nzxu0IKPUMoSH6HUJDnBUm014k8J8gzpB+bIkgjOby00GMDYO9/2kbyHPIgefB3NgleD+GmC2vXRDjTjz2hOW5y1vwYfsyV6khkJEgboWTEkeglxV9+WusL5soxGceqTLLqSzru/uQ1fvvttyZXMjr36pFHHon495FHHik333yzfPzxx3LiiSfGDaMSQof4OInhAw88EPcY+Du7Mq2wDIOFFiLvp11ZroAyzYOx50fSxTFj1wF59OPxOwFhYBNL1x5reEzVLUoqhJDQlCV/PMhxspGNnj17GkJImgzKjLPyHBsjOpUwj0EgeW9LPiFa2MHwHoT/Id9+Up2dgFDghuHXPGauH44cWiATG5AjxBwljWEwL1iPSyWOeQAEC+YeDdu+K1UCRr7Vo48+Kh06dJCLL7446fNZ6LDowQJl9OjRcYtmKKhJx3+MgeT5XDUWrn//5SSLbNlCeSFMXQTvwCwTAKrlUXs1dF8c7OApNDnkkEN8G8bnuHlQdcm9hArnh8WXqAPhZcgOx8//Q+y411HMIHNWFYTQJUqXYS6BTFry7LyWiV7HeYJQYiVmIxWcPz/dK5Biq6L6HTbKpapacbAOqxiyHdY1hfvWKSx5HQUzqrlZY5mw2rzCVEgboaTbbrvNEBQqrVO96a3KyCKSDaBWEOLyzMQPORwxAoNAmLXIvHn44lCtEiaN0YA8kpvEg11Uq1bILiLt2iGtpP3xkCIUlkILy2UDjDmKhkjM9ytpdIKoAZPp0KFDjXLjJQNzC8YiyiJ+rii9zBMQO0LSyTxjE4HX9+jRIyPVwuaGQiAhr9jX2DmN8WF9PSGmXgNhOrrCkGrhJXPvkoA8Plpsspnzm0dfLuascePGGXFGz42YdZ6iOCIMfpnDC4Y4srsnwT7aFw57Evv3ZDc6Bt7s3h977DGz+00VTMzZ7GZiC2cIa+UFhMh+/13k889Fvv0WSSv8e/wTqUCn93GXLmFiyILFYoTaiOq4fj1VLNuJJd/l4Yfx0gm/ByGoXr1Ejj9epFOn8OuSgAWaXapdDBWR1aeMVT+FORIB0tixY0f5/fffjY9q586dPefbCclBGYWs0a8YsuOVCZ/7xDlvQLzZhFI8SA4pBBJVzyvnlApbig0pgomVo+5X8F1QHGfOnOnbsLtbIDSLOs4Gp1DmrZISRxqQcC/4pTiwYIhjt27d5KOPPjJFKNbHkTD1d999Z0K+NtTDYGXSd6p5qJI33nijmfwxA49HANkpQUqdeXZMDu+//77ZOcWy9cmUOKJipkNes4Jx40Twu/zsszD5YxAffbTIbbeJdOhA5jfxs8yIKC3mhg8XGTSIyiORp55CqhU54QQRiooSGLRzzfyav+cmIASQasadV4hLNoCCh/rELhzyiGqTr9xW7u+5c+eaoo22bdsaIkYHE3ITs33OmV9QWiHOqI/ZAH6ePEjjsd+D+Q/iyE8W8XyNHQoKhw8fbu5tCqQK6f5G2aU4BuLIT7/mnLp1briPIEpKHMUUDDG/se4rccwxIIcHH3ywvPrqqybUy8X44YcfzMJ66623Fj3vwQcfNLmIVClaUNyCagjhRELnYYECacNPmBW/8847ptKanTuG1BTSMBlfcsklWdsx57QiD5Xwm29EnntOpH//sIp49tlhRZC2ftlYVHiPpk3DD94bcvrHH2FF88MPRXr3hvmLXHttmKg6SAKhN86z7tqLg00MuWyM9UIDGzHII+Q4H6SRQh0WfUK9/D/3uz0OtzrdUOwCmXOjMp7zSQoO84olaERoCLs3bdrULOC5Jm6o5cyZEPJC2vhYEOXC0xFjcO2WEgmEHNZNxnohbRgy3Sgzh7Pus2n0AwqGOILbb7/dDMi+ffuaCZGJkkIXdrOJwOIAPoTERIHXWuJoizMgi5BTLjhhn3vvvdeQ1myA42YnjoLqKlicCEPffHM4FN25s8hHH4UVQLfzTlgk+DweDz0UJpDPPhsmqxDExx4LE8hSpUzojQ5AWk1dHIw/7FwKFVx7mz/M4svkmqscPUK7fCbnl8IXL+YGZgLnIk2YnfA1G2lIMpvvXHYcIsfNFkUVIlAZGTu2QFOxHdzXjD3y1zUFSQyvYCPnFyJdttAWmiuuuMI84uE5lLUoONXHRED1irbjyTYIJ7me3zhypMhNN4kMGCByyCEi//d/4VB0PgBJPeWU8INQ9u23ixx7bFiBfOIJkbZtNcwTA1Qek1vHZqbQwcKLOsGOnJxHt6oy2bChcENQOa8UkxRyH23C1ah9fFdywcndPPTQQ12tBCYcj3OFDfcXOjRSEhukg6GuebH4LR+oW7eu/Pbbb74h0oW51fMxqDCketiV5HUKV268MVzdvGhROET988/5I43RQNn98cewEkpbqnbtZM6JJ8qSOXPyfWSeAjm55H0GYeEFbByosCZPj5zHWLZbJQFkkVw7CnIwb7afWcik0QnScbAC6dKliyGNEHWIJCH6bIJoCtcPVSVINjVUy7LpIQ1BEQaqGqqjRpLCsB2SWP/9ACWOHgM5mSTIZl2uHj06TBhfeEHk0UdFxo4NVzd7TRbneI480tj+rLr3Xqn99ddS7fDDScjK95F5BoQV2VgEqW0XJA7yyOIL+chWByHuNzxC2eljQp7PHCO+I4pqvgir/VxUQRReIjGk5GTLpxFiDiEndzVINiwQ8AkTJviyJ7GbYEywYcP3NOioVKmSKYhjPvIDlDh6DOw4skoIyGV8/vmwqsjuDj9G8hq9vuMvW1ZmH3+8DH/pJSlDaJIFnTxIn7XUyzYgTqiNhZzbGA+QZUgHiny28uLIYyQ0RMFbvouMUOG80FWDFAjOB8cxaNAgk4tWkoIdFDfIPuoS1y9oqSeQZFv84LeWoG6fF+YyqqsVYgQjVRwVaQMPSiqIs1aSjypz1VUi11wjQt4nBt4tWohfwKRSCcI4dKjI1VeLXHdd+HsEuF81eXiQpnyTnHyBnChrP8S94mzLlyrwkENhBCiMFL95oZsFmwLaB3ohpAk5J3xN8R+FQiVpbsC1ohAHxbhQiowyKX7guipJiiSOpEkwzyvECEaqOCrSht1tZEVxZKKnMvmVV8KPZ56hekj8AvKhCGEY/02O+8knRV57TeT118MhdrrZBBDYplDAEKRQXyIVa8SIEWmRR8L8+EMSigX5Vveicy1xeOCnFwDho7ije/fuhrCjllnCnQrIlUTRBeSzBSUnNxY4fzw0XB0J5nc2w5lsAAsNNWvWNOseG2KvQ4mjh2A7pJS4R++yZSLYA9H95fvvRS65RPwGFA8sjiJakF10kcgPP4QVSKqu+Z4BAkUhLN5BC/XFIzVYZdFmlM4jyUKA/B1/VnLNqCLOlll/EGBVQgqH8LK1pDsRbCETRNgLCqoXAAkPaqQgHrB/Igc0W7m0fkatbYKRH1RHJY4eUxxLXBiDEnfYYeFWf7/+KpJB71uvIGYuW/fuIr/9Fu6XfeihNPaWoAAbE5LJFdsXHWxdmGjxIkxEHvk7ag89vfEr9INXmhfVbkg3PZh5xDvfFC7RAYfihyCHp2Opa0ocI0FBCJs45vqgo3LlykaV90OeoxJHD1ZUZ4y1a8Ph6ZkzRfr1E2nZUvwK1Iq4Oy/yNPl+kOOjjgp/7wIH4UvORy4Nmv2yGFMNTe4YRCUeKCYinzFv/d8LAJBtSPd+++1nOqLgJRpt2cO/+T3hNgphstU6sVDAeUH51iKZ7WOKDYlGUcScC9Z/PyiO3knwCTggBvjz4aWWEZiIzjlH5M8/w96MbpHG+fPDRTYoX3zW0qUi2CnQHYGbnzwmwstt24YrufFmZJedhsIDASAEmbDtIr2tCcNjYH7WWSKffuo9a6EsG8PbSVZR3AONHDryFZ2dF1ikKewgpF3i9I8cgMUTYuv1RZRCjx133NEscNE+fJx7VBPaGGLyrJBixBrSzYbHdkUKOrhPOScUUAU9ElCzZk2ZTCc3j0OJo0dgdxkZK46PPx4mT599JtKpU/YOjKRlCNqbb4ZzJq2MTj4GpJB+1oSiKGAhqZ98pgULRN55R8R22eG5PO/888OFLUmsVCDQIKmDPsT0gw/CnWbwpvzPf6QQARnCygOCFPSimHiwpJFQPioXIUF8A8kZZrH2Q1s7CBehdD8A5duq39yv+NARoibkqPmj8QGZZnySNqHEcXs+LMSRTVPQO8nUqlXLzFvkBXs5xUOJo0dgd+8ZhSIJ2952W/hBv+dsgKrst94KG4bTy7tNG5HzzguTRQhbKrk6qJMokzz69hU55hiRhg3DFkGQyDiTBHYpTK4pkSTe8847Re64I6xy+jinMx6YRCBFKD2K+ECtoJiKSmsmX/LxyLHzC9mG4KK2o+b5paMG1bAUJ7Hws+j17NnTU5XqXgT3MTmiXicHuSTTbOzYgASdONbcJhzBB7zs1ev9bXhAQEJsRi2YUABPOy1cNHL//SU/EIprrr8+TAzpZ023mSFDwsbhDz0UJqapJnjzvOOOE3nwwfDrUSwhnRiQE3K99tqYxS1MIBghp4x77gkTRs4DZLXAgBJ1yCGH+KKHab5BKB/yxf1EONDrYV8nsOKgiw0//UTWIbqc72y3gixUoIZDlEg/UYQdEkglQTAIOqpXr242Xl4vkFHi6BFggppRmBpzb8JwhGxLqlJQhU2o7I03wqRu9myRDz8Mh76zkXtCuJrjpKgFM28UTXIVf/kl4mmE69JS1/je77+Po2zYKLyAwGKMMXzQc39SBUSxa9eu0qtXL5PfqIuRu0A54xyffPLJRj0jVUA9+RIDBbxt27ZSp06dfB+KZ8Cm2KYoBZ1E77777p43RVfi6AEQhuSmifAsTAVffCHSp4/Ic8+FC1IyBbmJqIB4P1J1Sh/rBx5IXVlMFzR0Rx0dN06EAhgKXFA3t/m9oTbSXi4toFDSWvHzz8N5ngUCvPNQobLVm7lQAVmxCw8hajYfHTp0UJXWRRBqXbBggTnX++yzjznf/E57DycH5EDD1NtBmkOjRo100yFh1dHrJFqJoweAokSXhbTCs4SUr7wybEdzyimZf/ikSeG8RcgnBSYDBuBdIjkBqmL//iKPPRYmfe3by8Kff868u8JJJ4VzHsmhLBB/R2xmID+aN5YYWJzgHejsumK6Dgm1WgvMQ5HdzS7EhxQKa3HE/NWtWzdTKKNIDhRxOhkpwh6GDRs29EURm9tgvvd6pESvkgeQchWxE1QsQx5feinzMPLo0SLY/+DFRgELqmOuk/L5PNRGciBDIal+0kmyZtCgzN6L88D5oGUT+Zg+B8UStOOyBEgRG1Sc82jRokXMntOQbwo4vOSPBvHaumGDbFm5UjYvXSqb5s+XjfPny5Z//jE/Ny1YIJv//lu20I8bqysPgW4wkHTUoejCI1Iq2ATTYcbri58XBAPGrSIMxgs2bEFHtWrVzNjwcscllTE8ADvBpuw1R/4DCiF5iJnmyYwcGe680qCByI8/wlolr2jRQkIDB8qaTp1k7yuuEGnaNFwlnS4Ir5M/SW/rG26gTE38CtvDVW074oNWZaiNVCDGyxkjlEqo/88//zTh1FybqBuSuHq1bPl3pWxdtVK2rFwlW9euEYnygCZw2b3uXiKLFsv6RVE5TqVLSRk6Ke28i5TZZWcps8suUjoPyh7tBidNmiRNmjSJqw5BJiGQVLeTb6oh2dhgQ0iBDKH9IPfxtqAyn8K2oDc5qLptLYYXYMHmRaji6AEwQJDqU7YNIaRM6BKlLhNgr9Ozp0ijRmGz8HyTxm1Yu8MO8vu998rWxo3DxzdtWmZvBGGkmtb6SPoUKDdsJrQdV3xglsu907x587jPgcTQXYbcIYo3cqGEhbZulc3//CPrJ0+WNYOHyNrhI2TD1KmyaeEi2bqmOGlMiq0hQzhRJtdPmixrhg6TNb//LhumTZMtK1bkpBMJ6hjFMIQU6buc6HxT/GHJo+atxQbjkXPk9UKIXIH7eOXKlYHvqlPVQRy9CiWOHglVpxympkz/5ZfDljmZED5CAZAy1M3vvsNES7yCf//9VzZXqiShr78OF/scfnhYXU0XfLcbbxTp3dvX9jwoaAceeGC+D8PToFd1+/btk+ZG8Xeei10P9jFuYevatbJ+6lSTbrFuzFjZtGChhFIMNa9et04Gjx1jfqb0WevWy8a582TtyFGyZsgQ2TBrlmthbRZ0eqWj7NJ2MBlIGeB8c0+jUCqKA6GAeZ9UCkWYOJKeQ5g2yKhQoYLJE/ZygYwSRw+AnUXKxPG118J5gYRjMwEFNeRGYshdkkpsF8DNQgisPJ1mOD4mEMLWmYAwPgou58unNjzqixcfLLYsMBQNxcprjAU8UumzzMSMmgsZyhY2L1sm68aMkTV/DJVN8+ZLaHNkD+dUwKK5cvWaYv2fU0Fow0bZOGu2IZDrJ06ULVn2gsSQH4JOW7hUgVqOEpy2Q0KAQGtG5jxFmDgCNhtBR1WPF8gocfQAGCApVVSzoOCxePrpmSmFX34p8skn4QpmD7rSM3EUhcCo1KRrDdY6mdjr7LKLyBlnhM9XBgtxvkFl+c8//6xhvhigcppiF4o0MgUhV7rL0Ce3JICgrRs9WtaNHiOb//HARL81JJsWLZa1w4YbAkkBTkkJ+vxtqj0+s+n6iaJQ2qprRWyCoD29tyuw2PL4pWuSm1DiqEgIkoFRP1JSHClioQrv4ovT/yB2cah39Io+9VTxqmdhRCVZSe11LrmENxX54QfxG8h7IgdK7Slikz4IDN6BmYIKbJRHyGMmoTFCwusnTZK1w4fL5mXLxYswBPKPP2TDzJkSymDzRHEWOaHZsDIaO3assZ9RxM4dVVueMEhvyKgRRoGhWrVqGqpWxIcNl6VEHAm70tkF38V0QR9rPqsk9j3RRJQe2RSgQGTPPTf88+GHwwU3aRI9COOoUaNMlWwROM4XX6QXm8h//pP+MVKVTY9tn4WrCVEvX75cq6ljAEsdiAwh05K0E0Td2H///c1PyGM6ptXY56wdOswUuqRd5JJjhLZslY2z/zIEF+ufVIHaMWzYMLOAUehSUnCtpk6d6ko7RTZZn3/+ubz++uvmp9+KTQjNUq2uCDsQlDQKUAioWrWqEZW8asmjxNEDkwbqSVLiyMKGcnbmmekTv2HDwgU1eBuWJGxEtdvgwWHDcULr2PnwnvhBsmPmJ0SSvtHkT558sgiejClUydm8lmJN7ulpzXu+8orIH3+kf8ycL/Il164VvwAvMyZQJY6R4JxQaIGNCf1+SwpyIzt16mRUXYh60s/fvNmojOvGjZeQC/mnO1aoIK2aNDE/s42ta9fJ2j//lA0zZyWtWuVexKeREGoqhUepoHHjxsZyhgKbbFbN4hd59913y48//mgquPnJv4cMGSJ+AeMZkqCEKZwaQaesoHcfqurxymoljnkGkzSJ50k7g9DPmZuJUHO6IKexYcPMC03A3Lkihx0mQpXvmDEiTz0V7jqDQoh5+G+/hX+yAPP7Z54JtxTEYByCmcTolkkT9Semn9lll4mQQM73SBecL3ZtdMTxCZg0WbTV2y0SbLA6duxoClyyBcLVdDuxfmnxClOw0Fk7YkRYZXQJ5cqWlVrVq5ufriAksnH2bFk3alTCSm/OCblmeF5mK9+M98FPk4UwW118UBbffffdsE/m1q0RP9955x3fVCuj6nJ+/HK8boK1EGSzcM3PxPEfj4arlTh6gDimFKbGOocWfenmdbFjoSCGMHKmiwCvZ7GePDlcYAMxvOaasEl3tBrBv/k9eYkTJ4pgrUNuU4sWIh99FPcjyDOL26qM9+T4P/2UOym9Y4dwYnL+7bfiF+CTpzY8xcP3kDqsdLJtKG0VNYptBg0aVKyaffPy5bJ25Eij2rmJDRs3yqwFC8xPN7Flxb/h7xOV28k9SOERSmyrVq2y3uYSgkT+WrbsVlAV4xXr8HvUSD8A0kg+s99C7G6Ae5v7US15Kpj1UBVHRUwQoigWno1HHFHP0g1Tv/deuKr4vPMyO0C8EAlN46k4dmy4WCXV0BXPo5c2r+PYqQYnZzEGWKyYPOOCHEoqjN99N73j53zx2Zw/H8AqJulWrxY6yI/79ddfXTUHJmRITtEff/xhOs0AWv9hsxPaFP63m1i/caNMnj3b/HQbJnQ9cqQhxXYegohRxOJ28UO27GdQY+KNB37vVbUmFho1aiQN2OAGHMx7EKagE0ervno1fUGJY57BDZK0Mwim3eQQdu2a3pszqb76qshxx7Eqpn9w//ufyOWXhz0RP/wwbKydCbCbeP/9sGk5SiTvFcPPLGGVLG2ojj8+/H3SJQ+ct7/+orJCvI6FCxfK999/X0RcFOHCKdqRkdfoJqHGb5CCGe5JcvzW/fWXrJ88xVjcFCIgw5Di1QsWmAIhlC+qzd0E14/NEZXEJbWaQsFMpDimZHHmERB10mriMFgP1cNWzHlQ4qiIm8+WlDiOGhX+SYVwOqCYZMKEsC1NJjmNF10UVgmffrrkldi8nv7RZ50VDjs7ch5RB7AkSgq+B2HydBPfW7eOPI8eT11Afc12mNDPIIQMqcmFIoP6Tx7lPzNmyMQBv0ihY8P6DfLLRx/J5pUrTaFQLvpKQ8wpkqFPc0nQuXPnhIrjAQccIH4CmyOvhiZzCar4aREadOy8886uuBBkA0oc8wzytlIijnRfoMAlHfTvz0oo0r17eq9jMqaQhkRlqrGzpfJYex0USApetk367Kr69u2bvLL14IPDqiffKx3Urx/+Lj4hjimlLgRoY4UZOnmfKfdyLyF22rhR2lSpIg2zULntdaxYvVq2btkqrXbcUcrnSOVhQaQYifSDkqiOpBacc845Rl0kL875k9/7zZUAL0ciDkGHpumEAS/wKnFUWcMDSNqSC8KDf2O6thi8DrUt3df99JPIN9+EO7Zkm8RYMkquJPZCRxxRlM8StzjGgu/B90mXAPK6Vq18QxwhSYowKNYg97U+5D8H2PLvv8Zyp3Kl8GZu5Zo1MmfRImneoIHrC1rZMmWkRtUq5qfbgLBBsnavWlWqV65sFN11Y8fJju3bSekUWziWBHSIGjBggKmwpn94SVRH8gMphCGnkfA0SqPfSCNgw6jt9sIV1RjPkzaSdE0oYOzkYeKoiqMHkFRxJL/RtuLLhDhmUhBDFTW5kW6AghmIHN6Mgr/3aqMmpWTozPcZOTL9z+T8ebw7A+oauT3WkkKBOL2rCR3nInRPN5h148dH5DSu37BB5i5ZImOnT3e1MAdUqlhR2jXdx/x0E5u3bJGhEybItG2hYmu5g0XP+vHjJZSDNpfMeWwIUJNLCkji8ccfLxdddJH56UfS6CSObo8zr4O1gGItr5KmXIF7hIikF03AlTj6gThS1FGrVkrvdXifw+WOQXeEO7tAlNIljoRKvvoqnE+YpsLy0uiXpMX/pZBcz/vy/qia8+ebSSLlnSXfh8UmxVyg+avnm2P6ovFGzxfH4NvYs2fPxNXlAQKpC7nK+WKxXj9+goQ2ROba7la1qrRq3FgW/P23THB544EKuHHTJlf7k7MQ/Tl5sqxau1ZqxCh22/LvStkwLfMe4OmagudKSfYLcaQojvkwyFBLnkhe4EUzdCWOeQZKSkKljd0nhKdmTZm6fKrc8MsNclifw6Ttu22l+8fd5eIfL5b3J71f/HV0cQHpJhnTLhD7ntNOS/01+DTS0vDTPtv/nQy8P5/z889movxj/R/yxfQvkr/Ofh/7/VIFIXd80nKgppR0t50t02W/Y8qUKaZTTC6wcdYs2RKnTSam3C0aNpS5ixfLlCwoZPEAmes3fLj56QYgpCOnTpUVq1dJu332kV3jbFg3zZ8vmxa7b0bNBskaryvCxLFOnToSdKglT2QKmxc3Ekoc8wwMjRPmTqG4bNoko3fbJKd9c5pMWTZFTmx8otze8XY5ockJUrpU6Qji+PXxX8s9ne8Jm28T3ks3xE14m+rVVK0s3norbPj9+OMiEyaGf8e/33478etQOxo1Mp9HLsvgNYPly+lfJv88POAokuD7pYNdK4eJqoe93fDQm5YK6Q4AWDRovVi3JC0yU8SW1atlY5LORnvutpvs27BhTJXOL5i5YIH88++/0nbvplI1STrEhmnTXGmrGA3CkaNHj3ZVZfULEBAwXg9yXp9zXfSi0pZLVNo2Drx4HrQ4xgM3SEJsqzR+NfS77Fx+Z/nwqA9ll/KRk/4/67aTofJltqmX7NYYeOnmhqHkpRrehuRg2WMnfZubw78vvDDcnhBymEg9HDXKEOeUCw9Q41BK0t2F2ckYIo4npAdB54iSFAoUEvD5Q311W5EiRL2BjkgpeDXW2eaFCslZumKFKSzxExrssYdUq1xZqiQrxtuW77hh+nSpkG6nqgyALU+NGjWy0n+8EIrBUJiq+HiDkg3g65uNHul+30jssMMOnlQclTjmGUn7EW8zgp67+R9pWK1hMdIIqlWsFpHj2K5mO3lwfUWSRUz497+D/yv/1/P/pO/svvL9rO9l89bNcnj9w+X2DrfLui3r5JGhj8gv88KedSfts0quL7uvWBo3fNFwuaDvBfLm4W9K+5rtI3IHew45Qe4/cFc5bmCMPDSI4BtvyOcXdJBvZn4j01dMl1UbV0mdnevIGU3PkFObnipSu7aExo6Vbu8fJMs2h9/D5ki2272dvNXzLfP/KzeulJdHvyw//fWTLFu/TGreWVNOLD1azg9tNYqrBc97dNij0n9OfyklpeTgugfL2c3ODv+xzLahHqcXcb6BjyVJ0GrFE8a8efMMkXA7bL9p3jzZsjI9k93Fy5bJ6KlTpWm9elLf46FWiPHkv2bLHtVrSOWddkqJNFrQl7tszZpS1kUSQx4X5tf2egcds2bNMpumww47TIIMLRDcfn94MWSvxNHriuM2orNHuWoy5p+JMm35NGlcpXHyN4ZwOhbdh4c9bAjmFa2ukLFLx0qfqX2MgjlmyRipWammXNv6Wvlt/m/yVodfpdGcJXJMql8gXgUgv589Wz6eMlsa7tpQutXpJmVKlZFf5/0qDwx9QLbKVjm9bFmjbBxZ4Ujpu7mv7LTDTnJxi4sjyPC6zevk/B/OlyVrl8jJTU42xzrm5f/Ks63Gyd/DH5dbO9y67eNCck3/a2TUklHmeQ0qNzAE0hQKAatoepQ4WhsOJY5hRY8QtdvVsYRiN86enfbryHnEpof2gGXKlJa6u3u348ek2bPlr4ULjb0QxDFdELIu26GDuIlatWqZXFYKd4Ke38v9j+rIJjIXZuxeBfMhSnTz5s0D7eu40047aahakQFx3BZqPneX7nLF4pfk5K9Pln2r7yttdm8j+9fcX9rXai/lSscwRsaLzdGNpVqFavJy95fNTXha09Nkzqo58vb4tw3J+m+n/5rnnNTkJDn8pVbyeeW5qRPHeDc1v69XT97qebdUKLt9AjxjnzPksp8uk3cmvCOnr20oW3fYQZqVbyZDSg+RqhWqytENj454G543d9Vc+eToT2SvXfYyvzvlw6ulRsOD5O3JH8q5zc81ZHLA3AHy5+I/5Ya2N8j5+55vnnfq3qcatdRg6zbC6NGOLEyUFEolHQ8BACEqfP7cxsa58zLuQb33XnvJlq1bZcKMmVKmdBmpnYX0h10qVZIeHTtKmSyF6CjkgTQ2b9hA9sjw+LauXiObliyRci6SeDYIEyZMkL///tuYegcZduOIl2GQiSNkCfWVynvCtUEukFnmwW5CwU4i8ACSTg7b/t65VD1578j3jHJHdfVb49+SS3++VA795FAZMGdA8dcRAnf4Px3f+PiInVuL6i0kJCE5ofEJRb9jAWy+ZieZVyYN/6xEiuOFF0aQRkLVy9cvN6H0eavnyapp42VjvXrmb/F2lT/+9aMhyYToea15lNko+4fqyJbQFhmxeIR5Hmpp2VJlDVl0fh+IqoFN9PfoJITq0r59+0Dvri1QGtwOz6B0b5pXspZ3+9SrJ3vuvrv8myW/Oa495t/ZGAMz5s+XmfPnm3B6SRXRjbNmu+otiKrSsmVLVdu3CQmorl7tUZwrWLKI+hr08bDegz6O3pRfAoSkbdSsUrBkiexb/TB55uBnZNOWTTJl+RTpN6efvDvxXbnh1xukz9F9TEg44nUsaNsSa2tVivSBJEwNdq8UucPfaecasrLMjHCBSyrKxwUXiAze1svaLni87o03TGEMoeMXR79owuOEnZ1YPXW8lD/+HKO0ldoae7Gcs3KOIcpd/9d1+y8fpoDkR/O/y9aFd2MLVy+U6jtWlx3LRSp29XYJE1NZuTL806PmwFTQaTUl/H6T6WO83377uXo+Ns6bJ6HNJUtbgODt6+gos2nzZilXAkV7zbp1MmHWLGlev36JTcApgslWDubWNWtkM6qji2pgLqrn/WR6H/QNpBVUgk4cy5cvb+ZEr0GJo9eJI6FLEoUdPUzLlSlnwtU8CN9S/PLj7B/l8laXb38dnVnANpsR8gtjodjvq1eX0PLp4erqBB6QRfYZVE5PuSxMFMsOFZGlGPAZ0jh35Vy5qO9FUr9yfbmp3U0mpExYHXUQwrt19Uqp2KWLURtkeJzPCW2VTrU6FYWfZdw4kRtuEHnlVZEG9bcTw2TAo48crwzyvHLVp5aE8KCbfy9ZssSoW27mN9IZZdP8BVl5L7vAL1u5UkZMmiRt9t5bqtOLPcOOLv+sWGF+Zoqly5cb0ohHYzyfxkyAt6ObxJHiMKyo9tprr+QNEQoctFEMOqzi6EW1LZfwKnHUULXXiSOga0ycrifNqzU3P5euWxr5B3LE2LX9ldifrvhn1RShUvn1180/bRU3FctOLFjjWHix3Hn4YZETT9r+bxFTqb1x60Z5/pDn5ZS9T5Gue3aVTnt0kgpltoWvq1eXHY86KqHlClXYazevNa8zj8nrpNOMzdKp48nm37V2Ciup/Px77d+ydlOkdcHslduKHyg+qendIobp06d7MpclH8QRAu1mftfmpUuz7lEISauyyy7y55TJhkTmA/OWLDHkdf7SqLkgC9iy4l/Zstq99AGiDrQfxJJKoSDPuUGDBoGPwpQvX950E/IalDj6hDgOWzslZp4R6h0oprwRMqPf9Jw0O12goJQrK/L++ya8u8dOexhVksITJ/435X9J38pa5ZBL6cxz/GLa5+F/nHyKzF+yxCTF71h2R/O3aBxe73AZs3SMDJ4/eLtBeYsWxgQcMou1EOhSu4tsDm2OOK4tW7fIB5M+2O6HmWLbxlzDeAlu2BDoZHiLFStWSLVUzeczRLbUxuiFrk2TJrLrTjsb8rYix312FyxdKuNmzDBek9ZvMtvYtGC+uAXOHyFarn/QMXnyZBk4cKAEHVRUY9UUZJT3KHHUULUfiGPz5vJwvV9k3WdHSPe63U3od9PWTTJ6yWjjzVh7p9pyXOPj4vR1HizSLO2DCtvW3H677PzCC3LYXofJh5M+NN6IKIBY6uCnmAyd9+hsQtNX9b/KVG+jBn467VOpumy9LCUV8cwzjdLG5LBPtX3k4ykfyytjXpG6u9Q1FdYda3WU8/Y9z1RMX9XvKjm20bHSbMtIWderrkwddIfxdex7Yl+pUqGKKRpqvVtreWbkM8ZjknzPfn/1k9Wbti3gc+eKNHfkSXoINo8nyNWDFoTqMYN2C1vXro3bWrCkoKihbdOmhjhOmDlDDtivpeQC+EqOmT5d9qheXZrT9cklbF68WEKNGkkpl4yZKY5RxTE8jrxowZJr0FUIBDl1oXyidsR5hCqOeQYhmqRo00ZufGeOdKjexiiMjw9/3DzG/z3eVBG/f+T7MY3BpW1bkYXpqyubQpul9xMnibz0ksjgwXJbx9uMmfYnUz+R50c9bwptHjzgwaTvA8F9qttThnA+OeJJ8/qTduggZ344JfyE2nvIt8u+lc8WfSaXtbxMuuzZRd6a8JbcMvAW6T2mt3lKxbIV5e2ebxsCOXzBH/LIQVvkjXqLTdHMla2ulJ3K71SkbhIS71W/l3w781t5fuTzstuOu8mDB247TnJE0+3bnSMocdyOFi1auGrJstnllpNlt5HHNns3Tfu1FbGmatDA/EwHK1atkprVqsl+kDoXiyqwLtqyzW/UDZCiQDW9FxWWXILIAzmfQW/DOHHixJz1qvcqdvDomlAq5KbPgiIupkyZIhdffLG88MILpoI0IQjPQnqGDBHp1Cn1D1myRIQWdo89JnLddSm/DNJGJfSVw8vLZZ8vCn/uXmEPxRKBQh0SvzmmwYOl9/jXzOecVuc0ueOQbUbdifD88+HCmHnzRNIhF0OHiuy/v8jw4SLt2okXd9Yor/vss49nJ4pcwFrwuJnXtHbUKNmyPDfh0I2bNsnYGdNln73qlbhKOhacVdxM47moxC1fZ0/ZoXEKDQgyAK3V5s+fL/Xq1UstElPAeb5Dhw6VQw89NHlnsQLGn3/+aQh0p3TWvALDX3/9Jc8995wMHz5cXnvttZz426YCVRx9Eqo24WOITzqgMvW440Reey2+32IMoP6h5r3YfqP07rGTyMEHU/YrJcKsWeH34Xt8/nkRaeyxYw85vd7pyV/P8b/6qsixx6ZHGsGff4ZzPvfdV7wIQjGtWrUKNGkEkOcRI8K+nG4gtNldxazY54VCxmJn2MSJsi4FWxGIIIUt/EyG5atWyS8jR8o/275Pruxb3FRs8azD8DnIpBGoFc32aBzdhIKM8hqqVsRCSo3cGTwHHCDyY9i7MC1ccgmaf1g1TANF5PHg8tL7oPJhe5933kmLgBrw/Hff3W4PNGCA9F7yZVjRbHWlIY0p5bD88YfI+PHh75Mu+vYNK7UeLT7BcsKLjezz0T3HTRPoLRRIbc1dgGWH8uWlY/N9DakbNnGCrHd0coqFtevXy9hp08zPRMBwnDzKnXfcMauWO6lg69p1Jk/ULVAcg+IWZDAfHnTQQaZrSNCJY9DTFsorcVSUCL16ifTvTy+m9F53yCEiJMyj1qWJIvLYrZz0vn5/kXPPFenZU+Snn5ITSP7+888iRxwhcs45IsccY5S/3v/+UEQaeX+6paTk2YdqSpeZQw9N70uwCHMcnD+PAv86QhFBByF78tzcwpY8dOOoUL68dGjWTLZs2SrDJ04scd7aqrVrZfikSVKpQgVpt88+eent7OZ5nD17tknjCbqYwH0Q9L7dkCY9B+XFi1Di6BcceWSYNA6I0V4wEVA0L75Y5OOPw7mBmZLHBgul94fXhP0kDztMZJ99RK66SuT//k9k2DCRsWPDP1El+X2zZiI9eogsWCDSp49RHXv/9VEEabQ2NEkXU97jo4/C3yPdis5ffw13z/EwceQcBD1MjcktYSk3LYm25slfcccKFaRj8+ami0tKEYYEmDBzpiGj7Zs1M4U4+cBWF4kj1z/oIVprybOAeS/AIG2hS5cuEmSU9yhxVDsevwCihuL21VdhEpkOLrtM5LnnRK64QuTLL7e3Bkz15S0vMz8hffLOlXLZin1E3norrOS9+GLxFzRpEi5GefllkYMOMp9XVHCzjTQCwrP9+/c3nRISevdBRFGiLnd0xkkVnC/amZEn6lGwUJLfFWQQkqIQwE3i6KaBdTJQHGMLZMhj3L1q1YyIX6smTaR0qVIlam3oZcWRDZQSx3CBDIUhiZojKAof5Tya75v27HPzzTen/SHk+DxGZa8ic0D2zjhD5IUXRJ56KtyKMFXQAg2Cd8IJYfXv5JPT/vgI8gj5e/vt8B/wxJs9m55h4VxMyG1Uy7VYpBHY/JWElkSffWaKaeSTT0SqVEnvoFFoP/ggTJw93PuVhbJKut+twABppIrULWzdsEFCSXIMc4ENGzca1XDeksXSrmlkqJn/33XnnYuF59Zvew19sVEb842tLpqbs3EgAoECbRdNqu1HjRpliBS/o5AsOv+PJgJYtzCnsN6Q/oJLAf9vN6jO17Rr187TXUmiCXQq5+Cff/6RP/74IyJn/MADDywaT3PmzDEFaER68EvF+qqkCribWLRokYwfP14OOeSQouNM5TzMnTvXtHB15pDjFUxalN/GQunSpYutj5wTzg1en+TCxkvvSXS9SzoW0iaOwwhHpomgN2zPGi66SOShh8Jh5/POS++1xx8fJo6od927i2TgyB9BHu2/IYm28CUG4pHGlIgjpPTKK8OV1CeemPbxGpLMe3DePAzuj5T8PBUZI+QRQ2UKZshNHD5povw5ZYq0a9q0aMLeqWJF6URXpCiiOWzCBNmydats9YhzGn6OtGws5YIagvLOIk/agiWOY8eONT2s69SpIwsXLpTRo0cXC2Hy3LZt25rXQzx///13mTdvnnkN4P5ikfULGBNOp7xUzoGzsCYaECZyR7t27WpIKes45AHrI6+C7w85YizYeySV88Df7HUHv/zyi+yJBdw2+G0slIriT7Vq1ZJGjRrJoEGD4r4m0fXOxlhIe7X63/+St5rLF9iFvPHGG/Ljjz/KqlWrpGHDhnLRRReZnUYyLF261HgqUqTAxNO6dWu5+uqrY4YKvvnmG/noo48M66fLxUknnSQnZkJs0kX9+uH8Qgpd0iWO1geR3MObbhJ5882MDiEmecyANAJrtRA3AfqWW8L5iailmWw+OE+oWA0bipdxMDZFAQdFEagEqAtuYOuG/KuNFlV32cWojRS5jJo6VVoTfo6x28eWh+ds3rLF5EimawzuJlBv3SCOVNUfgIPENqC6UWm9P6kv2xbNcePGGeXJqRI5q/FtcYmfnQogC3Z+TPUcJAIkC2N9m0sNSaAoz8vE0a4LdhORyXlYvny5eZ2bTQVyTRxTacma6HpnYyykTRxr1qwpXsXDDz9sdhcnn3yy2WF8//33csstt8izzz6b0GSbCebaa681A/Css84yO5KPP/7YEMc333wzYlL68ssv5cknnzQ7llNPPdXsgHh/5PAzzzzT/S+JHc1JJ4ngd5eumTUk+IknwkUmHTuKXHqpa+QxGWkECb3nX389XElNnmTt2ukf5MiRIuzIPLzRUWwHyoKbvQhCm7xDHEG1ypWl7d57y6yFC42SWHqbzc6QsWOl8377yS6VKpkqbMLUkEY3DMRLgq0bN0ppl8J7jAMeEEDmVRY45+JJWgPjJR5ZgCiwOHbo0CEiuvHbb7+Z92UNo/DCy5EwSJEtGkznHLCW0eea56K6WTLAc51m4vb1Xob9vnZeyGQsoKTBBZwbM7+NhVIZHFui652NsZA2cbzkkkuMxMmusD4KmIfaE/Xr108uv/xyOf30sKH04YcfLuedd568/PLL5hEPX3zxhQlrvPLKKyYvBnTs2NG8FoWV72wnpNdff9042d9///3md0cffbS5wd955x055phj3PfewtC7aVORu+4S+e679F9/4YUiY8aEC2XYBBAGzjJ5TIU0AvKQjjjiiOKK49dfh0ktx5ghuTXnhyIdwvMeByEHG34JKpjM3QzXeyG/MRo1qlQxDwBBdBJnFou9atUyXo08vAY3z+d3330n++67r7knMhlHhN4I5e26LdeavMkePXoY0kHuJB1JZsyYYZ7jVdTOYLOMwEGeMOocJIvuM1TlBrXABqWSynTyPC38OBZKeZDUpp0ZC3mi9c35559vCNqLL74oY8aMcVUtSAW//vqrISCQNwsGR69evWTChAmyePHiuK9FpWzatGkRaQRMWm3atJEBDvubkSNHGpPi4yBvDhx//PGGsZNX4zogWffcI/L99yKZfB6D8JlnwoTqlFOIu2d8KEVWPaNfLOotnSppdOb2RdwYkGGKdzjHVIJnctPQYvDbb8PnyQe5g6RVMIkFGWy+3EzUJyfPywscSuPkv2ab87BwW3eW2jVqGOXRiyDP0U1Ytc3a8zjXl2jFxEkaKQ5BRWqAd+02MK5sWA5SxQZt2bJl4nVPU8Ky6ZwD5lKbF8prIIz2e0arSvHOoZcAESYsbS1p0hkLANKIkOMUc/w4FjJBouudjbGQ9qr6f//3f+aCIPUOHjxY+vTpI5988onJKcFWBSWSEEGufemI0SNJR0vWlgxSQRQrz4EJityqI2NY3PBach6R/0m65jMAJNMJ+kcyIKdOnSqHkYMYA1T9UfXm7EFpJwjIqAWD2SZ4QyiiYcLmJ58sq++7T7b85z8R9jq8jteT6xktPTOpcG646VZSFfnSS2FzbIpm3nhDdj7rLPMdCNdHu/Vzw9odWnTe0FkNzzI/IYuvjn1VNm3dJBc1vch0hOF7kawNoed4OC4n+CxCCVTGmQpClMbzzzd5nKV695ZdtimRK1euLLYx4bvwndhZR9t3lL/jDqnYvLlsOekkWR2jxZxNPeDcR7e0sueQ9+S9Y53DeNeGewASHOsccmMyAcY6h/zbkmfnWLBg4uPa8Lxogsl14frwebbXswWvsZNm2uewfHlzzJwfzpMTHKut5OM8RPtwJjqH8cY3x8fx257Lic5h0vEdw6+x3LbrTFeW6JZ+VCpTtMLvo7u2mHO4TfFbue34nKCgxYzvDRtMb2oneE/emxxFWg8WO4fb5qq1GzZIzWrVTGh63IwZsmL1atmjenXzd5RICmQivkvZssYb0pzDGHl8lbdV1a7eVljgBK/j9RxrdBtE7IEIiZtzGDWWAOfBzBHr1sn6lf9K+X93SmmO4PzYSt9Y4zt6juAn15Dn8p7cr+TAUjRDXjnjggfPseOQxZ+5mgpRIhm81o5v/t9uTPjJPG5dDGKNby/MERR98HrWVMDn2WIfChvsObDnk/ucc8ex2r+xrqFccoyEvglhQ6o5p1TmkivHZ3h1juBz+QznezNOqJquW7euUQqjz4NzjiAKyfe3f+P97IP3tGOB8cdzEs2zicZ36STzbKI1MNH8bc9hJooj1xt+Zj2CuX+s8pzob6kiIzmGDyG/jwcnfMiQISbchjpHXiEHQ4Ub1U4MfBsycBOQslhJo/Z3ELdY4EJzMZO9loHKZzAAoq1TGOhcYCcxjMZXX30lb1sLGwewFnAavTLQUToZZNzo0SA0jgn26LPPluW33Sby6KMi2yYXCnogz7wfScNOUMTD7o2bvOh9L7ggXHV87rlyOGGNxx+Pqc42b97c7OApIELaj55gL+t6WRFpLCNlpMGSBjJwSfgzunXrZm4qSDUkMfq1jJ/lCxfKiGuuCaufJMZfdJFUGD3ahBQAIZfoycV6P86aNctsCorw++9St18/afn554YERJ9DbnJUaKeC7ATjlvE9f/58cy6cYOPBpoibPNa1IezOpMS551w5gd0B+UacW665E0yAfC6I9b4UjDCBYwrMcTnRpEkTs3EhCRy1xQleY4tNUMOjJy1COIxlPt9pXwE4Vo6ZCTb6mPiOfFfAeIheIClGY4HienPMTjBpYX/BsTjfl+vLRG6JI1GM6PupZcuW5j6EPPB3JxgLjAleH+scdqlTR9iGTP7rL1kc9b6N69aVRnvuKctWrpSRUce70447SpdtrgF/jB9fjESQjwhRmzl/vszBHN95DveoJfvUq2/I3R9R9yNzxqHbivZGTpksa9auk6lz5si4GdOleuXKRSR07uJFMn1upHF/rerVjZ8jxA+lMhpHbJsPxk2fLiuirs1+jRsbJRNVc2LUNa+2667hLjdbt8Z83+7t20v50qVl0l+zZfniRVKuRo2U5wjSmwDrRDSJiJ4jIDUQQf6fECL56USUuG+Yf/kcrjH3AtEfxhrzK2MY4kBxpDne7t3N/cpY4XMZV4wP5mpbgGNzAr02R/C5TnLJmorYANFhPrTngPmP9ZXiTLwff/rpJ3Pf8D25t61tDXMEx/bqtg5inAOiajzXq3MEiiupYhy3VVJZFyE6zPm8jvveeR4YS5ZU8n0QJfgb4Lmk12HbxDm0Y8FWaLPeQOIgnPzbCcQiciE5X8OjunwxdvlcACGL3hAw9rkHOGaO3QmuI/cO5ye6ShoCTLpdNHGkroIxAvFjzudccw0Z55wrzivEm2tu35MNlU39SPS3VFEqlMUYM1+Ek8oB8YVYzLgJOTEMQG5Wt/K4TjvtNPPejz/+eMTvIVH87aqrrpJTCM1GgQtAMc1ll10mZ+CT6MC3334rjz76qKnUZtA88sgjJo+SmzMaVFaziD+EXU6KiuMDDzwgTz/9dER+RUqKIzvhVatkC7mcDGIsknbdNXXF0anIMIm/9prsfNddUrp+fVnz2muyOcoSJJma8N6M94ziWK50uSLF8bym5yXdbTE+5nzxhXTq3VvWckMRWiansXTpiB1ryjthSHDHjlK+bVup+M03ZgH0opoQfQ5//vlns1lgUguq4pjOOcxIcZw/X7YsWuxJxZH3hTAuXPq37EgYacN66dGho6cVxzL160l5Rx5eNhVHiB9zKcQkFUUm2+PbC3MExIbPJp8+lXNYiHMERBjPRQpRnQ0S3JojvKo43nnnnYYckyII4fMCspoAxkmAIPLg5LFztCFtilN69+5t8gndgL2o0bAXKl7o3P4+ldfyM17TdZ6bKDwPq+cRDQaVs2rbORhj/b7odQzUV14J2+s88EC4AnkbuHHitSpiMBZ7X2xvUDLPPlsqYQ1DYQm/i/o+3NDRr43OabT/3qHCDhE5jtzQEXkUGzZI6d69pS5V3i1aSGWqoPkuMZCofzE3XVG3EWvfw3kpVcrcrAnPocMoNxpcy3jXM9m1SWSREesccr/YY0n0vom6yzApJnptyucwCsnOYaJisHTOITt8Jlb7u0TnMO3xjaK5aLFs2Uac4gFCZUlXLCTKN8QqJ55dDoQs0fvSd7pc2XJyQMuWRk2E0Nn3gnjGM/025zDB+0Jq46F8uXLmEfccJjpeOvxUrizlYpznWOPbiUR/s3PEUUcdZd7HWSyVr/GdrzmCz403loM0R3CeeO9Y3yvbc0Qq5zDZ+N4lwTkstgameG3yXT8SC65VDnBxkLF5XHHFFUaihUC6BWToaOkfWJUvFmmzF5oBFivMHP1aPoPdFUqZM1wN6WSnkYq/UlbBjp+OPHRGIVcx3VaETpALSrEN1eIof3So4X1p8xfHgilWIUxSqx7Ceb17m8dOS5fKtJNOkr1ef112KGk1+g8/hH0b8Xx0mL36AX72GMsWUOQJTzqLGrKJUuW92boLRRFiSIgYtXP01KnSpG5ds1iMnT7deD7W8eD4KOViBxuvF23kAhAUN9tv+gGWMHmxqjjoSJs4Eq5NBC4yOwHMt4nt210BYQc3zUYJ95IDE20GSr6C/Xu8XQ2LVXSehX0tuSx2B0K4GvBcG0Kw/0aKt3/PKfBkJDcQD0lyi0qy8KJA3Hdf+L2oaH7yScwxw9XXV19NYooJIyerni5GHltcEvadxIAcX0U+59xzZcMll0j5XXeVsiW1GyGHhTQDcmoguz4DOTjsNkn+DypseMktlPZAq75oTPnrL5m7ZIkc1Lq1UTsJlS/8+2+pz5xToYJRKsfPmCFlSpeWPRz5hIVMHNmEk6vFXJpI2Sl0kN6lCCPoxDFUCIojxS+pXuznn39ebr311py09yE5lW4uJElbH0cWIjzBmjVrVqTqkNNIToUzGZTjw8MRAmgrpknahYhSAGRBHhoKJSbgTuLIv9kdOn+XM0Dk3n03bAaOxc6QIen1sY4F8ihQ7h58MNxhBsL3/vvESMzn9O5ZWV6sMVWurH+WXLbvxZGvJR9o4UK5bObuIn/vHSaPDz4kl30yN9zHGiKKl+Suuwr76RJvJchj4XujAL/3XhGx9RNImmY8Bpk42t68tjjGTwpZJpg+b54pqGlar54hjbHQrH59k6c7Zvp0s8Gl8torcOt8MjeTtuCW8qzwD1hTKfaM21ksIAgVAnGkS0oioLyRvEt+I8UlGGVTKey2wSbkkNZtVI1RjcVn/vDDD6YCE/Jq8eCDDxqrA2cVGD6MtBHkeRTSMFDpHEM4mn87F7cLL7zQFLTcddddRRV7JHNffPHFCfMbXAVV6599JkIrJvoyZ4tA8b433CBy7bWYXYr88Yf0Xtk3TBo/WyyXffUfEflPWEEkT4XkaUeu6GW1aomc3UhepEDx9NPksmMeDvtQbgPEngRoZ9VcWiDhGnP2KVPCYXafEi+IUnTyeBAXCSZIFKd4uUklQSkPteubuWC+TJszx1Rzoy4mTPdp2NCMjdHTpkknrGkS5NwVAnG0BRi5tnPzGlijuB9wyggqyI0M8vcvKOJIeXsqgMThjXjppZeakvo77rhD3Mbtt99uSEjfvn1NlRe7Vqqikx0zoWgIMb2q6QBje1VTiR1tJQTJJJGV70TOJp5hPI/K7LyClor/938iKKSEtTD5zpZyA9nr3l16V58mL45eHg5PH3q0yIV/kpwWVv2Y8JnsyU8iJxR7mdq1xQSOt4W1ZXyDiLA26gKqLrZNaVs2cTPRcxsl9IMP8GoRv4KNSryiq6CAYgA3O1GV9kj3FXIasddpuOeexgIoGSCP+zVqJFWXLvGMGXjpihWklEsqkBLHMCgUc2MD5ScgLLCRTLUfd6FiqwdFBVfbapDniAVPtOeaW2CyoRCHRzw8R+5eDEAA7yO/LwXgpWj8FL0GyCtEju/PzUaoOUvkMWZOY4ptseIVzNgQRNqkCdJI5ffTT4eLeByqsB9hOyIEnTjSZs4tlCpbVkrvWFG2rs1vf14KYQ5s2TJmdTf2PY3q7Gl+OkGYuu7u4QK1v1esMP+maCZfKO2i6slm0po0BxnMB3mLYHkEGJ6TPharOUdQsGXLlmJ2UF6A63cnOQpuVlMrokAVNArgjTfCyKhmKnHYOp02gumQR7s4pHVjsPtCveZ74dl55ZXid2DOrsCGc0VC24+SovROO+eNOFL0snjZMqMexrMEglQ2rlM34fvMWrhQlq9cKR2aN5dd8xS2dpM4kucb3ZkriIBAB111ZV0Ien7jRhcLBj1NHPniQd895hzkJUIW+YmxNiHsDC0uskEa45HHi7cV1qSsOGIUe9554cpsKr75fgUAt/N//QKaBhClcMudoMxOlWTzEsk5IIzkKNJGMFHhD0bhdHrZdeedTUV1LLRu0sS0JuTRsXnzvISvy5TUOisByCuP7swVxNAkIdqgE0fWhaBzh41BJY6EqSlUUeQY110nQuU41jqYetPTOk0/uGySxnjkcd8q+6Y2OeDReeyx9GgU6dNH5MQTpZB21igMQc/lITQXqytGtlAmB61Po0FoedTUqbJ71apGbUxEHOnIAiG0bQxjAULZbp99ZNjECTJ8EuRx34RG31lHKZEyLtrkEJ6EOAb5XmCMkPcddD9L5kUljhvFiyjt5q7prbfeMv1HuQkUseFq/gKm4L/+Sn/DcLHKzz/nlTRa8H68L+8/fufxyQ2w+/fHC0mEXql8nwIijQD7EVpreTGXJZewvcvdQunKlaVUudwtRLT8+3PKZKm+a2Vp1bhx1myGsO9pv08z2aXSTvC4nALSWCoTB4QUFSaK5TCCDzIYJxQLBl1xhEMocdwogTAA52LTRYWkVnKWyHGM1SNaIXFbHWYVmHbTz/rcc0V69Ahb6+ClmGA36yZpjKU8YjdweavLY4emb789XASDakrI3aVe5/mEXSBIiE/U7ioIxHHmzJnmnsjInimFBblM1aqyeXFu4tW0Emy6Vz2ps9tupqAlm6BdYHu6PW0LcfOI15owmyjrouWV7R8cZONvwLo5H4/Ppk0DneO3H04hAcfGQiGOqRqAM/H36NFDrrzyykAvhsmQExsWbD9++ils5I2nZd++4c4wEMkY2Bra6ipptOD9Z82cJUuWxljI+/UTueYakRkzRJ56Kkx4fWjunQpsMQjh6iDfKxAGQpScBzeIIyhbrZrrxHHlmjWyYeNGqVGliuwVp11nNjFuxgxZuWa17N9832IV2dlGmTitW7MB1GYIdqL+0EEA54FuUngTK4KNjYVCHJMZgLOr58avU6dO4H2oPKE4WkC6IF+QRUyzDzss3KKPyuSo9lZXtIpvZ5Rt9KrWK9LDccIEkVtuEfnuOxE68dCq0EWbFq8pjkEGhr+HHHKIq58BcSxVprSEtrjjjbZq7VoZNnGiyTuEOKYDSNOOFSukrU7uXbeu/DF+vPlcCmZQI90AdkZlXCR1ECbGQLbVWb9WVAe91R5pC3CJvLTy9Qg2FgpxTNUAXOHRgcEu9rffRD7/PKw+Eg6ggIZiGvII89RqzhS9sCmhfSKtCT/5JJzLGIDJkw0Wi2XONhEeh1uhakB+XtkaNWTTosVZf2+KWyhaIWTcNgNLmZ133FEOap3+PYi9D/Y8QyeMNwUzHZo1j9vGsCQol6DLTTZAMUiQFXcL5sOg5zeC5cuXu2bN5Rds9ChxDPbWzgPIC1mAjNHfGXWP/EEKTiieoYgJwparwbpxo+w2cKA0ufjiMGmlCIaw9MSJIiedFAjSaHHEEUdI3bqJPfyCgGnTpskvtLd0EW4QoHUbNhjFr1wZClf2cYW4JQIKJwUza9dvkKXLl2f/A0qXknIuh9333ntvadKkiQQdShzDUC9LMcTRrU10SaDEMc/Ia6s5UglsHuGnn4bD2RQyYUh9xhlhErl6dXY/k/fjfXn/GjWk/i23hFsqYbFD1TTh9ABOFkEPz1mQtsCCYQsl3LLlyXYLQgq8rPKXaZ4huZE/Dx9ufmYCPB0Pat1a9thmKJ/NHrdlq9dwrT81WLNmjbnuClzTdpc9XFZ3/bAu4jIRdOK4YcMGTxLHYNe6ewCeCE+ijqBA8hg/PkwiCWV/+GGYXJKeQHV2hw5hZRJlLBUT4FWrRObMEfnzz3Bl97BhIqNHhxVNQuTXXy+bjjlGKpHDGPB8WFwI2F0GvZKwWrVqppJ08eLFrrZcK1+3jqyfPKXE77Nx0yaTiwZpJL+wJIDoMR+UhPDZ/Ma/Fi2SJcuXS9u9987KpqR8neR9tUuCKVOmyOrVq6Vr164SdGjkYXu+t4aqNypxVPgghwESx+Puu8MKIEUqQ4eGPSBfDJt2G5Akj7E7Hozc3NhG4EPIDb9okciCBWHiaEEICuJ51lkivXqJNGhgfu29WyJ/44CcnqADkkMLxiVLlriaFF+2Vi0pPWdOiVoQbtq82YSnK+xQXto1DVvjeAWErifNnm3Mx+k2UxLyWLZ6NVdNvyHKXO/69etL0EH05e+//zatF4PsYYjS2K5du8D3696giqMiFtbRV9qrgNxddVX4ATBnHjuW9g5hYjh/vsjixWEFkZA7Ex2DnHxFQi0QS6yAWrQgBhk3RDVx4kRp3rx5oBPjmSDnQGS2bg182JpQ3aRJk1ztVYtKWL5ePVk/cVJGr8c3kS4v6zdulJYerPqsVrmyURv/nDJFxk6fbo4x0yrd8i4TOjZMKK1JGwEEAKiuQ4cOlQMOOMCQx6AC0lyrVi0JOtasWePJDkJKHPMMTxPHaKA6uNAFaNGiRUZtCLqHIcrLqlWrAm+ATNMA7LzctiMpu/vuUnr2X7J17dq0XgehHTFpkqxZv146NGtmqqG9COyA6FiD6rjTjjtKIzZxaYIKdDd7UwPSEnAWCPq4B7ZzUtCVNroHcS6CrkKvXr3ak+tisKUND2BtmotWoUE9DCVioXCz5Z5fgOIKaXQ7/5fP2GHv9Kt4//73X1PAQs/oeD2lM0GlihVl/xYtzM9soWa1atKuadOMjMjxu9yhUUPJBVCXgu5bCCgKwwQ/yGFqu5mgi1TQsVqJoyKeFB1kMEESjgw6ceQcdOzYUcN120DO248//uh6pW3ZKlWkXK3USJUtWtm9alVTvVwly0pc2TJlzHvyM9vKI/ZA+EzOIL0kRZRv0EBK5yBMts8++wS+KMyCjaMqr2pJZOcbiKMXQ9VKHPMMX4WqXQKVc3oeRHbbbbfAT5YWVapUMQrU3LlzXf+sHRo1Smo1wyQ+eto0mbkgTLzcaO1HvuSk2bPMTzewbOVKmfrXXzJt7pykzy2zy85SLoPQdrr4559/TOhfsX0jHeTcRgs2jEGvqF6/fr2xJVLFUREzVJ1NvzU/AtPfmjno6euHMNXYsWMDPx4AlYR42VEw5Pb5oJvMDk3iF7jw+RSYLPrnH6lUwb3dP/2tZy9YaH66gTq77y5N9tpLps+dl1B5NCHqpk1dDx3jJPDHH3/IX3/95ern+AkdOnQIfF6fjcR5kTDlEqu3eSh78TwoccwzWJSCrrZRDIF/X9BBeIZFNOjpCxZ77bWX2VhhT+I2yu22m/F2jIUJM2fKgqVLpWWjRiZM7Wc0rF1bGtXZ0yiPsxcujPmcHfbe29We1BZWTeb+V4RNr3XTGAaWXEFfE1YrcVSkMkCCCogzhCnok6bNbdICme3has4Jlea5QPmGDaVMlUjbKMjV3MWLpUWjRkUdWfyOxnXqSsM995RKMUKB5WrXdr21oAX3PEUxVFQrRKZPny4DBgzI92F4AuS8Bj3fe7USR0Ui5Gph9PL3J0Qb9JZjLKAkQitx3I4uXbpIg21m8W6D0GzF5s2ldIXteaZ77rabtN57b/OzkNCkbl1TNMNmbcW2BarMrpVlh8aNclb8hLKOqqwIg/t+pxwovX6IvGjURQxxZE3wYoW9EkcPIOiKI/YTQCeLsOroZp9mvwEyZ7tp5OTzIO8tW8pfS5eaKmQqnLG0yQVoF1i3Zs2itoG5wPylS+X3ceNkybp1UrFFCymVI/N5XARorRf0cGQ0cQy6fyOYP3++/PLLL4GPQK1atcqzGwkljnkGO4qgE0dUNgiCEkcxxtcUhSgic+EoosjV+Ji9eLFMLyWyZFVuCXzFHXaQ5g0amJ+5Qu0aNWSP2nvIxE0bZWkOW15CGFu2bJmzz/M6iLagtKkVT1hAQEwIuq/n6tWrlTgqYoP8haATRwyfOQ9KHMVUl6PEKCLJNDZFU6ZMyUne3YQJE2TvFi2k+ZFHSqlyuQsTYUvz7+rVObWnKVNpR9n/1FOlZu3aMnz4cNeVXVSk8ePHBz49Jxr2fChx3E4cg47Vq1fLzi53bcoUShw9oLbpJBruTxx03y5n/peGqyM3Fo0bNzYhLDfvlXnz5plcW+xQMKUus8suUrF1GyldMTfjcvW6dTJk7FjzMxcoU3kXqdimjZStWFHatm1rVEDOsZtYuHChzJo1y/WuQH6sIu7Zs6cnCyFyDSWOYajiqIgLBsaKFSsk6GjevHnOiiC8DhQvFlfFdqDCsslyU3VE1YQ0MhYtyuxUSSq2bWtIViGh7G67ScXWraX0topmyHn79u2LOriQV+qG2sj1gySpyXVs79KggzHC2PMqYcoVQhStrVjhWQVaiWOewcCgobsibMsT9IRo20EG1VGxHRAbCF3t2rVdKUpg3EFo9t1332K5VZArSFa5mgVgD1JKpHy9elJx3+bFCmEoWOG7L1++XPr375911Zs0AFSUpk2bZvV9/Q5yG3/++WddB7YVw/Xo0SPw6TqrV682Bvle3WApcfQAccTkOOgm4EyaTJ4atg+H7UmWV1ueSOD5xwNka4OxdOlSGTRokMyePTvh8yBZFZo1kwrNm+U07zGbIOS+Y+vWskODxJ1JUHtQvyhIylb+NSrStGnTpF69erLrrpFemUEHY5D5X8OzCgu7ifCq64ASxzzDStFB321aGwrN7ROzy8S7S1XH2Bg5cmRWQtbccxSEVK9ePWU/wXK77y47duggZatWETfUFqv6ZRvl9qglO7ZvL2VSIG2Qxk6dOhnHh99//91sbLOhGOPJqWpjcSxevNiQae1TLzJp0iSzYQk6li1bZuYBmiB4EUocPUKYgk4cIUrsuFVlCy+y5NqR06coDioN6bJRkk0G+UNDhw41E3O7du3MOU8VpXfYQSq2aiUVMAvPYuHMLpUqyWEdO5qf2UKZXXaWHdu0lgr0nk7DSBjSuP/++xsiC1EvCQh9UwxD8Zvm8UUC5RzFMehdUpz3JWMu6Pjnn38MN/Ci+TdQ4phnMEFDmIJOHAE3ihLHMFBmtIdvbDRs2NCEU8eMGZNxyJoKasYbBSGZLlTldt9NduzYUXZo1NBz4Wu63xBW37Fdu5RUxliA6KE8tmrVKuPjIE9r2LBhMnHixIzfo5BhSTV5zYpwvrFXC0JyiWXLlnk2TA2UOHokNMkOI+hgwgh6rmf0JKqh++JAHcQ8GnVixowZab3WVgtTaNOxY8cS7+jJfSxft65U6tRJdmjSWErvmLlKvGrtWvlt9GjzsyQKoyGM++9vwuolBao3JH3z5s3GqggimA7wbITc77333iU+lkKd+7t166ZkaVtxJCRaz4UY4ujVwhjgrW1yQKHEcbuShF+fIgwUNRbtNm3a5PtQPAdCzIyVdBRH/OEIT0M62c1nMwxEGLj8nnuax+a//5ZNCxfKZu7praG0SO3qtWvTtsJB7SxbvbqU22MPKePSokvlLx6MkHVUyFRCzhQc4QvJ+FWP1vjwqslzrmGjTUEnjqFQyBBHa43lRShx9ABYxKg4DDrSyTMLAsh7ws+RiSTo7bdiwVlokewcoWZQ6EFY2m2POEgcj9CWLYY8bl66VLYsWy6hLJpeE4ouU626lK1RXcpUqeL6+CCdBsI4ZMgQQ77Jf0xEvCGa+JGSq+uGhVIhgDFJGB9ireQxbEPWtWvXwG8yVm+z4vFyqFqJo0cUR2vJE/SCCCrqUJM0tBWeSKdOnWryoLwctsg3ULbIWezcuXPMzQfWRpBGyBXkJ1fVq6XKlJFyu+1mHmDrunWyZeUq2bpqpWxdvVq2btgooY0bJLRpc/z3KF9eSpUvJ6UrVJDSO+1kutmU5rHNuDuXICcUwsi5pBqdUH+8zR7nmOsRdPUoWTU19mNBJ0oWjCUdL1JU7+DlOV+JowdgBwgDJui7cxZ37aQTBhYdFE9hy+PlScQL5wl1i3y6WOGdUaNGmf7PBxxwQF4X6dIVK5qH7B5ZCIEyiRq5efly2WHDeqnUvp1UqlpVSpUrV8yk2wvnGsLIZiYWaSTMDomnv7hXrUS8Antfa6V5GH/++acZN0EvFPrnn388bcUDvDUrBRRWktbK6vDCpMQxDCYPOijowpJ8zLRo0cJ0JpkzZ06xv0MmURq92gcYZRJFcafq1aVjly7mJ5Y/XiONFpAd8pEBVjLOnEyqpymiUSP/xGAj8/fff6sNjyMqsGDBAnNego5ly5YZ5dWrVjzAmzNTwEBYhxwiLZAJL0rkd2SrY4Xfsc8++xQt0or4gGBj4g1pYUGmChgFkp/cW37ofcsGoWbNmr7ZKNgcvdGjR5scU7w1ycmlbaP1p1XEBoQbkqTE0T/h2VxhmccrqoF3KW3AQPcKJpOgA3kepQ0S7YfFPle7cRQceikr4gPVkRxhCg0gNFgZQSj9QmIoKEEx5Zj90EWEc01hByFG8vWwUiE3mbaCisSAMJI6oXNcGMz3bPD8MO7dBjyAojIvQxVHjwClYdGiRRJ0IM/TmoxcF0UYM2fONN070rVpCRrYcKDOktOIdUyTJk18QxrtBmHy5Mnmp19A73AMwmkBiYKmRW2pj1Wvq0q5hNcNr3OFTZs2mYgJfMDLUOLooQmYXReqQ9BBfoda82wHChThe8iQIj4Il6J+cR+R9wiZ0bxhd8G4pMPRcccdZ4gQqQGKxGBzwDhVRFprpdovvpCxePFiM4/BB7wMXZ09ArvDYOAEHdaoGYsihZhwFrvxWIUfikgVh/NEG0HbjYNxxA5ekX0wHvv162fykQlPEykgYqDkMT6IGnDecEtQRIbu2ewFHQsXLjSiidfTkpQ4egQMFMyJVVUKFwlgVaFq0XawG4cAQaoVkWCHbslhgwYNjJ0H91KHDh1MzizeoFjEKLJ3vidNmmQ6G6E2kpsGWPAItf36669pt4IMCpjXiCqpurYddBfS+zMM0tWYv7xcUQ2UOHoELHQMGM1zFLMbp8BBq8y3g9CF5n3GBtXTkMNoUs3kC3lkkfaDsT4bJq6zl6uqyWMkzEoFNf2+KUhydq3h2PGixZYHY3ZFJLCMYjPjp9zbXORwQ6gVYoQjr+c3AiWOHgKLhiqOYRByVOK4Hag5FCFYdUcRBsbfEBS8GmOdG84b5IbxhFKGEuZVrzh8Jtu1a+dZv0mb00hPYdIBUHfj5avxt3Hjxml6hQOosURRyFlWhEFaA+NJC2PEzEukqnk9vxEocfQQ2Gmw89IcobCfFwqSFgsVD+sooQ6D4hfUCohhKosxlka8hn7LeBB6Mf+NimovVs+zuEN8UG4PPvjgpKoIaiRKL+TRT1XibgI19tBDDw18dzAn6EDEhk4rzMWk20AeVXFUpAV2Giwa6ucYzvls27at53M9cg3UtWnTpknQwX3CJqtZs2Yp+wYSHsQ7j83IL7/84rm8KojtTz/95KmuKyzqjLfffvvN9E0HqToeQOgPPPBA7cW87TwiCEAeSUtShMFah3cjqUlBx8Jt0UYljoq0K8vIF9JwdTjPcY899tBJNgooa0y2Qa44Z1cOeYEEpttVh0rrgw46yEzO+D3qJi0+UPwHDx5sVNpGjRqZLkbpgLmM8w3IeQxyHhshSDYFqr5GghC1en+GQX0D58MPJuhKHD1Glhg4WiATBp0/qNxkt64IAzKNahHU3DG+94ABA0yuXaZen5y/1q1bS+fOnYtsL7TFZSQIS6Mycp45T+QtZnq+UYc5v8OHDw9smgXjFlstVV+LiyVaYe6vwhigxNFj0AKZ4p5nasuzHSiwWKBQnenVIg+3QGiZjQSTazZ88GxCPnlWkFF6LgddESJMzn1nyXXXrl1LnH8G4aToh/ONrybnO2jKLWqrFsUUz+lTkSQMxBHOhR8KY4ASR4+BRZGwhhcT5HMNwlzI9kEOccUCFauEDZ02KIUONlMQOyyJKLzIJrBHoSqb+65///4mNBu0AjUIM6QcD0arZqMGZSvHGPJIJTb3NNZJQVJ4yQ1lHlM7rUjgcDBr1qx8H4YnsHz5cpN77RfFUSsPPBiKJDzEbgxfxyADYsQ5YEFPN7+qkIFdS5DUC+4H8hG5N1q2bOkKYSZcxvvjT8iDz6DXdS5B8U6vXr1yuiFAtWYB5ztD7iDlbo0t1PKOHTuaz/Oy5VC2lSTGb+PGjbWNatS4Y43TeX27Wwbwi+KoxNFjwKqBCYZQZNCJI+AczJ0719in+MHEOZcYO3asOScsSoUMwtLk2UGs3CRVhGdZyKjStibcqG98pr0v3QSfk2sVmcWbqun69eubceS2+TgKpi2GWLFihfm8QvYm5XpClhXFxx1RNV3jpGieqV69um/uBd0CebSaGOKoCNvyYOuhtjzFAZFBvaGQoRBBbisG36g29LHNlWIDGbfjjaprQuRUxBLCdjMHklw4PCbdbCtJiBhvRQpVbDi6e/fuxtYo1x1r6PjD9y1UhwDyRYmWKIqD9CNUZwqGFGLWez8VCZUtpJu0d+/eMnDgQJMrgHJwxRVXJC31Z9fTt29fk9vDzpv3QS4+5JBD5LTTTitWGk+yeCxccsklctZZZ2XluzCAUJNYMIOUxxYLLGap+vQFDViksFOFPFL1WkhAjaKQgpy4fN4HeIlybsnFwmycOYK5wY1QK3mVVB1nO7+S88dCzXewvnnMMfa85qvSl4IZiOPvv/9urJUKreJ48uTJZj1h86th6kiwEVTvxjDYOHF/4nnqFxQEcYT83XrrrWYBheyx2HzxxRdy7bXXymuvvZYwKRkF4eGHHza5Pccee6xJlEfleOutt2TkyJHyzDPPFFu0mPB69uwZ8btshguZ1PFPI2FWHfXDNxaLHpsAVR63g4UWUs25oWAmG5XGXrFhooCChYVe0/ledAkf7bvvvmb8WaUEcIwoJiS0UzHspU0eOWSQFhZo5kf6S3OsVEoT0cj3ObXjt1OnTmaugzySjuAHD7tUNz5UyXK+vXCuvQYtFNoOW4ymimOOQRcIwh733XefdOvWzfwOVeCMM84wBPCuu+5KqGi9+OKLJhxqcfTRR5vF4M033zQTLkQxetAfdthhrn0f3p9FiAGlxDEM1B4WQW3XFVt1RKnyS2J1sk0CJAJyRm6YlzYKzBV2/EHGIGJUe0PcIe2EfdmA5jrka0EeMOMAwmKdCA4//HBTlMK86MWCFNICII8jRowwkaJCIY6kNTA+dL4qDsL3XGfmc4WYMDXnwprl+wHemZVLAMLMECxnGJkLQU9VcpOoaounxjDJO0mjRZcuXQxx5KJGE0dgeyi7MdExmbII8dmtWrWSoIMFDyV4wYIFOhFHgXFN/1svEaySqlDsvFFQ80XAUgEqEiokD6suQdrsdYAIsfljHrKLQjavEXMan0tYGwWRPNeff/7Z/I3PIwLCRsJ2XvIiaXQquszdnC8IOQ8/j2ciRRB30hy8pEJ7BYg8FIIocfRnfiPw790Z5ZMVy+6APMevv/7aVOWm25rMmk7H2gX88MMPJhROjhAX/JxzzpEePXokrSJzdk1IVvzC+2pP4u1gcZw0aZJZIL1MKPIBFlkWW4iEXxVq1DLSRtgg+C1f05LDaDLEHILyZI3aIUfMJ8xHXCtIMg/IP8+3FfIUx7Ax5ZpCEFGuuK68Bq9FzhO/B4TzbTeh/fff3/zbj7mClmBhu8T347v4td0o1f/4ghZCBCDbYAwTVVABIAzuc6IWscQpL6MgiCMTNP5u8TpDQNjSJY4ffvihmcyjrRRQGFAymRR4388++0zuv/9+M9kfd9xxcd/vq6++krfffjvlz8dLjeIA8r2YiIIOFkdyT1F2ND+mOAiXkoxPhazfiANEgfA0Gz/6SBeCSmP96dhckmvIgmlVPxYL5iwnAYQwQpjZGJEeE52OAHGEHEKsub7MTZBVp32HbZ/oZzBPMxaGDRtm8lv9SB45Zr8pSLn0KyRKZ9fmoGPu3LlmjvCbL6/niCO77FTtRdips8gwEccKRdvf2bByqnj33XdNqOmGG24oVvn10ksvRfz7yCOPlIsuukheffVVOeKII+KGro855hhTOehUHB944IG4x2AnHvLXIKtBB4slu3i/KmpuwyrUPGKlXngVECeKTFDlUJkKgTQ6wfdh4+fc/EEEeQCrKqIa8xPVkTQZxjuvtXMcgCRyDxQyIMNs1hkTzMF0m/FTcQnHTZoRvpiKSECQSDdCBCi0+zxTwAO4r/1GpD1HHAnFUA2dKsFjwYSs2Z27E/Z36eQh9uvXT15//XXTwSGRgmiBCnDCCSfIk08+acJS8SZ2cjp4pArCUwwmBpYSxzB0Fx8fEA/ICKoj58kPKjUbRBZa7lMqar2ch+cWIEVWIf73339NOgYhbb+pxtkEm0MII6ojYTy/hDUhRdgdkZ+rKA42SXvuuaeG8B1AGGK+9huR9hxxRLK97bbbUnquZelMNM78QQv7u1TZPKa4Dz30kKnyu/HGG1M+Zut+T1g5m2BAqRF4JGy7Mp18ioMFa968eWbzhSeY1ycjIgFWaVQjYIUThN2pBPdLJw02PxirMy9pN5T4IXxtMbgdFLYxX7vp0BIY4gjJI+SbDsgPwjCbHY0zrMHunZ17KjlxEydOlDvvvNN4td17771pVfWx0wTZrhKDOOIlSTJxENWYWGBHz3VW4lgcjH2q8BkvXiaNtlgEsgg58PKxKvIHSxpZXMkJ9XKYnvWDUKxGh2KDc4OlGopjoVguZSPfk7nQj5E0/ySPJAAJ9UwsdI2xIBl9wIABJgTmzH/kYtmG4hazZ882BuJ4Nz766KNxBzbvGQ0W6T59+phqyWRdatKF7ZhC4YMiDMJWKMlutn7zM9i8kEPkJGheAqQfZd8WgChpVKQCIi/YuHiVFHGv0bYxyCkGyVxFINc6b28HRJqcZj8q1J5THDMBqgXkjQ4wkEDbOYZF6oILLoh47vXXX29+fvzxx0XE76abbjKVj3SdoaLPCRZhu4ukgnrQoEGGjJIADYH57rvvjKHpHXfckXWbGL4Hg4qCB4yFFWLIPSEPqtGy2a2n0EAFOmOaMLBXYDuYcN9EuxUownmqRFz87GHoBlCpIGZElbwY7mTzg2ejInEuHxEGP5lc58JGsFGjRr4q/rIoiBmKyeSxxx4zFc+ffvqpyZ3C2oJcyWRl7iSk2y4Lr7zySrG/01rQEkeqVdn1fvPNNyafkd0lkxhqpVsTB+Ro9OjR2rc6qnsHCgQ3nZ6T+Dli7GgJ87Hw5huMXzz6uNcofEinUCxIoVk2pYriIJwHeWRDhErjlf71bOohRJo6Ex+sx9ioeY3w5xOrVq0yhV/UU/gRBUEcAbY5EDgeiWCVRgtueGeIOxFY8HjkEk2aNDG9XLVrSqTXmw3HKmIDpZrxwkLL/+e7jzWqPBMlGyw/hmZyRa7tBlE3RLGLv1BjifZ4AYgOOGn4zbA+12DzCrywgfUKpk2bZu5xa8vlN/hPIw0YKOxB2dQuMtvBDh9FTRfXxLBKuRdyw0gxIBdZlZn4IIrx7bffZt2doZBABIkcdHLlonPVc512QSQIwULtdxID1xNSrfK9efUSpk2bZoi0X4telTh6HOQ/oLCRD6HYDjr14AGYrrl7kMBEDXlkckLJygdwNiC/CUSb6SsUmYIcZxwn+JkPkAZCuJGOZX7MUcsl6HbkldQCL2DLli1m/Pg5R19HvA9AuJpQ9erVq/N9KJ4iRRRZ5Gvh8AsIVxNKy4c6Sxhv+vTpnqzuVvgbLLrkPeJZau3QcgU2YaRd0B0m2xZshaiskaai2A7y8xE8WNf9CiWOPoAtAmERVmwvkiHPkZswX2qa34zTUf9yBcYqKjkJ8dp+TeEGKFZkY4TySPFFrsBcTPtYzW1MborOHKCCR3EyTfTFK7m6mUCJo0+qLSFJGq6OBIoDdkp4hCkSw248rIOA28nwkFR21H5N/lb4Y0xjeM/cmCtVm7QLQtSEp3HzUCQvikmlAUfQiGPjxo19naOvxNEnYBFGNdKwX2TSNTs3O0Ep4gPVjx2u7UTkJqiaJhk+24b4hQ7Gco8ePTQXNA2w+LZp06bIccLNsc0GFS/JfBbl+AlEgyiG06KY7aBRCePIz2FqoMTRJ2CHQl6E5vRFgkWDkJUi+QLbunVrM4nTucWNDQjhQqpd+QytNE0fqFg4KGixReZq4K+//irLly/P+nuvW7fOmNdj0K4botRawxKi9mM7PbfVxjJlyvh+ftQZyidg54YNjYarI7HLLrsYbzfsMRTJ80LbtWtnxlG2zxfFAiNGjND2mCUAahnn0G1FuFCB6sh8MHToUOOxmC1wr3BdWPDxIfVziDGX0SDOFURbsR2s35Bpv6uwShx9AiYrVEf1c4ytdP3888+yadOmfB+K58HCyoQOicyW6kjeJCFwNjdaMJA5GL8QcB3HmQFiRytLcsKx6iIXMRtAOUNJZ9Pl9wU/l9dCmzQULxaiJbLfw9RAiaOPwKJMCCAXBQ5+ApYYLLbWL1CR2mLYv39/k3NTEpCvQ+ibvEZC4arGKPIJog/0Zyfkny0XCjZb3bt3V+udFIFF0uTJk/N9GJ5UG7ds2VIQqQ5KHH0EjMCZEGkjp9gOzglhKkxVNWSdGjAF50HeVklM1CHsdPFBxdTcPIUXgJpOD2DMuUuCFStWmPtj8+bNOrbTyAUlD1+V2eKggxfdYjBE9zv0bvDZbhpfPAagehcWJ9WEk3JtBuxXsBASegPkb6VLuFkgAOHpDh066MKq8BQgLoxJch1/++03MzekG1a0+aY6tlMHOc6sU7SGVGwH4480M9sG1u/QO8JnYODRMSWXhrd+ABYmhEuzmRRf6KDnL0ohyko6oSV6KVO9isKryK5yTjoKPxXZUx9R1H///feUlXU25SiNhBXZXClxTD36gAUPxR+QR8V2ML+yOW/WrJkUAvSO8KEfHyFGVEdFJNq3b2/8AxXpVT9iokwIJdXcSAoPGINq7Jt9Ik8BHD8V2QHjlLA1pIZxm0rhEYs8m3M2VRUrVszJcRYCOGeQI+0UVRys1xBq8mULAUocfQZ2v5AjDVfHPjecEyYwRfo2JigsiSpRCduh3BAGpAABNUeRPUBqiCRoVXV2QZU15JFwIeHnZEAtQxmqXr16To6vUFCzZk1jYK+KeSTWrFljojOFEqYGShx9CAYgIVntmFIcixcvliFDhrhiAlzoQGkZPHhwXPJI5yJsNiCNmvyefUDMqVBXH0d3UlkYt+SIx4MNZaP6+t2gOdcgEoHaqPNCcdB+FSQae36DEkcfgsRjJkINVxcHbfU4N1OmTMn3ofgO+IsRmiOkF4u8oHQfcMABqigofInKlSsbSx0IDoUKzoIwbKn69etnNp6K9MB5ZM6YOHFivg/Fkxg/frzZiKB8FwqUOPoQeOWhOmLLo/Yzxc8NPln4XWrIOj0QekaVQVVkIUCBoboUFRIFl1QAzb9T+B0o6hBH6yZAsRfdZrBJwVpKkR4oiCENoF69evk+FM9h5cqV5vwUUpgaKHH0KRiIhAcYlIpIYBGDuqAmtOkDYgh5JN8RQ3UIJONM8xkVhQLmBgrp2FyyKSJvFzWI32kFdXpgnsBonTxpWpkqIoEKy5gqtI5aepf4FLRzYoes4erYILmdyUwLiDKrRD3wwANN2I6QNURSFwX3wQJDmoWSF/dhTevJKWXzTatCtZBJH5w7IhOF0EbPDYwfP14aNWpUcOk9OkP5PFzNjiZbPYcLCVREEjrRFniZT3iE9LDp4f/pnqFwF5DGbt26mZ+K3FQBn3jiiUZp1BSMzEBONKSxkPL3soXly5ebAtZCC1MDJY4+BgOSDh7k6yiKg/wl+qZqb+/0wWKACgNxtDlgSh4VhQDmTMLT/MRbjx7rgHGuSD8tSNXG2Bg7dqxJ8SmE3tTRUOLo8wpiwrEjR47M96F4EoT8yM/TXMfUiTb5SvwkDwxzcKpQCVUreXQfnOPvv/9eCYyLgCxi1xXtGsC/Bw4cqHNFisBrdPTo0UWtRxWRYA4dNWqUEXcK0aJIiaPP0aZNG6M4aqu92CApmXOzcOHCfB+Kp0EuKAsBNka0IHSCXFpLHtVyw91rADHXvFx3QOUvSiPo3LlzRFcY8nrJi2Yu1QhOcmBoPX/+fE0FSnB+mEfJoy1EKHH0OdjRIIezu1EUR7Vq1UwPa0xY1booNiAqhPQXLFhgNiIojdGAPNJ9o9CqAxXBAPc+SiM/GcexWgnitUdYEdVR+7AnJuA0A6C14P+3dx7QVpVXHv9MxnE0Dkas2AZFCYJtAopBULqigCAIKFiJdSzLzETHGWPGFo0r6rhm7A27AipdpQhSREWIUiQgAoqACoqoWDO+Wb9Nvud5l3vfu/20/2+tu97j8sp9557znf+393/vnbSij3Ixd+7c2oxgEpFwjDmYug8++GBLV0sYZYdIAikV9XXMDsUvq1atspnVeJZyQdqatAtVlLQxUUpVxMm2wiabbgFEF3OBX48q2JUrV6roMAdswun1yoQdsSUUFZK5IdqY1IishGMC4ATlJo4/TWwJVapdu3ZVc98cELE+5JBDrBAm3wglN9WZM2dq0oaINEQOFyxYYJ+TecgnQsZouA4dOpg4km1gy2gjmQmOkXq7ZgfLDxsV1tSkIuGYkJ6ORIoIj4vckVluAuvXrw/7pUQGCoeA9DPVpfnCzZfRgwhx+uCtWLGigq8yPdAr8+ijj1bPzDLAtY5gZLpWMQIQUUQByIwZM0woiR+v/U6dOrm999477JcSSWpqaiz7R3Q7yWl8CccERR2XLl2q9GE90FMLc7wKiZx5lKZNm2ZplWLgZtymTRvzhVEws2nTprK/xrTBMaWanY+ieCgwev3116059aGHHmpWlWJShjQER8QjBBRZ31z1T6aBVH9SU7DliHBv2LAhsUUxHgnHhIDPkYWOMLnIjh+LRRQizeDfQuzh5Sql2TQ3D27KNK2mAbCvChbFgQ+XKJlanJR+8/7000+tD+k+++xT0vlNj0cahTPXmhGFaQXBSDuutK+dDTFv3jyzRORr+4krEo4JQUUy+RvkKZJJa3seimAQJ0QKy1Uh7adGUI1K0YyET3F89913Jur5KArHb1rYEJHyL4enGfFIpwEmUWHLoDAsjeCf57zk2Irc1h8Khzhfkh6RlXBMEJyw9I5SK4nccDOhTQIRt7QJbP5eUtT4GVu1alX2n88u2/vCMntBClFJ2AhOnjzZbChsEMs5Ao+fhy2DRxpHE7IRRDg2a9as3or0tPPWW2/ZuYI9IulIOCYsFYsoUpFM/SCa6NeW9F1hENLILGoUtRCZrgSkvalG5eZCzzyim0JUejNE6xNSyWwKK1VYhO+UFCSw+UqTl5x2XRQLKdpY//o6d+5cs+5k6xGaNCQcEwRCCFMuC2maFrZCIRpBdIzjlYZebczqJgpIqokbQCUFMxEZGixT6a++maKSMCYQawSTXtgIknGpdGERQpUqa4rsii0sixtkKIii4aEX2aGzBL7apBfFeCQcEwYXOOKAqkJRP3jyXn311UT3akO84c2iNUS1Fn5u3jQT9ykbbrSqSs1PdOM9TWM6tNjzjCg6Tb1p3F2NDAK/j6IbrifWjiR3E/BWHiKtZLJEbmbPnm1FVKUUY8UJCceEwU0HLw6pm7QaufOFBZFdIm07kghtIaiEZOwi5wQ3vWrib+QffvihbWTmz5+vqut6QIxgo0hy/7dyNKBmvCrRc9Y6rBdMNKomTE9idjsbMQRDUovBSFHL9pRfRuedd96x+edpsT9JOCYQdsQsrFRYi9wwk5k0DJVwSVv8KVJBNNIX8PDDD6+6aAxCCpEpCvTRnD59uglasSWIao6NxHV2iFzTe5S2OKSpw8RbMvBVIiSTmKlgQ82mU9TP7NmzXaNGjSpScBhVJBwTCCcxBRCkUtLg4SsFRmcROfBjyZICdgUEG5uIKDSURqAfc8wxdpNVL7jskPZkjGOS05/FboKIMhL9oi0OfUOrHWXMBpFh7BhcX7RiSUobJVLUVAj7jbXIzRdffGGZFCLQUVhnq4WEY0IhbE5rCtrOiPoFFiKbaswkeB0RHX5mOan4KBnaKUoitUgEFCjg8mMPhajvnCYdSDNuLBdRi/D5iloiT4jcuMMEMjIwZAnSknotltdff93WWDbpaULCMaFgZqbvFm1RkiCIKgmm5mLHkkUJ0ne+DU5U050cY1/8QfX/yy+/bH1HdY6KIJy//rwguti1a9fITuPwTcLxX5Llieq1V8hmmir1UqZKpYHvvvvOCg+ppE6bL1nCMeFRRxrjMo1CNAzHibRDHOGmRcSDdAneqyhFGnPBzZZUGKlrvGuqvBYIxffff9+99NJL5j32jeSjngZEZJGuJDqKtzjOFiECDurZ2DB//luRFnagtCHhmGBo7UHkkSiUaBhuThjCMeHHCRYvRCM3XURjXHa/HG9GQDIejteMryrON9xyRK5Iw8Y98l0s69evtwg05wFexs6dO7sdd9zRxQUK0RARiMc4WjDIANCiTOTnA509e7atX7zvaUPCMcFwAyLqSKsAPEKifvbee29rXE3UMU5V1ggwbrCIxjhOLWDh5bUjIPlbiJ4iHviYtqK2Y4891j6mCW9T4P1GODN9iGh0HM9lrsMuXbrYOc3fFZexprQl4z4R9chuVFj8t2g499c0IuGYcNgRcSNidyQaBkM4iydpiKj77jDiU9XnG26Xcz5vGPhIKdEaej9OmTLFIiBx94yJ7PgNAtca4GHkRhyFiulS8OLrzTffjM06Qus2RK9S1A1TU1NjE4vI6OGPTyMSjgmHRQzvDVG0tIzIKkcbG/oeRlmwkNKlog9zdtRvTIVCmpKoDV4r5gLjd0tDxJzrk7816dcp1xVpUf5WNgi0fUkiTZo0MY85AjLK1yityBCPVK2n1SZRCO/9zc6U1mgjSDimAIQQxRJU/ImGoektYhsRGWXRSDubpC72nK8tWrQwnxtNln3aMim98rJBWhN/XFzSm8XA30YhFC2j9t13X3t/mzZt6pII0SiuTxrfR7VPrD/XyLRst912Yb+cWDBr1ixrdcbGNq1Ev/RSlCUFeMQRR5hwZJcU95RmtWCKB6lSjl1UvD8s9IyT5LVhxI9T8UAxIBi5+fq/nQbZvBeIDlKbYU7EEflBNItKaQQi7x1N9zlv0yBU9txzT9vo+YIfPNRRgusnbT0IS4FNwDvvvOP69euXyA17vmjVTQkIRhYJbrwiP4g4ItCiNOmEiBSN3WminbZxYJy/NGtHTHIjnjRpkgn7NFdix2Gqhn+f/KhJxFQaRKNnn332sfWX1HVUIHVO1gKrgMifqVOnWrSR2oE0I+GYErjZUrmKJy7pHqpywTQZ5o/iacGrFCa+QpN+cfj/SN+mEf5uIsCkOIk40vvRRx3j2AIlqTCxyvfmpOCCBt5E3NIKmzwiVBwPfLth4zttRG0KT5ThPsB716lTp1RHG0Gp6hSBb4/mtDNmzHDHH3982C8nFtCget26dWZwR7QhJsMQjURuSPkxci0qafMwwW6BqOfYsIgzNYdoAG1QqHYkJRi3NDZ/E9doHK0knJtMLCIFzYOoDO8FUba4vQ+VhGwBhUGcs5ynYYBg5DUwHSaphUnlhnWGYi7O5xYtWri0oys6ZV5HUibMVWUBE/lBqxtuhmGlREmV4xFLa+uH+vA7fyLqeD6JoNACZfLkybUzu+NUEERENQ5TfzxEeSn8IB1NlNGno4kukpKWaKxL8+bNLQLrr+lqwwaL1jsMhjjggAOq/vvjyooVKyziqGjjZuKzQomywM2VIpnp06e7Xr16hf1yYgE3ciJBQLq4mjdDGs2yaFH1GNVZvVGAxZwoFw/EDMfs22+/rY2GYWpHeEe5qTR9Dbk5EeWO8vQffw1wTBHpiHUqTKP+uqMCxUG+YIa1pZoFM0TOSJuzGZYAKizayPorsb0ZCceUwSJ/1FFHWUSmffv2ia/KrcSYKQRINVoxkFIiakZKlpuyyA/sBBTReJjwQDRs4cKF1lya94+UUxi2g/pA6C5dutReX5QEGDdOjiGFFHh9iVZxThJVpCJX6ejC4fghGqvZ7Byxig2CwjqRP6zBbJJOO+00ie2/oas9hbBwUNXIXFiRP9wc8QQRBWSubqUhekakMywvVFIg/du9e/faMXYUBvhKeTYDiCKRHcQim0y6MZBaJVrlLROIW6WjiwMBgleOdZiI+CeffFLR37dy5UrLMkV5qEGUo41s3LUO/4gijiltM8M82BdeeMGijmmudiwUFnv8ofhEma1cidQn6cptttnGbtBprZ6uxDmPyPF99XwjcW7YWDcQQRxvHmwO0liA5AUMUUUyEfRdRNiQSvXHRRGXykS0li9fbjaiSqzFzKEm2s77GSf/bBSgjRTXw5lnnqlzP0BiziJazNx99922qyLlg4/kwgsvtMqxhvjDH/5gIipb/63HHnusznNEKJ566ik3atQouyDxPQwZMsTaTcSJ1q1bWwd8Wmb0798/7JcTG1g8iFxxntGIm7R/OSMuVKZSQZ3mOaiVBlHoBT83agrGuDkQXSMyg0DifSXaQJSNdCIV9UmKrPlCL47F6tWrrcqWHqHA3+p7hDLnnrSqqBzco5gCRV9FMgzlrHTmXsgml41Ay5Yty/Zz0wDXP50aWIuTOt0o1cIRMXfFFVdYj6VBgwZZGwiE3aWXXuruu+8+t/fee+fl/bv88svrPJetLQY/7/HHH7fCEqJPpHCuvfZaExT014sL7DyJmI0fP94+khYV+cG5QlscFvtyignmn2KYJy2im3V14LpFJPGgqS/vqRdVVKBSMcwNhPeZdQURyXtTieiDj4pWYtQlG2s2uqTlefBvfKCca0S3uf752xAYcWwHFGc4t1hPEI60S6Pfbjm8j5y3bG59oCBJG59qgJ0Fn7mKSBMqHImaEYpHwHXs2NGeo0Hwqaee6h566CF39dVXN/gz2Hnjg6oP+vk9/fTTrm/fvu6yyy6z53r27Okuvvhid+edd9rvjlOKi1FuRB3xMHGsRP6wsPvFndQ1oqIUWKBok4FwCBZ2iOpChM2DgOrRo4e9v0HB5UUjUWdEHt9DqpsHAoznfH/JQiAtXMr4N6rJv/76a6vO9g/avyAM8XWyMSGayHlLBMXbIIi6yq4SLtw38J4jHDnfyiEcOf8o4uP9j1KxVRxg80i0kSrqfAJPaSMRwpEiD8L7RM48XHj0XKK/GH6mfDrkc7Kw2ObacRNdxFyMcAxenH369DHRyg6FtilxWqxIsY8YMcKitWke2l4sFMlQaY0IL6VdDjd05i+TTpKXJlrXCGtLZvoQYUg1MWIS0c+6wdrA5hHhSKQSoeYFJQ++nopkvISIA95nokB85Pew7tAHkc95zk8L4nsRlfwOfmZQGPL9vlUUm0Dv3eQ18H18DcKBKOmhhx4aq41t2iALhG3CX/+cJ8VGnwlysDGQ3aU4EPBE6AcOHBj2S4kkiRCOtLBgZ5AZisfnOHbsWPONNSSKWGCJLvDRj3U7//zz68xUZdeONyqzNQq/x/9/LuGIwAhWzlEAEQUQKvw9eDwvuOACpTMKhEgNO1JSzJwbhc6PRiggGPhepafjAzf3zJ5uCEcvzCgo8WKPB9FAPgI3JNKSQTgHSCdigyFqGdy84rHi3CCaSEU/54oXo8H1CQGJ0EAoZgpEnhPRx4tGvLX4ThGShVoHuLfgk6bYRhakwsHrSzAK+4COX4KFIwsxu+lM/E0cwVafcOTrTjnlFEvrsMtnt4FHkijc7bffXluJxs/BA5QZEfK/p74WLWPGjHHDhg1zUYO/5bjjjnP33nuv+WGYAywKg80CooA54FSp59sfENFIRS+RSqWn40+wYrW+9C/PszH1EUWf1uZzBCcpSzImPMfDZ0tYe0444YScv79Uu4SIDkSmqbYmm0GhVr7dG4h+E+0meyHRUxy03+G6I2MpYiIcWTwJ0ecDCypvMJVj2VLR/jk/QSIX5513Xp1/s6gTRaIQhp2HL3rh52RLHeTze3r37m0LQHBXeP3117soQAqNVCueDgRMlKdrRBGitL5Kneh3Pj41UpVsUPDHqdoxXRANDEYKg+cEkUFEo0RguuE8INrImoJ45POGfIqcP2z+fYN2UTh0VsBrfuyxx2a9RkVEhSMpP6qh8+HRRx+trQr03p4g/rli0jQDBgxwDzzwgF2IXjjyc7KJ2nx+T9QN6BQT4dGk0IiUvSgMNhQ+VdgQFFgQaSQFRTpJvjMhRCYIRSqsEY/0E2RMYH3QSgqbFRtX+aQLh8g/li0yiJquEzPhSO/EK6+8Mq+v9SlijOvZOu/75wr1nXkRSDSI9hzB38ds1syKSf97oiwMG4L0KsVFU6ZMMW+HGk8Xjo8IcM6wiBO9zbaAExngaxGaasgrhMgFUS+ijfkEP7DMBH22ojAQ56zbgwcP1jFsgMjdtRBnhUa8MKljBibNHSzuwEjODbqYcnp6uGW2Rdh///3duHHjLM0cbAjKHFz//3GG6BfNYl988UW7eLRrLQ78jpjbOR/x3vrjyKKOUMTTiJdNhUgiCOlp9YwTmfjiGAqsfOTRbzjpBEJWjHsP985K9ABNA6zNEydONC2RWfQmtiQRd65jjjnGCmToq+ahTQaePXZrQf8jUxJ4ePAlIhIzefjhhy2yiJjyUPjABfvcc8/VPsfXjB492iJ0NBCOM/xt9LLElE2FuCgOTOl4Rqnm9zOREZP4ZVesWGH/lmgUQhQCIpE2O1Tk8zkbUwryyHhpPSkNrEMEivA2ihhGHIuB3mkjR450N954o4Wa/eQYLqyzzz67ztf6xt3Dhw+3jwjOoUOHWj9D0uTAhcmJhGhELAYFwcknn+yefPJJ26HQhmfGjBkW7fzd736XiPA246+oyCPqSCV6Ev6mMKCRN+cI5waw4LPJUF81kQsiSm+++aZFlPKtzBfpgfsa9yTuTdyjEIuIRp6j4l4UB55zgk50FImz3ayaJEI4Im5uvvlmm97yzDPPWBSRcYB4Jb0YzAULNFFJdm4YYxGb3PTPPfdcG1+YuZOjAhsDMu11+HrSjldddZXr1q2bSwK+PQ9zv1mcMGeL4qBwi3ORfmx4lAppqyHSB1EkWjT5kYdCZIKfH4FD4IOiTNrISeyU3n6HbBuZS5Ei4QiIOeZV86gPH2kMfh/CL18QkkOGDLFHUqGdA+1lSK1S4KHoR/H4qUUUwhBR0hxgIUQpIBTZ3GOxYq0WxYNtjSj/8ccfr019AcgYIXK250EkE1UVxYOdgUgj6RAiuN7jKIQQhcL6QUSaaUJ46rG/4KXmoygMjiOT5XygROSPhKPI2QaCXe3ChQutqbXIH+wONJFFLGKjIGKL/QHPKMczKuMmhRDxgbWDR3BCGdYGImY8LwqDxupM2jnxxBNVXFQgOloiJ6SpafMwfvz4BqfviB9FI+0xmECQ2ZSeCTEUHlEwo8ijyLZZoxpfEytEEKKJfs2gV2MwPY3nkZZfFIX6tnCiYSgqYtgFHn4mp4nCkHAU9RbK9OzZ07w0GIhFwws8kUYqqJk8kK3xPOklIo9EI4UIQg8+iu3Ui08E1xSGTtAXlmp7Cu4yoQCUdeXdd9+1QjzR8DElRU19Ax1ZROFIOIp6oQE6Ixfx5+GlEblZsGCBRRrxy9Q3eYfII9FcCE4mEumGCDWRo2zjU0V6N+9YXVhT6htkQSYDPzWbfPkd6wchznVGs31t0opDwlE0CO0fmHTCLk2tQnKDj5E5sfn0auSGQFNw3wdUi734+uuvbfPBR5Fu6AH70Ucf2efNmzfPK52KrQirg19bxJaQ6WFCDNFbCoxEcUg4igbBONy7d28zZc+cOTPslxPJlg4IP1LTCOx8YRwmniXSUOyC8UcKIdLN999/b02+WROKiT7T9gtrEeuKqMvzzz9vBYtMSBPFI+Eo8gJDNm1l6LCPh09shtmx3tdYDKSfSEOtXbvWimokHoVILxQhvvLKKyb+6P0aHJebL6S2WVfeeuutOuN10w5rNQVEPXr0UAFaiUg4iryhsz6eR1LWSq06m+fNA88i4yiLhTQUxTSbNm2Sv02IlIJFYdasWbYGsElnrS0WimUQj0Qt2ZSmHVL3dAch7d+qVauwX07skXAUecNYJgzFpECIjqWZ5cuX2w6W2d5USZcKwpMKP9LXRB3kc0vn9UVRFR9F+uB9Z7IUI3Cp+C0FfI606WFTumjRotRnMqZMmWLr6gknnGDHRpSGVihREE2bNrXU6uTJk233tsMOO7g0QioJMzrHoFz4BY2FHj8pRUmlRB1EvEA0kJ4U6YJODKyjjLxr27ZtWdcTimUQTGlucM3AhTlz5thYwbTer8pNes8mUTTdunVz22yzjXvuuedSt5P1jdApaqH9RSUglYIHB6+T0kzpAfsH1bSygaSHZcuWmaip1DQpBCOClPPqtddec59++qlLW4qa+xS9Ltu0aRP2y0kMEo6iYEin9u3b1xY7xjalhTVr1ljKY+PGjRX9PYhyJhpQkIQlgMa+IvnQ05OqT/X2TD5suCleWbx4sWUtWrRoUdHfR/SRVmqIx0qvX1FiwoQJZvs56aSTUh11LTc6kqIoaDiLgZu2DwiqpENPNaqn6dHYqFGjiv8+WkbQE/KAAw6Q502IhMGG8IMPPrBUMj7paqwnWF/wTrLZT8PmhP64PJh+JstPeZFwFEXTqVMnK+p49tlnE10NTKsdFnpEo2+wWw34PUQi/JgxipLo8SaEiDekTvGzMmKyWrABxUOJDYY+kUleSz777DOrosZS5Kd0ifIh4ShK2sX269fPUh90408i+M0WLlzodt55Z4sAhlWRh7eSHmRMmklDtECIpPHxxx9b4RuwCc02y77SMGIPwYo/O6nj9rABEMzA20lBjCg/Eo6iJBBUxx13nEXkaE+TNBCKLLQYq8P0yOB77NChg4l1pveQ5hJCRB82n0uWLDF/Ib1awy4opKm4n3vNOpK01l+sj6tWrTJfI358UX4kHEXJEIkjpTpmzBibBZoEiOqx0JPOYeeKYItCu5b27dvbTGwa+0o8Jgv8Z8cee2zJPfxEdMDCwzrCoADWSBr9R6VIg2IZBC2eR98tIu6wJk6bNs022dgBRGWIxhksYh+VY5Y1C+KoUaNi304E8RvVxRQBS2NfIqB+LnbYEQxRHrh+iAZFRViI0lm5cqVZechaUOgWpebTrCV0b0BAst7F3afO6ydFTdNzppyJyqEVSpQFDNe06KF1DDvsuEIqCeM4KQ4W+6j6gFgcERiIXFoEUfUt4g3n3uuvv24fRbzxmReGBCBisPREdd1GPLJJjnvBDK2sGMyA7z4KGaIkI+Eoygaj91iEJk2aFEshQ5Ncdt5UHyIaif5EHQQu0xAQHHhM4x7tTTOcf1w3fBTxhPeOtl3Tp0837yCbu6j77Lbffntbt+Ow3uWCwkHsOz169HCNGzcO++UkHglHUVa6dOliu+uRI0fGLvWBYKSnGosoxShxgIgovin8U0yhYNpM0szuQsSBDRs2mGBE/NO2C290XKA3rc+wMG2F9HWcWu+MHTvWtWzZ0h122GFhv5xUIOEoyi6++vfvb74eimXiEAFD4PpCE6oNox4hyATfFP6pdu3a2YIfJR+VEGlg9erVbtasWSa8jj766Fr/cdxgvSZlTZeMOHinSa0//fTTtmb36tVLa1+VkHAUZWeXXXZxz42FlwAAOo1JREFUffr0sf6HLEJRX3hIT5PqiLO/B0jRcNNiEeVvYaRZFAt8hEgKXlyRZSHqT9cDuh/EFYTXQQcd5NavX+/mzp0bafGIyKXJNwMaBg4cGKsIb9yRcBQVgbQBIwnxO1JZGFU/EsKW1Azp6agWwhQDBRYffvihe/nll2PpN00jCP5WrVrFLuKdRhAtK1ascFOnTrWMBdYWCmGSEPFCBNO1gYblb775ZmSzRghbXh+RRhqqi+oh4Sgq6ndkXN6IESMiN+2ElK5vyIu3J2m985jN2rFjR/tI4QzRRxVdRBvEx3777Rcbf21aYaPJ2kFGhZGrSazg3W233aw/L5vPqK3dQINvqqiZv017MlFdJBxFxaCiEL8jvsfhw4dHSriQgmHBZ3YrVclJBAHiF9Y1a9ZE8gYgfgR7Ae9T3C0TSYboPQ2mabfDhpM5yEkUjr7lF5v/qK2PtNzhfoKPlIb5ovpIOIqKgt9nwIABbu3ate6FF16IhGAkYuBntu64444u6TBBoWvXruaBJO20dOnS2FW8p4GvvvrK0m98FNHCp2tpWUOUkd6MeLmTjo9+L1iwwHzgUcgU0bGD94P7SlJFe9SRcBQVhxF5DJunUo9eW2HBYsPvp/oxyqbvSuD9m6Tmly9f7l566SVL9wghcsM6wUaLNlesH2w0SeHGuedhsQEAhjtwLMJk8uTJ7v333zfRmDR7UZz4u7BfgEgHrVu3tpYVVMHhn6l2uwoWfYzURD4xfqd1rBvNfjt16mTRA44H4vGQQw6x54UQP/LJJ5+4+fPn22aL4QasIUkofikGvLdE+xgyQJSP41Ft8JTSAYMm35pDHS7pvHuKUCDqSJoHf0q103GkWujVSGPetFfgkX7iOJCqJ23PDVII8SOLFi2yKCORRdLSBx54YGo3mx56xfJg01ntTg1UeI8ePdo2ufi2Rbik+0oQVYUiGfpt4a975plnqpYuxsiOaGSqAGlzsRk8WlRe+937kiVLbIEW4UAkh0IE+bbCgYiiL+CjGwFFZTTVV0r0R+hVSaqeAEC1YHNLk2882mryHQ0kHEVV4cZIpTU90CZMmFCVHmEs/J07d7apMKIuRFFYiBHxn376qbUZobelKrCrD3YBGrjLNlB9aCLNuEAijcAGkw2VRMqWcGw4LqwXdAGoJKTHEY1kqAg6JKnXbpyRcBSh+GV69uxpxTKkgyrFO++8Y/0LQU2VGxaQNEFn7jWLNDdR/F1CJBmyEX6zREZE3rn8IYszb9486/VYCQgqMLaWYphBgwZZxFFEAxXHiFAg3cFweibLkBZiYkY5oXIYI/cvfvGLsv7cpIP/kzTUe++9VzuukGgkD26sonIw333mzJk2ti5qvfOSCOc3GyRG1VEwR99CkT/0sKTnKC2k2HCWO31Nv0w2/mSoGCQhooPuBCI0qO7dsGGDe+655yydXK7dPjtUUk6MAGvevHlZfmbaoo/77rtv7b8RkcuWLTMRTrpf6bvKkbY2UdWG1CfrA0LEN8jfaaedUl/4UgysAxTZIRznzJljwxQYV1gO6PjAuFT6zzI7W0QLXS0i1IXnxBNPNM/MU089VZbqXn4Gu1SED5WQonRon8TNleNKhIaWRlGdXytELkG+cuVK619KVTDZDl8gJtFYPBw7Wq3RXq1cvS3JFpGi5uceddRRZfmZorzoihGhQvoT/8p2223nHn/88ZLb9OCDoXq63KnvNMN7g7WAFCo3B7ypFBMIEQfoHztlyhTrA8gGiE4C8suVVzwSeWzUqJFFdPGNFgtdHSiGwQd/wgknKLsRUSQcRejgMRo8eLB5jp588smiZvXSV2z9+vW20CidWhmYmkEBTYcOHWrHrWEJ4MasCKSIEggY79EFUqgIRjZATEERlQFfOZO5ihGPfA/BA9aZk08+WZHgCKN3RkQCFotTTz3VKvRGjRpVkBAh+kUUDO+SqDwUM/kWPkzVoLJy6tSpNoVGArJ4aMODuFE7nuKhDyOj8YgwBlvrEBHTca08eMoJBDDhhbUhX+jt+8QTT9j6wX3Az8gW0UTCUUQGFvh+/fqZB4mZpPlALzGM2UQUSFGL6kFEgOICeg9S3OQN7RKPxUHjb46jGoAXDlkK2m8hGIl64culWbWoLvRZJCvBR1qt5WM9YgM6YsQIW8vJPJHyFtFGwlFEChb7Y4891tIdCML6wOBODzailWmePx02tI6hHQej2ahkJxpJ5Gfx4sXu66+/DvvlxQaOFQVIOmauoEiVT01T+U+RBs3+mfqCN1dUH3zQiEc2QA31eGSTySAIosSkpxH8IvqoHY+IHMxQRhSyoNC4m35huQpr8NoRaVSUJnyIFPhoAZNnaOPDDYHekFS5U5gg6hdB2C2aNm1q6T6RW2wgSJg+9eWXX1rLFtaJ7t27ax2ICLwfZCJ871eiitk29lS5YzPq3bu3bTpFPJBwFJGEqCMzSunxyA422Mgb7wwLE54lIo0ielC1yg2d6RLc4Elb0TvvkEMOCfuliRgLRlq1cD4RleUco8efL4STaIwWXjRSPEc0mChksGUPze5nzJhhgp+iJREfJBxFJOFmwC6UKAz+FwzTtGhANCJCmFJAOkpE+8ZB9AzBSMW7v5HQa5MqeKrf8fQJUR9kH3xBFj1EiVyzFmi6TjzgfSIIwFhH73/EhoSPHXtLu3btwn6JokAkHEVkIbVx0kknWXNwHnhgSH8SWZDxPT5ww/ftewDxT0qWNDaCAAFZzgbCIv4QUaRKn4g15wsCAxsEDaHVaitekBlCMLLhf/31182GMX78eLMk0UVAxA9VE4hIQ5Rq4MCBVjV9880324hCdqhq1xBfGC1JeoqCGiwHNGZGIPjq2LSO3eOcxueV9nOb9k5Eo0hvko7meveRaYnGeILoRyhyrd9///3WHgk7kt7PeKKIo4g8pDaYa02V7pIlSyz6gOAQ8Y4mUzTDg0bN3ji/dOlS80TRmokHEcm0wDmdtjGZbBJow8LGgSwCx4BUNBHqJk2a1NobRPxhKgwZIwYI9OrVS6IxxuiqFJE3xLPAHHDAAe6aa66xJrEPP/ywO/PMM+ukP0V8CUbYSFsDQoJCCIQEBTVpaNNBC6ONGzeaJyzpggkRwQYBrytRZlrnkJ7m/cYTK5IF0WNGCeJL79+/v3nXsaq0bNlSAjKGKFUtIn0jpZ+jnwhDuuP00083zwzikSILkSx4j5kzTiobXxRRJ9+aZuXKldZknFYs9O1LGr7wq5CJG3EBcchmgGsa8C8ikimeom1Lly5drB+rSB5UweNRb9asmYlGPOqMF+T5P//5zxoYEEOSva0VsQVhgJGaBSZYPUlkAvE4bNiw2sgjPiiRLIhC4GvlEXwOjyuig5sPlfXcjCQ4ogk9FhkH6ufIIxDwuZEpwOOmhv3Jh9Q0WSI2CAMGDKhtmcQ5QAse/Kw8R1ZBkcf4oCtXRNL3RLsG2nC0bdt2i7YbP/vZz0w84n1U5DE9kMLE68oD6wKpTT85ZM2aNW7+/PnWrsU/J6oLLVcQ9b64acGCBTY+FMFIv8Vu3brV2kskGpMPGYLHH3/c7CcUOGbaL+ikwPAGMkqcJyI+KOIoIgezZhGDiMZc0USqLM844wz3yCOPuIceesiddtppqfDBic3tPRCOPDykQIlqEeEANhtEIymwEZUDoc5xJ7LoU+zYDTj++Nnwr6oxd/qgyG348OG22UM0ssnPxl577WUbjVz/L6KJhKOIHAgCRGBDI+q4QZ111lnuscces9T14MGDbSES6Wzxw4MoJEKGh49q4YmkGp8KbdLafER8Ri3qRaqO4pAopuywjjBGkiwA9hE/AYjjyo0fSwEV4Vyzvh+nZkWnE1ruPPvsszbtq1+/fg0WenHderhug/YUEU0SIxxZzO6++243ffp0a+/BInbhhRfWGVWXC8zZuWCk3a233lq7u2b3lI3f//73ZvAWxUE6i5sQO1SKIfKda0zamsgjPhqij6eccorNRRbphHOH1JivzgaiXohFRA+pVM412gDRRxJBhLDk/xE6YYo2NkKkc8MGIUi6HxFLUcvs2bNNNHLcENu8Tp4nStS+ffvEV4CL/MGzOHbsWNtYnHjiiQVtzohaM12GSmuyBSK6JOKKZ6G74oorrLx/0KBBliYZNWqUu/TSS919991X5yaSjauuuiprunTkyJF2c8mEGbyYvINQCSpK26XiieG981W0+cINbsiQIdbuAU8NJuzmzZtX7LWKeEGU0RfQIBSp5vUCkQ0nNzsgpcpGBGFE8UZwLnoS062+1ZWf5EMxCw/+jRWEfqmIQ44dGzrENc8HxYBEo/CwwXjxxRfdEUcc4Xr06FHwJgz/K9km/I5cbxTUiGiSiKt+2rRpJjyuvfba2hFGnTt3tvnG+N+uvvrqer+f1h+Z0CaAEz9bFJGTO9v3iOJgoUA04omi/UoxkB4j2vjMM89Y6wdGFWLIFyIIN6SgbxYxxAQLxCQiEuEUnFwzc+ZMi76xmSG9jbBkugv/RmDxtQjLcni0iOq99tpr5u1FvJYKrxthh9DDM8yDVD6vm7+TFCFNt8nQ0FORv4+bNxH74O8/+OCDS34tIrmwAXn55ZftPkxzb+69xUbuOR/Z3FFYxbXaUNBHhEMihCMnLTeDYMqZGwLVl5MmTbIFtJA5uHw9P5OKL1p+ZIMFmEVZpt7STdREihF5Qa9LMfB+MM969OjRJiC5IbZu3bpsr1UkE9YGBFO2hvKIOB+JQ1gy5cT3nePc9aMSuckhIEmxEZ3j6/k/nue85EHK3K8niDcEHTdY/0CE8jznLWsQv4cHP4N1hvQw6XYKgfyD7/ORGXpc8v1UN/Pg5zHbmbWRhtuk6XmNCMRgqyP+nyyKEIXC+Tlx4kSLNnIOYV0oFbJ33kIi4RhNEiEcWcCJAmb6KfA54rdgwSzEM4HPgoU/l9+IQoy77rrLFm08lL/+9a8tPF8fmH6DbWN89WfaIbKBp6VcvkTOgT59+thNmveemzCzboUoBjagucYesr4gEr1Q4+FtFnxOFM8LPEQcaV4vHPFi+2bYHiLupIz5XiKbHtYurhGEK2tT8FzHlxlM6fFv/MGc/z5K6l9r2sYZisrCOT1u3DizepxwwglZbV3FQpTbb9AQkUm0isSZRAhHogAsupn4AgsEWyHCkSglUQg8PkFYqLk4iGyyW6d3HC0HLr/8cnfjjTfapItcjBkzxgSncLXvCe8PRQrlBkGPx4abJ7thxCMWhihWq4r4QvQu18x01oegzYWbbHDaDZFMhKO/OfKRqCTCksbIbKh8JNKLUQQsUR2+jhtp5kaZDIkQ1YBzmcrpxYsXu759+2a9/5aCP/fZLBHNxHOsEbPRIXLCkQWWlEw+IO44uRAG2VLR/jn+P19I9XCisrATIQhCi5hbbrmlznP4o2hGfccdd9QrHHv37m1po2DE8frrr3dphKjKW2+9ZRXrxXoaG8L7UxGPkydPdl999ZWJyai1YBHpgPMueO5l60+Kz5JII+tMZtN7/zMKLRwTotxwPx0xYoSNDMQaVMlINtcDGyamiFGQmm+3DZEy4YigoBo6Hx599FFLFSEOsk2L8M/x//mCt5Hvy7ctBpEBBAnVvPiIcnkiM8enpRXSd7zHpNcqJRqD4LnhZjt+/HgbV8dCV8j5IES14CaJrSKYphYiSuCxpfUZhVz0zd1vv/0q+vvYLBFgQDhSOEZwRiNGwydywpECiSuvvDKvr/W7D3bv2cbO+ecK2aWQpsYXVIgvzotFwuq5hKPY3AeTanUMz9WseKZAhl0rtoIHH3zQqu2zRXSECBNS0IqoiChv+p988kkr1Bo6dGjVUsfeIoa/Fz8lRa/KHIVL5IQjCycRvEKgMIY5taS5gycU/gs8SPlWZlHAgrA57rjjCqrCxusIEiMNC0fmk+KHqbbfEI8rRUxEhuntSesejaMTUYKiGNJ/FIrl8k4KEVbLtOeee8486fRKrnZUHE8v9jG6mUg0hk8i3gGKWCiQoVIxGFKfOnWqRQ6DIpBdE49svPTSSyY+c6Wp+ZnZut1PmDDBhIlS0dnxRQEYnDHwh1Wkwg4Z8Uj0kUIlNhZCRMk7tmzZsoI82UJUEoq2Zs2aZdkaOogwpSssKwUReeoOuEf71lMiHCIXcSwGKmaZ8kJls58+wuQYTrCzzz67ztdedtll9pELIVuaGvHnp0ZkQgseRCepT76OPlNUSxMpuOSSSyr018UbBP3cuXNrmxqHXdmMDYHFj/ODSTNsEthchP26hBAiaht+vOGkh+kkQoo4Cusk3Qjwq1PEytqtmejVJxHCkTD2zTff7O68887axs90oMcrmW9TaSp9mZXMuLpcoXB8FqSlCdnjZ0SEMJOTqup8ZmKnDSK0GJoR8lEy/OPR6d+/v3lj2SzghaUPmXqFCSHE5gEXBFe4L9IXN0qtnsggUiTzyiuvmHikW4msHdUlEcIRCGEzr5pHfWSLNAICM5jqzgY91DRhIT+ousPMzPtCc/SoiTLfrgdPLY3CEblsGrQACSHSDNE8vOCkgk877bRIzoxmnUY8kkZHPDLqUHPTq0ciPI4ier4Y0hukEEhRR/mCZifN4kjhzgMPPGCpdSHCiqSwgS2kME+IckKE8f777zebF37wKIpGD23WEI8Uv0b5HpNEJBxFRaJ5+EBp2BqHWd4sjrSXwNNz7733mmVBiDBuhHQcUJNvEcZmH1sRRYP49xGNcWgNhQVq//33t8/po5zv8BBRGhKOoqy+GJp7I8BIUccpcsJiee6551pDeXqVTZkyxXbdQlQLrhu808HRhEJUGmoCKC59/vnnLUOEZz9uBScUzNBKj0bhun4qj4SjKNvig9eE9kRx3fXhm6FHGT7WmTNn2mSiL7/8MuyXJVIC59q0adN0zomqwXpNX1vaQOHxZoRu1Pzo+UCqGi893nrEozb9lUXCUZQMIxoRjez08JzEucCENDtjCmnZw6J6zz33mO9HCCGSxIIFC0w00kXknHPOcS1btnRxhlGEiEeKe9544w2Jxwoi4ShKArFI9TQRR0RjlNrulOp7PO+882wxwvfD34gPSAgh4r5mM7SC1nW0rcPPmJThFfgyaZuHbSquma84oFIkURKkNRgjyIxu+lomCXyaRB7xO77wwgtu1apVrnfv3m6bbbYJ+6UJIUTBbNy40Y0YMcK6SNC7tk2bNpFo6l3uCWE0LOfvQjySxk7a3xg2ijiKonetVLEBVW1MhUmqMO7evbv5f/ABkdrxf7cQ5UZzeEWlePfdd816QwEWE9WIzCVVUPF3kaqmSfj8+fPDfjmJQ6uUKBguyDlz5tgoQfyNaQD/D1XX3NgRj1SPK3UtygkTlogC8VGIcq7XL7/8snvssccsO4QFZ88993RJh7V6v/32M4/6okWLwn45iUKpalHwIoRgZEwfrRvi1HKnHP4Z/EDMb2Xs5DvvvGM3evXdE0JEEQYasFZ98MEH7phjjrFHUqOM2aA5OPcsoo5kj/B0itJRxFHkDRG2N99801K1eGOSYqguBIRy3759bdY1qWvmo5MCEqJUaMPD2FO14xHlWKvZ4N999912Pp111lmuY8eOqRKNHnrztmrVytZr2vWI0lHEURTUZBV/zC9/+Uu32267uTRz0EEH2Xi40aNHW79H2kB069YtFpNyRHR9wxQvqIGxKAWE4pgxY9zSpUttraY3Y9oL+khZUzRDwaMoHQlHkRdUpyGKfLWacFYQNGTIEGs4O2nSJLd8+XJ30kknmY9ICCGqzV/+8hc3duxY+/yUU05xv/jFL8J+SZHBi0ZGytJrmEikKA4JR9Egb7/9tvvoo49MNMZxqkAlQUTj9WzWrJl79tln3f33328+og4dOqhCVghRFeijS8swxu4hFmkblpSeupUIghCN5V621157hf1yYomEo6gXLjA8fKRmJRpzg99z6NCh5lFjbByFM3ghKagRQohKQdUwBTCbNm1yJ554ojvssMOUFaoH7mXYQfDrs7lXhqhwJBxFThCMhPUPPPBAt++++4b9ciIPwrpTp07ugAMOsOgjxnT8Ra1bt9ZCLhpku+22s3OFj0Lk4zlnkzpr1iyrHj799NNt0pVomEMOOcSqrefNm2f+T23wC0PCUWSF3evixYtd8+bNrcG3yB/SH+eff76bOHGiGzdunPUQ69mzpxYnUS94iBX9EPlGGVlbaIvWpUsX165dO1ljCoCNPJFZfI8///nPw345sUPCUWQFfwyexqROhKlG2x7EItFaFvi77rrLfI9HHXWUjcASIptPbfXq1dacOe1VsCI7zGCePHmytdphg3rOOee43XffPeyXFVvx6IMitOkhgtu4ceOwX1Ys0B1M1IEbFxcRgkeisXQomrnwwgvN+8j0hgULFpigbNq0adgvTUSMb775xqLTRKYlHEVmX0bWjhdffNEEDoMHsDUoylg+L/+6devckUceqXR/HuisE7V8+OGHVpVH5EPj9MqbgiSdRPoa/9qwYcPcqFGj3FdffRX2SxNCxGD6C71i8U2z4bzoootszrREY/kgbU2g5LXXXlOT8DxQxFEYTIMh/dGkSRN36KGHqpijAuy66642wQFDNn0f2eV2795dx1sIsQVEFl955RXLVmy//fZu8ODBVngnyg/2IYY4zJ492x54RtUsPDcSjsKmVcyZM8eEzT//8z9LxFQQji0pJnqtUTxD5JG2EKSv0zjCUQixJe+9915t8Qsiht6wmkpVWTi+pKq5FyLaRW4kHIXtrKiexo+n9Ed1IILAlBmijePHj7fimfbt21sBjYpn0gnvO6M89f6nF+wrZCOwDNFi57zzzkv9eNdqFzVSwAi066FZuPzGW6IVKuWRRthhhx2UAgkJxPoFF1zgZsyY4WbOnGnRx65du1qTWkV+09fJgHSZSB9EuBhdSloayECo/2v4E9OwcBHxZUSh+BEJx5TyxRdfmJeDHlaE50W4KZLOnTtb9JFowzPPPGPvDc3DNU81PRDhQEAQcVTkPx1QhEgl/ZQpU2wjj1js2LGjxgVGgP3228+tXbu21vOoyOOPaHVKIV9++aVdDNtuu60tVCIa0IZl0KBB7swzz7R/P/TQQ+6pp54yn5NIx2aOdit8FOlo4v3AAw+4kSNHmr+czANtdiQaowEdMBCMpKtfffVV+yg2I+GYQg8NohEvx69+9SsZriMILTdo7NuvXz/b8d5xxx1uwoQJat8jRELa6wwfPtw9+OCDNjP5jDPOcKeccorbZZddwn5pIgNEPPdJeqwi9MVmlKpOGd999535NegDhngU0QRv08EHH2yN2Nnt4oF86623bJpP27ZtVUAhRAynvjAEgKpdBEnfvn1tZrJ8jNEvHmXdJUMnNqO7T4oEI2IDTyOVuyIe8J5RbU2bJG46eKG48dBQXAU0QkQffKtcs1y/+FjxMOIrV7YnPnjRyJCM999/37Vp0ybVPmQJx5SIRtLTVE/TIV/EDyIUxx9/vFXdMquWAhqaA9PfjZ6QEpBCRAvS0HRJIFvANBL85FyvtOIS8QSxv27dOvfGG2+kWjxKOCYcb+zFo6FCmPhDk3AKaGgQPHXqVCue2X333S2VQlpbAjK+MPKsR48e7qc//WnYL0WUGGGkDyPttRCMrVq1MsEoD2MyChgPP/xwiyDzHv/yl79M5Zor4ZiC3mAUVVAdpp1ucqBND9XXCEhSYJjtqcxEQLZs2TK1O+E4ww1I3tV4b9IZJ4pgpHMFHmVsQRKMyWLXXXe1IAxRx8WLF9t6mza0SiWY1atX246XqjCiGSKZAvL00093q1atMgFJaw+ikghIPJASkPFh06ZNbsGCBSY41JIlXlaguXPnulmzZtkmnfeP64/olEgmu+++u6WqsX+lEQnHhIsKdrv0oxLJhvFkQ4YMsc0CAvLZZ5+1j0Q8qNyUgIxHhgD/lObkxkcwkrLEa0zFNA38ud4aN24c9ksTVRKP/jz44IMPrGF4WpBwTOAkAtIlTZo0cXvssYdEY8rYc8893amnnurWrFlj48tGjRpVR0AqFSpEaeAXRzBScPjtt99awSGdD3bcccewX5oIgXXr1tn0HwRkixYtXBrQXSRhohHDLk2j99prr7BfjggRNg0U0dA+AgE5ZswYa+VDeoUHvcmEEPmzfv1699prr1k/VSqmKYxAMKY1XSl+3KyzmWC2NYVtBxxwgEs6Eo4JEo3z58+3SBML2m677Rb2SxIRSacMGDDAbnoUShElwbxPpSeNxFn0hBC519Vly5aZYOQj3lMKDSmO0OZLeJo1a2abib/85S8mHpOetpZwTAgsajQmpVE00SYhglAwQx/Izp07W1QaEclGg8g0ApLKQLWBCb/JMIUVmlARPqSg6cHIdcKseNZUJr2w4ZLdQ2SjefPmJh7TcH4k/y9MUXEEfkZFkER9MG6SKnvE4jvvvGORFJqJT5w40fqTEUlRRW84MAKUOeUi3DnSiEU2V7TXoTdqnz59bIOVxn59ojAOPPDA2s9pyZTUFngSjjGHPn6kIxEEEo0iX6iyZuIMj48//tgEJBMu8EPSxgdhSYGVqB4IlY8++shsJhpHV9109PLly+0aYDNFxJcJTWyk1MZMFMNHH31kBVRsxJO4jko4xph3333XDLm+9Y4QxTa07dWrl82/9mls0nRsSGgxQjW2opCVhx6AHH96AKrgojrRRQpdeHz22Wcm2LkOsAtIuItS19Q99tjD+nuyAUlazYGEY0xZuXKliUYquCQaRTnA6nDUUUdZKpvICzdU5mJPmjTJzjPajuDjkRdSxNm7SOsUNkZ4wrfZZhvzLXJuY/dROlqUg6222srqDX744QebMEMEO0kThCQcYwhTQpgwQeVWWvpGiXDS2ETBFi5caDfap59+uraAgxstKRjdaEXU4ea9YsUK2wgxIo4G66yd/fr1s/VT0UVRCbbaaivrcELKGiuEhKMIHUz07JSFqHQUkt0yD7yQ3HypxiadTToGAYmQVGsSETVoQeVT0Yxe9aM4sV/IuyiqtQlv06ZNHT9tEjbbEo4xm2WL14yUCg8hqglCsVu3buaFxF/LDfmll16yVDZ9zGjpQ5RSfsjiwALA9BFZAYpnw4YN1kuPdDRj4CgapNiLDQ7Fg0m4aYt48dO/Xc/cv4k+EoWM+8ZFwjFGY42I8vgFUIgwd9F4Hnkwo5ebNNaJsWPH2mOfffaxFCCtKX7+85+H/XJjA607mEQi8ocIDpFwUtAIRiYl0UePVHT//v3tPExDXz0Rj3ZbP/nJT2wIA17yOLfq0RUVA2hAy04Fj0QSS/tFfMHz6McYsqNesmSJ3cQpqnnxxRetMhsByYPzVxEfUQ6xiM8boci5RpSRIhcKt5jJvv/++9u/hYgSW2+9tTvyyCPdK6+8YuKRCURxzc5IOEYcFkUijY0bN7abMzsWIaIIiyBpGB5Ur1KZzc2dhXLq1Kl2DiMgiQKpofKWbNy40fpoqh3PljCRgwIXziceNFfmfONc4rHvvvsqsihiEXX81a9+5WbNmmX39Y4dO8ZyHdSVFnHwkuGHoBeURKOIC0R88JbxoIqVmz7RIaqzWTRJ0+CL5IZPWjHunh9R/qgimRaqUTl3eHzzzTfmAaUYiw0Imw+tiSKOa2O7du2sY0UcRSNIOEYUX31FLyg+l2FexBUiQd4TSWsU0oyktBEFFNjATjvtZAISIclD85rTB5XPQaHIvxGGCERSfEQWaaQc15utEB6Ktnhwb2ctZO0jGhkXJBwjCF4xmoaS8lObE5EkEAI0rPdN69l1e6FAdB0vL8IAbySLKQ+KbdRrL3lQWMUgAy8WaZ8DvPdEqtlAcJ7E6YYqRCEQRacRPSMKiULGZZ2TcIwY3EjxhBGl0YIp0tAnkn6kvicpPj8vJIhGktYm2k77KQQkHQUY5aUNVbwgssJYv9WrV9vjvffec2vXrrXn8b6yQejUqZOJRc4JIdLAtttuW1sww6x0Po+DVzf6rzBluw+qrbhRYqBVZaBIGxSFYM/wFg2iUF5IMveV4hHAE4mI9EKSB6mfOIMY7ty5cyLS9BSvrFmzplYo8jmbYqBFE5sAfNsIRhUCiTTTqFEju98jHimYadu2beStaRKOEYI0HTdLQtZxvwkKUSqkrGnhw4PFlGsD31tQjMyYMcMquIHJIAhILyhJecZh9x5M48exPQcbXqKH/j3hI5Fj4O/hPWHykBf5cfwbhagkO+ywg61xXEdxKPiKz6paD0QlRo4cWdsEFu/M7bffblGLQhps/+///q+JNwz8fO/FF19sC10m48aNc0899ZQ1m+WmRqNZ5p6WCr4e0tNJiDgIUQkhyQLLgyk14KOSwegWDclp38ICTBUugjLzEcVrjIgc6xdFIFFL13KciSJyrDMfXiSydrFeso55Ac97pWIWIRoGywYP4JoiAxFVEZkI4UiV5hNPPGHVd6Q+uHEUumBfeumlVpQyZMgQi1IMHz7chOODDz5YJ5UyevRod8stt7hjjjnGDRw40Ob2IlLZdQ8ePLjg106rEqqqqDjlJieEKC4qyQxiQDRiNmf37sXN22+/bR47BBAQ9aKSO1NQkkYNa7H+/vvvTfjSpigsWI/oHZtNIPrILseHGxzHi9Y4HHuEIsczqjc6IeLC999/b2lrRrxSIBtFEiEcmY9LFBCvwLRp09zVV19d0PePGjXK5prec8891h8MCBufeeaZ7umnn3bnnnuuPcfCef/995sf4brrrrPnevXqZRHKRx55xPXu3btg0z4il9eN6FUKR4jSwR/kfY+ZC/Knn35aRwwhLhcuXOi+++47+xqEDz0muY79g+sz+G8eWEniFElDMLNB/uKLL+xByt9/HnyOr/Himqgs4pAbGBFePkccap62EJWDympGC+PppkAwitmRRAjHUtM6iE0/W9dDGwjUPhMvvHCcN2+ehZD79OlT5/v79u3rJk2aZIUt3bt3L+h3E+Xs1q2bRKMQVViQ6QPIIwhCCeGEkERYBsUUrTL46As7gj/Li0jWHwrZeJCuDX7M9TlZDYSnF5/ZRKgXcGxM+ZxoIJtXHgjd4Mdcn7O++L+FSKyH38ea40UxaWXWQP7to4n8XXESx0IkhSZNmphdDs0RxSh+IoRjKbAoU7V5/PHHb/F/CEk8j9w0WEQZoQYssJkRT97cpUuX5hSO3JSYhOBZtmyZfSQN/vHHH9tDCBEuXgxmgujCO43Pj/UAQeY/splEqPEgqukfrC2FwPcQAWUTWmg/NyKAfA8PxKn/3EcNqWJGKPJgLatPFGK7IQMjhAiXRo0amXgEbxWJAqkXjqRnWPBJwWTin0P0sfAi/FigM72ILNC8wUFhmMmYMWPcsGHDtnj+v//7v8vydwghkgH+TCGECELg6pBDDnFRIHLCkV06O+98YGddairFq/hsO3zfgNt/DR9ztffga+vbEeB/POqoo2r/TQX4rbfe6q644gq3//77uzRCE+Drr7/eXXXVVbWTRNKIjoOOAegYbEbHQccAdAx+zE7+8Y9/jNQxiJxwxAxKhXM+PProoyUfTN9kO5tY9YZ5/zV8xGeUDb62vobdvmozE0Qjqe40w3uY9mMAOg46BqBjsBkdBx0D0DHYTJSmZUVOOJISvvLKK/P62mzp5UIhxUy0MFua2T/nBR+/D68T7SqC6WpEJynvcrweIYQQQoioEjnhiPjq0aNH1X4fRS30fqTxbib0fqOlh6/aptci8LW05PHwb1Ls/v+FEEIIIZJI9Oq8q2A8xzsRhGbeiL+geKQNx5///GfXsWPH2udoz0OEkibgQfg3fd2CYjIfgUyfyDRHKXUMNqPjoGMAOgab0XHQMQAdg+geh61qfLOwmPPwww/bx5UrV7opU6ZYex16IcEZZ5xR+3WXXHKJe/PNN9306dNrn6OtxtChQ+3joEGDrHKayTFEEZkcwzQJz3PPPeduu+02E5TMX8WT+eKLL7pzzjnHnXbaaVX9m4UQQgghqklihOPRRx+d8/+CIjGbcAT6KGbOqr7oootsoksmY8eOtYky9FxjqgINwE8++WQ1yxVCCCFEokmMcBRCCCGEEJUldR5HIYQQQghRHBKOQgghhBAinu144g7jCUeOHGmTYajSZr7t7bffbp7JfFm3bt0WfsuLL77YWgNlMm7cOPfUU0+5Dz/80O2yyy6uf//+rl+/fi4KfPHFF+7uu+82PylTdZj9feGFF+bVzLU+z2qbNm1s6g7gMx04cGDWr/v973/vunTp4uJ6DP7whz+4F154IWuv08cee6zOc5wnnAejRo1yn376qXlzhwwZ4rp27erCpthjwN9E4dnLL79s47b4ORS8de7c2YrYMhvu5zpnzj33XDsW1YBBAA888ICbOHGivd5mzZq5X//61+7www9PzXVf7DHgfX7ppZds3eQcxj9OpwqKGzObHw8YMMD+9mwTuv7t3/7Nxfk4UJCZbTwt/YYnT56cinMh1/sLe+65p3vyyScjdd3XB0W3vD+090MXcBzoVZ1v28FC1s+ZM2e6hx56yDrHUNRLkfDpp5+ec+JdsUg4lplVq1a5J554wm7c9IdctGhRwScZk3M2bdpkJz1vOBXe3EBYUHbYYYc6bYBuueUWayeEeJo/f76J1G+++cYNHjzYhQk3PsYpvvvuu3aT53Ujavjb7rvvPrf33nvX+/2MmcqEGwqiPNuig0A68sgj6zzXqlUrF+dj4G8Wl19+eZ3nfvazn23xdfy8xx9/3PXq1cu1aNHCFpBrr73WCrbCFM+lHAPO4xtvvNHexxNPPNGa7nM9sTDOmzfP5rxnFqSxqTjuuOPqPFfN/qq83mnTplmxHGvA888/b+8f12V9c2aTct2Xcgz+9Kc/WcuR7t27u912283OGbpYvPrqqyY+MjcKvK+Zm8ZsxYxxOw6ef/3Xf3XbbrttnZ7DmST1XOC8J+gSBCF5//33Z13/w77u62Pjxo22EeCcZlIcbf4qsX5ynfznf/6nO+yww+z/ly9f7h555BEbWMK5VFYojhHlY9OmTTUbN260z6dOnVrToUOHmnnz5uX9/Y8//rh9z9tvv1373MqVK2s6duxYc88999Q+980339T07Nmz5vLLL6/z/ddee21N9+7daz7//POaMJkyZYr9HRwDz4YNG2p69OhRc8011xT1M2+66aaao48+uuajjz6qfW7NmjX2e5544omaqFHqMbjhhhvsvWyIjz/+uKZTp041t956a+1zP/zwQ82//Mu/1Jx00kk1f/3rX2vieAy+++67mvnz52/x/EMPPWQ/c86cOXWe57ngMag2ixYt2uJc5DodNGhQzfnnn5+K676UY5BtnXz++eft540dO7bO8yeffPIWxyBKlHIcHnjgAfterpP6SPK5kI1hw4bZz8tcE8K+7hvi22+/rVm/fr19vnjxYnu9EyZMqCn3+nnaaafVnHXWWTXff/997XP33nuv3TNZS8qJPI5lhikzNAkvFnZnRIwIRwdnddJ8fOrUqbXPEXFhJ9OnT586309rIHZqs2fPdmFC2qlx48Z10giEzjt16mTRMD8HPF/4en4muylSWNng7842czzux4Axl0SicsHPYoY6772HSBznBunPQqPeUTkGW2+9tTv44IO3eL5Dhw72MbORv4d0Do8w/lZ6wJIu9RAlO+GEE+w9YPhAGq77Yo9BNjuPP2/oz5sNrvfMyFQUKOU4BOG6z9X4JMnnQjZI02NVybYmhHnd55M1KrZ5d77rJ9cHDzJOwbQ05wLnD+tLOZFwjBCEpQkvcwPJhBvK6tWrLaUFeL4g82vxPZDSWLp0qQsTfj+pgsz0Cn8HaRRS+oVAGP7LL7903bp1y/r/pAKOPfZYS1njbXn99ddd2JTjGPB1eGF4sODi7fTngIdzgZQWQiPz9/j/T8p5APjfIJi+9eAJJdXJeUJD/kmTJrlqwXEmHZdpJfDvw7JlyxJ/3Rd7DHLxySef2MfgEIagcOK95rrHEzdixAgXFcpxHEg9c92Tgr3uuutqz/vg70jLucDfwkYxl2c7zOs+Cuunf68zfY8777yz+V7LfQ+QxzFCfP7557aDyLY78c9RfENxBAsquzl8X5lRGiKefsENCxa5Qw89NOffwevDKJ0vLATs3PDyBOGCwvPCjoyLZM2aNeYNw0eDv6aQMZBROwZ83SmnnOKaN29uu8bXXnvN/C34XfAI+Z0lP4fzINPvFzxnknIeAMZ4bkZt27at8/xBBx1kO3GiEvzcZ5991m64RG0yozKVgN/Z0LWb9Ou+2GOQC/zi/L2Z1z3+cTxyeLw4fnjn/ud//sd+/gUXXODCppTjQCHQSSedZN5e3ld8i3g9KazA1+aFWJrOBS8EswUOwr7uo7B++vc61/Eu97kg4VgPRALyTX0iakqdHOPD7Fz42X5+8Gv4mKtSiq8tZ8i+mOPA7/evOfP/oZDXxwJA2gWhkFldieEYc3gQIhBUkt1xxx1lE45hHIPzzjuvzr8pcuFGyc2DFIYveuHn5HPOxP08gEcffdS98cYb7je/+c0W58Kdd95Z599UFFLBee+991rkJrO4otwU+z5E9bovhnKei4iF8ePH2+Yps4jqpptu2uK9/u1vf2ubRiqKc9lZ4nAcKCQJwnhbIkyIIQSkrxROy7nAukO1PZG3pk2bbvH/YV/3lSTf9dOnrHN9bWaWqlQkHOuBOdRUJ+V7Q8tMFRaKP8Gz3Zz9ieG/ho/42rLB15bzYinmOPD7s/nXMv+OfEAk8X250tSZsNtmwaDKmFGS5biJhH0MPKTkqDBFPHnhyM/J55yJ+zFgBj1VlaTs84kkcNMicsPGYsmSJXlVspZCse9DVK/7YijXuci59sc//tEdccQR7pxzzmnw69mkcG1gUWGkLGnLMCn3Ncnax0Z47ty5tcIxLecC7yde7UxBHZXrvpLku356wZjra8t9Lkg41gOpIfot5UOx5tdMwcMJkC2s7J8jHet/H0UTlNoHUxVcqKRuyvF6SjkOGHrr+zsKeX1EHrbffnvXrl27vL/Hi0V6YJVDOIZ9DDwsAJwnvMfB30eLB9LZwah35jkT52NAb0P6WhJBLqS1hH/vg8erUvC3cIPLpKH3IarXfTWPQRC8b5xnpKNpKZVvD7pqvtfVOA7Z/r7M6z7p54Jf/7EkFdKTNkrnQinku34GU9dk4TK/Nlh0Vw4kHOuBNyPfJp3lgIuDxZJ+hZnQPJRGwFRtB3tU8bXBdCz/JrRfzh5WxRwHfj/eHF5L0NiLT+cf/uEf8uph6H0wiCIM4tnC8LnA65irgCJuxyAIKQcqKYPFAvQGowkw5vFgKodzxv9/nI8Bfwd9PTF+X3PNNQU1s/XnQbbiinLje7RhrQgWBDT0PkT1uq/mMfBQCEQDb4TQzTffXPt3R+29rvRxyIRNIX0Mg+9v0s+FzG4ahYjtKJ0LpZDv+unfayKsLVu2rHP/RLwHK9vLgaqqQ4R2BJktRTCBc+EHbyLvv/++XYB4XTy06SBSQQPYIPybEyrMohD/d2Dspdu957PPPrPWIkQOgyKQmwWPbOBt4aLJlabmZ2bChTJhwgQzDZcr2lbtY4B3JZsv5eGHH7abSLAwpH379iam8D95+BrOBSrqMI/H9TygxQQNcHfffXdLXeZKuWQ7Dzh+NIxn85DPpJ5S4fokAjRmzJg6Nz7ORRZzHwlI8nVfyjEgMkI0mRskzcBz3fSJIvE7gpCyxZpCmrKQKV1RPA7ZzmWK4ng+eN0n+VzIt5tGFK77coHI4zgE7Qf5rp/77ruvZYTGjh1b59rgvCELlVlcViqKOFYAbu7B3mOMTWPXAIzP8txwww3m3wieFPRdInrEzZJO8VTNYfhmB86/PdxAhw4d6m677TZ39dVXmxcIXxCjnfAEldJLslyLBhcvlc0cB9/xHhF49tln1/nayy67zD7yd2ZLUyD+ct0M7rrrLhMbrVu3tq9jV85CRauCSy65xMX1GLBY8P6SnmFBAPxbLKTcPBCLwbQM/h+qjVl0SEvMmDHDzrnf/e53dg7F8RhwAyD6hN2Acz+zLx2ROC+KqaSkrxmLKTckRAg3KG5KTFPIZtIvN9wMqe7ElM/izmg02oRwTnI9p+G6L+UYUNxCpIhimAULFtjDw3HwE0NmzZplEzG4GVJJy/nBOrFixQprxRV2irbU48C1zFhNotAIA44D/l6iSpk9EZN6LjTUTcMThes+H5555hkTwD7FzDmM/x4o5sKKxXHi+Dz99NN2Xhe6fjKGEIsHmy/877T4IpjQs2fPrEVFpSDhWAEoXgjCiewJCsdskJqh1Qoza1kc/czaiy66aIsdODcbIk2caJyICAi+Ll8TcSXhxkeqiYo3LhoiaPQb48T2QqghiLgQesf0nm3cFnAz4WbDBcINhAsQMzRV1WHvNks5Bt7TibePxYTzgIWXGyNCIvN4UIFNlTGima+nfxrp3XwLiqJ4DEjJ+8X1nnvu2eL/sS944UhT4IULF5r4IiJFxAUBzQ2KTUW1+I//+A+7gbFZ5EbBzZ9IKam2NFz3pRwD39cvOIfYw/d64cjPo/AKUYEg4VggqrAxIFSiQrHHgWuWc9kXBfIzENOsaZzXaTgXgt00GCXLepiNqFz3DcH7E5y9jUj2QplCrlx/XyHrJ/eL66+/3noas5YgMimkOvPMM1252YrxMWX/qUIIIYQQInHI4yiEEEIIIfJCwlEIIYQQQuSFhKMQQgghhMgLCUchhBBCCJEXEo5CCCGEECIvJByFEEIIIUReSDgKIYQQQoi8kHAUQgghhBB5IeEohBBCCCHyQsJRCCGEEELkhWZVCyFEFZg3b54bPXq0zdZlxvK2227rmjZtavOVe/fu7bbeeuuc38uM+7//+7939913n1u7dq0bOHCgO+KII9yf/vSnqv4NQggh4SiEEBXkr3/9q7vtttvc2LFjTSy2bdvW7bnnnm7Tpk1uzpw57vbbb3djxoxxN998s9ttt922+P7Vq1e7FStWuKFDh4by+oUQIoiEoxBCVJB7773XRGOLFi3cDTfc4HbZZZfa//u///s/9/DDD7thw4a5yy+/3L52m222qfP9M2fOtI/t27ev+msXQohM5HEUQogKsWrVKjd8+HDXqFEjd9NNN9URjfDTn/7UnX322a5r164WVRwxYsQWPwPh2KRJE9esWbMqvnIhhMiOhKMQQlSIF154wf3www+uV69ernHjxvV6GGHcuHF1nscLiSdS0UYhRFSQcBRCiAqB6IPWrVvX+3X/9E//5HbeeWe3Zs0a98knn9Q+P3v2bEtnd+jQoeKvVQgh8kHCUQghKoQXgbvuumuDX+u/Zv369XXS1DvssIM7+OCDK/gqhRAifyQchRAiQpDahm+//daqro888kjzQgohRBSQcBRCiAqx00472cePP/64wa/1X+MLaBCN33zzjfyNQohIIeEohBAV4qCDDrKPc+fOrffr3nvvPUtR/+M//mNtEQ1papp+0+hbCCGigoSjEEJUiOOOO8795Cc/sWppKqRz8eijj9rH7t2729eTrqYwpk2bNtY0XAghooKEoxBCVIi9997bDRgwwG3cuNH9+7//e53CF0Ag0gB84sSJbvvtt3cnn3yyPb9o0SK3YcMGpamFEJFDk2OEEKKCnHvuuTZekOkxgwcPtmKX4MjBDz74wFLS//Vf/+X22GMP+54ZM2ZY5LFdu3Zhv3whhKiDhKMQQlSQv/u7v3O//e1vXefOnW0m9YIFC9z06dOtPyO0atXKXXXVVSYmPfgbW7ZsWW/TcCGECAMJRyGEqAI0AQ82Amcc4fnnn+/Wrl3rampqap9fuXKlRSF79uyZ9ecwfhDhKYQQYSCPoxBChOR/vO6669znn3/ufvOb37h169bVRhtB/kYhRBTZqia41RVCCFFVZs2a5ZYsWWJjB7t06RL2yxFCiHqRcBRCCCGEEHmhVLUQQgghhMgLCUchhBBCCJEXEo5CCCGEECIvJByFEEIIIUReSDgKIYQQQoi8kHAUQgghhBB5IeEohBBCCCHyQsJRCCGEEELkhYSjEEIIIYRw+fD/q0yd2eVujywAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAJvCAYAAAD1FlDHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydBbhUVffGF90ipYCCdEtJiVKiYnfrZwf2Z392d3eLfzuwExUxQCWku5EuQUAa5v/89rAv586dvmdmzpmz3ucZr9w7ceacffZ+97vWeleJUCgUEoVCoVAoFAqFIgFKJnqCQqFQKBQKhUIBlDgqFAqFQqFQKJKCEkeFQqFQKBQKRVJQ4qhQKBQKhUKhSApKHBUKhUKhUCgUSUGJo0KhUCgUCoUiKShxVCgUCoVCoVAkBSWOCoVCoVAoFIqkoMRRoVAoFAqFQpEUlDgqFAqFQqFQKJJCackTrF+/Xt577z2ZPHmyTJkyRdauXSs33nijHHrooUm9nue/8MIL8ssvv8imTZukZcuWcskll0jz5s2LPHfo0KEyYMAAmTdvnuy6665y2GGHyZlnnimlS+fN6VQoFAqFQqHIX8Xxn3/+kddff92QuSZNmqT02u3bt8sNN9wgP/zwgxx33HHSv39/WbVqlVx55ZUyf/78Qs/9448/5Oabb5bKlSubv/fo0UPeeOMNefLJJ13+RgqFQqFQKBTeQt5IZDVq1JBPPvnE/Jw6dapceOGFSb/2p59+kokTJ8pdd90lvXv3Nr874IAD5LTTTjPK4m233Vbw3Oeee04aN24sjz76aIHCWLFiRXnrrbfkhBNOkL322isD306hUCgUCoUi98gbxbFs2bKGNKaDn3/+WapXry49e/Ys+B0h6D59+piw9ObNm83v5s6dax5HHnlkobD0scceK6FQyBBQhUKhUCgUinxF3iiOxcH06dOladOmUrJkYR5NnuMXX3xhwtWojDwPROY91qxZU2rVqiUzZsyI+RkrVqyQlStXFsqpJKzerFkzQ3oVCoVCoVAonEC4Wrx4sXTp0sUIWl6AEkcR+fvvv6Vdu3ZFfm8VTAgfxNESv2jKJr9zEsNIfP755yYHU6FQKBQKhSIV3HLLLXLwwQeLF6DEUcRUUUdT/ezv+DuwIetYz6WyOxaOOuoo2W+//Qr+PXPmTHnwwQfl8MMPl86dO8see+zhyndRKBTJY+PGjbJ69eqCx5o1a+Tff/819zIPUlAsSpQoYfKZeVAcZ/+/fPny5v7nUaZMmYKH/XepUqUydvxbt26VLVu2mLmJn5H/v2HDBvN97HfiJ79zgkgL36NSpUrmUbVqVaNs8OD/NSKiUGQfM2bMkCVLlsguu+wizzzzjNSuXVu8AiWOIlKuXLkCUuiE/R1/B3YCjfVc+7xoIJzNIxIonUzmdevWlSpVqhTreygUiuiuCbgkkC4S+bAkClJYrVo1k+tMgRv3on0wcfMTchWZzuJHbNu2TdatW2fSZZwPSDOP5cuXm42tBd/dzl9EVuz/Qyo5bwqFwl1QrMum9ZBDDjH8AMTjF9mGEkcRs1hECzNHhqadoevdd9+9yHPJiUwVDRs2NPmRShoViuIDIrho0SJZuHChyQuCHJKKAlmyk68lPuQXWyLEHJBrH1YsxfCRpUgPUpYpoIDy/vE+g40wc5qTZP/1118yZswYo3IC1FTOH/MXG18ederUUYVSoSgGiBQsW7ZM2rZtK3vuuadMmzZNvAYljiKmMGb8+PFGmXAqChiJE4aqV69ewfMAF7JVq1YFz2NSZZdOODodsGiBWbNmGVWDyVehUCSeYCGHkERLFiGJgPuW+6hRo0YmqdySRULMqpIlBuSP8xc5FzFHQnCdhJJFDgs0rgfndrfddjMkkvQbHvw7k+F6hSJfsH37drMh69Wrl6fvmcARRyY6pF8mNKswcJGw0mG3b30cyXcaMmSIdO/evWAHjTpYv359U2kNSbQX9tNPPzUTJu9THDAhMwF36tSpiKKpUAR9QoWgQA7tg80av+c+huCgIFrCwmZMCaL7YGNNSJ+H3Ug7r48l8DzGjRtXcH3Iz+K62OuDUqnXR6HYCYSjBQsWyP777+9p0ph3xPGjjz4yuTs2xDxs2DAzmYHjjz/eqA0vvfSSfPvtt/L+++8X7KYhiwMHDpT777/f+DQSwoEMMumde+65hT6DNoS0Mrzmmmukb9++Mnv2bGM8fsQRR0iDBg2Kdfzt27c3IbVRo0ZJ165do+ZEKhRBAPk9S5culTlz5ph7DOsqwqcQFxQsyAdKIj8JlXp9os13cF0ghzw6duxofocCSXK/VYTJmxw+fLj5G5EVNuIowvyEiCqRVAQVc+fONe2S2Yz5YS7LK+IIGWSiskBB5AEoY4c4RgMX6qGHHjJdYSCfVFG3aNHCEEQURidQIO+55x5jrUObQUjmGWecIWeffbYrk+8+++wjI0eOlBEjRpjP8opvk0KRaaJIAYslikykRAZQq7gHyfvjJ5s9QjmJAGmxeY1+AcSY78tPqr3zAZB6HmyKAd/LKpP44xLpIbJDjjf5XKQFsRmguluhyGeU2eG4wH0wYcIEs4mCd/gBJUJOvwlF1kCe5AUXXCAvv/xyEUNxFjz+Tugt1wn7CkWmQHTAEkV+kh6C6gRxsGoURCKVe4CqYNJRrIWWn8BUzINzEBT1je9LsY19WLLPgsp1t4+gnA9FcFBih70X9RVsiimGiYZ4XCFXUFbiQTBp2uIbVBcmUyxBFAq/kwSKWSg6YzK0aSSEnpkQIYpY4VDYkg4gjYRFiSyQ5sGOXgmHv8BcZ30o+Um6EIA8UhHPQzfTinyYC//991+Tp40lH2q7n6B3oMcxadIkE8LDPDxWqF2h8CpY+MlPpOiLBwVgFSpUMGp6jx49jLLo1rhGaeS9mIT9SBghTYRyIc5+yHPKFGyYmsWVc4J67HxAHDlHPHRzoPAjtmzZYuYqxrP1afQTlDh6HOQG/fbbb/L777+bnEfN/VH4YVIk/IyySH93OpagmJO/g9cpqqLbRtp8JpMwSqNfiQREie/hJaPfXILraEPVzHtsQrjGkGsWW1IdINiWROJ+4ddrrwgOtm7dauZExjW5vURK2CD5SUn3z5EGFEyG++67r6kQhzyiPKLYKBReAos5LbIgi1TPEmaExFFhC1nEhiWTi7rNjUumcEbhT7DZYO7jAclmjGH4btsq8ndLIiHfSiIVXiSN//77r9nwkN9oi+D4vRJHhatgEkRt/OOPP8xORYmjwguArEEWx44da37ybwgiIWjURappsw0lC8EA19nmPFqllkUYEskcyd8hkCzOqkQqvIBt27YVkEYUdD8XwSlx9AmYBDEYZ6DZSkRVVxTZBmMPyyvIIhYSLNJY5Bx00EFGWcxkqzyFIhqYEyGHPAj9MTdCIhmbEEmr7rDh9pOqo8gvlCxZ0oxR1nK/EkYLvYt8BDvYMArF5JwQtpJHRTZAPhlEEcKIMTeJ3eTfUhGoXY7cgQ21up3/GbQ5kjmRB2PUhrMZv2vXrjULNyRSz7MiW9jmsJjKl2ihEkcfAm87TEPpwtCtWzfdRSsyApQbilsgi+Qtsihjm0PHpCZNmujCmyHiqHA/nE1xllUhrV+ohrIVmcb27dsL8m/zyRVFGYcPwSQIYaRYhg4ztCcMsn2Hwl2gKP75559GYUStwZD70EMPlTZt2uTNjtmLsCkoanjtPli4IYk8OMc2F9KGshnX/E034Qo3SeO6devM/zO28gl6l/gUtCKEMFIwg08e5skKRXEmOdRFVGy6uJArRvtLQtG5KHJxG2t/HJLrQ5AqB/RJKnkeZSIagaHN6TnnnGP+/9dff5X999+/CPGkA8WCBQvk8MMPly+//LLI6wAKXPXq1WXvvfc2z+NvXO9Yn2Vfw3vTuvXWW2/1TXoCC/fDDz9sxjWbbDxxBwwYYFrEcp4pqoFAWnsfjOkfffRRY4GGQsm8euGFF8oVV1yR8LMoEOPcDB06VP7++29zvk477TS59tprYxKHe++9V2655RZp3bq1TJw4MeFnYHDP8XD98St98MEH5cgjjyz0nI8//lj69+9vjkdzjnNPGitVqpR30Rkljj4Gkz8VrPkkgSuyCxSXMWPGmEWVEB5pECeccIIpdFEV25sgxPrOO+8UIY4///yzIY2xfCDvuusuY7gOWaLAiT7R//3vf+Wxxx6Tzz//PGrLM/saSBSE6Pnnn5evv/7akBw/qCiYwvMdIHFsgvjO0YpqiOJAtE888URD4q666iozv/7111/mnCYCqUNdunQxRO2yyy4zryUidPvttxv1/rPPPivyGt73vvvuS8mb96yzzjLkEcKIRRvHi7F+gwYNzN+5ThDVe+65R0ljDrF9R8cjrm0+zqNKHH0OqxTQuogJhclRw1yKRGC8QBbJX2SSY7FkESIsrfA2DjvsMPnwww/lqaeeKqRMQiZRiSFL0UC6QadOnQr+feONN8qPP/4oRxxxhBx11FHGgzMyFcH5mvPPP19q1KhhiCZE6NRTTxWvg4p/2lzWrl1bRo0aJZ07d476PNQhlDwU2LfeestsqDAbtyFu1OB4BODNN980Gy/INfcS4P24t9544w2jdFarVq3QayB4pBzx3rGumRMcE9cL8tuzZ0+jKqKMDho0SC666CLznEceecQQRq6VIvsIhULmpzX3zte1OL/00wCDvB12sOPGjSsYvAqFE4wLwtEscs8++6whChjKo64cd9xxShp9Aggbrgrff/99we+oHh44cKAJjaaCAw44wIRXSXeBMCXzfEA6gx+A+gppTARIN7m9hI5t1TUkGSJNGJu/Qf44z9FA9w8QGcKHuFobFid++eUXc72eeOKJpL8LaiL3sCWgkBJSlgi1A4SDBx54QJ588sm8C436qf/0hg0bzL/zlTQCHV15AiaoDh06mJBJMrkyiuCAxY4cr2eeecYskExsEEXClL1799ZUB4+AhYYFP9GCQ1gSK65333234HfffPON6QN+yimnpPy5//nPf8zP7777LuFzZ82aZX5CqjIBwuiob8k8bDjQDfzwww8mXA35wjmAe4Lv+L///c8oePyN+4jPRa2HrDk36NxH4LzzzjMqPvPw+++/b0L75Ec6w9EojJdffrlRBckzTRYQxsaNG5vwNsT97bffNp9FiBxcf/31RiFGjVTkhjRu27atyCYhH6Gh6jwCihEDF9WRnXazZs1yfUiKHIKFbuTIkSacBVls1aqVHHPMMSapPp93w34FoVAISjJAWSTUzHVFFYNE0CCAzj2pgvEAObKk0AnIKGQJtYucOvIF+TzC25kAn9GnT/wiIgvIk83tKy4oJCFqc/TRRxvyd//995uQ8NNPP21C0JB0yB/ha8La/A5fSMKRnI9DDjlE7r77bkPqyBe1uPnmm02+oRMvvPCCUXghq6nipZdeMjnI7733nvk3mz+iBtzjn3zyiYkiKLJPGtevX2/GT6zCtnxD/n/DgIEk8EwqAgrvg8WN/EWS8/l/jLoppIjMsVL4FyeddJIhDRR0QFr4Sc5jumDBgwhF4sADDyz077322suQ1EylNZCj7QzBx0MyIehkARlk8Sdv0J5HVHk2Xy+++KIhzE2bNi3ohc3vnQSS88e5Qe07/vjjzfz71VdfGSLJcVIwA0gxuO2220x6QDpuBaQKULAzadIks0mgmA3lFVXzmmuuMceAykm4GkJDGgrfSZE5bN682SjlbCyCQBpBML5lQMkjOyByczR3LRhAFSIkjUUTk1nHjh0NYdTqSn+AaAFkBBKSqBIT0gGpI/UAwsNrUaLSBZ+72267Ffk9ubBELlgQyd8jjOvMn4PAXHzxxSZkinL53HPPFYRt4/0tFtjcRJLVbMAWBUUW/KDsQhzZhEEcLQhHUjkNYYA4UgADceO78jwUfYgnpO6GG24w7wuZxHqH1xGqTheMD6zYLLAXokqesDoq5nXXXWfyVTkGjp9rlqyKq0gdZcuWNfdHPlZPx4ISxzwG+Trjx483JAJLDUV+gnAlZBHSyGaBylrCV8mGPRXeAAqRfSQDSMEFF1xgSAO5bRRKpAOK6ghJ0w0oEuTPOSuxnYA0EdpF7RoyZIh5QF7xQmTsxfpbvGgIcxUeiMkA8uzWYo16B9GNLG6xZJrCmGigtSFEEAJPviKkjs06IWyKbKhWxxMTyyvUQELNFMQsWrSo0IaPczl37lxz3ni/ZEFRDuFwqqlRvAipc55JSQH8PwqxEsfMzLulS5c2YyBIpBEoccxjMFGRsEuxDAPbKpGK/ABKk+0ehLLBAt+9e/ciZs6K/MSxxx5rbFjYNFCIkS6osgf9+vVL6XWQQAiVNcdGKaRAj1w7bGZi/S2eVQy5ernIcWSzRYjcFsdYWIKXKKy8bNkyo5byPNRbiDhKpA3/s6HjvW1YOZqhOJv7K6+8MqVKa+uzefrppxccL+fZSYhRQRXuYsMOu6agEUYLJY55DgoibMEMg1zD1v6HLVRAYQR400EYUzESVvgfqFvks6FURXYPSRb4AlLU4SQfqSBSHeXfKHcQx1h/82KOIzmjWNm8+uqrBZZD4JVXXjGqkjPEzoaNPMOaNWuaByCcT1U6ZJb/Z/MGaUQBJLRPNTSKMMQ5EoSveS55iTwvWWCthVMC1j622A3FFENwC4pl3DxPip2kkfSGIFRQR4MSxwCAHsOQRwa7wr/gGo4ePdqE/QhtkecEYfRDBw9FZkAnkWSBZQ+kwuY+QxohaUQmqASm6CMVoMxBhjAEJ2dv8ODBpnsNbfri/S3bOY6QK4pYrHr4xRdfFHSD4djIAUalO/fcc+W1114z54cKdaqqMVqnet1ZrY7CjypKV5g77rjD/I68Qs4vnbwohCEcT8HSt99+a+yO2NShNqLqcp6drgZWYbTh5WRB4cvJJ59cYMdjQ9OkCNx0000F39W2nlQUH6yhmzZtMtcwVoemIECJYwDAJEVlrVOxSnWRUOTeuJtFnqpMVBlUEc1hdK9PtBdARCCZwph0QTWvs7CDnDxIS7Re1cmA3K5PP/3UkC+Ms0mVgMhQCBPvb9kG+X/Y3zh7OfMAZ5xxRkHxGDY5pPNQbIIyCKF+/PHHTfV6IlBNTZgdIkkREPcpKi7fHX9F7mHyEQnf2xaHxVGraPuI0si84AQ2SXwmNkJ8JrZC5L8q3AHqc4UKFQJNGkGJkLYZyQnIDyKx/eWXXy6UU5NpkEiPasUu1YZZFN4FKgkhMMKRLEQHH3ywMXtXFAabIcKEnCPdFOUOKOAQVCyCUvlbkMYpBBJVEwICYQ+KhYufQdEW18ntjjwbk5i3csUV4kFHbMBAlSBqA+EW8pBSqeBTZA8k1xPeoyqehHsqaK3NhyI/QSiTMBhqhl9axjE+yenj2LHu4aclhvH+FlTYECd5kuQ1ki+HyszDL9c8iKSR62U9PBXacjBwYHKimIL8I4orICgK7wDiAGEk1EQnD0JPeOGxACtpDAZxdLOVXqZBWJfiCx5UdxOeTuZvQQb3MTmPbOJRHHG+oCqbnxoA9CZpJK0g6OFpJ1RxDCDIoSJUzWRO1R3KoyK3gCzYwhfIA2E9vBh1slJ4GeQA8kj1b4rwJt76PaI+sonHyoecS1W2cg8KECGN5OuSVqAb951Q4hhQkK/h7D6gyB3IO6X6EZ83W/ii3V4UiuBs5IkAoUJCHjFAhzhSQKP5j7ndzEMaIfZKGgtDR2WAwU0B2FXR2QBLCrV2yW4YBMsPlF8KlbADUZN2hSK48zE2PhRMQCCXL19uFEkIpRKX7BJG1GCiPRrxiQ4ljgpzkxAepQsJ4VENk2QeVMphqUFeEwrjvvvuG9guBIqd9yG5VFokEVxAEK3dC+FrKrApoCECEVSz6WyCanfm5CCbeycDnaEUhihCXEjMxotMjcIzBxYC2sPRUYJq6UsvvVT2339/JY0KQxhR/JU4KhgDkEUiEczLK1asMCqknwqn/NhgAdLIXGyjcYroUMVRYcAOC/IIcaTamg4IGh5xD0z4I0eONBXT7GTp8NC6dWs9x4oCQBBYvFi4dFwoAHMFG0wIjbXvscUzOkbcA/cdhUl286bnNj6UOCoKQC4N5JHJSW8cd028afu1ePFi00Gjb9++mg6giLl44emnRREKC+ZixgRzBqoj3WcIZUMgdZy4A/JKIY2sgar4J4aOOkUhWDNa1A8c7SnW0MkpfTsH+gFT/IJn23nnnZeTlmsKhcL/YB6mYYMWz7gPVEbWPCWNyUEZgSIqqLSmgGPp0qXG81Fz8FJXGemHu3r1ajnwwAONV6aeQ4VC4XbxDEQSOx/d4KeePsQ6x/nU9JDUoPRaERXsYvF5JCwyatQoTcpOEpynX375RV555RWTYH3RRReZSnUljQqFwu3iGex7qARGfYQEaeeZ5Odp8kZ1XUsPukVRxARhEdoT0tf6zz//lH322Uel/DjAuBeVESNviot69eqlhFGRNFA87EOhSAYoj6TBELomuoH6CKHUeSc50khalp6r1KHEUREXVPRR0EHoVREd7PIh1oMGDTI5Rxh516tXL9eHpfAZWMC0Y5AiVbCZr1atmimegTyiPhK61gK86ECZVdJYPKh8pEiI3Xff3XSVYYJip6bhkJ2gCvadd94xVdNt27aV/v37K2lUBB6vv/66UU7nzp2b1PMfeughadGihYYOiwFy9VAfSZEh+gGJ9Mr5fOGFF0yhpRc8glFpScVS0pg+lDgqUmqRR/7epEmTcn0onsCUKVPkueeeM2rsaaedJkceeaR2G1AUy46Hggd+RsMdd9xhyBhm0NHQpk0b6d27t/gNFHg8+OCDcsMNNxSkwljiaR+oZ82aNZPLLrvMFOxZRHte3bp1pV+/fvLUU0+Z8+k3ML+eeOKJ0qhRI1Ptiwl4z549TT/7SOANyznBExYy1LBhQ7n44otl2bJlxlYN9ZF522L06NFy1FFHmTQk3psxw3lKBNJvDj/8cNM/u1WrVlGPhTQdGzaPxNlnn22O48UXX5RcALED0spPiLUWEhUPevYUSQNSxKQxfvx4M8Hz/0EEE9A333wjY8eONSoJhJFJW6FwwwA8aIr+a6+9Zgo8Tj311CJ/u+uuuwwZIndv6NCh8vzzz5tWnRMnTjTEJ/J5WGAtWbLE9ID/73//K4899ph8/vnnJhrgF8ybN88Q3rPOOsuQYEKrH330kSF8EK8LL7yw4LkQ7mHDhhmiyXfkuz/zzDPmHP3666/G/ouNBik0NHfgPYge3XrrrSZUO2vWLFmwYEHCY+JYII/Oz5s6dao0aNDA/J3rc+2118o999wTNd0CQs97cD0uv/zyrObxcj9xDhkbEEZVGl1ASJETTJ06NdSjRw/z02+YNWtW6PPPPw9NmzYtFDQsWbIk9OSTT4buu+++0JgxY0Lbt2/P9SEpQqHQhg0bQpMnTzY//YotW7aEVq1aZX5Gw+233w6jDC1fvjzq31u3bh3q1atXyAsYMGCAOdY5c+YkfG7btm1DZ5xxRtTXjxw5stDvr776avP7d955J+7zwODBg0MVKlQI7bXXXqH169eH/IytW7eG2rVrF2revHmh3w8bNiy0adOmQr+bPn16qFy5cqHTTz/dzE9r1qwx60ytWrVCxxxzTGjbtm0pfTbnrkSJEqGff/7Z/Jv3bNiwYeiFF14oeM7dd98dat++fdz3HjVqlLlWXJdsgWNdt26dua82b94c8uO8NdWDXEFD1YqUQQgFpY38JWcYJN+BwojNDsorNjvt27fXCtgAgNDoJ598Yq49P52hUi/DhrZnzpxpQoUUTKAGnXPOOUaBiXweCtJJJ51kwpHYvFx55ZVGSYrEmDFj5NBDDzXPQ7WiExIm9+mAJgNEMPA6TQYHHHBAweuSeS7KGgreW2+9JX4GKhm50+QtOtG9e/ci6TFNmzY1oWtSabiuqI3ff/+9CVtfddVVRnlLxYqGMYBqRwEO4D0ZS3YMoUQ+8MAD8uSTT8Z13cCVgxD5Z599JtkAx0y4nu9LREj7T7sHDVUr0gKT01577WUmLW7QfCZQhNEITVM5TZjnsMMO00koICAs9+abb5rxbcc51fNnnnmmWbT9AMggYdz777/f5LhBgMlFI+wY+TxCjzwPIkjuGz6ub7zxRqH8O6ymII3XX3+9uQ8In5Jb+fPPPxvv11RA+BR07NgxqecTWgUQ22Twn//8R2666Sb57rvv5IILLpBMAXISLbcvGiBPydiaQe4gPrwv4XbmoJNPPjnh6xinbG4gjxaE7rlmkEdSjGbPnm3IFOfn8ccfj1uBDWFs3Lix3HfffebBNWMT/fTTT5u/Mw7YSJCHmQhcZ+6pbIKUBp2v3YUSR0XagDSSk4XP4x577GGq5vINLJwffPCBmXDJD0p2gVP4Hyy+kEYWYpt3aH9Cppo0aWIImFvIVK9cNjuvvvpqwb9Xrlxp/h1JHCGXVg269NJLDdGg+IvcNZsjeMsttxiSRL4hkQcAiW7evLkhEJDHVIDKaT87GiBN5OihekE4yGWkeviII45I6v3J8UNltYQzU+DY+vTpk9RzUUttbmA8XHPNNQXFJIyJ4447zuQvJsLbb79tVEDOlcWMGTPMBphrBVnEYo15m2pnVMx333037nu+9NJLcsIJJ8h7771n/k3+KI0NIJGo8KibyYAxwz2VabAuodI682AV7kGJo6JY4OZksRs3bpz5fwhkvmD69OlmUmQ3Tp/pOnXq5PqQFFkEi6JVGiPB7yELxx57rGufBznIhME+FlFOoBgyrqlmhhxaQBadoIgB4kihBcSRxRjl7phjjikgjYD7AleBl19+uch7JgIkloIFQt7REBnCJsoBMUplnuG9M11d3a5dOxMOTga1a9dO6nmQM8garg1sXjn/iVKDIOJcx3333dcUozhtwwgtMxYoMIKIUyVNoR+bIEgmUaR4Yf+//vrLKM4U7BA2J9R9xRVXGILLdeF9CVdzvxASjxx3Vr1EReVYMkXqeH/OEyF6bViRGShxVBQbe++9t5nUyH2CPCY7MXoVTIiEdrAeQklhoUTlUAQLkJpYFc78nr+7Pe5Y8FDy013woqWMREYCbK4aarqT5EUSB8KTHIf1YrRt7bgnItGyZUtz/PPnzy8UIi0unn32WWPDA7nET5bPTvXcQJqcyjAEB5I7YcIEufnmm02OZ3HBOU02TzNZkEfOA6AUHnzwwcbBYfjw4VGvMxXVkEEU1oEDBxaqHrbzl61cZzNMc4fjjz/eEEfmu3jE0RJwZyrCgAEDzGf+73//kx9++EGuu+46k0vKsbGR4FpFqrD2fspUahOEGDLM91PSmDkocVQUG0wCFIqwcJAHSL6TX+1pyCvC+oJwEkn/+++/f17nbypigzy6eIpjsnl2yYL7h4UPkhRt0bN5aCgq0QCpi5arFst+JJHtTzbGve21jCKIQhSJLl26mLBqusBqhnA3aQVOhRSyiHG/W4DwY7qdDCBs6VjCoD5SlEckJJK88x3JMyTsjA0PqqAT/Bu1EPJtwTiz52Xx4sXmtZDOZK47yjKk+5FHHjFzPaFujo9Ntj1WlOFI4shmBaUxExtxCCP3D/eAds3JLJSSK1wBkw25VDz8ShpRS8gpIreNHT4hPSWNwQXFL/EUR3K8sgnCgWDatGlRSSPj1z4nHZAH5wTV2JBZm48H4WHRj/b5hEghu6l2TbKKWjJV0unA5tNhCG4BuSFfmcrgaICYEybmu0DwrLk4Ydl4aQ0Q0mQeXKd0YDcMkUU4kCWUSAglHayi+etS0QzIfXQCxRDwXRlD5JNC5BPB+maefvrp5t+E051klf+P/Cx7nVGnM2XwTVcYJY2ZhyqOCtfAwmEnDyZHCCQVhH4AOZpULnL8mNumkqelyE+gzrCBIJTnrKrmJ793szAmGaCAE8Ym1ErOmVOVpHiBBR/VqThhYcKhFrZq1r4nJIq/U0BD+NoSSjZaqHeo86neN+TigVGjRrlu0v3jjz/K3XffXYjgJAOKgSimoQKda80GghAvOZ/ZyHGk60vk2KIgiXGIUuckhqQIUWn9+++/m+tiz2ckqJjHMoeiKGtpBKiwR3mEWLMxQDWFPBJ6h4RFAwSVIh1SeezGmnvFFjoBimWifU/OaSrXIllwHITSNTydHShxVLgOJluIIztjJt1onQS8dKzk91ANilpKtaZ2FlBYMH4J51EIQ04joVWUxmyTRsBn3nbbbaayGesTVDMUQNQuQoU2By5doAbxnocccoghIuSrkasGKbKgMwgECZJ4ySWXGNKBSo/aQ7/pVEGRDW3vyJE799xz0z52rGogLpBniCykkeNEgWVDmKwKxTWmkw3EGCIFIFWoevGuuZs5joSjCQVzjSkCQhUk7Mv3e/TRRwsVElGYwvfjukP6Iv0qzzjjDPOTuY3za7v09OrVy8x7H374odx4440FG35LHjkPKLLRClgofIGskkZgQWj66KOPNtZHgJaEqJ9OkMbEe/M8N1MEeGTCjUARB7l2IA8qvOgG7ybofvHLL7+Evv32W9O5wKvHOHDgQNOR49dff9UuMD5GPnSOoTsIXS74GQ9vvfVWqFu3bqFKlSqZDiEtWrQI3XnnnaGNGzcm1WkmsquLfR7n74QTTghVqVIlVK1atdBll10W9XyOHj061K9fv1DlypVDFStWDPXp0yf022+/xf2MeHjsscfMezm7u8TrCBPtc+yjbNmyodq1a4cOOugg0+Ep3txz0UUXme/uBPNB165dC/3utNNOCz300EOhbOHdd98NHXjggaHdd989VLp0aXMt+Pdnn31W5Ll0CnJ+/8iHE3ROueOOO0wnnTJlyoSaNGkSevzxx4u8J/Pg33//HVq4cKE5f8558auvvjLXatGiRUVed//994fq1q0bqlOnTujBBx8s8vcbbrghVL9+fdfmWb4PHWG4Z/w6d2/waecYJY45ghcHg9vgxv7pp59CgwYNMje3l8DxvPLKK6ZV1sSJE3N9OIpiIh+IY66QqJVhprF69epQ9erVzf2YTUQjji+99FLokEMOKfj3v//+a1r1TZo0KRQk2FaFkEdIZHGJGZsaCP0TTzzhyvHlA2n0M3FUbVeRMeDWT85NzZo1PeXcj60IuT2ETWjF5qZ9iEKRLtjIU4ySqNo530AqC+bhDz/8cNJt8IoDQrWEnskPdP4/YC6gaw6FQoSL6TZDjme0gpN8hm1VaH0XCV3bc5QOsO5hDYjm7ZgqGCMU8pAmQShdCxizDyWOioyCZH66rfCTCTpa79tsgjwuEsSZxFgU6CyhUHgBLMyQleIs0H7FDTfcUFCZnWmQp0mRCZvHe++91/y/rb4mpxUDbXI4yb0k9892bwkiODds/CHYFM1QpJMOIIwYiMcquEkFjBGOi7xGJY25QV4Vx5AkCymguwG+YBjYnn/++dK5c+e4r6PizNoSRILkZGc7plj9OC+88MKCRGRFdGAQDnFkcnZjAknn80napsqSymm1bVAoggc8HOOZfkMseSjCYNMPebQV1zhl5GL+tgoxn80xKXKHvCKO999/v6kUgxSgJFFpRwiENkjxrB6wWYg01YVIsiONRjoxpKXy0IlErvsKMdeAClBCQYSws3XzE/obPHiw6a/LtTvssMO0Ak+hSJJIKRSEhSGPGHjHq7jOJGmkAxDzNuuGKo25Rd4Qx8mTJxtycPHFFxe0VcJGgRw2fM94xAJGz5H4v//7P/PzoIMOKvI3zFKdfmeK5EBoAcKItQlts7p165bx3Ed2qPTlZXwwHvhMnXQUCoUiNUDaUBuxWaPLDHMreZCZnk8hjXT04vM1PO0N5I3sgg8f/nv4kFkgadO7k1ZLeHulAnzFcPmnD3M04FvGQ5Ea8CCDPKLwMvlkOnWBNAM6XeA7xufqpKNQKBTpgfmTYiaM3lEAycnNZDEXhTCQRqBejd5B3iiOVMERno5sd2fbG9E+y9mnMx5wxp83b5785z//ifr3b7/9Vj799FNzw2AwSxeJaMqkE+SGIPFb8P5BBZMO3QsIf9jJwe0JgVxKulmQckCnAvIaFYpsYIfNWcGCag3l2chE/o2wG3/nbyg4/NuaGnN/8G/uD/4NbPs7Hlatt5XI9vcKRSZhu7TwE/WR8UfoOlNjj/uDYhgljd5B3hBH29UhEvZ3ELdkYVtHRSODVNrRuB01ks/8+OOPTVsrdkW2wXs04O7/+uuvJ30M+Q5LGmlNxa6VXFK3JgauBR0UUDQh9Vo5rXALLJLWMsf+P2MZEgfxY+w5FRjGtG3Dx2aG5zsJniV/vCaymtreD/zNSTqdyg9A+XGSR1t1ynFxTLwvv+Nh/65QFBdWASTvkXGJdY9b5NGOZxueVngLeUMcCRtHy5ezBRjJhpUZsLSrotjF9mJ14rnnniv0bwotqNymVyx+X7GqzQih06rMqThq5Z6YhOvZs2ebHqb77LNPsSceSCg9XVmkyW9NVmVWKCwsKYRw2Z9U4KN8MK6s+gcsGWPu4f+5/+3vIhXAePlgvA6iRwoHpM/Z9pL/d/aAdhJIQJGC0wPSklNgfQoj50ReY5VM3t9JLBWKZMFYZcxQcc0D8ljcjYkzPM09o/Ae8oY4MvFG85iyk3yy9gFjx441BtFUZicDFozjjjvO9BAlly5W9TYEiYeiMOiNSqXzyJEjjV0OPVXTXbyYuCCNLJ7nnHNOVAVaoXACUmgJorVnwsrLqeBBrCxRs1YgTnJowe/iWTwlGtd8BkQvUc5Y5Oda9T4aOB6O2amQ2oWd/2dD7fw8vqtdrDkWSygVinhjjLnWkkcKaNIdM4xFSCNj09mTW+Et5A1xZOBC+CJh8wqTJW2EqRn0qTSs32233QrULkXqQBXEJBzVkUknmtKbCMuWLTMmvizqhKdtGE+hcC5KEC7beQLCaEmTVQv5u1VRopEmpxLoF1iiGfldIJzcJ5ZQOkPlnBdC4IDX8b15WNKsUDjBvcMazHrLg3k81XvFSRoJT/vxXgsK8oY4NmnSxChWDDxnTgQ2LPbviYA6SXV2+/btU1IHFy1aZH6SIKxID3RoYFFiwkkVnH9yGlFKKGjSnarCKmyoZs48P5vUz4PFzhIiJxnyUnvMbMASZKdyyfkhPG5Nl/mJOmlTfwip2/xOHrrIK6xRuCWPEMlUxoVV/1m/46noitwjb7aOvXv3NoOOIhQnEfz6669Nn1Gb64YtT6yKZoyp2WXHqpCOZh+DcjFw4ECzc2/evLlr3yeIYNJhAeM8U9meDLiWeG5COMlpVNIYXDhVM8gOIWcIDiQSMmjTVSBFLE6E2GxuoqIoOC+cHxRY7ivmOHuurHLL+eU8E23hnIOg9dpW7ATjhXmcMUBBqh0T8WDHC2SRzYqSRu8jb64Q5JBqZ4pUIB60CsQ2BzsW+qBa0JuUPMZffvklapiaXVOvXr2ifgYV1HQfoWUeRJRdFcQUMnrzzTcHTqnIFKjSI18UNGvWLObzZs2aZXwaMWQ/5ZRTctIGS5E7sDEkPYUFitwqFh1UMatY2J9+Kfiw1dB+ILKQbh6WrNt8SEAxDv+2aqSfroGi+OB627A19yb/H2tthDQivtixr+PEH/D+DJUCbrrpJlPUMmjQIHnqqafM5PXggw+a0HMiEOL+/fffTWeRWKoVZuCEo7/88kt5/PHH5YMPPjCk5bHHHtNOMi4Cz8UWLVoY8gg5jIY5c+YY0shz8WlU0hgMoHCx0IDFixebvFg2GixOjAFbnGIrnf20EDmrsv2oStrjtqFrihWZV/H6c1aiZzMKxSMZEGkiV/3tt98WP2Lu3LlmrGfT8s1+5iOPPBKzRSFjAgIZTXmENHI/M078nOrw008/mfPATwuEjJNOOknyFXmjOAIm3UsuucQ8YgFCGQ2oE3SLiQe8BqP1rla4D+yQUDLIUWVhql+/fqHwNObemK/TEUZDG/kNQqGQRKIHkBCKp9jEEVVA+YcsonKxmfAT6YoE6h2LaLTwOYQApwDw66+/yv77719kEeYeWbBggemWxeY2V+D4rcJk1UhLDKwaaZ/jlev15JNPmhxpFnwLUl9IQ7JFQpFAYDjhhBPUnzcGuOZWeXz//feNEHDXXXcV/B3SyIYCayibO5tJ3HfffSYyGc9v2S3ccMMNxi1k3Lhx0q5dO8k3eOOuVSiiANWRULWzQnr+/PlGFcDUm0leSWN+wtrh4PHJTh7lmc0d1fe2GxTXPp79jd9gcwbtd48Gvi+bpkhQ1Adp9JryDnmwRUj234DvSV4km4JoNmrZBJ8PccSP18/Kl5fJ4+DBg02jDKs82u5IKNXZII2WONLxLRvo0KGDIY7Y9OUjlDgqPA0KjqxlyMSJE031NF17Tj31VM0pzTOgRtEadMiQIeYnqF27tnTt2lX69etnDOJRGYO8WaDhwIcfflgk9AeZ5PxwvrwM7lmUOvJRUZqciiMEjhxVyGQ2gTpLrmw+hxZzCdsyEKA+okIzDtgIRtvoMLZzkdrgNk466SRTFxFLsfYzlDgqfAEMwsmlYaI57bTTsrZLVWQe5CjiaECqCOEsNgrWDgtyQe6ZV0KauQYbJhZf2xYVsMgSUuW+iAY2XU888YS0bt3aKJaE9y+66CJz3p347LPPTJgbayzus8aNGxuVKLIV4owZM+T44483JJX3s+o/aQSJ8u34/R133GGuJ/fwww8/bH6SknLGGWeYY6PDFrmREEm8WSHEEA+cE/gcog6RoCiS4+V5Xbp0MeH8ZIEKRfoDry8O+L58v2HDhsnVV19tmhtAjo499tgiHsN83hFHHCHfffedycHnPBJGhWhEAtWd3H2+P/cDefhfffVVWsfIOb3zzjtNKpA17ibtwTmeYuWGErqP5bFLzj+pQ5x/ikvZ5DtfZzuuMWbY+NncWGeeJGOUa8DYYzwwrm+77TZz/ZkTOJc9evQwG8toYxzVmBQWvhfn/pBDDpFRo0aZv/MZjCkcOKwdF8dlsXDhQjn33HPN+OPzuVdee+21Ip+Dqn/MMceYY2Feuuqqq2J2pcOdhc90ntt8QXC37grfgIWSUBwLGsUwhLiYGBT+BVXQgMXQVubSdQk1WZXk2GDh3nfffU1hGC1OwTfffGNIG6QqWg43JNHmSF5xxRUmF/SZZ54xvreQHHu+eQ5qIKSHn7ReZeHmfoPgARZz1F8Wy8svv9wQARZdVDvcLNI13ocYQWZwvUBxYkxAcAgvotycd955pkL36aeflp49e5pjt765r776qvmOuF3897//NUSLFq+MLYoXE+G3334zKRBugfNC673bb7/dECMI0WWXXWby/CIJODna/fv3l7POOksGDBhgzgNuINYSDscOvhcFYVw7iB7kh+/HZgFSmgog7ffff78Jy0OwubaQK4rMYtnQJQLdulCJL730UhM1gMAdcMABMmHChIJNCl67ECgIJOQV8uhMyeC789oLL7zQEDeuHcf2yiuvmM3SBRdcYD6Da834GzFiRKGiV8YH45d7gu/GGGLzwIaUkDEbEPud+QxgNwqcY8g4ZJLrxNrCPcV7cgyMKZte0bdvX/nrr7/MtWA94n25T6KBjQBEmnss1evkeYQUOcHUqVNDPXr0MD8VsbFq1arQY489FnrmmWdCa9euDQ0fPjz05ZdfhlasWJHrQ1OkiC1btoTmzJkT+vHHH0Off/55aOTIka6994YNG0KTJ082P/2KrVu3mjHOz0gMGDAAsztzzrgXqlSpElq/fr3524knnhjq06eP+f+99tordPjhhxe87tdffzWve/vttwu937ffflvk9/b9nLjoootCFStWDG3cuNH8e8yYMeZ1H374YczvwTXmORxzJPj97bffXvBv/p/fnXrqqYWeN3fu3FCpUqVC99xzj/n3v//+G1qzZk1o9OjRodKlS4fuvfde8/vNmzeHdtttt1D79u1DmzZtKnj9Sy+9ZN63V69eoURjskSJEqFrrrmmyN/OOuusUKVKlWK+lr/xnMhrdOCBB4a2b99e8PurrrrKfJfVq1cX/I7rxHM/+uijgt/9888/oTp16oQ6dOhQ8Lv//ve/5nlcRwvGSMOGDUMNGjQIbdu2LeE5d6Jdu3aFxkc0cM6inTe+K8dtYT+zQoUKoQULFhT8njma3/O9Lfr3729+xxjjmi1evDi0bNmy0KxZs8zvd9llF/NvJ7gPnNfUrge777576Nxzzy34HfMJ73HFFVcUOWbndYi8XhbnnXeeOe+Ra8opp5wSqlq1asF98cQTT5jP+eCDDwqew7hs0qSJ+f2QIUOKvHezZs1Chx56aKg485YXuYLGfxSeBbkh7GYJa9BGEBWE3SO7btQHhX+AGoXiQAiL6lVUM0JQisK5YIzxRAUaKHCoH6h8qDD8jBWmJh8SFRA1iXvGPjj3fJYz7Gfz0ADvy/MIDaJ2TZ061fzeKopYnllbJDeA6uYEIVsUKRQ5jgNFlcgDuZEoRRRb8HfUMtqN8npn+gphyGTUT5Rv+CwKoVtA0XLaQHEOUdQjG0+gWDmVKL4b8xxqKg4CAJ9gVDJnFT3Xjc9AzbSd0ZIFKu2kSZOM2ukWCN2Se2zB8ZKXzLFbldrm5DLGULhRFPmdbapB6kNkFMm2uARca64Vr2ENQCG1+Oijj8z5RuFNpz88rz/yyCMLTMvtA2WTcWc/i+9DROSEE04oeD2pA1bBjAbGVT6uVRqqVngSLIyQRsIa5J5ANgAkkonJ5rxZo2GF98CECQEhvYDr16hRI2MZ4yQoip1wdlyJt+CxwB544IGmIMb23HYuZk5AEFj8yMeKBkiXBYTilltuMaE3QnRO2PxFriWhbLxrcTeAFBE2JT+xOP3hed/I4+Z8EL6OBnvPWzIW+TzICeMtWaTb7SbadXJahwFLSiNzSmmDG/l62/AAUkgaAN8PEhYJ6yzA39u0aZP08WKHc/TRR5vP4XXkAdKmlTSRdBHtGvH++BwD29bTCdte1uarxsqdJCxPZTIbF2f1vXO84LgACU+nXS25p5BXcmR5xLtHONfRrlnzOB3jGFd+8pJNFrriKjwHJggWRRRH8rIi1QBLGslNwScL9coSS0VuAYkh5408M0gjZIJFgYVDW3ImPneMeRSlRJshFEbyvlCmyOuy+X6RQKmJZ2xtVR4WT4oaUL0gF6h6FBmgtuBJ58xHYyFH0aOYhuIO8r3ImyOfjEKZWAtlZJGNE5GbCT6P9yHXLJoCS3EC84AlfNYTMFXTd8gGz48kdYDvTy5ntMWf35GTF80OKpZi7IVWjOSHQrTstSOHkMKWF154weQAAr5rtGONd/1igffhfEQbz+QyOjcbkecZBw3GGYrmddddZ8Yx78VYi9UYIlXYcc3GhzzTaCgOqV61alXMzY+focRR4SkweXzyySdmQWTSiFcEw6TP5EPHHyoxWUwUuQPqL6FPFlTUEhQNWx2tcBeEOCk6gKxFFl04AQGkWp37I57Si1cmoWBCxJALCwppooHqVR4olBSX8P6Qj3vuuadgo2fDkBaRodp44LiZC1CW4rUdpZIXQCQ4BsikJXMceyLzZQgNnxXte/LejGneG6XJCeyiIFL289MB7xFJlqZPn15IgeP9bftVJ2zqQDqfz7zJhpwHGxWuN0Uzljhy/dj4RSLW9YsW9uaYUV4h3lyPWGTe2vFwnjkWpwBA8Q+qMWPS+frIkDTXj9QJQtnxVMdox8D6wmdyLVHx44FzTapNKOKaRbs+9juhqKLI5xs0x1HhKZAHN2XKFJPz4sybiQbUBarh+Al5dDPnSpEcmBxZZNi5swijKlJRSYclJY2ZA6rk888/bxZ88rPi5UOyKGKrEwlnjplVyZxKEwqetVGxIIQd6SEJgYSwWVsSVEuu/S+//FLoeZHvFQ/HHXecOSYqqyPVL/4NyQWMMxZ/qnIJf/IajoMK20jiGgtELKxtixO2ap0K9Eg8++yzhZ6TDqg0ZpPsPLek51AtbP048e2kgpj5zQKLF8KqkEsqd1OBPW/OcQQpdlrKQMQgpk4LISI7VAfHsjMiymDBRoJjpg2vJYZ2Ux/rmvA8IhTOOTzamBw+fHihcwFYK3gOYyUSztdyDJGfz2fwevIcnRZCFs5zwLXgmg0cOLDgdxxvrBA3+adsoqmKzzeo4qjwlFcjkw6TMV1jkgETDhM/kxr2D9HygRSZSSdApYE0QkxQKXhE5ncpModYoTUnCD+jTBLeGzt2rFnM2WihElE4g3UK+ZEsblw/3pPQM4oKViORpI38RyxLsI1BCYRE8jy7AFugXj3wwAPmJ8UMkEirpiUDyAvq5Y033mjy/QhXogwx5iBbFCRce+215rvwPL4j341iGsYkxBG1irEJKYJUxlK9yPnjO3B8TnUTAsfxc444X9auhs0thRL8rTjt5PgsLF+Y97CtwTeQ9BtIsMX//ve/AuslrguKGnl/nAfITqr+phBNPBopjuK9IMwQIa6pBTnl5LBSHMLxkeOHmoy3YWTuK4B4Urxz8cUXm5QBzhfvfdNNNxWcc1sIx3fgfRkvzvaOXB8KTSB2ttsQPpeojajr+IvynTkOvoPTVLtPnz4mTxMrKq4TeZtsZLHj4W/2u3EMqO98N2vtxnrBOCVSwv+T/sH7o16SpsHzrXUYf2MTceaZZ8qff/5pCmUYNxx3NDBO+Fu6NkeeRq7LuoMKL5bY5xKchzvuuCP0zTffpPV6LBOsZYgis8CGg+uELdKECRM8YYGTD3Y8WMNgN8LPeHY88RBpx+O0p9lnn32MdQpWPnvvvXfo+uuvDy1atKjgOcOGDQt169bNPKdu3brm74MGDSpkNTJ79mxjhdK4ceNQ+fLlQ9WrVzdWQD/88EOR+xGbE+xM+LyTTjrJ2K3EsuNZvnx51O+DXc3+++9vrFR4tGjRInTppZeGpk2bVuh5zz33nLGoKVeuXKhTp06hX375JdSzZ0/zWs4pVjfMD057FgssX2rWrBm6++67i/wNu5snn3zS2NjwfXnw/0899VSBFU6ia8S5i7RrsdeJ89u2bVtz3Hy3aDZHWNaccMIJoV133dV8fpcuXcy950SydjzYG/F63ovrzGdibYRFjhNvvfVWqFGjRqGyZcsaqyOOM5Ydz8MPPxx69NFHQ/Xq1TPfo3v37qGxY8cWsda5/PLLQ7Vq1TL2R5Z6ON+Da4MlDmOS4+Hf9913n/lM3hebIr535HHY9+c9+D4cM5+DDc6ff/5ZaI1hTPC9+UynNc/SpUvNuOI7lClTJlS7du1Q3759zX3jxLx580JHHXWUsahizFx55ZUF1laRdjxdu3YNnXHGGXGvh1/teErwn1yT1yCCvAh2MC+//HLgiwaQ/9lls3NFyShOlxBCA1SHktCsRtLuAeUGdQklgLAUyoAtoPACuO4oEqgIXjmmVMFUbPOn8rESM1ewqiOhd8ZvtFxPQvnMQShW2ehXTZiZHGCslPIBzry/4lQSoxTixsB7kO7g197hY8eONabyqJZOo/J05i0vcgXNcVTkFBAQKqipmCOvqbit5SA3TDwUDUTmYilSBxM4Cd6EKCHkgNxT275O4R5YbBn/ShrdBeSDkCGhbptzB4l02rvQOo7w53vvvZfDI/UvMSc/0faXLs74Zfzj08u8Q4jYWc3vJzzwwAMmBSQeafQzNMdRkTOw28ImBGWQtlJuKIQke1MwQwI1idT8v193rbkGBByySF4TOUHJ5p0q0l+ArcWLjln34TynkEbb+g4FknnD6WmpSA4QO4p1gFt+ulwn2+QBOxtrmeQnvJfnGxBVHBU5WySxEWGXf/rpp5uJ2y3gDUaiM4SHxHNF6oDAQLxZDEh8J7E8VhK4wh2gskBmNHso86DClgfEx1bz6nlPDZw7W6TC/F3caJETiAgUa5FigPm8XhtvQRVHRdbBJPD555+bZvFUqGXCtoVJhw4zECBFcmCSpiKVPBpUL7qCYK2iUOQjICdsjGxLPDdy9JIFleJ+BxXUTjN2t8EchAgAceQ6uSkuKIoHJY6KrAPrHHzBsO8ojoFuIhDucBbgYJ/gt5BHNsBCibkv/pmcH84TnUiUNCryHYx38h6dRtSoj7ansiI2OEe2M0ymACklOkX0CPKoedXegIaqFVkFXRgGDx5s1CyMg7MBQlFUt1HppiGPwmBCth6Y5DFi3h2rfZ1CURxQZMXCH8tI2ksFSuTt8fBrcQb49ttvjUrnNLEuLpg/IdacF85TNnJxKWpi3JDvqAWP3oASR0VWK6gxrcXGBWPWbIGJB2sEbGQgSIqdYBFgMqZdG2bGGPEqcgPbLi9a2A9Da2vTw4PnYSCNuTGm0c7Wgc7noaRhLo3p83333ecqiUgV9MAm95ix5gQmy8wHpKywaSHFBGPleBg6dGjBd6SIIhEiz4vzgQODBUQIskU+L/cFm063yUrktXQ+aLWaCLRijfbayOI1jLCxOMP8PVq3F55PKJjOQ0RkIkGrPIzWnaQRMk0ebjYJNd+NccF94edK63yChqoVWQGT7wcffGCIiRu2O6kCNY2QB6ojiwN2MkEFRIMHXpe0NoNYaAg/93D2WY5HvvB8I3cX8kTbQbqY0C7NWbxEhw7a8THmIYt0ZKLHL10zuA9RlrMJjoGOJzycINeZrjB0f6J9IuOQ4yP3GUKITU4kIA6XX365CWPait5kYc+LE5F9qAHzFKFR8n6tqmZVNrdgr6UTyar9bAheeeWVQr+DBEaCjjp02KEdn+0DTR4zHXZ4cN6feOIJ07eafs8W/D/dfmwfaksaGU+cd7cqqJMF553qasYEOY+cJ52zcgcljoqMg0nnq6++MnYXtLDKVXVuvXr1zMQHaXJ7EfADIBsQjMWLF5v+vpwLFkWdgL0BxqS9JrHGJq3naOEHaHlHHi9k8LPPPjOWVhakguAj5wR5xbTlI7eYPrrksmYLb731liEbkX21aeHGceATavMMITuoYShz0YgjvYEJe9t2gKkg2nmJBa6BNQu31dcQSsi9VfkwDUcBTAfOa5kqOJdnnHFGwudxrSHZtJeklSD47rvvZM899zQknu/QsmVLs5GwVlBs8jnvt912m5knnJGJXJBGC3JOIYyErPl/LZbJHYK1cipyAvILx4wZY3qPZnOxitWxgVAYi4I1rA0CFixYYPqxEuohbK/+lt71xEslFGeVQ7pPJAKpCKhLpIxA2LIJQqOEqSMXe3JscUCwpBFATAhbR+vwwvi95ZZbjFqXbi5uOuFnG/ZnzuD1TvPw4oD3YrOQDmzRSDzQWIHIAhsLZzW0U7FDyWNzb6ukGRu8N4TTAqIGacx1wRBjguPge6MGK3IDJY6KjBMWQmmEh7zios+Eye4alYOwTRDAokBYmlwyOr8o8qfYLNJBIB5Q21h8UZ0SgbBgMo9ECzgkCz9VNiyRIPcSk/lbb71VZs6cab4P7f9GjRol119/fZHn8zzGMapkOiAki1sAyhr3Ap+T7P2DZyHzBuQVKzHA75znAjUsWfD5HAsRGPIJbVg4GaAA8lrC0xC/Sy+9tMBTMRJ4sJKqYMFczEb+3XffNRuOe++914TrIfCkFBDWRsW2VkUApTXXpNGC783xcK7TJd2K4kFD1YqMAfWEfCVURhK1vQQWDqyAWLRQ3jJpC5QrkBrAYtKoUSNp2rRprg/Hv2BBf+01zPeQrEUI+eXofJLfBUGBwFCdjPIGEUTNTwYs/hTVWMIZDzZMmQiJwrWQLIhXZD6fJYKWvNxzzz3mdxApiuiOPvroQs8dP368vPjii2YjmqpaDtEgbHvYYYcZNZNQ/SOPPGJC15CqDh06xH39Qw89ZAhVJFDlnMoc80gij0a+H+fLEsc///zTELXu3bub6AwpNfHAfAqphoijTlM9/dxzz5lUBIqAIkPJ3P+MGeYDFEgM/Tnm0047zfwd4jlw4EDz/zfffLOJRhx++OHmmrEpIDqTq/B0rI2/JbmQeK6npttkF94ZDYq8AhMaeTXsCE866SRPhkXJ7eH4WJA4PvJ+8gF8Jwgx3owUvrBg68SaJgYMIJmQ1Ypk3fDPhx4SefVVyluzfjgHHnhgoX9DVGjbmYqKTLiYEGkifP/990m9X6JCs5UrV5qfLPaRIPwLkUUJpWiOsUsOI/l7fD4kxlnYQl4geZqpAlLGwwKFj88kjHvjjTca8hUPFOtAuJw46KCDTOEJ5BNiBSlPJn+b+ZCHBcVB/fr1k549exoC/cILL8R9fWSV9CmnnGLOIaQPAsi/nbDnHfIIcQTkhl5zzTWmirtVq1ZmTFA4+MYbb5if/J7zzeaETSdFWMyXXgHzdWSxjCJ7UOKoyAiw2LCdYbxsJN2mTRuzWFE0AsnySjgmXRC+IQyFIsWimI9KalaVRkhjtJzD884TgUhEqchNF5D7RMVKzz77rCEJEBXGK11+Ui3yQoW2FbapkNTiIpqHKnZC2OGgtNnvAamCjF555ZWm7SWgPSnKIPepWyA8i6r58ccfFxQlxQKqHY9IQLogkChztu91OoCUkgPKvJkOKGZBveX1kcTRnvfIcVW/fn3zsIAo9u/f3+SBM29TREduJEU0FDVNnTrVU8ojKrLtLMP/a0vU7ME7o0CRNyAMxCRPeJpJyOuAYLGI+J00AsJ+fA8WIZLIFcUA4elYJI7fozpG8chLFxCXRISOwq50K3FtvuH06dPNhikRkvEUBCze8QiTzb+MzP8jf+7VV181YVcn+WX8oixSpMFzIAXXXXednHjiieb/bSiYIh9AhTXPw3IrVRAW5rWk1aSzwYWM2S4z5B1Cyvl3On6oHMu0adMkHfCZnGdCt5Gw5z1ea1eIOZ2jIIqcD4qZyINlrEHiX375ZUPwI1XXXAOyyJhmLHAN8mEO9wOUOCpcBbs/vNnYiUNe/AAmf0gW4XXCNEzgyeZ3eQGoHSx8hG4gwWqx4xIgKLE6DfF7H/YbJpRJ7hqh0URI1gEhUY4jqhbEJrLymxA21c3RChysybT9G+TwnXfeMY9IkOtHxTj3bqqgOI585+Jau6DEQfo5t+neexxLuvMOqQeEbaO9nvMOaYz13hBeiDk5nIS12TBw/i0R59rxexooeA2cawg/ZBeCzPcMms1aLqDEUeEamOg/+eQTs9smtOFH8mIrQCG9yVaq5hIoDCTXs3BRoeqlUJLvgVoeT3F0WU2HJKFYQWIykRNM8cR///tfQwKows1WjiMqEMpVZAUz+XbkpjFnUORjVTrOwRdffGG8HK2SyXMi8d577xmljLw8Z36yrXCGsNrwJYUUkcSJ88EmF3UzHbIRGXpnvrOfx99IF+E7RV7LaMdCwQ/3MeFiJ2wRE922AO/JHBWpTFOJzmdGK0LkfTH6joUHH3zQXAdC3IxByBfzCKFp0iI4lxwz1exeBNfOFstAoKMZoSvcha4yCtdAeJqCjLPOOivtXJ9cT0AscCNGjDAPEvOjJfR7BSgUpAVwjFhu+JGoexpUT1MIEw2QBvIcXQQLv30UF7/++qshGRABlD2KHCBJLKqQsGRIgJs5juQSUryB/54NCUOoKC7Bl5F7jbw6jpfwNTZemIY7C0giYRVGiJ8zDEuIG/UM31I2U4AuKcxJFMhAWLlvKMKB6D3wwAMJj58COh6JAOnnWLmGEDyUMD7DGULlGKjiZq7hepDf+dprr5lIx0033VTo/fr27Wt+2vA8aiCvxezdthikywvEE9IYWYlOJTXHHWujQB76ww8/bAg4yqslubwPmwz+znhBfYxHPnMNzq/Nd6TgKlEHJkUxEVLkBFOnTg316NHD/MwHLFy4MHTnnXeGvv/++5DfsWXLltDQoUND33zzTWj9+vUhL2Ly5Mmhzz//PDRp0qTQtm3bQkHHhg0bzDnhp6sYMCAUKlkyFCpVqvBPfp+Bcbdq1Srzs+hhDIBNhkaOHBn3PYYMGWKeZx9lypQJ1apVK9SzZ8/QvffeG1q2bFkoF1i6dGmodOnSoTfffLPI395+++1Qly5dQrvuumuoQoUKoa5du4YGDhyY8D1vv/128x2XL18e9fecC4snn3zSfEb16tXNcdSpUyd0xhlnhGbMmJHU8dv3TPTYa6+9Cl7Dfblu3TpzTZlHtm/fbn5/8803h9q3bx+qWrWquT7169cPXXzxxaElS5YU+Vzez/mevBfH3aRJk1DFihVD5cqVC7Vu3Tp03333hTZv3lzk9c8//7x53po1a6J+r+OPPz505JFHhv7999+C47PXi99XqVIl1LFjx9CoUaNCXgfHv2LFitDixYtDW7duDeXLvDXVg1yhBP8pLvlUpA6SoC+44AKTdExlpJ/Brhp/NXZ6tBT0ovVOqkAtIK8qWiWlF0BIhpBerjvxeAWoa+RyYT3kutowc2a4EMb6OKI0ulhNbUG+nw1V52PKAXMDhTmooUEbmzxQHtMpmikOUCdRXR9//PEif2PpRwFmrHFs+RCxsL3ZUSDJ+fb6d9qYxLzlRa6Qf7OTIusgVMIERDeHfCCNgInHkkZ6W7OY57pKmeR0QlaE9chxSsZSReECIIkuVk8HFbfffrvJmSNsvt9++0lQACFgPrF5lOSCZ6OAA29KutEwP0cDpIp5jWPxOsFKFqw/5GuS+03RT67n7HyFEkdFsUACNcnXFMPEs3vwK9iVY1OBGsRil6vcTXadqDX5YlKuiL7oZaowxgugWAWFJYiw15R5BAeEdC17UgE5j9HaEHIMODGgMubjWIOoQxitv6Na9LgPrVtXFCtcSsI9SdrR+tDmA9iJo/Dx8/fff8/6woc6QfI8pJHzTOgpHyd7RXisETbMF/VHURTcu9bzMRck2hLXfM9QIxrDvYRFT75/11xAiaMiLXAzYhLLREj7rnxe7NjBUlFI/gzkkZzObAErDCopqZrWftP5DTYJEAp+KvIT1rKHOQXiyPXOFrFh/oI0EppGkcvnOdta9ECUSaNSuAsljoq0QBcBPMawnghCqye+IzYahD6iGRa7DUJJAOuQAw44IK2uGAp/AcLIpkSJY/4D4sicwlySDeLImCJsHQTSaIGyi/UTZDmoKRKZghJHRcrAG4yeqKhw1pg2CGDCtXmOVF2zm82UyogHHR5qQD3JFIr8A5tQW5zi7JKTCfAZNvcvSJ1V+L6cZ1oS6obMPQRnBClcAbtjujoQBrDmtEEE3WWGDx/u+mSPBRBqLpWBarWjyAdccsklctBBB+X6MDwJq/zRqhBF0I3N6P/+97+Cdq+QJTa5ALu0VEhjgwYN4raS9Mv5Za2y1kMKd6DEUZEyYYLcUEWdj15zyaJly5amao/z4dZOFusMumFQfdqlSxetBlQU4PXXXzeLoH2gHmFtc9lllxm7qEjQSYTnkeKQS6UFj7pXXnmlSEcU7p3rr7/e5O2i4O+1117G59Gq7E7y4vzezkcyOb/fffeded82bdqYfGzeL1eIdyycA34HeYyVQ83f6OaCswIkkDno+eefL/I8nkM7RXLQeQ2kNMgFIpxXQtbkk9oUIEXxENyVX5EymOwJUdMqi4k+yGAXy64edZAevJyT4oSAWNwJUWPwCiFQBA+Mn0SqED2dMQsmZ2vo0KGGOEASJ06cWCjX+O233zbEBN/PH3/80dX2gangySefNMfbp0+fQmMdBZK2f6iRjPeZM2fKc889ZzwHsb+yHqVPPPFEEUsZ2prSpvDggw9O+PnvvPOOaaeH60Ou84TjHYvNPYTc8ABOux4iG/369TNzDe0DIc2cK84flcNOYk47SQoWaSVIfnRQchrjgXsDAk3ImrzxoJ+PYiPXrWuCCi+2EUrUzonWYI888oj7bd18DFpzffnll2m3cuO80u7L/r/CYy0HPYJYLQevvvpq8/t33nmn4He0uatUqVLoqaeeCnXo0CF09tln5+CIQ6YFXs2aNUO33HJLod8PGzbMHPMzzzxT6Pevvfaa+f3HH38c933vvvtu8zzeJ5lWqLYV3+GHH16ofV9xrkM6SOZY7HywadOmQr//4IMPzOe++uqrRVoGli9f3sxDzlaHtHYsUaJEaPr06aF0wfGdddZZoXwB555r8M8//4S8gg0+bTmooWpFUkAdwEvw8MMP12INB9i9kutZq1atlF+L8jJmzBijHJHbpLvgYINwIuMglbAiipINCVt88sknRl058cQT5ZRTTpGPP/44J1WljGtU9Ei10+aa7b777oV+b3N6E5nso9yhYuJykAgoe15J+UjmWKxdj1UbbX6ibdPI9XSCf3NtP/vss0K/p80g+PLLLxMeF+PtnnvuMSFwPht1eNKkSVGfi2JHKLxevXpGHW/SpIk8+OCDRdIhVq5cKf/5z39MiJh87bPOOsuEz/l+pF3kApx7lGwUbHteFelBQ9WKhGARIhzWqlUrY0KtKAxLpMlR5Fy1bds24WuYaOm4Q4U6pt5BzhdV7AxHptqrGkssUKNGjUJhahZ/QpYQC4olKGiDSCaCM1SaKG+MdI14+O233wxRYHw7QVoH4dNbb73V9BMmPYNQNTmPnTt3jhtWZ6NFKPvmm2+WbIAwsLMAzobNIcROQLjctiWzZt0QNHLzOOeR3WbsZzKXnH/++YYEEvaGBOJ4QXvHq666Ku7n3HbbbYY4HnbYYeZBwwHSACJzLRkXvXr1Mq1PaS9LLjbX+MYbb5TFixebtAI7t5EDP2LECLn44ovNmgGxhTzmGtxbNmRNpzPdrKcHXa0USSV1M3keeuihuT4UzxNIWjAywbdu3TrugkBRDf1UWShRLRWKZPOMIS2oTJACch5R6I444ohCVlm2aILFHdssyGQyxPGhhx6SO++8M+HzyHEmfzIeuBcghqhOTrBgk+t3wQUXFHJmIIdv4MCBcUkz3wOcfvrpkg1AesmpjERkhIE+3HfccYern8154NpCdFBYmYPJqd5///0LnmOVSMic7QgDOYIQNWrUyESK4mH58uXmmhNJYnNhiRTE/L777iv03Mcee8xsVCDvtjAJAomSSj7lNddcY5RIinJolACRvPLKK83zIJBeqKzn+6GAcg9xvjhXitShxFERF7NnzzYTBTtIm7CuiA4mTSb3CRMmGPIYS51l545yQStDp1KkUCRCpBoHgYNM7bHHHubf7733nlGcjj/++ILnnHrqqWZRRz1LpBKeeeaZhYhJLCTTs51wZazPg3hByqgKZ5OFmwAE5pxzzpEPP/ww6mtQsvh+vI6K4myAcwtxc26iIUnff/99oedB0jIB1EbIzrHHHisPPPCAnHvuufLss88a4saxUFAErJWPsxCGc8/cHQ9sMlAWL7/88kLqG+HoSOLIdenRo4d5X6fiypjk2H755RdD6L/99lsTFmZjYMGYpKiHQq1cA9WW80TLXDb7Gu1JHXrGFDFBHgg5MlRn5msvarfBuYI8stNnN0vIyIKJ3VpDoLQEyYhX4Q4gDVQhs9iRI0iY1zmO3nrrLWPlBGnjASBakAMW/gsvvDDu+0OA3CRB0fI12YwSSn/jjTcKCO7RRx9d4Bv4zTffRI1u/Pzzz0ZZSxR6dRMY/juxYMEC8zObVeoQHRRHVFqun60mZx556qmnzDkjZA0ZcuZQcu4ThWKtmhppbQSxjyT9pOKMHz8+Zj43ard9T/JVI0P35EN6BYggqPYo+KjiGrJODUocFTHx008/mUR2dpF6YyUPcotQCpwG3pBGwkxMWO3atVPSqCgCp0dhLEAKyRGMBhZ2UiBANI9D1LNExBHlKtL+JhrYACUqCENNR+WMBMURLNo2vG6BhQwgBB+NOHL83DcoqEED5JFQPqQbdRYVtH379gW+l0Q3IgtvOPekBbgFa6NELmo0+MlGjHFUtWpVky7EuQxC21w3ocRRERVLliwxeSooAxpOTR1WaSQcwuSEUsH/Y/6rUMQiYyxm6QJiBXl48803zXtFVjijTkE0yHuMhUceecS1HEfIDMeEquP8XhiWo4ZFdl2yla7RuqdQHPLRRx+ZauFc+zHmEmwqUO64zqQLsLkHkMpIUGnPJjUerB8vmw6n0kzuYyTpZ0PMpiKR2sp70jKVlBwnIaMAyksgTM05RBzh/3UznzyUOCqKgEmdPBUk/GQsLxSxQZedr776ylS4koBOYrZCkQlA0shBO/nkk4v8jQIZiOO7774rN9xwQ1ZyHPlM5hIqfq1tkFWm+P0HH3xQqKUdxwYiq7ABrg5UwsYriqEYB6ISjxgXFxxvptvwQaApQoFsR7Ydhdxw7jkXixYtMlY4uDhEkjnIOu9BUUo88DpI6NNPP21C4FbtthXSTpx00kmmAAjj8UiiyvFYNwD+9vLLL5uHLY5BrSTNwmsg3E+InU19cTZtQYMSR0URYHeBmnDGGWcUUS4UqYGFzLYT03ZXinhAgaPSk1y1VO87+qaj6FBsEg0Uz5CnDLmMRxzdzHGEgBKtoADDSRwhXiibVORSvEFxDBYwtCbk/ykEiQTHTfqHs+gnEhTMYBdjVThATt7nn39u/p/zA6HCegagxlH0Fw+2bV8iQN4S2XAleyzkcfJdsK9xeh7y3SDjKHooxyjLqHrkoUeqZZxzyDm5o/FAusG1114r999/v0kdwI6Ha0KeaWSY+7rrrjPHz/O4hvvss48ZrxQDUg3PmsFrjjnmGJNSQUEW3xPlmdcReQFeSnviPiN9CNWRudornp+eR64dyIMKL7rBgy1btoQef/zx0FtvvZXrQ8kbrFmzJvTnn3+Gvvjii9CSJUtyfTh5iXzoHMO9t2rVKvMz2c4xFpdffrn5+6xZs2K+/x133GGeM27cuFC2cMUVV4SaNGlS5PcLFiwInXvuuaGGDRuGypYtG6pTp07oggsuCC1fvrzIc+n0QXeU4447Lu5n8d169eoV9bxFeyTTFYXuKbFe73zcfvvtCd8r2WOZM2dO1OO76qqrzPkqV65cqFatWqGTTz45NHbsWNMpJhL8bf/99w8lA15/5513mmtQoUKFUO/evUMTJ06M2jlm7dq1oRtvvNFcU64bnYG6d+9uOorZrjiA63jaaaeFqlSpEqpatarpXmQ7Br333nshL4FuPczLK1asyHr3rg0+7RxTgv/kmrwGEdOmTTN2Bcj5VEZ6BfiCkZ9CD1Q3E6uDBnoHc/4IUdtQDZ0TCKNpzqj7oNiCnC6qT/3a2YjcvlQNwL0OijlQnFCwnJ6NivRC2NYQ3KYKMK9Eqo3kp3MfYF2USHHMJlBvUZPJt42sVs81KJAhp5P0rGzOHxuTmLe8yBXyY3baASwnXn31VeNvRc4Cyby46WOyHA+vvfZa1DZIVLIh+UeC0AA3JTcoUv8JJ5wQN4TiF3DOII6EGZQ0pg9yrZgMnDkzTO42d4u9mprPKoIAwt7nnXee8flT4uiOITjE0TmvMJ8QsibMyppFfuLee++dU9IIEXPmwZKGQR4lOYVetHaDtHHuSB+w3pmKgBBH8jTIb6FDAlWt7HKxDnjyySeTagNHToZzsEersqJ10qOPPmryTUhCJ2+F92fnkK1uBpnC4MGDzeTEd1OkB3KPqFAkRwlD8Ggg74cH+UpaLKPId9guNor0BRFy8Xg4SaOFtXCCPLJmQdJzDQzFIY/MceR20y+d9oSYiidTWJVtcP7Y6FNNrpv6ABFHDJchPlSRWZ8vqrtI4mXiSmbygjDFW8i5AUjg5ma4++67ze9IaCZcgJktPmR+7a5ChR7+YFT+evHG9gOYdNhIkLwez+yWsASVfPg6UrUe2ZJNEUxADNIpjFHkd3gaQogaFs9rkDmbdciSnlyPIYqhEFiIziGqMB+iOMYq3vICUGw5x0TebEGjIjryxriIrgJcaGsiC9idQYQmTZpkvMOSge33GQ1U/iFlUzXmBHkb7K7wPfQjrP0OPZOplFOkBxZ9ul8QJooHVF3SAZikGDPJVG0q8h+oHixeGiZTOHMarWdjPDBmmE/4yWsgkbnEaaedZmyYWC8RXFiDvUwaLazwA3lUBEBxJDxIeJrF2wnb05TQIC264oHQs83NwEqC3pokyzo/A0T2ILZtv6ZPn17QDioS9Pa0LcCcrZ68AG5qQqx4uKkJaupgR82mhYk7WYNvFgN6VRO+wesxW713FbnbnNnFnLHCvwlBOjep/J2Fnw0vhTL2384Nh30tUIKZv+D6W9JoCWEiMHez/kE4dR4vvj1PZAtHRR4SR0hZtGpV+ztnU/ZIMFCOO+444yHGQCHc+Mknnxg/QyqZLBnlMxhYkT08eQ3hRicxjAQ+VtEKcHINJpnvv//ekGE3e9QGaYLHQ4/FHiKYCgg/UV1oK2iT6S2r8Ba4ZpYU8uD/LcGDGLKpsM8B/M3mT/E3JyyxZD5hXNlOKva1Nnxmw5eMFQgCP/m9VaX4u/2bEgj/IhXSaGFzIQFjiP/XOSU1sN5zf6GWwh/0/OUxcUQOj7Y7YHG2f48FimmcoK0VChB5jBBIjLDte8SyyeBz4n0GIXSnBQGKozV/zSVQvAiVxlJKFbFhu2IwyUTrdpEM7JglP5I83a5du/rWTsYLyLS7GNWhPGxIGVUoskWeJXiQNvs8S+IskbPJ+NHseEC0fDYn+eTvlqg6w5K2Yt/CkkqebytwdSH0LhhbXCeucXEsmXgfxpLTukeRHLg/EIIwLGdzl8nzF/KpG2LeEEduELtDd4Jdv/17KqCZOy2SIAaWONoQUjTwOfE+A3sbr1ncsMAMGzbMkBVnSF6RvFcjhI/zV9wCF3a5jCFbMGM3PIrk4CRybk/0LB7c9yzGdqInSgEhg+TzO6v8ORW+4i7+kbCEj8+INT7somcJpSW69rU2/80qUzw4RiWTuYcle1zb4o5hq0CTesV4SXX9Czq4rzln5Dry/5m6P9avX29++i0knjfEEUmZRTwSNnycDmmjWIRcB+dncHNjFOoMV0NYeZ7fjJ0hjSCZ3rSKwuB602KLVmF4eRYXKEJU66MAUzADefTbZJJLsFBaOw2Uf8hTqoSIe9tJEG2KCmTLKnf2wT3v3KjymuKCz7bhbTcJp7PdpSWUHLtVLCEYjDV+Z0PtGuLOLhg/1k6HaxGZxlAcEHJlfskXU/lsgevAvU8fbrc3o6Ed3pu4a+Dk4rcK7rwZSZT702PT9nq1IPxn/57qhcXgu2nTpgW/s/+PwTOLvAX/ZhJ2PtfrYGc7cuRIQ1Di2TwoogNiQkqDm/ZL5L7Zghm6zHTq1Mm19w4C6NLDBM9k7NzwJXOvQ6xsMYoNKWebuPP5kMdsEjf7nXlAHPl8q6BakqwkMvPXwBkZc1PdskVY9r0VqQE+sXjxYjPPZ0J13HXXXQu6i/kJeUMcWcTp5kIRivVx5Ib5+uuvpVWrVgUV1djysJvDa8+CHUWkfyPtkfg9YUgLHO8hDJiAO4kj/0bOdv7O66BDDIuCn47ZC2BMLViwwBQSZcKzk/HFNVG1MXUwsXMfozxa9TDaIs19TbEc15IqeBZXXBeIIpCyEWSiBHkktwvlFgKOYwQLGwso51Q9R90HXaZQBcmTzgS5Y5zbvElFamCegFf06dPHFM+6iTJlyvhOabTIm5EEOeTivvTSS2Zh2GOPPYw3IarhDTfcUPC8e++91xhd//LLL4WKYzAshQyQXzJhwgRjJo6CGOkLSfusxx9/XG677TbjxYcyRItDekn6ZVJlkho1apQxPNdCjNSLYVCzGF+Z2sHbogkWcSygqHgPMplJh0BG5heiKBJ9YOPIeUWZrFOnToHCk8h7MxuA1Fo7sFxdb+YDNkRsrG1upLUao6CPv3PeIJNacVo82EIlCjFpj5upvGY7xxMaZT1U94zkgcUf9wJ8gbQkJd9h5NVZuOmmm4yyOGjQIBOK5QZ58MEHpX379gkLYSh0wESc3RnvgWqJr2EkscLsm8Hz/vvvmxxB8iAxNo2szPa62siC6VRTFYlBSgI5syiC2Qj7kJiNGoHagzG7ksfUFmUUM84haSrs7pkTMGiH+ERWNHsBHCsLVM+ePT1xfE41BGJdt25dQzx4MC5RYJhjIbw6NlMDmxcK4Zo1a2bWm2wUw6Ei49nLZ0GIFMlHM5977jmTCte5c+dcH44nkFfEkcX8kksuMY9YeOqpp4r8jn7WqYA2gzz8CAp76IDTt29fzXlJAeS5EM5kscxWERRhUyYqclGZtEiVUIUnPghPY2ZP4RKEm3MIcYTY9OjRI9eH51sw7qwzBOF9Z8GA3VDRShNyqSQy8RiFNKIAZjO/HOWM+R+fYqJjfomQ5RoUP7JxYlOHCFVG04jyp+WgIjkw+JnwdeeUOnFkUcx2mAdFG8LI55MWoYi/IP/www8mJE2uI24BTu9UhXvg/NqNJwsriymbG84/YW1bkKEoDML/NAxgU0MhXCbypOMBAkQRHpvRaPZ1itiqI9eMVCVFnimOivhAFYB8YPatPoGpgcT1XJm1Elrl83Uxjh5+o2UjSgApJCyMKMKau5s9QBx52NQK296VOQZyogrNTpA/T440pDEX6QikH+DWgHODHy3kcgUiF8wxpHl17Ngx8OunEscAgRxOdptq85I8CMMxubIw5jJMTDGOBVWvQTZsR1mksh2SQt4iITecEgj7Oc+TIrtAPWvbtq0pVLRFBOSBQxwJY1NQE/QwNlXq9evXL9K2NpvgPqEYNOjXIlWQe4zwMmLEiMB7H+vICZAyw26XPC+tDEsOFAFQ1Wzd/b1SEc9iPG3aNAkqmLgpZoOoEIrGHSAfvEhRoMid9kJhTHHg7L2OIwAbLkJ8OFWgRrphlu4ncB7YgBIxIE3IC5s+SCPXgXxHlGJFcukZqI3Dhg2L2144CFDiGBD89NNPZkFi4CsSAwWL3SUqidPzM9fgGmLfQR4Zi3AQwALHd7ULHIoWxV0o515YhBXRAWHk/qHJAOSefF0Kl4JGGrF/Y/yy6fMaiF5QLOnsd66IDYSXLVu2mDzVIEOJYwDA5EDBAPK6Xw1HczHZs/Dh3eU1UCWMjceUKVNMuDafrwMh6SFDhhjFhopQu/N3uwWYF0DYfejQoeZnvoF0Au4ligyYg1Dx+a4YLOczUPQWLlxoNuxutCZ1E1wHjovxxv2lSG4cd+zY0VTFB7m4SIljAEDvY0J5ifwsFWEQhmBhoyDFq0nQ5EphGsyilKuinUwCdZFEdCp1IYqY+5Mblu/KKuQ4n0O5Nq/OfkfmJlIP8pEs45mIwgphxpHBq0SICMasWbNMOpMiMfbdd19j1B9klwsljnkOCBDqGV1uNLcxOVCRizLiNYUgEoRsmcRQRvMl1GQJBQUVjFdyGAlJO/vPK/wP8lOJgGBszyaBVJp8C2NTiEiVf7169cTLoHCJuQ5vTkViVKtWzcy9bHryZd5NFUoc8xz4dQH1bUyOtKBw4dfll4pDwk3kYxLOxevRr6BwgIKXH3/80VRNQ97JjdMcxvwGShxqMguxtYaBSPpZdbUpFeRG06nI62DjSRcxWuwqksO+++5r7O3INQ8i/LE6KtICCzBhIELU+VB1mmmQ57No0SLf7SIxYiacS5I7bfb8BM41hQNU3OLHiPrhF9KucAdcb4z1UZVJu2CzywaC/Fa/Yfbs2SZ3E1LhJ1irMXKm/Xjec9XD+rfffpMgQmfoPAY5GISq2R0pEqsETPrk+2S7m4Mbkz75mFStsuj6qeAAsgthJ5xHpbRtDxhEsLnjOgZ5k2fVL8KBqP8UIaCo+wHz5s0zeY2MYb8aa1P5jfLvl3OeS3Tv3t2kV7DhDRqCOUMHAOzcycHAR03DfYlVL0g2qh2Klx8B2SJfjAULzzzUZi+PTeuDRnU4xrr0P/ZqIVK2QF4nSkbQO62gPJLXSncVwtY23cbLgDxQQc38webTryBlgLkE8qiIj2bNmpn5lnU2aFDimKcg9wLliV2RIj5ovcUOm+rHXHaHKS6Y8Mll9XIhFAo44R1SKGxVJw9FOM9z7ty52lpyByjYwP/RukFwj3rRAoWNEMSRqn82QH4Gmze+A/nSNEBQxEaJEiXM+ootGpZ3QYISxzwFizPhP69X9HkBKI0HHXRQXhAYimUI87GYETaDFHsFLK60vcTKAmVDURicF7o78VOxk8jY1BEUPaqvvZSKQbTChtdpt5gvBUv0GiffWxEfbdu2NaklpFQECUoc8xAkN5Nvg5WJIjYgV/iXoWLkmzE6Vakk6DOhecEjD0soHnXq1DFWR37NAVPkDljbYHFDaJBNUa6L2PA9xM0AFZ35w8/Rikhgcq1dxhKjTJkyJsJDPq6XWtNmGkoc8xBMrCzM5GAoYgNyTUcdL6lyboFQNTliKDaMh1xNatacnMId8tYIO3o1jK7wNugWxJhu3bq1CenTMzhX5vdsysi9hMhiHZVvsPco6q61F1JER+fOnc04HDVqlAQFShzzDNzkkCEqqYNanZoMyJciN4W8pHxVvyCNjAPUEMijLUjJBijOIbRouysQ/kJtVCiKA1Q9rHsoqKJ6mX+jrmeTQDLHkqNLSgiboXyeZ6dNm2YiBblWd/3ghjB8+HBPFyW6ifwd8QEFFbX4+nmxx7KXQC4ZhCrfc+0YC5BHiFu2qpYJjf/yyy8mZYLFVZG8ykNBiCqyiUHeo92IELYmpzsbRUUQKJQl8qFRmvItxSVaDh/RiqAaXSeLrl27msYRiBFBgBLHPOx8AmkMuqVHPBCapmKQ6sEgnCdCfFiEoM5Q/ZfJBZbQFgbIqDBUxGKSq0jehoZQrLZXTA1YGLFo09s80/m8jGtURi87F7hN0FF2yQXnHCuio2bNmqZLEMJNEKDEMc/CCtzc+PkpYgO1AFKDChckoJZYU+VM2ZrQuQaVkT7ESoBSA+FWQl25ytvzK/CpZbyh/rFpyUTVNfMqyibXhvEdhA2nBcSRyAUdnhSxwbpL7q3fugalAyWOeQR2O9jvUIigiA4UCSb/fLDeSdfnkdCTm/k4nM/Vq1eb/0fZDIoakwkl/JtvvsnLYq1s5JnhIoG1ltv+g9gjkSPMpsiLPpKZBoSce5qiJEVsMPcR3QmC6qjEMc9a5qnaGBuEaFEkgrxzhjDbjhwk+JPeUBzweiZKKlwpOCIcnk+2JAr/WaNYgkP7vOKqt4xpSCNjmlzhoHY3Yt5gM8j5UEU8Ojg/uEZQTJTvRTJKHPMEhCAJJ+iuMH4oHwQ97w5VhmRuFoHi9KSlSpuiBJQYNiz5aEui8J+qDsljbLJJZFOT7uYIdRHSyOshjUEf35zTH3/80fRnVkQH3pdEdKZOnSr5DCWOeVQUQwVckHJvUgEKG76NeFsGVTWIzAvr06ePyUNk/KRqt0HIn2IEiCchwtq1a2fsWBWKVMEmms0Mmxo2N+lYUaEgMa5pK0coPOjgnFLJDikKYsg+GdSqVcsIE6NHj5Z8hhLHPMCMGTMMMVKn/9ggsZ3Jn8o3RRg2pEzImvBKKiEoNihVq1aVHj16mJ8KhdcA6WNTw+YmlYprwoy4D3B/kLemRV47wflgo6n2PLHBOkzaWD73r1bimAcgHLPHHnuo6hMDECJ2yrQsy2ez3nQBmaYvLWbdicgj/aZRb1AfKLQJevjObeuTfv36FfRmVhQfdnNjc/QSAVJE4RhejcXN/81HcL83bdpU5syZ44lWpl5Eq1atzHnKZ9VRV1GfgwRwij20KCY2UA4IHxBGUBQFpJqkbkjhxIkTYz4PLzeUyYULF2b1+IICNjWkUejmxl2wiFM0w08K5GLZ9ZCuQRtB5tQgmHunCzr34J2pRXCxozF4KZM+lq+bD52hfA52NSw2mFkrigIylIySFnSwEJAjiw9ZtIWV0AutLFEbWDgUkhGvQNIG1Gg5c2Dzg6K4dOnSqB1h8OCjcEw7HsUGhJqNpobwYwMhh/vYFmTmG5Q45oGhMyFYLfiIfn64cclZ0t1xYqDK0gOYLgiRpJEcUUhjixYtcnZ8+Q7GKYQm3608conmzZsbn1tIIoUzFqRfEHpFmczX3vVuY/ny5aZ1q6IoGGN4Kuerp6MSRx+DPBPMgrUoJjqwjcC8l0pqRXKwhS5UoKPOAPIZlTQq8gGkAaAGsbATloaoE07EuLl3796azpIC2OAQocjnIpDioGPHjmYOzUdDfyWOPgb5aOyOyVFTFAaLAdXmFA1psUHqoBKVsCmbE86hkkZFPpJHcnZpwUkqi+aWpgaKMSk6ynfPwuJUoJcqVcpEa/INeqf4eLc3ZcoUk9uoYdiiYBdMIjyhKUXqIH+Jc4iJshr+KvINkETsuZgj6tevb34qUgPrDhtK8kIz0R88XyrQJ8YpOPQrlDj6FEjgqEJaFBMdhJwOPPBATeBOA4TvUGL2339/Ux1IcZHb/X8V0RcaOj+pxVHmgUpG7i754WDIkCF5GVLMNHbffXfTiYqQtaIoWJ9xoaAlcD5BiaNPwS6Gm1ZzcoqCBYDCGHLzFKkB9YDCAcJQVFmzsKIqaMFA5sF4pWJdx21mwSJOGgt+e3iYMtbJcSRkTbs4RWro1KmT5tnHAPn12PPkm+qoxNGHIKzCjlnVxughfPrLameD9EBOIySRhYBQFA/CLUx+FBppSCpzoI0bRuzazi2zwGoHU/DGjRubfzO2u3XrZgzCmTuK0789iIB0E/pnflAUBm4npEspcVTkHOyWWVwIaymKEh/Io7YWTA8QRhSEaIUCjDs88JQ8ZgaoXdh3qOqVGeAUwPwACK86gcq77777mkiFFnukDjwLBw8eXMQfUyFG4OG8YF+UL1Di6EOwe6HStXr16rk+FE+BSZ+FAf8szRNLHrbNGiE8CGOs1mxMgKiRVFurBYfCT1iwYIGMHz8+rrk6yhl5vaRoKFIDueSQcWvhpdiJJk2amI1JPqmOShx9BsIoKD8api4KkpAx8tXOJqmBBZXcxkQt1iCVtGJjgYBo0ppNofA6CP9T7EX1dKIojQ27kietbgKpgdA/88jq1atzfSieQunSpY01D8QxXzqYKXH0GWwnFA1TFwW5SpDGypUr5/pQfAMUWtQYqqfxZEsEyCXdNTAK11wwhddBWgVtWevWrWuUxGStyyCbbKg0LSN5UGSE8qiqY1Eg9ECq8yWUr8TRZ2DXQmu4ZBb5oIGJSwl18iDcjDktZJvUh1R20N27dzdV/QCVV1F8QMoh5ImUX0Xy4HxS3EVv5VT8bilooPUmOada9JEcOL+ojozffFHW3ELDhg2Nb2i+hKuVOPoIJM2zm9MwdVEQvl+7dm2uD8NXICSHEkMYpTjn/ZdfftGCDheAUk6vcFXM3dkUMSaJQkACU+0KAwmiUAwShD0V+dOKxEDUSJWkBwGlSpUy9k/5Eq5W4ugj0CmGQccAVOwEuXZUQipxTA4sgjzIVWRxLE6rNQqRmBTVxkThFZBjRw5ucaujsVIhp5dxvW7dOteOL9/B3DJ//ny1lYoAgg9jk1x8v0OJo8/yG0nw1m4ohYEKSxhAe3Ynh8mTJ5uF1Y2dL9Xr2JjwXr/99puGrYu5Afrqq6+06KgYoKgFI2/607tRHU2ou2/fvpoalAIgjOSHYn+k2AnWbtYp1nG/Q4mjT0BBDIUMONErdoL8IxLZydPT8EhiUAjDOIJku3W+qESFPGLro4nxxYOGRNMHqiDKN4tz165dY9pKpQoUeeZfQtZaMZwYWM/sueeeZp7R8Vx4HGHNQ3qP36HE0SegFyg7ORK9FTvB5MQCwW5OkViNQQlgUnfbIB0VHA+84uRLKhTF3URCGukCQ26j24s+IWvII527FPFBkQzni029YidYv5csWeL7vuhKHH0CWugRNtHe1IUBAbJJ7IrYQA0cOXKkIXiZMjhGeUTFpDCBUDgqjUKRaUDkSJVgbmTzQm6i24A40lGJ+4hK63wocMgkKPDiemi4ujBQHJkj/a46KnH0AZikGGiEqTUcWxgoDLvttluuD8PzgFiz2yXZP9Mkm0UW8ghRZaFVKDIFVK2hQ4cW5I1lcn4knxfyiLfj7NmzM/Y5+USSqLJWFN5cU1CoxFGRcWAcSjs4DVMXBt0gyNlTxIetbrTJ2ZkG1drkmDFm1cokNZWmd+/easeTgtJIIQybk2ylqtByE0KkSAx8MEmLURQG6zgbDz9HZJQ4+iRMTR4fJqKKMOg5i+WDIj5YVPFZzLZCQh911E3UmQkTJmT1s/0KlGCqgTXtIrnNEIUwkEfM6LOxIbIgj5ccPkVy8/S4ceN08+gAkUPGrZ/D+EocfQBkbUij2wnffgZ9ZDkfasETH4TwCOfZLi/ZBDlOkEfd8CRf3MEiq51KkiuK4zxRzZ8rezJ8IjXikdxcvXjx4lwfhmew2267GXsnP4erlTh6HPjisTPRMPVOsHtlMiIMoupMbGAdgtJI54xcLa52kkT5ZLHXooLYQIVgXGvVbmIwH/bo0cMotLkCnWnoBKLepbHBvEPI2s/qmtsoUaKEUR2VOCoyBnzxIEpKHHdi2bJlZnHVxOvYYMygXrGw4nHphTxdFll6YysU6Y5pcmZJf2DxzXUjBDqBcBw6puOD/FPuf+2+sxOs55wTHn6EEkePg10JIb9q1arl+lA8g9q1a+dcbfA6UPbY6dM3tjgtBd1UHrEBQnWkdaZCkSppxAZn6dKl4hVg+9O6dWvTQo7NrCI6SCfiXKnquBOk71C34FfVMfcriiKhDY+qjdErdxWxQQifRQ3vT68AhZhjmjlzpin4UiiSnQfHjBljyBk5s2yIvALSZdjYL1++PNeH4lmwccVrVwuKdgIijQexX4mjOz2ZPALCl6+++qp89913snbtWjNQzz//fDPZxMPPP/8sP/74o0l2xn8OdYSk67POOquIqnXSSScZ5/dIHHXUUXLttde6+n3YXSPvK3HcCUgHoSq6QyiiY8SIEWaXj1+Y10DYnHxHrbKM3qoNqxd+Kgr3Vqe4Ag9FL3q2ZsMb1e/QxhVFwboOV8EhwG+Fr3lFHO+//3756aef5MQTTzQ7wW+++Uauv/56efLJJ+N2y3jkkUeMP9fBBx9sqk/JK/zkk0+MRxhENHIi54KffPLJhX6XCb8q2gwyIXmRAOQKhIU0RB0bFFew4fByJbNzI4RdR65z1bwCDKa1ZWN0pRp7J1JUvAhLGmmvh8GzphVFB2kqODzoGA8DxZFNNJX5Xp6v85o4sisdPHiwXHzxxXLqqaea3/Xr10/OPvtsef75580jFu666y7p0KFDod9RiXrffffJ999/L0cccUShvxEqgWRmGrZymFwIhRgVmR6fXBtFUVDdyX3ARsMPO3wMwocNGybt2rXTzZGIMQT+559/THqB3vNicuL22GMPY4judVN0wukIDhCBnj17eiKv2GtAWUMMoaJYFVox6jkbDdZ5vxHHvBndhJsZjISMLVAKDz/8cFP1Fi+pOpI0Am5+wECPdRNk0m+NiYiJUyuHd4IdPQuqF8NVXgCpFlR5tmrVSvwAlBkqLqn+RkkOOlBff/vtN/Mz6MB/dPz48b4pOuG+YwNEalGsNSPoYBPA5sgv1zQbY6Z+/fq+LBrKm20tSaaoc5FhLyuLkxuXigmyLZOPVoQxevRooziyuyR8QmicRzyQl+csvU80WHguC0hOiCMt6kj23rgRGYRYjAg5GDVqYMwluQLkn9w93c1H32iwkSEMTOK1X7D33nub+4jiBzZ+Xg1Hun2tUId5sBFizrJ+rYxxFAhUR8a5TYFhwQ2KCmmLp5i769atK34BfqVcL46feVtVtcJgnDOu2SRq44YwGCdDhgwxc6CfxkvezEQQLfIUI2F/B3FLBe+88465kL169SqS3E++JKE1wqbkUT799NPm/QmTx8Lnn38ur7/+etKfzyLCjiRjvT4xYkblGTFCZORIkYkTw//mAWmMZdRMlS6T+R57kKwm0qUL2eEiLVqECWYGsd9++/m6v2cmwVihYMhvBtscN5ZBTJyQBTZ3/C6fQs8QCpLfIRTkeUES7XUizwnyDOnHpgjSSA4vLfTYANj7n7aRPIc8SB78nU2C10O4qcLaNRHO9GNPaI6bnDU/hh+zpToSGQnSRigRcSR6SfGXn/p6582VYzKOVplk1ZdU3P3Ja/zqq69MrmRk7tUDDzxQ6N+HHXaYXHfddfLBBx/I8ccfHzOMSggd4uMkhvfcc0/MY+Dv7MpcrbAkBPbttyKffioyeLCIbQMFEWzfPkwCIYT8G+WnfHkRbm4qYOlmAfmGWC5aFP75008iL7wQJpksYN27ixxzjMjRR4ffw0Ww0ELk/bQryxZQpnkw9vxIujhm7Dogj348ficgDGxi6dpjDY+pukVJhRASmrLkjwc5TjayccghhxhCSJoMyoyz8hwbIzqVMI9BIHlvSz4hWtjB8B6E/yHfflKdnYBQ4Ibh1zxmrh+OHFogEx2QI8QcJY1hMC9Yj0sljjkABAvmHgnbvitZAka+1YMPPihdunSRCy64IOHzWeiw6MECZezYsTGLZiioScV/jIHkSq4aCt1nn4m88YbId9+Fw8977y1y1lkiXbuG1ULIYrpYs0bkzz/DyuX334tcfrnIJZeIYJdD5fnZZ7MqFvtrUC2P2qs5n0XBDp5CkwMOOMC3YXyOmwdVl9xLqHB+WHyJOhBehuxw/Pw/xI57HcUMMmdVQQhdvHQZ5hLIpCXPzmsZ73WcJwglVmI2UsH589O9Aim2KqrfYaNcqqoVBeuw2k3thHVN4b51CkteR96Mam7WaCasNq8wGdJGKOnGG280BIVK62Rveqsysoi4AdQKQlzFmvj//lvklVdEnn0WGSSsJt59d1gRdDMEtMsuIn36hB833BD+3C+/FPn4Y5Hrrxe55ZYweYRQpqkiQIpQWPItLOcGGHMUDZGY71fS6ARRAybT4cOHG+XGSwbmFoxFlEX8XFF6mScgdoSkE3nGxgOvP+igg9JSLWxuKAQS8op9jZ3TGB/W1xNi6jUQpqMrDKkWXjL3Lg7I46PFJps5v3n0ZWPOmjBhghFn9NyIWecpiiPC4Jc53B9HmQTY3ZNbElmRiD2J/XuiGx0Db3bvDz30kNn9JgsmZje7mdjCGcJaKeOff8IEDtn71ltFDjggrAgOHy6CQXmm84ZYsM48MxwO53tcc43Ihx+GcyCPPZZyyZTfkgWaXapdDBWFq08Zq34Kc8QDpLFr164mkR4fVSyYvAZIzvz5881mlWPF9gvS5wVwnzBv2E0WxJtzSfEgdmUU9nnpnFJhyzFRBBMtR92v4LugOM6ePTvXh+I5EJpFHfdS+8hcE8eNGzf6qto8b4hj7969TY4URSjOMPXXX39tQr421MNgjaxoRpW85pprDNvHDDwWAWSnxGc4weTw9ttvm51TNFufdMDxoWKmQl5NJfQzz4jQ1omfELb580UGDBDp2FFyAirn7rwzrHhyHGPGiLRpE1YfU2jRxTXza/5eJoEqDakmH8wvO9VkgIKH+oQ6BnmMvOeyCe5vCjboLMX5BnQwQRlE5WVcunXumV/Ir3YrcgHw89xnn33M8VKljHrPIgX4mcsOPhQUjhw50pxDCqTy6f5m7FIcA3G06VKKneeGDY2fiFKmC4ZKlSrlK1uevAlVQw779OkjL730kgn1cjG+/fZbs7DegAK3A/fee6/JRaRK0YLiFlRDimGQ0HlYoEDa8BNmxW+88YaptCb0w86diZ6F5cILL3Rtx5xyRd7vv4ucc44I/X/PPRdHc9eLU4oFcloIV59yisjTT3MRwjmXDz8sQh5pnAWD0Bvn2a/J8pkEShK5bIz1fAMbMcgjZC0XBVGQVRZ9Qr38P/e7PY5Mdbqh2AUyl4nKeM4nKTjMK5agYYFE2L1FixZGsc42cUMtZ86E2ObTxseCKBeejhiDa7eUwkDIYd1krOfThiHdjTJzOOs+EQw/IG+II7jpppvMgBw0aJCZEJkoKXRhNxsPLA7g3XffLfI3XmuJoy3OgCxCTrngJHPfeeedhrS6AY6bnTgKakKwk4Uk3n9/OIdx7FiROK0Vcw7yq667Lkxyb7xR5KKL8CkK52LG8O8j9EYoUKupi4Lxh51LvoJrb/OHWXyZXLOVo0dol8/k/FL44sXcwHTgXKTbtGljLJDYSEOS2Xxns+MQOW62KCpfQ7KMHVUci4L7mrGHAq4pSGJ4BRs5vxDp0vm20FxyySXmEQtPPfVUkd851cd4QPWKtONxG+ROJZXfSK7gaaeJjB8fJo+oqn6p4CMB/uWXw7Y9550XDl+/+mr431HgV2uRTILKYwoJ2MzkO1h4USfYkXfv3j1jVZls2FC4IaicV4pJ8rmPNvZAqH18V3LByd088MADM1oJTBge5wrC/daKKJ+hkZLoIB0Mdc2LxW+5QP369eXXX3/1DZHOz62ej0GFIYntTOoxgQcjkjaFQH/8IXLzzf4hjU7QAxzj8R49wtXe991XyHicECEJ/ZoLI0Vycsn7DMLCazcOVFhjt0XOYzTbreIAskiu3e+//24K7Oxn5jNpdIJ0HKxAevToYUgjRB0i6XZuKdEUrh+qSpBsasgjZdNjc0sVYeUb1VEjSWHYDkms/36AEkePgZxMrDViytWEdQ85JOyTiHfiPvuIr0FoDOueO+4IE2ByNHeEdiBI1t9NsROEFdlYBKltFyQO8sjiC/lwq4MQ9xseoez0MSHPZY4R3xFFNVeE1X4uqiAKL5EYUnLcAPcxxBxCTu5qkGxYIOCTJk3yVfFDNsCYYMOG72nQUalSJePMwHzkByhx9BjYcUQlBChxN90ULibhgVeiRyxAig1I8u23i7z1Fr0eRfr1M8biqGqQRvVv3AmIE+cln3MbYwGyDOlgPLiVF0ceI6EhCt5yXWSECueFrhqkQHA+OI6hQ4eaXLTiFOyguEH2UZe4fkFLPYEk2+IHv7UEzfR5YS7TiFIYCEaqOCpSBh6UVBBbM98CMNngwUgRzCOPhE298zHUc/rpIj/8ELbtOeQQWTF7dswWjkEFeXiQplyTnFyBnChsrzgH3Cvp2MngIYfCCFAYKX7zQjcLNgW0D/RCSBNyTvia4j8KhYpjEcS1ohAHxThfioyC4NWXDeJImoT6OYaBYKSKoyJl2N1GEcWR7iuPPbbTn9EHVVdpg3zH77+X0OTJ0pYq+Xi5ngEEtikUMAQp1BdPxRo1alRK5JEwP10aCMWCXKt7kbmWODzw0wuA8FHc0bdvX0PYUcss4U4G5Eqi6AI2gEHJyY0Gzh8PDVcXBi4obIZz6SfqFdSuXdvkAXvJoD8WlDh6CLZDSqEevRBGikZQGi+9NFsHIoKXJTmUv/4aLsAZN45VlxU785/fubOU+PZbqT53rtSiQt7lYgi/gqIQFu+ghfpikRqssmgzSueRRCFA/o4/K7lmVBG7ZdYfBFiVkMIhvGwt6Y4HW8gEEfaCguoFQMKDGimIBeyfyAF1K5fWz6izQzDyg+rone22wiiOhQpjvvkmHKLGagelMRNAQRg1SmTkyDBR5OeOFopRgQLYqZMhd+aBf2S9eu6roN26SYlPPhE57DCR//1P5NFHJejAxoSdOf53ivCig60LCfZ4EcbrPsLfaStKt5e0WnkqjNqNGkIPZtJqWrduHfV8U7hEr3GKHyj2CWp4OhK2e5liJygIYROneexiFGlUeXgAKSJehhJHD4GdRkFPbdQ9fBoPPzysOLoJVMNvv8XUUmTQoPDvKLSBCNJnmp/YAxBaIveLClYq3yCZo0eHCSZFLA89FH4tXRGuuELkP/+hPMyVQ0StaNC2rdSGMP73v2GCevLJElQQvmR8sFgrCi/GVEOjJkJUYlUkU0wE8cmmwXW+AZKISTjnmPMNeYS4Oy1VUI/wGIVgktPolR7eXgHnhW4y5Hz6weg50+AccF8qxJwLhCNVHBUpEQPsZ/BSk/XrRY47ToQWhm++SVzOnQ8hd+L118Nt/2bMCFv5vPSSSM+eIuxwkvmcgw/e+f/kZA4fHj5Gwuh0gzn//PD/F6PqFwJACNK0XYSQQlQxCoc0YRYeQGAMr5NsbA80cujIV3R2XmCRprADJbJQ+odHQQoCaqjXUxEo9MDtgAUu0oePc49qQhtDTJ4VhQGxhjiy4dHCvzCUTO8ExHHq1KnidWiOo0dgdxmmovrqq8N9p/E3dGPyRTFEtSS/5qqrRMjvGjYsHJbG2ofuBumQU3IyMO7+6CN8TcLvhc9k48bhCukVK9I6XAg0MA76TCSQWzqknHgipacSNECGsPKAIAW9KCYWLGkkbM3Ey2KEbyA/3TayzhQgXITS/VBEgnJLn3R7v5LHSGI/uaeEHv3Q/SIXgEyjwmqRTOF8WIhjcSr38ynPcdWqVZ7PC1bi6BHY3XutyZNFXnxR5OGH3ek7TR9uFMVbbw2rgXPnirz/vkj37u7mJaIwErqm8wbV34TCWVjI00zDLoXJtYAkEX6kjzjk9N57JWhgEoEUofQoYgO1Ag/C8ePHy8CBA02hGeFSv5BtCK6fiC4g55bipDfffNMYqbtlzJ7P4D7Ggsbr5CCbZJoNhxUMgozaO6z4vB6uVuLoJePvatWk1MUXh0kdP4sDqkxR6tq3F8Eni37cVGhnOtQJyePYaSXIZ1Pcwr9pj5gkmEAwQi4EwtQYoNMrnIrvAAEF6oADDlAVJwkQyifVgfuJcKDXw75OoNhBvvjpJ7JO2Jrz7XYryHwFldUQJdJPFGGHBFJJEAyCjpo1a5roideNwJU4egTsQHtA7lAEX365eHmNWBscdZTIRReJnHoqJaUi++0nWQVh7K+/FnnuOZH/+79weBxLnyRAuC6qukYOJbmYhMR9pMoUByzGFCEEPfcnWUAUe/bsKYcffrjJb9TFKLOgwppzfOKJJ5rqaVIF1JMvPlDA99lnH6mHG4XCgE2xKo5iSDQbXq+bomtxjAdAGHLLrFnS9NNPw+SoVav034yFkgIWwrqffRYmkLkCZAe18YADRE45RaR3b5HvvgtXbcdBEbXRggpvSPX++4dD12ecIfkOvPMmT54s/fr185RZtdcAWSE3iLGDT6MN+3hVpQ1t3izbN2+W0KZN4cfWrbJ59WrZsnSpbJ43TzbvuquUKFtWSpQrJyV3/CzhsetPqHXRokUFFkcUe5AmQO/hXPXb9gvUmqdobh+EmvvYrXaiflYdV3qcRHtrJgooUJS6DR4s2+nBe9116b8Rg61vX5GFC0WGDAmHir0Aim9++knk0ENFDjwwbAHUrVvUp9p+rjHz+VBOIcN33hkmox5bTN0GLcogP0oa4wN7GHwa6XJi2wfaxRlyAyguyhVJ3LZmjXls5+fadRKKEtbdtG6dbF2yVDbNnSebKhddOEqUKyuldtlFSlWpIiX5ucsuOSOT3KMojKRQ2BxSSHvv3r1VHU8SKOLktduNTpBhO+soxMz3GOd7GcGm9h7BP2PGSIexY2UD1jPpGqFi4XPEEd4jjRZMChBGCn7Ie5wyJerTyPuhBVVc3HVXuOjnjTckn0GRBOdC1Yn4YLPBgyrfaD2nId8UcGQz4Xz7xo2yef58WT96tKwbNkw2jJ8gm+fOk61/r4pKGi1KxFFbQps2y9blK2TT7DmyYew4WTd0qGwYP162LFpkyGm2wKKGwTfqUGThEaSRVoN0mNE0gcSCAeNWEQbjBRu2oKNGjRpmbHi5eEqJowdQ/uGHZX3FilIeq5x0QCUj6tv48eG8Qq96HdJ15osvwrZAhxwSJrkRKgaWDAl3nu3aiZxwQphAZnHBzDZsD1f1e4sNWpWhNmLwHStnjFAqYes///wzowtTaPt22bJkiawfNUr+/e132TRjpmxb/Y9I/G6IBahaubIc0q2b+ZkUtodk64qVsnHqtDA5HTtWtqZpgZUsaDc4ZcoUU8wQK6QImYRA0kfcy4tfrsGGkCp6QvsK0vvnyrRp0yToqL4jvcbLGy8ljrnGqlVS7ZtvZDQhn3Sl+scfF/nqK5GBAxPmD+Yc+FJi1UMC/dlnh6u/d4BqWOw8kgpZ3HabCF5o5HHmKVBuWKC1HVds4NnIeInXUQcSQ3cZcoco3nB7QiZXERUQsrhx8hTZtmatZB0hMWomyua/f/whmxcsMHmTbgJ1jGKYxo0bm77L8c43xR+WPGqxTHQwHjlHXi+EyBa4jxEOEvWdz3dUV+KoSIgvvpBQiRKy2NmRJRVQBAOJuvLKcA6hH4DiSJHLDz8UCjf/888/5mdSxBGPSPIdsRzKU6Cg7U8hkCImaHnXuXPnhAn1/J3nYteDfYwbgJhBGNf//rtsnju32OHidRs2yLDx48zP4mD7+g2yafoM+feP4bJl4UJXFmIWdHqlo+zSdjARSBngfHNPo1AqoiuzkARSKRTheZ/0HMK0QUb58uVNcZmXC2SUOOYan3wiszp0kEr166f+WhYELHcwDb37bvEVCFVTFU2XnB0TJzdLs2bNkvfeu/DCMPmEPOehDY/64sUGiy0LDEVD0fIao4FChLZt25qJGTU33U4VxgVh0SJDzAxh3OaOosaiuWbdv64ZgENkN06bLuuHjyh2CBtDfgg6beGSBWo5SnAVUlQUUUFrRuY8xU7BwAoIQUb16tVVcVTEwV9/yfC2bWNb0MQD/oiDB4u88ELYeNstEFpCJfj8c5EPPjDk1vSkdjtfCUNyKjD/+9+CiSNeCKwIaEFI6Bv1Ms9AS7IffvhBw3wx+rpT7FKcykNCrrYlYSrYvn69bBg92uQVZrMgpTgwxzx+gmyYMDHlY4agU60OyBNNtWIahRKrnmyBsO8nn3wir7zyivnp9TAwBEF7eu9UYLHliex/HkRU9zhxVI+PHCNUt67MqltXOqfqN8eEiFr3n/+I9OtX/APZtCncihAySg/raAsq1h9URR97bFjtK27RRq1aIk88Ef4Op58uC9q1M3k/KEJJgZ6+J58cJrf33+9uC8UcgwWPcxF0T7NYpA8C07Jly7Tfgwrs3377zZDH/fbbLynfQcK+m2bOdE1hzDa2Ll8u/675R8q3aCGlk9ioUpxFTijFWXQ7KQ7wd6QDUlMM/DMEKrlpfcjYQBXm56BBg+TMM8+U7nTj8ijIHSW3W215wqknCjFCEnZNXoWuSjnGem6UEiVSNyp+9tlwNTWqXXHAe9BjGlXgrLPCHWto7UcIGP87utBQiQqZfOopERbr++4LP/+888J/Kw5OP90Yg2+/804ZM2aMqZJNCUceSamnSB5V4xGixsxaq6mLAksdfBkJmRannSDqRrdu3cxPyGO8ylbsc7C9IezrV9LotPTZMG68bJw+PW7uI2rHiBEjzAJGoUtxwbWaPn16xtopstGCNPKdUOmdP9944w1P5xESmqVaXRFOA0k1CpCPqF69uikW9aorgRLHHGNVq1ZmZ5wScYTsvfqqyGmnUZqX/odPnx7uwkK3muOOC4env/9e5H//CxuJ0zaQvBM+A4JLF5i33sJsMWyFQ0UzRSpffpn+MaASXn65lBw5UqrMmZO6CWyfPmQTh6vK8wRYxjCBKnEsDM4JhRbYmBRXAQPkRu67775G1YWoR8P2DRtk/Z+jje1NplGxfHlp36yZ+ZlpbFmwUDaOGxfVUxIig08jIdRkCo+SAUojiiMFNpmomkU9jhVG5/eokV4F4xmSoIQpnBpBv/agWxRV93hltRLHHGNx3bom8TylziDffBNWAwkXpwsURfpHU7nFpPr882RqJ/dawlzXX0/MUAQ1AtXvjjsKWeukhCOPlK01a0rDH34wi0tKoEIW8phHxJFJk0U75XOR54AAdO3a1RS4uAXSIuh2YrvKOAtTtv3zj6wf9afJEcwGypQuLXVq1jQ/swHse9aPHmPIceQ5IdesS5curuWb8T74abIQ2k4+boIK1FiElN97uUIVVZfz42VVNFtgLQTpFq7lG3Fc6dFxq8Qxx1i9fn3qYWosaCBsHTum96G0/6PLTK9eImPGxGz/lxBUc6M23nNPuAUgP9NBmTKy8qijZA863qSzSFOhPXRoOE8zD4BPntrwFA3fQ+qw0kk6BzZJWEWNYpuhQ4eazyIfcP2YMXG7vLiNTZs3y5xFi8zPbGH7v/8aRXXbunWmSp3CI5TY9u3bu97mEoJEgU0m7FZ473iKY1rFh1kCpJF8Zq8X8mQD3Nvcj2rJU97kXaviqIgKQhQphWcXLAh3h0lXbZw7V+SYY8Ihaqqli2suzWR9881hOyD8JCmwSQPrTjlFSpP/9OGHqb+YMDoL/KRJ4nfYvCzt91sY5Mf9/PPPGTUHJmRITtGwb7+VtXRh2p5dI+KNmzfL1Llzzc9sgkrrlb//Ib8OHmyKWDJd/JAJ+xmKX+IpjhRAeRlNmjTR4pgdJB/CFHTiaNVXr6YvKHHMMbhBUuoM8t57JGeJnHpq6h/GxNq/PyNS5KOPwu/jFiCPJ50kctlllGOm/PLGBx0UzqskhzJV0IIQooV66nMsXrxYvvnmG1NlqQgDMkc7MvIaM0mo8Rvs1KKF/D1lioyaNNk1P0WvA6I6fNw42TZnrrRu3Dijn8X1Y3NEJbGbVlOQfqqneX8UK+dPfu/1fGGiTqixCrSMyuphK+Hz4FXiqHY8HshnS4k4Ut2MwpaOqe7bb4sMGhQOL6fb3jAWWNBt1TU9t998MzVD5S1bpGzv3iKPPhomuKkQBKxU8H/MA+JIYQKhQrfDhH4GIWTCeZlWZLatXSvl5s2TTs1byIjJk2TWwoXSLIsehLkAYfHhkyaae7Bzs2YSmjpVtnfqJCWLUbGezGbZFsnstdderqqOKHcUwpAbRngapdHrpNGCzREqU8qpS3kG264y6KhSpYpn0xdUccwxUDVSIo6QI4paUgVkjDxEqqcPP1wygt13F3nggbBqmII5M7sq/NbW4vGGHQ89qFNF+/Yi48ZJPhDHlCvL83xjhRk6eZ9Y52QKpsvKhAkS2rpNqlWpIt1at5HGLlRuex2r162T7dtD0qVVK6lQrpxs37hJNk4ME8lMLogUI5F+4LbBPSTx2GOPlfPPP9/89AtpBLNnzzYRh6BDSWMY8IJM2VcVF0ocPYCkW3IhW2MKmk5RDAUxkLkdXVoyBsy86YTwyitJv8Tms5SzRTrpKIcNGoTzP30OJY6FQbEGhQMNGzbM2GdAkjZOnmxIk0XVypWNyrnm339l4qxZGSVSFqVLlZJa1auZn5mGJWy7V68uPdu3l0qOCv5tq/+RzcXoypMM6BBFCkImKqz9Cu57bbcXrqgePHhw4PMcKytxVMRD0oqjVdTSURzxfcRuJ9PVuixAkMcBA8J+k0mAmwM1qSxhK1TLdIgj+UFLlqRvCeQRdY2QvbWkULAH2dVY8GQydL959mxjTRMNGzdtkvnLlsl4OsZkeGxB3jq1aFmIxGUCW7dtk+GTJskM/Fh3VPVGYvP8BbIlg2Ey5jw2BKjJisLEMRubFC+DtYCiUa+SpmyBe4SIpBdNwJU4+ok4QqgoaInTaq3fwH5y89Cbi/7h559Fjj46tdxB1E3MwSnE4WeCFkjPjX1O9v6/vcMtCfEkw2A8CTBJFLR8gxSnQxwxK+cGi/D/WrhuoTmmT2d+Kl4Hvo2HHHKIWVAVYky5M21HsXXVKtk876+Yf9+tenVp37SpLFqxQibNnp1xFXDzli0Z7U/OQvTn1Kmydv16qVWtWtznbiLfMYOLFqbgmVSS/UgcKYpjPgwy1JKnMC/wohm6ZuDnGCgpybZOmz5/jLxwdROZ+NnhsnLDStm13K7SaNdG0rtebzm95emxX0hbQMK4qYS4UQzPPz9MNG2xCq0JUS7PPjtxviGAALZqlfCjmCj/2PiHrJy5Uo6BFKdj5m0rEskR8nGoN5N5fH7DtGnTDNHJlJVKaPt22ZREq0pMubdt3y4TZs405tzNXSzocAIy99v48dK9bVsTKncbENLR06fL6nVrpXPLVrJrgs+gvSLnpwKuBRmAbpCKEsd69epJ0KGWPIVT2Ly4kVDFMcfA0DiZZOCxy8bKKS1HybTdS8rxTY+Xm7reJMc1O05Kligpb095u+B5Xxz7hdzR/Y7oIW5L6BIBZRHSiPKBJYnzJ/2pE+U/oWSQczh2bFIfR8/gYf8Ok89mfhaukE5H5SCvEvi44wAeel5ubJ9NsGjQerF+BquaN8+ZI9vXJ7eb33O33aRN48YJVTovY/aiRbLyn39kn+YtpHqS6RBbV/6d0ZA14cixY8dmVGX1CxAQMF4viL4EfF30otKWTVTaMQ68eB5UcfTADZIMXhr/klTZWkre/bKy7HLlRYX+hvpoUbZUFPXShvuS9Ql77bXYIW1+j+p4//3x34PPitH/t+hblthJnukKkg5xtDlwPvY/xHphzz33zPVheAL4/KG+2laAboNOKZv/ih2ijoZ65N/uUO6Wr15tCkv8hEZ160qNqlVN1Xgq2DR9hpSuVk1KZMiiZ/78+VKrVi1X+o/nQzEYClM1H29Q3ECLFi1c6ZHu941EuXLlVHFUFEWy/Yjnr50vjdeWk122FQ1l1qhQI2aOI7l9e2+4W0Y3rSj3T3hCer7XU7q/013u/P1O2bJti6zZvEZu+vUm6f5ud/N4bNRjEpo7p6DIZGSLSrL3623MTwN+P3du4txBEu63bJFPZnwi5w06T3q930s6vtlRjv70aHl/6s7uMhSD9Hq7l8xcPVNGLR0le+/5nuz90G5yzrfnFDyHY3xwxINy4IcHmvc47OPD5NUJr8r2kEOlKFlS1lQsKTcvGSD7vrOv+Y6ch7WbvWmgGonN2MFs3KgV1TuwYMECQyTc6pUcCVM1nGYNwtK//5bRU6ea9oBeB4UWU+bOkX/WrTMLcaqk0bzHli0pk+xU8rjwLeR6K0TmzJkjI/HqDTgoEEzJpi5PUblyZU+G7FVx9IniWLdyXRlX9S+ZUamENE3jc+4/o47U+GeeXNL+Ehm/fLwMnD5QqpStIuOWjZPalWrLlR2ulF8X/ioDJg2QJm3by1EfxlEcCUMnArukChXkg2kfSONdG5s8zFIlSsnPC36We4bfI9tlu5za4lRDlg4rf5gM2jpIKperLBfMqiXy449S4+ULzNts2LrBkMhl65fJic1ONMc6bvk4eXL0k7Jiwwq5ocsNBYvbFVfsJWPWDpcTm58kjao2kh//+jF6oZAHYW04lDiGFT1C1Jny4Nu2enXMKupkQM4jNj20ByxVqqTU3927HT+mzJ0r8xYvlqqVKhcrb3LLwoVSpl49Kelmt6kdqFOnjkyZMsXks2Zqo+AXcP+jOjIvut2T3U9gPkSJbt26daB9HStXrqyhakX6xPGs1mfJJQt/kxOPWydtvj5DOu7eUbrV7iad63SWMiUTF1TUWLNVnq98lpRo0VNOaXGK/LX2L3l94uuGjN26763mOSc0O0H6fdRPPmmxRY6KZQnB78lzjAfyIamoPu00GXDIZVK+9M4J8LSWp0n/7/vLG5PeKCCOrcq2kt9K/ibVy1eXI1fuLjK1pEjd7ub5PA+19cMjP5S9dgkXJZzU/CSpVaGWvD7pdXNeIJNDVvwhf7aoJFfXPknO6XaLed7JzU+WcwedK36ZKCmUSnY85DNQxvD5yxQ2zZ5T7PegQIaCmUmzZkupkqVkj1q1iv2eu1SqJAd17SqlXArRTZs3z5DG1o0bSd1iHh+FMpvnzZPyGegzzQZh0qRJsmLFCtM6MMiwG0e8DINMHCFLqK9U3hOuDXKBzN8ZdpZIBxqqzjGSnRy61+0ub83vKb2nbJbpq6bLgIkD5KIfLjLh2yF/DUn4+mN/WyclHMUqe9fcW0ISkuOaHlfwOxbA1jVay4JtK8N5jCxgdhGz/8/vmzSJ/2EUeCCvd+hQiDQSNl61cZV0qt1JFqxbYP7N7hoU7CrxYnTkjn037ztDkncpu4t5rX10q9tNtoW2mfA2+HXZH1J6a8iQRef3gaj6AagunTt3DvTu2gKlIVPhGex3UBzdQMsGDWTP3Xc3YWA3wLXH/NuNMUC7xNkLF0qLBg1cU0S3LFok23fcr26rKu3atVO1fYeQgOrq1R7F2YIli3Z9CPJ42OhBH0dVHH1kv9KmRW954qTnZMuShTKt1N8y+K/B8ubkN+Xqn6+WgUcONCHhWKhTo4HIb7+JXHGF+TdharB7pcI7/MplK8uaTWvCljuYhb/7oIj8IXLKySKn3pCYNAI+B7RvL2OWjZFnxz5rwuOEnZ1Yt3mdmRhQ2kpsL7HTwode3Dvw15q/DFHu+X7PqB/194bwbmzxhqVS858tUnGPwmH0BrskEVb3SAWdVlOGc17pY9y2bduMnI8tLubSQfDaNGpUQPS2bN1q7HrSxb8bNsikOXOkdcOGxTYBpwgG0tjQzeKi7SETsi6XgZ7hmaye96PpfdA3kFZQCTpxLFu2rJkTvQYljn7y7dvRMabMuInS5uCDpU3NNiZ8e+uwW+W7ud/Jxe0vjvnSUgf0FbnxyXCFtUPRI+8wEiiRBpDECy4UGfRH+GftnaQxrn0GHpB9+8r8Muvl/K/Pl4ZVG8q1na41IWXC6uRSQnjJcyRMZQqEyAfnPSdNErnggp2fE9ou+9bZV85ps7NYJioxZIIpWYoTKn4EfWpJCA+6t92yZctMQUcm8htRy7auWOHqe9oF/u81a2TUlCnSsXlzqWmtodLo6LKS/EtSPdLE8lWrDGnEozGRT2M62LJ4sZRt2NB1YkNxGFZUe+21V+CLIrp3D6fpBBlWcfSi2pZNKHFUFJ84stOnKnL0aJGDDza/IrQMlm9YHv+1RxwhcsPjIm+8kVK/akLEtrLZiUX/xqkoHTpU5P335acFP8nm7Zvl6QOeljqV6xT8eeSSkYVyOAp6dVNQw03iaKlYr0o9Wb91vexbd9+4x1lnTQkZXqOUrN+yXiqW2ZknOHfNXPEDZs6cKQ0aNFDiuGyZIdCZyO/aijl8hrq5QdKq7bKL/DltqjHXTtYn0U0sWLbMmJTjN2mtg9xGaNNm2bZihZR2IafTCaIOtB/kugedOCrCec6NGjUKfBSmbNmyppuQ16A5jj4hjiMWj5AQu3xMvB0t+VDvkgrJVqsuctJJIg8+KJJCjhfV3KiSfy79s9Dv35+201KnALaghvZ/Rx9tzMnNrx2rNXmNTgufhQsXmqT4iqUrytp1K8JV223bFvy9X4N+pop62MJhRT4OMrt1e/im6jHxX9laqvBxbdu+Td6Z8o54HShshGSCnAxvsXr1aqlRY6e9lNtqWSYXuo7NmsmulasY5XF1lvvsLlq+XCbMmmUIY6ZIYybPI+ePEC3XP+iYOnWq/PLLLxJ0UFGNVVOQUdajxFEVR58Qx/tH3G9yBPseUVkajhwrW6a+a7rJDJo7SPaovIcc0/SYxG8CaaQF4PXXi1ySXBcZciEP3utgeXfKu1JCShgFEEudvzdGqfSaMiX885lnTE9tCnoITV/242Wmehs18KMZH5nqaauQorQxObSs0VI+WD5eXjynhdRf9ot5Ttc6XeXsNmfLkPlD5LLBl8nRTY6WVjVamfNA3uP3876XQccPkmrldpXeX0yWDvu1lydGP2E8Jsn3HDxvsKzbkt0FPB3YPJ4gVw9aoLhiBu02tq1ZI9s3ZDbsRVHDPi1aGOI4afYs2a9tZlr1RfOVHDdzptStWVNaZyD/MBJb//5bQlu3Soli5HNGA8UxmOAHHYwjL1qwZBt0FQJBVqDLZsh0v7hQxTHHIESTDK7pdI10qd1Ffq27UR7uW0oeHvGQTFwx0VQRv33Y2wUh5bigMwPk8eWXd5K8KNiyfYu8MO6Fgn/f2PVG6VO/j3w4/UN5eszTUqdSHbl3v3sLv2juXJGvvw7//3HhSm1yGx/r/ZghnI+OetS8HssfZ1/tr/7+Sj5e8rH0b3W+9Ji6SQbsV1au/+X6gs+vULqCvH7I64ZAEuJ+YMQDxvyboplL219qinn47JKrVsvTdS6RwxseLl/N/kqeHv207FZxN7l3/4jj9CCUOO7E3nvvnRFLlq0rdnZXyiRK7yCPHZu3SPm1FcqVk1aNGpmfqWD12rVSu0YNadukSXaKKraHDHl0G6QoUE3vRYUlmyDyQM5n0NswTp482fh7BhnlPLomlAgRJ1NkHdOmTZMLLrhAnnnmGVNBmjSYVDHgJmfxhZ3kLmkwGZ1yisgXX4h8+aUpYokEpI1KaIhZ/3b9E7/nwoUiBxwQ9m+kojrJwgb7OafUO0VuXt1S5PjjadgMe0jtO338cfi1dPIgTO7DnTXKa8uWLT07UWQD1oInE3lN60eOlG1rs6s+b96yRcbPmikt92pQ7CrpaHBWcTONZ7MSt0yd2lK+ZUtX35PWaqSukOubUu53Hub5Dh8+XA488MCkO4vlI/78809DoPfdN35+ez5j3rx58tRTT5luQi+//HJG/W1TgSqOOUbKEyQLBQbcb78N40j9A/FipECmd+8w+UR9jNg7QBYhjZA6p/IYFX/8IdKjB46tIoMGpUwaD6p4kJza4FSRl14S6dYtddIIyAeix7MPSaMNxbRv3z7QpBFAnkeNCvtyuontmzdnnTRaMofFzojJk2VDErYiEMGFy5ebn4mwau1a+Wn0aFm5o+NQtu1btq78OyOedRg+B5k0ArWi2RmNo5tQkFFWQ9WKaCiJ4XWqgDiizrz3XnofysT06aciZ5whcuGFIkcdFVYNUyGPEMXbbhPZbz8RctIgb41j+0jGUjQhjbusXCny3XfhY0kHhMgPO0z8CiwnvNjIPhfdczJhAr1tVfrtBYuDcmXLStfWbQypGzF5kmzcvDnu89dv3CjjZ8wwP+MBw3HyKKtUrJgRy51kEIKMr3PfpJ3iGBS3IIONZK9evXa6TQSYOAY9baGsEkdFTOuaVIFZ7qGHhlW6dIG6hdr42WciI0aEw9+nny7y++/hkHM08ogyOXu2yE03idSrJ3LffSJ33CEybFhy/aujhMHpllKTY2CSpOo7VdClhsfhh4tfgX8doYigg5A9eW5uY3sOu3CUL1tWurRqJdu2bZeRkycXO29t7fr1MnLKFKlUvrx0atkyp72dt69z/7zOnTvXpPEEGVSYcx8EvW83pEnPQVnxIrSqOteAdKWDSy4Jh5pRDo9JoqI6FlAbe/UKm3Y//bTIO++QZCbSsSN+CNKf3sk1Gsiz8qzIQw9J/3fmkMUucu65IpddlrTKGI00EsrbPHeulH3mGSlx1lnhz01HbeTmIsfSpyAkFfQwNSa3hKUyYUm0PcvWOJGoWL68dG3d2oSXIQXFwaTZsw0Z7dyqlSnEySUMIa/tTjtDC64/9lxBB5Y8kMe6bnb+8RlIW+ARZJRV4qiIiuHDRQjVpupdR2gWle3SS0X69MHLIv1j4LWYgl9+eZjIckyokKiPGzdKfwbvQVXkWTzHj7pS+h92d1ghTAHRCm4Iz645/XTZvWxZKYFymQ4++CBMGn1s2QBxJL8ryCAkRSFAJohjLvIbI0FxjC2QIY9x9+rV0yJ+7Zs1k5IlShSrtaGXzysbqKDn9gHC9RSGBJk4KsSz+b4pzz7XXXddyh9Cjs9DDz2U8usCAcK/b76ZUjcXA5Lhn3vOqILyv/+JPP988Y+Fhaxnz/AjAobq7SB/MrtFctXWiaq0P/lE6vz+u6wfMEAqpmP0SntCqrghjz4GC2W1atUkyIA0UkWaiTaDIQ+17Nq0ebNRDRcsWyqdWhQONfP/u1apUiQ8t3HHa+iLjdroFWz/133iyMaBcD4KtF00qbYfM2aMIVL8jkKyyPw/VEqsW9iAsN7QshKXAv6fDeqPP/5Y6DWdOnXydFeSSAKdzDlYuXKl/PHHH4V8D/fff/+C8fTXX3+ZAjQiPfilYn1VXAU8k1iyZIlMnDhRDjjggILjTOY8zJ8/37RwdeaQ4xVMWpTfxkLJkiWLWPZxTjg3eH2SCxsrvSfe9S7uWEiZOI5AiUoRQW/YHheoZeQqXnllmAymmut4//1hpfC008LVzRmEJX2GPDr+nRZpXL1aKlx7rSzp0kWqnHBCegdEjiaFOUcfLX4G90eyfp6K1BDyWK9bCmbITRw5ZbL8OW2adGrRomDCrlyhguwb4SoA0RwxaZJs275dtnvMOS20ZauEtm2TEi6GzFHeWeRJW7DEcfz48aaHdb169WTx4sUyduxY6REx1/HcffbZx7we4vn777/LggULzGsA9xeLrF/AmHA65SVzDpyFNZGAMJE72rNnT0NKWcchD1gfeRV8f8gRY8HeI8mcB/5mrzv46aefZE9cN3bAb2OhRAQvqFOnjjRp0kSGxqmPiHe93RgLKa9W778fpdWcR8Au5NVXX5XvvvtO1q5dK40bN5bzzz/f7DQSYfny5cZTkSIFJp4OHTrI5ZdfHjVU8OWXX8p7771nWD9dLk444QQ5Hh/BdIBZ9n/+Ew4R779/6q+/+OJwXuIFF4R7WGc45JkKeYzrB0n3mn//lQn9+0uPdEgTVd3YCvG9PaTCpIM+pBoEHBRFoBKgLrhd/es10McatZEilzHTp0sHws9RdvvY8vCcrdu2mRzJVI3Bs4HQpk1SwsU5h6r6/XBq2AFUNyqtu2HVtWPRnDBhglGenCqRsxrfFpf42akAsmCtaJI9B/EAycJY3+ZSQxIoyvMycbRKqd1EpHMeVq1aZV6XiaYCuSKOybRkjXe93RgLKa/YtV1OhnYT999/v9ldnHjiiWaH8c0338j1118vTz75ZFyTbSaYK6+80gzAM844w+xIPvjgA0McX3vttUKT0meffSaPPvqo2bGcfPLJZgfE+yOHn05Vcqro1IksYJHHHkuPOHJzvfKKCOT41FNFPvoo7PWYY/IYlzQ+9ZRRC9c98ohsrFkzvYP4v/8L99w+//z0Xq/wFFAWMtGLYPsm7xFHUKNqVdmneXOZs3ixURJL7rDZ+W38eOnetq3sUqmSqcImTA1pzISBuGvE3OXNKuOABwSQeZUFzrl4ktbAeIlFFiAKLI5dunQp+B0h7F9//dW8L2sYRRdejoRBimwFfirngLWMPtc8F9XNkgGe6zQTt6/3Muz3tfNCOmMBJQ0u4NyY+W0slEjj2OJdbzfGQsoM48ILLzQSJ7vChg0bipfaEw0ePFguvvhiORUCJSL9+vWTs88+W55//nnziIVPP/3UhDVefPFFkxcDunbtal6Lwsp3thPSK6+8Ypzs7777bvO7I4880tzgb7zxhhx11FGpe28xKG6+WeTss8OKIdXMqYL+0wMHcjDhausXX0w97O0ieYxLGslHJJ/z2mulytVXy6HbtqVuuUD48Z57wkQ5D6ruCDnY8EtQwWSeiXC9FxVHi1rVqpkHgCA6iTOLxV516hivRh5eBebqbtd2f/3119KmTRtzT6Qzjgi9EcrbddddC/ImDzroIEM6yJ2kI8msWbPMc7yKPWgPmyIQOMgTRp2DZNF9hqrcoBbYoFQuWrTI5Hla+HEslPAgqU05MxbyROubc845xxC0Z599VsaNG5cRtSAV/Pzzz4aAQN4sGByHH364TJo0SZYuXRrztaiULVq0KCCNgEmrY8eOMmTIkILfjR492pgUHxNhf3Pssccaxk5eTVpAqaSVEIba6QJfR5RH8v6wyclCn9NoJuFxSeOHH4a/K/mYDz5YkNuX8o1BTijG6bffLvkA0iqYxIIMNl+ZSNQPbd3iiwUOpXHqvLnmPCzGZQHyUKuWUR49jQwZNFu1jYWeNce5vkQqJjsPZaspDkFFatSoUcHvGVc2LAepYoP2dwZ6bbvtaUpYNpVzwFxq80J5DYTRfs9IVSnWOfQSIMKEpa0lTSpjAUAaEXKcYo4fx0I6iHe93RgLKW/x/+///s9cEKTeYcOGycCBA+XDDz80OSXdu3c3SiQhgmz70hGjR5KOlKwtGaSCKFqeAxMUuVWHRek8wmvJeUT+J+mazwCQTCfoH8mAnD59uhx8MJ41RUHVH1Vvzh6UdoL4hy4w5Pydd56U+eknqdi7tzkuCEUkbNic10W2Y6p4+ulSZssW2XzhhbIB7zrC3ztUHCYVzg033Zo1a4q8LzcX34FwfaRbPzes3aFF5g2d0fgM8xOy+NL4l2TL9i1yfovzTUcYSDbJ2hD6DQMGyGbCyuR0PvkkbMl8FqEEKuMiLTggk7ZajOMtmCz4/HvukUqkFDRrZnbWka9louFG4PxwnlI6hxUrFuTT8N5O2HMY69pwvBx3tHPI8XBc0c4h/7bkmXMW69rwvEiCyXXh+vB5ttezBa+xk2ahc7gDfBe+U6rn0HltOA+RptbxziG/twUMznPI8XH8tudyvHNILnNkaCXW+N64Zq1sWbfOqHbmHG7cWKSlH5XKFK3w+8iuLeYc7lD81uw4PicoaDHje9Mm05vaCd6T9yZHkdaDRc7hjrlq/aZNUrtGDROanjBrlqxet07q1qxp/o4SSYFMoXNYurTxhjTnMEoeX9UdVbXrdhQWOMHreD3HGtkGEXsgQuLmHEaMJWDPId+F7wQ2/fOPlKlUKe4cwfmxlb7RxnfBHLFhQ8G15RryXN6T+5UcWIpmyCtnXPDgOXYcsvgzV1MhSkU1r7Xjm/+3GxN+Mo9bFwOvzhEUffB61lTA59liHwob7Dmw55P7nHPHsdq/sa6hXHKMhL4JYUOqOadU5pIrx2d4dY7gc/kM53szTqiarl+/vlEKI8+Dc44gCsn3t3/j/eyD97RjgfHHc+LNs/HGd8kE82zk+E52/rbnMB3FkesNP7Mewdw/VnmO97dkkVZsiA8hv48HJ/y3334z4TbUOfIKORgq3Kh2YuDbkEEmASmLljRqfxfLVJYLzcVM9FoGKp/BAIi0TmGgc4GdxDASn3/+ubz++utFfo+1AETc+Dg2aCB7XHKJdBw/3kzq3OiRIDQOmFhI/HWCgp49L7hAFv3zj0yAiNJH+uqruWCmiIfdGzd5tPclrM8NF02dbd26tdnBU0CEtB85wfbv2b+ANJaSUtJoWSP5ZVn4M3p36iRVbr9dpr/8svzVt29YccRCZ8drGT98j8gexTakAAi5FEwunMNVq6T7FVcIV2fOnDlmU+AE16pdu3YF+T6RNzkqtFNBdoJxy/heuHChORdOsPFgU8RNHu0cHnrooWZSImGbc+UEdgfkG3FuueZOMAHyuSDa+1IwwgSOKTDH5USzZs3MxoVziNriBK+xxSao4ZGTFiEcxjKf77SvABwrx8wEG3lMfEe+K2A8RC6QFKOxQLEp4JidYNLC/oJjcb4v15eJ3BJHohiR9xPXlGsLeeDvkfcqcw2vd77v5gULZNvKv6VPp06GxE2dN0+WRrxv0/r1pcmee8rfa9bI6IjjrVyxovRo3978/x8TJxYhEeQjQtRmL1wof0W0D21Qt460bNDQkLs/JkwoMmccuKNob/S0qfLv+g0y/a+/ZMKsmVKzatUCEjp/6RKZOX9B4XNYs6bxc2SOQKmMxKE7yMaEmTNldcS1adu0qVEyUTUnR1zzGrvuGu5ys3171Pft27mzlC1ZUqbMmyvL/w7PPaVXrpQyNWsknCNIbwKsE5Ekonfv3mbhZePNmIHUQAT5f0KI5KcTUeK+Yf7lc7jG3AtEfxhrzK+MYYgDxZHmePv2NfcrY4XPZVwxPpirbQGOV+cIPtdJLllTERsgOsyH9hww/7G+UpyJ9+P3339v7hu+J/e2ta1hjuDYXtrRbYxzQFSN53p1jkBxJVWM47ZKKuQLosOcz+u4753ngbFkSSXfB1GCvwGeS3odtk2cQzsWbIU26w3rDoSTfzuBWEQuJOdrZESXL8YunwsgZJEbAsY+9wDHzLE7wXXk3uH8RFZJsx6zLkcSR+oqGCMQP+Z8zjXXkHHOueK8Qry55vY92VDZ1I94f0sWJUIuxpj5IpxUDogvxGLGTciJYQBys2Yqj+uUU04x7/3www8X+j2kjL9ddtllclKUlnZcAIpp+vfvL6cRQnXgq6++kgcffNBUajNoHnjgAZNHyc0ZCSqrWcTvow1fkorjPffcI48//vjO/Io//5QyfftKxUcfle3//W/qiuOOXZzZtf/8c7j3MyTwvvuk9PnnS6XKlV1XHJnI35r1llEcy5QsU6A4nt3ibGMkXvnii6XU0qWy4YEHZDO9sR03AeODCZQJPnKHF1VxhCxQgXzLLVLp1lvT2gl7UXH84YcfTFoEk1pQFcdUzmFKiuOMmbKFkJWHFUfeF8K4ePkKqUgYadNGOahLV18ojuWbNpEydeu6qjhC/JhLISbJKDJuj28vzBEQGz6bfPpkzmE+zhEQYTwXKUR1Nkhwe45I5hzmUnG85ZZbDDkmRRDC5wW4mo3OSYAg8uDksXO0IW2KU1544QWTT5gJ2IsaCXuhYoXO7e+TeS0/YzVd57nxwvOweh6RYFAVVG2z88PP8ZZbpOQxx0hVR55OtNfFAjdOWdQ6VI5rrhG56ioRyO6rr0qJ2rULVYlHIp69Azd05Gsjcxrtv8sNGyr9r/tYhMrGQYOkQpMmEplFYW9sbqp4nVPMBMR553u0aWPOjw3Bc9PF6jbC+8b7rvHOIdcy1vVkonDzHHK/2GOJ977xzhGTYrzXxusBXZxzGK8YLJVzyA6f8WB/F+8cmvEdw4KJydb5vuWr7iKbHYsExCkWIFSWdEVDvHxDrHJi2eVAyOK9L32ny5QuI/u1a2fURAidfS+IZyzTb3MO47wvpDYWypYpYx4xz2G843W8b/mqVaWM43xHG99OxPsbiz6PI444wryPs1gqV+M7V3MEnxs5li2CNEdwnnjvaN/LrTkilXOYaHzvEucc2vGd6rXJdf1INGTMNp6Lg4x9ySWXyNtvv21yIy/Acy9DQIaOFiq2v4tG2uyFZoAl81o+g91VZIgY0slOIxl/pYSgWhhTa/IBI3a6KYNJjwrrL74waqbpK03VdURoIF0UKYRZuVL6f/uPXDp4ozxbY6q88PhJIr/+KhKjYi2l3A06D40dGy7+8WgbpnRBeMGrnQuyBRR5cpfcRgmPjxUURRZeQsSQtbHTpxfY0YybMUPmxynq8wJKZMBDlcU16Ib4EJRMtN/0Eyxh8mJVcdCR8t1JuDYeuMgsgphvE9u3CyJhh0yajRLuJQcm0gyUfAX791i7GvIMIvMs7GvJZbE7ENtwnefaEIL9N1K8Kw3ZIXsDBoigGFJlfe+9xX/PI46gT5HIs8+GWxPyoIgHdfOQQzgJxSONpfYPh8XfestUc/cn5F+3gTwrH4pMeiWmSTiknc1FwkVi8GCRW28Nt1Z0eLPlC8jBYbdJ8n9QYcNLfiA2bmHavHkyf9ky6dWhg1E7CZUvXrFCGjLnlC9vlMqJs2ZJqZIlpS6bSQ/C7fPLJpxcLebSeMpOvoP0LkUYQSeOIQ8qjikTR4pfkr3YTz/9tNxwww1Zae9DcirdXEiStj6OLER4grVq1aqgopqcRnIqnMmgHB8ejhBAWzFN0i5ElAIgC/LQIDuYgDuJI/9md+j8XbFAyJpWgjfcEDb2jrD/SQuoptjXQL6wxaGymQRw2hbic8Xn8OjQIb6h77Zt8sKP98qziz6US+fXl/5PvSwy+mJTgGNCyKjKtWrt6G29W1yTcJSFhJuJv/4igZVMd5G77pJ8BEnTjMcgE0fbm9cWx7iFEh7stgJmLlhgCmpaNGhgSGM0tGrY0BSqjJs502xwqbz2Gtw+v8zNpC047XQUwQRrKk4pKfv85hlC+UAc6ZISDyhvJO+S30hxCUbZlMRn2mATckjrNqrGqMbiM7/99ltTgQl5tbj33ntNRbKzCgwfRtoI8jwKaRiodI6hmox/Oxe38847zxS03HbbbQUVeyRzE4aPl9+QMq67jsbgImeeGf4ZYQGUNpjoKVKhupkq3PfeE6FK7OOPw8ba3KTsdiGC5GMQLiH/k3zEVavkhTrz5Nkjq8mlHy+T/jO3hxVAKrix2YkICybqMAOxJwHaWTVXCBwPrRxRkN99N3xseQiIUmTyeBAXCSZIFKdYuUn5ojjOXrRQZvz1l6nmRl2Mm+7TuLEZG2NnzJB9saaJk3OXC7idCmALMLJt5+Y1sEZxP+CUEVSQGxnk759XxJHy9mQAicMb8aKLLjIl9TfTHSXDuOmmmwwJGTRokKnyYtdKVXSiYyYUDSGmVzUdYGyvaiqxI62EIJmEVvlOFP3gGcbzqMx2FaguhKzpy0k4mV7WaXQTiPv+KKRWJYUcEs6GRGKNg33RDrJoekFXqCAv9K0ozzauJpfuerj0f+tm7uyEHxOPPKIuoOpi21TEsoliGNRe7C7Ik/Sg2uIW2KjEKroKCigGyEQnqpIeyxMjpxF7ncZ77mksgBIB8ti2SROpvnyZ58zAS5YvJyVcNm1X4hgGhWJubqD8CIQFNpJBz//e7kFRIaMZyOQ5YsET6bmWKTDZUIzDIxaeok9yFEAA70oyFIqXovVTzCggZt9+Gw4lk/NIRfpuu2Xms1AO2N3x2NFi0Ym4HWHSJI82BFGENFEUdM459B4jDwDjNMln2I4IQSeOtJnLhCJWskJ52b6hsOVHrkCF9P7t2kWt7sa+p0m9Pc1PJwhT19+9tvn/FatXm39XdzO6kSZKptpeNQmwmbQmzUEG84GrESwfAsNz0seiNecICrZt21bEDiqvq6otyFHIx5Y+WQO+l1jpoPyR57dsWdYPoTikMV57Qrs4FLox+P/zzhN5551wsU0AJg3M2YNcCGBBikmkp5sbKFnZfYKTKih6oWIa9SCWJRCksmm9+jHtd8CcxYtl1JQpprtMrlGykvthc/J8IztzBRHcB0FXXVkXgp7fuDkDBYO+II588aDvHouNZs1E6JlNpwG6Qkyb5ivSGIs82nFRoDiyGJIr+eab4YejMCmfQf5vpnOA/QCaBmTCkqdUldzmBS79+2+To0jYOV7hD6baKIrWXDsaOjRrZoy4aU8YzaQ7m8jEeSWvPBMpC34CmwtCtEEnjqwLQecOm4NKHAlTU6iiKCbYhdOqDzWCvMQMGalnijRGI48vT3zZLBRmcqCVHm3JfvyR/owiEV188n1nHdk1IIggNBetK4YXQ6rJAiI4Zvp02b16dZOrGI840pEFQhjZZcYJLHo6tWwpFcuXk5FTJpvuMLlCyQyEUglPBv1eYIyQ9036VJDBvKjEcbMEijiyaxowYIDpP8pNoIiOlPIXsKiAPHbsGPZhfOUVSq58QxqjkceJVSbK7qhMXbuGFVX6Z+7oExsUYD9Cay0v5rJkE7Z3udsoReFVyex7wUHq/pw2VWruWlXaN23qms0Q9j2dW7aSXSpVllw53JWsVElKuqyIoTBRLBf01CbGCcWCQVcc4RBKHDdLIAzAudh0USGplZwlchyj9YhWSMxWh3HBIoiX5uWXhz0TKZ554YWwT6MPSKOFed/t28MFM58ul/5164t8+mnYBihgsAsECfHx2l0FgTjOnj3b3BNR7ZnSRIlSpaR0tWqydWV2CQmtBFvs1UDq7babKWhxE7QL7Nyypfl/Qts84uVGuo3SNdz3HLX9g4Oe78u6uRCPzxYtAp3j17ZtWwk6NucLcUzWAJyJ/6CDDpJLL7000IthIqRlw8KiClk88ECRiy4S2XvvsHUPtj0uYHtoe0ZJo8GsWdL/0rdEdlsmazt1FHn/s3AYPoCwrcVIiA/yvQJhwHqD8+AmcQSlatTIGnEk93DT5s1Sq1o12at2uBo6k5gwa5as+XeddGvdpkhFdqbA+XQbqM0Q7Hj9oYMAzgPdpPAmVgQbm/OFOCYyAEdm58avV69e4H2oMqI4OnHCCSL77Sdy7rkihx4qgrJLx5lidl24pH1sO6NiY+1akYcfFnnkEZE6daTbGbdLSeyGAjxWnIpjkIHh7wF0TcoASteoIZtkhmQaa9evlxGTJ0vlChUMcUwFkKaKFcqnrE42r19f/pg40Xxu19atjRqZSZQoUzoc/s8AYWIMuK3O+rWiOuit9khbgEu40srXp9icL8QxWQNwRZYGRp06Yb/DN97AAT1cREMYm/Z/KS5cGQXK6muvhftvr14tctVV5ng3TZ4sJQNOmNhgsVgWaxORR3A7VA1KVqggpXatKttWu59DaUFRy4jJk0zIeJ80LGWolu7VoWPKr8Pep0vr1jJ80kRTMNOlVeuYbQzdQOnddssIqaEFaZAVdws2kEHPbwSrVq0qiMYEFZs9ShyDvbXzAFwhC0ziZ50lMmNGmJi9+KIIlhbXXCMyZ47kFOQtYbpOPhZhdYzMp08PK6NVqhT0KA46Dj30UKlP3/CAY8aMGfJThhwDyrDJyhA2bNpkFL8ypShcaZlR4hYNKJwUzKzfuEmW4/maQZTJUB5y8+bNpRnWYwGHEscw1MtSDHF0exPtBpQ45hiutppjt47SOHNmmKSR94g/4LHHinz3XbitYDZApff48SJXXokDfJjAduoUbmWIP6ODILGjzITps98Q9PCcBdWkjAdbKOG6UlamdMb6yVrlL908Q3Ijfxg5Mm1/RloS9urQQerWqlVwTJnwbiyVAXsjLHh0HgiDtrl1A1gkGLku4jIRdOK4adMmJY6KoshIeJKE/AcfxBRN5Pnnw0pkv37MSCJnninyySfM1O5+JlYy9NO+9loRclLatQt3f7niCpG5c0XefTdq60DaUvbEvzHgwIVgPGQ74KhRo4apJF26dKnr722qq7kHXMTmLVtky9athjSSX1icymaIHvNBcQifzW+ct2SJjJo61fU+t5lSG6dNmyYjRozIyHv7DUQeqBEIMmwUSkPVmz1JHINtkpTvOQwokPSdxrZnzJgwYeSB6kcojd7AXbqIdO5M8mq4vSFqRTz1i0UNNQjD7kmTRJjsR44U+fPPcOcXTGuPPlrkmWdE+vSh8iPuIXrxpsjVOCCnJ+hAeaUF47JlyzKSFF+2Xj3Zwth1QYyDMBKeLl+urHRqEbbG8QoIXU+ZO9eYj9Ntxg1Fu0S5slI6A1XiEGWud9A7xgCI/ooVK0zrxSB7GKI0durUKfD9ujd5VHEM7sj0CDZko/MDOZCYhvO4++5wjuHgwWHCh6E4RuJWmWCyIheMB6SPf/M3CO6KFWHCuH79zveGbEI+CZFTHd2tm0gK3mOEqCZPniytW7cOdGI8E+Rff/1lFo6gh60J1U2ZMiUjvWopkiHXccuixcV6H3wT6fKycfNmaefBqs8aVavKPs2by5/Tpsn4mTPNMRa3oKXsXnsZ1dZtsGFCaeW6Bx3r1q2T4cOHy3777WfIY1ABaa6TwZxkv+Dff/81RWNegxLHIBDHSJCAzuPii8P/RimcMkVk0aIwMeTnkiVsd8LV0CwW7Hrok037SMJV/GTBdGGyX7JkiVEbgu5hiPKydu3awBsg0zSAUF2m7EjKNmggWxjf29OTHSG0o6ZMkX83bpQurVqZamgvAjsgOtagOlauWFGakG+cJkqWL5exMDVpCTgLBH3cA9s5KehKG92DOBdBV6HXrVvnyXVRiWOOsd6p3uUKGO4Srs4B1MNQCi0UTJZBX0Ct4poJWx7z/uXLS5k6dcMh6zSw4p9/TAFL51atpKqLZtWVKlSQbnvvbX66hdo1akinFi1k12IWtBi1MYNKOOpS0H0LAUVhmOAHOUxtNxOLFi1S4rhundR0sSucWwh2TMwjUnSQwQRJODLoxJFz0LVrVw3X7QA5b999913GKm3LNWwgJVIkpbZoZffq1U31cjWXq4tLlypl3pOfbiuP2APhMzkrDbJMJXXpDFb5tmzZUtvL7YBuHMNQS6LwfANx9GKoWoljEEPVHgOVc3oeqCvaLfCTpUW1atWMAjV//vyMvH+JsmWlXLOmKU3iY2fMkNmLwsQrE639yJecMneO+ZkJ/L1mjUyfN09mzP8r+ReVECnXokXG1MCVK1ea0L9i50Y6yLmNFmwYg15RvXHjRmNL5MVQtRJHD4SqM+G35idg+ls7Cz19/RCmwpIn6OMBEKLGy46CoUydjzK77y6layRepPl8CkyWrFwplcpnbvdPf+u5ixabn5lAvd13l2Z77SUz5y9IWnksW79+RnwbrZPAH3/8IfPmzcvI+/sRXbp0CXx41kbivEiYsol11B4YcxTvnQcljjkGi1LQ1TaKIfDvCzoIz7CIBj19wWKvvfYyGyvsSTKFcs2bS4nS8UPDk2bPlkXLl0u7Jk1MmNrPaLzHHtKk3p5GeZy7OH5lecmKFUwhUaZg1WTuf0XY9Fo3jWFgyRX0NWGdEkdFMgMkqIA4Q5iCPmna3CZbWRl0EK7mnFBpnilQKFOedpgxALmav3Sp7N2kSUFHFr+jab360njPPaVSnFBgiVIlpXybNhmx37HgnqcohopqBQ2/ZsqQIUNyfRieADmvQc/3XqfEUREPmVwY/fL9CdEGveUYCyiJ0Eocd6JHjx7SqFGjjH5G6Vq1pGyDvaL+bc/ddpMOzZubn/mEZvXrm6IZNmuro2xcyWss5WLFeLTiJ5R1VGVFGNz3lTN4zv0UedGoixjiyJrgxQp7JY4eQNAVR+wngE4WYdUxE32a/QqKMmw3jUyibMOGUrp6tUJKI1XIVDhjaZMN0C6wfu3aBW0Ds4GFy5fL7xMmmPzNguOot6fJ/8y0iwCt9YIejowkjkH3bwQLFy6Un376KfARqLVr13p2I6HEMcdgRxF04ojKBkFQ4kgjnnqmKERROBeOIopMjg/GX/nWraVkpUoyZ9EimTJnjixd9bdkExXKlZPWjRqZn9nCHrVqGWJMxfjyVaukdM0aUrZJk4x/LoSxHf3sFQZEW1Da1IonLCAgJgTd13PdunVKHBXRQf5C0Ikjhs+cByWOYqrLUWIUhck0NkXTpk3L6Ofg67is2q4ybfEiabTHHtKo7h6STWBL88+6dVm1p2Fxpuin1q67ytgF82Xd7rtndMFGRZo4cWLg03MiYc+HEsedxDHoWLdunVTJkKNBcaHE0QNqm06i4f7EQfftcuZ/abi68MaiadOmJoSVyXtlwYIFMnHaNGl+wAHSsnkzyTbWbdggv40fb35m+/x26tJZ6uyzjyyiFWMGsXjxYpkzZ47pCqQoXEV8yCGHeLIQIttQ4uh9xdF7WZcBAwNj9erVEnS0bt0614fgGUyaNMmYAGsobydQYak6RXXs1KlTRj4DVRMPPcZiaONG2TBuvGz3QkvQDKNUtV2lwt57S5cSJQraPZJXav/fTbWR6wdJUpProshEe02/gTHC2PMqYcoWQhStrV7tWQVaFcccg4FBQ3dF2JYn6AnRtoMMqqNiJyAxELo99tgjI0UJjDsITRssaCBQFSpIxX06GlKVzyhTt45UaNdOSuxo/cl3X7Vqlfz444+uq97Y76CitGjRwtX39TvIbfzhhx90HdiROnHQQQcFPl1n3bp1xiDfqxssJY4eII6YHAfdBJxJk8lTw/bhsD3J8mrLUxh4/vEAbm0wli9fLkOHDpW5c+dGzXmEVJWpk59djco1biTlaScYoSyi9qB+UZDkVv41KtKMGTOkQYMGsuuu+U3G0xmDzP8anlVY2E2EV10HlDjmGFaKDvpu09pQaG6fmF0m3l2qOkbH6NGjXSmU4Z4bOXKk1KxZM6afIKQKg3D6WmOKnWm1xap+Gf0c/ELb7i1lY3xnSOO+++5rHB9+//13s7F1QzHGk1PVxqJYunSpIdPap15kypQpZsMSdPz9999mHqAJghehxNEjhCnoxBGixI5bVbbwIkuuHYVTiqKg0pB8x+JsMsgfGj58uJmYyZlMlM9Xds89pWKnTlKqSuZyr3apVEkO7trV/MwUSteqKRW7dJbSNWvGfR6ksVu3bobIQtSLA0LfFMNQ/KZ5fIWBco7iGPQuKc77kjEXdKxcudJwAy+afwMljjkGEzSEKejEEXCjKHEMA2VGe/hGR+PGjU04ddy4cWmHrKmgZrx17tw56YUKj8cK++wT7jJT0l8ecyXKlJbyLZqbIpiSSbb4g+ihPLZv3z7tzyVPa8SIETJ58uS03yOfYUk1ec2KcL6xVwtCsom///7bs2FqoMTRI6FJdhhBBxNG0HM9IydRDd0XBeogFeeoE7NmzUo51w5QaNO1a9eUd/SErss1aiSVunQxrQrdxNr16+XXsWPNT9dQsoSU2XMPqdS1q5RJw1ge1RuSvnXrVtMWFCKYCvBshNw3b9485c8Oytzfu3dvJUs7iiMh0XouxBBHrxbGACWOHgADRBXHsJLUt2/fXB+GZ4CiRkhWURSEmPF2TEVxxB+OVmZs0sgfKk4YqGTFilJh7zZSsWMHKbWrOwsdpHbd+vUF5La4gNhCcMs3a2byGotb+YsHI/lnyXowUnCE9+bee++tHq0JUi+C3iUF2GhT0IljKBRS4qhIDCRpJY5hJUmxE+Q9USCjFkWxw/mQR5DoHKFmUOjBAu2mR1ypXXeVih07Guue0rvvJpLj9b9E6VJSZg8Uxi6G2EJw3QDpNIStKZQhNxQFMhHRxI+UXN1MWCjlAxiTP//8szpJ7ADh+p49ewZ+k7FuhxWPhqoVccHOQi15wkDRyHRrOT9NpKg75EEp4itbw4YNi6nUYW1kSSPkJxPVq6WqVpUKrVtLpe7dpWyDBq4RtqQ/f5cqUq5pE6m0775Svnkzk4/pNsgJpWAGokM1ejxllHPcvXt3adWqlevHkU/V1JzLoBMlp3AQdLURWBFJFUdFXNgBoqpj2JJEO+mEgUUHxVNqy5P4PBHmIp8uGsaMGWP6P0MaM71IlyxXTso1aiiVunU1qh//D6lzXYksWcKYk5dr1kwq7dfdVHyXrVfPeE9m+lyTG8qmJlqEADL5119/GQWYdAKNIsQG9zVzv1aah/Hnn3/qXCfhimovW/EAb9Z6BwxWkoY4Bj2sw8IUzYw5iGDyoIOCLiyJxwx5dOSE8v+RXSfatm1riEy2+wCj+pXl0aCBhLZtk+1r18o2HmvWSGjDBtm+aZOEKDbZEWWvWL68dGzRwvzc+SYlTBV0iXLlzPuVqlJFSu6yi5SsXDlneXGQHbvZxUqG+csSRKqnuX+5DtZqTFEUbGRWrFihRUOOqMCiRYukbhoFXPmGv//+2yivXrXiAd49sgCBsA45RFpZHV6Upk+f7ukG79lEy5Ytc30IvgBkEaWayl8IIsRl6tSpJg/SCx05SpQqZfIheTgBoYU8hig4CYWkKrmaEMISJaVk2TLFLmrJJEitwWqHbj4dOnQwFe5z5swxJF5JY3xAuCGP6t/on/BstvC3xwtjgBJHj4DuFUwmQQfyPEoKJFqJ487dOLlQ9FJWxAaEBfsYqlQhNFgZQSi9TGIY66iJUq6cKSghzMsx+6GLCOe6Y8eOJsRIvh75uChotBVUxAeEcb/99tM5bgeY79ng+WHcZxrwAIrKvAxNQPEIateuLUuWLJGgA3me1mT16tXL9aF4BrNnzzbdO9yyaclXQMKwdCKnEeuYZs2aeZo0RtsgoJLy0y9AbcQgnII2FDQNvSY/Vr2uKmUTXje8zha2bNliUhjgA16GEkcPTcDsulAdgg7yOzSpfidQoLBngAwpYoOwL+oX9xGhasiMFpxlFoxLOhwdc8wxhgglsulRiNkcME4VO0FKSax+8UHC0qVLzTwGH/AydHX2COwOg4ETdGDUjFccFkUKMeEsduOEMRXxVRzOE20EbTcOxhE7eIX7YDwOHjzY5CMTniZSQMRAyWNs2Kpz3BIUhUP3bPaCjsWLFxvRxOtpSUocPQIGCj1zVVUSU0WMLYOqRTvBbhwCBKlWFAY7dEsOGzVqZKxiuJe6dOlicmbxBqU3tcK98z1lyhRTxY7aaIuPWPAItWFqnWoryKCAeY2okqprO0F3Ib0/wyBdjfnLyxXVQImjR8BCx4DRPEcxu3EKHLTKfCcIXWjeZ3Tg3wg5jCTVTL6QRxZpCjn8sGHiOnvZfok8RsKstMKk3zcFSU5bII4dSzFry6MojHnz5pnNjJ9yb7ORw63+jWEgHHk9vxEocfQQWDRUcQyDkKMSx51AzaEIwQvWMl4Cbe0gKHg1Rjs3nDfIDeMJpQwlDPLjRWAj1KlTp6z7Taaa04jZOukAqLux8tX424QJEzS9wgHUWKIokT6jQQZpDYwnLYwRMy+Rqub1/EagxNFDYKfBzktzhMJ+XihIWixUNKyjhDoMil9QKyCGySzGWBrxmt9++82T7T3Jf6Oi2ovV8yzuEB+U2z59+iRURVAjUXohj36qEs8kUGMPPPDAwDd5cIJ2qmzotMJcTLoN5FEVR0VKYKfBoqF+juGcz3322cfzuR7ZBurajBkzJOjgPmGTRS/kZH0DCQ/incdm5KeffvJcXhXE9vvvvzc/vQIWdcbbr7/+aoz5QbKOBxD6/fffX3sx7ziPCAKQR9KSFGGw1uHdSGpS0LF4R7RRiaMi5coy8oU0XB3Oc6T9lE6yhYGyxmQb5IpzduWQF0ggvo2pgErrXr16mckZv0fdpMUGiv+wYcOMStukSZOUuxgxl3G+ATmPQc5jIwTJpkDV18IgRK3en2FQ38D58IMJuhJHj5ElBo4WyIRB5w8qN9mtK8KATKNaBDV3jO89ZMgQk2uXrtcn548Wed27dy+wvcBSRrEThKVRGTnPnCfyFtM936jDnN+RI0cGNs2CcYutlqqvRcUSrTD3V2EMUOLoMWiBTFHPM7Xl2QkUWCxQqM70apFHpkBomY0Ek6sbPng2IZ88K8jo2LFjA68IESbnvrPkumfPnsXOP4NwUvTD+cZXk/MdNOUWtVWLYorm9KlIEgbiCOfCD4UxQImjx8CiSFjDiwny2QZhLmT7IIe4ooGKVcKGThuUfAebKYgdlkQUXrgJ7FGoyua++/HHH01oNmgFahBmSDkejFbNRg1yK8cY8kglNvc01klBUnjJDWUeUzutwsDhYM6cObk+DE9g1apVJvfaL4qjVh54MBRJeIjdGL6OQQbEiHPAgp5qflU+A7uWIKkX3A/kI3JvtGvXLiOEmXAZ748/IQ8+g17X2QTFO4cffnhWNwSo1izgfGfIHaQ8U2MLtbxr167m87xsOeS2ksT4bdq0qbZRjRh3rHE6r+90ywB+URyVOHoMWDUwwRCKDDpxBJyD+fPnG/sUP5g4ZxPjx48354RFKZ9BWJo8O4hVJkkV4VkWMqq0rQk36hufae/LTILPybaKzOJN1XTDhg3NOMq0+TgKpi2GWL16tfm8fPYm5XpClhVFxx1RNV3jpGCeqVmzpm/uBd0CebSaGOKoCNvyYOuhtjxFAZFBvaGQIR9BbisG36g29LHNlmIDGbfjjaprQuRUxBLCzmQOJLlweExmsq0kIWK8FSlUseHovn37GlujbHesoeMP3zdfHQLIFyVaoigK0o9QnSkYUohZ7/1UJFQ6n27SF154QX755ReTK4BycMkllyQs9WfXM2jQIJPbw86b90EuPuCAA+SUU04pUhpPsng0XHjhhXLGGWe48l0YQKhJLJhBymOLBhazZH36ggYsUtipQh6pes0noEZRSEFOXC7vA7xEObfkYmE2zhzB3JCJUCt5lVQdu51fyfljoeY7WN885hh7XnNV6UvBDMTx999/N9ZK+VZxPHXqVLOesPnVMHVhsBFU78Yw2Dhxf+J56hfkBXGE/N1www1mAYXssdh8+umncuWVV8rLL78cNykZBeH+++83uT1HH320SZRH5RgwYICMHj1annjiiSKLFhPeIYccUuh3boYLmdTxTyNhVh31wzcWix6bAFUed4KFFlLNuaFgxo1KY6/YMFFAwcJCr+lcL7qEj9q0aWPGn1VKAMeIYkJCOxXDXtrkkUMGaWGBZn6kvzTHSqU0EY1cn1M7fvfdd18z10EeSUfwg4ddshsfqmQ53144116DFgrthC1GU8Uxy6ALBGGPu+66S3r37m1+hypw2mmnGQJ42223xVW0nn32WRMOtTjyyCPNYvDaa6+ZCReiGDnoDz744Ix9H96fRYgBpcQxDNQeFkFt1xVddUSp8ktidaJNAiQCckZumJc2CswVdvxBxiBiVHtD3CHthH3ZgGY75GtBHjDjAMJinQj69etnilKYF71YkEJaAORx1KhRJlKUL8SRtAbGh85XRUH4nuvMfK4QE6bmXFizfD/AO7NyMUCYGYLlDCNzIeipSm4SVW2x1BgmeSdptOjRo4chjlzUSOIIbA/lTEx0TKYsQnx2+/btJehgwUMJXrRokU7EEWBc0//WSwSruCoUO28U1FwRsGSAioQKycOqS5A2ex0gQmz+mIfsouDmNWJO43MJa6Mgkuf6ww8/mL/xeURA2EjYzkteJI1ORZe5m/MFIefh5/FMpAjiTpqDl1RorwCRh0IQJY7+zG8E/r07I3yyotkdkOf4xRdfmKrcVFuTWdPpaLuAb7/91oTCyRHigp955ply0EEHJawic3ZNSFT8wvtqT+KdYHGcMmWKWSC9TChyARZZFluIhF8VatQy0kbYIPgtX9OSw0gyxByC8mSN2iFHzCfMR1wrSDIPyD/PtxXyFMewMeWaQhBRrriuvAavRc4TvweE8203oW7dupl/+zFX0BIsbJf4fnwXv7YbpfofX9B8iAC4DcYwUQUVAMLgPidqEU2c8jLygjgyQePvFqszBIQtVeL47rvvmsk80koBhQElk0mB9/3444/l7rvvNpP9McccE/P9Pv/8c3n99deT/ny81CgOIN+LiSjoYHEk9xRlR/NjioJwKcn4VMj6jThAFAhPs/Gjj3Q+qDTWn47NJbmGLJhW9WOxYM5yEkAII4SZjRHpMZHpCBBHyCHEmuvL3ARZddp32PaJfgbzNGNhxIgRJr/Vj+SRY/abgpRNv0KidHZtDjrmz59v5gi/+fJ6jjiyy07WXoSdOosME3G0ULT9nQ0rJ4s333zThJquvvrqIpVfzz33XKF/H3bYYXL++efLSy+9JIceemjM0PVRRx1lKgediuM999wT8xjsxEP+GmQ16GCxZBfvV0Ut07AKNY9oqRdeBcSJIhNUOVSmfCCNTvB92Pg5N38QQR7AqoqoxvxEdSRNhvHOa+0cByCJ3AP5DMgwm3XGBHMw3Wb8VFzCcZNmhC+mojAgSKQbIQLk232eLuAB3Nd+I9KeI46EYqiGTpbgsWBC1uzO3Qn7u1TyEAcPHiyvvPKK6eAQT0G0QAU47rjj5NFHHzVhqVgTOzkdPJIF4SkGEwNLiWMYuouPDYgHZATVkfPkB5WaDSILLfcpFbVezsPLFCBFViH+559/TDoGIW2/qcZugs0hhBHVkTCeX8KakCLsjsjPVRQFm6Q999xTQ/gOIAwxX/uNSHuOOCLZ3njjjUk917J0Jhpn/qCF/V2ybB5T3Pvuu89U+V1zzTVJH7N1vyes7CYYUGoEXhi2XZlOPkXBgrVgwQKz+cITzOuTEZEAqzSqEbDCCcLuVIL7pZMGmx+M1ZmXtBtK7BC+thjcCQrbmK8z6dASGOIIySPkmwrID8Iwmx2NM6zB7p2dezI5cZMnT5ZbbrnFeLXdeeedKVX1sdMEbleJQRzxkiSZOIhqTDSwo+c6K3EsCsY+VfiMFy+TRlssAlmEHHj5WBW5gyWNLK7khHo5TM/6QShWo0PRwbnBUg3FMV8sl9zI92Qu9GMkzT/JI3FAQj0TC11jLEhGHzJkiAmBOfMfuVi2objF3LlzjYE43o0PPvhgzIHNe0aCRXrgwIGmWjJRl5pUYTumUPigCIOwFUpyJlu/+RlsXsghchI0LwHSj7JvC0CUNCqSAZEXbFy8Soq412jbGOQUg0SuIpBrnbd3AiJNTrMfFWrPKY7pANUC8kYHGEig7RzDInXuuecWeu5VV11lfn7wwQcFxO/aa681lY90naGizwkWYbuLpIJ66NChhoySAA2B+frrr42h6c033+y6TQzfg0FFwQPGwgox5J6QB9VobnbryTdQgc6YJgzsFdgOJtw3kW4FinCeKhEXP3sYZgKoVBAzokpeDHey+cGzURE/l48Ig59MrrNhI9ikSRNfFX9Z5MUMxWTy0EMPmYrnjz76yOROYW1BrmSiMncS0m2XhRdffLHI32ktaIkj1arser/88kuTz8jukkkMtTJTEwfkaOzYsdq3OqJ7BwoEN52ek9g5YuxoCfOx8OYajF88+rjXKHxIpVAsSKFZNqWKoiCcB3lkQ4RK45X+9WzqIUSaOhMbrMfYqHmN8OcSa9euNYVf1FP4EXlBHAG2ORA4HvFglUYLbnhniDseWPB4ZBPNmjUzvVy1a0phrzcbjlVEB0o144WFlv/PdR9rVHkmSjZYfgzNZItc2w2iboiiF3+hxhLt8QIQHXDS8JthfbbB5hV4YQPrFcyYMcPc49aWy2/wn0YaMFDYg7KpXWR2gh0+ipourvFhlXIv5IaRYkAusiozsUEU46uvvnLdnSGfQASJHHRy5SJz1bOddkEkCMFC7XfiA9cTUq1yvXn1EmbMmGGItF+LXpU4ehzkP6CwkQ+h2Ak69eABmKq5e5DARA15ZHJCycoFcDYgvwlEmukrFOmCHGccJ/iZC5AGQriRjmV+zFHLJuh25JXUAi9g27ZtZvz4OUdfR7wPQLiaUPW6detyfSieIkUUWeRq4fALCFcTSsuFOksYb+bMmZ6s7lb4Gyy65D3iWWrt0LIFNmGkXdAdxm0LtnxU1khTUewE+fkIHqzrfoUSRx/AFoGwCCt2FsmQ58hNmCs1zW/G6ah/2QJjFZWchHhtv6bIBChWZGOE8kjxRbbAXEz7WM1tTGyKzhyggkdRMk30xSu5uulAiaNPqi0hSRquLgwUB+yU8AhTxIfdeFgHgUwnw0NS2VH7Nflb4Y8xjeE9c2O2VG3SLghRE57GzUORuCgmmQYcQSOOTZs29XWOvhJHn4BFGNVIw36Fk67ZudkJShEbqH7scG0nokyCqmmS4d02xM93MJYPOuggzQVNASy+HTt2LHCcyOTYZoOKl2Qui3L8BKJBFMNpUcxO0KiEceTnMDVQ4ugTsEMhL0Jz+gqDRYOQlSLxAtuhQwczidO5JRMbEMKFVLvyGVppmjpQsXBQ0GKL9NXAn3/+WVatWuX6e2/YsMGY12PQrhui5FrDEqL2Yzu9TKuNpUqV8v38qDOUT8DODRsaDVcXxi677GK83bDHUCTOC+3UqZMZR26fL4oFRo0ape0xiwHUMs5hphXhfAWqI/PB8OHDjceiW+Be4bqw4OND6ucQYzajQZwriLZiJ1i/IdN+V2GVOPoETFaojurnGF3p+uGHH2TLli25PhTPg4WVCR0S6ZbqSN4kIXA2N1owkD4YvxBwHcfpAWJHK0tywrHqIhfRDaCcoaSz6fL7gp/Na6FNGooWC9ES2e9haqDE0UdgUSYEkI0CBz8BSwwWW+sXqEhuMfzxxx9Nzk1xQL4OoW/yGgmFqxqjyCWIPtCfnZC/Wy4UbLb69u2r1jtJAoukqVOn5vowPKk2btu2LS9SHZQ4+ggYgTMh0kZOsROcE8JUmKpqyDo5YArOg7yt4pioQ9jp4oOKqbl5Ci8ANZ0ewJhzFwerV68298fWrVt1bKeQC0oeviqzRUEHL7rFYIjud+jd4LPdNL54DED1LixKqgknZdsM2K9gIST0BsjfSpVws0AAwtNdunTRhVXhKUBcGJPkOv76669mbkg1rGjzTXVsJw9ynFmnaA2p2AnGH2lmtg2s36F3hM/AwKNjSjYNb/0ALEwIl7qZFJ/voOcvSiHKSiqhJXopU72KwqtwVzknHYWfCvfURxT133//PWllnU05SiNhRTZXShz/v73zgLKqytLwtXscR9uBFiOmQVEawTSCYhOUrCggCAIKRto4hmXPtI4ztj2m1ma1Oq4Zc8KsgEpWCYIEURFEgjSIgCIggiIqxh5r1rfpU9569V7VffGm/1vrrSoeFV7dd++5/9n733sHzz7QgofiD8Sj+AnWVzbnLVq08JKArogY9uMjxUjUUdTk6KOPtv6BIr/qR5ook0IJ6o2k8IBzUI19Sy/kKYDjoygNnKekrRE1nLdBCo+4ybM5Z1O14447VuR1JgGOGeJIk6Jqw/0aQY1fNglIOMYMdr+II6Wrsx8bjgkLmMi/jQkRlroqUUnbEbkhDUgBAtEcUToQNWQSVFVdWqiyRjySLiT9XB9Ey4gM7bbbbhV5fUlhr732sgb2ipjXZOvWrZadSUqaGiQcYwgnIClZTUypzYYNG7zXXnutLE2Akw6RltmzZ+cUj0wuos0GolHm99KDMKdCXX0cy2Nl4bzFI54Ll8om6hv3Bs2VhkwE0UatC7Vh/CrUde7FDQnHGILxmIVQ6eraMFaPY7Ns2bKwX0rsoL8YqTlSetnEC5Hudu3aKaIgYknDhg2tpQ4Ch0IFf0EYbammTp1qG0+RHxxH1ox333037JcSSRYvXmwbESLfSUHCMYbQK4+oI2151H6m9rGhTxb9LpWyzg9Sz0RliCpyIyACQ3UpUUgiuFgB5L8TcYeIOsLRdROg2ItpM7RJobWUyA8KYrABNGnSJOyXEjm++OILOz5JSlODhGNM4UQkPcBJKWpCixiiC2pCmz8IQ8QjfkcaqiMgOc/kZxRJgbWBQjo2l2yK8O0SDeI5VVDnB+sEjdbxSTPKVNSEKCznVNImaukqiSmMc2KHrHR1djC3s5ipgKiwStT27dtb2o6UNUJSN4Xyww0Gm4XES/lxTevxlLL5ZlShWsjkD8eOzEQSxuiVg8WLF3sHHXRQ4uw9WqFinq5mR1OqmcNJgopIUicagVf4gkdKjzY9fM70DFFeEI0dO3a0j6IyVcD9+vWzSKMsGIWBJxrRmCT/XqnYvHmzFbAmLU0NEo4xhhOSCR74dURt8C8xN1WzvfOHmwFRGISj84BJPIokwJpJepqP9NZjxjpwnov8bUGKNmZn4cKFZvFJwmzqTCQcY15BTDp2/vz5Yb+USELKD3+evI7BhTZ+JT7iA6M5OFWopKolHssPx/jFF1+UgCkjiEXadWV2DeDfM2bM0FoREHqNLliwoHr0qKgJa+jbb79twZ0ktiiScIw5Rx11lEUcNWovO5iSOTbr168P+6VEGryg3AhoY8QIQj94aZ14VMuN8r4HCHP5cssDlb9EGqFt27Y1psLg68UXzVqqDE790NB67dq1sgLVcXxYR/HRJhEJx5jDjoZwOLsbUZtdd93VZljThFWti7KDUCGlv27dOtuIEGnMBPHI9I2kVQeKdMC1T6SRj5zH2UYJ0muPtCJRR81hr1uAMwyA0YJJK/ooFfPmzavOCCYRCceYg6n7sMMOs3S1hFF2iCSQUlFfx+xQ/LJmzRqbWY1nKRekrUm7UEVJGxOlVEWcbCtssukWQHQxF/j1qIJdvXq1ig5zwCacXq9M2BG1oaiQzA3RxqRGZCUcEwAnKDdx/GmiNlSpdu3aVc19c0DE+vDDD7dCmKARSm6qs2bN0qQNEWmIHC5atMg+J/MQJELGaLgOHTqYOJJtoHa0kcwEx0i9XbOD5YeNCmtqUpFwTEhPRyJFhMdF7sgsN4FNmzaF/VIiA4VDQPqZ6tKgcPNl9CBCnD54q1atKuOrTA/0yjzuuOPUM7MEcK0jGJmuVYgARBRRADJz5kwTSuKna79Tp07efvvtF/ZLiSRVVVWW/SO6neQ0voRjgqKOy5cvV/qwDuiphTlehUSeeZSmT59uaZVC4GbcunVr84VRMLN169aSv8a0wTGlmp2PonAoMHrzzTetOfURRxxhVpVCUoY0BEfEIwQUWd9W9U+mgVR/UlOwpYhwb968ObFFMQ4Jx4SAz5GFjjC5yI4bi0UUIs3g30Ls4eUqptk0Nw9uyjStpgGwqwoWhYEPlyiZWpwUf/P+7LPPrA/p/vvvX9T5TY9HGoUz15oRhWkFwUg7rrSvnfUxf/58s0QEtf3EFQnHhKAimeAGeYpk0tqehyIYxAmRwlJVSLupEVSjUjQj4VMY33//vYl6Por8cZsWNkSk/EvhaUY80mmASVTYMigMSyP45zkvObYit/WHwiHOl6RHZCUcEwQnLL2j1EoiN9xMaJNAxC1tApu/lxQ1fsaWLVuW/Oezy3a+sMxekEKUEzaCU6ZMMRsKG8RSjsDj52HL4JHG0YRsBBGOTZs2rbMiPe288847dq5gj0g6Eo4JS8UiilQkUzeIJvq1JX1X6Ic0MosaRS1EpssBaW+qUbm50DOP6KYQ5d4M0fqEVDKbwnIVFuE7JQUJbL7S5CWnXRfFQoo21r2+zps3z6w72XqEJg0JxwSBEMKUy0KapoUtX4hGEB3jeKWhVxuzuokCkmriBlBOwUxEhgbLVPqrb6YoJ4wJxBrBpBc2gmRcyl1YhFClypoiu0ILy+IGGQqiaHjoRXboLIGvNulFMQ4Jx4TBBY44oKpQ1A2evNdffz3RvdoQb3izaA1RqYWfmzfNxF3KhhutqlKDiW68p2lMhxZ6nhFFp6k3jbsrkUHg91F0w/XE2pHkbgLOykOklUyWyM2cOXOsiKqYYqw4IeGYMLjp4MUhdZNWI3dQWBDZJdK2I4nQFoJKSMYuck5w06sk7kb+8ccf20Zm4cKFqrquA8QINook938rRQNqxqsSPWetw3rBRKNKwvQkZrezEUMwJLUYjBS1bE/BMjrvvfeezT9Pi/1JwjGBsCNmYaXCWuSGmcykYaiES9riT5EKopG+gEcffXTFRaMfUohMUaCP5owZM0zQitogqjk2EtfZIXJN71Ha4pCmDhNnycBXiZBMYqaCDTWbTlE3c+bM8Ro0aFCWgsOoIuGYQDiJKYAglZIGD18xMDqLyIEbS5YUsCsg2NhERKGhNAL9+OOPt5usesFlh7QnYxyTnP4sdBNElJHoF21x6Bta6ShjNogMY8fg+qIVS1LaKJGipkLYbaxFbr788kvLpBCBjsI6WykkHBMKYXNaU9B2RtQtsBDZVGMmweuI6HAzy0nFR8nQTlESqUUioEABlxt7KERd5zTpQJpxY7mIWoTPVdQSeULkxh0mkJGBIUuQltRrobz55pu2xrJJTxMSjgkFMzN9t2iLkgRBVE4wNRc6lixKkL5zbXCimu7kGLviD6r/X331Ves7qnNU+OH8decF0cWuXbtGdhqHaxKO/5IsT1SvvXw201SpFzNVKg18//33VnhIJXXafMkSjgmPOtIYl2kUon44TqQd4gg3LSIepEvwXkUp0pgLbrakwkhd411T5bVAKH744YfeK6+8Yt5j10g+6mlARBbpSqKjeIvjbBEi4KCejfXz9t+KtLADpQ0JxwRDaw8ij0ShRP1wc8IQjgk/TrB4IRq56SIa47L75XgzApLxcLxmfFVxvuGWInJFGjbuke9C2bRpk0WgOQ/wMnbu3NnbZZddvLhAIRoiAvEYRwsGGQBalIlgPtA5c+bY+sX7njYkHBMMNyCijrQKwCMk6ma//fazxtVEHeNUZY0A4waLaIzj1AIWXl47ApK/hegp4oGPaStqO+GEE+xjmnA2Bd5vhDPTh4hGx/Fc5jrs0qWLndP8XXEZa0pbMu4TUY/sRoWlf4uGc39NIxKOCYcdETcidkeifjCEs3iShoi67w4jPlV9ruF2KefzhoGLlBKtoffj1KlTLQISd8+YyI7bIHCtAR5GbsRRqJguBie+FixYEJt1hNZtiF6lqOunqqrKJhaR0cMfn0YkHBMOixjeG6JoaRmRVYo2NvQ9jLJgIaVLRR/m7KjfmPKFNCVRG7xWzAXG75aGiDnXJ39r0q9TrivSovytbBBo+5JEGjdubB5zBGSUr1FakSEeqVpPq00iHz74m50prdFGkHBMAQghiiWo+BP1Q9NbxDYiMsqikXY2SV3sOV+bN29uPjeaLLu0ZVJ65WWDtCb+uLikNwuBv41CKFpGHXDAAfb+NmnSxEsiRKO4Pml8H9U+se5cI9Oy0047hf1yYsHs2bOt1Rkb27QS/dJLUZIU4DHHHGPCkV1S3FOalYIpHqRKOXZR8f6w0DNOkteGET9OxQOFgGDk5uv+dhpk814gOkhthjkRRwSDaBaV0ghE3jua7nPepkGo7LPPPrbRcwU/eKijBNdP2noQFgObgPfee8/r169fIjfsQdGqmxIQjCwS3HhFMIg4ItCiNOmEiBSN3WminbZxYJy/NGtHTHIjnjx5sgn7NFdix2Gqhnuf3KhJxFQaRKNj//33t/WX1HVUIHVO1gKrgAjOtGnTLNpI7UCakXBMCdxsqVzFE5d0D1WpYJoM80fxtOBVChNXoUm/OPx/pG/TCH83EWBSnEQc6f3ooo5xbIGSVJhY5XpzUnBBA28ibmmFTR4RKo4Hvt2wcZ02ojaFJ8pwH+C969SpU6qjjaBUdYrAt0dz2pkzZ3onnXRS2C8nFtCgeuPGjWZwR7QhJsMQjURuSPkxci0qafMwwW6BqOfYsIgzNYdoAG1QqHYkJRi3NDZ/E9doHK0knJtMLCIFzYOoDO8FUba4vQ/lhGwBhUGcs5ynYYBg5DUwHSaphUmlhnWGYi7O5+bNm3tpR1d0yryOpEyYq8oCJoJBqxtuhmGlREmV4xFLa+uHunA7fyLqeD6JoNACZcqUKdUzu+NUEERENQ5TfxxEeSn8IB1NlNGlo4kukpKWaKxJs2bNLALrrulKwwaL1jsMhjj44IMr/vvjyqpVqyziqGjjNuKzQomSwM2VIpkZM2Z4vXr1CvvlxAJu5ESCgHRxJW+GNJpl0aLqMaqzeqMAizlRLh6IGY7Zd999Vx0Nw9SO8I5yU2n6GnJzIsod5ek/7hrgmCLSEetUmEb9dUcFioNcwQxrSyULZoickTZnMywBlF+0kfVXYnsbEo4pg0W+Xbt2FpFp37594qtyyzFmCgFSiVYMpJSImpGS5aYsgoGdgCIaBxMeiIYtXrzYmkvz/pFyCsN2UBcI3eXLl9vri5IA48bJMaSQAq8v0SrOSaKKVOQqHZ0/HD9EYyWbnSNWsUFQWCeCwxrMJunMM8+U2P4butpTCAsHVY3MhRXB4eaIJ4goIHN1yw3RMyKdYXmhkgLp3+7du1ePsaMwwFXKsxlAFInsIBbZZNKNgdQq0SpnmUDcKh1dGAgQvHKsw0TEP/3007L+vtWrV1uWKcpDDaIcbWTjrnX4JxRxTGmbGebBvvTSSxZ1THO1Y76w2OMPxSfKbOVypD5JV+6www52g05r9XQ5znlEjuur5xqJc8PGuoEI4njzYHOQxgIkJ2CIKpKJoO8iwoZUqjsuiriUJ6K1cuVKsxGVYy1mDjXRdt7POPlnowBtpLgezjnnHJ37PhJzFtFi5t5777VdFSkffCSXXHKJVY7Vxx//+EcTUdn6bz3xxBM1niNC8cwzz3ijR4+2CxLfw5AhQ6zdRJxo1aqVdcCnZUb//v3DfjmxgcWDyBXnGY24SfuXMuJCZSoV1Gmeg1puEIVO8HOjpmCMmwPRNSIzCCTeV6INRNlIJ1JRn6TImiv04lisXbvWqmzpEQr8ra5HKHPuSauK8sE9iilQ9FUkw1DKSmfuhWxy2Qi0aNGiZD83DXD906mBtTip041SLRwRc1dffbX1WBo0aJC1gUDYXXHFFd4DDzzg7bfffoG8f1dddVWN57K1xeDnPfnkk1ZYQvSJFM4NN9xggoL+enGBnScRswkTJthH0qIiGJwrtMVhsS+lmGD+KYZ50iK6WVcGrltEEg+a+vKeOlFFBSoVw9xAeJ9ZVxCRvDfliD64qGg5Rl2ysWajS1qeB//GB8q5RnSb65+/DYERx3ZAcYZzi/UE4Ui7NPrtlsL7yHnL5tYFCpK08akE2FnwmauINKHCkagZoXgEXMeOHe05GgSfccYZ3iOPPOJdd9119f4Mdt74oOqCfn7PPvus17dvX+/KK6+053r27Olddtll3t13322/O04pLka5EXXEw8SxEsFhYXeLO6lrREUxsEDRJgPh4C/sEJWFCJsDAdWjRw97f/2Cy4lGos6IPL6HVDcPBBjPuf6S+UBauJjxb1STf/PNN1ad7R60f0EY4utkY0I0kfOWCIqzQRB1lV0lXLhv4D1HOHK+lUI4cv5RxMf7H6ViqzjA5pFoI1XUQQJPaSMRwpEiD8L7RM4cXHj0XKK/GH6mIB3yOVlYbHPtuIkuYi5GOPovzj59+phoZYdC25Q4LVak2EeOHGnR2jQPbS8UimSotEaEF9Muhxs685dJJ8lLE61rhLUlM32IMKSaGDGJ6GfdYG1g84hwJFKJUHOCkgdfT0UyXkLEAe8zUSA+8ntYd+iDyOc856YF8b2ISn4HP9MvDPl+1yqKTaDzbvIa+D6+BuFAlPSII46I1cY2bZAFwjbhrn/Ok0KjzwQ52BjI7lIYCHgi9AMHDgz7pUSSRAhHWliwM8gMxeNzHDdunPnG6hNFLLBEF/joxrpddNFFNWaqsmvHG5XZGoXf4/4/l3BEYPgr5yiAiAIIFf4ePJ4XX3yx0hl5QqSGHSkpZs6NfOdHIxQQDHyv0tPxgZt7Zk83hKMTZhSUOLHHg2ggH4EbEmlJP5wDpBOxwRC19G9e8VhxbhBNpKKfc8WJUf/6hIBEaCAUMwUiz4no40Qj3lp8pwjJfK0D3FvwSVNsIwtS/uD1JRiFfUDHL8HCkYWY3XQm7iaOYKtLOPJ1p59+uqV12OWz28AjSRTuzjvvrK5E4+fgAcqMCLnfU1eLlrFjx3rDhw/3ogZ/y4knnujdf//95odhDrDIDzYLiALmgFOlHrQ/IKKRil4ilUpPxx9/xWpd6V+eZ2PqIoourc3nCE5SlmRMeI6Hy5aw9px88sk5f3+xdgkRHYhMU21NNoNCraDdG4h+E+0meyHRUxi03+G6I2MpYiIcWTwJ0QeBBZU3mMqxbKlo95ybIJGLCy+8sMa/WdSJIlEIw87DFb3wc7KlDoL8nt69e9sC4N8V3nTTTV4UIIVGqhVPBwImytM1oghRWlelTvQ7iE+NVCUbFPxxqnZMF0QD/ZFC/zlBZBDRKBGYbjgPiDaypiAe+bw+nyLnD5t/16Bd5A+dFfCan3DCCVmvURFR4UjKj2roIDz++OPVVYHO2+PHPVdImmbAgAHeQw89ZBeiE478nGyiNsjviboBnWIiPJoUGpGyF/nBhsKlCuuDAgsijaSgSCfJdyaEyAShSIU14pF+gowJrAtaSWGzYuMqn3T+EPnHskUGUdN1YiYc6Z14zTXXBPpalyLGuJ6t8757Ll/fmROBRINoz+H/fcxmzayYdL8nysKwPkivUlw0depU83ao8XT+uIgA5wyLONHbbAs4kQG+FqGphrxCiFwQ9SLaGCT4gWXG77MV+YE4Z90ePHiwjmE9RO6uhTjLN+KFSR0zMGluf3EHRnJu0IWU09PDLbMtwkEHHeSNHz/e0sz+hqDMwXX/H2eIftEs9uWXX7aLR7vWwsDviLmd8xHvrTuOLOoIRTyNeNlUiCT8kJ5WzziRiSuOocDKRR7dhpNOIGTFuPdw7yxHD9A0wNo8adIk0xKZRW+iNom4cx1//PFWIENfNQdtMvDssVvz+x+ZksDDgS8RkZjJo48+apFFxJSDwgcu2BdeeKH6Ob5mzJgxFqGjgXCc4W+jlyWmbCrERWFgSsczSjW/m4mMmMQvu2rVKvu3RKMQIh8QibTZoSKfz9mYUpBHxkvrSXFgHSJQhLdRxDDiWAj0Ths1apR3yy23WKjZTY7hwjrvvPNqfK1r3D1ixAj7iOAcOnSo9TMkTQ5cmJxIiEbEol8QnHbaad7TTz9tOxTa8MycOdOinb///e8TEd5m/BUVeUQdqURPwt8UBjTy5hzh3AAWfDYZ6qsmckFEacGCBRZRClqZL9ID9zXuSdybuEchFhGNPEfFvSgMPOcEnegoEme7WSVJhHBE3AwbNsymtzz33HMWRWQcIF5JJwZzwQJNVJKdG8ZYxCY3/QsuuMDGF2bu5KjAxoBMex2+nrTjtdde63Xr1s1LAq49D3O/WZwwZ4vCoHCLc5F+bHiU8mmrIdIHUSRaNLmRh0Jkgp8fgUPgg6JM2shJ7BTffodsG5lLkSLhCIg55lXzqAsXafR/H8IvKAjJIUOG2COp0M6B9jKkVinwUPSjcNzUIgphiChpDrAQohgQimzusVixVovCwbZGlP+kk07Spj4PZIwQOdvzIJKJqorCwc5ApJF0CBFc53EUQoh8Yf0gIs00ITz12F/wUvNR5AfHkclyLlAigiPhKHK2gWBXu3jxYmtqLYKD3YEmsohFbBREbLE/4BnleEZl3KQQIj6wdvDwTyjD2kDEjOdFftBYnUk7p5xyioqL8kRHS+SENDVtHiZMmFDv9B3xk2ikPQYTCDKb0jMhhsIjCmYUeRTZNmtU42tihfBDNNGtGfRq9Ken8TzS8ouiUNcWTtQPRUUMu8DDz+Q0kR8SjqLOQpmePXualwYDsah/gSfSSAU1kweyNZ4nvUTkkWikEH7owUexnXrxCf+awtAJ+sJSbU/BXSYUgLKuvP/++1aIJ+o/pqSoqW+gI4vIHwlHUSc0QGfkIv48vDQiN4sWLbJII36ZuibvEHkkmgv+yUQi3RChJnKUbXyqSO/mHasLa0pdgyzIZOCnZpMvv2PdIMS5zmi2r01aYUg4inqh/QOTTtilqVVIbvAxMic2SK9Gbgg0BXd9QLXYi2+++cY2H3wU6YYesBs2bLDPmzVrFiidiq0Iq4NbW0RtyPQwIYboLQVGojAkHEW9YBzu3bu3mbJnzZoV9suJZEsHhB+paQR2UBiHiWeJNBS7YPyRQoh088MPP1iTb9aEQqLPtP3CWsS6Imry4osvWsEiE9JE4Ug4ikBgyKatDB328fCJbTA71vkaC4H0E2mo9evXW1GNxKMQ6YUixNdee83EH71f/eNyg0Jqm3XlnXfeqTFeN+2wVlNA1KNHDxWgFYmEowgMnfXxPJKyVmrVs3nePPAsMo6yUEhDUUyzdetW+duESClYFGbPnm1rAJt01tpCoVgG8UjUkk1p2iF1T3cQ0v4tW7YM++XEHglHERjGMmEoJgVCdCzNrFy50nawzPamSrpYEJ5U+JG+Juogn1s6ry+Kqvgo0gfvO5OlGIFLxW8x4HOkTQ+b0iVLlqQ+kzF16lRbV08++WQ7NqI4tEKJvGjSpImlVqdMmWK7t4YNG3pphFQSZnSOQalwCxoLPX5SipKKiTqIeIFoID0p0gWdGFhHGXnXpk2bkq4nFMsgmNLc4JqBC3PnzrWxgmm9X5Wa9J5NomC6devm7bDDDt4LL7yQup2sa4ROUQvtL8oBqRQ8OHidlGZKD9g/qKaVDSQ9rFixwkRNuaZJIRgRpJxXb7zxhvfZZ595aUtRc5+i12Xr1q3DfjmJQcJR5A3p1L59+9pix9imtLBu3TpLeWzZsqWsvwdRzkQDCpKwBNDYVyQfenpS9anensmHDTfFK0uXLrWsRfPmzcv6+4g+0koN8Vju9StKTJw40Ww/p556aqqjrqVGR1IUBA1nMXDT9gFBlXToqUb1ND0aGzRoUPbfR8sIekIefPDB8rwJkTDYEH700UeWSsYnXYn1BOsL3kk2+2nYnNAflwfTz2T5KS0SjqJgOnXqZEUdzz//fKKrgWm1w0KPaHQNdisBv4dIhBszRlESPd6EEPGG1Cl+VkZMVgo2oHgoscHQJzLJa8nnn39uVdRYityULlE6JBxFUbvYfv36WeqDbvxJBL/Z4sWLvd12280igGFV5OGtpAcZk2bSEC0QIml88sknVvgGbEKzzbIvN4zYQ7Diz07quD1sAAQz8HZSECNKj4SjKAoE1YknnmgROdrTJA2EIgstxuowPTL4Hjt06GBinek9pLmEENGHzeeyZcvMX0iv1rALCmkq7uZes44krfUX6+OaNWvM14gfX5QeCUdRNETiSKmOHTvWZoEmAaJ6LPSkc9i5Itii0K6lffv2NhObxr4Sj8kC/9kJJ5xQdA8/ER2w8LCOMCiANZJG/1Ep0qBYBkGL59F1i4g7rInTp0+3TTZ2AFEeonEGi9hH5ZhlzYI4evTo2LcTQfxGdTFFwNLYlwiom4sddgRDlAauH6JBUREWonhWr15tVh6yFhS6Ran5NGsJ3RsQkKx3cfep8/pJUdP0nClnonxohRIlAcM1LXpoHcMOAU7GlQAAO+dJREFUO66QSsI4ToqDxT6qPiAWRwQGIpcWQVR9i3jDuffmm2/aRxFvXOaFIQGIGCw9UV23EY9skuNeMEMrKwYz4LuPQoYoyUg4ipLB6D0WocmTJ8dSyNAkl5031YeIRqI/UQeByzQEBAce07hHe9MM5x/XDR9FPOG9o23XjBkzzDvI5i7qPrudd97Z1u04rHe5oHAQ+06PHj28Ro0ahf1yEo+EoygpXbp0sd31qFGjYpf6QDDSU41FlGKUOEBEFN8U/immUDBtJmlmdyHiwObNm00wIv5p24U3Oi7Qm9ZlWJi2Qvo6Tq13xo0b57Vo0cI78sgjw345qUDCUZRcfPXv3998PRTLxCEChsB1hSZUG0Y9QpAJvin8U23btrUFP0o+KiHSwNq1a73Zs2eb8DruuOOq/cdxg/WalDVdMuLgnSa1/uyzz9qa3atXL619FULCUZSc3Xff3evTp4/1P2QRivrCQ3qaVEec/T1AioabFosofwsjzaJY4CNEUnDiiiwLUX+6HtD9IK4gvA499FBv06ZN3rx58yItHhG5NPlmQMPAgQNjFeGNOxKOoiyQNmAkIX5HKguj6kdC2JKaIT0d1UKYQqDA4uOPP/ZeffXVWPpN0wiCv2XLlrGLeKcRRMuqVau8adOmWcYCawuFMEmIeCGC6dpAw/IFCxZENmuEsOX1EWmkobqoHBKOoqx+R8bljRw5MnLTTkjpuoa8eHuS1juP2awdO3a0jxTOEH1U0UW0QXwceOCBsfHXphU2mqwdZFQYuZrECt4999zT+vOy+Yza2g00+KaKmvnbtCcTlUXCUZQNKgrxO+J7HDFiRKSECykYFnxmt1KVnEQQIG5hXbduXSRvAOInsBfwPsXdMpFkiN7TYJp2O2w4mYOcROHoWn6x+Y/a+kjLHe4n+EhpmC8qj4SjKCv4fQYMGOCtX7/ee+mllyIhGIkYuJmtu+yyi5d0mKDQtWtX80CSdlq+fHnsKt7TwNdff23pNz6KaOHStbSsIcpIb0a83EnHRb8XLVpkPvAoZIro2MH7wX0lqaI96kg4irLDiDyGzVOpR6+tsGCx4fdT/Rhl03c5cP5NUvMrV670XnnlFUv3CCFywzrBRos2V6wfbDRJ4ca552GhAQCGO3AswmTKlCnehx9+aKIxafaiOPF3Yb8AkQ5atWplLSuogsM/U+l2FSz6GKmJfGL8TutYN5r9durUyaIHHA/E4+GHH27PCyF+4tNPP/UWLlxomy2GG7CGJKH4pRDw3hLtY8gAUT6OR6XBU0oHDJp8aw51uKTz7ilCgagjaR78KZVOx5FqoVcjjXnTXoFH+onjQKqetD03SCHETyxZssSijEQWSUsfcsghqd1sOugVy4NNZ6U7NVDhPWbMGNvk4tsW4ZLuK0FUFIpk6LeFv+65556rWLoYIzuikakCpM3FNvBoUXntdu/Lli2zBVqEA5EcChHk2woHIoqugI9uBBSV0VRfKdGfoFclqXoCAJWCzS1NvvFoq8l3NJBwFBWFGyOV1vRAmzhxYkV6hLHwd+7c2abCiJoQRWEhRsR/9tln1maE3paqwK482AVo4C7bQOWhiTTjAok0AhtMNlQSKbXh2HBcWC/oAlBOSI8jGslQEXRIUq/dOCPhKELxy/Ts2dOKZUgHlYv33nvP+heCmirXLyBpgs7caxZpbqL4u4RIMmQj3GaJjIi8c8EhizN//nzr9VgOCCowtpZimEGDBlnEUUQDFceIUCDdwXB6JsuQFmJiRimhchgj969+9auS/tykg/+TNNQHH3xQPa6QaCQPbqyifDDffdasWTa2Lmq985II5zcbJEbVUTBH30IRHHpY0nOUFlJsOEudvqZfJht/MlQMkhDRQXcCERpU927evNl74YUXLJ1cqt0+O1RSTowAa9asWUl+ZtqijwcccED1vxGRK1asMBFOul/pu/KRtjZRlYbUJ+sDQsQ1yN91111TX/hSCKwDFNkhHOfOnWvDFBhXWAro+MC4VPrPMjtbRAtdLSLUheeUU04xz8wzzzxTkupefga7VIQPlZCieGifxM2V40qEhpZGUZ1fK0QuQb569WrrX0pVMNkOVyAm0Vg4HDtardFerVS9LckWkaLm57Zr164kP1OUFl0xIlRIf+Jf2Wmnnbwnn3yy6DY9+GConi516jvN8N5gLSCFys0BbyrFBELEAfrHTp061foAsgGik4D8cqUVj0QeGzRoYBFdfKOFQlcHimHwwZ988snKbkQUCUcROniMBg8ebJ6jp59+uqBZvfQV27Rpky00SqeWB6ZmUEDToUOH6nFrWAK4MSsCKaIEAsZ5dIEUKoKRDRBTUER5wFfOZK5CxCPfQ/CAdea0005TJDjC6J0RkYDF4owzzrAKvdGjR+clRIh+EQXDuyTKD8VMroUPUzWorJw2bZpNoZGALBza8CBu1I6ncOjDyGg8Ioz+1jpExHRcyw+ecgIBTHhhbQgKvX2feuopWz+4D7gZ2SKaSDiKyMAC369fP/MgMZM0CPQSw5hNRIEUtagcRAQoLqD3IMVNztAu8VgYNP7mOKoBeP6QpaD9FoKRqBe+XJpVi8pCn0WyEnyk1VoQ6xEb0JEjR9paTuaJlLeINhKOIlKw2J9wwgmW7kAQ1gUGd3qwEa1M8/zpsKF1DO04GM1GJTvRSCI/S5cu9b755puwX15s4FhRgKRj5uUVqXKpaSr/KdKg2T9TX/DmisqDDxrxyAaovh6PbDIZBEGUmPQ0gl9EH7XjEZGDGcqIQhYUGnfTLyxXYQ1eOyKNitKED5ECFy1g8gxtfLgh0BuSKncKE0TdIgi7RZMmTSzdJ3KLDQQJ06e++uora9nCOtG9e3etAxGB94NMhOv9SlQx28aeKndsRr1797ZNp4gHEo4ikhB1ZEYpPR7ZwfobeeOdYWHCs0SkUUQPqla5oTNdghs8aSt65x1++OFhvzQRY8FIqxbOJ6KynGP0+HOFcBKN0cKJRorniAYThfS37KHZ/cyZM03wU7Qk4oOEo4gk3AzYhRKFwf+CYZoWDYhGRAhTCkhHiWjfOIieIRipeHc3EnptUgVP9TuePiHqguyDK8iihyiRa9YCTdeJB7xPBAEY6+j8j9iQ8LFjb2nbtm3YL1HkiYSjiCykNk499VRrDs4DDwzpTyILMr7HB274rn0PIP5JyZLGRhAgIEvZQFjEHyKKVOkTseZ8QWBgg6AhtFptxQsyQwhGNvxvvvmm2TAmTJhgliS6CIj4oWoCEWmIUg0cONCqpocNG2YjCtmhql1DfGG0JOkpCmqwHNCYGYHgqmPTOnaPcxqfV9rPbdo7EY0ivUk6muvdRaYlGuMJoh+hyLX+4IMPWnsk7Eh6P+OJIo4i8pDaYK41VbrLli2z6AOCQ8Q7mkzRDA8aNTvj/PLly80TRWsmHkQk0wLndNrGZLJJoA0LGweyCBwDUtFEqBs3blxtbxDxh6kwZIwYINCrVy+Jxhijq1JE3hDPAnPwwQd7119/vTWJffTRR71zzjmnRvpTxBd/hI20NSAkKIRASFBQk4Y2HbQw2rJli3nCki6YEBFsEPC6EmWmdQ7pad5vPLEiWRA9ZpQgvvT+/fubdx2rSosWLSQgY4hS1SLSN1L6ObqJMKQ7zjrrLPPMIB4pshDJgveYOeOksvFFEXVyrWlWr15tTcZpxULfvqThCr/ymbgRFxCHbAa4pgH/IiKZ4inatnTp0sX6sYrkQRU8HvWmTZuaaMSjznhBnn/77bc1MCCGJHtbK2ILwgAjNQuMv3qSyATicfjw4dWRR3xQIlkQhcDXysP/HB5XRAc3HyrruRlJcEQTeiwyDtTNkUcg4HMjU4DHTQ37kw+pabJEbBAGDBhQ3TKJc4AWPPhZeY6sgiKP8UFXroik74l2DbThaNOmTa22G7/4xS9MPOJ9VOQxPZDCxOvKA+sCqU03OWTdunXewoULrV2Le05UFlquIOpdcdOiRYtsfCiCkX6L3bp1q7aXSDQmHzIETz75pNlPKHDMtF/QSYHhDWSUOE9EfFDEUUQOZs0iBhGNuaKJVFmeffbZ3mOPPeY98sgj3plnnpkKH5zY1t4D4cjDQQqUqBYRDmCzQTSSAhtRPhDqHHciiy7Fjt2A44+fDf+qGnOnD4rcRowYYZs9RCOb/Gzsu+++ttHI9f8imkg4isiBIEAE1jeijhvUueee6z3xxBOWuh48eLAtRCKdLX54EIVEyPBwUS08kVTjU6FNWpuPiM+oRb1I1VEcEsWUHdYRxkiSBcA+4iYAcVy58WMpoCKca9b149Ss6HRCy53nn3/epn3169ev3kIvrlsH163fniKiSWKEI4vZvffe682YMcPae7CIXXLJJTVG1eUCc3YuGGl3++23V++u2T1l4w9/+IMZvEVhkM7iJsQOlWKIoHONSVsTecRHQ/Tx9NNPt7nIIp1w7pAac9XZQNQLsYjoIZXKuUYbIPpIIogQlvw/QidM0cZGiHRu2CAESfcjYilqmTNnjolGjhtim9fJ80SJ2rdvn/gKcBEcPIvjxo2zjcUpp5yS1+aMqDXTZai0JlsgoksirngWuquvvtrK+wcNGmRpktGjR3tXXHGF98ADD9S4iWTj2muvzZouHTVqlN1cMmEGLyZvP1SCiuJ2qXhieO9cFW1QuMENGTLE2j3gqcGE3axZs7K9VhEviDK6AhqEItW8TiCy4eRmB6RU2YggjCje8M9FT2K61bW6cpN8KGbhwb+xgtAvFXHIsWNDh7jmeb8YkGgUDjYYL7/8snfMMcd4PXr0yHsThv+VbBN+R643CmpENEnEVT99+nQTHjfccEP1CKPOnTvbfGP8b9ddd12d30/rj0xoE8CJny2KyMmd7XtEYbBQIBrxRNF+pRBIjxFtfO6556z1A6MKMeQL4Ycbkt83ixhiggViEhGJcPJPrpk1a5ZF39jMkN5GWDLdhX8jsPhahGUpPFpE9d544w3z9iJei4XXjbBD6OEZ5kEqn9fN30mKkKbbZGjoqcjfx82biL3/9x922GFFvxaRXNiAvPrqq3Yfprk3995CI/ecj2zuKKziWq0v6CPCIRHCkZOWm4E/5cwNgerLyZMn2wKazxxcvp6fScUXLT+ywQLMoixTb/EmaiLFiDy/16UQeD+YZz1mzBgTkNwQW7VqVbLXKpIJawOCKVtDeUSci8QhLJly4vrOce66UYnc5BCQpNiIzvH1/B/Pc17yIGXu1hPEG4KOG6x7IEJ5nvOWNYjfw4OfwTpDeph0O4VA7sH3ucgMPS75fqqbefDzmO3M2kjDbdL0vEYEor/VEf9PFkWIfOH8nDRpkkUbOYewLhQL2TtnIZFwjCaJEI4s4EQBM/0U+BzxW7Bg5uOZwGfBwp/Lb0Qhxj333GOLNh7K3/zmNxaerwtMv/62Ma76M+0Q2cDTUipfIudAnz597CbNe89NmFm3QhQCG9BcYw9ZXxCJTqjxcDYLPieK5wQeIo40rxOOeLFdM2wHEXdSxnwvkU0HaxfXCMKVtcl/ruPL9Kf0+Df+YM5/FyV1rzVt4wxFeeGcHj9+vFk9Tj755Ky2rkIhyu02aIjIJFpF4kwihCNRABbdTFyBBYItH+FIlJIoBB4fPyzUXBxENtmt0zuOlgNXXXWVd8stt9iki1yMHTvWBKfwqt8T3h+KFEoNgh6PDTdPdsOIRywMUaxWFfGF6F2umemsD36bCzdZ/7QbIpkIR3dz5CNRSYQljZHZULlIpBOjCFiiOnwdN9LMjTIZEiEqAecyldNLly71+vbtm/X+Wwzu3GezRDQTz7FGzEaHyAlHFlhSMkFA3HFyIQyypaLdc/x/UEj1cKKysBMh8EOLmNtuu63Gc/ijaEZ911131Skce/fubWkjf8Txpptu8tIIUZV33nnHKtYL9TTWh/OnIh6nTJniff311yYmo9aCRaQDzjv/uZetPyk+SyKNrDOZTe/dz8i3cEyIUsP9dOTIkTYyEGtQOSPZXA9smJgiRkFq0G4bImXCEUFBNXQQHn/8cUsVIQ6yTYtwz/H/QcHbyPcFbYtBZABBQjUvPqJcnsjM8WlphfQd7zHptXKJRj94brjZTpgwwcbVsdDlcz4IUSm4SWKr8KephYgSeGxpfUYhF31zDzzwwLL+PjZLBBgQjhSOEZzRiNHwiZxwpEDimmuuCfS1bvfB7j3b2Dn3XD67FNLU+ILy8cU5sUhYPZdwFNv6YFKtjuG5khXPFMiwa8VW8PDDD1u1fbaIjhBhQgpaERUR5U3/008/bYVaQ4cOrVjq2FnE8Pfip6ToVZmjcImccGThJIKXDxTGMKeWNLf/hMJ/gQcpaGUWBSwImxNPPDGvKmy8jiAxUr9wZD4pfphK+w3xuFLERGSY3p607tE4OhElKIoh/UehWC7vpBBhtUx74YUXzJNOr+RKR8Xx9GIfo5uJRGP4JOIdoIiFAhkqFf0h9WnTplnk0C8C2TXxyMYrr7xi4jNXmpqfma3b/cSJE02YKBWdHVcUgMEZA39YRSrskBGPRB8pVGJjIUSUvGMrVqzIy5MtRDmhaGv27NmWraGDCFO6wrJSEJGn7oB7tGs9JcIhchHHQqBilikvVDa76SNMjuEEO++882p87ZVXXmkfuRCypakRf25qRCa04EF0kvrk6+gzRbU0kYLLL7+8TH9dvEHQz5s3r7qpcdiVzdgQWPw4P5g0wyaBzUXYr0sIIaK24ccbTnqYTiKkiKOwTtKNAL86Rays3ZqJXnkSIRwJYw8bNsy7++67qxs/04Eer2TQptJU+jIrmXF1uULh+CxISxOyx8+ICGEmJ1XVQWZipw0itBiaEfJRMvzj0enfv795Y9ks4IWlD5l6hQkhxLYBFwRXuC/SFzdKrZ7IIFIk89prr5l4pFuJrB2VJRHCEQhhM6+aR11kizQCAtOf6s4GPdQ0YSEYVN1hZuZ9oTl61ESZa9eDp5ZG4YhcNg1agIQQaYZoHl5wUsFnnnlmJGdGs04jHkmjIx4Zdai56ZUjER5HET1fDOkNUgikqKN8QbOTZnGkcOehhx6y1LoQYUVS2MDmU5gnRCkhwvjggw+azQs/eBRFo4M2a4hHil+jfI9JIhKOoizRPHygNGyNwyxvFkfaS+Dpuf/++82yIEQYN0I6DqjJtwhjs4+tiKJB/PuIxji0hsICddBBB9nn9FEOOjxEFIeEoyipL4bm3ggwUtRxipywWF5wwQXWUJ5eZVOnTrVdtxCVgusG77R/NKEQ5YaaAIpLX3zxRcsQ4dmPW8EJBTO00qNRuK6f8iPhKEq2+OA1oT1RXHd9+GboUYaPddasWTaZ6Kuvvgr7ZYmUwLk2ffp0nXOiYrBe09eWNlB4vBmhGzU/ehBIVeOlx1uPeNSmv7xIOIqiYUQjopGdHp6TOBeYkGZnTCEte1hU77vvPvP9CCFEkli0aJGJRrqInH/++V6LFi28OMMoQsQjxT1vvfWWxGMZkXAURYFYpHqaiCOiMUptd4r1PV544YW2GOH74W/EBySEEHFfsxlaQes62tbhZ0zK8Ap8mbTNwzYV18xXHFApkigK0hqMEWRGN30tkwQ+TSKP+B1feuklb82aNV7v3r29HXbYIeyXJoQQebNlyxZv5MiR1kWC3rWtW7eORFPvUk8Io2E5fxfikTR20v7GsFHEURS8a6WKDahqYypMUoVx9+7dzf+DD4jUjvu7hSg1msMrysX7779v1hsKsJioRmQuqYKKv4tUNU3CFy5cGPbLSRxapUTecEHOnTvXRgnib0wD+H+ouubGjnikelypa1FKmLBEFIiPQpRyvX711Ve9J554wrJDWHD22WcfL+mwVh944IHmUV+yZEnYLydRKFUt8l6EEIyM6aN1Q5xa7pTCP4MfiPmtjJ1877337EavvntCiCjCQAPWqo8++sg7/vjj7ZHUKGM2aA7OPYuoI9kjPJ2ieBRxFIEhwrZgwQJL1eKNSYqhOh8Qyn379rVZ16SumY9OCkiIYqEND2NP1Y5HlGKtZoN/77332vl07rnneh07dkyVaHTQm7dly5a2XtOuRxSPIo4iryar+GOOOuoob8899/TSzKGHHmrj4caMGWP9HmkD0a1bt1hMyhHR9Q1TvKAGxqIYEIpjx471li9fbms1vRnTXtBHypqiGQoeRfFIOIpAUJ2GKHLVasKzgqAhQ4ZYw9nJkyd7K1eu9E499VTzEQkhRKX5y1/+4o0bN84+P/30071f/epXYb+kyOBEIyNl6TVMJFIUhoSjqJd3333X27Bhg4nGOE4VKCeIaLyeTZs29Z5//nnvwQcfNB9Rhw4dVCErhKgI9NGlZRhj9xCLtA1LSk/dcgRBiMZyL9t3333DfjmxRMJR1AkXGB4+UrMSjbnB7zl06FDzqDE2jsIZvJAU1AghRLmgapgCmK1bt3qnnHKKd+SRRyorVAfcy7CD4Ndnc68MUf5IOIqcIBgJ6x9yyCHeAQccEPbLiTwI606dOnkHH3ywRR8xpuMvatWqlRZyUS877bSTnSt8FCKI55xN6uzZs616+KyzzrJJV6J+Dj/8cKu2nj9/vvk/tcHPDwlHkRV2r0uXLvWaNWtmDb5FcEh/XHTRRd6kSZO88ePHWw+xnj17anESdYKHWNEPETTKyNpCW7QuXbp4bdu2lTUmD9jIE5nF9/jLX/4y7JcTOyQcRVbwx+BpTOpEmEq07UEsEq1lgb/nnnvM99iuXTsbgSVENp/a2rVrrTlz2qtgRXaYwTxlyhRrtcMG9fzzz/f22muvsF9WbMWjC4rQpocIbqNGjcJ+WbFAdzBRA25cXEQIHonG4qFo5pJLLjHvI9MbFi1aZIKySZMmYb80ETG+/fZbi04TmZZwFJl9GVk7Xn75ZRM4DB7A1qAoY+m8/Bs3bvSOPfZYpfsDoLNOVPPxxx9bVR6RD43TK20KknQS6Wv8a8OHD/dGjx7tff3112G/NCFEDKa/0CsW3zQbzksvvdTmTEs0lg7S1gRK3njjDTUJD4AijsJgGgzpj8aNG3tHHHGEijnKwB577GETHDBk0/eRXW737t11vIUQtSCy+Nprr1m2Yuedd/YGDx5shXei9GAfYojDnDlz7IFnVM3CcyPhKGxaxdy5c03Y/PM//7NETBnh2JJiotcaxTNEHmkLQfo6jSMchRC1+eCDD6qLXxAx9IbVVKrywvElVc29ENEuciPhKGxnRfU0fjylPyoDEQSmzBBtnDBhghXPtG/f3gpoVDyTTnjfGeWp9z+9YF8hG4FliBY7F154YerHu1a6qJECRqBdD83C5TeujVaolEcaoWHDhkqBhARi/eKLL/ZmzpzpzZo1y6KPXbt2tSa1ivymr5MB6TKRPohwMbqUtDSQgVD/1/AnpmHhIuLLiELxExKOKeXLL780Lwc9rAjPi3BTJJ07d7boI9GG5557zt4bmodrnmp6IMKBgCDiqMh/OqAIkUr6qVOn2kYesdixY0eNC4wABx54oLd+/fpqz6Mijz+h1SmFfPXVV3Yx7LjjjrZQiWhAG5ZBgwZ555xzjv37kUce8Z555hnzOYl0bOZot8JHkY4m3g899JA3atQo85eTeaDNjkRjNKADBoKRdPXrr79uH8U2JBxT6KFBNOLl+PWvfy3DdQSh5QaNffv162c73rvuusubOHGi2vcIkZD2OiNGjPAefvhhm5l89tlne6effrq3++67h/3SRAaIeO6T9FhF6IttKFWdMr7//nvza9AHDPEoognepsMOO8wasbPbxQP5zjvv2DSfNm3aqIBCiBhOfWEIAFW7CJK+ffvazGT5GKNfPMq6S4ZObEN3nxQJRsQGnkYqd0U84D2j2po2Sdx08EJx46GhuApohIg++Fa5Zrl+8bHiYcRXrmxPfHCikSEZH374ode6detU+5AlHFMiGklPUz1Nh3wRP4hQnHTSSVZ1y6xaCmhoDkx/N3pCSkAKES1IQ9MlgWwB00jwk3O90opLxBPE/saNG7233nor1eJRwjHhOGMvHg0VwsQfmoRTQEOD4GnTplnxzF577WWpFNLaEpDxhZFnPXr08H7+85+H/VJEkRFG+jDSXgvB2LJlSxOM8jAmo4Dx6KOPtggy7/FRRx2VyjVXwjEFvcEoqqA6TDvd5ECbHqqvEZCkwDDbU5mJgGzRokVqd8JxhhuQvKvx3qQzThTBSOcKPMrYgiQYk8Uee+xhQRiijkuXLrX1Nm1olUowa9eutR0vVWFEM0QyBeRZZ53lrVmzxgQkrT2ISiIg8UBKQMaHrVu3eosWLTLBoZYs8bICzZs3z5s9e7Zt0nn/uP6ITolkstdee1mqGvtXGpFwTLioYLdLPyqRbBhPNmTIENssICCff/55+0jEg8pNCch4ZAjwT2lObnwEIylLvMZUTNPAn+utUaNGYb80USHx6M6Djz76yBqGpwUJxwROIiBd0rhxY2/vvfeWaEwZ++yzj3fGGWd469ats/Flo0ePriEglQoVojjwiyMYKTj87rvvrOCQzge77LJL2C9NhMDGjRtt+g8Csnnz5l4a0F0kYaIRwy5No/fdd9+wX44IETYNFNHQPgIBOXbsWGvlQ3qFB73JhBDB2bRpk/fGG29YP1UqpimMQDCmNV0pftqss5lgtjWFbQcffLCXdCQcEyQaFy5caJEmFrQ999wz7JckIpJOGTBggN30KJQiSoJ5n0pPGomz6Akhcq+rK1asMMHIR7ynFBpSHKHNl3A0bdrUNhN/+ctfTDwmPW0t4ZgQWNRoTEqjaKJNQvihYIY+kJ07d7aoNCKSjQaRaQQklYFqAxN+k2EKKzShInxIQdODkeuEWfGsqUx6YcMlu4fIRrNmzUw8puH8SP5fmKLiCPyMiiCJumDcJFX2iMX33nvPIik0E580aZL1JyOSoorecGAEKHPKRbhzpBGLbK5or0Nv1D59+tgGK439+kR+HHLIIdWf05IpqS3wJBxjDn38SEciCCQaRVCosmbiDI9PPvnEBCQTLvBD0sYHYUmBlagcCJUNGzaYzUTj6Cqbjl65cqVdA2ymiPgyoYmNlNqYiULYsGGDFVCxEU/iOirhGGPef/99M+S61jtCFNrQtlevXjb/2qWxSdOxIaHFCNXYikKWH3oAcvzpAaiCi8pEFyl04fH555+bYOc6wC4g4S6KXVP33ntv6+/JBiRpNQcSjjFl9erVJhqp4JJoFKUAq0O7du0slU3khRsqc7EnT55s5xltR/DxyAsp4uxdpHUKGyM84TvssIP5Fjm3sfsoHS1KwXbbbWf1Bj/++KNNmCGCnaQJQhKOMYQpIUyYoHIrLX2jRDhpbKJgixcvthvts88+W13AwY2WFIxutCLqcPNetWqVbYQYEUeDddbOfv362fqp6KIoB9ttt511OCFljRVCwlGEDiZ6dspClDsKyW6ZB15Ibr5UY5POJh2DgERIqjWJiBq0oHKpaEavulGc2C/kXRSV2oS3bt26hp82CZttCceYzbLFa0ZKhYcQlQSh2K1bN/NC4q/lhvzKK69YKps+ZrT0IUopP2RhYAFg+oisAIWzefNm66VHOpoxcBQNUuzFBofiwSTctEW8+Pnfrmfu30QfiULGfeMi4RijsUZEedwCKESYu2g8jzyY0ctNGuvEuHHj7LH//vtbCpDWFL/85S/DfrmxgdYdTCIRwSGCQyScFDSCkUlJ9NEjFd2/f387D9PQV0/Eo93Wz372MxvCgJc8zq16dEXFABrQslPBI5HE0n4RX/A8ujGG7KiXLVtmN3GKal5++WWrzEZA8uD8VcRHlEIs4vNGKHKuEWWkyIXCLWayH3TQQfZvIaLE9ttv7x177LHea6+9ZuKRCURxzc5IOEYcFkUijY0aNbKbMzsWIaIIiyBpGB5Ur1KZzc2dhXLatGl2DiMgiQKpoXJttmzZYn001Y6nNkzkoMCF84kHzZU53ziXeBxwwAGKLIpYRB1//etfe7Nnz7b7eseOHWO5DupKizh4yfBD0AtKolHEBSI+eMt4UMXKTZ/oENXZLJqkafBFcsMnrRh3z48ofVSRTAvVqJw7PL799lvzgFKMxQaEzYfWRBHHtbFt27bWsSKOohEkHCOKq76iFxSfyzAv4gqRIOeJpDUKaUZS2ogCCmxg1113NQGJkOShec3pg8pnv1Dk3whDBCIpPiKLNFKO681WCAdFWzy4t7MWsvYRjYwLEo4RBK8YTUNJ+anNiUgSCAEa1rum9ey6nVAguo6XF2GAN5LFlAfFNuq1lzworGKQgROLtM8B3nsi1WwgOE/idEMVIh+IotOInhGFRCHjss5JOEYMbqR4wojSaMEUaegTST9S15MUn58TEkQjSWsTbaf9FAKSjgKM8tKGKl4QWWGs39q1a+3xwQcfeOvXr7fn8b6yQejUqZOJRc4JIdLAjjvuWF0ww6x0Po+DVzf6rzBluw+qrbhRYqBVZaBIGxSFYM9wFg2iUE5IMveV4hHAE4mIdEKSB6mfOIMY7ty5cyLS9BSvrFu3rloo8jmbYqBFE5sAfNsIRhUCiTTToEEDu98jHimYadOmTeStaRKOEYI0HTdLQtZxvwkKUSykrGnhw4PFlGsD35tfjMycOdMquIHJIAhIJyhJecZh9+5P48exPQcbXqKH7j3hI5Fj4O/hPWHykBP5cfwbhSgnDRs2tDWO6ygOBV/xWVXrgKjEqFGjqpvA4p258847LWqRT4Pt//3f/zXxhoGf773ssstsoctk/Pjx3jPPPGPNZrmp0WiWuafFgq+H9HQSIg5ClENIssDyYEoNuKikP7pFQ3Lat7AAU4WLoMx8RPEaIyLH+kURSNTStRxnoogc68yHE4msXayXrGNOwPNeqZhFiPrBssEDuKbIQERVRCZCOFKl+dRTT1n1HakPbhz5LthXXHGFFaUMGTLEohQjRoww4fjwww/XSKWMGTPGu+2227zjjz/eGzhwoM3tRaSy6x48eHDer51WJVRVUXHKTU4IUVhUkhnEgGjEbM7u3Ymbd9991zx2CCAg6kUld6agJI0a1mL9ww8/mPClTVFYsB7ROzabQHSRXY4PNziOF61xOPYIRY5nVG90QsSFH374wdLWjHilQDaKJEI4Mh+XKCBegenTp3vXXXddXt8/evRom2t63333WX8wIGx8zjnneM8++6x3wQUX2HMsnA8++KD5EW688UZ7rlevXhahfOyxx7zevXvnbdpH5PK6Eb1K4QhRPPiDnO8xc0H+7LPPaoghxOXixYu977//3r4G4UOPSa5j9+D69P+bB1aSOEXSEMxskL/88kt7kPJ3n/uf42ucuCYqizjkBkaEl88Rh5qnLUT5oLKa0cJ4uikQjGJ2JBHCsdi0DmLTzdZ10AYCtc/ECycc58+fbyHkPn361Pj+vn37epMnT7bClu7du+f1u4lyduvWTaJRiAosyPQB5OEHoYRwQkgiLP1iilYZfHSFHf6f5UQk6w+FbDxI1/o/5vqcrAbC04nPbCLUCTg2pnxONJDNKw+Erv9jrs9ZX9zfQiTWwe9jzXGimLQyayD/dtFE/q44iWMhkkLjxo3NLofmiGIUPxHCsRhYlKnaPOmkk2r9H0ISzyM3DRZRRqgBC2xmxJM3d/ny5TmFIzclJiE4VqxYYR9Jg3/yySf2EEKEixODmSC68E7j82M9QJC5j2wmEWo8iGq6B2tLPvA9REDZhObbz40IIN/DA3HqPndRQ6qYEYo8WMvqEoXYbsjACCHCpUGDBiYewVlFokDqhSPpGRZ8UjCZuOcQfSy8CD8W6EwvIgs0b7BfGGYyduxYb/jw4bWe/+///u+S/B1CiGSAP1MIIfwQuDr88MO9KBA54cgunZ13ENhZF5tKcSo+2w7fNeB2X8PHXO09+Nq6dgT4H9u1a1f9byrAb7/9du/qq6/2DjroIC+N0AT4pptu8q699trqSSJpRMdBxwB0DLah46BjADoGP2Un//SnP0XqGEROOGIGpcI5CI8//njRB9M12c4mVp1h3n0NH/EZZYOvratht6vazATRSKo7zfAepv0YgI6DjgHoGGxDx0HHAHQMthGlaVmRE46khK+55ppAX5stvZwvpJiJFmZLM7vnnODj9+F1ol2FP12N6CTlXYrXI4QQQggRVSInHBFfPXr0qNjvo6iF3o803s2E3m+09HBV2/RaBL6WljwO/k2K3f2/EEIIIUQSiV6ddwWM53gn/NDMG/HnF4+04Xj77be9jh07Vj9Hex4ilDQB98O/6evmF5NBBDJ9ItMcpdQx2IaOg44B6BhsQ8dBxwB0DKJ7HLarcs3CYs6jjz5qH1evXu1NnTrV2uvQCwnOPvvs6q+7/PLLvQULFngzZsyofo62GkOHDrWPgwYNssppJscQRWRyDNMkHC+88IJ3xx13mKBk/iqezJdfftk7//zzvTPPPLOif7MQQgghRCVJjHA87rjjcv6fXyRmE45AH8XMWdWXXnqpTXTJZNy4cTZRhp5rTFWgAfhpp52mZrlCCCGESDSJEY5CCCGEEKK8pM7jKIQQQgghCkPCUQghhBBCxLMdT9xhPOGoUaNsMgxV2sy3vfPOO80zGZSNGzfW8ltedtll1hook/Hjx3vPPPOM9/HHH3u77767179/f69fv35eFPjyyy+9e++91/ykTNVh9vcll1wSqJlrXZ7V1q1b29QdwGc6cODArF/3hz/8wevSpYsX12Pwxz/+0XvppZey9jp94oknajzHecJ5MHr0aO+zzz4zb+6QIUO8rl27emFT6DHgb6Lw7NVXX7VxW/wcCt46d+5sRWyZDfdznTMXXHCBHYtKwCCAhx56yJs0aZK93qZNm3q/+c1vvKOPPjo1132hx4D3+ZVXXrF1k3MY/zidKihuzGx+PGDAAPvbs03o+rd/+zcvzseBgsxs42npNzxlypRUnAu53l/YZ599vKeffjpS131dUHTL+0N7P3QBx4Fe1UHbDuazfs6aNct75JFHrHMMRb0UCZ911lk5J94VioRjiVmzZo331FNP2Y2b/pBLlizJ+yRjcs7WrVvtpOcNp8KbGwgLSsOGDWu0AbrtttusnRDiaeHChSZSv/32W2/w4MFemHDjY5zi+++/bzd5Xjeihr/tgQce8Pbbb786v58xU5lwQ0GUZ1t0EEjHHntsjedatmzpxfkYuJvFVVddVeO5X/ziF7W+jp/35JNPer169fKaN29uC8gNN9xgBVthiudijgHn8S233GLv4ymnnGJN97meWBjnz59vc94zC9LYVJx44ok1nqtkf1Ve7/Tp061YjjXgxRdftPeP67KuObNJue6LOQZ//vOfreVI9+7dvT333NPOGbpYvP766yY+MjcKvK+Zm8ZsxYxxOw6Of/3Xf/V23HHHGj2HM0nqucB5T9DFD0LywQcfzLr+h33d18WWLVtsI8A5zaQ42vyVY/3kOvnP//xP78gjj7T/X7lypffYY4/ZwBLOpZJCcYwoHVu3bq3asmWLfT5t2rSqDh06VM2fPz/w9z/55JP2Pe+++271c6tXr67q2LFj1X333Vf93LffflvVs2fPqquuuqrG999www1V3bt3r/riiy+qwmTq1Kn2d3AMHJs3b67q0aNH1fXXX1/Qz7z11lurjjvuuKoNGzZUP7du3Tr7PU899VRV1Cj2GNx88832XtbHJ598UtWpU6eq22+/vfq5H3/8sepf/uVfqk499dSqv/71r1VxPAbff/991cKFC2s9/8gjj9jPnDt3bo3nec5/DCrNkiVLap2LXKeDBg2quuiii1Jx3RdzDLKtky+++KL9vHHjxtV4/rTTTqt1DKJEMcfhoYcesu/lOqmLJJ8L2Rg+fLj9vMw1Iezrvj6+++67qk2bNtnnS5cutdc7ceLEqlKvn2eeeWbVueeeW/XDDz9UP3f//ffbPZO1pJTI41himDJDk/BCYXdGxIhwtH9WJ83Hp02bVv0cERd2Mn369Knx/bQGYqc2Z84cL0xIOzVq1KhGGoHQeadOnSwa5uaAB4Wv52eymyKFlQ3+7mwzx+N+DBhzSSQqF/wsZqjz3juIxHFukP7MN+odlWOw/fbbe4cddlit5zt06GAfMxv5O0jn8Ajjb6UHLOlSB1Gyk08+2d4Dhg+k4bov9Bhks/O484b+vNnges+MTEWBYo6DH677XI1PknwuZIM0PVaVbGtCmNd9kKxRoc27g66fXB88yDj509KcC5w/rC+lRMIxQhCWJrzMDSQTbihr1661lBbg+YLMr8X3QEpj+fLlXpjw+0kVZKZX+DtIo5DSzwfC8F999ZXXrVu3rP9PKuCEE06wlDXeljfffNMLm1IcA74OLwwPFly8ne4ccHAukNJCaGT+Hvf/STkPAP8b+NO3DjyhpDo5T2jIP3nyZK9ScJxJx2VaCdz7sGLFisRf94Ueg1x8+umn9tE/hMEvnHivue7xxI0cOdKLCqU4DqSeue5Jwd54443V573/d6TlXOBvYaOYy7Md5nUfhfXTvdeZvsfddtvNfK+lvgfI4xghvvjiC9tBZNuduOcovqE4ggWV3Ry+r8woDRFPt+CGBYvcEUcckfPv4PVhlA4KCwE7N7w8frig8LywI+MiWbdunXnD8NHgr8lnDGTUjgFfd/rpp3vNmjWzXeMbb7xh/hb8LniE3M6Sn8N5kOn3858zSTkPAGM8N6M2bdrUeP7QQw+1nThRCX7u888/bzdcojaZUZlywO+s79pN+nVf6DHIBX5x/t7M6x7/OB45PF4cP7xz//M//2M//+KLL/bCppjjQCHQqaeeat5e3ld8i3g9KazA1+aEWJrOBScEswUOwr7uo7B+uvc61/Eu9bkg4VgHRAKCpj4RNcVOjnFhdi78bD/f/zV8zFUpxdeWMmRfyHHg97vXnPn/kM/rYwEg7YJQyKyuxHCMOdwPEQgqye66666SCccwjsGFF15Y498UuXCj5OZBCsMVvfBzgpwzcT8P4PHHH/feeust77e//W2tc+Huu++u8W8qCqngvP/++y1yk1lcUWoKfR+iet0XQinPRcTChAkTbPOUWUR166231nqvf/e739mmkYriXHaWOBwHCkn8MN6WCBNiCAHpKoXTci6w7lBtT+StSZMmtf4/7Ou+nARdP13KOtfXZmapikXCsQ6YQ011UtAbWmaqMF/cCZ7t5uxODPc1fMTXlg2+tpQXSyHHgd+fzb+W+XcEAZHE9+VKU2fCbpsFgypjRkmW4iYS9jFwkJKjwhTx5IQjPyfIORP3Y8AMeqoqSdkHiSRw0yJyw8Zi2bJlgSpZi6HQ9yGq130hlOpc5Fz705/+5B1zzDHe+eefX+/Xs0nh2sCiwkhZ0pZhUuprkrWPjfC8efOqhWNazgXeT7zamYI6Ktd9OQm6fjrBmOtrS30uSDjWAakh+i0FoVDza6bg4QTIFlZ2z5GOdb+PoglK7f2pCi5UUjeleD3FHAcMvXX9Hfm8PiIPO++8s9e2bdvA3+PEIj2wSiEcwz4GDhYAzhPeY//vo8UD6Wx/1DvznInzMaC3IX0tiSDn01rCvff+41Uu+Fu4wWVS3/sQ1eu+ksfAD943zjPS0bSUCtqDrpLvdSWOQ7a/L/O6T/q54NZ/LEn59KSN0rlQDEHXT3/qmixc5tf6i+5KgYRjHfBmBG3SWQq4OFgs6VeYCc1DaQRM1ba/RxVf60/H8m9C+6XsYVXIceD3483htfiNvfh0/uEf/iFQD0Png0EUYRDPFobPBV7HXAUUcTsGfkg5UEnpLxagNxhNgDGP+1M5nDPu/+N8DPg76OuJ8fv666/Pq5mtOw+yFVeUGtejDWuFvyCgvvchqtd9JY+Bg0IgGngjhIYNG1b9d0ftvS73cciETSF9DP3vb9LPhcxuGvmI7SidC8UQdP107zUR1hYtWtS4fyLe/ZXtpUBV1SFCO4LMliKYwLnw/TeRDz/80C5AvC4O2nQQqaABrB/+zQkVZlGI+zsw9tLt3vH5559baxEih34RyM2CRzbwtnDR5EpT8zMz4UKZOHGimYZLFW2r9DHAu5LNl/Loo4/aTcRfGNK+fXsTU/ifHHwN5wIVdZjH43oe0GKCBrh77bWXpS5zpVyynQccPxrGs3kIMqmnWLg+iQCNHTu2xo2Pc5HF3EUCknzdF3MMiIwQTeYGSTPwXDd9okj8Dj+kbLGmkKbMZ0pXFI9DtnOZojie91/3ST4XgnbTiMJ1XyoQeRwHv/0g6Pp5wAEHWEZo3LhxNa4NzhuyUJnFZcWiiGMZ4Obu7z3G2DR2DcD4LMfNN99s/g3/SUHfJaJH3CzpFE/VHIZvduD828ENdOjQod4dd9zhXXfddeYFwhfEaCc8QcX0kizVosHFS2Uzx8F1vEcEnnfeeTW+9sorr7SP/J3Z0hSIv1w3g3vuucfERqtWrezr2JWzUNGq4PLLL/fiegxYLHh/Sc+wIAD+LRZSbh6IRX9aBv8P1cYsOqQlZs6caefc73//ezuH4ngMuAEQfcJuwLmf2ZeOSJwTxVRS0teMxZQbEiKEGxQ3JaYpZDPplxpuhlR3YspncWc0Gm1COCe5ntNw3RdzDChuIVJEMcyiRYvs4eA4uIkhs2fPtokY3AyppOX8YJ1YtWqVteIKO0Vb7HHgWmasJlFohAHHAX8vUaXMnohJPRfq66bhiMJ1H4TnnnvOBLBLMXMO478HirmwYnGcOD7PPvusndf5rp+MIcTiweYL/zstvggm9OzZM2tRUTFIOJYBihf8cCI7/MIxG6RmaLXCzFoWRzez9tJLL621A+dmQ6SJE40TEQHB1wU1EZcTbnykmqh446Ihgka/MU5sJ4Tqg4gLoXdM79nGbQE3E242XCDcQLgAMUNTVR32brOYY+A8nXj7WEw4D1h4uTEiJDKPBxXYVBkjmvl6+qeR3g1aUBTFY0BK3i2u9913X63/x77ghCNNgRcvXmzii4gUERcENDcoNhWV4j/+4z/sBsZmkRsFN38ipaTa0nDdF3MMXF8//xxiB9/rhCM/j8IrRAWChGOBqMLGgFCJCoUeB65ZzmVXFMjPQEyzpnFep+Fc8HfTYJQs62E2onLd1wfvj3/2NiLZCWUKuXL9ffmsn9wvbrrpJutpzFqCyKSQ6pxzzvFKzXaMjyn5TxVCCCGEEIlDHkchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEIzaoWQogKMH/+fG/MmDE2W5cZyzvuuKPXpEkTm6/cu3dvb/vtt8/5vcy4//u//3vvgQce8NavX+8NHDjQO+aYY7w///nPFf0bhBBCwlEIIcrIX//6V++OO+7wxo0bZ2KxTZs23j777ONt3brVmzt3rnfnnXd6Y8eO9YYNG+btueeetb5/7dq13qpVq7yhQ4eG8vqFEMKPhKMQQpSR+++/30Rj8+bNvZtvvtnbfffdq//v//7v/7xHH33UGz58uHfVVVfZ1+6www41vn/WrFn2sX379hV/7UIIkYk8jkIIUSbWrFnjjRgxwmvQoIF366231hCN8POf/9w777zzvK5du1pUceTIkbV+BsKxcePGXtOmTSv4yoUQIjsSjkIIUSZeeukl78cff/R69erlNWrUqE4PI4wfP77G83gh8UQq2iiEiAoSjkIIUSYQfdCqVas6v+6f/umfvN12281bt26d9+mnn1Y/P2fOHEtnd+jQoeyvVQghgiDhKIQQZcKJwD322KPer3Vfs2nTphpp6oYNG3qHHXZYGV+lEEIER8JRCCEiBKlt+O6776zq+thjjzUvpBBCRAEJRyGEKBO77rqrffzkk0/q/Vr3Na6ABtH47bffyt8ohIgUEo5CCFEmDj30UPs4b968Or/ugw8+sBT1P/7jP1YX0ZCmpuk3jb6FECIqSDgKIUSZOPHEE72f/exnVi1NhXQuHn/8cfvYvXt3+3rS1RTGtG7d2pqGCyFEVJBwFEKIMrHffvt5AwYM8LZs2eL9+7//e43CF0Ag0gB80qRJ3s477+yddtpp9vySJUu8zZs3K00thIgcmhwjhBBl5IILLrDxgkyPGTx4sBW7+EcOfvTRR5aS/q//+i9v7733tu+ZOXOmRR7btm0b9ssXQogaSDgKIUQZ+bu/+zvvd7/7nde5c2ebSb1o0SJvxowZ1p8RWrZs6V177bUmJh34G1u0aFFn03AhhAgDCUchhKgANAH3NwJnHOFFF13krV+/3quqqqp+fvXq1RaF7NmzZ9afw/hBhKcQQoSBPI5CCBGS//HGG2/0vvjiC++3v/2tt3HjxupoI8jfKISIIttV+be6QgghKsrs2bO9ZcuW2djBLl26hP1yhBCiTiQchRBCCCFEIJSqFkIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQXhD+H0cLL/owMD4oAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -691,7 +714,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "5447d326", "metadata": {}, "outputs": [ @@ -699,10 +722,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Polarization degree: (80.71 +/- 5.23) %\n", + "Polarization degree: (84.51 +/- 5.47) %\n", "Polarization angle: (87.12 +/- 1.88) deg\n", - "Normalized Q: -0.803 +/- 0.052\n", - "Normalized U: 0.081 +/- 0.052\n" + "Normalized Q: -0.841 +/- 0.045\n", + "Normalized U: 0.085 +/- 0.055\n" ] } ], @@ -723,62 +746,6 @@ "print('Normalized U: %.3f +/- %.3f'%(Normalized_U, UN_ERR))\n", "\n" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "92094db7", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8bf272fd", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c3850941", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f1900703", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d832ae71", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "edaaee68", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b4e6f892", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From 4d068a450343689efe2939ef86acf35be3fdb66c Mon Sep 17 00:00:00 2001 From: nmik Date: Mon, 15 Dec 2025 14:51:11 -0600 Subject: [PATCH 27/31] allowed for ASAD binning to be read from the response files instead to being hardcoded to 20 bins --- cosipy/polarization/polarization_stokes.py | 348 +++++++++--------- .../polarization/Stokes_method.ipynb | 255 ++++++------- 2 files changed, 301 insertions(+), 302 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 5256fea2..bc990141 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -17,29 +17,28 @@ #we can define all these functions in a separate file to import def R(x, A, B, C): - """ - Function to fit to the modulation of the azimuthal angle distribution. + """ Function to fit to the modulation of the azimuthal angle distribution. """ return A + B*(np.cos(x + C)**2) def constant(x, a): - """ - Constant function to fit to mu_100 values. + """ + Constant function to fit to mu_100 values. - Parameters - ---------- - x : float - Mu_100 - a : float - Parameter + Parameters + ---------- + x : float + Mu_100 + a : float + Parameter - Returns - ------- - a : float - Constant value - """ + Returns + ------- + a : float + Constant value + """ - return a + return a def stokes_u(phi): """ @@ -59,18 +58,18 @@ def stokes_u(phi): def stokes_q(phi): """ - Calculate the Q Stokes parameter from the azimuthal angle phi. + Calculate the Q Stokes parameter from the azimuthal angle phi. - Parameters - ---------- - phi : float - Azimuthal angle in radians + Parameters + ---------- + phi : float + Azimuthal angle in radians - Returns - ------- - q : float - Q Stokes parameter - """ + Returns + ------- + q : float + Q Stokes parameter + """ return np.cos(phi * 2) * 2 def rotate_points_to_x_axis(newPD, newPA): @@ -124,85 +123,86 @@ def polar_chart_backbone(ax): plt.plot([1,-1], [-1,1], linewidth=1, color='k', linestyle='--', alpha=0.3) def calculate_azimuthal_scattering_angle(psi, chi, source_vector, reference_vector): - """ - Calculate the azimuthal scattering angle of a scattered photon. + """ + Calculate the azimuthal scattering angle of a scattered photon. - Parameters - ---------- - psi : float - Polar angle (radians) of scattered photon in local coordinates - chi : float - Azimuthal angle (radians) of scattered photon in local coordinates - source_vector : astropy.coordinates.SkyCoord - Source direction - reference_vector : astropy.coordinates.SkyCoord - Reference direction (e.g. X-axis of spacecraft frame) + Parameters + ---------- + psi : float + Polar angle (radians) of scattered photon in local coordinates + chi : float + Azimuthal angle (radians) of scattered photon in local coordinates + source_vector : astropy.coordinates.SkyCoord + Source direction + reference_vector : astropy.coordinates.SkyCoord + Reference direction (e.g. X-axis of spacecraft frame) - Returns - ------- - azimuthal_angle : astropy.coordinates.Angle - Azimuthal scattering angle defined with respect to given reference vector - """ + Returns + ------- + azimuthal_angle : astropy.coordinates.Angle + Azimuthal scattering angle defined with respect to given reference vector + """ - source_vector_cartesian = [source_vector.cartesian.x.value, - source_vector.cartesian.y.value, - source_vector.cartesian.z.value] - reference_vector_cartesian = [reference_vector.cartesian.x.value, - reference_vector.cartesian.y.value, - reference_vector.cartesian.z.value] + source_vector_cartesian = [source_vector.cartesian.x.value, + source_vector.cartesian.y.value, + source_vector.cartesian.z.value] + reference_vector_cartesian = [reference_vector.cartesian.x.value, + reference_vector.cartesian.y.value, + reference_vector.cartesian.z.value] - # Convert scattered photon vector from spherical to Cartesian coordinates - scattered_photon_vector = [np.sin(psi) * np.cos(chi), np.sin(psi) * np.sin(chi), np.cos(psi)] - - # Project scattered photon vector onto plane perpendicular to source direction - d = np.dot(scattered_photon_vector, source_vector_cartesian) / np.dot(source_vector_cartesian, source_vector_cartesian) - projection = [scattered_photon_vector[0] - (d * source_vector_cartesian[0]), - scattered_photon_vector[1] - (d * source_vector_cartesian[1]), - scattered_photon_vector[2] - (d * source_vector_cartesian[2])] - - # Calculate angle between scattered photon vector & reference vector on plane perpendicular to source direction - cross_product = np.cross(projection, reference_vector_cartesian) - if np.dot(source_vector_cartesian, cross_product) < 0: - sign = -1 - else: - sign = 1 - normalization = np.sqrt(np.dot(projection, projection)) * np.sqrt(np.dot(reference_vector_cartesian, reference_vector_cartesian)) + # Convert scattered photon vector from spherical to Cartesian coordinates + scattered_photon_vector = [np.sin(psi) * np.cos(chi), np.sin(psi) * np.sin(chi), np.cos(psi)] + + # Project scattered photon vector onto plane perpendicular to source direction + d = np.dot(scattered_photon_vector, source_vector_cartesian) / np.dot(source_vector_cartesian, source_vector_cartesian) + projection = [scattered_photon_vector[0] - (d * source_vector_cartesian[0]), + scattered_photon_vector[1] - (d * source_vector_cartesian[1]), + scattered_photon_vector[2] - (d * source_vector_cartesian[2])] + + # Calculate angle between scattered photon vector & reference vector on plane perpendicular to source direction + cross_product = np.cross(projection, reference_vector_cartesian) + if np.dot(source_vector_cartesian, cross_product) < 0: + sign = -1 + else: + sign = 1 + normalization = np.sqrt(np.dot(projection, projection)) * np.sqrt(np.dot(reference_vector_cartesian, reference_vector_cartesian)) - azimuthal_angle = Angle(sign * np.arccos(np.dot(projection, reference_vector_cartesian) / normalization), unit=u.rad) + azimuthal_angle = Angle(sign * np.arccos(np.dot(projection, reference_vector_cartesian) / normalization), unit=u.rad) - return azimuthal_angle + return azimuthal_angle def get_modulation(_x, _y, title='Modulation', show=False): - """ - Function to estimate the modulation factor. + """ Function to estimate the modulation factor. + _x is the central value of the histogram bins + _y is the value of the bins on the histograms - Parameters - ---------- - _x : array - Central values of the histogram bins - _y : array - Values of the histogram bins - title : str - Title of the plot - show : bool - Whether to show the plot or not + Parameters + ---------- + _x : array + Central values of the histogram bins + _y : array + Values of the histogram bins + title : str + Title of the plot + show : bool + Whether to show the plot or not - Returns - ------- - mu : float - Modulation factor - mu_err : float - Error on the modulation factor + Returns + ------- + mu : float + Modulation factor + mu_err : float + Error on the modulation factor """ popt, pcov = curve_fit(R, _x, _y ) #sigma=np.sqrt(_y), absolute_sigma=True pcov[0][0], pcov[1][1], pcov[2][2] = np.sqrt(pcov[0][0]), np.sqrt(pcov[1][1]), np.sqrt(pcov[2][2]) - logger.info('A = %.2f, B = %.2f, C = %.2f'%(popt[0], popt[1], popt[2])) + print('A = %.2f, B = %.2f, C = %.2f'%(popt[0], popt[1], popt[2])) Rmax, Rmin = np.amax(R(_x, *popt)), np.amin(R(_x, *popt)) - logger.info('Rmax, Rmin:', Rmax, Rmin) + print('Rmax, Rmin:', Rmax, Rmin) mu = (Rmax-Rmin)/(Rmax+Rmin) - logger.info('Modulation mu = ', mu) + print('Modulation mu = ', mu) mu_err = 2/(popt[1]+2*popt[0])**2 * np.sqrt(popt[1]**2 * pcov[0][0]**2 + popt[0]**2 * pcov[1][1]**2) @@ -301,63 +301,63 @@ def create_asad_from_response(spectrum, polarization_level, polarization_angle, return asad def create_unpolarized_asad(spectrum, source_vector, ori, response, convention, response_file, response_convention, bins=20): - """ - Create unpolarized ASAD from response. + """ + Create unpolarized ASAD from response. - Parameters - ---------- - bins : int or astropy.units.quantity.Quantity, optional - Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity - spectrum : :py:class:`threeML.Model` - Spectral model. - source_vector : astropy.coordinates.sky_coordinate.SkyCoord - Source direction: - ori : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile - Spacecraft orientation - response : cosipy.response.FullDetectorResponse.FullDetectorResponse - Response object - convention : cosipy.polarization.PolarizationConvention - Polarization convention - response_file : str or pathlib.Path - Path to detector response - response_convention : str - Response convention. If in the spacecraft frame, the angle must have the same convention as the response. - Returns - ------- - asad : histpy.Histogram - Counts in each azimuthal scattering angle bin - """ - pd = 0 - pa = PolarizationAngle(Angle(0 * u.deg), source_vector, convention=convention) - unpolarized_asad = create_asad_from_response(spectrum, pd, pa, source_vector, ori, - response, convention, response_file, - response_convention, bins=bins) + Parameters + ---------- + bins : int or astropy.units.quantity.Quantity, optional + Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity + spectrum : :py:class:`threeML.Model` + Spectral model. + source_vector : astropy.coordinates.sky_coordinate.SkyCoord + Source direction: + ori : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile + Spacecraft orientation + response : cosipy.response.FullDetectorResponse.FullDetectorResponse + Response object + convention : cosipy.polarization.PolarizationConvention + Polarization convention + response_file : str or pathlib.Path + Path to detector response + response_convention : str + Response convention. If in the spacecraft frame, the angle must have the same convention as the response. + Returns + ------- + asad : histpy.Histogram + Counts in each azimuthal scattering angle bin + """ + pd = 0 + pa = PolarizationAngle(Angle(0 * u.deg), source_vector, convention=convention) + unpolarized_asad = create_asad_from_response(spectrum, pd, pa, source_vector, ori, + response, convention, response_file, + response_convention, bins=bins) - return unpolarized_asad + return unpolarized_asad def create_polarized_asads(spectrum, source_vector, ori, response, convention, response_file, response_convention, bins=20): - """ - Create 100% polarized ASADs for each polarization angle bin of response. + """ + Create 100% polarized ASADs for each polarization angle bin of response. - Parameters - ---------- - bins : int or astropy.units.quantity.Quantity, optional - Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity + Parameters + ---------- + bins : int or astropy.units.quantity.Quantity, optional + Number of azimuthal scattering angle bins if int or array of edges of azimuthal scattering angle bins if Quantity - Returns - ------- - polarized_asads : dict of histpy.Histogram - Counts in each azimuthal scattering angle bin for each polarization angle bin - """ + Returns + ------- + polarized_asads : dict of histpy.Histogram + Counts in each azimuthal scattering angle bin for each polarization angle bin + """ - polarized_asads = {} - for k in range(response.axes['Pol'].nbins): - pd = 1 - pa = PolarizationAngle(Angle(response.axes['Pol'].centers.to_value(u.deg)[k] * u.deg), source_vector, convention=convention) - polarized_asads[k] = create_asad_from_response(spectrum, pd, pa, source_vector, ori, - response, convention, response_file, - response_convention, bins=bins) - return polarized_asads + polarized_asads = {} + for k in range(response.axes['Pol'].nbins): + pd = 1 + pa = PolarizationAngle(Angle(response.axes['Pol'].centers.to_value(u.deg)[k] * u.deg), source_vector, convention=convention) + polarized_asads[k] = create_asad_from_response(spectrum, pd, pa, source_vector, ori, + response, convention, response_file, + response_convention, bins=bins) + return polarized_asads class PolarizationStokes(): """ @@ -389,7 +389,7 @@ def __init__(self, source_vector, source_spectrum, data, ###################### This will need to be changed into IAUPolarizationConvention hardcoded! ###################### - logger.warning('This class loading takes around 30 seconds... \n') + print('This class loading takes around 30 seconds... \n') ###################### if isinstance(fit_convention.frame, SpacecraftFrame) and not isinstance(source_vector.frame, SpacecraftFrame): @@ -404,6 +404,11 @@ def __init__(self, source_vector, source_spectrum, data, (isinstance(fit_convention, MEGAlibRelativeZ) and response_convention != 'RelativeZ')): raise RuntimeError("If performing fit in spacecraft frame, fit convention must match convention of response.") + # if not type(data) == list: + # self._data = [data] + # else: + # self._data = data + self._ori = sc_orientation self._convention = fit_convention @@ -419,8 +424,9 @@ def __init__(self, source_vector, source_spectrum, data, self._spectrum = source_spectrum self._nbins = self._response.axes['Pol'].nbins + print('Number of azimuthal angle bins used:', self._nbins) - self._binedges = Angle(np.linspace(-np.pi, np.pi, self._nbins), unit=u.rad) + # self._binedges = Angle(np.linspace(-np.pi, np.pi, self._nbins), unit=u.rad) self._reference_vector = self._convention.get_basis(source_vector)[0] @@ -428,7 +434,7 @@ def __init__(self, source_vector, source_spectrum, data, self._energy_range = [min(self._response.axes['Em'].edges.value), max(self._response.axes['Em'].edges.value)] #print the energy range considered due to responses: - logger.info(f'Energy range considered (by response design): {self._energy_range[0]} - {self._energy_range[1]} keV') + print(f'Energy range considered (by responses design): {self._energy_range[0]} - {self._energy_range[1]} keV') # do a data cut before anything else! actually this should come as a separate routine: data selection and response # prep shold be done before analyzing the data @@ -449,12 +455,12 @@ def __init__(self, source_vector, source_spectrum, data, self._data_counts = self.get_data_counts() - self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data, show_plots=False) + self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data, show_plots=True) self._background = background if self._background is not None: - logger.warning('Background provided. Make sure there is enough statistics.') + print('Background provided. Make sure there is enough statistics.') if not type(background) == list: iii = np.where((background['Energies'] >= self._energy_range[0]) & (background['Energies'] <= self._energy_range[1])) self._background = [{key: background[key][iii] for key in background.keys()}] @@ -469,7 +475,7 @@ def __init__(self, source_vector, source_spectrum, data, self._background_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._background) self._background_duration = self.get_background_duration() else: - logger.warning('No background provided. Will not subtract background from data.') + print('No background provided. Will not subtract background from data.') self._background = None self._background_duration = 0 self._background_azimuthal_angles = None @@ -588,7 +594,7 @@ def convolve_spectrum(self, spectrum): polarization_angle = PolarizationAngle(Angle(self._response.axes['Pol'].centers.to_value(u.deg)[0] * u.deg), self._source_vector, convention=self._convention) polarization_level = 0 if isinstance(self._convention.frame, SpacecraftFrame): - logger.info('>>> Convolving spectrum in spacecraft frame...') + print('>>> Convolving spectrum in spacecraft frame...') target_in_sc_frame = self._ori.get_target_in_sc_frame(target_name='source', target_coord=self._source_vector.transform_to('galactic')) dwell_time_map = self._ori.get_dwell_map(response=self._response_file, src_path=target_in_sc_frame, pa_convention=self._response_convention) psr = self._response.get_point_source_response(exposure_map=dwell_time_map, coord=self._source_vector.transform_to('galactic')) @@ -600,9 +606,9 @@ def convolve_spectrum(self, spectrum): psichi = SkyCoord(lat=(np.pi/2) - expectation.axes['PsiChi'].pix2ang(i)[0], lon=expectation.axes['PsiChi'].pix2ang(i)[1], unit=u.rad, frame=self._convention.frame) azimuthal_angle = PolarizationAngle.from_scattering_direction(psichi, self._source_vector, self._convention) azimuthal_angle_bins.append(azimuthal_angle.angle) - + else: - logger.info('>>> Convolving spectrum in ICRS frame...') + print('>>> Convolving spectrum in ICRS frame...') scatt_map = self._ori.get_scatt_map(nside=self._response.nside*2, target_coord=self._source_vector, coordsys='galactic') psr = self._response.get_point_source_response(coord=self._source_vector, scatt_map=scatt_map) expectation = psr.get_expectation(spectrum, LinearPolarization(polarization_level * 100., polarization_angle.angle.deg)) @@ -657,9 +663,12 @@ def calculate_azimuthal_scattering_angles(self, unbinned_data, show_plots=False) if show_plots: plt.figure() plt.title('Azimuthal scattering angles') - plt.hist(azimuthal_angles, bins=50, alpha=0.5) + plt.hist(azimuthal_angles, bins=50, alpha=0.5, label='Data fine binning') + plt.hist(azimuthal_angles, bins=self._nbins, alpha=0.5, + histtype='step', linewidth=2, label='Response binning') plt.xlabel('Azimuthal angle (radians)') plt.ylabel('Counts') + plt.legend() plt.show() return azimuthal_angles @@ -678,12 +687,12 @@ def calculate_average_mu100(self, show_plots=False): mu_100 : dict Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins """ - logger.info('Creating the 100% polarized ASADs (this may take a minute...)') + print('Creating the 100% polarized ASADs (this may take a minute...)') polarized_asads = create_polarized_asads(self._spectrum, self._source_vector, self._ori, self._response, - self._convention, self._response_file, self._response_convention) - logger.info('Creating the unpolarized ASAD...') + self._convention, self._response_file, self._response_convention, bins=self._nbins) + print('Creating the unpolarized ASAD...') unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, self._response, - self._convention, self._response_file, self._response_convention) + self._convention, self._response_file, self._response_convention, bins=self._nbins) mu_100_list = [] mu_100_uncertainties = [] @@ -903,7 +912,7 @@ def simulate_unpolarized_stokes(self, n_samples=100, show_plots=False): unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, self._response, self._convention, - self._response_file, self._response_convention) + self._response_file, self._response_convention, bins=self._nbins) azimuthal_bin_center = unpolarized_asad.axis.centers.value # Get the bin edges of the azimuthal angle distribution # Create the spline from the unpol azimutal angle distrib spline_unpol = interpolate.interp1d(azimuthal_bin_center, unpolarized_asad.full_contents) @@ -925,7 +934,7 @@ def simulate_unpolarized_stokes(self, n_samples=100, show_plots=False): #Generate random samples from a uniform distribution and map them to azimuthal angles _qs_unpol_, _us_unpol_ = [], [] - logger.info('Simulating unpolarized Stokes parameters from the source data...') + print('Simulating unpolarized Stokes parameters from the source data...') for _ in range(n_samples): unpol_azimuthal_angles = np.random.choice(fine_bins, size=self._data_counts, p=fine_probabilities) * u.rad qs_unpol_, us_unpol_ = self.compute_pseudo_stokes(unpol_azimuthal_angles, show_plots=False) @@ -1009,16 +1018,16 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot pol_I = I = len(qs) pol_Q = np.sum(qs) / mu pol_U = np.sum(us) / mu - logger.info('I, Q, U, mu', pol_I, pol_Q, pol_U, mu) + print('I, Q, U, mu', pol_I, pol_Q, pol_U, mu) self.QN = pol_Q/pol_I self.UN = pol_U/pol_I - logger.info('Q, U (unsubtracted:)', self.QN, self.UN) + print('Q, U (unsubtracted:)', self.QN, self.UN) if bkg_qs is None or bkg_us is None: - logger.info('No background data provided, assuming no background contribution.') + print('No background data provided, assuming no background contribution.') else: - logger.info('Unpolarized bkg (or simulation) provided, subtracting its contribution.') + print('Unpolarized bkg (or simulation) provided, subtracting its contribution.') bkg_qs = np.array(bkg_qs) bkg_us = np.array(bkg_us) if bkg_qs.ndim == 1: @@ -1026,7 +1035,7 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot unpol_Q = np.sum(bkg_qs) * BACKSCAL / mu unpol_U = np.sum(bkg_us) * BACKSCAL / mu I = pol_I - unpol_I - logger.info('check I(src+bkg) vs I(src):', pol_I, I) + print('check I(src+bkg) vs I(src):', pol_I, I) else: BACKSCAL = 1 unpol_I = [] @@ -1039,24 +1048,25 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot unpol_I = np.mean(unpol_I) unpol_Q = np.mean(unpol_Q) unpol_U = np.mean(unpol_U) - logger.info('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) + # print('I unpolarized:', unpol_I) + print('Q, U unpolarized:', unpol_Q/unpol_I, unpol_U/unpol_I) unpol_modulation = mu * np.sqrt(unpol_Q**2. + unpol_U**2.) / unpol_I unpol_sI = np.sqrt(unpol_I) unpol_sQ = np.sqrt((2 - unpol_modulation**2) * unpol_sI**2 / unpol_I**2 / mu**2) unpol_sU = np.sqrt((2 - unpol_modulation**2) * unpol_sI**2 / unpol_I**2 / mu**2) - logger.info('Q, U unpolarized uncertainty:', unpol_sQ*100, '%') + print('Q, U unpolarized uncertainty:', unpol_sQ*100, '%') self.QN = np.sum([pol_Q/pol_I, unpol_Q/unpol_I * BACKSCAL]) self.UN = np.sum([pol_U/pol_I, unpol_U/unpol_I * BACKSCAL]) - logger.info('Q, U, subtracted:', self.QN, self.UN) + print('Q, U, subtracted:', self.QN, self.UN) pol_sI = np.sqrt(I) pol_sQ = np.sqrt((2 - self.QN**2) * pol_sI**2 / I**2 / mu**2) pol_sU = np.sqrt((2 - self.UN**2) * pol_sI**2 / I**2 / mu**2) pol_covQNUN = - (self.QN * self.UN) / I**2 - logger.info('Q/I, U/I, uncertainty:', pol_sQ, pol_sU, np.sqrt(pol_sQ)) + print('Q/I, U/I, uncertainty:', pol_sQ, pol_sU, np.sqrt(pol_sQ)) # Reconstructed polarization fraction uncertainty: See eq 36 in Kislat 2015 polarization_fraction = np.sqrt(self.QN**2. + self.UN**2.) @@ -1072,10 +1082,10 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot pol_PA += np.pi pol_1sigmaPA = np.degrees(1 / (m * np.sqrt(2. * (I - 1.)))) - logger.info('\n ############################## \n') - logger.info(' PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') - logger.info(' PA: %.2f'%(np.degrees(pol_PA)), '+/- %.2f'%pol_1sigmaPA, 'deg') - logger.info('\n ############################## \n') + print('\n ############################## \n') + print(' PD: %.2f'%(pol_PD), '+/- %.2f'%(pol_1sigmaPD), '%') + print(' PA: %.2f'%(np.degrees(pol_PA)), '+/- %.2f'%pol_1sigmaPA, 'deg') + print('\n ############################## \n') if show_plots: @@ -1084,10 +1094,12 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot polar_chart_backbone(ax) if ref_qu[0] != None: + # print('Drawing Reference point:', ref_qu) plt.plot(ref_qu[0], ref_qu[1], 'x', markersize=20, color='tab:green') plt.annotate(ref_label, (ref_qu[0], ref_qu[1]), textcoords="offset points", xytext=(0,10), ha='center', fontsize=12) if ref_pdpa[0] != None: + # print('Drawing Reference point:', ref_pdpa) ref_q, ref_u = rotate_points_to_x_axis(ref_pdpa[0], np.radians(ref_pdpa[1])) plt.plot(ref_q, ref_u, 'x', markersize=20, color='tab:green') plt.annotate(ref_label, (ref_q, ref_u), textcoords="offset points", xytext=(0,10), ha='center', @@ -1153,4 +1165,6 @@ def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plot if __name__ == "__main__": + print('Just some tests here...') + pass \ No newline at end of file diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 53e7a891..692aeddc 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -18,19 +18,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "26c12d83-7afc-4000-8b8f-d353e0b08d12", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
10:17:05 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
+       "
13:53:49 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m10:17:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=591577;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=985696;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m13:53:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=666818;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=592802;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -45,7 +45,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=247959;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474106;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=17970;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=682580;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -60,7 +60,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=70732;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=686002;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=747434;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=738963;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -74,7 +74,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=792814;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=807013;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=126496;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968859;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -87,7 +87,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=656430;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=415752;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=865136;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356097;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -100,7 +100,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=449848;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=880668;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=217546;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389598;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -113,7 +113,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=934633;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=425583;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564841;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=485750;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -122,11 +122,11 @@ { "data": { "text/html": [ - "
10:17:05 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
13:53:49 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m10:17:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=597712;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=956934;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m13:53:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=797738;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=43119;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -139,7 +139,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=234536;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980578;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=141670;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617301;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -152,7 +152,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=822549;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908135;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780359;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727712;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -161,12 +161,12 @@ { "data": { "text/html": [ - "
10:17:06 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
        "                  require the C/C++ interface (currently HAWC)                                                     \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m10:17:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=201310;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=992938;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=655623;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=536519;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -181,7 +181,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=726341;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=663070;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687634;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980422;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -196,7 +196,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=329631;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=347411;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905227;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=822273;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -206,11 +206,11 @@ { "data": { "text/html": [ - "
10:17:06 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
13:53:50 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m10:17:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=921605;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=380246;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m13:53:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=391953;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=916116;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -219,12 +219,12 @@ { "data": { "text/html": [ - "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "
13:53:50 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955530;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=606507;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m13:53:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882371;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265069;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -239,7 +239,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=734901;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=937767;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=823517;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=323345;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -254,7 +254,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=419283;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=960890;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=321511;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=487320;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -265,7 +265,9 @@ "source": [ "from cosipy import UnBinnedData\n", "from cosipy.spacecraftfile import SpacecraftFile\n", - "from cosipy.polarization import PolarizationStokes\n", + "# from cosipy.polarization.conventions import MEGAlibRelativeX, MEGAlibRelativeY, MEGAlibRelativeZ, IAUPolarizationConvention\n", + "from cosipy.polarization.polarization_stokes import PolarizationStokes\n", + "\n", "from cosipy.threeml.custom_functions import Band_Eflux\n", "from astropy.time import Time\n", "import numpy as np\n", @@ -278,7 +280,7 @@ }, { "cell_type": "markdown", - "id": "a2484913", + "id": "4b292969", "metadata": {}, "source": [ "### Download and read in data" @@ -286,64 +288,26 @@ }, { "cell_type": "markdown", - "id": "e9291c43", - "metadata": {}, - "source": [ - "This will download the files needed to run this notebook. If you have already downloaded these files, you can skip this." - ] - }, - { - "cell_type": "markdown", - "id": "79a1d620", - "metadata": {}, - "source": [ - "Download the unbinned data (660.58 KB)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4722704e", - "metadata": {}, - "outputs": [], - "source": [ - "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/polarization_fit/grb_background.fits.gz', checksum = '21b1d75891edc6aaf1ff3fe46e91cb49')" - ] - }, - { - "cell_type": "markdown", - "id": "30a1b8ab", - "metadata": {}, - "source": [ - "Download the polarization response (1.35 GB). This needs to be unzipped before running the rest of the notebook" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f364b21", - "metadata": {}, - "outputs": [], - "source": [ - "fetch_wasabi_file('COSI-SMEX/DC3/Data/Responses/ResponseContinuum.o3.pol.e200_10000.b4.p12.relx.s10396905069491.m420.filtered.nonsparse.binnedpolarization.11D_nside8.area.good_chunks.h5.zip', unzip = True, checksum = '9c1309efec9a37afdcd49b7a443b280b')" - ] - }, - { - "cell_type": "markdown", - "id": "7701c07a", + "id": "5f241124", "metadata": {}, "source": [ - "Download the orientation file (1.10 GB)" + "Download data (same as ASAD method tutorial: if you have already downloaded them you don't need to run these lines)" ] }, { "cell_type": "code", - "execution_count": null, - "id": "f8b0eef7", + "execution_count": 2, + "id": "3e7fa183", "metadata": {}, "outputs": [], "source": [ - "fetch_wasabi_file('COSI-SMEX/DC3/Data/Orientation/DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori', checksum = 'b87fd41b6c28a5c0c51448ce2964e57c')" + "# fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/polarization_fit/grb_background.fits.gz', checksum = '21b1d75891edc6aaf1ff3fe46e91cb49')\n", + "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Responses/ResponseContinuum.o3.pol.e200_10000.b4.p12.relx.s10396905069491.m420.filtered.nonsparse.binnedpolarization.11D_nside8.area.good_chunks.h5.zip', unzip = True, checksum = '9c1309efec9a37afdcd49b7a443b280b')\n", + "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Orientation/DC3_final_530km_3_month_with_slew_1sbins_GalacticEarth_SAA.ori', checksum = 'b87fd41b6c28a5c0c51448ce2964e57c')\n", + " \n", + "# fetch_wasabi_file('COSI-SMEX/DC3/Data/Sources/3C279_3months_unbinned_data_filtered_with_SAAcut.fits.gz',\n", + "# checksum = 'd0b1c3f2e4a5f8b6c7d8e9f0a1b2c3d4',\n", + "# unzip=True)" ] }, { @@ -356,12 +320,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "ac0ad83d", "metadata": {}, "outputs": [], "source": [ - "data_path = Path('') # Update to your path\n", + "data_path = Path(\"/Users/mnegro/MyDocuments/_COSI/COSIpy/eliza_pull_request_updated/cosipy/docs/tutorials/polarization/\") # Update to your path\n", "\n", "grb_plus_background = UnBinnedData(data_path/'grb.yaml')\n", "grb_plus_background.select_data_time(unbinned_data=data_path/'grb_background.fits.gz', output_name=data_path/'grb_background_source_interval') \n", @@ -378,7 +342,9 @@ "background_after.select_data_energy(200., 10000., output_name=data_path/'background_after_energy_cut', unbinned_data=data_path/'background_after.fits.gz')\n", "background_2 = background_after.get_dict_from_fits(data_path/'background_after_energy_cut.fits.gz')\n", "\n", - "background = [background_1, background_2]" + "background = [background_1, background_2]\n", + "# Save background_1 dictionary to a file npz\n", + "np.savez(data_path/'background_1.npz', **background_1)" ] }, { @@ -386,7 +352,7 @@ "id": "2cc0300a", "metadata": {}, "source": [ - "Read in the response files and the orientation file. Here, the spacecraft is stationary, so we are only using the first attitude bin. The orientation is sliced to the time interval of the source" + "Read in the response files and the orientation file. Here, the spacecraft is stationary, so we are only using the first attitude bin ( The orientation is cut down to the time interval of the source.)" ] }, { @@ -459,46 +425,64 @@ "text": [ "This class loading takes around 30 seconds... \n", "\n", + "Number of azimuthal angle bins used: 12\n", ">>> Convolving spectrum in ICRS frame...\n", + "Energy range considered (by responses design): 200.0 - 10000.0 keV\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHRCAYAAABkYc0JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABabElEQVR4nO3dCbxM9f/H8Y99F9kqZM+SqEhJZZeltFEpRSIVChXpp12khUjWFimhPZWthLSXFCERicq+79v9P97f+zjznzt35u7LuXdez8fjmnvPOTNzzpkx5zOf7+f7/eaIiYmJMQAAgCiXM7N3AAAAwA8IigAAAAiKAAAAYhEUAQAAEBQBAADEIigCAAAgKAIAAIhFUAQAAEBQBAAAEIugCEgDOXLksCZNmlhWsnDhQrffjz32WLo9x19//eWeo2vXrun2HNEiK77HMovOk84XkFwERYg6Tz31lPvA1M/q1astuyIgSTkFijp3ChzD0TnVep1jANlH7szeASAjaaq/l19+2V3Q9PukSZPsueeeS/Xjrlq1ygoWLJgm+wiEw3sMSH9kihBV5s2b577dd+nSxU477TR7/fXX7ejRo6l+3Bo1atiZZ56ZJvsIhMN7DEh/BEWIKsoMSY8ePezmm2+27du32wcffBCx3iahn+CmlXD1HsFNMNOmTbN69eq5b/pnnHGG9e/f344cOeK2++KLL9x9ixYtasWLF7dbbrnFduzYkayaktDmHD13pUqV3O8K/IL3e/LkyfHu/8svv1i7du2sWLFibh8bN25s33zzTbzt/v33X3viiSesUaNGLqjMmzevO56bbrrJVq5caaml7J329+KLL7ZSpUpZ/vz5rXz58nb55ZfbjBkz4m2/adMmu+eee6xatWpWoEABO/XUU61Bgwb25JNPxtluwYIFdscdd1itWrXceda2tWvXtscff9wOHz4cZ9uKFSu65dK0adM45050q30UnWNvne4XbOfOnTZo0CCrWbOme75TTjnFmjdv7gLzUHpNvNdmzpw57nXW9sF1MYm9x95991137Hr9dB5uvPFG++eff8Ke5x9//NFatWplRYoUceejRYsW9u233ybabBjqjz/+sAcffNDq16/vXq98+fJZhQoV3LnWa5NQHVtS33Py33//2W233WalS5d25/Lcc891r0FK6uLmzp1rbdu2tZIlS7r9rVKlij3wwAO2e/fueNsuW7bMOnXq5F5bbatjPP/8861v37527NixJD8nsg6azxA1tmzZYjNnzrSzzjrLXXR1MXj++edt4sSJdsMNN8TZVh+Cjz76aLzH0AfhiBEj3IU0qU0ZL774os2ePduuvvpqd1HTRXHkyJHuonnVVVe5i5cuDrqQ6KLw5ptvumBN90kpPY8+5EeNGmV169Z1z+3RBSXYTz/9ZM8884w1bNjQunfvbn///be999577gKuC1f16tUD23755Zf29NNPu2Dhuuuus8KFC9uaNWvcBVnn9uuvv3bPl1L/+9//bNiwYS7YuP76611goAuiLuLvvPNOnNdJ+61gSefxsssus2uvvdYOHjzogjNdJB9++OHAtsOHD7fff//dve4613r9tK/aThfWzz//3HLlyuW21QXvww8/tEWLFrmMYmiwo/eF1v/666927733uou6eLeyYcMG9xooSL300kutdevWduDAAfvkk0/c7xMmTHCBeSidRwVFbdq0sTvvvNM9TlKMHTvWnf/27du74OL77793QaT2Ua+hLujBr6ECohMnTrhzpqBg+fLl7jVt1qxZsl6v999/38aPH+/uq3OrIHnFihWuifrjjz92r1HZsmXj3S8577mtW7e67XQu9DrreTZv3mx33323O47kULCr11xB4xVXXOGCLAU+akKfNWuWCwz1uSBafuGFF7qgS+dV78m9e/fa2rVr3fkeMmSI5cmTJ1nPjywgBogSw4YNi9FbfujQoYFl9erVi8mRI0fMmjVrkvQYXbp0cY/Rt2/fOMu1rHHjxnGWPfroo2550aJFY1auXBlYfvjw4ZhatWrF5MyZM+bUU0+NWbhwYWDdiRMnYlq0aOHut3Tp0kSfI3S/1q9fH1im37VM68JZsGCBW6+f1157Lc668ePHu+V33XVXnOVbtmyJ2bt3b7zH+uWXX2IKFSoU07p16zjLE9uHUDofZcuWjTlw4EC8ddu2bQv8fuTIkZiKFSu6x546dWq8bTdu3Bjn7z///DPm5MmT8bYbPHiwe4zp06eHfe10jpJ6voPpddL7atq0aXGW79q1K6Zu3box+fPnj9m8eXNguc6/Hk/3mT17dtjHTOg9VqRIkZhly5bFWdepUye3bsaMGXHeX1WrVnXLZ82aFWf7cePGBd4PkY471KZNm9z7OdTcuXPd+/vOO+9M9XuuW7dubvmAAQPivefy5s3r1uk8BNN5Cr28ffHFF25Zw4YN3esQzDv/wf+v+/fv75Z9+OGH8Y5v586d7lwi+6H5DFFVYJ0zZ0679dZb4zQ7eQXXiVGzkVL2yu4ow5RUat5RE4pH39qV8Th58qTLWuibvUf717lzZ/e7vuVnBDWFhfZQ69atm+XOndt++OGHOMv1zVpNLqGUHVKWQc1UqW1W0LdvL2sTTM0dHmUhlIXRN3g13YUqV65cnL8rV64ctot2v379Ak0qaUWvm7JMyqQpCxhM2SSvyU6ZkVB6bymTlFx6j51zzjlxlnmZqODXUJlIZTqU2VE2KpgylcqiJoeyQMFZKI8yOGeffXbE85rU95zq/dT0rIzh4MGD473ngv8vJ2b06NHuVv/Xg7N6on1RBnXq1Knx7qfmulBq5tb/VWQ/NJ8hKqhu588//3TNLcHpfF1Q77vvPlfLkVA6XB+WajZR7cRbb72VrA9E3SeU6nBEdUahvP0LV5ORHsLtn85DmTJlbNeuXfHWffrpp67JRE0gauY7fvx4nPVadvrpp6doX1TnpeZG1f6o+UwBo5pOdFEM9t1337nb0At7JGq6UlOi6sdUB7Nv3z4XDHsi1d6khJpgZM+ePWFrXbZt2xboTRZKNUFp9RqqFkuCX8OlS5e620suuSTe9npPq2lK5yepdA71f0P/fxQM6rnULOdRc1pq3nMaMuPQoUNu+3DBuI5DX3aS+rroOdQMq59QCsD02qier0SJEu6Li94zanru0KGDq7tSMKfmRmRfBEWICqobktBvp6otuPLKK9239o8++sh9+IXSt359i1UBqWpCktstOvSCLvpGnNi6jCrkDP3WHLwfwRc40UVCNTf6ptyyZUvXG0rnQ1kYr87GKyBPCdVaKavz2muvudol/Wg/VBir7FzVqlXddl5RbLh6lVA6j8piKQOh4mpd7FQw6wXAytykZp9DeUXyn332mfuJZP/+/fGWqXg9rV5D730U/BoqUBMFH+FEWh6JOgy88MILLgj2vnB4mRUFSpFqopL6nkvL/dXrogDeK6JP6HVRUKQAdfHixW5cM9V6vfHGG2696p30BUkF2Mh+CIqQ7enbny7Yog+ySB9mCpxCgyIV515zzTXug16FmMm9aKQlBR6hWRlPuJ4zaU3PrcyHLtw///xzvGyQlyFJDTWbKejSjwpsv/rqK5s+fbr7Zq8CXv2ouca7qCYlw6NgVwGRAmIFW8FUxJ3YRTK5vEBXAaSatZIjvUdh9oqI1ekgnEjLw9HroyYpBZpqlgvN5KjZy0/7q9dFTdYqzE8qZSn1RUhB85IlS1wRvDKZyjArsFb2CNkLQRGyPW8sIjVVhfa88qjnjnogrV+/PtCVXcGUan70zVE9wdSkk5mUndm4cWO85fpmrR47oby6nNBsT0qpWUzBl3oshQZEOkcKlNKS6pf0XPpRryQ1gf7222/udbzooovcNnpd1EsrIaqhET1OuCxgOImdu4TWe/umLENyg6L0dt5557lbBZuhFDBE6hIfzrp169x9vK79wdT0q/VpMTaTvpCoJ5iaPEOfJ9xxRKLXRU2/CqxV75QcCsTVtKgfDf+gWiYF2wRF2Q+VYsj2vCJqdaNV/UG4n549ewaKsUWFsCri1Qe7uk/ropzZlM5X1+XQcW5UCxWumUJBlDIPuk9aBSlqKtM35uCmHzVPqWu6gqbU0LdxdZMPpcf3vt17TZdq8lRXeQWz4TISwfVYXpf60LF39NoOHDgw7L6o+UQinbuE1qv+Rd3w1V391VdfDXt/dYFXpiWjeTUxKogPHfJBmdLk1BN551WBSXBwqPeGirwjZTWTQzVJau5UM5re58HUVDtlypQkP5ZXVK9903hb4erOvFo1UYCoeqZI2SlGF8+eyBQhW9OFUB/06pmTUBHr7bff7moH1Lyi5hQ1C+gDUvUtCjjCFcyqOSZ0DJv0dP/997vePOqhpAuF6qH0wa3slsbECb3oawwhjbOijIUKmNWzSBkOBXt16tRJ9vOrEFeZD9X56HxqP5SB0wVWQYt6NOn3lNIFSIWzqhtSNkg1XApOVZejomTtt9eLTxdLNakpS6GmDAWuygRoe207f/78wEVZAZQeU+NLKRhRtkTBjJpFlAkMF9joWHS8GnxR2SkFmOL1gFKQ/Oyzz7oLrHqZKYOhJr3evXu79SrGVx2T3ld6L+l10HoFa8p66DHV3KhAMyPpmBT4q4ebzqf2XUGS9knnWYXrCpaS0pFAzajqXafmTWVg9VooeNHjaNBNLQuXwUwuvd+UJdS4Rhp/SdkaNXu+/fbbrtZMTeNJ2V+9ZnosvabK9ui+ygoriNP/cWUN9f5TE5no+fS8CnC1nf4/Kcuk86P3g3rrIRvK7DEBgPR00003ubFGRo0alei2LVu2dNu+//77gfFfEvoJHssloTFkwo354o2LEjpWS/BYLqFjr8hHH33kxlbKly+fG9PnhhtuiPnrr78ijpuj8ZeuuOIKt63GwAl+zoSeRypUqOB+gh07dizm+eefj6lZs6Yba6dMmTIxnTt3jrgPyRmn6OjRozHDhw93Yx2VL1/eHWPJkiVjLrzwQjeGjsYmCrVhwwY3ro3GLMqTJ487zgYNGsQ89dRTcbb7+++/3XvhjDPOcPutcaL0XDqeSOM/vfHGG4ExhbzXPJjOQ40aNQJj5YSeK43npP04//zz3RhOehztZ9u2bWMmTJgQs3///iS9H1L6Hkvo3H/33XduPKzChQu7n+bNm8d88803Mb169Qo7RlYkGk/qoYceiqlSpYp7vcqVKxdz9913x2zfvj3sWEEpec954yHdeuut7v2g86jXZfLkyTHvvPOOe7yRI0fG2T7cc3sWL14c07Fjx5jTTz/dvWf0mHq8fv36xfz4449xxlrq2rWre69rrLGCBQvGnHXWWTF9+vRx73dkTzn0T2YHZgCAzKfmNWVjlPEpVKiQ+Z1GQB86dKjL7qj3G5Ba1BQBQBTRVCjheiuqC72aY9UM5reAKFwNkJpC1TSpZuTgAVCB1KCmCACiiGqoVFelcaZUa6XaKw3qqIJp1T0lZ7T2jKLide2ruv8rYNN8e+pJpt5vqidTDROQFmg+A4AoohGjNSu8Cos1sap6/aloWt3L1RzlxxGb1flBBdWa2kVd8xW8qbBenQ/UyQBIKwRFAAAA1BQBAADEIigCAAAgKEoeDQynWZt1CwAAsheComTQqKcawTbSzM8AACDrIigCAAAgKAIAAIhFUAQAAEBQBAAAEItpPtKIxsDUcPknTpzI7F2BT+XJk8dy5cqV2bsBAIiAoCgNHD161P777z830SIQSY4cOaxcuXJWuHDhzN4VAEAYBEWppAkJ169f7zIAZ5xxhuXNm9dd/IDQTOK2bdts06ZNVq1aNTJGAOBDBEVpkCVSYFS+fHkrWLBgZu8OfKxUqVJuQstjx44RFAGAD1FonUZy5uRUImFkEAHA38gUpZMl765Jl8et16FakrarWLGi5cuXz/Lnz28HDhyws88+2wYOHGgXX3xxovf98MMP7bTTTrOLLroo2fv33XffuVG/c+fObU8//bSNGjXKRo4cadWrV7e0sHDhQuvbt6/98ssv8db99NNP9uyzz9qMGTNS9Rxt27ZN030GAGQNBEXZmIKDc8891/3+/vvvu4v93Llz7cILL0w0KNL9UhIUvf7663bTTTfZoEGD3N+XX365ZZT69eunOiCSWbNmpcn+AACyFtp8osS1115rd955pz333HPu7/nz51vDhg3tvPPOc1mkV155JRAQzJw502VcFBi9/PLLtnnzZmvatKnVq1fPbdu7d29XRxVKmSEFJWPGjHH33b17t8tYeVmdJk2a2P3332+XXnqpValSxe2PZ9++fS7D1KBBA6tTp47dcccdrl4rHA19cOutt1rt2rXdPnmPryySFwSqdqdYsWL26KOPum2qVq0aJ9hRU9bQoUPd81WqVMlee+21wLqk7rN6HLZq1cpq1arlbm+88UZ77LHHUvlKAQAyC0FRFFGGaMWKFe73888/37766itbunSpLV682J544gnXM0rZpPbt29sDDzzgAoPu3bu74OLjjz+2JUuW2LJly1zA8fbbb8d7/AcffDDOfXW/UH/++actWLDAfvvtN5e1+vbbb93y++67zwUeP/zwg/36668u6FLTWzg6hi5durjHUJOgghH17gq1Z88eF2BpvxWo9evXL856NS/q+WbPnm333HOPC7bCibTPuo8Cy5UrV9qUKVNcUAYAyLoIiqJIcOCwY8cO69ixo8u2NGvWzP2ti344ClAUfNStW9dlllS7E66mJyluuOEGV29UoEABl9VRwOE12XnZKT2HArW1a9eGfQxlcpo3b+5+v/76610ma+PGjfG2Uz2VMmSi4MV7Ls/NN9/sbmvUqOH2SY+TnH1Wtq1bt27ud9VgXXHFFSk6JwAAf6CmKIr8+OOPLggSNQMpK/Tee++5piRljg4fPhz2fiNGjLCtW7fa999/7wKN/v37R9w2Mbq/R93SveyMAjbty1lnnZXsx9T+h+vZpUyQt1zPFTraeKR9Seo+h9sPAEDWRaYoSnz00Uc2btw410wlu3btsgoVKrgL+ZdffumarDxFixZ1TU8ebatMiIIDZVPeeeedNN+/q6++2oYPHx4IOPSckTJFar5Tc5a8++67VqZMGTdSdEZThm3y5Mnu9y1bttgnn3yS4fsAAEg7ZIqyMTX7eF3yVQysQmOv55mKou+++2578sknXZNQcI+0W265xbp27eqatHr16mX33nuvdejQwRVZa9TuFi1apPm+qgu8apK0LxrzSc1VzzzzjCuQDqX9UDCimh6NID5t2rRMydKo5km1TTq3Oi86h+HqqADAb97d9q0dPHnE/KhgznzWoVTDTHnuHDHhKlQR1urVq10PqUmTJgXGsFEzkqb5UA+m4GYWZH+HDh1yk7wqgFNNloYwePPNNyMOecB7xf8fxpn9gQxklClbFtqBEykrg0hvhXLlt1vLNLHMQKYISKE1a9a4oQH0vULDByjzltgYUDAXEPn1wxiINjkshxXMlc/84OCJIxZjmZunISgCUkjd/VPaCw/++jD2ywcykNH0fzCzsjJ+zF4RFAGwaP8w9ssHMoDM5cugSGPOaITl5cuX2969e13vIhX3apC+4FoMrR8/frz98ccfVqhQITfqsmp+QmerV9OGHm/evHlu5GSNTKxBCS+44IJMODoAAOBHvuuSr67NPXv2dKMEX3PNNdanTx/X2+jVV1+1xx9/PE49h0YoVvGqpp1o166dG3VZ0zqEGjZsmBuBuWXLlq7Hkno3DRgwwI3ODAAA4MtMkbI5+/fvt5deesn10hFNHaFRlTXFgjI9RYoUsYkTJ7rb0aNHuyyRnH766a4bt6Zu0JxWouBKIw/fdddd1qlTp8AkpepyrnF79AMAAOC7oEhj6kjx4sXjLC9RokRg/Bpto6kmNMWDFxB5wc6LL77oBvbzgqJFixa5UYgVWAWPdKzMkgIrZabUPJeVuhzTZRgAgChoPtO8V6LRjdVEpqBFmR6NyHzddde5+afWrVvnpmzwxgryaMyYatWquft59LtGOw4OnqRmzZruNtKoyWnR5Ti9fpIScGl+MJ0fDYaoWw3WmJ1oVOtIAyX++++/bnLZ1FLdmTdyNgAg+/NdpkjjvNx+++1uELyvv/46zijLKqIWDZTnZY9CaVnwlBXaNtJ2sn379oj7onXec8mGDRsytctxcrsMz5gxwwVF//zzjxt1WdNSeBm07EyjS2tC2dR6+eWX02R/AABZg++CIq82SDOyN27c2M3D9e2337og6dRTT3XZoiNHjgQyQ6E07YN6m3m0baTtvPWRzJw5MzC3lR+6HKe0y3DZsmXdTPAK6hQUaf4yFZwr26JRma+66iobMmSIq9vScmXmdH7UVKnAVNsruFLmRDVfytJpigtvuo833njDzXAv5cuXd82Sek6dO71upUqVst9++801W6rgvXLlyi6Dp7ou1Y/peb19OHbsmD388MP2xRdfuNdRE8ROmDAhXnOq5/7774+3Tzou7e/u3bvdNpoC5KmnnnLTlmzbts0eeeQRu+222wIZNQ3A+Nlnn7njVEA+ePBgt65JkybWt29fNy+b9lX7r8yiekdqYt3p06e786Q6N50bBeM6VgWgel+l5r0DAMh4vguKdEHWBXbq1KlWunRpt0zBkUYN1sVRFz1dnEQX0FC6kHoBj2jbSNt56yNRHVKjRo0Cfyuo0IU7q/n9999dxksXedF8XQ899JA7r5qA9YorrnCTvGqeMZ3/FStWuPotTQrrnUv9ribH5557zr777jt3bv788093Th544AFbsmSJC4QUfChAmD17trvfjz/+6AY4VNG85jZTs6hexzFjxrjnHTRokNtu586d7lavvZo6VSwvmptNQYoK70NF2qdw9DrrMXUuNBSDMo8K+kTBkwJvZQY1XIMCJh1LKB2HmtP0WJdddpm99957rnj/iSeecM26q1atckHexRdfbPXq1UujVw8AELVB0QcffODqgryAyKPgRBdaZRi8pq/gpi2PlpUsWTLwt7ZVdiDcdhK8bSitS2h9VpgQVsGN5mzThKvKYqhIXYGParU8upBrm1atWrkgqVu3bm7MJxWj6/6iAELZEtEcX2qiWrp0qcuOtG7dOhBEaKoLBQnK3EjDhg0DvQj1uwrhRUGFgik9t4IzL+ukbI6CHQUcXvCqbE44kfbpzDPPjLftzTff7G6VMdP9lBVSrZncdNNN7lavtbJYmp8sXFCkISK8MbCUcfMCMJ1PnV9lpNQjUuc9PWrVAABRFhTt2rXLXVhC6WItutjqIqseZbqQq07Go4yQgiZd0D3KfuhCqWAguNhaXfW99dmVV1P0+eef25VXXunOlRegKLMSblJSNXOpx54yIsrifPnll4GMSqhwM9OHLgt+Dr1m3uuoZlBlVNRspazRCy+8YLNmzXIZQQVOCtBSItw+JbQfia1L6mMkZR8AAP7mu95nqklRYKO6jWD6Nq6shZo3ChcubPXr13e1JAcPHgxso3GMVCMTHBSpyUiBlOqDPMo+6AKs2o+07o7vR8rCaJwmNUPp3On8BPdGU2+tTZs2uYyagkcFJEOHDnUZGi94VACg2iFRM5Tuo4BLjzVnzhz3t2iE8ebNm7ugISF6jXXuVc+jsaUUpInqd5R18V5X3ao5L5xI+5TRFGy+/vrrLqBT5kt1UwCArMd3mSJN5fH999+7UaqvvfZaV2j9zTffuGWqQfGas1S30qtXLzfitWpJtm7d6jIjqhcJnqlcgY8u3Cr+Ve2ImkV0EVfzycCBA9P1WNRbTMXRafl4KaXiZWXFVPujeq3+/fu7YmFlNZRBU52Pgkf18FPGTb+rybJNmzau99opp5ziskgqgFcw8tZbb7mMnh5DdUBqQvOC2kmTJiW6P++++64rwlbNkgqtFUyJXhMVKes19DIuWqZRzUNF2qdwzarpSYXbKtBWfZPen9qfSMMFAAD8K0eMvt76jLITr732mssmaO4z9UbTRVdFrcFNOZqmw5v7TLUeCn40RUjo3Ge6yHpzn+mbvOpGFFQlt3u6musUNOii742RpGlGVIOiZimveSW9J5YslCt/hk6kGdqbC3F5QaRef2XaNIiognXVFgUL916JRt7/j4x+H2fV/QKi5f0+xQf75LtMkZfd8bp4J6ROnTo2duzYRLdTbyEVAOsnI2jE6az8+Eh+HZwyagqMFPhoeAGNtg4AyFp8GRRlddltCg7VFpElikw9JdUsCQDI2nxXaA0AAJAZCIrSiIqFgYT4sHwPABCE5rNUUu8pDRWg7uAaHFF/M04NwgVEGvJA741w087AP9K612ha1RFmt2Z5wI8IilJJAZF6E/3333+BsXqAcBQQaRTtxMZwQubSpMvp2XsUgH8RFKUBZYc0tYTGyvGmtwBCKUNEQORffuzVqayVgjQAGYOgKI14zSI0jQBZkx+bp9J7zDMAcVFoDQAAQFAEAAAQi6AIAACAoAgAACAWQREAAABBEQAAQCyCIgAAAIIiAACAWARFAAAAjGjtD+9u+9YOnjxifsVklFmXH99bmroCAPyIoMgHdNFiKH+kB95bAJB0BEU+ksNyWMFc/pmUkskosw+/vbf8OgErgOhGUOQjumjdWqaJ+QWTUWYffntvAdHCj03YQjN2eARFAACkE5qwsxaCIgAAorAJW2jGjougCACAdEYTdtbAOEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAEBQBAAD4tEv+0KFDbc6cORHXv/fee1aqVCn3+/Lly238+PH2xx9/WKFChaxp06bWo0cPK1iwYJz7HD161F555RWbN2+e7du3z6pUqWLdu3e3Cy64IN2PBwAAZA2+C4rat29v9evXj7MsJibGnn/+eTvttNMCAdGaNWusX79+VqFCBevdu7dt3brVZsyYYZs2bbJnn302zv2HDRtmCxcutI4dO1q5cuVs9uzZNmDAABs1apTVqVMnQ48PAAD4k++Cotq1a7ufYMuWLbPDhw9by5YtA8smTpxoRYoUsdGjR7sskZx++un2zDPP2A8//GANGjRwy1auXGnz58+3u+66yzp16uSWXX755da1a1cbN26c+wEAAMgSNUWff/655ciRw1q0aOH+PnDggP3000/WqlWrQEDkBTsFChSwBQsWBJYtWrTIcuXK5TJQnnz58lm7du1sxYoVtmXLlgw+GgAA4Ee+D4qOHz/ughxlj5QJknXr1tmJEyesevXqcbbNkyePVatWzTWtefS7msyCgyepWbOmu127dm2GHAcAAPA33zWfhVJT2J49e+I0ne3YscPdlihRIt72Wvbrr7/G2TbSdrJ9+/aIz6113nPJhg0bUnEkAADAz3Jnhaaz3Llzu55lniNHjgQyQ6Hy5s3repsFbxtpu+DHCmfmzJk2efLkVB8DAADwP18HRQcPHrSvvvrKFU2fcsopcWqC5NixY/Huo4DIC3i8bSNtF/xY4agOqVGjRnEyRUOGDLFoc/DEEZuyZaH5TcGc+axDqYaZvRsAgGzC10GRAqLQXmfBTV/BTVseLStZsmScbbdt2xZ2OwneNpTWJbQ+WsRYjB04cTizdwMAgOgNij777DPXmyw4WyOVKlVyPcpWr15tzZo1CyxXRkiF1cFNbVWrVrWlS5e6HmvBxdbqqu+tR+RMjF8zVwrUAACIiqBo9+7drtu9uuHnz58/zrrChQu7AR41QnWXLl0CI1jPnTvXDh06FCcoatKkiU2fPt3VB3njFKnpbNasWVarVi0rU6ZMBh9Z1uHXpik15ZG5AgBETVCkARfV7T606cyjaTp69eplffr0cbU/3ojWmrrjwgsvDGynwEdBkgZ7VKBVtmxZN43I5s2bbeDAgRl4RAAAwM9y+7nXWfHixa1evXph12uMohEjRri5z1588UWXLdKAjD179oy37UMPPeQyQsok7d+/3ypXrmzDhw+3c889NwOOBAAAZAW+DYqSMv2G5i0bO3Zsotuph9ndd9/tfgAAALLkiNYAAAAZgaAIAACAoAgAACAWQREAAICfC60BALGYagfIGARFAOBzTLUDZAyCIgDwKabaATIWQREA+JRfm6aYagfZFYXWAAAABEUAAACxCIoAAAAIigAAAGIRFAEAABAUAQAAxCIoAgAAICgCAACIRVAEAABAUAQAABCLoAgAAICgCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAmFlu86nVq1fba6+9ZsuXL7ejR4/aGWecYVdeeaV16NAhsI3WjR8/3v744w8rVKiQNW3a1Hr06GEFCxaM81i6/yuvvGLz5s2zffv2WZUqVax79+52wQUXZMKRAQAAP/JlUPTDDz/YoEGDrFq1atalSxcrUKCA/fPPP7Zt27bANmvWrLF+/fpZhQoVrHfv3rZ161abMWOGbdq0yZ599tk4jzds2DBbuHChdezY0cqVK2ezZ8+2AQMG2KhRo6xOnTqZcIQAAMBvfBcUHThwwIYOHWoXXXSRPfnkk5YzZ/gWvokTJ1qRIkVs9OjRLkskp59+uj3zzDMuqGrQoIFbtnLlSps/f77ddddd1qlTJ7fs8ssvt65du9q4cePcDwAAgO9qij7//HPbuXOnawZTQHTo0CE7efJkvMDpp59+slatWgUCIi/YUVZpwYIFgWWLFi2yXLlyWfv27QPL8uXLZ+3atbMVK1bYli1bMujIAACAn/kuU6RgR4HO9u3b7X//+59t3LjRBToKgNRMpoBm3bp1duLECatevXqc++bJk8c1ualpzaPf1WQWHDxJzZo13e3atWutTJkyYfdF+7Bjx47A3xs2bEjjowUAAH7hu6BINUEKeB566CGXzbnjjjvsl19+sffee8/2799vjz76aCBQKVGiRLz7a9mvv/4a+FvbRtrOC3wimTlzpk2ePDmNjgwAAPiZ74IiNZcdPnzYrrrqKrv33nvdssaNG9uxY8dckNKtWzc7cuRIIDMUKm/evK63mUfbRtrOWx+JmtwaNWoUJ1M0ZMiQVB4hAGQPB08csSlbFprfFMyZzzqUapjZu4EsyHdBkZrHpHnz5nGWt2jRwgVFqgPKnz+/W6ZAKZQCIi/g8R4v0nbBzxdOyZIl3Q8AIL4Yi7EDJw5n9m4A2TcoUrPW+vXr7dRTT42zvHjx4u5W4wyVLVvW/R5c7+PRsuBARo8X3JU/eDsh6AGA5Gdi/Jq5UqAGZJugSMXTKrZWIHPmmWcGlnu1P8WKFbNKlSq5HmUa4LFZs2aBbZQRUmG1BnH0VK1a1ZYuXep6rAUXW6urvrceAJB0fm2aUlMemStkqy75XkDz6aefxlmuvxUInXfeeVa4cGGrX7++G6H64MGDgW3mzp3rapKCg6ImTZq4wm01vQU3nc2aNctq1aoVsecZAACILr7LFJ111lnWtm1bF7QomDn33HNd7zONPdS5c+dAc5em6ejVq5f16dPHFUR7I1pr6o4LL7ww8HgKfBQkabDH3bt3u6a3OXPm2ObNm23gwIGZeKQAAMBPfBcUyf333+8yOJqOY/Hixe53jVF0/fXXx2lmGzFihJv77MUXX3TznakLf8+ePeM9nrr36zGUSVK3/sqVK9vw4cNdwAUAAODboCh37tx22223uZ+EaN6ysWPHJvp46mF29913ux8AAIAsUVMEAACQGQiKAAAACIoAAAB8XFMEZNUpBpheAACyLoIiZFlMMQAASEsERchy/DjFANMLAEDWR1CELMePzVNMLwAAWR+F1gAAAARFAAAAsQiKAAAACIoAAABiERQBAAAQFAEAAMQiKAIAACAoAgAAiEVQBAAAQFAEAAAQi6AIAACAoAgAACAWQREAAABBEQAAQCyCIgAAAIIiAACAWARFAAAABEUAAACxCIoAAAAIigAAAGIRFAEAAJhZbvOZpUuX2r333ht23bhx4+zss88O/L18+XIbP368/fHHH1aoUCFr2rSp9ejRwwoWLBjnfkePHrVXXnnF5s2bZ/v27bMqVapY9+7d7YILLkj34wEAAFmD74Iiz3XXXWc1a9aMs6xs2bKB39esWWP9+vWzChUqWO/evW3r1q02Y8YM27Rpkz377LNx7jds2DBbuHChdezY0cqVK2ezZ8+2AQMG2KhRo6xOnToZdkwAAMC/fBsU1a1b15o0aRJx/cSJE61IkSI2evRolyWS008/3Z555hn74YcfrEGDBm7ZypUrbf78+XbXXXdZp06d3LLLL7/cunbt6jJP+gEAAPB1TdHBgwft+PHj8ZYfOHDAfvrpJ2vVqlUgIPKCnQIFCtiCBQsCyxYtWmS5cuWy9u3bB5bly5fP2rVrZytWrLAtW7ZkwJEAAAC/822mSE1ehw4dcgGNmriU6alRo4Zbt27dOjtx4oRVr149zn3y5Mlj1apVc01rHv2uJrPg4Em8prm1a9damTJlMuSYAABANgyK/vzzT/v9999dE5cXcBw5csTGjBljX3/9tcvG3HjjjXbVVVclb4dy57bGjRvbRRddZKeccor99ddfrlZIdUNjx461s846y3bs2OG2LVGiRLz7a9mvv/4a+FvbRtpOtm/fHnFftM57LtmwYUOyjgUAAERBUDRlyhTX+6tt27Zx6nxmzpzpmrD27NljI0eOtDPOOCNZvbzOOecc9+O55JJLXOB12223ucd/7rnnXPDlZYZC5c2b1/U282jbSNt56yPRsUyePDnJ+w4AAKIwKFq1apWdd955liNHDve3an/Uq0vNUurVpa7v6vb+7rvvprrru5q/FBx9+eWXrtlMWSg5duxYvG0VEHkBj2jbSNt56yNRHVKjRo3iZIqGDBmSqmMBAADZLChSJqh06dKBv9WUpgJoNZcp0NCPAorvvvsuTXZUz6Xg5vDhw4Gmr+CmLY+WlSxZMvC3tt22bVvY7SR421Bal9B6AACQfaS495kKoIMzML/88ovLGil75FFNkIKntPDvv/+6DJCa5ipVquSef/Xq1XG20f6osLpq1aqBZfpdYxcpYAumrvreegAAgBRnik477TQ3+rRH3eA1TpCWe5ShUWCUHLt377ZixYrFWaYeYirevvDCCy1nzpxWuHBhq1+/vhuhukuXLoERrOfOnet6rGlka4/qkaZPn+7qg7xxitR0NmvWLKtVqxY9z5CmDp44YlO2LDQ/7Q8AIJ2DIo0RpIEPe/bs6QqZ1RvtlltuibONus6rHig5Hn30Udf0Vrt2bStevLjrffbxxx9b/vz53XN5VK/Uq1cv69Onj6v98Ua0Vv2SgiePAh8FSSrSVsClUbHnzJljmzdvtoEDB6b08IGwYizGDpw4nNm7AQDIyKDo2muvdcXWGhwxJibGdaHv3LlzYP369etdhqdbt27JetxLL73UPvvsM3v77bddk5eyRpdddpkbgTo4wNIYRSNGjHBzn7344osuW6QBGYMDJ89DDz3kMkLKJO3fv98qV65sw4cPt3PPPTelhw/EUTBn5IJ9P/D7/gFAlg6KVN/z+OOPu8BFtUShk7Aqy6NJWIOb05KiQ4cO7icpNKijxi5KjDJPd999t/sB0kOHUg0zexcAAJlVaK3Cak2RoYEbQwMiUYZHc5MpWwQAAJBtg6K+ffu6cYkSouYqbQcAAJBtgyLVESVlG29wRwAAgGwZFCWFxgcKnYgVAAAgyxdaP/3003H+Xrx4sevaHkpTcaiL/LJly+J0jwcAAMgWQVFwDZGaxVREHamQWutr1KjhZrcHAADIVkGRBkf0aoVuvPFG69ixY9ju8xp1Wj3PNCUHAABAtguKgsccevDBB+2ss85K9jhEAAAA2WrwxjZt2qTtngAAAGTFoCh4tvnff//dTZ9x8uTJsLVFmrQVAIBom5iZSZmjJCjau3evm1Pst99+S3DMIoIiAEBGYmJmZHhQNGbMGFu+fLmbVLV169ZWunRpy5UrV4p3BACA7DrxsZ/3DWkQFH377bdWs2ZNe+GFFxi1GgCQ6ZiYGZk2ovWRI0esbt26BEQAACC6g6KqVauGHc0aAAAgqoKirl272tdff20rVqxI2z0CAADISjVFO3futIsuusjuuecea9mypVWrVi3i5K8qxAYAAMiWQdGwYcNcPZG642tONP2E1hdpnZYRFAEAgGwbFGmaDwAAgOyCaT4AAABSU2gNAACQnaQ4U7Rly5Ykb1umTJmUPg0AAIC/g6Lrr78+SQM3apsFCxak9GkAAAD8HRRdfvnlYYOi/fv3259//mn//fefmxfttNNOS+0+AgAA+DcoeuihhyKuU1f86dOn27Rp02zgwIEpfQoAAICsXWitDFKnTp2sUqVKNnbs2PR4CgAAgKzT+6x69er2888/p+dTAAAA+D8o+ueff+zEiRPp+RQAAACZW1MUycmTJ23btm02Z84cN2Hs+eefn9ZPAQAA4J+gqHHjxgl2yVexdZEiRaxXr16WGlOmTLGXX37Z1Se9/vrrcdYtX77cxo8fb3/88YebjLZp06bWo0cPK1iwYJztjh49aq+88orNmzfP9u3bZ1WqVLHu3bvbBRdckKp9AwAA2UeKg6K6deuGDYq0TMFQjRo1rG3btla8ePEU79zWrVvtzTfftAIFCsRbt2bNGuvXr59VqFDBevfu7badMWOGbdq0yZ599tl4k9cuXLjQOnbsaOXKlXOT1w4YMMBGjRplderUSfH+AQCA7CPFQdHo0aMtvannWq1atVyT3J49e+Ksmzhxogu+tB/KEsnpp59uzzzzjP3www/WoEEDt2zlypU2f/58u+uuu1yPOG+Mpa5du9q4cePcDwAAgG/nPvvll19s0aJF1qdPn3jrDhw4YD/99JO1atUqEBB5wY6ySsEjaOsxcuXKZe3btw8sy5cvn7Vr185WrFiRrOlKAABA9pUmhdaq7VFz1sGDB109T7Vq1eycc85J8eOpx5qathS4qP4n1Lp169w26vIfLE+ePO65tS8e/a4ms+DgSWrWrOlu165dy9xsAAAgdUGRgqGnn37adb33iqu9OiMFIg8++KDVrl072Y/70UcfuQzOyJEjw67fsWOHuy1RokS8dVr266+/xtk20nayffv2iPuhdd5zyYYNG5J5JAAAINsHRevXr7f777/fDh8+bPXr17fzzjvPBRo7d+60pUuX2o8//ujWq3dYxYoVk/y4qh169dVX7dZbb7VixYqF3ebIkSOBzFCovHnzut5mwdtG2i74scKZOXOmTZ48Ocn7DgAAojAoUrBw7NgxV9h84YUXxll388032/fff2+DBg1y2z322GNJflx1v1cB9XXXXRdxG9UEiZ4/lAIiL+Dxto20XfBjhaM6pEaNGsXJFA0ZMiTJxwIAAKIgKFIhdJMmTeIFRB4t1/olS5Yk+TE3btxoH3/8sSuuDm7WUgBz/Phx+++//1xtkNf0Fdy05dGykiVLBv7WthpMMtx2ErxtKK1LaD0AAMg+UhwUqQeYusAnROu1XVIpEFL3exVZ6yfUDTfcYB06dLBu3bq5HmWrV6+2Zs2aBdYrI6TCag3i6KlataprztN+BBdbq6u+tx4AACDFQZEyMOrSnhAFHuGKnCPRqNVPPfVU2CY19Wy755577IwzzrDChQu7OiaNUN2lS5fACNZz5861Q4cOxQmKlK2aPn26qw/yxilS5mnWrFluDCR6ngEAgFQFRaq1ef/9913Acsstt8SpzVHx8tSpU12GJqHaoFAqrL700kvjLX/nnXfcbfA6TdOhKUTU1KbaH29Ea03dEdykp8BHQZIGe9y9e7eVLVvWzcu2efNmGzhwIO8CAACQuqBIGZpvv/3WTcOhLIzG/dGUHrt27bLff//dBSDK6mi79KAxikaMGOF6t7344osuW6RxjXr27Blv24ceeshlhJRJ2r9/v1WuXNmGDx9u5557brrsGwAAyHpyxGhwoRRS4KOgRNNoBHeDV++v5s2b25133hmxW31WpBomTTg7adKkeANHpsaULQvtwInDVihXfru1TJM0e1wAALKKKT64FqZq8EYFPBqgUeMRqbu6N6K1JmnNnTtNBssGAADIEMmOXKZMmeIGbFQPMC/w0W3wdBzqBaZsiuYh69y5c9ruMQAAQGZPCKtJWDXadNGiRRPMBGkEaW2jIuyff/45LfYTAADAP0GRCpU12vS1116b6LbXXHON23b27Nmp2T8AAAD/BUW//fab1atXL840GpFoG40lpEljAQAAslVQpBGn1c0+qTSidbipOAAAALJ0UJQzZ043B1lSaVvdBwAAwO+SFbFoyo7169cneXtty4SqAAAg2wVFderUcb3JNFt9YrSNtq1bt25q9g8AAMB/QZF6lKlJ7JFHHnGjWUeyZ88ee/TRR+3EiRN21VVXpcV+AgAA+GfwRk1t0bFjRzdB66233uoCnvPOO89KlSoVKMResmSJffzxxy5ouv7669N0OgwAAADfjGitmenV3X7atGn2xhtvuJ9gmkpNxdUayVoz2QMAAGTLoChHjhx2xx13uBnpZ82a5cYu2rlzp1t36qmn2jnnnGNt2rSxsmXLpsf+AgAApIsUz9qqoEczxgMAAGQHDCIEAABAUAQAABCLoAgAAICgCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAEBQBAADEIigCAAAws9zmM+vXr7fXXnvNVq9ebTt37rT8+fNbhQoVrFOnTtaoUaM42/711182ZswYW758ueXOndsaNmxovXv3tmLFisXZ7uTJkzZ9+nT78MMP3WOWK1fOOnfubC1atMjgowMAAH7lu6Bo8+bNdvDgQWvdurWVLFnSDh8+bIsWLbJBgwbZ/fffb+3bt3fbbd261fr06WOFCxe2Hj162KFDh1zgs27dOpswYYLlyZMn8JiTJk2yqVOn2pVXXmk1atSwr776yp544gnLkSOHNW/ePBOPFgAA+IXvgiJle/QT7Nprr3WBz9tvvx0Iit58800XML388stWpkwZt6xmzZrWv39/mz17dmC7bdu22YwZM+yaa66xfv36uWVXXHGFC6jGjh1rTZo0sVy5cmX4cQIAAH/JEjVFClpKly5t+/fvDyxT9ujiiy8OBERSv359K1++vC1YsCCwTFmh48ePu6DIowzR1Vdf7QKmFStWZOCRAAAAv/JtUKTmsN27d9s///zjMkTff/+9nX/++W6dgpldu3ZZ9erV491P2aI1a9YE/tbvBQoUcHVJodt56wEAAHzXfOZ56aWXbObMme73nDlz2mWXXRZo/tqxY4e7LVGiRLz7adnevXvt6NGjljdvXrdt8eLFXXYodDvZvn17xH3QOu+5ZMOGDWl0dAAAwG98GxR17NjR1fsoMFFz2IkTJ+zYsWNu3ZEjR9xtcDG1R4GQt41+121i20WioGzy5MlpdkwAAMC/fBsUqbnLa/JSTzQVUD/44IOuZ1m+fPncci9ICqYMkXjb6DYp24WjYu3gYQCUKRoyZEiqjw0AAPiPb4OiUMoaPffcc7Zx48ZA01dw05ZHy4oWLRrIBGnbpUuXWkxMTJwmNO++6vYfidYltB4AAGQfvi20DuU1c6kHWqlSpdwAjRrgMdSqVausatWqgb/1u7ruh9YDrVy5MrAeAADAd0GRepWFUpf6uXPnuqauihUrumWNGze2b775xrZs2RLYbsmSJS6T1LRp08CySy65xI12/cEHHwSWKWv00UcfueCqdu3a6X5MAADA/3zXfKYmsgMHDljdunVd0KJmrs8++8z+/vtv69WrlxUsWNBtp2k6Fi5caH379rUOHTq4LvzTpk2zypUrW5s2bQKPp/GNVLStdQqu1BV/8eLFtmzZMnv44YcZuBEAAPgzKGrWrJl9+umnLpOzZ88eFwRpPKI777zTZX08GrRx9OjRbu4zFV97c58pcPLqiTw9e/a0IkWKuN5kc+bMcXOfDR482Fq2bJkJRwgAAPzId0GR5iJL6nxklSpVsueffz7R7TTOkTJL+gEAAMgSNUUAAACZgaAIAACAoAgAACAWQREAAABBEQAAQCyCIgAAAIIiAACAWARFAAAABEUAAACxCIoAAAAIigAAAGIRFAEAABAUAQAAxCIoAgAAICgCAACIRVAEAABAUAQAABCLoAgAAICgCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAmFlu85lVq1bZnDlzbOnSpbZ582YrWrSonX322da9e3crX758nG3/+usvGzNmjC1fvtxy585tDRs2tN69e1uxYsXibHfy5EmbPn26ffjhh7Zz504rV66cde7c2Vq0aJHBRwcAAPzKd0HRW2+95YKcpk2bWpUqVWzHjh32wQcfuKBo3LhxVrlyZbfd1q1brU+fPla4cGHr0aOHHTp0yAU+69atswkTJliePHkCjzlp0iSbOnWqXXnllVajRg376quv7IknnrAcOXJY8+bNM/FogexrybtrEt2mXodqGfY4AJDlgqLrr7/eHnnkkThBTbNmzey2225zgc3DDz/slr355pt2+PBhe/nll61MmTJuWc2aNa1///42e/Zsa9++vVu2bds2mzFjhl1zzTXWr18/t+yKK65wAdXYsWOtSZMmlitXrkw5VgAAMhNfOnweFJ1zzjnxlqnZrGLFirZhw4bAskWLFtnFF18cCIikfv36btsFCxYEgiJlhY4fP+6CIo8yRFdffbXLFq1YscLq1KmT7scFIHpwoQGypixRaB0TE2O7du2yU045JZD90d/Vq1ePt62yRWvW/P8Hkn4vUKCAVahQId523noAAADfZYrC+eyzz1wg1K1bN/e36oykRIkS8bbVsr1799rRo0ctb968btvixYu77FDodrJ9+/aIz6t13nNJcKYKAIBosCSKMp++D4oUiIwcOdL1QGvdurVbduTIEXcbXHfkUSDkbaPfdZvYdpHMnDnTJk+enGbHAiDzRNMHO4BsGBQpSzNw4EArVKiQPfnkk4GC6Hz58rnbY8eOxbuPMkTB2+g2KduFo7qkRo0axQnQhgwZkurjAgDAD18EkEWCov3799uAAQPcrcYiKlmyZLymr+CmLY+WaWwjLxOkbTXmkeqSgpvQvPsGP24orUtofXbHN2sAQDTxZVCkJq0HH3zQNm7caCNGjHA9z4KVKlXKDdC4evXqsIM/Vq1aNfC3fv/kk09clif4cVauXBlYDwBARuDLpr/5Lig6ceKEPfbYY66r/NChQ6127dpht2vcuLEb+XrLli2BbvlLlixxgZTGOvJccsklLtOkASC9cYqUNfroo49ccBXp8QEAQHQFe74Lil566SX7+uuv3RhE+/bts3nz5sVZ36pVK3eraToWLlxoffv2tQ4dOrgRradNm+ZGvG7Tpk1g+9KlS1vHjh3dOo1XpK74ixcvtmXLlrmBIKN14EbamgEAfrrubCq63YrXLmyZyXdB0dq1a93tN998435CeUGRskOjR492WSBN6+HNfdarV69APZGnZ8+eVqRIEdebTNklzX02ePBga9myZQYdVfaVXb4dIGsjyAeQLYMiBTpJValSJXv++ecT3S5nzpwus6QfAP4RzcEMXygA//FdUAQASNugkeAKyEbTfAAAAKQ3MkU+8e/KnVbgZF5bsjfyN0O+7SEhNMdkjGhu8gOyO4IiAHEQXAGIVgRF2QzfYoGU4/8PEN2oKQIAACBTlLXwLRZ+wXsRQHZEUAQAQBbDF5P0QVCEdEfhLoBoQKCS9REUAVGED20AiIxCawAAADJFAAD4CxndzENQBACg9g8gKEJWwoc2ACA9ERTBF0gXAwAyG0ERAMB3X3DI+iIz0PsMAACATBEAwI+oIURmICgCgGyOmj0gaQiKgDD4lgoA0YegCACQJfHlBWmNQmsAAAAyRUDWQE0IAKQ/giJkK6TTgfRDcI7sjqAIUYcPdgBAONQUAQAAEBQBAADEovkMAIBE0OweHcgUAQAA+DFTdPDgQZs+fbqtXLnSVq1aZfv27bNBgwZZmzZt4m37119/2ZgxY2z58uWWO3dua9iwofXu3duKFSsWZ7uTJ0+6x/zwww9t586dVq5cOevcubO1aNEiA48M2Q093QAge/FdULRnzx6bPHmylSlTxqpWrWpLly4Nu93WrVutT58+VrhwYevRo4cdOnTIBT7r1q2zCRMmWJ48eQLbTpo0yaZOnWpXXnml1ahRw7766it74oknLEeOHNa8efMMPDoAAOBXvguKSpQoYR988IG7/f333+2OO+4Iu92bb75phw8ftpdfftkFUFKzZk3r37+/zZ4929q3b++Wbdu2zWbMmGHXXHON9evXzy274oorXEA1duxYa9KkieXKlSsDjxAAAPiR74KivHnzuoAoMYsWLbKLL744EBBJ/fr1rXz58rZgwYJAUKSs0PHjx11Q5FGG6Oqrr3bZohUrVlidOnXS6WgQ7WhiA4CsI0sWWiv7s2vXLqtevXq8dcoWrVnz/xci/V6gQAGrUKFCvO289QAAAL7LFCXFjh073G24jJKW7d27144ePeqyTtq2ePHiLjsUup1s37494vNonfdcsmHDhjQ8CgAA4CdZMig6cuSIuw0upvYoEPK20e+6TWy7SGbOnOmKvgEA2RdjECFLB0X58uVzt8eOHYu3Thmi4G10m5TtwlFdUqNGjeJkioYMGZIGRwAAAPwmSwZFXtNXcNOWR8uKFi0ayARpW3Xrj4mJidOE5t23ZMmSEZ9H6xJaDwAAso8sWWhdqlQpN0Dj6tWr463TgI8a38ij39V1P7QeSINDeusBAACyZFAkjRs3tm+++ca2bNkSWLZkyRLbuHGjNW3aNLDskksucaNda+wjj7JGH330kQuuateuneH7DgAA/MeXzWfvvfee7d+/P9DE9fXXX7sRrOW6665zo1hrmo6FCxda3759rUOHDm5E62nTplnlypXjTAlSunRp69ixo1un8YrUFX/x4sW2bNkye/jhhxm4EQAA+Dco0gjUmzdvDvz95Zdfuh9p1aqVC4o0aOPo0aPd3Gea1sOb+6xXr16BeiJPz549rUiRIq432Zw5c9zcZ4MHD7aWLVtm+LEBoej5AgD+4Mug6O23307SdpUqVbLnn38+0e1y5szpMkv6AQAAyFY1RQAAAGmJoAgAAICgCAAAIBZBEQAAAEERAACAj3ufAQCQFhjyAslBpggAAICgCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKAAAAYhEUAQAAEBQBAADEIigCAAAgKAIAAIhFUAQAAEBQBAAAEIugCAAAgKAIAAAgFkERAAAAQREAAEAsgiIAAACCIgAAgFgERQAAAGaW26LE0aNH7ZVXXrF58+bZvn37rEqVKta9e3e74IILMnvXAACAD0RNpmjYsGH29ttvW8uWLe2ee+6xnDlz2oABA2zZsmWZvWsAAMAHoiIoWrlypc2fP9/uuOMOu/vuu619+/b2wgsv2GmnnWbjxo3L7N0DAAA+EBVB0aJFiyxXrlwuGPLky5fP2rVrZytWrLAtW7Zk6v4BAIDMFxVB0Zo1a6xcuXJWqFChOMtr1qzpbteuXZtJewYAAPwiKgqtd+zYYSVKlIi33Fu2ffv2sPfTct3X4wVPGzZsSNP9277zX9v33zY7ejKPbTyQto8NAEBWsOfAVosptN8O5cxrq3evTpfnqFChguXPnz+6g6IjR45Ynjx54i3PmzdvYH04M2fOtMmTJ8dbPmTIEEsv36bbIwMAkDV8mE6PO2nSJKtevXp0B0WqHzp27FjYbvre+nBUg9SoUaPA3+rKryzRWWedFQioMpKeWwHZ4MGDXbSLuDg/CeP8JIzzkzDOT2Scm6xzfhJ7/qgIitRMtm3btnjLvaaxkiVLhr2floeuq1+/vmU2vagJRbrRjvOTMM5Pwjg/CeP8RMa5yfrnJyoKratWrWqbNm2yAwcOxOuq760HAADRLSqCoiZNmtiJEydcjVBw09msWbOsVq1aVqZMmUzdPwAAkPmiovlMgU/Tpk1t4sSJtnv3bitbtqzNmTPHNm/ebAMHDrSs1AzYtWvXsD3pwPlJDOcnYZyfhHF+IuPcZJ/zkyMmJibGooB6mHlzn+3fv98qV67s5j5r0KBBZu8aAADwgagJigAAACzaa4oAAAASQ1AEAABAUAQAABBFvc+yq19++cWmT5/uJrzds2ePFS5c2I251KVLFzvnnHMs2i1ZssQ+++wzW7ZsmRu889RTT7Xzzz/fbr/99ogDdkYTze337rvv2qpVq+z333+3Q4cO2ahRo+y8886zaKLhObxOGBq1vkqVKq4TxgUXXGDR7uDBg+4zRmO66X2i8zNo0CBr06aNRTudD/ViXrp0qevJXLRoUTv77LPde6d8+fIW7davX2+vvfaarV692nbu3OnmG9PgjZ06dYozU4TfkCnKwjQgZc6cOe2qq66yvn372g033ODefH369LHvv//eot348ePdB9all15q9957rzVv3twWLFjgPrSCJ/qNVhs3brS33nrLBYzqjRmthg0bZm+//ba1bNnS7rnnHvd/asCAAS6Yjnb6sqX5HzVNA4PcxqX/O4sWLbJ69eq5982VV15pv/76q/t8WbdunUW7zZs3u6C6devW7vzceuutbrmC6uAxA31Hvc+QfRw6dCjmqquuirnvvvtiot3SpUtjTpw4EW/ZpZdeGjNx4sSYaHfgwIGYPXv2uN8XLFjgzsvPP/8cE01WrFjhjvutt94KLDt8+HDMjTfeGHPnnXfGRLsjR47EbN++3f2+atUqd65mzZqV2bvlC8uWLYs5evRonGV///13TPPmzWOeeOKJTNsvPzt+/HjMbbfdFnPzzTfH+BWZomxGKcpTTjnFjcUU7c4991z3rT90mdLc+uYb7QoWLOjORTTTN/1cuXK5yZ89miC6Xbt2tmLFCtuyZYtFM018nRUG3MsMKlHIkydPnGVqNqtYsSKfLxHo/1rp0qV9fX2ipigb0Jxux44dc6nuuXPnurbcW265JbN3y5eUzlXtjAJHQPV45cqVs0KFCsVZXrNmTXe7du1apgFCkmnYv127drnACLH0eavBk3Wd+vrrr11ph2aY8CuComzg0UcftR9++MH9rm8u+tbrtd8irnfeeccFkM2aNcvsXYEPqLYsXCbEW6ZidCCp1LFDNXrdunXL7F3xjZdeeilQQ6TM/WWXXWb9+vUzvyIo8omTJ0+6i3VSU9o5cuQI/N2zZ09XZL1161bXG+L48eNuAtzsJDXnJ7i3nopG9S1FxZHZSVqcn2ikb7ChTSDeOfLWA0mhJrORI0e6HmgqLkasjh07uknZ9QVDHV10bUrqZ1VmICjyCfVaUA+ppHjjjTdc10ZPtWrVAr+3atXK9X5Qj5onn3zSsovUnB/vA2vw4MGul1VWmgQ4o85PtFL9ULgPaHXT99YDSck46nNFzbD63FXtDGLps8b7vFGw2L9/f3vwwQdtwoQJvvxyRlDkE2eeeabrqpgUCRU+6luvxoCYOnWq+5abXT7UU3N+VCx73333uQ+s4cOHuwLj7Cat3j/RRudCzR2hvCEbGM8KiVHRsIZw0O2YMWN4zyRCWaPnnnvODQmizy2/ISjy0YdzWg2IpmBIBX8qKs4uQVFKz4+KzxUQKRug1HZ2/cBKy/dPNNHYOxrLSkWgwcXWGqzQWw8k9FmrrIcu8CNGjKDAOgm8Jmm/9kCjS34Wpl4OoTTirLoZq9tj8eLFLdp7PegbnNqyn3nmGUaZRdhvrapxCB5MTk1ns2bNslq1atHzDBHpffPYY4+5oRsef/xxq127dmbvku+vT8ePH3c9pPVl3a8BJJmiLOyBBx6wUqVKuQ9vBUBqJtKHuVL/+s8a7dS2r6H427Zt62qKgscOKVCggBvpOtq9/vrr7vavv/5yt/rA8kZy1nQx2Z3+76jwfuLEibZ7924rW7as66yg0XizY+1ZSrz33nvuW73XpKhu1erUIdddd52bXihae1XpXFx88cXuy6imiQmm+s5o9txzz7kMbN26dd11Su8f9c77+++/rVevXr4tY8ihERwzeyeQMu+//7598cUX7mKvD60iRYq4D3nNLaM3YrS7/vrr3cUtnNNOO81N7RDt1D02ki+//NKiJZ3vzX2m/0cqxldnhQYNGmT2rvn+/9GMGTPs9NNPt2ikqSvUozXa//9EMn/+fPv000/dlCcqY1AQVL16dbv22mvtkksuMb8iKAIAAKCmCAAAIBZBEQAAAEERAABALIIiAAAAgiIAAIBYBEUAAAAERQAAALEIigAAAAiKgMwze/ZsN6K0brMCTZyq/X311VfT7Tn0+BopOKvSvic0Snhaeeihh6xz585u/q3MoPeAjlPvCc9///3nlg0dOtT86JNPPnFz3f3555+ZvSvwMYIiIImefvpp96F/xRVXuElDs+uUDvqBf2lqia+++spuu+02y5UrV2bvTpbRunVrN8HvuHHjMntX4GNMCAskwcGDB23BggWWI0cO27t3ry1evNiaN2+eqsfUhLSaq65EiRJptp/I/l5++WU3d58msvUTTfr5xhtvWKFChcyPcufO7QL+UaNG2fLly+2cc87J7F2CD5EpApJAE+8eOnTIOnbsaDlz5nQTHaaWZhevUKFC1M4yjuRbv369LVu2zFq2bOneh34LOvR+LlmypPmVvsgou/bRRx9l9q7Ap8gUAUmgIEgfpjfddJOrSfj555/dzOH6xh5aazF58uSIj6Pt3377bfe7aomGDRtmgwYNsjZt2gS2URPdueeeaw8//LBL9f/444+uua5u3brWt29fO+OMM+yvv/6yiRMn2q+//mrHjx93M7r369fPTj311MDjqN7j3nvvta5du1q3bt3i7IfqP2644QbXpKD6FO/v4H3whLv/77//7p5/xYoV7uJ8/vnnW+/evePNmK6ZwpVh0/bbt293F84qVapYhw4dXH1HamhGe13cvvvuO9u0aZObifuUU06x+vXru30uW7Zs2NdGmQLty7Rp0+zvv/92QamyLnfeeafly5cvzn10bqdPn+7qUXQfZUPatWtnzZo1sxtvvDFw/pJC2cX33nvP/vjjD/d6av90f2UvktoMNmvWLHcbLkukWp45c+a4/dV513v233//dYGA9lH7P3PmTPvhhx/c8gMHDrgs5UUXXeSa4ooXLx7vMbds2WLjx49399G5OOuss+z2228Pu2+h7ynP6tWr3X6r2W/r1q127Ngxd+wK7HQO9Z4I5jXf6rWaNGmSLVy40GVny5cv717X0PeN3gczZsxw2+nxlc3VsdSuXdvta/D/0WLFitl5553ntu3fv7+buR0IRlAEJEIBiC7+ungo6Lj88sttyZIl7oM+NFjQB244GzZscMFB6EU3kn379lmvXr3cRUvPp4v+N9984z7IdfFTAFK9enVr27atu8guWrTIXTh0wU8JBQa64Lz77rvubwUtkY5JAY4CCi1v3769rVmzxl3w161b5y5kwceowEkXPTVV6Fh2795tX3/9tT3yyCMuYLvuuusspXROFehoP9QUWaBAAbfs888/t2+//TbQzBTq/fffdxf5Ro0auWDu+++/d8GKgirtV7Dhw4fb3LlzXSB69dVXuwu6gtrffvstWfs6YcIEmzp1qguqFHDqfCvjo6B31apV9sQTTyTpcRSM6zgrVaoUcZsXXnjBVq5caQ0bNrSLL744EOwogFbwoGOuWbOme1302n344YfufOh8BWctFUTdfffdtm3bNhd0KyDS+b3vvvsivs/D+fjjj917V0G9/g8dPnzYBUh6b+i9NGTIkHj3UQCm59H/g8aNG7v7KFv76KOP2rPPPuv2R2JiYuz+++93x6v32IUXXuiCIgVzep/p/07oe+Dss8+2n376yb2G3uMAHoIiIBHKEog+YEUXtZEjR7pMjwKJ4GYMXSxCLxi7du2ynj17Wt68eW3AgAFJek5lo/SNWcGPZ8SIEe4CpmX6Zq+mPO/CMHDgQJcx0bdyBUvJVaRIERfgKdMgocFeMD2PLk7BNVVPPfWUCx5UABy8/JlnnnEBRWh9li62r7zyisu65M+f31JCTTUffPCBFS1aNF7goOBxypQpYc+3AlplIM4880z3d48ePdzx6qKr/fKaf7SdjqlatWr20ksvBfbzlltuse7duyd5P5XpU0CkC/CTTz7pghrvddNrqmyXMheJZc503vS+0EU9ocySttG5VVFxMAVDOl+h2RG95gq0FSzeeuutgeUKWhQQ6ViDlyvb9NxzzyX5+HW+lMUM3mcduwJOfbEIV9+jgKxGjRo2evRoy5Mnj1umzJIeR0GpF8woEFdApKBY78FgysYpuArl/f8gKEI4/mqUBnxGH6rz5s1zxaOXXHKJW6aLij6E9W1U3zgTcuTIEdeUoKa2Bx98MMnFnbpwhl54vWBDTUTBmRx9M/bWZUR3Y33jDy0yV8ZKlPUIFhoQeedPzYVq9lCmIKWU1QgNiLyLf8WKFSO+Njp3XkAkymzpeE6ePOmCSo9ed+nSpUucwE1BU/D5T4yCDXnggQcCAZH3uilY1u38+fMTfZwdO3a4fQzXzBWsU6dO8QIi0f3CNRcp2Nf7W0GgRxkxBYm6T3Czqqj3Zbly5SyptC+hQZyO+ZprrnG/R3qdFPx7AZHUq1fPZX3CvWfCZWD1JSTc8XpNzGpqA0KRKQISoMyHmnyU0Qj+4NWFRBdN1W1E+rapb8P6Bq6mN2V2WrRokeTn1UUnNIPi9VKrXLmyu6iEW6dv2OktXCZKzUKiQCc0S6YsibJLCiIVJAZL7f6qbuqdd95x2QI1fwWP2xN8QQ2mZqBQpUuXjrf/a9eudbd16tSJt73qVZJK+6ZgKFJxvt5Xqm1KjI5PEivMV9NYJGpmVaZHTa461uDzFfxaaH+UaVGAGRpwKDOq4F5NukmhAEuBoQI/Pa46LOj/Rrjn9egYwwXUep/p/1NwtlA1amoyVZCjLyuqx1N2L1IhurKiwecTCEZQBCTAu5B5TWfB31r1Aa26BdXyhMtYqEZDdUQKhhQUJUe4bs3et+2E1oVrLkhr4b59e8+vTIZH5+WOO+5wwZAuoiqA1sVOFysFHAo4dcFMKZ3bxx57zAUcCkyVRfACSTUJKTsXTkLnL3j/1VylfVVmLlRwQXtidB4UfCRUgK9AITFecJLYGFmRMkkqwB47dqwrNr7gggvc+9d7TNWSBb8WKsJO6LESy1YFU4cB1RSpUFoF6rqvzreCstDn9UQK/HS/4NdIdVGqoXrttddcwKdmTtExXnvtta7pLjRL5Z2/lDbbInsjKAIi0MVc9SCS0CjLyhiFNqeo3khjtigYULNZZvCySeFGPfYueukdUOocqgeQmqCCvfnmmy4oSg1dCNVEovogXXCDqeknLYI/XYCVUdBFNtjOnTuT/DgKwvRaqOA4Nbx9UPFxQkKziF6wrBorZRRVnB4c1Chro8L50H32Mn3hRFoeSs2pCogUtKqGKDhAUcbHK+xPDQWt6pWpwn0VgqumTJkpHaeCJo38HRqkSuhrCghBERCBsg26KKr5JPSi6wUb2kYX/+CgSD1rVIiq9L+KP3XhzgxeM0G45gn1OgpHmZHUZG+C/fPPP+7Wq8UKpp5XqaVu5aodCn1tdLxal1pVq1Z150mFwGqWCZac3mdqzlIPt40bN4Z9HyWVapkUACSlqS2UAjtlZtQcFprlUY1OaLOm9lPvW9VYaV1wE5r+TyT1+L3XQT3hQjM2afEeCA0G9X7Qj3oWqiOCMrmhQZF3/tQMDYSi0BoIQ9+e1TNGH7QqlFbvrtAfLVdPIBU3e8WfuvANHjzYXUQ0LUhmfhtVMbGyHV4TX3CWQ1mDcNQMqAto6EUyJbyu0Aoqgn322Weuxii1VMCrwCs4a6P9Vo+utGhGVG8nUbNX8PlQwXNyMhxewKxMSbg6Fj2ehn1IjN6LCtA1HpDq3JJDgZDek6olUvd2j7JO4YZxUECksZCUEVI3/tDemHqfJ4VX8B0aAGkQSmULU0vnQj+RMlnhvpB4nQFUewSEIlMEhKEUvD5s9cEZruAzuNeVmgGULfK6ECsAUf1MuCYc1Upk1NxiKjTWOEBqxlNPNn17Vu2KgiQdl5fJCabhBBTgqSu7LsBqflBvs5RcQFq1amVvvfWWu+iqIFoXSNUS6dxqWAMNMJgaqhnRY6t5Tt3ZlbnzmjuV5fEKpVNKr6HqwVTEq6EXlPFSFk21TMr+qFkoKaNKa+wcNR++/vrrrmeY/ta50PtEr4ECBh2DMhyJUcZKY0LpOL2gLSm0nxpnSQGO6tv0XlATqjJY2pdwo1CrZ5xeK9XGKbBV8bKapxTQqibJO9cJ0XnSj86Zgj99ifDGEFL2SEMRpIZeY30J0XPo/KnWS8MIqGlWx+wNWxH8ZUe97FSgnZqsHbIvgiIggQLr4JGmw1HhqAIh9axRF2Ivo6BuxuG6Git7kpETrupiq8BGx6NeR3p+XaA1qJ8KU0NpnZpZdMHXxVqBhgKClARF6tGlc6MBCnUu9Fjq+fX888+7nkJpERTp2FQ/onodBZy60OpiHjoIY0opG6gLqLKGeh4VJ+tCq2YonaOkjois10HBpTJMuijrHCsrpxHAdX6TGuAoezNmzBhXx5acoEh0XvScqnfTeFfKHmkoAgVJ2odQCpRUmK3XT4M7avBH7/VTsJSUoEhNZsqQeaNiK+BWz0qNB6XgMLVBkXpCapR5NVlrwE6dVwVG6gihAFRBWDAdg4KyPn36pOp5kX3liAnuGwkASJSakDQwpQaJVAYmIylzo2EOVBwdbsRuRKbBM5Ud07nzau6AYNQUAUAEavIJ/d6o5hnVZCkLosxURlNmRBkfNYsi6VQHpSZtjc5NQIRIaD4DgAiUkVGzjJq+VDSvZj81m2kMIzU7hRs5Or2pye5///uf6xmmJsmkTiYb7fTaqZnQG0kbCIfmMwCIQE0tKk5WD0P11FJvJo2grCaz5Nb0APA/giIAAABqigAAAGIRFAEAABAUAQAAxCIoAgAAICgCAACIRVAEAABAUAQAABCLoAgAAICgCAAAINb/AS1yHyIH6rk7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Background provided. Make sure there is enough statistics.\n", "Creating the 100% polarized ASADs (this may take a minute...)\n", "Creating the unpolarized ASAD...\n", - "A = 0.70, B = 0.59, C = 1.54\n", - "Rmax, Rmin: 1.296362263993903 0.7045013854812356\n", - "Modulation mu = 0.2958027043311636\n", - "A = 0.70, B = 0.60, C = 1.29\n", - "Rmax, Rmin: 1.3015395182787968 0.7007339063841972\n", - "Modulation mu = 0.30006172208759263\n", - "A = 0.70, B = 0.60, C = 1.02\n", - "Rmax, Rmin: 1.299080696407923 0.7020257337541459\n", - "Modulation mu = 0.29836242273501756\n", - "A = 0.70, B = 0.59, C = 0.77\n", - "Rmax, Rmin: 1.2934099578667642 0.7030000374258599\n", - "Modulation mu = 0.2957358066895296\n", - "A = 0.70, B = 0.60, C = 0.50\n", - "Rmax, Rmin: 1.2988200755168664 0.7015119332421038\n", - "Modulation mu = 0.29860450148240125\n", - "A = 0.70, B = 0.59, C = 0.25\n", - "Rmax, Rmin: 1.2886829648874454 0.7034352676970612\n", - "Modulation mu = 0.29378160774679707\n", - "A = 1.30, B = -0.60, C = 1.54\n", - "Rmax, Rmin: 1.2982384590994411 0.6996091008132603\n", - "Modulation mu = 0.2996371546547519\n", - "A = 1.30, B = -0.60, C = 1.28\n", - "Rmax, Rmin: 1.2986652250227264 0.6994399944096454\n", - "Modulation mu = 0.2998967345590093\n", - "A = 1.30, B = -0.60, C = 1.02\n", - "Rmax, Rmin: 1.2993691627841086 0.700069122523783\n", - "Modulation mu = 0.29973420268285\n", - "A = 1.30, B = -0.59, C = 0.76\n", - "Rmax, Rmin: 1.295186663981397 0.7090702970204761\n", - "Modulation mu = 0.29243573971070924\n", - "A = 1.30, B = -0.60, C = 0.50\n", - "Rmax, Rmin: 1.2962375037496803 0.7035416073846245\n", - "Modulation mu = 0.296380681778834\n", - "A = 0.71, B = 0.59, C = 1.81\n", - "Rmax, Rmin: 1.2980745189958551 0.708486741516934\n", - "Modulation mu = 0.2938299413436539\n" + "A = 0.72, B = 0.56, C = 1.55\n", + "Rmax, Rmin: 1.2765994095848665 0.7208759491498263\n", + "Modulation mu = 0.2782129241319227\n", + "A = 0.71, B = 0.57, C = 1.28\n", + "Rmax, Rmin: 1.277565221044138 0.7145656302116623\n", + "Modulation mu = 0.2826117523743843\n", + "A = 0.71, B = 0.58, C = 1.02\n", + "Rmax, Rmin: 1.2811347880756978 0.7115098904640041\n", + "Modulation mu = 0.2858637587254843\n", + "A = 0.71, B = 0.58, C = 0.76\n", + "Rmax, Rmin: 1.2832547944023935 0.7105732262477737\n", + "Modulation mu = 0.28722716414020205\n", + "A = 0.71, B = 0.58, C = 0.50\n", + "Rmax, Rmin: 1.286333723259795 0.709611209311379\n", + "Modulation mu = 0.2889471069752825\n", + "A = 0.71, B = 0.57, C = 0.25\n", + "Rmax, Rmin: 1.2795091218061168 0.7209409818293889\n", + "Modulation mu = 0.27922123074283006\n", + "A = 1.28, B = -0.57, C = 1.54\n", + "Rmax, Rmin: 1.2816992490648778 0.7193171518560963\n", + "Modulation mu = 0.2810482197696847\n", + "A = 1.28, B = -0.57, C = 1.28\n", + "Rmax, Rmin: 1.282324586598261 0.724706750909539\n", + "Modulation mu = 0.2778321520286452\n", + "A = 1.29, B = -0.58, C = 1.02\n", + "Rmax, Rmin: 1.2897273462156322 0.7181465237202669\n", + "Modulation mu = 0.2846696852096655\n", + "A = 1.29, B = -0.57, C = 0.76\n", + "Rmax, Rmin: 1.286606127370973 0.7197829170713229\n", + "Modulation mu = 0.2825091234772001\n", + "A = 1.29, B = -0.58, C = 0.51\n", + "Rmax, Rmin: 1.2880870304466803 0.7157297168971504\n", + "Modulation mu = 0.28563356120674255\n", + "A = 0.72, B = 0.57, C = 1.81\n", + "Rmax, Rmin: 1.2815309169458988 0.7196863013802212\n", + "Modulation mu = 0.28075143988398316\n" ] } ], @@ -511,7 +495,7 @@ "id": "54defb88", "metadata": {}, "source": [ - "Print the source and background duration, total counts, count rate, and minimum detectable polarization (MDP)" + "Let's check some numbers:" ] }, { @@ -531,7 +515,7 @@ "\n", "Background duration: 378.9 s\n", "\n", - "MDP_99: 16.081 %\n" + "MDP_99: 16.837 %\n" ] } ], @@ -554,12 +538,12 @@ "id": "1e5cb5b3", "metadata": {}, "source": [ - "Derive the modulation factor. This depends on the source spectrum and the instrument polarization response averaged over polarization angles. This needs to be re-computed for every source" + "Derive the modulation factor. This depends on the source spectrum and the instrument polarization response averaged over polarization angles. This steo needs to be re-computed for every source." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "2db5d9d4", "metadata": {}, "outputs": [ @@ -567,7 +551,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "modularion factor: 0.296 +/- 0.000\n" + "modularion factor: 0.283 +/- 0.000\n" ] } ], @@ -576,7 +560,7 @@ "mu = average_mu['mu']\n", "mu_err = average_mu['uncertainty']\n", "\n", - "print('modulation factor: %.3f +/- %.3f'%(mu, mu_err))" + "print('modularion factor: %.3f +/- %.3f'%(mu, mu_err))" ] }, { @@ -644,12 +628,12 @@ "source": [ "The background is rate is estimated over a longer time period and therefore its flux needs to be rescaled to the expected flux during the GRB.\n", "\n", - "This factor is simply computed as the ratio of GRB duration / background duration." + "This factor is simply computed as the ration of GRB duration / background duration." ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "id": "da3b6513", "metadata": {}, "outputs": [ @@ -674,12 +658,12 @@ "id": "b3417867", "metadata": {}, "source": [ - "Compute the expected MDP " + "Compute the expected MDP assuming " ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "id": "f19a7f75", "metadata": {}, "outputs": [ @@ -687,17 +671,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "8114 -6519.425425657893 656.0337319379967 0.29616350838989125\n", - "Q, U, unsubtracted: -0.8034786080426292 0.0808520744315993\n", + "I, Q, U, mu 8114 -6825.917273322408 686.8752520880079 0.2828654127255937\n", + "Q, U (unsubtracted:) -0.8412518207200403 0.08465309983830513\n", "Unpolarized bkg (or simulation) provided, subtracting its contribution.\n", "check I(src+bkg) vs I(src): 8114 8111.672527983004\n", - "Q, U unpolarized: 0.29876762836269133 0.12365691531783854\n", - "Q, U unpolarized uncertainty: 413.49740057864454 %\n", - "Q, U, subtracted: -0.8030522602225199 0.08102853550462827\n", + "Q, U unpolarized: 0.31281332049973815 0.1294702859721143\n", + "Q, U unpolarized uncertainty: 326.9602341890562 %\n", + "Q, U, subtracted: -0.8408054293956954 0.08483785671606878\n", + "Q/I, U/I, uncertainty: 0.044634633579211894 0.05541113952798577 0.21126910228240167\n", "\n", " ############################## \n", "\n", - " PD: 80.71 +/- 5.23 %\n", + " PD: 84.51 +/- 5.47 %\n", " PA: 87.12 +/- 1.88 deg\n", "\n", " ############################## \n", @@ -706,7 +691,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAJvCAYAAAD1FlDHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydBbhUVffGFymIipSCCNIiiDQICqKIotjd3d1+xmd3t9j+7U+xExVQBJSQ7pYOBaR7/s9vD/tyZu70nTNzzpz1Ps945d6JM+fss/e737XWu0qFQqGQKBQKhUKhUCgUSVA62RMUCoVCoVAoFAqgxFGhUCgUCoVCkRKUOCoUCoVCoVAoUoISR4VCoVAoFApFSlDiqFAoFAqFQqFICUocFQqFQqFQKBQpQYmjQqFQKBQKhSIlKHFUKBQKhUKhUKQEJY4KhUKhUCgUipSgxFGhUCgUCoVCkRLKSoFg7dq18tFHH8nEiRNl0qRJsmrVKrntttvkiCOOSOn1PL93794ycOBA2bBhg+yzzz5yxRVXyN57713suYMGDZK33npL/vrrL9l1113lyCOPlHPOOUfKli2Y06lQKBQKhUJRuIrjv//+K2+//bYhc40aNUrrtVu3bpVbb71Vfv75ZznhhBPksssuk+XLl8u1114rc+fOjXjuH3/8IXfccYfstNNO5u9dunSRd955R5599tksfyOFQqFQKBQKb6FgJLJq1arJ559/bn5OnjxZLrnkkpRf+8svv8j48ePlvvvuk27dupnfHXLIIXLGGWcYZfGuu+4qeu5LL70kDRs2lCeffLJIYdxxxx3lvffek5NOOkn22msvF76dQqFQKBQKRf5RMIpj+fLlDWnMBL/++qtUrVpVunbtWvQ7QtAHH3ywCUtv3LjR/G727NnmcfTRR0eEpY8//ngJhUKGgCoUCoVCoVAUKgpGcSwJpk6dKo0bN5bSpSN5NHmOX3/9tQlXozLyPBCd91i9enWpUaOGTJs2Le5n/P333/LPP/9E5FQSVm/SpIkhvQqFQqFQKBROIFwtXLhQOnToYAQtL0CJo4gsW7ZMWrZsWez3VsGE8EEcLfGLpWzyOycxjMZXX31lcjAVCoVCoVAo0sGdd94phx12mHgBShxFTBV1LNXP/o6/AxuyjvdcKrvj4ZhjjpEDDjig6N/Tp0+XRx99VHr16iXt27eX2rVrZ+W7KBSK1LF+/XpZsWJF0WPlypWyZs0acy/zIAXFolSpUiafmQfFcfb/K1SoYO5/HuXKlSt62H+XKVPGtePfvHmzbNq0ycxN/Iz+/3Xr1pnvY78TP/mdE0Ra+B6VKlUyj8qVKxtlgwf/rxERhSL3mDZtmixatEh22WUXeeGFF6RmzZriFShxFJEddtihiBQ6YX/H34GdQOM91z4vFghn84gGSieT+R577CE777xzib6HQqGI7ZqASwLpItEPS6IghVWqVDG5zhS4cS/aBxM3PyFX0eksfsSWLVtk9erVJl3G+YA081i6dKnZ2Frw3e38RWTF/j+kkvOmUCiyC4p12bT27NnT8AOQiF/kGkocRcxiESvMHB2adoaud99992LPJScyXdSvX9/kRyppVChKDojgggULZP78+SYvCHJIKgpkyU6+lviQX2yJEHNAvn1YsRTDR5YiPUiZW0AB5f0TfQYbYeY0J8meM2eOjBo1yqicADWV88f8xcaXR61atVShVChKACIFS5Yskf3220/23HNPmTJlingNShxFTGHM2LFjjTLhVBQwEicMVadOnaLnAS5ks2bNip7HpMounXB0JmDRAjNmzDCqBpOvQqFIPsFCDiGJlixCEgH3LfdRgwYNTFK5JYuEmFUlSw7IH+cvei5ijoTgOgklixwWaFwPzu1uu+1mSCTpNzz4t5vheoWiULB161azITvooIM8fc8Ejjgy0SH9MqFZhYGLhJUOu33r40i+04ABA6Rz585FO2jUwbp165pKa0iivbBffPGFmTB5n5KACZkJuF27dsUUTYUi6BMqBAVyaB9s1vg99zEEBwXREhY2Y0oQsw821oT0ediNtPP6WALPY8yYMUXXh/wsrou9PiiVen0Uiu1AOJo3b54ceOCBniaNBUccP/30U5O7Y0PMgwcPNpMZOPHEE43a8Oqrr8oPP/wg//vf/4p205DFPn36yMMPP2x8GgnhQAaZ9C644IKIz6ANIa0Mb7zxRunevbvMnDnTGI8fddRRUq9evRIdf6tWrUxIbcSIEdKxY8eYOZEKRRBAfs/ixYtl1qxZ5h7DuorwKcQFBQvygZLIT0KlXp9oCx1cF8ghjzZt2pjfoUCS3G8VYfImhw4dav5GZIWNOIowPyGiSiQVQcXs2bNNu2Q2Y36YywqKOEIGmagsUBB5AMrYIY6xwIV67LHHTFcYyCdV1E2bNjUEEYXRCRTIBx54wFjr0GYQknnWWWfJeeedl5XJt23btjJ8+HAZNmyY+Syv+DYpFG4TRQpYLFFkIiUygFrFPUjeHz/Z7BHKSQZIi81r9AsgxnxfflLtXQiA1PNgUwz4XlaZxB+XSA+RHXK8yeciLYjNANXdCkUho9w2xwXug3HjxplNFLzDDygVcvpNKHIG8iQvvvhiee2114oZirPg8XdCb/lO2Fco3ALRAUsU+Ul6CKoTxMGqURCJdO4BqoJJR7EWWn4CUzEPzkFQ1De+L8U29mHJPgsq190+gnI+FMFBqW32XtRXsCmmGCYWEnGFfEFZiQfBpGmLb1BdmEyxBFEo/E4SKGah6IzJ0KaREHpmQoQoYoVDYUsmgDQSFiWyQJoHO3olHP4Cc531oeQn6UIA8khFPA/dTCsKYS5cs2aNydPGkg+13U/QO9DjmDBhggnhYR4eL9SuUHgVLPzkJ1L0xYMCsIoVKxo1vUuXLkZZzNa4RmnkvZiE/UgYIU2EciHOfshzcgs2TM3iyjlBPXY+II6cIx66OVD4EZs2bTJzFePZ+jT6CUocPQ5yg4YMGSK///67yXnU3B+FHyZFws8oi/R3p2MJijn5O3idoipm20ibz2QSRmn0K5GAKPE9vGT0m09wHW2omnmPTQjXGHLNYkuqAwTbkkjcL/x67RXBwebNm82cyLgmt5dICRskPynp/jnSgILJsFOnTqZCHPKI8ohio1B4CSzmtMiCLFI9S5gREkeFLWQRGxY3F3WbG5dK4YzCn2CzwdzHA5LNGMPw3bZV5O+WREK+lUQqvEga16xZYzY85DfaIjh+r8RRkVUwCaI2/vHHH2anosRR4QVA1iCLo0ePNj/5NwSREDTqItW0uYaShWCA62xzHq1SyyIMiWSO5O8QSBZnVSIVXsCWLVuKSCMKup+L4JQ4+gRMghiMM9BsJaKqK4pcg7GH5RVkEQsJFmkscnr06GGURTdb5SkUscCcCDnkQeiPuRESydiESFp1hw23n1QdRWGhdOnSZoyylvuVMFroXeQj2MGGUSgm54SwlTwqcgHyySCKEEaMuUnsJv+WikDtcpQd2FBrtvM/gzZHMifyYIzacDbjd9WqVWbhhkTqeVbkClscFlOFEi1U4uhD4G2HaShdGPbff3/dRStcAcoNxS2QRfIWWZSxzaFjUqNGjXThdYk4KrIfzqY4y6qQ1i9UQ9kKt7F169ai/NtCckVRxuFDMAlCGCmWocMM7QmDbN+hyC5QFP/880+jMKLWYMh9xBFHyL777lswO2YvwqagqOF19sHCDUnkwTm2uZA2lM245m+6CVdkkzSuXr3a/D9jq5Cgd4lPQStCCCMFM/jkYZ6sUJRkkkNdRMWmiwu5YrS/JBSdjyKXbGNV/wH5PgTZ+ZCDU0qeR5mIRWBoc3r++eeb///tt9/kwAMPLEY86UAxb9486dWrl3zzzTfFXgdQ4KpWrSotWrQwz+NvXO94n2Vfw3vTuvW///2vb9ITWLgff/xxM67ZZOOJ+9Zbb5kWsZxnimogkNbeB2P6J5980ligoVAyr15yySVyzTXXJP0srILuuusueffdd83n0AmE9rTk/0aDYjLO46BBg2TZsmXm3J5xxhly0003JSUZmNxzTIwBPEsfffRROfrooyOe89lnn8lll11mPkfzjvNLGitVqlRw0Rkljj4Gkz8VrIUkgStyCxSXUaNGmUWVEB5pECeddJIpdFEV25sgxPrBBx8UI46//vqrIY3xfCDvu+8+Y7gOWaLAiT7R1113nTz11FPy1VdfxWx5Zl8DiYLkvPzyy/Ldd9/J+PHjfaGiYArPd4CYsQniO8cqqiGKA9E++eSTpXnz5nL99deb+XXOnDnmnKYCyGifPn3MOW3cuLEh30ceeaTpxe28VqQZdejQwRC6q666ynwO0aO7777bKP1ffvllws8599xzDXmEMGLTxjFjrl+vXj3zd64VBBTSqqQxP9i6reMRpLEQ51Eljj6HVQpoXcRkwuSoYS5FMjBeIIvkLzLJsViyABGWVngbkJFPPvlEnnvuuQhlEjKJSgxZigXSDdq1a1f079tuu0369+8vRx11lBxzzDHGgzM6FcH5mosuukiqVatmiCbk5vTTTxevg4p/2lzWrFlTRowYIe3bt4/5PNQhVDwU2Pfee89sqFAQbYgbNTgRAeBe+uijj4y6CWkD55xzjknvuOWWW4yCaYEiySYNIs59B/hs7sN33nnHqJVVqlSJ+TkcF9cMAty1a1ejKvLeffv2lUsvvdQ854knnjCEkeulyC1CoZD5ac29C3UtLiz9NMAgb4ed8ZgxY4oGr0LhBOOCcDQL14svvmiIAobyqCsnnHCCkkafAMKGq8JPP/1U9Duqh1G7CHemg0MOOcSETEl3gTCl8nxAOoMfgPoKaUwGSDe5vQ8++GBR1TUkGSJNGJu/Qeg4z7HAuYdYQgAteI8LL7zQqImojBZ0CgHR4X5IrrVsiQfURO5jSywhJqQtEW4HiAePPPKIPPvsswUXHvVL/+l169aZfxcqaQQ6sgoETDqtW7c2ExRhJIXCgsWOHK8XXnjBLJBMbBBFQmrdunXTVAePgIWGxT7ZgkNIEiuuDz/8sOh333//vekDftppp6X9uWeffbb5+eOPPyZ97owZM8xPSJUbIIyOYprKw4YDs4Gff/7ZhKshXjgHcE/wHf/zn/8Y9Y6/cR/xuaj1EDXnBp10D/qv8zwnCEkDlH0L7jkAqeT3zNn/+9//TBoAuZSJ2spCGBs2bCgPPfSQIe/vv/++eQ/7OaibqMSokYrck8YtW7YkJP6FAg1VFxBQjBi4qI7stJnIFMEFC93w4cNNKAuy2KxZMznuuONMQn0h74b9ChSraOIRDyiLhJq5rqhiEAgaBNC5J10wHiBHlhQ6ARmFLKF0kU9HviCfR3jbDfAZBx+cuIjIAuJk8/pKCopIiNoce+yxhtA9/PDDJhz8/PPPm7AyJB1CR/iasDa/wxeScCTng3A4m/do2N8tWLCg6Hc9e/aU+++/35A/ckst7rjjDpOXmAyvvvqqyUMmNA7YABI54D7//PPPTSRBkVvSuHbtWjN+4hW2FRoK/xsGDCSBu6kIKLwPFjdyrgiR8f8YdZOcHy9vSuE/nHLKKYYwUNABEeEnOY+ZggUPIhSNQw89NOLfe+21lyGpbqU1kKPtDMEnQioh6FQBGWTxJ2fQnkdUeTZfr7zyiiHMFLzYXtj83kkgeW2soiTry2nDlxYQXlTBE0880czV3377rSGSfCcKZpKlC1C0M2HCBLNRoKAN9RW18sYbbzTXCPWScDWkhlQUvpfCHWzcuNEo5WwsgkAaQTC+ZUDJIzsgcnM0dy0YQBUiJI1FE5NZmzZtDGHUykp/gGgBZAQSl6wSE4skSB2pB5AWXosKlSn43N12263Y78mFJXLBgkhOHmFcZ+4c5OXyyy834VKUy5deeqkoFJvob/HA5iaarOYCtigouuAHZRfiyCYM4mhBOJJqaAiD7UjDT8KV5EhaRZ970vn+AKWQXEjyjTkvlqRC/m699VZzDMk2/owR7NgssBiiUp7QOmH3m2++2eSschx8B65bqkquIj2UL1/e3B+FWD0dD0ocCxjk64wdO9aQCCw1FIUJ1AzIIqSRzQKVtYSuUg17KrwB1CH7SAUQgosvvtgQBvLaKJLIBBTVEZKmG1A0yJ1zVmI7AWkitIvSheUMD8grXoiMvXh/S0SKmKvwNUwFkOdsLdYodxDd6IIVS6YpjIkFWhtCICGA5CpyHm0IGwJJCNu+vwUEmnx0SxotqGzHwod8yXTIM8U2hLmppkb1IqzOuSYtBfD/qMRKHLM/75YtW9aMgSCRRqDEsYBByIIdMMUyDGyrRCoKAyhNtnsQagULfOfOnYuZOSsKE8cff7yxYGHTQHFFpqDKHhx++OFpvQ4SCKGy5tiQHQgReXZ0tor3t0Q2MeTp5SPHkc0WIXJbHGNhcxOTmeDz3ciJJFyNImsJ5MCBA83fSRexIAoUK20EIg7Y/KUD67V55plnFh0zx2MBaXUW5yhKjnXb7JqCRhgtlDgWOCiIsAUzDHINW/sftlABhRHgTQdhTFSNqSg8EK4kl2327NnFOoekCjwBKdRwEo90EK2O8m+UO4hjvL95MceRnFFsbN54440iyyHw+uuvG1XJGWJnw0aOYfXq1c3DqnoofoSM8XFk80ZREb6MpIxAFPn+hI4J/VPBTqjaWcCIUgjpjGXEHg+8B24JEFQbHkc1xRDcgmKZbJ6roGPdNtJI+kEQKqhjQYljAIAJLeSRwa7wL7iGI0eONGE/1AlynCCMfujgoXAHdBFJFVj2QChs7jOkEZJGZILqXlvIkSpQ5giPYwh+9dVXS79+/Uz3Gtr0JfpbrnMcIVYUsVj18Ouvvy7qBsOxkQOMQnfBBRfIm2++ac4PFeooiBitU73uDDWj8KOK0unlnnvuMb/jXsRAn+cuWbLEhP3/7//+z3wOn084megPIXyIJdeCrl8UwhC6p7iJ36HGplMZT+HLqaeeWmTHY0ksaQK333570fe17ScVJQNr6IYNG8y9Eq9DUxCgxDEAYCfqDJWgWKW7SCjyb9zNIo/xM6oMqojmMGavT7QXQEQglcKYTEEfZWdhB72qn3nmmZi9qlMBuV1ffPGFIV8YZ5MqAYkhdy/R33INlEAMzp19nHmAs846q6h4rHfv3iadB9WQkDqE+umnnzbV66kAdREzdWevaggbKQBs9CCP/J5uMZBozgv5jtzTKL78Gx/GVEHrR5RG5gYnsErivbASYu7AWogcWEXJgfpcsWLFQJNGUCqkbUbyAvKDSGx/7bXXInJq3AaJ9KhW7FBtmEXhXaCSENYiHMnicthhh8X0iws62AyR88Y50k1R/oACDkHFIiidvwVpnEIgUTUhIBD2oFi4+BkUbXGdst2NZ30K81a+uEIi6IgNGKgSRG0g3EIeEv+v8B5Irie8R1U8iflU0GIHosbdhQsKnAiD2QILP4DxSZ4ex451Dz8tMUz0t6DChjjJk6R4hnw5VGYefrnmQSSNXC/r4anQloOBA5MTxRTkH1FcAUFReAcQBwgjYSY6eRB2wguPBVhJYzCIYzZb6bkNwroUXvCgupvwdCp/CzK4jylkYxOP4kjuI3mR/NQAoDdJI+kdQQ9PO6GKYwBBDhWhaiZzKu5QHhX5BWTBFr5AHgjr4cWok5XCyyAHkEe6f1OEN/HW7xH1kU08RuzkXKqylX+QlwppJF+XtALduG+HEseAgnwNZ+cBRf5A3imVj3jI2cIX7faiUARnI08ECBUS8ogBOsSR4jfNf8zvZh7S6OwEpAhDR2WAwU0B2FXRrQBLCrV2yW0YBMsPlF8KlbADUZN2hSK48zHWPBRMQCCXLl1qFEkIpRKX3BJG1GCiPRrxiQ0ljgpzkxAepQsJ4VENk7gPKuWw0yCvCYWxU6dOge1CoNh+H5JLpUUSwQUE0dq9EL6mApsCGiIQQTWbziWodmdODrK5dyrQGUphiCLEhcRsWn6pUbh7YCGgPRxdIqiWvvLKK+XAAw9U0qgwhBHFX4mjgjEAWSQSwbxMFxpUSD8VTvmxwQKkkbnYRuMUsaGKo8KAHRbkEeJItTVdDTQ8kj0w4Q8fPtxUTLOTpbsDRsB6jhUWEAQWLxYuHRcKwFzBBhNCY+17bPGMjpHsgfuOwiS7edNzmxhKHBVFIJcG8sjkpDdOdk286SCxcOFC00Gje/fumg6giLt44emnRREKC+ZixgRzBqoj3WcIZUMgdZxkB+SVQhpZA1XxTw4ddYoIWDNa1A8c7SnW0MkpczsH+gFT/IJn24UXXpiXlmsKhcL/YB6mYYMWz2QfqIyseUoaU4MyAkVMUGlNAcfixYuN56Pm4KWvMtIPd8WKFXLooYcar0w9hwqFItvFMxBJ7Hx0g59++hDrHOdT00PSg9JrRUywi8XnkbDIiBEjNCk7RXCeBg4cKK+//rpJsL700ktNpbqSRoVCke3iGex7qARGfYQEaeeZ1Odp8kZ1XcsMukVRxAVhEdoT0tf6zz//lLZt26qUnwAY96IyYuRNcdFBBx2khFGRMlA87EOhSAUoj6TBELomuoH6CKHUeSc10khalp6r9KHEUZEQVPRR0EHoVREb7PIh1n379jU5Rxh516lTJ9+HpfAZWMC0Y5AiXbCZr1KliimegTyiPhK61gK82ECZVdJYMqh8pEiK3Xff3XSVYYJip6bhkO2gCvaDDz4wVdP77befXHbZZUoaFYHH22+/bZTT2bNnp/T8xx57TJo2baqhwxKAXD3UR1JkiH5AIr1yPnv37m0KLb3gEYxKSyqWksbMocRRkVaLPPL3JkyYkO9D8QQmTZokL730klFjzzjjDDn66KO124CiRHY8FDzwMxbuueceQ8Ywg46FfffdV7p16yZ+AwUejz76qNx6661FqTCWeNoH6lmTJk3kqquuMgV7FrGet8cee8jhhx8uzz33nDmffseDDz5ovhvXN9bG9e6775aePXua1CIKZL766iujXGOrhvrIvM2cffLJJ0uDBg1MBTHG4l27dpWvv/46pWMg/aZXr16mf3azZs1ivo40HRs2j8Z5551njuOVV16RfACxA9LKT4i1FhKVDHr2FCkDUsSkMXbsWDPB8/9BBBPQ999/L6NHjzYqCYSRHaxCkQ0D8KAp+m+++aYp8Dj99NOL/e2+++6T+vXrm9y9QYMGycsvv2xadY4fP94QoOjnYYG1aNEi0wP+uuuuk6eeesoQKaIBfsS8efPkoYceiju/sIngu6PmtWzZ0nxvSCbPZ75GdeQ5bHIh0eeee64h1oRrP/30UznmmGMMmbvkkksSHgevgzxC8AcPHmxI6OTJk6VevXrm71yfm266SR544IGY6RYQet6D63H11VfnNI+X+4nvy9iAMKrSWHIocVSkhb322sssbuxguQlRAYIE1A5aBhKyP+6448xkrcUMCkXmeOuttwyBiZWTd8QRR5gca3DRRReZKmLIx5dffhlBNJ3PA7fddpvxUD3qqKPMe0OcCOX6DZAxrLyYc2MpzbVq1TKNBWrWrGncLyhmtEBZQ1lElezcubNRo8mFtMQJ9ZaCR85nIuKIcsm5hJSiUpKOQ4cxcrpxjQBPPPGEIYxco3g45ZRTTErCgAED5JBDDpFck0YNT2cPGqpWpA3CHSht5C8RfggKUBix2WEnz4TZqlUrJY0B2Sx8/vnn5trz0xkq9TJsaHv69OkmVEjBBIv7+eefbxbT6OehILG4E46EoF177bVGSYrGqFGjDFHjeRQY0AkJk/tMQJMBIhh4naYCSzh4XSrP/e9//yt//fWXvPfee+I3kBbUp08feeaZZxLm60Ea44HrSsGe07bH5hlCosjHRpVMBMYABAzSad+TsWTHEErkI488Is8++2xC1w1IKuF0SH8uwDFDei1p1P7T2YMqjoqM0LhxY6M+QqK4QQuZQDHhEpqmcpoioSOPPFInoYCAsNy7775rxrcd5ygt55xzjlFx/ADIIGHchx9+WEaOHGkIMLlohB2jn0fokedBBMkRxMf1nXfeKXoOkQaspiCNt9xyi7kPCHWiZv3666/G+zUdoFyBNm3apPT8GTNmmJ8QoVRw9tlny+233y4//vijXHzxxeIWICexcvtiAfKUzNYMhZGQLgpeixYtSnx8EEwcMgh9T5s2zRTN/Pzzz2ZeO/XUUxO+FsLYsGFDEzLnwTVjE/3888+bvzMO2EigRiYD15l7KpcgpUHn6+xCiaMiY0AameDweaxdu7bJsyk0sHB+/PHHZqdOyCvVBU7hf6AsQhohjDbv0P6ETDVq1MgQsGzBrV65bHbeeOONon//888/5t/RxBFyadWgK6+80pBDir8Il9ocwTvvvNOQJPINiTwASPTee+9tCATkMR2gctrPjgXIGCFaVC8IB/l8hJwJQacCWnyislrC6RY4toMPPjil56KW2tzARFXIKKWQu2wBhRHi9+qrr5p/M86OP/54eeGFF5K+ltecdNJJ8tFHH5l/kz9KYwNIJCo8qQCpgDHDPeU2WJf4vs48WEX2oMRRUSJwc7LYjRkzxvw/BLJQMHXqVDMpkntFn2nyiRTBAYuiVRqjwe8hCyy82QILuRsG++SkOYFiyLimmhlyaAFZdALFC+JIMQrEkcUY5Y7cXksaAfcFrgKvvfZasfdMBkgsudKEvGMhOoRNlOP9999Pa57hvd2uribX+aeffkrpuYlCy/ac3HXXXSbMjkqYTVx//fWmsAVSCgkklEu+tg1DJwr7z5kzxyjOFNcQ4ka1vOaaa+TGG28014XCJcLV3C98TvS4A3wOn0mY2y1Sx/uTQkWIXhtWuAMljooSg1AKiwq5T5DHZBOj18GESCI4OUYoKSyUfkysV5QMLODxKpz5PX/P9rhjwUPJz3TBi5UyEh0JsCQBNd1J8kg/cYLwJMdhvRhtWzvuiWjss88+5vjnzp0rzZs3l2zhxRdfNAV4kEv8ZPnsdM8NxSFOZRiCA8kdN26c3HHHHSbHs6TgnKaap5kMqLqEsyHu2Qa56TwAVc4cM64QKMjJnCEg4M5UBIqaqGD/z3/+Y5TRm2++2eSSMgbZSHCtolVYez+5ldqEMk0OJ5t9JY3uQYmjosRgEqBQhIWDPEDynfxqT8PuG5sKwkkk/R944IEFnb+piA/y6BIpjqnm2aUK7h8WPkhSrEXPVh2jqMQCpC5WZXK8StJktj+5GPe2aANFEIUoGh06dIiolk4X5PQR7iatwKmQQhYx7s8WIPyYbqcCVMR414T8Q8LCFMQ4u3UxLkgRgMRD9iGWJQXj7LTTTpPLL7/czNuoyoT1U7nuKMuQbqqpmes//PBDE8pmkw34f5ThaOLIZgWl0Y2NOISR88Q9oF1z3IVSckVWwGRDLhUPv5JG1BIS/cltI2+LkJ6SxuCC4pdEiiM5XrkE4UAwZcqUmKSR8WufkwkgLU5QjQ2Ztfl4EB4W/VifT64iZDfdrklW/UqlSjoT2Hw6DMEtIDfkK1MZHAsQc3L4+C4QPGsuTlg2UVoDhDSVB9cpHqhQtiFg8j7tY+jQoSZ1hv8nzzNbcHZyYQyRTwqRTwbrm3nmmWeaf0NyCWFb8P98l2hwnVGn3TL4pghISaP7UMVRkTWwcNjJg8kRApmNnXEuQI4mRsEcPzlA6eRpKQoThEbZQFAI46yq5ie/z2ZhTCpAASeMTaiVnDOnKolKxYJPdWtJwsKHHXZY0b9t1ax9T0gUf6eABuXLEko2Wqh3qPPp3jedOnUyP/EgzLZJN96D999/fwTBSQUUA1FMQwU615oNBJ6RiULH2cpxpDsM+aexwteosuQQkkKQLpYsWVJsvKJgMrZR/yj6g3ShmkIeCb3z71iAwFJQQyqP3Vhzr9hCJ0CxTKzvyTlN51qkCo6DULqGp3MDJY6KrIPJFuJIiIhJN1YnAS8dK/mMVIOillKtqSaxCgvGL2FOCmHIaSS0itKYa9II+EyKJiARWJ+gmqEAonYRKoTUka+WKVCDeE/a1/3+++8mX41cNUiRBZ1BIEiQxCuuuMKEO1HpUXswd04XFNlAlsiRu+CCCzI+dmxlIC6QZ4gspJHjRIFlQ5iqCsU1ppMNxNgWpqBWEgJNdM2zleOIYbcN9zphvRxj/Q0ShxejDW3TDpAQPYDsMv/iO0t4mXFDYRG5iYSSOWdPPvlkUXES3xnyyHlAkY1VwELhCxY+pBFYEJo+9thjjfWRPYZvvvkm4nWEw3lvnpfNFAEebrgRKOJDiaPCld0fkwqLD35wLL6x8pfyDRYZ1BOS5Jn0IQQamlZEA8KQzerpeGDs4TeXaAySV4bSB1kgXMgYRlG79957I3o9ZwI6IkFMKXaAENJZ5PHHH494DoUvv/32m+nMgt8jYVUKJiCZ6Xo4WkAY+VxCxJnmvvF6gCJLlIOCPcgWZufpzD1sIiHKKGgWkLJk9jn5BHmGVEk7e0bzAGeddZYhjhA9LJhQqyGFnBMMubFkYrNgwfhhc8R35kHRI6TSjkkq7FEaUR2dYMNNT21UajbjjI1o9fuTTz4xhVrZ6hqDYkp4XT0a84CQIi+YPHlyqEuXLuZnoWLjxo2hX375JdS3b9/Q6tWrQ14Cx/P666+H7r///tD48ePzfTiKEmLdunWhiRMnmp+K9HD33XeTyBlaunRpXj5/xYoVoapVq5r7MZe49NJLzXd34tVXXw317Nmz6N9r1qwJ1ahRIzRhwoRQkLB169bQypUrQ/Pnzw8tW7bM/LskWL9+fahmzZqhZ555Jmtry/Lly808XtJj8/q8NdmDXEG1XYVrYCdIDhPhFy/tCrEVoXsGYRNasWXTPkShyBQoNSh4yaqdCw0oYpiHo27y/d0GKi2hZ9Q05/8D5gKiJBQKEdql2wzKWbNmzSRIsK0Kre8iKqU9R5kA6x7WgFjejumCMYLSiCpOKF2jRLmHEkeFqyB0ROI1P5mgY/W+zSXI4yJkwyTGokBnCYXCC2BhhqyUZIH2Kwiz28pst0GeJiFxNo+EV/l/W31NWg1G6ORwkntJsRw5nEEF54aNPwSbohnCw5kAwoiBeLyCm3TAGOG4yGtU0pgfFFSOI0mykAK6G1CBRvUZvT7bt2+f8HX0aCVZOBZIJCbx3CJeP85LLrnE5JMo4gODcIgjk3M2JpBMPp+kbXLCqJxW2waFInjAwzGR6TfEkociDDb9kEdbcU0OaT7mb6sQ89kckyJ/KCjiSEIuyc2QApQkKu0IgWBhkMjqgcqzaFNdiCQ70likE0NaKg+diO66oCgOrgEVoISCCGHn6uYn9NevXz/THYFrd+SRR2oFnkKRIpFSKAgLQx4x8E5Uce0maaQDEPM264YqjflFwRDHiRMnGnKACz6eW9ZGgRw2Ksl4xANGz9H4v//7P/OzR48exf6GMazT70yRGggtQBixNsHQdv/993c995EdKr5ojA/GA5+pk45CoVCkB0gbaiM2a1RcM7eSB+n2fApppKMXn6/haW+gYGQXfPjw33NaCyBp9+rVyzRmx9srHeArhss/tg6xgG+Z03VfkRqwdoA8ovAy+bidukCaAZ0usKPgc3XSUSgUiszA/EkxE0bvKIDk5LpZzEUhDKQRqFejd1AwiiNVcISno9vd2fZGtM9yenMlAh5V+GKdffbZMf/+ww8/yBdffGFuGAxm6SIRS5l0gtwQJH4Lp+9W0MCkg5cX4Q87OWR7QiCXkm4WpBzQqYC8RoUiF2BesA9gDeXZyET/jbAbf+dvKDj825oac3/wb+4P/g1s+zvr+QhsJbL9vULhJmyXFn6iPjL+CF27Nfa4PyiGUdLoHRQMcbRdHaJhfwdxSxW2dVQsMkilHY3bUSP5TIxWaWvFriiWq78F3QvefvvtlI+h0GFJI62p2LWSS5qtiYFrgSExiiakXiunFdkCi6S1zLH/z1iGxEH8GHtOBYYxbdvwsZnh+U6CZ8kfr4muprb3A39zkk6n8gNQfpzk0VadclwcE+/L73jYvysUJYVVAMl7ZFxi3ZMt8mjHsw1PK7yFgiGOhI1j5cvZAoxUw8oMWNpVUewSq1vASy+9FPFvCi2o3KZXLH5f8arNCKHTmcSpOGrlXrjF1syZM00PUzoZlHTigYTSf5VFmvzWVFVmhcLCkkIIl/1JBT7KB+PKqn/AkjHmHv6f+9/+LloBTJQPxusgerZ7irPtJf/v7AHtJJCAIgWnB6Qlp8D6FEbPibzGKpm8v5NYKhSpgrHKmKHimgfksaQbE2d42osdxxQFRByZeGN5TNlJPlX7gNGjRxuDaCqzUwELxgknnGD6fZJLF696G4LEQxEJeqNS6Tx8+HBjl0O/6EwXLyYuSCOLJ63GYinQCoUTkEJLEK09E1ZeTgUPYmWJmrUCcZJDC36XyOIp2bjmMyB6yXLGoj/XqvexwPFwzE6F1C7s/D8baufn8V3tYs2xWEKpUCQaY8y1ljxSQJPpmGEsQhoZm7Z/tsJ7KBjiyMCF8EXD5hWmStoIUzPo02lYTy9bq3Yp0geqICbhqI5MOpn0hV2yZIkx8WVRJzxtw3gKhXNRgnDZzhMQRkuarFrI362KEos0OZVAv8ASzejvAuHkPrGE0hkq57wQAge8ju/Nw5JmhcIJ7h3WYNZbHszj6d4rTtJIeNqP91pQUDDEsVGjRkaxYuA5cyKwYbF/TwbUSaqzW7VqlZY6uGDBAvOTBGFFZqBDA4sSE0664PyT04hSQkGT7lQVVmFDNXPm+dmkfh4sdpYQOcmQl9pj5gKWIDuVS84P4XFrusxP1Emb+kNI3eZ38tBFXmGNwi15hEimMy6s+s/6nUhFV+QfBbN17Natmxl0FKE4ieB3331n+ozaXDdseeJVNGNMzS47XoV0LPsYlIs+ffqYnfvee++dte8TRDDpsIBxnqlsTwVcSzw3IZzkNCppDC6cqhlkh5AzBAcSCRm06SqQIhYnQmw2N1FRHJwXzg8KLPcVc5w9V1a55fxynom2cM5B0HptK7aD8cI8zhigINWOiUSw4wWyyGZFSaP3UTBXCHJItTNFKhAPWgVim4MdC31QLehNSh7jwIEDY4ap2TUddNBBMT+DCmq6j9AyDyLKrgpiChm94447AqdUuAWq9MgXBU2aNIn7vBkzZhifRgzZTzvttLy0wVLkD2wMSU9hgSK3ikUHVcwqFvanXwo+bDW0H4gspJuHJes2HxJQjMO/rRrpp2ugKDm43jZszb3J/8dbGyGNiC927Os48Qe8P0Olgdtvv90UtfTt21eee+45M3k9+uijJvScDIS4f//9d9NZJJ5qhRk44ehvvvlGnn76afn4448NaXnqqae0k0wWgedi06ZNDXmEHMbCrFmzDGnkufg0KmkMBlC4WGjAwoULTV4sGw0WJ8aALU6xlc5+WoicVdl+VCXtcdvQNcWKzKt4/Tkr0XMZheKRCog0kav+/vvvix8xe/ZsM9ZzaflmP/OJJ56I26KQMQGBjKU8Qhq5nxknfk51+OWXX8x54KcFQsYpp5wihYqCURwBk+4VV1xhHvEAoYwF1Am6xSQCXoOxelcrsg/skFAyyFFlYapbt25EeBpzb8zX6QijoY3CBqFQSCLRA0gIxVNs4ogqoPxDFlG52Ez4iXRFA/WORTRW+BxCgFMA+O233+TAAw8stghzj8ybN890y2Jzmy9w/FZhsmqkJQZWjbTP8cr1evbZZ02ONAu+BakvpCHZIqFoIDCcdNJJ6s8bB1xzqzz+73//M0LAfffdV/R3SCMbCqyhbO6sm3jooYdMZDKR33K2cOuttxq3kDFjxkjLli2l0OCNu1ahiAFUR0LVzgrpuXPnGlUAU28meSWNhQlrh4PHJzt5lGc2d1Tf225QXPtE9jd+g80ZtN89Fvi+bJqiQVEfpNFryjvkwRYh2X8Dvid5kWwKYtmo5RJ8PsQRP14/K19eJo/9+vUzjTKs8mi7I6FU54I0WuJIx7dcoHXr1oY4YtNXiFDiqPA0KDiyliHjx4831dN07Tn99NM1p7TAgBpFa9ABAwaYn6BmzZrSsWNHOfzww41BPCpjkDcLNBz45JNPioX+IJOcH86Xl8E9i1JHPipKk1NxhMCRowqZzCVQZ8mVLeTQYj5hWwYC1EdUaMYBG8FYGx3Gdj5SG7KNU045xdRFxFOs/QwljgpfAINwcmmYaM4444yc7VIV7oMcRRwNSBUhnMVGwdphQS7IPfNKSDPfYMPE4mvbogIWWUKq3BexwKbrmWeekebNmxvFkvD+pZdeas67E19++aUJc2ONxX3WsGFDoxJFt0KcNm2anHjiiYak8n5W/SeNIFm+Hb+/5557zPXkHn788cfNT1JSzjrrLHNsdNgiNxIiiTcrhBjigXMCn0PUIRoURXK8PK9Dhw4mnJ8qUKFIf+D1JQHfl+83ePBgueGGG0xzA8jR8ccfX8xjmM876qij5McffzQ5+JxHwqgQjWigupO7z/fnfiAP/9tvv83oGDmn9957r0kFssbdpD04x1O83FBC9/E8dsn5J3WI809xKZt85+tsxzXGDBs/mxvrzJNkjHINGHuMB8b1XXfdZa4/cwLnskuXLmZjGWuMoxqTwsL34tz37NlTRowYYf7OZzCmcOCwdlwcl8X8+fPlggsuMOOPz+deefPNN4t9Dqr+cccdZ46Feen666+P25UOdxY+03luCwXB3borfAMWSkJxLGgUwxDiYmJQ+BdUQQMWQ1uZS9cl1GRVkuODhbtTp06mMIwWp+D77783pA1SFSuHG5JocySvueYakwv6wgsvGN9bSI493zwHNRDSw09ar7Jwc79B8ACLOeovi+XVV19tiACLLqodbhaZGu9DjCAzuF6gODEmIDiEF1FuLrzwQlOh+/zzz0vXrl3NsVvf3DfeeMN8R9wurrvuOkO0aPHK2KJ4MRmGDBliUiCyBc4LrffuvvtuQ4wgRFdddZXJ84sm4ORoX3bZZXLuuefKW2+9Zc4DbiDWEg7HDr4XBWFcO4ge5Ifvx2YBUpoOIO0PP/ywCctDsLm2kCuKzOLZ0CUD3bpQia+88koTNYDAHXLIITJu3LiiTQpeuxAoCCTkFfLoTMngu/PaSy65xBA3rh3H9vrrr5vN0sUXX2w+g2vN+Bs2bFhE0Svjg/HLPcF3YwyxeWBDSsiYDYj9znwGsBsFzjFkHDLJdWJt4Z7iPTkGxpRNr+jevbvMmTPHXAvWI96X+yQW2AhApLnH0r1OnkdIkRdMnjw51KVLF/NTER/Lly8PPfXUU6EXXnghtGrVqtDQoUND33zzTejvv//O96Ep0sSmTZtCs2bNCvXv3z/01VdfhYYPH5619163bl1o4sSJ5qdfsXnzZjPG+RmNt956C7M7c864F3beeefQ2rVrzd9OPvnk0MEHH2z+f6+99gr16tWr6HW//fabed37778f8X4//PBDsd/b93Pi0ksvDe24446h9evXm3+PGjXKvO6TTz6J+z24xjyHY44Gv7/77ruL/s3/87vTTz894nmzZ88OlSlTJvTAAw+Yf69Zsya0cuXK0MiRI0Nly5YNPfjgg+b3GzduDO22226hVq1ahTZs2FD0+ldffdW870EHHRRKNiZLlSoVuvHGG4v97dxzzw1VqlQp7mv5G8+JvkaHHnpoaOvWrUW/v/766813WbFiRdHvuE4899NPPy363b///huqVatWqHXr1kW/u+6668zzuI4WjJH69euH6tWrF9qyZUvSc+5Ey5YtI8ZHLHDOYp03vivHbWE/s2LFiqF58+YV/Z45mt/zvS0uu+wy8zvGGNds4cKFoSVLloRmzJhhfr/LLruYfzvBfeC8pnY92H333UMXXHBB0e+YT3iPa665ptgxO69D9PWyuPDCC815j15TTjvttFDlypWL7otnnnnGfM7HH39c9BzGZaNGjczvBwwYUOy9mzRpEjriiCNCJZm3vMgVNP6j8CzIDWE3S1iDNoKoIOwe2XWjPij8A9QoFAdCWFSvopoRglJE5oIxxpMVaKDAoX6g8qHC8DNemJp8SFRA1CTuGfvg3PNZzrCfzUMDvC/PIzSI2jV58mTze6soYnlmbZGyAVQ3JwjZokihyHEcKKpEHsiNRCmi2IK/o5bRbpTXO9NXCEOmon6ifMNnUQizBRQtpw0U5xBFPbrxBIqVU4niuzHPoabiIADwCUYlc1bRc934DNRM2xktVaDSTpgwwaid2QKhW3KPLThe8pI5dqtS25xcxhgKN4oiv7NNNUh9iI4i2RaXgGvNteI1rAEopBaffvqpOd8ovJn0h+f1Rx99dJFpuX2gbDLu7GfxfYiInHTSSUWvJ3XAKpixwLgqxLVKQ9UKT4KFEdJIWIPcE8gGgEQyMdmcN2s0rPAemDAhIKQXcP0aNGhgLGOcBEWxHc6OK4kWPBbYQw891BTE2J7bzsXMCQgCix/5WLEA6bKAUNx5550m9EaIzgmbv8i1JJSNdy3uBpAiwqbkJ5akPzzvG33cnA/C17Fg73lLxqKfBzlhvKWKTLvdxLpOTuswYElpdE4pbXCjX28bHkAKSQPg+0HComGdBfj7vvvum/LxYodz7LHHms/hdeQB0qaVNJFMEesa8f74HAPb1tMJ217W5qvGy50kLE9lMhsXZ/W9c7zguAAJz6RdLbmnkFdyZHkkukc417Gu2d4JOsYxrvzkJZsqdMVVeA5MECyKKI7kZUWrAZY0kpuCTxbqlSWWivwCEkPOG3lmkEbIBIsCC4e25Ex+7hjzKErJNkMojOR9oUyR12Xz/aKBUpPI2NqqPCyeFDWgekEuUPUoMkBtwZPOmY/GQo6iRzENxR3ke5E3Rz4ZhTLxFsroIhsnojcTfB7vQ65ZLAWW4gTmAUv4rCdguqbvkA2eH03qAN+fXM5Yiz+/Iycvlh1UPMXYC60YyQ+FaNlrRw4hhS29e/c2OYCA7xrrWBNdv3jgfTgfscYzuYzOzUb0ecZBg3GGonnzzTebccx7MdbiNYZIF3Zcs/EhzzQWSkKqly9fHnfz42cocVR4Ckwen3/+uVkQmTQSFcEw6TP50PGHSkwWE0X+gPpL6JMFFbUERcNWRyuyC0KcFB1A1qKLLpyAAFKtzv2RSOnFK5NQMCFiyIUFhTSxQPUqDxRKikt4f8jHAw88ULTRs2FIi+hQbSJw3MwFKEuJ2o5SyQsgEhwDZNKSOY49mfkyhIbPivU9eW/GNO+N0uQEdlEQKfv5mYD3iCZLU6dOjVDgeH/bftUJmzqQyeczb7Ih58FGhetN0Ywljlw/Nn7RiHf9YoW9OWaUV4g31yMembd2PJxnjsUpAFD8g2rMmHS+PjokzfUjdYJQdiLVMdYxsL7wmVxLVPxE4FyTahOKumaxro/9TiiqKPKFBs1xVHgK5MFNmjTJ5Lw482ZiAXWBajh+Qh6zmXOlSA1Mjiwy7NxZhFEVqaikw5KSRveAKvnyyy+bBZ/8rET5kCyK2OpEw5ljZlUyp9KEgmdtVCwIYUd7SEIgIWzWlgTVkms/cODAiOdFv1cinHDCCeaYqKyOVr/4NyQXMM5Y/KnKJfzJazgOKmyjiWs8ELGwti1O2Kp1KtCj8eKLL0Y8JxNQacwm2XluSc+hWtj6ceLbSQUx85sFFi+EVSGXVO6mA3venOMIUuy0lIGIQUydFkJEdqgOjmdnRJTBgo0Ex0wbXksM7aY+3jXheUQonHN4rDE5dOjQiHMBWCt4DmMlGs7XcgzRn89n8HryHJ0WQhbOc8C14Jr16dOn6Hccb7wQN/mnbKKpii80qOKo8JRXI5MOkzFdY1IBEw4TP5Ma9g+x8oEU7qQToNJAGiEmqBQ8ovO7FO4hXmjNCcLPKJOE90aPHm0WczZaqEQUzmCdQn4kixvXj/ck9IyigtVINGkj/xHLEmxjUAIhkTzPLsAWqFePPPKI+UkxAyTSqmmpAPKCennbbbeZfD/ClShDjDnIFgUJN910k/kuPI/vyHejmIYxCXFErWJsQooglfFUL3L++A4cn1PdhMBx/Jwjzpe1q2FzS6EEfytJOzk+C8sX5j1sa/ANJP0GEmzxn//8p8h6ieuCokbeH+cBspOuvylEE49GiqN4LwgzRIhrakFOOTmsFIdwfOT4oSbjbRid+wognhTvXH755SZlgPPFe99+++1F59wWwvEdeF/Gi7O9I9eHQhOIne02hM8laiPqOv6ifGeOg+/gNNU++OCDTZ4mVlRcJ/I22chix8Pf7HfjGFDf+W7W2o31gnFKpIT/J/2D90e9JE2D51vrMP7GJuKcc86RP//80xTKMG447lhgnPC3TG2OPI18l3UHFV4ssc8nOA/33HNP6Pvvv8/o9VgmWMsQhbvAhoPrhC3SuHHjPGGBUwh2PFjDYDfCz0R2PIkQbcfjtKdp27atsU7ByqdFixahW265JbRgwYKi5wwePDi0//77m+fsscce5u99+/aNsBqZOXOmsUJp2LBhqEKFCqGqVasaK6Cff/652P2IzQl2JnzeKaecYuxW4tnxLF26NOb3wa7mwAMPNFYqPJo2bRq68sorQ1OmTIl43ksvvWQsanbYYYdQu3btQgMHDgx17drVvJZzitUN84PTnsUCy5fq1auH7r///mJ/w+7m2WefNTY2fF8e/P9zzz1XZIWT7Bpx7qLtWux14vzut99+5rj5brFsjrCsOemkk0K77rqr+fwOHTqYe8+JVO14sDfi9bwX15nPxNoIixwn3nvvvVCDBg1C5cuXN1ZHHGc8O57HH3889OSTT4bq1Kljvkfnzp1Do0ePLmatc/XVV4dq1Khh7I8s9XC+B9cGSxzGJMfDvx966CHzmbwvNkV87+jjsO/Pe/B9OGY+BxucP//8M2KNYUzwvflMpzXP4sWLzbjiO5QrVy5Us2bNUPfu3c1948Rff/0VOuaYY4xFFWPm2muvLbK2irbj6dixY+iss85KeD38asdTiv/km7wGEeRFsIN57bXXAl80gPzPLpudK0pGSbqEEBqgOpSEZjWSzh5QblCXUAIIS6EM2AIKL4DrjiKBiuCVY0oXTMU2f6oQKzHzBas6Enpn/MbK9SSUzxyEYpWLftWEmckBxkqpEODM+ytJJTFKIW4MvAfpDn7tHT569GhjKo9q6TQqz2Te8iJX0BxHRV4BAaGCmoo58ppK2loOcsPEQ9FAdC6WIn0wgZPgTYgSQg7IPbXt6xTZA4st419JY3YB+SBkSKjb5txBIp32LrSOI/z50Ucf5fFI/UvMyU+0/aVLMn4Z//j0Mu8QInZW8/sJjzzyiEkBSUQa/QzNcVTkDey2sAlBGaStVDYUQpK9KZghgZpEav7fr7vWfAMCDlkkr4mcoFTzThWZL8DW4kXHbPbhPKeQRtv6DgWSecPpaalIDRA7inVAtvx0uU62yQN2NtYyyU/4qMA3IKo4KvK2SGIjwi7/zDPPNBN3toA3GInOEB4SzxXpAwID8WYxIPGdxPJ4SeCK7ACVBTKj2UPugwpbHhAfW82r5z09cO5skQrzd0mjRU4gIlCsRYoB5vN6bbwFVRwVOQeTwFdffWWaxVOh5oZtC5MOHWYgQIrUwCRNRSp5NKhedAXBWkWhKERATtgY2ZZ42cjRSxVUivsdVFA7zdizDeYgRACII9cpm+KComRQ4qjIObDOwRcM+46SGOgmA+EOZwEO9gl+C3nkAiyUmPvin8n54TzRiURJo6LQwXgn79FpRI36aHsqK+KDc2Q7w7gFSCnRKaJHkEfNq/YGNFStyCnowtCvXz+jZmEcnAsQiqK6jUo3DXlEggnZemCSx4h5d7z2dQpFSUCRFQt/PCNpLxUokbfHw6/FGdaAGrIVy9g6UzB/Qqw5L5ynXOTiUtTEuCHfUQsevQEljoqcVlBjWouNC8asuQITD9YI2MhAkBTbwSLAZEy7NsyMMeJV5Ae2XV6ssB+G1tamhwfPw0Aac2NMo52tA53PQ0nDXBrT54ceeiiiE0auQQ9sco8Za05gssx8QMoKmxZSTDBWjoU33nhD9tlnH/P96QH8/PPPp/TZtC91npfoh+18AhEiJEo+L/cFm85sk5Xoa+l80Go1ESBsvJ42dnXq1DGKHLY+mKBHp+VgZI1x9l133VXsfSDvzInMjYwN28LQCWvW7SSNkGnycHNJqDkvjAvuCz9XWhcSNFStyAmYfD/++GNDTLJhu5MuUNMIeaA6sjhgJxNUQDR44HVJazOIhYbw8w9nn+VE5AvPN0jCoEGDTNtBupigKjmLl1j0acfHmIcs0pGJHr90zeA+RFnOJTgGOp7wcIJcZ7rC0P2J9omMQ46P3GeqarHJsXjllVfksssuMykuN9xwg+kMwvdk83Prrbcm/Hw6y0T3IoYI8X54Kka3N2WeQq0j79eqalZlyxbstXQimdrPd6XHNG4RHDs2ZjhIcG2J5GCb5byXeQ6t8oj0sGEH5AzSLYf3oAMPRJRzOnbs2KLvipsCvoF0SHGSRsYTZDVbFdSpgvNOdTVjguPnPOmclUfk24E8qPCiG7xboAPAF198YTozODtV5AN0Kvjjjz+KdX0IAuhOQFeLr776KvT777+bbguFgkLoHMOYpGNGrLEZryvJDTfcYH7/wQcfRHQpidWBhG4eu+22m+kakuv78KmnnjIdO1atWhXx+x49epguNc6uT3TOoTMNHVWcnWiqVatWrCvOmWeeaTrKLFu2LO1j+u2338y5onNKMnBNVqxYYY7Ddp9JpVNLLKTaBSgW6HJDh59o3HvvveY9f/rpp4jfM56qVKkS+u9//1v0O7o+0fnE3iu2e4tzLTr00ENNpxeL1atXmw480R1mcg3O//z584uNI79inU87x2ioWuE6yC8cNWqU6T1K4UU+gbpAKIwdrDWsDQLmzZtn+rES6iFEpf6W3vXESycUZ5VDuk8kA6kIzzzzjEkZoeduLvHFF1+YMHV0ZSw5tjgg2OIUgJpF2NrZ4YWx+88//8gVV1wR8forr7zSnLNvv/027WOi8QCq1RlnnJH0uTbsz5xB+NppHl4S8F6oeKkCJZS+4tGgnzOgwM0JCnwIRX/55ZcR1dAo21bdRsmzaqa9VszX9957b8T7oDTmu2CIMcFxMG5QgxX5gRJHheuEhVAaYTOvuOizCBDqI6yD/UwQwGJBWJpcsuiwnMK/IAQZ7SCQCHSzYPH98ccfkz6XsGAqj2QLOCQLP1U2LNGA1BAW/e9//yvTp08334f2fyNGjJBbbrml6HkQGdCuXbuI1+MvyibQ/j1VcEyExCFhbCZTuX/wLGTeYPOFlRjgd85zQQFHquBexLmAFANyFml3mClsbmQsazPOEakMkC3QunVrE+598sknjZsCYW5sb7Dh4lreeOONhjQSDrabawhrvkmjBeeM4+Fcp0O6FdmD5jgqXANKAJMzKmPPnj3FS2C3jRUQixbKm5u2QPkCnTBY2Bo0aGAKCRQZggX9zTcx30OyFrngApE8nU8WfAgKBIYCB/LkIIKo+amAxZ+iGks4E6FGjRopvSc9nik+iQdIFsQrOp8PQBhRSx988EFT4AEgUhTRkYdnsXDhQnOfktPnBAQC0ozdVjro27evUTBpPpAKHnvssQgFzuLqq682DwvmkWQejXw/zpcljuQRknsKiSU6Q9FLuuD4eK8jjjii2N+4/1GxKYAh2gJRpiUeeaE33XSTGT8UHXFcFFDxk9xIxhhEEmKe65zGZBt/VGryZiHxkGXNd8wtvDMaFAUFJqpPPvnE7AhPOeUUT4ZFqc7k+GxS+J577imFAL4ThBg1gcIXFmydWDPEW2+JXHQRqxUJ4eGfjz1GeS+lujk/nOgCD4gKbTvTUZEJFxMiTYaffvoppfdLVmgGQQMs9tEg/AuRRQmlaI6x++qrr8pZZ51lPp+UCgDxjFfxzybQmlGnE6aGRDM3pQKKdeig5ESPHj0M8cJaDGLF+6XSXYnPdH4uxUFUL3ft2tUQ6N69e6f1XSB7VKa/9NJLMYtr7Hlnw2HBcZ999tmGtKM08hzI98MPP2xC1YwPFN/vv//ebPyffvrpYtXw+QTzdXSxjCJ3UOKocAVMZLYzjJeNpLGyYLEilAPJ8ko4JlMQviFsh1pA1XQhKqk5VRohjbFyDi+8UAQi0ahR1j4Ocs+CmIjkv/jii4ZoQVQYryz66Vb6okJjw5IuSS0pYnmoYif0xx9/GKXNfg9IFWT02muvNW0vAapYvJxkxrozHzKV70/OH2Qt1RA/qh2PaGB5A4FEmbN9rzMBpJQcUObNdEDb1jvvvFMuvPBCufzyyxOe9+hxxfjhYYEC2b17d0MQeU+q1okYkV+KrQ9KqpcIGhsJ21mG/9eWqLmDEkeFK8az2H8Qnk4lfyjfgGA1atTI96QRoCDwPViESCJXlACEp+OROH6P6vjww1n7OEhjMkJHqDE6zy/d3L6pU6eaDVMyJPMUtGDxTkSYLDmLzv+DCBIiRdlykl/GLyFXCnh4DqQA1YsNHukXznA1f0fRxG4rVaCoUQiSapg6ESBjtssM7wkp5d+Z+KESop4yZUrKz0eRZWMOqUukUtrznqi1K+S9T58+xueW8/zZZ58Z/0dsknhghfTNN98YJdhLgCwypin44hoUwhzuByhxVGQV7P7wZmMnDnnxA5j8IVmE1/F5ZAJPNb/LC0DtIJ+U0A0kOJlqpUgR5KrF6zTE733YbxhyQFjXaewcD6k6ICTLcaxbt64hU9GV3xA+/F1jFThYk2n7N1tYR9EMvoQW/JvnpVN4R2ifcD0FKdkCaiOkn3Ob6b1HoV6q8w5KLJXUbCJQBRPlIHLeIeYo1fEUSfwwebCB5t/klDrJOP9vTdK9BM41ES02EBBkyHGuPYKDCCWOiqyBCfzzzz83u+2jjz7al+TFVoBCelMNY+UTJIeTXM/CQYWql5LYfQ/U8kSKY5bVdEgSihWkxo2cYPrDX3fddSafDRubXOU4ogJBcCB5TqAcEvpkzqDIx6p0nIOvv/5amjZtWqRkYjvExgjDcydx5N+oTqhuFrbCGcIaHb6koIJw8Omnn17i0GZ06J35zr4nfyOEzneKvpYcQzRBxHmC+xjy5oQtYrLm3dZyh+9LNAcVMFl4nPflGqEMxwIG4LSDpMiHMcjxEsKmmOawww4zcyIV77gyeBEQRVssQ25mvO+pyB50lVFkDYSnKcg499xzM871yfcExAI3bNgw8yAxP1ZCv1eAQkFaAMeI5YYfibqnQfU0hTCxAGkgzzGLgGzYR0lBfhrEBSKAskcFNpEAFlWIWiokIJs5jlRI33HHHcYSxuY8Q1Ao0iCfjnuNsCvHS/gaG6/33nuv6PXMJ9j0QHhPPvlko5jyHXkOBSXWixAQ4qYCmtw8NlPROYGonOmGqSmg45EMkH6KXbiGEC6UMMikM4RK9TSWOMw1XA/yO998800T6bj99tsj3o+cQ2ArtSFGfHfUtZtvvrmYfyUEk9CyBcfw66+/FvO/tOD9+EyuAefQklyKlSDziAGMHcaSk7B7DZxfm+9IwVWyDkyKEiLfDuRBhRfd4EsC3PzpXhDducCPoHPFoEGDTIcFOhV4EXQboAPMhAkTAtkFJ2edY+gMUrp0KFSmTOTPDDqGpDLu6M7Bz0y7jdjOMfZRrly5UI0aNUJdu3Y1HVKWLFkSygcWL14cKlu2bOjdd98t9rf3338/1KFDB9PRhu4yHTt2DPXp0yfm+7z66quhvffeO1S+fHnTXebpp58u6uRicffdd5vvzrmIxv7772+656TbNcm+Z7LHXnvtVfQa7kvbccXZceaOO+4ItWrVKlS5cmVzferWrRu6/PLLQ4sWLSr2ubyf8z1tl5d4j3PPPTfi9cxh/H7atGkxvxedh1q3bm2O03ke+fc555xjrknTpk1DP/zwQ8jr4Pj//vvv0MKFC33TFWudTzvHlOI/JSWfivRBEvTFF19s+oFSGelnsKsmeZqdHtV9XrTeSRfs1AnfxKqk9AJQCgjp5bsTj1eAIkIuF9ZDWVcbpk8PF8JYH0eUxixWU1ughNlQdSGmHDA3UJiDUhi0sckD5TGTopmSAPWTSAQqczRY+lGAGWscWyFELGxvdhRIFFSvf6f1KcxbXuQKhTc7KXIOzHSZgC699NKCII2AiceSxsWLF5vFPN9VyiSnE7IirEcifiqWKoosAJKYxerpoIIOJRRoEPr0kieg24AQMJ/Yog3Cv7ko4CAXkhxICv5iAVLFvMaxeJ1gpQrWH/Jmyf2myj3fc3ahQomjokQggZrka4phEtk9+BXsypmAUYNY7PKVu8muE7WmUEzKFbEXPbcKY7wAilVQWIIIe02ZR3BAyNSyJ90GB3xeNPgdTgyojIU41iDqEEbr76gWPdmH1q0rShQuJeGe6sdYfWgLAezEUfj4+fvvv+d84UOdIHke0sh5Jqm+ECd7RXisETYsFPVHURzcu9bzMR8k2hLXQs9QIxrDvUQRUaF/13xAiaMiI3AzYqTLRIgfWiEvduxgqVQkfwbyGK+DhRvAVgQjZqqmtd90YYNNAoSCn4rChLXsYU6BOHK9c0VsmL8gjYSmUeQKec62Fj0QZdKoFNmFEkdFRqDTAB5jJF8HodUT3xEbDUIfsQyLsw1CSdbrDg+7dDpjKPwJCCObEiWOhQ+II3MKc0kuiCNjisKrIJBGC5RdrJ8gy0FNkXALShwVaYO2X5joosI5jWkLHUy4Ns+RqutY+UPZUhnxoKPXN1BPMoWi8MAm1BanOLvkuAE+w+b+BamzCt+X80xLQt2QZQ/BGUGKrIDdMV0dCANYc9oggu4ytP3K9mSPBRBqLpWBarWjKARgPt2jR498H4YnYZU/WhWiCGZjM/qf//ynqN0rZIlNLsAuLR3SSGeaRK0k/XJ+Waus9ZAiO1DiqEibMEFuqKIuRK+5dCoWqdrjfGRrJztt2jRjnUH1aYcOHbQaUBHRFo5F0D5Qj7C2ueqqq4xdVDRoYcfzSHHIp9KCR93rr79erCMK984tt9xi8nZR8Pfaay/j82hVdid5cX5v5yOVnN8ff/zRvO++++5r8rF5v3wh0bFwDvgd5DFeDjV/o2UkzgqQQOYgWi5Gg+fQXpIcdF4DKQ1ygQjnlZA1+aQ2BUhRMgR35VekDSZ7QtS0ymKiDzLYxbKrRx2kBy/npCQhIBZ3QtQYvEIIFMED4yeZKkQbOMyCydkaNGiQIQ6QxPHjx0fkGr///vuGmOD72b9//6y2D0wHzz77rDnegw8+OGKso0DSLhM1kvFOL+SXXnrJeMJif2U9Sp955hlDfpygrSkt8uijnAwffPCBaTOI60O+84QTHYvNPYTc8ABOux4iG7QaZK6h7SKkmXPF+aNy2EnMaSdJweLjjz9u8qODktOYCNwbEGhC1uSNB/18lBj5bl0TVHixjVCydk60BnviiSey39bNx6CV2jfffJNxKzfO65o1a4r+X+GxloMeQbyWg7SM4/cffPBBRLu4SpUqhZ577jnTTu68887LwxGHQhs3bgxVr149dOedd0b8fvDgweaYX3jhhYjfv/nmm+b3n332WcL3vf/++83zeJ9UWqFyHKBXr14R7ftKch0yQSrHYueDDRs2RPz+448/Np/7xhtvRPz+xBNPDFWoUMHMQ85Wh7R2LFWqVGjq1KmhTMHxRbcw9DM491yDf//9N+QVrPNpy0ENVStSAuoAXoK9evXSYg0H2L2S61mjRo20X4vyMmrUKKMckduku+Bgg3Ai4yCdsCKKkg0JW9BeDnXl5JNPltNOO00+++yzvFSVMq5R0aPVTptrtvvuu0f83ub0JjPZR7lDxcTlIBlQ9ryS8pHKsVi7Hqs22vxE26aR6+kE/+bafvnllxG/79atm/lJ55hkYLw98MADJgTOZ6MOT5gwIeZzUewIhdepU8eo440aNZJHH320WDrEP//8I2effbYJEZOvfe6555rwOd+PtIt8gHOPko2Cbc+rIjNoqFqRFCxChMOaNWtmTKgVkbBEmhxFztV+++2X9DVMtHTcoUIdU+8g54sqtocj0+1VjSUWqFatWkSYmsWfkCXEgmIJCtogksngDJUmyxsjXSMRhgwZYogC49sJ0joIn/73v/81/YRJzyBUTc5j+/btE4bV2WgRyr7jjjskFyAM7CyAs2FzCLETEK5s25JZs24IGrl5nPPobjP2M5lLLrroIkMCCXtDAnG8oL3j9ddfn/Bz7rrrLkMcjzzySPOg4QBpANG5loyLgw46yLQ+pb0sudhc49tuu00WLlxo0grs3EYO/LBhw+Tyyy83awbEFvKYb3Bv2ZA1nc50s54ZdLVSpJTUzeR5xBFH5PtQPE8gacHIBN+8efOECwJFNfRTZaFEtVQoUs0zhrSgMkEKyHlEoTvqqKMirLJs0QSLO7ZZkMlUiONjjz0m9957b9LnkeNM/mQicC9ADFGdnGDBJtfv4osvjnBmIIevT58+CUkz3wOceeaZkgtAesmpjEZ0hIE+3Pfcc09WP5vzwLWF6KCwMgeTU33ggQcWPccqkZA52xEGcgQhatCggYkUJcLSpUvNNSeSxObCEimI+UMPPRTx3KeeespsVCDvtjAJAomSSj7ljTfeaJRIinJolACRvPbaa83zIJBeqKzn+6GAcg9xvjhXivShxFGREDNnzjQTBTtIm7CuiA0mTSb3cePGGfIYT51l545yQStDp1KkUCRDtBoHgYNM1a5d2/z7o48+MorTiSeeWPSc008/3SzqqGfJVMJzzjkngpjEQyo92wlXxvs8iBekjKpwNlm4CUBgzj//fPnkk09ivgYli+/H66gozgU4txA35yYakvTTTz9FPA+S5gZQGyE7xx9/vDzyyCNywQUXyIsvvmiIG8dCQRGwVj7OQhjOPXN3IrDJQFm8+uqrI9Q3wtHRxJHr0qVLF/O+TsWVMcmxDRw40BD6H374wYSF2RhYMCYp6qFQK99AteU80TKXzb5Ge9KHnjFFXJAHQo4M1ZmF2os62+BcQR7Z6bObJWRkwcRurSFQWoJkxKvIDiANVCGz2JEjSJjXOY7ee+89Y+UEaeMBIFqQAxb+Sy65JOH7Q4CySYJi5WuyGSWU/s477xQR3GOPPbbIN/D777+PGd349ddfjbKWLPSaTWD478S8efPMz1xWqUN0UBxRabl+tpqceeS5554z54yQNWTImUPJuU8WirVqarS1EcQ+mvSTijN27Ni4+dyo3fY9yVeNDt2TD+kVIIKg2qPgo4pryDo9KHFUxMUvv/xiEtnZReqNlTrILUIpcBp4QxoJMzFhtWzZUkmjohicHoXxACkkRzAWWNhJgQCxPA5Rz5IRR5SraPubWGADlKwgDDUdlTMaFEewaNvwugUWMoAQfCziyPFz36CgBg2QR0L5kG7UWVTQVq1aFfleEt2ILrzh3JMWkC1YGyVyUWPBTzZijKPKlSubdCHOZRDa5mYTShwVMbFo0SKTp4IyoOHU9GGVRsIhTE4oFfw/5r8KRTwyxmKWKSBWkId3333XvFd0hTPqFESDvMd4eOKJJ7KW4wiZ4ZhQdZzfC8Ny1LDorku20jVW9xSKQz799FNTLZxvP8Z8gk0Fyh3XmXQBNvcAUhkNKu3ZpCaC9eNl0+FUmsl9jCb9bIjZVCRTW3lPWqaSkuMkZBRAeQmEqTmHiCP8v27mU4cSR0UxMKmTp4KEn4rlhSI+6LLz7bffmgpXEtBJzFYo3AAkjRy0U089tdjfKJCBOH744Ydy66235iTHkc9kLqHi19oGWWWK33/88ccRLe04NhBdhQ1wdaASNlFRDMU4EJVExLik4HjdbsMHgaYIBbId3XYUcsO551wsWLDAWOHg4hBN5iDrvAdFKYnA6yChzz//vAmBW7XbVkg7ccopp5gCIIzHo4kqx2PdAPjba6+9Zh62OAa1kjQLr4FwPyF2NvUl2bQFDUocFcWA3QVqwllnnVVMuVCkBxYy205M210pEgEFjkpPctXSve/om46iQ7FJLFA8Q54y5DIRccxmjiMElGgFBRhO4gjxQtmkIpfiDYpjsIChNSH/TyFINDhu0j+cRT/RoGAGuxirwgFy8r766ivz/5wfCBXWMwA1jqK/RLBt+5IB8pbMhivVYyGPk++CfY3T85DvBhlH0UM5RllG1SMPPVot45xDzskdTQTSDW666SZ5+OGHTeoAdjxcE/JMo8PcN998szl+nsc1bNu2rRmvFANSDc+awWuOO+44k1JBQRbfE+WZ1xF5AV5Ke+I+I30I1ZG52iuen55Hvh3IgwovusGDTZs2hZ5++unQe++9l+9DKRisXLky9Oeff4a+/vrr0KJFi/J9OAWJQugcw723fPly8zPVzjEWV199tfn7jBkz4r7/PffcY54zZsyYUK5wzTXXhBo1alTs9/PmzQtdcMEFofr164fKly8fqlWrVujiiy8OLV26tNhz6fRBd5QTTjgh4Wfx3Q466KCY5y3WI5WuKHRPifd65+Puu+9O+l6pHsusWbNiHt/1119vztcOO+wQqlGjRujUU08NjR492nSKiQZ/O/DAA0OpgNffe++95hpUrFgx1K1bt9D48eNjdo5ZtWpV6LbbbjPXlOtGZ6DOnTubjmK2Kw7gOp5xxhmhnXfeOVS5cmXTvch2DProo49CXgLdepiX//7775x371rn084xpfhPvslrEDFlyhRjV4CcT2WkV4AvGPkp9EDNZmJ10EDvYM4fIWobqqFzAmE0zRnNPii2IKeL6lO/djYity9dA3Cvg2IOFCcULKdnoyKzELY1BLepAswr0Woj+encB1gXJVMccwnUW9Rk8m2jq9XzDQpkyOkkPSuX88f6FOYtL3KFwpidtgHLiTfeeMP4W5GzQDIvbvqYLCfCm2++GbMNEpVsSP7RIDTATckNitR/0kknJQyh+AWcM4gjYQYljZmDXCsmA2fODJO7zd1ir6bms4oggLD3hRdeaHz+lDhmxxAc4uicV5hPCFkTZmXNIj+xRYsWeSWNEDFnHixpGORRklPoRWs3SBvnjvQB652pCAhxJE+D/BY6JFDVyi4X64Bnn302pTZw5GQ4B3usKitaJz355JMm34QkdPJWeH92DrnqZuAW+vXrZyYnvpsiM5B7RIUiOUoYgscCeT88yFfSYhlFocN2sVFkLoiQi8fDSRotrIUT5JE1C5Keb2AoDnlkjiO3m37ptCfEVDyVwqpcg/PHRp9qct3UB4g4YrgM8aGKzPp8Ud1FEi8TVyqTF4Qp0ULODUACNzfD/fffb35HQjPhAsxs8SHza3cVKvTwB6Py14s3th/ApMNGguT1RGa3hCWo5MPXkar16JZsimACYpBJYYyisMPTEELUsEReg8zZrEOW9OR7DFEMhcBCdA5RhfkQxTFe8ZYXgGLLOSbyZgsaFbFRMMZFdBXgQlsTWcDuDCI0YcIE4x2WCmy/z1ig8g8pm6oxJ8jbYHeF76EfYe136JlMpZwiM7Do0/2CMFEioOqSDsAkxZhJpWpTUfhA9WDx0jCZwpnTaD0bE4Exw3zCT14DicwnzjjjDGPDxHqJ4MIa7GXSaGGFH8ijIgCKI+FBwtMs3k7YnqaEBmnRlQiEnm1uBlYS9NYkWdb5GSC6B7Ft+zV16tSidlDRoLenbQHmbPXkBXBTE2LFw01NUNMHO2o2LUzcqRp8sxjQq5rwDV6Pueq9q8jf5swu5owV/k0I0rlJ5e8s/Gx4KZSx/3ZuOOxrgRLMwgXX35JGSwiTgbmb9Q/CqfN4ye15ols4KgqQOELKYlWr2t85m7JHg4FywgknGA8xBgrhxs8//9z4GVLJZMkon8HAiu7hyWsINzqJYTTwsYpVgJNvMMn89NNPhgxns0dtkCZ4PPRY7CGC6YDwE9WFtoI2ld6yCm+Ba2ZJIQ/+3xI8iCGbCvscwN9s/hR/c8ISS+YTxpXtpGJfa8NnNnzJWIEg8JPfW1WKv9u/KYHwL9IhjRY2FxIwhvh/nVPSA+s99xdqKfxBz18BE0fk8Fi7AxZn+/d4oJjGCdpaoQCRxwiBxAjbvkc8mww+J9FnEEJ3WhCgOFrz13wCxYtQaTylVBEftisGk0ysbhepwI5Z8iPJ0+3YsaNv7WS8ALfdxagO5WFDyqhC0S3yLMGDtNnnWRJniZxNxo9lxwNi5bM5ySd/t0TVGZa0FfsWllTyfFuBqwuhd8HY4jpxjUtiycT7MJac1j2K1MD9gRCEYTmbOzfPX8inbogFQxy5QewO3Ql2/fbv6YBm7rRIghhY4mhDSLHA5yT6DOxtvGZxwwIzePBgQ1acIXlF6l6NED7OX0kLXNjlMoZswYzd8ChSg5PIZXuiZ/HgvmcxthM9UQoIGSSf31nlz6nwlXTxj4YlfHxGvPFhFz1LKC3Rta+1+W9WmeLBMSqZzD8s2ePalnQMWwWa1CvGS7rrX9DBfc05I9eR/3fr/li7dq356beQeMEQRyRlFvFo2PBxJqSNYhFyHZyfwc2NUagzXA1h5Xl+M3aGNIJUetMqIsH1psUWrcLw8iwpUISo1kcBpmAG8ui3ySSfYKG0dhoo/5CndAkR97aTINoUFciWVe7sg3veuVHlNSUFn23D29kknM52l5ZQcuxWsYRgMNb4nQ21a4g7t2D8WDsdrkV0GkNJQMiV+aVQTOVzBa4D9z59uLO9GQ1t897EXQMnF79VcBfMSKLcnx6btterBeE/+/d0LywG340bNy76nf1/DJ5Z5C34N5Ow87leBzvb4cOHG4KSyOZBERsQE1Iasmm/RO6bLZihy0y7du2y9t5BAF16mOCZjJ0bvlTudYiVLUaxIeVcE3c+H/KYS+JmvzMPiCOfbxVUS5KVRLp/DZyRsWyqW7YIy763Ij3AJxYuXGjmeTdUx1133bWou5ifUDDEkUWcbi4UoVgfR26Y7777Tpo1a1ZUUY0tD7s5vPYs2FFE+zfSHonfE4a0wPEewoAJuJM48m/kbOfvvA46xLAo+OmYvQDG1Lx580whkRuenYwvromqjemDiZ37GOXRqoexFmnua4rluJZUwbO44rpAFIGUjSATJcgjuV0otxBwHCNY2FhAOafqOZp90GUKVZA8aTfIHePc5k0q0gPzBLzi4IMPNsWz2US5cuV8pzRaFMxIghxycV999VWzMNSuXdt4E6Ia3nrrrUXPe/DBB43R9cCBAyOKYzAshQyQXzJu3DhjJo6CGO0LSfusp59+Wu666y7jxYcyRItDekn6ZVJlkhoxYoQxPNdCjPSLYVCzGF9u7eBt0QSLOBZQVLwHmcxkQiCj8wtRFIk+sHHkvKJM1qpVq0jhSea9mQtAaq0dWL6uN/MBGyI21jY30lqNUdDH3zlvkEmtOC0ZbKEShZi0x3Urr9nO8YRGWQ/VPSN1YPHHvQBfIC1JyXcYBXUWbr/9dqMs9u3b14RiuUEeffRRadWqVdJCGAodMBFnd8Z7oFriaxhNrDD7ZvD873//MzmC5EFibBpdme11tZEF06mmKpKDlARyZlEEcxH2ITEbNQK1B2N2JY/pLcooZpxD0lTY3TMnYNAO8YmuaPYCOFYWqK5du3ri+JxqCMR6jz32MMSDB+MSBYY5FsKrYzM9sHmhEK5JkyZmvclFMRwqMp69fBaESJF6NPOll14yqXDt27fP9+F4AgVFHFnMr7jiCvOIh+eee67Y7+hnnQ5oM8jDj6Cwhw443bt315yXNECeC+FMFstcFUERNmWiIheVSYtUCVV4EoPwNGb2FC5BuDmHEEeITZcuXfJ9eL4F4846QxDedxYM2A0VrTQhl0oik49RSCMKYC7zy1HOmP/xKSY65pcIWb5B8SMbJzZ1iFDlNI2ocFoOKlIDg58JX3dO6RNHFsVch3lQtCGMfD5pEYrEC/LPP/9sQtLkOuIW4PROVWQPnF+78WRhZTFlc8P5J6xtCzIUkSD8T8MANjUUwrmRJ50IECCK8NiMxrKvU8RXHblmpCopCkxxVCQGqgDkA7Nv9QlMDySu58usldAqn6+LcezwGy0bUQJIIWFhRBHW3N3cAeLIw6ZW2PauzDGQE1VotoP8eXKkIY35SEcg/QC3Bpwb/Gghly8QuWCOIc2rTZs2gV8/lTgGCORwsttUm5fUQRiOyZWFMZ9hYopxLKh6DbJhO8oile2QFPIWCbnhlEDYz3meFLkF6tl+++1nChVtEQF54BBHwtgU1AQ9jE2Vet26dYu1rc0luE8oBg36tUgX5B4jvAwbNizw3sc6cgKkzLDbJc9LK8NSA0UAVDVbd3+vVMSzGE+ZMkWCCiZuitkgKoSicQcoBC9SFChyp71QGFMSOHuv4wjAhosQH04VqJHZMEv3EzgPbECJGJAm5IVNH6SR60C+I0qxIrX0DNTGwYMHJ2wvHAQocQwIfvnlF7MgMfAVyYGCxe4SlcTp+ZlvcA2x7yCPjEU4CGCB47vaBQ5Fi+IulHMvLMKK2IAwcv/QZAByT74uhUtBI43YvzF+2fR5DUQvKJZ09jtXxAfCy6ZNm0yeapChxDEAYHKgYAB53a+Go/mY7Fn48O7yGqgSxsZj0qRJJlxbyNeBkPSAAQOMYkNFqN35Z7sFmBdA2H3QoEHmZ6GBdALuJYoMmINQ8fmuGCwXMlD05s+fbzbs2WhNmk1wHTguxhv3lyK1cdymTRtTFR/k4iIljgEAvY8J5SXzs1SEQRiChY2CFK8mQZMrhWkwi1K+inbcBOoiiehU6kIUMfcnN6zQlVXIcSGHcm1enf2OzE2kHhQiWcYzEYUVwowjg1eJEBGMGTNmmHQmRXJ06tTJGPUH2eVCiWOBAwKEekaXG81tTA1U5KKMeE0hiAYhWyYxlNFCCTVZQkFBBeOVHEZC0s7+8wr/g/xUIiAY27NJIJWm0MLYFCJS5V+nTh3xMihcYq7Dm1ORHFWqVDFzL5ueQpl304USxwIHfl1AfRtTIy0oXPh1+aXikHAT+ZiEc/F69CsoHKDgpX///qZqGvJObpzmMBY2UOJQk1mIrTUMRNLPqqtNqSA3mk5FXgcbT7qI0WJXkRo6depk7O3INQ8i/LE6KjICCzBhIELUhVB16jbI81mwYIHvdpEYMRPOJcmdNnt+AueawgEqbvFjRP3wC2lXZAdcb4z1UZVJu2CzywaC/Fa/YebMmSZ3E1LhJ1irMXKm/Xje89XDesiQIRJE6AxdwCAHg1A1uyNFcpWASZ98n1x3c8jGpE8+JlWrLLp+KjiA7ELYCedRKW3bAwYRbO64jkHe5Fn1i3Ag6j9FCCjqfsBff/1l8hoZw3411qbyG+XfL+c8n+jcubNJr2DDGzQEc4YOANi5k4OBj5qG+5KrXpBsVDsULz8CskW+GAsWnnmozV4em9YHjepwjHXpf+zVQqRcgbxOlIygd1pBeSSvle4qhK1tuo2XAXmggpr5g82nX0HKAHMJ5FGRGE2aNDHzLets0KDEsUBB7gXKE7siRWLQeosdNtWP+ewOU1Iw4ZPL6uVCKBRwwjukUNiqTh6KcJ7n7NmztbXkNlCwgf+jdYPgHvWiBQobIYgjVf9sgPwMNm98B/KlaYCgiI9SpUqZ9RVbNCzvggQljgUKFmfCf16v6PMCUBp79OhREASGYhnCfCxmhM0gxV4BiyttL7GyQNlQRILzQncnfiq2ExmbOoKiR/W1l1IxiFbY8DrtFgulYIle4+R7KxJjv/32M6klpFQECUocCxAkN5Nvg5WJIj4gV/iXoWIUmjE6Vakk6DOhecEjD0soHrVq1TJWR37NAVPkD1jbYHFDaJBNUb6L2PA9xM0AFZ35w8/Rimhgcq1dxpKjXLlyJsJDPq6XWtO6DSWOBQgmVhZmcjAU8QG5pqOOl1S5bIFQNTliKDaMh3xNatacnMId8tYIO3o1jK7wNugWxJhu3ry5CenTMzhf5vdsysi9hMhiHVVosPco6q61F1LERvv27c04HDFihAQFShwLDNzkkCEqqYNanZoKyJciN4W8pEJVvyCNjAPUEMijLUjJBSjOIbRouysQ/kJtVChKAlQ9rHsoqKJ6mX+jrueSQDLHkqNLSgiboUKeZ6dMmWIiBflWd/3ghjB06FBPFyVmE4U74gMKKmrx9fNij2UvgVwyCFWh59oxFiCPELdcVS0TGh84cKBJmWBxVaSu8lAQoopscpD3aDcihK3J6c5FUREECmWJfGiUpkJLcYmVw0e0IqhG16miY8eOpnEEYkQQoMSxADufQBqDbumRCISmqRikejAI54kQHxYhqDNU/7m5wBLawgAZFYaKWExyFanb0BCK1faK6QELIxZtepu7nc/LuEZl9LJzQbYJOsouueCcY0VsVK9e3XQJQrgJApQ4FlhYgZsbPz9FfKAWQGpQ4YIE1BJrquyWrQmda1AZ6UOsBCg9EG4l1JWvvD2/Ap9axhvqH5sWN6qumVdRNrk2jO8gbDgtII5ELujwpIgP1l1yb/3WNSgTKHEsILDbwX6HQgRFbKBIMPkXgvVOpj6PhJ6ymY/D+VyxYoX5f5TNoKgxbijh33//fUEWa+UizwwXCay1su0/iD0SOcJsirzoI+k2IOTc0xQlKeKDuY/oThBURyWOBdYyT9XG+CBEiyIR5J0zhNl25CDBn/SGkoDXM1FS4UrBEeHwQrIlUfjPGsUSHNrnlVS9ZUxDGhnT5AoHtbsR8wabQc6HKuKxwfnBNYJiokIvklHiWCAgBEk4QXeFiUP5IOh5d6gyJHOzCJSkJy1V2hQloMSwYSlEWxKF/1R1SB5jk00im5pMN0eoi5BGXg9pDPr45pz279/f9GdWxAbel0R0Jk+eLIUMJY4FVBRDBVyQcm/SAQobvo14WwZVNYjOCzv44INNHiLjJ127DUL+FCNAPAkR1qxZ07VjVSjSBZtoNjNsatjcZGJFhYLEuKatHKHwoINzSiU7pCiIIftUUKNGDSNMjBw5UgoZShwLANOmTTPESJ3+44PEdiZ/Kt8UYdiQMiFrwivphKDYoFSuXFm6dOlifioUXgOkj00Nm5t0Kq4JM+I+wP1B3poWeW0H54ONptrzxAfrMGljhdy/WoljAYBwTO3atVX1iQMIETtlWpYVsllvpoBM05cWs+5k5JF+06g3qA8U2gQ9fJdt65PDDz+8qDezouSwmxubo5cMkCIKx/BqLGn+byGC+71x48Yya9YsT7Qy9SKaNWtmzlMhq466ivocJIBT7KFFMfGBckD4gDCCojgg1SR1QwrHjx8f93l4uaFMzp8/P6fHFxSwqSGNQjc32QWLOEUz/KRALp5dD+katBFkTg2CuXemoHMP3plaBBc/GoOXMuljhbr50BnK52BXw2KDmbWiOCBDqShpQQcLATmy+JDFWlgJvdDKErWBhUMhrngFkjagRsvugc0PiuLixYtjdoTBg4/CMe14FB8QajaaGsKPD4Qc7mNbkFloUOJYAIbOhGC14CP2+eHGJWdJd8fJgSpLD2C6IESTRnJEIY1NmzbN2/EVOhinEJpCt/LIJ/bee2/jcwtJpHDGgvQLQq8ok4Xauz7bWLp0qWndqigOxhieyoXq6ajE0ccgzwSzYC2KiQ1sIzDvpZJakRpsoQsV6KgzgHxGJY2KQgBpAKhBLOyEpSHqhBMxbu7WrZums6QBNjhEKAq5CKQkaNOmjZlDC9HQX4mjj0E+GrtjctQUkWAxoNqcoiEtNkgfVKISNmVzwjlU0qgoRPJIzi4tOEll0dzS9EAxJkVHhe5ZWJIK9DJlyphoTaFB7xQf7/YmTZpkchs1DFsc7IJJhCc0pUgf5C9xDjFRVsNfRaEBkog9F3NE3bp1zU9FemDdYUNJXqgb/cELpQJ9fIKCQ79CiaNPgQSOKqRFMbFByOnQQw/VBO4MQPgOJebAAw801YEUF2W7/68i9kJD5ye1OHIfqGTk7pIfDgYMGFCQIUW3sfvuu5tOVISsFcXB+owLBS2BCwlKHH0KdjHctJqTUxwsABTGkJunSA+oBxQOEIaiypqFFVVBCwbcB+OVinUdt+6CRZw0Fvz28DBlrJPjSMiadnGK9NCuXTvNs48D8uux5yk01VGJow9BWIUds6qNsUP49JfVzgaZgZxGSCILAaEoHoRbmPwoNNKQlHugjRtG7NrOzV1gtYMpeMOGDc2/Gdv777+/MQhn7ihJ//YgAtJN6J/5QREJ3E5Il1LiqMg72C2zuBDWUhQnPpBHbS2YGSCMKAixCgUYd3jgKXl0B6hd2Heo6uUOcApgfgCEV51A5e3UqZOJVGixR/rAs7Bfv37F/DEVYgQezgv2RYUCJY4+BLsXKl2rVq2a70PxFJj0WRjwz9I8sdRh26wRwoMwxmvNxgSIGkm1tVpwKPyEefPmydixYxOaq6OckddLioYiPZBLDhm3Fl6K7WjUqJHZmBSS6qjE0WcgjILyo2Hq4iAJGSNf7WySHlhQyW1M1mINUkkrNhYIiCat2RQKr4PwP8VeVE8ni9LYsCt50uomkB4I/TOPrFixIt+H4imULVvWWPNAHAulg5kSR5/BdkLRMHVxkKsEadxpp53yfSi+AQotagzV03iyJQPkku4aGIVrLpjC6yCtgrase+yxh1ESU7Uug2yyodK0jNRBkRHKo6qOxYHQA6kulFC+EkefgV0LreFSWeSDBiYuJdSpg3Az5rSQbVIf0tlBd+7c2VT1A1ReRckBKYeQJ1N+FamD80lxF72V0/G7paCB1pvknGrRR2rg/KI6Mn4LRVnLFurXr298QwslXK3E0UcgaZ7dnIapi4Pw/apVq/J9GL4CITmUGMIoJTnvAwcO1IKOLAClnF7hqphnZ1PEmCQKAQlMtysMJIhCMUgQ9lTkTyuSA1EjXZIeBJQpU8bYPxVKuFqJo49ApxgGHQNQsR3k2lEJqcQxNbAI8iBXkcWxJK3WKERiUlQbE4VXQI4dObglrY7GSoWcXsb16tWrs3Z8hQ7mlrlz56qtVBQQfBib5OL7HUocfZbfSIK3dkOJBCosYQDt2Z0aJk6caBbWbOx8qV7HxoT3GjJkiIatS7gB+vbbb7XoqASgqAUjb/rTZ6M6mlB39+7dNTUoDUAYyQ/F/kixHazdrFOs436HEkefgIIYChlwoldsB/lHJLKTp6fhkeSgEIZxBMnO1vmiEhXyiK2PJsaXDBoSzRyogijfLM4dO3aMayuVLlDkmX8JWWvFcHJgPbPnnnuaeUbHc+Q4wpqH9B6/Q4mjT0AvUHZyJHortoPJiQWC3ZwiuRqDEsCknm2DdFRwPPBKki+pUJR0EwlppAsMuY3ZXvQJWUMe6dylSAyKZDhfbOoV28H6vWjRIt/3RVfi6BPQQo+wifamjgQEyCaxK+IDNXD48OGG4LllcIzyiIpJYQKhcFQahcJtQORIlWBuZPNCbmK2AXGkoxL3EZXWhVDg4CYo8OJ6aLg6EiiOzJF+Vx2VOPoATFIMNMLUGo6NBArDbrvtlu/D8Dwg1ux2SfZ3m2SzyEIeIaostAqFW0DVGjRoUFHemJvzI/m8kEe8HWfOnOna5xQSSaLKWhG5uaagUImjwnVgHEo7OA1TR4JuEOTsKRLDVjfa5Gy3QbU2OWaMWbUySU+l6datm9rxpKE0UgjD5iRXqSq03IQQKZIDH0zSYhSRYB1n4+HniIwSR5+Eqcnjw0RUEQY9Z7F8UCQGiyo+i7lWSOijjrqJOjNu3LicfrZfgRJMNbCmXaS2GaIQBvKIGX0uNkQW5PGSw6dIbZ4eM2aMbh4dIHLIuPVzGF+Jow+ArA1pzHbCt59BH1nOh1rwJAYhPMJ5tstLLkGOE+RRNzypF3ewyGqnktSK4jhPVPPny54Mn0iNeKQ2Vy9cuDDfh+EZ7Lbbbsbeyc/haiWOHge+eOxMNEy9HexemYwIg6g6Ex9Yh6A00jkjX4urnSRRPlnstaggPlAhGNdatZsczIddunQxCm2+QGcaOoGod2l8MO8QsvazupZtlCpVyqiOShwVrgFfPIiSEsftWLJkiVlcNfE6PhgzqFcsrHhceiFPl0WW3tgKRaZjmpxZ0h9YfPPdCIFOIByHjunEIP+U+1+772wH6znnhIcfocTR42BXQsivSpUq+T4Uz6BmzZp5Vxu8DpQ9dvr0jS1JS8FsKo/YAKE60jpToUiXNGKDs3jxYvEKsP1p3ry5aSHHZlYRG6QTca5UddwO0neoW/Cr6pj/FUWR1IZH1cbYlbuK+CCEz6KG96dXgELMMU2fPt0UfCkUqc6Do0aNMuSMnFk2RF4B6TJs7JcuXZrvQ/Es2LjitasFRdsBkcaD2K/EMTs9mTwCwpdvvPGG/Pjjj7Jq1SozUC+66CIz2STCr7/+Kv379zfJzvjPoY6QdH3uuecWU7VOOeUU4/wejWOOOUZuuummrH4fdtfI+0octwPSQaiK7hCK2Bg2bJjZ5eMX5jUQNiffUassY7dqw+qFn4rI3uoUV+Ch6EXP1lx4o/od2riiOFjX4So4BPit8LWgiOPDDz8sv/zyi5x88slmJ/j999/LLbfcIs8++2zCbhlPPPGE8ec67LDDTPUpeYWff/658QiDiEZP5FzwU089NeJ3bvhV0WaQCcmLBCBfICykIer4oLiCDYeXK5mdGyHsOvKdq+YVYDCtLRtjK9XYO5Gi4kVY0kh7PQyeNa0oNkhTweFBx3gYKI5soqnM9/J8XdDEkV1pv3795PLLL5fTTz/d/O7www+X8847T15++WXziIf77rtPWrduHfE7KlEfeugh+emnn+Soo46K+BuhEkim27CVw+RCKMSoyPT45NooioPqTu4DNhp+2OFjED548GBp2bKlbo5EjCHwv//+a9IL9J4XkxNXu3ZtY4judVN0wukIDhCBrl27eiKv2GtAWUMMoaJYFVox6jkbDdZ5vxHHghndhJsZjISMLVAKe/XqZareEiVVR5NGwM0PGOjxbgI3/daYiJg4tXJ4O9jRs6B6MVzlBZBqQZVns2bNxA9AmaHikupvlOSgA/V1yJAh5mfQgf/o2LFjfVN0wn3HBojUonhrRtDBJoDNkV+uaS7GTN26dX1ZNFQw21qSTFHnosNeVhYnNy4dE2RbJh+rCGPkyJFGcWR3SfiE0DiPRCAvz1l6n2yw8FwWECWO2wH5J3dPd/OxNxpsZAgDk3jtF7Ro0cLcRxQ/sPHzajgy29cKdZgHGyHmLOvXyhhHgUB1ZJzbFBgW3KCokLZ4irl7jz32EL8Av1KuF8fPvK2qWiQY54xrNonauCEMxsmAAQPMHOin8VIwMxFEizzFaNjfQdzSwQcffGAu5EEHHVQsuZ98SUJrhE3Jo3z++efN+xMmj4evvvpK3n777ZQ/n0WEHYn2+tyOAw44wNf9Pd0EY4WCIb8ZbHPcWAYxcUIW2Nzxu0IKPUMoSH6HUJDnBUm014k8J8gzpB+bIkgjOby00GMDYO9/2kbyHPIgefB3NgleD+GmC2vXRDjTjz2hOW5y1vwYfsyV6khkJEgboWTEkeglxV9+WusL5soxGceqTLLqSzru/uQ1fvvttyZXMjr36pFHHon495FHHik333yzfPzxx3LiiSfGDaMSQof4OInhAw88EPcY+Du7Mq2wDIOFFiLvp11ZroAyzYOx50fSxTFj1wF59OPxOwFhYBNL1x5reEzVLUoqhJDQlCV/PMhxspGNnj17GkJImgzKjLPyHBsjOpUwj0EgeW9LPiFa2MHwHoT/Id9+Up2dgFDghuHXPGauH44cWiATG5AjxBwljWEwL1iPSyWOeQAEC+YeDdu+K1UCRr7Vo48+Kh06dJCLL7446fNZ6LDowQJl9OjRcYtmKKhJx3+MgeT5XDUWrn//5SSLbNlCeSFMXQTvwCwTAKrlUXs1dF8c7OApNDnkkEN8G8bnuHlQdcm9hArnh8WXqAPhZcgOx8//Q+y411HMIHNWFYTQJUqXYS6BTFry7LyWiV7HeYJQYiVmIxWcPz/dK5Biq6L6HTbKpapacbAOqxiyHdY1hfvWKSx5HQUzqrlZY5mw2rzCVEgboaTbbrvNEBQqrVO96a3KyCKSDaBWEOLyzMQPORwxAoNAmLXIvHn44lCtEiaN0YA8kpvEg11Uq1bILiLt2iGtpP3xkCIUlkILy2UDjDmKhkjM9ytpdIKoAZPp0KFDjXLjJQNzC8YiyiJ+rii9zBMQO0LSyTxjE4HX9+jRIyPVwuaGQiAhr9jX2DmN8WF9PSGmXgNhOrrCkGrhJXPvkoA8Plpsspnzm0dfLuascePGGXFGz42YdZ6iOCIMfpnDC4Y4srsnwT7aFw57Evv3ZDc6Bt7s3h977DGz+00VTMzZ7GZiC2cIa+UFhMh+/13k889Fvv0WSSv8e/wTqUCn93GXLmFiyILFYoTaiOq4fj1VLNuJJd/l4Yfx0gm/ByGoXr1Ejj9epFOn8OuSgAWaXapdDBWR1aeMVT+FORIB0tixY0f5/fffjY9q586dPefbCclBGYWs0a8YsuOVCZ/7xDlvQLzZhFI8SA4pBBJVzyvnlApbig0pgomVo+5X8F1QHGfOnOnbsLtbIDSLOs4Gp1DmrZISRxqQcC/4pTiwYIhjt27d5KOPPjJFKNbHkTD1d999Z0K+NtTDYGXSd6p5qJI33nijmfwxA49HANkpQUqdeXZMDu+//77ZOcWy9cmUOKJipkNes4Jx40Twu/zsszD5YxAffbTIbbeJdOhA5jfxs8yIKC3mhg8XGTSIyiORp55CqhU54QQRiooSGLRzzfyav+cmIASQasadV4hLNoCCh/rELhzyiGqTr9xW7u+5c+eaoo22bdsaIkYHE3ITs33OmV9QWiHOqI/ZAH6ePEjjsd+D+Q/iyE8W8XyNHQoKhw8fbu5tCqQK6f5G2aU4BuLIT7/mnLp1briPIEpKHMUUDDG/se4rccwxIIcHH3ywvPrqqybUy8X44YcfzMJ66623Fj3vwQcfNLmIVClaUNyCagjhRELnYYECacNPmBW/8847ptKanTuG1BTSMBlfcsklWdsx57QiD5Xwm29EnntOpH//sIp49tlhRZC2ftlYVHiPpk3DD94bcvrHH2FF88MPRXr3hvmLXHttmKg6SAKhN86z7tqLg00MuWyM9UIDGzHII+Q4H6SRQh0WfUK9/D/3uz0OtzrdUOwCmXOjMp7zSQoO84olaERoCLs3bdrULOC5Jm6o5cyZEPJC2vhYEOXC0xFjcO2WEgmEHNZNxnohbRgy3Sgzh7Pus2n0AwqGOILbb7/dDMi+ffuaCZGJkkIXdrOJwOIAPoTERIHXWuJoizMgi5BTLjhhn3vvvdeQ1myA42YnjoLqKlicCEPffHM4FN25s8hHH4UVQLfzTlgk+DweDz0UJpDPPhsmqxDExx4LE8hSpUzojQ5AWk1dHIw/7FwKFVx7mz/M4svkmqscPUK7fCbnl8IXL+YGZgLnIk2YnfA1G2lIMpvvXHYcIsfNFkUVIlAZGTu2QFOxHdzXjD3y1zUFSQyvYCPnFyJdttAWmiuuuMI84uE5lLUoONXHRED1irbjyTYIJ7me3zhypMhNN4kMGCByyCEi//d/4VB0PgBJPeWU8INQ9u23ixx7bFiBfOIJkbZtNcwTA1Qek1vHZqbQwcKLOsGOnJxHt6oy2bChcENQOa8UkxRyH23C1ah9fFdywcndPPTQQ12tBCYcj3OFDfcXOjRSEhukg6GuebH4LR+oW7eu/Pbbb74h0oW51fMxqDCketiV5HUKV268MVzdvGhROET988/5I43RQNn98cewEkpbqnbtZM6JJ8qSOXPyfWSeAjm55H0GYeEFbByosCZPj5zHWLZbJQFkkVw7CnIwb7afWcik0QnScbAC6dKliyGNEHWIJCH6bIJoCtcPVSVINjVUy7LpIQ1BEQaqGqqjRpLCsB2SWP/9ACWOHgM5mSTIZl2uHj06TBhfeEHk0UdFxo4NVzd7TRbneI480tj+rLr3Xqn99ddS7fDDScjK95F5BoQV2VgEqW0XJA7yyOIL+chWByHuNzxC2eljQp7PHCO+I4pqvgir/VxUQRReIjGk5GTLpxFiDiEndzVINiwQ8AkTJviyJ7GbYEywYcP3NOioVKmSKYhjPvIDlDh6DOw4skoIyGV8/vmwqsjuDj9G8hq9vuMvW1ZmH3+8DH/pJSlDaJIFnTxIn7XUyzYgTqiNhZzbGA+QZUgHiny28uLIYyQ0RMFbvouMUOG80FWDFAjOB8cxaNAgk4tWkoIdFDfIPuoS1y9oqSeQZFv84LeWoG6fF+YyqqsVYgQjVRwVaQMPSiqIs1aSjypz1VUi11wjQt4nBt4tWohfwKRSCcI4dKjI1VeLXHdd+HsEuF81eXiQpnyTnHyBnChrP8S94mzLlyrwkENhBCiMFL95oZsFmwLaB3ohpAk5J3xN8R+FQiVpbsC1ohAHxbhQiowyKX7guipJiiSOpEkwzyvECEaqOCrSht1tZEVxZKKnMvmVV8KPZ56hekj8AvKhCGEY/02O+8knRV57TeT118MhdrrZBBDYplDAEKRQXyIVa8SIEWmRR8L8+EMSigX5Vveicy1xeOCnFwDho7ije/fuhrCjllnCnQrIlUTRBeSzBSUnNxY4fzw0XB0J5nc2w5lsAAsNNWvWNOseG2KvQ4mjh2A7pJS4R++yZSLYA9H95fvvRS65RPwGFA8sjiJakF10kcgPP4QVSKqu+Z4BAkUhLN5BC/XFIzVYZdFmlM4jyUKA/B1/VnLNqCLOlll/EGBVQgqH8LK1pDsRbCETRNgLCqoXAAkPaqQgHrB/Igc0W7m0fkatbYKRH1RHJY4eUxxLXBiDEnfYYeFWf7/+KpJB71uvIGYuW/fuIr/9Fu6XfeihNPaWoAAbE5LJFdsXHWxdmGjxIkxEHvk7ag89vfEr9INXmhfVbkg3PZh5xDvfFC7RAYfihyCHp2Opa0ocI0FBCJs45vqgo3LlykaV90OeoxJHD1ZUZ4y1a8Ph6ZkzRfr1E2nZUvwK1Iq4Oy/yNPl+kOOjjgp/7wIH4UvORy4Nmv2yGFMNTe4YRCUeKCYinzFv/d8LAJBtSPd+++1nOqLgJRpt2cO/+T3hNgphstU6sVDAeUH51iKZ7WOKDYlGUcScC9Z/PyiO3knwCTggBvjz4aWWEZiIzjlH5M8/w96MbpHG+fPDRTYoX3zW0qUi2CnQHYGbnzwmwstt24YrufFmZJedhsIDASAEmbDtIr2tCcNjYH7WWSKffuo9a6EsG8PbSVZR3AONHDryFZ2dF1ikKewgpF3i9I8cgMUTYuv1RZRCjx133NEscNE+fJx7VBPaGGLyrJBixBrSzYbHdkUKOrhPOScUUAU9ElCzZk2ZTCc3j0OJo0dgdxkZK46PPx4mT599JtKpU/YOjKRlCNqbb4ZzJq2MTj4GpJB+1oSiKGAhqZ98pgULRN55R8R22eG5PO/888OFLUmsVCDQIKmDPsT0gw/CnWbwpvzPf6QQARnCygOCFPSimHiwpJFQPioXIUF8A8kZZrH2Q1s7CBehdD8A5duq39yv+NARoibkqPmj8QGZZnySNqHEcXs+LMSRTVPQO8nUqlXLzFvkBXs5xUOJo0dgd+8ZhSIJ2952W/hBv+dsgKrst94KG4bTy7tNG5HzzguTRQhbKrk6qJMokzz69hU55hiRhg3DFkGQyDiTBHYpTK4pkSTe8847Re64I6xy+jinMx6YRCBFKD2K+ECtoJiKSmsmX/LxyLHzC9mG4KK2o+b5paMG1bAUJ7Hws+j17NnTU5XqXgT3MTmiXicHuSTTbOzYgASdONbcJhzBB7zs1ev9bXhAQEJsRi2YUABPOy1cNHL//SU/EIprrr8+TAzpZ023mSFDwsbhDz0UJqapJnjzvOOOE3nwwfDrUSwhnRiQE3K99tqYxS1MIBghp4x77gkTRs4DZLXAgBJ1yCGH+KKHab5BKB/yxf1EONDrYV8nsOKgiw0//UTWIbqc72y3gixUoIZDlEg/UYQdEkglQTAIOqpXr242Xl4vkFHi6BFggppRmBpzb8JwhGxLqlJQhU2o7I03wqRu9myRDz8Mh76zkXtCuJrjpKgFM28UTXIVf/kl4mmE69JS1/je77+Po2zYKLyAwGKMMXzQc39SBUSxa9eu0qtXL5PfqIuRu0A54xyffPLJRj0jVUA9+RIDBbxt27ZSp06dfB+KZ8Cm2KYoBZ1E77777p43RVfi6AEQhuSmifAsTAVffCHSp4/Ic8+FC1IyBbmJqIB4P1J1Sh/rBx5IXVlMFzR0Rx0dN06EAhgKXFA3t/m9oTbSXi4toFDSWvHzz8N5ngUCvPNQobLVm7lQAVmxCw8hajYfHTp0UJXWRRBqXbBggTnX++yzjznf/E57DycH5EDD1NtBmkOjRo100yFh1dHrJFqJoweAokSXhbTCs4SUr7wybEdzyimZf/ikSeG8RcgnBSYDBuBdIjkBqmL//iKPPRYmfe3by8Kff868u8JJJ4VzHsmhLBB/R2xmID+aN5YYWJzgHejsumK6Dgm1WgvMQ5HdzS7EhxQKa3HE/NWtWzdTKKNIDhRxOhkpwh6GDRs29EURm9tgvvd6pESvkgeQchWxE1QsQx5feinzMPLo0SLY/+DFRgELqmOuk/L5PNRGciBDIal+0kmyZtCgzN6L88D5oGUT+Zg+B8UStOOyBEgRG1Sc82jRokXMntOQbwo4vOSPBvHaumGDbFm5UjYvXSqb5s+XjfPny5Z//jE/Ny1YIJv//lu20I8bqysPgW4wkHTUoejCI1Iq2ATTYcbri58XBAPGrSIMxgs2bEFHtWrVzNjwcscllTE8ADvBpuw1R/4DCiF5iJnmyYwcGe680qCByI8/wlolr2jRQkIDB8qaTp1k7yuuEGnaNFwlnS4Ir5M/SW/rG26gTE38CtvDVW074oNWZaiNVCDGyxkjlEqo/88//zTh1FybqBuSuHq1bPl3pWxdtVK2rFwlW9euEYnygCZw2b3uXiKLFsv6RVE5TqVLSRk6Ke28i5TZZWcps8suUjoPyh7tBidNmiRNmjSJqw5BJiGQVLeTb6oh2dhgQ0iBDKH9IPfxtqAyn8K2oDc5qLptLYYXYMHmRaji6AEwQJDqU7YNIaRM6BKlLhNgr9Ozp0ijRmGz8HyTxm1Yu8MO8vu998rWxo3DxzdtWmZvBGGkmtb6SPoUKDdsJrQdV3xglsu907x587jPgcTQXYbcIYo3cqGEhbZulc3//CPrJ0+WNYOHyNrhI2TD1KmyaeEi2bqmOGlMiq0hQzhRJtdPmixrhg6TNb//LhumTZMtK1bkpBMJ6hjFMIQU6buc6HxT/GHJo+atxQbjkXPk9UKIXIH7eOXKlYHvqlPVQRy9CiWOHglVpxympkz/5ZfDljmZED5CAZAy1M3vvsNES7yCf//9VzZXqiShr78OF/scfnhYXU0XfLcbbxTp3dvX9jwoaAceeGC+D8PToFd1+/btk+ZG8Xeei10P9jFuYevatbJ+6lSTbrFuzFjZtGChhFIMNa9et04Gjx1jfqb0WevWy8a582TtyFGyZsgQ2TBrlmthbRZ0eqWj7NJ2MBlIGeB8c0+jUCqKA6GAeZ9UCkWYOJKeQ5g2yKhQoYLJE/ZygYwSRw+AnUXKxPG118J5gYRjMwEFNeRGYshdkkpsF8DNQgisPJ1mOD4mEMLWmYAwPgou58unNjzqixcfLLYsMBQNxcprjAU8UumzzMSMmgsZyhY2L1sm68aMkTV/DJVN8+ZLaHNkD+dUwKK5cvWaYv2fU0Fow0bZOGu2IZDrJ06ULVn2gsSQH4JOW7hUgVqOEpy2Q0KAQGtG5jxFmDgCNhtBR1WPF8gocfQAGCApVVSzoOCxePrpmSmFX34p8skn4QpmD7rSM3EUhcCo1KRrDdY6mdjr7LKLyBlnhM9XBgtxvkFl+c8//6xhvhigcppiF4o0MgUhV7rL0Ce3JICgrRs9WtaNHiOb//HARL81JJsWLZa1w4YbAkkBTkkJ+vxtqj0+s+n6iaJQ2qprRWyCoD29tyuw2PL4pWuSm1DiqEgIkoFRP1JSHClioQrv4ovT/yB2cah39Io+9VTxqmdhRCVZSe11LrmENxX54QfxG8h7IgdK7Slikz4IDN6BmYIKbJRHyGMmoTFCwusnTZK1w4fL5mXLxYswBPKPP2TDzJkSymDzRHEWOaHZsDIaO3assZ9RxM4dVVueMEhvyKgRRoGhWrVqGqpWxIcNl6VEHAm70tkF38V0QR9rPqsk9j3RRJQe2RSgQGTPPTf88+GHwwU3aRI9COOoUaNMlWwROM4XX6QXm8h//pP+MVKVTY9tn4WrCVEvX75cq6ljAEsdiAwh05K0E0Td2H///c1PyGM6ptXY56wdOswUuqRd5JJjhLZslY2z/zIEF+ufVIHaMWzYMLOAUehSUnCtpk6d6ko7RTZZn3/+ubz++uvmp9+KTQjNUq2uCDsQlDQKUAioWrWqEZW8asmjxNEDkwbqSVLiyMKGcnbmmekTv2HDwgU1eBuWJGxEtdvgwWHDcULr2PnwnvhBsmPmJ0SSvtHkT558sgiejClUydm8lmJN7ulpzXu+8orIH3+kf8ycL/Il164VvwAvMyZQJY6R4JxQaIGNCf1+SwpyIzt16mRUXYh60s/fvNmojOvGjZeQC/mnO1aoIK2aNDE/s42ta9fJ2j//lA0zZyWtWuVexKeREGoqhUepoHHjxsZyhgKbbFbN4hd59913y48//mgquPnJv4cMGSJ+AeMZkqCEKZwaQaesoHcfqurxymoljnkGkzSJ50k7g9DPmZuJUHO6IKexYcPMC03A3Lkihx0mQpXvmDEiTz0V7jqDQoh5+G+/hX+yAPP7Z54JtxTEYByCmcTolkkT9Semn9lll4mQQM73SBecL3ZtdMTxCZg0WbTV2y0SbLA6duxoClyyBcLVdDuxfmnxClOw0Fk7YkRYZXQJ5cqWlVrVq5ufriAksnH2bFk3alTCSm/OCblmeF5mK9+M98FPk4UwW118UBbffffdsE/m1q0RP9955x3fVCuj6nJ+/HK8boK1EGSzcM3PxPEfj4arlTh6gDimFKbGOocWfenmdbFjoSCGMHKmiwCvZ7GePDlcYAMxvOaasEl3tBrBv/k9eYkTJ4pgrUNuU4sWIh99FPcjyDOL26qM9+T4P/2UOym9Y4dwYnL+7bfiF+CTpzY8xcP3kDqsdLJtKG0VNYptBg0aVKyaffPy5bJ25Eij2rmJDRs3yqwFC8xPN7Flxb/h7xOV28k9SOERSmyrVq2y3uYSgkT+WrbsVlAV4xXr8HvUSD8A0kg+s99C7G6Ae5v7US15Kpj1UBVHRUwQoigWno1HHFHP0g1Tv/deuKr4vPMyO0C8EAlN46k4dmy4WCXV0BXPo5c2r+PYqQYnZzEGWKyYPOOCHEoqjN99N73j53zx2Zw/H8AqJulWrxY6yI/79ddfXTUHJmRITtEff/xhOs0AWv9hsxPaFP63m1i/caNMnj3b/HQbJnQ9cqQhxXYegohRxOJ28UO27GdQY+KNB37vVbUmFho1aiQN2OAGHMx7EKagE0ervno1fUGJY57BDZK0Mwim3eQQdu2a3pszqb76qshxx7Eqpn9w//ufyOWXhz0RP/wwbKydCbCbeP/9sGk5SiTvFcPPLGGVLG2ojj8+/H3SJQ+ct7/+orJCvI6FCxfK999/X0RcFOHCKdqRkdfoJqHGb5CCGe5JcvzW/fWXrJ88xVjcFCIgw5Di1QsWmAIhlC+qzd0E14/NEZXEJbWaQsFMpDimZHHmERB10mriMFgP1cNWzHlQ4qiIm8+WlDiOGhX+SYVwOqCYZMKEsC1NJjmNF10UVgmffrrkldi8nv7RZ50VDjs7ch5RB7AkSgq+B2HydBPfW7eOPI8eT11Afc12mNDPIIQMqcmFIoP6Tx7lPzNmyMQBv0ihY8P6DfLLRx/J5pUrTaFQLvpKQ8wpkqFPc0nQuXPnhIrjAQccIH4CmyOvhiZzCar4aREadOy8886uuBBkA0oc8wzytlIijnRfoMAlHfTvz0oo0r17eq9jMqaQhkRlqrGzpfJYex0USApetk367Kr69u2bvLL14IPDqiffKx3Urx/+Lj4hjimlLgRoY4UZOnmfKfdyLyF22rhR2lSpIg2zULntdaxYvVq2btkqrXbcUcrnSOVhQaQYifSDkqiOpBacc845Rl0kL875k9/7zZUAL0ciDkGHpumEAS/wKnFUWcMDSNqSC8KDf2O6thi8DrUt3df99JPIN9+EO7Zkm8RYMkquJPZCRxxRlM8StzjGgu/B90mXAPK6Vq18QxwhSYowKNYg97U+5D8H2PLvv8Zyp3Kl8GZu5Zo1MmfRImneoIHrC1rZMmWkRtUq5qfbgLBBsnavWlWqV65sFN11Y8fJju3bSekUWziWBHSIGjBggKmwpn94SVRH8gMphCGnkfA0SqPfSCNgw6jt9sIV1RjPkzaSdE0oYOzkYeKoiqMHkFRxJL/RtuLLhDhmUhBDFTW5kW6AghmIHN6Mgr/3aqMmpWTozPcZOTL9z+T8ebw7A+oauT3WkkKBOL2rCR3nInRPN5h148dH5DSu37BB5i5ZImOnT3e1MAdUqlhR2jXdx/x0E5u3bJGhEybItG2hYmu5g0XP+vHjJZSDNpfMeWwIUJNLCkji8ccfLxdddJH56UfS6CSObo8zr4O1gGItr5KmXIF7hIikF03AlTj6gThS1FGrVkrvdXifw+WOQXeEO7tAlNIljoRKvvoqnE+YpsLy0uiXpMX/pZBcz/vy/qia8+ebSSLlnSXfh8UmxVyg+avnm2P6ovFGzxfH4NvYs2fPxNXlAQKpC7nK+WKxXj9+goQ2ROba7la1qrRq3FgW/P23THB544EKuHHTJlf7k7MQ/Tl5sqxau1ZqxCh22/LvStkwLfMe4OmagudKSfYLcaQojvkwyFBLnkhe4EUzdCWOeQZKSkKljd0nhKdmTZm6fKrc8MsNclifw6Ttu22l+8fd5eIfL5b3J71f/HV0cQHpJhnTLhD7ntNOS/01+DTS0vDTPtv/nQy8P5/z889movxj/R/yxfQvkr/Ofh/7/VIFIXd80nKgppR0t50t02W/Y8qUKaZTTC6wcdYs2RKnTSam3C0aNpS5ixfLlCwoZPEAmes3fLj56QYgpCOnTpUVq1dJu332kV3jbFg3zZ8vmxa7b0bNBskaryvCxLFOnToSdKglT2QKmxc3Ekoc8wwMjRPmTqG4bNoko3fbJKd9c5pMWTZFTmx8otze8XY5ockJUrpU6Qji+PXxX8s9ne8Jm28T3ks3xE14m+rVVK0s3norbPj9+OMiEyaGf8e/33478etQOxo1Mp9HLsvgNYPly+lfJv88POAokuD7pYNdK4eJqoe93fDQm5YK6Q4AWDRovVi3JC0yU8SW1atlY5LORnvutpvs27BhTJXOL5i5YIH88++/0nbvplI1STrEhmnTXGmrGA3CkaNHj3ZVZfULEBAwXg9yXp9zXfSi0pZLVNo2Drx4HrQ4xgM3SEJsqzR+NfS77Fx+Z/nwqA9ll/KRk/4/67aTofJltqmX7NYYeOnmhqHkpRrehuRg2WMnfZubw78vvDDcnhBymEg9HDXKEOeUCw9Q41BK0t2F2ckYIo4npAdB54iSFAoUEvD5Q311W5EiRL2BjkgpeDXW2eaFCslZumKFKSzxExrssYdUq1xZqiQrxtuW77hh+nSpkG6nqgyALU+NGjWy0n+8EIrBUJiq+HiDkg3g65uNHul+30jssMMOnlQclTjmGUn7EW8zgp67+R9pWK1hMdIIqlWsFpHj2K5mO3lwfUWSRUz497+D/yv/1/P/pO/svvL9rO9l89bNcnj9w+X2DrfLui3r5JGhj8gv88KedSfts0quL7uvWBo3fNFwuaDvBfLm4W9K+5rtI3IHew45Qe4/cFc5bmCMPDSI4BtvyOcXdJBvZn4j01dMl1UbV0mdnevIGU3PkFObnipSu7aExo6Vbu8fJMs2h9/D5ki2272dvNXzLfP/KzeulJdHvyw//fWTLFu/TGreWVNOLD1azg9tNYqrBc97dNij0n9OfyklpeTgugfL2c3ODv+xzLahHqcXcb6BjyVJ0GrFE8a8efMMkXA7bL9p3jzZsjI9k93Fy5bJ6KlTpWm9elLf46FWiPHkv2bLHtVrSOWddkqJNFrQl7tszZpS1kUSQx4X5tf2egcds2bNMpumww47TIIMLRDcfn94MWSvxNHriuM2orNHuWoy5p+JMm35NGlcpXHyN4ZwOhbdh4c9bAjmFa2ukLFLx0qfqX2MgjlmyRipWammXNv6Wvlt/m/yVodfpdGcJXJMql8gXgUgv589Wz6eMlsa7tpQutXpJmVKlZFf5/0qDwx9QLbKVjm9bFmjbBxZ4Ujpu7mv7LTDTnJxi4sjyPC6zevk/B/OlyVrl8jJTU42xzrm5f/Ks63Gyd/DH5dbO9y67eNCck3/a2TUklHmeQ0qNzAE0hQKAatoepQ4WhsOJY5hRY8QtdvVsYRiN86enfbryHnEpof2gGXKlJa6u3u348ek2bPlr4ULjb0QxDFdELIu26GDuIlatWqZXFYKd4Ke38v9j+rIJjIXZuxeBfMhSnTz5s0D7eu40047aahakQFx3BZqPneX7nLF4pfk5K9Pln2r7yttdm8j+9fcX9rXai/lSscwRsaLzdGNpVqFavJy95fNTXha09Nkzqo58vb4tw3J+m+n/5rnnNTkJDn8pVbyeeW5qRPHeDc1v69XT97qebdUKLt9AjxjnzPksp8uk3cmvCOnr20oW3fYQZqVbyZDSg+RqhWqytENj454G543d9Vc+eToT2SvXfYyvzvlw6ulRsOD5O3JH8q5zc81ZHLA3AHy5+I/5Ya2N8j5+55vnnfq3qcatdRg6zbC6NGOLEyUFEolHQ8BACEqfP7cxsa58zLuQb33XnvJlq1bZcKMmVKmdBmpnYX0h10qVZIeHTtKmSyF6CjkgTQ2b9hA9sjw+LauXiObliyRci6SeDYIEyZMkL///tuYegcZduOIl2GQiSNkCfWVynvCtUEukFnmwW5CwU4i8ACSTg7b/t65VD1578j3jHJHdfVb49+SS3++VA795FAZMGdA8dcRAnf4Px3f+PiInVuL6i0kJCE5ofEJRb9jAWy+ZieZVyYN/6xEiuOFF0aQRkLVy9cvN6H0eavnyapp42VjvXrmb/F2lT/+9aMhyYToea15lNko+4fqyJbQFhmxeIR5Hmpp2VJlDVl0fh+IqoFN9PfoJITq0r59+0Dvri1QGtwOz6B0b5pXspZ3+9SrJ3vuvrv8myW/Oa495t/ZGAMz5s+XmfPnm3B6SRXRjbNmu+otiKrSsmVLVdu3CQmorl7tUZwrWLKI+hr08bDegz6O3pRfAoSkbdSsUrBkiexb/TB55uBnZNOWTTJl+RTpN6efvDvxXbnh1xukz9F9TEg44nUsaNsSa2tVivSBJEwNdq8UucPfaecasrLMjHCBSyrKxwUXiAze1svaLni87o03TGEMoeMXR79owuOEnZ1YPXW8lD/+HKO0ldoae7Gcs3KOIcpd/9d1+y8fpoDkR/O/y9aFd2MLVy+U6jtWlx3LRSp29XYJE1NZuTL806PmwFTQaTUl/H6T6WO83377uXo+Ns6bJ6HNJUtbgODt6+gos2nzZilXAkV7zbp1MmHWLGlev36JTcApgslWDubWNWtkM6qji2pgLqrn/WR6H/QNpBVUgk4cy5cvb+ZEr0GJo9eJI6FLEoUdPUzLlSlnwtU8CN9S/PLj7B/l8laXb38dnVnANpsR8gtjodjvq1eX0PLp4erqBB6QRfYZVE5PuSxMFMsOFZGlGPAZ0jh35Vy5qO9FUr9yfbmp3U0mpExYHXUQwrt19Uqp2KWLURtkeJzPCW2VTrU6FYWfZdw4kRtuEHnlVZEG9bcTw2TAo48crwzyvHLVp5aE8KCbfy9ZssSoW27mN9IZZdP8BVl5L7vAL1u5UkZMmiRt9t5bqtOLPcOOLv+sWGF+Zoqly5cb0ohHYzyfxkyAt6ObxJHiMKyo9tprr+QNEQoctFEMOqzi6EW1LZfwKnHUULXXiSOga0ycrifNqzU3P5euWxr5B3LE2LX9ldifrvhn1RShUvn1180/bRU3FctOLFjjWHix3Hn4YZETT9r+bxFTqb1x60Z5/pDn5ZS9T5Gue3aVTnt0kgpltoWvq1eXHY86KqHlClXYazevNa8zj8nrpNOMzdKp48nm37V2Ciup/Px77d+ydlOkdcHslduKHyg+qendIobp06d7MpclH8QRAu1mftfmpUuz7lEISauyyy7y55TJhkTmA/OWLDHkdf7SqLkgC9iy4l/Zstq99AGiDrQfxJJKoSDPuUGDBoGPwpQvX950E/IalDj6hDgOWzslZp4R6h0oprwRMqPf9Jw0O12goJQrK/L++ya8u8dOexhVksITJ/435X9J38pa5ZBL6cxz/GLa5+F/nHyKzF+yxCTF71h2R/O3aBxe73AZs3SMDJ4/eLtBeYsWxgQcMou1EOhSu4tsDm2OOK4tW7fIB5M+2O6HmWLbxlzDeAlu2BDoZHiLFStWSLVUzeczRLbUxuiFrk2TJrLrTjsb8rYix312FyxdKuNmzDBek9ZvMtvYtGC+uAXOHyFarn/QMXnyZBk4cKAEHVRUY9UUZJT3KHHUULUfiGPz5vJwvV9k3WdHSPe63U3od9PWTTJ6yWjjzVh7p9pyXOPj4vR1HizSLO2DCtvW3H677PzCC3LYXofJh5M+NN6IKIBY6uCnmAyd9+hsQtNX9b/KVG+jBn467VOpumy9LCUV8cwzjdLG5LBPtX3k4ykfyytjXpG6u9Q1FdYda3WU8/Y9z1RMX9XvKjm20bHSbMtIWderrkwddIfxdex7Yl+pUqGKKRpqvVtreWbkM8ZjknzPfn/1k9Wbti3gc+eKNHfkSXoINo8nyNWDFoTqMYN2C1vXro3bWrCkoKihbdOmhjhOmDlDDtivpeQC+EqOmT5d9qheXZrT9cklbF68WEKNGkkpl4yZKY5RxTE8jrxowZJr0FUIBDl1oXyidsR5hCqOeQYhmqRo00ZufGeOdKjexiiMjw9/3DzG/z3eVBG/f+T7MY3BpW1bkYXpqyubQpul9xMnibz0ksjgwXJbx9uMmfYnUz+R50c9bwptHjzgwaTvA8F9qttThnA+OeJJ8/qTduggZ344JfyE2nvIt8u+lc8WfSaXtbxMuuzZRd6a8JbcMvAW6T2mt3lKxbIV5e2ebxsCOXzBH/LIQVvkjXqLTdHMla2ulJ3K71SkbhIS71W/l3w781t5fuTzstuOu8mDB247TnJE0+3bnSMocdyOFi1auGrJstnllpNlt5HHNns3Tfu1FbGmatDA/EwHK1atkprVqsl+kDoXiyqwLtqyzW/UDZCiQDW9FxWWXILIAzmfQW/DOHHixJz1qvcqdvDomlAq5KbPgiIupkyZIhdffLG88MILpoI0IQjPQnqGDBHp1Cn1D1myRIQWdo89JnLddSm/DNJGJfSVw8vLZZ8vCn/uXmEPxRKBQh0SvzmmwYOl9/jXzOecVuc0ueOQbUbdifD88+HCmHnzRNIhF0OHiuy/v8jw4SLt2okXd9Yor/vss49nJ4pcwFrwuJnXtHbUKNmyPDfh0I2bNsnYGdNln73qlbhKOhacVdxM47moxC1fZ0/ZoXEKDQgyAK3V5s+fL/Xq1UstElPAeb5Dhw6VQw89NHlnsQLGn3/+aQh0p3TWvALDX3/9Jc8995wMHz5cXnvttZz426YCVRx9Eqo24WOITzqgMvW440Reey2+32IMoP6h5r3YfqP07rGTyMEHU/YrJcKsWeH34Xt8/nkRaeyxYw85vd7pyV/P8b/6qsixx6ZHGsGff4ZzPvfdV7wIQjGtWrUKNGkEkOcRI8K+nG4gtNldxazY54VCxmJn2MSJsi4FWxGIIIUt/EyG5atWyS8jR8o/275Pruxb3FRs8azD8DnIpBGoFc32aBzdhIKM8hqqVsRCSo3cGTwHHCDyY9i7MC1ccgmaf1g1TANF5PHg8tL7oPJhe5933kmLgBrw/Hff3W4PNGCA9F7yZVjRbHWlIY0p5bD88YfI+PHh75Mu+vYNK7UeLT7BcsKLjezz0T3HTRPoLRRIbc1dgGWH8uWlY/N9DakbNnGCrHd0coqFtevXy9hp08zPRMBwnDzKnXfcMauWO6lg69p1Jk/ULVAcg+IWZDAfHnTQQaZrSNCJY9DTFsorcVSUCL16ifTvTy+m9F53yCEiJMyj1qWJIvLYrZz0vn5/kXPPFenZU+Snn5ITSP7+888iRxwhcs45IsccY5S/3v/+UEQaeX+6paTk2YdqSpeZQw9N70uwCHMcnD+PAv86QhFBByF78tzcwpY8dOOoUL68dGjWTLZs2SrDJ04scd7aqrVrZfikSVKpQgVpt88+eent7OZ5nD17tknjCbqYwH0Q9L7dkCY9B+XFi1Di6BcceWSYNA6I0V4wEVA0L75Y5OOPw7mBmZLHBgul94fXhP0kDztMZJ99RK66SuT//k9k2DCRsWPDP1El+X2zZiI9eogsWCDSp49RHXv/9VEEabQ2NEkXU97jo4/C3yPdis5ffw13z/EwceQcBD1MjcktYSk3LYm25slfcccKFaRj8+ami0tKEYYEmDBzpiGj7Zs1M4U4+cBWF4kj1z/oIVprybOAeS/AIG2hS5cuEmSU9yhxVDsevwCihuL21VdhEpkOLrtM5LnnRK64QuTLL7e3Bkz15S0vMz8hffLOlXLZin1E3norrOS9+GLxFzRpEi5GefllkYMOMp9XVHCzjTQCwrP9+/c3nRISevdBRFGiLnd0xkkVnC/amZEn6lGwUJLfFWQQkqIQwE3i6KaBdTJQHGMLZMhj3L1q1YyIX6smTaR0qVIlam3oZcWRDZQSx3CBDIUhiZojKAof5Tya75v27HPzzTen/SHk+DxGZa8ic0D2zjhD5IUXRJ56KtyKMFXQAg2Cd8IJYfXv5JPT/vgI8gj5e/vt8B/wxJs9m55h4VxMyG1Uy7VYpBHY/JWElkSffWaKaeSTT0SqVEnvoFFoP/ggTJw93PuVhbJKut+twABppIrULWzdsEFCSXIMc4ENGzca1XDeksXSrmlkqJn/33XnnYuF59Zvew19sVEb842tLpqbs3EgAoECbRdNqu1HjRpliBS/o5AsOv+PJgJYtzCnsN6Q/oJLAf9vN6jO17Rr187TXUmiCXQq5+Cff/6RP/74IyJn/MADDywaT3PmzDEFaER68EvF+qqkCribWLRokYwfP14OOeSQouNM5TzMnTvXtHB15pDjFUxalN/GQunSpYutj5wTzg1en+TCxkvvSXS9SzoW0iaOwwhHpomgN2zPGi66SOShh8Jh5/POS++1xx8fJo6od927i2TgyB9BHu2/IYm28CUG4pHGlIgjpPTKK8OV1CeemPbxGpLMe3DePAzuj5T8PBUZI+QRQ2UKZshNHD5povw5ZYq0a9q0aMLeqWJF6URXpCiiOWzCBNmydats9YhzGn6OtGws5YIagvLOIk/agiWOY8eONT2s69SpIwsXLpTRo0cXC2Hy3LZt25rXQzx///13mTdvnnkN4P5ikfULGBNOp7xUzoGzsCYaECZyR7t27WpIKes45AHrI6+C7w85YizYeySV88Df7HUHv/zyi+yJBdw2+G0slIriT7Vq1ZJGjRrJoEGD4r4m0fXOxlhIe7X63/+St5rLF9iFvPHGG/Ljjz/KqlWrpGHDhnLRRReZnUYyLF261HgqUqTAxNO6dWu5+uqrY4YKvvnmG/noo48M66fLxUknnSQnZkJs0kX9+uH8Qgpd0iWO1geR3MObbhJ5882MDiEmecyANAJrtRA3AfqWW8L5iailmWw+OE+oWA0bipdxMDZFAQdFEagEqAtuYOuG/KuNFlV32cWojRS5jJo6VVoTfo6x28eWh+ds3rLF5EimawzuJlBv3SCOVNUfgIPENqC6UWm9P6kv2xbNcePGGeXJqRI5q/FtcYmfnQogC3Z+TPUcJAIkC2N9m0sNSaAoz8vE0a4LdhORyXlYvny5eZ2bTQVyTRxTacma6HpnYyykTRxr1qwpXsXDDz9sdhcnn3yy2WF8//33csstt8izzz6b0GSbCebaa681A/Css84yO5KPP/7YEMc333wzYlL68ssv5cknnzQ7llNPPdXsgHh/5PAzzzzT/S+JHc1JJ4ngd5eumTUk+IknwkUmHTuKXHqpa+QxGWkECb3nX389XElNnmTt2ukf5MiRIuzIPLzRUWwHyoKbvQhCm7xDHEG1ypWl7d57y6yFC42SWHqbzc6QsWOl8377yS6VKpkqbMLUkEY3DMRLgq0bN0ppl8J7jAMeEEDmVRY45+JJWgPjJR5ZgCiwOHbo0CEiuvHbb7+Z92UNo/DCy5EwSJEtGkznHLCW0eea56K6WTLAc51m4vb1Xob9vnZeyGQsoKTBBZwbM7+NhVIZHFui652NsZA2cbzkkkuMxMmusD4KmIfaE/Xr108uv/xyOf30sKH04YcfLuedd568/PLL5hEPX3zxhQlrvPLKKyYvBnTs2NG8FoWV72wnpNdff9042d9///3md0cffbS5wd955x055phj3PfewtC7aVORu+4S+e679F9/4YUiY8aEC2XYBBAGzjJ5TIU0AvKQjjjiiOKK49dfh0ktx5ghuTXnhyIdwvMeByEHG34JKpjM3QzXeyG/MRo1qlQxDwBBdBJnFou9atUyXo08vAY3z+d3330n++67r7knMhlHhN4I5e26LdeavMkePXoY0kHuJB1JZsyYYZ7jVdTOYLOMwEGeMOocJIvuM1TlBrXABqWSynTyPC38OBZKeZDUpp0ZC3mi9c35559vCNqLL74oY8aMcVUtSAW//vqrISCQNwsGR69evWTChAmyePHiuK9FpWzatGkRaQRMWm3atJEBDvubkSNHGpPi4yBvDhx//PGGsZNX4zogWffcI/L99yKZfB6D8JlnwoTqlFOIu2d8KEVWPaNfLOotnSppdOb2RdwYkGGKdzjHVIJnctPQYvDbb8PnyQe5g6RVMIkFGWy+3EzUJyfPywscSuPkv2ab87BwW3eW2jVqGOXRiyDP0U1Ytc3a8zjXl2jFxEkaKQ5BRWqAd+02MK5sWA5SxQZt2bJl4nVPU8Ky6ZwD5lKbF8prIIz2e0arSvHOoZcAESYsbS1p0hkLANKIkOMUc/w4FjJBouudjbGQ9qr6f//3f+aCIPUOHjxY+vTpI5988onJKcFWBSWSEEGufemI0SNJR0vWlgxSQRQrz4EJityqI2NY3PBach6R/0m65jMAJNMJ+kcyIKdOnSqHkYMYA1T9UfXm7EFpJwjIqAWD2SZ4QyiiYcLmJ58sq++7T7b85z8R9jq8jteT6xktPTOpcG646VZSFfnSS2FzbIpm3nhDdj7rLPMdCNdHu/Vzw9odWnTe0FkNzzI/IYuvjn1VNm3dJBc1vch0hOF7kawNoed4OC4n+CxCCVTGmQpClMbzzzd5nKV695ZdtimRK1euLLYx4bvwndhZR9t3lL/jDqnYvLlsOekkWR2jxZxNPeDcR7e0sueQ9+S9Y53DeNeGewASHOsccmMyAcY6h/zbkmfnWLBg4uPa8Lxogsl14frwebbXswWvsZNm2uewfHlzzJwfzpMTHKut5OM8RPtwJjqH8cY3x8fx257Lic5h0vEdw6+x3LbrTFeW6JZ+VCpTtMLvo7u2mHO4TfFbue34nKCgxYzvDRtMb2oneE/emxxFWg8WO4fb5qq1GzZIzWrVTGh63IwZsmL1atmjenXzd5RICmQivkvZssYb0pzDGHl8lbdV1a7eVljgBK/j9RxrdBtE7IEIiZtzGDWWAOfBzBHr1sn6lf9K+X93SmmO4PzYSt9Y4zt6juAn15Dn8p7cr+TAUjRDXjnjggfPseOQxZ+5mgpRIhm81o5v/t9uTPjJPG5dDGKNby/MERR98HrWVMDn2WIfChvsObDnk/ucc8ex2r+xrqFccoyEvglhQ6o5p1TmkivHZ3h1juBz+QznezNOqJquW7euUQqjz4NzjiAKyfe3f+P97IP3tGOB8cdzEs2zicZ36STzbKI1MNH8bc9hJooj1xt+Zj2CuX+s8pzob6kiIzmGDyG/jwcnfMiQISbchjpHXiEHQ4Ub1U4MfBsycBOQslhJo/Z3ELdY4EJzMZO9loHKZzAAoq1TGOhcYCcxjMZXX30lb1sLGwewFnAavTLQUToZZNzo0SA0jgn26LPPluW33Sby6KMi2yYXCnogz7wfScNOUMTD7o2bvOh9L7ggXHV87rlyOGGNxx+Pqc42b97c7OApIELaj55gL+t6WRFpLCNlpMGSBjJwSfgzunXrZm4qSDUkMfq1jJ/lCxfKiGuuCaufJMZfdJFUGD3ahBQAIZfoycV6P86aNctsCorw++9St18/afn554YERJ9DbnJUaKeC7ATjlvE9f/58cy6cYOPBpoibPNa1IezOpMS551w5gd0B+UacW665E0yAfC6I9b4UjDCBYwrMcTnRpEkTs3EhCRy1xQleY4tNUMOjJy1COIxlPt9pXwE4Vo6ZCTb6mPiOfFfAeIheIClGY4HienPMTjBpYX/BsTjfl+vLRG6JI1GM6PupZcuW5j6EPPB3JxgLjAleH+scdqlTR9iGTP7rL1kc9b6N69aVRnvuKctWrpSRUce70447SpdtrgF/jB9fjESQjwhRmzl/vszBHN95DveoJfvUq2/I3R9R9yNzxqHbivZGTpksa9auk6lz5si4GdOleuXKRSR07uJFMn1upHF/rerVjZ8jxA+lMhpHbJsPxk2fLiuirs1+jRsbJRNVc2LUNa+2667hLjdbt8Z83+7t20v50qVl0l+zZfniRVKuRo2U5wjSmwDrRDSJiJ4jIDUQQf6fECL56USUuG+Yf/kcrjH3AtEfxhrzK2MY4kBxpDne7t3N/cpY4XMZV4wP5mpbgGNzAr02R/C5TnLJmorYANFhPrTngPmP9ZXiTLwff/rpJ3Pf8D25t61tDXMEx/bqtg5inAOiajzXq3MEiiupYhy3VVJZFyE6zPm8jvveeR4YS5ZU8n0QJfgb4Lmk12HbxDm0Y8FWaLPeQOIgnPzbCcQiciE5X8OjunwxdvlcACGL3hAw9rkHOGaO3QmuI/cO5ye6ShoCTLpdNHGkroIxAvFjzudccw0Z55wrzivEm2tu35MNlU39SPS3VFEqlMUYM1+Ek8oB8YVYzLgJOTEMQG5Wt/K4TjvtNPPejz/+eMTvIVH87aqrrpJTCM1GgQtAMc1ll10mZ+CT6MC3334rjz76qKnUZtA88sgjJo+SmzMaVFaziD+EXU6KiuMDDzwgTz/9dER+RUqKIzvhVatkC7mcDGIsknbdNXXF0anIMIm/9prsfNddUrp+fVnz2muyOcoSJJma8N6M94ziWK50uSLF8bym5yXdbTE+5nzxhXTq3VvWckMRWiansXTpiB1ryjthSHDHjlK+bVup+M03ZgH0opoQfQ5//vlns1lgUguq4pjOOcxIcZw/X7YsWuxJxZH3hTAuXPq37EgYacN66dGho6cVxzL160l5Rx5eNhVHiB9zKcQkFUUm2+PbC3MExIbPJp8+lXNYiHMERBjPRQpRnQ0S3JojvKo43nnnnYYckyII4fMCspoAxkmAIPLg5LFztCFtilN69+5t8gndgL2o0bAXKl7o3P4+ldfyM17TdZ6bKDwPq+cRDQaVs2rbORhj/b7odQzUV14J2+s88EC4AnkbuHHitSpiMBZ7X2xvUDLPPlsqYQ1DYQm/i/o+3NDRr43OabT/3qHCDhE5jtzQEXkUGzZI6d69pS5V3i1aSGWqoPkuMZCofzE3XVG3EWvfw3kpVcrcrAnPocMoNxpcy3jXM9m1SWSREesccr/YY0n0vom6yzApJnptyucwCsnOYaJisHTOITt8Jlb7u0TnMO3xjaK5aLFs2Uac4gFCZUlXLCTKN8QqJ55dDoQs0fvSd7pc2XJyQMuWRk2E0Nn3gnjGM/025zDB+0Jq46F8uXLmEfccJjpeOvxUrizlYpznWOPbiUR/s3PEUUcdZd7HWSyVr/GdrzmCz403loM0R3CeeO9Y3yvbc0Qq5zDZ+N4lwTkstgameG3yXT8SC65VDnBxkLF5XHHFFUaihUC6BWToaOkfWJUvFmmzF5oBFivMHP1aPoPdFUqZM1wN6WSnkYq/UlbBjp+OPHRGIVcx3VaETpALSrEN1eIof3So4X1p8xfHgilWIUxSqx7Ceb17m8dOS5fKtJNOkr1ef112KGk1+g8/hH0b8Xx0mL36AX72GMsWUOQJTzqLGrKJUuW92boLRRFiSIgYtXP01KnSpG5ds1iMnT7deD7W8eD4KOViBxuvF23kAhAUN9tv+gGWMHmxqjjoSJs4Eq5NBC4yOwHMt4nt210BYQc3zUYJ95IDE20GSr6C/Xu8XQ2LVXSehX0tuSx2B0K4GvBcG0Kw/0aKt3/PKfBkJDcQD0lyi0qy8KJA3Hdf+L2oaH7yScwxw9XXV19NYooJIyerni5GHltcEvadxIAcX0U+59xzZcMll0j5XXeVsiW1GyGHhTQDcmoguz4DOTjsNkn+DypseMktlPZAq75oTPnrL5m7ZIkc1Lq1UTsJlS/8+2+pz5xToYJRKsfPmCFlSpeWPRz5hIVMHNmEk6vFXJpI2Sl0kN6lCCPoxDFUCIojxS+pXuznn39ebr311py09yE5lW4uJElbH0cWIjzBmjVrVqTqkNNIToUzGZTjw8MRAmgrpknahYhSAGRBHhoKJSbgTuLIv9kdOn+XM0Dk3n03bAaOxc6QIen1sY4F8ihQ7h58MNxhBsL3/vvESMzn9O5ZWV6sMVWurH+WXLbvxZGvJR9o4UK5bObuIn/vHSaPDz4kl30yN9zHGiKKl+Suuwr76RJvJchj4XujAL/3XhGx9RNImmY8Bpk42t68tjjGTwpZJpg+b54pqGlar54hjbHQrH59k6c7Zvp0s8Gl8torcOt8MjeTtuCW8qzwD1hTKfaM21ksIAgVAnGkS0oioLyRvEt+I8UlGGVTKey2wSbkkNZtVI1RjcVn/vDDD6YCE/Jq8eCDDxqrA2cVGD6MtBHkeRTSMFDpHEM4mn87F7cLL7zQFLTcddddRRV7JHNffPHFCfMbXAVV6599JkIrJvoyZ4tA8b433CBy7bWYXYr88Yf0Xtk3TBo/WyyXffUfEflPWEEkT4XkaUeu6GW1aomc3UhepEDx9NPksmMeDvtQbgPEngRoZ9VcWiDhGnP2KVPCYXafEi+IUnTyeBAXCSZIFKd4uUklQSkPteubuWC+TJszx1Rzoy4mTPdp2NCMjdHTpkknrGkS5NwVAnG0BRi5tnPzGlijuB9wyggqyI0M8vcvKOJIeXsqgMThjXjppZeakvo77rhD3Mbtt99uSEjfvn1NlRe7Vqqikx0zoWgIMb2q6QBje1VTiR1tJQTJJJGV70TOJp5hPI/K7LyClor/938iKKSEtTD5zpZyA9nr3l16V58mL45eHg5PH3q0yIV/kpwWVv2Y8JnsyU8iJxR7mdq1xQSOt4W1ZXyDiLA26gKqLrZNaVs2cTPRcxsl9IMP8GoRv4KNSryiq6CAYgA3O1GV9kj3FXIasddpuOeexgIoGSCP+zVqJFWXLvGMGXjpihWklEsqkBLHMCgUc2MD5ScgLLCRTLUfd6FiqwdFBVfbapDniAVPtOeaW2CyoRCHRzw8R+5eDEAA7yO/LwXgpWj8FL0GyCtEju/PzUaoOUvkMWZOY4ptseIVzNgQRNqkCdJI5ffTT4eLeByqsB9hOyIEnTjSZs4tlCpbVkrvWFG2rs1vf14KYQ5s2TJmdTf2PY3q7Gl+OkGYuu7u4QK1v1esMP+maCZfKO2i6slm0po0BxnMB3mLYHkEGJ6TPharOUdQsGXLlmJ2UF6A63cnOQpuVlMrokAVNArgjTfCyKhmKnHYOp02gumQR7s4pHVjsPtCveZ74dl55ZXid2DOrsCGc0VC24+SovROO+eNOFL0snjZMqMexrMEglQ2rlM34fvMWrhQlq9cKR2aN5dd8xS2dpM4kucb3ZkriIBAB111ZV0Ien7jRhcLBj1NHPniQd895hzkJUIW+YmxNiHsDC0uskEa45HHi7cV1qSsOGIUe9554cpsKr75fgUAt/N//QKaBhClcMudoMxOlWTzEsk5IIzkKNJGMFHhD0bhdHrZdeedTUV1LLRu0sS0JuTRsXnzvISvy5TUOisByCuP7swVxNAkIdqgE0fWhaBzh41BJY6EqSlUUeQY110nQuU41jqYetPTOk0/uGySxnjkcd8q+6Y2OeDReeyx9GgU6dNH5MQTpZB21igMQc/lITQXqytGtlAmB61Po0FoedTUqbJ71apGbUxEHOnIAiG0bQxjAULZbp99ZNjECTJ8EuRx34RG31lHKZEyLtrkEJ6EOAb5XmCMkPcddD9L5kUljhvFiyjt5q7prbfeMv1HuQkUseFq/gKm4L/+Sn/DcLHKzz/nlTRa8H68L+8/fufxyQ2w+/fHC0mEXql8nwIijQD7EVpreTGXJZewvcvdQunKlaVUudwtRLT8+3PKZKm+a2Vp1bhx1myGsO9pv08z2aXSTvC4nALSWCoTB4QUFSaK5TCCDzIYJxQLBl1xhEMocdwogTAA52LTRYWkVnKWyHGM1SNaIXFbHWYVmHbTz/rcc0V69Ahb6+ClmGA36yZpjKU8YjdweavLY4emb789XASDakrI3aVe5/mEXSBIiE/U7ioIxHHmzJnmnsjInimFBblM1aqyeXFu4tW0Emy6Vz2ps9tupqAlm6BdYHu6PW0LcfOI15owmyjrouWV7R8cZONvwLo5H4/Ppk0DneO3H04hAcfGQiGOqRqAM/H36NFDrrzyykAvhsmQExsWbD9++ils5I2nZd++4c4wEMkY2Bra6ipptOD9Z82cJUuWxljI+/UTueYakRkzRJ56Kkx4fWjunQpsMQjh6iDfKxAGQpScBzeIIyhbrZrrxHHlmjWyYeNGqVGliuwVp11nNjFuxgxZuWa17N9832IV2dlGmTitW7MB1GYIdqL+0EEA54FuUngTK4KNjYVCHJMZgLOr58avU6dO4H2oPKE4WkC6IF+QRUyzDzss3KKPyuSo9lZXtIpvZ5Rt9KrWK9LDccIEkVtuEfnuOxE68dCq0EWbFq8pjkEGhr+HHHKIq58BcSxVprSEtrjjjbZq7VoZNnGiyTuEOKYDSNOOFSukrU7uXbeu/DF+vPlcCmZQI90AdkZlXCR1ECbGQLbVWb9WVAe91R5pC3CJvLTy9Qg2FgpxTNUAXOHRgcEu9rffRD7/PKw+Eg6ggIZiGvII89RqzhS9sCmhfSKtCT/5JJzLGIDJkw0Wi2XONhEeh1uhakB+XtkaNWTTosVZf2+KWyhaIWTcNgNLmZ133FEOap3+PYi9D/Y8QyeMNwUzHZo1j9vGsCQol6DLTTZAMUiQFXcL5sOg5zeC5cuXu2bN5Rds9ChxDPbWzgPIC1mAjNHfGXWP/EEKTiieoYgJwparwbpxo+w2cKA0ufjiMGmlCIaw9MSJIiedFAjSaHHEEUdI3bqJPfyCgGnTpskvtLd0EW4QoHUbNhjFr1wZClf2cYW4JQIKJwUza9dvkKXLl2f/A0qXknIuh9333ntvadKkiQQdShzDUC9LMcTRrU10SaDEMc/Ia6s5UglsHuGnn4bD2RQyYUh9xhlhErl6dXY/k/fjfXn/GjWk/i23hFsqYbFD1TTh9ABOFkEPz1mQtsCCYQsl3LLlyXYLQgq8rPKXaZ4huZE/Dx9ufmYCPB0Pat1a9thmKJ/NHrdlq9dwrT81WLNmjbnuClzTdpc9XFZ3/bAu4jIRdOK4YcMGTxLHYNe6ewCeCE+ijqBA8hg/PkwiCWV/+GGYXJKeQHV2hw5hZRJlLBUT4FWrRObMEfnzz3Bl97BhIqNHhxVNQuTXXy+bjjlGKpHDGPB8WFwI2F0GvZKwWrVqppJ08eLFrrZcK1+3jqyfPKXE77Nx0yaTiwZpJL+wJIDoMR+UhPDZ/Ma/Fi2SJcuXS9u9987KpqR8neR9tUuCKVOmyOrVq6Vr164SdGjkYXu+t4aqNypxVPgghwESx+Puu8MKIEUqQ4eGPSBfDJt2G5Akj7E7Hozc3NhG4EPIDb9okciCBWHiaEEICuJ51lkivXqJNGhgfu29WyJ/44CcnqADkkMLxiVLlriaFF+2Vi0pPWdOiVoQbtq82YSnK+xQXto1DVvjeAWErifNnm3Mx+k2UxLyWLZ6NVdNvyHKXO/69etL0EH05e+//zatF4PsYYjS2K5du8D3696giqMiFtbRV9qrgNxddVX4ATBnHjuW9g5hYjh/vsjixWEFkZA7Ex2DnHxFQi0QS6yAWrQgBhk3RDVx4kRp3rx5oBPjmSDnQGS2bg182JpQ3aRJk1ztVYtKWL5ePVk/cVJGr8c3kS4v6zdulJYerPqsVrmyURv/nDJFxk6fbo4x0yrd8i4TOjZMKK1JGwEEAKiuQ4cOlQMOOMCQx6AC0lyrVi0JOtasWePJDkJKHPMMTxPHaKA6uNAFaNGiRUZtCLqHIcrLqlWrAm+ATNMA7LzctiMpu/vuUnr2X7J17dq0XgehHTFpkqxZv146NGtmqqG9COyA6FiD6rjTjjtKIzZxaYIKdDd7UwPSEnAWCPq4B7ZzUtCVNroHcS6CrkKvXr3ak+tisKUND2BtmotWoUE9DCVioXCz5Z5fgOIKaXQ7/5fP2GHv9Kt4//73X1PAQs/oeD2lM0GlihVl/xYtzM9soWa1atKuadOMjMjxu9yhUUPJBVCXgu5bCCgKwwQ/yGFqu5mgi1TQsVqJoyKeFB1kMEESjgw6ceQcdOzYUcN120DO248//uh6pW3ZKlWkXK3USJUtWtm9alVTvVwly0pc2TJlzHvyM9vKI/ZA+EzOIL0kRZRv0EBK5yBMts8++wS+KMyCjaMqr2pJZOcbiKMXQ9VKHPMMX4WqXQKVc3oeRHbbbbfAT5YWVapUMQrU3LlzXf+sHRo1Smo1wyQ+eto0mbkgTLzcaO1HvuSk2bPMTzewbOVKmfrXXzJt7pykzy2zy85SLoPQdrr4559/TOhfsX0jHeTcRgs2jEGvqF6/fr2xJVLFUREzVJ1NvzU/AtPfmjno6euHMNXYsWMDPx4AlYR42VEw5Pb5oJvMDk3iF7jw+RSYLPrnH6lUwb3dP/2tZy9YaH66gTq77y5N9tpLps+dl1B5NCHqpk1dDx3jJPDHH3/IX3/95ern+AkdOnQIfF6fjcR5kTDlEqu3eSh78TwoccwzWJSCrrZRDIF/X9BBeIZFNOjpCxZ77bWX2VhhT+I2yu22m/F2jIUJM2fKgqVLpWWjRiZM7Wc0rF1bGtXZ0yiPsxcujPmcHfbe29We1BZWTeb+V4RNr3XTGAaWXEFfE1YrcVSkMkCCCogzhCnok6bNbdICme3has4Jlea5QPmGDaVMlUjbKMjV3MWLpUWjRkUdWfyOxnXqSsM995RKMUKB5WrXdr21oAX3PEUxVFQrRKZPny4DBgzI92F4AuS8Bj3fe7USR0Ui5Gph9PL3J0Qb9JZjLKAkQitx3I4uXbpIg21m8W6D0GzF5s2ldIXteaZ77rabtN57b/OzkNCkbl1TNMNmbcW2BarMrpVlh8aNclb8hLKOqqwIg/t+pxwovX6IvGjURQxxZE3wYoW9EkcPIOiKI/YTQCeLsOroZp9mvwEyZ7tp5OTzIO8tW8pfS5eaKmQqnLG0yQVoF1i3Zs2itoG5wPylS+X3ceNkybp1UrFFCymVI/N5XARorRf0cGQ0cQy6fyOYP3++/PLLL4GPQK1atcqzGwkljnkGO4qgE0dUNgiCEkcxxtcUhSgic+EoosjV+Ji9eLFMLyWyZFVuCXzFHXaQ5g0amJ+5Qu0aNWSP2nvIxE0bZWkOW15CGFu2bJmzz/M6iLagtKkVT1hAQEwIuq/n6tWrlTgqYoP8haATRwyfOQ9KHMVUl6PEKCLJNDZFU6ZMyUne3YQJE2TvFi2k+ZFHSqlyuQsTYUvz7+rVObWnKVNpR9n/1FOlZu3aMnz4cNeVXVSk8ePHBz49Jxr2fChx3E4cg47Vq1fLzi53bcoUShw9oLbpJBruTxx03y5n/peGqyM3Fo0bNzYhLDfvlXnz5plcW+xQMKUus8suUrF1GyldMTfjcvW6dTJk7FjzMxcoU3kXqdimjZStWFHatm1rVEDOsZtYuHChzJo1y/WuQH6sIu7Zs6cnCyFyDSWOYajiqIgLBsaKFSsk6GjevHnOiiC8DhQvFlfFdqDCsslyU3VE1YQ0MhYtyuxUSSq2bWtIViGh7G67ScXWraX0topmyHn79u2LOriQV+qG2sj1gySpyXVs79KggzHC2PMqYcoVQhStrVjhWQVaiWOewcCgobsibMsT9IRo20EG1VGxHRAbCF3t2rVdKUpg3EFo9t1332K5VZArSFa5mgVgD1JKpHy9elJx3+bFCmEoWOG7L1++XPr375911Zs0AFSUpk2bZvV9/Q5yG3/++WddB7YVw/Xo0SPw6TqrV682Bvle3WApcfQAccTkOOgm4EyaTJ4atg+H7UmWV1ueSOD5xwNka4OxdOlSGTRokMyePTvh8yBZFZo1kwrNm+U07zGbIOS+Y+vWskODxJ1JUHtQvyhIylb+NSrStGnTpF69erLrrpFemUEHY5D5X8OzCgu7ifCq64ASxzzDStFB321aGwrN7ROzy8S7S1XH2Bg5cmRWQtbccxSEVK9ePWU/wXK77y47duggZatWETfUFqv6ZRvl9qglO7ZvL2VSIG2Qxk6dOhnHh99//91sbLOhGOPJqWpjcSxevNiQae1TLzJp0iSzYQk6li1bZuYBmiB4EUocPUKYgk4cIUrsuFVlCy+y5NqR06coDioN6bJRkk0G+UNDhw41E3O7du3MOU8VpXfYQSq2aiUVMAvPYuHMLpUqyWEdO5qf2UKZXXaWHdu0lgr0nk7DSBjSuP/++xsiC1EvCQh9UwxD8Zvm8UUC5RzFMehdUpz3JWMu6Pjnn38MN/Ci+TdQ4phnMEFDmIJOHAE3ihLHMFBmtIdvbDRs2NCEU8eMGZNxyJoKasYbBSGZLlTldt9NduzYUXZo1NBz4Wu63xBW37Fdu5RUxliA6KE8tmrVKuPjIE9r2LBhMnHixIzfo5BhSTV5zYpwvrFXC0JyiWXLlnk2TA2UOHokNMkOI+hgwgh6rmf0JKqh++JAHcQ8GnVixowZab3WVgtTaNOxY8cS7+jJfSxft65U6tRJdmjSWErvmLlKvGrtWvlt9GjzsyQKoyGM++9vwuolBao3JH3z5s3GqggimA7wbITc77333iU+lkKd+7t166ZkaVtxJCRaz4UY4ujVwhjgrW1yQKHEcbuShF+fIgwUNRbtNm3a5PtQPAdCzIyVdBRH/OEIT0M62c1nMwxEGLj8nnuax+a//5ZNCxfKZu7praG0SO3qtWvTtsJB7SxbvbqU22MPKePSokvlLx6MkHVUyFRCzhQc4QvJ+FWP1vjwqslzrmGjTUEnjqFQyBBHa43lRShx9ABYxKg4DDrSyTMLAsh7ws+RiSTo7bdiwVlokewcoWZQ6EFY2m2POEgcj9CWLYY8bl66VLYsWy6hLJpeE4ouU626lK1RXcpUqeL6+CCdBsI4ZMgQQ77Jf0xEvCGa+JGSq+uGhVIhgDFJGB9ireQxbEPWtWvXwG8yVm+z4vFyqFqJo0cUR2vJE/SCCCrqUJM0tBWeSKdOnWryoLwctsg3ULbIWezcuXPMzQfWRpBGyBXkJ1fVq6XKlJFyu+1mHmDrunWyZeUq2bpqpWxdvVq2btgooY0bJLRpc/z3KF9eSpUvJ6UrVJDSO+1kutmU5rHNuDuXICcUwsi5pBqdUH+8zR7nmOsRdPUoWTU19mNBJ0oWjCUdL1JU7+DlOV+JowdgBwgDJui7cxZ37aQTBhYdFE9hy+PlScQL5wl1i3y6WOGdUaNGmf7PBxxwQF4X6dIVK5qH7B5ZCIEyiRq5efly2WHDeqnUvp1UqlpVSpUrV8yk2wvnGsLIZiYWaSTMDomnv7hXrUS8Antfa6V5GH/++acZN0EvFPrnn388bcUDvDUrBRRWktbK6vDCpMQxDCYPOijowpJ8zLRo0cJ0JpkzZ06xv0MmURq92gcYZRJFcafq1aVjly7mJ5Y/XiONFpAd8pEBVjLOnEyqpymiUSP/xGAj8/fff6sNjyMqsGDBAnNego5ly5YZ5dWrVjzAmzNTwEBYhxwiLZAJL0rkd2SrY4Xfsc8++xQt0or4gGBj4g1pYUGmChgFkp/cW37ofcsGoWbNmr7ZKNgcvdGjR5scU7w1ycmlbaP1p1XEBoQbkqTE0T/h2VxhmccrqoF3KW3AQPcKJpOgA3kepQ0S7YfFPle7cRQceikr4gPVkRxhCg0gNFgZQSj9QmIoKEEx5Zj90EWEc01hByFG8vWwUiE3mbaCisSAMJI6oXNcGMz3bPD8MO7dBjyAojIvQxVHjwClYdGiRRJ0IM/TmoxcF0UYM2fONN070rVpCRrYcKDOktOIdUyTJk18QxrtBmHy5Mnmp19A73AMwmkBiYKmRW2pj1Wvq0q5hNcNr3OFTZs2mYgJfMDLUOLooQmYXReqQ9BBfoda82wHChThe8iQIj4Il6J+cR+R9wiZ0bxhd8G4pMPRcccdZ4gQqQGKxGBzwDhVRFprpdovvpCxePFiM4/BB7wMXZ09ArvDYOAEHdaoGYsihZhwFrvxWIUfikgVh/NEG0HbjYNxxA5ekX0wHvv162fykQlPEykgYqDkMT6IGnDecEtQRIbu2ewFHQsXLjSiidfTkpQ4egQMFMyJVVUKFwlgVaFq0XawG4cAQaoVkWCHbslhgwYNjJ0H91KHDh1MzizeoFjEKLJ3vidNmmQ6G6E2kpsGWPAItf36669pt4IMCpjXiCqpurYddBfS+zMM0tWYv7xcUQ2UOHoELHQMGM1zFLMbp8BBq8y3g9CF5n3GBtXTkMNoUs3kC3lkkfaDsT4bJq6zl6uqyWMkzEoFNf2+KUhydq3h2PGixZYHY3ZFJLCMYjPjp9zbXORwQ6gVYoQjr+c3AiWOHgKLhiqOYRByVOK4Hag5FCFYdUcRBsbfEBS8GmOdG84b5IbxhFKGEuZVrzh8Jtu1a+dZv0mb00hPYdIBUHfj5avxt3Hjxml6hQOosURRyFlWhEFaA+NJC2PEzEukqnk9vxEocfQQ2Gmw89IcobCfFwqSFgsVD+sooQ6D4hfUCohhKosxlka8hn7LeBB6Mf+NimovVs+zuEN8UG4PPvjgpKoIaiRKL+TRT1XibgI19tBDDw18dzAn6EDEhk4rzMWk20AeVXFUpAV2Giwa6ucYzvls27at53M9cg3UtWnTpknQwX3CJqtZs2Yp+wYSHsQ7j83IL7/84rm8KojtTz/95KmuKyzqjLfffvvN9E0HqToeQOgPPPBA7cW87TwiCEAeSUtShMFah3cjqUlBx8Jt0UYljoq0K8vIF9JwdTjPcY899tBJNgooa0y2Qa44Z1cOeYEEpttVh0rrgw46yEzO+D3qJi0+UPwHDx5sVNpGjRqZLkbpgLmM8w3IeQxyHhshSDYFqr5GghC1en+GQX0D58MPJuhKHD1Glhg4WiATBp0/qNxkt64IAzKNahHU3DG+94ABA0yuXaZen5y/1q1bS+fOnYtsL7TFZSQIS6Mycp45T+QtZnq+UYc5v8OHDw9smgXjFlstVV+LiyVaYe6vwhigxNFj0AKZ4p5nasuzHSiwWKBQnenVIg+3QGiZjQSTazZ88GxCPnlWkFF6LgddESJMzn1nyXXXrl1LnH8G4aToh/ONrybnO2jKLWqrFsUUz+lTkSQMxBHOhR8KY4ASR4+BRZGwhhcT5HMNwlzI9kEOccUCFauEDZ02KIUONlMQOyyJKLzIJrBHoSqb+65///4mNBu0AjUIM6QcD0arZqMGZSvHGPJIJTb3NNZJQVJ4yQ1lHlM7rUjgcDBr1qx8H4YnsHz5cpN77RfFUSsPPBiKJDzEbgxfxyADYsQ5YEFPN7+qkIFdS5DUC+4H8hG5N1q2bOkKYSZcxvvjT8iDz6DXdS5B8U6vXr1yuiFAtWYB5ztD7iDlbo0t1PKOHTuaz/Oy5VC2lSTGb+PGjbWNatS4Y43TeX27Wwbwi+KoxNFjwKqBCYZQZNCJI+AczJ0719in+MHEOZcYO3asOScsSoUMwtLk2UGs3CRVhGdZyKjStibcqG98pr0v3QSfk2sVmcWbqun69eubceS2+TgKpi2GWLFihfm8QvYm5XpClhXFxx1RNV3jpGieqV69um/uBd0CebSaGOKoCNvyYOuhtjzFAZFBvaGQoRBBbisG36g29LHNlWIDGbfjjaprQuRUxBLCdjMHklw4PCbdbCtJiBhvRQpVbDi6e/fuxtYo1x1r6PjD9y1UhwDyRYmWKIqD9CNUZwqGFGLWez8VCZUtpJu0d+/eMnDgQJMrgHJwxRVXJC31Z9fTt29fk9vDzpv3QS4+5JBD5LTTTitWGk+yeCxccsklctZZZ2XluzCAUJNYMIOUxxYLLGap+vQFDViksFOFPFL1WkhAjaKQgpy4fN4HeIlybsnFwmycOYK5wY1QK3mVVB1nO7+S88dCzXewvnnMMfa85qvSl4IZiOPvv/9urJUKreJ48uTJZj1h86th6kiwEVTvxjDYOHF/4nnqFxQEcYT83XrrrWYBheyx2HzxxRdy7bXXymuvvZYwKRkF4eGHHza5Pccee6xJlEfleOutt2TkyJHyzDPPFFu0mPB69uwZ8btshguZ1PFPI2FWHfXDNxaLHpsAVR63g4UWUs25oWAmG5XGXrFhooCChYVe0/ledAkf7bvvvmb8WaUEcIwoJiS0UzHspU0eOWSQFhZo5kf6S3OsVEoT0cj3ObXjt1OnTmaugzySjuAHD7tUNz5UyXK+vXCuvQYtFNoOW4ymimOOQRcIwh733XefdOvWzfwOVeCMM84wBPCuu+5KqGi9+OKLJhxqcfTRR5vF4M033zQTLkQxetAfdthhrn0f3p9FiAGlxDEM1B4WQW3XFVt1RKnyS2J1sk0CJAJyRm6YlzYKzBV2/EHGIGJUe0PcIe2EfdmA5jrka0EeMOMAwmKdCA4//HBTlMK86MWCFNICII8jRowwkaJCIY6kNTA+dL4qDsL3XGfmc4WYMDXnwprl+wHemZVLAMLMECxnGJkLQU9VcpOoaounxjDJO0mjRZcuXQxx5KJGE0dgeyi7MdExmbII8dmtWrWSoIMFDyV4wYIFOhFHgXFN/1svEaySqlDsvFFQ80XAUgEqEiokD6suQdrsdYAIsfljHrKLQjavEXMan0tYGwWRPNeff/7Z/I3PIwLCRsJ2XvIiaXQquszdnC8IOQ8/j2ciRRB30hy8pEJ7BYg8FIIocfRnfiPw790Z5ZMVy+6APMevv/7aVOWm25rMmk7H2gX88MMPJhROjhAX/JxzzpEePXokrSJzdk1IVvzC+2pP4u1gcZw0aZJZIL1MKPIBFlkWW4iEXxVq1DLSRtgg+C1f05LDaDLEHILyZI3aIUfMJ8xHXCtIMg/IP8+3FfIUx7Ax5ZpCEFGuuK68Bq9FzhO/B4TzbTeh/fff3/zbj7mClmBhu8T347v4td0o1f/4ghZCBCDbYAwTVVABIAzuc6IWscQpL6MgiCMTNP5u8TpDQNjSJY4ffvihmcyjrRRQGFAymRR4388++0zuv/9+M9kfd9xxcd/vq6++krfffjvlz8dLjeIA8r2YiIIOFkdyT1F2ND+mOAiXkoxPhazfiANEgfA0Gz/6SBeCSmP96dhckmvIgmlVPxYL5iwnAYQwQpjZGJEeE52OAHGEHEKsub7MTZBVp32HbZ/oZzBPMxaGDRtm8lv9SB45Zr8pSLn0KyRKZ9fmoGPu3LlmjvCbL6/niCO77FTtRdips8gwEccKRdvf2bByqnj33XdNqOmGG24oVvn10ksvRfz7yCOPlIsuukheffVVOeKII+KGro855hhTOehUHB944IG4x2AnHvLXIKtBB4slu3i/KmpuwyrUPGKlXngVECeKTFDlUJkKgTQ6wfdh4+fc/EEEeQCrKqIa8xPVkTQZxjuvtXMcgCRyDxQyIMNs1hkTzMF0m/FTcQnHTZoRvpiKSECQSDdCBCi0+zxTwAO4r/1GpD1HHAnFUA2dKsFjwYSs2Z27E/Z36eQh9uvXT15//XXTwSGRgmiBCnDCCSfIk08+acJS8SZ2cjp4pArCUwwmBpYSxzB0Fx8fEA/ICKoj58kPKjUbRBZa7lMqar2ch+cWIEVWIf73339NOgYhbb+pxtkEm0MII6ojYTy/hDUhRdgdkZ+rKA42SXvuuaeG8B1AGGK+9huR9hxxRLK97bbbUnquZelMNM78QQv7u1TZPKa4Dz30kKnyu/HGG1M+Zut+T1g5m2BAqRF4JGy7Mp18ioMFa968eWbzhSeY1ycjIgFWaVQjYIUThN2pBPdLJw02PxirMy9pN5T4IXxtMbgdFLYxX7vp0BIY4gjJI+SbDsgPwjCbHY0zrMHunZ17KjlxEydOlDvvvNN4td17771pVfWx0wTZrhKDOOIlSTJxENWYWGBHz3VW4lgcjH2q8BkvXiaNtlgEsgg58PKxKvIHSxpZXMkJ9XKYnvWDUKxGh2KDc4OlGopjoVguZSPfk7nQj5E0/ySPJAAJ9UwsdI2xIBl9wIABJgTmzH/kYtmG4hazZ882BuJ4Nz766KNxBzbvGQ0W6T59+phqyWRdatKF7ZhC4YMiDMJWKMlutn7zM9i8kEPkJGheAqQfZd8WgChpVKQCIi/YuHiVFHGv0bYxyCkGyVxFINc6b28HRJqcZj8q1J5THDMBqgXkjQ4wkEDbOYZF6oILLoh47vXXX29+fvzxx0XE76abbjKVj3SdoaLPCRZhu4ukgnrQoEGGjJIADYH57rvvjKHpHXfckXWbGL4Hg4qCB4yFFWLIPSEPqtGy2a2n0EAFOmOaMLBXYDuYcN9EuxUownmqRFz87GHoBlCpIGZElbwY7mTzg2ejInEuHxEGP5lc58JGsFGjRr4q/rIoiBmKyeSxxx4zFc+ffvqpyZ3C2oJcyWRl7iSk2y4Lr7zySrG/01rQEkeqVdn1fvPNNyafkd0lkxhqpVsTB+Ro9OjR2rc6qnsHCgQ3nZ6T+Dli7GgJ87Hw5huMXzz6uNcofEinUCxIoVk2pYriIJwHeWRDhErjlf71bOohRJo6Ex+sx9ioeY3w5xOrVq0yhV/UU/gRBUEcAbY5EDgeiWCVRgtueGeIOxFY8HjkEk2aNDG9XLVrSqTXmw3HKmIDpZrxwkLL/+e7jzWqPBMlGyw/hmZyRa7tBlE3RLGLv1BjifZ4AYgOOGn4zbA+12DzCrywgfUKpk2bZu5xa8vlN/hPIw0YKOxB2dQuMtvBDh9FTRfXxLBKuRdyw0gxIBdZlZn4IIrx7bffZt2doZBABIkcdHLlonPVc512QSQIwULtdxID1xNSrfK9efUSpk2bZoi0X4telTh6HOQ/oLCRD6HYDjr14AGYrrl7kMBEDXlkckLJygdwNiC/CUSb6SsUmYIcZxwn+JkPkAZCuJGOZX7MUcsl6HbkldQCL2DLli1m/Pg5R19HvA9AuJpQ9erVq/N9KJ4iRRRZ5Gvh8AsIVxNKy4c6Sxhv+vTpnqzuVvgbLLrkPeJZau3QcgU2YaRd0B0m2xZshaiskaai2A7y8xE8WNf9CiWOPoAtAmERVmwvkiHPkZswX2qa34zTUf9yBcYqKjkJ8dp+TeEGKFZkY4TySPFFrsBcTPtYzW1MborOHKCCR3EyTfTFK7m6mUCJo0+qLSFJGq6OBIoDdkp4hCkSw248rIOA28nwkFR21H5N/lb4Y0xjeM/cmCtVm7QLQtSEp3HzUCQvikmlAUfQiGPjxo19naOvxNEnYBFGNdKwX2TSNTs3O0Ep4gPVjx2u7UTkJqiaJhk+24b4hQ7Gco8ePTQXNA2w+LZp06bIccLNsc0GFS/JfBbl+AlEgyiG06KY7aBRCePIz2FqoMTRJ2CHQl6E5vRFgkWDkJUi+QLbunVrM4nTucWNDQjhQqpd+QytNE0fqFg4KGixReZq4K+//irLly/P+nuvW7fOmNdj0K4botRawxKi9mM7PbfVxjJlyvh+ftQZyidg54YNjYarI7HLLrsYbzfsMRTJ80LbtWtnxlG2zxfFAiNGjND2mCUAahnn0G1FuFCB6sh8MHToUOOxmC1wr3BdWPDxIfVziDGX0SDOFURbsR2s35Bpv6uwShx9AiYrVEf1c4ytdP3888+yadOmfB+K58HCyoQOicyW6kjeJCFwNjdaMJA5GL8QcB3HmQFiRytLcsKx6iIXMRtAOUNJZ9Pl9wU/l9dCmzQULxaiJbLfw9RAiaOPwKJMCCAXBQ5+ApYYLLbWL1CR2mLYv39/k3NTEpCvQ+ibvEZC4arGKPIJog/0Zyfkny0XCjZb3bt3V+udFIFF0uTJk/N9GJ5UG7ds2VIQqQ5KHH0EjMCZEGkjp9gOzglhKkxVNWSdGjAF50HeVklM1CHsdPFBxdTcPIUXgJpOD2DMuUuCFStWmPtj8+bNOrbTyAUlD1+V2eKggxfdYjBE9zv0bvDZbhpfPAagehcWJ9WEk3JtBuxXsBASegPkb6VLuFkgAOHpDh066MKq8BQgLoxJch1/++03MzekG1a0+aY6tlMHOc6sU7SGVGwH4480M9sG1u/QO8JnYODRMSWXhrd+ABYmhEuzmRRf6KDnL0ohyko6oSV6KVO9isKryK5yTjoKPxXZUx9R1H///feUlXU25SiNhBXZXClxTD36gAUPxR+QR8V2ML+yOW/WrJkUAvSO8KEfHyFGVEdFJNq3b2/8AxXpVT9iokwIJdXcSAoPGINq7Jt9Ik8BHD8V2QHjlLA1pIZxm0rhEYs8m3M2VRUrVszJcRYCOGeQI+0UVRys1xBq8mULAUocfQZ2v5AjDVfHPjecEyYwRfo2JigsiSpRCduh3BAGpAABNUeRPUBqiCRoVXV2QZU15JFwIeHnZEAtQxmqXr16To6vUFCzZk1jYK+KeSTWrFljojOFEqYGShx9CAYgIVntmFIcixcvliFDhrhiAlzoQGkZPHhwXPJI5yJsNiCNmvyefUDMqVBXH0d3UlkYt+SIx4MNZaP6+t2gOdcgEoHaqPNCcdB+FSQae36DEkcfgsRjJkINVxcHbfU4N1OmTMn3ofgO+IsRmiOkF4u8oHQfcMABqigofInKlSsbSx0IDoUKzoIwbKn69etnNp6K9MB5ZM6YOHFivg/Fkxg/frzZiKB8FwqUOPoQeOWhOmLLo/Yzxc8NPln4XWrIOj0QekaVQVVkIUCBoboUFRIFl1QAzb9T+B0o6hBH6yZAsRfdZrBJwVpKkR4oiCENoF69evk+FM9h5cqV5vwUUpgaKHH0KRiIhAcYlIpIYBGDuqAmtOkDYgh5JN8RQ3UIJONM8xkVhQLmBgrp2FyyKSJvFzWI32kFdXpgnsBonTxpWpkqIoEKy5gqtI5aepf4FLRzYoes4erYILmdyUwLiDKrRD3wwANN2I6QNURSFwX3wQJDmoWSF/dhTevJKWXzTatCtZBJH5w7IhOF0EbPDYwfP14aNWpUcOk9OkP5PFzNjiZbPYcLCVREEjrRFniZT3iE9LDp4f/pnqFwF5DGbt26mZ+K3FQBn3jiiUZp1BSMzEBONKSxkPL3soXly5ebAtZCC1MDJY4+BgOSDh7k6yiKg/wl+qZqb+/0wWKACgNxtDlgSh4VhQDmTMLT/MRbjx7rgHGuSD8tSNXG2Bg7dqxJ8SmE3tTRUOLo8wpiwrEjR47M96F4EoT8yM/TXMfUiTb5SvwkDwxzcKpQCVUreXQfnOPvv/9eCYyLgCxi1xXtGsC/Bw4cqHNFisBrdPTo0UWtRxWRYA4dNWqUEXcK0aJIiaPP0aZNG6M4aqu92CApmXOzcOHCfB+Kp0EuKAsBNka0IHSCXFpLHtVyw91rADHXvFx3QOUvSiPo3LlzRFcY8nrJi2Yu1QhOcmBoPX/+fE0FSnB+mEfJoy1EKHH0OdjRIIezu1EUR7Vq1UwPa0xY1booNiAqhPQXLFhgNiIojdGAPNJ9o9CqAxXBAPc+SiM/GcexWgnitUdYEdVR+7AnJuA0A6C14P+3dx7QVpVXHv9MxnE0Dkas2AZFCYJtAopBULqigCAIKFiJdSzLzETHGWPGFo0r6rhm7A27AipdpQhSREWIUiQgAoqACoqoWDO+Wb9Nvud5l3vfu/20/2+tu97j8sp9557znf+393/vnbSij3Ixd+7c2oxgEpFwjDmYug8++GBLV0sYZYdIAikV9XXMDsUvq1atspnVeJZyQdqatAtVlLQxUUpVxMm2wiabbgFEF3OBX48q2JUrV6roMAdswun1yoQdsSUUFZK5IdqY1IishGMC4ATlJo4/TWwJVapdu3ZVc98cELE+5JBDrBAm3wglN9WZM2dq0oaINEQOFyxYYJ+TecgnQsZouA4dOpg4km1gy2gjmQmOkXq7ZgfLDxsV1tSkIuGYkJ6ORIoIj4vckVluAuvXrw/7pUQGCoeA9DPVpfnCzZfRgwhx+uCtWLGigq8yPdAr8+ijj1bPzDLAtY5gZLpWMQIQUUQByIwZM0woiR+v/U6dOrm999477JcSSWpqaiz7R3Q7yWl8CccERR2XLl2q9GE90FMLc7wKiZx5lKZNm2ZplWLgZtymTRvzhVEws2nTprK/xrTBMaWanY+ieCgwev3116059aGHHmpWlWJShjQER8QjBBRZ31z1T6aBVH9SU7DliHBv2LAhsUUxHgnHhIDPkYWOMLnIjh+LRRQizeDfQuzh5Sql2TQ3D27KNK2mAbCvChbFgQ+XKJlanJR+8/7000+tD+k+++xT0vlNj0cahTPXmhGFaQXBSDuutK+dDTFv3jyzRORr+4krEo4JQUUy+RvkKZJJa3seimAQJ0QKy1Uh7adGUI1K0YyET3F89913Jur5KArHb1rYEJHyL4enGfFIpwEmUWHLoDAsjeCf57zk2Irc1h8Khzhfkh6RlXBMEJyw9I5SK4nccDOhTQIRt7QJbP5eUtT4GVu1alX2n88u2/vCMntBClFJ2AhOnjzZbChsEMs5Ao+fhy2DRxpHE7IRRDg2a9as3or0tPPWW2/ZuYI9IulIOCYsFYsoUpFM/SCa6NeW9F1hENLILGoUtRCZrgSkvalG5eZCzzyim0JUejNE6xNSyWwKK1VYhO+UFCSw+UqTl5x2XRQLKdpY//o6d+5cs+5k6xGaNCQcEwRCCFMuC2maFrZCIRpBdIzjlYZebczqJgpIqokbQCUFMxEZGixT6a++maKSMCYQawSTXtgIknGpdGERQpUqa4rsii0sixtkKIii4aEX2aGzBL7apBfFeCQcEwYXOOKAqkJRP3jyXn311UT3akO84c2iNUS1Fn5u3jQT9ykbbrSqSs1PdOM9TWM6tNjzjCg6Tb1p3F2NDAK/j6IbrifWjiR3E/BWHiKtZLJEbmbPnm1FVKUUY8UJCceEwU0HLw6pm7QaufOFBZFdIm07kghtIaiEZOwi5wQ3vWrib+QffvihbWTmz5+vqut6QIxgo0hy/7dyNKBmvCrRc9Y6rBdMNKomTE9idjsbMQRDUovBSFHL9pRfRuedd96x+edpsT9JOCYQdsQsrFRYi9wwk5k0DJVwSVv8KVJBNNIX8PDDD6+6aAxCCpEpCvTRnD59uglasSWIao6NxHV2iFzTe5S2OKSpw8RbMvBVIiSTmKlgQ82mU9TP7NmzXaNGjSpScBhVJBwTCCcxBRCkUtLg4SsFRmcROfBjyZICdgUEG5uIKDSURqAfc8wxdpNVL7jskPZkjGOS05/FboKIMhL9oi0OfUOrHWXMBpFh7BhcX7RiSUobJVLUVAj7jbXIzRdffGGZFCLQUVhnq4WEY0IhbE5rCtrOiPoFFiKbaswkeB0RHX5mOan4KBnaKUoitUgEFCjg8mMPhajvnCYdSDNuLBdRi/D5iloiT4jcuMMEMjIwZAnSknotltdff93WWDbpaULCMaFgZqbvFm1RkiCIKgmm5mLHkkUJ0ne+DU5U050cY1/8QfX/yy+/bH1HdY6KIJy//rwguti1a9fITuPwTcLxX5Llieq1V8hmmir1UqZKpYHvvvvOCg+ppE6bL1nCMeFRRxrjMo1CNAzHibRDHOGmRcSDdAneqyhFGnPBzZZUGKlrvGuqvBYIxffff9+99NJL5j32jeSjngZEZJGuJDqKtzjOFiECDurZ2DB//luRFnagtCHhmGBo7UHkkSiUaBhuThjCMeHHCRYvRCM3XURjXHa/HG9GQDIejteMryrON9xyRK5Iw8Y98l0s69evtwg05wFexs6dO7sdd9zRxQUK0RARiMc4WjDIANCiTOTnA509e7atX7zvaUPCMcFwAyLqSKsAPEKifvbee29rXE3UMU5V1ggwbrCIxjhOLWDh5bUjIPlbiJ4iHviYtqK2Y4891j6mCW9T4P1GODN9iGh0HM9lrsMuXbrYOc3fFZexprQl4z4R9chuVFj8t2g499c0IuGYcNgRcSNidyQaBkM4iydpiKj77jDiU9XnG26Xcz5vGPhIKdEaej9OmTLFIiBx94yJ7PgNAtca4GHkRhyFiulS8OLrzTffjM06Qus2RK9S1A1TU1NjE4vI6OGPTyMSjgmHRQzvDVG0tIzIKkcbG/oeRlmwkNKlog9zdtRvTIVCmpKoDV4r5gLjd0tDxJzrk7816dcp1xVpUf5WNgi0fUkiTZo0MY85AjLK1yityBCPVK2n1SZRCO/9zc6U1mgjSDimAIQQxRJU/ImGoektYhsRGWXRSDubpC72nK8tWrQwnxtNln3aMim98rJBWhN/XFzSm8XA30YhFC2j9t13X3t/mzZt6pII0SiuTxrfR7VPrD/XyLRst912Yb+cWDBr1ixrdcbGNq1Ev/RSlCUFeMQRR5hwZJcU95RmtWCKB6lSjl1UvD8s9IyT5LVhxI9T8UAxIBi5+fq/nQbZvBeIDlKbYU7EEflBNItKaQQi7x1N9zlv0yBU9txzT9vo+YIfPNRRgusnbT0IS4FNwDvvvOP69euXyA17vmjVTQkIRhYJbrwiP4g4ItCiNOmEiBSN3WminbZxYJy/NGtHTHIjnjRpkgn7NFdix2Gqhn+f/KhJxFQaRKNnn332sfWX1HVUIHVO1gKrgMifqVOnWrSR2oE0I+GYErjZUrmKJy7pHqpywTQZ5o/iacGrFCa+QpN+cfj/SN+mEf5uIsCkOIk40vvRRx3j2AIlqTCxyvfmpOCCBt5E3NIKmzwiVBwPfLth4zttRG0KT5ThPsB716lTp1RHG0Gp6hSBb4/mtDNmzHDHH3982C8nFtCget26dWZwR7QhJsMQjURuSPkxci0qafMwwW6BqOfYsIgzNYdoAG1QqHYkJRi3NDZ/E9doHK0knJtMLCIFzYOoDO8FUba4vQ+VhGwBhUGcs5ynYYBg5DUwHSaphUnlhnWGYi7O5xYtWri0oys6ZV5HUibMVWUBE/lBqxtuhmGlREmV4xFLa+uH+vA7fyLqeD6JoNACZfLkybUzu+NUEERENQ5TfzxEeSn8IB1NlNGno4kukpKWaKxL8+bNLQLrr+lqwwaL1jsMhjjggAOq/vvjyooVKyziqGjjZuKzQomywM2VIpnp06e7Xr16hf1yYgE3ciJBQLq4mjdDGs2yaFH1GNVZvVGAxZwoFw/EDMfs22+/rY2GYWpHeEe5qTR9Dbk5EeWO8vQffw1wTBHpiHUqTKP+uqMCxUG+YIa1pZoFM0TOSJuzGZYAKizayPorsb0ZCceUwSJ/1FFHWUSmffv2ia/KrcSYKQRINVoxkFIiakZKlpuyyA/sBBTReJjwQDRs4cKF1lya94+UUxi2g/pA6C5dutReX5QEGDdOjiGFFHh9iVZxThJVpCJX6ejC4fghGqvZ7Byxig2CwjqRP6zBbJJOO+00ie2/oas9hbBwUNXIXFiRP9wc8QQRBWSubqUhekakMywvVFIg/du9e/faMXYUBvhKeTYDiCKRHcQim0y6MZBaJVrlLROIW6WjiwMBgleOdZiI+CeffFLR37dy5UrLMkV5qEGUo41s3LUO/4gijiltM8M82BdeeMGijmmudiwUFnv8ofhEma1cidQn6cptttnGbtBprZ6uxDmPyPF99XwjcW7YWDcQQRxvHmwO0liA5AUMUUUyEfRdRNiQSvXHRRGXykS0li9fbjaiSqzFzKEm2s77GSf/bBSgjRTXw5lnnqlzP0BiziJazNx99922qyLlg4/kwgsvtMqxhvjDH/5gIipb/63HHnusznNEKJ566ik3atQouyDxPQwZMsTaTcSJ1q1bWwd8Wmb0798/7JcTG1g8iFxxntGIm7R/OSMuVKZSQZ3mOaiVBlHoBT83agrGuDkQXSMyg0DifSXaQJSNdCIV9UmKrPlCL47F6tWrrcqWHqHA3+p7hDLnnrSqqBzco5gCRV9FMgzlrHTmXsgml41Ay5Yty/Zz0wDXP50aWIuTOt0o1cIRMXfFFVdYj6VBgwZZGwiE3aWXXuruu+8+t/fee+fl/bv88svrPJetLQY/7/HHH7fCEqJPpHCuvfZaExT014sL7DyJmI0fP94+khYV+cG5QlscFvtyignmn2KYJy2im3V14LpFJPGgqS/vqRdVVKBSMcwNhPeZdQURyXtTieiDj4pWYtQlG2s2uqTlefBvfKCca0S3uf752xAYcWwHFGc4t1hPEI60S6Pfbjm8j5y3bG59oCBJG59qgJ0Fn7mKSBMqHImaEYpHwHXs2NGeo0Hwqaee6h566CF39dVXN/gz2Hnjg6oP+vk9/fTTrm/fvu6yyy6z53r27Okuvvhid+edd9rvjlOKi1FuRB3xMHGsRP6wsPvFndQ1oqIUWKBok4FwCBZ2iOpChM2DgOrRo4e9v0HB5UUjUWdEHt9DqpsHAoznfH/JQiAtXMr4N6rJv/76a6vO9g/avyAM8XWyMSGayHlLBMXbIIi6yq4SLtw38J4jHDnfyiEcOf8o4uP9j1KxVRxg80i0kSrqfAJPaSMRwpEiD8L7RM48XHj0XKK/GH6mfDrkc7Kw2ObacRNdxFyMcAxenH369DHRyg6FtilxWqxIsY8YMcKitWke2l4sFMlQaY0IL6VdDjd05i+TTpKXJlrXCGtLZvoQYUg1MWIS0c+6wdrA5hHhSKQSoeYFJQ++nopkvISIA95nokB85Pew7tAHkc95zk8L4nsRlfwOfmZQGPL9vlUUm0Dv3eQ18H18DcKBKOmhhx4aq41t2iALhG3CX/+cJ8VGnwlysDGQ3aU4EPBE6AcOHBj2S4kkiRCOtLBgZ5AZisfnOHbsWPONNSSKWGCJLvDRj3U7//zz68xUZdeONyqzNQq/x/9/LuGIwAhWzlEAEQUQKvw9eDwvuOACpTMKhEgNO1JSzJwbhc6PRiggGPhepafjAzf3zJ5uCEcvzCgo8WKPB9FAPgI3JNKSQTgHSCdigyFqGdy84rHi3CCaSEU/54oXo8H1CQGJ0EAoZgpEnhPRx4tGvLX4ThGShVoHuLfgk6bYRhakwsHrSzAK+4COX4KFIwsxu+lM/E0cwVafcOTrTjnlFEvrsMtnt4FHkijc7bffXluJxs/BA5QZEfK/p74WLWPGjHHDhg1zUYO/5bjjjnP33nuv+WGYAywKg80CooA54FSp59sfENFIRS+RSqWn40+wYrW+9C/PszH1EUWf1uZzBCcpSzImPMfDZ0tYe0444YScv79Uu4SIDkSmqbYmm0GhVr7dG4h+E+0meyHRUxy03+G6I2MpYiIcWTwJ0ecDCypvMJVj2VLR/jk/QSIX5513Xp1/s6gTRaIQhp2HL3rh52RLHeTze3r37m0LQHBXeP3117soQAqNVCueDgRMlKdrRBGitL5Kneh3Pj41UpVsUPDHqdoxXRANDEYKg+cEkUFEo0RguuE8INrImoJ45POGfIqcP2z+fYN2UTh0VsBrfuyxx2a9RkVEhSMpP6qh8+HRRx+trQr03p4g/rli0jQDBgxwDzzwgF2IXjjyc7KJ2nx+T9QN6BQT4dGk0IiUvSgMNhQ+VdgQFFgQaSQFRTpJvjMhRCYIRSqsEY/0E2RMYH3QSgqbFRtX+aQLh8g/li0yiJquEzPhSO/EK6+8Mq+v9SlijOvZOu/75wr1nXkRSDSI9hzB38ds1syKSf97oiwMG4L0KsVFU6ZMMW+HGk8Xjo8IcM6wiBO9zbaAExngaxGaasgrhMgFUS+ijfkEP7DMBH22ojAQ56zbgwcP1jFsgMjdtRBnhUa8MKljBibNHSzuwEjODbqYcnp6uGW2Rdh///3duHHjLM0cbAjKHFz//3GG6BfNYl988UW7eLRrLQ78jpjbOR/x3vrjyKKOUMTTiJdNhUgiCOlp9YwTmfjiGAqsfOTRbzjpBEJWjHsP985K9ABNA6zNEydONC2RWfQmtiQRd65jjjnGCmToq+ahTQaePXZrQf8jUxJ4ePAlIhIzefjhhy2yiJjyUPjABfvcc8/VPsfXjB492iJ0NBCOM/xt9LLElE2FuCgOTOl4Rqnm9zOREZP4ZVesWGH/lmgUQhQCIpE2O1Tk8zkbUwryyHhpPSkNrEMEivA2ihhGHIuB3mkjR450N954o4Wa/eQYLqyzzz67ztf6xt3Dhw+3jwjOoUOHWj9D0uTAhcmJhGhELAYFwcknn+yefPJJ26HQhmfGjBkW7fzd736XiPA246+oyCPqSCV6Ev6mMKCRN+cI5waw4LPJUF81kQsiSm+++aZFlPKtzBfpgfsa9yTuTdyjEIuIRp6j4l4UB55zgk50FImz3ayaJEI4Im5uvvlmm97yzDPPWBSRcYB4Jb0YzAULNFFJdm4YYxGb3PTPPfdcG1+YuZOjAhsDMu11+HrSjldddZXr1q2bSwK+PQ9zv1mcMGeL4qBwi3ORfmx4lAppqyHSB1EkWjT5kYdCZIKfH4FD4IOiTNrISeyU3n6HbBuZS5Ei4QiIOeZV86gPH2kMfh/CL18QkkOGDLFHUqGdA+1lSK1S4KHoR/H4qUUUwhBR0hxgIUQpIBTZ3GOxYq0WxYNtjSj/8ccfr019AcgYIXK250EkE1UVxYOdgUgj6RAiuN7jKIQQhcL6QUSaaUJ46rG/4KXmoygMjiOT5XygROSPhKPI2QaCXe3ChQutqbXIH+wONJFFLGKjIGKL/QHPKMczKuMmhRDxgbWDR3BCGdYGImY8LwqDxupM2jnxxBNVXFQgOloiJ6SpafMwfvz4BqfviB9FI+0xmECQ2ZSeCTEUHlEwo8ijyLZZoxpfEytEEKKJfs2gV2MwPY3nkZZfFIX6tnCiYSgqYtgFHn4mp4nCkHAU9RbK9OzZ07w0GIhFwws8kUYqqJk8kK3xPOklIo9EI4UIQg8+iu3Ui08E1xSGTtAXlmp7Cu4yoQCUdeXdd9+1QjzR8DElRU19Ax1ZROFIOIp6oQE6Ixfx5+GlEblZsGCBRRrxy9Q3eYfII9FcCE4mEumGCDWRo2zjU0V6N+9YXVhT6htkQSYDPzWbfPkd6wchznVGs31t0opDwlE0CO0fmHTCLk2tQnKDj5E5sfn0auSGQFNw3wdUi734+uuvbfPBR5Fu6AH70Ucf2efNmzfPK52KrQirg19bxJaQ6WFCDNFbCoxEcUg4igbBONy7d28zZc+cOTPslxPJlg4IP1LTCOx8YRwmniXSUOyC8UcKIdLN999/b02+WROKiT7T9gtrEeuKqMvzzz9vBYtMSBPFI+Eo8gJDNm1l6LCPh09shtmx3tdYDKSfSEOtXbvWimokHoVILxQhvvLKKyb+6P0aHJebL6S2WVfeeuutOuN10w5rNQVEPXr0UAFaiUg4iryhsz6eR1LWSq06m+fNA88i4yiLhTQUxTSbNm2Sv02IlIJFYdasWbYGsElnrS0WimUQj0Qt2ZSmHVL3dAch7d+qVauwX07skXAUecNYJgzFpECIjqWZ5cuX2w6W2d5USZcKwpMKP9LXRB3kc0vn9UVRFR9F+uB9Z7IUI3Cp+C0FfI606WFTumjRotRnMqZMmWLr6gknnGDHRpSGVihREE2bNrXU6uTJk233tsMOO7g0QioJMzrHoFz4BY2FHj8pRUmlRB1EvEA0kJ4U6YJODKyjjLxr27ZtWdcTimUQTGlucM3AhTlz5thYwbTer8pNes8mUTTdunVz22yzjXvuuedSt5P1jdApaqH9RSUglYIHB6+T0kzpAfsH1bSygaSHZcuWmaip1DQpBCOClPPqtddec59++qlLW4qa+xS9Ltu0aRP2y0kMEo6iYEin9u3b1xY7xjalhTVr1ljKY+PGjRX9PYhyJhpQkIQlgMa+IvnQ05OqT/X2TD5suCleWbx4sWUtWrRoUdHfR/SRVmqIx0qvX1FiwoQJZvs56aSTUh11LTc6kqIoaDiLgZu2DwiqpENPNaqn6dHYqFGjiv8+WkbQE/KAAw6Q502IhMGG8IMPPrBUMj7paqwnWF/wTrLZT8PmhP64PJh+JstPeZFwFEXTqVMnK+p49tlnE10NTKsdFnpEo2+wWw34PUQi/JgxipLo8SaEiDekTvGzMmKyWrABxUOJDYY+kUleSz777DOrosZS5Kd0ifIh4ShK2sX269fPUh90408i+M0WLlzodt55Z4sAhlWRh7eSHmRMmklDtECIpPHxxx9b4RuwCc02y77SMGIPwYo/O6nj9rABEMzA20lBjCg/Eo6iJBBUxx13nEXkaE+TNBCKLLQYq8P0yOB77NChg4l1pveQ5hJCRB82n0uWLDF/Ib1awy4opKm4n3vNOpK01l+sj6tWrTJfI358UX4kHEXJEIkjpTpmzBibBZoEiOqx0JPOYeeKYItCu5b27dvbTGwa+0o8Jgv8Z8cee2zJPfxEdMDCwzrCoADWSBr9R6VIg2IZBC2eR98tIu6wJk6bNs022dgBRGWIxhksYh+VY5Y1C+KoUaNi304E8RvVxRQBS2NfIqB+LnbYEQxRHrh+iAZFRViI0lm5cqVZechaUOgWpebTrCV0b0BAst7F3afO6ydFTdNzppyJyqEVSpQFDNe06KF1DDvsuEIqCeM4KQ4W+6j6gFgcERiIXFoEUfUt4g3n3uuvv24fRbzxmReGBCBisPREdd1GPLJJjnvBDK2sGMyA7z4KGaIkI+Eoygaj91iEJk2aFEshQ5Ncdt5UHyIaif5EHQQu0xAQHHhM4x7tTTOcf1w3fBTxhPeOtl3Tp0837yCbu6j77Lbffntbt+Ow3uWCwkHsOz169HCNGzcO++UkHglHUVa6dOliu+uRI0fGLvWBYKSnGosoxShxgIgovin8U0yhYNpM0szuQsSBDRs2mGBE/NO2C290XKA3rc+wMG2F9HWcWu+MHTvWtWzZ0h122GFhv5xUIOEoyi6++vfvb74eimXiEAFD4PpCE6oNox4hyATfFP6pdu3a2YIfJR+VEGlg9erVbtasWSa8jj766Fr/cdxgvSZlTZeMOHinSa0//fTTtmb36tVLa1+VkHAUZWeXXXZxz42FlwAAOo1JREFUffr0sf6HLEJRX3hIT5PqiLO/B0jRcNNiEeVvYaRZFAt8hEgKXlyRZSHqT9cDuh/EFYTXQQcd5NavX+/mzp0bafGIyKXJNwMaBg4cGKsIb9yRcBQVgbQBIwnxO1JZGFU/EsKW1Azp6agWwhQDBRYffvihe/nll2PpN00jCP5WrVrFLuKdRhAtK1ascFOnTrWMBdYWCmGSEPFCBNO1gYblb775ZmSzRghbXh+RRhqqi+oh4Sgq6ndkXN6IESMiN+2ElK5vyIu3J2m985jN2rFjR/tI4QzRRxVdRBvEx3777Rcbf21aYaPJ2kFGhZGrSazg3W233aw/L5vPqK3dQINvqqiZv017MlFdJBxFxaCiEL8jvsfhw4dHSriQgmHBZ3YrVclJBAHiF9Y1a9ZE8gYgfgR7Ae9T3C0TSYboPQ2mabfDhpM5yEkUjr7lF5v/qK2PtNzhfoKPlIb5ovpIOIqKgt9nwIABbu3ate6FF16IhGAkYuBntu64444u6TBBoWvXruaBJO20dOnS2FW8p4GvvvrK0m98FNHCp2tpWUOUkd6MeLmTjo9+L1iwwHzgUcgU0bGD94P7SlJFe9SRcBQVhxF5DJunUo9eW2HBYsPvp/oxyqbvSuD9m6Tmly9f7l566SVL9wghcsM6wUaLNlesH2w0SeHGuedhsQEAhjtwLMJk8uTJ7v333zfRmDR7UZz4u7BfgEgHrVu3tpYVVMHhn6l2uwoWfYzURD4xfqd1rBvNfjt16mTRA44H4vGQQw6x54UQP/LJJ5+4+fPn22aL4QasIUkofikGvLdE+xgyQJSP41Ft8JTSAYMm35pDHS7pvHuKUCDqSJoHf0q103GkWujVSGPetFfgkX7iOJCqJ23PDVII8SOLFi2yKCORRdLSBx54YGo3mx56xfJg01ntTg1UeI8ePdo2ufi2Rbik+0oQVYUiGfpt4a975plnqpYuxsiOaGSqAGlzsRk8WlRe+937kiVLbIEW4UAkh0IE+bbCgYiiL+CjGwFFZTTVV0r0R+hVSaqeAEC1YHNLk2882mryHQ0kHEVV4cZIpTU90CZMmFCVHmEs/J07d7apMKIuRFFYiBHxn376qbUZobelKrCrD3YBGrjLNlB9aCLNuEAijcAGkw2VRMqWcGw4LqwXdAGoJKTHEY1kqAg6JKnXbpyRcBSh+GV69uxpxTKkgyrFO++8Y/0LQU2VGxaQNEFn7jWLNDdR/F1CJBmyEX6zREZE3rn8IYszb9486/VYCQgqMLaWYphBgwZZxFFEAxXHiFAg3cFweibLkBZiYkY5oXIYI/cvfvGLsv7cpIP/kzTUe++9VzuukGgkD26sonIw333mzJk2ti5qvfOSCOc3GyRG1VEwR99CkT/0sKTnKC2k2HCWO31Nv0w2/mSoGCQhooPuBCI0qO7dsGGDe+655yydXK7dPjtUUk6MAGvevHlZfmbaoo/77rtv7b8RkcuWLTMRTrpf6bvKkbY2UdWG1CfrA0LEN8jfaaedUl/4UgysAxTZIRznzJljwxQYV1gO6PjAuFT6zzI7W0QLXS0i1IXnxBNPNM/MU089VZbqXn4Gu1SED5WQonRon8TNleNKhIaWRlGdXytELkG+cuVK619KVTDZDl8gJtFYPBw7Wq3RXq1cvS3JFpGi5uceddRRZfmZorzoihGhQvoT/8p2223nHn/88ZLb9OCDoXq63KnvNMN7g7WAFCo3B7ypFBMIEQfoHztlyhTrA8gGiE4C8suVVzwSeWzUqJFFdPGNFgtdHSiGwQd/wgknKLsRUSQcRejgMRo8eLB5jp588smiZvXSV2z9+vW20CidWhmYmkEBTYcOHWrHrWEJ4MasCKSIEggY79EFUqgIRjZATEERlQFfOZO5ihGPfA/BA9aZk08+WZHgCKN3RkQCFotTTz3VKvRGjRpVkBAh+kUUDO+SqDwUM/kWPkzVoLJy6tSpNoVGArJ4aMODuFE7nuKhDyOj8YgwBlvrEBHTca08eMoJBDDhhbUhX+jt+8QTT9j6wX3Az8gW0UTCUUQGFvh+/fqZB4mZpPlALzGM2UQUSFGL6kFEgOICeg9S3OQN7RKPxUHjb46jGoAXDlkK2m8hGIl64culWbWoLvRZJCvBR1qt5WM9YgM6YsQIW8vJPJHyFtFGwlFEChb7Y4891tIdCML6wOBODzailWmePx02tI6hHQej2ahkJxpJ5Gfx4sXu66+/DvvlxQaOFQVIOmauoEiVT01T+U+RBs3+mfqCN1dUH3zQiEc2QA31eGSTySAIosSkpxH8IvqoHY+IHMxQRhSyoNC4m35huQpr8NoRaVSUJnyIFPhoAZNnaOPDDYHekFS5U5gg6hdB2C2aNm1q6T6RW2wgSJg+9eWXX1rLFtaJ7t27ax2ICLwfZCJ871eiitk29lS5YzPq3bu3bTpFPJBwFJGEqCMzSunxyA422Mgb7wwLE54lIo0ielC1yg2d6RLc4Elb0TvvkEMOCfuliRgLRlq1cD4RleUco8efL4STaIwWXjRSPEc0mChksGUPze5nzJhhgp+iJREfJBxFJOFmwC6UKAz+FwzTtGhANCJCmFJAOkpE+8ZB9AzBSMW7v5HQa5MqeKrf8fQJUR9kH3xBFj1EiVyzFmi6TjzgfSIIwFhH73/EhoSPHXtLu3btwn6JokAkHEVkIbVx0kknWXNwHnhgSH8SWZDxPT5ww/ftewDxT0qWNDaCAAFZzgbCIv4QUaRKn4g15wsCAxsEDaHVaitekBlCMLLhf/31182GMX78eLMk0UVAxA9VE4hIQ5Rq4MCBVjV9880324hCdqhq1xBfGC1JeoqCGiwHNGZGIPjq2LSO3eOcxueV9nOb9k5Eo0hvko7meveRaYnGeILoRyhyrd9///3WHgk7kt7PeKKIo4g8pDaYa02V7pIlSyz6gOAQ8Y4mUzTDg0bN3ji/dOlS80TRmokHEcm0wDmdtjGZbBJow8LGgSwCx4BUNBHqJk2a1NobRPxhKgwZIwYI9OrVS6IxxuiqFJE3xLPAHHDAAe6aa66xJrEPP/ywO/PMM+ukP0V8CUbYSFsDQoJCCIQEBTVpaNNBC6ONGzeaJyzpggkRwQYBrytRZlrnkJ7m/cYTK5IF0WNGCeJL79+/v3nXsaq0bNlSAjKGKFUtIn0jpZ+jnwhDuuP00083zwzikSILkSx4j5kzTiobXxRRJ9+aZuXKldZknFYs9O1LGr7wq5CJG3EBcchmgGsa8C8ikimeom1Lly5drB+rSB5UweNRb9asmYlGPOqMF+T5P//5zxoYEEOSva0VsQVhgJGaBSZYPUlkAvE4bNiw2sgjPiiRLIhC4GvlEXwOjyuig5sPlfXcjCQ4ogk9FhkH6ufIIxDwuZEpwOOmhv3Jh9Q0WSI2CAMGDKhtmcQ5QAse/Kw8R1ZBkcf4oCtXRNL3RLsG2nC0bdt2i7YbP/vZz0w84n1U5DE9kMLE68oD6wKpTT85ZM2aNW7+/PnWrsU/J6oLLVcQ9b64acGCBTY+FMFIv8Vu3brV2kskGpMPGYLHH3/c7CcUOGbaL+ikwPAGMkqcJyI+KOIoIgezZhGDiMZc0USqLM844wz3yCOPuIceesiddtppqfDBic3tPRCOPDykQIlqEeEANhtEIymwEZUDoc5xJ7LoU+zYDTj++Nnwr6oxd/qgyG348OG22UM0ssnPxl577WUbjVz/L6KJhKOIHAgCRGBDI+q4QZ111lnuscces9T14MGDbSES6Wzxw4MoJEKGh49q4YmkGp8KbdLafER8Ri3qRaqO4pAopuywjjBGkiwA9hE/AYjjyo0fSwEV4Vyzvh+nZkWnE1ruPPvsszbtq1+/fg0WenHderhug/YUEU0SIxxZzO6++243ffp0a+/BInbhhRfWGVWXC8zZuWCk3a233lq7u2b3lI3f//73ZvAWxUE6i5sQO1SKIfKda0zamsgjPhqij6eccorNRRbphHOH1JivzgaiXohFRA+pVM412gDRRxJBhLDk/xE6YYo2NkKkc8MGIUi6HxFLUcvs2bNNNHLcENu8Tp4nStS+ffvEV4CL/MGzOHbsWNtYnHjiiQVtzohaM12GSmuyBSK6JOKKZ6G74oorrLx/0KBBliYZNWqUu/TSS919991X5yaSjauuuiprunTkyJF2c8mEGbyYvINQCSpK26XiieG981W0+cINbsiQIdbuAU8NJuzmzZtX7LWKeEGU0RfQIBSp5vUCkQ0nNzsgpcpGBGFE8UZwLnoS062+1ZWf5EMxCw/+jRWEfqmIQ44dGzrENc8HxYBEo/CwwXjxxRfdEUcc4Xr06FHwJgz/K9km/I5cbxTUiGiSiKt+2rRpJjyuvfba2hFGnTt3tvnG+N+uvvrqer+f1h+Z0CaAEz9bFJGTO9v3iOJgoUA04omi/UoxkB4j2vjMM89Y6wdGFWLIFyIIN6SgbxYxxAQLxCQiEuEUnFwzc+ZMi76xmSG9jbBkugv/RmDxtQjLcni0iOq99tpr5u1FvJYKrxthh9DDM8yDVD6vm7+TFCFNt8nQ0FORv4+bNxH74O8/+OCDS34tIrmwAXn55ZftPkxzb+69xUbuOR/Z3FFYxbXaUNBHhEMihCMnLTeDYMqZGwLVl5MmTbIFtJA5uHw9P5OKL1p+ZIMFmEVZpt7STdREihF5Qa9LMfB+MM969OjRJiC5IbZu3bpsr1UkE9YGBFO2hvKIOB+JQ1gy5cT3nePc9aMSuckhIEmxEZ3j6/k/nue85EHK3K8niDcEHTdY/0CE8jznLWsQv4cHP4N1hvQw6XYKgfyD7/ORGXpc8v1UN/Pg5zHbmbWRhtuk6XmNCMRgqyP+nyyKEIXC+Tlx4kSLNnIOYV0oFbJ33kIi4RhNEiEcWcCJAmb6KfA54rdgwSzEM4HPgoU/l9+IQoy77rrLFm08lL/+9a8tPF8fmH6DbWN89WfaIbKBp6VcvkTOgT59+thNmveemzCzboUoBjagucYesr4gEr1Q4+FtFnxOFM8LPEQcaV4vHPFi+2bYHiLupIz5XiKbHtYurhGEK2tT8FzHlxlM6fFv/MGc/z5K6l9r2sYZisrCOT1u3DizepxwwglZbV3FQpTbb9AQkUm0isSZRAhHogAsupn4AgsEWyHCkSglUQg8PkFYqLk4iGyyW6d3HC0HLr/8cnfjjTfapItcjBkzxgSncLXvCe8PRQrlBkGPx4abJ7thxCMWhihWq4r4QvQu18x01oegzYWbbHDaDZFMhKO/OfKRqCTCksbIbKh8JNKLUQQsUR2+jhtp5kaZDIkQ1YBzmcrpxYsXu759+2a9/5aCP/fZLBHNxHOsEbPRIXLCkQWWlEw+IO44uRAG2VLR/jn+P19I9XCisrATIQhCi5hbbrmlznP4o2hGfccdd9QrHHv37m1po2DE8frrr3dphKjKW2+9ZRXrxXoaG8L7UxGPkydPdl999ZWJyai1YBHpgPMueO5l60+Kz5JII+tMZtN7/zMKLRwTotxwPx0xYoSNDMQaVMlINtcDGyamiFGQmm+3DZEy4YigoBo6Hx599FFLFSEOsk2L8M/x//mCt5Hvy7ctBpEBBAnVvPiIcnkiM8enpRXSd7zHpNcqJRqD4LnhZjt+/HgbV8dCV8j5IES14CaJrSKYphYiSuCxpfUZhVz0zd1vv/0q+vvYLBFgQDhSOEZwRiNGwydywpECiSuvvDKvr/W7D3bv2cbO+ecK2aWQpsYXVIgvzotFwuq5hKPY3AeTanUMz9WseKZAhl0rtoIHH3zQqu2zRXSECBNS0IqoiChv+p988kkr1Bo6dGjVUsfeIoa/Fz8lRa/KHIVL5IQjCycRvEKgMIY5taS5gycU/gs8SPlWZlHAgrA57rjjCqrCxusIEiMNC0fmk+KHqbbfEI8rRUxEhuntSesejaMTUYKiGNJ/FIrl8k4KEVbLtOeee8486fRKrnZUHE8v9jG6mUg0hk8i3gGKWCiQoVIxGFKfOnWqRQ6DIpBdE49svPTSSyY+c6Wp+ZnZut1PmDDBhIlS0dnxRQEYnDHwh1Wkwg4Z8Uj0kUIlNhZCRMk7tmzZsoI82UJUEoq2Zs2aZdkaOogwpSssKwUReeoOuEf71lMiHCIXcSwGKmaZ8kJls58+wuQYTrCzzz67ztdedtll9pELIVuaGvHnp0ZkQgseRCepT76OPlNUSxMpuOSSSyr018UbBP3cuXNrmxqHXdmMDYHFj/ODSTNsEthchP26hBAiaht+vOGkh+kkQoo4Cusk3Qjwq1PEytqtmejVJxHCkTD2zTff7O68887axs90oMcrmW9TaSp9mZXMuLpcoXB8FqSlCdnjZ0SEMJOTqup8ZmKnDSK0GJoR8lEy/OPR6d+/v3lj2SzghaUPmXqFCSHE5gEXBFe4L9IXN0qtnsggUiTzyiuvmHikW4msHdUlEcIRCGEzr5pHfWSLNAICM5jqzgY91DRhIT+ousPMzPtCc/SoiTLfrgdPLY3CEblsGrQACSHSDNE8vOCkgk877bRIzoxmnUY8kkZHPDLqUHPTq0ciPI4ier4Y0hukEEhRR/mCZifN4kjhzgMPPGCpdSHCiqSwgS2kME+IckKE8f777zebF37wKIpGD23WEI8Uv0b5HpNEJBxFRaJ5+EBp2BqHWd4sjrSXwNNz7733mmVBiDBuhHQcUJNvEcZmH1sRRYP49xGNcWgNhQVq//33t8/po5zv8BBRGhKOoqy+GJp7I8BIUccpcsJiee6551pDeXqVTZkyxXbdQlQLrhu808HRhEJUGmoCKC59/vnnLUOEZz9uBScUzNBKj0bhun4qj4SjKNvig9eE9kRx3fXhm6FHGT7WmTNn2mSiL7/8MuyXJVIC59q0adN0zomqwXpNX1vaQOHxZoRu1Pzo+UCqGi893nrEozb9lUXCUZQMIxoRjez08JzEucCENDtjCmnZw6J6zz33mO9HCCGSxIIFC0w00kXknHPOcS1btnRxhlGEiEeKe9544w2Jxwoi4ShKArFI9TQRR0RjlNrulOp7PO+882wxwvfD34gPSAgh4r5mM7SC1nW0rcPPmJThFfgyaZuHbSquma84oFIkURKkNRgjyIxu+lomCXyaRB7xO77wwgtu1apVrnfv3m6bbbYJ+6UJIUTBbNy40Y0YMcK6SNC7tk2bNpFo6l3uCWE0LOfvQjySxk7a3xg2ijiKonetVLEBVW1MhUmqMO7evbv5f/ABkdrxf7cQ5UZzeEWlePfdd816QwEWE9WIzCVVUPF3kaqmSfj8+fPDfjmJQ6uUKBguyDlz5tgoQfyNaQD/D1XX3NgRj1SPK3UtygkTlogC8VGIcq7XL7/8snvssccsO4QFZ88993RJh7V6v/32M4/6okWLwn45iUKpalHwIoRgZEwfrRvi1HKnHP4Z/EDMb2Xs5DvvvGM3evXdE0JEEQYasFZ98MEH7phjjrFHUqOM2aA5OPcsoo5kj/B0itJRxFHkDRG2N99801K1eGOSYqguBIRy3759bdY1qWvmo5MCEqJUaMPD2FO14xHlWKvZ4N999912Pp111lmuY8eOqRKNHnrztmrVytZr2vWI0lHEURTUZBV/zC9/+Uu32267uTRz0EEH2Xi40aNHW79H2kB069YtFpNyRHR9wxQvqIGxKAWE4pgxY9zSpUttraY3Y9oL+khZUzRDwaMoHQlHkRdUpyGKfLWacFYQNGTIEGs4O2nSJLd8+XJ30kknmY9ICCGqzV/+8hc3duxY+/yUU05xv/jFL8J+SZHBi0ZGytJrmEikKA4JR9Egb7/9tvvoo49MNMZxqkAlQUTj9WzWrJl79tln3f33328+og4dOqhCVghRFeijS8swxu4hFmkblpSeupUIghCN5V621157hf1yYomEo6gXLjA8fKRmJRpzg99z6NCh5lFjbByFM3ghKagRQohKQdUwBTCbNm1yJ554ojvssMOUFaoH7mXYQfDrs7lXhqhwJBxFThCMhPUPPPBAt++++4b9ciIPwrpTp07ugAMOsOgjxnT8Ra1bt9ZCLhpku+22s3OFj0Lk4zlnkzpr1iyrHj799NNt0pVomEMOOcSqrefNm2f+T23wC0PCUWSF3evixYtd8+bNrcG3yB/SH+eff76bOHGiGzdunPUQ69mzpxYnUS94iBX9EPlGGVlbaIvWpUsX165dO1ljCoCNPJFZfI8///nPw345sUPCUWQFfwyexqROhKlG2x7EItFaFvi77rrLfI9HHXWUjcASIptPbfXq1dacOe1VsCI7zGCePHmytdphg3rOOee43XffPeyXFVvx6IMitOkhgtu4ceOwX1Ys0B1M1IEbFxcRgkeisXQomrnwwgvN+8j0hgULFpigbNq0adgvTUSMb775xqLTRKYlHEVmX0bWjhdffNEEDoMHsDUoylg+L/+6devckUceqXR/HuisE7V8+OGHVpVH5EPj9MqbgiSdRPoa/9qwYcPcqFGj3FdffRX2SxNCxGD6C71i8U2z4bzoootszrREY/kgbU2g5LXXXlOT8DxQxFEYTIMh/dGkSRN36KGHqpijAuy66642wQFDNn0f2eV2795dx1sIsQVEFl955RXLVmy//fZu8ODBVngnyg/2IYY4zJ492x54RtUsPDcSjsKmVcyZM8eEzT//8z9LxFQQji0pJnqtUTxD5JG2EKSv0zjCUQixJe+9915t8Qsiht6wmkpVWTi+pKq5FyLaRW4kHIXtrKiexo+n9Ed1IILAlBmijePHj7fimfbt21sBjYpn0gnvO6M89f6nF+wrZCOwDNFi57zzzkv9eNdqFzVSwAi066FZuPzGW6IVKuWRRthhhx2UAgkJxPoFF1zgZsyY4WbOnGnRx65du1qTWkV+09fJgHSZSB9EuBhdSloayECo/2v4E9OwcBHxZUSh+BEJx5TyxRdfmJeDHlaE50W4KZLOnTtb9JFowzPPPGPvDc3DNU81PRDhQEAQcVTkPx1QhEgl/ZQpU2wjj1js2LGjxgVGgP3228+tXbu21vOoyOOPaHVKIV9++aVdDNtuu60tVCIa0IZl0KBB7swzz7R/P/TQQ+6pp54yn5NIx2aOdit8FOlo4v3AAw+4kSNHmr+czANtdiQaowEdMBCMpKtfffVV+yg2I+GYQg8NohEvx69+9SsZriMILTdo7NuvXz/b8d5xxx1uwoQJat8jRELa6wwfPtw9+OCDNjP5jDPOcKeccorbZZddwn5pIgNEPPdJeqwi9MVmlKpOGd999535NegDhngU0QRv08EHH2yN2Nnt4oF86623bJpP27ZtVUAhRAynvjAEgKpdBEnfvn1tZrJ8jNEvHmXdJUMnNqO7T4oEI2IDTyOVuyIe8J5RbU2bJG46eKG48dBQXAU0QkQffKtcs1y/+FjxMOIrV7YnPnjRyJCM999/37Vp0ybVPmQJx5SIRtLTVE/TIV/EDyIUxx9/vFXdMquWAhqaA9PfjZ6QEpBCRAvS0HRJIFvANBL85FyvtOIS8QSxv27dOvfGG2+kWjxKOCYcb+zFo6FCmPhDk3AKaGgQPHXqVCue2X333S2VQlpbAjK+MPKsR48e7qc//WnYL0WUGGGkDyPttRCMrVq1MsEoD2MyChgPP/xwiyDzHv/yl79M5Zor4ZiC3mAUVVAdpp1ucqBND9XXCEhSYJjtqcxEQLZs2TK1O+E4ww1I3tV4b9IZJ4pgpHMFHmVsQRKMyWLXXXe1IAxRx8WLF9t6mza0SiWY1atX246XqjCiGSKZAvL00093q1atMgFJaw+ikghIPJASkPFh06ZNbsGCBSY41JIlXlaguXPnulmzZtkmnfeP64/olEgmu+++u6WqsX+lEQnHhIsKdrv0oxLJhvFkQ4YMsc0CAvLZZ5+1j0Q8qNyUgIxHhgD/lObkxkcwkrLEa0zFNA38ud4aN24c9ksTVRKP/jz44IMPrGF4WpBwTOAkAtIlTZo0cXvssYdEY8rYc8893amnnurWrFlj48tGjRpVR0AqFSpEaeAXRzBScPjtt99awSGdD3bcccewX5oIgXXr1tn0HwRkixYtXBrQXSRhohHDLk2j99prr7BfjggRNg0U0dA+AgE5ZswYa+VDeoUHvcmEEPmzfv1699prr1k/VSqmKYxAMKY1XSl+3KyzmWC2NYVtBxxwgEs6Eo4JEo3z58+3SBML2m677Rb2SxIRSacMGDDAbnoUShElwbxPpSeNxFn0hBC519Vly5aZYOQj3lMKDSmO0OZLeJo1a2abib/85S8mHpOetpZwTAgsajQmpVE00SYhglAwQx/Izp07W1QaEclGg8g0ApLKQLWBCb/JMIUVmlARPqSg6cHIdcKseNZUJr2w4ZLdQ2SjefPmJh7TcH4k/y9MUXEEfkZFkER9MG6SKnvE4jvvvGORFJqJT5w40fqTEUlRRW84MAKUOeUi3DnSiEU2V7TXoTdqnz59bIOVxn59ojAOPPDA2s9pyZTUFngSjjGHPn6kIxEEEo0iX6iyZuIMj48//tgEJBMu8EPSxgdhSYGVqB4IlY8++shsJhpHV9109PLly+0aYDNFxJcJTWyk1MZMFMNHH31kBVRsxJO4jko4xph3333XDLm+9Y4QxTa07dWrl82/9mls0nRsSGgxQjW2opCVhx6AHH96AKrgojrRRQpdeHz22Wcm2LkOsAtIuItS19Q99tjD+nuyAUlazYGEY0xZuXKliUYquCQaRTnA6nDUUUdZKpvICzdU5mJPmjTJzjPajuDjkRdSxNm7SOsUNkZ4wrfZZhvzLXJuY/dROlqUg6222srqDX744QebMEMEO0kThCQcYwhTQpgwQeVWWvpGiXDS2ETBFi5caDfap59+uraAgxstKRjdaEXU4ea9YsUK2wgxIo4G66yd/fr1s/VT0UVRCbbaaivrcELKGiuEhKMIHUz07JSFqHQUkt0yD7yQ3HypxiadTToGAYmQVGsSETVoQeVT0Yxe9aM4sV/IuyiqtQlv06ZNHT9tEjbbEo4xm2WL14yUCg8hqglCsVu3buaFxF/LDfmll16yVDZ9zGjpQ5RSfsjiwALA9BFZAYpnw4YN1kuPdDRj4CgapNiLDQ7Fg0m4aYt48dO/Xc/cv4k+EoWM+8ZFwjFGY42I8vgFUIgwd9F4Hnkwo5ebNNaJsWPH2mOfffaxFCCtKX7+85+H/XJjA607mEQi8ocIDpFwUtAIRiYl0UePVHT//v3tPExDXz0Rj3ZbP/nJT2wIA17yOLfq0RUVA2hAy04Fj0QSS/tFfMHz6McYsqNesmSJ3cQpqnnxxRetMhsByYPzVxEfUQ6xiM8boci5RpSRIhcKt5jJvv/++9u/hYgSW2+9tTvyyCPdK6+8YuKRCURxzc5IOEYcFkUijY0bN7abMzsWIaIIiyBpGB5Ur1KZzc2dhXLq1Kl2DiMgiQKpofKWbNy40fpoqh3PljCRgwIXziceNFfmfONc4rHvvvsqsihiEXX81a9+5WbNmmX39Y4dO8ZyHdSVFnHwkuGHoBeURKOIC0R88JbxoIqVmz7RIaqzWTRJ0+CL5IZPWjHunh9R/qgimRaqUTl3eHzzzTfmAaUYiw0Imw+tiSKOa2O7du2sY0UcRSNIOEYUX31FLyg+l2FexBUiQd4TSWsU0oyktBEFFNjATjvtZAISIclD85rTB5XPQaHIvxGGCERSfEQWaaQc15utEB6Ktnhwb2ctZO0jGhkXJBwjCF4xmoaS8lObE5EkEAI0rPdN69l1e6FAdB0vL8IAbySLKQ+KbdRrL3lQWMUgAy8WaZ8DvPdEqtlAcJ7E6YYqRCEQRacRPSMKiULGZZ2TcIwY3EjxhBGl0YIp0tAnkn6kvicpPj8vJIhGktYm2k77KQQkHQUY5aUNVbwgssJYv9WrV9vjvffec2vXrrXn8b6yQejUqZOJRc4JIdLAtttuW1sww6x0Po+DVzf6rzBluw+qrbhRYqBVZaBIGxSFYM/wFg2iUF5IMveV4hHAE4mI9EKSB6mfOIMY7ty5cyLS9BSvrFmzplYo8jmbYqBFE5sAfNsIRhUCiTTTqFEju98jHimYadu2beStaRKOEYI0HTdLQtZxvwkKUSqkrGnhw4PFlGsD31tQjMyYMcMquIHJIAhILyhJecZh9x5M48exPQcbXqKH/j3hI5Fj4O/hPWHykBf5cfwbhagkO+ywg61xXEdxKPiKz6paD0QlRo4cWdsEFu/M7bffblGLQhps/+///q+JNwz8fO/FF19sC10m48aNc0899ZQ1m+WmRqNZ5p6WCr4e0tNJiDgIUQkhyQLLgyk14KOSwegWDclp38ICTBUugjLzEcVrjIgc6xdFIFFL13KciSJyrDMfXiSydrFeso55Ac97pWIWIRoGywYP4JoiAxFVEZkI4UiV5hNPPGHVd6Q+uHEUumBfeumlVpQyZMgQi1IMHz7chOODDz5YJ5UyevRod8stt7hjjjnGDRw40Ob2IlLZdQ8ePLjg106rEqqqqDjlJieEKC4qyQxiQDRiNmf37sXN22+/bR47BBAQ9aKSO1NQkkYNa7H+/vvvTfjSpigsWI/oHZtNIPrILseHGxzHi9Y4HHuEIsczqjc6IeLC999/b2lrRrxSIBtFEiEcmY9LFBCvwLRp09zVV19d0PePGjXK5prec8891h8MCBufeeaZ7umnn3bnnnuuPcfCef/995sf4brrrrPnevXqZRHKRx55xPXu3btg0z4il9eN6FUKR4jSwR/kfY+ZC/Knn35aRwwhLhcuXOi+++47+xqEDz0muY79g+sz+G8eWEniFElDMLNB/uKLL+xByt9/HnyOr/Himqgs4pAbGBFePkccap62EJWDympGC+PppkAwitmRRAjHUtM6iE0/W9dDGwjUPhMvvHCcN2+ehZD79OlT5/v79u3rJk2aZIUt3bt3L+h3E+Xs1q2bRKMQVViQ6QPIIwhCCeGEkERYBsUUrTL46As7gj/Li0jWHwrZeJCuDX7M9TlZDYSnF5/ZRKgXcGxM+ZxoIJtXHgjd4Mdcn7O++L+FSKyH38ea40UxaWXWQP7to4n8XXESx0IkhSZNmphdDs0RxSh+IoRjKbAoU7V5/PHHb/F/CEk8j9w0WEQZoQYssJkRT97cpUuX5hSO3JSYhOBZtmyZfSQN/vHHH9tDCBEuXgxmgujCO43Pj/UAQeY/splEqPEgqukfrC2FwPcQAWUTWmg/NyKAfA8PxKn/3EcNqWJGKPJgLatPFGK7IQMjhAiXRo0amXgEbxWJAqkXjqRnWPBJwWTin0P0sfAi/FigM72ILNC8wUFhmMmYMWPcsGHDtnj+v//7v8vydwghkgH+TCGECELg6pBDDnFRIHLCkV06O+98YGddairFq/hsO3zfgNt/DR9ztffga+vbEeB/POqoo2r/TQX4rbfe6q644gq3//77uzRCE+Drr7/eXXXVVbWTRNKIjoOOAegYbEbHQccAdAx+zE7+8Y9/jNQxiJxwxAxKhXM+PProoyUfTN9kO5tY9YZ5/zV8xGeUDb62vobdvmozE0Qjqe40w3uY9mMAOg46BqBjsBkdBx0D0DHYTJSmZUVOOJISvvLKK/P62mzp5UIhxUy0MFua2T/nBR+/D68T7SqC6WpEJynvcrweIYQQQoioEjnhiPjq0aNH1X4fRS30fqTxbib0fqOlh6/aptci8LW05PHwb1Ls/v+FEEIIIZJI9Oq8q2A8xzsRhGbeiL+geKQNx5///GfXsWPH2udoz0OEkibgQfg3fd2CYjIfgUyfyDRHKXUMNqPjoGMAOgab0XHQMQAdg+geh61qfLOwmPPwww/bx5UrV7opU6ZYex16IcEZZ5xR+3WXXHKJe/PNN9306dNrn6OtxtChQ+3joEGDrHKayTFEEZkcwzQJz3PPPeduu+02E5TMX8WT+eKLL7pzzjnHnXbaaVX9m4UQQgghqklihOPRRx+d8/+CIjGbcAT6KGbOqr7oootsoksmY8eOtYky9FxjqgINwE8++WQ1yxVCCCFEokmMcBRCCCGEEJUldR5HIYQQQghRHBKOQgghhBAinu144g7jCUeOHGmTYajSZr7t7bffbp7JfFm3bt0WfsuLL77YWgNlMm7cOPfUU0+5Dz/80O2yyy6uf//+rl+/fi4KfPHFF+7uu+82PylTdZj9feGFF+bVzLU+z2qbNm1s6g7gMx04cGDWr/v973/vunTp4uJ6DP7whz+4F154IWuv08cee6zOc5wnnAejRo1yn376qXlzhwwZ4rp27erCpthjwN9E4dnLL79s47b4ORS8de7c2YrYMhvu5zpnzj33XDsW1YBBAA888ICbOHGivd5mzZq5X//61+7www9PzXVf7DHgfX7ppZds3eQcxj9OpwqKGzObHw8YMMD+9mwTuv7t3/7Nxfk4UJCZbTwt/YYnT56cinMh1/sLe+65p3vyyScjdd3XB0W3vD+090MXcBzoVZ1v28FC1s+ZM2e6hx56yDrHUNRLkfDpp5+ec+JdsUg4lplVq1a5J554wm7c9IdctGhRwScZk3M2bdpkJz1vOBXe3EBYUHbYYYc6bYBuueUWayeEeJo/f76J1G+++cYNHjzYhQk3PsYpvvvuu3aT53Ujavjb7rvvPrf33nvX+/2MmcqEGwqiPNuig0A68sgj6zzXqlUrF+dj4G8Wl19+eZ3nfvazn23xdfy8xx9/3PXq1cu1aNHCFpBrr73WCrbCFM+lHAPO4xtvvNHexxNPPNGa7nM9sTDOmzfP5rxnFqSxqTjuuOPqPFfN/qq83mnTplmxHGvA888/b+8f12V9c2aTct2Xcgz+9Kc/WcuR7t27u912283OGbpYvPrqqyY+MjcKvK+Zm8ZsxYxxOw6ef/3Xf3XbbrttnZ7DmST1XOC8J+gSBCF5//33Z13/w77u62Pjxo22EeCcZlIcbf4qsX5ynfznf/6nO+yww+z/ly9f7h555BEbWMK5VFYojhHlY9OmTTUbN260z6dOnVrToUOHmnnz5uX9/Y8//rh9z9tvv1373MqVK2s6duxYc88999Q+980339T07Nmz5vLLL6/z/ddee21N9+7daz7//POaMJkyZYr9HRwDz4YNG2p69OhRc8011xT1M2+66aaao48+uuajjz6qfW7NmjX2e5544omaqFHqMbjhhhvsvWyIjz/+uKZTp041t956a+1zP/zwQ82//Mu/1Jx00kk1f/3rX2vieAy+++67mvnz52/x/EMPPWQ/c86cOXWe57ngMag2ixYt2uJc5DodNGhQzfnnn5+K676UY5BtnXz++eft540dO7bO8yeffPIWxyBKlHIcHnjgAfterpP6SPK5kI1hw4bZz8tcE8K+7hvi22+/rVm/fr19vnjxYnu9EyZMqCn3+nnaaafVnHXWWTXff/997XP33nuv3TNZS8qJPI5lhikzNAkvFnZnRIwIRwdnddJ8fOrUqbXPEXFhJ9OnT586309rIHZqs2fPdmFC2qlx48Z10giEzjt16mTRMD8HPF/4en4muylSWNng7842czzux4Axl0SicsHPYoY6772HSBznBunPQqPeUTkGW2+9tTv44IO3eL5Dhw72MbORv4d0Do8w/lZ6wJIu9RAlO+GEE+w9YPhAGq77Yo9BNjuPP2/oz5sNrvfMyFQUKOU4BOG6z9X4JMnnQjZI02NVybYmhHnd55M1KrZ5d77rJ9cHDzJOwbQ05wLnD+tLOZFwjBCEpQkvcwPJhBvK6tWrLaUFeL4g82vxPZDSWLp0qQsTfj+pgsz0Cn8HaRRS+oVAGP7LL7903bp1y/r/pAKOPfZYS1njbXn99ddd2JTjGPB1eGF4sODi7fTngIdzgZQWQiPz9/j/T8p5APjfIJi+9eAJJdXJeUJD/kmTJrlqwXEmHZdpJfDvw7JlyxJ/3Rd7DHLxySef2MfgEIagcOK95rrHEzdixAgXFcpxHEg9c92Tgr3uuutqz/vg70jLucDfwkYxl2c7zOs+Cuunf68zfY8777yz+V7LfQ+QxzFCfP7557aDyLY78c9RfENxBAsquzl8X5lRGiKefsENCxa5Qw89NOffwevDKJ0vLATs3PDyBOGCwvPCjoyLZM2aNeYNw0eDv6aQMZBROwZ83SmnnOKaN29uu8bXXnvN/C34XfAI+Z0lP4fzINPvFzxnknIeAMZ4bkZt27at8/xBBx1kO3GiEvzcZ5991m64RG0yozKVgN/Z0LWb9Ou+2GOQC/zi/L2Z1z3+cTxyeLw4fnjn/ud//sd+/gUXXODCppTjQCHQSSedZN5e3ld8i3g9KazA1+aFWJrOBS8EswUOwr7uo7B++vc61/Eu97kg4VgPRALyTX0iakqdHOPD7Fz42X5+8Gv4mKtSiq8tZ8i+mOPA7/evOfP/oZDXxwJA2gWhkFldieEYc3gQIhBUkt1xxx1lE45hHIPzzjuvzr8pcuFGyc2DFIYveuHn5HPOxP08gEcffdS98cYb7je/+c0W58Kdd95Z599UFFLBee+991rkJrO4otwU+z5E9bovhnKei4iF8ePH2+Yps4jqpptu2uK9/u1vf2ubRiqKc9lZ4nAcKCQJwnhbIkyIIQSkrxROy7nAukO1PZG3pk2bbvH/YV/3lSTf9dOnrHN9bWaWqlQkHOuBOdRUJ+V7Q8tMFRaKP8Gz3Zz9ieG/ho/42rLB15bzYinmOPD7s/nXMv+OfEAk8X250tSZsNtmwaDKmFGS5biJhH0MPKTkqDBFPHnhyM/J55yJ+zFgBj1VlaTs84kkcNMicsPGYsmSJXlVspZCse9DVK/7YijXuci59sc//tEdccQR7pxzzmnw69mkcG1gUWGkLGnLMCn3Ncnax0Z47ty5tcIxLecC7yde7UxBHZXrvpLku356wZjra8t9Lkg41gOpIfot5UOx5tdMwcMJkC2s7J8jHet/H0UTlNoHUxVcqKRuyvF6SjkOGHrr+zsKeX1EHrbffnvXrl27vL/Hi0V6YJVDOIZ9DDwsAJwnvMfB30eLB9LZwah35jkT52NAb0P6WhJBLqS1hH/vg8erUvC3cIPLpKH3IarXfTWPQRC8b5xnpKNpKZVvD7pqvtfVOA7Z/r7M6z7p54Jf/7EkFdKTNkrnQinku34GU9dk4TK/Nlh0Vw4kHOuBNyPfJp3lgIuDxZJ+hZnQPJRGwFRtB3tU8bXBdCz/JrRfzh5WxRwHfj/eHF5L0NiLT+cf/uEf8uph6H0wiCIM4tnC8LnA65irgCJuxyAIKQcqKYPFAvQGowkw5vFgKodzxv9/nI8Bfwd9PTF+X3PNNQU1s/XnQbbiinLje7RhrQgWBDT0PkT1uq/mMfBQCEQDb4TQzTffXPt3R+29rvRxyIRNIX0Mg+9v0s+FzG4ahYjtKJ0LpZDv+unfayKsLVu2rHP/RLwHK9vLgaqqQ4R2BJktRTCBc+EHbyLvv/++XYB4XTy06SBSQQPYIPybEyrMohD/d2Dspdu957PPPrPWIkQOgyKQmwWPbOBt4aLJlabmZ2bChTJhwgQzDZcr2lbtY4B3JZsv5eGHH7abSLAwpH379iam8D95+BrOBSrqMI/H9TygxQQNcHfffXdLXeZKuWQ7Dzh+NIxn85DPpJ5S4fokAjRmzJg6Nz7ORRZzHwlI8nVfyjEgMkI0mRskzcBz3fSJIvE7gpCyxZpCmrKQKV1RPA7ZzmWK4ng+eN0n+VzIt5tGFK77coHI4zgE7Qf5rp/77ruvZYTGjh1b59rgvCELlVlcViqKOFYAbu7B3mOMTWPXAIzP8txwww3m3wieFPRdInrEzZJO8VTNYfhmB86/PdxAhw4d6m677TZ39dVXmxcIXxCjnfAEldJLslyLBhcvlc0cB9/xHhF49tln1/nayy67zD7yd2ZLUyD+ct0M7rrrLhMbrVu3tq9jV85CRauCSy65xMX1GLBY8P6SnmFBAPxbLKTcPBCLwbQM/h+qjVl0SEvMmDHDzrnf/e53dg7F8RhwAyD6hN2Acz+zLx2ROC+KqaSkrxmLKTckRAg3KG5KTFPIZtIvN9wMqe7ElM/izmg02oRwTnI9p+G6L+UYUNxCpIhimAULFtjDw3HwE0NmzZplEzG4GVJJy/nBOrFixQprxRV2irbU48C1zFhNotAIA44D/l6iSpk9EZN6LjTUTcMThes+H5555hkTwD7FzDmM/x4o5sKKxXHi+Dz99NN2Xhe6fjKGEIsHmy/877T4IpjQs2fPrEVFpSDhWAEoXgjCiewJCsdskJqh1Qoza1kc/czaiy66aIsdODcbIk2caJyICAi+Ll8TcSXhxkeqiYo3LhoiaPQb48T2QqghiLgQesf0nm3cFnAz4WbDBcINhAsQMzRV1WHvNks5Bt7TibePxYTzgIWXGyNCIvN4UIFNlTGima+nfxrp3XwLiqJ4DEjJ+8X1nnvu2eL/sS944UhT4IULF5r4IiJFxAUBzQ2KTUW1+I//+A+7gbFZ5EbBzZ9IKam2NFz3pRwD39cvOIfYw/d64cjPo/AKUYEg4VggqrAxIFSiQrHHgWuWc9kXBfIzENOsaZzXaTgXgt00GCXLepiNqFz3DcH7E5y9jUj2QplCrlx/XyHrJ/eL66+/3noas5YgMimkOvPMM1252YrxMWX/qUIIIYQQInHI4yiEEEIIIfJCwlEIIYQQQuSFhKMQQgghhMgLCUchhBBCCJEXEo5CCCGEECIvJByFEEIIIUReSDgKIYQQQoi8kHAUQgghhBB5IeEohBBCCCHyQsJRCCGEEELkhWZVCyFEFZg3b54bPXq0zdZlxvK2227rmjZtavOVe/fu7bbeeuuc38uM+7//+7939913n1u7dq0bOHCgO+KII9yf/vSnqv4NQggh4SiEEBXkr3/9q7vtttvc2LFjTSy2bdvW7bnnnm7Tpk1uzpw57vbbb3djxoxxN998s9ttt922+P7Vq1e7FStWuKFDh4by+oUQIoiEoxBCVJB7773XRGOLFi3cDTfc4HbZZZfa//u///s/9/DDD7thw4a5yy+/3L52m222qfP9M2fOtI/t27ev+msXQohM5HEUQogKsWrVKjd8+HDXqFEjd9NNN9URjfDTn/7UnX322a5r164WVRwxYsQWPwPh2KRJE9esWbMqvnIhhMiOhKMQQlSIF154wf3www+uV69ernHjxvV6GGHcuHF1nscLiSdS0UYhRFSQcBRCiAqB6IPWrVvX+3X/9E//5HbeeWe3Zs0a98knn9Q+P3v2bEtnd+jQoeKvVQgh8kHCUQghKoQXgbvuumuDX+u/Zv369XXS1DvssIM7+OCDK/gqhRAifyQchRAiQpDahm+//daqro888kjzQgohRBSQcBRCiAqx00472cePP/64wa/1X+MLaBCN33zzjfyNQohIIeEohBAV4qCDDrKPc+fOrffr3nvvPUtR/+M//mNtEQ1papp+0+hbCCGigoSjEEJUiOOOO8795Cc/sWppKqRz8eijj9rH7t2729eTrqYwpk2bNtY0XAghooKEoxBCVIi9997bDRgwwG3cuNH9+7//e53CF0Ag0gB84sSJbvvtt3cnn3yyPb9o0SK3YcMGpamFEJFDk2OEEKKCnHvuuTZekOkxgwcPtmKX4MjBDz74wFLS//Vf/+X22GMP+54ZM2ZY5LFdu3Zhv3whhKiDhKMQQlSQv/u7v3O//e1vXefOnW0m9YIFC9z06dOtPyO0atXKXXXVVSYmPfgbW7ZsWW/TcCGECAMJRyGEqAI0AQ82Amcc4fnnn+/Wrl3rampqap9fuXKlRSF79uyZ9ecwfhDhKYQQYSCPoxBChOR/vO6669znn3/ufvOb37h169bVRhtB/kYhRBTZqia41RVCCFFVZs2a5ZYsWWJjB7t06RL2yxFCiHqRcBRCCCGEEHmhVLUQQgghhMgLCUchhBBCCJEXEo5CCCGEECIvJByFEEIIIUReSDgKIYQQQoi8kHAUQgghhBB5IeEohBBCCCHyQsJRCCGEEELkhYSjEEIIIYRw+fD/q0yd2eVujywAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAJvCAYAAAD1FlDHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydBbhUVffGF90ipYCCdEtJiVKiYnfrZwf2Z392d3eLfzuwExUxQCWku5EuQUAa5v/89rAv586dvmdmzpmz3ucZr9w7ceacffZ+97vWeleJUCgUEoVCoVAoFAqFIgFKJnqCQqFQKBQKhUIBlDgqFAqFQqFQKJKCEkeFQqFQKBQKRVJQ4qhQKBQKhUKhSApKHBUKhUKhUCgUSUGJo0KhUCgUCoUiKShxVCgUCoVCoVAkBSWOCoVCoVAoFIqkoMRRoVAoFAqFQpEUlDgqFAqFQqFQKJJCackTrF+/Xt577z2ZPHmyTJkyRdauXSs33nijHHrooUm9nue/8MIL8ssvv8imTZukZcuWcskll0jz5s2LPHfo0KEyYMAAmTdvnuy6665y2GGHyZlnnimlS+fN6VQoFAqFQqHIX8Xxn3/+kddff92QuSZNmqT02u3bt8sNN9wgP/zwgxx33HHSv39/WbVqlVx55ZUyf/78Qs/9448/5Oabb5bKlSubv/fo0UPeeOMNefLJJ13+RgqFQqFQKBTeQt5IZDVq1JBPPvnE/Jw6dapceOGFSb/2p59+kokTJ8pdd90lvXv3Nr874IAD5LTTTjPK4m233Vbw3Oeee04aN24sjz76aIHCWLFiRXnrrbfkhBNOkL322isD306hUCgUCoUi98gbxbFs2bKGNKaDn3/+WapXry49e/Ys+B0h6D59+piw9ObNm83v5s6dax5HHnlkobD0scceK6FQyBBQhUKhUCgUinxF3iiOxcH06dOladOmUrJkYR5NnuMXX3xhwtWojDwPROY91qxZU2rVqiUzZsyI+RkrVqyQlStXFsqpJKzerFkzQ3oVCoVCoVAonEC4Wrx4sXTp0sUIWl6AEkcR+fvvv6Vdu3ZFfm8VTAgfxNESv2jKJr9zEsNIfP755yYHU6FQKBQKhSIV3HLLLXLwwQeLF6DEUcRUUUdT/ezv+DuwIetYz6WyOxaOOuoo2W+//Qr+PXPmTHnwwQfl8MMPl86dO8see+zhyndRKBTJY+PGjbJ69eqCx5o1a+Tff/819zIPUlAsSpQoYfKZeVAcZ/+/fPny5v7nUaZMmYKH/XepUqUydvxbt26VLVu2mLmJn5H/v2HDBvN97HfiJ79zgkgL36NSpUrmUbVqVaNs8OD/NSKiUGQfM2bMkCVLlsguu+wizzzzjNSuXVu8AiWOIlKuXLkCUuiE/R1/B3YCjfVc+7xoIJzNIxIonUzmdevWlSpVqhTreygUiuiuCbgkkC4S+bAkClJYrVo1k+tMgRv3on0wcfMTchWZzuJHbNu2TdatW2fSZZwPSDOP5cuXm42tBd/dzl9EVuz/Qyo5bwqFwl1QrMum9ZBDDjH8AMTjF9mGEkcRs1hECzNHhqadoevdd9+9yHPJiUwVDRs2NPmRShoViuIDIrho0SJZuHChyQuCHJKKAlmyk68lPuQXWyLEHJBrH1YsxfCRpUgPUpYpoIDy/vE+g40wc5qTZP/1118yZswYo3IC1FTOH/MXG18ederUUYVSoSgGiBQsW7ZM2rZtK3vuuadMmzZNvAYljiKmMGb8+PFGmXAqChiJE4aqV69ewfMAF7JVq1YFz2NSZZdOODodsGiBWbNmGVWDyVehUCSeYCGHkERLFiGJgPuW+6hRo0YmqdySRULMqpIlBuSP8xc5FzFHQnCdhJJFDgs0rgfndrfddjMkkvQbHvw7k+F6hSJfsH37drMh69Wrl6fvmcARRyY6pF8mNKswcJGw0mG3b30cyXcaMmSIdO/evWAHjTpYv359U2kNSbQX9tNPPzUTJu9THDAhMwF36tSpiKKpUAR9QoWgQA7tg80av+c+huCgIFrCwmZMCaL7YGNNSJ+H3Ug7r48l8DzGjRtXcH3Iz+K62OuDUqnXR6HYCYSjBQsWyP777+9p0ph3xPGjjz4yuTs2xDxs2DAzmYHjjz/eqA0vvfSSfPvtt/L+++8X7KYhiwMHDpT777/f+DQSwoEMMumde+65hT6DNoS0Mrzmmmukb9++Mnv2bGM8fsQRR0iDBg2Kdfzt27c3IbVRo0ZJ165do+ZEKhRBAPk9S5culTlz5ph7DOsqwqcQFxQsyAdKIj8JlXp9os13cF0ghzw6duxofocCSXK/VYTJmxw+fLj5G5EVNuIowvyEiCqRVAQVc+fONe2S2Yz5YS7LK+IIGWSiskBB5AEoY4c4RgMX6qGHHjJdYSCfVFG3aNHCEEQURidQIO+55x5jrUObQUjmGWecIWeffbYrk+8+++wjI0eOlBEjRpjP8opvk0KRaaJIAYslikykRAZQq7gHyfvjJ5s9QjmJAGmxeY1+AcSY78tPqr3zAZB6HmyKAd/LKpP44xLpIbJDjjf5XKQFsRmguluhyGeU2eG4wH0wYcIEs4mCd/gBJUJOvwlF1kCe5AUXXCAvv/xyEUNxFjz+Tugt1wn7CkWmQHTAEkV+kh6C6gRxsGoURCKVe4CqYNJRrIWWn8BUzINzEBT1je9LsY19WLLPgsp1t4+gnA9FcFBih70X9RVsiimGiYZ4XCFXUFbiQTBp2uIbVBcmUyxBFAq/kwSKWSg6YzK0aSSEnpkQIYpY4VDYkg4gjYRFiSyQ5sGOXgmHv8BcZ30o+Um6EIA8UhHPQzfTinyYC//991+Tp40lH2q7n6B3oMcxadIkE8LDPDxWqF2h8CpY+MlPpOiLBwVgFSpUMGp6jx49jLLo1rhGaeS9mIT9SBghTYRyIc5+yHPKFGyYmsWVc4J67HxAHDlHPHRzoPAjtmzZYuYqxrP1afQTlDh6HOQG/fbbb/L777+bnEfN/VH4YVIk/IyySH93OpagmJO/g9cpqqLbRtp8JpMwSqNfiQREie/hJaPfXILraEPVzHtsQrjGkGsWW1IdINiWROJ+4ddrrwgOtm7dauZExjW5vURK2CD5SUn3z5EGFEyG++67r6kQhzyiPKLYKBReAos5LbIgi1TPEmaExFFhC1nEhiWTi7rNjUumcEbhT7DZYO7jAclmjGH4btsq8ndLIiHfSiIVXiSN//77r9nwkN9oi+D4vRJHhatgEkRt/OOPP8xORYmjwguArEEWx44da37ybwgiIWjURappsw0lC8EA19nmPFqllkUYEskcyd8hkCzOqkQqvIBt27YVkEYUdD8XwSlx9AmYBDEYZ6DZSkRVVxTZBmMPyyvIIhYSLNJY5Bx00EFGWcxkqzyFIhqYEyGHPAj9MTdCIhmbEEmr7rDh9pOqo8gvlCxZ0oxR1nK/EkYLvYt8BDvYMArF5JwQtpJHRTZAPhlEEcKIMTeJ3eTfUhGoXY7cgQ21up3/GbQ5kjmRB2PUhrMZv2vXrjULNyRSz7MiW9jmsJjKl2ihEkcfAm87TEPpwtCtWzfdRSsyApQbilsgi+Qtsihjm0PHpCZNmujCmyHiqHA/nE1xllUhrV+ohrIVmcb27dsL8m/zyRVFGYcPwSQIYaRYhg4ztCcMsn2Hwl2gKP75559GYUStwZD70EMPlTZt2uTNjtmLsCkoanjtPli4IYk8OMc2F9KGshnX/E034Qo3SeO6devM/zO28gl6l/gUtCKEMFIwg08e5skKRXEmOdRFVGy6uJArRvtLQtG5KHJxG2t/HJLrQ5AqB/RJKnkeZSIagaHN6TnnnGP+/9dff5X999+/CPGkA8WCBQvk8MMPly+//LLI6wAKXPXq1WXvvfc2z+NvXO9Yn2Vfw3vTuvXWW2/1TXoCC/fDDz9sxjWbbDxxBwwYYFrEcp4pqoFAWnsfjOkfffRRY4GGQsm8euGFF8oVV1yR8LMoEOPcDB06VP7++29zvk477TS59tprYxKHe++9V2655RZp3bq1TJw4MeFnYHDP8XD98St98MEH5cgjjyz0nI8//lj69+9vjkdzjnNPGitVqpR30Rkljj4Gkz8VrPkkgSuyCxSXMWPGmEWVEB5pECeccIIpdFEV25sgxPrOO+8UIY4///yzIY2xfCDvuusuY7gOWaLAiT7R//3vf+Wxxx6Tzz//PGrLM/saSBSE6Pnnn5evv/7akBw/qCiYwvMdIHFsgvjO0YpqiOJAtE888URD4q666iozv/7111/mnCYCqUNdunQxRO2yyy4zryUidPvttxv1/rPPPivyGt73vvvuS8mb96yzzjLkEcKIRRvHi7F+gwYNzN+5ThDVe+65R0ljDrF9R8cjrm0+zqNKHH0OqxTQuogJhclRw1yKRGC8QBbJX2SSY7FkESIsrfA2DjvsMPnwww/lqaeeKqRMQiZRiSFL0UC6QadOnQr+feONN8qPP/4oRxxxhBx11FHGgzMyFcH5mvPPP19q1KhhiCZE6NRTTxWvg4p/2lzWrl1bRo0aJZ07d476PNQhlDwU2LfeestsqDAbtyFu1OB4BODNN980Gy/INfcS4P24t9544w2jdFarVq3QayB4pBzx3rGumRMcE9cL8tuzZ0+jKqKMDho0SC666CLznEceecQQRq6VIvsIhULmpzX3zte1OL/00wCDvB12sOPGjSsYvAqFE4wLwtEscs8++6whChjKo64cd9xxShp9Aggbrgrff/99we+oHh44cKAJjaaCAw44wIRXSXeBMCXzfEA6gx+A+gppTARIN7m9hI5t1TUkGSJNGJu/Qf44z9FA9w8QGcKHuFobFid++eUXc72eeOKJpL8LaiL3sCWgkBJSlgi1A4SDBx54QJ588sm8C436qf/0hg0bzL/zlTQCHV15AiaoDh06mJBJMrkyiuCAxY4cr2eeecYskExsEEXClL1799ZUB4+AhYYFP9GCQ1gSK65333234HfffPON6QN+yimnpPy5//nPf8zP7777LuFzZ82aZX5CqjIBwuiob8k8bDjQDfzwww8mXA35wjmAe4Lv+L///c8oePyN+4jPRa2HrDk36NxH4LzzzjMqPvPw+++/b0L75Ec6w9EojJdffrlRBckzTRYQxsaNG5vwNsT97bffNp9FiBxcf/31RiFGjVTkhjRu27atyCYhH6Gh6jwCihEDF9WRnXazZs1yfUiKHIKFbuTIkSacBVls1aqVHHPMMSapPp93w34FoVAISjJAWSTUzHVFFYNE0CCAzj2pgvEAObKk0AnIKGQJtYucOvIF+TzC25kAn9GnT/wiIgvIk83tKy4oJCFqc/TRRxvyd//995uQ8NNPP21C0JB0yB/ha8La/A5fSMKRnI9DDjlE7r77bkPqyBe1uPnmm02+oRMvvPCCUXghq6nipZdeMjnI7733nvk3mz+iBtzjn3zyiYkiKLJPGtevX2/GT6zCtnxD/n/DgIEk8EwqAgrvg8WN/EWS8/l/jLoppIjMsVL4FyeddJIhDRR0QFr4Sc5jumDBgwhF4sADDyz077322suQ1EylNZCj7QzBx0MyIehkARlk8Sdv0J5HVHk2Xy+++KIhzE2bNi3ohc3vnQSS88e5Qe07/vjjzfz71VdfGSLJcVIwA0gxuO2220x6QDpuBaQKULAzadIks0mgmA3lFVXzmmuuMceAykm4GkJDGgrfSZE5bN682SjlbCyCQBpBML5lQMkjOyByczR3LRhAFSIkjUUTk1nHjh0NYdTqSn+AaAFkBBKSqBIT0gGpI/UAwsNrUaLSBZ+72267Ffk9ubBELlgQyd8jjOvMn4PAXHzxxSZkinL53HPPFYRt4/0tFtjcRJLVbMAWBUUW/KDsQhzZhEEcLQhHUjkNYYA4UgADceO78jwUfYgnpO6GG24w7wuZxHqH1xGqTheMD6zYLLAXokqesDoq5nXXXWfyVTkGjp9rlqyKq0gdZcuWNfdHPlZPx4ISxzwG+Trjx483JAJLDUV+gnAlZBHSyGaBylrCV8mGPRXeAAqRfSQDSMEFF1xgSAO5bRRKpAOK6ghJ0w0oEuTPOSuxnYA0EdpF7RoyZIh5QF7xQmTsxfpbvGgIcxUeiMkA8uzWYo16B9GNLG6xZJrCmGigtSFEEAJPviKkjs06IWyKbKhWxxMTyyvUQELNFMQsWrSo0IaPczl37lxz3ni/ZEFRDuFwqqlRvAipc55JSQH8PwqxEsfMzLulS5c2YyBIpBEoccxjMFGRsEuxDAPbKpGK/ABKk+0ehLLBAt+9e/ciZs6K/MSxxx5rbFjYNFCIkS6osgf9+vVL6XWQQAiVNcdGKaRAj1w7bGZi/S2eVQy5ernIcWSzRYjcFsdYWIKXKKy8bNkyo5byPNRbiDhKpA3/s6HjvW1YOZqhOJv7K6+8MqVKa+uzefrppxccL+fZSYhRQRXuYsMOu6agEUYLJY55DgoibMEMg1zD1v6HLVRAYQR400EYUzESVvgfqFvks6FURXYPSRb4AlLU4SQfqSBSHeXfKHcQx1h/82KOIzmjWNm8+uqrBZZD4JVXXjGqkjPEzoaNPMOaNWuaByCcT1U6ZJb/Z/MGaUQBJLRPNTSKMMQ5EoSveS55iTwvWWCthVMC1j622A3FFENwC4pl3DxPip2kkfSGIFRQR4MSxwCAHsOQRwa7wr/gGo4ePdqE/QhtkecEYfRDBw9FZkAnkWSBZQ+kwuY+QxohaUQmqASm6CMVoMxBhjAEJ2dv8ODBpnsNbfri/S3bOY6QK4pYrHr4xRdfFHSD4djIAUalO/fcc+W1114z54cKdaqqMVqnet1ZrY7CjypKV5g77rjD/I68Qs4vnbwohCEcT8HSt99+a+yO2NShNqLqcp6drgZWYbTh5WRB4cvJJ59cYMdjQ9OkCNx0000F39W2nlQUH6yhmzZtMtcwVoemIECJYwDAJEVlrVOxSnWRUOTeuJtFnqpMVBlUEc1hdK9PtBdARCCZwph0QTWvs7CDnDxIS7Re1cmA3K5PP/3UkC+Ms0mVgMhQCBPvb9kG+X/Y3zh7OfMAZ5xxRkHxGDY5pPNQbIIyCKF+/PHHTfV6IlBNTZgdIkkREPcpKi7fHX9F7mHyEQnf2xaHxVGraPuI0si84AQ2SXwmNkJ8JrZC5L8q3AHqc4UKFQJNGkGJkLYZyQnIDyKx/eWXXy6UU5NpkEiPasUu1YZZFN4FKgkhMMKRLEQHH3ywMXtXFAabIcKEnCPdFOUOKOAQVCyCUvlbkMYpBBJVEwICYQ+KhYufQdEW18ntjjwbk5i3csUV4kFHbMBAlSBqA+EW8pBSqeBTZA8k1xPeoyqehHsqaK3NhyI/QSiTMBhqhl9axjE+yenj2LHu4aclhvH+FlTYECd5kuQ1ki+HyszDL9c8iKSR62U9PBXacjBwYHKimIL8I4orICgK7wDiAGEk1EQnD0JPeOGxACtpDAZxdLOVXqZBWJfiCx5UdxOeTuZvQQb3MTmPbOJRHHG+oCqbnxoA9CZpJK0g6OFpJ1RxDCDIoSJUzWRO1R3KoyK3gCzYwhfIA2E9vBh1slJ4GeQA8kj1b4rwJt76PaI+sonHyoecS1W2cg8KECGN5OuSVqAb951Q4hhQkK/h7D6gyB3IO6X6EZ83W/ii3V4UiuBs5IkAoUJCHjFAhzhSQKP5j7ndzEMaIfZKGgtDR2WAwU0B2FXR2QBLCrV2yW4YBMsPlF8KlbADUZN2hSK48zE2PhRMQCCXL19uFEkIpRKX7BJG1GCiPRrxiQ4ljgpzkxAepQsJ4VENk2QeVMphqUFeEwrjvvvuG9guBIqd9yG5VFokEVxAEK3dC+FrKrApoCECEVSz6WyCanfm5CCbeycDnaEUhihCXEjMxotMjcIzBxYC2sPRUYJq6UsvvVT2339/JY0KQxhR/JU4KhgDkEUiEczLK1asMCqknwqn/NhgAdLIXGyjcYroUMVRYcAOC/IIcaTamg4IGh5xD0z4I0eONBXT7GTp8NC6dWs9x4oCQBBYvFi4dFwoAHMFG0wIjbXvscUzOkbcA/cdhUl286bnNj6UOCoKQC4N5JHJSW8cd028afu1ePFi00Gjb9++mg6giLl44emnRREKC+ZixgRzBqoj3WcIZUMgdZy4A/JKIY2sgar4J4aOOkUhWDNa1A8c7SnW0MkpfTsH+gFT/IJn23nnnZeTlmsKhcL/YB6mYYMWz7gPVEbWPCWNyUEZgSIqqLSmgGPp0qXG81Fz8FJXGemHu3r1ajnwwAONV6aeQ4VC4XbxDEQSOx/d4KeePsQ6x/nU9JDUoPRaERXsYvF5JCwyatQoTcpOEpynX375RV555RWTYH3RRReZSnUljQqFwu3iGex7qARGfYQEaeeZ5Odp8kZ1XUsPukVRxARhEdoT0tf6zz//lH322Uel/DjAuBeVESNviot69eqlhFGRNFA87EOhSAYoj6TBELomuoH6CKHUeSc50khalp6r1KHEUREXVPRR0EHoVREd7PIh1oMGDTI5Rxh516tXL9eHpfAZWMC0Y5AiVbCZr1atmimegTyiPhK61gK86ECZVdJYPKh8pEiI3Xff3XSVYYJip6bhkJ2gCvadd94xVdNt27aV/v37K2lUBB6vv/66UU7nzp2b1PMfeughadGihYYOiwFy9VAfSZEh+gGJ9Mr5fOGFF0yhpRc8glFpScVS0pg+lDgqUmqRR/7epEmTcn0onsCUKVPkueeeM2rsaaedJkceeaR2G1AUy46Hggd+RsMdd9xhyBhm0NHQpk0b6d27t/gNFHg8+OCDcsMNNxSkwljiaR+oZ82aNZPLLrvMFOxZRHte3bp1pV+/fvLUU0+Z8+k3ML+eeOKJ0qhRI1Ptiwl4z549TT/7SOANyznBExYy1LBhQ7n44otl2bJlxlYN9ZF522L06NFy1FFHmTQk3psxw3lKBNJvDj/8cNM/u1WrVlGPhTQdGzaPxNlnn22O48UXX5RcALED0spPiLUWEhUPevYUSQNSxKQxfvx4M8Hz/0EEE9A333wjY8eONSoJhJFJW6FwwwA8aIr+a6+9Zgo8Tj311CJ/u+uuuwwZIndv6NCh8vzzz5tWnRMnTjTEJ/J5WGAtWbLE9ID/73//K4899ph8/vnnJhrgF8ybN88Q3rPOOsuQYEKrH330kSF8EK8LL7yw4LkQ7mHDhhmiyXfkuz/zzDPmHP3666/G/ouNBik0NHfgPYge3XrrrSZUO2vWLFmwYEHCY+JYII/Oz5s6dao0aNDA/J3rc+2118o999wTNd0CQs97cD0uv/zyrObxcj9xDhkbEEZVGl1ASJETTJ06NdSjRw/z02+YNWtW6PPPPw9NmzYtFDQsWbIk9OSTT4buu+++0JgxY0Lbt2/P9SEpQqHQhg0bQpMnTzY//YotW7aEVq1aZX5Gw+233w6jDC1fvjzq31u3bh3q1atXyAsYMGCAOdY5c+YkfG7btm1DZ5xxRtTXjxw5stDvr776avP7d955J+7zwODBg0MVKlQI7bXXXqH169eH/IytW7eG2rVrF2revHmh3w8bNiy0adOmQr+bPn16qFy5cqHTTz/dzE9r1qwx60ytWrVCxxxzTGjbtm0pfTbnrkSJEqGff/7Z/Jv3bNiwYeiFF14oeM7dd98dat++fdz3HjVqlLlWXJdsgWNdt26dua82b94c8uO8NdWDXEFD1YqUQQgFpY38JWcYJN+BwojNDsorNjvt27fXCtgAgNDoJ598Yq49P52hUi/DhrZnzpxpQoUUTKAGnXPOOUaBiXweCtJJJ51kwpHYvFx55ZVGSYrEmDFj5NBDDzXPQ7WiExIm9+mAJgNEMPA6TQYHHHBAweuSeS7KGgreW2+9JX4GKhm50+QtOtG9e/ci6TFNmzY1oWtSabiuqI3ff/+9CVtfddVVRnlLxYqGMYBqRwEO4D0ZS3YMoUQ+8MAD8uSTT8Z13cCVgxD5Z599JtkAx0y4nu9LREj7T7sHDVUr0gKT01577WUmLW7QfCZQhNEITVM5TZjnsMMO00koICAs9+abb5rxbcc51fNnnnmmWbT9AMggYdz777/f5LhBgMlFI+wY+TxCjzwPIkjuGz6ub7zxRqH8O6ymII3XX3+9uQ8In5Jb+fPPPxvv11RA+BR07NgxqecTWgUQ22Twn//8R2666Sb57rvv5IILLpBMAXISLbcvGiBPydiaQe4gPrwv4XbmoJNPPjnh6xinbG4gjxaE7rlmkEdSjGbPnm3IFOfn8ccfj1uBDWFs3Lix3HfffebBNWMT/fTTT5u/Mw7YSJCHmQhcZ+6pbIKUBp2v3YUSR0XagDSSk4XP4x577GGq5vINLJwffPCBmXDJD0p2gVP4Hyy+kEYWYpt3aH9Cppo0aWIImFvIVK9cNjuvvvpqwb9Xrlxp/h1JHCGXVg269NJLDdGg+IvcNZsjeMsttxiSRL4hkQcAiW7evLkhEJDHVIDKaT87GiBN5OihekE4yGWkeviII45I6v3J8UNltYQzU+DY+vTpk9RzUUttbmA8XHPNNQXFJIyJ4447zuQvJsLbb79tVEDOlcWMGTPMBphrBVnEYo15m2pnVMx333037nu+9NJLcsIJJ8h7771n/k3+KI0NIJGo8KibyYAxwz2VabAuodI682AV7kGJo6JY4OZksRs3bpz5fwhkvmD69OlmUmQ3Tp/pOnXq5PqQFFkEi6JVGiPB7yELxx57rGufBznIhME+FlFOoBgyrqlmhhxaQBadoIgB4kihBcSRxRjl7phjjikgjYD7AleBl19+uch7JgIkloIFQt7REBnCJsoBMUplnuG9M11d3a5dOxMOTga1a9dO6nmQM8garg1sXjn/iVKDIOJcx3333dcUozhtwwgtMxYoMIKIUyVNoR+bIEgmUaR4Yf+//vrLKM4U7BA2J9R9xRVXGILLdeF9CVdzvxASjxx3Vr1EReVYMkXqeH/OEyF6bViRGShxVBQbe++9t5nUyH2CPCY7MXoVTIiEdrAeQklhoUTlUAQLkJpYFc78nr+7Pe5Y8FDy013woqWMREYCbK4aarqT5EUSB8KTHIf1YrRt7bgnItGyZUtz/PPnzy8UIi0unn32WWPDA7nET5bPTvXcQJqcyjAEB5I7YcIEufnmm02OZ3HBOU02TzNZkEfOA6AUHnzwwcbBYfjw4VGvMxXVkEEU1oEDBxaqHrbzl61cZzNMc4fjjz/eEEfmu3jE0RJwZyrCgAEDzGf+73//kx9++EGuu+46k0vKsbGR4FpFqrD2fspUahOEGDLM91PSmDkocVQUG0wCFIqwcJAHSL6TX+1pyCvC+oJwEkn/+++/f17nbypigzy6eIpjsnl2yYL7h4UPkhRt0bN5aCgq0QCpi5arFst+JJHtTzbGve21jCKIQhSJLl26mLBqusBqhnA3aQVOhRSyiHG/W4DwY7qdDCBs6VjCoD5SlEckJJK88x3JMyTsjA0PqqAT/Bu1EPJtwTiz52Xx4sXmtZDOZK47yjKk+5FHHjFzPaFujo9Ntj1WlOFI4shmBaUxExtxCCP3D/eAds3JLJSSK1wBkw25VDz8ShpRS8gpIreNHT4hPSWNwQXFL/EUR3K8sgnCgWDatGlRSSPj1z4nHZAH5wTV2JBZm48H4WHRj/b5hEghu6l2TbKKWjJV0unA5tNhCG4BuSFfmcrgaICYEybmu0DwrLk4Ydl4aQ0Q0mQeXKd0YDcMkUU4kCWUSAglHayi+etS0QzIfXQCxRDwXRlD5JNC5BPB+maefvrp5t+E051klf+P/Cx7nVGnM2XwTVcYJY2ZhyqOCtfAwmEnDyZHCCQVhH4AOZpULnL8mNumkqelyE+gzrCBIJTnrKrmJ793szAmGaCAE8Ym1ErOmVOVpHiBBR/VqThhYcKhFrZq1r4nJIq/U0BD+NoSSjZaqHeo86neN+TigVGjRrlu0v3jjz/K3XffXYjgJAOKgSimoQKda80GghAvOZ/ZyHGk60vk2KIgiXGIUuckhqQIUWn9+++/m+tiz2ckqJjHMoeiKGtpBKiwR3mEWLMxQDWFPBJ6h4RFAwSVIh1SeezGmnvFFjoBimWifU/OaSrXIllwHITSNTydHShxVLgOJluIIztjJt1onQS8dKzk91ANilpKtaZ2FlBYMH4J51EIQ04joVWUxmyTRsBn3nbbbaayGesTVDMUQNQuQoU2By5doAbxnocccoghIuSrkasGKbKgMwgECZJ4ySWXGNKBSo/aQ7/pVEGRDW3vyJE799xz0z52rGogLpBniCykkeNEgWVDmKwKxTWmkw3EGCIFIFWoevGuuZs5joSjCQVzjSkCQhUk7Mv3e/TRRwsVElGYwvfjukP6Iv0qzzjjDPOTuY3za7v09OrVy8x7H374odx4440FG35LHjkPKLLRClgofIGskkZgQWj66KOPNtZHgJaEqJ9OkMbEe/M8N1MEeGTCjUARB7l2IA8qvOgG7ybofvHLL7+Evv32W9O5wKvHOHDgQNOR49dff9UuMD5GPnSOoTsIXS74GQ9vvfVWqFu3bqFKlSqZDiEtWrQI3XnnnaGNGzcm1WkmsquLfR7n74QTTghVqVIlVK1atdBll10W9XyOHj061K9fv1DlypVDFStWDPXp0yf022+/xf2MeHjsscfMezm7u8TrCBPtc+yjbNmyodq1a4cOOugg0+Ep3txz0UUXme/uBPNB165dC/3utNNOCz300EOhbOHdd98NHXjggaHdd989VLp0aXMt+Pdnn31W5Ll0CnJ+/8iHE3ROueOOO0wnnTJlyoSaNGkSevzxx4u8J/Pg33//HVq4cKE5f8558auvvjLXatGiRUVed//994fq1q0bqlOnTujBBx8s8vcbbrghVL9+fdfmWb4PHWG4Z/w6d2/waecYJY45ghcHg9vgxv7pp59CgwYNMje3l8DxvPLKK6ZV1sSJE3N9OIpiIh+IY66QqJVhprF69epQ9erVzf2YTUQjji+99FLokEMOKfj3v//+a1r1TZo0KRQk2FaFkEdIZHGJGZsaCP0TTzzhyvHlA2n0M3FUbVeRMeDWT85NzZo1PeXcj60IuT2ETWjF5qZ9iEKRLtjIU4ySqNo530AqC+bhDz/8cNJt8IoDQrWEnskPdP4/YC6gaw6FQoSL6TZDjme0gpN8hm1VaH0XCV3bc5QOsO5hDYjm7ZgqGCMU8pAmQShdCxizDyWOioyCZH66rfCTCTpa79tsgjwuEsSZxFgU6CyhUHgBLMyQleIs0H7FDTfcUFCZnWmQp0mRCZvHe++91/y/rb4mpxUDbXI4yb0k9892bwkiODds/CHYFM1QpJMOIIwYiMcquEkFjBGOi7xGJY25QV4Vx5AkCymguwG+YBjYnn/++dK5c+e4r6PizNoSRILkZGc7plj9OC+88MKCRGRFdGAQDnFkcnZjAknn80napsqSymm1bVAoggc8HOOZfkMseSjCYNMPebQV1zhl5GL+tgoxn80xKXKHvCKO999/v6kUgxSgJFFpRwiENkjxrB6wWYg01YVIsiONRjoxpKXy0IlErvsKMdeAClBCQYSws3XzE/obPHiw6a/LtTvssMO0Ak+hSJJIKRSEhSGPGHjHq7jOJGmkAxDzNuuGKo25Rd4Qx8mTJxtycPHFFxe0VcJGgRw2fM94xAJGz5H4v//7P/PzoIMOKvI3zFKdfmeK5EBoAcKItQlts7p165bx3Ed2qPTlZXwwHvhMnXQUCoUiNUDaUBuxWaPLDHMreZCZnk8hjXT04vM1PO0N5I3sgg8f/nv4kFkgadO7k1ZLeHulAnzFcPmnD3M04FvGQ5Ea8CCDPKLwMvlkOnWBNAM6XeA7xufqpKNQKBTpgfmTYiaM3lEAycnNZDEXhTCQRqBejd5B3iiOVMERno5sd2fbG9E+y9mnMx5wxp83b5785z//ifr3b7/9Vj799FNzw2AwSxeJaMqkE+SGIPFb8P5BBZMO3QsIf9jJwe0JgVxKulmQckCnAvIaFYpsYIfNWcGCag3l2chE/o2wG3/nbyg4/NuaGnN/8G/uD/4NbPs7Hlatt5XI9vcKRSZhu7TwE/WR8UfoOlNjj/uDYhgljd5B3hBH29UhEvZ3ELdkYVtHRSODVNrRuB01ks/8+OOPTVsrdkW2wXs04O7/+uuvJ30M+Q5LGmlNxa6VXFK3JgauBR0UUDQh9Vo5rXALLJLWMsf+P2MZEgfxY+w5FRjGtG3Dx2aG5zsJniV/vCaymtreD/zNSTqdyg9A+XGSR1t1ynFxTLwvv+Nh/65QFBdWASTvkXGJdY9b5NGOZxueVngLeUMcCRtHy5ezBRjJhpUZsLSrotjF9mJ14rnnniv0bwotqNymVyx+X7GqzQih06rMqThq5Z6YhOvZs2ebHqb77LNPsSceSCg9XVmkyW9NVmVWKCwsKYRw2Z9U4KN8MK6s+gcsGWPu4f+5/+3vIhXAePlgvA6iRwoHpM/Z9pL/d/aAdhJIQJGC0wPSklNgfQoj50ReY5VM3t9JLBWKZMFYZcxQcc0D8ljcjYkzPM09o/Ae8oY4MvFG85iyk3yy9gFjx441BtFUZicDFozjjjvO9BAlly5W9TYEiYeiMOiNSqXzyJEjjV0OPVXTXbyYuCCNLJ7nnHNOVAVaoXACUmgJorVnwsrLqeBBrCxRs1YgTnJowe/iWTwlGtd8BkQvUc5Y5Oda9T4aOB6O2amQ2oWd/2dD7fw8vqtdrDkWSygVinhjjLnWkkcKaNIdM4xFSCNj09mTW+Et5A1xZOBC+CJh8wqTJW2EqRn0qTSs32233QrULkXqQBXEJBzVkUknmtKbCMuWLTMmvizqhKdtGE+hcC5KEC7beQLCaEmTVQv5u1VRopEmpxLoF1iiGfldIJzcJ5ZQOkPlnBdC4IDX8b15WNKsUDjBvcMazHrLg3k81XvFSRoJT/vxXgsK8oY4NmnSxChWDDxnTgQ2LPbviYA6SXV2+/btU1IHFy1aZH6SIKxID3RoYFFiwkkVnH9yGlFKKGjSnarCKmyoZs48P5vUz4PFzhIiJxnyUnvMbMASZKdyyfkhPG5Nl/mJOmlTfwip2/xOHrrIK6xRuCWPEMlUxoVV/1m/46noitwjb7aOvXv3NoOOIhQnEfz6669Nn1Gb64YtT6yKZoyp2WXHqpCOZh+DcjFw4ECzc2/evLlr3yeIYNJhAeM8U9meDLiWeG5COMlpVNIYXDhVM8gOIWcIDiQSMmjTVSBFLE6E2GxuoqIoOC+cHxRY7ivmOHuurHLL+eU8E23hnIOg9dpW7ATjhXmcMUBBqh0T8WDHC2SRzYqSRu8jb64Q5JBqZ4pUIB60CsQ2BzsW+qBa0JuUPMZffvklapiaXVOvXr2ifgYV1HQfoWUeRJRdFcQUMnrzzTcHTqnIFKjSI18UNGvWLObzZs2aZXwaMWQ/5ZRTctIGS5E7sDEkPYUFitwqFh1UMatY2J9+Kfiw1dB+ILKQbh6WrNt8SEAxDv+2aqSfroGi+OB627A19yb/H2tthDQivtixr+PEH/D+DJUCbrrpJlPUMmjQIHnqqafM5PXggw+a0HMiEOL+/fffTWeRWKoVZuCEo7/88kt5/PHH5YMPPjCk5bHHHtNOMi4Cz8UWLVoY8gg5jIY5c+YY0shz8WlU0hgMoHCx0IDFixebvFg2GixOjAFbnGIrnf20EDmrsv2oStrjtqFrihWZV/H6c1aiZzMKxSMZEGkiV/3tt98WP2Lu3LlmrGfT8s1+5iOPPBKzRSFjAgIZTXmENHI/M078nOrw008/mfPATwuEjJNOOknyFXmjOAIm3UsuucQ8YgFCGQ2oE3SLiQe8BqP1rla4D+yQUDLIUWVhql+/fqHwNObemK/TEUZDG/kNQqGQRKIHkBCKp9jEEVVA+YcsonKxmfAT6YoE6h2LaLTwOYQApwDw66+/yv77719kEeYeWbBggemWxeY2V+D4rcJk1UhLDKwaaZ/jlev15JNPmhxpFnwLUl9IQ7JFQpFAYDjhhBPUnzcGuOZWeXz//feNEHDXXXcV/B3SyIYCayibO5tJ3HfffSYyGc9v2S3ccMMNxi1k3Lhx0q5dO8k3eOOuVSiiANWRULWzQnr+/PlGFcDUm0leSWN+wtrh4PHJTh7lmc0d1fe2GxTXPp79jd9gcwbtd48Gvi+bpkhQ1Adp9JryDnmwRUj234DvSV4km4JoNmrZBJ8PccSP18/Kl5fJ4+DBg02jDKs82u5IKNXZII2WONLxLRvo0KGDIY7Y9OUjlDgqPA0KjqxlyMSJE031NF17Tj31VM0pzTOgRtEadMiQIeYnqF27tnTt2lX69etnDOJRGYO8WaDhwIcfflgk9AeZ5PxwvrwM7lmUOvJRUZqciiMEjhxVyGQ2gTpLrmw+hxZzCdsyEKA+okIzDtgIRtvoMLZzkdrgNk466SRTFxFLsfYzlDgqfAEMwsmlYaI57bTTsrZLVWQe5CjiaECqCOEsNgrWDgtyQe6ZV0KauQYbJhZf2xYVsMgSUuW+iAY2XU888YS0bt3aKJaE9y+66CJz3p347LPPTJgbayzus8aNGxuVKLIV4owZM+T44483JJX3s+o/aQSJ8u34/R133GGuJ/fwww8/bH6SknLGGWeYY6PDFrmREEm8WSHEEA+cE/gcog6RoCiS4+V5Xbp0MeH8ZIEKRfoDry8O+L58v2HDhsnVV19tmhtAjo499tgiHsN83hFHHCHfffedycHnPBJGhWhEAtWd3H2+P/cDefhfffVVWsfIOb3zzjtNKpA17ibtwTmeYuWGErqP5bFLzj+pQ5x/ikvZ5DtfZzuuMWbY+NncWGeeJGOUa8DYYzwwrm+77TZz/ZkTOJc9evQwG8toYxzVmBQWvhfn/pBDDpFRo0aZv/MZjCkcOKwdF8dlsXDhQjn33HPN+OPzuVdee+21Ip+Dqn/MMceYY2Feuuqqq2J2pcOdhc90ntt8QXC37grfgIWSUBwLGsUwhLiYGBT+BVXQgMXQVubSdQk1WZXk2GDh3nfffU1hGC1OwTfffGNIG6QqWg43JNHmSF5xxRUmF/SZZ54xvreQHHu+eQ5qIKSHn7ReZeHmfoPgARZz1F8Wy8svv9wQARZdVDvcLNI13ocYQWZwvUBxYkxAcAgvotycd955pkL36aeflp49e5pjt765r776qvmOuF3897//NUSLFq+MLYoXE+G3334zKRBugfNC673bb7/dECMI0WWXXWby/CIJODna/fv3l7POOksGDBhgzgNuINYSDscOvhcFYVw7iB7kh+/HZgFSmgog7ffff78Jy0OwubaQK4rMYtnQJQLdulCJL730UhM1gMAdcMABMmHChIJNCl67ECgIJOQV8uhMyeC789oLL7zQEDeuHcf2yiuvmM3SBRdcYD6Da834GzFiRKGiV8YH45d7gu/GGGLzwIaUkDEbEPud+QxgNwqcY8g4ZJLrxNrCPcV7cgyMKZte0bdvX/nrr7/MtWA94n25T6KBjQBEmnss1evkeYQUOcHUqVNDPXr0MD8VsbFq1arQY489FnrmmWdCa9euDQ0fPjz05ZdfhlasWJHrQ1OkiC1btoTmzJkT+vHHH0Off/55aOTIka6994YNG0KTJ082P/2KrVu3mjHOz0gMGDAAsztzzrgXqlSpElq/fr3524knnhjq06eP+f+99tordPjhhxe87tdffzWve/vttwu937ffflvk9/b9nLjoootCFStWDG3cuNH8e8yYMeZ1H374YczvwTXmORxzJPj97bffXvBv/p/fnXrqqYWeN3fu3FCpUqVC99xzj/n3v//+G1qzZk1o9OjRodKlS4fuvfde8/vNmzeHdtttt1D79u1DmzZtKnj9Sy+9ZN63V69eoURjskSJEqFrrrmmyN/OOuusUKVKlWK+lr/xnMhrdOCBB4a2b99e8PurrrrKfJfVq1cX/I7rxHM/+uijgt/9888/oTp16oQ6dOhQ8Lv//ve/5nlcRwvGSMOGDUMNGjQIbdu2LeE5d6Jdu3aFxkc0cM6inTe+K8dtYT+zQoUKoQULFhT8njma3/O9Lfr3729+xxjjmi1evDi0bNmy0KxZs8zvd9llF/NvJ7gPnNfUrge777576Nxzzy34HfMJ73HFFVcUOWbndYi8XhbnnXeeOe+Ra8opp5wSqlq1asF98cQTT5jP+eCDDwqew7hs0qSJ+f2QIUOKvHezZs1Chx56aKg485YXuYLGfxSeBbkh7GYJa9BGEBWE3SO7btQHhX+AGoXiQAiL6lVUM0JQisK5YIzxRAUaKHCoH6h8qDD8jBWmJh8SFRA1iXvGPjj3fJYz7Gfz0ADvy/MIDaJ2TZ061fzeKopYnllbJDeA6uYEIVsUKRQ5jgNFlcgDuZEoRRRb8HfUMtqN8npn+gphyGTUT5Rv+CwKoVtA0XLaQHEOUdQjG0+gWDmVKL4b8xxqKg4CAJ9gVDJnFT3Xjc9AzbSd0ZIFKu2kSZOM2ukWCN2Se2zB8ZKXzLFbldrm5DLGULhRFPmdbapB6kNkFMm2uARca64Vr2ENQCG1+Oijj8z5RuFNpz88rz/yyCMLTMvtA2WTcWc/i+9DROSEE04oeD2pA1bBjAbGVT6uVRqqVngSLIyQRsIa5J5ANgAkkonJ5rxZo2GF98CECQEhvYDr16hRI2MZ4yQoip1wdlyJt+CxwB544IGmIMb23HYuZk5AEFj8yMeKBkiXBYTilltuMaE3QnRO2PxFriWhbLxrcTeAFBE2JT+xOP3hed/I4+Z8EL6OBnvPWzIW+TzICeMtWaTb7SbadXJahwFLSiNzSmmDG/l62/AAUkgaAN8PEhYJ6yzA39u0aZP08WKHc/TRR5vP4XXkAdKmlTSRdBHtGvH++BwD29bTCdte1uarxsqdJCxPZTIbF2f1vXO84LgACU+nXS25p5BXcmR5xLtHONfRrlnzOB3jGFd+8pJNFrriKjwHJggWRRRH8rIi1QBLGslNwScL9coSS0VuAYkh5408M0gjZIJFgYVDW3ImPneMeRSlRJshFEbyvlCmyOuy+X6RQKmJZ2xtVR4WT4oaUL0gF6h6FBmgtuBJ58xHYyFH0aOYhuIO8r3ImyOfjEKZWAtlZJGNE5GbCT6P9yHXLJoCS3EC84AlfNYTMFXTd8gGz48kdYDvTy5ntMWf35GTF80OKpZi7IVWjOSHQrTstSOHkMKWF154weQAAr5rtGONd/1igffhfEQbz+QyOjcbkecZBw3GGYrmddddZ8Yx78VYi9UYIlXYcc3GhzzTaCgOqV61alXMzY+focRR4SkweXzyySdmQWTSiFcEw6TP5EPHHyoxWUwUuQPqL6FPFlTUEhQNWx2tcBeEOCk6gKxFFl04AQGkWp37I57Si1cmoWBCxJALCwppooHqVR4olBSX8P6Qj3vuuadgo2fDkBaRodp44LiZC1CW4rUdpZIXQCQ4BsikJXMceyLzZQgNnxXte/LejGneG6XJCeyiIFL289MB7xFJlqZPn15IgeP9bftVJ2zqQDqfz7zJhpwHGxWuN0Uzljhy/dj4RSLW9YsW9uaYUV4h3lyPWGTe2vFwnjkWpwBA8Q+qMWPS+frIkDTXj9QJQtnxVMdox8D6wmdyLVHx44FzTapNKOKaRbs+9juhqKLI5xs0x1HhKZAHN2XKFJPz4sybiQbUBarh+Al5dDPnSpEcmBxZZNi5swijKlJRSYclJY2ZA6rk888/bxZ88rPi5UOyKGKrEwlnjplVyZxKEwqetVGxIIQd6SEJgYSwWVsSVEuu/S+//FLoeZHvFQ/HHXecOSYqqyPVL/4NyQWMMxZ/qnIJf/IajoMK20jiGgtELKxtixO2ap0K9Eg8++yzhZ6TDqg0ZpPsPLek51AtbP048e2kgpj5zQKLF8KqkEsqd1OBPW/OcQQpdlrKQMQgpk4LISI7VAfHsjMiymDBRoJjpg2vJYZ2Ux/rmvA8IhTOOTzamBw+fHihcwFYK3gOYyUSztdyDJGfz2fwevIcnRZCFs5zwLXgmg0cOLDgdxxvrBA3+adsoqmKzzeo4qjwlFcjkw6TMV1jkgETDhM/kxr2D9HygRSZSSdApYE0QkxQKXhE5ncpModYoTUnCD+jTBLeGzt2rFnM2WihElE4g3UK+ZEsblw/3pPQM4oKViORpI38RyxLsI1BCYRE8jy7AFugXj3wwAPmJ8UMkEirpiUDyAvq5Y033mjy/QhXogwx5iBbFCRce+215rvwPL4j341iGsYkxBG1irEJKYJUxlK9yPnjO3B8TnUTAsfxc444X9auhs0thRL8rTjt5PgsLF+Y97CtwTeQ9BtIsMX//ve/AuslrguKGnl/nAfITqr+phBNPBopjuK9IMwQIa6pBTnl5LBSHMLxkeOHmoy3YWTuK4B4Urxz8cUXm5QBzhfvfdNNNxWcc1sIx3fgfRkvzvaOXB8KTSB2ttsQPpeojajr+IvynTkOvoPTVLtPnz4mTxMrKq4TeZtsZLHj4W/2u3EMqO98N2vtxnrBOCVSwv+T/sH7o16SpsHzrXUYf2MTceaZZ8qff/5pCmUYNxx3NDBO+Fu6NkeeRq7LuoMKL5bY5xKchzvuuCP0zTffpPV6LBOsZYgis8CGg+uELdKECRM8YYGTD3Y8WMNgN8LPeHY88RBpx+O0p9lnn32MdQpWPnvvvXfo+uuvDy1atKjgOcOGDQt169bNPKdu3brm74MGDSpkNTJ79mxjhdK4ceNQ+fLlQ9WrVzdWQD/88EOR+xGbE+xM+LyTTjrJ2K3EsuNZvnx51O+DXc3+++9vrFR4tGjRInTppZeGpk2bVuh5zz33nLGoKVeuXKhTp06hX375JdSzZ0/zWs4pVjfMD057FgssX2rWrBm6++67i/wNu5snn3zS2NjwfXnw/0899VSBFU6ia8S5i7RrsdeJ89u2bVtz3Hy3aDZHWNaccMIJoV133dV8fpcuXcy950SydjzYG/F63ovrzGdibYRFjhNvvfVWqFGjRqGyZcsaqyOOM5Ydz8MPPxx69NFHQ/Xq1TPfo3v37qGxY8cWsda5/PLLQ7Vq1TL2R5Z6ON+Da4MlDmOS4+Hf9913n/lM3hebIr535HHY9+c9+D4cM5+DDc6ff/5ZaI1hTPC9+UynNc/SpUvNuOI7lClTJlS7du1Q3759zX3jxLx580JHHXWUsahizFx55ZUF1laRdjxdu3YNnXHGGXGvh1/teErwn1yT1yCCvAh2MC+//HLgiwaQ/9lls3NFyShOlxBCA1SHktCsRtLuAeUGdQklgLAUyoAtoPACuO4oEqgIXjmmVMFUbPOn8rESM1ewqiOhd8ZvtFxPQvnMQShW2ehXTZiZHGCslPIBzry/4lQSoxTixsB7kO7g197hY8eONabyqJZOo/J05i0vcgXNcVTkFBAQKqipmCOvqbit5SA3TDwUDUTmYilSBxM4Cd6EKCHkgNxT275O4R5YbBn/ShrdBeSDkCGhbptzB4l02rvQOo7w53vvvZfDI/UvMSc/0faXLs74Zfzj08u8Q4jYWc3vJzzwwAMmBSQeafQzNMdRkTOw28ImBGWQtlJuKIQke1MwQwI1idT8v193rbkGBByySF4TOUHJ5p0q0l+ArcWLjln34TynkEbb+g4FknnD6WmpSA4QO4p1gFt+ulwn2+QBOxtrmeQnvJfnGxBVHBU5WySxEWGXf/rpp5uJ2y3gDUaiM4SHxHNF6oDAQLxZDEh8J7E8VhK4wh2gskBmNHso86DClgfEx1bz6nlPDZw7W6TC/F3caJETiAgUa5FigPm8XhtvQRVHRdbBJPD555+bZvFUqGXCtoVJhw4zECBFcmCSpiKVPBpUL7qCYK2iUOQjICdsjGxLPDdy9JIFleJ+BxXUTjN2t8EchAgAceQ6uSkuKIoHJY6KrAPrHHzBsO8ojoFuIhDucBbgYJ/gt5BHNsBCibkv/pmcH84TnUiUNCryHYx38h6dRtSoj7ansiI2OEe2M0ymACklOkX0CPKoedXegIaqFVkFXRgGDx5s1CyMg7MBQlFUt1HppiGPwmBCth6Y5DFi3h2rfZ1CURxQZMXCH8tI2ksFSuTt8fBrcQb49ttvjUrnNLEuLpg/IdacF85TNnJxKWpi3JDvqAWP3oASR0VWK6gxrcXGBWPWbIGJB2sEbGQgSIqdYBFgMqZdG2bGGPEqcgPbLi9a2A9Da2vTw4PnYSCNuTGm0c7Wgc7noaRhLo3p83333ecqiUgV9MAm95ix5gQmy8wHpKywaSHFBGPleBg6dGjBd6SIIhEiz4vzgQODBUQIskU+L/cFm063yUrktXQ+aLWaCLRijfbayOI1jLCxOMP8PVq3F55PKJjOQ0RkIkGrPIzWnaQRMk0ebjYJNd+NccF94edK63yChqoVWQGT7wcffGCIiRu2O6kCNY2QB6ojiwN2MkEFRIMHXpe0NoNYaAg/93D2WY5HvvB8I3cX8kTbQbqY0C7NWbxEhw7a8THmIYt0ZKLHL10zuA9RlrMJjoGOJzycINeZrjB0f6J9IuOQ4yP3GUKITU4kIA6XX365CWPait5kYc+LE5F9qAHzFKFR8n6tqmZVNrdgr6UTyar9bAheeeWVQr+DBEaCjjp02KEdn+0DTR4zHXZ4cN6feOIJ07eafs8W/D/dfmwfaksaGU+cd7cqqJMF553qasYEOY+cJ52zcgcljoqMg0nnq6++MnYXtLDKVXVuvXr1zMQHaXJ7EfADIBsQjMWLF5v+vpwLFkWdgL0BxqS9JrHGJq3naOEHaHlHHi9k8LPPPjOWVhakguAj5wR5xbTlI7eYPrrksmYLb731liEbkX21aeHGceATavMMITuoYShz0YgjvYEJe9t2gKkg2nmJBa6BNQu31dcQSsi9VfkwDUcBTAfOa5kqOJdnnHFGwudxrSHZtJeklSD47rvvZM899zQknu/QsmVLs5GwVlBs8jnvt912m5knnJGJXJBGC3JOIYyErPl/LZbJHYK1cipyAvILx4wZY3qPZnOxitWxgVAYi4I1rA0CFixYYPqxEuohbK/+lt71xEslFGeVQ7pPJAKpCKhLpIxA2LIJQqOEqSMXe3JscUCwpBFATAhbR+vwwvi95ZZbjFqXbi5uOuFnG/ZnzuD1TvPw4oD3YrOQDmzRSDzQWIHIAhsLZzW0U7FDyWNzb6ukGRu8N4TTAqIGacx1wRBjguPge6MGK3IDJY6KjBMWQmmEh7zios+Eye4alYOwTRDAokBYmlwyOr8o8qfYLNJBIB5Q21h8UZ0SgbBgMo9ECzgkCz9VNiyRIPcSk/lbb71VZs6cab4P7f9GjRol119/fZHn8zzGMapkOiAki1sAyhr3Ap+T7P2DZyHzBuQVKzHA75znAjUsWfD5HAsRGPIJbVg4GaAA8lrC0xC/Sy+9tMBTMRJ4sJKqYMFczEb+3XffNRuOe++914TrIfCkFBDWRsW2VkUApTXXpNGC783xcK7TJd2K4kFD1YqMAfWEfCVURhK1vQQWDqyAWLRQ3jJpC5QrkBrAYtKoUSNp2rRprg/Hv2BBf+01zPeQrEUI+eXofJLfBUGBwFCdjPIGEUTNTwYs/hTVWMIZDzZMmQiJwrWQLIhXZD6fJYKWvNxzzz3mdxApiuiOPvroQs8dP368vPjii2YjmqpaDtEgbHvYYYcZNZNQ/SOPPGJC15CqDh06xH39Qw89ZAhVJFDlnMoc80gij0a+H+fLEsc///zTELXu3bub6AwpNfHAfAqphoijTlM9/dxzz5lUBIqAIkPJ3P+MGeYDFEgM/Tnm0047zfwd4jlw4EDz/zfffLOJRhx++OHmmrEpIDqTq/B0rI2/JbmQeK6npttkF94ZDYq8AhMaeTXsCE866SRPhkXJ7eH4WJA4PvJ+8gF8Jwgx3owUvrBg68SaJgYMIJmQ1Ypk3fDPhx4SefVVyluzfjgHHnhgoX9DVGjbmYqKTLiYEGkifP/990m9X6JCs5UrV5qfLPaRIPwLkUUJpWiOsUsOI/l7fD4kxlnYQl4geZqpAlLGwwKFj88kjHvjjTca8hUPFOtAuJw46KCDTOEJ5BNiBSlPJn+b+ZCHBcVB/fr1k549exoC/cILL8R9fWSV9CmnnGLOIaQPAsi/nbDnHfIIcQTkhl5zzTWmirtVq1ZmTFA4+MYbb5if/J7zzeaETSdFWMyXXgHzdWSxjCJ7UOKoyAiw2LCdYbxsJN2mTRuzWFE0AsnySjgmXRC+IQyFIsWimI9KalaVRkhjtJzD884TgUhEqchNF5D7RMVKzz77rCEJEBXGK11+Ui3yQoW2FbapkNTiIpqHKnZC2OGgtNnvAamCjF555ZWm7SWgPSnKIPepWyA8i6r58ccfFxQlxQKqHY9IQLogkChztu91OoCUkgPKvJkOKGZBveX1kcTRnvfIcVW/fn3zsIAo9u/f3+SBM29TREduJEU0FDVNnTrVU8ojKrLtLMP/a0vU7ME7o0CRNyAMxCRPeJpJyOuAYLGI+J00AsJ+fA8WIZLIFcUA4elYJI7fozpG8chLFxCXRISOwq50K3FtvuH06dPNhikRkvEUBCze8QiTzb+MzP8jf+7VV181YVcn+WX8oixSpMFzIAXXXXednHjiieb/bSiYIh9AhTXPw3IrVRAW5rWk1aSzwYWM2S4z5B1Cyvl3On6oHMu0adMkHfCZnGdCt5Gw5z1ea1eIOZ2jIIqcD4qZyINlrEHiX375ZUPwI1XXXAOyyJhmLHAN8mEO9wOUOCpcBbs/vNnYiUNe/AAmf0gW4XXCNEzgyeZ3eQGoHSx8hG4gwWqx4xIgKLE6DfF7H/YbJpRJ7hqh0URI1gEhUY4jqhbEJrLymxA21c3RChysybT9G+TwnXfeMY9IkOtHxTj3bqqgOI585+Jau6DEQfo5t+neexxLuvMOqQeEbaO9nvMOaYz13hBeiDk5nIS12TBw/i0R59rxexooeA2cawg/ZBeCzPcMms1aLqDEUeEamOg/+eQTs9smtOFH8mIrQCG9yVaq5hIoDCTXs3BRoeqlUJLvgVoeT3F0WU2HJKFYQWIykRNM8cR///tfQwKows1WjiMqEMpVZAUz+XbkpjFnUORjVTrOwRdffGG8HK2SyXMi8d577xmljLw8Z36yrXCGsNrwJYUUkcSJ88EmF3UzHbIRGXpnvrOfx99IF+E7RV7LaMdCwQ/3MeFiJ2wRE922AO/JHBWpTFOJzmdGK0LkfTH6joUHH3zQXAdC3IxByBfzCKFp0iI4lxwz1exeBNfOFstAoKMZoSvcha4yCtdAeJqCjLPOOivtXJ9cT0AscCNGjDAPEvOjJfR7BSgUpAVwjFhu+JGoexpUT1MIEw2QBvIcXQQLv30UF7/++qshGRABlD2KHCBJLKqQsGRIgJs5juQSUryB/54NCUOoKC7Bl5F7jbw6jpfwNTZemIY7C0giYRVGiJ8zDEuIG/UM31I2U4AuKcxJFMhAWLlvKMKB6D3wwAMJj58COh6JAOnnWLmGEDyUMD7DGULlGKjiZq7hepDf+dprr5lIx0033VTo/fr27Wt+2vA8aiCvxezdthikywvEE9IYWYlOJTXHHWujQB76ww8/bAg4yqslubwPmwz+znhBfYxHPnMNzq/Nd6TgKlEHJkUxEVLkBFOnTg316NHD/MwHLFy4MHTnnXeGvv/++5DfsWXLltDQoUND33zzTWj9+vUhL2Ly5Mmhzz//PDRp0qTQtm3bQkHHhg0bzDnhp6sYMCAUKlkyFCpVqvBPfp+Bcbdq1Srzs+hhDIBNhkaOHBn3PYYMGWKeZx9lypQJ1apVK9SzZ8/QvffeG1q2bFkoF1i6dGmodOnSoTfffLPI395+++1Qly5dQrvuumuoQoUKoa5du4YGDhyY8D1vv/128x2XL18e9fecC4snn3zSfEb16tXNcdSpUyd0xhlnhGbMmJHU8dv3TPTYa6+9Cl7Dfblu3TpzTZlHtm/fbn5/8803h9q3bx+qWrWquT7169cPXXzxxaElS5YU+Vzez/mevBfH3aRJk1DFihVD5cqVC7Vu3Tp03333hTZv3lzk9c8//7x53po1a6J+r+OPPz505JFHhv7999+C47PXi99XqVIl1LFjx9CoUaNCXgfHv2LFitDixYtDW7duDeXLvDXVg1yhBP8pLvlUpA6SoC+44AKTdExlpJ/Brhp/NXZ6tBT0ovVOqkAtIK8qWiWlF0BIhpBerjvxeAWoa+RyYT3kutowc2a4EMb6OKI0ulhNbUG+nw1V52PKAXMDhTmooUEbmzxQHtMpmikOUCdRXR9//PEif2PpRwFmrHFs+RCxsL3ZUSDJ+fb6d9qYxLzlRa6Qf7OTIusgVMIERDeHfCCNgInHkkZ6W7OY57pKmeR0QlaE9chxSsZSReECIIkuVk8HFbfffrvJmSNsvt9++0lQACFgPrF5lOSCZ6OAA29KutEwP0cDpIp5jWPxOsFKFqw/5GuS+03RT67n7HyFEkdFsUACNcnXFMPEs3vwK9iVY1OBGsRil6vcTXadqDX5YlKuiL7oZaowxgugWAWFJYiw15R5BAeEdC17UgE5j9HaEHIMODGgMubjWIOoQxitv6Na9LgPrVtXFCtcSsI9SdrR+tDmA9iJo/Dx8/fff8/6woc6QfI8pJHzTOgpHyd7RXisETbMF/VHURTcu9bzMRck2hLXfM9QIxrDvYRFT75/11xAiaMiLXAzYhLLREj7rnxe7NjBUlFI/gzkkZzObAErDCopqZrWftP5DTYJEAp+KvIT1rKHOQXiyPXOFrFh/oI0EppGkcvnOdta9ECUSaNSuAsljoq0QBcBPMawnghCqye+IzYahD6iGRa7DUJJAOuQAw44IK2uGAp/AcLIpkSJY/4D4sicwlySDeLImCJsHQTSaIGyi/UTZDmoKRKZghJHRcrAG4yeqKhw1pg2CGDCtXmOVF2zm82UyogHHR5qQD3JFIr8A5tQW5zi7JKTCfAZNvcvSJ1V+L6cZ1oS6obMPQRnBClcAbtjujoQBrDmtEEE3WWGDx/u+mSPBRBqLpWBarWjyAdccsklctBBB+X6MDwJq/zRqhBF0I3N6P/+97+Cdq+QJTa5ALu0VEhjgwYN4raS9Mv5Za2y1kMKd6DEUZEyYYLcUEWdj15zyaJly5amao/z4dZOFusMumFQfdqlSxetBlQU4PXXXzeLoH2gHmFtc9lllxm7qEjQSYTnkeKQS6UFj7pXXnmlSEcU7p3rr7/e5O2i4O+1117G59Gq7E7y4vzezkcyOb/fffeded82bdqYfGzeL1eIdyycA34HeYyVQ83f6OaCswIkkDno+eefL/I8nkM7RXLQeQ2kNMgFIpxXQtbkk9oUIEXxENyVX5EymOwJUdMqi4k+yGAXy64edZAevJyT4oSAWNwJUWPwCiFQBA+Mn0SqED2dMQsmZ2vo0KGGOEASJ06cWCjX+O233zbEBN/PH3/80dX2gangySefNMfbp0+fQmMdBZK2f6iRjPeZM2fKc889ZzwHsb+yHqVPPPFEEUsZ2prSpvDggw9O+PnvvPOOaaeH60Ou84TjHYvNPYTc8ABOux4iG/369TNzDe0DIc2cK84flcNOYk47SQoWaSVIfnRQchrjgXsDAk3ImrzxoJ+PYiPXrWuCCi+2EUrUzonWYI888oj7bd18DFpzffnll2m3cuO80u7L/r/CYy0HPYJYLQevvvpq8/t33nmn4He0uatUqVLoqaeeCnXo0CF09tln5+CIQ6YFXs2aNUO33HJLod8PGzbMHPMzzzxT6Pevvfaa+f3HH38c933vvvtu8zzeJ5lWqLYV3+GHH16ofV9xrkM6SOZY7HywadOmQr//4IMPzOe++uqrRVoGli9f3sxDzlaHtHYsUaJEaPr06aF0wfGdddZZoXwB555r8M8//4S8gg0+bTmooWpFUkAdwEvw8MMP12INB9i9kutZq1atlF+L8jJmzBijHJHbpLvgYINwIuMglbAiipINCVt88sknRl058cQT5ZRTTpGPP/44J1WljGtU9Ei10+aa7b777oV+b3N6E5nso9yhYuJykAgoe15J+UjmWKxdj1UbbX6ibdPI9XSCf3NtP/vss0K/p80g+PLLLxMeF+PtnnvuMSFwPht1eNKkSVGfi2JHKLxevXpGHW/SpIk8+OCDRdIhVq5cKf/5z39MiJh87bPOOsuEz/l+pF3kApx7lGwUbHteFelBQ9WKhGARIhzWqlUrY0KtKAxLpMlR5Fy1bds24WuYaOm4Q4U6pt5BzhdV7AxHptqrGkssUKNGjUJhahZ/QpYQC4olKGiDSCaCM1SaKG+MdI14+O233wxRYHw7QVoH4dNbb73V9BMmPYNQNTmPnTt3jhtWZ6NFKPvmm2+WbIAwsLMAzobNIcROQLjctiWzZt0QNHLzOOeR3WbsZzKXnH/++YYEEvaGBOJ4QXvHq666Ku7n3HbbbYY4HnbYYeZBwwHSACJzLRkXvXr1Mq1PaS9LLjbX+MYbb5TFixebtAI7t5EDP2LECLn44ovNmgGxhTzmGtxbNmRNpzPdrKcHXa0USSV1M3keeuihuT4UzxNIWjAywbdu3TrugkBRDf1UWShRLRWKZPOMIS2oTJACch5R6I444ohCVlm2aILFHdssyGQyxPGhhx6SO++8M+HzyHEmfzIeuBcghqhOTrBgk+t3wQUXFHJmIIdv4MCBcUkz3wOcfvrpkg1AesmpjERkhIE+3HfccYern8154NpCdFBYmYPJqd5///0LnmOVSMic7QgDOYIQNWrUyESK4mH58uXmmhNJYnNhiRTE/L777iv03Mcee8xsVCDvtjAJAomSSj7lNddcY5RIinJolACRvPLKK83zIJBeqKzn+6GAcg9xvjhXitShxFERF7NnzzYTBTtIm7CuiA4mTSb3CRMmGPIYS51l545yQStDp1KkUCRCpBoHgYNM7bHHHubf7733nlGcjj/++ILnnHrqqWZRRz1LpBKeeeaZhYhJLCTTs51wZazPg3hByqgKZ5OFmwAE5pxzzpEPP/ww6mtQsvh+vI6K4myAcwtxc26iIUnff/99oedB0jIB1EbIzrHHHisPPPCAnHvuufLss88a4saxUFAErJWPsxCGc8/cHQ9sMlAWL7/88kLqG+HoSOLIdenRo4d5X6fiypjk2H755RdD6L/99lsTFmZjYMGYpKiHQq1cA9WW80TLXDb7Gu1JHXrGFDFBHgg5MlRn5msvarfBuYI8stNnN0vIyIKJ3VpDoLQEyYhX4Q4gDVQhs9iRI0iY1zmO3nrrLWPlBGnjASBakAMW/gsvvDDu+0OA3CRB0fI12YwSSn/jjTcKCO7RRx9d4Bv4zTffRI1u/Pzzz0ZZSxR6dRMY/juxYMEC8zObVeoQHRRHVFqun60mZx556qmnzDkjZA0ZcuZQcu4ThWKtmhppbQSxjyT9pOKMHz8+Zj43ard9T/JVI0P35EN6BYggqPYo+KjiGrJODUocFTHx008/mUR2dpF6YyUPcotQCpwG3pBGwkxMWO3atVPSqCgCp0dhLEAKyRGMBhZ2UiBANI9D1LNExBHlKtL+JhrYACUqCENNR+WMBMURLNo2vG6BhQwgBB+NOHL83DcoqEED5JFQPqQbdRYVtH379gW+l0Q3IgtvOPekBbgFa6NELmo0+MlGjHFUtWpVky7EuQxC21w3ocRRERVLliwxeSooAxpOTR1WaSQcwuSEUsH/Y/6rUMQiYyxm6QJiBXl48803zXtFVjijTkE0yHuMhUceecS1HEfIDMeEquP8XhiWo4ZFdl2yla7RuqdQHPLRRx+ZauFc+zHmEmwqUO64zqQLsLkHkMpIUGnPJjUerB8vmw6n0kzuYyTpZ0PMpiKR2sp70jKVlBwnIaMAyksgTM05RBzh/3UznzyUOCqKgEmdPBUk/GQsLxSxQZedr776ylS4koBOYrZCkQlA0shBO/nkk4v8jQIZiOO7774rN9xwQ1ZyHPlM5hIqfq1tkFWm+P0HH3xQqKUdxwYiq7ABrg5UwsYriqEYB6ISjxgXFxxvptvwQaApQoFsR7Ydhdxw7jkXixYtMlY4uDhEkjnIOu9BUUo88DpI6NNPP21C4FbtthXSTpx00kmmAAjj8UiiyvFYNwD+9vLLL5uHLY5BrSTNwmsg3E+InU19cTZtQYMSR0URYHeBmnDGGWcUUS4UqYGFzLYT03ZXinhAgaPSk1y1VO87+qaj6FBsEg0Uz5CnDLmMRxzdzHGEgBKtoADDSRwhXiibVORSvEFxDBYwtCbk/ykEiQTHTfqHs+gnEhTMYBdjVThATt7nn39u/p/zA6HCegagxlH0Fw+2bV8iQN4S2XAleyzkcfJdsK9xeh7y3SDjKHooxyjLqHrkoUeqZZxzyDm5o/FAusG1114r999/v0kdwI6Ha0KeaWSY+7rrrjPHz/O4hvvss48ZrxQDUg3PmsFrjjnmGJNSQUEW3xPlmdcReQFeSnviPiN9CNWRudornp+eR64dyIMKL7rBgy1btoQef/zx0FtvvZXrQ8kbrFmzJvTnn3+Gvvjii9CSJUtyfTh5iXzoHMO9t2rVKvMz2c4xFpdffrn5+6xZs2K+/x133GGeM27cuFC2cMUVV4SaNGlS5PcLFiwInXvuuaGGDRuGypYtG6pTp07oggsuCC1fvrzIc+n0QXeU4447Lu5n8d169eoV9bxFeyTTFYXuKbFe73zcfvvtCd8r2WOZM2dO1OO76qqrzPkqV65cqFatWqGTTz45NHbsWNMpJhL8bf/99w8lA15/5513mmtQoUKFUO/evUMTJ06M2jlm7dq1oRtvvNFcU64bnYG6d+9uOorZrjiA63jaaaeFqlSpEqpatarpXmQ7Br333nshL4FuPczLK1asyHr3rg0+7RxTgv/kmrwGEdOmTTN2Bcj5VEZ6BfiCkZ9CD1Q3E6uDBnoHc/4IUdtQDZ0TCKNpzqj7oNiCnC6qT/3a2YjcvlQNwL0OijlQnFCwnJ6NivRC2NYQ3KYKMK9Eqo3kp3MfYF2USHHMJlBvUZPJt42sVs81KJAhp5P0rGzOHxuTmLe8yBXyY3baASwnXn31VeNvRc4Cyby46WOyHA+vvfZa1DZIVLIh+UeC0AA3JTcoUv8JJ5wQN4TiF3DOII6EGZQ0pg9yrZgMnDkzTO42d4u9mprPKoIAwt7nnXee8flT4uiOITjE0TmvMJ8QsibMyppFfuLee++dU9IIEXPmwZKGQR4lOYVetHaDtHHuSB+w3pmKgBBH8jTIb6FDAlWt7HKxDnjyySeTagNHToZzsEersqJ10qOPPmryTUhCJ2+F92fnkK1uBpnC4MGDzeTEd1OkB3KPqFAkRwlD8Ggg74cH+UpaLKPId9guNor0BRFy8Xg4SaOFtXCCPLJmQdJzDQzFIY/MceR20y+d9oSYiidTWJVtcP7Y6FNNrpv6ABFHDJchPlSRWZ8vqrtI4mXiSmbygjDFW8i5AUjg5ma4++67ze9IaCZcgJktPmR+7a5ChR7+YFT+evHG9gOYdNhIkLwez+yWsASVfPg6UrUe2ZJNEUxADNIpjFHkd3gaQogaFs9rkDmbdciSnlyPIYqhEFiIziGqMB+iOMYq3vICUGw5x0TebEGjIjryxriIrgJcaGsiC9idQYQmTZpkvMOSge33GQ1U/iFlUzXmBHkb7K7wPfQjrP0OPZOplFOkBxZ9ul8QJooHVF3SAZikGDPJVG0q8h+oHixeGiZTOHMarWdjPDBmmE/4yWsgkbnEaaedZmyYWC8RXFiDvUwaLazwA3lUBEBxJDxIeJrF2wnb05TQIC264oHQs83NwEqC3pokyzo/A0T2ILZtv6ZPn17QDioS9Pa0LcCcrZ68AG5qQqx4uKkJaupgR82mhYk7WYNvFgN6VRO+wesxW713FbnbnNnFnLHCvwlBOjep/J2Fnw0vhTL2384Nh30tUIKZv+D6W9JoCWEiMHez/kE4dR4vvj1PZAtHRR4SR0hZtGpV+ztnU/ZIMFCOO+444yHGQCHc+Mknnxg/QyqZLBnlMxhYkT08eQ3hRicxjAQ+VtEKcHINJpnvv//ekGE3e9QGaYLHQ4/FHiKYCgg/UV1oK2iT6S2r8Ba4ZpYU8uD/LcGDGLKpsM8B/M3mT/E3JyyxZD5hXNlOKva1Nnxmw5eMFQgCP/m9VaX4u/2bEgj/IhXSaGFzIQFjiP/XOSU1sN5zf6GWwh/0/OUxcUQOj7Y7YHG2f48FimmcoK0VChB5jBBIjLDte8SyyeBz4n0GIXSnBQGKozV/zSVQvAiVxlJKFbFhu2IwyUTrdpEM7JglP5I83a5du/rWTsYLyLS7GNWhPGxIGVUoskWeJXiQNvs8S+IskbPJ+NHseEC0fDYn+eTvlqg6w5K2Yt/CkkqebytwdSH0LhhbXCeucXEsmXgfxpLTukeRHLg/EIIwLGdzl8nzF/KpG2LeEEduELtDd4Jdv/17KqCZOy2SIAaWONoQUjTwOfE+A3sbr1ncsMAMGzbMkBVnSF6RvFcjhI/zV9wCF3a5jCFbMGM3PIrk4CRybk/0LB7c9yzGdqInSgEhg+TzO6v8ORW+4i7+kbCEj8+INT7somcJpSW69rU2/80qUzw4RiWTuYcle1zb4o5hq0CTesV4SXX9Czq4rzln5Dry/5m6P9avX29++i0knjfEEUmZRTwSNnycDmmjWIRcB+dncHNjFOoMV0NYeZ7fjJ0hjSCZ3rSKwuB602KLVmF4eRYXKEJU66MAUzADefTbZJJLsFBaOw2Uf8hTqoSIe9tJEG2KCmTLKnf2wT3v3KjymuKCz7bhbTcJp7PdpSWUHLtVLCEYjDV+Z0PtGuLOLhg/1k6HaxGZxlAcEHJlfskXU/lsgevAvU8fbrc3o6Ed3pu4a+Dk4rcK7rwZSZT702PT9nq1IPxn/57qhcXgu2nTpgW/s/+PwTOLvAX/ZhJ2PtfrYGc7cuRIQ1Di2TwoogNiQkqDm/ZL5L7Zghm6zHTq1Mm19w4C6NLDBM9k7NzwJXOvQ6xsMYoNKWebuPP5kMdsEjf7nXlAHPl8q6BakqwkMvPXwBkZc1PdskVY9r0VqQE+sXjxYjPPZ0J13HXXXQu6i/kJeUMcWcTp5kIRivVx5Ib5+uuvpVWrVgUV1djysJvDa8+CHUWkfyPtkfg9YUgLHO8hDJiAO4kj/0bOdv7O66BDDIuCn47ZC2BMLViwwBQSZcKzk/HFNVG1MXUwsXMfozxa9TDaIs19TbEc15IqeBZXXBeIIpCyEWSiBHkktwvlFgKOYwQLGwso51Q9R90HXaZQBcmTzgS5Y5zbvElFamCegFf06dPHFM+6iTJlyvhOabTIm5EEOeTivvTSS2Zh2GOPPYw3IarhDTfcUPC8e++91xhd//LLL4WKYzAshQyQXzJhwgRjJo6CGOkLSfusxx9/XG677TbjxYcyRItDekn6ZVJlkho1apQxPNdCjNSLYVCzGF+Z2sHbogkWcSygqHgPMplJh0BG5heiKBJ9YOPIeUWZrFOnToHCk8h7MxuA1Fo7sFxdb+YDNkRsrG1upLUao6CPv3PeIJNacVo82EIlCjFpj5upvGY7xxMaZT1U94zkgcUf9wJ8gbQkJd9h5NVZuOmmm4yyOGjQIBOK5QZ58MEHpX379gkLYSh0wESc3RnvgWqJr2EkscLsm8Hz/vvvmxxB8iAxNo2szPa62siC6VRTFYlBSgI5syiC2Qj7kJiNGoHagzG7ksfUFmUUM84haSrs7pkTMGiH+ERWNHsBHCsLVM+ePT1xfE41BGJdt25dQzx4MC5RYJhjIbw6NlMDmxcK4Zo1a2bWm2wUw6Ei49nLZ0GIFMlHM5977jmTCte5c+dcH44nkFfEkcX8kksuMY9YeOqpp4r8jn7WqYA2gzz8CAp76IDTt29fzXlJAeS5EM5kscxWERRhUyYqclGZtEiVUIUnPghPY2ZP4RKEm3MIcYTY9OjRI9eH51sw7qwzBOF9Z8GA3VDRShNyqSQy8RiFNKIAZjO/HOWM+R+fYqJjfomQ5RoUP7JxYlOHCFVG04jyp+WgIjkw+JnwdeeUOnFkUcx2mAdFG8LI55MWoYi/IP/www8mJE2uI24BTu9UhXvg/NqNJwsriymbG84/YW1bkKEoDML/NAxgU0MhXCbypOMBAkQRHpvRaPZ1itiqI9eMVCVFnimOivhAFYB8YPatPoGpgcT1XJm1Elrl83Uxjh5+o2UjSgApJCyMKMKau5s9QBx52NQK296VOQZyogrNTpA/T440pDEX6QikH+DWgHODHy3kcgUiF8wxpHl17Ngx8OunEscAgRxOdptq85I8CMMxubIw5jJMTDGOBVWvQTZsR1mksh2SQt4iITecEgj7Oc+TIrtAPWvbtq0pVLRFBOSBQxwJY1NQE/QwNlXq9evXL9K2NpvgPqEYNOjXIlWQe4zwMmLEiMB7H+vICZAyw26XPC+tDEsOFAFQ1Wzd/b1SEc9iPG3aNAkqmLgpZoOoEIrGHSAfvEhRoMid9kJhTHHg7L2OIwAbLkJ8OFWgRrphlu4ncB7YgBIxIE3IC5s+SCPXgXxHlGJFcukZqI3Dhg2L2144CFDiGBD89NNPZkFi4CsSAwWL3SUqidPzM9fgGmLfQR4Zi3AQwALHd7ULHIoWxV0o515YhBXRAWHk/qHJAOSefF0Kl4JGGrF/Y/yy6fMaiF5QLOnsd66IDYSXLVu2mDzVIEOJYwDA5EDBAPK6Xw1HczHZs/Dh3eU1UCWMjceUKVNMuDafrwMh6SFDhhjFhopQu/N3uwWYF0DYfejQoeZnvoF0Au4ligyYg1Dx+a4YLOczUPQWLlxoNuxutCZ1E1wHjovxxv2lSG4cd+zY0VTFB7m4SIljAEDvY0J5ifwsFWEQhmBhoyDFq0nQ5EphGsyilKuinUwCdZFEdCp1IYqY+5Mblu/KKuQ4n0O5Nq/OfkfmJlIP8pEs45mIwgphxpHBq0SICMasWbNMOpMiMfbdd19j1B9klwsljnkOCBDqGV1uNLcxOVCRizLiNYUgEoRsmcRQRvMl1GQJBQUVjFdyGAlJO/vPK/wP8lOJgGBszyaBVJp8C2NTiEiVf7169cTLoHCJuQ5vTkViVKtWzcy9bHryZd5NFUoc8xz4dQH1bUyOtKBw4dfll4pDwk3kYxLOxevRr6BwgIKXH3/80VRNQ97JjdMcxvwGShxqMguxtYaBSPpZdbUpFeRG06nI62DjSRcxWuwqksO+++5r7O3INQ8i/LE6KtICCzBhIELU+VB1mmmQ57No0SLf7SIxYiacS5I7bfb8BM41hQNU3OLHiPrhF9KucAdcb4z1UZVJu2CzywaC/Fa/Yfbs2SZ3E1LhJ1irMXKm/Xjec9XD+rfffpMgQmfoPAY5GISq2R0pEqsETPrk+2S7m4Mbkz75mFStsuj6qeAAsgthJ5xHpbRtDxhEsLnjOgZ5k2fVL8KBqP8UIaCo+wHz5s0zeY2MYb8aa1P5jfLvl3OeS3Tv3t2kV7DhDRqCOUMHAOzcycHAR03DfYlVL0g2qh2Klx8B2SJfjAULzzzUZi+PTeuDRnU4xrr0P/ZqIVK2QF4nSkbQO62gPJLXSncVwtY23cbLgDxQQc38webTryBlgLkE8qiIj2bNmpn5lnU2aFDimKcg9wLliV2RIj5ovcUOm+rHXHaHKS6Y8Mll9XIhFAo44R1SKGxVJw9FOM9z7ty52lpyByjYwP/RukFwj3rRAoWNEMSRqn82QH4Gmze+A/nSNEBQxEaJEiXM+ootGpZ3QYISxzwFizPhP69X9HkBKI0HHXRQXhAYimUI87GYETaDFHsFLK60vcTKAmVDURicF7o78VOxk8jY1BEUPaqvvZSKQbTChtdpt5gvBUv0GiffWxEfbdu2NaklpFQECUoc8xAkN5Nvg5WJIjYgV/iXoWLkmzE6Vakk6DOhecEjD0soHnXq1DFWR37NAVPkDljbYHFDaJBNUa6L2PA9xM0AFZ35w8/Rikhgcq1dxhKjTJkyJsJDPq6XWtNmGkoc8xBMrCzM5GAoYgNyTUcdL6lyboFQNTliKDaMh1xNatacnMId8tYIO3o1jK7wNugWxJhu3bq1CenTMzhX5vdsysi9hMhiHZVvsPco6q61F1JER+fOnc04HDVqlAQFShzzDNzkkCEqqYNanZoMyJciN4W8pHxVvyCNjAPUEMijLUjJBijOIbRouysQ/kJtVCiKA1Q9rHsoqKJ6mX+jrmeTQDLHkqNLSgiboXyeZ6dNm2YiBblWd/3ghjB8+HBPFyW6ifwd8QEFFbX4+nmxx7KXQC4ZhCrfc+0YC5BHiFu2qpYJjf/yyy8mZYLFVZG8ykNBiCqyiUHeo92IELYmpzsbRUUQKJQl8qFRmvItxSVaDh/RiqAaXSeLrl27msYRiBFBgBLHPOx8AmkMuqVHPBCapmKQ6sEgnCdCfFiEoM5Q/ZfJBZbQFgbIqDBUxGKSq0jehoZQrLZXTA1YGLFo09s80/m8jGtURi87F7hN0FF2yQXnHCuio2bNmqZLEMJNEKDEMc/CCtzc+PkpYgO1AFKDChckoJZYU+VM2ZrQuQaVkT7ESoBSA+FWQl25ytvzK/CpZbyh/rFpyUTVNfMqyibXhvEdhA2nBcSRyAUdnhSxwbpL7q3fugalAyWOeQR2O9jvUIigiA4UCSb/fLDeSdfnkdCTm/k4nM/Vq1eb/0fZDIoakwkl/JtvvsnLYq1s5JnhIoG1ltv+g9gjkSPMpsiLPpKZBoSce5qiJEVsMPcR3QmC6qjEMc9a5qnaGBuEaFEkgrxzhjDbjhwk+JPeUBzweiZKKlwpOCIcnk+2JAr/WaNYgkP7vOKqt4xpSCNjmlzhoHY3Yt5gM8j5UEU8Ojg/uEZQTJTvRTJKHPMEhCAJJ+iuMH4oHwQ97w5VhmRuFoHi9KSlSpuiBJQYNiz5aEui8J+qDsljbLJJZFOT7uYIdRHSyOshjUEf35zTH3/80fRnVkQH3pdEdKZOnSr5DCWOeVQUQwVckHJvUgEKG76NeFsGVTWIzAvr06ePyUNk/KRqt0HIn2IEiCchwtq1a2fsWBWKVMEmms0Mmxo2N+lYUaEgMa5pK0coPOjgnFLJDikKYsg+GdSqVcsIE6NHj5Z8hhLHPMCMGTMMMVKn/9ggsZ3Jn8o3RRg2pEzImvBKKiEoNihVq1aVHj16mJ8KhdcA6WNTw+YmlYprwoy4D3B/kLemRV47wflgo6n2PLHBOkzaWD73r1bimAcgHLPHHnuo6hMDECJ2yrQsy2ez3nQBmaYvLWbdicgj/aZRb1AfKLQJevjObeuTfv36FfRmVhQfdnNjc/QSAVJE4RhejcXN/81HcL83bdpU5syZ44lWpl5Eq1atzHnKZ9VRV1GfgwRwij20KCY2UA4IHxBGUBQFpJqkbkjhxIkTYz4PLzeUyYULF2b1+IICNjWkUejmxl2wiFM0w08K5GLZ9ZCuQRtB5tQgmHunCzr34J2pRXCxozF4KZM+lq+bD52hfA52NSw2mFkrigIylIySFnSwEJAjiw9ZtIWV0AutLFEbWDgUkhGvQNIG1Gg5c2Dzg6K4dOnSqB1h8OCjcEw7HsUGhJqNpobwYwMhh/vYFmTmG5Q45oGhMyFYLfiIfn64cclZ0t1xYqDK0gOYLgiRpJEcUUhjixYtcnZ8+Q7GKYQm3608conmzZsbn1tIIoUzFqRfEHpFmczX3vVuY/ny5aZ1q6IoGGN4Kuerp6MSRx+DPBPMgrUoJjqwjcC8l0pqRXKwhS5UoKPOAPIZlTQq8gGkAaAGsbATloaoE07EuLl3796azpIC2OAQocjnIpDioGPHjmYOzUdDfyWOPgb5aOyOyVFTFAaLAdXmFA1psUHqoBKVsCmbE86hkkZFPpJHcnZpwUkqi+aWpgaKMSk6ynfPwuJUoJcqVcpEa/INeqf4eLc3ZcoUk9uoYdiiYBdMIjyhKUXqIH+Jc4iJshr+KvINkETsuZgj6tevb34qUgPrDhtK8kIz0R88XyrQJ8YpOPQrlDj6FEjgqEJaFBMdhJwOPPBATeBOA4TvUGL2339/Ux1IcZHb/X8V0RcaOj+pxVHmgUpG7i754WDIkCF5GVLMNHbffXfTiYqQtaIoWJ9xoaAlcD5BiaNPwS6Gm1ZzcoqCBYDCGHLzFKkB9YDCAcJQVFmzsKIqaMFA5sF4pWJdx21mwSJOGgt+e3iYMtbJcSRkTbs4RWro1KmT5tnHAPn12PPkm+qoxNGHIKzCjlnVxughfPrLameD9EBOIySRhYBQFA/CLUx+FBppSCpzoI0bRuzazi2zwGoHU/DGjRubfzO2u3XrZgzCmTuK0789iIB0E/pnflAUBm4npEspcVTkHOyWWVwIaymKEh/Io7YWTA8QRhSEaIUCjDs88JQ8ZgaoXdh3qOqVGeAUwPwACK86gcq77777mkiFFnukDjwLBw8eXMQfUyFG4OG8YF+UL1Di6EOwe6HStXr16rk+FE+BSZ+FAf8szRNLHrbNGiE8CGOs1mxMgKiRVFurBYfCT1iwYIGMHz8+rrk6yhl5vaRoKFIDueSQcWvhpdiJJk2amI1JPqmOShx9BsIoKD8api4KkpAx8tXOJqmBBZXcxkQt1iCVtGJjgYBo0ppNofA6CP9T7EX1dKIojQ27kietbgKpgdA/88jq1atzfSieQunSpY01D8QxXzqYKXH0GWwnFA1TFwW5SpDGypUr5/pQfAMUWtQYqqfxZEsEyCXdNTAK11wwhddBWgVtWevWrWuUxGStyyCbbKg0LSN5UGSE8qiqY1Eg9ECq8yWUr8TRZ2DXQmu4ZBb5oIGJSwl18iDcjDktZJvUh1R20N27dzdV/QCVV1F8QMoh5ImUX0Xy4HxS3EVv5VT8bilooPUmOada9JEcOL+ojozffFHW3ELDhg2Nb2i+hKuVOPoIJM2zm9MwdVEQvl+7dm2uD8NXICSHEkMYpTjn/ZdfftGCDheAUk6vcFXM3dkUMSaJQkACU+0KAwmiUAwShD0V+dOKxEDUSJWkBwGlSpUy9k/5Eq5W4ugj0CmGQccAVOwEuXZUQipxTA4sgjzIVWRxLE6rNQqRmBTVxkThFZBjRw5ucaujsVIhp5dxvW7dOteOL9/B3DJ//ny1lYoAgg9jk1x8v0OJo8/yG0nw1m4ohYEKSxhAe3Ynh8mTJ5uF1Y2dL9Xr2JjwXr/99puGrYu5Afrqq6+06KgYoKgFI2/607tRHU2ou2/fvpoalAIgjOSHYn+k2AnWbtYp1nG/Q4mjT0BBDIUMONErdoL8IxLZydPT8EhiUAjDOIJku3W+qESFPGLro4nxxYOGRNMHqiDKN4tz165dY9pKpQoUeeZfQtZaMZwYWM/sueeeZp7R8Vx4HGHNQ3qP36HE0SegFyg7ORK9FTvB5MQCwW5OkViNQQlgUnfbIB0VHA+84uRLKhTF3URCGukCQ26j24s+IWvII527FPFBkQzni029YidYv5csWeL7vuhKHH0CWugRNtHe1IUBAbJJ7IrYQA0cOXKkIXiZMjhGeUTFpDCBUDgqjUKRaUDkSJVgbmTzQm6i24A40lGJ+4hK63wocMgkKPDiemi4ujBQHJkj/a46KnH0AZikGGiEqTUcWxgoDLvttluuD8PzgFiz2yXZP9Mkm0UW8ghRZaFVKDIFVK2hQ4cW5I1lcn4knxfyiLfj7NmzM/Y5+USSqLJWFN5cU1CoxFGRcWAcSjs4DVMXBt0gyNlTxIetbrTJ2ZkG1drkmDFm1cokNZWmd+/easeTgtJIIQybk2ylqtByE0KkSAx8MEmLURQG6zgbDz9HZJQ4+iRMTR4fJqKKMOg5i+WDIj5YVPFZzLZCQh911E3UmQkTJmT1s/0KlGCqgTXtIrnNEIUwkEfM6LOxIbIgj5ccPkVy8/S4ceN08+gAkUPGrZ/D+EocfQBkbUij2wnffgZ9ZDkfasETH4TwCOfZLi/ZBDlOkEfd8CRf3MEiq51KkiuK4zxRzZ8rezJ8IjXikdxcvXjx4lwfhmew2267GXsnP4erlTh6HPjisTPRMPVOsHtlMiIMoupMbGAdgtJI54xcLa52kkT5ZLHXooLYQIVgXGvVbmIwH/bo0cMotLkCnWnoBKLepbHBvEPI2s/qmtsoUaKEUR2VOCoyBnzxIEpKHHdi2bJlZnHVxOvYYMygXrGw4nHphTxdFll6YysU6Y5pcmZJf2DxzXUjBDqBcBw6puOD/FPuf+2+sxOs55wTHn6EEkePg10JIb9q1arl+lA8g9q1a+dcbfA6UPbY6dM3tjgtBd1UHrEBQnWkdaZCkSppxAZn6dKl4hVg+9O6dWvTQo7NrCI6SCfiXKnquBOk71C34FfVMfcriiKhDY+qjdErdxWxQQifRQ3vT68AhZhjmjlzpin4UiiSnQfHjBljyBk5s2yIvALSZdjYL1++PNeH4lmwccVrVwuKdgIijQexX4mjOz2ZPALCl6+++qp89913snbtWjNQzz//fDPZxMPPP/8sP/74o0l2xn8OdYSk67POOquIqnXSSScZ5/dIHHXUUXLttde6+n3YXSPvK3HcCUgHoSq6QyiiY8SIEWaXj1+Y10DYnHxHrbKM3qoNqxd+Kgr3Vqe4Ag9FL3q2ZsMb1e/QxhVFwboOV8EhwG+Fr3lFHO+//3756aef5MQTTzQ7wW+++Uauv/56efLJJ+N2y3jkkUeMP9fBBx9sqk/JK/zkk0+MRxhENHIi54KffPLJhX6XCb8q2gwyIXmRAOQKhIU0RB0bFFew4fByJbNzI4RdR65z1bwCDKa1ZWN0pRp7J1JUvAhLGmmvh8GzphVFB2kqODzoGA8DxZFNNJX5Xp6v85o4sisdPHiwXHzxxXLqqaea3/Xr10/OPvtsef75580jFu666y7p0KFDod9RiXrffffJ999/L0cccUShvxEqgWRmGrZymFwIhRgVmR6fXBtFUVDdyX3ARsMPO3wMwocNGybt2rXTzZGIMQT+559/THqB3vNicuL22GMPY4judVN0wukIDhCBnj17eiKv2GtAWUMMoaJYFVox6jkbDdZ5vxHHvBndhJsZjISMLVAKDz/8cFP1Fi+pOpI0Am5+wECPdRNk0m+NiYiJUyuHd4IdPQuqF8NVXgCpFlR5tmrVSvwAlBkqLqn+RkkOOlBff/vtN/Mz6MB/dPz48b4pOuG+YwNEalGsNSPoYBPA5sgv1zQbY6Z+/fq+LBrKm20tSaaoc5FhLyuLkxuXigmyLZOPVoQxevRooziyuyR8QmicRzyQl+csvU80WHguC0hOiCMt6kj23rgRGYRYjAg5GDVqYMwluQLkn9w93c1H32iwkSEMTOK1X7D33nub+4jiBzZ+Xg1Hun2tUId5sBFizrJ+rYxxFAhUR8a5TYFhwQ2KCmmLp5i769atK34BfqVcL46feVtVtcJgnDOu2SRq44YwGCdDhgwxc6CfxkvezEQQLfIUI2F/B3FLBe+88465kL169SqS3E++JKE1wqbkUT799NPm/QmTx8Lnn38ur7/+etKfzyLCjiRjvT4xYkblGTFCZORIkYkTw//mAWmMZdRMlS6T+R57kKwm0qUL2eEiLVqECWYGsd9++/m6v2cmwVihYMhvBtscN5ZBTJyQBTZ3/C6fQs8QCpLfIRTkeUES7XUizwnyDOnHpgjSSA4vLfTYANj7n7aRPIc8SB78nU2C10O4qcLaNRHO9GNPaI6bnDU/hh+zpToSGQnSRigRcSR6SfGXn/p6582VYzKOVplk1ZdU3P3Ja/zqq69MrmRk7tUDDzxQ6N+HHXaYXHfddfLBBx/I8ccfHzOMSggd4uMkhvfcc0/MY+Dv7MpcrbAkBPbttyKffioyeLCIbQMFEWzfPkwCIYT8G+WnfHkRbm4qYOlmAfmGWC5aFP75008iL7wQJpksYN27ixxzjMjRR4ffw0Ww0ELk/bQryxZQpnkw9vxIujhm7Dogj348ficgDGxi6dpjDY+pukVJhRASmrLkjwc5TjayccghhxhCSJoMyoyz8hwbIzqVMI9BIHlvSz4hWtjB8B6E/yHfflKdnYBQ4Ibh1zxmrh+OHFogEx2QI8QcJY1hMC9Yj0sljjkABAvmHgnbvitZAka+1YMPPihdunSRCy64IOHzWeiw6MECZezYsTGLZiioScV/jIHkSq4aCt1nn4m88YbId9+Fw8977y1y1lkiXbuG1ULIYrpYs0bkzz/DyuX334tcfrnIJZeIYJdD5fnZZ7MqFvtrUC2P2qs5n0XBDp5CkwMOOMC3YXyOmwdVl9xLqHB+WHyJOhBehuxw/Pw/xI57HcUMMmdVQQhdvHQZ5hLIpCXPzmsZ73WcJwglVmI2UsH589O9Aim2KqrfYaNcqqoVBeuw2k3thHVN4b51CkteR96Mam7WaCasNq8wGdJGKOnGG280BIVK62Rveqsysoi4AdQKQlzFmvj//lvklVdEnn0WGSSsJt59d1gRdDMEtMsuIn36hB833BD+3C+/FPn4Y5Hrrxe55ZYweYRQpqkiQIpQWPItLOcGGHMUDZGY71fS6ARRAybT4cOHG+XGSwbmFoxFlEX8XFF6mScgdoSkE3nGxgOvP+igg9JSLWxuKAQS8op9jZ3TGB/W1xNi6jUQpqMrDKkWXjL3Lg7I46PFJps5v3n0ZWPOmjBhghFn9NyIWecpiiPC4Jc53B9HmQTY3ZNbElmRiD2J/XuiGx0Db3bvDz30kNn9JgsmZje7mdjCGcJaKeOff8IEDtn71ltFDjggrAgOHy6CQXmm84ZYsM48MxwO53tcc43Ihx+GcyCPPZZyyZTfkgWaXapdDBWFq08Zq34Kc8QDpLFr164mkR4fVSyYvAZIzvz5881mlWPF9gvS5wVwnzBv2E0WxJtzSfEgdmUU9nnpnFJhyzFRBBMtR92v4LugOM6ePTvXh+I5EJpFHfdS+8hcE8eNGzf6qto8b4hj7969TY4URSjOMPXXX39tQr421MNgjaxoRpW85pprDNvHDDwWAWSnxGc4weTw9ttvm51TNFufdMDxoWKmQl5NJfQzz4jQ1omfELb580UGDBDp2FFyAirn7rwzrHhyHGPGiLRpE1YfU2jRxTXza/5eJoEqDakmH8wvO9VkgIKH+oQ6BnmMvOeyCe5vCjboLMX5BnQwQRlE5WVcunXumV/Ir3YrcgHw89xnn33M8VKljHrPIgX4mcsOPhQUjhw50pxDCqTy6f5m7FIcA3G06VKKneeGDY2fiFKmC4ZKlSrlK1uevAlVQw779OkjL730kgn1cjG+/fZbs7DegAK3A/fee6/JRaRK0YLiFlRDimGQ0HlYoEDa8BNmxW+88YaptCb0w86diZ6F5cILL3Rtx5xyRd7vv4ucc44I/X/PPRdHc9eLU4oFcloIV59yisjTT3MRwjmXDz8sQh5pnAWD0Bvn2a/J8pkEShK5bIz1fAMbMcgjZC0XBVGQVRZ9Qr38P/e7PY5Mdbqh2AUyl4nKeM4nKTjMK5agYYFE2L1FixZGsc42cUMtZ86E2ObTxseCKBeejhiDa7eUwkDIYd1krOfThiHdjTJzOOs+EQw/IG+II7jpppvMgBw0aJCZEJkoKXRhNxsPLA7g3XffLfI3XmuJoy3OgCxCTrngJHPfeeedhrS6AY6bnTgKakKwk4Uk3n9/OIdx7FiROK0Vcw7yq667Lkxyb7xR5KKL8CkK52LG8O8j9EYoUKupi4Lxh51LvoJrb/OHWXyZXLOVo0dol8/k/FL44sXcwHTgXKTbtGljLJDYSEOS2Xxns+MQOW62KCpfQ7KMHVUci4L7mrGHAq4pSGJ4BRs5vxDp0vm20FxyySXmEQtPPfVUkd851cd4QPWKtONxG+ROJZXfSK7gaaeJjB8fJo+oqn6p4CMB/uWXw7Y9550XDl+/+mr431HgV2uRTILKYwoJ2MzkO1h4USfYkXfv3j1jVZls2FC4IaicV4pJ8rmPNvZAqH18V3LByd088MADM1oJTBge5wrC/daKKJ+hkZLoIB0Mdc2LxW+5QP369eXXX3/1DZHOz62ej0GFIYntTOoxgQcjkjaFQH/8IXLzzf4hjU7QAxzj8R49wtXe991XyHicECEJ/ZoLI0Vycsn7DMLCazcOVFhjt0XOYzTbreIAskiu3e+//24K7Oxn5jNpdIJ0HKxAevToYUgjRB0i6XZuKdEUrh+qSpBsasgjZdNjc0sVYeUb1VEjSWHYDkms/36AEkePgZxMrDViytWEdQ85JOyTiHfiPvuIr0FoDOueO+4IE2ByNHeEdiBI1t9NsROEFdlYBKltFyQO8sjiC/lwq4MQ9xseoez0MSHPZY4R3xFFNVeE1X4uqiAKL5EYUnLcAPcxxBxCTu5qkGxYIOCTJk3yVfFDNsCYYMOG72nQUalSJePMwHzkByhx9BjYcUQlBChxN90ULibhgVeiRyxAig1I8u23i7z1Fr0eRfr1M8biqGqQRvVv3AmIE+cln3MbYwGyDOlgPLiVF0ceI6EhCt5yXWSECueFrhqkQHA+OI6hQ4eaXLTiFOyguEH2UZe4fkFLPYEk2+IHv7UEzfR5YS7TiFIYCEaqOCpSBh6UVBBbM98CMNngwUgRzCOPhE298zHUc/rpIj/8ELbtOeQQWTF7dswWjkEFeXiQplyTnFyBnChsrzgH3Cvp2MngIYfCCFAYKX7zQjcLNgW0D/RCSBNyTvia4j8KhYpjEcS1ohAHxThfioyC4NWXDeJImoT6OYaBYKSKoyJl2N1GEcWR7iuPPbbTn9EHVVdpg3zH77+X0OTJ0pYq+Xi5ngEEtikUMAQp1BdPxRo1alRK5JEwP10aCMWCXKt7kbmWODzw0wuA8FHc0bdvX0PYUcss4U4G5Eqi6AI2gEHJyY0Gzh8PDVcXBi4obIZz6SfqFdSuXdvkAXvJoD8WlDh6CLZDSqEevRBGikZQGi+9NFsHIoKXJTmUv/4aLsAZN45VlxU785/fubOU+PZbqT53rtSiQt7lYgi/gqIQFu+ghfpikRqssmgzSueRRCFA/o4/K7lmVBG7ZdYfBFiVkMIhvGwt6Y4HW8gEEfaCguoFQMKDGimIBeyfyAF1K5fWz6izQzDyg+rone22wiiOhQpjvvkmHKLGagelMRNAQRg1SmTkyDBR5OeOFopRgQLYqZMhd+aBf2S9eu6roN26SYlPPhE57DCR//1P5NFHJejAxoSdOf53ivCig60LCfZ4EcbrPsLfaStKt5e0WnkqjNqNGkIPZtJqWrduHfV8U7hEr3GKHyj2CWp4OhK2e5liJygIYROneexiFGlUeXgAKSJehhJHD4GdRkFPbdQ9fBoPPzysOLoJVMNvv8XUUmTQoPDvKLSBCNJnmp/YAxBaIveLClYq3yCZo0eHCSZFLA89FH4tXRGuuELkP/+hPMyVQ0StaNC2rdSGMP73v2GCevLJElQQvmR8sFgrCi/GVEOjJkJUYlUkU0wE8cmmwXW+AZKISTjnmPMNeYS4Oy1VUI/wGIVgktPolR7eXgHnhW4y5Hz6weg50+AccF8qxJwLhCNVHBUpEQPsZ/BSk/XrRY47ToQWhm++SVzOnQ8hd+L118Nt/2bMCFv5vPSSSM+eIuxwkvmcgw/e+f/kZA4fHj5Gwuh0gzn//PD/F6PqFwJACNK0XYSQQlQxCoc0YRYeQGAMr5NsbA80cujIV3R2XmCRprADJbJQ+odHQQoCaqjXUxEo9MDtgAUu0oePc49qQhtDTJ4VhQGxhjiy4dHCvzCUTO8ExHHq1KnidWiOo0dgdxmmovrqq8N9p/E3dGPyRTFEtSS/5qqrRMjvGjYsHJbG2ofuBumQU3IyMO7+6CN8TcLvhc9k48bhCukVK9I6XAg0MA76TCSQWzqknHgipacSNECGsPKAIAW9KCYWLGkkbM3Ey2KEbyA/3TayzhQgXITS/VBEgnJLn3R7v5LHSGI/uaeEHv3Q/SIXgEyjwmqRTOF8WIhjcSr38ynPcdWqVZ7PC1bi6BHY3XutyZNFXnxR5OGH3ek7TR9uFMVbbw2rgXPnirz/vkj37u7mJaIwErqm8wbV34TCWVjI00zDLoXJtYAkEX6kjzjk9N57JWhgEoEUofQoYgO1Ag/C8ePHy8CBA02hGeFSv5BtCK6fiC4g55bipDfffNMYqbtlzJ7P4D7Ggsbr5CCbZJoNhxUMgozaO6z4vB6uVuLoJePvatWk1MUXh0kdP4sDqkxR6tq3F8Eni37cVGhnOtQJyePYaSXIZ1Pcwr9pj5gkmEAwQi4EwtQYoNMrnIrvAAEF6oADDlAVJwkQyifVgfuJcKDXw75OoNhBvvjpJ7JO2Jrz7XYryHwFldUQJdJPFGGHBFJJEAyCjpo1a5roideNwJU4egTsQHtA7lAEX365eHmNWBscdZTIRReJnHoqJaUi++0nWQVh7K+/FnnuOZH/+79weBxLnyRAuC6qukYOJbmYhMR9pMoUByzGFCEEPfcnWUAUe/bsKYcffrjJb9TFKLOgwppzfOKJJ5rqaVIF1JMvPlDA99lnH6mHG4XCgE2xKo5iSDQbXq+bomtxjAdAGHLLrFnS9NNPw+SoVav034yFkgIWwrqffRYmkLkCZAe18YADRE45RaR3b5HvvgtXbcdBEbXRggpvSPX++4dD12ecIfkOvPMmT54s/fr185RZtdcAWSE3iLGDT6MN+3hVpQ1t3izbN2+W0KZN4cfWrbJ59WrZsnSpbJ43TzbvuquUKFtWSpQrJyV3/CzhsetPqHXRokUFFkcUe5AmQO/hXPXb9gvUmqdobh+EmvvYrXaiflYdV3qcRHtrJgooUJS6DR4s2+nBe9116b8Rg61vX5GFC0WGDAmHir0Aim9++knk0ENFDjwwbAHUrVvUp9p+rjHz+VBOIcN33hkmox5bTN0GLcogP0oa4wN7GHwa6XJi2wfaxRlyAyguyhVJ3LZmjXls5+fadRKKEtbdtG6dbF2yVDbNnSebKhddOEqUKyuldtlFSlWpIiX5ucsuOSOT3KMojKRQ2BxSSHvv3r1VHU8SKOLktduNTpBhO+soxMz3GOd7GcGm9h7BP2PGSIexY2UD1jPpGqFi4XPEEd4jjRZMChBGCn7Ie5wyJerTyPuhBVVc3HVXuOjnjTckn0GRBOdC1Yn4YLPBgyrfaD2nId8UcGQz4Xz7xo2yef58WT96tKwbNkw2jJ8gm+fOk61/r4pKGi1KxFFbQps2y9blK2TT7DmyYew4WTd0qGwYP162LFpkyGm2wKKGwTfqUGThEaSRVoN0mNE0gcSCAeNWEQbjBRu2oKNGjRpmbHi5eEqJowdQ/uGHZX3FilIeq5x0QCUj6tv48eG8Qq96HdJ15osvwrZAhxwSJrkRKgaWDAl3nu3aiZxwQphAZnHBzDZsD1f1e4sNWpWhNmLwHStnjFAqYes///wzowtTaPt22bJkiawfNUr+/e132TRjpmxb/Y9I/G6IBahaubIc0q2b+ZkUtodk64qVsnHqtDA5HTtWtqZpgZUsaDc4ZcoUU8wQK6QImYRA0kfcy4tfrsGGkCp6QvsK0vvnyrRp0yToqL4jvcbLGy8ljrnGqlVS7ZtvZDQhn3Sl+scfF/nqK5GBAxPmD+Yc+FJi1UMC/dlnh6u/d4BqWOw8kgpZ3HabCF5o5HHmKVBuWKC1HVds4NnIeInXUQcSQ3cZcoco3nB7QiZXERUQsrhx8hTZtmatZB0hMWomyua/f/whmxcsMHmTbgJ1jGKYxo0bm77L8c43xR+WPGqxTHQwHjlHXi+EyBa4jxEOEvWdz3dUV+KoSIgvvpBQiRKy2NmRJRVQBAOJuvLKcA6hH4DiSJHLDz8UCjf/888/5mdSxBGPSPIdsRzKU6Cg7U8hkCImaHnXuXPnhAn1/J3nYteDfYwbgJhBGNf//rtsnju32OHidRs2yLDx48zP4mD7+g2yafoM+feP4bJl4UJXFmIWdHqlo+zSdjARSBngfHNPo1AqoiuzkARSKRTheZ/0HMK0QUb58uVNcZmXC2SUOOYan3wiszp0kEr166f+WhYELHcwDb37bvEVCFVTFU2XnB0TJzdLs2bNkvfeu/DCMPmEPOehDY/64sUGiy0LDEVD0fIao4FChLZt25qJGTU33U4VxgVh0SJDzAxh3OaOosaiuWbdv64ZgENkN06bLuuHjyh2CBtDfgg6beGSBWo5SnAVUlQUUUFrRuY8xU7BwAoIQUb16tVVcVTEwV9/yfC2bWNb0MQD/oiDB4u88ELYeNstEFpCJfj8c5EPPjDk1vSkdjtfCUNyKjD/+9+CiSNeCKwIaEFI6Bv1Ms9AS7IffvhBw3wx+rpT7FKcykNCrrYlYSrYvn69bBg92uQVZrMgpTgwxzx+gmyYMDHlY4agU60OyBNNtWIahRKrnmyBsO8nn3wir7zyivnp9TAwBEF7eu9UYLHliex/HkRU9zhxVI+PHCNUt67MqltXOqfqN8eEiFr3n/+I9OtX/APZtCncihAySg/raAsq1h9URR97bFjtK27RRq1aIk88Ef4Op58uC9q1M3k/KEJJgZ6+J58cJrf33+9uC8UcgwWPcxF0T7NYpA8C07Jly7Tfgwrs3377zZDH/fbbLynfQcK+m2bOdE1hzDa2Ll8u/675R8q3aCGlk9ioUpxFTijFWXQ7KQ7wd6QDUlMM/DMEKrlpfcjYQBXm56BBg+TMM8+U7nTj8ijIHSW3W215wqknCjFCEnZNXoWuSjnGem6UEiVSNyp+9tlwNTWqXXHAe9BjGlXgrLPCHWto7UcIGP87utBQiQqZfOopERbr++4LP/+888J/Kw5OP90Yg2+/804ZM2aMqZJNCUceSamnSB5V4xGixsxaq6mLAksdfBkJmRannSDqRrdu3cxPyGO8ylbsc7C9IezrV9LotPTZMG68bJw+PW7uI2rHiBEjzAJGoUtxwbWaPn16xtopstGCNPKdUOmdP9944w1P5xESmqVaXRFOA0k1CpCPqF69uikW9aorgRLHHGNVq1ZmZ5wScYTsvfqqyGmnUZqX/odPnx7uwkK3muOOC4env/9e5H//CxuJ0zaQvBM+A4JLF5i33sJsMWyFQ0UzRSpffpn+MaASXn65lBw5UqrMmZO6CWyfPmQTh6vK8wRYxjCBKnEsDM4JhRbYmBRXAQPkRu67775G1YWoR8P2DRtk/Z+jje1NplGxfHlp36yZ+ZlpbFmwUDaOGxfVUxIig08jIdRkCo+SAUojiiMFNpmomkU9jhVG5/eokV4F4xmSoIQpnBpBv/agWxRV93hltRLHHGNx3bom8TylziDffBNWAwkXpwsURfpHU7nFpPr882RqJ/dawlzXX0/MUAQ1AtXvjjsKWeukhCOPlK01a0rDH34wi0tKoEIW8phHxJFJk0U75XOR54AAdO3a1RS4uAXSIuh2YrvKOAtTtv3zj6wf9afJEcwGypQuLXVq1jQ/swHse9aPHmPIceQ5IdesS5curuWb8T74abIQ2k4+boIK1FiElN97uUIVVZfz42VVNFtgLQTpFq7lG3Fc6dFxq8Qxx1i9fn3qYWosaCBsHTum96G0/6PLTK9eImPGxGz/lxBUc6M23nNPuAUgP9NBmTKy8qijZA863qSzSFOhPXRoOE8zD4BPntrwFA3fQ+qw0kk6BzZJWEWNYpuhQ4eazyIfcP2YMXG7vLiNTZs3y5xFi8zPbGH7v/8aRXXbunWmSp3CI5TY9u3bu97mEoJEgU0m7FZ473iKY1rFh1kCpJF8Zq8X8mQD3Nvcj2rJU97kXaviqIgKQhQphWcXLAh3h0lXbZw7V+SYY8Ihaqqli2suzWR9881hOyD8JCmwSQPrTjlFSpP/9OGHqb+YMDoL/KRJ4nfYvCzt91sY5Mf9/PPPGTUHJmRITtGwb7+VtXRh2p5dI+KNmzfL1Llzzc9sgkrrlb//Ib8OHmyKWDJd/JAJ+xmKX+IpjhRAeRlNmjTR4pgdJB/CFHTiaNVXr6YvKHHMMbhBUuoM8t57JGeJnHpq6h/GxNq/PyNS5KOPwu/jFiCPJ50kctlllGOm/PLGBx0UzqskhzJV0IIQooV66nMsXrxYvvnmG1NlqQgDMkc7MvIaM0mo8Rvs1KKF/D1lioyaNNk1P0WvA6I6fNw42TZnrrRu3Dijn8X1Y3NEJbGbVlOQfqqneX8UK+dPfu/1fGGiTqixCrSMyuphK+Hz4FXiqHY8HshnS4k4Ut2MwpaOqe7bb4sMGhQOL6fb3jAWWNBt1TU9t998MzVD5S1bpGzv3iKPPhomuKkQBKxU8H/MA+JIYQKhQrfDhH4GIWTCeZlWZLatXSvl5s2TTs1byIjJk2TWwoXSLIsehLkAYfHhkyaae7Bzs2YSmjpVtnfqJCWLUbGezGbZFsnstdderqqOKHcUwpAbRngapdHrpNGCzREqU8qpS3kG264y6KhSpYpn0xdUccwxUDVSIo6QI4paUgVkjDxEqqcPP1wygt13F3nggbBqmII5M7sq/NbW4vGGHQ89qFNF+/Yi48ZJPhDHlCvL83xjhRk6eZ9Y52QKpsvKhAkS2rpNqlWpIt1at5HGLlRuex2r162T7dtD0qVVK6lQrpxs37hJNk4ME8lMLogUI5F+4LbBPSTx2GOPlfPPP9/89AtpBLNnzzYRh6BDSWMY8IJM2VcVF0ocPYCkW3IhW2MKmk5RDAUxkLkdXVoyBsy86YTwyitJv8Tms5SzRTrpKIcNGoTzP30OJY6FQbEGhQMNGzbM2GdAkjZOnmxIk0XVypWNyrnm339l4qxZGSVSFqVLlZJa1auZn5mGJWy7V68uPdu3l0qOCv5tq/+RzcXoypMM6BBFCkImKqz9Cu57bbcXrqgePHhw4PMcKytxVMRD0oqjVdTSURzxfcRuJ9PVuixAkMcBA8J+k0mAmwM1qSxhK1TLdIgj+UFLlqRvCeQRdY2QvbWkULAH2dVY8GQydL959mxjTRMNGzdtkvnLlsl4OsZkeGxB3jq1aFmIxGUCW7dtk+GTJskM/Fh3VPVGYvP8BbIlg2Ey5jw2BKjJisLEMRubFC+DtYCiUa+SpmyBe4SIpBdNwJU4+ok4QqgoaInTaq3fwH5y89Cbi/7h559Fjj46tdxB1E3MwSnE4WeCFkjPjX1O9v6/vcMtCfEkw2A8CTBJFLR8gxSnQxwxK+cGi/D/WrhuoTmmT2d+Kl4Hvo2HHHKIWVAVYky5M21HsXXVKtk876+Yf9+tenVp37SpLFqxQibNnp1xFXDzli0Z7U/OQvTn1Kmydv16qVWtWtznbiLfMYOLFqbgmVSS/UgcKYpjPgwy1JKnMC/wohm6ZuDnGCgpybZOmz5/jLxwdROZ+NnhsnLDStm13K7SaNdG0rtebzm95emxX0hbQMK4qYS4UQzPPz9MNG2xCq0JUS7PPjtxviGAALZqlfCjmCj/2PiHrJy5Uo6BFKdj5m0rEskR8nGoN5N5fH7DtGnTDNHJlJVKaPt22ZREq0pMubdt3y4TZs405tzNXSzocAIy99v48dK9bVsTKncbENLR06fL6nVrpXPLVrJrgs+gvSLnpwKuBRmAbpCKEsd69epJ0KGWPIVT2Ly4kVDFMcfA0DiZZOCxy8bKKS1HybTdS8rxTY+Xm7reJMc1O05Kligpb095u+B5Xxz7hdzR/Y7oIW5L6BIBZRHSiPKBJYnzJ/2pE+U/oWSQczh2bFIfR8/gYf8Ok89mfhaukE5H5SCvEvi44wAeel5ubJ9NsGjQerF+BquaN8+ZI9vXJ7eb33O33aRN48YJVTovY/aiRbLyn39kn+YtpHqS6RBbV/6d0ZA14cixY8dmVGX1CxAQMF4viL4EfF30otKWTVTaMQ68eB5UcfTADZIMXhr/klTZWkre/bKy7HLlRYX+hvpoUbZUFPXShvuS9Ql77bXYIW1+j+p4//3x34PPitH/t+hblthJnukKkg5xtDlwPvY/xHphzz33zPVheAL4/KG+2laAboNOKZv/ih2ijoZ65N/uUO6Wr15tCkv8hEZ160qNqlVN1Xgq2DR9hpSuVk1KZMiiZ/78+VKrVi1X+o/nQzEYClM1H29Q3ECLFi1c6ZHu941EuXLlVHFUFEWy/Yjnr50vjdeWk122FQ1l1qhQI2aOI7l9e2+4W0Y3rSj3T3hCer7XU7q/013u/P1O2bJti6zZvEZu+vUm6f5ud/N4bNRjEpo7p6DIZGSLSrL3623MTwN+P3du4txBEu63bJFPZnwi5w06T3q930s6vtlRjv70aHl/6s7uMhSD9Hq7l8xcPVNGLR0le+/5nuz90G5yzrfnFDyHY3xwxINy4IcHmvc47OPD5NUJr8r2kEOlKFlS1lQsKTcvGSD7vrOv+Y6ch7WbvWmgGonN2MFs3KgV1TuwYMECQyTc6pUcCVM1nGYNwtK//5bRU6ea9oBeB4UWU+bOkX/WrTMLcaqk0bzHli0pk+xU8rjwLeR6K0TmzJkjI/HqDTgoEEzJpi5PUblyZU+G7FVx9IniWLdyXRlX9S+ZUamENE3jc+4/o47U+GeeXNL+Ehm/fLwMnD5QqpStIuOWjZPalWrLlR2ulF8X/ioDJg2QJm3by1EfxlEcCUMnArukChXkg2kfSONdG5s8zFIlSsnPC36We4bfI9tlu5za4lRDlg4rf5gM2jpIKperLBfMqiXy449S4+ULzNts2LrBkMhl65fJic1ONMc6bvk4eXL0k7Jiwwq5ocsNBYvbFVfsJWPWDpcTm58kjao2kh//+jF6oZAHYW04lDiGFT1C1Jny4Nu2enXMKupkQM4jNj20ByxVqqTU3927HT+mzJ0r8xYvlqqVKhcrb3LLwoVSpl49Kelmt6kdqFOnjkyZMsXks2Zqo+AXcP+jOjIvut2T3U9gPkSJbt26daB9HStXrqyhakX6xPGs1mfJJQt/kxOPWydtvj5DOu7eUbrV7iad63SWMiUTF1TUWLNVnq98lpRo0VNOaXGK/LX2L3l94uuGjN26763mOSc0O0H6fdRPPmmxRY6KZQnB78lzjAfyIamoPu00GXDIZVK+9M4J8LSWp0n/7/vLG5PeKCCOrcq2kt9K/ibVy1eXI1fuLjK1pEjd7ub5PA+19cMjP5S9dgkXJZzU/CSpVaGWvD7pdXNeIJNDVvwhf7aoJFfXPknO6XaLed7JzU+WcwedK36ZKCmUSnY85DNQxvD5yxQ2zZ5T7PegQIaCmUmzZkupkqVkj1q1iv2eu1SqJAd17SqlXArRTZs3z5DG1o0bSd1iHh+FMpvnzZPyGegzzQZh0qRJsmLFCtM6MMiwG0e8DINMHCFLqK9U3hOuDXKBzN8ZdpZIBxqqzjGSnRy61+0ub83vKb2nbJbpq6bLgIkD5KIfLjLh2yF/DUn4+mN/WyclHMUqe9fcW0ISkuOaHlfwOxbA1jVay4JtK8N5jCxgdhGz/8/vmzSJ/2EUeCCvd+hQiDQSNl61cZV0qt1JFqxbYP7N7hoU7CrxYnTkjn037ztDkncpu4t5rX10q9tNtoW2mfA2+HXZH1J6a8iQRef3gaj6AagunTt3DvTu2gKlIVPhGex3UBzdQMsGDWTP3Xc3YWA3wLXH/NuNMUC7xNkLF0qLBg1cU0S3LFok23fcr26rKu3atVO1fYeQgOrq1R7F2YIli3Z9CPJ42OhBH0dVHH1kv9KmRW954qTnZMuShTKt1N8y+K/B8ubkN+Xqn6+WgUcONCHhWKhTo4HIb7+JXHGF+TdharB7pcI7/MplK8uaTWvCljuYhb/7oIj8IXLKySKn3pCYNAI+B7RvL2OWjZFnxz5rwuOEnZ1Yt3mdmRhQ2kpsL7HTwode3Dvw15q/DFHu+X7PqB/194bwbmzxhqVS858tUnGPwmH0BrskEVb3SAWdVlOGc17pY9y2bduMnI8tLubSQfDaNGpUQPS2bN1q7HrSxb8bNsikOXOkdcOGxTYBpwgG0tjQzeKi7SETsi6XgZ7hmaye96PpfdA3kFZQCTpxLFu2rJkTvQYljn7y7dvRMabMuInS5uCDpU3NNiZ8e+uwW+W7ud/Jxe0vjvnSUgf0FbnxyXCFtUPRI+8wEiiRBpDECy4UGfRH+GftnaQxrn0GHpB9+8r8Muvl/K/Pl4ZVG8q1na41IWXC6uRSQnjJcyRMZQqEyAfnPSdNErnggp2fE9ou+9bZV85ps7NYJioxZIIpWYoTKn4EfWpJCA+6t92yZctMQUcm8htRy7auWOHqe9oF/u81a2TUlCnSsXlzqWmtodLo6LKS/EtSPdLE8lWrDGnEozGRT2M62LJ4sZRt2NB1YkNxGFZUe+21V+CLIrp3D6fpBBlWcfSi2pZNKHFUFJ84stOnKnL0aJGDDza/IrQMlm9YHv+1RxwhcsPjIm+8kVK/akLEtrLZiUX/xqkoHTpU5P335acFP8nm7Zvl6QOeljqV6xT8eeSSkYVyOAp6dVNQw03iaKlYr0o9Wb91vexbd9+4x1lnTQkZXqOUrN+yXiqW2ZknOHfNXPEDZs6cKQ0aNFDiuGyZIdCZyO/aijl8hrq5QdKq7bKL/DltqjHXTtYn0U0sWLbMmJTjN2mtg9xGaNNm2bZihZR2IafTCaIOtB/kugedOCrCec6NGjUKfBSmbNmyppuQ16A5jj4hjiMWj5AQu3xMvB0t+VDvkgrJVqsuctJJIg8+KJJCjhfV3KiSfy79s9Dv35+201KnALaghvZ/Rx9tzMnNrx2rNXmNTgufhQsXmqT4iqUrytp1K8JV223bFvy9X4N+pop62MJhRT4OMrt1e/im6jHxX9laqvBxbdu+Td6Z8o54HShshGSCnAxvsXr1aqlRY6e9lNtqWSYXuo7NmsmulasY5XF1lvvsLlq+XCbMmmUIY6ZIYybPI+ePEC3XP+iYOnWq/PLLLxJ0UFGNVVOQUdajxFEVR58Qx/tH3G9yBPseUVkajhwrW6a+a7rJDJo7SPaovIcc0/SYxG8CaaQF4PXXi1ySXBcZciEP3utgeXfKu1JCShgFEEudvzdGqfSaMiX885lnTE9tCnoITV/242Wmehs18KMZH5nqaauQorQxObSs0VI+WD5eXjynhdRf9ot5Ttc6XeXsNmfLkPlD5LLBl8nRTY6WVjVamfNA3uP3876XQccPkmrldpXeX0yWDvu1lydGP2E8Jsn3HDxvsKzbkt0FPB3YPJ4gVw9aoLhiBu02tq1ZI9s3ZDbsRVHDPi1aGOI4afYs2a9tZlr1RfOVHDdzptStWVNaZyD/MBJb//5bQlu3Soli5HNGA8UxmOAHHYwjL1qwZBt0FQJBVqDLZsh0v7hQxTHHIESTDK7pdI10qd1Ffq27UR7uW0oeHvGQTFwx0VQRv33Y2wUh5bigMwPk8eWXd5K8KNiyfYu8MO6Fgn/f2PVG6VO/j3w4/UN5eszTUqdSHbl3v3sLv2juXJGvvw7//3HhSm1yGx/r/ZghnI+OetS8HssfZ1/tr/7+Sj5e8rH0b3W+9Ji6SQbsV1au/+X6gs+vULqCvH7I64ZAEuJ+YMQDxvyboplL219qinn47JKrVsvTdS6RwxseLl/N/kqeHv207FZxN7l3/4jj9CCUOO7E3nvvnRFLlq0rdnZXyiRK7yCPHZu3SPm1FcqVk1aNGpmfqWD12rVSu0YNadukSXaKKraHDHl0G6QoUE3vRYUlmyDyQM5n0NswTp482fh7BhnlPLomlAgRJ1NkHdOmTZMLLrhAnnnmGVNBmjSYVDHgJmfxhZ3kLmkwGZ1yisgXX4h8+aUpYokEpI1KaIhZ/3b9E7/nwoUiBxwQ9m+kojrJwgb7OafUO0VuXt1S5PjjadgMe0jtO338cfi1dPIgTO7DnTXKa8uWLT07UWQD1oInE3lN60eOlG1rs6s+b96yRcbPmikt92pQ7CrpaHBWcTONZ7MSt0yd2lK+ZUtX35PWaqSukOubUu53Hub5Dh8+XA488MCkO4vlI/78809DoPfdN35+ez5j3rx58tRTT5luQi+//HJG/W1TgSqOOUbKEyQLBQbcb78N40j9A/FipECmd+8w+UR9jNg7QBYhjZA6p/IYFX/8IdKjB46tIoMGpUwaD6p4kJza4FSRl14S6dYtddIIyAeix7MPSaMNxbRv3z7QpBFAnkeNCvtyuontmzdnnTRaMofFzojJk2VDErYiEMGFy5ebn4mwau1a+Wn0aFm5o+NQtu1btq78OyOedRg+B5k0ArWi2RmNo5tQkFFWQ9WKaCiJ4XWqgDiizrz3XnofysT06aciZ5whcuGFIkcdFVYNUyGPEMXbbhPZbz8RctIgb41j+0jGUjQhjbusXCny3XfhY0kHhMgPO0z8CiwnvNjIPhfdczJhAr1tVfrtBYuDcmXLStfWbQypGzF5kmzcvDnu89dv3CjjZ8wwP+MBw3HyKKtUrJgRy51kEIKMr3PfpJ3iGBS3IIONZK9evXa6TQSYOAY9baGsEkdFTOuaVIFZ7qGHhlW6dIG6hdr42WciI0aEw9+nny7y++/hkHM08ogyOXu2yE03idSrJ3LffSJ33CEybFhy/aujhMHpllKTY2CSpOo7VdClhsfhh4tfgX8doYigg5A9eW5uY3sOu3CUL1tWurRqJdu2bZeRkycXO29t7fr1MnLKFKlUvrx0atkyp72dt69z/7zOnTvXpPEEGVSYcx8EvW83pEnPQVnxIrSqOteAdKWDSy4Jh5pRDo9JoqI6FlAbe/UKm3Y//bTIO++QZCbSsSN+CNKf3sk1Gsiz8qzIQw9J/3fmkMUucu65IpddlrTKGI00EsrbPHeulH3mGSlx1lnhz01HbeTmIsfSpyAkFfQwNSa3hKUyYUm0PcvWOJGoWL68dG3d2oSXIQXFwaTZsw0Z7dyqlSnEySUMIa/tTjtDC64/9lxBB5Y8kMe6bnb+8RlIW+ARZJRV4qiIiuHDRQjVpupdR2gWle3SS0X69MHLIv1j4LWYgl9+eZjIckyokKiPGzdKfwbvQVXkWTzHj7pS+h92d1ghTAHRCm4Iz645/XTZvWxZKYFymQ4++CBMGn1s2QBxJL8ryCAkRSFAJohjLvIbI0FxjC2QIY9x9+rV0yJ+7Zs1k5IlShSrtaGXzysbqKDn9gHC9RSGBJk4KsSz+b4pzz7XXXddyh9Cjs9DDz2U8usCAcK/b76ZUjcXA5Lhn3vOqILyv/+JPP988Y+Fhaxnz/AjAobq7SB/MrtFctXWiaq0P/lE6vz+u6wfMEAqpmP0SntCqrghjz4GC2W1atUkyIA0UkWaiTaDIQ+17Nq0ebNRDRcsWyqdWhQONfP/u1apUiQ8t3HHa+iLjdroFWz/133iyMaBcD4KtF00qbYfM2aMIVL8jkKyyPw/VEqsW9iAsN7QshKXAv6fDeqPP/5Y6DWdOnXydFeSSAKdzDlYuXKl/PHHH4V8D/fff/+C8fTXX3+ZAjQiPfilYn1VXAU8k1iyZIlMnDhRDjjggILjTOY8zJ8/37RwdeaQ4xVMWpTfxkLJkiWLWPZxTjg3eH2SCxsrvSfe9S7uWEiZOI5AiUoRQW/YHheoZeQqXnllmAymmut4//1hpfC008LVzRmEJX2GPDr+nRZpXL1aKlx7rSzp0kWqnHBCegdEjiaFOUcfLX4G90eyfp6K1BDyWK9bCmbITRw5ZbL8OW2adGrRomDCrlyhguwb4SoA0RwxaZJs275dtnvMOS20ZauEtm2TEi6GzFHeWeRJW7DEcfz48aaHdb169WTx4sUyduxY6REx1/HcffbZx7we4vn777/LggULzGsA9xeLrF/AmHA65SVzDpyFNZGAMJE72rNnT0NKWcchD1gfeRV8f8gRY8HeI8mcB/5mrzv46aefZE9cN3bAb2OhRAQvqFOnjjRp0kSGxqmPiHe93RgLKa9W778fpdWcR8Au5NVXX5XvvvtO1q5dK40bN5bzzz/f7DQSYfny5cZTkSIFJp4OHTrI5ZdfHjVU8OWXX8p7771nWD9dLk444QQ5Hh/BdIBZ9n/+Ew4R779/6q+/+OJwXuIFF4R7WGc45JkKeYzrB0n3mn//lQn9+0uPdEgTVd3YCvG9PaTCpIM+pBoEHBRFoBKgLrhd/es10McatZEilzHTp0sHws9RdvvY8vCcrdu2mRzJVI3Bs4HQpk1SwsU5h6r6/XBq2AFUNyqtu2HVtWPRnDBhglGenCqRsxrfFpf42akAsmCtaJI9B/EAycJY3+ZSQxIoyvMycbRKqd1EpHMeVq1aZV6XiaYCuSKOybRkjXe93RgLKa/YtV1OhnYT999/v9ldnHjiiWaH8c0338j1118vTz75ZFyTbSaYK6+80gzAM844w+xIPvjgA0McX3vttUKT0meffSaPPvqo2bGcfPLJZgfE+yOHn05Vcqro1IksYJHHHkuPOHJzvfKKCOT41FNFPvoo7PWYY/IYlzQ+9ZRRC9c98ohsrFkzvYP4v/8L99w+//z0Xq/wFFAWMtGLYPsm7xFHUKNqVdmneXOZs3ixURJL7rDZ+W38eOnetq3sUqmSqcImTA1pzISBuGvE3OXNKuOABwSQeZUFzrl4ktbAeIlFFiAKLI5dunQp+B0h7F9//dW8L2sYRRdejoRBimwFfirngLWMPtc8F9XNkgGe6zQTt6/3Muz3tfNCOmMBJQ0u4NyY+W0slEjj2OJdbzfGQsoM48ILLzQSJ7vChg0bipfaEw0ePFguvvhiORUCJSL9+vWTs88+W55//nnziIVPP/3UhDVefPFFkxcDunbtal6Lwsp3thPSK6+8Ypzs7777bvO7I4880tzgb7zxhhx11FGpe28xKG6+WeTss8OKIdXMqYL+0wMHcjDhausXX0w97O0ieYxLGslHJJ/z2mulytVXy6HbtqVuuUD48Z57wkQ5D6ruCDnY8EtQwWSeiXC9FxVHi1rVqpkHgCA6iTOLxV516hivRh5eBebqbtd2f/3119KmTRtzT6Qzjgi9EcrbddddC/ImDzroIEM6yJ2kI8msWbPMc7yKPWgPmyIQOMgTRp2DZNF9hqrcoBbYoFQuWrTI5Hla+HEslPAgqU05MxbyROubc845xxC0Z599VsaNG5cRtSAV/Pzzz4aAQN4sGByHH364TJo0SZYuXRrztaiULVq0KCCNgEmrY8eOMmTIkILfjR492pgUHxNhf3Pssccaxk5eTVpAqaSVEIba6QJfR5RH8v6wyclCn9NoJuFxSeOHH4a/K/mYDz5YkNuX8o1BTijG6bffLvkA0iqYxIIMNl+ZSNQPbd3iiwUOpXHqvLnmPCzGZQHyUKuWUR49jQwZNFu1jYWeNce5vkQqJjsPZaspDkFFatSoUcHvGVc2LAepYoP2dwZ6bbvtaUpYNpVzwFxq80J5DYTRfs9IVSnWOfQSIMKEpa0lTSpjAUAaEXKcYo4fx0I6iHe93RgLKW/x/+///s9cEKTeYcOGycCBA+XDDz80OSXdu3c3SiQhgmz70hGjR5KOlKwtGaSCKFqeAxMUuVWHRek8wmvJeUT+J+mazwCQTCfoH8mAnD59uhx8MJ41RUHVH1Vvzh6UdoL4hy4w5Pydd56U+eknqdi7tzkuCEUkbNic10W2Y6p4+ulSZssW2XzhhbIB7zrC3ztUHCYVzg033Zo1a4q8LzcX34FwfaRbPzes3aFF5g2d0fgM8xOy+NL4l2TL9i1yfovzTUcYSDbJ2hD6DQMGyGbCyuR0PvkkbMl8FqEEKuMiLTggk7ZajOMtmCz4/HvukUqkFDRrZnbWka9louFG4PxwnlI6hxUrFuTT8N5O2HMY69pwvBx3tHPI8XBc0c4h/7bkmXMW69rwvEiCyXXh+vB5ttezBa+xk2ahc7gDfBe+U6rn0HltOA+RptbxziG/twUMznPI8XH8tudyvHNILnNkaCXW+N64Zq1sWbfOqHbmHG7cWKSlH5XKFK3w+8iuLeYc7lD81uw4PicoaDHje9Mm05vaCd6T9yZHkdaDRc7hjrlq/aZNUrtGDROanjBrlqxet07q1qxp/o4SSYFMoXNYurTxhjTnMEoeX9UdVbXrdhQWOMHreD3HGtkGEXsgQuLmHEaMJWDPId+F7wQ2/fOPlKlUKe4cwfmxlb7RxnfBHLFhQ8G15RryXN6T+5UcWIpmyCtnXPDgOXYcsvgzV1MhSkU1r7Xjm/+3GxN+Mo9bFwOvzhEUffB61lTA59liHwob7Dmw55P7nHPHsdq/sa6hXHKMhL4JYUOqOadU5pIrx2d4dY7gc/kM53szTqiarl+/vlEKI8+Dc44gCsn3t3/j/eyD97RjgfHHc+LNs/HGd8kE82zk+E52/rbnMB3FkesNP7Mewdw/VnmO97dkkVZsiA8hv48HJ/y3334z4TbUOfIKORgq3Kh2YuDbkEEmASmLljRqfxfLVJYLzcVM9FoGKp/BAIi0TmGgc4GdxDASn3/+ubz++utFfo+1AETc+Dg2aCB7XHKJdBw/3kzq3OiRIDQOmFhI/HWCgp49L7hAFv3zj0yAiNJH+uqruWCmiIfdGzd5tPclrM8NF02dbd26tdnBU0CEtB85wfbv2b+ANJaSUtJoWSP5ZVn4M3p36iRVbr9dpr/8svzVt29YccRCZ8drGT98j8gexTakAAi5FEwunMNVq6T7FVcIV2fOnDlmU+AE16pdu3YF+T6RNzkqtFNBdoJxy/heuHChORdOsPFgU8RNHu0cHnrooWZSImGbc+UEdgfkG3FuueZOMAHyuSDa+1IwwgSOKTDH5USzZs3MxoVziNriBK+xxSao4ZGTFiEcxjKf77SvABwrx8wEG3lMfEe+K2A8RC6QFKOxQLEp4JidYNLC/oJjcb4v15eJ3BJHohiR9xPXlGsLeeDvkfcqcw2vd77v5gULZNvKv6VPp06GxE2dN0+WRrxv0/r1pcmee8rfa9bI6IjjrVyxovRo3978/x8TJxYhEeQjQtRmL1wof0W0D21Qt460bNDQkLs/JkwoMmccuKNob/S0qfLv+g0y/a+/ZMKsmVKzatUCEjp/6RKZOX9B4XNYs6bxc2SOQKmMxKE7yMaEmTNldcS1adu0qVEyUTUnR1zzGrvuGu5ys3171Pft27mzlC1ZUqbMmyvL/w7PPaVXrpQyNWsknCNIbwKsE5Ekonfv3mbhZePNmIHUQAT5f0KI5KcTUeK+Yf7lc7jG3AtEfxhrzK+MYYgDxZHmePv2NfcrY4XPZVwxPpirbQGOV+cIPtdJLllTERsgOsyH9hww/7G+UpyJ9+P3339v7hu+J/e2ta1hjuDYXtrRbYxzQFSN53p1jkBxJVWM47ZKKuQLosOcz+u4753ngbFkSSXfB1GCvwGeS3odtk2cQzsWbIU26w3rDoSTfzuBWEQuJOdrZESXL8YunwsgZJEbAsY+9wDHzLE7wXXk3uH8RFZJsx6zLkcSR+oqGCMQP+Z8zjXXkHHOueK8Qry55vY92VDZ1I94f0sWJUIuxpj5IpxUDogvxGLGTciJYQBys2Yqj+uUU04x7/3www8X+j2kjL9ddtllclKUlnZcAIpp+vfvL6cRQnXgq6++kgcffNBUajNoHnjgAZNHyc0ZCSqrWcTvow1fkorjPffcI48//vjO/Io//5QyfftKxUcfle3//W/qiuOOXZzZtf/8c7j3MyTwvvuk9PnnS6XKlV1XHJnI35r1llEcy5QsU6A4nt3ibGMkXvnii6XU0qWy4YEHZDO9sR03AeODCZQJPnKHF1VxhCxQgXzLLVLp1lvT2gl7UXH84YcfTFoEk1pQFcdUzmFKiuOMmbKFkJWHFUfeF8K4ePkKqUgYadNGOahLV18ojuWbNpEydeu6qjhC/JhLISbJKDJuj28vzBEQGz6bfPpkzmE+zhEQYTwXKUR1Nkhwe45I5hzmUnG85ZZbDDkmRRDC5wW4mo3OSYAg8uDksXO0IW2KU1544QWTT5gJ2IsaCXuhYoXO7e+TeS0/YzVd57nxwvOweh6RYFAVVG2z88PP8ZZbpOQxx0hVR55OtNfFAjdOWdQ6VI5rrhG56ioRyO6rr0qJ2rULVYlHIp69Azd05Gsjcxrtv8sNGyr9r/tYhMrGQYOkQpMmEplFYW9sbqp4nVPMBMR553u0aWPOjw3Bc9PF6jbC+8b7rvHOIdcy1vVkonDzHHK/2GOJ977xzhGTYrzXxusBXZxzGK8YLJVzyA6f8WB/F+8cmvEdw4KJydb5vuWr7iKbHYsExCkWIFSWdEVDvHxDrHJi2eVAyOK9L32ny5QuI/u1a2fURAidfS+IZyzTb3MO47wvpDYWypYpYx4xz2G843W8b/mqVaWM43xHG99OxPsbiz6PI444wryPs1gqV+M7V3MEnxs5li2CNEdwnnjvaN/LrTkilXOYaHzvEucc2vGd6rXJdf1INGTMNp6Lg4x9ySWXyNtvv21yIy/Acy9DQIaOFiq2v4tG2uyFZoAl81o+g91VZIgY0slOIxl/pYSgWhhTa/IBI3a6KYNJjwrrL74waqbpK03VdURoIF0UKYRZuVL6f/uPXDp4ozxbY6q88PhJIr/+KhKjYi2l3A06D40dGy7+8WgbpnRBeMGrnQuyBRR5cpfcRgmPjxUURRZeQsSQtbHTpxfY0YybMUPmxynq8wJKZMBDlcU16Ib4EJRMtN/0Eyxh8mJVcdCR8t1JuDYeuMgsgphvE9u3CyJhh0yajRLuJQcm0gyUfAX791i7GvIMIvMs7GvJZbE7ENtwnefaEIL9N1K8Kw3ZIXsDBoigGFJlfe+9xX/PI46gT5HIs8+GWxPyoIgHdfOQQzgJxSONpfYPh8XfestUc/cn5F+3gTwrH4pMeiWmSTiknc1FwkVi8GCRW28Nt1Z0eLPlC8jBYbdJ8n9QYcNLfiA2bmHavHkyf9ky6dWhg1E7CZUvXrFCGjLnlC9vlMqJs2ZJqZIlpS6bSQ/C7fPLJpxcLebSeMpOvoP0LkUYQSeOIQ8qjikTR4pfkr3YTz/9tNxwww1Zae9DcirdXEiStj6OLER4grVq1aqgopqcRnIqnMmgHB8ejhBAWzFN0i5ElAIgC/LQIDuYgDuJI/9md+j8XbFAyJpWgjfcEDb2jrD/SQuoptjXQL6wxaGymQRw2hbic8Xn8OjQIb6h77Zt8sKP98qziz6US+fXl/5PvSwy+mJTgGNCyKjKtWrt6G29W1yTcJSFhJuJv/4igZVMd5G77pJ8BEnTjMcgE0fbm9cWx7iFEh7stgJmLlhgCmpaNGhgSGM0tGrY0BSqjJs502xwqbz2Gtw+v8zNpC047XQUwQRrKk4pKfv85hlC+UAc6ZISDyhvJO+S30hxCUbZlMRn2mATckjrNqrGqMbiM7/99ltTgQl5tbj33ntNRbKzCgwfRtoI8jwKaRiodI6hmox/Oxe38847zxS03HbbbQUVeyRzE4aPl9+QMq67jsbgImeeGf4ZYQGUNpjoKVKhupkq3PfeE6FK7OOPw8ba3KTsdiGC5GMQLiH/k3zEVavkhTrz5Nkjq8mlHy+T/jO3hxVAKrix2YkICybqMAOxJwHaWTVXCBwPrRxRkN99N3xseQiIUmTyeBAXCSZIFKdYuUn5ojjOXrRQZvz1l6nmRl2Mm+7TuLEZG2NnzJB9saaJk3OXC7idCmALMLJt5+Y1sEZxP+CUEVSQGxnk759XxJHy9mQAicMb8aKLLjIl9TfTHSXDuOmmmwwJGTRokKnyYtdKVXSiYyYUDSGmVzUdYGyvaiqxI62EIJmEVvlOFP3gGcbzqMx2FaguhKzpy0k4mV7WaXQTiPv+KKRWJYUcEs6GRGKNg33RDrJoekFXqCAv9K0ozzauJpfuerj0f+tm7uyEHxOPPKIuoOpi21TEsoliGNRe7C7Ik/Sg2uIW2KjEKroKCigGyEQnqpIeyxMjpxF7ncZ77mksgBIB8ti2SROpvnyZ58zAS5YvJyVcNm1X4hgGhWJubqD8CIQFNpJBz//e7kFRIaMZyOQ5YsET6bmWKTDZUIzDIxaeok9yFEAA70oyFIqXovVTzCggZt9+Gw4lk/NIRfpuu2Xms1AO2N3x2NFi0Ym4HWHSJI82BFGENFEUdM459B4jDwDjNMln2I4IQSeOtJnLhCJWskJ52b6hsOVHrkCF9P7t2kWt7sa+p0m9Pc1PJwhT19+9tvn/FatXm39XdzO6kSZKptpeNQmwmbQmzUEG84GrESwfAsNz0seiNecICrZt21bEDiqvq6otyFHIx5Y+WQO+l1jpoPyR57dsWdYPoTikMV57Qrs4FLox+P/zzhN5551wsU0AJg3M2YNcCGBBikmkp5sbKFnZfYKTKih6oWIa9SCWJRCksmm9+jHtd8CcxYtl1JQpprtMrlGykvthc/J8IztzBRHcB0FXXVkXgp7fuDkDBYO+II588aDvHouNZs1E6JlNpwG6Qkyb5ivSGIs82nFRoDiyGJIr+eab4YejMCmfQf5vpnOA/QCaBmTCkqdUldzmBS79+2+To0jYOV7hD6baKIrWXDsaOjRrZoy4aU8YzaQ7m8jEeSWvPBMpC34CmwtCtEEnjqwLQecOm4NKHAlTU6iiKCbYhdOqDzWCvMQMGalnijRGI48vT3zZLBRmcqCVHm3JfvyR/owiEV188n1nHdk1IIggNBetK4YXQ6rJAiI4Zvp02b16dZOrGI840pEFQhjZZcYJLHo6tWwpFcuXk5FTJpvuMLlCyQyEUglPBv1eYIyQ9036VJDBvKjEcbMEijiyaxowYIDpP8pNoIiOlPIXsKiAPHbsGPZhfOUVSq58QxqjkceJVSbK7qhMXbuGFVX6Z+7oExsUYD9Cay0v5rJkE7Z3udsoReFVyex7wUHq/pw2VWruWlXaN23qms0Q9j2dW7aSXSpVllw53JWsVElKuqyIoTBRLBf01CbGCcWCQVcc4RBKHDdLIAzAudh0USGplZwlchyj9YhWSMxWh3HBIoiX5uWXhz0TKZ554YWwT6MPSKOFed/t28MFM58ul/5164t8+mnYBihgsAsECfHx2l0FgTjOnj3b3BNR7ZnSRIlSpaR0tWqydWV2CQmtBFvs1UDq7babKWhxE7QL7Nyypfl/Qts84uVGuo3SNdz3HLX9g4Oe78u6uRCPzxYtAp3j17ZtWwk6NucLcUzWAJyJ/6CDDpJLL7000IthIqRlw8KiClk88ECRiy4S2XvvsHUPtj0uYHtoe0ZJo8GsWdL/0rdEdlsmazt1FHn/s3AYPoCwrcVIiA/yvQJhwHqD8+AmcQSlatTIGnEk93DT5s1Sq1o12at2uBo6k5gwa5as+XeddGvdpkhFdqbA+XQbqM0Q7Hj9oYMAzgPdpPAmVgQbm/OFOCYyAEdm58avV69e4H2oMqI4OnHCCSL77Sdy7rkihx4qgrJLx5lidl24pH1sO6NiY+1akYcfFnnkEZE6daTbGbdLSeyGAjxWnIpjkIHh7wF0TcoASteoIZtkhmQaa9evlxGTJ0vlChUMcUwFkKaKFcqnrE42r19f/pg40Xxu19atjRqZSZQoUzoc/s8AYWIMuK3O+rWiOuit9khbgEu40srXp9icL8QxWQNwRZYGRp06Yb/DN97AAT1cREMYm/Z/KS5cGQXK6muvhftvr14tctVV5ng3TZ4sJQNOmNhgsVgWaxORR3A7VA1KVqggpXatKttWu59DaUFRy4jJk0zIeJ80LGWolu7VoWPKr8Pep0vr1jJ80kRTMNOlVeuYbQzdQOnddssIqaEFaZAVdws2kEHPbwSrVq0qiMYEFZs9ShyDvbXzAFwhC0ziZ50lMmNGmJi9+KIIlhbXXCMyZ47kFOQtYbpOPhZhdYzMp08PK6NVqhT0KA46Dj30UKlP3/CAY8aMGfJThhwDyrDJyhA2bNpkFL8ypShcaZlR4hYNKJwUzKzfuEmW4/maQZTJUB5y8+bNpRnWYwGHEscw1MtSDHF0exPtBpQ45hiutppjt47SOHNmmKSR94g/4LHHinz3XbitYDZApff48SJXXokDfJjAduoUbmWIP6ODILGjzITps98Q9PCcBdWkjAdbKOG6UlamdMb6yVrlL908Q3Ijfxg5Mm1/RloS9urQQerWqlVwTJnwbiyVAXsjLHh0HgiDtrl1A1gkGLku4jIRdOK4adMmJY6KoshIeJKE/AcfxBRN5Pnnw0pkv37MSCJnninyySfM1O5+JlYy9NO+9loRclLatQt3f7niCpG5c0XefTdq60DaUvbEvzHgwIVgPGQ74KhRo4apJF26dKnr722qq7kHXMTmLVtky9athjSSX1icymaIHvNBcQifzW+ct2SJjJo61fU+t5lSG6dNmyYjRozIyHv7DUQeqBEIMmwUSkPVmz1JHINtkpTvOQwokPSdxrZnzJgwYeSB6kcojd7AXbqIdO5M8mq4vSFqRTz1i0UNNQjD7kmTRJjsR44U+fPPcOcXTGuPPlrkmWdE+vSh8iPuIXrxpsjVOCCnJ+hAeaUF47JlyzKSFF+2Xj3Zwth1QYyDMBKeLl+urHRqEbbG8QoIXU+ZO9eYj9Ntxg1Fu0S5slI6A1XiEGWud9A7xgCI/ooVK0zrxSB7GKI0durUKfD9ujd5VHEM7sj0CDZko/MDOZCYhvO4++5wjuHgwWHCh6E4RuJWmWCyIheMB6SPf/M3CO6KFWHCuH79zveGbEI+CZFTHd2tm0gK3mOEqCZPniytW7cOdGI8E+Rff/1lFo6gh60J1U2ZMiUjvWopkiHXccuixcV6H3wT6fKycfNmaefBqs8aVavKPs2by5/Tpsn4mTPNMRa3oKXsXnsZ1dZtsGFCaeW6Bx3r1q2T4cOHy3777WfIY1ABaa6TwZxkv+Dff/81RWNegxLHIBDHSJCAzuPii8P/RimcMkVk0aIwMeTnkiVsd8LV0CwW7Hrok037SMJV/GTBdGGyX7JkiVEbgu5hiPKydu3awBsg0zSAUF2m7EjKNmggWxjf29OTHSG0o6ZMkX83bpQurVqZamgvAjsgOtagOlauWFGakG+cJkqWL5exMDVpCTgLBH3cA9s5KehKG92DOBdBV6HXrVvnyXVRiWOOsd6p3uUKGO4Srs4B1MNQCi0UTJZBX0Ct4poJWx7z/uXLS5k6dcMh6zSw4p9/TAFL51atpKqLZtWVKlSQbnvvbX66hdo1akinFi1k12IWtBi1MYNKOOpS0H0LAUVhmOAHOUxtNxOLFi1S4rhundR0sSucWwh2TMwjUnSQwQRJODLoxJFz0LVrVw3X7QA5b999913GKm3LNWwgJVIkpbZoZffq1U31cjWXq4tLlypl3pOfbiuP2APhMzkrDbJMJXXpDFb5tmzZUtvL7YBuHMNQS6LwfANx9GKoWoljEEPVHgOVc3oeqCvaLfCTpUW1atWMAjV//vyMvH+JsmWlXLOmKU3iY2fMkNmLwsQrE639yJecMneO+ZkJ/L1mjUyfN09mzP8r+ReVECnXokXG1MCVK1ea0L9i50Y6yLmNFmwYg15RvXHjRmNL5MVQtRJHD4SqM+G35idg+ls7Cz19/RCmwpIn6OMBEKLGy46CoUydjzK77y6layRepPl8CkyWrFwplcpnbvdPf+u5ixabn5lAvd13l2Z77SUz5y9IWnksW79+RnwbrZPAH3/8IfPmzcvI+/sRXbp0CXx41kbivEiYsol11B4YcxTvnQcljjkGi1LQ1TaKIfDvCzoIz7CIBj19wWKvvfYyGyvsSTKFcs2bS4nS8UPDk2bPlkXLl0u7Jk1MmNrPaLzHHtKk3p5GeZy7OH5lecmKFUwhUaZg1WTuf0XY9Fo3jWFgyRX0NWGdEkdFMgMkqIA4Q5iCPmna3CZbWRl0EK7mnFBpnilQKFOedpgxALmav3Sp7N2kSUFHFr+jab360njPPaVSnFBgiVIlpXybNhmx37HgnqcohopqBQ2/ZsqQIUNyfRieADmvQc/3XqfEUREPmVwY/fL9CdEGveUYCyiJ0Eocd6JHjx7SqFGjjH5G6Vq1pGyDvaL+bc/ddpMOzZubn/mEZvXrm6IZNmuro2xcyWss5WLFeLTiJ5R1VGVFGNz3lTN4zv0UedGoixjiyJrgxQp7JY4eQNAVR+wngE4WYdUxE32a/QqKMmw3jUyibMOGUrp6tUJKI1XIVDhjaZMN0C6wfu3aBW0Ds4GFy5fL7xMmmPzNguOot6fJ/8y0iwCt9YIejowkjkH3bwQLFy6Un376KfARqLVr13p2I6HEMcdgRxF04ojKBkFQ4kgjnnqmKERROBeOIopMjg/GX/nWraVkpUoyZ9EimTJnjixd9bdkExXKlZPWjRqZn9nCHrVqGWJMxfjyVaukdM0aUrZJk4x/LoSxHf3sFQZEW1Da1IonLCAgJgTd13PdunVKHBXRQf5C0Ikjhs+cByWOYqrLUWIUhck0NkXTpk3L6Ofg67is2q4ybfEiabTHHtKo7h6STWBL88+6dVm1p2Fxpuin1q67ytgF82Xd7rtndMFGRZo4cWLg03MiYc+HEsedxDHoWLdunVTJkKNBcaHE0QNqm06i4f7EQfftcuZ/abi68MaiadOmJoSVyXtlwYIFMnHaNGl+wAHSsnkzyTbWbdggv40fb35m+/x26tJZ6uyzjyyiFWMGsXjxYpkzZ47pCqQoXEV8yCGHeLIQIttQ4uh9xdF7WZcBAwNj9erVEnS0bt0614fgGUyaNMmYAGsobydQYak6RXXs1KlTRj4DVRMPPcZiaONG2TBuvGz3QkvQDKNUtV2lwt57S5cSJQraPZJXav/fTbWR6wdJUpProshEe02/gTHC2PMqYcoWQhStrV7tWQVaFcccg4FBQ3dF2JYn6AnRtoMMqqNiJyAxELo99tgjI0UJjDsITRssaCBQFSpIxX06GlKVzyhTt45UaNdOSuxo/cl3X7Vqlfz444+uq97Y76CitGjRwtX39TvIbfzhhx90HdiROnHQQQcFPl1n3bp1xiDfqxssJY4eII6YHAfdBJxJk8lTw/bhsD3J8mrLUxh4/vEAbm0wli9fLkOHDpW5c+dGzXmEVJWpk59djco1biTlaScYoSyi9qB+UZDkVv41KtKMGTOkQYMGsuuu+U3G0xmDzP8anlVY2E2EV10HlDjmGFaKDvpu09pQaG6fmF0m3l2qOkbH6NGjXSmU4Z4bOXKk1KxZM6afIKQKg3D6WmOKnWm1xap+Gf0c/ELb7i1lY3xnSOO+++5rHB9+//13s7F1QzHGk1PVxqJYunSpIdPap15kypQpZsMSdPz9999mHqAJghehxNEjhCnoxBGixI5bVbbwIkuuHYVTiqKg0pB8x+JsMsgfGj58uJmYyZlMlM9Xds89pWKnTlKqSuZyr3apVEkO7trV/MwUSteqKRW7dJbSNWvGfR6ksVu3bobIQtSLA0LfFMNQ/KZ5fIWBco7iGPQuKc77kjEXdKxcudJwAy+afwMljjkGEzSEKejEEXCjKHEMA2VGe/hGR+PGjU04ddy4cWmHrKmgZrx17tw56YUKj8cK++wT7jJT0l8ecyXKlJbyLZqbIpiSSbb4g+ihPLZv3z7tzyVPa8SIETJ58uS03yOfYUk1ec2KcL6xVwtCsom///7bs2FqoMTRI6FJdhhBBxNG0HM9IydRDd0XBeogFeeoE7NmzUo51w5QaNO1a9eUd/SErss1aiSVunQxrQrdxNr16+XXsWPNT9dQsoSU2XMPqdS1q5RJw1ge1RuSvnXrVtMWFCKYCvBshNw3b9485c8Oytzfu3dvJUs7iiMh0XouxBBHrxbGACWOHgADRBXHsJLUt2/fXB+GZ4CiRkhWURSEmPF2TEVxxB+OVmZs0sgfKk4YqGTFilJh7zZSsWMHKbWrOwsdpHbd+vUF5La4gNhCcMs3a2byGotb+YsHI/lnyXowUnCE9+bee++tHq0JUi+C3iUF2GhT0IljKBRS4qhIDCRpJY5hJUmxE+Q9USCjFkWxw/mQR5DoHKFmUOjBAu2mR1ypXXeVih07Guue0rvvJpLj9b9E6VJSZg8Uxi6G2EJw3QDpNIStKZQhNxQFMhHRxI+UXN1MWCjlAxiTP//8szpJ7ADh+p49ewZ+k7FuhxWPhqoVccHOQi15wkDRyHRrOT9NpKg75EEp4itbw4YNi6nUYW1kSSPkJxPVq6WqVpUKrVtLpe7dpWyDBq4RtqQ/f5cqUq5pE6m0775Svnkzk4/pNsgJpWAGokM1ejxllHPcvXt3adWqlevHkU/V1JzLoBMlp3AQdLURWBFJFUdFXNgBoqpj2JJEO+mEgUUHxVNqy5P4PBHmIp8uGsaMGWP6P0MaM71IlyxXTso1aiiVunU1qh//D6lzXYksWcKYk5dr1kwq7dfdVHyXrVfPeE9m+lyTG8qmJlqEADL5119/GQWYdAKNIsQG9zVzv1aah/Hnn3/qXCfhimovW/EAb9Z6BwxWkoY4Bj2sw8IUzYw5iGDyoIOCLiyJxwx5dOSE8v+RXSfatm1riEy2+wCj+pXl0aCBhLZtk+1r18o2HmvWSGjDBtm+aZOEKDbZEWWvWL68dGzRwvzc+SYlTBV0iXLlzPuVqlJFSu6yi5SsXDlneXGQHbvZxUqG+csSRKqnuX+5DtZqTFEUbGRWrFihRUOOqMCiRYukbhoFXPmGv//+2yivXrXiAd49sgCBsA45RFpZHV6Upk+f7ukG79lEy5Ytc30IvgBkEaWayl8IIsRl6tSpJg/SCx05SpQqZfIheTgBoYU8hig4CYWkKrmaEMISJaVk2TLFLmrJJEitwWqHbj4dOnQwFe5z5swxJF5JY3xAuCGP6t/on/BstvC3xwtjgBJHj4DuFUwmQQfyPEoKJFqJ487dOLlQ9FJWxAaEBfsYqlQhNFgZQSi9TGIY66iJUq6cKSghzMsx+6GLCOe6Y8eOJsRIvh75uChotBVUxAeEcb/99tM5bgeY79ng+WHcZxrwAIrKvAxNQPEIateuLUuWLJGgA3me1mT16tXL9aF4BrNnzzbdO9yyaclXQMKwdCKnEeuYZs2aeZo0RtsgoJLy0y9AbcQgnII2FDQNvSY/Vr2uKmUTXje8zha2bNliUhjgA16GEkcPTcDsulAdgg7yOzSpfidQoLBngAwpYoOwL+oX9xGhasiMFpxlFoxLOhwdc8wxhgglsulRiNkcME4VO0FKSax+8UHC0qVLzTwGH/AydHX2COwOg4ETdGDUjFccFkUKMeEsduOEMRXxVRzOE20EbTcOxhE7eIX7YDwOHjzY5CMTniZSQMRAyWNs2Kpz3BIUhUP3bPaCjsWLFxvRxOtpSUocPQIGCj1zVVUSU0WMLYOqRTvBbhwCBKlWFAY7dEsOGzVqZKxiuJe6dOlicmbxBqU3tcK98z1lyhRTxY7aaIuPWPAItWFqnWoryKCAeY2okqprO0F3Ib0/wyBdjfnLyxXVQImjR8BCx4DRPEcxu3EKHLTKfCcIXWjeZ3Tg3wg5jCTVTL6QRxZpCjn8sGHiOnvZfok8RsKstMKk3zcFSU5bII4dSzFry6MojHnz5pnNjJ9yb7ORw63+jWEgHHk9vxEocfQQWDRUcQyDkKMSx51AzaEIwQvWMl4Cbe0gKHg1Rjs3nDfIDeMJpQwlDPLjRWAj1KlTp6z7Taaa04jZOukAqLux8tX424QJEzS9wgHUWKIokT6jQQZpDYwnLYwRMy+Rqub1/EagxNFDYKfBzktzhMJ+XihIWixUNKyjhDoMil9QKyCGySzGWBrxmt9++82T7T3Jf6Oi2ovV8yzuEB+U2z59+iRURVAjUXohj36qEs8kUGMPPPDAwDd5cIJ2qmzotMJcTLoN5FEVR0VKYKfBoqF+juGcz3322cfzuR7ZBurajBkzJOjgPmGTRS/kZH0DCQ/incdm5KeffvJcXhXE9vvvvzc/vQIWdcbbr7/+aoz5QbKOBxD6/fffX3sx7ziPCAKQR9KSFGGw1uHdSGpS0LF4R7RRiaMi5coy8oU0XB3Oc6T9lE6yhYGyxmQb5IpzduWQF0ggvo2pgErrXr16mckZv0fdpMUGiv+wYcOMStukSZOUuxgxl3G+ATmPQc5jIwTJpkDV18IgRK3en2FQ38D58IMJuhJHj5ElBo4WyIRB5w8qN9mtK8KATKNaBDV3jO89ZMgQk2uXrtcn548Wed27dy+wvcBSRrEThKVRGTnPnCfyFtM936jDnN+RI0cGNs2CcYutlqqvRcUSrTD3V2EMUOLoMWiBTFHPM7Xl2QkUWCxQqM70apFHpkBomY0Ek6sbPng2IZ88K8jo2LFjA68IESbnvrPkumfPnsXOP4NwUvTD+cZXk/MdNOUWtVWLYorm9KlIEgbiCOfCD4UxQImjx8CiSFjDiwny2QZhLmT7IIe4ooGKVcKGThuUfAebKYgdlkQUXrgJ7FGoyua++/HHH01oNmgFahBmSDkejFbNRg1yK8cY8kglNvc01klBUnjJDWUeUzutwsDhYM6cObk+DE9g1apVJvfaL4qjVh54MBRJeIjdGL6OQQbEiHPAgp5qflU+A7uWIKkX3A/kI3JvtGvXLiOEmXAZ748/IQ8+g17X2QTFO4cffnhWNwSo1izgfGfIHaQ8U2MLtbxr167m87xsOeS2ksT4bdq0qbZRjRh3rHE6r+90ywB+URyVOHoMWDUwwRCKDDpxBJyD+fPnG/sUP5g4ZxPjx48354RFKZ9BWJo8O4hVJkkV4VkWMqq0rQk36hufae/LTILPybaKzOJN1XTDhg3NOMq0+TgKpi2GWL16tfm8fPYm5XpClhVFxx1RNV3jpGCeqVmzpm/uBd0CebSaGOKoCNvyYOuhtjxFAZFBvaGQIR9BbisG36g29LHNlmIDGbfjjaprQuRUxBLCzmQOJLlweExmsq0kIWK8FSlUseHovn37GlujbHesoeMP3zdfHQLIFyVaoigK0o9QnSkYUohZ7/1UJFQ6n27SF154QX755ReTK4BycMkllyQs9WfXM2jQIJPbw86b90EuPuCAA+SUU04pUhpPsng0XHjhhXLGGWe48l0YQKhJLJhBymOLBhazZH36ggYsUtipQh6pes0noEZRSEFOXC7vA7xEObfkYmE2zhzB3JCJUCt5lVQdu51fyfljoeY7WN885hh7XnNV6UvBDMTx999/N9ZK+VZxPHXqVLOesPnVMHVhsBFU78Yw2Dhxf+J56hfkBXGE/N1www1mAYXssdh8+umncuWVV8rLL78cNykZBeH+++83uT1HH320SZRH5RgwYICMHj1annjiiSKLFhPeIYccUuh3boYLmdTxTyNhVh31wzcWix6bAFUed4KFFlLNuaFgxo1KY6/YMFFAwcJCr+lcL7qEj9q0aWPGn1VKAMeIYkJCOxXDXtrkkUMGaWGBZn6kvzTHSqU0EY1cn1M7fvfdd18z10EeSUfwg4ddshsfqmQ53144116DFgrthC1GU8Uxy6ALBGGPu+66S3r37m1+hypw2mmnGQJ42223xVW0nn32WRMOtTjyyCPNYvDaa6+ZCReiGDnoDz744Ix9H96fRYgBpcQxDNQeFkFt1xVddUSp8ktidaJNAiQCckZumJc2CswVdvxBxiBiVHtD3CHthH3ZgGY75GtBHjDjAMJinQj69etnilKYF71YkEJaAORx1KhRJlKUL8SRtAbGh85XRUH4nuvMfK4QE6bmXFizfD/AO7NyMUCYGYLlDCNzIeipSm4SVW2x1BgmeSdptOjRo4chjlzUSOIIbA/lTEx0TKYsQnx2+/btJehgwUMJXrRokU7EEWBc0//WSwSruCoUO28U1FwRsGSAioQKycOqS5A2ex0gQmz+mIfsouDmNWJO43MJa6Mgkuf6ww8/mL/xeURA2EjYzkteJI1ORZe5m/MFIefh5/FMpAjiTpqDl1RorwCRh0IQJY7+zG8E/r07I3yyotkdkOf4xRdfmKrcVFuTWdPpaLuAb7/91oTCyRHigp955ply0EEHJawic3ZNSFT8wvtqT+KdYHGcMmWKWSC9TChyARZZFluIhF8VatQy0kbYIPgtX9OSw0gyxByC8mSN2iFHzCfMR1wrSDIPyD/PtxXyFMewMeWaQhBRrriuvAavRc4TvweE8203oW7dupl/+zFX0BIsbJf4fnwXv7YbpfofX9B8iAC4DcYwUQUVAMLgPidqEU2c8jLygjgyQePvFqszBIQtVeL47rvvmsk80koBhQElk0mB9/3444/l7rvvNpP9McccE/P9Pv/8c3n99deT/ny81CgOIN+LiSjoYHEk9xRlR/NjioJwKcn4VMj6jThAFAhPs/Gjj3Q+qDTWn47NJbmGLJhW9WOxYM5yEkAII4SZjRHpMZHpCBBHyCHEmuvL3ARZddp32PaJfgbzNGNhxIgRJr/Vj+SRY/abgpRNv0KidHZtDjrmz59v5gi/+fJ6jjiyy07WXoSdOosME3G0ULT9nQ0rJ4s333zThJquvvrqIpVfzz33XKF/H3bYYXL++efLSy+9JIceemjM0PVRRx1lKgediuM999wT8xjsxEP+GmQ16GCxZBfvV0Ut07AKNY9oqRdeBcSJIhNUOVSmfCCNTvB92Pg5N38QQR7AqoqoxvxEdSRNhvHOa+0cByCJ3AP5DMgwm3XGBHMw3Wb8VFzCcZNmhC+mojAgSKQbIQLk232eLuAB3Nd+I9KeI46EYqiGTpbgsWBC1uzO3Qn7u1TyEAcPHiyvvPKK6eAQT0G0QAU47rjj5NFHHzVhqVgTOzkdPJIF4SkGEwNLiWMYuouPDYgHZATVkfPkB5WaDSILLfcpFbVezsPLFCBFViH+559/TDoGIW2/qcZugs0hhBHVkTCeX8KakCLsjsjPVRQFm6Q999xTQ/gOIAwxX/uNSHuOOCLZ3njjjUk917J0Jhpn/qCF/V2ybB5T3Pvuu89U+V1zzTVJH7N1vyes7CYYUGoEXhi2XZlOPkXBgrVgwQKz+cITzOuTEZEAqzSqEbDCCcLuVIL7pZMGmx+M1ZmXtBtK7BC+thjcCQrbmK8z6dASGOIIySPkmwrID8Iwmx2NM6zB7p2dezI5cZMnT5ZbbrnFeLXdeeedKVX1sdMEbleJQRzxkiSZOIhqTDSwo+c6K3EsCsY+VfiMFy+TRlssAlmEHHj5WBW5gyWNLK7khHo5TM/6QShWo0PRwbnBUg3FMV8sl9zI92Qu9GMkzT/JI3FAQj0TC11jLEhGHzJkiAmBOfMfuVi2objF3LlzjYE43o0PPvhgzIHNe0aCRXrgwIGmWjJRl5pUYTumUPigCIOwFUpyJlu/+RlsXsghchI0LwHSj7JvC0CUNCqSAZEXbFy8Soq412jbGOQUg0SuIpBrnbd3AiJNTrMfFWrPKY7pANUC8kYHGEig7RzDInXuuecWeu5VV11lfn7wwQcFxO/aa681lY90naGizwkWYbuLpIJ66NChhoySAA2B+frrr42h6c033+y6TQzfg0FFwQPGwgox5J6QB9VobnbryTdQgc6YJgzsFdgOJtw3kW4FinCeKhEXP3sYZgKoVBAzokpeDHey+cGzURE/l48Ig59MrrNhI9ikSRNfFX9Z5MUMxWTy0EMPmYrnjz76yOROYW1BrmSiMncS0m2XhRdffLHI32ktaIkj1arser/88kuTz8jukkkMtTJTEwfkaOzYsdq3OqJ7BwoEN52ek9g5YuxoCfOx8OYajF88+rjXKHxIpVAsSKFZNqWKoiCcB3lkQ4RK45X+9WzqIUSaOhMbrMfYqHmN8OcSa9euNYVf1FP4EXlBHAG2ORA4HvFglUYLbnhniDseWPB4ZBPNmjUzvVy1a0phrzcbjlVEB0o144WFlv/PdR9rVHkmSjZYfgzNZItc2w2iboiiF3+hxhLt8QIQHXDS8JthfbbB5hV4YQPrFcyYMcPc49aWy2/wn0YaMFDYg7KpXWR2gh0+ipourvFhlXIv5IaRYkAusiozsUEU46uvvnLdnSGfQASJHHRy5SJz1bOddkEkCMFC7XfiA9cTUq1yvXn1EmbMmGGItF+LXpU4ehzkP6CwkQ+h2Ak69eABmKq5e5DARA15ZHJCycoFcDYgvwlEmukrFOmCHGccJ/iZC5AGQriRjmV+zFHLJuh25JXUAi9g27ZtZvz4OUdfR7wPQLiaUPW6detyfSieIkUUWeRq4fALCFcTSsuFOksYb+bMmZ6s7lb4Gyy65D3iWWrt0LIFNmGkXdAdxm0LtnxU1khTUewE+fkIHqzrfoUSRx/AFoGwCCt2FsmQ58hNmCs1zW/G6ah/2QJjFZWchHhtv6bIBChWZGOE8kjxRbbAXEz7WM1tTGyKzhyggkdRMk30xSu5uulAiaNPqi0hSRquLgwUB+yU8AhTxIfdeFgHgUwnw0NS2VH7Nflb4Y8xjeE9c2O2VG3SLghRE57GzUORuCgmmQYcQSOOTZs29XWOvhJHn4BFGNVIw36Fk67ZudkJShEbqH7scG0nokyCqmmS4d02xM93MJYPOuggzQVNASy+HTt2LHCcyOTYZoOKl2Qui3L8BKJBFMNpUcxO0KiEceTnMDVQ4ugTsEMhL0Jz+gqDRYOQlSLxAtuhQwczidO5JRMbEMKFVLvyGVppmjpQsXBQ0GKL9NXAn3/+WVatWuX6e2/YsMGY12PQrhui5FrDEqL2Yzu9TKuNpUqV8v38qDOUT8DODRsaDVcXxi677GK83bDHUCTOC+3UqZMZR26fL4oFRo0ape0xiwHUMs5hphXhfAWqI/PB8OHDjceiW+Be4bqw4OND6ucQYzajQZwriLZiJ1i/IdN+V2GVOPoETFaojurnGF3p+uGHH2TLli25PhTPg4WVCR0S6ZbqSN4kIXA2N1owkD4YvxBwHcfpAWJHK0tywrHqIhfRDaCcoaSz6fL7gp/Na6FNGooWC9ES2e9haqDE0UdgUSYEkI0CBz8BSwwWW+sXqEhuMfzxxx9Nzk1xQL4OoW/yGgmFqxqjyCWIPtCfnZC/Wy4UbLb69u2r1jtJAoukqVOn5vowPKk2btu2LS9SHZQ4+ggYgTMh0kZOsROcE8JUmKpqyDo5YArOg7yt4pioQ9jp4oOKqbl5Ci8ANZ0ewJhzFwerV68298fWrVt1bKeQC0oeviqzRUEHL7rFYIjud+jd4LPdNL54DED1LixKqgknZdsM2K9gIST0BsjfSpVws0AAwtNdunTRhVXhKUBcGJPkOv76669mbkg1rGjzTXVsJw9ynFmnaA2p2AnGH2lmtg2s36F3hM/AwKNjSjYNb/0ALEwIl7qZFJ/voOcvSiHKSiqhJXopU72KwqtwVzknHYWfCvfURxT133//PWllnU05SiNhRTZXShz/v73zgLKqytLwtXscR9uBFiOmQVEawTSCYhOUrCggCAIKRto4hmXPtI4ztj2m1ma1Oq4Zc8KsgEpWCYIEURFEgjSIgCIggiIqxh5r1rfpU9569V7VffGm/1vrrSoeFV7dd++5/9n733sHzz7QgofiD8Sj+AnWVzbnLVq08JKArogY9uMjxUjUUdTk6KOPtv6BIr/qR5ook0IJ6o2k8IBzUI19Sy/kKYDjoygNnKekrRE1nLdBCo+4ybM5Z1O14447VuR1JgGOGeJIk6Jqw/0aQY1fNglIOMYMdr+II6Wrsx8bjgkLmMi/jQkRlroqUUnbEbkhDUgBAtEcUToQNWQSVFVdWqiyRjySLiT9XB9Ey4gM7bbbbhV5fUlhr732sgb2ipjXZOvWrZadSUqaGiQcYwgnIClZTUypzYYNG7zXXnutLE2Akw6RltmzZ+cUj0wuos0GolHm99KDMKdCXX0cy2Nl4bzFI54Ll8om6hv3Bs2VhkwE0UatC7Vh/CrUde7FDQnHGILxmIVQ6eraMFaPY7Ns2bKwX0rsoL8YqTlSetnEC5Hudu3aKaIgYknDhg2tpQ4Ch0IFf0EYbammTp1qG0+RHxxH1ox333037JcSSRYvXmwbESLfSUHCMYbQK4+oI2151H6m9rGhTxb9LpWyzg9Sz0RliCpyIyACQ3UpUUgiuFgB5L8TcYeIOsLRdROg2ItpM7RJobWUyA8KYrABNGnSJOyXEjm++OILOz5JSlODhGNM4UQkPcBJKWpCixiiC2pCmz8IQ8QjfkcaqiMgOc/kZxRJgbWBQjo2l2yK8O0SDeI5VVDnB+sEjdbxSTPKVNSEKCznVNImaukqiSmMc2KHrHR1djC3s5ipgKiwStT27dtb2o6UNUJSN4Xyww0Gm4XES/lxTevxlLL5ZlShWsjkD8eOzEQSxuiVg8WLF3sHHXRQ4uw9WqFinq5mR1OqmcNJgopIUicagVf4gkdKjzY9fM70DFFeEI0dO3a0j6IyVcD9+vWzSKMsGIWBJxrRmCT/XqnYvHmzFbAmLU0NEo4xhhOSCR74dURt8C8xN1WzvfOHmwFRGISj84BJPIokwJpJepqP9NZjxjpwnov8bUGKNmZn4cKFZvFJwmzqTCQcY15BTDp2/vz5Yb+USELKD3+evI7BhTZ+JT7iA6M5OFWopKolHssPx/jFF1+UgCkjiEXadWV2DeDfM2bM0FoREHqNLliwoHr0qKgJa+jbb79twZ0ktiiScIw5Rx11lEUcNWovO5iSOTbr168P+6VEGryg3AhoY8QIQj94aZ14VMuN8r4HCHP5cssDlb9EGqFt27Y1psLg68UXzVqqDE790NB67dq1sgLVcXxYR/HRJhEJx5jDjoZwOLsbUZtdd93VZljThFWti7KDUCGlv27dOtuIEGnMBPHI9I2kVQeKdMC1T6SRj5zH2UYJ0muPtCJRR81hr1uAMwyA0YJJK/ooFfPmzavOCCYRCceYg6n7sMMOs3S1hFF2iCSQUlFfx+xQ/LJmzRqbWY1nKRekrUm7UEVJGxOlVEWcbCtssukWQHQxF/j1qIJdvXq1ig5zwCacXq9M2BG1oaiQzA3RxqRGZCUcEwAnKDdx/GmiNlSpdu3aVc19c0DE+vDDD7dCmKARSm6qs2bN0qQNEWmIHC5atMg+J/MQJELGaLgOHTqYOJJtoHa0kcwEx0i9XbOD5YeNCmtqUpFwTEhPRyJFhMdF7sgsN4FNmzaF/VIiA4VDQPqZ6tKgcPNl9CBCnD54q1atKuOrTA/0yjzuuOPUM7MEcK0jGJmuVYgARBRRADJz5kwTSuKna79Tp07efvvtF/ZLiSRVVVWW/SO6neQ0voRjgqKOy5cvV/qwDuiphTlehUSeeZSmT59uaZVC4GbcunVr84VRMLN169aSv8a0wTGlmp2PonAoMHrzzTetOfURRxxhVpVCUoY0BEfEIwQUWd9W9U+mgVR/UlOwpYhwb968ObFFMQ4Jx4SAz5GFjjC5yI4bi0UUIs3g30Ls4eUqptk0Nw9uyjStpgGwqwoWhYEPlyiZWpwUf/P+7LPPrA/p/vvvX9T5TY9HGoUz15oRhWkFwUg7rrSvnfUxf/58s0QEtf3EFQnHhKAimeAGeYpk0tqehyIYxAmRwlJVSLupEVSjUjQj4VMY33//vYl6Por8cZsWNkSk/EvhaUY80mmASVTYMigMSyP45zkvObYit/WHwiHOl6RHZCUcEwQnLL2j1EoiN9xMaJNAxC1tApu/lxQ1fsaWLVuW/Oezy3a+sMxekEKUEzaCU6ZMMRsKG8RSjsDj52HL4JHG0YRsBBGOTZs2rbMiPe288847dq5gj0g6Eo4JS8UiilQkUzeIJvq1JX1X6Ic0MosaRS1EpssBaW+qUbm50DOP6KYQ5d4M0fqEVDKbwnIVFuE7JQUJbL7S5CWnXRfFQoo21r2+zps3z6w72XqEJg0JxwSBEMKUy0KapoUtX4hGEB3jeKWhVxuzuokCkmriBlBOwUxEhgbLVPqrb6YoJ4wJxBrBpBc2gmRcyl1YhFClypoiu0ILy+IGGQqiaHjoRXboLIGvNulFMQ4Jx4TBBY44oKpQ1A2evNdffz3RvdoQb3izaA1RqYWfmzfNxF3KhhutqlKDiW68p2lMhxZ6nhFFp6k3jbsrkUHg91F0w/XE2pHkbgLOykOklUyWyM2cOXOsiKqYYqw4IeGYMLjp4MUhdZNWI3dQWBDZJdK2I4nQFoJKSMYuck5w06sk7kb+8ccf20Zm4cKFqrquA8QINook938rRQNqxqsSPWetw3rBRKNKwvQkZrezEUMwJLUYjBS1bE/BMjrvvfeezT9Pi/1JwjGBsCNmYaXCWuSGmcykYaiES9riT5EKopG+gEcffXTFRaMfUohMUaCP5owZM0zQitogqjk2EtfZIXJN71Ha4pCmDhNnycBXiZBMYqaCDTWbTlE3c+bM8Ro0aFCWgsOoIuGYQDiJKYAglZIGD18xMDqLyIEbS5YUsCsg2NhERKGhNAL9+OOPt5usesFlh7QnYxyTnP4sdBNElJHoF21x6Bta6ShjNogMY8fg+qIVS1LaKJGipkLYbaxFbr788kvLpBCBjsI6WykkHBMKYXNaU9B2RtQtsBDZVGMmweuI6HAzy0nFR8nQTlESqUUioEABlxt7KERd5zTpQJpxY7mIWoTPVdQSeULkxh0mkJGBIUuQltRrobz55pu2xrJJTxMSjgkFMzN9t2iLkgRBVE4wNRc6lixKkL5zbXCimu7kGLviD6r/X331Ves7qnNU+OH8decF0cWuXbtGdhqHaxKO/5IsT1SvvXw201SpFzNVKg18//33VnhIJXXafMkSjgmPOtIYl2kUon44TqQd4gg3LSIepEvwXkUp0pgLbrakwkhd411T5bVAKH744YfeK6+8Yt5j10g+6mlARBbpSqKjeIvjbBEi4KCejfXz9t+KtLADpQ0JxwRDaw8ij0ShRP1wc8IQjgk/TrB4IRq56SIa47L75XgzApLxcLxmfFVxvuGWInJFGjbuke9C2bRpk0WgOQ/wMnbu3NnbZZddvLhAIRoiAvEYRwsGGQBalIlgPtA5c+bY+sX7njYkHBMMNyCijrQKwCMk6ma//fazxtVEHeNUZY0A4waLaIzj1AIWXl47ApK/hegp4oGPaStqO+GEE+xjmnA2Bd5vhDPTh4hGx/Fc5jrs0qWLndP8XXEZa0pbMu4TUY/sRoWlf4uGc39NIxKOCYcdETcidkeifjCEs3iShoi67w4jPlV9ruF2KefzhoGLlBKtoffj1KlTLQISd8+YyI7bIHCtAR5GbsRRqJguBie+FixYEJt1hNZtiF6lqOunqqrKJhaR0cMfn0YkHBMOixjeG6JoaRmRVYo2NvQ9jLJgIaVLRR/m7KjfmPKFNCVRG7xWzAXG75aGiDnXJ39r0q9TrivSovytbBBo+5JEGjdubB5zBGSUr1FakSEeqVpPq00iHz74m50prdFGkHBMAQghiiWo+BP1Q9NbxDYiMsqikXY2SV3sOV+bN29uPjeaLLu0ZVJ65WWDtCb+uLikNwuBv41CKFpGHXDAAfb+NmnSxEsiRKO4Pml8H9U+se5cI9Oy0047hf1yYsHs2bOt1Rkb27QS/dJLUZIU4DHHHGPCkV1S3FOalYIpHqRKOXZR8f6w0DNOkteGET9OxQOFgGDk5uv+dhpk814gOkhthjkRRwSDaBaV0ghE3jua7nPepkGo7LPPPrbRcwU/eKijBNdP2noQFgObgPfee8/r169fIjfsQdGqmxIQjCwS3HhFMIg4ItCiNOmEiBSN3WminbZxYJy/NGtHTHIjnjx5sgn7NFdix2Gqhnuf3KhJxFQaRKNj//33t/WX1HVUIHVO1gKrgAjOtGnTLNpI7UCakXBMCdxsqVzFE5d0D1WpYJoM80fxtOBVChNXoUm/OPx/pG/TCH83EWBSnEQc6f3ooo5xbIGSVJhY5XpzUnBBA28ibmmFTR4RKo4Hvt2wcZ02ojaFJ8pwH+C969SpU6qjjaBUdYrAt0dz2pkzZ3onnXRS2C8nFtCgeuPGjWZwR7QhJsMQjURuSPkxci0qafMwwW6BqOfYsIgzNYdoAG1QqHYkJRi3NDZ/E9doHK0knJtMLCIFzYOoDO8FUba4vQ/lhGwBhUGcs5ynYYBg5DUwHSaphUmlhnWGYi7O5+bNm3tpR1d0yryOpEyYq8oCJoJBqxtuhmGlREmV4xFLa+uHunA7fyLqeD6JoNACZcqUKdUzu+NUEERENQ5TfxxEeSn8IB1NlNGlo4kukpKWaKxJs2bNLALrrulKwwaL1jsMhjj44IMr/vvjyqpVqyziqGjjNuKzQomSwM2VIpkZM2Z4vXr1CvvlxAJu5ESCgHRxJW+GNJpl0aLqMaqzeqMAizlRLh6IGY7Zd999Vx0Nw9SO8I5yU2n6GnJzIsod5ek/7hrgmCLSEetUmEb9dUcFioNcwQxrSyULZoickTZnMywBlF+0kfVXYnsbEo4pg0W+Xbt2FpFp37594qtyyzFmCgFSiVYMpJSImpGS5aYsgoGdgCIaBxMeiIYtXrzYmkvz/pFyCsN2UBcI3eXLl9vri5IA48bJMaSQAq8v0SrOSaKKVOQqHZ0/HD9EYyWbnSNWsUFQWCeCwxrMJunMM8+U2P4butpTCAsHVY3MhRXB4eaIJ4goIHN1yw3RMyKdYXmhkgLp3+7du1ePsaMwwFXKsxlAFInsIBbZZNKNgdQq0SpnmUDcKh1dGAgQvHKsw0TEP/3007L+vtWrV1uWKcpDDaIcbWTjrnX4JxRxTGmbGebBvvTSSxZ1THO1Y76w2OMPxSfKbOVypD5JV+6www52g05r9XQ5znlEjuur5xqJc8PGuoEI4njzYHOQxgIkJ2CIKpKJoO8iwoZUqjsuiriUJ6K1cuVKsxGVYy1mDjXRdt7POPlnowBtpLgezjnnHJ37PhJzFtFi5t5777VdFSkffCSXXHKJVY7Vxx//+EcTUdn6bz3xxBM1niNC8cwzz3ijR4+2CxLfw5AhQ6zdRJxo1aqVdcCnZUb//v3DfjmxgcWDyBXnGY24SfuXMuJCZSoV1Gmeg1puEIVO8HOjpmCMmwPRNSIzCCTeV6INRNlIJ1JRn6TImiv04lisXbvWqmzpEQr8ra5HKHPuSauK8sE9iilQ9FUkw1DKSmfuhWxy2Qi0aNGiZD83DXD906mBtTip041SLRwRc1dffbX1WBo0aJC1gUDYXXHFFd4DDzzg7bfffoG8f1dddVWN57K1xeDnPfnkk1ZYQvSJFM4NN9xggoL+enGBnScRswkTJthH0qIiGJwrtMVhsS+lmGD+KYZ50iK6WVcGrltEEg+a+vKeOlFFBSoVw9xAeJ9ZVxCRvDfliD64qGg5Rl2ysWajS1qeB//GB8q5RnSb65+/DYERx3ZAcYZzi/UE4Ui7NPrtlsL7yHnL5tYFCpK08akE2FnwmauINKHCkagZoXgEXMeOHe05GgSfccYZ3iOPPOJdd9119f4Mdt74oOqCfn7PPvus17dvX+/KK6+053r27Olddtll3t13322/O04pLka5EXXEw8SxEsFhYXeLO6lrREUxsEDRJgPh4C/sEJWFCJsDAdWjRw97f/2Cy4lGos6IPL6HVDcPBBjPuf6S+UBauJjxb1STf/PNN1ad7R60f0EY4utkY0I0kfOWCIqzQRB1lV0lXLhv4D1HOHK+lUI4cv5RxMf7H6ViqzjA5pFoI1XUQQJPaSMRwpEiD8L7RM4cXHj0XKK/GH6mIB3yOVlYbHPtuIkuYi5GOPovzj59+phoZYdC25Q4LVak2EeOHGnR2jQPbS8UimSotEaEF9Muhxs685dJJ8lLE61rhLUlM32IMKSaGDGJ6GfdYG1g84hwJFKJUHOCkgdfT0UyXkLEAe8zUSA+8ntYd+iDyOc856YF8b2ISn4HP9MvDPl+1yqKTaDzbvIa+D6+BuFAlPSII46I1cY2bZAFwjbhrn/Ok0KjzwQ52BjI7lIYCHgi9AMHDgz7pUSSRAhHWliwM8gMxeNzHDdunPnG6hNFLLBEF/joxrpddNFFNWaqsmvHG5XZGoXf4/4/l3BEYPgr5yiAiAIIFf4ePJ4XX3yx0hl5QqSGHSkpZs6NfOdHIxQQDHyv0tPxgZt7Zk83hKMTZhSUOLHHg2ggH4EbEmlJP5wDpBOxwRC19G9e8VhxbhBNpKKfc8WJUf/6hIBEaCAUMwUiz4no40Qj3lp8pwjJfK0D3FvwSVNsIwtS/uD1JRiFfUDHL8HCkYWY3XQm7iaOYKtLOPJ1p59+uqV12OWz28AjSRTuzjvvrK5E4+fgAcqMCLnfU1eLlrFjx3rDhw/3ogZ/y4knnujdf//95odhDrDIDzYLiALmgFOlHrQ/IKKRil4ilUpPxx9/xWpd6V+eZ2PqIoourc3nCE5SlmRMeI6Hy5aw9px88sk5f3+xdgkRHYhMU21NNoNCraDdG4h+E+0meyHRUxi03+G6I2MpYiIcWTwJ0QeBBZU3mMqxbKlo95ybIJGLCy+8sMa/WdSJIlEIw87DFb3wc7KlDoL8nt69e9sC4N8V3nTTTV4UIIVGqhVPBwImytM1oghRWlelTvQ7iE+NVCUbFPxxqnZMF0QD/ZFC/zlBZBDRKBGYbjgPiDaypiAe+bw+nyLnD5t/16Bd5A+dFfCan3DCCVmvURFR4UjKj2roIDz++OPVVYHO2+PHPVdImmbAgAHeQw89ZBeiE478nGyiNsjviboBnWIiPJoUGpGyF/nBhsKlCuuDAgsijaSgSCfJdyaEyAShSIU14pF+gowJrAtaSWGzYuMqn3T+EPnHskUGUdN1YiYc6Z14zTXXBPpalyLGuJ6t8757Ll/fmROBRINoz+H/fcxmzayYdL8nysKwPkivUlw0depU83ao8XT+uIgA5wyLONHbbAs4kQG+FqGphrxCiFwQ9SLaGCT4gWXG77MV+YE4Z90ePHiwjmE9RO6uhTjLN+KFSR0zMGluf3EHRnJu0IWU09PDLbMtwkEHHeSNHz/e0sz+hqDMwXX/H2eIftEs9uWXX7aLR7vWwsDviLmd8xHvrTuOLOoIRTyNeNlUiCT8kJ5WzziRiSuOocDKRR7dhpNOIGTFuPdw7yxHD9A0wNo8adIk0xKZRW+iNom4cx1//PFWIENfNQdtMvDssVvz+x+ZksDDgS8RkZjJo48+apFFxJSDwgcu2BdeeKH6Ob5mzJgxFqGjgXCc4W+jlyWmbCrERWFgSsczSjW/m4mMmMQvu2rVKvu3RKMQIh8QibTZoSKfz9mYUpBHxkvrSXFgHSJQhLdRxDDiWAj0Ths1apR3yy23WKjZTY7hwjrvvPNqfK1r3D1ixAj7iOAcOnSo9TMkTQ5cmJxIiEbEol8QnHbaad7TTz9tOxTa8MycOdOinb///e8TEd5m/BUVeUQdqURPwt8UBjTy5hzh3AAWfDYZ6qsmckFEacGCBRZRClqZL9ID9zXuSdybuEchFhGNPEfFvSgMPOcEnegoEme7WSVJhHBE3AwbNsymtzz33HMWRWQcIF5JJwZzwQJNVJKdG8ZYxCY3/QsuuMDGF2bu5KjAxoBMex2+nrTjtdde63Xr1s1LAq49D3O/WZwwZ4vCoHCLc5F+bHiU8mmrIdIHUSRaNLmRh0Jkgp8fgUPgg6JM2shJ7BTffodsG5lLkSLhCIg55lXzqAsXafR/H8IvKAjJIUOG2COp0M6B9jKkVinwUPSjcNzUIgphiChpDrAQohgQimzusVixVovCwbZGlP+kk07Spj4PZIwQOdvzIJKJqorCwc5ApJF0CBFc53EUQoh8Yf0gIs00ITz12F/wUvNR5AfHkclyLlAigiPhKHK2gWBXu3jxYmtqLYKD3YEmsohFbBREbLE/4BnleEZl3KQQIj6wdvDwTyjD2kDEjOdFftBYnUk7p5xyioqL8kRHS+SENDVtHiZMmFDv9B3xk2ikPQYTCDKb0jMhhsIjCmYUeRTZNmtU42tihfBDNNGtGfRq9Ken8TzS8ouiUNcWTtQPRUUMu8DDz+Q0kR8SjqLOQpmePXualwYDsah/gSfSSAU1kweyNZ4nvUTkkWikEH7owUexnXrxCf+awtAJ+sJSbU/BXSYUgLKuvP/++1aIJ+o/pqSoqW+gI4vIHwlHUSc0QGfkIv48vDQiN4sWLbJII36ZuibvEHkkmgv+yUQi3RChJnKUbXyqSO/mHasLa0pdgyzIZOCnZpMvv2PdIMS5zmi2r01aYUg4inqh/QOTTtilqVVIbvAxMic2SK9Gbgg0BXd9QLXYi2+++cY2H3wU6YYesBs2bLDPmzVrFiidiq0Iq4NbW0RtyPQwIYboLQVGojAkHEW9YBzu3bu3mbJnzZoV9suJZEsHhB+paQR2UBiHiWeJNBS7YPyRQoh088MPP1iTb9aEQqLPtP3CWsS6Imry4osvWsEiE9JE4Ug4ikBgyKatDB328fCJbTA71vkaC4H0E2mo9evXW1GNxKMQ6YUixNdee83EH71f/eNyg0Jqm3XlnXfeqTFeN+2wVlNA1KNHDxWgFYmEowgMnfXxPJKyVmrVs3nePPAsMo6yUEhDUUyzdetW+duESClYFGbPnm1rAJt01tpCoVgG8UjUkk1p2iF1T3cQ0v4tW7YM++XEHglHERjGMmEoJgVCdCzNrFy50nawzPamSrpYEJ5U+JG+Juogn1s6ry+Kqvgo0gfvO5OlGIFLxW8x4HOkTQ+b0iVLlqQ+kzF16lRbV08++WQ7NqI4tEKJvGjSpImlVqdMmWK7t4YNG3pphFQSZnSOQalwCxoLPX5SipKKiTqIeIFoID0p0gWdGFhHGXnXpk2bkq4nFMsgmNLc4JqBC3PnzrWxgmm9X5Wa9J5NomC6devm7bDDDt4LL7yQup2sa4ROUQvtL8oBqRQ8OHidlGZKD9g/qKaVDSQ9rFixwkRNuaZJIRgRpJxXb7zxhvfZZ595aUtRc5+i12Xr1q3DfjmJQcJR5A3p1L59+9pix9imtLBu3TpLeWzZsqWsvwdRzkQDCpKwBNDYVyQfenpS9anensmHDTfFK0uXLrWsRfPmzcv6+4g+0koN8Vju9StKTJw40Ww/p556aqqjrqVGR1IUBA1nMXDT9gFBlXToqUb1ND0aGzRoUPbfR8sIekIefPDB8rwJkTDYEH700UeWSsYnXYn1BOsL3kk2+2nYnNAflwfTz2T5KS0SjqJgOnXqZEUdzz//fKKrgWm1w0KPaHQNdisBv4dIhBszRlESPd6EEPGG1Cl+VkZMVgo2oHgoscHQJzLJa8nnn39uVdRYityULlE6JBxFUbvYfv36WeqDbvxJBL/Z4sWLvd12280igGFV5OGtpAcZk2bSEC0QIml88sknVvgGbEKzzbIvN4zYQ7Diz07quD1sAAQz8HZSECNKj4SjKAoE1YknnmgROdrTJA2EIgstxuowPTL4Hjt06GBinek9pLmEENGHzeeyZcvMX0iv1rALCmkq7uZes44krfUX6+OaNWvM14gfX5QeCUdRNETiSKmOHTvWZoEmAaJ6LPSkc9i5Itii0K6lffv2NhObxr4Sj8kC/9kJJ5xQdA8/ER2w8LCOMCiANZJG/1Ep0qBYBkGL59F1i4g7rInTp0+3TTZ2AFEeonEGi9hH5ZhlzYI4evTo2LcTQfxGdTFFwNLYlwiom4sddgRDlAauH6JBUREWonhWr15tVh6yFhS6Ran5NGsJ3RsQkKx3cfep8/pJUdP0nClnonxohRIlAcM1LXpoHcMOAU7GlQAAO+dJREFUO66QSsI4ToqDxT6qPiAWRwQGIpcWQVR9i3jDuffmm2/aRxFvXOaFIQGIGCw9UV23EY9skuNeMEMrKwYz4LuPQoYoyUg4ipLB6D0WocmTJ8dSyNAkl5031YeIRqI/UQeByzQEBAce07hHe9MM5x/XDR9FPOG9o23XjBkzzDvI5i7qPrudd97Z1u04rHe5oHAQ+06PHj28Ro0ahf1yEo+EoygpXbp0sd31qFGjYpf6QDDSU41FlGKUOEBEFN8U/immUDBtJmlmdyHiwObNm00wIv5p24U3Oi7Qm9ZlWJi2Qvo6Tq13xo0b57Vo0cI78sgjw345qUDCUZRcfPXv3998PRTLxCEChsB1hSZUG0Y9QpAJvin8U23btrUFP0o+KiHSwNq1a73Zs2eb8DruuOOq/cdxg/WalDVdMuLgnSa1/uyzz9qa3atXL619FULCUZSc3Xff3evTp4/1P2QRivrCQ3qaVEec/T1AioabFosofwsjzaJY4CNEUnDiiiwLUX+6HtD9IK4gvA499FBv06ZN3rx58yItHhG5NPlmQMPAgQNjFeGNOxKOoiyQNmAkIX5HKguj6kdC2JKaIT0d1UKYQqDA4uOPP/ZeffXVWPpN0wiCv2XLlrGLeKcRRMuqVau8adOmWcYCawuFMEmIeCGC6dpAw/IFCxZENmuEsOX1EWmkobqoHBKOoqx+R8bljRw5MnLTTkjpuoa8eHuS1juP2awdO3a0jxTOEH1U0UW0QXwceOCBsfHXphU2mqwdZFQYuZrECt4999zT+vOy+Yza2g00+KaKmvnbtCcTlUXCUZQNKgrxO+J7HDFiRKSECykYFnxmt1KVnEQQIG5hXbduXSRvAOInsBfwPsXdMpFkiN7TYJp2O2w4mYOcROHoWn6x+Y/a+kjLHe4n+EhpmC8qj4SjKCv4fQYMGOCtX7/ee+mllyIhGIkYuJmtu+yyi5d0mKDQtWtX80CSdlq+fHnsKt7TwNdff23pNz6KaOHStbSsIcpIb0a83EnHRb8XLVpkPvAoZIro2MH7wX0lqaI96kg4irLDiDyGzVOpR6+tsGCx4fdT/Rhl03c5cP5NUvMrV670XnnlFUv3CCFywzrBRos2V6wfbDRJ4ca552GhAQCGO3AswmTKlCnehx9+aKIxafaiOPF3Yb8AkQ5atWplLSuogsM/U+l2FSz6GKmJfGL8TutYN5r9durUyaIHHA/E4+GHH27PCyF+4tNPP/UWLlxomy2GG7CGJKH4pRDw3hLtY8gAUT6OR6XBU0oHDJp8aw51uKTz7ilCgagjaR78KZVOx5FqoVcjjXnTXoFH+onjQKqetD03SCHETyxZssSijEQWSUsfcsghqd1sOugVy4NNZ6U7NVDhPWbMGNvk4tsW4ZLuK0FUFIpk6LeFv+65556rWLoYIzuikakCpM3FNvBoUXntdu/Lli2zBVqEA5EcChHk2woHIoqugI9uBBSV0VRfKdGfoFclqXoCAJWCzS1NvvFoq8l3NJBwFBWFGyOV1vRAmzhxYkV6hLHwd+7c2abCiJoQRWEhRsR/9tln1maE3paqwK482AVo4C7bQOWhiTTjAok0AhtMNlQSKbXh2HBcWC/oAlBOSI8jGslQEXRIUq/dOCPhKELxy/Ts2dOKZUgHlYv33nvP+heCmirXLyBpgs7caxZpbqL4u4RIMmQj3GaJjIi8c8EhizN//nzr9VgOCCowtpZimEGDBlnEUUQDFceIUCDdwXB6JsuQFmJiRimhchgj969+9auS/tykg/+TNNQHH3xQPa6QaCQPbqyifDDffdasWTa2Lmq985II5zcbJEbVUTBH30IRHHpY0nOUFlJsOEudvqZfJht/MlQMkhDRQXcCERpU927evNl74YUXLJ1cqt0+O1RSTowAa9asWUl+ZtqijwcccED1vxGRK1asMBFOul/pu/KRtjZRlYbUJ+sDQsQ1yN91111TX/hSCKwDFNkhHOfOnWvDFBhXWAro+MC4VPrPMjtbRAtdLSLUheeUU04xz8wzzzxTkupefga7VIQPlZCieGifxM2V40qEhpZGUZ1fK0QuQb569WrrX0pVMNkOVyAm0Vg4HDtardFerVS9LckWkaLm57Zr164kP1OUFl0xIlRIf+Jf2Wmnnbwnn3yy6DY9+GConi516jvN8N5gLSCFys0BbyrFBELEAfrHTp061foAsgGik4D8cqUVj0QeGzRoYBFdfKOFQlcHimHwwZ988snKbkQUCUcROniMBg8ebJ6jp59+uqBZvfQV27Rpky00SqeWB6ZmUEDToUOH6nFrWAK4MSsCKaIEAsZ5dIEUKoKRDRBTUER5wFfOZK5CxCPfQ/CAdea0005TJDjC6J0RkYDF4owzzrAKvdGjR+clRIh+EQXDuyTKD8VMroUPUzWorJw2bZpNoZGALBza8CBu1I6ncOjDyGg8Ioz+1jpExHRcyw+ecgIBTHhhbQgKvX2feuopWz+4D7gZ2SKaSDiKyMAC369fP/MgMZM0CPQSw5hNRIEUtagcRAQoLqD3IMVNztAu8VgYNP7mOKoBeP6QpaD9FoKRqBe+XJpVi8pCn0WyEnyk1VoQ6xEb0JEjR9paTuaJlLeINhKOIlKw2J9wwgmW7kAQ1gUGd3qwEa1M8/zpsKF1DO04GM1GJTvRSCI/S5cu9b755puwX15s4FhRgKRj5uUVqXKpaSr/KdKg2T9TX/DmisqDDxrxyAaovh6PbDIZBEGUmPQ0gl9EH7XjEZGDGcqIQhYUGnfTLyxXYQ1eOyKNitKED5ECFy1g8gxtfLgh0BuSKncKE0TdIgi7RZMmTSzdJ3KLDQQJ06e++uora9nCOtG9e3etAxGB94NMhOv9SlQx28aeKndsRr1797ZNp4gHEo4ikhB1ZEYpPR7ZwfobeeOdYWHCs0SkUUQPqla5oTNdghs8aSt65x1++OFhvzQRY8FIqxbOJ6KynGP0+HOFcBKN0cKJRorniAYThfS37KHZ/cyZM03wU7Qk4oOEo4gk3AzYhRKFwf+CYZoWDYhGRAhTCkhHiWjfOIieIRipeHc3EnptUgVP9TuePiHqguyDK8iihyiRa9YCTdeJB7xPBAEY6+j8j9iQ8LFjb2nbtm3YL1HkiYSjiCykNk499VRrDs4DDwzpTyILMr7HB274rn0PIP5JyZLGRhAgIEvZQFjEHyKKVOkTseZ8QWBgg6AhtFptxQsyQwhGNvxvvvmm2TAmTJhgliS6CIj4oWoCEWmIUg0cONCqpocNG2YjCtmhql1DfGG0JOkpCmqwHNCYGYHgqmPTOnaPcxqfV9rPbdo7EY0ivUk6muvdRaYlGuMJoh+hyLX+4IMPWnsk7Eh6P+OJIo4i8pDaYK41VbrLli2z6AOCQ8Q7mkzRDA8aNTvj/PLly80TRWsmHkQk0wLndNrGZLJJoA0LGweyCBwDUtFEqBs3blxtbxDxh6kwZIwYINCrVy+Jxhijq1JE3hDPAnPwwQd7119/vTWJffTRR71zzjmnRvpTxBd/hI20NSAkKIRASFBQk4Y2HbQw2rJli3nCki6YEBFsEPC6EmWmdQ7pad5vPLEiWRA9ZpQgvvT+/fubdx2rSosWLSQgY4hS1SLSN1L6ObqJMKQ7zjrrLPPMIB4pshDJgveYOeOksvFFEXVyrWlWr15tTcZpxULfvqThCr/ymbgRFxCHbAa4pgH/IiKZ4inatnTp0sX6sYrkQRU8HvWmTZuaaMSjznhBnn/77bc1MCCGJHtbK2ILwgAjNQuMv3qSyATicfjw4dWRR3xQIlkQhcDXysP/HB5XRAc3HyrruRlJcEQTeiwyDtTNkUcg4HMjU4DHTQ37kw+pabJEbBAGDBhQ3TKJc4AWPPhZeY6sgiKP8UFXroik74l2DbThaNOmTa22G7/4xS9MPOJ9VOQxPZDCxOvKA+sCqU03OWTdunXewoULrV2Le05UFlquIOpdcdOiRYtsfCiCkX6L3bp1q7aXSDQmHzIETz75pNlPKHDMtF/QSYHhDWSUOE9EfFDEUUQOZs0iBhGNuaKJVFmeffbZ3mOPPeY98sgj3plnnpkKH5zY1t4D4cjDQQqUqBYRDmCzQTSSAhtRPhDqHHciiy7Fjt2A44+fDf+qGnOnD4rcRowYYZs9RCOb/Gzsu+++ttHI9f8imkg4isiBIEAE1jeijhvUueee6z3xxBOWuh48eLAtRCKdLX54EIVEyPBwUS08kVTjU6FNWpuPiM+oRb1I1VEcEsWUHdYRxkiSBcA+4iYAcVy58WMpoCKca9b149Ss6HRCy53nn3/epn3169ev3kIvrlsH163fniKiSWKEI4vZvffe682YMcPae7CIXXLJJTVG1eUCc3YuGGl3++23V++u2T1l4w9/+IMZvEVhkM7iJsQOlWKIoHONSVsTecRHQ/Tx9NNPt7nIIp1w7pAac9XZQNQLsYjoIZXKuUYbIPpIIogQlvw/QidM0cZGiHRu2CAESfcjYilqmTNnjolGjhtim9fJ80SJ2rdvn/gKcBEcPIvjxo2zjcUpp5yS1+aMqDXTZai0JlsgoksirngWuquvvtrK+wcNGmRpktGjR3tXXHGF98ADD9S4iWTj2muvzZouHTVqlN1cMmEGLyZvP1SCiuJ2qXhieO9cFW1QuMENGTLE2j3gqcGE3axZs7K9VhEviDK6AhqEItW8TiCy4eRmB6RU2YggjCje8M9FT2K61bW6cpN8KGbhwb+xgtAvFXHIsWNDh7jmeb8YkGgUDjYYL7/8snfMMcd4PXr0yHsThv+VbBN+R643CmpENEnEVT99+nQTHjfccEP1CKPOnTvbfGP8b9ddd12d30/rj0xoE8CJny2KyMmd7XtEYbBQIBrxRNF+pRBIjxFtfO6556z1A6MKMeQL4Ycbkt83ixhiggViEhGJcPJPrpk1a5ZF39jMkN5GWDLdhX8jsPhahGUpPFpE9d544w3z9iJei4XXjbBD6OEZ5kEqn9fN30mKkKbbZGjoqcjfx82biL3/9x922GFFvxaRXNiAvPrqq3Yfprk3995CI/ecj2zuKKziWq0v6CPCIRHCkZOWm4E/5cwNgerLyZMn2wKazxxcvp6fScUXLT+ywQLMoixTb/EmaiLFiDy/16UQeD+YZz1mzBgTkNwQW7VqVbLXKpIJawOCKVtDeUSci8QhLJly4vrOce66UYnc5BCQpNiIzvH1/B/Pc17yIGXu1hPEG4KOG6x7IEJ5nvOWNYjfw4OfwTpDeph0O4VA7sH3ucgMPS75fqqbefDzmO3M2kjDbdL0vEYEor/VEf9PFkWIfOH8nDRpkkUbOYewLhQL2TtnIZFwjCaJEI4s4EQBM/0U+BzxW7Bg5uOZwGfBwp/Lb0Qhxj333GOLNh7K3/zmNxaerwtMv/62Ma76M+0Q2cDTUipfIudAnz597CbNe89NmFm3QhQCG9BcYw9ZXxCJTqjxcDYLPieK5wQeIo40rxOOeLFdM2wHEXdSxnwvkU0HaxfXCMKVtcl/ruPL9Kf0+Df+YM5/FyV1rzVt4wxFeeGcHj9+vFk9Tj755Ky2rkIhyu02aIjIJFpF4kwihCNRABbdTFyBBYItH+FIlJIoBB4fPyzUXBxENtmt0zuOlgNXXXWVd8stt9iki1yMHTvWBKfwqt8T3h+KFEoNgh6PDTdPdsOIRywMUaxWFfGF6F2umemsD36bCzdZ/7QbIpkIR3dz5CNRSYQljZHZULlIpBOjCFiiOnwdN9LMjTIZEiEqAecyldNLly71+vbtm/X+Wwzu3GezRDQTz7FGzEaHyAlHFlhSMkFA3HFyIQyypaLdc/x/UEj1cKKysBMh8EOLmNtuu63Gc/ijaEZ911131Skce/fubWkjf8Txpptu8tIIUZV33nnHKtYL9TTWh/OnIh6nTJniff311yYmo9aCRaQDzjv/uZetPyk+SyKNrDOZTe/dz8i3cEyIUsP9dOTIkTYyEGtQOSPZXA9smJgiRkFq0G4bImXCEUFBNXQQHn/8cUsVIQ6yTYtwz/H/QcHbyPcFbYtBZABBQjUvPqJcnsjM8WlphfQd7zHptXKJRj94brjZTpgwwcbVsdDlcz4IUSm4SWKr8KephYgSeGxpfUYhF31zDzzwwLL+PjZLBBgQjhSOEZzRiNHwiZxwpEDimmuuCfS1bvfB7j3b2Dn3XD67FNLU+ILy8cU5sUhYPZdwFNv6YFKtjuG5khXPFMiwa8VW8PDDD1u1fbaIjhBhQgpaERUR5U3/008/bYVaQ4cOrVjq2FnE8Pfip6ToVZmjcImccGThJIKXDxTGMKeWNLf/hMJ/gQcpaGUWBSwImxNPPDGvKmy8jiAxUr9wZD4pfphK+w3xuFLERGSY3p607tE4OhElKIoh/UehWC7vpBBhtUx74YUXzJNOr+RKR8Xx9GIfo5uJRGP4JOIdoIiFAhkqFf0h9WnTplnk0C8C2TXxyMYrr7xi4jNXmpqfma3b/cSJE02YKBWdHVcUgMEZA39YRSrskBGPRB8pVGJjIUSUvGMrVqzIy5MtRDmhaGv27NmWraGDCFO6wrJSEJGn7oB7tGs9JcIhchHHQqBilikvVDa76SNMjuEEO++882p87ZVXXmkfuRCypakRf25qRCa04EF0kvrk6+gzRbU0kYLLL7+8TH9dvEHQz5s3r7qpcdiVzdgQWPw4P5g0wyaBzUXYr0sIIaK24ccbTnqYTiKkiKOwTtKNAL86Rays3ZqJXnkSIRwJYw8bNsy7++67qxs/04Eer2TQptJU+jIrmXF1uULh+CxISxOyx8+ICGEmJ1XVQWZipw0itBiaEfJRMvzj0enfv795Y9ks4IWlD5l6hQkhxLYBFwRXuC/SFzdKrZ7IIFIk89prr5l4pFuJrB2VJRHCEQhhM6+aR11kizQCAtOf6s4GPdQ0YSEYVN1hZuZ9oTl61ESZa9eDp5ZG4YhcNg1agIQQaYZoHl5wUsFnnnlmJGdGs04jHkmjIx4Zdai56ZUjER5HET1fDOkNUgikqKN8QbOTZnGkcOehhx6y1LoQYUVS2MDmU5gnRCkhwvjggw+azQs/eBRFo4M2a4hHil+jfI9JIhKOoizRPHygNGyNwyxvFkfaS+Dpuf/++82yIEQYN0I6DqjJtwhjs4+tiKJB/PuIxji0hsICddBBB9nn9FEOOjxEFIeEoyipL4bm3ggwUtRxipywWF5wwQXWUJ5eZVOnTrVdtxCVgusG77R/NKEQ5YaaAIpLX3zxRcsQ4dmPW8EJBTO00qNRuK6f8iPhKEq2+OA1oT1RXHd9+GboUYaPddasWTaZ6Kuvvgr7ZYmUwLk2ffp0nXOiYrBe09eWNlB4vBmhGzU/ehBIVeOlx1uPeNSmv7xIOIqiYUQjopGdHp6TOBeYkGZnTCEte1hU77vvPvP9CCFEkli0aJGJRrqInH/++V6LFi28OMMoQsQjxT1vvfWWxGMZkXAURYFYpHqaiCOiMUptd4r1PV544YW2GOH74W/EBySEEHFfsxlaQes62tbhZ0zK8Ap8mbTNwzYV18xXHFApkigK0hqMEWRGN30tkwQ+TSKP+B1feuklb82aNV7v3r29HXbYIeyXJoQQebNlyxZv5MiR1kWC3rWtW7eORFPvUk8Io2E5fxfikTR20v7GsFHEURS8a6WKDahqYypMUoVx9+7dzf+DD4jUjvu7hSg1msMrysX7779v1hsKsJioRmQuqYKKv4tUNU3CFy5cGPbLSRxapUTecEHOnTvXRgnib0wD+H+ouubGjnikelypa1FKmLBEFIiPQpRyvX711Ve9J554wrJDWHD22WcfL+mwVh944IHmUV+yZEnYLydRKFUt8l6EEIyM6aN1Q5xa7pTCP4MfiPmtjJ1877337EavvntCiCjCQAPWqo8++sg7/vjj7ZHUKGM2aA7OPYuoI9kjPJ2ieBRxFIEhwrZgwQJL1eKNSYqhOh8Qyn379rVZ16SumY9OCkiIYqEND2NP1Y5HlGKtZoN/77332vl07rnneh07dkyVaHTQm7dly5a2XtOuRxSPIo4iryar+GOOOuoob8899/TSzKGHHmrj4caMGWP9HmkD0a1bt1hMyhHR9Q1TvKAGxqIYEIpjx471li9fbms1vRnTXtBHypqiGQoeRfFIOIpAUJ2GKHLVasKzgqAhQ4ZYw9nJkyd7K1eu9E499VTzEQkhRKX5y1/+4o0bN84+P/30071f/epXYb+kyOBEIyNl6TVMJFIUhoSjqJd3333X27Bhg4nGOE4VKCeIaLyeTZs29Z5//nnvwQcfNB9Rhw4dVCErhKgI9NGlZRhj9xCLtA1LSk/dcgRBiMZyL9t3333DfjmxRMJR1AkXGB4+UrMSjbnB7zl06FDzqDE2jsIZvJAU1AghRLmgapgCmK1bt3qnnHKKd+SRRyorVAfcy7CD4Ndnc68MUf5IOIqcIBgJ6x9yyCHeAQccEPbLiTwI606dOnkHH3ywRR8xpuMvatWqlRZyUS877bSTnSt8FCKI55xN6uzZs616+KyzzrJJV6J+Dj/8cKu2nj9/vvk/tcHPDwlHkRV2r0uXLvWaNWtmDb5FcEh/XHTRRd6kSZO88ePHWw+xnj17anESdYKHWNEPETTKyNpCW7QuXbp4bdu2lTUmD9jIE5nF9/jLX/4y7JcTOyQcRVbwx+BpTOpEmEq07UEsEq1lgb/nnnvM99iuXTsbgSVENp/a2rVrrTlz2qtgRXaYwTxlyhRrtcMG9fzzz/f22muvsF9WbMWjC4rQpocIbqNGjcJ+WbFAdzBRA25cXEQIHonG4qFo5pJLLjHvI9MbFi1aZIKySZMmYb80ETG+/fZbi04TmZZwFJl9GVk7Xn75ZRM4DB7A1qAoY+m8/Bs3bvSOPfZYpfsDoLNOVPPxxx9bVR6RD43TK20KknQS6Wv8a8OHD/dGjx7tff3112G/NCFEDKa/0CsW3zQbzksvvdTmTEs0lg7S1gRK3njjDTUJD4AijsJgGgzpj8aNG3tHHHGEijnKwB577GETHDBk0/eRXW737t11vIUQtSCy+Nprr1m2Yuedd/YGDx5shXei9GAfYojDnDlz7IFnVM3CcyPhKGxaxdy5c03Y/PM//7NETBnh2JJiotcaxTNEHmkLQfo6jSMchRC1+eCDD6qLXxAx9IbVVKrywvElVc29ENEuciPhKGxnRfU0fjylPyoDEQSmzBBtnDBhghXPtG/f3gpoVDyTTnjfGeWp9z+9YF8hG4FliBY7F154YerHu1a6qJECRqBdD83C5TeujVaolEcaoWHDhkqBhARi/eKLL/ZmzpzpzZo1y6KPXbt2tSa1ivymr5MB6TKRPohwMbqUtDSQgVD/1/AnpmHhIuLLiELxExKOKeXLL780Lwc9rAjPi3BTJJ07d7boI9GG5557zt4bmodrnmp6IMKBgCDiqMh/OqAIkUr6qVOn2kYesdixY0eNC4wABx54oLd+/fpqz6Mijz+h1SmFfPXVV3Yx7LjjjrZQiWhAG5ZBgwZ555xzjv37kUce8Z555hnzOYl0bOZot8JHkY4m3g899JA3atQo85eTeaDNjkRjNKADBoKRdPXrr79uH8U2JBxT6KFBNOLl+PWvfy3DdQSh5QaNffv162c73rvuusubOHGi2vcIkZD2OiNGjPAefvhhm5l89tlne6effrq3++67h/3SRAaIeO6T9FhF6IttKFWdMr7//nvza9AHDPEoognepsMOO8wasbPbxQP5zjvv2DSfNm3aqIBCiBhOfWEIAFW7CJK+ffvazGT5GKNfPMq6S4ZObEN3nxQJRsQGnkYqd0U84D2j2po2Sdx08EJx46GhuApohIg++Fa5Zrl+8bHiYcRXrmxPfHCikSEZH374ode6detU+5AlHFMiGklPUz1Nh3wRP4hQnHTSSVZ1y6xaCmhoDkx/N3pCSkAKES1IQ9MlgWwB00jwk3O90opLxBPE/saNG7233nor1eJRwjHhOGMvHg0VwsQfmoRTQEOD4GnTplnxzF577WWpFNLaEpDxhZFnPXr08H7+85+H/VJEkRFG+jDSXgvB2LJlSxOM8jAmo4Dx6KOPtggy7/FRRx2VyjVXwjEFvcEoqqA6TDvd5ECbHqqvEZCkwDDbU5mJgGzRokVqd8JxhhuQvKvx3qQzThTBSOcKPMrYgiQYk8Uee+xhQRiijkuXLrX1Nm1olUowa9eutR0vVWFEM0QyBeRZZ53lrVmzxgQkrT2ISiIg8UBKQMaHrVu3eosWLTLBoZYs8bICzZs3z5s9e7Zt0nn/uP6ITolkstdee1mqGvtXGpFwTLioYLdLPyqRbBhPNmTIENssICCff/55+0jEg8pNCch4ZAjwT2lObnwEIylLvMZUTNPAn+utUaNGYb80USHx6M6Djz76yBqGpwUJxwROIiBd0rhxY2/vvfeWaEwZ++yzj3fGGWd469ats/Flo0ePriEglQoVojjwiyMYKTj87rvvrOCQzge77LJL2C9NhMDGjRtt+g8Csnnz5l4a0F0kYaIRwy5No/fdd9+wX44IETYNFNHQPgIBOXbsWGvlQ3qFB73JhBDB2bRpk/fGG29YP1UqpimMQDCmNV0pftqss5lgtjWFbQcffLCXdCQcEyQaFy5caJEmFrQ999wz7JckIpJOGTBggN30KJQiSoJ5n0pPGomz6Akhcq+rK1asMMHIR7ynFBpSHKHNl3A0bdrUNhN/+ctfTDwmPW0t4ZgQWNRoTEqjaKJNQvihYIY+kJ07d7aoNCKSjQaRaQQklYFqAxN+k2EKKzShInxIQdODkeuEWfGsqUx6YcMlu4fIRrNmzUw8puH8SP5fmKLiCPyMiiCJumDcJFX2iMX33nvPIik0E580aZL1JyOSoorecGAEKHPKRbhzpBGLbK5or0Nv1D59+tgGK439+kR+HHLIIdWf05IpqS3wJBxjDn38SEciCCQaRVCosmbiDI9PPvnEBCQTLvBD0sYHYUmBlagcCJUNGzaYzUTj6Cqbjl65cqVdA2ymiPgyoYmNlNqYiULYsGGDFVCxEU/iOirhGGPef/99M+S61jtCFNrQtlevXjb/2qWxSdOxIaHFCNXYikKWH3oAcvzpAaiCi8pEFyl04fH555+bYOc6wC4g4S6KXVP33ntv6+/JBiRpNQcSjjFl9erVJhqp4JJoFKUAq0O7du0slU3khRsqc7EnT55s5xltR/DxyAsp4uxdpHUKGyM84TvssIP5Fjm3sfsoHS1KwXbbbWf1Bj/++KNNmCGCnaQJQhKOMYQpIUyYoHIrLX2jRDhpbKJgixcvthvts88+W13AwY2WFIxutCLqcPNetWqVbYQYEUeDddbOfv362fqp6KIoB9ttt511OCFljRVCwlGEDiZ6dspClDsKyW6ZB15Ibr5UY5POJh2DgERIqjWJiBq0oHKpaEavulGc2C/kXRSV2oS3bt26hp82CZttCceYzbLFa0ZKhYcQlQSh2K1bN/NC4q/lhvzKK69YKps+ZrT0IUopP2RhYAFg+oisAIWzefNm66VHOpoxcBQNUuzFBofiwSTctEW8+Pnfrmfu30QfiULGfeMi4RijsUZEedwCKESYu2g8jzyY0ctNGuvEuHHj7LH//vtbCpDWFL/85S/DfrmxgdYdTCIRwSGCQyScFDSCkUlJ9NEjFd2/f387D9PQV0/Eo93Wz372MxvCgJc8zq16dEXFABrQslPBI5HE0n4RX/A8ujGG7KiXLVtmN3GKal5++WWrzEZA8uD8VcRHlEIs4vNGKHKuEWWkyIXCLWayH3TQQfZvIaLE9ttv7x177LHea6+9ZuKRCURxzc5IOEYcFkUijY0aNbKbMzsWIaIIiyBpGB5Ur1KZzc2dhXLatGl2DiMgiQKpoXJttmzZYn001Y6nNkzkoMCF84kHzZU53ziXeBxwwAGKLIpYRB1//etfe7Nnz7b7eseOHWO5DupKizh4yfBD0AtKolHEBSI+eMt4UMXKTZ/oENXZLJqkafBFcsMnrRh3z48ofVSRTAvVqJw7PL799lvzgFKMxQaEzYfWRBHHtbFt27bWsSKOohEkHCOKq76iFxSfyzAv4gqRIOeJpDUKaUZS2ogCCmxg1113NQGJkOShec3pg8pnv1Dk3whDBCIpPiKLNFKO681WCAdFWzy4t7MWsvYRjYwLEo4RBK8YTUNJ+anNiUgSCAEa1rum9ey6nVAguo6XF2GAN5LFlAfFNuq1lzworGKQgROLtM8B3nsi1WwgOE/idEMVIh+IotOInhGFRCHjss5JOEYMbqR4wojSaMEUaegTST9S15MUn58TEkQjSWsTbaf9FAKSjgKM8tKGKl4QWWGs39q1a+3xwQcfeOvXr7fn8b6yQejUqZOJRc4JIdLAjjvuWF0ww6x0Po+DVzf6rzBluw+qrbhRYqBVZaBIGxSFYM9wFg2iUE5IMveV4hHAE4mIdEKSB6mfOIMY7ty5cyLS9BSvrFu3rloo8jmbYqBFE5sAfNsIRhUCiTTToEEDu98jHimYadOmTeStaRKOEYI0HTdLQtZxvwkKUSykrGnhw4PFlGsD35tfjMycOdMquIHJIAhIJyhJecZh9+5P48exPQcbXqKH7j3hI5Fj4O/hPWHykBP5cfwbhSgnDRs2tDWO6ygOBV/xWVXrgKjEqFGjqpvA4p258847LWqRT4Pt//3f/zXxhoGf773ssstsoctk/Pjx3jPPPGPNZrmp0WiWuafFgq+H9HQSIg5ClENIssDyYEoNuKikP7pFQ3Lat7AAU4WLoMx8RPEaIyLH+kURSNTStRxnoogc68yHE4msXayXrGNOwPNeqZhFiPrBssEDuKbIQERVRCZCOFKl+dRTT1n1HakPbhz5LthXXHGFFaUMGTLEohQjRoww4fjwww/XSKWMGTPGu+2227zjjz/eGzhwoM3tRaSy6x48eHDer51WJVRVUXHKTU4IUVhUkhnEgGjEbM7u3Ymbd9991zx2CCAg6kUld6agJI0a1mL9ww8/mPClTVFYsB7ROzabQHSRXY4PNziOF61xOPYIRY5nVG90QsSFH374wdLWjHilQDaKJEI4Mh+XKCBegenTp3vXXXddXt8/evRom2t63333WX8wIGx8zjnneM8++6x3wQUX2HMsnA8++KD5EW688UZ7rlevXhahfOyxx7zevXvnbdpH5PK6Eb1K4QhRPPiDnO8xc0H+7LPPaoghxOXixYu977//3r4G4UOPSa5j9+D69P+bB1aSOEXSEMxskL/88kt7kPJ3n/uf42ucuCYqizjkBkaEl88Rh5qnLUT5oLKa0cJ4uikQjGJ2JBHCsdi0DmLTzdZ10AYCtc/ECycc58+fbyHkPn361Pj+vn37epMnT7bClu7du+f1u4lyduvWTaJRiAosyPQB5OEHoYRwQkgiLP1iilYZfHSFHf6f5UQk6w+FbDxI1/o/5vqcrAbC04nPbCLUCTg2pnxONJDNKw+Erv9jrs9ZX9zfQiTWwe9jzXGimLQyayD/dtFE/q44iWMhkkLjxo3NLofmiGIUPxHCsRhYlKnaPOmkk2r9H0ISzyM3DRZRRqgBC2xmxJM3d/ny5TmFIzclJiE4VqxYYR9Jg3/yySf2EEKEixODmSC68E7j82M9QJC5j2wmEWo8iGq6B2tLPvA9REDZhObbz40IIN/DA3HqPndRQ6qYEYo8WMvqEoXYbsjACCHCpUGDBiYewVlFokDqhSPpGRZ8UjCZuOcQfSy8CD8W6EwvIgs0b7BfGGYyduxYb/jw4bWe/+///u+S/B1CiGSAP1MIIfwQuDr88MO9KBA54cgunZ13ENhZF5tKcSo+2w7fNeB2X8PHXO09+Nq6dgT4H9u1a1f9byrAb7/9du/qq6/2DjroIC+N0AT4pptu8q699trqSSJpRMdBxwB0DLah46BjADoGP2Un//SnP0XqGEROOGIGpcI5CI8//njRB9M12c4mVp1h3n0NH/EZZYOvratht6vazATRSKo7zfAepv0YgI6DjgHoGGxDx0HHAHQMthGlaVmRE46khK+55ppAX5stvZwvpJiJFmZLM7vnnODj9+F1ol2FP12N6CTlXYrXI4QQQggRVSInHBFfPXr0qNjvo6iF3o803s2E3m+09HBV2/RaBL6WljwO/k2K3f2/EEIIIUQSiV6ddwWM53gn/NDMG/HnF4+04Xj77be9jh07Vj9Hex4ilDQB98O/6evmF5NBBDJ9ItMcpdQx2IaOg44B6BhsQ8dBxwB0DKJ7HLarcs3CYs6jjz5qH1evXu1NnTrV2uvQCwnOPvvs6q+7/PLLvQULFngzZsyofo62GkOHDrWPgwYNssppJscQRWRyDNMkHC+88IJ3xx13mKBk/iqezJdfftk7//zzvTPPPLOif7MQQgghRCVJjHA87rjjcv6fXyRmE45AH8XMWdWXXnqpTXTJZNy4cTZRhp5rTFWgAfhpp52mZrlCCCGESDSJEY5CCCGEEKK8pM7jKIQQQgghCkPCUQghhBBCxLMdT9xhPOGoUaNsMgxV2sy3vfPOO80zGZSNGzfW8ltedtll1hook/Hjx3vPPPOM9/HHH3u77767179/f69fv35eFPjyyy+9e++91/ykTNVh9vcll1wSqJlrXZ7V1q1b29QdwGc6cODArF/3hz/8wevSpYsX12Pwxz/+0XvppZey9jp94oknajzHecJ5MHr0aO+zzz4zb+6QIUO8rl27emFT6DHgb6Lw7NVXX7VxW/wcCt46d+5sRWyZDfdznTMXXHCBHYtKwCCAhx56yJs0aZK93qZNm3q/+c1vvKOPPjo1132hx4D3+ZVXXrF1k3MY/zidKihuzGx+PGDAAPvbs03o+rd/+zcvzseBgsxs42npNzxlypRUnAu53l/YZ599vKeffjpS131dUHTL+0N7P3QBx4Fe1UHbDuazfs6aNct75JFHrHMMRb0UCZ911lk5J94VioRjiVmzZo331FNP2Y2b/pBLlizJ+yRjcs7WrVvtpOcNp8KbGwgLSsOGDWu0AbrtttusnRDiaeHChSZSv/32W2/w4MFemHDjY5zi+++/bzd5Xjeihr/tgQce8Pbbb786v58xU5lwQ0GUZ1t0EEjHHntsjedatmzpxfkYuJvFVVddVeO5X/ziF7W+jp/35JNPer169fKaN29uC8gNN9xgBVthiudijgHn8S233GLv4ymnnGJN97meWBjnz59vc94zC9LYVJx44ok1nqtkf1Ve7/Tp061YjjXgxRdftPeP67KuObNJue6LOQZ//vOfreVI9+7dvT333NPOGbpYvP766yY+MjcKvK+Zm8ZsxYxxOw6Of/3Xf/V23HHHGj2HM0nqucB5T9DFD0LywQcfzLr+h33d18WWLVtsI8A5zaQ42vyVY/3kOvnP//xP78gjj7T/X7lypffYY4/ZwBLOpZJCcYwoHVu3bq3asmWLfT5t2rSqDh06VM2fPz/w9z/55JP2Pe+++271c6tXr67q2LFj1X333Vf93LffflvVs2fPqquuuqrG999www1V3bt3r/riiy+qwmTq1Kn2d3AMHJs3b67q0aNH1fXXX1/Qz7z11lurjjvuuKoNGzZUP7du3Tr7PU899VRV1Cj2GNx88832XtbHJ598UtWpU6eq22+/vfq5H3/8sepf/uVfqk499dSqv/71r1VxPAbff/991cKFC2s9/8gjj9jPnDt3bo3nec5/DCrNkiVLap2LXKeDBg2quuiii1Jx3RdzDLKtky+++KL9vHHjxtV4/rTTTqt1DKJEMcfhoYcesu/lOqmLJJ8L2Rg+fLj9vMw1Iezrvj6+++67qk2bNtnnS5cutdc7ceLEqlKvn2eeeWbVueeeW/XDDz9UP3f//ffbPZO1pJTI41himDJDk/BCYXdGxIhwtH9WJ83Hp02bVv0cERd2Mn369Knx/bQGYqc2Z84cL0xIOzVq1KhGGoHQeadOnSwa5uaAB4Wv52eymyKFlQ3+7mwzx+N+DBhzSSQqF/wsZqjz3juIxHFukP7MN+odlWOw/fbbe4cddlit5zt06GAfMxv5O0jn8Ajjb6UHLOlSB1Gyk08+2d4Dhg+k4bov9Bhks/O484b+vNnges+MTEWBYo6DH677XI1PknwuZIM0PVaVbGtCmNd9kKxRoc27g66fXB88yDj509KcC5w/rC+lRMIxQhCWJrzMDSQTbihr1661lBbg+YLMr8X3QEpj+fLlXpjw+0kVZKZX+DtIo5DSzwfC8F999ZXXrVu3rP9PKuCEE06wlDXeljfffNMLm1IcA74OLwwPFly8ne4ccHAukNJCaGT+Hvf/STkPAP8b+NO3DjyhpDo5T2jIP3nyZK9ScJxJx2VaCdz7sGLFisRf94Ueg1x8+umn9tE/hMEvnHivue7xxI0cOdKLCqU4DqSeue5Jwd54443V573/d6TlXOBvYaOYy7Md5nUfhfXTvdeZvsfddtvNfK+lvgfI4xghvvjiC9tBZNuduOcovqE4ggWV3Ry+r8woDRFPt+CGBYvcEUcckfPv4PVhlA4KCwE7N7w8frig8LywI+MiWbdunXnD8NHgr8lnDGTUjgFfd/rpp3vNmjWzXeMbb7xh/hb8LniE3M6Sn8N5kOn3858zSTkPAGM8N6M2bdrUeP7QQw+1nThRCX7u888/bzdcojaZUZlywO+s79pN+nVf6DHIBX5x/t7M6x7/OB45PF4cP7xz//M//2M//+KLL/bCppjjQCHQqaeeat5e3ld8i3g9KazA1+aEWJrOBScEswUOwr7uo7B+uvc61/Eu9bkg4VgHRAKCpj4RNcVOjnFhdi78bD/f/zV8zFUpxdeWMmRfyHHg97vXnPn/kM/rYwEg7YJQyKyuxHCMOdwPEQgqye66666SCccwjsGFF15Y498UuXCj5OZBCsMVvfBzgpwzcT8P4PHHH/feeust77e//W2tc+Huu++u8W8qCqngvP/++y1yk1lcUWoKfR+iet0XQinPRcTChAkTbPOUWUR166231nqvf/e739mmkYriXHaWOBwHCkn8MN6WCBNiCAHpKoXTci6w7lBtT+StSZMmtf4/7Ou+nARdP13KOtfXZmapikXCsQ6YQ011UtAbWmaqMF/cCZ7t5uxODPc1fMTXlg2+tpQXSyHHgd+fzb+W+XcEAZHE9+VKU2fCbpsFgypjRkmW4iYS9jFwkJKjwhTx5IQjPyfIORP3Y8AMeqoqSdkHiSRw0yJyw8Zi2bJlgSpZi6HQ9yGq130hlOpc5Fz705/+5B1zzDHe+eefX+/Xs0nh2sCiwkhZ0pZhUuprkrWPjfC8efOqhWNazgXeT7zamYI6Ktd9OQm6fjrBmOtrS30uSDjWAakh+i0FoVDza6bg4QTIFlZ2z5GOdb+PoglK7f2pCi5UUjeleD3FHAcMvXX9Hfm8PiIPO++8s9e2bdvA3+PEIj2wSiEcwz4GDhYAzhPeY//vo8UD6Wx/1DvznInzMaC3IX0tiSDn01rCvff+41Uu+Fu4wWVS3/sQ1eu+ksfAD943zjPS0bSUCtqDrpLvdSWOQ7a/L/O6T/q54NZ/LEn59KSN0rlQDEHXT3/qmixc5tf6i+5KgYRjHfBmBG3SWQq4OFgs6VeYCc1DaQRM1ba/RxVf60/H8m9C+6XsYVXIceD3483htfiNvfh0/uEf/iFQD0Png0EUYRDPFobPBV7HXAUUcTsGfkg5UEnpLxagNxhNgDGP+1M5nDPu/+N8DPg76OuJ8fv666/Pq5mtOw+yFVeUGtejDWuFvyCgvvchqtd9JY+Bg0IgGngjhIYNG1b9d0ftvS73cciETSF9DP3vb9LPhcxuGvmI7SidC8UQdP107zUR1hYtWtS4fyLe/ZXtpUBV1SFCO4LMliKYwLnw/TeRDz/80C5AvC4O2nQQqaABrB/+zQkVZlGI+zsw9tLt3vH5559baxEih34RyM2CRzbwtnDR5EpT8zMz4UKZOHGimYZLFW2r9DHAu5LNl/Loo4/aTcRfGNK+fXsTU/ifHHwN5wIVdZjH43oe0GKCBrh77bWXpS5zpVyynQccPxrGs3kIMqmnWLg+iQCNHTu2xo2Pc5HF3EUCknzdF3MMiIwQTeYGSTPwXDd9okj8Dj+kbLGmkKbMZ0pXFI9DtnOZojie91/3ST4XgnbTiMJ1XyoQeRwHv/0g6Pp5wAEHWEZo3LhxNa4NzhuyUJnFZcWiiGMZ4Obu7z3G2DR2DcD4LMfNN99s/g3/SUHfJaJH3CzpFE/VHIZvduD828ENdOjQod4dd9zhXXfddeYFwhfEaCc8QcX0kizVosHFS2Uzx8F1vEcEnnfeeTW+9sorr7SP/J3Z0hSIv1w3g3vuucfERqtWrezr2JWzUNGq4PLLL/fiegxYLHh/Sc+wIAD+LRZSbh6IRX9aBv8P1cYsOqQlZs6caefc73//ezuH4ngMuAEQfcJuwLmf2ZeOSJwTxVRS0teMxZQbEiKEGxQ3JaYpZDPplxpuhlR3YspncWc0Gm1COCe5ntNw3RdzDChuIVJEMcyiRYvs4eA4uIkhs2fPtokY3AyppOX8YJ1YtWqVteIKO0Vb7HHgWmasJlFohAHHAX8vUaXMnohJPRfq66bhiMJ1H4TnnnvOBLBLMXMO478HirmwYnGcOD7PPvusndf5rp+MIcTiweYL/zstvggm9OzZM2tRUTFIOJYBihf8cCI7/MIxG6RmaLXCzFoWRzez9tJLL621A+dmQ6SJE40TEQHB1wU1EZcTbnykmqh446Ihgka/MU5sJ4Tqg4gLoXdM79nGbQE3E242XCDcQLgAMUNTVR32brOYY+A8nXj7WEw4D1h4uTEiJDKPBxXYVBkjmvl6+qeR3g1aUBTFY0BK3i2u9913X63/x77ghCNNgRcvXmzii4gUERcENDcoNhWV4j/+4z/sBsZmkRsFN38ipaTa0nDdF3MMXF8//xxiB9/rhCM/j8IrRAWChGOBqMLGgFCJCoUeB65ZzmVXFMjPQEyzpnFep+Fc8HfTYJQs62E2onLd1wfvj3/2NiLZCWUKuXL9ffmsn9wvbrrpJutpzFqCyKSQ6pxzzvFKzXaMjyn5TxVCCCGEEIlDHkchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEICUchhBBCCBEIzaoWQogKMH/+fG/MmDE2W5cZyzvuuKPXpEkTm6/cu3dvb/vtt8/5vcy4//u//3vvgQce8NavX+8NHDjQO+aYY7w///nPFf0bhBBCwlEIIcrIX//6V++OO+7wxo0bZ2KxTZs23j777ONt3brVmzt3rnfnnXd6Y8eO9YYNG+btueeetb5/7dq13qpVq7yhQ4eG8vqFEMKPhKMQQpSR+++/30Rj8+bNvZtvvtnbfffdq//v//7v/7xHH33UGz58uHfVVVfZ1+6www41vn/WrFn2sX379hV/7UIIkYk8jkIIUSbWrFnjjRgxwmvQoIF366231hCN8POf/9w777zzvK5du1pUceTIkbV+BsKxcePGXtOmTSv4yoUQIjsSjkIIUSZeeukl78cff/R69erlNWrUqE4PI4wfP77G83gh8UQq2iiEiAoSjkIIUSYQfdCqVas6v+6f/umfvN12281bt26d9+mnn1Y/P2fOHEtnd+jQoeyvVQghgiDhKIQQZcKJwD322KPer3Vfs2nTphpp6oYNG3qHHXZYGV+lEEIER8JRCCEiBKlt+O6776zq+thjjzUvpBBCRAEJRyGEKBO77rqrffzkk0/q/Vr3Na6ABtH47bffyt8ohIgUEo5CCFEmDj30UPs4b968Or/ugw8+sBT1P/7jP1YX0ZCmpuk3jb6FECIqSDgKIUSZOPHEE72f/exnVi1NhXQuHn/8cfvYvXt3+3rS1RTGtG7d2pqGCyFEVJBwFEKIMrHffvt5AwYM8LZs2eL9+7//e43CF0Ag0gB80qRJ3s477+yddtpp9vySJUu8zZs3K00thIgcmhwjhBBl5IILLrDxgkyPGTx4sBW7+EcOfvTRR5aS/q//+i9v7733tu+ZOXOmRR7btm0b9ssXQogaSDgKIUQZ+bu/+zvvd7/7nde5c2ebSb1o0SJvxowZ1p8RWrZs6V177bUmJh34G1u0aFFn03AhhAgDCUchhKgANAH3NwJnHOFFF13krV+/3quqqqp+fvXq1RaF7NmzZ9afw/hBhKcQQoSBPI5CCBGS//HGG2/0vvjiC++3v/2tt3HjxupoI8jfKISIIttV+be6QgghKsrs2bO9ZcuW2djBLl26hP1yhBCiTiQchRBCCCFEIJSqFkIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQgZBwFEIIIYQQXhD+H0cLL/owMD4oAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -729,7 +714,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "5447d326", "metadata": {}, "outputs": [ @@ -737,10 +722,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Polarization degree: (80.71 +/- 5.23) %\n", + "Polarization degree: (84.51 +/- 5.47) %\n", "Polarization angle: (87.12 +/- 1.88) deg\n", - "Normalized Q: -0.803 +/- 0.052\n", - "Normalized U: 0.081 +/- 0.052\n" + "Normalized Q: -0.841 +/- 0.045\n", + "Normalized U: 0.085 +/- 0.055\n" ] } ], From e21f3c429544cad77d91c5ddd1227eddfbfcd6c0 Mon Sep 17 00:00:00 2001 From: nmik Date: Tue, 20 Jan 2026 11:46:54 -0600 Subject: [PATCH 28/31] fixes unittest and addresses Eliza concerns (I think) --- cosipy/polarization/polarization_stokes.py | 31 +++++++--- .../polarization/Stokes_method.ipynb | 55 +++++++++--------- .../polarization/test_polarization_stokes.py | 57 ++++++++++++++++++- 3 files changed, 105 insertions(+), 38 deletions(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index bc990141..e37d82d5 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -380,12 +380,16 @@ class PolarizationStokes(): Path to detector response sc_orientation : cosipy.spacecraftfile.SpacecraftFile.SpacecraftFile Spacecraft orientation + fit_convention : cosipy.polarization.PolarizationConvention + Polarization convention for the fit + show_plots : bool + Whether to show plots or not """ def __init__(self, source_vector, source_spectrum, data, response_file, sc_orientation, background=None, response_convention='RelativeX', - fit_convention=IAUPolarizationConvention()): + fit_convention=IAUPolarizationConvention(), asad_bin_edges=None, show_plots=False): ###################### This will need to be changed into IAUPolarizationConvention hardcoded! ###################### @@ -409,6 +413,8 @@ def __init__(self, source_vector, source_spectrum, data, # else: # self._data = data + self.SHOW_PLOTS = show_plots + self._ori = sc_orientation self._convention = fit_convention @@ -426,6 +432,8 @@ def __init__(self, source_vector, source_spectrum, data, self._nbins = self._response.axes['Pol'].nbins print('Number of azimuthal angle bins used:', self._nbins) + self.asad_bin_edges = asad_bin_edges + # self._binedges = Angle(np.linspace(-np.pi, np.pi, self._nbins), unit=u.rad) self._reference_vector = self._convention.get_basis(source_vector)[0] @@ -455,7 +463,7 @@ def __init__(self, source_vector, source_spectrum, data, self._data_counts = self.get_data_counts() - self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data, show_plots=True) + self._data_azimuthal_angles = self.calculate_azimuthal_scattering_angles(self._data, show_plots=self.SHOW_PLOTS) self._background = background @@ -480,7 +488,7 @@ def __init__(self, source_vector, source_spectrum, data, self._background_duration = 0 self._background_azimuthal_angles = None - self._mu100 = self.calculate_average_mu100(show_plots=False) + self._mu100 = self.calculate_average_mu100(asad_bin_edges=self.asad_bin_edges, show_plots=False) self._mdp99 = self.calculate_mdp(modulation_factor=self._mu100['mu']) @@ -624,7 +632,7 @@ def convolve_spectrum(self, spectrum): def calculate_azimuthal_scattering_angles(self, unbinned_data, show_plots=False): """ - Calculate the azimuthal scattering angles for all events in a dataset. + Calculate the azimuthal scattering angles for all events in a dataset. Parameters ---------- @@ -673,12 +681,14 @@ def calculate_azimuthal_scattering_angles(self, unbinned_data, show_plots=False) return azimuthal_angles - def calculate_average_mu100(self, show_plots=False): + def calculate_average_mu100(self, asad_bin_edges=None, show_plots=False): """ Calculate the modulation (mu) of an 100% polarized source. Parameters ---------- + asad_bin_edges : array-like, optional + Bin edges for the ASAD. If None, default binning is used. show_plots : bool, optional Option to show plots. Default is False @@ -687,12 +697,17 @@ def calculate_average_mu100(self, show_plots=False): mu_100 : dict Modulation of 100% polarized source and uncertainty of constant function fit to modulation in all polarization angle bins """ + + if asad_bin_edges is not None: + self._nbins = asad_bin_edges + print('Custom Number of azimuthal angle bins used:', self._nbins) + print('Creating the 100% polarized ASADs (this may take a minute...)') polarized_asads = create_polarized_asads(self._spectrum, self._source_vector, self._ori, self._response, - self._convention, self._response_file, self._response_convention, bins=self._nbins) + self._convention, self._response_file, self._response_convention, bins=self._nbins) print('Creating the unpolarized ASAD...') unpolarized_asad = create_unpolarized_asad(self._spectrum, self._source_vector, self._ori, self._response, - self._convention, self._response_file, self._response_convention, bins=self._nbins) + self._convention, self._response_file, self._response_convention, bins=self._nbins) mu_100_list = [] mu_100_uncertainties = [] @@ -958,7 +973,7 @@ def simulate_unpolarized_stokes(self, n_samples=100, show_plots=False): return _qs_unpol_, _us_unpol_ - def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plots=True, ref_qu=(None, None), + def calculate_polarization(self, qs, us, mu, bkg_qs=None, bkg_us=None, show_plots=False, ref_qu=(None, None), ref_pdpa=(None, None), ref_label=None, mdp=None): """ Calculate the polarization degree (PD), polarization angle (PA), diff --git a/docs/tutorials/polarization/Stokes_method.ipynb b/docs/tutorials/polarization/Stokes_method.ipynb index 692aeddc..fc7e9577 100644 --- a/docs/tutorials/polarization/Stokes_method.ipynb +++ b/docs/tutorials/polarization/Stokes_method.ipynb @@ -25,12 +25,12 @@ { "data": { "text/html": [ - "
13:53:49 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
+       "
10:42:52 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:47\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:53:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=666818;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=592802;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m10:42:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=753510;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=712313;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#47\u001b\\\u001b[2m47\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -45,7 +45,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=17970;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=682580;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=539094;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=715852;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -55,12 +55,12 @@ { "data": { "text/html": [ - "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
+       "
10:42:53 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=747434;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=738963;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m10:42:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=600551;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=594049;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -70,11 +70,11 @@ { "data": { "text/html": [ - "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
10:42:55 INFO      Starting 3ML!                                                                     __init__.py:39\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=126496;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968859;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m10:42:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=552615;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=298482;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -87,7 +87,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=865136;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356097;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=226250;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=888216;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -100,7 +100,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=217546;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389598;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=177418;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662591;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -113,7 +113,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564841;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=485750;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=794853;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=469960;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -122,11 +122,11 @@ { "data": { "text/html": [ - "
13:53:49 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
10:42:56 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:53:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=797738;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=43119;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m10:42:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=254056;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=871483;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -139,7 +139,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=141670;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617301;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=319190;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=848592;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -152,7 +152,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780359;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727712;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=404745;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=503003;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -161,12 +161,12 @@ { "data": { "text/html": [ - "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "
10:42:57 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
        "                  require the C/C++ interface (currently HAWC)                                                     \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=655623;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=536519;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m10:42:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=744482;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=681910;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -181,7 +181,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687634;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980422;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=222570;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=966236;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -196,7 +196,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905227;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=822273;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955734;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412794;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -206,11 +206,11 @@ { "data": { "text/html": [ - "
13:53:50 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
10:42:58 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:53:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=391953;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=916116;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m10:42:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=664471;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142732;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -219,12 +219,12 @@ { "data": { "text/html": [ - "
13:53:50 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "
10:42:58 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:53:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882371;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265069;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m10:42:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=881316;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360777;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -239,7 +239,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=823517;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=323345;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=104856;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=914817;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -254,7 +254,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=321511;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=487320;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=219046;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=258154;file:///Users/mnegro/opt/anaconda3/envs/test2_stokesmethod_cosipy_env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -415,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "41cbf55e", "metadata": {}, "outputs": [ @@ -487,7 +487,8 @@ } ], "source": [ - "source_photons = PolarizationStokes(source_direction, spectrum, data, response_file, sc_orientation, background=background, response_convention='RelativeX')" + "source_photons = PolarizationStokes(source_direction, spectrum, data, response_file, sc_orientation, \n", + " background=background, response_convention='RelativeX', show_plots=False)" ] }, { @@ -663,7 +664,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "f19a7f75", "metadata": {}, "outputs": [ diff --git a/tests/polarization/test_polarization_stokes.py b/tests/polarization/test_polarization_stokes.py index b43a8197..3f95da96 100644 --- a/tests/polarization/test_polarization_stokes.py +++ b/tests/polarization/test_polarization_stokes.py @@ -11,7 +11,7 @@ analysis = UnBinnedData(test_data.path / 'polarization_data.yaml') data = analysis.get_dict_from_hdf5(test_data.path / 'polarization_data.hdf5') -response_path = test_data.path / 'test_polarization_response.h5' +response_path = test_data.path / 'test_polarization_response_dense.h5' sc_orientation = SpacecraftFile.parse_from_file(test_data.path / 'polarization_ori.ori') attitude = sc_orientation.get_attitude()[0] @@ -36,9 +36,10 @@ def test_stokes_polarization(): + bin_edges = Angle(np.linspace(-np.pi, np.pi, 10), unit=u.rad) source_photons = PolarizationStokes(source_direction, spectrum, data, - response_path, sc_orientation, background=None, - response_convention='RelativeZ') + response_path, sc_orientation, background=None, + response_convention='RelativeZ', asad_bin_edges=bin_edges, show_plots=False) average_mu = source_photons._mu100['mu'] mdp99 = source_photons._mdp99 @@ -51,3 +52,53 @@ def test_stokes_polarization(): assert np.allclose([average_mu, mdp99, Pol_frac, Pol_angl], [0.22, 0.20, 178, 82], atol=[0.1, 3.0, 5, 10]) +######################################### +print('Expected values for polarization:') +print('Fraction:', 13.73038868282377, '%') +print('Fraction uncertainty:', 2.1295224814008353, '%') +print('Angle:', np.degrees(1.4851296518928818), 'degrees') +print('Angle uncertainty:', np.degrees(0.07562763316088744), 'degrees') + +import matplotlib.pyplot as plt +chi_gal = data['Chi galactic'] +psi_gal = data['Psi galactic'] +fig = plt.figure(figsize=(8,4)) +ax = fig.add_subplot() +ax.set_title('Polarized source') +ax.hist2d(chi_gal, psi_gal, bins=40, cmap='viridis', cmin=1) +ax.set_xlabel('Chi galactic (deg)') +ax.set_ylabel('Psi galactic (deg)') +print(source_direction.galactic.l.deg, source_direction.galactic.b.deg) +ax.scatter(source_direction.galactic.l.deg, source_direction.galactic.b.deg, color='red', label='Source direction') + +source_photons = PolarizationStokes(source_direction, spectrum, data, + response_path, sc_orientation, background=None, + response_convention='RelativeX') + +data_duration = source_photons.get_data_duration() +data_counts = source_photons.get_data_counts() +print('\nData duration:', str(round(data_duration, 3)), 's') +print('Data counts:', data_counts) +print('Count rate:', round(data_counts / data_duration, 3), 'counts/s') + + +average_mu = source_photons._mu100['mu'] +print('Average mu100:', average_mu) + +mdp99 = source_photons._mdp99 +print('MDP99:', mdp99 * 100) + +# _bkg_qs_, _bkg_us_ = source_photons.simulate_unpolarized_stokes(n_samples=100, show_plots=True) +# _bkg_qs_, _bkg_us_ = np.load(test_data.path / 'simulated_unpolarized_stokes.npz')['qs'], np.load(test_data.path / 'simulated_unpolarized_stokes.npz')['us'] + +qs, us = source_photons.compute_data_pseudo_stokes(show_plots=True) + +polarization = source_photons.calculate_polarization(qs, us, average_mu, + bkg_qs=None, bkg_us=None, show_plots=True, + mdp=mdp99) +QN = polarization['QN'] +UN = polarization['UN'] +QN_ERR = polarization['QN_ERR'] +UN_ERR = polarization['UN_ERR'] +print('Normalized Q: %.3f +/- %.3f'%(QN, QN_ERR)) +print('Normalized U: %.3f +/- %.3f'%(UN, UN_ERR)) From b398051e0107562c712064b713d77325aeb392b2 Mon Sep 17 00:00:00 2001 From: nmik Date: Tue, 20 Jan 2026 12:13:55 -0600 Subject: [PATCH 29/31] changed response file for test --- tests/polarization/test_polarization_stokes.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/polarization/test_polarization_stokes.py b/tests/polarization/test_polarization_stokes.py index 3f95da96..1c14e371 100644 --- a/tests/polarization/test_polarization_stokes.py +++ b/tests/polarization/test_polarization_stokes.py @@ -11,7 +11,7 @@ analysis = UnBinnedData(test_data.path / 'polarization_data.yaml') data = analysis.get_dict_from_hdf5(test_data.path / 'polarization_data.hdf5') -response_path = test_data.path / 'test_polarization_response_dense.h5' +response_path = test_data.path / 'test_polarization_response.h5' sc_orientation = SpacecraftFile.parse_from_file(test_data.path / 'polarization_ori.ori') attitude = sc_orientation.get_attitude()[0] From 6bd3fc36c4ff8ac73df9efac3c433a63d0beb2cd Mon Sep 17 00:00:00 2001 From: nmik Date: Tue, 20 Jan 2026 13:24:56 -0600 Subject: [PATCH 30/31] removed old keyword from SC file call --- cosipy/polarization/polarization_stokes.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index e37d82d5..46e4537a 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -617,7 +617,8 @@ def convolve_spectrum(self, spectrum): else: print('>>> Convolving spectrum in ICRS frame...') - scatt_map = self._ori.get_scatt_map(nside=self._response.nside*2, target_coord=self._source_vector, coordsys='galactic') + scatt_map = self._ori.get_scatt_map(nside=self._response.nside*2, target_coord=self._source_vector) + # scatt_map = self._ori.get_scatt_map(nside=self._response.nside*2, target_coord=self._source_vector, coordsys='galactic') psr = self._response.get_point_source_response(coord=self._source_vector, scatt_map=scatt_map) expectation = psr.get_expectation(spectrum, LinearPolarization(polarization_level * 100., polarization_angle.angle.deg)) From ace3324f0801a7386e474167fd7aa90340811503 Mon Sep 17 00:00:00 2001 From: nmik Date: Tue, 20 Jan 2026 13:32:00 -0600 Subject: [PATCH 31/31] removed old keyword from SC file call --- cosipy/polarization/polarization_stokes.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/cosipy/polarization/polarization_stokes.py b/cosipy/polarization/polarization_stokes.py index 46e4537a..0bded79f 100644 --- a/cosipy/polarization/polarization_stokes.py +++ b/cosipy/polarization/polarization_stokes.py @@ -271,7 +271,8 @@ def create_asad_from_response(spectrum, polarization_level, polarization_angle, else: - scatt_map = ori.get_scatt_map(nside=response.nside*2, target_coord=source_vector, coordsys='galactic') + scatt_map = ori.get_scatt_map(nside=response.nside*2, target_coord=source_vector) + # scatt_map = ori.get_scatt_map(nside=response.nside*2, target_coord=source_vector, coordsys='galactic') psr = response.get_point_source_response(coord=source_vector, scatt_map=scatt_map) expectation = psr.get_expectation(spectrum, LinearPolarization(polarization_level * 100., polarization_angle.angle.deg))